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Preface

This volume, “Theory and Applications of Special Functions,” is ded-
icated to Mizan Rahman in honoring him for the many important con-
tributions to the theory of special functions that he has made over the
years, and still continues to make. Some of the papers were presented at
a special session of the American Mathematical Society Annual Meeting
in Baltimore, Maryland, in January 2003 organized by Mourad Ismail.

Mizan Rahman’s contributions are not only contained in his own pa-
pers, but also indirectly in other papers for which he supplied useful and
often essential information. We refer to the paper on his mathematics
in this volume for more information.

This paper contains some personal recollections and tries to describe
Mizan Rahman’s literary writings in his mother tongue, Bengali. An
even more personal paper on Mizan Rahman is the letter by his sons,
whom we thank for allowing us to reproduce it in this book.

The theory of special functions is very much an application driven
field of mathematics. This is a very old field, dating back to the 18th
century when physicists and mathematician were looking for solutions
of the fundamental differential equations of mathematical physics. Since
then the field has grown enormously, and this book reflects only part of
the known applications.

About half of the mathematical papers in this volume deal with ba-
sic (or ¢-) hypergeometric series—in particular summation and trans-
formation formulas—special functions of basic hypergeometric type, or
multivariable analogs of basic hypergeometric series. This reflects the
fact that basic hypergeometric series is one of the main subjects in the
research of Mizan Rahman. The papers on these subjects in this volume
are usually related to, or motivated by, different fields of mathematics,
such as combinatorics, partition theory and representation theory. The
other main subjects are hypergeometric series, and special functions of
hypergeometric series, and generalities on special functions and orthog-
onal polynomials.
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The papers in this volume on basic hypergeometric series can be sub-
divided into three groups: (1) papers on identities, such as integral rep-
resentations, addition formulas, (bi-)orthogonality relations, for specific
sets of special functions of basic hypergeometric type; (2) papers on
summation and transformation formulas for single or multivariable ba-
sic hypergeometric series; and (3) papers related to combinatorics and
Rogers-Ramanujan type identities. Some of the papers in this volume
fall into more than just one class.

In the first group we find the two papers by Gasper and Rahman;
one on g-analogs of work of Tratnik on multivariable Wilson polynomi-
als yielding multivariable orthogonal Askey-Wilson polynomials and its
limit cases and the other paper on g-analogs of multivariable biorthogo-
nal polynomials. The paper by Ismail and R. Zhang studies the g-analog
&, of the exponential function, giving, amongst other things, new proofs
of the addition formula and its expression as a spi-series. They also
present new derivations of the important Nassrallah-Rahman integral,
and connection coefficients for Askey-Wilson polynomials. Koornwinder
gives an analytic proof of an addition formula for a three-parameter sub-
class of Askey-Wilson polynomials in the spirit of the Rahman-Verma
addition formula for continuous g-ultraspherical polynomials. Stokman’s
paper simplifies previous work of Koelink and Stokman on the calcula-
tion of matrix elements of infinite dimensional quantum group represen-
tations as Askey-Wilson functions for which Rahman has supplied them
with essential summation formulas. He uses integral representations for
these matrix elements and shows how this can be extended to the case
lgl = 1. Stokman’s paper and Rahman’s summation formulas are the
motivation for Rosengren’s paper using Stokman’s method to extend
Rahman’s summation formulas. The paper by Abreu and Bustoz deals
with completeness properties of Jackson’s third (or the 1¢1) g-Bessel
function for its Fourier-Bessel expansion.

In the second group of papers on summation and transformation for-
mulas for (multivariable) basic hypergeometric series we have the above
mentioned short paper by Rosengren giving summation formulas in-
volving bilateral sums of products of two basic hypergeometric series.
Schlosser derives bilateral series from terminating ones both in the sin-
gle and multivariable case. Multiple transformation formulas using the
g-Pfaff-Saalsciitz formula recursively are obtained by Chu. Kadell dis-
cusses various summation formulas as moments for little g-Jacobi poly-
nomials, and extends this approach to non-terminating cases of these
summation formulas.

The papers in the third group present some connections between ba-
sic hypergeometric series and, number theory and combinatorics, es-
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pecially Rogers-Ramanujan type identities and the partition function.
Andrews discusses two-variable analogs of the Gaussian polynomial and
finite Rogers-Ramanujan type identities. In the paper by Berndt, Chan,
Chan and Liaw the crank of partitions and its relation to entries in Ra-
manujan’s notebooks are discussed. The paper by Chu also shows how
the multiple transformation formulas yield multiple Rogers-Ramanujan
type identities.

In this volume there are two papers that deal mainly with hyper-
geometric series. The paper by Stanton gives cubic and higher order
transformation and summation formulas for hypergeometric series by
splitting series up as a sum of r series, presenting g-analogs as well. The
paper by Groenevelt, Koelink and Rosengren is solely devoted to hyper-
geometric series. The paper contains a summation formula where the
summand involves a product of two Meixner-Pollaczek polynomials and
a continuous dual Hahn polynomial. Then a Lie algebraic interpretation
gives a transformation pair involving non-terminating s Fa-series, which
is proved analytically.

There are four papers that deal with aspects of the general theory
for special functions and orthogonal polynomials and related subjects.
Suslov’s paper discusses a version of the Cauchy-Hadamard theorem giv-
ing the maximum domain of analyticity of expansions of functions into
orthogonal polynomials of basic hypergeometric type. Szwarc discusses
nonnegative linearization for both orthogonal polynomials and its asso-
ciated polynomials, and shows the equivalence to a maximum principle
for a canonically associated discrete boundary value problem. In Ruijse-
naars’s paper the L2-asymptotics of orthogonal polynomials on [~1, 1]
having a c-function expansion as the degree tends to infinity is given
explicitly with an exponentially decaying error term. The paper by C.
Zhang deals with summation methods involving Jacobi’s theta function,
which gives a summation method for divergent series. This is applied
to the confluence of o¢1-series to apg-series, and a new g-analog of the
I’-function.

The remaining papers do not fit into the scheme given above. Using
basic hypergeometric series, Berg gives direct proofs of some results on
distributions for exponential functionals of Lévy processes. In particular
he obtains the corresponding Laplace and Mellin transforms, which have
been previously obtained by different methods from stochastic processes.
Clarkson discusses polynomials that occur in relation to rational solu-
tions of the second, third and fourth Painlevé equations, in particular
the Yablonskii-Vorob’ev, (generalized) Okamoto and generalized Her-
mite polynomials, and he demonstrates experimentally that the zeroes
of these polynomials behave in a very regular fashion. DeDeo, Martinez,
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Medrano, Minei, Stark and Terras study IThara-Selberg zeta functions
of Cayley graphs for the Heisenberg group over certain finite rings, and
discuss a corresponding Artin L-function.

This book was prepared at the University of South Florida. Denise
Marks put the book together and handled all correspondence and the
galley proofs. We thank Denise for all she has done for this project.
Working with Denise is always a pleasure.

We take this opportunity and thank all the speakers and participants
in the American Mathematical Society Special Session, all the contribut-
ing authors, and the referees, in making this book a worthy tribute to
Mizan Rahman.

Orlando, FL, and Delft, Mourad E.H. Ismail
July 2004. Erik Koelink
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Mizan studied at the University of Dhaka where he obtained his B.Sc.
degree in mathematics and physics in 1953 and his M.Sc. in applied
mathematics in 1954. He received a B.A. in mathematics from Cam-
bridge University in 1958, and a M.A. in mathematics from Cambridge
University in 1963. He was a senior lecturer at University of Dhaka from
1958 until 1962. Mizan decided to go abroad for his Ph.D. He went to
the University of New Brunswick in 1962 and received his Ph.D. in 1965
with a thesis on Kinetic Theory of Plasma using singular integral equa-
tions techniques. After obtaining his Ph.D., Mizan became an assistant
professor at Carleton University, where he spent the rest of his career.
He is currently a distinguished professor emeritus there.

In this article we mainly discuss some of Mizan’s mathematical re-
sults which are the most striking and influential, at least in our opinion.
Needless to say, we cannot achieve completeness since Mizan has written
so many interesting papers. The reference item preceded by CV refer to
items under “Publications” on Mizan’s CV while the ones without CV
refer to references at the end of this article.

© 2005 Springer Science+Business Media, Inc,
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In the early part of his research career Mizan devoted some energy
to questions involving statistical distributions resulting in the papers
CV[5], CV]7] and CV][11]. Mizan spent the academic year 1972/73 at
Bedford College, of the University of London on sabbatical and worked
with Mike Hoare. In an e-mail to the editors, Hoare described how the
liberal arts atmosphere of Bedford, set idyllically in Regent Park was
well-suited for Mizan but the down side was that Physics at Bedford
was a small department and “there was little resonance in the heavily
algebracisized Mathematics Department under Paul Cohen.” He added
“This hardly seemed to matter, since we were both outsiders from what
was most fashionable at the time.”

Hoare’s original plan was to study a one-dimensional gas model known
as the Rayleigh piston, but his collaboration with Mizan went way be-
yond this goal. This resulted in CV[9] and CV[12]. Another problem
suggested by Hoare involved urn models which made them soon realize
that the urn models they were investigating were related to birth and
death processes and Jacobi and Hahn polynomials. The result of their
investigations are papers CV|[13], CV([17], and CV[18]. Some proba-
bilistic interpretations of identities for special functions were known, but
it was not an active area of research. The Hoare-Rahman papers dealt
with exactly solvable models where the eigenvalues and eigenfunctions
have been found explicitly. Such questions led in a very natural way to
certain kernels involving the Hahn and Krawtchouk polynomials. These
kernels were reproducing kernels which take nonnegative values. More
general bilinear forms involving orthogonal polynomials also appeared.
The question of positivity of these kernels became important and Mizan
started corresponding with R. Askey who, with G. Gasper, was working
on positivity questions at the time and they were very knowledgeable
about these questions. Through Askey and Gasper, Mizan Rahman was
attracted to the theory of special functions and eventually to g-series. He
mastered the subject very quickly and started contributing regularly to
the subject. Within a few years, Mizan had become a world’s expert in
the theory of special functions in general and g¢-series in particular. It is
appropriate here to quote from Mike Hoare’s e-mail how he described the
beginning of this activity. Mike wrote “After we had done some work on
... (Rayleigh Piston) ...I happened to mention a problem which I have
been worrying away at for some years. This disarmingly simple notion
arose from energy transfer in chemical kinetics (the Kassell model). Re-
formulated as a discrete ‘urn model,’ it corresponds to a Markoff chain
for partitioning balls in boxes in which only a subset are randomized in
each event. My eigenvalue solution for the simplest continuous case in
Laguerre polynomials led to probability kernels (which are) effectively
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the same as those seen in the formulas of Erdélyi and Kogbetliantz in the
1930°s special function theory.” He then added “Once Mizan’s interest
was stimulated, he was off and running, with the early series of abstract
papers you well know.” Mike Hoare echoed the feelings of those of us
who collaborated with Mizan when he wrote “To see Mizan at work was
an amazing experience. He seldom had to cross anything out and [in]
what seemed no time at all the sheets in his characteristically meticulous
script would be delivered with a modest little gesture of triumph.”

The Gegenbauer addition formula for the ultraspherical polynomials
was found in 1875. It says

Cy,(cos 8 cos ¢ + zsin @ sin )

= " 050 O CH (con ) sin ) O o )2y, (D)
k=0

where
_T@v-1) Tk +v)(n—k)!(2k+2v - 1) 5
ko (V) = (v) 4=k T(n + k + 2v) ' 2)

The continuous g-ultraspherical polynomials first appeared in the work
of L. J. Rogers from the 1890’s on expansions of infinite products, which
contained what later became known as the Rogers-Ramanujan identi-
ties. Their weight function and orthogonality relation were found in the
late 1970’s, (Askey and Ismail, 1983), (Askey and Wilson, 1985). Mizan
recognized the importance of these polynomials and, in joint work with
Verma, they extended the Gegenbauer addition formula to the continu-
ous g-ultraspherical polynomials. In CV[48] they proved

%8lq) = ZAM Cuet (00365 84" | 4) Crr. (<05 3 Ba")
ka( \/Bel(‘”@ VB9 \/Bee=0) \/Gem ’((’W)lq)

where A, (8) are constants which are given in closed form, and the
polynomial p,(z;a,b,c,d) is an Askey-Wilson polynomial. This result
led to a product formula for the same polynomials. At the time the
Rahman-Verma addition theorem was very surprising for two reasons.
Firstly, the variables 8 and ¢ appear in the parameters of the Askey-
Wilson polynomial. Even more surprising is the fact that the terms in
(3) factor in an appropriate symmetric way, since this factorization was
not predicted by any structure known at the time. Only later partial

explanations using representation theory of quantum groups have been
given (Koelink, 1997).

3)
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Askey (Askey, 1970) raised the question of finding the domain of
(e, B) within o > —1, 3 > —1 which makes the linearization coefficients
a(m,n, k) in

m+n
P,(La’ﬁ)(m)Pr(na’ﬁ) (1.) — Z a(m, n, k:)PISaaﬁ)(x)_ (4)
k=|m-n|

nonnegative. E. Hylleraas (Hylleraas, 1962) showed that the coefficients
a(m, n, k) satisfy a three-term recurrence relation, and showed that the
case @ = B+ 1 leads to a closed form solution, as was the case when
o = (. For other (o, 3) (except 8 = —%), the coefficients were repre-
sented as double sums, and this expression cannot be used for any of
the applications the writers know except for computing a few of the co-
efficients. In (Gasper, 1970a) and (Gasper, 1970b), G. Gasper used the
recurrence relation of Hylleraas to solve the problem of the positivity
of these coeflicients. Mizan started working on extending Gasper’s re-
sults to the continuous g-Jacobi polynomials, where the problem is much
more difficult. Rahman CV[27] identified a(m,n,k) as a ¢Fy function
and then used the g Fg-representation to prove the nonnegativity of the
linearization coefficients. Later Mizan CV|[30] used the same technique
to identify the g-analogue of a{(m,n, k) as a 109 and establish its non-
negativity for (o, §) in a certain subset of (-1, 00) X (—1, c0).

The linearization coefficients in (4) are integrals of products of three
Jacobi polynomials. Din (Din, 1981) proved that

1
/Pm(x)Pn(m)Qn(m)dm =0, for|m—n| <k<m+ n, (5)
-1

where {P,(z)} are Legendre polynomials and {Q,(z)} are Legendre
functions of the second kind. Askey, Koornwinder and Rahman CV|[50]
extended this to the ultraspherical polynomials. Rahman and Shah
CV|[39] summed the series, which is dual to (5), namely

o
F(0,0,9) =Y (n+ 1/2)Py(cos 0) Pa(cos 9)Qn(cos¥),  (6)
n=0
0 < 6,p,9% < w. They proved that F(0,¢,%) = 0 for |§ — o] < ¢ <
0+ <m but F(0,0,9)=AY2if o) < |0 — |, or 7 < 0 + ¢ < 27 and
0+@+1p < 2. On the other hand, F(8, p,%) = —AY2 if 1 > > 0+.
In the above

A = sin((6 + ¢ + %) /2) sin((0 + ¢ — ¥)/2)

x sin((0 — ¢ +1)/2) sin((p + ¢ — 6)/2). (7)
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They also extended it to the ultraspherical polynomials. In CV[40],
this was extended to the case where the sum involves a product of three
ultraspherical polynomials and an ultraspherical function of the second
kind. In CV[51], Rahman and Verma extended CV|[39] in a different
direction where it involved products of two g-ultraspherical polynomials
and a g-ultraspherical function.

The Askey-Wilson integral (Askey and Wilson, 1985) is

T . ;
(821'0, 6—210; q)oo "

1
0 [T (ake,are=; q),,
k=1

27 (ayaga3ay4; q)oo

(Do Il (ej0850)
1<j<k<4

This integral is an analogue of the beta integral and is the key ingredi-
ent in establishing the orthogonality of the Askey-Wilson polynomials.
Nassrallah and Rahman CV|[28] generalized this integral to what has
become known as the Nassrallah-Rahman integral, namely

< db

[T (are®®, axe=; g)o
=1

9
_ 2w (a102a30a4, a1aa3as5, agas, bay, bag, basz; q) ©)

B (¢, a102a3b;q9) o T1  (ajar;9),,
1<j<k<5

T . . . .
(62107 6—219, b6167 be—ze; q)
5
0
k

x sWr (a1a2a3b/q; araz, aras, asas, b/aq, b/as; a, asas) .

This is a very general extension of Euler’s integral representation of
the classical 9F) function. The sum (9) can be evaluated when b =
aiazazasas, and in this form it is an extension of (8). The integral
evaluation (9) is precisely what is needed to introduce biorthogonal ra-
tional function generalizations of the Askey-Wilson polynomials, which
was done by Mizan in CV[65]. In CV|[75], CV[80], CV[90] and CV|[91],
Rahman and Suslov gave evaluations of several sums and integrals using
the Pearson equation and quasi-periodicity of the integrand and sum-
mands. Earlier Ismail and Rahman CV/[76] used the quasiperiodicity to
evaluate, in closed form, certain series and integrals.

Ismail and Rahman CV([66] introduced and analyzed two families of
orthogonal polynomials which arise as associated Askey-Wilson polyno-
mials. This is the highest level in a hierarchy of associated polynomi-
als of classical orthogonal polynomials starting from the Askey-Wimp



6 THEORY AND APPLICATIONS OF SPECIAL FUNCTIONS

and Ismail-Letessier-Valent associated Hermite and Laguerre polynomi-
als from the mid-1980’s. The Askey-Wilson polynomials are birth and
death process polynomials, so their associated polynomials are also birth
and death process polynomials. The death rate at zero population, po,
is either zero or follows the pattern of u,. Each definition of pg leads
to a family of orthogonal polynomials. Surprisingly, thanks to Mizan’s
insight and amazing computational power, one can get not only closed
form representations for both families of polynomials, but also find the
orthogonality measures of both families explicitly. The closed form ex-
pressions represent the polynomials in terms of the Askey-Wilson basis
{(aeio,ae”ie;q)n}. The coefficients are 19p9. No other choice of g
leads to orthogonal polynomials where the coefficients of their expan-
sion in the Askey-Wilson basis is a single sum. The paper also gives a
basis of solutions to the recurrence relation satisfied by the polynomials.
Rahman and Tariq derived a Poisson and related kernels for associated
continuous g-ultraspherical polynomials in CV([86] and reproducing ker-
nels for associated Askey-Wilson polynomials in CV([88]. Earlier, Mizan
CV[78] found generating functions for the Askey-Wilson polynomials. In
CV[41] Mizan gave a g-analogue of Feldheim’s kernel (Feldheim, 1941)
which involves g-utraspherical polynomials. An integral representation
analogous to the Weyl fractional integral in Fourier analysis is in CV[99].

Recall the notation f(z) = f(z), where z = (z+271) /2, and the
Askey-Wilson operator

“(ql/QZ) _ ]F(q—l/Qz)
D = 10
( Qf) (CII) g (q1/2z) ¢ (q‘l/zz) ’ ( )
where e(z) = x. Ismail raised the question of finding Dq“l, a right

inverse to Dy on different L? spaces weighted by weight functions of
different classical g-orthogonal polynomials. In CV[79] Ismail, Rahman
and Zhang found an integral representation for D 1 on L? weighted by
the weight function of the continuous ¢g-Jacobi polynomials. They then
proved that the spectrum of the compact operator D 1 is discrete and
described completely the eigenvalues and eigenfunctions. This led to a
generalization of the plane wave expansion in (Ismail and Zhang, 1994).
Ismail and Rahman CV[100] found an integral representation of D!
on L? weighted by the Askey-Wilson weight function. The kernel in
this integral representation turned out to be very simple and all the
complications are absorbed in a constant.

Mizan has served the mathematical community very well. He is a reg-
ular referee for many mathematics and physics journals. He co-organized
a major meeting on special functions at the Fields Institute in Toronto
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in 1994 and co-edited its proceedings. One of the most important ways
a mathematician can serve is in writing books which are needed. Gasper
and Rahman (Gasper and Rahman, 1990) did this, and a second edi-
tion will appear shortly. The new edition will not only have more on
g-series, but will contain a chapter on new work on elliptic hypergeomet-
ric series (Frenkel and Turaev, 1997), a very interesting new extension
of hypergeometric and basic hypergeometric series. This extended the
earlier trigonometric case in (Frenkel and Turaev, 1995). The Gasper-
Rahman book also contains a treatment of the 19¢9 biorthogonal rational
functions CV[65] and its elliptic extensions. The book started because,
according to George Gasper “Mizan was tired of having to repeatedly
search papers for known formulas involving basic hypergeometric func-
tions that were not contained in the books by Bailey or Slater.” Mizan
then suggested that he and Gasper should write an up-to-date book on
basic hypergeometric functions. A first outline of this book dates back
to 1982. Their book has become a much-cited classic, and Mizan and
George have rendered the mathematical community a great service in
writing this book.

Not only did Mizan co-author the definitive book on ¢-series, but he
also wrote valuable review articles CV[64}, CV[87], CV[97] and CV[98].
To the best of our knowledge, CV[98] is the first article which collects
all the recent developments on associated orthogonal polynomials, which
makes it a very valuable reference and teaching source.

Mizan’s scientific contributions have been recognized and acknowl-
edged. Part of his dissertation was included in a book on gases and
plasmas by Wu (Wu, 1966). A special session was held in his honor at
the the annual meeting of the American Mathematical Society held in
Baltimore, Maryland. The session was well attended and highly success-
ful. Several speakers expressed their mathematical debt to Mizan and
noted his generosity with his ideas. He has helped younger mathemati-
cians with suggestions and specific ideas on how to overcome certain
hurdles and would not have his name as a joint author of the resulting
paper(s). Mizan’s contributions are well-appreciated by people working
in special functions and related areas. R. W. (Bill) Gosper put it well
when he wrote on April 7, 2004 “I can’t begin to estimate Mizan Rah-
man’s prowess as a g-slinger. All I know is that he alone could ‘¢’ any
hypergeometric identity that I could find. Sometimes the ¢g-form was so
unimaginable that I would have bet money there was none.” He then
added “And yet the memory that stands out was not a ¢. I exhibited to
the usual gang of maniacs a really mysterious-looking infinite trig prod-
uct identity, dug up with Macsyma. It wasn’t even obvious that the nth
term converged to 1. And that gentle man completely stung me with a
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reply that began, “Since this identity is rather elementary, let us prove
the more general result .... That’s when you know you're in the Big
Leagues.”

Mizan serves on the editorial board of an international journal Inte-
gral Transforms and Special Functions. He was been elected fellow of
the Bangladesh Academy of Sciences in 2002. Since his retirement in
1996, Mizan has been a Distinguished Professor Emeritus at Carleton
University.

Apart from papers in mathematics, Mizan has several publications
in Bengali. He writes essays for several Bengali magazines, such as
Parabaas, Dehes-Bideshe, Porshi, Natun Digonto, Probashi, Aamra,
Obinashi Shobdorashi and Aakashleena on a regular basis. These essays
are personal and dwell on the immigration experience, and are compara-
tive studies of lifestyles, ethics and values in the societies of Bangladesh
and India compared to the American and Canadian societies. Subjects
that Mizan addresses cover raising children in a proper humanistic value
system, and the problems that aging immigrants face. According to
one of the editors, Samir Bhattacharya, his articles drew overwhelming
response of appreciation from the readers, because “the language has
an apparent simplicity, but is often lyrical and extremely touching, rea-
soning is clear—but above all, a deep humanism and his simplicity and
integrity shine through,” and, as Mr. Bhattacharya says: “I will publish
any article from him any time.”

Mizan Rahman has also published several books in Bengali; “Tirtho
Aamar Gram” (My Village is My Pilgrimage), “Lal Nodi” (Red River) a
collection of 25 of his essays, “Proshongo Nari” on women and “Album.”
He has been awarded for his contributions several times, including an
Award for Excellence, a Best Writer Award, Award for Contributions to
Bengali literature by several organizations in North America.
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77. “On the classical orthogonal polynomials” (with N.
M. Atakishiyev and S. K. Suslov), Constructive Ap-
prozimation 11 (1995), 181-226.

78. “Some generating functions for the associated Askey-
Wilson polynomials,” J. Comp. Appl. Math. 68 (1996),
287-296.

79. “Diagonalization of certain integral operators II” (with
M. E. H. Ismail and R. Zhang), J. Comp. Appl. Math.
68 (1996), 163-196.

80. “A unified approach to the summation and integra-
tion formulas for basic hypergeometric series I” (with
S. K. Suslov) J. Stat. Planning and Inference 54
(1996), 101-118.

81. “An integral representation of the very-well-poised
gg series,” CRM Proceedings and Lecture Notes 9
(1996), 281-288.

82. “Singular analogue of the Fourier transformation for
the Askey-Wilson polynomials” (with S. K. Suslov),
CRM Proceedings and Lecture Notes 9 (1996), 101-
118.

83. “Some cubic summation and transformation formu-
las,” The Ramanujan Journal 1 (1997), 299-308.

84. “Some summation theorems and transformation for-
mulas for g-series” (with M. E. H. Ismail and S. K.
Suslov), Can. J. Math. 49 (1997), 543-567.

85. “Enumeration of the k-poles” (with Z. Gao), Annals
of Combinatorics 1 (1997), 55-66.

86. “Poisson kernel for the associated continuous g-ultraspherical
polynomials” (with Q. Tariq), Methods and Applica-
tions of Analysis, 4 (1997), 77-90.

87. “The g-exponential functions, old and new,” Proceed-

ings of the Dubna Conference on Integrable Systems,
(1994).

88. “A projection formula and a reproducing kernel for
the associated Askey-Wilson polynomials” (with Q.
M. Tariq), Int. J. Math. and Stat. Sc. 6 (1997), 141-
160.
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89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

“The g¢-Laguerre polynomials and related moment
problems” (with M. E. H. Ismail), J. Math. Anal
Appl. 218 (1998), 155-174.

“A unified approach to the summation and integra-

tion formulas for basic hypergeometric series I1” (with

S. K. Suslov), Methods and Applications of Analysis

5 (1998), 399-412.

“A unified approach to the summation and integra-

tion formulas for basic hypergeometric series ITI” (with
S. K. Suslov), Methods and Applications of Analysis

5 (1998), 413-424.

“A g-extension of a product formula of Watson,” Ques-
tiones Mathematicae 22(1) (1999), 27-42.

“Addition formulas for g-Legendre type functions”
(with Q. M. Tariq), Methods and Applications of Anal-
ysis 6 (1999), 3-20.

“Quadratic g-exponentials and connection coefficient
problems” (with M. E. H. Ismail and D. Stanton),
Proc. Amer. Math. Soc. 127 (1999), 2931-2941.

“A g-analogue of Weber-Schafheitlin integral of Bessel
functions,” The Ramanujan Journal 4 (2000), 251—
265.

“A g-analogue of a product formula of Bailey and
related results,” in Special Functions, C. Dunkl, M.
E. H. Ismail and R. Wong (eds.), World Scientific
Publishing Co. (2000), pp. 262-281.

“The amazing first order linear equation,” Ganita 51
(2000), 1-23.

“The associated classical orthogonal polynomials,” in
Special Functions 2000, J. Bustoz, M. E. H. Ismail
and S. K. Suslov (eds), Kluwer Academic Publishers,
(2001), pp. 255-280.

“Inverse operators, g-fractional integrals and g-Bernoulli
polynomials” (with M. E. H. Ismail), J. Approz. The-
ory 114 (2002), 269-307.

“An inverse to the Askey-Wilson operator” (with M.
E. H. Ismail), Rocky Mount. J. Math. 32 (2002), 657
678.
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3. Professional activities

(i) Referee: I have refereed many papers for SIAM J. Math.
Anal., Proc. Amer. Math. Soc., J. Math. Phys., Can. J.
Math., Rocky Mtn. J. Math., Journal of Approzimation
Theory, Indian J. Math. and Ganita.

(ii) Review: I have reviewed a fairly large number of papers
for Mathematical Reviews since 1977.

(iii) Workshops: I was one of the three organizers of the 2-
week workshop on “g-Series, Special Functions and Re-
lated Topics”, June 12-23, 1994, in Toronto under the
auspices of the Fields Institute.

(iv) Invited talks:

(1) Special session on orthogonal polynomials at the Uni-
versity of Michigan, Ann Arbor, Mich., Aug. 1980.
(AMS summer meeting)

(2) Canadian Math. Soc. Winter meeting in Victoria,
Dec. 10-12, 1981.

(3) Special meeting on Group Theory and Special func-
tions at the Mathematical Institute at Oberwolfach,
Germany, Mar. 13-19, 1983.

(4) Canadian Math. Soc. Summer meeting in Edmonton,
June 21-23, 1984.

(5) International symposium on orthogonal polynomials
and their applications, in Bar-le-Duc, France, Oct.
15-18, 1984.

(6) AMS meeting in Laramie, Wy., Aug. 11-15, 1985.

(7) AMS annual meeting at San Antonio, Texas in Jan.
1986.

(8) Gave a short course on Special Functions at the Re-

search Institute in the University of Montreal in April—
May 1986.

(9) Ramanujan centennial meeting at the University of
Illinois, Urbana-Champaign, Aug. 1987.

(10) Ramanujan Birth Centennial Symposium on classical
Analysis in Pune, India, Dec. 26-28, 1987.

(11) CMS summer meeting, June 1988.
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(12) A 3-hour short course on g¢-series at the NATO Ad-
vanced Studies Institute on “Orthogonal Polynomi-
als and their Applications,” in Columbus, Ohio, May
22—-June 3, 1989.

(13) SIAM 40th Anniversary Meeting in Los Angeles, July
20-29, 1992,

(14) Meeting on Difference equations in Integrable sys-
tems in Esterel, organized by Centre de Recherches
Mathématiques of the University of Montredl, 1993.

(15) Meeting on Integrable Systems at Dubna, Russia,
Summer 1994.

(16) International Workshop on Special Functions, Asymp-
totics, Harmonic Analysis and Mathematical Physics
in Hong Kong, June 21-25, 1999.

(17) Centennial Mathematical Conference in Lucknow Uni-
versity, India, invited as the chief guest, December 31,
1999-January 4, 2000.

(18) Nato Advanced Study Institute Special Functions 2000:
Current Perspective and Future Directions at Ari-
zona State University, Tempe, AZ, May 29-June 9,
2000.

(19) AMS Annual Meeting at Baltimore, January 15-18,
2003: Special Session on Orthogonal Polynomials and
Special Functions.

(v) Editorial Activities:
(a) Member of the Editorial Board of the journal: “Inte-

gral Transforms and Special Functions: An Interna-
tional Journal.”

(b) From time to time I have lent a hand to Richard
Bumby, the editor of the Problem Section of the AMS
Math. Monthly.

(vi) Review of Grant Applications:

u [ have reviewed some grant applications for NSERC,
NSF and Austrian Math. Society.
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4. Books:

= “Basic Hypergeometric Series” by G. Gasper and M. Rah-
man, published by Cambridge University Press in 1990.

®  “Special Functions, ¢-Series and Related Topics,” Fields
Institute Communications, AMS (1997), edited by M. E.
H. Ismail, D. Masson and M. Rahman.

5. Chapters in edited books:

m Part of Chapter 6 of “Kinetic Equations of Gases and
Plasmas” by Ta-You Wu, (Addison-Wesley, 1966), specif-
ically pp. 187-193, is based on my Ph.D. thesis.

6. Recent Grants:
m NSERC grant: $20,000 per year for three years, 1989—
1992.

s NSERC grant: $20,000 per year for four years, 1992-
1996.

» NSERC grant: $18,000 per year for five years, 1996-2000.

» NSERC grant: $12,000 per year for four years, 2000—
2004.

7. Award and Honours:

m  Scholarly Achievement Awards: 1980, 1983, 1986, 1988.
m Teaching Award: 1986.

m Election to a Fellowship of Bangladesh Academy of Sci-
ence, 2003.

8. Bengali Literature:
i Publications (All in Bengali):
1. Tirtho Amar Gram (1994).
2. Lal Nodi (2001).
3. Proshongo Nari (2003).
4. Album (2003).

i1 Awards:

1. Award of Excellence from Bangladesh Publications
(Ottawa) in 1996.
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2. Best Writer Award from Deshe Bideshe (by Readers’
choice) in 1998.

3. Outstanding Achievement Award from Ottawa-Bangladesh
Muslim Society in 2000.

4. Award for Contributions to Bengali Literature in North
America from Bongo Shomyelon in 2002.
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Dr. Mizanur Rahman — A personal anecdote ...

Dr. Mourad Ismail asked me to write a brief bio about my father,
Dr. Mizanur Rahman. It will probably be more personal and emotional
than factual. But what did you expect from a son? This bio will be for
a collection of articles dedicated to him.

Apparently, the last book that Dad co-authored with Dr. George
Gasper has been called a ‘bible’ in its field of Basic Hypergeometric
Series. So, one would think that Dr. Rahman is a man of no small
repute. So, why can I only think of him as my simple father?

Dad was born in Dhaka, Bangladesh. Most of the family originated
from a small village called Hasnabad. He was the eldest of 5 boys and
4 girls. From the very beginning, he was responsible for taking care of
most of his siblings, with some help from the two older sisters. Our
grandmother was a homemaker, and our grandfather was a head clerk
in the public service, working as the assistant to the District Magistrate.
In spite of their humble status, my grandparents were firm believers in
the power of education. So, they made sure that Dad went to school
everyday (well, most days ...), did his homework, and studied for the
tests. Passing with flying colours was his responsibility, and that he did.

Dad was one of the few who finished a double major in Math and
Physics. His major was actually Physics, and the minor was supposed
to be Biology or Chemistry. However, he disliked both. So, the univer-
sity provided an option that they felt would be impossible one: if you
don’t want to minor in the other fields, then you would have to do a dou-
ble major. Dad did, and earned the University medal for outstanding
academic achievement! After Dhaka University, it was on to Cambridge
in 1956. From what little we know of this time, it sounded like an ex-
tended field trip, with even a brief sojourn in Spain. If only grad school
were this difficult all the time!

Dad married Parul Shamsun Nahar in July 1961. The marriage was
partially arranged by a friend of his good friend, who also happened to
be Mom’s brother. After a wonderful boat trip from Karachi to London,
they flew to Fredericton, New Brunswick in 1962. Dad was a grad stu-
dent and a lecturer at the same time there. In 1965, he took a position
in the Department of Mathematics and Statistics at Carleton Univer-
sity in Ottawa. This was the start of a long and successful career in
teaching and research. Both of us brothers were born in Ottawa. Life
had a comfortable and predictable rhythm to it. Dad left very early in
the morning to go to work, regardless of the weather. And at night, we
would run to greet him at the door. Every so often, Dad would take
us to his office. This was a special treat for us two kids. We could see
most of Ottawa from Dad’s office — but the best part was eating those
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little sugar cubes that Dad used in his coffee. Especially fascinating
was the prodigious amount of books, papers, reviews and miscellaneous
stuff that Dad managed to cram into every available nook and cranny.
Another ‘perk’ of working in academia was the sabbatical. To Dad,
it meant an opportunity to do some intense research with various col-
leagues. For us, it usually meant an opportunity to travel. We went to
Bangladesh one time. Another time, we spent a year in England. We
came back with accents and a renewed appreciation for our food! I also
remember that Mom was in the hospital a lot, dealing with progressive
kidney failure. In spite of being so busy, Dad would take us fishing quite
often. He cooked at home quite often. In the beginning, Mom would
do all the cooking and housework. In spite of her failing health, she
sacrificed everything to realize her dream: ensuring that her loved ones
would be able to pursue successful careers. As Dad said, his ‘modest
successes were but a reflection of the sacrifices that Mom had to make
throughout her painful life.” As we grew older, we would often wonder
how someone so intelligent could be so ‘detached’ from normal things.
Dad could be quite the ‘absent-minded professor.” As I liked to say, he
had a definite “Je ne sais pas” goofiness about him. Yet that trait was
juxtaposed against a very deep and insightful wisdom. I know that it
is Dad’s teachings that have led to some degree of equanimity in my
life. And now that he is a grandfather, I see him passing along those
same kernels of wisdom to my children. If I had to use one word to
summarize Dad’s character, it would be honest — to a fault. Words
can’t really describe the myriad of situations that displayed his honesty.
You really had to be there. As Dad’s mathematical career advanced, it
was amazing to see another side of him flourish. At heart, I suppose
Dad was always an artist, a writer. So, over the last decade or so, he
has been writing Bengali fiction more and more. Over that time, his
following and stature has been quickly increasing. As a matter of fact,
he has been awarded 2 national prizes in Canada, recognizing his con-
tributions to Bengali literature. Additionally, Dad received an award at
last year’s international Bangladeshi conference, held in Atlanta. It too
recognized his talents in Bengali literature. Now that Dad is “retired,”
we would have expected him to have time for us. No such luck. He is
200% busy with continuing mathematical research, writing math books
and his Bengali writing. He has been an inspiration to his two sons in
so many ways. He is a man of honesty, integrity, curiosity, and has a
wonderful sense of humour. He has lived his life with a pure heart and
single-minded devotion to family and work. He is a hard act to follow.
To Dad,
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From your sons,

Babu S. Rahman
Raja A. Rahman
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Mizanur Rahman by Michael Hoare

This is an outline of how we first met and how Mizan came to branch
out on his extraordinary mathematical career. We first corresponded
and eventually met at Bedford College, London University in 1971/72.
He was then working on Neutron Transport Theory (singular integral
equations), his Ph.D. subject, in which I had an interest from a more
general statistical physics viewpoint. With a sabbatical coming up he
had written to the outstanding English expert on neutron transport,
Mike Williams at Queen Mary College Nuclear Engineering Department,
with a view to spending a year there. For some reason Mike couldn’t
take him in and suggested that he come to me at Bedford instead. This
worked splendidly, and I dare say the liberal arts atmosphere of the col-
lege, set idyllically in Regent’s Park, was a distinct improvement on that
of Nuclear Engineering in the East End. The only downside was that
we were a very small Physics department and there was little resonance
with the heavily algebraicized Math department under Paul Cohn. This
hardly seemed to matter, since we were both to an extent outsiders from
what were the fashionable subjects at the time.

We started out on his home ground, the singular integral equation
arising from the form of one-dimensional gas model known as ‘Rayleigh’s
piston’ and this led to the first calculations of its eigenvalue spectrum,
with characteristic mixed discrete and continuum sets. In the course of
this he admitted me to the faith, convincing me that Cauchy Princi-
pal Values and Hadamard finite parts could be made tangible and did
not need to handled as though matters of higher metaphysics. About
this time I happened to mention a problem in combinatorics that had
been fascinating me for some time, in fact since my post-doc days at the
University of Washington. This arose from a disarmingly simple model
in chemical kinetics which involved the partitioning of energy quanta
between different vibrational degrees of freedom in colliding polyatomic
molecules. Reformulated as a ‘urn model,’ its iterations corresponded to
a Markov chain for partitioning balls in boxes, with only a subset ran-
domized at each event. My earlier eigenvalue solution for a continuum
version of this had come out in Laguerre polynomials and led to proba-
bility transition kernels with action very similar to formulae of Erdélyi
and Kogbetlianz in 1930s special function theory, though at the time
without any probabilistic interpretation. (I was happily able to meet
Erdélyi in Edinburgh shortly before his death and he was delighted to
know that the formulae had a ‘practical’ side.) Mizan seized on the im-
plications of this problem and its generalizations and before long was
off and running with his first series of papers on special function the-
ory, while my ‘statistical physics’ by-products followed at more leisurely
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intervals. I tended to keep cautiously within the bounds of ‘physical’
models, while Mizan was soon off into the never never land of g-theory.
After he returned to Carleton we managed to strike lucky with grants
from the NRC of Canada and the SRC in London, which kept us in funds
for several years of visits to and fro as the work progressed. (Happy days
of the '70s and beneficent Research Councils). Mizan even managed to
come to Stuttgart in ’77 when my turn for a sabbatical came round and
it was here that we sorted out what I have ever since felt was the real
‘gem’ among our various generalizations. This was the discovery of a
new take on Bernoulli Trials — the idea of ‘cumulative trials’ in which
one has the right to ‘throw again’ on the subset of trials that fail, in
order to achieve complete success. That such a simple idea could have
lain dormant for over 200 years still amazes me, but no trace of our
results in the earlier literature has ever turned up.
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Mizan Rahman by Steve Milne

The well-known classic book “Basic Hypergeometric Series” by George
Gasper and Mizan Rahman has been immensely helpful to me, both in
my research and teaching. My work in multiple basic hypergeomet-
ric series, especially that on multivariable 199 transformations, was
facilitated by the one-variable treatment in this book. Furthermore,
my Ph.D. students all learned g-series from my graduate special topics
courses based on this wonderful book or its notes. It will continue to be
essential to my program for many years to come.
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Abstract  We study completeness of systems of third Jackson g-Bessel functions by
two quite different methods. The first uses a Dalzell-type criterion and
relies on orthogonality and the evaluation of certain g¢-integrals. The
second uses classical entire function theory.

1. Introduction

For 0 < ¢ < 1 define the g-integral on the interval (0, a) by

n=0

/f(:v)dqm (-9 f(ag®) ag™. (1.1)
0
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Lg(O, 1) will denote the Hilbert space associated with the inner product

1
- / f(@)g(z)dga
1]

It is a well known fact that the third Jackson g-Bessel function J,S?’) (z;9),
defined as
k(k+l)

I (z9) = Pt q)°° i 2 (1.2)
(Qa o] -0 V+1a q)k (q q)k

satisfies the orthogonality relation

1
/SL‘J,/ (jm/qx; q2) Ju (jmuqx; q2) dez
J (1.3)
_a-1 L2 L2

‘—2‘;‘12—‘ Jut1 (Jnua q ) Jy (]nw q ) 6n,m

where j1, < jo, < --- are the zeros of J,EB) (z; q2) arranged in ascending

order. Important information on the zeros of J,SS) (z; q2) has been given
recently (Ismail, 2003; Koelink and Swarttouw, 1994; Koelink, 1999;
Abreu et al., 2003). The orthogonality relation (1.3) is a consequence
of the second order difference equation of Sturm-Liouville type satisfied

by the functions J,Ss) (z; q2) (Swartouw, 1992; Koelink and Swarttouw,
1994). In this paper we consider completeness properties of the third
g-Bessel function in the spaces L4(0,1) and Lg(O, 1). We will approach
the problem from two substantially different directions. In one case we
will apply a g-version of the Dalzell Criterion (Higgins, 1977) to prove
completeness of the system {J3 (jnuqz;¢?)} in Lg (0,1). In another case
we will use the machinery of entire functions and the Phragmén-Lindelof
principle to prove completeness of the system {Jg (jm,q:v; q2) }, p,v >0
in Lé(O7 1). This theorem is in the spirit of classical results on Bessel
functions (Boas and Pollard, 1947) that state the completeness of sys-
tems {J,(An(z))} where the numbers A, are allowed a certain freedom.
Although the entire function argument is more general, there is reason to
present the Dalzell Criterion approach as well because it relies solely on
techniques of g-integration and on properties of orthogonal expansions
in a Hilbert space. Also, this approach requires the calculation of some
g-integrals of g-Bessel functions that paralle]l results for classical Bessel
functions. Thus this method of proof extends the ¢-theory of orthogonal
functions.
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The third Jackson ¢g-Bessel function was also studied by Exton (Exton,
1983) and sometimes appears in the literature as The Hahn-Exton g-
Bessel Function. There are other two analogues of the Bessel function
introduced by Jackson (Jackson, 1904). The notation of Ismail (Ismail,
1982; Ismail, 2003), denoting all three analogues by J,Sk)(z; q),k=1,2,3
has become common and we adhere to it here. However, because the
present work will deal exclusively with J& (2;4?), to simplify notation
we write from now on

Jo(z) = JP® (2% .

It is critical to keep in mind that in definition (1.2) the g-Bessel function
is defined with base ¢, whereas in defining J,(z) we have changed the
base to ¢2. Thus the series definition for J,(2) is

2w+2. k(k+1)
(q 1q°) q ok
J(2) = 2¥ L0} T(_])k z°.
2 (P Z (@®7%6%) 00 (0% 0o
Let zp,, n = 1,2,... denote the positive roots of J,Sg')(z;q) arranged

in increasing order. From (Kvitsinsky, 1995) we have that

> ) = iy (4

n=1

Replacing ¢ by ¢2, we find for the roots jn, of J,(z) that

[eo]

> () 2 = - (‘i — (1.5)

n=1

Expression (1.5) will be used in Section 2.

2. Completeness: A Dalzell type criterion

It is easy to verify (Higgins, 1977) that if {®,} and {¥,} are two
sequences in a Hilbert space H, with ¥,, complete in H and ®,, complete
in ¥,, and orthogonal in H, then ®,, is also complete in H. Then, if ¥,
is complete in H, a necessary and sufficient condition for the orthogonal
sequence ®,, to be complete in H is that it satisfies the Parseval relation

> (@, ) |* = [Tk, for every Ty, k=0,1,.... (2.1)

This fact was used by Dalzell to derive a completeness criterion and
apply it to several sequences of special functions (Dalzell, 1945). In this
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section we will derive a similar criterion suitable to be used in Lg(O, 1).

Then, we use it to prove completeness in Lg (0,1) of the orthonomal set
of functions

To do so, we will evaluate explicitly some ¢-integrals using the results
from the preceding section. We start by stating and proving the following
lemma:;

Lemma 2.1. Let g € Lg(O, 1) such that g(q") > 0, n = 0,1,2....
Define xn(z) =1 if x € [0,9"] and xn(z) = 0 otherwise. Then {gxn} is
complete in Lg(O, 1).

Proof. Let f € Lg(O, 1) be such that

1
/fm)g z)dgr =0,n=0,1,2,.
0

Now, by (1.1) and using the fact that x, (qk) =0if k < n, we get:

=31 (#)o(#) e =0

Then,
0=An—An1=f(4")9(¢") ¢"
because g (¢") > 0 it follows that
f@)=0,n=0,1,2,....
O
Theorem 2.2. Let g € Lg(O, 1) such that g(¢") >0, n=1,2... and let
1
w(z) be such that [w(z)dgx exists and w(¢g™) >0, n =1,2.... Then
0

an orthonormal sequence {®n} C L2(0,1) is complete in L2(0,1) if and
only if

T 2 1 T

i /1 / On(z)g(z)dgz| w(r)dyr = / / lg(2)|* dgz | w(r)dgr. (2.2)
" o0 |o 0

0
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Proof. Writing ¥, = gxi in (2.1), by the preceding lemma, the sequence
{®n} is complete in L2(0,1) if and only if

2 1

=/]g(m)[2dq$ for every r € {qk,k:O, 1,...}.
0

Integrating both sides of this relation after multiplying by w(zx), one gets
the relation (2.2). On the other hand, if (2.2) holds, then define

2

T 00 T
F(r)= / |g(:r)|2dqac — Z /@n(a:)g(:c)dqm
0 " lo
From the hypothesis,
1
/F(r)w('r)dqr =0.
0

Observing that by the Bessel inequality, F'(r) is non-negative, we get

F(qk)=0,k:1,2,....

We proceed to evaluate two important g-integrals.

Lemma 2.3. For every real number r,

T

_ 1—- .
/ 2", (frvge) dgm = —q—j—q 1 (rugr) -
o nv
Proof. Express
T
/w”+1J,, (Jnvgx) dgx

0
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using the power series expansion (1.2). Then interchange the g-integral
with the sum and use the following fact:

T

o0
2w+2k+1 _ 2w+ 2k-+2 w+2k+2
/a:” dgx = (1 — g)r*” +Zq"("+ +2)
0 n=0

__l-a 2v+2k+2
T 1 gvt2kt2 :

Rearranging terms the result follows in a straightforward manner. O

Lemma 2.4.
1 1
/xJB—H (jnuqx) dqm = /JZ.]E (jnu‘Z-T) dq.’E.
0 0

Proof. Consider the following formula from (Koelink and Swarttouw,
1994):

1
[t = EE st @
0
~Jyy2(aq)dpy1(a) — agJ; 9(ag)Joy1(a) }
and
_ S2v
Joata) =7 (0@ = da@). @)

Shift v — v+ 1 in (2.4) and set = jp,. This yields

1— q2u+2
Jov2 (@) = —57—Jot1 () -
q” " Inv

Taking derivatives in both members of (2.4), changing v — v + 1 and
again setting « = j,, the result is

. e y 1
JII/+2 (@) = q7 3 {(1 - q2 +2) l:—
]nl/

1

— Tt )| = 9 im) )

nv

Jn,/—{»l (jm/)
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Substituting this in (2.3) we get the simplification:

1-¢ . .
zJ} o1 (Jnvgz) dgz = (—2(12) Iy (Grw) Tt (Grr)

o

1
—5(1- Q)q St Gnw@) Iy (Grv) = /37*]3 (Jnrqz) dez
0

wli—-

where (1.3) was used in the last identity. O
Theorem 2.5. The orthonormal sequence {®,} defined by

1 .
z2.J, (]nuqx)
1 .
zzJ, (Jnuqx) ”

b, () = }

is complete in Lg(O7 1).

Proof. In (2.2) take {®,} defined as above, g(z) = 2**% and w(r) =
r~2*~1 We need thus to prove the identity

5/

r 2

zzJ, (
/ (Jnvqz) u+1dqm T—2V—1dqr
‘ 2 Jy (jnvqz) “

[ )% d x} w(r)dgr.

