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1

Introduction 

Where do problems come from, and what do we do with them once we have them? 
The impression we get in much of schooling is that they come from textbooks or 
from teachers, and that the obvious task of the student is to solve them. 
Schematically, we have the following model: 

Problem Solve 

Given by authority 

Task for student 

The purpose of this book is to encourage a shift of control from "others" to 
oneself in the posing of problems, and to suggest a broader conception of what can 
be done with problems as well.1 Why, however, would anyone be interested in 
problem posing in the first place? A partial answer is that problem posing can help 
students to see a standard topic in a sharper light and enable them to acquire a 
deeper understanding of it as well. It can also encourage the creation of new ideas 
derived from any given topic—whether a part of the standard curriculum or 
otherwise. Although our focus is on the field of mathematics, the strategies we 

We do not provide a formal definition of "problem" here, for the issue is more complicated than it 
might appear on the surface. For an effort to define the term see Gene P. Agre "The Concept of Problem," 
in Educational Studies, 13(2), 1982, 121-142. For critical commentary on the definition of problem, see 
Stephen I. Brown, Reconstructing School Mathematics: Problems with Problems and the Real World, 
New York: Peter Lang, 2001, pp. 72-80. 

1 
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discuss can be applied to activities as diverse as trying to create something 
humorous, attempting to understand the significance of the theory of evolution, or 
searching for the design of a new type of car bumper. 

Have you thought, for example, of designing car bumpers that make use of 
liquid or that are magnetized, or shaped like a football? The creation of air bags 
suggests yet another option that was not available to us when the first edition of this 
book was published: that bumpers might be capable of inflation on impact. Or, have 
you thought of the possibility that they may be made of glass, the fragility of which 
might discourage people from driving recklessly or relying so heavily on the use of 
the automobile? 

In addition to teaching explicit strategies for problem posing, there is an 
underlying attitude toward "coming to know" something that we would like to 
encourage. Coming to know something is not a "spectator sport," although 
numerous textbooks, especially in mathematics, and traditional modes of 
instruction may give that impression. As Dewey asserted many years ago, and as 
the constructivist school of thought has vigorously argued more recently, to claim 
that "coming to know" is a participant sport is to require that we operate on and 
even modify the things we are trying to understand.2 The irony is that it is only in 
seeing a thing as something else that we sometimes come to appreciate and 
understand it. This attitude is central to the problem posing perspective developed 
in this book—found especially in chapter 4 and beyond as we explore what we 
have coined a "What-If-Not" stance. 

Our strategy in this book for revealing and analyzing issues and ideas is 
generally an inductive one. Whenever possible, we attempt first to expose some 
problem posing issue through an activity that gets at it in an implicit and playful 
manner. After there has been some immersion in an activity, we turn toward a 
reflection on its significance. We believe that it is necessary first to get "caught up 
in" (and sometimes even "caught," in the sense of "trapped by") the activity in order 
to appreciate where we are headed. Such a point of view requires both patience and 
also an inclination to recover from discomfort associated with being "caught." 

One way of gaining an appreciation for the importance of problem posing is 
to relate it to problem solving—a topic that has gained widespread acceptance 
(or rejuvenation, depending on your point of view). Problem posing is deeply 
embedded in the activity of problem solving in two very different ways. 

First of all, it is impossible to solve a new problem without first reconstructing 
the task by posing new problem(s) in the very process of solving. Asking questions 
like the following, propel us to generate new problems in an effort to "crack" the 

See John Dewey, Reconstruction in Philosophy. Boston, Beacon Press, 1957, for an analysis of 
such a conception of "coming to know." For a modern-day statement (as well as critical dialogue), see 
D. C. Phillips & Margaret Early (Editors), Constructivism in Education: Opinions and Second 
Opinions on Controversial Issues: Ninety-Ninth Yearbook. Washington; DC, National Society for the 
Study of Education, 99( 1), 2000. This point of view is expressed in many of the documents known as 
the "Standards," which we mention further in the final section of this chapter. 
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original one: What is this problem really asking, saying, or demanding? What if I 
shift my focus from what seems to be an obvious component of this problem to a 
part that seems remote? 

Second, it is frequently the case that after we have supposedly solved a problem, 
we do not fully understand the significance of what we have done, unless we begin 
to generate and try to analyze a completely new set of problems. You have probably 
had the experience of solving some problem (perhaps of a practical, nonmath­
ematical nature) only to remark, "That was very clever, but what have I really 
done?" These matters are discussed with examples in chapter 6. 

Often our formal education suppresses the relationship between the asking of 
questions—both new and "off-base"—and the coming up with answers. In a book 
that calls for a revised attitude toward education, D. Bob Gowin commented: 

Recently a teacher was overheard to announce: "When I want your questions, I'll 
give them to you." Much of school practice consists of giving definite, almost 
concrete answers. Perhaps boredom sets in as answers are given to questions that 
were never asked.3 

More than boredom is at stake, however, when we are robbed of the opportunity 
of asking questions. The asking of questions or the posing of problems is a much 
more significant task than we are usually led to believe. The point is made rather 
poignantly in the story of Gertrude Stein's response to Alice B. Toklas, on 
Gertrude's death bed. Alice, awaiting Gertrude's legacy of wisdom, asked, "The 
answers Gertrude, what are the answers?"—whereupon Gertrude allegedly 
responded, "The questions, what are the questions?" 

The centrality of problem posing or question asking is picked up by Stephen 
Toulmin in his effort to understand how disciplines are subdivided within the sciences. 
What distinguishes atomic physics from molecular biology, for example? He points 
out that our first inclination to look for differences in the specific content is mistaken, 
for specific theories and concepts are transitory and certainly change over time. On the 
other hand, Toulmin commented: 

If we mark sciences off from one another ... by their respective "domains," even these 
domains have to be identified not by the types of objects with which they deal, but 
rather by the questions which arise about them.... Any particular type of object will 
fall in the domain of (say) "biochemistry," only in so far as it is a topic for corres­
pondingly "biochemical" questions.4 

An even deeper appreciation for the role of problem generation in literature is 
expressed by Mr. Lurie to his son, in Chaim Potok's novel In the Beginning: 

3D. Bob Gowin, Educating. Ithaca, NY: Cornell University Press, 1981, p. 127. 

Stephen Toulmin, Human Understanding. Princeton, NJ: Princeton University Press, 1977, p. 149. 
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I want to tell you something my brother David, may he rest in peace, once said to me. He 
said it is as important to learn the important questions as it is the important answers. It is 
especially important to learn the questions to which there may not be good answers.5 

Indeed, we need to find out why some questions may not have good answers. For 
example, the questions might seem foolish or meaningless; or it might be that the 
questions are fundamental, personal human questions that each of us fights a 
lifetime to try to understand; it may be that they are unanswerable questions 
because they are undecidable from a technical point of view—an issue in the 
foundations of mathematics associated with Godel6; it might also be, however, that 
our perspective on a problem is too rigid and we are blinded in our ability to see how 
a question might bear on a situation. 

The history of every discipline—including mathematics—lends credence to the 
belief not only that it may be hard to distinguish good questions from bad ones in 
some absolute sense, but that very talented people may not be capable of seeing the 
difference even for a period of centuries. For a very long time, people tried to prove 
Euclid's fifth postulate: 

"Through a given external point, there is exactly one line parallel to a given line." 

It was only during the latter half of the 19th century that mathematicians began 
to realize that the difficulty in answering the question lay in the assumptions behind 
the question itself. The implicit question was: 

"How can you prove the parallel postulate from the other postulates or axioms?" 

It took hundreds of years to appreciate that the "how" was an interloper of sorts. 
If you delete the "how," the question is answerable (in the negative, it turns out); if 
you do not do so, the question destroys itself, as is the case with the pacifistic wife 
who is asked; "When did you stop beating your spouse?" 

So far, we have tried to point out some intimate connections between the asking and 
answering of questions, and between the posing and solving of problems. It is worth 
appreciating, however, that not everything we experience comes as a problem. Imagine 
being given a situation in which no problem has been posed at all. One possibility of 

5Chaim Potok, In the Beginning. New York: Knopf, 1976, pp. 295-296. 

Two relatively nontechnical accounts of Godel's quite technical proof of undecidability may be of 
interest. One of them, is James Nagel and James Newman, Godel's Proof. New York: New York University 
Press, 1958. Its focus is strictly on mathematics. The other, by Douglas Hofstadter, Metamathematical 
Themas: Variations on a Theme as the Crux of Creativity (New York: Basic Books, 1985), points out the 
centrality of that kind of thinking in art and music as well as in mathematics. See John W. Dawson, "Godel 
and the Limits of Logic," Scientific American, 280(6), 76-81,1999, for a discussion of Godel's genius and 
his psychological makeup. 
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course is that we merely appreciate the situation, and do not attempt to act on it in any 
way. When we see a beautiful sunset, a quite reasonable "response" may not be to pose 
a problem, but rather to experience joy. Another reasonable response for some 
situations, however, might be to generate a problem or to ask a question, not for the 
purpose of solving the original situation (a linguistically peculiar formulation), but in 
order to uncover or to create a problem or problems that derive from the situation. 

Suppose, for example, that you are given a sugar cube or the statement, "A number 
has exactly three factors." Strictly speaking, there is no problem in either case. Yet there 
are an infinite number of problems we can pose about either of the situations—some 
more meaningful than others, some more significant than others. As in the case of 
being presented with a problem, it is often impossible to tell in the absence of 
considerable reflection what questions or problems are meaningful or significant in a 
situation. We hope to persuade you, in much of what follows, that concepts like 
"significance" and "meaningfulness" are as much a function of the ingenuity and the 
playfulness we bring to a situation as they are a function of the situation itself. 
Frequently, a slight turn of phrase, or recontextualizing the situation, or posing a 
problem will transform it from one that appears dull into one that "glitters." 

In addition to reasons we have discussed so far, there are good psychological 
reasons for taking problem posing seriously. It is no great secret that many people 
have a considerable fear of mathematics or at least a wish to establish a healthy 
distance from it. There are many reasons for this attitude, some of which derive 
from an education that focuses on "right" answers. People tend to view a situation 
or even a problem as something that is given and that must be responded to in a 
small number of ways. Frequently people fear that they will be stuck or will not be 
able to come up with what they perceive to be the right way of doing things. 

Problem posing, however, has the potential to create a totally new orientation 
toward the issue of who is in charge and what has to be learned. Given a situation in 
which one is asked to generate problems or ask questions—in which it is even 
permissible to modify the original thing—there is no right question to ask at all. 
Instead, there are an infinite number of questions and/or modifications and, as we 
implied earlier, even they cannot easily be ranked in an a priori way. 

Thus, we can break the "right way" syndrome by engaging in problem 
generation. In addition, we may very well have the beginnings of a mechanism for 
confronting the rather widespread feelings of mathematical anxiety—something 
we discuss further in Chapter 8. 

This book then represents an effort on our part to try to understand: 

1. What problem posing consists of and why it is important. 
2. What strategies exist for engaging in and improving problem posing. 
3. How problem posing relates to problem solving. 

While problem posing is a necessary ingredient of problem solving, it takes 
years for an individual—and perhaps centuries for the species—to gain the wisdom 



6 1. INTRODUCTION 

and courage to do both of these well. No single book can provide a panacea for 
improving problem posing and problem solving. However, this book offers a first 
step for those who would like to learn to enhance their inclination to pose problems. 
While this book does analyze the role of problem solving in education, it does so 
with a recurring focus on problem posing. 

ORIGINS OF THE BOOK 

The material for this book was influenced heavily by our experience in creating 
and team-teaching courses on problem posing and solving at Harvard Graduate 
School of Education beginning in the mid 1960s.7 In addition to graduate 
students whose major concern was mathematics and education on both the 
elementary and secondary school level, on several occasions we had students at 
Harvard who were preparing to be lawyers, anthropologists, and historians. 
Subsequently, we taught variations of that course to both graduate and 
undergraduate students at numerous institutions, including Syracuse 
University, Dalhousie University, the University of Georgia, the University of 
Oregon, the University at Buffalo, and Hebrew University in Jerusalem. It is 
interesting for us to reflect on the fact that we did not originally perceive that 
we were creating something of a paradigm shift in focusing on problem posing. 
We thought rather that we were adding a new and small wrinkle to the already 
existing body of literature on teaching of problem solving that had been 
popularized primarily by the work of George Polya. Over time, however, we 
have come to appreciate why the activity of problem posing ought to assume a 
greater degree of centrality in education. Actually, it was the question we ask 
the reader to consider at the beginning of chapter 2 (about the Pythagorean 
equation) that launched us on the venture in the first place. We ourselves were 
unaware of the gold mine that would be revealed once we "unpacked" what we 
incorrectly thought was a good question. 

In addition to teaching courses on problem posing and solving, we have published a number of articles 
dealing either directly or indirectly with several themes of this book. Some of the chapters reflect or 
incorporate material from these articles. The following coauthored pieces deal directly with the theme of 
problem posing: "What-If-Not," Mathematics Teaching (British Journal), 46(Spring), 38–5, 1969; 
"What-If-Not? An Elaboration and Second Illustration," Mathematics Teaching, 57(Spring), 9-17, 1970; 
"Missing Ingredients in Teacher Training: One Remedy," American Mathematical Monthly, 78(4), 
399-404,1971; "The Roles of the Specific and General Cases in Problem Posing," Mathematics Teaching, 
59, 52-54, 1972; "Problem Posing and Solving: An Illustration of Their Interdependence," Mathematics 
Teacher, 70, 4-13, 1977.Modifications of the first two pieces appear as part of chapter 4;afew sections of 
the third appear in chapter 7; a small part of the fourth appears in chapter 3; a modified version of the last 
appears in chapter 6. The editors of each of the journals within which the material originally was published 
have granted permission to use what appears herein. In addition to articles dealing with problem generation 
explicitly, we have each made implicit use of problem generation in several others. These pieces are 
mentioned in chapter 5 in the context of the development of relevant ideas. 
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AUDIENCE 

The Art of Problem Posing is written for a wide audience. Although much of the 
book can be appreciated after having completed a high school mathematics 
program, it is intended for college mathematics students, present and future teachers 
of mathematics in middle school, in secondary school, and in higher levels of 
education, as well for as interested laypersons. Although many of the examples we 
use to illustrate our point of view may require technical competence beyond what 
would be expected in the elementary grades, some of this material would be 
appropriate for those interested in elementary education.8 This is especially true of 
the introduction to many of the geometric and arithmetic problem posing examples. 
On the other hand, we hope to illustrate that many rather quite simple looking 
elementary ideas are a heartbeat away from deep issues of a mathematical and 
educational nature. 

This book also has implications for curriculum writers and for those who wish 
to do research on the power of problem posing and its relationship to a host of 
variables ranging from fear of mathematics to new strategies for teaching 
mathematics. We hope that it also suggests directions for educators in fields other 
than mathematics as well. In fact, we are eager to continue to hear from 
practitioners in fields such as architecture, medicine, and engineering, who have 
viewed their work from a problem posing point of view, and who might find it 
useful to apply some of our techniques.9 

WAYS OF READING THE BOOK 

Although it would be helpful to explore many of the specific mathematical ideas 
presented early on in each chapter before attempting to pursue the more general 
issues we bring up later in the chapter, it will not be a hindrance to skip examples 
during the first reading that appear inaccessible. In many cases, we return to these 
examples later in the text. 

We have stressed the importance of participation in coming to know and we 
hope that you will read this book in an active way. We hope you will interrupt your 
reading every so often in order to explore, on your own, many of the emerging ideas 
before they fully unfold. So, for example, if you come across a list of questions or 
statements that reflect what former students may have contributed on a particular 
topic, stop to devise your own response before reading on. While reading the book, 

See David Whitin and Robin W. Cox; A Mathematical Passage: Strategies for Promoting Inquiry in 
Grades 4-6. Portsmouth, NH; Heinemann, 2003, for an example of how some of these ideas have been 
incorporated in elementary grades. 

See Donald A. Schon, The Reflective Practitioner. New York: Basic Books, 1983, and Educating 
The Reflective Practitioner. San Francisco: Jossey-Bass, 1987, for a discussion of the need to 
re-conceptualize the preparation of professionals in all fields so as to view problem posing as a central 
phenomenon. His discussion of the training of architects in particular is quite enlightening. 

9 
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you might wish to record questions that occur to you of a mathematical, 
philosophical, pedagogical nature—questions that you could perhaps explore with 
a partner or reexamine on your own later. 

On your first reading, after completing this chapter, you most likely will profit 
from reading chapters 2 through 4 in sequence—even if you decide to skim or skip 
over some sections or details. Perhaps the densest sections are those in chapter 4 that 
focus on the Pythagorean theorem, following the discussion of the geoboard. You 
may be intrigued by the interplay of algebra and geometry and by the generalizations 
of that theorem as you read chapter 4. If not, however, try to seek out the gist of those 
sections with the intention of returning to them at a later reading. 

Having read through chapter 4, you can appreciate chapters 5 through 8 in a 
less sequential manner. Chapter 5 provides illustrations of material that make 
use of the What-If-Not strategy developed in chapter 4. Chapter 6 discloses 
some surprising ways in which problem posing and solving relate. Chapter 7 is 
particularly appropriate for teacher educators. It discusses novel ways in which 
writing can be incorporated in the curriculum in a cooperative and interactive 
mode. We elaborate on these schemes in the next section. Although chapter 8 is 
the summary chapter, it does place the entire book in context once more, adding 
a few new wrinkles along the way—especially for those interested in research 
topics related to problem solving. As such, it need not be read at the end of your 
adventure in problem posing, but you may enjoy tasting the dessert whenever 
the urge strikes. 

