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Preface 

This volume, "Theory and Applications of Special Functions," is ded- 
icated to Mizan Rahman in honoring him for the many important con- 
tributions to the theory of special functions that he has made over the 
years, and still continues to make. Some of the papers were presented at 
a special session of the American Mathematical Society Annual Meeting 
in Baltimore, Maryland, in January 2003 organized by Mourad Ismail. 

Mizan Rahman's contributions are not only contained in his own pa- 
pers, but also indirectly in other papers for which he supplied useful and 
often essential information. We refer to the paper on his mathematics 
in this volume for more information. 

This paper contains some personal recollections and tries to describe 
Mizan Rahman's literary writings in his mother tongue, Bengali. An 
even more personal paper on Mizan Rahman is the letter by his sons, 
whom we thank for allowing us to reproduce it in this book. 

The theory of special functions is very much an application driven 
field of mathematics. This is a very old field, dating back to the 18th 
century when physicists and mathematician were looking for solutions 
of the fundamental differential equations of mathematical physics. Since 
then the field has grown enormously, and this book reflects only part of 
the known applications. 

About half of the mathematical papers in this volume deal with ba- 
sic (or q-) hypergeometric series-in particular summation and trans- 
formation formulas-special functions of basic hypergeometric type, or 
multivariable analogs of basic hypergeometric series. This reflects the 
fact that basic hypergeometric series is one of the main subjects in the 
research of Mizan Rahman. The papers on these subjects in this volume 
are usually related to, or motivated by, different fields of mathematics, 
such as combinatorics, partition theory and representation theory. The 
other main subjects are hypergeometric series, and special functions of 
hypergeometric series, and generalities on special functions and orthog- 
onal polynomials. 
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This volume is 
dedicated to Mizan 

Rahman in recognition 
of his contributions to 

special functions, 
q-series and orthogonal 

polynomials. 





MIZAN RAHMAN, HIS MATHEMATICS AND 
LITERARY WRITINGS 

Richard Askey 
Department of Mathematics 
University of Wisconsin 
Madison, Wisconsin 53706 

Mourad E.H. Ismail 
Department of Mathematics 
University of Central Florida 
Orlando, FL 39618 

Erik Koelink 
Department of Mathematics 
Technische Universiteit Delft 
Delft, The Netherlands 

Mizan studied at the University of Dhaka where he obtained his B.Sc. 
degree in mathematics and physics in 1953 and his M.Sc. in applied 
mathematics in 1954. He received a B.A. in mathematics from Cam- 
bridge University in 1958, and a M.A. in mathematics from Cambridge 
University in 1963. He was a senior lecturer at University of Dhaka from 
1958 until 1962. Mizan decided to go abroad for his Ph.D. He went to 
the University of New Brunswick in 1962 and received his Ph.D. in 1965 
with a thesis on Kinetic Theory of Plasma using singular integral equa- 
tions techniques. After obtaining his Ph.D., Mizan became an assistant 
professor at Carleton University, where he spent the rest of his career. 
He is currently a distinguished professor emeritus there. 

In this article we mainly discuss some of Mizan's mathematical re- 
sults which are the most striking and influential, at least in our opinion. 
Needless to say, we cannot achieve completeness since Mizan has written 
so many interesting papers. The reference item preceded by CV refer to 
items under "Publications" on Mizan's CV while the ones without CV 
refer to references at the end of this article. 

O 2005 Springer Science+Business Media, Inc. 
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In the early part of his research career Mizan devoted some energy 
to questions involving statistical distributions resulting in the papers 
CV[5], CV[7] and CV[11]. Mizan spent the academic year 1972173 at 
Bedford College, of the University of London on sabbatical and worked 
with Mike Hoare. In an e-mail to the editors, Hoare described how the 
liberal arts atmosphere of Bedford, set idyllically in Regent Park was 
well-suited for Mizan but the down side was that Physics at Bedford 
was a small department and "there was little resonance in the heavily 
algebracisized Mathematics Department under Paul Cohen." He added 
"This hardly seemed to matter, since we were both outsiders from what 
was most fashionable at the time." 

Hoare's original plan was to study a one-dimensional gas model known 
as the Rayleigh piston, but his collaboration with Mizan went way be- 
yond this goal. This resulted in CV[9] and CV[12]. Another problem 
suggested by Hoare involved urn models which made them soon realize 
that the urn models they were investigating were related to birth and 
death processes and Jacobi and Hahn polynomials. The result of their 
investigations are papers CV[13], CV[17], and CV[18]. Some proba- 
bilistic interpretations of identities for special functions were known, but 
it was not an active area of research. The Hoare-Rahman papers dealt 
with exactly solvable models where the eigenvalues and eigenfunctions 
have been found explicitly. Such questions led in a very natural way to 
certain kernels involving the Hahn and Krawtchouk polynomials. These 
kernels were reproducing kernels which take nonnegative values. More 
general bilinear forms involving orthogonal polynomials also appeared. 
The question of positivity of these kernels became important and Mizan 
started corresponding with R. Askey who, with G. Gasper, was working 
on positivity questions at the time and they were very knowledgeable 
about these questions. Through Askey and Gasper, Mizan Rahman was 
attracted to the theory of special functions and eventually to q-series. He 
mastered the subject very quickly and started contributing regularly to 
the subject. Within a few years, Mizan had become a world's expert in 
the theory of special functions in general and q-series in particular. It is 
appropriate here to quote from Mike Hoare's e-mail how he described the 
beginning of this activity. Mike wrote "After we had done some work on 
. . . (Rayleigh Piston) . . . I  happened to mention a problem which I have 
been worrying away at for some years. This disarmingly simple notion 
arose from energy transfer in chemical kinetics (the Kassell model). Re- 
formulated as a discrete 'urn model,' it corresponds to a Markoff chain 
for partitioning balls in boxes in which only a subset are randomized in 
each event. My eigenvalue solution for the simplest continuous case in 
Laguerre polynomials led to probability kernels (which are) effectively 
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the same as those seen in the formulas of Erddyi and Kogbetliantz in the 
1930's special function theory." He then added "Once Mizan's interest 
was stimulated, he was off and running, with the early series of abstract 
papers you well know." Mike Hoare echoed the feelings of those of us 
who collaborated with Mizan when he wrote "To see Mizan at work was 
an amazing experience. He seldom had to cross anything out and [in] 
what seemed no time at all the sheets in his characteristically meticulous 
script would be delivered with a modest little gesture of triumph." 

The Gegenbauer addition formula for the ultraspherical polynomials 
was found in 1875. It says 

C," (cos 0 cos cp + z sin 0 sin cp) 
n 

= akYn (v) (sin 6) (cos 6) (sin cp) c::; (COB q) CL-"~ ( z )  , (I) 

where 

The continuous q-ultraspherical polynomials first appeared in the work 
of L. J. Rogers from the 1890's on expansions of infinite products, which 
contained what later became known as the Rogers-Ramanujan identi- 
ties. Their weight function and orthogonality relation were found in the 
late 1970's, (Askey and Ismail, 1983), (Askey and Wilson, 1985). Mizan 
recognized the importance of these polynomials and, in joint work with 
Verma, they extended the Gegenbauer addition formula to the continu- 
ous q-ultraspherical polynomials. In CV[48] they proved 

where Ak,n(P) are constants which are given in closed form, and the 
polynomial pn(x; a, b, c, d) is an Askey-Wilson polynomial. This result 
led to a product formula for the same polynomials. At the time the 
Rahman-Verma addition theorem was very surprising for two reasons. 
Firstly, the variables 6 and cp appear in the parameters of the Askey- 
Wilson polynomial. Even more surprising is the fact that the terms in 
(3) factor in an appropriate symmetric way, since this factorization was 
not predicted by any structure known at the time. Only later partial 
explanations using representation theory of quantum groups have been 
given (Koelink, 1997). 
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Askey (Askey, 1970) raised the question of finding the domain of 
(a, p) within a > -1, p > -1 which makes the linearization coefficients 
a(m, n, k) in 

m+n 
(.,a) P ~ ~ ~ ( X ) P ~ ~ ~ ) ( X ) =  x a(m,n,k)Pk (4) 

k=lm-n) 

nonnegative. E. Hylleraas (Hylleraas, 1962) showed that the coefficients 
a(m, n, k) satisfy a three-term recurrence relation, and showed that the 
case a = ,f3 + 1 leads to a closed form solution, as was the case when 
a = P. For other (a, P) (except P = -+), the coefficients were repre- 
sented as double sums, and this expression cannot be used for any of 
the applications the writers know except for computing a few of the co- 
efficients. In (Gasper, 1970a) and (Gasper, 1970b), G. Gasper used the 
recurrence relation of Hylleraas to solve the problem of the positivity 
of these coefficients. Mizan started working on extending Gasper's re- 
sults to the continuous q-Jacobi polynomials, where the problem is much 
more difficult. Rahman CV[27] identified a(m, n, k) as a gF8  function 
and then used the gF8-representation to prove the nonnegativity of the 
linearization coefficients. Later Mizan CV[30] used the same technique 
to identify the q-analogue of a(m, n, k) as a locpg and establish its non- 
negativity for (a, P) in a certain subset of (-1, m )  x (- 1, m). 

The linearization coefficients in (4) are integrals of products of three 
Jacobi polynomials. Din (Din, 1981) proved that 

Pm(x)Pn(x)Qn(x)dx = 0, for m - n < k c m + n, (5) 
-1 

where {Pn(x)} are Legendre polynomials and {Qn(x)) are Legendre 
functions of the second kind. Askey, Koornwinder and Rahman CV[50] 
extended this to the ultraspherical polynomials. Rahman and Shah 
CV[39] summed the series, which is dual to (5), namely 

00 

F ( Q , ~ ) $ ) : = C ( ~ + ~ / ~ ) P ~ ( C O S ~ ) P ~ ( C O S ~ ) Q ~ ( C O S $ ) ,  (6) 
n=O 

0 < 8, cp,$ < 7r. They proved that F(8, cp,$) = 0 for 18 - cpl < $ < 
8 + cp 5 7r, but F(8, cp, $) = if $ < 10 - cpl, or 7r < 8 + cp < 27r and 
8+p+$ < 27r. On the other hand, F(8, cp, $1 = -all2, if 7r 2 $ > 8+cp. 
In the above 

A := sin((8 + cp + $)/2) sin((8 + cp - $)/2) 
x sin((8 - cp + $)/2) sin((cp + $ - 8)/2). (7) 
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They also extended it to the ultraspherical polynomials. In CV[40], 
this was extended to the case where the sum involves a product of three 
ultraspherical polynomials and an ultraspherical function of the second 
kind. In CV[51], Rahman and Verma extended CV[39] in a different 
direction where it involved products of two q-ultraspherical polynomials 
and a q-ultraspherical function. 

The Askey-Wilson integral (Askey and Wilson, 1985) is 

This integral is an analogue of the beta integral and is the key ingredi- 
ent in establishing the orthogonality of the Askey-Wilson polynomials. 
Nassrallah and Rahman CV[28] generalized this integral to what has 
become known as the Nassrallah-Rahman integral, namely 

This is a very general extension of Euler's integral representation of 
the classical 2F1 function. The sum (9) can be evaluated when b = 
ala2a3a4as, and in this form it is an extension of (8). The integral 
evaluation (9) is precisely what is needed to introduce biorthogonal ra- 
tional function generalizations of the Askey-Wilson polynomials, which 
was done by Mizan in CV[65]. In CV[75], CV[80], CV[90] and CV[91], 
Rahman and Suslov gave evaluations of several sums and integrals using 
the Pearson equation and quasi-periodicity of the integrand and sum- 
mands. Earlier Ismail and Rahman CV[76] used the quasiperiodicity to 
evaluate, in closed form, certain series and integrals. 

Ismail and Rahman CV[66] introduced and analyzed two families of 
orthogonal polynomials which arise as associated Askey-Wilson polyno- 
mials. This is the highest level in a hierarchy of associated polynomi- 
als of classical orthogonal polynomials starting from the Askey-Wimp 
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and Ismail-Letessier-Valent associated Hermite and Laguerre polynomi- 
als from the mid-1980's. The Askey-Wilson polynomials are birth and 
death process polynomials, so their associated polynomials are also birth 
and death process polynomials. The death rate at zero population, PO, 
is either zero or follows the pattern of p,. Each definition of po leads 
to a family of orthogonal polynomials. Surprisingly, thanks to Mizan's 
insight and amazing computational power, one can get not only closed 
form representations for both families of polynomials, but also find the 
orthogonality measures of both families explicitly. The closed form ex- 
pressions represent the polynomials in terms of the Askey-Wilson basis 
{(aeie, aeVie; q)n). The coefficients are lo(p+ No other choice of po 
leads to orthogonal polynomials where the coefficients of their expan- 
sion in the Askey-Wilson basis is a single sum. The paper also gives a 
basis of solutions to the recurrence relation satisfied by the polynomials. 
Rahman and Tariq derived a Poisson and related kernels for associated 
continuous q-ultraspherical polynomials in CV[86] and reproducing ker- 
nels for associated Askey-Wilson polynomials in CV[88]. Earlier, Mizan 
CV[78] found generating functions for the Askey-Wilson polynomials. In 
CV[41] Mizan gave a q-analogue of Feldheim's kernel (Feldheim, 1941) 
which involves q-utraspherical polynomials. An integral representation 
analogous to the Weyl fractional integral in Fourier analysis is in CV[99]. 

Recall the notation j(t) = f (x), where x = (t + t-') 12, and the 
Askey- Wilson operator 

where e(x) = x. Ismail raised the question of finding Vgl, a right 
inverse to Vq on different L2 spaces weighted by weight functions of 
different classical q-orthogonal polynomials. In CV[79] Ismail, Rahman 
and Zhang found an integral representation for D i l  on L2 weighted by 
the weight function of the continuous q-Jacobi polynomials. They then 
proved that the spectrum of the compact operator D i l  is discrete and 
described completely the eigenvalues and eigenfunctions. This led to a 
generalization of the plane wave expansion in (Ismail and Zhang, 1994). 
Ismail and Rahman CV[100] found an integral representation of Vgl 
on L2 weighted by the Askey-Wilson weight function. The kernel in 
this integral representation turned out to be very simple and all the 
complications are absorbed in a constant. 

Mizan has served the mathematical community very well. He is a reg- 
ular referee for many mathematics and physics journals. He co-organized 
a major meeting on special functions at the Fields Institute in Toronto 
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in 1994 and co-edited its proceedings. One of the most important ways 
a mathematician can serve is in writing books which are needed. Gasper 
and Rahman (Gasper and Rahman, 1990) did this, and a second edi- 
tion will appear shortly. The new edition will not only have more on 
q-series, but will contain a chapter on new work on elliptic hypergeomet- 
ric series (F'renkel and Turaev, 1997), a very interesting new extension 
of hypergeometric and basic hypergeometric series. This extended the 
earlier trigonometric case in (F'renkel and Turaev, 1995). The Gasper- 
Rahman book also contains a treatment of the lops biorthogonal rational 
functions CV[65] and its elliptic extensions. The book started because, 
according to George Gasper "Mizan was tired of having to repeatedly 
search papers for known formulas involving basic hypergeometric func- 
tions that were not contained in the books by Bailey or Slater." Mizan 
then suggested that he and Gasper should write an up-to-date book on 
basic hypergeometric functions. A first outline of this book dates back 
to 1982. Their book has become a much-cited classic, and Mizan and 
George have rendered the mathematical community a great service in 
writing this book. 

Not only did Mizan co-author the definitive book on q-series, but he 
also wrote valuable review articles CV[64], CV[87], CV[97] and CV[98]. 
To the best of our knowledge, CV[98] is the first article which collects 
all the recent developments on associated orthogonal polynomials, which 
makes it a very valuable reference and teaching source. 

Mizan's scientific contributions have been recognized and acknowl- 
edged. Part of his dissertation was included in a book on gases and 
plasmas by Wu (Wu, 1966). A special session was held in his honor at 
the the annual meeting of the American Mathematical Society held in 
Baltimore, Maryland. The session was well attended and highly success- 
ful. Several speakers expressed their mathematical debt to Mizan and 
noted his generosity with his ideas. He has helped younger mathemati- 
cians with suggestions and specific ideas on how to overcome certain 
hurdles and would not have his name as a joint author of the resulting 
paper(s). Mizan's contributions are well-appreciated by people working 
in special functions and related areas. R. W. (Bill) Gosper put it well 
when he wrote on April 7, 2004 "I can't begin to estimate Mizan Rah- 
man's prowess as a q-slinger. All I know is that he alone could 'q' any 
hypergeometric identity that I could find. Sometimes the q-form was so 
unimaginable that I would have bet money there was none." He then 
added "And yet the memory that stands out was not a q. I exhibited to 
the usual gang of maniacs a really mysterious-looking infinite trig prod- 
uct identity, dug up with Macsyma. It wasn't even obvious that the nth 
term converged to 1. And that gentle man completely stung me with a 
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reply that began, "Since this identity is rather elementary, let us prove 
the more general result . . . . That's when you know you're in the Big 
Leagues.'' 

Mizan serves on the editorial board of an international journal Inte- 
gral T rans fo rms  a n d  Special  Functions. He was been elected fellow of 
the Bangladesh Academy of Sciences in 2002. Since his retirement in 
1996, Mizan has been a Distinguished Professor Emeritus at Carleton 
University. 

Apart from papers in mathematics, Mizan has several publications 
in Bengali. He writes essays for several Bengali magazines, such as 
Parabaas, Dehes-Bideshe, Porshi, Natun Digonto, Probashi, Aamra, 
Obinashi Shobdorashi and Aakashleena on a regular basis. These essays 
are personal and dwell on the immigration experience, and are compara- 
tive studies of lifestyles, ethics and values in the societies of Bangladesh 
and India compared to the American and Canadian societies. Subjects 
that Mizan addresses cover raising children in a proper humanistic value 
system, and the problems that aging immigrants face. According to 
one of the editors, Samir Bhattacharya, his articles drew overwhelming 
response of appreciation from the readers, because "the language has 
an apparent simplicity, but is often lyrical and extremely touching, rea- 
soning is clear-but above all, a deep humanism and his simplicity and 
integrity shine through," and, as Mr. Bhattacharya says: "I will publish 
any article from him any time." 

Mizan Rahman has also published several books in Bengali; "Tirtho 
Aamar Gram" (My Village is My Pilgrimage), "La1 Nodi" (Red River) a 
collection of 25 of his essays, "Proshongo Nari" on women and "Album." 
He has been awarded for his contributions several times, including an 
Award for Excellence, a Best Writer Award, Award for Contributions to 
Bengali literature by several organizations in North America. 
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15. "A Five-parameter Family of Positive Kernels from 
Jacobi Polynomials," SIAM J. Math. Anal. 7 (1976), 
386-413. MR 53 # 11118. 

16. "Some Positive Kernels and Bilinear Sums for Hahn 
Polynomials," SIAM J. Math. Anal. 7 (1976)' 414- 
435. MR 53 # 11119. 

17. "Exact Transform Solution of the One-Dimensional 
Special Rayleigh Problem" (with J.  A. Barker, M. R. 
Hoare and S. Raval), Can. J. Phys. 55 (1977)' 916- 
928. 

18. "Stochastic Processes and Special F'unctions: On the 
Probabilistic Origin of some Positive Kernels Asso- 
ciated with Classical Orthogonal Polynomials" (with 
R. D. Cooper and M. R. Hoare), J. Math. Anal. Appl. 
61 (1977)' 262-291. 

19. "On a Generalization of the Poisson Kernel for Jacobi 
Polynomials," SIAM J. Math. Anal. 8 (1977), 1014- 
1031. MR 56 # 16021. 

20. "A Generalization of Gasper's Kernel for Hahn Poly- 
nomials: Application to Pollaczek Polynomials," Can. 
J. Math. 30 (1978) 133-46. MR 57 # 6544. 

21. "A positive kernel for Hahn-Eberlein polynomials," 
SIAM J. Math. Anal. 9 (1978), 891-905. MR 80g # 
33023. 

22. "An elementary proof of Dunkl's Addition Theorem 
for Krawtchouk: polynomials," SIAM J. Math. Anal. 
10 (1979), 438-445. MR 80j # 33022. 

23. "Distributive Processes in Discrete Systems" (with 
M. R. Hoare), Physica 97 A (1979), 1-41. MR 80i 
# 82018. 



Mizan Rahman, his Mathematics and Literary Writings 13 

24. "A product formula and a non-negative Poisson ker- 
nel for Racah-Wilson polynomials," Can. J. Math. 
30 (1980), 1501-1517. MR 82e # 33012. 

25. "A stochastic matrix and bilinear sums for Racah- 
Wilson polynomials," SIAM J. Math. Anal. 12 (1981), 
145-160. MR 82e # 33007. 

26. "Families of biorthogonal rational functions in a dis- 
crete variable," SIAM J. Math. Anal. 12 (1981) 355- 
367. 

27. "A non-negative representation of the linearization 
coefficients of the product of Jacobi polynomials," 
Can. J. Math. 33 (1981)) 915-928. 

28. "On the q-analogues of some transformations of nearly- 
poised hypergeometric series" (with B. Nassrallah), 
Trans. Amer. Math. Soc. 268 (1981)) 211-229. 

29. "Discrete orthogonal systems with respect to Dirich- 
let distribution," Utilitas Mathematica 20 (1981)) 261- 
272. 

30. "The linearization of the product of continuous q- 
Jacobi polynomials," Can. J. Math. 33 (1981), 961- 
987. 

31. "Reproducing kernels and bilinear sums for q-Racah 
and q-Wilson polynomials," Trans. Amer. Math. Soc. 
273 (1982)) 483-508. 

32. "The Rayleigh Model: Singular transport theory in 
one dimension" (with M. R. Hoare and S. Raval), 
Phil. Trans. Roy. Soc. London A 305 (1982)) 383- 
440. 

33. "A Poisson kernel for continuous q-ultraspherical poly- 
nomials" (with G. Gasper), SIAM J. Math. Anal. 14 
(1983)) 409-420. 

34. "Non-negative kernels in product formulas for q-Racah 
polynomials" (with G. Gasper), J. Math. Anal. Appl. 
95 (1983), 304-318. 

35. "Cumulative Bernoulli trials and Krawtchouk pro- 
cesses" (with M. R. Hoare), Stochastic Processes and 
their Applications 16 (1983), 113-139. 

36. "Product formulas of Watson, Bailey and Bateman 
types and positivity of the Poisson kernel for q-Racah 
polynomials" (with G. Gasper), SIAM J. Math. Anal. 
15 (1984), 768-789. 
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37. "A simple evaluation of Askey and Wilson's q-beta 
integral," Proc. Amer. Math. Soc. 92 (1984), 413- 
417. 

38. "Projection formulas, a reproducing kernel and a gen- 
erating function for q-Wilson polynomials" (with B. 
Nassrallah), SIAM J. Math. Anal. 16 (1985), 186- 
197. 

39. "An infinite series with products of Jacobi polynomi- 
als and Jacobi functions of the second kind" (with M. 
J. Shah), SIAM J. Math. Anal. 16 (1985), 859-875. 

40. "Sums of products of ultraspherical functions" (with 
M. J. Shah), J. Math. Phys. 26 (1985), 627-632. 

41. "A q-extension of Feldheim's bilinear sum for Jacobi 
polynomials and some applications," Can. J. Math. 
37 (1985), 551-576. 

42. "A q-analogue of Appell's Fl function and some quadratic 
transformation formulas for nonterminating basic hy- 
pergeometric series" (with B. Nassrallah) , Rocky Mtn. 
J. Math. 16 (1986), 63-82. 

43. "q-Wilson functions of the second kind," SIAM J. 
Math. Anal. 17 (1986), 1280-1286. 

44. "Another conjectured q-Selberg integral," SIAM J. 
Math. Anal. 17 (1986), 1267-1279. 

45. "A q-integral representation of Rogers' q-ultraspherical 
polynomials and some applications" (with A. Verma), 
Constructive Approximation 2 (1986), 1-10. 

46. "A product formula for the continuous q-Jacobi poly- 
nomials," J. Math. Anal. Appl. 118 (1986), 309-322. 

47. "Positivity of the Poisson kernel for the continuous q- 
Jacobi polynomials and some quadratic transform* 
tion formulas for basic hypergeometric series" (with 
G. Gasper), SIAM J. Math. Anal. 17 (1986), 970- 
999. 

48. "Product and addition formulas for the continuous q- 
ultraspherical polynomials" (with A. Verma), SIAM 
J. Math. Anal. 17 (1986), 1461-1474. 

49. "An integral representation of a 1099 and continuous 
biorthogonal 1099 rational functions," Can. J. Math. 
38 (1986), 605-618. 

50. "An integral of products of ultraspherical functions 
and a q-extension" (with R. Askey and T. H. Koorn- 
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winder), J. London Math. Soc. (2) 33 (1986)) 133- 
148. 

51. "Infinite sums and products of continuous q-ultraspherical 
functions" (with A. Verma), Rocky Mount. J. Math. 
17 (1987)) 371-384. 

52. "An integral representation and some transformation 
properties of q-Bessel functions," J. Math. Anal. Appl. 
125 (1987), 58-71. 

53. "Solutions to Problems 86-3 and 86-4," SIAM Review 
29 (1987)) 130-131. 

54. "Cummulative hypergeometric processes: a statisti- 
cal role for the ,Fn-l functions" (with M. R. Hoare), 
J. Math. Anal. Appl. 135 (1988)) 615-626. 

55. "A projection formula for the Askey-Wilson polyno- 
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(1988)) 1099-1106. 

56. "Some extensions of Askey-Wilson's q-beta integral 
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57. "An addition theorem and some product formulas 
for q- Bessel functions," Canad. J. Math. 40 (1988), 
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58. "Some infinite integrals of q-Bessel functions," Pro- 
ceedings of the Ramanujan Birth Centennial Sympo- 
sium on Classical Analysis, December 26-28 (1987), 
N. K. Thakare (ed.), (1989)) 119-137. 

59. "A note on the orthogonality of Jackson's q-Bessel 
functions," Canad. Math. Bull. 32 (1989)) 369-376. 

60. "Some cubic summation formulas for basic hypergeo- 
metric series," Utilitas Mathematica 36 (1989), 161- 
172. 

61. "A simple proof of Koornwinder's addition theorem 
for the little q-Legendre polynomials," Proc. Amer. 
Math. Soc. 107 (1989), 373-381. 

62. "A nonterminating q-Clausen formula and some re- 
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64. "Extensions of the beta integral and the hypergeo- 
metric function," Proc. NATO - ASI in "Orthogo- 
nal polynomials and their Applications," Paul Nevai 
(ed.), (1990), 319-344. 

65. "Biorthogonality of a system of rational functions 
with respect to  a positive measure on [-I, I]," SIAM 
J. Math. Anal. 22 (1991), 1430-1441. 

66. "The Associated Askey-Wilson polynomials" (with 
M. E. H. Ismail), Trans. Amer. Math. Soc. 328 (1991), 
201-237. 

67. "Complex weight functions for classical orthogonal 
polynomials" (with M. E. H. Ismail and D. R. Mas- 
son), Can. J. Math. 43 (1991), 1294-1308. 

68. "Askey-Wilson functions of the first and second kinds: 
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284. 

69. "Positivity of the Poisson kernel for the Askey-Wilson 
polynomials" (with Arun Verma), Indian J. Math. 
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70. "A cubic and a quintic summation formula," Ganita 
43 (1992), 45-61. 

71. "Some quadratic and cubic summation formulas for 
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72. "Classical biorthogonal rational functions" (with S. 
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Gonchar and E. B. Saff (eds.), Lecture Notes in Math. 
1550, Springer-Verlag, pp. 131-146; Proceedings of 
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tute, Leningrad, May 1991. 

73. "Quadratic transformation formulas for basic hyper- 
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74. "The Pearson equation and the beta integrals" (with 
S. K. Suslov), SIAM J. Math. Anal. 25 #2 (1994), 
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75. "Barnes and Ramanujan-type integrals on the q-linear 
lattice" (with S. K. Suslov), SIAM J. Math. Anal. 25 
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76. "Some basic bilateral sums and integrals" (with M. E. 
H. Ismail), Par. J. Math. 170 #2 (1995), 497-515. 

77. "On the classical orthogonal polynomials" (with N. 
M. Atakishiyev and S. K. Suslov), Constructive Ap- 
proximation 11 (1995), 181-226. 

78. "Some generating functions for the associated Askey- 
Wilson polynomials," J. Comp. Appl. Math. 68 (1996), 
287-296. 

79. "Diagonalization of certain integral operators 11" (with 
M. E. H. Ismail and R. Zhang), J. Comp. Appl. Math. 
68 (1996), 163-196. 

80. "A unified approach to the summation and integra- 
tion formulas for basic hypergeometric series I" (with 
S. K. Suslov) J. Stat. Planning and Inference 54 
(1996), 101-118. 

81. "An integral representation of the very-well-poised 
8$s series," CRM Proceedings and Lecture Notes 9 
(1996), 281-288. 

82. "Singular analogue of the Fourier transformation for 
the Askey-Wilson polynomials" (with S. K. Suslov), 
CRM Proceedings and Lecture Notes 9 (1996), 101- 
118. 

83. "Some cubic summation and transformation formu- 
las," The Ramanujan Journal 1 (1997), 299-308. 

84. "Some summation theorems and transformation for- 
mulas for q-series" (with M. E. H. Ismail and S. K. 
Suslov), Can. J. Math. 49 (1997), 543-567. 

85. "Enumeration of the k-poles" (with Z. Gao), Annals 
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86. "Poisson kernel for the associated continuous q-ultraspherical 
polynomials" (with Q. Tariq), Methods and Applica- 
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87. "The q-exponential functions, old and new," Proceed- 
ings of the Dubna Conference on Integrable Systems, 
(1994). 

88. "A projection formula and a reproducing kernel for 
the associated Askey-Wilson polynomials" (with Q. 
M. Tariq), Int. J. Math. and Stat. Sc. 6 (1997), 141- 
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89. "The q-Laguerre polynomials and related moment 
problems" (with M. E. H. Ismail), J. Math. Anal. 
Appl. 218 (1998), 155-174. 

90. "A unified approach to the summation and integra- 
tion formulas for basic hypergeometric series 11" (with 
S. K. Suslov), Methods and Applications of Analysis 
5 (1998)) 399-412. 

91. "A unified approach to the summation and integra- 
tion formulas for basic hypergeometric series 111" (with 
S. K. Suslov), Methods and Applications of Analysis 
5 (1998), 413-424. 

92. "A q-extension of a product formula of Watson," Ques- 
tiones Mathematicae 22(1) (1999)) 27-42. 

93. "Addition formulas for q-Legendre type functions" 
(with Q. M. Tariq), Methods and Applications of Anal- 
ysis 6 (1999), 3-20. 

94. "Quadratic q-exponentials and connection coefficient 
problems" (with M. E. H. Ismail and D. Stanton), 
Proc. Amer. Math. Soc. 127 (1999)) 2931-2941. 

95. "A q-analogue of Weber-Schafheitlin integral of Bessel 
functions," The Ramanujan Journal 4 (2000)) 251- 
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96. "A q-analogue of a product formula of Bailey and 
related results," in Special Functions, C. Dunkl, M. 
E. H. Ismail and R. Wong (eds.), World Scientific 
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97. "The amazing first order linear equation," Ganita 51 
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98. "The associated classical orthogonal polynomials," in 
Special Functions 2000, J. Bustoz, M. E. H. Ismail 
and S. K. Suslov (eds), Kluwer Academic Publishers, 
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99. "Inverse operators, q-fractional integrals and q-Bernoulli 
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3. Professional activities 

(i) Referee: I have refereed many papers for SIAM J. Math. 
Anal., Proc. Amer. Math. Soc., J. Math. Phys., Can. J. 
Math., Rocky Mtn. J. Math., Journal of Approximation 
Theory, Indian J. Math. and Ganita. 

(ii) Review: I have reviewed a fairly large number of papers 
for Mathematical Reviews since 1977. 

(iii) Workshops: I was one of the three organizers of the 2- 
week workshop on "q-Series, Special Functions and Re- 
lated Topics", June 12-23, 1994, in Toronto under the 
auspices of the Fields Institute. 

(iv) Invited talks: 

(1) Special session on orthogonal polynomials at the Uni- 
versity of Michigan, Ann Arbor, Mich., Aug. 1980. 
(AMS summer meeting) 

(2) Canadian Math. Soc. Winter meeting in Victoria, 
Dec. 10-12, 1981. 

(3) Special meeting on Group Theory and Special func- 
tions at the Mathematical Institute at Oberwolfach, 
Germany, Mar. 13-19, 1983. 

(4) Canadian Math. Soc. Summer meeting in Edmonton, 
June 21-23, 1984. 

(5) International symposium on orthogonal polynomials 
and their applications, in Bar-le-Duc, France, Oct. 
15-18, 1984. 

(6) AMS meeting in Laramie, Wy., Aug. 11-15, 1985. 

(7) AMS annual meeting at San Antonio, Texas in Jan. 
1986. 

(8) Gave a short course on Special Functions at the Re- 
search Institute in the University of Montreal in April- 
May 1986. 

(9) Ramanujan centennial meeting at the University of 
Illinois, Urbana-Champaign, Aug. 1987. 

(10) Ramanujan Birth Centennial Symposium on classical 
Analysis in Pune, India, Dec. 26-28, 1987. 

(11) CMS summer meeting, June 1988. 
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(12) A 3-hour short course on q-series at the NATO Ad- 
vanced Studies Institute on "Orthogonal Polynomi- 
als and their Applications," in Columbus, Ohio, May 
22-June 3, 1989. 

(13) SIAM 40th Anniversary Meeting in Los Angeles, July 
20-29, 1992. 

(14) Meeting on Difference equations in Integrable sys- 
tems in Esterel, organized by Centre de Recherches 
Mathkmatiques of the University of Montred, 1993. 

(15) Meeting on Integrable Systems at Dubna, Russia, 
Summer 1994. 

(16) International Workshop on Special Functions, Asymp- 
tot ic~, Harmonic Analysis and Mathematical Physics 
in Hong Kong, June 21-25, 1999. 

(17) Centennial Mathematical Conference in Lucknow Uni- 
versity, India, invited as the chief guest, December 31, 
1999-January 4, 2000. 

(18) Nato Advanced Study Institute Special Functions 2000: 
Current Perspective and Future Directions at Ari- 
zona State University, Tempe, AZ, May 29-June 9, 
2000. 

(19) AMS Annual Meeting at Baltimore, January 15-18, 
2003: Special Session on Orthogonal Polynomials and 
Special Functions. 

(v) Editorial Activities: 

(a) Member of the Editorial Board of the journal: "Inte- 
gral Transforms and Special Functions: An Intern* 
tional Journal." 

(b) From time to time I have lent a hand to Richard 
Bumby, the editor of the Problem Section of the AMS 
Math. Monthly. 

(vi) Review of Grant A~alications: 

I have reviewed some grant applications for NSERC, 
NSF and Austrian Math. Society. 
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4. Books: 
= "Basic Hypergeometric Series" by G. Gasper and M. Rah- 

man, published by Cambridge University Press in 1990. 

= "Special Functions, q-Series and Related Topics," Fields 
Institute Communications, AMS (1997), edited by M. E. 
H. Ismail, D. Masson and M. Rahman. 

5. Chapters in edited books: 

Part of Chapter 6 of "Kinetic Equations of Gases and 
Plasmas" by Ta-You Wu, (Addison-Wesley, 1966), specif- 
ically pp. 187-193, is based on my Ph.D. thesis. 

6. Recent Grants: 
= NSERC grant: $20,000 per year for three years, 1989- 

1992. 
NSERC grant: $20,000 per year for four years, 1992- 
1996. 
NSERC grant: $18,000 per year for five years, 1996-2000. 

= NSERC grant: $12,000 per year for four years, 2000- 
2004. 

7. Award and Honours: 
Scholarly Achievement Awards: 1980, 1983, 1986, 1988. 
Teaching Award: 1986. 
Election to a Fellowship of Bangladesh Academy of Sci- 
ence, 2003. 

8. Bengali Literature: 
i Publications (All in Bengali): 

1. Tirtho Amar Gram (1994). 
2. La1 Nodi (2001). 
3. Proshongo Nari (2003). 
4. Album (2003). 

ii Awards: 

1. Award of Excellence from Bangladesh Publications 
(Ottawa) in 1996. 
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2. Best Writer Award from Deshe Bideshe (by Readers' 
choice) in 1998. 

3. Outstanding Achievement Award from Ottawa-Bangladesh 
Muslim Society in 2000. 

4. Award for Contributions to Bengali Literature in North 
America from Bongo Shomyelon in 2002. 
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Dr. Mizanur Rahman - A personal anecdote . . . 
Dr. Mourad Ismail asked me to write a brief bio about my father, 

Dr. Mizanur Rahman. It  will probably be more personal and emotional 
than factual. But what did you expect from a son? This bio will be for 
a collection of articles dedicated to him. 

Apparently, the last book that Dad co-authored with Dr. George 
Gasper has been called a 'bible' in its field of Basic Hypergeometric 
Series. So, one would think that Dr. Rahman is a man of no small 
repute. So, why can I only think of him as my simple father? 

Dad was born in Dhaka, Bangladesh. Most of the family originated 
from a small village called Hasnabad. He was the eldest of 5 boys and 
4 girls. From the very beginning, he was responsible for taking care of 
most of his siblings, with some help from the two older sisters. Our 
grandmother was a homemaker, and our grandfather was a head clerk 
in the public service, working as the assistant to the District Magistrate. 
In spite of their humble status, my grandparents were firm believers in 
the power of education. So, they made sure that Dad went to school 
everyday (well, most days . . . ), did his homework, and studied for the 
tests. Passing with flying colours was his responsibility, and that he did. 

Dad was one of the few who finished a double major in Math and 
Physics. His major was actually Physics, and the minor was supposed 
to be Biology or Chemistry. However, he disliked both. So, the univer- 
sity provided an option that they felt would be impossible one: if you 
don't want to minor in the other fields, then you would have to do a dou- 
ble major. Dad did, and earned the University medal for outstanding 
academic achievement! After Dhaka University, it was on to  Cambridge 
in 1956. From what little we know of this time, it sounded like an ex- 
tended field trip, with even a brief sojourn in Spain. If only grad school 
were this difficult all the time! 

Dad married Parul Shamsun Nahar in July 1961. The marriage was 
partially arranged by a friend of his good friend, who also happened to 
be Mom's brother. After a wonderful boat trip from Karachi to  London, 
they flew to Fredericton, New Brunswick in 1962. Dad was a grad stu- 
dent and a lecturer a t  the same time there. In 1965, he took a position 
in the Department of Mathematics and Statistics at Carleton Univer- 
sity in Ottawa. This was the start of a long and successful career in 
teaching and research. Both of us brothers were born in Ottawa. Life 
had a comfortable and predictable rhythm to it. Dad left very early in 
the morning to  go to work, regardless of the weather. And at night, we 
would run to greet him at the door. Every so often, Dad would take 
us to his office. This was a special treat for us two kids. We could see 
most of Ottawa from Dad's office - but the best part was eating those 
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little sugar cubes that Dad used in his coffee. Especially fascinating 
was the prodigious amount of books, papers, reviews and miscellaneous 
stuff that Dad managed to cram into every available nook and cranny. 
Another 'perk7 of working in academia was the sabbatical. To Dad, 
it meant an opportunity to do some intense research with various col- 
leagues. For us, it usually meant an opportunity to travel. We went to 
Bangladesh one time. Another time, we spent a year in England. We 
came back with accents and a renewed appreciation for our food! I also 
remember that Mom was in the hospital a lot, dealing with progressive 
kidney failure. In spite of being so busy, Dad would take us fishing quite 
often. He cooked at home quite often. In the beginning, Mom would 
do all the cooking and housework. In spite of her failing health, she 
sacrificed everything to realize her dream: ensuring that her loved ones 
would be able to pursue successful careers. As Dad said, his 'modest 
successes were but a reflection of the sacrifices that Mom had to make 
throughout her painful life.' As we grew older, we would often wonder 
how someone so intelligent could be so 'detached' from normal things. 
Dad could be quite the 'absent-minded professor.' As I liked to say, he 
had a definite "Je ne sais pas" goofiness about him. Yet that trait was 
juxtaposed against a very deep and insightful wisdom. I know that it 
is Dad's teachings that have led to some degree of equanimity in my 
life. And now that he is a grandfather, I see him passing along those 
same kernels of wisdom to my children. If I had to use one word to 
summarize Dad's character, it would be honest - to a fault. Words 
can't really describe the myriad of situations that displayed his honesty. 
You really had to be there. As Dad's mathematical career advanced, it 
was amazing to see another side of him flourish. At heart, I suppose 
Dad was always an artist, a writer. So, over the last decade or so, he 
has been writing Bengali fiction more and more. Over that time, his 
following and stature has been quickly increasing. As a matter of fact, 
he has been awarded 2 national prizes in Canada, recognizing his con- 
tributions to Bengali literature. Additionally, Dad received an award at 
last year's international Bangladeshi conference, held in Atlanta. It too 
recognized his talents in Bengali literature. Now that Dad is "retired," 
we would have expected him to have time for us. No such luck. He is 
200% busy with continuing mathematical research, writing math books 
and his Bengali writing. He has been an inspiration to his two sons in 
so many ways. He is a man of honesty, integrity, curiosity, and has a 
wonderful sense of humour. He has lived his life with a pure heart and 
single-minded devotion to family and work. He is a hard act to follow. 

To Dad, 
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From your sons, 

Babu S. Rahman 
Raja A. Rahman 
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Mizanur Rahman by Michael Hoare 

This is an outline of how we first met and how Mizan came to branch 
out on his extraordinary mathematical career. We first corresponded 
and eventually met at Bedford College, London University in 1971172. 
He was then working on Neutron Transport Theory (singular integral 
equations), his Ph.D. subject, in which I had an interest from a more 
general statistical physics viewpoint. With a sabbatical coming up he 
had written to the outstanding English expert on neutron transport, 
Mike Williams at Queen Mary College Nuclear Engineering Department, 
with a view to spending a year there. For some reason Mike couldn't 
take him in and suggested that he come to me at Bedford instead. This 
worked splendidly, and I dare say the liberal arts atmosphere of the col- 
lege, set idyllically in Regent's Park, was a distinct improvement on that 
of Nuclear Engineering in the East End. The only downside was that 
we were a very small Physics department and there was little resonance 
with the heavily algebraicized Math department under Paul Cohn. This 
hardly seemed to matter, since we were both to an extent outsiders from 
what were the fashionable subjects at the time. 

We started out on his home ground, the singular integral equation 
arising from the form of one-dimensional gas model known as 'Rayleigh's 
piston' and this led to the first calculations of its eigenvalue spectrum, 
with characteristic mixed discrete and continuum sets. In the course of 
this he admitted me to the faith, convincing me that Cauchy Princi- 
pal Values and Hadamard finite parts could be made tangible and did 
not need to handled as though matters of higher metaphysics. About 
this time I happened to mention a problem in combinatorics that had 
been fascinating me for some time, in fact since my post-doc days at the 
University of Washington. This arose from a disarmingly simple model 
in chemical kinetics which involved the partitioning of energy quanta 
between different vibrational degrees of freedom in colliding polyatomic 
molecules. Reformulated as a 'urn model,' its iterations corresponded to 
a Markov chain for partitioning balls in boxes, with only a subset ran- 
domized at each event. My earlier eigenvalue solution for a continuum 
version of this had come out in Laguerre polynomials and led to probai 
bility transition kernels with action very similar to formulae of Erdklyi 
and Kogbetlianz in 1930s special function theory, though at the time 
without any probabilistic interpretation. (I was happily able to meet 
Erdklyi in Edinburgh shortly before his death and he was delighted to 
know that the formulae had a 'practical' side.) Mizan seized on the im- 
plications of this problem and its generalizations and before long was 
off and running with his first series of papers on special function the- 
ory, while my 'statistical physics' by-products followed at more leisurely 
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intervals. I tended to keep cautiously within the bounds of 'physical' 
models, while Mizan was soon off into the never never land of q-theory. 
After he returned to Carleton we managed to strike lucky with grants 
from the NRC of Canada and the SRC in London, which kept us in funds 
for several years of visits to and fro as the work progressed. (Happy days 
of the '70s and beneficent Research Councils). Mizan even managed to 
come to Stuttgart in '77 when my turn for a sabbatical came round and 
it was here that we sorted out what I have ever since felt was the real 
'gem' among our various generalizations. This was the discovery of a 
new take on Bernoulli Trials - the idea of 'cumulative trials' in which 
one has the right to 'throw again' on the subset of trials that fail, in 
order to achieve complete success. That such a simple idea could have 
lain dormant for over 200 years still amazes me, but no trace of our 
results in the earlier literature has ever turned up. 
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Mizan Rahman by Steve Milne 

The well-known classic book "Basic Hypergeometric Series" by George 
Gasper and Mizan Rahman has been immensely helpful to me, both in 
my research and teaching. My work in multiple basic hypergeomet- 
ric series, especially that on multivariable lo(p9 transformations, was 
facilitated by the one-variable treatment in this book. Furthermore, 
my Ph.D. students all learned q-series from my graduate special topics 
courses based on this wonderful book or its notes. It will continue to be 
essential to my program for many years to come. 
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A b s t r a c t  We study completeness of systems of third Jackson q-Bessel functions by 
two quite different methods. The first uses a Dalzell-type criterion and 
relies on orthogonality and the evaluation of certain q-integrals. The 
second uses classical entire function theory. 

1. Introduction 
For 0 < q < 1 define the q-integral on the interval (0, a )  by 
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L%(o, 1) will denote the Hilbert space associated with the inner product 

(3) It is a well known fact that the third Jackson q-Bessel function J, (z; q), 
defined as 

satisfies the orthogonality relation 

where jl, < j zu  < . . . are the zeros of 5L3) (z; q2) arranged in ascending 
(3) order. Important information on the zeros of J v  (z; q2) has been given 

recently (Ismail, 2003; Koelink and Swarttouw, 1994; Koelink, 1999; 
Abreu et al., 2003). The orthogonality relation (1.3) is a consequence 
of the second order difference equation of Sturm-Liouville type satisfied 
by the functions 5i3) (z; q2) (Swartouw, 1992; Koelink and Swarttouw, 
1994). In this paper we consider completeness properties of the third 
q-Bessel function in the spaces Lq(O, 1) and Li(0,l). We will approach 
the problem from two substantially different directions. In one case we 
will apply a q-version of the Dalzell Criterion (Higgins, 1977) to prove 
completeness of the system { J: (jnvqx; q2) ) in L$ (0,l). In another case 
we will use the machinery of entire functions and the Phragmh-Lindelof 
principle to prove completeness of the system { Jl (jnvqx; q2)),  p, v > 0 
in Lt(0,l). This theorem is in the spirit of classical results on Bessel 
functions (Boas and Pollard, 1947) that state the completeness of sys- 
tems {Jv(Xn(z))) where the numbers An are allowed a certain freedom. 
Although the entire function argument is more general, there is reason to 
present the Dalzell Criterion approach as well because it relies solely on 
techniques of q-integration and on properties of orthogonal expansions 
in a Hilbert space. Also, this approach requires the calculation of some 
q-integrals of q-Bessel functions that parallel results for classical Bessel 
functions. Thus this method of proof extends the q-theory of orthogonal 
functions. 
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The third Jackson q-Bessel function was also studied by Exton (Exton, 
1983) and sometimes appears in the literature as The Hahn-Exton q- 
Bessel Function. There are other two analogues of the Bessel function 
introduced by Jackson (Jackson, 1904). The notation of Ismail (Ismail, 
1982; Ismail, 2003), denoting all three analogues by J;~)(z; q), k = 1,2,3 
has become common and we adhere to it here. However, because the 
present work will deal exclusively with J;~) (z; q2) , to simplify notation 
we write from now on 

It is critical to keep in mind that in definition (1.2) the q-Bessel function 
is defined with base q, whereas in defining J,(z) we have changed the 
base to q2. Thus the series definition for J,(z) is 

(3) Let zn,, n = 1,2,. . . denote the positive roots of Ju (z; q) arranged 
in increasing order. From (Kvitsinsky, 1995) we have that 

Replacing q by q2, we find for the roots j,, of J,(z) that 

Expression (1.5) will be used in Section 2. 

2. Completeness: A Dalzell type criterion 
It is easy to verify (Higgins, 1977) that if {a,) and {an) are two 

sequences in a Hilbert space H, with Qn complete in H and an complete 
in Qn and orthogonal in H,  then an is also complete in H. Then, if Qn 
is complete in H, a necessary and sufficient condition for the orthogonal 
sequence cP, to be complete in H is that it satisfies the Parseval relation 

This fact was used by Dalzell to derive a completeness criterion and 
apply it to several sequences of special functions (Dalzell, 1945). In this 
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section we will derive a similar criterion suitable to be used in Li(0,l). 
Then, we use it to prove completeness in Li(0,l) of the orthonomal set 
of functions 

To do so, we will evaluate explicitly some q-integrals using the results 
from the preceding section. We start by stating and proving the following 
lemma: 

Lemma 2.1. Let g E Li (0,l) such that g (qn) > 0, n = 0,1,2. . . . 
Define x ~ ( x )  = 1 if x E [0, qn] and xn(z) = 0 otherwise. Then {gx,) is 
complete in Li(0, 1). 

Proof. Let f E Li(0, l )  be such that 

Now, by (1.1) and using the fact that xn (qk) = 0 if k < n, we get: 

Then, 
0 = An - An+l = f (qn) g (qn) qn 

because g (qn) > 0 it follows that 

Theorem 2.2. Let g E Li(0,l) such that g (qn) > 0, n = 1,2. .  . and let 
1 

w(x) be such that f w(x)d,x exists and w (qn) > 0, n = 1,2. .  . . Then 
0 

an orthonormal sequence {an) c Li(0, 1) is complete in Li(0, 1) i f  and 
only i f  
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Proof. Writing Qk = 9x1, in (2.1)) by the preceding lemma, the sequence 
{an) is complete in Li(0,l) if and only if 

that is 

Integrating both sides of this relation after multiplying by w(x), one gets 
the relation (2.2). On the other hand, if (2.2) holds, then define 

From the hypothesis, 
1 
n 

Observing that by the Bessel inequality, F(r)  is non-negative, we get 

We proceed to evaluate two important q-integrals. 

Lemma 2.3. For every real number r, 

Proof. Express 
T 
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using the power series expansion (1.2). Then interchange the q-integral 
with the sum and use the following fact: 

Rearranging terms the result follows in a straightforward manner. 0 

Lemma 2.4. 

Proof. Consider the following formula from (Koelink and Swarttouw, 
1994): 

and 

Shift v -+ v + 1 in (2.4) and set x = jnv. This yields 

Taking derivatives in both members of (2.4)) changing u t u + 1 and 
again setting x = jnv the result is 
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Substituting this in (2.3) we get the simplification: 

where (1.3) was used in the last identity. 

Theorem 2.5. The orthonormal sequence { a n )  defined by 

is complete in L i ( 0 , l ) .  
1 

Proof. In (2.2) take { a n )  defined as above, g(x)  = xv+i and w ( r )  = 
r-2v-1. We need thus to prove the identity 

Lemma 1 and Lemma 2 allow us to reduce the left hand member of 
above to: 

( 1  - q)2 * 1 C 7, q2 Jnv 

that is, 
1 - a  

by (1.5). It is straightforward to compute 

and the Theorem is proved. 0 
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3. Completeness: An entire function approach 
From (1.2) we can write 

where 

The function F,(w) is entire and it is directly shown that F,(w) has 
order zero. 

1 
G(w) Set G(w)  = 1 g ( ~ ) F , ( ~ w x ) d ~ x ,  and h(w) = -. 

0 

Lemma 3.1. If ,u > 0, v > 0 and g(x) E L i (0 , l )  then h(w) is entire of 
order 0. 

Proof. We first show that G(w)  is entire of order 0. From the definition 
of the q-integral we have 

The series in (3.1) converges uniformly in any disk Iw 1 _< R. Hence G(w) 
is entire. Recall that the order p ( f )  of an entire function f (w)  is given 
b!, 

InlnM(r; f )  
p( f )  = limsup 

I---too In r 

~ ( r ;  G) 5 M ( r ;  F,) J M X ) I  dqx. 
0 

Since p (F,) = 0 we have that p(G) = 0. 
Both the numerator and the denominator of h(w)  are entire functions 

of order 0. If we write G(w) and F,(w) as canonical products, each 
factor of F,(w) divides out with a factor of G(w)  by the hypothesis of 
Theorem 3.3. h(w)  is thus entire of order 0. 0 
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Lemma 3.2. If p > 0, u > 0, and 0 < q < 1 then the quotient 
is bounded on the imaginary w axis. 

Proof. We will make use of the simple inequality 

(4 f f ;4 )w<(q f f ;q )k<1,  Q > O ,  O < 4 < 1 .  
Using this inequality we get for w = iy, y real, 

Theorem 3.3. Let p > 0, v > 0 and g(x) E L:(O,l). If 

n = 1,2,. . . then g(x) = 0 for x = qm, m = 0,1,. . . . 
Proof. Lemma 3.2 implies that h(iy) is bounded. Since h(w) is entire 
of order 0, we can apply one of the versions of the Phragmkn-Lindelof 
theorem (Levin, 1980, p. 49) and Lemma 3.2 and conclude that h(w) is 
bounded in the entire w-plane. Next by Liouville's theorem we conclude 
that h(w) is constant. Say that h(w) - C. We will prove that C = 0. 
We have 

G(w) - CFv(w) r 0. 
In infinite series form this equality produces an identity of the form 

From the identity theorem for analytic functions we conclude that Ak = 
0. Calculating Ak we find 
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Dividing out common factors and letting k -+ oo gives C = 0. We can 
now conclude that G(w) r 0, or that is, 

We complete the proof with a simple argument that gives g (qm) = 0, 
m = 0,1, . . . . If G(w) = 0 then 

Letting k -+ 0 gives g(1) = 0. Then dividing by q2k and again letting 
k -+ oo gives g(q) = 0. Continuing this process we have g (qm) r 0 and 
the proof of the theorem is complete. 0 
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Abstract Classical Gaussian polynomials are generalized to two variable poly- 
nomials. The first half of the paper is devoted to a full account of 
this extension and its inherent properties. The final part of the paper 
considers the role of these polynomials in finite identities of the Rogers- 
Ramanujan type. 

Keywords: Rogers-Ramanujan identities, Gaussian polynomials 

1. Introduction 

Our object in this paper is to better understand certain classical gen- 
eralizations of the Rogers-Ramanujan identities (Andrews, 1976, p. 104): 

and 

where Iq1 < 1 and 

and 
w 
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The majority of early proofs of (1.2) and (1.3) were based on the 
following theorem which W. N. Bailey (Bailey, 1972, p. 8, line 4) called 
an "a-generalization." 

00 (-1)" 2n n(5n-1)/2 1 a q  ( - aq2n) (aq; q)n-1 
(4; q)n 

(1.5) 
As is well-known, Watson proved this identity as a limiting case of his 

q-analog of Whipple's theorem (Watson, 1929). 
There occur in the literature two refinements of (1.5) in which the 

series on the left of the identity is replaced by a polynomial. Namely 
(Andrews, 1974; Bressoud, 1981a; Paule, 1994; Zeilberger, 1990). 

and (Bressoud, 1981b, eq. (3.5)). 

n=O 

where 

is the Gaussian polynomial or q-binomial coefficient. 
Now there is something rather surprising about (1.6) and (1.7) that 

is readily observed upon examination. The left sides of both (1.6) and 
(1.7) are polynomials term by term and consequently the sums are poly- 
nomials. However it is not the case that the right-hand side of either 
(1.6) or (1.7) is obviously a polynomial in that the terms of the sums 
are mostly rational functions with non-trivial denominators. 

For example, when N = 2, (1.6) asserts 
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and (1.7) asserts (after cancelling common factors) 

One of the objects of this paper is to present a new representation for 
the polynomial on the left of (1.6) or (1.7) that converges to the right- 
hand side of (1.5) and is a polynomial term by term. To accomplish this 
we shall require the development of an "a-generalization" of Gaussian 
polynomials. 

Our new identity asserts 

The a-Gaussian polynomial 1 ; ; q, a] will be defined and studied in 
L J 

Sections 2 and 3. Propositions 3.1 and 3.2 show that (1.11) converges 
directly to (1.5). Now for N = 2, (1.11) asserts 

As we shall see in Sections 2 and 3, the a-Gaussian polynomials have 
their own intrinsic surprises and appeal. However, it is natural to ask 
why one would want (1.11) when it would seem that (1.6) and (1.7) 
would suffice as finitized versions of (1.5). We shall discuss this question 
further in Section 6. For now, we merely note that the long standing 
Borwein conjectures (Andrews, 1995) are merely assertions about poly- 
nomials that are, in fact, finitizations of classical Rogers-Ramanujan 
type identities (Andrews, 1995, Sec. 4). Consequently, in depth stud- 
ies of such polynomials is clearly in order, and it is to be hoped that 
a-Gaussian polynomials may add some insight in this area. 

In addition, our work here contributes to further elucidation of trun- 
cated Rogers-Ramanujan series, a topic suggested by Ramanujan and 
studied from the point of view of Bailey Chains in (Andrews, 1993). 
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2. a-Gaussian polynomials 
The definition for a-Gaussian polynomials is, a t  first glance, rather 

unilluminating. So we preface it with a discussion of what we are striving 
for. 

To begin with, it is well-known (Andrews, 1976, Ch. 3, Th. 3.1) that 
the Gaussian polynomial 

is the generating function for partitions with largest part 5 N and num- 
ber of parts 5 M. So, for example 

Now as is noted in (Andrews, 1976, Ch. 2) often one needs a two vari- 
able generating function in which a second variable records the number 
of parts of the partition being generated. Thus one would like to  gener- 
alize the above polynomial to 

Proposition 5 below makes clear that our a-Gaussian polynomials achieve 
this initial objective. 

Definition 2.1. For integers N and j with N 2 0 

Remark 2.2. The cases j 5 N and j 2 N actually coincide if one 

interprets 1 2 ; q] in the standard way. We have chosen to use the 
L J 

several separate lines to emphasize that the polynomial is a finite product 
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when j > N .  The more succinct representation would have sacrificed 
clarity. 

We shall now prove seven propositions about a-Gaussian polynomi- 
als. The first one establishes that we have truly generalized the classical 
Gaussian polynomials. Propositions 2.4-2.6 are the natural extensions 
of the Pascal triangle recurrences for Gaussian polynomials. Proposi- 
tion 2.7 establishes the connection with partitions that we described at 
the beginning of this section. Proposition 2.8 is a naturally terminating 
representation of a-Gaussian polynomials. Proposition 2.9 is the nat- 
ural extension of the finite geometric series summation to a-Gaussian 
polynomials. 

Proposition 2.3. For integers N and j with N 2 0, [ 7 ; q, q] = 

[ 7 ; q ~ .  

Proof. Clearly both sides are identically 0 if j < 0 or j > N. Also both 
sides equal 1 when j = 0 or N. Finally, for 0 < j < N 

by (Andrews, 1976, p. 37, eq. (3.3.9)). 

Proposition 2.4. For integers N and j with N 2 1, 
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Proof. If j < 0, then both sides are 0. If j = 0, then both sides equal 1. 
If 0 < j < N - 1, we see that 

(by (Andrews, 1976, p. 35, eq. (3.3.3))) 

Noting that 

we see that the case j = N - 1 also falls into place because 

The case j = N asserts 

1 = (I - aq-l) + aqF1 . I 

which is obvious. 
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Finally, if j > N 

Thus Proposition 2.4 is established. 

Proposition 2.5. For integers N and j with N 2 1, 

Proof. If j < 0, then both sides of this equation are identically 0. If 
j = 0, then both sides equal 1. If 0 < j < N - 1, then 

If j = N - 1, the assertion is 

which is immediate. 
If j = N, the assertion is 

which is obvious. 
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Finally if j > N, 

This proves Proposition 2.5. 

Proposition 2.6. For integers N and j with N 2 1, 

Proof. If j < 0, then both sides are 0. If j = 0, then both sides equal 1. 
I f O < j < N - 1 , t h e n  

If j = N - 1, the assertion is 

1 + a + a 2  + . .  . +aN-' = (1 + a + a 2  + - . - + a N v 2 )  +aN-'. 

If j = N, the assertion is 1 = 1. 
If j > N, then 

Thus Proposition 2.6 is proved. 
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Proposition 2.7. FOI 

where p(N, M, n ,  m) is 

nonnegative integers 

the number of partitions of n into m parts with 
m 5 M and each part 5 N .  

Proof. It is well known (Andrews, 1976, Th. 3.1, p. 33) that 

is the generating function for partitions with 5 M parts each 5 N.  
Hence 

is the generating function for partitions with exactly h parts each 5 N .  
Consequently 

as desired 

Proposition 2.8. For nonnegative integers N and j ,  
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Proof. If N = 0, the sum on the right is 

- - a' (q/a; q)j (q- j ; q) (by (Andrews, 1976, p. 35, eq. (3.3.6)) 
(4; 4)j 

for all j >= 0. . - 

If, on the other hand, j = 0, the sum on the right is equal to 1 which 

L 

We can conclude the proof of the proposition by showing that the 
right-hand side of the asserted identity satisfies the recurrence given 
in Proposition 2.4 thus permitting a double induction on N and j to 
conclude matters. 

We denote by R(N, j) the right-hand side of the equation asserted in 
the proposition. 
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and Proposition 2.8 is proved. 0 

Proposition 2.9. For N and j nonnegative integers 

Proof. 

(by (Andrews, 1976, p. 36, eq. (3.3.6))) 

by the finite geometric series summation. 0 

3. Limiting Cases and Identities 
The previous section described fundamental formulas and recurrences 

for the a-Gaussian polynomials. In this section, we examine the limiting 
values of these polynomials (Propositions 3.1 and 3.2), and we show how 
they fit into a generalized Chu-Vandermonde summation (Proposition 
3.3). Proposition 3.4 provides a useful reduction formula. 

Proposition 3.1. For la1 < 1, 141 < 1, 

Proof. 

- 1 -- (by (Andrew~, 1976, p. 36, eq. (3.3.7))). 
(a; q) M 
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Proposition 3.2. I f  la1 < 1, 141 < 1, and A, B, C  and D are integers 
with A  > C  > 0, then 

Proof. 

CN+D 

~ i m  [ A N + B  ; q, a = lim 
~ + m  CN+D ] N-m C 

h=O 

by (Andrews, 1976, p. 19, eq. (2.2.5)). 

Proposition 3.3. If R, N, and j are non-negative integers then 

Proof. We shall prove this result by showing that the right-hand side 
does not depend on R  and is equal to the left-hand side when R  = 0 
(the latter is immediately obvious). 
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R+ 1 
i (i-l)(n+i-1-j-R-1) 

+ C a n  
R 

j - i  ; 4, a i=o I 

Thus the sum on the right-hand side of the asserted identity is unaltered 
when R is replaced by R + 1. Consequently it is equal to its value at .- - 
R = 0 which is 0 

Proposition 3.4. For nonnegative integers r ,  n, m, 

Proof. We proceed by induction on r .  When r = 0, the assertion is a 
tautology. At r + 1, 

n+m = 2 a j ( - l ) j q ~ )  (qrn; ql j  [ ; q] [ n - j  ; q, a] 
j=O 



52 THEORY AND APPLICATIONS OF SPECIAL FUNCTIONS 

r+l 
n+m 

~ ~ 3 ( - l ) j ~ ( j ; ' ) + ~  (qm;q) j  [ j - 1  ; q ]  [ n - j  ; q ,a  
j=O 
r+l 

n+m 
= c a j ( - l ) j q ( : )  (qm; q) j  [ n - j  ; q7 a] ([ s ; q] + qr-j+' [ 

; q ] )  j=O 
~ + l  

n+m 
= c aj(- l ) jq(:)  (qm; q l j  [ + l ; q] [ ; q, a] 

3 n - j  j=O 
(by (Andrews, 1976, p. 35, eq. (3.3.3))). 

Hence Proposition 3.4 follows by induction on r .  0 

4. a-Generalizations of Finite 
Rogers-Ramanujan Type Identities 

In Section 1, equation (1.11) is the special case k = 2, m = N of the 
following result: 

Theorem 4.1. For m, N ,  k nonnegative integers with k > 0 

C( 1)s ks s((2k+l)s-1112 N + m + l - k s  - a q  [: ; 4 ]  [ m - k s  
s z o  

Remark 4.2. If we let m, N -+ oo take k = 1 and invoke Propositions 
3.1 and 3.2, we retrieve (1.5) term by term. 

Proof. Call the left side of this identity L ( m )  and the right side R(m). 
We proceed by induction on m. 

Clearly L(0)  = R ( 0 )  = 1. 
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Furthermore, it is immediate that 

00 

where [am] z q a i  = Cm. 

j=O 
On the other hand, 

N + m + l - k s  N + m - k s  
x ( [  m - k s  m - k s - 1  

1)s ks  s((2k+l)s-1)/2 =C(- a 9  
m-lcs-1 N  + m - ks [ m - k s  

s z o  

(by Proposition 2.6) 

C(-l)sq(;)+ms N + m - k s  [r ''1 [ m - k s  
s z o  

Hence the object of proving 
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reduces to proving 

x(-l)sq(;)+ms N + m - k s  [ y ;q] [ m - k s  
320 

This latter result is provable using an identity of J. Stembridge (Stem- 
bridge, 1990, Theorem 1.3 (b) with k  replaced by k  - 1 and z replaced 
by aq). Namely 

thus the induction step is established, and Theorem 4.1 is proved. 

We conclude this section with two reductions of Theorem 4.1 using 
Proposition 3.4. These results will allow us to obtain the single variable 
identities of the next section. 
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Corollary 4.3. For m, N ,  k  nonnegative integers with k  > 0 

N + m + l - k s  N + m - k s  ([ m - k s - j  m - k s - j - 1  ; 9, aq]) 

Proof. Apply Proposition 3.4 (with r = s  - 1  and a replaced aq) to each 
of the a-Gaussian polynomials in Theorem 4.1. The terms with s  = 0 
are instead combined using Proposition 2.5. 0 

Corollary 4.4. For m, N ,  k  non-negative with k  > 0 

N + m + l - k s  N + m - k s  ([ m - k s - j  m - k s - j - 1  ; 9, a]) . 

Proof. Apply Proposition 3.4 (with r = s)  to each of the a-Gaussian 
polynomials in Theorem 4.1. 0 

5. Single Variable Polynomial 
Rogers-Ramanujan Generalizations 

Schur (Schmiidgen, 1990) was the first to prove the Rogers-Ramanujan 
identities as a limiting case of polynomial identities. Namely, he proved 
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and 

The relationship of (5.1) and (5.2) to more general results is discussed 
extensively in (Andrews, 1989, esp. 59). 

To everyone's surprise, David Bressoud (Bressoud, 1981b) found a 
completely different polynomial refinement: 

and 
n 

j=O 
OC) (5.4) 

Identities (5.3) and (5.4) have been placed in the context of more general 
q-hypergeometric identities (Andrews and Berkovich, 2002). 

The list does not stop here. At least two further polynomial refine- 
ments of the Rogers-Ramanujan identities have been found (Andrews, 
1974), (Andrews, 1990, p. 3, eqs. (1.11) and (1.12)). Most recently, S. 
0. Warnaar (Warnaar, 2002) has found extensive partial sum Rogers- 
Ramanujan identities. 

It should be noted that in each of the examples given above (and in 
those alluded to in (Andrews, 1974) and (Andrews, 1989)) all the sums 
terminate naturally. In other words, the index of summation is extended 
over all values that produce non-zero summands. 

As we shall see, we may set a = 1 in Corollary 4.3 and a = q in 
Corollary 4.4 in order to obtain partial sums of the Rogers-Ramanujan 
polynomial. Our results are quite different from those of Warnaar in 
(Warnaar, 2002). 