Lemma 1 and Lemma 2 allow us to reduce the left hand member of

above to:
o0
Z —2 :
n=1 Jnv

|r—l

|>—n

n=1

that is,
1—gq
(1+q)(1 —g>*?)

by (1.5). It is straightforward to compute

1 r
2 _ 1—q
0/ 0/]g(w)| dqw} w(r)dyr = T =gy

and the Theorem is proved. O
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3. Completeness: An entire function approach
From (1.2) we can write

( 21/+2’q2)

Jy(w) = —°° 2'F, (w),
(4% %) oo

where

oo (_1)qu(k+1)22k

Fy(w) = Z @2 ), (@& )%

k=0

The function F,(w) is entire and it is directly shown that F,(w) has
order zero.

1
Set G(w) = fg z)F,(qwz)dqz, and h(w) = FG?O-“—);
Lemma 3.1. If 4 > 0, v > 0 and g(x) € L;(O, 1) then h(w) is entire of
order 0.

Proof. We first show that G(w) is entire of order 0. From the definition
of the g-integral we have

1-q§g() s (wa1gt) 1)

The series in (3.1) converges uniformly in any disk |w| < R. Hence G(w)
is entire. Recall that the order p(f) of an entire function f(w) is given
by

p(f) ZIngpw%g;-ﬁ
where
M(r, f) = max [f(w)].
|lw|<r
From (3.1)

M(r5G) < M (3 F,) / l0(2)] dg.
4]

Since p (F,,) = 0 we have that p(G) = 0.

Both the numerator and the denominator of h(w) are entire functions
of order 0. If we write G(w) and F,(w) as canonical products, each
factor of F,(w) divides out with a factor of G(w) by the hypothesis of
Theorem 3.3. h(w) is thus entire of order 0. O
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Lemma 3.2. If £ >0, v > 0, and 0 < ¢ < 1 then the quotient Efl’é’%’—)

is bounded on the imaginary w axis.
Proof. We will make use of the simple inequality
(€% Qoo < (€50 <L, a>0, 0<g<1

Using this inequality we get for w = iy, y real,

F ( m ) i qn(n+1)q2mny2n 1 o qn(n+1)y2n
qiy) = < ’
2 s (272,62, (% ), ~ (6% ¢2), i (2 ¢2),
& n(n+1) 2n © _n(n+1),2n
, Y q Y
Biy) =) 2V+z >
(@07, (0%%), ~ ) (6% 47,
Thus we have 7 (g
O S M (q )y) 1

F (i ) <(q2“+2;q2)oo

Theorem 3.3. Let pn> 0, v >0 and g(z) € Ly(0,1). If

1
/g 1 (@dnuz) dgz = 0,

n=12... then g(z) =0 forx =q¢™, m=0,1,....

Proof. Lemma 3.2 implies that h(iy) is bounded. Since h(w) is entire
of order 0, we can apply one of the versions of the Phragmén-Lindelof
theorem (Levin, 1980, p. 49) and Lemma 3.2 and conclude that A{w) is
bounded in the entire w-plane. Next by Liouville’s theorem we conclude
that h(w) is constant. Say that h(w) = C. We will prove that C' = 0.
We have

G(w) — CF,(w) =0.

In infinite series form this equality produces an identity of the form

io: AkwmC =0
k=0

From the identity theorem for analytic functions we conclude that A =
0. Calculating A we find

k(k+1)+2k(1 - q ( 1 Zg (Qk“)]
(g%1%¢?) ;

ke(k+1) (_

q ( 1)k

- C=0, k=01,2,....
(@%%2;¢%),, (6% )y,
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Dividing out common factors and letting k — oo gives C = 0. We can
now conclude that G(w) = 0, or that is,

1
/g z)Ju(wgr)dsx = 0.
0

We complete the proof with a simple argument that gives g (¢™) = 0,
m=20,1,.... If G(w) = 0 then

o0

>0 () ¢+ =0

j=0

Letting k£ — 0 gives g(1) = 0. Then dividing by ¢?* and again letting
k — oo gives g(g) = 0. Continuing this process we have g (¢™) = 0 and
the proof of the theorem is complete. O
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Abstract Classical Gaussian polynomials are generalized to two variable poly-
nomials. The first half of the paper is devoted to a full account of
this extension and its inherent properties. The final part of the paper
considers the role of these polynomials in finite identities of the Rogers-
Ramanujan type.
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1. Introduction

Our object in this paper is to better understand certain classical gen-
eralizations of the Rogers-Ramanujan identities (Andrews, 1976, p. 104):

P , (1.1)

and

= (1.2)

where |g| < 1 and

(A;59)n = (A;9) 0/ (A0 @)oo » (1.3)

and -
(4 Q)oo = [ (1 - AF) . (1.4)

j=0
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The majority of early proofs of (1.2) and (1.3) were based on the
following theorem which W. N. Bailey (Bailey, 1972, p. 8, line 4) called
an “a-generalization.”

ST 08 G OET S IO
(GDn  (agg

=0 (¢ Dn

(1.5)
As is well-known, Watson proved this identity as a limiting case of his
g-analog of Whipple’s theorem (Watson, 1929).
There occur in the literature two refinements of (1.5) in which the
series on the left of the identity is replaced by a polynomial. Namely
(Andrews, 1974; Bressoud, 1981a; Paule, 1994; Zeilberger, 1990).

N N
n n? N . _ n_n(5n-1)/2 2n N . 1
Zoa ! [ n ,q] “Zo(_l) (- )[ n 4 (aq™; Q)41
n= n=
(1.6)
and (Bressoud, 1981b, eq. (3.5)).

N
Zanqnz ’: JX ;q:| _ Z ( 1)na2nqn(5n 1)/2 (1 _ ann)
n=0

N22n20 (17)

n ) n ? ) n (aqn, q)N+1_n 9

where

N 0 ifn<Oorn>N

[ n ;q] - (_—(qﬁL otherwise (1.8)
G0 n (G N-n

is the Gaussian polynomial or ¢-binomial coefficient.

Now there is something rather surprising about (1.6) and (1.7) that
is readily observed upon examination. The left sides of both (1.6) and
(1.7) are polynomials term by term and consequently the sums are poly-
nomials. However it is not the case that the right-hand side of either
(1.6) or (1.7) is obviously a polynomial in that the terms of the sums
are mostly rational functions with non-trivial denominators.

For example, when N = 2, (1.6) asserts

4 1 __ d¢(1+q)
1+GQ(1+q)+a q = (1—aq)( aq2) (1 —aq) (1—aq3) (1.9)
atq® ‘

.*..

(1-ag®) (1 - ag?)
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and (1.7) asserts (after cancelling common factors)

(1-a¢) (1+a) ¢ (1-¢)
(1 —aq) (1—ag)
One of the objects of this paper is to present a new representation for
the polynomial on the left of (1.6) or (1.7) that converges to the right-
hand side of (1.5) and is a polynomial term by term. To accomplish this
we shall require the development of an “a-generalization” of Gaussian
polynomials.
Our new identity asserts

N

nnz N,
doa | g
n==0

= ) (D"a®q® 1)/2[ ;q,qH N_znn;q,aq}

1+ ag(l+q) + a®¢* = (1.10)

0S2nEN "
. N 2N - 2n n
D D G U e [ 0 q} [N——Qn—— L%, ] ~
0S2n<N-1

(1.11)
The a-Gaussian polynomial [ ]Z ;q,a] will be defined and studied in

Sections 2 and 3. Propositions 3.1 and 3.2 show that (1.11) converges
directly to (1.5). Now for N = 2, (1.11) asserts

1+ ag(l+q) +a’q*
=(l+a+aq+ aq® + a® + a®q + 2a%¢% + a’¢® + a2q4) (1.12)
—a2q2(1+q)—a(1+a+aq+aq2)

As we shall see in Sections 2 and 3, the a-Gaussian polynomials have
their own intrinsic surprises and appeal. However, it is natural to ask
why one would want (1.11) when it would seem that (1.6) and (1.7)
would suffice as finitized versions of (1.5). We shall discuss this question
further in Section 6. For now, we merely note that the long standing
Borwein conjectures (Andrews, 1995) are merely assertions about poly-
nomials that are, in fact, finitizations of classical Rogers-Ramanujan
type identities (Andrews, 1995, Sec. 4). Consequently, in depth stud-
ies of such polynomials is clearly in order, and it is to be hoped that
a~-Gaussian polynomials may add some insight in this area.

In addition, our work here contributes to further elucidation of trun-
cated Rogers-Ramanujan series, a topic suggested by Ramanujan and
studied from the point of view of Bailey Chains in (Andrews, 1993).
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2. a-Gaussian polynomials

The definition for a-Gaussian polynomials is, at first glance, rather
unilluminating. So we preface it with a discussion of what we are striving
for.

To begin with, it is well-known (Andrews, 1976, Ch. 3, Th. 3.1) that
the Gaussian polynomial
N+M
M 4

is the generating function for partitions with largest part £ N and num-
ber of parts £ M. So, for example
5
[ 9 ;q] =1+q+2¢%+2¢3+2¢* +¢° + ¢°
=14+ @+ @+ B+ @ P 22 B B8

Now as is noted in (Andrews, 1976, Ch. 2) often one needs a two vari-
able generating function in which a second variable records the number
of parts of the partition being generated. Thus one would like to gener-
alize the above polynomial to

1+ aq + ag® + a2¢* + ag® + a2¢*H + a2¢3+!
+ a2 4+ 22 4 @23

3 4
=1+aq[1 ;q]+a2q2[2 ;q]-

Proposition 5 below makes clear that our a-Gaussian polynomials achieve
this initial objective.

Definition 2.1. For integers N and j with N =2 0

0 ifj <0
1 ifj=0o0r N
N al={ ¢ N-j+h-1 2.1
i EN Y ah[ T ;q| ifo<j<n 3D
h=0 .
(a"39);_y if j > N.

Remark 2.2. The cases j < N and j > N actually coincide if one
interprets :;4 ;q] in the standard way. We have chosen to use the

several separate lines to emphasize that the polynomial is a finite product



a-Gaussian Polynomials 43

when j > N. The more succinct representation would have sacrificed
clarity.

We shall now prove seven propositions about a-Gaussian polynomi-
als. The first one establishes that we have truly generalized the classical
Gaussian polynomials. Propositions 2.4-2.6 are the natural extensions
of the Pascal triangle recurrences for Gaussian polynomials. Proposi-
tion 2.7 establishes the connection with partitions that we described at
the beginning of this section. Proposition 2.8 is a naturally terminating
representation of a-Gaussian polynomials. Proposition 2.9 is the nat-
ural extension of the finite geometric series summation to a-Gaussian
polynomials.

Proposition 2.3. For integers N and j with N 2 0, []]\7 ;q,q} =
EK
j qy-

Proof. Clearly both sides are identically 0 if § < 0 or 7 > N. Also both
sides equal 1 when j =0 or N. Finally, for 0 < j < N

[zjv ;M] sz:qh[N—j;lL'h—l ;q] :[J;f ;q} (22)

h=0

by (Andrews, 1976, p. 37, eq. (3.3.9)). a

Proposition 2.4. For integers N and j with N 2 1,

[];r;q,a]=[N;1;q,a}Jran‘j’l[];[:ll ;q,a]- (2.3)
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Proof. If j < 0, then both sides are 0. If j = 0, then both sides equal 1.
If0<j< N —1, we see that

[.,q,] Zah[N ]—I—h—l,q]

h=0

jéah([ —1—z+h—1’4

h=0
[ N—1—j+h-1
+ g 1[ hfl ,q,qD

(by (Andrews, 1976, p. 35, eq (3.3.3)))

N-1, N—j—1 [ _1_J+h:|
[ ; ,q,]+aq Z

_|N-1, N—j-1 N—l.
“I: ] ’qaa:|+aq j—l 4, @y -
Noting that
N ! 1—ait!
[N_1 ;q’a} =2 = (24)
h=0

we see that the case j = N — 1 also falls into place because

j—1
N E: N-1
I:N 17q’a’]_1+ h = I:N 1aq7a:|
h (2.5)

=0
—(N-1-1| N -1
_’_an(Nl)l{N 2"1’}'

The case j = N asserts

1= (1 —aq_l) +aq—1 -1

which is obvious.
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Finally, if j > N

N-1, N-j-1| N—-1
50 o [V g

N-1-j, ) N—j-1 (aq(N—l)—(j—l)-

4

e )(j~1)—(N—1)

(
= (ag" ", q)j—-N (1~ agV=179) + agV=7"1)
(0¢™™39);_n

N
[

Thus Proposition 2.4 is established. (|

j-(N-1) T a4

Proposition 2.5. For integers N and j with N 2 1,

|5 =[5 swea e[ 20 0]

j ’ q? j ’ q7 q _7 —- 1 ’q,

Proof. If j < 0, then both sides of this equation are identically 0. If
4 =0, then both sides equal 1. If 0 < j < N — 1, then

N 2 I N—j+h-1
e e [ Y

h=0
; . .
. h N——]-|—h—2‘ h N—]+h—2‘
=Y a <[ P ,q]+q [ . 4
N—j+h-1 ’ N-1-j+h-1
= ah“{ T ;q]+2(aq)h{ i ;q}

_a[N—l‘ a]+[N—1_ a]
j_la% ] yq,aq] .

If j = N — 1, the assertion is
l+a+-a"t=a(l+a+ - +a"?)+1,

which is immediate.
If j = N, the assertion is

l1=(1-a)+a

which is obvious.
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Finally if § > N,

N-1 N-1
i swag|Fal g
— (N-1)—j (N=-1)-(5-1).
a(qq ’q> j—n(N-1) +a<aq ’q)
= (a¢"7;q);_y (1= a) +a)

= (a"59),_,

=| 5 el
PRULIE

This proves Proposition 2.5.
Proposition 2.6. For integers N and j with N 2 1,

N 1 [N-1 i[N-1.
i:] 7q7a:|“‘[j__1 7Q7a:|+a |: ] aq:|

(G-D=(N-1)

Proof. If j < 0, then both sides are 0. If j = 0, then both sides equal 1.

If0<j< N-1, then

N 1 [N-1.
j g, a -_1 4, a

1

h=0

:aj[Nj‘l;q].

h=0

If = N — 1, the assertion is

1—+—a+a2+--~-|-aN”1=(1+a+a2+~~-+aN_2)+aN_1.

If j =N, the assertion is 1 = 1.
If > N, then

N N-1
[] ;qaa:|_|: -_1 ;qaa/]
_ (aqzv—j;q)j_ ( (N=1)-(j-1). q>

:Ozaj[N;1 ;Q]-

(-D-(N-1)

Thus Proposition 2.6 is proved.

=iah[ —J+h—1 ] ]Zah[ (jh—l)—i-h—l

’
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Proposition 2.7. For nonnegative integers

[ MM ;q,aq] = Y p(N,M,n,m)a™q",

n,m20

where p(N, M,n,m) is the number of partitions of n into m parts with
m < M and each part £ N.

Proof. It is well known (Andrews, 1976, Th. 3.1, p. 33) that

N+ M
M 4

is the generating function for partitions with < M parts each £ N.
Hence

h| N+h-1
h

is the generating function for partitions with exactly h parts each £ N.
Consequently

n,m=0
M
N hh|:N—|—h—'1J
h=0
| N+ M
- M 7q?a'q bl
as desired O

Proposition 2.8. For nonnegative integers N and j,

[zj;q,a} zj;[ . ]a] “(aqV5q), (a/ a5 9)j—.
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Proof. If N = 0, the sum on the right is

1 2]:[3 ,q] &=t (—1)iaiq () (g/a; q);

(4:9); =

(q/a q)g ig(2)-di
(@9 Z [ ]
— aJEQ/a Q) (q—j;q)j

¢ 9);

= <—1> < >af<q/a;q>j

a]

(by (Andrews, 1976, p. 35, eq. (3.3.6))

for all j 2 0.
If, on the other hand, j = 0, the sum on the right is equal to 1 which

0 DY

We can conclude the proof of the proposition by showing that the
right-hand side of the asserted identity satisfies the recurrence given
in Proposition 2.4 thus permitting a double induction on N and j to
conclude matters.

We denote by R(N, j) the right-hand side of the equation asserted in
the proposition.

R(N7.7) - R(N'— 1)])

‘Z 1q| a9 (q/a;9)j-i ((ag" 73 q), — (ag¥ 1 5q))

= R X . 3 q a’“’qa;qj__i aq _,ql —aq i
(¢:9) i I=i(q/a;q)j-i (agV 75 q), (1 — ag"—I+71)
! J =0 - i
— (1 — an—]_—]))
A S | | |
~ (@9 5a| @ 7Hg/a59)j-i (ag" T3 q),_yag" T (1 - ¢
G2 || @ e (00 ), ea T (1)
! =0 - B
N—1-j i—1 1 o |
= %3_('5'—; Z l: J ; ,q:l a]_l_l(q/a;q)j__l_i (aq(N—l)—(J—l);q)'
) .

= an_l_jR(N - 17.7 - 1):
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and Proposition 2.8 is proved. |

Proposition 2.9. For N and j nonnegative integers

[N+jj+1 ;q’a] :<q;1q)N§;[ \ 74( 1)iq(’s Zl(i;qa;ﬂ £+
Proof.
[N—%—J]—}—l ]:i[N+h }h

=£ g

- wd ZZ[' o] ol e

h 0i=0
(by (Andrews, 1976, p. 36, eq. (3.3.6)))

_ 1) i [ N } (=1) q(m) (1 - aj+1qi(j+1))

. ; _— ] )
CHAN el I (1 —ag)
by the finite geometric series summation. d
3. Limiting Cases and Identities

The previous section described fundamental formulas and recurrences
for the a-Gaussian polynomials. In this section, we examine the limiting
values of these polynomials (Propositions 3.1 and 3.2), and we show how
they fit into a generalized Chu-Vandermonde summation (Proposition
3.3). Proposition 3.4 provides a useful reduction formula.

Proposition 3.1. For |a| < 1, |¢| < 1,

hm{NJrM;q,a]: .1

Nooo | N (a;9)m

Proof.

. [N+M T Mth-1 ]

g | N e = m S5 M e
1

= ) (by (Andrews, 1976, p. 36, eq. (3.3.7))).
ya)M



50 THEORY AND APPLICATIONS OF SPECIAL FUNCTIONS

(N

Proposition 3.2. If|a| < 1, |q| <1, and A, B, C and D are integers
with A > C > 0, then

CN+D P

N—o00

. [AN+B ]_ 1

Proof.

(A—-C)N+B-D+h-1 ]| ,
n ;q| a

(a5 @)oo

_ i ah 1
= (@)
by (Andrews, 1976, p. 19, eq. (2.2.5)). O

Proposition 3.3. If B, N, and j are non-negative integers then
n & R n—R
) _ i i(nti—j—R~1) ) — i
[j,q,a} Zoaq {Z ,qH i ,q,a]~
2=

Proof. We shall prove this result by showing that the right-hand side
does not depend on R and is equal to the left-hand side when R = 0
(the latter is immediately obvious).

R
Y algrtimimRD [ l? ;q} [ R a]
i=0 J t

R
= aignti=i=R=D) { 1: ;q] ([ T;-__? 4, a} + ag" Bl
i=0

n—R-1
j___,L-_l 14, Q@

R
_ Zaiqi(n—!—i—j—R—l) [ R ;q] [ n—.(Rj- 1) g, a}

] -1
1=0 J
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R+1

i—1)(n+i— R n—R—jti_ n—(R+1
£ 3 aiglDinti lle)[Z_l;q]q RJ—HQ{ j(_l ),q’a]
i=0

R+1
_ i i(ntimj—(R+1)-1) [ 4| B R n—(R+1)

1=0

R+1
= Zal i(nti—j—(B+1)-1) { R+1 ;q} [ n—(B+1) ;Q,a} .

) j—1

Thus the sum on the right-hand side of the asserted identity is unaltered
when R is replaced by R + 1. Consequently it is equal to its value at

R = 0 which is [ 7; i q, a] as asserted. O

Proposition 3.4. For nonnegative integers v, n, m,

[n+m ;q,aq’] =§aj(—1)jq(5) (@™ 9); [; ;q} [ nAm ;q,a] :

Proof. We proceed by induction on r. When r = 0, the assertion is a
tautology. At r + 1,

n+m r+1
[ n 7q7aq ]

n

_ m+j—1 . | ajq(T-H)j

= ; iq

J=0 = I b

L -1 1 . . . .
=S| "I g (07 - g7 (1- @)

i

Jj=0 -

n r _1 A ) i n ,_1 ‘T‘
=y m+j i q afq”—Z(l~qm)[mj_Jl ;q}a”q’

LX)
i

o
L

j:

il
M=
<

r . q n—1 .
mri-l J g7 —(1-q™ ) [ " HI] o tlgith

Jj=0 * J Jj=0 J
n+ +m
=|: n 7qva’q:l'-aq (1_qm)l: n 7q7aqu

LY
I
<)
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- i+1 i+1 () r/ m . n+m
+ Zoa'j (_]-)] q(Z)q (q )j+1 [ ] aq:| [ n—1 —j 1 4, a]
J:

=Y ai(-1Y40) (¢™;q), [; ;q} [n+".1 ;q,a}

n-—>

Zaa‘(_l)jq(jgl)+r (g™ ), { il ;q] [ nET™ L, a]

n—>

zjgoaj(_l)jq(%) (¢™;9), [ ’;f_’j” ;q,a] ([; ;q] it [ jil ;qD
r+1

:jgoaj(_l)jq(i) (@™ 9); [ il ;q] [ ntm ;Q,a]

J n—-7
(by (Andrews, 1976, p. 35, eq. (3.3.3))).

Hence Proposition 3.4 follows by induction on 7. [

4. a-Generalizations of Finite
Rogers-Ramanujan Type Identities

In Section 1, equation (1.11) is the special case k = 2, m = N of the
following result:

Theorem 4.1. For m, N, k nonnegative integers with k > 0

s ks s s— N N+m+1-k s
> (~1)patg D 1)/2{ ;qH " 7 ,aq]

s m—ks
520

s ks s s N N+ -k s
=) (1) atetlgPhtnsts)/2 [ ;q] [ o ;q,aq}

] m — ks
520

Z qn%+n§+---+n%_1an1+n2+--~+nk—1(

= G ON
1SS 2120 (q; Q)N——m (q; Q)m ~ng (Q§ Q)nz——ns T (q; q)nk—Q“‘nk—l (q; Q)nk_1

nit+nat-ng_1Sm

Remark 4.2. If we let m, N — oo take k = 1 and invoke Propositions
3.1 and 3.2, we retrieve (1.5) term by term.

Proof. Call the left side of this identity L(m) and the right side R(m).
We proceed by induction on m.
Clearly L(0) = R(0) = 1.
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Furthermore, it is immediate that

R(m) — R(m —1)

an%+n%+...+n%_l an1+n2+"'+nk—1 (q, q)N

=a™[a™] Z

n122ng_120

(6D N-n1 (@ Dni—nz - {6 Dne—a—ni_1 (T Dnp—1

o0
where [a™] chaj = Cp.
=0
On the other hand,

L(m)— L(m - 1)
= Z(_l)saksqs((2k+1)s—1)/2 [ ]X ;q:I
520

x([N-i—m—f—l—ks‘

N+m-—ks
m — ks m—ks—1 ¢, aq”

S S S S N
_Z(_ aFsH ga((2k=1) +3)/2[ ) ’q]

520

N+m ks N4+m—ks—-1 s

s 8— N s\ym—ks— N + —k
:Z(_l) aks g (k1) 1)/2[ \ ;q} (ag"y™* 1[ m — ks ;q]

m — ks
520

_ )5 ket g (2k41)s43)/2 N svm—ks—1 | N+m—ks—1
;0 [s aQ}(aQ) [ m—ks—1

(by Proposition 2.6)

=" {Z(—l)sq@)*ms [ ]: ;QJ [ N;T;;Sks ;q]

520

3+1 +ms N . N+m—ks—1 .
S [V [Famp )

520
Hence the object of proving

L(m)—-L(m—1)=R(m)—R(m—1)

’
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reduces to proving

S (=1)qla)+me [ ]: ;q} [ N - ks ;q]

m— ks
520
_ s (*tY)4ms N N+m-—ks—1
s__
=" ) g TR gzt (g g) y

o120 (@ DN-n1 (G Dra—nz (& Dy =1 (G Dy

This latter result is provable using an identity of J. Stembridge (Stem-
bridge, 1990, Theorem 1.3 (b) with k replaced by k — 1 and z replaced
by aq). Namely

niAngAnE | onideetngey (g
[am] Z q a (q,Q)N

izeort 5o G ON-m (@ Dmana (G Drieg=miy (6 Dy
N

_ am nakn kn? +( ) N . (1 B ann)
]z% b [ n ,q] (ag™; @)yt

{XN:( 1)ratrgtnt+(3) [ ]X ;q} (1_aq2n)i [ N}—i-h ;q} ahqnh}

0

thus the induction step is established, and Theorem 4.1 is proved. O

We conclude this section with two reductions of Theorem 4.1 using

Proposition 3.4. These results will allow us to obtain the single variable
identities of the next section.
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Corollary 4.3. For m, N, k nonnegative integers with k > 0

guitmit i gt (g g)

2 (4 DN -1 (@G Drna—nz (G Dng—gngemy (D,

ny22ng-1
nit-tng—1<m

N
N+ 8 S .8 S— N
= [ " ;q,aq] + ) (=1)%akegBRHsmn/2 [ ;q}

m

s=1

= . (511 s—1
goaf(—l)Jq( =) (¢"5q), [ ; ;q]

v N+m+1-ks a0l — ag?s N+m-—ks a
m—ks—j 14, a9 q m_ks_j_lyqa q .

Proof. Apply Proposition 3.4 (with 7 = s—1 and a replaced aq) to each

of the a-Gaussian polynomials in Theorem 4.1. The terms with s = 0
are instead combined using Proposition 2.5. O

Corollary 4.4. For m, N, k non-negative with k > 0

Z qn?+n§+-"+"i_1an1+n2+---+nk_1 (@ Q)N /(@ @) Nn,
1D g 20 (q; q)m—nz T (q; Q)m—nz co (q; Q)nk_z—nk—1(Q§ Q)nk_l
nitetng_1<m

N s
s s §— N ] ] i
=) (=1)*aFeg(ZEHs=1/2 [ ;q] 3o (—1)74E) (N ) [ s ;q]
s=0

S
4=0 I

([N+m+1——ks ] 23[ N+m—ks })
X . 1q,a| —aq 1;q7a .

m—ks—j m—ks—j—

Proof. Apply Proposition 3.4 (with » = s) to each of the a-Gaussian
polynomials in Theorem 4.1. |

5. Single Variable Polynomial
Rogers-Ramanujan Generalizations

Schur (Schmiidgen, 1990) was the first to prove the Rogers-Ramanujan
identities as a limiting case of polynomial identities. Namely, he proved

> & [ n]_-j ;q] = i (—1)jqj(5j+1)/2{ {ésyj ;q], (5.1)

0=2j<n Jj=—00
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and

2i |l n—1—3
> q”][ ; j;q]

0<25<n—1

>0 . n
= Y (~1yg® 3)/2[ ["_—25JJ Ry

j=—o0

(5.2)

The relationship of (5.1) and (5.2) to more general results is discussed
extensively in (Andrews, 1989, esp. §9).

To everyone’s surprise, David Bressoud (Bressoud, 1981b) found a
completely different polynomial refinement:

> [ ? ;q] = Y (~LgETe [ n+n2j ;Q] ,  (53)

and

1 — gt - j%y{rf;}
(1-¢ )jz::oq ;i

o G| 2
= 2. (- [n+2j+2’q'

j=—00

(5.4)

Identities (5.3) and (5.4) have been placed in the context of more general
g-hypergeometric identities (Andrews and Berkovich, 2002).

The list does not stop here. At least two further polynomial refine-
ments of the Rogers-Ramanujan identities have been found (Andrews,
1974), (Andrews, 1990, p. 3, egs. (1.11) and (1.12)). Most recently, S.
O. Warnaar (Warnaar, 2002) has found extensive partial sum Rogers-
Ramanujan identities.

It should be noted that in each of the examples given above (and in
those alluded to in (Andrews, 1974) and (Andrews, 1989)) all the sums
terminate naturally. In other words, the index of summation is extended
over all values that produce non-zero summands.

As we shall see, we may set a = 1 in Corollary 4.3 and a = ¢ in
Corollary 4.4 in order to obtain partial sums of the Rogers-Ramanujan
polynomial. Our results are quite different from those of Warnaar in
(Warnaar, 2002).

To this end we require a definition and a lemma.

n

N N 3 2
Definition 5.1. E,(z,q) = 1&1{20[ n 3‘1’””] AT
j=0

We remark in passing that Euler proved (Andrews, 1976, p. 19, eq.
(2.2.5)) Exo(z,q) =

(£;9)o0
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Lemma 5.2. For non-negative integer N, M and t

101 (¢Vsq) [ t ;q] [N+M .q]

Pj
I
[y

~—

= j M-j>
N+ M
—- [ M ;q] (@ 9)eEe (6", q) -
Proof.
t
P (it t N+M

}_:0(—1)%1(’2 ) (¥ q), [ j ;q] [ M ;q]
J:

(q—M; q)j oJ g(M+t+1)j

CIN+M ] &= (059,
- yq cligloz

[ M e (49)5(c;9);
r N+M 1 ( ) t qj(M+1)
= (a4 (G0 ) ——
. M = (@
[ N+ M ]

i

v 39 @B (¢ ),

where the penultimate assertion follows from the last line on page 38 of
(Andrews, 1976) with b — ¢~%, a — ¢~M, and t — gM+t+1, 0

Theorem 5.3.

3 q ;9N

iz 50 (GDN-1 (G Dni=ng (G Drg—p =1 (6 Dragy

nybng_15m

N
N+M o s(@kit)e-ny2 | N
= [ - ;q] +Zl(~1) g (@rrD)s 1)/2[ ) ;q] (43 9)s1

y ([ N+M+1-ks ;q] B, (qm_ksﬂ,q)

m — ks
N+ M—ks _
2s . m—ks
—q [ m—rks—1 aq:| Es—l <q ,Q))

Proof. Set a = 1 in Corollary 4.3 and invoke Lemma 5.2 for the inner
sum with t = s — 1. |

nitntebn_y (
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Theorem 5.4.

Z q 49N

= (@ DN=n (& Dry—nz (6 Dy
n1ZZng—1

n%+--~+ni_1+n1+~-+nk_1(

il N
=) (~1)*q* (st @E1))/2 [ s ;CI] (¢;9)s
3=0

N+m+1_ks. m—ks+1
X([ m'—ks ;q:|ES(q 7Q)

N +m—ks -
_ 251 . m—k2,
q l m— ks — 1 ,q]Es(q ,q)>

Proof. Set a = ¢q in Corollary 4.3 and invoke Lemma 5.2 for the inner
sum with ¢ = s. O

6. Conclusion

The primary object of this paper has been the development of a-
Gaussian polynomials. In light of their natural partition-theoretic in-
terpretation (Proposition 2.7), it is surprising that they have not been
studied previously. It seems extremely likely that Proposition 2.7 has
already suggested itself to many workers. The first thing one notices is
that for a-Gaussian polynomials there is no lovely product formula like
(1.8) only a less satisfying sum (Proposition 2.8) which reduces to (1.8)
when a = ¢. In addition, the symmetry identity (Andrews, 1976, p. 35,

eq. (3.3.2))
([

has no simple analog for a-Gaussian polynomials. It may well be that
these two deficits discouraged further investigation especially in light of
the fact that the definition of a-Gaussian polynomials contains a sum
that is not naturally terminating.

A secondary object of this paper has been the study of the polynomial
refinements of “a-generalizations” of Rogers-Ramanujan type identities.
Such studies almost always have in mind (or, at least, in the back of
their mind) the famous Borwein conjecture (Andrews, 1995). Namely, if

(6:4°),, (2% d°),, = An (¢®) = aBn (¢®) —°Cn (¢*),  (6.1)

then each of A,(q), Bn(q) and C,(g) has non-negative coefficients.
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It is not hard to show (Andrews, 1995, p. 491) that

- (9 2n
An(q) = Z (—1)ig?O7D/2 [ nt 3 ;q} , (6.2)
j==00
Balg)= Y (-1yig@-a2| I, (6.3)
n , n+3j—19)
Jj==—c0
Calg) = 3 (~1ygCn2 | 2n (6.4)
n _ n+35+1"1"°
j=—o00

Much is known about polynomials of this general nature. Indeed the
main theorem in (Andrews et al., 1987) shows that many such polyno-
mials must have non-negative coefficients.

However, the right-hand side of (5.3) is not covered by (Andrews et al.,
1987), but nonetheless, we see easily that it has non-negative coefficient
by inspection of the left-hand side of (5.3).

While the investigation of polynomial “a-generalizations” has not
here led to further information on the Borwein conjecture, it should
be pointed out that it has provided new insights on truncated Rogers-
Ramanujan identities, a topic treated from a wholly different viewpoint
in (Andrews, 1993).
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Abstract We discuss a probability distribution I; depending on a parameter
0 < ¢ < 1 and determined by its moments n!/(q;g)». The treatment
is purely analytical. The distribution has been discussed recently by
Bertoin, Biane and Yor in connection with a study of exponential func-
tionals of Lévy processes.

Keywords: g¢-calculus, infinitely divisible distribution

1. Introduction

In (Bertoin et al., 2004) Bertoin et al. studied the distribution I of
the exponential functional

o0
I, = /th dt, (1.1)
0

where 0 < ¢ < 1 is fixed and (N, t > 0) is a standard Poisson process.
They found the density i,(z), £ > 0 and its Laplace and Mellin trans-
forms. They also showed that a simple construction from I leads to the
density

1
 log(1/9)(q, —, —q/7; @)oo’

Ag(z) (1.2)

found by Askey, cf. (Askey, 1989), and having log-normal moments. The
notation in (1.2) is the standard notation from (Gasper and Rahman,
1990), see below.

© 2005 Springer Science+Business Media, Inc,
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The distribution I, has also appeared in recent work of Cowan and
Chiu (Cowan and Chiu, 1994), Dumas et al. (Dumas et al., 2002) and
Pakes (Pakes, 1996).

The proofs in (Bertoin et al., 2004) rely on earlier work on exponential
functionals which use quite involved notions from the theory of stochastic
processes, see (Carmona et al., 1994; Carmona et al., 1997).

The purpose of this note is to give a self-contained analytic treatment
of the distribution I, and its properties.

In Section 2 we define a convolution semigroup (/;+),. of probabil-
ities supported by [0, 00, and it is given in terms of the corresponding
Bernstein function f(s) = log(—s;q)eo with Lévy measure v on ]0, oof
having the density

v 1S .
==z Zexp (—zg™). (1.3)
n=0

The function 1/ log(—s; ¢)eo is a Stieltjes transform of a positive measure
which is given explicitly, and this permits us to determine the potential
kernel of (I,t),- -

The measure I, := I, is a generalized Gamma convolution in the
sense of Thorin, cf. (Thorin, 1977b; Thorin, 1977a). The moment se-
quence of I, is shown to be n!/(g; ¢)n, and the nth moment of I; is a
polynomial of degree n in t. We give a recursion formula for the coeffi-
cients of these polynomials. We establish that I; has the density

(_1)nqn(n——1)/2

[e o]
. _ —n
ta(®) ,;)GXP( ) G @ D

A treatment of the theory of generalized Gamma convolutions can be
found in Bondesson’s monograph (Bondesson, 1992). The recent paper
(Biane et al., 2001) contains several examples of generalized Gamma
convolutions which are also distributions of exponential functionals of
Lévy processes.

We shall use the notation and terminology from the theory of basic
hypergeometric functions for which we refer the reader to the monograph
by Gasper and Rahman (Gasper and Rahman, 1990). We recall the g-
shifted factorials

n—1

(z,9)n = H <1—zqk),z€C,0<q<1,n=1,2,...,oo
k=0

and (z;¢)o = 1. Note that (2;q)c is an entire function of z.
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For finitely many complex numbers z1, z9, ..., 2z, We use the abbrevi-
ation

(21,22, 203 0),, = (21,90, (221 Q) - - - (2 D
The g¢-shifted factorial is defined for arbitrary complex index A by

(2 @)oo
Z9)x = )
=9 (26* @)oo
and this is related to Jackson’s function I'; defined by

_ @91 (G Do ;1 y1-z
Fa(z) = (1-g=t (qr”;q)oo(1 o (14

In Section 3 we introduce the entire function h(z) = I'(z) (¢%;¢)
and use it to express the Mellin transform of I,. We finally show that
the density A, given in (1.2) can be written as the product convolution
of I, and another related distribution, see Theorem 3.2 below. The
Mellin transform of the density A, can be evaluated as a special case
of the Askey-Roy beta-integral given in (Askey and Roy, 1986) and in
particular we have, see also (Askey, 1989):

o

dt I'(e)I'(1—-¢)
0/ -y —q/t e T = (4 @)oo m(l“@, c€C\Z. (15)

The value of (1.5) is an entire function of ¢ and equals h(c)h(1—c)/(g; §)co-
The following formulas about the g-exponential functions, cf. (Gasper
and Rahman, 1990), are important in the following;:

“al*) :,; G~ e AT (1.6)
n(n—1)/2 n
Efx)=Y T2 = (-zq)w, z€C. (1.7)

= (GDn

2. The analytic method

We recall that a function ¢ : ]0,00[ — [0,00] is called completely
monotonic, if it is C* and (—=1)*¢®*)(s) > 0 for s > 0, k = 0,1,....
By the Theorem of Bernstein completely monotonic functions have the

form
0

o(s) = / e~ do(z), (2.1)

0
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where o a non-negative measure on [0, c0[. Clearly ¢(0+) = ([0, co[).
The equation (2.1) expresses that ¢ is the Laplace transform of the
measure a.

To establish that a probability 7 on [0, co[ is infinitely divisible, one
shall prove that its Laplace transform can be written

/e"sm dn(z) = exp(—f(s)), s>0,
0

where the non-negative function f has a completely monotonic deriva-
tive. If n is infinitely divisible, there exists a convolution semigroup
(mt)e>0 of probabilities on [0, co[ such that n; = #n and it is uniquely
determined by

o0
/6_” dns(z) = e )| s> 0,
0

cf. (Berg and Forst, 1975), (Bertoin, 1996). The function f is called the
Laplace exponent or Bernstein function of the semigroup. It has the
integral representation

£(s) = as + / dv(z), (2.2)
0

where a > 0 and the Lévy measure v on ]0, co[ satisfies the integrability
condition [z/(1+ z)dv(z) < co. If f is not identically zero the convo-

e o]
lution semigroup is transient with potential kernel x = [ n; d¢, and the
0

Laplace transform of x is 1/ f since

07)6_” dr(z) = 070 Ze—sw dne(z) | dt = Ze—tf(S) dt = ?_(1_3)_ (2.3)

The generalized Gamma, convolutions n are characterized among the
infinitely divisible distributions by the following property of the corre-
sponding Bernstein function f, namely by f’ being a Stieltjes transform,

i.e. of the form
Td
=q + / #(x 7
0

N~

s+x



On a generalized Gamma convolution related to the q-calculus 65

where a > 0 and p is a non-negative measure on [0,00[. The relation
between p and v is that

d 1
vV
R zy
/e du(y).

0

This result was used in (Berg, 1981) to simplify the proof of a theo-
rem of Thorin (Thorin, 1977b), stating that the Pareto distribution is a
generalized Gamma convolution.

Theorem 2.1. Let 0 < g < 1 be fized. The function
[e o]
f(s) =log(=s;q)c0 = Y _log(1 +sqg™), s>0 (2.4)
n=0

is a Bernstein function. The corresponding convolution semigroup
(Ige) t>0) consists of generalized Gamma convolutions and we have

o0
1
T L () = e T = - 0. 2.5
/6 ‘17t(m) € (—S;Q)éo’ s> ( )
0
>
The potential kernel kg = [ I,;dt has the following completely mono-
0

tonic density
o
x)—l—q+/e “epg(y) dy, (2.6)
1
where ¢ is the continuous function

_ [ n(og?|(z;9)0l + n27%) T if gD <z < g,

n=12,....
Proof. The function f defined by (2.4) has the derivative

> 1

f(s) = ;Wg7

showing that f/ is a Stieltjes transform with a = 0, and p is the discrete
measure with mass 1 in each of the points ¢~", n > 0. In particular f is
a Bernstein function with a = 0 and Lévy measure given by (1.3).
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Since -
10g(1+s)_/ 1 dz

S rT+sx
1

we get ([z] denoting the integer part of x)

f(s) _ T llogz/log(1/q)] + 1
s / CEDE

showing that f(s)/s is a Stieltjes transform. It follows by the Reuter-It6
Theorem, cf. (Itd, 1974), (Reuter, 1956), (Berg, 1980), that 1/f(s) is a
Stieltjes transform. Since f is an increasing function mapping | — 1, 00|
onto the real line with f(0) =0 and f/(0) = 1/(1 — q) we get

1 _1—q+/du(x
fs) s z+s’
1
where
1

in the vague topology.
For z € ]q“("“l),q*” [, n=12 ... we find

-1
‘ 1 n—1 . ‘ e .

= (log |(%; q)oo| + inm) ™.

These expressions define in fact a continuous function on [1, oo[, vanish-
ing at the points ¢~™, n > 0, so the measure i has the density ¢ given
by (2.7). Using that the Stieltjes transformation is the second iteration
of the Laplace transformation, the assertion about the potential kernel
kg follows. O

Denoting by &,,a > 0 the exponential distribution with density
aexp(—az) on the positive half-line, we have

oo

/e—sa: dEa(a:) — e—log(l—}-s/a), s>0,
0
so we can write I, := I ; as the infinite convolution

L 00
Iq = *'n:O Eq—-n.
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If we let I'y ; denote the Gamma distribution with density

a* t—1 —az
mH—f‘_EZ)_x e ™, >0,

then we similarly have
—_— 000
Iq,t = *,n=0 Pq—n,t.

Specializing (2.5) to t = 1 we have

i 1

e dl{x) = ——, s> 0, 2.8

[ dne) = = 28)
0

and since the right-hand side of (2.8) is meromorphic in C with poles

at s = —¢~", n > 0 and in particular holomorphic for |s| < 1, we know

that I, has moments of any order with

1
sn(ly) = —1"D"{—} , n=0,1,...,
'ﬂ( q) ( ) (_Saq)oo a—0
cf. (Lukacs, 1960, p. 136). Here and in the following we denote by s, (1)
the nth moment of the measure . However by (1.6) we have

—s; Q)oo Z ‘(g q)n (2:9)

hence
n!

nlly) = (G @)n

Since I; has an analytic characteristic function, the corresponding
Hamburger moment problem is determinate. By Stirling’s formula we
have

(2.10)

OO?
so also Carleman’s criterion shows the determinacy, cf. (Akhiezer, 1965).
By (Berg, 1985, Cor. 3.3) follows that I, is determinate for all ¢ > 0
and by (Berg, 2000) the n’th moment s,(l,+) is a polynomial of degree
n in t given by

D= et n>1, (2.11)
k=1
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where the coeflicients ¢, i, satisfy the recurrence equation

n
n
Cnt1l4+1 = E Ck 1 (k>an—k-
k=l

Here 0,, = (=1)"f**t1)(0), where f is given by (2.4), cf. (Berg, 2000,
Prop. 2.4), so o, is easily calculated to be

n!
=i 20

It follows also by (Berg, 2000) that

On

ehn=04=010-¢7", cp1=0n_1=Mnm-1I/(1-4q").

Defining d,, y = (1 — q)’“c,n,;C we have

n k

t

sn(Igt) =D dnk <———> , n>1, (2.12)
k=1 1-q
and

n dkl n—k . -1

dnt1,1+1 = 1! Z T Z g ,1=0,1,...,n. (2.13)
k=l \j=0

In particular

(2) dn,1 = (n —1)! niqj

dnn - 1, dn,n—l =

We give the first coefficients
dip=1
deog=1 dyo1= !
22=1 021=77 p
dss=1 dzo=-—— d31= 2
33— 4 3,2_1+q7 3,1_1+q+q2'

It follows by induction using (2.13) that d,  as a function of ¢ has a
finite limit for g — 1.

The image measures y; = Ti—q (Iq¢) under 71_q(z) = (1 — q) form a
convolution semigroup (t),~q With

o0}

/e_sx dpe(x) =

0

1
(—s(1—q); )&’

s> 0,
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and

) =) dng(1—q)" M,
k=1

It follows that s, (1) — t™ for ¢ — 17, so 111{1 we = 0, weakly by the
q—1-
method of moments. This is also in accordance with
1

lim =e
g—1- (=s(1 = g);9)&

—st
)

because the g-exponential function F, given in (1.7) converges to the
exponential function in the following sense

qllr{l_ Eq(2(1 - q)) = exp(z),

cf. (Gasper and Rahman, 1990).

Remark 2.2. Consider a non-zero Bernstein function f. In (Carmona
et al., 1994; Carmona et al., 1997) it was proved by probabilistic methods
that the sequence
n!

fA) .- f(n)
is a determinate Stieltjes moment sequence, meaning that it is the mo-
ment sequence of a unique probability on [0,00[. The special case f(s) =
1—¢° gives the moment sequence (2.10). In (Berg and Duran, 2004) the
above result of (Carmona et al., 1994; Carmona et al., 1997) is obtained
as a special case of the following result:

Let (an) be a non-vanishing Hausdorff moment sequence. Then (s,)
defined by so =1 and s, = 1/(a1-...-an) for n > 1 is a normalized
Stieltjes moment sequence.

Sp =

In order to find an expression for I, we consider the discrete signed

measure (
oo
(—l)qu k+1)/2
T L (g )R @ Do 2.14
& ;;o (@ D@0 & (2.14)

with moments

00 1)kan k(k+1)/2 3 (qn—i-l;q)oo 1

Sn(tg) = Z

ot D@0 (G0 &GDn’

where we have used (1.7). In particular, the signed measure y, has mass
1.
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For measures v, 7 on |0, 00 we define the product convolution v ¢ 7
as the image of the product measure v ® 7 under z,y +— zy. The prod-
uct convolution is the ordinary convolution of measures on the locally
compact abelian group |0, co| with multiplication as group operation. In
particular we have

/ fdvor = / / F(zy) dv(z) dr(y).

From this equation we get the moment equation
sn(voT) = sp(¥)sn(7),

hence sy, (g ¢ £1) = n!/(q; q)n, Which shows that uq ¢ £ has the same
moments as I;. Since the first measure is not known to be non-negative,
we cannot conclude right-away that the two measures are equal, although
I, is Stieltjes determinate. We shall show that y,0&; has a density 44(x),
which is non-negative. Since d, ¢ &1 = &y, for a > 0, it is easy to see
that 0 ( 1)n n{n—1)/2

. . -n\ \ q

() = 2 exp (2 ™") CC

n=0

(2.15)

but it is not obvious that i(x) > 0.

Proposition 2.3. The function is(x) given by (2.15) is non-negative
for x> 0. Therefore Iy = p1q ¢ &1 = i4(x) Ljp oo (T) dz.

Proof. The Laplace transform of the function i, is

N (_1)nqn(n—1)/2
2 (s + 97 (6 D8 Do’

n=0

(2.16)

which is the partial fraction expansion of 1/(—s;¢)eo, since the residue
of this function at the pole s = ¢~ is

(_1)nqn(n—1)/2
CHIN R
We claim that

1 i (_1)nqn(n—1)/2 B
——= "n=0,1,..., (217
(=800 = (5+ ™) (G Dn(G Do’ s#Egn=01, (2.17)

which shows that I, and 44 have the same Laplace transform, so i, is the
density of I, and hence non-negative.
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To see the equation (2.17) we note that the left-hand side minus the
right-hand side of the equation is an entire function ¢, and by (2.9) we
get

PO _ (-1 i O el
n! (¢ Dn (q D

but by (1.7) the sum above equals ( w1 q) ., and we get o™ (0)/n! =0,
which shows that ¢ is identically zero.

We call the attention to the fact that the identity (2.17) was also
used in the work (Dumas et al., 2002) of Dumas et al., but it is in fact
a special case of Jackson’s transformations, see (III 4) in (Gasper and
Rahman, 1990) with b=1,a = —s, z = q. O

Let R4 denote the following positive discrete measure

s k

q
Ry = (g @)oo Y 70yt (2.18)

—(G9k *
with moments

TR TP 0 Citdo M (219)
sn(Ry) = (¢ 0)o - = (¢;Dns 2.19

k=0 (qvq)k‘

by (1.6). We claim that y, given by (2.14) and R, are the inverse of
each other under the product convolution, i.e.

