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Preface

It is with great pleasure that this book of original articles is dedicated to
Ingram Olkin on the occasion of his sixty-fifth birthday. All four co-editors
of this volume have been closely associated with Ingram, first as his Ph.D.
students and later as his collaborators. Our understanding of statistics and
our careers have benefited greatly from his guidance and assistance. His
joie de vivre and insightful judgement have strongly influenced our personal
views of life. He has been a friend and mentor not only to us individually,
but also to our families and to our own Ph.D. students. His enthusiasm
for statistics sparked and fueled our interest in the field, and his positive
outlook and energy have always served as a source of support. We know
that Ingram takes great pleasure in visiting new places. It is our hope that
the “trip” provided by this volume through topics that have interested him
throughout his career will be as enjoyable and satisfying as any of his many
adventures in life.

When we started planning this volume, it was clear that our most difficult
task would be to limit the number of contributors without hurting the
feelings of the many statisticians who through their attachment to Ingram
would have wanted to contribute. We finally agreed to limit invitations
to those researchers who had been his Ph.D. students or collaborators, or
had been most closely associated with him as a colleague. For whatever
oversights we may have made in this selection, we sincerely apologize. As
it is, the enthusiastic acceptance of our invitations by nearly all of the
individuals whom we contacted caused us to fear for a while that we would
have too much material for one book.

Since Ingram has been an outspoken and vigorous advocate of high qual-
ity standards in publishing, we decided that every paper submitted would
be carefully refereed, and that in cases where the referees did not recom-
mend publication, we would abide by their recommendations. Although
it was often painful to do so, we kept to this resolve. Accepted papers
were required to be revised along the lines of comments from the referees,
sometimes more than once. For those readers who do not personally know
Ingram, particularly those who enter the field after this book is published,
we decided to include an interview with Ingram in this volume, and to
illustrate this volume with pictures of Ingram at various stages of his life.
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We hope that these features will provide an informative and stimulating
introduction to a person who has made, and continues to make, so many
vital contributions to the field of statistics.

The editorial task we set for ourselves required the full participation of
all four co-editors in serving as associate editors for the articles submitted,
finding and dealing with the publishers, and preparing Ingram’s biography,
bibliography and interview. Even so, we could not have succeeded without
the support of the following referees, who cheerfully and enthusiastically

devoted their time to this project:

M. Aitkin (Educational Testing Service)
Y. Amemiya (Iowa State Univ.)

T.W. Anderson (Stanford Univ.)

B.C. Arnold (U. California, Riverside)
S.F. Arnold (Pennsylvania State Univ.)
R. Darrell Bock (U. Chicago)

G.C. Casella (Cornell Univ.)

A. Cohen (Rutgers Univ.)

D. Conway (U. Southern California)

S. DasGupta (Indian Statistical Instit.)
M. DeGroot (Carnegie-Mellon Univ.)

C. Derman (Columbia Univ.)

M.L. Eaton (U. Minnesota)

R.M. Elashoff (U. California, Los Angeles)
T.S. Ferguson (U. California, Los Angeles)
A.E. Gelfand (U. Connecticut)

C. Genest (U. Laval)

S. Ghosh (U. California, Riverside)

N.C. Giri (U. Montreal)

P.K. Goel (Ohio State Univ.)

D.V. Gokhale (U. California, Riverside)
S.S. Gupta (Purdue Univ.)

I. Guttman (U. Toronto)

L.R. Haff (U. California, San Diego)

A.S. Hedayat (U. Illinois, Chicago)

P.W. Holland (Educational Testing Service)
K. Joag-Dev (U. Illinois )

H. Joe (U. British Columbia )

J.H.B. Kemperman (Rutgers Univ.)

H.C. Kraemer (Stanford Univ.)

K-S. Lau (U. Pittsburgh)

S.Y. Lee (Chinese U. Hong Kong)

G.L. Lieberman (Stanford Univ.)

A. Madansky (U. Chicago)

C.N. Morris (U. Texas)

G.S. Mudholkar (U. Rochester)

J.G. Nicholls (Purdue Univ.)

J. Oosterhoff (Free Univ., Amsterdam)
S. Panchapakesan (S. Illinois Univ.)
S.K. Perng (Kansas State Univ.)

F. Proschan (Florida State Univ.)
T.R.C. Read (Hewlett-Packard Co.)

Y. Rinott (Hebrew Univ.)

J. Sacks (U. Illinois)

M.J. Schervish (Carnegie-Mellon Univ.)
J. Sethuraman (Florida State Univ.)
M. Shaked (U. Arizona)

K. Shigemasu (Tokyo Institute of Technology)
R.L. Smith (U. Surrey)

S.M. Stigler (U. Chicago)

D.S. Stoffer (U. Pittsburgh)

W.E. Strawderman (Rutgers Univ.)
T.W.F. Stroud (Queen’s Univ.)

K.W. Tsui (U. Wisconsin)

D.E. Tyler (Rutgers Univ.)

V.R. Uppuluri (OakRidge Natl. Lab.)
J.S. Verducci (Ohio State Univ.)

L. Wolstenholme (U. Surrey)

G.Y. Wong (Sloane-Kettering Cancer Ctr.)

We would also like to acknowledge the assistance of Anita Olkin in ob-
taining most of the photographs that illustrate the volume, and Mary Ep-
person, Betty Gick, Diane Hall, Norma Lucas and Teena Seele for their

assistance in preparing the manuscript.

The Editors
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Part 1

An Appreciation






A Brief Biography and
Appreciation of Ingram
Olkin

Ingram Olkin, known affectionately to his friends in his youth as “Red,”
was born July 23, 1924 in Waterbury, Connecticut. He was the only child
of Julius and Karola (Bander) Olkin. His family moved from Waterbury
to New York City in 1934. Ingram graduated from the Bronx’s DeWitt
Clinton High School in 1941, and began studying statistics in the Math-
ematics Department at the City College of New York. After serving as a
meteorologist in the Air Force during World War II (1943-1946), achieving
the rank of First Lieutenant, Ingram resumed his studies at City College.
He received his B.S. in mathematics in 1947.

Ingram then began graduate study in statistics at Columbia University,
finishing his M.A. in mathematical statistics in 1949. He completed his
professional training at the University of North Carolina, Chapel Hill, by
obtaining a Ph.D. in mathematical statistics in 1951.

During his tour of duty in the Air Force, Ingram met Anita Mankin.
They were married on May 19, 1945. Their daughters Vivian, Rhoda and
Julia were born, respectively, in 1950, 1953 and 1959. Ingram and Anita
now are the proud grandparents of three grandchildren.

Ingram began his academic career in 1951 as an Assistant Professor in
the Department of Mathematics at Michigan State University. He early
on demonstrated his penchant for “visiting” by spending 1955-1956 at the
University of Chicago and 1958-1959 at Stanford University. Ingram was
promoted to Professor at Michigan State, but left in 1960 to become the
Chairman of the Department of Statistics at the University of Minnesota.
Shortly afterward in 1961 he moved to Stanford University to take a joint
position, which he holds to this day, as Professor of Statistics and of Educa-
tion. From 1973-1976, he was also Chairman of the Department of Statistics
at Stanford.
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Ingram’s professional accomplishments span a broad spectrum, and have
made and continue to make a significant impact upon the profession of
statistics. He is an outstanding and prolific researcher and author, with
nearly thirty Ph.D. students in both statistics and education. The profes-
sional societies in statistics and their journals have greatly benefited from
his leadership and guidance. His contributions at the federal level include
his work with the National Research Council, National Science Foundation,
Center for Educational Statistics, and the National Bureau of Standards.

Over one hundred publications, five authored books, six edited books and
two translated works are included in his bibliography. Although his prime
research focus is multivariate statistics, his research contributions cover
an unusually wide range from pure mathematics to educational statistics.
Many of his papers and books are virtually classics in their fields — no-
tably his work with Al Marshall on majorization and related distributional
and inequality results. His statistical meta-analysis research and book with
Larry Hedges are also extremely influential. His text books on probability
and on ranking and selection have made novel pedagogical contributions,
bringing statistics to a broader nontechnical audience. Also of substantial
value to the profession has been his editing of the Annals of Statistics Index
and the three volume set Incomplete Data in Sample Surveys which derived
from the Panel on Incomplete Data, which he chaired (1977-1982) for the
National Research Council.

Among Ingram’s significant contributions to the statistical profession has
been his fostering of the growth of quality journals of statistics. He was a
strong proponent of splitting the Annals of Mathematical Statistics into
the Annals of Statistics and the Annals of Probability. He oversaw this
transition as the last editor (1971-1972) of the Annals of Mathematical
Statistics and the first editor (1972-1974) of the Annals of Statistics. As
President of the Institute of Mathematical Statistics (1984-1985), he was
instrumental in initiating the journal Statistical Science and has served
in the capacity of co-editor since its inception. He was also influential in
introducing the IMS Lecture Notes — Monograph Series. Furthermore,
he was heavily involved in the establishment of the Journal of Educational
Statistics, for which he served as Associate Editor (1977-1985) and as Chair
of the ASA/AERA Joint Managing Committee. In all these and numerous
other editorial activities, he strongly supports and encourages the major
statistics journals to publish applications of statistics to other fields and to
build ties with other scientific societies’ publications.

Ingram’s activities also extend to his work on governmental committees.
He was the first Chair of the Committee on Applied and Theoretical Statis-
tics (1978-1981) of the National Research Council, and also was a member
for six years of the Committee on National Statistics (1977-1983). He cur-
rently is involved with a major project to construct a national data base
for educational statistics.

As Ingram will happily admit, he is a prolific traveler. He has given
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seminars at more than sixty American and Canadian universities, and at
numerous universities in twenty five other countries. He also has attended
statistical meetings throughout the world, and has been a visiting faculty
member or research scientist at Churchill College (Cambridge University),
Educational Testing Service (Princeton, NJ), Imperial College, The Uni-
versity of British Columbia, the University of Copenhagen (as a Fulbright
Fellow), Eidgeniissische Technische Hochschule (Switzerland), the National
Bureau of Standards, Hebrew University, and the Center for Educational
Statistics. Anyone wishing to call Ingram has to be prepared to be for-
warded from one phone number to another.

In his travels, Ingram has tirelessly promoted and advanced the discipline
of statistics. On an outside review committee at a university, he will con-
vince the dean to take steps to form a new department of statistics. On a
governmental panel, he will persuade an agency to seek input from statisti-
cians. He has been an effective advocate for increased interdisciplinary ties
both in universities and in government, and has been equally successful in
convincing deans and statistics department heads of the need to reward
statistical consulting. At most statistics meetings, you will find Ingram in
constant conversation — perhaps promoting a new journal, encouraging
progress of a key committee, or giving advice about seeking grants or al-
locating funds. His public accomplishments are many and impressive, but
equally important are his behind-the-scenes contributions.

Ingram flourishes when working with others. Many of his published pa-
pers are collaborations, and his collaborative relationships tend to be long
lasting. Ingram is always bursting with new ideas and projects, and de-
lighted when a common interest develops. His enthusiasm is contagious,
and his energy and positive outlook (which are legendary in the field of
statistics) are tremendously motivating to all around him.

In describing Ingram, one cannot simply list his personal accomplish-
ments. He is above all a remarkably charming and unpretentious person,
who gives much of himself to his family, friends and colleagues. For his
former students and the many young statisticians he has mentored, he is a
continual source of wisdom, guidance and inspiration. All of us whose lives
have been touched by Ingram view him with deep personal affection and
great professional admiration.



A Conversation with
Ingram Olkin

Early in 1986, a new journal Statistical Science of the Institute
of Mathematical Statistics appeared. This is a journal Ingram
Olkin was intimately involved in founding. One of the most
popular features of Statistical Science is its interviews with dis-
tinguished statisticians and probabilists. In the spirit of those
interviews, the Editors of this volume wanted to include an
interview with Ingram. However, one does not “interview” In-
gram; one simply starts him talking, and sits back to listen and
enjoy.

The following conversation took place at the home of S. James Press in
Riverside, California in November of 1988.

Press: I am pleased to have this opportunity to interview you. How did
you initially get interested in the subject of statistics?

Olkin: To tell the truth, I'm not quite sure. What I do know is that in
my high school year book dated 1941 each student listed the profes-
sion that he wanted to follow; mine was listed as a statistician. I am
quite sure that at that time I did not know what a statistician did,
nor what kind of profession it was.

I was a mathematics major in DeWitt Clinton High School, which
was an all male school, and then went to CCNY — The College of
the City of New York, now called City University of New York. At
City College I was a mathematics major and took a course in mathe-
matical statistics. This was taught by Professor Selby Robinson, who
became quite well known for having indoctrinated many of the statis-
ticians who are currently at various universities, in government, or in
industry.



8 A Conversation with Ingram Olkin

It was through this course that I became interested in the subject.
Selby was not a great teacher, but he was a lovely person who some-
how managed to communicate an interest in the field. It may have
been that I was challenged to find out more about the subject.

Press: I would like to hear more about Selby Robinson, and your courses
with him.

Olkin: I believe that he got his degree at Iowa. He did publish a paper
in 1937 on the chi-square distribution. The book we used in class was
Kenney and Keeping, which was one of the few mathematically ori-
ented texts. In the applications course we used Croxton and Cowden,
which was a classic applied statistics text.

Anyone who was at CCNY and took a course in mathematical statis-
tics probably studied with Selby; Kenneth Arrow, Herman Chernoff,
Milton Sobel, Herbert Solomon, and many others were students in
his class. I don’t know how he managed to instill such an interest in
statistics, but ’m grateful that he did.

Some years ago I learned that Selby had retired to California. Several
of us invited Selby and his wife for a weekend to Stanford at a time
that the Berkeley-Stanford Colloquium was scheduled. He and his
wife had a marvelous time with us.

College Days

Press:  Tell me more about City College, and how statistics was taught
there.

Olkin:  Statistics was not taught in a single department at City College.
It was taught in part by the Mathematics Department. As a matter
of fact, the name of one statistics course taught by the Economics
Department was “Unattached, 15.1.” The terminology “unattached”
indicated its status at City College, that is, it was not basically part of
a structured departmental discipline. It was the first in a sequence of
three discrete courses, all of an applied nature. I left CCNY in 1943 in
my junior year, during the war, and became a meteorologist in what
was then the United States Army Air Force. (Shortly thereafter the
Air Force became a separate branch of the military.) I returned from
the service in 1946 and finished my bachelor’s degree at City College.
In 1947 I went to Columbia University to continue my studies, because
by then I knew I was interested in statistics, and Columbia was a
major center.

Press:  Was there a Statistics Department at Columbia at that time?
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Olkin:  The Department of Mathematical Statistics was formed formally
about 1946. The faculty at Columbia consisted of Ted Anderson,
Howard Levene, Abraham Wald, and Jack Wolfowitz. I had most
of my courses from Wald and Wolfowitz and a number of visitors;
Anderson was on leave during my stay. That was a heyday for visitors.
Henry Scheffé, Michel Loéve, R.C. Bose, and E.J.G. Pitman were
visitors about that time.

Press: How long were you at Columbia?

Olkin: I stayed at Columbia for my master’s degree, and then went to
Chapel Hill to continue my studies for the doctorate. Harold Hotelling
started his career at Stanford University from 1924-1931, at which
time he moved to Columbia. In 1946 he moved to Chapel Hill to
form a new department. I left Columbia for Chapel Hill in 1948.

Press: Why did you go to Chapel Hill?

Olkin: It was partially for personal reasons. I was married to Anita in
1945 while I was in the service. When we returned to New York af-
ter my discharge from the army, the country was faced with a severe
housing shortage. In fact, it was almost impossible to find an apart-
ment at that time. Even telephones were rationed after the war. If
you were a doctor you could get a telephone, but there was a very
long waiting list for the general public.

My parents had a small apartment, but Anita’s parents had an extra
bedroom, so we lived with her parents in Manhattan for about two
years. After living in California for our first year of marriage, we were
not as enamored with New York as before. This prompted me to look
for an alternative to Columbia, and I learned that Chapel Hill was
another major center. I was offered a Rockefeller Fellowship at Chapel
Hill which made such a move very attractive. But despite our desire to
leave New York, I was not at all disenchanted with Columbia. Quite to
the contrary. We had started a graduate student group that generated
a sense of community among the students. There were virtually no
books on statistics at this time, certainly not on advanced topics, and
one of our accomplishments was the publication of class lecture notes.
So I have fond memories of Columbia.

Press:  Tell me about Chapel Hill.

Olkin: In 1948 there were very few places where you could get a Ph.D.
in statistics. Berkeley didn’t have a department, though you could get
a doctorate in statistics. Iowa State had a department; Chicago had a
program, but not a department. Princeton, though small, generated
an amazing number of doctorates within the mathematics depart-
ment. Chapel Hill had an Institute of Statistics with two departments,



10 A Conversation with Ingram Olkin

one at Chapel Hill and one at Raleigh. It had a galaxy of stars on
the faculty. On the East Coast, Columbia and Chapel Hill were really
the large centers and there was a lot of interaction between the two.

Press:  So you ended up following Hotelling?

Olkin: In acertain sense, that’s right. The faculty at Chapel Hill in 1948
when I arrived, consisted of Hotelling as chair, R.C. Bose, Wassily
Hoeffding, P.L. Hsu, William Madow, George Nicholson, and Herbert
Robbins. Gertrude Cox was Director of the Institute.

Hsu was on the faculty, but was on leave in China for a year. He never
did return, and S.N. Roy joined the department the following year.
The faculty together with visitors formed a phenomenally large group.
At Raleigh, there was a Department of Experimental Statistics, with
Bill Cochran and many others. The Chapel Hill-Raleigh group was
really one of the great faculties.

Press:  So you spent about three years there?

Olkin:  Yes, from 1948 until 1951 when I graduated.
The Doctoral Dissertation at Chapel Hill

Press:  What was the subject of your dissertation?

Olkin:  Well, there is a story to my dissertation. I had planned to take
a class in multivariate analysis from P.L. Hsu, but he was in China.
That year Hoeflding gave a beautiful set of lectures in multivariate
analysis, after which I wanted to continue working in this area. A
fellow colleague, Walter Deemer, and I asked Hotelling about con-
tinuing our studies as a reading course. He suggested that we use
student notes from previous courses given by Hsu. My memory is
vague on this, but I recall that we had notes from Al Bowker and
Ralph Bradley who had previously taken such a course. Walter and I
formalized the material on Jacobians of matrix transformations, and
extended many of the results. This was the basis of my joint paper
with Walter Deemer on Jacobians of matrix transformations, and re-
ally set the stage for my later work. The next year when S.N. Roy
arrived, I continued my work with him and with Hotelling on mul-
tivariate distribution theory. The object was to develop a method-
ology for deriving a variety of multivariate distributions. I was able
to obtain new derivations for the distribution of the rectangular co-
ordinates, for various beta-type distributions related to the Wishart
distribution; for the joint distribution of singular values of a matrix
and for the characteristic roots of a random symmetric matrix.
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The singular value decomposition was not used much at that time,
but this has now become a common decomposition used by numerical
analysts. I believe that this was one of the earliest statistical uses of
singular values.

Press:  The dissertation was formally under Roy and Hotelling?
Olkin: They were both readers, but Roy served as principal advisor.
Press:  What else can you tell me about Columbia and Chapel Hill?

Olkin: Both Columbia and Chapel Hill had great students. You have
to remember that these were the first post-war classes. So there was
a tremendous backlog of individuals who had been away during the
war and were returning immediately thereafter. If you catalog the
statisticians who received doctorates at both Columbia and Chapel
Hill during those early years, you will find a large number who are
leaders in the field today. It was a very exciting period at Chapel
Hill, both in terms of faculty and in terms of what the students were
doing.

Press:  Who were some of your fellow students?

Olkin:  The list of students at Columbia and Chapel Hill was very long,
and my memory is not good enough to remember everyone. But I do
recall many with whom I interacted.

At Columbia the list includes Raj Bahadur, Robert Bechhofer, Al-
lan Birnbaum, Thelma Clark, Herbert T. David, Cyrus Derman,
Charles Dunnett, Harry Eisenpress, Lillian Elveback, Peter Frank,
Mina Haskind, Leon Herbach, Stanley Isaacson, Seymour Jablon,
William Kruskal, Roy Kuebler, Gottfried Noether, Monroe Norden,
Ed Paulson, G.R. Seth, Rosedith Sitgreaves, Milton Sobel, Henry Te-
icher, and Lionel Weiss.

At Chapel Hill-Raleigh there were Raj Bahadur, Isadore Blumen,
Colin Blyth, Ralph Bradley, Uttam Chand, Willard Clatworthy, Wil-
liam Connor, Meyer Dwass, Sudhish Ghurye, Bernard Greenberg,
Max Halpern, Jim Hannan, Gopinath Kallianpur, Marvin Kasten-
baum, Paul Minton, Sutton Munro, D.N. Nanda, Joan (Raup) Rosen-
blatt, Shared Shrikhande, Morris Skibinsky, Paul Somerville, Robert
Tate, Milton Terry, Geoffrey Watson, and Marvin Zelen.

Press:  Did you do any statistics during the war, before you returned?

Olkin: No, I did not. I was trained at MIT and Chanute Air Force Base
to be a meteorologist, and subsequently was a weather forecaster at
several airports. At one point I thought of combining the two fields,
since a variety of statistical procedures were being used to forecast
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weather. But somehow this merger did not materialize. Actually quite
a number of statisticians and mathematicians were in the meteorology
program — for example, those I remember are Kenneth Arrow, Jim
Hannan, Gil Hunt, Selmer Johnson, Jack Kiefer, Sam Richmond, and
Charles Stein, but I am sure there were many others.

Press:  Did subjectivity enter weather forecasting at that time?

Olkin: Not in a formal way. Some of the good forecasters were old
timers, who happened to remember similar weather patterns from
previous years. They were able to retrieve information from old maps
and use that as a basis for forecasting. As you may know, it is rather
difficult to beat a forecast of continuity, that is, forecast for tomorrow
what the weather is today. How to evaluate weather forecasts in terms
of accuracy is also an interesting area.

Early Years

Press:  Can we shift gears a bit and have you tell me about your child-
hood and your family?

Olkin: I was born in Waterbury, Connecticut. My father came to the
United States from Vilna in Lithuania — probably to escape being
inducted in the Tsarist Russian Army. This was a common sequence
at that time. My mother was born and lived in Warsaw, and met my
father there.

The move to Waterbury was primarily because some colleagues in
my father’s occupation — he was a jeweler — were in Waterbury
and they had arranged a job for him. When the depression period
in the early 1930’s came, jewelry was one of the first professions to
feel the financial pinch, because it was a luxury item. My family then
moved to New York City. I suspect that the move to New York was
also prompted by a concern about my future education. Connecticut
did not have any tuition-free state universities. Of course, it had Yale
University, but for immigrants Yale was totally out of the question,
whereas City College was free. We moved to New York in 1934 and
my formative years of high school and college were really there.

New York City was quite an exciting place. I went to DeWitt Clinton
High School, which at that time had a mathematics team. There was
also a football team, but I don’t remember it. The math team was
a good one. We used to have meets on Saturdays at one of the high
schools, and two different high school mathematics teams would com-
pete. It was very much like the Olympiad and Putnam competitions.

Press:  What kind of high school was this?
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Olkin: DeWitt Clinton was a very large school with an enrollment of
about 4000. It was located in the Bronx bordering on a park area.
My graduating class of 1941 boasts of James Baldwin, who wanted
to be a writer and became a distinguished one, Julius Irving, who be-
came Managing Director of the Vivian Beaumont Theater at Lincoln
Center, and Charles Silberman, who wrote several books, including
“Crisis in the Classroom.” I am sure that many others have become
success stories. With such a large enrollment there were opportunities
to pursue many different avenues.

Papers That I Like

Press:  I'd like to discuss your publications. You've published more than
100 papers that I know about. Which ones would you regard as your
particular favorite ones?

Olkin: That’s a hard question, Jim. Certainly the first one with Walter
Deemer was a favorite. Walter and I spent a lot of time together,
and it was an invigorating, productive, and enjoyable collaboration.
It also was my first paper, and that often is special. In retrospect,
the papers I tend to like most are the ones that brought me into a
new area, ones that I had not worked on before. There is a tendency
to continue working in the same research area, and it is not easy to
move into different fields.

Chronologically, probably the next paper that I like was the one with
John Pratt on Chebychev-type inequalities. That started me in a re-
search area that I continued with Albert Marshall for approximately
ten years. My association with Al came about by accident. He had
completed his dissertation at the University of Washington. His the-
sis was also on Chebychev inequalities, and was related to my work
with Pratt. In 1958 Al was a post-doctoral fellow at Stanford and
I was on sabbatical leave from Michigan State University. We had
corresponded before we met, and we were both immersed in the ideas
related to Chebychev inequalities. We had adjacent offices, which
made it easy to work together. We wrote several papers that year
and generated ideas for later work. That started a long history of
collaboration. The paper on this subject that I like most is the one
in which we were able to obtain multivariate Chebychev inequalities
in a rather general framework.

