
Contributions to Probability and Statistics 



Dedicated to our friend and mentor 

Ingram Olkin 

On the occasion of his 65th birthday 



Leon Jay GIeser Michael D. Perlman 
S. James Press Allan R. Sampson 
Editors 

Contributions to Probability 
and Statistics 
Essays in Honor of Ingram Olkin 

With 50 Illustrations 

Springer-Verlag 
New York Berlin Heidelberg 
London Paris Tokyo Hong Kong 



Leon Jay GIeser 
Department of Statistics 
Purdue University 
West Lafayette, IN 47907 

S. James Press 
Department of Statistics 
University of California 
Riverside, CA 92521 

Allan R. Sampson Michael D. Perlman 
Department of Statistics 
University of Washington 
Seattle, W A 98195 

Department of Mathematics and Statistics 
University of Pittsburgh 
Pittsburgh, PA 15260 

Library of Congress Cataloging-in-Publication Data 
Contributions to probability and statistics : essays in honor of 

Ingram Olkin / Leon Jay GIeser, Michael D. Perlman, S. James Press, Allan R. Sampson, 
editors. 

p. cm. 
Includes index. 
ISBN·13:978-1-4612-8200-6 (alk. paper) 
I. Probabilities. 2. Mathematical statistics. 3. Olkin, Ingram. 

I. GIeser, Leon Jay. II. Perlman, Michael D. III. Press, S. James. 
IV. Sampson, Allan R. V. Olkin, Ingram. 
QA273.18.C683 1989 
519.2-dc20 

Mathematical Subject Classification: 62-06, 60-06. 

Printed on acid free paper. 

© 1989 Springer-Verlag New York, Inc. 
Softcover reprint of the hardcoverIst edition 1989 

89-11470 

All rights reserved. This work may not be translated or copied in whole or in part without the written 
permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY 
10010, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in 
connection with any form of information storage and retrieval, electronic adaptation, computer soft­
ware, or by similar or dissimilar methodology now known or hereafter developed is forbidden. 
The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the 
former are not especially identified, is not to be taken as a sign that such names, as understood by 
the Trade Marks and Merchandise Act, may accordingly be used freely by anyone. 

Camera-ready copy supplied using LaTEX. 

987654321 

ISBN-I3:978-1-4612-8200-6 e- ISBN·I3:978-1-4612-3678-8 
DOl: 10.10071978-1-4612-3678-8 



Preface 

It is with great pleasure that this book of original articles is dedicated to 
Ingram Olkin on the occasion of his sixty-fifth birthday. All four co-editors 
of this volume have been closely associated with Ingram, first as his Ph.D. 
students and later as his collaborators. Our understanding of statistics and 
our careers have benefited greatly from his guidance and assistance. His 
joie de vivre and insightful judgement have strongly influenced our personal 
views of life. He has been a friend and mentor not only to us individually, 
but also to our families and to our own Ph.D. students. His enthusiasm 
for statistics sparked and fueled our interest in the field, and his positive 
outlook and energy have always served as a source of support. We know 
that Ingram takes great pleasure in visiting new places. It is our hope that 
the "trip" provided by this volume through topics that have interested him 
throughout his career will be as enjoyable and satisfying as any of his many 
adventures in life. 

When we started planning this volume, it was clear that our most difficult 
task would be to limit the number of contributors without hurting the 
feelings of the many statisticians who through their attachment to Ingram 
would have wanted to contribute. We finally agreed to limit invitations 
to those researchers who had been his Ph.D. students or collaborators, or 
had been most closely associated with him as a colleague. For whatever 
oversights we may have made in this selection, we sincerely apologize. As 
it is, the enthusiastic acceptance of our invitations by nearly all of the 
individuals whom we contacted caused us to fear for a while that we would 
have too much material for one book. 

Since Ingram has been an outspoken and vigorous advocate of high qual­
ity standards in publishing, we decided that every paper submitted would 
be carefully refereed, and that in cases where the referees did not recom­
mend publication, we would abide by their recommendations. Although 
it was often painful to do so, we kept to this resolve. Accepted papers 
were required to be revised along the lines of comments from the referees, 
sometimes more than once. For those readers who do not personally know 
Ingram, particularly those who enter the field after this book is published, 
we decided to include an interview with Ingram in this volume, and to 
illustrate this volume with pictures of Ingram at various stages of his life. 
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We hope that these features will provide an informative and stimulating 
introduction to a person who has made, and continues to make, so many 
vital contributions to the field of statistics. 

The editorial task we set for ourselves required the full participation of 
all four co-editors in serving as associate editors for the articles submitted, 
finding and dealing with the publishers, and preparing Ingram's biography, 
bibliography and interview. Even so, we could not have succeeded without 
the support of the following referees, who cheerfully and enthusiastically 
devoted their time to this project: 

M. Aitkin (Educational Testing Service) 
Y. Amemiya (Iowa State Univ.) 
T.W. Anderson (Stanford Univ.) 
B.C. Arnold (U. California, Riverside) 
S.F. Arnold (Pennsylvania State Univ.) 
R. Darrell Bock (U. Chicago) 
G.C. Casella (Cornell Univ.) 
A. Cohen (Rutgers Univ.) 
D. Conway (U. Southern California) 
S. DasGupta (Indian Statistical Instit.) 
M. DeGroot (Carnegie-Mellon Univ.) 
C. Derman (Columbia Univ.) 
M.L. Eaton (U. Minnesota) 
R.M. Elashoff (U. California, Los Angeles) 
T.s. Ferguson (U. California, Los Angeles) 
A.E. Gelfand (U. Connecticut) 
C. Genest (U. Laval) 
S. Ghosh (U. California, Riverside) 
N.C. Giri (U. Montreal) 
P.K Goel (Ohio State Univ.) 
D.V. Gokhale (U. California, Riverside) 
S.S. Gupta (Purdue Univ.) 
I. Guttman (U. Toronto) 
L.R. Haff (U. California, San Diego) 
A.S. Hedayat (U. Illinois, Chicago) 
P.W. Holland (Educational Testing Service) 
K Joag-Dev (U. Illinois) 
H. Joe (U. British Columbia) 
J.H.B. Kemperman (Rutgers Univ.) 
H.C. Kraemer (Stanford Univ.) 

K-S. Lau (U. Pittsburgh) 
S.Y. Lee (Chinese U. Hong Kong) 
G.L. Lieberman (Stanford Univ.) 
A. Madansky (U. Chicago) 
C.N. Morris (U. Texas) 
G.S. Mudholkar (U. Rochester) 
J.G. Nicholls (Purdue Univ.) 
J. Oosterhoff (Free Univ., Amsterdam) 
S. Panchapakesan (S. Illinois Univ.) 
S.K Perng (Kansas State Univ.) 
F. Proschan (Florida State Univ.) 
T.R.C. Read (Hewlett-Packard Co.) 
Y. Rinott (Hebrew Univ.) 
J. Sacks (U. Illinois) 
M.J. Schervish (Carnegie-Mellon Univ.) 
J. Sethuraman (Florida State Univ.) 
M. Shaked (U. Arizona) 
K Shigemasu (Tokyo Institute of Technology) 
R.L. Smith (U. Surrey) 
S.M. Stigler (U. Chicago) 
D.S. Stoffer (U. Pittsburgh) 
W.E. Strawderman (Rutgers Univ.) 
T.W.F. Stroud (Queen's Univ.) 
KW. Tsui (U. Wisconsin) 
D.E. Tyler (Rutgers Univ.) 
V.R. Uppuluri (OakRidge Nat!. Lab.) 
J.S. Verducci (Ohio State Univ.) 
L. Wolstenholme (U. Surrey) 
G.Y. Wong (Sloane-Kettering Cancer Ctr.) 

We would also like to acknowledge the assistance of Anita Olkin in ob­
taining most of the photographs that illustrate the volume, and Mary Ep­
person, Betty Gick, Diane Hall, Norma Lucas and Teena Seele for their 
assistance in preparing the manuscript. 

The Editors 
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Part I 

An Appreciation 





A Brief Biography and 
Appreciation of Ingram 
Olkin 

Ingram Olkin, known affectionately to his friends in his youth as "Red," 
was born July 23, 1924 in Waterbury, Connecticut. He was the only child 
of Julius and Karola (Bander) Olkin. His family moved from Waterbury 
to New York City in 1934. Ingram graduated from the Bronx's DeWitt 
Clinton High School in 1941, and began studying statistics in the Math­
ematics Department at the City College of New York. After serving as a 
meteorologist in the Air Force during World War II (1943-1946), achieving 
the rank of First Lieutenant, Ingram resumed his studies at City College. 
He received his B.S. in mathematics in 1947. 

Ingram then began graduate study in statistics at Columbia University, 
finishing his M.A. in mathematical statistics in 1949. He completed his 
professional training at the University of North Carolina, Chapel Hill, by 
obtaining a Ph.D. in mathematical statistics in 1951. 

During his tour of duty in the Air Force, Ingram met Anita Mankin. 
They were married on May 19, 1945. Their daughters Vivian, Rhoda and 
Julia were born, respectively, in 1950, 1953 and 1959. Ingram and Anita 
now are the proud grandparents of three grandchildren. 

Ingram began his academic career in 1951 as an Assistant Professor in 
the Department of Mathematics at Michigan State University. He early 
on demonstrated his penchant for "visiting" by spending 1955-1956 at the 
University of Chicago and 1958-1959 at Stanford University. Ingram was 
promoted to Professor at Michigan State, but left in 1960 to become the 
Chairman of the Department of Statistics at the University of Minnesota. 
Shortly afterward in 1961 he moved to Stanford University to take a joint 
position, which he holds to this day, as Professor of Statistics and of Educa­
tion. From 1973-1976, he was also Chairman of the Department of Statistics 
at Stanford. 
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Ingram's professional accomplishments span a broad spectrum, and have 
made and continue to make a significant impact upon the profession of 
statistics. He is an outstanding and prolific researcher and author, with 
nearly thirty Ph.D. students in both statistics and education. The profes­
sional societies in statistics and their journals have greatly benefited from 
his leadership and guidance. His contributions at the federal level include 
his work with the National Research Council, National Science Foundation, 
Center for Educational Statistics, and the National Bureau of Standards. 

Over one hundred publications, five authored books, six edited books and 
two translated works are included in his bibliography. Although his prime 
research focus is multivariate statistics, his research contributions cover 
an unusually wide range from pure mathematics to educational statistics. 
Many of his papers and books are virtually classics in their fields - nO­
tably his work with Al Marshall on majorization and related distributional 
and inequality results. His statistical meta-analysis research and book with 
Larry Hedges are also extremely influential. His text books On probability 
and on ranking and selection have made novel pedagogical contributions, 
bringing statistics to a broader nontechnical audience. Also of substantial 
value to the profession has been his editing of the Annals of Statistics Index 
and the three volume set Incomplete Data in Sample Surveys which derived 
from the Panel On Incomplete Data, which he chaired {1977-1982} for the 
National Research Council. 

Among Ingram's significant contributions to the statistical profession has 
been his fostering of the growth of quality journals of statistics. He was a 
strong proponent of splitting the Annals of Mathematical Statistics into 
the Annals of Statistics and the Annals of Probability. He oversaw this 
transition as the last editor {1971-1972} of the Annals of Mathematical 
Statistics and the first editor {1972-1974} of the Annals of Statistics. As 
President of the Institute of Mathematical Statistics {1984-1985}, he was 
instrumental in initiating the journal Statistical Science and has served 
in the capacity of co-editor since its inception. He was also influential in 
introducing the IMS Lecture Notes - Monograph Series. Furthermore, 
he was heavily involved in the establishment of the Journal of Educational 
Statistics, for which he served as Associate Editor {1977-1985} and as Chair 
of the ASA/ AERA Joint Managing Committee. In all these and numerous 
other editorial activities, he strongly supports and encourages the major 
statistics journals to publish applications of statistics to other fields and to 
build ties with other scientific societies' publications. 

Ingram's activities also extend to his work on governmental committees. 
He was the first Chair of the Committee On Applied and Theoretical Statis­
tics {1978-1981} of the National Research Council, and also was a member 
for six years of the Committee On National Statistics {1977-1983}. He cur­
rently is involved with a major project to construct a national data base 
for educational statistics. 

As Ingram will happily admit, he is a prolific traveler. He has given 
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seminars at more than sixty American and Canadian universities, and at 
numerous universities in twenty five other countries. He also has attended 
statistical meetings throughout the world, and has been a visiting faculty 
member or research scientist at Churchill College (Cambridge University), 
Educational Testing Service (Princeton, NJ), Imperial College, The Uni­
versity of British Columbia, the University of Copenhagen (as a Fulbright 
Fellow), Eidgeniissische Technische Hochschule (Switzerland), the National 
Bureau of Standards, Hebrew University, and the Center for Educational 
Statistics. Anyone wishing to call Ingram has to be prepared to be for­
warded from one phone number to another. 

In his travels, Ingram has tirelessly promoted and advanced the discipline 
of statistics. On an outside review committee at a university, he will con­
vince the dean to take steps to form a new department of statistics. On a 
governmental panel, he will persuade an agency to seek input from statisti­
cians. He has been an effective advocate for increased interdisciplinary ties 
both in universities and in government, and has been equally successful in 
convincing deans and statistics department heads of the need to reward 
statistical consulting. At most statistics meetings, you will find Ingram in 
constant conversation - perhaps promoting a new journal, encouraging 
progress of a key committee, or giving advice about seeking grants or al­
locating funds. His public accomplishments are many and impressive, but 
equally important are his behind-the-scenes contributions. 

Ingram flourishes when working with others. Many of his published pa­
pers are collaborations, and his collaborative relationships tend to be long 
lasting. Ingram is always bursting with new ideas and projects, and de­
lighted when a commOn interest develops. His enthusiasm is contagious, 
and his energy and positive outlook (which are legendary in the field of 
statistics) are tremendously motivating to all around him. 

In describing Ingram, one cannot simply list his personal accomplish­
ments. He is above all a remarkably charming and unpretentious person, 
who gives much of himself to his family, friends and colleagues. For his 
former students and the many young statisticians he has mentored, he is a 
continual source of wisdom, guidance and inspiration. All of us whose lives 
have been touched by Ingram view him with deep personal affection and 
great professional admiration. 



A Conversation with 
Ingram Olkin 

Early in 1986, a new journal Statistical Science of the Institute 
of Mathematical Statistics appeared. This is a journal Ingram 
Olkin was intimately involved in founding. One of the most 
popular features of Statistical Science is its iIiterviews with dis­
tinguished statisticians and probabilists. In the spirit of those 
interviews, the Editors of this volume wanted to include an 
interview with Ingram. However, one does not "interview" In­
gram; one simply starts him talking, and sits back to listen and 
enjoy. 

The following conversation took place at the home of S. James Press in 
Riverside, California in November of 1988. 

Press: I am pleased to have this opportunity to interview you. How did 
you initially get interested in the subject of statistics? 

Olkin: To tell the truth, I'm not quite sure. What I do know is that in 
my high school year book dated 1941 each student listed the profes­
sion that he wanted to follow; mine was listed as a statistician. I am 
quite sure that at that time I did not know what a statistician did, 
nor what kind of profession it was. 

I was a mathematics major in DeWitt Clinton High School, which 
was an all male school, and then went to CCNY - The College of 
the City of New York, now called City University of New York. At 
City College I was a mathematics major and took a course in mathe­
matical statistics. This was taught by Professor Selby Robinson, who 
became quite well known for having indoctrinated many of the statis­
ticians who are currently at various universities, in government, or in 
industry. 
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It was through this course that I became interested in the subject. 
Selby was not a great teacher, but he was a lovely person who some­
how managed to communicate an interest in the field. It may have 
been that I was challenged to find out more about the subject. 

Press: I would like to hear more about Selby Robinson, and your courses 
with him. 

Olkin: I believe that he got his degree at Iowa. He did publish a paper 
in 1937 on the chi-square distribution. The book we used in class was 
Kenney and Keeping, which was one of the few mathematically ori­
ented texts. In the applications course we used Croxton and Cowden, 
which was a classic applied statistics text. 

Anyone who was at CCNY and took a course in mathematical statis­
tics probably studied with Selby; Kenneth Arrow, Herman Chernoff, 
Milton Sobel, Herbert Solomon, and many others were students in 
his class. I don't know how he managed to instill such an interest in 
statistics, but I'm grateful that he did. 

Some years ago I learned that Selby had retired to California. Several 
of us invited Selby and his wife for a weekend to Stanford at a time 
that the Berkeley-Stanford Colloquium was scheduled. He and his 
wife had a marvelous time with us. 

College Days 

Press: Tell me more about City College, and how statistics was taught 
there. 

Olkin: Statistics was not taught in a single department at City College. 
It was taught in part by the Mathematics Department. As a matter 
of fact, the name of one statistics course taught by the Economics 
Department was "Unattached, 15.1." The terminology "unattached" 
indicated its status at City College, that is, it was not basically part of 
a structured departmental discipline. It was the first in a sequence of 
three discrete courses, all of an applied nature. I left CCNY in 1943 in 
my junior year, during the war, and became a meteorologist in what 
was then the United States Army Air Force. (Shortly thereafter the 
Air Force became a separate branch of the military.) I returned from 
the service in 1946 and finished my bachelor's degree at City College. 
In 1947 I went to Columbia University to continue my studies, because 
by then I knew I was interested in statistics, and Columbia was a 
major center. 

Press: Was there a Statistics Department at Columbia at that time? 
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Olkin: The Department of Mathematical Statistics was formed formally 
about 1946. The faculty at Columbia consisted of Ted Anderson, 
Howard Levene, Abraham Wald, and Jack Wolfowitz. I had most 
of my courses from Wald and Wolfowitz and a number of visitors; 
Anderson was on leave during my stay. That was a heyday for visitors. 
Henry Scheffe, Michel Loeve, R.C. Bose, and E.J.G. Pitman were 
visitors about that time. 

Press: How long were you at Columbia? 

Olkin: I stayed at Columbia for my master's degree, and then went to 
Chapel Hill to continue my studies for the doctorate. Harold Hotelling 
started his career at Stanford University from 1924-1931, at which 
time he moved to Columbia. In 1946 he moved to Chapel Hill to 
form a new department. I left Columbia for Chapel Hill in 1948. 

Press: Why did you go to Chapel Hill? 

Olkin: It was partially for personal reasons. I was married to Anita in 
1945 while I was in the service. When we returned to New York af­
ter my discharge from the army, the country was faced with a severe 
housing shortage. In fact, it was almost impossible to find an apart­
ment at that time. Even telephones were rationed after the war. If 
you were a doctor you could get a telephone, but there was a very 
long waiting list for the general public. 

My parents had a small apartment, but Anita's parents had an extra 
bedroom, so we lived with her parents in Manhattan for about two 
years. After living in California for our first year of marriage, we were 
not as enamored with New York as before. This prompted me to look 
for an alternative to Columbia, and I learned that Chapel Hill was 
another major center. I was offered a Rockefeller Fellowship at Chapel 
Hill which made such a move very attractive. But despite our desire to 
leave New York, I was not at all disenchanted with Columbia. Quite to 
the contrary. We had started a graduate student group that generated 
a sense of community among the students. There were virtually no 
books on statistics at this time, certainly not on advanced topics, and 
one of our accomplishments was the publication of class lecture notes. 
So I have fond memories of Columbia. 

Press: Tell me about Chapel Hill. 

Olkin: In 1948 there were very few places where you could get a Ph.D. 
in statistics. Berkeley didn't have a department, though you could get 
a doctorate in statistics. Iowa State had a department; Chicago had a 
program, but not a department. Princeton, though small, generated 
an amazing number of doctorates within the mathematics depart­
ment. Chapel Hill had an Institute of Statistics with two departments, 
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one at Chapel Hill and one at Raleigh. It had a galaxy of stars on 
the faculty. On the East Coast, Columbia and Chapel Hill were really 
the large centers and there was a lot of interaction between the two. 

Press: So you ended up following Hotelling? 

Olkin: In a certain sense, that's right. The faculty at Chapel Hill in 1948 
when I arrived, consisted of Hotelling as chair, R.C. Bose, Wassily 
Hoeffding, P.L. Hsu, William Madow, George Nicholson, and Herbert 
Robbins. Gertrude Cox was Director of the Institute. 

Hsu was on the facuIty, but was on leave in China for a year. He never 
did return, and S.N. Roy joined the department the following year. 
The faculty together with visitors formed a phenomenally large group. 
At Raleigh, there was a Department of Experimental Statistics, with 
Bill Cochran and many others. The Chapel Hill-Raleigh group was 
really one of the great faculties. 

Press: So you spent about three years there? 

Olkin: Yes, from 1948 until 1951 when I graduated. 

The Doctoral Dissertation at Chapel Hill 

Press: What was the subject of your dissertation? 

Olkin: Well, there is a story to my dissertation. I had planned to take 
a class in multivariate analysis from P.L. Hsu, but he was in China. 
That year Hoeffding gave a beautiful set of lectures in multivariate 
analysis, after which I wanted to continue working in this area. A 
fellow colleague, Walter Deemer, and I asked Hotelling about con­
tinuing our studies as a reading course. He suggested that we use 
student notes from previous courses given by Hsu. My memory is 
vague on this, but I recall that we had notes from Al Bowker and 
Ralph Bradley who had previously taken such a course. Walter and I 
formalized the material on Jacobians of matrix transformations, and 
extended many of the results. This was the basis of my joint paper 
with Walter Deemer on Jacobians of matrix transformations, and re­
ally set the stage for my later work. The next year when S.N. Roy 
arrived, I continued my work with him and with Hotelling on mul­
tivariate distribution theory. The object was to develop a method­
ology for deriving a variety of multivariate distributions. I was able 
to obtain new derivations for the distribution of the rectangular co­
ordinates, for various beta-type distributions related to the Wishart 
distribution; for the joint distribution of singular values of a matrix 
and for the characteristic roots of a random symmetric matrix. 
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The singular value decomposition was not used much at that time, 
but this has now become a common decomposition used by numerical 
analysts. I believe that this was one of the earliest statistical uses of 
singular values. 

Press: The dissertation was formally under Roy and Hotelling? 

Olkin: They were both readers, but Roy served as principal advisor. 

Press: What else can you tell me about Columbia and Chapel Hill? 

Olkin: Both Columbia and Chapel Hill had great students. You have 
to remember that these were the first post-war classes. So there was 
a tremendous backlog of individuals who had been away during the 
war and were returning immediately thereafter. If you catalog the 
statisticians who received doctorates at both Columbia and Chapel 
Hill during those early years, you will find a large number who are 
leaders in the field today. It was a very exciting period at Chapel 
Hill, both in terms of faculty and in terms of what the students were 
doing. 

Press: Who were some of your fellow students? 

Olkin: The list of students at Columbia and Chapel Hill was very long, 
and my memory is not good enough to remember everyone. But I do 
recall many with whom I interacted. 

At Columbia the list includes Raj Bahadur, Robert Bechhofer, Al­
lan Birnbaum, Thelma Clark, Herbert T. David, Cyrus Derman, 
Charles Dunnett, Harry Eisenpress, Lillian Elveback, Peter Frank, 
Mina Haskind, Leon Herbach, Stanley Isaacson, Seymour Jablon, 
William Kruskal, Roy Kuebler, Gottfried Noether, Monroe Norden, 
Ed Paulson, G.R. Seth, Rosedith Sitgreaves, Milton Sobel, Henry Te­
icher, and Lionel Weiss. 

At Chapel Hill-Raleigh there were Raj Bahadur, Isadore Blumen, 
Colin Blyth, Ralph Bradley, Uttam Chand, Willard Clatworthy, Wil­
liam Connor, Meyer Dwass, Sudhish Ghurye, Bernard Greenberg, 
Max Halpern, Jim Hannan, Gopinath Kallianpur, Marvin Kasten­
baum, Paul Minton, Sutton Munro, D.N. Nanda, Joan (Raup) Rosen­
blatt, Shared Shrikhande, Morris Skibinsky, Paul Somerville, Robert 
Tate, Milton Terry, Geoffrey Watson,· and Marvin Zelen. 

Press: Did you do any statistics during the war, before you returned? 

Olkin: No, I did not. I was trained at MIT and Chanute Air Force Base 
to be a meteorologist, and subsequently was a weather forecaster at 
several airports. At one point I thought of combining the two fields, 
since a variety of statistical procedures were being used to forecast 
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weather. But somehow this merger did not materialize. Actually quite 
a number of statisticians and mathematicians were in the meteorology 
program - for example, those I remember are Kenneth Arrow, Jim 
Hannan, Gil Hunt, Selmer Johnson, Jack Kiefer, Sam Richmond, and 
Charles Stein, but I am sure there were many others. 

Press: Did subjectivity enter weather forecasting at that time? 

Olkin: Not in a formal way. Some of the good forecasters were old 
timers, who happened to remember similar weather patterns from 
previous years. They were able to retrieve information from old maps 
and use that as a basis for forecasting. As you may know, it is rather 
difficult to beat a forecast of continuity, that is, forecast for tomorrow 
what the weather is today. How to evaluate weather forecasts in terms 
of accuracy is also an interesting area. 

Early Years 

Press: Can we shift gears a bit and have you tell me about your child-
hood and your family? 

Olkin: I was born in Waterbury, Connecticut. My father came to the 
United States from Vilna in Lithuania - probably to escape being 
inducted in the Tsarist Russian Army. This was a common sequence 
at that time. My mother was born and lived in Warsaw, and met my 
father there. 

The move to Waterbury was primarily because some colleagues in 
my father's occupation - he was a jeweler - were in Waterbury 
and they had arranged a job for him. When the depression period 
in the early 1930's came, jewelry was one of the first professions to 
feel the financial pinch, because it was a luxury item. My family then 
moved to New York City. I suspect that the move to New York was 
also prompted by a concern about my future education. Connecticut 
did not have any tuition-free state universities. Of course, it had Yale 
University, but for immigrants Yale was totally out of the question, 
whereas City College was free. We moved to New York in 1934 and 
my formative years of high school and college were really there. 

New York City was quite an exciting place. I went to DeWitt Clinton 
High School, which at that time had a mathematics team. There was 
also a football team, but I don't remember it. The math team was 
a good one. We used to have meets on Saturdays at one of the high 
schools, and two different high school mathematics teams would com­
pete. It was very much like the Olympiad and Putnam competitions. 

Press: What kind of high school was this? 
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Olkin: DeWitt Clinton was a very large school with an enrollment of 
about 4000. It was located in the Bronx bordering on a park area. 
My graduating class of 1941 boasts of James Baldwin, who wanted 
to be a writer and became a distinguished one, Julius Irving, who be­
came Managing Director of the Vivian Beaumont Theater at Lincoln 
Center, and Charles Silberman, who wrote several books, including 
"Crisis in the Classroom." I am sure that many others have become 
success stories. With such a large enrollment there were opportunities 
to pursue many different avenues. 

Papers That I Like 

Press: I'd like to discuss your publications. You've published more than 
100 papers that I know about. Which ones would you regard as your 
particular favorite ones? 

Olkin: That's a hard question, Jim. Certainly the first one with Walter 
Deemer was a favorite. Walter and I spent a lot of time together, 
and it was an invigorating, productive, and enjoyable collaboration. 
It also was my first paper, and that often is special. In retrospect, 
the papers I tend to like most are the ones that brought me into a 
new area, ones that I had not worked on before. There is a tendency 
to continue working in the same research area, and it is not easy to 
move into different fields. 

Chronologically, probably the next paper that I like was the one with 
John Pratt on Chebychev-type inequalities. That started me in a re­
search area that I continued with Albert Marshall for approximately 
ten years. My association with Al came about by accident. He had 
completed his dissertation at the University of Washington. His the­
sis was also on Chebychev inequalities, and was related to my work 
with Pratt. In 1958 Al was a post-doctoral fellow at Stanford and 
I was on sabbatical leave from Michigan State University. We had 
corresponded before we met, and we were both immersed in the ideas 
related to Chebychev inequalities. We had adjacent offices, which 
made it easy to work together. We wrote several papers that year 
and generated ideas for later work. That started a long history of 
collaboration. The paper on this subject that I like most is the one 
in which we were able to obtain multivariate Chebychev inequalities 
in a rather general framework. 

Earlier on I had given some lectures at Michigan State University on 
independence properties and characterizations of distributions. This 
led me to think about multivariate versions, and it started a col­
laborative effort with Sudhish Ghurye and with Herman Rubin. The 
key point here is that multivariate characterizations often introduce 
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an. ingredient that is quite different from the univariate case. With 
Ghurye the multivariate characterizations dealt with the normal dis­
tribution, and with Rubin the Wishart distribution. Each of these 
papers had novel aspects in their multivariate versions. 

The paper with Al Marshall on the multivariate exponential distribu­
tion seemed to fill a niche in terms of being a non-normal distribution 
that had some very nice properties. That paper has probably been 
referenced more than any of my other papers. 

Press: Why is that? 

Olkin: It may be because the problem of constructing bivariate distri-
butions with given marginals is rather tantalizing. We generated this 
particular bivariate exponential distribution from several disparate 
points of view, and they all converged to the same result. The bivari­
ate exponential distribution has now been applied in different con­
texts - in reliability theory, in hydrology, and in medicine. Recently 
Neils Keiding in Denmark has used our bivariate distribution as a 
model in which cancer can occur individually or simultaneously at 
several sites. I think that this will become an important application. 

A long-time interest of mine has been matrix theory. I think this 
started when I took a course with Alfred Brauer at Chapel Hill. He 
was the kind of teacher who was able to command an interest and 
excitement about the field. At that time he had obtained some nice 
hew results on estimating the eigenvalues of a matrix. I studied matrix 
theory rather extensively, used it in my dissertation, and subsequently 
in my work in multivariate analysis. 

I've enjoyed trying to mesh some probabilistic results with matrix 
theory results. For example, a quadratic form can be considered as 
the first moment of a distribution on the eigenvalues of the matrix of 
the quadratic form. Consequently, Chebychev inequalities can provide 
estimates for the location of eigenvalues of a symmetric matrix. There 
have been several papers of that type; one in particular, with Al 
Marshall, dealt with scaling of matrices. 

An area that I've probably spent the most time on is majorization. I 
am not sure how Al and I started, but I believe that it was a natural 
follow up of the work on Chebychev inequalities. From probabilistic 
inequalities we moved into a variety of real variable inequalities, such 
as the HOlder, Minkowski and matrix eigenvalue inequalities. At one 
time we thought of trying to update the Hardy, Littlewood and P6lya 
book on inequalities. It didn't take long to realize such a plan was 
rather presumptuous. But we did discover that majorization was a 
fundamental notion with a rich theory that could be applied to a 
wide range of topics. On and off we spent approximately 15 years in 
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writing our book on majorization. The reception of this work and its 
continued use in different areas is most gratifying. The reviews of our 
book were very laudatory. 

Another general area that I enjoy is to try statistically or probabilis­
tically to model a practical problem and to develop procedures for 
handling the statistical analysis. That has been an ongoing process 
throughout my career. The applic~tions have been in the behavioral 
and social sciences, including education. Many of my papers hp.ve a 
genesis in an application. . 

Most recently I've been working on meta-analysis, which, again, deals 
with a different area. I became intrigued in this through my connec­
tions in education. One of my colleagues, Nate Gage, who is an expert 
in teacher education, pointed out that in education you rarely see 
profound or strong effects. What you see are small or modest effects 
that are consistent over repeated studies. The question he posed was 
whether there was a way in which one could strengthen the conclu­
sion of the composite of studies, even though each particular study 
was non-significant. At that time the procedure that might be called 
"vote counting" (that is, counting the number of significant results) 
was in vogue. My first results in 1972 dealt with the development of an 
alternative method of analysis to vote counting. Later in 1976-1978 
Gene Glass coined the term meta-analysis and proposed a quantifi­
cation in combining results from independent studies. This served as 
a catalyst to work more seriously in this area. Larry Hedges was a 
doctoral student at Stanford and in 1980 wrote his dissertation with 
me on meta-analysis. Subsequently he continued to work in this area 
and contributed a lot to the field. Meta-analysis had begun to be 
somewhat of a fad, and the statistical procedures available or used 
were not always rigorous. So we decided to write a book that focused 
on the statistical methods for meta-analysis. This book, titled Sta­
tistical Methods for Meta-Analysis, was completed in 1985, and has 
had extensive use, in education, psychology and medicine. 

People I've Known 

Press: Let's talk about individuals and your relationships with them. 
Which ones were the closest? From what you've said so far, it's clear 
that you've spent a great many years working with Al Marshall. But 
what about your early years? For example, who was your mentor 
when you got started, and what was your relationship with people 
such as S.N. Roy and Harold Hotelling? 

Olkin: Hotelling certainly had a great influence. He valued research, 
and did not emphasize personalities. He was a very strong advocate 
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for the profession at large, and I think that this characteristic rubbed 
off on me. I don't think I ever heard Hotelling diminish anyone's 
work. He always built up individuals if they were productive. Also, 
he fought very strongly for the teaching of statistics by statisticians. 
We see this most clearly from his articles which have been reproduced 
in Statistical Science. But it was hard for a student to become close 
to him on a personal level. In part this was because he was such an 
esteemed figure, and his manner was somewhat on the distant side. I 
would say that one could feel respectful, fond, loyal, and appreciative. 

Roy was much more approachable. He had just come to the United 
States, and I was rather close to him. He and I wrote a joint paper 
immediately after my thesis. But then he died at quite an early age. 
This was quite a shock to me. 

There were others who influenced me, in particular, Wolfowitz at 
Columbia, Bose, Hoeffding, and Robbins at Chapel Hill. This was in 
terms of their scholarship and as role models. 

Shortly thereafter I became a faculty member at Michigan State Uni­
versity. From the beginning I have written a lot of joint papers and 
my collaborators became close associates. At one time I counted over 
thirty collaborators. Milton Sobel has been a continual collaborator. 
He and I, together with Jean Gibbons, did write a book titled Select­
ing and Ordering Populations. 

I've really enjoyed the collaboration and the closeness with almost all 
of my students. With some I've written a number of papers after they 
completed their doctoral degrees. One of my first students was Leon 
GIeser. I've written a book with him titled Probability Models and 
Applications and a number of papers. Today we keep up socially and 
professionally and are still involved on several papers. You were the 
second student, and we have collaborated on several papers. This was 
also true with Joe Eaton, Mike Perlman, Allan Sampson, Tom Stroud 
and others. So I've continued both the collaboration and friendship 
with students throughout my career. It is pleasing to me that I have 
had a total of 28 doctoral students in statistics and education, many 
of whom have had very successful careers. 

Probably in terms of the individuals with whom I've collaborated 
most, I don't think there's any question but that Al and I have the 
longest history. We've worked together for 30 years, which is quite a 
long time. Joe Eaton, Leon GIeser, Mike Perlman, and Milton Sobel 
are the others that I have worked with the longest. 

Press: I don't hear you mention anyone person whom I would call a 
mentor, people who drove you on, or from whom you sought advice. 
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Olkin: They were mentors in a different sense, more as friends who were 
supportive. For example, when I went to Michigan State University, 
Leo Katz was the senior faculty member. Leo visited Chapel Hill 
where we first met, and he recruited me. Statistics at Michigan State 
was part of the mathematics department in 1951; a separate statistics 
department was formed about five years later. Leo and I were quite 
close, though we only wrote one or two papers together. There was 
no question that in many ways Leo played the role of a mentor or a 
senior advisor with whom I could talk about a number of problems. 

There were a number of people of that type, but I didn't necessarily 
work with them. This was true to some degree when I visited Stan­
ford in 1958 and when I joined the faculty in 1961. The faculty were 
young with strong colleagial relationships. There were lots of discus­
sions and you could get advice from colleagues. I was quite close to 
Bob Bechhofer during my sabbatical and later established a special 
closeness with Jack Kiefer until his death and with Jerry Lieberman, 
which has continued to this day. 

There are other individuals who influenced me in different ways. For 
example, I took more courses from Jack Wolfowitz at Columbia than 
from any other single person. Again, I can't say that he was a men­
tor in the sense that I would ask him for advice. Jack was not that 
approachable. But he was a mentor in the sense of being a role model 
in his emphasis on publishing, on being active, and on having stu­
dents. While I am reminiscing about Wolfowitz, I can think back to 
an incident that is now humorous, but wasn't at the time. It was not 
very easy to meet with either Wald or Wolfowitz. First of all, they 
were well-known and busy, and the secretary considered it her duty 
to keep them sheltered. Wald was a very kind person, but somewhat 
formidable for a young student. 

At Columbia you had to write a dissertation for the master's degree. 
Wolfowitz was my adviser, so I occasionally needed to see him. He 
had office hours from 12:45 to 1:00, and so one would queue up for a 
long time in order to see him. I remember once waiting to discuss my 
dissertation with him. He invited me into his office and then there 
was something like a quartet in a Verdi opera, except that no one 
sang. Jack asked me to state my problem at the blackboard, which I 
did. As I was speaking, the phone rang. Jack started a conversation 
with the other person on the telephone and would periodically tell 
me to continue speaking. While this was going on, he was reading his 
mail. So Jack and the other person were speaking, I was talking to the 
blackboard, and Jack was reading his mail. This kind of interaction 
had a salutary effect. It kept students from coming back to see him, 
and certainly was successful in my case. 

Chapel Hill was quite different from Columbia. It was much more 
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intimate because it was not a commuting community. There was a 
little snack bar where the faculty and students could buy ice cream 
and sit around. And so the faculty were very approachable. There's 
no question that there was a lot of interaction between the faculty 
and the students. 

Both Robbins and Hoeffding were very active researchers. Robbins 
frequently would call students to his office or to a classroom to discuss 
his current research. Often, colloquia speakers were invited to faculty 
houses and occasionally a few students were also invited. I felt a 
part of a community, and the atmosphere at Chapel Hill fostered this 
feeling of community. 

Press: When you had questions about your career, to whom did you 
speak at North Carolina? 

Olkin: Mostly my own peer group. The students were a closely-knit 
group, but I don't recall talking to the faculty about non-technical 
matters. There were not that many people in the field. Statistics was 
a new field, so there was not much previous experience or previous 
track record concerning career opportunities. 

For example, when I graduated in 1951 there were very few job open­
ings. This was before the many statistics departments were formed. 
So most positions were in mathematics departments. This meant that 
there were at most a few statisticians in each mathematics depart­
ment, and it was not unusual to be the only statistician in the de­
partment. I felt that it was important to get a position in a university 
where there were plans for building a nucleus of statisticians. 

Press: Is that why you went to Michigan State? 

Olkin: As I mentioned, Leo Katz was there, and he wanted to build 
a group. Chuck Kraft was just getting his doctorate from Berkeley, 
and was an instructor at the time. A year later Ken Arnold came 
from Wisconsin, and then Jim Hannan came from Chapel Hill. Leo 
managed to attract a large number of visitors. For example, Alfred 
Remyi visited, as did R.A. Fisher. And so, within a period of three or 
four years we had a critical mass on the faculty. 

Press: After Michigan State you were at the University of Minnesota. 

Olkin: I spent a year and a half at the University of Minnesota. That 
was also a very nice period, though it wasn't for long. While at Michi­
gan State I was invited to join the faculty at Minnesota, which I 
did. At that time Leo Hurwicz, Palmer Johnson, and Richard Sav­
age were on the faculty. A statistics department was being formed 
and I was asked to serve as Chair. Within a short period thereafter 
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Meyer Dwass, Sudhish Ghurye, Gopinath Kallianpur, and Milton So­
bel joined the faculty. 

Press: Then there was Stanford? 

Olkin: As you know, my years at Stanford comprised a major part of 
my life and I will soon mark my thirtieth anniversary at Stanford. 
I visited Stanford in 1958 while on sabbatical, and then joined per­
manently in 1961. The Bay Area with Berkeley and Stanford was 
phenomenally active. You have to remember that this was almost 30 
years ago. Many of us were in our 30's or early 40's and a tremendous 
amount of energy and electricity flowed in the two places. 

Press: How about the Berkeley Symposium? 

Olkin: The Berkeley Symposium, held every five years, was very strong. 
In addition, we had frequent joint Berkeley-Stanford colloquia. These 
were very exciting years. Berkeley and Stanford each was trying to 
build its department, and there was a lot of research activity. The 
students were first rate. I think it's an interesting commentary that 
so many of our students have become the statistical leaders at this 
time. 

This was also a period of a lot of visitors, both in summer and during 
the academic year. If you waited on the steps of Sequoia Hall or the 
department at Berkeley, you probably would meet almost every statis­
tician at some point. Over the years Anita and I have entertained a 
very large number of visitors. It is not surprising for someone to tell 
Anita that he and his family had dinner in our house twenty years 
ago. 

The faculty at Stanford in 1961 was great: Bowker, Chernoff, Chung, 
Johns, Karlin, Lieberman, Miller, Moses, Parzen, Solomon, Stein. 
During the first 15 years at Stanford my main energy was devoted to 
my own research in both departments and to helping build the statis­
tics department and my program to train educational statisticians in 
the School of Education. 

Current Interests 

Press: What are your current research interests? You've been involved 
with many different research directions. 

Olkin: Two topics seem to follow me. I often receive letters on inequal-
ities and majorization, and I think I'm ready to say that I don't want 
to stare another inequality in the face. But I must also confess that I 
cannot keep away from a new inequality. I also receive letters concern­
ing meta-analysis, in which I still have a strong interest, especially 
the meta-analyses being conducted in medicine. 
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Al Marshall and I are becoming more involved in an area that we 
had worked on earlier, namely the bivariate exponential distribution. 
That was a specialized result, and we are now concerned with more 
general questions. For some time now we've been intrigued by the 
question of how to build dependencies into bivariate distributions. 
We have developed several unifying themes, some of which have been 
published, and we are contemplating writing a book that brings the 
subject into better focus. Since the last book took 15 years to write, 
we each are cautious about beginning a venture that could take a 
long time to complete. However, I suspect that subconsciously we 
each have a book in mind, but are reluctant to state so too openly. 

Let me add a bit about this project about dependencies. A natural 
question that needs to be resolved is how to simulate or generate dis­
tributions with these given dependencies. Computer simulation is an 
area that has recently interested me. In addition to my work with AI, 
I have written joint papers with Ted Anderson and George Marsaglia 
on generating correlation matrices and generating random orthogonal 
matrices. In order to apply these multivariate distributions, we need 
to develop methods for computer simulations. But it is not always 
clear how to generate observations with a particular type of depen­
dency. This is quite different from, say, fitting data using the Pearson 
families. The families that we have in mind arise more from models 
than from data. 

That's our main current work. Al and I are trying to get together 
more often, which should make it easier to keep working on a single 
project. 

Press: How have you and Al managed to work together so much? 

Olkin: I must say that in retrospect, I don't quite know how he and I 
have managed to collaborate as much as we have, inasmuch as we are 
not at the same university. In our early collaborations we would visit 
each other for periods ranging from three to seven days. This would 
give us a chance to get started on a project. 

These visits occurred approximately once every six weeks, so we really 
had a continuing connection with one another. This was particularly 
the case when Al was at the Boeing Scientific Research Laboratories, 
at the University of Rochester and the University of British Columbia, 
and I was at Stanford. We managed to meet this way over the years, 
but we also had longer periods of time together. 

We spent one year together at Cambridge University and one year 
at Imperial College. I visited the University of British Columbia and 
Al visited Stanford for longer periods. We also spent three months 
in Zurich. During these periods we had an opportunity to work in­
tensively. That has been the modus operandi - namely, working for 
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short stretches, and then meeting for a longer period of time when 
we could put things into perspective and write things up. 

Press: Do you have any other major books or projects under way at 
this time? 

Olkin: The project with Al has a high priority. But there are several 
other projects that I have in mind. 

As you know, I have a fine collection of photographs of well-known 
statisticians and probabilists that adorn Sequoia Hall. Over the years 
visitors have suggested that I publish these so that others might enjoy 
them. I plan to do this as a joint venture with H.O. Lancaster, who 
is more of a historian than I. 

The medical profession has taken to meta-analysis. There often are 
many studies dealing with the same illness, but with varying con­
ditions and patients, and meta-analysis offers a method for combin­
ing results. In my book with Larry Hedges on meta-analysis we did 
not include a discussion of medical applications, and we now plan a 
sequel to do that. Dr. Thomas Chalmers of the Harvard School of 
Public Health and Mt. Sinai Hospital will join us in this project. He 
has engaged in a number of medical meta-analyses, and will bring a 
first-hand knowledge base of medicine to the project. 

Another project that I have had in the back of my mind goes back 
to my Chapel Hill days, namely to write a book on matrix theory 
applications in statistics. But now I would like to add applications in 
operations research and numerical analysis. This project was to be 
a collaborative effort with Richard Cottle in the Department of Op­
erations Research, and Gene Golub in the Department of Computer 
Science. We started to meet on Saturdays to discuss this project, but 
you have to recognize that these three participants include some of 
the world's heaviest travelers. So the absences became more and more 
frequent, and we did not make much headway. But I like to imagine 
that the future will bring some free time to all of us and that this 
project will come to fruition. 

Press: I notice that you have not mentioned your work with the Depart-
ment of Education in Washington. Tell me about that connection. 

Olkin: Thanks for bringing that up. I have concentrated on the statis-
tics part of my activities. But I would like to tell you about some of 
the education activities. 

As you know, I have a joint appointment between Statistics and the 
School of Education at Stanford. This has been the case from the time 
I came to Stanford. My role in the School of Education has been pri­
marily in the doctoral program, to train educational statisticians, in 
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a comparable manner to the training of biostatisticians, psychometri­
cians, econometricians, or geo-statisticians. I have also been involved 
in research arising from an educational context. The meta-analysis 
work is an example of research that started from my education con­
nections. But there have been many other instances where a problem 
has arisen and led to a research study. Several of these have dealt 
with correlational models; others have involved statistical inference 
arising from achievement test models. 

Recently the American Statistical Association started a wonderful 
Fellows program designed to bring academia and government closer. 
This program is supported by the National Science Foundation. The 
first Fellows program was with the Census Bureau, and later was 
extended to the National Center for Education Statistics (NCES) 
and to the Bureau of Labor Statistics. There is a similar program 
in the Department of Agriculture, and the potential for one at the 
National Bureau of Standards. 

I was invited to be a Fellow at the Center, and before accepting this 
opportunity, it was important to me that I be engaged in a project 
that could have an impact in education. It would have been easy to 
become involved in particular studies at the Center, but over the years 
I've been on so many panels and studies that I did not see going to 
Washington for yet another study, even though it might be an impor­
tant one. The NCES collects data in the form of studies or surveys. 
For example, the NCES sponsors a School and Staffing Survey, A Na­
tional Educational Longitudinal Study, and Common Core of Data. 
There is also a major longitudinal study in mathematics and read­
ing called the National Assessment of Educational Progress (NAEP). 
ETS is the contractor for NAEP, and periodically issues a report to 
the nation on the state of mathematics and reading learning. I am 
currently a member of the NAEP Technical Advisory Committee. 

In addition to these national data bases, considerable data is collected 
by the states. Much data is required to fulfill federal legislation re­
quirements. Thus, the states and the federal government collect data, 
but there is little integration among states or with the federal gov­
ernment. Ultimately, if not immediately, we need to have enough in­
formation to permit us to answer broad issues about education, and 
to make policy intelligently. This all pointed to the need for a na­
t~')nal education data base. The idea of designing such a system was 
intriguing. It was an area in which I could serve as a link in bringing 
together the academic and governmental constituencies. 

There are 50 states, approximately 16,000 school districts, 100,000 
schools and 4 million teachers. It seemed reasonable as a beginning 
to focus on states and school districts. Each of these constituencies 
is of a manageable size. This was the thread of my thinking. 
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It seemed to me that this general area of a statistical education data 
base would be an interesting challenge that could have a great impact 
in terms of the statistics for the future. It combined my interests in 
both statistics and education. It was clear from the outset that such 
a project was a very ambitious kind of program, and that it would be 
addressed better by a small group of individuals. I proposed to two 
colleagues, Ed Haertel, who is a test and measurement specialist at 
Stanford University, and Larry Hedges, an educational statistician at 
the University of Chicago, to join me in this project. They both ac­
cepted the challenge. We were fortunate in being able to obtain help 
and advice from a number of colleagues more knowledgeable than we 
are about data bases. In particular, Nancy Flournoy, who had been 
instrumental in setting up a multi-disciplinary medical data base in­
formation system at the Fred Hutchinson Cancer Research Center, 
helped a lot. John McCarthy of Lawrence Laboratory, Berkeley, had 
developed a meta data base for the military, and his experiences were 
very informative. We Fellows have been holding a series of confer­
ences to help us more fully understand the information and policy 
needs in a data base system and some of the caveats to worry about. 
The first conference was with the educational constituency - teach­
ers, principals, administrators, educators, etc. The second conference 
was with data base specialists, and third was with state data base 
representatives. We are now in the process of amalgamating this in­
formation. But already we have had an effect in bringing some of 
these constituencies together. 

Press: How did you get into the field of education 27 years ago, or 
earlier? 

Olkin: The Department of Statistics at Stanford was modeled on some 
structural principles. You may have read about this in the interview 
with Al Bowker that appeared in Statistical Science. Some of the 
structure came from the Statistical Research Group at Columbia 
University during World War II, and some came from local needs. 
In effect, there was a strong outreach program. The word "outreach" 
is in vogue today, but in 1961 it wasn't. But the basic idea was that 
statistics should be intimately connected to substantive fields. During 
the 1960's approximately nine out of the sixteen faculty members in 
the Department of Statistics at Stanford had joint appointments with 
other fields: three with the medical school, one with operations re­
search, one with electrical engineering, one with economics, one with 
education, one with geology, and one with mathematics. Later we had 
a connection with the linear accelerator center. These joint appoint­
ments were a guiding principle. Each joint appointee was supposed 
to develop a program in the other department. 
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An opportunity arose about 1958-1960 for a joint appointment with 
the School of Education. Since my work had dealt with multivariate 
analysis and with models in the social sciences, I was one of the 
candidates who could fit into both the Statistics Department and 
the School of Education. The key was to try to find individuals who 
would be acceptable to two departments as varying as the ones I've 
mentioned. That's been a very difficult task. We have been successful 
until now, and I hope that we continue in this vein. In a certain sense 
this guarantees the development of cross-disciplinary research. 

Press: You have had many special satisfactions during your career. 
Which ones do you value or appreciate the most? 

Olkin: There are several aspects of my professional career that I really 
have enjoyed. I think that what I've enjoyed most of all is the con­
nection with the students I've had and the collaborations I've had. 
I've enjoyed keeping up with individuals, and I've enjoyed being able 
to work with them. It's been fruitful in many ways. 

In general, I have enjoyed the opportunity to create some programs 
and to effect changes. Being President of the Institute of Mathemati­
cal Statistics (IMS) afforded me an opportunity to tackle a number of 
needs for the profession. For example, the creation of Statistical Sci­
ence came out of that period, and I hope that this journal remains as a 
successful legacy. I think it is fair to say that Statistical Science came 
about from the concerted efforts of Morrie DeGroot, Bruce Trumbo, 
who was treasurer of the IMS at that time, and myself. Morrie DeG­
root deserves a tremendous amount of credit for making the journal 
a success during its formative years. 

Those are activities that have given me a lot of satisfaction over the 
years. 

Press: How about your editorships? 

Olkin: The editorship of The Annals is the kind of job where it is best 
if you're not asked to be Editor, but it is hard to say no if you are 
asked. It was a phenomenal amount of work. I was Editor at the 
time when the two journals - The Annals of Statistics and The 
Annals of Probability were still combined into the one, The Annals of 
Mathematical Statistics. I used to receive two new submissions every 
day. This meant that there were approximately 700 new papers a year 
to handle, not to mention the ones that were revised several times. 

It was a monumental task, and it became quite clear that it was 
too much for a single Editor to deal with in a responsible way, and 
that a split was in order. I was pleased to be able to have an effect 
in starting the two offspring journals. At that time there was a lot 
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of controversy as to whether a split was reasonable, and there were 
valid arguments on each side. But I doubt that many would want 
to combine the two Annals at this time. Each journal has become 
a leading publication and is a success. In fact, each journal is now 
sufficiently large that it is becoming a burden on each Editor. My 
impression is that professional societies have been too conservative 
in their publication policies. Because of the tremendous rise in both 
population and research we need more journal outlets. 

Comments About Statistics 

Press: I'd like to move on to a very broad question for the field of 
statistics as you see it. What is your assessment of the current state 
of the health of the field of statistics, and where do you see the field 
heading? 

Olkin: . I'm a bit worried about statistics as a field. As you know, I 
come from the mathematical community and I've always liked the 
mathematics of statistics. But I think that the connection with ap­
plications is an essential ingredient at this time. I say that because 
applications are crying out for statistical help. We currently produce 
approximately 300 Ph.D.'s in statistics and probability per year. This 
is a small number considering the number of fields of application that 
need statisticians. Fields such as geostatistics, psychometrics, educa­
tion, social science statistics, newer fields such as chemometrics and 
legal statistics generate a tremendous need that we are not fulfilling. 
Inevitably this will mean that others will fulfill those needs. If that 
happens across fields of application, we will be left primarily with the 
mathematical part of statistics, and the applied parts will be carried 
out by others not well-versed in statistics. Indeed, I think that a large 
amount of statistics is now being carried out by non-statisticians who 
learn their statistics from computer packages and from short courses. 

So I worry about this separation between theory and practice and 
the fact that we are not producing the number of doctorates to fulfill 
needs in all of these other areas. 

Press: Has tlie number of doctorates been going up or down? 

Olkin: The number is going up. There were approximately 150 Ph.D.'s 
in statistics and probability in 1970, 240 in 1975, and there are now 
about 300. Thus we have doubled in about 15 years. But this growth 
is not commensurate with the needs and growth of other fields. 

Press: Do you mean that we are not producing enough doctorates to 
meet the demand? 
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Olkin: We are definitely not producing enough doctorates to meet the 
demand. An example of an area of high demand is the drug compa­
nies, which could use almost all the doctoral students produced each 
year. Education is another area in which the number of statisticians 
involved is relatively small, but for which there is a large potential. 
Statistical needs are growing at a rapid rate in the legal profession, 
and I don't think there are many law schools that have either statisti­
cians on the faculty or connections with statistics departments. That's 
an area I would like to see statisticians become involved in early on, 
to avoid the inevitable turf battle as to who teaches statistics for law. 

Press: Is the field of statistics heading now toward more applications? 

Olkin: I think a number of individuals in the profession are heading 
more towards applications, but the field as a whole does not have 
enough faculty and students working in applied areas. Biostatistics 
is probably our only big success story in the sense that there are a 
lot of statisticians in medical schools, though perhaps not enough. 
This came about in part because of the prevalence of training grants, 
and in part because of federal regulations mandating clinical trials 
or other statistical procedures. But there are few, if any, statisticians 
in law schools, in social science departments, pharmacy, dentistry, 
education, business, and so on. 

Industry used to be a big user of statistics; this diminished consid­
erably about twenty years ago, and now has become a high demand 
area. Sample surveys are used a lot but this specialization is totally 
undernourished. The number of universities that teach sampling is 
small, and we have trained few experts. I am sure that we could ex­
pand the research effort and doctorate production in sampling theory. 

There is still an excitement in the field, but my impression is that, ex­
cept for a few places, the growth in statistics departments has reached 
a plateau. I believe that this is true because we do not have a natural 
mechanism for statistics departments to create strong links to other 
departments of the academic community. Academic institutions have 
not been designed for cross-disciplinary research, and indeed may ac­
tually be antagonistic to cross-disciplinary research. 

Press: Whereas, by nature, statistics tends to be used and needed in 
other fields? 

Olkin: Yes, indeed. It is particularly important because problems are 
now becoming much larger. For example, the study of a large scale 
problem such as pollution or acid rain with a small group of re­
searchers is really not very realistic. We will need a lot of connections 
with other disciplines. Except for a few places, we are not fostering 
that connection. The National Science Foundation has recognized this 
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need by creating centers that have a strong cross-disciplinary com­
ponent, but these do not have strong statistical components. I think 
that the time has come for the profession to have a Statistical Sciences 
Institute that would focus on cross-disciplinary research. 

It's interesting to note that when I was first at Chapel Hill, Gertrude 
Cox was a strong advocate for learning a substantive field. We were 
all encouraged, almost pushed, to become not only statisticians, but 
to gain a knowledge base in biology, sociology, political science, etc. 
- any area in which we could apply statistics. Except for the med­
ical field, not many took this route. Remember that starting in the 
late 1940's the decision theory orientation was strong so that many 
of us studied mathematics, rather than a substantive field, and we 
became mathematical statisticians rather than socio-statisticians or 
geo-statisticians. That was fine up to a point, but the needs in 1990 
center much more on our connections and usefulness in these other 
fields. We need to expand our vision. 

Press: How about the direction of growth of the field with computers 
and data analysis? Are we moving in that direction, are we moving 
enough or too much? 

Olkin: I am more comfortable with the previous general question than 
I am with the question about statistics and computers. I am not well 
versed about the field as a whole, but I do have some general impres­
sions. I believe that statistical packages have had serious positive and 
negative components. The positive, of course, is that people now can 
carry out more sophisticated analyses than they would be able to if 
they had to learn programming on their own. There's no doubt that 
it's been a great service. On the other hand, there is a tendency for 
people not to learn the statistical underpinnings, but only to learn 
how to use a statistical computer package. Indeed, my experience in 
reading doctoral dissertations is that the availability of packages is 
what drives the choice of analysis. The availability of statistical pack­
ages also drives the curriculum and may emphasize how to generate 
numbers, rather than interpretation and understanding. 

More recently there's been a strong development in statistical graph­
ics and resampling schemes. Again I think that in principle these are 
positive developments. What worries me is that they will be overly 
used and subsequently abused, as is the case with almost any new 
area for which there is a lot of use. It doesn't take long before there's 
a certain amount of abuse, and it becomes a serious problem. 

The result of the availability of computers and packages is that sta­
tistical analyses are being carried out by non-statisticians much more 
than ever before. This is fine when done well, but this is not always the 
case - probably not the case most of the time - so that the public 
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may be faced with erroneous conclusions. The statistical community 
is not intimately involved in this growth of the use of computers. We 
provide some of the packages and some of the theory, but, in effect, 
its big use is elsewhere. 

To illustrate the high use by non-statisticians, not long ago Stu Ge­
man gave a talk on image processing, an area in which he and others 
have been working. Stu mentioned that he had published a paper in 
an I.E.E.E. (Institute of Electrical and Electronics Engineers) jour­
nal, for which he received well over a thousand reprint requests. It's 
hard to imagine any statistician of my acquaintance who publishes in 
any of the standard statistical journals receiving that many reprint 
requests. I usually get six reprint requests - especially if I ask my 
relatives to write for them. Of course, photocopying confounds these 
numbers, but the fact remains that little theory is translated to usable 
methods except through packages. 

Press: That certainly makes the point. 

Olkin: That's a good example of an area in which the statistical com-
munity had a large input, but it is being developed, extended, and 
used by other fields. 

In Spain I Am a Bayesian 

Press: Here's a difficult question. Are you Bayesian or not? 

Olkin: I think I'm a part-time Bayesian. My inclination in dealing with 
a problem is to use classical procedures, but when I get more deeply 
involved and need to obtain information about the parameters I do 
not hesitate to incorporate some of the Bayesian ideas. I have found 
that some problems can be formulated in a manner that calls for 
a Bayesian approach. In other instances, this is not the case and a 
Bayesian approach would seem forced. I am not a Bayesian in the 
sense that I feel compelled to use a Bayesian approach, nor am I a 
classicist in not using a Bayesian procedure. 

I suspect that I am begging the question a bit. I don't have too many 
papers in which the word "Bayesian" appears in the title, but since I 
want to be invited to the Bayesian conferences, especially when they 
are in Spain, I will say I'm 75 percent non-Bayesian and 25 percent 
Bayesian. 

Press: You've certainly written papers with avowed Bayesians so you 
cannot be anti-Bayesian. Have you become increasingly sympathetic 
over the years? 
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Olkin: I am not sure how to answer that. Recently I have been work­
ing with Irwin Guttman on a model for interlaboratory differences. I 
had previously written a paper with Milton Sobel in which we used 
a ranking and selection procedure. At that time this seemed to be 
a reasonable formulation, but ranking and selection procedures have 
not been accepted very much in applied work. With Irwin we looked 
at an alternative formulation that led naturally to a Bayesian point 
of view, and I was interested to know how different the answers would 
be. I have no antipathy in using either approach, and try to under­
stand what one gains from each method. 

Visits to Other Universities 

Press: How about some of your travels. What are some of the univer­
sities that you visited, and some of the people there? 

Olkin: In 1955 I spent a year at the University of Chicago. At that time 
Allen Wallis had a program in which they invited two visitors every 
year, and Don Darling and I spent the year at Chicago. This was a 
very productive year for me. I taught a course in multivariate analysis 
and in sampling theory, as I recall, and this gave me an opportunity 
to renew old acquaintances and to begin new ones. 

Chicago had a small but good student body; for example, Herb T. 
David, Morrie DeGroot, Al Madansky, and Jack Nadler were students 
at that time. The faculty consisted of Raj Bahadur, Pat Billingsley, 
Alec Brownlee, Leo Goodman, John Pratt and Dave Wallace. Bill 
Kruskal was on leave that year, and we lived in his house. Allen Wallis 
was there as Dean of the School of Business. Also, Meyer Dwass and 
Esther Seiden were at Northwestern, and we used to get together 
quite often. 

Press: Tell me about your visits to other Universities. I know that you 
travel a lot. 

Olkin: In 1967 I was on sabbatical leave from Stanford and was an 
Overseas Fellow at Churchill College, Cambridge. That was a great 
year. Al Marshall and Mike Perlman were also at Cambridge, and 
Alfred Renyi was a visitor for one quarter. Cambridge had a vigorous 
group led by David Kendall and Peter Whittle. We had a seminar on 
inequalities that got us much more deeply into the field. In fact, that 
year was a very active one in England with lots of visitors in London. 
We used to visit London quite often for seminars. 

In 1971 I spent a year at the Educational Testing Service. Fred Lord, 
one of the leading researchers in tests and measurement, was head of 
a very active group. He invited visitors to participate in the program, 
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and that year in addition to myself, Murray Aitkin, Leon GIeser, 
Karl Joreskog, and Walter Kristof were in the group. There were 
some lively discussions. Also, since Princeton was nearby we were 
able to interact with some of their faculty. This was a period when 
Leon and I were able to work closely, and we wrote several papers 
and completed our book. 

I again visited England in 1976-77, this time at Imperial College. For 
several years thereafter Anita and I tended to spend a month every 
year in London. These visits gave us an opportunity to maintain and 
to renew European contacts. I was a Fulbright Fellow during the fall 
of 1979 at the University of Copenhagen. It was a thriving place with 
Steen Andersson, Hans Brons, Anders Hald, Martin Jacobsen, Soren 
Johansen, Neils Keiding, Stefan Lauritzen and others. I gave some 
lectures there and was able to start some new projects. 

In the spring of 1981 I was a visitor at the Eidgeniissische Technische 
Hochschule (ETH) in Zurich. Frank Hampel and his group, Elvezio 
Ronchetti, Peter Rousseeuw, Werner Stahel, were working on robust 
estimation. Others on the faculty were Hans Buhlmann and Hans 
Foellmer. Chris Field from Dalhousie, Bob Staudte from Melbourne, 
and Al Marshall were visitors. We each gave individual lectures, and 
I gave a series of lectures on multivariate analysis. 

In the early 1950's the National Bureau of Standards was a center 
for applied mathematics and statistics. They had many postdoctoral 
and student visitors during those early days. The Bureau was trying 
to revitalize this program of visitors, and in the fall of 1983 I spent a 
quarter there. As a consequence of interactions with John Mandel, I 
again became involved in finding the expected value and covariances 
of the ordered characteristic roots of a random Wishart matrix. This 
moved me in the direction of some numerical work that was new 
to me. Recently, together with Vesna Luzar, who was a Fulbright 
visitor from Yugoslavia, we have compared several alternative modes 
of computation. 

It was at the Bureau that I met Cliff Spiegelman, and he and I later 
started a collaboration on semi-parametric density estimation. This 
is work that we are both continuing. 

I visited Hebrew University as a Lady Davis Fellow in the spring 
of 1984. Our family had visited Israel in 1967, and this gave me an 
opportunity to renew acquaintances. The statistics group was very 
lively with lots of activity. The faculty consisted of Louis Guttman, 
Yoel Haitovsky, Gad Nathan, Samuel Oman, Danny Pfeffermann, 
Moshe Pollak, Adi Raveh, Yosef Rinott, Ester Samuel-Cahn, Gideon 
Schwarz, and Josef Yahav. Larry Brown was a visitor for the year. I 
gave some lectures on inequalities, which generated a collaboration 
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with Shlomo Yitzhaki, who is on the faculty of the Economics De­
partment. This work had a basis in economics and the primary focus 
was on Lorenz curves and subsequently, on concentration curves. This 
also introduced me more intimately with some of the results of Gini, 
which we were able to use to greater advantage. My collaboration 
with Shlomo has continued, especially when he visits the U.S. 

My Family 

Press: You haven't had a chance to speak about your immediate family. 
Can you tell me more about them and bring me up to date? 

Olkin: Anita and I were married in 1945 while I was in service. I was 
being transferred from LaGuardia Airport to San Francisco at the 
time, so we spent our honeymoon on the train from New York to San 
Francisco. We very much enjoyed our stay in California, and I am 
not sure why we returned to New York after my discharge. It never 
occurred to me to continue my studies at Berkeley. In any case, we did 
return and I attended CCNY, Columbia, and UNC. Anita and I now 
look back to our three years at Chapel Hill as a very happy period. We 
were one of few married couples, and Anita made our house available 
to many of the graduate students. Also, at Michigan State University 
we were very much involved in a University community, and our house 
was often a meeting place for visitors. 

We have three daughters. The oldest, Vivian, was born in Chapel Hill 
in 1950. She and her husband, Sim, live in Austin, Texas and have two 
children. Vivian was a career counselor at the University of Texas, 
and is now getting her master's degree in Human Resources Devel­
opment. Sim received a doctorate from Stanford and is now on the 
faculty of the Graduate School of Business, University of Texas. Our 
second daughter, Rhoda, was born in 1953 when I was at Michigan 
State University. She and her husband, Michael, live in Walnut Creek, 
California and have one child. Rhoda received a doctorate in coun­
seling psychology from the University of California, Santa Barbara. 
She is now on the faculty of California State University, Sacramento. 
Michael is a bio-medical engineer with a company housed in Berke­
ley. Our youngest, Julia, was born in California in 1959. She and her 
husband, Juan, live in Castro Valley, California. Julia and Juan both 
received doctorates in mathematical sciences from Rice University, 
and are each working as numerical analysts - Julia at SRI and Juan 
at Sandia in Livermore. My family of females has taught me and 
trained me in the women's movement, and I have been sensitized to 
difficulties that women have in the workplace, and the prejudices that 
exist. 
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Other Activities 

Press: Let me move away from statistics. What do you like to do when 
you're not doing statistics? 

Olkin: I do enjoy traveling, which I think is well-known to a number 
of people. Whenever I do travel, I generally try to find museums, 
symphonies, operas, and theaters. I almost always do that, wherever 
I go. You also know that I'm generally a people person, which is 
one of the reasons why I've enjoyed students and collaborators. Over 
the years, the professional contacts have merged with the personal 
contacts. I enjoy hiking. We used to go to Yosemite regularly when 
the children were young. More recently I have visited state parks near 
meeting places. 

Press: Do you hike alone? 

Olkin: I have tried to entice colleagues to join me, and years ago when 
we went to Yosemite our youngest daughter Julia would always go 
with me. But more recently I have gone alone. 

Press: How about sports? 

Olkin: I enjoy tennis and swimming. The tennis is a social event, but I 
am a non-social swimmer. 

Press: I have a vague recollection of having been told that you were the 
ping-pong champion on a ship. Tell me about that. 

Olkin: That was so long ago that I had totally forgotten it. I mentioned 
that I was born in Waterbury, Connecticut. There's a resort near New 
Haven called Woodmont, and even though we were relatively poor, 
we used to go to Woodmont and rent a room during the summer time. 
There was a ping-pong room in one of the hotels, for which they used 
to charge an hourly fee. But if you would help clean up, you had 
access to the ping-pong tables when they were not being rented, so I 
used to playa lot when I was young. In 1967 we went to England on 
the Dutch ship, Rotterdam, which had table tennis contests in both 
tourist and first class. I played ping-pong in tournaments for both 
classes and won both. At Stanford there were ping-pong tables in the 
student union, but the building was altered and there are no tables 
there at this time, so I haven't played for years. 

From 1989 On 

Press: What does the future hold for you? 
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Olkin: The word retirement is a curious word in that it implies that you 
will stop working at a certain date. We need an alternative descriptor. 
As I understand the current California and federal laws, if you were 
born after August 31, 1923 you do not have to retire. The law may 
change in 1994, but as of now I will not have to retire. Of course, it 
may not make sense financially or intellectually not to retire. How­
ever, I don't see retirement as a problem. I have several projects that 
I'd like to work on, and I don't have enough time for these without 
giving up other activities. So retirement is one way of reallocating 
one's time to the activities that one likes. I am also deeply involved 
with the Center for Education Statistics project and even though the 
fellowship will be over within the near future, I would like to con­
tinue my involvement. If one has a high metabolic rate, it's difficult 
not to continue working. All my retired colleagues tell me that I will 
probably be doing more, rather than less. 

Press: Thanks very much for the opportunity to review this part of 
your history. It was of interest to me and I am sure that it will be of 
great interest to many of our colleagues. 
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A Convolution Inequality 

Gavin Brownl 

Larry Shepp2 

ABSTRACT We establish an elementary convolution inequality which 
appears to be novel although it extends and complements a famous old 
result of W.H. Young. In the course of the proof we are led to a sim:ple 
interpolation result which has applications in measure theory. 

1 The Convolution Inequality 

Theorem 1.1 

(i) Suppose that 00 > p 2:: s 2:: q 2:: 1 and let r1 = p-1 + q-1 - 8-1 . If 
f, 9 E LP(lR) n Lq(lR) are nonnegative 

Unless f or 9 is null, equality holds only when p = q = 8 = t and 
then we have 

for all f, 9 E U(lR). 

(ii) Suppose that S-l + r1 = 1, 8> 1, t > 1. If f, 9 are continuous with 
compact support then 

J s~p If(x - y)g(y)1 dx 2:: Ilfllsllgllt 2:: s~p J If(x - y)g(y)1 dy. 

Equality holds if and only if f or 9 is null. 

Remarks 

1. The result will be seen to transfer to general LeA groups - with the 
proviso that non-null constant functions can give equality. 

IMathematics Department, University of New South Wales 
2 AT&T Bell Laboratories 
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2. If we allow {s, t} = {I, oo} in (ii), then the right hand inequality 
can be an equality for non-null functions (e.g. take f = 9 = X E , the 
indicator of a set of positive measure). 

3. If we delete the middle term in each inequality then we have a special 
case of a well known result about repeated means (Jessen (1931)). 

4. The theorem ofW.H. Young (1913), (see also B. Jessen (1931) p. 199), 
mentioned in the abstract, is the statement that for u > 1, v > 1, 
u- 1 + v- 1 > 1, 

L: /( -) (L: )v/(u+v-UV) (L: )u/(u+v-UV) zUv u+v uv < XU yV 
n , J 

where 

Zn = L: XiYj, 

i+j=n 

and the Xi, Yj are positive. 

This follows from the special case of the right hand inequality (i) 
of our theorem in which q = 1,p = uv(u + v - uv)-t, s = u, t = v, 
f(t) = Li xio(t-i) and g(t) = Lj yj8(t- j). The integral analogue of 
Young's result is explicitly discussed on p. 201 of Hardy, Littlewood, 
and P6lya (1951). 

5. In view of the homogeneity of the inequalities it is enough to con­
sider the seemingly weaker result in which p, q and s, t are pairs of 
conjugates - simply raise f and 9 to the same suitable power. 

Lemma 1.2 With p, q, as in the Theorem, 

with strict inequality unless f or 9 is null. 

Proof Let h(x)(y) = h(x, y) = f(x - y)qg(y)q 

1 (1 f(x - y)Pg(y)P dY) q/p dx = 1 Ilh(x)ll p/q dx. 

By Minkowski's inequality, since p/q 2 1, we have 

1 Ilh(x)ll p/q dx 2111 h(x) dxll p/q 

[ ( )
P/q lq/P 

= 1 1 f(x - y)qg(y)q dx dy 
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[( ) P/q 1 q/p 
= J f(x)q dx J g(y)P dy 

= J f q dX(J gP dY) q/p. 

Thus 

Ilup * gP)I/pllq ;::: Ilfllq IIglip 

(and, of course, the corresponding inequality holds with f, 9 interchanged). 
Equality requires that p = q or that h(x, y) be of the form k(x)C(y). 

The equation f(x - y)g(y) = k(x)C(y), when 9 is not null, forces 

f(x) f(y) 
f(O) f(O) 

f(x+y) 
f(O) 

(1.1) 

or else f is null. If (1.1) holds then f is a multiple of a (non-negative) group 
character and hence constant. For the case of the real line, this shows of 
course that f ¢ £P and we conclude that f is indeed null. 

It remains to 'interpolate' for s, t. This is not quite trivial because 
log IIfllp need not be convex as a function of p and it is not clear how to 
describe the behavior of log IIfllq as a function of p. The next lemma shows 
that, although log IIfllp + log IIfllq need not be U-shaped as a function of 
p, at least its graph has no caps. 

Lemma 1.3 Let SI < s < S2 and let tl, t, t2 be conjugate to S1, S, S2 re­
spectively. Then 

Proof Choose 01, 02 positive such that 01 +02 = 1 and s = 01Sl +02S2. 

By convexity of log IIfll: (Le. by HOlder's inequality) 

We choose 

and observe that 

Sl t 
/31 = 01--, 

sh 

Again by convexity of log IIgll~, 

IIgll~ ~ IIgll~lltl IIgll~:t2 . 

(1.2) 

(1.3) 
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But 
i3ltl alsl i32t2 a2s2 = 

t s t s 
(1.4) 

Combining (1.2), (1.3), (1.4) we find 

1I111sllgilt ~ (1I111s1 IIglltJ'1 s1/S(lIll1s2I1gllt2)l>2 s2/s. 

Since alsl/s + a2s2/s = 1, the result follows. 
The problem of establishing the lower bound for l!flls IIgli t is a little easier 

(cf. Hardy, Littlewood and P6lya (1951), p. 199). 

Lemma 1.4 Let p, q, s, t, I, 9 be as in Theorem 1.1 (with p, q conjugate) 
and choose s', t' such that 

Then 

Proof Since 

Holder's inequality gives 

where 

Because 

s' s t' t 
-+-=-+-=1. 
q p q p 

s'(I- qC1)-1 = s, t'(I- qs-l)-l = t, 

this is the statement that 

and the required result follows at once. 
It is now clear how to piece together the proof of the theorem. Part (ii) 

can be obtained by a limiting argument - but it also yields to a very quick 
direct proof that bypasses Lemma 1.3. 
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2 Application 

Lemma 1.3 makes no use of the special properties of Lebesgue measure, 
so it remains valid for 11/11s,1' = (J r dp,)l/s, IIglls,v = (J gSdV)1/8 where 
p" v are arbitrary probability measures. Moreover the choice of t, t1, t2 as 
conjugates of s, Sb S2 was unnecessarily restrictive. What we used in the 
proof is the fact that there exists a ¢> function ¢>(s) = s/(s-l) with t = ¢>(s), 
t1 = ¢>(st), t2 = ¢>(S2) and, the crucial condition, that s/¢>(s) is affine. 

It turns out that these are just the properties we need for the application 
in mind. In fact Oberlin (preprint) recently proved that 

where I, 9 are nonnegative continuous functions on the circle, ), is Haar 
measure, p, is Cantor measure and q = 10g3/(log3 -10g2). We extend his 
result as follows: 

Theorem 2.1 Suppose that I, 9 are nonnegative continuous functions on 
the circle and that s, t 2: 1 and satisfy 

Then 

1 = S-l + (10g2) r1. 
log 3 

( )
1/8 ( )l/t J s~p I(x - y)g(y) d)'(x) 2: J r d)' J l dp, 

Corollary 2.2 For s, t as above and arbitrary Borel sets E, F it is true 
that 

Proolol Theorem 2.1. Oberlin proved the limit case with t 1. Let's 
consider (the much easier) limit case with t = 00. We must prove 

J s~pg(x - y)/(y) d)'(x) 2: 11/1100 J g(y) d),(y). 

Without loss of generality we assume that 11/1100 = 1 and that I vanishes 
outside a small neighborhood N of Yo. As N shrinks, 

J S~pg(x - y)/(y) d)'(x) ~ J g(x - Yo) d)'(x) = Ilg111' 

as required. 
In view of the remarks at the beginning of this section we can now use 

Lemma 1.4 to interpolate to obtain the full force of the theorem. 
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The proof of the corollary is straightforward. 
Now that the utility of the sharpened form of Lemma 1.4 has been demon­

strated it seems worthwhile to state it in the form of a postscript to the 
discussion of convexity of r-th order means in §16 of Beckenbach and Bell­
man (1971). 

Recall that the mean of order t is 

while the sum of order t is 

It is, of course, implicit in these statements that x = (xi)i=l and a = 
(ai)i=l have positive entries and that I:ai = 1. We will consider also 
Y = (Yi)i=l' {3 = ({3i)f;l where m may differ from n. 

Lemma 2.3 Suppose that, for i = 0,1,2, Si :2: 1, ti :2: 1 and as;l + bt;l = 
1, for constants a, b. If Sl :=:; So :=:; S2 then 

(i) 

and, if further a : b = log n : log m, 

(ii) 

Proof The remarks at the beginning of this section establish (i). For (ii), 
we normalize by dividing both sides by n1/8om1/to. The condition on a: b 
enables us to apply (i). 0 

Further applications of Lemma 2.3 are given in Brown (preprint). 
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Peakedness of Weighted 
Averages of Jointly 
Distributed Random Variables 

Wai Chan1 

Dong Ho Park2 

Frank Proschan3 

ABSTRACT This note extends the Proschan (1965) result on peakedness 
comparison for convex combinations of LLd. random variables from a PF2 
density. Now the underlying random variables are jointly distributed from 
a Schur-concave density. The result permits a more refined description of 
convergence in the Law of Large Numbers. 

1 Introduction 

Proschan (1965) shows that: 

Theorem 1.1 Let f be PF2 , f(t) = f( -t) for all t, XI, ... , Xn inde-m _ _ 

pendently distributed with density f, ii ~ b; ii, b not identical, E~=l ai = 
E~=l bi = 1. Then E~=l biXi is strictly more peaked than E~l aiXi. 

m _ 

Definitions of majorization ( ii ~ b ), PF 2 density, and peakedness are 
presented in Section 2. The Law of Large Numbers asserts that the aver­
age of a random sample converges to the population mean under certain 
conditions. Roughly speaking, Theorem 1.1 states that a weighted aver­
age of Li.d. random variables converges more rapidly in the case in which 
weights are close together as compared with the case in which the weights 
are diverse. 

In the present note, we extend the basic univariate result to the multi­
variate result in which the underlying random variables have a joint Schur­
concave density. Theorem 2.4 presents the precise statement of the multi­
variate extension. 

lOhio State University, Department of Statistics, Columbus, Ohio 43210 
2University of Nebraska, Department of Statistics, Lincoln, Nebraska 68588 
3Florida State University, Department of Statistics, Tallahassee, Florida 32306 
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2 Peakedness Comparisons 

The theory of majorization is exploited in this section to obtain more gen­
eral versions of the result of Proschan (1965). We begin with some defini­
tions. The definition of peakedness was given by Birnbaum (1948). 

Definition 2.1 Let X and Y be real valued random variables and a and b 
real constants. We say that X is more peaked about a than Y about b if 
P(IX - al 2': t) :::; P(IY - bl 2': t) for all t 2': O. In the case a = b = 0, we 
simply say that X is more peaked than Y. 

Next we define the ordering of majorization among vectors. The stan­
dard reference on the theory of majorization is the book by Marshall and 
Olkin(1979). 

Definition 2.2 Let al 2': ... 2': an and bl 2': ... 2': bn be decreasing re­
arrangements of the components of the vectors ii and b. We say that ii 

- m_ n n k k 
majorizes b ( written ii 2': b ) if Li=l ai = Li=l bi and Li=l ai 2': Li=l bi 
for k = 1, ... , n - 1. 

Definition 2.3 A real valued function f defined on nn is said to be a _ m_ 

Schur-concave function if f(ii) :::; f(b) whenever ii 2': b. 

A nonnegative function f on (-00,00) is called a P6lya frequency func­
tion of order 2 (PF2 ) if log f is concave. If f is a PF2 function then cjJ(x) = 

I1~=1 f(xi) is Schur-concave. Thus the random vector it = (Xl, ... , Xn) 
has a Schur-concave density under the conditions of Theorem 1.1. A func­
tion f defined on nn is said to be sign-invariant if f(xl, ... , xn) 
= f(lxII, ... , Ixnl). In the following theorem, we give a peakedness com­
parison for random variables with a sign-invariant Schur-concave density. 

Theorem 2.4 Suppose the random vector it = (XI, ... , Xn) has a sign­
invariant Schur-concave density. Then for all t 2': 0, 

cjJ(aI, ... ,an) = p(taixi :::; t) 
.=1 

is a Schur-concave function of ii = (al,"" an), ai 2': 0 for all i. Equiva-
m_ 

lently, L~=l biXi is more peaked than L~=l aiXi whenever ii 2': b. 

Proof Without loss of generality, we may further assume that L ai = 1. 
We first consider the case n = 2. _ m_ 

Let ii = (al,a2),b = (bI,b2),ii 2': b. Since X l ,X2 are exchangeable, we 
may assume that al > bl 2': 1/2 2': b2 > a2. To show that 
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FIGURE 1. 

for t ~ 0, consider the lines alXl + a2X2 = t and blXl + b2X2 = t in Figure 
1. 

Since al > bl ~ 1/2, both lines intersect the xl-axis in the interval [t,2t] 
and they intersect the 45 degree line at the point (t, t) (al +a2 = bl +b2 = 1). 
We must show that P(E) :S P(F). Now reflect E across the 45 degree line 
to form the wedge E'. Then P(E) = P(E') because the joint density f is 
invariant under permutation. For k ~ 0, the line Xl - X2 = k intersects E' 
at the line segment joining (t + blk, t - b2k) and (t + alk, t - a2k), and it 
intersects F at the line segment joining (t+a2k, t-alk) and (t+b2k, t-blk). 
Note that both segments are of equal length. But f sign-invariant and 
Schur-concave implies that 

f(t + blk, t - b2k) = f(t + blk, b2k - t) 

:S f(t + b2k, blk - t) = f(t + b2k, t - blk). 
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This last fact then clearly implies that P( E') :::; P( F) by conditioning on 
Xl - X 2 • 

The result for n ;::: 3 now follows since 

and the conditional density f(xl, x21x3, ... ,xn ) is also Schur-concave and 
sign-invariant. 0 

For an example of a Schur-concave density that is also sign-invariant, 
consider the multivariate Cauchy density: 

( n+1)( n 2)-(n+l)/2 
f(Xl,'" ,xn ) = r -2- 7r + 7r 8Xi 

The following result is an immediate consequence of Theorem 2.4. 

Corollary 2.5 Let Xl, ... , Xn be mndom variables with a Schur-concave 
and sign-invariant joint density f. Then L::=l Xdk is increasing in peaked­
ness as k increases from 1 to n. 

Proof Let at = (1,0, ... ,0), a"2 = (~,~, 0, ... ,0), ... , and a-;' = U;, ... , ~), 
m m 

where each vector contains n components. Then at ;::: ... ;::: a-;'. The result 
follows from Theorem 2.4. 0 

Suppose X = (Xl, ... , Xn) and Y = (Yl,"" Yn) are independently 
distributei:l with Schur-concave and sign-invariant densities f and g. Then 
Theorem 2.4 implies thatL:~=l bi(Xi+Yi) is more peaked than L:~=l ai(Xi+ 

m_ 
Yi) whenever if;::: b. This is true because the convolution of Schur-concave 
functions is Schur-concave. Now suppose that Yl , ... , Yn are Li.d. Cauchy, 
then the joint density g given by 

a> 0, (2.1) 

is not Schur-concave. In Theorem 2.6 below, we show that L:~=l bi(Xi + Yi) 
m_ 

is more peaked than L:~l ai(Xi + Yi) whenever if ;::: b. This result identifies 
a different class of densities for which the conclusion of Theorem 2.4 holds. 

Theorem 2.6 Suppose that the mndom vector X = (Xl"",Xn) has a 
sign-invariant Schur-concave density f. Let Yl, ... , Yn be i.i.d. Cauchy with 
joint density g as given in {2.1}. Let X and Y = (Yl , ... , Yn ) be indepen-

m_ 
dent, and if ;::: b where ai ;::: 0, bi ;::: 0 for all i and L:~=l ai = L:~l bi = 1. 
Then L:~=1 bi(Xi + Yi) is more peaked than L:~=1 ai(Xi + Yi). 
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Proof Since f is sign-invariant, both I:~=l aiXi and I:~=l bil'i are sym­
metric random variables. We use the fact that I:~=l ail'i and I:~l bil'i 
have the same distribution as does Y1. The result now follows from The­
orem 2.4 and the Lemma of Birnbaum {1948} by noting that Y1 has a 
symmetric and unimodal density. 0 
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Multivariate Majorization 

Somesh Das Gupta1 

Subir Kumar Bhandari1 

ABSTRACT The concept of univariate majorization plays a central role 
in the study of Lorenz dominance for income distribution comparisions in 
economics. The first part of this paper reviews different conditions which 
are equivalent to Lorenz dominance. The second part of the present paper 
poses the question whether such equivalences extend to the multivariate 
case. Some concepts of multivariate majorization are presented along with 
a few new results. For economic applications, the notion of a concave utility 
function on vector observations appears to play a crucial role in multivari­
ate majorization. It is shown that such concavity follows from some easily 
understandable axioms. 

1 Introduction 

The concept of univariate majorization plays a central role in the study of 
Lorenz dominance for comparing two income distributions. Some alterna­
tive relations equivalent to univariate majorization or Lorenz dominance in 
the stochastic set-up are scattered in the literature. These results are miss­
ing in the excellent treatise on majorization by Marshall and Olkin (1979). 
The first part of this paper reviews the different conditions equivalent to 
Lorenz dominance, citing the appropriate references. This aspect has also 
been briefly mentioned in a recent monograph by Arnold (1987). 

The second part of the paper poses the problem whether the equivalent 
conditions in relation to univariate majorization could be extended to the 
multivariate case. The problem of comparing two communities in which 
individuals are characterized by a set of socio-economic attributes has not 
received much attention among the economists. The difficulty is not merely 
due to the non-uniqueness of the concept of "rich-poor," but also due to the 
fact that the effects of different socio-economic attributes or measurements 
on total utility or total social welfare are not easily comprehensible. One 
may, of course, reduce the data to a single measurement by using some 
appropriate weights, although the validity of such a simplification may 

1 Indian Statistical Institute, Calcutta 
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be questionable. On the other hand, the use of multivariate majorization 
in a purely mathematical framework is extremely limited in economics. 
Within these limitations some concepts of multivariate majorization have 
been presented along with a few new results. It appears that the notion 
of a concave utility function on ~m plays a crucial role in multivariate 
majorization. It is shown in the appendix that the concavity of the utility 
function results from some easily understandable axioms. 

2 Univariate Majorization 

Given a vector x = (Xl,'" ,Xn) in ~n, let X(l) ~ ... ~ x(n) be the ordered 
values of the Xi'S. For two vectors X = (Xl!"" xn) and Y = (Yl!" . ,Yn) 
in lRn , consider the following conditions: 

(a) Rearrangement Condition. X is majorized by y, written as X -< y, i.e. 

k k n n 

LX(i) ~ LY(i) for k = 1, ... ,n,and LXi = LYi. 
1 i=l 1 1 

(b) Structural Condition (Schur, 1929). There exists a doubly stochastic 
matrix P such that X = yP. 

(c) Convexity Condition. For all continuous convex functions r.p 

n n 

L r.p(Xi) ~ L r.p(Yi)' 
1 1 

(d) Residual Condition. For all real a 

n n 

L(Xi - a)+ ~ L(Yi - a)+, 
1 1 

where (a)+ = max(a, 0). 

It is well known that the above four conditions are mutually equivalent; 
see Marshall and Olkin(1979). 

Now suppose that the components of X and Y are non-negative with 
(L:~ Xi)(L:~ Yi) > O. Then the Lorenz-curve (Lorenz, 1905) correspond­
ing to X lies above the Lorenz-curve corresponding to Y if, and only if, 
x/(L:~ Xi) -< Y/(L:~ Yi); such a relation is often stated as X -<L Y (Arnold, 
1987; Nygard and Sandstrom, 1981). It is clear that if L:~ Xi = L:~ Yi then 
X -<L Y is equivalent to X -< y. 

The Lorenz-order -<L has been extended to the stochastic set-up as fol­
lows (Arnold, 1987; Nygard and Sandstrom, 1981). Let X and Y be two 
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non-negative random variables with distribution functions F and G, re­
spectively, having finite non-zero means. For 0 ::;; u ::;; 1, define 

Lx{u) = 1u F- 1(p) dp / 11 F- 1(p) dp. 

Then X -<L Y, by definition, if Lx(u) ~ Ly(u) for every u E [0,1]; -<L is 
denoted by ::;;L by Arnold (1987). 

The above concept leads to the extension of the rearrangement condition 
(a) to the stochastic set-up as follows: 

Condition (A) X -<L Y, E(X) = E(Y). 

It is now natural to ask whether conditions (B), (C) and (D) could be 
extended to the stochastic set-up, and whether these co~ditions, when ad­
equately defined, would be equivalent to condition (A). The convexity con­
dition (C) and the residual condition (D) have straightforward extensions 
as follows: 

Condition (C) Ecp(X) ::;; Ecp{Y), for all continuous convex functions cp 
for which the above expectations exist. 

Condition (D) E(X -a)+ ::;; E(Y -a)+ for all real a, and E(X) = E(Y). 

The structural condition (B) does not have a straightforward extension. 
Ryff (1965) has introduced a doubly stochastic operator to get an extension 
of (B)j a different development is given by Rothschild and Stiglitz (1970). 
However, the most satisfactory version of the structural condition in the 
stochastic set-up may be formulated following the work of Strassen (1965) 
as follows: 

Condition (B) There exists a probability space and associated random 
variables U and V such that the distribution of U is the same as that 
of X, the distribution of V is the same as that of Y, and E(VIU = 
u) = u almost surely. 

The above development of stochastic majorization is included in Bhan­
dari (1987), and it was pointed out in Bhandari (1987) that Conditions 
(A), (B), (C) and (D) are equivalent. This result is also included in Arnold 
(1987)j however, adequate references and a detailed proof are not provided 
there. Atkinson (1970) proved that (A) +-+ (D), Strassen's work (1965) con­
tains the results (B) +-+ (C), and the result (C) +-+ (D) has been proved by 
Karamata (1932) and Ross (1983). 

The above development can also be extended to weak majorization. For 
w 

example, if we start out with the definition of weak sub-majorization x -< y 
(Marshall and OIkin, 1979), then corresponding conditions in the stochastic 
set-up may be stated as follows: 
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Condition (A') 

11 Fx1(p) dp ~ 11 Fyl(p) dp, for all 0 ~ u ~ 1. 

Condition (B') There exists a probability space and random variables U 
and V associated with it, such that the distribution of U is the same as that 
of X, the distribution of V is the same as that of Y, and E{VIU = u) ~ u 
almost surely. 

Condition (C') E<p{X) ~ E<p{Y) for all non-decreasing convex func­
tions <p for which the above expectations exists. 

Condition (D') E{X - a)+ ~ E{Y - a)+ for all real a. 
The equivalence of the above four conditions can be easily derived from 

the work in Atkinson (1970), Karamata (1932), Stoyan (1983), and Strassen 
(1965). It may be noted in this connection that the condition (D') has been 

c 
used by Stoyan (1983) to define a convex ordering -<. Conditions similar to 
the above, and the corresponding result on their equivalence, can also be 
developed for weak super-majorization (Marshall and Olkin, 1979). 

3 Multivariate Majorization 

The ordering of univariate populations does not have a straightforward 
generalization to the case when the ordering is based on observations on 
multiple characteristics of the experimental units. The basic difficulty in 
extending the Lorenz curve, in particular, is due to the fact that there is 
no unique way to define an ordinal scale (poor to rich) to describe the units 
to start with, although attempts for such an extension have been made by 
Taguchi (Arnold, 1983; Taguchi, 1972a; and Taguchi, 1972b). It seems that 
any such concept of ordering should depend on the objectives and possible 
uses of such a study; besides, the physical nature of the problem as mani­
fested in concrete situations may call for some specific types of ordering on 
the basis of relevant auxiliary information. Any abstract formulation of the 
concept of ordering would primarily be a mathematical exercise, although 
such a formulation often may give insight into various underlying relations. 

In order to compare different communities with respect to social welfare, 
Sen (1976) has suggested the criterion C = L~1 ie[i] , where e[l] ~ ... ~ 
ern] are the ordered components of the income-vector of n individuals in 
a community, based on a given market-price of the commodities and the 
consumption-matrix for these commodities. Sen has shown (1976) that C is 
approximately proportional to e{l- G) for large n, where e is the average 
income and G is the Gini-index of income. Following Sen (1976), a commu­
nity 1 is said to be socially better than another community 2 of equal size if 
the C-value of community 1 is more than that of community 2 with respect 
to the price-vector prevailing in community 1. Note that this ordering is 
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not even a preordering, and use of C-values for comparing different com­
munities may lead to inconsistency. Social Welfare surely depends on the 
consumption of some basic commodities; however, it also depends on a va­
riety of individual and social attainments and the prevailing socio-political 
norms. 

From a mathematical viewpoint, multivariate majorization has been briefly 
discussed in Marshall and Olkin (1979), as well as in Arnold (1987). Some 
new results on concepts of multivariate majorization are given below. 

When comparisons have to be made based on measurements of m char­
acteristics on each individual in a population, partial ordering may be in­
troduced with respect to each of the characteristics separately. Following 
Marshall and Olkin (1979), X : n x m is said to be column-majorized by 

col 
Y : n x m, written as X ~ Y, when Xi ~ Y{ (i = 1, ... , m), where Xi and 
lic denote the vectors of measurements of the ith characteristic - that is, 
the ith column-vectors of X and Y, respectively. This can be viewed as the 
structural condition. 

We now define a convexity condition for column-majorization and show 
that it is equivalent to the structural condition. For a row vector Z = 
(Zll"" Zm) define 

where the gi'S are convex functions. For a matrix X : n x m with rows 
x[l, .. . , X;;, define 

n 

cp(X) = L g(Xf)· 
i=l 

Let q) be the set of all such functions cp. The following theorem can be 
proved easily using the developments in Marshall and Olkin (1979). 

col 
Theorem 3.1 For any two n x m real matrices X and Y, X ~ Y if, and 
only if, cp(X) :::; cp(Y) for all cp in q). 

In relation to the partial ordering defined by column-majorization, one 
may define appropriate inequality measures for X which would preserve 
such an ordering. For example, let 

I(X) = h(CP1(Xf), ... , CPm(X~)), 

where h is increasing, the CPi'S are Schur-concave, and Xi are columns 
of X. Then X <col Y implies I(X) ~ I(Y). In particular, for X > 0 
(elementwise) one may consider 
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Marshall and Olkin (1979) have considered the following extension of 
majorization to the multivariate case. A matrix X : n x m is said to be 
majorized by another matrix Y : n x m, written as X -< Y, if there exists 
a doubly stochastic matrix D such that X = DY. It is clear that X -< Y 

col 
implies X -< Y. The following is a useful necessary condition for matrix 
majorization: 

Theorem 3.2 For two n x m matrices X and Y, X -< Y implies y'y -
X' X is non-negative definite. 

The above theorem follows from the fact that I - D'D is non-negative 
definite for any stochastic matrix D. 

Matrix majorization calls for the same type of averaging for every com­
modity; on the other hand, column-majorization calls for averaging sepa­
rately for each commodity. It may be noted in this connection that redis­
tribution of the average amount of farm equipment without any change in 
the distribution of farm land may not result in an increase in social welfare. 
On the other hand, matrix majorization seems to be quite restrictive, and 
apparently presupposes a definite relationship among the commodities. 

The equivalence between the structural condition and the convexity con­
ditions has been proved by Karlin and Rinott (1983), using the general 
result on dilations; their result is stated below. 

Theorem 3.3 For any two n x m real matrices X and Y, the following 
conditions are equivalent: 

(i) X = DY for some doubly stochastic matrix D, 

(ii) L~=l f(Xf) ::; L~=l f(~R) 

for every continuous convex function f : !Rm --t !R, where xf and ~R 
denote the ith rows of X and Y, respectively. 

The above theorem seems to be useful from the viewpoint of economics. 
Suppose X and Y denote two consumption matrices of n individuals on 
m commodities. Suppose that the total welfare for X is given by w(X) = 
L~ U(Xf), where U is a concave function. Then X -< Y is equivalent 
to w(X) 2: w(Y), for all concave functions U. However, it is conceptually 
difficult to understand a concave utility function U on !Rm . In the appendix 
we shall pose some easily understandable axioms for U, which in turn would 
imply its concavity. 

The following inequality measures preserve the partial order of matrix 
majorization for X 2: 0 : 

n 

TJ(X) = LXfA(XiR)', (3.1) 
i=l 
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where 

and A is a positive semidefinite matrix. 

(3.2) 

where O!i E ~m, O!i ~ 0 (componentwise) for all i, h is an increasing func­
tion, the 'Pi'S are univariate inequality measures which preserve the partial 
order of majorization, and X is the matrix with xf defined in (3.1). 

We have pointed out that X ~ Y is equivalent to E~=l U(Xf) ~ 
E~=l U(YiR) for all concave functions U : !Rm -+ ~. A comparison be­
tweenX and Y can also be made by comparing (U(x{l), . .. ,U(X:!,)) with 
(U(y1R), ... , U(YnR») , as given in the following theorem: 

Theorem 3.4 For two n x m matrices X and Y, the following conditions 
are equivalent: 

(i) For all increasing concave functions U on ~m 

(ii) There exists a doubly stochastic matrix D such that X ~ DY, component­
wise. 

First note that from the viewpoint of economics the condition (i) in the 
above theorem appears to be quite reasonable for the comparison of two 
populations. Secondly, the above theorem is a generalization of Theorem 
5.A.2, part (iii) in Marshall and Olkin (1979). The proof of the above 
theorem depends on the following result which can be easily obtained from 
the development in Karlin and Rinott (1983). 

Theorem 3.5 For two n x m matrices X and Y, the following conditions 
are equivalent: 

(i) X ~ DY for some doubly stochastic matrix D. 

(ii) E~ U(Xf) ~ E~ U(YiR) 

for all increasing concave functions U on ~m. 

Comparison of two populations of different sizes has been considered by 
Fischer and Holbrook (1980), and later generalized to the multivariate case 
by Karlin and Rinott (1983). 
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Comparisons of multivariate populations can also be done by using the 
concept of univariate majorization and some suitable transformations. Fol­
lowing Marshall and Olkin (1979), a matrix X: n x m is said to be linearly 
majorized by a matrix Y : n x m if X a -< Ya for all vectors a in ~m. 
Bhandari (1988) has studied the relation between matrix majorization and 
linear majorization. 

4 Multivariate Majorization: Stochastic Case 

Following the definition of multivariate majorization in the non-stochastic 
case, one may say that a random vector X : 1 x m is majorized by another 
random vector Y : 1 x m, written as X -< Y, if 

Eh(X) ~ Eh(Y) 

for all convex functions h for which the above expectations exist. Such a 
relation is called Lorenz dominance and denoted by ~L by Arnold (1987). 
It follows from Strassen's work (1965) that the convexity condition defined 
above is equivalent to the structural condition (B') with random variables 
replaced by random vectors. 

One may also define majorization in the stochastic case by requiring 
<p(X) -<L <p(Y) for a class ~ of functions II' : ~m -+ R 

Marshall and Olkin (1979) have given a class of definitions for stochas­
tic majorizationj however, such definitions are quite restrictive, especially 
from the point of view of economics, since they are expressed in terms of 
symmetric or Schur functions. Moreover, such definitions do not reduce to 
Lorenz order in the univariate case. 

In order to ensure X = (Xl' ... ' Xm) -< Y = (Yl. ... , Ym), one needs a 
much stronger condition than Xi -<L Yi for i = 1, ... ,m. However, when the 
Xi'S are independent and so are the }j's, them Xi -<L Yi for i = 1, ... , m 
is equivalent to X -< Y. This result follows from the theorem below. 

Theorem 4.1 Let Xl. ... , Ym be a set ofm independent random variables, 
and Y I , ... , Y m be another set of m independent random variables. Suppose 
Xi -<L Yi for i = 1, ... ,m. Then 

for every real-valued function h, separately convex in each argument, when­
ever the above expectations exist. 

The proof of this theorem can easily be obtained from a closely related 
result of Ross (1983). It is interesting to note that under the assumptions 
of the above theorem 
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for any c; 's, and 
X I X 2 •.• Xm -<L YI Y2 .•• Ym · 

However, the above theorem does not yield max(Xi ) -<L max(Yi). Bhan­
dari (1987) has shown the following weaker result for comparison between 
max(Xi ) and max(Yi). 

Theorem 4.2 Let (Xl, ... , Xm) and (Yb . .. ,Ym) be two sets of m non­
negative independent random variables such that Xi -<L Yi for i = 1, ... , 
m. Then there exists a non-negative random variable Z with E(max(Yi)) = 
E(Z) such that 

max(Xt} $.St z, Z -<L max(Yi), 

where $.St denotes stochastic order (Marshall and Ollrin, 1979). 

Al Concavity of Utility Function 

First we shall consider the case m = 2. We postulate the following axioms. 

Axiom A1.1 U is strictly increasing. 

Axiom AI.2 U is concave in the positive direction, i.e., for x ~ y and 
O$.oX$.1 

U(oXx + (1 - oX)y) ~ oXU(x) + (1 - oX)U(y). 

Axiom A1.3 U is continuously twice differentiable. 

Axiom AI.4 Given xi > xi*, X2, ~X2 > 0, define ~xi and ~xi* by 

U(xi·*, X2) = U(xi* + ~xi*, X2 - ~X2). 

Then ~xi > ~xi* . 

Theorem A1.5 Under the Axioms A1.1-A1.4, U is a concave function 
on ~2. 

Proof Let 
U .. _ 02U(Xb X2) . 

13 - , 
OXiOXj 

i, j = 1, 2. (A1.1) 

It is sufficient to show that the matrix Uij is negative semidefinite for all 
xl. X2· 

Axiom A1.2 implies that for fixed x ~ y, 

H(oX) == U(oXx + (1 - oX)y) (A1.2) 
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is a concave function of A in [0,1). This, in turn, implies that H"(A) :::; O. 
It can be easily seen that 

(A1.3) 

Given w > 0 and a > 0 there exist x, y with x 2': y and 0 < A < 1 such 
that 

W = AX + (1 - A)Y, (AI.4) 

and 

(A1.5) 

To see this, note that there exists e: > 0 such that x = W + e:a > 0, Y = 
W - €a > 0 and use the fact that H"(A) :::; O. It follows from the above 
development that (A1.5) also holds for a < O. 

We want to show that (A1.5) holds for all a. Suppose Ul2 > 0 for x = w. 
Since U is concave in each argument (by Axiom A1.2), Un < 0, U22 < O. 
Hence (A1.5) holds when ala2 < O. 

Now suppose that Ul2 < 0 for x = w. It follows from Axiom AI.4 that 

where 

Thus 

Ui = aU(XI,X2) 
aXi 

U2Un - UIUl2 < O. 

Reversing the role of Xl and X2 we get 

From the above two relations we get 

since Ul2 < 0, Un < 0, U22 < 0, UI > 0, and U2 > O. Thus the proof of the 
theorem is complete. 0 

Next we consider the case m > 2. We define a new characteristic (or a 
commodity) by a mixture of the m given characteristics (or commodities) 
in fixed proportions. We modify Axioms A1.I-AI.4 so that they hold for 
any such two new characteristics. Under these modified axioms the utility 
function U is concave on ~m. 
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To verify the above claim, take any two fixed points x and y in lRm, and 
consider the plane E passing through x and y and the origin O. It is now 
sufficient to prove that U is concave on the plane E. Consider the convex 
cone which is the intersection of the plane E and the positive orthant, and 
let Ql and Q2 be the unit vectors corresponding to the two extreme rays 
of this cone. All points on E can be considered as linear combinations of 
Ql and Q2, i.e., for pEE 

p = PIQl + P2Q2. 

Thus any such point P in E can be represented by (Pl,P2). It is now suf­
ficient to show that the modified Axioms A1.1-A1.4 in terms of (p1,P2). 
This fact trivially follows for Axioms A1.1, A1.2, and A1.4. To see axiom 
A1.2, take any two points u and v on E. Let Ql and Q2 have coordinates 
(ib ... ,im), and (jl, ... ,jm), respectively, and let 

u = UIQl + U2Q2, 

V = VIQl + V2Q2. 

Suppose now (Ul,U2) ~ (VbV2)' Then U ~ v. Thus, U is concave on the 
line joining U and v. 

Acknowledgments: The author is thankful to the referees and a member of 
the Editorial Board for useful suggestions. 
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Some Results on Convolutions 
and a Statistical Application 

M.L. Eaton1 

L.J. G leser2 

ABSTRACT Classes of distributions, of both discrete and continuous type, 
are introduced for which the right tail of the distribution is nonincreasing. 
It is shown that these classes are closed under convolution, thus providing 
sufficient conditions for nonincreasing right tails to be preserved under con­
volution. A start is made on verifying a conjecture concerning the extension 
to the left of nondecreasing right tails under successive convolution. The 
results give properties of the distributions of random walks on the integers. 
A statistical application is the verification of a conjecture of Sobel and 
Huyett (1957) concerning the minimal probability of correct selection for 
the usual indifference zone procedure for selecting the Bernoulli population 
with the largest success probability. 