01 = pg o Ry. (2.20)
This amounts to proving that

> S

S CHANCH q)n k

1)k k(4 1)/2gn—k

_6'n0a nZ 07

but this follows by Cauchy multiplication of the power series (1.6), (1.7).
Combining Proposition 2.3 with (2.20) we get:

Corollary 2.4. The following factorization hold
& =1,0 Ry,
which corresponds to the factorization of the moments of €1 as

n!

nl =
(4 Dn

(g5 On.
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Remark 2.5. The factorization of Corollary 2.4 is a special case of a
general factorization in (Bertoin and Yor, 2001):

n!
OO

where f is a non-zero Bernstein function (2.2), and Iy, Ry are deter-
mined by their moments

& =1IfoRy, n (f) ... f(n)),

n!
sn(If) = —————, sn(Rf)=f(1) ... .
I = gy () =0 f(m)
3. The entire function h(z) :=I'(2)(¢%; @)
Since the Gamma function has simple poles at z = —n, n=0,1, ...,

where (¢%;q)., has simple zeros, it is clear that the product h(z) :=
I'(2) (¢%; ), is entire. We have

. » . 1-g¢7
P(0) = Bm T(2) (¢; @)oo = M Tz + 1) (¢ 0) oo —
= (¢; @)oo log(1/q),
and from this it is easy to see that
h(n) = D nee)/2(g; ) 10 (1), (3.1)
Proposition 3.1. For z € C we have
T h(z+1)
x®dl,(z) = . 3.2
0/ P - 62

Proof. For Re z > —1 the following calculation holds by (2.15) and (1.7):

o0 o0

> (_1\nn(n-1)/2 .
/.’L‘Z qu(.’L‘) — ZL/xze—mq dCE

0 n=0 (q;q)n(q;@oo /

= (0% T(z + 1)(¢°"; @)oo

Since the right-hand side is entire and I, is a positive measure, we get by
a classical result (going back to Landau for Dirichlet series, see (Widder,
1941, p. 58)) that the integral in (3.2) must converge for all z € C, and
therefore the equation holds for all z € C. O

When discussing measures on 0, co[ it is useful to consider this set as
a locally compact group under multiplication. The Haar measure is then
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dm(z) = (1/x)dz, and it is useful to consider the density of a measure
with respect to the Haar measure m. The Mellin transformation is the
Fourier tranformation of the locally compact abelian group (]0, oo], -),
and when the dual group is realized as the additive group R, the Mellin
transformation of a finite measure p on )0, co| is defined as

M(p)(€) = / v~ € du(z), £€R
0

We get from (3.2) that

M)E) = =,

From Proposition 3.1 it follows that I; has negative moments of any
order, and from (3.1) we get in particular that

1
Jo=—
7 zlog(1/q)

(3.3)

dl(x) (3.4)

is a probability. 5
The image of J,; under the reflection x +— 1/x is denoted J,.

Theorem 3.2. The product convolution Lq := I ¢ jq has the density

(1.2)
1

Ag() =
") = o o) (@ 5~/ Do
with respect to Lebesgue measure on the half-line.

Proof. For z € C we clearly have

[e o) oo o0

/xz dLy(z) = /:rz qu(x)/x_z dJq(z),

0 0 0

and by (3.2) we get

Y h(z+ k(=)
0/ = dLa(®) = i @ 0%

By (1.5) it follows that for z € C

/mz dLg(x) = /mz)\q(m) dz,
0 0
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so Ly = A\g(z) dx. O

Remark 3.3. In (Bertoin et al., 2004) the authors prove Theorem 3.2
by showing that

7 ; (_1)nqn(n+1)/2
[+ ) = e 1/q)/ <n__oo PR )d””

0

for =1 < Rez < 0, and then they prove the partial fraction expansion of
the meromorphic density A\g(x)

1 n n(n+1)/2

1 (=
Aq(z
) = G oa(1/) Z T
Remark 3.4. The moments of jq are given by
sn(Jg) = (&9 )" g (2, (3.5)

s0
o0
1

7;) 2 sn(Jy)

Therefore Carleman’s criterion gives no information about determinacy
of Jg. By the Krein criterion, cf. (Berg, 1995), (Stoyanov, 2000), we
can conclude that

< 0.

[ logiy(z)
J Vit )

because I, is determinate. The substitution x = 1/y in this integral leads
to

T = —00,

T log logig(1/y) y)

| Vi) ¥ (36)

but since
5 _ig(1/y)dy
q— ’
ylog(1/q)
we see that (3. 6) gives no information about indeterminacy of J We

do not know if J is determinate or indeterminate, and as a factor of an
indeterminate dzstrzbutzon L, none of these possibilities can be excluded.
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Abstract The existence of the crank was first conjectured by F. J. Dyson in
1944 and was later established by G. E. Andrews and F. G. Garvan in
1987. However, much earlier, in his lost notebook, Ramanujan studied
the generating function F,(g) for the crank and offered several elegant
claims about it, although it seems unlikely that he was familiar with all
the combinatorial implications of the crank. In particular, Ramanujan
found several congruences for Fi,(g) in the ring of formal power series
in the two variables a and ¢. An obscure identity found on page 59 of
the lost notebook leads to uniform proofs of these congruences. He also
studied divisibility properties for the coefficients of F,(q) as a power
series in ¢. In particular, he provided ten lists of coeflicients which he
evidently thought exhausted these divisibility properties. None of the
conjectures implied by Ramanujan’s tables have been proved.

1. Introduction

In attempting to find a combinatorial interpretation for Ramanujan’s
famous congruences for the partition function p(n), the number of ways
of representing the positive integer n as a sum of positive integers, in
1944, F. J. Dyson [7] defined the rank of a partition to be the largest part
minus the number of parts. Let N(m, n) denote the number of partitions
of n with rank m, and let N(m,t,n) denote the number of partitions of
n with rank congruent to m modulo ¢. Then Dyson conjectured that

N(k,5,5n+4)=@, 0< k<4, (1.1)
and . .
N(k,7,7n+5)=p(—n7+—), 0< k<86, (1.2)

which yield combinatorial interpretations of Ramanujan’s famous con-
gruences p(5n+4) =0 (mod 5) and p(7n+5) = 0 (mod 7), respectively.
These conjectures, as well as further conjectures of Dyson, were first
proved by A. O. L. Atkin and H. P. F. Swinnerton-Dyer [4] in 1954. The
generating function for N(m,n) is given by

n2

o0 o0 m o S q
Z ZN(m,n)a q _;(aq;q)n(q/a;q)n7 (1.3)

m=—00 n=0

where |g] < 1 and |q| < |a| < 1/|g|. Although, to the best of our
knowledge, Ramanujan was unaware of the concept of the rank of a
partition, he recorded theorems on its generating function in his lost
notebook; in particular, see [20, p. 20].

The corresponding analogue does not hold for p(11n+6) = 0 (mod 11),
and so Dyson conjectured the existence of a crank. In his doctoral dis-
sertation [11], F. G. Garvan defined vector partitions which became the
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forerunners of the crank. The true crank was discovered by G. E. An-
drews and Garvan on June 6, 1987, at a student dormitory at the Uni-
versity of Illinois.

Definition 1.1. For a partition m, let A(n) denote the largest part of w,
let () denote the number of ones in m, and let v(m) denote the number
of parts of w larger than p(m). The crank c(n) is then defined to be

clm) = )\(W)’ Zflul(ﬂ') = 0,
S {V(W) — (), if p(mw) > 0. (1.4)

For n # 1, let M(m,n) denote the number of partitions of n with
crank m, while for n = 1, we set

M(©0,1) =—-1,M(-1,1) = M(1,1) = 1,and M(m,1) = 0 otherwise.

Let M (m,t,n) denote the number of partitions of n with crank congruent
to m modulo ¢. The main theorem of Andrews and Garvan [2] relates
M (m,n) with vector partitions. In particular, the generating function
for M (m,n) is given by

i iM(m,n)amqn: ‘ (q;q)oo' ' (1.5)

e Wowar (aq; 9)oo(9/@; @)oo

The crank not only leads to a combinatorial interpretation of p(11n +
6) = 0 (mod 11), as predicted by Dyson, but also to similar interpreta-
tions for p(5n 4+ 4) =0 (mod 5) and p(7n +5) =0 (mod 7).

Theorem 1.2. With M(m,t,n) defined above,

M(k,5,5n+4):1’_(5£5+_4), 0<k<d
7
M(k,7,7n+5)=1’(_"7+ﬁ, 0<k<S6,
11
M(k,11,11n + 6) = P(?__+6), 0<k < 10.

An excellent introduction to cranks can be found in Garvan’s survey
paper [12]. Also, see [3] for an interesting article on relations between
the ranks and cranks of partitions.

2. Entries on Pages 179 and 180

At the top of page 179 in his lost notebook [20], Ramanujan defines
a function F'(g) and coefficients \,, n > 0, by

F(q) == Fa(q) = (aq; gq,(q/a Doo Z/\"q (2.1)

n=0
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Thus, F,(q) is the generating function for cranks, and by (1.5), for n > 1,

o0
Ap = Z M(m,n)a™.
m=-—00
He then offers two congruences for F,(g). These congruences, like others
in the sequel, are to be regarded as congruences in the ring of formal
power series in the two variables ¢ and ¢. First, however, we need to
define Ramanujan’s theta function f(a,b) by

o0

fla,b) =Y orHD2prtn=D2 0 gp) < 1, (2.2)
n=—00
which satisfies the Jacobi triple product identity [5, p. 35, Entry 19]
f(a,b) = (—a;ab)oo(—b; ab)oo(ab; ab)eo. (2.3)

The two congruences are then given by the following two theorems.
Theorem 2.1.

f(=¢%,~¢°) ( 1) f(=4,—4") 2, 1
E, =2 2 2/ lg—1+= A2 2 (moda?+ ).
VO = pa ) VIR )
(2.4)
Theorem 2.2.
Fo(q'%) = f(=¢* -4 f(=¢" —¢°)
(% ¢%)0
1 .f(_q> _qS)f(_qél, —q5)
+la—-1+ —) 1/3
< a)? (2% ¢%)oo
1 f(=4,—¢°) f(=¢* —4") 1
2, Y ,2/3 ) 3 L
i (a " a2> ! (4% ¢°) (moda™+ 1+ 25)
(2.5)
Note that Ay = a? + a~2, which trivially implies that a* = —1

(mod Az) and @® =1 (mod A2). Thus, in (2.4), a behaves like a primitive
8th root of unity modulo \y. On the other hand, A3 = a® +1 4 a3,
from which it follows that a® = —a® — a3 = 1 (mod A\3). So in (2.5), a
behaves like a primitive 9th root of unity modulo As.

This now leads us to the following definition.

Definition 2.3. Let P(q) denote any power series in q. Then the t-
dissection of P is given by

P(g) =Y _ q"Pi(d). (2.6)
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Thus, if we let a = exp(2mi/8) and replace q by ¢?, (2.4) implies the
2-dissection of Fy,(g), while if we let a = exp(27:/9) and replace q by
3, (2.5) implies the 3-dissection of F,(q). The first proofs of (2.4) and
(2.5) in the forms where a is replaced by the respective primitive root
of unity were given by Garvan [14]; his proof of (2.5) uses a Macdonald
identity for the root system Aj.

3. Entries on Pages 18 and 20

Ramanujan gives the 5-dissection of F,(q) on pages 18 and 20 of his
lost notebook [20], with the better formulation on page 20. It is inter-
esting that Ramanujan does not give the two variable form, analogous
to those in (2.4) and (2.5), from which the 5-dissection would follow by
setting a to be a primitive fifth root of unity. Proofs of the 5-dissection
have been given by Garvan [13] and A. B. Ekin [9]. To describe this
dissection, we first set

f(=9) = f(—=¢,—0%) = (¢ ¢)oos 3.1)
by (2.3).

Theorem 3.1. If { is a primitive fifth root of unity and f(—q) is defined
by (3.1), then

— f(—'q107 —q15)
fA(—¢% —¢?%)

+(¢—-1+¢ g

(=)
F2(=¢%)
f(_q57 _q20)
2 (=4*)
f(=4*%,—¢%)
3 f(_qs, _q20)
f2(—¢*% —¢%)
For completeness, we state Theorem 3.1 in the two variable form as a
congruence. But first, for brevity, it will be convenient to define

Fe(q)

+(¢2+ ¢

(G +1+¢ g 2(-¢®).

Ap=a"+a™ (3.2)

and
n

Sp = Z a®. (3.3)

k=—n
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Theorem 3.2. With f(—q), An, and S, defined by (3.1)—(3.3), respec-
tively,

f . 10’__ 15

3 12(—¢*)
(4 1)qf(—q"’,—q”)
3 f(_q57 _q20)

(=4, —¢'%)

Fu(q)

2(—¢%)
f(—q*0, —q'%)

2(=¢*®)  (mod Sy).

+ Axg®

+ (A3 + 1)g

As we have seen, by letting a be a root of unity, we can derive a
dissection from a congruence in the ring of formal power series in two
variables. In fact, the converse is true, and this is proved in [6].

4. Entries on Pages 70 and 71

The first explicit statement and proof of the 7-dissection of F,(g) was
given by Garvan [13, Thm. 5.1]; another proof was later found by Ekin
[9]. Although Ramanujan did not state the 7-dissection of Fy(q), he
clearly knew it, because the six quotients of theta functions that appear
in the 7-dissection are found on the bottom of page 71 (written upside
down) in his lost notebook. We record the two variable form here.

Theorem 4.1. With f(a,b) defined by (2.2), f(—q) defined by (3.1),
and A, and S, defined by (3.2) and (3.3), respectively,

Fu(q) = —f(_1q7) {2, —a*®) + (41 — Daf (-, —¢*) f(—¢*, —¢*®)
+ Ao f2(—q**, —¢®) + (A3 + 1) F(—¢", —¢") f (="', - ¢*°)
~A1g* f(=4", = ") f (=", —¢*) — (A2 + 1)¢® F2 (¢, —¢*)}

(mod S3).

The first appearance of the 11-dissection of F,(gq) in the literature
also can be found in Garvan’s paper [13, Thm. 6.7]. However, again, it
is very likely that Ramanujan knew the 11-dissection, since he offers the
quotients of theta functions which appear in the 11-dissection on page 70
of his lost notebook [20]. Further proofs were found by Ekin (8], [9], and
a reformulation of Garvan’s result was given by M. D. Hirschhorn [15].
We state the 11-dissection in the two variable form as a congruence.
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Theorem 4.2. With A, and S,, defined by (3.2) and (3.3), respectively,

Fala) = (q“;q”)oo(lqm;qm)go
+ A2q?AC®D + (43 + 1) *ABD?

+ (A2 + Ag + 1) ¢*ABCE — (Ay + Ay) °B°CE
+ (A1 + Ag) "ABDE — (Ag + As + 1) ¢*°CDE?

— (A4 +1) ®ACDE — quloBCDE} (mod S),

{ABCD + (A, — 1) gA’BE

where A = f(_q557 _q66)7 B = f(_q77a _q44); C = f(_q887 _q33); D=
f(_qgga _q22)7 and £ = f(_q1107 _qll)'

The present authors have recently given two proofs of each of Theo-
rems 2.1, 2.2, 3.2, 4.1, and 4.2 in [6]. Our first proofs of each theorem
use a method of “rationalization” which is like the method employed by
Garvan [13], [14] in proving the dissections where a is replaced with a
primitive root of unity. Our second method employs a formula found
on page 59 in Ramanujan’s lost notebook [20]. In fact, as we shall see
in the next section, Ramanujan actually does not record a formula, but
instead records “each side” without stating an equality.

5. Entries on Pages 58 and 59
On page 58 in his lost notebook [20], Ramanujan recorded the follow-

ing power series:
1+qa1 — 1)+ ¢Paz + ¢*(az + 1) + ¢*(as + az + 1)
+q°(as + a3+ a1+ 1) + ¢°(ag + as + a3 + ag + a1 + 1)
+q (a3 + 1){(as + a2 + 1) + ¢®az(ag + as + as + ag + a1 + 1)
+ ¢®ag(az + 1)(ag + ag + 1) + ¢*%ag(az + 1)(as + a3 + a3 + 1)
+ qllalag(ag +as+as+as+az+a+2)
+¢2(az3+ag+ay +1)(as +ag+az+ag+a; + 1)

X (ag — 2a3 +2a3 — a1 + 1)
+¢¥%(ay - 1)(ag — ag + 1)

x (a10 + 2a9 + 2ag + 2a7 + 2a¢ + 4as + 6a4 + 8a3 + 9az + a1 +9)
+g"*(az + 1)(as + 1)(aq + a2 + 1)(as — az + a1 + 1)
+ ¢Pajas(as + aq + az + ag + a1 + 1) (a7 — ag + a4 + a1)

+ ¢'%(az + 1)(az + az + a1 + 1)(as + ag + a3 + ag + a3 + 1)
X (a5 — 2a4 + 2a3 — 2a9 + 3a1 — 3)
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+ q17(a2 +1)(az3 + 1)(as + as + a3+ a2 + a1 + 1)(ay —ag + a3 +a; — 1)
+¢"%(as + ag + 1)(ag +az + a1 + 1)(as + ag + a3 + ag + a1 + 1)

x (ag —2a5 + a4 + a3 — ag + 1)
+ qlgag(al —1)(ag + ag + 1)(az + as + a1 + 1)

X (a9 — a7 + ag + 2a3 + as — 1)
+¢*(ag — a1 + 1)(az + 1) (a5 + ag + a3 + ag + a1 + 1)

X (a1o + ag + a4 + a3 + 2a3 + 2a; + 3)

+ q*'ajas(as + 1)(ag — a3 + 1)(as + a4 + az + ag + a3 + 1)

X (ag — ag + a4 + a1 + 2)

+-- (5.1)
Although Ramanujan did not indicate the meaning of his notation a,,
in fact,

ap :=a"+a™", (5.2)
and indeed Ramanujan has written out the first 21 coefficients in the
power series representation of the crank Fy(g). (We have corrected a
misprint in the coefficient of ¢%!.)

On the following page, beginning with the coefficient of ¢'3, Ramanu-
jan listed some (but not necessarily all) of the factors of the coefficients
up to ¢?6. The factors he recorded are

13. (a1 —1)(ag — a1 +1) (5.3)
14. (a2 + 1)(0,3 + 1)(a4 + a9 + 1)

15. alaz(a5 +a4+as+as+ a1+ 1)

16. (az3+1)(az+az+a1+1)(as+ag+as+as+a;+1)

17. (a2 +1)(az +1)(as + a4 + a3 +ag + a1 + 1)

18. (ag+as+1)(az+as+ar+1)(as+ag+ag+az+a;+1)
19. ag(a; —1)(as + a2+ 1)(az+ag +a; + 1)

20. (az+1)(ag~a1+1)(as +as+az+az+a1+1)

21. ajas(az+1)(az — a1+ 1)(as +ag + a3 + a2 + a3 + 1)

22. ag(ag + 1)((11 — 1)

23. (a1 —1)(as+a2+1)

24. (az+1)(ag+a2+1)(as+ag+a1+1)

25. agz(a1 —1)(as+as+as+az+a;+1)

26. ag(ag + 1)(0,3 + a9+ a1 + 1).

Ramanujan did not indicate why he recorded only these factors. How-
ever, it can be noted that in each case he recorded linear factors only
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when the leading index is < 5. To the left of each n, 15 < n < 26, are
the unexplained numbers 16 x 16, undecipherable, 27 x 27, —25,49, ~7 .
19,9,-7,-9,-11.15,-11, and —4, respectively.

6. Congruences for the Coefficients )\, on Pages
179 and 180

On pages 179 and 180 in his lost notebook [20], Ramanujan offers ten
tables of indices of coefficients ), satisfying certain congruences. On
page 61 in [20], he offers rougher drafts of nine of the ten tables; Table
6 is missing on page 61. Unlike the tables on pages 179 and 180, no ex-
planations are given on page 61. Clearly, Ramanujan calculated factors
well beyond the factors recorded on pages 58 and 59 of his lost notebook
given in Section 5.5. To verify Ramanujan’s claims, we calculated \,, up
to n = 500 with the use of Maple V. Ramanujan evidently thought that
each table is complete in that there are no further values of n for which
the prescribed divisibility property holds. However, we are unable to
prove any of these assertions.

1
Thmel.&ﬁEOOmﬁa2+aﬂ

Thus, Ramanujan indicates which coeflicients A\, have aq as a factor.
The 47 values of n with ay as a factor of \,, are

2,8,9,10, 11,15, 19,21, 22, 25, 26, 27, 28, 30, 31, 34, 40, 42, 45,
46,47,50, 55, 57,58, 59, 62, 66, 70, 74, 75, 78, 79, 86, 94, 98,
106,110, 122,126, 130, 142, 154, 158, 170, 174, 206.

Replacing g by ¢? in (2.4), we see that Table 1 contains the degree of
q for those terms with zero coefficients for both

f(=4% —¢'%) (=% —¢')

_— = ¢ and q .
(=% ¢*) oo (=% ¢%)oo

(6.1)

Table 2. A, =1 (mod a? + %)

To interpret this table properly, we return to the congruence given in
(2.4). Replacing q by ¢?, we see that Ramanujan has recorded all the
degrees of g of the terms (except for the constant term) with coefficients
equal to 1 in the power series expansion of

f(=q% —q'°)

(—¢% 4% (6.2)

The 27 values of n given by Ramanujan are
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14,16, 18,24, 32, 48,56, 72, 82, 88, 90, 104, 114, 138, 146,
162,178,186, 194, 202, 210, 218, 226, 234, 242, 250, 266.

ThMe3.AnE—4_@mda2+£ﬁ

This table is to be understood in the same way as the previous table,
except that now Ramanujan is recording the indices of those terms with
coefficients equal to —1 in the power series expansion of (6.2). Here
Ramanujan missed one value, namely, n = 214. The 27 (not 26) values
of n are then given by

4,6,12,20, 36, 38, 44, 52, 54, 60, 68, 76, 92, 102, 118,
134,150, 166, 182, 190, 214, 222, 238, 254, 270, 286, 302.

Table 4. )\n':‘a——l—i~1 (modag-}—%)
a a

We again return to the congruence given in (2.4). Note that a—1+1/a
occurs as a factor of the second expression on the right side. Thus,
replacing g by ¢?, Ramanujan records the indices of all terms of

f(_q27 _q14)

(=04 9% oo (6:3)

q

with coefficients that are equal to 1. The 22 values of n which give the
coefficient 1 are equal to

1,7,17,23,33,39, 41,49 63, 71,73, 81,
87,89,95,105, 111,119, 121, 127, 143, 159.
1
Table 5. \, = - (a—1+ %) (moda®+ =)
a

The interpretation of this table is analogous to the preceding one.
Now Ramanujan determines those coefficients in the expansion of (6.3)
which are equal to —1. His table of 23 values of n includes

3,5,13,29,35,37,43,51,53,61,67,69,77,
83, 85,91,93,99,107, 115, 123, 139, 155.
1
Table 6. A, =0 (moda+ —)
a

Ramanujan thus gives here those coefficients which have a; as a factor.
There are only three values, namely, when n equals
11,15, 21.

These three values can be discerned from the table on page 59 of the
lost notebook.
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From the calculation

@D _ (@D _ f0f(=d")
(ag;9)oo(9/a )0~ (0% 0P oo f(=a%)

where f(—q) is defined by (3.1), we see that in Table 6 Ramanujan

recorded the degree of q for the terms with zero coefficients in the power

series expansion of
f=a)f(=4)
. 6.4
f(=q" (64
For the next three tables, it is clear from the calculation

(4 9)oo (%) _ F(=))F(=4%) 1
= = moda — 1+ —),
(a9 9)oo(9/0; Qo0 ~ (—¢% 0% oo f(=4%) ( 2

that Ramanujan recorded the degree of g for the terms with coefficients
0, 1, and —1, respectively, in the power series expansion of

ovp_ .3
= (6

1
(mod a + ;),

Table 7. A, =0 (moda—1+ )
(21

The 19 values satisfying the congruence above are, according to Ra-
manujan,

1,6,8,13,14,17,19

,22,23, 25,
33,34, 37, 44, 46, 55, 58,61, 8

5
2.

1
Table 8. A\, =1 (moda—1+ E)

The 26 values of n found by Ramanujan are

5,7,10,11, 12, 18, 24, 29, 30, 31, 35, 41, 42, 43,
47,49, 53,54, 59, 67,71, 73, 85,91, 97, 109.

As in Table 2, Ramanujan ignored the value n = 0.
Table 9. A, = -1 (moda—1+ 1)
a

The 26 values of n found by Ramanujan are

2,3,4,9,15,16,20, 21, 26, 27, 28, 32, 38, 39,
40,52, 56, 62, 64, 68, 70, 76, 94, 106, 118, 130.
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Table 10. A, =0 (moda+ 1+ -61;)

Ramanujan has but two values of n such that A, satisfies the congru-
ence above, and they are when n equals

14,17.

From the calculation

(@D _ (92 _ (=9

(aq;D)oo(d/0; Q)0 ~ (6*8%)00  F(—¢%)

it is clear that Ramanujan recorded the degree of ¢ for the terms with
zero coefficients in the power series expansion of

f(-q)

f(=a%

The infinite products in (6.2)—-(6.6) do not appear to have monotonic
coefficients for sufficiently large n. However, if these infinite products
are dissected properly, then we conjecture that the coefficients in the

dissections are indeed monotonic. Hence, for (6.2), (6.3), (6.4), (6.5),
and (6.6), we must study, respectively, the dissections of

f(=q% —4*%) f(=q* —¢*)
(—a%q 4t

1
(moda+1+ 5),

(6.6)

oo , (“q g )oo ’
f(—a) f(—q*) F=A (=4 fA(=q)
f(=¢*) f(=¢%) 7’ f(=a3)

For each of the five products given above, we have determined certain
dissections.

We require an addition theorem for theta functions found in Chapter
16 of Ramanujan’s second notebook [19], [5, p. 48, Entry 31]. Our
applications of this lemma lead to the desired dissections.

Lemma 6.1. If U, = o""tD/2g0(n=1)/2 4pnq V,, = gn(n=1)/2gn{n+1)/2
for each integer n, then

= Unik Vi
fULV) =D ka( R ) (6.7)
k=0

Setting (o, 3, N) = (—¢%, —¢'°,4) and (—¢*, —¢'%,2) in (6.7), we ob-
tain, respectively,

f(~¢%-¢"°) = A—¢°*B - ¢'°C + ¢®D, (6.8)
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f=a* —4"®) = (@, ¢") - ¢* (5, ¢°°), (6.9)

where 4 := f(¢'%,¢'*), B := f(¢"%,¢'*), C = £(¢*°,¢*®), and D :=
F(g8, ¢**%).
Setting (o, 8, N) = (—¢, —¢?,3) in (6.7), we obtain

f(=q) = f(=4¥,~a"*) = ¢f (=¢*, ") = P f(~¢*, -**).  (6.10)
For (6.2), the 8-dissection (with, of course, the odd powers missing)
is given by
f(=¢%—4"%) _ f(=¢%, ") f(=¢",—¢")
(=% ¢%) oo f(=q'®)

f( 1q16 {A qGB _ q10C+q28D}
x {f 24’q40) 56)}
f( 1q16){Af(q24’q40) 32Df( 8 56)

[quf 8 56 8Cf(q247q40)]
Af(g* ,q4°) +¢**Df(¢% ¢°%)]

¢ [-
¢® [-Bf (@™, ¢*°) + ¢*Cf(¢%, ¢*)] }

where we have applied (6.8) and (6.9) in the penultimate equality.
For (6.6), we have the 3-dissection,

fPleg) 1
f(-¢*) (%%
- m&”(ﬂz”, —¢") +20°f(=¢°, ") f(~4*, ~¢*)
—q[2f(—¢"*, =) f(=d®, —*") = P2 (—¢%, —¢*)]
+¢ [f2(=¢% —*) - 2f (4", —4®) f(—¢*, —¢*")] }

where we have applied (6.10) in the first equality. For (6.3), (6.4), and
(6.5), we have derived an 8-dissection, a 4-dissection, and a 6-dissection,
respectively. Furthermore, we make the following conjecture.

2

{f(=4"%, —¢") = ¢f (=¢°, —¢®") — ¢*F (=&, —¢*4)}

Conjecture 6.2. Each component of each of the dissections for the five

products given above has monotonic coefficients for powers of q above
1400.

We have checked the coefficients for each of the five products up ton =
2000. For each product, we give below the values of n after which their
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dissections appear to be monotonic and strictly monotonic, respectively.

(6.2) 1262 1374
(6.3) 719 759
(6.4) 149 169
(6.5) 550 580
(6.6) 95 95

Our conjectures on the dissections of (6.4), (6.5), and (6.6) have mo-
tivated the following stronger conjecture.

Conjecture 6.3. For any positive integers a and 3, each component of
the (o + 3 + 1)-dissection of the product

f(=¢*)f(=¢")
f(—gqo+P+1)

has monotonic coefficients for sufficiently large powers of q.

We remark that our conjectures for (6.4), (6.5), and (6.6) are then
the special cases of Conjecture 6.3 when we set (a,8) = (1,2),(2,3),
and (1,1), respectively.

Setting (o, 8, N) = (—¢%, —¢'%,2) and (—¢?, —¢'4,2) in (6.7), we ob-
tain, respectively,

f(=a% —a"%) = £(@®,¢*) — ¢*f(¢*,¢*°) (6.11)
and
f(= =) = f(d®, ¢*) — 2f(d*?, ¢*). (6.12)

After reading our conjectures for (6.2) and (6.3), Garvan made the
following stronger conjecture.

Conjecture 6.4. Define b, by

=~ o F(=¢5=4") | f(=g%-¢")
bnq" =
2_bua a5 (—05 e
I ACTT i (ot ) B (Cu i)
(=44 (=04 (=% ¢%)oo
3 f(g"%,¢%%)
(—¢% ¢4’

-4
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where we have applied (6.11) and (6.12) in the last equality. Then
(=1)"ban > 0, for alln >0,

(=1)"bsn41 = 0, for alln >0,
(=1)"bgn42 > 0, foralln>0,n+# 3,
(=1)"*byny3 >0,  foralln >0,

Furthermore, each of these subsequences are eventually monotonic.

It is clear that the monotonicity of the subsequences in Conjecture 6.4
implies the monotonicity of the dissections of (6.2) and (6.3) as stated
in Conjecture 6.2.

In [1], Andrews and R. Lewis made three conjectures on the inequal-
ities between the rank counts N(m,t,n) and between the crank counts
M(m,t,n). Two of them, [1, Conj. 2 and Conj. 3] directly imply that
Tables 10 and 6, respectively, are complete. Recently, using the cir-
cle method, D. M. Kane [16] proved the former conjecture. It follows
immediately from [16, Cor. 2] that Table 10 is complete.

7. Page 182: Partitions and Factorizations of
Crank Coefficients

On page 182 in his lost notebook [20], Ramanujan returns to the
coefficients A, in the generating function (2.1) of the crank. He factors
An, 1 < m < 21, as before, but singles out nine particular factors by
giving them special notation. The criterion that Ramanujan apparently
uses is that of multiple occurrence, i.e., each of these nine factors appears
more than once in the 21 factorizations, while other factors not favorably
designated appear only once. Ramanujan uses these factorizations to
compute p(n), which, of course, arises from the special case a = 1 in
(2.1), ie.,

1 o0
= n)q", < 1.
. ;)p( )q lq|

Ramanujan evidently was searching for some general principles or theo-
rems on the factorization of A, so that he could not only compute p(n)
but say something about the divisibility of p(n). No theorems are stated
by Ramanujan. Is it possible to determine that certain factors appear in
some precisely described infinite family of values of A,? It would be in-
teresting to speculate on the motivations which led Ramanujan to make
these factorizations.
The factors designated by Ramanujan are

p1=a1~1,
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p=az—a+1,
p2 = ag,

p3 = a3+ 1,

p4 = aiag,

ps = a4+ ag + 1,
pr=ag+az+ag+1,

po = (a2 +1)(az + 1),
pir=0as+ag+az+az+a;+1.

At first glance, there does not appear to be any reasoning behind the
choice of subscripts; note that there is no subscript for the second value.
However, observe that in each case, the subscript

n = (as a sum of powers of a) the number of terms with positive
coeflicients minus the number of terms with negative coefficients
in the representation of p,, when all expressions are expanded out,

or if pp, = pn(a), we see that p,(1) = n.

The reason p does not have a subscript is that the value of n in this case
would be 3 — 2 = 1, which has been reserved for the first factor. These
factors then lead to rapid calculations of values for p(n). For example,
since A1p = pp2p3pr, then

p(10) =1-2.3.7 =42.

In the table below, we provide the content of this page.

p(l) =1, A1 = p1,
p(2) = 2, A2 = pg,
p(3) =3, A3 = p3,
p(4) =5, Aq = ps,

)

)

)

)

) =T, As = p7p,

p(6) =11,  A¢ = p1p11,

p(7) =15, A7y = psps,
) =22,  Ag= pipap11,

p(9) =30, A9 = paps3ps,
p(10) =42,  Ajo = pp2p3pr,
p(11) =56, A1 = pspr(as — ag + ag),
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p(12) =77, X2 = prp1i(as — 2a3 + 2a9 — a1 + 1),
p(13) =101, i3 = pp1 (a10 + 2a9 + 2as + 2a7 + 3as
+4as + 6a4 + 8a3 + 9az + a1 + 9),
p(14) =135, A4 = pspo(as —az + a1 + 1),
p(15) = 176, 15 = pyp11(ar — ag + ag + a1),
p(16) = 231, Aie = p3prp11(as — 204 + 2a3 — 2ag + 3a1 — 3),

A7 = popri(ar — ag + a3 + a1 — 1),
Mg = psprpi1(as — 2a5 + aq + a3 — a2 + 1),
Ao = p1p2pspr{ag — a7 + ag + 2a3 + az — 1),

oo = pp3p1i(aio + ag + ag + az + 2a2 + 2a1 + 3),
o1 = pp3pap11(ag — ag + ag + ag + 2).

8. Further Entries on Page 59

Further down page 59, Ramanujan offers the quotient (with one mis-
print corrected)

(1+alar = 2) + *(az — 1) + *(as — @2) + ¢ (as — as) + -
— (% (a1 - 2) + ¢*(a2 — a1) + q" (a3 — a2) + ¢°(as — ag) + - -+)
+(¢° a1—2 )+q (a2—a1)+q12(as a2) + q'°(as — az) + )
~ (q"%a1 - 2) + ¢"*(a2 — a1) + ¢"3(as — a2) + ¢**(as — az) + -+
( 15

+ (¢ 2) +q*(az — a1) + ¢®(az — a2) + - --)

—(q gy —2) + ))/
(I-a-++d" —¢?~¢®+¢7+- ). (8.1)
In more succinct notation, (8.1) can be rewritten as
= 5 (g, )
m=1,n=0 ’ (82)

(49

where now ag := 2. Scribbled underneath (8.1) are the first few terms
of (5.1) through ¢5. Thus, although not claimed by Ramanujan, (8.1)
is, in fact, equal to F,(q). We state this in the next theorem, with a,
replaced by A,.
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Theorem 8.1. If A, is given by (3.2), then, if |q| < min(|a|,1/la]),

(q; q)go — m _m{m+1)/24+mn
(aq;Q)oo(Q/a; q)oo - 1_m=§=0("1) q ( )/ (An+1_An). (83)

It is easily seen that Ramanujan’s Theorem 8.1, which we prove in the
next section, is equivalent to a theorem discovered independently by R.
J. Evans [10, eq. (3.1)], V. G. Ka¢ and D. H. Peterson [17, eq. (5.26)],
and Kac¢ and M. Wakimoto [18, middle of p. 438]. As remarked in [17],
the identity, in fact, appears in the classic text of J. Tannery and J.
Molk [21, Sect. 486].

Theorem 8.2. Let

e = (—1)fghE+D/2, (8.4)
Then
@92 _ i (1~ a) (8.5)

(0g; D)oo(a/a; @)oo~ 2~ 1—agk

A notable feature of the authors’ [6] second method, based on Theo-
rem 8.1 or Theorem 8.2, for establishing Ramanujan’s five congruences
is that elegant identities arise in the proofs. For example, in the proof
of Theorem 2.1, we need to prove that

oo

k

g -1 (9o 2 14
E T = —-q°, -
L k1+q4k q(_q4;q4)oof( q q )

and
oo

k
) +1 (@) 6 _ 10
Tkl T q4k - ('—q4,q4)oof( q,—q )7

k=—00
where 7y is defined by (8.4). To prove Theorem 2.2, we need to prove
i =1 1@ ) 1 =PI (07, —a)
1+ g% + ok 14j00 @@

k=—00

and two similar identities.
On page 59, below the list of factors and above the two foregoing
series, Ramanujan records two further series, namely,

1 e —1)2gn{n+1)/2 —1)rgM(n+1)/2
Si(a,q) :=1+G+Z(( )"q (2% (8.6)
n=1

1+ ag™ a-+q"
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(wV - I_wV) uw+g/([—u)ubu(1“) Z +1=

=w I=w I=u
(I_wv'uwb z + quw.b z _) z/([—u)ubu([_)z +1=

oo} 00 00

o=w o=ut 1=

(qu(I-I-w)b Z + quw,b z - Z) —-u)u u z +1=

0 00 00

o=w I=u
((w-—’v + wv)uwb z (ub - [) - Z) z/({—u)ubu(['-)z +1=

I=w o=w
(uwbw—p z (ub - [) - uwbwn Z (ub - I) -

T=u
(ub + I)) Z/([—u)ubu(t_)z +1=
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5(b D)
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o0
Sl 3 (L (A A,
m=0,n=1
which is (8.3), but with the roles of m and n reversed. O

Proof of Theorem 2.1. Multiply (8.6) throughout by (1 4+ a) to deduce
that

(1+a)Si(a,q) =1+ (1+a) i ((—1)"qn(n+1)/2 (_l)nqn(n+1)/2>
n=1

14 agn a-+qr
o0
( 1)71, n(n+1)/2 (__1)—nqn(n—1)/2
+(1+a)nz_:1< 1+ agn + 14+ ag™
n q" (n+1)/2
=14+ (1+ )Z
0 1 + aq™
B i (_1)nqn(n+1)/2(1 + a)
W 1+ aq™
_ (9%
(—aq; @)oo(~2/a; @)oo’
(9.2)
by an application of (8.5).
Secondly,
[ee]
Sa(a,q) =1+ Z (_1)mqm(m+1)/2+mn
m=1,n=0
x (= (=)™ = (=) L (~a)" + (~a) ™)
(4 9)%
— , 9.3
(~a; D)ool 4/ D 53
by Theorem 8.1. Thus, (9.2) and (9.3) yield Theorem 2.1. O
10. Conclusion

From the abundance of material in the lost notebook on factors of
the coefficients )\, of the generating function (2.1) for cranks, Fy(q),
Ramanujan clearly was eager to find some general theorems with the
likely intention of applying them in the special case of a = 1 to deter-
mine arithmetical properties of the partition function p(n). Although
he was able to derive five beautiful congruences for Fy,(g), the kind of
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arithmetical theorem that he was seeking evidently eluded him. Indeed,
general] theorems on the divisibility of A, by sums of powers of a appear
extremely difficult, if not impossible, to obtain. Moreover, demonstrat-
ing that the tables in Section 5.6 are complete seems to be a formidable
challenge.

Garvan discovered a 5-dissection of Fi,(q), where a is any primitive
10th root of unity, in [14, eq. (2.16)]. This is, to date, the only dissection
identity for the generating function of cranks that does not appear in
Ramanujan’s lost notebook. It would also be interesting to uncover new
dissection identities of Fj,(¢) when a is a primitive root of unity of order
greater than 11.
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Abstract By recursive use of the g-Saalschiitz summation formula, we investigate
further the Saalschiitz chain reactions introduced by the author in (Chu,
2002). Some general series transformations which express basic termi-
nating series in terms of finite multiple sums will be established. As
applications, we derive by means of Jackson’s ¢@s-series identity three
transformations including one due to Andrews (1975). These transfor-
mations yield further a number of multiple Rogers-Ramanujan identi-
ties, whose research was initiated and developed mainly by Andrews

and Bressoud from the middle of seventieth up to now.

1. Introduction and notation

For two complex numbers g and z, the shifted-factorial of order n

with base ¢ is defined by

(z;9)p =1 and (z;9), = (1—z) (1—2zq) - (1—zq" ) forn=1,2,....

When |g| < 1, the infinite product

o)

(€ Qoo = [[(1 — 2¢")

k=0

© 2005 Springer Science+Business Media, Inc,

(1.1a)

(1.1b)
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allows us consequently to express
(@ 0)n = (2100 / (247 D)oo (1.1c)

where n can be an arbitrary real number.
The product and fraction forms of the shifted factorials are abbrevi-
ated throughout the paper respectively to

[a, b, ¢;ql, = (4;0),, (B;D)p, - (650)p, (1.1d)
a, b, - _ (a;9), (059), - (c;9),
[A B, - C‘ ] (4;9), B;a),--(Ca), (L1e)

Following Bailey (Bailey, 1935) and Slater (Slater, 1966), the basic
hypergeometric series is defined by

00
_ n | @0y, 1, *°*, Qr
—E z
g, by, -+, by
n=0

where the base g will be restricted to |g| < 1 for non-terminating g-series.

Among the basic hypergeometric formulas, we reproduce three of them
for our subsequent references. The first is the g-Saalschiitz theorem
(cf. (Bailey, 1935, Chapter 8) and (Slater, 1966, §3.3)):

ag, ai, ‘-,
1+r¥Ps

)

q]n (1.2)

—n
I a’?

q b ol = [¢/a c/b
32 [ ¢, gi~mab/c ’ g; q} = [c, c/ab 9] - (1.3)

The second is the very well-poised formula due to Jackson (cf. (Bailey,
1935, Chapter 8) and (Slater, 1966, §3.3)):

a, Q\/aa Q\/_7 b, c, d qa
6905[ va, —+a, qafb, qa/c qa/d'q’ ggg] (1.4a)
qa, qa/bc, qa/bd, qa/cd
[qa/b, ga/c, qa/d, qa/bcd } , (lga/bed] < 1). (1.4b)

The third and the last one is Watson’s g-analogue of the Whipple trans-
formation (cf. (Bailey, 1935, Chapter 8)):

a, Q\/a _q\/_7 b7 ¢ d , 2+m 2
81 va, —+a, qa/b, qa/c, qa/d qa/e aq"”rl b ede

_ qa,qa/bc‘ g™, b ¢ qa/de ’ :
- [qa/b,qa/c q}m % 4%[ qa/d, qaje, ¢~™bcfa| T 9]
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The celebrated Rogers-Ramanujan identities (cf. (Slater, 1966, §3.5))
read as:

1
+mz=:1(1—q)(1“q2) (1—g™) =11 (1—q1+5” (1 — g*+5m)

n=0
(1.5a)
ZA-qA=-¢)-(1=gqm) 5 (1—g*)(1-g*+n)
(1.5b)

Bailey (Bailey, 1947; Bailey, 1948) discovered numerous identities of such
kind. A systematic collection was done by Slater (Slater, 1951; Slater,
1952). Some more recent results may be found in Gessel-Stanton (Gessel
and Stanton, 1983).

In their work on multiple Rogers-Ramanujan identities, Andrews and
Bressoud et al. (Agarwal et al., 1987; Andrews, 1984; Andrews, 1986;
Bressoud, 1980a; Bressoud, 1988) introduced the powerful Bailey chains
and Bailey lattice. They found general transformations which express
multiple unilateral sums into a single (unilateral) basic hypergeometric
series involving two sequences (Bailey pair) connected by an inverse se-
ries relation. The latter can be reformulated, in particular settings, as
a bilateral basic hypergeometric series. By evaluating the bilateral sum
with the Jacobi triple or the quintuple product formulas, they derived
with great success many multiple Rogers-Ramanujan identities.

By iterating the g-Saalschiitz formula (1.3), the Saalschitz chain re-
actions under “finite condition” has been introduced by the author in
(Chu, 2002) to study the ordinary and basic hypergeometric series with
integer differences between numerator and denominator parameters. We
will investigate further in the next section the Saalschiitz chain reactions
without finite condition and establish transformation theorems (from 2.4
to 2.7) of the same nature as Bailey chains due to Andrews and Bres-
soud but with one (or two) independent arbitrary sequence(s). Then we
proceed in Section 3 and 4 to derive explicitly several specific transfor-
mation formulas (without indeterminate sequence). Finally in the last
section, we conclude with thirty multiple Rogers-Ramanujan identities
which are simply limiting cases of the transformations presented in this
paper combined with the Jacobi triple product identity.

The purpose of this paper is not to present a general cover of the
Rogers-Ramanujan identities and their multiple counterparts through
the Saalschiitz chain reactions. Instead, it will be limited to illustrate
how to explore this method potentially to generate multiple basic hy-
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pergeometric transformations and produce multiple Rogers-Ramanujan
identities.

2. The Saalschiitz chain reactions

For nonnegative integers k, M with k > M and three indeterminates
a, =, y, the g-Saalschiitz formula (1.3) tells us that

a, ga/zy ‘q. q}:[ gy, 1"“/%’lq}
a/z, q1+ afy ™ 1+Ma/1, q y/a k—M

- [qam/’% oy qL (i_z)k/ [qax/’% oty q}M (%%)M

which may be restated explicitly as follows:

<@)’°[q:/$ qa/y' ] Z m(—qg(fg)’—)[ zyidly  (21a)

Ty
[qM_k, gMtkaq; Q]m qa M
X — ] .  (21b)
lga/z, qa/y; Q) prpm \2Y

M-k _M+k
y 4
3¥2 [ 1+M

Denote the multiple summation index and its partial sums respectively
by

m = (my,ma,...,my) (2.2a)

k
My=Y "mi, 0<k<n, (2.2b)
i=1

With 1 < ¢ < n, we may rewrite (2.1) with subscripts as

k
ga T, )
(%.@u) [qa/% qa/yL [0 93 o,y

] Z m, qa/wLyL,q)mL

(@D,

ML_ —k  M,_14k . L
1k Mt a,q]mL(qa )M :

[qa’/xba qa/yb; Q]ML z.Y.

[q

Then the recursive product (the Saalschitz chain reactions) of the ex-
pression just displayed for ¢ = 1,2,...,n reasults compactly in the fol-
lowing
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Lemma 2.1 (Multiple sum: Andrews (Andrews, 1979a, Eq.
5.2)). With k being a nonnegative integer, there holds
l
M

fI [ T U q] (& )’“ s (q“/-’”nyn;‘J)mn[ ", ¢a
Ll \qa/z,,qa/y. Ty, 4 (g;9) qa/Tn, qa/Yn
=1 k m>0 mMn
M H qa/l'zyzu \9a/ZiYi; 4) |: Titl, Yi+l q:l ( qa )Mz
P M, Tit1Yit1

qa /i, qa/y;
where the multiple summation index m runs over all m; > 0 for i =
1,2,...,n

In this lemma, replacing z; by ga/x; and then a by ag~*, we may state

the limiting case k — oo, (which did not appear in Andrews (Andrews,
1979a) explicitly), as follows:

Corollary 2.2 (Multiple sum).

< Z,/a, Y. ml/h)ml(h)zl i\ T
L[5 = X o I e ()™

>0 ’ q) (fL'“ q)M

When a — oo and y; — 0, it reduces to the following

Corollary 2.3 (Andrews (Andrews, 1979a, §6)).
(%)

ml(xh CI)M

For this identity, Milne (Milne, 1980, Thm. 3.1) has given an alternate
derivation.

For two natural numbers v and v with 1 < u < v < n, and complex
indeterminates ¢ and {z;,y;}, denote factorial fractions by

G-I, )
q© [{%%}} _ ﬁ (¢/2iYi; Q) rmg [mz‘+1,yi+1

| ] (@D,  LC/irc/vi

i=u

M;
c
o, i)
M; \Ti+1¥Yi+1
It is trivial to note that

lfy] - e fer]
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Then the multiple sum in the lemma may be expressed as

A {{wz,yz}] 3 (99/20n; Doy g [ {@i,9:) }

L P S P 1,7~ 1]

],

Multiplying both sides by %%)T@Wk for suitable Wj, and then summing
over all £ > 0, we establish the following general transformation theorem,

which may be considered as a counterpart of the main result obtained
n (Chu, 2002, Thm. 2).

« Mn[ ¢* gt
q
qa/xn, qa/yn

Theorem 2.4 (Well-poised transformation). For a complex se-

quence {Wy}, there holds the following multiple basic hypergeometric
transformation

(a; Q) A {zi, %} (9/%nYn; Drm, (M)
kgo(%Q)k { (1,7 ] mzm( 2 "0/, a0 v g,
(a; q)2Mn (qa) | {zi, v}
X”‘"““‘<q, o [[M—ll]

kM, ¢*; q) \eq™ 5 4q)y
X Z n ( a Witm,
k>0 49

provided that both series are well-defined and convergent.

Rewriting the well-poised transformation in Theorem 2.4 as

Z (G;Q)k A(;cla) [{xzyyz}:l Wy = Z (__1)Me (qa/wéyﬁ‘])me

k>0 (g;9)k 1, 4] e g0 [qa/xg,qa/yg;q]Me
(2.3a)
% Q(qa) [{xu yz}:| (a; Q)2Me ._(1‘/21/3)
[1,£-1]] (4;9),p,
(2.3b)
- >q
k>0 C@or

and then performing the substitution

= o | (0| - e[ 20
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we can manipulate the last sum (2.3c), shortly as S(2.3c) with respect
to k according to the formal series rearrangement

S UV =Vol 1+ Y Vi Al (2.4)
k=0 k=0

where V and A are forward and backward difference operators:

VE(n) = F(n) = F(n+1)
AF(n)=F(n)— F(n-1).