Earlier on I had given some lectures at Michigan State University on
independence properties and characterizations of distributions. This
led me to think about multivariate versions, and it started a col-
laborative effort with Sudhish Ghurye and with Herman Rubin. The
key point here is that multivariate characterizations often introduce
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an ingredient that is quite different from the univariate case. With
Ghurye the multivariate characterizations dealt with the normal dis-
tribution, and with Rubin the Wishart distribution. Each of these
papers had novel aspects in their multivariate versions.

The paper with Al Marshall on the multivariate exponential distribu-
tion seemed to fill a niche in terms of being a non-normal distribution
that had some very nice properties. That paper has probably been
referenced more than any of my other papers.

Press: Why is that?

Olkin: It may be because the problem of constructing bivariate distri-

butions with given marginals is rather tantalizing. We generated this
particular bivariate exponential distribution from several disparate
points of view, and they all converged to the same result. The bivari-
ate exponential distribution has now been applied in different con-
texts — in reliability theory, in hydrology, and in medicine. Recently
Neils Keiding in Denmark has used our bivariate distribution as a
model in which cancer can occur individually or simultaneously at
several sites. I think that this will become an important application.

A long-time interest of mine has been matrix theory. I think this
started when I took a course with Alfred Brauer at Chapel Hill. He
was the kind of teacher who was able to command an interest and
excitement about the field. At that time he had obtained some nice
new results on estimating the eigenvalues of a matrix. I studied matrix
theory rather extensively, used it in my dissertation, and subsequently
in my work in multivariate analysis.

I’ve enjoyed trying to mesh some probabilistic results with matrix
theory results. For example, a quadratic form can be considered as
the first moment of a distribution on the eigenvalues of the matrix of
the quadratic form. Consequently, Chebychev inequalities can provide
estimates for the location of eigenvalues of a symmetric matrix. There
have been several papers of that type; one in particular, with Al
Marshall, dealt with scaling of matrices.

An area that I've probably spent the most time on is majorization. I
am not sure how Al and I started, but I believe that it was a natural
follow up of the work on Chebychev inequalities. From probabilistic
inequalities we moved into a variety of real variable inequalities, such
as the Holder, Minkowski and matrix eigenvalue inequalities. At one
time we thought of trying to update the Hardy, Littlewood and Pélya
book on inequalities. It didn’t take long to realize such a plan was
rather presumptuous. But we did discover that majorization was a
fundamental notion with a rich theory that could be applied to a
wide range of topics. On and off we spent approximately 15 years in
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writing our book on majorization. The reception of this work and its
continued use in different areas is most gratifying. The reviews of our
book were very laudatory.

Another general area that I enjoy is to try statistically or probabilis-
tically to model a practical problem and to develop procedures for
handling the statistical analysis. That has been an ongoing process
throughout my career. The applications have been in the behavioral
and social sciences, including education. Many of my papers have a
genesis in an application.

Most recently I’ve been working on meta-analysis, which, again, deals
with a different area. I became intrigued in this through my connec-
tions in education. One of my colleagues, Nate Gage, who is an expert
in teacher education, pointed out that in education you rarely see
profound or strong effects. What you see are small or modest effects
that are consistent over repeated studies. The question he posed was
whether there was a way in which one could strengthen the conclu-
sion of the composite of studies, even though each particular study
was non-significant. At that time the procedure that might be called
“vote counting” (that is, counting the number of significant results)
was in vogue. My first results in 1972 dealt with the development of an
alternative method of analysis to vote counting. Later in 1976-1978
Gene Glass coined the term meta-analysis and proposed a quantifi-
cation in combining results from independent studies. This served as
a catalyst to work more seriously in this area. Larry Hedges was a
doctoral student at Stanford and in 1980 wrote his dissertation with
me on meta-analysis. Subsequently he continued to work in this area
and contributed a lot to the field. Meta-analysis had begun to be
somewhat of a fad, and the statistical procedures available or used
were not always rigorous. So we decided to write a book that focused
on the statistical methods for meta-analysis. This book, titled Sta-
tistical Methods for Meta-Analysis, was completed in 1985, and has
had extensive use, in education, psychology and medicine.

People I’'ve Known

Press: Let’s talk about individuals and your relationships with them.
Which ones were the closest? From what you’ve said so far, it’s clear
that you’ve spent a great many years working with Al Marshall. But
what about your early years? For example, who was your mentor
when you got started, and what was your relationship with people
such as S.N. Roy and Harold Hotelling?

Olkin:  Hotelling certainly had a great influence. He valued research,
and did not emphasize personalities. He was a very strong advocate



16 A Conversation with Ingram Olkin

for the profession at large, and I think that this characteristic rubbed
off on me. I don’t think I ever heard Hotelling diminish anyone’s
work. He always built up individuals if they were productive. Also,
he fought very strongly for the teaching of statistics by statisticians.
We see this most clearly from his articles which have been reproduced
in Statistical Science. But it was hard for a student to become close
to him on a personal level. In part this was because he was such an
esteemed figure, and his manner was somewhat on the distant side. I
would say that one could feel respectful, fond, loyal, and appreciative.

Roy was much more approachable. He had just come to the United
States, and I was rather close to him. He and I wrote a joint paper
immediately after my thesis. But then he died at quite an early age.
This was quite a shock to me.

There were others who influenced me, in particular, Wolfowitz at
Columbia, Bose, Hoeffding, and Robbins at Chapel Hill. This was in
terms of their scholarship and as role models.

Shortly thereafter I became a faculty member at Michigan State Uni-
versity. From the beginning I have written a lot of joint papers and
my collaborators became close associates. At one time I counted over
thirty collaborators. Milton Sobel has been a continual collaborator.
He and I, together with Jean Gibbons, did write a book titled Select-
ing and Ordering Populations.

I've really enjoyed the collaboration and the closeness with almost all
of my students. With some I’ve written a number of papers after they
completed their doctoral degrees. One of my first students was Leon
Gleser. I've written a book with him titled Probability Models and
Applications and a number of papers. Today we keep up socially and
professionally and are still involved on several papers. You were the
second student, and we have collaborated on several papers. This was
also true with Joe Eaton, Mike Perlman, Allan Sampson, Tom Stroud
and others. So I've continued both the collaboration and friendship
with students throughout my career. It is pleasing to me that I have
had a total of 28 doctoral students in statistics and education, many
of whom have had very successful careers.

Probably in terms of the individuals with whom I've collaborated
most, I don’t think there’s any question but that Al and I have the
longest history. We’ve worked together for 30 years, which is quite a
long time. Joe Eaton, Leon Gleser, Mike Perlman, and Milton Sobel
are the others that I have worked with the longest.

Press: I don’t hear you mention any one person whom I would call a
mentor, people who drove you on, or from whom you sought advice.
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Olkin: They were mentors in a different sense, more as friends who were
supportive. For example, when I went to Michigan State University,
Leo Katz was the senior faculty member. Leo visited Chapel Hill
where we first met, and he recruited me. Statistics at Michigan State
was part of the mathematics department in 1951; a separate statistics
department was formed about five years later. Leo and I were quite
close, though we only wrote one or two papers together. There was
no question that in many ways Leo played the role of a mentor or a
senior advisor with whom I could talk about a number of problems.

There were a number of people of that type, but I didn’t necessarily
work with them. This was true to some degree when I visited Stan-
ford in 1958 and when I joined the faculty in 1961. The faculty were
young with strong colleagial relationships. There were lots of discus-
sions and you could get advice from colleagues. I was quite close to
Bob Bechhofer during my sabbatical and later established a special
closeness with Jack Kiefer until his death and with Jerry Lieberman,
which has continued to this day.

There are other individuals who influenced me in different ways. For
example, I took more courses from Jack Wolfowitz at Columbia than
from any other single person. Again, I can’t say that he was a men-
tor in the sense that I would ask him for advice. Jack was not that
approachable. But he was a mentor in the sense of being a role model
in his emphasis on publishing, on being active, and on having stu-
dents. While I am reminiscing about Wolfowitz, I can think back to
an incident that is now humorous, but wasn’t at the time. It was not
very easy to meet with either Wald or Wolfowitz. First of all, they
were well-known and busy, and the secretary considered it her duty
to keep them sheltered. Wald was a very kind person, but somewhat
formidable for a young student.

At Columbia you had to write a dissertation for the master’s degree.
Wolfowitz was my adviser, so I occasionally needed to see him. He
had office hours from 12:45 to 1:00, and so one would queue up for a
long time in order to see him. I remember once waiting to discuss my
dissertation with him. He invited me into his office and then there
was something like a quartet in a Verdi opera, except that no one
sang. Jack asked me to state my problem at the blackboard, which I
did. As I was speaking, the phone rang. Jack started a conversation
with the other person on the telephone and would periodically tell
me to continue speaking. While this was going on, he was reading his
mail. So Jack and the other person were speaking, I was talking to the
blackboard, and Jack was reading his mail. This kind of interaction
had a salutary effect. It kept students from coming back to see him,
and certainly was successful in my case.

Chapel Hill was quite different from Columbia. It was much more
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intimate because it was not a commuting community. There was a
little snack bar where the faculty and students could buy ice cream
and sit around. And so the faculty were very approachable. There’s
no question that there was a lot of interaction between the faculty
and the students.

Both Robbins and Hoeffding were very active researchers. Robbins
frequently would call students to his office or to a classroom to discuss
his current research. Often, colloquia speakers were invited to faculty
houses and occasionally a few students were also invited. I felt a
part of a community, and the atmosphere at Chapel Hill fostered this
feeling of community.

Press: When you had questions about your career, to whom did you
speak at North Carolina?

Olkin: Mostly my own peer group. The students were a closely-knit
group, but I don’t recall talking to the faculty about non-technical
matters. There were not that many people in the field. Statistics was
a new field, so there was not much previous experience or previous
track record concerning career opportunities.

For example, when I graduated in 1951 there were very few job open-
ings. This was before the many statistics departments were formed.
So most positions were in mathematics departments. This meant that
there were at most a few statisticians in each mathematics depart-
ment, and it was not unusual to be the only statistician in the de-
partment. I felt that it was important to get a position in a university
where there were plans for building a nucleus of statisticians.

Press: Is that why you went to Michigan State?

Olkin: As I mentioned, Leo Katz was there, and he wanted to build
a group. Chuck Kraft was just getting his doctorate from Berkeley,
and was an instructor at the time. A year later Ken Arnold came
from Wisconsin, and then Jim Hannan came from Chapel Hill. Leo
managed to attract a large number of visitors. For example, Alfred
Renyi visited, as did R.A. Fisher. And so, within a period of three or
four years we had a critical mass on the faculty.

Press:  After Michigan State you were at the University of Minnesota.

Olkin: I spent a year and a half at the University of Minnesota. That
was also a very nice period, though it wasn’t for long. While at Michi-
gan State I was invited to join the faculty at Minnesota, which I
did. At that time Leo Hurwicz, Palmer Johnson, and Richard Sav-
age were on the faculty. A statistics department was being formed
and I was asked to serve as Chair. Within a short period thereafter
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Meyer Dwass, Sudhish Ghurye, Gopinath Kallianpur, and Milton So-
bel joined the faculty.

Press: Then there was Stanford?

Olkin:  As you know, my years at Stanford comprised a major part of
my life and I will soon mark my thirtieth anniversary at Stanford.
I visited Stanford in 1958 while on sabbatical, and then joined per-
manently in 1961. The Bay Area with Berkeley and Stanford was
phenomenally active. You have to remember that this was almost 30
years ago. Many of us were in our 30’s or early 40’s and a tremendous
amount of energy and electricity flowed in the two places.

Press: How about the Berkeley Symposium?

Olkin:  The Berkeley Symposium, held every five years, was very strong.
In addition, we had frequent joint Berkeley-Stanford colloquia. These
were very exciting years. Berkeley and Stanford each was trying to
build its department, and there was a lot of research activity. The
students were first rate. I think it’s an interesting commentary that
so many of our students have become the statistical leaders at this
time.

This was also a period of a lot of visitors, both in summer and during
the academic year. If you waited on the steps of Sequoia Hall or the
department at Berkeley, you probably would meet almost every statis-
tician at some point. Over the years Anita and I have entertained a
very large number of visitors. It is not surprising for someone to tell
Anita that he and his family had dinner in our house twenty years
ago.

The faculty at Stanford in 1961 was great: Bowker, Chernoff, Chung,
Johns, Karlin, Lieberman, Miller, Moses, Parzen, Solomon, Stein.
During the first 15 years at Stanford my main energy was devoted to
my own research in both departments and to helping build the statis-
tics department and my program to train educational statisticians in
the School of Education.

Current Interests

Press:  What are your current research interests? You’ve been involved
with many different research directions.

Olkin: Two topics seem to follow me. I often receive letters on inequal-
ities and majorization, and I think I’m ready to say that I don’t want
to stare another inequality in the face. But I must also confess that I
cannot keep away from a new inequality. I also receive letters concern-
ing meta-analysis, in which I still have a strong interest, especially
the meta-analyses being conducted in medicine.
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Al Marshall and I are becoming more involved in an area that we
had worked on earlier, namely the bivariate exponential distribution.
That was a specialized result, and we are now concerned with more
general questions. For some time now we’ve been intrigued by the
question of how to build dependencies into bivariate distributions.
We have developed several unifying themes, some of which have been
published, and we are contemplating writing a book that brings the
subject into better focus. Since the last book took 15 years to write,
we each are cautious about beginning a venture that could take a
long time to complete. However, I suspect that subconsciously we
each have a book in mind, but are reluctant to state so too openly.

Let me add a bit about this project about dependencies. A natural
question that needs to be resolved is how to simulate or generate dis-
tributions with these given dependencies. Computer simulation is an
area that has recently interested me. In addition to my work with Al,
I have written joint papers with Ted Anderson and George Marsaglia
on generating correlation matrices and generating random orthogonal
matrices. In order to apply these multivariate distributions, we need
to develop methods for computer simulations. But it is not always
clear how to generate observatiors with a particular type of depen-
dency. This is quite different from, say, fitting data using the Pearson
families. The families that we have in mind arise more from models
than from data.

That’s our main current work. Al and I are trying to get together
more often, which should make it easier to keep working on a single
project.

Press: How have you and Al managed to work together so much?

Olkin: I must say that in retrospect, I don’t quite know how he and I

have managed to collaborate as much as we have, inasmuch as we are
not at the same university. In our early collaborations we would visit
each other for periods ranging from three to seven days. This would
give us a chance to get started on a project.

These visits occurred approximately once every six weeks, so we really
had a continuing connection with one another. This was particularly
the case when Al was at the Boeing Scientific Research Laboratories,
at the University of Rochester and the University of British Columbia,
and I was at Stanford. We managed to meet this way over the years,
but we also had longer periods of time together.

We spent one year together at Cambridge University and one year
at Imperial College. I visited the University of British Columbia and
Al visited Stanford for longer periods. We also spent three months
in Zurich. During these periods we had an opportunity to work in-
tensively. That has been the modus operandi — namely, working for
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short stretches, and then meeting for a longer period of time when
we could put things into perspective and write things up.

Press: Do you have any other major books or projects under way at
this time?

Olkin: The project with Al has a high priority. But there are several
other projects that I have in mind.

As you know, I have a fine collection of photographs of well-known
statisticians and probabilists that adorn Sequoia Hall. Over the years
visitors have suggested that I publish these so that others might enjoy
them. I plan to do this as a joint venture with H.O. Lancaster, who
is more of a historian than I.

The medical profession has taken to meta-analysis. There often are
many studies dealing with the same illness, but with varying con-
ditions and patients, and meta-analysis offers a method for combin-
ing results. In my book with Larry Hedges on meta-analysis we did
not include a discussion of medical applications, and we now plan a
sequel to do that. Dr. Thomas Chalmers of the Harvard School of
Public Health and Mt. Sinai Hospital will join us in this project. He
has engaged in a number of medical meta-analyses, and will bring a
first-hand knowledge base of medicine to the project.

Another project that I have had in the back of my mind goes back
to my Chapel Hill days, namely to write a book on matrix theory
applications in statistics. But now I would like to add applications in
operations research and numerical analysis. This project was to be
a collaborative effort with Richard Cottle in the Department of Op-
erations Research, and Gene Golub in the Department of Computer
Science. We started to meet on Saturdays to discuss this project, but
you have to recognize that these three participants include some of
the world’s heaviest travelers. So the absences became more and more
frequent, and we did not make much headway. But I like to imagine
that the future will bring some free time to all of us and that this
project will come to fruition.

Press: Inotice that you have not mentioned your work with the Depart-
ment of Education in Washington. Tell me about that connection.

Olkin:  Thanks for bringing that up. I have concentrated on the statis-
tics part of my activities. But I would like to tell you about some of
the education activities.

As you know, I have a joint appointment between Statistics and the
School of Education at Stanford. This has been the case from the time
I came to Stanford. My role in the School of Education has been pri-
marily in the doctoral program, to train educational statisticians, in
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a comparable manner to the training of biostatisticians, psychometri-
cians, econometricians, or geo-statisticians. I have also been involved
in research arising from an educational context. The meta-analysis
work is an example of research that started from my education con-
nections. But there have been many other instances where a problem
has arisen and led to a research study. Several of these have dealt
with correlational models; others have involved statistical inference
arising from achievement test models.

Recently the American Statistical Association started a wonderful
Fellows program designed to bring academia and government closer.
This program is supported by the National Science Foundation. The
first Fellows program was with the Census Bureau, and later was
extended to the National Center for Education Statistics (NCES)
and to the Bureau of Labor Statistics. There is a similar program
in the Department of Agriculture, and the potential for one at the
National Bureau of Standards.

I was invited to be a Fellow at the Center, and before accepting this
opportunity, it was important to me that I be engaged in a project
that could have an impact in education. It would have been easy to
become involved in particular studies at the Center, but over the years
I’ve been on so many panels and studies that I did not see going to
Washington for yet another study, even though it might be an impor-
tant one. The NCES collects data in the form of studies or surveys.
For example, the NCES sponsors a School and Staffing Survey, A Na-
tional Educational Longitudinal Study, and Common Core of Data.
There is also a major longitudinal study in mathematics and read-
ing called the National Assessment of Educational Progress (NAEP).
ETS is the contractor for NAEP, and periodically issues a report to
the nation on the state of mathematics and reading learning. I am
currently a member of the NAEP Technical Advisory Committee.

In addition to these national data bases, considerable data is collected
by the states. Much data is required to fulfill federal legislation re-
quirements. Thus, the states and the federal government collect data,
but there is little integration among states or with the federal gov-
ernment. Ultimately, if not immediately, we need to have enough in-
formation to permit us to answer broad issues about education, and
to make policy intelligently. This all pointed to the need for a na-
tinnal education data base. The idea of designing such a system was
intriguing. It was an area in which I could serve as a link in bringing
together the academic and governmental constituencies.

There are 50 states, approximately 16,000 school districts, 100,000
schools and 4 million teachers. It seemed reasonable as a beginning
to focus on states and school districts. Each of these constituencies
is of a manageable size. This was the thread of my thinking.
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It seemed to me that this general area of a statistical education data
base would be an interesting challenge that could have a great impact
in terms of the statistics for the future. It combined my interests in
both statistics and education. It was clear from the outset that such
a project was a very ambitious kind of program, and that it would be
addressed better by a small group of individuals. I proposed to two
colleagues, Ed Haertel, who is a test and measurement specialist at
Stanford University, and Larry Hedges, an educational statistician at
the University of Chicago, to join me in this project. They both ac-
cepted the challenge. We were fortunate in being able to obtain help
and advice from a number of colleagues more knowledgeable than we
are about data bases. In particular, Nancy Flournoy, who had been
instrumental in setting up a multi-disciplinary medical data base in-
formation system at the Fred Hutchinson Cancer Research Center,
helped a lot. John McCarthy of Lawrence Laboratory, Berkeley, had
developed a meta data base for the military, and his experiences were
very informative. We Fellows have been holding a series of confer-
ences to help us more fully understand the information and policy
needs in a data base system and some of the caveats to worry about.
The first conference was with the educational constituency — teach-
ers, principals, administrators, educators, etc. The second conference
was with data base specialists, and third was with state data base
representatives. We are now in the process of amalgamating this in-
formation. But already we have had an effect in bringing some of
these constituencies together.

Press: How did you get into the field of education 27 years ago, or
earlier?

Olkin: The Department of Statistics at Stanford was modeled on some
structural principles. You may have read about this in the interview
with Al Bowker that appeared in Statistical Science. Some of the
structure came from the Statistical Research Group at Columbia
University during World War II, and some came from local needs.
In effect, there was a strong outreach program. The word “outreach”
is in vogue today, but in 1961 it wasn’t. But the basic idea was that
statistics should be intimately connected to substantive fields. During
the 1960’s approximately nine out of the sixteen faculty members in
the Department of Statistics at Stanford had joint appointments with
other fields: three with the medical school, one with operations re-
search, one with electrical engineering, one with economics, one with
education, one with geology, and one with mathematics. Later we had
a connection with the linear accelerator center. These joint appoint-
ments were a guiding principle. Each joint appointee was supposed
to develop a program in the other department.
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An opportunity arose about 1958-1960 for a joint appointment with
the School of Education. Since my work had dealt with multivariate
analysis and with models in the social sciences, I was one of the
candidates who could fit into both the Statistics Department and
the School of Education. The key was to try to find individuals who
would be acceptable to two departments as varying as the ones I've
mentioned. That’s been a very difficult task. We have been successful
until now, and I hope that we continue in this vein. In a certain sense
this guarantees the development of cross-disciplinary research.

Press: You have had many special satisfactions during your career.

Which ones do you value or appreciate the most?

Olkin: There are several aspects of my professional career that I really

have enjoyed. I think that what I've enjoyed most of all is the con-
nection with the students I've had and the collaborations I've had.
I've enjoyed keeping up with individuals, and I've enjoyed being able
to work with them. It’s been fruitful in many ways.

In general, I have enjoyed the opportunity to create some programs
and to effect changes. Being President of the Institute of Mathemati-
cal Statistics (IMS) afforded me an opportunity to tackle a number of
needs for the profession. For example, the creation of Statistical Sci-
ence came out of that period, and I hope that this journal remains as a
successful legacy. I think it is fair to say that Statistical Science came
about from the concerted efforts of Morrie DeGroot, Bruce Trumbo,
who was treasurer of the IMS at that time, and myself. Morrie DeG-
root deserves a tremendous amount of credit for making the journal
a success during its formative years.

Those are activities that have given me a lot of satisfaction over the
years.

Press: How about your editorships?

Olkin: The editorship of The Annals is the kind of job where it is best

if you're not asked to be Editor, but it is hard to say no if you are
asked. It was a phenomenal amount of work. I was Editor at the
time when the two journals — The Annals of Statistics and The
Annals of Probability were still combined into the one, The Annals of
Mathematical Statistics. I used to receive two new submissions every
day. This meant that there were approximately 700 new papers a year
to handle, not to mention the ones that were revised several times.

It was a monumental task, and it became quite clear that it was
too much for a single Editor to deal with in a responsible way, and
that a split was in order. I was pleased to be able to have an effect
in starting the two offspring journals. At that time there was a lot
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of controversy as to whether a split was reasonable, and there were
valid arguments on each side. But I doubt that many would want
to combine the two Annals at this time. Each journal has become
a leading publication and is a success. In fact, each journal is now
sufficiently large that it is becoming a burden on each Editor. My
impression is that professional societies have been too conservative
in their publication policies. Because of the tremendous rise in both
population and research we need more journal outlets.

Comments About Statistics

Press: I'd like to move on to a very broad question for the field of
statistics as you see it. What is your assessment of the current state
of the health of the field of statistics, and where do you see the field
heading?

Olkin: . I'm a bit worried about statistics as a field. As you know, I
come from the mathematical community and I've always liked the
mathematics of statistics. But I think that the connection with ap-
plications is an essential ingredient at this time. I say that because
applications are crying out for statistical help. We currently produce
approximately 300 Ph.D.’s in statistics and probability per year. This
is a small number considering the number of fields of application that
need statisticians. Fields such as geostatistics, psychometrics, educa-
tion, social science statistics, newer fields such as chemometrics and
legal statistics generate a tremendous need that we are not fulfilling.
Inevitably this will mean that others will fulfill those needs. If that
happens across fields of application, we will be left primarily with the
mathematical part of statistics, and the applied parts will be carried
out by others not well-versed in statistics. Indeed, I think that a large
amount of statistics is now being carried out by non-statisticians who
learn their statistics from computer packages and from short courses.

So I worry about this separation between theory and practice and

the fact that we are not producing the number of doctorates to fulfill
needs in all of these other areas.

Press: Has the number of doctorates been going up or down?

Olkin:  The number is going up. There were approximately 150 Ph.D.’s
in statistics and probability in 1970, 240 in 1975, and there are now
about 300. Thus we have doubled in about 15 years. But this growth
is not commensurate with the needs and growth of other fields.

Press: Do you mean that we are not producing enough doctorates to
meet the demand?



26 A Conversation with Ingram Olkin

Olkin:  We are definitely not producing enough doctorates to meet the
demand. An example of an area of high demand is the drug compa-
nies, which could use almost all the doctoral students produced each
year. Education is another area in which the number of statisticians
involved is relatively small, but for which there is a large potential.
Statistical needs are growing at a rapid rate in the legal profession,
and I don’t think there are many law schools that have either statisti-
cians on the faculty or connections with statistics departments. That’s
an area I would like to see statisticians become involved in early on,
to avoid the inevitable turf battle as to who teaches statistics for law.