1 Introduction 

A well known result of Wintner (1938, pp. 30, 32) asserts that the class of 
symmetric (about 0) unimodal densities on the real line R is closed under 
convolution. The corresponding result for symmetric unimodal probability 
mass functions on the integers is proved by Gupta and Sobel (1960). Conse­
quently, for symmetric distributions the property of having a nonincreasing 
right (or left) tail is preserved under convolution. 

In the present paper, a larger class of distributions is introduced in which 
convolution preserves nonincreasing right tails. In Section 2, the following 
two theorems are proved. 

Theorem 1.1 For any integer m, let P{m) be the class of probability mass 
functions p{.) defined on the integers which satisfy 

p{m - j) 
p(j) 

> p{m+j), 

> p(j + 1), 

lUniversity of Minnesota 
2Purdue University 

j = 0, 1,2, ... , 

for j = m, m + 1, ... 

(1.1a) 
(1.1b) 
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Then ifpiO belongs to P(mi), i = 1,2, the convolution PI *1120 OfPIO 
and 1120 belongs to P(ml + m2). 

Theorem 1.2 For any real number m, let .1"(m) be the class of density 
functions fO defined on the real line R which satisfy 

f(m - t) ~ f(m + t) for t ~ 0, (1.2a) 

f(x) ~ f(y) whe"}- m::; x::; y. (1.2b) 

Then, if fiO belongs to .1"(mi), i = 1,2, the convolution II * 12(·) of 110 
and 120 belongs to .1"(ml + m2). 

Note that symmetric (about 0) unimodal probability mass functions be­
long to P(O), and that symmetric unimodal densities belong to .1"(0); for 
these distributions the inequalities in (1.1a) and (1.2a) are actually equal­
ities. 

Suppose that a probability mass function p(.) belongs to P(O), and that 
p(.) is not symmetric about o. Theorem 1.1 says that for every n ~ 1 the 
n-fold convolution P(n) 0 of p(.) with itself satisfies 

P(n)(j) ~ P(n)(j + 1), all j = 0, 1, 2, ... . 

Thus, P(n)(·) has a nonincreasing right tail beginning with j = 0 for all 
n ~ 1. However, under these circumstances the mean (if it exists) of the 
distribution defined by p(.) is negative. Hence, the weak law of large num­
bers implies that the probability mass of P(n)(·) moves to minus infinity as 
n -+ 00. Also, if the variance of p(.) exists, the Central Limit Theorem sug­
gests that P(n)(j), j = 0, ±1, ±2, ... , becomes part of the right (decreasing) 
tail of the standard normal distribution as n -+ 00. These observations lead 
to the following conjecture. 

Conjecture 1.3 There exists a nondecreasing sequence {ni: i = 1,2, ... } 
of positive integers such that P(n) ( -i) ~ P(n)(-i + 1), all n ~ ni, for i = 1, 
2, .... 

In Section 3, a special case of this conjecture is verified. Suppose that 
p{.) has support on the integers -1, 0, 1. That is 

p{-I) > p{I), p{O) ~ p{I), 

and p(j) = 0 for j 'f -1,0, 1. In this case, it is shown that 

n ~ max { 3, ~ - 1 } , (1.3) 

where 0: = p{-I) - p{I). The proof depends upon the following result, 
which is of independent interest. 
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Theorem 1.4 Let q(.) be the probability mass function of the uniform dis~ 
tribution on {-I, 0,1}, and let q(n) (-) be the n~fold convolution of q(.) with 
itself. Then q(n) (0) - q(n)(I) is nonincreasing in n for all n ~ 2. 

Both (1.3), in the case where p(.) has support {-1,0, I}, and also Th~ 
orem 1.4 give properties of the distribution of the n~th stage of a random 
walk on the integers. 

Finally, in Section 4, the above probability results are applied to the 
problem of choosing the Bernoulli population with the largest probability 
of success when independent random samples of size n are chosen from 
each of two Bernoulli populations. If the two probabilities of success differ 
by at least an amount Ll, ° < Ll < 1, it is shown that the probability of 
correct choice for the standard procedure (Sobel and Huyett, 1957) is, for 
all n ~ max{ 4, Ll- I }, minimized when the smaller probability of success is 
~(1 - Ll) and the larger probability of success is ~(1 + Ll).This verifies a 
conjecture of Sobel and Huyett (1957). 

2 Proofs of Theorems 1.1 and 1.2 

The following is a sketch of the main steps in the proof of Theorem 1.1: 

Step 1. If Xi has mass function Pi(-) in P(mi), i = 1, 2, it is easily seen 
that Yi = Xi - mi has mass function in P(O). Further, Xl + X2 

has mass function in P(ml + m2) if and only if YI +Y2 has mass 
function in P(O). Hence, to prove Theorem 1.1 it is sufficient to 
show that P(O) is closed under convolution. 

Step 2. P(O) is closed under convex linear combinations. That is, if Pi(·) 
belongs to P(O), i = 1,2, ... ,k, and ai, 1 ~ i ~ k, are nonnegative 

k k 
constants satisfying E ai = 1, then E aiPi(·) belongs to P(O). 

i=l i=l 
This assertion is straightforwardly verified from the definition of 
P(O). 

Step 3. Let 8(0) be the collection of all symmetric (about 0) unimodal mass 
functions on the integers, and let N(O) be the collection of all mass 
functions having support on the negative integers -1, -2, .... It 
has been previously noted that 8(0) is a sub collection of P(O), and 
it is easily seen that N(O) is also a sub collection of P(O). Any mass 
function p(.) in P(O) can be written as a convex linear combination 

p(.) = o:n(·) + (1- 0:)8(·) (2.1) 
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of a mass function n(·) in N(O) and a mass function 8(·) in S(O). 
00 

To see this, let a = L: (p( -i) - p( i) ) , 
i=l 

{ 
(1- a)-lp(lil), if i = -1, -2, ... , 

8(i) = (1- a)-lp(i), if i = 0, 1,2, ... , 

and 
. {a-1(p(i)-P(-i)), i=-I,-2, ... , 

n(2) = 
0, i = 0, 1, 2, .... 

Step 4. Let Pl(·) and P2(·) belong to P(O). Then by Step 3, 

i = 1,2, 

where nl(·) and n2(·) belong to N(O), 81(-) and 82(·) belong to 
S(O), and 0 ~ aI, a2 ~ 1. Note that 

PI * P2(·) = ala2(nl * n2(-)) + al(l- (2)(nl * 82(-)) 

+ (1- al)a2(81 * n2(-)) + (1 - al)(I- (2)(81 * 82(-)). 

(2.2) 

It is shown by Gupta and Sobel (1960) that 81 * 82(-) E S(O) c P(O). 
Further, it is clear that nl * n2(-) E N(O) c P(O). If it can be shown that 
nl * 82(·) and 81 * n2(-) belong to P(O), then it will follow from (2.2) and 
Step 2 that PI * P2(-) E P(O). 

The proof of Theorem 1.1 is thus completed by the following lemma. 

Lemma 2.1 Both nl * 82(·) and 81 * n2(-) = n2 * 81(-) belong to P(O). 

Proof We will show that nl *82(-) E P(O). The proof that n2*81(-) E P(O) 
is similar. For j 2: 0, 

00 00 

nl * 82(j) = L nl(i)82(j - i) = L nl (-i)82(j + i) 
i=-oo i=1 

00 00 

2:L nl(-i)82(j+l+i)= L nl(i)82(j+l-i) 
i=1 i=-oo 

Also, for j 2: 1, 

00 j 

nl *S2(j) = L nl (-i)82(j + i) + L nl (-i)82(j + i) 
i=j+1 i=1 
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00 j 

< L nl(-i)s2(-j+i)+L nl(-i)S2(j-i) 
i=j+l i=l 

00 j 

= L n1(-i)S2(-j+i) + L n1(-i)S2(-j+i) 
i=j+1 i=1 

00 

= L nl(i)s2(-j-i)=nl*s2(-j). 
i=-(X) 

Thus, nl * S2(·) obeys properties (LIb) and (1.1a), respectively, defining 
1'(0). 0 

The proof of Theorem 1.2 follows the same steps as the proof of Theo­
rem 1.1, substituting densities for mass functions and integrals for sums. 
Verification that S1 * S2(·) E S(O) follows from Wintner (1937). 

3 Proof of (1.3) 

Let p(.) be a probability mass function on the integers, with 

p( -1) > p(l), p(O) 2: p(l), (3.1) 

and p(j) = ° for j i- -1,0,1. Thus, p(.) belongs to 1'(0), and by Theorem 
1.1 the n-fold convolution, 

P(n)(·) = P * P * ... * p(.), 

of p(.) with itself also belongs to 1'(0). The goal of the present section is 
to verify the conjecture (1.3) in this special case. 

Let a = p( -1) - p( 1), 

and 

Then 

{
(I - a)-lp(l), if j = -1,1, 

s(j) = (1 - a)-lp(O), if j = 0, 

0, otherwise, 

(. {I, if j = -1, 
n J) = 

0, otherwise. 

p(j) = (1 - a)s(j) + an(j), 

and for any m 2: 1, 
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where S(k)O and n(k)(') are, respectively, the k-fold convolutions of s(·), 
nO with themselves. (Define S(O) 0 and nCO) 0 to be mass functions placing 
probability 1 on j = 0.) It is easily seen that for ° ::; i ::; m, 

. ( .) _ {I, if j = -(m - i), 
n(m-t) J -

0, otherwise, 

so that 
SCi) * n(m-i) (j) = SCi) (j + m - i). 

Consequently for m ~ 1, 

P(m)(j) = ~ (7)(1- n)inm-iS(i)(m + j - i), (3.2) 

for j = 0, ±1, ±2, .... Note that from (3.1), and from the definition of s(·), 
it follows that s(·) E S(O). Thus S(i)(-) E S(O), i = 2,3, .... 

Lemma 3.1 For all m ~ 2, 

P(m)(-I) - P(m) (0) ~ (1- n)m-l{mn(S(m_l)(O) - S(m-l)(I)) 

- (1 - n)(S(m) (0) - s(m)(I))}. 

Proof It follows from (3.2) and the symmetry about ° and unimodality 
of each SCi) (-) that 

P(m)(-I) - P(m) (0) 

= (1- n)m(s(m)(-I) - S(m) (0)) + mn(l- n)m-l(S(m_l)(O) - S(m_l)(I)) 

+ ~ (7) (1 - n)inm-i(s(i)(m -1- i) - S(i)(m - i)) 
t=O 

~ -(1- n)m (S(m) (0) - s(m)(I)) + mn(1 - n)m-l(S(m_l)(O) - S(m-l)(I)), 

from which the stated inequality directly follows. o 

Let 
(3 _ p(O) - p(l) ( .) _ {I, if j = 0, 

- , r J -
1 - n 0, otherwise, 

and 
q(j) = {~' j = -1:0,1, 

0, otherwIse. 

It is easily seen that 

S(·) = (3r(·) + (1 - (3)q(.), 

and thus that 

~ (k) k i . S(k)(') = ~ i (3 - (1- (3)'Q(i)(-), (3.3) 
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where q(O) 0 == r(·). Define 

a(i) = {q(3)(0) - Q(3)(I), 
Q(i)(O) - %)(1), 

i = 0,1,2, 
i ~ 3, 

and for i ~ 1 let Ji denote a random variable having a binomial distribution 
with sample size i and probability of success 1- f3. 

If Theorem 1.4 is correct, a{ i) is a nonincreasing function of i, all i = 0, 
1,2, .... Since 

it follows from (3.3) that for m ~ 2, 

(S(m-l)(O) - S(m-l) (1)) - (S(m) (0) - S(m) (I)) 

= E{a{Jm-d - a(Jm)} + R(m,f3), (3.4) 

where 

~ 1( R(m,f3) = 27{P{Jm- 1 = O} - P{Jm = O}) - 27 P{Jm- 1 = I} 

-P{Jm=I}) 

2 + 27(P{Jm- 1 = 2} - P{Jm = 2}). 

For fixed f3, it is known that Jk is stochastically increasing in k. Thus, 
a(Jk) is stochastically nonincreasing in k, and 

Some algebra shows that 

R{ (3) = f3m-3{1- (3) {(26 2) (f3 _ (m - 1){2m _1))2 
m, 27 +m 2{m2 +26) 

9{m -1) } 
+ 4{m2 + 26) (11m - 23) 

~O 

for m ~ 3. Thus, it follows from (3.4), assuming that Theorem 1.4 is true, 
that 

S(m-l){O) - S(m-l){I) ~ S(m)(O) - s(m)(I) (3.5) 

for all m ~ 3. 
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Hence, if Theorem 1.4 is true, it follows from Lemma 3.1 and (3.5) that 

P(m) ( -1) - P(m) (0) ~ 0, all m ~ max {3, ~ - I}, 

which, since a = p( -1) - p(I), verifies (1.3). Note that, as one would 
intuitively expect, the nonincreasing right tail of P(m) (-) moves one step 
to the left (from j = 0 to j = -1) at a rate depending inversely on the 
difference a in probability mass between the left tail and right tail of p(.). 

It remains to prove Theorem 1.4. 

Proof of Theorem 1.4 The characteristic function of q(.) is 

1 
¢(t) = a(1+2cos(t)), 

so 

¢m(t) = (~)m (1+2cos(t))m 

is the characteristic function of q(m)(·). Using the Fourier inversion formula 
(see Feller, 1966, p. 484) and the fact that ¢(t) is real-valued, we have 

1 171" OOt q(m)(j) = 2" ¢m(t)e-t3 dt 
7r -71" 
1 171" (1 )m =27r -71" a(1+2cos(t)) cos(jt)dt 

for j = 0, ±1, ±2, .... Therefore, 

Wm = (q(m-l) (0) - q(m-l)(I)) - (q(m) (0) - q(m)(I)) 

= 2~ [: ( (1 + 2;OS(t)) m-l _ (1 + 2;OS(t)) m) (1- cos(t)) dt 

= 27r~m (171" (1 + 2cos(t))m-l(l- cos(t)) 2 dt) (3.6) 

which is obviously nonnegative when m is an odd integer (m = 1,3,5, ... ). 
For m = 4, direct computation of the probabilities q(3) (0), q(3)(I), q(4) (0), q(4)(I), 
or use of (3.6), yields 

W4 =0. 

Note that Wm is nonnegative if and only if 

3m27r 
Tm =-4-Wm (3.7) 

is nonnegative. Also, T4 = o. We now show that T2k is nondecreasing in k, 
k ~ 2, and this will complete the proof that Wm ~ 0 for all even m ~ 4. 
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From (3.6), for k ~ 2, 

T2k+2 - T2k = 11< (1 + 2cOS(t))2k-l(1_ cOS(t))2( (1 + 2 cos(t)) 2 -1) dt 

= 411< (1 + 2 cos(t) )2k-l sin2(t) cos(t) (1 - cos(t)) dt 

:1.1< [3 2k-l 2 
~ 41 h (1 + 2 cos(t)) sin (t) cos(t) (1 - cos(t)) dt, (3.8) 

3 

since 1 + 2 cos(t) and cos(t) (1- cos(t)) have the same sign for t in [0, ~7r] U 
[~7r, 7r]. 

Let 
Hk(t) = (1 + 2 cos(t)) 2k-l sin2(t) cos(t) (1 - cos(t)). (3.9) 

From (3.8), 

:1.1< 11< 1 1 
T2k+2 - T2k ~ 41: Hk(t) dt = 41 6 (Hk(2 7r - u) + Hk(27r + u)) duo 

3 

171" 

= 4 [6 sin2( ~7r + u) sin(u){ (1 + 2 sin(u) )2k-l (1 - sin( u)) 10 2 

- (1- 2sin(u))2k-\1 + sin(u))} du (3.10) 

since sin2(!7r - u) = sin2(!7r + u), and 

cos (~7r - u) = sin(u) = -cos (~7r+u). 
Noting that 0 :::; sin(u) :::; ! for u E [0, i7r], and that for x E [0, n k ~ 2, 

(1+2x)2k-l(1-x) ~ (1+2x)(1-x) ~ (1-2x)(1+x) ~ (1-2x)2k-l(1+x), 

it follows that the right-hand side of (3.10) is nonnegative, all k ~ 2. This 
completes the proof of Theorem 1.4, and verifies the result (1.3). 0 

A proof of Conjecture 1.3 made in Section 1, even in the special case 
of p(.) considered in this section, appears to be extremely difficult. It is 
possible that the methods used to prove (1.3) can be extended, but such 
an approach appears cumbersome. A more promising attack on the prob­
lem may be through the characteristic function argument used to prove 
Theorem 1.4. 

4 A Statistical Application 

In the indifference zone formulation for the problem of ranking Bernoulli 
parameters (Sobel and Huyett, 1957), independent random samples of size 
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n are obtained from each of k Bernoulli populations. The goal is to choose 
the population with the largest probability of success, but there is concern 
about a correct choice only when the largest probability of success exceeds 
the second largest probability of success by at least ~, 0 < ~ < 1, where 
~ is a prespecified constant. 

When k = 2 Bernoulli populations are being compared, the procedure 
usually recommended is to compare the observed numbers Xl. X 2 of suc­
cesses in the two samples, and conclude that population 1 has the largest 
probability of success if Xl > X2 and population 2 has the largest proba­
bility of success if X2 > Xl. If Xl = X 2 , a population is either randomly 
selected (without loss of generality by a mechanism that does not depend 
upon the common observed value of Xl and X 2 ), or else the population 
believed a priori to have the largest probability of success is chosen. At­
tention then concentrates on determining the smallest sample size n such 
that the probability of correctly choosing the population with the highest 
probability of success is no less than a prespecified constant '"Y, 0 < '"Y < 1. 

Let Y denote the number of successes in the sample obtained from the 
population with the largest probability of success, and let X denote the 
number of successes in the remaining sample. Under the given assumptions, 

where 

X and Y are statistically independent, 

X rv binomial (n,p), 

Y rv binomial (n,p + d), 

05, p 5, 1- d, ~ 5, d 5, 1, 

and p, d are unknown. 

(4.1) 

Let 0 be the (conditional) probability of selecting the population of Y 
when Y = X (0 5, 0 5, 1). Note that 0 = 1 corresponds to always selecting 
Y when X = Y, while 0 = 0 corresponds to always selecting X in such 
a situation. Since selecting the population of Y is the correct choice, the 
probability of correct selection is 

PCS(p, d, n) = P{Y > X} + OP{Y = X} 
= OP{Y - X 2: O} + (1 - O)P{Y - X 2: 1}. (4.2) 

In order that PC S is never less than '"Y, n must be chosen so that 

inf inf PCS(p, d, n) 2: '"Y. 
~~d~l O~p9-d 

However, Sobel and Huyett (1957) show that PCS(p,d,n) is (strictly) de­
creasing in d for fixed p, n, O. Thus, it can be assumed that d = ~, and n 
is determined to satisfy 

inf PCS(p,~, n) 2: '"Y. 
O~p9-~ 

(4.3) 



M.L. Eaton, L.J. GIeser 85 

Since PCS(p,.6., n) is for fixed .6., n, (), a continuous function of p, and p 
takes values in a closed interval [0,1-.6.], the infimum in (4.3) is achieved. 
The value 

p* = p* (.6., n, () 

which achieves the infimum (minimum) is said to be least favorable. In gen­
eral, p* depends upon nand (), as well as on.6.. However, Sobel and Huyett 
(1957) use the large sample normal approximation to the distribution of 
y - X to show that for fixed (), .6., 

1 - .6. 
lim p* (.6., n, () = -2-. 

n-+oo 
( 4.4) 

Using both normal approximations and exact calculations, they give a table 
of the smallest values of n needed to assure that 

( 1-.6. ) PCS -2-,.6.,n 2: 'Y 

when () = ~. They remark that some exact calculations suggest that the 
limit in (4.4) is approached rapidly, so that their table gives a good ap­
proximation to an exact solution for determining the sample size n for the 
randomized selection rule with () = ~. They also indicate how to adjust 
their table to find n when () = 0 or l. 

In this section, it is shown that 

p*(.6., n, 1) = ~(1 - .6.), all n 2: 1, (4.5) 

and that for 0 ::; () < 1, 

p*(.6.,n,() = ~(1- .6.), all n 2: max{4,.6.- 1 }. (4.6) 

These results permit exact determination of the sample size n for both 
randomized (0 < () < 1) and nonrandomized selection rules. 

Define 
G(jj p,.6., n) = P{X - Y 2: j}, 

for j = 0, ±1, ±2, ... ,±n. Note from (4.1) and the above discussion that 

inf inf PCS(p, d, n) 
~::;d::;l O::;p9-d 

= min PCS(p,.6., n) 
O::;p9-~ 

= min (1 - (1 - ()G(lj p,.6., n) - ()G(Oj p,.6., n»). (4.7) 
O::;p9-~ 

Theorem 4.1 Fix.6., 0 < .6. < 1. For all n 2: 1, j 2: 1, G(jj p,.6., n) is uni­
modal in p. Further, G(Oj p,.6., n) is unimodal in p for n 2: max{ 4,.6. -I}. 
The mode in both cases is p* = ~(1 - .6.). 
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Proof Let v = p - ~(1 - ~). Then from (4.1), 

X rv binomial (n, v + ~(1- ~)), 

Y rv binomial (n, v + ~(1 + ~)), 
and X, Y are independent. Further since 0 ~ p ~ 1-~, 

1 1 
-2(1 -~) ~ v ~ 2(1- ~). 

Also 

C(j; p,~, n) = C(j; v + ~(1- ~),~, n) 

so that C(j; p,~, n) is unimodal in p, 0 ~ p ~ 1 - ~, if and only if 
C(j; v + ~(1- ~),~, n) is unimodal in v, Ivl ~ H1- ~). 

Since X and Yare independent binomials, 

n 

Y rv LYi, 
i=l 

where Xl' ... ' X n , YI , ... Yn are independent Bernoulli variables with 

Xi rv Bernoulli (v + ~(1- ~)), Yi rv Bernoulli (v + ~(1 + ~)). 
Thus, 

i = 1, ... ,n, 
are i.i.d. random variables with common mass function 

It follows that 

ifz=-1, 

if z = 0, 

if z = 1, 

otherwise. 

C(j; v + ~(1 - ~),~, n) = p{ ~ Zi 2: j} 

(4.8) 

(4.9) 

depends upon v only through v2 , and is thus an even function of v. Conse­
quently, (4.9) is unimodal in v if and only if it is nonincreasing as a function 
of v2 , in which case the mode occurs at v = O. [Note that v = 0 corresponds 
to p = !(1- ~)·l 

It is now convenient to change notation. Let t = v2 and 

(4.10) 
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where our notation suppresses the dependence of this probability on ~. 
(Recall that ~ is held fixed.) Let 

p(fjt) = P{Zi = f}, f = -1,0,1, 

and note from (4.8) that 

1 
p(lj t) = 4(1 - ~)2 - t, 

1 
p(Oj t) = 2(1 - ~2) + 2t, 

1 
p( -lj t) = 4(1 + ~)2 - t. (4.11) 

Finally, if P(n) ('j t) is the n-fold convolution of pC t) with itself, then 

and 
n 

H(jj t, n) = LP(n)(ij t). 
i=j 

In an appendix, it is shown that for all i = 0, ±1, ±2, ... , 

!P(n) (ij t) = n(2P(n_l) (ij t) - P(n-l) (i - 1j t) - P(n-l) (i + 1j t)). 

Consequently, 

d n d 
-d H(jj t, n) = L dP(n)(ij t) 

t . . t 
0=) 

= n(2H(jjt,n -1) - H(j -ljt,n -1) - H(j + 1jt,n -1)) 

= n(P(n-l)(jj t) - P(n-l)(j - 1j t)), 

and (d/dt)H(jj t, n) will be less than or equal to ° for 0::::: t ::::: ~(1- ~)2 if 
and only if 

1 
P(n-l)(j - 1j t) ~ P(n-1)(jj t), all ° ::::: t ::::: 4(1- ~)2. (4.12) 

Note from (4.8), or (4.11), that 

1 2 1 2 
p(-ljt)-p(ljt)=4(1+~) -4(1-~) =~>O, 

1 2 1 2 
p(Ojt) - p(ljt) = 2(1- ~ ) - 4(1-~) + 3t 

1 
= 4(1 - ~)(1 + 3~) + 3t ~ 0. 
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for ° $ t $ Hl- ~)2. Theorem 1.1 now applies to show that (4.12) holds 
for j ~ 1, all n ~ 1. Hence, H(jj t, n) is nonincreasing in t for all j ~ 1, 
n ~ Ij and consequently, for all n ~ 1, G(jj p,~, n) is unimodal in p with 
mode at p = !(1 - ~). 

For j = 0, the result (1.3) can be applied to show that (4.12) holds for 

n -1 ~ max{3, ~-l -I}. 

Thus, when n ~ max{4,~-1}, G(Oj p,~,n) is unimodal in p with mode 
at p = !(1 - ~). 0 

The asserted results (4.5) and (4.6) now follow immediately from (4.7) 
and Theorem 4.1. 

Al Derivatives of Convolutions 

For any functions p(.), q(.) mapping the integers 0, ±1, ±2, ... into the 
real line, define the convolution p * q(.) by 

00 

p * q(j) = L p(i)q(j - i), 
i=-oo 

provided the infinite sum exists. It is easily seen that 

p * q(.) = q * p(.), 

p*(q*r)(·) = (p*q)*r(·), 

(ap + bq) * r(·) = a(p * r(.)) + b(q * r(.)), 

for real constants a, b. 

(ALl) 

For each t in an interval (tL' tu), let p(.j t) and q(.j t) map the integers 
into the real line, and assume that for every integer j the derivatives 

:tp(jj t), ! q(jj t) 

exist for all t in (tL, tu). If 

00 

p * q(jj t) = L p(ij t)q(j - ij t) (A1.2) 
i=-oo 

exists for all j = 0, ±1, ±2, ... , all t in (tL' tu), then under the usual 
conditions for interchange of summation and differentiation, we have 

(! (p * q)) (.j t) = ( (! p) * q) (.j t) + (p * (! q) ) (.j t). (A1.3) 
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Lemma A1.1 Letp(n)('jt) bethen-foldconvolutionofp('jt), wherep(jjt) 
has a derivative with respect to t for all integers j, all t in (t L, tu). Then, 
assuming we can interchange summation and derivative, for all n ;::: 1, all 
integers j, 

! P(n)(jj t) = n (P(n-l) * (! p) ) (jj t). 

Proof Using (A.I) and (A.3), 

! P(2)(·jt) = ((! p) *p) (.jt) + (P* (! p)) (·jt) 

= 2 (P* (! p)) (·jt). 

The stated result now follows by use of (A1.I), (A1.3) and induction on n. 
o 

An important application of Lemma A1.1 is to the case where p(·jt) is 
linear in t. If 

p(ij t) = a(i) + b(i)t 

i = 0, ±I, ±2, ... , then (d/dt) p(ij t) = b(i) and 

dd P(n)(jjt)=n E P(n_l)(ijt)b(j-i). 
t . 

'&=-00 

In particular, if p(jj t) is given by (4.11), then 

{
2' 

b(i) = -1, 
0, 

and 

i = 0, 
i=-I,I, 
otherwise, 

! P(n)(ij t) = n(2P(n_l)(ij t) - P(n-l)(i - Ij t) - P(n-l)(i + Ij t)). 

Acknowledgments: We gratefully acknowledge the comments of Mary Ellen 
Bock and Keith Crank which led to the proof of Theorem 1.4 given in this 
paper. M.L. Eaton's research was supported in part by NSF Grant DMS 
8319924. L.J. GIeser's research was supported in part by NSF Grant DMS 
8501966. 

REFERENCES 

Feller, W. (1966). An Introduction to Probability Theory and its Applica­
tions, Volume II. Wiley, New York. 



90 4. Some Results on Convolutions and a Statistical Application 

Gupta, S.S. and Sobel, M. (1960). Selecting a subset containing the best 
of several populations. In Contributions to Probability and Statistics 
(I. Olkin, ed.), Stanford University Press, 224-248. 

Sobel, M. and Huyett, M.J. (1957). Selecting the best one of several bino­
mial populations. Bell System Tech. J. 36, 537-576. 

Wintner, A. (1938). Asymptotic Distributions and Infinite Convolutions. 
Edwards Brothers, Ann Arbor, ML 



5 

The X + Y, XjY 
Characterization of the 
Gamma Distribution 
George Marsaglia1 

ABSTRACT We prove, by elementary methods, that if X and Y are in­
dependent random variables, not constant, such that X + Y is independent 
of XjY then either X, Y or -X, -Y have gamma distributions with com­
mon scale parameter. This extends the result of Lukacs, who proved it for 
positive random variables, using differential equations for the characteristic 
functions. The aim here is to use more elementary methods for the X, Y 
positive case as well as elementary methods for proving that the restriction 
to positive X, Y may be removed. 

1 Introduction 

We say that X is a gamma-a variate if X has the standard gamma density 
xa-1e-x /r(a), x> O. If X and Yare independent gamma-a and gamma-b 
variates then X + Y is independent of X/Yo This article is concerned with 
the converse: if X + Y is independent of X/Y for independent X, Y, what 
can be said about X and Y? The general result is this: ruling out the case 
where X and Yare constants, in which case any function of X and Y is 
independent of any other, if X + Y is independent of X/Y then there is 
a constant e and positive constants a and b such that eX is gamma-a and 
eY is gamma-b. The constant e may qe negative, but neither X nor Y can 
take both positive and negative values; either X, Y or -X, -Yare pairs 
of positive gamma variates with a common scale parameter and possibly 
different gamma parameters. 

In 1955, Lukacs (1955) proved the basic result under the assumption 
that X and Y were positive. His method was to show that the charac­
teristic functions of X and Y satisfied differential equations whose only 
solutions were characteristic functions of gamma variates with a common 
scale parameter. A few years after that, in the late 1950's, I needed the 

ISupercomputer Computations Research Institute and Department of Statis­
tics, The Florida State University 
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x + Y, X/Y characterization in developing computer methods for gener­
ating random points on surfaces by means of projections of points with 
independent coordinates. But the coordinates could be negative as well as 
positive, so I set out to extend Lukacs' result by removing the restriction 
that X and Y be positive. I was able to do this, using elementary meth­
ods, but I still needed Lukacs' result for the positive case. I put the matter 
aside until I could find an elementary argument that established that case 
as well, perhaps motivated by a sentiment attributed to Herman Rubin: If 
you have to use characteristic functions you don't really understand what 
is going on. 

I was not able to find an elementary proof of the X, Y positive case, and 
the matter sat for years, until I was sent a manuscript, by Findeisen, which 
contained a clever device that might be used to establish Lukacs' result 
without resorting to characteristic functions. In the form that Findeisen's 
result was published, Findeisen (1978), there is a disclaimer suggested by 
the referees, to the effect that characteristic function results are implicit in 
parts of Findeisen's arguments. 

And there the matter rests today, the point of departure for this arti­
cle. In it, I will use a variation of Findeisen's device, together with my 
earlier proof that the X, Y positive restriction can be removed, to provide 
a complete treatment of the X + Y, X/Y characterization of the gamma 
distribution by elementary methods. Opinions differ on what is elementary, 
of course. In the development below, the most advanced result that I need 
is the fact that a distribution on [0,1] is determined by its moments. This 
was a deep result when first proved by Hausdorff, but it may now, thanks 
to Feller, be considered elementary, as the elegant proof in Feller (1971) 
shows, using basic probability and limit arguments. 

2 The Unrestricted Theorem 

Theorem 2.1 If X and Yare independent, non-degenerate {i.e. not con­
stant} random variables such that X +Y is independent of X/Y, then there 
are constants a, band c such that cX has the gamma density xa-1e- x /r(a) 
and cY has the gamma density yb-l e- y /r(b). 

Note that use of the expression X/Y requires the implicit assumption 
that Pr(Y = 0) = 0, but also note that X/Y independent of X + Y for 
independent X, Y also requires that Pr(X = 0) = 0, since, if 0 < Pr(X/Y = 
0) < 1, 

Pr(X/Y = 0) Pr(X + Y < s) = Pr(X/Y = 0, X + Y < s) = Pr(Y < s). 

As s grows, the left side approaches Pr(X/Y = 0), the right goes to 1. 
Thus we need not be concerned with possibilities X = 0 or Y = 0 in the 
theorem or subsequent discussion. 
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Theorem 2.1 is the most general form of the X + Y, X /Y characterization 
of the gamma distribution. It does not require that the variates be positive. 
Our proof depends on four propositions, each of which will be proved by 
elementary methods below. Two of the propositions depend on what we 
call the exponential moments of a non-negative random variable Z, defined 
as the sequence of values 

Evidently the exponential moments all exist, since zne- z is bounded for 
z? O. 

3 Four Propositions 

Proposition 3.1 If X and Y are independent random variables, not con­
stant, such that X + Y is independent of X/Y then either Pr(X > 0, Y > 
0) = 1 or Pr(X < 0, Y < 0) = 1. 

Proposition 3.2 If X and Y are independent positive random variables, 
not constant, such that X +Y is independent of X/Y, then there are positive 
constants a, band k such that the exponential moments of X and Y are 
those of gamma distributions with common scale parameter: for n = 1, 2, 
3, ... , 

d E(yne-Y) _ knr(b + n) 
an E(e-Y) - r(b) . 

Proposition 3.3 Every distribution on [0, 00) is determined by its expo­
nential moments. 

Proposition 3.4 If X and Y are independent, positive random variables 
such that X/Y is independent of X - Y, then X and Y are both constants. 

These four propositions will be proved below, but first we show how they 
are combined to prove the main theorem. 

PROOF OF THE MAIN THEOREM 

We now have independent X and Y, not constant, with X/Y independent 
of X + Y. Assume the four Propositions. Then Proposition 3.1 ensures that 
either X, Y or -X, -Yare pairs of positive variates. Proposition 3.2 then 
provides the exponential moments of X and Y, or -X and - Y, and Propo­
sition 3.3 ensures that, with the resulting gamma exponential moments, eX 
and eY are gamma-a and gamma-b for some constant e, possibly negative. 
Proposition 3.4 is not used directly, but is required for the proof of Propo­
sition 3.1. 
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PROOF OF PROPOSITION 3.1. 

We have independent X and Y, not constant but otherwise unrestricted, 
such that X +Y is independent of X/Yo We must prove that either Pr(X > 
0, Y > 0) = 1 or Pr(X < 0, Y < 0) = 1. Let Px = Pr(X > 0) and 
py = Pr(Y > 0). If PxPy > 0, let (X+, Y+) be the point (X, Y) conditioned 
by X > 0 and Y > 0: 

P (X Y ) Pr(O < X < x,O < Y < y) 
r + < x, + < y = . 

PxPy 

Evidently X+ is independent Y+ (a pllOduct measure is still a prod­
uct measure when restricted to a product set), and, in fact, X+ + Y+ is 
independent of X+/Y+ because 

P (X Y X /Y ) _ Pr(O < X + Y < r,O < X/Y < s) 
r + + + < r, + + < s - --'---------'-----'--------'­

PxPy 
Pr(O < X + Y < r) Pr(O < X/Y < s) 
=-~----~-~-~--~ 

PxPy 

Thus X+ + Y+ is independent of X+/Y+, since their joint distribution is a 
product. Propositions 3.2 and 3.3 apply: there is a positive constant c such 
that cX+ is gamma-a and cY+ is gamma-b. 

This takes care of the positive quadrant, with measure PxPy. If (1 -
Px)(1 - Py) > 0 then (X_, Y_) is well-defined and an argument similar 
to that for (X+, Y+) shows that cX_ and cY_ must be standard gamma 
variates for some negative constant c. Thus 0 < Px < 1 and 0 < Py < 1 and 
X + Y independent of X/Y lead to four possibilities: 

• X and Y each have densities that are (proper) mixtures of scaled 
"negative" and "positive" gamma densities. 

• X+, Y+ are gamma and X_, y_ are constants. 

• -X_, -y_ are gamma and X+, Y+ are constants. 

• Both X+, Y+ and X_, y_ are constants. 

It is elementary to verify that for none of these four cases is X + Y inde­
pendent of X/Yo 

Next, we eliminate the possibility that only one of Px,Py is between 0 and 
1. Suppose, for example, that X is positive and Y can take both positive 
and negative values. Then Pr(X + Y < 0) > 0 and Pr(Y/X > -1) > O. 
This leads to 

0< Pr(X + Y < O)Pr(Y/X > -1) = Pr(X + Y < O,X + Y > 0) = 0, 

with similar contradictions for Px = 0,0 < Py < 1, etc. 
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Thus Px is either 0 or 1, and Py is either 0 or 1. That conclusion leads to 
four more possibilities: 

(a) Px = 1, Py = 1 
(c) Px = 0, Py = 0 

(b) Px = 0, Py = 1 
(d) Px = 1, Py =0. 

If conditions (a) or (c) hold, then X, Y or -X, -Yare independent pairs of 
positive variates and Propositions 3.2 and 3.3 apply. If (b) holds, then -X 
and Y satisfy the conditions of Proposition 3.4, so they must be constant; 
if (d) holds, then Proposition 3.4 shows that X and -Y must be constant. 

This completes the proof of Proposition 3.1: the support of (X, Y) must 
be either the first or the third quadrant. The proof used Propositions 3.2, 
3.3 and 3.4, which we now proceed to prove. 

PROOF OF PROPOSITION 3.2. 

We have independent, positive non-constant X and Y with X/Y indepen­
dent of X + Y. Consider the exponential moments of X, Y and X + Y: 

Rn = E[Xne-xl/ E[e-X] 

8n = E[yne-Yl/ E[e-Y ] 

Tn = E[(X + Yte-X-Yl/E[e- X- Y ] = t (~)R;,8n-i. 
i=O t 

If X and Y were gamma variates with common scale parameter, then Rn, 
8n, Tn would have the form, for some positive constants a, band k: 

(3.1) 

The independence of X/(X + Y) and X + Y will be used to provide a 
pair of recurrence equations for Rn+1 and 8n+1 that will have a unique 
solution: the exponential moments of expression (3.1). Then, because by 
Proposition 3.3 the exponential moments determine the distribution, we 
will be led to gamma distributions. 

The recursions may be derived by dividing, side for side, the relation 

. E[xn(x + Y)e- X- Y] = E [(X ~ y) n] E[(X + Yt+1 e-X-Y] 

by the sides of 

E[Xne-X- Y ] = E [(X ~ y) n] E[(X + y)ne-X- Y ]. 

These relation follow easily from the independence of X, Y and of X/Y, X + 
Y. Upon division, side for side, we get the relation 

~1 + 81 = T~:1 . (3.2) 
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Reversing the roles of X and Y then provides 

8n+1 + R1 = Tn+1. 
8n Tn 

(3.3) 

Note that the gamma exponential moments in (3.1) satisfy (3.2) and 
(3.3). We must show that no others do. When n = 1, (3.2) and (3.3) lead 
to 

(3.4) 

Now R2 - R~ is the variance of a non-degenerate random variable, (the W 
defined by 

Pr(W ~ w) = l w 
e-x dF(x) / 100 

e- X dF(x), 

with F the distribution of X). Thus there is a positive value k such that 

and (3.5) 

A little algebra will verify that (3.2) and (3.3) give Rn+1 and 8n+1 uniquely 
in terms of R1, 81 , R2, 82 , ... , Rn, 8n . (Each pair (Rn+b 8n +1) arises from 
a linear system with matrix having determinant Tn(Tn - Rn - 8n), easily 
shown to be non-zero by induction.) 

Since (5) provides R2 and 82 in terms of R1 and 81 and the common 
parameter k, the two sets of exponential moments for X and Y are de­
termined by Rb 8 1 and the constant k. Specifically, given Rl , 8 1 and the 
common value k required by (3.4), define a and b by the conditions R1 = ak, 
8 1 = bk. Then R2 = ka(a + 1), 82 = kb(b + 1), R3 = ka(a + l)(a + 2), 
83 = kb(b + l)(b + 2) and, in general, 

and 

provides the unique solution to conditions (3.2),(3.3) and (3.4) derived from 
the assumption of independent pairs X, Y and XjY, X + Y. 

PROOF OF PROPOSITION 3.3 

Let X be non-negative with distribution F and exponential moments 

Rn = E(Xne-X) = roo xne-x dF(X)/ roo e-x dF(x) 
E(e-X ) 10 10 ' n=I,2,3, .... 

We must show that the R's determine F. To do this, let W be the random 
variable with distribution G defined by 

G(w) = Pr(W ~ w) = 1w 
e-x dF(x) / 100 

e- X dF(x). 
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Then the exponential moments of X are the regular moments of W: 

The distribution of X determines that of W, and vice versa; indeed, F(x) = 

J; eW dG(w)/ Jooo eW dG(w). 
It turns out that the moments of W determine its distribution, but that 

result requires analytic function theory, violating our proposed goal that 
proofs be elementary. We overcome this problem by converting W to a 
random variable Z on the unit interval. For such, an elementary proof 
that the moments determine the distribution is available--see Feller (1971), 
pages 225-227 for a beautiful elementary proof that for points of continuity 
z, 

Pr(Z:5 z) = ;~~ L (~)(-1)n-iE[(Zi(1- zt-ij. 
i:;i;nt J 

So, let Z = e-w . Then the distribution of Z is determined by its mo­
ments. To see that the moments of W, (the exponential moments of X), 
determine the moments of Z, write 

100 ( (kx)2 (kX)3 ) /100 
= e-:Z: 1 - kx + -- - -- + .. . dF(x) e-:Z: dF(x). 

o 2! 3! 0 

We may exchange the integral and summation operations to get 

E(Zk) = f (_.~)i roo(kX)ie-:Z:dF(X)/ roo e-:Z:dF(x) = f (_~)i Rk' 
i=O J. 10 10 i=O J. 

Thus the exponential moments of X determine the moments of Z, which 
determine the distribution of Z, which determines the distribution of W = 
-In(Z), which determines the distribution of X, and that sequence of 
implications provides proof of Proposition 3.3: 

expo moments of X ~ moments of Z ~ 
dist. of Z ~ dist. of W ~ dist. of X. 

PROOF OF PROPOSITION 3.4. 

We have X and Y independent, positive and XjY independent of X - Y. 
Evidently this cannot hold if only one of X or Y is constant, so assume 
that neither is constant. We will develop a contradiction. 

Let p = Pr(Y - X> 0) = Pr(YjX > 1). Then 

p = Pr(Y -X> O,YjX > 1) = Pr(Y -X> O)Pr(YjX > 1) =p2. 
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Thus p is idempotent, p2 = p, and p must be 0 or 1. Interchanging the roles 
of X and Y if necessary, we may assume that p = Pr(Y > X) = 1. Then 
X must be bounded, and X, not constant, will have two points of increase 
Xl < X2 such that Pr(X > X2) = o. 

Since Y is not constant, it (or its distribution) has two points of increase 
Yl < Y2. Now define two sets A and 8: 

8 = ({x,y) : y - X > Y2 - X2}. 

Then Pr(A) > 0, since A contains the point (X2, yd. Similarly, Pr(8) > 0 
because 8 contains the point (Xl> Y2). 

From the assumed independence of Y / X and Y - X, 

Pr(A n 8) = Pr(A) Pr(8) > 0, 

contradicting the fact that every point (x, y) in An 8 has x > X2, so that 

Pr(A n 8) :::; Pr(X > X2) = o. 

This proves Proposition 3.4: Y - X independent of Y / X for positive 
·independent X and Y requires that both be constant. 

Proof of the four Propositions, and hence an elementary proof of the 
unrestricted X + Y, X/Y characterization of the gamma distribution, is 
now complete. 
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A Bivariate Uniform 
Distribution 

Albert W. Marshall1 

ABSTRACT The univariate distribution uniform on the unit interval [0,1] 
is important primarily because of the following characterization: Let X be 
a random variable taking values in [0,1]. Then the distribution of X + U 
(mod 1) is the same as the distribution of X for all nonnegative random 
variables U independent of X if and only if X has a distribution uniform 
on [0,1]. 
A natural bivariate version of this is the following: Let (X, Y) be a random 
vector taking values in the unit square. Then (*) (X + U (mod 1), Y + 
V (mod 1)) has the same distribution as (X, Y) for every pair (U, V) of 
nonnegative random variables independent of (X, Y) if and only if X and 
Y are independent and uniformly distributed on [0, 1]. But if (*) is required 
to hold only when U = V with probability one, then (X, Y) can have any 
one of a large class of bivariate uniform distributions which are given an 
explicit representation and studied in this paper. 

1 Introduction 

The literature abounds with examples of bivariate distributions having 
marginals uniform on [0, 1]; indeed, any bivariate distribution with contin­
uous marginals can be transformed to provide such an example. Bivariate 
distributions with uniform marginals can be regarded as "canonical forms" 
representing all bivariate distributions with marginals that are both con­
tinuous and have continuous inverses. In this context, they are sometimes 
called "copulas" or "dependence functions" . 

The purpose of this note is to take a different viewpoint, and to address 
this question: Which bivariate distributions with uniform marginals are 
important in their own right? This problem is naturally approached by 
starting with the property primarily responsible for the importance of the 
univariate uniform [0,1] distribution. The property is a characterization 
most easily stated with the following notation: 

(i) x E9 y := x + y - [x + y] = x + y (mod 1), x, y ::::: 0, 

lUniversity of British Columbia. 
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(ii) U d~t V means U and V are random variables with the same 
distribution, 

where ttl denotes the integer part of t. 

UNIVARIATE CHARACTERIZATION 

Suppose that P{X E [0, I]} = 1. Then 

X EB U d~t X for every random variable U ~ ° independent of X (1.1) 

if and only if X has the uniform [0,1] distribution. 
The property (1.1) can be easily interpreted by considering 21l"X to be 

a random direction. Reformulated as a functional equation in terms of the 
distribution F of X, (1.1) becomes 

11 F(x - y) dG(y) + 11 F(l + x - y) dG(y) -11 F(l- y) dG(y) = F(x), 

(1.2) 
for ° ~ x ~ 1, for all distributions G with support in [0,1]. This functional 
equation is easily solved by standard methods; the only solution is F(x) = 

x, ° ~ x ~ 1. 

2 Bivariate Versions 

Perhaps the most straightforward two-dimensional version of (1.1) is the 
following. 

FIRST BIVARIATE CHARACTERIZATION 

Suppose that P{(X, Y) E [0, W} = 1. Then 

(X EB U, Y EB V) d~t (X, Y) for every pair U ~ 0, V ~ ° of (2.1) 
random variables independent of (X, Y) 

if and only if X and Y are independent and uniformly distributed on [0, 1]. 
It is not difficult to show that (2.1) is equivalent to 

(X EB u, Y EB v) d~t (X, Y) for all u, v E [0,1]. (2.2) 

Condition (2.2) can be reformulated as a functional equation for the dis­
tribution F of (X, Y) which is easily solved to yield F{x, y) = xy, ° ~ x, 
y ~ 1. Alternatively the characterization (2.1) can be obtained directly 
from the uniqueness of Haar measure. 
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The above result is reminiscent of a result of Marshall and Olkin (1967) 
concerning bivariate exponential distributions. They started with the uni­
variate functional equation 

P(X > x+y) = P(X > x) P(X > y), x,y ~ 0, 

extended it to two dimensions by taking X, x, and y to be vectors, and 
then solved to find that the components of X must be independent. More 
interesting solutions were admitted by weakening the functional equation, 
and the same procedure can be followed here. 

SECOND BIVARIATE CHARACTERIZATION 

Suppose that P{(X, Y) E [0, IF} = 1. Then 

(X EB U, Y EB U) dg/ (X, Y) for every random variable U ~ 0 (2.3) 
independent of (X, Y) 

if and only if (X, Y) have a joint distribution H of the form 

H(x, y) = 11 F(J(x, y) dG(O), (2.4) 

where G is a distribution with support contained in [0,1]' and for fixed 
o E [0,1]' 

Fo(x,y) = 

x 
y-O 
o 
x+y-l 
x+O-l 
y 

ifO~O~y-x 

if Y - x ~ 0 ~ min(1 - x, y) 
ify~O~l-x 

ifl-x~B~y 

if max(1 - x, y) ~ 0 ~ 1 - x + y 
if 1 - x + y ~ B~ 1. 

To verify this result, first note that (2.3) is equivalent to 

(2.5) 

(X EB u, Y EB u) dgt (X, Y) for all u E [0,1). (2.6) 

Condition (2.6), when rewritten as a functional equation for the distribution 
H of (X, Y), becomes 

H(x, y) = H(x - u, y - u) + [H(l + x - u, y - u) - H(l - u, y - u») 

+ [H(x - u, 1 + y - u) - H(x - u, 1 - u)] 

+ [H(l + x - u, 1 + y - u) - H(1 - u, 1 + y - u) 

- H(l + x - u, 1 - u) + H(1 - u, 1 - u)] (2.7) 

for all u E [0,1]. 
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FIGURE 1. The set So and the value of the distribution function Fo in various 
regions. 

-+_"""""'""7r _____ --+.o.....(l, 1) 

(O,B) 
x+y-1 

o x - (1 - B) 

y 

(0,0) (1 - B, 0) 

The functional equation (2.7) appears to be difficult to solve using stan­
dard methods. However, it is immediate from (2.7) that the set of all so­
lutions is convex. A crucial step in solving (2.7) might be to identify the 
extreme point solutions. 

Suppose that H = F is a solution of (2.7) and that the point (s, t) belongs 
to the support of F. Let B = tEB (1- s). It follows from (2.6) that all points 
in the set 

89 = {(x,y): x = sEBz, y = tEBz, OS; z S; 1} 

={(x,y):x=z, y=zEBB, OS;zS;l} 

also belong to the support of F. Moreover, the conditional distribution F9 
of (X, Y) given (X, Y) E 89 must be uniform on 89. A somewhat tedious 
but straightforward calculation shows that F9 is given by (2.5). 

Now suppose that there are at least two points (Sl' t1) and (S2' t2) in 
the support of F for which B1 = t1 EB (1 - sd =1= B2 = t2 EB (1 - S2). The 
above arguments lead to the conclusion that the conditional distribution 
of (X, Y) given (X, Y) E 8 91 U 892 must be a mixture of the distributions 
uniform on 8 91 and 892 so that H = F cannot be an extreme point solution 
of (2.7). It follows from the Krein-Milman theorem that solutions of (2.7) 
must be of the form (2.4). 
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3 Properties of the Distribution H 

Bivariate distributions of the form (2.4) have some quite nice properties in 
spite of the fact that the definition of Fe is a bit awkward. 

UNIQUENESS 

The representation (2.4) is essentially unique, with non-uniqueness occur­
ring only because Fo = Fl. If G is not allowed to have point mass at 1, 
then G can be recovered from H through the equation 

G(O) = P{(X, Y) E Ae} 

where (X, Y) has distribution Hand 

Ae = {(x, y) : y = x EB a for some a E [0, OJ} = Ua<eSa. 

RANDOM VARIABLE REPRESENTATION 

If 
(X, Y) = (X, X EB 0), 

(3.1) 

(3.2) 

where X has a uniform [0,1] distribution, then (X, Y) has the distribution 
Fe· 

COVARIANCES 

From (3.2) it is easily verified that if (X, Y) has the distribution Fe, then 

1 1 
EXY = - - -B(l - B) 

3 2 ' 

1 1 
cov(X Y) = - - -B(l - 0) , 12 2 ' 

and 
corr(X, Y) = 1 - 60(1 - 0). (3.3) 

It follows from (3.3) that _1 ~ corr(X, Y) ~ 1, where the minimum 
correlation is achieved with 0 = ~ and the maximum correlation is achieved 
with 0 = ° or l. 

It also follows from (3.3) that if (X, Y) has the distribution H of (2.4), 
then 

corr(X, Y) = /[1- 60(1 - 0)] dG(O) 

= 1 - 6Ee + 6Ee2 , 

where e has the distribution G. 

(3.4) 
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REGRESSION 

If (X, Y) has the distribution H of (2.4), it follows from (3.2) that 

E(YIX) = G(l - X) - (1 - X) + Ee. (3.5) 

CONVOLUTIONS (MOD 1) 

Suppose that (Ui' \Ii) is a random vector with distribution K i , i = 1,2. 
Denote the distribution of (U1 Ell U2, VI Ell V2) by Kl ®K2. It can be seen 
with the aid of (3.2) that . 

(3.6) 

It follows that if Hi (·) = J F8 (·)dGi (0), then 

HI ®H2 (-) = f F8(·) d(GI ®G2 )(0). (3.7) 

Thus, the class of distributions of the form (2.4) is closed under convolution 
(mod 1), as well as under mixtures and weak limits. 

The fact that (3.7) follows from (3.6) has an analog for ordinary convolu­
tions which is best known under the condition that the mixing distribution 
G is infinitely divisible (Feller, 1971, p. 538). See also Keilson and Steutel 
(1974, Proposition 1.4) and Marshall and Olkin (1989, Lemma 2.6). 

4 Some Examples 

INDEPENDENT MARGINALS 

It is easy to see that (2.4) yields H(x, y) = xy, 0 ~ x, y ~ 1 if and only if 
G(O) = 0, 0 ~ 0 ~ 1, is itself uniform on [O,lJ. 

CONDITIONAL WAITING TIME IN A POISSON PROCESS 

If {N(t), t 2: O} is a Poisson process, it is well known that the conditional 
distribution ofT = inf{t: N(t) = I} given N(l) = 1 is uniform [O,lJ. This 
natural occurrence of the uniform distribution has a bivariate analog. 

Let ((N1(t), N2 (t)), t 2: O} be a bivariate Poisson process, i.e., N1(t) = 
M1(t) + M I2 (t) and N2(t) = M2(t) + M I2 (t), where MI, M2 and M12 are 
independent Poisson processes having respective parameters AI. A2 and A12, 
say. Let Ti = inf{ t : Ni(t) = I}, i = 1,2. Then the conditional distribution 
H of (TI, T2 ) given N 1(1) = N 2 (1) = 1 must have uniform marginals. 
Elementary calculations show that 

Ha(x,y) = (1- a)xy + amin(x,y), 0 ~ x, y ~ 1, (4.1) 



Albert w. Marshall 105 

where a = >'12/(>'1>'2 + >'12). This distribution is of the form (2.4) where G 
puts mass a at 0 and mass (1- a) uniformly on [0,1]. Of course Ho: is just 
a convex combination of the case of independence and the upper Frechet 
bound. 

The class of distributions of the form (4.1) is closed under convolutions 
(mod 1), and 

(4.2) 

This fact can be obtained directly or from (3.7). 
If (X, Y) has the distribution Ho: of (4.1) then from (3.4) it follows that 

corr(X, Y) = a. From (3.5), it follows that 

E(YIX) = ax + (1 - a)/2. 

Moreover, distributions H of the form (2.4) which have linear regressions 
must be of the form Ho: for some a E [0,1]. To see this, set E(YIX) = aX +b 
in (3.5) and use G(I) = 1 to conclude that G(x) = (1 - x)G(O) + x, 0 :::; 
x :::; 1; thus G is a convex combination of the distribution giving unit mass 
to the origin and the distribution uniform on [0,1]. 

ADDITIONAL EXAMPLES 

If G is uniform on [O,~] and (X, Y) has the distribution H of (2.4), then 
X and Y are not independent. However, X and Y are uncorrelated (this 
follows from (3.4)) and X + Y has the same distribution as it does in the 
case of independence (this is easily seen from a sketch of the density of H). 

If G(8) = 80:, 0 ::; 8 ::; 1 where a > 0, then (2.4) yields 

{ x+ _1_{yo:+1 + (1- x)O:+l - (y- x)O:+l -I} 0:::; x:::; y:::; 1 
H(x, y) = y + :t {xo:+1 + (1- y)O:+l - (x - y)O:+l - I} 12: x 2: y 2: O. 

5 Extension to Higher Dimensions 

Conceptually, extension of the preceding results to higher dimensions in­
volves no difficulties, but distributions uniform on sets of the form 

S = {(Xl, ... ,xn ) : Xi = Si EB Z, i = 1, ... ,n, 0:::; z:::; I} 

are not so easily written down. They can be parameterized by points in the 
set [0, l]n-1, so that in the n-dimensional version of (2.4), G is a distribution 
on [0, l]n-1. The n-dimensional versions of H in (2.4) have nice properties; 
e.g., their (n - 1) dimensional marginals are (n - 1) dimensional versions 
of H. 
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Multinomial Problems in 
Geometric Probability with 
Dirichlet Analysis 

Milton Sobel1 

ABSTRACT A variety of new combinatorial results are obtained using 
the recently developed technique of Dirichlet Analysis, which utilizes the 
study of Dirichlet integrals. These results are stated as seventeen problems 
which are geometrical or combinatorial in nature. 

1 Introduction 

The following 17 problems (and solutions) are all geometrical and/or com­
binatorial in nature and illustrate the wide application of a recently de­
veloped method of analysis, called Dirichlet Analysis because of the usage 
of Dirichlet integrals. These integrals are introduced, studied and tabled 
in Volumes 4 and 9 of Selected Tables of Mathematical Statistics and we 
refer to these books below simply as Vol. 4 and Vol. 9. The main emphasis 
in these 17 problems is (1) to show the wide application of these integrals 
and (2) to solve the so-called faces problem, the edges problem and the 
vertices problem for the regular and for certain quasi- regular polyhedra 
with central symmetry. Assuming that a polyhedral die falls with a face 
upward (otherwise the bottom face is used), we see the top face (resp., 
all the edges associated with the top face, resp., all the vertices associated 
with the top face) and the problem is to find the expected number of tosses 
E(T) needed to see all the faces (resp., all the edges; resp., all the vertices) 
of the given polyhedra. In many cases the Dirichlet analysis gives higher 
moments in addition to the first moment, so that variances can also be 
obtained. A summary table for the various polyhedra investigated is given 
as Table 1. In some cases exact fractional values of Dirichlet C-integrals 
are more useful than the decimal values in Vol. 9 and for this purpose a 
small exact C-table is included as an appendix to this paper; these values 
are used extensively throughout this paper. 

It is assumed that readers are familiar with the notations I~b) (r; m) and 

lUniversity of California, Santa Barbara 
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TABLE 1. Expectation results for selected polyhedra 

Polyhedron Faces Problem Edges Problem Vertices Problem 

Tetrahedron 8.33333 

Cube 14.70000 

Octahedron 21.51786 

Dddecahedl'on 37.23853 

Icosahedron 72.42848 
Cuboctahedron 45.52187 

(with P2 = 0, PI = P3 = ta) 
Cuboctahedron 42.42012 

(with P2 = 0, 6PI = 8P3 = !) 
Zonohedron (n = 6) 119.84961 
(triacontahedron) 

n.c. means not computed 

* the last 3 decimals may not be correct. 
** estimated values. 

4.33333 2.33333 

8.10000 4.20000 
11.01905 4.14286 

21.60216 12.34699 

37.50874* 14** 

26.29376 8.46870 

n.e. n.c. 

60** 31** 

cib) (rj m) fbr the type-1 and type-2 Dirichlet integrals. Definitions, recur­
rence relations and examples of the use of such integrals in combinatorial 
problems are given in Vol. 4 and Vol. 9, respectively. The related type-2 
Dirichlet integral Dib) (rj m), and generalizations of these integrals, such as 
I (b 1 ,b2 ) ( ) d C(b1 ,b2 ) ( . ) 1 d' d··u 1 9 ( ) rl,r2jm an ( )r1,r2jm,areaso 1scusse lllvO .. al,a2 al,a2 

Let Tf (resp., Tej resp., Tv) denote the number of tosses required to see 
(in the sense mentioned above) all the faces (resp., all the edgesj resp., all 
the vertices) each at least Olice. Let Ie = 2 denote the number of faces 
associated with each edge and let Iv (variable) denote the number of faces 
associated with each vertexj e.g. Iv = 3 for the tetrahedron, the cube 
and the dodecahedron but Iv = 4 for the octahedron and Iv = 5 for the 
icosahedron. As a result of the exact calculations in the problems below (in 
terms of C-functions), the following double inequality (and approximation) 
arises as a conjecture since no proof has been found. 

Conjecture 1.1 For any given regular or quasi-regular polyhedra (with 
central symmetry) 

(1.1) 

Since we have a definitive formula only for ETf , namely 

ETf = s (1 + ~ + ... + ~ ) (1.2) 

where s is the number of faces of the given polyhedron, the inequalities in 
(1.1) provide an upper bound for E(Tv) and a lower bound for E(Te). If the 
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exact answer is not known, then (1.1) also provides the best approximation 
known to the author. 

In rhombic and/or zonal polyhedra there can be two or more values of 
fv and the question then arises how to use (1.1) as an approximation. Thus 
in a certain 3D-sided zonohedron (with n = 6 in the notation of Coxeter 
(1973)), there are 32 vertices, 12 of which have 5 associated faces and the 
remaining 20 of which have 3 associated faces. Then the average nu~ber of 
faces associated with a vertex is [12(5) + 20(3)1/32 = 3.75. Hence for this 
zonohedron (called the triacontahedron) we give the answer to the faces 
problem as 

30 

E(T,) = 30 L ~ = 30(3.994987) = 119.84961 (1.3) 
j=l J 

and approximate the other two answers by 

E(Te) R;j 119.8497 = 59.92, 
2 

E(Tv) R;j 11~:~:97 = ~1.96. 

(1.4) 

(1.5) 

The use of equality in (1.3) deserves some comment. This zonohedron has 
central symmetry and each of the 30 (rhombic) faces has two vertices asso­
ciated with 5 faces and the other two associated with 3 faces. By symmetry 
we assume that the faces are equiprobable and (1.3) then holds. 

The vertices problem for the icosahedron has not been done, so that the 
use of (1.1) is in order; this gives 

1 
E(Tv) R;j 5(72.42848) = 14.5, (1.6) 

and we estimate the exact answer to be less than this value. In an expanded 
version of this paper (Sobel (1987), Problem 22), we get the exact answer 
for the vertices problem on the cuboctahedron, namely 8.46870, and the 
approximation gives (45.52187)/4 = 11.4. Although the approximation is 
not close, the inequality (1.1) still holds. 

Problem 1.2 "Seeing Double" Suppose we have a fair die with (~) sides 
and that each side has on it a different combination of two of the numbers 
(1,2, ... , c). We want the expected number of tosses E(T) required to see 
each of the c numbers at least r times. Consider first the case r = 1 and 
do r > 1 later. How does ET vary as a function of c? For the special case 
c = 4, find the variance of T. 

Remark 1.3 This problem has applications to finding the number of bound­
ary constraints of a feasible region and separating them from the redundant 
constraints . A random point in the feasible region and a random direction 
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TABLE 2. #Faces, #Edges, #Vertices and Iv for the Polyhedra in 
Table 1 

Polyhedron #Faces #Edges #Vertices Iv 

Tetrahedron 4 6 4 3 

Cube 6 12 8 3 

Octahedron 8 12 6 4 
Dodecahedron 12 30 20 3 
Icosahedron 20 30 12 5 

Cuboctahedron 14 24 12 4 

Zonohedron (n = 6) 3 for 20 vertices 

(triacontahedron) 30 60 32 5 for 12 vertices 

Average = 3.75 

give rise to 2 constmints. If c were known and each pair was equally likely, 
then ET would be the expected number of these line-cut opemtions needed 
to see each of the boundary constmints at least once. If each pair had its 
own probability the same methods apply (c.f. next problem). If the num­
ber of constmints c is unknown then any reasonable stopping rule provides 
information about c. 

Solution: 

In this problem we can make more progress with Markovian methods than 
with Dirichlet integrals, but we consider both (along with other) techniques. 
Let Xj denote E(Tlj), the expected number of additional tosses needed after 
seeing j constraints (or numbers) each at least once, so that Xo = E(TIO) 
is the required ET. It is easily seen that the equations to be solved are: 
Xo = 1 + X2 and 

Xc-3 = 1 + { (c; 3)XC_3 + (c - 3)3xc-2 + G)XC-1} / G) 
Xc-2 = 1 + { (c; 2)XC_2 + (c - 2)XC-1} / (~) 

Xc-1 = 1 + (c; 1)XC_1/ G) (1.7) 

For small values of c from 3(1) 20 the solutions are given in Table 4 to 7 
decimal places. If we disregard all the ones after the equal sign in (1. 7) and 
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write the result as : = Q:, then Q is the probability transition matrix 

for the c - 2 transient states (2,3, ... , c - 1). Hence from standard Markov 
chain theory about the fundamental matrix (1 - Q)-l, we have the result 

(1.8) 

where [!!l1 is the first coordinate of the vector !!, ~ is a vector of ones and Q 

(as well as 1 - Q and (1 - Q)-1) are upper triangular with at most 3 non­
zero diagonals. To illustrate the solution (1.8), we consider c = 4 where X4 

is already zero and, from (1.7) 

1 (1 4) 
Q= 6 0 3 ' 

(1_ Q)-1=6(5 _4)-1 =~(3 4). 
o 3 5 0 5 

(1.9) 

Hence for c = 4 the desired result for E(T) is 1 + 154 = 3.8 as in Table 
4 below. The same answer is easily obtained from (1.7), since Xc-1 = c/2 
from the last equation, which is 2 for c = 4. From the next equation 

5X2 = 6 + 4X3 = 6 + 8 = 14. (1.10) 

It follows that 

ET = Xo = 1 + 14/5 = 19/5 = 3.8. (1.11) 

A Dirichlet analysis of this problem for c = 4 is based on the concept of a 
minimal covering set. Let the sides of the die numbered (1,2), (1,3), (1,4), 
(2,3), (2,4) and (3,4) be denoted by 1, 2, 3, 4, 5 and 6 respectively. Then 
there are seven minimal covering sets, namely (1,6), (2,5), (3,4), (1,2,3), 
(2,4,6), (1,4,5) and (3,5,6). We need unions of t ~ 1 of these minimal 
covering sets in order to calculate the probability of at least 1 covering 
using inclusion-exclusion. For each t we want to break up the G) possible 
unions of t minimal covering sets according to the size of the union, Le., 
the number of different pairs in the union. See Table 3. 

We need the probability of terminating in anyone of the seven minimal 
covering sets, Le., in their union. We use inclusion-exclusion with +1 for 
odd values of t and -1 for even values of t. All sets of the same size are 
treated alike and hence we only need to consider a typical case. Thus (1,6) 
is one of 3 cases all of size 2 and each occurs once, Le., with multiplicity 
one. Since there are 7 minimal covering sets we have a row check of G) 
for the tth row. The last 2 rows have to add to 1 and 0, respectively, and 
are useful checks. From the last row (after factoring out the common 6) we 
obtain for the 'Yth ascending factorial moment (for all 'Y ~ 0) 

E(Th'J) = 6r(\+ 1) [ci 1)(1,'Y + 1) + 2cf)(1,'Y + 1) -lOCP)(1,'Y + 1) 
p 

+ lOC~4)(1,'Y + 1) - 3C~5)(1,'Y + 1)] (1.12) 
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TABLE 3. The Union of t of the Seven Minimal Covering Sets for 
c=4 

Size 61 

Absolute 
Size 2 Size 3 Size 4 Size 5 Value Check 

t = 1 +3 +4 (I) = 7 

t=2 -15 -6 m =21 

t=3 +24 +11 m =35 

t=4 -6 -29 m =35 

t=5 +21 m =21 

t=6 -7 W=7 

t=7 +1 m =1 

Algebraic 
Value Check 

Coef. I +3 + 4 -15 +12 - 3 +1 
Coef. x Size +6 +12 -60 +60 -18 0 

where p = 1/6. For 'Y = 1 and 'Y = 2 this yields (exactly) 

E(T) = 36[3/4 + 2(11/18) - 10(25/48) + 10(137/300) - 3(49/120)J = 3.8, 
(1.13) 

E{T(T + I)} = 432[.875 + 2(.78703704) - 10(.72048611) 

+ 10(.66772222) - 3(.62449074)J = 20.7200. (1.14) 

It follows that for c = 4 

(12(T) = 20.7200 - (3.8)(4.8) = 2.48, (1.15) 

which is quite small for problems of this type. 
The problem with this analysis is that the number of minimal covering 

sets grows with c (it is 35 for c = 5) and the total number of subsets that 
have to be distributed in the table grows too rapidly with c. 

Although we have now considered three different solutions of the prob­
lem, none of these are easy to generalize so that explicit formulas or tables 
are easily obtained. We therefore consider one more method which does 
lead to an explicit formula for any c-value and from which a table can 
easily be constructed. 

The probability pjn) of covering all c digits for the first time on the nth 
toss is equal to the sum of two terms. One term is the probability of staying 
within and covering any specific set of exactly c - 1 digits in the first n - 1 
tosses; this is multiplied by c and by the probability of getting the missing 
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digit on the nth toss. The other term is the probability of staying within 
and covering any specific set of exactly c - 2 digits in the first n - 1 tossesj 
this is multiplied by m and by the probability of getting the two missing 
digits on the nth toss. Hence, letting [x] denote the integer part of x, we 
obtain 

(1.16) 

and hence the desired result for E(T) is 

E(T) = f: 2n((Cf))n-l ~(_I)Q(c: 1) ((C~;~Q))n-l 
n=[(c+2)/2] (2) Q=O ( 2 ) 

00 ( (C-2) ) n-l c-4 _ ( (c-2-Q) ) n-l 
+ L n (~) L( -1)Q C a 2) (C~2) . (1.17) 

n=[c/2] 2 Q=O 2 

Interchanging the order of summations, we obtain after some algebra 

where r = [c/2] and fr(a, c) is given by 

[ ( (Q;2)) r ((Q;2)) r+l] / ( { (Q;2) }) 2 
fr(a, c) = 1- (r + 1) m + r m . 1- m 

(1.19) 
From (1.18) and (1.19) we obtain Table 4 of ET-values. The fact that 

symmetrical dice with (~) sides exist only for c = 4 is of no serious concern, 
since the random experiment can be carried out otherwise, say with cards. 

Regarding an asymptotic evaluation, it can be shown from the linear 
equations in (1.7) that the leading asymptotic term as C -4 00 is ~clog Cj we 
omit the details. It follows that any linear function of C obtained by solving 
a subset of the equations (1.7) and adding 1 for each additional equation 
will eventually be exceeded. A reasonable approximation for E(T) in view 
of the above is 

C 
E(T) ~ '2{logc+ .57), (1.20) 
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TABLE 4. Values of E(T) for Prob-
lem 1.4 

c E(T) c E(T) 
3 2.5000000 12 18.0592579 

4 3.8000000 13 20.0936347 

5 5.3253968 14 22.1675957 

6 6.9285714 15 24.2782575 

7 8.6257576 16 26.4231256 

8 10.3954727 17 28.6000215 

9 12.2306693 18 30.8070265 

10 14.1233619 19 33.0424380 

11 16.0678397 20 35.3047349 

which gives 35.65 for c = 20 and 2.50 for c = 3. The possibility that (1.20) 
is an upper bound for all c is consistent with our table above since the error 
is increasing slightly with c. On the other hand if we replace .57 in (1.20) 
by .50 the result appears to be a lower bound for all c. It is conjectured 
that the error in (1.20) will remain less than 1 at least up to c = 50. 

Problem 1.4 Sliced Edges and Chopped Vertices Starting with an 
ordinary die with 6 sides, 12 edges and 8 vertices we modify it as follows. 
Cut a slice off each of the 12 edges so that the die can also stand (with 
equal probability) on anyone of the 12 new edge-faces. At each of the 8 
original vertices we chop off a piece so that the die can also stand (with 
equal probability) on anyone of the 8 new vertex- faces. Let PI, P2 and P3 
denote respectively the new probabilities of each of the original faces, each 
of the 12 edge-faces, and each of the 8 vertex-faces. Under this symmetry 
the only algebraic restraint we have for the Pi ~ 0 (i = 1, 2, 3) is 

(1.21) 

If the die lands on an original face we see only one number j(l :::; j :::; 6) as 
usual. If it lands on an edge-face, we see a pair of adjacent (or neighboring) 
sides of the original die. If it lands on a vertex-face, we see a neighboring 
triple, Le., three sides of the original die that had a common vertex. Hence, 
we see i numbers with probability Pi (i = 1, 2, 3), but only neighboring 
pairs and neighboring triples on the original die are possible. With the usual 
marking on a die (Le., opposite sides adding to seven), the neighboring pairs 
exclude exactly those pairs that add to seven and the 8 neighboring triples 
exclude exactly those that contain a pair adding to seven. We make use of 
this geometric property to find the expected number of tosses E(T) needed 
to see all six numbers, each at least once. The variance a 2 (T) is also found 
as a special case of higher moments. It would be desirable to use a method 
that can also be applied to other regular or centrally symmetric polyhedra 
with faces having different shapes. 
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Solution: 

The solution is based on a combination of conditioning and inclusion- ex­
clusion which uses the geometry of the die. By virtue of the way dice are 
marked, the geometry consists of counting how many pairs of elements 
in a subset add to seven. Thus, the subsets (6,4,3,1) and (6,5,2,1) are 
equivalent but (6,5,4,3) and (6,4,3,1) are not. 

We first condition on the event that exactly one number is not seen until 
the nth toss and all the others are covered at least once in the first n - 1 
tosses; this is multiplied by 6. In the second summation in (1.23) below 
we condition on the event that for one of the 12 neighboring pairs neither 
member is seen until the nth toss and all the others are covered at least 
once in the first n - 1 tosses; this is multiplied by 12. In the third (and 
last) summation we do the analogous thing for each of the 8 neighboring 
triples and multiply the result by 8. The covering part is accomplished by 
inclusion-exclusion but in place of using (~) for the number of sides that can 
be missed (when side #6 say is reserved forthe nth toss), the pair (6,1) has 
to be treated differently than the other four pairs. Similarly instead of (~) 
we consider 4 + 6 cases, etc. One definite advantage of our method is that 
we get in one calculation the 'Yth ascending factorial moment for all l' ~ o. 
The second factor outside each of the three summations is easily seen to 
be the probability of the required single, double and triple (respectively) 
needed on the nth set to terminate the tossing. It is also clear that the 
first two summations start with n = 3 but the last one statts with n = 2. 
However, corrections (after summing the infinite series) are needed only for 
n = 1 due to the fact that we are omitting terms of the form on-I, which 
equals one if and only if n = 1 (and 0 otherwise). We thus obtain for any 
'Y~o 

00 

E(Tbl) = 6(Pl + 4112 + 4p3) L nh'1(5pl + 8P2 + 4p3)n-l 
n=3 

00 

+ 12(P2 + 2p3) L n b1 (4Pl + 5112 + 2P3t-1 

n=3 
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. {I _ 2 ( 3Pl + 3P2 + P3 ) n-I 
4PI + 5P2 + 2P3 

2 ( 3PI + 2P2 )n-I 5 ( 2Pl + P2 )n-I 
- ~+~+~ + ~+~+~ 
+ PI 4 PI ( 2 )n-I ( )n-l} 

4PI + 5P2 + 2P3 4PI + 5P2 + 2P3 
00 

+ 8P3 L n h1 (3Pl + 3P2 + P3)n-1 
n=2 

{I (3) ( 2Pl +P2 )n-I (3) ( PI )n-I} 
. -. 1 3PI + 3P2 + P3 + 2 3PI + 3P2 + P3 . 

(1.22) 

For, = 1, after summing each of the above series, combining like terms 
and correcting for n = 1 (since n = 2 needs no correction) we obtain 

E(T) = 6(pl + 4P2 + 4p3) 12(2PI + 7P2 + 6p3) 
(1 - 5PI - 8P2 - 4P3)2 (1 - 4PI - 5P2 - 2P3)2 

6(pl + 4P2 + 4p3) + 8(3pI + 9P2 + 7p3) 
(1 - 4PI - 4p2)2 (1 - 3PI - 3P2 - P3)2 

12(3PI + lOp2 + 8p3) 12( 4Pl + llp2 + 8p3) + ---~------~~~ 
(1 - 3PI - 2p2)2 (1 - 2PI - P2)2 

12(PI + 3P2 + 2p3) 6(5pI + 12p2 + 8p3) 
- (1 - 2pI)2 + (1 - PI)2 

- 2(3pI + 6P2 + 4p3), (1.23) 

where the last term is the correction for n = 1. For the (, + 1) st ascending 
factorial moment we simply replace in (1.23) all the squares (Le., the ex­
ponents 2) by, + 1 and multiply every term (including the correction) by 
,! Hence, we need not rewrite the result (1.23) for general" although we 
use it below. This prescription also holds for, = 0, and the answer must 
then be equal to 1, of course. 

Consider the following eight different cases (or models) for the above. 

Case 1: PI = P2 = P3 = 1/26, 
Case 2: 6PI = 12p2 = 8P3 = 1/3 
Case 3: PI = 0, 12p2 = 8P3 = 1/2 
Case 4: P2 = 0, 6PI = 8P3 = 1/2 
Case 5: P3 = 0, 6PI = 12p2 = 1/2 
Case 6: PI = P2 = 0, 8P3 = 1, 
Case 7: PI = P3 = 0, 12p2 = 1, 
Case 8: P2 = P3 = 0, 6PI = 1; 

(1.24) 
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we calculate ET for each of these eight cases. [The reader may wish to use 
his intuition to rank the eight results before looking at the answers below.] 

From (1. 23) the expectation answers for these eight cases are 

Case 1: 
Case 2: 
Case 3: 
Case 4: 

6.42929 
6.66515 
5.21532 
6.52797 

Case 5: 
Case 6: 
Case 7: 
Case 8: 

9.40574 
4.14286 
6.90433 
14.70000. 

(1.25) 

The reader will of course recognize the last case as our usual die problem 
(waiting to see each side at least once) without any slicing or chopping; it 
serves as a standard to compare with the other cases. 

For'Y = 2 we again use (1.23) with the modification indicated above. For 
Case 1 we obtain for 'Y = 2 from (1.23) (with a factor of 2 and all exponents 
equal to 3) 

E{T(T + I)} = 55.54164, (1.26) 

and hence for Case 1 we obtain the variance 

a 2 (T) = 55.54164 - (6.42929)(7.42929) = 7.77658. (1.27) 

For Case 8 the same method yields 38.99 for the variance and this is a check 
since this is a known result, i.e., it has been obtained by other methods. 
The reader may wish to see if Case 6 with the smallest mean also has the 
smallest variance. 

Problem 1.5 Do the faces, edges and vertices problems for the (regular) 
tetrahedron, i.e., find the expected number of tosses ET needed to see all 
the faces (resp., all the edges, resp., all the vertices) of the tetrahedron 
if on each toss we 'see' all elements associated with the face touching the 
ground. 

Solution: 

The faces problem has the usual analysis and answer in two different forms 

E(Tf ) = 16d3)(I, 2) = 4 (1 + ~ + ~ + ~) = 8.33333, (1.28) 

and we omit the detailed derivation. For the edge problem we can only get 
one new edge on the nth (or last) toss. Hence we obtain (with p = 1/4) 

P{Te = n} = 6(2p)(1- 2pt-lI~(1;n -1). 
1-2p 

(1.29) 

As a check we obtain by summing (1.29) on n 

P{Te < oo} = 6C~~~(1; 1) = 6/ G) = 1, (1.30) 



118 7. Multinomial Problems in Geometric Probability with Dirichlet Analysis 

where the C-value can be obtained by using Vol. 9 (p. 106) or by a simple 
probability calculation using the probability interpretation of C in Vol. 9 
(p. 13). If we multiply by n and then sum we obtain 

_ 6 (2) . _ ( 13) _ E(Te) - 2p C1/ 2 (1, 2) - 12 36 - 4.33333, (1.31) 

where the C-value is obtained from Vol. 9 (p. 106) or from Table 8 below. 
For the vertex problem we can only get one new vertex on the nth toss 

and hence (with p = 1/4) 

P{Tv = n} = 4(3p)(1- 3p)n-l I~ (1; n -1). 
1-3p 

(1.32) 

The check, by summing on n, gives 

P(Tv < 00) = 4CD~(1; 1) = 4 (~) = 1. (1.33) 

If we multiply by n and then sum we obtain 

_ 4 (1) . _ 16 ( 7 ) _ 
E(Tv) - 3p C 1/ 3 (1, 2) - 3 16 - 2.33333, (1.34) 

where the C-value is obtained from Vol. 9 (p. 105) or from the exact C-table 
in the Appendix below. 

Problem 1.6 Do the vertices problem for the cube. 

Solution: 

Another method was rejected in favor of the following analysis which em­
phasizes the common aspects of all the polyhedral problems. Consider the 
(at most) 4 disjoint events Aj where j is the number of new vertices seen 
on the nth (or last) toss. Let Pj (resp., Tj ) denote the contribution for each 
j to P{T = n} (resp., E(T)), so that P{T = n} (resp., E(T)) is the sum 
of the four contributions. For j = 1 we have 8 possible vertices for the last 
one seen each associated with 3 faces and hence, letting p = 1/6, 

1 (3) _ 8 (3) . _ 57 
Pi = 8(3p)(1 - 3p)n- I~ (1; n - 1); Tl - 3p C1/ 3 (1, 2) - 25' (1.35) 

using Vol. 9 (p. 105) or the exact C-table in the Appendix below. For j = 2 
we have 12 possible edges each associated with 2 faces and hence 

1 (2) _ 3 (2) . _ 37 
P2 = 12(2p)(1 - 4p)n- Irrv (1; n - 1); T2 - 2p C1/ 4 (1, 2) - 25' (1.36) 

using Vol. 9 (p. 104) or the exact C-table in the Appendix. It should be 
noted that 2 opposite vertices (and also 3 new vertices) cannot occur for 
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the first time on the nth toss, i.e., P3 = T3 = o. Thus if the vertices on the 
last face seen are marked 1, 2, 3, 4 cyclically and if vertices 1, 2 and 3 were 
not seen on the first n - 1 tosses then vertex 4 which has to be seen either 
with 1 or with 3 was also not seen on the first n - 1 tosses. For j = 4 we 
have 6 possible faces and hence 

1 (1) _ 6 (1) • _ 11 
P4 = 6(p)(1 - 5p)n- I~ (1; n - 1); T4 - 25p C1/5 (1, 2) - 25. (1.37) 

It follows that 

E(Tv) = 57 + 37 + 11 = 21 = 4.20000. 
25 5 

(1.38) 
The check in this case gives 

(3) (2) 6 (1) 8 6 6 (1) 
P{Tv < oo} = 8C1/3(1; 1)+6C1/4(1; 1)+5C1/5 (1; 1) = 20 + 15 +5 6" = 1. 

Problem 1. 7 Do the edges problem for the octahedron. 

Solution: 

(1.39) 

Consider the three disjoint (and exhaustive) events Aj (j = 1, 2, 3) where 
j is the number of new edges seen on the nth (or last) toss. For j = 1 
two triangles are not seen on the first n - 1 tosses but the four triangles 
surrounding these two are seen. In addition at least one of the 2 remaining 
triangles has to be seen in order to include the edge joining these two. 
Hence for p = 1/8 

Pi = 12(2p)(1 - 2p)n-l [2I~~2p (1; n - 1) - I~j2p (1; n - 1)] (1.40) 

and multiplying by n and summing for n ~ 6 

Tl = ~![2C~~~(I; 2) - C~~~(I; 2)] = 48(.18069728) = 8.67346944. (1.41) 

For j = 2 we obtain by a straightforward similar analysis 

P2 = 24p(1 - 3t-1 I~ (1; n - 1); T2 = ~C~4/~(I; 2) = 1.99836736. 
1-3p 3p 

(1.42) 
For j = 3 a similar analysis yields 

P3 = 8p(1 - 4Pt-1 I~ (1; n - 1); T3 = ~C~3/~(I; 2) = .34721088. 
1-4p 2p 

(1.43) 
The sum Pi + P2 + P3 equals P{Te = n} and 

E(Te) = Tl + T2 + T3 = 11.01904768. (1.44) 
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The check for this problem is 

P{Te < oo} = 12[2C~~~(I; 1) - C~~~(I; 1)] + 8C~~;(I; 1) + 2C~~~(I; 1) 

( 2 1 ) 8 2 12 ( 5 ) 2 
= 12 21 - 28 + 35 + 35 = 1" 12 +"7 = 1. (1.45) 

Although we carried out the computation in (1.41) through (1.44) with 
decimals from Vol. 9, an alternate method would be to use the entries in 
the exact C-table and this furnishes a rational answer, which will agree 
with the above. 

Problem 1.8 Do the edges problem for the dodecahedron which, accord­
ing to Table 1, has 30 edges. 

Solution: 

Consider the disjoint (and exhaustive) events Aj where j is an index for 
the number and relative position of the new edges seen on the nth (or last) 
toss. Here we need at most 7 cases since for j = 2 and j = 3 we may want 
to consider whether or not the edges are connected; surprisingly it turns 
out that we only need 2 cases. For j = 1, since there are 30 edges and 
p = 1/12, 

PI = 30(2p) [(1 - 2p)n-1 I~~2p (1; n - 1) + 2(1 - 3p)n-1 I~~3P (1; n - 1)] 

= 30(2p)(1 - 2p)n-1 

(1.46) 

here we gave two equivalent forms, the latter of which will give us C­
functions with the same subscript. The derivation of (1.46) follows from 
the fact that 2 pentagons are not seen on the first n - 1 tosses and the 
6 pentagons surrounding these two are seen. The remaining 4 pentagons 
are connected and the reader can then follow the argument with a simple 
sketch. 

For j = 2 suppose 2 edges both seen for the first time on the nth (or last) 
toss are connected. This cannot occur since the third edge at the common 
vertex of these two cannot be seen (on the first n - 1 tosses) without one 
of these two. Similarly the only other case is Case 2B where 2 edges on 
the same pentagon have one space between them. There are 60 such pairs 
and each implies that 3 connected pentagons are not seen on the first n - 1 
tosses and that 7 pentagons surrounding these are seen on the first n - 1 
tosses. The remaining 2 pentagons have 1 common edge and we see it by 
getting either one of these 2 pentagons or both. Hence for Case 2B 

P2B = 60(p) [(1- 3Pt-1 I~~3P (1; n - 1) + 2(1 - 4p)n-1 I~~t (1; n - 1)] 

= 60(p)(1 - 3p)n-1 [2I~~3P (1; n - 1) - <~3P (1; n - 1)] . (1.47) 



Milton Sobel 121 

From the second expression in (1.46) we obtain 

_ 15 [ (8) ( .) (9) ( .) (10) ( . )] Tl - - C1/ 2 1,2 + 2C1/ 2 1,2 - 2C1/ 2 1,2 
P 

(1.48) 

and from the second expression in (1.47) we obtain 

_ 20 (8). (9). 
T2B - 3p[2C1/ 3 (1,2) - C1/ 3 (1,2)]. (1.49) 

As mentioned above the cases for j = 3, 4 and 5 cannot occur; the argument 
is the Sanle as above for Case 2A. Hence 

P{T = n} = PI + P2B 

P{Case I} = 30[Ci~;(I; 1) + 2Ci~;(I; 1) - 2CD~)(I; 1)] 

28 
= 33; 

P{Case 2} = 20[2Ci~~(I; 1) - ci~~(1; 1)] = :3' 

(1.50) 

(1.51) 

and the check lies in the fact that the latter two add to one. If we multiply 
by n and then sum we obtain (with P = 1/12) 

_ 15[ (8) ( )( .) (9) (10)] 20[ (8) ( .) (9)] E(Te) - - C1/ 2 8 1,2 + 2C1/ 2 - 2C1/ 2 + -3 2C1/ 3 1,2 - C1/ 2 
P P 

= 180 [ (5~8:010) + 2 ( ::::O~) - 2 (:18:~6~) ] 
[ ( 42131) (44441)] 

+ 80 2 1524600 - 2032800 

1646733 = 49901 = 21.602165. (1.52) 
33(2310) 2310 

The use of the first expressions in (1.46) and (1.47) gives exactly the same 
result. In distinction to the method used for problem 1.7 where we used 
decimal expressions from Vol. 9, we have used here only C-values from 
the exact C-table in the Appendix below to illustrate the two different 
methodologies; these methods are of course interchangeable. 

Consider the generalized die of Problem 1.4 with P2 = 0 so that 

(1.53) 

i.e., we have 6 squares (resp., 8 triangles) with common probability PI 
(resp., P3). Among geometers the figure in question is known as a cuboc­
tahedron and is classified as quasi-regular (cf. Coxeter, 1973, p. 18). [We 
prefer to work with PI and P3 subject to (1.53) without specifying them 
since they may depend on factors other than the geometry of the polyhe­
dron (such as the substance it is made of or the manner of tossing or etc.).] 



122 7. Multinomial Problems in Geometric Probability with Dirichlet Analysis 

Cases 4 and 6 of Problem 2 both pertain to this polyhedron, which has 
24 edges if P3 > 0 and is a cube with 12 edges if P3 = O. Since we cannot 
make a continuous change from the cuboctahedron to the cube by letting 
P3 --4 0 without major changes in the geometry, we should not expect the 
answer to an edge problem for the former to necessarily yield the correct 
answer for the latter by simply setting P3 = O. We now investigate this 
point numerically in detail. 

Problems 1.9 (A and B) Do the edges problem a) for the cuboctahe­
dron with 24 edges and b) also for the cube with 12 edges. Check whether 
the answer to a) with P3 = 0 agrees with the answer in b) or if it agrees 
with the 'magic' answer 14.7 for the faces of a die. If the latter, give an 
explanation. 

Solution: 

We consider 7 disjoint (and exhaustive) ways of termination which we call 
TTj (j = 1, 2, ... , 7): 

TTl: with one new edge, 

TT2 : with a pair of parallel new edges on the same square, 

TT3: with a connected pair of new edges on the same square, 

TT4 : with 3 new edges on the same square, 

TTs: with 4 new edges on the same square, 

TT6: with 2 new edges on the same triangle, 

TT7: with 3 new edges on the same triangle. 

For TTl if anyone of the 24 edges is not seen until the nth (or last) toss 
then the associated square and triangle were not seen on the first n - 1 
tosses. This implies that 2 other square and 3 other triangles surrounding 
this pair were seen in the first n - 1 tosses; this accounts for a total of 
3 squares and 4 triangles. The remaining 3 squares and 4 triangles are 
sketched in Fig. 1, where arrows point to identifiable sides and 8 denotes 
edges included in the previous discussion. 

There are eight edges not yet accounted for; to see all of these consider 
8 disjoint subcases: 

Subcase 1: 80,81, 82 Sub case 5: 8o, 81, 82 , To, Tl,T3 
Subcase 2: 8o, 81, 82, To, Tl,T2, T3 Subcase 6: 8o, 81, 82, To, Tl , T2,T3 
Subcase 3: 80 ,81,82, To, T3 Subcase 7: 8o, 81, 82,To,Tl,T2,T3 
Subcase 4: 80,81, 82, To, Tl Sub case 8: 80,81, 82, To, Tl , T2,T3 

Here 8 denotes the absence of 8 in the first n - 1 tosses. For TT2 two 
triangles and one square are not seen until the nth (or last) toss and hence 
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FIGURE 1. Backside of the Cuboctahedron 

~ meane identify 

the 4 square and 2 triangles surrounding these are seen in the first n - 1 
tosses. We consider two disjoint (and exhaustive) subcases: 

Subcase 1. The remaining square S6 is seen among the first n - 1 tosses. 

Subcase 2. S6 is not seen but the 4 remaining triangles are all seen in the 
first n - 1 tosses. 

For TT3 two triangles and a square are not seen until the nth (or last) toss; 
it follows that 2 other triangles and 3 other squares are seen on the first 
n - 1 tosses. Then we consider four disjoint (and exhaustive) sub cases (cf. 
Fig. 2) where S indicates edges included in the previous discussion. 

Subcase 1: 
Subcase 2: 

So, S1 I Subcase 3: 
80, S1. T1. T2, T3, T4 Subcase 4: 

So, 81 , T1, T2 
80, 81 , Tl, T2, T3, T4· 

For TT4 we need two subcases as in TT2 above. 

For TT5 we again need two subcases as in TT2 above. 

For TT6 we use four subcases and Fig. 3. 

FIGURE 2. Case TT3 for the edges problem of the cuboctahedron 

s s 

s s 
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FIGURE 3. Case TT6 for the edges problem of the cuboctahedron 

s s 

s 

Subcase 1: To, fL 81. 82 

Subcase 2: 
To, Tl I Subcase 3: 
1''0, Tl, 80, 8 1 , 8 2 ~ubcase 4: To, fL 80, 81. 82 

Finally for TT7 we have two disjoint (and exhaustive) subcases: 

Subcase 1. The one remaining triangle is seen in the first n - 1 tosses. 

Sub case 2. The one remaining triangle is not seen but all 3 remaining 
squares are seen in the first n - 1 tosses. 

Let Pi (resp., Ti ) (i = 1, 2, ... , 7) denote the contribution of TTi to 
P{T = n} (resp., to Ee(T)). Then 

PI = 24(Pl + P3) [(1 - PI - P3)n-l 1(:'~~I]_P3' 1_:"3_P3 ) (1,1; n - 1) 

+ (1 - 2Pl - P3)n-l 1((4,7) p] P3) 
1 2Pl P3' 1 2Pl V3 

+ 2(1 2 )n-l1(4,5) 
- PI - P3 (PI P3) 

1 2Pl V3' 1 2Pl P3 

+ (1 3 )n-l1(3,6) 
- PI - P3 (PI P3) 

1 3Pt P3' 1 3Pt V3 

+ 2(1 3 )n-l1(3,7) 
- PI - P3 (P] P3) 

1 3Pt V3' 1 3Pt V3 

(1 4 )n-11(2,7) ] + - PI - P3 (P] P3) , 
1 4Pl V3' 1 4Pl V3 

(1.54) 

P2 = 12pl [(1- PI - 2P3t-1 1((5,2) p] P3) (1,1; n - 1) 
1 PI 2P3' 1 PI 2P3 

+ (1 - 2p - 2p )n- 11(4,6) ] 
1 3 PI P3 , 

(I 2Pl 2P3' 1 2Pl 2P3) 

(1.55) 
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P3 = 24pl [(1 - PI - 2p3)n-l 1(5,2) 1'1 

1 PI 2P3' 1 

1'3 ) (1, 1; n - 1) 
1'1 21'3 

+ (1- 2Pl - 2P3)n-lI'4,6) 1'1 

(1 2))1 2P3' 1 

+ (1 - 2Pl - 2P3)n-11(4,4) 1'1 

(1 2"1 2P3' 1 

+ (1 - 3Pl - 2P3)n-11(3,6) 1'1 "3)] , (1.56) 
(1 3Pl 2P3' 1 3Pl 2P3 

P4 = 24pl [(1- PI - 3p3)n-l 1(5,1) 1'1 1'3) (1, 1; n - 1) 
1 PI 3P3' 1 PI 3P3 

+ (1 - 2Pl - 3P3)n-11(4,5) 1'1 1'3] , (1.57) 
(1 2))1 3P3'1 2"1 3P3) 

P5 = 6Pl [(1 - PI - 4p3)n- 11(5) 1'1 (1; n - 1) 
1 1'1 -41'3 

+ (1 - 2Pl - 4P3)n-l1(4,4) 1'1 1'3) (1,1; n - 1)], (1.58) 
1 2Pl 4P3' 1 2Pl 4P3 

P6 = 24p3 [(1 - 2Pl - P3t-1 1(1,7) 1'1 1'3) (1,1; n - 1) 
1 2Pl V3' 1 2Pl V3 

+ (1 - 2Pl - 2P3t-11(4,6) 1'1 

(1 2))1 2P3' 1 2~3 2P3) 
+ (1 - 2Pl - 2P3t-11(3,6) 1'1 1'3) 

(1 2Pl 2P3' 1 2Pl 2P3 

+ (1 - 2Pl - 3P3)n-l1(4,5) 1'1 1'3.) (1, 1; n - 1)] , (1.59) 
1 2Pl 3P3' 1 2P2 3P3 

P7 = 8P3 [(1 - 3Pl - P3t-1 1(7) 1'3 (1; n - 1) 
1 31'1 1'3 

+ (1 - 3Pl - 2P3)n-l1(3,6) 1'1 1'3) (1, 1; n - 1)]. (1.60) 
1 3Pl 2P3' 1 3Pl 2P3 

Letting Dij = iPl + jP3, the corresponding T-values are 

_ ( ) [1 (5,3) (.) 1 (4,7) 2 (4,5) 
Tl - 24 PI + P3 D2 C(.EL 1.L) 1,1,2 + D2 C(.EL 1.L) + D2 C .EL,1.L 

11 Dll'1Yil 21 D21'D21 21 D21 D21 

+ _1_d3,6) + ~d3,7) + _1_d2,7) ] (1.61) 
D~1 ($it,~) D~1 ($it,~) D~1 (~,$t) , 

_ [1 (5,2) (.) 1 (4,6) ] 
T2 - 12pl D2 C(.EL 1.L) 1,1,2 + D2 C(.EL 1.L) , 

12 Dl2' D12 22 1>22' D22 

(1.62) 

_ [1 (5,2) (. . 1 (4,6) 
T3 - 24pl D2 C(.EL 1.L) 1,1,2) + D2 C(.EL 1.L) 

12 n-i2'D12 22 1>22'V22 

+ _1_d4,4) + _1_c(3,6) ] 
2.EL p 2.EL1.L' D22 ( D22 ' ~ ) D32 ( D32 ' D32 ) 

(1.63) 
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- [1 (5,1) . 1 (4,5) 1 
T4 - 24p1 D2 C(.El... ..Ea...) (1,1,2) + D2 C(.El.....Ea...) , 

13 D13 ' D13 23 D23' D23 
(1.64) 

_ [1 (5). 1 (4,4) . ] 
T5 - 6P1 D2 C ~ (1, 2) + D2 C(.El... ..Ea...) (1,1,2) , 

14 14 24 "lJ24'"lJ24 
(1.65) 

_ [1 (1,7) (.) 1 (4,6) 
T6 - 24p3 D2 C(.El... ..Ea...) 1,1,2 + D2 C(.El... ..Ea...) 

21 D21 ' D21 22 D22' D22 

+ _1_0<3,6) + _1_0<4,5) ] 
D~2 (~,~) D~2 (~,~) , 

(1.66) 

_ [1 (7). 1 (3,6) . ] 
T7 - 8P3 D2 C..Ea... (1, 2) + D2 C(.El... ..Ea...) (1, 1, 2) . 

31 D31 32 1:>32' 1:>32 
(1.67) 

The sum of Tt, T2, ... , T7 is the desired expectation Ee(T). For PI 
P3 = 1/14 the result is 

where the C-values are all obtained from Vol. 9 except for one entry that 
appears in the exact C-table in the Appendix. 

As a partial check we calculate the probabilities for each of the seven 
cases and see if they add to one, but this is done only for the special case 
PI = P3 = 1/14. From (1.54) we obtain 

_ (8). (11) (9) (9) (10) 48 (9) 
P(Case 1) - 24C1/2 (1, 1) + 16C1/3 + 32C1/3 + 12C1/4 + 24C1/4 + 5C1/5 

= 23072 = .76830 (1.69) 
30030 ' 

_ (7). (10) _ 4 3 _ 1091 _ 
P(Case 2) - 4C1/3(1, 1) +3C1/4 - C30) + C44) - 30030 - .03633, (1.70) 

_ (7). (8) (10) 24 (9) _ 2618 _ 
P(Case 3) - 8C1/ 3(1, 1) + 6C1/ 4 + 6C1/4 + 5 C1 /5 - 30030 - .08718, 

(1.71) 
(6) 24 (9) 6 24 930 

P(Case 4) = 6C1/ 4(1; 1) + 5 C1 /5 = (~O) + 5C54) = 30030 = .03097, 

(1. 72) 
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_ 6 (5). (8) _ 6 1 _ 153 _ 
P(Case 5) - "5 Ct (1,1) +C1/6 - 5(~O) + C64) - 30030 - .00509, (1.73) 

_ (8). (9) (10) 24 (9) _ 1960 _ 
P(Case 6) - 8C1/3(1, 1) + 6C1/4 + 6C1/4 + SC1/ 5 - 30030 - .06527, 

(1.74) 
_ (7). 8 (9) _ 2 8 _ 206 _ 

P(Case 7) - 2C1/4(1, 1) + "5 C1 /5 - (~1) + 5C54) - 30030 - .00686, 

(1. 75) 
and the sum of these is exactly one (which is our check). 

If we set P3 = 0 (and hence P1 = 1/16 by (1.53)), then only one non­
zero term appears and the result is 

E{TeIP3 = O} = 36C~5)(I; 2) = 14.70000. (1.76) 

This is not the answer for the edges problem on the cube. However suppose 
that the edges of the cube are directed (as in the graph theory), marked 
differently for each direction and that they are assigned one to each of the 
two faces associated with a given edge of the cube. Then the problem of 
seeing all the directed edges is equivalent to the problem of seeing all the 
faces of the cube and this has expectation 14.7. Since the six squares of 
the cuboctahedron have no common edges, it is reasonable that this should 
occur as P3 -4 O. 

For part b) dealing with the cube (which we will call Problem 1.9B) 
consider the disjoint (and exhaustive) events Aj where j is the number of 
new edges seen on the nth (or last) toss. For j = 2 only pairs of parallel 
edges are possible and j = 3 and 4 are also not possible. Hence we have 
only 2 cases to consider which we denote by 1 and 2B. Then (with P = 1/6) 

P1 = 12(2p)(1-2p)n-1I~(I;n-l); P2B = 12p(I-3p)n-1I~(I;n-l) 
1-2p 1-3p 

(1.77) 
and P(T = n) is the sum of these two. Hence 

_ 6 (4). 4 (3) . _ 81 _ 
E(Te) - pC1/2(1, 2) + 3p C1/3(1, 2) - 10 - 8.10000. (1. 78) 

In particular the result 14.7 is not the answer to the edges problem for the 
cube. The check for the latter computation gives 

P(T < 00) = 12C<4) (1'1) + 4C<3) (1'1) = 12 + -±- = 1 
1/2' 1/3' 15 20 (1. 79) 

and the probabilities of Cases 1 and 2B are t and ~, respectively. 

Problem 1.10 Do the faces problem for the cuboctahedron, Le., using the 
polyhedron in problem 1.4 with P2 = 0, common P1 for the 6 squares and 
common P3 for the 8 triangles find the expected number of tosses E(Tf ) 
needed to see all the 14 faces. 
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Solution: 

Consider 2 disjoint (and exhaustive) cases according to whether the last 
face seen is a square or a triangle. Then we obtain 

P{T = n} = 6P1 (1 - pdn- 1 I(5,!~ -&.) (1,1; n - 1) 
1-1'1' 1-1'1 

+ 8p3(1 - P3)n-1 It:~L, 1~;'3) (1,1; n - 1). (1.80) 

The check yields an identity for any PbP3 with 6P1 + 8P3 = 1, namely 

6d5,8) (1 1·1) + 8d6,7) (1 1·1) = 1 
1,P3/Pl ' , (ll 1) , , , 

P3 ' 

(1.81) 

whose proof follows from the probability interpretation of C. Multiplying 
(1.80) by n and summing for n ~ 3, the general result is 

( ) _ 6 (5,8) ( .) 8 (6,7) ( .) 
E Tf - -C1 P /p 1,1,2 + -C(P' ) 1,1,2 . 

P1 ' 3 1 P3 ~,1 
(1.82) 

For P1 = P3 = 1/14 we obtain 

E(Tf) = 196C?3) (1; 2) = 196(.23225445) = 45.52187, (1.83) 

which is exactly equal to 14 L:~~11jj. For 6P1 = 8P3 = 1/2 

E(Tf) = 72C~~3~~(1, 1; 2) + 128C~~/~1) (1,1; 2) 

= 72tt(-1)a+f3 (;~(~) 2 

(3=00:=0 (1 + "2 + (3) 

+ 128 t t( _1)0:+(3 (~)(;) 2 

(3=00:=0 (1 + "3° + (3) 

= 72(.32153771) + 128(.15054223) 

= 42.42012, (1.84) 

where the double sums were done on a computer by Jer-Yan Lin of Uni­
versity of California at Santa Barbara. It is interesting that the numerical 
answer in (1.84) is smaller than in (1.83) and this raises the question of 
finding a minimum, which we do not consider here. 

Problem 1.11 Do the vertices problem for the dodecahedron, i.e., assum­
ing that on each toss we see the five vertices on the top face (and only 
those),find the expected number of tosses E(T) to see all twenty vertices 
of the dodecahedron. Whatever disjoint sets of cases are considered, find 
the probability of each set and check to see if they add to unity. 
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Solution: 

In case j we see exactly j new vertices on the nth (or last) toss (j = 1, 2, 
3, 4, 5). For j > 1 if these vertices are not neighbors (i.e., connected by an 
edge) then the case is not possible. Hence the case j = 4 does not occur 
and there is only one (type of) case for j = 2 and 3, i.e., we have a total of 
four (types of) cases, which we still callI, 2, 3 and 5. 

For j = 1 there are three pentagons that we do not see on the first n - 1 
tosses and (cf. Fig. 4) hence there are three other pentagons that we must 
see on the first n - 1 tosses. This accounts for sixteen vertices. The back 
piece in Fig. 4 shows the four remaining vertices that have to be included 
in the first n - 1 tosses. The latter is accomplished by including (at least 
two Z's) or (exactly one Z and the opposite W). 

FIGURE 4. Front piece and back piece of the dodecahedron for the case j = 1 

FRONT BACK 

As before Pj (resp., Ej ) is the contribution to P(N = n) (resp., to ET) 
from Case j and Pj is the probability of Case j (j = 1, 2, 3, 5). Thus we 
have for Case 1, letting p denote 1/12, 

P1 = 20(3p)(I- 3pt-1 [3I~~3P (l;n -1) - 2I~~3P (l;n -1)] 

+ 20(3p)(1 - 5pt-13I~ (1; n - 1), 
1-5p 

* (5) () (6) () (5) ( ) P1 = 60C1/3 1,1 - 40C1/3 1,1 + 36C1/5 1,1 , 

_ 20 (5). 40 (6). 36 (5) . 
E1 - -C1/3 (1, 2) - -3 C1/ 3 (1, 2) + -5 C1/ 5 (1, 2). 

p p p 

(1.85) 

(1.86) 

(1.87) 

For Case 2 the two vertices must be neighbors and there are four pen­
tagons (marked No in Fig. 5) that we don't see on the first n - 1 tosses 
and another four pentagons (marked Yes) that we do see. This accounts 
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for eighteen vertices and the remaining two are circled in Fig. 5 below. The 
latter two are included by including at least one Z pentagon or both W 
pentagons. 