This can be proceeded as follows:

(anMe, q) (a) {lL‘ 'Y } —kM,
S(2.3c) = g —@'—)—‘—'ak-kMev {7k+MeA k+M, [[1 —|J— éjn]} } ¢

2M,.
_ o, (08°M5 q), (a) {2y}
_ZA{q @ “’“*Mf}“”“‘*MfA’“Me 1+

k>0
2Mp—1.
_ M (a2 [ {jqe ynge} @ [ {295}
—kM,
q Yk+M, -
X —-.._-——1 — an\Ie—f {(1 - aqk 1+2Me)ak+M - q (1 —q )ak—1+M(} .

Now applying the transformation in Theorem 2.4 to the penultimate
line, we obtain with some simplification, the following expression

S(2.3¢) = Z q(ﬂge)_(fvgn) (a/TnYn; Qo (ag?Me~ 17‘])2Mn——2Me

M14gM2 ey Mn 20 (q;q)mn [a/2n, a/yn; dlu, M,

(=)M~—Me Q(Z?[ {z5 y;} 1]} ( a

M,
X ——————e — .
1= asze—1 14 8n— w1+ey1+e) [Z1+2, Y1465 2 py,

qu‘an (ag®*"1q),, { (1 - ag*~ lJrl\/]"“/h)041c+M
q,q)

—gMe(1 — gt+Mn=Me) g, Mn} Vet Mr -

k>0

Replacing (2.3c) with this result leads (2.3) to the following almost-
poised series transformation.

Theorem 2.5 (Almost-poised transformation). For two complex
sequences {a,Vr}, there holds the following multiple basic hypergeomet-
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ric transformation

(@ Dk, (ga) [{zi, v} )| {595} o

,;ak (; q)kA’c [ [1,4 ]V{VA [[1+€ n]” (2.52)
(a/TnYn; )mn qa) | {2, ¥i a T, Y; _(Mn

22;0———_(‘1"-’) @ ’[{[1 g]}] Qe >[[1i€ gil]] (%) (2.5D)
( ) " (a/Q§‘I)2Mn Z —kM,, (aq2Mn—l§Q)kak+M .

“T=0/q [a/n, o/ yni dlos, k>0q (@)
(2.5¢)

provided that both series are well-defined and convergent with

apin, = (@ —ag" M) ap g, — (1= MMy 0y (26)

According to (2.4), the k-sum in (2.5¢) may be reformulated as

- 2M, 2.
Of— 1+ My, Ve+ My, (aq Q’Q)k —kM,, 7
> oM, —3 . q (27)
= 1-agt (@D

where we have defined dually

e, = (1 — ") (gMMe — qgb=242Mny oy 1 (2.8a)

— (1= MMy (1 — ag" 22y (2.8b)
In Theorem 2.5, take
v, = 1.
Then it is easy to check the factorization

Mn—Mg)(l _ 2k——2+2Mn)

Ve+M, = —(1—q aq
which leads us to the following transformation:

Theorem 2.6 (Almost-poised transformation). For a complez se-
quence {ay}, there holds the following multiple basic hypergeometric
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transformation
(GQQ) a {%‘, z} o {LC, }

s ok, A >[ o ]V{M )[[11 é”n]]} 290
= — 1+Mn1‘q —Me (a/q;Q)gMn — (M)

r;)( 1—a/q [a/wn,a/yn;q]Mn (2.9b)

(@/nYn; Do, (e [{2, w5} @) [ {25, 91
i, g g] o) | o

2Mp —2+2k ( q2M —Q,q)

Ol 14 My, (2.9d)

l1—a
kM, q
x> q

,;0 1 — ag?Mn-=2 CH)

provided that both series are well-defined and convergent.
Taking instead in Theorem 2.5

(ga/e;q); (e\*
q(e;q)(jc : (;)

we can compute without difficulty that

«p =

- - 1— g Me/a(a/e;Qprm, (€)\r+Mn
Wym, = (1—ag** 12 / + (5)

l1—e/a (6@ rim,
which leads us to the following transformation:

Theorem 2.7 (Almost-poised transformation). For a complez se-
quence {7y}, there holds the following multiple basic hypergeometric trans-
formation

3 {a,;’ae/e ‘ q]k <§)kA(lga) [{T{j?f}] v {’Ykl\(;f) [[gxi,é/’jg]”

k>0
(2.10a)
My (@/TnYn; Din,, 1 — g Mee/a (a/e;q)py, (e \Mn
_2—;0 (4 Drm,, i—e/a  (6q)um ( ) (2.10b)

(4 Dan, @ [{z v} g@[ {zpu} | -0 )
X[a/l'ma/yn;q]Manz [ [1,4] ]Q [[1+én—1]] (2.10c)

N Z 1 —_ anMn_l'i"?k anMn—l’ana/e l (E —Mn)k
P 1_ anMn.__l q, ane q X aq ’Yk-}—Mn

(2.10d)

provided that both series are well-defined and convergent.
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3. Basic Almost-poised Transformations

By specifying the W and «, y-sequences in the transformation theo-
rems established in the last section, we will derive three explicit multiple

series transformations which exemplify a larger class of such relations.
In Theorem 2.4, take

_ g2k k
I/szl q“"a | b, c, d lq (ﬂ)
1-a qa’/bv qa/c, qa/d k bed
Then the inner sum with respect to k becomes
s | Q0@ VA, —q M8, ba Y, g, dg 'q. ¢~ Ma
O g Va, —¢M/a, gt Mafb, ¢ Majc, g M a/d | T T bed
1—ag®™~ [ b ¢ d ‘ (£>Mn
“1-a |ae/bqe/c,qa/d ||} \bed

with the gys-series evaluated by Jackson’s formula as

(:g) M lqa/b, qa/c, qa/d;qly (um) [qa, qa/bc, qa/bd, qa/cd ]
bed (90; @)ops, (bed/a; q) p qa/b, qa/c, qa/d, qa/bed | 7|

This leads us to the following

Theorem 3.1 (Andrews (Andrews, 1975, Theorem 4) and (An-
drews, 1979a, §5)). For compler parameters {a,b,c,d}, and indeter-
minates {xk, yp}p, with X = z1x92 25 and Y = y1yo -+ yn, there
holds the multiple basic hypergeometric series transformation

46542 -a’7 Q\/E, —_Q\/a7 b, Cy d, {xkn yk} ¢ (qa)””
t +an L \/av —\/aa qa’/b, qa/ca qa/da {qa/l'k, qa/yk} " bed XY

(3.1)
_ [ qa, qa/be, qa/bd, qa/cd ] T o [[{wi, yi}] A

X 1—-a

|ga/b, qa/c, qa/d, qafbed | 7| >0 Ln—1]
(3.1b)
(qa/lmyn; Q)m |: b ¢ d ]
\qa/ZnYn; U)m,, ) ’ 3.1
X (q; ‘I)mn bed/a, qa/xn, qa/yn e M, (319

provided that both series are well-defined and terminated by one of b, ¢
ord.

In Theorem 2.6, take

o = b, c, d } gz_a b
= |qa/b, qa/c, qafd |, \bed )
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Then the sum with respect to &k in (2.9d) becomes

sos | 292 Vaghtn, = /ag, byttt gt dgth l P
vaghn=t, —/agM=t gMrafb, ¢Mraje, Mrajd 1T bed

y b, ¢ d q2_a Mn—1
qa/b, qa/c,qa/d 1|, _ \bed

with the gps-series under terminating condition evaluated as
(| qa, ga/bc, qa/bd, ga/cd
1 qa/b,qa/c,qa/d, qa/bcd
lga/b,qa/c,qa/d;qly (—qa>1 ~Mn
(995 9)aps, —o(bed/a;q) 1 \ bed .

Substituting these into Theorem 2.6, we get the following transforma-
tion:

Theorem 3.2 (Almost-poised transformation). There holds the
multiple basic hypergeometric transformation

S lmmnriasa 1 (£5) 20w )]

k>0
(3.2a)
_ q/a [ a, ga/be, qa/bd, qa/cd :l
(1—¢q/b)(1 —g/c)(1~q/d) 4afb, qa/c, qa/d; q ®a/bed
(3.2b)
- (@/Znyn; Q)rm, [ b/, ¢/, d/q q} gMn (3.2¢)
=0 (@0, |bed/aga/znaly. 7], '
x Q(qa) [{E@a%}] Q(;L) [[1{:75:53_}1]] (1 _ an—Me) (3.2d)

provided that both series are well-defined and terminated by one of b, c
or d.

In Theorem 2.7, take

1 b ¢ d, e‘ a? \*
= \a/b, ajc, a/d, afe qk bede )



110 THEORY AND APPLICATIONS OF SPECIAL FUNCTIONS

Then the sum with respect to k in (2.10d) becomes

q2Mn 1 M"\/q_a _ M"\/q_a qun chn dq
g™ /q, —q"\/a/q, ¢Mra/b, qMma/c, q

y b, ¢, d, e ’ a? \ M
a/b,a/c, a/d, afe 9 m,, \bede
with the gps-series under terminating condition evaluated as
(=1)M= (Mn) a,a/be,a/bd,a/cd
a/b a/c,a/d, a/bcd

[a/b7 a/c, a/dv q]Mn (qud> Mn
(a;0)opg, (gbcd/a; @)y, \ @ '

-M
aq n
6¥5 |: q; bed :I

Substituting these into Theorem 2.7, we get the following transforma-
tion:

Theorem 3.3 (Almost-poised transformation). There holds the
multiple basic hypergeometric transformation

> e { [ e ] o) A2 [0 00

X A(qa) [{xz,y,}} (qa/e; @)y, <§)k - [a ,a/be,a/bd,a/cd ] (3.3b)

1,4 | (e9) a/b,a/c,a/d, a/bcd
(a/mnyn, b, ¢, d o
'r;) mn [qud/a a/Tn, 0/Yn ]an (3.3¢)
a iy Yi a T, Yj 1 - _Mee/a
<9l )[{Tl z]}] o [[1 -{l‘ 3 rgﬁ 1]] “—fg_"gﬁ;_ (3.3d)

provided that both series are well-defined and terminated by one of b, ¢
ord.
4. Reductions and Consequences

The transformations displayed in the last section may be reduced by
limiting process to several known and unknown results as consequences.
4.1 George Andrews

In Theorem 3.1, let ¢ — oo and xz;,y; — oo for ¢ = 2,3,...,n. The
result may be stated as
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Proposition 4.1. There holds the multiple basic hypergeometric trans-
formation

a2 a/z [0, d; q] - a/o,qa
W i AT

1 —a b d z, ___( a)n+1 k
(2n— 1) q , , Y q
* kgoq ~a [Qa qa/b, qa/d, qa/:v qa/y I q} { bdzy :

This may be considered as an extension of Andrews (Andrews, 1975,
Corollary 4.1).

If taking further b = ¢, d — oo and = = 1, y — oo, then Proposi-
tion 4.1 reduces to the following:

Corollary 4.2 (Andrews (Andrews, 1979b, Eq. 4.1) and (An-
drews, 1981, Egs. 1.5 & 3.1)).

(ql-i-M—Mn n kak B 1

o @ q)m1

’:1

(@ Dme (@5 Qoo

whose limiting version reads as

1 BogMieMe g
2 (45 Dma H (g5 Do

0 (965 Dy o (& D

Again in Theorem 3.1, let ¢ — oo, and z; = —,/qa, y; — oo for
i1=12,3,...,n. The result may be stated as

Proposition 4.3. There holds the multiple basic hypergeometric trans-
formation

S () [ | ()"

Mm>0
X [ b, d qj| - M _ [qa/b,qa/d q}
VIO it (6D, qa, a/bd

n k
y Z k1= aq a, b, d, =z, y ‘ ~(q9) JL2_3
k>0 ! 1 —a q, qa’/ba qa‘/da qa/x, qa‘/y 4 k bdwy .

4.2 David Bressoud

Letting e — 0 and ¢ — oo in Theorem 3.3, we may state the result as
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Theorem 4.4 (Almost-poised transformation). There holds the
multiple basic hypergeometric transformation
> (a/wnyn;q)mn{ b, d

= (@9) a/Tn,a/ya | *| ), \bd

o[G0 anly 70
= [‘Z{b&%éi L’;O(—n’“%Af” [{”{{jiﬁ}] ey

@] {zjy:} || b d a\k
x V{Ak [[1+€,n]] [a/b, a4 k(bd)
The central theorem of Bressoud (Bressoud, 1980a, Thm. 1) is equiv-

alent to the limiting case b — oo and z;,9; — oo for 1 < ¢ < £. In
Theorem 4.4, taking x;,y; — oo further for i = 2,3, ..., n, we obtain the

following

Proposition 4.5. There holds the multiple basic hypergeometric trans-
formation

b0 e e g
Z [ ﬂ[Mn [ qa/zy }q} q v=E+1 II aq (4.1a)
(bd)Mn | qa/z,qaly ey CH) -

m>0
a/b,a/d a, b, d, =z, —og™ I\

- [a a/z{d Lkzzo[q, a/b, a/d, qa/z, qay/y|<JL fdmy) (4.1b)

e i 53(1(:’@2328—_55/2) (&)} o

The limiting case b, d, x, y — oo of Proposition 4.5 reads, with re-
placement a — ¢& as a formula on Alder polynomials

Corollary 4.6 (Andrews (Andrews, 1974, Eq. 2.5)).

-

Z M, o gMEgMs R (*E)R2 (n 1)+t
=1 2
ﬁlzzjoq H(q, mi (qré;q)ookz%5 !
ST PR R SAS s
x (1) rrn {1 (q 5) '
4.3 Other transformations

For ¢ — oo, Theorem 3.2 may be restated as
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Theorem 4.7 (Almost-poised transformation). There holds the
multiple basic hypergeometric transformation

— My (3/TnYn; @) [ b/q, d/q qga Mn
1 — an M, Mn 3 q] 4
mzzo( ) (6 Dpm, a/Tn,a/yn Mn( bd)
<o [{zo vl q@f {zpy} | _ (A—e/b)A~-q/d)
m [1,5] m [1+£,n—1] q/a
qa/b,qa/d k@ b d qay ¥
8 [ a, ga/bd |1 ookZ>o( Y q,qa/b,qa/diq k(bd)
(go) [ {1, vi} @ | {59} L4k
x A { 1] ]V{Ak [[1+€,n] ('3,
Its further limiting case x;,y; — oo for i = 2,3,...,n reads as

Proposition 4.8. There holds the multiple basic hypergeometric trans-
formation

2(1 _ an—Me) [b/qad/Q§Q]Mn [ ga/zy } ]
= (bd)Mn qa/z,qa/yl*],
n—1
Ma-MZ- 3> M, ™ oM M?
X q v=£+1

1 (G D,

_ |qa/b,qa/d ko+(2n—1)(* (o \vF
- [ a, qa/bd q Z q oot (q a)

% >0
OO o b b ) (e
Q/a q, qa’/ba qa/d, qa/xa qa/y k bdzy '

Letting ¢, e — oo in Theorem 3.3, we may state the result as

Theorem 4.9 (Almost-poised transformation). There holds the
multiple basic hypergeometric transformation

Z(a/xnyn;q)mn[ b, d q]Mn(b%)Mn

= (GDm, /T Yn

o[ o et

-t Z @) e

0 k>0

[ i ol () }
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Its further limiting case z;,y; — oo for ¢ = 2,3, ..., n of this theorem
reads as

Proposition 4.10. There holds the multiple basic hypergeometric trans-
formation

b, d; - L M gM?
> [ ‘Jggn [ qa/zy ‘q] o -5, MH q
- . |

= (bd) qa/x,qa/y i1 (G D,
_ |a/ba/d k[, e (1=¢")(1 g~ 2k ;) 1+n—t
ol DAY ¥ "L,czzo( v {1 e )

14+n £\ k
o q(’;)(Qn—l) a, b, d, =z, 'y I a't"q
q, a/b a/d, qa/a: qa/y bdxy

5. Multiple Rogers-Ramanujan Identities

Under various specifications, the k-sums appeared in the propositions
demonstrated in last section may be evaluated in closed forms by the
Jacobi triple product identity (cf. Bailey (Bailey, 1935, Chapter 8))

+oo

[qa $7Q/$;Q]oo = Z (__1)m q(g) ™

— Z /x)l+2n}q

which allows us to derive the following multiple Rogers-Ramanujan iden-
tities:

Example 1 (a=1: b,d - o0 and z,y = +¢1/2 in Proposition 4. 1).

3 L q)mlﬁ ¢ _ [¢"" g —gttgtt]
0 (6 Pm 1 (6 D (¢ Poo '

Example 2 (a=¢: b,d - oo and z,y = +¢1/2 in Proposition 4.1).

> (—q;2 Q)my

S0 (@6 Pem 125 (G Do (4 9)oo

n gMr(l+My) ~ [q1+2n7_q1+2n,_q1+2n;q1+2n]oo

Example 3 (a = ¢: = —¢ and b, d, y — oo in Proposition 4.5).

£
ZML n M? 2420 e+l 14n—L. 2+2n]

¢= I ) q s it
2 1 (6 Dm, (4 D oo

m>0( q,q)ml k=1
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It has first been discovered in (Agarwal and Bressoud, 1989, Eq. 1.1),
(Bressoud, 1980a, Eq. 3.4), (Bressoud, 1980b, Thm. 1: § = 0), (Bressoud,
1981, Eq. 5.6), (Bressoud, 1989, Eq. 1.1) and (Bressoud et al., 2000, p. 7-
2) by Bressoud et al.

Example 4 (a = q¢: 2 = —q and b, d, y — oo in Proposition 4.8;
cf. (Stembridge, 1990, Eq. I-11)).

—-M, —-M,

Zq "—q

m>0 q)

£
ngbﬁ gMi [ ¢ g P
( .

AT Dy, (4 Doo

Example 5 (a = ¢: b, d, z, y — oo in Proposition 4.5).

q:,él M. fI qM% — [q3+2n, qn+z+27 q1+n—e;q3+2n]oo
- (G D, (4 Doo

As a common generalization of the Rogers-Ramanujan identities (1.5a)-
(1.5b), this one has been found in (Agarwal et al., 1987, Eq. 1.5), (Agar-
wal and Bressoud, 1989, Eq. 0.3), (Andrews, 1974, Eq. 1.7), (Andrews,
1976, Eq. 7.3.7), (Andrews, 1979b, Eq. 1.3), (Andrews, 1981, Eq.1.1),
(Andrews, 1984, Eq.1.3), (Andrews, 1986, Egs. 3.45-46), (Bressoud,
1980a, Eq.3.2), (Bressoud, 1980b, Thm.1:§ = 1), (Bressoud, 1981,
Egs. 5.3 & 6.1), (Bressoud, 1989, Eq. 0.3), (Bressoud et al., 2000, pp. 4-1
& 7-1), (Garrett et al., 1999, Eq. 4.1) and (Stembridge, 1990, Egs. c-d)
mainly by Andrews and Bressoud et al.

Mm>0

Example 6 (a =gq: b, d, z, y — oo in Proposition 4.8).
M2 [q3+2n qn—l n+0+3

4
S (g 5 T L kil
>0 kel (‘Eq)mk (9o

3+2n]
fos)

Example 7 (a=¢: b= —¢q,d - o0 and z, y = +¢/? in Proposi-
tion 4.3).

Z q, q)ml H gl (=% Qoo

S0 (@ Pem 15 (@ Dme (6 Doo

1M

[ql-{—n, __q1+n’ _q1+n

;g

oo’

Example 8 (a = ¢q: b= —¢q, d — oo and z, y = +q'/?

tion 4.1).

in Proposi-

Z (=@ Omi (= O, (M) H gMr(1+My)
m>0 (q, q2)1+m1 k1 (q, Q)mk
—4; 4
= (( -’ )°° [an, _q2n, _q2n;q2n]oo‘
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Example 9 (a = 1: b= —¢,d —» 00 and z = y = —1 in Proposi-
tion 4.1).

n

3 (g; q)inl.(—q; Q)M _ () H

’I’;LZO ( q? q)'ml k:l q?
(_‘I§ Q)oo 2 2
=210 0", ¢ 0" -
(45 @)oo [ J

Example 10 (a = ¢: b=z = —qg and d, y — oo in Proposition 4.8).

£
5 ey it 5y 0
= (=% D, i1 (G Dm,
(—Q§Q) 142 — 4+1, 142
:2—°°[+n et et +n]
(q;q)oo q s 4 q q ~
b=—q, d=—q'/?

Example 11 (a = ¢: | q — ¢% in Proposition 4.3).

z=q1/2, y—o0

My (14+-My,)

Z( 7 i (=4 ), _le—[q

= (4 )1+ - (0% @)y

—q; q
_ ((q. q)zooo [0, —g2¥om, _q¥+on, 2+n]

Example 12 (a =¢q: b= —q and d, z, y — oo in Proposition 4.8).

_(Mn)+£ M, qM,f

> (@M =g M) (~159), g =

>0 =1 (& Dy
=2(—Q;Q)oo [q2+2n gt g 2+2n]
(4 Do B
b=—q, d=—q'/?

Example 13 (a = ¢: | q — ¢° in Proposition 4.1).

w=q¢/2, y—oo

n 2Mk(1+Mk)

Z Q; 2Mn —Mn—2M2 q
(@ ) 1 i (@5¢%)m,

—4:9
_ ((q’q)()):o [ 4n, _q4n, _q4n;q4n]

oo "
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Example 14 (a = 1: b=—1,d=—q'/? [ q — ¢* in Proposition 4.1).

T, Yy—00

n
> (-L9)2m, g M2 1T 2?

2
>0 k=1 (% @)

— (=% Doo [ 244n gt q1+2n;q2+4n]

(¢ @)oo ™

b, d—oo
z=—1, y=—q'/2

2M?

oo’

Example 15 (a = 1: l q — ¢% in Proposition 4.1).

2 244 142 1+2n. 244
M7 [q+"q+"q+"q+”}

(6 P TT_ 4 N : : ; oo
> 11 = -
= (=0 Domy i (@5 P (4% 4%)oo

Example 16 (a = 1: byd oo | q — ¢° in Proposition 4.1; cf.

w=q'/2, y—o0

(Bressoud et al., 2000, p. 8-2)).

n 2 4-4-4 142 3+2n. A4+4
g* M [q+",—q+",—q+",q+"]

POl | e

0 (6 )ma i (% P (4% 7*)oo

oo

Example 17 (a = 1: mb::lqlzjif;;f;;' q — ¢* in Proposition 4.3).

(=@ Omi(eq; Pmi T4 4
Y e ]

5o (=% )y (=645 @)y i (055 6%) s

M;

e=x1 (=¢; Yoo

24+2n 14+n 14+n 2+2n]
(4% 1))

[¢°1%", eq' ", ¢ T q

oo’

Example 18 (a = 1: b=‘q1/2’d_’°°| q — ¢* in Proposition 4.3).

rz=—1, y—o0
2
(=4; ¢*)my ﬁ ™M (-4 P [+

S (=% P o (@5 P (65 oo

2 2 . 442
N ey

oo’

—b=¢!/2 d—co

Example 19 (a = ¢: g, yeql/? l q — ¢° in Proposition 4.1).

n oM (1+ M)

3 (=4 @®)m, (- ~4 g Mn _le—[q

5560 (6 ¢em (=% ¢°)

(2% B m

(-Q'Q)oo 4 4 dn, 4
= .(qz;qz)oo [ n, —q n7 —q n;q n]

oo’
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b=—q3/2, d—oo

Example 20 (a = ¢: reqymqt/2| 4 q? in Proposition 4.8).

—M2+2 E M

qZ(q—2Mn_q—2Me)( qq) NG 8, H T

.2
(~q,q )oo { an  an—2t q2n+2€.q4n} _
(%% U ’ e

b=—q'/2, d—oo
z=¢1/2, y—oo

Example 21 (a = g: | ¢ — ¢? in Proposition 4.1).

n 2M (14+My)

> Laou. T

_ (—Q; q )oo [ 24+4n  __ 244n  _ _2+44n, 2+4n]

o~
. b=— /2 d—

Example 22 (a = ¢ "7 775

(Bressoud, 1980a, Eq. 3.9)).

| q — ¢° in Proposition 4.5; cf.

(—q'q ) _
_ 4 o [ Hdn  2n—2041 L+2n+2L. q2+4n]

(o ¢]

b:—-ql/z, d—00
r=—q3%/2, y—oo

Example 23 (a = ¢: | q — ¢* in Proposition 4.8).

-1. .2 2
Z (122 (—a 56y —M2+2EMLH M
Eet (=46, i (0% 9°)
.2
_ (—q,q )oo 24dn  In—20  On+204+2. 2+4n
- (q2.q2) y 4 y 4 yq oo
) o0
Example 24 (a = ¢: b:;q’l;igo_’w| q — ¢ in Proposition 4.5).
£
—M2425" M, & M
.2 23 q
Z (—4:9°) p, a = H D)
>0 k=1 VL Sy

(0"
UG ) o [ at4n  2n—2041 3420420, 4+4n
- (qg,qg) q y 4 y 4 v 4

) [ele]

o0
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This identity appeared in (Agarwal and Bressoud, 1989, Eq. 1.2), (An-
drews, 1975, Corollary 4.3), (Andrews, 1976, Eq. 7.4.4), (Bressoud,
1980a, Eq. 3.8) and (Bressoud, 1989, Eq. 1.2) due to Andrews and Bres-
soud et al.

b=-1,d—o0
z—0, y=—eql/?2

Example 25 (a = 1: | q — ¢° in Proposition 4.3).

n 2
3 (e 2L LI L @bt s 0
o (=485 ))mi (=G ¢*)n i (@25 P)my,

2
=+1 \—q"; 4 "
- ((q2; q2)()>ooo [q2 ? Eqn> sqn;q?n]oo

Example 26 (a =1: "=~ 1942%1 4, 02 in Proposition 4.3).
@, y=%q'/

M2

(=1 )M (=1 Py a1 T
Z — ) tq H(z. 2
k=

=0 (=3 P (g ¢)m L (65 ¢)m,

_ (=% ¢*)oo [ 2+2n  ___l4n __l+n, 2+2n]
@ D)oo "¢, T g

b=—q, d—o0
z=—q1/2, y—oo

Example 27 (a = ¢: | ¢ — ¢* in Proposition 4.3).

n Mk (1+My)

Z (—=d% ¢%) H (—q2§ 7*)oo g2 B+2n, de2n]

g, 4" g
o (-4 g )1+ m o ( (4% 4%)oo ’

oo’

Example 28 (a = 1: bz_l’d"*‘x’| q — ¢° in Proposition 4.3).

T, y—00

Z( 1‘1)Mn —q; 9% )m, MnH

6 @) M, (q 7°)
—q7;4q

— ((q2; q2)zooo [q6+2n, q3+n7 q?»-{—'n,;qf$+2n]oo )

Example 29 (¢ =1: b=d = -1 and z = —¢, y — oo in Proposi-
tion 4.1).

L D, so-nz 7y % —q; )2
Z ( ‘ )anMn Mz H( — ( ) )200 [q2n’ qn, qn;q2n]oo
k=

16 Dme (4 DS
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Example 30 (a = 1: b=d=-1 1, _, ¢% in Proposition 4.3).

T=—q, Y0

) n M2

( ) ( 3 k
2

7% ¢*)m

q-; q
((q q )) [ 2+2n’ q1+n, q1+n;q2+2n]
’ o0

"

These examples are selected from about two hundreds multiple Rogers-
Ramanujan identities derived from the propositions displayed in the last
section. More identities of such kind may be found in (Agarwal and
Bressoud, 1989), (Andrews, 1984), (Bressoud, 1980a; Bressoud, 1989)
and (Stembridge, 1990), mainly due to Andrews and Bressoud. For the
most recent development, we refer to (Bressoud et al., 2000), (Garrett
et al., 1999), (Schilling and Warnaar, 1997), (Stanton, 2001) and (War-
naar, 2001).
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Abstract In this paper we are concerned with rational solutions and associated
polynomials for the second, third and fourth Painlevé equations. These
rational solutions are expressible as in terms of special polynomials. The
structure of the roots of these polynomials is studied and it is shown
that these have a highly regular structure.

1. Introduction

In this paper we discuss hierarchies of rational solutions and associated
polynomials for the second, third and fourth Painlevé equations (Pr—

Prv)

w" = 2w + 2w + a, (1.1)
n2 ! 2 S
W' — (ww> _w;ﬁwTﬂfﬂwsm, (1.2)
N2
3
w’ = (12013 +§w3+4zw2+2(22—a)w+§, (1.3)

where ' = d/dz and «, 3, v and § are arbitrary constants.

The six Painlevé equations (Pr-Pyi), were discovered by Painlevé,
Gambier and their colleagues whilst studying second order ordinary dif-
ferential equations of the form

w" = F (z,w,v'), (1.4)

where F is rational in w’ and w and analytic in 2. The Painlevé equa-
tions can be thought of as nonlinear analogues of the classical special
functions. Indeed Iwasaki, Kimura, Shimomura and Yoshida (Iwasaki

© 2005 Springer Science+Business Media, Inc,
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et al., 1991) characterize the six Painlevé equations as “the most im-
portant nonlinear ordinary differential equations” and state that “many
specialists believe that during the twenty-first century the Painlevé func-
tions will become new members of the community of special functions.”
The general solutions of the Painlevé equations are transcendental in
the sense that they cannot be expressed in terms of (known) classical
functions and so require the introduction of a new transcendental func-
tion to describe their solution. However it is well-known that P—Pvr,
possess hierarchies of rational solutions for special values of the param-
eters (see, for example, (Airault, 1979; Albrecht et al., 1996; Bassom
et al., 1995; Fokas and Ablowitz, 1982; Fukutani et al., 2000; Gromak,
1999; Gromak et al., 2002; Okamoto, 1987a; Okamoto, 1987b; Okamoto,
1986; Okamoto, 1987¢c; Umemura and Watanabe, 1997; Umemura and
Watanabe, 1998; Vorob’ev, 1965; Watanabe, 1995; Yablonskii, 1959;
Yuan and Li, 2002) and the references therein). These hierarchies are
usually generated from “seed solutions” using the associated Béacklund
transformations and frequently can be expressed in the form of determi-
nants through “r-functions”.

Vorob’ev (Vorob’ev, 1965) and Yablonskii (Yablonskii, 1959) expressed
the rational solutions of Py; in terms of the logarithmic derivative of
certain polynomials which are now known as the Yablonskii-Vorob’ev
polynomials. Okamoto (Okamoto, 1986) obtained analogous polynomi-
als related to some of the rational solutions of Py, these polynomials
are now known as the Okamoto polynomials. Further Okamoto noted
that they arise from special points in parameter space from the point-
of-view of symmetry, which is associated to the affine Weyl group of
type Ag2). Umemura (Umemura, 2003) associated analogous special
polynomials with certain rational and algebraic solutions of Pyp, Py
and Py which have similar properties to the Yablonskii-Vorob’ev poly-
nomials and the Okamoto polynomials; see also (Noumi M. and H.,
1998; Umemura, 1998; Umemura, 2001; Yamada, 2000). Subsequently
there have been several studies of special polynomials associated with the
rational solutions of Py (Fukutani et al., 2000; Kajiwara and Masuda,
1999a; Kajiwara and Ohta, 1996; Taneda, 2000), the rational and alge-
braic solutions of Pyi1 (Kajiwara and Masuda, 1999b; Ohyama, 2001),
the rational solutions of Pry (Fukutani et al., 2000; Kajiwara and Ohta,
1998; Noumi and Yamada, 1999), the rational solutions of Py (Masuda
et al., 2002; Noumi and Yamada, 1998b) and the algebraic solutions
of Py (Kirillov and Taneda, 2002b; Kirillov and Taneda, 2002a; Ma-
suda, 2002; Taneda, 2001a; Taneda, 2001b). However the majority of
these papers are concerned with the combinatorial structure and deter-
minant representation of the polynomials, often related to the Hamil-
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tonian structure and affine Weyl symmetries of the Painlevé equations.
Typically these polynomials arise as the “r-functions” for special so-
lutions of the Painlevé equations and are generated through nonlinear,
three-term recurrence relations which are Toda equations that arise from
the associated Backlund transformations of the Painlevé equations. The
coeflicients of these special polynomials have some interesting, indeed
somewhat mysterious, combinatorial properties (see (Noumi M. and H.,
1998; Umemura, 1998; Umemura, 2001; Umemura, 2003)). Addition-
ally these polynomials have been expressed as special cases of Schur
polynomials, which are irreducible polynomial representations of the
general linear group GL(n) and arise as 7-functions of the Kadomtsev-
Petviashvili (KP) hierarchy (Jimbo and Miwa, 1983). The Yablonskii-
Vorob’ev polynomials associated with Py are expressible in terms of
2-reduced Schur functions (Kajiwara and Masuda, 1999a; Kajiwara and
Ohta, 1996), and are related to the 7-function for the rational solution
of the modified Korteweg de Vries (mKdV) equation since Py arises as a
similarity reduction of the mKdV equation. The Okamoto polynomials
associated with Pyyv are expressible in terms of 3-reduced Schur functions
(Kajiwara and Ohta, 1998; Noumi and Yamada, 1999) since Py arises
as a similarity reduction of the Boussinesq equation (cf. (Clarkson and
Kruskal, 1989)), which belongs to the so-called 3-reduction of the KP
hierarchy (Jimbo and Miwa, 1983).

It is also well-known that Py—Pyr possess solutions which are express-
ible in terms of the classical special functions; these are often referred
to as “one-parameter families of solutions”. For Py; these special func-
tion solutions are expressed in terms of Airy functions Ai(z) (Airault,
1979; Flaschka and Newell, 1980; Gambier, 1910; Okamoto, 1986), for
P11 they are expressed in terms of Bessel functions J,(z) (Lukashevich,
1967a; Milne et al., 1997; Murata, 1995; Okamoto, 1987c), for Pry they
are expressed in terms of Weber-Hermite (parabolic cylinder) functions
D,(z) (Bassom et al., 1995; Gromak, 1987; Lukashevich, 1967b; Mu-
rata, 1985; Okamoto, 1986), for Py they are expressed in terms of
Whittaker functions My ,(z), or equivalently confluent hypergeomet-
ric functions 1 Fi(a;c;2) (Lukashevich, 1968; Gromak, 1976; Okamoto,
1987b; Watanabe, 1995), and for Py they are expressed in terms of
hypergeometric functions 9 Fj(a, b; c; 2) (Fokas and Yortsos, 1981; Luka-
shevich and Yablonskii, 1967; Okamoto, 1987a); see also (Ablowitz and
Clarkson, 1991; Gromak, 1978b; Gromak, 1999; Gromak and Lukashe-
vich, 1982; Tamizhmani et al., 2001). Some classical orthogonal poly-
nomials arise as particular cases of these special function solutions and
thus yield rational solutions of the associated Painlevé equations, espe-
cially in the representation of rational solutions through determinants.
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For Pi1 and Py these are in terms of associated Laguerre polynomials

Lg,k)(z) (Charles, 2002; Kajiwara and Masuda, 1999b; Masuda et al.,
2002; Noumi and Yamada, 1998b), for Pry in terms of Hermite polyno-
mials H,(z) (Bassom et al., 1995; Kajiwara and Ohta, 1998; Murata,
1985; Okamoto, 1986), and for for Py in terms of Jacobi polynomials

pied (z) (Masuda, 2002; Taneda, 2001b). In fact all rational solutions
of Py1 arise as particular cases of the special solutions given in terms of
hypergeometric functions (Mazzocco, 2001).

This paper is organised as follows. The Yablonskii-Vorob’ev poly-
nomials and rational solutions for Py are studied in §2. We compare
the properties of these special polynomials with properties of classical
orthogonal polynomials. The analogous special polynomials associated
with rational solutions of Py, which occur in the generic case when
v # 0, are studied in §3. Further, in §3 we study the special polynomi-
als associated with algebraic solutions of Py, which occur in the cases
when either v = 0 and ad # 0, or 6 = 0 and (v # 0. In §4 the special
polynomials associated with rational solutions for Pry. Here there are
four types of special polynomials, two classes of Okamoto polynomials,
which were introduced by Okamoto (Okamoto, 1986), generalized Her-
mite polynomials and generalized Okamoto polynomials, both of which
were introduced by Noumo and Yamada (Noumi and Yamada, 1999).
Finally in §5 we discuss our results and pose some open questions.

2. Second Painlevé equation
2.1 Rational solutions of Py

The rational solutions of Pyy (1.1) are summarized in the following
Theorem due to Vorob’ev (Vorob’ev, 1965) and Yablonskii (Yablonskii,
1959); see also (Fukutani et al., 2000; Umemura, 1998; Umemura and
Watanabe, 1997; Taneda, 2000).

Theorem 2.1. Rational solutions of Py exist if and only if a = n € Z,
which are unique, and have the form

forn > 1, where the polynomials Q,(2) satisfy the differential-difference
equation

Qui1Qn-1 = 2Q3 — 4 [QnQs — (@4)°] (2:2)

with Qo(z) = 1 and Q1(2) = z. The other rational solutions are given

by
w(z;0) =0, w(z; —n) = —w(z;n). (2.3)
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The polynomials Q,,(z) are monic polynomials of degree %n(n+1) with
integer coeflicients, and are called the Yablonskii- Vorob’ev polynomials.
The first few polynomials Q,(z) are

Q2(2) = 2> + 4,

Q3(z) = 2° 4 202° — 80,

Qa(z) = (2° + 602° + 11200)z,

Qs(2) = 2 + 140212 4 28002° + 784002 — 3136002° — 6272000
Qe(z) = 2% + 28028 + 18480215 + 62720022 — 172480002°

+ 14488320002° + 193177600002 — 38635520000,
Q7(2) = (227 4 5042%* + 7560022! + 517440028 + 62092800215
+ 1303948800022 — 8287319040002°
— 497239142400002°% — 3093932441600000) 2
Qs(z) = 2% 4 840233 + 24024023 + 327712002%7 + 201801600022
+ 1243097856002%' — 6629855232000~12
+ 4077360967680002'° + 126696533483520000212
+ 17697293565952000002° + 371643164884992000002°
— 7432863297699840000002° — 991048439693312000000.
(2.4)
Remarks 2.2.

1. The hierarchy of rational solutions for Py given by (2.1) can also
be derived using the Backlund transformation of Py
200+1
2w2(z; @) + 2w'(z;a) + 2’

w(z;a+1) = —w(z;a) — (2.5)

(Lukashevich, 1971), with “seed solution” wo = w(z;0) = 0.

2. It is clear from the recurrence relation (2.2) that the Q,(z) are
rational functions, though it is not obvious that in fact they are
polynomials since one is dividing by @,—1(2) at every iteration.
Indeed it is somewhat remarkable that the Q,(z) defined by (2.2)

are polynomials.
3. Letting Q,.(2) = cnTn(2) exp(2%/24), with ¢, = (2)"**+1) in (2.2)
yields the Toda equation

TnTh — (7'7,1)2 = Tn4+1Tn—1- (2.6)
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4. The Yablonskii-Vorob’ev polynomials Q,(z) possess the discrete
symmetry
Qn(wz) = W"™HD2Q,(2), (27)

where w® = 1 and 4n(n + 1) is the degree of Q,(2).

Fukutani, Okamoto and Umemura (Fukutani et al., 2000) and Taneda
(Taneda, 2000) have proved Theorems 2.3 and 2.4 below, respectively,
concerning the roots of the Yablonskii-Vorob’ev polynomials. Further
these authors also give a purely algebraic proof of Theorem 2.1.

Theorem 2.3. For every positive integer n, the polynomial Qn(2) has
simple roots. Further the polynomials Qn(2) and Qnt1(z) do not have a
common Toot.

Theorem 2.4. The polynomial Q(z) is divisible by 2 if and only if
n = 1mod 3. Further Q,(2) is a polynomial in 23 if n # 1 mod 3 and
Qn(2)/z is a polynomial in 2° if n = 1 mod 3.

Remarks 2.5.

1. From these theorems, since each polynomial @, (z) has only simple
roots then it can be written as

n{n+1)/2
()= [[ (2= anp) (2.8)
k=1
where a,j, for k = 1,,..,%n(n + 1), are the roots. Thus the

rational solution of P11 can be written as

n(n—1)/2

n1(2) _Qn(2) _ 3

n(n+1)/2

1 1
- Z zZ—anp

Z = 0p_1k =1
(2.9)

and so w(z; n) has n roots, $n(n—1) with residue +1 and Fn(n+1)
with residue —1; see also (Gromak, 2001).

w(z;n) = =

Qn-1(2)  Qn(2)

k=1

2. The roots ay, j of the polynomial Q,(z) satisfy

n(n+1)/2 1

1
=0, j=1,2...,2n(n+1). (210
k:§;ﬁ] (an»j - an;k)3 2

This follows from the study of rational solutions of the Korteweg-
de Vries (KdV) equation

U + 6utty + Uggpy =0 (2.11)
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and a related many-body problem by Airault, McKean and Moser
(Airault et al., 1977) (see also (Adler and Moser, 1978)).

. Rational solutions of the KdV equation (2.11) have the form (Ablowitz

and Satsuma, 1978; Adler and Moser, 1978; Airault, 1979; Airault
et al., 1977).

2 Qn(z/(39')Qn(x/(3)) — (Qu(x/(3)'/*)*

U ) = s Q= BHT)

(2.12)

. The Yablonskii-Vorob’ev polynomials are closely related with Schur

functions (Kajiwara and Ohta, 1996; Umemura, 2001) and so it
can be proved that the rational solution of Py can be expressed in
terms of determinants (Iwasaki et al., 2002; Kajiwara and Masuda,
1999a; Kajiwara and Ohta, 1996).

. Kametaka (Kametaka, 1983) has obtained a sharp estimate for the

maximum modulus of the poles of the Yablonskii-Vorob’ev poly-
nomials. It is shown that if A, = maxi<r<p(nt1)/2{l@nk|} then
n?3 < Apio < 4023, for n > 0. In (Kametaka, 1985) Kametaka
studies the irreducibility of the Yablonskii-Vorob’ev polynomials.

. Kaneko and Ochiai (Kaneko and Ochiai, 2002) derive formulae

for the coefficients of the lowest degree term of the Yablonskii-
Vorob’ev polynomials; the other coefficients remain to be deter-
mined, which is an interesting problem.

Qs(z) | —1.5874, 0.7937 + 1.37471

Qa(z) | —2.8600, —.75305 & 1.30431, 1.5061, 1.4305 L 2.47761

Qs(z) | —3.0756, —2.0111 + 1.25831, —.08414 & 2.3708i, O,
1.9878 4+ 3.44301, 2.0952 & 1.1125i

Qolz) | —4.0886, —3.1185F 122421, —1.3264 * 2.20741, —1.2416
0.4990 + 3.3128i, 0.6208 = 1.0753i, 2.4943 + 4.3202i,
2.6195 £ 2.08851, 2.6528

Qr(z) | —50287, —4.1278 % 1.19741, —2.4245 & 2.24161, —2.3406

—0.7290 £ 3.22051, —0.6048 £1.0476i, 1.0269 £ 4.17341,
1.1703 £ 2.02711, 1.2096, 2.9643 +5.1344i, 3.1008 +2.97611,
3.1536 + 0.97891

Table 1. Roots of the Yablonskii-Vorob’ev polynomials
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Figure 1. Roots of the Yablonskii-Vorob’ev polynomials Q,(z) =0

2.2 Roots of the Yablonskii-Vorob’ev
polynomials

The locations of the roots for the Yablonskii-Vorob’ev polynomials
Qn(z) =0, for n = 3,4,...,8 are given in Table 1 and these are plotted
in Figure 1. The locations of the poles of the rational solutions of Py,
which are the roots of S, (z) = Qn-1(2)Qn(z) =0, forn = 3,4,...,8 are
plotted in Figure 2.

From these plots we make the following observations
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1. From Figure 1 we see that the roots of the Yablonskii-Vorob’ev
polynomials form approximately equilateral triangles, in fact ap-
proximate “Pascal triangles.” The values of the roots in Table 2.1
show that they actually lie on curves rather than straight lines.

2. The roots of Q,(z) = 0 lie on circles with centre the origin. If we
define
Qn(¢1/3) if n#1mod 3,
an(¢) = 13Y/01/3 5 o o=
Qn(¢7°)/¢ if n=1mod3.

The radii of the circles are given by the third roots of the absolute
values of the non-zero roots of ¢,(¢) = 0, with three equally spaced
roots of Qn(z) = 0 on circles for the real roots of ¢,(¢) = 0 and
six roots, three complex conjugate pairs, of @, (z) = 0 on a circles
for the complex roots of g,(¢) = 0 (see (Clarkson and Mansfield,
2003)).

3. The plots in Figures 1 and 2 are invariant under rotations through
27 and reflections in the real z-axis and the lines arg(2) = +im, £2m.
This is because Py; admits the finite group of order 6 of scalings

and reflections
w — eplw, z — pz, o — ea, (2.13)
where p2 = 1 and €2 = 1.

4. From Figure 2 we see that the poles of the rational solutions of
Py that the location of the poles yields an approximate triangle
structure, with internal hexagons.

3. Third Painlevé equation
3.1 Rational solutions of Py

In this section we consider the generic case of Py; when 44 # 0, then
we set v = 1 and § = —1, without loss of generality (by rescaling w and
z if necessary), and so consider

N2 ! 2
o — (ww) -~y oW+ B 215 (3.1)

The location of rational solutions for the generic case of Py given by
(3.1) is stated in the following theorem.

Theorem 3.1. Fquation (3.1), i.e., Py with v = —§ = 1, has rational
solutions if and only if o + 8 = 4n, with n € Z and € = +£1. These
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rational solutions have the form w = Pny(2)/Qm(z), where Py(z) and
Qm(z) and polynomials of degree m with no common roots.

Proof See Gromak, Laine and Shimomura (Gromak et al., 2002), p. 174
(see also (Milne et al., 1997; Murata, 1995; Umemura and Watanabe,
1998)).

We remark that the rational solutions of the generic case of Py (3.1)
lie on lines in the a-J plane, rather than isolated points as is the case for
Prv (see §4). Further, equation (3.1) is of type Dg in the terminology
of Sakai (Sakai, 2001), who studied the Painlevé equations through a
geometric approach based on rational surfaces.

Umemura (Umemura, 2003), see also (Kajiwara and Masuda, 1999b;
Noumi M. and H., 1998; Umemura, 1998; Umemura, 2001), derived spe-
cial polynomials associated with rational solutions of Pyy;, which are
defined in Theorem 3.2 below. Further Umemura states that these poly-
nomials are the analogues of the Yablonskii-Vorob’ev polynomials as-
sociated with rational solutions of Py; and the Okamoto polynomials
associated with rational solutions of Pry.

Theorem 3.2. Suppose that T,,(z; 1) satisfies the recursion relation
Tpi1Tpot = —2 [TnT,'; -~ (T,;)2] T, T+ (2 + 1) T2, (3.2)
with T_1(z; u) = 1 and To(z; 1) = 1. Then

wn(2; ) = w(2 an, Bn, 1,-1)

1 4 [TEer D _ Talzip =D Taa(zp) (3.3)
itz {1 [ 2" Tn(z; 1) ]} Tn(z 1) T1(z; = 1)

satisfies Pry1, with o, =2n4+2p—1 and 3, = 2n — 2u + 1.
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The first few polynomials for Py defined by (3.2) are
Tl(z;u) =1+ %7

3u 3u? 21
To(zp) =14 24 4 3 p 1)
z z z

Sy, B 1542 Bu(dp®—1)  154%(p?—1)
B(zp) =1+ —+—+ = + I
L3 - D@et = 3) a1 —4)
5 6
z 4
10p  45u%  15u(8u? —1)  105u%(2u% -1
Ta(zip) = 1+ o 2507 1ouBu — 1) | 1057207 — 1)
z z z
63u(u? — (42 —1) | 105202 — (22— 3) (
+ 5 + 6
y4 y4
15u(p? — 1)(8u* — 27u% + 15)
+ ~
L = (e —2) (W - 4)
8
z
L3 - (e = 42 - 1)
9
z

A 1)2(5120— 4)(p* — 9

)

3.4)

and associated rational solutions of Py are
wo(z; 1) =1,
1
z4+u’
1 3(2 + p)?
2tp—1 (z+pP-p (3.5)
3(z+pu—1)2
(z4+p—13—-p+1
6(2 + p)° — 15u(z + p)? + 9
(2 + p)® — 5u(z + p)3 + 9z + p) — 5u?’
The hierarchy of rational solutions of Py given in (3.5) can also be
derived using the Béacklund transformation of Py; given by

wi(zp) =1-

wa(z;p) =1+

ws(z;p) = 1+

2w + 2w? — fw —w+ 2z
wlzw + zw? + ow + w + 2}’

’[E(Z;aa Evl)_l) = (36)

where w = w(z;, 5,1, 1), @ = a+ 2 and E = [+ 2 (Gromak, 1973;
Gromak, 1975) (see also (Milne et al., 1997; Murata, 1995; Umemura
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and Watanabe, 1998)), i.e.,

2wl + zw2 + (Bp + Dw, + 2
wn+1(z; an-i—laﬁn-i—l; ]'7 _—1) = wn[zZ)iL + Z'ZJ% + (an + 1)wn + Z]7

(3.7)

where w, = w(z;an, On, 1, 1), o =2n+2p—1and B, = 2n —2u+1,
with “seed solution” wo(z; @, fo;1;—1) = 1 where a9 = 2u — 1 and
Bo=—2pu+ 1.