Press: Is the field of statistics heading now toward more applications?

Olkin: I think a number of individuals in the profession are heading
more towards applications, but the field as a whole does not have
enough faculty and students working in applied areas. Biostatistics
is probably our only big success story in the sense that there are a
lot of statisticians in medical schools, though perhaps not enough.
This came about in part because of the prevalence of training grants,
and in part because of federal regulations mandating clinical trials
or other statistical procedures. But there are few, if any, statisticians
in law schools, in social science departments, pharmacy, dentistry,
education, business, and so on.

Industry used to be a big user of statistics; this diminished consid-
erably about twenty years ago, and now has become a high demand
area. Sample surveys are used a lot but this specialization is totally
undernourished. The number of universities that teach sampling is
small, and we have trained few experts. I am sure that we could ex-
pand the research effort and doctorate production in sampling theory.

There is still an excitement in the field, but my impression is that, ex-
cept for a few places, the growth in statistics departments has reached
a plateau. I believe that this is true because we do not have a natural
mechanism for statistics departments to create strong links to other
departments of the academic community. Academic institutions have
not been designed for cross-disciplinary research, and indeed may ac-
tually be antagonistic to cross-disciplinary research.

Press:  Whereas, by nature, statistics tends to be used and needed in
other fields?

Olkin:  Yes, indeed. It is particularly important because problems are
now becoming much larger. For example, the study of a large scale
problem such as pollution or acid rain with a small group of re-
searchers is really not very realistic. We will need a lot of connections
with other disciplines. Except for a few places, we are not fostering
that connection. The National Science Foundation has recognized this
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need by creating centers that have a strong cross-disciplinary com-
ponent, but these do not have strong statistical components. I think
that the time has come for the profession to have a Statistical Sciences
Institute that would focus on cross-disciplinary research.

It’s interesting to note that when I was first at Chapel Hill, Gertrude
Cox was a strong advocate for learning a substantive field. We were
all encouraged, almost pushed, to become not only statisticians, but
to gain a knowledge base in biology, sociology, political science, etc.
— any area in which we could apply statistics. Except for the med-
ical field, not many took this route. Remember that starting in the
late 1940’s the decision theory orientation was strong so that many
of us studied mathematics, rather than a substantive field, and we
became mathematical statisticians rather than socio-statisticians or
geo-statisticians. That was fine up to a point, but the needs in 1990
center much more on our connections and usefulness in these other
fields. We need to expand our vision.

Press:  How about the direction of growth of the field with computers
and data analysis? Are we moving in that direction, are we moving
enough or too much?

Olkin: I am more comfortable with the previous general question than
I am with the question about statistics and computers. I am not well
versed about the field as a whole, but I do have some general impres-
sions. I believe that statistical packages have had serious positive and
negative components. The positive, of course, is that people now can
carry out more sophisticated analyses than they would be able to if
they had to learn programming on their own. There’s no doubt that
it’s been a great service. On the other hand, there is a tendency for
people not to learn the statistical underpinnings, but only to learn
how to use a statistical computer package. Indeed, my experience in
reading doctoral dissertations is that the availability of packages is
what drives the choice of analysis. The availability of statistical pack-
ages also drives the curriculum and may emphasize how to generate
numbers, rather than interpretation and understanding.

More recently there’s been a strong development in statistical graph-
ics and resampling schemes. Again I think that in principle these are
positive developments. What worries me is that they will be overly
used and subsequently abused, as is the case with almost any new
area for which there is a lot of use. It doesn’t take long before there’s
a certain amount of abuse, and it becomes a serious problem.

The result of the availability of computers and packages is that sta-
tistical analyses are being carried out by non-statisticians much more
than ever before. This is fine when done well, but this is not always the
case — probably not the case most of the time — so that the public
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may be faced with erroneous conclusions. The statistical community
is not intimately involved in this growth of the use of computers. We
provide some of the packages and some of the theory, but, in effect,
its big use is elsewhere.

To illustrate the high use by non-statisticians, not long ago Stu Ge-
man gave a talk on image processing, an area in which he and others
have been working. Stu mentioned that he had published a paper in
an LE.E.E. (Institute of Electrical and Electronics Engineers) jour-
nal, for which he received well over a thousand reprint requests. It’s
hard to imagine any statistician of my acquaintance who publishes in
any of the standard statistical journals receiving that many reprint
requests. I usually get six reprint requests — especially if I ask my
relatives to write for them. Of course, photocopying confounds these
numbers, but the fact remains that little theory is translated to usable
methods except through packages.

Press:  That certainly makes the point.

Olkin: That’s a good example of an area in which the statistical com-
munity had a large input, but it is being developed, extended, and
used by other fields.

In Spain I Am a Bayesian

Press: Here’s a difficult question. Are you Bayesian or not?

Olkin: I think I'm a part-time Bayesian. My inclination in dealing with
a problem is to use classical procedures, but when I get more deeply
involved and need to obtain information about the parameters I do
not hesitate to incorporate some of the Bayesian ideas. I have found
that some problems can be formulated in a manner that calls for
a Bayesian approach. In other instances, this is not the case and a
Bayesian approach would seem forced. I am not a Bayesian in the
sense that I feel compelled to use a Bayesian approach, nor am I a
classicist in not using a Bayesian procedure.

I suspect that I am begging the question a bit. I don’t have too many
papers in which the word “Bayesian” appears in the title, but since I
want to be invited to the Bayesian conferences, especially when they
are in Spain, I will say I'm 75 percent non-Bayesian and 25 percent
Bayesian.

Press:  You've certainly written papers with avowed Bayesians so you
cannot be anti-Bayesian. Have you become increasingly sympathetic
over the years?
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Olkin: I am not sure how to answer that. Recently I have been work-
ing with Irwin Guttman on a model for interlaboratory differences. I
had previously written a paper with Milton Sobel in which we used
a ranking and selection procedure. At that time this seemed to be
a reasonable formulation, but ranking and selection procedures have
not been accepted very much in applied work. With Irwin we looked
at an alternative formulation that led naturally to a Bayesian point
of view, and I was interested to know how different the answers would
be. I have no antipathy in using either approach, and try to under-
stand what one gains from each method.

Visits to Other Universities

Press: How about some of your travels. What are some of the univer-
sities that you visited, and some of the people there?

Olkin: In 19551 spent a year at the University of Chicago. At that time
Allen Wallis had a program in which they invited two visitors every
year, and Don Darling and I spent the year at Chicago. This was a
very productive year for me. I taught a course in multivariate analysis
and in sampling theory, as I recall, and this gave me an opportunity
to renew old acquaintances and to begin new ones.

Chicago had a small but good student body; for example, Herb T.
David, Morrie DeGroot, Al Madansky, and Jack Nadler were students
at that time. The faculty consisted of Raj Bahadur, Pat Billingsley,
Alec Brownlee, Leo Goodman, John Pratt and Dave Wallace. Bill
Kruskal was on leave that year, and we lived in his house. Allen Wallis
was there as Dean of the School of Business. Also, Meyer Dwass and
Esther Seiden were at Northwestern, and we used to get together
quite often.

Press:  Tell me about your visits to other Universities. I know that you
travel a lot.

Olkin: In 1967 I was on sabbatical leave from Stanford and was an
Overseas Fellow at Churchill College, Cambridge. That was a great
year. Al Marshall and Mike Perlman were also at Cambridge, and
Alfred Rényi was a visitor for one quarter. Cambridge had a vigorous
group led by David Kendall and Peter Whittle. We had a seminar on
inequalities that got us much more deeply into the field. In fact, that
year was a very active one in England with lots of visitors in London.
We used to visit London quite often for seminars.

In 1971 I spent a year at the Educational Testing Service. Fred Lord,
one of the leading researchers in tests and measurement, was head of
a very active group. He invited visitors to participate in the program,
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and that year in addition to myself, Murray Aitkin, Leon Gleser,
Karl Joreskog, and Walter Kristof were in the group. There were
some lively discussions. Also, since Princeton was nearby we were
able to interact with some of their faculty. This was a period when
Leon and I were able to work closely, and we wrote several papers
and completed our book.

I again visited England in 1976-77, this time at Imperial College. For
several years thereafter Anita and I tended to spend a month every
year in London. These visits gave us an opportunity to maintain and
to renew European contacts. I was a Fulbright Fellow during the fall
of 1979 at the University of Copenhagen. It was a thriving place with
Steen Andersson, Hans Brons, Anders Hald, Martin Jacobsen, Soren
Johansen, Neils Keiding, Stefan Lauritzen and others. I gave some
lectures there and was able to start some new projects.

In the spring of 1981 I was a visitor at the Eidgeniissische Technische
Hochschule (ETH) in Zurich. Frank Hampel and his group, Elvezio
Ronchetti, Peter Rousseeuw, Werner Stahel, were working on robust
estimation. Others on the faculty were Hans Buhlmann and Hans
Foellmer. Chris Field from Dalhousie, Bob Staudte from Melbourne,
and Al Marshall were visitors. We each gave individual lectures, and
I gave a series of lectures on multivariate analysis.

In the early 1950’s the National Bureau of Standards was a center
for applied mathematics and statistics. They had many postdoctoral
and student visitors during those early days. The Bureau was trying
to revitalize this program of visitors, and in the fall of 1983 I spent a
quarter there. As a consequence of interactions with John Mandel, I
again became involved in finding the expected value and covariances
of the ordered characteristic roots of a random Wishart matrix. This
moved me in the direction of some numerical work that was new
to me. Recently, together with Vesna Luzar, who was a Fulbright
visitor from Yugoslavia, we have compared several alternative modes
of computation.

It was at the Bureau that I met Cliff Spiegelman, and he and I later
started a collaboration on semi-parametric density estimation. This
is work that we are both continuing.

I visited Hebrew University as a Lady Davis Fellow in the spring
of 1984. Our family had visited Israel in 1967, and this gave me an
opportunity to renew acquaintances. The statistics group was very
lively with lots of activity. The faculty consisted of Louis Guttman,
Yoel Haitovsky, Gad Nathan, Samuel Oman, Danny Pfeffermann,
Moshe Pollak, Adi Raveh, Yosef Rinott, Ester Samuel-Cahn, Gideon
Schwarz, and Josef Yahav. Larry Brown was a visitor for the year. I
gave some lectures on inequalities, which generated a collaboration
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with Shlomo Yitzhaki, who is on the faculty of the Economics De-
partment. This work had a basis in economics and the primary focus
was on Lorenz curves and subsequently, on concentration curves. This
also introduced me more intimately with some of the results of Gini,
which we were able to use to greater advantage. My collaboration
with Shlomo has continued, especially when he visits the U.S.

My Family

Press:  You haven’t had a chance to speak about your immediate family.
Can you tell me more about them and bring me up to date?

Olkin: Anita and I were married in 1945 while I was in service. I was
being transferred from LaGuardia Airport to San Francisco at the
time, so we spent our honeymoon on the train from New York to San
Francisco. We very much enjoyed our stay in California, and I am
not sure why we returned to New York after my discharge. It never
occurred to me to continue my studies at Berkeley. In any case, we did
return and I attended CCNY, Columbia, and UNC. Anita and I now
look back to our three years at Chapel Hill as a very happy period. We
were one of few married couples, and Anita made our house available
to many of the graduate students. Also, at Michigan State University
we were very much involved in a University community, and our house
was often a meeting place for visitors.

We have three daughters. The oldest, Vivian, was born in Chapel Hill
in 1950. She and her husband, Sim, live in Austin, Texas and have two
children. Vivian was a career counselor at the University of Texas,
and is now getting her master’s degree in Human Resources Devel-
opment. Sim received a doctorate from Stanford and is now on the
faculty of the Graduate School of Business, University of Texas. Our
second daughter, Rhoda, was born in 1953 when I was at Michigan
State University. She and her husband, Michael, live in Walnut Creek,
California and have one child. Rhoda received a doctorate in coun-
seling psychology from the University of California, Santa Barbara.
She is now on the faculty of California State University, Sacramento.
Michael is a bio-medical engineer with a company housed in Berke-
ley. Our youngest, Julia, was born in California in 1959. She and her
husband, Juan, live in Castro Valley, California. Julia and Juan both
received doctorates in mathematical sciences from Rice University,
and are each working as numerical analysts — Julia at SRI and Juan
at Sandia in Livermore. My family of females has taught me and
trained me in the women’s movement, and I have been sensitized to
difficulties that women have in the workplace, and the prejudices that
exist.
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Other Activities

Press: Let me move away from statistics. What do you like to do when
you’re not doing statistics?

Olkin: I do enjoy traveling, which I think is well-known to a number
of people. Whenever I do travel, I generally try to find museums,
symphonies, operas, and theaters. I almost always do that, wherever
I go. You also know that I’'m generally a people person, which is
one of the reasons why I've enjoyed students and collaborators. Over
the years, the professional contacts have merged with the personal
contacts. I enjoy hiking. We used to go to Yosemite regularly when
the children were young. More recently I have visited state parks near
meeting places.

Press: Do you hike alone?

Olkin: I have tried to entice colleagues to join me, and years ago when
we went to Yosemite our youngest daughter Julia would always go
with me. But more recently I have gone alone.

Press: How about sports?

Olkin: I enjoy tennis and swimming. The tennis is a social event, but I
am a non-social swimmer.

Press: I have a vague recollection of having been told that you were the
ping-pong champion on a ship. Tell me about that.

Olkin: That was so long ago that I had totally forgotten it. I mentioned
that I was born in Waterbury, Connecticut. There’s a resort near New
Haven called Woodmont, and even though we were relatively poor,
we used to go to Woodmont and rent a room during the summer time.
There was a ping-pong room in one of the hotels, for which they used
to charge an hourly fee. But if you would help clean up, you had
access to the ping-pong tables when they were not being rented, so I
used to play a lot when I was young. In 1967 we went to England on
the Dutch ship, Rotterdam, which had table tennis contests in both
tourist and first class. I played ping-pong in tournaments for both
classes and won both. At Stanford there were ping-pong tables in the
student union, but the building was altered and there are no tables
there at this time, so I haven’t played for years.

From 1989 On

Press:  What does the future hold for you?
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Olkin:  The word retirement is a curious word in that it implies that you
will stop working at a certain date. We need an alternative descriptor.
As I understand the current California and federal laws, if you were
born after August 31, 1923 you do not have to retire. The law may
change in 1994, but as of now I will not have to retire. Of course, it
may not make sense financially or intellectually not to retire. How-
ever, I don’t see retirement as a problem. I have several projects that
I’d like to work on, and I don’t have enough time for these without
giving up other activities. So retirement is one way of reallocating
one’s time to the activities that one likes. I am also deeply involved
with the Center for Education Statistics project and even though the
fellowship will be over within the near future, I would like to con-
tinue my involvement. If one has a high metabolic rate, it’s difficult
not to continue working. All my retired colleagues tell me that I will
probably be doing more, rather than less.

Press:  Thanks very much for the opportunity to review this part of
your history. It was of interest to me and I am sure that it will be of
great interest to many of our colleagues.
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A Convolution Inequality

Gavin Brown!

Larry Shepp?

ABSTRACT We establish an elementary convolution inequality which
appears to be novel although it extends and complements a famous old
result of W.H. Young. In the course of the proof we are led to a simple
interpolation result which has applications in measure theory.

1 The Convolution Inequality

Theorem 1.1

(i) Suppose that co >p>s>q>1landlett ! =p 1 +q7 1 —s7L If
f,g € LP(R) N LI(R) are nonnegative

[T Y TR PR (RO RL

Unless f or g is null, equality holds only when p = q = s =t and
then we have

|7 =g re| = 11fll, N,
for all f,g € LP(R).

(ii) Suppose that s+t~ =1, s > 1,t > 1. If f, g are continuous with
compact support then

/Sl;p |f(z —y)g@)ldz > ||, llgll, > sgp/ |f(z —y)g(y)| dy.

Equality holds if and only if f or g is null.

Remarks

1. The result will be seen to transfer to general LCA groups — with the
proviso that non-null constant functions can give equality.

!Mathematics Department, University of New South Wales
2AT&T Bell Laboratories
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2. If we allow {s,t} = {1,00} in (ii), then the right hand inequality
can be an equality for non-null functions (e.g. take f = g = Xg, the
indicator of a set of positive measure).

3. If we delete the middle term in each inequality then we have a special
case of a well known result about repeated means (Jessen (1931)).

4. The theorem of W.H. Young (1913), (see also B. Jessen (1931) p. 199),
mentioned in the abstract, is the statement that for u > 1,0 > 1,
v l4ovl>1,

Zzuv/(u+v wv) < (Z l)v/(U+v uv) (Zy;’)U/(u-H}_uU)

where

= Z T;iYj, and the z;, y; are positive.
it+j=n

This follows from the special case of the right hand inequality (i)
of our theorem in which ¢ = 1,p = ww(u +v —uv)™!, s = u, t = v,
f(t) = 3, x:6(t—1) and g(t) = 3_; y;6(t— 7). The integral analogue of
Young’s result is explicitly discussed on p. 201 of Hardy, Littlewood,
and Pélya (1951).

5. In view of the homogeneity of the inequalities it is enough to con-
sider the seemingly weaker result in which p, ¢ and s, ¢ are pairs of
conjugates — simply raise f and g to the same suitable power.

Lemma 1.2 With p, q, as in the Theorem,
|7 <gm 2| =111, gl
q

with strict inequality unless f or g is null.

Proof. Let h(z)(y) = h(z,y) = f(z — y)g9(y)?

q/p
/(/fz— pdy) dz = [ [|h(z)]l,,, dz.

By Minkowski’s inequality, since p/q > 1, we have

/ 1A(@)l/q dz > H/ e
<[ (o)

q/p
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- [( / f(x)"dw)p/q [ty dy] "
Jredfra)”

|7« a2 = 15,

(and, of course, the corresponding inequality holds with f, g interchanged).
Equality requires that p = q or that h(z,y) be of the form k(z)L(y).
The equation f(z — y)g(y) = k(z)L(y), when g is not null, forces

fz) fy) _ flz+y) (1.1)

£(0) £(0) £(0)
or else f is null. If (1.1) holds then f is a multiple of a (non-negative) group
character and hence constant. For the case of the real line, this shows of
course that f ¢ LP and we conclude that f is indeed null.

It remains to ‘interpolate’ for s, . This is not quite trivial because
log || f|l,, need not be convex as a function of p and it is not clear how to
describe the behavior of log || f|| 4 3 a function of p. The next lemma shows
that, although log || f]|,, + log || /|| o need not be U-shaped as a function of
D, at least its graph has no caps.

Thus

Lemma 1.3 Let s; < s < sy and let t1,t,ta be conjugate to sy,s, sy re-
spectively. Then

1715 llglly < max([l £, Nglly, > I£1ls, lglle,)-

Proof. Choose a1, a2 positive such that oy +as = 1 and s = a;8; +asss.
By convexity of log || f||5 (i.e. by Hélder’s inequality)

Il < WA A N2 . (1.2)
We choose ; ;
] )
ﬂ1=01—1—, ﬂ2—a2‘3—
st s ta
and observe that
t
B+ B2 = 011"l +0t2fg -
t t2 S
= (a1(31 — 1)+ ay(s2 — 1))t/s
t
=(s—-1)-=1.
(s-1)s

Again by convexity of log || g||§,

t t t
lglls < llglFees llgl22* . (1.3)
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But

Pty _ us Batz2 _ Q282 (1.4)
t ] t ]

Combining (1.2), (1.3), (1.4) we find

”f”s ”g”t < (“f”‘91 “g“tl)o:131/.9(||f"32 ”g”tz)azsz/s.

Since a181/s + a282/s = 1, the result follows.
The problem of establishing the lower bound for || f||, |g]|, is a little easier
(cf. Hardy, Littlewood and Pélya (1951), p. 199).

Lemma 1.4 Letp, q, s, t, f, g be as in Theorem 1.1 (with p, q conjugate)
and choose s', t' such that

ot

=—4+-=1

s s
- + -—
q b q P

Then , o
(f7 % gO)Me < [I£1S72 lgllE /2 (2 + g)V/P.

Proof. Since
QI-ggH)+(1-gs )+ (-1 =1,
Holder’s inequality gives
lhihahally < [1hall - ge-1y-1 1R2l(1—gs-1)-1 IRall(g—1y-1 »
where
h@) =fl-v)", h@) =90)", ha@)=(fle—y) 9@ "

Because
fl—gt ™ Hl=s t(Q-gs 1) =t

this is the statement that

Fxg%(@) < IFIZ gllE (£° * g8)1 (=),

and the required result follows at once.

It is now clear how to piece together the proof of the theorem. Part (ii)
can be obtained by a limiting argument — but it also yields to a very quick
direct proof that bypasses Lemma 1.3.
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2 Application

Lemma 1.3 makes no use of the special properties of Lebesgue measure,
so it remains valid for ||f|l, , = (f f*du)*/, lgll,, = (J g°dv)'/* where
1, v are arbitrary probability measures. Moreover the choice of ¢,t;,t2 as
conjugates of s,s;,ss; was unnecessarily restrictive. What we used in the
proof is the fact that there exists a ¢ function ¢(s) = s/(s—1) with t = ¢(s),
t1 = &(s1), ta = ¢(s2) and, the crucial condition, that s/¢(s) is affine.

It turns out that these are just the properties we need for the application
in mind. In fact Oberlin (preprint) recently proved that

/Sx;pf(z—y)g(y)d)\(m) Z/fdu</quz)1/"’

where f, g are nonnegative continuous functions on the circle, A is Haar
measure, u is Cantor measure and ¢ = log 3/(log 3 — log 2). We extend his
result as follows:

Theorem 2.1 Suppose that f, g are nonnegative continuous functions on
the circle and that s,t > 1 and satisfy

log2\ _
_ '“1 t 1.
1=s""+ <—log3)

/St;pf(:c—y)g(y) d\(z) > (/ s d)\>1/s </gt du>1/t

Corollary 2.2 For s, t as above and arbitrary Borel sets E, F it is true
that

Then

ME + F) > u(F)Y*\(E)'/*

Proof of Theorem 2.1. Oberlin proved the limit case with ¢ = 1. Let’s
consider (the much easier) limit case with ¢t = co. We must prove

/ supg(z — 1) /) A@) 2 Ifll [ o) A

Y

Without loss of generality we assume that || f||_, = 1 and that f vanishes
outside a small neighborhood N of yy. As N shrinks,

/ supg(z — v)f () d\(z) — / oz — v0) dA(z) = g,

Yy

as required.
In view of the remarks at the beginning of this section we can now use
Lemma 1.4 to interpolate to obtain the full force of the theorem.
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The proof of the corollary is straightforward.

Now that the utility of the sharpened form of Lemma 1.4 has been demon-
strated it seems worthwhile to state it in the form of a postscript to the
discussion of convexity of r-th order means in §16 of Beckenbach and Bell-
man (1971).

Recall that the mean of order t is

n 1/t
M(z,a) = (Z a,-zﬁ) ,
i=1

while the sum of order t is

n 1/t
Si(z) = (me) .

It is, of course, implicit in these statements that z = (z;), and a =
(a;)?; have positive entries and that Y a; = 1. We will consider also
vy = (yi)™q, B = (6:;), where m may differ from n.

Lemma 2.3 Suppose that, fori=0,1,2, s; > 1,t; > 1 and a,s,-"1 —}—bti_1 =
1, for constants a,b. If s; < sg < so then

(i) Mao(z’ a)Mto(ys :B) < {2% MB.‘ (.’E, a)Mti (ya B),
and, if further a : b =logn : logm,

(i) S50 ()8t (y) < max Ss, (2) 5t (y)-

Proof The remarks at the beginning of this section establish (i). For (ii),
we normalize by dividing both sides by nl/%om!/t The condition on a : b
enables us to apply (i). O

Further applications of Lemma 2.3 are given in Brown (preprint).
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Peakedness of Weighted
Averages of Jointly
Distributed Random Variables

Wai Chan!
Dong Ho Park?
Frank Proschan?

ABSTRACT This note extends the Proschan (1965) result on peakedness
comparison for convex combinations of i.i.d. random variables from a PF,
density. Now the underlying random variables are jointly distributed from
a Schur-concave density. The result permits a more refined description of
convergence in the Law of Large Numbers.

1 Introduction

Proschan (1965) shows that:

Theorem 1.1 Let f be PF;, f(t) = f(-t) for all t, X1,..., X inde-

m - -
pendently distributed with density f, @ > b; @, b not identical, 22;1 a; =
Sr  bi=1. Then Y i | b;X; is strictly more peaked than ;. ; a; X;.

Definitions of majorization ( @ 72” b ), PF2 density, and peakedness are
presented in Section 2. The Law of Large Numbers asserts that the aver-
age of a random sample converges to the population mean under certain
conditions. Roughly speaking, Theorem 1.1 states that a weighted aver-
age of i.i.d. random variables converges more rapidly in the case in which
weights are close together as compared with the case in which the weights
are diverse.

In the present note, we extend the basic univariate result to the multi-
variate result in which the underlying random variables have a joint Schur-
concave density. Theorem 2.4 presents the precise statement of the multi-
variate extension.