CONTEXTUALIZING THE THIRD EDITION 

As we mentioned in the Acknowledgments, several years after the publication 
of the second edition of The Art of Problem Posing, we edited a book of 
readings most of which focused on the central theme of this book. The essays 
we included refer explicitly to one of the first two editions and/or to related 
articles that we wrote. The collection deals with an array of theoretical as well 
as practical issues. 

The theoretical essays include matters related to the nature of problem posing 
in relation to problem solving, the role of problem posing in the education of 
women, its place in the encouragement of a multiplistic view of the world, and its 
relationship to a view of science as a falsifiable form of inquiry. The more 
practical ones focus on issues in specific branches of mathematics and education. 
In addition, there are essays that explore the role of problem posing in fields other 
than education in mathematics—including biology and psychology. We have 
included interpretive text throughout that collection, and that book may be 
thought of as a supplement to this edition of The Art of Problem Posing. It may be 
particularly useful as a companion text to this one for instructors who wish to 
have their students participate in writing projects of the sorts we discuss in 
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chapter 7. We make reference to that collection—Problem Posing: Reflections 
and Applications—in relevant sections of this edition.10 

In the second edition (1990) of The Art of Problem Posing, we mentioned the 
emergence of a then new interdisciplinary journal first published in 1987, 
entitled Questioning Exchange. It was edited by James T. Dillon from the 
University of California at Riverside, and it focused on the role of the problem 
or the question in relation to the solution or the answer. It explored issues in 
many fields of scholarship.11 Although not readily accessible, that collection 
would also be a valuable companion in reading this edition, for those who are 
interested in some of the more theoretical issues such as discussion of the 
various definitions of "problem." 

One resource that is more directly focused upon mathematics education per se 
and that is readily accessible is a collection of documents produced by the National 
Council of Teachers of Mathematics. These four documents produced between 
1989 and 2000 are part of a program known as "The Standards."12 They are 
historically interesting because at the time they were first created, they were the 
first effort by a professional organization in any of the school disciplines to 
articulate specific and extensive goals for teachers, curriculum designers, and 
policymakers on a national level. The first document was published in 1989, several 
years after the appearance of the first edition of The Art of Problem. Here is an 
illustration of how the 1989 Curriculum and Evaluation Standards for School 
Mathematics acknowledged the role of problem posing13: 

Students in grades 9-12 should also have some experience recognizing and 
formulating their own problems, an activity that is at the heart of doing 
mathematics. For example, exploration of the perimeters of various rectangles with 
area 24 cm2 by means of models or drawings, with data as recorded in [the table 
below], could lead to student recognition and formulation of such problems as the 
following: Is there a rectangle of minimum perimeter with the specified area? What 
are its dimensions? 

See Stephen I. Brown and Marion I. Walter (Editors), Problem Posing: Reflections and 
Applications. Hillsdale, NJ: Lawrence Erlbaum Associates, 1993. 

Although an important and ambitious undertaking, the journal was unfortunately short-lived. The 
last issue was published two years after the first. 

The documents are as follows: (1) National Council of Teachers of Mathematics. (1989). 
Curriculum and Evaluation Standards for School Mathematics. Reston, VA: Author. (2) National 
Council of Teachers of Mathematics. (1991). Professional Standards for Teaching Mathematics. 
Reston, VA: Author. (3) National Council of Teachers of Mathematics. (1995). Assessment Standards 
for School Mathematics. Reston, VA: Author. (4) National Council of Teachers of Mathematics. (2000). 
Principles and Standards for School Mathematics. Reston, VA: Author. 

See listing of the "Standards," note 12. 
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Rectan|*le Data 

Area Length Width Perimeter 

24cm2 1 cm 24cm 50cm 

24cm2 2cm 12cm 28cm 

24cm2 3 cm 8cm 22cm 

24cm2 4 cm 6 cm 20cm 

24cm2 6 cm 4 cm 20cm 

24cm2 8 cm 3 cm 22cm 

While the 1989 document selects some important aspects of problem posing, 
subsequent ones make reference to and draw more broadly on themes developed in 
The Art of Problem Posing and elsewhere. In exploring this material (as well as our 
own), it will be worthwhile for the reader to determine the extent to which those 
documents tend to attach problem posing to the bootstraps of problem solving. 
Now that the "Standards" are available on the Internet, and are evolving into an 
interactive, living and modifiable document, it is likely that future modifications 
will make use of problem posing in a way that exemplifies even deeper connections 
between it, problem solving, mathematical and self-understanding.14 

The most recent "Standards" illustrate the potential of computer technology 
as a problem-posing mechanism, and in this edition of The Art of Problem 
Posing we have expanded the second edition of chapter 5 in order to illustrate 
that connection as well. 

Although we make reference to "The Standards" within some of the sections 
that follow, readers may enjoy locating relevant sections on their own. It is 
particularly easy and inexpensive to do so now that some of the material is 
available in electronic form on the internet. Furthermore a committee has been 
launched that is charged with improving, expanding, and making more accessible 
future electronic (and CD) versions. 

In addition to suggesting that you make use of some of the mentioned material as 
resources in reading the third edition of The Art of Problem Posing, and in addition 
to our incorporating some of that material within already existing portions in this 
edition, we expand on some powerful educational ideas we developed in the second 
edition with regard to writing in mathematics. In chapter 7, we discuss how the 
concept of editorial boards and class journals incorporates many of the strategies 
explored in this book. 

At the time we wrote the first edition, there was very little in the way of 
experimentation with writing in mathematics. Since then, the concept has 
become more popular at all grade levels. Especially given the emerging concept 
of writing across the disciplines (not relegated specifically to courses in English 

The web site for the document produced in 2000 is http://standards.nctm.org/document. For 
current information as the program evolves, see http://www.nctm.org. 

http://www.nctm.org
http://standards.nctm.org/document
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or history), educators in all fields might wish to adapt parts of this approach in 
their own field of expertise. 

In addition to reflecting on the editorial board scheme by including an interview 
with Deborah Moore-Russo in chapter 7, we introduce a new format that has deep 
educational roots and implications—a secular Talmud. It is based on dialogue as 
well as storytelling as a way of communicating the richness of a field. It encourages 
a multiplicity of viewpoints within mathematics—a discipline that is frequently 
and inaccurately touted for its certainty, unambiguity, uncontroversial quality, and 
linearity of thought. Although new as a mode of secular education, the concept of a 
mathematical Talmud is borrowed from a tradition that is over two thousand years 
old. It is a document that has all of the qualities of hypertext and more. We suggest 
ways in which it can be reconstructed as a secular text—one that is particularly 
appropriate as a heuristic for problem posing. 

In closing (or perhaps opening), what will be particularly interesting to uncover 
in the various documents we have mentioned in this chapter (including The Art of 
Problem Posing itself) are efforts to see problem posing in mathematics as a vehicle 
for understanding how we all view the world in a more personal way. When given 
the opportunity to pose problems on our own, what sorts of questions do we ask? 
What level of clarity do we desire? What role does ambiguity play in our thinking? 
What questions do we avoid? What level of safety do we seek in the questions we 
ask? To what extent do we feel the need to seek answers to the problems we pose? 
How closely do we stick to an original source when we employ some of the 
What-If-Not strategies that encourage us to deviate from a given source? What does 
it tell us about ourselves as we explore the panorama of question and problems we 
pose over time? It may in fact take a paradigm switch to be able to find ways of 
seeing these questions as relevant. We return to these issues in chapter 8. 

Before embarking on your exploration of problem posing, we should mention, as 
we did in the second edition, that there is a modicum of repetition of key ideas 
throughout. There are several reasons for this. First, and most importantly, the reader 
may find a number of these ideas to be novel, and as has been the case in our own 
experiencing of them, it may take a while to fully appreciate their force. Second (as we 
recommended in the previous section), readers may enjoy skimming the book at first, 
and repetition will enable readers to appreciate the saliency of ideas that might not 
otherwise be noticed at all. Third, most of the key ideas are embedded in the context of 
specific examples, and what may appear to be a repetition may very well suggest a 
different nuance in each case. Fourth, the inclination toward sparseness of style is the 
unfortunate legacy of an elitist view of mathematical exposition—one that prizes 
sparseness over understanding. Sixth, it is 22 years since we collaborated on the first 
edition of The Art of Problem Posing, and because 22 years is equivalent to 44 
collaboration years, we have become ever so slightly forgetful. Fifth, and most 
importantly, the reader may find a number of these ideas to be novel, and as has been the 
case in our own experiencing of them, it may take a while to fully appreciate their force. 

In the spirit of problem posing, take any of the preceding reasons, and pose at 
least one educational problem that it suggests to you. 
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Two Problem-Posing Perspectives: 
Accepting and Challenging 

A FIRST LOOK; WHAT ARE SOME ANSWERS? 

After looking at the preceding equation, respond to the following: 

"What are some answers?" 

We have asked this question of our students and colleagues over the years. 
Before reading on, you might wish to answer it yourself. Jot down a few responses, 
and we will then discuss the significance of the question. 

First Question Revisited 

What was your reply to the question which opened this chapter? What are some 
answers? Answers will depend in part on your level of mathematical experience. 
People who have had very little experience with mathematics frequently respond, 
"Oh, that reminds me of some statement about right triangles, but I can't 
remember it exactly." 

Those who have had more experience with mathematics sometimes respond 
with a list like the following: 

12 
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3,4, 5 

5, 12, 13 

8, 15,17 

Then they remark that they know there are a few other such number triples but they 
cannot recall them. 

Among those who have had a great deal of experience, we have frequently 
received this sort of list and, in addition, a comment about the potential length of 
such a list. People suggest how many triples there are and, occasionally, either 
recall or attempt to generate a formula for them. 

People who know more about real or imaginary numbers are often pleased 
when, almost in a sense of amusement, they produce sets of numbers such as: 

2, 3,Vl3 or i, 1,0 

Now look back at all the preceding responses. Notice that something very 
significant has happened. All the responses to "What are some answers?" assume 
that a question has been asked by the equation itself. Furthermore, they assume that 

2the specific question asked when we wrote "x2 + y  = z2" was: "What are some 
integer solutions (or perhaps real or imaginary ones)?" 

2Notice, however, that "x2 +y  = z2" is not in itself a question at all. If anything, it 
begs for you to ask a question or topose aproblem rather than to answer a question. 

It may look as if we are splitting hairs or that we have pulled your leg by setting a 
trap. Our experience indicates, on the contrary, that we are getting at something 

2important. Perceiving x2 + y = z2 only as an equation that requires solving for x, y, 
and z reveals a very limited perspective. As you read on, you will see that the issues 
we are getting at open up vast new possibilities for learning in general and for 
learning mathematics in particular. 

Although it is beginning to crumble, there is still an entrenched belief that it is 
the role of the expert or authority (textbook, teacher, research mathematician) to 
ask the questions and for the student to try to answer them.1 Of course, it is 
considered good pedagogy to encourage students to ask questions, but too often 
they are questions of an instrumental nature—questions that enable teachers to 
pursue their preconceived agendas. 

Frequently students are encouraged to ask questions that enable them to better 
follow well-trodden terrain that has been laid out not only by their teacher, but by the 

See section "Contextualizing the Third Edition" in chapter 1 for some evidence for the crumbling of 
this belief. 
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mathematics community at large. In grade school, for example, teachers encourage 
children to ask questions to make sure that they understand existing procedures. 

A typical interchange might be: 

Teacher: "Do you understand how to add two-digit numbers?" 

Simcha: "Did you say we have to add from right to left?" 

Teacher: "Good question. Yes. Let me show you what happens if you did it from left to 
right. Let's do a problem. 

95 
+ 87 

"Let's find the sum by adding from left to right but carrying in the way I showed you. 

95 
+8,7 
713 

"You see, you get the answer 713, but you know it must be wrong because you can tell 
the answer must be less than 200." 

Note that the teacher has not approached the question in a completely arbitrary 
way, for a reason has been offered other than the teacher's authority for preferring 
one method over another. Furthermore, it is possible that Simcha's question could 
lead to some interesting exploration. For example, a teacher could encourage a 
student to investigate modified strategies for which we could get the correct 
answer by adding from left to right. Or the teacher and student could explore the 
extent to which the notation itself imposes one algorithm over another. 
Nonetheless, students and teachers do not usually ask questions for such 
purposes; rather, they are interested in making sure that their students understand 
and can execute what is expected of them. 

Such an atmosphere leads neither to understanding the significance of an 
activity or a procedure, nor does it contribute to the development of a sense of 
autonomy and independence. Until recently, such qualities have not been 
advocated as essential components of the mathematics classroom. A focus on 
problem posing rather than procedural question asking can offer students an 
opportunity to acquire these qualities. 

A SECOND LOOK AT 

2Reconsider x2 + y2 = z . Now let us ask not "What are some answers?" but "What 
are some questions?" Before reading on, list some of your own questions. 

Here are some of the responses people have given at this early stage: 
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1. Who first discovered it? 
2. Are the solutions always integers? 
3. How do you prove it? 
4. What's the geometric significance of this? 

Loosening Up 

In order to loosen up your own thinking processes further at this point and to give 
them free reign, write down any ideas, not necessarily questions, that occur to you 

2 2when you look at and think about x2 + v  = z . No holds barred! We are asking you 
to free associate and write down any ideas you have. 

Some Typical Observations 

Did you write down any statements or questions of the following types? 

1. Some famous right triangles are 3, 4, 5; 5, 12, 13; and 8, 15, 17. 

2. The Greeks used knots on a rope to make a right angle. 

3. You can use it to introduce irrational numbers. 
4. This is associated with the Pythagorean Theorem. 
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5. It's the only thing I remember from geometry. 
6. It reminds me of ladders against a wall. 

7. How do you find more triples satisfying 
8. Is 3, 4, 5 considered different from 6, 8, 10 or from 30, 40, 50? 
9. It has to do with squares on the sides of a right triangle. 

10. What good is any of this? 

Notice that even in this small sample of observations, we have a few new ideas 
2for x2 + y2 = z : namely, that it can deal with triangles; that it has a history; and that 

there are applications of it. 
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A NEW PERSPECTIVE 

2We are not yet done with the equation x2 + y2 = z . In fact, we have hardly begun. 
Compare the kinds of questions just mentioned with the following list of questions 

2 2also using x2 + y  = z  as a point of departure: 

1. For what integral values of x, y, z is it true that x2 + y2 < z2? 
2. For what values is it true that x2 + y2 = 1 + z2? 
3. What happens to the Pythagorean Theorem if the triangle is not a right 

triangle? That is, suppose the right angle is replaced by a 60° angle. How is 
2x2 +y

2 = z  affected? 
4. For what 60° triangles (i.e., triangles with at least one 60° angle) can you find 

three sides that are all integers? 
5. If you replace the squares on each side of the triangle by rectangles that are 

not squares, do the areas on the legs ever add up to the area of the rectangle 
on the hypotenuse? 

6. Is there a three-dimensional analogue for the Pythagorean Theorem? 
7. What analogy is there for four-sided figures? 

A Reflection on the Preceding Questions 

What are the differences between the thinking shown in the set of questions in "A 
New Perspective," and the thinking shown in questions and observations we made 
in the previous subsections? 

There are many ways of answering this question. In making such comparisons 
what we see is very much a function of our idiosyncratic experiences and of the 
kinds of lenses we are accustomed to use. We could, for example, try to compare the 
questions with regard to their degree of generality or the sense in which they call for 
algorithms. Since you do not know where we are headed at this point, it is probably 
very difficult to get a grasp on what we see as a salient difference between the seven 
questions just listed and those that preceded them. Nevertheless we urge you to take 
a stab. Compare the section "Some Typical Observations" with the section "A New 
Perspective" and see if you can find some differences that mean something to you. 

Perhaps you have observed differences of the following kinds: 

2 21. The degree to which you strive only for solutions of the equation x +y2 = z . 
2. The degree to which you search for literal or narrow interpretation of the 

2equation x2 + y2 = z . 
3. The degree to which you risk asking questions for which you may not have a 

method of solution. 
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4. The style in which you interpret the mathematics—for example, geo­
metrically or algebraically. 

In addition to these four categories (and many others), there is one that has 
significantly influenced our thinking about problem posing. It is a bit subtle and 
took us a while to appreciate, although after realizing it, it is hard to imagine that 
there was a time we did not see it. 

5. The degree to which one "accepts" the given. 

Notice that sometimes we have essentially accepted the given—in this case 
2x  + y2 = z2 and its relationship to the Pythagorean Theorem—and sometimes we 

have challenged the given in order to ask new questions. We do not, in the latter 
case, take the given for granted. Rather, the given is a starting point for 

2investigations that modify it. For example, instead of considering x2 + y  = z2 and 
2squares on the sides of right triangles, we asked about such forms as x2 + y  = 1 + z2 

and we replaced squares with rectangles. Although problem posing using each of 
these perspectives is valuable and necessary, it is challenging the given that 
frequently opens up new vistas in the way we think. Only after we have looked at 
something, not as it "is" but as it is turned inside out or upside down, or even only 
slightly altered, do we gain a better understanding of the implicit assumptions, the 
context and significance of what is given. 

We have refined this notion of challenging the given into a strategy that can be 
learned, and we have coined the phrase "What-If-Not" to describe it. It is a second 
phase of problem posing after the earlier one of accepting the given. Ironically, we 
first begin to gain a deeper understanding of something when we can see it as 
something else. It is worth keeping in mind that although it is possible to learn a 
strategy for challenging the given, it is not possible to guarantee (by using any 
particular procedure) that we will capture those phenomena we later perceive to be 
most significant. It takes not only insight but courage and sometimes totally new 
worldviews for anyone to find significant challenges. Merely looking for 
something to challenge will not guarantee that we will find it. The fact that it has 
taken such a long time even to realize that there were attitudes to be challenged 
concerning full-time employment, leisure time, aging, race, and sex roles suggests 
how difficult it is to perceive that there are things to challenge. 