To this end we require a definition and a lemma. 
n 

Definition 5.1. En(x, q) = lim 
N+m 

We remark in passing that Euler proved (~ndrews, 1976, p. 19, eq. 
1 
1 

(2.2.5)) Em (x, q) = - . 
(x; d O C )  
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Lemma 5.2. For non-negative integer N ,  M  and t 

Proof. 

where the penultimate assertion follows from the last line on page 38 of 
(Andrews, 1976) with b --t qdt,  a --t q-", and t -t q"+t+l. 0 

Theorem 5.3. 

N + M + l - k s  
x ( [  m - k s  

Proof. Set a = 1  in Corollary 4.3 and invoke Lemma 5.2 for the inner 
sum with t = s  - 1. 0 
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Theorem 5.4. 

N + m + l - k s  
x ( [  m - k s  

Proof. Set a = q in Corollary 4.3 and invoke Lemma 5.2 for the inner 
sum with t = s. 0 

6. Conclusion 
The primary object of this paper has been the development of a- 

Gaussian polynomials. In light of their natural partition-theoretic in- 
terpretation (Proposition 2.7)) it is surprising that they have not been 
studied previously. It seems extremely likely that Proposition 2.7 has 
already suggested itself to many workers. The first thing one notices is 
that for a-Gaussian polynomials there is no lovely product formula like 
(1.8) only a less satisfying sum (Proposition 2.8) which reduces to (1.8) 
when a = q. In addition, the symmetry identity (Andrews, 1976, p. 35, 
eq. (3.3.2)) 

has no simple analog for a-Gaussian polynomials. It may well be that 
these two deficits discouraged further investigation especially in light of 
the fact that the definition of a-Gaussian polynomials contains a sum 
that is not naturally terminating. 

A secondary object of this paper has been the study of the polynomial 
refinements of "a-generalizations" of Rogers-Ramanujan type identities. 
Such studies almost always have in mind (or, at least, in the back of 
their mind) the famous Borwein conjecture (Andrews, 1995). Namely, if 

then each of An(q), B,(q) and Cn(q) has non-negative coefficients. 
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It is not hard to show (Andrews, 1995, p. 491) that 

Much is known about polynomials of this general nature. Indeed the 
main theorem in (Andrews et al., 1987) shows that many such polyno- 
mials must have non-negative coefficients. 

However, the right-hand side of (5.3) is not covered by (Andrews et al., 
1987), but nonetheless, we see easily that it has non-negative coefficient 
by inspection of the left-hand side of (5.3). 

While the investigation of polynomial "a-generalizations" has not 
here led to further information on the Borwein conjecture, it should 
be pointed out that it has provided new insights on truncated Rogers- 
Ramanujan identities, a topic treated from a wholly different viewpoint 
in (Andrews, 1993). 
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Abst rac t  We discuss a probability distribution Iq depending on a parameter 
0 < q < 1 and determined by its moments n!/(q; q)n .  The treatment 
is purely analytical. The distribution has been discussed recently by 
Bertoin, Biane and Yor in connection with a study of exponential func- 
t ional~ of Lkvy processes. 

Keywords: q-calculus, infinitely divisible distribution 

1. Introduction 
In (Bertoin et al., 2004) Bertoin et al. studied the distribution I ,  of 

the exponential functional 

Iq = J qN' dt, 

0 

where 0 < q < 1 is fixed and (Nt ,  t 2 0) is a standard Poisson process. 
They found the density i 4 ( x ) ,  x > 0 and its Laplace and Mellin trans- 
forms. They also showed that a simple construction from Iq leads to the 
density 

found by Askey, cf. (Askey, 1989), and having log-normal moments. The 
notation in (1.2) is the standard notation from (Gasper and Rahman, 
1990), see below. 

O 2005 Springer Science+Business Media, Inc. 
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The distribution Iq has also appeared in recent work of Cowan and 
Chiu (Cowan and Chiu, 1994), Dumas et al. (Dumas et al., 2002) and 
Pakes (Pakes, 1996). 

The proofs in (Bertoin et al., 2004) rely on earlier work on exponential 
functionals which use quite involved notions from the theory of stochastic 
processes, see (Carmona et al., 1994; Carmona et al., 1997). 

The purpose of this note is to give a self-contained analytic treatment 
of the distribution Iq and its properties. 

In Section 2 we define a convolution semigroup (Iq,t)t,O of probabil- 
ities supported by [0, m[, and it is given in terms of the corresponding 
Bernstein function f (s) = log(-s; q), with LBvy measure v on 10, m [  
having the density 

dv 1 00 - = - C exp (-xqdn) . 
dx x n=O 

The function 1/ log(-s; q), is a Stieltjes transform of a positive measure 
which is given explicitly, and this permits us to determine the potential 
kernel of 

The measure Iq := Iq,~ is a generalized Gamma convolution in the 
sense of Thorin, cf. (Thorin, 197713; Thorin, 1977a). The moment se- 
quence of I, is shown to be n!/(q; q),, and the nth moment of IqTt is a 
polynomial of degree n in t. We give a recursion formula for the coeffi- 
cients of these polynomials. We establish that Iq has the density 

A treatment of the theory of generalized Gamma convolutions can be 
found in Bondesson's monograph (Bondesson, 1992). The recent paper 
(Biane et al., 2001) contains several examples of generalized Gamma 
convolutions which are also distributions of exponential functionals of 
LBvy processes. 

We shall use the notation and terminology from the theory of basic 
hypergeometric functions for which we refer the reader to the monograph 
by Gasper and Rahman (Gasper and Rahman, 1990). We recall the q- 
shifted factorials 

and (z; q)o = 1. Note that (z; q), is an entire function of z. 



On a generalized Gamma convolution related to the q-calculus 63 

For finitely many complex numbers zl, 22, . . . , zp we use the abbrevi- 
ation 

(zl,z2,. zp; q), = (21; 4)n (22; 4)n. ( ~ p ;  q)n. 

The q-shifted factorial is defined for arbitrary complex index X by 

and this is related to Jackson's function rq defined by 

In Section 3 we introduce the entire function 
and use it to express the Mellin transform of Iq. 
the density Xq &ven in (1.2) can be written as the product convolution 
of I, and another related distribution, see Theorem 3.2 below. The 
Mellin transform of the density Xq can be evaluated as a special case 
of the Askey-Roy beta-integral given in (Askey and Roy, 1986) and in 
particular we have, see also (Askey, 1989): 

The value of (1.5) is an entire function of c and equals h(c)h(l-c)/(q; q),. 
The following formulas about the q-exponential functions, cf. (Gasper 

and Rahman, 1990), are important in the following: 

qn(n-1)/2Zn 
Eqb) = c = (-2; q),, z E @. 

(a; q)n 
(1.7) 

n=O 

2. The analytic method 
We recall that a function cp : 10, m [  I+ [0, m [  is called completely 

monotonic, if it is Cw and (-l)kcp(k)(~) 2 0 for s > 0, k = 0,1,.  . . . 
By the Theorem of Bernstein completely monotonic functions have the 
form 

00 

~ ( s )  = J e-sx dol(x), (2.1) 
0 
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where a a non-negative measure on [0, m[. Clearly cp(O+) = a( [O,  m[). 
The equation (2.1) expresses that cp is the Laplace transform of the 
measure a .  

To establish that a probability q on [O, oo[ is infinitely divisible, one 
shall prove that its Laplace transform can be written 

I e-"" dq(x) = exp(- f (s)), s > 0, 
0 

where the non-negative function f has a completely monotonic deriv% 
tive. If q is infinitely divisible, there exists a convolution semigroup 
(qt)t>o of probabilities on [0, m [  such that q1 = q and it is uniquely 
determined by 

cf. (Berg and Forst, 1975), (Bertoin, 1996). The function f is called the 
Laplace exponent or Bernstein function of the semigroup. It has the 
integral representation 

where a > 0 and the LBvy measure v on 10, oo[ satisfies the integrability 
condition J x/(1+ x) dv(x) < oo. If f is not identically zero the convo- 

00 

lution semigroup is transient with potential kernel K = J qt dt, and the 
0 

Laplace transform of K is l/ f since 

The generalized Gamma convolutions q are characterized among the 
infinitely divisible distributions by the following property of the corre- 
sponding Bernstein function f ,  namely by f' being a Stieltjes transform, 
i.e. of the form 
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where a 2 0 and p is a non-negative measure on [O, XI[. The relation 
between p and v is that 

This result was used in (Berg, 1981) to simplify the proof of a theo- 
rem of Thorin (Thorin, 197713)) stating that the Pareto distribution is a 
generalized Gamma convolution. 

Theorem 2.1. Let 0 < q < 1 be fixed. The function 

00 

f ( s )  = log(-s; q), = C log(1 + sqn), s t 0 (2.4) 
n=O 

is a Bernstein function. The corresponding convolution semigroup 
((Iq,t)t,o) consists of generalized Gamma convolutions and we have 

00 

The potential kernel K~ = Iq,t dt has the following completely mono- 
0 

tonic density 

Xq(x) = 1 - q + p c p q ( Y )  dY. (2.6) 
1 

where cp is the continuous function 

Proof. The function f defined by (2.4) has the derivative 

showing that f' is a Stieltjes transform with a = 0, and p is the discrete 
measure with mass 1 in each of the points qen, n 2 0. In particular f is 
a Bernstein function with a = 0 and L6vy measure given by (1.3). 
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Since 
1 0  + s) 1 dx -- 

s x + s  x 
1 

we get ([XI denoting the integer part of x) 

showing that f (s)/s is a Stieltjes transform. It follows by the Reuter-It6 
Theorem, cf. (It6, 1974), (Reuter, 1956), (Berg, 1980), that l/ f(s) is a 
Stieltjes transform. Since f is an increasing function mapping ] - 1, oo[ 
onto the real line with f (0) = 0 and f'(0) = 1/(1- q) we get 

in the vague topology. 
 or x ~ ] q - ( ~ - l ) , q - ~ [ ,  n = l ,2 , .  . . we find 

= (log 1 (x; q), 1 + inn)-' 

These expressions define in fact a continuous function on [I, m[, vanish- 
ing at the points q-n, n > 0, so the measure p has the density cp given 
by (2.7). Using that the Stieltjes transformation is the second iteration 
of the Laplace transformation, the assertion about the potential kernel 
6, follows. 0 

Denoting by I,, a > 0 the exponential distribution with density 
aexp(-ax) on the positive half-line, we have 

so we can write I, := I,,J as the infinite convolution 
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If we let ralt denote the Gamma distribution with density 

then we similarly have 

Specializing (2.5) to t = 1 we have 

and since the right-hand side of (2.8) is meromorphic in C with poles 
at s = -qWn, n 2 0 and in particular holomorphic for 1st < 1, we know 
that I, has moments of any order with 

cf. (Lukacs, 1960, p. 136). Here and in the following we denote by sn(p) 
the nth moment of the measure p. However by (1.6) we have 

hence 

Since Iq has an analytic characteristic function, the corresponding 
Hamburger moment problem is determinate. By Stirling's formula we 
have 

so also Carleman's criterion shows the determinacy, cf. (Akhiezer, 1965). 
By (Berg, 1985, Cor. 3.3) follows that Iq,t is determinate for all t > 0 
and by (Berg, 2000) the n'th moment s,(I~,~) is a polynomial of degree 
n in t given by 

n 
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where the coefficients cn,k satisfy the recurrence equation 
n 

Cn+l,l+l= c Ck,l ( ; )an -k .  
k=l 

Here an = ( - l ) n f ( n + l ) ( ~ ) ,  where f is given by (2.4)) cf. (Berg, 2000, 
Prop. 2.4), so an is easily calculated to be 

It follows also by (Berg, 2000) that 

cn,n = a: = (1 - q)-n, cn,l = an-l = (n - 1 ) ! / ( 1  - qn). 

Defining dn,k = (1  - q)kcn,k we have 

and 

dn+ 1, 

In particular 

We give the first coefficients 

It follows by induction using (2.13) that dn,k as a function of q has a 
finite limit for q --+ I-. 

The image measures pt = ~ 1 - ~  under q-,(x)  = x ( 1 -  q)  form a 
convolution semigroup ( P ~ ) , , ~  with 
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and 
n 

It follows that s, ( p t )  -+ tn for q -+ I - ,  so lim pt = bt weakly by the 
0 4 1 -  
2 - 

method of moments. This is also in accordance with 

because the q-exponential function Eq given in (1.7) converges to the 
exponential function in the following sense 

lim Eq ( z ( 1  - q) )  = exp(z), 
q+l- 

cf. (Gasper and Rahman, 1990). 

Remark 2.2. Consider a non-zero Bernstein function f .  In  (Carmona 
et al., 1994; Carmona et al., 1997) it was proved by probabilistic methods 
that the sequence 

n ! 
Sn = f ( l )  . . . . . f ( n )  

is a determinate Stieltjes moment sequence, meaning that it is the mo- 
ment sequence of a unique probability on [0, o ~ [ .  The special case f ( s )  = 
1 - qS gives the moment sequence (2.10). In  (Berg and Duran, 2004) the 
above result of (Carmona et al., 1994; Carmona et al., 1997) is obtained 
as a special case of the following result: 

Let (a,) be a non-vanishing Hausdorff moment sequence. Then (s,) 
defined by so = 1 and s, = I /  (al  - . . . . a,) for n 2 1 is a normalized 
Stieltjes moment sequence. 

In order to find an expression for Iq we consider the discrete signed 
measure 

sqk (2.14) 
k=O 

with moments 

where we have used (1.7). In particular, the signed measure pq has mass 
1. 
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For measures v, T on 10, co[ we define the product convolution v o T 

as the image of the product measure v @I T under x, y H xy. The prod- 
uct convolution is the ordinary convolution of measures on the locally 
compact abelian group 10, co[ with multiplication as group operation. In 
particular we have 

From this equation we get the moment equation 

hence sn (p, o E l )  = n!/(q; q)n, which shows that p, o El has the same 
moments as I,. Since the first measure is not known to be non-negative, 
we cannot conclude right-away that the two measures are equal, although 
I, is Stieltjes determinate. We shall show that pqoEl has a density i,(x), 
which is non-negative. Since 6, o El = Ell, for a > 0, it is easy to see 
that 

m (-l)nqn(n-1)/2 

is ( x )  = x exp (-xq-") (2.15) 
n=O (4 ;  q)n(q; q)m ) 

but it is not obvious that i,(x) 2 0. 

Proposition 2.3. The function i4(x)  given by (2.15) is non-negative 
for x > 0. Therefore I, = pq o El = iq(x) l lo,m[(x) dx. 

Proof. The Laplace transform of the function i, is 

which is the partial fraction expansion of l / ( -s ;  q),, since the residue 
of this function at the pole s = q-" is 

We claim that 

which shows that I, and i, have the same Laplace transform, so i, is the 
density of I, and hence non-negative. 
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To see the equation (2.17) we note that the left-hand side minus the 
right-hand side of the equation is an entire function cp, and by (2.9) we 
get 

but by (1.7) the sum above equals (qn+'; q)OO, and we get cp(n)(~)/n! = 0, 
which shows that cp is identically zero. 

We call the attention to the fact that the identity (2.17) was also 
used in the work (Dumas et al., 2002) of Dumas et al., but it is in fact 
a special case of Jackson's transformations, see (111 4) in (Gasper and 
Rahman, 1990) with b = 1, a = -s, z = q. 0 

Let Rq denote the following positive discrete measure 

with moments 

by (1.6). We claim that pq given by (2.14) and Rq are the inverse of 
each other under the product convolution, i.e. 

This amounts to proving that 

but this follows by Cauchy multiplication of the power series (1.6), (1.7). 
Combining Proposition 2.3 with (2.20) we get: 

Corollary 2.4. The following factorization hold 

El = Iq 0 Rq, 

which corresponds to the factorization of the moments of £1 as 
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Remark 2.5. The factorization of Corollary 2.4 is a special case of a 
general factorization in (Bertoin and Yor, 2001): 

where f is a non-zero Bernstein function (2.2), and If, Rf are deter- 
mined by their moments 

sn(Rf) = f (1) . . . . f (n). 

3. The entire function h ( x )  := I?(%) (q"; q), 

Since the Gamma function has simple poles at z = -n, n = 0,1,. . . , 
where (qr; q), has simple zeros, it is clear that the product h(z) := 
r(z) (q"; q), is entire. We have 

and from this it is easy to see that 

Proposition 3.1. For z E cC we have 

I x" dIq (x) = 
h(z + 1) 

0 
(4; 4)m ' 

Proof. For Re z > -1 the following calculation holds by (2.15) and (1.7): 

i 00 (- l)nqn(n-1)/2 
x" dIq (x) = i x~e-xq-n dx 

,=, (q; q)n(q; q)m 
0 0 

Since the right-hand side is entire and I, is a positive measure, we get by 
a classical result (going back to Landau for Dirichlet series, see (Widder, 
1941, p. 58)) that the integral in (3.2) must converge for all z E C, and 
therefore the equation holds for all z E C. 0 

When discussing measures on 10, oo[ it is useful to consider this set as 
a locally compact group under multiplication. The Haar measure is then 
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d m ( x )  = (112) dx ,  and it is useful to consider the density of a measure 
with respect to the Haar measure m. The Mellin transformation is the 
Fourier tranformation of the locally compact abelian group (10, oo[, -), 
and when the dual group is realized as the additive group R, the Mellin 
transformation of a finite measure p on 10, oo[ is defined as 

We get from (3.2) that 

From Proposition 3.1 it follows that I, has negative moments of any 
order, and from (3.1) we get in particular that 

is a probability. 
The image of Jq under the reflection x I+ l / x  is denoted jq. 

Theorem 3.2. The product convolution Lq := Iq o jq has the density 

(1.2) 1 

with respect to Lebesgue measure on the half-line. 

Proof. For z E @ we clearly have 

and by (3.2) we get 

By (1.5) it follows that for z E C 
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so Lq = Xq(x) dx.  0 

Remark 3.3. In  (Bertoin et al., 2004) the authors prove Theorem 3.2 
by showing that 

for -1 < Re z < 0, and then they prove the partial fraction expansion of 
the meromorphic density X q  (x) 

Remark 3.4. The moments of Jq are given by 

Therefore Carleman's criterion gives no information about determinacy 
of jq. B y  the Krein criterion, cf. (Berg, 1995), (Stoyanov, 2000), we 
can conclude that 

because Iq is determinate. The substitution x = l l y  i n  this integral leads 
to 

but since 

we see that (3.6) gives no information about indeterminacy of jq. W e  
do not know if jq is determinate or indeterminate, and as a factor of an 
indeterminate distribution Lq none of these possibilities can be excluded. 
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Abstract The existence of the crank was first conjectured by F. J. Dyson in 
1944 and was later established by G. E. Andrews and F. G. Garvan in 
1987. However, much earlier, in his lost notebook, Ramanujan studied 
the generating function Fa(q) for the crank and offered several elegant 
claims about it, although it seems unlikely that he was familiar with all 
the combinatorial implications of the crank. In particular, Ramanujan 
found several congruences for Fa(q) in the ring of formal power series 
in the two variables a and q. An obscure identity found on page 59 of 
the lost notebook leads to uniform proofs of these congruences. He also 
studied divisibility properties for the coefficients of F,(q) as a power 
series in q. In particular, he provided ten lists of coefficients which he 
evidently thought exhausted these divisibility properties. None of the 
conjectures implied by Ramanujan's tables have been proved. 

1. Introduction 
In attempting to find a combinatorial interpretation for Ramanujan's 

famous congruences for the partition function p(n), the number of ways 
of representing the positive integer n as a sum of positive integers, in 
1944, F. J. Dyson [7] defined the rank of a partition to be the largest part 
minus the number of parts. Let N(m, n) denote the number of partitions 
of n with rank m, and let N(m, t, n) denote the number of partitions of 
n with rank congruent to m modulo t. Then Dyson conjectured that 

and 

N (k, 7,7n + 5) = p(7n + 5, 0 5 k 5 6, 7 '  
which yield combinatorial interpretations of Ramanujan's famous con- 
gruences p(5n + 4) r 0 (mod 5) and p(7n+ 5) - 0 (mod 7), respectively. 
These conjectures, as well as further conjectures of Dyson, were first 
proved by A. 0. L. Atkin and H. P. F. Swinnerton-Dyer [4] in 1954. The 
generating function for N(m, n) is given by 

where 1q1 < 1 and Iql < la1 < 1/1q1. Although, to the best of our 
knowledge, Ramanujan was unaware of the concept of the rank of a 
partition, he recorded theorems on its generating function in his lost 
notebook; in particular, see [20, p. 201. 

The corresponding analogue does not hold for p(l ln+6) r 0 (mod l l ) ,  
and so Dyson conjectured the existence of a crank. In his doctoral dis- 
sertation [ll], F. G. Garvan defined vector partitions which became the 
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forerunners of the crank. The true crank was discovered by G. E. An- 
drews and Garvan on June 6, 1987, at a student dormitory at the Uni- 
versity of Illinois. 

Definition 1.1. For a partition n-, let X(n) denote the largest part of n-, 
let p(n) denote the number of ones in  n, and let u(n-) denote the number 
of parts of n- larger than p(n-). The crank c(n-) is then defined to be 

For n # 1, let M(m,n) denote the number of partitions of n with 
crank m, while for n = 1, we set 

M(0, l )  = -1, M(-1,l) = M(1, l )  = 1, and M(m, 1) = 0 otherwise. 

Let M(m, t ,  n) denote the number of partitions of n with crank congruent 
to m modulo t. The main theorem of Andrews and Garvan [2] relates 
M(m, n) with vector partitions. In particular, the generating function 
for M(m, n) is given by 

The crank not only leads to a combinatorial interpretation of p(1ln + 
6) = 0 (mod l l ) ,  as predicted by Dyson, but also to similar interpreta- 
tions for p(5n + 4) = 0 (mod 5) and p(7n + 5) r 0 (mod 7). 

Theorem 1.2. With M (m, t ,  n) defined above, 

M(k, 11, l l n  + 6) = + 6, 0 < k < 10. 
11 ' 

An excellent introduction to cranks can be found in Garvan's survey 
paper [12]. Also, see [3] for an interesting article on relations between 
the ranks and cranks of partitions. 

2. Entries on Pages 179 and 180 
At the top of page 179 in his lost notebook 

a function F(q) and coefficients An, n 2 0, by 
[20], Ramanujan defines 
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Thus, Fa(q) is the generating function for cranks, and by (1.5)) for n > 1, 

He then offers two congruences for Fa(q). These congruences, like others 
in the sequel, are to be regarded as congruences in the ring of formal 
power series in the two variables a and q. First, however, we need to 
define Ramanujan's theta function f (a, b) by 

which satisfies the Jacobi triple product identity [5, p. 35, Entry 191 

The two congruences are then given by the following two theorems. 

Theorem 2.1. 

Theorem 2.2. 

Note that X2 = a2 + a-2, which trivially implies that a4 - -1 
(mod X2) and a8 r 1 (mod X2). Thus, in (2.4), a behaves like a primitive 
8th root of unity modulo X2. On the other hand, X3 = a3 + 1 + a-3, 
from which it follows that a9 = -a6 - a3 r 1 (mod X3). SO in (2.5), a 
behaves like a primitive 9th root of unity modulo X3. 

This now leads us to the following definition. 

Definition 2.3. Let P(q) denote any power series in q. Then the t- 
dissection of P is given by 
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Thus, if we let a = exp(2ri/8) and replace q by q2, (2.4) implies the 
2-dissection of Fa(q), while if we let a = exp(2ri/9) and replace q by 
q3, (2.5) implies the 3-dissection of Fa(q). The first proofs of (2.4) and 
(2.5) in the forms where a is replaced by the respective primitive root 
of unity were given by Garvan [14]; his proof of (2.5) uses a Macdonald 
identity for the root system A2. 

3. Entries on Pages 18 and 20 

Ramanujan gives the 5-dissection of F,(q) on pages 18 and 20 of his 
lost notebook [20], with the better formulation on page 20. It is inter- 
esting that Ramanujan does not give the two variable form, analogous 
to those in (2.4) and (2.5), from which the 5-dissection would follow by 
setting a to be a primitive fifth root of unity. Proofs of the 5-dissection 
have been given by Garvan [13] and A. B. Ekin [9]. To describe this 
dissection, we first set 

Theorem 3.1. If C is a primitive fifth root of unity and f (-q) is defined 
by (3.1), then 

For completeness, we state Theorem 3.1 in the two variable form as a 
congruence. But first, for brevity, it will be convenient to  define 

and 
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Theorem 3.2. With f (-q), A,, and Sn defined by (3.1)-(3.3), respec- 
tively, 

+ (A, + 1)q3 f (-q51 -q2') 2 
f 2(-q10, -q15) 

f (-q25) (mod S2). 

As we have seen, by letting a be a root of unity, we can derive a 
dissection from a congruence in the ring of formal power series in two 
variables. In fact, the converse is true, and this is proved in [6]. 

4. Entries on Pages 70 and 71 
The first explicit statement and proof of the 7-dissection of Fa(q) was 

given by Garvan [13, Thm. 5.11; another proof was later found by Ekin 
[9]. Although Ramanujan did not state the 7-dissection of Fa(q), he 
clearly knew it, because the six quotients of theta functions that appear 
in the 7-dissection are found on the bottom of page 71 (written upside 
down) in his lost notebook. We record the two variable form here. 

Theorem 4.1. With f (a, b) defined by (2.2), f (-q) defined by (3.1), 
and A, and S, defined by (3.2) and (3.3), respectively, 

1 
Fa(q) -- - f (-q7) 

{f2(-q2', + (A1 - 1)qf (-q14, -q35)f (-q211 -q28) 

+ ~2~~ f2(-q14, -q35) + (A3 + l)q3 f (-q7, -q42) f (-q2', -q28) 

-Alq4f (-q7, -q42)f (-d4, -q35) - (A2 + l)q6f 2(-q71 -q42)) 
(mod S3). 

The first appearance of the 11-dissection of Fa(q) in the literature 
also can be found in Garvan's paper [13, Thm. 6.71. However, again, it 
is very likely that Ramanujan knew the 11-dissection, since he offers the 
quotients of theta functions which appear in the 11-dissection on page 70 
of his lost notebook [20]. Further proofs were found by Ekin [8], [9], and 
a reformulation of Garvan's result was given by M. D. Hirschhorn [15]. 
We state the 11-dissection in the two variable form as a congruence. 



Ramanujan and Cranks 83 

Theorem 4.2. With A, and S, defined by (3.2) and (3.3), respectively, 

- (A4 + 1) q g A C ~ E  - A ~ ~ ~ O B C D E )  (mod S5), 

where A = f (-q55, -q66), B = f (-q77, -q44), C = f (-q88, -q33), D = 
f (-qg9, -q22), and E = f (-qllO, -qll). 

The present authors have recently given two proofs of each of Theo- 
rems 2.1, 2.2, 3.2, 4.1, and 4.2 in [6]. Our first proofs of each theorem 
use a method of "rationalization" which is like the method employed by 
Garvan [13], [14] in proving the dissections where a is replaced with a 
primitive root of unity. Our second method employs a formula found 
on page 59 in Ramanujan's lost notebook [20]. In fact, as we shall see 
in the next section, Ramanujan actually does not record a formula, but 
instead records "each side" without stating an equality. 

5. Entries on Pages 58 and 59 

On page 58 in his lost notebook [20], Ramanujan recorded the follow- 
ing power series: 
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Although Ramanujan did not indicate the meaning of his notation a,, 
in fact, 

a, := an + a-", (5.2) 
and indeed Ramanujan has written out the first 21 coefficients in the 
power series representation of the crank F,(q). (We have corrected a 
misprint in the coefficient of q21.) 

On the following page, beginning with the coefficient of q13, Ramanu- 
jan listed some (but not necessarily all) of the factors of the coefficients 
up to q26. The factors he recorded are 

Ramanujan did not indicate why he recorded only these factors. How- 
ever, it can be noted that in each case he recorded linear factors only 
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when the leading index is 5 5. To the left of each n, 15 5 n 5 26, are 
the unexplained numbers 16 x 16, undecipherable, 27 x 27, -25,49, -7 . 
19,9, -7, -9, -11 15, -11, and -4, respectively. 

6. Congruences for the Coefficients A, on Pages 
179 and 180 

On pages 179 and 180 in his lost notebook [20], Ramanujan offers ten 
tables of indices of coefficients An satisfying certain congruences. On 
page 61 in [20], he offers rougher drafts of nine of the ten tables; Table 
6 is missing on page 61. Unlike the tables on pages 179 and 180, no ex- 
planations are given on page 61. Clearly, Ramanujan calculated factors 
well beyond the factors recorded on pages 58 and 59 of his lost notebook 
given in Section 5.5. To verify Ramanujan's claims, we calculated An up 
to n = 500 with the use of Maple V. Ramanujan evidently thought that 
each table is complete in that there are no further values of n for which 
the prescribed divisibility property holds. However, we are unable to 
prove any of these assertions. 

1 
Table 1. An - 0 (mod a2 + -) 

a2 
Thus, Ramanujan indicates which coefficients A, have a2 as a factor. 

The 47 values of n with a2 as a factor of An are 

Replacing q by q2 in (2.4), we see that Table 1 contains the degree of 
q for those terms with zero coefficients for both 

1 
Table 2. An = 1 (mod a2 + -) 

a2 
To interpret this table properly, we return to the congruence given in 

(2.4). Replacing q by q2, we see that Ramanujan has recorded all the 
degrees of q of the terms (except for the constant term) with coefficients 
equal to 1 in the power series expansion of 

The 27 values of n given by Ramanujan are 
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1 
Table 3. An r -1 (mod a2 + -) 

a2 

This table is to be understood in the same way as the previous table, 
except that now Ramanujan is recording the indices of those terms with 
coefficients equal to -1 in the power series expansion of (6.2). Here 
Ramanujan missed one value, namely, n = 214. The 27 (not 26) values 
of n are then given by 

1 1 
Table 4. An r a - 1 + - (mod a2 + -) 

a a2 
We again return to the congruence given in (2.4). Note that a- 1 + l l a  

occurs as a factor of the second expression on the right side. Thus, 
replacing q by q2, Ramanujan records the indices of all terms of 

with coefficients that are equal to 1. The 22 values of n which give the 
coefficient 1 are equal to 

1 
Table 5. h, = - (a  - 1 + !) (mod a2 + T )  

a 
The interpretation of this table is analogous to the preceding one. 

Now Ramanujan determines those coefficients in the expansion of (6.3) 
which are equal to -1. His table of 23 values of n includes 

1 
Table 6. A, = 0 (mod a + -) 

a 
Ramanujan thus gives here those coefficients which have a1 as a factor. 

There are only three values, namely, when n equals 

These three values can be discerned from the table on page 59 of the 
lost notebook. 
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From the calculation 

where f (-q) is defined by (3.1), we see that in Table 6 Ramanujan 
recorded the degree of q for the terms with zero coefficients in the power 
series expansion of 

For the next three tables, it is clear from the calculation 

that Ramanujan recorded the degree of q for the terms with coefficients 
0, 1, and -1, respectively, in the power series expansion of 

1 
Table 7. An - 0 (mod a - 1 + -) 

a 
The 19 values satisfying the congruence above are, according to Ra- 

manujan, 

1 
Table 8. An = 1 (mod a - 1 + -) 

a 
The 26 values of n found by Ramanujan are 

As in Table 2, Ramanujan ignored the value n = 0. 

1 
Table 9. A, r -1 (mod a - 1 + -) 

a 

The 26 values of n found by Ramanujan are 
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1 
Table 10. An - 0 (mod a + 1 + -) 

a 

Ramanujan has but two values of n such that An satisfies the congru- 
ence above, and they are when n equals 

14,17. 

From the calculation 

it is clear that Ramanujan recorded the degree of q for the terms with 
zero coefficients in the power series expansion of 

The infinite products in (6.2)-(6.6) do not appear to have monotonic 
coefficients for sufficiently large n. However, if these infinite products 
are dissected properly, then we conjecture that the coefficients in the 
dissections are indeed monotonic. Hence, for (6.2)) (6.3)) (6.4)) (6.5), 
and (6.6)) we must study, respectively, the dissections of 

For each of the five products given above, we have determined certain 
dissections. 

We require an addition theorem for theta functions found in Chapter 
16 of Ramanujan's second notebook [19], [5, p. 48, Entry 311. Our 
applications of this lemma lead to the desired dissections. 

Lemma 6.1. If Un = an(n+l)/2pn(n-1)/2 and Vn = an(n-1)/2pn(n+1)/2 
for each integer n, then 

Setting (a, P, N) = (-q6, -qlO, 4) and (-q4, -q12, 2) in (6.7)) we ob- 
tain, respectively, 
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8 56 f (-q4, -q12) = f (q241 q40) - q4f (q , q ), (6.9) 
120 136 whereA:= f(q , q  ), B : =  f(q72,q184), C : =  f(q56,q200), and D:= 

f (q81 q248). 
Setting (a, P, N) = (-q, -q2, 3) in (6.7), we obtain 

For (6.2), the 8-dissection (with, of course, the odd powers missing) 
is given by 

where we have applied (6.8) and (6.9) in the penultimate equality. 
For (6.6), we have the 3-dissection, 

where we have applied (6.10) in the first equality. For (6.3), (6.4), and 
(6.5), we have derived an 8-dissection, a 4-dissection, and a 6-dissection, 
respectively. Furthermore, we make the following conjecture. 

Conjecture 6.2. Each component of each of the dissections for the five 
products given above has monotonic coeficients for powers of q above 
1400. 

We have checked the coefficients for each of the five products up to  n = 
2000. For each product, we give below the values of n after which their 
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dissections appear to  be monotonic and strictly monotonic, respectively. 

Our conjectures on the dissections of (6.4), (6.5), and (6.6) have mo- 
tivated the following stronger conjecture. 

Conjecture 6.3. For any positive integers a and P, each component of 
the (a + ,B + 1)-dissection of the product 

has monotonic coeficients for sufficiently large powers of q. 

We remark that our conjectures for (6.4), (6.5), and (6.6) are then 
the special cases of Conjecture 6.3 when we set (a,  P) = (1,2), (2,3), 
and (1,1), respectively. 

Setting (a, P, N) = (-g6, -glO, 2) and (-g2, -q14, 2) in (6.7), we ob- 
tain, respectively, 

and 

After reading our conjectures for (6.2) and (6.3), Garvan made the 
following stronger conjecture. 

Conjecture 6.4. Define bn by 
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where we have applied (6.11) and (6.12) in the last equality. Then 

(-l)"b4, > 0, for all n > 0, 

(-l)nb4n+1 > 0, for all n > 0, 

(-l),b4,+2 > 0, for all n > 0, n # 3, 

(-1)"+lb4,+3 > 0, for all n > 0. 

Furthermore, each of these subsequences are eventually monotonic. 

It is clear that the monotonicity of the subsequences in Conjecture 6.4 
implies the monotonicity of the dissections of (6.2) and (6.3) as stated 
in Conjecture 6.2. 

In [I], Andrews and R. Lewis made three conjectures on the inequal- 
ities between the rank counts N(m,  t ,  n) and between the crank counts 
M(m,  t ,  n). Two of them, [I, Conj. 2 and Conj. 31 directly imply that 
Tables 10 and 6, respectively, are complete. Recently, using the cir- 
cle method, D. M. Kane [16] proved the former conjecture. It follows 
immediately from [16, Cor. 21 that Table 10 is complete. 

7. Page 182: Part it ions and Factorizations of 
Crank Coefficients 

On page 182 in his lost notebook [20], Ramanujan returns to the 
coefficients A, in the generating function (2.1) of the crank. He factors 
A,, 1 5 n 5 21, as before, but singles out nine particular factors by 
giving them special notation. The criterion that Ramanujan apparently 
uses is that of multiple occurrence, i.e., each of these nine factors appears 
more than once in the 21 factorizations, while other factors not favorably 
designated appear only once. Ramanujan uses these factorizations to 
compute p(n), which, of course, arises from the special case a = 1 in 
(2.1), i.e., 

00 

Ramanujan evidently was searching for some general principles or theo- 
rems on the factorization of A, so that he could not only compute p(n) 
but say something about the divisibility of p(n). No theorems are stated 
by Ramanujan. Is it possible to determine that certain factors appear in 
some precisely described infinite family of values of A,? It would be in- 
teresting to speculate on the motivations which led Ramanujan to make 
these factorizations. 

The factors designated by Ramanujan are 
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At first glance, there does not appear to be any reasoning behind the 
choice of subscripts; note that there is no subscript for the second value. 
However, observe that in each case, the subscript 

n = (as a sum of powers of a) the number of terms with positive 

coefficients minus the number of terms with negative coefficients 

in the representation of p,, when all expressions are expanded out, 

or if p, = p,(a), we see that p,(l) = n. 

The reason p does not have a subscript is that the value of n in this case 
would be 3 - 2 = 1, which has been reserved for the first factor. These 
factors then lead to rapid calculations of values for p(n). For example, 
since Ale = pp2p3p7, then 

In the table below, we provide the content of this page. 

A1 = Pl, 

A2 = P2, 
A3 = P3, 

A4 = P5, 
A5 = P7P, 

A6 = PlP11, 

A7 = P3P5, 

A8 = PlP2P11, 
A9 = P2P3P5, 

A10 = PP2P3P7, 

A11 = ~ 4 ~ 7 ( a 5  - a4 + a2), 
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8. Further Entries on Page 59 
Further down page 59, Ramanujan offers the quotient (with one mis- 

print corrected) 

In more succinct notation, (8.1) can be rewritten as 

where now ao := 2. Scribbled underneath (8.1) are the first few terms 
of (5.1) through q5. Thus, although not claimed by Ramanujan, (8.1) 
is, in fact, equal to F,(q). We state this in the next theorem, with an 
replaced by An. 
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Theorem 8.1. If An is given by (3.2), then, if (ql < min()al, l l lal), 

It is easily seen that Ramanujan's Theorem 8.1, which we prove in the 
next section, is equivalent to a theorem discovered independently by R. 
J. Evans [lo, eq. (3.1)], V. G. KaE and D. H. Peterson [17, eq. (5.26)], 
and KaE and M. Wakimoto [18, middle of p. 4381. As remarked in [17], 
the identity, in fact, appears in the classic text of J. Tannery and J. 
Molk [21, Sect. 4861. 

Theorem 8.2. Let 
k k(k+1)/2 

r k  = (-1) q (8.4) 

Then 

A notable feature of the authors' [6] second method, based on Theo- 
rem 8.1 or Theorem 8.2, for establishing Ramanujan's five congruences 
is that elegant identities arise in the proofs. For example, in the proof 
of Theorem 2.1, we need to prove that 

and 
00 

qk + 1 
rk-- 

(4; 4)w 
1 + q4k - (-q4; q4)w f (-q6, -qlO), 

k=-w 

where r k  is defined by (8.4). To prove Theorem 2.2, we need to prove 

and two similar identities. 
On page 59, below the list of factors and above the two foregoing 

series, Ramanujan records two further series, namely, 



m(b ! ~ / b ) ~ ( b  fbv) 

?(b fb)  

1=u W(b fv/b)"(b f b ~ )  
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.sp-(oy 'uoypas qxau ayq uy pahold aq 09 'ma~oayq SUIMO-(-(OJ 
ay? qnq 'uvfnuems~ Ilq pamysp sy waloayq ON -1 =: ov aJay a m p  

S6 syuvq puv uvCnuvu1v~ 



THEORY AND APPLICATIONS OF SPECIAL FUNCTIONS 

which is (8.3), but with the roles of m and n reversed. 0 

Proof of Theorem 2.1. Multiply (8.6) throughout by (1 + a) to deduce 
that 

by an application of (8.5). 
Secondly, 

by Theorem 8.1. Thus, (9.2) and (9.3) yield Theorem 2.1. 0 

10. Conclusion 
From the abundance of material in the lost notebook on factors of 

the coefficients An of the generating function (2.1) for cranks, Fa(q), 
Ramanujan clearly was eager to find some general theorems with the 
likely intention of applying them in the special case of a = 1 to deter- 
mine arithmetical properties of the partition function p(n). Although 
he was able to derive five beautiful congruences for Fa(q), the kind of 
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arithmetical theorem that he was seeking evidently eluded him. Indeed, 
general theorems on the divisibility of A, by sums of powers of a appear 
extremely difficult, if not impossible, to obtain. Moreover, demonstrat- 
ing that the tables in Section 5.6 are complete seems to be a formidable 
challenge. 

Garvan discovered a 5-dissection of FU(q), where a is any primitive 
10th root of unity, in 114, eq. (2.16)]. This is, to date, the only dissection 
identity for the generating function of cranks that does not appear in 
Ramanujan's lost notebook. It would also be interesting to uncover new 
dissection identities of Fu(q) when a is a primitive root of unity of order 
greater than 11. 
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Abstract By recursive use of the q-Saalschiitz summation formula, we investigate 
further the Saalschiitz chain reactions introduced by the author in (Chu, 
2002). Some general series transformations which express basic termi- 
nating series in terms of finite multiple sums will be established. As 
applications, we derive by means of Jackson's BPS-series identity three 
transformations including one due to Andrews (1975). These transfor- 
mations yield further a number of multiple Rogers-Ramanujan identi- 
ties, whose research was initiated and developed mainly by Andrews 
and Bressoud from the middle of seventieth up to now. 

1. Introduction and notation 
For two complex numbers q  and z ,  the shifted-factorial of order n 

with base q  is defined by 

( x ;  q ) O  -- 1  and (z ;  q)n = ( 1  - x )  (1  - zq )  . . . (1  - xqn-l) for n = 1,2,  . . . . 
( l . l a )  

When Iql < 1, the infinite product 

( x ;  q)m = J-Jl - xqk)  

O 2005 Springer Science+Business Media, Inc. 
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allows us consequently to express 

where n can be an arbitrary real number. 
The product and fraction forms of the shifted factorials are abbrevi- 

ated throughout the paper respectively to 

b, . . .  , c (a; (4  q), . . . (c; dn (1. le) 

Following Bailey (Bailey, 1935) and Slater (Slater, 1966), the basic 
hypergeometric series is defined by 

where the base q will be restricted to Iql < 1 for non-terminating q-series. 
Among the basic hypergeometric formulas, we reproduce three of them 

for our subsequent references. The first is the q-Saalschiitz theorem 
(cf. (Bailey, 1935, Chapter 8) and (Slater, 1966, $3.3)): 

The second is the very well-poised formula due to Jackson (cf. (Bailey, 
1935, Chapter 8) and (Slater, 1966, 53.3)): 

The third and the last one is Watson's q-analogue of the Whipple trans- 
formation (cf. (Bailey, 1935, Chapter 8)): 
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The celebrated Rogers-Ramanujan identities (cf. (Slater, 1966, 53.5)) 
read as: 

Bailey (Bailey, 1947; Bailey, 1948) discovered numerous identities of such 
kind. A systematic collection was done by Slater (Slater, 1951; Slater, 
1952). Some more recent results may be found in Gessel-Stanton (Gessel 
and Stanton, 1983). 

In their work on multiple Rogers-Ramanujan identities, Andrews and 
Bressoud et al. (Agarwal et al., 1987; Andrews, 1984; Andrews, 1986; 
Bressoud, 1980a; Bressoud, 1988) introduced the powerful Bailey chains 
and Bailey lattice. They found general transformations which express 
multiple unilateral sums into a single (unilateral) basic hypergeometric 
series involving two sequences (Bailey pair) connected by an inverse se- 
ries relation. The latter can be reformulated, in particular settings, as 
a bilateral basic hypergeometric series. By evaluating the bilateral sum 
with the Jacobi triple or the quintuple product formulas, they derived 
with great success many multiple Rogers-Ramanujan identities. 

By iterating the q-Saalschutz formula (1.3), the Saalschutz chain re- 
actions under "finite condition" has been introduced by the author in 
(Chu, 2002) to study the ordinary and basic hypergeometric series with 
integer differences between numerator and denominator parameters. We 
will investigate further in the next section the Saalschutz chain reactions 
without finite condition and establish transformation theorems (from 2.4 
to 2.7) of the same nature as Bailey chains due to Andrews and Bres- 
soud but with one (or two) independent arbitrary sequence(s). Then we 
proceed in Section 3 and 4 to derive explicitly several specific transfor- 
mation formulas (without indeterminate sequence). Finally in the last 
section, we conclude with thirty multiple Rogers-Ramanujan identities 
which are simply limiting cases of the transformations presented in this 
paper combined with the Jacobi triple product identity. 

The purpose of this paper is not to present a general cover of the 
Rogers-Ramanujan identities and their multiple counterparts through 
the Saalschutz chain reactions. Instead, it will be limited to illustrate 
how to explore this method potentially to generate multiple basic hy- 
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pergeometric transformations and produce multiple Rogers-Ramanujan 
identities. 

2. The Saalschutz chain reactions 
For nonnegative integers k ,  M with k 2 M and three indeterminates 

a, z,  y, the q-Saalschiitz formula (1.3) tells us that 

which may be restated explicitly as follows: 

Denote the multiple summation index and its partial sums respectively 
by 

f i  = (ml, m2,. . . , m,) 

With 1 5 L 5 n, we may rewrite (2.1) with subscripts as 

Then the recursive product (the Saalschutz chain reactions) of the ex- 
pression just displayed for L = 1,2,.  . . , n reasults compactly in the fol- 
lowing 
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Lemma 2.1 (Multiple sum: Andrews (Andrews, 1979a, Eq. 
5.2)). With k being a nonnegative integer, there holds 

where the multiple summation index fh runs over all mi 2 0 for i = 
1 , 2  , . . . ,  n. 

In this lemma, replacing xi by qa/xi and then a by aq-5 we may state 
the limiting case k -+ co, (which did not appear in Andrews (Andrews, 
1979a) explicitly), as follows: 

Corollary 2.2 (Multiple sum). 

When a -+ co and yi t 0, it reduces to the following 

Corollary 2.3 (Andrews (Andrews, 1979a, 56)). 

For this identity, Milne (Milne, 1980, Thm. 3.1) has given an alternate 
derivation. 

For two natural numbers u and v with 1 < u < v < n, and complex 
indeterminates c and {xi, yi}, denote factorial fractions by 

It is trivial to note that 
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Then the multiple sum in the lemma may be expressed as 

Multiplying both sides by M w k  for suitable Wk and then summing 
over all k 2 0, we establish the following general transformation theorem, 
which may be considered as a counterpart of the main result obtained 
in (Chu, 2002, Thm. 2). 

Theorem 2.4 (Well-poised transformation). For a complex se- 
quence {Wk),  there holds the following multiple basic hypergeometric 
transformation 

provided that both series are well-defined and convergent. 

Rewriting the well-poised transformation in Theorem 2.4 as 

and then performing the substitution 
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we can manipulate the last sum (2.3c), shortly as S(2.3~) with respect 
to k according to the formal series rearrangement 

where V and A are forward and backward difference operators: 

This can be proceeded as follows: 

Now applying the transformation in Theorem 2.4 to the penultimate 
line, we obtain with some simplification, the following expression 

Replacing (2.3~) with this result leads (2.3) to the following almost- 
poised series transformation. 

Theorem 2.5 (Almost-poised transformation). For two complex 
sequences {ak, yk), there holds the following multiple basic hypergeomet- 
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ric transformation 

provided that both series are well-defined and convergent with 

According to (2.4)) the k-sum in (2.5~) may be reformulated as 

where we have defined dually 

In Theorem 2.5, take 

Yk = 1. 

Then it is easy to check the factorization 

which leads us to the following transformation: 

Theorem 2.6 (Almost-poised transformation). For a complex se- 
quence {ak), there holds the following multiple basic hypergeometric 
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transformation 

provided that both series are well-defined and convergent. 

Taking instead in Theorem 2.5 

we can compute without difficulty that 

6k+Mn  = (1 - aq (f) k+Mn 

which leads us to the following transformation: 

Theorem 2.7 (Almost-poised transformation). For a complex se- 
quence { Y ~ ) ,  there holds the following multiple basic hypergeometric trans- 
formation 

provided that both series are well-defined and convergent. 
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3. Basic Almost-poised Transformations 
By specifying the W and a, y-sequences in the transformation theo- 

rems established in the last section, we will derive three explicit multiple 
series transformations which exemplify a larger class of such relations. 

In Theorem 2.4, take 

Then the inner sum with respect to  k becomes 

with the 6p5-series evaluated by Jackson's formula as 

This leads us to the following 

Theorem 3.1 (Andrews (Andrews, 1975, Theorem 4) and (An- 
drew~,  1979a, 95)). For complex parameters {a, b, c, d), and indeter- 
minates {xk, yk)EZ1 with X = xlx2.. . xn and Y = yly2. yn, there 
holds the multiple basic hypergeometric series transformation 

provided that both series are well-defined and terminated by one of b, c 
or d. 

In Theorem 2.6, take 
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Then the sum with respect to k in (2.9d) becomes 

with the 6q5-series under terminating condition evaluated as 

Substituting these into Theorem 2.6, we get the following transforma- 
tion: 

Theorem 3.2 (Almost-poised transformation). There holds the 
multiple basic hypergeometric transformation 

provided that both series are well-defined and terminated by one of b, c 
or d. 

In Theorem 2.7, take 
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Then the sum with respect to k in (2.10d) becomes 

with the 6cps-series under terminating condition evaluated as 

Substituting these into Theorem 2.7, we get the following transform* 
tion: 

Theorem 3.3 (Almost-poised transformation). There holds the 
multiple basic hypergeometric transformation 

provided that both series are well-defined and terminated by one of b, c 
or  d .  

4. Reductions and Consequences 
The transformations displayed in the last section may be reduced by 

limiting process to several known and unknown results as consequences. 

4.1 George Andrews 
In Theorem 3.1, let c t oo and xi, yi + oo for i = 2,3,. . . , n. The 

result may be stated as 
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Proposition 4.1. There holds the multiple basic hypergeometric trans- 
formation 

n 
Q+Y [b, d; qlMn aMiqMj qalb, qald x qMn-M' [ R ~ / x ,  Q ~ / Y  I q] (bdJMn (q; q)mi Th20 z=1 

= [ qa, a / M  Iq ]_  

This may be considered as an extension of Andrews (Andrews, 1975, 
Corollary 4.1). 

If taking further b = qVM,  d --+ oo and x = 1, y t oo, then Proposi- 
tion 4.1 reduces to the following: 

Corollary 4.2 (Andrews (Andrews, 1979b, Eq. 4.1) and (An- 
drew~,  1981, Eqs. 1.5 & 3.1)). 

whose limiting version reads as 

Again in Theorem 3.1, let c + oo, and xi = -@, yi -t oo for 
i = 2,3 , .  . . , n. The result may be stated as 

Proposition 4.3. There holds the multiple basic hypergeometric trans- 
formation 

4.2 David Bressoud 
Letting e t 0 and c + oo in Theorem 3.3, we may state the result as 
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Theorem 4.4 (Almost-poised transformation). There holds the 
multiple basic hypergeometric transformation 

alb, a l d  
= [a ,  a/bd I '1 C(-') k q)k "1 [ {T~: q(l:k) 

O0 k>O (4; d k  

The central theorem of Bressoud (Bressoud, 1980a, Thm. 1) is equiv- 
alent to the limiting case b -+ oo and xi, yi + oo for 1 < i 5 e. In 
Theorem 4.4, taking xi, yi -+ oo further for i = 2,3,. . . , n, we obtain the 
following 

Proposition 4.5. There holds the multiple basic hypergeometric trans- 
formation 

alb, a ld  
= [a ,  a/,, I q] c [ a, b, d, x, 

00 k20 
lq],(-E)" (4.lb) 

4, alb, ald,  PIX, qaly 

The limiting case b, d, x, y + oo of Proposition 4.5 reads, with re- 
placement a + qJ as a formula on Alder polynomials 

Corollary 4.6 (Andrews (Andrews, 1974, Eq. 2.5)). 

4.3 Other transformations 
For c + oo, Theorem 3.2 may be restated as 
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Theorem 4.7 (Almost-poised transformation). There holds the 
multiple basic hypergeometric transformation 

Its further limiting case xi, yi -+ oo for i = 2 ,3 , .  . . , n reads as 

Proposition 4.8. There holds the multiple basic hypergeometric trans- 
formation 

Letting c, e -+ oo in Theorem 3.3, we may state the result as 

Theorem 4.9 (Almost-poised transformation). There holds the 
multiple basic hypergeometric transformation 

alb, aid (a ;  q ) k  (qa) {x i ,  ~ i }  -(;I 
= [ a ,  a/bd 1 co k 2 0  (2) [ [ I ,  *] ] 
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Its further limiting case xi7 yi --t co for i = 2,3,. . . , n of this theorem 
reads as 

Proposition 4.10. There holds the multiple basic hypergeometric trans- 
formation 

n-1 

[b, d; 911 M~ qa/x Y -M;- .=e C M, n aMi 4 Mf 

(bd) Mn [qa/x7 P/Y 1 '1 m: s20 i=, (4; 4)mi 

5. Multiple Rogers-Ramanujan Identities 
Under various specifications, the k-sums appeared in the propositions 

demonstrated in last section may be evaluated in closed forms by the 
Jacobi triple product identity (cf. Bailey (Bailey, 1935, Chapter 8)) 

which allows us to derive the following multiple Rogers-Ramanujan iden- 
tities: 

Example 1 (a = 1: b, d + oo and x, y = f q1/2 in Proposition 4.1). 

Example 2 (a = q: b, d --t oo and x, y = f q1I2 in Proposition 4.1). 

Example 3 (a = q: x = -q and b, d, y -t oo in Proposition 4.5). 
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It has first been discovered in (Agarwal and Bressoud, 1989, Eq. 1.1), 
(Bressoud, 1980a, Eq. 3.4), (Bressoud, 1980b, Thm. 1: S = 0), (Bressoud, 
1981, Eq. 5.6), (Bressoud, 1989, Eq. 1.1) and (Bressoud et al., 2000, p. 7- 
2) by Bressoud et al. 

Example 4 (a = q: x = -q and b, dl y + oo in Proposition 4.8; 
cf. (Stembridge, 1990, Eq. 1-11)). 

Example 5 (a = q: b, dl x, y -t oo in Proposition 4.5). 

As a common generalization of the Rogers-Ramanujan identities (1.5a)- 
(1.5b), this one has been found in (Agarwal et al., 1987, Eq. 1.5), (Agar- 
wal and Bressoud, 1989, Eq. 0.3), (Andrews, 1974, Eq. 1.7), (Andrews, 
1976, Eq. 7.3.7), (Andrews, 197913, Eq. 1.3), (Andrews, 1981, Eq. 1.1), 
(Andrews, 1984, Eq. 1.3), (Andrews, 1986, Eqs. 3.45-46), (Bressoud, 
1980a, Eq. 3.2), (Bressoud, 1980b, Thm. 1: b = I), (Bressoud, 1981, 
Eqs. 5.3 & 6.1), (Bressoud, 1989, Eq. 0.3), (Bressoud et al., 2000, pp. 4-1 
& 7-I), (Garrett et al., 1999, Eq. 4.1) and (Stembridge, 1990, Eqs. c-d) 
mainly by Andrews and Bressoud et al. 

Example 6 (a = q: b, d, x, y + oo in Proposition 4.8). 

Example 7 (a = q: b = -9, d -t oo and x, y = f q1I2 in Proposi- 
tion 4.3). 

Example 8 (a = q: b = -9, d -+ oo and x, y = f q1I2 in Proposi- 
tion 4.1). 



116 THEORY AND APPLICATIONS OF SPECIAL FUNCTIONS 

Example 9 ( a  = 1: b = -q, d -t co and x = y = -1 in Proposi- 
tion 4.1). 