! Ohio State University, Department of Statistics, Columbus, Ohio 43210
2University of Nebraska, Department of Statistics, Lincoln, Nebraska 68588
3Florida State University, Department of Statistics, Tallahassee, Florida 32306
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2 Peakedness Comparisons

The theory of majorization is exploited in this section to obtain more gen-
eral versions of the result of Proschan (1965). We begin with some defini-
tions. The definition of peakedness was given by Birnbaum (1948).

Definition 2.1 Let X and Y be real valued random variables and a and b
real constants. We say that X is more peaked about a than Y about b if
P(|X —a| >t) < P(|Y —b| > t) for allt > 0. In the case a = b = 0, we
simply say that X is more peaked than Y .

Next we define the ordering of majorization among vectors. The stan-
dard reference on the theory of majorization is the book by Marshall and
Olkin(1979).

Definition 2.2 Leta; > --- > a, and by > --- > bn_‘be decreasing re-

arrangements of the components of the vectors @ and b. We say that @
- m -

majorizes b ((written @>b ) if X" ai =" b and Y5 a; > YO8 1 b;

fork=1,...,n—1.

Definition 2.3 A real valued function f defined on R™ is said to be a

Schur-concave function if f(&@) < f (l_;) whenever @ 'é' b.

A nonnegative function f on (—00,00) is called a Pdlya frequency func-
tion of order 2 (PFy) if log f is concave. If f is a PF; function then ¢(Z) =
[T, f(zi) is Schur-concave. Thus the random vector X =(X1,...,Xn)
has a Schur-concave density under the conditions of Theorem 1.1. A func-
tion f defined on R™ is said to be sign-invariant if f(zi1,...,Zn)
= f(|z1],---,|zn|). In the following theorem, we give a peakedness com-
parison for random variables with a sign-invariant Schur-concave density.

Theorem 2.4 Suppose the random vector X = (X1,...,Xn) has a sign-
invariant Schur-concave density. Then for allt > 0,

#(ay,...,an) = P(zaiXi < t)
i=1

is a Schur-concave function of @ = (a1,...,a,),a; > 0 for all i. Equiva-

m -
lently, 37, b;X; is more peaked than ;. _; a;X; whenever @ > b.

i=
Proof Without loss of generality, we may further assume that )_ a; = 1.
We first consider the case n = 2. m

Let @ = (al,ag),g = (b1, b2),d > b. Since X1, X, are exchangeable, we
may assume that a; > b > 1/2 > by > ay. To show that

P(a1X1 + a3 X < t) < P(b1X1 + by Xs < t)
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FIGURE 1.

for t > 0, consider the lines a121 + aoze =t and byxy + baxe =t in Figure
1. ‘

Since a; > b; > 1/2, both lines intersect the z,-axis in the interval [t, 2t]
and they intersect the 45 degree line at the point (¢,t) (a1+az = by+be = 1).
We must show that P(E) < P(F'). Now reflect E across the 45 degree line
to form the wedge E’. Then P(E) = P(E'’) because the joint density f is
invariant under permutation. For k > 0, the line z; — x5 = k intersects E’
at the line segment joining (¢ + b1k, t — bek) and (t + a1k,t — agk), and it
intersects F at the line segment joining (t+azk,t—a; k) and (t+bok,t—b; k).
Note that both segments are of equal length. But f sign-invariant and
Schur-concave implies that

F(t +bik,t — bok) = f(t + bik, bok — £)
< f(t + bok,brk — t) = f(t + bok,t — bik).
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This last fact then clearly implies that P(E’') < P(F) by conditioning on
X; — Xs.
The result for n > 3 now follows since

n n
P(ZaiXi S t) = E[P(ale +a2X2 <t-— ZaiXi) X3,... ,Xn:I
i=1 i=3
and the conditional density f(zi,z2|zs,...,Z,) is also Schur-concave and
sign-invariant. O

For an example of a Schur-concave density that is also sign-invariant,
consider the multivariate Cauchy density:

n —(n+1)/2
1
f(xl,...,:cn)=1’(%> <7r+7r2xf) .
i=1

The following result is an immediate consequence of Theorem 2.4.

Corollary 2.5 Let X1,...,X, be random variables with a Schur-concave
and sign-invariant joint density f. Then ZLI X /k is increasing in peaked-
ness as k increases from 1 to n.

Proof Letdi =(1,0,...,0),d3 = (3,3,0,...,0),...,and g, = (% 1
m m
where each vector contains n components. Then dj > --- > d,,. The result

follows from Theorem 2.4. O

Suppose ff = (X1,...,Xn) and Y = (Yi1,...,Y,) are independently
distributed with Schur-concave and sign-invariant densities f and g. Then
Theorem 2.4 implies that Y., b;(X;+Y;) is more peaked than 3. ; a;(X;+

m
Y;) whenever @ > b. This is true because the convolution of Schur-concave
functions is Schur-concave. Now suppose that Y,...,Y, are i.i.d. Cauchy,
then the joint density g given by

91, Yn) = (%)"/f[u +a%?), a>0, (2.1)
i=1

is not Schur-concave. In Theorem 2.6 below, we show that ., b;(X; +Y;)

is more peaked than } ., a;(X;+Y;) whenever @ g b. This result identifies
a different class of densities for which the conclusion of Theorem 2.4 holds.

Theorem 2.6 Suppose that the random vector X = (X1,...,Xy) has a
sign-invariant Schur-concave density f. Let Y,..., Y, beiid Cauchy with
joint density g as given in (2.1). Let X and Y = (Y1,...,Y,) be indepen-

dent, and @ '§ b where a; > 0,b; > 0 for all i and Shiai=Yr  b=1
Then Y, by(X; +Y;) is more peaked than ¥ ;. a;(X; +Y;).
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Proof Since f is sign-invariant, both Y_;- ; a;X; and Y- ; b;Y; are sym-
metric random variables. We use the fact that } - ; a;¥; and > [, b;Y;
have the same distribution as does Y;. The result now follows from The-
orem 2.4 and the Lemma of Birnbaum (1948) by noting that Y; has a
symmetric and unimodal density. a
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Multivariate Majorization

Somesh Das Gupta!
Subir Kumar Bhandari!

ABSTRACT The concept of univariate majorization plays a central role
in the study of Lorenz dominance for income distribution comparisions in
economics. The first part of this paper reviews different conditions which
are equivalent to Lorenz dominance. The second part of the present paper
poses the question whether such equivalences extend to the multivariate
case. Some concepts of multivariate majorization are presented along with
a few new results. For economic applications, the notion of a concave utility
function on vector observations appears to play a crucial role in multivari-
ate majorization. It is shown that such concavity follows from some easily
understandable axioms.

1 Introduction

The concept of univariate majorization plays a central role in the study of
Lorenz dominance for comparing two income distributions. Some alterna-
tive relations equivalent to univariate majorization or Lorenz dominance in
the stochastic set-up are scattered in the literature. These results are miss-
ing in the excellent treatise on majorization by Marshall and Olkin (1979).
The first part of this paper reviews the different conditions equivalent to
Lorenz dominance, citing the appropriate references. This aspect has also
been briefly mentioned in a recent monograph by Arnold (1987).

The second part of the paper poses the problem whether the equivalent
conditions in relation to univariate majorization could be extended to the
multivariate case. The problem of comparing two communities in which
individuals are characterized by a set of socio-economic attributes has not
received much attention among the economists. The difficulty is not merely
due to the non-uniqueness of the concept of “rich-poor,” but also due to the
fact that the effects of different socio-economic attributes or measurements
on total utility or total social welfare are not easily comprehensible. One
may, of course, reduce the data to a single measurement by using some
appropriate weights, although the validity of such a simplification may
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64 3. Multivariate Majorization

be questionable. On the other hand, the use of multivariate majorization
in a purely mathematical framework is extremely limited in economics.
Within these limitations some concepts of multivariate majorization have
been presented along with a few new results. It appears that the notion
of a concave utility function on R™ plays a crucial role in multivariate
majorization. It is shown in the appendix that the concavity of the utility
function results from some easily understandable axioms.

2 Univariate Majorization

Given a vector = (z1,...,Z,) in R", let ;) < --- < z(,) be the ordered
values of the z; ’s. For two vectors z = (z1,...,Z,) and ¥y = (¥1,...,Yn)
in ™, consider the following conditions:

(a) Rearrangement Condition. x is majorized by y, written as z < y, i.e.

Zz(,)>§:y(,) fork=1,. ,n,andizi=zn:y,-.
1 1

i=1

(b) Structural Condition (Schur, 1923). There exists a doubly stochastic
matrix P such that z = yP.

(c) Convezity Condition. For all continuous convex functions ¢
n n
Z p(zi) < z o(yi)-
1 1

(d) Residual Condition. For all real a

n

Z '—a)+$z '—a)+1 Zzi=zyis
1 1 1

1
where (a)t = max(a,0).

It is well known that the above four conditions are mutually equivalent;
see Marshall and Olkin(1979).

Now suppose that the components of z and y are non-negative with
(X1 z:)(3Twi) > 0. Then the Lorenz-curve (Lorenz, 1905) correspond-
ing to z lies above the Lorenz-curve corresponding to y if, and only if,
z/(37 i) < y/(37 vi); such a relation is often stated as z <, y (Arnold,
1987; Nygard and Sandstrom, 1981). It is clear that if "] z; = > y: then
z <[ y is equivalent to z < y.

The Lorenz-order <7, has been extended to the stochastic set-up as fol-
lows (Arnold, 1987; Nygard and Sandstrom, 1981). Let X and Y be two
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non-negative random variables with distribution functions F' and G, re-
spectively, having finite non-zero means. For 0 < u < 1, define

Lx(U)=/0uF'1(p)dp//01F‘1(p)dp~

Then X <r Y, by definition, if Lx (u) > Ly (u) for every u € [0,1]; <L is
denoted by <, by Arnold (1987).

The above concept leads to the extension of the rearrangement condition
(a) to the stochastic set-up as follows:

Condition (A) X <. Y, E(X) = E(Y).

It is now natural to ask whether conditions (B), (C) and (D) could be
extended to the stochastic set-up, and whether these conditions, when ad-
equately defined, would be equivalent to condition (A). The convexity con-
dition (C) and the residual condition (D) have straightforward extensions
as follows:

Condition (C) E¢(X) < E¢(Y), for all continuous convex functions ¢
for which the above expectations exist.

Condition (D) E(X —a)* < E(Y —a)* for all real a, and E(X) = E(Y).

The structural condition (B) does not have a straightforward extension.
Ryff (1965) has introduced a doubly stochastic operator to get an extension
of (B); a different development is given by Rothschild and Stiglitz (1970).
However, the most satisfactory version of the structural condition in the
stochastic set-up may be formulated following the work of Strassen (1965)
as follows:

Condition (B) There exists a probability space and associated random
variables U and V such that the distribution of U is the same as that
of X, the distribution of V is the same as that of Y, and E(V|U =
u) = u almost surely.

The above development of stochastic majorization is included in Bhan-
dari (1987), and it was pointed out in Bhandari (1987) that Conditions
(A), (B), (C) and (D) are equivalent. This result is also included in Arnold
(1987); however, adequate references and a detailed proof are not provided
there. Atkinson (1970) proved that (A) < (D), Strassen’s work (1965) con-
tains the results (B) < (C), and the result (C) < (D) has been proved by
Karamata (1932) and Ross (1983).

The above development can also be extended to weak majorization. For

example, if we start out with the definition of weak sub-majorization x Z Y
(Marshall and Olkin, 1979), then corresponding conditions in the stochastic
set-up may be stated as follows:
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Condition (A’)

1 1
/F)?l(P)dPS/ Fy ' (p) dp, forall 0 <u < 1.

Condition (B’) There exists a probability space and random variables U
and V associated with it, such that the distribution of U is the same as that
of X, the distribution of V is the same as that of Y, and E(V|U = u) > u
almost surely.

Condition (C') Ep(X) < Eg(Y) for all non-decreasing convex func-
tions ¢ for which the above expectations exists.

Condition (D’) E(X —a)t < E(Y —a)?t for all real a.

The equivalence of the above four conditions can be easily derived from
the work in Atkinson (1970), Karamata (1932), Stoyan (1983), and Strassen
(1965). It may be noted in this connection that the condition (D) has been

used by Stoyan (1983) to define a convex ordering <. Conditions similar to
the above, and the corresponding result on their equivalence, can also be
developed for weak super-majorization (Marshall and Olkin, 1979).

3 Multivariate Majorization

The ordering of univariate populations does not have a straightforward
generalization to the case when the ordering is based on observations on
multiple characteristics of the experimental units. The basic difficulty in
extending the Lorenz curve, in particular, is due to the fact that there is
no unique way to define an ordinal scale (poor to rich) to describe the units
to start with, although attempts for such an extension have been made by
Taguchi (Arnold, 1983; Taguchi, 1972a; and Taguchi, 1972b). It seems that
any such concept of ordering should depend on the objectives and possible
uses of such a study; besides, the physical nature of the problem as mani-
fested in concrete situations may call for some specific types of ordering on
the basis of relevant auxiliary information. Any abstract formulation of the
concept of ordering would primarily be a mathematical exercise, although
such a formulation often may give insight into various underlying relations.

In order to compare different communities with respect to social welfare,
Sen (1976) has suggested the criterion C = 7" | ief;;, where ejy) > -+ >
e[n) are the ordered components of the income-vector of n individuals in
a community, based on a given market-price of the commodities and the
consumption-matrix for these commodities. Sen has shown (1976) that C is
approximately proportional to €(1 — G) for large n, where € is the average
income and G is the Gini-index of income. Following Sen (1976), a commu-
nity 1 is said to be socially better than another community 2 of equal size if
the C-value of community 1 is more than that of community 2 with respect
to the price-vector prevailing in community 1. Note that this ordering is
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not even a preordering, and use of C-values for comparing different com-
munities may lead to inconsistency. Social Welfare surely depends on the
consumption of some basic commodities; however, it also depends on a va-
riety of individual and social attainments and the prevailing socio-political
norms.

From a mathematical viewpoint, multivariate majorization has been briefly
discussed in Marshall and Olkin (1979), as well as in Arnold (1987). Some
new results on concepts of multivariate majorization are given below.

When comparisons have to be made based on measurements of m char-
acteristics on each individual in a population, partial ordering may be in-
troduced with respect to each of the characteristics separately. Following
Marshall and Olkin (1979), X : n X m is said to be column-majorized by
Y : nxm, written as X °<°‘ Y, when X¢ <Y (i =1,...,m), where X{ and
Y¢ denote the vectors of measurements of the ith characteristic — that is,
the ith column-vectors of X and Y, respectively. This can be viewed as the
structural condition.

We now define a convexity condition for column-majorization and show

that it is equivalent to the structural condition. For a row vector Z =
(Z1,-..,2Zm) define

g(Z) = gl(zl) +---+ gm(Zm)’

where the g;’s are convex functions. For a matrix X : n x m with rows
XE, ..., XE, define

p(X) = g(xF).
i=1

Let ® be the set of all such functions ¢. The following theorem can be
proved easily using the developments in Marshall and Olkin (1979).

col
Theorem 3.1 For any two n x m real matrices X andY, X <Y if, and
only if, p(X) < p(Y) for all p in ®.

In relation to the partial ordering defined by column-majorization, one
may define appropriate inequality measures for X which would preserve
such an ordering. For example, let

where h is increasing, the ¢;’s are Schur-concave, and X{ are columns
of X. Then X <! Y implies I(X) > I(Y). In particular, for X > 0
(elementwise) one may consider

1 i": 1 2 s |1 X —Xi,,-|.
n

Io(X) = =
0 m = -1 Ei Xij
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Marshall and Olkin (1979) have considered the following extension of
majorization to the multivariate case. A matrix X : n X m is said to be
majorized by another matrix Y : n X m, written as X <Y, if there exists
a doubly stochastic matrix D such that X = DY. It is clear that X <Y

1
implies X < Y. The following is a useful necessary condition for matrix
majorization:

Theorem 3.2 For two n x m matrices X andY, X <Y impliesY'Y —
X'X is non-negative definite.

The above theorem follows from the fact that I — D’D is non-negative
definite for any stochastic matrix D.

Matrix majorization calls for the same type of averaging for every com-
modity; on the other hand, column-majorization calls for averaging sepa-
rately for each commodity. It may be noted in this connection that redis-
tribution of the average amount of farm equipment without any change in
the distribution of farm land may not result in an increase in social welfare.
On the other hand, matrix majorization seems to be quite restrictive, and
apparently presupposes a definite relationship among the commodities.

The equivalence between the structural condition and the convexity con-
ditions has been proved by Karlin and Rinott (1983), using the general
result on dilations; their result is stated below.

Theorem 3.3 For any two n x m real matrices X and Y, the following
conditions are equivalent:

(i) X = DY for some doubly stochastic matriz D,
(i) i, (X)) < T, f(EF)

for every continuous convez function f : R™ — R, where X! and YR
denote the ith rows of X and Y, respectively.

The above theorem seems to be useful from the viewpoint of economics.
Suppose X and Y denote two consumption matrices of n individuals on
m commodities. Suppose that the total welfare for X is given by w(X) =
ST U(X}), where U is a concave function. Then X < Y is equivalent
to w(X) > w(Y), for all concave functions U. However, it is conceptually
difficult to understand a concave utility function U on ®™. In the appendix
we shall pose some easily understandable axioms for U, which in turn would
imply its concavity.

The following inequality measures preserve the partial order of matrix
majorization for X >0 :

n(X) =3 XPAXEY, (31)

i=1
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where
XE = XE.diag(r1,...,™m)
T = .
T Y Xy
and A is a positive semidefinite matrix.
n(X) = h(pr(Xaa),. .., pe(Xax)), (3:2)

where a; € ™, a; > 0 (componentwise) for all ¢, h is an increasing func-
tion, the ¢;’s are univariate inequality measures which preserve the partial
order of majorization, and X is the matrix with X} defined in (3.1).

We have pointed out that X < Y is equivalent to Y i, U(XF) >
S.r  UYR) for all concave functions U : R™ — R. A comparison be-
tween X and Y can also be made by comparing (U(X{),...,U(XE)) with
(UR),...,UYE)), as given in the following theorem:

Theorem 3.4 For two n X m matrices X and Y, the following conditions
are equivalent:

(i) For all increasing concave functions U on R™
(UXE),...,.UXE) < UEH),...,.UxF).

(ii) There exists a doubly stochastic matriz D such that X > DY, component-
wise.

First note that from the viewpoint of economics the condition (i) in the
above theorem appears to be quite reasonable for the comparison of two
populations. Secondly, the above theorem is a generalization of Theorem
5.A.2, part (iii) in Marshall and Olkin (1979). The proof of the above
theorem depends on the following result which can be easily obtained from
the development in Karlin and Rinott (1983).

Theorem 3.5 For two n x m matrices X and Y, the following conditions
are equivalent:

(i) X > DY for some doubly stochastic matriz D.
(i) XY UXF) 2 ST UEH)
for all increasing concave functions U on R™.

Comparison of two populations of different sizes has been considered by
Fischer and Holbrook (1980), and later generalized to the multivariate case
by Karlin and Rinott (1983).
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Comparisons of multivariate populations can also be done by using the
concept of univariate majorization and some suitable transformations. Fol-
lowing Marshall and Olkin (1979), a matrix X : n X m is said to be linearly
majorized by a matrix Y : n x m if Xa < Ya for all vectors a in ®™.
Bhandari (1988) has studied the relation between matrix majorization and
linear majorization.

4 Multivariate Majorization: Stochastic Case

Following the definition of multivariate majorization in the non-stochastic
case, one may say that a random vector X : 1 x m is majorized by another
random vector Y : 1 X m, written as X <Y, if

ERh(X) < Eh(Y)

for all convex functions h for which the above expectations exist. Such a
relation is called Lorenz dominance and denoted by <;, by Arnold (1987).
It follows from Strassen’s work (1965) that the convexity condition defined
above is equivalent to the structural condition (B’) with random variables
replaced by random vectors.

One may also define majorization in the stochastic case by requiring
@(X) <L o(Y) for a class ® of functions ¢ : R™ — R.

Marshall and Olkin (1979) have given a class of definitions for stochas-
tic majorization; however, such definitions are quite restrictive, especially
from the point of view of economics, since they are expressed in terms of
symmetric or Schur functions. Moreover, such definitions do not reduce to
Lorenz order in the univariate case.

In order to ensure X = (X3,...,Xp) <Y = (Y3,...,Y,), one needs a
much stronger condition than X; <r Y; fori = 1,..., m. However, when the
Xi’s are independent and so are the Y}’s, them X; <, Y; fori=1,...,m
is equivalent to X < Y. This result follows from the theorem below.

Theorem 4.1 Let X,,...,Y,, be a set of m independent random variables,
and Y,...,Y,, be another set of m independent random variables. Suppose
X;<pY fori=1,...,m. Then

Eh(X1,...,Xm) < Eh(Y4,...,Yn)

for every real-valued function h, separately convez in each argument, when-
ever the above expectations exist.

The proof of this theorem can easily be obtained from a closely related
result of Ross (1983). It is interesting to note that under the assumptions
of the above theorem

aXi+ - temXm <aYi 4+ enYm,
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for any c;’s, and
X1 Xo.. X, <L Y., .Y,

However, the above theorem does not yield max(X;) <5 max(Y;). Bhan-
dari (1987) has shown the following weaker result for comparison between
max(X;) and max(Y;).

Theorem 4.2 Let (X1,...,X,,) and (Y3,...,Y:,) be two sets of m non-
negative independent random variables such that X; <y Y; fori=1, ...,
m. Then there ezists a non-negative random variable Z with E(max(Y;)) =
E(Z) such that

max(X;) <5 Z, 7 <y max(Y;),

where <5t denotes stochastic order (Marshall and Olkin, 1979).

Al Concavity of Utility Function

First we shall consider the case m = 2. We postulate the following axioms.
Axiom Al.1 U is strictly increasing.

Axiom A1.2 U is concave in the positive direction, i.e., for x > y and
0<A<1
UM+ (1-Ny) > \U(z)+ (1= NU(y).

Axiom A1.3 U is continuously twice differentiable.
Axiom Al.4 Given x] > x1*, T2, Aze > 0, define Az} and AxT* by
U(z],z2) = U(z] + Az],z2 — Azy)
Uz, z2) = U(zi* + AzT*, 22 — Aza).
Then Az} > AzT*.

Theorem A1l.5 Under the Azrioms Al1.1-A1.4, U is a concave function
on R2.

Proof Let 52U )
T1,T2 L
o= e =1, 2. All
UZ] axlaxj 1’7 .7 k) ( )
It is sufficient to show that the matrix U;; is negative semidefinite for all
Ty, T2.

Axiom A1.2 implies that for fixed z > y,

HMN=UMz+(1-Ny) (A1.2)
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is a concave function of A in [0,1]. This, in turn, implies that H"”(\) < 0.
It can be easily seen that

2U (w
H”(,\) = Z Z(xi - yi)(xj - yj) gw(zj{;wj)

(A1.3)

w=Az+(1-A)y

Given w > 0 and a > 0 there exist z, y with £ > y and 0 < XA < 1 such
that
w=Azx+(1- Ny, (A1.4)

2
DX 0 ) <0. (ALS)

To see this, note that there exists € > 0 such that z = w+¢€a > 0,y =
w — ea > 0 and use the fact that H”()\) < 0. It follows from the above
development that (A1.5) also holds for a < 0.

We want to show that (A1.5) holds for all a. Suppose Uz > 0 for £ = w
Since U is concave in each argument (by Axiom A1.2), Uy; < 0,Us2 < 0.
Hence (A1.5) holds when aja; < 0.

Now suppose that U;; < 0 for z = w. It follows from Axiom A1l.4 that

0 U,
3_.’1)1 (_Fl) <0

6U(zc1, 1132)
89:,-

and

where
U, =

Thus
UU; — U U2 < 0.

Reversing the role of z; and z2 we get
U1Use — UpUy2 < 0.
From the above two relations we get
Un1Uz > U,

since U2 < 0,U11 < 0,Us2 < 0,U; > 0, and U; > 0. Thus the proof of the
theorem is complete. a

Next we consider the case m > 2. We define a new characteristic (or a
commodity) by a mixture of the m given characteristics (or commodities)
in fixed proportions. We modify Axioms A1l.1-A1.4 so that they hold for
any such two new characteristics. Under these modified axioms the utility
function U is concave on R™.



Somesh Das Gupta, Subir Kumar Bhandari 73

To verify the above claim, take any two fixed points z and y in R™, and
consider the plane P passing through z and y and the origin O. It is now
sufficient to prove that U is concave on the plane P. Consider the convex
cone which is the intersection of the plane P and the positive orthant, and
let Q1 and @2 be the unit vectors corresponding to the two extreme rays
of this cone. All points on P can be considered as linear combinations of
Q; and @3, ie.,forpe P

P =p1Q1 + p2Qa.

Thus any such point p in P can be represented by (p;,p2). It is now suf-
ficient to show that the modified Axioms A1.1-A1.4 in terms of (pl,ps).
This fact trivially follows for Axioms Al.1, A1.2, and Al.4. To see axiom
A1.2, take any two points u and v on P. Let ¢); and @2 have coordinates
(31,..-,%m), and (j1,...,Jm), respectively, and let

u=u1Q1 + u2Q2,

v =v1Q1 + 12Q>.
Suppose now (u;,u2) < (v1,v2). Then v < v. Thus, U is concave on the
line joining u and v.
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Some Results on Convolutions
and a Statistical Application

M.L. Eaton!
L.J. Gleser?