In the next chapter we explore the first phase of problem posing—in which we 
accept the given—and in chapter 4, we introduce the second phase, the "What-If-
Not" approach. 
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The First Phase of Problem 

Posing: Accepting 

In this chapter we explore how we might broaden our outlook on problem posing, 
by sticking with the given in our exploration. We begin with a number of different 
kinds of examples. They provide a concrete context in which we can reflect on 
issues related to this first phase of problem posing. 

STICKING TO THE GIVEN: SOME EXAMPLES 

Example 1. A "Real-Life" Situation: Supreme Court Judges 

Several years ago a speaker gave a talk at a meeting of mathematics educators. He 
began with the following observation: 

There are nine Supreme Court Justices. Every year, in an act of cordiality the Supreme 
Court session begins with each judge shaking hands with every other judge. 

He then asked the audience what the obvious question was in this setup. The task 
appeared to the speaker to be so obvious that he treated his query as a rhetorical 
question, answered it himself, and proceeded with the talk. What do you think the 
question was? Well, you might have guessed that his question was, "How ma 
handshakes were there altogether?" 

Many of us are blinded to alternative questions we might ask about any 
phenomenon because we impose a context on the situation, a context that 
frequently limits the direction of our thinking. We all do this to some extent because 

19 
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we are influenced by our own experiences and frequently are guided by specific 
goals (e.g., to teach something about permutations and combinations), even if we 
may not be aware of having such goals. 

The ability to shift context and to challenge what we have taken for granted is as 
valuable a human experience as creating a context in the first place. With this in 
mind, what else might you ask in the case of the Supreme Court situation? Some of 
the questions people have asked, after considerable thought were: 

1. Would you predict an even or an odd number of handshakes? 
2. Can you come up with a lower limit to the number of handshakes? 
3. Is the handshaking task one that is even possible to perform?1 

4. Can you come up with a number that is an upper limit to the number of 
handshakes before attempting an exact calculation? 

5. Does a handshake between two people count as one or as two handshakes? 
6. If it takes three seconds to shake hands, what is the least amount of time 

necessary for all the handshakes? 
7. If three justices arrive late, how many handshakes still need to be made? 
8. If they are sitting two feet apart on one long bench, what is the least amount 

of walking needed in order for them all to shake hands? 
9. If a group of four judges have shaken hands and the remaining five have 

already done so, how many handshakes remain? 

You may have noticed that despite our efforts at extending the range of 
questions, we have narrowly confined all our questions to mathematical ones. 
Had we not intended to focus on mathematics, we might well have included 
such questions as: 

10. Does the handshaking have an effect on subsequent cordiality? 

Or heretically, we might respond: 

11. Isn't that nice? or 
12. Who cares? 

Although our focus is mathematical, these nonmathematical comments and 
questions raise an important issue concerning the concept of significance, which 
we discuss toward the end of this chapter. 

This is not an unreasonable question. If we suggested, for example, that four people should shake 
hands with each other but no one should shake hands an even number of times, we would find this task 
impossible to fulfill. 
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Example 2. A Geometric Situation: An Isosceles Triangle 

Let us take an example that seems so simple we might doubt that it could lead to 
new ideas. Assume that we have a triangle in which two sides are equal in length— 
an isosceles triangle. What questions could you ask? 

Students who have studied geometry often find the following to be "obvious" 
questions. 

1. Why is it called isosceles? 
2. How can you prove that the base angles are "equal," i.e., congruent? 

List some other questions, without taking into consideration whether or not you 
are familiar with the answer. In listing your own questions, you might find it 
worthwhile to ask yourself what made you think of them. Here are a few additional 
questions that could be asked: 

1. How might we classify isosceles triangles? We might, for example, classify 
them with regard to their vertex angles (e.g., obtuse, right, acute) or the ratio 
of the lengths of base to side. What other ways can you think of? 

2. What types of symmetry does an isosceles triangle have? 
3. If one angle of an isosceles triangle is twice another, is the shape of the 

triangle determined? 
4. What relationships exist among the exterior angles of the triangle? How do 

the exterior angles relate to the interior angles? 
5. What was it that encouraged people initially to investigate isosceles triangles? 
6. What figures can you make with congruent isosceles triangles? Using two 

of them? Using three of them? Others? What geometric figures have been 
created below by replicating an isosceles triangle? Can you make others? 

7. Can you make a collection of congruent isosceles triangles into a bicycle hub? 

The isosceles triangle is particularly interesting, for unlike the Supreme Court 
situation, the concept is part of the standard curriculum. Ironically enough, those 
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who have most recently been exposed to a course in geometry (at almost any 
level) tend to find great difficulty coming up with much more than observations 
relating the equality of lengths to the equality of angles, while those who have not 
studied the subject, or perhaps consider themselves "weak" in mathematics, tend 
to come up with more robust questions and observations like questions 5-7. What 
this tells us is that focusing on a topic by studying it in some formal or official 
sense (finding out what the culture has to say about it) sometimes has the effect of 
narrowing rather than expanding our view. One way of regarding our schemes for 
problem generation is as a sensitizing kit to prevent the study of any well-
established scheme from narrowing our perspective. 

Example 3. Concrete Material: Geoboards 

Problem posing can be initiated with almost anything—definitions, theorems, 
questions, statements, and objects, just to list a few possibilities. Let us turn next to 
a concrete material, one that has been used in school mathematics—the geoboard 
[see Figure 1 (a)]. This one is a square wooden board with 25 nails in it. It is called a 
five-by-five board. As is customary, we can make shapes with rubber bands as 
shown in Figure l(b). 

The geoboard has an appeal to the uninitiated student as well as to the 
sophisticated one. People have written many books, articles, and guides for its use. 
What would you do with it? Give yourself a minute to think. 

Most of the books suggest particular questions or problems with varying 
amounts of detail and at various levels of sophistication. A standard elementary 
task would be: 

1. Using rubber bands, make a number of different shapes on the board. 

FIG. 1
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A harder problem might be: 

2. Taking the smallest square as a unit, find the area of shapes created in 
answer to Task 1. 

Significantly more sophisticated questions would be: 

3. Given only the number of nails inside and on the boundary of any shape created 
in Figure 1 (b), can you determine what the figure looks like? What the area is?2 

4. How many noncongruent squares can you make on a five-by-five geoboard? 

Notice that in all these questions or tasks, the given, the geoboard, was accepted 
as is. Although we could make even the preceding list almost endless, we will open 
up even more ways of asking questions about a geoboard in chapter 4 when we 
approach the task from the perspective of challenging the given. 

Example 4. Looking at Data: Primitive Pythagorean Triples 

2In chapter 2, we saw that x +y2 = z2 often triggers "the answers" 3,4,5; 5,12,13; 
7, 24, 25; even before a question has been asked. This time let us accept the 
assumed question, "For what whole numbers is it true that x2 + y2 = z2?" A partial 
list of ordered primitive Pythagorean triples3 is shown in Table 1. 

Starting with this table what questions, observations, or hypotheses can you 
make after studying the data? 

See Niven, I., and Zuckerman, H. "Lattice Points and Polygonal Area." American Mathematical 
Monthly, 74, (10), 1195-1200, 1967, for a rigorous analysis of this problem (which can be analyzed 
intuitively by many junior high school students). See also Yaglom, I., and Yaglom, A. Challenging 
Mathematical Problems, Vol. 2. San Francisco: Holden Day, 1967. The actual formula for the area A is 
A = Vzb + i - 1 where ; is the number of nails inside the shape and b the number of nails on the boundary, 
assuming the unit of area is the square s below. There, for example, i - 2, b = 1. Then, according to this 
formula, A should equal ) /«  7 + 2 - l = %  . Verify that this answer is correct without using this formula. 

Pythagoren triples x, y, z, are said to be primitive if x, y, z, are relatively prime, meaning they have no 
factors other than 1 in common. Thus 6 and 7 are relatively prime, but 6 and 8 are not. 
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TABLE 1 
Partial List of Ordered Primitive Pythagorean Triples 

y z


3 4 5


5 12 13


7 24 25


8 15 17


9 40 41


12 35 37


One of our classes came up with the following list. 

1. It appears that sometimes z = y + 1, sometimes z = y + 2. 
2. Is z always odd? 
3. Is z always either a prime or divisible by 5? 
4. x and y seem to have different parity (i.e., one is odd and the other even). 
5. Isy always divisible by 4 or 5? 
6. If .xis odd, i =y + 1. 
7. If jcis even, z = y + 2. 
8. Every triple has one element divisible by 5 and one by 4. 
9. Are there other cases besides the 40 ( in the 9, 40, 41 triple) where one 

element is divisible by 4 and 5? And can one predict where they appear? 
10. It looks as if x will run through many of the odd integers. 
11. Can you get a triple for any value of x you choose? What about y ? z? Which 

ones can't you get? 
12. Will every multiple of 5 occur somewhere in the table? 
13. It looks as if z = y + 1 implies y + z = x2. 
14. If jcis even, z + y =x*/2. 
15. z's appear all to be of the form 4n + 1. 
16. Listing only those triples for which z=y + 1, is it always true that any two y's 

differ by the same amount as any two z's? 
17. For a fixed x, are y and z always unique? Same with a fixed z? 

Our point in choosing the Pythagorean triples as data is to show that such data 
are frequently a wealthy source for generating new questions. The issue goes 
deeper than that, however. People with a mathematical bent who take a look at the 
partial list of triples frequently focus exclusively on the search for some formula 
that might generate the entire list. Although some of the questions we have listed 
have the possibility of heading us in that direction, not all of them do. That is, there 
are many surprising observations—like number 8 on the list—that appear to have 
no obvious connection with a search for a formula to create all triples. 
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Example 5. Simple Number Sequence 

There is something mysterious about the data in Table 1 for most people who first 
stumble on them. Even if you suppress the desire to figure out how the sequence 
triples might be generated by a formula, there is still a nagging puzzlement about 
the source of it all, and we tend to be pulled in that direction even if we allow for 
occasional diversions. But even simple data whose generating formulas are not in 
question can be a source of surprise and marvel, provided we assume a 
problem-posing stance. Suppose we list a sequence such as 9, 16, 23, 30, 37, 44, 
51, 58, .... What questions and observations come to your mind? 

A possible list might include: 

1. The difference between the numbers is 7. 
2. The first two numbers are perfect squares. Are there more perfect squares in 

this sequence? When does the next one occur? How many are there? 
3. What is the nth term? 
4. If we subtract 2 from each number, it is just the 7 times table. 
5. If we add 5 to each number it is almost the 7 times table! 
6. Two numbers of the list given are prime. As you extend the sequence will 

there be an infinite number of primes? 
7. The numbers alternate between ones that are odd and even. 
8. There is a number in the sequence that is divisible by 2, a number divisible 

by 3, one by 4, one by 5, by 6, but not one by 7. Is 7 the only exception? 
9. Do all digits from 0 to 9 occur in the units place? Tens place? 

10. Is there a pattern to the last digits? 
11. Can you tell quickly if 1938 appears in the list? 

As in the case of the isosceles triangle example, here is something that is 
included in standard curriculum under the topic of arithmetic progressions. 
Blinded by the realization that some things are already well known about this kind 
of sequence (that is, how it is created and how it grows), many people incorrectly 
conclude that there is nothing more to find out. Questions such as numbers 6, 8,9, 
and 10, however, suggest that beneath the surface of our pedestrian sequence we 
can find some surprising implications. Although we may have explored arithmetic 
sequences in general, we have not explored this one inparticular, and every special 
case has a world within it that is not covered by the general investigation. 

SOME REFLECTIONS ON PHENOMENA TO INVESTIGATE 

What have we explored so far in this chapter? Specifically, we have looked at five 
examples, but it would help to find a way of classifying them in order to help us 
come up with many others. 
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Let us begin by asking what we normally select for carrying out an investigation. 
Since, in the eyes of most people who design curriculum, mathematics is about 
propositions, the starting point (sometimes disguised or diluted) is usually a 
collection of statements—definitions, axioms, theorems, and the like. We make 
statements and try to prove them. 

What else might we use other than propositions? Look at examples 2 and 3 of 
this chapter. What we have in each case is an object—one of them abstract and the 
other concrete. In example 1, we have something closer to a situation. Objects and 
situations then may be helpful starting points for generating new questions. 

We have also selected data as a starting point for investigation in examples 4 and 5. 
In example 5 the data are generated explicitly by a formula (y = Ix - 2 for ;c a natural 
number); in example 4 they are generated by an implicit formula (x2 + y2 = z2). 

Once we have acquired data by whatever method, we can view the data as taking 
on a life of their own. We can thus focus on more than the origin of the data. That is, 
we are in a position to ask questions that do not necessarily focus on methods of 
generating the data. Now that we are aware of the variety of objects about which we 
might pose problems, what strategies might we use to generate questions? 

STRATEGIES FOR PHASE-ONE PROBLEM GENERATION 

Things to Do With Phenomena 

Exploration of something, whether it be a concrete object (geoboard), an abstract 
object (an isosceles triangle), data, or a theorem itself, can take many forms. What 
have we done so far that enables us to generate problems? We have done more than 
just ask questions. Sometimes we have made observations. At other times we came 
up with conjectures. Frequently these observations or conjectures themselves can 
lead to questions and vice versa. 

Let us look at example 4—primitive Pythagorean triples. One observation was: 

4. x and y seem to have different parity. 

A question following this observation might be, "Can you find a primitive 
Pythagorean triple in which this is not the case?" This question is generated by an 
observation; other questions are generated by conjectures—perhaps based on 
apparent regularity or predictability, coupled with the desire to find out if that 
appearance is realized. Especially with regard to data, but applicable in other areas 
as well, a helpful heuristic for seeing things in new ways would be to separate out 

1. the making of observations, 
2. the asking of questions, and 
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3. the coming up with conjectures. 

It is the eventual intertwining of these three activities that creates the force that 
enables us to see beyond "a glass darkly." 

One strategy then for phase-one problem generation involves an attempt to 
focus on observations, conjectures, and questions without being concerned with 
interrelating them at first. Eventually, however, we may attempt to do so. As you 
read on, you will see how the various phases of problem posing enrich many facets 
of understanding, doing, and learning mathematics. 

Internal Versus External Exploration 

It is perhaps a legacy of our technological society that when we see something new, 
we are more inclined to ask how its parts fit together than how it (taken as a whole 
in some vague way) might relate to other phenomena. To look at an automobile 
internally is to ask questions about how its parts fit together. To ask questions 
about it externally, however, is to suggest not only that we explore how one 
automobile relates to others, but how the automobile as a class relates to other 
means of transportation or other phenomena like the quality of life in society.4 

Notice that in the beginning of our exploration of the isosceles triangle in 
example 2, we questioned internal workings. We assumed that the object of our 
concern was how the pieces of one isosceles triangle interacted with each other in 
isolation from other triangles. We asked, for example, about the symmetry of the 
triangle. We did not consider taking the triangle as a single object to be related to 
other such triangles until we asked the question: What figures can you make with 
two or even three or more congruent isosceles triangles? (question 6). 

Looking back at this question, we notice that it frees us from the restriction of 
looking only at internal workings—a restriction we often impose on ourselves 
without realizing it. Appreciating that we have explored one external type of 
question enables us to search for others. In the Supreme Court case, for example, 
we might ask what the consequences would be if three members of the legislature 
were to join the nine judges and the judges were expected to greet the members of 
the legislature by handshaking. 

Such external type of investigation was done in the case of the isosceles triangle 
example when, instead of exploring the workings of one such triangle, we 
combined triangles as already described. Further external investigation might lead 
us to relate the isosceles triangle to other figures—to determine, perhaps, how they 
might be combined with each other in the creation of patterns. We could even move 

This distinction is elaborated in the context of analyzing "understanding" by Jane Martin, 
Explaining, Understanding and Teaching, New York: McGraw-Hill, 1970, pp. 152-163. 
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beyond the relationship of such patterns in mathematics and include domains of 
inquiry such as art, architecture, and other areas as well. 

Exact Versus Approximate Explorations 

An important strategy for exploring a problem stems from the notion that we need 
not necessarily aim for exact answers. Notice that in the Supreme Court example, a 
number of questions were directed at efforts to approximate answers, even before 
exact calculations were suggested. It is extremely important mathematically as 
well as intellectually to appreciate that there are times not only when it is 
unnecessary and undesirable to get exact answers, but when it is impossible to do 
so. It would be worthwhile to take a look once more at many of the questions we 
have posed in this chapter to determine what would be lost by searching not for an 
exact answer, but for an approximation instead. Take some of these questions and 
try to modify them, so that they are transformed from a request for a precise 
response to one for an approximate response. You might try to relate this activity 
both to any other mathematical activity you may be involved with, and to your 
nonmathematical life as well. How much is lost by searching for a less exact 
analysis or a less precise strategy? 

Historical Exploration: Actual Versus Hypothetical 

In this subsection, we suggest how it is possible to generate significant questions 
by making use of historical ways of thinking, despite the fact that you may not be a 
historian and may, in fact, know very little about the history of the idea or 
phenomenon under investigation. 

In the case of isosceles triangle, we asked the question: What was it that 
encouraged people initially to investigate isosceles triangles? (question 5). An 
exploration of this question would involve the study of history—something that 
requires an expertise that few of us have. It is possible, however, to slightly modify 
these questions so we need not be historians. We could let our imaginations have 
free reign and consider what might have been the historical antecedents. For 
example, we could ask: 

What might have encouraged people to investigate isosceles triangles? 

or 

What might have accounted for people's interest in the Pythagorean relation? 