The polynomials T,(z) are somewhat unsatisfactory since they are
polynomials in £ = 1/z rather than polynomials in z, which would be
more natural and is the case for the Yablonskii-Vorob’ev polynomials
and Okamoto polynomials associated with rational solutions of Pyp and
Prv, respectively. However it is straightforward to determine a sequence
of functions S,,(z) which are generated through a Toda equation that
are polynomials in z. These are given in the following theorem.

Theorem 3.3. Suppose that S,(z;p) satisfies the recursion relation
(Toda equation)

Spi1Sn1 = —2 {sns;; - (s;f] — 8,8 + (2 + p)S2, (3.8)

with S_i(z; ) = So(z; u) = 1. Then

Wy, = w(2; 0n, Bn, 1, —1) =1+ % {ln [%2} }
_ Sn(z; 1 — 1) Sp-1(z; ) (3.9)
Sn(2; 1) Sp—1(z; 0 — 1)’

satisfies Prip with o =2n+ 2 — 1 and B, = 2n — 2u + 1.

Proof. This essentially follows from Theorem 1 due to Kajiwara and
Masuda (Kajiwara and Masuda, 1999b) since the Toda equation (3.8),
modulo a scaling factor, is equation (16) in Proposition 3 of (Kajiwara
and Masuda, 1999b).
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The first few polynomials S,(z;u), which are monic polynomials of
degree in(n + 1), are

S3(z; ) = (2 + 1)® = 5u(z + 1)* + u(z + 1) — 5%,

Sa(z; 1) = (2 + )"0 = 15p(z + )" + 63u(z + 1)° — 225p(z + p)?
+ 31502 (2 4 )2 — 17513 (2 + p) + 362,

Ss(z; 1) = (2 + 1)'® — 35p(z + 1) + 252u(z + p)*°
+ 17513 (z 4+ p)° — 2025u(z + 1)® + 9453 (z + )7
~12254(u? — 9)(z + 1) — 2608242 (2 + p)®
+ 330753 (2 + p)* — 35012(3502% + 36) (2 + )’
+ 1134013 (2 + p)? — 225u2(49u2 — 36) (2 + p)
+ 713 (875u% — 828).

(

So(z; ) = (z + p)°® — p,
(
(

(3.10)
The associated rational solutions of Py are in (3.5). It is clear from the
recurrence relation (3.8) that the S,(z; 1), are rational functions, though
it is not obvious that in fact they are polynomials since one is dividing
by Snh—1(z; ) at every iteration. Indeed it is somewhat remarkable that
the S, (z; 1) defined by (3.8) are polynomials. The polynomials S, (z; u)
defined by (3.8) are related to the polynomials R, (z; 1) defined by (3.2)
through S, (z;p) = 2™*+D/2R, (z;). The polynomials Sy,(z; ) have
the property that Sy (z;u) = Sn(—2; —p).

In Figure 3 plots of the roots of the polynomial Sy(§ — p, ) defined
by (3.10) for various p are given. Initially for 4 = —3 there is an ap-
proximate triangle of roots with 4 roots on each side. As p increases,
sets of roots then in turn coalesce until there is a multiple root of order
10 for m = 0. Then as p another approximate triangle appears which is

“turned round” from the configuration for 4 = —3 since the symmetry
is Sp(z; 1) = Sp(—2z; 1) implies that the roots for S,(z; 1) is a reflection
of those for S,(z; —p) in the imaginary axis. O

3.2 Algebraic solutions of Py

In this section we consider the special case of Py when either (i),
v=0and ab # 0, or (ii), d = 0 and By # 0. In case (i), we make the
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transformation

w(z) = (g) P, e (;)3/2 &, (3.11)

and set ¢ = 1, § = 2p and § = —1, with u an arbitrary constant,
without loss of generality, which yields

Pu 1 (du\? 1du 0 4¢*
d—C§ =4 (&') - ZEE + 4¢u” + 12u¢ — e (3.12)
In case (ii), we make the transformation
3\ 1/2 o\ 3/2
w(z) = (§> fu(), z= <§) ¢, (3.13)

and set a = 2u, 8 = —1 and v = 1, with y an arbitrary constant, without
loss of generality, which again yields (3.12). The scalings in (3.11) and
(3.13) have been chosen so that the associated special polynomials are
monic polynomials. We remark that equation (3.12) is of type D7 in the
terminology of Sakai (Sakai, 2001).

Rational solutions of (3.12) correspond to algebraic solutions of Py
with v = 0 and ad # 0, or § = 0 and fv # 0. Lukashevich (Lukashevich,
1965; Lukashevich, 1967a) obtained algebraic solutions of Pyj1, which are
classified in the following theorem.

Theorem 3.4. Equation (3.12) has rational solutions if and only if
u = n, with n € Z. These rational solutions have the form u(() =

P2, 1(0)/Qn2(C), where P2, 1(¢) and Q,2({) and monic polynomials of
degree n? + 1 and n?, respectively.

Proof. See Gromak, Laine and Shimomura (Gromak et al., 2002), p. 164
(see also (Gromak, 1973; Gromak, 1978a; Milne et al., 1997; Murata,
1995)).

A straightforward method for generating rational solutions of (3.12)
is through the Béacklund transformation

= ¢ e¢ duy _3(2u+e)
ke = uZ  2ul d¢ 2u,

(3.14)

where €2 = 1 and w,, is the solution of (3.12) for parameter 4, using the
“seed solution” up(¢) = ¢ for u = 0 (see Gromak, Laine and Shimomura
(Gromak et al., 2002), p. 164 — see also (Gromak, 1973; Gromak, 1978a;
Milne et al., 1997; Murata, 1995)). Further we note that u_,({) =
—iu,(i¢). Therefore the transformation group for (3.12) is isomorphic to



Painlevé Equations and Associated Polynomials 139

the affine Weyl group Zl, which also is the transformation group for Py
(Okamoto, 1986; Umemura, 2000; Umemura and Watanabe, 1997). [

Ohyama (Ohyama, 2001) derived special polynomials associated with
the rational solutions of (3.12). These are essentially described in The-
orem 3.5 below, though here the variables have been scaled and the
expression of the rational solutions of (3.12) in terms of these special
polynomials is explicitly given.

Theorem 3.5. Suppose that R, ({) satisfies the recursion relation ( Toda
equation)

2%¢Rpi1Rn_1 = —Rn

5 2
4R, (an> _Ra an+2(<2_n) R2, (3.15)

d¢ T\d¢ ) ¢

with Ro(¢) =1 and Ry(¢) = (2. Then

Rny1(¢) Bn-1(¢) (3.16)

0= R

satisfies (3.12) with p = n. Additionally u_n,(¢) = —iu,(i{).
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The first few polynomials R, (¢) defined by (3.15) are

R2(<> (*=-1)¢

Rs(¢) = (¢* —4¢* +5) ¢°,

R4(¢) = (¢® - 10¢5 + 40¢* — 70¢? + 35) ¢5,
Rs(¢) = (¢1% —20¢10 + 175¢® — 840¢5 + 2275¢4

—3220¢% + 1925) ¢,

Rs(¢) = (¢ — 35¢16 4 560¢1* — 5320¢*2 — 32690¢ 10
+133070¢® — 354200¢° + 585200¢*
— 525525¢2 4+ 175175)¢°,

R7(¢) = (¢** —56¢?% 4 1470¢%° — 23800¢ '8 + 263375¢16
— 2088240¢1* + 12105940¢ 12 — 51466800¢1° (3.17)
+ 158533375¢% — 343343000¢® + 493643150¢*

— 421821400¢2 + 163788625)¢ 1!,

Rs(¢) = (€32 — 84¢39 + 3360¢2® — 84700¢?® 4 1501500¢%4
— 19787460¢%2 + 199916640¢%° — 1574673100¢ 8
+9741481750¢1¢ — 47328781500¢ 14
+ 179306327200¢ 2 — 521782561300¢ 10
+ 1136861225500¢® — 1778744467500¢8
+ 1860638780000¢* — 1132762130500¢2
+ 283190532625)¢12,

and associated rational solutions of (3.12) are

u(e) =1,

4 2
u2(C) = C( (<2 icl):— 5)7 (3.18)
ua(() = =D~ 10¢° +40¢" — 70¢? + 35)

(¢t —4¢% +5)

The polynomial R,(¢) is a monic polynomial of degree n(n + 3)
with integer coefﬁments Further it has the form R,({) = S,({)¢{*",
where &k, = énQ — [ —(—=1)"] and S,(¢) a monic polynomial of degree
3n+ 31— (=1)"] Wlth simple zeros and S, (0) # 0.



Painlevé Equations and Associated Polynomials 141

44 4

34 3

2] 2

1 1

o : 0

B ! : N

-2 -2

-3 _a]

4T3 240 1F 8 S4TTETRTHY T 28 a
Poles of u3(¢) Poles of u4(()

4 4

31 3

21 2

1 1

0 0

T . -1

_2d _2_

~33 -39

~TEE RS S ~TE TS TR
Poles of us(¢) Poles of ug(¢)

4 49

3 3

2 21

1 1

0 07

- . . -1

-2 -2

-3 ~34

R M R R R R Y 4320 1 2 3 4
Poles of u7(¢) Poles of ug(¢)

Figure 4.  Poles of algebraic solutions of Pii1-D7 (3.12)



142 THEORY AND APPLICATIONS OF SPECIAL FUNCTIONS

In Figure 4 plots of the locations of the poles of the algebraic solutions
of Piir-D7 (3.12) given by un(z), for n = 3,4,...,8, as defined in (3.18)
are given. These take the form of two “triangles” in a “bow-tie” shape.

4. Fourth Painlevé equation

4.1 Rational solutions of Piv

Lukashevich (Lukashevich, 1967b), Gromak (Gromak, 1987) and Mu-
rata (Murata, 1985) (see also (Bassom et al., 1995; Gromak et al.,
2002; Umemura and Watanabe, 1997)), have proved the following theo-
rem

Theorem 4.1. Ppy has rational solutions if and only if
a=m, B=-2014+2n-m)? (4.1)

or

2
a=m, B = —5(1 + 6n — 3m)?, (4.2)

with m,n € Z.. Further the rational solutions for these parameter values
are untque.

Three simple rational solutions of Pyy are

3

(4.3)
It is known that there are three families of unique rational solutions of
P1v, which have the solutions (4.3) as the simplest members. These are
summarized in the following theorem (see (Bassom et al., 1995; Murata,
1985; Umemura and Watanabe, 1997) for further details).

2 2
wi(z;£2,-2) = £1/z, wa(z;0,-2) = =22z, w3 (z;O, _5) = ——2z.

Theorem 4.2. There are three families of rational solutions of Pry,
which have the forms

w1 (Z; a, ﬁl) = Pl,n—l(z)/Ql,n(z)a (443')
wy (z; a9, F2) = =22+ Py p_1(2)/Q2n(2), (4.4b)
ws (2 a9, fo) = —=2 + Poa1(2)/Qan(2), (4.40)

3
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where Pjn(2) and Q;n(2), j =1,2,3, are polynomials of degree n, and

(alvﬁl) = (:tm7 _2(1 +2n+ m)2) , myn€Z, n< -1, m2>-2n,

(4.5a)
(a2, B2) = (m,—2(1+2n + m)2) , m,n€Z, n>0 m>-—n,

(4.5b)
(as, B3) = (m, %(1 + 6n — 3m)2> , m,n € Z. (4.5¢)

The three hierarchies given in this theorem are known as the “—1/z
hierarchy”, the “—2z hierarchy” and the “—%z hierarchy”, respectively
(see (Bassom et al., 1995) where the terminology was introduced). The
“—1/z hierarchy” and the “—2z hierarchy” form the set of rational so-
lutions of Pyy with parameter values given by (4.1) and the “—%z hier-
archy” forms the set with parameter values given by (4.2). The rational
solutions of Pry with parameter values given by (4.1) lie at the vertexes
of the “Weyl chambers” and those with parameter values given by (4.2)
lie at the vertexes of the “Weyl chamber” (Umemura and Watanabe,
1997).

4.2 Okamoto polynomials

In a comprehensive study of the fourth Painlevé equation Pry, Okamoto
(Okamoto, 1986), see also (Kajiwara and Ohta, 1998; Noumi and Ya-
mada, 1999; Umemura, 1998) defined two sets of polynomials analogous
to the Yablonskii-Vorob’ev polynomials associated with Py1. These poly-
nomials are defined in Theorems 4.3 and 4.5 below, where they have been
scaled compared to Okamoto’s original definition, where the polynomials
were monic, so that they are for the standard version of Pry.

Theorem 4.3. Suppose that Q,(z) satisfies the recursion relation

Qn+1Qn-1= % |On@ = (@W)°] + 22430 - 1] Q% (46)
with Qo(z) = Q1(z) = 1. Then

o= nanp) = 2o L fn[ZON

satisfies Py with (an, Br) = (2n, _%)'
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The first few polynomials @, (z), which are referred to as the Okamoto
polynomials, are

Qo=0Q1=1,
Q=222 +3,
Q3 = 82°% + 602* + 9022 + 135,
Q4 = 6422 + 134420 + 936028 + 302402° + 567002*
+ 17010022 + 127575,
Qs = 102422° + 460802 + 8179202'® + 7603200214
+ 4173120022 + 155675520210 + 4939704002%
+ 18860688002° + 53045685002* + 530456850022
+ 3978426375,

Qs = 32768230 4 2703360228 + 95477760225 + 191600640024
+ 244726272002%2 + 2125809100802%°
+ 133282195200028 + 6627106886400z
+ 30481566192000z1 + 148952283480000212
+ 702723772951200210 4+ 23757889215060002°
+ 48744634768830002° + 64514957782275002*
+ 967724366734125022 + 4838621833670625.

Remarks 4.4.

1. The polynomials Q,(z) are polynomials of degree n(n — 1), in fact
they are monic polynomials in ¢ = v/2z with integer coefficients,
which is the form in which Okamoto (Okamoto, 1986) originally
defined these polynomials.

2. The hierarchy of rational solutions of Pry defined by (4.7) can be
derived using the following Bécklund transformation of Py

. ' w? — 2w) 4 2
ZD(z;&,ﬁ)= of v = Dou) 420 :

2w [w' — w? - 2zw+ 2 (a+ 1)) (4.8)
a=a+2, E:ﬂ’

where w = w(z;a, 8), which is the Backlund transformation 75
derived by Murata (Murata, 1985) and the Schlesinger transfor-
mation RP! derived by Fokas, Mugan and Ablowitz (Fokas et al.,
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1988). Specifically

9 [w), —w? — 2zwn]2 —4
18wy, [w!, — w2 — 2zw, + 4n + 2]’

Wn+1 = (49)

where wy, = w (2;2n, —2), with “seed solution” wy = w (;0, -2) =
2

3. The solutions w,, are members of the so-called “—% z” hierarchy of
rational solutions of Pyy, recall Theorem 4.2, which is one of three
hierarchies of rational solutions of Pry (see, for example, (Bassom
et al., 1995; Murata, 1985) for further details).

The second set of polynomials introduced by Okamoto (Okamoto,
1986) are defined in the following theorem.

Theorem 4.5. Suppose that S,(z) satisfies the recursion relation
Sns1Sn-1 = o [SuS" — (8)2] +2 (% + 3n) S2 4.10
nt1Sn-1 = 5 [SnSh = (S4)] +2 (22 + 3n) 2, (4.10)

with So(z) = 1 and S1(z) = vV22z. Then

w (25 6, ) = —g-z + % {m [Lg%iﬂ } , (4.11)

for n > 0, satisfies Pry with (o, By) = (2n +1, ——S—).
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The first few polynomials S,(z), are

Sp =1,

S =2z,

Sy =42* 41222 — 9,

S5 = V22 (162% + 19225 + 5042* — 2835)

Sy = 2562'¢ 4 768021* + 80640212 + 362880210 + 45360028
— 19051202 — 142884002* — 2143260022 + 8037225,

S5 = V22 (40962%* + 245760272 + 599040022 4 774144002
+ 56972160026 + 22469529602* + 1600300800212
— 356638464002'° — 2758375620002% — 11033502480002°
—17377766406002* + 3258331201125) ,

Se = 2621442%¢ 4 2752512023 + 1259274240232
+ 331952947202%° + 5601705984002% + 63246326169602%6
+ 477420023808002% + 2192817070080002%2
+ 22831994465280022° — 58256893094400002'8
— 63304058468851200216 — 41277656797977600024
— 18109022816364480002'? — 46519585558205760002°
~ 40257333656139600002% + 112720534237190880002°
+ 475539753813149025002* + 4755397538131490250022
— 11888493845328725625.

Remarks 4.6.

1. The polynomials S,,(z) are polynomials of degree n2, in fact they
are monic polynomials in { = 2z with integer coefficients, which
is the form in which Okamoto (Okamoto, 1986) originally defined
these polynomials.

2. The hierarchy of rational solutions of Pry defined by (4.11) can be
derived using the Béacklund transformation (4.8) of Pry, derived
by Murata (Murata, 1985) and Fokas, Mugan and Ablowitz (Fokas
et al., 1988). Hence

9 [@l, — B2 — 22,)° — 16
18W, [W!, — W2 — 2210, + 4n + 4]’
where @, = w (2;2n + 1,2n — §), with “seed solution”

Wo = w (7 1, —%) = —%—z-{— 1/z.

D1 = (4.12)
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3. The solutions w,, are also members of the so-called “-—% ” hierar-
chy of rational solutions of Py, recall Theorem 4.2.

4. The two hierarchies of rational solutions of Pry given by (4.7) and
(4.11) are linked by the Schlesinger transformations R and RE!
for Prv given by Fokas, Mugan and Ablowitz (Fokas et al., 1988).

(w' + \/—_2ﬂ)2 —w? [2¢/=28 — da — 4 + (w + 22)?]
2w (w2 + 2zw — W' — v/=20) ’
ol = +1, 5[1]——< 2+\/j)

ydE AN 1

(4.13)
o, g _ (= VTIB) +w? [2VB 4 da 4~ (w+ 22)’]
' 2w(w2+2zw—w +v—20) ’

(4.14)

where w = w(z; o, 8), wh = w (z; ol ﬁm) Specifically, for n > 0

o (wn + %)2 —wk [8n+ § — (w, +22)?]

n = ) 4.15

v 2wy, (w2 + 22w, — w), — 2) (4.15)
(@, +$) + @2 |80+ 3 — (@0 +22)%)

Wit = . (4.16)

2, (B2 + 22y, — @, — 3)

5. The Schlesinger transformations R, RBI and R are related by
RURB = RBIRM = RBl from the definition given by Fokas,
Mugan and Ablowitz (Fokas et al., 1988).

In Figures 5 and 6 plots of the locations of the roots for the Okamoto
polynomials Q,(z) = 0, defined by (4.6), and S,(z) = 0, defined by
(4.10), for n = 3,4,...,8, respectively, are given. These both take the
form of two “triangles” with the polynomials R, (z) having an additional
row of roots on a straight line between the two “triangles.”

4.3 Generalized Hermite polynomials

Noumi and Yamada (Noumi and Yamada, 1999) generalized the re-
sults of Okamoto (Okamoto, 1986) and introduced the generalized Her-
mite polynomials Hyp, n(z), which are defined in Theorem 4.7 and dis-
cussed below in this section, and generalized Okamoto polynomials Qp, n(2),
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which are defined in Theorem 4.9 and discussed in §4.4. Noumi and Ya-
mada (Noumi and Yamada, 1999) expressed both the generalized Her-
mite polynomials and the generalized Okamoto polynomials in terms of
Schur functions related to the so-called modified Kadomtsev-Petviashvili
(mKP) hierarchy. Kajiwara and Ohta (Kajiwara and Ohta, 1998) also
expressed rational solutions of Pry in terms of Schur functions by ex-
pressing the solutions in the form of determinants. Further Noumi and
Yamada (Noumi and Yamada, 1999) obtained their results on ratio-
nal solutions of Py by considering the symmetric representation of Py
given by the system

01 + @1 (w2 — @3) +2p1 =0, (4.17a)
¢ +©2(p3 — p1) + 2p2 = 0, (4.17b)
¥+ 93 (p1 — ¢2) +2u3 = 0, (4.17¢)

where py, po and ps3 are arbitrary constants, with gy + puo + us = 1, and
the constraint 1 + 2 + ¢3 = —22. Then eliminating ¢2(z) and @3(z),
w(z) = p1(2) satisfies Pry with (o, 8) = (us — p2, —2p%), which was
first derived by Bureau (Bureau, 1992) — see also (Adler, 1994; Noumi
and Yamada, 1998a; Schiff, 1995; Veselov and Shabat, 1993).

First we discuss the generalized Hermite polynomials H,, ,(z).

Theorem 4.7. Suppose that Hy, ,(z) satisfies the recurrence relations

2mHm st nHm-1n = HunHls  — (Hb)? + 2mHZ, (4.18a)
2nHmni1Himp-1 = —HmnHe o + (Ho ) + 2nHZ, ., (4.18b)
with
Ho,o = Hl,() = HO,l =1, H1,1 =2z, (4.18C)
and m,n > 0, then
d Hm n
wg)n =w (Z;Oég)n, g)n) = -7 {ln (_JE)}
) B 3 dZ Hm n
’ (4.19)
= _9m Hm+1,n Hm—l,n+1
Hm,n+1 Hm,n
Wl = w (s, 080) = £ {m (Fp2e
' dz H, .
’ (4.20)
— 9, Hyn1r Hg1n—1
Hm+1,n Hm,n ’
is a solution of Pry, respectively for the parameters
o, =—(m+2n+1), AU =-2m? (4.21)

ol = 2m +n+1, Blon = —2n. (4.22)
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Remarks 4.8.

1. The rational solutions of Py defined by (4.19) and (4.20) include
all the solutions in the “—1/2” and “—22” hierarchies, as is easily
verified by comparing the parameters in (4.21) and (4.22) with
those in (4.5a) and (4.5b). Further they are the set of rational
solutions of Py with parameter values given by (4.1).

2. Each generalized Hermite polynomial H,, »(2) is a polynomial of
degree mn with integer coefficients (Noumi and Yamada, 1999).
In fact Hppm (%x) is a monic polynomial in x of degree mn with
integer coefficients.

3. The polynomials H,, ,(z) possess the symmetry
Hyyn(iz) = 1™ Hp ;m(2), where mn is the degree of Hy, »(2).

4. Hp1(2) = Hp(z) and Hypn(z) = i7"Hp(iz), where Hy(z) is the
usual Hermite polynomial defined by

H,(z) = (—1)" exp(z> ) {exp 29}, (4.23)

Some generalized Hermite polynomials H, m,n(z) are given in Appendix
A. Plots of the locations of the roots of the polynomials and Hy, 7(z),
Hy7p(2) for4 <m < 6 and 4 < n < 6, are given in Figure 7. These plots,
which are invariant under reflections in the real and imaginary z-axes,
take the form of m x n “rectangles”, though these are only approximate
rectangles as can be seen by looking at the actual values of the roots.

4.4 Generalized Okamoto polynomials

In this section we discuss the generalized Okamoto polynomials Py, n(2)
which were introduced by Noumi and Yamada (Noumi and Yamada,
1999) and are defined in Theorem 4.9 below. We have reindexed these

polynomials by setting Qmn(2) = Pn—nn(2), i€, Qminn(2) = Pnn(2),
where Qm+nn(2) is the polynomial defined Noumi and Yamada (Noumi
and Yamada, 1999), since we feel that P, ,(z) is more natural, espe-
cially when one studies the plots of the locations of the roots for various
generalized Okamoto polynomials in Figure 8.

Theorem 4.9. Suppose that Pp, n(2z) satisfies the recurrence relations
PopinProin = {P WPl = (Pl } +[22% +3(2m +n—1)] P2,
(4.24a)

9
Prani1Pan1 =5 {Pm,nP,’,’,’n _ (pvgm)Q} [222 4+ 3(1 —m — 2n)] P2,
(4.24b)
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with
P0,0 = Pl,O = PO,l = 1, P171 = \/_2-2, (4.240)
then
2 d m,n
w'grlb),n =w (Z, agrlz),rw g?n) = “§Z - d_Z. {ln (Pp;n,:l) } 3 (425)
2 d Priin
w£L=w(za2%,Sﬂ)=-§z+a;{m(fﬁir>}, (4.26)
are solutions of Prv, respectively for the parameters
ol = —2n—m, gg:_gmm_na (4.27)
2
ol = 2m +n, 5$;=—§@n—n? (4.28)

Remarks 4.10.

1.

The rational solutions of Pry defined by (4.25) and (4.26) include
all the solutions in the “~%z” hierarchy, as is easily verified by
comparing the parameters in (4.27) and (4.28) with those in (4.5¢).
Further they are the set of rational solutions of Pyy with parameter
values given by (4.2).

. Each polynomial P,,,(z) is a polynomial of degree d,,, = m? +

n? + mn — m — n with integer coefficients (Noumi and Yamada,
1999). Further P, »(#) is a monic polynomial in ¢ = /2 z of degree
dmn with integer coefficients.

. The original Okamoto polynomials defined in Theorems 4.3 and 4.5

are respectively given by Q. (2) = Pno(2) and Ry, (2) = Py 1(2).

The polynomials Py, »(2) possess the symmetry
Prn(iz) = exp(i7idmn) Pom(2), where dp = m? 4+ n? + mn —
m — n is the degree of P, n(2).

. The hierarchies of rational solutions of Pyy generated from the gen-

eralized Hermite polynomials H,, »(2) defined in Theorem 4.7 and
the generalized Okamoto polynomials P, ,,(z) defined in Theorem
4.9 are linked by the Schlesinger transformations Rl (or R14) and
REl = RIUREB! given by Fokas, Mugan and Ablowitz (Fokas et al.,
1088).

Some generalized Okamoto polynomials P, »(2) are given in Ap-
pendix B. Plots of the locations of the roots of the polynomials and
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Pp7(2), Prn(z) for 4 <m < 6 and 4 < n < 6, are given in Figure 8.
The roots of the polynomial Py, »(z) takes the form of mxn “rectangles”
with an “equilateral triangle,” which have either m — 1 or n — 1 roots on
each of its sides. These are only approximate rectangles and equilateral
triangles as can be seen by looking at the actual values of the roots. The
triangles We remark that as for the Bi-Hermite polynomials above, the
plots are invariant under reflections in the real and imaginary z-axes.

5. Conclusions

An important, well-known property of classical orthogonal polynomi-
als, such as the Hermite, Laguerre or Legendre polynomials whose roots
all lie on the real line (cf. (Abramowitz and Stegun, 1972; Andrews et al.,
1999; Temme, 1996)), is that the roots of successive polynomials inter-
lace. Thus for a set of orthogonal polynomials ¢,(z), forn =0,1,2,...,
if 2pm and 2, mq1 are two successive roots of ¢, (2), i.e., @p (Znm) =0
and ¢p, (2n,m+1) = 0, then n_1 (¢o—1) = 0 and @n 11 (Cny1) = 0 for some
Gn—1 and (pq1 such that 2, < (o1, Cnt1 < 2pm+1. Further the deriva-
tives ;,(2) and ¢/, (2) also have roots in the interval (zn m, 2nm+1),
that is ¢}, (§,) = 0 and ¢, | (§n41) = O for some &, and &,41 such that
Znm < €nyEny1 < Zn,m+1-

An interesting open question is whether there are analogous results
for the polynomials associated with rational and algebraic solutions of
the Painlevé equations discussed here. Clearly there are notable differ-
ences since these special polynomials have complex roots whereas clas-
sical orthogonal polynomials ¢, (2), have real roots. The pattern of the
roots of the special polynomials associated with the Painlevé equations
are highly symmetric and structured, suggesting that they have inter-
esting properties. A particularly interesting question is whether there
is any “interlacing of roots” analogous to that for classical orthogonal
polynomials. Clearly this warrants further analytical study as does an
investigation of the relative locations of the roots for the special polyno-
mials and their derivatives. We shall not pursue these questions further
here.
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Appendix: The Generalized Hermite polynomials

H,o=Hon=1 n>0
Hiq =22
Hip=42"+2
Hi s =82%+122
Hi 4= 162" 4+ 482° + 12
Hi s = 322° 4+ 1602° + 120z
Hyp =42° — 2
Hyp =162 +12
Has = 642° + 962* + 1442% — 72
Hj 4 = 2562° +10242° + 19202* + 720
Has = 10242 + 76802% + 230402° + 192002* + 1440022 — 7200
Hs1 =82°—122
Ha o = 642° — 962* + 1442% + 72
Ha s = 5122° + 23042° — 43202
Hj 4 = 409622 + 122882 + 460802° + 307202° — 576002 + 17280022 + 43200
Hj 5 = 327682"° + 2457602 + 11059202 + 21504002° + 138240027
+ 48384002° — 40320002z* — 60480002
Hyy =162 — 482% 4+ 12
Hy o = 2562° — 10242° + 19202* + 720
Hy 3 = 40962'% — 122882 + 460802® — 307202 — 576002 — 17280022 + 43200
Hy 4 = 655362"° + 9830402'% — 18432002° + 32256000z* + 6048000
Hy s = 10485762%° + 524288028 4 353804402'° + 786432002 -+ 68812800212
+ 206438400z + 12902400002® — 36126720002° — 3386880000z*
— 338688000022 4 846720000
Hs; = 322° — 1602° + 1202
Hs 2 = 10242'° — 76802% + 230402° — 192002* + 1440022 + 7200 + 10242
Hs 3 = 327682 — 2457602 + 11059202*! — 21504002° + 138240027
— 48384002° — 4032000z° + 60480002
Hs 4 = 10485762°° — 52428802'® + 353894402'® — 786432002'* + 688128002!2
— 2064384002"° 4 12902400002° + 36126720002° — 33868800002*
+ 338688000027 + 846720000
Hs 5 = 335544322°° 4 12582912002" + 330301440027 + 1156055040002"°
— 2059223040000z° — 34139750400002° + 2133734400000z
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Appendix: The Generalized Okamoto polynomials

Qoo =Qo1=1
Qo2 =22° -3
Qo,3 = 82° — 602* +902% — 135
Qo4 = 642" — 13442 4+ 93602® — 302402° + 567002* — 1701002% + 127575
Qo5 = 10242%° — 460802"® -+ 8179202'¢ — 76032002'* + 417312002'*
— 1556755202 + 4939704002° — 18860688002° + 53045685002
— 530456850022 + 3978426375
Qio=1
Qi1 =V2z
Qi =42 -1222 -9
Q13 = V22(162° — 1922° 4 5042* — 2835)
Q1,4 = 2562"° — 7680z + 806402'* — 3628802'° + 4536002°
+ 19051202° — 142884002* + 214326002 + 8037225
Q15 = V2 2(40962%* — 2457602%% + 59904002%° — 774144002"®
+ 5697216002'% — 22469529602 + 16003008002"2
+ 356638464002 ~ 2758375620002° + 11033502480002°
— 1737776640600z" + 3258331201125)
Q20=22"+3
Qa1 = 42" +1222 -9
Q2,2 = 162° — 5042 — 567
Q2,3 = 1282 — 13442"% — 60482 + 756002° — 1587602° — 2381402*
— 10716302% + 535815
Q2,4 = 20482°% — 645122%° + 4838402"'® + 31449602'® — 616896002'*
+ 29719872022 — 4457980802'° — 11144952002° — 58510998002°
+ 438832485002" — 1316497455027 + 19747461825
Q2,5 = 655362°% — 43253762°° + 1061683202 — 10218700802%°
— 30191616002>* + 1693749657602 — 1749906063360z
+ 86306508288002'% — 169581589632002'% — 264804059520002'*
— 876260706048002"% + 39760329536928002"°
— 189765209153520002° + 284647813730280002°
+ 640457580893130002% — 24017159283492375
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Q3,0 = 82° + 602* + 902% + 135

Q3,1 = V2 2(162° + 1922° + 5042* — 2835)

Q3,2 = 1282™ + 134422 — 60482'° — 756002° — 1587602° + 2381402*
— 10716302 — 535815

Qa3 = V2 2(10242%° — 2419202 + 127008002'% — 3714984002°
— 20255499002* 4 6582487275)

Q3,4 = 327682°° — 7372802%% — 77414402%° + 25159680022
— 37739520027 — 21398307840z%° + 89159616000z'°
+ 7400248128002 — 6753840912000z + 91277156880002'2
— 355980911832002"° + 3902098456620002°
+ 6469268493870002° — 16173171234675002*
+ 24259756852012502° + 727792705560375

Qa5 = V22(10485762"° — 629145602°% + 9201254402 + 147220070402
— 5434490880002 + 3594009968640z + 449975844864002%°
— 7486554636288002°° + 12573645686784002*
+ 460662771179520002% — 4333735091911680002%°
+ 15562390139412480002"® — 28095108887664000002°
+ 36860782860615168000z'* — 2005990774579209600002*2
— 368158306863949056000 2 + 42712116069762839700002°

— 56949488093017119600002° 4 149492406244169938950002*
~ 16817895702469118131875)
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Abstract  We investigate Thara-Selberg zeta functions of Cayley graphs for the
Heisenberg group over finite rings Z/p™Z, where p is a prime. In order
to do this, we must compute the Galois group of the covering obtained
by reducing coordinates in Z/p™*'Z modulo p*. The Thara-Selberg
zeta functions of the Heisenberg graph mod p"*! factor as a product
of Artin L-functions corresponding to the irreducible representations of
the Galois group of the covering. Emphasis is on graphs of degree four.
These zeta functions are compared with zeta functions of finite torus
graphs which are Cayley graphs for the abelian groups (Z/p"Z)".

1. Introduction

The aim of this paper is to study the special functions known as Ihara-
Selberg zeta functions for Cayley graphs of finite Heisenberg groups as
well as their factorizations into products of Artin-Thara L-functions. The
Heisenberg group H(R) over a ring R consists of upper triangular 3x 3
matrices with entries in R and ones on the diagonal. The Thara-Selberg
zeta function is analogous to the Riemann zeta function with primes
replaced by certain closed paths in a graph. This paper is a continuation
of (DeDeo et al., 2004) where we presented a study of the statistics of
the spectra of adjacency matrices of finite Heisenberg graphs.

When R is the field of real numbers R, the group is well known for
its connection with the uncertainty principle in quantum physics. When
the ring R is Z, the ring of integers, there are degree 4 and 6 Cayley
graphs (see the next paragraph) associated to H(Z) whose spectra (i.e.,
eigenvalues of the adjacency matrix) have been much studied starting
with D. R. Hofstadter’s work on energy levels of Bloch electrons (Hofs-

© 2005 Springer Science+Business Media, Inc.
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tadter, 1976) which includes a picture of the Hofstadter butterfly. This
subject also goes under the name of the spectrum of the almost Mathieu
operator or the Harper operator. See (DeDeo et al., 2004) and (Terras,
1999) for more information on the Heisenberg group. See also (Kotani
and Sunada, 2000).

If S is a subset of a finite group G, the Cayley graph X(G,S) has
as its vertex set the set G. Edges connect vertices g € G and gs, for
all s € S. Usually we will assume that s € S implies s~! € S so that
the graph is undirected. And we will normally assume that S is a set of
generators of G so that the graph will be connected. It is not hard to
see that the spectrum of the adjacency matrix of X (G, S) is contained
in the interval [—k, k], if & = |S|.

Heisenberg groups over finite fields have provided examples of ran-
dom number generators (see (Zack, 1990)) as well Ramanujan graphs
(see (Myers, 1995)). Ramanujan graphs were defined by (Lubotzky
et al., 1988) to be finite connected k-regular graphs such that the eigen-
values A of the adjacency matrix (not equal to k or —k) satisfy |\ <
2vk — 1. Other references are (Diaconis and Saloff-Coste, 1994) and
(Terras, 1999). As shown in the last reference, the size of the second
largest (in absolute value) eigenvalue of the adjacency matrix governs
the speed of convergence to uniform for the standard random walk on
a connected regular graph. Ramanujan graphs have the best possible
eigenvalue bound for connected regular graphs of fixed degree in an
infinite sequence of graphs with number of vertices going to infinity.
For such graphs, the random walker gets lost as quickly as possible.
Equivalently, this says that such graphs can be used to build efficient
communication networks.

There are more reasons to study the Heisenberg group. First, as a
nilpotent group (see (Terras, 1999) for the definition), it may be viewed
as the closest to abelian. Second, it is an important subgroup of GL(3, R)
(the general linear group of matrices z such that 2 and z~! have entries
in the ring R) for those interested in creating a finite model of the
symmetric space of the real GL(3,R) analogous to the finite upper half
plane model of the Poincaré upper half plane.

Some of our motivation comes from quantum chaoticists who investi-
gate the statistics of various spectra as well as zeros of zeta functions.
This MSRI website (http://www.msri.org/) has movies and trans-
parencies of many talks from 1999 on the subject. See, for example,
the talks of Sarnak from Spring, 1999. Other references are (Sarnak,
1995) and (Terras, 2000; Terras, 2002).
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The Ihara-Selberg zeta function is an analogue of the Riemann zeta
function ((s). The latter is defined for Re(s) > 1 by

=1 1\7!
@-L5- 11 (-5)

n=1 p prime
Thanks to this Euler product, the zeros of zeta are important for any
work on the statistics of the primes. The earliest results on the location
of zeta zeros led to a proof of the prime number theorem which says that
the number of primes less than or equal to z is asymptotic to z/log z, as
z goes to infinity. Now there is a million dollar prize problem to prove the
Riemann hypothesis which says that the non-real zeros of the analytic
continuation of {(s) lie on the line Re(s) = 1/2. This would give the
best possible error estimate in the prime number theorem. For a report
of experimental verification for the first 100 billion zeros, see the web
site http://www.hipilib.de/zeta/index.html. Quantum chaoticists
have experimental evidence that the zeros of zeta behave analogously to
the eigenvalues of a random Hermitian matrix. See (Katz and Sarnak,
1999) for a discussion of various zeta functions whose zeros and poles
have been studied in the same manner that the physicists study energy
levels of physical systems.

To define a graph-theoretical analogue of {(s), we must define “prime”
in a graph X. Modelling the idea of the Selberg zeta function of a
Riemannian manifold, we use the prime cycles [C] in X. Orient the
edges of X, which we assume is a finite connected graph. A prime [C]
in X is an equivalence class of tailless backtrackless primitive cycles C
in X. Here C = ajay - - - a5, where the a; are oriented edges of X. The
length of C is v(C) = s. “Backtrackless” means that a;; # a; !, for all
i. “Tailless” means that a;1 # a;. The “equivalence class” of C is [C)]
which consists of all cycles a;a;11 - asa1as---a;_1; i.e., the same path
with all possible starting points. We call the class [C] “primitive” if you
only go around once; i.e., C' # D™, for all integers m > 2 and all paths
Din X.

The Ihara zeta function of a connected graph X is defined for
u € C, with |u| sufficiently small, by

= [[ (1-w©)". (11)

[C] prime
cycle in X

The connection with the adjacency matrix A of X is given by Ihara’s
theorem which says

(x(w)t=(1- u2)r_1 det (I — Au+ Qu?), (1.2)
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where r = |E|—|V|—1 = rank of fundamental group of X and @ is the di-
agonal matrix whose jth diagonal entry is Q;; =(-1+ degree of jth vertex).
Proofs of the Thara theorem can be found in (Stark and Terras, 1996;
Stark and Terras, 2000), (Terras, 1999). In the first two papers, edge
and path zeta functions of more than one variable are also discussed.
The most elementary proof of formula (1.2) was found by Bass and in-
volves the edge zeta function associated to more than one variable for
which the analogous determinant formula is easy to prove. See (Stark
and Terras, 2000) pages 168 and 172.

Remark 1.1. The lhara zeta function is related to walk generating func-
tions of graphs, in particular, that for reduced walks considered by (God-
sil, 1998, p. 72), but it is not the same. Differences come from not
counting tails and the fact that a prime can pass through o given vertex
more than once. Related generating functions have also been considered
by probabilists studying first passage times for random walks but again
they are different. See (Kemperman, 1961).

We believe that it is worth singling out this special function associated
to graphs for several reasons. First, for number theorists, it provides a
new analogue of the Riemann zeta function which is easier to experiment
on than the zeta functions of number or function fields. Secondly, it
connects the zeta functions from many disparate areas such as number
theory, differential geometry, and dynamical systems. Thirdly, this zeta
function has a generalization to analogues of Artin L-functions. See the
definition in formula (2.7). Thus we can make use of the Galois theory
of normal covering graphs to obtain factorizations of the zeta function.

It follows from formula (1.2) that there is an analogue of the prime
number theorem for primes in a graph. This says that if X is a connected
(g+1)-regular graph and 7(n) is the number of prime paths [C] of length
n in X, then

qn
w(n) ~ =, 88 7m — 0. (1.3)

The proof is easy. One can simply imitate the proof of the analogous
result for function fields over finite fields in (Rosen, 2002), pp. 56-57.
From (1.2), we know that these zeta functions are reciprocals of poly-
nomials. When the graph is connected and (g+ 1)-regular, one sees that
it is a Ramanujan graph if (and only if) the Ihara-Selberg zeta function
satisfies the Riemann hypothesis in the sense that the zeros of the
polynomial satisfy |u| = ¢~1/2. See (Terras, 1999, p. 418). When the
zeta function satisfies the Riemann hypothesis, the error estimate in the
prime number theorem (1.3) is best possible. While the Ihara zeta func-
tion of a random regular graph may satisfy the Riemann hypothesis, the
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zeta functions that we encounter here in the study of finite Heisenberg
graphs are not Ramanujan in general. See (DeDeo et al., 2004), where
it is shown that the spectrum of the adjacency matrix of the degree
4 Heisenberg graph over a finite ring with ¢ elements approaches the
interval [—4, 4] as g approaches infinity.

Special values or residues of the Ihara-Selberg zeta function give graph
theoretic constants such as the number of spanning trees. There are
connections with famous polynomials such as the Alexander polynomials
of knots. See (Lin and Wang, 2001).

Here we consider Cayley graphs Hg(q) = X (G, S) with vertex set the
Heisenberg group G = Heis(Z/qZ) consisting of matrices (z,y,z) =

1 z =z

0 1 y|, where z,y,z € Z/qZ, q = p™ and p is prime. The edge set

0 01
S is chosen to have 4 elements S = { X+ A+1 }, where X = (z,y, 2)
and A = (a,b,c). We assume that ay # bz (mod p) to insure that the
graph is connected (see (DeDeo et al., 2004)). For p odd, all these graphs
are isomorphic. When p = 2, there are only two isomorphism classes.
These facts are proved in (DeDeo et al., 2004). Define the degree 4
Heisenberg graph

H(q) = X (Heis(Z/qZ), {(£1,0,0), (0, £1,0)}). (1.4)
When p = 2, define a second Cayley graph
H(2™) = X (Heis(Z/2"Z), {(1,1,0)*!, (£1,0,0)}).

Histograms of the spectra of the degree 4 Heisenberg graphs were
studied in (DeDeo et al., 2004). These figures were made using the rep-
resentations of the Heisenberg group to block diagonalize the adjacency
matrix of Hg(g). This changes the size of the eigenvalue problem from
a p°" x p®" matrix problem to a collection of p” x p” matrix problems.
The histograms were compared with those for the finite torus graphs

T (q) = X (Z/qZ)", {*e1, *ey, ..., +en}), (1.5)

where e; denotes a unit vector with ith component 1 and the rest 0.
Here we investigate the Thara-Selberg zeta functions of these Heisen-
berg graphs. Taking S = {£(1,0,0),+£(0,1,0)}, the graph Hg (p"*!)
covers the graph Hg (p™) in the usual sense of covering spaces in topol-
ogy. See Theorem 2.2. The covering is unramified and normal or Ga-
lois with Abelian Galois group isomorphic to the subgroup of (z,y, 2)
in Heis (Z/p"'HZ) such that z,y, and z are all congruent to 0 mod-
ulo p”. This implies that the spectrum of the adjacency operator on
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Hs (p) is contained in that of Hg (p"™) and that (m(u)~! divides
CH(pn+1)(u)_1. Moreover it says that the adjacency matrix of Hg (p™*!)
can be block diagonalized with blocks the size of the adjacency matrix of
Hs (p™) associated to the characters of the Galois group. See Proposition
2.1.

The same result that implies Proposition 2.1 implies that the Thara
zeta function of Hg (p"'“) factors as a product of Artin-Thara L-functions
L(u, x) corresponding to the characters x of irreducible representations p
of the Galois group of the covering. See (Hashimoto, 1990) or (Stark and
Terras, 2000). We use this factorization to compute the Ihara-Selberg
zeta function explicitly for the smallest Heisenberg graphs. See formulas
(2.11) and (2.12). Contour maps of (powers of) the absolute value of
CH(z)(u)_l and (4 (u)~! can be found in Figures 3 and 4.

The last part of this paper concerns comparisons of zeta functions for
Cayley graphs of the Heisenberg group with analogous Cayley graphs
for finite torus groups. We find, for example, that the zeta functions of
the smallest degree four Heisenberg and torus graphs can be compared
using the following formula

CH(4)(U)_1/CT(2)(4)(U)_1 =(1- U2)48 (3u2 + 1)20

(1.6)
x (3u? — 2u+ 1) (3u® + 2u+ 1)* (9u? — 2% +1)"°.

2. IThara-Selberg Zeta Functions

We say that Y is an unramified finite covering of a finite graph
X if there is a covering map 7 : ¥ — X which is an onto graph map
(i.e., taking adjacent vertices to adjacent vertices) such that for every
z € X and for every y € 7~ !(z), the set of points adjacent to y in Y
is mapped by 7 one-to-one, onto the points in X which are adjacent to
z. Note that when graphs have loops and multiple edges, one must be a
bit more careful with this definition if one wants Galois theory to work
properly. See (Stark and Terras, 2000, p. 137). A d-sheeted covering is
a normal covering iff there are d graph automorphisms ¢ : Y — Y such
that m(o(y)) = w(y) for all y € Y. These automorphisms form the Galois
group G(Y/X). See (Stark and Terras, 1996; Stark and Terras, 2000)
for examples of normal and non-normal coverings and the factorization
of their zeta functions.

Take a spanning tree T in X. View Y as |G| sheets, where each sheet
is a copy of T labeled by the elements of the Galois group G. So the
points of Y are (z,g), with z € X and g € G. Then an element a € G
acts on the cover by a(z, g) = (z,ag).
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Suppose the graph X has m vertices. Define the m x m matrix A(g)
for g € G by defining the 4, j entry to be

A(g)i; = the number of edges in Y between (i,€) and (5,9), (2.1)

where e denotes the identity in G. Using these m X m matrices, we can
find a block diagonalization of the adjacency matrix of Y as follows.

Proposition 2.1. IfY is a normal d-sheeted covering of X with Galois
group G, then the adjacency matriz of Y can be block diagonalized where
the blocks are of the form

D

M,=>" A(g) ® plg),

geqG

each taken d, = degree of p times, as the representations p run through
G. Here A(g) is defined in formula (2.1).

Proof. The adjacency matrix Ay of Y has the (4, g), (4, h) entry for é,j €
X and g,h € G given by

(AY>(i,a),(j,b) = the number of edges between (¢,a) and (5,b). (2.2)

and this is the same as the number of edges between (2, €) and (j, a™*b),
if e is the identity of G.
Also define the |G| x |G| matrix o(g) indexed by elements a,b € G:

{1, ifa~tb=g,

0, otherwise.

(@(9))ap = (2.3)

Note that ¢ is essentially the matrix of the right regular representation
of G, since if d, is the vector with 1 in the a position and 0 everywhere
else, we have o(g)0, = d4g-1.

It follows from (2.1), (2.2), and (2.3) that

Ay = Z A(g) ® o(g). (2.4)

geqG

One of the fundamental theorems of representation theory (see (Terras,
1999, p. 256)) says that

©
a(g) =Y dpp(g). (2.5)

peG
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D
It follows that Ay = 3 d,M,. This completes the proof of Proposition

peG
2.1. [

Theorem 2.2. Assume p is odd. H(p"*1) is an unramified graph cov-
ering of H(p"). Moreover it is a normal covering with abelian Galois

group
Gal (H (") /H (p™)) =T
= {(a,b,c) € Heis (Z/p"™Z) |(a,b,¢) =0 (modp)"}.

Proof. The projection 7 : H (p”“) — H(p™) is just the reduction of the
coordinates mod p™*! to coordinates mod p™. Clearly this preserves
adjacency. Moreover, given g € H (p™), if we take a point ¢’ € H (p"+?)
in 7~ 1g, we see that the points in H (p”“) adjacent to ¢’ have the form
g's, for s € Sp = { (£1,0,0),(0,%+1,0) }. The points adjacent to g in
H (p™) are of the same form except computed mod p”. And 7 maps
these adjacent points in H (p™*!) one-to-one, onto those in H (p™).

If (a,b,c) € T defined in the statement of Theorem 2.2, we define the
Galois group element

n+1) n+1'

Y(a,b,c) ((.’II, Y, Z) mod p = (aa b) C) ($7 Y, Z) mod p

It follows that woy = =, since (a, b, c) = 0 ( mod p™) and 7 reduces things
mod p™. Moreover, it is easy to see that I" is abelian since if (a, b, ¢) and
(u, v,w) are both = 0 ( mod p"), then (a,b, ¢)(u,v,w) = (a+u,b+v,c+
w + av) and p™ divides both a and v so that av =0 (mod p"*!). O

Corollary 2.3. The spectrum of H (p™) is contained in the spectrum of
H (p"). Moreover Crypny(u)™ divides Gpygpm+1y(u) L

Proof. Use Proposition 2.1 or see (Stark and Terras, 1996, p. 131). O

Example. The last Theorem and Corollary also work if p = 2, except
that then the graph at the bottom of the cover can be a multi-graph
when n = 1, as in Figure 1. Consider the covering H(4) over H(2).
Note that H(2) is a multigraph with 2 edges between any vertices that
are adjacent, because 1 = —1 (mod 2) and we want the graph to have
degree 4. So the graph of H(2) is a cycle graph as in Figure 1. We label
the vertices using the following table.
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Figure 1. The Cayley Graph H(2) = X (Heis(Z/2Z), {(+1,0,0), (0,£1,0)}).