ABSTRACT Classes of distributions, of both discrete and continuous type,
are introduced for which the right tail of the distribution is nonincreasing.
It is shown that these classes are closed under convolution, thus providing
sufficient conditions for nonincreasing right tails to be preserved under con-
volution. A start is made on verifying a conjecture concerning the extension
to the left of nondecreasing right tails under successive convolution. The
results give properties of the distributions of random walks on the integers.
A statistical application is the verification of a conjecture of Sobel and
Huyett (1957) concerning the minimal probability of correct selection for
the usual indifference zone procedure for selecting the Bernoulli population
with the largest success probability.

1 Introduction

A well known result of Wintner (1938, pp. 30, 32) asserts that the class of
symmetric (about 0) unimodal densities on the real line R is closed under
convolution. The corresponding result for symmetric unimodal probability
mass functions on the integers is proved by Gupta and Sobel (1960). Conse-
quently, for symmetric distributions the property of having a nonincreasing
right (or left) tail is preserved under convolution.

In the present paper, a larger class of distributions is introduced in which
convolution preserves nonincreasing right tails. In Section 2, the following
two theorems are proved.

Theorem 1.1 For any integer m, let P(m) be the class of probability mass
functions p(-) defined on the integers which satisfy

pm—-j) 2 pm+j), =012 .., (1.1a)
p(j) > p(G+1), forj=m,m+1,.... (1.1b)

1University of Minnesota
2Purdue University
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Then if p;(-) belongs to P(m;), i = 1,2, the convolution p; * p2(-) of p1(-)
and p2(-) belongs to P(m; + my).

Theorem 1.2 For any real number m, let F(m) be the class of density
functions f(-) defined on the real line R which satisfy

flm—=t) > f(m+1) fort >0, (1.2a)
flz) > fv) whenm <z < y. (1.2b)

Then, if fi(-) belongs to F(m;), i = 1,2, the convolution f1 * fa(-) of fi(:)
and fo(-) belongs to F(my + my).

Note that symmetric (about 0) unimodal probability mass functions be-
long to P(0), and that symmetric unimodal densities belong to F(0); for
these distributions the inequalities in (1.1a) and (1.2a) are actually equal-
ities.

Suppose that a probability mass function p(-) belongs to P(0), and that
p(+) is not symmetric about 0. Theorem 1.1 says that for every n > 1 the
n-fold convolution p,)(-) of p(-) with itself satisfies

p(n)(j) Zp(n)(j+ l)a allj=0,1,2,....

Thus, p(»)(-) has a nonincreasing right tail beginning with j = 0 for all
n > 1. However, under these circumstances the mean (if it exists) of the
distribution defined by p(-) is negative. Hence, the weak law of large num-
bers implies that the probability mass of p(n)(-) moves to minus infinity as
n — 0o. Also, if the variance of p(-) exists, the Central Limit Theorem sug-
gests that p(,) (4),7 = 0,£1,£2, ..., becomes part of the right (decreasing)
tail of the standard normal distribution as n — oo. These observations lead
to the following conjecture.

Conjecture 1.3 There ezists a riondecreasing sequence {n;: i =1,2,...}
of positive integers such that p)(—1) > pn)(—i+1), alln > n;, fori=1,
2 ...

In Section 3, a special case of this conjecture is verified. Suppose that
p(-) has support on the integers —1,0, 1. That is

p(-1)>p(1),  p(0) 2 p(1),
and p(j) =0 for j # —1,0,1. In this case, it is shown that

1
p(n)(-—l) > p(n)(O), n > max {3, E — 1} R (13)

where a = p(—1) — p(1). The proof depends upon the following result,
which is of independent interest.
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Theorem 1.4 Let q(-) be the probability mass function of the uniform dis-
tribution on {—~1,0,1}, and let q(,)(-) be the n-fold convolution of q(-) with
itself. Then q(n)(0) — q(n)(1) is nonincreasing in n for all n > 2.

Both (1.3), in the case where p(-) has support {—1,0,1}, and also The-
orem 1.4 give properties of the distribution of the n-th stage of a random
walk on the integers.

Finally, in Section 4, the above probability results are applied to the
problem of choosing the Bernoulli population with the largest probability
of success when independent random samples of size n are chosen from
each of two Bernoulli populations. If the two probabilities of success differ
by at least an amount A, 0 < A < 1, it is shown that the probability of
correct choice for the standard procedure (Sobel and Huyett, 1957) is, for
all n > max{4, A~!}, minimized when the smaller probability of success is
2(1 — A) and the larger probability of success is (1 + A). This verifies a
conjecture of Sobel and Huyett (1957).

2 Proofs of Theorems 1.1 and 1.2

The following is a sketch of the main steps in the proof of Theorem 1.1:

Step 1. If X; has mass function p;(-) in P(m;), i = 1, 2, it is easily seen
that Y; = X; — m; has mass function in P(0). Further, X; + X,
has mass function in P(m; + my) if and only if Y; + Y2 has mass
function in P(0). Hence, to prove Theorem 1.1 it is sufficient to
show that P(0) is closed under convolution.

Step 2. P(0) is closed under convex linear combinations. That is, if p;(-)
belongs to P(0), i = 1 2,...,k, and a;, 1 < i < k, are nonnegative

constants satisfying Z a; = 1, then Z a;pi(+) belongs to P(0).
i=1
This assertion is straightforwardly verlﬁed from the definition of

P(0).

Step 3. Let S(0) be the collection of all symmetric (about 0) unimodal mass
functions on the integers, and let A'(0) be the collection of all mass
functions having support on the negative integers —1, =2, .... It
has been previously noted that S(0) is a subcollection of P(0), and
it is easily seen that A/(0) is also a subcollection of P(0). Any mass
function p(-) in P(0) can be written as a convex linear combination

p(-) = an() + (1 -a)s()) (2.1)
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of a mass function n(-) in A(0) and a mass function s(-) in S(0).
To see this, let a = Y- (p(—i) — p(3)),
i=1
A=) tp(ldl), ifi=-1,-2,...,
s(i) =
1-a) 1p@), ifi=0,1,2,...,
and .
o 1(p(i) — p(=i)), i=-1,-2,...,
iy = { & ) =2(=D)
0, 1=0,1,2,....

Step 4. Let pi(-) and p2(-) belong to P(0). Then by Step 3,
pi(-) = aing () + (1 — a4)si(-), i=1,2,
where n;(-) and ny(-) belong to N(0), s1(-) and s2(-) belong to
8(0), and 0 < 03, as < 1. Note that
p1*P2(-) = anaz(ny *xna(+)) + ar(l — o) (ng * s2(+))

+ (1 - ar)az(s1 *n2(-)) + (1 — a1)(1 — a2) (51 * s2(-)).
(2.2)

It is shown by Gupta and Sobel (1960) that s; * s2(-) € S(0) c P(0).
Further, it is clear that n; * ny(-) € N'(0) C P(0). If it can be shown that
ny * 52(:) and s; * na(-) belong to P(0), then it will follow from (2.2) and
Step 2 that p; * p2(-) € P(0).

The proof of Theorem 1.1 is thus completed by the following lemma.

Lemma 2.1 Both n; * s3(-) and s1 *xny(-) = ng * s1(-) belong to P(0).

Proof We will show that n;*sa(-) € P(0). The proof that na*s;(-) € P(0)
is similar. For 7 > 0,

[o o)

ny * s2(j) = Z ny(2)s2 J—Z)—an( i)s2(j + 1)
i=—00 i=1
23 m(=)s(+1+i)= Y m(@)s(j+1~1)

=ny *s2(j + 1).

Also, for j > 1,

00

nixsa(i) = Y m(- z)su+z)+2m( i)s2(j + )

i=j+1
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o0 J
< 3 ma(—i)sa(—j+4) + Yy ma(—i)s2(j —9)
i=j+1 i=1
= Z nl(—i)SQ(—j + 1) + an(—i)'s?(_j + 2)
i=j+1 i=1
= Z ny(2)s2(—j — i) = ny * s2(—J)-

Thus, n; * s2(-) obeys properties (1.1b) and (1.1a), respectively, defining
P(0). o

The proof of Theorem 1.2 follows the same steps as the proof of Theo-
rem 1.1, substituting densities for mass functions and integrals for sums.
Verification that s; * s3(-) € S(0) follows from Wintner (1937).

3 Proof of (1.3)
Let p(-) be a probability mass function on the integers, with

p(=1)>p(1),  p(0) =p(1), (3.1)
and p(j) = 0 for j # —1,0, 1. Thus, p(-) belongs to P(0), and by Theorem
1.1 the n-fold convolution,

Pn)(-) =p*p*---*p(-),

of p(-) with itself also belongs to P(0). The goal of the present section is
to verify the conjecture (1.3) in this special case.
Let a = p(-1) — p(1),
(1 —a)"lp(l), lf] = —lala
s(j) =< (1-a)71p(0), ifj=0,
0, otherwise,

= 0, otherwise.

and

Then
p(j) = (1 = &)s(j) + an(j),

and for any m > 1,

Pm)(9) = Z (T) (1 - @)™ s * nm-i)(9),

m
=0
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where s(x)(-) and n)(-) are, respectively, the k-fold convolutions of s(-),
n(-) with themselves. (Define s(g)(-) and nq)(-) to be mass functions placing
probability 1 on j = 0.) It is easily seen that for 0 < i < m,
. 1, ifj=—(m-1),
Nm—9)(J) =
(m=9(J) {0, otherwise,
so that
8G) * N(m—i)(J) = 8¢ (J + m —9).
Consequently for m > 1,
m m . .
Pmy(j) = Z ( ; )(1 —a)'a™ s (m+j — i), (3.2)
i=0

for j = 0,£1,+£2,... . Note that from (3.1), and from the definition of s(-),
it follows that s(-) € §(0). Thus s(;)(-) € §(0), ¢ =2,3,....

Lemma 3.1 For allm > 2,
Pim)(=1) = Pm)(0) = (1 — &)™ {ma(s(m-1)(0) = $(m-1)(1))
= (1 = a)(s(m)(0) — s(my(1)) }.

Proof It follows from (3.2) and the symmetry about 0 and unimodality
of each s(;)(-) that

P(m)(=1) = p(m)(0)
= (1= &)™ (s(m)(=1) = 5(m)(0)) + mex(1 = &)™ (8(m-1)(0) = 8(m-1)(1))

m-—2 m . ]
+ Z (z )(1 —a)'a™ (s (m — 1 =) — sy (m — 4))

i=0
> =(1 =)™ (5(m)(0) = 8(m)(1)) +ma(Ll = @)™ ! (8(m-1)(0) = 8(m-1)(1)),
from which the stated inequality directly follows. O
Let ©0) - p(1) 1, ifj=0
_ y4 =P N y =0,
A= l-a '’ r() {0, otherwise,
and

1 .
A - Jj=-10,1,
90) { 0, otherwise.

It is easily seen that
s() =pBr(-) + (1= B)qa(),

and thus that .

siy() =3 (f) B*4(1 - B)q() (), (3.3)

=0
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where gq(g)(-) = 7(:). Define

N _ [a3)(0) — g (1), i=0,1,2,
A - .
6) { 9)(0) — q(;)(1), >3,

and for 7 > 1 let J; denote a random variable having a binomial distribution
with sample size ¢ and probability of success 1 — 3.

If Theorem 1.4 is correct, A(z) is a nonincreasing function of i, all ¢ = 0,
1,2, .... Since

90)(0) —q)(1) =1,  qy(0) — g(1)(1) =0,
1 1
q(2)(0) — g(2(1) = 3 ® (0) — g)(1) = 77
it follows from (3.3) that for m > 2,

(8(m=1)(0) = 8(m—1)(1)) = (8(m)(0) — 8(m)(1))
= E{A(Jm-1) — A(Jm)} + R(m, B), (3.4)

where
R(m, ) = 2 (P{Jmy =0} = P{Im = 0)) - o= (P{J =1}

—P{Jn = 1})
+ 52—7-(P{J ~1=2}~ P{Jm =2}).

For fixed @, it is known that Jj is stochastically increasing in k. Thus,
A(Jy) is stochastically nonincreasing in k, and

E{A(Jm—l) - A(Jm)} > 0.

Some algebra shows that

m=3(1 — ) m—1)2m - 1)\?
Rm ) = 2(7 ﬂ){(26+m)(ﬁ_( 2(m2’(+26) )>

9(m —1)
4(m? + 26)

+ (11m—23)}

>0
for m > 3. Thus, it follows from (3.4), assuming that Theorem 1.4 is true,

that
8(m—1)(0) = 8(m-1)(1) 2 8(m)(0) — 5(m)(1) (3.5)

for all m > 3.
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Hence, if Theorem 1.4 is true, it follows from Lemma 3.1 and (3.5) that
1
p(m)(_l)_p(m)(O) >0, a.llmZmax{,‘j’ a_l}’

which, since & = p(—1) — p(1), verifies (1.3). Note that, as one would

intuitively expect, the nonincreasing right tail of p(m)(-) moves one step

to the left (from j = 0 to j = —1) at a rate depending inversely on the

difference a in probability mass between the left tail and right tail of p(-).
It remains to prove Theorem 1.4.

Proof of Theorem 1.4 The characteristic function of g(-) is

o(t) = 31-(1 + 2 cos(t)),

) om0 = (3) @+ 2cost)”

is the characteristic function of g(,,)(-). Using the Fourier inversion formula
(see Feller, 1966, p. 484) and the fact that ¢(t) is real-valued, we have

s

: 1 m —1ij
gm)(§) =5 [ #"(t)e It dt

= % _: (%(1 + 2cos(t)))mcos(jt) dt

for j =0,+£1,%2,... . Therefore,

Wm = (q(m—-l)(o) - q(m—l)(l)) - (q(m)(o) - q(m)(l))

-1 ((1 +2;:os(t))"“1 (! +2§os(t)>'") (1 = cos(t)) dt

= 27:;1” (/01r (1+ 2cos(t))m_1 (1- cos(lt))2 dt) (3.6)

which is obviously nonnegative when m is an odd integer (m = 1,3,5,...).
For m = 4, direct computation of the probabilities g(3)(0), g(3)(1), g(4)(0), g4)(1),
or use of (3.6), yields

Wy = 0.
Note that wy, is nonnegative if and only if
_3m2rm
T4

Tm W : 3.7

is nonnegative. Also, 74 = 0. We now show that 75 is nondecreasing in k,
k > 2, and this will complete the proof that w,, > 0 for all even m > 4.
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From (3.6), for k£ > 2,
Tok42 — Tok = / (1+ 2cos(t))2k_1(1 - cos(t))z((l + 2cos(t))2 - 1) dt
0

- 4/7r (1+2 cos(t))%_l sin®(t) cos(t) (1 — cos(t)) dt
0

2x
> 4/3 (1+ 2cos(t))2k_1 sin?(t) cos(t) (1 — cos(t)) dt, (3.8)
3m
since 1+ 2cos(t) and cos(t)(1 — cos(t)) have the same sign for ¢ in [0, 17]U
(37, 7].
Let -
Hi(t) = (14 2cos(t))™ " sin®(t) cos(t) (1 — cos(t)). (3.9)
From (3.8),
§m v 1 1
Tok4+2 — Tok > 4 Hk(t)dt=4/ (Hk(iﬂ—u)+Hk(§7r+u)) du.
%‘n 0

= 4/061r sin2(%7r +u)sin(u){(1 + 2sin(u))2k_l (1 - sin(u))
-(1- 2sin(u))2k_1 (1 + sin(u)) } du (3.10)

since sin(1m — u) = sin®(7 + u), and

1 . 1
cos <§7r - u) = sin(u) = — cos (57'( + u) .

Noting that 0 < sin(u) <  for u € [0, 2], and that for z € [0, 3], k > 2,
(14+22)* " 1(1-2) > 1+2x)(1-x) > (1-2z)(1+z) > (1-22)* 1 (1+2),

it follows that the right-hand side of (3.10) is nonnegative, all £ > 2. This
completes the proof of Theorem 1.4, and verifies the result (1.3). m]

A proof of Conjecture 1.3 made in Section 1, even in the special case
of p(-) considered in this section, appears to be extremely difficult. It is
possible that the methods used to prove (1.3) can be extended, but such
an approach appears cumbersome. A more promising attack on the prob-
lem may be through the characteristic function argument used to prove
Theorem 1.4.

4 A Statistical Application

In the indifference zone formulation for the problem of ranking Bernoulli
parameters (Sobel and Huyett, 1957), independent random samples of size
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n are obtained from each of k Bernoulli populations. The goal is to choose
the population with the largest probability of success, but there is concern
about a correct choice only when the largest probability of success exceeds
the second largest probability of success by at least A, 0 < A < 1, where
A is a prespecified constant.

When k£ = 2 Bernoulli populations are being compared, the procedure
usually recommended is to compare the observed numbers X;, X5 of suc-
cesses in the two samples, and conclude that population 1 has the largest
probability of success if X; > X, and population 2 has the largest proba-
bility of success if Xo > X;. If X; = X5, a population is either randomly
selected (without loss of generality by a mechanism that does not depend
upon the common observed value of X; and X5), or else the population
believed a priori to have the largest probability of success is chosen. At-
tention then concentrates on determining the smallest sample size n such
that the probability of correctly choosing the population with the highest
probability of success is no less than a prespecified constant v, 0 <y < 1.

Let Y denote the number of successes in the sample obtained from the
population with the largest probability of success, and let X denote the
number of successes in the remaining sample. Under the given assumptions,

X and Y are statistically independent,
X ~ binomial (n,p), (4.1)
Y ~ binomial (n,p + d),

where
and p, d are unknown.

Let 8 be the (conditional) probability of selecting the population of Y
when Y = X (0 < 6 < 1). Note that § = 1 corresponds to always selecting
Y when X =Y, while 8 = 0 corresponds to always selecting X in such
a situation. Since selecting the population of Y is the correct choice, the
probability of correct selection is

PCS(p,d,n) = P{Y > X} +0P{Y = X}
=0P{Y —-X>0}+(1-0)P{Y - X >1}. (4.2)
In order that PCS is never less than 7, n must be chosen so that

. . >
Algrfifg oségfl—dpcs(p’ dn) 2y

However, Sobel and Huyett (1957) show that PCS(p,d,n) is (strictly) de-

creasing in d for fixed p, n, 6. Thus, it can be assumed that d = A, and n

is determined to satisfy

o, FCS (p,A,n) > 7. (4.3)
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Since PCS(p, A, n) is for fixed A, n, 8, a continuous function of p, and p
takes values in a closed interval [0,1 — A], the infimum in (4.3) is achieved.

The value
p* =p"(4,n,0)

which achieves the infimum (minimum) is said to be least favorable. In gen-
eral, p* depends upon n and 0, as well as on A. However, Sobel and Huyett
(1957) use the large sample normal approximation to the distribution of
Y — X to show that for fixed 6, A,
. N 1-A
nan;op (A,n,0) = — (4.4)
Using both normal approximations and exact calculations, they give a table
of the smallest values of n needed to assure that

PCS (I—QA-,A,n) >y
when 6 = % They remark that some exact calculations suggest that the
limit in (4.4) is approached rapidly, so that their table gives a good ap-
proximation to an exact solution for determining the sample size n for the
randomized selection rule with 6 = % They also indicate how to adjust
their table to find n» when 8 =0 or 1.

In this section, it is shown that

p*(An,1) = %(1 ~A),  alln>1, (4.5)
and that for 0 <0 < 1,
p*(A,n,0) = %(1 —A), all n > max{4, A~!}. (4.6)

These results permit exact determination of the sample size n for both
randomized (0 < @ < 1) and nonrandomized selection rules.
Define

for j =0,%1,+£2,...,%+n. Note from (4.1) and the above discussion that

inf inf dPCS(p, d,n)

A<d<10<p<1—

= osgx%lF—A PCS(p,A,n)

= OS%IIII—A(I - (1-0)G(1; p,A,n) —0G(0; p,A,n)). (4.7
Theorem 4.1 FizA,0 <A <1. Foralln >1,j>1,G(j; p,A,n) is uni-
modal in p. Further, G(0; p,A,n) is unimodal in p for n > max{4, A~1}.
The mode in both cases is p* = 1(1 - A).
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Proof Letv=p— 3(1— A). Then from (4.1),

X ~ binomial (n,v + %(1 - A)),
La+ay,

2
and X,Y are independent. Further since 0 <p <1 - A,

Y ~ binomial (n,v +

—%(I—A) <v< %(I—A).

Also 1
G(Ja vaan) = G(Ja v+ 5(
so that G(], p,A,n) is unimodal in p, 0 < p < 1— A, if and only if
G(j; v+ (1 - A),A,n) is unimodal in v, [v] < §(1 - A).
Since X and Y are independent binomials,

1-A),An)

n n n
X~ X, Y)Y, X-vy=»Y 2z
i=1 i=1 i=1
where X3,...,X,, Y1,...Y, are independent Bernoulli variables with

X; ~ Bernoulli (v + %(1 - 4)), Y; ~ Bernoulli (v+ -;—(1 +4)).
Thus,
Zi=Xi-Y, i=1,...,n,
are i.i.d. random variables with common mass function
11+4A)2 -2, ifz=-1,
L(1-A?%) +20%, ifz=0,

={?2 4.8
PEA=Y10_ap -, ifz=1, (48)
0, otherwise.
It follows that
. 1 = .
GG v+ 50 ),8m) = P37 2} (49)

depends upon v only through v%, and is thus an even function of v. Conse-
quently, (4.9) is unimodal in v if and only if it is nonincreasing as a function
of v?, in which case the mode occurs at v = 0. [Note that v = 0 corresponds
top=3(1-A4)]

It is now convenient to change notation. Let ¢ = v? and

H(@; t,n) = {Zz >J} (4.10)
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where our notation suppresses the dependence of this probability on A.
(Recall that A is held fixed.) Let

p(4;t) = P{Z; = ¢}, {=-1,0,1,
and note from (4.8) that
p(11) = (1~ A —+,
p(0;t) = %(1 — A% 42,
p(=1;t) = %(1 YNCI (4.11)

Finally, if p(n)(-;t) is the n-fold convolution of p(-; t) with itself, then

Py (35 t) = P{Z Z; = i},
=1

and

H(j; t,n) =) pm)(i; ).

i=j

In an appendix, it is shown that for all i = 0, +1, +2, ...,

d . . . .
ap(n)(z; t) = 1n(2p(n-1)(i;t) — Pn—1) (i — 1;t) — Pn—1) (i + 1;1)).

Consequently,

d_ . " d .

d_tH(J’t’ n) = Z]: %p(n)(zat)
=n(2H(j;t,n—1)—H(j—1;t,n-—1)—H(j+1;t,n—1))
=n(p(n-1)(G;t) — P(n-1)(§ — L;)),

and (d/dt)H(j;t,n) will be less than or equal to 0 for 0 <t < 1(1 - A)? if
and only if

) . 1
Pin-1)(J — 1;t) 2 p(n-1)(jst), all0 <t < Z(l - A)% (4.12)
Note from (4.8), or (4.11), that

P18 —p(L0) = 71+ A~ 11— AP = A >0,

p(0;t) — p(1;t) = %(1 - A?) - i(l —A)?+3t

- %(1 ~A)(1434)+3t>0.
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for 0 <t < (1 — A)2. Theorem 1.1 now applies to show that (4.12) holds
for j > 1, all n > 1. Hence, H(j; t,n) is nonincreasing in ¢ for all j > 1,
n > 1; and consequently, for all n > 1, G(j; p,A,n) is unimodal in p with
mode at p = 1(1 - A).

For j = 0, the result (1.3) can be applied to show that (4.12) holds for

n—1> max{3, A™! ~1}.
Thus, when n > max{4,A~!}, G(0; p,A,n) is unimodal in p with mode
at p=1(1-A). O

The asserted results (4.5) and (4.6) now follow immediately from (4.7)
and Theorem 4.1.

A1l Derivatives of Convolutions

For any functions p(-), () mapping the integers 0, +1, +2,... into the
real line, define the convolution p * ¢(-) by

o0

prq(i) = Y p(i)a( —1),

i1=—00
provided the infinite sum exists. It is easily seen that
pxq(-) =qx*p(),
px(gxr)(-) = (p*q) *xr(-), (A1.1)
(ap +bg) x () = a(p* (")) + b(g (),
for real constants a, b.

For each t in an interval (t1,ty), let p(-; t) and g(-; t) map the integers
into the real line, and assume that for every integer j the derivatives

d ,. d .
ap(Jat)a 'd—tQ(]at)

exist for all ¢ in (tr,ty). If

o0

pra(Git) = > p(i;t)g(j —ist) (AL.2)
1=—00
exists for all 7 = 0, £1, £2, ..., all ¢t in (¢;,ty), then under the usual

conditions for interchange of summation and differentiation, we have

(5 @r0) o= ((F2)ra) o+ (o (F0)) 0 aL3)
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Lemma A1l.1 Letp(,)(-;t) be the n-fold convolution of p(-;t), where p(j;t)
has a derivative with respect to t for all integers j, allt in (tr,ty). Then,
assuming we can interchange summation and derivative, for alln > 1, all

zntegﬂ S J)
d (J"t) n I n—1 I (‘ t)'

Proof Using (A.1) and (A.3),

%pu)(-;t) = ((% p) *p) (5t) + (p* (% p)) (51)
=2<p* (Z(tii p))(-;t)-

The stated result now follows by use of (A1.1), (A1.3) and induction on n.
]

An important application of Lemma Al.1 is to the case where p(-;t) is

linear in ¢t. If
p(i;t) = a(3) + (i)t

i=0, +1, £2, ..., then (d/dt) p(¢;t) = b(¢) and

oo

d . N
7 P (it) =1 3 Py ()b —19).