With regard to the first question, one reasonable answer might be that it was 
merely an effort at classification. Another might be that a special kind of triangle 
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enabled people to get a handle on conjectures that were hard to prove in general. 
The importance of asking and searching for answers to these questions is that such 
inquiry forces us not merely to prove things, but rather to locate the significance of a 
topic we are asked to investigate. The importance of this issue is raised in an 
anecdote of Edwin Moi'se. He commented: 

A distinguished algebraist once served as an examiner in a final oral for the doctorate, 
based on a dissertation on Banach algebras. Toward the end of the examination, the 
algebraist asked the student to describe some examples of Banach algebras. The 
student was able ... to name one example, but his one example was trivial.5 

As Mo'i'se pointed out, although the dissertation director could have justified 
the student's research, the student—who had solved a number of mathematical 
problems—had no good intellectual reason for working on those problems in 
the first place. 

Yet all of us know good problem solvers who do not necessarily appreciate the 
significance of the activity in which they are engaged. We recall our experience 
with Jordan, a bright young man who was confused by what the ambiguous case in 
trigonometry was all about. Trying to put the issue in perspective, he was reminded 
of his prior geometry course in which he had investigated those conditions under 
which a triangle was determined (S.A.S., A.S.A., S.S.S., or A.S.S.—which is the 
ambiguous case). He was confused for a while and finally complained, "What do 
you mean? We never studied how a triangle is determined. We only did things like 
prove that two triangles were congruent if S.A.S. = S.A.S." Here is a beautiful 
example of an honor student who could prove a great deal, but had little 
appreciation for why it was significant for him to prove these things. He never 
realized that a major purpose of such congruence theorems was to determine the 
minimum amount of information needed for a particular purpose. We wonder how 
many other students do not realize the power of congruence theorems in reducing 
the number of pieces of information needed to be sure that two triangles are 
congruent. One can lead students to understand this by putting a cost on each piece 
of information needed so that instead of having to pay for six items (three sides and 
three angles) to ensure congruence, a maximum of three suffices. Some students 
may also want to investigate what other pieces of information (besides angles and 
sides of triangles) could be given to completely determine a triangle. 

To look at the significance of something, then, is not only to prove things or to 
investigate them more generally, but to try to figure out why they are worth 
investigating in the first place. While we would all be hard pressed to explore 
everything we engage in from the perspective of whether or not and why it may be 
significant, we certainly do see things differently when we ask questions of that 

Edwin Moi'se, "Activity and Motivation in Mathematics," American Mathematical Monthly, 72(4), 
1965, p. 410. 
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sort. Pseudo-history thus becomes one more tool that we can use to generate a set of 
questions that enable us to search for significance. 

A Handy List of Questions 

If we look back at some of the questions we have asked in this chapter and 
incorporate others that we and our students have used in much of our 
mathematical explorations, we arrive at a list of general questions that could 
provide yet one more point of departure for problem generation even at this 
early stage. These questions do not apply to specific content; instead, they are a 
master list. Alhough some of these questions might be incorporated into some 
of our other problem posing strategies, they are nevertheless valuable as an 
independent starting point of their own. We list a number of these starting 
questions with the understanding that they will provide a handy point of 
departure for you. This list is not complete, of course, and never can be. As you 
go through this book, you will want to add other questions of your own. It will 
be interesting, at various points in your reading, to look back at your expanded 
list to see which kinds of questions you tend to favor. Perhaps you might enjoy 
comparing your favorites with those of a colleague or classmate. 

Here is a beginning list generated in one of our classes. 

A List of Questions 

Is there a formula? 

What is the formula? 

What purpose does the formula serve? 

What is the number of objects or cases satisfying this condition? 

What is the maximum? 

What is the minimum? 

What is the range of the answer? 

Is there a pattern here? 

What is the pattern in this case? 

Is there a counterexample? 

Can it be extended? 

Does it exist? 

Is there a solution? 

Can we find the solution? 

How can we condense the information? 

Can we make a table? 
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Can we prove it? 

When is it false? When true? 

Is it constant? 

What is constant; what is variable? 

Does it depend on something we can specify? 

Is there a limiting case? 

What is the domain? 

Where does the proof break down in an analogous situation? 

Is there a uniting theme? 

Is it relevant? 

Are we imposing any restrictions without intending to do so? 

When is it relevant? 

What does it remind you of? 

How can one salvage what appears to be a breakdown? 

How can you view it geometrically? 

How can you view it algebraically? 

How can you view it analytically? 

What do they have in common? 

What do I need in order to prove this? 

What are key features of the situation? 

What are the key constraints currently being imposed on the situation? 

Does viewing actual data suggest anything interesting? 

How does this relate to other things? 

Many people have made and used their own rich questions in their writings. As 
you read journal articles and other books, we encourage you to make a list of both 
explicit and implicit questions that authors ask themselves, that occur repeatedly, 
that are rich and that you particularly like.6 

A word of caution is necessary for anyone using our list (yours, or anyone else's) 
or trying to teach problem posing and solving with it. It is necessary to understand 
the special circumstances of a situation that might make it appropriate to use 
preconceived lenses to illuminate that situation. It might be foolish to apply some of 
these questions in certain circumstances. On the other hand, we should be equally 

See especially our book Problem Posting: Reflections and Applications (Hillsdale, NJ: Lawrence 
Erlbaum Associates, 1993), which includes many articles reprinted from journals. 
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aware that a nonsensical-sounding question might apply if we were willing to 
modify what might be our own rigid mind set. 

Mathematics itself is studded with examples of questions that appeared to be 
foolish or inapplicable due to a vision that was limited. A question like "If we take 
the side of a square to have unit length, how many times longer is the diagonal than 
its side?" was essentially a nonquestion for those unable to associate the diagonal of 
a square with a number. The question "How can I show that Euclid's fifth postulate 
does not follow from his others?" was not asked for over 2000 years because people 
were so committed to it being an inconceivable possibility. Even when we are 
convinced that a question such as "Which is more prime: 181 or 191?" is 
meaningless, frequently a slight modification of the question will bring it into line. 

Although we are not suggesting that every nonsensical question eventually 
incorporated (perhaps modified) in a given situation will guarantee historic 
posterity, it is possible that some worthwhile insight could follow. The next chapter 
demonstrates how such questions can be the catalyst for valuable reflection even 
for topics in a standard curriculum. 



4

The Second Phase of Problem 

Posing: "What-If-Not" 

You see things; and you Say say 

"Why?" 

But I dream things that never were, and I say 

"WhyNot?" 

George Bernard Shawl 

SEEING WHAT IS IN FRONT OF YOU 

Do we always "see" what is in front of us? The most obvious things are frequently 
those most hidden from us. Sometimes it takes a bit of a rude awakening for us to 
appreciate what is right before us and, often some kind of reorganization or shift of 
perspective leads us to see the obvious. For instance, a personal disaster may have 
the ironic effect of enabling us to see love, friendship, and blessings that may not 
have been perceived beforehand. 

You most likely have had experience in problem solving that illustrates this 
point. On a perceptual level, you might take the drawing in Figure 2 as an example. 

This quote is from George Bernard Shaw's play, "Back to Methuselah." The quote is sometimes 
incorrectly attributed to Robert F. Kennedy. The play premiered in New York City on May 13, 1922. 

33 
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FIG. 2. 

What is it a picture of? Most people will say that it is six equilateral triangles or a 
hexagon with the diagonals drawn in. Very few people will see it as a drawing of 
something three-dimensional, although occasionally a few people see it as the top 
of a tent. Sometimes the suggestion that it might be three-dimensional is enough to 
trigger an "ah-ha" response, as the person shifts perspective to see it as a cube. Of 
course, there are many additional ways of interpreting this drawing. 

On a more cognitive level, perhaps one of the most famous "ah-ha" solutions 
was Gauss's recognition that the sum: 

1+2 + 3 + 4 + . . . + 9 7  + 98 + 99+100 

can be calculated easily by noticing that we can consider the series as many pairs of 
numbers summing to 101. 

The shift of visual and cognitive perspectives may appear so obvious once we 
achieve it that we may not appreciate that the task was a nontrivial one. 

It is one thing to appreciate something from a fresh point of view; it is another to 
show that such a fresh point of view can be productive. For example, inductive 
evidence suggests that x2 - x + 41 generates only prime numbers for successive 
natural numbers for x, thus strengthening the belief that the formula yields only 
prime numbers. It works for x = 1,2,3,4,5,6,..., 31,32,33, and more. That's quite 
a string of successes. A shift of perspective, however, is quite revealing. If we ask 
explicitly "For what value of x might the formula break down?" we see the 
limitations of the formula faster than if we attempt to search for positive evidence. 
Alas, we can see with essentially no calculation that it breaks down at x = 41. 
Virtually no calculation is needed beyond the observation that for x = 41, we are left 
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with 412, which cannot be a prime since it has at least three divisors (which are?). Of 
course a change in perspective is not always accompanied by an "ah-ha" experience 
(although it sometimes is) nor need it be productive. 

It is ironic that it is so difficult for us to see what supposedly stares us in the 
face, because so much of mathematical thinking begins with the assumption that 
we take the "given" for granted. We are trained to begin a proof by first stating and 
accepting what is given. If we are asked to prove in a right triangle, with right 

2angle at C, that c2 = a  + b2, we begin by assuming that we have a right triangle 
with sides a, b, c, and for this kind of proof, a clear statement of the given is a 
necessary first step. 

But all of this training hides several very important points about mathematical 
thinking. First of all, in most contexts (except those that have been contrived in 
classrooms) it is not always so easy to see what should be given. What we decide to 
take as given depends on our purposes, available intellectual tools, aesthetic 
desires, and so forth. For example, many people are familiar with the fact that it is 
impossible, in general, to trisect an angle—one of three well known classical 
problems of antiquity. The proof of the impossibility of trisection, depends in some 
not so obvious ways upon "the given" that construction is to be done with a straight 
edge and a pair of compasses. If we assume the use of an implement known as a 
tomahawk, however, it is easy to prove that it is possible to trisect any angle.2 It is a 
fascinating issue to locate where in the proof using a tomahawk we violate the 
assumptions of the Euclidean instruments. It is also worth thinking about why 
Euclidean tools were considered sacred. 

Second, taking the given for granted usually assumes that our job is one of 
proving something based on the given. But there is certainly much more to 
mathematics than proving things. Coming up with a new idea, finding an 
appropriate image to enable us to hold on to an old one, evaluating the significance 
of an idea we may have already learned, or seeing new connections are also 
reasonable mathematical activities. For these and many other activities, we need a 
different notion than that of merely specifying and accepting the given as it is used 
in problem solving. 

ATTRIBUTE LISTING FOR A NEW PROBLEM POSING STRATEGY 

How can we go beyond accepting the given? First we try to specify what we see as 
"the given," although as we indicated earlier this is sometimes more difficult to do 
than we would imagine. Let us illustrate what we mean, first by using a theorem, 
and then by using a concrete material. 

See Howard Eves, An Introduction to the History of Mathematics, 3rd ed. New York: Holt, Rinehart 
and Winston, 1969, pp. 84-87. 
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Using A Theorem 

Let us go back to the Pythagorean theorem as an illustration. What is given? As 
suggested in the previous section, we are asking for many different possible inter­
pretations of what is in front of us. How would you describe the Pythagorean 
theorem? 

The following is a list of some of the responses to the question that we have received. 

1. The statement is a theorem. 
2. The theorem deals with lengths of line segments. 
3. The theorem deals with right triangles. 
4. The theorem deals with areas. 
5. The theorem deals with squares. 
6. There are three variables associated with the Pythagorean theorem. 
7. The variables are related by an equals sign. 
8. There is a plus sign between two of the variables. 
9. There are three exponents all of which are the same. 

10. The exponents are positive integers. 

We can call the 10 preceding statements some attributes of the theorem. In what 
ways do the first five statements differ from the other five? At first glance, it seems 
as if the first five resulted from viewing the theorem geometrically, whereas the last 
five statements viewed it algebraically. We realize, however, that more is involved 
because in some cases we deal with the logic of the statement, while in others we 
focus on the form of the statement. 

These kinds of distinctions point out that there are many ways of seeing the 
given. Regardless of these distinctions, what have we done so far? We have chosen 
as an example a theorem—the Pythagorean theorem—and we have made a list of 
some of its attributes. Different people will obviously produce different lists. Note 
that the list of attributes can never be complete and that the attributes need not be 
independent of each other. That is, we might have listed as attributes the fact that the 
theorem has a long and interesting history, or the triangle has a right angle and the 
fact that the two acute angles add up to 90°. We call the listing of attributes Level I of 
our scheme, and the branches of Figure 3 indicate a few of the attributes. 

This is just the beginning of our scheme. Before continuing, let us demonstrate 
further what we mean by attributes by choosing a second, different type of starting 
point: concrete material instead of an abstract theorem. 

Concrete Material: Geoboards 

We now return to the concrete material that we introduced in chapter 3, the 
geoboard, to develop the scheme suggested in Figure 3. 

Examine the geoboard in Figure 4. How would you describe it? 
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FIG. 3. 

FIG. 4. 

Some people might say that there are 25 nails arranged in a square array; others 
might mention that the board is white. Various attributes we have heard 
mentioned include: 

1. The board is square. 
2. The markings are regularly spaced. 
3. The markings are spaced along square lattice points. 
4. The markings are nails. 
5. The additional objects are rubber bands. 
6. The board is 5 x 5—that is, it has 25 nails on it. 
7. The board is rigid. 
8. The markings on this board are only on one side of the board. 
9. The nails are all of the same height. 

10. The board is stationary (unless picked up and moved). 
11. The board is simply connected. 
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You might well be thinking that attribute 10 is silly or that attribute 4 is irrelevant. 
However, apparently silly or irrelevant attributes may lead to worthwhile investigation. 
The question of which attributes are significant is not always easy to answer 
beforehand, and furthermore it is difficult to make such a judgment unless you have 
some idea of the purpose of the board. For example, we would expect the yoga expert to 
answer this question differently from the mathematician. Similarly, although we might 
not consider the whiteness of the board to be an important variable, the fact that the 
board is all the same color (or that the color could be varied within a given geoboard) 
might be significant. Someone who is interested in topological problems might find 
color to be a salient attribute—as in the case of the famous four-color problem. In any 
case, it is better to include an attribute that might not be useful than exclude one that, 
with further reflection might be. In short, when in doubt, leave it in! 

You may wish at this point to draw a schematic diagram for the geoboard that is 
analogous to the one we drew for the Pythagorean theorem (Figure 3). You might 
now be asking, "Where does this Level I attribute listing lead?" In order to 
demonstrate its power, let us further explore the geoboard. In the final sections of 
this chapter, we return to the Pythagorean theorem in order to apply and expand on 
strategies we have suggested here. 

NOW WHAT? A LOOK AT THREE ATTRIBUTES OF GEOBOARDS 

If we vary the attribute of squareness for geoboards, what alternatives come to 
mind? Consider the following four possibilities: 
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So, by allowing our imaginations free reign and modifying squareness as an 
attribute, we came up with circular, triangular, washer shaped and rectangular 
geoboards. 

Notice that in all the shapes generated so far,we have employed a hidden 
assumption: flatness. This suggests that flatness may be another attribute to vary, 
and it is not one we listed before. We may also notice that all the shapes are finite 
and bounded. Although squareness and flatness may be immediately obvious 
attributes of the board, the latter two attributes are less apparent and, as a matter of 
fact, became obvious to us only after we attempted to vary squareness and flatness. 
Thus, not only does looking for a new variation of an attribute suggest new 
geoboards, but it suggests additional attributes of the initial one as well. 

An Alternative to Squareness: Circularity 

Consider a circular geoboard. Let us change only the shape of the board and not the 
spacing of the nails. In asking how this board differs from the square geoboard, we 
realize that it is essentially a square geoboard with certain nails removed. This 
leads us to consider the question, "How many nails would be eliminated if we were 
to cut the largest circular board out of an n x n one?"3 Clearly, for a 2 x 2 board all 
four nails would be eliminated to form a circle. [Figure 5(a)]. 

For a 3 x 3 geoboard [Figure 5(b)], four of the nine nails disappear. For a 4 x 4 
board [Figure 5(c)], 12 nails are removed. You might want to see what happens in a 
5x5 board. We summarize our exploration in Table 2. 

It would be worthwhile (partly because the answer is not apparent) for you to 
predict the number of nails that would remain on an n x n geoboard that is cut into the 
largest possible circle. Although this problem has been generated within the context 
of a new kind of geoboard, it is worth realizing that this same question can be 
analyzed in the case of a standard geoboard. For example, instead of rubber bands as 
an adjunct of the standard geoboard, we could use wire circles and ask, "What is the 
maximum number of nails that can be enclosed by a wire circle on the board?" 

Now let us turn to another variation of the geoboard. We start by challenging the 
attribute that the markings are placed along square lattice points. 

An Alternative to Square Lattice Points: Shearing 

Suppose the nails are not placed as a square lattice, but conform to the shape of 
the figure as in the sheared one shown in Figure 6. 

We are assuming that our theoretical square geoboard has no border beyond the square grid of nails, 
and hence for the board in figure 5a, all four nails would have to be removed in cutting out the largest 
possible circular board. 



FIG. 5. 

TABLE 2 
The Largest Circular Geoboard Cut From a Square Geoboard 

Size of Square Number of Nails Number of Nails Number of Nails 
Board on Square Board Eliminated on Circular Board 

1x1 1 0 0 

2 x 2 4 4 0 

3 x 3 9 4 5 

4 x 4 16 12 4 

5 x 5 25 12 13 

6 x 6 36 20 16 

7 x 7 49 20 29 

8 x 8 64 32 32 

9 x 9 81 32 49 
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FIG. 6. 