Hence we have for the Case j = 2 

P2 = 30(2p) [(1 - 4p)n-l I~j4" (1; n - 1) + 2(1 - 5p)n-l I~~5" (1; n - 1) 

+ (1 - 6p)n-l I~~6" (1; n - 1)], (1.88) 

P; = 15C~~~(I; 1) + 24C~~~(I, 1) + lOC~~~(1, 1), (1.89) 

_ 15 (6). 24 (5). 5 (6) . 
E2 - 4p C1/ 4 (1, 2) + 5p C1/ 5 (1, 2) + 3p C1/ 6 (1, 2). (1.90) 

FIGURE 5. The case j = 2 for the dodecahedron vertices problem (connecting 
the front and back sides) 

FRONT BACK 

The reader should have little difficulty sketching the case j = 3 where 
we have three neighboring vertices that are not seen until the nth (or last) 
toss. Then five pentagons are not seen on the first n - 1 tosses and four 
others are. This leaves 3 more pentagons which surround only one vertex 
not yet accounted for. We accomplish this by including at least one Z. 
Hence for j = 3 we have 

P3 = 60(P)(1 - 5p)n-l 

[3I~~5" (1; n - 1) - 3I~~t (1; n - 1) + I~~t (1; n - 1)] , 

P; = 12 [3ci~~ - 3Ci~~(I; 1) + Ci;~(I; 1)] , 

(1.91) 

(1.92) 
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_ 12 [ (S) ( .) (6) ( .) (7) ( • )] E3 - 5p 3CI / S 1,2 - 3CI / S 1,2 + CI / S 1,2 . (1.93) 

For j = 4 we already noted that P4 = P; = E4 = O. For j = 5 we obtain 
similarly 

Ps = 12p(1 - 6p)n-1 I~ (lj n - 1), (1.94) 
1-61' 

P; = 2C~~~(lj 1), (1.95) 

_ 1 (S) • 
Es - 3p CI / 6 (1, 2). (1.96) 

The sum of the Pj is P{N = n}. The sum of the Pj" is 

[ 60 40 36] [15 24 10 ] m - m + CSO) + C40) + CSO) + C;) 

+ [(~S~) - (~S~) + (V)] + [0] + [(V)] 
= [!~] + [2~11] + [:~] + [0] + [2~1] = 1, (1.97) 

where the jth bracket is the probability of case j (j = 1, 2, 3, 4, 5). Finally 
the sum of Ej gives the desired expected number of tosses 

( 1023 ) ( 3349 ) 1152 ( 2131 ) ( 2761 ) 
E(T) = 240 15680 - 160 70560 + -5- 127008 + 45 132300 

( 27767 ) 432 ( 25961) 144 ( 28271) (20417) 
+ 20 213444 - 5 2561328 + 5 4390848 + 4 2134440 

= 13179474 = 12346989 (1.98) 
1067220 . . 

Problem 1.12 Do the vertices problem for the octahedron (which has 
eight faces, twelve edges and six vertices). Let p denote 1/8. 

Solution: 

Consider the three disjoint cases for j = 1, 2, 3 where j is the number of 
new vertices seen on the nth (or last) toss. For j = 1 there are four triangles 
not seen on the first n - 1 tosses and using the notation in Fig. 6 we get 
all five remaining vertices by the events YI Y4 or Y2 , 1'3 or both. 

Hence for Case 1 we have 

Pl = 6(4p)(l- 4pt-l [2I~~t (ljn -1) - I~~t (ljn -1)] , (1.99) 

.. (2) (4) 12 6 5 
PI = 12CI / 4 (lj 1) - 6CI / 4 (lj 1) = (~) - m = 7' (1.100) 

3 (2). 3 (4) . 
EI = pCI /4(1, 2) - 2pCI/4(1, 2). (1.101) 
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FIGURE 6. The case j = 1 for the vertices problem of the octahedron 

For j = 2 we mark another V at the box in Fig. 6 and change Y3 and Y4 to 
No. Then we need both Y1 and Y2 for the four remaining vertices. Hence 
we have 

P2 = 12(2p)(1 - 6pt-1 I~ (1; n - 1), 
1-6p 

* _ (2) . _ 4 _ 1 
P2 - 4C1/ 6 (1, 1) - m - 7' 

_ 2 (2) . 
E2 - 3p C1/ 6 (1, 2). 

(1.102) 

(1.103) 

(1.104) 

For j = 3 we mark the top vertex as a V and make the additional change, 
Y1 to No. This gives 

P3 = 8(P)(1 - 7p)n-1I~ (1; n - 1), 
1-7p 

* _ 8 (1) • _ 8 1 _ 1 
P3 - 7C1/7 (1, 1) - 7 (~) - 7' 

_ 8 (1) • 
E3 - 49p C1/ 7 (1, 2). 

(1.105) 

(1.106) 

(1.107) 

The sum of the Pj is P{N = n}; the sum of Pl is unity. The sum of E j is 

_ 8 [3 (2). 3 (4). 1 (2). 1 (1) . ] 
E(T) - P gC1/ 4 (1,2) - 16 C1/ 4 (1,2) + 12 C1/ 6 (1,2) + 49 C1/ 7 (1, 2) 

[3 ( 37 ) 3 ( 743) 1 (73) 1 (15)] 29 
= 64 g 225 - 16 14700 + 12 784 + 49 64 = 1" 
= 4.142857. (1.108) 

Problem 1.13 Do the edges problem for the icosahedron, i.e., if on each 
toss you see all three edges associated with the top face, find the expected 
number of tosses E(T) needed to see all thirty edges. 
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Solution: 

Consider the three disjointed sets of cases according to whether j new edges 
are seen on the nth (or last) toss for j(= 1, 2, 3). Actually we have sixty 
disjoint cases for j = 1 (since there are 2 possible faces for each of the 30 
edges), 60 disjoint cases for j = 2 (since there are (~) pairs of edges for 
each of twenty faces), and twenty disjoint cases for j = 3 (one for each 
face) j below we also call these three sets Case I, Case II and Case III. Our 
sketches below make use of the fact that the icosohedron is a zonohedron 
with n = 5 (so that #faces = n(n - 1) = 20), cf. Coxeter (1973). In each 
case we label one side the 'front' side (with the final face in the center of 
the sketch) and the other side the 'back' side (where most of our analysis 
applies). For Case I there is one final edge E, two N -faces not seen (resp., 
four Y -faces seen) on the first n - 1 tosses. 

FIGURE 7. Case I - Icosahedron (edge problem) 

7 

12 12 

The four edges marked S are edges of the Y faces and are in a sense 
accounted for in our main analysis. For convenience we call the two top 
faces Xl, X 2 , the five bottom faces Zi (i = 1, 2, 3, 4, 5) and the seven 
middle zone faces Wj (j = 1, 2, 3, 4, 5, 6, 7), all going from left to right on 
the Back Side sketch in Fig. 7. 

Let X, Z and W denote that the corresponding faces are not seen on the 
first n - 1 tosses. To concentrate on the middle zone and avoid worrying 
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about the 5 horizontal (unmarked) edges, we consider the two sets 

X1X2 

Xl X2 W5 
X1X 2W3 

Set 1 
Zl Z2Z3Z4Z5 
Z2 Z3Z4Z5Z 1 
Zl Z2Z3Z4Z5 
ZlZ3Z4Z5Z2W2 
ZlZ2Z4Z5Z3 W4 
ZlZ2Z3Z5Z4 W6 

Set 2 
ZlZ3Z4Z2Z5W2 
Z2 Z4Z5Z 1Z3 W4 
Z2Z3Z5Z1Z4W6 

Zl Z2Z4Z3Z5 W4 
ZlZ3Z5Z2Z4W2W6 

whose cartesian product contains 3(11) = 33 disjoint events, each contain­
ing all the 11 edges in the top and bottom zones and their boundaries. For 
the 6 remaining (unmarked) edges in the middle zone we use Table 5. 

For Terms Containing 

W2 only (or W6 only) 

W4 only 

W3 only (or Ws only) 

W2 W6 
W2W3 (or WSW6) 

W3W4 (or W4WS) 

W3W6 (or W2WS) 

W2WSW6 (or W2W3W6) 

no W's at all 

TABLE 5. W-Table for Case I 

Multiply by (Le., intersect with) 

~%+~%~%+%~~%+~%~% 
~%+~%%~+%~~~+~%~~%~ 
(WI + W2 - WIW2)(W4W6 + W4W'6WSW7 + W6W'4WS + W'4W'6WSW7) 

W4 + W'4W3WS 

~%+~%%~+%~%+~%%~ 
(WI + W2 - WI W2)(W6 + W'6WSW7) 

(WI + W2 - WIW2)(W4 + Ws - W4WS) 

W3 +W4 - W3W4 

{ ~~%+~~%%~+~%~~%+~%~~~ W~W',~W~W3WSW7 + W6W'2W'4WI W3WS + W4W'2W'6WI W3WSW7 
+W2W4W6WIW3WSW7· 

For parenthetical cases (e.g. or W6 only) the right side is obtained by a 
simple interchange of W 2 with W6 and also of W3 with W 5. After consid­
erable algebra and simplification we obtain for Case I with p = 1/20 

PI = 30(2p) [(1- 2Pt-1 [~~L (1; n - 1) + 5(1 - 3pt-1 [(13) 

+ 4(1 - 3pt-1 [(14) + (1 - 3p)n-1 [(15) + 5(1 _ 4p)n-1 [(12) 

+ 22(1 - 4p)n-1 [(13) + 2(1 - 4p)n-1 [(14) + 6(1 - 4Pt-1 [(15) 

- (1 - 4p)n-1 [(16) + 22(1 - 5Pt-1 [(12) + 7(1 _ 5p)n-1 [(13) 

+ 20(1 - 5pt-1 [(14) - 4(1 - 5p)n-1 [(15) + 4(1 - 6Pt-1 [(12) 

+ 20(1 - 6pt-1 [(13) - 4(1 - 6pt-1[(14) - 4(1 _ 7p)n-1 [(11) 

+ 8(1 - 7p )n-1 [(12) - 2(1 - 7p)n-1 [(13)] (1.109) 

where the [-arguments (1; n -1) and the appropriate subscripts p/(l- jp) 
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are omitted. Hence the contribution E1 to E(Te) for Case 1 is given by 

E - 60 [~C<14) (1' 2) + ~C<13) + ~C<14) + ~G(15) + ~C<12) 
1 - P 4 1/2' 9 1/3 9 1/3 9 1/3 16 1/4 

11 G(13) ~C<14) ~G(15) _ ~C<16) 22 C<12) 
+ 8 1/4 + 8 1/4 + 8 1/4 16 1/4 + 25 1/5 

+ 2.-C<13) + ~G(14) _ ~C<15) + ~C<12) + ~C<13) 
25 1/5 5 1/5 25 1/5 9 1/6 9 1/6 

1 (14) 4 (11) 8 (12) 2 (13)] 
- 9G1/ 6 - 49 G 1/ 7 + 49 G 1/ 7 - 49 G 1/ 7 ' 

(1.110) 

where the common arguments (1; 2) are omitted after the first term. 

FIGURE 8. Case II - Icosahedron (edge problem) 

2 

9~~t----If_-t-_-710 

FllONT SIDE 12 
12 

In a similar manner using Fig. 8 and a new analysis containing 3(8) = 24 
disjoint events for the top and bottom zones and a new W-table we obtain 
for Case II. In this case there are 3N-faces, 5Y-faces and 8 marked edges 
(on the FRONT SIDE) and 14 unmarked edges to account for. The result 
obtained for Case II is 

P2 = 20 G) (P) [(1- 3p)n-11(14) + 4(1- 4pt-11(13) + 3(1- 4pt-11(14) 

+ 2(1 - 4Pt-11(15) + 6(1 - 5Pt-11(12) + 14(1 _ 5p)n-11(13) 

+ 6(1 - 5pt-11(14) + 4(1 - 5pt-11(15) + (1 - 6p)n-11(11) 

+ 13(1 - 6Pt-11(12) + 11(1 - 6p)n-11(13) + 11(1 - 6Pt-11(14) 

+ 7(1 - 7pt-11(12) + 10(1 - 7pt-11(13) + 3(1 - 8pt-1 1(12)]. 

(1.111) 



136 7. Multinomial Problems in Geometric Probability with Dirichlet Analysis 

Hence the contribution E2 of Case II to E(T) is 

_ 60 [1 (14). 1 (13) 3 (14) 1 (15) 6 (12) 14 (13) 
E2 - P 9G1/3 (1,2) + 4G1/4 + 16 G1/4 + 8G1/4 + 25 G1/5 + 25 G1/5 

6 (14) 4 (15) 1 (11) 
+ 25 G1/5 + 25 G1/5 + 36 G1/6 

13 cC12) 11 cC13) 11 cC14) 
+ 36 1/6 + 36 1/6 + 36 1/6 

1 (12) 10 (13) 3 (12)] 
+ 7G1/ 7 + 49 G1/ 7 + 64 G1/ 8 . 

(1.112) 

For Case III we use Fig. 9 with a new simpler analysis containing 3(5) = 
15 disjoint events for the top and bottom zones and also a new W-Table. 
In this case we have 4N-faces, 6Y-faces, 6 marked edges and 12 unmarked 

FIGURE 9. Case III - Icosahedron (edge problem) 

1 
1 

2 

12 12 

FRONT SIDE BACK SIDE 

edges (on the BACK SIDE) to account for in the analysis. The result 
obtained for Case III is 

P3 = 20(p)[(1 - 4Pt-1/(14) + 5(1 - 5Pt-1/(13) + 2(1 - 5Pt-1/(14) 

+ (1 - 5p)n-1/(15) + 9(1 - 6Pt-1/(12) + 5(1 - 6Pt-1/(13) 

+ 6(1 - 6p)n-1/(14) + 6(1 _ 7p)n-1/(12) + 7(1 _ 7Pt-1/(13) 

+ 2(1 - 8p)n-1/(12)]. (1.113) 

Hence the contribution E3 to E(Te) for Case III is 

(1.114) 
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By adding E1 in (1.110), E2 in (1.112) and E3 in (1.114), the desired 
result is 

E(T. ) = 20 [~C<14)(1. 2) + ~C<13) + ~C<14) + ~C<15) + 15 C<12) 
e p 4 1/2' 3 1/3 3 1/3 3 1/3 16 1/4 

+ 39 C<13) + C<14) + ~C<15) _ ~C<16) + 84 C<12) 
8 1/4 1/4 2 1/4 16 1/4 25 1/5 

68 (13) 16 (14) 1 (15) 1 (11) 5 (12) 
+ 25 C 1/ 5 + 5 C1 / 5 + 25 C 1/ 5 + 12 C 1/ 6 + '3 C1 / 6 

49 C<13) ~C<14) _ 12 C(11) ~C(12) 31 C<13) ~C<12)] 
+ 18 1/6 + 4 1/6 49 1/7 + 7 1/7 + 49 1/7 + 64 1/8 

= 400[~(.03967882) + ~(.01007533) + ~(.00855685) + ~(.00733496) 

+ ~~ (.00340087) + 3: (.00269953) + .00217225 

+ ~(.00176925) - 136(.001456682) + ~:(.00109585) 
68 16 1 

+ 25 (.00082386) + 5(·00062969) + 25 (.00048339) 

+ 112 (.00560545) + ~(.000391653) + ~: (.000279612) 

+ ~(.000155554) - !~ (.000031422) + ~(.00015250) 
31 11 ] + 49 (.000014805) + 64 (.000063817) = 37.50874, (1.115) 

where C~values were taken from Vol. 9 or calculated exactly. Since the 
check sum added to slightly more than 1 (namely, 1.001) we cannot trust 
the last 2 or 3 decimals in the result. The amount of arithmetic needed 
made the solution difficult to pin down. The probabilities associated with 
Cases I, II and III, respectively are approximately .859, .135 and .007. 

The structure of our answers for ET as a linear combination of C­
functions is not unique and it is often desirable to get the answer with 
a common subscript on all the C~functions. We illustrate this by redoing 
the vertices problem for the cube (Problem 1.6) in this manner. 

Problem 1.14 Do the vertices problem for the cube so that the subscripts 
on the C ~ functions are all equal (preferably to one). 

Solution: 

We are waiting to see any pair of opposite faces (Le. adding to seven) for 
the first time. The terminating side (say face #1) can be any fixed one of 
the 6 faces. Then among the first n - 1 tosses one specific side (face #6) 
has to appear at least once, and two combinations of 3 sides (namely 6, 2, 
5 and 6, 3, 4) have to be ruled out, Le., must not occur in the first n - 1 



138 7. Multinomial Problems in Geometric Probability with Dirichlet Analysis 

tosses. Using inclusion-exclusion the full combination of all 5 remaining 
sides was ruled out twice and hence is added back once. Thus we have, 
letting p = 1/6 and N denote the random number of tosses needed, 

P{N = n} = 6p(l-pt-1 [I~ (1; n - 1) - 2I~ (1; n - 1) + I~ (1; n -1).] 
(1.116) 

Multiplying by n and summing yields 

E(T) = 36 [C(1) (1· 2) - 2C<3) (1· 2) + C<5) (1· 2)] = 36 [~ _ 25 + ~] = 4.2 
l' l' l' 4 24 120 ' 

(1.117) 
where all the C-values can be obtained from our exact C-table. As a check 
we sum (1.116) without multiplying by n and obtain the identity 

P{N < oo} = 6 [ci1)(I; 1) - 2CP)(I; 1) + Ci5)(I; 1)] = 6 (~- ~ +~) = 1. 

(1.118) 

Problem 1.15 Do the edge problem for the cube as in Problem 1.14. 

Solution: 

Assume that face #1 is the terminal face (which accounts for a factor of 6 
below) and let p = 1/6. Going around the cube in cylindrical motion, we 
can see that the first n - 1 tosses must include either sides (3,4,6) or sides 
(2,5,6) but not their union (which must therefore be subtracted twice). 
Thus 

P{N=n}=6p(l-p)n-l [2I~(I;n-l)-2I~(I;n-1)], (1.119) 

_ 6 [ (3). (5).] _ (25 49 ) _ ET - P 2C1 (1,2) - 2C1 (1,2) - 72 48 - 120 - 8.1, (1.120) 

and the check is simply that 6 (~ - ~) = 1. 

Problem 1.16 Do the vertices problem for the octahedron so that the 
C-functions all have the same subscript (preferably one). 

Solution: 

To see all 6 vertices we have to wait either for a pair of opposite faces 
or for a set of 3 faces such that two are opposite on a pyramid (Le., half 
of the octahedron) and the third one is anywhere on the other pyramid. 
Assume without loss of generality that face #1 in Figure 10 is the terminal 
face. Among the first n - 1 tosses we need either face #8 or one of the 
combinations (4,6), (4,7), (6,7) but it can not contain any of the following 
(2,7), (3,6), (4,5), (2,3,5), (2,3,8), (2,5,8), (3,5,8) or (4,6,7). After a 
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FIGURE 10. Pyramid structure of the octahedron (from above) 

UPPER PYRAMID LOWER PYRAMID 

careful application of inclusion-exclusion to all subsets of (2,3,4,5,6,7,8) 
we obtain, letting p = 1/8, 

P{N = n} = 8p(1 - p)n-l [1% (l,n - 1) + 3I~ (1; n - 1) 

-18I~ (1; n - 1) + 25I~ (1; n - 1) 
I-p I-p 

-12I~(1;n-1) +I~(l;n-1)]. (1.121) 

The sum of the coefficients is zero since the complete sum has to be 
removed. The first two coefficients are clear; the negative 18 is to re­
move (2,4,7), (2,6,7), (3,4,6), (3,6,7), (4,5,6), (4,5,7), (2,3,8), (2,5,8), 
(3,5,8), (4,6,8), (4,7,8), (6,7,8), (2,7,8), (3,6,8), (4,5,8) all once and 
(4,6, 7) three times. We omit the other explanations. Multiplying by nand 
summing gives the desired result 

E(T) = ~ [dl ) (1; 2) + 3d2) (1; 2) - 18C~3) (1; 2) + 25C~4) (1; 2) 

-12C~5) (1; 2) + cf) (1; 2)] 

_ 4 [~ 11 _ 75 137 _ 49 761 ] _ 29 
- 6 4 + 6 8 + 12 10 + 2240 - 7 

= 4.142857, (1.122) 

where the exact table of C-values was again used. The same method can 
also be used to obtain higher moments. The check gives 

P{ N < oo} = 8 [cF) (1; 1) + 3d2) (1; 1) - 18CP) (1; 1) + 25C~4) (1; 1) 

-12d5)(1; 1) + cf)(l; 1)] 

[1 9 1] 
=8 2+1-2+5-2+8 =1. (1.123) 
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Problem 1.17 Show that for the tetrahedron, letting P = h 

P{Nf = n} = 4p(1 - pt- i 1~ (1; n - 1), 
, I-p 

P{Nv = n} = 4p(1- p)n-i [31% (1; n - 1) - 61~ (1; n - 1) 

+ 31~ (l;n -1)], 
P{Ne = n} = 4p(1- p)n-i [31~(1;n -1) - 31~(1;n -1)] 

and as a consequence show that 

E(Tf) = ~cP) (1; 2) = 2:, 

E(Tv) = ~ [3CP)(1;2) - 6C~2)(i;2) + 3C~3)(1;2)] =~, 

E(Te) = ~ [3C~2) (1; 2) - 3C~3) (1; 2)] = ~. 

(1.124) 

(1.125) 

(1.126) 

(1.127) 

(1.128) 

(1.129) 

Problem 1.18 Do the vertices problem for the cuboctahedron i.e., for the 
polyhedron in Problem 1.4 with P2 = O. Find the expected number of 
tosses to see all the vertices. Find the numerical answer for the special case 
Pi = P3 = 1/14. 

Sohition: 

The cub octahedron has 6 squares and 8 triangles as faces; it has 24 edges 
each separating a square from a triangle, and it has 12 vertices each asso­
ciated with 2 square and 2 triangular faces. As in previous discussions we 
take Pi (resp., P3) for the probability of a square (resp., triangular) face so 
that 6Pi + 8P3 = 1. The values of Pi and P3 may depend on the material 
from which the cuboctahedron is made, on the kind of flooring used to 
roll it and possibly on the manner of tossing. If the reader feels that these 
can be calculated (or estimated) then they can be inserted into our final 
formula to get numerical results. 

There are six disjoint and exhaustive possibilities for the last toss (which 
we call cases 1, 2, ... , 6); these are 

1. One new vertex, 

2. Two new vertices on the same edge, 

3. Two new opposite vertices on the same square, 

4. Three new vertices on the same triangle, 

5. Three new vertices on the same square, 
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6. Four new vertices on the same square. 

Each of these 6 cases adds a contribution Pi (resp., Ei ) to P* = P{N < 
oo} = E~=l Pi (resp., to E(T) = E~=l Ei ); f* = 1 is a useful check and 
E(T) is the desired result. The following (planar) sketch of the cuboctahe­
dron is for Case 1 but with obviouf:l modifications is useful for all 6 cases; 
vertices with the same label (and the corresp'o~ding edges conn~cti!lg them) 
have to be ~dentified. 

FIGURE 11. Planar sketch of the cubohedron, case I (one new-vertex on the last 
toss) 

A A A 

B 
F 

D B 

A 

Using Fig. 11 we sketch the analysis for Case 1; similar analyses were 
used for each of the 6 cases. For the marked vertex (the new one on the 
last toss), the four faces marked N are not seen on the first n - 1 tosses. 
This leaves 6 - 2 = 4 squares, 8 - 2 = 6 triangles and 12 - 1 = 11 vertices 
to account for. Each of the 11 vertices gives us a condition but they reduce 
logically to the following conditions: 

T7 or 85 , T3 or 85 , T6 or 83 , 

T2 or T3 or 84 , T6 or T7 or 86 , T5 or Ts or 84 or 86 , 
(1.130) 

where T (resp., 8) stands for triangle (resp., sqllare) and these are labeled 
in the second sketch of Fig. 11. The 4 squares to be accounted for in Case 1 
are 83 , 84 , 85 and 86 and we list the 24 = 16 possibilities: no 8, 83 , 84 , 85 , 

86 , 83 and 84 , ••• ,83 and 84 and 85 and 86 • For each of these we list the 
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possibilities with respect to the 6 triangles: T2 , T3 , T5 , T6 , T7 and Ts that 
are not yet accounted for. This gives us a total of 322 sub cases satisfying 
(1.130) to each of which a pair (8, t) is associated indicating that 8 squares 
and t triangles are seen in the first n - 1 tosses. The distribution of these 
322 cases with respect to pairs (8, t) is shown in the column labeled (a = 1) 
in Table 6 below; the other cases a = 2, 3, 4, 5 and 6 are also there. The 
constants in the body of Table 6 are called K!~) in our formulas below; the 
item QQ at the bottom of Table 6 is the probability associated with the 
last toss together with a factor for the total number of possibilities in each 
of the 6 cases. 

TABLE 6. Ouboctahedron (Vertex Problem) K!~) -Values. Analysis of 
all possibilities satisfying (1.130) for Case a (a = 1, 2, 3, 4, 5, 6) 

(8, t) Q=1 Q=2 Q=3 Q=4 Q=5 Q=6 

(0,3) 0 0 0 1 0 0 
(0,4) 0 1 0 0 
(0,5) 2 1 0 0 0 0 
(0,6) 1 0 0 0 0 0 
(1,2) 0 0 0 0 1 0 
(1,3) 4 2 0 3 2 0 
(1,4) 12 5 0 3 1 
(1,5) 12 3 0 0 0 0 
(1,6) 4 0 0 0 0 0 
(2,1) 0 0 0 0 0 
(2,2) 4 4 4 3 1 0 
(2,3) 24 S 4 6 2 0 
(2,4) 37 S 1 3 1 0 
(2,5) 24 3 0 0 0 0 
(2,6) 6 0 0 0 0 0 
(3,0) 0 0 1 0 0 
(3,1) 4 1 4 4 0 0 
(3,2) 20 4 6 6 0 0 
(3,3) 40 6 4 4 0 0 
(3,4) 40 4 1 1 0 0 
(3,5) 20 1 0 0 0 0 
(3,6) 4 0 0 0 0 0 
(4,0) 1 0 0 0 0 0 
(4,1) 6 0 0 0 0 0 
(4,2) 15 0 0 0 0 0 
(4,3) 20 0 0 0 0 0 
(4,4) 15 0 0 0 0 0 
(4,5) 6 0 0 0 0 0 
(4,6) 0 0 0 0 0 

Totals 322 52 25 36 S 2 

Qa 12(2Pl + 2pa) 24(Pl + pa) 6(2)Pl S(pa) 6(4)Pl 6(Pl) 
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For the special case P1 = P3 we only need a summary of Table 6 arranged 
with respect to F = s + t, where F denotes the # of faces; this is given in 
Table 7 where P denotes the common value of P1 = P3. Using the weights 

TABLE 7. Summary of Table 6 

Weighted 

F 0=1 0=2 0=3 0=4 0=5 0=6 Sums 

3 0 1 1 2 1 0 lOOp 
4 13 8 8 11 3 1270p 
5 64 18 10 15 3 1 4254p 
6 105 17 5 7 1 0 5996p 
7 88 7 1 0 0 4580p 
8 41 1 0 0 0 0 2016p 
9 10 0 0 0 0 0 480p 

10 0 0 0 0 0 48p 
Totals 322 52 25 36 8 2 445 

Weights 48p 48p 12p 8p 24p 6p 

in the bottom row, the weighted sum of the six columns is given in the last 
column of Table 7; these eight constants are used for both P* = P {N < oo} 
and E(T) below for the special case P1 = P3. 

The values K;~) in Table 6 can be put into a rectangular array with 
o ::; s ::; 4 and 0 ::; t ::; 6. For convenience let s' = 6 - sand t' = 8 - t and 
let F' = s' + t' = 14 - F. Then our first result is 

664 

P{T = n} = L L L K!~)Qo(l - S'P1 - t'P3)n-1 
0=1 t=O s=O 

x I(s,t) PI 

1 slpl t'P3 '1 

P3 (1;1;n-1). 
s'Pl tl p3 

(1.131) 

If we sum on n we obtain 

6 6 4 K(O)Q 
P* = P{T < oo} = L L L ,s,t ,0 C(S,t~1 P3 (1,1; 1). 

0=1 t=o 8=0 s P1 + t P3 S'PI +t'P3 ' s'Pl +t'P3 

(1.132) 
If we multiply by n and then sum (on n) we obtain 

6 6 4 K(O)Q 
E(T) = """ s,t 0 C(s,t) (1 l' 2) 

~ ~ ~ (' + t')2 PI P3 ". 
0=1 t=O 8=0 S P1 P3 S'Pl +t'P3 ' S'PI +t'P3 

(1.133) 

For the special case P1 = P3 we use the constants in Table 7 and write out 
the eight terms in each result. The first result is 

P{T = n} = lOOp(l - IIp)n-1 I~ (1; n - 1) 
I-llp 
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+ 1270p{1 - lOp)n-1 <~~oP (I; n - 1) 

+ 4254p{1 - 9p)n-1 I~~9P (I; n - 1) 

+ 5996p{1 - 8pt-1 I~ (I; n - 1) 
1-8p 

+ 4580p{1 - 7pt-1I?L (I; n - 1) 
1-7p 

+ 2016p{1 - 6p)n-1 I~ (I; n - 1) 
1-6p 

+ 480p{1 - 5p)n-1I~ (I; n - 1) 
1-5p 

+ 48p{1 - 4p)n-1 I~ (1; n - 1). 
1-4p 

(1.134) 

The second "result" is a check which "worked" to 12 decimals, namely 

P{T } = 100 d 3) (1. 1) 1270 d 4) 4254 d 5) 5996 d 6) 
< 00 11 1/11 , + 10 1/10 + 9 1/9 + 8 1/8 

4580 d7) 2016 d8) 480 C(9) 48 C(10) - 1 
+ 7 1/7 + 6 1/6 + 5 1/5 + 4 1/4-

(1.135) 

(independent of pl. The last result is the desired numerical result for ET 
when PI = P3 = P (say) namely 

1 {100 (3) 1270 (4) 4554 (5) 5996 (6) 
E(T) = P 121 C1/ 11 (1; 2) + 100 Cl / l0 + 8lCl/9 + MC1/8 

4580 d7) 2016 C(8) 480 d 9) 48 C(lO) } (I 136) 
+ 49 1/7 + 36 1/6 + 25 1/5 + 16 1/4· . 

Here p = 1/14 and using the formula at the bottom of our exact C-table 

(13) . _ 3875 (4). _ 25381 
C1/ 11 (1,2) - 397488' C1/ 10{1,2) - 6012006' (1.137) 

(5) ( • ) _ 96163 (6) (1. 2) _ 237371 . 
C1/ 9 1,2 - 40080040' C1/ 8 ' - 135270135' 

the remaining four C-values are given in our exact C table. Hence from 
(1.136) 

{ 100 ( 3875 ) ( 511073 )} 
ET = 14 121 397488 + ... + 3 90180090 

= 14(.6049068) = 8.46870. (1.138) 

Acknowledgments: Thanks are due to Ingram Olkin for suggesting the 
problem dealing with cylindrical die and for suggesting that I look for the 
explicit expressions for certain partial sums. Thanks are also due to Her­
bert Solomon for asking me to prepare a paper on geometric probability 
for the 1986 Chicago meeting of the ASA, which led to this paper. 
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TABLE 8. Appendix: Exact (Fractional) Values of d b)(1; 2) for b = 1(1)10 and a- 1 = 1(1) 

a -+ 1/2 1/3 1/4 1/5 1/6 1/7 
b! 

i 3 5 7 9 11 13 15 
4 9 16 25 36 49 64 

11 
2 

13 47 37 107 73 191 
18 36 200 225 882 784 2592 
25 

3 
77 57 319 533 56 1207 

48 300 400 3675 9408 7056 43200 

4 
137 29 459 743 1879 1627 15797 
300 150 4900 14700 63504 75600 1306800 
49 223 1023 2509 2131 20417 18107 

5 
120 1470 15680 79380 127008 2134440 3136320 
363 481 3349 2761 25961 27767 263111 

6 
980 3920 70560 132300 2561328 4268880 88339680 

7 
761 4609 3601 32891 28271 4712171 288851 
2240 45360 100800 2286900 4390848 7935847920 176679360 
7129 4861 42131 35201 395243 6694151 12515 

8 
22680 56700 1524600 3430350 92756664 13887733860 13250952 
7381 55991 44441 485333 420983 8543999 134159 

9 
25200 762300 2032800 64414350 144288144 347193346500 235572480 

10 
83711 58301 605453 511073 445007 69114973 2424847 
304920 914760 34354320 90180090 216432216 1111018708800 6808044672 

The general formula for the entries of this table is 

b+a' 
(b) . _ a' L . 

Ca (1,2) - e-J;,a') j=a,l/J (where a' = l/a is an integer). 

The decimal C-values for a' = 1(1)5 and b = 1(1)15 can be found in Vol. 9. 
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Probability Inequalities for 
n-Dimensional Rectangles via 
Multivariate Majorization 

Y.L. Tong1 

ABSTRACT Inequalities for the probability content P [n7=1 {alj :=:; Xj :=:; 

a2j}] are obtained, via concepts of multivariate majorization (which in­
volves the diversity of elements of the 2 x n matrix A = (aij)). A special case 
of the general result is that P [n7=1 {alj :=:; Xj :=:; a2j}] :=:; P [n7=1 {iiI :=:; 

Xj :=:; ii2}] for iii = ~ L7=1 aij (i = 1, 2). The main theorems apply in 
most important cases, including the exchangeable normal, t, chi-square and 
gamma, F, beta, and Dirichlet distributions. The proofs of the inequalities 
involve a convex combination of an n-dimensional rectangle and its permu­
tation sets. 

1 Introduction 

This paper concerns probability inequalities (or integral inequalities) for 
n-dimensional rectangles and their applications in statistics. The math­
ematical tools used are Schur-concavity and concepts of multivariate ma­
jorization (for definitions see Marshall and Olkin (1979), p. 54 and Chapter 
15). 

Let X = (Xl, ... , Xn) be an n-dimensional random variable whose den­
sity is f(x). It is known that (Tong (1982)) if f(x) is a Schur-concave 
function of x and if D is a region given by D = {x I x E ?Rn , -dj ::; 

Xj ::; dj , j = 1, ... , n}, which is an n-dimensional rectangle centered at 
the origin, then the probability content 

lGeorgia Institute of Technology 
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is a Schur-concave function of d = (d l , ... , dn ). Consequently we have 

1 n 

d= - Ldj. 
n j=l 

p [rH -dj :S Xj :S dj }] :S P [rH -d :S Xj :S d}], 
3=1 3=1 

(1.1) 
A natural question to ask is whether similar results hold if D is not centered 
at the origin. To answer this question we prove two theorems in Section 3 
via multivariate majorization. For n :2: 2 let 

B = (bl ) = (bll ... bl n) , b2 b2l ... b2n (1.2) 

denote two real matrices such that alj < a2j and blj < b2j (j = 1, ... , n). 

From Marshall and Olkin (1979), Chapter 15, we say that 
c 

Definition 1.1 (1) A chain majorizes B (in symbols A ~ B) if there exists 
an n x n matrix Q which is the product of finitely many n x nT-transform 
matrices (defined in Marshall and Olkin (1979), p. 21), such that B = AQ. 

m 
(2) A majorizes B in a multivariate sense (in symbols A ~ B) if there exists 
a doubly stochastic matrix Q such that B = AQ. (3) A row-wise majorizes 

r 
B (in symbols A ~ B) if al ~ bl and a2 ~ b2 . 

c m r 
These concepts imply the following fact: If A ~ B or A ~ B or A ~ B, 

then the components of bi are simultaneously less diverse than that of ai, 

given L:?=l aij = L:?=l bij (i = 1, 2). Clearly we have 

c m r 
A ~ B::::} A ~ B::::} A ~ B, (1.3) 

and it is known that for n > 2 the implications in (1.3) are strict. The 
r m 

statement that A ~ B does not imply A ~ B can be seen easily; and 
m c 

"A ~ B does not imply A ~ B for n > 2" follows from the fact that 
a doubly stochastic matrix may not be the finite product of T-transform 
matrices (Marshall and Olkin (1979), p. 39). 

The concepts of multivariate majorization have been found useful for 
deriving certain types of probability (or integral) inequalities. For exam­
ple, the results in Rinott (1973), Marshall and Olkin (1979) Chapter 15, 
and Karlin and Rinott (1981) concern inequalities via the diversity of the 
elements of a parameter matrix. In this paper we study inequalities for the 
probability content of an n-dimensional rectangle whose location and shape 
are determined either by A or by B. That is, denoting 

-y(A) = P [rH aij :S Xj :S a2j}], 

3=1 
(1.4) 

we establish the inequality 

(1.5) 
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via multivar~ate majorization, which yields 

p[n{aii ~ Xi ~ a2i}] ~ p[n{ih ~ Xi ~ ii2}] , 

]=1 ,]=1 

1 n 

iii = - I>ii (i = 1, 2) 
n i=l 

(1.6) 

c 
as a special case. It is shown in Section 3 that (1.5) holds when A >- B and 

m 
J(z) is any Schur-concave function, and that (1.5) holds when A >- B and 
J(z) is a permutation invariant and log-concave function of z (which then 
implies that J(z) is a Schur-concave function). It is also shown in a coun­
terexample that under the weakest concept of multivariate majorization, 
the row-wise majorization, such inequalities are no longer possible under 
useful conditions on J (z ). 

2 Transformations of n-dimensional Rectangles 

The method we use to prove the results in Section 3 involves the convex 
combination of an n-dimensional rectangle and its permutation set(s). For 
arbitrary but fixed real matrix A let us define 

S=S(A)={zlzE!Rn , a1i~xi~a2i' j=I, ... ,n}. (2.1) 

Let 1r = (71"1. ••• ,7I"n) be a permutation of (1,2, ... ,n), and define the per­
mutation set of S by 

S1r = {z I z E !Rn , ali ~ X1rj ~ a2i' j = 1, ... ,n}. (2.2) 

For arbitrary but fixed a E [0,1] consider the set 

So. = {z I z E !Rn , z = az + (1 - a)y for z E S, Y E S1r } 

= as + (1 + a)S1r. (2.3) 

Now let P1r be the permutation matrix such that 1r = (1,2, ... n)P1r. It can 
be verified that for every fixed a E [0,1], So. is also a rectangle and is of 
the form 

So. = {z I z E !Rn , aii ~ Xi ~ a;i' j = 1, ... ,n}, (2.4) 

where 

and I is the identity matrix. Such a transformation can be extended to 
the convex combination of any finite number of permutation matrices. For 
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fixed K :::; n! let 71"(1), ... , 7I"(K) denote permutations of (1,2, ... ,n), and 
let P1r(k) satisfy 7I"(k) = (1,2, ... , n)P1r(k) (k = 1, ... , K). If we define, for 

a fixed real vector a = (al, ... , ak), ak ~ 0, LJ:=l ak = 1, 

K 

Sa = L ak S1r(k) , 

k=l 

then we can similarly verify that 

where 

(ai(a)) (al) ~ p- l 
a2(a) = a2 ~ ak 1r(k)· 

(2.6) 

(2.8) 

Note that, since p;(k) is a permutation matrix for each k, the matrix 

LJ:=l akP';(k) is doubly stochastic. For convenience we say that Sa in (2.6) 
is an S-transform of the rectangle S. Also, note that the matrix aI + (1 -
a)p;l in (2.5) is a T-transform (Marshall and Olkin (1979), p. 21) if exactly 
two of the diagonal elements of p;l are zero; in this special case we say 
that Sa in (2.3) is a T-transform of S. By Definition 1.1, Lemma 2.B.1 in 
Marshall and Olkin (1979), p. 21, and Birkhoff's Theorem (Marshall and 
Olkin (1979), p. 19), we can obtain the follo~ing result: 

c 
Proposition 2.1 Let S(A), S(B) be two n-dimensional rectangles. If A >-
B holds, then S(B) can be derived from S(A) through a finite number of 

m 
T-transforms. If A >- B, then S(B) is an S-transform of S(A). 

Such transformations can be viewed as an averaging process, because 
the components in bi are less diverse than those in ai (i = 1, 2) after the 
transformation. This is particularly true for n = 2 and a = 1/2, in which 
case the transformation carries any rectangle in ~2 into a square centered 
on the 45°-line. Thus if an inequality for the probability contents of the sets 
S and Sa can be obtained, then a chain of inequalities will follow through 
these concepts of multivariate majorization, by repeating this averaging 
process for a finite number of times. 

3 The Main Results 

In this section we prove two theorems and some related results. The first 
theorem (Theorem 3.1) involves chain majorization, its proof depends on 
the T-transform of an n-dimensional rectangle. The second theorem (The-

m 
orem 3.8) involves the concept of >- majorization, and its proof depends on 
the (more general) S-transform given in (2.6). 
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Theorem 3.1 Let S(A), S(B) denote two n-dimensional rectangles, and 
let f(a:): lRn -+ [0,00) be Lebesgue measurable. If f(a:) is a Schur-concave 

c 
function of a: and if A >- B, then (provided that the integrals exist) 

r f(a:)da:5, r f(a:)da:. 
is(A) is(B) 

Proof Without loss of generality we may assume that 

bil = o:ail + (1 - 0:)ai2' 

bi2 = (1 - o:)ail + o:ai2, 

j =3, ... ,n 

(3.1) 

for some 0: E [0,1] for i = 1, 2. Therefore it suffices to show that, for every 
n 

fixed (X3,""Xn ) E .x [a1j,a2j], the inequality 
3=3 

(3.2) 

holds, where for notational convenience g stands for f(X1' X2, X3,' .. ,xn ) 

when (X3,"" xn) is kept fixed. Moreover, since g is a non-negative Schur­
concave function of (Xl! X2) we may further assume, without loss of gener­
ality, that 0: E [1/2,1] and 

because all Schur-concave functions are permutation invariant. 
It can be verified analytically that (3.3) implies 

au + a12 = bu + b12 == >'1 < a21 + a12 == >'2 

5, b21 + b12 == >'3 5, bu + b22 == >'4 5, au + a22 == >'5 

< b21 + ~2 = a21 + a22 == >'6' 

(3.3) 

(3.4) 

For each fixed>. E [>'m' >'m+1] (m = 1, ... ,5) we can find the line segment 
lA(A) (lA(B» of the intersect of the straight line Xl + X2 = >. and the 

2 2 
rectangle .x [a1j,a2j] (the rectangle .x [b1j ,b2j ]). For * = A, B let IIlA(*)II, 

3=1 3=1 

OA(*) denote, respectively, the length of lA(*) and the distance between its 
midpoint and (>./2, >./2). Then, by 0: ~ 1/2, the inequality in (3.3), and 
>'m 5, >. 5, >'m+l! it can be verified that for each>' and each m = 1, ... , 5, 
at least one of the following statements is true: 

lA(A) is a subset of lA(B), 

IllA(A)11 5, IllA(B)11 and oA(A) ~ oA(B). 

(3.5) 

(3.6) 
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Now apply the orthogonal transformation 

Xl +X2 
VI = v'2 ' 

and for * = A, B define 

c>.(*) = inf{ (Xl - X2)/V2! (XbX2) E l>.(*)}, 

d>.(*) = sup{ (Xl - x2)/V2! (XbX2) E l>.(*)}, 

Then we can write 

[b21 [b22 g(Xb X2) dX2 dXl 
ibn ib12 

1>'6/Y21d>.(B) (VI + V2 VI - V2) 
= 9 to' to dV2 dVl. 

>'1/Y2 c>.(B) v2 v2 

(3.7) 

(3.8) 

For each fixed Vb if (3.5) holds then the inner integral in (3.7) is less than 
or equal to that in (3.8); if (3.6) holds then the same statement is true by 
Lemma 2.1 in Tong (1982). Thus (3.2) follows, and the proof of the theorem 
is complete. 0 

A special case of Theorem 3.1 is the following corollary. 

Corollary 3.2 If f(x) : !Rn ~ [0,00) is a Schur-concave function of x, 
then 

(3.9) 

for iii = ~ Ej=l aij (i = 1, 2). 

Proof By Definition 1.1 and Theorem 3.1 it suffices to show that for 
arbitrary but fixed al = (au, ... , aln) and a2 = (a2l' ... ' a2n) there exists 
a matrix Q, which is the product of at most 2( n - 1) T -transform matrices, 
such that 

( ~l) == (~l ... ~l) = (al) Q. 
a2 a2·· ·a2 a2 

Since al >- 0,1 where ">-" stands for the univariate majorization, by 2.B.1.a 
of Marshal and Olkin (1979), p. 22, there exists r (r ::; n - 1) T-transform 
matrices T l , ... , Tr such that 0,1 = al (n~=l Tk). Let c denote the vector 
a2 (n~=l Tk), which obviously majorizes 0,2· Then again there exists s (8 ::; 



152 8. Majorization Inequalities for Rectangles 

n -1) T-transform matrices Tr+1, ... , Tr+s such that a2 = c (I1~=1 Tr+k)' 
Let Q = I1~!~ Tk; it follows that 

( :~ ) Q = (~l ) (I1~=1 Tr+k ) = (:~) 
as to be shown. o 

Now let X = (Xl"'" Xn) be an n-dimensional variable, at, a2, bl , b2, 
be vectors, and let 'Y(A), 'Y(B) denote the probability contents defined in 
(1.4). From Theorem 3.1 and Corollary 3.2 it follows immediately that 

Corollary 3.3 If f(x) (the density of X) is a Schur-concave function of 
c 

x, and if A >- B, then 'Y(A) ::; 'Y(B). In particular, the inequality 

p [rH alj ::; Xj ::; a2j}] ::; p [n {al ::; Xj ::; a2}] 
3=1 3=1 

(3.10) 

holds for ai = * E;=l aij, i = 1, 2. 

Remark 3.4 Theorem 3.1 immediately yields Theorem 2.1 in Tong (1982) 
by letting al = -a2. In this special case, since al is a sign change of a2, 
the condition of chain majorization in Definition 1.1 is equivalent to that 
of a2 >- b2. 

The above remark suggests that in certain special cases the condition of 
chain majorization can be simplified to the univariate version of majoriza­
tion (which is easier to verify). In the proposition below we state two such 
cases. The proof is immediate. 

c 
Proposition 3.5 (1) If al = Aa2 for some real number A ¥= 0, then A >- B 
is satisfied iff al >- bl (or equivalently a2 >- b2). (2) If al = (al,"" at) 

c 
(a2 = (a2,"" a2)), then A >- B is satisfied iff al = bl and a2 >- b2 
(al >- bl and a2 = b2). 

Theorem 3.1 concerns inequalities via the strongest concept of multivari­
ate majorization, the chain majorization. An immediate question is whether 
similar results also follow under weaker concepts of multivariate majoriza­
tion. The following example shows that, under the row-wise majorization 
(the weakest concept), it is no longer possible to obtain useful results. 

Example 3.6 

Let f(x) be any continuous function which is > 0 almost everywhere, 
and let 
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bl = (cl,Cl,al3, ... ,aln ), b2 = a2. Then for € 
r 

C2 - Cl > 0 and 

a2j > alj (j = 3, ... , n) we have A >- Band 

r f(x)dx > 0, 
18(A) 

r f(x)dx=O. 
18(B) 

o 

It is not yet known to the author whether or not the condition on chain 
c m 

majorization ">-" in Theorem 3.1 can be weakened to ">-". However, a 
result has been obtained, under this weaker concept of multivariate ma­
jorization, by imposing a stronger condition on f(x). This result is given 
below as Theorem 3.8; its proof depends on the S-transform (as defined in 
(2.6)) and an application of Prekopa's inequality (1971). 

The new condition on f(x) is stated below. 

Condition 3.7 f is of the form f(x) = 'ljJ(¢(x)) , where (1) ¢(x) : ~n -+ 

(-00,00) is a permutation invariant and convex function of x, and (2) 
'ljJ(z) : (-00,00) -+ [0,00) is nonincreasing, differentiable, and -'ljJ'(z) is a 
log-concave function of z. Moreover, J1Rn f(x) dx < 00. 

Theorem 3.8 Let S(A) and S(B) denote two n-dimensional rectangles, 
m 

and let f(x) : ~n -+ [0,00) satisfy Condition 3.7. If A >- B, then 

r f(x) dx s:; r f(x) dx. 
18(A) 18(B) 

(3.11) 

To prove this theorem, let us define 

10 f(x) dx == H(C) (3.12) 

and observe the following lemma. 

Lemma 3.9 For arbitra:Jf: but fixed K let Pl, ... , PK be permutation ma­
trices, and let Q:k 2: 0, Lk=l Q:k = 1. If f(x) satisfies Condition 3.7, then 

K 

H(:LQ:kPk(C)) 2: H(C) 
k=l 

(3.13) 

holds for all convex and bounded sets C c ~n. 

Proof Since f is permutation invariant we have H(Pm(C)) = H(C) for 
each Pm. Thus by Theorem 2 of Prekopa (1971) we have, for Q:m 2: 0, 
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M 

= H((I- OM+1) L 1 Om Pm(C) + OM+1 PM+1(C)) 
m=l - OM+1 

2: (H(t 1 Om Pm(C))1-ctM
+

1
• (H(PM+1(C))tM +1 

m=l - OM+1 

2: (H(C))1-ct M +1 • (H(C)tM +1 = H(C). 

Hence the lemma. o 

Proof of Theorem 3.8 Immediate from Proposition 2.1 and Lemma 3.9. 
o 

In certain applications f is of the form f (x) = 1jJ ( </J( x )) only for x in a 
permutation invariant and convex set E, and zero elsewhere. In this case 
Theorem 3.8 again applies provided that S(A) is a subset of E (note that if 
S(A) is in E, then any of its S-transforms must be in E). This observation 
yields the following corollary. 

Corollary 3.10 Let the density function f(x) of X satisfy Condition 3.7 
for x E !Rn ; or for x E E (a permutation invariant and convex set), zero 

m 
elsewhere, and S(A) a subset of E. If A ?- B, then the inequality 

p[n{aij ::; Xj ::; a2j}] ::; p[n{b1j ::; Xj ::; ~j}] 
J=l J=l 

(3.14) 

holds; as a special consequence, 

P [n {a1j ::; Xj ::; a2j}] ::; P [n {ih ::; Xj ::; U2}] 
3=1 J=l 

(3.15) 

holds for Ui = ~ ~j=l aij, i = 1, 2. 

It may be useful to point out that Condition 3.7 is satisfied for a variety 
of density functions. In particular, we note that 

Proposition 3.11 If f (x) is a permutation invariant and log-concave func­
tion of x for x E !Rn , or for x in a permutation invariant and convex set 
E and zero elsewhere, then the condition on f(x) in Corollary 3.10 is sat­
isfied. 

Proof Immediate by choosing </J(x) = -logf(x) and 1jJ(z) = e-Z • 0 

In the following proposition, we show that the class of functions satisfying 
Condition 3.7 is in fact a sub-class of Schur-concave functions. 
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Proposition 3.12 If f(x) satisfies Condition 3.7, or if it satisfies Con­
dition 3.7 for x E E (a permutation invariant and convex set) and zero 
elsewhere, then it is a Schur-concave function of x. 

Proof First assume that f satisfies Condition 3.7 for all x, and let x, y be 
in!Rn such that x )- y holds. Without·loss of generality it may be assumed 
that y = xT where T is a T-transform matrix, and that x and y differ in the 
first two coordinates only. Consequently, we can write y = ax + (1- o)x* 
for some a E [0,1], where x* is obtained by interchanging the first two 
coordinates in x. It then follows that 

¢(y) = ¢(ox + (1 - o)x*) ~ o¢(x) + (1 - o)¢(x*) = ¢(x), 

and that 
f(y) = 'lj;(¢(y)) ~ 'lj;(¢(x)) = f(x). (3.16) 

If f satisfies Condition 3.7 for x E E =I- !Rn , and zero elsewhere, the x E E 
implies y E E. It can be verified that for either (1) x, y E E, or (2) x f/. E, 
y E E, or (3) x f/. E, y f/. E, the inequality in (3.16) always holds. 0 

Thus, when comparing Theorems 3.1 and 3.8, we now see that in The­
orem 3.1 an inequality is given for all Schur-concave functions, under a 
stronger condition of multivariate majorization; while the majorization con­
dition in Theorem 3.8 is weaker, the inequality applies to only a sub-class 
of Schur-concave functions. 

m 
A related interesting question is the following: suppose that A )- B 

holds, is it always possible to find a finite number of S-transforms SO!. given 
in (2.3) (Le., by taking the convex combination of only two sets at a time) 
to transform S(A) into S(B)? The answer to this question would be in the 
affirmative if the following conjecture were true. 

Conjecture 3.13 Every doubly stochastic matrix Q can be expressed as 
the product of a finite number of S-matrices, where each S-matrix is of the 
form 01 + (1 - o)Pk for some a E [0,1] and some permutation matrix Pk 

(I is the identity matrix). 

If Conjecture 3.13 were true, then it would yield the following statement. 

Conjecture 3.14 Let A, B be two p x n matrices (p, n ~ 2). If A ~ B, 
then B can be derived from A by successive applications of a finite number 
of S-tmnsforms defined in Conjecture 3.13. 

This, if true, would be a multivariate version of the result concerning 
(univariate) majorization and the T-transform (see, e.g., Marshall and 
Olkin (1979), Lemma 2.B.l, p. 21). Thus, in the proof of Theorem 3.8, 
we would not have to depend on the transformation given in (2.6) because 
then the transformation in (2.3) would be sufficient. It was communicated 
to me by M. Shaked that Conjecture 3.13 is false. The following is one of 
the counterexamples he obtained. 
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Example 3.15 

The doubly stochastic matrix 

1 (8 
Q= 16 i 

is not a finite product of S-transforms. 

This can be justified using a geometric argument; the details are not 
given here. 0 

4 Some Applications 

In this section we point out some of the important cases (distributions) in 
which the main results in Section 3 apply. The applications are presented 
for the purpose of illustration, so, of course, the list is not complete. Note 
that in each of the applications, the inequality 

p[rHalj ~ Xj ~ a2j }] ~ p[n{al ~ Xj ~ a2}] 
3=1 3=1 

holds as a special case for ai = * Ej=l aij, i = 1, 2. 

Application 4.1 In each of the following cases the joint density function 
f(z) (of X) satisfies the condition in Corollary 3.10. Thus (3.14) holds if 

A~B. 

1. Xl, ... , Xn are i.i.d. random variables whose common (marginal) 
density h(x) is a log-concave function of x for all x, or for x in some 
interval I, and zero elsewhere. 

In particular, this applies when h(x) is the density function of a nor­
mal distribution, or an exponential, gamma, or a chi-square distri­
bution with degrees of freedom::::: 2. 

2. X is a multivariate normal variable with equal means, equal vari­
ances, and equal correlation coefficients p E (-I/(n - 1),1). 

3. As a more general case of (2), f(z) is a permutation invariant el­
liptically contoured density function such that f(z) = 'I/J((z - p.) / 
E-l(Z - p.)), where ~ is a positive definite matrix with equal diago­
nal elements and equal off-diagonal elements, p. = (J..L, ••• , J..L) for some 
real number J..L, and 'I/J satisfies Condition 3.7. 
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4. X is a multivariate beta or Dirichlet variable with density 

n ( n )d 
f(z) = c}1 wj-1 1-{;Xj 

n 

for LXj ~ 1, 
j=1 

and zero elsewhere; where c > 0, W ~ 1, and d > 0. 

This application implies an earlier result of Olkin (1972), which in­
volves probability contents of the for p[nj=dO ~ Xj ~ aj}], as a 
special case. 

5. Other Dirichlet-type integrals with integrand 

forz E E, 

and zero elsewhere; where c > 0, W ~ 1, d > 0, and E is a permutation­
invariant and bounded convex set. 

Note that if h(x) is a log-concave function of x, then it is well-known that 
J(z) is a Schur-concave function of z. But the statement in (1) above is 
stronger because all functions J satisfying Condition 3.7 are Scur-concave 
(Proposition 3.12). The statement in (1) follows from the inequality 

n 

logJ(az + (1- a)y) = Llogh(axj + (1- a)Yj) 
j=1 

n 

~ L(a log h(xj) + (1- a)1ogh(Yj») 
j=1 

= a logJ(z) + (1 - a) logf(y) 

(that is, J is a log-concave function of z), and Proposition 3.11. The state­
ment in (2) can be verified easily. The statements in (3), (4), (5) follow from 
Proposition 3.11 and the fact that f(z) is a log-concave function (which 
can be verified analytically). 

Below we state some important examples in which the density function 
J (z) is a Schur-concave function and it mayor may not satisfy Condition 
3.7. 

Application 4.2 In each oj the Jollowing cases the joint density J (z) is a 
Schur-concave function oj z. Hence Theorem 3.1 and Corollaries 3.2 and 
3.3 apply. 

1. J (z) is permutation invariant and unimodal. 

2. J(z) is the density of one oj the following variables (as discussed in 
Section 3.3 oj Tong (1980)): 
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(i) Multivariate t variable t = X I JU Ill, where X is defined as in 
Application 4.1. (2) with means zero, and is independent of U; 
U is a chi-squared variable with 1I d.f. 

(ii) Multivariate chi-squared variable X 2 = (U1 + Uo, ... , Un + Uo), 
where U1, ... , Un, Uo are independent chi-squared variables with 
d.f. 's 1I1 = ... = lin ~ 2 and lIo, respectively. 

(iii) Multivariate F-variable F = (1I011l1)U IUo, where U = (U1, ... , Un) 
and Uo are as in (2) (ii). 

Remark 4.3 The following is an example in which Theorem 3.8 applies 
and Theorem 3.1 does not apply. Consider the matrices 

(1 1 0) 
A=A 2 4 6 ' 

B = A ( 1 0.5 0.5 ) 
3 4 5 ' 

where A > 0 is arbitrary but fixed. Let iP denote the c.d.f. of a normal (or 
an exponential or a gamma or a chi-squared) variable. By Example lS.A.3 

m c 
of Marshall and Olkin (1979), p. 431, we have A >- B but not A >- B. 
Hence Theorem 3.1 fails to apply and Theorem 3.8 yields 

(iP(2A) - iP(A))(iP(4A) - iP(A))(iP(6A) - iP(O)) 

~ (iP(3A) - iP(A)) (iP(4A) - iP(0.5A)) (iP(5A) - iP(0.5A)). 

Application 4.4 When choosing f(x) = c > 0 for x E E (and zero else­
where), where E is a convex and permutation-invariant set in ~n, Theo­
rem 3.1 yields the following geometric inequality: If the chain majorization 

c 
A >- B is satisfied, then the value of S(A) is less than or equal to that of 
S(B). It in turn yields the algebraic expression 

n 

II (a2j - a1j) ~ (a2 - adn 

j=l 

for a1j ~ a2j (j = 1, ... , n) and ai = ~ 2::;=1 aij, i = 1, 2. 

Finally, we state a result for the scale parameter families. The proof is 
easy, and is omitted. 

Application 4.5 Let Xl, ... , Xn be independent random variables with 
densities hj(x) = h(xIOj), OJ > 0, j = 1, ... , n. If h(x) is a log-concave 
function of x for all x (for x ~ 0 and zero elsewhere) then for all finite inter­
vals (a1' a2) (for all finite intervals (a1' a2) C [0,00)) the probability content 
p [n;=l {a1 ~ Xj ~ a2}] is a Schur-concave function of (011, ... , Oil). 

As a special case, Application 4.5 yields inequalities for the independent 
normal variables via the diversity of their standard deviations; the details 
are left to the reader. 
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Minimum Majorization 
Decomposition 

Joseph S. Verducci1 

ABSTRACT A famous theorem of Birkhoff says that any doubly stochas­
tic matrix D can be decomposed into a convex combination of permu­
tation matrices R. The various decompositions correspond to probability 
distributions on the set of permutations that satisfy the linear constraints 
E[R] = D. This paper illustrates how to decompose D so that the resulting 
probability distribution is minimal in the sense that it does not majorize 
any other distribution satisfying these constraints. 
Any distribution maximizing a strictly Schur concave function 9 under these 
linear constraints will be minimal in the above sense (Joe (1987». In partic­
ular, for D in the relative interior of the convex hull of the permutation ma­
trices, the probability functions p that maximize g(p) = - E ... p( 11") log p( 11"), 
subject to E[R] = D, form an exponential family £ with sufficient statistic 
R. 
This paper provides a theorem that characterizes the exponential family £ 
by a property called quasi-independence. Quasi-independence is defined in 
terms of the invariance of the product measure over Latin sets. The char­
acterization suggests an algorithm for an explicit minimal decomposition 
of a doubly stochastic matrix. 

1 Introduction 

Chapter 2 of Marshall and Olkin (1979) describes the theory of doubly 
stochastic matrices, a term apparently coined by Feller (1950) for square 
matrices with nonnegative elements, whose rows and columns all sum to 
one. Perhaps the most famous theorem (Birkhoff (1947)) about doubly 
stochastic matrices is that they form the convex hull of the set of all per­
mutation matrices, which are doubly stochastic matrices consisting of only 
O's and l's. Marshall and Olkin review several proofs of Birkhoff's theorem, 
including explicit methods for decomposing a doubly stochastic matrix into 
a convex combination of permutation matrices. All of these decompositions 
express a doubly stochastic matrix D in terms of only a few permutation 
matrices, the smallest number needed for a general n x n doubly stochastic 

IThe Ohio State University 
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matrix being n 2 - 2n + 2. 
Any decomposition of a doubly stochastic matrix D induces a probability 

distribution on the set n of all permutations of n objects as follows. Let 
7r : {I, ... , n} -+ {I, ... , n} be a general permutation in n, and define the 
n x n permutation matrix R( 7r) by [R( 7r) ]ij = 1 if 7r( i) = j, and 0 otherwise. 
Then the decomposition D = E"'Erl p( 7r )R( 7r) makes p(.) a probability 
mass function on n. Traditional decompositions of D concentrate p(.) on 
a few permutations. Here we are interested in making p(.) as diffuse as 
possible. 

The motivation behind a diffuse decomposition is statistical. Through 
the principle of maximal entropy, Good (1963) extolls the usefulness of 
probability models that are as diffuse as possible, subject to constraints 
that represent knowledge of particular features of the probability distri­
bution. If II represents a random permutation sampled from n accord­
ing to a probability mass function p, then the doubly stochastic matrix 
D = E[R(II)lp] has ith row equal to the marginal distribution of the ran­
dom variable II(i), i = 1, ... , n. A diffuse decomposition of D thus corre­
sponds to a probability distribution p on n that is as diffuse as possible, 
subject to the fixed marginal constraints 

P[II(i) = j] = L p(7r) = Dij , 

{ ... I ... (i)=j} 

(1.1) 

for each j = 1, ... , n and each i = 1, ... , n. 
The preordering > of majorization [ef. Marshall and Olkin, 1979, p13] 

on the set {p(.)} of all probability mass functions on n gives a criterion for 
relative diffusion; namely, p is more diffuse than q if q > p. Let PD denote 
the set of probability functions on n that satisfy the linear constraints (1.1); 
by Birkhoff's theorem, PD is not empty. A probability function p E PD is 
minimal with respect to majorization if p > q for any q E PD implies q > p. 
A result due to Joe (1987) is that if p maximizes a strictly Schur concave 
function on PD , then p is minimal. 

In this paper, we focus attention on the problem of finding the minimal 
p that maximizes the Schur concave function g(p) = - E"'Erl p( 7r) 10g(P( 7r)] 
known as Shannon entropy. Let F be an exponential family with sufficient 
statistic R, that includes the uniform distribution, on a discrete space. It 
is easy to show that each member of F is the unique distribution that 
maximizes Shannon entropy among all distributions with the same value 
of E[R]. Thus if the range of E[R] is restricted to Vo == relative interior of 
convex hull of {R(7r)}, then for each DE Vo the unique distribution of PD 

that maximizes Shannon entropy has the form 

p(7rIB) = w-1 (B) exp{tr[BR(7r)]}, (1.2) 

where B is an n x n real valued matrix, and W is the (Laplace transform) 
normalizing function that ensures L p( 7r) = 1. 
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Using the language and tools of log-linear models, Holland and Silverberg 
(cf. Silverberg, 1980, unpublished Ph. D. dissertation, Princeton) investi­
gated the exponential family £ of probability functions defined by (1.2). 
This model has not been applied much, chiefly because of the difficulty in 
estimating the parameter 0, due to the intractable form of \If for large val­
ues of n. The proposed decomposition of D solves this problem, because the 
maximum likelihood estimate of 0 corresponds to the unique (cf. Brown, 
1986, pp. 148-149) solution of the equation 

E[R(7r)IO] = Do, (1.3) 

whenever Do, the average of the sample permutation matrices, is in Vo. 
The proposed decomposition of any Do E Vo will be given in terms of the 
solution 0 of (1.3). 

In the next section, the exponential family £ is characterized by the 
property that its members are the only probability functions p for which 

II p(7r) = C (1.4) 
7rEL 

where L is any subset of n whose members form the rows of a Latin Square, 
and c > 0 is a constant that does not depend on L. 

In Section 3, the algorithm for decomposing D is developed. First it is 
shown that 0 in (1.2) may be determined from the values p(7rIO) on a set 
S of n, which contains n( n - 1) members. Second, this set is embedded 
into the union of Latin sets L. Third, an initial, near-minimal decomposi­
tion is performed. Fourth, iteratively transferring probability across Latin 
sets increases entropy while staying inside the family PD, and leads to the 
minimal decomposition. Exact decompositions are computationally feasi­
ble only for small values of n; however, the method may be used to obtain 
approximate decompositions in the case of larger n. 

2 Quasi-independence 

Definitions. A Latin set L is a subset of n with the property that for 
each i and j E {I, ... , n}, there is a unique 7r E L such that 7r(i) = j. A 
probability mass function p on n is quasi-independent if p satisfies (1.4) for 
all Latin sets L. The class of all quasi-independent probability functions of 
n is denoted by Q. 
Remark A. A Latin set, of necessity, consists of n permutations {7rk}, 
which if displayed in the n x n array [7rk(i)] form a Latin square. 
Remark B. The random variables {II( i) Ii = 1, ... ,n} induced by a proba­
bility distribution on n cannot be independent unless they are all constant. 
Suppose the n is generalized to the space n* of all functions (not just bijec­
tions) from {I, ... , n} into itself. Then the corresponding random variables 
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{II* (i) I i = 1, ... , n} could be independent under some probability p* on 0* , 
in which case the product of probabilities p* (7r) over any Latin set L would 
not depend on the particular choice of L. Quasi-independence preserves 
this aspect of independence. 
Remark C. One corollary of the characterization Q = £ proven below 
is that the above definition of quasi-independence matches that of Bishop, 
Fienberg and Holland (1975, p. 178) for the nn contingency table [P{II(i) = 
ji}ji,ji E {I, ... ,n}] with nn - n! structural zeroes. 

Lemma 2.1 Q:J £. 

Proof For any p E £ and any Latin set L, 

II p(7r) = w-n(B)eLllij = constant. 
7rEL 

o 

The goal of this section is to prove, conversely, that £ :J Q, so that the ex­
ponential family £ is characterized by the property of quasi-independence. 
To understand the idea of the proof, one more definition is necessary. 
Definitions. Let G be a group and M an additive abelian group. The 
group M is called a left G-module if for each g E G and m E M a product 
gm E M is defined such that 

and 

g(m + m') = gm + gm', 

gg'(m) = g[g'(m)J, 

em = m for the identity element e of G. 

(2.1) 

Similarly, M is called a right G-module if a product mg E M is defined 
with the right multiplication properties analogous to (2.1). M is called a 
G-module if it is both a left and right G-module. A subgroup N of M is a 
G-submodule if it is closed under left and right multiplication be G. A G­
submodule of M is trivial if it consists of only the zero element of M or of 
M itself. 

The set 0 is a group under composition 0 of permutations defined by 
7r 0 a(i) = 7r[a(i)]. Let'S be the vector space of real valued functions on 
0, and for each A, 7r E 0, define left multiplication by Af(7r) = f(A 0 7r) so 
that 'S becomes a left O-module. Similarly for each a,7r E 0 define right 
multiplication by fa(7r) = f(7r 0 a), so that'S is indeed an O-module. Let 
V be the vector subspace of 'S spanned by {logp(')lp E £}, and let W be 
the vector subspace of'S spanned by {logq(')lq E Q}. We shall show that 
V and Ware the same O-submodule of'S. 

First, however, we need to make precise the relationships between £ and 
V and between Q and W, so that we can conclude from V = W that £ = Q. 
To do this, define ¢ : 'S -+ £ by ¢[f(7r)] = exp[f(7r)J1 LvEfI exp[f(v)]. Then 
we get the following lemma. 
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Lemma 2.2 £ = </>(V) and Q = </>(W). 

Proof £ = </>(V) V is also spanned by {[R(·)]ijli,j E {I, ... ,n}}, so that 
each f E V can be expressed as f(7r) = tr[OR(7r)]. Thus </>[f(7r)] has exactly 
the form (1.2). 

Q = </>(W) If fEW, then f = Lkaklogqk = log [TIk(qk)a k ] for some 
ak E lR and qk E Q. Let c = LIIEO exp[f(v)] so that </>(1) = c-1 TIk(qk)a k 

is a probability function q E ~. Then for any Latin set L, 

which does not depend on L because each qk E Q implies that TI1I"EL qk(7r) 
does not depend on L. Thus Q ::> </>(W)j but for any q E Q, q = </>(logq) E 
</>(W), so that </>(W) ::> Q. 0 

In fact, the stronger result V = </>-1(£) and W = </>-l(Q) is true, but not 
needed for our theorem. We will show that V and W are both O-modules, 
that they must have the same decomposition into irreducible O-modules, 
and hence must be equal. Then, by Lemma 2.2, Q = </>(W) = </>(V) = £. 

Lemma 2.3 V is an O-submodule of ~. 

Proof As vector subspace of~, V is clearly a subgroup of~. It only needs 
to be shown that V is closed under left and right multiplication by permu­
tations. Suppose that f(7r) = tr[OR(7r)] E V. Then >.f(7r) = f(>.7r) 
tr[OR(>.7r)] = tr{[OR(>')]R(7r)} E V, and similarly fa(7r) = f(7ra) 
tr[OR(7ra)] = tr{[R(a)O]R(7r)} E V, as required. 0 

Lemma 2.4 W is an O-submodule of ~. 

Proof Again, we only need to show that W is closed under left and right 
multiplication by permutation!!; Let L be a Latin set. Then for any fEW, 
L1I"EL f(7r) does not depend on the specific choice of Lj and for each >., a E 

0,L1 = >'L = {>.7rI7r E L} is also a Latin set, as is L2 = La = {7ral7r E L}. 
Therefore 

L >.f(7r) = L f(>.7r) = L f(7r) 
1I"EL 1I"EL 1I"ELl 

= constant 

= L f(7r) = L f(7ra) = L fa(7r) 

for any Latin set L. It follows that q>. = </>(>.1) and qa = </>(la) are Qj 
moreover, >.f is proportional to q>. and fa is proportional to qa. Thus >.f 
and fa are both in W. 0 
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Remark D. Suppose that people independently rank items in a set {1, ... , n}, 
with each person's ranking represented by a permutation 7r. Suppose fur­
ther that these people come from two distinct populations. Let qk (7r) be 
the probability that a person from population k (k = 1,2) produces the 
ranking 7r, and define the agreement between ql and q2 as ql @q2 ( 7r) = 
[ql (7r )q2( 7r )]/ Ell [ql (V)q2(V)]. This is the conditional distribution of rank­
ings given that two people from different populations agree on the same 
ranking. If ql, q2 E Q, Lemma 2.4 implies that their agreement is also in 
Q. In fact, if M is any O-module, then ¢(M) is closed under agreement. 
Definition. A G-module M is irreducible if its only G-submodules are 
trivial; otherwise it is reducible. 

The next lemma, a version of Maschke's theorem (see, for example, Curtis 
and Reiner, 1962, p.41), has a simple proof in the present setting, where C;S 

is an inner product vector space rather than just a group. 

Lemma 2.5 Any O-submodule A of C;S may be expressed as a vector space 
direct sum of irreducible O-submodules. 

Proof Because'S is finite dimensional, we need only show that if A is re­
ducible, then it can be written as a direct sum of irreducible O-submodules. 
Specifically, we show that if B is a nontrivial O-submodule of A, the or­
thogonal complement Be of B in A is an O-submodule of A. 

Let < h, f >= EllEn h(v)l(v) denote the standard inner product of h 
and IE'S. This inner product is both left and right invariant in the sense 
that for every)" a E 0, < )'h,)'1 >=< h, f >=< ha, fa >. Thus if f E Be 
and hE B, then < h, )'1 >=< ),-Ih, I >= 0, since ),-Ih E B because B 
is an O-submodule. Likewise, < h, fa >=< ha- I, I >= 0, shows that Be 
is closed under right multiplication. Be is therefore an O-submodule of A. 
D 

The simplest example of an irreducible O-module is the subspace Vo 
of C;S consisting of all constant functions on O. Let VI be the orthogonal 
complement of Vo in V. By Lemma 2.5, it is an O-submodule. The following 
example illustrates the construction of irreducible O-modules in general, 
and shows that V = Vo EEl VI is the decomposition of V into irreducible 
O-submodules promised by Maschke's theorem. 
Example. VI is irreducible. 

Proof We show that VI is generated by a single function. Let Tj be the 
permutation in 0 that transposes j and n; that is, Tj(n) = j, Tj(j) = n, 
and Tj (i) = i otherwise. Define II to be the indicator function of the set 
{7r(n) = n} so that ho = II -n- I is in VI' Any I E V can then be expressed 
as 

i,j i,j 
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Since 

vEn j,i 

any h E V1 can be expressed as 

vEn i,j i,j 

Thus ho generates V1. Similarly, since h1 = h - Td1 is in V1 and 

n 

ho = n-1 LTjT1hb 
j=2 

it follows that h1 also generates V1; we mention this because h1 is the 
standard generator described in Lemma 2.7 below. We conclude that any S1-
submodule that contains h1 must contain all of V1. Together with Lemmas 
2.3 and 2.5, this proves that V1 is an irreducible S1-module. 0 

In fact, each irreducible S1-module on ~ is generated by a single element 
(see, for example, Curtis and Reiner, 1962, p. 190), a fact that we now need. 
Including this fact, we need only two non-elementary results, the enumer­
ation of the irreducible S1-submodules of ~ and the form of a generating 
function for each of the irreducible S1-submodules. Fortunately, we require 
just a few more definitions to discuss these results. 
Definition. Let n be a positive integer. A partition Z = (Zb" . ,zn) of n is 
a vector with non-negative integer components arranged in nonincreasing 
order and summing to n. For any fixed partition z, let 

and 

( be the number of positive components of Z; 

k 

8k = L Zj, k = 1, ... , ( with 80 = 0; 
j=1 

Zk = {I + 8k-b"" 8k}, k = 1, ... , (; 

fz E ~ be the indicator function of the event , 
n {7r(Zk) = Zk}. 
k=1 

Remark E. It is helpful to think of the partition Z as the triangular array 

1, .................. ,81 

81 + 1, ............ ,82 

8,-1 + 1, ...... ,8" 
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called an ordered tableau, with row k consisting of the elements of Zk, 
in order. This visual aid is especially useful for constructing the column 
stabilizer of z, defined below. (See, for example, Stanley, 1971.) 
Remark F. The n-module Mz generated by fz is sometimes called a Young 
module. The structure of Young modules, together with the ordering of ma­
jorization on partitions, makes {Q(Mz)} an interesting system of probabil­
ity models, with Q(Mz) including more complicated forms of interaction 
among the component variables II( i) as z decreases in the sense of ma­
jorization. 

Proofs of the following two lemmas may be found in James (1978, pp. 6 
and 16, respectively). 

Lemma 2.6 There is a one-to-one correspondence z -+ Sz between parti­
tions of n and irreducible n-modules. 

Definition. For any partition z, let (j = #{Zi ~ j}, and let Zj = {Sk-l + 
jlk = 1, ... , (j} be the jth column of the ordered tableau associated with 
z. Then the column stabilizer r z of z is defined by r z = b E nh'(Zj) = 
Zj,j = I, ... ,Zl}. 

Lemma 2.7 For each partition z, the irreducible n-module Sz is generated 
by 

gz = L sgn('Yhfz, 
')'Er. 

where sgn( 'Y) = 1 or -1 as 'Y is even or odd, respectively. 

Example. n = 4 
z = (2,2,0,0). In this case 

fz{-rr) = {I if {-rr(I~, 7r(2)} = {I, 2}; 
o otherWIse. 

and 

{
I if {7r(I),7r(2)} = {I,2} or {3,4} 

gz(7r) = -1 if {7r(I),7r(2)} = {I,4} or {2,3} 
o otherwise. 

For Latin sets L1 and L2 defined by 

[ 
(1 
(2 

Ll = (3 

(4 

2 3 4) 1 1 4 3) 
4 1 2) 
3 2 1) 

and 3) 1 1) 
4) 
3) 
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and so Sz rf. w. 
z = (2, 1, 1 0). 

and 

In this case 

if 7r(3) = 3 and 7r( 4) = 4; 
otherwise. 

{
I if [7r(3), 7r(4)] = [3, 4] or [1, 3] or [4, 1]; 

gz(7r) = -1 if [7r(3), 7r(4)] = [4, 3] or [3, 1] or [1, 4]; 
o otherwise. 

For Latin sets L3 and L4 defined by 

[ (\ 2 3 
4) 1 [ (\ 4 2 

3) 1 (2 3 4 1) 
and 

(2 1 4 3) 
L3 = (3 4 1 2) L4 = (3 2 1 4) 

(4 1 2 3) (4 3 2 1) 

L = 2:f: -2 = L gz(7r) 
7rE L 3 7rEL4 

and so Sz rf. W. 

z = (1, 1, 1, 1). Here 

gz(7r) = {~ if 7r is even 
if 7r is odd. 

As for the case z = (2, 2, 0, 0), we again get 

L gz(7r) = 4:f: -4 = L gz(7r) 
7rELI 7rEL2 

and so Sz rf. W. 
The above example effectively shows that Q = £ in case n = 4. The 

following theorem gives a formal proof for general n. The key of the proof 
is to find for each partition z < (n - 2, 2, 0, ... ,0) a pair of Latin sets 
L1 and L2 such that ELI gz(7r) :f: ELz gz(7r). The theorem shows how to 
construct such pairs for a general partition z. 

Theorem 2.8 Q = £ 

Proof By Lemmas 2.1 and 2.2, we have to show V ::J W; by Lemmas 
2.3, 2.4, 2.5, and 2.6, V ::J W if z < (n - 2, 2, 0, ... ,0) in the sense of 
majorization implies that Sz rf. W; by Lemma 2.7 we just need to show 
that gz rf. W for any z < (n - 2, 2, 0, ... ,0). 

Let Tz be the transposition of 1 and Zl + 1. Then Tz E r z and sgn( Tz) = 
-1, so that 

gZ(TZ7r) = L sgnb)rTzfz(7r) 
I'Erz 
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= L -sgn(v)vfz(1T) (2.2) 
vEr. 

(2.3) 

Thus for any Latin set L, ET.L gz(1T) = - EL gz(1T), and it remains only 
to show that for every Z < (n - 2, 2, 0, ... ,0), there exists a Latin set 
L such that EL gz(1T) of O. In terms of ordered tableaux, we proceed as 
follows: First construct such a set L for the two cases that correspond to 
the two basic forms for the bottom of an ordered tableau, and then show 
how to construct L when successively larger blocks are placed on top of the 
tableau. 0 

Case A Z = (Zb Z2, 0, ... ,0) with Z1 ~ Z2 ~ 2. 
If Z2 is even, let L12 be a Latin square formed from Z2, let L22 be a Latin 

square formed from {I, ... , Z2}, and let L be a Latin square of the form 

Then EL gz(1T) = 2Z2 > 0, since any permutation 1T in the last n - 2Z2 
rows of L must have fz(1T) = O. 

If Z2 is odd, the above construction gives EL gz(1T) = 0, and must 
thus be modified. In this situation, let L~2 be a Latin square formed from 
{I, (n - Z2) + 2, ... , n}, let Lq2 be the square matrix obtained by replacing 
the column of Lb with first entry 1 by the column [(n - Z2) + 1, 2, ... , z21, 
and let L1 be the Latin rectangle of the form L1 = [ . Lbl. By construction, 
each row of L1 has gz(1T) = 1, because each 1T E L1 has the form 1T = TjT1P, 
where pZ2 = Z2, and Tj is the transposition in the column stabilizer r z 

that transposes j and (n - Z2) + j. 
The Latin rectangle L1 is now completed into a Latin square L whose 

remaining rows 1T have gz(1T) = O. Let L22 be the Latin square formed from 
Z2, let L~2 be the square matrix obtained by replacing the column of L22 
with first entry (n - Z2) + 1 by the column [(n - Z2) + 2, ... , n, IJ, and 
let L2 be the Latin rectangle of the form L2 = [. L~21. Then any Latin 
square of the form 

has LL gz(1T) = Z2· 

Case B Z = (Zb Z2, 1, 0, ... , 0). 
Setting L equal to the Latin set corresponding to the cyclic group gen­

erated by 1Te = (2, ... , n, 1) always works in this case. To see this, first 
note that the only 1T for which 'Y fz (1T) of 0 for some 'Y E r z must have 
1T(n} E {I, Z1 + 1, n}. For 1T equal to the identity fz(1T} = 1; for 1T = 1Te, 
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"Y/z(7r) = 1 when"Y is the cycle n -+ (Zl + 1) -+ 1 -+ n, which is even. Thus 
EL gz(7r) ~ 1 since two out of its three possible non-zero terms are 1. 

As mentioned earlier, the above two cases will be used to form the base or 
bottom of a general ordered partition. In order to prove that larger blocks 
may be added on top of these bases, we need to show that these additional 
blocks themselves have the desired property. Thus we consider 

Case C (block form) Z = (Zb . .. ,zn) with Zl = ... = Zk = n/k for k ~ 3 
and Zk+1 = ... = Zn = o. 

We first show that there is a Latin set K of permutations of {I, ... ,k} 
consisting of only even permutations: If k is odd, the the cyclic group Ko 
generated by (2, ... , k, 1) constitutes such a set; if k is even, transpose 
items 1 and k - 1 in each of the odd permutations of Ko to obtain K. 
Because 1 and k - 1 appear only in the even columns of Ko, this K is 
indeed a Latin set. 

Now let Lj be a Latin square formed from Zj(j = 1, ... , k), and let K = 
{a1, ... ,ak} be a Latin set of even permutations of {I, ... , k}. Then the 
nxn Latin square L with (i, j) block equal to LUj(i) satisfies EL gZ(7r) = n. 

Appending oj blocks 
We nOW consider partitions of the form 

Z=[;] 
where w is a k x m block, and Y = (Y1, ... , Y(n-km») is a general partition 
of n - km with Y1 < k. We assume that Y has the desired property, and we 
want to show that Z does also. 

Case 1 k = 1. 
Let L12 be a Latin set on {m + 1, ... ,n} such that EL12gy(a) > O. If 

n - m > m, restrict L12 to an m x (n - m) Latin rectangle by first deleting 
any a with gy(a) ~ o. 

For any permutation a of {m + 1, ... , n}, let 7r U be its embedding into 
n defined by 7ru (i) = i for i = 1, ... , m, and 7ru (i) - a(i) otherwise, and 
note that gz(7ru ) = gy(a). Let L11 be a Latin square formed {I, ... ,m}. If 
m > n - m restrict L11 to an (n - m) x m Latin rectangle with the entry 
"m" in each of its first (n - m) columns. Then any completed Latin square 
of the form 

L = [L11 L12] 
L21 L22 

has EL gz(7r) > 0 because each column (and hence row) of L22 has an "m" 
in it. 

Case 2 k> 1. 
Note that for k = 2, case A above guarantees that w has an associated 

Latin set Lw with the desired property that ELwgw (7r) > 0, and for k > 2 
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case C above makes the same guarantee. The proof now follows as for case 
1, with Lw replacing L 11 • II 
Remark G. The proof of the above theorem shows that if a Latin square 
is chosen at random according to the uniform distribution on the set of all 
Latin squares of fixed dimension, then for each partition z, Xz = LL9z(7r) 
has a non-degenerate distribution that is symmetric about O. Further re­
search on the distribution of X z should provide some insight into the rela­
tive frequency of various types of Latin squares. 

3 Application 

The fact that the distributions in £ are the only distributions possessing 
the property of quasi-independence can be used as the basis of an algorithm 
for a minimal majorization decomposition of a doubly stochastic matrix. 
The idea is to start with an arbitrary decomposition and then diffuse it by 
transferring probability mass between pairs of Latin sets. The transfers pre­
serve the decomposition but make the distribution approach the maximal 
entropy distribution. In fact for small values of n it is possible to achieve 
quasi-independence to any degree of numerical accuracy. 

A key to obtaining the desired minimal decomposition is the fact that 
the parametric matrix () in (1.2) may be determined simply by knowing 
the probabilities of n( n - 1) particular permutations. First notice that for 
identifiability we may set (}jn = (}ni = 0 for i,j = 1, ... , n. Let Ti be the 
permutation in n that transposes i and nj that is, Ti(n) = i, Ti(i) = n, and 
Ti(k) = k otherwise. Then by (1.2) 

p(7rI(}) = lI1- l ((})exp [I: (}".(i),i] , 

so that 

In particular, if 7r( n) = n, then 

(3.1) 

Let L - = {/Ll, ... , /Ln- d be a Latin set on the first n - 1 integers. Define 
lIj E n(j = 1, ... , n-l) by lIj(i) = /Lj(i) for i = 1, ... , n-l, and lIj(n) = n. 
Then (3.1) implies that () is determined by the probabilities of the n(n -1) 
permutations in 

S = {lIj 0 Tili = 1, ... ,n - Ij i = 1, ... ,n}. 

Let q be some arbitrary decomposition of a given doubly stochastic ma­
trix Dj that is, q is a probability function on n such that Eq[R(7r)] = D. 
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Let Y be a collection of Latin sets whose union contains both S and the 
support of q. We now give a practical method for transferring probability 
across sets in Y to achieve a new decomposition p such that Ep[R(7l')] = D 
and (1.4) holds for all Latin sets LEY. In the case where Y consists of all 
Latin sets, it follows from the Theorem and the already cited result of Joe 
(1987) that p is a minimal decomposition of D. 

Let Ll and L2 be two Latin sets in Y. There is a one-to-one correspon­
dence between Ll - L2 arid L2 - L 1 , lind so if an amount ~ of probability is 
transferred from each 71' E Ll - L2 to a corresponding a E L2 - L 1 , Eq [R( 71')] 
will not change. The amount ~ that wlll balance the product of probabili­
ties on Ll and L2 is determined by the equation 

. n [q(7l') -~] = II [q(a) + ~]. (3.2) 

For practical purposes the solution 

~ = [~EgL2 q(pi) - uEgL~ q(a)]/ {[~EEL2Jl q(JL)] 

+ [uEELlll q(>.)]} (3.3) 

to the linear approximation of (3.2) suffices to balance the product of prob­
abilities on Ll and L2. Note that JL E Ll - L2 and>' E L2 - Ll in (3.3). 

Suppose that in successive iterations the sets Ll and L2 are chosen from 
Y to maximize and minimize, respectively, the product of the probabilities 
of the permutations inside them. Then after a suitable number of such 
transfers the products of the probabilities will be balanced on all latin sets 
in Y. 

At this point (3.1) may be used to compute the Oji.(i, j = 1, ... ,n - 1). 
If n is not too large, (1.2) may be used to compute the probabilities for each 
71' E fl, and the doubly stochastic matrix E[R(7l')IO] may be computed and 
compared to the original D to check the accuracy of the approximation. 

For moderate and large values of n, the accuracy of the approximation 
depends heavily on the initial decomposition q and the collection Y of 
Latin set over which to balance. Optimal choices of q and Y remain an 
open research problem. 
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The Asymptotic Distribution 
of Characteristic Roots and 
Vectors in Multivariate 
Components of Variance 

T. W. Anderson1 

ABSTRACT The asymptotic distribution of the characteristic roots and 
vectors of one Wishart matrix in the metric of another as the two degrees 
of freedom increase in fixed proportion is obtained. In the balanced one­
way multivariate analysis of variance these two matrices are the sample 
effect and error covariance matrices, and the numbers of degrees of freedom 
are (approximately) proportional to the number of classes. The maximum 
likelihood estimate of the effect covariance matrix of a given rank depends 
on the characteristic roots and vectors. 

1 Introduction 

In the one-way multivariate analysis of variance the covariance matrix of 
effects and the covariance matrix of errors are to be estimated. In the bal­
anced case with normally distributed effects and errors the maximum like­
lihood estimators of these matrices are based on the sample "between" and 
"within" cross-product matrices, which have independent Wishart distribu­
tions. The estimators, in fact, depend nontrivially on the ordered character­
istic roots and corresponding vectors of the "between" matrix in the metric 
of the "within" matrix (Anderson (1984a), Schott and Saw (1984), and An­
derson, Anderson, and Olkin (1986)). This paper develops the asymptotic 
distribution of such roots and vectors in a general setting. The two matrices 
do not need to have Wishart distributions; they are only required to have 
asymptotic distributions with certain symmetry properties. The asymp­
totic distribution of the estimates of the population covariance matrices 
are characterized on this basis. Because Ingram Olkin has been involved 
in deriving the maximum likelihood estimators in the multivariate com­
ponents of variance as well as playing an important role in multivariate 

IStanford University. 
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statistical analysis in general, it seems fitting to contribute this paper to a 
volume in his honor. 

Let H and G be random p x p symmetric matrices with G positive defi­
nite (with probability 1). We treat the asymptotic distribution of the roots 
of IH -tGI = 0 and the corresponding vectors y satisfying (H -tG)y = 0 
and a normalization condition. When Hand G have independent Wishart 
distributions W(~, M) and W(!P, N), an explicit asymptotic distribution 
is obtained. 

As noted above, a particular case of H and G arises in the balanced 
one-way multivariate analysis of variance with random effects. Suppose 

or = 1, ... ,n, j = 1, ... ,k, (1.1) 

where the unobservable va's and Uaj'S are independently normally dis­
tributed with means 0 and covariance matrices £vav~ = 8 and £UajU~j = 

!P. Then Zaj has the distribution N(IL,!P + 8), Vkza = (l/Vk) L:~=1 Zaj 

has the distribution N( Vk IL,!P + k8), and ..;:nk Z = ...jk/n L::=1 za has 
the distribution N(..;:nk IL,!P + k8). The matrices 

n 

H = k ~)Za - z)(za - z)' (1.2) 
a=1 

and 
n k 

G = L L(Zaj - za)(zaj - za)', (1.3) 
a=1 j=1 

are distributed independently according to W(!P+k8, n-1) and W(!P, n(k-
1)), respectively. This is the case of ~ = !P + k8, M = n - 1, and 
N = n(k - 1), representing k replications on n categories. The covari­
ance matrix of effects 8 is positive semidefinite, but not necessarily of full 
rank. 

If k -+ 00, {l/[n(k - l)J}G ~ !P and (l/k)H ~ Hoc)! which has the 
distribution W (8, n - 1). A consistent estimator of 8 is not available. (In 
this model z, H, and G are a sufficient set of statistics.) n the other 
hand, if n -+ 00, then M = n - 1 -+ 00, N = n(k - 1) -+ 00, and 
M/N = (n - l)/[n(k - 1)) -+ l/(k - 1), and consistent estimators are 
available. This latter case is covered in this paper. 

In our treatment we permit the roots 6 of I~ - 6!P1 = 0 to have arbitrary 
multiplicities. When H and G have Wishart distributions, the asymptotic 
distribution of the roots of IH - tGI = 0 for this general case has been 
given by Li, Pillai, and Chang (1970), Chang (1973), Chattopadhyay and 
Pillai (1973), and Sugiura (1976); asymptotic expansions have also been 
given. uirhead (1978) has given a survey of the results. However, the 
asymptotic distribution of the related vectors has been obtained only for 
the case of the roots of I~ - 6!li"1 = 0 being simple, but multiple roots must 
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be considered in the multivariate analysis of variance, for example, when 
the rank of e is less than p - 1. (See Sections 2 and 6.) The asymptotic 
distribution of the roots and vectors of the Wishart matrices is a special 
case of a more general theory which holds when the matrices Hand G have 
asymptotic normal distributions with certain symmetry properties (The­
orem 4.3), but the asymptotic distribution of the roots and vectors can 
be obtained under even more general conditions (Theorem 4.1 and Section 
A2). In this generality Amemiya (1986) has considered the asymptotic dis­
tribution of the roots, but not the vectors. Tyler (1987) among others has 
studied the asymptotic normal distributions of symmetric matrices under 
general conditions. 

2 Characteristic Roots and Vectors 

Let d1 > d2 > ... > dp > 0 be the roots of 

lif - dGI = 0, (2.1) 

where if = (l/M)H and G = (l/N)G with M ;::: p and N ;::: p. (If Hand 
G have densities, the roots of (2.1) exist and are distinct and positive with 
probability 1.) Let Yl, ... 'YP be the solutions to 

i=l,oo.,p, (2.2) 

normalized by 
y'Gy = 1. (2.3) 

Let Y = (Yl,oo., Yp) and D = diag(d!, 00., dp), where diag(d1 , 00., dp) 
denotes a p x p diagonal matrix with diagonal elements d1 , ... ,dp . Then 

ify = GYD, Y'GY=I. (2.4) 

From (2.4) we obtain 
y'ify = D. (2.5) 

Let2 Z = y-l. Then (2.4) and (2.5) imply 

if = Z'DZ, G=Z'Z. (2.6) 

The vectors Yl, ... , Yp are determined uniquely except for multiplication 
of each by -1; the rows of Z are determined uniquely except for multipli­
cation by -1. We shall indicate later (Section 5) how this indeterminacy is 
resolved. 

2In Anderson, Anderson, and Olkin (1986) Z was defined as (y')-l. We have 
changed that notation to y- 1 in order to agree with Anderson (1951). 
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- p - p 
Suppose that as M -+ 00, H ---+ ~ and that as N -+ 00, G ---+ I}! , 

where I}! is positive definite. Let 01 ~ ... ~ op be the roots of 

I~ - oI}!l = 0, (2.7) 

and let "Yi satisfy 
(2.8) 

"Y:I}!"Yi = 1, and "Y:I}!"Yj = 0, i ~ j. Let .4 = diag(ob ... , op). Then r = 
("'(1, ... , "Yp) satisfies 

~r = I}!r.4, r'l}!r = I, r'~r =.4. (2.9) 

In the case of the balanced one-way components of variance, (2.7) is 

II}! + ke - oI}!l = o. (2.10) 

If the rank of e is m, then om+! = ... = op = 1. As n -+ 00, then 
- p - p p 

N -+ 00, M -+ 00, H ---+~, G ---+ I}!, and D ---+ .4. 
We shall suppose that 

[

)..lIr1 0 
o )..2Ir2 

.4 = . . . . . . 
o 0 

(2.11) 

where )..1 > )..2 > ... > )..K > OJ that is, )..j is a root of multiplicity 
Tj CEf=l Tj = p), and )..b •.• ,)..K are distinct. Let 

(2.12) 

If r satisfies (2.9) then r* = (nn1, ... , rKfh), where n 1 , •.. , n K are 
orthogonal matrices of order T1, .•. , TK, respectively, satisfies (2.9) as well. 
We shall consider the limiting distribution of ..fN (D -.4) and ..fN (Z - r) 
as M -+ 00 and N -+ 00 in such a way that MIN -+ c, where 0 < C < 00. 

3 Reduction of the Problem 

First we relate H and G to the canonical forms of ~ and I}!. Let 

H* = r'Hr = Mr'Z'DZr, 

G* = r'Gr = Nr'Z'Zr. 

(3.1) 

(3.2) 
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Let zr = T. Then 

~H* = H* = T'DT 
M ' 

~G* = G* = T'T. 
N 

(3.3) 

If the roots of IH* - dG* I = ° are distinct, then (3.3) determines D and T 
uniquely if the diagonal elements of D are in descending order and tii > ° 
(as long as tii ¥- 0). 

As M -+ 00 and N -+ 00, H* ~ .::1, G* ~ J. Let 

VN(H* - .::1) = u, 

VN(G* -:- J) = V. 

We suppose that (U, V) has a limiting distribution. 

(3.4) 

(3.5) 

If H* has the distribution W(.::1, M) (as in the balanced components of 
variance), U has a limiting normal distribution with mean 0 as M -+ 00. 

The functionally independent elements are uncorrelated and asymptoti­
cally independent. The ith diagonal element of H* divided by 8i has a X2-

distribution with M degrees of freedom. The limiting distribution of Uii is 
N(O, 28; /e), and the limiting distribution of Uji = Uij is N(O, 8i 8j /e) , i ¥- j. 
If G* has the distribution W(J, N), V has a limiting normal distribution 
with mean 0 as N -+ 00. The functionally independent components are 
uncorrelated and asymptotically independent. The limiting distribution of 
Vii is N(O, 2), and the limiting distribution of Vji = Vij is N(O, 1), i ¥- j. In 
the balanced components of variance, U and V are independent. 

4 The Asymptotic Distribution of Roots and 
Vectors in Canonical Form 

We shall now study the asymptotic distribution of 

D~ [1' 
0 q, [Tn T12 

T'K 1 D2 T21 T22 T2K 
T= . 

0 DK TKI TK2 TKK 

Let 
X gh = VN T gh , 9 ¥- h, g,h = 1, ... ,K, 

Tgg = PgSgQg, g= 1, ... ,K, 

(4.1) 

(4.2) 

(4.3) 

where Pg and Qg are orthogonal matrices of order rg and Sg is diagonal 
with positive diagonal elements, arranged in descending order. (4.3) is the 
singular value decomposition of Tgg , TggT~g = PgS~P~, and T~gTgg = 
Q~S;Qg. Define 

Wg = PgQg. (4.4) 
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Note that Wg is uniquely defined, although Pg and Qg may not be. Define 

Xgg = VN(Tgg - W g) = VNPg(Sg - lrg)Qg, (4.5) 

and 
Lg = VN(Dg - >'glrg), 

which is diagonal. Note that Wg is orthogonal and 

WgT~g = PgSgP~ = TggW~. 

(4.6) 

(4.7) 

is positive definite if Tgg is nonsingular. We want the limiting distribution 
ofXgh , g,h=l, ... ,K, W g, g=l, ... ,K,andLg, g=l, ... ,K. 

Let 

W = block diag(W1, W 2, ... , WK), L = block diag(L!,L2"" ,LK)' 
(4.8) 

and define X, U, and V as composed of blocks Xgh, Ugh, and Vgh, respec­
tively. 

We can write (3.3) as 

~ + ~ U = (w + ~X)' ( ~ + ~L) (w + ~X) 
=~+ ~(X'~W+W'~X+W'LW)+ ~C, (4.9) 

1+ ~ V= (w+ ~X)' (w+ ~X) 
=1+ ~ (X'W + W'X) + ~X'X, (4.10) 

where the submatrices of C are products of the submatrices of W, X, ~, 
and L. Note that C and X' X are Op(l). The submatrix equations of (4.9) 
and (4.10) when (l/VN) C and (l/VN) X' X are dropped are 

Ugg = W~Lg Wg + >'g(W~Xgg + X;g W g) 

= W~Lg Wg + 2>.g W~Xgg, 

Ugh = >.g W~Xgh + >'hX~g W h, 9 =f. h, 

Vgg = W~Xgg + X;g Wg = 2W~Xgg, 
Vgh = W~Xgh + X~g Wh, 9 =f. h. 

From these equations we find 

W~Lg Wg = Ugg - >.g Vgg , 

1 
Xgg = 2 Wg Vgg, 

1 
Xgh = >.g _ >'h Wg(Ugh - >'h Vgh), 9 =f. h. 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 
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Theorem 4.1 Define ~ by (2.11), where Al > A2 > '" > AK. Suppose 
CU, Y) has a distribution such that with probability 1 (4.15) has a unique 
solution for orthogonal Wg and diagonal Lg with each diagonal element of 
Wg positive and the diagonal elements of Lg indexed in descending order. 
If the limiting distribution of ffi (H* -~, G* - J) as N ----+ 00 is the 
distribution of (U, V), then the limiting distribution of orthogonal W g, 
diagonal L g, X gg , and X gh , g ¥- h, defined by (4.2) to (4.6), where diagonal 
D and T satisfy (3.3), is determined from the distribution of (U, Y) by 
(4. 15}, (4·16), and (4.17). 

Corollary 4.2 Let d1 > d2 > ... > dp be the characteristic roots of 
HG- I . Under the conditions of Theorem 4.1 the limiting distribution of 
ffi(di - 8d, i = 1, ... ,p, is the distribution of ii, i = 1, ... ,p, where ii, 

i = 2:;:i rg + 1, ... ,2:;=1 rg, have the distribution of the characteristic 

roots of Uhh - Ah Vhh, h = 1, ... , K. 

Theorem 4.1 was proved by Anderson (1951), Section 6, but was not 
stated in this generality. The corollary, stated by Amemiya (1986), fol­
lows from (4.15), which indicates that the diagonal elements of Lh are the 
characteristic roots of Uhh - Ah Vhh . The conclusions require only that the 
sequence of symmetric matrices H* = H* (N) and G* = G* (N) have 
joint distributions (depending on N) such that ffi(H* -~, G* - J) has 
a limiting distribution that is the distribution of (U, V). As an example, 
in (1.1) the vo:'s can be independently identically distributed according to 
any multivariate distribution with finite fourth-order moments, and simi­
larly for the uo:j's. 

The proof of Theorem 4.1 is treated in the Appendix. 
A random orthogonal matrix W is said to have the uniform distribution, 

or its probability measure is said to be the Haar invariant measure, if the 
distribution or measure of W P is that of W for every (fixed) orthogonal 
P. The distribution of W that results from the conditioning Wil 2 0 or 
Wii 2 0 we call the conditional Haar invariant distribution. See Anderson 
(1951) or Anderson (1984b), Section 13.3, for more discussion. 

Theorem 4.3 Suppose the distribution of the symmetric matrices U and 
Y is normal with means 0 and with the functionally independent elements 
of the matrices being (statistically) independent, the variance of a diagonal 
element of Ugg being 2o:~, of an off-diagonal element being o:~, of an ele­

ment of Ugh, g ¥- h, being [3gh (= [3hg), of a diagonal element of Y being 
2 and of an off-diagonal element of V being 1. In the limiting distribution 
the triples L g, Wg and Xgg and the pairs X gh , X hg are independent. The 
limiting marginal distribution of the diagonal elements of Lg is 

(4.18) 
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for frl + .. +rg ~ ... ~ frl + .. +rg-l +1 and 0 elsewhere. Wg is independent 
of Lg and has the Haar invariant distribution conditional on Wii > O. The 
conditional distribution of Xgg given Lg and Wg is normal with expected 
value - ~ [Ag / (a~ + A~)] L 9 Wg and covariances 

[ ] 1 a~ ') Cov (:l:i,:l:j)ILg,Wg =-4 2 A2(6ijI+wjwi, 
ag + 9 

(4.19) 

whereXgg = (:l:rl+·.+r9_l+b ... ,:l:rl+···+rg ) andWg = (Wrl+··+rg_l+1,"" 
w r1 + .. + rg ). In the conditional distribution of the off-diagonal blocks of 
X, the pairs Xgh, Xhg, g < h, are independent normal with means 0. 
The elements of Xgh (g =I- h) are independent with mean 0 and variance 
({3gh + A~)/(Ag - Ah)2. The covariance of an element Xij in Xgh and Xki 

in X hg conditional on Wg and Wh is -[({3gh + AgAh)/(Ag - Ah)2]w~:)wi~)· 

The proof is considered in the Appendix. 
The case of H* and G* having distributions W(..4, M) and W(I, N) 

follows from Theorem 4.3. 

Corollary 4.4 Let U and V (depending on Nand M) be defined by (3.4) 
and (3.5) and L g, W g, and X gh be defined by (4.2), (4.5), (4.6), and (4.7). 
Then Theorem 4.3 holds with a~ = A~/C and {3gh = AgAh/e. 

In the balanced one-way multivariate components of variance model, 
AK = 1,e = l/(k -l),ak = Ak/c = k -1, and 2(ak + Ak) = 2k. 
The limiting distribution of LK, WK is the same as the limiting distri­
bution of the characteristic roots and vectors of ..IN(S - I), where S is 
the sample covariance matrix of a sample of N from N(O, kIp - m )' Let 
A = (l/-/2k)(UKK - VKK) and (diagonal) B = (l/-/2k)LK. Then 

A = WkBWK (4.20) 

has the limiting distribution of ..IN(S-I) , where S is the sample covariance 
matrix of a sample of N from N(O, (1/2)Ip _ m ). The density of the limiting 
distribution of A = A' is 

const. exp ( -~trA2) (4.21) 

[Anderson (1984b), Section 13.3]. For an arbitrary orthogonal P we have 

pI AP 4 A. Thus WKP 4 WK except for conditioning (Wii ~ 0). 
Thus W K has the Haar invariant measure. The limiting distribution of 
bm+b' .. ,bp (the diagonal elements of B) has the density 

const. exp (- ~ t b~) II (b i - bj ). (4.22) 
i=m+1 i<j 

See Anderson (1984b), Section 13.3. 
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5 The Asymptotic Distribution of Characteristic 
Roots and Vectors in the General Case 

We now consider the roots d1 , .•. , dp of (2.1) and the corresponding vectors 
Yb ... , YP satisfying (2.2) and (2.3). The matrix Y is 

Y = rT-1 = r ( w + ~X)-1 (5.1) 

Let 

(5.2) 

where 
r- 1 R = R* = block diag(Ri, m, ... , Ri<), (5.3) 

r- 1 F = F* R* R*' = 1 R*' F* = F*' R* the matrix 1+(1/ iN)R*' F* , 9 9 , 9 gg gg g, V lV 9 gg 

is positive definite, and Y, F and F* are partitioned as T. These definitions 
amount to decomposing T- 1 as R* + (1/VN)F*. If the indeterminacy of 
multiplication of each column of Y by ±1 is resolved so that the diagonal 
elements of r- 1 Y are positive, the matrices R; and F;h can be treated as 
W~ and - W~Xgh Wh, respectively. See Anderson (1951), Section 7, for a 
rigorous treatment. 