1=—00
In particular, if p(j;t) is given by (4.11), then
2, =0,
b(i) = { -1, i=-1,1,
0, otherwise,

and

d . . . .
% P(n) (58) = n(2p(n—1) (35 t) — Pn—1) (& — 1;8) — P(n—1) (i + 1;1)).
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The X +Y, X/Y
Characterization of the
Gamma Distribution

George Marsaglial

ABSTRACT We prove, by elementary methods, that if X and Y are in-
dependent random variables, not constant, such that X +Y is independent
of X/Y then either X,Y or —X, ~Y have gamma distributions with com-
mon scale parameter. This extends the result of Lukacs, who proved it for
positive random variables, using differential equations for the characteristic
functions. The aim here is to use more elementary methods for the X,Y
positive case as well as elementary methods for proving that the restriction
to positive X,Y may be removed.

1 Introduction

We say that X is a gamma-a variate if X has the standard gamma density
z% =% /T'(a),z > 0. If X and Y are independent gamma-a and gamma-b
variates then X +Y is independent of X/Y . This article is concerned with
the converse: if X +Y is independent of X/Y for independent X,Y, what
can be said about X and Y'? The general result is this: ruling out the case
where X and Y are constants, in which case any function of X and Y is
independent of any other, if X + Y is independent of X/Y then there is
a constant ¢ and positive constants a and b such that cX is gamma-a and
cY is gamma-b. The constant ¢ may be negative, but neither X nor Y can
take both positive and negative values; either X,Y or —X, Y are pairs
of positive gamma variates with a common scale parameter and possibly
different gamma parameters.

In 1955, Lukacs (1955) proved the basic result under the assumption
that X and Y were positive. His method was to show that the charac-
teristic functions of X and Y satisfied differential equations whose only
solutions were characteristic functions of gamma variates with a common
scale parameter. A few years after that, in the late 1950’s, I needed the

!Supercomputer Computations Research Institute and Department of Statis-
tics, The Florida State University
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X +Y,X/Y characterization in developing computer methods for gener-
ating random points on surfaces by means of projections of points with
independent coordinates. But the coordinates could be negative as well as
positive, so I set out to extend Lukacs’ result by removing the restriction
that X and Y be positive. I was able to do this, using elementary meth-
ods, but I still needed Lukacs’ result for the positive case. I put the matter
aside until I could find an elementary argument that established that case
as well, perhaps motivated by a sentiment attributed to Herman Rubin: If
you have to use characteristic functions you don’t really understand what
is going on.

I was not able to find an elementary proof of the X,Y positive case, and
the matter sat for years, until I was sent a manuscript, by Findeisen, which
contained a clever device that might be used to establish Lukacs’ result
without resorting to characteristic functions. In the form that Findeisen’s
result was published, Findeisen (1978), there is a disclaimer suggested by
the referees, to the effect that characteristic function results are implicit in
parts of Findeisen’s arguments.

And there the matter rests today, the point of departure for this arti-
cle. In it, I will use a variation of Findeisen’s device, together with my
earlier proof that the X,Y positive restriction can be removed, to provide
a complete treatment of the X + Y, X/Y characterization of the gamma
distribution by elementary methods. Opinions differ on what is elementary,
of course. In the development below, the most advanced result that I need
is the fact that a distribution on [0,1] is determined by its moments. This
was a deep result when first proved by Hausdorff, but it may now, thanks
to Feller, be considered elementary, as the elegant proof in Feller (1971)
shows, using basic probability and limit arguments.

2 The Unrestricted Theorem

Theorem 2.1 If X and Y are independent, non-degenerate (i.e. not con-
stant) random variables such that X +Y is independent of X/Y , then there
are constants a, b and c such that cX has the gamma density z® 'e~2/T'(a)
and cY has the gamma density y®~1e™Y/T(b).

Note that use of the expression X/Y requires the implicit assumption
that Pr(Y = 0) = 0, but also note that X/Y independent of X + Y for
independent X,Y also requires that Pr(X = 0) = 0, since, if 0 < Pr(X/Y =
0) <1,

Pr(X/Y =0)Pr(X +Y < s) =Pr(X/Y =0,X +Y < 5) = Pr(Y < s).

As s grows, the left side approaches Pr(X/Y = 0), the right goes to 1.
Thus we need not be concerned with possibilities X = 0 or Y = 0 in the
theorem or subsequent discussion.
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Theorem 2.1 is the most general form of the X +Y, X/Y characterization
of the gamma distribution. It does not require that the variates be positive.
Our proof depends on four propositions, each of which will be proved by
elementary methods below. Two of the propositions depend on what we
call the exponential moments of a non-negative random variable Z, defined
as the sequence of values

E(Z"e %)/E(e™?) forn=1,2,3,....

Evidently the exponential moments all exist, since z"e~* is bounded for
z>0.

3 Four Propositions

Proposition 3.1 If X and Y are independent random variables, not con-
stant, such that X +Y is independent of X/Y then either Pr(X > 0,Y >
0)=10rPr(X <0,Y <0)=1.

Proposition 3.2 If X and Y are independent positive random variables,
not constant, such that X+Y is independent of X /Y, then there are positive
constants a, b and k such that the exponential moments of X and Y are
those of gamma distributions with common scale parameter: for n = 1, 2,
3, ...,

E(X"e=*) k"TI'(a+n) and E(Y"e™Y) k"I'(b+n)
E(e~X) =~ TI(a) E(eY) ~—  TI(b

Proposition 3.3 FEvery distribution on [0,00) is determined by its expo-
nential moments.

Proposition 3.4 If X and Y are independent, positive random variables
such that X/Y is independent of X —Y, then X and Y are both constants.

These four propositions will be proved below, but first we show how they
are combined to prove the main theorem.

PROOF OF THE MAIN THEOREM

We now have independent X and Y, not constant, with X/Y independent
of X +Y. Assume the four Propositions. Then Proposition 3.1 ensures that
either X,Y or —X, —Y are pairs of positive variates. Proposition 3.2 then
provides the exponential moments of X and Y, or —X and —Y, and Propo-
sition 3.3 ensures that, with the resulting gamma exponential moments, cX
and cY are gamma-a and gamma-b for some constant c, possibly negative.
Proposition 3.4 is not used directly, but is required for the proof of Propo-
sition 3.1.
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PROOF OF PROPOSITION 3.1.

We have independent X and Y, not constant but otherwise unrestricted,
such that X +Y is independent of X/Y. We must prove that either Pr(X >
0,Y >0)=1or Pr(X <0,Y <0) =1. Let p, = Pr(X > 0) and
py = Pr(Y > 0). If p,py, >0, let (X,Y) be the point (X,Y) conditioned
by X >0and Y > 0:

0 < Y
Pr(X+<z,Y+<y)=Pr( <X<z,0< <y).
DzDy

Evidently X, is independent Y, (a product measure is still a prod-
uct measure when restricted to a product set), and, in fact, X, + Y, is
independent of X /Y, because

Pr0<X+Y <r0< X/Y <5s)

PzDy
_Pr0<X+4+Y <r)Pr(0 < X/Y < s)

DzPy

PI’(X+ +Y+ < T,X+/Y+ < 8) =

Thus X, + Y, is independent of X, /Y, , since their joint distribution is a
product. Propositions 3.2 and 3.3 apply: there is a positive constant ¢ such
that ¢X, is gamma-a and cY, is gamma-b.

This takes care of the positive quadrant, with measure p,p,. If (1 —
Pz)(1 —py) > 0 then (X_,Y_) is well-defined and an argument similar
to that for (X4,Y,) shows that cX_ and cY_ must be standard gamma
variates for some negative constant ¢. Thus 0 < p, <1and 0 < py, < 1 and
X +Y independent of X/Y lead to four possibilities:

e X and Y each have densities that are (proper) mixtures of scaled
“negative” and “positive” gamma densities.

e X, Y, are gamma and X_,Y_ are constants.
e —X_,-Y_aregamma and X,,Y, are constants.
e Both X,,Y, and X_,Y_ are constants.

It is elementary to verify that for none of these four cases is X + Y inde-
pendent of X/Y.

Next, we eliminate the possibility that only one of p;, p, is between 0 and
1. Suppose, for example, that X is positive and Y can take both positive
and negative values. Then Pr(X +Y < 0) > 0 and Pr(Y/X > -1) > 0.
This leads to

0<Pr(X+Y <0)Pr(Y/X>-1)=Pr(X+Y <0,X+Y >0)=0,

with similar contradictions for p, = 0,0 < p, < 1, etc.
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Thus p; is either 0 or 1, and p, is either 0 or 1. That conclusion leads to
four more possibilities:

(@ pe=1,py=1 (b) pz=0,py=1
(€) pe=0,py=0 (d) pz=1, py=0.
If conditions (a) or (c) hold, then X,Y or —X, —Y are independent pairs of
positive variates and Propositions 3.2 and 3.3 apply. If (b) holds, then —X
and Y satisfy the conditions of Proposition 3.4, so they must be constant;
if (d) holds, then Proposition 3.4 shows that X and —Y must be constant.
This completes the proof of Proposition 3.1: the support of (X,Y’) must
be either the first or the third quadrant. The proof used Propositions 3.2,
3.3 and 3.4, which we now proceed to prove.

PROOF OF PROPOSITION 3.2.

We have independent, positive non-constant X and Y with X/Y indepen-
dent of X + Y. Consider the exponential moments of X,Y and X + Y

R, = E[X"e X]/E[e™X]
Sn=E[Y"e Y]/E[e7"]

T, =E[(X +Y)"e X~ Y]/E[e* Y] =) (’Z’) R;iSn_;.
i=0
If X and Y were gamma variates with common scale parameter, then R,,,
Sy, T, would have the form, for some positive constants a, b and k:

I'(a +n) I'(n+b) T'(a+b+n)

ank——r(—a)——, Sp=k"——r T =k ) (3.1)

I(b)
The independence of X/(X +Y) and X + Y will be used to provide a
pair of recurrence equations for R,,; and S,4; that will have a unique
solution: the exponential moments of expression (3.1). Then, because by
Proposition 3.3 the exponential moments determine the distribution, we
will be led to gamma distributions.
The recursions may be derived by dividing, side for side, the relation

X
X+Y

EX"(X+Y)e X Y|=E [( )n} E[(X +Y)"Tle XY

by the sides of

X
E[X"e X Y]=E
x"e ] [(x +Y
These relation follow easily from the independence of X,Y and of X/Y, X +

Y. Upon division, side for side, we get the relation

Rny1 _Thna
e (32)

)n] E[(X +Y)"e X7Y].
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Reversing the roles of X and Y then provides

Sn+1 _Thn
S, +R = T, (3.3)
Note that the gamma exponential moments in (3.1) satisfy (3.2) and
(3.3). We must show that no others do. When n = 1, (3.2) and (3.3) lead
to

R1 Sl

Now R; — R? is the variance of a non-degenerate random variable, (the W
defined by

RrR%—Sz_S%. (3.4)

Pr(W <w) = / e’ " dF(:L')// e *dF(x),
0 0
with F the distribution of X). Thus there is a positive value k such that
Ry = le(l + Rl) and Sy = kSl(l + Sl) (35)

A little algebra will verify that (3.2) and (3.3) give R,,+1 and Sp41 uniquely
in terms of Ry, Sy, Ra, S, - .., Rn, Sn. (BEach pair (Ry,41, Sn41) arises from
a linear system with matrix having determinant T,,(T},, — R,, — Sy,), easily
shown to be non-zero by induction.)

Since (5) provides R; and S, in terms of R; and S; and the common
parameter k, the two sets of exponential moments for X and Y are de-
termined by R;,S; and the constant k. Specifically, given R;,S; and the
common value k required by (3.4), define a and b by the conditions R; = ak,
S; = bk. Then Ry = ka(a + 1), S2 = kb(b+ 1), R3 = ka(a + 1)(a + 2),
S3 = kb(b+ 1)(b+ 2) and, in general,

R, =k"I'(a +n)/T(a) and S, =k"T'(b+ n)/T(b)

provides the unique solution to conditions (3.2),(3.3) and (3.4) derived from
the assumption of independent pairs X,Y and X/Y, X +Y.

PRrRoOOF OF PROPOSITION 3.3

Let X be non-negative with distribution F' and exponential moments

— n,—X o) 00
= _Eﬁa(f(x)e : =/ ze™ dF(l‘)// e?dF(z), n=123,....
0 0

We must show that the R’s determine F. To do this, let W be the random
variable with distribution G defined by

G(w) = Pr(W < w) = /0 ¥ et 4P (z) / /0 ” e dF (2).
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Then the exponential moments of X are the regular moments of W:

EW™) = /oo w" dG(w) = /oo z"e™* dF(m)/ /Ooo e T dF(z).

0 0

The distribution of X determines that of W, and vice versa; indeed, F(z) =
Iy e¥dG(w)/ [;° e* dG(w).

It turns out that the moments of W determine its distribution, but that
result requires analytic function theory, violating our proposed goal that
proofs be elementary. We overcome this problem by converting W to a
random variable Z on the unit interval. For such, an elementary proof
that the moments determine the distribution is available—see Feller (1971),
pages 225-227 for a beautiful elementary proof that for points of continuity
2,

<) = [ ")_n—j i(1 — Z)*—9].
Pr(Z<z)= lim Y (j (-1 E[(Z7(1 - Z)"]

n—o00
j<nt

So, let Z = e~". Then the distribution of Z is determined by its mo-
ments. To see that the moments of W, (the exponential moments of X),
determine the moments of Z, write

E(Z*) = E(e™*Y) = /oo e kT dF(a:)/ /Ooo e T dF(z).

0

=/Oooe_$ <1—ka:+ (k;)z - (k;)3 +) dF(m)//Oooe""'dF(x).

We may exchange the integral and summation operations to get

/oo e *dF(z) = Z (_;l::)J Ry.

Thus the exponential moments of X determine the moments of Z, which
determine the distribution of Z, which determines the distribution of W =
—1In(Z), which determines the distribution of X, and that sequence of
implications provides proof of Proposition 3.3:

exp. moments of X = moments of Z =
dist. of Z = dist. of W = dist. of X.

PROOF OF PROPOSITION 3.4.

We have X and Y independent, positive and X/Y independent of X — Y.
Evidently this cannot hold if only one of X or Y is constant, so assume
that neither is constant. We will develop a contradiction.

Let p=Pr(Y — X > 0) = Pr(Y/X > 1). Then
p=Pr(Y -X >0,Y/X >1)=Pr(Y - X >0)Pr(Y/X > 1) = p.
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Thus p is idempotent, p? = p, and p must be 0 or 1. Interchanging the roles
of X and Y if necessary, we may assume that p = Pr(Y > X) = 1. Then
X must be bounded, and X, not constant, will have two points of increase
T1 < T3 such that Pr(X > z3) = 0.

Since Y is not constant, it (or its distribution) has two points of increase
y1 < y2. Now define two sets A and B:

A= {(z,9) : y/z < y2/z2}, B={(z,y):y— >y — 22}

Then Pr(.A) > 0, since A contains the point (z2,y:). Similarly, Pr(B) > 0
because B contains the point (r1,¥2)-
From the assumed independence of Y/X and Y — X,

Pr(AN B) = Pr(A) Pr(B) > 0,
contradicting the fact that every point (z,y) in AN B has £ > x2, so that
Pr(ANB) < Pr(X > x2) =0.

This proves Proposition 3.4: Y — X independent of Y/X for positive
independent X and Y requires that both be constant.

Proof of the four Propositions, and hence an elementary proof of the
unrestricted X + Y, X/Y characterization of the gamma distribution, is
now complete.
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A Bivariate Uniform
Distribution

Albert W. Marshall!

ABSTRACT The univariate distribution uniform on the unit interval [0, 1]
is important primarily because of the following characterization: Let X be
a random variable taking values in [0, 1]. Then the distribution of X + U
(mod 1) is the same as the distribution of X for all nonnegative random
variables U independent of X if and only if X has a distribution uniform
on [0, 1].

A natural bivariate version of this is the following: Let (X,Y’) be a random
vector taking values in the unit square. Then (x) (X +U (mod 1), Y +
V  (mod 1)) has the same distribution as (X,Y) for every pair (U, V) of
nonnegative random variables independent of (X,Y) if and only if X and
Y are independent and uniformly distributed on [0, 1]. But if () is required
to hold only when U = V with probability one, then (X,Y) can have any
one of a large class of bivariate uniform distributions which are given an
explicit representation and studied in this paper.

1 Introduction

The literature abounds with examples of bivariate distributions having
marginals uniform on [0, 1]; indeed, any bivariate distribution with contin-
uous marginals can be transformed to provide such an example. Bivariate
distributions with uniform marginals can be regarded as “canonical forms”
representing all bivariate distributions with marginals that are both con-
tinuous and have continuous inverses. In this context, they are sometimes
called “copulas” or “dependence functions”.

The purpose of this note is to take a different viewpoint, and to address
this question: Which bivariate distributions with uniform marginals are
important in their own right? This problem is naturally approached by
starting with the property primarily responsible for the importance of the
univariate uniform [0, 1] distribution. The property is a characterization
most easily stated with the following notation:

(i) zdy:=z+y—[r+y|=c+y (modl), =z,y>0,

1University of British Columbia.
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(ii)) U %'V means U and V are random variables with the same
distribution,

where [t] denotes the integer part of .

UNIVARIATE CHARACTERIZATION
Suppose that P{X € [0,1]} = 1. Then

XoU % X for every random variable U > 0 independent of X (1.1)

if and only if X has the uniform [0, 1] distribution.

The property (1.1) can be easily interpreted by considering 27X to be
a random direction. Reformulated as a functional equation in terms of the
distribution F of X, (1.1) becomes

1 1 1
/ F(z—y)dG(y) + / F(l+2—y)dG(y) - / F(1-y)dG(y) = F(z),
0 0 0

(1.2)
for 0 < z < 1, for all distributions G with support in [0, 1]. This functional
equation is easily solved by standard methods; the only solution is F(z) =
z, 0<z <1

2 Bivariate Versions

Perhaps the most straightforward two-dimensional version of (1.1) is the
following.

FIRST BIVARIATE CHARACTERIZATION
Suppose that P{(X,Y) € [0,1]2} = 1. Then

XU Yo®YV) dist (X,Y) for every pair U > 0, V > 0 of (2.1)
random variables independent of (X,Y)

if and only if X and Y are independent and uniformly distributed on [0, 1].
It is not difficult to show that (2.1) is equivalent to

dist

(X®u, YD) (X,Y) for all u,v € [0,1]. (2.2)
Condition (2.2) can be reformulated as a functional equation for the dis-
tribution F of (X,Y) which is easily solved to yield F(z,y) = zy, 0 < z,
y < 1. Alternatively the characterization (2.1) can be obtained directly
from the uniqueness of Haar measure.
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The above result is reminiscent of a result of Marshall and Olkin (1967)
concerning bivariate exponential distributions. They started with the uni-
variate functional equation

PX>z+y)=PX>z)P(X>y), zy=>0,

extended it to two dimensions by taking X, z, and y to be vectors, and
then solved to find that the components of X must be independent. More
interesting solutions were admitted by weakening the functional equation,
and the same procedure can be followed here.

SECOND BIVARIATE CHARACTERIZATION
Suppose that P{(X,Y) € [0,1}2} = 1. Then

XeU YaU) dist (X,Y) for every random variable U > 0 (2.3)
independent of (X,Y)

if and only if (X,Y") have a joint distribution H of the form

H(z,y) = [0 Fo(z,y) dG(6), (2.4)

where G is a distribution with support contained in [0, 1], and for fixed
6 € 10,1],

T if0<b6<y—=z
y—06 ify—z<6<min(l1~-z,v9)
_Jo ify<0<lil-z
Fo@v) =9 piy—1 if1-z<6<y (2.5)
z+6—-1 ifmax(l-z,9)<6<1l-z+y
Yy fl—-z+y<o<1.
To verify this result, first note that (2.3) is equivalent to
(X®u, You) % (X,Y) forall uel01]. (2.6)

Condition (2.6), when rewritten as a functional equation for the distribution
H of (X,Y), becomes

H(z,y)=H@@-u, y—u)+[Hl+z-u, y—u) - H(l -y, y - u)]
+[Hz-u, 1+y—u)— H(x —u, 1 —u)]
+Hl+z-u, 1+y—u)—H(l—u, 1+y—u)

~Hl+z-u, 1-u)+ H( —u, 1 —u)] (2.7)

for all u € [0, 1].
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FIGURE 1. The set Sy and the value of the distribution function Fy in various
regions.
(1,1)

(0,6)

(0,0)

The functional equation (2.7) appears to be difficult to solve using stan-
dard methods. However, it is immediate from (2.7) that the set of all so-
lutions is convex. A crucial step in solving (2.7) might be to identify the
extreme point solutions.

Suppose that H = F is a solution of (2.7) and that the point (s, t) belongs
to the support of F'. Let 6 = t® (1 —s). It follows from (2.6) that all points
in the set

So

{(z,9):2=5®2, y=t®z, 0<2<1}
{z,y): =2 y=280,0<2<1}

also belong to the support of F. Moreover, the conditional distribution Fjy
of (X,Y) given (X,Y) € Sp must be uniform on Sy. A somewhat tedious
but straightforward calculation shows that Fy is given by (2.5).

Now suppose that there are at least two points (s1,%;) and (sg,t2) in
the support of F' for which ; = t; ® (1 — s1) # 6 = t2 & (1 — s3). The
above arguments lead to the conclusion that the conditional distribution
of (X,Y) given (X,Y) € Sy, U Sy, must be a mixture of the distributions
uniform on Sg, and Sy, so that H = F cannot be an extreme point solution
of (2.7). It follows from the Krein-Milman theorem that solutions of (2.7)
must be of the form (2.4).
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3 Properties of the Distribution H

Bivariate distributions of the form (2.4) have some quite nice properties in
spite of the fact that the definition of Fj is a bit awkward.

UNIQUENESS

The representation (2.4) is essentially unique, with non-uniqueness occur-
ring only because Fy = F;. If G is not allowed to have point mass at 1,
then G can be recovered from H through the equation -

G(0) = P{(X,Y) € Aq} (3.1)
where (X,Y) has distribution H and

Ag = {(z,y):y=z®afor somea € [0,0]} = Uy<4S,-

RANDOM VARIABLE REPRESENTATION

If
(X,Y) = (X, X ®9), (3.2)

where X has a uniform [0, 1] distribution, then (X,Y’) has the distribution
Fy.

COVARIANCES
From (3.2) it is easily verified that if (X,Y’) has the distribution Fp, then

1 1 1 1
and
corr(X,Y) =1-66(1 - 9). (3.3)

It follows from (3.3) that —1 < corr(X,Y) < 1, where the minimum
correlation is achieved with § = 1 and the maximum correlation is achieved
with § =0 or 1.

It also follows from (3.3) that if (X,Y) has the distribution H of (2.4),
then

corr(X,Y) = / (L — 60(1 — 6)] dG(6)
=1-6EO + 6E0?, (3.4)

where © has the distribution G.
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REGRESSION
If (X,Y) has the distribution H of (2.4), it follows from (3.2) that

E(Y)X)=G(1-X)-(1-X)+E®. (3.5)

CONVOLUTIONS (MOD 1)

Suppose that (U;, V;) is a random vector with distribution K;, i = 1,2.
Denote the distribution of (U; & Us, V3 @ V2) by K; ® K». It can be seen
with the aid of (3.2) that -

Fgl ®F92 = Fgl@g2, 61,05 € [0, 1]. (3.6)

It follows that if H;(-) = [ Fy(-) dGi(6), then
Hy ©Hs() = / Fo(-) d(G1 ®Ga)(8). 3.7)

Thus, the class of distributions of the form (2.4) is closed under convolution
(mod 1), as well as under mixtures and weak limits.

The fact that (3.7) follows from (3.6) has an analog for ordinary convolu-
tions which is best known under the condition that the mixing distribution
G is infinitely divisible (Feller, 1971, p. 538). See also Keilson and Steutel
(1974, Proposition 1.4) and Marshall and Olkin (1989, Lemma 2.6).

4 Some Examples

INDEPENDENT MARGINALS

It is easy to see that (2.4) yields H(z,y) = zy, 0 < z, y < 1 if and only if
G(0) =6, 0 <8 <1, is itself uniform on [0, 1].

CONDITIONAL WAITING TIME IN A POISSON PROCESS

If {N(t), t > 0} is a Poisson process, it is well known that the conditional
distribution of T = inf{t : N(t) = 1} given N(1) = 1 is uniform [0, 1]. This
natural occurrence of the uniform distribution has a bivariate analog.