Example 10 ( a  = q: b = x = -q and d, y -+ co in Proposition 4.8). 

~~~~~l~ 11 (a  = q: "-v, z=ql,2, d=-q1L/2 y _ _  I q -) q2 in Proposition 4.3). 

Example 12 ( a  = q: b = -q and d, x ,  y -t co in Proposition 4.8). 



The Saalschutz Chain Reactions and Multiple q-Series Transformations 117 

Example 15 (a = 1: b, d 4 c o  
x=-1, y=-q 

I q + q2 in Proposition 4.1). 

b d+oo Example 16 (a = 1: x=;1,2 1 q + q2 in Proposition 4.1; cf. 
r Y+, 

(Bressoud et al., 2000, p. 8-2)). 

Example 17 (a = 1: b=-q d 4 0 0  
x = - ~ ,  y=-+/2 1 q + q2 in Proposition 4.3). 

b=-q1/2, d 4 ,  Example 18 (a = 1: x=-l, y+03 I q + q2 in Proposition 4.3). 

-b=q'/2, d-,, Example 19 (a = q: 
x=- q, y=q1l2 

I p + q2 in Proposition 4.1). 
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b=-q3/2, d-00 Example 20 (a = q: x=-q, y=-q1/2 1 q + q2 in Proposition 4.8). 

b=-q'/2, d + m  Example 21 (a = q: x=ql,2, +m I q + q2 in Proposition 4.1). 

Example 22 (a = q: b=-q d 4 0 0  
x=-q , Y--+OO I q -+ q2 in Proposition 4.5; cf. 

(Bressoud, 1980a, Eq. 3.9)). 

Example 23 (a = q: b=-q 
112, d+, 

= -  I q + q2 in Proposition 4.8). 
r Y - ' m  

Example 24 (a = q: b=-q 1 / 2 9 d ^ m  I q + q2 in Proposition 4.5). 
x ,  Y+00 



The Saalschiitz Chain Reactions and Multiple q-Series Transformations 119 

This identity appeared in (Agarwal and Bressoud, 1989, Eq. 1.2), (An- 
drew~, 1975, Corollary 4.3), (Andrews, 1976, Eq. 7.4.4), (Bressoud, 
1980a, Eq. 3.8) and (Bressoud, 1989, Eq. 1.2) due to  Andrews and Bres- 
soud et al. 

b=-1, d - t m  
Example 25 (a = 1: x+o, y=-Eq1/2  1 t q2 in Proposition 4.3). 

b=-1, d 4 m  Example 26 (a = 1: %, y=+ql,2 I q t q2 in Proposition 4.3). 

Example 27 (a = q: b=-q , d -to3 
z=-ql,,, +, 1 q + q2 in Proposition 4.3). 

Example 28 (a = 1: b=x~j"m I q + q2 in Proposition 4.3). 

Example 29 (a  = 1: b = d = -1 and x = -q, y t oo in Proposi- 
tion 4.1). 
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b=d=-1 Example 30 ( a  = 1: z=- 
9, Y+m 

I q -4 q2 in Proposition 4.3). 

These examples are selected from about two hundreds multiple Rogers- 
Ramanujan identities derived from the propositions displayed in the last 
section. More identities of such kind may be found in (Agarwal and 
Bressoud, 1989)) (Andrews, 1984), (Bressoud, 1980a; Bressoud, 1989) 
and (Stembridge, 1990)) mainly due to Andrews and Bressoud. For the 
most recent development, we refer to (Bressoud et al., 2000)) (Garrett 
et al., 1999), (Schilling and Warnaar, 1997), (Stanton, 2001) and (War- 
naar, 2001). 
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Abstract In this paper we are concerned with rational solutions and associated 
polynomials for the second, third and fourth Painlev6 equations. These 
rational solutions are expressible as in terms of special polynomials. The 
structure of the roots of these polynomials is studied and it is shown 
that these have a highly regular structure. 

1. Introduction 
In this paper we discuss hierarchies of rational solutions and associated 

polynomials for the second, third and fourth Painlev6 equations (PII- 
PIV) 

where ' = d/dz and a, P, y and 6 are arbitrary constants. 
The six Painlev6 equations (PI-PVI), were discovered by Painlev6, 

Gambier and their colleagues whilst studying second order ordinary dif- 
ferential equations of the form 

where F is rational in w' and w and analytic in Z .  The Painlev6 equa- 
tions can be thought of as nonlinear analogues of the classical special 
functions. Indeed Iwasaki, Kimura, Shimomura and Yoshida (Iwasaki 
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et al., 1991) characterize the six Painlev6 equations as "the most im- 
portant nonlinear ordinary differential equations" and state that ('many 
specialists believe that during the twenty-first century the Painlev6 func- 
tions will become new members of the community of special functions." 
The general solutions of the Painlev6 equations are transcendental in 
the sense that they cannot be expressed in terms of (known) classical 
functions and so require the introduction of a new transcendental func- 
tion to describe their solution. However it is well-known that PII-PVI, 
possess hierarchies of rational solutions for special values of the param- 
eters (see, for example, (Airault, 1979; Albrecht et al., 1996; Bassom 
et al., 1995; Fokas and Ablowitz, 1982; F'ukutani et al., 2000; Gromak, 
1999; Gromak et al., 2002; Okamoto, 1987a; Okamoto, 1987b; Okamoto, 
1986; Okamoto, 1987c; Umemura and Watanabe, 1997; Umemura and 
Watanabe, 1998; Vorob'ev, 1965; Watanabe, 1995; Yablonskii, 1959; 
Yuan and Li, 2002) and the references therein). These hierarchies are 
usually generated from "seed solutions" using the associated Backlund 
transformations and frequently can be expressed in the form of determi- 
nants through '%-functions". 

Vorob'ev (Vorob'ev, 1965) and Yablonskii (Yablonskii, 1959) expressed 
the rational solutions of PII in terms of the logarithmic derivative of 
certain polynomials which are now known as the Yablonskii-Vorob'ev 
polynomials. Okamoto (Okamoto, 1986) obtained analogous polynomi- 
als related to some of the rational solutions of PIv, these polynomials 
are now known as the Okamoto polynomials. Further Okamoto noted 
that they arise from special points in parameter space from the point- 
of-view of symmetry, which is associated to the affine Weyl group of 
type A?). Umemura (Umemura, 2003) associated analogous special 
polynomials with certain rational and algebraic solutions of PIII, PV 
and PvI which have similar properties to the Yablonskii-Vorob'ev poly- 
nomials and the Okamoto polynomials; see also (Noumi M. and H., 
1998; Umemura, 1998; Umemura, 2001; Yamada, 2000). Subsequently 
there have been several studies of special polynomials associated with the 
rational solutions of PII (F'ukutani et al., 2000; Kajiwara and Masuda, 
1999a; Kajiwara and Ohta, 1996; Taneda, 2000), the rational and alge- 
braic solutions of PIII (Kajiwara and Masuda, 199913; Ohyama, 2001)) 
the rational solutions of PIv (F'ukutani et al., 2000; Kajiwara and Ohta, 
1998; Noumi and Yamada, 1999), the rational solutions of Pv (Masuda 
et al., 2002; Noumi and Yamada, 199813) and the algebraic solutions 
of PvI (Kirillov and Taneda, 2002b; Kirillov and Taneda, 2002a; Ma- 
suda, 2002; Taneda, 2001a; Taneda, 2001b). However the majority of 
these papers are concerned with the combinatorial structure and deter- 
minant representation of the polynomials, often related to the Hamil- 
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tonian structure and affine Weyl symmetries of the Painlev6 equations. 
Typically these polynomials arise as the "T-functions" for special so- 
lutions of the Painlev6 equations and are generated through nonlinear, 
three-term recurrence relations which are Toda equations that arise from 
the associated Backlund transformations of the Painlev6 equations. The 
coefficients of these special polynomials have some interesting, indeed 
somewhat mysterious, combinatorial properties (see (Noumi M. and H., 
1998; Umemura, 1998; Umemura, 2001; Umemura, 2003)). Addition- 
ally these polynomials have been expressed as special cases of Schur 
polynomials, which are irreducible polynomial representations of the 
general linear group GL(n) and arise as T-functions of the Kadomtsev- 
Petviashvili (KP) hierarchy (Jimbo and Miwa, 1983). The Yablonskii- 
Vorob'ev polynomials associated with PII are expressible in terms of 
2-reduced Schur functions (Kajiwara and Masuda, 1999a; Kajiwara and 
Ohta, 1996), and are related to the T-function for the rational solution 
of the modified Korteweg de Vries (mKdV) equation since PII arises as a 
similarity reduction of the mKdV equation. The Okamoto polynomials 
associated with PIv are expressible in terms of 3-reduced Schur functions 
(Kajiwara and Ohta, 1998; Noumi and Yamada, 1999) since PIv arises 
as a similarity reduction of the Boussinesq equation (cf. (Clarkson and 
Kruskal, 1989)), which belongs to the so-called 3-reduction of the KP 
hierarchy (Jimbo and Miwa, 1983). 

It is also well-known that PII-PVI possess solutions which are express- 
ible in terms of the classical special functions; these are often referred 
to as "one-parameter families of solutions". For PII these special func- 
tion solutions are expressed in terms of Airy functions Ai(z) (Airault, 
1979; Flaschka and Newell, 1980; Gambier, 1910; Okamoto, 1986), for 
PIII they are expressed in terms of Bessel functions Jv(z) (Lukashevich, 
1967a; Milne et al., 1997; Murata, 1995; Okamoto, 1987c), for PIv they 
are expressed in terms of Weber-Hermite (parabolic cylinder) functions 
Dv(z) (Bassom et al., 1995; Gromak, 1987; Lukashevich, 196713; Mu- 
rata, 1985; Okamoto, 1986), for Pv they are expressed in terms of 
Whittaker functions M,,p(z), or equivalently confluent hypergeomet- 
ric functions 1Fl(a; c; z) (Lukashevich, 1968; Gromak, 1976; Okamoto, 
198713; Watanabe, 1995), and for PVI they are expressed in terms of 
hypergeometric functions 2F1(a, b; c; z )  (Fokas and Yortsos, 1981; Luka- 
shevich and Yablonskii, 1967; Okamoto, 1987a); see also (Ablowitz and 
Clarkson, 1991; Gromak, 197813; Gromak, 1999; Gromak and Lukashe- 
vich, 1982; Tamizhmani et al., 2001). Some classical orthogonal poly- 
nomials arise as particular cases of these special function solutions and 
thus yield rational solutions of the associated Painlev6 equations, espe- 
cially in the representation of rational solutions through determinants. 
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For PIII and Pv these are in terms of associated Laguerre polynomials 
~ ~ ' ( z )  (Charles, 2002; Kajiwara and Masuda, 1999b; Masuda et al., 
2002; Noumi and Yamada, 1998b), for PIv in terms of Hermite polyno- 
mials Hn(z) (Bassom et al., 1995; Kajiwara and Ohta, 1998; Murata, 
1985; Okamoto, 1986), and for for PvI in terms of Jacobi polynomials 
~ p " ) ( z )  (Masuda, 2002; Taneda, 2001b). In fact all rational solutions 
of PvI arise as particular cases of the special solutions given in terms of 
hypergeometric functions (Mazzocco, 2001). 

This paper is organised as follows. The Yablonskii-Vorob'ev poly- 
nomials and rational solutions for PII are studied in 92. We compare 
the properties of these special polynomials with properties of classical 
orthogonal polynomials. The analogous special polynomials associated 
with rational solutions of PIII, which occur in the generic case when 
7 6  # 0, are studied in $3. Further, in 93 we study the special polynomi- 
als associated with algebraic solutions of PIII, which occur in the cases 
when either y = 0 and a6 # 0, or 6 = 0 and p y  # 0. In 94 the special 
polynomials associated with rational solutions for PIv. Here there are 
four types of special polynomials, two classes of Okamoto polynomials, 
which were introduced by Okamoto (Okamoto, 1986), generalized Her- 
mite polynomials and generalized Okamoto polynomials, both of which 
were introduced by Noumo and Yamada (Noumi and Yamada, 1999). 
Finally in 95 we discuss our results and pose some open questions. 

2. Second Painlev6 equation 

2.1 Rational solutions of PII 
The rational solutions of PII (1.1) are summarized in the following 

Theorem due to Vorob'ev (Vorob'ev, 1965) and Yablonskii (Yablonskii, 
1959); see also (Fukutani et al., 2000; Umemura, 1998; Umemura and 
Watanabe, 1997; Taneda, 2000). 

Theorem 2.1. Rational solutions of PII exist i f  and only i f  a = n E Z, 
which are unique, and have the form 

for n 2 1, where the polynomials Qn(z) satisfy the d.i,terentiaGdifference 
equation 

Qn+~Qn-l= Z Q ~  - 4 [Q~Q: - ( ~ b ) ~ ]  9 (2.2) 

with Qo(z) = 1 and Ql(z) = z. The other rational solutions are given 
by 

W(Z; 0) = 0, w(z; -n) = -w(z; n). (2.3) 
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The polynomials Q, (z) are monic polynomials of degree $n(n+ 1) with 
integer coefficients, and are called the Yablonskii- Vorob'ev polynomials. 
The first few polynomials Q,(z) are 

Remarks 2.2. 

1. The hierarchy of rational solutions for PII given by (2.1) can also 
be derived using the Backlund transformation of PII 

(Lukashevich, 1971), with "seed solution" wo = w(z; 0) = 0. 

2. It is clear from the recurrence relation (2.2) that the Q,(z) are 
rational functions, though it is not obvious that in fact they are 
polynomials since one is dividing by Q,-l(z) at every iteration. 
Indeed it is somewhat remarkable that the Qn(z) defined by (2.2) 
are polynomials. 

3. Letting Q, (z) = C ~ T ,  (z) exp(z3/24), with c, = (2i),(,+l), in (2.2) 
yields the Toda equation 
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4. The Yablonskii-Vorob'ev polynomials Qn(z) possess the discrete 
symmetry 

Qn(wz) = w n(n+1)/2 
Qn (2) 7 (2-7) 

where u3 = 1 and fn (n  + 1) is the degree of Qn(z). 

Fukutani, Okamoto and Umemura (Fukutani et al., 2000) and Taneda 
(Taneda, 2000) have proved Theorems 2.3 and 2.4 below, respectively, 
concerning the roots of the Yablonskii-Vorob'ev polynomials. Further 
these authors also give a purely algebraic proof of Theorem 2.1. 

Theorem 2.3. For every positive integer n, the polynomial Qn(z) has 
simple roots. Further the polynomials Qn(z) and Qn+l(z) do not have a 
common root. 

Theorem 2.4. The polynomial Qn(z) is  divisible by z i f  and only if 
n - 1 mod 3. Further Qn(z) is  a polynomial in z3 i f  n $ 1 mod 3 and 
Qn(z)/z is  a polynomial in z3 i f  n - 1 mod 3. 

Remarks 2.5. 

1. From these theorems, since each polynomial Qn(z) has only simple 
roots then it can be written as 

where an,k, for k = 1, . . . , &n(n + I ) ,  are the roots. Thus the 
rational solution of PII can be written as 

(2.9) 
and so w (z; n) has n roots, $n(n- 1) with residue +1 and f n(n+ 1) 
with residue -1; see also (Gromak, 2001). 

2. The roots an,k of the polynomial Qn(z) satisfy 

This follows from the study of rational solutions of the Korteweg- 
de Vries (KdV) equation 
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and a related many-body problem by Airault, McKean and Moser 
(Airault et al., 1977) (see also (Adler and Moser, 1978)). 

3. Rational solutions of the KdV equation (2.11) have the form (Ablowitz 
and Satsuma, 1978; Adler and Moser, 1978; Airault, 1979; Airault 
et al., 1977). 

4. The Yablonskii-Vorob'ev polynomials are closely related with Schur 
functions (Kajiwara and Ohta, 1996; Umemura, 2001) and so it 
can be proved that the rational solution of PII can be expressed in 
terms of determinants (Iwasaki et al., 2002; Kajiwara and Masuda, 
1999a; Kajiwara and Ohta, 1996). 

5. Kametaka (Kametaka, 1983) has obtained a sharp estimate for the 
maximum modulus of the poles of the Yablonskii-Vorob'ev poly- 
nomials. It is shown that if A, = r n a ~ ~ < ~ < , ~ , + ~ ~ / ~ { ~ a ~ , ~ ~ )  then 
n2l3 5 An+2 < 4n2I3, for n 2 0. In ( ~ a i e c a k a ,  1985) Karnetaka 
studies the irreducibility of the Yablonskii-Vorob'ev polynomials. 

6. Kaneko and Ochiai (Kaneko and Ochiai, 2002) derive formulae 
for the coefficients of the lowest degree term of the Yablonskii- 
Vorob'ev polynomials; the other coefficients remain to be deter- 
mined, which is an interesting problem. 

Table 1. Roots of the Yablonskii-Vorob'ev polynomials 
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Roots of Qz(z) = 0 

Roots of Qg(z) = 0 

10 

-2 
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Roots of Q3(z) = 0 

10 1 0  , , , ;;::, , , , 

. . 
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-I0 - 8 - 6 - 4 - 2 0  2 4 6 8 1 0  

Roots of QB(z) = 0 

Roots of Qs(z) = 0 Roots of Q7(z) = 0 

Figure 1. hots of the Yablonskii-Vorob'ev polynomials Q,(z) = 0 

2.2 Roots of the Yablonskii-Vorob'ev 
polynomials 

The locations of the roots for the Yablonskii-Vorob'ev polynomials 
Qn(z) = 0, for n = 3,4, . . . , 8  are given in Table 1 and these are plotted 
in Figure 1. The locations of the poles of the rational solutions of PII, 
which are the roots of S,(z) = Qn-l(z)Qn(z) = 0, for n = 3,4, . . . , 8  are 
plotted in Figure 2. 

From these plots we make the following observations 
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-lo -8 -k A -2 0 2 4 6 8 (0 

Roots of S3(z) = 0 

Roots of S5(z) = 0 

Roots of &(z) = 0 

Roots of S4(z) = 0 

Roots of Ss(z) = 0 

Figure 2. Poles of rational solutions of PII 
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1. From Figure 1 we see that the roots of the Yablonskii-Vorob'ev 
polynomials form approximately equilateral triangles, in fact ap- 
proximate "Pascal triangles." The values of the roots in Table 2.1 
show that they actually lie on curves rather than straight lines. 

2. The roots of Qn(z) = 0 lie on circles with centre the origin. If we 
define 

if n $ lmod 3, 
qn(O = { if n - 1 mod 3. 

The radii of the circles are given by the third roots of the absolute 
values of the non-zero roots of qn(<) = 0, with three equally spaced 
roots of Q,(z) = 0 on circles for the real roots of qn(<) = 0 and 
six roots, three complex conjugate pairs, of Qn(z) = 0 on a circles 
for the complex roots of qn(<) = 0 (see (Clarkson and Mansfield, 
2003)). 

3. The plots in Figures 1 and 2 are invariant under rotations through 
$.ir and reflections in the real z-axis and the lines arg(z) = f $r, f $ 7 ~ .  

This is because PII admits the finite group of order 6 of scalings 
and reflections 

where p3 = 1 and E~ = 1. 

4. From Figure 2 we see that the poles of the rational solutions of 
PII that the location of the poles yields an approximate triangle 
structure, with internal hexagons. 

3. Third Painlev6 equation 

3.1 Rational solutions of PIII 
In this section we consider the generic case of PIII when y6 # 0, then 

we set y = 1 and 6 = -1, without loss of generality (by rescaling w and 
z if necessary), and so consider 

The location of rational solutions for the generic case of PIII given by 
(3.1) is stated in the following theorem. 

Theorem 3.1. Equation (3.1), i.e., PIII with y = -6 = 1, has rational 
solutions i f  and only i f  a + ED = 4n, with n E Z and E = f 1. These 
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rational solutions have the form w = Pm(z)/Qm(z), where Pm(z) and 
Q,(z) and polynomials of degree m with no common roots. 

Proof See Gromak, Laine and Shimomura (Gromak et al., 2002), p. 174 
(see also (Milne et al., 1997; Murata, 1995; Umemura and Watanabe, 
1998)). 

We remark that the rational solutions of the generic case of PIII (3.1) 
lie on lines in the a-p plane, rather than isolated points as is the case for 
PIv (see 94). Further, equation (3.1) is of type D6 in the terminology 
of Sakai (Sakai, 2001), who studied the Painlev6 equations through a 
geometric approach based on rational surfaces. 

Umemura (Umemura, 2003), see also (Kajiwara and Masuda, 199913; 
Noumi M. and H., 1998; Umemura, 1998; Umemura, 2001), derived spe- 
cial polynomials associated with rational solutions of PIII, which are 
defined in Theorem 3.2 below. Further Umemura states that these poly- 
nomials are the analogues of the Yablonskii-Vorob'ev polynomials as- 
sociated with rational solutions of PII and the Okamoto polynomials 
associated with rational solutions of PIv. 

Theorem 3.2. Suppose that Tn(z; p) satisfies the recursion relation 

with T- l (~ ;  p) = 1 and To(z; p) = 1. Then 

satisfies PIII, with an = 2n + 2p - 1 and ,On = 2n - 2p + 1. 
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The first few polynomials for PI1l defined by (3.2) are 

and associated rational solutions of PIII are 

The hierarchy of rational solutions of PIII given in (3.5) can also be 
derived using the Backlund transformation of PIII given by 

where w - w(z; a, p, 1, -I), 6 = a + 2 and = ,O + 2 (Gromak, 1973; 
Gromak, 1975) (see also (Milne et al., 1997; Murata, 1995; Umemura 
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and Watanabe, 1998)), i.e., 

where w, - w(z; a,, P,, 1, -I), a, = 2n + 2p - 1 and Pn = 2n - 2p + 1, 
with "seed solution" ~ ~ ( z ; c r o , / ? ~ ;  1; -1) = 1 where a0 = 2p - 1 and 
Po= -2p+1. 

The polynomials Tn(z) are somewhat unsatisfactory since they are 
polynomials in J = l / z  rather than polynomials in z, which would be 
more natural and is the case for the Yablonskii-Vorob'ev polynomials 
and Okamoto polynomials associated with rational solutions of PII and 
PIv, respectively. However it is straightforward to determine a sequence 
of functions S,(z) which are generated through a Toda equation that 
are polynomials in z. These are given in the following theorem. 

Theorem 3.3. Suppose that S,(z; p) satisfies the recursion relation 
( Toda equation) 

with S-l (z; p) = SO (z; p) = 1. Then 

satisfies PIII with a, = 2n + 2p - 1 and P, = 2n - 2p + 1. 

Proof. This essentially follows from Theorem 1 due to Kajiwara and 
Masuda (Kajiwara and Masuda, 199913) since the Toda equation (3.8), 
modulo a scaling factor, is equation (16) in Proposition 3 of (Kajiwara 
and Masuda, 199913). 
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The first few polynomials Sn(z; p), which are monic polynomials of 
degree $n(n + I), are 

S1(z;p) = 2 + p, 

S2(z;p) = (2 + pI3 - P, 

S3k;  = ( 
2 z + P ) ~  - 5 4 2  + pI3 + 9p(z + p) - 5p , 

s4(z; P) = (2 + P) lo - 15p(z + p)7 + 63p(z + p)5 - 225p(z + p) 
3 

+ 315p2(z + p)2 - 175p3(z + p)  + 36p2, 

S5(z; p) = (z + p)15 - 35p(z + p)12 + 252p(z + p)1° 

+ 175p2(z + p)' - 2025p(z + p)8 + 945p2(z + p)7 

- 1225p(p2 - 9)(2 + p)6 - 26082p2(z + , L L ) ~  

+ 33075p3(z + , L L ) ~  - 350p2(35p2 + 36)(z + p)3 

+ 11340p3(z + p)2 - 225p2(49p2 - 36) (z + p) 

+ 7p3 (875p2 - 828). 
(3.10) 

The associated rational solutions of PIII are in (3.5). It is clear from the 
recurrence relation (3.8) that the Sn(z; p), are rational functions, though 
it is not obvious that in fact they are polynomials since one is dividing 
by Sn-l (z; p) at every iteration. Indeed it is somewhat remarkable that 
the Sn(z; p) defined by (3.8) are polynomials. The polynomials S,(z; p )  
defined by (3.8) are related to the polynomials R, (z; p) defined by (3.2) 
through Sn (z; p )  = zn(n+1)/2 R, (z; p) . The polynomials Sn (z; p) have 
the property that Sn(z; p) = Sn(-z; -p). 

In Figure 3 plots of the roots of the polynomial & ( I  - p, p) defined 
by (3.10) for various p are given. Initially for p = -3 there is an ap- 
proximate triangle of roots with 4 roots on each side. As p increases, 
sets of roots then in turn coalesce until there is a multiple root of order 
10 for m = 0. Then as p another approximate triangle appears which is 
"turned round'' from the configuration for p = -3 since the symmetry 
is S,(z; p) = Sn(-z; p)  implies that the roots for Sn(z; p) is a reflection 
of those for S,(z; -p) in the imaginary axis. 0 

3.2 Algebraic solutions of PIII 
In this section we consider the special case of PIII when either (i), 

y = 0 and ad # 0, or (ii), 6 = 0 and @y # 0. In case (i), we make the 
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Figure 3. Roots of the polynomial S4([ - p, p)  defined by (3.10) for various p 
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transformation 

and set a = 1, ,6 = 2p and 6 = -1, with p an arbitrary constant, 
without loss of generality, which yields 

In case (ii), we make the transformation 

and set a = 2p, ,6 = -1 and y = 1, with p an arbitrary constant, without 
loss of generality, which again yields (3.12). The scalings in (3.11) and 
(3.13) have been chosen so that the associated special polynomials are 
monic polynomials. We remark that equation (3.12) is of type D7 in the 
terminology of Sakai (Sakai, 2001). 

Rational solutions of (3.12) correspond to algebraic solutions of PIII 
with y = 0 and a6 # 0, or 6 = 0 and ,6y # 0. Lukashevich (Lukashevich, 
1965; Lukashevich, 1967a) obtained algebraic solutions of PIII, which are 
classified in the following theorem. 

Theorem 3.4. Equation (3.12) has rational solutions i f  and only i f  
p = n, with n E Z. These rational solutions have the form u(5) = 
Pn2+l  (<)/Qn2 (<), where Pn2+l (5) and Qn2 (5) and monic polynomials of 
degree n2 + 1 and n2, respectively. 

Proof. See Gromak, Laine and Shimomura (Gromak et al., 2002), p. 164 
(see also (Gromak, 1973; Gromak, 1978a; Milne et al., 1997; Murata, 
1995)). 

A straightforward method for generating rational solutions of (3.12) 
is through the Backlund transformation 

where E~ = 1 and up is the solution of (3.12) for parameter p, using the 
"seed solution" uo(5) = 5 for p = 0 (see Gromak, Laine and Shimomura 
(Gromak et al., 2002)) p. 164 -see also (Gromak, 1973; Gromak, 1978a; 
Milne et al., 1997; Murata, 1995)). Further we note that ti-,(<) = 
-iu,(i('). Therefore the transformation group for (3.12) is isomorphic to 
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the affine Weyl group 21, which also is the transformation group for PII 
(Okamoto, 1986; Umemura, 2000; Umemura and Watanabe, 1997). 

Ohyama (Ohyama, 2001) derived special polynomials associated with 
the rational solutions of (3.12). These are essentially described in The- 
orem 3.5 below, though here the variables have been scaled and the 
expression of the rational solutions of (3.12) in terms of these special 
polynomials is explicitly given. 

Theorem 3.5. Suppose that Rn(<) satisfies the recursion relation (Toda 
equation) 

with Ro(<) = 1 and R1 (<) = c2. Then 

un(O = 
&+I (C) &-I(<) 

R%) 
7 

satisfies (3.12) with p = n. Additionally u-,(<) = -iu,(i<) . 
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The first few polynomials Rn(c) defined by (3.15) are 

and associated rational solutions of (3.12) are 

The polynomial &(c) is a monic polynomial of degree i n (n  + 3) 
with integer coefficients. Further it has the form Rn(<) = Sn(c)CKn, 
where ten = i n 2  - [l- (-l)n] and Sn(C) a monic polynomial of degree 
$n + $[l - (-l)n] with simple zeros and S,(O) # 0. 
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Poles of us(<) 

Poles of us(<) 

Poles of 245) 

Poles of u4(<) 

Poles of us(<) 

-4 - 3 - 2 - 1 0  1 2  3 4 

Poles of u8(<) 

Figure 4. Poles of algebraic solutions of PIII-D7 (3.12) 
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In Figure 4 plots of the locations of the poles of the algebraic solutions 
of PIII-D7 (3.12) given by un(z), for n = 3,4, . . . ,8, as defined in (3.18) 
are given. These take the form of two "triangles" in a "bow-tie" shape. 

4. Fourth Painlev6 equation 

4.1 Rational solutions of PIv 
Lukashevich (Lukashevich, 196713)) Gromak (Gromak, 1987) and Mu- 

rata (Murata, 1985) (see also (Bassom et al., 1995; Gromak et al., 
2002; Umemura and Watanabe, 1997))) have proved the following theo- 
rem 

Theorem 4.1. PIv has rational solutions i f  and only i f  

with m, n E Z. Further the rational solutions for these parameter values 
are unique. 

Three simple rational solutions of PIv are 

2 
w1(2; f 2, -2) = f l /z, w2(2; 0, -2) = -22, w3 (2;o, -;) = -- 

32. 
(4.3) 

It is known that there are three families of unique rational solutions of 
PIv, which have the solutions (4.3) as the simplest members. These are 
summarized in the following theorem (see (Bassom et al., 1995; Murata, 
1985; Umemura and Watanabe, 1997) for further details). 

Theorem 4.2. There are three families of rational solutions of PIv, 
which have the forms 
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where Pj,n(z) and Qj,n(2), j = 1,2,3, are polynomials of degree n, and 

The three hierarchies given in this theorem are known as the "-l/z 
hierarchy", the "-22 hierarchy" and the "-$2 hierarchy", respectively 
(see (Bassom et al., 1995) where the terminology was introduced). The 
"-l/z hierarchy" and the "-22 hierarchy" form the set of rational so- 
lutions of PIv with parameter values given by (4.1) and the "-$2 hier- 
archy" forms the set with parameter values given by (4.2). The rational 
solutions of PIv with parameter values given by (4.1) lie a t  the vertexes 
of the "Weyl chambers" and those with parameter values given by (4.2) 
lie a t  the vertexes of the "Weyl chamber" (Umemura and Watanabe, 
1997). 

4.2 Okamoto polynomials 
In a comprehensive study of the fourth Painlev6 equation PIv, Okamoto 

(Okamoto, 1986), see also (Kajiwara and Ohta, 1998; Noumi and Ya- 
mada, 1999; Umemura, 1998) defined two sets of polynomials analogous 
to the Yablonskii-Vorob'ev polynomials associated with PII. These poly- 
nomials are defined in Theorems 4.3 and 4.5 below, where they have been 
scaled compared to Okamoto's original definition, where the polynomials 
were monic, so that they are for the standard version of PIv. 

Theorem 4.3. Suppose that Qn(z) satisfies the recursion relation 

with Qo(z) = Ql (2) = 1. Then 

W, = w(2;a,,Pn) = - - z+  - {ln [Q;;;;;)] ) , (4.7) 3 dz 

satisfies PIv with (an, ,&) = (271, -2). 
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The first few polynomials Q,(z), which are referred to as the Okamoto 
polynomials, are 

Remarks 4.4. 

1. The polynomials Q, (z) are polynomials of degree n(n - I), in fact 
they are monic polynomials in C = f i z  with integer coefficients, 
which is the form in which Okamoto (Okamoto, 1986) originally 
defined these polynomials. 

2. The hierarchy of rational solutions of PIv defined by (4.7) can be 
derived using the following Backlund transformation of PIv 

2 (w' - w2 - 2zw) + 2p 
G z ;& ,p  = ( -) 2w[w1-w2-2zw+2(a+ l ) ] '  (4.8) 

& = a + + ,  p = p ,  

where w r w(z; a, p), which is the Backlund transformation I+ 
derived by Murata (Murata, 1985) and the Schlesinger transfor- 
mation 7d51 derived by Fokas, Mugan and Ablowitz (Fokas et al., 
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1988). Specifically 

where w, = w (2; 2n, -a), with "seed solution" wo = w (z; 0, -$) = 
2 -";. 

3. The solutions w, are members of the so-called "-$2" hierarchy of 
rational solutions of PIv, recall Theorem 4.2, which is one of three 
hierarchies of rational solutions of PIv (see, for example, (Bassom 
et al., 1995; Murata, 1985) for further details). 

The second set of polynomials introduced by Okamoto (Okamoto, 
1986) are defined in the following theorem. 

Theorem 4.5. Suppose that S,(z) satisfies the recursion relation 

with So(z) = 1 and Sl(z) = f i z .  Then 

w (z; a,, p,) = --z + - (4.11) 
3 dz 

for n 2 0, satisfies PIv with (a,, A) = (2n + 1, -9 ) .  
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Roots of Qg (z) = 0 

Roots of Q6(z) = 0 

Roots of Q4(z) = 0 

a h i i  o 2-8 

Roots of Q8(z) = 0 

Figure 5. b o t s  of the Okamoto polynomials I defined by (4.6) 
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The first few polynomials Sn(z), are 

Remarks 4.6. 

1. The polynomials Sn(z) are polynomials of degree n2, in fact they 
are monic polynomials in 5 = 22 with integer coefficients, which 
is the form in which Okamoto (Okamoto, 1986) originally defined 
these polynomials. 

2. The hierarchy of rational solutions of PIv defined by (4.11) can be 
derived using the Backlund transformation (4.8) of PIv, derived 
by Murata (Murata, 1985) and Fokas, Mugan and Ablowitz (Fokas 
et al., 1988). Hence 

where Gn = w (z; 2n + 1,2n - g),  with "seed solution" 
2 Go = w (z; 1, -!) = -3.2 + l /z. 
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3. The solutions 67, are also members of the so-called "-Zz" hierar- 
chy of rational solutions of PIv, recall Theorem 4.2. 

4. The two hierarchies of rational solutions of PIv given by (4.7) and 
(4.11) are linked by the Schlesinger transformations and %d31 
for PIv given by Fokas, Mugan and Ablowitz (Fokas et al., 1988). 

where w = w(z; a, p), w[jl r w (z; abl, pb]). Specifically, for n 2 0 

A (wk + a)2 - w: [8n + 9 - (wn + 2 ~ ) ~ ]  
wn = 9 (4.15) 

2wn (wi + 2zwn - w:, - a) 

5. The Schlesinger transformations R['], R[~ ]  and 7?f51 are related by 
R[~ ]R [~ ]  = R[~]R['] = ~ 1 ~ 1 ,  from the definition given by Fokas, 
Mugan and Ablowitz (Fokas et al., 1988). 

In Figures 5 and 6 plots of the locations of the roots for the Okamoto 
polynomials Qn(z) = 0, defined by (4.6)) and Sn(z) = 0, defined by 
(4.10)) for n = 3,4,. . . ,8, respectively, are given. These both take the 
form of two "triangles" with the polynomials h ( z )  having an additional 
row of roots on a straight line between the two "triangles." 

4.3 Generalized Hermite polynomials 
Noumi and Yamada (Noumi and Yamada, 1999) generalized the re- 

sults of Okamoto (Okamoto, 1986) and introduced the generalized Her- 
mite polynomials Hm,,(z)) which are defined in Theorem 4.7 and dis- 
cussed below in this section, and generalized Okamoto polynomials Qm,,(z), 
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Roots of Rg(z) = 0 

Roots of R.5 (z )  = 0 

Roots of R7(z) = 0 

Roots of R4(z) = 0 

Roots of Rs(z) = 0 

Figure 6. Roots of the Okamoto polynomials I1 defined by (4.10) 
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which are defined in Theorem 4.9 and discussed in 54.4. Noumi and Ya- 
mada (Noumi and Yamada, 1999) expressed both the generalized Her- 
mite polynomials and the generalized Okamoto polynomials in terms of 
Schur functions related to the so-called modified Kadomtsev-Petviashvili 
(mKP) hierarchy. Kajiwara and Ohta (Kajiwara and Ohta, 1998) also 
expressed rational solutions of PIv in terms of Schur functions by ex- 
pressing the solutions in the form of determinants. Further Noumi and 
Yamada (Noumi and Yamada, 1999) obtained their results on ratio- 
nal solutions of PIv by considering the symmetric representation of PIv 
given by the system 

where p1, p2 and p3 are arbitrary constants, with pl + pa + p3 = 1, and 
the constraint c p l +  9 2  + 9 3  = -22. Then eliminating ~ ~ ( 2 )  and cp3(z), 
w(z) = cpl(z) satisfies PIV with (a, P) = (p3 - pa, -2&), which was 
first derived by Bureau (Bureau, 1992) - see also (Adler, 1994; Noumi 
and Yamada, 1998a; Schiff, 1995; Veselov and Shabat, 1993). 

First we discuss the generalized Hermite polynomials Hm,,(z). 

Theorem 4.7. Suppose that Hm,,(z) satisfies the recurrence relations 
2 

2mHrn+1,nHm-l7n = Hm,nH;,, - (H;,,) + 2m~;,,, (4.18a) 

2nHm,n+lHm,n-l = -Hm,nH;, + (H;,~)~ + 2n~;,,, (4.18b) 

with 
Ho,o = Hi,o = Ho,i = 1, H1,i = 22, (4.18~) 

and m, n 2 0, then 

is a solution of PIv, respectively for the parameters 

a:!, = -(m + 2n + 1), &), = -2m2, (4.21) 

a:!! = 2m + n  + 1, ,B:!i = -2n2. (4.22) 
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Remarks 4.8. 

1. The rational solutions of PIv defined by (4.19) and (4.20) include 
all the solutions in the "-l/zV and "-22" hierarchies, as is easily 
verified by comparing the parameters in (4.21) and (4.22) with 
those in (4.5a) and (4.5b). Further they are the set of rational 
solutions of PIv with parameter values given by (4.1). 

2. Each generalized Hermite polynomial Hm,,(z) is a polynomial of 
degree mn with integer coefficients (Noumi and Yamada, 1999). 
In fact Hmjn ($x) is a monic polynomial in x of degree mn with 
integer coefficients. 

3. The polynomials H,,,(z) possess the symmetry 
Hm,,(iz) = imn Hn,,(z), where mn is the degree of Hm,,(z). 

4. Hn,l(z) = Hn(z) and H1,,(z) = PnHn(iz), where Hn(z) is the 
usual Hermite polynomial defined by 

dn 
Hn (z) = (- 1)" exp(z2) {exp(--z2)) . (4.23) 

Some generalized Hermite polynomials Hm,,(z) are given in Appendix 
A. Plots of the locations of the roots of the polynomials and Hm,7(z), 
H7,n(z) for 4 5 m 5 6 and 4 5 n 5 6, are given in Figure 7. These plots, 
which are invariant under reflections in the real and imaginary z-axes, 
take the form of m x n "rectangles", though these are only approximate 
rectangles as can be seen by looking at the actual values of the roots. 

4.4 Generalized Okamoto polynomials 
In this section we discuss the generalized Okamoto polynomials Pm,,(z) 

which were introduced by Noumi and Yamada (Noumi and Yamada, 
1999) and are defined in Theorem 4.9 below. We have reindexed these 
polynomials by setting Q,,, (z) = Pm-,,, (z), i.e., Qm+,,, (z) = Pm,, (z), 
where Qm+n,n(z) is the polynomial defined Noumi and Yamada (Noumi 
and Yamada, 1999), since we feel that Pm,,(z) is more natural, espe- 
cially when one studies the plots of the locations of the roots for various 
generalized Okamoto polynomials in Figure 8. 

Theorem 4.9. Suppose that Pmln(z) satisfies the recurrence relations 



THEORY AND APPLICATIONS OF SPECIAL FUNCTIONS 

Roots of H4,7(z) = 0 

Roots of H 7 , 5 ( ~ )  = 0 

Roots of H5,7(z) = 0 

Roots of H7,4(2) = 0 

Figure 7. Roots of generalized Hermite polynomials defined by (4.18) 
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with 
Po,o = P1,o = Po,l = 1, PIJ = &z, (4.24~) 

then 

(11) = 2 d Pm+ 1 ,n 
(I1) P(")) = --z + - {ln (-) ) , (4.26) n w (2; am,n,  m,n 3 d~ 

Pm,n 

are solutions of PIv, respectively for the parameters 

Remarks 4.10. 

1. The rational solutions of PIv defined by (4.25) and (4.26) include 
all the solutions in the "-$2" hierarchy, as is easily verified by 
comparing the parameters in (4.27) and (4.28) with those in (4.5~). 
Further they are the set of rational solutions of PIv with parameter 
values given by (4.2). 

2. Each polynomial Pm,,(z) is a polynomial of degree dm,, = m2 + 
n2 + rnn - m - n with integer coefficients (Noumi and Yamada, 
1999). Further Pm,,(z) is a monic polynomial in < = & z of degree 
dm,, with integer coefficients. 

3. The original Okamoto polynomials defined in Theorems 4.3 and 4.5 
are respectively given by Qm(z) = Pmlo(z) and &(z) = Pm,l (2). 

4. The polynomials Pmln(2) possess the symmetry 
Pm,n(iz) = exp($ridm,,) Pn,m(z), where dm,, = m2 + n2 + mn - 
m - n is the degree of Pm,,(z). 

5. The hierarchies of rational solutions of PIv generated from the gen- 
eralized Hermite polynomials Hm,n(z) defined in Theorem 4.7 and 
the generalized Okamoto polynomials Pmln(z) defined in Theorem 
4.9 are linked by the Schlesinger transformations %d2] (or 7d41) and 
R [ ~ ]  z R[']R[~] given by Fokas, Mugan and Ablowitz (Fokas et al., 
1988). 

Some generalized Okamoto polynomials Pm,,(z) are given in Ap- 
pendix B. Plots of the locations of the roots of the polynomials and 
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Roots of P4,7(z) = 0 Roots of P5,7(z) = 0 

Roots of P6,7(z) = 0 Roots of P74(z) = 0 

Roots of P7,5(~)  = 0 Roots of P7,6(~)  = 0 

Figure 8. Roots of generalized Okamoto polynomials defined by (4.24) 



Painleve' Equations and Associated Polynomials 155 

Pm,7(~), P~,,(z) for 4 5 m 5 6 and 4 5 n 5 6, are given in Figure 8. 
The roots of the polynomial Pm,,(z) takes the form of m x n "rectangles" 
with an "equilateral triangle," which have either m - 1 or n - 1 roots on 
each of its sides. These are only approximate rectangles and equilateral 
triangles as can be seen by looking at the actual values of the roots. The 
triangles We remark that as for the Bi-Hermite polynomials above, the 
plots are invariant under reflections in the real and imaginary z-axes. 

5. Conclusions 
An important, well-known property of classical orthogonal polynomi- 

als, such as the Hermite, Laguerre or Legendre polynomials whose roots 
all lie on the real line (cf. (Abramowitz and Stegun, 1972; Andrews et al., 
1999; Temme, 1996)), is that the roots of successive polynomials inter- 
lace. Thus for a set of orthogonal polynomials p,(z), for n = 0,1,2,. . . , 
if znlm and z,,,+l are two successive roots of p,(z), i.e., p, (z,,,) = 0 
and pn (zn,m+l) = 0, then 9,-1 (<,-I) = 0 and pn+l (&+I) = 0 for some 

and such that zn,, < <,+i < zn,,+l. Further the deriva- 
tives pL(z) and ~ ; + ~ ( z )  also have roots in the interval (zn,m,zn,m+l), 
that is pL (tn) = 0 and pL+l (en+l) = 0 for some en and such that 
zn,m < tn,  tn+l < zn,m+l- 

An interesting open question is whether there are analogous results 
for the polynomials associated with rational and algebraic solutions of 
the Painlev6 equations discussed here. Clearly there are notable differ- 
ences since these special polynomials have complex roots whereas clas- 
sical orthogonal polynomials p,(~),  have real roots. The pattern of the 
roots of the special polynomials associated with the Painlev6 equations 
are highly symmetric and structured, suggesting that they have inter- 
esting properties. A particularly interesting question is whether there 
is any "interlacing of roots" analogous to that for classical orthogonal 
polynomials. Clearly this warrants further analytical study as does an 
investigation of the relative locations of the roots for the special polyno- 
mials and their derivatives. We shall not pursue these questions further 
here. 
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Abstract We investigate Ihara-Selberg zeta functions of Cayley graphs for the 
Heisenberg group over finite rings Z / p n Z ,  where p is a prime. In order 
to do this, we must compute the Galois group of the covering obtained 
by reducing coordinates in Zlpn+'Z modulo pn . The Ihara-Selberg 
zeta functions of the Heisenberg graph mod p n f l  factor as a product 
of Artin L-functions corresponding to the irreducible representations of 
the Galois group of the covering. Emphasis is on graphs of degree four. 
These zeta functions are compared with zeta functions of finite torus 
graphs which are Cayley graphs for the abelian groups (Z/pnZ) ' .  

1. Introduction 
The aim of this paper is to study the special functions known as Ihara- 

Selberg zeta functions for Cayley graphs of finite Heisenberg groups as 
well as their factorizations into products of Artin-Ihara L-functions. The 
Heisenberg group H(R) over a ring R consists of upper triangular 3 x 3 
matrices with entries in R and ones on the diagonal. The Ihara-Selberg 
zeta function is analogous to the Riemann zeta function with primes 
replaced by certain closed paths in a graph. This paper is a continuation 
of (DeDeo et al., 2004) where we presented a study of the statistics of 
the spectra of adjacency matrices of finite Heisenberg graphs. 

When R is the field of real numbers R, the group is well known for 
its connection with the uncertainty principle in quantum physics. When 
the ring R is Z, the ring of integers, there are degree 4 and 6 Cayley 
graphs (see the next paragraph) associated to H(Z) whose spectra (i.e., 
eigenvalues of the adjacency matrix) have been much studied starting 
with D. R. Hofstadter's work on energy levels of Bloch electrons (Hofs- 
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tadter, 1976) which includes a picture of the Hofstadter butterfly. This 
subject also goes under the name of the spectrum of the almost Mathieu 
operator or the Harper operator. See (DeDeo et al., 2004) and (Terras, 
1999) for more information on the Heisenberg group. See also (Kotani 
and Sunada, 2000). 

If S is a subset of a finite group G, the Cayley graph X(G, S) has 
as its vertex set the set G. Edges connect vertices g E G and gs, for 
all s E S. Usually we will assume that s E S implies s-l E S so that 
the graph is undirected. And we will normally assume that S is a set of 
generators of G so that the graph will be connected. It is not hard to 
see that the spectrum of the adjacency matrix of X(G, S) is contained 
in the interval [-k, k], if k = IS/. 

Heisenberg groups over finite fields have provided examples of ran- 
dom number generators (see (Zack, 1990)) as well Ramanujan graphs 
(see (Myers, 1995)). Ramanujan graphs were defined by (Lubotzky 
et al., 1988) to be finite connected k-regular graphs such that the eigen- 
values X of the adjacency matrix (not equal to k or -k) satisfy [X I  5 
2 4 k - l .  Other references are (Diaconis and Saloff-Coste, 1994) and 
(Terras, 1999). As shown in the last reference, the size of the second 
largest (in absolute value) eigenvalue of the adjacency matrix governs 
the speed of convergence to uniform for the standard random walk on 
a connected regular graph. Ramanujan graphs have the best possible 
eigenvalue bound for connected regular graphs of fixed degree in an 
infinite sequence of graphs with number of vertices going to infinity. 
For such graphs, the random walker gets lost as quickly as possible. 
Equivalently, this says that such graphs can be used to build efficient 
communication networks. 

There are more reasons to study the Heisenberg group. First, as a 
nilpotent group (see (Terras, 1999) for the definition), it may be viewed 
as the closest to abelian. Second, it is an important subgroup of GL(3, R) 
(the general linear group of matrices x such that x and x-I have entries 
in the ring R) for those interested in creating a finite model of the 
symmetric space of the real GL(3,R) analogous to the finite upper half 
plane model of the Poincar6 upper half plane. 

Some of our motivation comes from quantum chaoticists who investi- 
gate the statistics of various spectra as well as zeros of zeta functions. 
This MSRI website (ht tp : //www . msri . org/) has movies and trans- 
parencies of many talks from 1999 on the subject. See, for example, 
the talks of Sarnak from Spring, 1999. Other references are (Sarnak, 
1995) and (Terras, 2000; Terras, 2002). 
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The Ihara-Selberg zeta function is an analogue of the Riemann zeta 
function [(s). The latter is defined for Re(s) > 1 by 

Thanks to this Euler product, the zeros of zeta are important for any 
work on the statistics of the primes. The earliest results on the location 
of zeta zeros led to a proof of the prime number theorem which says that 
the number of primes less than or equal to x is asymptotic to x/ log x, as 
x goes to infinity. Now there is a million dollar prize problem to prove the 
Riemann hypothesis which says that the non-real zeros of the analytic 
continuation of [(s) lie on the line Re(s) = 112. This would give the 
best possible error estimate in the prime number theorem. For a report 
of experimental verification for the first 100 billion zeros, see the web 
site http : //www . hipilib. de/zeta/index . html. Quantum chaoticists 
have experimental evidence that the zeros of zeta behave analogously to 
the eigenvalues of a random Hermitian matrix. See (Katz and Sarnak, 
1999) for a discussion of various zeta functions whose zeros and poles 
have been studied in the same manner that the physicists study energy 
levels of physical systems. 

To define a graph-theoretical analogue of [(s), we must define "prime" 
in a graph X.  Modelling the idea of the Selberg zeta function of a 
Riemannian manifold, we use the prime cycles [C] in X.  Orient the 
edges of X ,  which we assume is a finite connected graph. A prime [C] 
in X is an equivalence class of tailless backtrackless primitive cycles C 
in X. Here C = alaz . . . a,, where the a j  are oriented edges of X. The 
length of C is v(C) = s. "Backtrackless7' means that ai+l # a;', for all 
i. "Tailless" means that a;' # al. The "equivalence class" of C is [C] 
which consists of all cycles aiai+l . . a,alag . . ai-1; i.e., the same path 
with all possible starting points. We call the class [C] "primitive" if you 
only go around once; i.e., C # Dm, for all integers m 2 2 and all paths 
D i nX .  

The Ihara zeta function of a connected graph X is defined for 
u E (C, with lul sufficiently small, by 

PI p"me - 
cycle m X 

The connection with the adjacency matrix A of X is given by Ihara's 
theorem which says 

Cx(u)-' = (1 - u2)'-' det (I - Au + Q U ~ )  , 
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where r = I E I - I VI - 1 = rank of fundamental group of X and Q is the di- 
agonal matrix whose jth diagonal entry is Qjj =(-I+ degree of j th vertex). 
Proofs of the Ihara theorem can be found in (Stark and Terras, 1996; 
Stark and Terras, 2000), (Terras, 1999). In the first two papers, edge 
and path zeta functions of more than one variable are also discussed. 
The most elementary proof of formula (1.2) was found by Bass and in- 
volves the edge zeta function associated to more than one variable for 
which the analogous determinant formula is easy to prove. See (Stark 
and Terras, 2000) pages 168 and 172. 

Remark 1.1. The Ihara zeta function is related to walk generating func- 
tions of graphs, in particular, that for reduced walks considered by (God- 
sil, 1993, p. 72), but it is not the same. Differences come from not 
counting tails and the fact that a prime can pass through a given vertex 
more than once. Related generating functions have also been considered 
by probabilists studying first passage times for random walks but again 
they are different. See (Kemperman, 1961). 

W e  believe that it is worth singling out this special function associated 
to graphs for several reasons. First, for number theorists, it provides a 
new analogue of the Riemann zeta function which is easier to experiment 
on than the zeta functions of number or function fields. Secondly, it 
connects the zeta functions from many disparate areas such as number 
theory, differential geometry, and dynamical systems. Thirdly, this zeta 
function has a generalization to analogues of Artin L-functions. See the 
definition in formula (2.7). Thus we can make use of the Galois theory 
of normal covering graphs to obtain factorizations of the zeta function. 

It follows from formula (1.2) that there is an analogue of the prime 
number theorem for primes in a graph. This says that if X is a connected 
(q+ 1)-regular graph and ~ ( n )  is the number of prime paths [C] of length 
n in X,  then 

qn ~ ( n )  N -, as n --+ oo. 
n (1.3) 

The proof is easy. One can simply imitate the proof of the analogous 
result for function fields over finite fields in (Rosen, 2002), pp. 56-57. 

From (1.2), we know that these zeta functions are reciprocals of poly- 
nomials. When the graph is connected and (q+ 1)-regular, one sees that 
it is a Ramanujan graph if (and only if) the IharaiSelberg zeta function 
satisfies the Riemann hypothesis in the sense that the zeros of the 
polynomial satisfy lul = q-1/2. See (Terras, 1999, p. 418). When the 
zeta function satisfies the Riemann hypothesis, the error estimate in the 
prime number theorem (1.3) is best possible. While the Ihara zeta func- 
tion of a random regular graph may satisfy the Riemann hypothesis, the 
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zeta functions that we encounter here in the study of finite Heisenberg 
graphs are not Ramanujan in general. See (DeDeo et al., 2004)) where 
it is shown that the spectrum of the adjacency matrix of the degree 
4 Heisenberg graph over a finite ring with q elements approaches the 
interval [-4,4] as q approaches infinity. 

Special values or residues of the Ihara-Selberg zeta function give graph 
theoretic constants such as the number of spanning trees. There are 
connections with famous polynomials such as the Alexander polynomials 
of knots. See (Lin and Wang, 2001). 

Here we consider Cayley graphs Zs (q) = X (G, S) with vertex set the 
Heisenberg group G = Heis(Z/qZ) consisting of matrices (x, y, z) = 

0 1 y , where x, y, z E Z/qZ, q = pn and p is prime. The edge set (a : J 
S is chosen to have 4 elements S = { x", A*' ), where X = (x, y, z) 
and A = (a, b, c) .  We assume that ay $ bx (modp) to insure that the 
graph is connected (see (DeDeo et al., 2004)). For p odd, all these graphs 
are isomorphic. When p = 2, there are only two isomorphism classes. 
These facts are proved in (DeDeo et al., 2004). Define the degree 4 
Heisenberg graph 

When p = 2, define a second Cayley graph 

Histograms of the spectra of the degree 4 Heisenberg graphs were 
studied in (DeDeo et al., 2004). These figures were made using the rep- 
resentations of the Heisenberg group to block diagonalize the adjacency 
matrix of Zs(q). This changes the size of the eigenvalue problem from 
a p3n x p3n matrix problem to a collection of pn x pn matrix problems. 
The histograms were compared with those for the finite torus graphs 

where ei denotes a unit vector with ith component 1 and the rest 0. 
Here we investigate the Ihara-Selberg zeta functions of these Heisen- 

berg graphs. Taking S = {f (1,0,0), f ( O , l ,  O)), the graph Zs (pn+l) 
covers the graph Zs (pn) in the usual sense of covering spaces in topol- 
ogy. See Theorem 2.2. The covering is unramified and normal or Ga- 
lois with Abelian Galois group isomorphic to the subgroup of (x, y , ~ )  
in Heis (Zlpn+'Z) such that x, y, and z are all congruent to 0 mod- 
ulo pn. This implies that the spectrum of the adjacency operator on 
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7-ts (pn) is contained in that of lFls (pn+') and that <x(p)(~)-' divides 
<x(pn+l)(~)- ' .  Moreover it says that the adjacency matrix of l-ls (pn+l) 
can be block diagonalized with blocks the size of the adjacency matrix of 
'Fls (pn) associated to the characters of the Galois group. See Proposition 
2.1. 

The same result that implies Proposition 2.1 implies that the Ihara 
zeta function of 3 - t ~  (pn+') factors as a product of Artin-Ihara L-functions 
L(u, X) corresponding to the characters x of irreducible representations p 
of the Galois group of the covering. See (Hashimoto, 1990) or (Stark and 
Terras, 2000). We use this factorization to compute the IharaiSelberg 
zeta function explicitly for the smallest Heisenberg graphs. See formulas 
(2.11) and (2.12). Contour maps of (powers of) the absolute value of 
<B(2)(u)-1 and <%(4)(u)-' can be found in Figures 3 and 4. 

The last part of this paper concerns comparisons of zeta functions for 
Cayley graphs of the Heisenberg group with analogous Cayley graphs 
for finite torus groups. We find, for example, that the zeta functions of 
the smallest degree four Heisenberg and torus graphs can be compared 
using the following formula 

2. Ihara-Selberg Zeta Functions 
We say that Y is an unramified finite covering of a finite graph 

X if there is a covering map n : Y + X which is an onto graph map 
(i.e., taking adjacent vertices to adjacent vertices) such that for every 
x E X and for every y E n-'(x), the set of points adjacent to y in Y 
is mapped by n one-to-one, onto the points in X which are adjacent to 
x. Note that when graphs have loops and multiple edges, one must be a 
bit more careful with this definition if one wants Galois theory to work 
properly. See (Stark and Terras, 2000, p. 137). A d-sheeted covering is 
a normal covering iff there are d graph automorphisms a : Y + Y such 
that n(a(y)) = n(y) for all y E Y. These automorphisms form the Galois 
group G(Y/X). See (Stark and Terras, 1996; Stark and Terras, 2000) 
for examples of normal and non-normal coverings and the factorization 
of their zeta functions. 

Take a spanning tree T in X .  View Y as [GI sheets, where each sheet 
is a copy of T labeled by the elements of the Galois group G. So the 
points of Y are (x, g), with x E X and g E G. Then an element a E G 
acts on the cover by a(x, g) = (x, ag). 
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Suppose the graph X has m vertices. Define the m x m matrix A(g )  
for g E G by defining the i, j entry to be 

A(g)i, j  = the number of edges in Y between (i, e )  and ( j ,  g ) ,  (2.1) 

where e denotes the identity in G. Using these m x m matrices, we can 
find a block diagonalization of the adjacency matrix of Y as follows. 

Proposition 2.1. If Y is a normal d-sheeted covering of X with Galois 
group G ,  then the adjacency matrix of Y can be block diagonalized where 
the blocks are of the form 

each taken dp = degree of p times, as the representations p run through 
G. Here A ( g )  is defined in formula (2.1). 

Proof. The adjacency matrix Ay of Y has the (i, g) ,  ( j ,  h) entry for i, j E 
X and g, h E G given by 

- the number of edges between (i, a )  and ( j ,  b). (2.2) ( A ~ ) ( i , a ) , ( j , b )  - 

and this is the same as the number of edges between (i, e )  and ( j ,  a-'b), 
if e is the identity of G .  

Also define the [GI x \GI matrix a ( g )  indexed by elements a,  b E G: 

Note 
of G ,  

that a is essentially the matrix of the right regular representation 
since if 6, is the vector with 1 in the a position and 0 everywhere 

else, we have a(g)ba = 6,,-I. 
It follows from (2.1), (2.2), and (2.3) that 

One of the fundamental theorems of representation theory (see (Terms, 
1999, p. 256)) says that 
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@ 
It follows that Ay E C d,Mp. This completes the proof of Proposition 

PEE 
2.1. 0 

Theorem 2.2. Assume p is odd. 3-1(pn+1) is an unramified graph cov- 
ering of 3-1(pn). Moreover it is a normal covering with abelian Galois 
group 

Gal (3-1 (pn+l) 13-1 (pn)) 2 

{(a, b, c) E Heis (?ZlPn+l~) I(a, b, c) - 0 ( m ~ d p ) ~ )  . 

Proof. The projection .rr : 3-1 FIPn+l) + 3-1(pn) is just the reduction of the 
coordinates mod pn+l to coordinates mod pn. Clearly this preserves 
adjacency. Moreover, given g E 3-1 (pn), if we take a point g' E 3-1 (pn+') 
in .rr-lg, we see that the points in 3-1 (pn+l) adjacent to g' have the form 
g's, for s E So = { (f 1,0, O), (0, f 1 , O )  ). The points adjacent to g in 
3-1 (pn) are of the same form except computed mod pn. And .rr maps 
these adjacent points in 3-1 (pn+l) one-to-one, onto those in 3-1 (pn). 

If (a, b, c) E r defined in the statement of Theorem 2.2, we define the 
Galois group element 

It follows that .Troy = .rr, since (a, b, c) r 0 ( mod pn) and .rr reduces things 
mod pn. Moreover, it is easy to see that I' is abelian since if (a, b, c) and 
(u, v, W) are both = 0 ( mod pn), then (a, b, c) (u, v, w) = (a + u, b + v, c + 
w + av) and pn divides both a and v so that av - 0 ( mod pn+l). 17 

Corollary 2.3. The spectrum of3-1 (pn) is contained in the spectrum of 
3-1 (pn+l) . Moreover <H(pn) (u)-' divides c z ( p + l )  (u)-' . 

Proof. Use Proposition 2.1 or see (Stark and Terras, 1996, p. 131). 17 

Example. The last Theorem and Corollary also work if p = 2, except 
that then the graph at the bottom of the cover can be a multi-graph 
when n = 1, as in Figure 1. Consider the covering 'H(4) over 3-1(2). 
Note that X(2) is a multigraph with 2 edges between any vertices that 
are adjacent, because 1 = -1 (mod 2) and we want the graph to have 
degree 4. So the graph of 'H(2) is a cycle graph as in Figure 1. We label 
the vertices using the following table. 
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Figure 1 .  The Cayley Graph X(2) = X(Heis(Z/2Z), { ( f  1,0, O), (0, f 1,O))). 

Table 1.  Vertex Labeling for X(2). 

We obtain a spanning tree for X(2) by cutting one of each pair of 
double edges and then cutting both edges between vertices 6 and 7. 
This really gives a line graph but we will draw it as a circle cut between 
vertices 6 and 7. So we draw the covering graph X(4) by placing 8 
copies of the cut circle which is the spanning tree of X(2) and labeling 
each with a group element from Gal(X(4)/X(2)). We know that this 
can be identified with the subgroup of Heis(Z/4Z) consisting of (u, v, w) 
where u, v, w are all even. We label the Galois group elements using the 
following table. 

label 

vertex 

The covering graph X(4)/X(2) has 8 sheets and each sheet is a copy 
of the spanning tree of X(2). So every point on X(4) has a label (n, v), 
where 1 5 n 5 8 and v E {a ,  b, c, d, el f ,  g, h). We will just write nu. 
See Figure 2 for a picture of the tree with connections between level a 
and the rest. You can use the action of the Galois group to find all the 
edges of X(4). It makes a pretty complicated figure. The following table 

I 1 1 2  1 3  
I (0,0,0) I (1,0,0) 1 (1,1,1) 

4 

(O,l, 1) 



. . . .  . .  
identity of the group. 
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Table 2. Galois Group Labeling for Gal(W(4)/8(2)). In this labeling, a not e is the 

I 
I 

shows which connections are made in Figure 2. This table allows one to  
compute the matrices A(g), g E G = Gal('F1(4)/'F1(2)). 

label 

Table 3. Table of Connections Between Sheet a in 744) and the other sheets. 

Galois group element 11 (0,0,0) 1 (2,0,0) 1 (2,2,2) 
a I b  

vertex 11 adjacent vertices in W(4) 

2b, 8h, 2a, 8a 
lb, 3d, la ,  3a 
2d, 4 f ,  2a, 4a 

4a 3 f ,  5h, 3a, 5a 

c 
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Figure 2. Connections Between Level a and the Rest of the Cayley Graph 
'H(4) = X(Heis(Z/4Z), {(f 1,0, O), (0, f 1,O)) 

The representations of the abelian Galois group have the form 
(2~ i ( ra :sb+tc) )  

X T , S , ~ ( ~ ,  b, c) = exp for r, s, t (mod 2). Then one must 
compute the matrices MxT appearing in Proposition 2.1. For example , ,  
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Mxo,o,o is the adjacency matrix of E(2) and 

The eigenvalues of the Mx are to be found in the following table. 

Table 4. Eigenvalues of Mr,s,t = Mx T,S, . 

So we see that the spectrum of E(4) for p = 2 is given in Table 5. 

Table 5. Spectrum of X(Heis(%/4%)), {(f 1,0, O), (0, f 1,O)). 

eigenvalue 

f 4 
0 

multiplicity 

1 
26 



Zeta Functions of Heisenberg Graphs over Finite Rings 177 

The Artin L-function associated to the representation p of G = 
Gal(Y/X) can be defined by a product over prime cycles in X as 

L(u, p, Y/X) = n det (I - p (Frob (6)) u v ( ~ ) ) - l  , (2.7) 
[GI prime in X 

where 6 denotes any lift of C to Y and Frob denotes the Frobenius 
automorphism defined by 

if 6 starts on Y-sheet labeled by i E G and ends on Y-sheet labeled by 
j E G. As in Proposition 2.1, define 

Then, setting Qp = Q €3 Id,, with dp = d = deg p, we have the following 
analogue of formula (1.2): 

L(u, p, Y/x)-' = (1 - u~)('-')~" det (I - Mp u + Q~ u2) . (2.9) 

See (Stark and Terras, 1996) for an elementary proof and more informa- 
tion. 

Formula (2.5) implies that the zeta function of Y factors as follows 

See (Stark and Terras, 2000). 
For our example, the Galois group is abelian and all degrees are 1. 

We obtain a factorization of the Ihara-Selberg zeta function of Z(4) as 
a product of Artin L-functions of the Galois group of Z(4)/3-1(2). We 
use definition (2.8)) and Table 3 to compute the matrices Mx,,,,, as in 
formula (2.6). Then formula (2.9) gives the following list of L-functions. 
Here Q = 318, r = 9. 

Reciprocals of L-funct ions for H (4) / H (2). 

1) For x = xo,o,o, A = adjacency matrix of 3-1(2), and 
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4) When p = x,,,,~ we find that Mxl,l,o = 0, so that 

1 L (u, x ~ , ~ , ~ )  - = (1 - u2) (r-l)d det (I + Q,u~) 

= (1 - U2) (1 + 3u2)8 . 

It follows from these computations and (2.10) that the Ihara zeta 
function of X(4) is 

Consider the torus graphs 

where ei denotes the vector with 1 in the ith coordinate and 0 elsewhere. 
Because the torus groups (Z/qZ)n are abelian, it is relatively easy to 
generate spectra. In fact, the eigenvalues of the adjacency matrix of 
T ( ~ ) ( ~ )  are 

2nial bl 2xia2b2 
A, = 2 (cos ( ) + cos (T)  + . . - + cos (27ii;bn)) , 

for a, b E (Z/qZ)n. Note that, by a result of our earlier paper (DeDeo 
et al., 2004), the part of the spectrum of the degree 4 Heisenberg graph 
X(4) corresponding to 1-dimensional representations of X(4) contains 
the spectrum of ~ ( ~ ) ( 4 ) .  One obtains a second proof of this fact by noting 
that X(4) is actually a covering graph of ~ ( ~ ) ( 4 ) ,  via the covering map 
sending (x, y, z )  to (x, y) . 

We can easily compute the Selberg-Ihara zeta functions of the small 
torus graphs using covering graph theory. As in Theorem 2.2, the Galois 
group of (pr+ l ) /T (~ )  (pT ) is 

Since the 1-dimensional graphs are cycles, we know that 

&ql,(q) (u)-l = (1 - 2 ~ 1 ) ~  , for all q. 
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In 2-dimensions, we consider only the smallest values of q (namely 
q = 2 and q = 4) and find that if I' = Gal ( ~ ( ~ ) ( 4 ) / 7 ( ~ ) ( 2 ) )  , the repre- 

sentations of I? have the form x,,, (x, y) = exp ( 2 ~ i ( ~ ; f  33) ) 1 for (x,Y) E r1 

(r, s) E (Z/2Z)2. Therefore (x, y) = 0 (mod 2). It follows that 

Here C7(2)(2) (u)-l = - (1 - u2)5 (9u2 - 1) (3u2 + 1) 2. 
From these results plus (2.11) and (2.12) we see that 

and 

Figure 3 shows a contour plot of the absolute value of 5'H(2)(x + iy)-l 
made using the Mathematica command Plot3D. It should be compared 
with Figure 4 showing a contour plot of the 1/10 power of the absolute 
value of Ca(4) (x + iy)-l. The roots of cx(4) (x + iy)-' (not counting 
multiplicity) are approximately the following 14 numbers: 

Future Work. There are many other questions one can ask in this 
context. One should study the zeros of Ihara-Selberg zeta functions 'Fl(q) 
for large q. One should consider these questions for Cayley graphs of 
other finite groups and even for irregular graphs for which there is no 
obvious relation between the spectrum of the adjacency matrix and the 
zeros of the Ihara-Selberg zeta function. 

Can such zeta functions be used to recognize groups involved in Cay- 
ley graphs? In particular, one wonders whether you can see the shape 
of a group by staring at zeros of the zeta function of Cayley graphs as- 
sociated to the group? This is an analogous question to that of Mark 
Kac about hearing the shape of a drum (as the Dirichlet spectrum of 
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Figure 3. A contour plot of the absolute value of <x(2)(x + iy)-l. 
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Figure 4. A contour plot of 1/10 power of the absolute value of <N(4)(x + iy)-' 
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the Laplace operator on a plane drum determines the fundamental fre- 
quencies of vibration). Here we wonder if one can somehow recognize 
groups from properties of the zero set of zeta functions of associated 
Cayley graphs with some sort of condition on the generating sets S. In- 
stead of hearing the drum in its spectrum, we are trying to see it. Of 
course, it is known that there are graphs with the same zeta function 
that are not isomorphic. See (Stark and Terras, 2000) for examples that 
are connected, regular, without loops or multiple edges. 