Do new questions suggest themselves to you, now that we are looking at a 
different board? Do any of the new questions have meaning for the initial 5x5 
board? For which questions will the answers be the same for the square lattice as 
well as for the sheared one? 

Let us compare the two boards by looking at one example in more detail. We can 
think of our geoboard as graph paper and consider the two edges as our axes. 
Suppose we label the axes in both cases D and A. In addition, we have drawn in two 
lines. Notice that the pairs of lines are analogously placed in each diagram. See 
Figures 7 and 8. 

In what ways can we compare these two lines in the two diagrams?4 We could 
ask, "How do the equations of these lines compare? How do their points of 
intersection compare?" In what other ways could we compare the boards? 

We might consider regions, for instance. Now, draw any polygonal region on the 
square lattice board, and imagine that you have sheared the square lattice board. 
Now draw this new shape on the sheared board. Choosing a square as a unit for the 
square board, decide how you would analogously define a unit of area on the 

FIG. 7. 

As a start we might ask: Why did we see the two new lines in Figure 8 as analogously placed in 
relationship to those in Figure 7? 
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FIG. 8. 

sheared board. What is the area of the new sheared figure and how does it compare 
with the old one? 

In the two examples just given, we have in effect asked whether or not a 
rearrangement of lattice points alters the answer to the questions we pose. Can it 
make the original question meaningless? Here we can even ask a question that 
arises out of a direct comparison of the two boards and that goes beyond analogy. 
For example, if you place the square geoboard in Figure 7 on top of the sheared 
geoboard in Figure 8 so that the bottom row of nails coincides, will any other nails 
coincide? Does the answer depend on the angle of shear? (Assume here that the 
same unit of length is chosen along axes for Figures 7 and 8.) 

To continue to see how exploring alternatives to an attribute can lead to new 
ideas, we next consider in some detail one other attribute of the standard 
geoboard—that of finiteness. 

An Alternative to Finiteness: Infinite Boards 

What kinds of phenomena are suggested when we consider finiteness as a 
variable, while maintaining most of the other attributes of the geoboard? The 
board can obviously be infinite (and also unbounded) in a number of essentially 
different ways, though no physical model of it can exist. What would be your first 
reaction to drawing an infinite geoboard? 

Figure 9 shows several different ways in which we might represent an infinite 
board. 

Figures 9(a), (b), and (c) respectively depict half plane, full plane, and quarter 
plane infinite lattices. In Figure 9(d), we vary the quarter plane lattice by changing 
the number of degrees in the angle between the axes. There are, of course, other 
kinds of variations that lead to an infinite array. 
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Let us focus here on one model, Figure 9(c). One fanciful way of interpreting it 
is as an infinite orchard with trees equally spaced.5 Let each dot represent a tree 
(with no thickness, as a start). Suppose a man (who also has taken the ultimate diet 
pill) is sitting at the origin. Let us suppose further that his vision is limited to 
straight-line paths from the origin, and that any tree along a line of vision blocks 
trees behind it (on the same line of vision). There are a number of questions that 
relate to this phenomenon. For example: 

1. Given a tree in the lattice, is it visible or blocked? 
2. Does every line of vision hit a tree somewhere (perhaps far off) on the lattice? 
3. Can the person at the origin systematically number the trees (1, 2, 3, ...) so 

that given any number no matter how large, he can tell where in the orchard 
the tree associated with that number is located? 

4. Suppose the man is placed on a rotating wheel chair at the origin and he 
is spun in a random fashion within lines of vision of the quarter plane. 

Although it was not conceived of as a variation to the geoboard, the notion of such an orchard is 
discussed by Martin Gardner, "Mathematical Games," Scientific American, 2/2(5), pp. 120-126,1965. 
We pose a number of questions here that were not suggested therein. 
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What is the probability that when his chair stops, his line of vision will 
have no trees along it? 

People who respond in the affirmative to question 2 would most likely be in for 
a shock when they learn that the answer to question 4 is 1.6 You may wish to 
think of additional questions that involve many other variations or topics. You 
might, for example, wish to reconsider questions of this sort once we allow for 
thickness of the trees. Also, what new questions are suggested, and how are 
answers to the previous ones modified if the person in the quarter plane is no 
longer seated at the origin? How do things change if the man also relinquishes 
taking his diet pills? 

WHAT HAVE WE DONE? 

Look at Figure 3 once more. Recall that previously we chose a theorem and then 
listed attributes. This time we selected a concrete material, the geoboard, and 
looking directly at the geoboard as an object, we listed attributes. There were 
many of them (such as the board is square, the board is finite,...). We thought of 
many of the attributes when we first began the exploration, while others occurred 
to us only later. We depict what we have done with attribute listing on the 
geoboard in Figure 10. (You might find it useful to compare it to the scheme 
depicted in Figure 3.) In Figure 10 we indicate by "..." that there are many 
attributes we have not yet listed. 

We have, however, done more than this chart would imply. Not only have we 
asked, "What are some attributes?" but we have also asked, "What are some 
alternatives to any given attribute?" We have also asked additional questions 
concerning the new attributes. 

So after listing some attributes of the geoboard depicted as Level I, we asked for 
each attribute "What-If-Not?" that attribute. For example, for Attribute 1, "The 
board is square" we asked, "What if the board were not square?" We designate this 
"What-If-Not?" question asking as Level II(a). What other shape could the board 
be? Some answers were that the board is circular, or triangular. We designate these 
answers as Level II(b). We depict these first two levels of our scheme in Figure 11. 
It was in this way that we were led to consider: 

In order to appreciate that there is at least one line of vision not blocked by a tree (question 2), 

consider the line defined by the equation y = V2 *x. Finding integral values for x and y would be 

tantamount to expressing Vz as a rational number—something that is impossible. Once we have nailed 

down one such line of vision by use of an irrational slope, it is possible to imaginean infinite number of 
such lines. The probability of 1 is a consequence of the uncountability of the irrational numbers in 
relationship to the rational numbers,a concept that is far from intuitively obvious, but beyond the scope 
of this discussion. 



FIG. 10. 

FIG. 11. 
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• A circular geoboard. 
• The sheared arrangement of nails. 
• An "infinite" array of nails. 

Notice that in Level II of Figure 11 we have only indicated one "What-If-Not" for 
each of the two attributes. Under squareness, for example, we listed only one 
alternative—circularity. Of course, we could have considered any other alternative to 
squareness (such as rectangular shaped or washer shaped) and pursued it in depth, too. 

But what does it mean to pursue something in depth in this context? It means 
to ask a question about it as a start. Notice in the case of the circular geoboard 
we asked only one question, whereas in the case of an infinite board we asked 
many. You may wish to return to the circular board and ask further questions. In 
order to generate questions, we can make use of all of the strategies for question 
asking that we indicated in chapter 3. This step of question asking that comes 
after listing attributes, and asking "What-If-Not" for any particular attribute, is 
the next step in our scheme, and we call it Level III. So far, then, we have 
demonstrated three levels in our scheme: Level I (list attributes), Level II (ask 
for each one, "What if it were not so?" and give some alternatives), and finally 
Level III (pose questions). 

In Figure 11, we have simplified the process by listing only a few attributes and 
by suggesting one alternative for each of two attributes. In Figure 12, we have 
indicated the asking of questions (Level III). You might wish to sketch just the 
branches for one attribute, two alternatives, and two new questions on these 
alternatives! Of course we have provided the diagram only to help explain our 
scheme; when actually using the scheme, there is no need to draw a diagram. 

A RETURN TO THE PYTHAGOREAN THEOREM 

"What-If-Not" on Some Attributes 

Now that we have the first few stages of our problem posing scheme, let us 
reconsider the Pythagorean theorem. Look again at our list of the attributes of the 
Pythagorean theorem (Level I of our scheme in Figure 3). How can we use this list 
of attributes to help us pose new problems? We can use the same strategies as we 
just did for the geoboard and follow through the same steps. 

Beginning the "What-If-Not" Strategy 

What did we do in the case of the geoboard after we listed attributes? We took an 
attribute and asked "What-If-Not" that attribute. We now do the same for the 
attributes of the Pythagorean theorem. We illustrate this second step (Level II) by 



FIG. 12. 
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using several attributes as an example. Although it is not essential at this point, if 
you find it helpful to keep track of the scheme as it unfolds, you may wish to look 
ahead at Figure 13. It will surely be helpful when you get to the section entitled 
"Brainstorming on One Changed Attribute." 

Attribute 1. The statement is a theorem. How else could we construe the 
statement? What if it were not a theorem? What could it be? 

Just to ask such a question is in many cases a bold move—one that takes 
courage! Great advances in knowledge have taken place by people who have had 
the courage to look at a cluster of attributes and to ask, "What-If-Not?" As we 
mentioned earlier, perhaps the most famous such instance in mathematics involves 
the development of non-Euclidean geometry. Up through the 18th century, 
mathematicians had tried in vain to prove the parallel postulate as a theorem. It took 
2000 years before mathematicians were prepared to even ask the question,"What if 
it were not the case that through a given external point there was exactly one line 
parallel to a given line? What if there were at least two? None? What would that do 
to the structure of geometry?" 

Cantor's work on countability (alluded to earlier in the infinite orchard) is 
another example of the intellectual leaps someone can make by questioning 
"obvious" givens. Great advances in modern science from Harvey (What if it were 
not the case that a great quantity of blood was constantly produced and dissipated 
into the body cavity?) to Einstein (What if time and space were not absolute, 
independent entities?) have depended in part on "What-If-Not" formulations of a 
problem. Some people have even been burned at the stake or have taken hemlock 
for "What-If-Not" formulations of an idea! 

Return to Attribute 1: The statement is a theorem. How could one answer 
"What-If-Not" in this case? Let us symbolize alternatives by (~1), which means 
"not attribute 1 ."7 Let us label the various alternatives by subscripts such as (~ 1 )9. 

(~1), Construe the statement as a definition. 

(~1)2 Construe the statement as an axiom. 

(~1)3 Assume the statement is false, i.e., a2 + b2 ^ c2 (as, for example, in 
non-Euclidean geometry). 

Does it seem far-fetched to construe the Pythagorean theorem as an axiom? Some 
people have pursued the consequences of choosing the theorem as an axiom. Even 
just listing this alternative increases our awareness of the statement as a theorem. 

Before picking an alternative to examine carefully, let us continue to increase 
our options by listing "What-If-Not" alternatives for the other attributes of the 
Pythagorean theorem. 

In this case the negation becomes "'not' the statement is a theorem," which in better English might 
read "the statement is not a theorem." 
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Attribute 2. The theorem deals with lengths of the three sides. What if it did not 
deal with lengths of the sides? Focusing on length, we might choose the following 
formulations for "What-If-Not" Attribute 2. 

(~2), Consider half-lengths of the sides. 
(~2), Look at various projections of the three sides. 

(~2)3 Look at the orientation of the three sides. 

Attribute 3. The theorem deals with a right triangle. What if the theorem did not 
deal with right triangles? What else could it be? 

(~3), Consider an acute triangle. 
(~3), Consider an obtuse triangle. 

Although it may seem absurd at first, let us not rule out listing the following 
cases because they might prove fruitful: 

(~3), A straight angle "triangle." 
(~3)4 A reflex "triangle." 

(~3)5 Consider a right four-sided figure (notice here we refocused our 
attention from "right" to "triangle" as something to vary). 

Attribute 4. The theorem deals with areas. 

(-4), Suppose it deals with volume. 
(~4), Consider higher (or lower) dimensions. 

Attribute 5, The theorem deals with squares. 

(-5), Consider rectangles on the sides. 

(~5)2 Consider triangles on the sides. 

(~5)3 Consider similar polygons (nonpolygons) on the sides. 
(~5)4 Consider random polygons on the sides. 

Attribute 6. There are three variables associated with the Pythagorean theorem. 
What if there were not three variables? What could be the case then? Among 
possibilities might be: 

(-6), Suppose there were four variables, for example, a2 + b1 = d2 + c2 or 
2 2a  + b2 + c  = cl2. 

(~6), Suppose there were two variables, for example, a2 = b2, 

(~6) Suppose there were three variables and some constants; for example, 
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(~6)4 Suppose there were two variables and a constant, for example, 

Attribute 7. The variables are related by an "equals sign." What if this were not 
the case? What could the relationship be? Some possibilities are: 

(~7), The variables are related by " < ": a2 + b2 < c2 . 

(~7)2 The variables are related by " < ": a2 + b2 < c2 . 
(~7)3 The variables are related by division: a2 + b2 divides c2 . 
(~7)4 The variables are related by " > ": a2 + b2 > c2 . 
(~7)5 a2 + b2 and c2 are relatively prime. 
(~7)6 a2 + b2 differs from c2 by a constant. 

Attribute 8. There is plus sign between two of the variables 

2(~8), a2-b2 = c . 
2(~8)2 a2-b2 = c . 

2(~8)3 (a2)"2 =c . 

(~8) 

Attribute 9. There are three exponents, all of which are the same. Some 
"What-If-Nots": 

2(-9), a + b2 = c . 
(~9)2 a + b = c2. 

2 5(~9)3 a  + b3 = c . 
2(~9)4 a  + b2 = c. 

Attribute 10. The exponents are positive integers. Some "What-If-Nots": 

m m(-10), a  + bm = c . 

Now we have taken 10 attributes of the Pythagorean theorem and have 
generated two or more alternatives for each. For attribute 7 we generated 6 
alternatives, and altogether we have generated over 30 alternatives. What do we 
do with this list of "What-If-Not" alternatives? We progress to our Level III 
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activity, that of asking a question. Let us demonstrate this third level by looking at 
attribute 7 as a start. 

Brainstorming on One Changed Attribute 

Asking a Question 

As we have shown, there are many possible variations of attribute 7. Let us 
choose one of them to demonstrate how alternatives to attributes can give rise to 
new investigations. 

Consider (~7),: The variables are related by a "<" sign: a2 + b2 < c1. What 
questions come to mind? Several possibilities are: 

(~7), (a): Does a2 + b2 < c2 have any geometrical significance? 
(~7), (b): For what numbers is the inequality a2 + b2 < c2 true? 
(~7), (c): How many instances are there for which a2 + b2 differs from c1 by a 

particular constant? (i.e., a2 + b2 = k + c2 for a fixed k). 
(~7), (d): What is the graph of a2 + b2 < c2? 

Let us stress again that we have done more than merely list attributes (Level I of 
our scheme) and modifying attributes by asking "What-If-Not"? (Level II). We 
have just posed some new questions (Level III). We would probably not have 
thought of these questions without having gone through Level I and Level II. For 
the purpose of brainstorming ideas, proposing "What-If-Not" is only Level II and 
must be followed by question-asking. 

In Figure 13, for example, we have shown two attributes, attributes 7 and 9. 
Attribute 7 is, "The variables are related by an equals sign a2 + b2 = c2" and three 
alternatives to this attribute are given. They are: 

(~7), The variables are related by " < " : a + b < c . 

(~7)2 The variables are related by " < " : a2 + b2 < c2. 
2(~7)3 The variables are related by divisibility, a2 + b2 divides c . 

Attribute 9 is, "There are three exponents—all of them the same." One 
alternative to attribute 9 is shown in the diagram (namely, that there are three 
exponents of which the third is raised only to the first power). But in both 
cases—attribute 7 and attribute 9—there is greater potential for gaining anything 
new once we ask a question. We urge you to trace through other branches of the 
diagram, making your own choices of attributes and "What-If-Not" alternatives 
and questions. 
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Posing new questions is a valuable activity. Let us demonstrate this by indicating 
how a newly posed question may help us gain some deeper insight into the nature of 
the Pythagorean relationship, which was our starting point. 

Analyzing a Question 

Let us take two of the questions we posed and see how analyzing and trying to 
answer them gives us a deeper insight into the Pythagorean theorem. So often 
people have a feeling that once they "know" a theorem, they know all there is to it. 
So let us look at two of the questions we posed after we wrote down a 
"What-If-Not" to attribute 7, namely, a2 + b2 < c1. The first question posed was, 
"Does a2 + b2 < c2 have any geometric significance?" 

The second question posed was, "For what whole numbers does this 
inequality hold?" You may wish to skim much of what follows in this section 
and defer a reading of the details of the analysis for a second go-round. Your 
first step might be to translate the algebraic inequality into the geometrical 
assertion: The sum of the squares on the two legs of a right triangle is less than 
the square on the hypotenuse. Though we know from the Pythagorean theorem 
that this is not the case for a right triangle with right angle at C, under what 
circumstances might it be true? 

Suppose we relax the criterion that the triangle be a right triangle but maintain 
our focus, using conventional notations that c is the side opposite angle C. Under 
what conditions can a2 + b2 be less than c2 and what is the geometric significance? 

The law of cosines asserts that for any three sides a, b and c of a triangle, 
a2 + b2 = c2 + 2ab cos C. Therefore a2 + b2 < c2 whenever lab cos C is negative. 
This occurs only when <C is obtuse, as in the picture below. 

Since the question ("Under what conditions is a2 + b2 <c2?") is understandable 
to one who knows nothing about trigonometry, it is interesting to note that the 

2problem is also analyzable without the law of cosines. If a2 + b2 < c , then c must 
be larger than what it would be if <C were a right angle. Hence <C must be 
obtuse. We might also ask if we could somehow appreciate the geometric 

2significance of c2 - (a2 + b2), the amount by which a2 + b2 falls short of c . 
Let us recall the drawing used by Euclid in his proof of the Pythagorean 

theorem. See Figure 14. He proved the theorem by showing that the square on BC 



FIG. 13. 
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has the same area as rectangle BKME [Figure 14(a)] and that the square on CA has 
the same area as the rectangle KADM [Figure 14(b)]. Thus the square on BC plus 
the square on AC equals the square on AB. 