Let {(N1(t), Na(t)), t > 0} be a bivariate Poisson process, i.e., Ni(t) =
M (t) + Mi2(t) and N2(t) = Ms(t) + My2(t), where My, My and M, are
independent Poisson processes having respective parameters A;, A and A9,
say. Let T; = inf{t : N;(t) = 1}, i = 1,2. Then the conditional distribution
H of (T1,T,) given N1(1) = N2(1) = 1 must have uniform marginals.
Elementary calculations show that

Ha(m,y) = (1 - a)xy + amin(x,y), 0<=z, y<], (41)
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where @ = A\12/(A1 A2 + A12). This distribution is of the form (2.4) where G
puts mass a at 0 and mass (1 — o) uniformly on [0, 1]. Of course H, is just
a convex combination of the case of independence and the upper Fréchet
bound.
The class of distributions of the form (4.1) is closed under convolutions
(mod 1), and
H,, ®H,, = Hy,q,- (4.2)

This fact can be obtained directly or from (3.7).

If (X,Y) has the distribution H, of (4.1) then from (3.4) it follows that
corr(X,Y) = a. From (3.5), it follows that

EY|X)=az+ (1-a)/2.

Moreover, distributions H of the form (2.4) which have linear regressions
must be of the form H,, for some a € [0, 1]. To see this, set E(Y|X) = aX+b
in (3.5) and use G(1) = 1 to conclude that G(z) = (1 — z)G(0) + z, 0 <
z < 1; thus G is a convex combination of the distribution giving unit mass
to the origin and the distribution uniform on [0, 1].

ADDITIONAL EXAMPLES

If G is uniform on [0, 1] and (X,Y’) has the distribution H of (2.4), then
X and Y are not independent. However, X and Y are uncorrelated (this
follows from (3.4)) and X + Y has the same distribution as it does in the
case of independence (this is easily seen from a sketch of the density of H).

If G(8) = 6%, 0 < 6 < 1 where a > 0, then (2.4) yields

Hizy) < { et +@-a " - -a)=" -1} 0<a<y<1
@ =+ et + 1=y — @ —y)*1 -1} 122>y>0

5 Extension to Higher Dimensions

Conceptually, extension of the preceding results to higher dimensions in-
volves no difficulties, but distributions uniform on sets of the form

S={(z1,...,Tn) i =8Pz i=1,...,n, 0<2< 1}

are not so easily written down. They can be parameterized by points in the
set [0,1)"~1, so that in the n-dimensional version of (2.4), G is a distribution
on [0,1]"~ 1. The n-dimensional versions of H in (2.4) have nice properties;
e.g., their (n — 1) dimensional marginals are (n — 1) dimensional versions
of H.
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7

Multinomial Problems in
Geometric Probability with
Dirichlet Analysis

Milton Sobel!

ABSTRACT A variety of new combinatorial results are obtained using
the recently developed technique of Dirichlet Analysis, which utilizes the
study of Dirichlet integrals. These results are stated as seventeen problems
which are geometrical or combinatorial in nature.

1 Introduction

The following 17 problems (and solutions) are all geometrical and/or com-
binatorial in nature and illustrate the wide application of a recently de-
veloped method of analysis, called Dirichlet Analysis because of the usage
of Dirichlet integrals. These integrals are introduced, studied and tabled
in Volumes 4 and 9 of Selected Tables of Mathematical Statistics and we
refer to these books below simply as Vol. 4 and Vol. 9. The main emphasis
in these 17 problems is (1) to show the wide application of these integrals
and (2) to solve the so-called faces problem, the edges problem and the
vertices problem for the regular and for certain quasi- regular polyhedra
with central symmetry. Assuming that a polyhedral die falls with a face
upward (otherwise the bottom face is used), we see the top face (resp.,
all the edges associated with the top face, resp., all the vertices associated
with the top face) and the problem is to find the expected number of tosses
E(T) needed to see all the faces (resp., all the edges; resp., all the vertices)
of the given polyhedra. In many cases the Dirichlet analysis gives higher
moments in addition to the first moment, so that variances can also be
obtained. A summary table for the various polyhedra investigated is given
as Table 1. In some cases exact fractional values of Dirichlet C-integrals
are more useful than the decimal values in Vol. 9 and for this purpose a
small exact C-table is included as an appendix to this paper; these values
are used extensively throughout this paper.

It is assumed that readers are familiar with the notations Igb)(r; m) and

!University of California, Santa Barbara
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TABLE 1. Expectation results for selected polyhedra

Polyhedron Faces Problem Edges Problem  Vertices Problem
Tetrahedron 8.33333 4.33333 2.33333
Cube 14.70000 8.10000 4.20000
Octahedron 21.51786 11.01905 4.14286
Dodecahedron 37.23853 21.60216 12.34699
Icosahedron 72.42848 37.50874* 14**
Cuboctahedron 45.52187 26.29376 8.46870
(with pp =0, p; = p3 = 7)

Cuboctahedron 42.42012 n.c. n.c.
(with py = 0, 6p; = 8p3 = })

Zonohedron (n = 6) 119.84961 60** 31%*
(triacontahedron)

n.c. means not computed
* the last 3 decimals may not be correct.
** estimated values.

(b) (r;m) for the type-1 and type-2 Dirichlet integrals. Definitions, recur-
rence relations and examples of the use of such integrals in combinatorial
problems are given in Vol. 4 and Vol. 9, respectively. The related type-2
Dirichlet integral DY (r;m), and generalizations of these integrals, such as

((Zizz)) (r1,72;m) and C'((:izz)) (r1,72;m), are also discussed in Vol. 9.

Let Ty (resp., Te; resp., T,) denote the number of tosses required to see
(in the sense mentioned above) all the faces (resp., all the edges; resp., all
the vertices) each at least once. Let fo = 2 denote the number of faces
associated with each edge and let f, (variable) denote the number of faces
associated with each vertex; e.g. f, = 3 for the tetrahedron, the cube
and the dodecahedron but f, = 4 for the octahedron and f, = 5 for the
icosahedron. As a result of the exact calculations in the problems below (in
terms of C-functions), the following double inequality (and approximation)

arises as a conjecture since no proof has been found.

Conjecture 1.1 For any given regular or quasi-regular polyhedra (with
central symmetry)

fvE(Tv) < E(Tf) < feE(Te)' (1-1)
Since we have a definitive formula only for ET}, namely

1 1
ETf=S<1+§+"‘+;) (1.2)

where s is the number of faces of the given polyhedron, the inequalities in
(1.1) provide an upper bound for E(T,) and a lower bound for E(T). If the
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exact answer is not known, then (1.1) also provides the best approximation
known to the author.

In rhombic and/or zonal polyhedra there can be two or more values of
f» and the question then arises how to use (1.1) as an approximation. Thus
in a certain 30-sided zonohedron (with n = 6 in the notation of Coxeter
(1973)), there are 32 vertices, 12 of which have 5 associated faces and the
remaining 20 of which have 3 associated faces. Then the average number of
faces associated with a vertex is [12(5) + 20(3)]/32 = 3.75. Hence for this
zonohedron (called the triacontahedron) we give the answer to the faces
problem as

30
1
E(T;)=30) ;= 30(3.994987) = 119.84961 (1.3)
j=1

and approximate the other two answers by

1198497

E(T.) » —5— =59.92, (1.4)
119.8497

The use of equality in (1.3) deserves some comment. This zonohedron has
central symmetry and each of the 30 (rhombic) faces has two vertices asso-
ciated with 5 faces and the other two associated with 3 faces. By symmetry
we assume that the faces are equiprobable and (1.3) then holds.

The vertices problem for the icosahedron has not been done, so that the
use of (1.1) is in order; this gives

B(T,) ~ %(72.42848) — 145, (1.6)
and we estimate the exact answer to be less than this value. In an expanded
version of this paper (Sobel (1987), Problem 22), we get the exact answer
for the vertices problem on the cuboctahedron, namely 8.46870, and the
approximation gives (45.52187)/4 = 11.4. Although the approximation is
not close, the inequality (1.1) still holds.

Problem 1.2 “Seeing Double” Suppose we have a fair die with (5) sides
and that each side has on it a different combination of two of the numbers
(1,2,...,c). We want the expected number of tosses E(T) required to see
each of the ¢ numbers at least r times. Consider first the case 7 = 1 and
do r > 1 later. How does ET vary as a function of ¢? For the special case
¢ = 4, find the variance of T.

Remark 1.3 This problem has applications to finding the number of bound-
ary constraints of a feasible region and separating them from the redundant
constraints . A random point in the feasible region and a random direction
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TABLE 2. #Faces, #Edges, #Vertices and f, for the Polyhedra in

Table 1
Polyhedron #Faces #Edges #Vertices fv
Tetrahedron 4 6 4 3
Cube 6 12 8 3
Octahedron 8 12 6 4
Dodecahedron 12 30 20 3
Icosahedron 20 30 12 5
Cuboctahedron 14 24 12 4
Zonohedron (n = 6) 3 for 20 vertices
(triacontahedron) 30 60 32 5 for 12 vertices

Average = 3.75

give rise to 2 constraints. If ¢ were known and each pair was equally likely,
then ET would be the expected number of these line-cut operations needed
to see each of the boundary constraints at least once. If each pair had its
own probability the same methods apply (c.f. next problem). If the num-
ber of constraints ¢ is unknown then any reasonable stopping rule provides
information about c.

Solution:

In this problem we can make more progress with Markovian methods than
with Dirichlet integrals, but we consider both (along with other) techniques.
Let z; denote E(T'|5), the expected number of additional tosses needed after
seeing j constraints (or numbers) each at least once, so that zo = E(T|0)
is the required ET. It is easily seen that the equations to be solved are:
o =1+ 25 and

x2=1+{(;)$2+2(c_ 2)3 +(c;2)“}/(;>
1o (s (390}

(s (P} )

rerm e {(1 e mme} )

To1 =14 (c; )mc_ /(g) (1.7)

For small values of ¢ from 3(1) 20 the solutions are given in Table 4 to 7
decimal places. If we disregard all the ones after the equal sign in (1.7) and
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write the result as £ = Qx, then Q is the probability transition matrix

for the ¢ — 2 transient states (2,3,...,c— 1). Hence from standard Markov
chain theory about the fundamental matrix (I — @)™}, we have the result
B(T) =1+ [(1-Q)™1], 18)

where [a]; is the first coordinate of the vector a, 1 is a vector of ones and @

(as well as I — Q and (I — @Q)~!) are upper triangular with at most 3 non-
zero diagonals. To illustrate the solution (1.8), we consider ¢ = 4 where x4
is already zero and, from (1.7)

R ) I (N

Hence for ¢ = 4 the desired result for E(T) is 1 + 3 = 3.8 as in Table
4 below. The same answer is easily obtained from (1.7), since z.—1 = ¢/2
from the last equation, which is 2 for ¢ = 4. From the next equation

529 =6+ 423 =6+ 8 = 14. (1.10)
It follows that
ET =z0=1+14/5=19/5 = 38. (1.11)

A Dirichlet analysis of this problem for ¢ = 4 is based on the concept of a
minimal covering set. Let the sides of the die numbered (1, 2), (1,3), (1,4),
(2,3), (2,4) and (3,4) be denoted by 1, 2, 3, 4, 5 and 6 respectively. Then
there are seven minimal covering sets, namely (1,6), (2,5), (3,4), (1,2,3),
(2,4,6), (1,4,5) and (3,5,6). We need unions of ¢ > 1 of these minimal
covering sets in order to calculate the probability of at least 1 covering
using inclusion-exclusion. For each ¢ we want to break up the (Z) possible
unions of ¢ minimal covering sets according to the size of the union, i.e.,
the number of different pairs in the union. See Table 3.

We need the probability of terminating in any one of the seven minimal
covering sets, i.e., in their union. We use inclusion-exclusion with +1 for
odd values of ¢t and —1 for even values of ¢. All sets of the same size are
treated alike and hence we only need to consider a typical case. Thus (1, 6)
is one of 3 cases all of size 2 and each occurs once, i.e., with multiplicity
one. Since there are 7 minimal covering sets we have a row check of (Z)
for the tth row. The last 2 rows have to add to 1 and 0, respectively, and
are useful checks. From the last row (after factoring out the common 6) we
obtain for the yth ascending factorial moment (for all v > 0)

6I(y+1) [
p’Y

E(TM) = c(1,v+1)+20P1,y+1) —10cP 1,7 +1)

+100{9 (1,7 +1) - 3¢ (1,7 +1)] (1.12)
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TABLE 3. The Union of t of the Seven Minimal Covering Sets for

c=4
Absolute
Size 2 Size 3 Size4 Size5 Size 6 | Value Check
t=1 +3 +4 (D=7
t=2 -15 -6 (;) =21
t=3 +24 411 (3) =35
t=4 -6 -29 (3) =35
t=5 +21 () ==
t=6 -7 (B) =7
t=17 +1 (;) =
Algebraic
Value Check
Coef. +3 + 4 -15 +12 -3 +1
Coef. x Size +6 +12 —-60 +60 -18 0

where p = 1/6. For v = 1 and « = 2 this yields (exactly)
E(T) = 36[3/4 + 2(11/18) — 10(25/48) + 10(137/300) — 3(49/120)] = 3.8,

(1.13)
E{T(T + 1)} = 432[.875 + 2(.78703704) — 10(.72048611)
+10(.66772222) — 3(.62449074)] = 20.7200.  (1.14)
It follows that for ¢ =4
o?(T) = 20.7200 — (3.8)(4.8) = 2.48, (1.15)

which is quite small for problems of this type.

The problem with this analysis is that the number of minimal covering
sets grows with ¢ (it is 35 for ¢ = 5) and the total number of subsets that
have to be distributed in the table grows too rapidly with c.

Although we have now considered three different solutions of the prob-
lem, none of these are easy to generalize so that explicit formulas or tables
are easily obtained. We therefore consider one more method which does
lead to an explicit formula for any c-value and from which a table can
easily be constructed.

The probability Pc(") of covering all ¢ digits for the first time on the nth
toss is equal to the sum of two terms. One term is the probability of staying
within and covering any specific set of exactly ¢ — 1 digits in the first n — 1
tosses; this is multiplied by ¢ and by the probability of getting the missing
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digit on the nth toss. The other term is the probability of staying within
and covering any specific set of exactly ¢ — 2 digits in the first n — 1 tosses;

this is multiplied by (g) and by the probability of getting the two missing

digits on the nth toss. Hence, letting [z] denote the integer part of z, we

obtain
) S

(2

(‘z)

(3) = (
Q@) () S AfEEL

and hence the desired result for E(T) is

oo 5 ) B

n=[(c+2)/2] (;)

+ i "((CEQ)Y—I c_:(—l)" (622) (%)n_l. (1.17)

n=[c/2] (;) a=

Interchanging the order of summations, we obtain after some algebra

E(T) = 22(—1)“{ (21 (()_—(()—5) v (—1)6(;;12)fr(a,c)}
. g(—l)a{ (27 (#)2 + (—1)6_1(2;12>fr—1(a,c)},

(1.18)

where r = [¢/2] and f,(a,c) is given by

e ) ()] -

(1.19)
From (1.18) and (1.19) we obtain Table 4 of ET-values. The fact that
symmetrical dice with (,_f) sides exist only for ¢ = 4 is of no serious concern,
since the random experiment can be carried out otherwise, say with cards.
Regarding an asymptotic evaluation, it can be shown from the linear
equations in (1.7) that the leading asymptotic term as ¢ — oo is %clog c; we
omit the details. It follows that any linear function of ¢ obtained by solving
a subset of the equations (1.7) and adding 1 for each additional equation
will eventually be exceeded. A reasonable approximation for E(T) in view
of the above is

E(T) =~ =(logc+ .57), (1.20)

NI O
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TABLE 4. Values of E(T) for Prob-

lem 1.4

c E(T) ¢ E(T)
3 2.5000000 | 12 18.0592579
4  3.8000000 | 13  20.0936347
5  5.3253968 | 14  22.1675957
6  6.9285714 | 15  24.2782575
7  8.6257576 | 16  26.4231256
8 10.3954727 | 17  28.6000215
9 12.2306693 | 18  30.8070265

10  14.1233619 | 19  33.0424380

11 16.0678397 | 20  35.3047349

which gives 35.65 for ¢ = 20 and 2.50 for ¢ = 3. The possibility that (1.20)
is an upper bound for all ¢ is consistent with our table above since the error
is increasing slightly with c. On the other hand if we replace .57 in (1.20)
by .50 the result appears to be a lower bound for all ¢. It is conjectured
that the error in (1.20) will remain less than 1 at least up to ¢ = 50.

Problem 1.4 Sliced Edges and Chopped Vertices Starting with an
ordinary die with 6 sides, 12 edges and 8 vertices we modify it as follows.
Cut a slice off each of the 12 edges so that the die can also stand (with
equal probability) on any one of the 12 new edge-faces. At each of the 8
original vertices we chop off a piece so that the die can also stand (with
equal probability) on any one of the 8 new vertex- faces. Let p;,p2 and p3
denote respectively the new probabilities of each of the original faces, each
of the 12 edge-faces, and each of the 8 vertex-faces. Under this symmetry
the only algebraic restraint we have for the p; >0 (i =1, 2, 3) is

6p1 + 12ps + 8p3 = 1. (1.21)

If the die lands on an original face we see only one number j(1 < j < 6) as
usual. If it lands on an edge-face, we see a pair of adjacent (or neighboring)
sides of the original die. If it lands on a vertex-face, we see a neighboring
triple, i.e., three sides of the original die that had a common vertex. Hence,
we see i numbers with probability p; (i = 1, 2, 3), but only neighboring
pairs and neighboring triples on the original die are possible. With the usual
marking on a die (i.e., opposite sides adding to seven), the neighboring pairs
exclude exactly those pairs that add to seven and the 8 neighboring triples
exclude exactly those that contain a pair adding to seven. We make use of
this geometric property to find the expected number of tosses E(T') needed
to see all six numbers, each at least once. The variance o2(T') is also found
as a special case of higher moments. It would be desirable to use a method
that can also be applied to other regular or centrally symmetric polyhedra
with faces having different shapes.
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Solution:

The solution is based on a combination of conditioning and inclusion- ex-
clusion which uses the geometry of the die. By virtue of the way dice are
marked, the geometry consists of counting how many pairs of elements
in a subset add to seven. Thus, the subsets (6,4,3,1) and (6,5,2,1) are
equivalent but (6, 5,4, 3) and (6,4, 3,1) are not.

We first condition on the event that exactly one number is not seen until
the nth toss and all the others are covered at least once in the first n — 1
tosses; this is multiplied by 6. In the second summation in (1.23) below
we condition on the event that for one of the 12 neighboring pairs neither
member is seen until the nth toss and all the others are covered at least
once in the first n — 1 tosses; this is multiplied by 12. In the third (and
last) summation we do the analogous thing for each of the 8 neighboring
triples and multiply the result by 8. The covering part is accomplished by
inclusion-exclusion but in place of using (?) for the number of sides that can
be missed (when side #6 say is reserved for the nth toss), the pair (6,1) has
to be treated differently than the other four pairs. Similarly instead of (g)
we consider 4 + 6 cases, etc. One definite advantage of our method is that
we get in one calculation the vth ascending factorial moment for all v > 0.
The second factor outside each of the three summations is easily seen to
be the probability of the required single, double and triple (respectively)
needed on the nth set to terminate the tossing. It is also clear that the
first two summations start with n = 3 but the last one starts with n = 2.
However, corrections (after summing the infinite series) are needed only for

=1 due to the fact that we are omitting terms of the form 0™~!, which
equals one if and only if n = 1 (and 0 otherwise). We thus obtain for any
720

E(TM) = 6(py + 4p; + 4p3) Z n(5p; + 8pz + 4ps)" !

n=3

- <4p1 +5pa +2p3)"'1
5p1 + 8p2 + 4p3
_ ( 4p, + 4p2 )"—1 4 < 3p1 + 3p2 + p3 )"—1
5p1 + 8p2 + 4p3 5p1 + 8p2 +4p3

6( 3p1 + 2p; >n—l —8( 2p1 +p2 )n—l
5p1 + 8p2 + 4p3 5p1 + 8p2 + 4p3
n—1 n—1
_g ( 2})1 ) +5 ( P1 )
5p1 + ip2 + 4p3 5p1 + 8p2 + 4ps3

+12(pz + 2ps) Y, " (4py + 5pz + 2ps)""

n=3
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i ( 3p1 +3p2 + p3 )n—l
4p1 + 5p2 + 2p3
—_9 ( 3p1 + 2p; )"_1 +5 ( 2p1 +p2 )n_l
4p; + 5p2 + 2p3 4p1 + 5p2 + 2p3
+ ( 2p: )"‘1 3 4( p1 )"_1
4p1 + 5p2 + 2p3 4p1 + 5p2 + 2p3

+38ps Y nM(3py + 3pg + ps)"

n=2

-0 22"+ 0) (eram)
1/ \3p1 +3p2 +p3 2/ \3p1 +3p2 +p3 '
(1.22)

For v = 1, after summing each of the above series, combining like terms
and correcting for n = 1 (since n = 2 needs no correction) we obtain

E(T) = 6(pr+4p2+4ps)  12(2p1 + 7p2 + 6ps)
(1—5p1 —8p2 —4p3)? (1 —4p1 — 5pz — 2p3)?

_ 6(p1 +4p2 + 4ps) + 8(3p1 + 9p2 + 7ps3)

(1 —4p; — 4p2)? (1 - 3p1 — 3p2 — p3)?
12(3py + 10p + 8p3)  12(4py + 11p; + 8ps)
(1—-3p1 — 2p2)? (1 —2p; — po)?
_ 12(p1 +3p2 +2p3) | 6(5p1 + 12p2 + 8p3)
(1-2p1)? (1-p1)?
—2(3p1 + 6p2 + 4ps), (1.23)

where the last term is the correction for n = 1. For the (y+ 1)* ascending
factorial moment we simply replace in (1.23) all the squares (i.e., the ex-
ponents 2) by v + 1 and multiply every term (including the correction) by
~! Hence, we need not rewrite the result (1.23) for general «, although we
use it below. This prescription also holds for v = 0, and the answer must
then be equal to 1, of course.

Consider the following eight different cases (or models) for the above.

Case 1: p; = pa = p3 = 1/26,
Case 2: 6p; = 12p, =8p3 =1/3 ( 3
Case 3: p; =0, 12p, = 8p3 =1/2 (orp1_0 p2 = 428,1)3:%
Case4: p2 =0, 6p; =8p3 =1/2 ( 2
Case5: p3=0,6p; =12p; =1/2 (

Case 6: p; =p3=0,8ps =1,

Case 7: p1=p3 = 0, 12p2 = 1,

Case 8: pp=p3=0,6p1 =1;
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we calculate ET for each of these eight cases. [The reader may wish to use
his intuition to rank the eight results before looking at the answers below.]
From (1.23) the expectation answers for these eight cases are

Case 1: 6.42929 Case 5: 9.40574
Case 2: 6.66515 Case 6: 4.14286
Case 3: 5.21532 Case 7: 6.90433
Case 4: 6.52797 Case 8: 14.70000.

(1.25)

The reader will of course recognize the last case as our usual die problem
(waiting to see each side at least once) without any slicing or chopping; it
serves as a standard to compare with the other cases.

For v = 2 we again use (1.23) with the modification indicated above. For
Case 1 we obtain for v = 2 from (1.23) (with a factor of 2 and all exponents
equal to 3)

E{T(T + 1)} = 55.54164, (1.26)

and hence for Case 1 we obtain the variance
o? (T') = 55.54164 — (6.42929)(7.42929) = 7.77658. (1.27)

For Case 8 the same method yields 38.99 for the variance and this is a check
since this is a known result, i.e., it has been obtained by other methods.
The reader may wish to see if Case 6 with the smallest mean also has the
smallest variance.

Problem 1.5 Do the faces, edges and vertices problems for the (regular)
tetrahedron, i.e., find the expected number of tosses ET needed to see all
the faces (resp., all the edges, resp., all the vertices) of the tetrahedron
if on each toss we ‘see’ all elements associated with the face touching the
ground.

Solution:
The faces problem has the usual analysis and answer in two different forms

1 1 1
E(Ty) = 16C{V(1,2) = 4 (1 +3+3+ Z) = 8.33333, (1.28)

and we omit the detailed derivation. For the edge problem we can only get
one new edge on the nth (or last) toss. Hence we obtain (with p = 1/4)

P{T. =n} =6(2p)(1 — 2p)"-11<1_2_?%(1;n -1). (1.29)

As a check we obtain by summing (1.29) on n

PAT. < 00} = 6C)(1;1) = 6/ (‘21) —1, (1.30)
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where the C-value can be obtained by using Vol. 9 (p. 106) or by a simple
probability calculation using the probability interpretation of C in Vol. 9
(p- 13). If we multiply by n and then sum we obtain

1
E(T.) = —26;03)2(1;2) =12 (gg) = 4.33333, (1.31)

where the C-value is obtained from Vol. 9 (p. 106) or from Table 8 below.
For the vertex problem we can only get one new vertex on the nth toss
and hence (with p = 1/4)
P{T, = n} = 4(3p)(1 - 3p)"*11‘1_12_(1;n -1). (1.32)
~3p

The check, by summing on n, gives

1
P(T, < 00) = 4C{)(1;1) = 4 (Z) =1 (1.33)
If we multiply by n and then sum we obtain
A oW 18T
E(T,) = 3p01/3(1’2) =3 (16) = 2.33333, (1.34)

where the C-value is obtained from Vol. 9 (p. 105) or from the exact C-table
in the Appendix below.