The limiting distribution of L = VN(D - ~), R, and F is the distribu­
tion of L, r R*, and F, which may be described as follows: 

The marginal distribution of L, R* is such that the pair L g , R; is in­
dependent of the other pairs L h , Ri.; the density of Lg is (4.18) with 
o:~ = A~/C; and the distribution of R; is the conditional Haar invariant 
distribution (conditional on Tii ~ 0). The conditional distribution of F 
given L, R is normal. The conditional expectation of Fgh is 

(5.4) 

Let the i-th column of F be Ii; the conditional covariance between Ii and 
Ij for T1 + ... +Tg-1 + 1::; i,j::; T1 + ... +Tg is 

(5.5) 

and the conditional covariance between Ii and Ij for T1 + ... + Tg-1 + 1 ::; 
i ::; T1 + ... + Tg and T1 + ... + Th-1 + 1 ::; j ::; T1 + ... + Th, 9 I- h, is 

(1 + C)AgAh I1 *(h) *(g)' r' 
C(Ag _ Ah)2 hrj r i g' 

(5.6) 

where r;(g) is the ith column of R;. 
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An important case occurs when all of the roots 8j are simple except 
possibly one; that is, T1 = ... = TK-1 = 1. Then Wi = Ri = 1,i = 
1, ... , K - 1. Let 

Then Yi is a consistent estimator of "Ii, i = 1, ... ,K - 1. The conditional 
expectation of ..fN(Yi -"Ii) = Ii in the limiting distribution given il, . .. ,ip 
and R'K is {c i;/[2(1 + C)Ailhi. In the conditional limiting distribution 
of ft, ... , !K-1 given LK and R'K, the expectation of Ii is 0 and the 
covariances are 

(5.8) 

(5.9) 

6 The Asymptotic Distribution of the Maximum 
Likelihood Estimators of the Covariance 
Matrices 

In the multivariate components of variance the two sample matrices Hand 
G have distributions W(!Ii" + ke, M) and W(!Ii", N), respectively, where 
M = n - 1 and N = n(k - 1). Let p* be the number of roots of (2.1) that 
are greater than 1, and let m* = min(m,p*), where m is the assumed rank 
of e, which may be less than p. Let 

D= (
D* 
o (6.1) 

where the order of D* and number of rows of Z* is m*. Then the maximum 
likelihood estimators of e and !Ii" based on the Wishart likelihood are 

e = ~Z*'(D* - Im')Z*, (6.2) 
k 

.p = Z*' Z* + Z**' (n(k - 1) I p - m' + n - 1 D**) Z**, (6.3) 
nk -1 nk-1 

Anderson, Anderson, and Olkin (1986) found the maximum likelihood es­
timators based on the likelihood function of the kn observations; the ex­
pressions are the same with (1/M)H = [1/(n-1)]H replaced by (1/n)H. 
Note that m* is a random variable. 
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The number of roots of (2.9) that are greater than 1 is m. Since D is a 
consistent estimator of .d as n - 00, Pr{p" ~ m} - 1 and m" ~ m. 
If m = p (that is, B is nonsingular), then Pr{Z" = Z} - 1 and (6.2) 
is asymptotically equivalent to kB = Z'(D - J)Z = H- G and (6.3) is 
equivalent to ~ = Z' Z = G . 

A more interesting case is 1 ~ m < p. Let 

Note that Pr{Z" = (ZLZ~, ... ,Zk-_d} -1. We have 

Z=Tr-l=Tll 
1 

= (W+ JNX)1l 

[ 

Wllll + IN 'E~=l Xlhllh I 
~ W,II, + Jw ~~1 X'hlIh . 

WKllK + IN 'E~=l XKhllh 

With probability approaching 1, kB is 

= Z'(D - J)Z' - Zk-(DK - J)Zk­

= 1l'(H" - G")ll - _l_Zk-LKZk­
IN 

= kB + ~ [Il'(U - V)ll - llk-W~LKWKllK] 

(6.4) 

(6.5) 

+ Op (~ ) . (6.6) 

Thus IN (k8 - kB) has the limiting distribution of 

K 

1l'(U - V)ll - llk-(UKK - VKK)IlK = L 1l~(Ugh - ¥gh)llh. 
9,h=1 

(g,h)",,(K,K) 

(6.7) 
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With probability approaching 1, .J; is 

(Z~, ... , Z~_l) ( ~l ) + Z~ (k ~ 1 I + ~ DK) ZK 

ZK-l 
, 1, 1, 

= Z Z - "kZKZK + "kZKDKZK 

,- 1, 
= II G* II + /TrZKLKZK 

kvN 

1, " (1) =lP+ .jNllVll+llKWKLKWKllK+Op N . 

Thus .jN(.J; -lP) has the limiting distribution of 

K 

(6.8) 

L ll~Vghllh + ll~UKKllK' 
g,h=l 

(g,h)#(K,K) 

(6.9) 
Thus .jN(e - 8) and .jN(.J; -lP) have a limiting normal distribution 

with mean O. The covariances can be calculated from the covariances of 
Ugh and Vgh using (6.7) and (6.9). 

7 Linear Structural Relations 

The model (1.1) can be viewed in another way. The unobserved vector 
p, + Va can be called the "systematic part" and Uaj the "error." If the 
systematic part satisfies B(p, + va) = {3 or equivalently 

BVa = 0, (7.1) 

the model is called a linear structural relation. Then 

B8=0. (7.2) 

See Anderson (1984a), for example. When the va's and ua's are normally 
distributed, a maximum likelihood estimator of B is any matrix B such 
that Be = O. Let y** be made up of the characteristic vectors of C- 1 iI 
corresponding to the p - m* smallest characteristic roots of C-l iI; then 
Y**' is a maximum likelihood estimator of B. 

Let YK consist of the last rK columns of Y = Z-l. Then Pr{Y** = 
YK} --+ 1 as n --+ 00. The asymptotic distribution of YK is the asymptotic 
distribution of 
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which is asymptotically equivalent to 

(7.4) 

In (7.1) there is the indeterminacy of multiplying B on the left by an 
arbitrary nonsingular matrix. If B is normalized by 

B!liB' = I, (7.5) 

there remains the indeterminacy of multiplication of B on the left by an 
arbitrary orthogonal matrix. That indeterminacy is reflected in the fact 
that (7.4) can be multiplied on the right by an arbitrary orthogonal matrix 
(except for the requirement of Wii > 0.) 

All of the ambiguity in B can be eliminated by requiring that 

B = (B* Ip-m). (7.6) 

This is sometimes known as the "errors in variables" model. Then the 
maximum likelihood estimator of B' is B' = YK YKk, which is treated 
asymptotically as 

The limiting distribution of y'n,( B - B)' as n -+ 00 is the limiting distri­
bution of 

K-1 

- L (rg - rKrKkrKg)W~XgKrKk 
g=l 

K-1 1 
= - L (rg - rKrKkrKg),\ -1 (UgK - ¥gK)rKk· (7.8) 

g=l 9 
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We have 

UgK = In(k -1) r~(iI - ~)rK 

[ 
k n 

= In(k - 1) rg' -- ""(v", - V + u", - u)(v", - v + u", - u)' n-1L." ",=1 
-~] rK , (7.9) 

where v = (lin) 2::=1 v"" u'" = (11k) 2:~=1 U",j, and u = (lin) 2::=1 u"'. 
Because r K = B'rKK , it follows from (7.1) and (7.2) that V~rK = 
0, v'rK = 0, and erK = 0. Thus 

kJn(k - 1) ,~( _)(_ _)' UgK = n _ 1 rg L." v", - v U", - U rK 
",=1 

+ kJn(k - l)r~ [n ~ 1 t(U", -u)(u", - u)' - q;] r K· 

(7.10) 

The first matrix on the right-hand side of (7.10) has a limiting normal 
distribution under quite general conditions, in particular, if {v",} and {u",j } 
are independent, v", are iid with finite second-order moments, and U"'j are 
iid with finite second-order moments. (See Anderson (1987b), for example.) 
The second matrix on the right-hand side of (7.10) has a limiting normal 
distribution if the U",j are iid with finite fourth-order moments. Under 
the above conditions the limiting distribution of (7.8) will depend on the 
distribution of v", only through e. 

Amemiya and Fuller (1984) have given the maximum likelihood esti­
mator of B and its asymptotic distribution when the U",j are normally 
distributed and when the v", are iid or when the v", are nonstochastic and 
(lin) 2::=1 v",v~ converges. See also Fuller (1987), Section 4.1. 

A1 Proofs of Theorems 4.1 and 4.3 

Theorems 4.1 and 4.3 were essentially proved in Anderson (1951), although 
in that paper the results were stated for a regression model that includes 
the multivariate analysis of variance with fixed effects. In this appendix we 
shall sketch the proofs in the notation of the current paper. More details 
were given in Anderson (1987a). 

The proofs of Theorem 4.1 and 4.3 are based on the (nonstochastic) 
matrices W = W(N), L = L(N) and X = X(N) being (single-valued) 
functions of U = U(N) and V = V(N) as defined by (3.3) to (4.6). The 
limit of these functions are W, L, and X as defined by (4.15), (4.16), and 
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(4.17). It is to be shown that these functions are continuous in the sense 
that ifnonstochastic U(N) --+ Uo and YeN) --+ Yo, then WeN), L(N), and 
X(N) converge to the solutions of (4.15), (4.16), and (4.17) for U = Uo and 
V = Yo, except for a set of probability zero relative to the distribution of 
U and V. Then a theorem of Rubin (stated in Anderson (1951) and proved 
in Anderson (1963» applies to the effect that the limiting distribution of 
(stochastic) W(N),L(N), and X(N) is that defined by (4.15), (4.16), and 
(4.17) and the distribution of U and V. 

First we argue that Lg(N) --+ L~ consisting of the characteristic roots of 
ugg - Ag Yy~. For 9 = 1, for example, (2.1) is 

I~+ ~U(N)- (AI + ~f) [I+ ~V(N)]I 
= 1~-AlI+ ~[U(N)-AlV(N)] - ~f[I+ ~V(N)]I 
= o. (A1.1) 

Since the first rl columns of ~ - AlI in the second determinant are zero, 
we can factor 1/v'N out of the first rl rows of the entire matrix. Then as 
N --+ 00 that determinant converges to 

K 

IUPI - Al Vi~ - tIl . II (Ag - At}rg , (A1.2) 
g=2 

the zeroes of which are the characteristic roots of UrI - Al Vi~. 
Since rl of the roots of 

I~+ ~U(N) -d [I + ~V(N)]I = 0 (A1.3) 

converge to Ai, i = 1, ... ,p, then p - rl of the roots of (A1.1) diverge to 
00. The argument depends on the following proposition, which is a simpli­
fication of a proposition given by Bai (1984) correcting Hsu (1941). (See, 
also, Amemiya (1988).) 

Proposition A1.1 Suppose the zeroes of 

(A1.4) 

are real and ordered as Xl (N) 2:: ... 2:: xp (N), and suppose the zeroes of 

(A1.5) 

are real and ordered as Xl 2:: ... 2:: X r • Suppose further that as N --+ 00 

ai(N) --+ {ai, ~ = 0,1, ... ,r, 
0, Z = r + 1, ... ,p, 

(A1.6) 

.(N) {oo, i=l, ... ,q, x. --+ . 
-00, z=q+r+1, ... ,p. (A1.7) 
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Then 
i = 1, ... ,T. (Al.8) 

Proof Because x - xi(N) is a factor of PN(x) we can define a polynomial 
of degree T as 

QN(X) = PN(x) , 

TIi=l [1 - X/tN)] TIf=q+r+l [1 - x/tN)] 
= br(N)xr + ... + bo(N). (Al.9) 

Since IXi(N)1 -+ 00, i = 1, ... , q, q+T + 1, ... ,p, xi(N) # 0 for sufficiently 
large N. The zeroes of QN(X) are xq+l(N) 2: ... 2: xq+r(N). Because 
PN(x) -+ p(x), we have QN(X) -+ p(x). By continuity of the roots as 
functions of the coefficients (with leading coefficient different from 0), we 
obtain (Al.8). 0 

Now we argue that in (4.9) (l/VN)C(N) -+ 0 and further that in 
(4.10) (l/VN)X'(N)X(N) -+ 0 by consideration of the characteristic vec­
tors of [1 + (l/VN)V(N)] -1 [.d + (1/VN)U(N)] normalized by y*' [1 + 
(1/VN)V(N)]y* = l. For convenience consider the set of Tl (column) 
vectors associated with f l , ... , frl' denoted by (Yii', Y2i', ... , YK'l)" They 
satisfy 

1 K 
VN ~ [Ulg(N) - Al Vig(N)]Y9*1(N) 

= ~ [Yl;(N) + ~ LVig(N)Y9*1(N)] Ll(N), 

K 

(Ah - Al)Yhl(N) + ~ L [Uhg(N) - A1Vhg(N)] Yy*l(N) 
vN g=l 

=[~Yh*l+ ~tvhg(N)Yg*l(N)lLl(N), h=2, ... ,K. 
g=l 

(Al.1O) 

(Al.11) 

(Al.11) shows that Yg*l(N) = 0(1/VN), 9 # l. Then the limit of (Al.1O) 
as N -+ 00 is 

(Ufl - Al Vi~)Yi; = Yi*lL~; (Al.12) 

hence Yli(N) -+ wt. Similarly, Ygh(N) = 0(1/VN), 9 # h, and Yy~(N)-+ 
W~'. Since T = y*-l, Tgh(N) = 0(1/VN) and Tgg(N) -+ W~. Then 
Xgh(N) = 0(1), 9 # h. Then (4.10) implies Xgg(N) = 0(1). Hence, 
the limits of (4.9) and (4.10) as N -+ 00 yield (4.11) to (4.14), and 
Lg(N), Wg(N),Xgh(N) converge to L~, W~,X~h' Rubin's theorem ap­
plies to complete the proof of Theorem 4.1. 
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For Theorem 4.3 the algebra of Anderson (1951) applies. In that paper 
the variance of a diagonal term of Eii (which corresponds to Ugg here) 
is 4Ai and of an off-diagonal term is 2Ai (corresponding to 2a~ and a~, 
respectively, here). The variance of a element of an off-diagonal block Eij 
is Ai + Aj (corresponding to (3gh in Ugh here). The distribution of U in that 
paper is the distribution of V here. 

In the proof of Theorem 4.1 we have used the fact that (4.5) and (4.7) 
define Xgg and Wg uniquely (for orthogonal W g). The proof of that state­
ment in Anderson (1951) needs to take account of the condition that 
WgT~g = Tgg W~ is positive definite. 

A2 Parameters Depending on N 

Suppose H* has the distribution W(..::1(N),M), where 

(A2.1) 

A1(N) > A2(N) > ... > AK(N), Ak(N) ~ A£, and A~ > ... > A~. Note 
that the ordering and multiplicities do not depend on N. The definitions 
of the various matrices are unchanged. In (4.9) and (4.10) L1 is replaced 
by L1(N). In (4.15) and (4.17) Ag and Ah are the limiting values A~ and 
A~. The proofs of Theorems 4.1 and 4.3 are based on the applicability of 
Rubin's theorem, which is justified in Appendix A1. In (A1.1), for example, 
L1 and Al depend on N. In (A1.2) Al is the limiting value. In (A1.lO) and 
(A1.U) A1(N) and Ah(N) are involved, while in (A1.12) Al = A~ is the 
limiting value. The proof goes through with these modifications. 

Now consider ~ = ~(N) and IP = IP(N) positive definite such that 

~(N) ~ ~o, (A2.2) 

and such that A1(N) > ... > AK(N) are the characteristic roots of the 
matrix ~(N)IP-1(N) of multiplicity T1,"" TK and such that A~ > ... > 
A~ are the characteristic roots of ~oIPo1 of multiplicities T1,"" TK. Then 
Ak(N) ~ A£. Let rk(N) satisfy 

<p(N)rk(N) = Ak(N)IP(N)n(N), 

r~(N)IP(N)n(N) = I. 

(A2.3) 

(A2.4) 

If Tk > 1, some other conditions are needed on rk(N) to avoid the indeter­
minacy of multiplication on the right by an arbitrary orthogonal matrix of 
order Tk. Let r~ satisfy 

IPor~ = A£IPor~, 
r~/IPor~ = I, 

(A2.5) 

(A2.6) 
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and any other conditions for uniqueness. Then 

(A2.7) 

Define 
(A2.8) 

Then r(N) is used in Section 3 to define H*, G*, and T. Section 4 is 
unchanged from the above. In Section 5 r is rO. The results hold with 
these changes. 

Anderson (1951) gave details for a different case with population roots 
and vectors depending on N. It was remarked that if the multiplicities of 
the roots vary with N one needs 

(A2.9) 

for such i that 8i (N) ----+ >.2. Here 8i (N) is the i-th root of 

14»(N) - 8!P(N) I = O. (A2.10) 
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Univariate and Multivariate 
Analyses of Variance for 
Incomplete Factorial 
Experiments Having 
Monotone Structure in 
Treatments 

R.P. Bhargava 1 

ABSTRACT In this paper, we give the analysis of variance for an in­
complete factorial experiment with three fixed factors with a monotone 
structure (in the treatments) when the design of the experiment is com­
pletely randomized. We consider both the univariate and the multivariate 
case. For the multivariate case, the analysis is given for the general situ­
ation when the data vectors are incomplete and have a monotone sample 
pattern. (See Bhargava 1962, 1975.) The monotone sample case includes 
as a special case the complete sample case in which no observations are 
missing in any vector. A univariate example is given. 

1 Introduction 

Consider a factorial experiment with three fixed factors A, Band C. Let A, 
B, C have I levels, J levels and K levels respectively. Thus, in all, there are 
IJK treatment combinations possible. Let T be the number of treatment 
combinations actually used in the experiment. If T < IJK, then IJK - T 

treatment combinations are missing and the experiment is said to be an in­
complete factorial. Let aibjCk denote the treatment combination (hereafter, 
called treatment) composed of the ith level of A, the lh level of B, and the 
kth of C. Let aibjCk # ¢ mean that the treatment aibjCk is occurring in the 
experiment, while aibjCk = ¢ means that it is missing. 

An incomplete factorial experiment (design) will be called monotone fac­

torial, or will be said to have a monotone structure in treatments, if (i) 
aibjCk # ¢ implies ailbjlckl # ¢ for all i' :$ i,j' :$ j, k' :$ k and (ii) 

lOntario Institute for Studies in Education, University of Toronto 
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aibjCk = 1 implies ai,bj,ck' = 1 for all i' 2': i,j' 2': j, k' 2': k. Such a de­
sign for the case of two additive factors has been called "triangular" by 
Ditchburne (1955) and "staircase" by Graybill and Pruitt (1957), and by 
Bhargava (1967). 

A monotone factorial design may be appropriate when the following con-
ditions hold: 

(i) the number of treatment combinations (i.e. IJK in our case) is large, 

(ii) the resources available to do the experiment are low, and 

(iii) the experimenter is able to order the levels of each factor in some 
decreasing (non-increasing) order of importance and wants to have 
a more precise comparison between important levels of factors and 
their interactions than the unimportant ones. 

Also, in certain experiments some treatment combinations may not be feasi­
ble. For example, consider a pharmacological experiment which investigates 
the effects of three ingredients (factors) A, Band C with I, J and K levels 
respectively. It may be known, a priori, that the toxic effects of the highest 
levels of any two of A, Band C may be tolerable but that the highest levels 
of all three combined may be nearly lethal. In such a situation, the exper­
iment will not have the treatment combination with the highest levels of 
all three factors. The design will therefore be an incomplete factorial with 
monotone structure. 

The univariate case is considered in Section 2. Some preliminaries and 
notational conventions introduced at the start of this section are used 
throughout the paper. Tests of main effects and two- and three-factor in­
teraction are derived, and illustrated by an example. 

In Section 3, the multivariate case is considered. Modified likelihood ra­
tio tests of main effects and interactions are presented, along with their 
approximate null distributions. 

In Section 4, some comments are made regarding the use of the monotone 
factorial design when the experiments have block designs with blocks of 
unequal sizes. 

The generalization to the m-factor case (m> 3) is straightforward. 

2 The Univariate Case 

SOME PRELIMINARIES AND NOTATION. 

Let aibjCk be a treatment included in our experiment, Le., aibjCk =f 1. Let 
Xijkl denote the [th observation for aibjCk, [ = 1, ... ,nijk, for the completely 
randomized design. Let 1(j, k) denote the highest level of A occurring with 
the lh level of B and the kth level of C, (Le., afbjCk =f 1 and ai,bj'ck' = 1 
for j = 1(j, k), i' > j,j' 2': j, k' 2': k.) Define J(i, k) and K(i,j) similarly. 
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Note 1(1,1) = I, J(I, 1) = J and K(I, 1) = K. I(j, k) is a non-increasing 
function of each j and k. Similar remarks hold for J(i, k) and K(i,j). 

We use dot notation for totals and (later on) for means. Let 

K(l,j) J(l,k) 

I(j,·) = L I(j, k), 1(·, k) = L I(j, k), 
k=l j=l 

and 
J K 

1(·,·) = LI(j,.) = LI(-,k). 
j=l k=l 

Define similarly, J(i, .), J(., k), J(.,.) and K(i, .), K(·,j), K(·, .). Observe 
that J(i,·) = K(i,·) is the total number of treatments having the ith level 
of A, I(j,·) = K(·,j) is the total number of treatments having the jth 
level of Band 1(·, k) = J(., k) is the total number of treatments having 
the kth level of C. And 1(·,·) = J(.,.) = K(·,·) = T is the total number of 
treatments included in our experiment. 

We find the following notation convenient for describing contrasts, con­
ditions on the parameters and transformations on the variables. For any 
singly indexed array {Zi}, define 

Similarly, for any double indexed array {Zij} define 

Finally, define 

Llizijk = (i(i _I))-1/2((i -I)zijk - ~ Zi'jk), 

( 
j-l) 

LljZijk = (j(j - I)r1/ 2 (j - I)Zijk - L Zij'k , 

j'=l 

Llkzijk = (k(k _I)r 1/ 2 ((k -I)zijk - ~ Zijk'). 

k'=l 

Observe that 
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and D.iD.jD.k operated in any order on the array {Zijk} gives the same 
result. 

The quantities Zi, Zj, Zk, Zijk in the above could be parameters or vari­
ables. V[X] will denote the variance of the random variable (r.v.) X. 

MODEL 

The fixed effects model for our three factor experiment (with a monotone 
structure) having a completely randomized design is 

Xijkl = J.L + ai + {3j + 'Yk + (a{3)ij + (a'Y)ik + ({3'Y)jk 

+ (a{3'Y)ijk + eijkl, (2.1) 

fori=I, ... ,Ij j=I, ... ,J(i,l)j k=I, ... ,K(i,j)j 1=1, ... ,nijk, 
where all the symbols in the model except eijkl are parameters, eijkl is 
N(O, a2), a2 > ° is unknown, and the eijkl'S are independent random 
variables (r.v.'s). We here consider the balanced case nijk = M ~ 2. The 
approach goes through when the design is proportionally balanced: nijk = 
np)n;2)ni3). This is more general than the sub-class numbers given by 
Ditchburne (1955) for the 2-factor additive model. The model (2.1) has 
too many parameters and they may be assumed to satisfy the following 
conditions: 

J(i,l) 

L K(i,j)[D.i(a{3)ij] = 0, 2:::; i :::; I, 
j=1 

1(j,I) 

L K(i,j)[D.j(a{3)ij] = 0, 2:::; j :::; J, 
i=1 

K(i,l) 

L J(i, k)[D.i(a'Y)ik] = 0, 2:::; i :::; I, 
k=1 

1(I,k) 

L J(i, k)[D.k(a'Y)ik] = 0, 2:::; k :::; K, 
i=1 

K(I,j) 

L I(j,k)[D.j({3'Y)jk] = 0, 2:::; j:::; J, 
k=1 

J(I,k) 

L I(j, k) [D.k ({3'Y)jk] = 0, 2:::; k :::; K, 
j=1 

(2.2) 

(2.3) 

(2.4) 
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J(i,l) K(i,j) 

L L A i(a{3'Y)ijk = 0, 2 ~ i ~ I, 
j=l k=l 

I(j,l) K(i,j) 

L L A j (a{3'Y)ijk = 0, 2 ~ j ~ J, (2.5) 

K(i,j) 

i=l k=l 
I(l,k) J(i,k) 

L L Ak(a{3'Y)ijk = 0, 2 ~ k ~ K, 
i=l j=l 

L A j Ai(a{3'Y)ijk = 0, 2 ~ j ~ J(i, 1), 2 ~ i ~ I, 
k=l 

J(i,k) 

L A kA i(a{3'Y)ijk = 0, 2 ~ k ~ K(i, 1), 2 ~ i ~ I, (2.6) 
j=l 

I(j,k) 

L Ak A j(a{3'Y)ijk = 0, 2 ~ k ~ K(I,j), 2 ~ j ~ J. 
i=l 

ANALYSIS 

Let 

M 

- M-1 " Xijk· = L..J Xijkl, 1 ~ k ~ K(i,j), 1 ~ j ~ J(i, 1), 1 ~ i ~ I, 
1=1 

Uijk = AiXijk., 

Vijk = AjXijk., 

Wijk = AkXijk., 

1 ~ k ~ K(i,j), 1 ~ j ~ J(i, 1), 2 ~ i ~ I, 

1 ~ k ~ K(i,j), 1 ~ i ~ I(j, 1), 2 ~ j ~ J, 

1 ~ j ~ J(i, k), 1 ~ i ~ 1(1, k), 2 ~ k ~ K. 

The Uijk'S are Helmert transformations on the Xijk. 'so Hence {Uijk, 1 ~ 
k ~ K(i,j), 1 ~ j ~ J(i,I), 2 ~ i ~ I} is a set of mutually independent 
normal r.v.'s each with variance equal to M-1(J"2. Similar remarks hold for 
Vijk and Wijk . 

Define 
J(i,l) K(i,j) 

Ui .. = L L Uijk/K(i, .), i = 2, ... ,1. (2.7) 
j=l k=l 

Now 

EUijk = Aiai + A i(a{3)ij + Ai (a'Y)ik + Ai (a{3'Y)ijk. (2.8) 

Hence, from (2.2), (2.3) and (2.5), 
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Similarly, we can define 

1(j,1) K(i,j) l(l,k) J(i,k) 

Vj . = L L ~jk/I(·,j), W .. k = L L Wijk/I(·,k), 
i=l k=l i=l j=l 

and then 

Note that 

The {rh. I i = 2, ... , I} are the best linear unbiased estimators for the 1-
1 Helmert contrasts D.iai, i = 2, ... , I, that involve only the ai's. Further, 
the Vi .. 's are mutually independent. Hence the valid sum of squares (SS) 
for the main effect A is 

Similarly, 

J 

SSB = MLK(.,j)V:;', 
j=2 
K 

SSe = MLi(-,k)'W.:k, 
k=2 

(d.!=I-1). 

(d.! = J -1), 

(d.! = k - 1). 

It is straightforward to show that 

I 

EMSA=E[:~~] = I~1t;J(i")(Aiai)2+a2, 
J 

EMSB = E [J~B1] = J ~ 1 ~K(.,j)(Ajt3j)2 +172, 

and 
K 

EMSe = E [:~1] = K ~ 1 t; 1(·, k)(Akl'k)2 + 172. 

We now proceed to obtain the SS for AB, AC and BC. 
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Define, 

( j-l) 
Uijk(j) = 6.jUijk = (j(j _1))-1/2 (j -l)Uijk - L Uij'k , 

j'=1 

i=2, ... ,I, j=2, ... ,J(i,1), k=l, ... ,K(i,j), 

Uijk(k) = 6.kUijk i = 2, ... , I, j = 1, ... , J(i, 2), k = 2, ... , K(i,j), 

Vijk(k) = 6.k Vijk i = 1, ... , I, j = 2, ... , J(i, 2), k = 2, ... , K(i,j). 

Wijk(i), Wijk(j), and Vijk(i) are defined similarly. Note that 

Further, {Uijk(j), i = 2, ... , I, j = 2, ... , J(i, 1), k = 1, ... , K(i,j)} is a 
set of mutually independent r. v.'s each having a variance equal to M- 1 0'2 • 

Similar results hold about Uijk(k) and Vijk(k). 
Let 

K(i,j) J(i,k) 
K(i,j)Uij.(j) = L Uijk(j), J(i, k)Ui.k(k) = L Uijk(k), 

k=1 j=1 

[(i,k) 

I(j, k)Vjk(k) = L Vijk(k), 
i=1 

and let Vij.(i), Wi.k(i) and W.jk(j) be defined similarly. We note that 
Uij.(j) = Vij.(i), Ui-k(k) = Wi.k(i) and Vjk(k) = Wjk(j). 

From (2.8), 

EUijk(j) = E6.jUijk = 6.jEUijk = 6.i6.j (a{3)ij + 6.i6.j (a{3'Y)ijk. (2.9) 

Hence, from (2.6), 

Similarly, 

EVjk(k) = EWjk(j) = 6.j6.k({3'Y)jk, j = 2, ... , J, k = 2, ... , K(l,j). 

Note that 

{Uij.(j)li=2, ... ,I, j=2, ... , J(i,l)} 

is a set of mutually independent r.v.'s, and that 
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The Uij.(j)'S are the best linear unbiased estimators for those contrasts 
involving only the (o:{3)i;'S (i.e., the parameters relating to the two-factor 
interactions AB). Similar remarks hold about the Ui.k(k)'s and Vjk(k)'s. 

Now the valid SS's for the interactions AB, AC and Be are as follows: 

. 1 J(i,l) 

SSAB = ML L K(i,j)Ui~.(j), 
i=2 j=2 

1 J(i,l) 

based on nAB = EEl = J(., 1) - I - J + 1, d.f., 
i=l j=2 

1 K(i,l) 

SSAC = ML L J(i,k)Ulk(k), 
i=2 k=2 

based on nAC = K(., 1) - I - K + 1 d.f., and 

J K(l,j) 

SSBC = M!: L I(j, k)V.~k(k), 
j=2 k=2 

based on nBC = K(I,·) - J - K + 1, d.f. 

It can easily be shown that 

. 1 J(i,l) 

E(MSAB) = E(SSAB/nAB) = M(nAB)-I L L K(i,j)(aia j (o:{3)ij)2 + (72, 

i=2 j=2 

1 K(i,l) 

E(MSAC) = E(SSAc/nAc) = M(nAc)-I L L J(i, k)(aiak(O:'Y)ik)2 + (72, 

i=2 k=2 

and 

J K(l,j) 

E(MSBC) = (SSBc/nBC) = M(nBc)-l L L I(j,k)(aja k({3'Y)jk)2+(72. 
j=2 k=2 

Finally, we proceed to obtain the Valid SS for the interaction ABC. Define 

Uijk(j, k) = akUijk(j) = tl.kajUijk = akajaiXijk, 

i=2, ... ,I, j=2, ... ,J(i,2), k=2, ... ,K(i,j). 

Note that 

Uijk(j,k) = Uijk(k,j) = Vijk(i,k) = Vijk(k,i) = Wijk(i,j) = Wijk(j,i). 

From (2.9), 

EUijk(j, k) = EakUijk(j) = akEUijk(j) = a i a j ak(o:{3'Y)ijk. 
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Note that 

{Uijk(j,k)li=2, ... ,I, J=2, ... ,J(i,2), k=2, ... ,K(i,j)} 

is a set of mutually independent r.v.'s and that 

Uijk(j, k) '" N(t1it1j t1k(a:(3'Y)ijk, M-10'2) 

Thus 
I J(i,2) K(i,j) 

SSABC = ML L L U~k(j,k), 
i=2 j=2 k=2 

is based on nABC d.f., where 

I J(i,2) K(i,j) 

nABC=L L L l=r-I(·,l)-J(l,.)-K(.,l)+I+J+K-l. 
i=2 j=2 k=1 

Let MSABC = SSABc/nABc. Then 

I J(i,2) K(i,j) 

E(MSABC) = M(nABc)-1 L L L (t1it1jt1k(a:(3'Y)ijk)2 + 0'2. 
i=2 j=2 k=2 

The error 88 based on 1le = (M - l)r d.f. is 

I J(i,l) K(i,j) M 

SSe = L L L L(Xijkl- Xijk.)2. 
i=1 j=1 k=1 1=1 

Let MSe = SSe/ne. Then 

MSA, MSB, MSc, MSAB, MSAC, MSBc and MSABC are each tested 
against M Se by an F test with the appropriate d.f. 

COMMENTS 

SSAB, SSAC and SSABC each is independent of SSA; SSAB, SSBC and 
S S ABC each is independent of S S B; S SAC, S S BC and S S ABC each is inde­
pendent of SSc; SSABC is independent of each of SSAB, SSAC and SSBC. 
SSe is independent of all other 88's. Otherwise, the 88's are dependent. 
Thus SSA, SSB and SSc are dependent; and SSAB, SSAC and SSBC are 
dependent. The factorial design is non-orthogonal. 
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EXAMPLE 

The data for our example are a subset of the data given in Table 5.14 on 
page 129 of Guenther (1964). This data came from a factorial experiment 
with 3 factors. Factor A (Wheat Varieties) had 4 levels, Factor B (Kind of 
Fertilizer) had 3 levels and Factor C (Plowing Methods) had 2 levels. The 
design of the experiment was completely randomized, and each treatment 
was replicated 3 times. 

The data for our example (see Table 1) are obtained by omitting all 
the observations for (a) the 3rd replicate, (b) the 4th level of A (so that 
there are only 3 levels of A) and (c) the treatment a3b3c2. Consequently, 
r = 17, M = 2, I = 3, J = 3, K = 2, a3b3c2 = ¢, and aibjCk #- ¢ 
otherwise. 

TABLE 1. Data for the Example 

Kind of fertilizer 

1 2 3 
Plowing methods 1 2 1 2 1 2 

52 48 38 32 44 20 
1 44 44 38 18 29 8 

43 51 21 13 27 1 
57 48 62 43 32 26 

Wheat 2 69 51 43 25 13 20 
varieties 53 42 39 34 27 11 

65 58 64 37 27 -
3 76 36 46 51 50 -

79 73 63 48 50 -

TABLE 2. Values of Xijk. 

j = 1 j=2 j=3 

k= 1 2 1 2 1 2 

i = 1 48 46 38 25 36.5 14 
2 63 49.5 52.5 34 22.5 23 
3 70.5 47 55 44 38.5 -

From Table 1, we first find SSe = 1767. Since SSe has ne = (M -l)r = 17 
degrees of freedom, it follows that M Se = 103.94. 

Next, from Table 2, we obtain Table 3 which gives values of the Uijk'S. 

Recall that Uijk = lliXijk., i ~ 2. 
We wish to compute 
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TABLE 3. Values of Uijk. 

j = 1 j=2 j=3 
k= 1 2 1 2 1 2 Sum Mean 

0 •.. 

i=2 
. ., ,) . ., .'< . ., " ·14 " ,) ,), . 
0 0 0 0 0 0 0 06 
30 -1.5 19.5 29 18 95 95 1 

3 
v'6 v'6 v'6 v'6 v'6 

-
v'6 v'65 

In our case M = 2, 1=3, J(2,·) = 6, J(3,·) = 5 and the values of [h. 
are given in the last column of Table 3. Thus 

SS = 2 [6 (37 ~)2 5 (~~)2l 
A y-26 + v'65 

= 829.82 

with d.f. nA = 2. Similarly SSB and SSe can be calculated. In fact, SSB = 
3960, with nB = 2 d.f. and SSe = 1339.03, with ne = 1 d.f. 

Now we obtain SSAB. For this purpose, from Table 3 we obtain the 
Uijk(j)'S which are given below in Table 4. Note that Uijk(j) = t1 jUijk, i ~ 
2, j ~ 2. 

TABLE 4. Values of Uijk (j) 

j=2 j=3 
k= 1 2 1 2 

i=2 -u.o 0.0 0"(.0 0.0 

00 00 0v'6 0v'6 
-lO.5 30.5 -13.5 

3 
v'60 v'60 v'6v'6 

-

From Table 4, 

Note that K(i,j) = 2 for i =f:. 3, j =f:. 3, K(3,3) = 1, and that J(2, 1) = 
J(3, 1) = 3. In our case, 

3 J(i,l) 

SSAB = 2 L L K(i,j)Ui~.(j) 
i=2 j=2 
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= 2 [(~/2r /2+ (~~r /2+ (~~r /2+ (;~rl 
= 380.46 

with d.f. nAB = 4. Similarly, SSAC = 46.33, with nAC = 4 d.f., and 
SSBC = 2.79, with nBC = 2 d.f. 

Now we obtain SSABC. For this purpose, from Table 4 we obtain Uijk(j, k), 
i ~ 2, j ~ 2, k = 2 which are given in Table 5 below. Note that 

Uijk(j, k) = LlkUijk(j), i ~ 2, j ~ 2, k ~ 2. 

Since k assumes only the value 2, Uijk(j, k) = Uij2(j, 2). 

TABLE 5. Values of Uij2(j, 2) 

j= 
2 3 

i=2 
O.U 

V2V2V2 
3 

41.0 

V6V2V2 

Here, J(2, 2) ::::: 3 and J(3,2) = 2. In our case, 

3 J(i,2) 

SSABC = 2 L L Ui~2(j, 2) 
i=2 j=2 

[ 36 522 412] 
= 2 8" + 24 + 24 = 374.42 

with nABC == 3 degrees of freedom. All the main effects and interactions 
are to be tested against M Se == 103.94. 

3 The Multivariate Case 

PRELIMIN ARIES 

Let the p (~ 2) response variables be X(l), X(2), ... , x(p). Let xg~l denote 

the observations on the variable x(t) for the lth experimental unit assigned 
to aibjCk, I = 1, ... , Mt , Mt ~ 2, t = 1, ... ,po Let the design of the exper­
iment be completely randomized, and let the structure of the treatments 
be monotone factorial for each of the p variables taken singly. Further, let 
the design be monotone in respect of the variables, i.e., (i) X~~~l missing 

implies that X~~~ll is also missing for t' ~ t, I' ~ I, and (ii) xg~l not miss­

ing implies that X~~~ll is also not missing for t' ::;; t, I' ::;; I. A multivariate 
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sample possessing this property has been termed a monotone sample by 
Bhargava (1962, 1975). Let Tt be the number of treatment combinations 
used for the experiment in x(t) and let Rt denote the set of these Tt treat­
ments. Then the design being monotone in variables implies that Rt ::J Rt' 
and Tt ~ Tt', if t $ t', and that MI ~ M2 ~ ... ~ Mp ~ 2. The complete 
sample case, viz, MI = M2 = ... = Mp ~ 2, is a particular case of this. To 

h b d ·t· (t)... 1· (t') . 1 .. sum up tea ove con I Ions, Xijkl mlssmg Imp Ies Xi'j'k'l' IS a so mlssmg 
for t' ~ t, i' ~ i, j' ~ j, k' ~ k, l' ~ l. 

The completely randomized design in this case means that there are MI Tl 
experimental units. Ml experimental units are assigned at random to each 
of the Tl treatments of the set R 1. X(I) is measured on these MITI units. Let 
aibjCk € R 2. From the Ml experimental units assigned to aibjCk on which 
X(I) is measured, a subset of M2 experimental units, M2 $ Ml is chosen at 
random and on these x(2) is measured. This is done for each of aibjCk € R 2. 
This is continued until x(p) is measured for the Mp experimental units of 
each aibjCk € Rp. Note Rt ::J Rt' and Tt ~ Tt' if t $ t'. After relabeling l, 

the observations will have the structure described above, namely, x~~L = ¢ 
. 1· (t') A.. £ t' > t ., >. ., > . k' > k l' > l Imp Ies Xi'j'k'l' = 'I" or _, z _ z, ) _), _, _. 

We briefly outline the analysis of this design. Our notations remain the 
same as described in section 2 except that now a superscript t is added to 
the variables, to the parameters and to the indexing variables that give the 
range of the levels of the factors. The joint distribution of the p variables 
is assumed to be multivariate normal with the covariance matrix ~ = 
(aij), i,j = 1, ... ,p, ~ positive definite and unknown. 

MODEL 

Our model is 

X~~~l = jL(t) + a~t) + f3jt) + l~t) + (af3)~? + (a,)~~ + (f31))~ + (af31)~~~ + e~~~l' 
t=l, ... ,p, i=1, ... ,1(t(1,1), j=1, ... ,J(t)(i,1), 

k=1, ... ,K(t)(i,j), l=1, ... ,M(t). 

Note that 

( (t) (t') ) _ { att' 
cov xijkl> Xi'j'k'l' - 0 

Also 

if i = i', j = j', k = k', l = l' 
otherwise 

(3.1) 

(3.2) 

1 = 1(1)(1,1), 
1(t)(1, 1) ~ 1(t1)(1, 1), 

J = J(1)(1, 1), 
J(t)(i, 1) ~ J(tl)(i, 1), 

K = K(1)(1, 1), 
K (t)(· .) > K{tl)( . . ) Z,) _ Z,) , 

(3.3) 
if t' ~ t. 

Let (2.2) to (2.6) hold, with superscript t, t = 1, ... ,p. Note that 
1(t)(·,·) = Jt(.,.) = Kt(.,.) is the number of treatments having obser­
vations on x(t). 
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TESTING THE HYPOTHESES RELATING TO THE MAIN 

EFFECTS OF A, BAND C. 

We now proceed to test hypotheses relating to the main effects of A, Band 
0, which we respectively denote by HA, HB and He. Similar notation will 
be followed for interactions. Now HA is 

HA: ~iQ:~t) = 0, t = 1, ... ,p, i = 2, ... , I(t)(l, 1). 

The alternative hypothesis to HA is that HA is not true; that is, at least 
one ~iQ:~t) =I O. HB and He can be defined similarly. Define 

and 

( ) _ (1) (2) (8) )' 
~ijkl S = Xijkl> Xijkl ,···, Xijkl , S ~ p, 

M t 

_(t'l '" (t') , 
MtXijk[Mtl = ~ xijkl> t ~ t, 

1=1 

_ ( ) _ (_(1) _(2) _(8»)' 
~ijk[Mtl S = xijk[Mtl' xijk[Mtl' ... ,xijk[Mtl ' S ~ t ~ p, (3.4) 

{ 

",1(t)(1,1) ",J(t)(i,l) ",K(t)(i,j) ",Mt [( _ () 
L..i=l L..j=l L..k=l L..I=l ~ijk/s) - ~ijk[M 1 s) set) _ ,t 

8 - x (~ijk[Mtl(S) - :Eijk[Mtl(s)) ], 1 ~ S ~ t, 
1, S = O. 

(3.5) 
Let 

(t') - -(t') t' ~ t 
Uijk[Mtl = ~iXijk[Mtl' 

for those values of i, j, k for which ~ix~;~[Mtl exists, viz, for i = 2, ... ,I(t)(1, 1), 

j = 1, ... , J(t)(i, 1), k = 1, ... , K(t)(i,j). 

Similarly, define 

(t') _ -(t') (t') _ -(t') 
V:jk[Mtl = ~jXijk[Mtl' Wijk[Mtl = ~kXijk[Mtl' t' ~ t, 

for the values of i, j, k for which they exist. 
Let 

J(t)(i,l) K(t)(i,j) 

Oi~~~~tl = L L ug~[Mt/K(t)(i,.), t' ~ t, i = 2, ... ,I(t)(1,1), 

j=l k=l 

J(t)(i,l) 

where K(t)(i,·) = l: K(t)(i,j), and 
j=l 

U. (S) == i··[Mtl' i··[Mtl'···, i··[Mtl 
- { (0(1) 0(2) 0(8»), 
-,··[M,l 0 

for 1 ~ S ~ t, 
for S = o. 
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for t = 1, ... ,po Finally, let 

'2 
Zt{A) = ,;t , t = 1, ... ,po 

at (A) 

The likelihood ratio (L.R) statistic to test HA {see Bhargava (1962, 
1975)) is 

P (tl 
Z{A) = II (Zt{A))MtK (.,)/2. 

t=l 

Let Ym,n denote a beta random variable with paranleters m > 0 and 
n > OJ i.e. its density is 

f{x) = {Xm- I{I-X)n-I/B {m,n) for 0 ~.x ~ 1,. 
0, otherWIse 

From Bhargava (1962, 1975) under HA, ZI{A), Z2{A), ... , Zp{A) are 
independent beta random variables with 

Zt{A) rv Yat /2, bt/2, t = 1, ... ,p, 

where at = (Mt - I)K(t){.,.) - (t -1) and bt = j(t){I, 1) - 1. 
Let 

p 

).." (A) = II (Zt{A)) (at-lt)/2, 
t=l 

where the it's are fixed numbers such that 0 < at -it. The asymptotic c.dJ 
of M{A) == -2in)..II{A) under HA can be obtained by using the result of 
Bhargava (1962), who followed the method of Box (1949), and is as follows: 

Pr{M{A) ~ Mo{A)} = Pr{pM{A) ~ pMo{A)} 

where 

= (I - W2) Pr{xJ ~ pMo} + W2 Pr{xJ+4 ~ pMo} 

+ 0{n-3 ), (3.7) 

p 

n= Lat, 
t=l 
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2h -(1-) I -~(b 6ht(2ht+bt-2)+(bt-2)(bt-l)) 
t - P at + P t, W2 - L....J t 6 2( I )2 

t=1 p at - t 

and X~ denotes a chi-square random variable with a degrees of freedom. 
If Mo(A) is the observed value of M(A) for our experiment, then HA is 

rejected at the a level of significance if Pr{M(A) ~ Mo(A)} :::; a. 
If we put -It = K t(.,.) + (t - 1) in )/'(A), we get the likelihood ratio 

(L.R.) test. If we put It = 0, we get the modified L.R. test based on d.f., 
rather than the sample size, as suggested by Bartlett (1937) in a different 
context. The L.R. test and the modified L.R. test, in general, are different 
when the multivariate observations form a monotone sample pattern. 

Approximations of higher order can be obtained by using Theorem A.2 
(Appendix) in Bhargava (1962). 

The hypotheses H B and H C are 

H B : ~jf3Y) = 0, t = 1, ... ,p, j = 2, ... , J(t)(I, 1) 

and 
Hc: ~k'Ykt) = 0, t = 1, ... ,p, k = 2, ... , K(t)(I, 1). 

The alternative hypotheses for HB and Hc respectively are HB not true 
and H c not true. 

HB and Hc can be tested similarly by defining 

[(t)(j,I) K(t)(i,j) 

Y;~;~tl = I: I: VS~!Mt/K(t)(.,j), t':::; t, 
i=1 k=1 

and 
[(t)(I,k) J(t)(i,k) 

- (t') _ '" '" (t') (t) t' :::; t 
W..k[Mtl - L....J L....J Wijk[Mtll J (', k), 

i=1 j=1 

and proceeding similarly. 

TESTING THE HYPOTHESES RELATING TO THE 

INTERACTIONS AB, AC AND BC 

We now proceed to test the hypotheses HAB, HAC and H BC . HAB is 

HAB: ~i~j(af3)W = 0, t = 1, ... ,p, i = 2, ... , J(t)(1, 1), j = 2, ... , J(t)(i, 1). 

The alternative to HAB is that HAB is not true; i.e., at least one ~i~j(af3)(t)ij 
-10. HAC and HBc are defined similarly. 

Define 

and 
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(t') (t') A A -(t') t' < t 
Rijk[Mtl = Llk Y;jk[Mtl = UkUjXijk[Mtl' -, 

for those values of i, j, k for which they exist. 
Also define 

(t') _ -(t') 
Hijk[Mtl - Llk Llj LliXijk[Mtl ' t' :S t, (3.8) 

for those values of i, j k for which they exist. 
Let 

K(t)(i,j) 

- (t') '"' (t') / (t) (..) , 
Pij.[Mtl = ~ Pijk[Mtl K z, J , t :S t 

k=1 

for i = 2, ... ,f(t)(1, 1),j = 2, ... , J(t)(i, 1). 

-(t') -(t') 
Similarly, Qi.k[Mtl and R-jk[Mtl are defined. 

Let 

Pij.[Mtl(s) == >J.[Mtl' >J.[Mtl' '>J.[Mtl ' lor :S s :S t, 
_ { (p-(1) p-(2)' ... p-(s) )' " 1 

1, for s = O. 

Define 

MtK(t)(., .)J.~ (AB) 

(t) "(t) - -, I 
/(t)(1 1) J(t)(i 1) I 

St + Mt i~ j">;2 Kij (fij.[Mtl(t)fij.[Mtl(t)) 

and 

where &; is given by (3.6). 
The L.R. statistic to test HAB (see Bhargava (1962, 1975)) is 

p (t) 

Z(AB) = IT (Zt(AB))Mt K (-'·)/2 
t=1 

From Bhargava (1962,1975), under H AB , Z1(AB), Z2(AB), ... , Zp(AB) 
are independent beta random variables with 

t = 1, ... ,p, 

where at = (Mt - 1)K(t)(.,.) - (t - 1) and bt = f(t)(., 1) - f(t)(1, 1) -
J(t)(1, 1) + 1. 
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Let N'(AB) = Ii (Zt(AB))(Bt- I ,)/2, where the it's are fixed numbers 
t=l 

such that 0 < at - Lt. The asymptotic c.d.f. of M(AB) = -2InA"(AB) 
under HAB can be obtained by using the result given in (3.7). 

Testing of the hypotheses HAC and HBc can similarly be done by defin-
ing Q (8) and R 'k[M J(8). -i'k[MtJ -'J t 

TESTING THE HYPOTHESIS RELATING TO THE INTERACTION 

ABC 

We now proceed to test the hypothesis HABC. HABC is 

HABC: ~i~j~k(a!11')~~~ = 0, 

t=1, ... ,p, i=2, ... ,I(t)(1,1), j=2, ... ,J(t)(i,1), k=2, ... ,K(t)(i,j). 
The alternative to HABC is that HABC is not true. 

Using (3.8), define 

Let 

and 

{ ( (1) (2) (S»)' 
-?:! ijk[MtJ (8 ) == 0 Hijk[Mtl' Hijk[M.l' ... , Hijk[MtJ for 1 ::; 8 ::; t 

for 8 = O. 

for 1 ::; 8 ::; t, 
for 8 = 0, 

1 

(t) [(t) (1,1) J(t\i,l) K(t) (i,j) 1 

St + Mt L: L: L: Gijk(t) 
M K(t) f/(ABC) _ i=2 j=2 k=2 

t (-,.) t -I (t) [(')(1,1) J(')(i,l) K(')(i,j) I' 
St-1 + Mt L: L: L: Gijk(t - 1) 

i=2 j=2 k=2 

t = 1, ... ,p. Finally, let 

t=1, ... ,p, 

where a-l is given by (3.6). 
The L.R. statistic to test HABC (See Bhargava (1962), (1975)) is 

p (t) 

Z(ABC) = IT {Zt(ABc))M.K (.,)/2. 

t=l 

From Bhargava (1962, 1975), under HABC, Zl(ABC), Z2(ABC), ... , 
Zp(ABC) are independent beta random variables with 

Zt(ABC) rv Y ~ £.t, t = 1, ... ,p, 
2 ' 2 
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where 

and 

bt = K(t)(.,.) - J(t)(., 1) - J(t)(l,.) - K(t)(., 1) 

+ J(t)(l, 1) + J(t)(1, 1) + K(t)(l, 1) - 1. 

Let A" (ABC) = Ii (Zt(ABC)) (a,-I')/2, where the it's are fixed numbers 
t=l 

such that 0 < at -it. The asymptotic c.dJ. of M(ABC) == -2 In A" (ABC) 
under H ABC can be obtained by using the result given in (3.7). 

4 Final Comments 

Incomplete factorial designs with monotone structure can be used very 
naturally in experiments having block designs with blocks of unequal sizes. 
In medical experiments litter sizes are generally unequal. If we want to 
use all the experimental material, then a monotone factorial design is one 
choice. However, due to lack of space here, this interesting further work 
will be presented elsewhere. 
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The Limiting Distribution of 
the Rank Correlation 
Coefficient Rg 
Rudy A. Gideon1 

Michael J. Prentice2 

Ronald Pyke3 

ABSTRACT A new correlation coefficient, Rg , based on ranks and greatest 
deviation was defined in Gideon and Hollister (1987). In there the exact 
distributions were obtained by enumeration for small sample sizes, and by 
computer simulations for larger sample sizes. In this note, it is shown that 
the asymptotic distribution of n 1/ 2 Rg is N(O, 1) when the variables are 
independent and n is the sample size. This limit is derived by restating 
the definition of Rg in terms of a rank measure and then using a limit 
theorem on set-indexed empirical processes which appears in Pyke (1985). 
The limiting distribution can be compared to the critical values for large 
samples given in Figure 2 of Gideon and Hollister (1987). Methods for 
deriving the limiting distribution under fixed and contiguous alternatives 
are also described. 

1 Introduction 

In Gideon and Hollister (1987), a new rank correlation coefficient, Rg , is 
defined that is more resistant to outliers than classical coefficients. Critical 
values for tests based On Rg for sample sizes n = 2, 3, ... , 100 were pro­
vided. In this paper, the limiting distribution of Rg is obtained so that the 
new robust correlation procedures may be used in all cases. Using the nota­
tion of Gideon and Hollister (1987), the correlation coefficient Rg is defined 
as follows. Let p denote any permutation of the first n positive integers and 
let e denote the particular "reverse" permutation, (n, n - 1, ... ,2,1). The 
symbol 0 denotes the cyclic group operation, [.J the greatest integer func­
tion, and 1 the indicator function. Let (Xk' Yk), k = 1, ... , n be a random 

lUniversity of Montana, Missoula, Montana, USA 
2University of Edinburgh, Edinburgh, Scotland, UK 
3University of Washington, Seattle, Washington, USA 
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sample from an absolutely continuous bivariate distribution H, and denote 
the corresponding order statistics by -00 < Xn1 < ... < Xnn < +00 and 
-00 < Yn1 < ... < Ynn < +00. If ri is the y rank of that y value which 
is paired with the i-th smallest x value, then (Xn1' Ynr1 ), ... , (Xnn' Ynrn ) 
are the data recorded by increasing x values. Now for p = (r1,r2, ... ,rn), 
define 

di(p) = L l(rj > i), di(eOp) = L 1(n+1-rj > i), 
j=l j=l 

The new correlation coefficient is then defined by 

Rg = {d(e 0 p) - d(p)}/[n/2]. 

For notational convenience during the derivation of the limiting distribu­
tion, it is assumed that the sample size n is even; the modifications needed 
when n is odd are straightforward. Thus, the normalized coefficient becomes 

(1.1 ) 

In terms of this definition, one sees that Rg may be described as the 
maximum deviation between sums of forward and backward ranks. How­
ever, for purposes of this paper, it is important to observe that the ranks 
in Rg may be viewed as random measures of particular sets, and this set­
indexed approach enables one to obtain the asymptotic null distribution 
rather directly. It also indicates the large family of correlation coefficients 
that may be considered. To obtain the set-indexed representation, define 
the following two families of Borel sets on the unit square ]2 = [0, 1] x [0, 1], 

A 
13 

{At : ° :S t :S I} 
{Bt : ° :S t :S 1} 

where At = {(x,y) E]2: y > t,x:S t}, 
where B t = {(x,y) E]2: y < 1- t,x:S t}. 

(1.2) 
Since Rg is distribution free with respect to the class of absolutely con­
tinuous distribution functions, without loss of generality we assume that 
the marginal distributions of the X k and Yk are both uniform on the unit 
interval ]. The problem addressed here is that of finding the limiting dis­
tribution of n 1/2 Rg under the null hypothesis of independence in which the 
joint distribution H is the uniform distribution in ]2; that is, for all Borel 
sets C E ]2, H (C) = I CI, where I . I denotes Lebesgue measure. 

For the x-ordered data (Xnj , Ynr ), j = 1, 2, ... , n, the rank measure 
Rn is defined on the Borel sets in /2 (cf. Pyke (1985)) by 

Rn(C) = n-1#{(Xk , Yk ) : X k = X ni , Yk = Ynj for some (i,j) E (n+1)C} 
(1.3) 

in which # denotes the cardinal number. Thus, Rn is the probability ran­
dom measure set function that assigns equal measure of l/n to each of the 
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n points (i/(n + l),ri/(n + 1)),1 :S i :S n. Notice that by the definition 
of ranks, this rank measure has (discrete) uniform marginals. It is easily 
checked that di(p) = nRn(Ai/(n+l)), so that 

d(p) = max nRn(Ai /(n+1)) = n sup Rn(At). 
l:5.:5n O:5t:51 

Similarly, diCe 0 p) = nRn(Bi/(n+1)) and 

dee 0 p) = max nRn(B i /(n+1)) = n sup Rn(Bt). 
l:5.:5n 0:5t:51 

For the last equality in each case, observe that Rn(Bt ) and Rn(At} change 
values only at t = i/(n + 1), i = 1, ... , n. It now follows that, for n even, 
(1.1) may be written as 

Rg = 2{ sup Rn(Bt} - sup Rn(At)}. (1.4) 
O:5t:51 O:5t:51 

See Figure 1 for an illustration based on the original YMCA data reported 
in Gideon and Hollister (1987). 

2 The Limiting Null Distribution 

Before deriving the limiting distribution, we record some properties of the 
exact distributions. First of all, di(p) is a hypergeometric random variable 
(r. v.); specifically, if Hyper (N, k, m) denotes a hypergeometric r.v. with 
population size N, sample size m, and k individuals of the type which is 
being counted, then di(p) and diCe 0 p) are Hyper (n, n - i, i) under the 
null hypothesis. To see this, note that the r.v. di(p) counts the number 
of ranks in the first i positions of p which exceed i and there are n - i 
such possibilities. Thus i ranks are samples, n - i ranks are classified as a 
"success" and the total population size is n. For the null distribution all 
permutations are equally likely and the conclusion follows. By the same 
argument, it follows that for any rectangle A = B x C, B, C c I, nRn(A) 
is a Hyper (n, b, c) r.v. where band c are the number of integers in (n+ l)B 
and (n + l)C, respectively. In the above, di(p) = nRn(Ai/(n+1)) and At = 
[0, t) x [t, 1]. 
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FIGURE 1. Set-indexed Representation of Rg Illustrated for the YMCA Data of 
Gideon and Hollister (1987): (i,ri) is plotted at (i/17,ri/17),i = 1,2, ... ,16 for 
(rl, ... ,r16) = (14,11,16,2,12,13,7,9,10,3,8,1,15,6,4,5) 

l 

a 
a 

Rn(A9/ 17 ) = 6/16 

l 

• 

• 

• 

• a 

a 

Rn(B12/17) = 3/16 

l 

l 

At 
d(p) = 

{(X,y) E [2: y > t,X::::; t} 
max di(p) 
l~i~n 

Bt 

d(e 0 p) 

n sup Rn(At) 
09~1 

= 16R16(A9 / 17 ) = 6 

= {(x,y)E[2: y <l-t,x::::;t} 
max di(e 0 p) 
l~i~n 

n sup Rn(Bt) 
099 

16R16 (B12/17 ) = 3 

2 
Rg = -{d(e 0 p) - d(p)} = (3 - 6)/8 = -3/8 

n 
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It then follows that 

and 
var(di(p» = var(nRn(A i / n+1» = i2(n - i)2/n2(n - 1). 

Similar equations hold for di(e 0 p) and nRn(Bi / n+1)' The covariances are 

To show this, write p = (rb"" rn). Note that dn(p) == O. Set do(p) == O. 
For i $ k, 

i k 

cov(di(p), dk(p» = cov{~ l(i < rj), ~ l(k < rt )} 

i k 

= LLcov{l(i < rj), l(k < rtn. 
j=lt=l 

Clearly, 

cov(l(i < rj), l(k < rt» = P(rj > i and rt > k) - P(rj > i) P(rt > k). 

Since P(rj > i) = (n - i)/n and 

P(rj > i, rt > k) = P(rj > ilrl > k)P(rt > k) 

{ (n - k)/n for j = l 
= {(n - i - 1)/(n - 1)}{(n - k)/n} for j =f.: i. 

Thus 

n - k n - i n - k (n - k)i 
cov(l(i < rt), l(k < rt» = -- - ---- = 2 

n n n n 

and for j "I- l, 

. n - i-I n - k n - i n - k -i(n - k) 
cov(l(t < rj), l(k < rt» = 1 -- - ---- = 2( 1)' n- n n n n n-

Thus for 0 $ i $ k $ n, 

~ ~ (-i)(n - k) ~ i(n - k) 
cov(di (p), dk(p» = f;1 j~l n2(n - 1) + f;1 n2 

= (-i)(n - k) i(k _ 1) + i(n - k) i = i2(n - k)2 . 
n2(n - 1) n2 n2(n - 1) 
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as desired. Again, the result depends only on the rectangular nature of the 
sets At, so that similar results could be stated for general rectangles. 

From the above, the covariance structure of the limiting process can 
be suggested: If i, k and n increase while i/n -. tl and kin -. t2 for 
0< tl $ t2 < 1, then the limiting covariance is t~(1- t2)2. 

In order to study the asymptotic behavior of n l / 2 Rg , we describe this 
normalized rank coefficient in terms of the normalized rank processes in­
troduced in Pyke (1985). For any collection C of Borel sets in [2, define 
the rank process 8n = {8n (C) : C E C} by 

8n (C) = n l / 2 {Rn(C) -IGI}, C E C, 

where Rn is the rank measure defined in (1.3). From (1.4), it follows that 

n l / 2Rg = 2sup{8n (B) + n l / 2 IBI} - 2sup{8n (A) + n l / 2 IAI}. (2.1) 
8 A 

By means of this representation of Rg as a function of the set-indexed rank 
process 8n , its limiting normality can be derived from the weak convergence 
of 8n that was established in Pyke (1985). To this end, rewrite (2.1) as 

Theorem 2.1 of Pyke (1985) states that under certain assumptions on the 
index family C, there exists a probability space on which equivalent versions 
of the 8n -processes and a Gaussian process 8 can be defined for which 
supc 18n (C) - 8(C)1 converges to zero as n -. 00. The assumptions on C 
for this form of weak convergence can be straightforwardly checked to be 
satisfied for both A and 8 of this paper, and hence for C = Au 8. Both 
families inherit the metric structure of [0, 1] and the rectangular shape of 
the sets permits Assumption II ofPyke (1985) to hold. The limiting process, 
S, is a mean zero Gaussian process with covariance given by 

cov(8(A),8(B)) = IAnBI+IAIIBI-iIAn(BIYX[) I dy-iIAn([XB2X)ldx 

for any A, B E C, where the sections B ly and B2x are defined by B ly = 
{x E [: (x,y) E B},B2x = {y E [: (x,y) E B}. It is easily calculated that 
when C = 8, this covariance reduces to 

which agrees with (1.4). It is also true that 8 is continuous over C where 
continuity is with respect to the Lebesgue symmetric-difference pseudo­
metric, d(A, B) = IAilBI. 
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The limiting null distribution of n 1/ 2 Rg can now be obtained from (2.1) 
since it can be shown that for the versions of Sn and Sin Pyke (1985), both 
of the suprema converge to zero. The argument is the same for both; we 
consider only the term involving B. Observe first that IBtl :::; 1/4 = IB1/ 2 1 

for all B E B. The deterministic function n 1/ 2 (1/4 -IBI) is therefore non­
negative and diverges to +00 except at B 1/ 2 , where it is zero for every n. 
The supremum is clearly non-negative; try B = B 1/ 2 . Since Sn converges 
to S uniformly over B, it suffices to show that 

Sn == sup{S(B) - S(B1/2) - n1/2(1/4 -IBI)} --+ O. (2.4) 
B 

Since S is continuous over Band B = {Bt : t E I}, S is uniformly bounded, 
by L say. Also, for any given c > 0, there exists a 15 > 0 such that 

sup{S(Bd - S(B1/2) : It - 1/21 < 15} < c. 

Consequently, for all n, 

Sn :::; c + sup {2L - n 1/ 2 (1/4 - t(l- t))}+ --+ c. 
It-1/21:56 

where x+ denotes the non-negative part of x. Since this is true for all c > 0, 
it follows that Sn --+ O. 

By a similar argument, the term in (2.2) that involves the supremum 
over A also converges to zero. Consequently, it follows that the right-hand 
side of (2.2) converges to 

since S([O, 1/2] x I) = 0 and A 1/ 2 UB1/ 2 = [O,~] x I. However, Z is a mean 
zero normal random variable whose variance, by (2.3) is 1. This completes 
the proof of 

Theorem 2.1 Under the uniform null hypothesis, n 1/ 2 Rg is asymptoti­
cally distributed as a N(O, 1) random variable. 

3 The Limiting Distribution under Alternatives 

In order to be able to evaluate the power or efficiency of procedures based 
on Rg, it is necessary to know the distribution of Rg under alternatives as 
well as under the null hypothesis. For moderate sample sizes this can best 
be done by simulation. For large sample sizes the asymptotic distribution 
is needed. For this reason, we outline below methods for obtaining the 
limiting distributions of Rg under both fixed and contiguous alternatives 
to the null-hypothesis assumption of independence. 
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Consider first the case of a fixed alternative, H. We assume that both 
marginals of H are continuous, and so, without loss of generality, we take 
the marginals to be uniform on [0, IJ, even though H itself is not uniform 
on 12. In this situation, the rank process is 

GEe. (3.1) 

As for the null-hypothesis case above, these limiting results for Rg depend 
on knowing the weak convergence of the rank process. Since the results for 
non-uniform (non-independence) cases require lengthy proofs, we outline 
here only the steps needed to obtain the results for Rg once one has the 
results for the rank process. The fuller study of the non-uniform rank pro­
cess is left for a later study; in what follows, the needed results for the rank 
process are stated as assumptions. 

As for (2.1), one may write 

n 1/ 2 Rg = 2sup{Sn(B) + n 1/ 2 H(B)} - 2sup{Sn(A) + n 1/ 2 H(A)}. (3.2) 
B A 

Set 
a = supH(A), b = supH(B) 

A B 

and 
A* = {A E A: H(A) = a}, B* = {B E B: H(B) = b}. 

Clearly ° < a, b < 1/2 since, for example, H(Ad ~ t 1\ (1 ~ t) for all 
tEl. Suppose that A* and B* are finite, say A* = {A: : 1 ~ i ~ k} and 
B* = {Bj : 1 ~ j ~ m}. The limiting distributions of the terms on the right 
hand side of (3.2) are determined by the members of A* and B*. Consider 
the term involving the supremum over B. Partition B into a finite union of 
sets, say B = Ur Bj , such that each Bj contains exactly one element of B* 
and that element is an interior point. Then write 

sup{Sn(B) + n 1/ 2 H(B)} 
B 

= m~{ Sn(Bj) + sup{ Sn{B) - Sn{Bj) - n 1/ 2 (b - H(B))} } + n 1/ 2b. 
J B j 

By a similar argument to that used to prove (2.4), one may show that the 
middle term involving the supremum over Bj converges to zero. This fact, 
together with a similar one for A, enables one to deduce from (3.1) that 

provided only that on some probability space there exists a process Sand 
equivalent versions of the rank processes Sn for which IISn - SllAuB -+ 0, 
where IlfilM is the sup-norm, IlfllM = sup{lf(x)l : x EM}. This estab­
lishes the limiting distribution under H. In summary, 
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Theorem 3.1 For a fixed alternative H with uniform marginals, if a = 
sup{H(A) : A E A} and b = sup{H(B) : B E B} are attained on finite 
subfamilies A * and B*, respectively, and if Sn converges in distribution 
to S in the sense that versions exists for which IISn - SIIAUS -+ 0, then 
n 1/ 2 (Rg - b + a) converges in law to 

2supS(B) - 2supS(A). 
s* A* 

When H is uniform on [2, so that one is in the null-hypothesis case, 
A* = {A 1/ 2 } and B* = {B1/ 2 }. Thus Theorem 3.1 is consistent with 
Theorem 2.1. 

To obtain the limiting distribution under a sequence of contiguous al­
ternatives, say {H(n)}, one first needs to have a convergence result for the 
rank processes that is in some sense uniform over alternatives. To this end, 
suppose 1l is a family of distributions H on [2 that have uniform marginals. 
Interpret the rank process in (3.1) as indexed by both a family C of sets 
and such a family 1l of distributions. That is, view the rank process as 

(C,H) E ex 1l. (3.3) 

Moreover, when the true distribution of (Xi, Yi) is H, it is possible to con­
struct equivalent observations that are functions of random variables that 
are uniform on [2. In this way, one can simultaneously construct all of the 
rank processes embodied in (3.3) on the one (null-hypothesis) probability 
space. Suppose it is then possible to show the convergence-in-Iaw of the pro­
cess Sn to a limiting process, say S = {S(C, H) : C E C, HE 1l}, in such a 
way that one may assume without loss of generality that IISn -SlIcx'H -+ o. 
Suppose C = A u B and 1l is a family containing the specified contiguous 
sequence of alternatives, {H(n)}. If the sequence converges to the uniform 
null hypothesis at a rate of n-1/ 2 so that 

for some bounded set function ZI, then arguments similar to those applied 
to (1.4) can be used to show that 

The major step in deriving such a result is again that of establishing the 
weak convergence of the basic rank process Sn. This will be the focus of 
later research, but it should be remarked here that conditions on 1l will 
permit large families of alternatives and hence of contiguous sequences. 
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Mean and Variance of Sample 
Size in Multivariate 
Heteroscedastic Method 

Hiroto Hyakutake1 

Minoru Siotani2 

ABSTRACT For statistical inference on several mean vectors when popu­
lation covariance matrices are different, the heteroscedastic method is em­
ployed to overcome difficulties under a two-stage sampling scheme. Total 
sample size for each sample is thus a random variable. Both exact and ap­
proximate upper and lower bounds for the mean and variance of the sample 
size are given. Tables are computed for some special cases of these bounds 
in order to have some information on their numerical behavior. 

1 Introduction 

Consider a statistical inference on mean vectors J.l.1. ••• , J.l.k of k p-variate 
normal populations Np(J.l.i' Ei), i = 1, ... , k, where J.l.i and Ei are un­
known, and Ei are different. The heteroscedastic method was introduced 
by Dudewicz and Bishop (1979) to treat the inference in this situation, 
and is essentially based on the two-stage sampling scheme devised by Stein 
(1945) for the univariate case and by Chatterjee (1959) for the multivariate 
case. That is, we first take a sample of fixed size No from each of the k 
populations and compute 

No No 

x(i) = NOl L X~i), VSi = L(X~i) - x(i»(x~i) - X(i»' (1.1) 
r=l r=l 

for i = 1, ... , k, where v = No - 1. Then for each i, we define the total 
sample size by 

(1.2) 

lHiroshima University 
2Science University of Tokyo. Partially supported by Grant-in-Aid for Scien­

tific Research of the Ministry of Education under Contract Number 321-6009-
61530017. 
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where c is a given positive constant, T is a given p x p positive definite 
(p.d.) matrix, and [aJ denotes the largest integer less than a real number 
a. Then we take Ni - No additional observations from the ith population 
and define the basic random vector Zi : P x 1 (i = 1, ... , k) using whole 
observations and using some matrices satisfying certain conditions. For 
details of the heteroscedastic method, see Dudewicz and Bishop (1979) or 
Siotani, Hayakawa, and Fujikoshi (1985). 

We note that the p.d. matrix T is chosen to as to reflect the relative 
importance of deviations in the means of components of the original variate 
x. If weights are assumed to be equal, we may take T = Ip- The constant 
c is usually chosen so as to meet the requirement in the problem under 
investigation; see, for example, Hyakutake and Siotani (1987). 

In this paper, we give formulae for upper and lower bounds on E(Ni ) 

and E(N'f), from which we may obtain an approximate variance or stan­
dard deviation of N i . The bounds are given both by infinite series of zonal 
polynomials and by asymptotic expansions. Tables of the upper and lower 
bounds on the mean and standard deviation of Ni are computed for some 
special cases in order to have some information on the numerical behavior 
of the bounds. 

It is clear that the evaluation for each i is the same, so that we shall drop 
the suffix i hereafter. 

2 Inequalities for E(N) and E(N2 ) or Var(N) 

Let N be the random variable representing the total sample size defined 
by (1.2). (Recall that we are suppressing the subscript i.) Then N takes 
values No + p2 + r, r = 0, 1,2, ... , and we have 

<Xl 

E(Ni ) = L ni Pr(N = n), i = 1,2. (2.1) 
n=No+p2 

It is obvious that 

Pr(N = No + p2) = Pr(ctr(TS) < No + p2) (2.2) 

and for n > No + p2 

Pr(N = n) = Pr(n - 1 < ctr(TS) < n), (2.3) 

where vS = V is distributed according to the Wishart distribution with 
v = No-1 degrees offreedom (d.f.) and covariance matrix~, i.e., Wp(v, ~). 
Thus we can write E(N i ) as 
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00 

+ L nipr (~(n -1) < tr(TV) < ~n) 
n=No+p2+1 

r(v/c)(No+p2) 

= (No + p2)i Jo f(u) du 

00 l(v/c)n 
+ L ni f(u)du 

n=No+p2+1 (v/c)(n-1) 

where f(u) is the probability density function (p.d.f.) of 

U = tr(TV) = tr(W), W = T 1/ 2VT 1/ 2 . 

Since 

(
1/ )i l(v/c)n l(v/c)n. 
-n f(u) du > u' f(u) du, i = 1,2 
c (v/c)(n-1) (v/c)(n-1) 

1/ l(v/c)n l(v/c)n 
( -n) f(u) du < uf(u) du 

c (v/c)(n-1) (v/c)(n-1) 

(
1/ l(v/c)n 

+ -) f(u)du, 
c (v/c)(n-1) 

21(v/c)n l(v/c)n 
(~n) f(u)du < u2f(u)du 

c (v/c)(n-1) (v/c)(n-1) 

(
1/) l(v/c)n +2 - uf(u)du 
c (v/c)(n-1) 

(
1/)21(v/c)n + - f(u) du, 
c (v/c)(n-1) 

E(N i ), i = 1,2, satisfy the following inequalities. 

where 

L1 < E(N) < U1 , 

L2 < E(N2 ) < U2 , 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

Li=(No+p2)ila f(u)du+(~r1°O uif(u)du, i=1,2, (2.11) 

U1 =(No +p2) la f(u)du+ (~) 100 
uf(u)du 

+ 100 
f(u) du, (2.12) 

U2=(No+p2)21
a 

f(u)du+ (~r 100 
u2 f(u)du 

+2(~) 100 
uf(u)du+ 100 

f(u)du, (2.13) 
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and a = (v/c)(No + p2). We observe that 

U1 -L1 = 100 
f(u) < 1, (2.14) 

U2 - L2. = 2 (~) 100 
uf(u) du + 100 

f(u) duo (2.15) 

It follows from (2.14) that E(N) can be evaluated almost exactly. For the 
variance of N, we obtain 

L2 - U? < Var(N) < U2 - L~. (2.16) 

To evaluate those upper and lower bounds, we need to know the distribution 
of the random variable U defined by (2.5). 

3 Distribution of U = tr(W) 

The exact distribution of U has been given by Khatri and Srivastava (1971) 
in the following form. Since W is distributed according to Wp(v, ~o), where 
~o = T1/2~T1/2, the cumulative distribution function (c.d.f.) of U is given 
by 

1

1 l-v/2 00 1 
Fu(u) = Pr(U ~ u) = ~~o ~ k!GpV+2k (~) ~ (~) It CIt(Ip_'x~Ol), 

(3.1) 
and the p.d.f. is then 

where Gf(x) is the c.d.f. of the X2-distribution with f d.f., gJ,>,(x) is 

gJ,>.(x) = (2,X)-f/2 (r (~)) -1 xf/2-1 exp (-2~)' (3.3) 

the symbol L:1t denotes the summation over all partitions /'i, = (kl, k2' ... ,kp), 
k1 2:: k2 2:: ... kp 2:: 0, k1 + k2 + ... kp = k of the integer k, CIt(A) is the 
zonal polynomial corresponding to /'i" 

and 0 < A < 00 is arbitrary, but is chosen so that the series (3.1) and (3.2) 
converge rapidly. Khatri and Srivastava (1971) suggest the choice 
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>. = 2>'I>'p/(>'1 + >'p), where >'1 and >'p are the largest and smallest latent 
roots of Eo, respectively. 

When p = 2, the distribution of U reduces to 

(3.4) 

where>. = 2>'1>'2/(>'1 + >'2), and bk ((),v/2) is the kth probability of the 
negative binomial distribution with parameter v/2, and () = 4>'1>'2/(>'1 + 
>'2)2, i.e., 

(3.5) 

The distribution function (3.4) was given by Muirhead (1982; problem 3.12, 
p. 115). Another special case is obtained for T = Ip and E = a 2 Ip, i.e., 
Eo = a 2 Ip; 

(3.6) 

in which we use>. = 2>'I>'p/(>'1 + >'p) = a 2 . 

We next consider the approximations to Fu(u) and fu(u) obtained from 
the asymptotic expansions for them. Note that the asymptotic distribution 
of Uo = (1/v) tr(W) as v ---+ 00 is easily found to be normal with mean 
tr(Eo) and variance (1/v)tr(E5) by applying Theorem 2.7.3 in Siotani, 
Hayakawa and Fujikoshi (1985), which was given in the class by Professor 
I. Olkin in 1964. 

Fujikoshi (1970) gave an asymptotic expansion for the distribution of the 
standardized variable 

(= JV (Uo - tr(Eo)) = 1r.:(U - vtr(Eo)), (3.7) 
7 7yV 

where 7 2 = 2tr(E5), whose limiting distribution is obviously N(O, 1). Fu­
jikoshi's result is 

where Sr = tr(Eo) = Ef=1 >'i (Vs are latent roots of Eo), and <J,(r)(z) is 

the rth derivative of the standard normal c.dJ. ~(z). We note that 

Fu(u) = Pr(U:S u) = Pr (7~(U - VSl) :S 7~(U - VSt}) 

= Pr(( :S zu) = F((zu), (3.9) 
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where Zu = (u - IIsd/ry'v, and that 

fu(u) = -dd Fdzu)' ddZu = hdzu)/ry'v, (3.10) 
Zu u 

hdzu) being the p.d.f. of ( at z = ZU' 

4 Evaluation of Upper and Lower Bounds on 
E(N) 

Noting that 

100 i i r ((plI+2k+2i)/2) ( (a)) 
a U gpv+2k,.>.(U) du = (2A) r((plI + 2k)/2) 1 - G pv+2k+2i A ' 

(4.1) 
we obtain from (2.9)-(2.16) the following result. 

Theorem 4.1 The upper and lower bounds U1 and L1 on E(N) are given 
by 

where 

(4.2) 

(4.3) 

Qp,k = (No +p2)Gpv+2k (~) + ~C(PII+ 2k) (1- G pv+2k+2 (~)). (4.4) 

For the cases P = 2 and E = a 2 I p , T = I p , the bounds reduce to the 
following forms, which can also be obtained from (3.4) 

Corollary 4.2 When P = 2, the bounds on E(N) become 

00 

L1 = L bk (O,~) Q2,k, 
k=O 

U1 = L1 + 1 - Fu(a), (4.5) 

where Fu(a) is given by (3.4) with u = a. 

Corollary 4.3 When E = a 2 Ip and T = I p, we have 

(4.6) 

Next we consider the user of the asymptotic expansion formula given by 
(3.7). Owing to (3.8) and (3.9), the integrals involved in the bounds (2.11) 
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and (2.12) are converted into integrals with respect to the p.d.f. of , as 
follows: 

loa fu(u) du = Fu(a) = Fdza), 

where Za = (a - //81)/7'yIv, 

(4.7) 

100 fu(u) du = 1 - F,(za), (4.8) 

100 
ufu(u)du=7'Vv 1~ zh,(z)dz+//81(1-Fc:(za)). (4.9) 

To evaluate the integral on the right-hand side of (4.9), note that 

r = 1,2, ... , 

and hence zh,(z) can be written as 

4 1 
zh,(z) = -<I>(2)(z) + --83(<I>(5)(z) + 3 <I> (3) (z)) 

3y1v 7'3 

(4.10) 

- ~~ (~8~<I>(8)(z) + (84 + ~8~) <I>(6)(Z) + 484<I>(4) (Z)) 
// 7'4 97'2 37'2 

Since 

we have 

8 1 [4 3 (11) ( 1 4 3) (9) 
+3//ylv7'5277'483<I> (z)+ 7'28384+37'483 <I> (z) 

+ (~85 + :28384) <I>(1)(z) + 685<I>(5) (Z)] 

+ 0(//-2). (4.11) 

100 <I>(r+l) (z) dz = { 1 - <I>(Za) 
_<I>(r) (z ) 

~ a 

for r = 0, 
for r = 1,2, ... , 

(4.12) 

rOO 4 1 Jza zh(z) dz = <I>(l) (Za) + 3y1v 7'3 83 (<I>(4) (Za) + 3<I>(2) (Za)) 

2 (4 2 (1) ( ) ( 8 2) (5)) (3)) + //7'4 97'2 83 <I> Za + 84 + 37'3 83 <I> (Za + 484 <I> (Za) 

8 1 [4 3 (10) ( 1 4 3) (8) 
- 3//y'v 7'5 277'483<I> (Za) + 7'28384 + 37'4 83 <I> (Za) 

+ (~85 + :28384) <I> (6) (Za) + 685 <I> (5) (za)] 

+ 0(//-2). (4.13) 

Substituting (4.7)-(4.9) with (4.13) into (2.11) and (2.12), we obtain ap­
proximations of the upper and lower bounds on E(N). 
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5 Upper and Lower Bounds on E(N2 ) 

To evaluate the upper and lower bounds U2 and L2 on E{N2), we observe 
from (2.11) and (2.13) that we need no additional computation except for 
Jaoo u2 Ju{u) duo 

Theorem 5.1 The exact upper and lower bounds U2 and L2 are given by 

where 

2 2 (a) Rp,k = (No + p ) Gpv+2k ); 

)..2c2 ((a)) + -,;-(pv + 2k)(pv + 2k + 2) 1- GpV+2k+4); , 

and 
U2 = L2 + L1 + U1 - 2{No + p2)Fu{a), 

where L1 and U1 are given by (4.2) and (4.3), respectively. 

Corollary 5.2 For p = 2, the bounds in Theorem 5.1 become 

00 
L2 = ~bk (0, i) R2,2k, 

k=O 

(5.1) 

(5.2) 

(5.3) 

where L 1, U1 are given by (4.5) and Fu{a) is given by (3.4) with u = a. 

Corollary 5.3 When E = u 2Ip and T = Ip, the bounds on E{N2) are U2 
and L2 in Theorem 5.1 for k = 0 and)" = u2, i.e., 

(5.5) 

where L1 and U1 are given in (4.6). 

For approximate bounds on E{N2) based on the asymptotic expansion 
formula (3.8), note that 

1~ u2 fu{u) du = 1~ (rVvz + vst}2hd z ) dz 

= r2v [00 z2h({z) dz 
lZa 

+ 2rvVvs1 1~ zhdz ) dz + v2sH1- Fdza)). (5.6) 
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Hence we have only to consider the evaluation of the first integral in (5.6). 
Since 

z2<1>(r)(Z) = <I>(r+2)(z) + (2r - 1)<I>(r)(z) + (r - 1)(r - 2)<I>(r-2) (z), (5.7) 

we obtain the following result by computing in a similar manner to the case 
of E(N): 

1~ z2hdz)dz 

= 1 - <l>a - <1>(2) + _4_~83(<I>(5) + 7<1>(3) + 6<1>(1») (5.8) a 3y'V 73 a a a 

2 [4 2 (8) ( 52 2) (6) ( 40 2) (4) - - -83<1> + 84 + -83 <I> + 984 + -83 <I> V74 972 a 972 a 372 a 

+ 1284 <I>~2)] 
8 1 [4 3 (11) (76 3 1 ) (9) + 3Vy'V75 277483<1>a + 277483 + 728384 <l>a 

( 32 3 15 6) (7) (42 66) (5) + -83 + -8384 + -85 <I> + -8384 + -85 <I> 374 72 5 a 72 5 a 

+ 2485<1>~3)] 
+ O(v-2 ), (5.9) 

where <l>r) = <I>(r) (za), r = 0,1, ... ,11. 

6 Tables for Some Special Cases 

To have some information on the numerical behavior of the mean and 
standard deviation of N, tables of the upper and lower bounds on them 
are computed for 

p = 3; No = 11(10)51, v = No - 1 = 10(10)50; 
c = 10(5)50; 
Eo : EO! = (0.5)h E02 = h E03 = 2h E04 = diag(l, 0.5, 0.2), 
E05 = diag(3, 1,0.5). 

Tabulated values are Ll and U1 such that Ll < E(N) < Ul, LSD and USD 
such that 

LSD < JVar(N) = standard deviation of N < USD, (6.1) 

where 

L - { (L2 - Ul)I/2 if L2 - u'f > 0, 
SD - 0 if L2 - u'f ::; 0; 

(6.2) 
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(6.3) 

and L 2 , U2 are given in (2.10) and in Section 5. 
Table 1 is for the case of ~o = ~Oi' i = 1,2,3 given above, in which case 

the computations are based on the formulae (4.6) and (5.5). For the X2-

distribution with m dJ., (2X;y/2 - (2m-l )1/2 is approximately distributed 
according to the standard normal distribution N(O, 1) for large m, say for 
m> 40. Hence we observe from (4.4) and (5.2) with k = 0 that, if 

(6.4) 

where t is a sufficiently large positive constant, Gpv+2r(s/a2), r = 0,1,2 
become very close to one or negligibly small depending on whether d in 
(6.4) is positive or negative, and we have approximately 

and 

L1 ~ (No + p2), U1 ~ L1, if d > 0; 

L1 ~ pca2, U1 = L1 + 1, if d < 0 

L2 ~ (No + p2)2, U2 ~ L2, if d > 0; 

(6.5) 

L2 ~ pc2a4 (pv + 2)/v, U2 ~ L2 + L1 + U1, if d < O. (6.6) 

The value of the critical point t depends, of course, on (No + p2)i, i = 1,2, 
pca2, pc2a4 (pv + 2)/v. For the range of parameters in Table 1, the value 
of t is chosen to be 5, for which 

Gpv+2r(a/a2) > 0.99999971, r = 0,1,2, if d > 0, 

Gpv+2r(a/a2) < 0.00000029, r = 0, 1,2, if d < o. 
Table 2 is for the case of ~o = ~04' ~05, and is calculated based on 

the asymptotic formulae (3.8), (4.13), and (5.9). The formulae for L i , Ui , 

i = 1,2 in this case are written as 

L1 = (No + p2)Fc(za) 

+ (~) (Ty'ill~ Zhc(Z)dZ+VS1(I-Fc;(Za))), (6.7) 

U1=L1(I-Fc(za)), (6.8) 

L2 = (No + p2)2 FC;(za) 

+ c2 (~ 1~ z2h(z) dz + 2;J 1~ zhC;(z) dz + sHl- Fc(Za))), 

(6.9) 

U2 = L2 + L1 + U1 - 2(No + p2)Fc(za). (6.10) 

It was observed, by comparing Fc(za) with Gpv (a/a2) for the case ~o = 
a 2 Ip (see (3.6)), that the asymptotic expansion formulae did not give good 
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approximations to the exact values, especially fOf the case of larger absolute 
values of Za, say IZal > 2.5; in some cases, Fdza) became greater than 
one or became negative when diagonal elements of Eo = diag( u~ , u~, un 
were large, although the absolute amop,nts' of those violations were small. 
Fortunately, numerical comparisons statElfi above showed that if we put 
Fdza) = 1 or 0 in those cases, effects of this modification on the final 
results were pretty small, and the tabulated values prefjerved the accuracy 
at least up to one decimal Blace. '. 

Acknowledgments: We would like to thank the editor and the associate 
editor for their useful suggestions. . 
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A Comparative Study of 
Cluster Analysis and 
MANCOVA in the Analysis of 
Mathematics Achievement 
Data 
J .E. Lockley! 

ABSTRACT This article is based upon the author's Ph.D. dissertation 
(Lockley, 1970), which was one of the first attempts to use cluster ana­
lytic techniques in the analysis of educational data. It is published here 
to illustrate an alternative approach to the analyses of covariance of stu­
dent achievement utilizing large numbers of related social, demographic, 
environmental and educational covariates which are widely applied in edu­
cational research. In this alternative approach, covariates relating to school 
environment and teaching method are used to identify clusters of school­
community-teaching environments. Such environments are then compared 
for their effects on student achievement using analysis of variance (with ad­
justments only for covariates that reflect students' individual prior abilities 
and achievements). If successful, such an approach both increases statisti­
cal power and provides insight into the effects of school environments on 
student achievement. 
The data used in this article comes from junior high schools that partic­
ipated in a pioneering research project conducted at Stanford University 
in the late 1960's by the National Longitudinal Study of Mathematical 
Abilities (NLSMA). Evidence in the data supports the existence of 3 or 4 
school-environment clusters, and suggests that such clusters (or the schools 
themselves) do make a difference in the mathematics achievement of junior 
high school students. 

1 Introduction 

Educational researchers are often confronted with the problem of making 
sense out of a large number of measurements made on each of a set of 
objects. The measurements are thought to be related, and to reflect an un-

1 Mountain View College 
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derlying partition of the population of all such objects that has descriptive 
or substantiative meaning for research. One approach to this problem is 
that of cluster analysis, where heterogeneous data vectors are partitioned 
into smaller, more homogeneous sub-groups called clusters. 

Cluster analysis shares with classification analysis the assumption that 
the data vectors belong to one of G underlying statistical populations. How­
ever, in classification analysis the number and identities of such populations 
are known in advance, and the problem is to assign a given data vector to 
its appropriate population. In cluster analysis, there is no prespecified num­
ber of groups, nor is there necessarily a clear idea of what objects should 
constitute a group. Often, clustering is done without using measurements 
at all, but instead is based on some index of similarity between the ob­
jects under study. Whether measurements or indices of similarity are used, 
the hope is that the resulting classifications (clusters) reflect an underlying 
structure which exists apart from the particular data (or similarity index) 
used to construct the clusters. In positing and searching for such structures, 
cluster analysis resembles scaling methods such as factor analysis and prin­
cipal components analysis. However, unlike such methods, the structures 
sought by cluster analysis are often qualitative (categorical), rather than 
quantitative. 

Clustering techniques tend to require considerable calculation. Hence, 
their development has paralleled the growth of ever more powerful com­
puters and related computer software. Numerous techniques for clustering 
have been proposed. All depend upon: (1) the choice of variables used to 
describe the objects being clustered, (2) choice of a proximity index (or 
distance) that measures the similarity or dissimilarity between pairs of ob­
jects, and (3) the criterion function that assesses "goodness-of-fit" of the 
clustering technique. Subjective judgment enters into all of these choices, 
and also into the decision as to how to trade off the number G of clus­
ters against the criterion of goodness-of-fit. Often, the interpretation of the 
clusters in terms of the measurements used to create them is used as a 
guide to evaluate whether achieved clusters are reasonable (Le. reflect an 
underlying structure). 

However, there are also external ways to evaluate clusters. Frequently, 
the variables used to describe the objects to be clustered are selected from 
a larger collection of variables known to be related to one another. For 
example, in behavioral research one may be interested in "environment" or 
"background" as an underlying qualitative structure, and will have a wealth 
of possible measures that reflect this concept. If one collection of such 
variables is used to form the clusters, and such clusters can be reasonably 
interpreted in terms of a different collection of variables that might have 
been used, then one has some confidence that these clusters reflect some 
stable underlying structure. (One must be careful that the two collections 
of variables are not too highly correlated with one another.) 

Still another check is provided by using different clustering methods on 
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the same set of variables (and objects). If the resulting clusters are in close 
agreement, one is less inclined to regard them as artifacts of a particular 
algorithm. This is particularly true if the clustering methods used are based 
on different proximity indices and criteria and/or use different search algo­
rithms. For example, one could use both hierarchical and non-hierarchical 
algorithms (Johnson and Wichern, 1988; Chapter 12) to construct clusters. 

Finally, in behavioral research the structure sought by a clustering method 
may be thought to affect or influence certain performance variables (e.g. 
performance on certain achievement tests). If this effect is demonstrated 
statistically (by an analysis of variance), one has evidence that the clusters 
have operational meaning (at least in terms of predicting performance). 
An important advantage of using clustering on covariates as a precursor to 
an analysis of performance differences, as opposed to a regression analysis 
using the explanatory variables (covariates) as predictors, is a reduction in 
dimensionality (number of predictors) of the regression model, and hence 
an increase in statistical power to detect such differences. 

The goal of the present paper is to apply such an approach via clustering 
to data collected in a pioneering educational research project conducted at 
Stanford University in the late 1960's by the National Longitudinal Study 
of Mathematical Abilities (NLSMA). The objects grouped into clusters are 
junior high schools. The variables used to cluster these schools are back­
ground (school-community) variables. Further insight on this clustering is 
provided by variables reflecting the training and background of teachers 
in these schools, and the educational methods emphasized. Four different 
clustering algorithms are used, including one of hierarchical type and three 
of non-hierarchical type (including one k-means method). The number (3 
or 4) of clusters, and the assignments of schools to clusters, produced by 
these algorithms are very similar. Using the 3-cluster partition of schools 
produced by the hierarchical algorithm, an identification of the clusters in 
terms of the teacher-training variables yields meaningful interpretations, 
suggesting that a stable underlying partition of the schools has been iden­
tified. 

Finally, statistical analysis of student mathematical achievement data 
shows that the 3 clusters of junior high schools are not equally effective 
in mathematical teaching, even after adjustments are made (MANCOVA) 
for differences in aptitude and initial understanding of mathematical con­
cepts by the students. These results suggest that background-teacher-school 
"gestalts" do make a difference in the mathematics achievement of junior 
high school students. 

2 The Clustering Techniques Used 

The clustering techniques used in this study were among the first proposed 
in the literature: HICLUS (Johnson, 1967), ISODATA (Ball and Hall, 1965, 



244 14. A Comparative Study of Cluster Analysis and MANCOVA 

1967), F-R (Friedman and Rubin, 1967), and S-K (Singleton and Kautz, 
1965). HICLUS is a hierarchical clustering method, while the remaining 
three algorithms are non-hierarchical (Johnson and Wichern, 1988). The 
non-hierarchical methods differ primarily in the search algorithms used to 
construct optimal clusters, and in the way they choose the number, G, of 
clusters to be formed. 

W!'l here give a brief exposition that may be helpful in understanding 
these methods. More detailed descriptions can be found in the previously 
cited articles introducing the methods, and in the present author's disser­
tation (Lockley, 1970). 

Suppose that p variables are measured on each of N objects. If Xij is the 
jth measurement on the ith object, then Xi = (Xii, Xi2, •• • , Xip)' is the vec­
tor of measurements for object i, i = 1, ... , N. The vectors Xl, X2, ••• , XN 

may be presented as points in p-dimensional space. Let 

be the Euclidean distance between the points Xi and X j. 

If the vectors Xi are grouped in G clusters, we can compute the between­
cluster scatter matrix B and the within-cluster scatter matrix W familiar 
from the multivariate analysis of variance (MANOVA). The total scatter 
matrix T, which is the usual matrix of sums of squares and cross products of 
deviations of the Xi about their mean x = N-I E~l Xi, is fixed regardless 
of which (and how many) clusters are used. Further, for every choice of 
clusters 

T=B+W. 

A good clustering procedure will produce clusters such that objects within 
clusters are more homogeneous (closer in terms of the distance dij ) than 
objects between clusters. This may be accomplished by minimizing the ma­
trix W, or (since T = B + W is fixed) by maximizing the matrix B. Since 
W is a matrix, some scalI¥' function h(W) of W is usually minimized. The 
S-K procedure seeks to minimize the trace, tr(W), of W. The ISODATA 
procedure uses a mean-square-error criterion which is equivalent to mini­
mizing tr(W). The F-R procedure can use tr(W), a criterion equivalent to 
the determinant IWj of W, or a criterion equivalent to -tr(W- I ). (For the 
latter two criteria, the number G of clusters cannot exceed N - p.) 

A desirable trait of clustering is to produce a small number of homo­
geneous clusters that would provide as much information about the data 
as could be obtained using N clusters. Hence, a value as close to zero as 
possible is sought for the statistic h(W), while keeping G, the number of 
clusters, small. The optimal number of clusters is reached as a compromise 
between the desire to produce a small number of clusters and the desire 
to make clusters as homogeneous as possible (a goal trivially achieved by 
using N clusters). . 
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Assuming that the criterion used by the F-R method is tr(W), the three 
non-hierarchical clustering methods used in this paper (ISODATA, S-K, 
F-R) differ primarily in the search algorithm used to optimize the criterion 
for a fixed number of clusters, and in the way the number G of clusters 
is chosen. Since the search algorithms used stop when a local minimum of 
the criterion is achieved, they may yield different results (for fixed G) if 
the criterion function has several local minima. (A global minimum is not 
necessarily achieved by any of the search algorithms.) In the F-R algorithm 
one object is selected at a time, and the effect on the criterion of moving 
that object from its present cluster to a new cluster is evaluated. The object 
is moved only if the criterion function is decreased, and is then moved to the 
cluster for which the decrease in the criterion is greatest. Several passes are 
made over all objects until no further moves are possible. This procedure 
is followed for each of several choices of the number G of clusters, and 
the number G of clusters is chosen from a graph of the optimal criterion 
value for each G versus the value of G. The algorithm of the S-K procedure 
is similar, except that an up-and-down method is used to select G. (The 
move from G to G - 1 is accomplished by collapsing two clusters into one, 
and from G to G + 1 by using one object as the nucleus of a new cluster.) 
The ISODATA algorithm is a k-mean clustering procedure (Johnson and 
Wichern, 1988), with the choice of G made graphically. 

Hierarchical clustering procedures such as HICLUS (Johnson, 1967) can 
use similarity or difference measures between objects in place of the dis­
tances dij between data points. For the present application, however, the 
distance dij between Xi and Xj was used as a measure of similarity be­
tween objects i and j. HICLUS can form clusters by single linkage (MIN) 
or complete linkage (MAX); see Johnson and Wichern (1988) for a cate­
gorization of linkage methods for hierarchical clustering. HICLUS uses a 
measure of average linkage to graphically choose the number of clusters. In 
the present paper, the following variant of this average linkage approach 
was used together with the MAX option of HICLUS to choose the number 
of clusters: 

Johnson (1968b) defines an experimental cluster statistic z(g) which mea­
sures the tightness of a cluster g. If the data is at least interval scaled, or 
if the data is replaced by ranks, then the statistic can be treated as a stan­
dardized score (a z-score). The cluster statistic is denoted here by Zj(g), 
which measures the tightness of a cluster 9 at each stage j of clustering. The 
larger the value of Zj(g), the more homogeneous is the cluster g. Johnson 
did not discuss a method for determining the optimal number of clusters. 
The optimal number of clusters is obtained here by using a weighted aver­
age of the Johnson statistic developed by the present author. We define 
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where Gj is the number of clusters at the jth stage which contain more 
than one object, and Nj(g) is the number of objects in cluster 9 at stage 
j. Note that OJ = N - L;';1 Nj(g) is the number of clusters at the jth 
stage containing only one object (called outliers). Thus, Zj is a measure of 
tightness of the set of clusters at stage j which are not outliers. If two sets of 
clusters have the same value Zj, then the one with the smaller dissimilarity 
(see Johnson, 1968b) is chosen as the more desirable. 

Table 1 summarizes the clustering techniques used in this paper in terms 
of procedure, proximity measure, criterion function, goal and computer 
restrictions (at the time of the analysis). 

TABLE 1. Summary of Concepts Necessary for Applying Clustering Procedures 

Procedure Proximity Criterion Restriction 
Measure (Input) Function 

Tl Friedman-Rubin 
Up to 200 objects with 30 

A Raw data max[det(B + W}/ det(W}] variables per object in up 
B scaled max [Trace W- 1 B] to 25 clusters 
C internally min [Trace W] 

T2 Ball-Hall Raw or minimize MSE 
Up to 1000 objects with 50 

ISODATA scaled (equivalent to variables per object in up 
data min of Trace W) to 50 clusters 

T3 Singleton- Raw or min [Trace W] 
Same as ISO-DATA 

Kautz scaled 
data 

T4 Hierarchical 
Clustering Similarities clusters optimally compact 

Up to 100 objects. 
HICLUS MAX dissimilarities in terms of dM(Xi, x;} 

3 The Mathematics Achievement Data Sets 

The data sets used in this paper were collected by the National Longitu­
dinal Study of Mathematical Abilities, NLSMA. NLSMA was a team re­
search effort, funded by the National Science Foundation, and administered 
by the School Mathematics Study Group (SMSG) at Stanford University. 
Consultants from mathematics, education, psychology, and statistics con­
tributed. During the Fall of 1962, schools that agreed to participate in the 
NLSMA five-year mathematics achievement study gave an initial battery 
of achievement inventories to students in the fourth, seventh and tenth 
grades in both conventional and new mathematics curricula. The design 
stressed three features: (1) A long-term longitudinal and cross-sectional 
study of student groups, (2) The study of mathematical abilities of stu-
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dents on several grade levels over varying times and, (3) Data collection on 
students' mathematics achievement in grades 4 through 12 for mathematics 
curriculum revision and modification. 

Over 112,000 students in 1,500 schools from 39 states participated in 
the study. This paper focuses attention on NLSMA's Y-Population of 197 
junior high schools. A random sample of thirty schools was selected. These 
schools had a total of 2,995 students. The sets of measurements taken on 
each school are divided into the following two main groups: 

A. Student Test Variables Mathematical and psychological scales were 
administered to the students during the fall, and mathematical scales 
only were administered in the spring, for each of the five years. 

B. Non-Test Variables School-community and teacher scales provided 
information on individual schools in school districts and the commu­
nities served by the schools. The teacher scales included information 
on the educational background of the teachers, and measured their 
attitudes toward teaching mathematics. 

Three batteries of tests designed by the NLSMA staff were administered 
to the students: 

(i) The Ideas and Preference Inventory measured attitudes toward math­
ematics. 

(ii) The Mathematics Inventory measured achievement in specific math­
ematical topics. 

(iii) The Reasoning Inventory contained sub-tests of the Lorge-Thorndike 
Verbal and Nonverbal Intelligence Tests. 

Twelve school-community non-test variables were selected to cluster the 
junior high schools: "average daily attendance", "residential description", 
"median yearly income of parents", "teachers' starting salary", "teachers' 
salary index", "innovations", "use of mathematics supervisors" (persons 
employed to spend at least 50% of the time in the development of math 
curriculum), "heavy use of SMSG" (use of the materials by at least 50% 
of the students in grades 4 through 12), "heavy use of other experimental 
mathematics" (materials from the University of Maryland, University of 
Illinois Committee on School Mathematics, and Greater Cleveland), "in­
service training", "mathematics class size", and "academic class size", re­
spectively. School means on each of the school-community variables were 
used to cluster the objects (schools). 
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4 Results of the Cluster Analysis 

PRELIMINARY ANALYSIS: PRINCIPAL COMPONENTS 

A principal component analysis was performed on the 12 school-community 
variables to obtain an idea of the underlying dimensionality of these vari­
ables, and thus to suggest guidelines for the number of clusters to use. The 
first five eigenvalues (2.98, 2.53, 1.31, 1.15, 0.99) of the correlation ma­
trix account for 75% of the total variance. The eigenvectors corresponding 
to these eigenvalues are presented in Table 2. Each component (factor) is 
bipolar; coefficients less than 0.25 in absolute value are not reported. The 
components may be described in terms of the school community variables 
as: "school characteristics", "district professional expenditures", "family 
socio-economic status", "number of innovations used" and "heavy use of 
SMSG materials", respectively. 

TABLE 2. Eigenvectors corresponding to the five largest eigenvalues of the 
school-community correlation matrix 

Variables 1 2 3 4 5 

81 .38 .25 

82 -.27 .69 

83 -.35 .30 -.43 

84 .50 .27 

85 .43 .30 

86 .27 .35 

87 .26 .36 .28 -.27 

88 -.83 

89 .30 .59 

810 .31 -.27 -.26 

811 .46 -.29 

812 .45 -.41 

Dimensions 1 2 3 4 5 6 7 8 9 10 11 12 
Percentage of Variance 25 46 57 67 75 82 87 92 96 98 99 100 

81 Average Daily Attendance 82 Residential Description 

83 Parent's Yearly Income 84 Teacher's Starting Salary 

85 Teacher Salary Index 86 Innovation 

87 Mathematics Supervisor 88 SMSG 

89 Experimental Mathematics 810 In-Service Training 

811 Mathematics Class Size 812 Academic Class Size 
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RESULTS 

The optimal number of clusters produced by the three non-hierarchical clus­
tering methods were determined by the algorithms used by these methods. 
Three clusters were chosen as optimal by F-R and S-K; four clusters were 
selected by ISODATA. 

The linkages produced by the hierarchical clustering method HICLUS are 
presented in Figure 1 using the data from Table 3. If only the clusterings 
with three or less outlying schools are considered, then the first 16 stages 
in Table 3 are eliminated. The maximum value of 4.12 for the clustering 
measure Zj occurs at j = 24 with six clusters and only one outlying school. 
The next value is 4.01 which occurs at j = 21, a clustering with nine 
clusters, three of which are outlying schools. At j = 27, Zj attains its third 
largest value of 3.99. This clustering has the advantage of having only three 
clusters and no outlying schools, and thus was chosen as the preferred set 
of clusters for the HICLUS algorithm. 

FIGURE 1. Johnson's max. method HICLUS ciusterings 
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Table 4 gives the memberships of the clusters chosen by the four cluster-
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ing methods. (For purposes of comparison, memberships in clusters chosen 
by F-R and S-K are also given for G = 4 clusters.) It is apparent that the 
clusters are quite similar. For example, if the two smallest clusters produced 
by ISODATA are combined into one cluster, the only disagreement between 
HICLUS and ISODATA is the placement of school 30. Similarly, F-R and 
S-K agree exactly for G = 4 clusters, and for G = 3 clusters disagree only 
in the placement of school 13. However, the S-K and HICLUS three-group 
clusters differ in the placement of six schools: 10, 11, 12, 13, 15 and 16. 
(But these five schools, excluding school 16, do remain together.) 