FIG. 14. 

Now let us look at what happens when <C is not a right angle. Since AB is shorter 
(longer) if <C is acute (obtuse), the square on AB cannot now be equal to the square 
on BC plus the square on AC. The difference between the area of the square on AB 
and the sum of the squares on the other two sides of the triangle is called the defect. If 
<C is obtuse, then the area of the square on AB is larger than the sum of the other two 
areas, whereas if <C is acute the area of the square on AB is smaller. See Figure 15. 
Let us take the case in which <C measures more than 90° (angle <C > 90°) and look 
for a geometric way of "seeing" the defect or, the amount by which the area denoted 

2 2by c2 overshoots the area denoted by a  + b2—that, is c  - (a2 + b2). 

Mimicking the Right Triangle Case 

One way of attempting to find a way to "see" the defect is to try to mimic Euclid's 
proof for the case in which <C is a right angle. Since Euclid's proof is only one of 
well over 300 different proofs of the Pythagorean theorem,8 let us briefly recall some 
details of his proof. As suggested earlier, Euclid proves geometrically (i.e., makes no 

See Elisha Loomis, The Pythagorean Proposition. Washington, DC., 1968: National Council of 
Teachers of Mathematics. 
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use of algebraic formulas for area) that the square on the side opposite the right angle 
is equal to the sum of the squares on the other two sides. He does this by breaking 
square BADE into rectangles as shown in Figure 14(a).9 To prove that the rectangle 
BKME and square BFGC are equal in area he makes use of the fact that: 

ABEC s ABAF and hence the 

area of ABEC = area of ABAF. Now the 

area of ABEC =1/2BE • BK, because the length of the 

altitude of ABEC from C is equal to BK, and the 

area of ABAF =1/2BF • CB since the length of 

the altitude of ABAF is equal to CB. 

It follows that BE • BK = BF • CB and hence that the area of rectangle BKME 
equals the area of square FBCG. Similarly, Euclid showed that the area of rectangle 
MDAK equals the area of square AJHC [Figure 14(b)].10 

The Obtuse Angle Case 

Let us now see what happens when <C is obtuse (Figure 16). As in the right 
triangle case, ABEC is congruent to ABAF and hence their areas are equal. Similarly 
the area of ABEC is1/2BE • BK, because the altitude of ABEC is BK. 

When we look at ABFA, and consider the base to be BF, the altitude is no longer 
CB since <C is not a right angle and ACG is no longer a line segment, and of course 
therefore neither parallel to BF nor perpendicular to BC. To mimic Euclid's proof 
we are tempted to draw AC'G' perpendicular to BC produced as indicated in Figure 
17(a). Then the area of ABFA = 1/2 • BF • C'B = 1/2 area BFG'C'. 

Using the fact that the area of ABEC equals the area of ABAF, we conclude that 
the area of rectangle BEMK equals the area of rectangle BFG'C' (rather than square 
BFGC). So the defect contributed by BEMK is seen to be the shaded area GCC'G'. 
See Figure 17(a). Similarly MDAK contributes CC"H'H, see Figure 17(b). Hence 

2the total defect c  - (a2 + b2} is seen to be the sum of the two rectangles GCC'G' and 

If you have not seen the proof before, it will help you to draw in AF and EC in Figure 14(a). We 
supply that diagram for the obtuse case later, in Figure 16(b). 

We have outlined a modern version of Euclid's proof. Since Euclid did not have a marked straight 
edge, he was not able to denote the regions of any areas by numbers per se. Therefore, he did not have any 
formulas (like the product of the lengths of the base and altitude) for the areas of geometric figures; 
nevertheless, he was able to figure out when two figures had the "same area" by making use of the 
concept of congruence without invoking any concept of number. All of this is quite amazing and should 
give pause to anyone who claims that "Euclid must go" because of certain deficiencies. In fact, Euclid 
appreciated the concept of "same area" much as Russell appreciated that of "same number" 23 centuries 
later. They are both fundamental concepts for the construction of mathematical objects. 



FIG. 16. 

FIG. 17. 
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CC"H'H. Note that this defect approaches 0 as <C approaches a right angle. So the 
Pythagorean theorem is a special case when the defect is zero. Another way of 
looking at it is to imagine line ACG approaching AC'G' and line BCH approaching 
BC"H' as <C approaches a right angle. 

A Step Back 

Lest we lose sight of the forest for the trees, let us highlight both what we have 
found out so far with respect to the usefulness of problem posing and how we found it 
out. Notice that the "What-If-Not" activity we have just been engaged in enables us to 
get a deeper insight into the Pythagorean theorem itself.11 Thus, as we explore 
alternatives to right angles, we can appreciate that certain points are collinear in the 
case of a right triangle or that certain "convenient lines" form altitudes (something we 
took for granted before considering alternatives). Furthermore, notice that these 
variations on a right angle enable us to appreciate in purely geometric terms a concept 
that would normally require a trigonometric explanation.12 Something special has 
taken place here with regard to our approach for the significance of a2 + b2 < c2. We 
would like to make the nature of our analysis explicit. Notice that in attempting to 
locate the geometric significance of a2 + b2 < c2, we have, as far as possible, mimicked 

2the proof of the Pythagorean theorem for which a2 + b2 = c . The concept of analyzing 
the variation of a phenomenon (in this case a proof) by mimicking the original 
phenomenon is one that sometimes pays off in our understanding the original 
situation. It is a concept worth keeping in mind. 

A Numerical Analysis 

Next let us consider a second question in relation to "What if a2 + b2 < c2?" 
Consider (~7),(b). For what whole numbers is the inequality a2 + b2 < c2 true? There 
are several ways to explore the problem. We might start by listing easy solutions. 
There are several: (1, 1, 3); (1, 1, 4); (1, 1, 5); (1, 1, 6); (1, 1, 7). Without much 
difficulty we can see that (1, 1, n) will satisfy the inequality for any n a natural 

Employing a proof by contradiction (on Proposition 12 and 13 of Book II and Proposition 47 of 
Book I of the Pythagorean theorem of Euclid), one can easily show that if a + b < c , then angle C is 
obtuse. Figure 17 is merely a generalization of the scheme employed in Proposition 47. The total defect 
is shaded and is drawn on two separate figures for clarity only. See pp. 404,405 of Euclid's Elements by 
T. L. Health (2nd edition. New York: Dover Publications). 

As a matter of fact, we now have the roots of an argument that explains in some sense the algebraic 
2 2 2 

ideas behind the law of cosines: c2 = a2 +b2 - 2 ab cos C. Notice that the area of rectangle G'C CG is 
GOCC' which equals -ab cos C, and the area of rectangle HCC"H' equals -ba cos C. Hence the total 
defect is -lab cos C. An additional surprise is that each of the areas on the legs contribute equally to the 
defect; that is, the amount by which the area on each leg fails to contribute to the exact area of its share of 
the square on the "hypotenuse" is the same! 
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number greater than 1. Therefore this gives an infinite number of solutions (we 
have, of course, still excluded an infinite number of possibilities). 

The answer that there is an infinite number of solutions, based upon the 
observation that the inequality holds for all triples of the form (1,1, n) for n > 1, is 
as unsatisfying as the observation that there is an infinite number of Pythagorean 
triples, based on the observation that the equality a2 + b2 = c1 holds for all triplets 
of the form (3n, 4n, 5«) for any n. Just as the problem of finding the number of 
Pythagorean triples is made more interesting by defining primitive Pythagorean 
triples (where a, b, and c are relatively prime), so it is worthwhile to define a 
solution here in such a way that (1, 1,«) for all n > 1 represents only one rather 
than an infinite number of solutions. Given this refinement of the concept of 
solution, what would another solution be? 

We leave (~7), (c), (d) for you to explore on your own. Notice that in (~7), (a) and 
(b), we have solved the problem of what the geometric significance of a2 -f b2 < c2 is, 
and we have indicated how to begin to solve the problem of what whole numbers 
satisfy cr + b2< c2. That is, we have become involved in problem solving and problem 
analyzing. We call this Level IV of our scheme. We have, however, not yet quite 
finished with our technique of posing problems, so we turn to another feature next. 

A New Addition to the "What-If-Not" Strategy: Cycling 

So far we have been systematic in listing attributes and then asking 
"What-If-Not?" for each. Sometimes this has made us aware of new attributes, 
which we have then added to our list. But we have also thought of new 
"What-If-Nots" that were not obtainable by strictly applying methods discussed 
so far. In this section we indicate how a somewhat "sloppier" "What-If-Not" 
procedure may extend the process fruitfully. In a sense, we are going to loop 
through some branches of our scheme depicted in Figure 13. We need alternatives 
to two or more attributes to do so. 

Among the many "What-If-Not" alternatives we can derive by modifying the 
attributes of equality (attribute 7) and equal exponents (attribute 9) for the 
Pythagorean theorem are the following respectively: 

Let us use these two alternatives to illustrate what else we can do to add other 
possibilities we cannot get by our previous methods. Notice that (~7), deals with 
inequality but keeps the right-hand term fixed, while (~9)4 keeps equality fixed but 
deals with an exponent of 1 . 

A new form would be: 
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A simple, systematic application of the "What-If-Not" principle on any of the 
listed attributes would not yield the sentence a2 + b2 < c. There are at least two 
possible paths indicated in the left-hand and right-hand branches of Figure 18. We 
could first (see the left-hand branch) apply the "What-If-Not" principle to attribute 
7 (equality) and then reapply the same principle to attribute 9 (three equal 
exponents). Or we could reverse the order and start with the right-hand branch. 

The process of varying one attribute followed by varying another suggests a 
systematic technique we could employ for brainstorming new problems. We 
call this technique cycling. Here we have a systematic way of generating new 
forms by combining the preceding two "What-If-Nots." Without much effort, 
we begin to generate an enormous number of new combinations of changed 
attributes by cycling through various branches of the chart (Figure 13) with the 
"What-If-Not" principle. We can demonstrate what is involved here by placing 
the left-hand branch of Figure 18 in the context of the overall plan. The 
darkened horizontal arrow in Figure 19 indicates that we have imposed (~7), 
onto (~9)4. There is, of course, nothing special about this particular imposition, 
and in order to significantly increase new forms we could cycle an attribute such 
as (~7)1 throughout the chart. 

Now that we have a new form, a2 + b2 < c, where can we go from here? 
Remember that the next step is to ask a question. What question could we ask? 

FIG. 18.




FIG. 19.
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Instead of choosing new questions, we can select some of the questions asked in 
our previous variations. In (~7), (a)-(d) among the questions (generalized a little) 
we asked the following: 

How many triples are there? 
For what numbers will the statement be true? 
Let us choose the first of these questions and apply it to the new form. We then 

have the following new problem: For any fixed value of c (c a natural number), how 
many ordered pairs (a, b) of integers satisfy the inequality a2 + b2 < c? 

We might begin the problem most naturally by creating a table (see Table 3). 
We urge you to complete the second row of the table to verify the entries in the 

third row. 
We can make a number of observations (based on the table). 

1. The number of ordered pairs in each case in our list so far is odd. 
2. From c to c + 1, the number of ordered pairs increases by either 4 or 8, or 

remains constant. 
3. There are not more than three c's in succession that have the same number 

of ordered pairs for solution. 

Undoubtedly, you will make a number of other observations. So far, however, 
we have calculated a value of N for each value of c. What happens if we explore the 
original (more general) question. "For any c, what is the value of NT Here we begin 
to look for an explicit relationship between the entries in the first and third row. 
There are many ways of exploring the relation of N to c. Consider differences, 
sums, ratios. The latter will lead to a result that will surprise you. (The use of graph 
paper may help reveal why a specific ratio is approached. This may lead to some 
fascinating "pi-in-the-sky" thinking). 

Reflections on Cycling 

New forms can be obtained by cycling alternatives through the different 
attributes as we did to obtain a2 + b2 < c. Even with only a small number of 
attributes and a small number of alternatives, the number of new ideas that can be 
obtained is staggering. Furthermore, not only the alternative forms, but the 
questions themselves can be cycled, as we did in the preceding example. This 
cycling technique can be very powerful. 

We illustrate this with an example from our own experience. In the previous 
section, we posed the problem: 

What is the graph of a2 + b2 < c2? [(~7), (d)] 

In analyzing the question, we had to clarify whether we are holding some of the 
variables fixed or not—that is, the graph could be one-, two-, or three-dimensional. 



TABLE 3 
Number of Ordered Pairs of Integers as a Function of Integral Values of c in 



64 4. THE SECOND PHASE OF PROBLEM POSING: "WHAT-IF-NOT" 

We leave it to you to analyze this problem. Let us point out, however, that the 
analogous question for the case of equality (what is the graph of a2 + b2 = c2!} was 
one that had not occurred to us at the time we originally began brainstorming on 
questions directly related to the Pythagorean theorem. The question "What is the 
graph of ..." can also be cycled through our other forms. In this way the 
problem-posing strategy not only enables us to pose problems with regard to 
changes on what is given, but gives us a better understanding of the unmodified 
phenomenon as well. 

Notice too, that once we observe that graphing is a phenomenon about which we 
have asked a new question, we can turn the question itself into an attribute. Only 
after we asked the question about graphing of a2 + b2 < c2 did we realize it could be 
applied as a question in the case of the Pythagorean relationship. As importantly, 
however, we realized that graphing can itself become an attribute of the 
Pythagorean relationship. Thus, we might add as an attribute: 

a2 + b2 = c2 is a relationship that lends itself to graphing. 

You may at this point wish to add a number of questions to our "handy list of 
questions" from chapter 3. An obvious one suggested by the above exploration 
would be: What is the graph of ... ? 

SUMMARY 

So far we have presented an outline of a problem posing strategy that we call 
"What-If-Not." As we have shown, there are a number of different components 
(Figures 12 and 13). We illustrated the strategy by using two types of starting 
points—a concrete material and a theorem. Since we cannot begin without 
choosing a starting point, perhaps we should dignify this step by calling it Level 
0 of our strategy. Our next step (Level I) was to list some attributes. We then 
asked, "What if each attribute were not so; what could it be then?" (Level II). We 
then used these new alternatives as a basis for asking new questions (Level III). 
Then we selected some of our new questions and tried to analyze or answer them. 
This is Level IV of our scheme. The stages of our strategy can be summarized by 
a few key words. 

The major stages of our strategy are: 

Level 0 Choosing a Starting Point 

Level I Listing Attributes 

Level II What-If-Not-ing 

Level III Question Asking or Problem Posing 

Level IV Analyzing the Problem 
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In addition, we have shown how the strategy of cycling modified attributes and 
cycling questions can be incorporated into the system—resulting in a number of 
questions that might stagger the imagination of even the most creative thinker. 

Our scheme, however, is not as linear as it may seem from this list. Almost every 
part can (and does) affect others. A new question may trigger a new attribute, and a 
new attribute may in turn trigger a new question (for example). This in turn may 
enable you to see the original phenomenon in a new light. 

Furthermore, it is worth keeping in mind that not all questions need be clear and 
easily understandable when they are first posed. We have even suggested that there 
might be value in posing problems that are ambiguous. Ambiguity has more value 
than we usually acknowledge. For one thing, it can lead to assuming a more 
humorous lighthearted attitude toward exploration. In addition, what is ambiguous 
in one context may generate other contexts within which it has greater clarity. In 
discussing questions to ask about the orchard in the section on the infinite geoboard 
for example, we wondered how things might change if the man looking out on his 
orchard were to relinquish his diet pills. Given the context of the orchard—with a 
concern on what is in the man's line of vision—this question might appear 
misguided. That is so if we were to continue to ask questions about the man's line of 
vision—as if it were a straight line with no width. Can you imagine what new 
questions you might ask and even what new attributes you might notice if we 
allowed for the possibility that his line of vision has some thickness to it? 

The WIN ["What-If-Not"] scheme may seem very formal the first time you read 
about or try the approach we have described and illustrated. You may also be 
overwhelmed by the number of possibilities and new problems that emerge. But when 
you choose your own starting point and carry out the steps outlined in this chapter, you 
will soon internalize the strategy implied by the different levels and you will find 
yourself doing a "What-If-Not" procedure in a more nonchalant manner. After a while, 
you will do it in a more haphazard and less systematic way, as is the case with many 
people who do research in mathematics. In fact, we strongly hope that you will not 
adopt this procedure in a mechanical way. Rather, we hope that it will provide a 
touchstone for a spirit of investigation and free inquiry, in a most imaginative way. We 
hope that this spirit will not be bound by the narrow "tunnel vision" so frequently 
associated with school based mathematical activity. With this in mind, we turn to a 
more lighthearted approach with a variety of starting points in the next chapter. Before 
doing so, however, you might wish to look once more at the last paragraph of the 
subsection "Reflections on Cycling." If you are wondering how it is that people may 
have come up with some of the questions to ask (Level IE), it might pay to skim the 
headings of chapter 3 in the section "Strategies for Phase-One Problem Generation." 
You mostly likely will be in a position now to add to those categories. 
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The "What-If-Not" Strategy 

in Action 

In the last chapter we used two examples to develop and describe our "What-If-Not" 
scheme for problem posing. Now let us employ the scheme, using several different 
topics or situations. Unlike our approach in the previous chapter, we are less 
exhaustive here. Instead, in order to indicate the richness of the scheme, we focus on 
just a few "What-If-Not" paths based on a listing of some of the attributes. 