Table 1. Vertex Labeling for H(2).

[ label [ 1 [ 2 [ 3 | 4 |
[ vertex ] (0,0,0) [ (1,0,0) [ (1,1,1) | (0,1,1) |

L5 | 6 | 7 | 8 |
[ (0,0,1) ] (1,0,1) | (1,1,0) [ (0,1,0) |

We obtain a spanning tree for H(2) by cutting one of each pair of
double edges and then cutting both edges between vertices 6 and 7.
This really gives a line graph but we will draw it as a circle cut between
vertices 6 and 7. So we draw the covering graph H(4) by placing 8
copies of the cut circle which is the spanning tree of H(2) and labeling
each with a group element from Gal(H(4)/H(2)). We know that this
can be identified with the subgroup of Heis(Z/4Z) consisting of (u, v, w)
where u, v, w are all even. We label the Galois group elements using the
following table.

The covering graph H(4)/H(2) has 8 sheets and each sheet is a copy
of the spanning tree of H(2). So every point on H(4) has a label (n,v),
where 1 < n < 8 and v € {a,b,c,d,e, f,g,h}. We will just write nv.
See Figure 2 for a picture of the tree with connections between level a
and the rest. You can use the action of the Galois group to find all the
edges of H(4). It makes a pretty complicated figure. The following table
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Table 2. Galois Group Labeling for Gal((4)/H(2)). In this labeling, a not e is the
identity of the group.

label " a | b | c I
Galois group element [ (0,0,0) | (2,0,0) [ (2,2,2) |

L d | /g | |
[©0.22) 0,02 [20,2) [ (220 ] 020 |

shows which connections are made in Figure 2. This table allows one to
compute the matrices A(g),g € G = Gal(H(4)/H(2)).

Table 3. 'Table of Connections Between Sheet a in H(4) and the other sheets.

[ vertex [[ adjacent vertices in H(4) |

la 2b, 8k, 2a, 8a
2a 1b,3d,1a,3a
3a 2d,4f,2a,4a
40 3f,5h,3a,5a
ba 4h,6b,4a,6a
6a 5b,7e, Th, ba
Ta 6e,6h,8f,8a
8a 1h,7f,7a,la
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Figure 2. Connections Between Level a and the Rest of the Cayley Graph
H(4) = X (Heis(Z/4Z), { (£1,0,0), (0, %1,0})

The representations of the abelian Galois group have the form
Xr,st(a,b,c) = exp (w—@), for r,s,t (mod 2). Then one must
compute the matrices M, _, appearing in Proposition 2.1. For example
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M.

Xo,0,0 18 the adjacency matrix of H(2) and

02000 0 0 0
20200 0 0 0
02000 0 0 0

M. —|00000 0 0 0

X001 =10 0000 2 0 0
00002 0 -20
00000 -2 0 0
00000 0 0 O

(2.6)
0000000 2
00200000
02000000
M. —|0o0002000
X100~ [0 0020000
00000020
00000200
20000000

The eigenvalues of the M, are to be found in the following table.

Table /. Eigenvalues of M, s = My

,8,t

| (r,s,t) 1 Eigenvalues of M, , [
(0>0a0) _41070)47“‘2\/57 _2\/572\/§y 2\/§
(1,0,0) and (0,1,0) —2,-2,-2,-2,2,2,2,2
(1,1,0) 0,0,0,0,0,0,0,0
(1,1,1),(0,1,1),(0,0,1), and (1,0,1) || 0,0,0,0, -2v2, ~2v/2,2v/2,2/2

So we see that the spectrum of H(4) for p = 2 is given in Table 5.

Table 5. Spectrum of X (Heis(Z/4Z)), {(£1,0,0),(0,+1,0)}.

eigenvalue || multiplicity |

+4 1
0 26
12 3
+24/2 10
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The Artin L-function associated to the representation p of G =
Gal(Y/X) can be defined by a product over prime cycles in X as

LiupY/X)= J]  det (I —p (Frob (c)) u'/(C))—l @)

[C] prime in X

where C denotes any lift of C to Y and Frob (é) denotes the Frobenius
automorphism defined by

Frob (é’) = ji 4

if C starts on Y-sheet labeled by 7 € G and ends on Y-sheet labeled by
j € G. As in Proposition 2.1, define

M, =Y Alg)®plg)- (2.8)

geG

Then, setting Q, = Q ® I4,, with d, = d = deg p, we have the following
analogue of formula (1.2):

L(u,p,Y/X) = (1=u?) " % det (I - Mau+Qu2).  (29)

See (Stark and Terras, 1996) for an elementary proof and more informa-
tion.
Formula (2.5) implies that the zeta function of Y factors as follows

Cx(w) = [] Llu,p, Y/ X)%. (2.10)
e

See (Stark and Terras, 2000).

For our example, the Galois group is abelian and all degrees are 1.
We obtain a factorization of the Thara-Selberg zeta function of H(4) as
a product of Artin L-functions of the Galois group of H(4)/H(2). We
use definition (2.8)) and Table 3 to compute the matrices M, ,, as in
formula (2.6). Then formula (2.9) gives the following list of L-functions.
Here @ = 3Ig, r =09.

Reciprocals of L-functions for H(4)/H(2).
1) For x = x0,0,0, A = adjacency matrix of H(2), and

ey (W) = L, )7 = (1= ?)° (w—1) (u+ 1)

x (3u—1) (Bu+1) (3u + 1) (9ut — 202 + 1)°. (2.11)
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2) L (%Xl,o,o)—l =1L (U>Xo,1,0)_1
= (1—u?)® (3u2 + 2u+1)* (3u? — 2u+1)".

3) L (U7X1,1,1)_1 =L (U7X0,1,1)—1 =L (uv X0,0,l)—l =L (U7X1,0,1)—1
= (1-u2)® (9ut — 2u? +1)% (3u? + 1)*.

4) When p = x, , , we find that M, =0, so that

L (u, xl'l’o)—l = (1 - u2) (r—=1)d det (I -+ qu2)
= (1-u?)® (1+3u2)°.

It follows from these computations and (2.10) that the Ihara zeta
function of H(4) is

Cray(@)™ = — (1 —u®)® (9u? - 1) (3u% 4 1)

(2.12)
x (9ut = 2u® + 1) 3u? + 2u +1)° (3u? — 2u+1)°.

Consider the torus graphs
T(n) (q) =X ((Z/qZ)n’ {:*:61, ie?? o 7ien}) y

where e; denotes the vector with 1 in the ith coordinate and 0 elsewhere.
Because the torus groups (Z/qZ)" are abelian, it is relatively easy to
generate spectra. In fact, the eigenvalues of the adjacency matrix of
T (q) are

N\ =2 <cos <2mslb1) + cos (2#2;12132) + et cos (2manbn>> ’
q

for a,b € (Z/qZ)™. Note that, by a result of our earlier paper (DeDeo
et al., 2004), the part of the spectrum of the degree 4 Heisenberg graph
H(4) corresponding to 1-dimensional representations of H(4) contains
the spectrum of 7(2) (4). One obtains a second proof of this fact by noting
that H(4) is actually a covering graph of 7(?)(4), via the covering map
sending (z,y, z) to (z,y).

We can easily compute the Selberg-lThara zeta functions of the small
torus graphs using covering graph theory. As in Theorem 2.2, the Galois
group of T (pr+1) /T() (p7) is

r={ze(Z/p™2)" |z2=0 (modp)}.
Since the 1-dimensional graphs are cycles, we know that

CT(x)(q)(u)_l = (1—wu9)?, for all q.
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In 2-dimensions, we consider only the smallest values of ¢ (namely
g =2 and ¢ = 4) and find that if I' = Gal (T®(4)/7(®)(2)), the repre-

sentations of I have the form x, s(z, y) = exp (Mff—sy)), for (z,y) € T,
(r,s) € (Z/2Z)%. Therefore (z,y) =0 (mod 2). It follows that

Crevm (@)™ = Creve (W)L (u, x0,1) " L (wy x1,1) " L (u, x1,0) "
@ @
= - (1-u) (9w —1) Bu? +1)° (3u® — 2u+1)* (3u? + 2u+ 1)*.

Here (re(g(w)™ = — (1 - u2)5 (9u? —1) (3u? + 1)2.
From these results plus (2.11) and (2.12) we see that

Sy rew @)t = (1 - u?)® (3u? + 1)

(2.13)
x (3u? = 2u+1)* (3u? + 2u+1)* (9u* — 202 + 1) "

and
i) (W) Cragw) = (1 - u?)* (9u* — 2u? + 1)2 . (2.14)

Figure 3 shows a contour plot of the absolute value of Crelz+ iy) 1
made using the Mathematica command Plot3D. It should be compared
with Figure 4 showing a contour plot of the 1/10 power of the absolute
value of (yyq)(z + 4y)~!. The roots of Creay(z + 2y)™' (not counting
multiplicity) are approximately the following 14 numbers:

—1,-0.333333,0.57735, —0.471405 — 0.3333334,
—0.471405 + 0.3333334, —0.333333 — 0.4714054,
—0.333333 + 0.471405i, 0.333333 — 0.4714054,
0.333333 + 0.4714054, 0.471405 — 0.3333334,
0.471405 + 0.3333331, —0.577354, 0.333333, 1.

Future Work. There are many other questions one can ask in this
context. One should study the zeros of Thara-Selberg zeta functions H(q)
for large q. One should consider these questions for Cayley graphs of
other finite groups and even for irregular graphs for which there is no
obvious relation between the spectrum of the adjacency matrix and the
zeros of the Ihara-Selberg zeta function.

Can such zeta functions be used to recognize groups involved in Cay-
ley graphs? In particular, one wonders whether you can see the shape
of a group by staring at zeros of the zeta function of Cayley graphs as-
sociated to the group? This is an analogous question to that of Mark
Kac about hearing the shape of a drum (as the Dirichlet spectrum of
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Figure 8. A contour plot of the absolute value of {3;(2)(z + iy) "L
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Figure 4. A contour plot of 1/10 power of the absolute value of {4y (z + iy)7 L.
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the Laplace operator on a plane drum determines the fundamental fre-
quencies of vibration). Here we wonder if one can somehow recognize
groups from properties of the zero set of zeta functions of associated
Cayley graphs with some sort of condition on the generating sets S. In-
stead of hearing the drum in its spectrum, we are trying to see it. Of
course, it is known that there are graphs with the same zeta function
that are not isomorphic. See (Stark and Terras, 2000) for examples that
are connected, regular, without loops or multiple edges.
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Abstract In 1989, M. V. Tratnnik found a pair of multivariable biorthogonal poly-
nomials Pn(x) and Pm(x), which is not necessarily the complex conju-
gate of Pm(x), such that

o0 (e o]

/ / w(%) Pn(X) P (x) ﬁ dz; = pn,méN,M,

where x = (z1,...,2p), n = (n1,...,mp), m = (M1,...,mp), N =

J

P P
nj, M = 3 mj, pinm is the constant of biorthogonality (which

=1 i=1

Tratnik did not evaluate),

c+iX)(d +iX)
T(2iX)

w(x) = T(A - iX)T(B + iX) ‘ I(

2 P
H T (ax + Z."L‘k) T (bx — izk),
k=1

X=Xp:mk, Azzp:ak, B=ibk,
k=1 k=1 k=1

and the o’s, b’s, z’s, ¢ and d are real. In the g-case we find that the
appropriate weight function is a product of a multivariable version of
the integrand in the Askey-Roy integral and of the Askey-Wilson weight
function in a single variable that depends on z1,...,zp.
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In arelated problem we find a discrete 2-variable Racah type biorthog-
onality:

N N
Z Z ’LUN(:E, y)Fm,n(:v, y)Gm’,n’ (113, y) = Vm,n(sm,m"sn,n’y

z=0y=0
where
wn(z,9) = (aq/vy v [e,aca/v'iq)y
(oq,1/c,acq/vY'ia)
(1 _ :ﬁﬁzf:&) (1 - cg?N) (:1_'1“1;6_’“’,7; q)m (Cq—N’,Y/;q)y

X

rg—=N-—-1 r1g—N 1-N
(1-22) (1 —eg) (q,l%c—;q) (9,225 q)
4 Y

(1/0; q)z—y(q_ ;q):z:+y a—-z(,yl)z—-y’

’ tg—N
(3077; q) (3—"—" 2 ;q)
z—y z+y

and Fop n(2,y), Gm n{(z,y) are certain bivariate extensions of the g-
Racah polynomials.

1. Introduction
Wilson polynomials (Wilson, 1980), defined by

Pu(z) = (@ +b)n(a+ c)nfa+ d)n

—-n,n+a+b+c+d—1,a—1ix,a+ix
><4F3[ a+batcatd ;1 (1.1)
satisfy an orthogonality relation on the real line
[ee]
/ P, (z)Pp(z)w(z)de = hylpm, (1.2)
—o0
where )
I(a + iz)['(b + iz)[(c + i)' (d + ix)
= 1.3
(@) ’ T(2iz) (13)

is the positive weight function (under the assumption that a,b,c, d are
real or occur in complex conjugate pairs), and

hp =4mnl(n+a+b+c+d—1),I'(n+a+bd)
JTntatolntatdl(n+b+l(n+b+dl(n+c+d) (1.4)
F'n+a+b+c+d)
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is the normalization constant. By Whipple’s transformation it is easy to

see that P,(z) is symmetric in a, b, ¢, d, and that

P.(z) = (a+b)p(c —iz)n(d —iz),

[ —n,l—c—d—n,a+iz,b+iz i
Lat+bl—c—n+iz,1-d-—n+iz '
= (b+ a)n(c+ ix)n(d + i),

[ —n,l—c—d—n,a—iz,b—iz
la+bl—c—n—iz,1-d—n-—iz

x 4F3

x 4F3

;1.

(1.5)

Corresponding to each of these forms M. V. Tratnik (Tratnik, 1989b)

introduced a multivariable polynomial:

Po(x) = (A+ o)n(A+d)n [ ] (ar +be),,
k=1
y Z (N+A+B+c+d-1);(A—-iX)y
(A+c);(A+d);

j
H —nk (ak + ’L:L‘k) i

(ak + b]c)ch Ji!

P
Po(x) = (B+o)n(B+d)n [[ (or + ak)n,

k=1
(N+A+B+c+d—1)(B+iX);
ij: (B+c)J(B+d)J
—nk ixk)jk
I:I bk + ak) !
p
Qn(x) = (c —iX)n(d—iX)y [] (ar + be),,,
k=1

XZ (1—-c—d=N)j(B+iX);
1—C—N+ZX) (1-d—N+:X);

y ﬁ _nk)Jk ag +’L:L‘k)
i (ak+be);, !

(1.6)

(1.7)

(1.8)
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P
@Qn(x) = (c+iX)n(d+iX)Nn ku-i—ak

1—c—d=N) (A—-iX)
XZ A—c_N —zX)J(l—d—N—JiX)J (1.9)

y H (—nk);, (bk — izy),;,

(bx, + ak)Jk Jk!

where x = (z1,2,...,%p), D = (n1,n2,...,Mp), j = (j1,72,...,Jp), and
P p P
X=3m N-Ym, M-3m,
k= k=1 k=1

P p p
A= Zak, B=> by, J=) i
k=1 k=1

=1

and the sums in (1.6)—(1.9) are from jp = 0 to ng, k = 1,...,p. Each
of the polynomials in (1.6)—(1.9) is of (total) degree 2N in the variables
1,2, ...,Tp. The overbars in (1.7), (1.9), and in (1.21) below are used
to denote distinct systems of polynomials and should not be confused
with complex conjugation. Tratnik proved that

7. . /OoPn(x)Pm(x)w(x) ﬁ dzj, =0, if N# M, (1.10)
7. . an(x)Qm(x)w(x) ﬁ do, =0, if N # M, (1.11)
. 7Pn(x)Qm(x)w(x) ﬁ dzy =0, ifn#m, (1.12)
and

/ / Pr(%)Qum(x)w(x) H dzp =0, ifn#m, (1.13)
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where
w(x) = \F(c - Zlfag((‘; ) r 4 — ix)0(B +ix)
» (1.14)
X HF(a—I—imk)F(b—iazk).
k=1

Note that in (1.12) and (1.13) the biorthogonality holds in all of the
indices n1,ng,...,np, while in (1.10) and (1.11) the biorthogonality is
for polynomials of different degrees (IV # M).

Since Whipple's 4 F3 transformation does not apply for p > 2 the P’s
and @’s are no longer equivalent and hence the orthogonality in a single
variable becomes biorthogonality in many variables.

We were curious to see what their g-analogues would be. At first sight
it might appear that they could be found in a pretty straightforward
manner. We were in for a surprise. The first hurdle is an appropriate
analogue of the weight function in (1.14). There are many possible
candidates but the one that works for a g-analogue of (1.10) is:

w® (x; q)
1 (621'@, 6_27'@, q)

~(2mp (Ae_i@ Bei®; ) h(cos ©;c¢,d;q) (ﬂblele g——e—l@ q)

oo

y P2,

ﬁ Bre®, a5 q),,

akelek, bke-wka q)oo

(1.15)

where —7r <O < 7r O = mklogq so that ef% = ¢ for k = 1,...,p,

© = EHJ, A= H a;, B = H h(cos©;¢,d;q) is defined as in

(Gasper and Rahman 1990a, (6. 1 2)) B is an arbitrary complex param-
eter such that 3 # qi" forn=0,1,..., and

Bry1 = P . k=1,2,....p—1, (1.16)
agbr11

with 8; = 8. By making repeated use of the Askey-Roy integral (Gasper
and Rahman, 1990a, (4.11.1)) followed by the use of the Askey-Wilson
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integral, we shall prove in Section 2 that

s k(s P
wW® (q) = / . ./w(p)(x; q) H doy,
-7 -7 k=1

2(ABcd; q)oo k]i (85 4/ 5% Bk @) oo

(1.17)

Y4
(¢;9)5(Ac, Ad, Be, Bd, cd; q)oo kHI (akbr; @)oo

bl

which is also valid for p = 1. It is understood that the (p — 2)-fold
product in the numerator is taken to be 1 when p = 1.
Let

45 ~Hak,B ku,J —Zyk,K Zkr,
=Jj
szzm,Mj:ka,@j:ZOk,
k=j k=j k=j

(1.18)

s0 that
Ay=ABi=B,J1=JKi=K, N =N,M; =M06,=0. (1.19)

Analogous to Tratnik’s polynomials in (1.6) and (1.7) we introduce the
functions

P
Pa(x;q) = (Ac, Ad; ) [ [ (akbe; 0).,,

k=1
ABquN 1 Ae—z@, p —ng akewk q)
1.20
ij: (Ac, Ad; q)y 1;[ (9, akbk; 9),, (1:20)

17102+ +ijp-10p)

—(N2j1+Naj2++Npjp—1)

- - ,

B)?...BJF !
2 P

q
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and

p
Pun(x;9) = (Be, Bd; Q)ur [ [ (arbi; @),
k=1

ABcqu 1 Be®

XZ Bc,Bd,q)K 2 KH

e"(k2(@2—e)+"'+kp(®p"@)) - 2 k(M =M,)

q =2
K3 DI Kp
) ap—l

q " b € wr;q)kr

q7 a’T 73 Q)k

X

(1.21)

Both Py(x;q) and Py (x;q) are Laurent polynomials in the variables
g™, ...,q"%*. Note that if we divide P,(x;q) by (1 — ¢)*" and re-
place its parameters ai,...,ap,b1,...,bp, ¢, d, respectively, by ¢*,...,
g, q%, ... q%, ¢°% ¢, and then let ¢ — 1 we obtain P,(x) as a limit
case. Similarly, we see that Py, (x) is hmlt case of Py(x;q). In Sec-
tion 3 we shall do the integration and in Section 4 prove the following
g-analogue of (1.10):

Ky Ky

p
Pn-Pm::/---/Pn(x;q)P (xq)wp)qu 0, if N# M,

o (1.22)
where w(®) (x; q) is given by (1.15), and

p—1  j-—1

N—1 ABecdgN
(ABcdq , ABedg”, )
PYP k1+...+kp_1

(ABeag v, BT )
apbp bttt kp1

H (@™, arbrg™r; Q)kr

(g, arbr; q)kr

)

(1.23)

when N = M, with ng == 1 and mo = 0, and L, is as defined in (3.7).
Discrete multivariable extensions of the Racah polynomials were con-
sidered in (Tratnik, 1991b) as well as in (van Diejen and Stokman, 1998)
and in (Gustafson, 1990). For other related works see, for instance, (Gra-
novskil and Zhedanov, 1992), (Koelink and Van der Jeugt, 1998), (Trat-
nik, 1989a), (Tratnik, 1991b). We have found g-extensions of Tratnik’s
systems of multivariable Racah and Wilson polynomials, complete with
their orthogonality relations, see this Proceedings (Gasper and Rahman,
1990Db) for our multivariable extension of the Askey-Wilson polynomials.
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However, there seems to be at least one more extension that, to our
knowledge, has not yet been investigated. The seed of this extension lies
in Rosengren’s (Rosengren, 2001) multivariable extension of the ¢-Hahn
polynomials as well as in Rahman’s (Rahman, 1981) 2-variable discrete
biorthogonal system. In Sections 5 and 6 we shall prove the following
2-variable extension of the g-Racah polynomial orthogonality (Gasper
and Rahman, 1990a, (7.2.18)):

N N
Z Z wN(:E, y)Fm,n(ma y) Gm’,n’ (iL‘, y) = Vm,n(sm,m’(sn,n’y (124)
z=0y=0

where 0 < m,n,m/,n’ <N,

Frn(z,y)
B (#;q)mm @7/ (0™ 50
(q‘N ;q)m+n (acq/7's @)n (1/6 O o
™ g%, N ac q) (T eV )
* z; = @YV acq); (¢, gt ),

N—m—n L q I

b

(1.25)
Gm,n(xa )
B i 2": ™ a N acq), (@7 a7, e N g)
B (4,%:74q"/c;9); (4,7, ccg™ /5 q).
=0 7=0 ’ (1.26)

(g™ R ‘I)H—j itj
—N.
(g aQ)i—{-j

’
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and the weight function is

wn(z,y) = (aq/v, 7 /e, acq/v; @) N
’ (ag,1/c,acq/vY;q)y
(1 _ ’y’y/qu_N_l/OéC) (1 - cq2y—N)
(1 =yy'¢e 1 ac) (1 — cg V)
("' ac,9), (™™, 759),
(@,7q N /ac;q), (a,¢a" N /75 9),,
. —N.
(1/¢;q)a—y (g ’q)m+y a™® (y)"
(¥ /063 @)y (VY TN /043 0)

X

(1.27)

The normalization constant in (1.24) is given by

__l-o  (0,000/7;9)m 0,7/ D

1 —ag?™ 2 (y,1/c;q)m (v, acq/vY';q),,
(qu/’)”)’,, an+1; q)m+’n n—m_mn

T g™, (1.28)

3 q ) q m+n

Ummn

Notice that both Fy, »(z,y) and Gp, n(z,y) are Laurent polynomials in
the variables ¢° and ¢¥, and Gy, n(2,y) is a polynomial of (total) degree
n+m in the variables ¢~ + vy'¢* V=1 /ac and ¢~ ¥ + cqv~ V.

We wish to make the observation that the summation in (1.24) is over
the square of length N, although the vanishing of the weight function
above the main diagonal, because of the factor (q‘N ; q)ac ty in the nu-
merator, makes it effectively over the triangle 0 < z +y < N. A very
innocuous observation but it will help simplify the calculations some-
what as we shall see in Section 6. '

It seems reasonable to expect that there is a multivariable extension
of (1.24), but we were unable to find it, mainly because an extension of
the g-shifted factorials of the type (a;¢)z—, doesn’t appear too obvious
to us.

2. Calculation of W®)(q)

The key to the proof of (1.17) is to observe that by periodicity we can
change 01,0y,...,0, to, say, ©,0,,...,0, (so that §; = © — ©), with
the limits of integration unchanged. So the total weight transforms to
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W (g
~ 1 /’T (621'@’ e=29. q)oo de
(2m)p—t ' (Ae™%©, Bei®;q) , h(cos©;c,d;q) (B%ei@,ggle—i@; )
e o]

(Bee™*, ge=% / B; q)
(arex, bpe=; q)

© 43 - - df, (2.1)

X
~—~
S~y |

Aoyl

»

D

@

_Bcb

A
—~

A k=3 o0
where
I (bs,...,6,)
_ i A (ﬁ2ei92, gei(©3—O)+ibs /B, ge—i02 /Ba, ﬁei(@—@:;)—wg; q)oodg
27T—7r (aneif2, by i(®3—O) it hye=i0a g, ¢i(O=62)=bz; q) 2
(2.2)

However, this integral matches exactly with the Askey-Roy integral
(Gasper and Rahman, 1990a, (4.11.1)), provided we assume that

max (|a1], |b1], Jaz], |b2|) < 1 (with, of course, |g] < 1). By (Gasper and
Rahman, 1990a, (4.11.1)), it then follows that

Ir(6s,...,6p)
(022, q/baBa, a1a2b1by, 61 B2e*©02), gei(®270) /g, By q)
(¢, a1b1, agby, a1a2€(®=03) b1byei(©3—0); ) .

(2.3)

Substitution of (2.3) into (2.1) makes it clear that the integration over 6
presents exactly the same situation, and so does the remaining integra-
tions up to and including ,. Finally, one is left with an Askey-Wilson
integral over ©:

(AB; ¢)o IEI (kB 4/ bk Br; @)oo

W (g) = —

(¢;9)% " kl_ll (akbr; @)oo

1 - (e2i®,e—2i®;q)oo o
* o h(cos©; A, B, ¢, d;q) (2:4)

—Tr

2(ABcd; q)oo kIl (bkBry a/bk Brs @) oo

?

Y4
(¢; )6 (Ac, Ad, Be, Bd, cd; q) oo kl'll (arbr; @)oo
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by (Gasper and Rahman, 1990a, (6.1.1)), which completes the proof of
(1.17).

3. Computation of the integral in (1.22)

We shall carry out the integrations in (1.22) in much the same way
as we did in the previous section. We transform the integration variables
01,...,0, to 02,...,6, and © as before; then we isolate the
fs-integral by observing that the factors (alei(@_ei’)_w?; q)j1 (aQew?; q)j2
% (blei(@g——@)—l-ieg; q)kl (b2e—i92; q)k2 ei@z(j1+k2)+ik2(@3——@)+ij1@3 can be glued

on to the integrand of W®(q), to get

_gyintka (1542) i 1
(=B)Y* g -

) T (ﬂ2ei02, ql—jl—kz ei(@;}-—@)-}-’ioz//g,/qul-f-kzei(@—@g)——iOQ, qe—i92/52; q)
(aijz €i92, blqk‘l ei(@s-—@)-{—igg’ b2qk26—i92, alqjl ei(@—@g)—iez; q)oo

= do,

which via (Gasper and Rahman, 1990a, (4.11.1)) equals, on a bit of
simplification,

(D202, 4/baB2, aragbibygir Hi2thithe, g)
(g, arbrg1tk agbogizthe; q)

(a1826'9=93), e¥(®2=©) /a1 B5: q) _
(a1a2qjl+j2 ei(e_@.'i), b1b2qkl+k2 ei(eii_@); q)oo )

allc2 b121 qJ1k26iJ1@3

(3.1)

Since O3 = 03 + ©4, we may now isolate the 3-integral in exactly the
same way, carry out a similar integration, simplify, and obtain

allcz(alag)ka(b2b3)j16%2ei(jl+j2)@4qj1k2+(j1+j2)k3
(b2B2, q/b2B2, b3fs, q/bsBs, ajazazbybabsglt Ti2tizthitkaths, 4)
(9, @, a1b1g71 R agbogiz 2 agbgqisths; q)

(010283¢" (=99, ¢€(®4=9) Ja1a903;q)
(a1a2a3qj1+j2+j3 €i(©=04) b bybzgki+katks ¢i(©4-0). q)oo'

x

X

(3.2)
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A clear pattern is now emerging. The 6, integral is

qj1k2+(j1+j2)k3+--'+(j1+---+jp-2)kp_1 <allcz+~..+kp-1a1203+~--+kp_1 B .akp—l)

i1 3.91+72 Jitetip—2
x (b btz gt a2
-1

. p
(Abﬁ_qJ+K_Jp_kP;q>oo I1 4r6r,a/beBri D)oo | —ion,

apOp

% r=2
b=l . 2
(g;9)%" Hl (arbrgirthr: q)
r=

qei(gp_e)

n (ﬁpem”, Gra B qe% /By, (a1 -+ - ap—2) Bp-1€"®~0%); Q)

X /
TR B K- i (0, — —i A J—j,.i(0-0,).
(a quezé?p, qK kpei(fp 9)’b que 10,,’ qJ Jpei(® Bp)’q)

o

w 'O (J—ip+kp) do,

(3.3)
The expression in [ | above can, once again, be computed by use of
(Gasper and Rahman, 1990a, (4.11.1)), and simplified to

J—i A t1] .
(AqJ—jp)’“p bp (bpﬂp, a/bpfBp, 22—, Sk ’@,ABqJJ’K;q)oo

@ ¢, apbpgirthe, AqTei®, BgK e=i®, A g+ K—jp=hy, q) N
(3.4)
Since, by repeated application of (1.16) we get AB,/a, = Bb1/B, the
O-integral simply becomes the Askey-Wilson integral

1 /“ (e2i@’e—2i@;q)oo
21 | h(cos©; Aq’, B¢K, ¢, d;
J ( q’,Bq q) (35)

_ 2(ABcd ¢/ 7K; q) oo
" (q,cd, ABq7+K, Acg’, Adg”, Beg¥, Bdg¥;q).
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Collecting these results and substituting into the integral in (1.22), we
find that

(ABcdg"';q) ; (ABedg™15q) . 5,
Py Pn=1I, ZZ (ABcd; q) 14K !

ﬁ ne Q)jr (g™ Q)kr (arby; Q)jr+kr (3.6)

(9, arbr; ), (q, arbri @)y,

r=1

y ébs 1 (K= Ny )+ko (M~ M)]

where

P
L, = (Ac, Ad; q)N(Bc, Bd; q)m W(p) H arbr; @), (arbriq), . (3.7)
r=1

4. Biorthogonality
The sum over j; and k; in (3.6) gives
(ABcqu_l; q) T (ABcqu_l; q)

(ABcd; q) 1yt Ky
mq (—’ml ABcqu+K2 1. q)

= (@ ABedgt52;q),
1:

™ ABedgNt2ml gibgM _
% 305 [q q g™ K|

K3 qJ2+K2

B g (4.1)

ABedg? Kotk qp 001

Since, by (Gasper and Rahman, 1990a, (3.2.7)), the above 32 equals

(ABed; @) g4 Katky (37575 0),,

(ABCd; q)J2+K2+m (q1+K2_N)k1
k1 ABedgNtB1, agbyg _
% 303 [q , q , mbig™ ik N} ,

ABcdgmttKa - gp 001

we can now do the summation over k; via (Gasper and Rahman, 1990a,
(1.5.3)) to obtain that the expression in (4.1) reduces to

(ABcqu"l;q) T (ABcqu_l;q)K2 (‘zéchqu“'r]VI'é’_1;q)m1 (ql"'Kz_N;q)n1

(ABed; @)y 4yt K, (527N ),
x (= 1) g(3)+ 1+ Ke=Nyma+Ir+ Ky
g™, aibig™, ABcdgVt/2m1 ABcedgMtKa-1

aiby, ABcdgN+tMe-1 ABcdqm+oatke 04| -
(1.2)

X 403
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Note that the 4¢3 series is balanced. Now, the sum over j, and ky gives

(ABcqu_l; q)Jg (ABcqu_l; q)Ks (ABquN+M2-1; q)m1 (ql-f—Ks—N; q)
(ABCd; q)n1+J3+K3 (q1+K3_N; q)nu
¢ (1) gUa KN m s
. Z (q—-ml’alblqm’ABcqu-i—Ja—l’ABcqu-l-Ka-—l;q)kl "
(q,albl,ABqun1+J3+K3,ABquM2+N—1; q)kl q

ni

) % (¢7™, ABcdgM+Ksthi=1, gltKs=Noyg) /-
P (q, ‘,él_Bcdq'nl"‘-]34'[{3‘*‘[‘317 q1+K3—N+TYI1 ; q)k2

w won | 4 ABedgVtTrhTlgghyghs
392 ABqun1+J3+K, asby 14,9

1+K3—N3

(4.3)
As in the previous step we apply (Gasper and Rahman, 1990a, (3.2.7))
to the 3¢9 series above, use (Gasper and Rahman, 1990a, (1.5.3)) to do

the ko sum and simplify the coefficients to reduce (4.3) to the following
expression

(ABcqu"l; q) I (ABcqu—l‘ q) K

3

(ABCd; Q)m +no+J3+K3
1+K3—N.

(ABcqu+M3_1; Q) mitma (q ’q)n1+n2

(¢HEe=Nog) s

< (_1)m1+7nzq(m1§m2)+(1+K3—-N)(m1+m2)+J3+K3

m2

y i 5 (7™, a1b1g™; @)y, (472, azbagq™; )y, Lm0k
P (9, a1b1; @)y, (g, a2ba; )y,
N+J3-—1 M+K3—1.
(ABqu " ABcdg ’ ’q)k1+k2 qk1+k2
(ABcdgmi+mo+tJs+Ks  ABedgMs+N-1;q), '
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A clear pattern of terms is now emerging, and by induction we find that
at the (p — 1)-th step the sum over ji, k1, ..., jp—-1, kp—1 in (3.6) equals
(ABcqu_l; q)J (ABcqu_l; q

p

(ABcd; @) N-N,+Jp+K,
(ABcqu-}-Mp—l; q)M—mp (q1+Kp—N; q)N—n

)k,

yid

X
(' TE»—N; Q)M—mp
x (—1)M—ms q(M-;“p)+(1+K,,—N)(M—mp)+J,,+K,,
1. (4.5)
% Z zj:[ (q M apbrgmn; Q)kr
Eiyeoskipy Lr=1 (g, arbr; @)y,
(ABedgN+7e~1 ABcdgM+Er—1, q) Kk
X
(ABcqu—np+Jp+Kp, ABcqup+N—1; q)K—k,,
% qkl+k2(1+n1—m1)+~--+kp—1(1+n1+---+np_2—m1—----—mp-z)‘
Using (4.5) we obtain that the sum over j and k in (3.6) equals
ABed N+mp—1;
AR Dat-m, (—1)M=mng(MTTP)H A= N) (M =)
(ABCd; Q)N——np
m1 Mp-1
% Z Z qk1+k2(1+n1—m1)+---+kp_1(1+n1+---+np—2—m1—~--—-mp—2)
k1=0  kp_1=0
-1, _
% h (q mT7arbran§‘I)kr
r=1 (qa a'rbr; q)kr
N-1 M-1.
) (ABedgN~?, ABedg™~5q), Ly g
(ABcdgN=me, ABedg" ™o =Yiq)y 4 oyp T
(4.6)
where
S % (q—mp,ABcqu+k1+---+kp_1—1;q)kp (q1+M—N—mp+kp; )oo ,
= - - q
P (g ABedgN TR TEetig) (g g)
g, ABcdgNtkitthp-1-1 apbpg®
X 3‘P2|: ABcqu—np+k1+-~'+k —>1+kp7 azbi » 441 -

(4.7)
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Note that the 3¢9 series is balanced, so by (Gasper and Rahman, 1990a,
(I1.12)) it has the sum

14+kp—n, ABed N—nptkitotky, 1.
(q L api,q PR pla‘])

g Ne-np+K.
(G ABedg—r+1sq)

Hence,
ABed N— k14+kp_1.
(Vbc;q np+k1+--+kp 1’q>
S, = e
P 1—np _

p
my (q_mp7 ABcqu+k1+...+kp_1——1; q)k (q1+M—N—mp+kp; q)oo
X Z 2

kp
20 (ABcqu+k1+...+k,,_1;q)kp (¢; @)oo

(4.8)

First, let us suppose that N > M > 0. Then it is clear from the right
side of (4.8) that S, is zero unless k, > N — M +m,, as well as m;, > k.
So, we must have
mp+ (N — M) < k, < myp. (4.9)
This is a contradiction unless N = M, and then k, = m,. In that case
(ABcqu—n,,+k1+--~+kp_1 ; q)
np

apbp

Sp=¢q""?

1—np .

( apbp ’q)np (4.10)
(a7, ABedgNthit-Fhe-171; g)
(ABquN+k1+---+k,,_1—np; q)

On the other hand, if M > N > 0 then

mp — (M — N) < kp < my, (4.11)

mp

Mp+np

So we get

ABcd  N—np+ki+-+kp-1.
“apby 4
p

S = mp+N—-M
p=4 gine N—nptky 4tk
( ) ABedg Tret i P-l;q>

np

(q——mp, ABcqu+k1+“'+kp—l”'1; q) (4.12)

mp+N-M

X
(ABquN+k1+"'+kp—l;q)m AN-M
P
q]\f—M7 ABcqu+mp+k1+mk‘p_1—1 .
X 2¢1 ABcdqQN—M+mp+lc1+-n+kP_1 34,4 -
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However, the above o1 equals

HN-M.
(‘1 ’q)M—N (ABquN+mp+k1+---+kp_1—1
(ABcdq2N—M+mp+k1+---+k,,_1 : q) MoN

o

H

(4.13)
which vanishes unless N = M. This completes the proof of (1.22).
Also, with N = M, (3.6), (4.6) and (4.10) give

P, Py

(4Bedg™ 1)  (“Shria)

(ABcd; Q) Ntm, (apbp; Q)n,,
m1 Mp-1

X Z . Z qk1+k2(1+n1—-m1)+---+kp—1(1+n1+---+np—2—m1—m2—-"—mp—z)
k1=0 kp—1=0

=L, 2(—1)Ng= (D)= (ABedg™)™

N
ABedgN~-1, ABedg”. ) 1,
( q '’ apbp d ki4e-tkp_1 pII (q mr,arbran;Q)kr

X
(ABcquerp, &Cadqg:"_f”; q (¢, arbr; q),,
PYp

?
r=1

>kl+"'+kp—l
(4.14)
which is, of course, the same as (1.23). By taking p = 2, e.g., in which
case the series on the right hand side of (4.14) becomes a terminating
balanced 43 series, it is easily seen that in general the above inner
product does not vanish when N = M and n # m.
In closing this section we would like to point out that unlike the ¢ — 1
case that corresponds to the Tratnik biorthogonalities, the g-analogues
of Py Qm, Pa Qm or Qu - Qm do not seem to work out the same way

as P, - Pm.
5. Transformations of F,, .(z,y) and G, .(z,y)

We shall now address the problem of proving the biorthogonality re-
lation (1.24). First of all, it is very simple to use (Gasper and Rahman,
1990a, (I1.20)) to prove that

N N

=0 y=0
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The forms of Fi,, n(z,y) and G, n(z,y) that turn out to be most conve-
nient for the summations in (1.24) are as follows:

Fm,n(xv y) =

/ —N /
pad’ SR ¥y
(=2 ’q>m+y(ac’q>w_y<a> ( N+n+1>mq
O I ) A N %
! —m—n. - —~N-1
(%q m ",q)j+k( ® Wge=N=1 g ,q)J

=0 k=0 (%—’q“’v;q), k<q,%ﬂ§;;q)j
y (67 ca? ", 709, s
(g, ca' =™, q);,
(5.2)
and
( qN+1 q)m+n (%l;q)m (%,q)n ,_y/q—N—-l m Cq_N n
Gmpn(z,y) = N 7 cq ac T
(g ;q)m+n(c;q) ( /,q>
m n +n,Q)J+k( ;qu’?;c N o+, q)
x ZZ :
j=0k=0  (ag"t1;q); 4y (q,% Lty q)j
X kgtk  assuming 0 <m+n < N.
(q,%l%—;q)k
(5.3)
Since

N
Y, 19

c !

i3 [q"”, agitmin g %”;q - . q}
! n J_ ] )
(acgzl‘ﬂ _agN+ntl, q)m (fy’q‘N“l > m
- (M,qf"N;q) ac
¢ m

¢, agdtTn, g, LgNTet
X 4¢3 144

acgit! N+n+1
e _?-YT_’ aq et
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and

¢ " agtmtr, gTY, etV

4P3 ,Y/ acg"““ qm_N 14,9
¥ cy/ ¥

B <—q—70 ,anHH;Q)n (cq—N>”

!

it+1 _
(2™, gm-Nq) \ 9
n
_ . ! N —y
X apy | QAT A, T—
m -
7/7 3’_3_7 an+1+z

by (Gasper and Rahman, 1990a, (I11.15)), (5.3) follows from (1.26) with
a bit of simplification.

To derive (5.2) from (1.25) we need two applications of (Gasper and
Rahman, 1990a, (III.15)) on each of the two 4¢3 series involved in (1.25).
First

-m Y a—N-1 x e —m
4903 qa " o4 ) 7qla G :q,q
eETVT Yy aty—N-m-n+j 11
Y, «c ? [ q
(qy—N7 clgnmyi; Q)m (ach“g”'H > n
(ﬁqlw—x’aq”";?”“‘j; ) vy
m
/ ax—N-—1 o
q 17 %7 q m, %qm—i—n J .
X 4(103 y__N _1 n—y—j ’q7q
Y, q y € °¢g
(a_c/ql-{-y—;g—}-m, agN—m—y-:-l+m+n : q) , . (54)
_ 7Y vy z—m <ﬂq:c—N—l>
(qvtm=N,c7lgmtn=v;q),_,, ac
'
(%q”y Nom=n cqltv=e ”;q).
X - J
(%qy‘N ", egttymmen q)
J
_ ! —N—-1 !qi—m—n
X q z7 %‘%qm ’ ,qu’ ﬂla__‘ .
4¥3 !o=y :Y_'L’ j+y—N—n 4,4
Ys m_ac )

Substituted into (1.25) this leads to another balanced 4¢3 series:

g™, g N, 4, W gimm—n 0q
493 ,Y/, cqy—m—n—}-l7 j%'qi—i-y—-N——n’ ’ ’
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which, when transformed twice in the same manner as in (5.4), leads to

!

—1 m4n—y ogVti-vin ! y—N-— Y.
(c q ; T gy=N=n ILg¥; g

;q)y_n jigen
(eg"™™)

Y .
2
m-+1 / 1
(qm+"‘N , *— ;q)y_n <%q“N : %q‘”;q>i
X 43 { i chN’ ’Y,?n7 l(;f_qi—m—'ﬂ 1 q q]
/ 1-m Y L i—~N [l '
v, eq ™™, g

(5.5)
After some simplifications (5.4) and (5.5) give (5.2). Denoting the left
hand side of (1.24) by Fnpn « Gpy v, it follows that

N N (1 _ ﬂc_’q2x—N—1) (1 _ cq2y—N)
o
Fm,n : Gm’,n’ = Am,n,m’,n’ E E P
T (1-Fe ) - )

/ —~N-—-1
(IL‘Z_____M ,’)’§Q)x (cq”N,fy’;q)y e
o~ N 1—-N 7 ('7) v
(q,lﬁ;—;q) (q,ﬂr;q)
T Y
(m————; ~ ;q>j+k (q‘“",%q"N”l,'qu;q)

J
X
7 k P yq otk q,7, v q j

X

oc
(4% c¢* N, 7¥a%q), i
(2, e ™, 75 )y,

/ / ' N—z+1
am*”;) (‘m, *, 2 ;)
><E:Z(q 9)., . @7 7—34)
ra CTRRRH YA (q,% -‘f;?q"’“;q)r
—n/ ' N=y.
(q "YdY, Lq y,q)s es

e qs,
(qyfya%; )s

X

(5.6)
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where

/
! = i1

Am,n,m’,n

(cq/vY Y [esacq/y @)y (eqV 5 q), 0 (%;q>
(egq,1/c,acq/vY; ) N (@5 @) s (%—'1 q) .

( 7 ,q) ) —~N-1 , N4n+1\ ™
[ Y 4q - aq
m ( ) (Cq N/,yl)n ( ) an.

( vy
m/

Qlﬁ

g

o |~{

(5.7)

6. Proof of (1.24)

Since each term in the weight function can be glued on nicely with the
x and y dependent terms of the two double series in (5.6), the z, y-sum
can be isolated as

'
vy v e
6W5( Ll g N g td acqj,qj Nogytq™ T)

-1
% 6W5< 2k—N. ,y/qs—i—k qu+1,qk—N q, (,y/qk-f-s) )
—N—r ~N-—s
(j_’y_ng N q ,q) e (chk N+1 LT_’q>N )

(yqf_"N g q) (_ql-N_”-qk N,q> ’
N—j v N-k

by (Gasper and Rahman, 1990a, (I1.21)). The sum over j, k, r, s in
(5.6) now reduces to

Fm,n ) Gm’,n’

(vq, Y q, acq/vY, 1/¢;q)
(g, q,0cq/7,7/c; )N

(m-—l = Q> » (aqm'+”'; q)
XE:E :}:}: J+ r+5
- g ¥, (agN+L;q)
J k T s o ?q j+k q 7q T7+s

(q N, 2L g™ ) (7N, Y9 eq;9),, (q""', %‘l,qu“;q)r

= Am,n,m’,n’

(6.1)

X
y . n! +1
(q,% L —; q) {a,7,cgt=™;q),, (q, v, 24— q)r
—n! .t r N+1,
% (q 7 /C, 74 q)s (’Y’ q)7‘+j (7,$ q)s—f—k‘ j+k+r+s'

<q, . 136_':‘_; q)s (Y% Or+5 (VG D g
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The sum over j is a multiple of

o | T 00 e e RdTT
vt Ly DXgkeN
! —n—-T _ 1 k—N—r 62
(¢; )N (%;q) @750, (”—&—;q) (6-2)
n N—-—m-n

—m— N
= . — T (vq")
(v¢" L 9) N (I’Lac ;q) (7 Om (ﬂa gk ;q)
n N-m—n

by (Gasper and Rahman, 1990a, (1.9.10)). Together with a similar ex-
pression for the sum over k we now have

Fm,n : Gm’,n’
(o), o o)
- ZZ e
(acq/¥, ¥/ D)y — (ag"*t9),,
( o, 2 g )T (q , c,v’qN“,q)s -

acgn 41 R jlqm X q
q, ~7 1 d q, c 4
r S

= Am,n,m’,n

% N—m—-n (fyqr)N
(vgN*1; q)y (ﬂf—" q) (Y O)m (%q‘N, q)
n N—m—-n
qu m—s ) (q—-N—r—s ) —s
) ( —;q a—4) (@70, ()Y

= mnmn 77,)  n
( /7CaQ) (77%"(])“
<£‘I_,q> N/aq —-n
m

o/ n+1 ! /m
(aqm+" q) re (q m,“—cgr;q)r(q ",15—;9)3

x ZZ =
+n+1 n/+1 / ’
(o (q, gc—q——;q)r (q, Lgm ;q)s

> (q-—r; q)m (q—s; q)n q(m—f—l)r—l-(n-i—l)s‘
(6.3)
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The r, s sum is
o m’—i—n'; )
(_1)m+nq<m;1>+<n;1>( L i
(aqm+n+l- Q)m-l—n

- n+1 _
(q m’ ﬂ/—,q) (q ",“—;q)

C
(f“—‘I’i—“;q) ( ,q)
n

m/~mmn'—n (aqm+"+m +n! ,q> ( m—m/ acg"+"‘+1 q>
r
q

X n

(6.4)

x Z Z
(q”‘"',jﬂ;q)
¢ 8 T+8

! n+m! q
(q, Lc ;Q>s

which vanishes unless m’ > m and n’ > n.
The sum in (6.4), via (Gasper and Rahman, 1990a, (I11.12) and (IL.6)),
equals

m4n/+1
(ag2m+2n+1; g, , (q ﬂ_,q)r

X

(q1+m m’+n—n' , chm—i-n—i-l, q) (q1+m—m’; q) ,
n’—n m/ —m

2m+-2n+1 Ql—m—l_nl .
aq > 5 ' q

’
, (aq2m+n+n +1; q)m’—m
n'—n

oM —m
% (aqm+n+m —I—n) ,

which vanishes unless m’ < m and n’ < n. Thus we must have

Frn-Gmn =0 unless (m,n) = (m/,n’), and then (6.5)

an'Gm,n

’

Lo (6559), (0F00), (o),
— n—
(7, 1/ @)m (7 ) oot q)n (0@ min

which completes the proof of (1.24) and (1.28).

It may be mentioned that there are other double series representa-
tions for Fy, »(z,y) that one could use instead of (5.2) in the derivation
of the biorthogonality relation (1.24) which do not contain the factor
1/ (q_N ;q)z +y that cancels out the (q_N ;q)z oy factor in the weight
function, but the subsequent computations turn out to be quite tedious,
while the final result is, of course, the same.