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Abstract In 1989, M. V. Tratnik found a pair of multivariable biorthogonal poly- 
nomials Pn(x) and Pm(x), which is not necessarily the complex conju- 
gate of Pm(x), such that 

where x = (X I , .  . . ,x,), n = (n l , .  . . ,n,), m = (ml , .  . . ,mp), N = 
P P 
C nj ,  M = C mj,  p,,, is the constant of biorthogonality (which 
j=1 j=1 

Tratnik did not evaluate), 

and the a's, blsl x's, c and d are real. In the q-case we find that the 
appropriate weight function is a product of a multivariable version of 
the integrand in the Askey-Roy integral and of the Askey-Wilson weight 
function in a single variable that depends on X I , .  . . , x,. 
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In a related problem we find a discrete Zvariable Racah type biorthog- 
onality: 

where 

and Fm,n (x, Y), G,,,,, (x, y) are certain bivariate extensions of the q- 
Racah polynomials. 

1. Introduction 
Wilson polynomials (Wilson, 1980), defined by 

satisfy an orthogonality relation on the real line 

where 

is the positive weight function (under the assumption that a, b, c, d are 
real or occur in complex conjugate pairs), and 
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is the normalization constant. By Whipple's transformation it is easy to 
see that Pn(x) is symmetric in a, b, c, d, and that 

P,(x) = (a + b),(c - ix),(d - ix), 

= (b + a),(c + ix),(d + ix), 

Corresponding to each of these forms M. V. Tratnik (Tratnik, 1989b) 
introduced a multivariable polynomial: 



THEORY AND APPLICATIONS OF SPECIAL FUNCTIONS 

where x = ( X I ,  2 2 , .  . . , x p ) ,  n = (nl,n2,. . . , np), j = ( j l ,  j2, .  . . , j p ) ,  and 

and the sums in (1.6)-(1.9) are from jk = 0 to n k ,  k = 1, .  . . ,p.  Each 
of the polynomials in (1.6)-(1.9) is of (total) degree 2 N  in the variables 
X I ,  x2, . . . , x,. The overbars in (l.'i'), (1.9), and in (1.21) below are used 
to denote distinct systems of polynomials and should not be confused 
with complex conjugation. Tratnik proved that 

and 
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where 

Note that in (1.12) and (1.13) the biorthogonality holds in all of the 
indices nl, nz, . . . , np, while in (1.10) and (1.11) the biorthogonality is 
for polynomials of different degrees (N # M). 

Since Whipple's 4F3 transformation does not apply for p > 2 the P's 
and Q's are no longer equivalent and hence the orthogonality in a single 
variable becomes biorthogonality in many variables. 

We were curious to see what their q-analogues would be. At first sight 
it might appear that they could be found in a pretty straightforward 
manner. We were in for a surprise. The first hurdle is an appropriate 
analogue of the weight function in (1.14). There are many possible 
candidates but the one that works for a q-analogue of (1.10) is: 

fi (,& eiek , q,6i e-iek ; q) , 
(akeiek , bke-iek; q), 7 P 2 2 ,  

k=l 

where -n 5 Ok < T, Ok = xk logq so that eiek = qixk for k = 1,.  . . ,p, 
P P P 

O = C O j ,  A = n aj, B = n b j ,  h(cos O; c, d; q) is defined as in 
j=1 j=l j = 1 

( ~ a s ~ e r  and  ahm man, 1990a, (6.1.2))) P is an arbitrary complex param- 
eter such that ,O # q*n for n = 0, 1, . . ., and 

with = /3. By making repeated use of the Askey-Roy integral (Gasper 
and Rahman, 1990a, (4.11.1)) followed by the use of the Askey-Wilson 
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integral, we shall prove in Section 2 that 

which is also valid for p = 1. It  is understood that the (p - 2)-fold 
product in the numerator is taken to be 1 when p = 1. 

Let 

so that 

Analogous to  Tratnik's polynomials in (1.6) and (1.7) we introduce the 
functions 
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Both Pn(x;q) and Pm(x;q) are Laurent polynomials in the variables 
qizi , . . . , qiXp. Note that if we divide Pn(x; q) by (1 - q)3N and re- 
place its parameters a l , .  . . , ap, bl, . . . , bp, C, d, respectively, by qal,. . . , 
qap, qbl, . . . , qbp, qc, qd, and then let q + 1, we obtain Pn(x) as a limit 
case. Similarly, we see that Pm(x) is limit case of P ~ ( x ;  q). In Sec- 
tion 3 we shall do the integration and in Section 4 prove the following 
q-analogue of (1.10) : 

- P 

pn Pm := j.. . /Pn(x ;q lh (x ;q l  w(p)(x.q) n dok = 0, if N i M, 
- X  - X  k=l 

(1.22) 
where w(p) (x; q) is given by (1.15)) and 

when N = M,  with no = 1 and mo = 0, and L, is as defined in (3.7). 
Discrete multivariable extensions of the Racah polynomials were con- 

sidered in (Tratnik, 1991b) as well as in (van Diejen and Stokman, 1998) 
and in (Gustafson, 1990). For other related works see, for instance, (Gra- 
novskiy and Zhedanov, 1992)) (Koelink and Van der Jeugt, l998), (Trat- 
nik, 1989a)) (Tratnik, 1991b). We have found q-extensions of Tratnik's 
systems of multivariable Racah and Wilson polynomials, complete with 
their orthogonality relations, see this Proceedings (Gasper and Rahman, 
1990b) for our multivariable extension of the Askey-Wilson polynomials. 
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However, there seems to be at least one more extension that, to our 
knowledge, has not yet been investigated. The seed of this extension lies 
in Rosengren's (Rosengren, 2001) multivariable extension of the q-Hahn 
polynomials as well as in Rahman's (Rahman, 1981) 2-variable discrete 
biorthogonal system. In Sections 5 and 6 we shall prove the following 
2-variable extension of the q-Racah polynomial orthogonality (Gasper 
and Rahman, 1990a, (7.2.18)): 

where 0 < m, n, m', n' < N, 
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and the weight function is 

The normalization constant in (1.24) is given by 

Notice that both F,,,(x, y) and G,,,(x, y) are Laurent polynomials in 
the variables qx and qy, and G,,,(x, y) is a polynomial of (total) degree 
n + m in the variables q-" + yy'qx-N-l /ac and q-Y + c ~ Y - ~ .  

We wish to make the observation that the summation in (1.24) is over 
the square of length N, although the vanishing of the weight function 
above the main diagonal, because of the factor (q-N; q)x+y in the nu- 
merator, makes it effectively over the triangle 0 5 x + y < N. A very 
innocuous observation but it will help simplify the calculations some- 
what as we shall see in Section 6. 

It seems reasonable to expect that there is a multivariable extension 
of (1.24), but we were unable to find it, mainly because an extension of 
the q-shifted factorials of the type (a;  q)x-y doesn't appear too obvious 
to us. 

2. Calculation of W ( P )  ( q )  

The key to the proof of (1.17) is to observe that by periodicity we can 
change 81,82,. . . , to, say, 0, 82,. . . , Op (so that O1 = O - 0 2 ) ,  with 
the limits of integration unchanged. So the total weight transforms to 
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where 

However, this integral matches exactly with the Askey-Roy integral 
(Gasper and Rahman, 1990a, (4.11.1))) provided we assume that 
max (\al l ,  lbl l, la21, Ib21) < 1 (with, of course, Iql < 1). By (Gasper and 
Rahman, 1990a, (4.11.1)), it then follows that 

Substitution of (2.3) into (2.1) makes it clear that the integration over O4 
presents exactly the same situation, and so does the remaining integra- 
tions up to and including 9,. Finally, one is left with an Askey-Wilson 
integral over Q: 

w ( p )  (q) = k=2 
P 

(4; 4)Z1 n (akbk; q), 
k=l 
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by (Gasper and Rahman, 1990a, (6.1.1)), which completes the proof of 
(1.17). 

3. Computation of the integral in (1.22) 

We shall carry out the integrations in (1.22) in much the same way 
as we did in the previous section. We transform the integration variables 
01,. . . ,Op to 02,. . . ,Op and O as before; then we isolate the 
82-integral by observing that the factors (alei(Q-03)-ie2 ; 4) . (a2eaZ ; ;) j2 

?? 
x (bl ei(e3-e)+ie2 ; q) ln (b2e-ih; q) k2 ei~z(ji+kz)+i~z(Q3-Q)+~~iQ3 can be glued 

on to the integrand of ~ ( p ) ( q ) ,  to get 

which via (Gasper and Rahman, 1990a, (4.11.1)) equals, on a bit of 
simplification, 

Since O3 = O3 + 04, we may now isolate the 03-integral in exactly the 
same way, carry out a similar integration, simplify, and obtain 
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A clear pattern is now emerging. The 0, integral is 

4 jikz+(ji+jz)k3+...+(jl+...+j p-2) kp-l k3+-+kp--1 
a2 . . . 

(3.3) 
The expression in [ ] above can, once again, be computed by use of 
(Gasper and Rahman, 1990a, (4.1 1 .I)), and simplified to 

AP eie - i ~  
A )  p ( $-* (L.& qibp&? lP ; npP e , A B ~ J + K ; ~ )  00 

q, apbpqjp+kp, AqJeiQ BqKe-iQ & apbpq J+K-jp-kp; q 

Since, by repeated application of (1.16) we get APp/ap = Pbl/B, the 
Q-integral simply becomes the Askey-Wilson integral 

- - ~ ( A B C ~  qJ+K; q), 
(q, cd, ABqJ+K, AcqJ, AdqJ, BcqK, BdqK; q), ' 
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Collecting these results and substituting into the integral in (1.22), we 
find that 

P,.,.%= L,CC (ABcdqN-l; q) J (ABcd~M-l; P) 
J+K 

( ABcd; q) J+K 
Q 

.i 

4. Biort hogonality 
The sum over jl and kl in (3.6) gives 

Since, by (Gasper and Rahman, 1990a, (3.2.7)), the above 3(P2 equals 

we can now do the summation over Icl via (Gasper and Rahman, 1990a, 
(1.5.3)) to obtain that the expression in (4.1) reduces to 
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Note that the 4 9 3  series is balanced. Now, the sum over j2 and k2 gives 

(4.3) 
As in the previous step we apply (Gasper and Rahman, 1990a, (3.2.7)) 
to the 3 9 2  series above, use (Gasper and Rahman, 1990a, (1.5.3)) to do 
the k2 sum and simplify the coefficients to reduce (4.3) to the following 
expression 
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A clear pattern of terms is now emerging, and by induction we find that 
at the (p - 1)-th step the sum over jl, kl, . . . , jp-1, kp-l in (3.6) equals 

Using (4.5) we obtain that the sum over j and k in (3.6) equals 

where 
(4.6) 
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Note that the 3992 series is balanced, so by (Gasper and Rahman, 1990a, 
(11.12)) it has the sum 

Hence, 

(4.8) 
First, let us suppose that N 2 M 2 0. Then it is clear from the right 
side of (4.8) that Sp is zero unless kp 2 N - M + mp, as well as mp 2 kp. 
So, we must have 

m p + ( N - M ) S k p I m p .  (4.9) 
This is a contradiction unless N = M, and then kp = mp. In that case 

(q -mp , ~ ~ ~ d ~ N + k l + - + k ~ - l - l .  
1 q)  rnP 

( ~ ~ ~ d ~ N + k l + - . + k ~ - l  -np . 
7 q )mp+np  ' 

On the other hand, if M 2 N 2 0 then 

m p - ( M - N ) < k p < m p .  

So we get 

ABcd N-np+kl+...+kp-l.  

Sp = q m ~ + N - M  ( x q  q )  np 

(5, ABcdqN-np+ki+...+kp-1 ; q)  
np 
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However, the above 2 9 1  equals 

(4.13) 
which vanishes unless N = M. This completes the proof of (1.22). 

Also, with N = M, (3.6)) (4.6) and (4.10) give 

(4.14) 
which is, of course, the same as (1.23). By taking p = 2, e.g., in which 
case the series on the right hand side of (4.14) becomes a terminating 
balanced 4p3 series, it is easily seen that in general the above inner 
product do& not vanish when N = M and n #m.  

In closing this section we would like to point out that unlike the q -, 1 
case that corresponds to the Tratnik biorthogonalities, the q-analogues 
of Pn - Q,, Pn . Q, or Q, . Q, do not seem to work out the same way 
as Pn . Pm. 

5. Transformations of F,,,(x, y) and G,,,(x, y) 

We shall now address the problem of proving the biorthogonality re- 
lation (1.24). First of all, it is very simple to use (Gasper and Rahman, 
1990a, (11.20)) to prove that 
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The forms of Fm,,(x, y) and Gm,,(x, y) that turn out to be most conve- 
nient for the summations in (1.24) are as follows: 

Since 



q-Analogues of Some Multivariable Biorthogonal Polynomials 203 

and 

by (Gasper and Rahman, 1990a) (111.15))) (5.3) follows from (1.26) with 
a bit of simplification. 

To derive (5.2) from (1.25) we need two applications of (Gasper and 
Rahman, 1990a, (111.15)) on each of the two 4.3 series involved in (1.25). 
First 

1 j-m-n q-ml gqx-N-1  
4.3 [ 1 74") ff 

x+y-N-m-n+j ; 474 Y 1 I 

q - ~ ,  dqx -N -1  I j-m-n 

4.3 [ ffc 
? wm, 01 

; q'q ' 
Y 1 I 

Substituted into (1.25) this leads to  another balanced 4.3 series: 
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which, when transformed twice in the same manner as in (5.4), leads to  

After some simplifications (5.4) and (5.5) give (5.2). Denoting the left 
hand side of (1.24) by F,,, . G,I,,I, it follows that 
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where 

6. Proof of (1.24) 
Since each term in the weight function can be glued on nicely with the 

x and y dependent terms of the two double series in (5.6), the x, y-sum 
can be isolated as 

by (Gasper and Rahman, 1990a, (11.21)). The sum over j ,  k, r ,  s in 
(5.6) now reduces to 
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The sum over j is a multiple of 

by (Gasper and Rahman, 1990a, (1.9.10)). Together with a similar ex- 
pression for the sum over k we now have 
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The r, s sum is 

which vanishes unless m' > m and n' > n. 
The sum in (6.4), via (Gasper and Rahman, 1990a, (11.12) and (II.6)), 

equals 

which vanishes unless m' 5 m and n' 5 n. Thus we must have 

Fm,n . Grnl,,1 = 0 unless (m, n) = (m', n') , and then (6.5) 

- 1-a - m+n n-m mn 
1 - aq2m+2n (2 q ,  

( ~ . l / c ;  q)m (T',YE;~; q) n (0, q-N; q)rn+n 

which completes the proof of (1.24) and (1.28). 
It may be mentioned that there are other double series representa- 

tions for Fm,,(x, y) that one could use instead of (5.2) in the derivation 
of the biorthogonality relation (1.24) which do not contain the factor 
11 ( r N ;  q)z+y that cancels out the (q-N; q)%+. factor in the weight 
function, but the subsequent computations turn out to be quite tedious, 
while the final result is, of course, the same. 



208 THEORY AND APPLICATIONS OF SPECIAL FUNCTIONS 

References 
Gasper, G. and Rahman, M. (1990). Basic Hypergeometric Series. Cambridge Uni- 

versity Press, Cambridge. 
Gasper, G. and Rahman, M. (2003). Some systems of multivariable orthogonal Askey- 

Wilson polynomials. This Proceedings. 
GranovskiY Y. I. and Zhedanov, A. S. (1992). 'Twisted' Clebsch-Gordan coefficients 

for su,(2). J. Phys. A, 25:L1029-L1032. 
Gustafson, R. A. (1987). A Whipple's transformation for hypergeometric series in 

u(n) and multivariable hypergeometric orthogonal polynomials. SIAM J. Math. 
Anal., 18:495-530. 

Koelink, H. T. and Van der Jeugt, J. (1998). Convolutions for orthogonal polynomials 
from Lie and quantum algebra representations. SIAM J. Math. Anal., 29:794-822. 

Rahman, M. (1981). Discrete orthogonal systems corresponding to Dirichlet distribu- 
tion. Utilitas Mathematzca, 20:261-272. 

Rosengren, H. (2001). Multivariable q-Hahn polynomials as coupling coefficients for 
quantum algebra representations. Int. J. Math. Sci., 28:331-358. 

Tratnik, M. V. (1991a). Some multivariable orthogonal polynomials of the Askey 
tableau-continuous families. J. Math. Phys., 32:2065-2073. 

Tratnik, M. V. (1991b). Some multivariable orthogonal polynomials of the Askey 
tableau-discrete families. J. Math. Phys., 32:2337-2342. 

van Diejen, J. F. and Stokman, J. V. (1998). Multivariable q-Racah polynomials. 
Duke Math. J., 91:89-136. 

Wilson, J. A. (1980). Some hypergeometric orthogonal polynomials. SIAM J. Math. 
Anal., 11:690-701. 



SOME SYSTEMS OF MULTIVARIABLE 
ORTHOGONAL ASKEY-WILSON 
POLYNOMIALS 

George Gasper 
Department of Mathematics 
Northwestern University 
Evanston, IL 60208 

Mizan Rahman* 
School of Mathematics and Statistics 
Carleton University 
Ottawa, Ontario 
CANADA K1S 5B6 

Abstract In 1991 Tratnik derived two systems of multivariable orthogonal Wil- 
son polynomials and considered their limit cases. q-Analogues of these 
systems are derived, yielding systems of multivariable orthogonal Askey- 
Wilson polynomials and their special and limit cases. 

1. Introduction 
In (Tratnik, 1991a) the Wilson (Wilson, 1980) polynomials 
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were extended to the multivariable Wilson polynomials (in a different 
notation) 

where, as elsewhere, 

These polynomials are of total degree Ns in the variables yl, . . . , y, with 
yk = xi ,  k = 1,2, . . . , s, and they form a complete set for polynomials 
in these variables. 

In (Askey and Wilson, 1979) and (Askey and Wilson, 1985) the nota- 
tions Wn (x2; a, b, c, d) and p, (-x2) are used for the polynomials in (1.1) 
and their orthogonality relation is given. Tratnik (Tratnik, 1991a, (2.5)) 
proved that the W,(x) polynomials satisfy the orthogonality relation 

for Re (a, b, c, d, a2,. . . ,a,) > 0 with 

I? (C + ix,) I? (C - ix,) I? (d + ix,) I? (d - ix,) 
X 

I' (2ixs) I? (-2ixS) 7 
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An = ( 4 ~ ) ~  [ G n k !  (Nk + N ~ - I +  2W+l - 

X 
r (Nk + Nk-1 + 2 4  (nk + 2ak+l) 

r (2Nk + 2ak+l) I (1.6) 

x I ? ( a + ~ + a z , ~ + N ~ ) r ( a + d + a a , , + N ~ )  
x I? (b + c + aa,, + Ns) (b + d + as,, + Ns) , 

and 2al = a + b, 2aS+l = c + d. 
Tratnik showed that these polynomials contain multivariable Jacobi, 

Meixner-Pollaczek, Laguerre, continuous Charlier, and Hermite polyno- 
mials as limit cases, and he used a permutation of the parameters and 
variables in (1.2) and (1.4) to show that the polynomials 

w ~ ( x )  = Wn (x; a, b, C, dl aa, as,. . . ,as) 
= wnl (XI;  c + a 2 , ~  + N2,s, d + a z , ~  + a, b) 

also form a complete system of multivariable polynomials of total degree 
Ns in the variables yk = x:, Ic = 1, . . . , s, that is orthogonal with respect 
to the weight function p(x) in (1.5), and with the normalization constant 

The Askey-Wilson polynomials defined as in (Askey and Wilson, 1979) 
and (Gasper and Rahman, 1990a) by 

[I-", abcdqn-I , aeie7 ~ e - ~  
= ~ - ~ ( a b ,  ac, ad; q), 4 9 3  ;414 2 I (1.9) 

ab, ac, ad 

where x = cos8, are a q-analogue of the Wilson polynomials (for the 
definition of the q-shifted factorials and the basic hypergeometric series 
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4 9 3  see (Gasper and Rahman, 1990a). These polynomials satisfy the 
orthogonality relation 

and 

An (q) = An (a, b, c1 d I q) 

- - 2r(abcd; q), 
(q, ab, ac, ad, bc, bd, cd; q), 
(q, ab, ac, ad, bc, bd, cd; q), (1 - abcdq-l) 

X 
(abcdq-l; q), (1 - abcdq2,-l) 

In this paper we extend Tratnik's systems of multivariable Wilson 
polynomials to systems of multivariable Askey-Wilson polynomials and 
consider their special cases. Some q-extensions of Tratnik's (Tratnik, 
1989) multivariable biorthogonal generalization of the Wilson polyno- 
mials are considered in (Gasper and Rahman, 1990b). q-Extensions of 
Tratnik's (Tratnik, 1991b) system of multivariable orthogonal Racah 
polynomials and their special cases will be considered in a subsequent 
paper. 

2. Mult ivariable Askey- Wilson polynomials 
In terms of the Askey-Wilson polynomials a q-analogue of the multi- 

variable Wilson polynomials can be defined by 

k 
where xk = cosOk, Aj,k = n ai, Ak+1,k = 1, Ak = Allk, 1 5 j 5 k 5 s. 

i=j 

Our main aim in this section is to show that these polynomials satisfy 
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the orthogonality relation 

where a: = ab and a:+l = cd. The two-dimensional case was considered 
in (Koelink and Van der Jeugt, 1998), but they did not give the value 
of the norm. First observe that by (1.10)-(1.12) the integration over xl 
in (2.2) can be evaluated to obtain that 
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After doing the integrations over XI,  x2,. . . , x j  for a few j one is led to 
conjecture that 

where 

for j = 1,2,. . . , s - 1. To prove this by induction on j, suppose that 
j < s - 1, multiply (2.6) by the xj+1-dependent parts of the weight 
function and orthogonal polynomials, and then integrate with respect to 
xj+l to get 

( 2 4 j  
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b ~ ~ , ~ + ~ ~ ~ ~ + l  eiej+z, bA2 j+2qN~+l e-iej+z ; q)-l ) 

ca 

(2.7) 
which is the j -t j + 1 case of (2.6), completing the induction proof. 

Now set j = s - 1 in (2.6) and use it and (2.5) to find that 

where Xn(q) is given by (2.4). This completes the proof of (2.2). 
Note that the integration region and weight function in (2.2) and (2.3) 

are invariant under the permutation of variables and parameters 

Hence, when these permutations are applied to (2.2) and (2.3) the trans- 
formed polynomials also form an orthogonal system with the same weight 
function. Since the polynomials Pn(x I q) in (2.1) are not invariant un- 
der (2.9), we obtain a second system of multivariable orthogonal Askey- 
Wilson polynomials, which is a q-analogue of Tratnik's second system 
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(1.7) of multivariable Wilson polynomials. After doing the permuta- 
tion nk tt ns-k+l, k = 1,. . . , s, the transformed polynomials and the 
normalization constant are given by 

with a: = ab, a:+1 = cd, and max (lql, la], Ibl, I c I ,  Idl, la21,lasl, . . . , lasl) < 
1. These polynomials are of total degree N, in the variables X I , .  . . , x, 
and they form a complete set. 

A five-parameter system of multivariable Askey-Wilson polynomials 
which is associated with a root system of type BC was introduced in 
(Koornwinder, 1995) and studied with four of the parameters generally 
complex in (Stokman, 1999). 

3. Special Cases of (2.2) 

First observe that the continuous dual q-Hahn polynomial defined by 

q-n, aeiO, ae-ie 
dn (x;  a, b, c 1 q) = a-n (ab, ac; q), 392  ab, ac 

is obtained by taking d = 0 in (1.9) and x = cos 13. Since dn (x; a, b, c I q) 
is symmetric in its parameters by (Gasper and Rahman, 1990a, (3.2.3))) 
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we may define the multivariable dual q-Hahn polynomials by 

with xr, = cos Ok for k = 1,2, . . . , s. I t  follows from the b = 0 case of 
(2.2)-(2.4) that the orthogonality relation for these polynomials is 

with 

where = bc and max (191, la[, lbl, lcl, la2111a31,. . . , las[) < 1. 
By taklng the limit a -+ 0 in (3.2)-(3.5) we can now deduce that the 

multivariable Al-Salam-Chihara polynomials defined by 
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satisfy the orthogonality relation 

with 

where a&l = kc, max(lq1, lbl, Icl, lazl, 1~31, .  . . , lasl) < 1, and the Al- 
Salam-Chihara polynomial p , (~ ;  b, c l q) is defined by 

see (Koekoek and Swarttouw, 1994, (3.8.1)). 
Setting 

in (2.1) and (2.2) gives a multivariable orthogonal extension of the con- 
tinuous q- Jacobi polynomials P ~ ' ~ ) ( X  1 q) defined in (Gasper and Rah- 
man, 1990a, (7.5.24))) while setting 

in (2.1) and (2.2) gives a multivariable orthogonal extension of the 
ppy8)(x; q) polynomials defined in (7.5.25). Also, via (Gasper and Rah- 
man, 1990a, (7.5.33)) and (Gasper and Rahman, 1990a, (7.5.34) with 
q + q1I2) the a = P = A-112 substitution gives a multivariable orthogo- 
nal extension of the continuous q-ultraspherical polynomials Cn (x; qX I q) . 
By letting X + oo when we use (3.12)) i.e., set a = -d = q1I2 and 
b = c = 0, we get a multivariable orthogonal extension of the continu- 
ous q-Hermite polynomials defined in (Gasper and Rahman, 1990a, Ex. 
1.28). 
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A multivariable orthogonal extension of the continuous q-Hahn poly- 
nomials defined by 

-n a2b2qn-1, ae2i(p+if3 ae-if3 
= (a2, ab, abe2"; q)n (aew) -" 4~ [9. 7 

1 

a2, ab, abe2ip ; Q , Q  1 , 
(3.13) 

see (Gasper and Rahman, 199Oa, (7.5.43)), is obtained from (2.1)-(2.4) 
by replacing a, b, c, d, Qk and xr, = cosQk by alez'+', ale-z", ~,+~e' '+', 
~ , + ~ e - ~ q ,  Qlc + cp and cos(& + cp), respectively. 

It is clear that similar special cases of the second system of multivari- 
able orthogonal Askey-Wilson polynomials can be obtained by appro- 
priate specialization of the parameters in (2.10) and (2.11). Additional 
systems of multivariable orthogonal polynomials will be considered else- 
where. 
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Abstract  An explicit bilinear generating function for Meixner-Pollaczek polynomi- 
als is proved. This formula involves continuous dual Hahn polynomials, 
Meixner-Pollaczek functions, and non-polynomial 3Fz-hypergeometric 
functions that we consider as continuous Hahn functions. An integral 
transform pair with continuous Hahn functions as kernels is also proved. 
These results have an interpretation for the tensor product decomposi- 
tion of a positive and a negative discrete series representation of su(1,l) 
with respect to hyperbolic bases, where the Clebsch-Gordan coefficients 
are continuous Hahn functions. 

1. Introduction 

The results and techniques in this paper are mainly analytic in na- 
ture, but they are motivated by a Lie algebraic problem. As is well 
known, many polynomials in the Askey-scheme of orthogonal polynomi- 
als of hypergeometric type, see (Koekoek and Swarttouw, 1998), have 
an interpretation in the representation theory of Lie groups and Lie al- 
gebras, see, e.g., Vilenkin and Klimyk (Vilenkin and Klimyk, 1991) and 
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Koornwinder (Koornwinder, 1988). The Askey-scheme can be extended 
to families of unitary integral transforms with a hypergeometric kernel. 
Many of these kernels also admit group theoretic interpretations. For ex- 
ample the Jacobi functions, which can be considered as a non-polynomial 
extension of the Jacobi polynomials and are given explicitly by a certain 
2Fl-hypergeometric function, have an interpretation as matrix elements 
for irreducible representations of the Lie group SU(1,l). The Jacobi 
function is the kernel in the Jacobi integral transform, which can be 
found by spectral analysis of the hypergeometric differential operator. 
For an overview of Jacobi functions in representation theory, we refer to 
the survey paper (Koornwinder, 1995) by Koornwinder. 

In this paper we give a generalization of the Jacobi functions. We 
consider the tensor product of a positive and a negative discrete series 
representation of the Lie algebra su(1,l). The Clebsch-Gordan coeffi- 
cients for the hyperbolic basisvectors turn out to be a certain type of 
non-polynomial 3F2-hypergeometric functions, which we call continu- 
ous Hahn functions. We show that the continuous Hahn functions are 
the kernel in an integral transform, that generalizes the Jacobi function 
transform. We emphasize that the main part (Sections 11.3 and 11.5) of 
this paper is analytic in nature, and that the Lie algebraic interpretation 
is mainly restricted to Section 11.4. 

The Lie algebra su(1,l) is generated by the three elements H, B 
and C. There are four classes of irreducible unitary representations for 
su(1,l): discrete series, i.e., the positive and the negative discrete series 
representations, and continuous series, i.e., the principal unitary series 
and the complementary series representations. There are three kinds of 
basis elements on which the various representations can act: the elliptic, 
the parabolic and the hyperbolic basis elements. These three elements 
are related to conjugacy classes of the group SU(1,l). We consider the 
tensor product of a positive and a negative discrete series representation, 
which decomposes into a direct integral over the principal unitary series 
representations. Under certain condition discrete terms can appear. The 
Clebsch-Gordan coefficients for the standard (elliptic) basis vectors are 
continuous dual Hahn polynomials. We compute the Clebsch-Gordan 
coefficients for the hyperbolic basis vectors, which are non-polynomial 
extensions of the continuous (dual) Hahn polynomials, and are therefore 
called continuous Hahn functions. For the Clebsch-Gordan coefficients 
for the elliptic and parabolic basis, we refer to (Groenevelt and Koelink, 
2002)) respectively (Basu and Wolf, 1983), (Groenevelt, 2003). 

The explicit expressions for the Clebsch-Gordan coefficients as 3F2- 

series are not new, they are found by Mukunda and Radhakrishnan in 
(Mukunda and Radhakrishnan, 1974). However not much seems to be 
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known about the generalized orthogonality properties of the continuous 
Hahn functions, i.e., they form the kernel in a unitary integral tranform 
(the continuous Hahn transform). Using the Lie algebraic interpretation 
of the continuous Hahn functions, we can compute formally the inverse 
of the continuous Hahn integral transform. In Section 11.5 we give an 
analytic proof for the integral transform pair. 

The method we use to compute the Clebsch-Gordan coefficients is 
based on an idea by Granovskii and Zhedanov (Granovskii and Zhedanov, 
1993). The idea is to consider a self-adjoint Lie algebra element Xa = 
-aH + B - C, a E R. The action of Xa in an irreducible representa- 
tion gives a difference equation, for which the (generalized) eigenvectors 
can be expressed in terms of special functions and the standard basis 
vectors. The Clebsch-Gordan coefficients for the eigenvectors can be 
calculated using properties of the special functions. In (Van der Jeugt, 
1997) and (Koelink and Van der Jeugt, 1998) Van der Jeugt and the 
second author considered the action of Xa in tensor products of positive 
discrete series representations of su(1,l) to find convolution formulas for 
orthogonal polynomials. In (Groenevelt and Koelink, 2002) the action 
of Xa in the tensor product of a positive and a negative discrete series 
representation is investigated for la[ > 1 (the elliptic case). This leads 
to a bilinear summation formula for Meixner polynomials (Groenevelt 
and Koelink, 2002, Thm. 3.6). In this paper we consider the case la1 < 1 
(the hyperbolic case). 

The plan of the paper is as follows. In Section 11.2 we introduce the 
special functions we need in this paper, and give some properties of these 
functions. 

In Section 11.3 we prove a bilinear summation formula for Meixner- 
Pollaczek polynomials by series manipulations. As a result we find a 
certain type of sFz-functions, which are the continuous Hahn functions. 
The summation formula is used in Section 11.4.2 to compute the Clebsch- 
Gordan coefficients for the hyperbolic bases. 

In Section 11.4 we consider the tensor product of a positive and a 
negative discrete series representation of the Lie algebra su(1,l). First 
we recall the basic properties of su(1,l) and its irreducible unitary rep- 
resentations in Section 11 A.1. Then in Section 11 A.2 we diagonalize 
Xa, la1 < 1, in the various irreducible representations. This leads to 
generalized eigenvectors of Xa, which can be considered as hyperbolic 
basis vectors. 

For the discrete series representations, the overlap coefficients for 
the eigenvectors and the standard (elliptic) basisvectors are Meixner- 
Pollaczek polynomials, cf. (Koornwinder, 1988, $7). For the continuous 
series, the overlap coefficients are Meixner-Pollaczek functions. This 
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follows from the spectral analysis of a doubly infinite Jacobi operator, 
which is carried out by Masson and Repka (Masson and Repka, 1991, 
53.3) and Koelink (Koelink, , 54.4.11). It turns out that the spectral pro- 
jection of the Jacobi operator is on a 2-dimensional space of generalized 
eigenvectors. So the eigenvectors of X,, la\ < 1, in the continuous series 
representations are 2-dimensional, and we find two linearly independent 
Meixner-Pollaczek functions as overlap coefficients. To determine the 
Clebsch-Gordan coefficients for the hyperbolic bases, we use the bilinear 
summation formula from Section 11.3. This leads to a pair of continuous 
Hahn functions as Clebsch-Gordan coefficients. By formal calculations 
we find an integral transform pair, with a pair of continuous Hahn func- 
tions as a kernel. To give a rigorous proof of the integral transform pair, 
we show that the continuous Hahn functions are eigenfunctions of a dif- 
ference operator A. To find this operator A we realize H, B and C as 
difference operators acting on polynomials, using the difference equation 
for the Meixner-Pollaczek polynomials. Then A is a restriction of the 
Casimir operator in the tensor product. 

The spectral analyis of this difference operator is carried out in Sec- 
tion 11.5. A main problem with spectral analysis of a difference operator 
is finding the right eigenfunctions. This is because an eigenfunction mul- 
tiplied by a periodic function is again an eigenfunction. Our choice of 
the periodic function is mainly motivated by the Lie algebraic inter- 
pretation of the eigenfunctions. Using asymptotic methods, we find a 
spectral measure for the difference operator. This leads to an integral 
transform with a pair of continuous Hahn functions as a kernel. We call 
this the continuous Hahn integral transform. 

Notations. We denote for a function f : C -t C 

1 
If dp(x) is a positive measure, we use the notation dpz (x) for the positive 
measure with the property 

d ps x ps (x, x) = dp(x). 
( l  7 

The hypergeometric series is defined by 

where (a), denotes the Pochhammer symbol, defined by 



Continuous Hahn functions 

Acknowledgments 
We thank Ben de Pagter for useful discussions. 

Dedication 
We gladly dedicate this paper to Mizan Rahman who, with his unsur- 

passed mastery in dealing with (q)-series and his insight in the structures 
of formulas, has pushed the subject of (q)-special functions much fur- 
ther. We are also grateful to Mizan Rahman for his interest in our work, 
and for his willingness to help others in solving problems in this field. 

2. Orthogonal polynomials and functions 
In this section we recall some properties of the orthogonal polynomi- 

als and functions which we need in this paper. 

Continuous dual Hahn polynomials. The Wilson polynomials, 
see Wilson (Wilson, 1980) or (Andrews et al., 1999, §3.8), are 4F3- 
hypergeometric polynomials on top of the Askey-scheme of hypergeomet- 
ric polynomials, see Koekoek and Swarttouw (Koekoek and Swarttouw, 
1998). The continuous dual Hahn polynomials are a three-parameter 
subclass of the Wilson polynomials, and are defined by 

For real parameters a, b, c, with a + b, a + c, b + c positive, the contin- 
uous dual Hahn polynomials are orthogonal with respect to a positive 
measure, supported on a subset of R. The orthonormal continuous dual 
Hahn polynomials are defined by 

By Kummer's transformation, see, e.g., (Andrews et al., 1999, Cor. 
3.3.5), the polynomials sn and Sn are symmetric in a, b and c. Without 
loss of generality we assume that a is the smallest of the real parameters 
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a, b and c. Let dp(.; a, b, c) be the measure defined by 

where K is the largest non-negative integer such that a + K < 0. In 
particular, the measure dp(.; a, b, c) is absolutely continuous if a 2 0. 
The measure is positive under the conditions a + b > 0, a + c > 0 and 
b + c > 0. Then the polynomials Sn (y; a, b, c) are orthonormal with re- 
spect to the measure dp(y; a, b, c). 

Meixner-Pollaczek polynomials. The Meixner-Pollaczek polyno- 
mials, see (Koekoek and Swarttouw, 1998), (Andrews et al., 1999, Ex. 
6.37), are a two-parameter subclass of the Wilson polynomials, and are 
defined by 

(2X)n einr 2fi 
(x; ~p) = - 1 - e - 2 ' ~  

n ! (-n7F ix 
(2.2) 

For X > 0 and 0 < cp < n, these are orthogonal polynomials with 
respect to a positive measure on R. The orthonormal Meixner-Pollaczek 
polynomials 

Pn(x) = P ~ ( x ;  cp) = (A,( - ) 
/(:In Pn x7P 

satisfy the following three-term recurrence relation 

where 

The Meixner-Pollaczek polynomials also satisfy the difference equation 

eiy(X - ix) y(x + i) + 2i[x cos cp - (n + A) sin cp] y(x) 

- e - i ~ ( ~  + ix)y(x - i) = 0, (2-4) 
y(x) = piA) (x; cp). 
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Define 
1 2x (29-*)a: Ir(x + i 4  l 2  w(')(x; cp) = - (2 sin cp) e 

27r r ( 2 4  
then the orthonormality relation reads 

S P:) (x; cp) PA') (x; cp)w(') (x; cp)dx = S,, . 
R 

Meixner-Pollaczek functions. The Meixner-Pollaczek functions 
u,, n E Z, can be considered as non-polynomial extensions of the 
Meixner-Pollaczek polynomials, see Masson and Repka (Masson and 
Repka, 1991) and Koelink (Koelink, , 54.4). The Meixner-Pollaczek 
functions are defined by 

F(n + 1 + E + X)l?(n + E - A) 
un(x; A, E, cp) = (2i sin cp)-" ' 

F(n + 1 + E  - ix) 
n + l + ~ + X , n + ~ - X  1 (2.5) 

n + l + & - i x  

The parameters cp and E satisfy the conditions 0 < cp < T ,  0 < E < 1, and 
1 X satisfies one of the following conditions: -; < X < -E, -Z < X < 6-1, 

or X = -4 + ip, p E R. In the last case u, is symmetric in p and -p, 
so without loss of generality we assume p 2 0. For 0 < cp 5 and 

7r < cp < .rr we use the unique analytic continuation of the 2Fl-function 
to C \ [I, 00). Note that the Meixner-Pollaczek function is well defined 
for all n E Z, since l ? ( ~ ) - ~ ~ F ~ ( a ,  b; c; z )  is analytic in a, b and c. 

The functions u, and u: satisfy the recurrence relation 

where 

Let L be the corresponding doubly infinite Jacobi operator acting on 
e2 (Z), 

L : en I-+ anen+l + ,&en + an-len-l. 

L is initially defined on finite linear combinations of the basis vectors of 
e2(Z), and then L is essentially self-adjoint. The spectral measure of L 
is described by 
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where 

The spectral measure for L can be obtained from (Koelink, , §4.4.11), 
using the connection formulas given there. The expression for wo(x) is 
found using Euler's reflection formula, elementary trigonometric identi- 
ties and the conditions on A. 

Let 'FI = 'FI(A, E, p) be the Hilbert space consisting of functions 

with inner product defined by 

Observe that the square matrix inside the integral is positive definite 
and self adjoint. 

Proposition 2.1. The functions 

form an orthonormal basis of the Hilbert space 'FI. 

The orthonormality follows by choosing u and v above as standard 
basis vectors en and em. The completeness of the Meixner-Pollaczek 
functions follows from the uniqueness of the spectral measure. An alter- 
native, grouptheoretic approach, can be found in (Vilenkin and Klimyk, 
1991). It is only worked out for the smaller range of parameters corre- 
sponding to SU(1,l) (rather than its Lie algebra or universal covering 
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group). We will briefly describe how the analytic arguments that lie be- 
hind the approach of (Vilenkin and Klimyk, 1991) extend to the present 
situation. We only discuss the case X = -$ + ip, p E R, which is all that 
we need later. 

Consider the space L2(T) on the unit circle with respect to normalized 
measure Idzl/2n. It has the orthonormal basis en(z) = zn, n E Z. If 
X = -$ + ip, p E R and E E R, it is easily checked that 

1 
(U f )  (x) = - (X + i)'-& - i)'+~f (e) 

f i  x + i 
defines an isometry U : L 2 ( ~ )  -t L~(R) .  Next we recall that the Mellin 
transform, defined by 

gives an isometry L2 (R+) + L2(R). Thus, we may define a "double" 
Mellin transform as the isometry 

given by 

f (-y)yix-t dy 

If we now let Tt, t E R, denote the translation operator (Ttf)(x) = 
f (x+t), we may compose the above isometries to obtain the orthonormal 
basis 

of L2 (R) @ L2 (R) . Explicitly, we have 

These integrals may be expressed in terms of Gauss's hypergeometric 
function; cf. (Vilenkin and Klimyk, 1991, 87.7.3). Using Kummer's iden- 
tities (ErdBlyi et al., 1953, §2.9), one may then express f: in terms of 
un (x + p) and uz (x + p), where e2ip = (t + i) / (t - i) . Rewriting the iden- 
tity (f,, f,) = 6,, in terms of Meixner-Pollaczek functions and making 
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a final change of variables x I+ x - p, one recovers the orthonormal basis 
Un. 

The group-theoretic interpretation of this proof is the following. The 
space L2(T) is a natural representation space for the principal unitary 
series (en is proportional to the en in (4.5) below). The operator L 
gives the action of a hyperbolic Lie algebra element; cf. also 54.2. It 
generates a one-parameter subgroup of the universal covering group of 
SU(1, I) ,  which locally may be identified with the group of linear frac- 
tional transformations of the circle that have two common fix-points. 
Thus, L2(T) splits into two invariant subspaces. The map Tt o U cor- 
responds to mapping the fix-points to (0, m), and the one-parameter 
subgroup to dilations of R. Finally, the operator V is the Fourier trans- 
form with respect to these dilations. In particular, the appearance of 
double eigenvalues in Proposition 2.1 has a natural geometric explana- 
tion: it corresponds to the fact that a circle falls into two pieces when 
removing two points. 

3. A bilinear summation formula 
In this section we prove a bilinear summation formula for Meixner- 

Pollaczeck polynomials. This summation is related to the tensor product 
of a positive and a negative discrete series representation of the Lie alge- 
bra su(1, I), which will be explained in Section 11.4. In the summation 
a certain type of non-polynomial 3F2-functions appear. These functions 
will be investigated in Section 11.5. 

Theorem 3.1. For 

p E Z, x1,xz E R, and kl, k2 > 0, the Meixner-Pollaczek polynomials 
and the continuous dual Hahn polymials satisfy the following summation 
formula 



,A+ - T L ~ + d + ( T x - z x ) z + z y - T y  
1  ' d z - Z + z y - r q + d L d z + f + z y - r y + d  T 

T + (1% - Zx) 2 + q-- Zy 'Zyz (' ! dz - 5 + Ty - Zy 'd l  + f + Ty - Zy 'Zxz + Zy 
T 

( ~ + T . + ( ~ x - Z X ) ~ + Z ~ - ~ Y ) J ( T + ( ~ X - Z X ) Z + ~ Y - ~ Y ) J  

(dp - f + ( T x  - Z X )  2 )  J (dz + f + ( I x  - Z X )  2)  J 
+ 

~ + d + ( z x - r x ) z + z y - T ~  
d z - Z + z y - ~ y + d ' d z + f + z y - - y + d  . T 

+ (Zx - --x) 2 + q - Zy 'Zyz 
+ ry - zy id2 + z + ry - z y  L z ~ )  - zy 

T 

(d  + T + ( Z X  - I x )  2 + Zy  - Iy )  J ( T  + ( Z ~  - I x )  Z 4- T~ - Z ~ )  J 

(dz - f + (Ex - 1%) z )  J (dz + f + ( z x  - r x )  z )  J 
d ( ~ - ) =  

(05 ~ Z X )  (z$d (h ! l x )  F ~ d x  

T 
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(iii) There is an interesting limit case of the summation of Theorem 
3.1; for 2 2  - x l  > 0 

x 2.1 ( k l  + k2 - i + ip ,  kl + k2 - i - i p  

2k2 x1 - 2 2  

1 
X U(P + - k2 + - 2 - ip ;  1 - 2ip; x2 - x l ) ,  

where L$,? is a Laguem polynomial as defined in  (Koekoek and 
Swarttouw, l998), and U (a ;  b; z) denotes the second solution of 
the confluent hypergeometric differential equation in the notation 
of Slater (Slater, 1960): 

This formula is obtained from Theorem 3.1 as follows. W e  re- 
place xi by -xi/2cp, i = 1,2, and transform the 2F1 -series on the 
right hand side by (Andrews et al., 1999, (2.3.12)). Then we let 
cp --+ 0. Here Stirling's formula is used, Euler's transformation 
is used for the 2F1-series which are obtained from the sF2-series, 
and Kummer's transformation (Slater, 1960, (1 ..&I)) is used for 
the -series which are obtained from the 2Fl-series. This limit 
case can also be obtained by Lie algebraic methods, see (Groenevelt, 
2003, Thm. 3.10). 

(iv) Note that from 
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see (Groenevelt and Koelink) 2002) (3.13))) it follows that the sum 
on the left hand side of Theorem 3.1 is invariant under kl tt k2, 
21 ++ x2, P * -P. 

(v) It is interesting to compare Theorem 3.1 with the results of (Ismail 
and Stanton, 2002)) where summation formulas with a similar, but 
simpler, structure are obtained for various orthogonal polynomials. 
The method used in (Ismail and Stanton, 2002) is completely dif- 
ferent from the method we use here. 

Proof of Theorem 3.1. We start with the sum on the left hand side, with 
orthonormal polynomials: 

First we show that this sum converges absolutely. Writing out the sum- 
mand Rn explicitly gives 

where K is a constant independent of n. To find the asymptotic be- 
haviour for n -+ M of the r-functions, we use the asymptotic formula 
for the ratio of two r-functions (Olver, 1974, 54.5) 

The asymptotics for the 3F2-function follows from transforming the func- 
tion by (Bailey, 1972, p. 15(2)) and using (3.2). This gives, for n + M, 

1 
3F2 (-n, ki + k2 - 2 + ip, kl + k2 - 2 - ip 

2k2,2k1 + p 
; 1) 

1 - - c1 n ~ - k ~ - k 2 - i p  + c2 ni-k~-kz+ip 1 

where CI and C2 are independent of n. If p2 is in the discrete part 
ofsuppdp(-;kz - k l +  4,kl +k2 - i ,k1 - k2+ p + i) , we assume with- 
out loss of generality that S(p) > 0. In this case the second term in the 
transformation (Bailey, 1972, p. 15(2)) vanishes, so C2 = 0. 
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The asymptotic behaviour of the 2Fl-functions follows from (ErdBlyi 
et al., 1953, 2.3.2(14)). This gives, for 0 < cp < n and n -t oo, 

where Ci, i = 3,. . . ,6 ,  is independent of n. Since 8 (1 - e-2iv) = 
2 sin2 cp > 0 and XI, x2 E JR, we find 

and then for p E JR the sum S converges absolutely. In case p E iJR, we 
have K2 = 0 and %(p) > 0, and then S still converges absolutely. 

Next we write out the polynomials in S as hypergeometric series, 
using (2.2) and (2.1), and then we transform the 3F2-series, using the 
first formula on page 142 of (Andrews et al., 1999); 

1 
3F2 (-n7 k2 - h + 3 + ip, k2 - kl + i - ip  

2k2, P + 1 

(P + h - k2 + $ - iP) 
.d?2 ( -n, k2 - kl + $ + ip, kl + k2 - $ + ip  

(P + 1)n 2k2,kg - k l +  i + i p -  n - p  

By (ErdBlyi et al., 1953, §2.9(27)) with 

(a, b, c, r )  = (-n - p, kl + isl, 2kl, 1 - e-2i~) 
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the 2Fl-series for ~ $ 2  (1.1; p) is written as a sum of two 2Fl-series 

Now the sum S splits according to this: S = S1 + S2. 
First we focus on S1. Reversing the order of summation in the 2F1- 

series of the second Meixner-Pollaczek polynomial and using Euler's 
transformation (Andrews et al., 1999, (2.2.7)), gives 

Writing out the hypergeometric series as a sum, we get 

Next we interchange summations 
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then the sum over n becomes 
00 (kl - k2 + 4 - ip + p - j)n (k2 + ix2 - m), 

C 1 = C  
n=j 

(n - j)! (p + 1 + 1 + kl + ixl), 

We substitute k H n - j ,  then we find by Stirling's formula for the 
summand R of S1, for large j and k, 

where C is independent of k and j. So we see that the sum Sl converges 
absolutely for k1 - kz + p < 0, and 2 7r < cp < T.  Now the sum El 
is a multiple of a 2F1-series with unit argument, which is summable by 
Gauss' summation formula (Erdelyi et al., 1953, (46)) p. 104); 

(k2 - kl + 4 - p + ip) (k2 + ix2 - m) 
C1 = 

(1 + j + & + k2 + ixl + ip) 

This gives 

00 I? (1 + m + i (XI - 22)  + 4 + ip) (k2 - i ~ 2 ) ~  

C I ? ( p + l + m + l + k l - k 2 + i ( x 1 - ~ 2 ) )  l,m=O 

The sum over j is a sF2-series, which by Kummer's transformation (An- 
drews et al., 1999, Cor. 3.3.5) becomes 

1 

3F2 ( k2 - ki + 3 + ip, k2 - kl + 1 2 - ip, k2 - ix2 + rn 

2k2, k2 - kl + 1 + i (xi - x2) + 1 + m 
Here we need the condition kl > 0 for absolute convergence. We write 
out the 3F2-series explicitly as a sum over j and interchange summations 



Continuous Hahn functions 

For the sum over 1 + m = n we find 

C (1 - ki + i ~ l ) ~  (k2 - ixa + j), 
l !  m! m+l=n 

- - (1 + k2 - ki + i (xi - x2) + j)n 
n ! 

Now S1 reduces to a double sum, which splits as a product of two sums, 
and we obtain 

3 + i (XI - 22) + ip, $ + i (XI - x2) - ip 
p + kl - k2 + i (xi - x2) + 1 

1 k2 - ki + 3 + ip, k2 - kl + $ - ip, k2 - is2 
2k2,k2 - kl + i ( x l -  x2) + 1 

S2 is calculated in the same way as S1, only for the first step (Erdklyi 
et al., 1953, §2.10(4)) is used instead of (3.4). Then we obtain 

2 + i (x2 - XI)  + ip, $ + i (x2 - XI)  - ip . 
k l -k : !+ i (x2-x l )+p+ l  

Finally using Euler's transformation for the 2Fl-series, using 

and writing the polynomials in the normalization given by (2.2) and 
(2.1)) the theorem is proved. 
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Let us remark that all the series used in the proof are absolutely 
convergent under the conditions 

x1,xz E R, kl > 0, i7r < cp < g 7 r  and k l - k z + p  < 0. Thelast 
condition can be removed using the symmetry (kl, k2,p) +, (kz, Icl, -p) 
and continuity in kl and k2. Using the analytic continuation of the 
hypergeometric function, we see that the result remains valid for 0 < 
cp < 7r. 0 

4. Clebsch-Gordan coefficients for hyperbolic 
basis vectors of su(l,1) 

In this section we consider the tensor product of a positive and a 
negative discrete series representation. We diagonalize a certain self- 
adjoint element of su(1,l) using (doubly infinite) Jacobi operators. We 
also give generalized eigenvectors, which can be considered as hyperbolic 
basis vectors. Using the summation formula from the previous section, 
we show that the Clebsch-Gordan coefficients for the eigenvectors are 
continuous Hahn functions. We find the corresponding integral trans- 
form pair by formal computations. In order to give a rigorous proof 
for the continuous Hahn integral transform, we realize the generators of 
su(1,l) in the discrete series as difference operators acting on polynomi- 
als. Using these realizations, the Casimir element in the tensor product 
is realized as a difference operator. Spectral analysis of this difference 
operator is carried out in Section 11.5. 

4.1 The Lie algebra su(1,l) 

The Lie algebra su(1,l) is generated by the elements H, B and C, 
satisfying the commutation relations 

[H, B] = 2B, [H, C] = -2C, [B, C] = H. (4.1) 

There is a +-structure defined by H* = H and B* = -C. The center of 
U(su(1,l)) is generated by the Casimir element S1, which is given by 

There are four classes of irreducible unitary representations of su( l , l ) ,  
see (Vilenkin and Klimyk, 1991, 56.4): 

The positive discrete series representations 7rL are representations la- 
belled by ii > 0. The representation space is e2(Z>o) - with orthonormal 
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basis {en)nEZ,o. The action is given by 
- 

The negative discrete series representations xi are labelled by k > 0. 
The representation space is e2 (Z>o) with orthonormal basis {en)nEZLo. 
The action is given by 

n; ( H )  en = -2(k + n) en, 

a;(B) en = -Jn(2k + n - 1) en-1, 

x; ( C )  en = J(n + 1) (2k + n) en+l, 
(4.4) 

The principal series representations nplc are labelled by E E [0, 1)  and 
p 2 0,  where ( p ,  E )  # (0, 4 ) .  The representation space is e2(2) with 
orthonormal basis The action is given by 

(4.5) 
np?' ( C )  en = - 

For ( p ,  E )  = (0 ,$ )  the representation no?+ splits into a direct sum of a 

positive and a negative discrete series representation: no*; = n$2ba& 
The representation space splits into two invariant subspaces: 
{en In < 0 )  GI {en In 2 0).  

The complementary series representations .rrXtE are labelled by E and 
A, where E E [o,.+) and X E ( -4,  - E )  or E E ( + , I )  and A E ( - ; , E  - 1) .  
The representation space is .12(Z) with orthonormal basis The 
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action is given by 

Note that if we formally write X = -4 + i p  the actions in the principal 
series and in the complementary series are the same. 

We remark that the operators (4.3)-(4.6) are unbounded, with domain 
the set of finite linear combinations of the basis vectors. The represen- 
tations are *-representations in the sense of Schmiidgen (Schmiidgen, 
1990, Ch. 8). 

The decomposition of the tensor product of a positive and a negative 
discrete series representation of su(1,l) is determined in full generality 
in (Groenevelt and Koelink, 2002, Thm. 2.2). 

Theorem 4.1. For k1 5 k2 the decomposition of the tensor product of 
positive and negative discrete series representations of su(1, l )  is 

where E = k1 - k2 + L, L is the unique integer such that E E [0, I),  and 
X = -kl - k2. The intertwiner J is given by 

1 
J (enl 8 en,) = (-lIn2 J s n  (y ;n l -  n2) enl-n2-L d ~ '  (Y; n l -  n2), 

P 
(4.7) 

where n = min{nl,n2), Sn(y;p) is an orthonormal continuous dual 
Hahn polynomial, 
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and dp(y;p) is the corresponding orthogonality measure 

The inversion of (4.7) can be given explicitly, e.g., for an element 

in the representation space of the direct integral representation, we have 

For the discrete components in Theorem 4.1 we can replace f by a Dirac 
delta function at the appropriate points of the discrete mass of dp(.; r). 
We remark that for kl = k2 < 114, the occurrence of a complementary 
series representation in the tensor product was discovered by Neretin 
(Neretin, 1986). This phenomenon was investigated from the viewpoint 
of operator theory in (EngliS et al., 2000). 

In the following subsection we assume that discrete terms do not occur 
in the tensor product decomposition. From the calculations it is clear 
how to extend the results to the general case. At the end of Section 11.5 
we briefly discuss the results for the discrete terms in the decomposition. 

In the Lie algebra su(1,l) three types of elements can be distinguished: 
the elliptic, the parabolic and the hyperbolic elements. These are related 
to the three conjugacy classes of the group SU(1,l). A basis on which 
an elliptic element acts diagonally is called an elliptic basis, and similarly 
for the parabolic and hyperbolic elements. The basisvectors en in (4.3)- 
(4.6) are elliptic basisvectors. 

We consider self-adjoint elements of the form 

in the tensor product of a positive and a negative discrete series represen- 
tation. For la1 = 1 this is a parabolic element, for la1 < 1 it is hyperbolic 
and for la1 > 1 it is elliptic. For the elliptic and the parabolic case we 
refer to (Groenevelt and Koelink, 2002), respectively (Groenevelt, 2003). 
We consider the case la\ < 1. 



242 THEORY AND APPLICATIONS OF SPECIAL FUNCTIONS 

4.2 Hyperbolic basisvectors 
We consider a self-adjoint element X ,  in su(1, I ) ,  given by 

The action of X,+, in the discrete series can be identified with the three- 
term recurrence relation for the Meixner-Pollaczek polynomials (2.3), cf. 
(Koelink and Van der Jeugt, 1998, Prop. 3.1). 

Proposition 4.2. The operators O', defined b y  

are unitary and intertwine nkf (X,) with M (f 2x sin c p )  . 

Here M denotes the multiplication operator, i.e., M (  f )g(x)  = f (x )g (x ) .  
Proposition 4.2 states that 

-. 

V ~ X )  = c pik' ( x ;  9) en, 

are generalized eigenvectors of nkf (X,) for eigenvalue f 2x sin cp. These 
eigenvectors can be considered as hyperbolic basis vectors. 

The action of X ,  in the principal unitary series can be identified with 
the recurrence relation for the Meixner-Pollaczek functions (2.6). Then 
the spectral decomposition of the corresponding doubly infinite Jacobi 
operator gives the following. 

Proposition 4.3. The operator Op" defined by  

(u, (.; - j + ip, E ,  n - c p )  
en H 

u;"l(.; -3 + ip, E ,  n - c p )  

is unitary and intertwines (X,) with M(2x sin cp), and extends to a 
unitary equivalence. 

From Propostion 4.3 we obtain that 

00 1 x; -- + ip, E ,  n - cp )  

n=-00 
f 2;-3 + i p , ~ , n - c p )  > en 
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is a generalized eigenvector of np?& (X,) for eigenvalue 2x sin cp. 
Next we consider the action of X ,  in the tensor product. Recall that 

in the tensor product we need the coproduct A, defined by A(Y) = 
1 8 Y + Y 8 1 for Y E su(1, l ) .  Then from Proposition 4.2 we find the 
following. 

Proposition 4.4. The operator T defined by 

is unitary and intertwznes n; 8 nG ( A  (X,)) with M (2 ( x l  - x2)  sin 9). 

In terms of the generalized eigenvectors v+ and v-, we find from 
Proposition 4.4 that 

CO 

+ ( 1 )  8 V- ( 2 )  = C PA:') ( 2 1  ; 9) pi:) (12; i p )  enl 0 en2 

n1 ,n2=0 

is a generalized eigenvector of n: 0 nG ( A  (X,)) for eigenvalue 
2 (x l  - x2)  sin cp. 

To determine the action of T on the representation space of the direct 
integral representation J@ 7rP7'dp, we need to find the operator T ,  such 
that T = T o J .  Here J is the intertwiner defined in Theorem 4.1. For 
appropriate functions gl and 92 we define an operator Tg by 

From Proposition 4.3 we see that T g  intertwines J@ .rrP>' (X,) dp with 
M (2tsincp). The functions gl and g2 for which T = T g  o J are the 
Clebsch-Gordan coefficients for the hyperbolic bases. To determine the 
Clebsch-Gordan coefficients we use the summation formula in Theorem 
3.1. Define the continuous Hahn function by 
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Theorem 4.5. Let 

where pp (x2; x1 - x2) = pp (x2; x1 - x2, kl, k2, p) and m(p) is given by 

then we have T = Tg o J .  

Proof. To show that T = 'fg o J, we use the summation formula of 
Theorem 3.1 with the orthogonal polynomials written in orthonormal 
form. We multiply by a continuous dual Hahn polynomial of degree n2 
with the same parameters as in Theorem 3.1, with p = nl  - n2 2 0. 
Then integrating against the corresponding orthogonality measure gives 
an equality with the following structure 

The 2Fl-functions are the Meixner-Pollaczek functions as defined by 
(2.5). From Proposition 4.2 we see that the left hand side is equal to 
T (en, @ en,) (XI, x2). SO from Theorem 4.1, with n l  2 n2, and Propo- 
sition 4.3 it follows that the right hand side must be equal to 

where g is a vector containing the Clebsch-Gordan coefficients for the 
hyperbolic bases. This gives the desired result. For n l  - n2 < 0 the 
theorem follows after using (3.1). 0 

Remark 4.6. The explicit expressions of the Clebsch-Gordan coefi- 
cients as 3F2-series can also be found in Mukunda and Radhakrishnan 
(Mukunda and Radhakrishnan, 1974). The method used in (Mukunda 
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and Radhakrishnan, 1974) is completely different from the method used 
here. 

In terms of the generalized eigenvectors, Theorem 4.5 states that 

4.3 The continuous Hahn integral transform 
Since the continuous Hahn functions occur as Clebsch-Gordan coeffi- 

cients for hyperbolic bases, they should satisfy (generalized) orthogonal- 
ity relations. We find these relations by formal computations with the 
generalized eigenvectors. 

For an element f E e2 (Z>o) - 8 e2 (Z>o) - we have the transform pair 

Similarly for f E e2(Z) we have the transform pair 

Denoting the intertwiner J in Theorem 4.1 by J = Jpdp, we find I@ 0 

from Theorem 4.5 
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We want to invert this formula. From (4.10) and Theorem 4.5 we find 
formally 

We substitute x1 H x + t, 2 2  H x, then (4.11) with f replaced by Jp f 
gives 

We denote 

and (.Fg)(x) = (T  f)(x + t, x), then we have the following integral trans- 
form pair with the continuous Hahn functions as a kernel 

In Section 11.5 we give a rigorous proof for this integral transform pair 
using spectral analysis of a difference operator for which the continuous 
Hahn functions are eigenfunctions. In the next subsection we obtain the 
difference operator from the action of the Casimir element in the tensor 
product. 

4.4 A realization of the discrete series 
representat ions. 

The following lemma is based on the fact that sI(2, @) is semi-simple, 
so [d(2, @), d(2, @)I = d(2, C). 
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Lemma 4.7. 

Proof. This follows from the definition of X ,  and the commutation re- 
lations (4.1). 0 

This lemma shows that to find the action of the generators H, B and 
C on the Meixner-Pollaczek polynomials, it is enough to find the action 
of H ,  since the action of X ,  is known. The action of H follows from the 
difference equation (2.4) for the Meixner-Pollaczek polynomials. 

Proposition 4.8. The operator 0+ intertwines the actions of the gener- 
ators H ,  B, C in the positive discrete series, with the following difference 
operators: 

cos cp 
@+<(HI = [M ( S - - ( k  2 sm cp - ix))  T~ + M (2-,) sin cp 

e-%' 
--(k + i x )  

z sin cp 
e 2 i ~  

@+T;(B) = [M (-(k 22 sln cp - ix))  TI + M (L) sin cp 

1 
@+T:(c) = [ M ( - - ( k - ~ x ) ) T , + M  2zsincp (-L) sin cp 

1 
+M (- 2i sin cp 

where T denotes the shift operator: T, f ( x )  = f ( x  + a) .  For the negative 
discrete series, 0- intertwines the actions of H ,  B, C, with the following 
difference operators: 
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cos cp 
8 - x i  ( H )  = [ M (L:n', --(k - i x ) )  T, + M (-2-x) sin cp 

i sin cp 
1 

@-ni(B) = M -- [ ( 2isincp (k  - i x ) )  T, + M (-2) sin cp 
1 

2i sin cp 
e2i'P 

e-ni (c) = [M (- 22 sm cp (k  - i x ) )  T, + M (2) sin cp 

Proof. We find the action of H from the difference equation (2.4) for the 
Meixner-Pollaczek polynomials; 

eic~ 
- cos $9 
- -(k- i x )  pik) ( x  + i; p)  + 2 x 7  pi" ( x ;  c p )  z sln cp sm cp 

- -(k + i x ) ~ i " ( x  - i; cp ) .  
z sm cp 

The action of X ,  is given in Proposition 4.2: 

0' nz (X,) en = 22 sin cp pik)(%; cp ) .  

Then Lemma 4.7 proves the proposition for the positive discrete series. 
We find the action in the negative discrete series in the same way, or 

we use the Lie-algebra isomorphism 19, given by 

Then IT: (19(Y)) = IT;(Y) for Y E su(1, l ) .  
A straightforward calculation shows that these operators indeed sat- 

isfy the su(1 , l )  commutation relations. 0 

Remark 4.9. To simplify notations we denote @+IT+ (Q+)* by IT+, and 
similarly for IT-. 

In the same way as in Proposition 4.8 it can be shown that W E  in- 
tertwines the actions of H ,  B and C in the principal unitary series with 
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2 x 2 diagonal matrices with difference operators as elements. This is 
done by finding a difference equation for the Meixner-Pollaczek func- 
tions u, and u i ,  using contiguous relations for 2F1-series. We do not 
need these realizations here, so we will not work this out. 

To express A(R) in terms of H, B and C, the coproduct A is extended 
to U (su(1,l)) as an algebra homomorphism. Then from the definition 
of the Casimir element (4.2) we find 

1 
A ( n ) = l @ R + R @ l - 5 H @ H - ( C @ B + B @ C ) .  (4.12) 

Using this expression and Proposition 4.8, we find the following. 

Proposition 4.10. In the realizations of Proposition 4.8, we have 

TL @ ~g ( A ( W  1 
x1=x+t, x2=x 

= M (kl + i(t + x)) (k2 + is)) T-i 
+ M (kl (1 - kl) + k2 (1 - kz) - 2(x + t ) ~ )  

+ M (-e2iv (kl - i(t + x)) (kZ - ix)) T,, 

where the shift operator T acts with respect to x. 

Proof. Let Fl (x) and F2 (x) be polynomials in x, and let f (x, t) = Fl (x+ 
t) F2 (x) , then a large but straightforward computation yields 

T; en,; (A(n)) f ( 4  = [kl (1 - kl) + Icz (1 - k2) - 2 ( ~  +t)x]  f (x , t )  
- e-2iv (kl + i ( t  + x)) (k2 + ix) f (x - i, t) 

- e2iv (kl - i ( t  + x)) (k2 - ix) f (x + i, t). 
0 

Remark 4.11. The action ofR in the tensor product can also be found 
from 

n$ (H) = M (2ix), n i  (H) = M(-2ix)) 

n $ ( ~ )  = M(k - ix)Z, n i (B )  = M (e-2iv(k + ix)) T+ 

n$(C) = M(k + ix)T-i, T; (C) = M (e2i'+'(k - ix)) T,. 

These realizations are equivalent to the realizations given in Proposition 
4.8. 

In the next section we show that the continuous Hahn functions 
vp (x; t ,  kl, k2, y )  are eigenfunctions of the difference operator of Propo- 
sition 4.10, and we work out the corresponding integral transform. 
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5. The continuous Hahn integral transform 
In this section we study a second order difference operator. This 

difference operator is obtained from the action of the Casimir operator 
on hyperbolic basis vectors in the tensor product of a positive and a 
negative discrete series representation of su(1, I), see Section 11.4.2. The 
spectral analysis of this operator, leads to an integral transform pair 
with a certain type of 3F2-series as a kernel. We call these 3F2-series 
continuous Hahn functions, because of their similarity to continuous 
(dual) Hahn polynomials. The method we use is based on asymptotics, 
and is essentially the same method as used by Gotze (Gijtze, 1965) and 
Braaksma and Meulenbeld (Braaksma and Meulenbeld, 1967) for the 
Jacobi function transform by approximating with the Fourier transform. 

5.1 The difference operator A and the 
Wronskian 

For kl, k2 > 0, t E lR and 0 < cp < n the weight function w(x) is 
defined by 

1 t)(2rp-?r)r (k1+ i t  + ix) I' (kl - i t  - ix) r (k2 + ix) I' (k2 - ix) . 
27r 

(5.1) , , 
The difference operator A is defined by 

where 

a*(x) = -ef 2 i ~  (k2 ix) (kl 7 i ( t  + x)) , 
P(x) = kl (1 - kl) + k2 (1 - k2) - 2(t + X)X. 

Initially A is defined for those g(x) E L2 (R, w (x)dx) that have an ana- 
lytic continuation to the strip 

The difference operator A corresponds to the action of the Casimir op- 
erator in the tensor product of a positive and a negative discrete series 
representation on hyperbolic basis vectors, see Proposition 4.10. 

Remark 5.1. Observe that the functions 

- 
e x(2'p-?r)p, (x; k1 + it, k2, kl - it, k2) , 
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where pn is a continuous Hahn polynomial in the notation of (Koekoek 
and Swarttouw, 1 998), form an orthogonal basis for L2 (R, w ( x ) d x ) ,  but 
they are not eigenfunctions of A. Also, the functions 

- e 2'pxpn (x ;  k1 + it, k2,  k1 - it, k2 )  

are eigenfunctions of A, but they are not elements of L2 (R ,  w ( x ) d x )  

We define 

Then lim ( f  , g )  M,N is the inner product on L~ (w, w (%)dm), so ( f ,  g)  M,N 
N,M+oo 

is a truncated inner product. 

Definition 5.2. For functions f and g analytic in S,, the Wronskian 