In Figures 2 and 3, the schools are plotted in two dimensions using a 
multidimensional scaling algorithm (MDSCALj see Johnson and Wichern, 
1988, pp. 572-578) with the cluster identities supplied by HICLUS (Figure 
2) and S-K, G = 3 clusters (Figure 3) superimposed on the data points. 
Other graphical representations and comparisons of the clusters obtained 
by the four clustering algorithms can be found in the author's Ph.D. dis­
sertation (op. cit.). Only the HICLUS grouping of 3 clusters is used in the 
rest of this paper. 

FIGURE 2. HICLUS max grouping imposed upon MDSCAL configuration (stress 
0.477) 
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FIGURE 3. S-K grouping imposed upon MDSCAL configuration (stress 0.477) 
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INTERPRETATION OF THE HICLUS CLUSTERS USING 

SCHOOL-COMMUNITY VARIABLES 

In Table 8 a statistical description of the school-community variables is 
given for the clusters created by HICLUS. 

The schools in Cluster 1 tend to be smaller than the schools in the 
other clusters, to be in communities with low cost housing and lower yearly 
family income, and (perhaps consequently) to pay lower salaries (and lower 
starting salaries) to teachers. Two of the three schools in this cluster have 
math supervisors, with more than 75% of the teachers involved in in-service 
training. 

Cluster 2 tends to have larger schools than those in the other two clusters 
and also tends to have larger classes. Family incomes are comparable, but 
somewhat larger, than Cluster 1. Teacher salaries for this cluster are larger 
than Cluster 1 and comparable to Cluster 3. Schools in this cluster are 
unlikely to have math supervisors, and highly likely to use innovation in 
teaching. Like Cluster 1 there are large fractions of teachers involved in 
in-service training. 

The most significant aspects of Cluster 3 are its higher family incomes 
(which however do not seem to yield highest starting salaries or pay for 
teachers), and relatively low use of innovation and experimental mathe­
matics programs. 

From this description, one might hypothesize that Cluster 1 schools tend 
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to provide training experience for teachers unable (because of lack of expe­
rience) to find more desirable employment. The large size and higher pay 
of Cluster 2 schools (relative to income in the community), and the use of 
innovative methods, suggest that such schools are recipients of more state 
aid than schools in the other two clusters, perhaps because the teaching en­
vironment is less desirable (heavily urban). Cluster 3 schools mfleY provide 
the most desirable teaching environment. 

INTERPRETATION USING TEACHER VARIABLES 

The Teacher Opinion Questionnaire developed by Price (1962); and re­
fined by SMSG, measures teachers' attitudes toward teaching and provides 
teacher demographic data. A statistical summary of data from this ques­
tionnaire by cluster is given in Table 9. 

Table 9 confirms our hypothesis that teachers in Cluster 1 tend to be the 
least experienced. Interestingly enough, they tend to have the strongest 
background in mathematics in college, and the strongest theoretical and 
authoritarian orientation to teaching. Schools in this cluster are also more 
likely to have a majority of female teachers. 

From our previous description of schools in Cluster 3 one might hypoth­
esize that schools in this cluster attract the most experienced teachers. 
However, Table 9 shows that this honor goes to Cluster 2, which also has 
a larger proportion of teachers whose undergraduate major was not math­
ematics, and who express the greatest need for social approval. Schools 
in this cluster may attract teachers interested in innovation in teaching 
methods and the improvement of society. 

The most striking aspects of Cluster 3 schools are (1) the large propor­
tion of schools having a majority of male teachers, (2) a higher proportion 
of teachers expressing only moderate involvement in teaching or concern for 
students, and (3) its inclusion of the only schools emphasizing rote learning 
of mathematics (3 of 9). Teachers in the schools in this cluster are nonau­
thoritarian, and use a creative approach to teaching. (They may also be 
more interested in teaching as a means of employment.) 

5 Analysis of Students' Mathematical 
Achievement 

Do the clusters formed in our analysis influence students' mathematical 
achievement? To answer this question, school means on three student math­
ematics achievement scales were analyzed as dependent variables by a mul-
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YI = Numbers-Whole, 
Y2 = Algebra-Sentences, 
Y3 = Conversion. 
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School means for the following 6 variables (scales) were used as covari­
ates, to account for prior ability and achievement of the students: 

Xl = Lorge-Thorndike Verbal, 
X3 = Rationals-Computation, 
X5 = Whole-Numbers, 

X2 = Lorge-Thorndike Nonverbal, 
X4 = Rationals-Noncomputation, 
X6 = Geometry. 

The X variables (covariates) were administered during the fall of the 
first year. The Y variables (criterion variables) were administered during 
the spring of the third year of testing. The criterion variables are used to 
measure changes in the students' mathematics achievement over the three 
year period at the junior high school. It is important to note that the X 

variables need not be direct causal agents of the Y variables but may merely 
reflect characteristics of the environment that also influence the y variables. 

MULTIVARIATE ANALYSIS OF COVARIANCE 

The general linear model for the one-way analysis of variance design for 
each dependent variable may be expressed as: 

where jJ, denotes the overall mean effect, (30 is the main class effect due to 
the treatment, and c is the residual or error which represents discrepancies 
between the observed vector and the vector sum of the general mean and 
treatment effect. 

Homogeneity of regression equations assumes that the regression equa­
tions across groups are identical, whereas homogeneity of covariances as­
sumes that the error covariance matrix is the same for each group. The 
term jJ, + (30 is referred to as the design part of the model. The term 
(3lxI + (32x2 + ... + (3pxp measures the effect of the covariates, variables 
measured by but not under the control of the researcher. The covariate 
model may be written as 

and Il).ultivariate analysis of covariance could be thought of as a multivariate 
analysis of variance which is performed on y assuming that the x's are 
known. 

The multivariate analysis of covariance involves the testing of the follow­
ing null hypotheses: 
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Ho Equality of treatment effects. The constant terms in the regression 
equations are the same across groups. 

Hl Parallelism ofregression lines. The vectors of beta-weights are the same 
across groups. 

H2 Homogeneity of covariances. There are no differences between the error 
covariance matrices across groups. 

Data for this study includes G = 3 clusters (treatments), q = 3 variates, and 
p = 6 covariates. The predicted criterion score of each student in the kth 
cluster (k = 1,2, ... ,G) can be thought of as the sum of the terms flak) and 

(fl~k) Xl + fl~k) x2 + ... + fl~k) xp). The first term characterizes the cluster 

to which the student is assigned, and the second term is proportional to 
the students' entering score. The assumption of parallelism of the regression 
planes means that the vector of regression weights for the covariates is the 
same across clusters. 

The hypothesis Ho states that the differences of the performances of 
the students in the different clusters can be attributed entirely to their 
competencies as measured by their scores on the six pretests. And after 
allowance for this, the effect of the clusters is the same. Hence, we are 
testing the hypothesis, 

IT • ~(l) _ ~(2) _ ~(3) 
no • fJo - fJO - fJO • 

TESTING HOMOGENEITY OF REGRESSION 

The likelihood ratio test described by Bock (1966) to test the hypothesis 
Hl of homogeneity of regression planes is used in this study. In doing 
so, we obtained a chi-square value of 29.90 with 36 degrees of freedom 
(X~6 = 28.7,p = .80) which is clearly not significant. Hence, the data does 
not contradict the hypothesis H l . 

Univariate F tests for homogeneity of regression appear in Table 10. The 
F values, with 12 and 2974 degrees of freedom, reported for Yl, Y2, and Y3 
are .71, .93, and .79 respectively. All of these F values correspond to p > .50. 
Therefore, none of the differences between the vectors of regression weights 
are significant and hence, the planes may be considered parallel. It follows 
that the relationship between each of the variates measured separately and 
the set of covariates is constant across clusters. Hence, a single plane may 
be fitted to all of the data to test treatment effects if the assumption of 
equal dispersion matrices is satisfied. 

TESTING HOMOGENEITY OF COVARIANCE MATRICES 

When testing for homogeneity of dispersion, after the Y values have been 
adjusted for the X values, there is a likelihood ratio test available which is a 
multivariate extension of Bartlett's X2 approximation for homogeneity of 
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variance. The chi-square value obtained for this test is 20.89 with 12 degrees 
of freedom. Since a chi-square value of 21.03 corresponds to a p value of .05, 
we may say that the assumption H2 of a common within-group covariance 
matrix is not rejected at p < .05 level. As a result of these tests we have 
satisfied the conditions for applying the multivariate analysis of covariance. 

The multiple correlation coefficient, R2 for totals, is reported in Table 10. 
We obtain values of 0.40 for Y3-conversion, 0.43 for Y2-algebra sentences, 
and 0.48 for Y1-numbers-whole. R2 is the proportion of the variance of the 
Y variables which is explained by the x variables in the regression equation. 
The value, 1- R2, is the proportion of variation in the criterion which must 
be ascribed to other sources. 

6 Test of the MANCOVA Hypothesis Ho 

The means and standard deviations for the three clusters are presented in 
Table 11. The Rao F transformation is used as the criterion for testing 
the hypothesis Ho, following covariance adjustment. An F value of 9.14 
with 6 and 5,968 degrees of freedom has a p-value, p < .01. Hence, the 
mathematics achievement of the students across the three clusters cannot 
be considered the same after adjustments have been made for differences 
in aptitude and initial understanding of mathematical concepts. 

The next stage of the analysis includes the analysis of the differences on 
each of the three variates using all six covariates to determine which par­
ticular variable was most significant on an individual basis. The results of 
the univariate tests after adjustments for the covariates have been made is 
displayed in Table 3. This table shows that the most significant variable is 
Y3=conversion, followed by Y2=algebra sentences. The variate Y1 =number 
whole did not discriminate between the groups. These differences between 
the adjusted means cannot be explained by the competencies of the stu­
dents, but must be attributed to the effect of the cluster to which the 
student was assigned. 

TABLE 3. F-values for differences 
between clusters on each variate 

F2,2986 P 
Yl Numbers Whole 0.86 .42 
Y2 Algebra Sentences 4.07 .02 
Y3 Conversation 20.43 .01 

The adjusted cluster means for each of the three criterion variables are 
displayed in Table 4. The students in Cluster 1 have the lowest adjusted 
means on variables Y1 =numbers whole and Y2=algebra sentences. Cluster 
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2 has the highest student achievers on Y1 =numbers whole and the lowest 
achievers on Y3=conversion. Finally, Cluster 3 has the highest adjusted 
means over variables Y2=algebra sentences and Y3=conversion. 

It must be concluded that even after adjustments are made for the co­
variates, the cluster differences on the scale Y1 =numbers whole are not sig­
nificant. However, the students' differences across clusters on Y2=algebra 
sentences and Y3=conversion are significant. 

Hence, the mathematics achievement of the students across the clusters 
cannot be considered the same after adjustments have been made for dif­
ferences in aptitude and initial understanding of mathematical concepts. 
We conclude that the clusters may not be considered equally effective. 

TABLE 4. The adjusted means for the three variates 

Cluster I Cluster II Cluster 1111 
Y1 Numbers Whole 4.13 4.32 4.30 
Y2 Algebra Sentences 2.45 2.81 2.84 
Ys Conversion 6.04 5.53 6.20 

TABLE 5 .. The error dispersion matrix ad­
justed for the covariate 

Y1 Y2 Ys 

Yl 2.50 0.73 0.96 
Y2 0.73 1.96 0.93 
Ys 0.96 0.93 6.87 

The standard errors of estimate 

8.1 = 1.58 = v'2.5044 (R~ = .48,811 1 = 2.17) 
8.2 = 1.40 = v'1.9556 (R~ = .43, 8 112 = 1.81) 
8.S = 2.62 = v'6.8678 (RS = .41, 8 11S = 3.35) 

The error dispersion matrix adjusted for the six covariates is presented 
in Table 5 along with the standard error of estimate, Se. The multiple 
correlation coefficient R is directly related to Se by the relation 

Sd = syi"h - R2 for i = 1,2,3 

where Syi is the standard deviation of the ith criterion variable (variate). 
When predicting the mathematics achievement for students similar to those 
in this study on scales Y1, Y2 and Y3, the observed achievement will be 
within ±1.58, ±1.40, and ±2.26 respectively of the adjusted mean about 
sixty-eight percent of the time. 
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TABLE 6. Data for HIeLDS max clustering 
(Figure 1) 

Stage Dissimilarity 

j A(1) 
J 

-(2) 
Zj 0(3) 

J 
C(4) 

1 0.88 3.92 28 29 

2 1.95 3.47 26 28 

3 1.97 3.54 24 27 
4 2.28 3.28 22 26 

5 2.31 3.08 20 25 
6 2.43 3.44 19 24 
7 2.85 3.61 18 23 

8 2.87 3.41 16 22 

9 3.24 3.58 15 21 

10 3.40 3.40 13 20 
11 3.43 3.44 12 19 
12 3.54 3.44 11 18 

13 3.60 3.31 9 17 
14 3.70 3.14 7 16 
15 3.74 3.02 5 15 

16 4.04 3.36 5 14 

17 4.34 3.18 3 13 
18 4.66 3.70 3 12 

19 4.80 3.87 3 11 

20 4.96 3.89 3 10 

21 5.08 4.01 3 9 

22 5.19 3.90 2 8 

23 5.43 3.85 7 
24 5.82 4.12 1 6 
25 6.12 3.92 1 5 
26 6.14 3.84 0 4 
27 6.90 3.99 0 3 
28 7.83 2.75 0 2 
29 9.45 Strong 0 

Clustering 

(1) Dissimilarity measure (Euclidean distance between 

two clusters/objects joined at stage j). 
(2) Measure of clustering excluding outlying schools at 

stage j. 

(3) Number of outlying schools (clusters of size 1) at 

stage j. 

(4) Total number of clusters at stage j. 
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TABLE 7. Cluster membership for optimal clustering 

ISODATA, G = 4 clusters: 

Cluster 1: Schools 1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 13, 15, 18, 20, 21, 23, 28, 29, 30 
Cluster 2: School 24 
Cluster 3: Schools 5, 6, 14, 17, 19, 22, 25, 26 

Cluster 4: Schools 16, 27 

HICLUS MAX, G = 3 clusters: 
Cluster 1: Schools 16, 24, 27 

Cluster 2: Schools 1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 13, 15, 18, 20, 21, 23, 28, 29 
Cluster 3: Schools 5, 6, 14, 17, 19, 22, 25, 26, 30 

F-R procedure based on trace W 

G = 4 clusters: 
Cluster 1: Schools 15, 20, 24, 27 

Cluster 2: Schools 5, 6, 14, 16, 17, 19, 22, 25, 26, 30 

Cluster 3: Schools 10, 11, 12, 13 
Cluster 4: Schools 1, 2, 3, 4, 7, 8, 9, 18, 21, 23, 28, 29 

G = 3 clusters: 
Cluster 1: Schools 10, 11, 12, 15, 24, 27 

Cluster 2: Schools 5, 6, 14, 16, 17, 19, 22, 25, 26, 30 

Cluster 3: Schools 1, 2, 3, 4, 7, 8, 9, 13, 18, 20, 21, 23, 28, 29 

S-K procedure 

G = 4 clusters: 
Cluster 1: Schools 5, 6, 14, 16, 17, 19, 22, 25, 26, 30 

Cluster 2: Schools 10, 11, 12, 13 

Cluster 3: Schools 15, 20, 24, 27 
Cluster 4: Schools 1, 2, 3, 4, 7, 8, 9, 18, 21, 23, 28, 29 

G = 3 clusters: 
Cluster 1: Schools 5, 6, 14, 16, 17, 19, 22, 25, 26, 30 
Cluster 2: Schools 10, 11, 12, 13, 15, 24, 27 
Cluster 3: Schools 1, 2, 3, 4, 7, 8, 9, 18, 20, 21, 23, 28, 29 
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Bayesian Inference in Factor 
Analysis 

S. James Press1 

K. Shigemasu2 

ABSTRACT We propose a new method for analyzing factor analysis mod­
els using a Bayesian approach. Normal theory is used for the sampling dis­
tribution, and we adopt a model with a full disturbance covariance matrix. 
Using vague and natural conjugate priors for the parameters, we find that 
the marginal posterior distribution of the factor scores is approximately a 
matrix T -distribution, in large samples. This explicit result permits sim­
ple interval estimation and hypothesis testing of the factor scores. Explicit 
point estimators of the factor score elements, in large samples, are obtained 
as means of the respective marginal posterior distributions. Factor loadings 
are estimated as joint modes (with the factor scores), or alternatively as 
means or modes of the distribution of the factor loadings conditional upon 
the estimated factor scores. Disturbance variances and covariances are es­
timated conditional upon the estimated factor scores and factor loadings. 

1 Introduction 

This paper proposes a new method for analyzing factor analysis models 
using a Bayesian point of view. We use normal theory for the sampling 
distribution, and vague and natural conjugate theory for the prior distri­
butions. We adopt a general disturbance covariance matrix whose prior 
mean is diagonal. We show that in large samples, for a variety of prior 
distributions for the factor scores (including vague and normal priors), the 
marginal posterior distribution of the factor scores is approximately matrix 
T. As a result, we are able to make both point and interval estimates of 
the factor scores, thereby improving upon most earlier research. For com­
parison, we give below a brief review of earlier research in this area. 

An early formulation (see Press 1972, 1982) of a Bayesian factor analy­
sis model used the Wishart distribution for the sample covariance matrix, 
and a vague prior distribution for the parameters. Only implicit numerical 

1 University of California, Riverside 
2Tokyo Institute of Technology 
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solutions could be obtained from this model. Kaufman and Press (1973a,b) 
proposed a new formulation of that model in terms of a model with more 
factors than observations (a characteristic the model shared with that pro­
posed by Guttman, 1953), but the prior on most of the factors was centered 
at zero. This work was developed further in Kaufman and Press (1976), 
who showed that the posterior distribution of the factor loading matrix 
was truncated multivariate normal in large samples. 

Martin and McDonald (1975) approached the factor analysis problem 
looking for a Bayesian solution to Heywood cases. They adopted a diagonal 
disturbance covariance matrix and used a Jeffreys type vague prior for 
the elements. They proposed finding posterior joint modal estimators of 
the factor loading and disturbance covariance matrices, and obtained an 
implicit numerical solution. A point estimate of the factor loading matrix 
was also obtained. 

Wong (1980) addressed the factor analysis problem from the empirical 
Bayes point of view, adopting normal priors for the factor loadings. He 
suggested use of the EM algorithm (see Dempster, Laird, and Rubin, 1977) 
to find a posterior mode for the factor loading matrix, but an explicit 
algorithm was not obtained. 

Lee (1981) adopted a heirarchial Bayesian approach to confirmatory fac­
tor analysis, starting from the assumption that the free parameters in the 
factor loading matrix were exchangeable and normally distributed. The 
disturbance covariance matrix was assumed to be diagonal. Joint modal 
estimates were found of the factor loading matrix, the variances of the dis­
turbances, and the covariance matrix of the factors. This modal solution 
was implicit and numerical. A point estimate of the factor loading matrix 
was obtained. 

Euverman and Vermulst (1983) studied the Bayesian factor analysis 
model with a diagonal disturbance covariance matrix, and a preassigned 
number of factors. A numerical computer routine was described for im­
plicitly finding the posterior joint mode of the factor loadings and error 
variances. 

Mayekawa (1985) studied the Bayesian factor analysis problem examin­
ing factor scores as well as factor loadings and error (specific) variances. 
The factor loadings were assumed to be normal, a priori. The author used 
the EM algorithm to find point estimates of the parameters as marginal 
modes of the posterior distributions. Unfortunately, however, there were no 
proofs about convergence of the EM algorithm used. 

Shigemasu (1986) used a natural conjugate prior Bayesian approach to 
the factor analysis model and found implicit numerical solutions for the 
factor loading matrix and specific variances. 

Akaike (1987) suggested that the Ale criterion could be used to select 
the appropriate number of factors to use in a Bayesian model (see also 
Press, 1982). He was motivated by the desire to deal with the problem of 
frequent occurrence of improper solutions in maximum likelihood factor 



S. James Press, K. Shigemasu 273 

analysis caused by overparameterization of the model. The introduction of 
prior information in our model directly addresses this issue. By minimizing 
the AIC in this, or other factor analysis models, results can be used to test 
hypotheses about the appropriate number of factors. 

In contrast to the earlier research on Bayesian factor analysis which fo­
cused upon point estimation, in this paper we also develop methods for 
obtaining large sample interval estimators of factor scores, factor loadings, 
and specific variances. Consequently, standard Bayesian hypothesis testing 
methods (see, e.g., Press, 1982; 1989) can be used for testing hypotheses 
about all of the fundamental quantities (apart from the number of factors) 
in the model. Because we develop exact (large sample) posterior distribu­
tions for these quantities, level curves, or contours, of the posterior distri­
butions can be studied for sensitivity around the point estimators by exam­
ining the steepness and shape of the level curves. (Earlier research in which 
only point estimators were proposed has not suggested simple methods for 
studying estimator sensitivity.) Finally, our development yields explicit an­
alytical results for the distributions of the quantities of interest (as well as 
some general implicit solutions), whereas most earlier work focused only 
on implicit numerical solutions of matrix equations. 

The paper is constructed so that the basic model we are adopting is set 
out in Section 2. The procedures for estimating factor scores and loadings, 
and disturbance variances and covariances, are discussed in Sections 3, 4, 
and 5, respectively. The paper concludes in Section 6 with a numerical 
illustration of the procedures. 

2 Model 

In this section we develop the basic factor analysis model. We first define 
the likelihood function. Then we introduce prior distributions on the pa­
rameters and calculate the joint posterior density of the parameters. Finally 
we find the marginal posterior densities for the parameters. 

LIKELIHOOD FUNCTION 

Define p-variate observation vectors, (Xl,"" XN) == X' on N subjects. The 
means are assumed to have been subtracted out, so that E(X') = O. The 
prime denotes transposed matrix. The traditional factor analysis model is 

Xj A 
(p x 1) (p x m) 

Ij + 
(m x 1) 

Cj 

(p x 1) 
m<p, 

(2.1) 

for j = 1, ... , N, where A denotes a matrix of constants called the fac­
tor loading matrix; /j denotes the factor score vector for subject j; F' == 
(II, ... , IN)' The C /s are assumed to be mutually uncorrelated and nor­
mally distributed as N(O, IJI), for IJI a symmetric positive definite matrix, 
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i.e., \II > O. Note that \II is not assumed to be diagonal (but note from 
(2.5b) that E(\II) is diagonal). 

We assume that (A, F, \II) are unobserved and fixed quantities, and we 
assume that we can write the probability law of Xj as 

(2.2) 

where .cO denotes probability law. Equivalently, if "<x" denotes propor­
tionality, the likelihood for (A, F, \II) is 

p(XIA,F, \II) <X 1\III-N/2 exp(( -1/2)tr\ll-I(X - FA')'(X - FA')). (2.3) 

We will use p(.) generically to denote "density"; the p's will be distinguished 
by their arguments. This should not cause confusion. The proportionality 
constant in (2.3) is numerical, depending only upon (p, N) and not upon 
(A, F, \II). 

PRIORS 

We use a generalized natural conjugate family (see Press (1982») of prior 
distributions for (A, \II). We take as prior density for the unobservables (to 
represent our state of uncertainty) 

peA, F, \II) = peA 1 \II)p(\II)p(F) , (2.4) 

where 

peA 1 \II) <X 1\III-m/2 exp {( -1/2) tr(A - Ao)H(A - AO)'\II-l }, (2.5a) 

p(\II) <X 1\III-v/2 exp {( -1/2) tr \11-1 B} , (2.5b) 

with B a diagonal matrix and H > O. (Choices for the prior density p(F) 
of F will be discussed in Section 3.) Thus, \11-1 follows a Wishart distribu­
tion, (11, B) are hyperparameters to be assessed; A conditional on \II has 
elements which are jointly normally distributed, and (Ao, H) are hyper­
parameters to be assessed. Note that E(\II 1 B) is diagonal, to represent 
traditional views of the factor model containing "common" and "specific" 
factors. Also note that if A == (Al, ... ,Am ), A == vec(A) = (A~, ... ,A~)', 
then var(AI\II) = \II lSI H- 1 , var(A) = (EiJI) lSI H- 1 , and COV[(Ai, Aj) 1 iJI] = 
iJI ij H- 1• Moreover, we will often take H = no!, for some preassigned scalar 
no. These interpretations of the hyperparameters will simplify assessment. 

J OINT POSTERIOR 

Combining (2.3)-(2.5), the joint posterior density of the parameters be­
comes 

p(A,F, iJI 1 X) <x p(F)liJll-(N+m+v)/2exp{(-1/2)tr[iJI-1GJ} , (2.6) 

where G == (X - FA')'(X - FA') + (A - Ao)H(A - Ao)' + B. 
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MARGINAL POSTERIORS 

Integrating with respect to W, and using properties of the Inverted Wishart 
density, gives the marginal posterior density of (A, F): 

p(A, F I X) ex p(F)IGI-(N+m+,,-p-l)/2. (2.7) 

We next want to integrate (2.7) with respect to A, to obtain the marginal 
posterior density of F. We accomplish this by factoring G into a form which 
makes it transparent that in terms of A, the density is proportional to 
a matrix T-density. Thus, completing the square in A in the G function 
defined in (2.6), (2.7) may be rewritten as 

where 

QF == H +F'F, 

RF == X' X + B + AoHA~ - (X' F + AoH)Qpl(X' F + AoH)', 

AF == (X'F + AoH)(H + F'F)-l, 

'Y==N+m+v-p-1. 

(2.9) 
(2.10) 
(2.11) 

(2.8) is readily integrated with respect to A (by using the normalizing 
constant of the matrix T-distribution) to give the marginal posterior den­
sity of F, 

p(F) 
p(F I X) ex IRFlb-m)/2IQFlp/2. (2.12) 

After some algebra, the marginal posterior density of Fin (2.12) may be 
rewritten in the form 

p(F)IH + F' Flb-m-P)/2 
p(F I X) ex. • b-m)/2' 

IA + (F - F)'(IN - XW-IX')(F - F)I 

where 

F == (IN - XW- 1 X,)-l XW- 1 AoH 

= (IN - X(X' X - W)-l X')XW- 1 AoH, 

W == X'X +B+AoHA~, 
A == H - H'A~W-lAoH 

- (H'A~W-lX')(IN - XW-1X')(XW-1AoH). 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

Note 1. In (2.14) the second representation of F is more convenient for 
numerical computation than the first, because we need only invert 
a matrix of order p, instead of one of order N. 
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Note 2. In (2.14), the quantity N-1(X' X) is the sample covariance matrix 
of the observed data (since the data are assumed to have mean 
zero). If the data are scaled to have a variance of unity, N-l(X' X) 
denotes the data correlation matrix. 

Note 3. In (2.16), H = H', but we have left H' to preserve the symmetry 
of the representation. 

3 Estimation of Factor Scores 

Now examine (2.13). There are several cases of immediate interest. We take 
factor scores of subsets to be independent, a priori, so we can think of p(F) 
as p(ft)p(!2)·· ·pUN). 

HISTORICAL DATA ASSESSMENT OF F 

Suppose that, on the basis of historical data that is very similar to the 
current data set, we can assess p(F). We can then evaluate p(F I X) 
numerically from (2.13) to construct point estimators, and we can make 
interval estimates from the cdf of p(F I X). 

VAGUE PRIOR ESTIMATION OF F 

Suppose instead that we are uninformed about F, a priori, and we accord­
ingly adopt the vague prior 

p(F) ex constant. (3.1) 

Then (2.13) becomes 

IH + F' Flh-m -p)/2 
p(F I X) ex A A h-m)/2· (3.2) 

IA + (F - F)'(IN - XW-l X')(F - F) I 

Again, interval estimates of F can be made numerically from the cdf of 
p(F I X), and point estimators can also be obtained numerically from 
(3.2). Such numerical evaluations are treated in Press and Davis (1987). 

LARGE SAMPLE ESTIMATION OF F 

We note that 
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If we assume (without loss of generality) that E(Ii) = 0, var(fj) = I, 
then for large N, by the law of large numbers, 

F'F 
N~I. 

Thus, for large N, IH +F'FI ~ IH +NII, a term which can be incorporated 
into the proportionality constant in (2.13), because it no longer depends 
on F. (2.13) may now be rewritten, for large N, as 

p(F) 
p(F I X) ex A A (-y-m}/2' 

IA + (F - F)'(IN - XW-1 X'){F - F) I 
where P is defined by (2.14). 

Suppose p{F) ex constant. Then, F I X follows a matrix T-distribution 
with density 

I A A I (-y-m}/2 
p(F I X) ex A + (F - F)'(IN - XW- 1 X'){F - F) . (3.3) 

Alternately, suppose C(fj) = N{O,I), and the Ii's are mutually inde­
pendent. Then, 

p{ F) ex exp ( - ~ tr F' F) . 

For large N, since F' F ~ N I, p{ F) can be incorporated into the propor­
tionality constant in (2.13) to yield (3.3). The same argument applies to 
any prior density for F which depends upon F' F. 

In summary, we conclude that for large N, and for a wide variety of 
important priors for F (a vague prior, or for any prior which depends on F 
only through F' F), the marginal posterior density of F, given the observed 
data vectors, is approximately matrix T, as given in (3.3), centered at P. 
In particular, E{F I X) ~ P, for large N. 

LARGE SAMPLE ESTIMATION OF Ii 
Since (F I X) is approximately distributed as matrix T, (fj I X) is dis­
tributed as multivariate t (see, e.g., Theorem 6.2.4, in Press, 1982, p. 140). 
In particular, the marginal posterior density for the factor score vector of 
subject N is given by 

( 
1 ) -(-y-m-N+1}/2 

p(fN I X) ex -po + (fN - iN)'A-1(fN - iN) , (3.4) 
22·1 

where iN is the N-th row of Pin (2.14), and P22-1 = P22 - P21 Pii1 P12 is 
obtained from 

P == IN - XW- 1X' == (Pu P12), 
(NxN) P21 P22 

Pu : (N - 1) x (N - 1). 
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By reindexing the subjects, (3.4) gives the posterior density of the factor 
score vector for any of the N subjects. (3.4) can readily be placed into the 
canonical form 

(3.5) 

where 8 == m + v - p - 2m. 

LARGE SAMPLE ESTIMATION OF ELEMENTS OF Ii. 
Now suppose we wish to make posterior probability statements about a 
particular element of IN == (fkN), k = 1, ... , m, say fIN. We use the 
posterior density of a Student t-variate obtained as the marginal of the 
multivariate t-density in (3.5) (see e.g., Press (1982), p. 137). It is given by 

P(f,N I X) oc (1 + (hN ;, AN ) ') -(Hl)/' , (3.6) 

where O'? is the (1, 1) element of 

A ( 0'2 - 1 
P22.1 = r:21 

AN is of course the (1, N) element of P'. From (3.6) we can make posterior 
probability statements about any factor score for any subject; i.e., we can 
obtain credibility (confidence) intervals for any factor score. 

4 Estimation of the Factor Loading Matrix 

We now return to the joint posterior density of (A, F), given in (2.8). One 
method of estimating A would be to integrate F out of (2.8) to obtain 
the marginal posterior density of A. Then, some measure of location of 
the distribution could be used as a point estimator of A. Unfortunately, 
while the integration can be carried out, the resulting marginal density is 
extremely complicated, and it does not seem possible to obtain a mean 
or mode of the distribution for any realistic prior densities for F, except 
numerically. The result is 

where 
PA == B + (A - Ao)H(A - Ao)', 

(pxp) 
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and 
Z == IN + XPil X' - (XPilA)(A'PilA)-l(A'PilA). 

Since this distribution is so complicated, we will alternatively estimate A 
for given F = F. First note from (2.8) that 

peA I F,X) <X IRF + (A - AF)QF(A - AF )T'Y/2 . (4.1) 

That is, the conditional distribution of A for pre-specified F is matrix T. 
Our point estimator of A is E(A I F, X), or 

A == Ap = (X' F + AoH)(H + F' F)-l. (4.2) 

Any scalar element of A, conditional on (F, X), follows a general Stu­
dent t-distribution, analogous to the general univariate marginal Student 
t-density in (3.6), which corresponds to the matrix T-density in (3.3). 

We note also that A in (4.2) is both a mean and a modal estimator of 
the joint distribution of (A, F I X) under a vague prior for F (see (2.8) and 
(2.10)). This follows from the unimodality and the symmetry of the density 
in (2.8). Thus, in this case (F, A) is a joint modal estimator of (F, A). 

5 Estimation of the Disturbance Covariance 
Matrix 

The disturbance covariance matrix, \II, is estimated conditional upon (A, F) = 
(A, F). The joint posterior density of (A, F, \II I X) is given in (2.6). The 
conditional density of (\II I A, F, X) is obtained by dividing (2.6) by (2.7) 
and setting G = 6 (6 depends only upon the data). The result is 

•• exp(-1/2)tr\ll-l6) 
p(\II I A, F, X) <X 1\11 1 (N+mp+v)/2 (5.1) 

where 

6 = (X - FA')'(X - FA') + (A - Ao)H(A - Ao)' + B. (5.2) 

That is, the posterior conditional distribution of \II given (A, F, X) is in­
verted Wishart. A point estimator of \II is given by ~ = E(\II I A, F, X). 
Equation (5.2.4), page 119, in Press (1982) gives 

. 6 
\II - -,--------

- N + m + v - 2p - 2 ' 
(5.3) 

with 6 given in (5.2). 
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6 Example 

We have extracted some data from an illustrative example in Kendall 
(1980), and have analyzed this data from a Bayesian viewpoint using our 
model. There are 48 applicants for a certain job, and they have been scored 
on 15 variables regarding their acceptability. They are: 

(1) Form of letter of application (9) Experience 
(2) Appearance (10) Drive 
(3) Academic ability (11) Ambition 
(4) Likeability (12) Grasp 
(5) Self-confidence (13) Potential 
(6) Lucidity (14) Keenness to join 
(7) Honesty (15) Suitabilty 
(8) Salesmanship 

The raw scores of the applicants on these 15 variables, measured on the 
same scale, are presented in Table 1. The question is, is there an underlying 
subset of factors that explain the variation observed in the scores? If so, 
then each applicant could be compared more easily. The correlation matrix 
for the 15 variables is given in Table 2. (Note: we assume the sample size 
of 48 is large enough to estimate the mean well enough for it to be ignored 
after subtracting it out.) 
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TABLE 1. Raw scores of 48 applicants scaled on 15 variables 

Person 1 

6 
2 9 

3 7 

4 5 

5 6 
6 7 
7 9 

8 9 

9 9 

10 4 

11 4 

12 4 

13 6 

14 8 

15 4 

16 6 

17 8 
18 6 
19 6 

20 4 

21 3 

22 9 

23 7 
24 9 

25 6 

26 7 

27 2 

28 6 

29 4 
30 4 

31 5 

32 3 

33 2 

34 3 

35 6 
36 9 

37 4 

38 4 

39 10 

40 10 

41 10 
42 10 

43 3 

44 7 

45 9 

46 9 

47 0 

48 o 

234 

7 2 5 
10 5 8 

8 3 6 

6 8 5 

8 8 8 

7 7 6 

988 
9 9 8 

9 7 8 

7 10 2 

7 10 0 

7 10 4 

9 8 10 
9 8 9 
887 

9 6 7 

7 7 7 
8 8 4 

7 8 4 

8 7 8 
8 6 8 

8 7 8 

10 7 9 

8 7 10 
977 

8 7 8 

10 7 9 
3 5 3 
3 4 3 

656 

5 4 7 

357 
357 

4 6 4 

7 4 3 
855 

9 6 4 

9 6 6 

6910 

6910 
7 8 0 

3 8 0 

4 9 8 

7 7 6 
6 10 9 

8 10 10 
7 10 3 
6 10 

5 

8 
10 

9 

6 
4 

8 

8 

9 

8 

10 
10 
10 

5 

6 
5 

8 

9 

8 
7 

8 
8 

9 

9 
8 
4 

5 

8 

5 
3 
9 
8 
7 
7 

3 

3 
6 

10 

9 

9 

9 

2 

2 

2 

9 

7 
7 
5 

5 

6 7 

7 8 
9 9 

8 9 

5 9 

5 9 
7 10 
8 8 

9 8 

8 8 

10 7 
8 3 

10 7 
4 9 

3 8 

4 10 
9 8 

5 8 

8 6 
8 5 

9 10 
8 10 

10 10 
9 10 

10 10 
5 9 
4 8 

9 10 
3 5 
o 0 
4 10 
4 10 
9 10 
9 10 
3 8 

o 9 

6 8 

8 8 

9 7 
10 10 

10 10 
1 2 
1 2 
4 5 

8 8 

7 10 

9 10 

o 10 
o 10 

8 9 

8 3 
10 5 

7 4 
2 8 
3 8 
5 9 
8 10 
8 10 
5 9 

10 3 

9 5 
8 2 
4 4 
2 5 
2 7 

9 8 

6 6 
4 3 

4 4 

5 2 
5 3 

10 3 
10 3 

10 2 
3 2 

2 3 
5 3 

o 0 
o 0 
3 1 
3 2 
3 2 

3 2 

1 

o 1 

2 2 
9 1 
9 1 

10 10 

10 10 
o 10 
o 10 

3 6 

6 8 

2 

3 1 

o 0 
o o 

10 

8 

9 
9 
4 

5 
6 
8 

9 

8 

10 

9 

8 

4 

2 

5 

8 

7 
3 
2 

6 

6 

10 
9 

9 
4 
4 

5 

3 

4 
3 

5 

5 

2 

3 

o 
2 

3 
2 

10 

10 
2 

2 

2 

8 

5 
5 

2 

2 

11 

9 

9 
9 

5 

5 

5 
10 
10 
10 

10 

10 

8 

5 

6 

3 

7 
8 

6 

6 
7 

7 
8 
9 

7 
4 

5 

6 

3 

4 
3 

5 

3 

3 

3 
2 

4 

9 

10 

8 

10 

o 
o 

10 

5 
7 
2 
2 

12 

7 
8 
8 

8 

8 

8 

8 

9 

9 

10 

8 

10 
4 

6 

6 

6 

6 
7 

8 

9 

8 

10 
10 

9 
4 
6 

7 
o 
o 
2 

3 
7 
6 

3 

3 

5 

7 

8 

10 

10 

3 

3 

3 

8 

7 

9 

o 
o 

13 

5 

8 
6 
7 

8 

6 

9 

9 

9 

9 

10 
10 

7 
7 
6 

8 
6 
2 

3 

8 

8 

8 

9 

9 
4 

5 
6 

o 
o 
2 

4 

5 

4 
2 

6 
5 

5 
10 

10 

o 
o 
3 

8 

8 

9 

o 
o 

14 15 

7 10 
8 10 
8 10 
6 5 

7 7 
6 6 
8 10 
9 10 

9 10 

3 10 
2 5 

3 7 

6 8 

5 6 
4 6 

6 10 
7 8 
6 4 

5 4 

8 9 

5 8 
10 8 

10 8 
10 8 

5 4 

5 6 

4 5 

5 0 
5 0 
7 3 

8 3 
5 2 
5 2 
5 2 

5 3 

6 3 

3 2 

5 2 
10 10 

10 10 

o 10 

o 10 

3 8 

6 5 

4 5 

4 4 
o 0 

o o 
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TABLE 2. Correlation matrix of variables 1 through 15 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 
1 1.00 .24 .04 .31 .09 .23 -.11 .27 .55 .35 .28 .34 .37 .47 .59 
2 1.00 .12 .38 .43 .37 .35 .48 .14 .34 .55 .51 .51 .28 .38 
3 1.00 .00 .00 .08 -.03 .05 .27 .09 .04 .20 .29 -.32 .14 

4 1.00 .30 .48 .65 .35 .14 .39 .35 .50 .61 .69 .33 
5 1.00 .81 .41 .82 .02 .70 .84 .72 .67 .48 .25 
6 1.00 .36 .83 .15 .70 .76 .88 .78 .53 .42 
7 1.00 .23 -.16 .28 .21 .39 .42 .45 .00 

8 1.00 .23 .81 .86 .77 .73 .55 .55 
9 1.00 .34 .20 .30 .35 .21 .69 

10 1.00 .78 .71 .79 .61 .62 
11 1.00 .78 .77 .55 .43 
12 1.00 .88 .55 .53 
13 1.00 .54 .57 
14 1.00 .40 
15 1.00 

Now we postulate a model with 4 factors. This choice is based upon our 
having carried out a principal components analysis and our having found 
that 4 factors accounted for 81.5% of the variance. This is therefore our 
first guess, a conclusion that might be modified if we were to do hypothesis 
testing to see how well a 4-factor model fit the data. Based upon underlying 
theory we constructed the prior factor loading matrix 

1 0 0 .7 0 
2 0 0 0 0 
3 0 .7 0 0 
4 0 0 0 .7 
5 .7 0 0 0 
6 .7 0 0 0 
7 0 0 0 .7 

Ao = 8 .7 0 0 0 
9 0 0 .7 0 
10 .7 0 0 0 
11 .7 0 0 0 
12 .7 0 0 0 
13 .7 0 0 0 
14 0 0 0 0 
15 0 .7 0 0 

The hyperparameter H was assessed as H = 10h5' The prior distribution 
for \If was assessed with B = 0.2115 , and v = 33. Note that when our 
observational data is augmented by proper prior information, as in this ex-
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ample, the identification-of-parameters problem of classical factor analysis 
disappears. 

The factor scores, factor loadings, and disturbance variances and covari­
ances may now be estimated from (2.14), (4.2), and (5.3), respectively. 
Results are given in Tables 3, 4, and 5. 

Note that since we used standardized scores, the elements in Table 4 may 
be interpreted as correlations. It may be noted from Table 5 that most off­
diagonal elements of the estimated disturbance matrix ~ are very small 
relative to the diagonal elements (the variances). That is, ~ is approxi­
mately diagonal. Tables 3, 4, and 5 give the Bayesian point estimates for 
(F, A, w). We next obtain two-tailed 95% credibility intervals for the 48th 
subject's factor scores, and for the last (15th) row of the factor loading 
matrix. 

The factor scores for subject 48 are given in the last row of the matrix 
in Table 3 as 

(-2.155, 2.031, -2.527, -0.749). 

Now calculate two-tailed credibility intervals at the 95% level from (3.6) 
and find the intervals 

[-2.5748, -1.7352], 
[0.9393, 3.1227], 
[-3.1657, -1.8883], 
[-1.5287, 0.0307]. 

The factor loadings for row 15 of the factor loading matrix are obtained 
from Table 4 as 

(0.128, -0.014, 0.677, 0.011). 

Now calculate 95% two-tailed credibility intervals from the marginals of 
(4.1), just as we obtained the result in (3.6) from (3.3). Results for the last 
row factor loadings are 

[0.0629, 0.1931], 
[-0.0625, 0.0345], 
[0.5997, 0.7543], 
[-0.0560, 0.0780]. 

Hypotheses about the elements of (F, A, w) may be tested using the asso­
ciated marginal posterior densities. These are quite simple, being Student 
t, Student t for given F, and Inverted Wishart, respectively. For example, 
note that the confidence intervals for the second and fourth factor loadings 
corresponding to the last row of Table 4 both include the origin. A com­
monly used Bayesian hypothesis testing procedure suggests that we should 
therefore conclude that we cannot reject the hypotheses that these two 
factor loadings are zero. 
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TABLE 3. Bayes estimates of factor 
scores 

0.728 -3.541 0.404 -0.301 
2 1.475 -1.455 1.226 0.735 

3 1.019 -2.855 0.728 0.231 
4 -0.286 0.645 0.226 -0.021 

5 -0.390 0.645 0.691 0.735 

6 0.264 -0.055 0.869 0.511 

7 1.187 0.645 1.940 0.455 

8 1.475 1.331 1.940 0.455 

9 0.874 -0.055 1.799 0.455 
10 1.881 2.031 0.047 -1.337 

11 1.550 2.031 -0.381 -2.954 
12 1.550 2.031 -0.526 -0.833 

13 -0.588 0.645 0.263 1.239 
14 -0.619 0.645 0.474 0.707 
15 -0.706 0.645 0.047 0.763 
16 0.903 -0.755 1.123 0.203 
17 0.424 -0.055 0.907 0.203 
18 -0.193 0.645 -0.460 -1.106 

19 -0.215 0.645 -0.315 -1.386 
20 0.730 -0.055 -0.240 1.015 
21 0.597 -0.755 -0.413 1.015 
22 1.593 0.055 0.648 1.015 
23 1.591 -0.055 0.296 1.267 
24 1.363 -0.055 0.507 1.519 
25 -0.931 -0.055 -0.601 0.483 
26 -0.700 -0.055 0.005 0.455 
27 0.327 -0.055 -1.024 1.267 
28 -1.822 -1.455 -1.461 -1.638 
29 -2.045 -2.155 -1.818 -3.038 

30 -0.976 -1.455 -1.250 0.511 
31 -0.586 -2.155 -0.925 0.763 

32 -0.150 -1.455 -1.419 0.763 
33 -0.491 -1.455 -1.597 0.763 
34 -1.601 -0.755 -1.564 -0.553 

35 -2.195 -2.155 -0.893 -0.525 

36 -0.698 -1.455 -0.216 -0.301 

37 0.676 -0.755 -1.391 -'-0.553 

38 0.720 -0.755 -1.391 -0.329 

39 1.723 1.331 2.119 1.519 

40 1.861 1.331 2.119 1.519 

41 -2.281 0.645 2.119 -3.234 

42 -2.707 0.645 2.119 -3.794 

43 -1.643 1.331 0.019 -0.378 

44 1.088 -0.055 0.583 -0.049 
45 -0.006 2.031 -0.070 1.267 
46 0.523 2.031 -0.216 1.519 
47 -2.155 2.031 -2.528 -0.245 

48 -2.155 2.031 -2.527 -0.749 
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Computational Aspects of 
Association for Bivariate 
Discrete Distributions 

Allan R. Sampson l 

Lyn R. Whitaker2 

ABSTRACT For bivariate discrete probability distributions, P, on the 
M x N lattice, various aspects for checking association (Esary, Proschan 
and Walkup (1967)) are considered. A new algorithm is given for verifying 
whether or not P is associated. The efficiency of this algorithm is obtained 
and compared to the efficiency of a simple algorithm based on the definition 
of association. When M = N = 5, for example, the new algorithm requires 
less than 3% of the computations required for the simple algorithm. 
In obtaining these results a new set function Q is constructed from P, on 
all upper sets in the lattice. In order to construct the algorithm to check 
association, we define a computationally important set of extreme points 
and consider related combinatorics. 

1 Introduction 

The conceptual ideas developed for modern notions of positive or mOnO­
tone dependence have proved very useful in reliability theory, simultaneous 
inference, and, what may be generally termed, nonparametric concepts of 
multivariate dependence. While these notions have been considered in the 
context of discrete multivariate random variables, their application to COn­
tingency table analyses have been limited. In part, this is due to the lack 
of suitable algorithms to check for the presence of these notions. The pur­
pose of this paper is to obtain some new results concerning the notion of 
association and based upon these results, to develop a computationally ef­
ficient algorithm to show whether or not a discrete bivariate distribution 
is associated. 

Of the many notions of positive dependence, One of the most useful is 
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association (Esary, Proschan and Walkup (1967)), where Xl, ... , Xp are 
said to be associated random variables if 

(1.1) 

for all f : ~p -+ ~l and 9 : ~p -+ ~l which are nondecreasing in each 
argument and have finite variances. Let U ~ ~p be an upper set if 8 E U 
and 8 ~ t imply t E U where 8 ~ t is componentwise ordering Si ~ ti 
i = 1, ... ,po Then an equivalent formulation of (1.1) is 

Prob[(Xl, ... ,Xp) E Un V] 2: Prob[(Xl, ... , Xp) E U] 

x Prob[(Xl, ... ,Xp) E V] (1.2) 

for all upper sets U, V ~ ~p. 
Association has been studied extensively and applied in a variety of set­

tings, e.g., Barlow and Proschan (1981), and Tong (1980) . More recently 
Schriever (1987) considers a partial ordering based upon association and 
examines the applications of association to observed bivariate data sets. 
When the specification of the random variables Xl' ... ' Xp is done struc­
turally (for example, Xl, ... , Xp are increasing functions of independent 
random variables) association can be established in a number of ways. If 
on the other hand, only the joint distribution of Xl, ... ,Xp is known, then 
the usual approaches are to either use theorems specific to a particular fam­
ily of distributions, for example, Pitt (1982), or to use sufficient conditions, 
for example, TP2 (see Barlow and Proschan (1981)). 

However, for a distribution described numerically, such as observed con­
tingency table probabilities, association can only be established by essen­
tially checking all the conditions of equation (1.2). To build a straightfor­
ward algorithm to check all conditions in (1.2) for discrete random variables 
is computationally expensive. The number of comparisons for such an al­
gorithm is on the order of K,2, where K, is the number of all possible upper 
sets generated by componentwise partial ordering on the support set of 
(Xl, ... , Xp). For example, if Xl, X 2 take values in an M x N lattice, the 
number of possible upper sets is (M ifN). For three dimensional lattices, the 
results are more complex. Sampson and Whitaker (1988) show, for example, 
that the number of upper sets in a 4 x 4 x 4 lattice is 232,848. 

The application of positive dependence notions to contingency tables is 
relatively recent. Agresti (1984) and Grove (1984) discuss some contingency 
table concepts in light of positive dependence. Nguyen and Sampson (1987) 
and Krishnaiah, Rao, and Subramanyan (1987) test for positive quadrant 
dependence (Lehmann (1966)) based on contingency table data. Sampson 
and Whitaker (1989) obtain maximum likelihood estimators of the under­
lying probabilities when one contingency table is assumed to be stochas­
tically larger than a second contingency table. GIeser and Moore (1985) 
discuss applications of certain other allied notions of positive dependence 
to contingency tables. 
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In Section 2 we obtain some new theoretical results concerning asso­
ciation for arbitrary random variables. Specifically, we define a new set 
function Q, study its properties, and show how association can be estab­
lished employing Q. We give an algorithm to compute Q in Section 3, where 
X I ,X2 take values in an M x N lattice. The computational complexities 
of this algorithm are considered in Section 4. 

2 An Alternate Characterization of Association 

In this section we allow Xl, ... , Xp to be arbitrary random variables. We de­
note the class of all upper sets in lRP by URP, and abbreviate Prob[X I, ••• , Xp 
E A] as Px(A) or when there is no ambiguity as P(A), so that (1.2) can 
be expressed as 

P(V n W) ;::: P(V)P(W) 'V V, WE URP. (2.1) 

By noting that the class of upper sets is closed under intersections we can 
re-express (2.1) as 

P(U) ;::: sup P(V)P(W) 'V U E URP (2.2) 
{V,WEURP:vnw=u} 

We now define the set function Q(U) on URP to be the right-hand side of 
(2.2) and thus we see that Xl, .. " Xp are associated if, and only if 

P(U) ;::: Q(U) 'V U E URP. (2.3) 

We return later to the issue of whether Q actually defines a probability 
measure, but first we consider some properties of Q. 

Observe that, whether or not Xl, ... , Xp are associated, Q(U) 2: 
P(U)P(lRP) = P(U). This fact and (2.3) lead immediately to the following 
slightly stronger representation of association. 

Theorem 2.1 A necessary and sufficient condition that the random vari­
ables Xl, ... , Xp be associated is 

P(U) = Q(U) 'V U E URP. (2.4) 

Additional properties of the set function Q are summarized as fonaws. 

Theorem 2.2 (i) IIU, V E URP, U ~ V, then Q(U) ~ Q(V). 

(ii) Q(lRP) = 1. 

(iii) Q(0) = O. 

(iv) II U = {(Xl! ••• ,xp) : Xk ;::: xo}, k = 1, ... ,p then Q(U) = P(U). 
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Proof (i) Let UI , U2 E U~p satisfy UI n U2 = U ~ V. Define Vi = 
UI U V, V2 = U2 U V so that VI n V2 = V, and UI ~ VI, U2 ~ V2· 
The class of upper sets is closed under union, therefore VI, V2 E U~P. 
Thus 

Q(U) = sup P(UI )P(U2) 
{Ul,U2EUIRP ,UlnU2=U} 

< sup P(VI )P(V2) = Q(V). 
{Vl,V2EUIRP,Vl nv2=V} 

(iv) Without loss of generality, let U = [Xl. 00) X )Rp-l. If UI n U2 = U, 
then either UI = U or U2 = U. Thus 

Q(U) = sup P(UI )P(U2) 
{U1 ,u2EUIRP,U1 nu2=U} 

= sup P(U)P(W) = P(U). 
{WEUIRP'U~W} 

Parts (ii) and (iii) are obvious. o 

Although the results presented in this section hold for general random 
vectors X, we will be primarily interested in bivariate random vectors 
(XI, X 2 ) with a finite support set. Without loss of generality we assume 
that (XI, X 2 ) take values in a subset of the two-dimensional lattice L = 
{I, ... ,M} x {I, ... ,N}. Let UL = {U n L : U E U~p}. Thus, U~p can be 
replaced by UL in (2.1), in the definition of Q, and in Theorem 2.1. The 
class UL is the class of all upper sets generated by componentwise partial 
ordering on the set L. 

To systematically describe upper sets in UL we use notation developed 
by Sampson and Whitaker (1988). There is a one-to-one correspondence 
between upper sets U E UL and the nondecreasing sequence of integers: 

where Uk = #{(XI,X2) E UL : Xl = k} for k = 1, ... ,M. The value Uk 

can be thought of as the "depth" of the upper set U above the kth lattice 
element in the one dimensional lattice {I, ... , M}. Thus for a 3 x 3 lattice, 
the upper set {(2, 3), (3, 1), (3,2), (3, 3)} has the representation (0,1,3). Let 
U, V, WE UL have corresponding array representations u = (UI, ... , UM), 
v = (Vb ... ,VM) and w = (WI, ... ,WM). Then V n W = U is equivalent 
to Ui = min( Vi, Wi), 1 ::; i ::; M, and V ~ W is equivalent to Vi ::; Wi, 1 ::; 
i ::; M. 

For illustrative purposes and for further use in Section 4, we compute 
Q for the following bivariate distribution on the 3 x 3 lattice: P((I, 1») = 
P((3,3») = 15/64, P((1,3») = P((3,1») = 8/64, P((2,2») = 18/64, and 
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P((XbX2)) = 0, otherwise. (Esary, Proschan and Walkup (1967) give this 
example as a distribution which is positively quadrant dependent, but not 
associated.) The set function Q is tabulated in Table 1 for each upper set 
UEUL' 

TABLE 1. The set function Q computed for the bivariate dis­
tribution, 
P((l,l)) = P((3,3)) = 15/64, P((1,3)) = P((3,1)) = 8/64, 
P((2,2)) = 18/64, P((Xl,X2)) = 0 otherwise. 

U P(U) Q(U) 
(0,0,0) ° ° (0,0,1) .2344 .2344 

(0,0,2) .2344 .2344 
(0,0,3) .3594 .3594 
(0,1,1) .2344 .2344 
(0,1,2) .2344 .2498* 
(0,1,3) .3594 .3594 

(0,2,2) .5156 .5156 
(0,2,3) .6406 .6406 
(0,3,3) .6406 .6406 
(1,1,1) .3594 .3594 
(1,1,2) .3594 .3594 
(1,1,3) .4844 .4844 
(1,2,2) .6406 .6406 
(1,2,3) .7656 .7651 
(1,3,3) .7656 .7656 
(2,2,2) .6406 .6406 
(2,2,3) .7656 .7656 
(2,3,3) .7656 .7656 
(3,3,3) .7656 .7656 

* There is one upper set (0,1,2) for which Q(U) > P(U) thus Xl> X2 are 
not associated. 

3 Computation of the Set Function Q 

In this section we develop the algorithm based on Theorem 2.1 for checking 
association of the two dimensional random vectors X = (Xl! X 2 ) with 
support in an M x N lattice L. The thrust of the algorithm is to reduce 
the number of pairs of upper sets needed to calculate Q(U). 

For an upper set U, we are interested in those extreme points (X =F 
(M, N)) which do not lie on the lower and left boundaries of the lattice L, 
namely we consider the extreme points (Xl, X2) of U such that Xl =F 1 or 
X2 =F 1 or (Xl! X2) =F (M, N) except in the special case that U = {(M, N)}. 
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We call this set of extreme points the outer vertices of U; they form the 
"lower corners" of the upper set. 

The outer vertices are easily identified from the array representation 
(Ul,"" UM) of an upper set, U. The points (i, N - Ui + 1) i = 1, ... , M 
define the lower boundary of U. The outer vertices are defined to be those 
points (i, N - Ui + 1), i = 2, ... , M for which Ui-l < Ui < N. For example, 
for the upper set (0,1,3,4,4) the outer vertices are (2,5) (3,3) and (4,2). 
(See Figure 1). For the upper set (0, ... ,0,1) there is exactly one outer 
vertex, (M, N). 

Let {Pl = (Pu, Pl2), ... ,Pm = (Pml, Pm2)} be the outer vertices of the 
upper set U. We find Q(U) by searching over 2m pairs of upper sets defined 
by subsets of the outer vertices. Let {ql = (qU, ql2), ... ,qk = (qk1, qk2)}, 
k = 0, ... ,m be a subset of outer vertices of U; k = ° corresponds to 0. 
For k ~ 1, we assume that this subset is ordered so that qn < ... < qkl. 
Then the two corresponding upper sets V (ql, ... , qk) and W (ql, ... , qk), 
denoted V and W where there is no ambiguity, are constructed so that 
they are the largest upper sets in UL which alternate tracing U between 
qo,···, qk+l where qo = (1, N) and qk+1 = (M, 1). (The intuitive notion of 
"tracing" is formally defined after the proof of Theorem 3.1.) For example, 
consider again the upper set (0,1,3,4,4) with outer vertices Pl = (2,5), 
P2 = (3,3) and P3 = (4,2). Suppose k = 2, with ql = Pl and q2 = P2. The 
upper set V(ql, q2) = (0,3,3,4,4) traces U from the upper left corner of the 
lattice (1,5) to ql and from q2 to the lower right corner ofthe lattice (5,1), 
whereas W(ql, q2) = (1,1,5,5,5) traces U between ql and q2. Where V 
and W do not trace U, they are chosen to be as large as possible for upper 
sets in UL. Note that because V and W alternate tracing U, V n W = U. 
Specifically we define V and W in terms of their array representations 
v = (Vl,"" VM) and w = (Wl,"" WM) as follows. Suppose that k is even. 
Between the outer vertices for which V traces U 

(3.1) 

for q21,l :s: j < q21+1,l, 1= 0, ... , k/2 - 1; between the outer vertices for 
which W traces U 

Vj = u q21+2,l and Wj = Uj (3.2) 

for q21+1,l :s: j < q21+2,1 for I = 0, ... ,k/2 -1; between the last outer vertex 
and qk+l, Vj = Uj and Wj = M, for qk,l :s: j :s: qk+l,l' In the case that 
k is odd, V and W are constructed similarly. Note that if U has no outer 
vertices (m = 0) or if k = 0, then V(0) = U and W(0) = L. 

We now show that Q(U) need not be constructed by searching over all 
pairs of upper sets S, T for which SnT = U. Rather, we need only consider 
pairs of upper sets of the form V and W. The next result states that for 
any S, T E UL such that S n T = U, either S traces U or T traces U 
between any two consecutive outer vertices, and between the end points 
(M, 1), (1, N) and the adjacent outer vertices. 
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FIGURE 1. The Upper Set (0,1,3,4,4) and Its Outer Vertices. (Outer Vertices 

are denoted by 8 ) 
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Theorem 3.1 Let S, T, U E UL, S n T = U. Then for Pi,Pi+!, i = 
0, ... ,m -1, either 

Sj = Uj Pi,l:5 j :5 PH1,1 - 1 (3.3) 

or 
tj = Uj Pi,l:5 j :5 PH1,l - 1, (3.4) 

where Po = (1, N) and Pm+! = (M, 1); for Pm, Pm+! either 

Sj = Uj <.< Pm,! _ J _ Pm+1,1 (3.5) 

or 
<.< Pm,l _ J _ Pm+1,l· (3.6) 

Proof Let a = Pill and b = Pi+l,l, i = 0, ... ,m - 1 then Ua = ... = 

Ub-1 < Ub. Note that the array representations s = (Sl, ... , SM) of S 
and t = (tb ... ,tM) of T satisfy Sl :5 ... :5 SR and tl :5 ... :5 tM. Further 
SnT = U so that Ui = min(si' ti), i = 1, ... , M. Without loss of generality, 
suppose Sb-1 = Ub-1. Then Ub-l = Ua :5 Sa, so that Sa = ... = Sb-l = 
Ub-l. Thus Sj = Uj for j = a, ... , b - 1. The case that i = m follows 
similarly. 0 
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When (3.3) or (3.5) holds we say that S is tracing U between Pi and PHI, 
and when (3.4) or (3.6) holds, we say that T is tracing U between Pi and 

PHI· 
In light of the previous theorem, there exists a subset {ql,"" qk}, 

k = 0, ... ,m (when k = ° the subset is taken to be 0) of the outer ver­
tices {PI, ... ,Pm} SO that Sand T alternate tracing U between successive 
points of qQ, ... , qkH' From the array representation of V(ql,"" qk) and 
W(ql,'" ,qk) it is clear that Vj :::=: Sj and Wj :::=: tj for j = 1, ... , M. Thus 
if we take S to be the upper set which traces U between qQ and ql then 
S <;;;; V(qI, ... , qk) and T <;;;; W(ql,"" qk) so that 

This provides the basis of the algorithm for computing Q(U), summarized 
in the following theorem. 

Theorem 3.2 For any U E UL, 

where the maximum is taken over all possible subsets {ql,"" qk} k = 
0, ... , m of outer vertices {PI,'" ,Pm} of U. 

We now consider the question posed in Section 2: is Q a p.m.f? To answer 
this, we examine Q when P exhibits a weaker form of positive dependence 
than association. Let Rx = {y E L : YI :::=: Xl, Y2 :::=: X2 where x = (Xl, X2)} 

be an upper rectangle in L. Then a p.m.f. P is said to be positive quadrant 
dependent (PQD) (see Lehmann (1966» if 

(3.9) 

Clearly Rx E UL. Note that upper rectangles of the form R(x},l), 1 ~ 
Xl ~ M, or R(I,x2)' 1 ~ X2 ~ N, have no outer vertices; furthermore, by 
Theorem 2.2 (iv) 

Q(Rx) = P(Rx)P(L) = P(Rx)' where x = (Xl, 1) or (1, X2). 

The remaining upper rectangles Rx where Xl > 1 and X2 > 1 have exactly 
one outer vertex PI = X. By definition V(PI) = R(x},l) and W(pr) = 
R(1,X2)' Thus by Theorem 3.2 for upper rectangles with one outer vertex x 

(3.10) 

This yields the following results 

Lemma 3.3 If P is PQD then Q(Rx) = P(Rx) V x E L. 

Theorem 3.4 There exists a P such that Q is not a p. m.f. 
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Proof Let P be a p.m.f. on L. Assume P is PQD but not associated, and 
suppose that Q is a p.m.f. Then by Lemma 3.3, P(Rz) = Q(Rz) Va; E L. 
Since Q is assumed to be a p.m.f it is uniquely specified by the probabil­
ities it assigns to upper rectangles. Thus P = Q. In particular, P(U) == 
Q(U) VUE UL, which by Theorem 2.1 implies that P is associated, 
thereby yielding a contradiction. 0 

An example of P which is PQD but not associated is given in Section 2. 
Thus Q tabulated in Table 1 is not a p.m.f. 

4 Computational Complexity 

A "definitional approach" to checking whether or not a pair of random 
variables on L is associated uses either (2.1) or Theorem 2.1. To use this 
approach, we would tabulate the probabilities of all upper sets in UL. Then 
for each upper set U E UL, P(U) would be compared to Q(U). Equiva­
lently P(V n W) could be compared to P(V)P(W) for all possible choices 
of V, W E UL. Therefore, the total number of required comparisons for 
this "definitional approach" is (#UL - 1)(#UL)/2, where #A denotes the 
cardinality of a set A. As was noted in Section 1, #UL = (Mit), so that 
the required number of comparisons is {(M~N) - I} (M~N)/2. 

However, we suggest an approach for checking association which uses 
outer vertices and Theorem 3.2, thereby, as we show, substantially reduc­
ing the total number of comparisons. This proposed "outer vertices" ap­
proach again computes P(U) for all U E UL and then compares P(U) to 
P(V)P(W) for all 2m pairs of upper sets V(q!, ... , qk) and W(ql, ... , qk), 
where ql, ... , qk are chosen from the m outer vertices Pl, ... ,Pm of U. 
Clearly calculating Q(U) using Theorem 3.2 requires use of fewer than the 
{( Mit) -1}( Mit) /2 comparisons required by the "definitional approach" . 
In fact, assuming M ::; N the required number of comparisons is 

M-l 

L2m Km (4.1) 
m=O 

where Km is the number of upper sets with m outer vertices. To numerically 
evaluate the reduction in the number of comparisons requires computing 
Km· 

The number, K m , of upper sets with m outer vertices can be found 
combinatorally by considering the array representation (Ul, ... , UM) for 
an upper set U. Suppose first that m > O. Every upper set U with m 
outer vertices can be characterized in a one-to-one fashion by two sets of 
characteristics: 

(i) 1 < Pll < ... < Pml, and an integer Z > Pml, where Z = i, if there 
exists an i such that Ui = N, and Z = M + 1, otherwise; and 
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(ii) 0:::; UI < uPll < ... < upm1 :::; N - 1. 

For instance, for the upper set (0,1,3,4,4) depicted in Figure 1, m = 3, 
and the two sets of characteristics become: (i) Pn = 2, P21 = 3, P31 = 4, 
Z = 6; and (ii) UI = 0, U2 = 1, U3 = 3, U4 = 4. For the case m = 0, the 
sets of characteristics become: 

(i') Z, where Z = i, if there exists an i such that Ui = N, and Z = M +1, 
otherwise; and 

(ii') 0:::; UI :::; N - 1. 

There is, however, one upper set with m = 0, which is not accounted for 
in this fashion, and that is (N, ... , N) = L. 

These correspondences lead to the following useful lemma. 

Lemma 4.1 The number of upper sets in an M x N lattice with m outer 
vertices is (m~l)(m~l)' ifm > 0, and 1 + MN, ifm = 0. 

Obviously the maximum number of possible outer vertices is min(M -
1, N -1). There is an interesting probabilistic interpretation of Lemma 4.1. 
Suppose we sample upper sets uniformly from all (MifN) possible upper 
sets in the lattice L. For any random upper set U, define the random 
variable Y by Y = 0, if U = L, and Y = m + 1, if U =f. L, where m is the 
number of outer vertices of U. Then Y has a hypergeometric distribution 
with parameters M, N, M +N (following the notation of Johnson and Kotz 
(1969,p.143)). 

Combining Lemma 4.1 with (4.1) we have shown that the number of 
required comparisons C using the "outer vertices approach" is 

_ min(M-I,N-I) m( M ) ( N ) 
C-l+ L 2 1 1· 

m=O m+ m+ 
(4.2) 

Observe that C = ! + (MifN)E(2Y)/2, so that the ratio of the number of 
comparisons of the "outer vertices approach" to the "definitional approach" 
is 

1/2 + (MifN)E(2Y)/2 

(Mit) ((MifN) -1) /2 
(4.3) 

which is essentially E(2Y)/(MifN). 
Table 2 provides values of E(2Y)/(MifN) for various choices of M and N. 

For an 8 x 8 or dual contingency table the "outer vertices" approach uses 
approximately 1/600 of the comparisons that the "definitional approach" 
uses. Clearly the resultant computational savings are substantial. 
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TABLE 2. Ratio of Comparisons 
"outer vertices approach" to "def­
initional approach" 

I MIN I Ratio I MIN I Ratio I 
2 2 0.3611 5 7 0.0064 
2 3 0.1900 6 7 0.0049 
3 3 0.1575 7 7 0.0041 
2 4 0.1156 2 8 0.0316 
3 4 0.0784 3 8 0.0120 
4 4 0.0655 4 8 0.0060 
2 5 0.0771 5 8 0.0036 
3 5 0.0440 6 8 0.0025 
4 5 0.0316 7 8 0.0019 

5 5 0.0265 8 8 0.0016 
2 6 0.0548 2 9 0.0251 
3 6 0.0269 3 9 0.0086 
4 6 0.0168 4 9 0.0038 
5 6 0.0125 5 9 0.0021 
6 6 0.0105 6 9 0.0013 
2 7 0.0409 7 9 0.0009 

3 7 0.0176 8 9 0.0007 
4 7 0.0097 9 9 0.0006 
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A Comparison of the 
Performances of Procedures 
for Selecting the Normal 
Population Having the Largest 
Mean when the Variances are 
Known and Equal 

Robert E. Bechhofer1 

David M. Goldsman2 

ABSTRACT We study the performance characteristics of procedures for 
selecting the normal population which has the largest mean when the vari­
ances are known and equal. The procedures studied are the single-stage 
procedure of Bechhofer, the closed two-stage procedure of Tamhane and 
Bechhofer, the open sequential procedure of Bechhofer, Kiefer, and Sobel 
and a truncated version of that procedure by Bechhofer and Goldsman, 
the closed multi-stage procedure with elimination of Paulson and improved 
closed versions of that procedure by Fabian and by Hartmann. The per­
formance characteristics studied are the achieved probability of a correct 
selection, the expected number of stages required to terminate experimenta­
tion, and the expected total number of observations required to terminate 
experimentation. Except for the single-stage procedure, all performance 
characteristics are estimated by Monte Carlo sampling. Based on these re­
sults, recommendations are made concerning which procedure to use in 
different circumstances. 

1 Introduction and Summary 

Over the years considerable research effort has been devoted to devis­
ing procedures for selecting the normal population which has the largest 
population mean. Bechhofer (1954), adopting the so-called indifference-
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zone approach, developed a single-stage procedure for the case of common 
known variance. Following that paper, several authors, also adopting the 
indifference-zone approach, have proposed different procedures for dealing 
with this same problem. Among these is a closed two-stage procedure, an 
open sequential procedure, and several closed multi-stage procedures. All 
of these procedures guarantee the same indifference-zone probability re­
quirement but each, at the time that it was introduced, had a different 
virtue and in some sense represented an improvement over the procedures 
proposed earlier. The purpose of the present article is to compare certain 
performance characteristics of these procedures-specifically their achieved 
probability of a correct selection, and for sequential and multi-stage proce­
dures, their expected number of stages required to terminate experimenta­
tion and their expected total number of observations required to terminate 
experimentation. 

In addition to the single-stage procedure of Bechhofer, the specific pro­
cedures that we study are the closed two-stage procedure of Tamhane and 
Bechhofer (1977,1979); the open sequential procedure of Bechhofer, Kiefer, 
and Sobel (1968) and the truncated version of that procedure by Bech­
hofer and Goldsman (1987); the closed multi-stage procedure of Paulson 
(1964) and the improved version of that procedure by Fabian (1974) with 
further improvements by Hartmann (1988). The numerical estimates of the 
performance characteristics for the Tamhane-Bechhofer, Paulson, Fabian, 
and Hartmann procedures are new, and have not been reported in detail 
elsewhere; all of our results for these procedures were obtained by care­
fully executed Monte Carlo sampling experiments. Based on these results 
we assess the virtues and drawbacks of the procedures, and discuss the 
alternatives available to the experimenter. Our findings should be of as­
sistance to experimenters who wish to decide which of these procedures is 
appropriate to use in a particular real-life setting. 

We formulate the selection problem in Section A2. The procedures under 
consideration will be described and their attributes reviewed in Section A3. 
Numerical estimates of the performance characteristics studied are given in 
Section A4. We discuss these results in Section A5. In Section A6 we state 
our conclusions. 

A2 Statement of the Problem 

We assume that we have k 2: 2 normal populations III, Ih, ... , Ilk with 
unknown population means /-li (1 ~ i ~ k) and a common known variance 
0"2. The ordered values of the /-li are denoted by /-l[l] ~ /-l[2] ~ •.• ~ /-l[k]' 

We further assume that the values of the /-l[j] (1 ~ j ~ k) are unknown, 
and that the pairing of the /-l(j] with the IIi (1 ~ i, j ~ k) is completely 
unknown. The objective of the experiment, and the associated probability 
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requirement, are stated in (2.1) and (2.2) below. 

Goal: To select the population associated with {l[k]' (2.1) 

If the population selected by a procedure is indeed the population associ­
ated with {l[k] , then we say that a correct selection (OS) has been made. We 
limit consideration to procedures that guarantee the following indifference­

zone requirement on the P{CS}: 
Probability requirement 

P{CS} ~ P* whenever {l[k] - {l[k-1] ~ 8*. (2.2) 

The quantities {8*, P*} with 0 < 8* < 00, 11k < P* < 1 are specified prior 
to the start of experimentation. All of the aforementioned procedures have 
been shown to guarantee (2.2). 

The present investigation is limited to the following representative cases: 
k = 4, 8* = 0.2, P* = 0.75, 0.90, 0.95, 0.99, and three configurations of 
the population means, namely, (i) equally-spaced 8*-apart (ES(8*)), i.e., 
{l[i+1] - {l[i] = 8* (1 ::; i ::; k - 1), (ii) least favorable (LF), i.e., {l[1] = 
{l[k-1] = {l[k] - 8* and (iii) equal means (EM), i.e., {l[1] = {l[k]. The extent 
to which our findings can be extrapolated to additional (k; 8* , P*) and 
other configurations will be indicated. 

3 Procedures Considered 

In order to make the present article self-contained, we describe and critique 
in this section the procedures under consideration. The reader is referred to 
the cited articles for more detailed information concerning these procedures 
and their performance characteristics. 

SINGLE-STAGE PROCEDURE OF BECHHOFER 

For this procedure (referred to herein as B) a common number n of in­
dependent observations X ij (1 ::; i ::; k, 1 ::; j ::; n) is taken in a single 

stage from each IIi (1 ::; i ::; k), and the k sample means Xi = 2:7=1 xijln 

(1 ::; i ::; k) are calculated. Let X[k] = max{x1, ... ,xd. The experimenter 
then selects the population that yielded X[k] as the one associated with 
{l[k]. Here n = [( O"Ck,P* 18* )2] + where Ck,P* is a constant which is given (as 

Vii>.) for k = 2(1)10 and selected P* in Table I of Bechhofer (1954), and 
[b] + is the smallest integer greater than or equal to b. 

The single-stage procedure can be quite conservative, i.e., if, unknown 
to the experimenter, the population means are in a very favorable con­
figuration (e.g., widely spaced), then the actual achieved probability of a 
correct selection when {l[k] - {l[k-1] = 8* may exceed the specified P* by 
a considerable amount. The experimenter thus has taken a larger number 
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of observations than would have been required had the true configuration 
been known, and had that configuration then been taken into account when 
choosing n. The fact that observations are taken in a single stage does not 
permit the experimenter to gain information concerning the configuration 
of the population means as sampling progresses, as would be the case if ob­
servations were taken in (say) several stages. In particular, no information 
can be obtained as to whether or not any populations are likely to be con­
tenders or non-contenders for "best." It is for this reason that multi-stage 
procedures were introduced. 

TWO-STAGE PROCEDURE OF TAMHANE AND BECHHOFER 

Tamhane and Bechhofer (1977,1979) proposed a two-stage selection pro­
cedure. At the end of the first stage, this procedure (referred to herein 
as T-B) screens out (permanently eliminates) populations indicated as be­
ing non-contending for best, and takes observations in the second stage 
only from those populations indicated as being contending. The cumula­
tive sample mean based on first- and second-stage observations is calculated 
for populations which enter the second stage, and the experimenter selects 
the population that yielded the largest of these cumulative means. Thus 
this procedure can capitalize on favorable configurations of the population 
means permitting a reduction in the expected total number of observations 
required to terminate sampling, and in extreme situations leads to termina­
tion after the first stage. Implementation of the T -B procedure involves the 
use of three predetermined constants (nl' n2, h) where nl, n2 are positive 
integers and h > O. The source of these constants is given below. 

We now formally describe the T-B procedure. A common number nl of 
independent observations Xi~) (1 ~ j ~ ih) is taken in the first stage from 

ili (1 ~ i ~ k) and the k first-stage sample means X~l) = 'E7~1 xW /nl 
(1 ~ i ~ k) are calculated. Let xf~? = max{ xiI) , ... ,x~l)}. Determine 

the subset I of {I, 2, ... ,k} where I = {i I xF) 2:: xf~? - h}, and let 
ill denote the associated subset of {ill. il2 , .•. ,ild. If ill consists of one 

population, stop sampling and select the population yielding x[~? as the one 
associated with J.t[k]. If ill consists of more than one population, proceed 

to the second stage and take n2 additional observations xg) (1 ~ j ~ 
n2) from each population in ill. Compute the cumulative sample means 

Xi = ('E7~1 xW + 'E7::l x~~)) /(nl +n2) for i E I. The experimenter then 

selects the population that yielded max{ Xi liE I} as the one associated 
with J.t[k]. 

For given k and specified {8*, P*} the procedure depends on the three 
constants (nb n2, h). Here nl = [(0-131/8*)2]+, n2 = [(0-132/8*)2]+, and h = 
d8* /131 where (131 , 132 , d) are found for k = 2 in Table I (E) of Tamhane and 
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Bechhofer (1979) and for k = 3(1)10, 12, 15, 25 and selected P* in Table 
II of that article. The choice (nl, n2, h) guarantees (2.2) and minimizes 
maxJL E{Total number of observations} where JL = (JLl, JL2,·· . , JLk). This - -
minimax two-stage procedure has the property that E{Total number of 
observations} < kn, uniformly in !: for all {8*, P*}, where n is the number 
of observations per population required by the corresponding single-stage 
procedure. 

Multi-stage procedures offer the potential of further improvements over 
the two-stage procedure. We next describe such procedures. 

SEQUENTIAL PROCEDURE OF BECHHOFER, KIEFER, AND 

SOBEL, AND A TRUNCATED VERSION 

Bechhofer, Kiefer, and Sobel (1968), Section 12.6.1.1, proposed a fully se­
quential open selection procedure. For this procedure (referred to herein 
as B-K-S) independent vector-observations consisting of one observation 
from each of the k populations are taken one vector-at-a-time until a stop­
ping rule calls for termination of sampling. The procedure can capitalize 
on favorable configurations of the population means, thus leading to early 
termination of sampling. In fact, if JL[k] - JL[k-l] » a, then with high prob­
ability sampling will stop after a single stage (requiring therefore only a 
total of k scalar observations). 

Let Xij (1 ::s: i ::s: k, j = 1, 2, ... ) denote the jthobservation from 
IIi. At stage m of experimentation (m = 1, 2, ... ), observe the random 
vector (Xlm, X 2m , •. . , X km ). Let Yim = Ej'!"l Xij (1 ::s: i ::s: k), and denote 
the ordered values of the Yim by Y[l]m < ... < Y[k]m. Calculate Zm = 

E~==-ll exp{ -8* (Y[k]m - Y[i]m)ja2}. Stop sampling when, for the first time, 
Zm ::s: (1 - P*)j P*. Let N, a random variable, denote the value of m at 
termination. After stopping, the experimenter selects the population that 
yielded Y[k]N as the one associated with JL[k]. 

This procedure has the drawback that if JL[k] - JL[l] is small, then the 
distribution of N is highly skewed to the right, and large values of N 
can occur with sizable probability. (See Table I in Bechhofer-Goldsman 
(1987).) Also, the variance of N can be very large. To avoid these undesir­
able effects, B-G (1987) studied a truncated version of the B-K-S procedure 
(referred to herein as (B-K-S)T); truncation is possible here because, when 
the population means are in the LF -configuration, the achieved P {CS} is 
greater than P*. For this version sampling is stopped when, for the first 
time, either Zm ::s: (1 - P*)j P* or m = no, whichever occurs first. Let N 
denote the value of m at termination, and let no(k; 8*, P*) = no (say) be 
predetermined as the smallest integer that will guarantee (2.2) using (B-K­
Sh. After stopping, the experimenter selects the population that yielded 
Y[k]N as the one associated with JL[k]. The truncated procedure retains all 
of the virtues of the original procedure, and in addition reduces E{N} and 
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Var{N}. Values of no are given for k = 2, 3, 4, 5 in Tables II, III, IV, 
V, respectively, of B-G (1987) and in Tables I, II, III, IV of B-G (1989); 
each table of B-G (1987) gives values for P* = 0.75, 0.90, 0.95, 0.99 with 
b* = 0.2(0.2)0.8, while each table of B-G (1989) gives values for P* = 0.75, 
0.90, 0.95, 0.99 with b* = 0.3(0.2)0.7. 

Neither B-K-S nor (B-K-S)r permits elimination of populations indi­
cated as being non-contending for best. Such elimination-type procedures 
are considered below. (T-B, which was considered in the foregoing, is also 
such a procedure.) 

SEQUENTIAL PROCEDURE OF PAULSON, AND THE FABIAN 

AND HARTMANN IMPROVEMENTS 

The B-K-S procedure has two drawbacks: i) it is open, i.e., before exper­
imentation starts it is not possible to give a finite upper bound on the 
number of stages required to terminate experimentation, and ii) it does 
not eliminate from sampling populations which, based on the earlier stages, 
would appear to be out of contention for selection as "best." The follow­
ing closed sequential procedure of Paulson (1964) (referred to herein as 
P), which employs elimination of populations, overcomes both of these 
drawbacks. For this procedure independent vector-observations are taken, 
one vector at a time, until a stopping rule calls for termination of sampling; 
each vector consists of one observation from each population not eliminated 
at an earlier stage. Paulson's procedure is actually a family of procedures 
which depends on a constant A (0 ::; A ::; 0*/2) which is chosen by the 
experimenter. Paulson recommended the choice A = b* /4. However, the 
choice A = b* /2 has the desirable property that the maximum possible 
number of stages to termination of the experiment is minimized for given 
k and specified {b*, P*}. 

Let Xij (1 ::; i ::; k, j = 1, 2, ... ) denote the jth observation from 
Ik At stage m (m = 1, 2, ... ) let Yim = L:;:l Xij (1 ::; i ::; k). De­
note the ordered values of the Yim for the R populations still retained at 
stage m by Y[l]m < ... < Y[R]m. Here R ~ 2 is a random variable. Let 
a", = (a2/{b* - A)) In((k - 1)/(1 - P*)) and let W'" denote the largest 
integer < a",/ A. Start sampling by taking one observation from each of 
the k populations. Eliminate from further sampling and consideration any 
population IIi for which a", - A < Y[k]l - Yil. If all but one population is 
eliminated after the first stage, then stop sampling and select the remain­
ing population as the one associated with J.L[k]. Otherwise, proceed to the 
second stage and take one observation from each population not yet elim­
inated. In general, at stage m (2 ::; m ::; W,x) take one observation from 
each population not eliminated after the (m - 1)st stage, and then elim­
inate from further consideration any remaining population IIi for which 
a,x - mA < Y[R]m - Yim. If all but one population is eliminated after the 
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mth stage, stop sampling and select the remaining population as the one 
associated with JL[kj; otherwise proceed to the (m+ l)st stage. If more than 
one population remains after stage W,x, take one additional observation 
from each of these populations. Then select the population with the largest 
sum of the (W,x + 1) observations as the one associated with JL[kj. 

The Fabian (1974) improvement of the P-procedure (referred to herein 
as P-F) is obtained by replacing the constant ((k - 1)/(1 - P*») by the 
smaller constants ((k-l)/2(I-P*») for A = 8* /2 and by 1/() for A = 8* /4 
where () solves (1- P*)/(k -1) = () - (1/2)()4/3. 

Hartmann (1988) improved the P-F procedure (and thus the P-procedure). 
For Hartmann's procedure (referred to herein as P-H) the constant 
((k - 1)/(1 - P*») of the P-procedure is replaced by 1/() where () = 
2(1_(P*)1/(k-l}) for A = 8* /2, and () solves 1_(p*)l/(k-l} = ()-(1/2)84/3 
for A = 8* /4. For k > 2 the constant a,x is smaller for the P-H procedure 
than for the P-F procedure. 

The P, P-F, and P-H procedures can be truncated while still guaranteeing 
(2.2). The effect of truncation is to decrease the achieved P{CS}. At the 
same time E{N}, VariN} and E{T}, Var{T} are reduced; here T is the 
total number of observations required to terminate sampling. We do not 
study truncation of these procedures in the present article. 

The P, P-F, and P-H procedures never require more than W,x +1 stages to 
terminate sampling. The effectiveness of these procedures can be measured 
not only in terms of E{N} but also in terms of E{T}. The appropriate mea­
sure(s) to use will depend on the particular practical situation at hand. For 
example, stages can often be equated to time; this would be the situation 
if only one vector of observations could be obtained per day (say) as with 
certain production processes. Thus the choice of measure might depend 
on whether it is more desirable to minimize the expected duration of the 
experiment than to minimize the expected total number of observations 
taken in the experiment. The answer will depend on various relative costs. 
Hartmann's (Fabian's) modification improves the performance of Fabian's 
(Paulson'S) procedure uniformly in (k; 8*, P*) and ~ for both measures. 

4 The Performance of the Procedures 

Monte Carlo (MC) estimates of the achieved P{CS}, E{N}, and E{T} are 
given for k = 4, 8* = 0.2 in Tables 1, 2, 3, 4 for P* = 0.75, 0.90, 0.95, 
0.99, respectively. Three configurations of the population means, namely, (i) 
equally-spaced 8*-apart (ES{8*)), (ii) least favorable (LF), and (iii) equal 
means (EM) were studied for B, T-B, B-K-S, {B-K-S)T, P using A = 8* /4 
and 8* /2 (P, 8* /4; P, 8*/2), P-F using A = 8* /4 and 8* /2 (P-F, 8*/4; P­
F, 8*/2), and P-H using A = 8*/4 and 8* /2 (P-H, 8*/4; P-H, 8*/2). All 
of the results for T-B, B-K-S, and {B-K-S)T' (P, 8* /4 and 8*/2), {P-F, 
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TABLE 1. Estimates of achieved probability of a correct selection (p or 'Iii), expected 
number of stages to terminate sampling (n), and expected total number of observa­
tions to terminate sampling (t) for three configurations of the population means, and 
selected procedures. (k = 4, 6* = 0.2, P* = 0.75) 

Equally-spaced 6· apart: Least favorable: Equal means: 
Procedure 1-'[;+1] - 1-'[;] = 6· (1 :::; i :::; 3) 1-'[1] = 1-'[3] = 1-'[4] - 6· 1-'[1] = 1-'[4] 

P n t p or ill n f n f 
B (n = 71) 0.8796 71 284 0.7508 71 284 71 284 

T-B (71.1 = 34, 0.8729 65.2 237.9 0.7361 65.9 258.9 66.0 261.8 
71.2 = 32, (0.0030) « 0.1) (0.3) (0.0028) « 0.1) « 0.1) « 0.1) « 0.1) 
h = 0.6107) 

B-K-S 0.8493 34.4 137.8 0.7759 53.3 213.1 72.0 288.0 
(0.0033) (0.2) (0.7) « 0.0001) (0.2) (0.6) (0.4) (1.8) 

(B-K-S)T 0.8439 33.6 134.5 0.7507 50.2 200.8 60.5 242.2 
(nO = 94) (0.0033) (0.2) (0.7) (0.0004) (0.1) (0.4) (0.2) (1.0) 

(P, 6· /4) 0.9388 66.4 191.8 0.8621 84.5 262.6 110.1 335.7 
(0.0022) (0.3) (0.7) (0.0023) (0.3) (0.7) (0.4) (1.1) 

(P, 6· /2) 0.9626 84.4 252.2 0.9065 104.0 341.3 134.3 437.1 
(0.0017) (0.3) (0.8) (0.0019) (0.2) (0.7) (0.4) (1.1) 

(P-F, 6" /4) 0.9228 57.9 167.7 0.8294 73.6 227.1 92.6 280.8 
(J = 0.10954 (0.0024) (0.3) (0.6) (0.0024) (0.2) (0.6) (0.4) (1.0) 
(P-F, 6· /2) 0.9225 58.9 176.3 0.8293 72.8 233.3 87.2 277.7 

(0.0024) (0.2) (0.6) (0.0024) (0.2) (0.5) (0.3) (0.8) 

(P-H, 6· /4) 0.9164 54.6 158.2 0.8200 69.3 213.0 85.9 259.6 
(J = 0.12154 (0.0025) (0.3) (0.6) (0.0025) (0.2) (0.6) (0.3) (0.9) 

(P-H, 6· /2) 0.9188 55.6 166.3 0.8151 68.4 219.0 80.7 256.3 
(J = 0.18288 (0.0025) (0.2) (0.5) (0.0025) (0.2) (0.5) (0.2) (0.7) 

8* /4 and 8* /2), and (P-H, 8* /4 and 8* /2) were obtained by MC sampling. 
The MC results for B-K-S and (B-K-S)T in the LF- and EM-configurations 
were abstracted from B-G (1987). All other MC results are new and were 
prepared especially for this article. 

The P{CS} achieved by the B procedure for the particular sample sizes 
used was calculated by quadrature. The achieved P{CS} for the other pro­
cedures was estimated by the observed proportion of correct selections (p), 
except for B-K-S and (B-K-Sh used in the LF-configuration, where a more 
precise unbiased estimate (w) was used. (See B-G (1987), Remark 3.3). 
E{N} and E{T} were estimated by the observed average number of stages 
to terminate sampling (n) and the observed average total number of obser­
vations to terminate sampling (l), respectively. In each of the four tables, 
the entries under n for the Band T-B procedures are the numbers of 
"vectors" of observations taken in the single- and two-stage procedures, 
respectively; thus these entries are comparable to the other entries in the 
n columns. 



Robert E. Bechhofer, David M. Goldsman 311 

TABLE 2. Estimates of achieved probability of a correct selection (p or w), ex­
pected number of stages to terminate sampling (n), and expected total number of 
observations to terminate sampling (t) for three configurations of the population 
means, and selected procedures. (k = 4, 8* = 0.2, P* = 0.90) 

Equally-spaced 0* apart: Least favorable: Equal means: 

Procedure '"[HI] - I-'[i] = o· (1 :S i :S 3) 1-'[1] = 1-'[3] = 1-'[4] - o' 1-'[1] = 1-'[4] 

P n t p or ill n t n t 
B (n = 151) 0.9588 151 604 0.9008 151 604 151 604 

T-B (nl = 78, 0.9583 116.6 394.7 0.9035 135.4 474.7 150.9 545.0 

n2 = 79, (0.0018) (0.4) (0.8) (0.0019) (0.2) (0.7) (0.2) (0.8) 

h = 0.1932) 

B-K-S 0.9354 61.6 246.3 0.9124 95.8 383.2 167.8 671.1 

(0.0022) (0.3) (1.3) «0.0001) (0.4) (1.4) (1.1) (4.2) 

(B-K-Sh 0.9350 61.8 247.0 0.9006 93.1 372.6 136.7 546.6 

(no = 205) (0.0023) (0.3) (1.3) (0.0001) (0.1) (0.4) (0.5) (2.2) 

(P, o' /4) 0.9745 93.2 269.5 0.9333 119.7 381.5 175.5 542.4 

(0.0014) (0.4) (1.0) (0.0016) (0.3) (0.9) (0.6) (1.7) 

(P, o' /2) 0.9840 116.0 347.3 0.9620 142.4 477.9 202.2 669.8 

(0.0011) (0.4) (1.0) (0.0012) (0.3) (0.9) (0.5) (1.5) 

(P-F, o' /4) 0.9693 87.1 252.3 0.9265 113.1 358.7 160.8 495.8 

(J = 0.04022 (0.0016) (0.4) (0.9) (0.0017) (0.3) (0.9) (0.6) (1.6) 

(P-F, o' /2) 0.9702 92.3 276.0 0.9205 114.0 376.3 150.7 492.1 

(0.0016) (0.3) (0.8) (0.0017) (0.3) (0.8) (0.4) (1.2) 

(P-H, o' /4) 0.9720 86.1 249.6 0.9247 110.8 351.0 158.5 489.7 

(J = 0.04175 (0.0015) (0.4) (0.9) (0.0017) (0.3) (0.9) (0.6) (1.5) 

(P-H, o' /2) 0.9684 90.2 269.8 0.9208 112.0 369.8 147.9 482.8 
(J = 0.06902 (0.0016) (0.3) (0.8) (0.0017) (0.3) (0.8) (0.4) (1.1) 

The number of independent Me replications on which each estimate 
is based for each procedure is 12,000 for the ES(8*)-configuration, 24,000 
for the LF -configuration and 12,000 for the EM-configuration, except that 
some of the estimates for (B-K-S)T in the LF-configuration were based 
on more than 24,000 independent replications. The number in parentheses 
below each estimate is the estimated standard error of that estimate. 

5 Discussion of Results 

In Table 5 we have indicated the procedure that, based on our results, 
dominates in terms of minimum ii or minimum f for each of the three 
configurations of the population means; these are given for four P* values. 

First we note that in terms of minimum ii, (B-K-S)T dominates in the 
LF-configuration for all P* values. This is not surprising since in that 
configuration, B-K-S is equivalent to a sequential probability ratio test for 
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TABLE 3. Estimates of achieved probability of a correct selection (p or w), ex­
pected number of stages to terminate sampling (n), and expected total number of 
observations to terminate sampling (l) for three configurations of the population 
means, and selected procedures. (k = 4, 0* = 0.2, P* = 0.95) 

Equally-spaced 0' apart: Least favorable: Equal means: 
Procedure I-'f;+l] - I-'fi] = 0* (1 ::; i ::; 3) I-'LlJ = 1-'j3] = 1-'[11 - 0' 1-'[1] = 1-'[4] 

P ii t P or 'III ii l n l 
B (n = 213) 0.9805 213 852 0.9502 213 852 213 852 

T-B (n1 = 115, 0.9794 149.4 530.3 0.9495 174.5 614.2 210.9 748.8 

n2 = 110, (0.0013) (0.5) (1.0) (0.0014) (0.4) (1.0) (0.3) (1.2) 
it = 0.1358) 

B-K-S 0.9656 80.8 323.1 0.9566 122.4 489.8 261.2 1044.7 
(0.0017) (0.5) (1.8) «0.0001) (0.4) (1.8) (1. 7) (6.6) 

(B-K-Sh 0.9628 81.0 324.2 0.9504 120.6 482.6 202.9 811.7 

(nO = 290) (0.0017) (0.5) (1.8) (0.0002) (0.3) (1.2) (0.8) (3.0) 

(P, 0'/4) 0.9882 113.1 327.5 0.9644 144.2 467.2 229.3 718.2 
(0.0010) (0.5) (Ll) (0.0012) (0.4) (Ll) (0.8) (2.1) 

(P, 0'/2) 0.9916 140.6 421.5 0.9796 169.7 577.9 255.7 855.8 
(0.0008) (0.5) (Ll) (0.0009) (0.4) (Ll) (0.6) (1.8) 

(P-F, 0'/4) 0.9869 108.6 314.5 0.9621 138.9 448.9 220.0 685.8 
() = 0.01925 (0.0010) (0.5) (Ll) (0.0012) (0.4) (Ll) (0.7) (2.0) 

(P-F, 0'/2) 0.9856 116.7 349.3 0.9603 142.8 479.1 201.5 668.2 
(0.0011) (0.4) (1.0) (0.0013) (0.3) (0.9) (0.5) (1.5) 

(P-H, 0'/4) 0.9818 107.2 310.9 0.9599 138.8 447.8 216.3 675.9 
() = 0.01959 (0.0012) (0.5) (Ll) (0.0013) (0.4) (Ll) (0.7) (2.0) 

(P-H, 0'/2) 0.9854 115.2 345.9 0.9604 141.8 476.3 200.0 662.2 
() = 0.03390 (0.0011) (0.4) (1.0) (0.0013) (0.3) (0.9) (0.5) (1.5) 

the corresponding identification problem (see B-K-S (1968), Section 4.3.1), 
and the effect of truncation is effectively to eliminate the "excess," i.e., 
achieved P{CS} -P*. The domination of (B-K-Sh in terms of minimum ii 
extends here to the ES(8*)-configuration (and we conjecture that it would 
continue to hold for even more favorable configurations). (B-K-Sh also 
dominates in all three configurations for both ii and f when P* = 0.75; 
it is at this (the lowest) P*-value that the excess is greatest in the LF­
configuration, and as noted above, truncation essentially eliminates that 
excess. 

Note 

In Table 4 the recorded value of f in the ES( 8*)-configuration for P* = 0.99 
is smaller for (P-F, 8* /4) than for (P-H, 8* /4) although the difference is not 
statistically significant. However, E{T}, of which f is an estimate, must be 
smaller for (P-H, 8*/4) than for (P-F, 8*/4) since the continuation region 
for the former is contained in the continuation region for the latter. The 



Robert E. Bechhofer, David M. Goldsman 313 

TABLE 4. Estimates of achieved probability of a correct selection (jj or w), ex­
pected number of stages to terminate sampling (n), and expected total number of 
observations to terminate sampling (f) for three configurations of the population 
means, and selected procedures. (k = 4, 0* = 0.2, P* = 0.99) 

Equally-spaced 6· apart: Least favorable: Equal means: 
Procedure I-'[Hl] - I-'[i] = 6· (1 ::; i ::; 3) 1-'[1] = 1-'[3] = 1-'[4] - 6* 1-'[1] = 1-'[4] 

p i'i f ii or w n t n t 

B (n = 361) 0.9964 361 1444 0.9901 361 1444 361 1444 

T-B (iiI = 220, 0.9963 236.2 912.5 0.9894 256.5 964.8 348.2 1242.5 

ii2 = 158, (0.0006) (0.4) (0.9) (0.0007) (0.4) (1.0) (0.6) (1.9) 
h = 0.08243) 
B-K-S 0.9938 123.6 494.3 0.9914 176.5 705.9 542.5 2169.8 

(0.0007) (0.7) (2.6) «0.0001) (0.4) (1.6) (3.5) (13.9) 

(B-K-S)T 0.9921 122.4 489.6 0.9902 175.8 703.0 370.8 1483.3 
(nO = 480) (0.0008) (0.6) (2.5) «0.0001) (0.4) (1.6) (1.2) (4.7) 

(P, 6· /4) 0.9969 156.2 455.1 0.9916 196.9 656.6 364.7 1163.7 
(0.0005) (0.6) (1.4) (0.0006) (0.5) (1.4) (1.1) (3.1) 

(P, 6* /2) 0.9981 194.2 585.3 0.9956 231.7 806.7 383.2 1310.0 
(0.0004) (0.6) (1.4) (0.0004) (0.4) (1.4) (0.8) (2.4) 

(P-F, 6* /4) 0.9958 153.8 447.9 0.9920 194.7 648.0 356.1 1137.6 
(J = 0.003610 (0.0006) (0.6) (1.4) (0.0006) (0.5) (1.4) (1.1) (3.0) 
(P-F, 6· /2) 0.9977 170.9 514.3 0.9919 206.0 710.9 328.5 1115.0 

(0.0004) (0.5) (1.3) (0.0006) (0.4) (1.3) (0.7) (2.1) 

(P-H, 6· /4) 0.9974 154.6 449.7 0.9925 192.9 643.4 357.3 1139.3 
(J = 0.003623 (0.0005) (0.6) (1.4) (0.0006) (0.5) (1.4) (1.1) (3.1) 
(P-H, 6* /2) 0.9970 171.2 514.8 0.9912 205.9 709.9 328.7 1112.9 
(J = 0.006689 (0.0005) (0.5) (1.2) (0.0006) (0.4) (1.3) (0.7) (2.1) 

observed difference in f means is due to sampling errors. Thus we have 
"credited" (P-H, 8*/4) with the smaller value of f for P* = 0.99 in the 
ES(8*)-configuration and have similarly "credited" (P-H, 8*/2) with the 
smaller value of n for P* = 0.99 in the EM-configuration. A similar reversal 
for n occurs in the ES(8*)-configuration between (B-K-S) and (B-K-S)r for 
P* = 0.95 and 0.90, and for f in the ES(8*)-configuration for P* = 0.90. 
In each of these reversals we have "credited" (B-K-S)r with the smaller n 
or f value. 

Also noteworthy is the fact that in terms of minimum f, (P-H, 8*/2) 
dominates in the EM-configuration for the largest P* -values, namely, P* = 
0.90, 0.95, 0.99. This is a consequence of the fact that for each P*, (P­
H, 8* /2) has the smallest predetermined upper bound on the maximum 
number of stages to terminate sampling. In terms of minimum f, (P-H, 
8* /4) dominates in the LF-configuration for the largest pO-values, namely, 
P* = 0.90, 0.95, 0.99, and in the ES(8*)-configuration for P* := 0.95, 0.99; 
elimination of populations is easier in the earlier stages with (P-H, 8*/4) 
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TABLE 5. Procedure having minimum fi or minimum t for each of three configu~ 
rations of the population means (k = 4, 6* = 0.2, selected PO) 

ES(6* )-configuration LF -configuration EM-configuration 
P* n t n t n t 
0.99 (B-K-S)T (P-H, 6· /4) (B-K-S)T (P-H, 6· /4) (P-H, 6· /2) (P-H, 6· /2) 
0.95 (B-K-Sh (P-H, 6· /4) (B-K-S)T (P-H, 6· /4) (P-H, 6· /2) (P-H, 6· /2) 
0.90 (B-K-S)T (B-K-Sh (B-K-S)T (P-H, 6· /4) (B-K-S)T (P-H, 6· /2) 
0.75 (B-K-Sh (B-K-Sh (B-K-Sh (B-K-Sh (B-K-Sh (B-K-Sh 

than with (P-H, 8* /2). 
Further MC studies carried out for k = 5, 8* = 0.4 established that (B­

K-S)T' (P-H, 8* /4) and (P-H, 8* /2) dominated in terms of minimum (ii, l) 
in essentially the same regions as those described in Table 5. The results 
of these studies are available from the authors on request. 

In our analysis of the performance of the various procedures we have not 
focused on the achieved P{CS} provided only that (A2.2) is guaranteed. 
Thus, for example, (P-H, 8* /2) achieved a P{CS} of 0.815 (approximately) 
in the LF-configuration for P* = 0.75. This large overprotection could be 
eliminated by truncation with consequent substantial reductions in E{N} 
and E{T} in all configurations. However, the preparation of a table of 
such truncation numbers would be excessively expensive (and in particu­
lar, much more costly than the corresponding tables for (B-K-S)T in B-G 
(1987,1989)). 

Remark A5.1 In Table 1, the MC estimate of the achieved P{CS} for 
the T-B procedure, i.e., p = 0.7361, is significantly lower (statistically) 
than the specified P* = 0.75. It has been brought to our attention by 
Professor Ajit Tamhane that this result is explained by the fact that the 
constants (CbC2, d) for k = 4, P* = 0.75 in Table II ofT-B (1979) on which 
(iib ii2, it) are based are in error because they do not satisfy the condition 
(ct)2 + (C2)2 > (Ck,P. )2; this condition is necessary (but not sufficient) 
in order for the tw~stage procedure T -B to guarantee the same {8*, P*} 
condition that the corresponding single-stage procedure B guarantees. The 
violation of this condition results in iiI and/or ii2 being too small, i.e., 
iiI + ii2 < n. Thus for k = 4, P* = 0.75, 8* = 0.2, we have iiI + ii2 = 
34 + 32 < n = 71 which results in the specified P* value not being attained 
in the LF-configuration. Several other entries in Table II of T-B (1979) for 
P* = 0.75 suffer from the same error (although the discrepancies are quite 
small). 
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6 Concluding Remarks 

We note from Table 5 that neither the single-stage procedure (B) nor the 
two-stage procedure (T-B) dominates either in terms of nor l for any config­
uration or any P*-value. However, both of these procedures play important 
roles in real-life situations in which truly sequential experimentation is not 
a feasible possibility. This is the case, for example, in agriculture where 
a stage is usually a growing season. Most such experiments would thus 
require a single-stage procedure; if a two-stage procedure is feasible, then 
T-B might well be preferable to B, since the former uniformly dominates 
the latter in terms of E{T} while still guaranteeing (2.2). 

We mention that at the time that T-B (1979) was written, the LF­
configuration for that two-stage procedure had not been determined for 
k > 2. As a consequence, a conservative lower bound on the P{CS} was 
used which, although it guaranteed (2.2), resulted in a larger E{T} than 
would have been the case if the LF -configuration had been known, and 
corresponding values of (iiI, ii2 , h) based on that bound had been calcu­
lated. However, Miescke and Sehr (1980) established the LF-configuration 
for k = 3, and more recently, Sehr (1988), and independently Bhandari 
and Chaudhuri (1987) have established the LF-configuration for all k. Cal­
culations based on the now-known (hitherto conjectured) LF-configuration 
could be expected to yield substantial decreases in E{T} (relative to the 
present E{T}-values), especially for large k and/or low P*. But calcula­
tions based on the exact P{CS I LF} given by equation (5.6) of T-B (1977) 
with 8 replaced by 8* would be prohibitively expensive, at least at the 
present time; this calculation involves the numerical evaluation of a four­
fold integral. 

For minimizing E {N} when sequential experimentation is feasible, (B­
K-S)r would appear to be preferable except for configurations which are 
suspected as being close to the EM-configuration when P* is high, in which 
situation (P-H, 8* /2) should be used; however, tables of no-values for (B­
K-S)r have been prepared only for k = 2(1)5. For k > 5 we recommend the 
use of (P-H, 8*/4) for all but the EM-configuration, and (P-H, 8* /2) for 
the latter configuration. The beauty of (P-H, 8* /4) or (P-H, 8* /2) is that 
in order to implement the procedure it is only necessary to determine the 
appropriate O-value for the particular (k, P*) of interest; this is a trivial 
calculation. 