)
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SOME SYSTEMS OF MULTIVARIABLE
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POLYNOMIALS
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Abstract In 1991 Tratnik derived two systems of multivariable orthogonal Wil-
son polynomials and considered their limit cases. g-Analogues of these
systems are derived, yielding systems of multivariable orthogonal Askey-
Wilson polynomials and their special and limit cases.

1. Introduction
In (Tratnik, 1991a) the Wilson (Wilson, 1980) polynomials

wn(w; a, b7 Cy d) = (a + b)n (a + C)n (a’ + d)n

-n,n+a+b+c+d-1,a+iz,a—ix

><4F3 a+b,a+c,a+d ,1:| (1.1)
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were extended to the multivariable Wilson polynomials (in a different
notation)

Wa(x) = Wy (x;0a,b,¢,d, as,a3, . ..,a;)

s—1
= | []wn. (ks 0+ 0g + Nk, b+ ag o + Ni—1,
F=1 (1.2)
Q1 T 1Tkt 1, Okl — 1 Tht1)
X Wn, (Tg;a+ a5 + Ns_1,b+ ags + Ns_1,¢,d) ,
where, as elsewhere,
k
X =(z1,...,%), n=(n1,...,n5), = Zai, ap=oayk, (1.3)
i=j
k
Njp = Zni, Ni = Nig, 016 =Nep1 =0, 1<j<k<s.
i=j
These polynomials are of total degree Ny in the variables y1, ..., ys with
Y = xi, k=1,2,...,s, and they form a complete set for polynomials

in these variables.

In (Askey and Wilson, 1979) and (Askey and Wilson, 1985) the nota-
tions W, (z%; a,b, ¢,d) and p, (—2z?) are used for the polynomials in (1.1)
and their orthogonality relation is given. Tratnik (Tratnik, 1991a, (2.5))
proved that the Wy (x) polynomials satisfy the orthogonality relation

[e o]

/ e Wha (x) W (X) p (X) dey - -dzrs = Ap 5n,m (1'4)

for Re(a,b,¢,d,as,...,as) > 0 with
p(x) =T (a+iz1) T (a—iz1) T (b+iz1) T (b — izy)

s—1 . . . .
o ll—[ I (ak41 + ixkp1 + i2) T (agg1 — t2ps1 — t7k)

P [ (2ixy)

o D@1 + 241 —t2x) T (apyr — i2h4a + k) (15)

[ (—2ixy,)
o T (c+izs) T (c —izs) T (d + izs) T (d — izs)
[ (2izs) T (—2ixs) ’
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An = (4m)° [T ma! (N + Neo1 + 200041 — 1),,,
k=1
['(Nk + Ni—1 + 2a) T (ng + 2ag41) (1.6)
F (2Nk + 20lk+1)

xI'(a+c+ags+ Ns)I'(a+d+ ags+ Ns)
XF(b+c+052,s+NS)F(b+d+a2,s+Ns)7

and 2a;1 = a+ b, 2a541 =c+d.

Tratnik showed that these polynomials contain multivariable Jacobi,
Meixner-Pollaczek, Laguerre, continuous Charlier, and Hermite polyno-
mials as limit cases, and he used a permutation of the parameters and
variables in (1.2) and (1.4) to show that the polynomials

=

Wa(x) = Wy (x;a,b,¢,d,a9,as,...,as)

n (Z1;¢+ a5 + Nos,d+ ag s + No s, a,b)

Il
g

(1.7)

.

Wny, (Tk; € + ki1, + Ni1,50d + 1,5 + Ni1,s,

bl
||
o

ag + iTp_1, Q) — iTk_1)

also form a complete system of multivariable polynomials of total degree
Nj; in the variables y;, = m%, k=1,...,s, that is orthogonal with respect
to the weight function p(x) in (1.5), and with the normalization constant

An = (@m)° [T 7! (Nhs + Niep1,s + 20041 — 1),,,
k=1

o D (NVis + Nit1,s + 20041,041) T (2 + 2a4) (1.8)
I (2Ngs + 20 541)

xT(a+c+ags+ Ns)I(a+d+ag,+ Ny)

XT(b+ctags+N)T'(b+d+ags+ Ns).

The Askey-Wilson polynomials defined as in (Askey and Wilson, 1979)
and (Gasper and Rahman, 1990a) by

Pa(z|q) = pn(z;0,b,¢,d | q)
g™, abedg™ 1, ae? ae=* (1.9)

= a""(ab, ac, ad; q)n 43 ab. ac. ad 1a0,4|,
b b

where z = cosf, are a g-analogue of the Wilson polynomials (for the
definition of the g-shifted factorials and the basic hypergeometric series
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4¢3 see (Gasper and Rahman, 1990a). These polynomials satisfy the
orthogonality relation

1
[ a1 Qo] Dtz | 9z =A@ (1.10)
-1

with max(|q/, |al, |8, ||, |d]) < 1,
p(z|q) = p(z;a,b,¢c,d|q)

- (29,62, q) (1_302)-1/2 (1.11)
(ae?, ae=" be? be=, ce?, ce=, det?, de=; q)

and
Mn(g) = Mn(a,b,c,d|g)
27 (abed; @)oo
- (g, ab, ac,ad, be, bd, cd; q) oo (1.12)
(g, ab, ac, ad, be, bd, cd; q)r, (1 — abedg™?)
(abedg=1;q),, (1 — abedg?—1) '

In this paper we extend Tratnik’s systems of multivariable Wilson
polynomials to systems of multivariable Askey-Wilson polynomials and
consider their special cases. Some g-extensions of Tratnik’s (Tratnik,
1989) multivariable biorthogonal generalization of the Wilson polyno-
mials are considered in (Gasper and Rahman, 1990b). g¢-Extensions of
Tratnik’s (Tratnik, 1991b) system of multivariable orthogonal Racah
polynomials and their special cases will be considered in a subsequent

paper.

2. Multivariable Askey-Wilson polynomials

In terms of the Askey-Wilson polynomials a g-analogue of the multi-
variable Wilson polynomials can be defined by

Pu(x|q) = Pu(x;0,b,c,d,a3,03,...,a5|q)

s—1
= lH Pry (-’EkSaA2,quk—1,bA2,quk_17ak+1€19k+laak+1€—zek+1 |Q>]
k=1
XPny (Ts; adasq" =2, bAsq""*1, ¢, d | q),
(2.1)

where zj;, = cosfy, A k= Haz, Ak+1k— 1, Ak—Alk, 1<j<k<s.
i=j
Our main aim in this section is to show that these polynomials satisfy
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the orthogonality relation

1 1
[+ [ Palxl 0Pl | ot | s+ = Ma(@ b (22)
G T

with max (|q], [al, o] [e], |d] |az], . . ., las]) <1,

p(xlq) =p(x;a,b,c,d,ag,ag,...,as|q)

. . , . -1
= (ae’el, ae1 bet?t bemi01, q)
o0

s—1 (e2i9k e~ 20k . q) (1 — 152)——1/2
y H 9 ) 0 k
L:l
(621057 e~ 2i0s, )oo (1 — x§)~1/2
(Cews 3 ce~0s y dei®s ) de—ws; q)oo ’

(2.3)
An(q) = An(a,b,¢,d,a2,a3,...,a5]q)
_ @y H (0, AR g™ HMe=1"Yg) (AR5 ) -
k=1 (Q7 A]%;qu-l_Nk—l 3 ai_;_lan ) q)oo )

-1
0o !

X (CLCAQ’SqNS, a,alAg,sqNs ) bcAQ,sqNs , bdAg,sqNs : q)

where af = ab and a2, ; = cd. The two-dimensional case was considered
in (Koelink and Van der Jeugt, 1998), but they did not give the value
of the norm. First observe that by (1.10)—(1.12) the integration over x
in (2.2) can be evaluated to obtain that

1
/pn1 (xla a, b7 a261927 a2€—i92 l q> DPmy (mh a, b7 a2ei62a a2e—i02 | q)
-1 (2.5)

X p (331; a,b, e’ age 2 |q> dzy

2 (q, aba%qnl”l; q)n1 (abagq%l ; q)oo
(g, abg™, a3q™;q)

= 6n1,m1

N . , . -1
x (aa2g™ ™, aaaq" ™%, bagg™ e, bagg™ % q)
o0

(ak+1ei0k+1+i9k , ak+le’i9k+1 -—iak , ak+lei9k—i9k+1 , ak+1e-—i0k+1 —iak , q) ~

|
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After doing the integrations over 1,9, ..., x; for a few j one is led to
conjecture that

1 1
[+ [ P10 PR x1 06 (x| e -y
-1 -1

J q’AIQH- Np+Ng_1— 1,(]) (A +1q2Nk q)oo

Ony,m 2.6
kl;[l o (g, A g™t 1,ak+1q k) ] (26)

X (aA2,j+1qu ¥+ adg ji1qMem i,

= (2r1)?

. -1
N; ib; N, i1
bAgji1q 7€t bAg j11q e ’“#1)

(e}

where

J
PP (x|q) = I—[pn,c (z; aA2 kg5 =1, bAg kg
k=1

16051 apy e 0k | q) )
. . . . R -1
P9 (x| q) = (e, ae™, b, be "% q)
o0

(621'0,0’ e~ 2if%, q)oo (1 xk) ~1/2

7
kl;[l (apr1€0%+1+0 ap1er1=0k gy g e0k=0kt1 qp g e 01—k, g)

for j =1,2,...,s— 1. To prove this by induction on j, suppose that
j < s —1, multiply (2.6) by the z;;;-dependent parts of the weight
function and orthogonal polynomials, and then integrate with respect to
RN | to get

¥ ﬁ (@ A ™M1l g) (AR 05 0)
nk,Tnk (q’A%qu+Nk 1’ak+1q ’c;q)

1
. N; N; 10, —1i0;
X/ Prjp (%‘H’“Azww 7,0A2,j41q7, aj12€"71? aj0e” I |‘1)
1

. N; N; 10 —18;
X Pt ($i+1’aA2,j+1q 7,0A2,j41q 77, aj42€"912 ajq0e ”“lq)

. N; N; 0, —i0,
Xp ($j+1, aAsg 19 7,bA2 41077, a542€"742, aj9e7 02 |Q> dzji1
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j+1

2 Nig+Ng-1—1. 2 2Ny .
= em+ T 6 (9, AR g™ 17 ) (AR416°5 )
= N, m
e (g, ARgMetNe-1, a2, g5 q)

X (aAQ,j+2qu+1€i0j+2, aAg j4aq" e iv2,

N; i6 N; —i0j 2.
bA2g42g"i+ 60512, bAy 40 e 021 q)
o0

(2.7)
which is the j — j + 1 case of (2.6), completing the induction proof.
Now set j = s — 1 in (2.6) and use it and (2.5) to find that

1

1
/"‘/P“(qu)Pm(xlq)P(XM)dwl---dxs
21

-1

— Ng+Np_1—1. .
— (277')5—1 ﬁ6 (q,A%”*'lq Ktk 1’q)'nk (Az‘l'quNk’q)oo
P N, My (q, A%qu+Nk_17aZ+1an; q)oo

1
X /pns (255 ah0,5¢™ 1, bA2 56", ¢, d | q)
-1

X Pm, (Ts; 049,571, bA2,¢"1, ¢, d | q)

e2i93’ e-:zios;q)oo (1 . x2)—1/2

8

A
(

cets, ceWs, deibs de=1s;q)

X <(1Ag,sqNs“1 ei0s , aAg,sqNs‘1 e~ s ,
) ) -1
b Ag,sqNs‘lew‘,bAg,sqNs—le_’es; q) dx,
oo

= )\n(‘I)(sn,nu

where An(g) is given by (2.4). This completes the proof of (2.2).
Note that the integration region and weight function in (2.2) and (2.3)
are invariant under the permutation of variables and parameters

(2.8)

a < C, b(_)da Af41 ¢ Qg—k4-1, k=1,2,...,$—1, (29)

9k<—>93_k+1, k:1,2,...,$.

Hence, when these permutations are applied to (2.2) and (2.3) the trans-
formed polynomials also form an orthogonal system with the same weight
function. Since the polynomials P,(x|g) in (2.1) are not invariant un-
der (2.9), we obtain a second system of multivariable orthogonal Askey-
Wilson polynomials, which is a g-analogue of Tratnik’s second system
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(1.7) of multivariable Wilson polynomials. After doing the permuta-
tion ng < Ns—gy1, K = 1,...,s, the transformed polynomials and the
normalization constant are given by

Pn(X'q) = pn(X;a’b7c,d7a2aa37'~-7as|q)
= P, (x1; cA2,50">*,dA2 54", a,b| q)

8
X 1—‘[pn,c (mk;cAk+1,$qN’°+1*s,dAk+1,squ+1’sa (2.10)

k=2
aew’“—l,ae"w’“‘l |q>:| ,

Xn(q) = 5\,, (a,b,c,d,a2,as,...,as|q)

2 Ni,s+Nip1,a—1. 2 2Ny .
8 (q’Ak,qu kot Tt "1)%( k,s+19 ’”"1)

= (2m)° =
k=1 (q, A7 o1 qNestNer1e 0l gk q)oo
-1
x (acAz,sq™", ad Ay oq", bed,q* bdAs,sq™ 5 0)
(2.11)
with a? = ab, a2, | = cd, and max (|q|, |al, [b], ||, |d|, a2|, |as]|, - . ., as|) <
1. These polynomials are of total degree N, in the variables z1,...,z;

and they form a complete set.

A five-parameter system of multivariable Askey-Wilson polynomials
which is associated with a root system of type BC was introduced in
(Koornwinder, 1995) and studied with four of the parameters generally
complex in (Stokman, 1999).

3. Special Cases of (2.2)
First observe that the continuous dual g-Hahn polynomial defined by

q—n, aew’ ae—w

abac DY (3.1)

dn(z;0,b,c|q) = a™" (ab, ac; q),, 32

is obtained by taking d = 0 in (1.9) and z = cos . Since d, (z;a,b,c|q)
is symmetric in its parameters by (Gasper and Rahman, 1990a, (3.2.3)),
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we may define the multivariable dual ¢-Hahn polynomials by

Dyn(x|q) = Dy (x50a,b,¢,a9,as,...,as|q)

s—1
, i0 —if Ny
= IVHdnk (mk,akﬂe’ R agp1e” R a Ay gt |Q)}
k=1

X dy, (a:s;b, c, aAg,sqNs“1 |q) ,
(3.2)

with xx = cosfy for k = 1,2,...,5. It follows from the b = 0 case of
(2.2)—(2.4) that the orthogonality relation for these polynomials is

1 1
[+ [ Daloxl 0 Den(x ol ) -+, = (@b (33
B

with
p(x|q) = p(x;a,b,¢c,ag,as,...,as|q)
-1
— 161 —i01 . )
(ae ,ae g N

s=1 26y ,—2iby. 2\~1/2
y H (€*%, e ”’q>oo(1’mk)
(ak+1ei9k+1+i0k, ak+1ei9k+1_i0k, ak+lei0k—i9k+1 , ak+1€—i9k+1—i9k ; q)oo

k=1

S

(be®ds be=0s  ceils, ce=i0s;q)

(621'93,6—21"93; )oo (1 _ xg)—1/2

(3.4)
)\n(Q) = /\n (aa b7 ¢, a2,03,...,0; |q)

L)

= (27)° [H (q"’“+1,a%+1q"";q);1:| (abA2,sq™*, acAs 5q™; Q);ola
k=1

(3.5)

where a§+1 = bc and max (|q|a |a|7 |b|, ICI? |CL2| ) |a3| P |as|) <1
By taking the limit a — 0 in (3.2)—(3.5) we can now deduce that the
multivariable Al-Salam-Chihara polynomials defined by

Sn(xlq) :Sn(x;b7c,a'27a3>~"ya's|Q)

s—1
) [Hpnk (””k; Q41674 apyre 70 | q)] (3.6)
k=1

X Dn, (Zs; b, ¢ q)
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satisfy the orthogonality relation

1 1
[+ [ Sutxl0Smix| Dp(x] 9o+ oy = (@) dnm (1)
104

with
p(x1q)
s—1 0y ,—2i0%. -1/2
_[f (20, q) (1= o)
s (anrreifre1tifh ap ek =P g eih=hit ayyie= k=il g)
(ezies, e—2ies;q)oo (1- xg)—1/2
(be®s, be=1s, ceils, ce=1s; q)
(3.8)
8
—1
An(g) = 2m)* [T (6™ afaa™;0), s (39)
k=1
where a2, ; = bc, max (|ql,|b],]c|,|az|,|as],...,|as]) < 1, and the Al-
Salam-Chihara polynomial p,(z;b,c|q) is defined by
_ ——n, b ia’ b —i6
paibiel)) =0 Geiadn ava |70 " e, a0)
see (Koekoek and Swarttouw, 1994, (3.8.1)).
Setting
a=qRatD/A Qo)A o OB/ g 2849/ (311

in (2.1) and (2.2) gives a multivariable orthogonal extension of the con-

tinuous g-Jacobi polynomials piP )(m | ¢) defined in (Gasper and Rah-
man, 1990a, (7.5.24)), while setting

a= q1/2, b= qa+1/2’ c= _qﬂ+1/2, d= __q1/2 (3.12)

in (2.1) and (2.2) gives a multivariable orthogonal extension of the

P,(,a’ﬁ ) (z; ¢) polynomials defined in (7.5.25). Also, via (Gasper and Rah-
man, 1990a, (7.5.33)) and (Gasper and Rahman, 1990a, (7.5.34) with
q — q*/?) the @ = 3 = A—1/2 substitution gives a multivariable orthogo-
nal extension of the continuous g-ultraspherical polynomials C, (:r; | q) .
By letting A — oo when we use (3.12), ie., set a = —d = q*/? and
b = ¢ =0, we get a multivariable orthogonal extension of the continu-

ous g-Hermite polynomials defined in (Gasper and Rahman, 1990a, Ex.
1.28).
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A multivariable orthogonal extension of the continuous g-Hahn poly-
nomials defined by

pn(cos(d + ¢);a,b]q)

-n 212 n—1 _ _2ip+if . _—if
(9 %%, P q ", a*bq ae'?T qe™"
= (a ,ab, abe w’q)n (aew) 493 aQ,ab: abe2i® 14,941

(3.13)
see (Gasper and Rahman, 1990a, (7.5.43)), is obtained from (2.1)-(2.4)
by replacing a, b, ¢, d, 6 and z; = cosf by a1, aje™, a1,
as+1€”, Ok + ¢ and cos(6y + ), respectively.

It is clear that similar special cases of the second system of multivari-
able orthogonal Askey-Wilson polynomials can be obtained by appro-
priate specialization of the parameters in (2.10) and (2.11). Additional
systems of multivariable orthogonal polynomials will be considered else-
where.
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Abstract  Anexplicit bilinear generating function for Meixner-Pollaczek polynomi-
als is proved. This formula involves continuous dual Hahn polynomials,
Meixner-Pollaczek functions, and non-polynomial 3F>-hypergeometric
functions that we consider as continuous Hahn functions. An integral
transform pair with continuous Hahn functions as kernels is also proved.
These results have an interpretation for the tensor product decomposi-
tion of a positive and a negative discrete series representation of su(1,1)
with respect to hyperbolic bases, where the Clebsch-Gordan coefficients
are continuous Hahn functions.

1. Introduction

The results and techniques in this paper are mainly analytic in na-
ture, but they are motivated by a Lie algebraic problem. As is well
known, many polynomials in the Askey-scheme of orthogonal polynomi-
als of hypergeometric type, see (Koekoek and Swarttouw, 1998), have
an interpretation in the representation theory of Lie groups and Lie al-
gebras, see, e.g., Vilenkin and Klimyk (Vilenkin and Klimyk, 1991) and

© 2005 Springer Science+Business Media, Inc,
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Koornwinder (Koornwinder, 1988). The Askey-scheme can be extended
to families of unitary integral transforms with a hypergeometric kernel.
Many of these kernels also admit group theoretic interpretations. For ex-
ample the Jacobi functions, which can be considered as a non-polynomial
extension of the Jacobi polynomials and are given explicitly by a certain
oF1-hypergeometric function, have an interpretation as matrix elements
for irreducible representations of the Lie group SU(1,1). The Jacobi
function is the kernel in the Jacobi integral transform, which can be
found by spectral analysis of the hypergeometric differential operator.
For an overview of Jacobi functions in representation theory, we refer to
the survey paper (Koornwinder, 1995) by Koornwinder.

In this paper we give a generalization of the Jacobi functions. We
consider the tensor product of a positive and a negative discrete series
representation of the Lie algebra su(1,1). The Clebsch-Gordan coeffi-
cients for the hyperbolic basisvectors turn out to be a certain type of
non-polynomial 3Fy-hypergeometric functions, which we call continu-
ous Hahn functions. We show that the continuous Hahn functions are
the kernel in an integral transform, that generalizes the Jacobi function
transform. We emphasize that the main part (Sections 11.3 and 11.5) of
this paper is analytic in nature, and that the Lie algebraic interpretation
is mainly restricted to Section 11.4.

The Lie algebra su(1,1) is generated by the three elements H, B
and C. There are four classes of irreducible unitary representations for
su(1,1): discrete series, i.e., the positive and the negative discrete series
representations, and continuous series, i.e., the principal unitary series
and the complementary series representations. There are three kinds of
basis elements on which the various representations can act: the elliptic,
the parabolic and the hyperbolic basis elements. These three elements
are related to conjugacy classes of the group SU(1,1). We consider the
tensor product of a positive and a negative discrete series representation,
which decomposes into a direct integral over the principal unitary series
representations. Under certain condition discrete terms can appear. The
Clebsch-Gordan coefficients for the standard (elliptic) basis vectors are
continuous dual Hahn polynomials. We compute the Clebsch-Gordan
coefficients for the hyperbolic basis vectors, which are non-polynomial
extensions of the continuous (dual) Hahn polynomials, and are therefore
called continuous Hahn functions. For the Clebsch-Gordan coefficients
for the elliptic and parabolic basis, we refer to (Groenevelt and Koelink,
2002), respectively (Basu and Wolf, 1983), (Groenevelt, 2003).

The explicit expressions for the Clebsch-Gordan coefficients as 3F»-
series are not new, they are found by Mukunda and Radhakrishnan in
(Mukunda and Radhakrishnan, 1974). However not much seems to be
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known about the generalized orthogonality properties of the continuous
Hahn functions, i.e., they form the kernel in a unitary integral tranform
(the continuous Hahn transform). Using the Lie algebraic interpretation
of the continuous Hahn functions, we can compute formally the inverse
of the continuous Hahn integral transform. In Section 11.5 we give an
analytic proof for the integral transform pair.

The method we use to compute the Clebsch-Gordan coefficients is
based on an idea by Granovskii and Zhedanov (Granovskii and Zhedanov,
1993). The idea is to consider a self-adjoint Lie algebra element X, =
—aH + B - C, a € R. The action of X, in an irreducible representa-
tion gives a difference equation, for which the (generalized) eigenvectors
can be expressed in terms of special functions and the standard basis
vectors. The Clebsch-Gordan coefficients for the eigenvectors can be
calculated using properties of the special functions. In (Van der Jeugt,
1997) and (Koelink and Van der Jeugt, 1998) Van der Jeugt and the
second author considered the action of X, in tensor products of positive
discrete series representations of su(1,1) to find convolution formulas for
orthogonal polynomials. In (Groenevelt and Koelink, 2002) the action
of X, in the tensor product of a positive and a negative discrete series
representation is investigated for |a] > 1 (the elliptic case). This leads
to a bilinear summation formula for Meixner polynomials (Groenevelt
and Koelink, 2002, Thm. 3.6). In this paper we consider the case |a| < 1
(the hyperbolic case).

The plan of the paper is as follows. In Section 11.2 we introduce the
special functions we need in this paper, and give some properties of these
functions.

In Section 11.3 we prove a bilinear summation formula for Meixner-
Pollaczek polynomials by series manipulations. As a result we find a
certain type of 3F»-functions, which are the continuous Hahn functions.
The summation formula is used in Section 11.4.2 to compute the Clebsch-
Gordan coefficients for the hyperbolic bases.

In Section 11.4 we consider the tensor product of a positive and a
negative discrete series representation of the Lie algebra su(1,1). First
we recall the basic properties of su(1,1) and its irreducible unitary rep-
resentations in Section 11.4.1. Then in Section 11.4.2 we diagonalize
Xa, |a| < 1, in the various irreducible representations. This leads to
generalized eigenvectors of X,, which can be considered as hyperbolic
basis vectors.

For the discrete series representations, the overlap coefficients for
the eigenvectors and the standard (elliptic) basisvectors are Meixner-
Pollaczek polynomials, cf. (Koornwinder, 1988, §7). For the continuous
series, the overlap coeflicients are Meixner-Pollaczek functions. This
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follows from the spectral analysis of a doubly infinite Jacobi operator,
which is carried out by Masson and Repka (Masson and Repka, 1991,
§3.3) and Koelink (Koelink, , §4.4.11). It turns out that the spectral pro-
jection of the Jacobi operator is on a 2-dimensional space of generalized
eigenvectors. So the eigenvectors of X,, |a} < 1, in the continuous series
representations are 2-dimensional, and we find two linearly independent
Meixner-Pollaczek functions as overlap coefficients. To determine the
Clebsch-Gordan coefficients for the hyperbolic bases, we use the bilinear
summation formula from Section 11.3. This leads to a pair of continuous
Hahn functions as Clebsch-Gordan coefficients. By formal calculations
we find an integral transform pair, with a pair of continuous Hahn func-
tions as a kernel. To give a rigorous proof of the integral transform pair,
we show that the continuous Hahn functions are eigenfunctions of a dif-
ference operator A. To find this operator A we realize H, B and C as
difference operators acting on polynomials, using the difference equation
for the Meixner-Pollaczek polynomials. Then A is a restriction of the
Casimir operator in the tensor product.

The spectral analyis of this difference operator is carried out in Sec-
tion 11.5. A main problem with spectral analysis of a difference operator
is finding the right eigenfunctions. This is because an eigenfunction mul-
tiplied by a periodic function is again an eigenfunction. Our choice of
the periodic function is mainly motivated by the Lie algebraic inter-
pretation of the eigenfunctions. Using asymptotic methods, we find a
spectral measure for the difference operator. This leads to an integral
transform with a pair of continuous Hahn functions as a kernel. We call
this the continuous Hahn integral transform.

Notations. We denote for a function f: C — C

() = (@)

If du(z) is a positive measure, we use the notation d/ﬁ (z) for the positive
measure with the property

d (#% X #%) (z,z) = du(z).
The hypergeometric series is defined by

P4 bl,-"7bq , n=0 (bl)n(bq)n nt’

where (a), denotes the Pochhammer symbol, defined by

_T{a+n)

(a)n = T'(a) =ala+1)(a+2)...(a+n—1), n € Z>o.
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2. Orthogonal polynomials and functions

In this section we recall some properties of the orthogonal polynomi-
als and functions which we need in this paper.

Continuous dual Hahn polynomials. The Wilson polynomials,
see Wilson (Wilson, 1980) or (Andrews et al., 1999, §3.8), are 4F3-
hypergeometric polynomials on top of the Askey-scheme of hypergeomet-
ric polynomials, see Koekoek and Swarttouw (Koekoek and Swarttouw,
1998). The continuous dual Hahn polynomials are a three-parameter
subclass of the Wilson polynomials, and are defined by

_n7a+7;$,a—iw'
S'n(y, a,b,c) = (a+b)n(a+c)n3F2 ( a.}_b,a—{—c ’1> ’ (21)
2

=y, (né€Z>o).

For real parameters a, b, ¢, with a + b, a + ¢, b + ¢ positive, the contin-
uous dual Hahn polynomials are orthogonal with respect to a positive
measure, supported on a subset of R. The orthonormal continuous dual
Hahn polynomials are defined by

(=1D)"sp(y;a,b,c)

Sauly; 0By c) = Vil(a+b)n(a+c)alb+c)n

By Kummer’s transformation, see, e.g., (Andrews et al., 1999, Cor.
3.3.5), the polynomials s, and S, are symmetric in a, b and c¢. Without
loss of generality we assume that a is the smallest of the real parameters
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a, b and c. Let du(-;a,b,c) be the measure defined by

/ F@)duly; a,b, ¢) =

e do
F(a+b)(a+)'(b+c)

1 /Oo ['(a + iz)( b+zx)F(c+im) 2
I'(2iz)

I'(b—a)'(c—a) vk (2a)k(a+ Dr(a+b)k(a+ o)k (a 9
+ 21 (@@ b+ Dafa—cr Dpkt? @TRD;

where K is the largest non-negative integer such that a + K < 0. In
particular, the measure du(-;a,b,c) is absolutely continuous if a > 0.
The measure is positive under the conditions a +b > 0, a + ¢ > 0 and
b+ ¢ > 0. Then the polynomials S,(y; a,b, c) are orthonormal with re-
spect to the measure du(y;a,b,c).

Meixner-Pollaczek polynomials. The Meixner-Pollaczek polyno-
mials, see (Koekoek and Swarttouw, 1998), (Andrews et al., 1999, Ex.
6.37), are a two-parameter subclass of the Wilson polynomials, and are
defined by

(M

A n gino o (—n,)\—{—iac

N (x5 0) = o)

11— 6_%(‘0) , (ne Zzo) .
(2.2)
For A > 0 and 0 < ¢ < 7, these are orthogonal polynomials with

respect to a positive measure on R. The orthonormal Meixner-Pollaczek
polynomials

Po(z) = PV (z50) = (2/\) P (@3 0)

satisfy the following three-term recurrence relation
2z sin ¢ Pp(z) = o Pryi(z) —2(n+ ) cos ¢ Pp(z) +an—1Pr—1(z), (2.3)

where

an = v/ (n+1)(n +2X\).
The Meixner-Pollaczek polynomials also satisfy the difference equation
e (X — iz)y(z + 1) + 2i[z cos p — (n + ) sin ply(z)
—e (A +iz)y(z — 1) =0, (2.4)
y(z) = PV (z;9).
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Define
1 .. — e [T+ iz) |2
N (p- - 22, (2p—m)z |-\ T VL))

then the orthonormality relation reads

/ PV (z;0) PY (25 0)w (z; 0) dz = S
R

Meixner-Pollaczek functions. The Meixner-Pollaczek functions
Up, N € Z, can be considered as non-polynomial extensions of the
Meixner-Pollaczek polynomials, see Masson and Repka (Masson and
Repka, 1991) and Koelink (Koelink, , §4.4). The Meixner-Pollaczek
functions are defined by

)_n\/F(n+1+a+)\)I‘(n+s—)\)
F(n+14¢—ix)

szl(n+1+€+/\’n+€_)\' L )7 (n €Z).

n+l+e—iz "1 — ey
The parameters ¢ and ¢ satisfy the conditions 0 < p < 7,0 < e < 1, and
A satisfies one of the following conditions: —% <A< =g, —% <A<e-1,
or A= —% +1ip, p € R. In the last case u, is symmetric in p and —p,
so without loss of generality we assume p > 0. For 0 < ¢ < %w and

g 7 < ¢ < 7 we use the unique analytic continuation of the o Fy-function
to C\ [1,00). Note that the Meixner-Pollaczek function is well defined
for all n € Z, since I'(c) 19 F(a, b; c; 2) is analytic in a, b and c.

The functions u, and v}, satisfy the recurrence relation

un(2; A €, 0) = (2isingp
(2.5)

2z sin @ up () = Aptnt1(2) + Bnun(z) + An_1un—1(z), (2.6)

where

an=+vMn+e+ A+ (n+e-N), Brn =2(n+¢)cosp.
Let L be the corresponding doubly infinite Jacobi operator acting on
(2),
L:e,— Qnén+t1 + Bnen + an_1€n-1.
L is initially defined on finite linear combinations of the basis vectors of

¢2(Z), and then L is essentially self-adjoint. The spectral measure of L
is described by

() = 3= [ (@,U@) U(),0) + (w,U°(@) U (@),0)
R
—w1(@) (u,U(2)) (U*(2),0) = wi(z) (1, U" (2)) (U (2), 0)) wolz)dz,
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where
_ TA+1+4z)D(=A + ix)
W) = T —or(ite—ia) '
DA+ 1 —4z)[(—X — iz)T(iz — e)['(1 + € — iz)|?

wol®) = Tz ST A + e @) = [T+ T — i) (=) — ia)P
(2sin go)‘%eh(‘f"%)
“T(—e—ATI+A—eT(LF AT el(e =N
= (2sin go)“QseQz(‘P'%),
U)= 3 wlasheplen, U@)= 3 ul(mh e, len.

The spectral measure for L can be obtained from (Koelink, , §4.4.11),
using the connection formulas given there. The expression for wo(z) is
found using Euler’s reflection formula, elementary trigonometric identi-
ties and the conditions on A.

Let H = H(\, €, ) be the Hilbert space consisting of functions

e e (1)

with inner product defined by

€8=5 R/ () (ot 1) (50) moteres

Observe that the square matrix inside the integral is positive definite
and self adjoint.

Proposition 2.1. The functions

Up,
Up,

form an orthonormal basis of the Hilbert space H.

The orthonormality follows by choosing u and v above as standard
basis vectors e, and e,,. The completeness of the Meixner-Pollaczek
functions follows from the uniqueness of the spectral measure. An alter-
native, group-theoretic approach, can be found in (Vilenkin and Klimyk,
1991). It is only worked out for the smaller range of parameters corre-
sponding to SU(1,1) (rather than its Lie algebra or universal covering
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group). We will briefly describe how the analytic arguments that lie be-
hind the approach of (Vilenkin and Klimyk, 1991) extend to the present
situation. We only discuss the case A = ——% +1p, p € R, which is all that
we need later.

Consider the space L?(T) on the unit circle with respect to normalized
measure |dz|/2m. It has the orthonormal basis e,(z) = 2", n € Z. If

A= —— +1ip, p € R and € € R, it is easily checked that
_ 1 N A—E Ate z—1
UN@) = <= @+ =) (T

defines an isometry U : L%(T) — L%(R). Next we recall that the Mellin
transform, defined by

- / =3 dy,

gives an isometry L2 (R;) — L?(R). Thus, we may define a “double”
Mellin transform as the isometry

V: L*R) - L*(R) @ L%(R)
given by

1 70 Fy)y™ 2 dy
0

V2 [ fpydy

If we now let T3, t € R, denote the translation operator (Tif)(z) =
f(z+t), we may compose the above isometries to obtain the orthonormal
basis

f+
fn = <f'_‘_) =(VoT,oU)(en)
of L?(R) @ L?(R). Explicitly, we have

[ o}

1 . —n— . n+te, iz—3
fr@ = o [rizp iy ety
0

These integrals may be expressed in terms of Gauss’s hypergeometric
function; cf. (Vilenkin and Klimyk, 1991, §7.7.3). Using Kummer’s iden-
tities (Erdélyi et al., 1953, §2.9), one may then express f= in terms of
un(z+ p) and u},(z + p), where e%? = (t+1)/(t—~1i). Rewriting the iden-
tity (fn, fm) = Onm in terms of Meixner-Pollaczek functions and making



230 THEORY AND APPLICATIONS OF SPECIAL FUNCTIONS

a final change of variables x — x — p, one recovers the orthonormal basis
Uup.
The group-theoretic interpretation of this proof is the following. The
space L?(T) is a natural representation space for the principal unitary
series (e, is proportional to the e, in (4.5) below). The operator L
gives the action of a hyperbolic Lie algebra element; cf. also §4.2. It
generates a one-parameter subgroup of the universal covering group of
SU(1, 1), which locally may be identified with the group of linear frac-
tional transformations of the circle that have two common fix-points.
Thus, L?(T) splits into two invariant subspaces. The map T; o U cor-
responds to mapping the fix-points to {0,00}, and the one-parameter
subgroup to dilations of R. Finally, the operator V is the Fourier trans-
form with respect to these dilations. In particular, the appearance of
double eigenvalues in Proposition 2.1 has a natural geometric explana-
tion: it corresponds to the fact that a circle falls into two pieces when
removing two points.

3. A bilinear summation formula

In this section we prove a bilinear summation formula for Meixner-
Pollaczeck polynomials. This summation is related to the tensor product
of a positive and a negative discrete series representation of the Lie alge-
bra su(1,1), which will be explained in Section 11.4. In the summation
a certain type of non-polynomial 3 Fy-functions appear. These functions
will be investigated in Section 11.5.

Theorem 3.1. For

1 1 1
p° € supp dp (-;kQ—k1+§,k1+k2—§,k1—k2+P+§>7

p E€Z, x1,29 € R, and ki1, ko > 0, the Meixner-Pollaczek polynomials
and the continuous dual Hahn polymials satisfy the following summation
formula
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(ili) There is an interesting limit case of the summation of Theorem
3.1; forxg —xz1 >0

e 9 1 1 1
an(p ;k)g—k1+§,k1+k2—— kl_k2+p+§)

1 2k1—1 B
TR A S (C

_e®(x — ml)%_kl_kz_i” ['(2k9)
ID(k2 — k1 + § + ip)|?

o« o ki+ko—3+ipki+ka—3—ip x
2 2]62 ’CL']_—l'Q

1
XU(p+ky = kg + 5 —ip;1 = 2ip;wg — m1),

(o)

where Ly’ is a Laguerre polynomial as defined in (Koekoek and
Swarttouw, 1998), and U(a;b;z) denotes the second solution of
the confluent hypergeometric differential equation in the notation
of Slater (Slater, 1960):

Ula;b;2) =
T(1 - b) o N\ T(b-1) . l+a-b
r(1+a~b)1F1(b’z)+ T(a) ZlblFl( 2—b Z)

This formula is obtained from Theorem 3.1 as follows. We re-
place z; by —x;/2¢p, i = 1,2, and transform the oF}-series on the
right hand side by (Andrews et al., 1999, (2.3.12)). Then we let
@ — 0. Here Stirling’s formula is used, Euler’s transformation
s used for the oI -series which are obtained from the 3Fy-series,
and Kummer’s transformation (Slater, 1960, (1.4.1)) is used for
the 1 F'i-series which are obtained from the oF-series. This limit
case can also be obtained by Lie algebraic methods, see (Groenevelt,
2003, Thm. 3.10).

(iv) Note that from

1 1 1
Sn <P2;k1—k2+—2",k‘1+k2—-§,k2—k1—p+§> =

2

(1) (3.1)

1
(kl—k2+—+il’)
2 p

1 1 1
X Sp—p (p2;k2—k1+§,k1+k2—§7’€1—k:z +p+ 5)7



Continuous Hahn functions 233

see (Groenevelt and Koelink, 2002, (3.13)), it follows that the sum
on the left hand side of Theorem 3.1 is invariant under ki « ko,
Tl > 22, P> —P.

(v) It is interesting to compare Theorem 3.1 with the results of (Ismail
and Stanton, 2002), where summation formulas with a similar, but
simpler, structure are obtained for various orthogonal polynomials.
The method used in (Ismail and Stanton, 2002) is completely dif-
ferent from the method we use here.

Proof of Theorem 3.1. We start with the sum on the left hand side, with
orthonormal polynomials:

> 1 1 1
. _1\n 2. _ - _ = _ =
S—E (-1) 5n<P,k2 k1+2,/€1+k2 2,k1 k2+p+2)

n=0

x P (21 0) P (223 0) .

First we show that this sum converges absolutely. Writing out the sum-
mand R, explicitly gives

_%WI‘ (2ka +n)T (2k1 +p+n)

R.=K
¢ T(n+ 1)I(n+p+1)

3Fy oF oF}

where K is a constant independent of n. To find the asymptotic be-
haviour for n — oo of the I'-functions, we use the asymptotic formula
for the ratio of two I'-functions (Olver, 1974, §4.5)

Tla+2) 3
Thtra) ~ P1+0ET), Jz— oo, Jarg(z) <w (3.2)

The asymptotics for the 3 F»-function follows from transforming the func-
tion by (Bailey, 1972, p. 15(2)) and using (3.2). This gives, for n — oo,

- N —1_
3 Fy n, k1 + ko 2+Zp,k1+k2 3 lp;l
2k, 2k1 +p

1 . 1 .
= —kq1—ko— 2 —ky1—ko+
= Cl n2 172 ’p+C2n2 1—F2 Zp,

where C; and Cs are independent of n. If p? is in the discrete part
of supp du (-;kg — k1 + %, ki + ko — %, ki—ke+p+ %), we assume with-
out loss of generality that $(p) > 0. In this case the second term in the
transformation (Bailey, 1972, p. 15(2)) vanishes, so Cy = 0.
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The asymptotic behaviour of the o Fj-functions follows from (Erdélyi
et al., 1953, 2.3.2(14)). This gives, for 0 < ¢ < 7 and n — oo,

2F1 (—(’I’L +p)a kl + 221 ,1 . e_2i<p>
2k

- (03 p~R—E oy n‘kl“"i”“6"(n+p)(1_e_2w)) (1+ O(Tl_l)) )

—n, kg — 129 %
F i1 — e
2 1< ok ;1—e )

- (C's n=RmiT2 4 g n_kﬁi’”?e_n(l_e_m)) (1+0(n™h),

where C;, ¢ = 3,...,6, is independent of n. Since §R(1 — e‘2i‘/’) =
2sin? ¢ > 0 and 1, zg € R, we find

R, = (Kl n=5+ie + Ko n_%_i/’) (1 4+ (’)(n_l)) , n — 00,

and then for p € R the sum S converges absolutely. In case p € iR, we
have K9 = 0 and (p) > 0, and then S still converges absolutely.

Next we write out the polynomials in S as hypergeometric series,
using (2.2) and (2.1), and then we transform the 3Fj)-series, using the
first formula on page 142 of (Andrews et al., 1999);

2ko,p+ 1
(p+k1—ko+5—ip), —n,k2—k1+%+ip,k1+k2—%+ip_1
P+ n 2 2kg, ko —k1+ 3 +ip—n—p e

_ _ 14, - 1_ .
3F2< n,ky —k1+ 5 +ip ko — ki1 + 3 zp;l)

By (Erdélyi et al., 1953, §2.9(27)) with

(a’7 ba ¢, Z) = (_n - D ki +izq,2k1,1 - e—2i¢)
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the o F}-series for PS_?ZZ (z1; ) is written as a sum of two o F}-series

—n —p, k1 + iz _9;
F (1= e 2ir
2 1( 2%k ;1—e )

(- e %) T Mk T(n 4 p+ 1)

B F(kl - zml)F(n +p+1+k + il‘l)
o« o F k1+ix1,1—k1+im1_ 1

U\ ndp+l4ktin (1—e 29
(1= 20) "M Pk D(n + p + 1)
I‘(k1+ix1)F(n+p+1+k1—z’m1)

k1 —iz1,1 — k1 — iz 1

2 1<n—|—p+1-|—k1—i:v1 ’1—62“P>

Now the sum S splits according to this: S = .S; + .5s.

First we focus on S;. Reversing the order of summation in the ¢ F}-
series of the second Meixner-Pollaczek polynomial and using Euler’s
transformation (Andrews et al.,; 1999, (2.2.7)), gives

—n, ko + T2 Y
F l—e ) =
2 1( %o ; € )

+(e—2itp)n+p

—2inp 1— Qup iwg—hy (k:2 + Zx?)
emme( A T

k2 —7:1132,1 - 2]€2 — Z:L‘Q 1
i ——— ). (34
X2F1( 1—k2—n—i$2 al__e_gup ( )

Writing out the hypergeometric series as a sum, we get
(1 _ e_2i<p)—-k1——i:1:1 (1 _ 621.(‘0)“:2_]62
(kl — i:L‘l) r (p+ 1+ ki + ia:l)

Xzzi k2+7/$2 p+k1—k‘2+l-1p)n
I(
n=0 j=0 I,m=0 nl(p+1+ ks +iz),

S| = e'P¥ [ (2k1) 4/p! (2k1),,

(—n)j (b2 — k1 + 3 + ip)j (ki+ky— 3+ ip)j a _m,)-l—m
—e
71 (2k2)j (kg -k + % +ip—mn —p)].
(k1 + i:L‘l)l (1—Fk + i.’L‘l)l (ko — 'iivg)m (1—ky— iﬂ:z)m
Dn+p+1+k+iz), m(1—ky—n—izxo),
Next we interchange summations
o n o e 0]

n=0 j=0 j=0 n=j
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then the sum over n becomes
o

5= (k1 —ko+ 3 —ip+p—3j) (ka+ize—m),
1 (n—i)(p+1+1+k +iz1), '

n=j
We substitute & +— n — j, then we find by Stirling’s formula for the
summand R of S1, for large j and &,

R~ G~ PE3(j 4 )71,

where C is independent of k£ and j. So we see that the sum .S, converges
absolutely for k1 — ks + p < 0, and %’ﬂ' << -2—71 Now the sum X
is a multiple of a 9 F}-series with unit argument, which is summable by
Gauss’ summation formula (Erdélyi et al., 1953, (46), p. 104);

5 (kg—kl-{-%—p+ip)j(k2+ix2—m)j

T (47 + 3+ ke +iz1 +ip)
xF(p+l+1+k1+ix1)F(l+m+%-{-ixl—ia:2+z'p)
Cp+l+m+ky — ko +ixy —izg)

This gives
(1- e_m)—kl—m (1- 62,-90)1'2;2—1@2
I’ (ky —ixy)
i T (l+m+i(zy—x2) + % +ip) (ko — iza),,
Flp+l+m+1+k —ko+i(z1—2x2))

Sl =eiptp

T'(2k1)/p! (2K1),

l,m=0
(k:l -+ z'xl)l (1 — k1 + ixl)l (1 _ 6_2i¢)_l—m

T'(l+ko+ 4 +izy +ip) mlll

©, (k2 — ki + 5 +ip), (k1 + k2 — 5 +1p), (k2 +izg —m),

X
].;0 G1(2ke); (L4 5 + k2 +iz1 +1p)

The sum over j is a 3Fy-series, which by Kummer’s transformation (An-
drews et al., 1999, Cor. 3.3.5) becomes
T(l+3+ky+izi+ip) T (I+m+ 3 +i(zy —z2) —ip)
F(kg*kl—l-].-l-i(xl ~a:2)+l+m)1"(l+k1+im1)
x 3Fy (k2~k1+%+ip,k2—k1+%—iP,kz—i$2+m . > ‘
2k2,k2—k1+1+i($1—m2)+l+m ’

Here we need the condition k1 > 0 for absolute convergence. We write
out the 3 Fh-series explicitly as a sum over j and interchange summations

lym,j=0 n=035=0l4+m=n
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For the sum over [ +m = n we find

Z (1 — ki + ia:l)l (kg — 129 + ])m
' m!

m-l=n
(14 ko — k1 + i (x1 — x2) + 7)
n!

n

Now S; reduces to a double sum, which splits as a product of two sums,
and we obtain

(1 _ e——2i<p)_k1“iml (1 . ezi(P)img—kg
F(k?l -—’i:l?l)l—‘(kl—i-ixl)
« F(%‘f‘i(i‘l—m2)+ip)r(%+i($1—l'2)—ip)
F(p-{-k:l—kg—i—’i(.’l:l—-.’tg)+1)F(k2—k1+i($1—$2)+1)
xT (2]()1) p! (2k1)p
X2F1(%-{—i(ml—xg)—l—ip,.%—i—i(xl—-a:g)—ip; 1 ' >
p+ki—ka+i(zx1—ze)+1 1—e2ip
1 . 1 . .
% 3F) (kQ—k1+§+lP,k2 —.k‘1+§—w7k2—liv2 ;1>
2ko, ko — k1 + Z(:L‘l - :L'g) +1

Sl = eip(p

Sy is calculated in the same way as Sy, only for the first step (Erdélyi
et al., 1953, §2.10(4)) is used instead of (3.4). Then we obtain

1— e_2i<p —kp—izo 1— €2i(p ix1—ky
( r<k1)+m)r(<k1—z~x1)) T (2k1) /o (280)p
F(i(xg—xl)-f-%+ip)I‘(i(x2—a:1)+%—ip)
F(k‘g—kl-l-i(.’l,‘g—x1)+1)r(k1-k2+i(m2—.’El)-i—].-l—p)
X3F2(k2+z’x2,k2—k1+%—‘i—ip,k2—k1+%—ip.1)
2k2,k2—k1+z(x2—:v1)+1 ’
X2F1<%+i(x2—a:1)+'-ip,%+i(x2—w1)~ip_ 1 )
kl—k2+z(:c2——a:1)+p-l—1 '1 — e2iv

Sy = e~

Finally using Euler’s transformation for the o Fj-series, using
e'P? (1 - eZi“’) P = (—1)P(2ising) P,
(1 _ e—2i<p)_iz1 (1 . e2i<p)iw1 — e—2z1(<p—g),
(1— e72¢) 75 (1 — ¢2#) ™™ = (25in )21,

and writing the polynomials in the normalization given by (2.2) and
(2.1), the theorem is proved.
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Let us remark that all the series used in the proof are absolutely
convergent under the conditions

1 1 1
p* € suppdp (';k2—k1 + -z-,kl + k2 — §,k1 —ka+p+ —2-> )
z1,23 € R, k1 > 0, %7‘( < p < %W and k1 — kg +p < 0. The last
condition can be removed using the symmetry (k1, k2,p) < (ke, k1, —p)
and continuity in k; and ko. Using the analytic continuation of the
hypergeometric function, we see that the result remains valid for 0 <
p <. a

4. Clebsch-Gordan coeflicients for hyperbolic
basis vectors of su(1,1)

In this section we consider the tensor product of a positive and a
negative discrete series representation. We diagonalize a certain self-
adjoint element of su(1,1) using (doubly infinite) Jacobi operators. We
also give generalized eigenvectors, which can be considered as hyperbolic
basis vectors. Using the summation formula from the previous section,
we show that the Clebsch-Gordan coefficients for the eigenvectors are
continuous Hahn functions. We find the corresponding integral trans-
form pair by formal computations. In order to give a rigorous proof
for the continuous Hahn integral transform, we realize the generators of
su(1,1) in the discrete series as difference operators acting on polynomi-
als. Using these realizations, the Casimir element in the tensor product
is realized as a difference operator. Spectral analysis of this difference
operator is carried out in Section 11.5.