[ f ,  g] is defined by 

Proposition 5.3. Let f and g be analytic i n  S,, then 

Proof. Observe that a; = a_, a*(x i ) w ( x  i )  = a $ ( x ) w ( x )  and 
P* ( x )  = P(x) .  Furthermore for x E R we have g* ( x  f i )  = g ( x  i )  . This 
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gives for the Wronskian 

- ] ~ ( X ) ~ * ( X  + i )a- (x  + i )w(x + i )dx. 

y-i 

For f and g analytic in S,, we find 

+ a- (x  + i )  f (x)g*(x + i )w(x  + i )dx. 

- M-i 

We choose a different path of integration 

N+i 
and similarly for J . Then we find 

-M+i 
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a-(x + i) f (x)g*(x + i)w(x + i)dx 

-M-i  

N 

+ a+(. - i)g*(x - i)w(x - i)] dx. 

N 
The last integral J equals 

-M 

and in the other four integrals we recognize [f,g](N) - [f, g](-M). 

Our first goal is to show that A is a symmetric operator on a domain 
which will be specified, so we are interested in the limit of the Wronskian 
[f, g] (y) for y --+ f oo. The following lemma is useful in determining these 
limits. 
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Lemma 5.4. Let kl, k2 > 1, x E R, and -1 5 y 5 1, then the weight 
function w(x + iy) has the following asymptotic behaviour 

w(x + iy) = 

Proof. From Stirling's asymptotic formula (Olver, 1974, (8.16)) we find 
for u > 0 and v E R 

We use 
v 

arctan - + arctan - = 
U v 2 '  v < o ,  

to find for v -t f oo 

v 
(iu - v) arctan - = (iu - v) (k 

U 2 v 

SO we have, for v + f 00, 

Applying this formula to the four I?-functions in (5.1) gives the asymp- 
totic behaviour of the weight function w(x + iy). 0 

In general, if for some E > 0 

then the moment problem for the measure dp  is determinate, see, e.g., 
(de Jeu, 2003) and references therein. Using this criterion with 0 < E < 
min{4cp, 4(7r - cp)), we find from Lemma 5.4 that the moment problem 
for the measure w(x)dx is determinate. In particular this shows that 
the polynomials are dense in L2 (R, w(x)dx). 

Let 2) be the space of polynomials on R, then 27 is a dense subspace 
of L2(R, w(x)dx). Since 

a- (x + iy) = e-2i'+'x2 ( 1 + O (:)) 3 x -+ f m )  (5.21 
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it follows from Definition 5.2 and Lemma 5.4 that lim [ f ,  g ] ( N )  = 0 
N-tfco 

for f ,  g polynomials. Hence by Proposition 5.3 we find 

Proposition 5.5. The operator (A ,D )  is a densely defined symmetric 
operator on L ~ ( I W ,  w(x)dx) .  

Remark 5.6. The operator (A ,  2)) is also densely defined and symmetric 
on the space spanned by e-x(2~-T)pn(x) ,  where pn is a polynomial, cf. 
Remark 5.1. 

5.2 Eigenfunctions of A 

W e  determine eigenfunctions o f  A, using contiguous relations for 3F2- 
functions. First note that for a monic polynomial o f  degree n, pn(x) = 
xn + - - . , we have 

(Ap,) ( x )  = [a+(x) + P(x)  + a- ( x ) ]  xn + lower order terms. 

Since a+(%) + P(x) + a - ( x )  is a polynomial o f  degree 2, A raises the 
degree o f  a polynomial by 2. Therefore A cannot have polynomial eigen- 
functions. 

Let p(x)  be the i-periodic function 

1 
p(x) = -en" sin (7r (kl  - it - i x ) )  , 

7r (5.3) 

and let cpp(x) = cpp  ( x ;  t ,  k l ,  k2, (P) and @,(x) = @, ( x ;  t, k l ,  k2,cp) denote 
the functions 

I? (1  - kl + it + i x )  
cpp(x) = e-2qxp(x) 

I? (k l  + i x  + it) 
3F2 (k2 - i x ,  k2 - kl + i + i p ,  k2 - k + - i p  (5.4) 

252, k2 - kl + i t  + 1 
I? (1  - kl + it + i x )  I? (1  - k2 + i x )  

@,(x) = e-2'xp(x) 
I? (k l  + i x  + it) I? (2 - kl + i x  + ip) 

3 k2 - k1 + i + ip, 2 - k1 - k2 + ip, 4 - it + i p  

1 + 2ip, - kl + i x  + i p  

(5.5) 

Both 3F2-series are absolutely convergent for %! (k l  + it + i x )  > 0. Note 
that the expression for cp,(x) is the same as (4.9) after applying Euler's 
reflection formula. 

Proposition 5.7. For kl > 1, the functions (P,(x) and <Pp(x) are eigen- 
functions of A for eigenvalue (p2  + a). 
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Remark 5.8. 

( i )  Observe that due to the i-periodic function p(x) ,  y p ( x )  is an entire 
function. Denote @,(x) = 9,(x) /p(x) ,  then p(x)  cancels the poles 
of @,(x). There are more choices of i-periodic functions that cancel 
the poles of @,(x). One of the reasons for this particular choice, is 
that it appears in the Lie-algebraic interpretation of the function 
v p ( x ) ,  see Theorem 4.5. We  come back to the choice of the i- 
periodic function in Remark 5.15. 

(i i) Observe that cp;(x) is obtained from (P, (X)  by the substitutions 
( x ,  t ,  9) H (-2, -t, T - 9). Since the diflerence operator A and 
the weight function w ( x )  are invariant under these substitutions, 
it follows from Proposition 5.7 that, for kl > 1, cp;(x) is also 
an eigenfunction of A for eigenvalue (p2 + i). A similar argu- 
ment shows that <P;(x) is an eigenfunction of A for eigenvalue 
(p2 + a) .  Obviously b-,(x) and O',(x) are also eigenfunctions of 
A for eigenvalue (p2 + a).  

Proof. Combining the contiguous relations (Andrews et al., 1999, (3.7.9)) 
(3.7.10)) (3.7.13))) gives 

From this relation we find that 

e - 2 ~ ~  I? (1  - kl + it + i x )  
I? (k l  + i x  + it) 

x 3 ~ 2  ( k2 - i x ,  k2 - k1 + 4 + ip ,  k2 - k1 + 4 - i p  
2k2, k2 - kl + it + 1 ; 1 )  

is an eigenfunction o f  A for eigenvalue p2 + $. And then, since p ( z )  is 
i-periodic, cp,(x) is also an eigenfunction for eigenvalue p2 + $. Since 
v p ( x )  must be analytic in S,, the condition kl > 1 is needed for absolute 
convergence o f  the 3F2-series at the point x + i. 

Denote 
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From contiguous relations (Andrews et al., 1999, (3.7.9), (3.7.10), (3.7.13)) 
we find 

[(d - l ) ( e  - 1)F-(a+) - (b- l ) ( c -  1)F]  - ( a  - l ) ( d  + e - a - b - c)F 

From this we see that 

I' ( 1  - k2 + i x )  r( l+ 2ip)F (1  - k1+ i x  + it) 
@ P W  = r (& + it + ip)  I? (k l  + g + i p  + i x )  r (g - kl + iz + ip )  

x e - 2 ~ x p ( x )  3F2 
3 - it + i p ,  1 - k2 + i x ,  k2 + i x  

+ i x  + ip, - kl + i p  + i x  
; 1 )  , (5.6) 

is another eigenfunction of A with eigenvalue p2 + $. The 3F2 series 
converges absolutely if R ( &  + i p  + it) > 0,  so absolute convergence does 
not depend on k l .  Using (Andrews et al., 1999, Cor. 3.3.5) this can 
be written as (5.5), and for this expression the condition kl > 1 is 
needed. 0 

The function cpp(x) can be expanded in terms of a p ( x )  and @-p(x). 

Proposition 5.9. 

where 

Proof. This follows from (Bailey, 1972, p. 15(2)) 

Here idem@; c) after an expression means that the expression is repeated 
with b and c interchanged. 0 

In the next subsection we consider the Wronskians [ yp ,  yo] ( 9 )  and 
[cp;, ya] ( y )  for y + f oo, so we need the asymptotic behaviour of yp.  
We find this from Proposition 5.9 and the asymptotic behaviour of @,. 



258 THEORY AND APPLICATIONS OF SPECIAL FUNCTIONS 

Lemma 5.10. Let kl > 1, p E @ and -1 5 y 5 1. For x + fa 

where 

+ (k2 - k i  + f + ip) (4 - kl - k2 + ip) ( f  - i t  + ip) 

f + ip  
3 

B(p) = 2kl + 2k2 - 1 + 2ip. 

Proof. This follows from (5.5) and the asymptotic formula for the ratio 
of two I?-functions (Olver, 1974, $4.5) 

The first part of the expression for A(p) is obtained from 

the second part comes from the second term in the hypergeometric series. 
0 

The asymptotic behaviour of the i-periodic function p(x) is also needed; 

e-irkl I-, ePTt + 0 (e2=l) , z + -a, 
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einkl e-in(kl -2y) 

p*(x + iy) = - e-7rt - en(2~+t)  

2ni 27ri 

5.3 Continuous spectrum 

We determine the spectrum of the difference operator A. In this 
subsection we consider the case where the spectrum only consists of 
a continuous part. 

Since 

we find from Proposition 5.10 that 

So cPp(x) is an element of L2(R, w(x)dx) for Q(p) < 0. This shows that 
it is possible to give eigenfunctions of A for complex eigenvalues. We 
only consider eigenfunctions which are even in p, and in that case all 
eigenvalues of A are real. 

First we consider the continuous spectrum of A. We show that [a, 00) 

is contained in the continuous spectrum. Assume that p is real and that 
the c-function in Proposition 5.9 does not have zeros, or, equivalently, 
assume that kl + k2 2 and k2 - kl > -4. Since we only consider 
even functions in p, we may assume p 2 0. We use Proposition 5.3 to 
calculate the truncated inner product of two eigenfunctions. This gives 
for kl > 1 and p # a 

Multiplying both sides with an arbitrary function f (p) and integrating 
over p from 0 to 00, gives 
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The function f (p) must satisfy some conditions, which we shall deter- 
mine later on. We take limits N, M -t co on both sides. To determine 
the limits of the Wronskians, the following lemma is used. 

Lemma 5.11. Let k l ,  k2 > 1 and p, a > 0. For x -t f co 

where 

Proof. From Lemma 5.10 we find for 0 < y < 1 and x -+ co 

G p  ( x  + i y )  Gz ( x  + i y  - i )  - Gp ( x  + i y  - i )  @; ( x  + i y  ) 
- - e2i(p-4i(py+4iny-4cpz 1-2kl-2kz 

1x1 lP(x) 12(ix)-i~(-ix)iu 

Using the asymptotic behaviour of p ( x )  and Lemma 5.4, we find the 
asymptotic behaviour of the integrand of the Wronskian. Note that 
this is independent of y. In a similar way we find the same asymptotic 
behaviour of the integrand for x -t -a. Now the lemma follows from 
writing the Wronskian as 

and applying dominated convergence. 0 

Proposition 5.12. Let a > 0, and let f be a continuous function sat- 
isfying 

) P + W ,  & > 0 ,  f (PI = 
p -+ 0, 6 > 0, 

then 
00 
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where 

r(k2 - kl + $ + ia)r(kl  + k2 - + ia)  
r(2k2)r(k2 - kl + i t  + l )r(2ia) 

Proof. Let kl, k2 > 1. We use (5.10) to calculate 

From the c-function expansion, see Proposition 5.9, we obtain 

Then (5.9) and Lemma 5.11 give, for N -t oo, 

From (5.10) we find 

where 
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Writing out explicitly the terms between square brackets for $9 gives, 
for p = a, 

sin ( ~ ( 4  + i t  + ip)) sin (T($ - i t  + ip)) - 
Ir(4 - i t+ iP) I2 1r ($+ i t+ ip) l2  

From Euler's reflection formula it follows that this is equal to zero. So 
$3 has a removable singularity at the point p = a. 

From the Riemann-Lebesgue lemma, see, e.g., (Whittaker and Wat- 
son, 1963, §9.41), it follows that for f qi E L1(O, CO), i = 1,2,3, the terms 
with $i, i = 1,2,3, vanish. This leaves us with a Dirichlet integral, for 
which we have the property (see, e.g., (Whittaker and Watson, 1963, 
S9.7)) 

co 

lim 1 Jg(x) 
sin[t (x - y)] 

t+CO T 
dx = dy ) ,  (5.11) 

2 - Y  
0 

for a continuous function g E L1 (0, CO). This gives for a continuous 
function f that satisfies f $: E L1 (0, CO), 

sin (n (4 + i t  + ia)) sin (n (4 - i t  + ia)) 

Ir (4 - i t  + ia) I 2 + Ir (4 + i t  + ia) l 2  

- - et(2cp-.rr) 

= wr1(a)  f (a). 

r (2k2) I? (k2 - kl + i t  + 1) r(2ia) 
r (k2 - kl + 4 + ia) I' (k1+ k2 - + ia) 2 
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In the last step Euler's reflection formula is used. The conditions kl, k2 > 
1 can be removed by analytic continuation. Since 

we find that the proposition is valid for the conditions off as stated. 

Next we consider the truncated inner product (~p;, and the 
corresponding Wronskians. We need to find the analogues of Lemma 
5.11 and Proposition 5.12. 

Lemma 5.13. Let kl  > 1 and p,a 2 0. For x + f oo 

Proof. The proof is similar to the proof of Lemma 5.11. 0 

Proposition 5.14. Let a 2 0, and let f be an even continuous function 
satisfying 

then 
00 

where 

1 I? ( k l  - k2 + it) I? ( a  - it - ia) I? (i - it + ia) w1(a) = -e-t(2~-r) 
2~ I? (k2 - kl - it + 1) I? ( 2 l ~ 2 ) ~  

r (k2 - k l  + a + ia) r (k1+ k2 - a + ia) 
F(2ia) 

Proof. The proof runs along the same lines as the proof of Proposition 
5.12, therefore we leave out the details. 
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As in the proof of Proposition 5.12 we find from Lemma 5.13 

where 

For p = a the term between the square brackets for $3 

zero, so $3 has a removable singularity at the point p = 
is equal to 
a. So, for 

f$i E L1(O, w), i = 1,2,3, the terms with $i, i = 1,2,3, vanish by 
the Riemann-Lebesgue lemma. This leaves us with a Dirichlet integral. 
Then, after applying (5.1 I), we find for f $4 E L1(O, oo) 

Writing out $4 explicitly gives the result. 0 

Remark 5.15. In  Remark 5.8 we observed that the i-periodic function 
p(x) cancels the poles of @,(x). Other obvious choices with the same 



Continuous Hahn functions 265 

property would be e2kTxp(x),  for k E Z. However for k # 0, the method 
we used here to find an integral transform pair would fail, since the 
method depends on the use of the Riemann-Lebesgue lemma and the 
Dirichlet kernel, which can no longer be used i n  case k # 0. This can, 
e.g., be seen from Lemma 5.11, where the terms in  front of ~ x l ~ ( ~ - p )  
would contain a factor e2ICTx. So this gives a heuristic argument for the 
choice (5.3) of the i-periodic function. 

Let f be a continuous function satisfying, 

and let f be the vector 

f(d = @) 
We define, for x E R, an operator F by 

To verify that this is a well-defined expression, we determine the be- 
haviour of cpp(x) and Wo(p) for p + m and p 0. From Thomae's 
transformation (Andrews et al., 1999, Cor. 3.3.6) we find 

And from (5.7) we obtain 

Then we see that the integral in (5.13) converges absolutely for f satis- 
fying (5.12). 

For a continuous function g satisfying 

we define, for p 2 0, an operator 6 by 

cp* ( 4  
W(P) = J g(x) (v;(x)) W W ~ X .  

R 
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From the asymptotic behaviour of cp;(x) and w(x) for x + f oo, see 
Lemmas 5.4 and 5.10, it follows that the integral in (5.16) converges 
absolutely. 

Proposition 5.16. If g = F f ,  and g satisfies the conditions (5.15), 
then 

1 
1 

Proof. For a function g satisfying (5.15) we define operators G1 and 82 
by 

then we have 

(W(P) = ([:$ [zi) . 
If g(x) = (F f )  (x) satisfies the conditions (5.15)) then the integral 

converges absolutely. So from (5.13) we obtain 

and interchanging integration gives 
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- 
From (5.12) and (5.14) it follows that the functions f (p )  Wo(p) ,  f ( p )  Wo(p)  
satisfy the conditions for Propositions 5.12, 5.14 respectively. Apply- 
ing the propositions gives (Glg) (a )  = fo + f ( a ) W o ( a ) / W l ( a ) .  In 
the same way (G2g) (a)  can be calculated. So we find ( ~ 2 ~ )  (a)  = 

f (4 + f ( a ) ~ o ( a ) / m .  0 

We define an operator F by 

1 wo/wl)-l f )  ( x )  
( " ) (XI  = 1 

From Proposition 5.16 we find (G(Ff) )  (p )  = f (p ) .  

Remark 5.17. From Euler's reflection formula and the identity 

2 sin x sin y = cos(x - y)  - cos(x + y) ,  

we find 

W e  define 

+ P ( 4  

e - ~ ( ~ v - " )  r (4 - it - i p )  I? (4 - it + i p )  I? (2k2) I' ( k2  - kl + it + 1)  
- 

I? ( k l  + i x  + it) I? ( k2  - i x )  (k l  + k2 - it) I? ( k l  - k2 - it + 1)  
1 3 - it + ip ,  5 - it - ip ,  kl - i x  - it 

x r ~ 2  kl - k2 - it + 1, kl  + k2 - it ; 1 )  , 

then from (Bailey, 1972, §3.8(1)) we obtain 

So the definition of F (5.18) is equivalent to 
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where 

Note that W2(p)dp is the orthogonality measure for the continuous dual 
Hahn polynomials. 

The function Ff exists for all functions f for which the integral (5.18) 
converges. We want to find a domain on which F is injective and isomet- 
ric. We look for a set S of functions for which FS is a dense subspace 
of L2 ( R ,  w(x )dx ) .  Recall that the set of polynomials is a dense subspace 
of L2 ( R ,  w(x )dx ) .  

0) Lemma 5.18. Let pn (.; 9) denote a Meixner-Pollazcek polynomial as 
defined by (2.2), then 

with qn given by 

Proof. Let G1 and G2 be as defined by (5.17). Since - the Meixner- 
Pollaczek polynomial pn is real, we have G1pn = G2pn. Writing out 

qn ( p )  = (91pLk2) (.; p)) ( p )  explicitl~, gives 
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k2 + ix, k2 - k1 + f + ip, k2 - k1 + f - ip 
2k2, k2 - kl - i t  + 1 

ca n (k2 - kt + f + ip)_ (k2 - kt + f - ip)_ (-n)r (1 - e 2 ' ~ ) z  x x m! (2k2), (h - kl - i t  + 1), m=O 1=0 11 (2k2)l 

x 1 ex(2q-")I' (k2 + ix + m) r (k2 - ix + 1) dx. 
27r 

R 

The inner integral can be evaluated by (Paris and Kaminski, 2001, 
(3.3.911, 

k-ico 

with s = k2 + m + ix and a = 2k2 + m + I. Now the sum over I becomes a 
terminating 2Fl-series, which can be evaluated by the Chu-Vandermonde 
identity (Andrews et al., 1999, Cor. 2.2.3) 

Then qn(p) reduces to a single sum, starting at m = n. Shifting the 
summation index gives the result. 0 

Proposition 5.19. For a continuous function g E L2(R, w(x)dx), we 
have F(6g) = g. 

Proof. Let qn be as in Lemma 5.18. We show that (Fq.) (2) = pik2) (x; p). 
From this the proposition follows, since the polynomials are dense in 
L2 (R, w (x)dx). 

Transforming the 2Fl-series of qn in Lemma 5.18 by (Andrews et al., 
1999, (2.3.12)) and using the asymptotic behaviour (ErdBlyi et al., 1953, 
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2.3.2(16)), we find 

From Stirling's formula it follows that I Wo(p)/ Wl (p) 1 = O (e-"p) for 
p + oo. So by (5.14) and (5.18) we see that Fq, exists. 

We calculate 

then according to Remark 5.17 we have Fq, = I +q. Writing Gp(x) and 
q,(p) as a sum, and interchanging summation and integration, gives 

where 

( : i ~ ~ ~ ~  ) 2k'+n e-irb 
C = e-"(2~-") 1 

n! I? (kl + ix + it) r (k2 - ix) 

X 
1 

r (kl + k2 - it) r (k2 - k1 - i t  + n + 1) F (k1 - k2 - i t  + 1) ' 

The integral IZ,, can be evaluated by (Andrews et al., 1999, Thm. 3.6.2); 
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Now the sum over m is a 2F1-series which can be summed by Gauss's 
theorem; 

Then the sum over 1 becomes a 2Fl-series7 and after applying Euler's 
transformation we obtain 

eincp 
I (x) = 

r (2k2 + n) 
(1 - e-2i9)ix+k2 r (k2 + i x  + n + 1) I? (k2 - i x )  

k2 + i x ,  1 - k2 + i x  
k2 + i x  + n + 1 

As in (3.3) we find from this 

Note that the condition 2 < p < is needed for absolute conver- 
gence of the 2F1-series of qn. This condition can be removed by analytic 
continuation. 0 

We define the Hilbert space M by 

M = span {qn 1 n E Z ~ O ) '  

then M consists of functions of the form 

The inner product on M is given by 
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Proposition 5.20. The operator F : M -+ L2(R, w(x)dx) is an isom- 
etry. 

Proof. Let 

and 
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Then from Propositions 5.12, 5.14 and (5.19) we obtain 

(Ff 7 Fg) ~ y ~ , ~ ( ~ ) d ~ )  = (f 7 g ) ~  
by a straightforward calculation. I7 

So far we only considered the integral transform F in the case that 
p2 + a is in the continuous spectrum of the difference operator A. In the 
next subsection we consider the discrete spectrum of A. 

5.4 Discrete spectrum 
From (5.8) it follows that for Q(p) < 0 we have ap (x )  E L2(R, w(x)dx). 

So if c(-p) = 0 and 3 ( p )  < 0, we find from Proposition 5.9 that 
vp (x )  = c(p)<Pp(x), and therefore cpp(x) E L2(R, w(x)dx). 
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There are two possible cases for c(-p) = 0, cf. Theorem 4.1: 

1. k2 - k1 + < 0, then p = i (k2 - kl + 4 + n), n = 0,. . . , no, where 
no is the largest nonnegative integer such that k2 - kl + 4 + no < 0, 

2. k1 +k2 - 8 < 0, then p = i ( k l  + k2- 8). 

Case (ii) does not occur for k1 > 1, which is needed for convergence 
of the 3F2-series of yp(x + i). However for kl 5 1 we use expression 
(5.6) for ap(x) (which still converges if kl 5 1) and vp(x) = c(p)ap(x). 
We see that the 3F2-series becomes a 2F1-series of unit argument, and 
then, with Gauss's summation formula, we find that in case (ii) we have 
@,(x) = e-2"xp(x). Observe that case (i) and case (ii) exclude each 
other. 

First we consider case (i). For pn = i (k2 - k1 + 8 + n), 0 5 n 5 no, 
we denote yp(x) by vpn (2). We show that cppn (x) is orthogonal to cp,, (x) 
and cpEm(x) for n # m. Note that vpn is given by a terminating series, 
cf. (5.4). 

Proposition 5.21. For m, n = 0,. . . , no 

e2t('f'-z) F (2k2) F (2kl - 2k2 - 1) 
= Jnm (kl - k2 + it) F (kl - k2 - it) I' (2kl - 1) 

n! (2k2 - 2kl + n + I), (2 - 2kl), 
X 

(2k2), (2k2 - 2kl+ 2)2, 
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Proof. Writing out the explicit expressions (5.4) for vpn ( x )  and ppm ( x )  
gives 

I' (k2 - i x  + k )  I' (k2 + i x  + 1 )  
dx .  r (k l  - i t  - i x )  I? (k l  + i t  + i s )  

The integral inside the sum can be evaluated by (Paris and Kaminski, 
2001, 93.3.4) 

where %(a + c - b - d) < 1 and the path of integration separates the 
poles of ,(a + s )  from the poles of r ( c  - s )  . Note that the convergence 
condition 2k2 - 2kl + k + 1 < 1 is satisfied in case (i) and k ,  1 2 no. Now 
we find for the double sum for n < m 

e 2 t ( ~ - i . )  
r ( 2 1 ~ ~ )  r (2k1 - 21c2 - 1) 

r (k l  - k2 + i t )  I? (k l  - k2 - i t )  (2kl - 1 )  
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The sum over 1 is a terminating 3F2-series, which can be evaluated by 
the Pfaff-Saalschiitz theorem 

So we find for n 5 m 

I? (2k2) I? (2kl - 2k2 - 1) 
= dnm I? (kl - k2 + it) I? (kl - k2 - it) I? (2kl - 1) 

Note that from the condition kg - kl + 4 + n < 0 follows that this 
expression is positive in case n = m. For n 2 m we find the same 
result by interchanging the summations over k and 1. A straightforward 
calculation shows that the expression found is equal to 

Proposition 5.22. For m, n = 0,. . . , no 

(-l)"n! e2t(v-I) I' (2k2) I? (2kl - 2k2 - 1) 
= Snm I? (kl - k2 + it) I? (kl - k2 - it) I? (2kl - 1) 

Proof. From the first formula on page 142 in (Andrews et al., 1999) we 
find 
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Then the explicit expression follows from Proposition 5.21. A straight- 
forward calculation shows that the explicit expression is equal to the 
residue at p = p, of Wl ( p ) .  0 

A similar calculation is used for case (ii). Recall from the beginning 
of this subsection that in this case ypc(x )  = e-2qxc (p,) p(x). 

Proposition 5.23. Let p, = i ( k l  + k2 - $), then 

Proof. The proof is similar to the proof of Proposition 5.21. 

Proposition 5.24. Let p, = i (k l  + k2 - i), then 

- - e2'('-$)I' (2k2) I? (1  - 2kl - 2k2) I? (k2 - kl - it + 1) 
I' ( 1  - 2kl)  I' (k l  + k2 - it) r (1  - kl - k2 - it) I? (kl  - k2 + it) ' 

Proof. We use Euler's reflection formula to write p(x) in terms of r- 
functions, then we have 

(CP ;~ ,  ~ p , )  = e 2 t ( q - ; ) m 2  

X'J 
I' (k2 + is) I' (k2 - i x )  I? (k l  - it - i x )  

dx. 
2 r ( k l + i t + i x ) I ' ( l - k l - i t - i x ) r ( l - k l - i t - i x )  

IW 

We use a special case of (Slater, 1966, (4.5.1.2)) to evaluate the integral; 

where %(d + e + f - a - b - c) > 0 and the path of integration separates 
the poles of r ( a  + s)  from the poles of r ( b  - s )  and I'(c - s).  We put 

s = -k2 + i x ,  a = 2k2, b = 0,  c = kl - k2 - i t ,  

d = kl + k2 + it, e = 1 - kl - kg - i t ,  f = 1 - k1 - k2 - it, 
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then we find that the sF2-series reduces to a 2F1-series, which can be 
evaluated by Gauss's summation formula. F'rom this the result follows. 

0 

Next we show that if p2 + is in the discrete spectrum of A, cpp(x) is 
orthogonal to cp,(x) and cp:(x), if a is real. 

Proposition 5.25. For a E [0, m) and p = p,, or p = p,, we have 

Proof. By  Propositions 5.3 and 5.7 

We show that the limit of each Wronskian is zero. Let 

First we consider the asymptotic behaviour of f ( - M )  and f ( N ) .  
For p = pn and 0 5 y 5 1 we find from Lemmas 5.4, 5.10 and 

Proposition 5.9 

For p = p, we find 

Here the implied constants do not depend on y. Then dominated con- 
vergence gives the result. 

The proof for ( y p ,  cp;) = 0 runs along the same lines. 0 

Remark 5.26. The explicit calculations in this subsection can be carried 
out because of the choice (5.3) of the i-periodic function p(x ) .  It is not 
likely that with another choice for the function p(x )  all the calculations 
can be done explicitly. This gives another (heuristic) argument for the 
choice of p (x )  . 
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5.5 The continuous Hahn integral transform 
We combine the results of Subsection 11.5.3 with the results of Sub- 

section 11.5.4. 
Let kl, k2 > 0, 0 < cp < 7r and t E W. Let cpp(x) be the function given 

by 

k2 - ix, k2 - kl + + ip, k2 - kl + i - ip 
2k2,k2 - k1 +it + 1 

We denote 

WO(P> - r (i + it + ip) I? (i + it - ip) 
h(p) = - - 

Wl (p) r (kl - k2 + it) (k2 - k1+ it + 1) ' 

Let M be the Hilbert space given by 

where q, is as in Lemma 5.18. For functions f = (2)  , the inner 

product on M is given by: 

(i) For kl + kl - i 2 0, k2 - kl + i 1 0 

(ii) For k~ + k2 - 4 < 0, p, = i (kl + k2 - i), 
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(iii) ~ o r k z - k l + ;  <O,pn = i ( k 2 - k l + ; + n ) , n = O ,  ..., no, where 
no is the largest integer such that -ipn, < 0, 

Observe that for m > n we have q,(pn) = 0.  For m 5 n it 
follows from the way qm is calculated in Proposition 5.18, that 
qm(~n) = h(~n)qm(~n) .  

For a continuous function f E M we define the linear operator F : 
M -t L2 (R, w (x)dx) by 

We call 3: the continuous Hahn integral transform. 

Theorem 5.27. The continuous Hahn integral transfrom F : M -+ 
L2(R, w(x)dx) is unitary and its inverse is given by 

Proof. For case (i) this follows from Propositions 5.16, 5.19 and 5.20. 
For case (ii) we only have to check that Propositions 5.12 and 5.14 

still hold with the discrete mass point in p = p, added to the integral. 
From Propositions 5.23, 5.24 and 5.25 we find 

Now the proof for case (ii) is completely analogous to the proof of case 
6) 

For case (iii) injectivity and surjectivity of F can be proved in the 
same way as case (i). We check that F is an isometry. The continuous 
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part follows from Proposition 5.20, so we only have to check for the 
discrete part. We write out (Fqk, Fql)LZ(a,w(x)dx), k ,  1 E Z>o, - for the 
discrete part of Fqk and Fql. From Propositions 5.21, 5.22 and qk(pn) = 
h (pn)qk (pn) we find, for n, m = 0 , .  . . , no, 

no / C (pPn ( P n )  + (P;. ( X ) P I  (pn) )  ?ii Res Wo(p)  
B n=O P'Pn 

no 

C ((Pprn ( X I P I  (Pm) + ( x )  P (Pm)) ~i Res Wo ( p )  w ( x )  dx 
m=O P'Pm 

no -- 
= C (qk (Pn )  41 (Pn) + Q ( ~ n ) q l (  pn)) ri Res Wo (p )  . 

n=O P=Pn 

Here we recognize the discrete part of the inner product (qk, ql)M. Com- 
bined with Propositions 5.20 and 5.25 this shows that F acts isometric 
on the basis elements q k .  By linearity F extends to an isometry. 

The continuous Hahn integral transform in case (i) corresponds ex- 
actly to the integral transform we found in s11.4.3 by formal computa- 
tions. 

Remark 5.28. Let us denote the operator A by A ( k l ,  k2, t ) ,  let w ( x )  = 
w ( x ;  k l ,  k2,  t ) ,  and let Tt denote the shzft operator. Observe that 

It is clear that L2 (W, w ( x ;  k l ,  k2,  t )  d x )  is invariant under the action of 
Tt . A short calculation shows that T-t o A ( k l ,  k2, t )  0 Tt = A (k2, k l ,  -t), 
so cpp ( x  + t; -t, k2, k l ,  (P) is an eigenfunction of A ( k l ,  k2, t )  for eigen- 
value p2 + i. Going through the whole machinery of this section again, 
then gives another spectral measure of A ( k l ,  k2, t ) ,  namely the one we 
found with kl  H k2, k2 H k1 and t I-+ -t. 

Finally we compare the spectrum of the difference operator A with 
the tensor product decomposition in Theorem 4.1. The discrete term 
in case (ii) in this section corresponds to one complementary series rep- 
resentation in the tensor product decomposition in Theorem 4.1. Case 
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(iii) does not occur in Theorem 4.1, since it is assumed that kl 5 k2. If 
we no longer assume this, the discrete terms in case (iii) correspond to 
a finite number of positive discrete series representations. 

The finite number of negative discrete series in Theorem 4.1 can be 
obtained as described in Remark 5.28. In order to obtain the Clebsch- 
Gordan coefficients in this case from the summation formula in Theorem 
3.1, we need to consider different overlap coefficients for the continuous 
series representations. Let vn(x; A, E, y) := u-,(x; A, - E ,  7r - y), where 
un is the Meixner-Pollaczek function as defined by (2.5). Then 

is a generalized eigenvector of ~ " 9 "  (X9 ) ,  see (Koelink, , 54.4.11). From 
Theorem 3.1, with (kl,k2,x1,x2,p) I+ (k2,k17x2,x1, -p) we find the 

Clebsch-Gordan coefficients for the eigenvector $ ,  (21 - 12) 
these Clebsch-Gordan coefficients are multiples of continuous Hahn func- 
tions 

In this case the discrete mass points in the measure for the continuous 
Hahn transform correspond to one complementary series representation, 
or a finite number of negative discrete series representations. 
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1. Introduction 
By a polynomial sequence { fn(x) }  we mean a sequence of polynomials 

such that fn(x) is a polynomial of exact degree n in x. Let T be a linear 
operator defined on polynomials and reduces the degree of a polynomial 
by 1, hence Tx is a nonzero constant. Given such operator one can 
inductively define a polynomial sequence { f n ( x ) )  such that 
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We say that a polynomial sequence {fn(x)) with fo(x) = 1 belongs to 
an operator T if (T fn) (x) = f n - l (~ ) .  It is known that given a sequence 
of polynomials {f,(x)) with f, of precise degree n then there exists an 
operator T of the form 

such that ak(x) has degree at most k and T f,(x) = fn-l (x). For details, 
see (Rainville, 1971, Chapter 13). 

Theorem 1 .l. Assume that two polynomial sequences {r, (x)) and {s, (x)) 
belong to the same operator T. Then there is a sequence of constants 
{a,) with a0 = 1 such that 

Conversely if (1.2) holds with a0 = 1, and {r,(x)) belongs to T then 
{s,(x)) also belongs to T. 

Theorem 1.1 is implicit in the Sheffer classification (Rainville, 1971), 
the umbra1 calculus (Rota et al., 1973) and the q-umbra1 calculus (Ismail, 
2001) where additional assumptions are made but these assumptions do 
not enter in the proof of (1.2). In 92 we apply Theorem 1 to give few 
line proofs of three identities whose original proofs are lengthy. 

Throughout this work we shall follow the notations and terminology 
in (Andrews et al., 1999) and (Gasper and Rahman, 1990) for basic 
hypergeometric series. 

Theorem 1.1 will be applied where T is related to the the Askey- 
Wilson operator Dq which we now define. Given a function f we set 
j (e") := f (x), x = cos8, that is 

In other words we think of f (cos 8) as a function of eie. The Askey- 
Wilson divided difference operator Dq, (Ismail, 1995), (Askey and Wil- 
son, 1985, p. 32), is defined by 

It easy to see that the action of Dq on Chebyshev polynomials is given 
bv 
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hence Vq reduces the degree of a polynomial by one and 

For applications of Vq to deriving summation theorems see (Ismail, 1995) 
and (Cooper, 1996). 

The polynomial bases we will be concerned with are 

vn (cos 8; a) = (ae", ae -ie; q) , 
n 

pn (COS 8) = (1 + e2") (-q 2-ne2i0; q2) ,-in0 

n-1 
7 

In the calculus of the Askey-Wilson operator the bases {cpn(x;a)), 
{P~(x)) ,  play the role played by ((1 - 2ax + u ~ ) ~ ) ,  and ((1 - x ) ~ ) ,  re- 
spectively, in the differential and integral calculus. On the other hand 
{pn(x)), and {un(x, y)) play the role of {xn) and {(x + Y ) ~ ) ,  respec- 
tively, with y = cos 9. For expansions of entire functions in the first 
three bases in (1.4) we refer the interested reader to (Ismail and Stan- 
ton, 2003b). 

The q-exponential function of Ismail and Zhang (Ismail and Zhang, 

Ismail and Zhang (Ismail and Zhang, 1994) also defined 
q-exponential function by 

(1.5) 

a two variable 

It is evident from (1.5) that the function lq(x; t) is entire in x for all t, 
It1 < 1 and is analytic in t for It1 < 1 and all x. 

In $3 we give a lemma, Lemma 3.1, which is a special case of the 
Nassrallah-Rahman integral (Nassrallah and Rahman, 1985) by using a 
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change of base formula from (Ismail, 1995). Lemma 3.1 and q-integration 
by parts (Brown et al., 1996) are used to solve the connection coefficient 
problem for Askey-Wilson polynomials. The original proof of the con- 
nection coefficients is in (Askey and Wilson, 1985). In 54 we show that 
Lemma 3.1 and the Watson transformation imply the full Nassrallah- 
Rahman result. 

In (Al-Salam, 1995) W. Al-Salam proved the following characteriza- 
tion theorem: 

Theorem 1.2. Let {pn(x)) be a polynomial sequence, po(x) = 1. If 
{pn(x)) are orthogonal polynomials and 

A(t) is a formal power series in t, then pn(x) is a multiple of the q- 
Hermite polynomials, (Askey and Ismail, 1983). 

In 55 we use Theorem 1.1 and Corollary 2.1 together with properties 
of continuous q-Hermite polynomials to give a simple proof of Theorem 
1.2. We outline a derivation of every formula used, so the developments 
presented here are self-contained. 

We hope that the elementary nature of the proofs presented here will 
lead to a better understanding of the subject matter. 

2. Theorem 1.1 and its Applications 
First note that given a sequence of polynomials {pn(x)) with pn(x) 

of degree n and po(x) = 1 we can define a linear operator T on the 
vector space of polynomials by Tpo(x) = 0 and Tpn(x) = pn-1 for 
n > 0. Hence T always exists. For representation of T as a differential 
operator, possibly of infinite order, see Theorem 70 of $122 in Rainville 
(Rainville, 1971). 

Proof of Theorem 1 . I .  Let 

Thus 
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Hence an,k+l = an-l,k, 01. an,k+l = an-k-l,O and (1.2) follows. Con- 
versely given (1.2) construct the operator T to which {rn(x)) belongs. 
It follows from (1.2) that {sn(x)) belongs to T and the result follows. 

The following corollary is a restatement of Theorem 1.1 in the lan- 
guage of formal power series. 

Corollary 2.1. Two polynomial sequences {rn(x)), and {sn(x)), with 
ro(x) = so(x) = 1 belong to the same operator T if and only if 

00 

where A(t) = C antn with a0 = 1 and an is independent of x. 
n=O 

Ismail and Stanton (Ismail and Stanton, 2003a) proved 

and 
00 ,2iB -k 2 

Eq (eos 0; t) = C (l + e2") (- q ; q ) k  qb2/4tke-ibB . 
(2.3) 

k=O (4; q)k (1 + e2ieq-k) 

Suslov (Suslov, 2001) proved the following addition theorem for Eq 
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belong to the operator Vq. Thus Corollary 2.1 and (1.5)) after replacing 
t by tq1I4, shows that there is a power series B(t) such that 

Both series defining the above 2p1 and Eq(x; t) are analytic functions of 
t for It1 < 1 and are entire functions of x. Moreover Eq(x; t) and the 2 9 1  

in (2.8) are equal to 1 at t = 0. Hence B(t) is analytic in a neighborhood 
of t = 0. Substituting x = (q1/4 + q-1/4) /2 we see that 

where we used the q-binomial theorem in the last step. A simplification 
completes the proof. 0 

Note that (2.2) implies 

Thus 
Eq(O; t) = 1. 

Proof of (2.3) and (2.4). The relationships (2.6) and (2.7) imply that 

belong to Vq for all y. Thus there are formal power series A(t) and B(t) 
such that 

00 qn2/4 
Ep (x; t )  = A(t) x -- 

(4.; q)n 
~n (XI tn 

n=O 
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This establishes (2.3) and (2.4) since pn(0) = 6n,0, Eq(O,y; t) = &(y;t) 
imply A(t) = 1 and B (t) = Eq (y ; t )  . 0 

3. Connection Coefficients 
Ismail (Ismail, 1995) proved a q-Taylor series expansion for polyno- 

mials in cpn(x; a) and applied it to derive the q-analogue of the Pfaff- 
Saalschiitz theorem in the form 

n 

~ n ( x ;  b) = x (9; qln (b/a)k (abqk, bla; q) n-k c~k(x; a). (3.1) 
]C=O (Q; q)k (4; q)n-k 

Let 
(,2ie, .-2ie; q) , 

w (cos 8; a) = 4 7 

where a stands for the vector (al, a2, as, a4). The Askey-Wilson integral 
is (Askey and Wilson, 1985) 

7r 

(e2ie, e-2ie; q), dB 
1(al,m,as,a4) := 

J o n (ajeie, aje-ie; q), 
j=1 

1. We have the evaluation Lemma 3. 

n 

(e2ie, e-2ie; q),(aeie, ae-ie; q), d8 i o n (ajeie, q), 

j=1 
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Proof. Apply (3.1) with b = a and a = a4 to see that the left-hand side 
of (3.4) is 

and the results follow. 

Define the inner product (Brown et al., 1996) 

Brown, Evans, and Ismail (Brown et al., 1996) proved that if f(z) and 
g(z )  are analytic in the ring q1I2 5 IzI 1 q-ll2 then 

The Askey-Wilson polynomials are defined by 

They have the property 

. , 

and satisfy the Rodrigues type formula 
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In the above c a = ( c  a l ,  c a2, c a3, cad) .  Clearly the form of the Askey- 
Wilson polynomials in (3.8) makes the polynomials symmetric under 
ai tt a j ,  i, j = 1,2,3. The symmetry a1 t, a2 is the Sears transformation 
which can be proved using (3.1), see (Ismail, 1995). On the other hand 
(3.10) makes the full symmetry transparent. 

The orthogonality relation of the Askey-Wilson polynomials is 

where 

Theorem 3.2. The Askey- Wilson polynomials satisfy the connection 
relation 

where 

Proof. Clearly the coefficients cn,k exist and are given by 
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Using (3.7)-(3.10), ( X I ) ,  and (3.15) we proceed in the following steps 

kl2b J-w x ( p n - x ( x ; q  ) ,  
= bt-" (blb2b3b4qn-l; q ) k  (blb4qk, b2hqk, b3b4qk; 4 )  

n-lc 

x (% ( x ;  b4qkl2) , .\/= w ( x ;  qk l 2a ) )  . 

Using Lemma 3.1 we see that the j-sum is 

j (ala4qk, a2a4qk, a3a4qk; q l l  ( W a 4 ;  q)j-l 

C (q ,  a4b4qk, ala2a3a4q21ci (q ;  q)j-1 1=0 

and some manipulations and the use of (3.12) one completes the proof. 
17 

Theorem 3.2 seems to be new. Although Askey and Wilson (Askey 
and Wilson, 1985) only considered the case when a4 = b4, they were 
aware that the connection coefficients are double sums, as Askey kindly 
pointed out in a private conversation. To get the Askey-Wilson result 
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set a4 = b4 in (3.13) to obtain 

q"k-n)(q; q)n (bla4qk,b2a4qk, b3a4qk; q)n-k 
= (blkha4qn-' ;  q)k 

a ~ - ~ ( ( q ;  q)n-k (Q ,  ala2a3a4qk-1; q)k 

x 5 9 4  ( qk-n, blb2b3aqqnf , ala4qk, a2a4qk, a3a4qk 
ha4qk,  b2a4qk, b3a4qk, ala2a3a4q2k 1w). 

(3.16) 
Askey and Wilson (Askey and Wilson, 1985) also pointed out that if in 
addition to a4 = b4, we also have bj = aj for j = 2, 3 then the 594  

becomes a 3 9 2  which can be summed by the q-analogue of the Pfaff- 
Saalschiitz theorem. This is evident from (3.14). 

Now define an ( N  + 1)  x ( N  + 1)  lower triangular matrix C(a, b) whose 
n, k element is cn,k(a, b), with 0 5 k < n < N .  Thus (3.13) is 

where X ( a )  is a column vector whose jth component is p j ( x ;  a), 0 5 j 5 
N .  Therefore the family of matrices C(a, b) has the property 

C ( c ,  b ) C ( b ,  a) = C ( c ,  a). (3.18) 

Furthermore 
[ C ( b ,  a)]-' = C ( a ,  b). (3.19) 

The implications of the orthogonality relation [ C ( b ,  a)]-%'(a, b) = I ,  I 
being the identity matrix will be explored in a future work. 

4. The Nassrallah-Rahman Integral 
We now state and prove the Nassrallah-Rahman integral, (Gasper and 

Rahman, 1990, 6.3.7)). 

Theorem 4.1. W e  have for laj /  < 1; 1 < j < 5, the evaluation 
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Proof. Let a5 = aqn and apply Lemma 3.1. Next apply (111.20) in 
(Gasper and Rahman, 1990) to the 493 in Lemma 3.1 with the choices: 

This establishes the theorem when a5 = aqn. Since both sides of (4.1) 
are analytic functions of a the identity theorem for analytic functions 
establishes the result. 0 

5. A Characterization Theorem 
Recall the generating function of the continuous q-Hermite polynomi- 

als (Askey and Ismail, 1983) 

which implies 

and 

Before proving Al-Salam's theorem we record the generating function 
(Ismail and Zhang, 1994) 

To prove formula (5.4) simply note that both 

belong to the operator V. Therefore 

and 
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and (5.4) follows. 
Recall the three term recurrence relation (Askey and Ismail, 1983) 

2xHn (2  1 q )  = Hn+l ( X  I q)  + ( 1  - qn) Hn-1 ( X  I q ) ,  (5.5) 

hence r n ( x )  = Hn(x  I q ) / (q ;  q) ,  satisfies 

2xrn (2)  = ( 1  - qnf l )  r n + ~ ( x )  + rn - l (x ) .  (5.6) 

Proof of Theorem 1.2. Let { p n ( x ) )  have the generating function (1.7). 
Thus sn(x )  = pn/(q;  q) ,  is related to the rn 's via 

Let the three term recurrence relation of the sn's be 

Substitute from (5.7) into (5.8) and use (5.6) to obtain 

By equating the coefficients of r n ( x )  and rn - l (x )  in (5.9) we find 

For k 2 2 equating coefficients of r ndk (x )  in (5.9) then replacing cn and 
dn by their values from (5.10) give 
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Since the above equation must hold for all n > 3, the coefficients of qn 
and the constant terms on both sides must be identical. This gives two 
recurrence relations for ak, which must be compatible. If a1 = a2 = 0 
a calculation proves ak = 0 for all k > 3 and we conclude that pn(x) = 
Hn(x I q). When a1 = 0, but a2 # 0 then (5.11) shows that a2k+l = 0 
for k 2 0 and 

The consistence condition implies a2 (1 - q-l) = -1. Hence pn(x) = 
Hn(x I l/q). Through a change of variable the polynomials are orthog- 
onal when q > 1 on the imaginary axis (Askey, 1989). If ala2 # 0 the 
compatibility condition leads to a contradiction, so this case does not 
arise. 0 
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THE LITTLE Q-JACOB1 FUNCTIONS OF 
COMPLEX ORDER 

Kevin W. J. Kadell 
Department of Mathematics and Statistics 
Arizona State University 
Tempe, AZ 85287-1804 

Abst rac t  We use Ismail's argument and an elementary combinatorial identity to 
prove the q-binomial theorem, the symmetry of the Rogers-Fine func- 
tion, Ramanujan's l$Jl sum, and Heine's q-Gauss sum and give many 
other proofs of these results. We prove a special case of Heine's 2 9 1  

transformation and write Ramanujan's 1 4 1  sum as the nonterminating 
q-Chu-Vandermonde sum. We show that the q-Saalschiitz and q-Chu- 
Vandermonde sums are equivalent to the evaluations of certain moments 
and to the orthogonality of the little q-Jacobi polynomials; hence the 
q-Chu-Vandermonde sum implies the q-Saalschutz sum. We extend the 
little q-Jacobi polynomials naturally to the little q-Jacobi functions of 
complex order. We show that the nonterminating q-Saalschutz and 
q-Chu-Vandermonde sums are equivalent to the evaluations of certain 
moments and, using the Liouville-Ismail argument, to two orthogonality 
relations. We show that the nonterminating q-Chu-Vandermonde sum 
implies the nonterminating q-Saalschutz sum. 

Keywords: little q-Jacobi polynomials, basic hypergeometric functions, bilateral ba- 
sic hypergeometric functions, g-binomial theorem, Rogers-Fine symmet- 
ric function, Ramanujan's sum, Heine's q-Gauss sum and 2 9 1  trans- 
formation, q-Chu-Vandermonde sum, q-Saalschutz sum, nonterminat- 
ing sum, and Macdonald, Bidenharn-Louck, Heckman-Opdam, Koorn- 
winder and Sahi-Knop polynomials 

1. Introduction and summary 
The celebrated Askey tableau of orthogonal polynomials (see (Koekoek 

and Swarttouw, 1994)) is founded on the Jacobi and little q-Jacobi poly- 
nomials (see (Hahn, 1949)). It is naturally related to the standard results 
for ordinary and basic hypergeometric functions surveyed by Gasper and 
Rahman (Gasper and Rahman, 1990). See also (Andrews, 1965; An- 
drew~,  1969; Andrews, 1972; Andrews, 1998), (Andrews and Askey, 
1977; Andrews and Askey, 1978; Andrews and Askey, 1981), (Askey, 

O 2005 Springer Science+Business Media, Inc. 
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1978), (Askey and Ismail, 1979)) (Askey and Wilson, 1985)) (Fine, 1988), 
(Gasper, 1997), (Heine, 1847; Heine, 1878)) (Ismail, 1977)) (Ismail and 
Rahman, 1995), (Joichi and Stanton, 1989), (Kadell, 1987a; Kadell, 
1987b), (Rogers, 1983; Rogers, 1916)) (Rahman and Suslov, 1994b; Rah- 
man and Suslov, 1994a; Rahman and Suslov, 1996; Rahman and Suslov, 
1998a; Rahman and Suslov, 1998b), (Suslov, 1998) by Andrews, Askey, 
Fine, Gasper, Heine, Ismail, Joichi, Kadell, Rahman, Rogers, Stanton, 
Suslov and Wilson. 

Askey (Askey, 1980) conjectured a number of extensions of Selberg's 
integral (Selberg, 1944) which use the beta-type distributions of the 
Askey tableau. Macdonald (Macdonald, 1982) and Morris (Morris, 11, 
1982) conjectured certain constant term identities associated with root 
systems. Anderson (Anderson, 1991) and Aomoto (Aomoto, 1987) devel- 
oped alternative proofs of Selberg's integral. See (Evans, 1994), (Garvan, 
1989a; Garvan, 198913)) (Garvan and Gonnet, 1991), (Gustafson, 1990), 
(Habsieger, 1988)) (Habsieger, 1986)) (Kadell, 1988a; Kadell, 1994a; 
Kadell, 199413; Kadell, 1998)) (Mehta, 1967), (Stembridge, 1988)) (Zeil- 
berger, 1988; Zeilberger, 8990) by Evans, Garvan, Gonnet, Gustafson, 
Habsieger, Kadell, Mehta, Stembridge and Zeilberger for proofs of these 
conjectures and closely related results. 

Heckman and Opdam (Heckman, 1987; Heckman and Opdam, 1987; 
Opdam, 1988a; Opdam, 198813) introduced Jacobi polynomials and ba- 
sic hypergeometric functions associated with root systems. Opdam (Op- 
dam, 1989) gave a norm evaluation which eclipsed the Macdonald-Morris 
constant term q-conjecture. Baker and Forrester (Baker and Forrester, 
1999)) Kadell (Kadell, 198813; Kadell, 1993; Kadell, 1997; Kadell, 2000a; 
Kadell, 2000b)) Kaneko (Kaneko, 1993; Kaneko, 1996; Kaneko, 1998)) 
Knop and Sahi (Knop and Sahi, 1997), Macdonald (Macdonald, 1995, 
Chap. VI), Opdam (Opdam, 1995)) Richards (Richards, 1989)) Stanley 
(Stanley, 1989)) and Vinet and Lapointe (Vinet and Lapointe, 1995) de- 
veloped further aspects of the theory associated with the root system 
An-1. Sahi and Knop (Sahi, 1994; Sahi and Knop, 1996) introduced 
polynomials related to  the hypergeometric distribution which general- 
ized the Biedenharn-Louck (Biedenharn and Louck, 1989) polynomials. 
Koornwinder (Koornwinder, 1995) introduced polynomials associated 
with the root system BC,. See also Kadell (Kadell, 2003) and Macdon- 
ald (Macdonald, 1998). 

In (Kadell, 2000b), we used the classical ratio of alternants to extend 
the ~ c h u r  functions to partitions with complex parts. Following Proctor 
(Proctor, 1989)) we gave a combinatorial representation as an alternating 
sum over the symmetric group, and established the Pieri formula and 



Little q-Jacobi Functions 303 

two Selberg q-integrals which extend results of Hua (Hua, 1963) and 
Kadell (Kadell, 1993; Kadell, 1997). 

Our goal is to lay the groundwork for extending these marvelous poly- 
nomials naturally to  functions of complex arguments, to  give q-integrals 
which serve as orthogonality relations, and to generalize other basic 
properties. While (Kadell, 2000b) treats the case k = 1 (see also Mac- 
donald (Macdonald, 1992)), we treat the case n = 2 with a focus on 
q-series identities and Ismail's argument (Ismail, 1977). 

Let 141 < 1, let n > 0 be a nonnegative integer, and let (a;q), = 
n 

(1 - aqi-l). The basic hypergeometric function .+lcp, [al,. . . , a,+l; 
i=l 
bl, . . . , b,; q, t] is given by 

where we assume throughout that Jtl < 1 and that there are no poles in 
the denominator. 

The q-Saalschutz sum (Gasper and Rahman, 1990, (l.7.2)), (Andrews, 
1998, (3.3.12)) is given by 

If we set b = 0 in the q-Saalschiitz sum (1.2) and relabel the param- 
eters, we obtain the q-Chu-Vandermonde sum (Gasper and Rahman, 
1990, (1.5.2))) (Andrews, 1998, (3.3.10)) 

If we let n tend to infinity in the q-Saalschutz sum (1.2)) we obtain 
Heine's (Heine, 1878) q-Gauss sum (Gasper and Rahman, 1990, (1.5.1)), 
(Andrews, 1998, Corollary 2.4) 

(cia; q), (c lk q)00 
2(f1 [at; q7 'lab] = (c; p), (club; q), ' 

Observe that the q-Chu-Vandermonde sum (1.3) is the case a = q-n of 
(1.4) with the parameters relabeled. 

Letting b and c in Heine's q-Gauss sum (1.4) tend to zero with clb = 
at, we obtain the q-binomial theorem (Gasper and Rahman, 1990, (1.3.2)), 
(Andrews, 1998, (2.2.1)) 
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Let q # 0 and let n be an integer. We may extend the q-Pockhammer 
symbol to integers by 

The basic bilateral hypergeometric function .$, [al, . . . , a,; b17 . . . , br; q, t] 
is given by 

where we assume throughout that lal - .  ar/bl . . . brI < It/ < 1 and that 
there are no poles in the denominator. 

Andrews (Andrews, 1969) used a limit of Heine7s q-Gauss sum (1.4) 
to obtain Ramanujan's sum (Gasper and Rahman, 1990, (5.2.1)) 

where Iblal < It1 < 1. Ismail (Ismail, 1977) used the q-binomial theorem 
(1.5) and analysis to give a short and elegant proof of (1.8); he also gives 
references to other proofs of (1.8). We now call his argument Ismail7s 
argument. See Kadell (Kadell, 198713) for a probabilistic proof of (1.8). 

Rogers (Rogers, 1983; Rogers, 1916) and Fine (Fine, 1988) studied 
the function 

Many of their results are related to the fact that the function 

is symmetric in b and t. See Starcher (Starcher, 1930) for some applicai 
tions to number theory. 

All of these q-series identities are consequences of Heine's (Heine, 1847; 
Heine, 1878) 2 9 1  transformation (Gasper and Rahman, 1990, (1.4.1))) 
(Andrews, 1998, Corollary 2.3) 

Gasper and Rahman (Gasper and Rahman, 1990, Section 2.10) used 
the case t = q of (1.11) to write Ramanujan's sum (1.8) as the 
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nonterminating q-Chu-Vandermonde sum (Gasper and Rahman, 1990, 
(2.10.13)) 

e (n2/c; s)m (a; dm.3 (b: d m  [niilc, b l c ;  q, q] 
2p1 [a:; q' q] - c (c; q), (aqlc; q), (bqlc; q), 2p' q2/c 

- - (q/c; 41, (abqlc; q), 
(aqlc; q)m (bqlc; q)m ' 

(1.12) 
Observe that (1.12) follows by setting c = 0 and replacing e by c in the 
nonterminating q-Saalschiitz sum (Gasper and Rahman, 1990, (2.10.12)) 

See Sears (Sears, 1951) for another proof of (1.13). 
Let a, /3 have positive real part and let p be complex. Let q # 0 with 

a fixed natural logarithm and 

P - P W .  Q - e  

Following Jackson (Jackson, 1910)) we have the q-integral 

1 f (t) dqt = (1 - q) C qi f ( 4 )  

0 i=O 

and the q-gamma function 

Gasper and Rahman (Gasper and Rahman, 1990, Section 1. 10) showed 
that the q-beta integral (Gasper and ~ a h m m ,  1990, (1.11.7)) 
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follows using the q-binomial theorem (1.5); we may view (1.17) as a 
q-integral formulation of (1.5). See Kadell (Kadell, 198713) for a proba- 
bilistic proof of (1.17). 

Hahn (Hahn, 1949) showed that the little q-Jacobi polynomials (Gasper 
and Rahman, 1990, (7.3.1)) 

are orthogonal with respect to the q-beta integral (1.17). Andrews and 
Askey (Andrews and Askey, 1977) solved the connection coefficient prob- 
lem and deduced the Rogers-Ramanujan identities. 

Let m 2 0, t 2 0 be nonnegative integers, let a+x,  P+y have positive 
real part, and let 

denote the moment of tx (tqP; q), / (tqP+y; q) _ with respect to the weight 

function (1.17) times the little q-Jacobi polynomial p;jP(t). The q- 
Saalschiitz sum (1.2), the evaluation of the moment (x, O), and the 
orthogonality of the little q-Jacobi polynomials are equivalent. 

Similarly, the q-Chu-Vandermonde sum (1.3), the evaluation of the 
moment I:'~(X, n - x - I), and the orthogonality of the little q-Jacobi 
polynomials are equivalent. 

Our main result is to extend the little q-Jacobi polynomials natu- 
rally to the little q-Jacobi functions of complex order. We show that 
the nonterminating q-Saalschutz (1.13) and q-Chu-Vandermonde (1.12) 
sums are equivalent to the evaluations of the moments IZ'~(X, 0) and 
I:'@ (x, n - x - I), respectively, and, using Ismail's argument (Ismail, 
1977), that (1.12) implies (1.13). 

In Section 2, we use an elementary combinatorial identity and Ismail's 
argument (Ismail, 1977) to establish the q-binomial theorem (1.5) and 
Ramanujan's sum (1.8). 

In Section 3, we recall (Kadell, 1987a, Section 7) the path function 
proof of the q-binomial theorem (1.5). We extend the path function to 
the plane and establish the symmetry (1.10) of the Rogers-Fine function. 
We show that (1.10) also follows using Ismail's argument (Ismail, 1977). 

In Section 4, we recall (Kadell, 1987a, Section 7) the path function 
proof of Heine's q-Gauss sum (1.4) which implies Ramanujan's sum 
(1.8) which implies the symmetry (1.10) of the Rogers-Fine function. We 
use Ismail's argument (Ismail, 1977) to establish Heine's q-Gauss sum 
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(1.4) using Ramanujan's sum (1.8) and the elementary combinatorial 
identity of Section 2. 

In Section 5, we give a path function proof of the case t = q of 
Heine's 2p1 transformation (1.11) which implies the symmetry (1.10) of 
the Rogers-Fine function. Following Gasper and Rahman (Gasper and 
Rahman, 1990, Section 2.10)) we write Ramanujan's sum (1.8) as 
the nonterminating q-Chu-Vandermonde sum (1.12). 

In Section 6, we show following Andrews and Askey (Andrews and 
Askey, 1977) that the q-Saalschutz sum (1.2) and the q-Chu-Vandermonde 
sum (1.3) are equivalent to the evaluations of the moments I$'~(X, 0) and 
I:Y~(X, n - x - 1)) respectively, and that each of these is equivalent to 
the orthogonality of the little q- Jacobi polynomials. Hence the q-Chu- 
Vandermonde sum (1.3) implies the q-Saalschutz sum (1.2). 

In Section 7, we extend the little q-Jacobi polynomials naturally to 
the little q-Jacobi functions of complex order. We show that the nonter- 
minating q-Saalschutz (1 .l3) and q-Chu-Vandermonde (1.12) sums are 
equivalent to the evaluations of the moments I E > ~ ( X ,  0) and I:@(x, n - 
x- 1)' respectively, and, using the Liouville-Ismail argument (Hille, 1973, 
Theorem 8.2.2) (Ismail, 1977)) to two orthogonality relations. We show 
that (1.12) implies (1.13). 

In Section 8, we conclude with some thoughts on the Hankel deter- 
minant, the Rodriguez formula, the slinky rule for the Schur functions, 
the q-Dyson polynomials, q-series identities, and the Vinet operator. 

2. The q-binomial theorem (1.5) and 
Ramanujan's sum (1.8) 

In this section, we use an elementary combinatorial identity and Is- 
mail's argument (Ismail, 1977) to establish the q-binomial theorem (1.5) 
and Ramanujan's sum (1.8). 

Let .rr E Sn be a permutation of the integers from one through n. We 
define the inversion number of .rr by 

i n )  = { ( i , )  1 i < j 5 nand ( i )  > ( j ) } .  (2.1) 

Let .rr' denote the permutation obtained by removing n from ;rr. We then 
have 

inv(.rr) = n - ~ - ' ( n )  + inv (d) . (2.2) 
The sum of a finite geometric series is given by 
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Using induction on n and taking i = n-'(n) in (2.3)) we have the gen- 
erating function 

Let 0 5 m 5 n and let [a, b] = {i I a 5 i 5 b) denote the interval from 
a to b. Let M C [I, n] with IMI = m. We define the inversion number 
of M by 

inv(M) = x 1. (2.5) 
l<i<j<n 
(EM, j$M 

Let M 5 [1, n] be defined by i E M e n(i) 5 m and let n1 and nz 
denote the permutations obtained by listing the values of n in [I, m] and 
[m + 1, n], respectively. We then have 

m 
where xi - 1 = (T) = m(m- 1)/2 and 

i=l 

inv(n) = inv (nl) + inv (n2) + inv(M) . (2.7) 

Using (2.4), (2.6) and (2.7)) we have 

Since the powers of (1 - q) cancel, we may rearrange (2.8) as the gener- 
ating function 

See Kendall and Stuart (Kendall and Stuart, 1973) for the natural st* 
tistical version of this argument. 

Observe that (2.9) gives the Laurent expansion 
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of a polynomial whose zeroes form a geometric series. Using the identity 
(Gasper and Rahman, 1990, (1.7)) 

for reversing the q-Pockhammer symbol, we have 

Hence we may write (2.10) as 

which is the case a = qan, t = xqn of the q-binomial theorem (1.5). 
Replacing a and t by l l a  and ax, respectively, in the q-binomial the- 

orem (1.5), we have the Laurent expansion 

1 9 0  PIa; q, ax] = (x; q>m 
(ax; d m  

in the disc 1x1 < lllal. 
Recall the uniform convergence theorem Hille (Hille, 1973, Theorem 

7.10.3) that a sum of functions which are analytic on the domain D and 
converges uniformly on compact subsets of 2) converges to a function 
which is analytic on D and we may differentiate term by term. 

Observe that 

is a polynomial and hence is an entire function of a. Using comparison 
with the sum (2.3) of a geometric series for the left side and an analysis 
of the partial products on the right side, we see that the functions on 
both sides of (2.14) are analytic in a in the disc la1 < 1/1x1. 

Recall the identity theorem Hille (Hille, 1973, Section 8.1) that two 
functions which are analytic in the domain 2) and agree at infinitely 
many points which include an accumulation point in D agree throughout 
D. 

Observe that (2.14) holds when a = qn since in that case it reduces 
to (2.13). Hence we see that (2.14) holds for a in the disc la1 < 1/1x1. 

We call this argument, see Ismail (Ismail, 1977) and Askey and Ismail 
(Askey and Ismail, 1979), Ismail's argument. 
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Let r = ( r l ,  r 2 , .  . .) be a partition; thus rl 2 r 2  2 . - .  > 0 and the 
00 

norm of T, denoted by I T (  = C xi, is finite. Let e(x) denote the number 
i=l 

of non zero parts of r .  
Observe that 

gives a bijecton between partitions r with r1 5 n - 1, e(r )  5 m and 
subsets M C_ [I, n + m - 11 with [MI = m such that 

We see that (2.9) becomes the generating function 

for partitions with at  most m parts which are less than or equal to n - 1. 
Observe (see Andrews (Andrews, 1998, Chapter 1)) that (2.18) gives 

the Laurent expansion 

in the disc It1 < 1. Since (2.19) is the case a = qn of the q-binomial 
theorem (1.5), we see that (1.5) follows by applying Ismail's argument 
[34] to the parameter a. 

Let m > 0, n > 0 be nonnegative integers. Using (2.11) and the fact 
that m + (y )  = (mll), we have 

Observe that the zeroes of (2.20) form a finite geometric series. Using 
the substitution i = s + m to shift the index of summation and then 
replacing s by i, we see by (2.11) that 

Substituting (2.21) into (2.20) and using the fact that (m:l) - m(i + 
m) + (l>m) = (1) ) we obtain 
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which is an equivalent formulation of (2.10). 
Observe that if we let m and n tend to  infinity in (2.22) and multiply 

by (q; q),, we obtain the Jacobi triple product identity (Gasper and 
Rahman, 1990, (1.6.1)) 

The reader may compare this with the proof of (2.23) given by Andrews 
(Andrews, 1965, Theorem 2.8). 

We now use a variant of Ismail's argument (Ismail, 1977) to estab- 
lish Ramanujan's 1gl sum (1.8) using the formulation (2.22) of the q- 
binomial theorem (1.5). 

Making the substitution x = at, A = l l a ,  B = b in Ramanujan's 
sum (1.8) and rearranging the result, we have the equivalent Laurent 
expansion 

(x; q), (q/x; q), - (A% q)m (B; q), - 
(Ax; q)m (BIZ; q ) ~  (q; d m  (AB; q)m 

in the annulus IBJ < 1x1 < 1/IAJ. Observe that we require JAB1 < 1 in 
order that the annulus is not empty. 

Setting A = qn, B = qm+l in (2.24)' we have 

Observe by (1.6) that the on the right side of (2.25) is a sum from 
-m to n. Using (2.11), we have 

(q-n. , Q  ), . - - (-q-n)\(i) (qn-i+l. (2.26) 

Substituting (2.26) into (2.25), we readily obtain (2.22). 
Following Ismail (Ismail, 1977), we observe that the functions on both 

sides of (2.24) are analytic in A and B in the discs JAJ < l / ( x (  and 1 B I < 
1x1, respectively. Since by (2.22) we have that (2.24) holds when A = qn, 
B = qm+l, we see that (2.24) follows by two successive applications of 
Ismail's argument (Ismail, 1977) to  the parameters A and B. That is, 
we fix B = qm+l and establish (2.24) when A is in the disc IAl < 1/1x1. 
Then, we fix A = qn and establish (2.24) when B is in the disc IBI < 1x1. 

3. The symmetry (1.10) of the Rogers-Fine 
function 

In this section, we recall (Kadell, 1987a, Section 7) the path function 
proof of the q-binomial theorem (1.5). We extend the path function to  
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the plane and establish the symmetry (1.10) of the Rogers-Fine function. 
We show that (1.10) also follows using Ismail's argument (Ismail, 1977). 

Suppressing the parameters throughout, we let q be an invertible lin- 
ear operator and use the convention 

Recall (Kadell, 1987a, Section 6) that the separation of {tn)n,l 
with respect to q, which is recursively defined by (3.1) and (Kadeil, 
1987a, (6.11)) 

tn+an+l =an+q(tn) ,  n >  1 1  (3.2) 

provides a measure (Kadell, 1987a, (6.13)) 

n-1 
of how close q comes to fixing the partial sums 1 + C ti. 

i=l 
Taking the limit of (3.3), we see that 

satisfies the functional equation 

II = q(II) - lim an. 
n+m 

Since (3.2) reduces to 

(1 - t )  + t  (1 - aqn) = (1 - qn) +qn ( l  - at), (3.6) 

we have (Kadell, 1987a, Section 7) the separation 

with respect to the operator q given by 

Since 
lim an = 0, 

n+oo 

we see by (3.5) that 
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satisfies the functional equation 

The q-binomial theorem (1.5) follows by repeated application of (3.11). 
We define a path function (Kadell, 1987a, (7.6)) by taking 

to be the integrals over paths starting at the point (i, j) and moving one 
unit to the right or downward, respectively, and extending by linearity. 
Observe by (1.6) that 

so that the path function (3.12) is zero over the upper half plane. 
Observe that q moves the underlying path one unit to the right. Ap- 

plying qj-l to (3.2), we obtain 

which gives the Cauchy property that the integral over a path depends 
only on the endpoints. Observe that (3.5) follows by integrating from 
(0, l )  to (n, 2) going through (0,2) or (n, 1). 

We may view (3.2) as saying that {u,),,~ and {tn)n,l represent el- 
ements of a group which correspond to translations to the right and 
downward and which commute with each other. As Ismail's argument 
(Ismail, 1977) suggests, we may extend the path function (3.12) by re- 
placing (q; q)n-l and (q; q), by (b; q),-l and (b; q),, respectively. How- 
ever, we obtain an equivalent extension naturally using the symmetry 
(1.10) of the Rogers-Fine function. 

Let Ibl < 1, It/ < 1. Using (1.9), the symmetry (1.10) of the Rogers- 
Fine function becomes 

Placing no restriction on i and j, we set 
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so that (3.15) becomes 

Observe that the operators 

are invertible and commute with each other, and that we have 

in agreement with (3.16). We see using (3.19) that the path function 

satisfies the translation property 

We easily check that 

and, interchanging b and t ,  

1 (1  - a td  b = (1  - abtq) 
V0,o + H1,o = - + 

(1  - t )  (1  - b) (1  - t )  (1  - b) ( 1  - t )  ' 
(3.23) 

Since these are equal, we see that the Cauchy integral formula (3.14) 
holds when i = j = 0. Using (3.21), we may extend (3.14) to the plane. 

The formulation (3.17) of the symmetry (1.10) of the Rogers-Fine 
function now follows using the Cauchy integral formula (3.14) and the 
fact that 

n n 

0 = lim 1/,, = lim C VnJ. 
n+oo n--00 

(3.24) 
i=O j = O  
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Andrews and Askey (Andrews and Askey, 1978) gave a simple proof 
of Ramanujan's sum (1.8) which essentially used the q-binomial 
theorem (1.5) and the extended path function (3.19). 

We see by the Cauchy integral formula (3.14) that the integrals 

of the path function (3.12) from (n, 1) to infinity along horizontal and 
vertical paths are equal. The reader may verify that (3.25) equals 
tn (a; q),/(q; q)n-l times the case b = qn of the symmetry (1.10) of the 
Rogers-Fine function. Hence (1.10) also follows by applying Ismail's 
argument (Ismail, 1977) to the parameter b. 

4. Heine's q-Gauss sum (1.4) 

In this section, we recall (Kadell, 1987a, Section 7) the path function 
proof of Heine's q-Gauss sum (1.4) which implies Ramanujan's sum 
(1.8) which implies the symmetry (1.10) of the Rogers-Fine function. We 
use Ismail's argument (Ismail, 1977) to establish Heine's q-Gauss sum 
(1.4) using Ramanujan's sum (1.8) and the elementary combinatorial 
identity of Section 2. 

Since (3.2) reduces to 

we have the separation 

with respect to the operator 7 given by 

Since (3.9) holds, we see by (3.5) that 
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satisfies the functional equation 

Heine's q-Gauss sum (1.4) follows by repeated application of (4.5) and 
the q-binomial theorem (1.5). 

Observe by (1.6) that 

Using (2.11), (4.6) and the fact that n2 - (;) = (nzl), we have 

and hence 

Substituting (4.8) into Ramanujan's sum (1.8), replacing a, b by abq, 
bq, respectively, and dividing by (1 - b), we have the Laurent expansion 

in the annulus lllal < It1 < 1. 
Observe that the function on the right side of (4.9) is symmetric in b 

and t. Recall that the Laurent expansion of a function which is analytic 
in a given annulus is unique. Hence the sum of the terms in (4.9) with 
nonnegative powers of t is symmetric in b and t, which is the symmetry 
(1.10) of the Rogers-Fine function. 

Let [w] f denote the coefficient of the monomial w in the Laurent 
expansion of the function f in a given annulus. 

Let h 2 0 be a nonnegative integer and let lABl < 1. Using the q- 
binomial theorem (1.5) to extract the coefficient of xh in the non empty 
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annulus IBI < 1x1 < 1/IAl, we obtain 

Using the formulation (2.24) of Ramanujan's sum, we have 