Acknowledgments: This research was partially supported by the U.S. Army 
Research office through the Mathematical Sciences Institute of Cornell Uni­
versity. The authors wish to thank Mr. Mark Hartmann for providing us 
with a copy of his article on an improvement of the Paulson-Fabian pro­
cedure; he has approved our including his improved procedure among our 
calculations. We also acknowledge the assistance of Professor Tom Santner 



316 17. A Comparison of Performance of Procedures for Selecting Normal Population 

who calculated for us the exact P{CS}-values achieved by the single-stage 
procedure, and made many constructive suggestions. We are indebted to 
Professor Ajit Tamhane who solved the mystery reported on in Remark 
5.1, and for helpful comments. 

REFERENCES 

Bechhofer, R.E. (1954). A single-sample multiple decision procedure for 
ranking means of normal populations with known variances. Ann. 
Math. Statist. 25, 16-39. 

Bechhofer, R.E. and Goldsman, D.M. (1987). Truncation of the Bechhofer­
Kiefer-Sobel sequential procedure for selecting the normal population 
which has the largest mean. Comm. Statist. - Simula. Computa. 
B16{ 4), 1067-1091. 

Bechhofer, R.E. and Goldsman, D.M. (1989). Truncation of the Bechhofer­
Kiefer-Sobel sequential procedure for selecting the normal population 
which has the largest mean (III): supplementary truncation numbers 
and resulting performance characteristics. Comm. Statist. - Simula. 
Computa. B 18(1), 63-81. 

Bechhofer, R.E., Kiefer, J. and Sobel, M. (1968). Sequential Identification 
and Ranking Procedures (with special reference to K oopman-Darmois 
populations), Chicago, The University of Chicago Press. 

Bhandari, S.K. and Chaudhuri, A.R. (1987). On two conjectures about 
two-stage selection procedures. To appear in Sankhyii, Ser. B. 

Fabian, V. (1974). Note on Anderson's sequential procedures with triangu­
lar boundary. Ann. Statist. 2, 170--176. 

Hartmann, M. (1988). An improvement on Paulson's sequential ranking 
procedure. Comm. Statist. - Sequential Analysis 7 (4), 363-372. 

Miescke, K.-J. and Sehr, J. (1980). On a conjecture concerning the least 
favorable configuration of certain two-stage selection procedures. 
Comm. Statist. - Theor. Meth. A9, 1609-1617. 

Paulson, E. (1964). A sequential procedure for selecting the population with 
the largest mean from k normal populations. Ann. Math. Statist. 35, 
174-180. 

Sehr, J. (1988). On a conjecture concerning the least favorable configuration 
of a two-stage selection procedure. Comm. Statist. - Theor. Meth. 
A17 (10), 3221-3235. 

Tamhane, A.C. and Bechhofer, R.E. (1977). A two-stage minimax proce­
dure with screening for selecting the largest normal mean. Comm. 
Statist. - Theor. Meth. A6, 1003-1033. 

Tamhane, A.C. and Bechhofer, R.E. (1979). A two-stage minimax proce­
dure with screening for selecting the largest normal mean (II): a new 



Robert E. Bechhofer, David M. Goldsman 317 

pes lower bound and associated tables. Comm. Statist. - Theor. 
Meth. A8, 337-358. 



18 

Parametric Empirical Bayes 
Rules for Selecting the Most 
Probable Multinomial Event 

Shanti S. Gupta1 

TaChen Liang2 

ABSTRACT Consider a multinomial population with k(? 2) cells and the 
associated probability vector P = (PI, ... ,Pk). Let P[k] = max Pi. A cell 

- l:<;:i:<;:k . 

associated with P[k] is called the most probable event. We are interested in 
selecting the most probable event. Let i denote the index of the selected cell. 
Under the loss function L('f: i) = P[k] - pi, this statistical selection problem 
is studied via a parametric empirical Bayes approach. Two empirical Bayes 
selection rules are proposed. They are shown to be asymptotically optimal 
at least of order 0 (exp( -Cin)) for some positive constants Ci. i = 1, 2, where 
n is the number of accumulated past experiences (observations) at hand. 
Finally, for the problem of selecting the least probable event associated 
with P[l] under the loss Pi - P[l], two empirical Bayes selection rules are 
also proposed. The corresponding rates of convergence are found to be at 
least of order 0 (exp( -Cin)) for some positive constants Ci, i = 3, 4. 

1 Introduction 

Consider a multinomial population with k 2: 2 cells and the associated 
probability vector!!. = (PI, .. ·lPk) where L~=I Pi = 1. Let P[I] ::::; ... ::::; P[k] 

denote the ordered values of the parameters PI, ... ,Pk. It is assumed that 
the exact pairing between the ordered and the unordered parameters is un­
known. Any event associated with P[k] is considered as the most probable 
event. A number of statistical procedures based on single samples or sequen­
tial sampling rules have been considered in the literature in the classical 
framework for selecting the most probable event. Bechhofer, Elmaghraby 
and Morse (1959) have considered a fixed sample procedure through the in­
difference zone approach. Gupta and Nagel (1967), Panchapakesan (1971) 
and Gupta and Huang (1975) have studied this selection problem using a 

IDepartment of Statistics, Purdue University 
2Department of Mathematics, Wayne State University 
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subset selection approach. Cacoullos and Sobel (1966), Alam (1971), Alam, 
Seo and Thompson (1971), Ramey and Alam (1979, 1980) and Bechhofer 
and Kulkarni (1984) have considered sequential selection procedures. 

We now consider a situation in which one repeatedly deals with the same 
selection problem independently. In such instances, it is reasonable to for­
mulate the component problem in the sequence as a Bayes decision problem 
with respect to an unknown (or partially known) prior distribution on the 
parameter space, and then, use the accumulated observations to improve 
the decision rule at each stage. This is the empirical Bayes approach due 
to Robbins (1956, 1964 and 1983). 

Empirical Bayes rules have been derived for subset selection goals by 
Deely (1965). Recently, Gupta and Hsiao (1983) and Gupta and Leu (1988) 
have studied empirical Bayes rules for selecting good populations with re­
spect to a standard or a control with the underlying populations being 
uniformly distributed. Gupta and Liang (1986, 1988) have studied empir­
ical Bayes rules for the problem of selecting the best binomial population 
or selecting good binomial populations. Many such empirical Bayes proce­
dures have been shown to be asymptotically optimal in the sense that the 
risk for the nth decision problem converges to the optimal Bayes risk which 
could have been obtained if the prior distribution was fully known and the 
Bayes procedure with respect to this prior distribution was used. 

Note that the above mentioned empirical Bayes rules use the so-called 
non parametric empirical Bayes approach. That is, one assumes that the 
form of the prior distribution is unknown. However, in many cases, an 
experimenter may have some prior information about the parameters of 
interest, and he would like to use this information to make appropriate 
decisions. Usually, it is suggested (for example, see Robbins (1964)), that 
the prior information be quantified through a class of subjectively plausible 
priors. In view of this situation, in this paper, it is assumed that the param­
eters of interest in a multinomial distribution follow some conjugate prior 
distribution with unknown hyperparameters. Under this statistical frame­
work, two empirical Bayes selection rules are proposed. They are shown to 
be asymptotically optimal at least of order o( exp( -Cin)) for some positive 
constants Ci, i = 1, 2, where n is the number of accumulated past experi­
ences (observations) at hand. Finally, for the problem of selecting the least 
probable event associated with P[lJ under the loss Pi - P[lJ' two empirical 
Bayes selection rules are also proposed. The corresponding rates of con­
vergence are found to be at least of order 0 (exp( -Cin)) for some positive 
constants Ci, i = 3, 4. 
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2 Formulation of the Problem under the 
Empirical Bayes Approach 

Consider a multinomial population with k(~ 2) cells, where the cell 7l"i has 
probability Pi, i = 1, ... , k. Let Xi denote the observations that arise in the 
cell7l"i based on N(~ 2) independent trials. Thus, for givenp = (P1, ... ,Pk), 

X = (Xl' ... ' X k) has the probability function 

f( I ) N! rrk x· 

:£ ~ = Ilk ( . ') Pi' , 
i=l x •. i=l 

(2.1) 

where, Xi = 0 ,1, ... , Nand L7=1 Xi = N. 
For each~, let P[l] ::; ... ::; P[k] denote the ordered parameters P1, ... , Pk· 

It is assumed that there is no a priori knowledge about the exact pairing 
between the ordered and the unordered parameters. Any cell7l"i associated 
with P[k] is considered as the most probable event. Our goal is to derive 
empirical Bayes rules to select the most probable event. 

Let n = {~I ~ = (Pl,· .. ,Pk), 0 < Pi < 1 and L7=lPi = I} be the 
parameter space. It is assumed that P has a Dirichlet prior distribution 

G with hyperparameters a = (a1, ... , ak), where all ai are positive but 
unknown. That is, P has a probability density function of the form 

where aD = L7=1 ai· 

k 

0< Pi < 1, LPi = 1, 
i=l 

(2.2) 

Let A = {i I i = 1, ... , k} be the action space. When action i is taken, 
it means that the cell 7l"i is selected as the most probable event. For the 
parameter P and action i, the loss function L(p, i) is defined as - -

(2.3) 

the difference between the most probable and the selected event. 
Let X be the sample space of X = (Xl, ... , Xk). A selection rule d = 

(d1, ... , dk) is a mapping from X into [0, Ilk such that for each X€X, the 

function d(:£) = (d1 (:£)' ... , dk (:£)) is such that 0 ::; di (:£) ::; 1, i = 1, ... , k, 

and L7=1 di(:£) = 1. Note that di (:£), i = 1, ... , k is the probability of 
selecting cell 7l"i as the most probable event given -! = :£. 

Let D be the class of all selection rules as defined above. For each d€D, 
let r(G, d) denote the associated Bayes risk. Then r(G) = inf r(G, d) is the 

deD 
minimum Bayes risk. 
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For each :EfX, let 

A(x) = {i I Xi +Oi = max (Xj + OJ)}. 
- l~j~k 

(2.4) 

Consider the selection rule da = (dw , ... , dka) defined below: for each 
i = 1, .. . ,k, 

(2.5) 

where IAI denotes the cardinality of the set A. 
It should be noted that in (2.5) any selection rule d = (dl , ... ,dk) satis­

fying the condition EiEA(X) di(:E) = 1 is a Bayes selection rule. 

A straightforward computation shows that the selection rule da is a 
randomized Bayes selection rule in the class D. Since the values of the 
hyperparameters (01, ... , Ok) are unknown, it is impossible to apply this 
Bayes selection rule da for the selection problem at hand. As we mentioned 
above, we study this selection problem via an empirical Bayes approach. 

For each j = 1,2, ... , let -!j = (Xlj , ... , Xkj) denote the random obser-

vations arising from N independent trials at stage j. Let f j = (Plj , ... , Pkj) 

denote the (random) parameters at stage j. Conditional on P ., X. has a 
-3 -3 

probability function of the form of (2.1). It is assumed that independent 
observations -! I' ... , -! n are available, and f j' 1:::; j :::; n, have the same 
prior probability density function of the form (2.2), though not observable. 
We also let X I = X = (XI, ... ,Xk) denote the present observations. -n+ -

Two empirical Bayes selection rules are proposed depending on whether 
the value of the parameter 00 is known or unknown. Note that 00 is the 
sum of all the parameters 0i, 1:::; i :::; k. In the case that 00 is known, the 
individual values of 0i, 1 :::; i :::; k, are still unknown. 

First, for each i = 1, ... ,k, and each n = 1,2, ... , we let 

(2.6) 
When 00 is known, let 

(2.7) 

and let 
(2.8) 

We then define an empirical Bayes selection rule dn = (dIn, ... , dkn) as 
follows: for each i = 1, ... , k, :EfX, 

(2.9) 
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Let J.Li1 = E[Xi(n)] and J.Li2 = E[Mi(n)]. Then, following a direct com­
putation, we have J.Li1 = NaiaO\ J.Li2 = Naia01 + (N2 - N)ai(ai + 
l)ao1(ao + 1)-1. Hence, ai = LilLi;\ where Lil = (NJ.Li1 - J.Li2)J.Lil.Li2 = 
(J.Li2 - J.LidN - (N -1)J.L~1' Thus, Zi(n), }'i(n), and Zi(n)/}'i(n) are moment 
estimators of Lil , Li2' and ai = LilL-;;'\ respectively. Note that Lil and 
Li2 are both positive, which can be verified directly by the definition of J.Li1 
and J.Li2. Also, Zi(n) 2: O. However, it is possible that }'i(n) :5 O. Hence, for 
the case when ao is unknown, we first let 

A. ( .) _ { Xi + Zi(n)/}'i(n) if }'i(n) > 0, 
~.n X. - h . Xi ot erw1se. 

(2.10) 

Also, let 
(2.11) 

We then define an empirical Bayes selection rule d~ = (din"'" dkn ) as 
follows: for each i = 1, ... ,k, ~€X, 

d~ (x) = {IA~(~)1-1 if i€A~(~), 
In - 0 otherwise. 

(2.12) 

In the next section, we will study the optimality of the two sequences of 
empirical Bayes selection rules {dn } and {d~}. 

3 Asymptotic Optimality of Selection Rules {dn } 

and {d~} 

Consider an empirical Bayes selection rule dn(x). Let r(G, dn) be the Bayes 
risk associated with the selection rule dn(~). Then r(G, dn)-r(G) 2: 0, since 
r( G) is the minimum Bayes risk. The nonnegative difference is always used 
as a measure of optimality of the selection rule dn . 

Definition 3.1 A sequence of empirical Bayes rules {dn}~=o1 is said to be 
asymptotically optimal at least of order f3n relative to the prior distribution 
G if r(G,dn) - r(G) :5 O(f3n) as n ~ 00, where {f3n} is a sequence of 
positive values satisfying lim f3n = O. 

n-+oo 

ASYMPTOTIC OPTIMALITY OF {dn } 

We first consider the case where ao is known. Note that Qin is an unbiased 
estimator of aii also E:=o1 Qin = ao for each n = 1,2, .... 

For each ~€X, let A(~) be as defined in (2.4) and let B(~) = {I, 2, ... , k} \ 
A(~). Thus, for each ~€X, i€A(~), j€B(~), Xi + ai > Xj + aj. Following 
straightforward computation, we can show 

0:5 r(G,dn) - r(G) 
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:s; I: I: I: P{Xi + ain :s; Xj + ajn}. 
:EeX ieA(:E) j£B(:E) 

Now, for itA(:E), jtB(:E) , 

P{Xi + ain :s; Xj + ajn} 

{I n (1 1) 
= P ;;: l; N(Xim - X jm ) - ao (ai - aj) 

< -(Xi + ai - Xj - aj)ao1 } 

(3.1) 

:s; p{ ~ t. (~(Xim - X jm ) - ~o (ai - a j )) < -E:ij } 

where 

and 

:s; exp{ -n2-1 E:~j } 

:s; exp{ -ncd, 

E:ij = min { IXi +ai -Xj -ajla01 I Xi, Xj = 0, 1, ... , N, } 
Xi,Xj O:S; Xi + Xj :s; N, Xi + ai - Xj - aj i= 0 

> 0 since N is a finite number, 

Cl = Tl min{ E:~j I i,j = 1, ... , k, i i= j} > O. 

In (3.2), the second inequality is obtained using the fact that 

E [~(Xim - X jm ) - ~o (ai - a j )] = 0, 

(3.2) 

1 1 1 1 
-l--(a·-a·)<-(X -X· )--(a·-a·)<l--(a·-a·) ao t 3 - N tm 3m aO t 3 - aO' 3 

and then making use of Theorem 2 of Hoeffding (1963). 
By noting that X is a finite space, from (3.1) and (3.2), we have the 

following theorem. 

Theorem 3.2 Let {dn} be the sequence of empirical Bayes selection rules 
defined in (2.9). Then r(G, dn) - r(G) :s; O(exp( -cln)) for some positive 
constant Cl. 

ASYMPTOTIC OPTIMALITY OF {d~} 

For each :EtX, let A(:E) and B(:E) be as defined in the previous sections. 
For the selection rule d~, one can obtain the following result 

O:S; r(G,d~) - r(G) 

:s; L L L P{Llin(Xi):S; Lljn(xj)}. (3.3) 



324 18. Empirical Bayes Selection for Multinomial Distributions 

Since X is finite, we only need to consider the behavior of P{~in(Xi) ::; 
~jn(Xj)} for each ~€X. Now 

P{~in(Xi) ::; ~jn(Xj)} 
= P{~in(Xi) ::; ~jn(Xj) and (Zi(n) ::; 0 

or Zj(n) ::; 0 or l'i(n) ::; 0 or Yj(n) ::; O)} 

+ P{~in(Xi) ::; ~jn(Xj) and (Zi(n) > 0, 

Zj(n) > 0, l'i(n) > 0 and Yj(n) > O)}. (3.4) 

Before we go further to study the associated asymptotic behaviors of the 
above probabilities appearing on the right hand side of (3.4), we need the 
following lemma. 

Lemma 3.3 Let b > 0 be a constant. Then, 

a) P{Zi(n) - Lil < -b}::; O(exp(-bin»); 

b) P{Zi(n) - Lil > b}::; O(exp(-bin»; 

c) P{l'i(n) - Li2 < -b}::; O(exp(-bin»); 

d) P{l'i(n) - Li2 > b}::; O(exp(-bin»); 

where bi = b2[2N4(N + JLil)2J-l > O. 

Proof: The techniques used to prove these four inequalities are similar. 
Here, we give the proof of part a) only. 

Note that Zi(n) = [NXi(n) - Mi (n)]Xi (n) ~ O. Hence, P{Zi(n) - Lil < 
-b} = 0 if Lil - b ::; O. So, we assume that b > 0 is small enough so that 
Lil - b > O. Then, 

P{Zi(n) - Lil < -b} 

= P{N[(Xi(n»)2 - JL~l]- [Mi(n)Xi(n) - JLi2JLil] < -b} 

::; P{Xi(n) - JLil < -b(2N(N + JLil»-l} 

+ P{Xi(n) - JLil > b(4N2)-l} + P{Mi(n) - JLi2 > b(4JLil)-l} 

::; exp{ -nb2[2N4(N + JLil)2t l } 

+ exp{ -nb2[SN4tl} + exp{ -nb2[SN4JLiltl} 

::; O(exp(-nbi»). (3.5) 

Note that in (3.5), the first inequality is obtained from the fact that 0 ::; 
Xi{n) ::; N,O ::; Mi{n) ::; N2 and an application of Bonferroni's inequality; 
the second inequality follows from an application of Theorem 2 of Hoeffding 
(1963) and the last inequality is obtained from the definition of bi' 

Hence, the proof of part a) is complete. 
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By the positivity of Lil and Li2' and by Lemma 3.3, 

P {~in(Xi) :::; ~jn(Xj) and } 
(Zi(n) :::; 0 or Zj(n) :::; 0 or Yi(n) :::; 0 or }j(n) :::; 0) 

:::; o( exp( -n min(bi , bj ))) 

= o (exp(-nbij )), where bij = min (bi,bj ). (3.6) 

Therefore, we then only need to consider the asymptotic behavior of 
P{~in(Xi) :::; ~jn(Xj) and (Zi(n) > 0, Zj(n) > 0, Yi(n) > 0 and }j(n) > 
On· 

Let Qij = (Xi - Xj)Li2 Lj2 + LilLj2 - Li2 Lj1 . Then Qij > 0 if ifA(~) 
and jfB(x). Therefore, 

P {~in(Xi) :::; ~jn(Xj) and } 
(Zi(n) > 0, Zj(n) > 0, Yi(n) > 0 and }j(n) > 0) 

:::; P{(Xi - xj)[Yi(n)}j(n) - Li2Lj2J < -Qij/3} 

+ P{Zi(n)}j(n) - LilLj2 < -Qij/3} 

+ P{Yi(n)Zj(n) - Li2Ljl > Qij/3}. (3.7) 

With repeated applications of Bonferroni's inequality, we have the fol­
lowing inequalities: 

and 

P{(Xi - xj)[Yi(n)}j(n) - Li2Lj2J < -Qij/3} 
< P{Yi(n) - Li2 < -Qij(6N4)-1} 

+ P{}j(n) - Lj2 < -Qij(6NLi2 )-1} 

if Xi > Xj; 

P{(Xi - xj)[Yi(n)}j(n) - Li2Lj2J < -Qij/3} 
< P{Yi(n) - Li2 > Qij(6N4)-1} 

+ P{}j(n) - Lj2 > Qij(6NLi2 )-1} 

if Xi <Xj; 

P{(Xi - xj)[Yi(n)}j(n) - Li2Lj2J < -Qij/3} = 0 

(3.8a) 

(3.8b) 

if Xi = Xj; (3.8c) 

P{Zi(n)}j(n) - LilLj2 < -Qij/3} 

:::; P{Zi(n) - Lil < -Qij(6N3 )-1} 

+ P{}j(n) - Lj2 < -Qij(6Lil)-1}; (3.9) 

P{Yi(n)Zj(n) - Li2Ljl > Qij/3} 

:::; P{Yi(n) - Li2 > Qij(6N3 )-1} 

+ P{Zj(n) - Ljl > Qij(6Li2 )-1}. (3.10) 
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Then, by Lemma 3.3 and from Equations (3.7) through (3.10), we con­
clude that 

p {~in(Xi) ::; ~jn(Xj) and } 
(Zi(n) > 0, Zj(n) > 0, Yi(n) > 0 and Yj(n) > 0) 

::; o( exp( -naij)) for some aij > O. (3.11) 

Now, from (3.4), (3.6) and (3.11), for each :!:€X, i€A(:!:) and j€B(:!:), 

(3.12) 

Now, let C2 = ~n{min(bij,aij)}. Then C2 > o. 
'.,..J 

Based on the preceding, we have the following result. 

Theorem 3.4 Let {d~} be the sequence of empirical Bayes selection rules 
defined in {2.12}. Then r(G, d~) - r(G) ::; O(exp( -C2n)) for some positive 
constant C2. 

Remark: Another selection problem related to the multinomial distribu­
tion is to select the least probable event; that is, to select the cell associated 
with P[l}. If we consider the loss function 

L(e, i) = Pi - P[l}, (3.13) 

the difference between the selected and the least probable event, then under 
the statistical model described in Section 2, a uniformly randomized Bayes 
selection rule is dc = (dlG, ... , dkc), where, for each i = 1, ... , k, 

(3.14) 

and 
(3.15) 

Let O:in, ~in(Xi) be defined as in (2.7) and (2.10), respectively. When Qo 
is known, we let 

and define a randomized selection rule dn (:!:) = (dl n (:!:), ... , dkn (:!:)) as 
follows: 

din(x) = {IAn(:!:)I-l if i€A n(:!:), 
- 0 otherwise. 

(3.17) 

When Qo is unknown, we let 

(3.18) 
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and define a randomized selection rule d~ (~) = ( di n (~), ... , dim (~)) as 
follows: 

d* (x) = {IA~(~)I-l if ifA~(~), 
m - 0 otherwise. 

(3.19) 

Following a discussion analogous to that given earlier for the most prob­
able event, we can see that {dn} and {d~} are both asymptotically optimal 
and have the following convergence rates: 

o :s; r(G, dn) - r(G) :s; o (exp( -C3n») , 
O:S; r(G,d~) - r(G):S; o (exp(-c4n»), 

for some positive constants C3 and C4, where r(G) now denotes the minimum 
Bayes risk with respect to the loss function (3.13). 
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Bayesian Estimation in 
Two-Way Tables With 
Heterogeneous Variances 

Irwin Guttman1 

Ulrich Menzefricke2 

ABSTRACT Consider a two-way table with one observation per cell and 
heterogeneous variances across the columns. We assume there is available 
proper prior knowledge about these variances and obtain the joint posterior 
distribution for the variances, where, however, the normalizing constant 
has to be evaluated numerically. We use this joint posterior distribution 
to examine the precision (inverse of the variance) in a given column as a 
fraction of the sum of all column precisions. An example is discussed. 

1 Introduction 

We examine the analysis of observations Yij arising from a two-way table 
according to the model 

Yij = 'Y + J.£i + (3j + Cij (i = 1, ... ,n;j = 1, ... ,r), (1.1) 

where 'Y is the grand mean, J.£i is due to a row effect, (3j is due to a column 
effect, and the residuals Cij are independently and normally distributed 
with mean 0 and precisions T/j, i.e., variances 1/T/;, which differ across 
columns. Grubbs (1948) analyzes a similar model from a sampling-theory 
point of view, and he discusses an example involving 

"individual burning times of power train fuses as measured by 
each of three observers on 30 rounds of ammunition which were 
fired from a gun. The fuses were all set for a burning time of ten 
seconds. 

The burning time of a fuse is defined as the interval of time 
which elapses from the instant the projectile leaves the gun muzzle 

IDepartment of Statistics, University of Toronto, Toronto, Ontario, Canada, 
M5S lAl 

2Faculty of Management, University of Toronto, Toronto, Ontario, Canada, 
M5S IV4 
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until the fuse functions the projectile. The times given are mea­
sured by means of electric clocks. A switch on the gun muzzle starts 
three different electric shocks as the gun is fired and each observer 
stops his clock the instant he sees the flash or burst of an individ­
ual round. Each timer, of course, stops his clock independently of 
the other two timers." 

Among other things, Grubbs was interested in whether the three ob­
servers' measurement error variances were different or whether the ob­
servers were equally precise. To this end he obtained unbiased estimators 
of the variances. He does not, however, examine appropriate tests of signif­
icance. 

Grubbs' estimators have received attention in the non-Bayesian litera­
ture since then, a recent reference being Brindley and Bradley (1985), who 
also cited other applications with heterogeneous variances. Brindley and 
Bradley's contribution was to examine the exact distribution of certain 
test statistics when r == 3, and they give some approximate results when 
r > 3. 

In this paper we use a Bayesian approach to obtain the joint posterior 
distribution of the precisions 111, ... ,11r and examine, in particular, the joint 
distribution of All ... , Ar-lI where Aj = l1j / E;=l11i' The parameters Aj 
represent the fraction of the precision due to the jth column effect in our 
model, (1.1). When Aj = l/r, j = 1, ... , r - 1, the precisions are all equal 
and the model of heterogeneous precisions simplifies to that of the well 
known model with homogeneous precisions. In section 2 we derive the joint 
posterior distributions, and in section 3 we discuss an example. 

2 The Joint Posterior Distribution 

As a first step, we derive the likelihood function and write it in a form 
convenient for our purposes. Let 

Y = {Yij} 

f!. = ({311 .. . , (3r) 

!!:. = (ILl, . .. , f..tn) 

'!1 = (1111"" l1r) 

(2.1) 

j=l 

Because of the normality assumption for the independent eij'S, we have 
that the likelihood function, say l, is such that 

(2.2) 
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where 
r n 

Q = L L 1]j(Yij - 'Y - /-ti - {3j)2. (2.3) 
j=li=1 

Using standard analysis of variance and Lagrangian techniques, we may 
write Q as 

r n n r 

Q = L L 8 ijOij + a L(Jti - /-ti)2 + n L 1]j(1 + {3j - 'Y - (3j)2(2.4a) 
j=li=1 i=1 j=1 

with 

r 

Pi a-I L 1]j(Yij - Yj), {3j = Yj - 1, 1 = Y = L LYij/rn (2.4b) 
j=1 

and where 
r 

a = L 1]j, Oij = 1]j -1];/a if i = j and Oij = -1]i1Jj/a, i =I- j. (2.4c) 
j=1 

In order to obtain the posterior distribution for (3, /-t, 1J, and 'Y, the like­
lihood of (2.2) must be combined with a prior. We Willexamine the case 
where 

ph, Ii, l!:., !l) = ph, Ii, l!:.)p('!J) (2.5) 

with h, Ii, l!:.) independent a priori of!1, 

(2.6) 

the so-called diffuse prior, and where the 1J/s are independent gamma dis­
tributions with 

(2.7) 

Note the common value /I. (Different values of /I for each 1]j are easily 
incorporated, as is the case of a multivariate normal prior for 'Y, (3, /-t.) 

We can now combine the diffuse prior for 'Y, {3 and /-t and that for 1]} (j = 
1, ... , r) with the likelihood in (2.2) to get a posteriOr distribution. After 
integrating out 'Y, Ii and l!:., we have the marginal posterior distribution for 
1Jl, ... , 1]r, 

( !y) -(n-1)/2 (ITr (n+,,-1)/2-1) {1 [J} P!1 cxa 1]j exp -2"' , 
j=l 

(2.8) 

where [.J = 2:;=1(8jj + /l80j )1]j - ± 2:~,j=11Ji1]j8ij, and a = 1J1 + ... +1Jr· 

[Note that the dimension of h, Ii, l!:.) is r+n-1, since 2:~1 /-ti = 2:;=1 {3j = 
O.J 
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We remark that a proof of (2.8) utilizing the matrix formulation of (1.1), 
y = Xr. +~, for X, r. and ~ specific to (1.1), is given in Guttman and 

Menzefricke (1988). 
Obtaining the normalizing constant for (2.8) in closed form does not seen 

possible, but some progress can be made by transforming from 111, ... ,11r 
to A!, ... , Ar-I, 0, where Aj = 11j/O. The Jacobian of this transformation 
is or-I. Integrating out 0, we get 

( ' 'IY) (rrr, (n+v-l)/2-1) /Q- (r-l)(n-l)/2-rv/2 P All" ., Ar-l <X Aj , 
j=l 

(2.9) 

where 
r r 

Q = ~)Sjj + VSOj)Aj - L Sij Ai Aj, (2.1O) 
j=l i,j=l 

and where, of course. Ar = 1 - Al - '" - Ar-l. 
Note that 0 is the total precision across all columns and so Aj is the frac­

tion of the total precision attributable to column j. Of course E;=l Aj = 1. 
Before turning to an example, let us examine the case when there are 

only 2 columns, i.e., r = 2. Using the prior for 111 and 112 in (2.7) and 
transforming to Al and 0 = 111 + 112, see the discussion before (2.9), we can 
find the prior for AI, 

[Al{l- At}]"'/2-1 
p{Al) <X [ {)t' (2.11) 

SOlAl + S02 1 - Al 

and we note that, as v -+ 0, 

p{At} <X [AI (I - Al)r1 (2.12) 

which is improper. 
When r = 2, the posterior density in (2.9) reduces to 

p{AIIY) <X {AI {1- Al)}(n+v-l)/2-1 /Q(n-2v-l)/2, (2.13) 

where 
2 2 

Q = ~)Sjj + VSOj)Aj - L SijAiAj, (2.14) 
j=l i,j=l 

= VS02 + V{SOI - S02)Al + (S11 + S22 - 2S12)Al{l- AI). 

This posterior distribution can be easily be evaluated using numerical 
methods. When the prior distribution in (2.7) is diffuse, i.e., when v = 0, 
then the posterior in (2.14) is . 

p{AIIY) <X [AI {l- At}r1 , 

i.e. it is improper and of the same form as the prior in (2.12). The au­
thors conjecture that the posterior is also improper for r ~ 3, but cannot 
formulate a rigorous proof of this. 
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3 An Example 

For numerical purposes, it is convenient to rewrite the expression Q in 
(2.10) as 

r r 

Q = ~)Sjj + VSOj)Aj - L SijAiAj (3.1) 
j=1 iJ=1 

r-l r-l 

= vSor + L (Sjj + v(SOj - SOr)) Aj - L SijAiAj, 

j=1 i,j=1 

where Sij = Sij + Srr - Sir - Sjr (i = 1, ... ,r -l;j = 1, ... ,r -1). 
To illustrate the results of section 2 we use the data in Grubbs (1948). 

Using the n = 29 complete observations in Grubbs' data set, where r = 3, 
we have 

1 (8.8916 2.4850) 
{ Sij} = 10000 2.4850 3.1084 . 

Grubbs' estimates for the three variances are (.0253)2, (.0079)2 and (.0157)2. 
Grubbs' would then estimate the >..j (j = 1,2,3) by >"1 = 0.072, >"2 = 0.741, 
and >"3 = 0.187. 

In any practical application, proper prior distributions for 'f/j must be 
specified. For our analysis, we chose prior distributions such that SOl = 
S02 = S03 = (0.0173)2 = 0.0003 in (2.7), i.e. we assume that, a priori, the 
three precisions have the same expected values. We note that v effectively 
indexes the prior sample size, see (2.7). In order to show the effect on v on 
posterior inferences, we let v = 0.01, 0.1, 1 and 5. 

Perspective plots of the joint distributions for the four cases are given in 
Figure 1 (contours of these surfaces are given in Guttman and Menzefricke 
(1988)). The shape of the plots is quite sensitive to choice of v, particularly 
when v is very small. 

Table 1 gives the posterior mean and standard deviation for Al and A2 

corresponding to the distinct values for v. As v increases, the posterior 
means get closer to the prior values, .33. Note that Grubbs' estimates of 
0.072,0.741, and 0.187 for AI, A2, and A3 are somewhat comparable to the 
results for the case when v = 0.01, a situation for which prior information 
is very diffuse with respect to the precisions 'f/ j. 
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FIGURE 1. Perspective plots of the joint posterior distribution p(Al' A2IY), based 
on the Grubbs data for various values of v. 
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Calibrating For Differences 

George Knafl.1 

Jerome Sacks2 

Cliff Spiegelman3 

ABSTRACT Suppose that an approximate linear model, or nonparamet­
ric regression, relates instrument readings y to standards x. A method is 
derived for constructing interval estimates of displacements Xl - X2 be­
tween standards based on corresponding instrument readings YI, Y2, and 
the results of a calibration experiment. 

1 Introduction 

Calibration (see Rosenblatt and Spiegelman, 1981) is commonly used to re­
late instrument readings to standards, thereby providing meaningful mea­
surements. Scientists and engineers often want displacements or differences 
that are measured by using readings at two sites (or times). Examples 
include change in the volume level of liquid in a nuclear processing tank 
(Knafl, Sacks, Spiegelman and Ylvisaker, 1984) and, in many chemical mea­
surements, the difference between a sample measurement and a "blank" 
measurement that corrects for background interferences. When the rela­
tionship between the instrument reading and the standard is a straight 
line, then the calibration is relatively easy to carry out. More complex 
relationships between standards and readings are more challenging. Our 
purpose here is to propose methods to perform the calibration of differ­
ences in the more realistic and less ideal situations where the relationships 
between standards and readings depart from linearity. 

A typical set-up is that an experiment is performed with observations 

j = 1, .. . ,n (1.1) 
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where the xj's are constant (standards), f.j's are independent N(O, 1) ran­
dom variables, a is unknown, and I is an unknown function in a family of 
regression functions F. This calibration experiment or training sample is 
used to establish the nature of the relationship between x and y (estimate 
f) as well as to estimate a. 

After the experiment is performed, pairs of new observations (yri' Y2i)' 
i = 1,2 ... are taken where Y;i = I(X;i)+f.;i satisfies the original model but 
the constants X;i(P = 1,2) are not known. The problem we address is to 
find interval estimates It of x 2i - xri satisfying the uncertainty statement 
made specific in Section 2 below. This is a special multivariate calibra­
tion problem. For an extensive treatment of other multivariate calibration 
problems see Brown (1982). 

The calibration is traditionally discussed in the context of an exact linear 
model: F is a set of linear combinations of a finite number of functions, 
for example, polynomials of fixed degree. Our discussion, however, is in the 
context of an approximate linear model or non parametric regression as in 
Sacks and Ylvisaker (1978), and Knafl, et. al. (1984). 

In this context 

k 

I(x) = 'LJ3j /j(x, t) + r(x, t) for t E X,x E X (1.2) 
j=l 

where Ir(x, t)1 s M(x, t), M is known. 11, ... , In are also known, and X 
is the calibration region. A typical example is k = 2, 11 = 1, h = x - t, 
M(x, t) is proportional to (x _t)2 and r(x, t) results from Taylor expansion 
around given t. The exact linear models are a special case of (1.2) and 
result from taking M(x, t) = O. See Sacks and Ylvisaker (1978), or Knafl, 
et. al. (1984) to see how this expansion is used. 

Our first step is to discuss the case of straight-line regression (Section 2). 
In Sections 3 and 4 we describe how to obtain useful intervals when the 
model has the more general form (1.1), (1.2). The technical aspects, re­
served for the Appendix, make it clear that detailed computations are 
needed to provide adequate confidence intervals. The examples presented 
in Section 5 indicate the general utility of the proposed methodology. 

2 Straight-line Calibration 

When the calibration curve I in (1.1) is a straight-line, I(x) = f31 + f32X, 
there is a natural way to proceed to calibrate for differences. Start with the 
calibration experiment, let ih, & be the usual estimates of f32, a obtained 
from least-squares theory; set 1/ D2 = I:7=1 (Xi - X)2 and note that 

(2.1) 
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has the t-distribution with n - 2 degrees of freedom. Let (u, v) be a single 
set of x values (unknown) at which new observations Yu, Yv are made and 
write 

fj = Yv - Yu = (32(V - u) + a(€v - €u) 

= (32x + 21/2a€ (say), (2.2) 

with x = v - u. Set C2 = tn -2(1 - 8/2), the 1 - 8/2 quantile of the tn -2 
distribution, and use (2.1) to get a confidence band for the line {{32X, -00 < 
X < oo}: 

(2.3) 

For simplicity of the exposition to follow assume that Figure 1 is the com­
mon case. This is a slight restriction because the only case not covered 
by Figure 1 is the situation where /32 - C2a D < 0 while /32 + C2a D > 0 
- a situation of little practical interest for precision instruments and one 
which leads to confidence "intervals" for x which are infinite and disjoint. 
A further simplification we make is that /32 > o. Again, this is typical in 
the calibration of precision instruments. 

Using these simplifications we let C1 be a positive constant, to be deter­
mined later, and expand the confidence band of (2.3) to 

(see the dashed line in Figure 1). Now define 

I = [ . fj - C1 a ,. fj + C1 a ] 
{32 + aC2D {32 - aC2D 

(2.4) 

(2.5) 

(see Figure 1). The goal is to choose C1 to ensure that I contains x with 
high probability. 

This uncertainty requirement has to be made precise. To do so let G be 
the event 

(2.6) 

Then (2.3) states that 

P[G];::: 1- 8 for all {3, a, 

where {3 = ({31,{32). The uncertainty statement we adopt is similar to the 
one used in Carroll, Sacks and Spiegelman (1988) namely, 

P.e,<7,x[I contains x 1/32, G] ;::: 1 - a (2.7) 

for all {3, a, x (further conditioning on /31 can also be done). This statement 
is related to the Scheffe (1973) uncertainty statement for calibration; see 
Carroll et. al. (1988) for further details. The interpretation of (2.6) and 
(2.7) is: 
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FIGURE 1. Calibrating Differences in Straight-line Model 

(a) The initial calibration experiment is successful with probability at least 
1- 8, 

(b) Given a successful outcome of the initial calibration experiment, the 
probability of coverage of the true x is at least 1 ~ Q. 

Therefore the expected percent of intervals that cover the true x values, 
given a good outcome of the initial calibration experiment, is 2: 1 - Q. In 
order to choose Cl (see (2.5)) to ensure (2.7) we note that 

P[I contains x I /32, C] 

= P [Iy - /32xl :s c2aDlxl + CIa 1/32,C] 

= P [1,82x + 21/ 2(1£ - /32xl :s c2aDlxl + CIa 1/32,C] 

= p[ - CIa + (/32 - (32)X - c2aDlxl < 21/ 2(1£ 

:s Cl a + (/32 - (32)X + C2a D1xll/32, c] 
2: P [CIa - 21xlc2Da < 21/ 2(1£ < CIa I /32'C]. (2.8) 
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From the arguments in Carroll et. al. (1988) we get the right side of (2.8) 
to be at least as large as 

P [_T1/2C1 - 21/21xlc2D < Tn - 2 < 2-1/ 2C1] (2.9) 

where Tn - 2 has the t-distribution with n - 2 degrees of freedom. 
There are two options we consider for handling (2.9). The first comes 

from noting that (2.9) is minimized when x = 0 in which case the choice 
C1 = 21/2t n _2(1 - a/2) assures the desired uncertainty statement of (2.7). 
Clearly, this choice of C1 is conservative. A second approach is to replace 
Ixl by lii/,821, treat it as a constant, and find C1 by 

(2.10) 

Although C1 is now data-dependent, it is easily calculated and should pro­
vide through (2.7) an adequate, if inaccurate, uncertainty statement. 

In Section 5 we present a comparison of the numbers obtained here using 
the conservative choice C1 = 21/2t n _2(1 - a/2) with those obtainable by 
applying the methods of Sections 3 and 4. The uncertainty statements we 
use below in Sections 3 and 4 are natural extensions of (2.6) and (2.7) with 
somewhat modified definitions of C1 and C2. 

3 Model Robust Calibration 

Recall the model of (1.1) and (1.2) and, as in Section 2, let Yu and Yv 
denote new observations at unknown sites u and v. Here, however, we do 
not assume a straight line model but our purpose is still to give a confidence 
interval for all the v-u that occur. We will follow the formulation in Knafl, 
Sacks, Spiegelman, and Ylvisaker (1984) but incorporate the simplifications 
stemming from Carroll, Sacks and Spiegelman (1988). 

In the model (1.1), (1.2) take X to be a compact interval of R1. We use 
the calibration experiment to estimate f by choosing {Ci(X)} and forming 

n 

j(x) = LCi(X)Yi. (3.1) 
i=1 

The weights {Ci(X)} which determine the linear estimates in (3.1) are not 
specified for now; one set which we use below is obtained as in Sacks and 
Ylvisaker (1978). Given the {c; (x)} set 

B(f,x) = LCi(X)f(Xi) - f(x) 

B(x) = sup IB(f, x)1 
fEr 

D(x) = (Lc;(x)) 1/2 

(3.2) 
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The estimate j(x) is normally distributed with mean f(x) + B(f, x) and 
variance a2D2(x). From (3.2), the bias B(f,x) of f is bounded by B(x). 

Our confidence interval calculations require assumptions about an esti­
mate of the scale a. In the case of an exact linear model there is no difficulty, 
we use the standard estimate of scale from least-squares theory and a is 
then independent of the least-squares estimate j of f. In the case of the 
approximately linear models we employ below, the relationship between j 
and a is more complicated. In particular, a and j need not be independent. 
In important situations, however, there will be an estimate a which is inde­
pendent of j. This occurs when a is based on replicated data and F is an 
approximately linear model in error-scaled form (see Sacks and Ylvisaker, 
1978) i.e., for each t E X and f E F 

If(x) - L,Bj!J(x, t)1 ~ aM(x, t) (3.3) 

where the !J's and M are specified functions. For example 

If(x) - f(t) - f'(t)(x - t)1 ~ am(x - t)2 (3.4) 

with m a known constant gives rise to such an error-scaled class (see Knafl 
et. al. 1984 for an example where such an m is known). 

In addition, when replicated data are available, we can define a so that 
the distribution of L:ci(X)€i conditioned on a is N(0,D2(x)) and l/a2ja2 
is chi-square with 1/ degrees of freedom (1/ determined by the numbers of 
replicates). These latter properties were used in Knafl et. al. (1984) where 
it was noted that care has to be exercised in choosing a. 

The properties we need for a then are 

( a) a independent of j, 

(b) l/a2 j a2 is chi-square with 1/ degrees of freedom, (3.6) 

(c) the conditional distribution of L:ci(X)€i given a is N(0,D2(x». 

The model (3.3) is useful because it permits a choice for a satisfying 
(3.6) which in turn allows the use of the methods in Carroll et. al. (1988). 
Moreover, it is useful when M cannot be specified in advance and cross­
validation is used to estimate M, as described in Knafl et. al. (1984). 

With (3.3) and (3.6) assumed, we seek a 1 - 0 confidence band for f. 
Following the methods employed in Knafl, et. al. (1984) and Knafl, Sacks, 
and Ylvisaker (1985), we first find a confidence band for f on a finite grid 
S of points of X. By linearly interpolating from S to all of X we then get 
a confidence band over all of X. Formally, we obtain 

Pi, a [Ij(x) - f(x)1 ~ Bo(S) + B(x) + c2D(x)a, all x E X] ~ 1- 0 (3.8) 

all a > 0, all f E F. Here, Bo(S) is a constant depending on the mesh of 
S and the family F. The functions Band D are as in (3.2), and C2 is a 
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constant chosen to ensure the validity of the coverage probability in (3.8). 
The case M = 0 corresponds to the straight line model and reduces the 
problem to the context of Section 2 because Bo(S) and B(x) are both 0 
and C2 is t n -2(1 - 6/2). The details of how C2 and Bo(S) are calculated in 
general can be found in the references just cited. 

For estimating a new v when Yv is observed we follow the procedures in 
these references, expand the confidence band to 

and obtain I as in Figure 2. Formally, 

FIGURE 2. Calibration for general f 

, 
I 

I = {xlYv is in the interval defined by (3.9)}. 

The constant Cl is chosen to guarantee 

P[I contains viZ = z, OJ 2: 1 - a 

where 0 is the event in the probability statement of (3.8) and 

Z = sup Ij(x) - f(x)I/D(x) . 
xEX 

We note that Z in (3.11) plays the role of ~2 in (2.7). 

(3.9) 

(3.10) 

(3.11) 

The statement (3.11) is discussed in Carroll et. al. (1988); in the context 
of Section 2 it is equivalent to (2.7) . The tactics described there for finding 
Cl to satisfy (3.11) lead to calculating 

P [Iyv - j(v)l::; Uo(v) +clalZ = z,O] (3.12) 
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where Uo(v) = Bo(S) + B(v) + C2uD(V). Under the assumption of (3.6) we 
can get (3.12) to be at least as large as 

P[-2Uo(v) - C1U < Uf < Cluj. (3.13) 

If Uo{v) is known, then Cl can easily be found to make (3.13) = 1 - Q. 

Since v is unknown, we replace Uo{v) by something calculable; namely, 
Uo{v) where v = j-l{yv). This sets the stage for dealing with differences. 

4 Calibrating Differences 

With the setting as described in Section 3, let Yu, Yv be two new observa­
tions. Our concern is to find a confidence interval for v - u and we approach 
this problem as follows: 

Fix u and let I be a confidence interval for v. Let u = j-l{yu) estimate 
u and take J = I - U. We will use J as a confidence interval for v - u. 

The disparate treatment of u, v leads to an asyPlmetry which can be 
overcome, but at the expense of added computation and of little apparent 
gain in the examples we examined. 

The problem to be faced is how to construct I (see (3.1O)), so that J 
has adequate coverage probability. In conformity with (3.11), we would ask 
that 

prJ contains v - ulZ = z, GJ ~ 1 - Q (4.1) 

where G, as before, is the event in (3.8), so that P[G] ~ 1 - 6. 
For technical reasons we need (4.9) below but we cannot verify that (4.9) 

holds on G. However, we can replace G by a more restrictive G l on which 
(4.9) does hold. To define G l set 

[C{v) - c(u)J· f 
r = -=.-. -:'--'-:-:---'-~-::-

~llc{v) - C(u) II 
(4.2) 

where c( u) is the vector (Cl (u), ... , en (u)), II II is ordinary Euclidean norm, 
and the· is the usual inner product. The random variable r has, according 
to (3.6), the tv-distribution. We let 

(4.3) 

and choose C2 so that 

which assures 
(4.4) 

by the Bonferroni inequality. Recall that G is the event in (3.8) and the C2 
defined there is not the one that assllres (4.4). The latter is larger because 
G l is more restrictive than G. 
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We replace G by G I and now demand that 

Pt,a,u,v[J contains v - ulZ = z,Gd ~ 1 - n. (4.5) 

Having chosen C2 to assure (4.4), we are left with the need to choose CI 

which enters, as indicated in (3.10), in the definition of I and hence J. 
In order to find CI we make a series of approximations to estimate the left 

side of (4.5). We sketch an outline of the argument here; the details are in 
the Appendix. We use the notation Pd'] to stand for Pt,a,u,v[·IZ = z, G I ]. 

Approximate the left side of (4.5) to be 

(4.6) 

where T = u - il, AT is an approximation to (see (Al.3)) 

AT = [j(v - T) - j(v)] - [j(u - T) - j(u)] (4.7) 

(AT is 0 if u = il so AT is usually small), d is the difference 

d = [j(v) - f(v)] - [j(u) - f(u)] , (4.8) 

and (;0 (see (Al.5)) is an approximation to Uo(v - T) (see after (3.12) for 
the definition of Uo). 

The probability in (4.6) is then bounded below by minimizing over the 
possible values of d. The range of d when G I is satisfied is obtained from 
(4.8), (3.2) and (4.2) to be 

Idl = IBU, v) - BU, u) + a(c(v) - c(u)) . EI 
::; B(v) + B(u) + allc(v) - c(u)11 ITI 
::; B(v) + B(u) + c2allc(v) - c(u)11 

= do (say) . (4.9) 

It is easy to confirm that the values of d which minimize (4.6) are d = 
±do. This leads to the approximation from below of the left side of (4.5) 
by 

mi~ J Pl [la(Ev - Eu) - At - dl < Cla + (;0] dQ(t) (4.10) 
d=±do 

where do is an estimate of do (A1.4) and Q is the conditional distribution 
of T given Z = Z, GI ( (4.10) is based on (Al.6)). 

The integrand in (4.10) is approximated in (Al.7). The distribution of 
Q is also estimated. This finally leads to solving 

mi~ in£. H(h, CI, d) = 1 - n 
d=±do Ihl~uo 

(4.11) 
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for C1 (see (Al.lI)) where H(h, c, d), defined in (Al.1O), is an approxima­
tion to (4.10). The approximations used at each step appear innocuous and 
are, for the most part, replacements of unknowns by estimated values based 
on the data. Extensive Monte Carlo studies would be useful for affirming 
our belief that the actual probabilities are close to the nominal values. 

The calculation of C1 completes the specification of J, the confidence 
interval for v - u as defined at the beginning of this section. 

5 Examples 

The first example arises from atomic absorption spectroscopy and is an 
example discussed in Carroll et. al. (1988). It was found there that a straight 
line was an adequate model to use and we therefore adopt this model. 
Table 1 gives the calibrations for individual y's. 

TABLE 1. Individual Calibrations for 
Spectroscopy Data 

iT = 0.0035, O! = 0.10, 6 = 0.10 

y" U Length of Conf. Interval 

0.06 0.016 0.022 

0.075 0.038 0.022 

0.08 0.045 0.022 

0.10 0.074 0.021 
0.15 0.146 0.021 
0.20 0.218 0.021 

In order to correct for unknown contaminants, a neutral sample is often 
measured so that v can be corrected. A common correction is v - u where 
u is the value from the neutral sanIple. This is called a correction for blank. 
As can be seen in Table 2, the method of Section 2 produces confidence 
intervals of smaller length than does the method of Section 4 when applied 
to the straight-line model. 

This is expected, since the method of Section 4 does not take advantage 
of the straight-line model to subtract the y's and get rid of the effect of the 
intercept [31. Figure 1 indicates that the methods of Section 2 ought to be 
best when v - u is small and this is borne out in Table 2. The differences 
between the two methods do not appear great, especially when Yv - Yu is 
not close to 0, suggesting that the method of Section 4 is adequate and 
conservative. 

The second example we eXanIine is the nuclear processing tank data 
discussed in Knafi, Sacks, Spiegelman, and Ylvisaker (1984). The details of 
that data set can be found there. Our concern with calibrating differences 
arises from the need to estimate the amount of nuclear material put in 



George Knafl, Jerome Sacks, Cliff Spiegelman 345 

TABLE 2. Calibration for Differences - Spec­
troscopy Data 

8- = 0.0035, Q = 0.10, 6 = 0.10 
Length of Conf. Interval 

Method of Method of 

Yv Yu v-u Section 2 Section 4 

0.06 0.08 0.029 0.026 0.032 

0.075 0.15 0.108 0.029 0.032 
0.10 0.20 0.144 0.030 0.033 

the tank or taken out of the tank. These amounts are then compared with 
plant records so that any unauthorized transfers of material can be detected 
promptly. 

The methods of Section 3 were used to produce the data in Table 3, 
while the methods of Section 4 produced the data in Table 4. The model 
fit is a modification of the type of model specified in (3.2) or (3.3) but one 
close in spirit. We refer the reader to Knafi et. al. (1984) for the details. 
The variation in the lengths of the confidence intervals in Table 4 is a 
consequence of the fluctuation of the underlying regression function. 

TABLE 3. Individual Calibrations for Tank Data 

8- = 2.784, Q = 0.10,6 = 0.10 

Yu U Length of Confidence Interval for 'It 

1033 0.568 0.0105 
1052 0.576 0.0104 
1062 0.581 0.0106 
1100 0.597 0.0116 
1400 0.726 0.0109 
2815 1.325 0.0100 

TABLE 4. Calibration of Differences for Tank Data 

8- = 2.784, Q = 0.10,6 = 0.10 

Yu Yv 1) - u 
1052 1062 0.0043 
1100 1400 0.1292 
1033 2815 0.7572 

Length of Confidence Interval 

0.008 
0.0169 

0.0136 
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Al Appendix 

Recall the definition of I from (3.10) and, from Section 4, that 

J = I - U, u = j-l(y,.). 

Note the definition of Uo following (3.12), let T = u - u and recall the 
notation P l (see above (4.6)). Then 

Pl[J :> v - u] = Pl[I:> v - T] (Al.l) 

= Pl [Iyv - j(v - T)I ::; Uo(v - T) + Cla] 

The definition of AT and d at (4.7) and (4.8) can be used in (Al.l) to get 

Pl[J:> v - u] = Pl [la(fv - fu) - AT - dl ::; Uo(v - T) + Cla]. (Al.2) 

We approximate AT by 

lh = (lev - T) - j(fJ)) - (j(u - T) - j(U))j (Al.3) 

that is, we replace u, v by their estimated values. We do the same with do, 
the upper bound on d given in (4.9) and replace it by 

do = B(fJ) + B(u) + c2allc(fJ) - c(u)ll. (Al.4) 

We also replace Uo(v - T) by 

00 = Uo(fJ - T). (Al.5) 

Subject to the approximations due to replacing u, v by U, fJ, we get an 
estimated lower bound on (Al.2) by taking its minimum over all Idl ::; do 
and replacing do, AT, Uo(v - T) by do, AT, 00 : 

Pl[J:> v - u] 2: mil! Pl [Ia(f v - fu) - AT - dl ::; 00 + Cla]. (Al.6) 
Idl::;do 

If the estimates do, AT, 00 are treated as exact, the minimum in (Al.6) 
is achieved at the end points d = ±do giving rise to (4.10). 

Let til = 2- l / 2a(fv -fu)la. Then til has the t-distribution with v degrees 
of freedom. We treat At/a, dla, 00 117 as exact and bound the integrand 
in (4.10) by 

(Al.7) 

by use of the results in Carroll, Sacks, and Spiegelman (1988). 
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We next estimate Q by discretizing: Let 0 ::; q-1 < qo < q1 < .... Let 
Sj = -qj for j ~ -1. Use (A1.7) and the discretization to replace (4.10) by 

= = 
L p(qj,d)[Q(qj + 1) - Q(qj)] + LP(sj,d)[Q(sj) - Q(Sj+1)]. (A1.8) 

j=-l j=l 

Set G(u, t) = j(u - t) -j(u). Then 

Q(tj+d - Q(qj) = P[qj < u - it < qj+1] 

= P[j(u - qj+1) < Yu < j(u - qj)] 

= P[G(u,qj+1) < O"fu + f(u) -j(u) < G(u,qj)] 

~ P[G(it,qj+1) < O"fu + f(u) -j(u) < G(it,qj)]. 

(A1.9) 

Put h = f(u) -j(u) and note that, on Gb If(u) -j(u)1 ::; Uo(u) ~ Uo(it). 
Then (A1.8) becomes (approximately) 

= 
LP(qj+1,d)P[G(it,qj+d < O"fu + h < G(it,qj)] 
j=l 

= 
+ L p(Sj, d)P[G(it, Sj) < O"fu + h < G(it, Sj+1)] 

j=-l 
= H(h, C1, d) (say). (A1.lO) 

We then solve 

min inf H(h, C1, d) = 1 - a 
d=±do Ihl:5Uo(tl) 

(A1.11) 

for C1. 

The calculations in (A1.10) can be implemented by dividing through 
by 0- and treating G(it, Sj)/o-, Uo(it)/o- as exact. Our calculations reveal 
that, typically, the minimizing h in (A1.11) occurs at one of the endpoints, 
±Uo(it). 
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Complete Class Results For 
Linear Regression Designs 
Over The Multi-Dimensional 
Cube 

Friedrich Pukelsheim 1 

ABSTRACT Complete classes of designs and of moment matrices for linear 
regression over the multi-dimensional unit cube ~re presented. An essen­
tially complete class of designs comprises the uniform distributions on the 
vertices with a fixed number of entries being equal to unity, and mixtures 
of neighboring such designs. The corresponding class of moment matrices 
is minimally complete. The derivation is built on information increasing or­
derings, that is, a superposition of the majorization ordering generated by 
the permutation groups, and the Loewner ordering of symmetric matches. 

1 Introduction 

In a brilliant paper C. -So Cheng (1987) recently determined optimal designs 
over the k-dimensionalunit cube [0, Ilk for the linear model 

In this setting the experimenter chooses the regression vector x in the cube 
[0, Ilk prior to running the experiment, and then observes the response 
Y. The response is assumed to have expected value and variance as given 
above; furthermore, responses at different design points x, and replicated 
observations at the same point x, are all taken to be uncorrelated. As 
pointed out by Cheng this model has interesting applications in Hadamard 
transform optics. 

The optimal designs of Cheng (1987) are the j-vertex designs ej and 
mixtures of (j + 1)- and j-vertex designs, defined as follows. A j-vertex 
of the unit cube [0, Ilk is a vector x with j entries equal to unity and the 
remaining k - j entries equal to zero, for j = 0, ... , k (See Figure 1.) There 

1 Cornell University, On leave from the Institut fUr Mathematik der Universitat 
Augsburg. 
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are (~) many j-vertices. The j-vertex design C,j is the design that has the 

j-vertices for support, and assigns uniform mass 1/ (~) to each of them. For 
mixtures of the form ac,j+l + (1- a)c,j the following notation is convenient, 
in that it provides a continuous parameterization. Given j, j = 0, ... , k - 1, 
define the design 

for s E (j,j + 1). 

In terms of s we have that j is the integer part of s, j = int s. In other 
words, the two integers j + 1 and j closest to s specify the number of vertices 
supporting c's, and the fractional part s - j determines the weight for mixing 
C,j+l and C,j. For example, 6.11 = 0.116 + 0.896, and 6.4 = OAc'8 + 0.66· 

Under the p-mean criteria considered by Cheng (1987) the class of opti­
mal designs is 

starting from the 'median vertex design' c'int(k+l)/2 and running through 
the j-vertex designs C,j and mixtures c's up to the design c'k that assigns 
all mass to the vector with each entry equal to unity. It is notationally 
convenient to define 

. k+ 1 
m=mt--· 

2 ' 
this is the largest median of the set of numbers 0, ... ,k. As usual the class 
of all designs on [0, IJk is denoted by 3. 

FIGURE 1. Corners of the unit cube with j entries 1 and the remaining entries 
o are called j-vertices. For the cube in dimension 3 the figure shows the 0-, 1-, 
2-, and 3-vertices. 
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In Section 2 we show that Cheng's class C is essentially complete, and that 
the corresponding class of moment matrices M(C) is minimally complete, 
with respect to the information ordering generated by the permutation 
group Perm( k). As a consequence, the class C contains an optimal design 
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whenever the optimality criterion is given by an information function <p 
that is permutationally invariant. 

Cheng (1987) studied the subclass of p-means <pp. In Section 3 we present 
some graphs showing how the optimal support parameter s(p) and the 
optimal value v(P) change with the order p E [-00,1) of the mean <PP' and 
with the dimensionality k. 

2 Complete Class Results 

The performance of a design e hinges on its moment matrix 

M(e) = r xx'de. 
l[O,11 k 

These matrices are of order k x k, and nonnegative definite. Our com­
plete class results refer to the information increasing ordering generated 
by the group Perm(k) of k x k permutation matrices. The general theory 
is surveyed in Pukelsheim (1987). We here only recall such details as are 
necessary for the present discussion. 

A matrix B is said to be more centered than a moment matrix A whenever 

BE conv{QAQ': Q E Perm(k)}, 

that is, B lies in the convex hull of the orbit of A when the group Perm(k) 
acts through congruence. A moment matrix M is said to be at least as 
informative as another moment matrix A when in the Loewner ordering 
one has M ~ B for some matrix B that is more centered than A. A moment 
matrix is said to be more informative than another moment matrix A when 
M is at least as informative as A, but does not lie in the orbit of A. 

Theorem 2.1 The class of designs C is essentially complete; that is, for 
all designs TJ in B there exists a design es in C such that M (es) is at least as 
informative as M (TJ). The corresponding class of moment matrices M (C) is 
minimally complete; that is, for all moment matrices A not in M(C) there 
exists a moment matrix M in M(C) such that M is more informative than 
A and there is no proper subclass of M(C) with the same property. 

Proof: Let TJ be a design not in C. First symmetrization leads to an 
invariant design ij, then a Loewner improvement produces a better design 
e, and another Loewner improvement yields a design es in the class C. 

I. Averaging TJ leads to a design ij that is permutationally invariant. Its 
moment matrix A is the average of the moment matrix A of TJ, 

- 1 ~ 
A= k! ~ 

QEPerm(k) 
QAQ', 
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and therefore more centered than A. 
It may happen that "., has an invariant moment matrix A without "., 

itself being invariant. In this case A = A, so that the passage from A to 
A meanS nO improvement whatsoever. The optimal balanced incomplete 
block designs of Corollary 3.5 in Cheng (1987) provide an instance of this. 

II. Being invariant the design i'j must be a mixture of j-vertex designs 
for j ~ 0, 

i'j = L{3jej 
j?O 

with min {3j ::::: 0 and E {3j = 1. Let J be the k x k matrix with each entry 
equal to 11k, and set K = h - Jj this is an orthogonal pair of orthogonal 
projections. The moment matrix of ej is 

Therefore the moment matrix of i'j is 

M(i'j) = L{3j(AjJ + AjK). 
j?O 

The eigenvalues Ajand Aj increase as j runs over the initial section from 0 
up to m. Hence we introduce new weights O!j that sweep the initial mass 
into the median m 

O!j = 0 for all j < m, O!j = {3j for all j > m. 

This produces a design which is a mixture of j-vertex designs for j ::::: m, 

e = L O!jej, 
j?m 

with a Loewner improved moment matrix M(e) ::::: M(i'j). Furthermore the 
two moment matrices are distinct, unless the weights {3j vanish for j < m. 

III. The moment matrix of e is M(e) = AJ + AK, with 

Thus the eigenvalue pair (A, A) varies over the COnvex set 

COnV {(Aj.Aj) : j = m, ... , k} = COnv {(kz2 , k: 1 z(l- z)) : z = 7,···,1} . 
In other words, On the curve x(z) = kz2 and y(z) = k~l z(1 - z) we pick 
the points (Aj, Aj) corresponding to z = j I k for j ::::: m, and then form 
their COnvex hull. 
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The geometry exhibits that for every eigenvalue pair (A, A) there exist 
vertices (AHl' AHd and (Aj, Aj) of the upper boundary of the convex hull 
containing (A, A) such that with some a E [0,1]' s = j + a, we obtain 

Thus the design es has a Loewner improved moment matrix, M(es) > 
M(e), and lies in Cheng's class C. Furthermore the two moment matrices 
are distinct, unless e itself lies in C. 

IV. As s varies over [m, kJ the eigenvalues As and As strictly increase 
and decrease, respectively. Therefore a proper subclass of M (C) cannot be 
complete. 0 

The eigenvalue improvement in part III of the proof appears to be small, 
indicating that mixtures of j-vertex designs for j :::: m may perform well 
even when they are not in the class C. 

Every optimality criterion ¢ that is isotonic relative to the Loewner or­
dering, concave, and permutationally invariant is isotonic also relative to 
the information increasing ordering: M is at least as informative as A if 
and only if 

M:::: LaiQiAQ~, 
with Qi E Perm(k), and minai :::: 0 and L:ai = 1. The functional proper­
ties of ¢ then yield 

The same reasoning also establishes that if there exists a design e E 3 that 
is ¢-optimal over 3 then there actually exists a design es E C with the 
same optimality property. An optimal design always exists provided the 
criterion ¢ is upper semicontinuous. The following corollary summarizes 
this behavior. 

Corollary 2.2 Let ¢ be an optimality criterion that is Loewner-isotonic, 
concave, and permutationally invariant. If a moment matrix M is at least 
as informative as another moment matrix A then 

¢(M) :::: ¢(A). 

Moreover, there exists a design es E C which is ¢-optimal over 3, 

provided ¢ is upper semicontinuous. 

A particular class of criteria to which this corollary applies are the ~ 
means ¢P' for p E [-00,1]' studied by Cheng (1987). 
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3 Optimal Designs for the p-mean Criteria 

As it happens the complete class of moment matrices M (C) is in fact ex­
hausted by the moment matrices M(~s(p)) belonging to </Ip-optimal designs 
~s(p), as p varies over [-00,1]. This follows from Theorem 3.1 in Cheng 
(1987); we now briefly recall this result. Cheng subdivides the interval 
[-00,1] using two interlacing sequences of numbers f(m), g(m), ... , f(k), g(k), 
according to 

-00 = f(m) < g(m) < f(j) < g(j) < f(j+1) < g(j+1) < f(k) = g(k) = 1 

for j = m + 1, ... , k - 2. His result can then be stated as follows. 

Theorem 3.1 For every order p E [-00, 1]' there exists a support param­
eter s(p) E [m, k] such that the design ~s(p) is </I-optimal over S. As a 
function of p the support parameter s(p) is continuous, equal to j on the 
interval [f(j), g(j)], and strictly increases from j to j + 1 on the interval 
[g(j), f(j + 1)], for j = m, . .. , k - 1. 

FIGURE 2. The graph shows the ¢>p-optimal support parameter Sk(p) standard­
ized by the dimension k, as a function of the order p of the mean ¢>p. Most of the 
variation takes place when p is positive. The limiting value for large dimensions 
k is 1/2. 
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Cheng (1987) actually provides explicit formulae for these quantities, 
namely 

. log ( 1 - 2/-1) 
f(J) = 1+ I ~ , 

og k-j 
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FIGURE 3. The graph shows the dependence of the optimal value v(P) = <I>({.(I'») 
on the order of p of the mean <1>1" for varying dimensions k. 
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(2j + l)(k - 1) + (2j + 1 - k) {I - 2j~l} p-

Figures 2 and 3 illustrate how the standardized support parameter s(p) / k 
and the optimal value ¢(es(p)) vary with p. Variation is small for p < -1 
and is not shown; variation is relatively large for p > O. 

Writing Sk(p) in place of s(p) we now show that for large dimensions k 
the support of the optimal designs tends to the vertices with half of their 
entries unity, 

lim Sk(p) = ~. 
k-+oo k 2 

Let jk be the integer part of Sk(p), so that Sk(p) E [jk,jk + 1), and p E 
[f(jk), f(jk + 1)). It suffices to show that jk/k tends to 1/2. 

Fromjk > m we clearly get liminfjk/k :2: 1/2. We argue that limsupjk/k = 
1/2. Otherwise there is no loss in generality in assuming limjk/k = a > 
1/2. Then we obtain 

. log (1 - 2jk/~ 11k) log (1 - t-) 
f()k) = 1 + 1 (k _ 1)~ - 1 + lim log(k ~ 1)-1L = 1. og l=JiJk k-+oo I-a 

Hence eventually p must fall below f(jk), and this is impossible. 
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Remark 

The criteria used to compare designs in this paper assume that all observa­
tions incur a constant cost regardless of the design point at which they are 
taken. Thus, the total cost is fixed by fixing the total sample size n, and 
the goal is to allocate proportions of this total sample size to design points 
in an optimal fashion. For example, a j-vertex design ~j assigns approxi­
mately n/ G) observations to each of the (;) j-vertices. However, there are 
many situations where investigators are also concerned with minimizing 
the number of design points. In this case, the first observation at a new de­
sign point is more expensive than all succeeding replications at that point. 
Criteria reflecting this concern, and designs optimal with respect to such 
criteria, are a worthy subject for further study. 
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A Unified Method of 
Estimation in Linear Models 
with Mixed Effects 
c. Radhakrishna Rao1 

ABSTRACT A unified approach is developed for the estimation of un­
known fixed parameters and prediction of random effects in a mixed Gauss­
Markov linear model. It is shown that both the estimators and their mean 
square errors can be expressed in terms of the elements of a g-inverse of 
a partitioned matrix which can be set up in terms of the matrices used in 
expressing the model. No assumptions are made on the ranks of the ma­
trices involved. The method is parallel to the one developed by the author 
in the case of the fixed effects Gauss-Markov model using a g-inverse of a 
partitioned matrix (Rao, 1971, 1972, 1973, 1985). 
A new concept of generalized normal equations is introduced for the simul­
taneous estimation of fixed parameters, random effects, and random error. 
All the results are deduced from a general lemma on an optimization prob­
lem. This paper is self-contained as all the algebraic results used are stated 
and proved. The unified theory developed in an earlier paper (Rao, 1988) 
is somewhat simplified. 

1 Introd uction 

The Gauss-Markov model with fixed and random effects, called the mixed 
linear model, is written in the form 

(1.1) 

where Y is an n-vector of observations, X is a given n x m matrix, 13 
is an m-vector of unknown fixed parameters, U is a given n x p matrix, 
( is a p-vector of hypothetical random variables. We make the following 
assumptions on the first and second order moments of ( and e. 

E(() = AI', E(e) = 0, D(() = r, D(e) = G, Cov((, e) = 0, 
(1.2) 

lCenter for Multivariate Analysis, Pennsylvania State University, University 
Park, PA 16802. 
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where D(z) is the dispersion matrix (covariance matrix) of the random 
vector z. 

We develop a simple and a unified approaCh in the general case, when 
nothing is assumed about the ranks of the matrices involved, for the esti­
mation of the fixed parameters {3 and the prediction (or estimation) of the 
hypothetical variables E and E, when the other parameters 'Y, r, and G 
are partly known or completely known. No distributional assumptions have 
been made except the existence of the first and second moments. First we 
prove a few algebraic lemmas. The following notations are used. 
!Rn n dimensional Euclidean real vector space. 
R(Z) vector space spanned by the column vectors of the matrix Z. 
p( Z) rank of the matrix Z. 
Z..L a matrix of maximum rank such that Z' Z..L = o. 
Z- a g-inverse of Z, i.e., a matrix satisfying the equation ZZ- Z = Z. 
tr Z sum of the diagonal elements of Z when it is a square matrix. 
(A: B) the matrix obtained by adjoining the columns of the matrix B to 

those of A. 
We need the following results on g-inverses, which are well known but 
reproved in a simple way to make the theory of linear estimation presented 
here self-contained. 

Lemma 1.1 Let Z- be a g-inverse as defined above. Then: 

a = Z-b is a solution of the consistent equation Za = b. (1.3) 

Proof Since Za = b is consistent, bE R(Z), i.e.,b = Zc for some c. 
Then ZZ-b = ZZ- Zc = Zc = b which shows that Z-b is a solution. 
Now ZZ- ZZ- = ZZ-, i.e., ZZ- is idempotent, so that (1.4) follows. 

o 

Lemma 1.2 Let G be an n.n.d. (non-negative definite) matrix of order 
n x n, X be an n x m matrix and 

( G X)- = (C1 
X 0 C3 

(1.5) 

be any choice of g-inverse. Then: 

X'CIG = X'C~G = 0, XC~X = X = XC3X. (1.6) 

GC~GCIG = GCIGC~G = GCIGCIG = GC~G = GCIG. (1.7) 

X'CIX = X'C~X = o. (1.8) 
trGCI = p(G : X) - p(X). (1.9) 
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Proof First we show that the equation 

Ga+Xb = G>' 
X'a X'J.L 

(1.10) 

is consistent for any vectors >. and J.L. To do so, we show that any vector 
orthogonal to the columns of the coefficient matrix on the left-hand side 
of (1.10) is orthogonal to the vector on the right-hand side of (1.10). Let 
(a' : f3') be a row vector such that 

(a' : f3') (;, !) = 0 => a'G + f3' X' = 0, a'X=O 

=> a' Ga + f3' X' a = 0 = a' Ga = 0 => a' G = o. 
The last step follows since G is an n.n.d. matrix. Then, 

which establishes the consistency of (1.10). In such a case, using the g­
inverse (1.5), we find a solution of (1.10): 

Substituting ii for a in the second equation of (1.10) and equating the 
terms involving>. and J.L on both sides, we obtain 

(1.11) 

Further, the transpose of the g-inverse in (1.5) is also a g-inverse in view of 
the symmetry of the left-hand side matrix of (1.5). Thus, results analogous 
to (1.11) hold, giving 

X'C~G=O, X'C~X'=X', (1.12) 

which prove (1.6). Again, substituting ii and b for a and b in the first 
equation of (1.5) and equating the terms in >. on both sides, we have 

(1.13) 

Multiplying (1.13) by GCl and GC~ and using (1.11) and (1.12) and the 
fact that (GCIG)' = GC~G, we get the equalities in (1.7). 

It is easy to see that 

Ga+Xb = XJ.L 
X'a = 0 

(1.14) 

is a consistent equation for any J.L, so that ii = CIX IL is a solution. Substi­
tuting ii for a in the second equation of (1.14), we find that X'CIXJ.L = 0 
'VJ.L => X'CIX = 0 = X'C~X, which proves (1.8). 
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Now 

C 2 ) = tr (GC1;- XC3 GC2 -; XC4 ) 
-C4 XCl XC2 

= tr(GCl + XC3 ) + tr X'C2 

= trGCl + p(XC3 ) + p(X'C2 ) 

= tr GCl + p(X) + p(X') (1.15) 

since XC3 and X'C2 are idempotent. Note that since G is n.n.d., 

a'(G,X) = c'(X',O) 

* a'G = c'X', a'X = 0 

* a'Ga = c'X'a = c'O = 0, a'X = 0 

* a'(G,X) = o. 

This shows that the rows of (G, X) are linearly independent of the rows of 
(X' , 0). Consequently, 

p(;, !) (g~ -~4) =p(;, !) =p(G:X)+p(X). (1.16) 

Equating (1.15) and (1.16), we have (1.9) and Lemma 1.2 is proved. 0 

Now we prove the main lemma 

Lemma 1.3 Let G and X be as in Lemma 1.2, 9 E R(G : X) and p E 

R(X'). Then 

min (a'Ga + 2a'g) = a:Ga* + 2a:g, 
X'a=p 

(1.17) 

where a* is any solution to 

Ga+Xb = -g 
X'a = p 

(1.18) 

With C l , C 2 , C 3 , C4 as defined in Lemma 1.2, one choice of the solution 
for (a, b) of (1.18) is 

(1.19) 

giving the expressions for the minimum in (1.18) as 

g' a* - p'b* = -g' Clg + g' (C2 + C~)p + p' C4p. (1.20) 

Proof Let a*, b* be any solution of (1.18), and Z = X..l. Then multi­
plying the first equation of (1.18), with (a, b) replaced by (a*, b*), by Z' 
and a~, we obtain 

Z'GA* + Z'g = 0 

a:Ga* + a:g = -b:p. 

(1.21) 

(1.22) 
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A general solution of X'a = p is a.+Zd where d is arbitrary. Then writing 
a= a. +Zd, 

a' Ga + 2a' 9 = a~Ga. + 2a~g + d' Z' GZd + 2d' (Z' Ga. + Z' g) 

= a~Ga* + 2a~g + d' Z'GZd, using (1.21) 

~ a~Ga* + 2a~g = a~g - b~p, using (1.22) 

with equality when d = 0, which proves (1.17). The result (1.20) is obtained 
by substituting the expressions (1.19) in (1.22). 0 

Lemma 1.3 plays a crucial role in estimation and prediction problems in 
linear models. The results are given in Section 2. 

Lemma 1.4 If Y is an n-vector random variable with E{Y) = 0 and 
D{Y) = (72G, then an unbiased estimator of (72 is 

Y'G-Y 2_ 
(7 - -p{7"':G""')-

where G- is any inverse of G. 

Proof Using (1.4), 

E{Y'G-Y) = Etr{YY'G-) = (72 trGG- = (72p{G), 

(1.23) 

using (1.4). 

o 

The basic results on estimation in the Gauss-Markov model with fixed 
and mixed effects are presented in Sections 2 and 3. The paper provides 
a synthesis of several well-known results obtained over the last forty years 
and elaborates on new ideas introduced in a recent paper of the author 
(Rao, 1988). The object of the paper is to show how all the results can 
be derived with the use of the above algebraic lemmas, and to emphasize 
the key role played by the inverse partitioned matrix method introduced in 
Rao (1971). A new concept of generalized normal equations is introduced. 

2 Fixed Effects Linear Model 

The Gauss-Markov linear model with fixed effects is 

Y = X,B + e, E(e) = 0, D(e) = (72G, (2.1) 

and the associated problems are those of estimating the unknown param­
eters ,B and (72 and the random error e. The matrix G is assumed to be 
known. We use the results of Lemma 1.3 in solving these problems. We 
denote 

(;, ;) - = (g~ -~4) (2.2) 

for any choice of the g-inverse. 
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BLUE OF p'/3 
Consider a linear function a'Y as an unbiased estimator of p' (3. Then 

E(a'Y) = a' X{3 = p' (3 "i/{3 => X' a = p. (2.3) 

We find a by minimizing 

V(a'Y) = (72a'Ga subject to X'a = p. (2.4) 

Applying Lemma 1.3 with 9 = 0, the BLUE of p'{3 is 

a:Y =p'C~Y (2.5) 

with the minimum variance 

(2.6) 

using (1.20) and the expressions for a. and b. in (1.19). 

ESTIMATION (PREDICTION) OF c 

Consider a linear function q' e of e and let a'Y, with E( a'Y) = ° => a' X = 
0, be its predictor. Then the mean square error of prediction is 

E(q'e - a'y)2 = E(q'e - a'e)2 
= (72(a'Ga - 2a'Gq + q'Gq). (2.7) 

Applying (1.19) withg = -Gq andp = 0, the minimum of (2.7) is attained 
when the predictor is 

(2.8) 

The minimum mean square error of prediction is, using (1.19) and (1.20), 

(72(a:g - b:p + q'Gq) = (72 ( -q'GC~ Gq + q'Gq) 

= (72q'(G - GC~G)q. (2.9) 

The results (2.8) and (2.9), which hold for any q, imply that the minimum 
dispersion error predictor of e is 

e = GC~Y = GC1Y (2.10) 

with 
(2.11) 
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ESTIMATION OF (]'2 

Now 

E(e) = E(GCIY) = GCI X{3 = 0, 

D(e) = D(GCIY) = a2GCIGC~G 

= a2GCI G, by (1.7). 

by (1.6), 

Then using Lemma 1.4, an unbiased estimator of a 2 is 

with a suitable divisor. Note that Y E R(G : X), so that Y = G>" + X" 
for a suitable >.. and It. Then 

since the terms in X vanish, using (1.6). Hence, by the definition of a 
g-inverse and (1.6), (2.13) reduces to 

>..' GCI G>" = (,,'X' + >"G)CI (X" + G>"), using (1.6) 

(2.14) 

Now 

E(Y'CIY) = tr E(YY'CI ) = a2 tr(G + X{3{3' X')CI 

= a2 tr GCI + a2 tr (3{3' X' C' X = tr GCb using (1.8) 

= a 2 trGCI = a 2 (p(G: X) - p(X»), using (1.9). 

Then an unbiased estimator of a 2 is 

A2 Y'CIY 
a = . 

p(G: X) - p(X) 
(2.15) 

If Y is assumed to have a normal distribution, this estimator is the mini­
mum variance unbiased estimator of a2 • 

NORMAL EQUATIONS 

The expressions for the estimates of p' {3, a2 , and e obtained above suggest 
a more direct way of obtaining them by first solving the consistent set of 
equations 

Go: +X{3 = Y 
X'o: = 0 

If (0.,(3) is a solution of (2.6), then we have the following. 

(i) The BLUE of an estimable function p' {3 is p' (3. 

(2.16) 
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(ii) The minimum dispersion error predictor of e is e = Go.. 

(iii) An unbiased estimator of u 2 is 8-2 = y'o./(p(G : X) - p(X)). 

We may call (2.16) the generalized normal equations for the simultaneous 
estimation of e and (3. 

If a and fj are obtained through a g-inverse as defined in (2.2), then 
we automatically have the following expressions for the precisions of the 
estimates: 

V(p'fj) = U 2P'C4p 

D(e - e) = u2 (G - GC1G). 

When G-l exists, we can write the equations (2.16) in terms of the 
unknowns e and {3 to be estimated in the form 

e+X{3 = Y 
X'G-1e = 0 (2.17) 

using the relationship e = Ga.. Thus, the equations (2.17) are the ap­
propriate normal equations for e and {3 when G-1 exists. In such a case, 
eliminating e in the second equation using the first equation in (2.17), we 
have 

(2.18) 

which is the usual normal equation for (3 only. If fj is a solution of (2.18), 
then from (2.17), e = Y - xfj is the usual residual. 

The equation (2.16), however, is a more natural one which is simple to 
set up without any initial computations, and which does not involve any 
assumptions on the ranks of the matrices involved. 

PROJECTION OPERATOR 

The second normal equation of (2.16) implies that a. = ZO where Z = X.L 
and 0 is arbitrary. Substituting for a. in the first normal equation of (2.16), 

X{3+GZo=Y (2.19) 

which provides the decomposition of the observed Y as 'signal + noise' 
giving estimates of X{3 and e. Note that R(GZ) and R(X) are disjoint 
and Y E R(G : X) = R(GZ : X) w.p.I. Hence the decomposition (2.19) 
is unique. If fj and i; is a solution of (2.19), then an estimate of p' (3 is p' fj 
and of e is e = GZi;. 

Since R(X) and R(GZ) are disjoint, although R(GZ : X) may not span 
the whole of lRn, there exist projection operators Px and PGZ onto R(X) 
and R(GZ) in terms of which Y can be decomposed as in (2.19). Then 

xfj = PxY and e = GZi; = PGzY = (1 - Px)Y. 

Rao (1974) and Rao and Yanai (1979) give a detailed discussion of gener­
alized projection operators. 
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3 Mixed Effects Linear Model 

The mixed effects linear model is of the form 

(3.1) 

with 

E(e) = 0, E(e) = A'Y, D(e) = G, Cov(e,e) = 0, D(e) = r. 

We write the model in an alternate form 

(3.2) 

where 
X* = (X: UA), {3~ = ({3': 1"), '" = e - AT 

For purposes of estimation, we first assume that G and r are known and 
later comment on their estimation under a given structure. 

ESTIMATION OF A MIXED EFFECT 

Let p' {3* + q' '" be a mixed effect to be estimated. If c + a'Y is an unbiased 
estimator, then 

E(c + a'Y - p' (3* - q'",) = 0 V{3:::::} c = 0 and X~a = p. 

The mean square error is 

E[a'(U", + e) - q'",]2 = a'G*a - 2a'Urq + q'rq, 

where G* = U ru' + G. Applying Lemma 1.3, the optimum a is a solution 
of the equation 

If 

urq 
p. 

(3.3) 

(3.4) 

for any choice of the g-inverse, then the best linear estimator of p' {3* + q' '" 
is a:Y where 

(3.5) 

and the mean square error is, using (1.19) and (1.20), 

-a~U rq-b~p+q' rq = q' (r - ru' C~ U r)q+p' C4p-p' (C~ +C~)U rq. 
(3.6) 

Writing p' = (p~,p~), 

p'{3* + q'", = p~{3 + P~'Y + q'", = p~{3 + (p~ - q' A)( + q'e· 

The formulas (3.5) and (3.6) cover all special cases of linear functions in­
volving one or more of the parameters {3 and l' and the random variable 

e· 
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ESTIMATION OF THE RANDOM ERROR 

Let r' e: be a linear function of the random error estimated by a'Y. The 
condition of unbiasedness implies that a' X* = O. The mean square error 
is 

E(a'Y - r'e:)2 = a'G*a - 2a'Gr + r'Gr. (3.7) 

Applying Lemma 1.3, the minimum of (3.7) is attained when the estimator 
of r' e: is a~ Y where a* = C 1 Gr. The minimum mean square error is, using 
(1.19), 

r'(G - GC~G)r. (3.8) 

From the above expressions it follows that the minimum dispersion error 
estimate of e: is 

(3.9) 

with D(e - e:) = G - GC1G. 

NORMAL EQUATIONS 

The expressions for the estimators obtained above suggest the following 
estimation procedure. We set up the generalized normal equations 

( 
G* 
X' 

A'U' 
(3.10) 

and obtain a solution a, (3, and 1'. Then the estimate of '11 is ", = ru' a and 
of e: is e = Ga. When pi{3 + p~-y is estimable, the estimate is pi(3 + P~1'. 

Letting (X : U A) = X* and {3~ = ({3', -y'), the equations (3.10) can be 
written as 

(G + U-yU')a + X*{3* = Y 
X~a = o. (3.11) 

If G-1 and r-1 exist, then multiplying the first equation by X~G-l and 
r- 1 ru' r- 1 and using the second equation, we obtain the two equations 

X~G-1U'I1 + X~G-l X{3* 
(r- 1 + U'G- 1U)'I1 + U'G- 1X{3* 

= X~G-ly 
U'G-1y. (3.12) 

Henderson (1984) derived equations of the type (3.12) when A = O. (See 
also Harville, 1976.) The equations (3.11) provide estimators of '11 and {3 
directly. 

When G and r are not both non-singular, or when G and/or r is a 
complicated matrix, other methods of solving the equations (3.10) could 
be explored. 

The estimators of~, e:, {3, and -y obtained in Section 3 involve the matrices 
G and r, which may not be known. In the simplest possible case G and 
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r may be of the form of Vi and 0'~V2 respectively, where Vi and V2 are 
known and O'~ and O'~ are unknown variance components. In such a case, O'~ 
and O'~ may have to be estimated using techniques such as the MINQE or 
maximum likelihood as described in Rao and Kleffe (1988). The estimates 
of O'~ and O'~ may be substituted for the unknown values in the expressions 
for the estimators e, e, (3, and T 
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Shrinking Techniques for 
Robust Regression 

Richard L. Schmoyer1 

Steven F. Arnold2 

ABSTRACT The asymptotic normality of robust estimators suggests that 
shrinking techniques previously considered for least squares regression are 
appropriate in robust regression as well. Moreover, the noisy nature of the 
data frequently encountered in robust regression problems makes the use of 
shrinking estimators particularly advantageous. Asymptotic and finite sam­
ple results and a short simulation demonstrate that shrinking techniques 
can indeed improve a robust estimator's performance. 

1 Introduction 

Numerous advances in linear regression have been made in the last several 
decades. Among these is the formulation of the robust estimation prob­
lem, in which an attempt is made to deal with non-normal, heavy-tailed, 
and contaminated data. Another is the proof, in the classical least squares 
problem, of the inadmissibility of the usual estimator of the vector of coef­
ficients when the dimension of this vector is greater than two (Stein, 1955), 
and the subsequent development of shrinking techniques for regression. In 
this paper, we shall discuss the advantage of applying shrinking techniques 
to robust estimators. 

Suppose that we observe an n x 1 vector Y = X {3 + e, where X is an n x p 
matrix of rank p, n > p, {3 is an unknown vector in ~P, and e is a random 
vector with n independent components each having common distribution 
function F. In the context of decision theory, we wish to estimate {3 with 
the estimator d(Y), subject to a loss L(d, {3). The risk of dis R(d, {3, F) = 
EF[L(d, {3)]. A good estimator is one for which the risk is small. 

Estimators that perform well for varied, and in particular, heavy-tailed 
F are said to be robust. Typically robust estimators are asymptotically 

lOak Ridge National Laboratory, P.O. Box Y, Oak Ridge, TN 37831. 
2Department of Statistics, The Pennsylvania State University, University 

Park. PA 16802 



Richard L. Schmoyer, Steven F. Arnold 369 

normal, in the sense that 

(X'X)1/2(d - {3) ~ Z '"-J N(O, VI) (1.1) 

where V = V(F) is a scalar called the asymptotic variance. A reasonable 
criterion for choosing a robust estimator is that it minimizes the supremum 
of V(F) as F ranges over a class of distributions (Huber, 1964). 

A shrinking estimator is a measurable function 8 of an estimator d, which 
for some specified norm satisfies 118 (d) - {3*1I ~ II d - {3*11 for some {3* E !RP • 

In this case we say that 8 shrinks d toward {3* . In general, since we obviously 
want 118(d) - {311 < lid - {311, we try to choose {3* as close as possible to {3. 
For this reason we will refer to {3* as a guess of {3. 

Various forms for shrinking estimators have been proposed for the regres­
sion problem with normal errors. These include ridge and Stein estimators 
(see, for example, Dempster, Schatzoff, and Wermuth, 1977). All are ex­
pressible, though perhaps not in closed form, as a function of 8(fj, &2), 
where fj is the least squares estimator of {3, and &2 is the usual unbiased 
estimator of variance. Because of its asymptotic normality, a robust esti­
mator might reasonably be modified in the same way. More precisely, if d 
denotes an estimator satisfying (1.1), and V is a consistent estimator of its 
asymptotic variance, then 8(d, V) may be a reasonable way to modify d. 

Let {dn} be a sequence of estimators of {3, and let {Ln ( d, {3)} be a se­
quence of loss functions. Suppose that 

when the errors have distribution function F. We define the asymptotic risk 
of the sequence of estimators {dn}, for the sequence {Ln} of loss functions 
and for the error distribution F, by 

AR({dn }, ({3, F)) = EF[W(F)]. 

(Note that some authors call AR the asymptotic distribution risk, reserving 
the term asymptotic risk for the limit of the finite sample risks.) 

In Section 2 of this paper, we derive a very general result, Theorem 2.1, 
concerning the asymptotic risk of many estimators of the form 8n(dn, Vn), 
for many loss functions. This result shows how the asymptotic risk for 
8n(dn, Vn) can be computed from V(F) and the risk of a related estima­
tor and loss function in the problem of estimating the mean of a multi­
variate normal distribution. Theorem 2.1 can be applied to M-estimators, 
R-estimators, and L-estimators for many loss functions (including non­
quadratic ones) and many functions 8n (including some non-shrinking ones). 
This result implies that if we apply to a robust estimator a shrinking pro­
cedure which is better than the least squares estimator for a particular 
loss function for the case of normal errors, we get an estimator which has 
smaller asymptotic risk than the original M-estimator. For quadratic loss 
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functions, the percentage improvement caused by the shrinking procedure 
has the same basic formula for the M-estimation problem as for the least 
squares problem. However, the comparison between the models is not com­
pletely straightforward, because the scale parameters are different for the 
two models. 

In Section 3, we look at a finite sample result. We show, under fairly 
general conditions, that if d = d(Y) is a local equivariant estimator of {3 
and L ( d, {3) is a quadratic loss function, then there exists a single shrinking 
estimator which has smaller risk than d(Y) for all F in a fairly large family 
C of distributions. This result is similar to a result in Brown (1966), but 
is more general in that Brown only showed improvement for a single dis­
tribution. M-estimators, R-estimators, and L-estimators are all equivariant 
estimators. One unfortunate aspect of this theorem is that it shows the 
existence of such an estimator, but does not give an explicit formula for it. 

In Section 4, we discuss a simulation of the average risks for a com­
monly studied M-estimator when it has been shrunk using the positive­
part shrinking technique. We look at several commonly studied distribu­
tions, all of which have been scaled to have the same inter-quartile range 
as a standard normal distribution. We let p = 4, and n = 10, 15, or 20 
and do 5000 replications at each situation. We have used the loss function 
L( d, {3) = (d - {3)' X, X (d - {3) or a closely related, bounded loss function. 

Let 

be a measure of how accurate our guess is. In our simulation, we let R2 
take on values 

0, 1, 10, 100, 1000, 100,000. 

(When R2 = 0, we have guessed {3 perfectly; when R2 = 1, we have 
come very close; but when R2 = 100,000, we have guessed horribly.) In 
Table 1 below we give the percentage improvement due to shrinking the 
M-estimator. We also table the percentage improvement under similar con­
ditions for shrinking a least squares estimator for the normal model. 

Note first that the difference in percentage improvement between n = 10 
and n = 20 observations is not too large. In addition, note that we can get 
substantial improvement from shrinking an M-estimator when p is as small 
as 4 and n is as small as 10, 15, or 20 

For the distributions with moderate or light tails (the normal, the con­
taminated normal, the triangular, and the uniform distributions) shrinking 
the M-estimator offers roughly the same percentage improvement as shrink­
ing the least squares estimator does. This improvement drops off quickly 
as our guess gets worse. 

For distributions with heavy tails (the t-distributions and the double 
exponential distributions) the improvement is somewhat broader. When 
R2 = 10, the improvement for shrinking the M-estimator is nearly twice 
that for shrinking the least squares estimator. 
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TABLE 1. Percentage improvement due to shrinking an M-estimator 
for various R2 

R2 

Distribution 0 10 100 1000 100,000 

Light 
Triangular n = 15 57 44 8 0 0 

Uniform n = 15 57 39 5 1 0 0 
Moderate 

Normal n = 10 53 41 8 0 0 
n = 20 58 46 9 0 0 

Contaminated Normal n = 10 52 43 12 0 0 
n = 20 58 47 12 1 0 0 
Heavy 

T-2 n = 10 45 42 28 11 2 0 
n = 20 57 50 23 3 0 0 

T-3 n = 15 54 47 17 2 0 0 
DE n = 15 56 48 18 2 0 0 

Very Heavy 
Slash n = 10 43 43 42 39 32 2 

n = 20 47 47 45 41 32 3 
Cauchy n = 15 48 48 46 42 32 4 

Shrinking least squares 
with normal errors 

n=20 61 48 10 0 0 

For the distributions with extremely heavy tails (the slash and Cauchy 
distributions), the improvement from shrinking the M-estimator occurs for 
a wider range of R2 than that from shrinking the least squares estimator. 
When R2 = 1000, there is no improvement from shrinking the least squares 
estimator, but there still is a 32% improvement from shrinking the M­
estimator. Even when R2 = 100,000 (so that our guess is terrible), shrinking 
the M-estimator offers non-negligible improvement for these distributions. 

A possible reason for the wide benefit from shrinking M-estimators for 
very heavy-tailed distributions is given in the asymptotic calculations in 
Section 2. The asymptotic risk is a function of (njV(F)) 1/2((3_(3*) = O(F). 
If V(F) is very large, O(F) will be small, even for bad guesses for (3*. 

The simulation summarized in Table 1 is only one of several we did, with 
different shrinking estimators, different loss functions and different assump­
tions about (3 and X. The results of all these simulations were qualitatively 
similar to those given in Table 1. For light and moderate tailed distribu­
tions, the gain from shrinking an M-estimator is comparable with the gain 
from shrinking the least squares estimator for the normal model. However, 
for heavy tailed distributions, the region of improvement from shrinking an 
M-estimator is greater than that for shrinking a least-squares estimator, 
and for distributions with very heavy tails, the region is much greater. See 
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Schmoyer (1980) for details on these additional simulations. 
There is an extensive literature on shrinking estimators for normal prob­

lems, and an extensive literature on robust estimators for non-normal data. 
However, there are not as many papers on applying shrinking procedures 
to robust estimators. One of the earliest papers applying such shrinking to 
estimators is by Askin and Montgomery (1980). In that paper, the shrink­
ing was done to increase the stability of the estimators for ill-conditioned X 
matrixes. This goal is quite different from our purpose which is to decrease 
the risk (or asymptotic risk) even when the X matrix is not ill-conditioned. 
Saleh and Sen (1985) consider shrinking M-estimators of location in order 
to decrease the risk. They approach the problem from an asymptotic per­
spective similar to that used in Section 2 of this paper. Their results are 
more limited than ours, in that their results apply to smaller classes of 
M-estimators, loss functions and shrinking rules than our results do. How­
ever, they do find expressions for the limit of the finite sample "risk, whereas 
we find the (easier) risk for the asymptotic distribution. Typically, these 
two limits should be the same, but it is often quite difficult to establish 
the necessary uniform integrability conditions to prove their equality. Sen 
and Saleh (1987) consider the problem of robustly estimating f3, when it is 
suspected to lie in a subspace. They discuss the asymptotic properties of 
preliminary test and shrunken M-estimators. If the subspace is all of Rp, 
their model is the same as ours, and they also use asymptotic risk, rather 
than the limit of finite sample risk, in evaluating procedures. However, their 
paper considers a much narrower class of robust estimators, loss functions, 
and shrinking rules than ours does. 

2 An Asymptotic Analysis 

In this section we state an elementary result which indicates why we would 
expect that shrinking robust estimators should be sensible, at least for large 
samples. 

To motivate the approach we used to make this calculation, we return 
briefly to the normal regression model in which we observe Y '" Nn (Xf3, J). 
Consider estimating f3 with the loss function 

L(d, (3) = (d - (3)' X' X(d - (3). 

Let fj be the usual unbiased estimator of f3. Let fjb be the James-Stein 
estimator shrunk to the vector b, 

f3b = 1 - --A (f3 - b) + b. , [ (p- 2)] , 
L(b, (3) 

Then 

R(fjb, (3) = E[L(fjb, (3)] = P - (p - 2)2 E[(p - 2 + 2K)-1] < p = R(fj, (3), 
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where K '" Poisson(-y), 'Y = L(b,/3)/2. When we do asymptotics for regres­
sion models, we often assume that n-1 X' X ---+ A > O. In this case, for any 
fixed /3 and b, 

L(b, /3) = n(b - /3)(n-1 X' X)(b - /3) ---+ 00, 

and hence 
lim R(~b, /3) = p = R(~, /3) 

n-+oo 

so that there is no asymptotic improvement from using the James-Stein es­
timator. A more sensitive development of the asymptotic risk of the James­
Stein estimator starts by allowing b to depend on n, in such a way that 

where () is an unknown vector which does not depend on n. In other words, 
in order to get asymptotic improvement with the James-Stein estimator, 
we are assuming that our "guess" bn is getting better as the sample size 
increases. (This approach is similar to that used in defining Pitman asymp­
totic efficiency in testing problems.) This is the approach we take in this 
section. 

Consider now a non-normal regression model in which we want to es­
timate the p-dimensional vector /3 with the sequence of loss functions 
Ln (d, /3) of the form 

(2.1) 

where h{ a, Q) is a continuous function and where Qn is a sequence of known 
matrices such that 

as n ---+ 00. 

Let {dn } be a sequence of estimators of /3. Suppose that for a particular 
distribution F, 

We define the asymptotic risk by 

AR{{dn }'/3,F) = E[W{F)]. 

(Some authors call AR the asymptotic distribution risk.) 
We assume that we have a sequence of estimators {dn } such that 

(2.2) 

where A> 0 is a known matrix and V = V{F) is an unknown scalar which 
depends on the underlying distribution F and the sequence of estimators 
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{dn }. We also assume that tpere exists a consistent sequence {Vn } of es­
timators of V. Let {.B~} be a sequence of known vectors (guesses) such 
that 

( ; ) 1/2 ({3 - {3~) -+ () 

where () = ()(F) is a fixed, but unknown vector. (If n 1/ 2 ({3 - {3~) -+ e, then 
()(F) = V(F)1/2e.) Let 

and let {Rn} be a sequence of known matrices such that Rn -+ R. We 
consider estimators of {3 of the form 

where k(U, R) is a known continuous function of U and R. 

Theorem 2.1 Let U '" Np((), A), L(d, ()) = h(d - (), Q). Then 

Ln(bm {3) ~ L(V1/2k(U,R), V1/2()), 

AR({bn },{3,F) = E[L(V1/2k(U,R), V1/2())]. 

If Ln(d, {3) = n(d - {3)'Qn(d - {3), then 

AR({bn },{3,F) = VE[L(k(U,R),())]. 

Proof Note first that 

(2.3) 

( )
1/2 ( ) 1/2 ( ) 1/2 

Un =; (dn-{3~) =; (dn-{3)+; ({3-{3~) ~ U '" N((), A). 

Therefore, 

and 

Ln(bn,{3) = h(n1/2(bn - {3),Qn) ~ h (V1/2(k(U,R) - ()),Q) 

= L(V1/2k(U, R), V1/2()). 

The formula for the asymptotic risk follows directly. The last equation in 
the theorem is just a special case of the general formula. 0 
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We illustrate the use of this theorem for shrinking M-estimators. Consider 
the regression problem in which we observe li independent, 

li = xil3 + ei, 

where the Xi are known constant vectors and the ei are unobserved errors 
which are Li.d. with common distribution function F. Let Xn be the n x p 
matrix whose ith row is Xi and suppose that 

as n -+ 00. 

Let dn be an M-estimator of (3 based on the first n observations. It is well 
known that, under fairly general conditions, 

where V(F) is an unknown constant which depends on F and the M­
estimator chosen, and which has a consistent estimator V. For example, 
dn(Y) could be the estimator found by minimizing r(b) = L::~1 p(li -
Xib)/T, where T is a scale parameter and 

(2.4) 

Suppose we want to estimate (3 with the loss function 

where 
h(u,R) = u'Ru. 

Let 

Un = (; r/2 
(dn - (3~), 

where {3~ is a sequence of "guesses" for (3. Let 

where 

[ (P-2)] 
k(U,R) = 1- U'RU U. 

(This estimator is just the usual James-Stein shrinking formula applied to 
the M-estimator dn .) By Theorem 2.1, 

AR( {On},(3, F) = V(F)E(k(U, R) - 0)' R(k(U, R) - 0), 
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where 
u", Np(O,R- 1). 

Note that k(U, R) is just the James-Stein estimator for the normal model 
involving U", Np(O, R-1). Therefore, 

where K has a Poison distribution with mean 

0' AO . ({3 - (3~)' R({3 - (3~) 
'Y = -2- = hm 2V(F) . 

Therefore, we see that 

so that the percent reduction in asymptotic risk from shrinking an M­
estimator in the James-Stein manner has the same formula as the per­
cent reduction from shrinking a least squares estimator in the James­
Stein manner. However, the interpretation is not quite so simple, since 
'Y = lim n({3 - (3~)' R({3 - {3~)/2u2 in the least squares case and 'Y = 
lim n({3 - (3~)' R({3 - (3~)/2V(F) in the case of M-estimators. In fact, for 
very heavy-tailed -distributions, such as the Cauchy distribution, the re­
duction from shrinking M-estimators may be more than the reduction for 
shrinking least squares estimators for moderately accurate guesses {3~ (see 
the simulation). The reason this occurs is that V(F) is often quite large for 
heavy-tailed distributions F, so that 'Y is still quite small, even when (3~ is 
only moderately accurate. 

Now, consider a family of distribution functions F and a class of se­
quences of estimators D. We say that a sequence of estimators {dn } E D 
is minimax, asymptotically, for the family F and class D if 

sup AR({dn},{3,F)::; sup AR({d~},{3,F) 
FEF, ~E~p FEF, ~E~p 

for all {d:} E D. For a sequence of M-estimators, {dn }, and a sequence of 
quadratic loss functions 

Ln(d, {3) = n(d - (3)'Qn(d - (3), 

it is easily seen that if n1/ 2(dn - (3) ~ N(O, V(F)R- 1), then 

AR({d~},{3,F) = V(F)tr(QR- 1). 

Therefore, a minimax rule for the set of M-estimators is one which mini-
mizes 

sup V(F). 
FEF 
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Huber (1964) finds some such results for various choices for the family F. 
We now show how to use those results, together with known results for the 
multivariate normal problem, to find estimators which are minimax in a 
larger class of estimators. Let V be the class of M-estimators and let ~ 
be the class of sequences 8n(dn) satisfying (2.3) for dn E V, some matrices 
Rn ---- R and some continuous function k(U, R). Let 

L(d, B) = (d - B)'Q(d - B). 

By Theorem 2.1, 

AR( {8n },,6, F) = V(F)E [L(k(U, R), B)]. 

Let {~} be a minimax sequence of M-estimators for a family F, and let 
ko(U, R) be a minimax estimator for estimating B based on U rv N(B, A) 
with loss function L(d,B). Let {8~} be computed from ko(U,Rn) and {dn } 

as defined in Equation (2.3). Then {8~} is a minimax estimator of,6 for 
the family F of distributions and the class ~. 

Similarly, if {dn } has lower asymptotic risk than {d~} and if k(U, R) has 
lower risk than k*(U,R), then {8n} has lower asymptotic risk than {8~} 
(where 8n is computed from dn and k following (2.3), as is 8~ from d~ and 
k*). In the example discussed above, we know, for the normal problem, 
that the positive James-Stein estimator, in which we take 

( [ (P-2)]) k(U,R) = max 0, 1- U'RU U (2.5) 

has smaller risk than the James-Stein estimator does. Therefore, Theorem 
2.1 implies that a positive-part James-Stein shrinking of an M-estimator 
has smaller asymptotic risk than does the James-Stein shrinking of this 
estimator, which in turn has smaller asymptotic risk than does the original 
M-estimator. 

The reason that we get results so easily for quadratic loss functions is 
that the asymptotic risk is a product of a function V(F) due to the M­
estimator chosen and a function E [L(k(U, R), B)] based on the shrinking 
estimator chosen. 

We finish this section with some additional comments about Theorem 
2.1. 

1. It applies to many different robust estimators. The only assump­
tion about the sequence dn is that is satisfies Equation (2.2). M­
estimators, R-estimators, and L-estimators typically satisfy this as­
sumption. 

2. The only assumption about the loss function is that it satisfies (2.1). 
Quadratic loss functions of the form 
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satisfy this assumption as long as n-1Qn goes to some Q. In studying 
robust estimators, we often use distributions with very heavy tails. 
In such situations, it can be helpful to use loss functions of the form 
q(Ln(d,(3)), where Ln(d,(3) is a quadratic loss function and q is a 
bounded function. Such loss functions would also be covered by The­
orem 2.1. Examples of such loss functions are 

L* (d (3) = Ln(d, (3) 
n' 1 + Ln(d, (3) , 

One such loss function is used in the simulation to compare estimators 
when the observations come from heavy-tailed distributions such as 
the Cauchy distribution. 