4.1 The Lie algebra su(1,1)

The Lie algebra su(1,1) is generated by the elements H, B and C,
satisfying the commutation relations

[H,B)=2B, [H,C]=-2C, [B,C]=H. (4.1)

There is a *-structure defined by H* = H and B* = —C. The center of
U (Eu(l, 1)) is generated by the Casimir element €2, which is given by

Q= ~E(H2+2H+4C’B) = ~—?}(H2—2H+4BC). (4.2)

There are four classes of irreducible unitary representations of su(1, 1),
see (Vilenkin and Klimyk, 1991, §6.4):

The positive discrete series representations 71',‘: are representations la-
belled by k > 0. The representation space is £*(Zxo) with orthonormal
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basis {e"}nEZZO‘ The action is given by

T (H) en = 2(k + 1) en,
7t (B) en = /0 ¥ DEEF 1) ensn,

TH(C) en = —v/n(2k +n — 1) ep_y,

T (Q)en =k(l —k)e,

The negative discrete series representations 7, are labelled by k& > 0.
The representation space is ¢2 (Z>o) with orthonormal basis {e,}

nEZZO
The action is given by

7, (H)en = —2(k + n)en,

m, (B) en = —/n(2k +n — 1) en 1,
T (C) en = /(n + 1)(2k + 1) ent1,
7, () en = k(1 — k) ey.

(4.4)

The principal series representations 77¢ are labelled by € € [0,1) and
p > 0, where (p,£) # (0, %) The representation space is ¢2(Z) with
orthonormal basis {en}, 7. The action is given by

¢ (H) e, = 2(g + n) ey,

1 1
WP,E(B)en:\/(n+£+§—ip> <n+s+§+z’p) €n+1,

- - (4.5)
T (C)en = — <n+€— 5*2'/0) (”‘FE— —2-—}—2',0) €n—1,
1

™ () e, = <,02 + %) en

For (p,e) = (0, %) the representation 7%z splits into a direct sum of a
0,1

positive and a negative discrete series representation: 73 = U /2697r1 /2°
The representation space splits into two invariant subspaces:
{en|n < 0} @ {en|n > 0}.

The complementary series representations 7 are labelled by £ and
A, where € € [0, )and)\e(—— —¢) OI'EE(2,1) and A € (—3,e—1).
The representation space is EQ(Z) with orthonormal basis {e,},z. The
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action is given by

( )en:2(€+n)en7
M(B)en=V(n+e+1+N)n+e—X) e,
)

Y (4.6)
S(C en=—vV(n+tet+tANn+e-A—1e,1,
(D) en = A1+ N en.
Note that if we formally write A = ——% + ip the actions in the principal

series and in the complementary series are the same.

We remark that the operators (4.3)—(4.6) are unbounded, with domain
the set of finite linear combinations of the basis vectors. The represen-
tations are x-representations in the sense of Schmiidgen (Schmiidgen,
1990, Ch. 8).

The decomposition of the tensor product of a positive and a negative
discrete series representation of su(1,1) is determined in full generality
n (Groenevelt and Koelink, 2002, Thm. 2.2).

Theorem 4.1. For k1 < ky the decomposition of the tensor product of
positive and negative discrete series representations of su(1,1) is

&

1 1
ki —ko > —= ki + ko> =
1 2 Z 271+ 2_..2)

IR

3 3
S+ x
® X
3 3
e 3
IR
o~—_3 o“-7§8 o~ 38
=\
>
o
>

T+

1
PEdp @ 1, ki + ke < 5

52
—

o

3
>
(L]
o
>
¥

fem, O = :

Ty © Thy Thaki—jr 1= k2 <=3,
J€Z >0

ky—ki—5—3>0

where € = ki — ko + L, L is the unique integer such that € € [0, 1), and
A = —ky — ko. The intertwiner J is given by

1
J (em ® enz) = (—1)n2 /Sn (y;nl - nz) €ny—ng—L du? (?J;nl - n2),

R
(4.7)

where n = min{n1,na}, Sn(y;p) is an orthonormal continuous dual
Hahn polynomial,

Su(y:p) = So(yki—ko+ 2 ki+ky— 3, ko—ki—p+3), p<O,
Sn(y;k2_kl+%7kl+k2—%ak1"k2+p+%)’ p207
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and du(y;p) is the corresponding orthogonality measure

d#(y;kl—k2+%>k1+k2—%,k2—/€1—10+%), p <0,

du(y;p) =
#(yip) {du(y;kg—k1+%,k1+k2—%,k1—k2+P+%)’ p=20.

The inversion of (4.7) can be given explicitly, e.g., for an element

o0

7 ®
f®eT_L=/f(m)er_Lda:EL2(0,00)®€2(Z)%/ 2(Z)dx
0 0

in the representation space of the direct integral representation, we have

F(f@e) =
5 0 [ S i n | @@ e TS0

p=0

o0
5 0P | S ) e 0 720
p=
For the discrete components in Theorem 4.1 we can replace f by a Dirac
delta function at the appropriate points of the discrete mass of du(-;).
We remark that for k1 = kg < 1/4, the occurrence of a complementary
series representation in the tensor product was discovered by Neretin
(Neretin, 1986). This phenomenon was investigated from the viewpoint
of operator theory in (Englis et al., 2000).

In the following subsection we assume that discrete terms do not occur
in the tensor product decomposition. From the calculations it is clear
how to extend the results to the general case. At the end of Section 11.5
we briefly discuss the results for the discrete terms in the decomposition.

In the Lie algebra su(1, 1) three types of elements can be distinguished:
the elliptic, the parabolic and the hyperbolic elements. These are related
to the three conjugacy classes of the group SU(1,1). A basis on which
an elliptic element acts diagonally is called an elliptic basis, and similarly
for the parabolic and hyperbolic elements. The basisvectors e, in (4.3)—
(4.6) are elliptic basisvectors.

We consider self-adjoint elements of the form

—aH + B —C € su(l1,1), (a € R),

in the tensor product of a positive and a negative discrete series represen-
tation. For |a| = 1 this is a parabolic element, for |a| < 1 it is hyperbolic
and for |a| > 1 it is elliptic. For the elliptic and the parabolic case we
refer to (Groenevelt and Koelink, 2002), respectively (Groenevelt, 2003).
We consider the case |a| < 1.
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4.2 Hyperbolic basisvectors
We consider a self-adjoint element X, in su(1,1), given by
Xyo=—cosp H+ B —-C, O<p<m.

The action of X, in the discrete series can be identified with the three-
term recurrence relation for the Meixner-Pollaczek polynomials (2.3), cf.
(Koelink and Van der Jeugt, 1998, Prop. 3.1).

Proposition 4.2. The operators ©F, defined by
0% : 2 (Zso) — L? (R, w® (z; <p)d:r)
en = P (5 9),
are unitary and intertwine mif (X,) with M(+2zsin p).

Here M denotes the multiplication operator, i.e., M(f)g(z) = f(z)g(z).
Proposition 4.2 states that

vi(z) =) PP (z;9)en,

n=0

are generalized eigenvectors of 7r,:€t (X,) for eigenvalue £2zsin . These
eigenvectors can be considered as hyperbolic basis vectors.

The action of X, in the principal unitary series can be identified with
the recurrence relation for the Meixner-Pollaczek functions (2.6). Then
the spectral decomposition of the corresponding doubly infinite Jacobi
operator gives the following,.

Proposition 4.3. The operator ©°F defined by

2

en (un (a_% +iP75,7T“90)> ,

u:(a -2 +ip, e, m— ()0)

07 3(Z) - H (—1 +ip, e, m— ga) ,

is unitary and intertwines m**° (X, ) with M (2zsing), and extends to a
unitary equivalence.

From Propostion 4.3 we obtain that

(vP,E(m)) — i (un gw;—%‘*‘il),eﬂr‘ﬂo)) e
v e(2) up (z; -3 +ipe,m—p) ) "

n=—oo



Continuous Hahn functions 243

is a generalized eigenvector of 77° (X,,) for eigenvalue 2z sin ¢.

Next we consider the action of X, in the tensor product. Recall that
in the tensor product we need the coproduct A, defined by A(Y) =
1Y +Y ®1 for Y € su(1,1). Then from Proposition 4.2 we find the
following.

Proposition 4.4. The operator T defined by
T : 02 (Zs0) ® 02 (Z>0) — L? <R2, w® (z1;0) w2 (24; ) d:cldxg) ,
eny ® eny = P (2150) PRY) (22;0) ,
is unitary and intertwines 7T,j1 ®m, (A (X)) with M (2 (z1 — 29) singp).

In terms of the generalized eigenvectors v+ and v~, we find from
Proposition 4.4 that

[e.e]
o) @7 (22) = Y P{Y (21,0) PEY (22;0) emy ® eny,
ni,ne=0
is a generalized eigenvector of 7r?:1 ® 7y, (A (X)) for eigenvalue
2(z1 — z9)sin .
"To determine the action of T on the representation space of the direct
integral representation [ ® m*dp, we need to find the operator T, such

that T = Y o J. Here J is the intertwiner defined in Theorem 4.1. For
appropriate functions g; and go we define an operator T, by

o0

o0
5 ® ®
Tg . LQ(O, OO) ® e?(Z) = / EQ(Z)CZ-'E - / H <_% + ipasaﬂ- - (10) dp’
0 0

roun [10 () (stoiine ) e

From Proposition 4.3 we see that Tg intertwines [ ® o (Xy) dp with
M (2tsing). The functions g; and go for which T = Tg o J are the
Clebsch-Gordan coefficients for the hyperbolic bases. To determine the
Clebsch-Gordan coefficients we use the summation formula in Theorem
3.1. Define the continuous Hahn function by

SOP(I7 t) = ¥p (.’L‘, t7 k17 k27 90)
e—:t(2<p—7r)
T (ky + iz +4t)] (4.9)

« I k:g——i.’l:,kg——kl+%+ip,k2—k1+%—ip_1
32 2ko, ko — k1 + it +1 ’ ’
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Theorem 4.5. Let

(501" (selemes o) (m) 0y,

where @, (T2; 1 — T2) = @, (T2; T1 — T2, k1, ko, @) and m(p) is given by
—2k1—Le(12—z1)(2go—7r)

V2r
T (3 +i(z2—z1) +ip) T (5 +i(z2 — 21) — ip)

m(p) = (~i)» E02)

X
F(kz—kl +i($2—$1)+1)
o [E(2k) T (ky+ ko — 3 +ip) T (kg — k1 + 2 +ip)
T (2ks) T(2ip) ’

then we have T = Tg olJ.

Proof. To show that T = Tg o J, we use the summation formula of
Theorem 3.1 with the orthogonal polynomials written in orthonormal
form. We multiply by a continuous dual Hahn polynomial of degree no
with the same parameters as in Theorem 3.1, with p = nqy — ng > 0.
Then integrating against the corresponding orthogonality measure gives
an equality with the following structure

[0 0]
P(kl) (;L'l (’0) (k2) 332, /Sn2 3F2 2F1 -+ 3F2 2F1)d
0

The oF;-functions are the Meixner-Pollaczek functions as defined by
(2.5). From Proposition 4.2 we see that the left hand side is equal to
T (en, ® €n,) (z1,22). So from Theorem 4.1, with n; > ng, and Propo-
sition 4.3 it follows that the right hand side must be equal to

/5"2 (P)8*(P)OPF (eny—ny—L) (21 — T2) d,u,% (p),
0

where g is a vector containing the Clebsch-Gordan coefficients for the
hyperbolic bases. This gives the desired result. For nqy — ng < 0 the
theorem follows after using (3.1). O

Remark 4.6. The explicit expressions of the Clebsch-Gordan coeffi-
cients as 3Fy-series can also be found in Mukunda and Radhakrishnan
(Mukunda and Radhakrishnan, 1974). The method used in (Mukunda
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and Radhakrishnan, 197}) is completely different from the method used
here.

In terms of the generalized eigenvectors, Theorem 4.5 states that

J (v (21) ® v (22))
/(% $2,w1—$2)> ( m(p) 0 ) (vp,s (z1 —@))d
J o (z2; 71 — T9) 0 m(p)) \wie (21 —22) )
4.3 The continuous Hahn integral transform

Since the continuous Hahn functions occur as Clebsch-Gordan coeffi-
cients for hyperbolic bases, they should satisfy (generalized) orthogonal-
ity relations. We find these relations by formal computations with the
generalized eigenvectors.

For an element f € £2 (Z>0) ® £2 (Z>0) we have the transform pair

((Y£) (21, 22) = (f,v" (z1) @07 (z2)),

S f= //(Tf) (xl,.’L'g) ’U+(931) Qu” (.’Eg) w(kl) (:L'l; (P) (410)

xw®2) (zq; 0} daidzs.

Similarly for f € £2(Z) we have the transform pair

(07°1) (0) = <f, (§§>> e
-2 [ @ (_w;(z) - (x)> (Eii) wola)d.
J ,

(4.11)

D
Denoting the intertwiner J in Theorem 4.1 by J = / Jodp, we find

from Theorem 4.5

(Tf) (z1,29) =
(% (2321 — 362))* (m(()p) L)) (€7 (Jpf)) (x1 — 22) dp.

@y (z2; 71 — 72) m(p
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We want to invert this formula. From (4.10) and Theorem 4.5 we find
formally

Tof = [[(0) @102 0 330wl (2350)
R2

« (goi, (z2;x1 — .’1:2))* (m(p) 0 ) v,*:,‘s (z1 — .’132)) diydzs,
@y (T2; T1 — T2) 0 m(p)) \vpe (z1 — 22)
We substitute z1 = z + ¢, xo — x, then (4.11) with f replaced by J,f
gives

I

wo(t) (_wll(t) i (t)) (07 (J,£)) (8

e () ()
xw®)(z + t; )w*?) (z; p)da.

We denote

" -1
0= 255 (B 9)( L 1)

and (Fg)(z) = (Y f)(z+1t,x), then we have the following integral trans-
form pair with the continuous Hahn functions as a kernel

( Can [ e\ (1 wi) [m(p)?
(J"g)(w)—wo(t)o (J:f@;t)) <'w1(t) 1 )g(p)1—|w1(t)l2dp

80) = [(Fo)@) ("”;(”“ t)) Wz + o) (z; p)de.

z;t
\ 2 ©p(T;t)

In Section 11.5 we give a rigorous proof for this integral transform pair
using spectral analysis of a difference operator for which the continuous
Hahn functions are eigenfunctions. In the next subsection we obtain the
difference operator from the action of the Casimir element in the tensor
product.

4.4 A realization of the discrete series
representations.

The following lemma is based on the fact that sl(2, C) is semi-simple,
so [sl(2, C), sl(2,C)] = sl(2,C).
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Lemma 4.7.

1 1 1 1 1 1
= =[H, X X, + = == —ZX,—= i
4[ 9 (p]+2 ¢+2COSSOH, C 4[H7X‘P] 2XLP 2COSS0H
Proof. This follows from the definition of X, and the commutation re-
lations (4.1). O

This lemma shows that to find the action of the generators H, B and
C on the Meixner-Pollaczek polynomials, it is enough to find the action
of H, since the action of X, is known. The action of H follows from the
difference equation (2.4) for the Meixner-Pollaczek polynomials.

Proposition 4.8. The operator ©F intertwines the actions of the gener-
ators H, B, C in the positive discrete series, with the following difference

operators:
( (k—ia:))'ﬂ-i—M(Qc?Ssom)
isin <p sin
( k + zm)) T_z} o,
isin

=
+M
T (B [ (ZZSlngo _Zx))T-l_M(smgo)
+M
©) = |n
+

—tap +
< 2 smgp (k+ zm)) _l] ©
x
(~graigth- ) T v (-52)
zsmcp sin ¢

. +
M (2zs1n<p(k+m)> T_l} or,

where T' denotes the shift operator: T, f(x) = f(x +a). For the negative
discrete series, © intertwines the actions of H, B, C, with the following
difference operators:
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g

O n, (H) = [M <— —(k — z:c)) T,+M (——2098('030)
zs1n<p sin ¢

( ) T_,} e,
O™ m, (B) = [M ( Sismp ”’)) he <_Siz‘f’>
+M (Qz = (k + zx)) T_i] e,
07, (C) = [M <2Z sm(p - im)) Li+M (sm <p>

+M (— Y k4 z'm)) T_i] o-.

2isin @

Proof. We find the action of H from the difference equation (2.4) for the
Meixner-Pollaczek polynomials;

Ot nf (H) e, = 0% (2n + 2k) e, = (2n + 2k) P (z; )
g
= - (k) 5P p(k)
isincp(k i) Py (x + 45 (,D)+2£L' po P (z;9)

(&

(k) ( —
zsm<p(k+m)P (x —;9).

The action of X, is given in Proposition 4.2:
@+7TI:— (ti) en = 2zsinp Pr(lk)(x; ©).

Then Lemma 4.7 proves the proposition for the positive discrete series.
We find the action in the negative discrete series in the same way, or
we use the Lie-algebra isomorphism 4, given by

ﬂ(H) = —H, ﬁ(B) =C, '9(0) =

Then ;7 (9(Y)) = 7 (V) for Y € su(1,1).
A straightforward calculation shows that these operators indeed sat-
isfy the su(1,1) commutation relations. O

Remark 4.9. To simplify notations we denote ©F 7+ (01)" by 7t and
similarly for m—.

In the same way as in Proposition 4.8 it can be shown that ©7¢ in-
tertwines the actions of H, B and C in the principal unitary series with
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2 x 2 diagonal matrices with difference operators as elements. This is
done by finding a difference equation for the Meixner-Pollaczek func-
tions u, and u}, using contiguous relations for oF}-series. We do not
need these realizations here, so we will not work this out.

To express A(Q) in terms of H, B and C, the coproduct A is extended
to U (su(1,1)) as an algebra homomorphism. Then from the definition
of the Casimir element (4.2) we find

AQ)=100+001—- -21-H®H— (C®B+B®C).  (4.12)
Using this expression and Proposition 4.8, we find the following.
Proposition 4.10. In the realizations of Proposition 4.8, we have

7:',":1 ® Ty, (A(2))

T1=z+t, To=z
=M (—e 2% (ky +i(t + z)) (k2 + iz)) T
+ Mkt (1—Fk1)+ ko (1 — ko) —2(z +t)x)
+ M (=¥ (ky —i(t + x)) (ke — iz)) T,
where the shift operator T acts with respect to x.
Proof. Let F(x) and Fy(z) be polynomials in z, and let f(z,t) = Fy(z+
t)Fa(x), then a large but straightforward computation yields
T @7, (AQ)) f(z,t) =[ki (1 — k1) + ko (1 — ka) — 2(z + t)z] f(, )
— e 8 (ky +i(t + 2)) (ko + iz) f(z — i, 1)
— %% (ky — i(t + z)) (ko — iz) f(z + i, 1).
O

Remark 4.11. The action of ) in the tensor product can also be found
from

ﬂ-l—:(H) = M(2iz), WI:(H) = M(—2iz),
7 (B) = M(k — ix)T;, 7, (B) = M (e™%%(k + iz)) T,
T (C) =Mk +iz)T—, 75 (C) =M (e**(k —iz)) T;.

These realizations are equivalent to the realizations given in Proposition

4.8.

In the next section we show that the continuous Hahn functions
o (x;t, k1, ko, ) are eigenfunctions of the difference operator of Propo-
sition 4.10, and we work out the corresponding integral transform.
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5. The continuous Hahn integral transform

In this section we study a second order difference operator. This
difference operator is obtained from the action of the Casimir operator
on hyperbolic basis vectors in the tensor product of a positive and a
negative discrete series representation of su(1, 1), see Section 11.4.2. The
spectral analysis of this operator, leads to an integral transform pair
with a certain type of 3Fb-series as a kernel. We call these 3F5-series
continuous Hahn functions, because of their similarity to continuous
(dual) Hahn polynomials. The method we use is based on asymptotics,
and is essentially the same method as used by Gotze (Gotze, 1965) and
Braaksma and Meulenbeld (Braaksma and Meulenbeld, 1967) for the
Jacobi function transform by approximating with the Fourier transform.

5.1 The difference operator A and the
Wronskian

For k1, k2 > 0, t € R and 0 < ¢ < 7 the weight function w(z) is
defined by

w(z) =
L e @ (k) 4 it + i) T (ky — it — i) T (kg + iz) T (ks — iz)

27
(5.1)
The difference operator A is defined by

A:g(z) = ap(z)g(z +14) + B(2)g(x) + a—(z)g(z — ),
where

ot (z) = —eF2 (ky T iz) (k) Ti(t + ),
ﬁ(l‘) =k (1 — kl) + ko (1 — ]CQ) — 2(t + .'L')I

Initially A is defined for those g(z) € L?(R,w(z)dx) that have an ana-
lytic continuation to the strip

Sc={2€C:|¥(z)|<1+¢, €>0}.

The difference operator A corresponds to the action of the Casimir op-
erator in the tensor product of a positive and a negative discrete series
representation on hyperbolic basis vectors, see Proposition 4.10.

Remark 5.1. Observe that the functions

6_1(2“’_")]9" (z; k1 + it ko, k1 — it, k),
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where p, is a continuous Hahn polynomial in the notation of (Koekoek
and Swarttouw, 1998), form an orthogonal basis for L?(R,w(zx)dx), but
they are not eigenfunctions of A. Also, the functions

6"2(Pxpn (CL', k1 + it, k27 k1 — it, k2)
are eigenfunctions of A, but they are not elements of L*(R, w(z)dz).

‘We define

N
un = [ 1@ (e
-M
Then N }&Im (f,9) 3z v 1s the inner product on L%(R, w(z)dz), so (f, 9) s &
) —00 ’ !
is a truncated inner product.

Definition 5.2. For functions f and ¢ analytic in S;, the Wronskian
[f, g] is defined by

y+i

[f,9)(y) = / {f(2)g"(z = 9) = f(z - 9)g"(2)} a(z)w(z)dz.

Proposition 5.3. Let f and g be analytic in S;, then

(Af, 9y — (F Mgy ar = [F5 gl(N) = [f, 91(—=M).

Proof. Observe that off = a_, ai+(z Fi)w(z Fi) = of(z)w(z) and

B*(x) = B(z). Furthermore for z € R we have g*(z+1¢) = g(z F4). This
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gives for the Wronskian
y+i

£, 9] / (@)@~ i) - f(z - i)g* ()} a—(z)u(z)dz

y+z

/ f(z)g* (z — i) (2)w(x)dx

: / (o= " ()a-(z)u(@)ds
v

_ / F(@)g* (@ — D)oy (@ — D)w(z — §)dz

- / f(@)g*(z + Ha_(z + i)w(z + i)dz
For f and g analytic in S, we find
N
[ @ @)z
M
N
= [ @@+ + 8@ (@) + a-(@)f(z - D] g @u(z)ds
N—_l_—fw N
= / ar(z —19)f(z)g"(z — Hw(z — i)dz + / B(z) f(z)g" (z)w(z)dx
~M+i -M
N—i
+ / a_(z+13)f(x)g"(x + )w(x + i)dx.
—M=—i
We choose a different path of integration

N—i -M N—i
/ - /+/+/
-M—-i -M—-i - N

N+i
and similarly for [ . Then we find
~M+i
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/ a_(z+1)f(z)g*(z + )w(z +1)dz
—M—i
N
- / a_(z+1)f(z)g"(xz + )w(z +i)dx
N—i
N+i
+ [ asla- 1@ - dula - i)da
N
—M+i
- / at(z — ) f(2)g*(z — Dw(z — i)dz
M
N

+ / f(z) [a—(z +9)g*(z + Dw(z + ©) + B(z)g* (z2)w(z)
M

+ ay(z —i)g" (z — Dw(z — 1) dz.

N
The last integral [ equals
-M

N
/ f(z) [a’i (z)g"(x + 1) + 8" (z)g™ () + of (2)g" (z — z)} w(z)dx
M

N

:/fwmwummm,

-M

and in the other four integrals we recognize [f, g|(N) — [f, g](—M).

253

a

Our first goal is to show that A is a symmetric operator on a domain
which will be specified, so we are interested in the limit of the Wronskian
[f, 9](y) for y — xoo. The following lemma is useful in determining these

limits.
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Lemma 5.4. Let ky,ky > 1, z € R, and —1 < y < 1, then the weight
function w(x + iy) has the following asymptotic behaviour

w(z +iy) =
oretlo—m+diy(p—m) p2k1+2k2 =2 ~d(m—p)e (1 L O (l)) , T — 00,
T
27r62<pt+4icpy|$l2k1+2k2—-2e4<pa: (1 +0 (}_) , T — —00.
X

Proof. From Stirling’s asymptotic formula (Olver, 1974, (8.16)) we find
foru>0andvelR

v

I‘(u—i—iv) - /271' \vlu+iv——%e—(u+iv) e(iu—v) arctan(v/u)+(') (1) , U — +o00.

We use
7, v>0,

-5, v<0,

v u
arctan — + arctan — =
U v

to find for v — +oo

(i — v) arctan = = (iv — v) (:J:g - %) <1 +0 (%)) .

So we have, for v — £oo0,
) N 1
F(u—i—w) = or |,U|u+w—%e—7r|v|/2—w:i:7mu/2 <1 + 40 <_)) )
v

Applying this formula to the four I'-functions in (5.1) gives the asymp-
totic behaviour of the weight function w(z + ty). O

In general, if for some € > 0

/eelxld,u(:c) < 00,

R

then the moment problem for the measure dy is determinate, see, e.g.,
(de Jeu, 2003) and references therein. Using this criterion with 0 < ¢ <
min{4yp, 4(w — @)}, we find from Lemma 5.4 that the moment problem
for the measure w(z)dz is determinate. In particular this shows that
the polynomials are dense in L2(R, w(z)dz).

Let D be the space of polynomials on R, then D is a dense subspace
of L2(R,w(z)dz). Since

a_(z +iy) = e 2%g? (1 +0 (1)) ,  x—o oo, (5.2)

x
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it follows from Definition 5.2 and Lemma 5.4 that Nliril [f,9l(N) =0
—Fo0
for f, g polynomials. Hence by Proposition 5.3 we find

Proposition 5.5. The operator (A, D) is a densely defined symmetric
operator on L*(R, w(z)dz).

Remark 5.6. The operator (A, D) is also densely defined and symmetric
on the space spanned by e‘m(Q‘P_”)pn(m), where p, is a polynomial, cf.
Remark 5.1.

5.2 Eigenfunctions of A

We determine eigenfunctions of A, using contiguous relations for 3 F»-
functions. First note that for a monic polynomial of degree n, p,(z) =
™ + .-, we have

(Apn) (z) = [a4(z) + B(z) + a—(z)] " + lower order terms.

Since o (z) + B(z) + a—(z) is a polynomial of degree 2, A raises the
degree of a polynomial by 2. Therefore A cannot have polynomial eigen-
functions.

Let p(z) be the i-periodic function

p(z) = %em sin ( (k1 — it — iz)) (5.3)

and let ¢,(x) = o, (z;t, k1, k2, @) and ®,(z) = ®, (z;t, k1, ka2, ) denote

the functions
- I'(1— kg +it+ix)
— 2¢x
Pplz) = e p(z) [ (k1 + iz + 4t)
« oF kz—iﬂﬁ,kz—k‘1+%+ip>k2—k1+%—il),1
32 ko, ko — k1 + it + 1 )
I'(1—ky + it +4z) T (1 — kg + iz)
D (ki +iz+it)T (3 — k1 + iz + ip)
< F k‘z——kl-i——%-i-ip,%—kl—kg-l-ip,%—it-l-ip.1
372 1+2ip,%—k1+ix+ip T

(5.4)

By(z) = e **p(x)

(5.5)

Both 3F)-series are absolutely convergent for R (k; + it + iz) > 0. Note
that the expression for p,(x) is the same as (4.9) after applying Euler’s
reflection formula.

Proposition 5.7. For ki > 1, the functions @,(x) and ®,(z) are eigen-
functions of A for eigenvalue (,02 + %)
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Remark 5.8.

(i)

Observe that due to the i-periodic function p(x), p,(x) is an entire
function. Denote ¢,(x) = po(x)/p(x), then p(x) cancels the poles
of ¢,(x). There are more choices of i-periodic functions that cancel
the poles of ¢,(x). One of the reasons for this particular choice, is
that it appears in the Lie-algebraic interpretation of the function
@,(x), see Theorem 4.5. We come back to the choice of the i-
periodic function in Remark 5.15.

Observe that ¢y (x) is obtained from p,(z) by the substitutions
(z,t,¢) — (—z,—t,m — @). Since the difference operator A and
the weight function w(x) are invariant under these substitutions,
it follows from Proposition 5.7 that, for ki > 1, ¢j(x) is also
an eigenfunction of A for eigenvalue (p2 + %) A similar argu-
ment shows that ®7(x) is an eigenfunction of A for eigenvalue
(p2 + %) Obviously ®_,(z) and ®* () are also eigenfunctions of
A for eigenvalue (p2 + %)

Proof. Combining the contiguous relations (Andrews et al., 1999, (3.7.9),
(3.7.10), (3.7.13)), gives

(d—a)(e—a)[Fla—)—F]+ala+b+c—d—e+1)[F(a+) — F]

= —bcF,

b, c +1,b,¢c
F:3F2<ade ﬂ)’ F(ai):3p2<a de ;1>'

From this relation we find that

I'(1—k;+it+ix)
T (ky + iz + it)
% 3 F <k2—ia:,k2—k1+%+ip,k2—k1+—%———ip _1)
2ko, ko — k1 +it+1 ’

e——2gaa:

is an eigenfunction of A for eigenvalue p? + %. And then, since p(z) is
i-periodic, ¢,(z) is also an eigenfunction for eigenvalue o+ %. Since
¢,(x) must be analytic in S, the condition k1 > 1 is needed for absolute
convergence of the 3 Fy-series at the point = + 4.

Denote

a,btl,cx1
Fi(aF) = 3F2< ; )

d+le+l ’
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From contiguous relations (Andrews et al., 1999, (3.7.9), (3.7.10), (3.7.13))
we find

[(d—1)(e—DF_(at+) = (b—1)(c— 1)F] — (a—1)(d+e—a—b—c)F

" [”C(d — = (a-) - (d - a)fe - a)F] =0.

From this we see that
C(1—=Fky+iz)T(1 4 2ip)T (1 — ky + iz + 4t)
T (3+it+ip)T (k1 + % +ip+iz)T (3 - ki + 42 +ip)

1 . . . .
s — it 1—ky+iz,k

x e Mrp(a)y By (2 TP TRTIM BRI ) g
ki+5+iz+ip, 5 -k +ip+ix

P, (z) =

is another eigenfunction of A with eigenvalue p? + %. The 3Fy series

converges absolutely if 3 (% +ip+ it) > 0, so absolute convergence does
not depend on k;. Using (Andrews et al., 1999, Cor. 3.3.5) this can
be written as (5.5), and for this expression the condition k; > 1 is
needed. O

The function ¢,(z) can be expanded in terms of ®,(z) and ®_,(z).
Proposition 5.9.

vp(z) = c(p)@p(z) + c(=p)®—p (),
where
[ (2k) T (ko — k1 + it + 1) I'(—2ip)
c(p) = T — -
F(k1+k2-—§—zp)f‘(—2- +zt—zp)I‘(k2—k1+§—zp)
Proof. This follows from (Bailey, 1972, p. 15(2))

2 a,b,c 1) = I['(1 - a)I(d)T'(e)I(c — b)
2\ de 7)) T T(d=b)T(e—bI(L+b—a)(c)
bb—d+1,b—e+1
X af% ( 1+b—c,1+b—a ’1>
+ idem(b; c).

Here idem(b; ¢) after an expression means that the expression is repeated
with b and ¢ interchanged. a

In the next subsection we consider the Wronskians [¢,, o] (y) and
[go;*,, @0 (y) for y — oo, so we need the asymptotic behaviour of Pp-
We find this from Proposition 5.9 and the asymptotic behaviour of &,,.
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Lemma 5.10. Let k1 > 1, pe C and -1 <y <1. Forz — +o0
Bp(z +iy) = pl(a + iy)e™ 2@+ (jg) 31 —haip

{1+ gz Ao +uBe) +o (5) ],

B4(x + iy) = p*(z + iy)e” W) (_jg)z—Ri—katD

x {1+-—— (o) - vBG)) +o(;2)}

where

1 3
Alp) =2t (1= k) + (b = ko = g —ip) (5 = b = ka+ i)

+(k2 k1+ +zp)(———k1 kg—i—zp)(——zt-f-zp)
3+ip
B(p) = 2ky + 2kg — 1 + 2ip.

Y

Proof. This follows from (5.5) and the asymptotic formula for the ratio
of two I'-functions (Olver, 1974, §4.5)

%% = 2o (1+%(a—b)(a+b— h+0 (%)) (5.7)

|z| — 00, |arg(z)| <.
The first part of the expression for A(p) is obtained from
(a1 — b1) (a1 + b1 — 1) + (a2 — b2) (ag + bg — 1),

the second part comes from the second term in the hypergeometric series.

(i

The asymptotic behaviour of the i-periodic function p(z) is also needed;

eim(k1+2y) . e—imk1
) — (2z+t) _ —7t
p(z+1y) omi omi ©
im(k1+2y)
e_zm'“ew(mﬂ +0(1), z— o0,
e—-iﬂ'kl

e——'/rt + o) (627”':) , T — —00,

27
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eivrkl e—iw(kl——Qy)
* ) — —mt _ m(2z+t)
Pz +w) 2mi ¢ 2me €
—i7l'(k1 —2y)
~E @ L 01), o,
™
e’iﬂ‘kl
—%—ie_” + O (62”) , T - —00.
5.3 Continuous spectrum

We determine the spectrum of the difference operator A. In this
subsection we consider the case where the spectrum only consists of
a continuous part.

Since

'(im)%—kl—kz—iﬂ? _ |$|1—2k1—2k2+23(P)e‘"§R(P)7 T > 0,
- lxl1—2k1—2k2+23‘(,0)e"7"%(/’), x <0,

we find from Proposition 5.10 that
1B,(z)[> w(z) = O (|x;28<9>—1) . & — oo (5.8)

So ®,(z) is an element of L?(R, w(z)dz) for 3(p) < 0. This shows that
it is possible to give eigenfunctions of A for complex eigenvalues. We
only consider eigenfunctions which are even in p, and in that case all
eigenvalues of A are real.

First we consider the continuous spectrum of A. We show that [, co)
is contained in the continuous spectrum. Assume that p is real and that
the c-function in Proposition 5.9 does not have zeros, or, equivalently,
assume that ki + ky > % and kg — k1 > —%. Since we only consider
even functions in p, we may assume p > 0. We use Proposition 5.3 to
calculate the truncated inner product of two eigenfunctions. This gives

fork; >1and p#o

- [QOp, 900] (Ng2__[‘§/;7 900] (_M) . (5‘9)

<90p, 900>M,N

Multiplying both sides with an arbitrary function f(p) and integrating
over p from 0 to oo, gives

[, 9ol (N) = [0, 0] (=M) ,
o2 — o2

/f(p) (Pps Po) N dp = /f(p) p-
0 0

(5.10)
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The function f(p) must satisfy some conditions, which we shall deter-
mine later on. We take limits N, M — oo on both sides. To determine
the limits of the Wronskians, the following lemma is used.

Lemma 5.11. Let k1,ke > 1 and p,o0 > 0. For x — +o0

821 (0) = £ D5 () + )lal e (140 (1)),

where ‘
D*(p,0) = 51- ot 2o—m) g LT (pto+2t)
T

Proof. From Lemma 5.10 we find for 0 <y <1 and z — o

Bp(z +iy) By (z + iy — i) — Bp(z + iy — )85 (z +iy)
— e2icp—4i<py+4i7ry—4npx |I|1_2k1 —2ka |p(:l:) |2 (il‘)—ip(——i.’l:)w

XB(/?)2;$B(0) (1 L0 (%))

— e2icp—4i<py+4i7ry—4<pm |x|1-—2k1—2k2 \p(m) |28ﬂ:%7r(p+a) lx|i(a—p)

(e D)

Using the asymptotic behaviour of p(z) and Lemma 5.4, we find the
asymptotic behaviour of the integrand of the Wronskian. Note that
this is independent of y. In a similar way we find the same asymptotic
behaviour of the integrand for x — —oo. Now the lemma follows from
writing the Wronskian as

41 1
/ f(z)dz = z/f(:v +1is)ds,
x 0
and applying dominated convergence. O

Proposition 5.12. Let ¢ > 0, and let f be a continuous function sat-
isfying
@) (e“’”’p%?_%_s) , p—oo, €>0,
fp) = 5
o (), p—0, 6>0,

then

Jm [ 76) on ool do = W5 ()5(0),
0
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where
1

1 1
Wo(0) = 5= et 2e=m) ID(5 +ito) (5 — it + io))?

2
F(k:g — k1 + %— +i0‘)F(k1 + ko — % -|-i0')
T(2ka)T (kg — Ey + it + 1)T(2i0)

Proof. Let ki, ks > 1. We use (5.10) to calculate

o0
I&EHOO/JC(P) <‘Ppa$0<r>N,N dp.
0

From the c-function expansion, see Proposition 5.9, we obtain
[eor ol (@) = Y clep)e(6o) [Bep, Beo) ().
ete{~1,1}
Then (5.9) and Lemma 5.11 give, for N — oo,

<‘Pp7 800>N,N =
i(§o—ep) R
e e (D (en ) + D (epe)] (140 (1) )

ep—Eo

2

e¢e{-1,1}

From (5.10) we find

N—oo

lim / f(0) (o, o)y v dp
0

¢}

— Jim / 7(0){$1() cos ([p + 0] In N) + ¥iz(p) sin ([o + o] In N)

N-—-oco
0

+93(p) cos ([p — o] In N) + 14(p)

sin([p—a]lnN)}dp
p—o ’

where
1

$(p) = = [Ap)e(=) (D* (9, ~0) + D™ (p,~0))

(
—e(=p)ele) (D¥(=p,0) + D™ (=p,0))] ,

<
=
)
g
I
Py
>
2
|
Q
—
]
+
)
|
S
+
!
i)
I
Q
N
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¥s(6) = —— [e(0)a(@) (D*(p, ) + D (p,0))
~e(=p)e(=0) (D*(=p,~0) + D™ (=p, )] ,
$a(p) = =i |e(p)e(0) (D*(p, ) + D™ (p, )
+e(=p)e(—0) (D*(=p, ~0) + D~ (=p,~0))] -

Writing out explicitly the terms between square brackets for 3 gives,
for p =0,

['(2ko) T (ko — k1 + it + 1) T'(2ip)
T (ki+ky—3+ip) T (ka— k1 + 5 +ip)
sin (m(% + it + ip)) _sin (m(3 — it +ip))
P& —it+ip)|°  |T@E+it+ip)|
From Euler’s reflection formula it follows that this is equal to zero. So
13 has a removable singularity at the point p = .
From the Riemann-Lebesgue lemma, see, e.g., (Whittaker and Wat-
son, 1963, §9.41), it follows that for fv; € L'(0,0), i = 1,2, 3, the terms

with ¢;, ¢ = 1,2, 3, vanish. This leaves us with a Dirichlet integral, for
which we have the property (see, e.g., (Whittaker and Watson, 1963,

§9.7))

et(2cp—7r)

o0

tim 1+ [ o220 gy - g, (5.11)

t—o0 T x—y
0

for a continuous function g € L'(0,c0). This gives for a continuous
function f that satisfies fzpff € L(0, ),

lim_ [ (6) (0aripo) v dp = 7 (@)a(0)

N—ooo

— 1 t(2p—7) —m(o+t) w(o+t) -
=3¢ {(e +e ) c(o)e(o)

n (e—ﬂ(a ~t) | omlo~ t)) }f(a
I (2k2) T (kg — k1 + it + 1) ['(2¢0)
T (ks — ki + 5 +i0) T (k1 + ko — 5 +40)
y sin( (1 +it+ia)) 4 sin (7r (l—it—}—ia)) f(a)
lI‘ % 7,t+w)| |I‘ —i—zt—l—w)|
= W' (0)f(0)-

— et(2<p—7r)
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In the last step Euler’s reflection formula is used. The conditions k1, ks >
1 can be removed by analytic continuation. Since

Wity = {010 15E), o = on
O (0‘ ) , o — 0,
we find that the proposition is valid for the conditions of f as stated. O

Next we consider the truncated inner product (w;, <Pa> yy and the

corresponding Wronskians. We need to find the analogues of Lemma
5.11 and Proposition 5.12.

Lemma 5.13. Let k1 > 1 and p,0 > 0. For x — +o00

x

[8,2) (@) = B0 0)(p - laf ) (140 (1)),

where .
E*(p,0) = o ot (2p—m) (F ymi(2k1 —2ka+iptio+2it)
Proof. The proof is similar to the proof of Lemma 5.11. ]

Proposition 5.14. Let 0 > 0, and let f be an even continuous function
satisfying

© (e_””p%‘%“s , p—oo, &£>0,
flp) = { )

O(/’é)> p—0, §>0,
then N
A}{{noo/f(f?) (eppa) .y do = Wi o) (o),
0
where
Wi(o) = etizo—m) LELZ k2 + )T (4 it i) T (% it io)
2 (ko — k1 — it + 1) T (2k2)

y F(kzz—kl-’r%——}-iO’)F(kl-l-kz—-%-—}—id) 2
I'(2i0)

Proof. The proof runs along the same lines as the proof of Proposition
5.12, therefore we leave out the details.
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As in the proof of Proposition 5.12 we find from Lemma 5.13

0

jm_ [ f(p){¢1(p) 0s ([ + o] 1n N) + (o) sin (jo + o] In V)
0

N—oo

+ips(p) cos ([p — o] In N + va(p) sin ([p — o] In N) } "

p—0C
where
91(p) = = [)e(0) (B* (pr) = E~(5, )
—e(=p)e(=0) (B*(—p,~0) = E~(=p,~0))| ,
a(p) = —— [elp)e0) (B*(p,) = B (1, )

+e(=P)e(=0) (E*(=p, ~0) = B~ (=p,~0))] ,
0a(p) = = [{=1() (B (=p,0) = B (=p,0)

—e(p)e(=0) (B*(p,~0) — B~ (p,~0))] ,
$alp) = i [e(=p)e(0) (B* (=p,0) ~ B (~p,0))
+o(p)e(=0) (B* (p, —0) = B~ (p,~0)) ]

For p = o the term between the square brackets for i3 is equal to
zero, so 3 has a removable singularity at the point p = o. So, for
fi; € LY(0,00), i = 1,2,3, the terms with 4;, s = 1,2,3, vanish by
the Riemann-Lebesgue lemma. This leaves us with a Dirichlet integral.
Then, after applying (5.11), we find for fi4 € L1(0, c0)

Jm [ 1006500 o= mis) @)
]

Writing out 4 explicitly gives the result. O

Remark 5.15. In Remark 5.8 we observed that the i-periodic function
p(zx) cancels the poles of py(x). Other obvious choices with the same



Continuous Hahn functions 265

property would be e**™*p(z), for k € Z. However for k # 0, the method
we used here to find an integral transform pair would fail, since the
method depends on the use of the Riemann-Lebesque lemma and the
Dirichlet kernel, which can no longer be used in case k # 0. This can,
e.g., be seen from Lemma 5.11, where the terms in front of |9:]i(”_p)
would contain a factor e2*7*. So this gives a heuristic argument for the
choice (5.3) of the i-periodic function.

Let f be a continuous function satisfying,

_Jo (p"%?_ee’”’) , p—oo, €>0,

flp) = {(9 (pg) ’ p—0, §>0, (5.12)

and let f be the vector O

_(flp

)=y (p)> '
We define, for 2 € R, an operator F by
(78) @ = [ (0@ T@ + 0@ 1() Wolo)dp.  (5.13)
0

To verify that this is a well-defined expression, we determine the be-
haviour of ¢,(x) and Wy(p) for p — oo and p | 0. From Thomae’s
transformation (Andrews et al., 1999, Cor. 3.3.6) we find

o p—2k267rp y P00,
pp(z) = ( )
(1), p—0.
And from (5.7) we obtain

B O (p4k2—le-—27rp) . p— 00,
Wo(p) = {0(1)’ 0 —0. (5.14)

Then we see that the integral in (5.13) converges absolutely for f satis-
fying (5.12).
For a continuous function g satisfying

1
(@] |x|5_k1"k2_562(““?)m) , T—o00, £>0,

5.15
ot ot e gn0 O

g(z) =

we define, for p > 0, an operator G by

(Go)(p) = R/ o) (522 wla)iz (5.16)
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From the asymptotic behaviour of ¢%(z) and w(z) for x — +oo, see
Lemmas 5.4 and 5.10, it follows that the integral in (5.16) converges
absolutely.

Proposition 5.16. If g = Ff, and g satisfies the conditions (5.15),

then
_ 1 Wo(p)/W1(p)\ ( f(p)
(G9)(e) = (Wo<p>/—wl<p> 1 ) f(p)) '

Proof. For a function g satisfying (5.15) we define operators G; and Ga
by

(G19) (p) = / o(2)g () (z)dz,

R

(G29) (0) = / o(@)pp(zul(z)dz,

R

_ ((G19) (p)
@00~ (G0 ()
If g(z) = (Ff)(z) satisfies the conditions (5.15), then the integral

(5.17)

then we have

(619)(0) = / (F 1) (@)} (2)w(z)da

R
converges absolutely. So from (5.13) we obtain

N

(G19) () = Jim_ [ ¢3(2)

-N

X {O/<Pp Flp)Wolp )dp+0/ pp(a )f(p)Wo(p)dp} w(z)dz,

and interchanging integration gives

)
(G19) (o / Sop,‘Pa>NN dp
0

+1\}Enoo/f(p)W0(P) <‘P:n 900>N,N d
0
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From (5.12) and (5.14) it follows that the functions f(p)Wo(p), f(0)Wo(p)
satisty the conditions for Propositions 5.12, 5.14 respectively. Apply-
ing the propositions gives (Gig) (¢) = f(o) + f(o)Wo(o)/ Wi (o).

the same way (G2g) (0) can be calculated. So we find (Gog) (o) =

(o) + f(o)Wo(o)/ Wi (o). O
We define an operator F by

-1
(F£)(z) = (ﬁ <WO}W1 Wo{m) f> ()

07 () Cmpmm ") e

y (W) %dp

f(0)) 1 _ W) |?
Wilp)

From Proposition 5.16 we find (G(Ff)) (p) = £(p).

Remark 5.17. From Euler’s reflection formula and the identity

2sinzsiny = cos(z — y) — cos(z + y),

we find
Wo(p)|? I (s + it +ip) T (3 — it +ip) 2
1— - .
Wi(p) T (ki —ko+ 3 +ip) T (ke — k1 + § +ip)
We define

1/’/)(5’3)
e~ (1 —it —ip) T (3 — it +ip) T (2ka) T (ke — by + it + 1)
F(k?l +i$+it)F(k2—i.’E)F(k1 —|—]€2—-it)r(k1 —k2—it+1)
zt+zp,— — it —ip, k1 —ix — it
E: ;1
%3 2( ki—ko—it+ 1,k +ko—it ’ ’
then from (Bailey, 1972, §3.8(1)) we obtain

Wi(p) * IT (k2 — k1 + L +ip)|?

So the definition of F (5.18) is equivalent to

Pp(T) —

o0

o = [ (jz(f;’)) (73) Wa(p)dp,

0
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where

e—H20—m)

R

T (ky—ko+ 3 +ip) T (ka — k1 + 5 +4p) T (ks + ko — & +ip) |
[ (2ko) T (kg — k1 + it + 1) I'(24p) '

Wa(p) =

Note that Wa(p)dp is the orthogonality measure for the continuous dual
Hahn polynomials.

The function Ff exists for all functions f for which the integral (5.18)
converges. We want to find a domain on which F is injective and isomet-
ric. We look for a set S of functions for which S is a dense subspace

of L2(R,w(z)dz). Recall that the set of polynomials is a dense subspace
of L?(R,w(z)dz).

Lemma 5.18. Let p,({\)(-;cp) denote a Meizner-Pollazcek polynomial as
defined by (2.2), then

(gpn ( ,w)) () = an(p) a(p))’
with g, given by
elt=ik2)(29—7) T (2ko) |(k2 — k1 + % + ip)n|2
(1 _ 6_21:(‘0)2]62"‘” ’n,' (k)Q - k]_ + it + 1)n

< ntky—kit+i+ipntk—ki+i—ip 1
2 n4 ko — ki +it+1 1 eZiv )

Proof. Let Gi and Ga b