Equating (4.10) and (4.11) and solving for the apl, we obtain 

Taking A = qh/a and B = q/b in (4.12), we see that Heine's q-Gauss 
sum (1.4) holds when c = qh+l. Observe that AB = club and that the 
functions on both sides of (1.4) are analytic in c in the disc Icl < lab[, 
which is lABl < 1. Hence (1.4) follows by applying Ismail's argument 
(Ismail, 1977) to the parameter c. 

We may use the q-binomial theorem (1.5) and Heine's q-Gauss sum 
(1.4) to compute the coefficients of x - ~  in the function on the left side of 
(2.24). Alternatively, we may observe that replacing x, A and B by q/x, 
Blq and Aq, respectively, fixes the function on the left side of (2.24) 
and the annulus IBI < 1x1 < l/IAl and, by (4.7)) reverses the sum 
on the right side of (2.24). Thus we have another proof of Ramanujan's 

sum (1.8). 
The reader may compare this with Andrews' proof (Andrews, 1969) 

of Ramanujan's sum (1.8) using Heine's q-Gauss sum (1.4). 
Let m 1 0, n 2 0 and h 1 0 be nonnegative integers and let 0 5 h 5 

m + n. Observe that 

which holds by (1.6) for all integers m, n. Using (2.11)' the formulation 
(2.13) of the q-binomial theorem (1.5), and the fact that 2 (';) + (m + 
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n - h + l ) h =  (m+n)h,  we have 

Using (4.14) and the formulation (2.13) of the q-binomial theorem (1.5), 
we have 

(4.15) 
Using (4.7) and (4.13), we have 

(9; 9)h-i = (q; q)h (qh+l; q) = (q; q)h (-l)i P-(h+l)i q(z:l) 
1 

-i ( Q - ~ ;  q)i ' 
(4.17) 

Substituting (4.16) and (4.17) into (4.15) gives 

Equating (4.14) and (4.18), solving for the 291, and using (2.11), we 
obtain 

Replacing a and b by l l a  and l l b ,  respectively, in Heine's q-Gauss 
sum (l.4), we have 

; q, abc = (ac; d m  (bc; d m  
291 [Ila2lb ] (c; q)m (abc; q), 

Using (2.12) and (2.12) with a replaced by b, we see that the functions 
on both sides of (4.20) are analytic in a, b and c in the disc label < 1. 
Since by (4.19) we have that (4.20) holds when a = qh, b = qn and 
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c = qm-h+l, we see that (4.20) follows by three successive applications 
of Ismail's argument (Ismail, 1977) to the parameters c, b and a. 

Observe that the first two applications of Ismail's argument (Ismail, 
1977) gives the q-Chu-Vandermonde sum (1.3). We may avoid the first 
two applications of Ismail's argument and establish (1.3) directly by 
considering [xh] (x; q),/(z/ab; q), . 

5. The nonterminat ing q-Chu-Vandermonde 
sum (1.12) 

In this section, we give a path function proof of the case t = q of 
Heine's 2p1 transformation (1.11) which implies the symmetry (1 .lo) of 
the Rogers-Fine function. Following Gasper and Rahman (Gasper and 
Rahman, 1990, Section 2.10), we write Ramanujan's sum (1.8) as 
the nonterminating q-Chu-Vandermonde sum (1.12). 

Since (3.2) reduces to 

we have the separation 

with respect to the operator 7 given by 

Comparing (4.1) and (5.1), we see that there must be a relation be- 
tween the separations (4.2) and (5.2). Applying 7-' to (3.2) and rear- 
ranging the result, we have 

Hence the separation {an)ntl of {tnJntl with respect to 7-' is given 
by (Kadell, 1987a, (6.28)) 

The reader may check that the separation (5.2) is obtained by replacing 
q by l/q in the separation (5.5) obtained from (4.2) and (4.3). 

Observe that 

lim an = - (a; q)m (4 q)m 
n+m (Q; d m  (c; d m  ' (5.6) 
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Observe by (3.5) that the function 

satisfies the q-difference equation 

Repeated application of (5.8) and multiplication and division by (1 - b) 
yields 

2 1 1  
PI = 

(5.9) 

which is the case t = q of Heine's 2pl transformation (1.11) with a and 
b interchanged. 

Replacing a, b and c by t, b and abtq, respectively, in (5.9) and rear- 
ranging the result, we have 

00 

F ( a b , b ; t ) = C  
(1 - b) i=o 

(5.10) 
Since the function on the right side of (5.10) is symmetric in b and t, we 
have another proof of the symmetry (1.10) of the Rogers-Fine function. 

Replacing a, b and c by t, b/q and at, respectively, in (5.9), multiplying 
by (1 - b/q), and rearranging the result, we have 

Replacing a, b and t by q2/b, q2/a and blat, respectively, in (5.11), we 
have 

00 (q2/b; q)i (q; 0, (q2!ati q) 00 yl [p/a, Vat; q, q] ' Z=O (q2/a; q)i @/at)' = (q2/a; q), (blat; q), q2/at 
(5.12) 

Let Iblal < It\ < 1. Observe using (4.8) that we may write Ramanu- 
jan's 1+1 sum (1.8) as 
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Substituting (5.11) and (5.12) into (5.13), multiplying by (b; q), (t; q),/ 
(q; q)m (at; q),, and using the facts that (b - q) = -q (1 - b/q) and 
(a - q) (q2/a; q), = a (qla; q),, we obtain 

(5.14) 
Observe that if we replace a, b and t by c/b, aq and b, respectively, 
in (5.14), then we obtain the nonterminating q-Chu-Vandermonde sum 
(1.12). 

6. The little q-Jacobi polynomials 
In this section, we show following Andrews and Askey (Andrews and 

Askey, 1977) that the q-Saalschiitz sum (1.2) and the q-Chu-Vandermonde 
sum (1.3) are equivalent to the evaluations of the moments I ~ ~ ~ ( X ,  0) and 
I:'~(X, n - x - I), respectively, and that each of these is equivalent to 
the orthogonality of the little q-Jacobi polynomials. Hence the q-Chu- 
Vandermonde sum (1.3) implies the q-Saalschiitz sum (1.2). 

Let m > 0, ! 2 0 be nonnegative integers and let 0 # 14.1 < 1 with 
a fixed natural logarithm of q. Using (1.14), (1.16) and the functional 
equation 

for the q-gamma function, we obtain 

Setting y = 0 in (6.2), taking 
(6.2) 
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in the q-Saalschiitz sum (1.2), and using (2.11), Andrews and Askey 
(Andrews and Askey) 1977) obtained 

. , 

Using the inverse q" = c, qP = aql-n/c and qx = blc of (6.3)) we see 
that (6.4) is equivalent to the q-Saalschutz sum (1.2). 

Since 0 5 m < n - 1 implies that (q-m; q)n = 0, we have the orthog- 
onality relation 

and hence the little q-Jacobi polynomials are orthogonal on (0, l )  with 
respect to  the q-beta integral (1.17). 

Observe that . . 

Using (2. l l ) ,  we have 

Observe that 

Using (6.6-8) and (6.8) with a replaced by b to  multiply the q-Saalschutz 
sum (1.2) by (ab)" (c; q), (club; q),, we obtain 

which is a polynomial formulation of the q-Saalschutz sum (1.2). 
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Let n, a and b be fixed with n 2 0, a # 0, b # 0 and alb not an 
integer power of q. Since (6.3) gives b = cqx, we see taking x = m in the 
orthogonality relation (6.5) that 

Using the symmetry 

we see that (6.10) becomes 

We have 
Sn(a, b, 0) = (ab)". 

Observe that Sn(a, b, c) has degree at most 2n as a polynomial in c and 
that (6. lo), (6.12) and (6.13) give the values, in agreement with (6.9), of 
Sn(a, b, c) at 2n + 1 distinct values of c. We may remove the restrictions 
on a and b by successively considering Sn(a, b, c) as a polynomial in a 
and b. Thus the orthogonality of the little q-Jacobi polynomials, which 
is given by (6.5), implies the polynomial formulation (6.9) of the q- 
Saalschiitz sum (1.2). Hence the orthogonality of the little q-Jacobi 
polynomials is equivalent to the q-Saalschiitz sum (1.2). 

We may use (2.11) to reverse the q-Chu-Vandermonde sum (1.3). The 
result is (Gasper and Rahman, 1990, (1.5.3)) 

Setting y = n - x - 1 in (6.2) and taking 

a = qa+" and b = q" (6.15) 

in the reversed q-Chu-Vandermonde sum (6.14), we obtain 

Using the inverse q" = b and qx = alb of (6.16), we see that (6.17) ib 
equivalent to the reversed q-Chu-Vandermonde sum (6.14) and hence is 
equivalent to the q-Chu-Vandermonde sum (1.3). 
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Since 0 < ! < n - 1 implies that (q-e; q), = 0, we have the orthogo- 
nality relation 

Since we may use any basis for the polynomials in t with degree less than 
or equal to n - 1, we see by (6.18) that the little q-Jacobi polynomials 
are orthogonal on (0,l) with respect to the q-beta integral (1.17). 

Using (6.6) and (6.8) with c replaced by b to multiply the reversed 
q-Chu-Vandermonde sum (6.14) by (b; q),, we obtain 

(6.18) 
which is a polynomial formulation of the reversed q-Chu-Vandermonde 
sum (6.14). 

Let n and a be fixed with n > 0, a # 0 and alb not an integer power 
of q. Since (6.16) gives a = bqx, we see taking x = e in the orthogonality 
relation (6.18) that 

We have 
[bn] T,(a, b) = (-l), q(;). (6.20) 

Observe that (6.20) gives the values, in agreement with (6. lg), of Tn (a, b) 
at n distinct values of b and that (6.21) gives the coefficient of the leading 
term of Tn(a, b) as a polynomial in b. We may remove the restrictions on 
a by considering Tn(a, b) as a polynomial in a. Thus the orthogonality 
of the little q-Jacobi polynomials, which is given by (6.18), implies the 
polynomial formulation (6.19) of the reversed q-Chu-Vandermonde sum 
(6.13) and hence implies the q-Chu-Vandermonde sum (1.3). Hence the 
orthogonality of the little q-Jacobi polynomials is equivalent to the q- 
Chu-Vandermonde sum (1.3). 

Observe that the q-Chu-Vandermonde sum (1.3) is equivalent to and 
hence implies the orthogonality of the little q-Jacobi polynomials, which 
is equivalent to and hence implies the q-Saalschutz sum (1.2). 

7. The little q- Jacobi functions 
In this section, we extend the little q-Jacobi polynomials naturally to 

the little q-Jacobi functions of complex order. We show that the nonter- 
minating q-Saalschutz (1 .l3) and q-Chu-Vandermonde (1.12) sums are 
equivalent to the evaluations of the moments I;'@(x, 0) and I;'@(X, n - 
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x-I), respectively, and, using the Liouville-Ismail argument (Hille, 1973, 
Theorem 8.2.2), (Ismail, 1977), to two orthogonality relations. We show 
that (1.12) implies (1.13). 

Let n, p be complex, let x + 1 have positive real part, and let m 2 0, 
k' 2 0 be nonnegative integers. Let 0 # lql < 1, t # 0 with fixed 
natural logarithms of q and t. Observe that (1.6) and (1.14) extend 
the q-Pockhammer symbol (a; q), = (a; q),/ (aqn; q), to complex n 
and that (4.13) continues to hold. The shifted basic hypergeometric 

9'l function T+lyT [al, . . . , aT+l; bl, . . . , br; q, t] is given by 

= tp (al; q), . (ar+l; q), (qp+l; 4) , 
( a l p ;  q), . - (aT+iqY q), (q; q ) ~  

( 7 4  
Setting p = 0 in (7.1)) we see that T+lyi = T+l(PT is the usual basic 
hypergeometric function. 

In (Kadell, 2000b), we used the classical ratio of alternants and the 
tool 

which interprets sums with complex limits, to extend the Schur functions 
to partitions with complex parts. Following Proctor (Proctor, 1989), we 
gave a combinatorial representation as an alternating sum over the sym- 
metric group of a sum over representatives of tableaux of complex shape 
which may be indexed by certain sequences of nonnegative integers. Ob- 
serve by (3.13) that 
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Since (7.1) and (7.3) give 

it is natural to extend the little q-Jacobi polynomials to functions of 
complex order n by 

1-n-a: n+p 
x 2 9 1  [q q 2 2  ; q,tq 1 I 

(7.5) 
which is a difference of shifted basic hypergeometric functions. We may 
avoid poles by assuming that n + a - 1, -n - P and -a are not non- 
negative integers. 

Using (1.16), (1.17) and (6.1), we have 
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Combining our results (6.2), (7.5) and (7.6), we obtain 

Setting y = 0 in (7.7), we have 

(9; q)m (qP+.+l. 1-n-a n+p 
X lq), 3 9 2  [q 

(qX+l; 41, (qP; q), q2-a1 qp+x+l ;9, Q . 

Taking 

+ I 
(7.8) 

in the nonterminating q-Saalschiitz sum (1.13) and substituting into 
(7.8), we obtain 

Using the inverse qa = el qx = c/e, qfl = abqle and qn = l /a  of (7.9), 
we see that (7.10) is equivalent to the nonterminating q-Saalschiitz sum 
(1.13). 

Setting y = n - x - 1 in (7.7), we have 
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Taking 
a = qWn, b = q"+" and c = q" (7.12) 

in the nonterminating q-Chu-Vandermonde sum (1.12) and substituting 
into (7.11), we obtain 

I:@(x,n - x - 1) = 
(4; 4)m (P; (!Pn+%; q) 00 (qa+P+n-l ; dm 

(ql-n-a; q), (qP+n-x-l. , dm (qX+l; 41, (qa+"; 41, ' 

(7.13) 
Using the inverse qa = C, qx = b/c and qn = l / a  of (7.12), we see 
that (7.13) is equivalent to the nonterminating q-Chu-Vandermonde sum 
(1.12). 

Observe that the evaluations (7.10) and (7.13) of the moments I:@(x, 0) 
and I,"@ (z, n - a: - 1) give the orthogonality relations 

n - x - 1, a - 1 or - n - a - ,8 - x is a nonnegative integer 
(7.14) + I,"*P(X,O) = 0 

and 

n - x - 1, a - 1 or - n - a - p + 1 is a nonnegative integer 
(7.15) + I:~P(x,n-x- 1) = O ,  

respectively. 
We may rearrange the nonterminating q-Saalschiitz sum (1.13) as 

~ ~ 

x (q2+i/e; q)_ (abcq2+'/e2; q), 

= (e; q), (q/e; 4)w (abqle; q)w (a+; q), (bcqle; q),. 
(7.16) 

Since (7.9) gives elacq = qn-"-l, e/q = q"-l and elbcq = q-n-"-P-x, 
we see that the orthogonality relation (7.14) gives 

m > 0 S (a, b, c; acqmf l) 
(7.17) 

= S (a, b, c; *"+I) = S (a, b, c; bcqm+l) = 0. 
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Observe that the functions on both sides of (7.16) satisfy 

and they are both symmetric in a, b and c. Hence by (7.17), we have 

m 2 0 + S (a, b, c; abqm+') = S (a, b, c; ql-") = 0. (7.19) 

Observe that (7.17) and (7.19) express the orthogonality relation (7.14) 
in terms of the function S(a, b, c; e) and identify the factors on the right 
side of (7.16). 

We may rearrange the nonterminating q-Chu-Vandermonde sum (1.12) 
as 

= (c; q)00 (dc ;  q)00 (abqlc; d m .  
(7.20) 

Since (7.12) gives clabq = qnRX-' and c/q = qff-l, we see that the 
orthogonality relation (7.15) gives 

e o + T (a, b; abqe+' = I a, b; qe+' = 0. ) ( )  (7.21) 

Observe that the functions on both sides of (7.21) satisfy 

Hence by (7.21), we have 

Observe that (7.21) and (7.23) express the orthogonality relation (7.15) 
in terms of the function 7(a ,  b; c) and identify the factors on the right 
side of (7.20). 

Since 
S(a, b, 0; c) = 7(a ,  b; c), (7.24) 

we see that the orthogonality relation (7.14), which is given by (7.17) 
and (7.19), implies the orthogonality relation (7.15), which is given by 
(7.21) and (7.23). 
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Observe that 

and hence 

We now show that the orthogonality relation (7.15) implies that 

n-m - x - 1 and m are nonnegative integers 
(7.27) 

I ;@(X, n - m - x - 1) = 0. 

We proceed by induction on m. The case m = 0 of (7.27) follows by 
(7.15). For m > 0, we set s = x ,  y = n - m -  x - 1 in (7.26) and use 
our induction assumption. 

Setting m = n - x -  1 in (7.27) gives the first part of the orthogonality 
relation (7.14), which by (7.17) is equivalent to the third part of the 
orthogonality relation (7.14). Letting m > 0, we observe that 

and, replacing i by m + i, 

. . 

(7.29) 
Using (7.28) and (7.29), we obtain the second part of the orthogonality 
relation (7.17), which is equivalent to the second part of the orthogonal- 
ity relation (7.14). Hence the orthogonality relations (7.14) and (7.15) 
are equivalent. 

We now show that the orthogonality relation (7.14) implies the for- 
mulation (7.16) of the nonterminating q-Saalschiitz sum (1.13). Let a, b 
and e be fixed, non zero complex numbers with labql > lei, a lb and e are 
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not integer powers of q, and abqle is not the reciprocal of a nonnegative 
integer power of q. Let 

- - 
(7.30) 

denote the sum on the left side of (7.16) divided by the product on the 
right side of (7.16). 

Observe that the orthogonality relation (7.14) implies (7.17) and (7.19), 
which identify the factors on the right side of (7.16). Since the function 
on the right side of (7.16) has at most simple zeroes, we see that f is an 
entire function of a, b and c. 

Observe that f (c)  is analytic and hence bounded on the disc 

f l l  = {c  1 lac1 < \el and Ibcl < ]el). (7.31) 

Let E > 0 be given and set 

and I bcql+"/e - 1 I for all m 2 0) . (7.32) 

Let c E f12. Hence c # 0 and we may write 

cqZ = w where z is an integer and lql 5 I w I  < 1. (7.33) 

Using the identity (2.11) for reversing the q-Pockhammer symbol and 
(4.13), we see that 

(xcq/e; q), = (xcqle; q)z ( ~ c q ' + ~ l e ) ,  
(7.34) 

= (-xcqle)' q(;) (e/xw; q), (xwq/e),. 

Using (7.33) and (7.34), we have 

(cq/e; q), (abcqle), - (e/w; q), (wq/e; q), ( e l a h ;  q ) ~  (abwqle; q) ,  - 
(acqle; q) ,  (bcqle; q), (claw; q), (awqle; (e/bw; q ) ~  (bwqle; q) ,  ' 

(7.35) 
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Observe by (7.31-33) that z is bounded below. Using (7.35) and 
(7.36), we see that both of the ratios of products on the right side of 
(7.30) are bounded as functions of c. Using (7.33) and the identity (2.11) 
for reversing the q-Pockhammer symbol, we have 

Using (7.37), (7.37) with c replaced by cq/e, and the fact that lelabql < 
1, we see that 3(~2[a, b, c; e, abcqle; q, q] and 3992 [aqle, W e ,  cq/e; q2/e, 
abcq2/e2; q, q] are bounded as functions of c. Thus f (c) is bounded on 
a2 

Recall Liouville's theorem Hille (Hille, 1973, Theorem 8.2.2) that a 
bounded entire function is constant. The proof uses the Laurent series 
representation Hille (Hille, 1973, Theorem 8.1 . l) 

where the coefficients are given by Hille (Hille, 1973, (8.1.2), (8.2.3)) 

1 
an = - dz, 

and the contour C, = { z  I lz - col = r) and c are inside a disc with center 
co on which f is analytic. If we take E < 1 - lql1I4, then for each co there 
exists a sequence {T,) , ,~ of radii with lim rn = oo and C,, G R1 U R2, - n400 
n 2 1. Using (7.39), we have a0 = f (co) and an = 0, n > 1. Hence 
(7.38) gives f (c) = f (co). Taking co = e/q, we have f (c) = f (elq) = 1, 
as required. We may remove the restrictions on a, b and e since f is 
entire and hence continuous in each of these parameters. 

We call this argument the Liouville-Ismail argument. 
We have come full circle since the nonterminating q-Chu-Vandermonde 

sum (1.12) implies in turn (7.13), (7.15), (7.14) and the formulation 
(7.16) of the nonterminating q-Saalschiitz sum (1.13), which implies 
(1.12). 

8. Conclusion 
In this section, we conclude with some thoughts on the Hankel deter- 

minant, the Rodriguez formula, the slinky rule for the Schur functions, 
the q-Dyson polynomials, q-series identities, and the Vinet operator. 
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The q-Saalschiitz sum (1.13) or the Hankel determinant ((Szega, 1975, 
(2.1.5))) or Rodriguez formula (Atakishiyev, Rahman and Suslov (Atak- 
ishiyev et al., 1995)) for the little q-Jacobi polynomials together with 
the evaluation of the q-measure for a family of orthogonal polynomials 
in the Askey tableau imply the orthogonality of the polynomials. We 
hope to extend the Hankel determinant, the Rodriguez formula, and the 
little q-Jacobi functions (7.5) to the Askey tableau. 

Observe that the renormalized little q-Jacobi functions 

are antisymmetric under 

and the antisymmetry allows us to recover (7.5). The slinky rule for 
the Schur functions was essential in establishing (Kadell, 2000b) the 
combinatorial representation as an alternating sum over the symmetric 
group. This paper follows the success for n = 2 of the thesis (Kadell, 
2000b) that we may extend the Macdonald polynomials to functions 
by reading the slinky rule from the Selberg q-integral (Kaneko (Kaneko, 
1996)) Macdonald (Macdonald, 1995, Section 6.9, Example 3)) and using 
the tool 

b 00 00 

where, following (Macdonald, 1995, Chap. VI), we have t = qk. Follow- 
ing (Kadell, 1994a; Kadell, 1997; Kadell, 1998; Kadell, 2000a; Kadell, 
2000b; Kadell, 2003)) we hope that this idea will work for the Askey 
tableau, the root system BCn, and the q-Dyson polynomials. 

The pioneering work (Baker and Forrester, 1999), (Biedenharn and 
Louck, l989), (Heckman, N U ) ,  (Heckman and Opdam, 1987)) (Kaneko, 
1993; Kaneko, 1996; Kaneko, 1998)) (Koornwinder, 1995)) (Opdam, 
1988a; Opdam, 1988b; Opdam, 1989) by Baker, Biedenharn, Koorn- 
winder, Louck, Forrester, Heckman, Kaneko and Opdam focuses on 
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the multivariable basic hypergeometric functions and orthogonal poly- 
nomials associated with root systems. We hope to extend the Mac- 
donald (Macdonald, 1995, Chap. VI), Bidenharn-Louck (Biedenharn 
and Louck, l989), Heckman-Opdam (Heckman, l987), (Heckman and 
Opdam, 1987), (Opdam, 1988a; Opdam, 1988b), Koornwinder (Koorn- 
winder, 1995), and Sahi-Knop (Sahi and Knop, 1996) polynomials to 
functions of complex argument and to extend the properties of orthog- 
onal polynomials and q-series identities. We hope to follow Section 5 of 
this paper and combine the transformation formulas of Baker and For- 
rester (Baker and Forrester, 1999) with Kaneko7s multivariable sum 
(Kaneko, 1998) to give a multivariable nonterminating q-Chu-Vandermonde 
sum and a multivariable Rogers-Fine symmetric function. We hope to 
use Ismail's argument (Ismail, 1977) to prove Heine's 2 9 1  transformation 
(1.11) and extend this to the multivariable setting. 

We hope to give a Vinet operator (see (Vinet and Lapointe, 1995)) 
of complex order which extends the Rodriguez formulas for the Askey 
tableau. 
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Abstract This paper provides the details of Remark 5.4 in the author's paper 
L'Askey-Wilson polynomials as zonal spherical functions on the SU(2) 
quantum group," SIAM J. Math. Anal. 24 (1993), 795-813. In formula 
(5.9) of the 1993 paper a two-parameter class of Askey-Wilson polynomi- 
als was expanded as a finite Fourier series with a product of two 3cpz's as 
Fourier coefficients. The proof given there used the quantum group in- 
terpretation. Here this identity will be generalized to a 3-parameter class 
of Askey-Wilson polynomials being expanded in terms of continuous q- 
ultraspherical polynomials with a product of two zcpz's as coefficients, 
and an analytic proof will be given for it. Then Gegenbauer's addition 
formula for ultraspherical polynomials and Rahman's addition formula 
for q-Bessel functions will be obtained as limit cases. This q-analogue of 
Gegenbauer's addition formula is quite different from the addition for- 
mula for continuous q-ultraspherical polynomials obtained by Rahman 
and Verma in 1986. Furthermore, the functions occurring as factors in 
the expansion coefficients will be interpreted as a special case of a sys- 
tem of biorthogonal rational functions with respect to the Askey-Roy 
q-beta measure. A degenerate case of this biorthogonality are Pastro's 
biorthogonal polynomials associated with the Stieltjes-Wigert polyno- 
mials. 
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1. Introduction 

Rahman and Verma (Rahman and Verma, 1986) obtained the follow- 
ing addition formula for continuous q-ultraspherical polynomials: 

1 1 
pn (cos 8; a, aqi , -a, -aqi I q) 

The formula is here written in the form given in (Gasper and Rahman, 
1990, Exercise 8.11). Use (Gasper and Rahman, 1990) also for notation 
of (q-)hypergeometric functions and (q-)shifted factorials. Throughout 
it is supposed that 0 < q < 1. 

Formula (1.1) is given in terms of Askey- Wilson polynomials (see 
(Askey and Wilson, 1985) or (Gasper and Rahman, 1990, 57.5)): 

P,(COS 8; a, b, c, d I q) := a-n (ab, ac, ad; q), r,(cos 8; a, b, c, d I q) 

(n E &o) 
(1.2) 

(symmetric in a, b, c, d), where 

1 
The continuous q-ultraspherical polynomials are the special case b = aqs , 

1 
c = -a, d = -aqs of the Askey-Wilson polynomials, often notated as 
follows (see (Gasper and Rahman, 1990, (7.4.14))): 

1 3  1 3  A further specialization to a = i, i.e., (a, b, c, d) = (a, a, -a, -T), yields 
the continuous q-Legendre polynomials. For this case a = Koelink 
was able to give two different poofs of the addition formula (1.1) from 
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a quantum group interpretation on SUq(2), see (Koelink, 1994) and 
(Koelink, 1997). 

If a is replaced by q f X  in (1.1) and the limit is taken for q I 1, 
then a version of the addition formula for ultraspherical polynomials is 
obtained: 

" 22k (2X + 2k - 1) (n - k)! (A): c; (cos 0) = C 
k=O (2X - l)n+k+l 

k X+k 2 x (sin cp) c::: (cos cp) (sin $) Cn-* (cos $) Ct-' 

Here ultraspherical polynomials are defined by 

cos 0 - cos cp cos $ 
sin cp sin $ 

(1.5) 

By elementary substitution the addition formula (1.5) transforms into 
the familiar addition formula for ultraspherical polynomials: 

" 22k (2X + 2k - 1) (n - k)! (A): 
~ ~ ( c o s c p c o s ~  + sincpsin$cos0) = C 

k=O (2X - l)n+k+l 
k X+k A-112 ~ ( s i n c p ) ~ ~ ~ f ~ ( c o s c p ) ( s i n ~ )  Cn-,(cos$)Ck (cos~) ,  

(1.7) 
see (Erdelyi et al., 1953, 10.9(34)), but watch out for the misprint 2m 
which should be 22m; see also the references given in (Askey, 1975, Lec- 
ture 4). For the removable singularity at X = in (1.7) observe that 

k 
lim - cL-f ( cos~ )  = cos(kq (k > 01; ~ t - i ( c o s ~ )  = I. 

A+' 2X - 1 
2 

(1.8) 
An elementary transformation comparable to the passage from (1.5) 

to (1.7) cannot be performed on the q-level. It is a generally observed 
phenomenon in q-theory that, for a classical formula involving a param- 
eter dependent function with an argument transformed by a parameter 
dependent transformation, a possible q-analogue has the transformation 
parameters occurring in the function parameters. Compare for instance 

the pk factor in (1.1) with the c:-+ factor in (1.5). 
In (Koornwinder, 1993, (5.9)) I obtained the following formula as a 

spin-off of the interpretation of certain Askey-Wilson polynomials as 
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zonal spherical functions on the quantum group SUq(2): 

(1.9) 
Here the summand, with eike omitted, is invariant under the transfor- 
mation k + -k, as can be seen by twofold application of (Gasper and 
Rahman, 1990, (3.2.3)). The 392)~ were viewed in (Koornwinder, 1993) 
as dual q-Krawtchouk polynomials (see their definition in (Koekoek and 
Swarttouw, 1998, §3.17)), but here we will prefer to consider them as 
certain (unusual) q-analogues of ultraspherical polynomials, for which an 
expression in terms of a 2 9 2  is more suitable. For this purpose apply a 
3 9 2  -f 2 9 2  transformation obtained from formulas (1.5.4) and (111.7) in 
(Gasper and Rahman, 1990). Then, after the substitutions q iu + is-', 

1 
qiT + i t  in (1.9)) we can write (1.9) equivalently as 

After the substitutions qu = tan2 $9, qT = tan2 $$J in (1.9)) the limit 
for q 1 becomes the case X = $ of the addition formula (1.7) (combined 
with (IS)), i.e., the addition formula for Legendre polynomials Pn(x) = 

c"$ (5). 
The first main result of this paper is the following addition formula 

for continuous q-ultraspherical polynomials. Thus I will finally fulfill 
my promise of bringing out "reference [9]" of my paper (Koornwinder, 
1993), which reference was mentioned there as being in preparation. 
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Theorem 1.1. We have, in notation (1.3), 

-1 1 -1 1 1 rn (COS 0; ast q2, ats q2, -astqi, -as-lt-lqt 1 q) 

(1.11) 
or, in notation (1.2), 

n 

= (- l )nq in2 C an-' 
q) n-k k=O 

For a = 1 formula (1.12) specializes to formula (1.10) (with usage 
of a Chebyshev case of the Askey-Wilson polynomials, see (Askey and 
Wilson, 1985, (4.21))). Its limit case for q 1 (after the substitutions 

LA-1 a = q2 4 ,  s = tan (iv), t = tan ($$)) is the addition formula (1.7) 
for ultraspherical polynomials of general order A. It is also possible to 
obtain Rahman's addition formula (Rahman, 1988, (1.10)) for q-Bessel 
functions as a formal limit case of (1.12), see Remark 2.2. For precise 

1 
correspondence of (1.11) with (1.1) one should replace a by aq-a in 
(1.11). 

The left-hand side of (1.12) is invariant under the symmetries (s, t )  --t 
(t, s), (s, t) --t (-S-l, t) and (s, t) t (s, At-'). These symmetries are 
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also visible on the right-hand side of (1.12) if we take into account that 

is invariant under the transformation s t s-' up to the factor (-l)n-k 
(by (3.14)). 

The proof of Theorem 1.1 (see details in 514.2) is quite similar to 
the proof of (1.1) in (Rahman and Verma, 1986). We consider (1.11) 
as a connection formula which connects Askey-Wilson polynomials of 
different order. There are certain choices of the orders of the Askey- 
Wilson polynomials in a connection formula 

for which the connection coefficients Anlk factorize. Formula (1.1) is one 
example; formula (1.11) is another example. 

At the end of 52 a degenerate addition formula for continuous q- 
ultraspherical polynomials will be given as a limit case of the addition 
formula (1.11). As a further limit case we obtain a degenerate addition 
formula for q-Bessel functions. 

The 2cp2 factors on the right-hand side of (1.11) tend, after the men- 
tioned substitutions and as q 1. 1, to ultraspherical polynomials ~;f :  
of argument cos cp resp. cos$, so we might expect that these 2cp2's also 
satisfy some kind of (bi)orthogonality relations. This is indeed the case 
a: = p of Theorem 1.2 below. See its proof in 514.3. 

Theorem 1.2. Let a:, P > -1. Define a system of rational functions i n  
t by 

and define, with additional parameter c E I%, a measure on [0, oo) by 
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where Fq is defined in (3.2). Then 

00 

The case n = m = 0 of (1.16), i.e., J dp,,~,~;,(t) = 1, is precisely the 
n 

q-beta integral of Askey and Roy ( ~ s i e ~  and Roy, 1986, (3.4)), which 
extends a q-beta integral of Ramanujan (Ramanujan, 1915, (19)). The 
Askey-Roy integral was independently obtained by Gasper (see (Gasper, 
1984) and also (Gasper, 1987)) and by Thiruvenkatachar and Venkat- 
achaliengar (see (Askey, 1988, p. 93)). 

1 
Note that the two 2cp2's in (1.11) (with a = qZa), can be rewritten 

(a+k,afk) 2 (a+k,a+k) in terms of (1.14): as pn-I, (s ; q,rat) and pndk (t-2; q,rat), 
respectively. 

The biorthogonality measure in (1.16) is evidently not unique, because 
of the parameter c. Further illustration of the non-uniqueness of the 
measure for these biorthogonality relation is provided by a q-integral 
variant of (1.16). In order to state this, we need the following definition 
of q-integral on (0, GO) (f arbitrary function on (0, oo) for which the sum 
absolutely converges) : 

Theorem 1.3. The functions defined by (1.14) also satisfy the biorthog- 
onality relations 

The case n = m = 0 of (1.3) is a q-beta integral first given by Gasper 
(Gasper, 1987), but it is essentially Ramanujan's sum; see some 
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further discussion in $14.3. The proof of Theorem 1.3 is by a completely 
analogous argument as I will give in $14.3 for the proof of Theorem 1.2. 

The paper concludes in 514.4 with some open questions and with some 
specializations of Theorem 1.2. Pastro's (Pastro, 1985) biorthogonal 
polynomials associated with the Stieltjes-Wigert polynomials occur as a 
special case. 
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2. Proof of the new addition formula 
In this section I prove the second addition formula for continuous q- 

ultraspherical polynomials, stated in Theorem 1.1. Let us first consider 
the general connection formula (1.13). We can split up this connection 
into three successive connections of more simple nature: 

(aeie, ae-"; q) = 2 djJ (ae", ae-"a 4, (2.2) 
1=0 

Then 

n-k j 

= Cn,j+k dj+k,l+k el+k,k 
j=O l=O 

and 

n-k m 
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The coefficients cn j ,  dj,l and el,k can be explicitly given as 

Here (2.6) follows from (1.3), formula (2.7) can be obtained by rewriting 
the q-Saalschiitz formula (Gasper and Rahman, 1990, (1.7.2)), and (2.8) 
follows from (Askey and Wilson, 1985, (2.6), (2.5)). 

I t  turns out that in the two double sums (2.4), (2.5) of Anlk the inner 
sum can be written as a balanced 4 9 3  of argument q: 

x 4 9 3  ( q-j, abqk, acqk, adqk 
aaqk, aa-lql-j, abcdq 2k ; q7 q 

and 

(I - ~ b c d q ~ ~ - l )  (q-"; q)k (a~y6q"-', ab, ac, ad; q)n an 
X 

(1 - abcdqkl) (q; q)k (abcdqk, aP, ay,  ah; q), an 
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The sums in (2.9) and (2.10) can be compared with the Bateman type 
product formula (Gasper and Rahman, 1990, (8.4.7)): 

(2.11) 
The sum in (2.9) can be matched with the right-hand side of (2.11) 
precisely for those values of the parameters a, b, c, d, a, /3, y ,  6 in (1.13) 
which occur in the Rahman-Verma addition formula (1.1)) i.e., for ab = 

1 1 
cd, a2 = cdq, a = pqi = -yqi = -6. In fact, this will prove (1.1). The 
proof in (Rahman and Verma, 1986) is essentially along these lines. 

Next we see that the sum in (2.10) can be matched with the right-hand 
side of (2.11) precisely for those values of the parameters a, b, c, d, a, /3, y, 6 

2 1 1 
in (1.13) when aP = y6 = a q, b = -c = aqz = -dq5. Thus put 

1 1 1 ' 1 
b = aqi ,  c = -aqi,  d = -a, a = ast- 82, /3 = ats- lq i ,  y = -astqi,  
6 = -as-'t-'qi in (1.13) and (2.10). Then these two formulas specialize 
to: 

-1 1. -1 1. 1 rn (COS 0; ast q2 , ats q2 , -astqi, -as-'t-'qi I q )  

1 

= C rk (cos 0; a, -a, aq i ,  -aqi I q , 
k=O ) 

If we next make the successive substitutions n -, n - k ,  a + a-lq-in, 
ei'f' -+ is-', ei$ -+ -itw1 in (2.11) and compare with (2.13) then we can 
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write (2.12) as follows: 

-1 I -1 -1. 1 -1 1 rn (COS 8; ast 92, ats q2, -astqj, -as t- q j  I q) 

p t -n  -:n(n-1) 
- - Q 

(a2% q); 
2 

X 
(a4qn+l; q)n k(n+:) 1 - a2qL (P1 a4; q)L 

2 ( - 1 )  q 
(-s2a2q, t-2a2q; 41, L=O 1 - a2 (q, a4qn+l; q)k 

(2.14) 
In order to make the two rn-k factors on the right-hand side above 

into closer q-analogues of the two ~;_fi factors on the right-hand side of 
(1.7), we will use the following string of identities: 

1 

rn (cos 8; a, a q ~ ,  -a, -aqi I q = 4 ~ 3  1 ;4,4 

(2.15) 
For the proof use successively (7.4.14), (7.4.2) and (1.5.4) in (Gasper 
and Rahman, 1990). 

Proof of Theorem 1.1. This follows from (2.14) by twofold substitution 
of (2.15). Here replace n by n - Ic and a by a-lq-in in (2.14)' and 
replace eie by is-' for the first substitution and by i t  for the second 
substitution. 0 

Remark 2.1. Let the divided difference operator Dq acting on a function 
F of argument eie be given by 

6, F (eie) 1 
D, F (e") := 

6, cos 8 ' 6,F (e") := F (q4eie) - F (q-je") . 
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Then Dq, acting on both sides of the addition formula (1.12)) sends 
1 

this to the same formula with n replaced by n - 1 and a replaced by qza 
(apply (Koekoek and Swarttouw, 1998, (3.1.9))). Thus, i f  formula (1.12) 
is already known for a = 1 (i.e., i f  formula (1.10) is known) then the 

1 .  
procedure just sketched yields this formula for a = q23 for all j E &, 
i.e., for infinitely many disctinct values of a. Since, for fixed n, both 
sides of (1.12) are rational in  a, formula (1.12) will then be valid for 
general a. Since formula (1.9), equivalent to (1.10), can be obtained by 
a quantum group interpretation, we can say that it is possible to prove 
formula (1.12) by arguments in  a quantum group setting, followed by 
minor analytic, but not very computational reasoning. 

Proof that (1.11) has limit (1.7) as q f 1. (after the substitutions a = 
qi.-a7 s = tan (&) ,  t = tan (;$)). 

The limits for q 7 1 o f  the factors rn(cos8), rk(cos8),  2 9 2  (-s2q) and 
2 9 2  (-t-2q) in  (1.11)) after the above substitutions and after substitu- 
tion o f  (1.3) for the r ,  and rk factors yields respectively: 

Express these 2F1)s as ultraspherical polynomials by  (1.6). The  limit o f  
the coefficients on the right-hand side o f  (1.11) (after the above substi- 
tutions) is also easily computed. 0 

Remark 2.2. Replace s by sqin and t by tq-in in (1.12) and let n - 
oo. Then formally we obtain Rahman's addition formula for q-Bessel 
functions, see (Rahman, 1988, (1.10)) (but watch out for the misprint 
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r,(v + 1)  which should be I':(v + 1) ) :  

According to  (Rahman, 1988, (1.1 O)), the further conditions 0 < a < 1, 
0 < s < t-l, 6 E IW should be imposed here. If we replace in  (2.16) s by 

1 
( 1  - q)s, t by ( 1  - q)-'t, a by qna, and i f  we let q 1 then we formally 
obtain the familiar Gegenbauer's addition formula for Bessel functions 
J,, (see (Erddyi et al., 1953, 7.15(32))). 

In  (2.16) the left-hand side is an Askey- Wilson q-Bessel function (see 
(Koelink and Stokman, 2001, §2.3)), earlier studied under the name q- 
Bessel function on a q-quadratic grid in (Ismail et al., 1999) and (Bus- 
toz and Suslov, 1998). The o y q  's on the right-hand side of (2.16) are 
Jackson's second q-Bessel functions, usually written (see (Gasper and 
Rahman, 1990, Exercise 1.24)) as 

Koelink (Koelink, 1991, (3.6.1 8)) gave an interpretation of the case 
a = 1 of (2.16) on the quantum group of plane motions. This inter- 
pretation is similar to the interpretation given in (Koornwinder, 1993, 
(5.9)) for equation (1.9). 

Remark 2.3. If we multiply both sides of the addition formula (1.11) 
with ( - ~ ~ t - ~ q ;  q)n and i f  we next let t + i aq in  in (1.11) then we obtain 
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a degenerate form of the addition formula (1.11): 

1 1 
cos 6 ;  a ,  a q l ,  -aq l ,  

(2.18) 
Integrated forms of (1.11) and (2.18) can be obtained by integrating both - 

(e2ie;q) 
2 

sides of these formulas with respect to the measure d6 on I (.2.2i.;i I 
[0, TI, i.e., with respect to the orthogonality measure for the continuous 

( 
1 1 

q-ultraspherical polynomials rk cos 6; a ,  q l a ,  -q la ,  -a I q)  (see (Gasper 

and Rahman, 1990, 3 7.4)). This will yield a product formula and an inte- 
gral representation, respectively, for the functions pp'") (s2 ;  q, rat) (with 

1 
a = qno"). 

Remark 2.4. In  (2.18) replace s by sqin and let n + CQ. Then we 
formally obtain a degenerate addition formula for q-Bessel functions: 

If we replace in (2.19) a by q t a ,  and i f  we substitute (2.17) and (1.4) 
then we can rewrite (2.19) as 

x ~ 2 1 ~  (2sq- fa;  q )  Ck (cos 8; q" I q) . 
(2.20) 

It is interesting to compare formula (2.20) with Ismail and Zhang (Ismail 
and Zhang, 1994, (3.32)). They expand there a generalized q-exponential 
function &&; -i, b/2) in terms of the Ck ( z ;  q" 1 q) and they obtain al- 
most the same expansion coeficients as in (2.20), including Jackson's 
second q-Bessel functions, but they have a factor q f  k 2 ,  where (2.20) has 
a factor q4k2+4". 
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3. Rational biort hogonal functions for the 
Askey-Roy q-beta measure 

The Askey-Roy q-beta integral (see (Askey and Roy, 1986, (3.4)), 
(Gasper, 1987), (Askey, 1988, pp. 92, 93) (Gasper and Rahman, 1990, 
Exercise 6.17(ii))) is as follows: 

Here the q-gamma function is defined by 

The special case c = a+l of (3.1) goes back (without proof) to Ramanu- 
jan in Chapter 16 of his second notebook (see (Berndt, 1991, p. 29, Entry 
14)), and later in his paper (Ramanujan, 1915, (19)), with subsequent 
proof by Hardy (Hardy, 1915). 

When we let q 1 in (3.1) then we formally obtain the beta integral 
on (0,oo): 

When we move the orthogonality relations 
(3.3) 

1 PP@) (x) Pk'P) (x) (1 - x)" (1 + x)P dx 

of the Jacobi polynomials 
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(see (Erdelyi et al., 1953, $10.8)) to [O,oo) by the substitution x = 
(1 - t)/(l + t), then we obtain orthogonality relations 

Thus the rational functions t I-+ P?") ((1 - t)/( l  + t)), n E Z>o, are 
orthogonal with respect to the beta measure on [0, oo) of which the 
total mass is given in (3.3). We would like to find q-analogues of these 
orthogonal rational functions such that the orthogonality measure is the 
q-beta measure in (3.1). 

From (1.15) we have 

Observe from (3.1) that, for k, I E Z20, 

Thus 
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Proof of Theorem 1.2. Multiply both sides of (3.8) with the factor 
(q-n, q"+a+P+l; q) qk 

and sum from k = 0 to n. Then the right-hand 
. -  - (4; 4)k 

side becomes 

by (Gasper and Rahman, 1990, (1.5.2)). Thus 

where (3.10) is obtained by a similar argument as (3.9). Then (3.9) and 
(3.10) together with (1.14) imply the biorthogonality relations (1.16). 

0 

The q-integral version of the Askey-Roy integral (3.1) is 

Here s > 0, Rea,  R e p  > -1, c E R, and the q-integral is defined by 
(1.17). The case s = qC of (3.11) (which is no real restriction) was 
given in (Gasper, 1987) (see also (Askey, 1988, (2.27))) and in (Gasper 
and Rahman, 1990, Exercise 6.17(i))). Another approach to (3.11) is 
presented in (De Sole and Kac, 2003). 
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For f any function on (0, oo) for which the sum below converges ab- 
solutely, we have: 

3.00 

(-sq-C, -s-lql+c; q) (-tqP+l, -t-lqff+2. " 1 f (t) tc-' 1 d, 
sC (-s, -s-1q. 74, ) (-tq-c, -t-lql+y q), dqt 

0 

(3.12) 
The right-hand side, and thus the left-hand side of (3.12) is independent 
of c. Henceforth we will take c = 0 without loss of information. Then 
(3.11) together with (3.12) takes the form 

The second equality in (3.13) is Ramanujan's sum (Gasper and 
Rahman, 1990, (5.2.1)). This observation is the usual way to prove 
(3.11). With a completely analogous argument as used for the proof of 
Theorem 1.2, we can next prove Theorem 1.3. Details are omitted. 

In completion of this section, observe the following symmetry of the 
functions p?@)(t; q, rat): 

q-n, qn+a+P+l 
p?J) (t; q, rat) = 2 9 2  q"+l, -tqP+l 

- - (-1)" (qP+l; q), tn (-t-lqa+l ; 
pi~7a)(t-1; q, rat). 

(qa+' ; q)n (-tqP+l; 4, 
(3.14) 

Here the first and last equality are just (1.14). We use (Gaper and 
Rahman, 1990, (1.5.4)) for the second and fourth equality, while the 
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third equality is obtained by reversion of summation order in a termi- 
nating q-hypergeometric series (see (Gasper and Rahman, 1990, Exercise 
lA.(ii))). 

4. Concluding remarks 
The results of this paper lead to several interesting questions. I formu- 

late two of these questions here. I also discuss specializations of Theorem 
1.2. 

As I already mentioned in $1, the new addition formula in the case of 
the continuous q-Legendre polynomials (formula (1.9)) was first obtained 
in a quantum group context, where a two-parameter family of Askey- 
Wilson polynomials, including the continuous q-Legendre polynomials, 
was interpreted as spherical functions on the SUq(2) quantum group. 
Here the left and right invariance of the spherical functions was no longer 
with respect to the diagonal quantum subgroup, but infinitesimally with 
respect to twisted primitive elements in the corresponding quantized 
universal enveloping algebra. The a and T variables in the addition 
formula (1.9) are parameters for the twisted primitive elements occurring 
in the left respectively right invariance property. On the other hand, the 
3(P2 factors on the right-hand side of (1.9), involving a resp. T, can be 
rewritten as the functions p$;)(. ; q, rat) of argument -qFU resp. -9-*. 
So I wonder whether an interpretation of these last functions and of 
their biorthogonality (discussed in $14.3) can be given in the context of 
su, (2). 

A second question is whether the biorthogonality relations for the 
functions peyB)(t; q, rat) (Theorems 1.2 and 1.3) fit into a more general 
class of biorthogonal rational functions. In fact, several papers have 
appeared during the last 10 or 20 years which discuss explicit systems 
of biorthogonal rational functions depending on many parameters and 
expressed as q-hypergeometric functions, see Rahman (Rahman, 1986), 
Wilson (Wilson, 1991), Ismail and Masson (Ismail and Masson, 1995) 
and Spiridonov and Zhedanov (Spiridonov and Zhedanov, 2000). How- 
ever, I did not see how the functions pp'P)(t; q, rat) and their biorthog- 
onality relations can be obtained as special or limit case of families dis- 
cussed in these references. If the functions pP@)(t; q, rat) are indeed 
unrelated to the functions discussed in these references, then it is a nat- 
ural question how to generalize the system of biorthogonal functions 
pp." (t; q, rat). 

On the other hand, our functions ppB)(t; q, rat) have some interesting 
limit cases, one of which has occurred earlier in literature. When we take 
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limits for o t ca and/or ,L3 -+ ca in (1.14), then we obtain: 

p?@)(t; q, rat) := 191 (q-n; qa+l; q, -qt) , (4.1) 

phm.P)(t; q, rat) := 191 (q-"; -tqP+l; q, -qt) , (4.2) 

p~m~m)( t ;  q, rat) := 1~ (qMn; 0; q, -qt) . (4.3) 

In (4.1) and (4.3) we have polynomials of degree n in t ,  rather than 
rational functions in t. The limit case ,L3 t ca of the biorthogonality 
relations (1.16) then becomes: 

where 

The further limit case a -+ ca of the biorthogonality relations (4.4) then 
becomes 

q-c2 rq(c) rq(i - C) i (t; q, rat) 
q c )  r(1 - 4 (1 - q) (q; q)m 

0 

tc-l dt (4.6) 
(m+')(t-lq; q, rat) x Pm (-tq-c -t-1 '+c. 

4 , d m  

Similar limit cases can be considered for the biorthogonality relations 
(1.3). The biorthogonality relations (4.6) are essentially the ones ob- 
served by Pastro (Pastro, 1985, pp. 532, 533). He also points out that 
biorthogonality relations of the form S Pn(t)Qm(t-l) dp(t) = hn 6,,, 
with Pn and Qn polynomials of degree n can be rewritten as orthog- 
onality relations on the real line for Laurent polynomials. This is in- 
deed the case in (4.6). Pastro also observes that the biorthogonality 
measure occurring in (4.6) is a (non-unique) orthogonality measure for 
the Stieltjes- Wigert polynomials (see (Koekoek and Swarttouw, 1998, 
53.27)). 
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Note 
For further discussion and references concerning the Ismail-Zhang ex- 

pansion of a generalized q-exponential function, mentioned in Remark 
2.4, see $4.5 in S. K. Suslov, An Introduction to Basic Fourier Series, 
Kluwer, 2003. 
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Abstract We prove a summation formula for a bilateral series whose terms are 
products of two basic hypergeometric functions. In special cases, series 
of this type arise as matrix elements of quantum group representations. 

1. Introduction 
The object of the present paper is to study bilateral series of a type 

that first appeared in the work of Koelink and Stokman (Koelink and 
Stokman, 2001), in the context of harmonic analysis on the SU(1,l) 
quantum group. They needed to compute sums of the form 

which appeared as matrix elements of quantum SU(1,l) representations. 
Several special cases were considered, with different, very technical, 
proofs (some of these proofs were found by Mizan Rahman, see the 
appendix to (Koelink and Stokman, 2001)). 

In joint work with Koelink (Koelink and Rosengren, 2002), we gave 
an extension of the summation formulas from (Koelink and Stokman, 
2001), with a unified proof. Namely, we showed that under natural 
conditions of convergence and the assumption 

(and thus also cy = abx), the sum in (1.1) can be expressed as the sum 
of two sW7 series, or, alternatively, as the sum of three balanced 493 

O 2005 Springer Science+Business Media ,  Inc. 
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series. From the quantum algebraic viewpoint, which was only briefly 
mentioned in (Koelink and Rosengren, 2002), this computes a general 
class of matrix elements for the strange, the complementary and the 
principal unitary series of quantum SU(1,l). The proof in (Koelink 
and Rosengren, 2002) is similar to, though not an extension of, one of 
Rahman's proofs in (Koelink and Stokman, 2001). In particular, it is 
quite technical and involves rather non-obvious applications of q-series 
transformations. 

In a related paper (Stokman, 2003), Stokman considered matrix ele- 
ments for the principal unitary series and gave a very simple proof for 
their expression as 8W7 series. The idea is simple but powerful: the 
representations are realized on L2(T), where one wants to compute the 
scalar product of two particular functions. Expanding both functions as 
Fourier series gives a special case of the sum (1.1). Stokman's observa- 
tion, which is our starting point, is that the integral defining the scalar 
product can be computed very easily using residue calculus. 

Our aim is to use Stokman's method not only to give a simple proof 
of the summation formula in (Koelink and Rosengren, 2002), but also 
to give a far-reaching extension of this identity. 

Dedication 

This paper would not have been written without the pioneering con- 
tributions of Mizan Rahman. I'm happy to know him, not only through 
his work as a master of identities, but also as a genuinely kind and help- 
ful person. It is a pleasure to dedicate this paper to him as a small token 
of my appreciation. 

2. A bilateral summation 

We will now state the main result of the paper. Throughout, we 
use the standard notation of (Gasper and Rahman, 1990). The base 
q is assumed to satisfy 0 < 1q1 < 1. We denote by .+lcp, not only the 
convergent basic hypergeometric series, but also its analytic continuation 
to (C \ It>1; - cf. (Gasper and Rahman, 1990, 94.5). 

Theorem 2.1. Let x, y E C \ It>o, - and let the other parameters below 
satisfy 
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Then the following identity holds: 

4, qybl bk ) + idem (al; a2,. . . , ak+l) . xal . . . ak+l 

Here, idem (al; a2,. . . , ak+1) denotes the sum of the k terms obtained 
by interchanging a1 in the second term with each of a2,. . . , ak+l (thus, 
we have in total k + 2 terms on the right-hand side of (2.3)). As is 
customary, we implicitly assume that the parameters are such that one 
never divides by zero. Note also that interchanging the roles of k+lcpk and 
1+1yq gives an alternative expression for the series, which is valid when 
(2.2) is replaced by the condition lqxdl - . . dl 1 < 1 ycl . . cl+11. These two 
expressions are related by (Gasper and Rahman, 1990, (4.10.10)). 

In (Koelink and Rosengren, 2002), we computed the sum when k = 
1 = 1 and, crucially to the methods used there, (1.2) holds. The latter 
condition means exactly that the three 4 9 3  series on the right-hand side 
of (2.3) are balanced. In this case Theorem 2.1 reduces to (Koelink and 
Rosengren, 2002, (3.13)), rather than the alternative expression as a sum 
of two 8W7 series given in (Koelink and Rosengren, 2002, Proposition 
3.1). 

Our main tool is the following lemma from (Koelink and Rosengren, 
2002), where it was used only in the case k = 5. Here we need the 
general case. 

Lemma 2.2. For 
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and x E (C \ R>o one has - 

- - (q, a l ,  , ak+l, 2-4 ! I14  bl/t,. - .  , bk/t; qIoo . (2.5) 
(x, q/x, bl,  .. . , bk, t, a1/t,.. . , ak+l/t; 

In (Koelink and Rosengren, 2002), this was proved using the explicit 
formula for analytic continuation of k+lcpr, series. I t  is possible to give 
a much simpler proof using integral representations. Namely, the coeffi- 
cient of tn in the Laurent expansion of the right-hand side in the annulus 
(2.4) is given by 

where the integral is over a positively oriented contour encircling thk 
origin inside the annulus. This is an integral of the form (Gasper and 
Rahman, 1990, (4.9.4)), which is computed there using residue calculus. 
If lxqnl < 1, its value is given by (Gasper and Rahman, 1990, (4.10.9)) 
as the k+lcpk series in (2.5). Since (2.6) is analytic in x, this also holds 
for lxqnl 2 1 in the sense of analytic continuation. 

Remark 2.3. More generally, (Gasper and Rahman, 1990, (4.10.9)) 
may be used to express the Laurent coeficients of 

in the annulus 
max l & l  < 14 < min (I/  Iril) (2.8) 

as sums of analytically continued basic hypergeometric series. 

Proof of Theorem 2.1. Similarly as in (Koelink and Rosengren, 2002), 
it is easy to check that (2.1) is the natural condition for absolute con- 
vergence of the left-hand side of (2.3). We first rewrite this series as an 
integral. For this we make the preliminary assumption that t is real with 

Writing fk(t; a, b, x) for either side of (2.5), we consider the integral 
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Using the expression on the left-hand side of (2.5) together with orthog- 
onality of the monomials, we find that it equals the sum in (2.1). 

To compute the integral, we plug in the expressions from the right- 
hand side of (2.5). Up to a constant, this gives an integral of the form 

where P is as in (2.7), with 

Note that (2.8) and (2.9) are equivalent. Thus, we again have an integral 
of the form (Gasper and Rahman, 1990, (4.9.4)). The condition (2.2) is 
precisely (Gasper and Rahman, 1990, (4.10.2)), which ensures that the 
singularity at z = 0 does not contribute to the integral. The value of 
the integral is then given by (Gasper and Rahman, 1990, (4.10.8)) as a 
sum of k + 2 terms, each being a k+1+49k+1+3 series. However, because 
of the condition a& = a2P2 = q, they all reduce to type k+l+29k+l+l. 

This proves Theorem 2.1 under the assumption (2.9). By analytic con- 
tinuation in t ,  this may be replaced with the weaker condition (2.1). 

Remark 2.4. Using instead of Lemma 2.2 the Laurent expansion of 
the general product (2.7) gives a generalization of Theorem 2.1, where 
the two basic hypergeometric series on the left-hand side of (2.3) are 
replaced by finite sums of such series. 

In the case I = 0, one may use the q-binomial theorem to sum the 
series 1 9 0  in Theorem 2.1. The condition y E (C \ is then superflu- 
ous. We find this special case interesting enough to write out explicitly. 
Compared to Theorem 2.1 we have made the change of variables y I+ c, 
cl I+ dlc. 

Corollary 2.5. Let x E C \ E%>o, - and assume that 
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Then the following identity holds: 

+ idem (a l ;  a2, . . . , ak+l) . 

Note that in the case c = d, the first k+29k+l on the right-hand side 
reduces to 1 and the remaining terms to 0. Thus, we recover Lemma 
2.2. We also remark that if we choose lc = 0 in Corollary 2.5 and replace 
x H a,  a1 H bla, we obtain the transformation formula 

(q, bla, c,  at ,  q lat ;  4, t ,  d lc  
2 2  ( q7 ) = (q la ,  b, d, t ,  blat;  q) ,  2 9 1  ( aqt/b ; 4, T )  

This identity is also obtained by choosing r = 2, cl = qua, c2 = b2 in 
(Gasper and Rahman, 1990, (5.4.3)), and then applying (Gasper and 
Rahman, 1990, (111.1)) to both 2 9 1  series on the right-hand side. 
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Abstract We study the asymptotics of orthonormal polynomials {pn(cosx))~=o, 
associated with a certain class of weight functions w(x) = l/c(x)c(-x) 
on [O,.rr]. Our principal result is that the norm of the difference of 
p, (cos x) and D, (x) = c ( ~ ) e ~ ~ " + c ( - x ) e - ~ ~ "  in L~ ([o, T I ,  (2~)-'w(x)dx) 
vanishes exponentially as n + co. The decay rate is determined by an- 
alyticity properties of the c-function. 

1. Introduction 
Suppose w(x) is a continuous function on [O, T] that is positive on 

(0, T) . Then the functions 

form a total set in the Hilbert space 

By the Gram-Schmidt procedure, we can therefore construct an or- 
thonormal base of the form 

Pn (x) = PnBn (x) + C bnmBm (x) Pn > 0, brim E B, n E N. (1.3) 
m<n 

We may view Bn(x) as a polynomial of degree n in cos x (the Tchebichev 
polynomial of the first kind). Doing so, it is clear that there are polyno- 
mials pn(v) such that 

pn (cos x) = Pn (5). (1.4) 

O 2005 Springer Science+Business Media, Inc. 
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As is well known (and easily verified), these polynomials satisfy a self- 
adjoint recurrence relation 

with 
a-1-0, anE(0,2) ,  b,E(-2,2), n € N .  ( l e 6 )  

In this paper we study the n -+ oo asymptotics of P,(x), p,, a, and 
b,. Our primary interest is in the n -+ oo asymptotics of the functions 
P,(x) in the Hilbert space 3-t. We allow weight functions of the form 

where c(x) has certain analyticity properties specified in Section 2. Defin- 
ing the dominant asymptotics function 

our principal result is an exponential decay bound 

for weight functions w(x) in the class We (2.18). Here, 11 . 11 denotes the 
norm derived from the scalar product of 3-t (1.2), and the decay rate d is 
any positive number smaller than a number d+ in (0, oo] that depends 
on the choice of c-function. (It is given by (2.2).) 

We obtain no information on the pointwise decay of IP,(x) - Dn(x)l 
for x E (0, r), but we believe this is also governed by an O(exp(-2nd))- 
bound. Our interest in obtaining a sharp L2-bound was triggered by 
the possibility to use such a bound for an approximation argument. The 
application we have in mind concerns what may be viewed as 'relativistic' 
Lam6 functions. To prove L2-completeness of a suitable countable set 
of the latter, we need a sufficiently strong bound IIP, - D,ll 5 P, on 
orthonormal polynomials associated to certain weight functions in We. 
Specifically, the sequence {P,) must be in 12. It is however beyond our 
scope to elaborate on this; we return to this issue elsewhere (Ruijsenaars, 
2003). 

As it has turned out, the methods we have developed to prove the 
desired L2-bounds can be generalized to the multi-variable case. The 
pertinent results have a striking application to the theory of quantum 
soliton systems, and have already been reported in our paper Ref. (Rui- 
jsenaars, 2002). (For further generalizations, see work by van Diejen (van 
Diejen, 2003).) 

In the one-variable case at issue here, the proofs are quite elementary 
and transparent. Furthermore, we can allow a larger class of weight 
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functions than the one obtained by specializing Ref. (Ruijsenaars, 2002). 
It therefore seems useful to have an independent treatment of the one- 
variable case available. 

At the outset, we should mention that the subclass WoYo of W (cf. (2.15)) 
belongs to the huge class of weight functions for which Szeg6 has ob- 
tained uniform pointwise bounds on I Pn (x) - Dn (x) I, cf. Theorem 12.1.4 
in his monograph (Szeg6, 1975). The latter Lw-bounds are however 
0 ((ln(n))-') for some X > 0, a decay that is far too slow to be in 12. 
(To be sure, SzegB's bounds are presumably quite sharp for the class he 
handles.) 

Another point of special note is that our class We of weight functions 
contains the weight function of the Askey-Wilson polynomials (Askey 
and Wilson, 1985; Gasper and Rahman, 1990). More precisely, setting 

CAW (x) - (ae-" ";) _ (be-"; 4) _ (ce-" ; 4) _ (de-'x; 4) _ / (e-2"; 4) _ , 
(1.10) 

the weight function 

WAW(X) = ~/CAW(X)CAW(-x) (1.11) 

belongs to W1,l (2.15) for 

We would like to emphasize that for this special case the exponen- 
tial decay of llPn - Drill is an obvious corollary of previous results by 
Ismail and Wilson (Ismail and Wilson, 1982; Ismail, 1986). Indeed, via 
generating function techniques they obtained an Lw([O, T]) exponential 
decay bound on Pn - Dn. It is an open question whether the generating 
functions of the much larger class of polynomials arising from We can 
again be exploited to obtain exponential decay in Lw. (Note this would 
yield a stronger result than our L2-decay, since we restrict attention to 
bounded weight functions.) 

2. Main results 
Our starting point consists of the space A of functions f (z) that are 

analytic and zero-free in the closed unit disk, real-valued for z E [-I, 11, 
and normalized by 

f (0) = 1. (2.1) 

Thus the convergence radii R+ and R- of the power series expansions 
of f (z) and l/ f (z) are greater than 1, and the decay parameters 
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belong to (0, m]. 
We now define a space Cr of 'reduced c-functions' c, (x), x E W, by 

Thus any c, E Cr admits expansions of the form 

00 

~ ( x ) = l + x a : e - " % ,  X E W ,  
k=l 

00 

I /+ (x) = 1 + a;e-"x, x E ER, a; E P, 
k=l 

a: = o (e-kd) , d E (0, d+) ,  ii + m, 

and we have 
G(-x )=c~(x ) )  XEW. 

Next we introduce the u-function ('5'-matrix') 

From (2.4)-(2.6) we readily deduce 

and from (2.7) we obtain 

Finally, we define a reduced weight function 

Clearly, w,(x), x E W, is a smooth, positive, 2n-periodic and even func- 
tion. 

We proceed to define classes of c-functions 
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and classes of w-functions 

W -- UM,NEN~M,N.  
Thus we have 

W(X) = [4 sin2 (x/2)] [4 cos2 (x/2)] w, (x), w E WM,N. (2.17) 

(We point out that for the simplest case c,(x) = 1, the weight functions 
(2.17) give rise to Jacobi polynomials (Szeg6, 1975).) The class We for 
which all of our results hold true is now defined by 

Fixing w E W M , ~ ,  we can write the function Dn(x) (1.8) as 

By (2.17) this implies that Dn(x) belongs to the Hilbert space 'H (1.2). 
We are now prepared for our first lemma. 

Lemma 2.1. A s s u m e  

T h e n  we have 

(Bm,Dn)=dmn, m I n ,  (2.21) 

(Pm, Dn) = ~ n a m n ,  m I n, (2.22) 

(Dn, Dn) = 1 + (-)"~-2n-M-N. (2.23) 

Proof. From the above definitions we have 
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Since the sequence {ai) has exponential decay, we may interchange 
the summation and the integration. For m < n each of the resulting 
integrals has an integrand proportional to exp(i1x) with 1 E N*, so they 
all vanish. For m = n we pick up the constant term and obtain 1. Hence 
(2.21) follows. 

Clearly, (2.22) follows from (2.21) and the definition (1.3) of Pn, so it 
remains to prove (2.23). To this end we calculate 

where we used (2.8)-(2.11). 

Notice that this lemma solely concerns equalities, as opposed to  in- 
equalities. As an obvious corollary, we obtain a further equality 

Using (2.1 I), the following inequality is also immediate from (2.23) : 

IlDnll = 1 + O(exp(-2nd)), d E (0, d+) , n + oo. (2.27) 

From (2.22) and the Schwarz inequality we now get 

Next, we combine (2.26) and the upper bound (2.28) to deduce that 
we have an equivalence 

llPn - Drill = O(exp(-nd)) * pn 2 1-C1exp(-2nd), C' > 0, Vn E N. 
(2.29) 

However, we will show in Section 3 that llPn - Drill does not decay ex- 
ponentially for w € W \ We. We now pass to an auxiliary result that is 
still valid for all w E W. 

To this end we introduce a truncated +function 

L 
ciL) (x) = 1 + x ate-i1x, L E N*, (2.30) 

k 1  
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and asymptotics function 

DiL) (x) = [2i s in(x/2)1-~ [2 C O S ( X / ~ ) ] - ~ C ~ ~ ) ( X )  
(2.31) 

x exp(ix[n+ (M + N)/2]) + (x -+ -x). 

The following lemma shows that the remainder function 

sLL) (x) = Dn (x) - DLL) (x) (2.32) 

has exponential decay in L~ sense as L --+ oo. 

Lemma 2.2. Assuming  (2.20) and d E (0, d+), we have 

with the bound u n i f o r m  for  n E N .  

Proof. By (2.17) and (2.30)-(2.32) we have 

By virtue of boundedness of w,(x) and the estimates (2.6), the lemma 
follows. 0 

From (2.32)-(2.33) we deduce 

To obtain exponential decay of IIPn - Drill, therefore, we need only es- 

timate Pn - Dn I I ( 2 n - 1 ) 1 1 .  The significance of the choice L = 2n - 1 
is that it ensures that the only exponentials present in the expansion 

( L )  of c, (x) exp(inx) are those occurring in the expansion of Pn(x). For 
M = N = 0, it is therefore immediate that we have equalities 

(x) = Bn (x) + cnmBm (x) 
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for certain G,, dn, E R. Now the functions on the rhs are manifestly 
bounded on [0, TI, whereas the functions on the lhs have a divergence 
as x + 0 and/or as x + T whenever M > 1 and/or N > 1, cf. (2.31). 
Thus the restriction to We in the next lemma is essential. 

Lemma 2.3. Assume w(x) belongs to We (2.18). Then the equalities 
(2.36) hold true. 

Proof. For w E Wo.o we have already established (2.36). Consider next 
w E W ~ J .  Then (2.'30)-(2.31) yield - 

sin(n + l ) x  L 

0AL) (x) = 
+ xat sin(n + 1 - 1)x 

sin x sin x 1=1 

Since we have 

sin(k + l )x 
sin x = Bk(4 + C tkl& (x), 

l<k 

we deduce (2.36). 
Now let w E Wllo. Then we obtain 

sin(n + 1/2)x L sin(n + 112 - 1)s 
0LL) (x) = 

sin(x/2) + Cai: sin(x/2) ' 1=1 

and since 
sin(k + 1/2)x 

sin(x/2) = &(x) + x sk lB1  (I) 9 

l<lc 
we obtain again (2.36). Finally, for w E Wo,l we get 

so (2.36) follows from 

Hence the lemma is proved. 

We are now prepared to obtain the principal result of this paper. 

Theorem 2.4. Let w E We and d E (0, d+). Then we have the estimates 

llPn - Drill = O(exp(-2nd))) n + 00, (2.43) 
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~n - 1 = O(exp(-2nd)), n -t oo. (2.44) 

Proof. By virtue of Lemma 2.3 we may invoke the expansions (2.36), 
which we rewrite as 

cf. (2.32). Taking the inner product with pnPn and using (2.22), we 
obtain 

- I + Pn (pn, S L ~ ~ - ' ) )  . Pn - (2.46) 

By the Schwarz inequality and Lemma 2.2, we have 

Now pn is positive, so in view of the upper bound (2.28) we may deduce 

Hence the estimate (2.44) follows. 
As a consequence of (2.44) and (2.26), we now obtain an O(exp(-nd))- 

bound on 11 Pn - Dn 11. To arive at  the sharper bound (2.43), we introduce 

d' E (d, d+) . (2.49) 

Now we take the inner product of (2.45) with Pi for I < n, which yields 
due to (2.22) 

0 = dnr + ( P I ,  s L ~ ~ - ' )  (2 .50) 

From the Schwarz inequality and (2.33) with d + d' we obtain 

Hence we have 

Telescoping and using (2.44) with d + d', we now get 

Finally, recalling (2.49), we deduce (2.43). 0 
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3. F'urt her developments 
In this section we derive some corollaries of the above results and 

consider the weight function class WM,N with M and/or N greater than 