Although we have introduced the use of computer technology programs 
explicitly in the last two examples of the later section entitled "Other 
Beginnings...", we could have done so with many other examples in this chapter. 
We encourage the reader who has access to such programs to do so with some of the 
other examples. 

TWO SAMPLE "WHAT-IF-NOTS" IN SOME DETAIL 

Example 1. A Sequence: Fibonacci Sequence 

Brief Background 

Before actually doing a "What-If-Not," we want to present some background 
on this fascinating topic, one that not only unites different branches of 
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mathematics but also relates mathematics to architecture, art, and even 
aesthetics. In this section we shall summarize well-known results, and will 
indicate sources for further investigation. In the following section, we assume a 
more playful attitude as we apply the "What-If-Not" strategy to the content of 
the Fibonacci sequence. 

Look at the following sequence of numbers: 

1,1,2,3,5,8,13,21,34,55,89,. .  . 

It is generated by a very simple rule, "Starting with 1 and 1 as the first two terms, 
add any two adjacent terms, and the sum will yield the next one." Thus: 

1 + 1=2 

1+2 = 3 

2 + 3 = 5 

3 + 5 = 8 

Since 55 + 89 = 144, the next term in the sequence is 144. Generate a few more 
terms in the infinite sequence. 

This sequence was investigated originally by Fibonacci (literally, "the son of 
Bonacci") an Italian mathematician of the 13th century. Despite its simplicity, it is 
one of the most intriguing mathematical sequences because it connects a number of 
branches of mathematics and, in addition, abounds with applications to numerous 
other disciplines. 

All of the following phenomena are related in some way to the original 
sequence: 

• The ratio of the length to the width of the Parthenon in Greece. 
• The placement of the navel in Michelangelo's David. 
• The construction of a regular pentagon using only an unmarked 

straight-edge and a pair of compasses. 
• The number of leaves in a pine cone. 
• The reproduction of rabbits (appropriately conceived). 
• The investigation of aesthetically appealing rectangles. 

One clue that may unlock several of these diverse fields for you may be revealed 
by observing the ratio of adjacent terms (choose smaller to larger numbers to get 
ratios). Thus we have: 
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The sequence of ratios approaches 

as a limit (which is irrational and is equal to . to three decimal places). That 
number is called the "golden ratio."1 It turns out that the ratio of width to length 
of the Parthenon approximates the "golden ratio," and also that David's "belly 
button" is placed at approximately .618 of his total height. Why the ratio of 
succeeding terms of the Fibonacci sequence approaches the golden ratio and 
how these other "real-world" phenomena relate to the golden ratio is revealed 
in numerous books and journals.2 Although not essential for what follows, one 
way of arriving at the golden ratio is to begin with the definition of the nth term 
in terms of the two preceding ones. Thus tn = tn_x + tn_r If you divide both sides 
of this equation by tn_l and consider ratios of terms as n gets large, you are on 
the right track.3 In summarizing, we begin (for the record) with (a), the "find" 
we have already discussed: 

If you take a segment of length 1 and break it up into segments of length x and 1 - x, so that 

when you solve for x, you get the aforementioned irrational number, and each of these 2 fractions will be 
the golden ratio. A rectangle with such dimensions is called a golden rectangle. 

•j 

For a start, see Martin Gardner, "The Multiple Fascination of the Fibonacci Sequence," Scientific 
American, March 1969, pp. 116-20; Stephen I. Brown, "From the Golden Rectangle and Fibonacci to 
Pedagogy and Problem Posing," Mathematics Teacher, March 1976, pp. 180-188. You will find a 
bibliography leading to other sources in these articles. In addition, there is a research journal, The 
Fibonacci Quarterly, which specializes in "fall-out" of the Fibonacci sequence. 

The uncommon development of the quadratic equation, which ends chapter 6, provides another 
clue as to how we can arrive at the ratio. 
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(a) The ratio of succeeding terms approaches 

the "golden ration." 
(b) The difference between any two adjacent terms generates another 

Fibonacci sequence (with 0 instead of 1 as the first term). 
Thus: 1, 1, 2, 3, 5, 8, 13, 21 becomes 0, 1, 1, 2, 3, 5, 8. 

(c) The square of any term differs by one from the product of its two adjacent 
terms: 

Thus: 52 = 3 • 8 + 1 
Also: 132 = 8-2  1 + 1 

(d) The product of two adjacent terms differs by one from the product of the 
two terms preceding and following these terms: 

1, 1,2,3,5,8, 13,21, 

Thus: 3 • 5 = 2 • 8 - 1 

Also: 8 • 13 = 5*21-1 

But notice that 5 • 8 = 3 • 13+1 and also 2*3 = 1*5+ 1 
If you have not explored the Fibonacci sequence before, you may wish to 

investigate (a)-(d) further before moving into a "What-If-Not" mode. If so, take a few 
minutes out before we begin to list the attributes (Level I) of the Fibonacci sequence. 

Beginning a "What-If-Not" on Fibonacci 

What are some attributes? Recall that we generate any term after the first two by 
adding two adjacent terms. This definition seems so simple that we might neglect to 
see its essential features. As we have said earlier, it may very well be that it is only 
after you have done some modification at other levels of the "What-If-Not" process 
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that you will become aware of the essential features of the phenomenon you are 
investigating. The following are two features (in addition to the one just mentioned) 
that we see as essential to the definition of the sequence: 

1. We start with two given numbers. 
2. The two starting numbers are both 1. 

Breaking Up Attributes 

Of course there are more attributes to list for the Fibonacci sequence, but first it 
is worth observing that we have expanded what might have been one statement into 
two; that is, we could have said: 

3. The first two given numbers are 1 and 1. 

Do you see the advantage of breaking up the attribute listing as in statements 1 and 2 
rather than consolidating it as in 3? By doing so, we have signaled the possibility that at 
a later stage we might change not just one thing, but two—the number of "starting 
numbers" andthe value of the starting numbers. If we had selected statement 3 as a way 
of listing the attribute, we might very well see only the possibility of changing the value 
of the beginning numbers without realizing that we might also change the number of 
beginning numbers (e.g., from two to perhaps three or four). 

With this word of caution, we realize that it might have even been better to break 
up statement 2 into two parts as indicated here: 

• The first two numbers are the same. 
• The same number is 1. 

After having fumbled around as already described, we realized that a good way 
to get started would be to list the attributes as follows: 

(i) We start with two given numbers. 
(ii) These two starting numbers are the same. 
(iii) The same number is 1. 

More Listing 

Let us now move on to other attribute listing, this time without reflecting 
explicitly on our wording as we did for the previous listing. 

(iv) If we do something to any two successive numbers, we get the next number. 
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(v) The something we do is an operation. 
(vi) The operation is addition. 

Perhaps you will find ways of breaking up attributes in a more fine-grained way 
than we have, so that you will be able to come up with even more interesting 
challenges at the next stage. 

What-If-Not 

Having demonstrated some attribute listing (Level I), let us now move to Level 
II: "What-If-Not." Let us select (ii) as the attribute to challenge.4 If the first two 
terms were not the same, what might they be? Suppose we maintain integers and 
even maintain the generating characteristic of the Fibonacci sequence, but select 10 
and 7 as the first two terms?5 

Thus, (~ii) might be, "Suppose 10, 7 are the first two terms." We thus have the 
following sequence: 

10,7, 17,24,41,65, 106, 171,... 

Now that we have modified the sequence, what might we do? Of the many 
questions we might ask (Level III), let us consider several that derive from our 
knowledge of the original sequence—described in (a), (b), etc. under "Brief 
Background". 

Asking Questions 

(a') What limit (if any) does the ratio of succeeding terms approach? 

Moving to Level IV, we begin to analyze the problem. If we take ratios of 
succeeding terms, we get the following: What 
limit do you think is being approached? Try a few more ratios. Move far out on the 
sequence. The fact that 1(%! = .620 suggests that it is reasonable to conjecture that 
we are once more approaching .618 ..., the golden ratio! Is it so and if so, why? An 

4 
Note that in challenging (ii), we are also challenging (iii). It is valuable nevertheless to maintain (iii) 

as a separate attribute because we could conceivably focus on a Fibonacci-like sequence in which the 
first two starting numbers are the same, but not equal to 1. That is, we could challenge (iii) but not (ii). 
The reason that we have "slippage" from (ii) to (iii) here is that the attributes listed are not independent. It 
is essential that we allow for such looseness because, as we have said earlier, we may not be able to see 
the independence of attributes until after we have begun the "What-If-Not" process. 

5At this point you might realize that we did not list the fact that the terms of the sequence were 
integers as an attribute; you might wish to add it now. 
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analysis of why the original Fibonacci ratios approach this limit might reveal why 
the situation has not changed in the new sequence. It is even possible that we would 
understand the original limit in a new light if we were to see why it is not affected by 
a radical change in the first two terms. Since our object here, however, is to exhibit 
the "What-If-Not" scheme in action, rather than to provide a full-blown analysisof 
relevant mathematics at each point, we leave that investigation up to you. The 
Fibonacci references at the beginning of this chapter will provide some direction 
should you be interested in pursuing this issue. 

We move now to yet another question to investigate on our modified sequence. 
We look back at (b) discussed earlier with regard to the bonafide sequence, then a 
counterpart to (b) would be: 

(b') What sequence is generated by taking the difference of succeeding terms? 

It seems clear that after a slightly rocky beginning, we once more "retrieve" 
the original sequence. You will probably find the analysis of why that is so to be 
easier than the analysis in (a"). At any rate, the fact that we do arrive at a new 
sequence (by taking succeeding differences) that is almost identical to the 
original except for the first term, suggests that we might now investigate a 
totally new question that had not occurred to us earlier: "How can we "work 
backwards" given any Fibonacci-like sequence in order to discover what terms 
precede the first one?" 

Analyzing Questions 

Let us now investigate how the phenomenon described in (c) for the Fibonacci 
sequence fares in our new Fibonacci-like sequence. We ask the question: 

(c') How does the square of any term compare with the product of its neighbors 
(again "borrowed" from an attribute of the original setup)? 

Compare 72 (49) with the product of its neighbors: 17 x 10 = 170. It is no longer 
the case that 72 differs from 10 x 17 by 1. 
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Too bad! Let us move to another question: 

(d') How does the product of two adjacent terms compare with the product of 
the two terms preceding and following? 

7x1 7 does not differ from 10 x 24 by 1 as in the analogous Fibonacci sequence. 
Too bad once again! But wait! Look at the "miss" in both (c') and (d'): 

From(c'):72= 10 • 17-121. 
From(d'): 17 • 7 = 10 • 24 - 121. 

There is something promising here! Just as 1 was the magic number for the 
Fibonacci sequence, so 121 might work here. Let's try a few more cases: 

172 = 289, and 24 • 7 = 168, again a difference (289 - 168) of 121. 
24 • 17 = 408 and 41 • 7 = 287, again a difference of 121. 

It looks as if we may have come upon something fascinating. Some further 
questions are suggested: 

• Why is 121 significant here? 
• How does 121 relate to our choice of 10 and 7 as our first two numbers? 
• Would this "magic" hold for a different choice of the first two numbers? 
• Of course, as in the case of examining ratios for the two sequences, we 

could be led back to the Fibonacci sequence itself and ask, "Why is 1 so 
significant as a correction factor there (just as 121 is significant for the 
pseudo-Fibonacci sequence)?" 

• What properties (like the role of 1 and 121) are shared by the two sequences ? 
• Just as there was a golden rectangle associated with the Fibonacci sequence, 

is there a geometric figure suggested by the Fibonacci-like sequence? 
• What other questions might you add? 

As we suggested in chapter 4, the "What-If-Not" in this new context raises 
questions that enable us to see aspects of the original context that we did not 
notice at first. 

We could go on and on. Notice that we have made only one variation of an 
attribute (attribute ii) of the Fibonacci sequence. We modified the first two 
numbers. What else might we vary to pose new problems? The following are some 
further possible directions to investigate based on "What-If-Nots." For these 
questions, which attributes (of the six we have listed) are we negating? Do any of 
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these "What-If-Nots" suggest attributes that we may have neglected to list—or 
perhaps ones that we might break up as we did when we listed the first three? Can 
you figure out on which attributes we have performed a "What-If-Not" in coming 
up with the following? 

• What would the consequences be of adding three successive numbers to get 
the next term? 

• What would the consequences be of adding every other number? 
• Suppose we modify the operation from addition to something else? Then ... 

(the question to be posed is left for you). 

This is just the beginning. You can continue to make additional variations and to 
pose new questions based on these variations. 

Example 2. A Problem: Rectangles 

You may think that the previous example gave rise to rich ideas only because it was 
special or particularly interesting. Let us see next how our ideas can reap rewards 
even when we start with a very basic problem—one that may even look extremely 
dull, an example of a very standard type of exercise: 

Calculate the area of a rectangle given that the width is 2 meters and the length is 
3 meters. 

Even a touch of the "What-If-Not" technique can enrich this simple exercise. Let 
us begin by considering the problem just stated and listing a few of its attributes 
(Level I activity). What does your list of attributes look like? Our list, which may 
look quite different from yours, follows: 

1. The situation is an exercise. 
2. The exercise is a request to calculate. 
3. The exercise deals with a four-sided shape. 
4. The exercise deals with a rectangle. 
5. We are asked to calculate an area. 
6. The width and length are specified. 
7. We are given two numbers. 
8. We are asked to calculate one number. 

Notice, once more, the list does not consist of attributes that are independent of 
each other. Nor do we rule out obvious or perhaps meaningless attributes because 
some of them may lead to worthwhile explorations or because they may suggest 
additional attributes. For example, you might think that attribute 8 is silly, but it 
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focuses our attention on the fact that we are probably going to give the answer as 6 
square meters and not as 2 x 3 square meters—although it surely is worthwhile to 
examine the answer in factored form for some purposes. 

Let us now proceed to Level II and ask "What-If-Not?" for the attributes.6 Here 
we choose only one attribute to illustrate our strategy: attribute 6 on our list: 

6. The width and length are specified. 

"What-If-Not" attribute 6 [denoted by (~6)]? What alternatives occur to you? 
Here are some we or our students have thought of: 

(~6), Only the width is specified. 
(~6)2 Only the length is specified. 
(~6)3 The sum of the width and length is specified. 

(~6)4 The length and width can be chosen from two given numbers. 

(~6)5 The lengths of the two diagonals are given. 

(~6)6 The distances from the center to the four corners are given. 

(~6)7 The distances from the center to three corners are given. 

(~6)8 The distances from the center to two corners are given. 

(~6)9 The distances from any point in the rectangle to three corners are given. 
(~6)10 The area is given. 

Here, again, we have neither made the alternatives independent of each other 
nor have we ruled them out just because they seem to give insufficient or 
redundant information. 

Let us look at one of the alternatives suggested by (~6)4. 

(~6)4: The length and width can be chosen from two given numbers. 

What questions might we ask now? (Such question-asking is our Level III activity.) 
The original question asked us to find the area. Here we are first faced with the question, 
"What are the possible rectangles?" and a new one, "How many possible rectangles are 
there?" This makes us more fully aware that we had only one possible rectangle 
before—a 2 meter by 3 meter one, because the width was specified as 2 m and the 
length as 3 m. Even if we now agree to consider a 3 x 2 rectangle to be the same as 2 x 3 
one, we still have a more complicated problem than the original one. See Figure 20. 

By stating that the length and width are to be chosen from the two lengths 2 m, 3 m, 
rather than being told that the length is 3 m and the width 2 m, how is the situation 
made more interesting? What possible rectangles can we have now? Notice that we 
can have a2x2ora3x  3 square as well as a 2 x 3 rectangle. That is, we can have three 

You may wish to refer back to Figure 11 of chapter 4. 
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FIG. 20. 

possible different rectangles and two of them are squares. We can find the area of 
each of these rectangles. 

Let us continue to ask questions on the same "What-If-Not" Attribute 6, alternative 
(~6)4. It is tempting to stick to the same question (how many rectangles?) for a moment 
and answer it for three different available lengths, and even for four or only one. 

Suppose we had three different lengths to choose from, say lengths of a, b, c.7 

How many different rectangles can be made now? There are several ways to get the 
answer. How would you do it? 

One way is to first determine the number of squares as we did before. In this case 
there are three squares: a x a, b x b, c x c. Then there are three different non-square 
rectangles, a x b, a x c, b x c, giving six different rectangles in all. How many 
different rectangles are possible if we have only one or only two different starting 
lengths? Let us begin to make a table to collect the information (Table 4). 

TABLE 4 
Number of Different Rectangles As A Function 

of the Number of Starting Lengths 

Number of different Number of nonsquare Total number 
starting lengths Number of squares rectangles of rectangles 

1 1 0 1 

2 2 1 3 

3 3 3 6 

4 4 7 7 

5 5 7 7 

7Using variables here made us realize that another attribute is, "We are given specific numbers." In 
this case, we decided to use variables rather than specific numbers for brevity of presentation rather than 
as a consequence of consciously applying the "What-If-Not" strategy. 
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What is your guess about the number of different rectangles if we had four or 
five different starting lengths? 

If we had four possible starting lengths, we have four possible squares. How 
many nonsquare rectangles are there? We can have a choice of four different 
lengths for one side, and then a choice of three different lengths for the second side, 
giving us 12 (4 • 3) choices in all. But wait a minute; we must divide this answer by 
two because we decided to consider an a x b rectangle to be the same as a b x a 
rectangle. So, we have 4 squares and 6 nonsquare rectangles, yielding ten different 
rectangles in all. Fill in the rest of the table; do you see some patterns emerging? 