Problem 1.6 Do the vertices problem for the cube.

Solution:

Another method was rejected in favor of the following analysis which em-
phasizes the common aspects of all the polyhedral problems. Consider the
(at most) 4 disjoint events A; where j is the number of new vertices seen
on the nth (or last) toss. Let P; (resp., T;) denote the contribution for each
j to P{T = n} (resp., E(T)), so that P{T = n} (resp., E(T)) is the sum
of the four contributions. For j = 1 we have 8 possible vertices for the last
one seen each associated with 3 faces and hence, letting p = 1/6,

57

o (1.39)

_ 8
P, = 8(3p)(1 — 3p)" II(lff?s_p(l;n -1); Ty = 5503)3(1; 2) =

using Vol. 9 (p. 105) or the exact C-table in the Appendix below. For j = 2
we have 12 possible edges each associated with 2 faces and hence

_ =172 (1. 1. _ 3 @ q.00 3T
Py = 120p)(1 - 4p)" MG (in-1); Ty = 5 0 (12) = 5, (136)

using Vol. 9 (p. 104) or the exact C-table in the Appendix. It should be
noted that 2 opposite vertices (and also 3 new vertices) cannot occur for
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the first time on the nth toss, i.e., P3 = T3 = 0. Thus if the vertices on the
last face seen are marked 1, 2, 3, 4 cyclically and if vertices 1, 2 and 3 were
not seen on the first n — 1 tosses then vertex 4 which has to be seen either
with 1 or with 3 was also not seen on the first n — 1 tosses. For j = 4 we
have 6 possible faces and hence

_ Ceyn=17() 1o 1. _ 6 vy 11
Py = 6(p)(1 — 5p) Il__rg_P(lyn 1); Ty= 25p01/5(1a 2)= 25" (1.37)
It follows that
11 21
P{T,=n} =P+ P+ P E(T,) = % = 2 = 4.20000.

(1.38)
The check in this case gives

_ ar® (1. @ 1.2 8 .y 8,6 61 _
P{T, < oo} = 8Cy3(1;1)+6C] 4(1; 1)+5C1/5(1, 1) = 20+15+5 5)= 1.

(1.39)
Problem 1.7 Do the edges problem for the octahedron.

Solution:

Consider the three disjoint (and exhaustive) events A; (j = 1, 2, 3) where
j is the number of new edges seen on the nth (or last) toss. For j = 1
two triangles are not seen on the first n — 1 tosses but the four triangles
surrounding these two are seen. In addition at least one of the 2 remaining
triangles has to be seen in order to include the edge joining these two.
Hence for p = 1/8

1-2p

Py = 12(2p)(1 — 2p)"! [212"_’_,?2_?(1;71 ~1) -1 (Ln- 1)] (1.40)

and multiplying by n and summing for n > 6

T, = %[209)2(1; 2) — C{%(1;2)] = 48(.18069728) = 8.67346944. (1.41)

For j = 2 we obtain by a straightforward similar analysis

Py=24p(1 - 3" (1,n-1); Tp= 3§C§‘};(1; 2) = 1.99836736.
D

1-3p
(1.42)
For j = 3 a similar analysis yields
n— 3 1 3
P; = 8p(1 — 4p) lli_}tu;n —1); T3= 2—pc§/11(1; 2) = .34721088.
(1.43)

The sum P; + P; + P3 equals P{T, = n} and
E(T.) =T, + Ts + T5 = 11.01904768. (1.44)
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The check for this problem is
P{T. < oo} = 122C5)(1;1) — €S (1;1)] + 8C{4(1;1) + 207 (1;1)

2 1 8 2 12/(5 2
—12(5—1-—%)*‘%4'55—7(1—2)'}‘?—1. (1.45)
Although we carried out the computation in (1.41) through (1.44) with
decimals from Vol. 9, an alternate method would be to use the entries in
the exact C-table and this furnishes a rational answer, which will agree
with the above.

Problem 1.8 Do the edges problem for the dodecahedron which, accord-
ing to Table 1, has 30 edges.

Solution:

Consider the disjoint (and exhaustive) events A; where j is an index for
the number and relative position of the new edges seen on the nth (or last)
toss. Here we need at most 7 cases since for j =2 and j = 3 we may want
to consider whether or not the edges are connected; surprisingly it turns
out that we only need 2 cases. For j = 1, since there are 30 edges and
p=1/12,

Py = 30(2p) [(1 —2p)" ) _(Ln-1)+2(1-3p)" 1Y (- 1)]
~2p ~3p
=30(2p)(1 - 2p)" "
x [I(_’?,_(n n—1)+2I% (n-1)-21% (1;n- 1)] . (1.46)
1-2p 1-2p 1-2p

here we gave two equivalent forms, the latter of which will give us C-
functions with the same subscript. The derivation of (1.46) follows from
the fact that 2 pentagons are not seen on the first n — 1 tosses and the
6 pentagons surrounding these two are seen. The remaining 4 pentagons
are connected and the reader can then follow the argument with a simple
sketch.

For j = 2 suppose 2 edges both seen for the first time on the nth (or last)
toss are connected. This cannot occur since the third edge at the common
vertex of these two cannot be seen (on the first n — 1 tosses) without one
of these two. Similarly the only other case is Case 2B where 2 edges on
the same pentagon have one space between them. There are 60 such pairs
and each implies that 3 connected pentagons are not seen on the first n—1
tosses and that 7 pentagons surrounding these are seen on the first n — 1
tosses. The remaining 2 pentagons have 1 common edge and we see it by
getting either one of these 2 pentagons or both. Hence for Case 2B

Pop = 60(p) [(1 - 3p)"1)_(13m = 1) +2(1 - 4p)" ' 1)_(1;n - 1)]
- —4&p

P

= 60(p)(1 — 3p)"~! [21513_,?3_? (1n-1) — 19 _(Ln - 1)] . (1.47)
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From the second expression in (1.46) we obtain

(1;2) +205(1;2) - 2079 (1;2)] (1.48)

15, (s)
T, =—|[C
1 p[1/2

and from the second expression in (1.47) we obtain

2
T3 = 2 [2C ®)
3p

1/3(1§2) —Cf%(lﬂ)]. (1.49)

As mentioned above the cases for j = 3,4 and 5 cannot occur; the argument
is the same as above for Case 2A. Hence

P{T = n} = Pl + P2B
P{Case 1} = 30{C{7(1;1) + 205 (1;1) — 2009 (1; 1)]

28
== 1.
o (1.50)
5

P{Case 2} = 20[2C{7}(1;1) - C{ (1;1)] = 5 (1.51)

and the check lies in the fact that the latter two add to one. If we multiply
by n and then sum we obtain (with p = 1/12)

15, (8) 9) (10); , 20 8 9
B(T.) = ZIC1()(12) + 2017 - 2003 + 32013 (132) - 1)
4861 55991 58301
=180 | o )+ 2 ) — o 2
80 [(56700) + (762300) 2 (914760)]
42131 44441
+80 [2 (1524600) - (2032800)]

1646733 49901
= = = 21. . .
33(2310) 2310 602165 (1.52)

The use of the first expressions in (1.46) and (1.47) gives exactly the same
result. In distinction to the method used for problem 1.7 where we used
decimal expressions from Vol. 9, we have used here only C-values from
the exact C-table in the Appendix below to illustrate the two different
methodologies; these methods are of course interchangeable.

Consider the generalized die of Problem 1.4 with p; = 0 so that

6p1 +8ps =1, (1.53)

i.e., we have 6 squares (resp., 8 triangles) with common probability p;
(resp., p3s). Among geometers the figure in question is known as a cuboc-
tahedron and is classified as quasi-regular (cf. Coxeter, 1973, p. 18). [We
prefer to work with p; and ps subject to (1.53) without specifying them
since they may depend on factors other than the geometry of the polyhe-
dron (such as the substance it is made of or the manner of tossing or etc.).]
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Cases 4 and 6 of Problem 2 both pertain to this polyhedron, which has
24 edges if p3 > 0 and is a cube with 12 edges if ps = 0. Since we cannot
make a continuous change from the cuboctahedron to the cube by letting
p3 — 0 without major changes in the geometry, we should not expect the
answer to an edge problem for the former to necessarily yield the correct
answer for the latter by simply setting ps = 0. We now investigate this
point numerically in detail.

Problems 1.9 (A and B) Do the edges problem a) for the cuboctahe-
dron with 24 edges and b) also for the cube with 12 edges. Check whether
the answer to a) with ps = 0 agrees with the answer in b) or if it agrees
with the ‘magic’ answer 14.7 for the faces of a die. If the latter, give an
explanation.

Solution:

We consider 7 disjoint (and exhaustive) ways of termination which we call
TTJ' (j = 1, 2, ceey 7)

TT;: with one new edge,

TT,: with a pair of parallel new edges on the same square,
TTj;: with a connected pair of new edges on the same square,
TT,: with 3 new edges on the same square,

TTs: with 4 new edges on the same square,

TTg: with 2 new edges on the same triangle,

TT7: with 3 new edges on the same triangle.

For TT; if any one of the 24 edges is not seen until the nth (or last) toss
then the associated square and triangle were not seen on the first n — 1
tosses. This implies that 2 other square and 3 other triangles surrounding
this pair were seen in the first n — 1 tosses; this accounts for a total of
3 squares and 4 triangles. The remaining 3 squares and 4 triangles are
sketched in Fig. 1, where arrows point to identifiable sides and S denotes
edges included in the previous discussion.

There are eight edges not yet accounted for; to see all of these consider
8 disjoint subcases:

Subcase 1: Sp, 51,5 Subcase 5:  Sp, 51,82, To, Th, Ts

Subcase 2: So,sl,SQ,To,Tl,Tg,Tg Subcase 6: S(],Sl,SQ,To,Tl,TQ,Tg
Subcase 3: So,Sl,S'Q,To,Tg Subcase T: 5'0,5'1,5'2,T0,T1,T2,T3
Subcase 4: So,gl,SQ,To,Tl Subcase 8: 50,51,S2,T0,T1,T2,T3

Here S denotes the absence of S in the first n — 1 tosses. For T'T» two
triangles and one square are not seen until the nth (or last) toss and hence
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FIGURE 1. Backside of the Cuboctahedron

> 3
S.\S
S s T() 2 &) means identify
1
S
S
T So |Ts
s S
I

the 4 square and 2 triangles surrounding these are seen in the first n — 1
tosses. We consider two disjoint (and exhaustive) subcases:

Subcase 1. The remaining square Sg is seen among the first n — 1 tosses.

Subcase 2. Sg is not seen but the 4 remaining triangles are all seen in the
first n — 1 tosses.

For TT3 two triangles and a square are not seen until the nth (or last) toss;
it follows that 2 other triangles and 3 other squares are seen on the first
n — 1 tosses. Then we consider four disjoint (and exhaustive) subcases (cf.
Fig. 2) where S indicates edges included in the previous discussion.

Subcase 1: §o,51 Subcase 3: §’0, .5'1, T, T
Subcase 2: Sg, Sl, Tl, T2, T3, T4 Subcase 4: So, Sl, T1, T2, T3, T4.

For T'T, we need two subcases as in TTy above.
For TT; we again need two subcases as in TT5 above.

For TTs we use four subcases and Fig. 3.

FIGURE 2. Case T'T; for the edges problem of the cuboctahedron
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FIGURE 3. Case T'T¢ for the edges problem of the cuboctahedron

s
T
s 1
S
Sl s2
T,
s ° s
) So s
s
Subcase 1: Ty, Ty Subcase 3: T, Ty, 51, Sz

Subcase 2: To, Tl, So, Sl, Sz Subcase 4: To, Tl, So, Sl, S2
Finally for TT7 we have two disjoint (and exhaustive) subcases:
Subcase 1. The one remaining triangle is seen in the first n — 1 tosses.

Subcase 2. The one remaining triangle is not seen but all 3 remaining
squares are seen in the first n — 1 tosses.

Let P; (resp.,, T;) (i = 1, 2, ..., 7T) denote the contribution of TT; to
P{T = n} (resp., to E¢(T)). Then

Pl=24<p1+p3)[(1—p1—m)ﬂ*l?’”,, n)(LLin=1)

1-p1—-p3’1-pP1-P3

- 4,7
+ (1 - 2p1 _p3)n IIE )p] P3 )
1-2p; —p3’1-2p1—P3
+2(1-2p ‘Ps)n_11(4’5)
(bt iiss)
—-17(3,6
+(1-3p, — pa)" 1S )p »3
(1-3P1—P3’1—3P1—P3)

+2(1 - 3py —:Ds)n—lIE&?)p )

1-3p1—p3’1-3p1 -pP3

+(1-4py —p3)n-11?'7’,, , )], (1.54)

—td
1-4p; -p3’1—4p] —p3

Pa=1op [ =g = 20" 00D, (L)

1-p1-2p3°1-p1-2p3

+(1-2p;, - 2pa)"’1IE4’6) » )], (1.55)

P3
1-2p;)—2p3°’1—-2p; —2p3
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Py = 24p, [(1 — py — 2p3)" 1132 1,1;n—1)
(1 P1—-2p3’1-p;1— 2?3)
+(1—2p1 — 2pg)" IO
(1 2p1 2p3 ' 1— 2p1 2p3)
+ (1~ 2py — 2p3)" 1Y
(1 2p1 2p3'1— 2p1—2p3)
+ (1= 3py — 2p5)» 11O ] (1.56)
(1 3p1—2p3’1 3p1 2p3)
17(5, 1) .
P4-24p1[(1—p1——3p )= e ) (1,1;n—1)
1- P1 3p3 ' 1- P1 3pr3
+ (1 —2p; — 3pg)" 114 ] (1.57)
(1 2p1—3p3’1 2p1 3p3)
P5 = 6p1 [(1 -D1— 4p3)n—11(5) 3 (l,n - 1)
1-p1—4p3
+ (1 —2py — dpg)" I 1,1;n - )] (1.58)
(l —2py —4pgz ' 1— 2p1 4p3
Ps = 24ps [(1 — 2p; — pg)* IV 1,1;n—1
(oot )

+ (1 - 2p; — 2p3)" 11O

)t
)t
(s i)
)
)

+ (1 - 2p; — 2pg)" O

( 1-— 2p1 —2p3 71— 2p1 —2p3

+ (1 - 2p; — 3pg)" (D)

(1 2?1 3p3 ' 1- 2112 3p3

1,1;n - )] (1.59)

P; = 8p; [(1 - 3p; —p3)"‘11(7) s (Ln—1)

1-3p1-7p3
+ (1 - 3p, — 2p3)""UPO e L,Ln-1)|.  (1.60)
(1—3p1—-2p3’1—3p1-2p3)
Letting D;; = ip1 + jps, the corresponding T-values are
Ty = 24(p; +p3) [ CPD | (1,1;2) + - CWD 4 2 o)
[ (FILI’DII) Dgl (F2L1 32?) Dgl F‘-}I Fg-l—
1 ., 6) (3,7 1 @7
+=C c +=-C ] (1.61)
D ("5—;-1-’5%) (E:h’D:n) D ( 41’5‘%)
Ty = 12p; [—c“ 2 (1,1;2) + —-C4O) , } , (1.62)
D%2 ( 12”512) D%2 (pzz’ﬁz%)

Ty = 24p, | = C%2 1,1;2 +-.—c(46)
3 llD%2 (3—115 Ff;)( ) D§2 (D22 )

1 a4 I 36
+=-C*Y 4= C , (1.63)
D22’2 (F:E’ng_) D (032’%)
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T =24 [Dfsc((svlll ) WD+ 5 C(R —L)] (169
Ty = 6py [Dhc“l" (1;2) + —cz“;i 77%)(1,1;2)], (1.65)
T =2 [ O e (452 5 )

+ 31%;0235) ot 51%—202‘:])_53_)] (1.66)
T =8p3[D§IC%(1 2) + Dgzc&‘% 77;i;)(1,1;2)]. (1.67)

The sum of T}, T%,..., Ty is the desired expectation E(T). For p; =
p3 = 1/14 the result is

(8 4 .y 8 1 o 10
E.(T) = 168 [cf/;u;z) +5C18 + 5Cus + 2O+ c§/4)

4 (9 ) 10) , 2 (M (10) ®)
+ 5301/5 + 01/3 + _C1/4 + _C1/3 + ‘C1/4 + §01/4

2 ~(9) (6) (9) () (8) ©)
+_‘C1/5 01/4 C1/5 01/5+ Cl/6 §C1/3

(10) (9) 9) (7 (9
C1/4 + C1/4 Cf/s 401/4 + %01/)5
= 168(.15651047) = 26.29376, (1.68)

where the C-values are all obtained from Vol. 9 except for one entry that
appears in the exact C-table in the Appendix.

As a partial check we calculate the probabilities for each of the seven
cases and see if they add to one, but this is done only for the special case
p1 = p3 = 1/14. From (1.54) we obtain

8 9 9 0 48 9
P(Case 1) = 240)(1;1) + 1603 +32C(9) + 1207, + 240( + = O
23072

= So030 = 76830 (1.69)

4 3 1091
CSS) = (10) + (—‘14) = 30030 .03633, (1.70)
3

P(Case 2) = 4C{}(1;1)+3

9 2618
P(Case 3) = 8C7)(1;1) +6C{7 +6C1)9 + c§ % = 30035 = 08718,
(1.71)
— e® ) _ 6 24 930 _
(Ca.se 4) 601/4(1 1) + C1/5 = '@ + 5(154) = m = .03097,

(1.72)
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6 _.(s) (8) 6 1 153
5 6
24 1960
P(Case 6) = 8C{7(1;1) + 6C1), +6C + T = 30030 = 06527,
74)
8 2 8 206
Case 7) =20 (1) +-CO) = ——+ —_ = =2 _
P(Case 7) = 2C) /4(1;1) + =Ciss &) + 509 = 30030 00686,

(1.75)
and the sum of these is exactly one (which is our check).
If we set p3 = 0 (and hence p; = 1/16 by (1.53)), then only one non-
zero term appears and the result is

E{T.|ps = 0} = 36C®)(1;2) = 14.70000. (1.76)

This is not the answer for the edges problem on the cube. However suppose
that the edges of the cube are directed (as in the graph theory), marked
differently for each direction and that they are assigned one to each of the
two faces associated with a given edge of the cube. Then the problem of
seeing all the directed edges is equivalent to the problem of seeing all the
faces of the cube and this has expectation 14.7. Since the six squares of
the cuboctahedron have no common edges, it is reasonable that this should
occur as p3 — 0.

For part b) dealing with the cube (which we will call Problem 1.9B)
consider the disjoint (and exhaustive) events A; where j is the number of
new edges seen on the nth (or last) toss. For j = 2 only pairs of parallel
edges are possible and j = 3 and 4 are also not possible. Hence we have
only 2 cases to consider which we denote by 1 and 2B. Then (with p = 1/6)

P =122p)(1-2p)" 1Y _(1,n-1); Pop =12p(1-3p)" " 1%)_(1;n-1)

2p 1-3p
(1.77)
and P(T = n) is the sum of these two. Hence
_ 0@ 1.9+ L0®) 1.9y = 8L _
E(Te) = - Crja(1:2) + 32 Cya(1;2) = 75 = 8.10000. (1.78)

In particular the result 14.7 is not the answer to the edges problem for the
cube. The check for the latter computation gives
12 4

— 190@ (1. @)= 12,4 _
P(T < 00) = 120}, (1;1) + 4C{ (1) = = + 75 = 1 (1.79)

and the probabilities of Cases 1 and 2B are % and %, respectively.

Problem 1.10 Do the faces problem for the cuboctahedron, i.e., using the
polyhedron in problem 1.4 with p; = 0, common p; for the 6 squares and
common p3 for the 8 triangles find the expected number of tosses E(TY)
needed to see all the 14 faces.
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Solution:

Consider 2 disjoint (and exhaustive) cases according to whether the last
face seen is a square or a triangle. Then we obtain

P{T =n}=6p:(1-p1)"" 11(58) ’ )(l,l;n—l)

(1 p1’1 P1

—1 7(6,7) .
+ 8p3(1 — p3)" 11(_1_ __3_)(1,1,n— 1). (1.80)
1-p3’1-p3

The check yields an identity for any p;,ps with 6p; + 8ps = 1, namely

(5,8) . (6,7) a1y
6050/, (1 131) +8C(5 " (L) = 1, (1.81)

whose proof follows from the probability interpretation of C. Multiplying
(1.80) by n and summing for n > 3, the general result is

6
E(Ty) = ;,;Cfif)/m(l 1;2) + OE:) )(1 1;2). (1.82)

For p; = p3 = 1/14 we obtain
E(Ty) = 196C*¥)(1;2) = 196(.23225445) = 45.52187, (1.83)
which is exactly equal to 14 2;4:1 1/4. For 6p; = 8ps =1/2

E(Ty) = 720§53:‘j)2(1 1;2) +128C{570 1 (1, 1;2)

‘7222( e 1+( 31(42@2

=0 a=0

+12SZZ( 1)*+8 () ()

prurSoonrt 1+ oz+ﬁ)2

= 72(.32153771) + 128(.15054223)
= 42.42012, (1.84)

where the double sums were done on a computer by Jer-Yan Lin of Uni-
versity of California at Santa Barbara. It is interesting that the numerical
answer in (1.84) is smaller than in (1.83) and this raises the question of
finding a minimum, which we do not consider here.

Problem 1.11 Do the vertices problem for the dodecahedron, i.e., assum-
ing that on each toss we see the five vertices on the top face (and only
those),find the expected number of tosses E(T') to see all twenty vertices
of the dodecahedron. Whatever disjoint sets of cases are considered, find
the probability of each set and check to see if they add to unity.



Milton Sobel 129

Solution:

In case j we see exactly j new vertices on the nth (or last) toss (j = 1, 2,
3, 4, 5). For j > 1 if these vertices are not neighbors (i.e., connected by an
edge) then the case is not possible. Hence the case j = 4 does not occur
and there is only one (type of) case for j = 2 and 3, i.e., we have a total of
four (types of) cases, which we still call 1, 2, 3 and 5.

For j = 1 there are three pentagons that we do not see on the first n — 1
tosses and (cf. Fig. 4) hence there are three other pentagons that we must
see on the first n — 1 tosses. This accounts for sixteen vertices. The back
piece in Fig. 4 shows the four remaining vertices that have to be included
in the first n — 1 tosses. The latter is accomplished by including (at least
two Z’s) or (exactly one Z and the opposite W).

FIGURE 4. Front piece and back piece of the dodecahedron for the case j = 1

FRONT

As before P; (resp., E;) is the contribution to P(N = n) (resp., to ET)
from Case j and P} is the probability of Case j (j = 1, 2, 3, 5). Thus we
have for Case 1, letting p denote 1/12,

Py, = 20(3p)(1 — 3p)"~ [315_5‘}3_(1;71 1) - 21(1_6_23%(1;71. - 1)]

P

+20(3p)(1 — 5p)"-131(1_5f)5_(1;n -1), (1.85)
—op
P} = 60C{75(1,1) —40C {5 (1,1) + 36C5(1,1), (1.86)
20 (s) 40 (6) (1. 0y 4 36 ~(5)
By = Z-C0yja(1;2) = 2-C15(1i2) + £-Cij(1;2). (1.87)

For Case 2 the two vertices must be neighbors and there are four pen-
tagons (marked No in Fig. 5) that we don’t see on the first n — 1 tosses
and another four pentagons (marked Yes) that we do see. This accounts
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for eighteen vertices and the remaining two are circled in Fig. 5 below. The
latter two are included by including at least one Z pentagon or both W
pentagons.

Hence we have for the Case j = 2

Py = 30(2p) [(1 4p)" 1) _(im-1)+2(1 - 5p)" %) (1;n - 1)

1-5p
+(1—-6p)™" 11(‘” _(tm - 1)] (1.88)
Py =15C{(1;1) + 24C§*'/’Z,,(1, 1)+ 1OC§%(1 1), (1.89)
_ 15,6 (1. 24 (5) (1. (6)
By = 2-Cia(li) + L CLy(1:2) + o 01/6(1 2). (1.90)

FIGURE 5. The case j = 2 for the dodecahedron vertices problem (connecting

the front and back sides)

FRONT BACK

The reader should have little difficulty sketching the case j = 3 where
we have three neighboring vertices that are not seen until the nth (or last)
toss. Then five pentagons are not seen on the first n — 1 tosses and four
others are. This leaves 3 more pentagons which surround only one vertex
not yet accounted for. We accomplish this by including at least one Z.
Hence for j = 3 we have

Py = 60(p)(1 - 5p)"
[31(_5L(1; n=1)-31% Gn-1)+10_(L;n- 1)] . (1.91)
1-5p 1-5p 1-5p

Pr=12 [3C§§f,, ~3081;1) + (1, 1)] , (1.92)



Milton Sobel 131

Es = [309’5(1;2) 308 (1;2) +<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>