1. First, we obtain the asymptotics of the recurrence coefficients an, bn 
in (1.5). 

Proposition 3.1. Let w E We and d E (0, d+). Then we have 

bn = O(exp(-2nd))) n -+ oo. (3.2) 

Proof. From the relations (1.3)-(1.5) it is easily seen that 

Therefore, (3.1) is clear from (2.44). To prove (3.2)) we begin by noting 
that Dn(x) (1.8) satisfies the recurrence 

Now the recurrence (1.5) entails 

where v denotes multiplication by cos x. Telescoping, we obtain 

Using (3.4) and then (2.22)) we get 

Finally, using the Schwarz inequality and the estimates (2.43)) (2.27)) 
we deduce (3.2). 0 

Next, we consider the special case where the function f (2) defining 
~ ( x )  (recall (2.3)) is a polynomial. 

Proposition 3.2. Let w E We and suppose that in the c,-expansion 
(2.4) we have 

a: = O, k > L, L E N. (3.8) 

Then we have 
Pn(x) = D,(x), 2n 2 L + I. (3.9) 

Proof. From (2.30)-(2.32) we deduce 
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Thus we have 
s ~ ~ ~ - ' ) ( x )  =0,  2 n 2  L+1 ,  (3.11) 

so that (2.45) yields 

Taking the inner product with Pl, l  5 n, we deduce from (2.22) that 
dnl = 0 for 1 < n, and that pn = 1 for I = n. Hence (3.9) follows. 

For w in our class Wolo, the result contained in this proposition can 
already be found in (Szegd, 1975)) by looking rather hard in Section 12.4 
('Bernstein-Szegd polynomials'). In words, it says that, for w E We cor- 
responding to a polynomial f ( z )  of degree L, the dominant asymptotics 
function Dn(x) coincides with Pn(x) for 2n 2 L+ 1. As we have pointed 
out before, no such result can hold for w E W \ We, since Pn(x) is 
bounded on (0, T), whereas in that case D,(x) is unbounded. Even so, 
in view of the results (2.21)-(2.29) (which are valid for all w E W), one 
might be inclined to guess that the sequence of numbers 

converges exponentially to 0 as n + oo. As we show next, this is not 
the case. 

Proposition 3.3. Let w E W \ We. Then we have 

Proof. To ease the exposition, we detail the proof for the case w E WO,J 
and then indicate how to proceed in general. We assume {c,) E l2 so as 
to arrive at a contradiction. 

Consider the identification map 

I : 3-10,~ = L~([o,  TI, w(x)dx) -+ 3-10,~ = L~ ([0, TI, w,(x)dx) , 
(3.15) 

F(x) H 2 cos(x/2) F(x). 

Recalling (2.17)) we see that I is an isometric isomorphism. Using ob- 
vious notation, we therefore have 

Next, recalling (2.19)) we see that we may view (ID,) (x) as the dom- 
inant asyrnptotics function D ~ + ~  (x) corresponding to the polynomial 
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pn+1(x) in ',Yo,o that arises from w,(x). Doing so, it follows from the 

exponential decay of f!n+l - Dn+1 (which we proved in Section 2) and II - II 
the assumption {k) E l2 that the sequence 

is in 12. 
We are now in the position to invoke a known completeness result, 

cf. Theorem A on p. 72 of Higgins' monograph (Higgins, 1977). Since I 
is unitary, the sequence {IPn)z=o yields an orthonormal base in ',Yo,o. 
Since the sequence {An)~=o is in Z2(IV), the pertinent completeness result 

w 
says that the sequence {a+;} is complete in This yields the 

n=O 
desired contradiction, since Po is orthogonal to pl, p2, . . . 

Once this special case is understood, it will be clear how to proceed 
for any W M , ~  with M and/or N greater than 1: one can identify W M , ~  
with one of the four spaces in We (2.18) (by reducing M and N modulo 
2), and use (2.19) as in the special case (M, N) = (0,2) to arrive at a 
contradiction. 0 

Next, we note that thanks to (2.26) and (2.11)) we have the equiva- 
lence 

lim cn = 0 H lim pn = 1. 
n+w n+w 

(3.18) 

Consider now the weight function integral 

Evidently, we have 
Po(z) = Po = I (W)-~/~, 

so using (3.3) we obtain 

From this we readily infer a second equivalence 

lirn /in = 1 o lim an = 1, lirn n ay2 = I ( u ) .  
n-+w n+m n h w  

(3.22) 
j=O 
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At this point we insert a parenthetical remark. For the class We of 
weight functions, we have already shown that pn goes to 1. The class 
contains in particular the weight function w ~ w  (1.11)) for the choice 
of parameters (1.12) yielding the Askey-Wilson integral I(wAw) given 
by Eq. (6.1.1) in the monograph by Gasper and Rahman (Gasper and 
Rahman, 1990). Since the self-adjoint recurrence coefficients an,AW are 
explicitly known, our results yield the explicit formula for I(wAW) as a 
corollary. Quite likely, this relation between I(w) and the aj-product has 
been noticed before for the Askey-Wilson case, but we have not found 
this in the literature. 

Of course, the normalization (2.1) of our weight functions is critical 
for the relations just pointed out. Indeed, when we switch from a given 
w(x) E W to Xw(x), X > 0, then we should multiply Pn by to 
retain unit norm. Thus the coefficients pn change to ~ - ' / ~ p , ,  whereas 
the recurrence coefficients a,, bn are invariant. 

To elaborate on the normalization issue, let us fix c, E C, and consider 

Clearly, we have 

Now the polynomials P,,R(x) obviously converge to the polynomials 
Pnll(x) for R 1 1, so the natural expectation is that the sequence p,,l 
still converges to 1 as n -+ oo. Unfortunately, there seems to be no short 
and simple way to control the pertinent interchange of limits. 

In any case, the sequence p,,~ does have limit 1 for n --+ oo. Equiva- 
lently, we have 

lim p n =  1, Q W E  W, 
n+m 

(3.25) 

so that we also have 

lim c,=O, lim a n = l ,  lirn n a ~ ~ = I ( w ) ,  Q w E W .  (3.26) 
n--too n+m n+oo 

To substantiate this assertion, we invoke a limit theorem that can be 
found in Szeg6's monograph, cf. Theorem 12.7.1 in (Szeg6, 1975). The 
crux is that our normalization requirement (2.1) implies 
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(To verify this for w E Wo,0, use the substitution z = e-" and note 
that f (z) E A has a one-valued analytic logarithm for lzl 5 1 such that 
ln(f (0)) = 0. To handle w E W M , ~ ,  the above approximation (3.24) can 
be used.) 

With the convergence question answered, it is natural to ask about 
the rate of convergence for w E W M , ~  with M or N greater than 1. In 
our last proposition we answer this for the simplest w(x) in each class. 

Proposition 3.4. Assume w E W \ We corresponds to c,(x) = 1. Then 
we have 

a n = 1 + O ( n - 2 ) ,  n - + a ,  (3.28) 

p n = l + O ( n - l ) ,  n - a ,  (3.29) 

Proof. Inspecting (2.17), we see that the functions Pn(x) are propor- 
(M-1/2,N-112) tional to the Jacobi polynomials Pn (cos x). Their self-adjoint 

recurrence coefficients are given by 

cf., e.g., (Koekoek and Swarttouw, 1994). Now a straightforward calcu- 
lation yields 

a; = 1 + C(M, ~ ) n - ~  + 0 (n-3) , n -r oo, (3.32) 

C(M, N) -[M(M - 1) + N ( N  - 1)]/2. (3.33) 

Hence (3.28) follows. 
Since we have already seen that pn converges to 1, we may invoke 

(3.20)-(3.22), yielding 
00 

= n a:. (3.34) 
j=n 

From this representation and (3.32) we readily deduce (3.29). Finally, 
(2.26) and (3.29) entail (3.30). 0 

It is natural to expect that the asymptotics (3.28)-(3.30) holds true 
for all w E W M , ~ .  After submission of this paper we learned that this is 
indeed the case, as follows from work by Kuijlaars, McLaughlin, van Ass- 
che and Vanlessen (Kuijlaars et al., 2003); moreover, we were informed 
that Kuijlaars has obtained results that imply in particular uniform ex- 
ponential decay of Pn(x) - Dn(x) on [0, T] for w E We (Kuijlaars, 2003). 
Both of these references make essential use of Riemann-Hilbert problem 
techniques (Deift, 1999). 
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ABEL-ROTHE TYPE GENERALIZATIONS 
OF JACOBI'S TRIPLE PRODUCT 
IDENTITY 
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Abstract Using a simple classical method we derive bilateral series identities from 
terminating ones. In particular, we show how to deduce Ramanujan's 
l$l summation from the q-Pfaff-Saalschutz summation. Further, we 
apply the same method to our previous q-Abel-Rothe summation to 
obtain, for the first time, Abel-Rothe type generalizations of Jacobi's 
triple product identity. We also give some results for multiple series. 

Keywords: q-series, bilateral series, Jacobi's triple product identity, Ramanujan's 
lGl summation, q-Rothe summation, q-Abel summation, Macdonald 
identities, A, series, U(n) series. 

1. Introduction 
Jacobi's (Jacobi, 1829) triple product identity, 

is one of the most famous and useful identities connecting number the- 
ory and analysis. Many grand moments in number theory rely on this 
result, such as the theorems on sums of squares (cf. (Gasper and Rah- 
man, 1990, Sec. 8.11)), the Rogers-Ramanujan identities (cf. (Gasper 
and Rahman, 1990, Sec. 2.7)), or Euler's pentagonal number theorem 
(cf. (Bressoud, 1999, p. 51)). In addition to this identity, different exten- 
sions of it, including Ramanujan's (Hardy, 1940) summation formula 
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(see (3.1)) and Bailey's (Bailey, 1936) very-well-poised 6?,b6 summation 
formula, have served as effective tools for studies in number theory, com- 
binatorics, and physics, see (Andrews, 1974). 

In this paper, we derive new generalizations of Jacobi's triple prod- 
uct identity, in one variable and also in severable variables. Our new 
extensions look rather unusual. We classify these to be of "Abel-Rothe 
type,'' since they are derived from q-Abel-Rothe summations which we 
previously found in (Krattenthaler and Schlosser, 1999, Eq. (8.5)) and 
in (Schlosser, 1999, Th. 6.1). At the moment, we cannot tell if our 
new identities have interesting combinatorial or number-theoretic appli- 
cations. Nevertheless, we believe that they are attractive by its own. 

Our article is organized as follows. In Section 17.2, we review some 
basics in q-series. In addition to explaining some standard notation, we 
also briefly describe a well-known method employed in this article for 
obtaining a bilateral identity from a unilateral terminating identity, a 
method already utilized by Cauchy (Cauchy, 1843) in his second proof 
of Jacobi's triple product identity. In Section 17.3, we apply this clas- 
sical method to derive Ramanujan's summation from the q-Pfaff- 
Saalschiitz summation. According to our knowledge, this very simple 
proof of the summation has not been given explicitly before. In 
Section 17.4, we give two Abel-Rothe type generalizations of Jacobi's 
triple product identity, see Theorem 4.1 and Corollary 4.2. These are 
consequences of our q-Abel-Rothe summation from (Krattenthaler and 
Schlosser, 1999, Eq. (8.5)). In Section 17.5 we give multidimensional 
generalizations of our Abel-Rothe type identities, associated to the root 
system A,-1 (or equivalently, associated to the unitary group U(r)) .  As 
a direct consequence, we also give an Abel-Rothe type generalization 
of the Macdonald identities for the affine root system A,. Finally, we 
establish the conditions of convergence of our multiple series in the Ap- 
pendix. 
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2. Some basics in q-series 
First, we recall some standard notation for q-series and basic hyperge- 

ometric series (Gasper and Rahman, 1990). Let q be a (fixed) complex 
parameter (called the "base") with 0 < Iql < 1. Then, for a complex 
parameter a, we define the q-shifted factorial by 

and 

where k is any integer. Since we work with the same base q throughout 
this article, we can readily omit writing out the base in the q-shifted 
factorials (writing (a)k instead of (a; q)k, etc.) as this does not lead 
to any confusion. For brevity, we occasionally employ the condensed 
notation 

( a ,  . . . , am)k := ( w ) ~  - - (am)k, 

where k is an integer or infinity. Further, we utilize 

and 

to denote the basic hypergeometric ,cpS-l series, and the bilateral basic 
hypergeometric s$s series, respectively. 

A standard reference for basic hypergeometric series is Gasper and 
Rahman's text (Gasper and Rahman, 1990). Throughout this article, in 
our computations we make decent use of some elementary identities for 
q-shifted factorials, listed in (Gasper and Rahman, 1990, Appendix I). 

We now turn our attention to identities. One of the simplest sum- 
mations for basic hypergeometric series is the terminating q-binomial 
theorem, 

This can also be written (with z H zqn) as 
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where 

denotes the q-binomial coeficient. 
Cauchy's (Cauchy, 1843) second proof of Jacobi's triple product iden- 

tity is very elegant and actually constitutes a useful method for obtain- 
ing bilateral series identities in general. It is worth looking closely at his 
proof: First he replaced in (2.6) n by 2n and then shifted the summation 
index k H k + n, which leads to 

Next, he replaced z by zq-n and obtained after some elementary manip- 

Finally, after letting n --+ oo he obtained 

which is an equivalent form of Jacobi's triple product identity (1.1). 

3. Ramanujan's 1+1 summation 
Hardy (Hardy, 1940, Eq. (12.12.2)) describes Ramanujan's sum- 

mation (cf. (Gasper and Rahman, 1990, Appendix (II.29))), 

where Iblal < lzl < 1, as a "remarkable formula with many parameters." 
On the one hand, it bilaterally extends the nonterminating q-binomial 
theorem (which is the b = q special case of (3.1)), on the other hand it 
also contains Jacobi's triple product identity as a special case. Namely, 
if in (3.1) we replace z by zla, and then let a + co and b -, 0, we 
immediately obtain (2.10). Another important special case of (3.1) is 
obtained when b = aq, which is a bilateral q-series summation due to 
Kronecker, see Weil (Weil, 1976, pp. 70-71). 

Ramanujan (who very rarely gave any proofs) did not provide a proof 
for the above summation formula. It is interesting that Bailey's (Bailey, 
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1936, Eq. (4.7)) very-well-poised 6$6 summation formula, although it 
contains more parameters than Ramanujan's 1 ~ 1  summation, does not 
include the latter as a special case. Hahn (Hahn, 1949, n = 0 in Eq. (4.7)) 
independently established (3.1) by considering a first order homogeneous 
q-difference equation. Hahn thus published the first proof of the 
summation. Not much later, M. Jackson (Jackson, 1950, Sec. 4) gave 
the first elementary proof of (3.1). Her proof derives the summation 
from the q-GauB summation, by manipulation of series. A simple and 
elegant proof of the summation formula was given by Ismail (Ismail, 
1977) who showed that the summation is an immediate consequence 
of the q-binomial theorem and analytic continuation. 

We provide yet another simple proof of the summation formula 
(which seems to have been unnoticed so far) by deriving it from the 
terminating q-Pfaff-Saalschiitz summation (cf. (Gasper and Rahman, 
1990, Eq. (11.12)))) 

First, in (3.2) we replace n by 2n and then shift the summation index 
by n such that the new sum runs from -n to n: 

(a, b, 9-2n)n 
n 

- - 
(q, C, abq1-2n/~)n qn k=-n (ql+n, cqn, abql-"/c)k 

Next, we replace a by ~ q - ~ ,  and we replace c by cq-". 

Now, we may let n -+ oo (assuming Iclabl < 1 and lbl < 1) while 
appealing to Tannery's theorem (Bromwich, 1949) for being allowed to 
interchange limit and summation. This gives 
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where Iclal < Iclabl < 1. Finally, replacing b by c laz  and then c by b 
gives (3.1). 

Remark 3.1. The elementary method we use in the above derivation 
(exactly the same method already utilized by Cauchy) has also been ex- 
ploited by Bailey (Bailey, 1936, Secs. 3 and 6), (Bailey, 1950) (see also 
Slater (Slater, 1966, Sec. 6.2)). For instance, in (Bailey, 1950) Bailey 
applies the method to Watson's transformation formula of a terminating 
very-well-poised 8 9 7  into a multiple of a balanced 4 9 3  (Gasper and Rah- 
man, 1990, Eq. (111.18)). A s  a result, he obtains a transformation for 
a 2 ~ 2  series, see also Gasper and Rahman (Gasper and Rahman, 1990, 
Ex. 5.11). 

Remark 3.2. W e  conjecture that any bilateral sum can be obtained from 
an appropriately chosen terminating identity by the above method (as  
a limit, without using analytic continuation). However, it is already 
not known whether Bailey's (Bailey, 1936, Eq. (4.7)) (3?+b6 summation 
formula (cf. (Gasper and Rahman, 1990, Eq. (11.33))) follows from such 
an identity. 

4. Abel-Rot he type generalizations of Jacobi's 
triple product identity 

We apply the method of bilateralizationl we just utilized now to the 
following q- Abel-Rothe summation (Krattenthaler and Schlosser, 1999, 
Eq- (8.5))) 

This summation is different from the q-Rothe summation found by John- 
son (Johnson, 1996, Th. 4) which he derived by means of umbra1 cal- 
culus. It is also different from Jackson's (Jackson, 1910) q-Abel sum- 
mation. Our summation in (4.1) was originally derived in (Kratten- 
thaler and Schlosser, 1999) by extracting coefficients of a nonterminat- 
ing q-Abel-Rothe type expansion formula (actually, the n -+ oo case of 
(4.1))) which in turn was derived by inverse relations. However, it can 
also be derived directly by inverse relations (by combining the q-Chu- 
Vandermonde summation with a specific non-hypergeometric matrix in- 
verse), see (Schlosser, 1999, Sec. 6). 

In (Krattenthaler and Schlosser, 1999)) (Schlosser, 1999) and (Schlosser, 
2000), we referred to (4.1) as a q-Rothe summation to distinguish it from 
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the q-Abel summation 

(a+b) (a+bqk)k-l (a+bqk) n-k , (4.2) 

that we derived in (Krattenthaler and Schlosser, 1999, Eq. (8.1)). It 
appears that (4.2) is different from any of the q-Abel summations from 
Jackson (Jackson, 1910) or Johnson (Johnson, 1996). However, it is 
equivalent to Bhatnagar and Milne's (Bhatnagar and Milne, 1997) q- 
Abel summation (by reversing the sum). Above we decided to call (4.1) 
a q-Abel-Rothe summation since it is also contains (4.2) as a special 
case. In fact, if in (4.1) we replace a and b by a lc  and blc, and then let 
c -+ 0, we obtain after some algebra (4.2). 

Our q-Abel-Rothe summation in (4.1) is indeed a q-extension of the 
Rothe summation: If we divide both sides by (q),, do the replacements 
a ~ ~ ~ -  B, b H B, c H q-A-C, and then let q + 1, we obtain 
Rothe's (Rothe, 1793) summation formula 

Rothe's identity is an elegant generalization of the well-known Chu- 
Vandermonde convolution formula, to which it reduces for B = 0. Sim- 
ilarly, (4.1) reduces for b = 0 to the q-Chu-Vandermonde summation 
listed in Appendix 11, Eq. (11.6) of (Gasper and Rahman, 1990)) and for 
a = 0 to the q-Chu-Vandermonde summation in Appendix 11, Eq. (11.7) 
of (Gasper and Rahman, 1990). 

Furthermore, Eq. (4.2) (and thus also the more general (4.1)) is indeed 
a q-extension of the Abel summation: If in (4.2) we replace a and b, by 

A B 
0 + (A+c)(l-q) and (A+$l-q), respectively, and then let q - 1, we 
obtain Abel's generalization (Abel, 1826) of the q-binomial theorem, 

Some historical details concerning the Abel and Rothe summations 
can be found in Gould (Gould, 1956; Gould, 1957), and in Strehl (Strehl, 
1992). 

We now present our main result, an Abel-Rothe type generalization 
of (2.10): 
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Theorem 4.1. Let a,  b, and z be indeterminate. Then 

Proof. In (4.1), we first replace n by 2n, and then shift the summation 
index k t-t k + n. This gives 

n+k (nik)Cn+k a+bqn+") (-1) q 
n-k 

Next, we replace a and c by aqn and ~ q - ~ .  After some elementary 
manipulations we obtain 

x ( c  ( a  + bqk) )  (- l )kq(:)ck. 
n-k 

Finally, replacing c by z and (assuming lazl, Ibl < 1)  letting n -+ oo while 
appealing to Tannery's theorem, we formally arrive at (4.5). However, 
it remains to establish the conditions of convergence. 

Since 

(aqlWk + bq) 00 = (-l)kqq-(:)(a+bqk)k (11 ( a  + bqk))* (aq + bql+*) w , 

it is easy to find that if lazl < 1 then the positive part of the sum, i.e., 
C , converges. Similarly, for the negative part of the sum, i.e., C , we 
k 2 0  k<O 
use 

and determine that we need lbl < 1 for absolute convergence. 0 

By reversing the sum in (4.5), we easily deduce the following: 
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Corollary 4.2. Let a, b, and z be indeterminate. Then 

oa (a, za, l/.>" 
(1 - az) = k=-rn C (aq-% b)_ (zq (a + bqk)) Ml ( - ~ ) ~ q ( ~ ; ' ) z ~ ,  

provided max(laz1, Ibl) < 1. 
(4.6) 

Proof. In (4.5), we first replace k by -k, and then simultaneously replace 
a, b and z, by bz, az and l /z,  respectively. 0 

We have given analytical convergence conditions for the identities 
(4.5) and (4.6). However, we would like to point out that these identities 
also hold when regarded as identities for formal power series over q. 

It is obvious that both Theorem 4.1 and Corollary 4.2 reduce to Ja- 
cobi's triple product identity (2.10) when a = b = 0. 

If we extract coefficients of zn on both sides of (4.5), using (2.10) on 
the left and 

(cf. (Gasper and Rahman, 1990, Eq. (11.2))) on the right hand side, 
divide both sides by (-l)"& and replace a by aq-", we obtain 

(which is valid for Ibl < 1)) which is, modulo substitution of vari- 
ables, our q-Abel-type expansion in (Schlosser, 1999, Eq. (3.4)). For 
a multivariable extension of (4.8), see (5.5). If we now replace a and 
b by -BZ and (1 - qA + B)Z  and then let q t I-, while using 
lim,,l- ((1 - q)Z), = e-', we recover Lambert's (Lambert, 1758) for- 
mula 

which is valid for I B Z ~ ' - ~ ~ I  < 1. Note that in (4.9), Z is a redundant 
parameter. However, the advantage of writing (4.9) in this form is that 
here we have an identity of power series in the variable Z (having in mind 
the expansion of the geometric series and of the exponential function). 

In (Krattenthaler and Schlosser, 1999), (Schlosser, 1999)) and (Schlosser, 
2000) we erroneously attributed (4.9) and some related expansions to 
Euler (Euler, 1779), but which are actually due to Lambert (Lambert, 
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1758). Nevertheless, Euler's article on Lambert's identities is significant 
and is often cited in the literature as sole reference for these identities 
(see e.g., P6lya and Szegi5 (P6lya and Szego, 1925, pp. 301-302)). 

5. Multidimensional generalizations 
Here we extend Theorem 4.1 and Corollary 4.2 to multiple series as- 

sociated to the root systems of type A, or equivalently, associated to the 
unitary groups. Multiple series, associated to root systems, or to Lie 
groups, have been investigated by various authors. Many different types 
of such series exist in the literature. For some results on the special type 
of series that are considered in this section, see, e.g., (Bhatnagar and 
Milne, 1997), (Bhatnagar and Schlosser, 1998), (Milne, 1997), (Milne 
and Schlosser, 2002), (Rosengren, 2OO3), (Schlosser, l997), (Schlosser, 
1999), and (Schlosser, 2000). 

In the following, we consider r-dimensional series, where r is a positive 
integer. For brevity, we employ the notation IkJ := kl + . . . + Ic,. 

If we apply the method of bilateralization to the multidimensional q- 
Abel-Rothe summations that were derived in (Krattenthaler and Schlosser, 
1999) (see Theorems 8.2 and 8.3 therein), the multiple q-Abel-Rothe 
summations in Theorems 6.7 and 6.9 of (Schlosser, 1999), or Theorems 
3.7 and 3.8 of (Schlosser, 2000), the resulting series do not converge 
for higher dimensions. The only multidimensional q-Abel-Rothe sum- 
mations we are aware of that converge when bilateralized are Theorem 
6.11 of (Schlosser, 1999), and (the slightly more general) Theorem 3.9 
of (Schlosser, 2000). Both these theorems were derived by applying 
multidimensional inverse relations, in particular by combining different 
higher-dimensional q-Chu-Vandermonde summations with specific mul- 
tidimensional non-hypergeometric matrix inverses. 

For the sake of simplicity, we consider here only the multilateral iden- 
tities arising from Theorem 6.11 of (Schlosser, 1999), a multiple q-Abel- 
Rothe summation associated to the root system AT-1: 
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Theorem 5.1. Let a ,  b, c,  and X I ,  . . . , x ,  be indeterminate, and let 
nl, . . . , n, be nonnegative integers. Then there holds 

Our multilateral extension of (4.5) is as follows: 

Theorem 5.2. Let a,  b, z ,  and X I ,  . . . , x,  be indeterminate. Then 

provided max(lazl, Ibl) < 1. 

Proof. The proof is very similar to the one-dimensional case. In (5.1)) 
we replace ni by 27-4, for i = 1, .  . . , r ,  and then shift all the summation 
indices ki H Ici + ni.  This gives 
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We replace a, c and xi, by aqlnl, cq-lnl and ~ i q - ~ i ,  i = 1,. . . , r, respec- 
tively. After some elementary manipulations we obtain 

Next, we replace c by z and let ni -+ oo, for i = 1,.  . . , r (assuming 
lazl < 1 and lbl < I), while appealing to Tannery's theorem. Finally, we 
apply the simple identity 

and arrive at (5.2). For establishing the conditions of convergence of the 
series, see the Appendix. 0 

Next, we provide the following multilateral generalization of (4.6). 

Theorem 5.3. Let a, b, z, and XI, . . . , xT be indeterminate. Then 

provided max(lazl, Ibl) < 1. 

Proof. In (5.2), we first replace ki by -kil for i = 1, .  . . , r ,  and then 
simultaneously replace a, b, z and xi, by bz, az, l / z  and l/xi1 for i = 
1,. . . , r, respectively. 0 
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We have given analytical convergence conditions for the identities 
(5.2) and (5.4). However, as we already observed in Section 17.4 when 
dealing with the respective one variable cases, these identities also hold 
when regarded as identities for formal power series over q. 

We complete this section with an Abel-Rothe type generalization of 
the Macdonald identities for the affine root system A,, as a direct con- 
sequence of Theorem 5.2. 

If we multiply both sides of (5.2) by n (1 - xi/xj), extract the 
l<i<j<r 

coefficient of zM, using the Jacobi triple product identity (2.10) on the 
left hand side and (4.7) on the right hand side, and divide the resulting 

identity by ( - l ) ~q ( y ) ,  we obtain 

We use the Vandermonde determinant expansion (0.2) and a little bit of 
algebra and obtain 

If a = 0 and b = 0, the terms of the sum in (5.6) are zero unless 
Ikl = M. Specializing this further by setting M = 0 gives an identity 
which has been shown to be equivalent to the Macdonald identities for 
the affine root system A,, see Milne (Milne, 1985). Regarding this, we 
may consider the identity (5.6) as an Abel-Rothe type generalization of 
the Macdonald identities for the affine root system A,. 
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Concluding, we want to point out that we could have given an even 
more general multidimensional Abel-Rothe type generalization of Ja- 
cobi's triple product identity than Theorem 5.2, by multilateralizing 
Theorem 3.9 of (Schlosser, 2000) instead of Theorem 6.11 of (Schlosser, 
1999) as above. However, we feel that, because of the more complicated 
factors being involved, the result would be not as elegant as Theorem 
5.2 which is sufficiently illustrative. We therefore decided to refrain from 
giving this more general identity. 

Appendix: Convergence of multiple series 
Here we prove the conditions of convergence of our multiple series identity in 

Theorem 5.2 (and thus also of Theorem 5.3). 
We determine the condition for absolute convergence of the multilateral series in - 

(5.2) by splitting the entire sum into two sums, C and C , and show 
k l ,  ..., k,=-oo l k l lo  Ikl<o 

the absolute convergence for each of these separately. 
We first consider the sum C . We obtain that for (kl > 0 the sum in (5.2) 

IkllO 
converges absolutely provided 

We use the Vandermonde determinant expansion 

where S, denotes the symmetric group of order r ,  interchange summations in (0.1) 
and obtain r! multiple sums each corresponding to a permutation a E S,. Thus for 
Ikl 2 0 the series in (5.2) converges provided 

for any a E S, . 
The next step is crucial and typically applies in the theory of multidimensional 

basic hypergeometric series over the root system A,-1 for a class of series. (For 
instance, it applies to several of the multilateral summations and transformations in 
(Milne and Schlosser, 2002).) In the summand of (0.3), we have 
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or equivalently, whenever lazl < 1. 
The absolute convergence of the sum C is established in a similar manner. In 

lk1<0 
this case we obtain that for I kl < 0 the sum in (5.2) converges absolutely provided 

The further analysis is as follows. We use (0.2) and (0.4) and assume that for Ikl < 0,  
without loss of generality, k ,  < 0. In a very similar analysis to above one easily finds 
the condition Jbl < 1 for absolute convergence. 

R e m a r k  0.4. In  an  earlier version of this article we had given a smaller region of 
convergence for the series i n  (5.2). In particular, instead of 

we had given the condition 

To see that this gives a smaller region of convergence (for r > 1)) assume we would 
have instead max(lazl,lb1) 2 1. NOW take the '$roduct7' of the whole relation (0.8) 
over all j = 1, . . . , r .  This gives lazlT < l q l ( ; )  < Iqr(T-l)b-r I, or equivalently, after 

taking r- th roots, lazl < l q l  * < lqr-lb-l 1 ,  which apparently contradicts max(laz1, Ibl) > 
1 since r > 1. 

The same argument which leads to the convergence condition i n  Theorem 5.2 ( in 
contrast to the condition (0.8)) can be used to improve some analogous results given 
in  the literature. In  particular, this concerns the papers (Milne, 1997), (Milne and 
Schlosser, 2002), (Schlosser, 1999), (Schlosser, 2000) (and possibly others). 

Notes 
1. The Merriam-Webster Online dictionary (http : //www . m-w . com/cgi-bin/dictionarf 

gives for the entry '-be': ". . .1 a (1): cause to be . . . (2): cause to be formed into . . . 2  a: 
become . . .usage The suffix -ize has been productive in English since the time of Thomas 
Nashe (1567-1601), who claimed credit for introducing it into English to remedy the surplus 
of monosyllabic words. Almost any noun or adjective can be made into a verb by adding 
-be <hospitalize> <familiarize>; many technical terms are coined this way <oxidize> as 
well as verbs of ethnic derivation <Americanize> and verbs derived from proper names 
<bowdlerize> <mesmerize>. Nashe noted in 1591 that his coinages in -be were being 
complained about, and to this day new words in -ize <finalize> <prioritize> are sure to 
draw critical fire." 
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Abstract New expansions for certain ~ F l ' s  as a sum of r higher order hypergeo- 
metric series are given. When specialized to the binomial theorem, these 
r hypergeometric series sum. The results represent cubic and higher or- 
der transformations, and only Vandermonde's theorem is necessary for 
the elementary proof. Some q-analogues are also given. 

1. Introduction 

A hypergeometric series may always be written as a sum of two other 
hypergeometric series by splitting the series into its even and odd terms, 
for example 

00 00 

(~)2k+l  z2k+1 

k=O + k=O C (2k + l ) !  

One may also write a series as a sum of r series by reorganizing the 
terms modulo r. 

In this paper a variation of this idea is considered, where the terms 
modulo r differ by a power of a linear function. We give in 52 four exam- 
ples of this phenomena, Theorems 2.2, 2.5, 2.8, and 2.11, which may be 
considered as rth-degree transformations. Special cases of these expan- 
sions give new expansions for (1 - x)-": four cubic expansions are ex- 
plicitly given as Corollaries 2.3, 2.6, 2.9, and 2.12 in 52. q-analogues may 
also be given, we state two such in $4: Theorems 2.2q and 2.5q. Thus 
these results are in the same spirit as those of Mizan Rahman in (Rah- 
man, 1989; Rahman, 1993; Rahman, 1997), and his work with George 
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Gasper (Gasper and Rahman, 1990; Gasper and Rahman, 1990b), al- 
though these are at a much lower level. They are motivated by Corollary 
4.4 for r = 2, which was the key lemma in (Prellberg and Stanton, 2003). 

2. Main Results 
In this section we state and prove the main results of this paper, 

Theorems 2.2, 2.5, 2.8, and 2.11. 
One may expand a formal power series F(x) in x as a formal power 

series in y = x(1 - x)-'Ir 

The coefficients ak may be found from the Lagrange inversion formula. 
If r is a positive integer, then this series may be rewritten as 

We shall consider variations of (2.1) where the denominator exponent 
is either t or t + 1 instead of t + i l r .  We shall find expansions for the 
function 

00 

( 4 k  k c - x  = 2F1 1x). 
k=O (PI k 

First we consider what happens if all of the denominator exponents 
in (2.1) are t. 

00 

Proposition 2.1. Let F(x) = C FsxS be a formal power series in  x, 
s=o 

and let r 1 2 be an integer. If 

then 

Proof. Considering the coefficient of xrtfi, 0 5 i 5 r - 1, in 
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we find 

(0) For i=Otherearetwoterms( j=O,s=t , (bt  ) a n d j = r - l , s = t - 1 ,  

(bcil))) which contribute to the coefficient of xTt. 0 

Theorem 2.2. For any integer r 2 2 we have 

Proof. In Proposition 2.1 take 

and use the Vandermonde evaluation 

When ,6 = 1 in Theorem 2.2, the left side sums to (1 - x)-" by 
binomial theorem. We explicitly state the r = 3 case as a corollary. 

Corollary 2.3. 

0 

the 

+ 

Next we consider a variation of Theorem 2.2 in which the denominator 
exponents for bi" are t + 1 for 1 5 i 5 r - 1 and t for 6:'). 
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00 

Proposition 2.4. Let F(x) = C FSxS be a formal power series in x, 
s=o 

and let r be a positive integer. If 

00 x 7-1 00 xrt+i 
F (z) = x b y )  

(1 - x)t 
+ C C b l ' )  

t=O i=l t=O (1 - x)t+l 

then 

Proof. Let's again find the coefficient of xrt+i, 0 5 i 5 T - 1, in 

If i = 0 or 1, only the s = t term contributes, and we obtain (1) and 
(2). For 2 5 i 5 r - 1, the term s = t contributes for 1 5 j 5 i and we 
see that 

which implies (3). 
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Theorem 2.5. For any integer r 2 2 we have 

Proof. In Proposition 2.4 take 

and use (2.2). 

The /3 = 1 case is the next corollary. 

Corollary 2.6. 

Proposition 2.4 may be generalized by taking the denominator expo- 
nents for b f )  to be t + 1 for v + 1 < i < r - 1, and the exponents for b f )  
to be t ,  0 < i < v ,  for some 0 < v < r - 2. 

00 

Proposition 2.7. Let F ( x )  = C FsxS be a formal power series in x ,  
s=o 

and let 0 < v < r - 2 be non-negative integers. If 

2) 03 x~t+i T-1 a3 x~t+i 
F ( x )  = 6:) 

( 1  - x)t 
+ x b f )  

i=O t=O i=v+l t=O (1  - x)t+l 
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then 

Theorem 2.5 is the v = 0 case of Theorem 2.8. 

Theorem 2.8. For integers 0 < v < r - 2 we have 

Corollary 2.9. 

A version of Proposition 2.7 exists for denominator exponents t + 1 
f o r 1 ~ i < v , a n d t f o r i = O o r v + 1 < i < r - 1 , f o r s o m e 1 < v < r - 2 .  

00 

Proposition 2.10. Let F(x )  = C FsxS be a formal power series in x, 
s=o 

and let 1 5 v < r - 2 be non-negative integers. If 
00 

xrt 
v 00 xrt+i r-1 00 xrt+i 

F ( x )  = bp)  
(1  - x)t 

+ y 7; b p  
(1 - x)t+l 

+ C C b p  
t=O i=l t=O i=v+l t=0 

( 1  - x ) ~  
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then 

Although the equations in Proposition 2.10 may be solved using (2.2), 
we give here only the r = 3, v = 1 version. 

Theorem 2.11. 

Corollary 2.12. 

3. Previous results 
In (Gessel and Stanton, 1982, (5.12)) another expansion is given for 

the left side in Theorems 2.2, 2.5, 2.8, and 2.11, 
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If s = r, a positive integer, then (3.1) becomes 

while for s = -r a negative integer we have 

One may consider Theorems 2.2, 2.5, and 2.8, and Equations (3.2) 
and (3.3) as iterated higher order transformations. 

4. q-analogues 

It is a routine computation to find q-analogues of Propositions 2.1, 2.4, 
2.7, and 2.10. The denominator terms of (1 - x ) ~  and (1 - x ) ~ + ~  are re- 
placed by (x; q)t and (x; q)t+l. What replaces (2.2) is the q-Vandermonde 
evaluation (Gasper and Rahman, 1990) 

We give the q-analogues of Theorems 2.2 and 2.5. 

Theorem 4.1 (Theorem 2.2q). For any integer r 2 2, 
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Theorem 4.2 (Theorem 2.5q). For any integer r 2 2, 

r-l 00 

CC (a ;  q)(r-l)t+i-l (b/a;  q)t+l 

i=2 t = ~  (b; q)rt+i 

The a = q N ,  b = q case of Theorem 2.5q was the key Lemma used in 
(Prellberg and Stanton, 2003) with r = 2. As corollaries we state the 
general a = qN,  b = q case of Theorems 2.2q and 2.5q. 

Corollary 4.3. For any integer r 2 2, 

Corollary 4.4. For any integer r > 2, 
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Abstract Eigenfunctions of the Askey-Wilson second order q-difference operator 
for 0 < q < 1 and lql = 1 are constructed as formal matrix coefficients of 
the principal series representation of the quantized universal enveloping 
algebra Uq(s1(2, C)). The eigenfunctions are given in integral form. We 
show that for 0 < q < 1 the resulting eigenfunction can be rewritten as 
a very-well-poised *p7-series, and reduces for special parameter values 
to a natural elliptic analogue of the cosine kernel. 

1. Introduction 
The aim of this paper is to simplify the quantum group construction 

of explicit eigenfunctions of the second order Askey-Wilson q-difference 
operator, and to extend the results to the interesting and less well studied 
Iq1 = 1 case. 

The approach is based on the known fact from (Koornwinder, 1993), 
(Noumi and Mimachi, 1992) and (Koelink, 1996) that the second order 
Askey-Wilson difference operator arises as radial part of the quantum 
Casimir element of Uq(51(2, C)) when the radial part is computed with 
respect to Koornwinder's twisted primitive elements. Using this result, 
we construct nonpolynomial eigenfunctions of the Askey-Wilson second 
order difference operator as matrix coefficients of the principal series 
representation of Uq(5[(2, C)). The two cases 0 < q < 1 and Iql = 1 
will be treated seperately. The theory for 0 < q < 1 is related to the 

*Supported by the Royal Netherlands Academy of Arts and Sciences (KNAW). 

O 2005 Springer Science+Business Media, Inc. 
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noncompact quantum group Uq(su(l, I)), while for Iql = 1 it is related 
to the noncompact quantum group Uq(sI(2, R)). 

This approach was considered in (Koelink and Stokman, 2001b) for 
0 < q < 1 using an explicit realization of the principal series rep- 
resentation on 12(2). The resulting eigenfunction then appears as a 
non-symmetric Poisson type kernel involving nonterminating acpl series. 
With the help of a highly nontrivial summation formula, proved by Rah- 
man in the appendix of (Koelink and Stokman, 2001b) (see (Koelink 
and Rosengren, 2002) for extensions), this eigenfunction was expressed 
as one of the explicit 8cp7-solutions of the Askey-Wilson second order dif- 
ference operator from (Ismail and Rahman, 1991). This eigenfunction 
was called the Askey-Wilson function in (Koelink and Stokman, 2001a), 
since it is a meromorphic continuation of the Askey-Wilson polynomial 
in its degree. In this paper we start by reproving this result, now using an 
explicit realization of the principal series representation of Uq(sI(2, (C)) as 
difference operators acting on analytic functions on the complex plane. 
Koornwinder's twisted primitive element then acts as a first order differ- 
ence operator, hence eigenvectors are easily constructed (for the positive 
discrete series, this was observed in (Van der Jeugt and Jagannathan, 
1998) and in (Rosengren, 2000)). The corresponding matrix coefficients 
lead to explicit integral representations for eigenfunctions of the Askey- 
Wilson second order difference operator. These matrix coefficients can 
be rewritten as the explicit 8cp7-series representation of the Askey-Wilson 
function by a residue computation. 

We also show that for a special choice of parameter values, the Askey- 
Wilson function reduces to an elliptic analogue of the cosine kernel. This 
is the analogue of the classical fact that the Jacobi function reduces to 
the cosine kernel for special parameter values, see e.g., (Koornwinder, 
1984). We give two proofs, one proof uses an explicit expansion formula 
of the Askey-Wilson function in Askey-Wilson polynomials from (Stok- 
man, 2002), the other proof uses Cherednik's Hecke algebra techniques 
from (Cherednik, 1997) and (Stokman, 2001). 

In the second part of the paper we consider the quantum group tech- 
niques for 141 = 1. In this case, the approach is similar to the con- 
struction of quantum analogues of Whittaker vectors and Whittaker 
functions from (Kharchev et al., 2002). The role of q-shifted factorials, 
or equivalently q-gamma functions, is now taken over by Ruijsenaars' 
(Ruijsenaars, 1997) hyperbolic gamma function. The hyperbolic gamma 
function is directly related to Barnes' double gamma function, as well as 
to Kurokawa's double sine function, see (Ruijsenaars, 1999) and refer- 
ences therein. The quantum group technique applied to this particular 
set-up leads to an eigenfunction of the Askey-Wilson second order dif- 
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ference operator for 141 = 1, given explicitly as an Euler type integral 
involving hyperbolic gamma functions. 

The emphasis in this paper lies on exhibiting the similarities between 
the 0 < q < 1 case and the 1q1 = 1 case as much as possible. Other 
approaches might very well lead to eigenfunctions for the Askey-Wilson 
second order difference operator for Iql = 1 which are "more optimal," in 
the sense that they satisfy two Askey-Wilson type difference equations 
in the geometric parameter, one with respect to base q = exp(2nir), the 
other with respect to the "modular inverted" base q = exp(2~i/r) ,  cf. 
(Kharchev et al., 2002) for q-Whittaker functions. Such eigenfunctions 
are expected to be realized as matrix coefficients of the modular double 
of the quantum group Uq(51(2, C)) (a concept introduced by Faddeev in 
(Faddeev, 2000)), and are expected to be closely related to Ruijsenaars' 
(Ruijsenaars, 1999), (Ruijsenaars, 2001) R-function. The R-function is 
an eigenfunction of two Askey-Wilson type second order difference oper- 
ators in the geometric parameter, which is explicitly given as a Barnes' 
type integral involving hyperbolic gamma functions. I hope to return to 
these considerations in a future paper. 

Acknowledgments 
It is a pleasure to dedicate this paper to Mizan Rahman. His im- 

portant contributions to the theory of basic hypergeometric series and, 
more concretely, his kind help in the earlier stages of the research on the 
Askey-Wilson functions in (Koelink and Stokman, 2001b), have played, 
and still play, an important role in my research on Askey-Wilson func- 
tions. 

2. Generalized gamma functions 
In this section we discuss q-analogues of the gamma function for de- 

formation parameter q in the regions 0 < Iql < 1 and IqJ = 1. 

2.1 The q-gamma function for 0 < Iql < 1. 

Let r be a fixed complex number in the upper half plane W. The 
corresponding deformation parameter q = q, = exp(2nir) has modulus 
less than one. We write q" = exp(2~iru) for u E C. 

Let b, bj E C and n E Z>o - U {oo). The q-shifted factorial is defined by 
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In q-analysis the function 

is known as the q-gamma function; see, e.g., (Gasper and Rahman, 
1990). For our purposes, it is more convenient to work with the function 

Observe that r,(x) is a zero-free meromorphic function with simple poles 
located at - 1 +T-' +2Z<o+2~-1Z. - It furthermore satisfies the difference 
equation 

F,(x + 2) = 2 COS(T(X + I )T /~ )~ , (x ) .  P2) 
Note furthermore that for T E iR>o, i.e., 0 < q < 1, the function F,(z) 
satisfies r,(x) = r,(Z), where the bar stands for the complex conjugate. 

Observe that the above defined q-gamma type functions are not T-I- 
periodic. It is probably for this reason that formulas in q-analysis are 
usually expressed in terms of q-shifted factorials instead of q-gamma 
functions. For our present purposes the expressions in terms of q-gamma 
type functions are convenient because it clarifies the similarities with the 
Iq1 = 1 case. 

2.2 The gamma function for 191 = 1. 

In this subsection we take T E IW<o, whence q = q, = exp(27ri.r) 
satisfies 141 = 1. As in the previous subsection, we write qU = exp(27ri.r~) 
for u E @. 

It is easy to verify that the integral 

converges absolutely in the strip I Re(z)l < 1 - T-I. For z E @ in this 
strip we set 

GT (2) = exp(iyr (4). (2.4) 

Ruijsenaars' (Ruijsenaars, 1997, Sect. 3) hyperbolic gamma function 
G(z) = G (a+, a_;  z) with a+, a- > 0 is related to GT by 
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In the following proposition we recall some of Ruijsenaars' results (Rui- 
jsenaars, 1997, Sect. 3) on the hyperbolic gamma function. 

Proposition 2.1. (i) The function GT(z) satisfies the difference equa- 
tion 

GT(z + 2) = 2cos(n(z + 1)7/2)G,(z). 

I n  particular, GT(z) admits a meromorphic continuation to the complex 
plane C ,  which we again denote by G,(z). 

(ii) The zeros of GT(z) are located at 1 - 7-I + 2Z>o + 27-'Z<o, - and 
the poles of G,(z) are located at -1 + 7-' + 2Z<o - + %-'z>~. - 

(iii) G,(-z)G,(z) = 1 and G,(z) = G,-I (-72). 
(iv) The function y,(z) has an analytic continuation to the cut plane 

which we again denote by y,(z). Set r = max (1, -7-I) and choose 
E > 0, then 

for Im(z) -t f co uniformly for Re(z) in compacts of R. 

7r7z2 7r 

24 
(7 + 7-l) 

From the explicit expression for GT(z) with I Re(z)l < 1 - 7-I and 
the first order difference equation for GT, we have GT(z) = GT(Z). 

As Ruijsenaars verifies in (Ruijsenaars, 1999, Appendix A), the hyper- 
bolic gamma function is a quotient of Barnes' double gamma function, 
and it essentially coincides with Kurokawa's double sine function. 

The hyperbolic gamma function is the important building block for 
q-analysis with Iql = 1. It was used in (Nishizawa, 2001) and (Nishizawa 
and Ueno, 2001) to construct for Iql = 1 explicit integral solutions of 
the q-Bessel difference equation and of the q-hypergeometric difference 
equation. Ruijsenaars (Ruijsenaars, 1999) used hyperbolic gamma func- 
tions to construct an eigenfunction for the Askey-Wilson second order 
difference operator for Iql = 1 as an explicit Barnes' type integral. In this 
paper we construct an eigenfunction of the Askey-Wilson second order 
difference operator for Iql = 1 using representation theory of quantum 
groups. 

= 0 (exp ((E - TIT)] Im(z) I)) , 

3. The Askey-Wilson second order difference 
operator and quantum groups 

Throughout this section we require that T E C \ Z and we write 
q = q, = exp(2.rri.r) for the corresponding deformation parameter. The 
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condition on T implies q # kl. As usual, we write qu = exp(27ri~u) for 
u E C. 

Definition 3.1. The quantum group Uq is the unital associative algebra 
over C generated by Kf l, X +  and X - ,  subject to the relations 

It is well known that Uq has the structure of a Hopf-algebra, and 
as such it is a quantum deformation of the universal enveloping alge- 
bra of the simple Lie algebra d(2, C). The Hopf-algebra structure does 
not play a significant role in the present paper, so the definition of the 
Hopf-algebra structure is omitted here. I only want to stipulate that 
the upcoming definition of Koornwinder's twisted primitive element is 
motivated by its transformation behaviour under the action of the co- 
multiplication of Uq, see (Koornwinder, 1993) for details. 

It is convenient to work with an extended version of U,, which we 
define as follows. Write A = @ C 2 for the group algebra of the additive 

- - -  

XGC 
group (C, +) . Denote Endalg (U,) for the unital algebra homomorphisms 
cp : Uq t Uq. There exists an algebra homomorphism 

with K. (2) = IE, E Endalg (U,) for x E C defined by 

Note that for m E Z, 

so the automorphisms 6, generalize the inner automorphisms Km ( - ) K-m 
of Uq (m E Z). The extended algebra Uq is now defined as follows. 

Definition 3.2. The unital, associative algebra Uq is the vector space 
A @ U, with multiplication defined by 

The unit element is 8 @ 1. 
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Observe that A and Uq embed as algebras in Uq by the formulas 

for a E A and X E Uq. We will use these canonical embeddings to 
identify the algebras Uq and A with their images in Uq. The commutation 
relations between A and Uq within Uq then become 

The quantum Casimir element, defined by 

is an algebraic generator of the center 2(Uq) of Uq. Note that R is also 
in the center Z (Uq) of the extended algebra Uq. 

We now consider the explicit realization of Uq as difference operators. 
Such realizations are well known; see, e.g., (Van der Jeugt and Jagan- 
nathan, 1998)) (Rosengren, 2000) and (Kharchev et al., 2002). Let M 
be the space of meromorphic functions on the complex plane @. For any 
X E @, the assignment 

uniquely extends to a representation of Uq on M. The quantum Casimir 
element S2 acts as 

Observe furthermore that .rrX(A) = .rrx(Km) for all m E Z. 
In the present paper the quantum group input to the theory of q- 

special functions is based on the explicit connection between the radial 
part of the quantum Casimir element R and the second order Askey- 
Wilson difference operator. Here the Askey- Wilson second order dif- 
ference operator 2) = ~ ~ , ~ y ~ , ~ ,  depending on four parameters (a, b, c, d) 
called the Askey-Wilson parameters, is defined by 
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with A(x) = A(x; a, b, c, d) the explicit function 

cf. (Askey and Wilson, 1985). The radial part of R is computed with 
respect to elements Yp - p,(p) 1 E U, for a, p E C, where Yp is Koorn- 
winder's (Koornwinder, 1993) twisted primitive element, 

and p,(p) is the constant 

Consider the five dimensional space 

24,' = span {x+, X-, K, K-', 1) c U,. 
c 

(3.6) 

The radial part computation of R leads to the following result. 

Proposition 3.3. Let p, a, a, P E C. For all x E C, 

ZRK = ZR(x) K mod (Yp - pQ(p)) ZU,' + ZU,' (Y, - pg(a)) 

with R(x) = R(x; a, p, p, a )  given explicitly by 

where 

1 - qa+") (1 - q 2-a+x) (1 - qb+x) (1 q2-b+z) 
B (x) = q - ~  ( 

(1 - q2") (1 - q2+2x) 1 

C(x) = -A(x; a, b, c, d) - A(-x; a, b, c, d), 

Here the Askey- Wilson parameters (a, b, c, d) are related to the parame- 
ters 0, P, P, 0 by 

(a, b,c,d) = ( l +p+a ,  1-p+a, l+a+p-P-a ,  1-a-p-P-a). (3.7) 
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Proof. The proof generalizes the radial part computation in (Koorn- 
winder, 1993), where the case a = P = 0 and x E Z is considered (see 
also (Noumi and Mimachi, 1992) and (Koelink, 1996) for extensions to 
discrete values of a and p). In the present set-up the computation is 
a bit more complex, and we gather more precise information on the re- 
mainder. For the convenience of the reader, I have included the main 
steps of the proof as appendix. Cl 

Unless specified otherwise, we assume that the Askey-Wilson param- 
eters (a, b, c, d) are related to the four parameters (a, p, P, a) by (3.7). 

Proposition 3.3 allows us to identify specific eigenfunctions of nx(R) 
with eigenfunctions of the second order difference operator 

(Lf)(x) = ( P @ j ~ ~ ~ f )  (2) = B(x)f (5 + 2) + C(x)f (x) + D(x)f (x - 2). 

(3.8) 
The second order difference operator C is gauge equivalent to the Askey- 
Wilson second order difference equation 2) = Va~b~c~d,  since L = A o V o 
A-I with A(x) = A(x; a, b, c, d) any meromorphic function satisfying 
the difference equation 

To make use of the above radial part computation, we first need to 
construct explicit eigenfunctions of ;rrx (Yp) with eigenvalue pa (p) . As 
we will see in the proof of the following proposition,the operator ;rrx (Yp) 
is a first order difference operator, hence eigenfunctions of ;rrx (Yp) admit 
the following simple characterization. 

Proposition 3.4. Let a , p  E C. A meromorphic function f E M is an 
eigenfunction of nx (Yp) with eigenvalue p,(p) if and only if 

Proof. A direct computation shows that ;rrx (Yp) E End(M) is the ex- 
plicit first order difference operator 
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and, more generally, 

The eigenvalue equation nx (Yp) f = p,(p) f is thus equivalent to the 
first order difference equation 

Rewriting this formula yields the desired result. 0 

4. The Askey-Wilson function for 0 < q < 1. 
In this section we take 7 E i so that 0 < q = q, = exp(2ni.r) < 1. 

The assignment 

uniquely extends to a unital, anti-linear, anti-algebra involution on Uq. 
This particular choice of *-structure corresponds classically to choosing 
the real form su(1,l) of sI(2, C) . 

The elements Km (m E Z), the quantum Casimir element R (see 
(3.1)), and the special family Yp (p E R) of Koornwinder's twisted primi- 
tive elements (3.4) are *-selfadjoint elements in Uq. The eigenvalue ,u,(p) 
(see (3.5)) is real for a, p E R. We consider now an explicit *-unitary 
pairing for the representation nx. 

Lemma 4.1. Let X E R. Suppose that f ,g  E M are ~- ' -~eriodic and 
analytic on the strip {z E C I I Re(z)l 5 1). Then 

with the pairing (., .) defined by 

Proof. This is an easy verification for the basis elements 1, Kf l , X' of 
24:) using Cauchy's Theorem to shift contours. 0 
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Remark 4.2. This lemma can be applied recursively. Let f ,g  E M 
be and analytic on the strip {z E (C I I Re(z)l 5 k )  with 
k E %>o. For any X = XlXz...X, E I.I, with m 5 k and Xi E q ,  

In particular, the subspace Or-I of entire, ~ - l -~e r iod ic  functions is an *- 
unitary nx-invariant subspace of M with respect to the pairing ( a ,  .) . This 
subspace is the algebraic version of the principal series representation of 
the *-algebra (Uq, *). 

To combine this lemma with the radial part computation of the quan- 
tum Casimir element (see Proposition 3.3), we need to construct mero- 
morphic T-'-periodic eigenfunctions of nx(Yp) (p E R) which are analytic 
in a large enough strip around the imaginary axis. We claim that the 
meromorphic function fx(z) = fx(z; a, p) defined by 

meets these criteria for special values of the parameters. By Proposition 
3.4 and the difference equation for r, it follows that fx(z; a,p) is an 
eigenfunction of nx (Yp) with eigenvalue p,(p) for a, p, X E C. Writing 
fx(z; a, p) in terms of q-shifted factorials leads to the expression 

for some nonzero constant C (independent of z), hence fx(z) is T-l- 
periodic if and only if a E 22. Furthermore, observe that the poles of 
fx(z) are located at 

so fx(z) is analytic on the strip {z E (C I I Re(z)l < p) when a > 0, p 2 0 
and X E R. 

Definition 4.3. Let X E R, a,P E 22>0 and p, a E ItL3. For x E (C 

with I Re(x)l 1 2 we define cpx(x) = cpx(x; a, p, 0, a) by 
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Note that the matrix coefficient cpx(x) is given explicitly by 

. . 
and that cpx(x) is analytic on the strip {x E C I I Re(x)l 5 2). The quan- 
tum group interpretation of this explicit integral leads to the following 
result. 

Theorem 4.4. Let X E R, a,p E 2Z>o and p,a E R>s. The matrix 
coeficient cpx(x) = cpx(x; a, p, p, a) satisfies the second %der diflerence 
equation 

(.Lcpx> (2) = E(X)cpx(x) 

for generic x E iR, with the eigenvalue E(X) = E(X; P) given by 

Proof. For the duration of the proof we use the shorthand notations 
f (z) = fx(z; P, a) and g(z) = fx(z; a, p) .  By the conditions on the 
parameters, Yp is *-selfadjoint, p,(p) is real and the meromorphic func- 
tions f (z) and g(z) are analytic on the strip {z E C I I Re(z)l 5 3). By 
Lemma 4.1 we thus obtain for any X E L4: and x E i R, 

and obviously also (xx (ZX (Yo - pp(a))) f ,  g )  = 0. We conclude from 
Proposition 3.3 that 

On the other hand, (3.2) and Definition 4.3 implies that 
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For the comparison with the results for Iql = 1, see Section 5, it is 
convenient to note that the matrix coefficient cpx(x) can be rewritten as 

I?,, (& + ~ + o - i X + x +  (-I+ & +o-iX-X- $) 
X 
r2~ ( - & + ~ + o + i ~ - x -  $)r2, ( I - & + a + i ~ + x + $ )  

dy 

(4.7) 
for some x-independent nonzero constant C. Formula (4.7) follows from 
(4.5) and the difference equation 

,, (x + k) = exp (-F) r2, (x - k) . 
Corollary 4.5. Let X E R, a,p  E 2Z>o and p,a E R>3. Let the 
Askey- Wilson parameters (a, b, c, d) be given by (3.7). The function 
FA(x) = FA(x; a, b, c, d) defined by Fx(x) = A(x)-lcpx(x), with A(x) = 
A(x; a, b, c, d) the ~-'-~eriodic, meromorphic function 

satisfies the Askey- Wilson second order digerence equation 

for generic x E i R and generic p and a .  

Proof. Note that A(x) can be rewritten as 

for some nonzero (x-independent) constant C. Since ,8 E 2Z>o, the 
gauge factor A(x) is ~- l -~er iodic .  Furthermore, A(%)-I is regular at 
x E f 2 + i R and x E i R under generic conditions on the parameters 
p and o. The proof is completed by observing that A(x) satisfies the 
difference equation (3.9). 0 

We end this section by extending these results to continuous parame- 
ters a and p. Changing integration variable and substituting the expres- 
sion for r2, in terms of q-shifted factorials, we can rewrite the matrix 
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coefficient cpx(x) (see (4.5)) as 

for some x-independent nonzero constant C, where T = {z E C I lzl = 1) 
is the positively oriented unit circle in the complex plane. To allow a, P 
to be continuous parameters, we need to get rid of the term z % @  in the 
integrand. This can be achieved by rewriting cpx(x) as 

with C again some (different) irrelevant x-independent nonzero constant. 
The integral formula (4.11) follows from (4.10) by substitution of the 
identity 

which in turn is a direct consequence of the functional equation 

for the modified Jacobi theta function Q(z) = (az, q/z; a2),. By (4.9), 
the eigenfunction FA(%) = Fx(x; a, b, c, d) of the Askey-Wilson second 
order difference equation 2) (see Corollary 4.5) is equal to 
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up to some nonzero x-independent multiplicative constant. 
Define for the Askey-Wilson parameters (a, b, c, d) given by (3.7), dual 

Askey-Wilson parameters (a, b, c, d) by 

This notion of dual Askey-Wilson parameters coincides with the notion 
of dual parameters as used in, e.g., (Koelink and Stokman, 2001a). 

In the following theorem we express Fx(x) in terms of basic hyperge- 
ometric series by shrinking the radius of the integration circle T to zero 
while picking up residues. Recall that the very-well-poised s(p7 series is 
defined by 

for lzl < 1, see (Gasper and Rahman, 1990). 

Theorem 4.6. Let X E R, a,P  E IR>O and p ,a  E R>3. Under the 
parameter correspondence (3.7), the function .FA(x) = -FA (x; a, b, c, d) 
given by (4.12) can be expressed in terms of basic hypergeometric series 
as 

with the (irrelevant) generically nonzero, x-independent constant C given 
by 

Furthermore, FA(x) is ~ - l -~e r i od i c  and satisfies the Aslcey- Wilson dif- 
ference equation (27.F~) (x) = E(X)FA(x) for generic x E i R. 

Proof. The expression for FA follows by shrinking the radius of the inte- 
gration contour T to  zero while picking up residues. I t  is actually a spe- 
cial case of (Gasper and Rahman, 1990, Exerc. 4.4, p. 122), in which one 
should replace the base q by q2 and the parameters (a ,  b, c, d, f ,  g, h, k) 
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We have seen that the difference equation (DFA) (x) = E(A)FA(x) for 
generic x E i R is valid under the extra assumption a, P E 2Z>o. For 
a, p E this difference equation has been proved by Ismail and Rah- 
man (Ismail and Rahman, 1991) using the explicit expression of FA(x) 
as very-well-poised 8(P7 series. 0 

Using the explicit expressions of FA(x), the conditions on x, X and the 
four parameters a, p, p, a can be relaxed by meromorphic continuation. 
The resulting function FA is a meromorphic, ~- ' -~er iodic  eigenfunction 
of the Askey-Wilson second order difference operator D = D ~ * ~ * ~ , ~  with 
eigenvalue E (A) = E (A; P) . 
Remark 4.7. Some special cases of the matrix coeficients (PA were ex- 
plicitly expressed in terms of very-well-poised S(P7 series in (Koelink and 
Stokman, 2001b) using the realization of the representation .rrx on the 
representation space l 2 ( 2 ) .  I n  this approach the basic hypergeometric se- 
ries manipulations are much harder, since one needs a highly nontrivial 
evaluation of a non-symmetric Poisson type kernel involving nontermi- 
nating 2pl-series which is due to  Rahman, see the appendix of (Koelink 
and Stokman, 2001 b) and (Koelink and Rosengren, 2002). 

Remark 4.8. The explicit 8 9 7  expression (4.13) of FA(x) and its an- 
alytic continuation was named the Askey- Wilson function i n  (Koelink 
and Stokman, 2001a). Suslov (Suslov, 1997), (Suslov, 2002) established 
Fourier-Bessel type orthogonality relations for the Aslcey- Wilson func- 
tion. Koelink and the author (Koelink and Stokman, 2001b), (Koelink 
and Stokman, 2OOla) defined a generalized Fourier transform involv- 
ing the Askey- Wilson function as the integral kernel, and established its 
Plancherel and inversion formula. This transform, called the Askey- 
Wilson function transform, arises as Fourier transform on the noncom- 
pact quantum group SUq (1,l) (see (Koelink and Stokman, ,2001 b)), and 
may thus be seen as a natural analogue of the Jacobi function transform. 

5. The expansion formula and the elliptic cosine 
kernel 

In this section we still assume that T E ilW>o, so 0 < q = q, = 
exp(2r i~)  < 1. To keep contact with the conventions of the previous 
section, we keep working in base q2. 
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First we recall the (normalized) Askey-Wilson polynomials (Askey and 
Wilson, 1985). The Askey-Wilson polynomials Em(x) = Em(x; a, b, c, d) 
(m E Z>o) - are defined by 

with 
CO 

al,  a2, a3, a4 ( ~ 1 ,  a21 a31 a4; q h  ,k I,[ < 
4V3 ( h i b 2 1 b 3  ; '") = k=O (q, b l l  h1 b3; q)k ' 

The Askey-Wilson polynomial E,(x) is a polynomial in qx + q-" of 
degree m, normalized by Em(a) = 1. They satisfy the orthogonality 
relations 

for m # n, provided that Re(a), Re@), Re(c), Re(d) > 0. Observe that 
the Askey-Wilson polynomial Em(x) is regular at the special choice 

of Askey-Wilson parameters. The above orthogonality relations also 
extend (by continuity) to the Askey-Wilson parameters (5.1), leading to 

0 

for m # n, hence we conclude that 

= c o s ( 2 ~ m ~ x ) ,  m E Z>o, (5.2) 

which is the usual cosine kernel from the Fourier theory on the unit 
circle, cf. (Askey and Wilson, 1985, (4.25)). In this section we derive an 
analogous result for the Askey-Wilson function. 

In the previous section we have introduced the dual Askey-Wilson pa- 
rameters associated to a, b, c and d. They can be alternatively expressed 
as 
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Note that the special choice (5.1) of Askey-Wilson parameters is self 
dual, (a, b, c, d) = (a, b, c, d). For our present purposes it is convenient 
to use yet another normalization of the Askey-Wilson function, namely 

for lq2-d-pI < 1. For fixed A, the eigenfunction .FA(-) of the Askey- 
Wilson second order difference operator D is a constant multiple of 
&+(2iX, .). The present normalization of the Askey-Wilson function is 
convenient due to the properties 

and &+ (-a, -a) = 1. The property (5.3) is called duality and can be 
proved using a transformation formula for very-well-poised 8 9 7  series, 
see (Koelink and Stokman, 2001a) for details. Furthermore, 

see, e.g., (Koelink and Stokman, 2001a, (3.5)), thus the Askey-Wilson 
function &+(p, x) provides a natural meromorphic continuation of the 
Askey-Wilson polynomial in its degree. 

The meromorphic continuation of &+(p, x) in p and x can be estab- 
lished by the integral representation of the Askey-Wilson function (see 
the previous section), or by the expression of the Askey-Wilson func- 
tion as a sum of two balanced 493'~ (see, e.g., (Koelink and Stokman, 
2001a, (3.3))). For our present purposes, it is most convenient to con- 
sider the meromorphic continuation via the expansion formula of the 
Askey-Wilson function in Askey-Wilson polynomials, given by 

. , 

see (Stokman, 2002, Thm. 4.2). The sum converges absolutely and uni- 
formly on compacta of (p, x) E C x C due to the Gaussian qm2. The 
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expansion formula (5.5) shows that the Askey-Wilson function @(p, x) 
is well defined and regular at the special choice (5.1) of Askey-Wilson 
parameters. In fact, for this special choice of parameters, the Askey- 
Wilson function can be expressed in terms of the (renormalized) Jacobi 
theta function 

d (x) = (-ql+", -ql-" ; q2) , 
as follows. 

Proposition 5.1. We have the identity 

Proof. To simplify notations, we write 

for the duration of the proof. 
We substitute the special choice (5.1) of Askey-Wilson parameters in 

the expansion formula for @(p, x). By simple q-series manipulations 
and by (5.2)) we obtain the explicit formula 

Using the well known Jacobi triple product identity 

and the elementary identity 

1 
cos(2~mrp) cos(2nmrx) = - (cos(2?rmr(p + x)) + cos (2?rmr(p - x))) , 