3. Equation (2.3) is the only assumption about the shrinking procedure 
8n . This assumption allows most Stein and ridge type estimators. For 
example, the ridge estimator 

8n(dn ) = (X~Xn + ncI)-l X~Xn(dn - (3~) + (3~ 
= (I + c(n-1 X~Xn)-l)(dn - (3~) + (3~ 

has this form with Rn = n-1X~Xn' k(U, Rn) = (I +kR;;l )-lU. Note 
that 

and hence {8n } is a shrinking procedure only when Ilk(U, Rn)11 2 ~ 
11U112. However, Theorem 2.1 is still applicable for non-shrinking es­
timators. 

3 Existence of Improved Estimators 

In Section 2 an asymptotic argument was used to motivate shrinking robust 
estimators. As further motivation we now present a result, which is similar 
to a theorem of Brown (1966), that shows the existence, under certain 
conditions, of estimators better than usual equivariant robust estimators 
in finite-sample problems. The feature that distinguishes our result from 
Brown's is that we consider the risk, R(d, (3, F), of an estimator d, as having 
arguments both (3 E RP and F E C. For a robust estimator, d, we show 
the existence of an estimator 8 which satisfies R( 8, (3, F) < R( d, (3, F) for 
all (3 E RP and all F E C. 

Dropping the "n" subscripts used in Section 2, we have Y = X (3 + e. We 
consider estimating (3 with the quadratic loss function 

L(d,(3) = (d - (3)'Q(d - (3). 
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Let d = d(Y) denote a translation equivariant estimator of (3 (e.g., an M­
estimator), and let V = V (F) be some measure of the dispersion of F E C. 
Also let ~ = ~(F) = EF(d - (3)(d - (3)', and let ~ denote the largest 
eigenvalue of~. We now give conditions under which there exist constants 
A and B such that the estimator 

8(D) - (I B Q-1) d 
- - A+ IIdl1 2 

(3.1) 

satisfies 
R(8, (3, F) < R(d, (3, F) for all (3 E lRP , FE C. (3.2) 

Theorem 3.1 Suppose that R(d, (3, F) < 00 for all FE C, and that there 
exists Vo such that V ~ Vo for all F E C. Also suppose that 

(i) EF[d] = (3; 

(ii) there exists f > 0 such that tr(~) - 2~ > f for all F E C; 

(iii) there exists N < 00 such that EF lid - (311 4 jV2 ~ N for all F E C. 

Then there exists A and B such that the estimator (3.1) satisfies (3.2) for 
all (3 E lRP and all F E C. 

Proof We show the existence of a scalar a for which the estimator 

8(d) - (I _ Vo Q-1) d 
- a(aVo + Ild11 2 ) 

(3.3) 

satisfies (3.2). Substituting (Aj B)1/2 for a and (BA)1/2 for Vo in (3.3) 
establishes (3.2). 

Let ~ = R(d,(3,F) - R(8,(3,F). Using 8(d) as in (3.3), R(8,(3,F) is 

Ep [( d - ~) - a(a + 11~1I2 /Vo) Q-'d r Q [(d - ~) - a(a + 1I~112IVo) Q-'d]. 

By expanding this and subtracting it from R( d, (3, F), ~ is seen to be 

which is greater than or equal to 

E [ 1 (2Vr d'(d - (3) - V02)] (3.4) 
F a(aVo + Ild112) 0 qa' 

where q > 0 is the smallest eigenvalue of Q. 
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Let Efj,. denote an expectation when f3 = O. Then substituting d + f3 for 
din (3.4) gives 

EO [ 1 (2Vr(d+ f3 )'d- V02)] (3.5) 
F a(aVo + lid + (311 2) 0 qa· 

As in Stein (1955), we use the equality l/(x+y) = 1/x-y/x2+y2/x2(x+y) 
to expand l/(aVo + lid + (311 2), and with a little more algebra we can write 
(3.5) as 

EO [ 1 [2Vr d' (d + (3) Vo2] ] 
F a(aVo + 11(3112) 0 - qa 

_ EO [ 2d' f3 + IIdl12 [2Vod'(d + (3) - V02]] 
F a(aVo + 11(3112)2 qa 

+ EO [ 4(d' (3)2 + 4(d' (3) IIdl1 2 + IIdl14 (2Vod' (d + (3) - V02)]. 
F a(aVo + 11(311 2)2(aVo + lid + (311 2) qa 

(3.6) 

By condition (i) the first term in (3.6) is 

Vo EO [211d112 _ Vo] = Vo [tr(E) _ Vo] (3.7) 
a(aVo + 11(311 2) F qa a(aVo + 11(3112) qa . 

With more algebra, the Cauchy-Schwartz inequality and the fact that 
11f311 /(aVo + 11(3112) ::; (2(aVO)1/2)-1, we can show that the second term 
in (3.6) is at least 

Now, 

o [(d,f3)2]_ f3'Ef3 
EF Ii!ij2 - 11f311 2 ::;~, EO [lldllk ] < l+Eo [lld I14 ] < l+N F k/2 - F V2 - , 

Vo 

for k = 1, 2, 3, 4. Therefore, the second term in (3.6) must be at least 

- Vo 2 (4~ + 3(1 + N)Voa-1/2 + 2(1 + N)Voa-1 
a(aVo + 11f311 ) 

+ (1 + N)Voq- 1a-3/ 2 ) 

Vo 4 + 0 -1/2 
a(aVo + 11(311 2 ) ( ~ (a )) 
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where O(a-1/ 2 ) is uniform in F and {3. (We say that h(a,F,{3) is O(a-1/ 2 ) 

uniformly in F and {3 if there exists K, not depending on F or (3, such that 
Ih(a,F,{3)1 :::; Ka- 1/ 2 for a large enough.) In a similar way, we can show 
that the third term in (3.6) is at least Vo/(a(aYo + 11(311 2))O(a-1/ 2 ) where 
O(a- 1/ 2 ) is uniform in F and (3. Therefore, we see that 

Ll > Vo 2 [2tr(E)-4e+O(a-1/ 2 )] > Yo 2 [2€+O(a- 1/ 2 )]. 
- a(aVo + 11{311 ) - a(aVo + 1I{311 ) 

Since € > 0 and O(a-1/ 2 ) is uniform in F and {3, there exists an a such 
that Ll > 0 for all (3 and all F E C. 0 

Condition (i) is satisfied in most problems. In particular, if d(X{3) = (3 
and EF(e) = 0, then this assumption is satisfied because of the location 
equivariance of d. Condition (ii) is a condition which guarantees that the 
estimation problem never degenerates into a two-dimensional problem. (See 
Brown (1973) or Bock (1975) for a discussion of conditions of this type.) 
Condition (iii) is somewhat harder to interpret, but is similar to assuming 
that d has bounded kurtosis. (Note that this condition does not imply 
that the distribution F has bounded kurtosis.) If this condition were not 
satisfied, the estimator d might be a bad choice for estimating (3 for that 
family. 

4 Simulation 

In this section, we discuss a computer simulation designed to study the 
performance of the James-Stein positive-part shrinking formula (2.5) as 
applied to the M-estimator defined by (2.4). We chose p = dim({3) = 4, 
n = number of observations = 10, 15, or 20. We did 5000 replications in 
each simulation. 

The loss functions we considered were all invariant. Since the M-estimator 
is equivariant, the risk of the positive part estimator depends on the true 
parameter {3 and the guess {3* only through {3* - {3. Therefore, in simula­
tions, we can take either {3* or {3 to be O. We choose to take {3 = o. For 
each of R2 = 0, 1, 10, 100, 1000, and 100,000, we simulated {3* uniformly 
on the ellipsoid 

(4.1) 

(Small values for R2 correspond to good guesses {3* for (3 and large values 
correspond to bad guesses.) 

From the assumption {3 = 0 we get Y = e. The distribution used in this 
simulation included 2 light-tailed distributions (the uniform and the trian­
gular (J(t) = 1 -Itl, -1 < t < 1) distributions), two distributions with 
moderate tails (the normal distribution and the contaminated normal mix­
ture of 95% N(O, 1) and 5% N(O, 9)), three distributions with heavy tails (t 
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distributions with 2 and 3 degrees of freedom and the double exponential 
distribution) and two distributions with very heavy tails (the Cauchy and 
slash (ratio of standard normal to independent uniform) distributions). The 
distributions were all scaled to have the same inter-quartile range so that 
at least in this one sense they are scale equivalent. The scale was chosen 
so that if the errors are normal, then their standard deviation is 1. Then, 
for example, the constraint IIX,6*11 2 = 100 corresponds to guessing the 
observation means with an average accuracy of about 31.6/n1/ 2 standard 
deviations. For n = 20 this is about 7 standard deviations. 

The matrix X was generated row by row with each row having first entry 
1 and remaining entries simulated from a N(O, E) distribution, where E 
was taken to be a correlation matrix with off-diagonal elements p. We used 
p = 0.99 for the normal, contaminated normal, t-2, and slash distributions 
and p = 0.95 for the remaining distributions. 

For the loss functions considered in this study, the risk of the positive­
part James-Stein shrinking of the least squares estimator is constant on the 
sets defined by (4.1). This suggests that the risk of the estimators considered 
in this study might be nearly constant on these sets. Earlier simulations 
have indicated this to be true. Hence it may not be too important how we 
generated X and ,6* subject to (4.1). 

The M-estimator, d, and its variance estimate are given in Huber (1973), 
Section 8, and were calculated by the method of iteratively re-weighted 
least squares. To estimate scale, we used 1.48 times the median absolute 
deviation of the least squares residuals (and did not iterate the scale esti­
mate). 

Performance of the estimators was measured with the loss function 

L(d,,6) = (d -,6)' X' Xed -,6). 

However, preliminary simulations indicated that the loss L(d,,6) was not 
adequate when the underlying errors are very heavy-tailed. With high-noise 
errors the variance of this loss function is too great to expect reasonably 
accurate estimates of the risk in a reasonable number of simulation trials. 
The problem is with the unboundedness of the quadratic loss functions. 
For Cauchy and slash errors the loss, L, was modified by calculating 

LB = B(l- exp(-L/B)) 

where LB denotes the new bounded loss, and B is the bound. B was taken 
to be 20,000 on the basis of preliminary simulations. For light and mod­
erately heavy-tailed distributions, simulation results for the bounded and 
unbounded losses were virtually identical. Of course, a bounded loss func­
tion may more accurately reflect the true loss characteristics of the problem 
anyway. 

The entire procedure just described was repeated 5,000 times to yield 
statistically meaningful estimates of the percentage improvement due to 
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shrinking at the different values of R, for the different distributions, etc. 
Each such estimate was computed by dividing the simulation average of 
the simulated loss differences, L( d, 0) - L (8 (d), 0), by the average of the 
simulated losses, L(d,O). 

Results have already been presented in Table 1. For the distributions with 
lighter tails (e.g., normal), shrinking is beneficial for small R but is neither 
detrimental nOr beneficial for large R. For heavier tailed distributions, the 
benefit of shrinking extends to much larger values of R. We believe that the 
improvement of 2 to 11 percent and more, obtained for values of R around 
10 to 31.6, is of substantial practical importance to anyone who is analyzing 
very noisy data, which is often the setting in which robust procedures are 
applied. 

Table 1 also gives percentage improvements for the positive part James­
Stein estimator over the least squares estimator when the errors are nOr­
mal. These values are similar to those for the shrinking M-estimator in the 
case of light-tailed error distributions. We have investigated other shrinking 
versions of the M-estimator considered here (for example, several ridge es­
timators), and found this relationship to be true for those versions as well. 
That is, shrinking M-estimators in a situation involving light-tailed errOrS 
appear to have about the same effect as does shrinking the least squares 
estimator in the problem with normal errOrS. As the errOr tail weight and 
variability of the M-estimator increase, so does the potential for improving 
the M-estimator by shrinking. 
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Asymptotic Mean Squared 
Error of Shrinkage Estimators 

T. W. F. Stroud 1 

ABSTRACT When hyperparameters are estimated in a Bayesian model 
which produces shrinkage estimators of group means, it is well known that 
the mean square errors of the estimated means are underestimated if hy­
perparameter estimates are simply substituted for hyperparameter values 
in mean square formulas. In this article, a method for approximating the 
mean square error is described for the case where the estimators of the hy­
perparameters are obtained by maximum likelihood, and hence are asymp­
totically normal. Under this approach, the Bayesian model is interpreted 
as a random-effects model. The method is useful in situations such as small 
area estimation under stratified sampling (with a large number of strata). 

1 Introduction 

The principle of shrinkage toward a common value in the simultaneous esti­
mation of means of several populations of a similar nature has been a topic 
of interest for the last three decades, e.g., James and Stein (1961), Box and 
Tiao (1968), Efron and Morris (1975), Leonard (1976), Dempster, Rubin 
and Tsutakawa (1981), Reinsel (1985), Peixoto and Harville (1986). An im­
portant issue is evaluating the risk of such estimators. When this is done, 
it is usually done either by using the chi-square (or Wishart) distribution 
of the sum of squares resulting from the normality of the observations, e.g. 
Lehmann (1983, p.300~301), Reinsel (1985) and Fuller and Harter (1987), 
or by invoking a convenient hyperprior for the between-group variance, e.g. 
Morris (1983a). In this paper an alternative approach is presented, namely 
the use of large-sample theory for the case where the number of groups be­
comes large, This technique is applicable to a parametric empirical Bayes 
situation (e.g., Dempster, Rubin and Tsutakawa, 1981) where global pa­
rameters such as the grand mean and the assumed variance of the group 
means are estimated by maximum likelihood, and can be used in rather 
complicated situations. 

A first approximation to the mean squared error of an empirical Bayes 

lQueen's University at Kingston 
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estimator of the vector of means, where a consistent estimate of hyper­
parameters has been used, is the posterior covariance matrix using the 
estimated hyperparameter values. An empirical Bayes estimator usually 
shrinks toward a grand mean based on the data, which makes intuitive 
sense, but the posterior covariance matrix based on estimated hyperpa­
rameter values reflects only part of the uncertainty of the estimates of the 
individual means; it does not reflect the uncertainty due to estimation of 
the between-group covariance matrix Or of the grand mean. It is essentially 
this point that is made in Dempster, Rubin and Tsutakawa (1981, Section 
3, last two paragraphs). The purpose of this article is to try to capture 
the total uncertainty of estimation of the individual means by using large 
sample theory. 

Because the motivating application (see below) was a problem in finite 
population sampling, the results are expressed in terms of estimating av­
erages of unobserved data. The standard problem of estimating means of 
distributions can be obtained simply by letting the finite population sizes 
go to infinity. 

Efron and Morris (1972) evaluate the "relative savings loss" (a variation 
of mean squared error) of an empirical Bayes estimator for essentially the 
same model as is dealt with in this article. For their estimator, which is 
not based on maximum likelihood, the relative savings loss has a partic­
ularly simple form for that problem. The method of this article, on the 
other hand, features maximum likelihood estimation of hyperparameters 
and can be extended, with perhaps some variations in the derivations, to 
more complicated problems such as the one we now mention. 

The results presented here were motivated by an application (Stroud, 
1987) in small area estimation (see Platek et al (1987) for a treatment of 
this topic ). Estimates of numbers employed, unemployed and not in the 
labor force, based on Canadian Labor Force Survey data, were desired for a 
large number of Canadian geographical areas which did not correspond to 
the strata used in the sampling plan. A Bayesian model was formulated for 
the potential observations in primary sampling units (which were subsets 
of the strata, and also subsets of the desired areas). Hyperparameters of 
the Bayesian model were estimated, and the resulting estimated posterior 
means were aggregated into estimated totals for the desired areas. It was 
found from simulations using census data that these estimated area totals 
were superior to expansion estimates (see e.g. Cochran, 1977, p. 21) based 
on the separate area samples. 

In this paper, finite population inference is treated from the superpop­
ulation perspective, under which finite population totals are said to be 
"predicted" rather than "estimated." The finite population values are ran­
dom variables, of which a subset (the sample) is randomly observed. We 
consider the parameters to be the group means, which are subject to a prior 
involving hyperparameters which are estimated (the parametric empirical 
Bayes approach). This setup is equivalent to a frequentist superpopulation 
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formulation in which the population values obey a random-effects model. 
Ghosh and Meeden (1986) and Ghosh and Lahiri (1987) have taken a dif­
ferent, but related, setup and obtained slightly different results. 

For simplicity, we avoid the usual complex designs in this paper and 
consider only stratified random sampling, where the strata are the groups 
in whose means we are interested. Also for simplicity, the observations 
in each group are in equal numbers and obey a multivariate normal model 
with known and equal covariance matrices. See Berger (1985, Section 3.5.4) 
(and, for related discussion, Section 4.5.3) for the univariate version of the 
empirical Bayes inference. 

In Section 2 the Bayesian model incorporating unknown hyperparameters 
is described, and the mean squared prediction error of population totals is 
formulated. Section 3 contains formulas for hyperparameter estimation and 
the consequent estimation of posterior means and prediction of stratum 
totals. The approximation of the mean squared prediction error using large 
sample theory is developed in Section 4 using the Fisher information matrix 
which is presented in Section 5. 

2 The Model and the Prediction Error Vector 

Using the superpopulation approach to finite population sampling, we as­
sume that the population for group (stratum) h (h = 1, ... , m) consists of 
Nh independent, identically distributed random column vectors with the 
Np(l;!:h'~) distribution, of which n from each group are randomly observed. 

For h = 1, ... , m, let the average of the n observed values be ~h and let 
the average of the Nh - n unobserved values be zh* . Then, given the {L , we 

- -h 
have 

~h rv Np(l;!:h,n-l~), 

~~ rv Np(l;!:h' (Nh - n)-l~), 

all independent. 
Now Bayesian structure is imposed. Let the {L be independent, iden­

-h 
tically distributed random column vectors with the Np (£, m distribution. 
The mean squared error we consider is unconditional with respect to {L • 

-h 
For this we need the unconditional distribution of (~h' ~~), which is jointly 
normal with 

E(~h) = E(~~) = £ 
V(~h) = g + n-l~ 
V(~~) = g + (Nh - n)-l~ 

C(~h'~~) = g, (2.1) 
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where V (.) denotes variance-covariance matrix and C (., .) denotes cross 
covariance matrix. The vectors (3£h' 3£~)' are independent across h. 

We wish to predict the population total of stratum h. (A minor extension 
would be to predict the total of an area defined as a collection of strata.) 
Denote the total of stratum h by r h: then 

r h = n3£h + (Nh - n)3£~' 

Let the predicted total t h be of the form 

th = n3£h + (Nh - n)"£h' (2.2) 

where '¢ is the empirical Bayes estimate of J.L defined early in Section 3. 
-h -h 

Then the prediction error vector is t h - r h = (N h - n) ("£ h - 3£~)' 
Although it might at first glance seem more normal to use the notation 

jl for the empirical Bayes estimate of J.L we are reserving the caret for a 
-h -h 
different category of estimate, namely of the global parameters £ and ~. 

The unconditional (with respect to J.L ) mean squared error can be defined 
-h 

with respect to an arbitrary positive definite matrix A as (Nh - n)2 E( '¢ -
- -h 

3£~)' ~("£h - 3£~)' which is equal to (Nh - n)2 tr{~E("£h - 3£~)("£h - 3£~)'}' 
We therefore define the mean squared error matrix (MSE) as the matrix 
given by 

(2.3) 

The trace of this quantity, without the factor of (Nh - n)2 and with 3£~ 
replaced by J.L , is sometimes referred to as the empirical Bayes risk (Mor­

-h 
ris, 1983b) and sometimes simply as the mean squared error (Peixoto and 
Harville, 1986). 

3 Estimation of Hyperparameters and of Group 
Means 

The predicted total given by (2.2) depends on the estimate '¢ of the group 
-h 

mean J.L • If the hyperparameters ((,0) were known, we would use the 
-h - -

posterior mean vector 

We propose to use the empirical Bayes estimator, 

(3.1) 
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where £ and ~ are maximum likelihood estimators of £ and ~, respectively, 

based on the marginal distribution (2.1) of the ~h' Since marginally the 
~h can be regarded as a multivariate normal sample with unknown mean 
vector ( and covariance matrix n + n-1~, it follows that - --

(3.2) 

provided that ~ is positive definite. Thus ¢ is given by (3.1), where ( 
-h -

and n are given by (3.2). Note that n will be positive definite with high - -
probability when m is large. 

The remainder of this section is devoted to obtaining formulas for E( ¢ ) 
-h 

and E( ¢ ¢') in terms of expectations of quantities involving ( and n, as 
-h-h - -

these expressions are needed in Section 4. These formulas can be derived 
from formulas for the means of 2::;:1 ¢ and 2::;:1 ¢ ¢' , since by sym-

-h -h-h 
metry E(¢ ) = (l/m)E (2::;:'=1 ¢ ), and similarly for E(¢ ¢'). It follows 

-h -h -h-h 
from (3.1) and (3.2) that 

"'¢ = m(. 
~-h -

(3.3) 

Here, and below, the sign 2:: refers to the summation over h from 1 to m. 
Also, since from (3.2) we have 

L~h~~ = m((t + ~ + n-1~), 

it follows from (3.1) and (3.2) that 

L~h~~ = (~-1 +n~-1)-1 {L(~-1£+n~-1~h)(n-1£+n~-1~h)'} 
(~-1 + n~-1)-1 

= (~-1 +n~-1)-1 {mQ-1(t~-1 +m~-1(t(n~-1) 

+ mn~-1(t~-1 + mn2~-1((t + ~ + n-1~)~-1} 

(Q-1 + n~-1)-1 

= m(( + m(Q-1 + n~-1) -1 (n~-1)(Q + n-1~)(n~-1) (3.4) 

(Q-1 + n~-1) -1. 

Using the fact that (A -1 + B-1) -1 = A(A + B)-1 B = B(A + B)-1 A, 
we obtain 

~~h~~ = m {(t + Q(Q + n-1~)-1~}. (3.5) 
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It follows from (3.3) and (3.5) that 

E('¢ ) = E((), (3.6) 
-h 

E(!h!~) = E(((') + E {~(~ + n-1~)-1~} . (3.7) 

Finally, we will need E(~h!~). We have 

E(~h!~) = E { (~hf' ~ -1 + n~h~~~-1)(~ -1 + n~-1) -1 } 

= ~ E { [{E~h)f' ~ -1 + n{E~h~~)~-1] (~-1 + n~-1) -1 } 

A AI A 

= E((( ) + Em). (3.8) 

4 Approximating the Mean Square Prediction 
Error 

From (2.3), we see that to compute the MSE we need formulas for E{ '¢ '¢/), 
-h-h 

E(~~!~) and E(~~~~/). In this section, we compute approximations to the 
first two of these quantities. These expressions are functions of ( and O. - -
An estimated MSE could thus be obtained by substituting ((, ~) for ((, Q). 
E(~~~~/) is obtained directly from (2.1). --

The approximations are based on the asymptotic distribution of ((,0), 
and thus approach the correct values as m, the number of groups, becomes 
large. We assume that n is fixed. 

The main result, stated below as a theorem, gives an expression for the 
asymptotic value of MSE/(Nh - n)2. By the statement "the asymptotic 
value of A equals B + m-1C," where A ,B, and C are matrices, we 

-"'m -- -- -m -- --
mean that 

m(A - B) ~ C as m ~ 00. 
-m - -

The result is subject to the usual uniform integrability conditions required 
to infer convergence of moments from convergence in distribution. The 
theorem is stated following the derivation of the quantities referred to above 
as Band C. - -

A AI 

From (3.7) and (3.8), we see that we need approximations to E((( ), 

E {~(~ + n-1~)-1~} and E(~). Notice from (3.2) that E(~) can be ob-
A AI 

tained directly from E((( ) and E(~h~~); the latter is given by (2.1). We 

first derive an approximation to E(((/), then to E {~(~ + n-1~)-1~}. 
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The b8.'lic idea is 8.'l follows. Let :E = g(f) and ¥. = h(f) be functions of 

dimension q and s, respectively, of the maximum likelihood estimator (. 
Denote e = g(() and", = h((). As m -+ 00, the 8.'lymptotic approximation 

.-..- --- --- --
to E (:E¥.') is 

E(~t) '"N +! (~)r,' (~)', 
where, by the 8.'lymptotic properties of maximum likelihood estimation, the 
distribution of m! (f -f) converges to the distribution Np (0, Ill). Here I1 
is the part of the Fisher information matrix pertaining to (, and, 8.'l shown 

in the next section, is equal to m + n -1~) -1. 
A A' 

Applying this method to E((( ), we find that 

(4.1) 

Here, in the simple C8.'le Qf common n and ~, the equality is exact due to 

the simple form for (given by (3.2). However, the method may be extended 

to the C8.'le of unequal nh, ~h' 
We now extend this method from vectors to matrices, for the purpose of 

applying it to functions of~. Let.!: and ~ be matrix-valued functions of ~ 
of dimension q x r and s x r, respectively, and let t and ~ be their values 

A , A' 
taken at ~. As m -+ 00 the 8.'lymptotic approximation to E(.!: ~ ) is 

E(J:6.') ~ rLl' + ~ ~ (a.!:o) <1> (aLlo)', (4.2) 
-- -- m ~ an - an 

0=1 -c -c 

where, for a = 1 to r, rand Ll denote the ath column of r, Ll respec-
-a -0 -- --

tively, and <1> is the limiting covariance matrix of m! (n - n ). Here n 
--c --c -c 

refers to the column vector of distinct components of n, of which there are 
pep + 1) /2. Note that <1> is the inverse of the Fisher information matrix I 2 , 

which is given in Section 5. We note that <1> = H(n + n-1E), where the 
matrix-valued function H(·) is given by - - - -

[.g(~)Jij,kl = aikajl + ailajk, 1 ~ i ~ j ~ p; 1 ~ k ~ l ~ p, 

arranged in lexicographic order. The right side of (4.2) is evaluated by com­
puting each component of each of the matrices (ar / an )<1>( all / an )' 

. -0 -c -- -0 --c 
appearing in (4.2). Call the matrix .§o and the (L, ~)-th component bLK • It 
is shown in Stroud (1971, p. 1423) that 

(4.3) 
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where A = O+n-1~,'YLQ and lil(Q are the (/',a)-th and (K, a)-th components 
of r, A respectively, and for any scalar function of a symmetric matrix, 
y =-gm), we define dy/dQ to be asymmetric matrix of the same dimension 
as Q, whose components are defined by 

(:~) = ::'.' 
- ii It 

(4.4) 

(:~ t ~ ~ !; 10' i '" 

Thus to evaluate (4.2) it remains to obtain the matrices d'YLQ/dQ and 
dliI(Q/dQ. Comparing (4.2) and the last term of (3.7), define r = Q(Q + 
n-1~)-1 and ~ = Q. We see from (4.4) that dlil(Q/dQ is a matrix with 1 
in the (K, K) position if K = a, or 1/2 in the(K, a) and (a, K) positions if 
K #- a, with zeros elsewhere. We may write this as 

dlil(Q _ 1 (E E') - - + dO - 2 -I(Q -I(Q' (4.5) 

where by E we mean a matrix with 1 in the (K, a) position and zeros -I(Q 
elsewhere. 

To evaluate d'YLQ/dO, write 

d!: = (dQ)(Q + n-1?;D-1 + Qd(Q + n-1~)-1 
= (dQ)(Q + n-1~)-1 - Q(Q + n-1~)-1(dm(Q + n-1~)-\ 

d'YLQ/dQ is then just the derivative of the (/',a)-th component of d!: with 
respect to dO. This kind of use of matrix differentials is described in Deemer 
and Olkin (1951). 

The extension of (4.5) to arbitrary linear functions of dQ == -! is a slight 
generalization of a formula in Dwyer and MacPhail (1948). Denoting the 
function by Y = ~-!~, where -! is symmetric, the required formula is 

dYLQ = ~(A' E B' + BE' A). 
dX 2 - -LQ- --LQ-

It follows after some simplification that 

To summarize, referring to (4.2) we have 

E {Q(Q + n-1~)-1Q} ~ Q(Q + n-1~)-1Q + ! t ~Q' (4.7) 
Q=1 
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where the (L, K) component of B , denoted by b.I<' is given by (4.3), in 
-0< 

which the partial derivative matrices are given in (4.5) and (4.6). 
Referring to (2.3), the mean squared prediction error MSE may be cal­

culated from 

MSE/(Nh - n)2 = E(!h!~) - E(!hZ~') - E(z~!~) + E(z~z~')· (4.8) 

E('ljJ 'ljJ') is given by (3.7), and 
-h-

(4.9) 

using (2.1). Finally, since zh* may be regarded as J.L plus uncorrelated error, 
- -h 

we have 

E(z* .// ) - E( .// ) -h'f::.h - ~h'f::.h 
= E{E(J.L 'ljJ' Iz1, ... , Z )} -h-h - -m 

= E{E(J.L Izh)'ljJ'} 
-h - -h 

where 

E(~hlzh) = m-1 + n~-lfl~-lf + m-1 + n~-l)-ln~-lzh' 

Hence, since E('ljJ ) = E(() = (, 
-h --

where 

and 

from (3.2), so that 

E(Zh!~) = E(ZhZ~) - n-l~ 

= ((' +~. (4.11) 

where E(ZhZ~) = ((' + ~ + n-l~ from (2.1). Substituting into (4.10) we 
have 

E(z*'ljJ') = ((' + (n-1 + nE-1f1nE-1n. (4.12) 
-h_h __ - - --

Substituting from (3.7), (4.1) and (4.9) into (4.8) and using (4.1) and (4.7), 
we have the following result. 



394 24. Asymptotic Mean Squared Error of Shrinkage Estimators 

Theorem 4.1 Assuming the model stated at the beginning of Section 2, 
where n is fixed and {N1,N2, ... } is a given sequence, and subject to uni­
form integrability conditions, the asymptotic value of the matrix M S E / (N h -

n)2 as defined by (2.3) is equal to 

where the definition of B may be found following relation (4.7). 
-0< 

This is the main result. We conclude with a section setting out the form 
of the Fisher information matrix, which was used in the above development. 

5 Fisher Information Matrix of the 
Hyperparameters 

In Sections 1-4 we are dealing with observations 

In this section we deal with the Fisher information matrix, or, equivalently, 
the asymptotic covariance matrix of 

1 [ (-( 1 m'2 -;:- -
0-0 

It turns out to be almost as easy to write down the answer for the more 
general case: 

~h rv N(f, Q + ~h)' 
which we do, for possible future applications. The log likelihood function 
for ((,0) is 

The Fisher information matrix is given by 

where (~) is the column vector of components ~ followed by the com­

ponents g~fj j i ~ j = 1, ... ,p in lexicographic order. By fh we mean the 
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h-th term in the summation in (5.1). Carry out the process of differentia­
tion, and define Afj to be the (i,j) component of (Q + ~h)-l. It may be 
verified that for h = 1, ... , m and i,j, k, 1 = 1, ... ,p with i ~ j and k ~ l: 

E (8th ) (~) = O. 
8(,i 8Wjk 

If I is partitioned as [~l ~2]' where II is p x p and I2 is p(p + 1) /2 

by p(p + 1)/2, we see that, for the case of equal ~h' the inverse of I is 
(l/m)(Q + ~h) and it may be shown that the component of the inverse 
of I2 corresponding to i,j, k, 1 is (l/m)(aikajl + ailajk), where aij is the 
(i,j)-th component of Q + ~h. 
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Likelihood Analysis of a 
Binomial Sample Size Problem 

Murray Aitkin1 

Mikis Stasinopoulos2 

ABSTRACT The problem of estimating the binomial sample size N from 
k observed numbers of successes is examined from a likelihood point of 
view. The direct use of the likelihood function for inference about N is 
illustrated when p is known, and the problem of inference is considered when 
p is unknown, and has to be eliminated in some way from the likelihood. 
Different methods (Bayesian, integrated likelihood, conditional likelihood, 
profile likelihood) for eliminating the nuisance parameter are found to lead 
to very different likelihoods in N in an example. This occurs because of a 
strong ridge in the two-parameter likelihood in Nand p. Integrating out 
the parameter p is found to be unsatisfactory, but reparameterization of 
the model shows that the inference about N is almost unaffected by the 
new nuisance parameter. The resulting likelihood in N corresponds closely 
to the profile likelihood in the original parameterization. 

1 Introduction 

Carroll and Lombard (1985) considered the problem of estimating the pa­
rameter N based on k independent success counts 81,"" 8k from a bi­
nomial distribution with unknown parameters Nand p. They extended 
earlier work by Olkin, Petkau and Zidek (OPZ, 1981) on the moment and 
maximum likelihood estimators by introducing new estimators of N based 
on integrating out p from the likelihood with respect to a beta distribution, 
yielding a beta-binomial distribution for the number of successes. The new 
estimators maximizing this likelihood compared favorably in mean square 
error terms with the OPZ estimators. Casella (1986) considered perturba­
tions of the likelihood to decide on the "stability" or instability of the ML 
estimator. 

The emphasis throughout these discussions is on point estimation of N, 
and the comparison of different estimators through their mean square or 

lTel Aviv University 
2Welcome Research Laboratories 
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relative mean square errors. In practical data analysis, the reporting of 
a point estimate without some measure of precision would not be suffi­
cient. Carroll and Lombard noted this problem and commented: " ... little 
is known about the shape of L(N) [the likelihood function of N] ... , so the 
question of finding a confidence interval for N remains to be addressed." 
Casella considered the likelihood and perturbations of it but used only the 
maximum likelihood estimate. 

A Bayesian analysis of the problem was given by Draper and Guttman 
(1971). They used independent priors on N and p, taking N to be uniform 
on a finite grid and p to be beta. The marginal posterior distribution for N 
had the peculiar feature of a long right-hand tail, with finite mass for N max , 

the largest value of N allowed a priori. Kahn (1987) pointed out that this 
tail behavior is entirely determined by the prior distributions for p and N, 
and not at all by the data, and therefore the choice of N max is important, 
affecting both the mean and the median ofthe posterior distribution of N. 
Raftery (1988) extended the Bayes analysis by assuming a Poisson (/1) prior 
for Nj this avoids the range restriction of Draper and Guttman. Raftery 
assumed a uniform prior for p in his examples, independent of N, and a 
hyperprior for /1 proportional to /1-1, so that the joint prior for p and N is 
proportional to N-1. 

The Bayesian analysis has the advantage over the "classical" approach 
in providing the full posterior distribution forN, not just a posterior mode 
(maximum integrated likelihood estimate). With a uniform prior for N, 
the posterior for N is simply proportional over the interval N :::;; Nmax 

to the integrated likelihood L(N). With an informative prior p(N), the 
posterior is proportional to p(N)L(N). For a robust Bayes analysis, L(N) 
or the posterior should not depend strongly on the prior distribution for p 
or N. A strong dependence should make us very cautious about drawing 
inferential conclusions about N. 

In this paper we present a likelihood analysis of the problem (see Edwards 
1972 for an authoritative exposition of this approach). Other methods for 
eliminating nuisance parameters in the likelihood approach are available, 
and have been surveyed by Hinde and Aitkin (1987). We compute and 
present in Section 2 the likelihood functions for N obtained by different 
methods of eliminating p. Inferences about N can be dramatically different 
using different methods, as we show with one of the "unstable" examples 
considered by Carroll and Lombard. 

Examination in Section 3 of the two-parameter likelihood in Nand p 
shows why these differences occur, and we find that the likelihoods obtained 
by integrating out p are unsatisfactory. In Section 4 we consider the canon­
ical decomposition of the likelihood (Hinde and Aitkin, 1987) and show 
that elimination of the nuisance parameter by integration is effectively im­
possible in the example. In Section 5 we reparameterize the problem and 
show that the nuisance parameter can now be eliminatedj the resulting 
"canonical" likelihood in N is almost identical to the profile likelihood in 
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Section 2. We show that such a result can be expected frequently. 

2 Likelihood Functions for N 

Given k independent success counts Si from the binomial distribution b(N,p), 
the likelihood function in Nand p is 

Our object is to make an inferential statement about N. Hence, p here is 
a nuisance parameter and needs to be eliminated from the likelihood. We 
will use as an example the "unstable" example of OPZ, with k = 5 and 
Si = (16,18,22,25,27). 

LIKELIHOOD SECTION 

Suppose first that p is known to be 0.21. Then the likelihood in N is simply 
the section of L( N, p) at p = 0.21. This is easily computed provided log n! 
can be accurately calculated. Figure 1 shows the likelihood normalized to 
a maximum of 1, that is the relative likelihood 

R(N) = L(N,po)/L(N,po) at Po = 0.21. 

The maximum likelihood estimate is N = 103. 
Since N is a discrete parameter, the usual "standard error" of the maxi­

mum likelihood estimator based on the observed or expected information is 
not appropriate, and the asymptotic X 2 distribution of -2 log (likelihood 
ratio) is not valid with a sample of 5. 

The likelihood approach uses the relative likelihood, or likelihood ratio, 
directly to construct likelihood intervals for the parameter. Thus all values 
of N with R(N) ::::: , constitute a 100,% likelihood interval for N. For ex­
ample, the 15% likelihood interval for N is (87,121). All such intervals can 
be obtained from a tabulation of R(N), but as with Bayes posterior densi­
ties, it is usually more informative to plot the likelihood than to summarize 
it in one or two interval statements. 

The "calibration" of the likelihood can be understood in conventional 
repeated sampling or in Bayesian terms. In a sequential likelihood ratio 
test of Ho : () = (}o against HI : () = (}1 with equal Type I and Type II 
error probabilities a, the value (I-a) / a for the likelihood ratio L( (}o) / L( (}1) 

would lead to rejection of HI and acceptance of Ho and the value a/(l- a) 
to rejection of H 0 and acceptance of HI. In Bayesian terms, if (}o and (}1 have 
equal prior probabilities, the posterior probability of (}o is a if the likelihood 
ratio L((}o)/L((}I) is a a/(l - a). Thus, in either case, a "conventionally 
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small" a of 0.05 or 0.01 corresponds to a likelihood ratio a/(l- a) of 1/19 
or 1/99. These values give a calibration of the likelihood ratio or relative 
likelihood which is the same for all models, and does not depend on exact or 
asymptotic sampling distributions. See Aitkin (1986) for further discussion. 

We now consider possible methods for eliminating p from the two-parameter 
likelihood. Several methods were discussed by Carroll and Lombard. Hinde 
and Aitkin (1987) gave a full discussion of the elimination of nuisance pa­
rameters in general. 

CONDITIONAL LIKELIHOOD 

If N were known, T would be sufficient for p. By conditioning on T, p is 
eliminated from the likelihood: 

C(N) = Pr(sl < ... < skIT,N) = [II (~)]/ (~k) . 
• 

This generalized hypergeometric likelihood depends only on N, but since 
the distribution b(Nk,p) of the conditioning variable T itself depends strongly 
on N, some loss of information about N must result from conditioning on 
T. Formally, 

L(N,p) = C(N). (~k) p T(l_ p)Nk-T 

and the second factor is ignored in constructing the conditional likelihood. 

PROFILE LIKELIHOOD 

We substitute for pits MLE given N: 

peN) = T/Nk 

peN) = [II (~) ]p(Nf [1- p(N)]Nk-T . 
• 

(Note that peN) :S 1 always since N :::: Smax :::: s = T/k.) 
The profile likelihood is maximized at the ordinary MLE N, and is the 

section of the likelihood L(N,p) along the hyperbola in the parameter space 
given by 

Np=T/k. 

"INTEGRATED" LIKELIHOOD 

Assume a beta "prior" distribution for p 
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and integrate p out of the likelihood to give 

B( N) = [II (N)] (N K + a + b + 1) -1 
. Si T + a + 1 
• 

omitting a proportionality constant of T + a + 1. Here, a and b can be non­
integral; in this case the binomial coefficients are interpreted as gamma 
function ratios. 

Carroll and Lombard calculated the MLEs from this likelihood for the 
particular cases a = b = 0, a = b = 1, and examined their efficiencies (in 
terms of mean square error) compared with those of the adjusted moment 
and ML estimators proposed by OPZ. They noted also that the conditional 
likelihood is equivalent to the integrated likelihood with a = -1, b = 0; in 
Bayesian terms this would imply strong prior information that p is small, 
whereas a = b = 0 would be the uniform prior and a = b = 1 a quadratic 
with mode at p = 0.5. . 

The efficiency comparisons of the estimators established that the maxi­
mum integrated likelihood estimators with a = b = 0 and a = b = 1 are 
generally superior to the OPZ estimators. The difficulty with these com­
parisons is that they are based on one-point inferential summaries: a single 
value found by one estimation method is compared with a single value found 
by another estimation method. But no scientist would be satisfied with a 
point estimate without some information about precision: what could be 
learned from the report "N = 50"? This information is available in the 
likelihood function resulting from the elimination of p, interpreted in the 
same way as the likelihood in Nand p is known. 

The likelihood functions described above are plotted in Figure 1 for the 
"unstable" example of OPZ, together with the section of the likelihood 
at p = 0.21. There is a lower limit to N which must exceed 26; all the 
likelihoods increase rapidly from this value. 

Figure 1 shows remarkable differences among the likelihoods. The section 
of the likelihood is very condensed; the profile likelihood has a poorly­
defined maximum around 100 and falls off very slowly for large values of 
N; the conditional likelihood becomes flat for very large values of N; the 
two integrated likelihoods have a well-defined maximum around 50 but very 
long tails. 

Kahn (1987) showed that the integrated likelihoods behave for large N 
like CN-(aH), where C is a function of k and T but not N. The intervals 
of plausible values of N from these likelihoods (or the intervals of highest 
posterior density if N is given a uniform prior) thus depend explicitly on 
the prior parameter a. For the conditional likelihood with a = -1, the tail 
behaves like a constant C, as is clearly visible. The posterior distribution 
for N given by Raftery (1988) for this example (his Figure 1.1a) behaves 
like CN- 2 since N is given a prior proportional to N- 1 , and p is uniform. 
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FIGURE 1. Likelihoods for N from unstable example: a) Section at p = 0.21, b) 
Conditional, c) Profile, d) Integrated a = b = 0, e) Integrated a = b = 1. 
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Why do these likelihoods differ so much? Examination of the two param­
eter likelihood provides the answer. 

3 Likelihood Function for Nand p 

FIGURE 2. Two-parameter likelihood L(N,p) for "unstable" example. 

Figure 2 shows a perspective plot of the likelihood in Nand p. This func­
tion causes particular difficulty to most plotting and contouring routines 
because the contours are so elongated in the parameter space and the like­
lihood decreases so rapidly from the ridge where N p = T / k. The profile 
likelihood is the section of the likelihood along this ridge and is essentially 
flat over a large range of N. The property of "instability" in a given sam­
ple of the MLE described by OPZ is that the addition of 1 to the largest 
Si results in a very large change to the MLE in the sample. There is no 
need to perturb the sample to demonstrate this property: it is evident in 
the likelihood function for the given sample. The MLE is almost arbitrary, 
and may indeed by affected by the numerical precision with which the fac­
torials in the likelihood are evaluated. OPZ noted that a flat likelihood 
could be expected when the sample variance of the Si was close to the sam­
ple mean, since in this "near-Poisson" region the parameters Nand pare 
nearly unidentifiable. 

As N -+ 00 , the profile likelihood in N tends to the maximum over A of 
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the Poisson likelihood 

k 

L*(A) = II(1/si!)e-kAAT 

i-l 

which is 
k 

L*(T/k) = II(1/Si!)~-T(T/k)T. 
i=l 

For the example, the relative likelihood of "best Poisson" to "best binomial" 
is 

P(o:') = L*(T!k) = 0.935 
P(N) P(N) , 

showing that the Poisson model is a perfectly reasonable alternative to the 
binomial. This value of the relative likelihood is approached as an asymp­
tote in Figure 1 (c). (A simple confirmation comes from the Poisson homo­
geneity test, comparing L(Si - s)2/s = 85.7/21.6 = 3.94 to the usual xl 
null distribution.) This result completely contradicts the conclusions from 
the integrated likelihoods (except for a = -1, b = 0), since the relative 
likelihoods go to zero as N - 00 in these cases. 

The great differences between the integrated likelihoods and the condi­
tional likelihood can be easily interpreted in terms of the relative weights 
assigned to small and large values of P by the prior distribution. The con­
ditionallikelihood assigns heavy weight to small values of Pi for such values 
the likelihood is large only for large values of N. The uniform and quadratic 
priors assign more weight to intermediate values of P and therefore of N. 
The integrated likelihood in N can be made to have any tail behavior by a 
suitable choice of prior distribution. In the absence of real evidence about 
P external to the experiment justifying an informative prior distribution, 
the use of integrated likelihoods is potentially misleading and cannot be 
recommended. Even the location of the maximum depends on the prior: 
with a = -1 and b = 0 there is no finite maximizing value at all. To quote 
'''N ~ 50", the MLE from a = b == 0 and a = b = 1, would certainly be 
misleading. 

This dependence of inference about N on the choice of the prior for P is 
a consequence of the shape of the likelihood and can be characterized by 
the eigenvalues in its canonical decomposition, which we now discuss. 

4 Canonical Decomposition of the Likelihood 

Hinde and Aitkin (1987) described a new approach to the elimination of 
nuisance parameters in two-parameter likelihoods. They approximated the 
likelihood L(O, cp) by a separable function A(O)B(cp) of the parameters. A 
least-squares approximation of L(O, cp) by A(O)B(cp) gives A(O) and B(cp) 
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as the principal eigenfunctions in the eigenfunction expansion of L{(}, ¢). 
Computationally, the likelihood function. is evaluated as a matrix Lover 
finite grids in each parameter, and the likelihood matrix is approximated by 
its rank 1 representation in the singular value decomposition. If the squared 
principal eigenvalue A~ contains most of the trace of LL', the likelihood is 
well represented by A{(})B{¢), and inference about () can be based on the 
"canonical likelihood" A{(}). ignoring ¢. The goodness ofthe approximation 
is measured by a = AUtrLL'; this should be at least 0.95 for a good 
approximation. 

For the unstable example of Section 2, the likelihood function L{N,p) 
has squared principal eigenvalue A~ which is only 11% of the trace of LL'. 
Inference about N thus depends strongly on p, and the nuisance parameter 
p cannot be eliminated by integrating out, since the resulting likelihood 
in N will depend strongly on the weight function in p that is used in the 
integration. Thus, the routine use of integrated likelihoods in this problem 
cannot be recommended. 

Both the integrated likelihoods and the accuracy of the canonical ap­
proximation depend on the form of the nuisance parameter. Kahn (1987) 
speculated that reparameterizing the model might help. We now examine 
the choice of parameterization. 

5 The Choice of Nuisance Parameter 

The choice of the nuisance parameter in two-parameter likelihoods was 
discussed by Hinde and Aitkin (1987). They recommended choosing the 
nuisance parameter ¢ to make the likelihood L{(}, ¢) as nearly separable 
as possible. If there exists a parameterization {(), t/J) such that L{ 0, t/J) = 
A{(})B{t/J) exactly, then the expected information matrix of {) and ¢ will 
be diagonal. Cox and Reid (1987) gave a partial differential equation to be 
satisfied by t/J = g{O, ¢) in order to give a diagonal expected information 
matrix, but this applies only to continuous parameters () and ¢. In the 
discussion of Kalbfleisch and Sprott (1970), Edwards pointed out that if 
separability holds exactly, then the maximum likelihood estimate ¢( 0) of 
t/J given 0 will not depend on O. If therefore we can express the partial 
derivative equation {)log L / 8¢ = 0 in the form g{ 0, ¢) = h{ data), then the 
choice t/J = g(O, ¢) will have the required property. This choice does not 
ensure separability; it is a necessary but not sufficient condition. 

In the model considered here, we have 

810gL T 
= 

8p p 

Nk-T 
1-p 

so that 8 log L / 8p = 0 leads to N p = T / k as before. The choice of nuisance 
parameter t/J = N p will therefore give ¢ = T / k. Here, t/J is just the binomial 
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mean which is estimated by the sample mean s = T/k. The likelihood 
function can then be written 

Note that the parameter space is now not a product space. Figure 3 shows 
the likelihood function in N and 'I/J. The strong dependence of the shape 
of the likelihood section in N on the value of p has now disappeared. The 
canonical decomposition of L( N, 'I/J) now gives Q = 0.998 : 99.8% of the 
trace of LL' is contained in the first eigenvalue Ai. The likelihood function 
is almost exactly separable; whether we integrate out 'I/J or maximize over it, 
almost the same likelihood in N will be obtained. The canonical likelihood 
for N is shown in Figure 4, together with the profile likelihood. These are 
very close, and the profile likelihood in N from L(N, 'I/J) is identical to that 
from L(N,p) as is easily seen. 

FIGURE 3. Two-parameter likelihood L(N,1j.J}. 

Thus the reparameterization of the likelihood leads to an almost exactly 
separable likelihood for Nand 'I/J; the resulting likelihood in N is almost 
identical to the profile likelihood for N in the original parameterization, but 
is very different from the integrated likelihoods, except for the conditional 
likelihood. 

This discussion has been restricted to one "unstable" example from OPZ. 
Is examination of the likelihood necessary only in these unstable cases 
(where the mean and variance of the counts Si are nearly equal)? Figure 5 
shows the likelihood for one of the "stable" examples from OPZ with k = 20 
and Si = (17,23,24,25,25,26,26,26,27,27,28,28,28,29,30,30, 30, 31, 33, 38). 
Here the mean and variance are 27.55 and 17.73, showing considerable 
under-dispersion. There is a clear maximum of the likelihood at N = 71, 
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FIGURE 4. Canonical and profile likelihoods for N from L(N,7jJ). 
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and the maximum falls off along the ridge as N increases. The limit of 
the profile relative likelihood as N ---> 00 is 0.356, so the Poisson is still a 
plausible alternative to the binomial. The same pronounced curvature in 
the likelihood is visible, and integration over p still gives integrated likeli­
hoods depending on the prior. The "stability" of the MLE of N is thus no 
insurance against misleading point inferences, whether from the integrated 
or the profile likelihoods. 

FIGURE 5. Two-parameter likelihood L(N,p) for "stable" example. 
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6 Conclusion 

The "instability" of the MLE of N is a consequence of the flatness of the 
likelihood in N in the near-Poisson region when the mean and variance 
of the counts Si are nearly equal. The lack of information about N in the 
unstable cases cannot be corrected by integrating p out of the likelihood; 
the tail behavior of the integrated likelihoods depends completely on the 
prior for p. 

This example provides further evidence of the importance of careful 
examination of the likelihood function. The apparently straightforward 
Bayesian (or integrated likelihood) analysis provides a posterior distribu­
tion (integrated likelihood) for N which depends strongly on the specifica­
tion of the prior. The use of the maximum of the integrated likelihood as a 
point estimate would not be satisfactory in any scientific analysis without 
a variability qualification. The integrated likelihood provides a full descrip­
tion of the variability about the MLE, but this description is so sensitive 
to the prior on p that no confidence can be placed in the conclusions. 

Reparameterization solves these difficulties. It no longer matters much 
whether we integrate or maximize over 1/;, since the likelihood L(N,1/;) 
factors almost exactly. The resulting likelihood in N corresponds closely to 
the profile likelihood, an unexpected result for the Bayesian view that it is 
better to integrate out nuisance parameters than to maximize over them. 

This result can be expected quite often. If the likelihood function L( (), ¢) 
is not separable, but there is a transformation of the nuisance parameter ¢ 
to 1/; = g((},¢) such that L((},1/;) is separable (L((},1/;) = A((})B(1/;)), then 
A((}) is exactly the profile likelihood L((},~((})). If under the new param­
eterization the likelihood function is nearly separable, there will be close 
agreement between the canonical and profile likelihoods, as in this example. 
This result provides support for the general use of profile likelihoods. 

The practical conclusion for the "unstable" example is that nothing prac 
tical can be said about N except that it is not very small. It could indeed 
be infinite! This differs very much from the apparent conclusion from the 
integrated likelihoods that N is around 50. 

REFERENCES 

Aitkin, M. (1986). Statistical modelling: the likelihood approach. The 
Statistician 35, 103-113. 

Carroll, R.J. and Lombard, F. (1985). Note on N estimators for the bino­
mial distribution. J. Amer. Statist. Assoc. 80,423-426. 

Casella, G. (1986). Stabilizing binomial n estimators. J. Amer. Statist. 
Assoc. 81, 172-175. 



Murray Aitkin, Mikis Stasinopoulos 411 

Cox, D.R. and Reid, N. (1987). Parameter orthogonality and approximate 
conditional inference (with Discussion). J. Roy. Statist. Soc. B 49, 
1-39. 

Draper, N. and Guttman, I. (1971). Bayesian estimation of the binomial 
parameter. Technometrics 13,667-673. 

Edwards, A.W.F. (1972). Likelihood. Cambridge University Press. 

Hinde, J.P. and Aitkin, M. (1987). Canonical likelihoods: a new likelihood 
treatment of nuisance parameters. Biometrika 74, 45-58. 

Kahn, W.D. (1987). A cautionary note for Bayesian estimation of the bi­
nomial parameter n. Amer. Statist. 41, 38-39. 

Kalbfleisch, J.D. and Sprott, D.A. (1970). Application of likelihood meth­
ods to models involving large numbers of parameters (with Discus­
sion). J. Roy. Statist. Soc B 32, 175-208. 

Olkin, I., Petkau, A.J. and Zidek, J.V. (1981). A comparison ofn estimators 
for the binomial distribution. J. Amer. Statist. Assoc., 76, 637-642. 

Raftery, A.E. (1988). Inference for the binomial N parameter: a hierarchical 
Bayes approach. Biometrika 75, 223-228. 



26 

Truncation, Information, and 
the Coefficient of Variation 
M.J. Bayarri 1 

M.H. DeGroot2 

P.K. Goe13 

ABSTRACT The Fisher information in a random sample from the trun­
cated version of a distribution that belongs to an exponential family is 
compared with the Fisher information in a random sample from the un­
truncated distribution. Conditions under which there is more information in 
the selection sample are given. Examples involving the normal and gamma 
distributions with various selection sets, and the zero-truncated binomial, 
Poisson, and negative binomial distributions are discussed. A property per­
taining to the coefficient of variation of certain discrete distributions on the 
non-negative integers is introduced and shown to be satisfied by all bino­
mial, Poisson, and negative binomial distributions. 

1 Introduction 

Consider the basic statistical problem in which a random variable X is dis­
tributed over a certain population according to the (generalized) density 
g(x I 0) and it is desired to make inferences about the unknown value of 
the parameter 0 which lies in the parameter space O. In the usual statis­
tical analysis, it is assumed that the observed data form a random sample 
from the density g(x I 0). In many situations, however, observations are 
obtained only from certain selected portions of the underlying population, 
either because experimental conditions make it impossible to obtain data 
from the entire population or because experimenters choose to restrict the 
observations in this way in their experimental design. 

In this paper we will consider problems in which the observations are 
restricted to lie in a specified subset S of the sample space of X. Let 

8(0) = Pr(XfS I 0) for Of 0 , 

University of Valencia 
2Carnegie Mellon University 
30hio State University 

(1.1) 
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where it is assumed that s(9) > 0 throughout n. The statistical analysis will 
then be based on a random sample Yt, ... , Yn from the following truncated 
version of the density g: 

f(y I 9) = { g(Y I 9)js(9) for yES, 
otherwise. 

(1.2) 

The model (1.2) is called a truncation model or a selection model, and a 
random sample from (1.2) is called a selection sample. The set S is called 
the selection set. 

Selection samples occur frequently in practice. Several examples are given 
in Bayarri and DeGroot (1987a,c), together with a discussion of the Bayesian 
approach to their analysis. 

Our central focus here is to compare the experiment in which a ran­
dom sample Xl' ... ' Xn is drawn from the unrestricted density g( x I 9) 
with the experiment in which a selection sample Y1 , ... ,Yn is drawn from 
the truncation model f(y I 9) in order to determine which of these two 
experiments is more informative about 9. Many different concepts of the 
information in an experiment have been discussed in the statistical litera­
ture, including sufficiency and the comparison of experiments, as developed 
by Blackwell (1951, 1953); Kullback-Leibler information (Kullback, 1968); 
and the widely-used Fisher information. Some relationships among these 
concepts and further references can be found in Goel and DeGroot (1979). 
Here we will restrict our study to problems in which 9 is a real-valued 
parameter and the comparison is based on the Fisher information in each 
experiment. The investigation of the information in selection samples was 
introduced in Bayarri and DeGroot (1987b), where comparisons based on 
both Fisher information and other concepts of information were carried 
out. Some of the results to be discussed here were mentioned there with 
the details omitted. In closely related subsequent work, Patil and Taillie 
(1987) calculate the Fisher information for a wide variety of weighted dis­
tributions, including some truncation models. Their paper, like this one, 
concentrates on exponential families of distributions. 

This paper has two major purposes. The first is to illuminate the effects 
of truncation on the information in the most widely used distributions 
in statistical practice, including the normal, gamma, binomial, Poisson, 
and negative binomial. We shall accomplish this by studying the Fisher 
information in truncated exponential families. The second purpose is really 
a happy bonus. We will present a simple and fascinating property that 
is satisfied by all binomial, Poisson, and negative binomial distributions, 
but (relatively speaking) few other discrete distributions. This property, 
which we discovered in our study of the Fisher information in truncated 
versions of these standard discrete distributions with the zero class missing, 
is defined as follows: 
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Suppose that a random variable X has a discrete distribution on the 
non-negative integers with finite variance, and let 

Pi = Pr{X = i) 
I-" = E{X), 

for i = 0, 1, 2, ... , 

and 0'2 = Var{X). 

Then the distribution of X is said to have the CV property if 

Po 0'2 

Pl = 1-"2 . 

(1.3) 

(1.4) 

The name CV property that we have given to (1.4) is inspired by the fact 
that the right-hand side of (1.4) is the square of the coefficient of variation 
(the CV) of the distribution of X. 

It is easy to verify that the distribution of X has the CV property if 
it is a member of anyone of the following "Big 3" families of discrete 
distributions: 

Binomial: Pi = (7) (Ji{1 - ())n-i for i = 0,1, ... , n , (1.5) 

for some positive integer n and some number () (O < () < 1). In this family 
I-" = n() and 0'2 = n(){1 - ()). 

P . -B()ij.' l: • 0 1 2 ozsson: Pi = e Z. lor z = , , ,... , (1.6) 

for some number () > O. In this family I-" = 0'2 = (). 

Negative binomial: Pi= (~r)()r[_{1_())li for i=0,1,2, ... , (1.7) 

where r and () are numbers such that r > 0 and 0 < () < 1. In this family 
I-" = r{1- ())j() and 0'2 = r{1- ())j()2. 

Although isolated examples of other distributions satisfying the CV prop­
erty (1.4) can be constructed, we do not know of any other widely-used 
family of discrete distributions all of whose members satisfy it. 

In Section 2 we derive a general expression for the Fisher information in 
a selection sample from a truncation model with an arbitrary selection set 
when the underlying distribution belongs to an exponential family. Nec­
essary and sufficient conditions are presented for the information in the 
selection sample to be greater than that in an unrestricted random sample. 

In Section 3, we study the information in a truncated normal distribution 
for various selection sets, first when the mean is unknown and then when 
the variance is unknown. In some of the examples that are presented, the 
unrestricted random sample contains more information than the selection 
sample, and in other examples the reverse is true. 

In Section 4, truncated gamma distributions are studied when the se­
lection set is the upper tail of the distribution. It is shown that whether 
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a selection sample or an unrestricted random sample contains more in­
formation about the scale parameter depends on the value of the shape 
parameter. 

In Section 5, we study truncated binomial, Poisson, and negative bino­
mial distributions with the zero class missing. It is shown that for each 
of these three zero-truncated families, the ratio of the Fisher information 
in a selection sample to the Fisher information in an unrestricted random 
sample has the special form Pr(X ~ 2 I O)/[Pr(X ~ 11 OW. 

Finally, in Section 6, we discuss the CV property (1.4) and motivate its 
derivation by using the results in Section 5. Selected theorems are presented 
describing the properties of some distributions that satisfy the CV property. 

2 Fisher information in a truncated 
exponential family 

Under the usual regularity conditions regarding differentiation with respect 
to 0 inside the expectation operator, the Fisher information Ix(O) in an 
observation X with density g(x I 0) is given by 

I (0) = E [_ 82 logg(X I 0)] 
x 9 802 

(2.1) 

The Fisher information in a random sample Xl' ... ' Xn from g(x I 0) is 
simply nlx(O). 

It follows from (2.1) that the Fisher information ly(O) in an observation 
Y from the truncation model (1.2) is given by 

I (0) = E [_ 8 2 logg(Y I 0)] d2 logs(0) 
y f 802 + d02 (2.2) 

If Ix(O) ~ Iy(O) for all values of Odl, then the experiment Ex in which a 
random sample is drawn from the unrestricted density g(x I 0) will always 
yield at least as much Fisher information about 0 as the experiment Ey in 
which a selection sample of the same size is drawn from the truncated model 
(1.2). In this case, we write Ex 'cF Ey. Similarly, if ly(O) ~ lx(O) for all 
values of Off?, we write Ey 'cF Ex. Of course, in an arbitrary problem, it 
is not necessarily true that either Ex 'cF Ey or Ey 'cF Ex. 

In general, it is important to note that the expectation in (2.1) is calcu­
lated with respect to the density g(x I 0) whereas the expectation in (2.2) 
is calculated with respect to the density f(y I 0). However, this distinction 
becomes irrelevant if the expression inside the square brackets in (2.1) or 
(2.2) does not actually depend on X or Y. 

This situation will arise if 0 is the natural parameter of an exponential 
family of distributions, in which case g(x I 0) = a(x)eOu(x) /c(O). It follows 
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from (2.1) and (2.2) that 

Ix(B) = d2l~~;(B) = Var[u(X) I B] (2.3) 

and 
d2log s(B) 

ly(B) = Ix (B) + dB2 = Var[u(Y) I B] . (2.4) 

A similar result is given by Patil and Taillie (1987) for more general types 
of weighted distributions. 

Now consider an arbitrary exponential family of the form 

a(x )ew (9)u(x) 

g(x I B) = c(B) , (2.5) 

where w( B) is a one-to-one differentiable function of B for BEn. If the density 
(2.5) and the corresponding truncation model (1.2) are reparametrized in 
terms of ( = w(B), and if Il(() and Iy(() denote the Fisher information 
about ( in X and Y, respectively, then as is well known, 

( d()2 
lz(B) = Iz[w(B)] dB for Z=X,Y. (2.6) 

The following result is now immediate: 

Theorem 2.1 Suppose that g(x I B) is given by {2.5}. Then for any value 
of BoEn, 

(2.7) 

if and only if 

{ d2log s[w- 1(()]} 

d(2 (=w(90 ) 

< > o. (2.8) 

The interpretation of this theorem is that anyone of the three possible 
relations in (2.7) holds if and only if the corresponding relation in (2.8) 
holds. Since ( = w(B) is the natural parameter of the exponential family 
defined by (2.5), we have, in particular, the following corollary: 

Corollary 2.2 Suppose that g(x I B) is given by {2.5}, and let 

t(() = Pr[XES I B = w- 1 (()] • (2.9) 

Then ex 'CF ey if and only if logt(() is a concave function of (, and 
ey 'CF ex if and only iflog t( () is convex. 

We now apply these results to truncated normal distributions. 
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3 Truncated normal distributions 

Suppose that the distribution of X is normal with unknown mean 
() (-00 < () < 00) and known variance which, without loss of generality, we 
take to be 1. For this exponential family, the natural parameter is () itself, 
and u(x) = x. Hence, it follows from (2.3) that, as is well known, Ix(()) = 1. 

Example 1. 

Suppose that this normal distribution is truncated so that any observation 
Y must lie in the interval S = {y : 71 < y < 72}, where 71 and 72 are 
given numbers such that 71 < 72. We include the possibility of one-sided 
truncation by allowing either 71 = -00 or 72 = 00. Thus, 

s(()) = Pr(XfS I ()) = q,(72 - ()) - q,(71 - ()), (3.1) 

where, as usual, q, denotes the d.f. of the standard normal distribution. 

A straightforward calculation shows that d21~~:(()) :::; 0 if and only if 

h - ())¢( 71 - ()) - (72 - ())¢( 72 - ()) < [¢( 71 - ()) - ¢( 72 _ ()) ] 2 , 
q,( 72 - ()) - q,h - ()) - q,( 72 - ()) - q,( 71 - ()) 

(3.2) 
where ¢ is the standard normal p.d.f. If 71 :::; () :::; 72 then the left-hand side 
of (3.2) is negative and the inequality is trivially true. Suppose next that 
() < 71. Then (3.2) is equivalent to 

where 
d2 = 72 - () > d1 = 71 - () > 0 

and M(·,·) is the generalized Mills' ratio defined by 

(3.3) 

(3.4) 

q,(A2) - q,(A1) 
M(A1, A2) = ¢(Ad _ ¢(A2) for 0:::; Al < A2 :::; 00 . (3.5) 

The inequality (3.3) now follows from the fact that d1¢(d1 ) - d2¢(d2 ) :::; 

dd¢(dd - ¢(d2 )] and the inequality A1M(A1, A2) < 1 for 0 :::; Al < A2 :::; 00 
(Fang and He, 1984). Finally, the same argument can be applied when 

d2 10g s( ()) 
() > 72, so d()2 :::; 0 for all values of () (-00 < () < 00). Thus, by 

Corollary 2.2, [x 'cF [y. 0 
It is noteworthy that, as we have just shown in Example 1, an unre­

stricted random sample provides greater Fisher information for all possible 
values of () than a selection sample from any given interval, bounded or 
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unbounded, irrespective of its location or its length. This same conclu­
sion could have been reached by using the expression for the variance of 
the truncated normal distribution in Example 1, as given for example by 
Schneider (1986, Sec. 2.2), and then applying (2.4). However, the calcu­
lations needed to reach the conclusion of Example 1 would be the same 
as those that we have presented, starting from (3.2). Indeed, the calcula­
tions given in Example 1 can be regarded as a proof of the fact that the 
variance of any truncated normal distribution for which the selection set S 
is an interval, bounded or unbounded, is smaller than the variance of the 
untruncated normal distribution. 

Example 2. 

Suppose now that the observation Y is restricted to the set S = {y : y < 
TI or y > T2}, where TI < T2 are specified finite real numbers. Then 

8(0) = 1 - 4?(T2 - 0) + 4?(TI - 0) , 

and a straightforward calculation shows that 

d2 log 8(0) 
d02 

(T2 - 0)4>(T2 - 0) - (TI - O)4>(TI - 0) 
8(0) 

_ [4>(T2 - 0) - 4>(TI - 0)]2 
8(0) 

(3.6) 

(3.7) 

We will show that (3.7) is negative for some values of 0 and positive for 
others. 

It can be seen that (3.7) will be negative for any value of 0 such that 

(3.8) 

Since the function u4>(u) is decreasing in u for u > 1, the inequality (3.8) 
will hold for any value of 0 such that 0 < TI - l. 

On the other hand, consider the point 00 = (TI + T2)/2 and let 

Also, let 

d = T2 - 00 = 00 - TI > 0 . 

M(d) = 1 - 4?(d) 
4>(d) 

(3.9) 

(3.10) 

denote Mills' ratio [the limit of (3.5) as A2 ~ 00 with Al = dJ. Then the 
value of (3.7) at 0 = 00 is simply d/M(d) > O. Thus, in this example, 
neither Ex ~F Ey nor Ey ~F Ex· 

It follows from (2.4) that 

d 
ly(Oo) - Ix (00 ) = M(d) > 0 . (3.11) 
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Furthermore, if the truncation points T1 and T2 are moved further and 
further apart, so that T2 - T1 - 00, then d - 00 and, from (3.11), 

Iy(Oo) - Ix (00 ) - 00 . (3.12) 

In other words, if T2 - T1 is large, a selection drawn from outside the interval 
T1 ~ Y ~ T2 will yield much more Fisher information than an unrestricted 
random sample if 0 is near the middle of the excluded interval. 0 

To conclude this section, we will consider an example in which the distri­
bution of X is normal with a known mean which, without loss of generality, 
we take to be 0, and an unknown precision 0 (0 > 0). Recall that the pre­
cision of a normal distribution is the reciprocal of its variance. 

Example 3. 

In this example 
(3.13) 

so 0 is again the natural parameter of the exponential family and u(x) = 
-x2/2. It follows from (2.3) that 

1 
lx(O) = 202 • (3.14) 

Now suppose that this normal distribution is truncated so that anyob­
servation Y must lie in the selection set S = {y : y > T}, where T is a given 
positive number. Here, 

(3.15) 

After some calculation, it can be found that d2 l~;:( 0) > 0 if and only if 

where 'Y = 01/2T • (3.16) 

Since the inequality in (3.16) holds for all 'Y > 0 (Gordon, 1941), it follows 
that ey !:F ex. 0 

Thus, a selection sample from the right tail of a normal distribution 
contains less information about the mean than an unrestricted random 
sample when the variance is known (as follows from Example 1 with T2 = 
00), but more information about the variance than an unrestricted random 
sample when the mean J.L is known, provided that T > J.L (as follows from 
Example 3). By symmetry, a similar conclusion may be made for samples 
from the left tail of a normal distribution. 
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4 Truncated gamma distributions 

In this section we will consider an example in which X has a gamma dis­
tribution and the selection set S is again the right-hand tail of the distri­
bution. This example is interesting because the results depend critically on 
the value of the shape parameter of the gamma distribution. 

Example 4. 

Suppose that X has a gamma distribution for which the shape parameter 
a is known and the scale parameter fJ is unknown (0) 0); that is, 

OO!. 
g(x I 0) = r(a) xO!.-le-9x for x > 0 . (4.1) 

For this exponential family, 0 is the natural parameter, u(x) = -x and 
Ix(O) = ';/02 • 

Now suppose again that the selection set is S = {y : y > T}, where T 

is a given positive number. Let gl(X) and G1(x) denote the p.d.£. and the 
corresponding d.f. of the gamma distribution given by (4.1) with 0 = 1, 
and let 

for x>O (4.2) 

denote the hazard-rate or failure-rate function for the distribution G1. Since 
fJ is a scale parameter in (4.1), then g(x I 0) = Ogl(OX) and G(x I fJ) = 
G1 (Ox). It is easy to verify that 

rP log s(O) = _ 2h' ( 0) 
d02 TIT, (4.3) 

where h~(x) = dh1(x)/dx. Therefore, by (2.4), ly(O) ~ Ix(O) at a given 
value of 0 if and only if h~ (TfJ) :::; O. It is known (Barlow and Proschan, 
1975, Chapter 3) that a gamma distribution has an increasing hazard-rate 
function if a > 1 and a decreasing hazard-rate function if 0 < a < 1. 
Therefore, if a > 1, then ex tF ey, whereas if a < 1, then ey tF ex. 
If a = 1, the gamma distribution reduces to the exponential distribution 
for which the hazard-rate function is constant and both of the relations 
ex tF ey and ey tF ex hold. In fact, if a = 1 then both X and Y - T 
have an exponential distribution with parameter 0, so the experiments ex 
and ey are equivalent. 0 

5 Truncated discrete distributions 

Two truncation models that have been widely treated in the statistical lit­
erature are the truncated binomial and Poisson distributions in which the 
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zero class is missing (see, for example, David and Johnson, 1952; Irwin, 
1959; Cohen, 1960; Dahiya and Gross, 1973; Sanathanan, 1977; Blumen­
thal and Sanathanan, 1980; and Blumenthal, 1981). These distributions 
are called zero-truncated (or, sometimes, positive or decapitated) binomial 
and Poisson distributions (see, e.g., Patil, Boswell, Joshi, and Ratnaparkhi, 
1984). In this section we will derive the Fisher information in zero-truncated 
binomial, Poisson, and negative binomial distributions by fundamental cal­
culations (that is, brute force) in order to motivate our discovery of the CV 
property (1.4) introduced in Section 1. 

Example 5. 

Suppose that X has a binomial distribution with parameters n and (), as 
defined by (1.5), where () is unknown (0 < () < 1). It is well known that 

n 
Ix(()) = ()iJ ' (5.1) 

where iJ = 1 - (). 
The zero-truncated random variable Y has the following discrete p.f.: 

where 

( n) ()YiJn-y 
f(y I ()) = y ~ for y = 1, ... , n , 

s( ()) = 1 - iJn . 

(5.2) 

(5.3) 

We will calculate ly(()) directly from (5.2) and the basic definition (2.1) of 
Fisher information. It is found that 

8210gf(y I ()) y n - y niJn-2(n -1 + iJn) 
8()2 = ()2 + ---rJ2 - (1 _ ()n )2 . (5.4) 

Since 

E(Y I ()) = ~ 
1 - ()n ' 

we obtain after much algebra, 

or, equivalently, 

I (()) = I (()) 1 - niJn- 1 + (n - 1)iJn 
Y x (1-()n)2 

ly(()) 

Ix (()) 
Pr(X 2: 2 I ()) 

[Pr(X 2: 1 I ())J2 . 

(5.5) 

(5.6) 

(5.7) 

We know that the right-hand side of (5.7) is less than 1 because it can 
be rewritten as 

Pr(X 2: 2 I X 2: 1, ()) 

Pr(X 2: 1 I X 2: 0, ()) 
(5.8) 
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and, as is well known, the binomial distribution has the property that in 
reliability theory is called "new better than used" (see, e.g., Barlow and 
Proschan, 1975). Hence, ex ~F ey. 0 

We will now carry out a similar calculation for the zero-truncated Poisson 
distribution. 

Example 6. 

If X has a Poisson distribution with unknown mean 0 (0 > 0), as defined 
by (1.6), then 

1 
Ix(O) = (j . 

The p.f. of the zero-truncated random variable Y is 

e90Y 
fey I 0) = y!s(O) for y = 1,2, ... , 

where 

It is found that 

Since 

we obtain 

s(O) = 1 - e-9 • 

-fPlog fey I 0) 
f)02 

y e-9 

02 - (1 - e-9 )2 • 

o 
E(Y) = 1 _ e-9 ' 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

It is a striking fact that (5.14) can again be expressed in the form (5.7). 
Since the Poisson distribution is also known to have the property called 
"new better than used," we can again conclude that ex ~F ey. 0 

Finally, we turn to the zero-truncated negative binomial distribution. 

Example 7. 

If X has a negative binomial distribution with parameters r and 0, as 
defined by (1.7), where 0 is unknown (0 < 0 < 1), then 

r 
Ix (0) = 02iJ (5.15) 

and it can again be shown by straightforward calculations that (5.7) holds 
for the zero-truncated random variable Y. In this example, however, as 
noted by Patil and Taillie (1987), 

< Ix(O) > !y(O) for all 0 (0 < 0 < 1) (5.16) 
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if and only if 
(5.17) 

Thus, if r < 1, then ey ?::F ex; if r > 1, then ex ?::F ey; and if r = 1, 
then Ix(O) == !y(O). In this case, both X and Y - 1 have a geometric 
distribution with parameter O. 0 

We will now look more closely at just why the relation (5.7) is satisfied 
in all three of the examples presented in this section, and we will develop 
the connection between (5.7) and the CV property. 

6 The CV property 

Suppose that a random variable X has a discrete distribution on the non­
negative integers with mean Jt and variance a2, and Po = Pr(X = 0) < 1. 
If the random variable Y is the zero-truncated version of X, then 

E(yk) = E(Xk) for k = 1,2 . 
1- Po 

It follows from an easy calculation that (Patil and Taillie, 19&7) 

"tT (Y) = 21 - Po - (Jt2/a 2)pO 
var a ( )2 . 

1- Po 

(6.1) 

(6.2) 

Also, if the pJ. of X can be expressed in the form (2.5) with u(x) = x, 
then it follows from (2.3), (2.4), and (2.6) that 

!y (0) Var(Y I 0) 
Ix(O) - Var(X I 0) , 

(6.3) 

where Y is any truncl::!-ted version of X restricted to a fixed selection set 
S. In particular, if the distribution of X is binomial, Poisson, or negative 
binomial, as in ~xamples 5, 6, and 7, then (6.3) holds. Furtheqnore, it was 
shown in Section 5 that if Y is the zero-truncated version of X, then for each 
of these three families, the relation (5.7) holds. The CV property (1.4) now 
follows from (5.7), (6.3), and (6.2) for every dist~ibution belonging to any 
one of these "Big 3" families of discrete distributions: binomial, Poisson, 
and negative binomial. 

Of course, once the CV property (1.4) has been put forward, it is trivial 
to verify directly from (1.5)-(1.7) that every distribution in the "Big 3" sat­
isfies the property. Our purpose in giving the preceding discussiop. has been 
to motivate both our interest in the property and the method by which we 
discovered it. It should be emphasized that although we developed the CV 
property by studying Fisher information in parametric families of distri­
butions, the property itself pertains to an individual discrete distribution 
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on the non-negative integers. As we will show, there are other discrete dis­
tributions outside the "Big 3" families that satisfy this property. However, 
we do not know any other "standard" distributions satisfying it. For ex­
ample, it is not satisfied by discrete uniform distributions, hypergeometric 
distributions, or beta-binomial mixtures, except in the trivial situation in 
which the distribution is restricted to the two values X = 0 and X = 1. 
Characterization problems for families of distributions satisfying the CV 
property are discussed in Goel and DeGroot (1988). 

In the remainder of this paper we will present a few selected results 
pertaining to the question of which distributions satisfy the CV property. 
Throughout this discussion we will use the notation given in (1.3), and will 
restrict ourselves to discrete distributions on the non-negative integers for 
which both I-L and 0-2 are finite and POPl > O. This last inequality, of course, 
implies that I-L > 0 and 0-2 > O. The support of a discrete distribution of 
this type is the set of non-negative integers i such that Pi > O. 

We begin by noting that every distribution with support {O, I} satisfies 
the CV property. Of course, every such distribution is a binomial distribu­
tion with n = 1, that is, a Bernoulli distribution. Now consider distributions 
with support {O, 1, 2}. 

Theorem 6.1 A distribution with support {O, 1, 2} satisfies the CV prop­
erty if and only if it is binomial. 

Proof Since the support is {O, 1, 2}, it follows that I-L = Pl + 2P2 and 

0-2 = Pl + 4P2 - 1-L2 

= Pl(l- Pl) + 4pOP2. 

Thus, the CV property is satisfied if and only if 

Po Pl (1 - Pl) + 4pOP2 

Pl (Pl + 2P2)2 

or equivalently 

(6.4) 

(6.5) 

po(pi + 4P1P2 + 4pi) = pi(1- pd + 4POP1P2 . (6.6) 

If we write the term 1 - Pl on the right-hand side of (6.6) as Po + P2, and 
then cancel poPI + 4POP1P2 from each side of (6.6), we find that the CV 
property is satisfied if and only if 

pi = 4POP2 . (6.7) 

However, (6.7) is precisely the condition that a distribution on the set 
{O, 1, 2} is a binomial distribution with n = 2. 0 

The next result shows that the distribution of a sum of Li.d. random 
variables will satisfy the CV property if and only if the distribution of each 
random variable in the sum satisfies it. 
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Theorem 6.2 Suppose that the random variables X}, ... , Xm are i.i.d., 
and let X = Xl + ... + X m . Then the distribution of X satisfies the CV 
property if and only if the distribution of Xl satisfies it. 

Proof We will reserve the notation Po, PI, p" and 0'2 for the distribution 
of Xl. Then 

Pr(X = 0) = pif, Pr(X = 1) = mp:f-IpI , 
E(X) = mp, , Var(X) = m0'2 • 

(6.8) 

The theorem follows immediately from (6.8) and the definition (1.4) of the 
CV property. 0 

We will conclude this paper by exhibiting a class of distributions outside 
the "Big 3" families that satisfy the CV property. 

Theorem 6.3 A distribution supported on the three points {O, 1, n} satis­
fies the CV property if and only if there exists a number () (0 < () < 1) such 
that 

PO=(}2, 

n -
PI = --1 (}() , 

n-
fi2 n-2 -

Pn = () + --1 (}() . 
n-

(6.9) 

(6.10) 

(6.11) 

Remark. Before we give the proof of Theorem 6.3, we shall describe 
one possible stochastic mechanism that leads to a distribution of the form 
specified in the theorem. Suppose that X I is a Bernoulli random variable 
with 

Pr(XI = 0) = (), Pr(XI = 1) = 0 , (6.12) 

and that X 2 is a discrete random variable whose conditional distribution 
given X I is as follows: 

Pr(X2 = 0 I Xl = 0) = () , Pr(X2 = 1 I Xl = 0) = 0, 

() 
Pr(X2 = 0 I Xl = 1) = --, 

n-l 
() 

Pr(X2 = n -11 Xl = 1) = 1- --. 
n-l 

(6.13) 

Then it is easily verified that the distribution of Xl + X 2 is specified by 
(6.9)-(6.11). It should be noted that Xl and X 2 are independent only for 
n = 2. In this case they are LLd. Bernoulli random variables, and the 
distribution in Theorem 6.3 is .simply a binomial distribution. 
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Proof of Theorem 6.3 For a distribution with support {O, 1, n}, 

(6.14) 

We now reparametrize the problem in terms of new parameters oX and () 
defined by the relations 

n 
PI=--loX and Po=()-oX. 

n-
(6.15) 

If we let Pn = 1-Po - PI in (6.14), and replace Po and PI by the expressions 
given in (6.15), then we obtain 

E(X) = nO and E(X2) = n2(0 - ~) . 
n 

(6.16) 

Hence, the CV property will be satisfied if and only if 

() - oX = 0 - ~oX/n) _ 1 
noX/(n - 1) ()2 

(6.17) 

or, equivalently, after some algebra, if and only if 

- (oX -) (oX - ()() n _ 1 - () = 0 . (6.18) 

The relation (6.18) is satisfied if and only if oX = ()O or oX = (n - 1) 0. 
Suppose first that oX = ()O. Then in order to have both 0 < Po < 1 and 

o < PI < 1, it is necessary and sufficient that 0 < () < 1. In this case we 
obtain the distribution specified by (6.9) -(6.11). 

Suppose next that oX = (n - 1)0. In this case Po + PI = 1 and Pn = 0, 
so the support of this distribution has less than three points. The theorem 
now follows. 0 

It follows from Theorem 6.2 that the sum of any fixed number of Li.d. 
random variables, each having the three-point distribution specified in The­
orem 6.3, will also satisfy the CV property. Thus, we can identify distri­
butions satisfying the CV property with more than three points in their 
support. If n = 2 in Theorem 6.3, then we merely generate binomial distri­
butions through this process; but if n ~ 3, then we obtain some previously 
unidentified distributions. However, none of these new distributions can 
have a support of the form {O, 1,2, ... ,r - 1, r} for some integer r ~ 3 
because the point r - 1 must have probability O. 
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Asymptotic Error Bounds for 
Power Approximations to 
Multinomial Tests of Fit 
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ABSTRACT The Cressie-Read (1984) class of goodness-of-fit tests is con­
sidered. Asymptotic error bounds are derived for two new non-local approx­
imations, the classical noncentral X2 approximation, a moment-corrected 
version of it and normal approximations to the power of these tests. 

1 Introduction 

Consider the following goodness-of-fit problem. Let Xl> ... , Xn be i.i.d. 
observations with distribution function F X and suppose the hypothesis 
Ho is to be tested that F X equals a given F. If the range of the Xj is 
partitioned into k cells Cl> ... , Ck and Ni = #{j : Xj E Ci,j ~ n}, i = 1, 
... , k, multinomial tests of fit can be based on the cell counts Ni and the 
null probabilities Pi = PF(Xj E Ci ). In the case of grouped observations 
the cells C1 , ... , Ck may already be given at the start. 

Cressie and Read (1984) have considered the class of statistics 

where N = (Nl> ... , Nk)', P = (Pl> ... ,Pk)' and fA is a directed divergence 
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between probability vectors P and q defined by 

k 

fA(q : p) = {A(oX + I)} -1 L qi{(qi/Pi)A - I} 
i=l 

for real oX -:J 0, -1. One may define fA by continuity when oX = 0 or -1. 
The class contains the well known statistics 

k 

X2 = L(Ni - npi)2/(npi) 
i=l 

k 

C2 = 2 L Ni log (Ni/(npi)) 
i=l 

k 2 

FT2 = 4 L { Nil/2 - (nPi )I/2} 
i=1 

k 

X;' = L(Ni - npi)2/Ni 
i=l 

for oX = 1 (Pearson statistic), oX = 0 (likelihood ratio statistic), oX = -~ 
(Freeman-Tukey statistic) and oX = -2 (Neyman's modified chi-square 
statistic), respectively. Cressie and Read (1984) recommend the use of RA 
with oX = 2/3. See Moore (1984) for an interpretation of fA as a measure 
of lack of fit. 

Under Ho the asymptotic distribution of the statistics RA is xLI (chi­
square on k - 1 degrees of freedom), although the approximation for mod­
erate sample sizes is not satisfactory outside the interval (1/3,3/2), see 
Larntz (1978), Cressie and Read (1984) and Read (1984 a,b). 

Here we are concerned with the power of the tests in the Cressie-Read 
class under alternative distributions Cn of the X/so Let 7rin = FCn (Xj E 

Ci), i = 1, ... , k and 7rn = (7rln,"" 7rkn)'. Under contiguous alternatives 
where n l / 2 (7rin - Pi) is bounded for each i as n ---+ 00, RA is asymptotically 
distributed as noncentral xLI (Dn) with noncentrality parameter 

k 

Dn = n L(7rin - Pi)2/Pi , 
i=l 

see Patnaik (1949) and Cressie and Read (1984). More precise expansions 
have been given by many authors, see e.g. Peers (1971), Hayakawa (1975) 
and Chibisov and van Zwet (1984). However, these are strictly local results 
based on local expansions of 7rin around Pi. To obtain good approximations 
to the power for small or moderate sample sizes, an approach which avoids 
such local expansions seems to be more promising, since less approximations 
are involved. 
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We therefore consider global expansions of RA. Exploiting the limiting 
normality of the multinomial distribution, the limit distributions of the 
leading terms of the expansion of RA can be derived. Such distributions 
may serve as approximations to the distribution of RA under quite arbitrary 
sequences of alternatives Gn . Two approximations of this nature are studied 
in this paper. 

To measure the precision of power approximations, asymptotic error 
bounds are a natural yard-stick. Our main theorem furnishes asymptotic 
error bounds both for the new global approximations and for the more 
classical noncentral X2 and normal approximations (moment-corrected or 
not), covering the whole range from contiguous to fixed alternatives. An 
asymptotic comparison of the accuracy of the approximations is thus made 
possible. 

In Section 2 the new power approximatiQIls are derived and our main 
theorem is stated. Proofs are given in Section 3. 

In a companion paper Drost et al. (1989) the practical implications of 
the results are further explored and a numerical study is undertaken to 
compare the various approximations for small sample sizes. The conclusions 
are summarized at the end of Section 2. 

2 Approximations and Error Bounds 

Let P1, ... , Pk be fixed, mini Pi > 0, and assume that the 7rin are bounded 
away from zero. The distribution of N under Gn will often be denoted by 
P1rn ' Put 

Yin = (Ni - n7rin)/(n7rin)1/2, 

rin = 7rin/Pi 

i = 1, ... ,k 

and consider the Taylor expansion of RA under Gn , for>. ::j; 0, -1, 

RA(N/n : p) = 2{>.(>. + I)} -1 [t, rtnn7rin { 1 + (n7rin)-1/2Yin r+1 
- n] 

k 

= 2{>.(1 + >.)} -1 [tt rt, {n7rin + (>. + l)(n7rin)1/2Yin 

+ ~(>. +l)>'Yi~ 
1 1/2 3 }] + 6(>' + 1)>'(>' - 1)(n7rin)- Yin +... - n 

= AA(Yn) + Op(n- 1/ 2 ) (2.1) 
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where 

k 

+ 2nl'\7rn : p) - nA-2 L 7rin(l- r~A)2r;n 
i=1 

k 

= BA(Yn) + L(r;n - fnA)Yi; (2.2) 
i=1 

k 2 

BA(Yn) = fnA L {Yin + (AfnA)-I(n7rin)I/2(r;n - 1) } 
i=1 

k 

+ 2nIA(7rn : p) - nA-2f;;1 L 7rin(r;n _1)2. (2.3) 
i=1 

The leading part AA(Yn) of the expansion is a first candidate for approx­
imating RA. The statistic BA(Yn) is a useful modification of AA(Yn) in that 
its quadratic terms have equal coefficients. Even simpler is the linear part 
of RA (and AA) given by 

k 

L A(y' ) - 2 l/h-I'" 1/2( A l)y'o 2 JA( .) n - n A ~ 7rin rin - on + n 7rn · P . (2.4) 
i=1 

By taking appropriate limits in (2.1)-(2.4), the expansion extends to 
A = 0 or -1. Note that AA = RA if A = 1 and that AA = BA if A = O. To 
turn AA, BA and LA into approximations to the distribution of RA, we rely 
on the asymptotic normality of the multinomial distribution. Let Un have 
a multivariate normal distribution 

Un = (Uln, . .. , Ukn)' rv Nk(O, J - 7r~/27r~/2') 

h 1/2 (1/2 1/2), S· y'. t t· all d· t ·b t d were 7rn = 7rln , ... ,7rkn . IDce n IS asymp 0 lC Y IS n u e as 
Un under Gm replace Yn by Un in AA, BA and LA and consider the ap­
proximations AA(Un), BA(Un) and LA(Un). 

To derive their distribution, we employ the following notation. Let Qn 
be the diagonal matrix Qn = diag(r~~2, ... , r;~2), let f..Ln be the vector 

1/2\ -1 (1/2(1 -A) 1/2(1 -A»)' d I () () b f..Ln = n A 7rln - rln , ... , 7rkn - rkn an et In,···, kn e 
the eigenvalues and Sn be the k x k orthonormal matrix of eigenvectors of 
the matrix Qn(I _7r~/27r~/2')Qn . Put Tn = diag«(}ln, ... ,(}kn) and Wn = 
S~Qnf..Ln. Here and in the sequel Zb Z2, ... are Li.d. standard normal 
random variables. 
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Apply the orthogonal transformation S~ to A>'(Un). Then 

A>'(Un) = IIQn(Un + JLn)112 + 2nI>'(7rn : p) -IIQnJLnI1 2 

= IIS~Qn(Un + JLn)112 + 2nI>'(7rn : p) - IIS~QnJLnI12 
k 

"" L (}in(Zi + Win/(}:~2)2 + L w;n + 2nI>'(7rn : p) - L w;n 
();n#O ();n=O i=1 

since S~Qn(Un + JLn) "" Nk(Wn, Tn). As one of the (}in vanishes, assume 
(}kn = O. It follows that A>'(Un) is distributed as a linear combination of 
noncentral X2 's: 

k-1 k-1 
L (}in(Zi + Win/(}:~2)2 + 2nI>'(7rn : p) - LW;n. (2.5) 
i=1 i=1 

A similar transformation shows that B>'(Un) is distributed as 

where 

r X2 (8(>'» + c(>.) n>. k-1 n '>n 

8~>') = n(Arn>.)-2 [t, 7rin(r;n - 1)2 - {t, 7rin(r;n - I)} 2] 

~~>') = 2nI>'(7rn : p) - rn>.8~>'). 

(2.6) 

(2.7) 

In a sense (2.6) is the "best noncentral X2 approximation" to the distribu­
tion of RA, since rn>. is chosen to satisfy E"'n (B>'(Un) - A>'(Un» = o. For 
A = 0 it coincides with A>'(Un)j note that in this case rnO = 1 and 

k ( k )2 8~0) = n ~ 7rin log2 rin - n ~ 7rin log rin 

k 

c(0) = 2n '" 7r. logr· - 8(0) 
~n L...,.; zn tn n· 

i=1 

A local expansion of 7rin around Pi yields that locally, as maxi l7rin -Pi I ~ 0, 

8~>') = 2nI1(7rn : p) + 0 (nmF l7rin - Pi13) 

~~>') = 0 (nmF l7rin - Pi13) . 

(2.8) 

Neglecting the remainder terms, B>'(Un) thus reduces locally to the classical 
xL 1 (8n ) approximation with 

8n = 2nI1(7rn : p) = n L(7rin - Pi)2/Pi . 
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A competing approximation for A f=. 1 is xL 1 (DnA) where DnA = 2nI A (7r n : 
p). 

Starting from the classical approximation x2 (2nJ1), improved approxi­
mations can be obtained by the introduction of moment corrections to get 
the "right" first two moments of RA. Define 

and 

Var:n RA = (4nA- 2 - 6 - 4A-1){ L 7rinr~ - (L 7rinr;n r} 
+ 4{ L r~; - L r;n L 7rinr;n} + 2{ L(I- 7rin)r~; }. 

The quantities E;nRA and Var:n RA are approximations to E1rnRA and 
Var1rn RA, cf. Drost et al. (1989). The moment-corrected xL1 (2nl1(7r : p») 
is of the form 

where 

and 
b~ = E;nRA - a~ (k - 1 + 2nl1(7rn : p») . 

The linear approximation LA(Un ) is of course normally distributed with 
expectation 2nI A ( 7r n : p) and variance 

Since the non-linear terms of RA are of lower order of magnitude than the 
linear ones if n 1/2 maxi l7rin - Pi I --+ 00, this result expresses the asymptotic 
normality of RA under non-contiguous alternatives. The normal approxi­
mation is improved if the moments of RA (or of AA(Un» are employed, cf. 
Drost et al. (1989). This approximation is discussed in Broffitt and Randles 
(1977) for the case A = l. 

We now state our main result on the approximation errors. For simplicity 
we write 7r for trn and U for Un. 

Theorem 2.1 Let k ~ 3 and A E ~. Let 0 < E < 11k and II. = {7r E ~k : 

mini7ri ~ E,2=>i = I}. Let {sn}, Sn > 0, be a nondecreasing sequence, let 
II(sn) = {7r E II. : maxi l7ri - Pil ~ snln1/ 2 } and let II*(sn) = II. \ II(sn). 
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(i) As n -+ 00 

sup sup ip,.. (RA(N/n : p) > c) - P (AA(U) > c) i = O(n- I/2). 
,..EII.c>O 

(ii) If sn/nl /2 -+ 0, then as n -+ 00 

sup sup IP,.. (RA(N/n : p) > c) - P (BA(U) > c) I = O(snn- I/2). 
"'EII(sn} c>o 

(iii) If Sn/nl /2 -+ 0 and OnA = 2nIA(7r : p), then as n -+ 00 

sup sup IP,.. (RA(N/n: p) > c)-P (XLI (OnA) > c) I = O(snn- I/2). 
"'EII(sn} c>o 

(iv) If Sn/nl / 4 -+ 0 and On = 2nJl(7r : p), ). :f:. 1, then as n -+ 00 

sup sup IP,.. (RA(N/n: p) > c)-P (XLI(On) > c) I = O(s~n-I/2). 
"'EII(sn} c>O 

(v) If Sn/nl /2 -+ 0, then as n -+ 00 

sup sup IP,.. (RA(N/n : p) > c) - P(MA > c)1 = O(snn- I/2). 
,..EII(sn} c>o 

(vi) If Sn -+ 00 and sn/nl / 2 < 1, then as n -+ 00 

sup sup IP,.. (RA(N/n: p) > c) - P (LA(U) > c) I = O(s~l). 
,..EII·(sn} c>o 

The error bounds in (iv) and (vi), when larger than O(n- I/ 2 ), are sharp. 

Remark 2.2 The theorem also holds for k = 2 if c is restricted to 'Y < c < 
00 for any fixed 'Y > 0, i.e. if the significance level is bounded away from 
one. 

Remark 2.3 The bound in (ii) remains valid if we further simplify BA(U) 
by taking fA = 1 everywhere. 

Remark 2.4 The error bound in (vi) also holds for normal approximations 
based on the moments of AA(U) and remains sharp. 

Remark 2.5 We have no proof that the error bounds in (i)-(iii) are sharp. 

According to the theorem the error of the AA approximation (2.5) is at 
most Cn- 1/ 2 for all alternatives 7rn E IT,. Hence the AA approximation is 
satisfactory both from a local and a non-local point of view. 

The BA, XLI (on) and XLI (8nA ) approximations have the same error 
bound Cn- I / 2 as AA for contiguous alternatives. This bound is familiar 
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from the work of Hayakawa (1975, 1977) and others on power expansions 
of likelihood ratio tests under contiguous alternatives. But for more distant 
alternatives the latter three approximations are less accurate than A).. The 
maximum error of xL1 (On) increases much faster as alternatives move away 
than the maximum error of B). and xL1 (On).)' Theory thus suggests not to 
employ the traditional xL1 (On) approximation at all for oX f:. 1. Although 
B). follows the structure of R). more closely than xL1 (On).), this is not 
reflected in the asymptotic error bounds. However, B). = A). when oX = 0, 
implying an error bound O(n-1/2) for B). in that case, while xL1 (On).) still 
has an error bound O(Snn-1/2). The moment-corrected xL1 (On) with On = 

2nI1 ( 11" n : p) has the same error bound as B). (and x~ -1 (2nI). ) ). Hence this 
moment-correction seems to recover some of the precision that has got lost 
by local approximation. Since B). coincides with the best approximation 
A). for oX = 0, B). still has an edge on M).. 

The normal approximation shows different behavior. It is accurate for 
fixed alternatives (cf. Theorem 3 in Hayakawa (1977)), but breaks gradually 
down for more local alternatives. Therefore Broffitt and Randles (1977) only 
recommended normal approximations to estimate large powers. Of course 
the situation changes if k = k(n) -+ 00 as n -+ 00 (see Morris (1975)), but 
here we only consider fixed k. 

Based on the asymptotic error bounds of Theorem 2.1 and the numerical 
study in Drost et al. (1989) our recommendations on the use of power 
approximations are as follows: 

(i) Do not use the xL1 (2nJ1) approximation for other R). tests than 
X 2 • 

(ii) For practical purposes B). is a good and simple approximation for 
-1 < oX < 3 and n > 20. The approximation M). is a possible alter­
native. 

(iii) For accurate work the A). approximation (or exact computation) is 
best. 

(iv) For quick and dirty work the xL1(2nI).) approximation is adequate 
for -1/2 < oX < 2 and n > 50. 

3 Proofs 

Before proving Theorem 2.1 we derive some preliminary results. 
Let Zl, Z2, ... be Li.d. standard normal variables with cdf ~ and density 

<p. Repeatedly we use the order relation 

as n -+ 00, (3.1) 
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which continues to hold if ZI is replaced by a standardized binomial Bin( n, p) 
variable, uniformly in p bounded away from 0 and 1. We begin with a cru­
cial lemma, which is in the same spirit as Theorem 1 in Cox and Reid 
(1987). Although many constants and sets in the sequel depend on n, sub­
scripts n are often suppressed to simplify notation. The symbols 0 and 0 

refer to n -+ 00. 

Lemma 3.1 Let ai, bi (i = 1, ... , m) and c be real numbers, m ~ 2, let 
'Pi('), i = 1, ... , m be polynomials of fixed degree q ~ 0 and let ao > 0 and 
do > 0 be fixed. Uniformly for ai > ao, bi E !R, c> 0 and the coefficients 
of the 'Pi bounded by do, 

p(~ai(Zi - bi )2 + n-1/ 2 ~'Pi(lZil) ~ c) 
= p(~ ai(Zi - bi )2 ~ c) + O(n-1/2). (3.2) 

The relation continues to hold for m = 1 if c > 'Y for some fixed 'Y > O. 

Proof The present short proof is due to A.W. van der Vaart. 
Assume q ~ I, since for q = 0 the desired result follows by the mean 

value theorem from the fact that the noncentral X~ density is bounded 
(uniformly in the noncentrality), provided neighborhoods of 0 are excluded 
in the case m = 1. 

It is first shown that for m ~ 2, Ul < U2 and v ~ 0 

p (u1 ~ ~ai(Zi - bi )2 ~ U2, IZml ~ v) 

~ (2aO)-I(U2 - Ul) exp ( _~v2) . (3.3) 

For m = 2 this holds because the area between the two ellipses ~ai(zi -
bi )2 = max{O, Uj}, j = 1,2, is at most 7I"(ala2)-1/2(U2 -ud, while the joint 
density of (Zb Z2) is smaller than (271")-1 exp( _!v2) on the set {(Zb Z2) : 
IZ21 ~ v}. 

For m = 3 write the LHS of (3.3) as 

2 1 p(u1 - a3(Z - b3)2 ~ L ai(Zi - bi )2 ~ U2 - a3(Z - b3)2) 
Izl~v i=1 

x (271")-1/2 exp ( _~z2) dz. (3.4) 

Application of (3.3) with m = 2 and v = 0 yields that (3.4) is smaller than 

(2aO)-I(U2 - ud2 (1 - ()(v» ~ (2aO)-I(U2 - ud exp ( _~V2) . 
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Repeating the argument for m > 3, (3.3) follows. 
Let M 2: (q + l)do, MEN. Write S = E ai(Zi - bi )2 and T = 

EPi(IZil). Suppose 0 ~ v < mM. Then by (3.3) with v = 0 

P(UI ~ S ~ U2, ITI 2: v) ~ (2aO)-I(U2 - ud. (3.5) 

For v 2: mM proceed as follows. Since IPi(lzil)l ~ M(lzilq + 1) for all 
Zi E ?R, (3.3) also implies 

m 

~ L P (UI ~ S ~ U2, IZjlq 2: (mM)-lv - 1) 
j=1 

~ m(2ao)-I(U2 - udexp (-~((mM)-lv _1)2/q) . (3.6) 

Hence by (3.5) and (3.6) 

IP(S + n- I / 2T ~ c) - peS ~ c)1 
~ pes ~ c, S + n- I / 2T > c) + pes > c, S + n- I / 2T ~ c) 

00 

~ LP (c- n-I/2(v + 1) < S ~ c- n- I/2v,T > v) 
v=O 

00 

+ L P (c + n- I / 2v < S ~ c + n- I / 2 (v + 1), T < -v) 
v=O 

~ 2(2ao)-ln- I/ 2 {mM + m VfM exp ( -~((mM)-lv - 1)2/q) } 

= O(n- I / 2 ) 

since the last sum converges. This establishes (3.2) for m 2: 2. 
It remains to consider the case m = 1. Fix 'Y > O. The preceding argument 

continues to hold for c > 'Y if we replace (3.3) by 

P (UI ~ al(ZI - bl )2 ~ U2, IZll 2:: v) ~ (21l"aO'Y)-1/2(U2 - ud exp ( _~V2) 

valid for Ul > ~'Y, and use the inequality 

L P (c - n- I/2(v + 1) < al(ZI - bl )2 ~ C - n- I/2v, PI(IZII) > v) 
v~(1/2hnl/2 

< L P(PI(IZII) > v) 
v~(1/2hnl/2 

< L P(IZllq > M-1v - 1) 
v~(1/2hnl/2 
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::; {2/rr)I/2 L exp (_~{M-IV)2/q) 
v~(1/2hnl/2 

::; {2/rr)I/2 M ('0 exp (_~V2/q) dv 
J«I/2hn1/2-1)/M 4 

= o{n- 1/ 2 ). 

o 

Remark 3.2 There is nothing sacred about the integers n E N in {3.2}. 
They can be replaced by any Sn > 0 such that Sn -+ 00 as n -+ 00. 

Corollary 3.3 Let U1, ... , Uk be jointly Nk{O, 1- rr1/ 2rr1/ 2') distributed 
with rr E IIE • Replacing ZI, ... , Zm in Lemma 3.1 by U1, ... , Uk, the 
lemma remains valid in the sense that {3.2} holds for k :::: 3 {and also for 
k = 2 if c > 'Y > OJ. 

Proof By an orthogonal transformation similar to that in Section 2, 

k k-l 
L ai{Ui - bi )2 rv L Qi{Zi - f3i)2 + f35 
i=1 i=1 

and 

where the Qi are positive and bounded away from zero, the gis (and dij ) 
are bounded. Since for 1 ::; j ::; q 

where the It~!) are again bounded, the desired result follows from Lemma 
3.1. 0 

Lemma 3.4 Let ai, di {i = 1, ... , m} and c be real numbers, m:::: 1, and 
let ao > 0 and do > 0 be fixed. Then, uniformly for maxi I ai I > ao, I di I < do 
and c E ~ 

P('faizi + n-1/2 'fdiZ; ::; c) = p('f aiZi ::; c) + O{n-l/2). 
1=1 1=1 1=1 

The error bound is sharp; Remark 3.2 again applies. 
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Proof It is sufficient to prove that 

Consider an orthogonal transformation Z = 111 Z where 111 is an m x m 
orthonormal matrix with first row lIall-1 (at, ... ,am)' Then 

By direct calculation, using lIall ~ ao, uniformly 

Hence, by a convolution argument, 

P (II all Zl ± n-1/ 2do L zl ~ c) 
= P (liall Zl ± n-1/ 2do X~-l ~ c) + O(n- 1/ 2 ) 

where Zl and X~-l are independent. A conditioning argument immediately 
shows that the RHS equals P(lIall Zl ~ c) + O(n-1/ 2 ) and (3.7) is proved. 
That the error bound is sharp follows by direct calculation for m = 1 and 
hence in general. 0 

Lemma 3.5 Let fm(x; 6) denote the density of the noncentral X!.(6) dis­
tribution, m ~ 1. Then 

{ 
Cmx(m-2)/2 exp( -(1/2)(X1/2 _ 61/2)2) 

fm(x; 6) ~ Cmx-1/2 exp( -(1/2)(x1/2 - 61/2)2) 
Cmx-1/2(x/6)(m-1)/4 exp( -(1/2)(X1/2 _ 61/2)2) 

for x > 0,6> 0 
forO < x < 46 
for 4m2 < 6 < x 

where the positive constants Cm do not depend on x or 6 . Conversely, 

Proof All statements are trivial for m = 1; so assume m ~ 2. 
Let v = v(x, 6) be a real-valued function satisfying 0 ~ v ~ !x, and let 

bm = (2m 7r)-1/2r((m-l)/2)-1. Then 

fm(x; 6) = 1x 
fm-1(X - y; O)/t(y; 6) dy 

~ bm 1x y-1/2(X - y)(m-3)/2 exp ( -~6 - ~x + 61/2y1/2) dy 

~ bm exp { _~(x1/2 _ 61/ 2)2 } 
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x [exp {_81/ 2 (X1/2 - (x _ V)1/2)} 1 x
-

v y-1/2(x _ y)(m-3)/2 dy 

+ l~v y-1/2(x - y)(m-3)/2 exp { _81/ 2(x 1/2 - y1/2)} dy 

:S bm exp { _~(X1/2 - 81/2)2 } 

X [exp { _~(8/X)1/2v} 1 x 
y-1/2(X - y)(m-3)/2 dy 

+(x-V)-1/21
v z(m-3)/2 exp { -~ (~r/2 Z} dZ] 

:S bm exp { _~(X1/2 - 81/2)2 } 

X [exp { -~(8/X)1/2v } x(m-2)/2 B (~, ~(m -1)) 
(li/x)1/2v ( 1) ] 

+ 21/2x-1/ 2(x/8)(m-1)/41 w(m-3)/2 exp -2w dw. 