2 

we deduce that 

Simplifying the multiplicative constant yields the desired result. 0 
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Remark 5.2. The Jacobi theta function 6 ( x )  is the natural ~ - ' - ~ e r i o d i c  
analogue of the Gaussian since 

by the Jacobi triple product identity and the Jacobi inversion formula. 
I n  fact, in (Stokman, 2002) and (Stokman, 2001) i t  is shown that the 
function (q2-d+x, q2-d-x; q2)_ ,  which reduces to 6 ( x )  for the Askey- 
Wilson parameters (5.1), plays the role of the Gaussian in the Askey- 
Wilson theory. If one replaces the theta functions by Gaussians in the 
right hand side of (5.6), then we obtain up to  a multiplicative constant 

which is essentially the classical cosine kernel. Thus the right hand side 
of (5.6) is an elliptic analogue of the cosine kernel. 

Remark 5.3. Using the quasi-periodicity 

of the Jacobi theta function, we obtain as a consequence of (5.6), 

which is i n  accordance with (5.2) and (5.4). 

Remark 5.4. The orthogonality relations for the Askey- Wilson poly- 
nomials with Askey- Wilson parameters (5.1) are equivalent to the L2-  
theory of the classical Fourier tansform on  the unit circle. On the 
other hand, the L2-theory of the Askey- Wilson function transform, see 
(Koelink and Stokman, 2OOla), does not reduce to the L2-theory of the 
classical Fourier theory on the real line for the Askey- Wilson parame- 
ters (5.1). Instead one obtains a Fourier type transform with integral 
kernel given by the elliptic cosine function (5.6). For the corresponding 
L2 theory, the transform is defined on a weighted L2-space consisting of 
functions that are supported on a finite closed interval and an infinite, 
unbounded sequence of discrete mass points. This transform, as well as 
the general Askey- Wilson function transform, still has many properties 
in common with the classical Fourier transform on the real line, see e.g., 
(Koelink and Stokman, 2001a), (Stokman, 2002) and (Stokman, 2001). 
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Cherednik's (Cherednik, 1997) Hecke algebra approach to q-special 
functions leads to a direct proof that the right hand side of the expan- 
sion formula (5.5) is an eigenfunction of the Askey-Wilson second or- 
der difference operator V, see (Stokman, 2001). The expansion formula 
(5.5) may thus be seen as the explicit link between Cherednik's approach 
and Ismail's and Rahman's (Ismail and Rahman, 1991) construction of 
eigenfunctions of D in terms of very-well-poised 897 series. We end this 
section by sketching a proof of Proposition 5.1 using Cherednik's Hecke 
algebra approach. 

The affine Hecke algebra techniques for Askey-Wilson polynomials 
are developed in full detail in (Noumi and Stokman, 2000), and for 
Askey-Wilson functions in (Stokman, 2001). We first recall one of the 
main results from (Stokman, 2001)) specialized to the present rank one 
situation. 

Define two difference-reflection operators by 

(1 - qa+") (1 - qb+') 
( 2 ' ~ ~ ~  f )  (x) = -qa+bf (x) + 

(1 - q2") 
(f (-4 - f (4) . 

The connection with affine Hecke algebras follows from the fact that 
To = T:~ and TI = T:'~ satisfy Hecke type quadratic relations. These 
relations imply that the operators To and TI are invertible. Consider 
the (invertible) operator 

Remark 5.5. The operator Y + Y-I, acting on even functions, is es- 
sentially the Askey- Wilson second order difference operator V; see, e.g., 
(Noumi and Stokman, 2000, Prop. 5.8). 

Theorem 5.17 in (Stokman, 2001) states that for generic Askey-Wilson 
parameters (a, b, c, d), there exists a unique meromorphic function 
&(., a )  = @(., .; a, b, c, d) on @ x @ satisfying the following six conditions: 

@(p, x) is ~- ' -~er iodic  in p and x, 

(p, x) (q2-d+p, q2-d-p , q 2-d+x, q2-d-~ 2 
;q Irn &(p, x) is analytic, 

0 

For fixed generic p E @, E(p, .) is an eigenfunction of ~ ~ ! ~ l ~ 3 ~  with 
eigenvalue qa-p, 
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4. For fixed generic x E @, &(., x) is an eigenfunction of ~ ~ y ~ , ~ , ~  with 
eigenvalue qa-" , 

5. (rpb&(p, .)) (x) = -cia+) (T;?"(.,x)) (p), 

The existence of a kernel & satisfying the above six conditions is proved 
by explicitly constructing & as series expansion in nonsymmetric ana- 
logues of the Askey-Wilson polynomials, see (Stokman, 2001, (6.6)). 
This expansion formula for & is very similar to the expansion formula 
(5.5) of the Askey-Wilson function &+ in Askey-Wilson polynomials. In 
fact, a comparison of the formulas leads to the explicit link 

see (Stokman, 2001, Thm. 6.20). These results allow us to study the 
Askey-Wilson function &+ using the characterizing conditions 1-6 for 
the underlying kernel &, instead of focussing on the explicit expression 
for &+. 

The kernel &(p, x) is regular at the Askey-Wilson parameters (5.1). 
The resulting kernel 

is the unique meromorphic kernel satisfying the six conditions 1-6 for 
the special Askey-Wilson parameters (5.1). Observe that the operators 
To, TI and Y for the special Askey-Wilson parameters (5.1) reduce to 

hence Eo is the unique meromorphic kernel satisfying the six conditions 

1'. Eo(p, x) is ~- l -~er iod ic  in p and x, 

2'. (p, x) H 6(p)6(x) C0 (p, x) is analytic, 

3'. @o(p, x + 2) = q-%(p, x), 
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We conclude that 

since the right hand side satisfies 1'-6' due to the quasi-periodicity (5.8) 
of 29(x). Thus eo(p, x) is an elliptic analogue of the exponential kernel 
exp(-4ni~px), cf. Remark 5.2. Using the notation (5.7)' we conclude 
that 

which is the desired formula (5.6). 

6. The Askey-Wilson function for Iql = 1. 

In this section we take -$ < T < 0, SO that q = q, = exp(2ni~) has 
modulus one and q # f 1. The assignment 

uniquely extends to a unital, anti-linear, anti-algebra involution on Uq. 
This particular choice of *-structure corresponds to the real form sI(2, R) 
of 4 2 ,  C). The *-unitary sesquilinear form for the representations nx 
(A E R) of Uq (see Section 3) is 

ico 

where f and g are meromorphic functions which are regular on a large 
enough strip around the imaginary axes and decay sufficiently fast at 
f ioo. Koornwinder's twisted primitive element iYp E Uq is *-selfadjoint 
for p E R. Thus in principle we are all set to extend the construction of 
eigenfunctions of the Askey-Wilson second order difference operator D 
to the 141 = 1 case by simply replacing the role of the q-gamma function 
F2, by G2,. We need to be careful though due to the following differences 
with the 0 < q < 1 case: 

a. The analogue of the explicit eigenfunction of iYp (cf. (4.2)), given 
now as quotient of hyperbolic gamma functions G2,, has more 
singularities. 

b. No ~-l-~eriodici ty conditions have to be imposed. Consequently, 
the parameters a and ,8 do not need to be discretized for the Iql = 1 
case. 
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c. We have to take the decay rates at f ioo of integrands into account. 

One needs to be careful with the decay rate (see c) in reproving the cru- 
cial Theorem 4.4 because acting by x~ (x') worsens the asymptotics at 
f ioo (the factor q" = exp(2.rri.r~) is O(exp(-2x~Im(z)) as Im(z) -t 00). 

The decay rate can be improved by considering different eigenfunctions 
of iY,, but then the location of the singularities turns out to cause prob- 
lems. 

To get around these problems, we generalize the techniques of Section 
4 to a nonunitary set-up. More concretely, we replace ( a ,  .)' by a bilin- 
ear form, given as a contour integral over a certain deformation of i R.  
With such a bilinear form, the singularity problems and the asymptotic 
problems can be resolved simultaneously. 

The proper replacement of the involution * is the unique unital, linear, 
anti-algebra involution o on IA, satisfying 

For f E M we write S( f )  c @ for the singular set of f .  

Definition 6.1. f E M is said to  have (exponential) growth rate E E R 
at f ioo when the following two conditions are satisfied: 

1. For some compact subset K f  c R, 

2. The function f satisfies 

uniformly for x i n  compacts of R .  

We call a contour C a deformation of i R  when C intersects the line 

in exactly one point z,(C) for all c E R, and z,(C) = i c  for Icl > 0. For 
k E Z>o - we define the strip of radius k around C by 

For k = 0, the strip of radius zero around C is the contour C itself. 

Lemma 6.2. Suppose that f ,g  E M have growth rates ~f and eg at 
f ioo, respectively. Suppose furthermore that ~f + eg < 2x7 and that f 
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and g are analytic on the strip of radius one around a given (oriented) 
deformation C of i R. Then 

where 

( f ,  S I C  = / f (z )g(z)dz .  

Proof. The proof follows by an elementary application of Cauchy's The- 
orem. 0 

Remark 6.3. The condition on the growth rates in  Lemma 6.2 may be 
weakened to E + eg < 0 when X is taken from the subspace f spanc (1, K- , K )  of U;. 

Koornwinder's twisted primitive element Yp (see (3.4)) is not o-invariant, 

On the other hand, a direct computation shows that R-A (Yi )  is still a 
first order difference operator. This leads to the following analogue of 
Proposition 3.4. 

Proposition 6.4. Let a, p E C. A meromorphic function f E M is an 
eigenfunction of n-A (Yi)  with eigenvalue p,(p) i f  and only i f  

We define two meromorphic functions by 

The difference equation for G2T, Proposition 3.4 and Proposition 6.4 
imply 

X A  (Yo) 94 . ;  P, 4 = pp(a)gx(.; P, 4, 
R-A (y;) hA(? a, P)  = pa(p)hA(.; a, P).  

(6.3) 
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We want to construct now eigenfunctions of the gauged Askey-Wilson 
second order difference operator L which are of the form 

for a suitable deformation C of iR.  To make sense of this integral, we 
need to take the singularities and the asymptotic behaviour at f ioo  
of the integrand into account. The singularities can be located using 
the precise information on the zeros and poles of the hyperbolic gamma 
function G,, see Proposition 2.l(ii). It follows that the singularities of 
z H gA(l + x + Z; P, a )  are contained in the union of the four half lines 

and the singularities of z H hx(z; a, p) are contained in the union of the 
four half lines 

We call the above eight half lines the singular half lines with respect 
to the given, fixed parameters T, x, A, a, p, P, a .  Each singular half line 
is contained in some horizontal line 1, for some c E R. For generic pa- 
rameters a ,  p, p, a, the eight singular half lines lie on different horizontal 
lines. Under these generic assumptions, there exists a deformation C, of 
i R which separates the four singular half lines with real part tending to 
-00 from the four singular half lines with real part tending to oo. We 
take such contour C = C, in the definition (6.4) of $x. The resulting 
function $x(x) is well defined and independent of the particular choice 
of the deformation C, of iR, since gx(.; P, a) (respectively, hx(-; a, p)) 
has growth rate n ((1 - 2 Im(X))r - 1) (respectively n (1 + 2 Im(X)) T) 
at f ioo. This follows from the asymptotic behaviour of the hyperbolic 
gamma function G,, see Proposition 2.1 (iv) . The resulting function 
$x(x) is analytic in x. 
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Theorem 6.5. For generic parameters a, p, ,8, a, the function = 

+A(.; a, P, p, 4 defined by 

is an eigenfunction of the gauged Askey- Wilson difference operator C'+'!B~~ 
with eigenvalue E (A; /3) . 
Proof. We adjust the proof of Theorem 4.4 to the present set-up. We 
simplify notations by writing g(z) = gx (z; ,B, a )  and h(z) = hx (z; a, p). 
Choose the deformation C, of iR such that g and h are analytic on the 
strip of radius > 4 around C,. 

Observe that nx (PS2K)g has the same growth rate at fioo as g. 
By (3.2) and the definition of $Q(x), we conclude that the integral 
(nx(PRK)g, h)Cx converges absolutely and equals 

On the other hand, the radial part computation of S2 with respect to 
Koornwinder's twisted primitive element yields 

PS2K = PS2(x)K + ((Yp - p,(p)) K-l) X P K  + PZ (Y, - pp(a)) (6.6) 

for certain elements X, Z E Ui, cf. Proposition 3.3. Substituting this 
algebraic identity in (nx (PO K)g, h)Cx and using nx (Y,) g = pp (a)g, we 
have 

provided that both integrals on the right hand side of (6.7) converge 
absolutely. 

For the second term on the right hand side of (6.7), observe that the 
sum of the growth rates of g and h at f ioo equals (27-1)n. Furthermore, 
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1 since -Z < I- < 0, and 

Hence the integral 

converges absolutely, and Lemma 6.2 shows that this integral equals 

where the last equality follows from the eigenvalue equation .~ r -~(Y; )h  = 

pa ( P)h. 
For the first term on the right hand side of (6.7)) observe that 

n~ (ZO(x)  K )  g has the same growth rate at f ioo as g. Hence the inte- 
gral (nx ($Q(x )K)  g, h)cx converges absolutely. By the definition of the 
gauged Askey-Wilson second order difference operator L, this integral 
equals 

Combining the results, we conclude that 

and for both sides we have obtained an explicit expression in terms of 
$A. The resulting identity for yields the desired difference equation 
.c$A = E(X)$x. 0 

Remark 6.6. The eigenfunction $A of C as given by the integral (6.5) 
loolcs very similar to the eigenfunction c p ~  of C ( for the case I- E i 
as given by the integral (4.7), since the integrand of c p ~  is essentially 
the integrand of $A with the hyperbolic gamma functions G2, replaced 
by q-gamma functions r2,. Note though that the integration cycles are 
diferent. 

We can reformulate the difference equation for $A in terms of the 
Askey-Wilson second order difference operator 2) = ~ ~ l ~ * " ~  (see (3.3)) 
using an appropriate gauge factor, cf. Corollary 4.5. Using the param- 
eter correspondence (3.7), we can for instance choose the gauge factor 
a(.) = q x ;  a, P, P, 4 by 
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Corollary 6.7. For generic parameters a, p, P, a, the function HA = 
HA(- ;  a, b, c, d )  E M defined by Hx (x )  = G ( X ) - ' $ ~ ( X )  satisfies the Askey- 
Wilson second order difference equation 

P H A )  ( x )  = E ( 4 H x ( x ) ,  

where the Askey- Wilson parameters (a ,  b, c, d )  are given by (3.7). 

Appendix 
In this appendix we sketch a proof of Proposition 3.3, following closely the argu- 

ments in (Koornwinder, 1993) for the special case a = P = 0. 
Fix x E (C and write X E X' for X ,  X' E Uq if 

In order to simplify notations, I use the notations p = pm(p) and v = pp(a) for 
the duration of the proof. To reduce PRK = P K R  in the desired form, we need to 
concentrate on the part P KX'X- . Using 

and the commutation relation between X -  and X+ in Uq, we obtain 

hence we need to focus now only on the reduction of PX- and PK2x- .  Using 

'-' (q -$X-K  - g $ x t K )  K-'P p x -  = 92 

+ q $ - 2 x ~ - 1 P  (q$X+K _ q - $ ~ - ~ )  + q 1 - 2 x ~ - 1 P ~ - ~ ,  

we obtain 

and a similar computation yields 
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Collecting all these results we arrive for generic x E C at a formula of the form 

for explicit rational expressions B(x), C(x) and D(x). Using 

the rational functions B(x), C(x) and D(x) are explicitly given by 

and 

By a tedious computation, it can now be proven that 

with the parameters a, b, c, d as in (3.7). 
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Abstract We derive an analog of the Cauchy-Hadamard formula for certain poly- 
nomial expansions and consider some examples. 

Keywords: Basic hypergeometric functions, q-orthogonal polynomials, continuous 
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Askey-Wilson polynomials, the Chebyshev polynomials, the Jacobi poly- 
nomials, Taylor's series and its generalizations. 

1. Main Result 

A problem of fundamental interest in classical analysis is to study the 
representation of an analytic function as a series of polynomials; see, for 
example, (Boas and Buck, 1964), (Szeg6, 1982, p. 147) and references 
therein. In this note we consider polynomial expansions of the form 

These series are obviously infinite sums of analytic functions and by the 
Weierstrass theorem the uniform convergence guarantees analyticity of 
the limit function is some region of the complex x-plane. This raises an 
interesting question about the maximum domain of analyticity of these 
series. In many cases a complete solution can be given by the following 
analog of Cauchy-Hadamard's formula well-known for the power series 
(Ahlfors, 1979, pp. 38-39), (Dienes, 1957, pp. 75-76), (Markushevich, 
1985, pp. 344-346). 
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Theorem 1.1. Let E ,  be an ellipse in the complex x-plane 

with the semiaxes given by 

and the focal points at f 1; let Int EE be the interior of the ellipse E,  and 
Ext EE be the exterior of E,. Suppose that a sequence of polynomials 
{ P ~ ( X ) ) ~ = ~ ~  deg pn(x) = n, n = 0,1,2,  . . . , such that all zeros of pn(x) 
lie i n  the interval (-1, I ) ,  satisfies the following inequalities 

where C1(&) > 0,  on the ellipse E ,  with 0 < q < 1, E > 0 for all 
suficiently large n. Then the series (1.1) converges absolutely for every 
x i n  the interior of the ellipse E,  : 

with 
l / n  qE = lim sup 1 cn 1 . 

n--tea 

If 0 < E' < E ,  the convergence is uniform in the closure of the interior of 
the subellipse EE,. For every x i n  the interior of the ellipse E,  the sum 
of the series (1.1) is an analytic function. For every x i n  the exterior of 
the ellipse EE the terms of the series (1.1) are unbounded, and the series 
is consequently divergent. 

We shall call the ellipse EE given b y  (1.2)-(1.3) and (1.6) the ellipse 
of convergence; nothing is claimed about the convergence on the ellipse. 

The proof of Theorem 1.1 here is similar to the proof of Theorem 6.12 
in (Suslov, 2003b); see also Exercise 6.21. 

Proof. Let EE be  the ellipse of convergence given above. When 0 < 6 < E 

and qE < q"-S, b y  the definition of limit superior there exists an no > 0 
such that 

~ ~ l ~ / ~ < ~ ~ - ~ ,  or l ~ l < ~ ( ' - * ) ~  (1.7) 

for all n > no. If 0 < E' < E ,  the following estimate holds 



Expansions in q-Polynomials 445 

for all n > no and every x inside the ellipse EEl due to the maximum 
principle for the analytic functions and the hypotheses of the theorem. 
Thus, when E' < E - 6, 0 < 6 < E ,  for large n the series (1.1) has a 
convergent geometric series as a majorant, and consequently converges 
absolutely. For every x on the subellipse E,I, 0 < E' < E and in its 
interior Int Eel the convergence is uniform by the M-test and, therefore, 
by the Weierstrass theorem the limit function is analytic inside EE. 

If E' > E > 0, we choose 6, 0 < 6 < E' - E SO that q"' < qE+b < qE. 
Since qE+6 < qE there are arbitrary large n such that 

Thus 

when x E EE1 c Ext E E ,  for infinitely many n, and the terms are un- 
bounded. This completes the proof of the theorem. 0 

Remark 1.2. If under the hypotheses of Theorem 1.1 the set of poly- 
nomials {pn (x)}:=~, instead of satisfying the inequalities (1.4), is uni- 
formly bounded on compacts 

1 P ~ ( x )  I < D = constant (1.11) 

for all suficiently large n and 

then the series (1.1) is an entire function in the complex x-plane. 

Remark 1.3. It follows from the second part of the proof of Theorem 
1.1 that the imposed condition that all zeros of pn(x) lie in the interval 
( -1 , l )  can be replaced by weaker requirements that those zeros lie inside 
the ellipse of convergence and the lower bound in (1.4) holds only outside 
the ellipse of convergence. The Cauchy-Hadamard formula holds also 
in the case of Szegii's class of orthogonal polynomials (Szegii, 1975), 
Theorems 12.7.3-12.7.4 and (Szeg6, 1982, p. 377), but our approach 
does not require orthogonality; see (Suslov, 2003a) for more details. 

Remark 1.4. Theorem 1.1 holds also for a sequence of analytic func- 
tions { f n ( x ) }  i f  the conditions (1.4) are satisfied. By  the Root Test the 

l / n  theorem holds also under conditions lim c ~ / ~ ( E )  = lim C2 ( E )  = 1; n+m n+oa 
cf. (Davis, 1963, Lemma 4.4.2, p. 89). 
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2. Some Expansions in Classical q-Orthogonal 
Polynomials 

Let us consider the maximum domain of analyticity for several familiar 
expansions in q-orthogonal polynomials. 

2.1 The continuous q-ultraspherical polynomials 
These polynomials are defined by 

where x = cos8; see, for example, (Andrews et al., 1999) and (Gasper 
and Rahman, 1990); we shall assume throughout the paper that -1 < 
,B < 1 and 0 < q < 1. Let us establish first a convenient upper bound. 

Lemma 2.1. The following inequalities hold 

for E > 0, -1 < p < 1 and 0 < q < 1 when x is inside or on the ellipse 
E, given by (1.2)-(1.3). 

Proof. As in the proof of Lemma 6.8 in (Suslov, 2003b), we rewrite the 
relation (2.1) in the form 

Let z = Re z + i Im z with Re z = E', qi ImZ = eie, or qZ = eieq"', where 
0 5 E' 5 E. Then 

1 x = 1 (6' + q-s') cos e + i- (qc' - q-~') sin e 
2 2 

and the image of the vertical line segment given by Re z = E', Im z = 
8 log q, -.rr 5 0 5 .rr is the ellipse E,I in the complex x-plane; see Figure 
1. 
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Figure I .  Mapping by x = (qZ + q-') 12. 

The case -E 5 -E' 5 0 corresponds to the opposite orientation of the el- 
lipse E,t and we will skip the details. Every x inside the largest ellipse E, 
belongs to some subellipse Eel and, therefore, the following inequalities 
hold 

One can also use the maximum modulus principle for analytic functions 
and the fact that the maxima of ICn ( x ;  ,6 I q)l on the ellipse E, occur at 
the points f x = a, = x ( E ) .  From (2.3) we obtain 

because (%!I), < (%q)k and (P;q)k < (-1Pl;q)co for 0 < 4 < 1 and 
-1 < p < 1. As a result, for every x inside or on the ellipse EE with 
E > 0 the following inequalities hold 

when E > 0. This completes the proof of the lemma. 0 
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We need to show that the hypotheses of Theorem 1.1 are satisfied 
for the continuous q-ultraspherical polynomials. This can be done with 
the help of the uniform asymptopic for these polynomials which one can 
establish with the help of the following result (Bromwich, 1965), (Ismail 
and Wilson, 1982). 

Theorem 2.2 (Tannery's theorem). Let 

m 

Sn = a0 (n) + a1 (n) + . . + a, (n) = x ar. (n) ; (2.8) 
k=O 

lim ak (n) = bk, Ic being fixed; 
n+m (2.9) 

and 
lak(n) l5Mk,  C ~ k < m ,  (2.10) 

k 

where Mk is independent of n. Then 

lim Sn = bk, 
n+m 

it is being understood that m = m (n) + m as n + m .  

See (Bromwich, 1965) for the proof of this theorem; the result holds 
uniformly with respect to  all parameters in compact sets if the conver- 
gence in (2.9) and bound in (2.10) hold uniformly. 

In the case of the continuous q-ultraspherical polynomials Eq. (2.3) 
implies that 

where 

with -1 < p <  1, 0 < q < 1 and 

Also 

lim (Pi q)n-k (P; q)k 2kz ((P; q)m (P; q)k q2kz 
4 - 

n'w (4; q)n-k (4; 4)k (4; q)m (4; d k  
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Thus by the Tannery theorem 

2kr ( ( P ;  q)m (Pq2"; q ) ,  lim qn"Cn ( x ;  P 1 9)  = 
n+co 4 - 

(4;  d m  (q2"; 41, 

due to the q-binomial theorem. 
One can easily see that the resulting limiting relation 

lim qnzCn ( x ;  p 1 q)  = 
(P ,  Pq2"; P )  , 

n+m 14"1 < 1 (2.16) 
(4, q2"; d ,  

holds uniformly on the ellipse EE with x = (qZ + q-") 12 and q" = q"eie, 
E > 0. 

Indeed, the bound in (2.13) is uniform on EE and the convergence in 
(2.9) holds uniformly due to Cauchy's criteria. It is clear that 

is arbitrary small on the ellipse for all sufficiently large m and n. 
Now we can show that the conditions (1.4) of Theorem 1.1 are satis- 

fied. 

Lemma 2.3. The following inequalities hold 

for E > 0, -1 < p < 1 and 0 < q < 1 for all suficiently large n and 
every x on the ellipse E, given by (1.2)-(1.3). 

Proof. Let x ( z )  = (qZ + q-") 12 and q" = eieq' with E > 0, -T 5 0 5 n. 
In view of (2.16), 

uniformly on the ellipse E,. This means that for a given €0 > 0 there is 
no = no ( E ~ )  such that 
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for all n 2 no and x E EE. Introducing 

LI = min L (B ) ,  L2 = max L (B), 
01e5~l2 o<e<~/a 

(2.20) 

one can write 

for all n 2 no and x E EE. Choosing 

we arrive at inequalities (2.17) uniformly on the ellipse EE and the proof 
is complete. 0 

As the first example, let us consider convergence of the series in the 
Ismail and Zhang formula (Ismail and Zhang, 1994), 

8, (x; iw) = 
(Q; q ) o o ~ - ~  

(qv; dm (-qw2; q2)00 
00 (2.23) 

4 (2) x C " (1 - qVf ") qn ' Jv+n ( 2 ~ ;  q) Cn (2; qV I q) 

where J $ ~  (2w; q) is Jackson's q-Bessel function defined by 

with v > -1 and the basic exponential function on a q-quadratic grid is 
given by 

with x = cosB and Ial < 1. This function was originally introduced by 
Ismail and Zhang (Ismail and Zhang, 1994) with different notation and 
normalization; see also (Atakishiyev and Suslov, 1992), (Suslov, 1997) 
for the corresponding solutions of a q-analog of the equation for harmonic 
motion; the above notation is due to Suslov (Suslov, 1997). Different 
proofs of the Ismail and Zhang formula were given in (Floreanini and 
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Vinet, 1995), (Ismail et al., 1999)) (Ismail et al., 1996), and (Ismail and 
Stanton, 2000); see also (Suslov, 2003b), Section 4.5. 

From (2.24) we obtain 

by the Jacobi triple product identity (Andrews et al., 1999), (Gasper 
and Rahman, 1990). This upper bound is of an independent interest. 

Introducing 

in view of (2.26) one gets 

with 
D = (-% d m  (-p1+vlw12, -q'+'/l~1~; q2),. (2.29) 

(a; a)co 

Therefore 

and 
qC=limsup~Gll ln=O, or E = W .  (2.31) 

n-+w 

The series in (2.23) is an entire function in the complex x-plane for all 
finite values of w, thus providing an analytic continuation of the basic 
exponential function (2.25). 

In a similar fashion, one can show that the ellipse of convergence of the 
series in Rogers' generating function for the continuous q-ultraspherical 
polynomials, 

a 
(@reie, @re-ie ; q) , 

C C , ( C O S ~ ; ~  I q)rn = , Irl < 1 (2.32) 
(reie, re-ie; q), n=O 

see, for example, (Andrews et al., 1999) and (Gasper and Rahman, 
1990), is the ellipse E, given by (1.2)-(1.3) with 
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Observe that the first poles in the right side of (2.32) are located on 
the ellipse of convergence. In a similar manner, one can analyze the 
convergence of the series in the Poisson kernel for the continuous q- 
ultraspherical polynomials and in related bilinear generating functions 
(Gasper and Rahman, 1990). 

2.2 The continuous q-Hermite polynomials 
These polynomials are the special case of the continuous q-ultraspherical 

polynomials: 
Hn (X 1 4) = (4; q)nCn (2; 0 I q) . (2.34) 

They have two generating functions 

and 

see, for example, (Suslov, 2003b) and (Gasper and Rahman, 1990), re- 
spectively. 

By Lemma 2.1 and (2.34) the uniform upper bound is 

and in the first case (2.35)) the series defines an entire function in the 
complex x-plane for all finite values of a. Indeed, 

In the second case (2.36), by Lemma 2.3 and (2.34) the corresponding 
ellipse of convergence EE is given by (1.2)-(1.3) with 

qE = lim sup (1rln)'ln = 
n--100 

Irl. 

The first poles in the right side of (2.36) occur on the ellipse of conver- 
gence. 

Ismail and Stanton (Ismail and Stanton, 2000) have found the follow- 
ing expansion formula 
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in the continuous q-Hermite polynomials. They call expansion (2.38) 
the "addition" theorem with respect to the parameter a because it be- 
comes exp a x  exp px = exp (a + p) x in the limit q --+ I-; see (Suslov, 
1997), (Suslov, 2000) and (Suslov, 2003b, Chapter 3), for other addition 
theorems for the basic exponential functions. 

One can easily verify with the help of (1.8) of (Gasper and Rahman, 
1990) that 

when n = 2k and 

when n = 2k + 1. Thus, the corresponding ellipse of convergence is Em 
and the series represents an entire function. 

2.3 The Askey-Wilson polynomials 
These polynomials are given by 

= awn (ab, ac, ad; q), 4 9 3  
q-n, abcdqn-l, aeie, 

ab, ac, ad 

where x = cos 6. They are the most general known classical orthogonal 
polynomials; see, for example, (Andrews and Askey, 1985), (Askey and 
Wilson, 1985)) and (Gasper and Rahman, 1990). 

The uniform asymptotic on the ellipse E,, namely, 

when max (la[, Ibl, I c I ,  [dl) < 1 and IqZ I < 1, was established in (Ismail 
and Wilson, 1982) with the help of the Tannery theorem; see also (Rah- 
man, 1986) and (Gasper and Rahman, 1990) for another approach. The 
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same consideration as  in the proof of Lemma 2.3 shows that the condi- 
tions (1.4) of Theorem 1.1 are satisfied. 

An example of the explicit expansion in the Askey-Wilson polynomials 
is the generating relation found by Ismail and Wilson (Ismail and Wilson, 
1982): 

00 
rn (ar1 br1 CT, dr; q)m ' (41 cd; q)n 

Pn (x; a1 b1 c1 d) = 
n=O (ab, cd, reie, re-ie; q)m 

(2.43) 
reie, re-ie 

2v2 ( ar, b r  

where Irl < 1; we have used (A.3.5) of (Suslov, 2003b) in the right 
side. By Theorem 1 the corresponding ellipse of convergence is E, with 
qE = Irl; the first poles in the right occur on the ellipse. 

3. Some Expansions in Classical Orthogonal 
Polynomials 

Consider also several expansions in Chebyshev and Jacobi polynomi- 
als. 

3.1 The Chebyshev polynomials 
The polynomials Tn (x) and Un (x) are usually defined as 

sin (n + 1) 8 
Tn (COS 8) = cos no, Un (COS 8) = 

sin 8 ( 3 4  

They have several generating relations including 

1 un (x) rn = 
n=O 1 -2 r x+ r2 '  

where Irl < 1, 
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where R = dl - 2rx + r2, Irl < 1, and 

00 
rn C T, (x) - = eTx 
n ! cosh ( r&Ci)  , n=O 

(3.6) 

see, for example, (Andrews et al., 1999), (Rainville, 1960). 
From the definition of the Chebyshev polynomials one can establish 

the following lower and upper bounds on the ellipse EE with E > 0 given 
by (1.2)-(1.3), 

when n = 1,2,3,. . . and 

when n = 0,1,2, . . . . Thus, by Theorem 1.1 the ellipse of convergence of 
the series in (3.2)-(3.5) is EE with qE = Irl < 1; the series in (3.6)-(3.7) 
represent entire functions. 

3.2 The Jacobi polynomials 
Expansions of analytic functions in series of Jacobi polynomials are 

discussed in (Askey, 1975), (Boas and Buck, 1964), (Erd6lyi et al., 1953) 
and (Szeg6, 1975). More details on the ellipse of convergence, asymp- 
totics and inequalities can be found in (Antonov and Kholshevnikov, 
1979), (Carlson, 1974b), (Carlson, 1974a) and references therein. 

As an example, Jacobi's generating relation, 

co 2"+P C P?@) (x) rn = (3.10) 
n=O ~ ( 1 - r + R ) " ( l + r + ~ ) ~ '  

where R = (1 - 2x7- + r2)'I2, holds in the ellipse EE with qE = Irl < 1. 

4. Some q-Taylor's Expansions 
There is certain interest nowadays in expansions of polynomials and 

entire functions in the so-called q-Taylor series (Ismail and Stanton, 
2002), (Ismail and Stanton, 2003a), and (Kac and Cheung, 2002); see 
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also Exercise 3.8 of (Suslov, 2003b). We only consider here two exam- 
ples related to the basic exponential function on a q-quadratic grid. The 
Taylor expansion of Eq (x; a) with respect to a is 

where by the definition 

and 

We assume that the empty products when k = 0 here are equal to 
1. Formula (4.1) provides also an expansion of the basic exponential 
function with respect to the set of polynomials {cpn (x; q))F==O. This ba- 
sis has been used for the basic sine and cosine functions (Bustoz and 
Suslov, 1998) and for the basic exponential functions on a q-quadratic 
grid (Suslov, 2001)-(Suslov, 2002) and, recently, in a more general set- 
ting of the q-Taylor expansions (Ismail and Stanton, 2003a)-(Ismail and 
Stanton, 2003b). 

One can easily establish the following upper bounds 
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and 

where by the definition 1x1 = X(E) = (qg + qbg)/2. These inequalities 
show that the polynomials (9, (x; q))r=o are uniformly bounded with 
respect to n for any finite value of x. Thus, by Remark 1.2 the series 
(4.1) is an entire function in the complex x-plane when q1/21al < 1. The 
coefficients of this series coincide with those found by the q-Taylor series 
with respect to cpn(x; q). Indeed, in this case a formal q-Taylor formula 
has the form (Ismail and Stanton, 2003a)-(Ismail and Stanton, 2003b) 

where 

and the operator Dq = S/6x is the standard first order Askey-Wilson 
divided difference operator 

with x(z) = (qZ + q-') /2 = cos8, qz = eie; see (Gasper and 
1990) and (Suslov, 2003b) for more details. Here we took 

(4.8) 

Rahman, 
also into 

account that the basic exponential function f (x) = lq(x;  a) satisfies the 
difference equation 

which is a q-version of 

on a q-quadratic grid. 
In the recent papers (Ismail and Stanton, 2002)-(Ismail and Stanton, 

2003a) Ismail and Stanton pointed out the following representations for 
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the q-exponential function 

where la1 < 1 and by the definition 

Two independent proofs of (4.11)-(4.12) are presented in (Suslov, 2003b); 
see Sections 2.3 and 3.4.3. 

The uniform upper bound is 

and, therefore, the series in (4.12) is an entire function in the complex x- 
plane when la1 < 1. The corresponding formal q-Taylor formula (Ismail 
and Stanton, 2002)-(Ismail and Stanton, 2003a) 

where 

gives again the right coefficients in the expansions (4.11). 
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polynomials in terms of these polynomials has nonnegative coefficients. 
We want to decide which orthogonal systems { ~ ~ ) r = ~  have the property 

with nonnegative coefficients c(n, m, k) for every n, m and k. 
Numerous classical orthogonal polynomials as well as their q-analogues 

satisfy nonnegative linearization property (Gasper, 1970a; Gasper, 1970b; 
Gasper, 1983), (Gasper and Rahman, 1990), (Ramis, 1992), (Rogers, 
1894), (Szwarc, 1992b; Szwarc, 1995). There are many criteria for non- 
negative linearization given in terms of the coefficients of the recurrence 
relation the orthogonal polynomials satisfy (Askey, 1970), (Mlotkowski 
and Szwarc, 2001), (Szwarc, 1992a; Szwarc, 199213; Szwarc, 2003), that 
can be applied to general orthogonal polynomials systems. These crite- 
ria are based on the connection between the linearization property and 
a certain discrete boundary value problem of hyperbolic type. 

In this paper we are going to show that many polynomials systems 
satisfy even a stronger version of nonnegative linearization. Namely let 

PI  { P , ) ~ ? ~  be an orthogonal polynomial system. Let {pn )r=o denote the 
associated polynomials of order I .  We say that the polynomials {P~},",~ 
satisfy the strong nonnegative linearization property if 

with nonnegative coefficients c(n, m, k) and cl(n, m, k) for any n, m, k 
and I. 

The interesting feature of this property is the fact that it is equivalent 
to a maximum principle of the associated boundary value problem (see 
Theorem 2). Also this property is invariant for certain transformations of 
the recurrence relation (see Proposition 2), unlike the usual nonnegative 
linearization property. 

In the last part of this work we are going to show that the Jacobi 
polynomials have the strong linearization property if and only if either 
a = P > - 1 / 2 o r a > P > - l a n d a + P > O .  

2. Strong nonnegative linearization 

Let pn denote a sequence of orthogonal polynomials, relative to a 
measure p, satisfying the recurrence relation 
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where yn, an+l > 0 and /3n E R. We use the convention that po = 1 and 
111 a0 = p-1 = 0. For any nonnegative integer 1 let pn denote the sequence 

of polynomials satisfying 

111 [I1 For n 2 1 + 1 the polynomial pn is of degree n- 1 - 1. The polynomials pn 
are called the associated polynomial of order 1 + 1. These polynomials are 

- .  

orthogonal, as well. Let pl denote any orthogonality measure associated 
111 00 with. {pn In=,+i - 

For n > m 2 1 + 1 2 0 consider the polynomials pn(x)pm(x) and 
pI1 (x)p;(x).  We can express these products in terms of pk (x )  or 
to obtain the following. 

The polynomial pn(x)pm(x) has degree n + m while p!] (x )p$(x)  has 
degree n + m - 21 - 2. Hence the expansions have finite ranges and by 
the recurrence relation we obtain expansions of the form 

Definition 2.1. The system of orthogonal polynomials pn satisfies the 
strong nonnegative linearization property (SNLP)  if 

The form of recurrence relation used in (2.1) and (2.2) is suitable for 
applications. For technical reasons we will work with the renormalized 
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polynomials Pn and P! defined as 

Clearly the property of strong nonnegative linearization is equivalent for 
the systems {pn)r=o and {Pn),",o, so we can work with the latter system 
from now on. 

The polynomials Pn satisfy 

[11 where 7-1 = 0. On the other hand the polynomials Pn satisfy 

Moreover by (2.4) and (2.5) we have 

Let L denote a linear operator acting on sequences a = {an)r=O by 
the rule 

For any real number x set 

Let 61 denote the sequence whose terms are equal to zero except for the 
lth term which is equal to 1. The formulas (2.8), (2.9) and the fact that 

PI - - 1 Pl+l - al+l immediately imply that 

L P ( x )  = xP(x ) ,  (2.13) 

LP[~ ]  ( x )  = ZP[" ( x )  + 61. (2.14) 
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3. Hyperbolic boundary value problem and 
basic solutions 

Let u ( n , m )  be a matrix defined for n > m > 0. We introduce the 
operator H acting on the matrices by the rule 

for n > m > 0. By (2.13), if we take u ( n , m )  = Pn(x)Pm(x) for some x ,  
then 

(Hu ) (n ,  m) = 0. (3.2) 

Similarly by (2.14), if we take u (n ,  m) = P;'] (x)P; ( x ) ,  then 

['I Assume n > m. Then n = I implies Pm ( x )  = 0. Hence 

( H u ) ( n , m )  = - ~ ~ ' ] ( x ) d ~ ( m ) ,  for n > m 2 0. (3.3) 

Proposition 3.1. Given a matrix v = {v(n ,  m))n>m>o - and a sequence 
f = { f  (n))n>o. Let u = { ~ ( n ,  m))n>m>o satisfy 

Hu(n ,  m) = v(n ,  m), for n > m > 0, 

u(n,O) = f(n), forn  > 0. 

Then 

Proof. The formula (3.1) and the fact that am > 0 imply that u is 
uniquely determined. 

Let uk(n ,  m) = C(n ,  m, k ) .  By (2.10) we have 

Therefore by (3.2) we obtain 

(Huk ) (n ,  m) = 0,  for n > m > 0, 

uk (n ,  0 )  = dk(n), for n 2 0. 
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For k > 1 > 0 let ~ k , ~ ( n ,  m) = Cl (n ,m ,  k ) .  By (2.11) we have 

Thus by (3.3) we get 

Hence the matrix 

satisfies the assumptions of Proposition 1. By uniqueness we have u = 
u.  0 

Let H* denote the adjoint operator to H with respect to the inner 
product of matrices 

The explicit action of this operator is given by the following. 

For each point (n,m) with n 2 m > 0,  let A,,, denote the set of 
lattice points located in the triangle with vertices in (n - m + 1,0), 
(n + m - 1,O) nad (n, m - I ) ,  i.e. 

A,,, = { ( i ,  j )  1 0 5 j  5 i, In - il < m - j } .  

The points of A,,, are marked in the picture below with empty circles. 
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By (Szwarc, 2003, Theorem 1) nonnegative linearization is equivalent to 
the fact that for every (n,m) with n 2 m > 0 there exists a matrix v 
such that 

Definition 3.2. Any matrix v satisfying (3.4) and (3.5) will be called 
a triangle function. 

Definition 3.3. Let v,,, denote a matrix satisfying 

SUPP vn,m c An,,, (3.7) 

(H*vn,m)(n, m) = -1, (3.8) 
( H * v ~ , ~ ) ( ~ ,  j )  = 0, for 0 < j < m (3.9) 

The matrix vn,, will be called the basic triangle function. 

The main result of this section relates the values of vn,,(k, I )  to the 
coefficients Cl (n, m, k )  . 

Theorem 3.4. For any n > m > 0 and k > 1 2 0 we have 

Moreover 
n+m 



468 THEORY AND APPLICATIONS OF SPECIAL FUNCTIONS 

Proof. Let u (n ,  m) = piz1 ( x )  P! ( x ) .  We have P!] = 0,  hence by (3.3), 
(3.8) and (3.9) we obtain 

Thus by (2.11) we get vn,,(k,I) = Cl (n ,m ,k ) .  The second part of the 
statement follows from (Szwarc, 2003, Lemma), but we will recapitulate 
the proof here for completeness. By (3.8) and (3.9) we have 

Let u(n ,  m) = Pn(x) Pm(x). Since H u  = 0,  we have 

Hence dk = C (n, m, k )  . 

4. Main results 

The main result of this paper is the following. 

Theorem 4.1. Let pn be a system of orthogonal polynomials satisfying 
the recurrence relation 

where p-1 = 0 and po = 1. Then the following four conditions are 
equivalent. 

(a) The polynomials pn satisfy the strong nonnegative linearization 
property. 

(Hu ) (n ,  m) I 0, for n > m 2 0, { u(n,O) 2 0. 

Then u(n, m) 2 0 for every n 2 m 2 0. 

(c)  For every n 2 m 2 0 there exists a triangle function v ,  satisfying 
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(i) supp v C &,m 

(ii) (H*v)(n, m) < 0. 

(iii) (H*v)(i, j) > 0 for (i, j) # (n, m). 

(iv) v > 0. 

(d) The basic triangle functions vn,, (see (3.7), (3.8), (3.9)) satisfy 

(i) (H*vn,m)(i, 0) > 0. 

(ii) vn,m > 0. 

Proof. 

(b)=w 
By the proof of Proposition 1 we have that if uk(n, m) = C(n, m, k) 

and U ~ , J  (n, m) = Cl (n, m, k) then 

f o r n > m > O .  ThusC(n,m,k) >OandCl(n,m,k) > O f o r n > m > O .  

(a)=' (dl 
This follows immediately by Theorem 1. 

(d)=w 
This is clear by definition. 

(c)=m 
Let u = {u(n, m))nym20 satisfy (Hu)(n, m) 5 0, for n > m > 0 and 

u(n, 0) > 0. We will show that u(n, m) > 0, by induction on m. Assume 
that u(i, j) > 0 for j < m. Let v be a triangle function satisfying the 
assumptions (c) . Then 

0 > (Hu, V) = (u, H*v) = u(n, m)(H*v)(n, m) + u(i, j)(H*v)(i, j) 
Dj20 
j<m 

Therefore 

and the conclusion follows. 0 

Remark 4.2. Theorem 2 should be juxtaposed with the following result 
which can be derived from (Szwarc, 2003, Theorem 1). 
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Theorem 4.3. Let pn be a system of orthogonal polynomials satisfying 
the recurrence relation 

where p-1 = 0 and po = 1. Then the following four conditions are 
equivalent. 

(a)  The polynomials pn satisfy nonnegative linearization property. 

(Hu ) (n ,  m) = 0, for n > m 2 0,  
u(n,O) 2 0. 

Then u (n ,  m) > 0 for every n > m 2 0.  

(c )  For every n > m > 0 there exists a triangle function v ,  satisfying 

( i )  ~ U P P  v C An,, . 
(ii) (H *v ) (n ,m)  < 0. 

(iii) (H*v )  (i, j )  > 0 for (i, j )  # (n, m). 

( d )  The basic triangle functions vn,, (see (3.7), (3.8), (3.9)) satisfy 

One o f  the advantages o f  the strong nonnegative linearization prop- 
erty is its stability for a certain perturbation o f  the coefficients in the 
recurrence relation. Namely the following holds. 

Proposition 4.4. Assume orthogonal polynomial system { P ~ ) ; . ~  sat- 
isfies (SNLP). Let E, be a nondecreasing sequence. Let qn be a sequence 
of polynomials satisfying the perturbed recurrence relation 

for n > 0. Then the system {qn)?=o satisfies (SNLP). 

Proof. W e  will make use o f  Theorem 4.l(c). Let H and H,  denote the 
hyperbolic operators corresponding t o  the unperturbed and perturbed 
system, respectively. For any matrix v ( i ,  j )  we have 

(H,*v)(i, j )  = (H*v ) ( i ,  j )  + (E i  - Ej)v( i ,  j ) .  (4.1) 

B y  assumptions for any n >_ m > 0 ,  there exists a triangle function v 
satisfying the assumptions o f  Theorem 4.l(c) with respect t o  H. By  
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(4.1) the same matrix v satisfies these assumptions with respect to HE.  
Indeed, the assumptions (i) and (iv) do not depend on the perturbation. 
Since v(n, m) = 0 the assumption (ii) is not affected, as well. Concerning 
(iii), since v 2 0 and E, is nondecreasing we have 

for i 2 j 2 0 and j < m. Hence the perturbed system of polynomials 
satisfies (SNLP) . 0 

5. Some necessary and sufficient conditions 
We begin with the following generalization of Theorem 1 of (Szwarc, 

l992a). 

Theorem 5.1. Let orthogonal polynomials {pn}zi0 satisfy (2.1). Let 
{ c , ) ~ = ~  be a fixed sequence of positive numbers with co = 1 and 

Assume that 

(ii) a, 5 a; for m < n. 

(iii) a, + y, 5 a; + y; for m < n. 

Then the system { ~ n ) z = ~  satisfies the strong nonnegative linearization 
property. 

Proof. It suffices to construct a suitable triangle function for every (n, m), 
with n > m, i.e., a matrix v satisfying the assumptions of Theorem 
4.1 (c). Fix (n, m). Define the matrix v according to the following. 

v(i,j) = ci (i, j) E A,,,, (n + m) - (i + j )  odd 
0 otherwise (5.1) 

The points in the support of v,,, are marked by empty circles in the 
picture below. 
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Then supp H*v consists of the points marked by o, o, a, D and o. A 
straightforward computation gives 

Hence H*v satisfies the assumptions of Theorem 4.l(c). 

Applying Theorem 5.1 to the sequences 

gives the following. 

Corollary 5.2. Let orthogonal polynomials { P ~ ) ~ ! ~  satisfy (2.1). If 
the sequences a,, Pn, a, + y, are nondecreasing and a, 5 y, for all 
n, then the system {P,):?~ satisfies the strong nonnegative linearization 
property. 

Corollary 5.3. Let orthogonal polynomials satisfy (2.1). As- 
sume that 

(ii) a, 5 y, for m 5 n 



Strong nonnegative linearization of orthogonal polynomials 473 

(iii) am + Ym 5 an-1 + yn+l for m < n 

(iv) a, 5 an for m 5 n 

Then the system { ~ n ) r = ~  satisfies the strong nonnegative linearization 
property. 

Now we turn to necessary conditions for (SNLP). 

Proposition 5.4. Assume a system {pn)F==O satisfies the strong non- 
negative linearization property. Then the sequence ,On is  nondecreasing. 

Proof. By (2.2) we can compute that for n 2 2 we have 

But by (2.1) we have 

(X - @n-l)pk-21 = YnPn+l [n- 21 (Pn -Pn- l )~k-~ ]  +%Pn-l [n-21 

Thus Pn 2 for n 2 2. On the other hand 

and 

(x - P0)~ l  = YlP2 + (PI - P0)p1 + a1po. 

Hence pl 2 Po. 

6. Jacobi polynomials 

The Jacobi polynomials J P ' ~ )  satisfy the recurrence relation 

Theorem 6.1. The Jacobi polynomials satisfy the strong nonnegative 
linearization property if and only i f  eeither a > P > -1 and a + ,!3 2 0 

1 ~ r a = p > - ~ .  

Proof. Assume the Jacobi polynomials satisfy (SNLP). In particular 
they have nonnegative linearization property. By (Gasper, 1970a) we 
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know that the condition a 2 > is necessary for nonnegative linearization 
to hold. Also if a = ,O then the condition a 2 -; is necessary (see 
(Askey, 1975)). Let a > P. By Proposition 5.4 the sequence 

should be nondecreasing, which holds only if a + ,O 2 0. Hence the 
conditions on a and p are necessary for (SNLP). 

Now we are going to show that the conditions on the parameters are 
also sufficient for (SNLP). Assume first that a = P > -112. Let 

J?'" (x) 
Rn (x) = J?@' (1) ' 

Then by (Koekeok and Swarttouw, 1998, (1.8.1)) (1.8.3)) the polynomi- 
als satisfy 

Hence by Corollary 5.2 the polynomials satisfy (SNLP). 
Assume now that a > ,8 > -1 and a + p > 0. Let pn(x) denote the 

monic version of Jacobi polynomials, i.e., let 

By (Askey, 1970) the polynomials pn satisfy the assumptions of Corollary 
5.2 if a + P 2 1. Hence they satisfy (SNLP). 

We have to consider the remaining case when a > P > -1 and 
0 5 a + ,!3 < 1. By (6.1) we have 

These numbers satisfy the assumptions of Corollary 5.3 for a 2 /3 and 
0 5 a + ,B 5 1. Indeed, observe that for n > 0 we have 
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and 

These calculations are valid only for n > 0, because a0 = 0 does not 
coincide with (6.2). The formulas (6.2) and (6.4) show that an is non- 
decreasing and yn is nonincreasing when a + P 5 1. Both sequences 
tend to i. This gives the conditions (ii) and (iv) of Corollary 5.3. The 
formula (6.5) shows that an + yn is nondecreasing for n > 0, regardless 
the sign of ap. This and the fact that an is nondecreasing imply 

Thus the condition (iii) of Corollary 5.3 is satisfied for 0 < m < n - 1. 
It remains to show the condition (iii) for m = 0, i.e. 

By (6.2) and (6.4) the above inequality is equivalent to the following. 

Observe that the left hand side of (6.6) is a decreasing function of a - P. 
Therefore we can assume that a - P attains the maximal possible value, 
i.e., p = -1. Let /3 = -1 and x  = 2n+a+P+1. Then x  2 2+a+P+1> 
3. The left hand side of (6.6) can be now written as follows. 

- (a+  1)2 + (a+ 1)2 - 1  (a - 1)2 - 1  ( a -  1I2 - 1  - 
x + l  x + 2  x  - 2  

+ 
x - 1  

- - 4  - (a + q2 - (a - 1)2 
( x - 2 ) ( x + 2 )  ( x + l ) ( x + 2 )  ( x - l ) ( x - 2 )  

- 4  - 4  4  - (a + 1)2 (a - 1)2 + 
( x - 2 ) ( x + 2 )  ( x + l ) ( x + 2 )  ( x + l ) ( x + 2 )  ( x - l ) ( x - 2 ) .  
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The first two terms of the last expression give a positive contribution to 
the sum because x > 2. Hence it suffices to show that 

Note that a - 1 2 0 (as /3 = -1). Thus a + 1 2 2 and 4 - (a + 1)2 5 
0. Hence the left hand side of (6.7) is a nondecreasing function of x. 
Therefore we can verify (6.7) only for the smallest value of x, that is for 
x = 2 + a + ,G' + 1 = 2 + a. Under substitution x = 2 + a the inequality 
(6.7) takes the form 

After simple transformations it reduces to 

which is true because a is nonnegative. Summarizing, Corollary 5.3 
yields that for a > P and 0 5 a + P 5 1 we get (SNLP). 0 
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Abstract Many results in Mathematical Analysis seem to come from some "ob- 
vious" computations. For a few years, we have been interested in the 
analytic theory of linear q-difference equations. One of the problems we 
are working on is the analytical classification of q-difference equations. 
Recall that this problem was already considered by G. D. Birkhoff and 
some of his students ((Birkhoff, 1913), (Birkhoff and Giienther, 1941)). 
An important goal of these works is to be able to derive transcendental 
analytical invariants from the divergent power series solutions; that is, 
to be able to define a good concept of Stokes' multiplier for divergent 
q-series! Very recently, we noted ((Zhang, 2002), (Ramis et al., 2003)) 
that this problem can be treated in a satisfactory manner by a new 
summation theory of divergent power series through the use of Jaco- 
bian theta functions and some basic integral calculus. The purpose of 
the present article is to explain how much 'Lobvious" this mechanism 
of summation may be if one practises some elementary calculations on 
q-series. It would be a very interesting question to understand (Di Vizio 
et al., 2003) whether Ramanujan's mysterious formulas are related to 
this transcendental invariant analysis. . . 

The article contains four sections. In the first section, we explain how 
to use the theta function for giving a q-integral representation which 
remains valid for the sum function of every convergent power series. I t  is 
this integral representation which leads us to a new process of summation 
of divergent series. Some identities then follow on the convergent power 
series, in the spirit of a Stokes analysis: the convergence takes place only 
in spite of the Stokes phenomenon! 

O 2005 Springer Science+Business Media, Inc. 
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It is well known that every basic hypergeometric series 2 9 0  is formal 
limit of a family of 291's. In (Zhang, 2002), we have applied the new 
summation method to this divergent power series 290. In the third 
section of our present article, we prove that each sum of 2 9 0  is exactly 
the limit of an associated family of 2 9 1  while the parameter tends to 
infinity following a q-spiral. 

In the last section, we give a remark about the Euler's I? function. The 
best known q-analog of I? is certainly the Jackson's I', (Askey, 1978), 
which satisfies a first order q-difference equation deduced from the fun- 
damental equation of I?. This q-difference equation has a formal Laurent 
series solution that is divergent everywhere in @ (Zhang, 2001). Using 
a summation formula of Ramanujan for and the above-mentioned 
summation method, one gets a new q-analog of I? which is meromorphic 
on @*. 

Some basic notations. In the following, q denotes a real number in 
the open interval (0,l) and some notations of the book (Gasper and 
Rahman, 1990) will be used. For example, if a E @, we set (a; q)o = 1, 

for a l ,  . . . , ae E (C, we set: 

To each fixed X E C*, we associate its so-called q-spiral [A; q] by setting 
XqZ = [A; q] = {Xqn : n E Z). If A, p E @*, the following conditions are 
equivalent: 

1. How to get the sum of a power series by 
means of 8 

Let us denote by 04(x) or more shortly O(x) the theta function of 
Jacobi, given by the following series: 

Jacobi's triple product formula says that: 
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from this, it follows that O(x) = 0 if and only if x E [-1; q]. Recall 
also that 6' verifies the fundamental equation O(x) = xO(qx) or, more 
generally, 

6' (qnx) = q- n(n-1)/2 X -n 6'b) (1.1) 
for any n E Z. 

Consider any given power series f = C anxn with complex coeffi- 
n20 

cients and let X be an arbitrary nonzero complex number. Suppose 
the radius R of convergence of f is > 0. It is obvious that the 
product f (x)O(X/x) defines an analytical function in the truncated disc 
0 < 1x1 < R. From direct computations, one obtains the following iden- 

where c p f  denotes the entire function, depending upon f ,  defined as 
follows: 

n20 
It is useful to note that for any B > 1/R, there exists C > 0 such that 

According to (Ramis, 1992), the function c p f  is said to  have a q-exponential 
growth of order (a t  most) one at infinity. 

Let C{x) be the ring of all power series that converge near x = 0 and 
Eq;1 the set of all entire functions having at most a q-exponential growth 
of order one at infinity. 

Proposition 1.1. The map f I+ c p f  given in (1.3) establishes a bijection 
between C{x) and IEq;1. 

More precisely, i f  cp = c p f ,  f E C{x) and i f  R > 0 is the radius of 
convergence o f f ,  then the following assertions hold. 

1. For any 0 < r < R, let C& be the counterclockwise-oriented circle 
centered at the origin and of radius r ,  then 

2. For any X E C*, the following q-integral 
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defines an analytical function which is equal to the sum of the 
convergent power series f in the open disc 0 < 1x1 < R minus the 
points of the set (-AqZ) (i.e., the q-spiral [-A; q] ) .  

Accordingly, one can obtain the sum of a convergent power series 
by the following process: 

Proof. Applying Cauchy's formula to cpf gives the growth of its coeffi- 
cients, from which we deduce that the map f H cpf is surjective (see 
(Ramis, 1992)). It is obvious that this map is also injective. Note that 
the q-integral representation of 1.1 is a reformulation of the identity 
(1.2), while the formula (1.4) follows directly from Cauchy. 0 

According to (Zhang, 2002) and (Ramis and Zhang, 2002), we shall 
denote by $;l f the power series ipf of (1.3) and by ,CF1cp the q-integral 

-. 

of (1.5). It is important to remark that the convergence of ,C$F1cp de- 
pends only on the asymptotic behaviour of the function cp(J) as J goes 
to co along the q-spiral [A; q]. So, let H z 1  be the set of analytic func- 
tion germs at the origin that can be analytically continued to a function 
having a q-exponential growth of order one at infinity in a neighborhood 
of [A; q]. Here we call neighborhood of [A; q] any domain V c @ such 
that there exists a neighborhood U of X in @* for which the inclusion 
{Jqn : ,$ E U, n E Z) C V holds. It is essential to notice that Eq;1 c H!iql 
for every A E @*, the inclusion being strict. Therefore, the process (1.6) 
allows us to sum not only the convergent power series, but also any 
power series f̂  that can be transformed by f̂  H Bq;1f^ to be an element 
of w!:]. By definition, these power series f̂  are called [A; q]-summable, 

of sum ,C!; o $;l f̂  . Here one uses the notation " j" instead of " f" , be- 
cause the series under consideration is not necessarily convergent: one 
will have to distinguish a power series from "its sum(s)". 

In (Zhang, 2002), it is shown that the summation process f̂  + ,C2F1 o 

l?,;lf" can be applied to every formal power series solution of any q- 
difference equation if this equation is, in some sense, generically singu- 
lar. For example, all basic hypergeometric series zcpo(a, b; -; q, x) are 
summable by this method. For more details, see (Zhang, 2002) and 
(Ramis and Zhang, 2002). 
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2. Identities characterizing the convergence of a 
power series 

Let cp = cpf, f E C{x) (i.e., f is a convergent power series) and 
suppose R is the radius of convergence of f .  Since O(-1) = 0, putting 
X = 5 and x = -5 in (1.2) gives the following formula: 

which is valid for any 5 E C such that 151 < R. 
The equality (2.1) can be viewed as an identity characterizing the 

convergence of the power series f such that cp = cpf. Indeed, let cp be 
any analytical function known in a domain U of the form U = (5 E cC : 
I < (  < 1) U (5 E C* : -a < arg x < a), where a E (0, T). Suppose that 
cp has a q-exponential growth of order at most one at infinity. For each 
x E U such that -a < argx < a and 1x1 < R (for a suitable fixed real 
R > 0), we write 

Theorem 2.1. Let V f f ; ~  = (5 E C* : -a < argx < a, 151 < R). The 
function Acp i s  identically equal to  zero o n  the sector i f  and only 
i f  there exists a convergent power series f (i.e., f E C{x)) such that 
cp = (Pf. 

Proof. The "if" part has been explained at the beginning of this section. 
We shall prove the ('only if" part. 

For each S E (-a, a) ,  we note 

and we set, if x E D;: 

Since cp is holomorphic in U, the functions f b  can be glued into an 
analytic function on the sector 
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of the Riemann surface of the logarithm function. Let f be this function 
just constructed on V; by the theorem of residues, we get: 

for all x E By assumption, Ap(J) = 0 on hence, it follows 
that f can be identified to an analytical function in the truncated disc 
0 < 1x1 < R. We write again f for the latter function. By means of direct 
estimations for (2.2), one can check that f is bounded in a neighborhood 
of zero. Therefore, by Riemann's Removable Singularities Theorem the 
function f is holomorphic at the origin, i.e., f is the sum function of a 
convergent power series in the disc 1x1 < R. 

It only remains to verify that the Taylor expansion of p at zero co- 
incides with the power series p f .  To do this, one can use the following 
formula: 

for more details, see (Zhang, 2000). 0 

Now let's go back again to the formula (1.2) and let be given X E C*, 
p E (C*; one gets: 

(2.3) 
Recall that for any analytic function g given in an open disc 0 < 1x1 < r ,  
if C anxn is its Laurent series expansion, then the formula (1.2) can be 

nEZ 
extended in the following way: 

At the same time, the equality (2.3) takes the following form: 
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this implies: Vm E Z, 

So, VX E c*, Vp E c*, V€ E {0,1/2): 

The identity (2.5) is also a formula that characterizes the convergence 
of the power series f such that cp = pf  (= . I jq; l f ) .  Indeed, consider any 

function p E it may be noticed that p E F$iql for all p E C* close 
enough to A. The following result is essentially related to the PRINCI- 
PLE that the [A; q]-summation is a totally discontinuous mapping with 
respect to X unless the power series to sum has in fact a radius of con- 
vergence > O! 

Theorem 2.2. Let X E C* and consider a function p E d"pl. We 
have p E Eqil i f  and only if there exists p E @* such that [A; ql # [p; q], 

p E ~ k ; ~ ~  and that (2.5) holds for E = 0 and 112. 
9,l 

Proof. The identity (2.5) holds if, and only if, according to (2.3)-(2.4), 
we have the following: 

Remember that each integral ,CEiqlp defines an analytic function in the 
truncated disc 0 < 1x1 < R minus all points of the q-spiral [-A; q]. 

[A I Hence, neither ,Cq;F p nor c ~ F ~ ~  has singularity in the disc 0 < 1x1 < R. 
The proof may be completed by the Removable Singularities Theorem 
and the fact that ~ [ ~ ' l p  is asymptotic to the power series f such that 

A A 

p = Bq,l f ;  see (Zhang, 2002) and (Ramis and Zhang, 2002). 0 

It is obvious that the formulas (2.1), (2.5) can be extended to a very 
larger class of functions that may possess a singularity at zero; cf. (2.4). 
On the other hand, if we only restricted to the class of rational functions 
p = P/Q (P, Q E C[<]), the equalities (2.1) and (2.5) would give criteria 
on the divisibility of P by Q: what unexpected criteria (how to make 
them effective ?)! 



486 THEORY AND APPLICATIONS OF SPECIAL FUNCTIONS 

3. Confluence of 2 9 1  to 290 along a q-spiral 
For any a, b, c E C such that c @ q-N, we write 291(a, b; c; q; x), as in 

the book (Gasper and Rahman, 1990), the following Heine's series: 

If ab # 0 and alb 4 qZ, the sum of the power series 2cpl(a, b; c; q, x) can 
be analytically continued in the cut plane C \ [I, +GO) by the following 
formula, due to G. N. Watson: 

+ (" 
q)m e(-bx) 2 9 1  (b, bq/c; bq/a; q, 2) . 

(c, alb; q)m q-x)  
( 3 4  

Note that if c + GO, the series 291 (a, b; c; q, ct) converges termwise to 
avo(% b; -; q, t), where 

Unless a or b E q-N, the last power series is divergent for all t # 0 
and, according to Theorem 2.2.1 (Zhang, 2002), it is [A; q]-summable for 
all X E C* \ (-qZ). More precisely, let 2 fo(a, b; A, q, t) be the sum of 
290(a, b; - ; q, t) corresponding to the "path" [A; q] . By Theorem 2.2.1 
(Zhang, 2002), one has the following formula, which is similar to the 
above-mentioned one (3.1): 

Theorem 3.1. Let X E C* \ (-qZ). For all t E C* \ (-XqZ), one has: 

n-wx 

Remark that this Theorem has a "fast" proof: one verifies that the 
right side of (3.1) converges, as c = -7, rz E N, x = d and n -+ +GO, 

to the right side of (3.3); to do this, the following lemma is helpful. 
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Lemma 3.2. Let A, a E C* such that X $ [-I; q]. One has the following: 

lim ( - a w n ;  d m  a-n - e ( a 4  
n € N  (-Xq-n; q)m 
n+m ' 

Therefore, zf a, P,  y and 6 are four complex numbers such that a@ = 
Sy # 0, S $ [-I; q], y $ [-I; q], then the following limit holds: 

lim - 
n€N ( - ~ q - ~ ,  -SQ-~ 
n-+w ; d m  W) ' 

Proof. It suffices to notice that, for any n E N one has: 

Now, we shall give a "direct" proof of Theorem 3.1: it is helpful to 
understand in which way the formula (1.4) goes to its limit form after 
the confluence along a q-spiral. 

Proof of Theorem 3.1. Let n E N; thanks to the formula (1.2)) one has: 

where 

Next, one expands the function 2 9 1  a, b; -9; q, I at infinity by means ( ) 
of the formula (3.1). Hence, the integral of (3.6) gives the following: 

9 f n  (qmY 

which, together with the formula (3.5), leads to the conclusion of Theo- 
rem 3.1. 0 
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4. q-analogs of I' and summation of a basic 
bilateral series 

The Jackson's q-Gamma function 

satisfies the functional equation 

Letting x = qZ, this equation leads us to the following q-difference equai 
tion: 

(4 - l)y(qx) = (x - ~)Y(x ) .  (4.2) 

Put y = C anxn in (4.2); by checking the corresponding coefficients, 
n€Z 

one gets: 
1 

I t  follows that, if 1 - q @ qZ, then: 

In the rest of this paper, we suppose that 1 - q @ qZ. It is immediate 
to observe that if 1 - q E qZ, any formal solution will be convergent. 

Let's denote by Lj the Laurent series corresponding to a0 = 1: 

If n 3 -m, then ((1 - q)ql+n; q), = 0 ((q - ~ ) - ~ q - " ( ~ + ' ) / ~ ) ;  it fol- 
lows that the polar part of G(x) is divergent in G everywhere. Recall 
that the summation method described in (1.6) is valid for power series. 
Now one extends this method to the Laurent series Lj in the following 
way (see (2.4)): 
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where X E @* \ ((q - l)qZ). 

Lemma 4.1. For all P $ q-N, one has: 

Proof. It suffices to use Ramanujan's summation formula for (cf 
(Gasper and Rahman, 1990), page 126, (5.2.1)), noticing also the fact 
that 

In particular, the following identity holds: 

If n E Z and X E (C* \ (q - l)qz, one gets, from the formula (1.1): 

from this and Lemma 4.1 one deduces that 

- - (9; q)m (A) 
( 1  - d l  x q )  ,g (;) ,g (A) ' 

1-q 

If x = q, one verifies without difficulties that 

hence we are ready to state the following result. 



490 THEORY AND APPLICATIONS OF SPECIAL FUNCTIONS 

Theorem 4.2. Consider the formal solution f (q ;  z )  = ( 1  - q; q),ij (qZ)  
of the equation (4.1). One has 

and the series f'(q; z )  is [A; q]-summable i n  the variable qZ for all X E 
C \ (q  - l )qz,  with sum: 

L!:' 0 $; I f  (q; z )  = (1  - q) (4; 4 )m ' ( A ) B  (&q-') 
(qZ; dm 0 (a) 0 pq-~ )  ' 

1-9 

When q tends to  1, the following limit holds: 

for all z E C \ (0, -1, -2,. . . ), the convergence being uniform on every 
compact subset of C \ (0 ,  -1, -2,. . . ). 

Proof. I t  only remains to check the limit, which can be deduced from 
the following formulas (see (Askey, 1978)): 

lim (4; 4 ) s ~  ( 1  - q)l-a = qa), 0 ( q a 4  lim - - - xb-a, 
q+l- 0 (qbx) q--tl- (qa; qIm 

lim 0 ( ( 1  - q)qax) (1  - p)a-b = xb-a. 

g-1- 0 ( ( 1  - q)qbx) 
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