The first inequality follows by taking v == O. The second inequality follows 
from the first one if x < 4m2; otherwise take v (x, 8) == 2( m - 1) log x 
(bound the last integral by 2(m-1)/2r (~(m - 1))). The third inequality is 
obtained by taking v(x, 8) == (m - 1)(x/8)1/2Iog x (bound the last integral 
as before). 

To prove the reverse inequality, assume 8 > 4, let Ix1/2 - 81/21 < 1 and 
observe that 

1 r (1 1 ) fm(x; 8) > 2bm 10 y-1/2(x - y)(m-3)/2 exp -28 - 2x + 81/ 2y1/2 dy 

~ ~bm exp { _~(X1/2 _ 81/2)2} X- 1/2 

X 1~1 (x - y)(m-3)/2 exp {_81/2(x1/2 - y1/2) } dy 

~ ~bm exp { _~(X1/2 - 81/2)2 - 81/2X- 1/2 } (81/2 + 1)-12(m - 1)-1 

~ ~(m -1)-1bme-5/28-1/2. 

o 

We are now prepared to prove our main theorem. 

Proof of Theorem 2.1 (i) Let En denote the set {y E ~k : maxi IYil < 
logn}. In view of (3.1) P7r(Yn E En) = 1 - o(n- 1/ 2 ) uniformly for 7r E II •. 
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By Corollary 17.2 in Bhattacharya and Ranga Rao (1976) 

sup IP,.(Yn E B) - P(U E B)I = O(n-1/2) 
B 

where the supremum is taken over all Borel measurable convex sets B C !Rk 

and where U = (U1, ... , Uk)' is distributed as in Corollary 3.3. Note that 
after a linear transformation the asymptotic covariance matrix of the first 
k -1 components of Yn is nonsingular. The error bound is uniform in 1r E IIE 
. Consider R>' as a function of Yn, see (2.1). Since R>' is a convex function 
of Yn on En, and En itself is a convex set, it follows that 

or 
sup IP,. (R>'(Yn) :::; c) - P (R>'(U) :::; c) I = O(n-l/2) (3.8) 

where the supremum is taken over 1r E IIE and c > o. 
Conditionally on Yn E En, the terms in the expansion (2.1) beyond the 

third power of Yin are uniformly bounded by €n = d>.n-1log n, where d>. 
is a suitable positive constant. This remains true after replacing Yn by U. 
By Corollary 3.3 (with q = 3) 

P ( A>'(U) + ~n-l/2(A - 1) 2: r;1r;1/2Ul ± €n :::; c) 
= P (A>'(U) :::; c) + O(n-1/ 2). 

Combining this result with (3.8), (i) is established. 

(ii) By (2.2) 

A>'(U) = B>'(U) + 2:(r; - T>.)Ul 

where T>. -+ 1 and r; - T>. = O(maxi 11ri - Pi!) as maxi 11ri - Pil -+ O. By 
Corollary 3.3 (with q = 2) 

P (A>'(U) :::; c) = P (B>'(U) :::; c) + O(m~ 11ri - Pi!). 
t 

The desired result now follows from part (i). Note that this argument re­
m~ns valid if one takes T>. = 1. 

(iii) Let 

Define iJ>. by (2.3) with T>. replacing T>.. Obviously 
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where h .. = 1 + O(maxi l7ri - Pil) and rt - r).. = O(maxi l7ri - Pi!), cf. (2.8). 
Similarly to (2.6) and (2.7), jj)..(U) is distributed as 

r).. XL1(On)..) + (1- r)..)On)..' 

By Corollary 3.3 (with q = 2) 

P ... (A)..(U) ~ c) = P(jj)..(U) ~ c) + O(m~ l7ri - pil). , 
Moreover, in the notation of Lemma 3.5, 

p ... (jj)..(U) ~ c) = P (r).. xL1 (On)..) + (1 - r)..)On).. ~ c) 

= P (xL1 (On)..) ~ C + (c - On)..)(l - r)..)/r)..) 

= P (xLI (On)..) ~ c) + (c - On)..) (1 - r).. w;: 1 !k-l(O; On)..) 

(3.10) 

where On = C+tn(c- On)..)(l- r)..)/r).., 0 ~ tn ~ 1. The first part of Lemma 
3.5 implies 

Since c - On).. = (On - On)..) (1 + 0(1)), it follows that 

(c - On)..)!k-l(On; On)..) = 0(1). 

Hence the last term in the RHS of (3.10) is of order 0(Snn-1/2) and the 
desired result follows from part (i). 

(iv) Define r)"1 as r).. in (3.9) with J)..(7r : p) replaced by J1(7r: p) and define 
jjNU) as jj)..(U) with r).. replaced by r)"1' 

Again 

and 
jjNu) "J r)"1 xL1 (On) + (1 - r)"I)On + On).. - On 

with r)"1 = 1 + O(maxi l7ri - Pi!) and rt - r)"1 = O(maxi l7ri - Pi!). 
Proceeding as in (iii) 

P (r)"1 xLI (on) + (1- r)..t}On + On).. - On ~ c) 

= P (xLl (On) + On).. - On ~ c) + 0(Snn- l / 2). 

By a local expansion 
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implying (on>. - On)/8f;,/2 = O(s~n-1/2). Since by Lemma 3.5 fk-1(X; 0) ~ 
CO-1/ 2 (all x > 0), another application of the mean value theorem yields 

The desired result follows again from part (i). 
To prove that the bound in (iv) is sharp, it suffices to show that for given 

{sn} 

for some E > 0 and appropriate 11"1, ... , 1I"k. First note that 11"1. ... , 1I"k exist 
such that both on/s~ and IOn>. - onl/(s~n-1/2) are bounded away from 0 
and 00, cf. (3.11). Since 

The second part of Lemma 3.5 and the mean value theorem imply the 
above inequality. 

(v) By definition of M>' and direct calculation we have 

a~ = 1 + O(snn-1/2) 

b~ = on>. - On + on(1 - a~) + O(snn-1/2). 

It is seen in the proof of (iv) that 

P (xL1 (on) + On>. - On ~ c) = P (iJNU) ~ c) + O(Snn-1/2) 

Proceeding as in (iii) 

P (a~ xL1 (On) + b~ ~ c) 

= P (R>'(N/n : p) ~ c) + O(Snn-1/2). 

(3.12) 

= P (a~ xL1 (On) + (1 - a~)On ~ c - b~ + (1 - a~)On) 

= P (xL1 (On) ~ c - b~ + (1 - a~)On>.) + O(snn- 1/2) 

= P (xL1 (On) + On>. - On ~ C + O(Snn-1/2)) + O(snn-1/2) 

= P (XL1(On) + On>. - On ~ c) + O(snn-1/2) (3.13) 

by the mean value theorem and the boundedness of the density of the 
noncentral XL1(on)-distribution. Combination of (3.12) and (3.13) yields 
the desired result. 
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(vi) By (2.2), (2.4) and (2.5) 

p (A,x(U) ~ c) = P (L,x(U) + L r;U[ ~ c) 

( k-1 k-1) 
= P 2 ~ ():~2WinZi + 2nI)'(-rr : p) + ~ ()inZl ~ C • 

(3.14) 

The ()in (i = 1, ... , k - 1) are bounded away from 0 and 00 and the first 
k - 1 components of Wn = S~Qnl£n (see Section 2) satisfy maxi win > 
f1nmaxi(r;/2 _r-;,x/2)2j>.2 for some 101 > O. Hence, dividing both members 

in the last event of (3.14) by n 1/ 2 maxi Ir;/2 _r-;,x/2 1/1>'1, Lemma 3.4 implies 
that the RHS of (3.14) equals 

where the remainder term is 0(S;:;1). The desired result now follow from 
part (i). That the bound is sharp is an easy exercise. 0 

Acknowledgments: The authors are grateful to A.W. van der Vaart for 
providing a much shorter and more transparent proof of Lemma 3.1 than 
the original proof. 
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28 

Estimating the Normal Mean 
and Variance Under A 
Publication Selection Model 

Larry v. Hedges1 

ABSTRACT Maximum likelihood estimators of the mean and variance of 
a normal distribution are obtained under a publication selection model in 
which data are reported only when the hypothesis that the mean is 0 is 
rejected. An approximation to the asymptotic variance-covariance matrix 
for these estimators is given. Also discussed are the marginal distributions 
of the sample mean and variance under the selection model. 

1 Estimating the Normal Mean and Variance 
under A Publication Selection Model 

Statistical analyses involving hypothesis testing have become the dominant 
mode of quantitative practice in the applied social sciences. Indeed, a rather 
simplistic conception of statistical practice has led some researchers (and 
even some journal editors) to believe that the results of empirical research 
studies are only of interest if some theoretical null hypothesis is rejected 
at a conventional level of significance, usually 5% (see Greenwald, 1975). 
The belief that research studies are conclusive only if they lead to rejection 
of null hypotheses encourages selective (conditional) reporting of research 
results. One form of selective reporting is a consequence of selective publica­
tion of research results. Some journals in psychology have at times adopted 
policies explicitly requiring statistical significance at the 5% level for publi­
cation (see Melton, 1962), while others have used statistical significance as 
one of the most important (but not a strictly necessary) criteria for pub­
lication (see Greenwald, 1975). These mechanisms appear to be effective 
since reviews of statistics reported in connection with hypothesis tests in 
psychology journals suggest that well over 90% of the journal articles sur­
veyed rejected a null hypothesis (see Sterling, 1959; Bozarth and Roberts, 
1972). Because unpublished studies are not observed, the extent of selec­
tive publication based on statistical significance is difficult to know. There 

IThe University of Chicago 
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may be many unpublished studies languishing in the file drawer for want of 
statistically significant results, or there may be only a few (see Rosenthal, 
1978). 

A second selection mechanism is easier to document. Some researchers 
describe all hypothesis tests that were undertaken, but report statistical 
summaries of only the analyses that resulted from rejections of null hy­
potheses. The increased use of statistical methods for combining the results 
of replicated research studies (meta-analysis) has documented the magni­
tude of the problem. For example, in each of two recent meta-analyses of 
studies on gender differences in cognitive abilities (Hyde, 1981, and Eagly, 
1981) over 40% of the studies did not report summary statistics on gender 
differences because the t-test for gender differences was not statistically 
significant. This suggest that at least 40% of the studies in those two re­
views reported statistical results (e.g., means and variances) conditional 
on the statistical significance of a t-statistic. If the means and variances 
are observed conditional on the rejection of a null hypothesis, the observed 
values of those summary statistics may be seriously biased estimates of the 
corresponding parameters. A related problem is that of conditional report­
ing of test statistics after a preliminary test. For a discussion of conditional 
F-tests following a preliminary F-test in the general linear model with nor­
mally distributed errors, see Olshen (1973). 

A variety of models of selective publication or reporting of results could 
be posited. The simplest and most extreme model is that data correspond­
ing to nonsignificant results is reported with probability zero. Estimation 
of the standardized mean difference conditional on a significant two-sample 
t-statistic under this model was considered by Hedges (1984) and Hedges 
and Olkin (1985). Others have considered less extreme models of selective 
publication in which the probability of reporting is an increasing mono­
tonic function of the value of the test statistic. Estimation of the stan­
dardized mean difference conditional on the two sample t-statistic under 
such a model was considered by Iyengar and Greenhouse (1988). Although 
the latter model is more realistic, the more extreme model assuming that 
nonsignificant results are never reported is simpler and provides an upper 
bound on the biasing effects of selection. 

This paper is an examination of the problem of interpreting the sample 
mean and variance from a normal distribution when they are reported 
conditional upon rejection of the hypothesis that the mean is zero. First the 
conditional model is stated. Then the marginal distributions of the sample 
mean and variance are examined. Next maximum likelihood estimation of 
the population mean JL and variance (72 is considered and an approximation 
to the asymptotic variance-covariance matrix of the maximum likelihood 
estimates is given. Finally an example illustrates the procedure. 
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2 Notation and Model 

Suppose that the original data are n independent scores Xl, ... ,Xn from a 
normal distribution with unknown mean IL and unknown variance 0'2. That 
is, 

i = 1, ... ,no 

The experimenter tests the two-sided hypothesis Ho : IL = 0 versus the 
alternative HI : IL ¥- 0 at significance level Q using an F-test (or equivalently 
a two-tailed t-test). Hypothesis Ho is rejected if 

nx2 2 
-2 >c, 

8 
(2.1) 

where x = E xdn and 82 = E(Xi - x)2/(n - 1) are sample estimates of IL 
and 0'2, and c is a function of n and Q. 

Consider the case in which the statistics x and 82 are observed only if 
(2.1) is satisfied; that is, only if the hypothesis Ho is rejected at level Q. Let 
x .. and 8~ denote random variables corresponding to the observed mean and 
variance. Since the statistics are observed only if Ho is rejected, nx~ > c28~. 

This selection model might be called "restriction to significant results." 
It differs from selection models such as simple truncation and censoring in 
that the selection is based on a ratio of the variables and not on either 
variable alone. For a discussion of selection models involving truncation, 
see Bayarri and DeGroot (1986a,b); Dawid and Dickie (1977); Hedges and 
Olkin (1985); and Schneider (1986). Our selection model also differs from 
censoring models in which a known number of observations are unavailable 
(see Schneider, 1987). 

3 The Distribution of x* and s~ 

The joint distribution f (u, v) of x and 8 2 is 

where m = n - 1, which implies that the joint distribution f .. (u, v) of x .. 
and 8~ is 

f .. (u v) = { f(u, v)/A(IL/O') ~f nu2 > vc2 

'0 If nu2 ::; vc2 , 
(3.2) 

where A(IL/O') is a normalizing constant equal to the probability that the 
absolute value of a noncentral t-variate with n - 1 degrees of freedom and 
noncentrality parameter VnIL/O' exceeds c in (2.1). 
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Integrating (3.2) over the values of s~ for which ! .. (x .. , s~) is nonzero 
yields the marginal distribution ! .. (u) of x .. 

f () y'nr(m/2j nmu2/2c2( 2) (( )2/2 2) (3.3) 
.. u = ~A(,.,,/u)u exp -n u -,." u 

where r( aj x) is the incomplete gamma ratio given by 

1 r r(aj x) = r(a) 10 ta-1e-tdt. 

Thus the marginal distribution of x .. is essentially a normal distribution 
weighted by an incomplete gamma ratio. Evaluating (3.3) for a = .05, and 
for various values of ,." and n, we see that the marginal distribution of x .. 
is generally skewed away from zero. Plots of the density function are given 
in Figure 1 for u = 1.0, n = 20 and 80, and ,." = 0.0, 0.50, and 1.00. Note 
that the density function is bimodal for ,." = 0.0. 

The moments of x.. are easily obtained by numerical integration. The 
expected value of x .. is given in Table 1 for u = 1, a = .05, and various 
values of,." and n. Comparable values derived from the simulation study of 
Lane and Dunlap (1978) are also given. As expected, the bias of x .. as an 
estimator of ,." is greatest when sample sizes are small and the effect size 
6 = (,.,,/u) is moderate. When the sample size n is large, the bias in x .. is 
smaller, although it may not be negligible even ifthe sample size is n = 100. 
It is interesting to note that the absolute magnitude of the bias decreases 
near ,.,,/u = 0 and that if the mean ,." is exactly zero, then x .. is unbiased. 
In contrast, the relative bias E[(x .. ) - ,."l/,." becomes large near ,." = 0.0 
and tends to one as ,.,,/u becomes large. The implication of these results 
is that the sample mean may substantially overestimate the magnitude of 
the population mean under the model of restriction to significant results. 

4 The Marginal Distribution of the Variance 

We obtain the marginal distribution of the variance s~ by integrating over 
the values of the mean difference for which ! .. (x .. , s~) is nonzero. This region 
can be characterized by values of x .. such that 

x .. > s .. c/.jTi, or x .. < -s .. c/.jTi. 

This yields the marginal distribution ! .. (v) of s~ given by 

! .. (v) = {~[-z - y'n,.,,/u] + 1- ~[z - y'n,.,,/u]} (v/2)1f-le-mv/2u2 (4.1) 
r(m/2)um m-m / 2 A (,.,,/u) 

where z = c..,rv/u, ~(x) is the standard normal cumulative distribution 
function and A(,.,,/u) is the normalizing constant in (3.2). 
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TABLE 1. Expected Value of the Sample Mean Conditional on a 
Significant F-Statistic at the a = .05 Level 

n I-' = .25 I-' = .50 I-' = 1.00 
Simulated Exact Simulated Exact Simulated Exact 

10 .96 .96 1.39 1.37 1.66 1.65 

20 .96 .89 1.14 1.10 1.32 1.30 
30 .83 .80 .93 .93 1.15 1.15 
40 .72 .73 .83 .83 1.07 1.08 
60 .62 .71 1.02 
80 .56 .64 1.00 
100 .51 .60 1.00 

Note: In these data a = 1.0. Exact values were obtained by numerical 
integration. Simulated values were calculated from data given in Lane and 
Dunlap (1978) . 

FIGURE 1. Probability density function of the observed mean difference x. for 
sample size (a) n = 20 and (b) n = 80 when (j = 1.0 and only mean differences 
that are'statistically significant at the a = .05 level may be observed. Note that 
the density functions for J.L = 0.0 are bimodal. 

x, x, 

(.1 (bl 

Evaluating the density function (4.1) for a = .05 and for various values of 
nand J.L we see that the marginal distribution of 8~ is much like a chi-square, 
but weighted more heavily toward zero. Plots of the density function are 
given in Figure 2 for (1 = 1.00, n = 20, and 80, and for J.L = 0.0,0.50, and 
1.00. 

The moments of s~ are easily obtained by numerical integration. The 
expected value of 8~ is given in Table 2 for a = .05 and various values of J.L 

and n. The results in Table 2 suggest that 8~ underestimates (12, especially 
when J.L and n are small. These results also show that the relative bias of 8~ 
as an estimate of (12 is smaller than the relative bias of x. as an estimate 
of J.L . For example, the relative bias of 8~ given by [E(8~) - (121/(12 is less 
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FIGURE 2. Probability density function of the observed variance s~ for sample 
size (a) n = 20 and (b) n = 40 when f7 = 1.0 and only the data corresponding 
to mean differences that are statistically significant at the 0: = .05 level may be 
observed. 

o o~~~~~~~~~~ __ ~~~ 
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TABLE 2. Expected Value of the 
Sample Variance Conditional on 
a Significant F-Statistic at the 
0: = .05 Level 

n I-' = .25 I-' = .50 I-' = 1.00 

10 .58 .63 .73 

20 .80 .85 .92 
30 .88 .91 .97 

40 .91 .95 .99 

50 .95 .97 1.00 
80 .96 .98 1.00 

100 .97 .99 1.00 

Note: In these data (7 = 1.0. These values 
were obtained by numerical integration. 

(bl 

than 10 percent for J.L/ f7 = .25 and n = 40 whereas the relative bias of x. 
is nearly 200 percent in the same situation. Note that, unlike x*, s~ is not 
unbiased when J.L = o. 

5 Maximum Likelihood Estimation of /-l and (72 

The log-likelihood of x. and s~ is 

L = -nlog(a) - [n(x. - J.L)2 + (n - 1)s:l/2a2 - nlog[A(J.L/a)J . (5.1) 
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Maximization of (5.1) directly is complicated by the last term, which is a 
function of both fJ- and 0"2 that is difficult to compute. It is convenient, 
therefore, to re-parameterize using either fJ- or 0" and 6 = fJ-/0". 

Reparameterizing the likelihood (5.1) in terms of 0" and 6 yields 

L = -nlog(O") - [n(x. - 60")2 + (n -1)s~l/20"2 - nlog[A(6)]. (5.2) 

Setting the derivative with respect to 0" equal to zero and solving for 0" 
yields 

(5.3) 

Differentiating (5.2) with respect to 6 and substituting the expression 
given in (5.3) for 0" yields the likelihood equation 

2y _ 6 _ A' (6) - 0 ( 4) 
-6y + [62y2 + 4(y2 + n')]A A(6) - , 5. 

where A'(6) = 8A(6)/86, y = x./s., and n' = (n - l)/n. A closed form 
solution of (5.4) for the maximum likelihood estimate of 6 is not available, 
but (5.4) can be solved numerically given any specific values of x./ s. and 
n. 

Table 3 gives the maximum likelihood estimate 8 = y'n8 of () = y'n6 
for positive values of x. and n = 20(4)40(10)100(50)200. Enter Table 3 
in a column corresponding to a sample size n and move down to find the 
row corresponding to the sample value of t. = y'nx./s •. Only positive 
values are tabulated. For negative values of x., obtain 8 by noting that if 
y'nx./s. corresponds to 80 then -80 corresponds to -y'nx./s •. Note that 
the minimum observable positive value of y'nx./ s. is the two-tailed critical 
value c and that when y'nx. / s. = c, the maximum likelihood estimate of () 
is not zero. Both c and the value of {j corresponding to c are given in Table 
3. 

Maximizing the likelihood (5.2) after re-parameterizing in terms of fJ- and 
6, or noting that fJ- = 6a:, yields the maximum likelihood estimate p, of fJ- as 

p, = 6fT. (5.5) 

6 The Asymptotic Distribution of the Estimates 

Calculation the expectation of the second derivatives of the likelihood (5.2) 
and inverting the information matrix yields the asymptotic distribution of 
(fT,8) as 

J1i[(8, fT) - (6,0")] '" N(O, E) (6.1) 

where 
E _ ( (1 + 62 /2}-Y -6.0" /2/3 ) 

- -6.0" /2/3 (1 - .\)0"2/2/3 ' 
(6.2) 
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TABLE 3. Maximum Likelihood Estimator {) as a Function of t. and n 

Sample Size n 

20 24 28 32 36 40 50 60 70 80 90 100 150 200 

tmin = C 2.093 2.069 2.052 2.040 2.030 2.023 2.010 2.001 1.995 1.990 1.987 1.984 1.976 1.972 
8m 'n .53 .52 .51 .51 .51 .50 .50 .50 .49 .49 .49 .49 .48 .48 

t. 
2.10 0.53 0.54 0.54 0.54 0.54 0.54 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 
2.20 0.59 0.59 0.59 0.60 0.60 0.60 0.61 0.61 0.61 0.62 0.62 0.62 0.62 0.62 

2.30 0.65 0.66 0.66 0.67 0.68 0.68 0.69 0.69 0.70 0.70 0.71 0.71 0.72 0.72 
2.40 0.72 0.74 0.75 0.77 0.78 0.78 0.80 0.81 0.82 0.83 0.84 0.84 0.85 0.86 

2.50 0.82 0.86 0.88 0.90 0.92 0.94 0.97 0.99 1.01 1.02 1.04 1.04 1.07 1.09 
2.60 0.97 i.03 1.08 1.13 1.16 1.19 1.25 1.28 1.31 1.33 1.35 1.36 1.40 1.41 

2.70 1.21 1.32 1.40 1.45 1.50 1.53 1.59 1.63 1.65 1.67 1.69 1.70 1.73 1.75 
2.80 1.55 1.67 1.74 1.79 1.83 1.86 1.91 1.94 1.96 1.97 1.98 2.00 2.02 2.03 

2.90 1.89 1.99 2.05 2.09 2.12 2.14 2.18 2.21 2.22 2.23 2.24 2.25 2.27 2.28 
3.00 2.19 2.26 2.31 2.34 2.37 2.39 2.42 2.44 2.45 2.46 2.47 2.47 2.49 2.49 

3.10 2.44 2.50 2.54 2.57 2.59 2.60 2.63 2.64 2.65 2.66 2.67 2.67 2.68 2.69 

3.20 2.67 2.71 2.75 2.77 2.78 2.80 2.81 2.83 2.83 2.84 2.85 2.85 2.86 2.86 

3.30 2.87 2.90 2.93 2.95 2.96 2.97 2.99 3.00 3.00 3.01 3.01 3.0l 3.02 3.03 
3.40 3.05 3.08 3.10 3.12 3.13 3.13 3.15 3.15 3.i6 3.16 3.17 3.17 3.17 3.18 

3.50 3.21 3.24 3.26 3.27 3.28 3.28 3.29 3.30 3.31 3.31 3.31 3.31 3.32 3.32 

3.60 3.37 3.39 3.40 3.41 3.42 3.43 3.43 3.44 3.44 3.44 3.45 3.45 3.45 3.45 
3.70 3.52 3.53 3.54 3.55 3.56 3.56 3.57 3.57 3.57 3.57 3.58 3.58 3.58 3.58 

3.80 3.65 3.67 3.68 3.68 3.69 3.69 3.70 3.70 3.70 3.70 3.70 3.70 3.70 3.70 

3.90 3.79 3.80 3.80 3.81 3.81 3.81 3.82 3.82 3.82 3.82 3.82 3.82 3.82 3.82 

4.00 3.91 3.92 3.93 3.93 3.93 3.93 3.94 3.94 3.94 3.94 3.94 3.94 3.94 3.94 

and 

b. = 11-./a, 11-. = E(x.), a~ = E(s~), (6.3) 
f3 = [(1 - A)(3a~/a2 - 2M. - 1) + (2 - 3A)b~]j2, 

'Y = [3(a~/a2 + b~) - 2M. - l]j[2f3(1 + b2/2)]' 
A = {[A'(b)]2 - A"(b)A(b)}/[A(bW, 

and the primes imply derivatives with respect to b. When there is no se­
lection so that A = 0, b. = b, and a. = a, then f3 = A = 1 and the diagonal 
elements of (6.2) reduce to the asymptotic variances a 2 /2 and (1 + b2 /2) 
respectively, of the maximum likelihood estimators of a and b under the 
model with no selection. 

The asymptotic joint distribution of P and a is obtained by applying the 
usual delta method to (6.1) to yield 

J1i[(P, a) - (11-, a)] '" N(O, E) (6.4) 
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where 

( 
U11 (u2/2{3)(8 - 8. - 8),,) ) 

E = (u2/2{3)(8 - 8. - 8),,) (u2/2{3)(1 - )..) , (6.5) 

U11 = [3(u~ + J.L~) - 41'1'. + 1'2(1 - )..) - u2112{3, 

and (3,).., 1'., u., and 8. are as in (6.3). Note that if there is no selection and 
).. = 0, (6.5) reduces to the usual asymptotic covariance matrix of x and s. 

Since 

A(8) = 1 - I: f(tlvln8)dt, 

where f(tI9) is the probability density function of & non-central t-variate 
with n - 1 degrees of freedom and non-centrality parameter 9,).. involves 
integrals of derivatives of the non-central t-density, which can be difficult 
to compute. An approximation to the non-central t-distribution studied by 
Laubscher (1960) can be used to obtain a relatively simple (and reasonably 
accurate) approximation to )... Using this approximation 

l h (C) 

A(8) ~ 1- </>[t - h( vln8)]dt 
h(-c) 

where 
h(x) = v'2sinh- 1(x/v'2), 

and </>(x) is the standard normal density function. This approximation 
yields 

A'(8) ~ A(8)b(77 - '"Y1) 

and 

where 
77 = h(vln8), 

and 71 and 72 are the first and second moments about zero of a trun­
cated normal distribution with mean 77, unit variance, and truncation points 
±h(c). 

7 Example 

A twenty-year longitudinal study of aging twins by Blum, Fosshage and 
Jarvik (1972) reported changes in measures of intellectual functioning be­
tween the first measurement in 1947 anq the second measureIllent in 1967. 
The sufficient statistics for analysis in this report appear to be reported only 
when the mean is significantly different from zero at the a = .05 level of 



456 28. Estimating the Normal Mean and Variance Under A Selection Model 

significance since several analyses yielding nonsignificant results are men­
tioned, but not reported. One analysis that was reported examined the 
change over the 20-year period in a memory task involving the recollection 
of a list of one-digit numbers. The group included n = 20 men, whose mean 
change score was x* = -4.40. The standard deviation of the change scores 
was 8* = 7.56. Given that this particular result is selectively reported, what 
estimates should we make for the population mean and standard deviation 
to account for the selection? Computing t* = -V20 4.40/7.56 = -2.60, 
and entering Table 3 under n = 20, we see that 8 = -.97, which yields 
6 = -.22,17 = 8.11, and {L = -1.78. Thus the estimated standard devia­
tion is larger (about 7%) than that observed, while the absolute magnitude 
of the estimated mean is considerably smaller (about 59.5%) that that ob­
served. In this case it appears that the practice of reporting only significant 
results produced a substantial overestimate of the magnitude of the 20-year 
change in intellectual functioning. 

Al Details of Computations 

Computations for the distributions of x* and 8~ were simplified by using 
the distributions of ..jiix* and (n - 1)8~, respectively. The IMSL (1977) 
subroutine MDGAM was used to compute the incomplete gamma ratio 
r{aj x) and the IMSL subroutine MDNOR was used to compute the normal 
cumulative distribution function q;{x). All of the numerical integrations 
were computed using IMSL subroutines DCADRE and DCSQDU. 

Similarly, computations for the distribution of ..jiiX*/8* were based on 
the non-central t-distribution with non-centrality parameter () = ..jii8 and 
m = n - 1 degrees of freedom. The density function for a non-central t­
variate with m degrees of freedom and non-centrality parameter () is given 
(see e.g., Resnikoff and Lieberman, 1957) by 

m! _! ( m92 ) ( m ) !!!f1 (-()x) h x () m = e 2 m+",2 H hm ( I, ) 2m21 r{m/2)v'7I"m m+x2 v'm+x2 

where 100 vm 
Hhm{y) = _, e-!(v+y)2 dv. 

o m. 

For m < 20, values of Hhm{y) can be obtained as 

where Pm{y) and Qm{Y) are polynomials and 

1 r 1 2 

Hho{y) = 271" Jo e-'2 t dt, 
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and 
e-h2 

Hh_l(Y)=~ 

A recurrence relationship anlOng the polynomials Pm(y) and Qm(Y) sim­
plifies their computation. For large m it is easier to compute Hhm(y) by 
using an asymptotic expansion given by Resnikoff and Leiberman, which 
is accurate to five decimal places when m > 20. This expansion is 

where 
_y + (y2 + 4m)! 

t = 2 . 
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Estimating Poisson Error 
Rates When Debugging 
Software 

Gerald J. Lieberman1 

Sheldon M. Ross2 

ABSTRACT Five estimators for the vector of mistake rates of errors dis­
covered in debugging software are proposed and compared for Ii. model in 
which an unknown number of errors yield numbers of mistakes having in­
dependend Poisson distributions. 

1 Introduction 

Ross (1985) proposed a model in which there is an unknown number, m, 
of errors contained in a piece of software. He supposed that these errors 
caused mistakes according to independent Poisson processes with the rate 
corresponding to the ith such error being (the unknown) Ai, i = 1, ... , m. 
At a fixed time t = 1, the output of the software is analyzed and all resulting 
mistakes determined, and the errors causing these mistakes identified. In 
this paper we will be interested in estimating the mistake rates of those 
errors that are discovered. In Section 2 we present five possible estimators 
for the vector of mistake rates. The motivation for these estimators is then 
given in Section 3, and in Section 4 we report on the results of extensive 
simulations done to compare these estimators. 

2 The Estimators 

Consider m independent Poisson random variables having respective means 
A1, ... , Am where both m and the Ai, i = 1, ... , m are assumed unknown. 
Suppose that k of the Poisson variables are observed to be positive, taking 
on the set of values {Ni' i = 1, ... , k}. The m - k PQisson random variables 

1 Department of Operations Research, Stanford University. 
2Department of Industrial Engineering and Operations Research, University 

of California, Berkeley. 
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taking on value 0 are unobserved (and thus the value m - k is not learned). 
We are interested in estimating the vector of means, which we will desig­
nate by Al, ... ,Ak corresponding to the Poisson random variables having 
respective observed values Nl, ... , Nk. Let M i , i 2: 1, denote the number 
of Poisson random variables that are observed to take on the value i. Also, 
let N = Li Ni and, for i = 1, ... , m set Ii = 1 if Ni > 0 and Ii = 0 if 
Ni = O. We will consider the following five estimators of (Al, ... ,Ak): 

(i) The estimator E(1) where E?) = N i , i = 1, ... , k 

(ii) The estimator E(2) where E;2) = Ni - Mdk, i = 1, ... ,k 

(iii) The estimator E(3) where E;3) = eNi , i = 1, ... , k, where e 
(N-Md/N 

(iv) The estimator E(4) where E;4) = aNi + (1- a)N, i = 1, ... ,k, where 
N = N/k and a = LJi(Ni - N)2/(N + LJi(Ni - N)2) 

( ) (5) (5) E(4). 1 k 'th . v The estimator E where Ei = e i , Z = , ... , ,WI C as In 

(iii) 

3 Motivation for the Estimators 

In Ross (1985) it was supposed that the errors causing the observed mis­
takes were identified and corrected, and the major problem of interest was 
to then estimate the sum of the A's of those errors that remained. Two 
estimators of this quantity considered in Ross (1985) were 

and 

where Mi is equal to the number of errors that were determined to have 
caused exactly i mistakes. (The estimator Ml had previously been proposed 
by Robbins (1968) in a slightly different context.) Whereas simulation indi­
cated that the latter estimator appeared to perform better, a recent paper 
by Derman and Koh (1968) has analytically shown that whereas the latter 
estimator will usually dominate when the number of errors m is small to 
moderate, the former estimator will be preferable for larger values of m. 
The Derman-Koh paper (1968) concerns itself primarily with some clever 
mathematics to establish its results, and does not present any intuitive rea­
son for the superiority of Ml when m is large. However, in knowing their 
result, it is not too difficult to see why it might be so. We now present such 
an argument. 

Suppose that m is a very large number and all of the A's are approx­
imately equal to elm, a very small number. In this case the number of 
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mistakes by time 1 will be approximately Poisson distributed with mean c, 
and almost all of these mistakes will be singletons - that is, Ml will also 
be approximately Poisson with mean c, and the other M i , i > 1, will be 
zero with high probability. Since the sum of the A's corresponding to errors 
having 0 mistakes is 

c - (number of errors causing mistakes)c/m ~ c 

it is clear that the best estimate of this is M l . (That is, in this situation 
we are effectively interested in estimating a parameter that is equal to the 
mean of the observed Poisson random variable Md In addition, when m 
is very large and there is a mix of values of the A (with a large number 
being very small) the data corresponding to the larger values of A will play 
a relatively negligible role in the observed values of the estimators, and 
again the pivotal role will be played by the large set of errors having small 
mistake rates. For this reason, it intuitively appears that Ml should again 
dominate. 

We are now in position to present intuitive justifications for the five 
estimators presented in Section 3. 

(a) The estimator E(l) is the maximum likelihood estimator. 

(b) The rationale behind the estimators E(2) and E(3) is that since N, 
the total number of mistakes, is Poisson distributed with mean A == 
L~l Ai, it follows that it is the best estimator of A. In addition, since 
we think that there should be some positive estimator of the sum of 
those m - k errors that have not yet caused any mistakes - and we 
will take Ml as our estimator of this quantity - it follows that the 
maximum likelihood estimators Ni overestimate the Ai, i = 1, ... , k. 
Since the total overestimate of the sum of the Ai, i = 1, ... , k is 
Ml the estimator E(2) is an attempt to correct this by decreasing 
each of the estimates by a fixed amount, whereas E(3) attempts to 
correct by scaling each estimator by the same fraction. (Intuitively, it 
appears to the authors that scaling would be more appropriate than 
fixed amount reductions, but we initially consider both possibilities.) 

(c) The estimator E(4) is an attempt to estimate a vector of means by 
using a "weighted towards the average" approach developed in Jun 
(1988). Specifically, Jun considers a problem in which one has n (a 
known number) of independent random variables having a common 
form of distribution with unknown means. If Xi, i = 1, ... ,n are the 
values of these variables then Jun considers estimators of the means 
E[XiJ of the form aXi + (1 - a)X, where X = LXi/n. He then 
determines the best (in the sense of minimizing the sum of squares 
of the errors) value of a, which will be a function of the unknown 
parameters of the distributions, and then estimates this quantity by 
considering the same function evaluated not at the parameters but 
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at their maximum likelihood estimates. In the case of estimating n 
independent Poisson means, Jun's approach leads to the estimators 

aXi + (1- a)X 

with 

The estimators E14) thus directly make use of this "weighted towards 
the average" approach without compensating for the "overestimation 
hypothesis" noted in (b). The estimators E15) modify these estimators 
(by scaling) to take this overestimation hypothesis into account. 

For any of the above estimators E, define the mean square error of E by 

The mean square error of the maximum likelihood estimator E(l) is com­
puted by the following reasoning: 

Hence, 

and thus, 

Ai = E[(Ni - Ai)2] 
= E[(Ni - Ai)2 I Ii = 1](1 - e->';) + A~e->';. 

E[Ii(Ni - Ai)2] = E[(Ni - Ai)2 I Ii = 1](1- e->';) 

= Ai(l- Aie->';) 

m 

MSE(E(1») = LAi(l- Aie->';). 
i=l 

Unfortunately, however, we have not been able to obtain a simple closed 
form expression for any of the other mean square errors and have thus had 
to resort to simulation to determine which estimator is superior. 

Remark 3.1 Another estimator one might consider would be obtained by 
estimating Ai, i ~ 1, by utilizing the conditional distribution of a Poisson 
mndom variable with mean Ai given that it is positive. To see that this 
would not be beneficial, consider any set of estimators Ei of Ai, i ~ 1, 
where Ei depends on the data only through Ni . Since we are only interested 
in estimating Ai when Ii = 1 we can suppose that Ei = 0 when Ii = o. Let 
u; = E[(Ei - Ai)2] and note that 

u; = A~e->'i + E[(Ei - Ai)21 Ii = 1](1- e->'i) 

= A~e->'i + E[Ii(Ei - Ai)2]. 
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Hence, since E A~e->'i is a constant it follows that the choice of good es­
timators E i , i;::: 1, in our problem is the same as in the problem where 
one attempts to estimate all of the Poisson means, and since Ni is an ad­
missible estimate of Ai in this unconstrained problem there is no necessity 
to consider other estimators. (In particular, we need not consider an esti­
mator of the form: estimate Ai as 0 if Ni = 0; otherwise use the maximum 
likelihood estimate based on the conditional distribution of Poisson random 
variable given that it is positive.) 

4 Simulation Analysis of the Estimators 

In all the simulations we ran it always turned out that MSE(E(i») decreased 
in i, i = 1, ... ,5. For instance, in two cases we set m = 100 and chose 
the 100 values of A uniformly between 0 and 3. In both cases we then ran 
100 simulations to estimate the mean square errors. The results were quite 
similar in both cases, giving the following estimates of the mean square 
errors in one of the cases: 

Ml = 121.5, M2 = 112.8, Ma = 82.8, M4 = 51.4, M5 = 38.8, 

where Mi = MSE(E(i»). In another simulation where we chose m = 250, 
with 100 of the A uniformly chosen between 0 and 3, 100 uniformly chosen 
between 5 and 7, and 50 uniformly chosen between 8 and 10, we obtained 
the following estimates of the mean square errors: 

Ml = 1148.4, M2 = 1145.4, Ma = 1099.8, M4 = 751.4, M5 = 742.3. 

In this case it should be noted that most of the errors result from estimating 
the errors with large values of A, and thus there is not as much scope for 
percentage improvement as in the case considered above. 

In addition, it is worth noting that in almost all simulation runs (as 
opposed to just the average of the runs) the sum of squares of errors of 
the five estimators were decreasing. Table 1 gives the results of the last 19 
(of 100) runs when m = 300 and 100 of the )..'s were uniformly chosen in 
(0,2), 100 in (3,9), and 100 in (4,9). The tabulated values Ti refer to the 
sum of squares of the errors for estimator i. 'Ii is the average and Vi is the 
variance of the T/s over all 100 runs. 

Summarizing, it would seem that compensating for the overestimation 
by reducing the maximum likelihood estimates by a fixed amount (estima­
tor E2) results in a slight improvement, whereas compensating by scaling 
results in a much more substantial improvement. In addition, the greatest 
improvement is obtained by not using the maximum likelihood estimates 
directly but rather "weight them towards the average." This (that is, E(4») 
in itself leads to a great improvement over the other estimates, and an even 
greater improvement is obtained by combining this with the overestimation 
compensation (to obtain E(5»). 
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TABLE 1. Simulation Runs 

Trial TI T2 Ts T4 T5 

82 647.747 647.473 643.206 229.471 228.074 
83 585.470 585.450 581.712 207.167 206.310 
84 604.730 605.735 602.105 234.720 234.935 

85 834.172 833.265 831.070 341.082 339.573 

86 648.429 648.422 646.514 246.160 245.710 

87 613.959 614.597 605.235 229.525 228.042 
88 604.203 604.636 602.792 231.050 231.075 
89 472.874 473.547 470.957 186.796 187.129 
90 784.148 783.199 773.775 308.084 304.354 

91 628.643 628.761 626.926 240.765 240.475 
92 805.946 806.518 796.980 328.493 326.213 
93 832.697 830.782 826.141 334.841 331.580 
94 603.276 604.875 599.399 233.535 233.934 
95 642.532 644.378 640.355 260.696 261.549 
96 785.062 784.748 780.390 317.131 315.631 
97 719.839 720.195 717.996 284.529 284.282 
98 607.406 607.406 607.406 224.901 224.901 
99 735.818 735.818 735.818 289.577 289.577 
100 774.466 775.525 768.768 317.919 317.073 

1\ = 672.520, T2 = 672.606, TS = 669.028, T4 = 260.833, 
T5 = 260.002, VI = 10062.819, V2 = 10036.589, Vs = 9847.313, 
V4 = 2488.182, V5 = 2447.342 
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A Comparison of the 
Likelihood Ratio, Wald, and 
Rao Tests 
Albert Madansky1 

ABSTRACT Three commonly considered methods for forming approxi­
mate (large-sample) tests of a simple null hypothesis are: (a) the likelihood 
ratio test, (b) the Wald "linearization" test, and (c) a quadratic scores test 
due to Rao. In the context of testing that the variance of a normal distri­
bution is equal to one, it is possible to make detailed finite-sample power 
comparisons, both "local" and "nonlocal," of these tests. In contrast to at 
least one assertion made in the literature (Chandra and Joshi, 1983), none 
of the three tests dominates another, even locally. 

1 Introduction 

Suppose we have a probability distribution whose natural parameter B is 
an m-vector, and we wish to test the simple null hypothesis B = Bo. It may 
be difficult to obtain an exact test of this hypothesis, and so approximate 
test procedures have been adduced. The three most commonly considered 
methods for obtaining asymptotic tests are the likelihood ratio test, the 
Wald test (called "linearization" in Madansky and Olkin (1965)), and the 
quadratic score test due to Rao (see, for example, section 6e.2 of Rao 
(1965)). In Rao (1962) (and also in Rao (1965), but not in later editions 
of that book) it was conjectured that the Rao test is locally more powerful 
than the others. Peers (1971) developed the power functions of these three 
tests to O(n-l/2) and showed by example that "no one of these criteria 
is uniformly superior to the other two." But Chandra and Joshi (1983) 
considered the case where m = 1 and argued that if we view each of these 
tests as a two-sided test based on the maximum likelihood estimate of 0 of B 
and we superposed on the tests the condition that the size (i.e., probability 
content) of each of the tails be equal, then the Rao conjecture is true and 
that the Wald test is the worst of the three. This note looks at a specific 
example, testing the simple hypothesis that the variance B of a normal 
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distribution is equal to 1, and shows that the Chandra-Joshi conclusion is 
incorrect. 

The author wishes to thank the referee of an earlier version of this paper, 
who not only saved me from the embarrassment of a public display of my 
confused exposition in that version but who also brought to my attention 
the Peers and Chandra-Joshi papers. The referee also provided me with an 
unpublished paper by Kallenberg (1983), who considered the same exam­
ple, calculating the Bahadur slopes for these three tests for a "nonlocal" 
comparison and also providing a "local" approximation (around 0 = 1) to 
the number of observations required to achieve a fixed power for each of 
the three tests. He reached the following conclusions: 

comparison 
"local" "nonlocal" 

W> LR > R W = LR > R 
R> LR > W R = LR > W 

where LR denotes likelihood ratio test, W denotes Wald test, R denotes 
Rao test, and the> (=) between two tests is to be read as "is better than" 
("is equivalent to"). In this paper we consider the finite sample properties 
of these three tests and develop comparable conclusions. 

2 The Example 

As stated earlier, we consider the problem of testing the hypothesis Ho : 
o = 00 given a random sample Xl, ... ,Xn from a normal distribution with 

• n 2 
mean zero and unknown variance O. Here 0 = sin, where s = Li=l Xi. The 
three test statistics - the likelihood ratio, Wald, and Rao statistics - are 
given respectively by 

and 

L = n log 00 + nO/Oo - nlogO - n, 

W = n(O - ( 0 )2/202, 

We see from the form of each of the tests that they are each two-sided 
tests based On 0, each with its OWn pair of critical values. Thus, as pointed 
out by Kallenberg, superposition of the equal-tailed condition required by 
Chandra-Joshi will reduce the three tests to one commOn test which is nOne 
of the three under consideration. 

Table 1 exhibits the critical values for 0 for testing 0 = 1 against 0 =I- 1 
based On the large sample distribution (xD of L, W, and R. It also exhibits 
the exact probabilities of rejection of Ho based On these three approximate 
tests. We note that under the null hypothesis the probability of rejecting 
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Ho using L is smaller than that using Wand greater than that using R. 
Thus L is more conservative than Wand less conservative than R when 
(}o = 1. 

As another comparison of the tests, we can hold the exact power fixed 
for a given alternative () and observe the rate of convergence to zero of the 
exact level of significance for each of the three tests. Tables 2 and 3 exhibit 
the convergence to zero of the exact level of significance for each of the 
three test procedures when the power is held fixed at 0.60 for two different 
non-null values of (), () = 0.6 and () = 1.4, respectively. Note that for () = 0.6 
the size of the Wald test converges to zero more rapidly than that of the 
likelihood ratio test, and that for () = 1.4 the size of the Rao test converges 
to zero more rapidly than that of the likelihood ratio test. 

Bahadur (1967) defined a test to be optimal for a given non-null () if the 
rate of convergence to zero of the size is faster than that of any other test 
procedure with the same power at that alternative (), and showed that the 
likelihood ratio test is optimal. It is easy to determine that the function 
p( ()) measuring the rate of convergence to zero of the size of the likelihood 
ratio test is given for this example by 

p( (}) = e-(II-l-log 11)/2, 

that is, the size of the likelihood ratio test tends to zero at the rate (p( ()) ) n . 

Regression of the logarithm of the levels of Table 2 on n, with no intercept 
included, produced the following coefficients: 

() = 0.6 () = 1.4 
likelihood ratio -0.0622 -0.0328 
Wald -0.0694 -0.0189 
Rao -0.0409 -0.0364 

These regression coefficients should be contrasted with log p(0.6) = -0.0554 
and log p(1.4) = -0.0318. Note that the regression coefficients calculated 
for the likelihood ratio test are reasonably close to the asymptotic rates, 
but that the magnitude of other sets of regression coefficients do not con­
form with Bahadur's optimality theorem. That is, the magnitude of the 
slope for the Wald test when () = 0.6 exceeds the magnitude of the slope 
for the likelihood ratio test. Similarly, the magnitude of the slope for the 
Rao test exceeds that of the likelihood ratio test when () = 1.4. This is 
of course an artifact of the values of n used in calculating the regression 
coefficients, and does not invalidate Bahadur's result. 

Table 4 exhibits the power of each of these three tests for various values 
of () and n, to yield another comparison of these tests. Note that for small 
n, of which n = 3 is representative, since the critical regions using Wand 
R are one-sided, L has better power for () corresponding to the tail of the 
distribution of {) which is never in the critical region, i.e., better power than 
R for () < 1 and better power than W for () > 1. This behavior of the power 
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function of L persists, though not to as marked a degree, for moderate n 
(represented by n = 15) and even large n (like n = 250). Thus for a two­
sided alternative there is no clear power dominance of any of the three test 
procedures over each other, and so we conclude that the ordering of L, W, 
and R based on exact power considerations is as follows: 

B < 1 
B> 1 

W>LR>R 
R>LR>W. 

Finally, emulating the finite sample calculations performed by Kallen­
berg, we present in Table 5 the sample sizes required for each of these tests 
so that, for various values of B, the power of the test will be 0.5. Here the 
results are not quite as clearcut. For B < 1 we have that W > LR > R, but 
for B > 1 we almost have that R > LR > W, except that when B = 1.1 the 
ranking is W > R> LR. 

This simple example had the virtue of producing different critical regions 
for the Wald, Rao, and likelihood ratio tests, each based on the same test 
statistic with known small sample distribution, thus enabling a detailed 
comparison of the behavior of the three tests. From our study we conclude 
that no one of these three tests dominates the others, and that a casual use 
of Bahadur slopes for comparison may be misleading. 
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TABLE 1. Critical values of 8 for nominal Q = 0.05 and exact level of 
significance of these critical regions 

likelihood ratio Wald Rao 
n -lower upper level lower upper level lower upper level 

1 0.008 
2 0.057 

6.751 
4.403 

3 0.115 3.546 
4 0.166 3.088 
5 0.211 2.797 
6 0.249 2.593 
7 0.282 2.441 
8 0.310 2.323 
9 0.336 2.228 
o 0.359 2.149 

15 0.444 1.896 
20 0.501 1. 754 
25 0.543 1.661 
30 0.575 1.595 
35 0.602 1.544 
40 0.623 1.505 
45 0.642 1.472 
50 0.657 1.445 

100 0.748 1.303 
150 0.790 1.244 
200 0.817 1.209 
250 0.835 1.186 
300 0.848 1.169 
350 0.859 1.156 
400 0.868 1.145 
450 0.875 1.136 
500 0.881 1.129 

1000 0.915 1.090 

0.0805 0.265 
0.0678 0.338 
0.0623 0.385 
0.0593 0.419 
0.0576 0.447 
0.0564 0.469 
0.0555 0.488 
0.0548 0.505 
0.0542 0.520 
0.0538 0.533 
0.0524 0.583 
0.0517 0.617 
0.0513 0.643 
0.0510 0.664 
0.0508 0.681 
0.0506 0.695 
0,0505 0.708 
0.0504 0.718 
0.0500 0.783 
0.0499 0.815 
0.0498 0.836 
0.0497 0.851 
0.0497 0.862 
0.0497 0.871 
0.0497 0.878 
0.0497 0.884 
0.0497 0.890 
0.0497 0.919 

0.3928 0 
0.2867 0 
0.2359 0 
0.2051 0 
0.1840 0 
0.1685 0 
0.1564 0 

50.000 0.1467 0.020 
13.150 0.1388 0.076 

8.100 0.1320 0.123 
3.517 0.1096 0.284 
2.630 0.0967 0.380 
2.244 0.0882 0.446 
2.025 0.0823 0.494 
1.882 0.0779 0.531 
1.780 0.0746 0.562 
1. 704 0.0719 0.587 
1.645 0.0698 0.608 
1.383 0.0599 0.723 
1.293 0.0565 0.774 
1.244 0.0548 0.804 
1.213 0.0537 0.825 
1.191 0.0530 0.840 
1.174 0.0525 0.852 
1.161 0.0522 0.861 
1.150 0.0519 0.869 
1.141 0.0517 0.876 

1.096 0.0506 0.912 

3.772 
2.960 
2.600 
2.386 
2.240 
2.132 
2.048 
1.980 
1.924 
1.877 
1.716 
1.620 
1.554 
1.506 
1.496 
1.438 
1.403 
1.392 
1.277 
1.226 
1.196 
1.175 
1.160 
1.148 
1.139 
1.131 
1.124 
1.088 

0.521 
0.518 
0.504 
0.489 
0.476 
0.465 
0.455 
0.447 
0.441 
0.138 
0.442 
0.450 
0.457 
0.462 
0.467 
0.470 
0.472 
0.475 
0.485 
0.488 
0.490 
0.491 
0.492 
0.492 
0.493 
0.493 
0.493 
0.495 
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TABLE 2. Critical values of iJ for Power= 0.60 when (J = 0.6 and exact level 
of significance of these critical regions 

likelihood ratio Wald Rao 

n lower upper level lower upper level lower upper level 

15 0.629 

20 0.628 

25 0.626 

30 0.626 

35 0.625 
40 0.624 

45 0.624 

50 0.623 

100 0.618 

150 0.615 
200 0.613 

250 0.612 
500 0.609 

1000 0.606 

1.495 

1.495 

1.497 

1.499 

1.501 
1.503 

1.504 

1.506 

1.515 

1.520 
1.523 

1.525 
1.531 

1.535 

0.2434 0.629 2.432 

0.1764 0.629 2.444 

0.1286 0.627 2.461 

0.0943 0.626 2.478 

0.0695 0.625 2.495 

0.0515 0.624 2.510 
0.0382 0.624 2.524 

0.0285 0.623 2.537 

0.0020 0.618 2.624 

0.0002 0.615 2.673 

0.0000 0.613 2.706 
0.0000 0.612 2.730 
0.0000 0.609 2.796 

0.0000 0.606 2.849 

0.1485 0.628 

0.1056 0.628 

0.0763 0.627 

0.0557 0.626 

0.0409 0.625 
0.0302 0.624 

0.0224 0.624 

0.0167 0.623 

0.0011 0.618 

0.0001 0.615 
0.0000 0.613 

0.0000 0.612 
0.0000 0.609 

0.0000 0.606 

1.372 

1.372 

1.373 

1.374 

1.375 

1.376 
1.376 

1.377 

1.382 

1.385 

1.387 
1.388 

1.391 
1.394 

0.2958 

0.2282 

0.1775 

0.1391 

0.1098 

0.0873 
0.0698 

0.0561 

0.0080 
0.0016 

0.0004 
0.0001 

0.0000 
0.0000 

TABLE 3. Critical values of iJ for Power= 0.60 when (J = 1.4 and exact level 
of significance of these critical regions 

likelihood ratio Wald Rao 
n lower upper level lower upper level lower upper level 

15 0.745 

20 0.752 

25 0.754 

30 0.752 

35 0.750 

40 0.747 

45 0.744 

50 0.741 

100 0.722 

150 0.714 

200 0.710 

250 0.707 

500 0.700 

1000 0.695 

1.308 

1.297 

1.295 

1.297 

1.301 

1.305 

1.310 

1.314 

1.341 

1.353 

1.360 

1.365 
1.376 

1.383 

0.4468 0.789 

0.3940 0.805 

0.3431 0.808 

0.2957 0.809 

0.2528 0.809 

0.2148 0.808 

0.1820 0.807 

0.1538 0.806 

0.0291 0.797 

0.0062 0.793 

0.0015 0.791 

0.0004 0.789 

0.0000 0.785 

0.0000 0.783 

1.339 

1.318 

1.311 

1.308 

1.309 

1.311 

1.314 

1.317 

1.341 

1.353 

1.360 

1.365 

1.376 

1.383 

0.4877 0.710 

0.4436 0.715 

0.4011 0.714 

0.3609 0.709 

0.3235 0.704 

0.2894 0.698 

0.2586 0.692 

0.2310 0.687 

0.0799 0.659 

0.0316 0.647 

0.0136 0.640 

0.0062 0.635 
0.0002 0.624 

0.0000 0.617 

1.290 

1.285 

1.286 

1.291 

1.297 

1.302 

1.308 

1.313 

1.341 

1.353 

1.360 

1.365 

1.376 

1.383 

0.4206 

0.3615 

0.3050 

0.2533 

0.2081 

0.1669 

0.1383 

0.1125 

0.0163 

0.0031 

0.0008 

0.0002 

0.0000 
0.0000 
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TABLE 4. Power of tests 

.1 .6712 .9909 0 1.0000 1.0000 .9997 

.2 .3675 .8764 0 .9956 .9998 .8731 

.3 .2342 .7214 0 .8971 .9847 .4910 

.4 .1650 .5902 .0003 .6595 .8883 .2239 

.5 .1241 .4889 .0015 .4221 .7095 .0994 1.0000 1.0000 

.6 .0980 .4114 .0047 .2544 .5174 .0457 .9999 .0000 .9998 

.7 .0809 .3515 .0109 .1513 .3583 .0234 .9804 .9889 .9724 

.8 .0700 .3044 .0207 .0921 .2424 .0173 .6948 .7661 .6449 

.9 .0640 .2666 .0340 .0617 .1628 .0240 .2124 .2770 .1766 
1.0 .0621 .2359 .0504 .0524 .1096 .0442 .0497 .0537 .0491 

1.1 .0637 .2106 .0392 .0607 .0743 .0781 .1917 .1313 .2195 

1.2 .0684 .1895 .0898 .0841 .0510 .1245 .5412 .4423 .5800 

1.3 .0757 .1716 .1118 .1203 .0357 .1807 .8371 .7702 .8595 

1.4 .0851 .1563 .1345 .1664 .0258 .2435 .9625 .9383 .9695 

1.5 .0962 .1432 .1578 .2198 .0200 .3098 .9937 .9883 .9951 
1.6 .1088 .1318 .1812 .2776 .0175 .3768 .9990 .9981 .9993 
1.7 .1225 .1218 .2045 .3375 .0179 .4417 .9998 .9997 .9998 
1.8 .1370 .1130 .2275 .3973 .0214 .5031 1.0000 .9999 1.0000 
1.9 .1522 .1052 .2502 .4550 .0280 .5604 

2. .1678 .0982 .2724 .5098 .0380 .6126 

3. .3247 .0565 .4574 .8511 .2853 .8984 

4. .4535 .0376 .5828 .9546 .5877 .9715 

5. .5509 .0274 .6684 .9845 .7836 .9907 

6. .6243 .0210 .7290 .9940 .8879 .9965 

7. .6805 .0168 .7735 .9974 .9410 .9985 

8. .7243 .0138 .8072 .9988 .9679 .9993 

9. .7592 .0116 .8334 .9994 .9820 .9996 
10. .7874 ,0100 .8542 .9996 .9895 .9998 

TABLE 5. Sample size 
required for 0.05 level 
of significance and 0.5 
power 

8 LR W R 
0.5 19 30 
0.6 33 14 46 

0.7 65 38 83 

0.8 161 117 187 

0.9 704 609 757 

1.1 834 943 783 

1.2 225 284 200 

1.3 108 149 92 

1.4 65 98 53 

1.5 45 72 35 
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On the Inadmissibility of the 
Modified Step-Down Test 
Based on Fisher's Method For 
Combining Independent 
p-Values 
John I. Marden1 

Michael D. Perlman2 

ABSTRACT Marden and Perlman (1988) have shown that the classical 
step-down procedure for the HoteHing T2 testing problem is inadmissible 
in most cases. Mudholkar and Subbaiah (1980) proposed a modified step­
down procedure wherein the p-values associated with the sequence of step­
wise F tests are combined according to Fisher's combination method. In 
the present paper it is shown that the modified step-down procedure is 
inadmissible if at least one step is of dimension one. 

1 Introduction 

The Hotelling T2 problem (with covariates) may be expressed in the fol­
lowing canonical form. One observes X and S, independent, where 

(1.1) 

respectively, a p-dimensional normal distribution and a p-dimensional Wishart 
distribution. The covariance matrix ~ is assumed to be positive definite, 
but otherwise ~ and the mean vector Jl. are unknown. We also assume that 
n ~ p, so that S is nonsingular with probability one. 

IDepartment of Statistics, University of Illinois at Urbana-Champaign, Ur­
bana, Illinois 61801. 

2Department of Statistics GN-22 , University of Washington, Seattle, Wash­
ington 98195. 
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Partition J.L and E into q + 1 blocks: 

(

EOO 

E10 
E= . 

Eqo 

EOl ... Eoq) 
E11 '" E1q 
· . · . · . 

Eq1 Eqq 

(1.2) 

with J.Li : Pi x 1 and Eij : Pi x Pj, where Po + P1 + ... + Pq = p, Po 2: 0, P1 2: 
1, ... ,Pq 2: 1. The Hotelling T2 testing problem with covariates is that of 
testing 

Ho : J.L = 0 vs. HA: J.Lo = O. (1.3) 

Since J.Lo = 0 under both hypotheses, the variables measured by Xo act as 
covariates. If Po = 0, this problem reduces to the ordinary T2 problem of 
testing J.L = 0 vs. J.L ::f. O. 

Consider the nested sequence of hypotheses 

where 
H(i) : J.Lj = 0 for j = 0,1, ... ,i. (1.5) 

The classical step-down test proceeds by testing H(l) vs. H(O), H(2) vs. 
H(l), ... , H(q) vs. H(q-1), using the likelihood ratio test (LRT) at each 
step. The overall null hypothesis Ho == H(q) is accepted if and only if each 
step-wise LRT accepts its null hypothesis. 

The level (}:i likelihood ratio test (LRT) for testing H(i) vs. H(i-1), i = 
1, ... ,q, accepts H(i) if and only if 

where, for i = 0,1, ... ,q, 

Tl-Tl-1 
Y,;= l+Tf! ' 

0-1 

(
XO)' (SOO SOl ... SOi) -1 (XO) Xl S10 S11 . . . Sli Xl 
· .. . .' · .. . . · .. . . 

Xi SiO Sil Sii Xi 

Here, T': l == 0, while TJ == Yo == 0 when Po = OJ note too that 

i 

l+Tl= II(1+Y})· 
j=O 

(1.6) 

(1. 7) 

(1.8) 

(1.9) 
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The joint distribution of (Yo, Yb ... , Yq) is as follows (cf. Marden and 
Perlman (1988)): 

{ ¥i I Yo, Yb ... , ¥i-I 
Yo 

where 

x~; (6.d(l + Tl- 1)) Ix;;, 
rv xpolx;o 

i 

ni = n - :L>j + 1 
j=O 

i = 1, ... ,qj 

(1.10) 

(1.11) 

and the two chi-squared random variables appearing in each ratio are inde­
pendent, with X~(A)(X~) denoting a noncentral (central) chi-squared ran­
dom variable with v degrees of freedom and noncentrality parameter A. 
The parameters 6.1, ... , 6.q in (1.10) are determined by the relations 

i = 1, .. . ,q, (1.12) 

where 7l is defined as Tl in (1.8) but with (X, S) replaced by (IL, E) (so 
76 == 0). 

Note that the hypothesis H(i) in (1.5) is equivalent to 6.1 = ... = 6.i = o. 
Thus when H(i) is true, the statistics Yo, Y b ... , Yq are mutually indepen­
dent F statistics, hence the critical value ai(ai) for the step-wise LRT 
(1.6) is the upper ai-point of the (non-normalized) Fp;,n; distribution. The 
classical step-down test, with acceptance region 

(1.13) 

therefore has overall significance level a given by 

q 

1- II(1- ai). (1.14) 
i=1 

At this point we restrict consideration to the class of tests for (1.3) that 
depend on (X, S) only through (Yo, Yb ... , Yq). Under this restriction, the 
testing problem (1.3) is equivalent to the reduced problem 

Ho : 6.1 = ... = 6.q = 0 vs. HA: 6.1 ~ 0, ... ,6.q ~ 0 (1.15) 

with at least one inequality strict. Theorem 3.1 of Marden and Perlman 
(1988) [hereafter abbreviated as MP (1988)] characterizes the class of all 
admissible tests for (1.15) based on (Yo, Yb . .. , Yq). They applied this min­
imal complete class theorem to show that the step-down test (1.13) is inad­
missible for problem (1.15), hence a fortiori inadmissible for (1.3), if Po = 0 
and q ~ 3, or if Po > 0 and q ~ 2. The test is also inadmissible if Po = 0 
and q = 2 or if Po > 0 and q = 1, unless a is sufficiently small. Thus, except 
for a few isolated cases, the classical step-down test is inadmissible. 
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Mudholkar and Subbaiah (1980) proposed a modified step-down test for 
problem (1.15), using Fisher's method to combine the observed p-values 
Q1,"" Qq associated with the step-wise LRT's based on Yt, ... , Yq, re­
spectively. If Yt, . .. Yq are the observed values of Yt, ... , Yq, then we define 

Qi == Qi(Yi) = Prob[Yi 2: Yi I H(i)j 

= 11 fi(Z) dz, 
Yi/(1+Yi) 

(1.16) 

where fi(Z) is the central Beta density of Yi/(l + Yi) under H(i) given by 

0< Z < 1, (1.17) 

Since Qt, ... Qq are independent and uniformly distributed on (0,1) when 
Ho is true, Fisher's combination method based on n Qi may be applied to 
obtain an overall level a test for (1.15). Precisely, Mudholkar and Subbaiah 
(1980) proposed the test with acceptance region 

(1.18) 

where X~q,Q denotes the upper a-point of the X~q distribution. (Note, how­
ever, that Q1,"" Qq are not independent under HA.) 

For the case Po = 0, Mudholkar and Subbaiah (1980) evaluated the 
power functions of the modified step-down procedure (1.18) and the overall 
T2 test based on T; == X'S-l X, and concluded that the two tests are 
of comparable performance. Since the T; test is known to be admissible 
(Stein (1956)) and proper Bayes (Kiefer and Schwartz (1965)), this raises 
the question of the admissibility of the modified step-down test (1.18). 

In the present paper, Theorem 3.1 of MP (1988) is restated as Theorem 
2.1 below, then is applied to establish a necessary convexity condition for 
the admissibility of tests based on (Yo, Yl.' .. , Yq) for problem (1.15). This 
result, Corollary 2.2, is then used in Section 3 to show that the modified 
step-down test (1.18) is inadmissible whenever min{pt, ... ,pq} = 1. Only 
partial results are available for the remaining cases; in particular, this test 
is admissible for (1.15) when Po = 0 and PI = ... = Pq = 2. 

Marden (1982) and Marden and Perlman (1982) studied the problem of 
combining the p-values associated with F statistics that are independent 
under both the null and the alternative hypotheses. As in the present paper, 
they first established a minimal complete class theorem, then derived a 
necessary condition for admissibility. This necessary condition imposes a 
convexity requirement on the acceptance region of an admissible test, when 
that region is expressed in terms of a certain set of transformed variables. 
The method in the present paper is of a related nature. 
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2 The Complete Class Theorem and a Necessary 
Condition for Admissibility 

In order to state Theorem 3.1 of MP (1988), some notation from that 
paper must be reviewed. Let Y == (Vo, VI"'" Yq) and (tg, t~, ... , t~) denote 
possible values of Y == (YO,YI, ... ,Yq ) and (TJ,T?, ... ,T;), respectively 
(cf. (1.7) and (1.8)). Now define 

i 

Vi = Yi/ II (1 + Vi), 
i=O 

i = 0,1, ... ,q, 

i 

1Li = LVi, 
i=O 

i = O,i, ... ,q, 

V = (Vo, VI, ... , Vq), 

U=(UlI""Uq ), 

(2.1) 

(2.2) 

(2.3) 
(2.4) 

(Note that U is q-dimensional regardless of whether Po = 0 or Po> 0.) The 
mapping V - V is 1 - 1 and the range of V is 

v={v I VO,VI, ... ,Vq >0, O<tVi<I}, (2.5) 

while that of U is 

u = { U I 0 < UI < ... < uq < I}. (2.6) 

For the testing problem (1.15), the class of all tests depending on V is 
identical to the class of all tests depending on v. 

Let /A(V) denote the density of Y under HA, where ~ = (~11"" ~q), 
and denote the likelihood ratio by 

RA. == /A/Jo. (2.7) 

It follows from (1.10) (cf. MP (1988) Section 3) that 

q 

RA. == RA.(v) = II exp {-(I - ui-dai/2} Gi(Viai/2), (2.8) 
i=l 

where 

Define 

i = 1, .. . ,q, 

(2.10) 
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d(V;A,7I"0,7I"1) = ~Aili+ [ [R~; 1] 7I"o(dLl)+ [ R~7I"1(dLl), 
J{O<E~i<l} i h1s.E~i} 

(2.11) 
where 71"0 is a finite measure on {O < ~Lli :$ I}, 7I"i is a locally finite measure 
on {I :$ ~Lli}' and A == (AI.' .. ,Aq) with AI. . ,. ,Aq ~ O. 

Finally, let C", represent the class of all relatively closed, convex, and 
nonincreasingsubsets of U, and let C denote the class of all pre-images in 
V of all members of C", under the mapping u : V ~ U determined by (2.2). 
The indicator function of a set A is denoted by lA. 

Theorem 2.1 (MP (1988» A test function r.p == r.p(v) is admissible for 
problem (1.15) if and only if 

r.p(v) = 1 - lenA' (v) (2.12) 

for a.e. v E V, where C E C, 

(2.13) 

for some A, 71"0, 71" as above, Icl < 00, and Id( v; A, 71"0, 71"1) I < 00 for v E 
interior (C). 0 

This theorem states that a test based on (Yo, Y1 , .•• , Yq) is admissible for 
problem (1.15) if and only if its acceptance region in V is of the form CnA'. 
Corollary 2.2, the main result of this section, presents a necessary convexity 
condition for the acceptance region of an admissible test for (1.15). 

For i = 0,1, ... ,q, define 
(2.14) 

where ro = 1 and, for i ~ 1, 

(2.15) 

where Ki denotes an integer-valued random variable with probability mass 
function proportional to 

r (~(pi + ni) + k) zk 

r(~Pi + k) k! ' 
k = 0,1,2, ... 

(cf. Marden and Perlman (1980), equations (2.9) and (2.10)). It is shown 
by Marden and Perlman (1980, 1982) that for i ~ 1, 

max -, --'- < ri < 1. ( 1 p' ) 
2 Pi +ni 

(2.16) 

Let 
* - *() (* * *) v = v v = vo, VI , ..• , Vq (2.17) 
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and let V* denote the image of V under the 1-1 mapping v*(v), i.e., 

q 

V* - { * I * * 0 0 ""'( *)l/r. 1 } - v vo, ... ,Vq > , < L..J Vi <. 
i=O 

(2.18) 

Define C* to be the class of all convex and nonincreasing subsets of V* . 

Corollary 2.2 A necessary condition for the admissibility of a test func­
tion r.p == r.p(v) for problem (1.15) is that 

r.p{v(v*)) = 1- Ic.{v*) [a.e. v* E V* J (2.19) 

for some subset C* E C*, where v( v*) is the inverse of the mapping v* (v). 

Proof If r.p is admissible for (1.15), then by Theorem 2.1, r.p(v) = 1 -
IcnA'(v) for some C E C and A' as in (2.13). We shall show that v*(C) E C* 
and v* (A') E C*, hence since C* is closed under intersections, v* (C n A') E 
C*, which verifies (2.19). 

Since Ui is linear and increasing in each Vj (see (2.2)), C E C is convex 
and nonincreasing in v. Because 0 < ri:::; 1 for each i ~ 0, v*(C) E C*. 

To see that v*(A') E C*, first express Rtl. as a function of v*, i.e., define 

Ra(v*) = Rtl.{v(v*)). 

Then from (2.8), 

q 

lnRa(v*) = L [va + (vi)l/rl + ... + (Vi_l)1/r.- 1 -1] !l.i/2 
i=l 

(2.20) 

Since 0 < Ti :::; 1, (v;)l/ri is convex and increasing in vi- Marden and Perl­
man {1980, equations (2.32) and (2.33)) show that In Gi ((v;)1/r'!l.i/2) is 
convex in vi, while it is clearly nondecreasing since!l.i ~ O. Thus, In Ra (v*) 
itself is a convex and nondecreasing function of v*, and the same is true 
of Ii == li{V{V*)) in (2.1O), so therefore d{v{v*)j,x,1I"o,1I"1) in (2.11) is also 
convex and nondecreasing in v*. This directly implies that v* (A') E C*. 
o 

3 Inadmissibility of the Modified Step-down 
Procedure 

The following theorem is the main result of this paper. 
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Theorem 3.1 Suppose that q ~ 2 and 0 < a < 1. If min{Pl, ... ,pq} = 1, 
the level a modified step-down procedure (1.18) is inadmissible for prob­
lem (1.15) within the class of all tests based on (Yo, Yl, ... , Yq), hence is 
inadmissible for problem (1.3) among all tests based on (X,S). 

Proof Let A* denote the acceptance region (1.18) expressed in terms of 
v*. We shall show that A * is not equal a.e. to a convex subset of V*, hence, 
by Corollary 2.2, the test determined by A* is inadmissible. 

For i = 1, ... ,q define the functions h on V* and gi on (0,1) by 

(3.1) 

(3.2) 

Since v;/(1 - ui-d = y;/(1 + Yi), the acceptance region A* expressed in 
terms of v* is given by 

A* = {v* E V* I h(v*) < ~X2 } - 2 2q,0< . (3.3) 

Note that h( v*) < 00 for v* E V*, while 

( Vq(v*) ) 
gq 1 - Uq-l(V*) ---- 00 

and hence h(v*) ---- 00 as v* approaches the upper boundary 

(3.4) 

of V* from within V*. Because a > 0 implies X~q,o< < 00, the upper bound­
ary 

Ou A * == { v* E V* I h(v*) = ~X~q,o< } (3.5) 

of A * must be uniformly bounded below Ou V*, hence there exists 0 < € < 1 
such that 

q 

u q == uq(v*) == ~:)vnl/r; ::; 1 - €, (3.6) 
i=O 

By assumption, Pk = 1 for some k = 1, ... ,q. Suppose first that 1 ::; k ::; 
q - 1. Fix values vi for vi, i -:j:. k, q, and define the section 
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where 

(3.8) 

Because A: is the intersection in V* of A* with a hyperplane and since h 
is continuous, if A: is not convex for some set of values {Vi, i :f:. k, q} then 
A * cannot be equal a.e. to a convex subset of V* . 

Choose vi > 0, i :f:. k, q, small enough that A: is nonempty. (Such a 
section exists since a < 1 requires that A* be nonempty.) Since h(v*) is 
strictly increasing in each vi, A: must be of the form 

A: = {(vZ,v~) 10 < v~ ~ a(vZ), 0 < vZ < Vk}, (3.9) 

where a(·) is a well-defined, continuous, positive, and strictly decreasing 
function that satisfies 

(3.10) 

and where 
0< Vk == sup {vZ I (vZ,v~) E A:} < 1 (3.11) 

because A: is nonempty and vi > 0 for i :f:. k, q. Since h has continuous 
partial derivatives, a(·) is continuously differentiable. We shall show that 

lim a'(vk) = -00, 
vA;-+o 

which implies that A: is not convex, since a(·) is strictly decreasing. 
From (3.10), 

'( *) __ [8h(V*) / 8h(V*)] 
a vk - 8 * 8 ' 

vk v~ v'=w'(v;;,a(v;;») 

hence to establish (3.12) it suffices to show that 

I. 8h(v*) I -
1m 8 * - 00, 

v· .... O V 
k k v'=w'(v;:,a(v;;») 

8h(v*) I o < lim -- < 00. 
- v· .... O 8v* 

k q v'=w'(v/:,a(v/:») 
By (3.1) and (2.14), 

(3.12) 

(3.13) 

(3.14) 

(3.15) 



John I. Marden, Michael D. Perlman 481 

From (3.2), (1.16), and (1.17), 

d !,po-1(1 )!no-1 , iX~ , - X 2 ' 

9i(X) = Qi(x/(I- x)) 

> d Ipo-1(1 )!n o -1 _ i X2 ' - X 2 ' 

>0 (3.17) 

for 0 < x < 1, while Vi(V*) > 0, so (recall Pk = 1) 

oh(v*) dk [ Vk(V*) ] -! [ Vk(V*)] !n/c-1 (vzy/rlc -1 -- > - 1 - -:---"-'----';-----;-
ovic - Tk 1- Uk-1(V*) 1- Uk-1(V*) [1- Uk-1(V*)] 

dk [1 ( *)]_! [1 (vn1/r/c] !n/c-1 ( *)~-1 = - - Uk-1 V 2 - Vk ric • 

Tk 1 - Uk-1(V*) 
(3.18) 

The relation (3.14) now follows from the facts that Tk > ! and that 

1 ~ 1 - Uk-1(V*) > 1 - uq(v*) ~ c > 0 (3.19) 

when 
V* = w*(vic,a(vic)) E ouA* (3.20) 

(see (3.6)). 
The first inequality in (3.15) is immediate since h(v*) is increasing in v;. 

To establish the second inequality, apply (3.16) and (3.17) to obtain 

oh(v*) 
ov~ 

11 [ .]!n -1 d (V*)2rq -1 1- Vq(V) 2 q 
_ q q 1-Uq _l(V·) 

- Q ( Vq(V·) ) [1 ( *)]!p . Tq q 1 uq(v.) - Uq-1 V 2 q 

When (3.20) holds, however, 

1> v; = a(vic) ---+ a(O+) > 0 as vic ---+ 0, 

(3.21) 

(3.22) 

1> 1 - Uq-1(V*) > 1- uq(v*) ~ c > 0 (3.23) 

(cf. (3.6)), hence 

1 > 1 - Vq(V"') > c, (3.24) 
1- Uq_1(V*) 

v (v*) (a(0+))1/rq 
lim sup q < < 00. (3.25) 
v~-+o 1 - uq(v*) - c 
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The relations (3.21)-(3.25) together yield the second inequality in (3.15). 
(When nq ~ 2, apply the first inequality in (3.24), while when nq = 1, 
apply the second inequality.) 

In order to complete the proof of the theorem, it remains to consider 
the case where Pq = 1. For this purpose we set k = q - 1 in the preceding 
argument and shall show that some section 

(3.26) 

of A* fails to be convex when the vi are sufficiently small that A: is 
nonempty. Since a(·) (defined as in (3.9) but with k = q-l now) is strictly 
decreasing, this will follow from 

liIll a'(v~_1) = 0 
v;_1-+V:_1 

(3.27) 

(see (3.11) for the definition of 11;-1 > 0). By (3.13) with k = q - 1, it 
suffices to show that 

1. 8h(v*) I 
lIll ---a:;;;- = 00, 

Vq* -1 -+Vq* -1 q v* =w* (v* a(v* ») 
q-l' q-l 

(3.28) 

8h(v*) I o < lim -- < 00. 
- 11* --+;. 8v* -1 

q-1 q-1 q v*=w* (v* a(v* ») 
q-l' q-l 

(3.29) 

For (3.28), first set Pq = 1 in (3.21) and verify that (3.18) holds with 
k replaced by q. Then (3.28) follows (as did (3.14) from (3.18)) from the 
facts that Tq > ! and that when v* = w*, (3.23) holds and 

as V~-l - 11;-1' (3.30) 

Once again, the first inequality in (3.29) is immediate. For the second 
inequality, begin by applying (3.16) (with k = q - 1) and the first line 
in (3.17) to evaluate 8h(v*)/8v~-1' then use the facts that Pq = 1 and 
nq-1 ~ 2 to obtain the bound 

8h( v*) dq- 1 (V~-1)(pq-1/2rq-d-1 
--<------~~~~~---------------
8V~-1 - Tq-1Qq-1 (1~~~~~v(::*») [1 - uq_2(v*)](Pq-1/2) 

[ ( *) ] ~-1 d (v*)(1/2rq) 1 _ Vq V 2 

+ q q 1-Uq_1(V*) (* )(1/rq_1)-1 

( Vq(v*) ) ( * )3/2 Vq_1 . 
TqQq 1 uq(v*) l-uq_1(v) 

(3.31) 

As in (3.21)-(3.25), both of these terms remain bounded below 00 when 
v* = w* and V~-l - 11;-1 (also apply (3.30)), so the verification of (3.29) 
(and therefore that of (3.26)) is complete. 0 
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Remark 3.2 The modified step-down procedure (1.18) is admissible for 
problem (1.15) when Po = ° and P1 = ... = Pq = 2. This is seen as follows. 
Since Pi = 2, 

(3.32) 

so, when Po = 0, the acceptance region (1.18) is equivalent to 

{ u E U 1-2 ~ In(1 - Ui) - nq In(1 - uq) :::; X~q,Q }. (3.33) 

(We use the fact that ni-1 = ni + 2; see (1.11).) Since the region (3.33) 
belongs to the class Cu (defined above Theorem 2.1), the corresponding 
test function r.p == r.p(v) has the form r.p(v) = 1 - Ic(v) for some set C E C. 
By Theorem 3.1, therefore, this test is admissible for problem (1.15). (Take 
>. = 0,11'0 = 0,11'1 = 0, and c = 1 in (2.13), so that A' = V.) 0 

Lastly, we discuss the admissibility and/or inadmissibility of the mod­
ified step-down procedure (1.18) in the remaining cases not covered by 
Theorem 3.1 or Remark 3.2. 

(i) q = 1, Po = 0: both the classical and modified step-down procedures 
reduce to the ordinary T2 test based on Y1 == Tl, which is known to 
be admissible. 

(ii) q = 1, Po > 0: both procedures reduce to the LRT based on Y1 == 
(Tl- TJ)/(1 + TJ), which is admissible for 0: :::; 0:* and inadmissible 
for 0: > 0:*, where ° < 0:* == 0:* (n, P1) < 1. (See Marden and Perlman 
(1980)). 

(iii) q ~ 2,po > 0,P1 = ... = Pq = 2; and 

(iv) q ~ 2,po ~ 0,2 :::; min{P1,'" ,pq} < max{pl, ... ,pq}: no results 
for these two cases are available, but it is suspected that the admis­
sibility/inadmissibility of the modified step-down procedure (1.18) 
may depend on the value of the significance level 0:. The classical 
step-down procedure is inadmissible in both these cases, with the ex­
ception of the situation where q = 2 and Po = 0, in which case it is 
admissible only if 0: :::; 0:** for some ° < 0:** < 1 (see MP (1988)). 

4 Comments 

It is possible to combine the p-values Ql, ... ,Qq according to methods other 
than Fisher's, e.g., by replacing -ElnQi by -E<I>-l(Qi), where <I> is the 
standard normal distribution function. Also, one may consider weighted 
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versions of these combination statistics, such as -E8i In Qi with 8i :::-: o. 
(The classical step-down procedure (1.13) is equivalent to a weighted version 

of the Tippett combination statistic min{Ql, ... , Qq}, namely, min{Qf1 , ••• , Q~q} 
for appropriate weights 8d 

A study of these various procedures has not been completed, but it is 
suspected that they remain inadmissible in many cases. We believe that the 
basic difficulty stems from the inappropriateness of testing Ho vs. HA by 
means of the sequence of intermediate problems H(i) vs. H(i-l) (cf. (1.4), 
(1.5)), for which Yi is the LRT statistic. MP (1988, Section 6) showed 
that an alternative step-down procedure based on max:{Tf' ... ,T,n or its 
weighted version is admissible for problem (1.15) and, in fact, for the orig­
inal problem (1.3). Use of this procedure corresponds to testing Ho vs. HA 

by means of the sequence of problems H(i) vs. H A , i = 1, ... , q, for which 
Tl is the LRT statistic when Po = o. The operating characteristics of this 
procedure will be investigated in a subsequent study. 

Finally, since the LRT for testing H(i) vs. HA is based on the statistic 
Zi = (T? - TJ)/(1 + TJ) rather than on T? when Po > 0, a step-down 
procedure based on max:{Zl, ... , Zq} or its weighted version should also be 
studied. This too is under investigation. 
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On A Statistical Problem 
Involving the Measurement of 
Strength and Duration-of-Load 
for Construction Materials 
Sam C. Saunders! 

ABSTRACT This paper presents a new analysis, applicable to construction 
materials, for estimating the probabilistic behavior of the duration-of-Ioad, 
say Ti when the load is of magnitude f, based on the imposed stress ratio 
of load to characteristic material strength. The stochastic behavior of the 
logarithm of the duration-of-Ioad, given the strength S exceeds f, is of 
axiomatic importance. We assume the conditional distribution, presuming 
strength S were known, to be of the form 

[InTi IS = s]- H(s/f) '" CTOZ, 

where the r.v. Z is a standard variate appropriately chosen for the material, 
and the regression H is a monotone increasing function of the form 

H(x) = ao + aIX + a_Ix-1 for x > O. 

Here either al or a-I may be zero. 
Estimation procedures are derived to determine the unknown parameters 
from the type of data that is available from the observable variate 
[In Ti IS> fl. The estimated distribution is then used to calculate the 
safe-life, at an assurance level p, as the largest value ~ such that 

Pr[Ti > ~ IS> f] 2 p. 

A tabulation of ~p, as a function of p at a given load f for a material of 
given characteristic strength, can be used to replace the so-called safety 
factors. 

1 Introduction 

An estimate is desired of the distribution of the time to failure, under a 
given load, for structural components made of a particular building ma-

I Department of Pure and Applied Mathematics, Washington State University, 
Pullman, WA 99164-2930 
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teriai. The relevant data are sparse and come from either of two possible 
experiments: 

In the first experimental procedure, call it experiment I, only the (short­
term) strength, call it S, of each specimen is obtained by subjecting it to an 
increasing load until it fails, or the limit of the testing machine is reached. 
Thus, after a number of replications, the distribution of the strength can 
be estimated based on the sample obtained under type I censoring on the 
right. 

In experiment II a specimen is selected at random from the population 
and subjected to an increasing load until it fails or it sustains a preassigned 
stress level f. Thus either the strength S is determined, whenever S < f, or 
the time to failure, called the duration-of-load and labeled Ti, is measured 
whenever S > f; but not both. Of course, samples are obtained at several 
stress levels. 

A widely Held assumption based on the Physics of Materials is: 

A: The duration-of-load, Ti, of a specimen having strength S under stress 
f, when f < S, is a fun~tion of the stress ratio flS and not of the 
stress itself. 

The methods presently utilized for dealing with the dichotomy of experi­
ment II may be unsatisfactory since each observation of the duration-of­
load is assigned a short-term strength by an ad hoc equal-rank assumption 
between the two samples, (Murphy, 1983), or by transforming each time to 
failure into an equivalent value from a constant stress ratio, (Barrett and 
Foschi, 1982; Madsen and Barrett, 1976). Moreover, if a stochastic model 
is adopted then the implications of the stress-ratio assumption A must 
be treated by careful argument involving the conditional random variables 
involved. 

The basic problem is that of expressing the unknown distribution of the 
duration-of-load, given non-failure initially, in terms of those distributions 
that can be estimated from the data available from experiments I and II, 
i.e., we must estimate the distribution of the conditional variate [Ti IS> fl. 

One specialization of assumption A, (Murphy, 1983), postulates a linear 
regression of the form: 

E[lnTi I S = 8] = b+a (~) (1.1) 

where a < 0 and b > 0 are constants which must be estimated from data. 
Of course, no direct observations on [Tf. I S = 8] can be obtained because of 
the dichotomy of experiment II. In Murphy (1983) the material was selected 
and a large set of observations of the strength of the material was obtained. 
A load f was fixed from which a series of ordered observations of the log­
duration-of-load, In T( f), were made. The supposed applicable stress ratios 
were deduced by dividing the lh ordered duration observation by the cor-
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responding equal-rank ordered strength observation. Unfortunately, form­
ing ratios of order-observations from the marginal distributions of jointly 
distributed random variables will not adequately reproduce the original 
dependence. 

Nevertheless, from such ratios equation (1.1) was fitted by least-squares. 
This procedure did yield some agreement with the facts when the stress i 
was assigned near the median strength of the material, as estimated from 
experiment I, since the expected duration-of-load is very short. In this case, 
the fitted values of a and b are of approximately the same magnitude but 
of opposite sign. However equation (1.1) implies duration-of-loads which 
seem unduly conservative whenever i is near zero, since the expected log­
life can be nO higher than b. It is shown here that the entailed duration­
of-load values, being so unsatisfactorily short when i is small, may be a 
consequence of this type of analysis of the assumed model of equation (1.1) 
and not a state of nature. 

If One were to assume a linear regression of alternate form, viz., 

E[lnTil S = s] = b+a (l)' (1.2) 

where now a > 0, b < 0 are constants to be estimated, the predicted 
behavior is correct when i is near zero, giving estimates of the duration­
of-load which are high and in conformity with the sparse data, but it does 
not agree well with the mass of data, which can be obtained, because of the 
time and expense involved, only when i is a sizable fraction of the median 
strength. 

A more inclusive model which generalizes equations (1.1) and (1.2) by 
assuming the regression is a partial Laurent expansion in the stress ratio 
if s, namely, 

E [InTi I S = s] = H(sfi) == ao + al G) + a_I (~) (1.3) 

for some constants ao, al :5 0, a_I :5 0 which are to be estimated from the 
data, is examined here in order to unify the treatment. 

By recognizing the stochastic variability of all the quantities that can 
be measured, and incorporating the regression on strength into the joint 
distribution of Ti, S - from which are derived the marginal distributions 
of S and the conditional distribution of [Tl IS> i] - a realistic model is 
obtained. Maximum likelihood estimation procedures are then derived to 
estimate the unknown parameters of interest using data which reflects the 
actual testing procedures followed. A quantity of great engineering interest 
is the safe-life; a quantity which, at a specified stress ratio, the duration­
of-load will exceed with a prescribed high level of assurance. An integral 
formula is given by which the safe-life can be evaluated. 

It is claimed that this method of analysis gives results which agree well 
with the few complete data sets available for structural timbers, (Mar-
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tin and Saunders, 1988), q.v., and it makes reasonable predictions for the 
duration-of-load for this material. 

2 The Problem of Determining the Proper 
Distributions 

The first problem is that of expressing the unknown distribution of the 
duration-of-load, given survival at a prescribed stress, in terms of those 
distributions that can be more easily estimated from the data that are 
available. 

By introducing notation for an indicator function, namely, 

(8 ::; i) = 1 if 8 ::; i and 0 otherwise, 

we can denote the outcome of Experiment II at stress i as observing both 
the random variable and the event, respectively, 

Ye = 8(8 ::; i) + Tl(8 > i) and (8::; i). 

Hence, by the calculus of probability, the distribution of Ye is 

FyAx) = Pr[Tl ::; x I 8> i) Pr[8 > i) + Pr[8 ::; min(x, i») 

= FTtls>l(X) Fs(i) + Fs[min(x,i») 

which after rearrangement gives the conditional distribution of the duration­
of-load, viz., 

p. ()_Fyt(x)-Fs[min(x,i») for x>O. 
TIls>l x - Fs(i) (2.1) 

Thus, correspondingly, we find 

(2.2) 

From Experiment II we can, for various values of i, estimate the distribu­
tion FYI and also obtain some data which may contribute to our knowledge 
of Fs. Assuming that Fs is known we can, by Equation (1.1), estimate the 
conditional distribution FTtlS>l for each of the several values of i for which 
FYi is known. 

How can we estimate the distribution FTtls(x I s) for each value of sand 
i ? We know this distribution would be equivalent with the conditional 
distribution of the duration-of-load given the random stress ratio A = i18, 
say FTiIA(t I A). This last distribution is, by assumption A, the one thought 
to be critical in engineering practice. The statistical problem then is to de­
termine the conditional distribution FTIls using the data that are available 



490 32. On A Statistical Problem for Construction Materials. 

from replications of Experiments I and II as previously described. But first 
we must obtain an expression which expresses the unknown distribution in 
terms of ones that are determinable. 

If we let FTt,S be the joint distribution of (Te, S), then assuming all 
densities exist 

(2.3) 

and finally we obtain a relationship which does not require densities : 

(2.4) 

This equation is another version of the conditional distribution of the 
duration-of-load as given in equation [5] from Martin and Saunders (1982). 
Thus, to a certain degree of precision Fs can be determined from data 
obtained from replications of Experiment I and to another degree FTl1s>e 
may be estimated using the results from Experiment II. We must therefore 
postulate, in accord with information about the mechanics of failure, the 
unobservable distribution FTllS as required in equation (2.4) and determine 
its parameters by correct statistical procedures. 

There are many studies which are analogous to the one described here 
which arise in determining biological sensitivity to certain dosages of toxic 
material, or radiation. But each requires a different analysis because of 
the known relationships between "life" and "stress", as well as the type 
and quantity of data obtainable. An archetypical example is the study of 
survival of mice under various doses of radiation (Johnson and Johnson, 
1980). 

3 A General Model Involving Scale and Location 
Parameters 

We make two assumptions, concerning the distribution of strength and the 
conditional distribution of the time to failure under load i, which are in 
accord with A. These two assumptions are: 

B: The survival distribution of strength S is of the form 

- {(InS-ILl)} Fs(s) = exp -Q1 0'1 for S > 0, (3.1) 
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for some known hazard function Q1. Thus the distribution of In(S) 
is known except for location and scale parameters ILl and 0"1 respec­
tively. 

c: The conditional distribution of time to failure under load i, call it 
Ti , given the value of strength S = s, will have a distribution with 
a known hazard Qo but with unknown scale parameter 0"0, and with 
a location parameter which is a function of the stress ratio, call it 
H (s / i), as expressed by 

FTtls(t I s) = exp { -Qo [lnt - O"~(S/l)]} for t > O. (3.2) 

The choice of the hazard functions, Qo and Q1 is left unspecified here so 
that this analysis may be applicable to as many materials as possible, but 
we have in mind two canonical cases. When Q1(X) = Qo(x) = eX, we call 
it the Gumbel case and when Q1(X) = Qo(x) = -In<l>(-x), we call it the 
Galton (log-normal) case. Here <I> is the standard normal distribution. 

These distributions can be combined in equation (2.4), which for conve­
nience is here rewritten using survival distributions, as 

FTl1s>i(t) = 1: FTtls(t I s) dFsls>i(S). (3.3) 

Thus if we substitute equations (3.1) and (3.2) into (3.3), and for notational 
simplicity set 

_Q (Ini- IL1 ) c- 1 , 
0"1 

(3.4) 

where we set 
(3.5) 

and then by making the change of variable 

Q ( InS-ILl) y = 1 -c 
0"1 

(3.6) 

we obtain, from assumptions A and B, the survival distribution for the 
logarithm of the duration-of-load given survival at load i, namely, 

- 100 
{ [x-C~[Ql1(y+c)]] } 

FX(l)(X) = y=o exp -Qo 0"0 - y dy. (3.7) 

Here, and subsequently, we write for the conditional variate of primary 
interest 

XCi) = [InTi IS> i]. 
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Unfortunately this integral in equation (3.7) cannot be evaluated in closed 
form, but requires numerical evaluation even in the simplest cases of the 
Gumbel or Galton formulation. 

In terms of random variables, we are assuming in equation (3.2) that in 
distribution 

[InTi I S = s)- H(sjl) rv (1oZ (3.8) 

where Z is the standard variate with known hazard function Qo given by 

Fz(z) = Pr[Z :::; z) = 1 - exp{ -Qo(z)} for - 00 < z < 00. 

We now introduce notation for the mean and variance of Z, viz., 

EZ= [: zdFz(z) == -Gj 

Var(Z) = [: z2 dFz(z) - G2 == 82 • 

(3.9) 

(3.10) 

Note that the value of the constants 82 and G will change with each choice 
of Qo in the model. 

We now have, recalling the definition, 

EX(l) = 1: E[lnTil S = s)dFsIS>l(S) 

= -(1oG + E[H(Sjl) IS> i). (3.11) 

In order to include the models that have been proposed previously in the 
literature we assume the function H(·) can be defined as in equation (1.3), 
namely, 

H(x) = ao + alX + a_lx- l for x > 0, 

where three constants (or maybe two, depending on the model) are to be 
determined. 

Thus we have 

and we now seek to evaluate these conditional expectations. By definition 

E[S IS> i) = 1: FSIS>l(S)ds 

= 1: exp { -Ql Cns(1~ JLl ) + e} ds, (3.13) 
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where we have made use of the definition of e in equation (3.4). By using 
the transformation of equation (3.6) to change the variable of integration 
in equation (3.13) and utilizing the definition in equation (3.5), we find 

E[Sjl IS> l] = ~ 1= exp {-y + alQl1(y + e)} dy 

= 1= exp {-y + alC'¢(y, e)} dy, 

where we have introduced the function, recall equation (3.5), 

After a similar exercise we find a corresponding result 

E[lj SIS> l] = 1= exp { -y - cal ,¢(y, e)} dy. 

By comparing equation (3.14) and (3.16) we see that by setting 

K(e, x) = 1= exp[x'¢(t, e) - t] dt 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

for e > 0 and -00 < x < 00, that both integrals can be defined using this 
expression. 

From equation (3.12) we have the result that 

Thus we finally obtain from equation (3.11) the desired regression equation 

(3.18) 

where the coefficients aI, a_I, b = ao - aoC are unknown and must be 
estimated from the data, or determined from the theory of the mechanics 
of fracture. 

Note that this equation depends on the ratio of load i to characteristic 
strength (31 only through the modified stress ratio e = Q1 [In(ij (31)1/0"1] 
from equation (3.4). It is not in terms of the true stress ratio, if s, which 
can be known only to Nature, but cannot be determined by the investiga­
tor. Also note how this regression equation (3.18) involves coefficients with 
multipliers which are conditional expectations rather than simple stress 
ratios of load to (unknown) strength. It is not surprising that the conse­
quences are quite different for this model than the ones hitherto proposed 
and studied. 
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4 Behavior of The Conditional Expectations 

Since Ql is a hazard function on !R, by the definition given in equation 
(3.1), the value of c will vary monotonically as a function of i. Since Q11 is 
a monotone decreasing map from!R+ onto!R, we have from equation (3.15) 
that 

'¢(t, c) ~ 0 for all t, c > OJ 

and for all t > 0 
lim '¢(t, c) = lim Q1l(c) = -00. 
e-+O e-+O 

(4.1) 

If In S has an IHR distribution, i.e., Q~ = ql is increasing, as it is in the 
Gumbel case, then '¢(t, c) is monotone decreasing as a function of c > 0 
since 

sgn [(N~~c)] = <ii[Q1l(t + c)]- qdQ11(c)] ~ o. 

It follows easily in this case that 

lim '¢(t, c) = 0, for any t > 0, (4.2) 
e-+oo 

whenever lime-+oo ql (c) = 00. 

From equation (3.17) there follows by the Dominated Convergence The­
orem that 

lim K(c, x) = { ~ 
e-+O 

00 

if x < 0, 
if x = 0, 
if x> O. 

(4.3) 

If equation (4.1) is true and InS is IHR then by the Monotone Conver­
gence Theorem we have 

lim K(c, x) = 1 for any x > O. 
e-+oo 

(4.4) 

Note that from equations (3.18) and (4.4) that 

lim EX(l) = b+al +a-l. 
£-+00 

(4.5) 

Note this limit must be non-negative by physical considerations, and from 
equations (3.18) and (4.3) we see that 

lim E X(l) = sgn(ad . 00. 
£-+0 

(4.6) 

Since, as the load approaches zero the expected log-duration-of-load, should 
from physical reasoning, get large, we must have 

(4.7) 

We note that in the case of the Galton (log-normal) distribution for 
strength that In S is not IHR. However, it can be shown directly in this 
case that equation (4.2) is true. 
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For some materials, it is possible to simplify the model and reduce the 
number of parameters by taking 

al = a > 0, a_I = -a, and b < 0. (4.8) 

Since, H(s/i) is, as we have argued by the mechanics of fracture, a 
monotone decreasing function of i, we assume that H(.) is an increasing 
function. Moreover, for a range of values of x = s/i smaller than unity, 
H(x) must be negative. 

Recalling equations (1.1), (1.2), and (1.3), respectively we now consider 
three models: 

Model I 
Model II 
Model III 

H(s/i) =b+a(i/s) 
H(s/i) = b + a(s/i) 
H(s/i) = b + a(s/i) - a(i/s) 

for some a < 0, b > 0, 
for some a > 0, b < 0, 
for some a > 0, b < 0. 

5 The Variance of X(f) = [In Ti IS> f] and its 
behavior 

From equation (3.8) we have 

Var[ln Te I s] = 0-582 

where the constant 82 is determiried by the the choice of Qo in equation 
(3.10). Here 82 equals 11"2/6 or 1 in the Gumbel or Galton cases, respectively. 

For notational convenience set, from equation (3.18), 

m(i) == E X(i) = b + aA(c) 

where c is the modified stress defined in terms of the ratio of load i to the 
median strength f3l in equation (3.4) We now define: 

A(c) = K(c, -O"d 

A(c) = K(c, 0"1) 

in Model I 

in Model II 

A(c) = K(c, O"d - K(c, -0"1) in Model III. 

Then we have 

Var X(l) = E {[In Te - m(iW IS> l} 
=E {E([lnTe-m(lW I S) I S>l}, 

(5.1) 

(5.2) 

(5.3) 

where we have made use of conditional expectation given S. By using the 
identity in equation (3.8) we obtain 

Var X(l) = E {E[O"o(Z + G) + H(s/i) - O"oG - m(i)]2 IS = siS> l}. 
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Likelihood Analysis of a 
Binomial Sample Size Problem 
Murray Aitkinl 

Mikis Stasinopoulos2 

ABSTRACT The problem of estimating the binomial sample size N from 
k observed numbers of successes is examined from a likelihood point of 
view. The direct use of the likelihood function for inference about N is 
illustrated when p is known, and the problem of inference is considered when 
p is unknown, and has to be eliminated in some way from the likelihood. 
Different methods (Bayesian, integrated likelihood, conditional likelihood, 
profile likelihood) for eliminating the nuisance parameter are found to lead 
to very different likelihoods in N in an example. This occurs because of a 
strong ridge in the two-parameter likelihood in Nand p. Integrating out 
the parameter p is found to be unsatisfactory, but reparameterization of 
the model shows that the inference about N is almost unaffected by the 
new nuisance parameter. The resulting likelihood in N corresponds closely 
to the profile likelihood in the original parameterization. 

1 Introduction 

Carroll and Lombard (1985) considered the problem of estimating the pa­
rameter N based on k independent success counts 8I, .•. , 8k from a bi­
nomial distribution with unknown parameters N and p. They extended 
earlier work by OIkin, Petkau and Zidek (OPZ, 1981) on the moment and 
maximum likelihood estimators by introducing new estimators of N based 
on integrating out p from the likelihood with respect to a beta distribution, 
yielding a beta-binomial distribution for the number of successes. The new 
estimators maximizing this likelihood compared favorably in mean square 
error terms with the OPZ estimators. Casella (1986) considered perturba­
tions of the likelihood to decide on the "stability" or instability of the ML 
estimator. 

The emphasis throughout these discussions is on point estimation of N, 
and the comparison of different estimators through their mean square or 

ITel Aviv University 
2Welcome Research Laboratories 
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We presume the samples to be large enough that the assumption of nor­
mality of the sample means can be made. We assume that Xi is normally 
distributed with mean mi and variance v'f where 

2 [c+ a2Bil 
mi = b + aAi and v· = for i = 1, ... , k. (6.1) 

. • ni 

Here the Ai and Bi are calculated values of the A(ci) and B(ci) as deter­
mined by the model chosen. The unknown parameters a, b and c can now 
be estimated using the method of maximum likelihood. 

Except for scale or location constants independent of the unknown pa­
rameters, the log-likelihood becomes 

k 

L = L: {In(v;) + (Xi - mi)2(v;)-1}. (6.2) 
i=l 

By setting the first two partial derivatives equal to zero we obtain the two 
equations: 

8L = 0 iff 
8b 

8L = 0 iff 
8c 

k _ 

L: x .- m . 
• • - 0 2 -, 

v· 
i=l • 

(6.3) 

(6.4) 

and then by combining equation (6.4) with 8Lj8a = 0 we obtain, after 
some simplification, the third equation: 

(6.5) 

After substituting from equation (6.1), we obtain, by machine computation, 
the simultaneous solution of these three non-linear equations, which we 
denote by fL, band c. 

As an initial guess for an iterative procedure to compute the MLE's we 
obtain the (modified) minimum Chi-square estimates, ii and b. Let 

2 ~ (Xi - b - aAi)ni 
X = LJ 2 , 

i=l Si 
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the solution of which is a, b. Now we set aLlac = 0, then C is the solution 
of the non-linear equation in the variable c: 

k 1 k (- )2 
'"""' '"""' ni Xi - mi f:t c + (a2 )Bi = f:t [c + (a2 )BiF . 

(6.8) 

7 The Calculation of a Safe Duration-of-Load 

Once we have chosen an appropriate distribution, which to fix ideas we as­
sume is the Gumbel distribution, and one of the three forms of the regres­
sion function H then the three parameters a and band c can be calculated. 
We already know both 0"1, (31 from the distribution of strength. Thus for 
any preassigned load i we can solve for a safe life, say ep , at any specified 
assurance level p near unity. We compute the modified stress ratio which 
for the Gumbel case is clTl = il (31) then using equation (3.6) we seek the 
largest value e such that 

100 exp {-Qo [lne - c~[Ql1(y + c)l] - Y} dy ~ p. 
y=o 0"0 

(7.1) 

Of course, with machine computation we can invert the problem and for 
a specified duration-of-load and a given level of assurance solve for the value 
of the modified stress ratio c and then the load i. Hence this calculation 
can be used to replace and quantify the safety factors that are in use with 
certain materials and applications. 

Acknowledgments: The author thanks Dr. Jonathan W. Martin, of the Cen­
ter for Building Technology at the National Bureau of Standards, for bring­
ing this problem to his attention and for pointing out its importance in the 
construction industry. 
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factorial experiments, 197 
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interactions in, 198 
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g-inverse, 358 
goodness-of-fit, 429 

Freeman-Thkey, 430 
likelihood ratio, 430 
Neyman, 430 
Pearson, 430 
power of F, 430 

hazard function, 491 
Helmert transformation, 201 

for contrasts, 204 
heteroscedastic method, 227-228 
homogeneity of covariance 

test of, 254 
Hotelling T2 

testing problem, 472 

IHR: see increasing hazard rate, 
494 

inadmissible test, 474, 475, 479 
step-down, 483 

increasing hazard rate, 494 
inequality 

Bonferroni, 343 
convolution, 51 
Hoelder's, 53 
Minkowski's, 52 

information, 426 

James-Stein estimator, 373 

Kullback-Leibler information, 413 

Latin square, 169 
Law of Large Numbers, 58 
least favorable, 85 
least probable event, 326 
likelihood function, 186,274,401, 

452 
canonical decomposition, 406 
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estimates in, 188 
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relative savings loss, 386 
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Bayesian inference, 330 
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