Filling in a few more rows will probably persuade you that the number of 
n(n+1) 

different rectangles possible for n different starting lengths is — or some 

equivalent formula.8 One way to show that this is the correct result is to realize that 
n(n-\)

there are n possible squares and — different rectangles that are not squares. 

n(n—\\ n(n+\)
This gives a total of n + different rectangles. 

2 2 

Returning to our original question about areas, we can now calculate the area of 
each possible rectangle for any given value of n (the number of different starting 

The numbers 1,3,6,10,15,21,... are called triangular numbers. Note that 1 = 1,3 = 1 + 2,6= 1 +2 + 3, 
10 = 1 + 2 + 3 + 4. If we denote the triangular numbers by T1 T2, T3 ..., Tn, then 
Tn = 1 + 2 + 3 + ... + n = n(n + l)/2. Each Tn can be represented by dots that form a triangular pattern; for 
example 

If you have never proved the formula for Tn, you can convince yourself of its correctness by takinga 

staircase of squares depicting 1 + 2 + 3 + 4 + 5, for example. Then make a duplicate of it. Can you put 
them together to form a rectangle? How many square are there in the rectangle? You might also look back 
at The Gauss solution at the beginning of Chapter 4. 

Look at Table 4. Can you see why the number of non-square rectangles for say, four different lengths 
is 3 + 3, i.e., 1+2 + 3, and for five different lengths is 6 + 4, i.e., 1+2 + 3 + 4? 



78 5. THE WHAT-IF-NOT STRATEGY IN ACTION 

lengths). Before looking at the general cases, you might want to find all possible 
areas for four starting lengths of 3, 5, 7, and 10, respectively. See Table 5. 

TABLE 5 
Areas as a Function of Starting Lengths 

Number Number 
of starting Number ofnonsquare Total number 
lengths, n of squares rectangles of rectangles Areas 

l:(a) 1 0 1 a2 

2: (a,b) 2 1 3 a2, b2 , ab 

3: (a,b,c) 3 3 6 a\b2,c2 

ab, ac, be, 

4: (a,b,c,d) 4 6 10 a2, b2 , c2 ab, 
ac, ad, be, 

bd,cd 

n:(s,,s2,... sn) n n(n-\} n(n + l) 
2 2 

We can now ask a new question, "For any given value of n (e.g., n = 4) which 
rectangle has the smallest area? Which has the greatest area?" It is easy to answer 
these questions if we assume a<b<c<d, because a2 is clearly the smallest and d2 

the largest value for the area. It is also easy to see that a2<ab<b2<bc<c2<cd< d2, 
but it is not trivial to analyze where ac, ad, and bd belong in this sequence. What 
conditions do you have to impose on the relative sizes of a, b, c, or d to make a 
definitive statement? Of course, for any four particular lengths, you can calculate 
the areas and arrange the rectangles according to size. Try a few different values of 
a, b, c, d to see if you can get the orders of the rectangles changed. Under what 
conditions on a, b, c, d is the size of the areas of the two rectangles axe and bxd 
reversed? The same? Next, you may wish to tackle the ordering according to area of 
the fifteen possible rectangles made from five starting lengths. 

Notice that the problem "How many different rectangles are possible to make 
from a given number of different lengths?" is a practical one. Carpenters, for 
example, may meet such a problem when they need to know how many different 
sized frames they can produce from different available lengths. They may need to 
know how many different lengths they must stock to be able to make, say, 15 
different sized frames for items such as waterbeds, door frames, window molding, 



 79 OTHER BEGINNINGS: SOME SNIPPETS

and picture frames. They might be quite surprised to find that to make 16 different 
frames, they need to stock six different lengths but that this enables them to make 21 
different sized frames! Notice, we have not yet taken into consideration that some 
frames may be different in size and yet have the same area. 

We have pursued only one small path for one changed attribute and only a tiny 
fraction of the alternatives to that situation.10 We asked only a very few questions. 
Do you realize how many new paths the original question suggests? Where are you 
led if you pursue a "What-If-Not" on attribute 4? 

Attribute 4. The exercise deals with a rectangle. 

What if it did not deal with a rectangle? Suppose it dealt with a triangle, a 
rhombus, or a general quadrilateral? Where would old and new questions lead? It 
should be clear that starting with a mundane example of calculating the area of one 
particular rectangle, we can, by just a touch of the "What-If-Not" technique, open 
up the problem to investigations of various depths and degrees of difficulty. 

OTHER BEGINNINGS: SOME SNIPPETS 

This section is intended to entice you with the spirit of the "What-If-Not" strategy, 
making use of the various levels. 

Level I. Attribute Listing 

Level II. "What-If-Not-ing" 

Level III. Question Asking 

Level IV. Analyzing a Problem 

Without specifying in much detail which specific level is being used, we present 
these snippets to indicate the unexpected byways we have been led to explore as a 
result of "What-If-Not-ing" on a variety of starting points. A major reason for 
presenting these snippets is to encourage you to use your own starting points. 

Our experience indicates that there are significant differences among people in 
their ability to use the strategy implicitly. For some people, considerable practice is 
needed before learning to challenge the given in any situation; for others, relatively 
little explicit teaching is necessary. You may wish to take this observation into 
consideration as you approach some of the situations described here. 

For further details see Marion Walter, "Frame Geometry: An Example in Posing and Solving 
Problems," The Arithmetic Teacher, 27(2), 1980, pp. 16-18; and Marie Kuper and Marion Walter, "From 
Edges to Solids," Mathematics Teaching, 74, 1976, pp. 20-23. 
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It has also been our experience that most people eventually do not require the 
overt "What-If-Not?" structure to generate new problems because the method is 
soon incorporated as a way of thinking. Although you will uncover interesting 
issues and topics that never occurred to us in our explorations of the situations that 
follow, we have indicated in each case something for you to read in the event that 
you wish to compare your explorations with someone else's. In some cases the 
explorations will be very open-ended; in others, we will direct you in ways that are 
rather specific and closed. 

Some Data11 

How often have you caught yourself daydreaming over a doodle of some kind 
or even over some arithmetic calculation? The following is some very 
unexpected fall-out based on a "What-If-Not" perspective imposed on just 
such a situation. 

Look at the following number pattern that was arrived at in a spirit of doodling: 

1 . 3  = 3 

2 - 4  = 8 

3-5 = 15 

4 • 6 = 24 

5 • 7 = 35 

There are many attributes to observe in the above. For example, notice that: 

1. In each case there are two factors. 
2. The factors in each pair differ by 2. 
3. The differences between the products form an interesting pattern: 

8 - 3 =  5 

1 5 - 8 = 7 

24-15= 9 

35 - 24 = 11 

See Stephen I. Brown, "A New Multiplication Algorithm: On the Complexity of Simplicity," 
Arithmetic Teacher, 22(7), 1975, pp. 546-554, and "A Musing on Multiplications," Mathematics 
Teaching, 61, 1974, pp. 26-30. 
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It appears that the differences form an arithmetic progression; furthermore, the 
products alternate in parity (odd, even, odd, even, odd). You could take these data 
and generate many observations, conjectures or questions in the spirit of chapter 3, 
in which we accept the given. 

We could also do a "What-If-Not" on the data in the spirit of chapter 4. With the 
intention of carrying out such an exploration, let us list one more attribute that was 
the impetus for this investigation. First look once more at 3, 8, 15, 24, and 35 ... as 
the start of a sequence. If you think in metaphors like "striving," you will be 
impressed that those numbers in the sequence are all almost perfect squares. They 
all miss by 1. Here is the picture: 

1-3 = 3 —> 4 (missing by 1) 

2 »4= 8^> 9 (missing by 1) 

3 • 5 = 15 — •> 16 (missing by 1) 

4 • 6 = 24 -» 25 (missing by 1) 

5 • 7 = 35 —> 36 (missing by 1) 

To see where this might lead, let us focus on the attribute that asserts that the 
factors differ by two. Suppose they are made to differ by four. Then if we still start 
with 1, we have: 

1 - 5 = 5 

2 - 6 = 1  2 

3*7 = 21 

4 • 8 = 32 

5 • 9 = 45 

So what? In using the "What-If-Not" strategy we have to ask a question, 
something we have not done yet. Let us choose as a question something that comes 
out of the last attribute we observed earlier, that the pattern almost yields squares. 
Let us ask, "Can we get that again?" 
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Although this pattern yields squares, the correction factors form an arithmetic 
progression (1, 3, 5, 7, 9). In our original metaphor of "striving," the correction 
factor for all numbers was the same, namely, the number 1. Can we find something 
like that here? If we try for 9 rather than 4 as the "striven square" for 1 • 5, let's see 
what emerges. 

1 - 5  = 5=0-4 =32-22 

2-6 = 12=©-4 = 42-22 

3-7 =21 =©-4 = 52 -22 

4 - 8  = ? 

5 - 9  = ? 

Notice that here we have the same correction factor -4 in every case. Furthermore, 
that correction factor itself is a perfect square! As we look back at the original data, 
we realize that there too the correction factor, 1, is also a perfect square. 

At this point, you are probably tempted to explore another variation of the 
product pairs. Again, let us strive for squares given the following factors. (What 
kind of number is the correction factor itself? 

1 • 7 = 7 =©- ??? 

2»8 = 16=©-??? 

Finish up on your own! 
There is a lot to explore just following this particular line of thought. Can you 

calculate 5 • 13 so that the "striven number" and the correction factor are both 
squares? Can you find those squares in an efficient manner? 

If you think of the two numbers as sitting on the ends of a seesaw, then it is easy 
to figure out how to create the two squares. The following picture suggests what is 
happening. Nine is midway between 5 and 13, thus "balancing" 5 and 13. It is easy 
to see that the correction factor is 4. 

The implications of this search are extraordinary; they suggest, ultimately, a new 
algorithm for multiplying any two integers. The search was in fact begun by doing a 
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"What-If-Not" based on free-floating musing as a start. You might want to 
investigate whether this newly emerging procedure (multiplying any two numbers 
in terms of the difference of squares) actually becomes complicated or not. It is 
much more manageable than you would guess initially. 

Before leaving this activity, you might also want to do at least one more 
"What-If-Not" on the data to see if you can find another starting path, based on your 
own muse. It might be worth saving your future doodles to see in what unexpected 
directions later "What-If-Nots" might take you. 

Starting With a Problem 

Given a point P in the interior of rectangle ABCD, such that PA = 3, PB = 4, PC = 5 
(Figure 21). What is PD?12 We decided to use this textbook problem as a starting point 
for "What-If-Not-ing" because we were surprised by the nature of the problem. 

Actually, it was more discomfort than surprise that piqued our interest at the 
beginning, because the sides of the rectangle were not given. How is it possible to 
determine the length of the fourth segment PD without knowing the lengths of the 
sides? Further analysis revealed the surprising result that despite the fact that the 
length of PD is indeed determined (PD = 3-V/2), there are an infinite number of 
rectangles satisfying the given conditions. That affected our curiosity enough to 
suggest using the problem as a starting point for a "What-If-Not." So we looked 
again at Figure 21 and made a list of attributes, including: 

1. The problem deals with a rectangle. 
2. The problem deals with a four-sided shape. 

FIG. 21. 

This problem as stated appears in Alan R. Hoffer, Geometry. Menlo Park, CA: Addison-Wesley, 
1979, Problem 45, p. 526. It is developed in a What-If-Not spirit in Marion Walter, "Exploring a 
Rectangle Problem," Mathematics Magazine, 54(3), 1981, pp. 131-134. 
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3. The problem deals with a shape that has four equal angles. 
4. The number of lengths given is one less than the number of vertices. 
5. The lengths of the three segments from one point to three vertices are given. 

We realized that by focusing on each part of sentence number 5 in turn (the 
lengths of the three segments from one point to three vertices are given) we actually 
had many attributes within that one! We capture that find by expanding our list to 
include attributes 6-12. 

6. The lengths of the three segments, are given. 
7. The lengths of three segments are given. 
8. The lengths of three segments are given. 
9. The lengths of segments starting from one point are given. 

10. The lengths of segments starting from one point are given. 
11. The lengths of segments terminating at three vertices are given. 
12. The lengths of segments terminating at vertices are given. 

Instead of listing some "What-If-Nots" on these few attributes, we have drawn 
pictures (Figure 22) to suggest some alternatives. For example, Figure 22(a) 
negates the fact that a four-sided figure is given, whereas Figure 22(b) negates the 
fact that the number of lengths given is 1 less than the number of vertices. Which 
attributes are negated by other figures? 

Now look at the diagrams in Figure 22 and use them as a catalyst to pose a 
question or two. You may wish to recycle old questions—ones posed about the 
original diagram—or the new diagrams may suggest different questions. 

What questions can you pose for each picture? Can you recycle some old 
questions? Which new ones occur to you? 

Long Division: An Algorithm13 

Most of us have slaved over some form of long division (at least in our youth!). 
There are many things to observe about the long-division algorithm. One attribute 
is that the remainder is always less than the divisor. Thus: 

17)4266 = number + a remainder 

and the remainder is smaller than 17. Next is the calculation of Sharon, a 
fourth-grade student first learning the algorithm. She got stuck when she did not 
know how to divide 17 into 16. 

13Stephen I. Brown, "Sharon's 'Kye,'" Mathematics Teaching, 94, 1981, pp. 11-17. 
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Then her eyes lit up and she commented, "If I had to divide 17 into 17, instead 
of into 16,1 could do it. I would get 1 as a part of the answer. I'm going to make 
believe that I do have 17 instead of 16 for a minute." She then put 1 in the quotient 
and wrote "-1" next to it to indicate that she had to subtract 1 from the product of 
251 and 17 to get the check of 4266 as a correct answer. The work she did was: 

What do you think of her procedure? How would you check to determine 
whether or not the answer is correct? Will the implied new algorithm work in other 
cases? What attributes of the long division algorithm are challenged by her 
procedure? What questions does it raise for you? 

Explore a few more division problems with negative remainders yourself! 
It is worth observing that Sharon has come up with something that may not be 

merely a cute trick, but that has a more radical potential. In a sense, she has devised 
an original way of doing long division. What she has done is analogous to what a 
third grader did several years ago for the case of the standard subtraction algorithm. 
Here is an account of that similar experience: 

A few years ago, in the elementary school in Weston, Connecticut, a third-grade 
boy named Kye invented a new algorithm for subtracting. His teacher had been 
solving the problem: 

64 

-28 
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and had said, "We can't subtract eight from four, so we have to regroup the sixty as..." 
At this point Kye interrupted, took the chalk, and did this: 

Kye said: Kye wrote: 

64 

-28 
"Oh, yes, you can! Four minus eight is negative four ... _ A 

64 

-28 

-4 

and sixty minus twenty is forty ... 40 

64 

-28 

-4 

40 

... and forty and negative four are thirty-six, 36 

so the answer is thirty-six."14 

You may be asking yourself how these examples relate to the "What-If-Not" 
scheme. It is obvious from the description that neither Sharon nor Kye was 
attempting explicitly to do a "What-If-Not" on the standard algorithms. Their 
approaches were born more out of a sense of desperation (for Sharon) and 
innocence (for Kye). Although neither of them made explicit use of the 
"What-If-Not" strategy, their creative responses can inspire us to perform a 
"What-If-Not." The major contribution each of them has made is to challenge 
implicitly the assumption (in several places) that we must make use of only 
positive integers in calculating differences and quotients. It is thus possible for 
each of us to become aware and to take advantage of other people's challenges 
to the existing order of things, even when they themselves may be unaware of 
the radical potential of what they have done. 

A beginning list of attributes for their alternative approaches then might involve 
something like: 

Robert Davis, "The Misuse of Educational Objectives," Educational Technology, 13, 1973, pp. 
34-36. 
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1. The intermediate stages of the calculation all involve positive integers. 
2. The answer in all cases is a positive integer (or combination of positive 

integers). 

Notice that an advantage of listing the attributes like this is that now we are led to 
explore not only the use of negative numbers as Sharon and Kye have done, but 
other possibilities (such as fractions) as well. A valuable fallout of this discussion is 
that it exhibits a point we have suggested earlier with regard to the "What-If-Not" 
scheme—namely, that the levels feed on each other in unanticipated ways. In this 
case, we see how the inadvertent varying of an attribute can make us explicitly 
aware of the attribute in the first place, thus standing on its head what would appear 
to be a more expected, logical order of things. 

As we suggested earlier, the value of such "What-If-Not" analysis is not merely 
the potential it raises for creative activity; there is also value in the insight we can 
develop with regard to the accepted algorithms. Both students made us aware that 
we have assumed that the domain for calculation, as well as for answers, is that of 
the natural numbers, and not that of the negative integers. Even those who have 
studied number theory and know the long-division algorithm as a more general 
theorem about quotients and remainders may know the logical derivations but not 
appreciate the significance that remainders are located uniquely in the range 
between 0 and the divisor (so that we expect a remainder to be between 0 and 16 in 
Sharon's example). To understand the significance of such observations, we must 
find out not only how to prove theorems but we must also realize the consequences 
of violating the essential conditions of the theorem. Both of these youngsters invite 
us to do exactly that. We leave the exploration of the significance of Kye's and 
Sharon's finds for your enjoyment. 

A Construction: The Usual Regular Hexagon Construction 
Using a Straightedge and Compass15 

Once we know how to do something in one way, we usually tend to stop thinking 
about it further. Generally, we do not even ask ourselves why it works. Of course, 
for many routine activities we do not want to have to think about them; we want to 
be able to do them automatically so that we can use them for purposes of exploring 
new problems or to satisfy someone who wants to test our ability to recall 
associated skills. Certainly this is the case for the standard hexagon construction 
shown in Figure 23. That construction requires that we inscribe a regular hexagon 
in a given circle with a straight edge and a compass. The solution makes use of the 
fact that the length of the radius equals the length of the side of a regular hexagon. 

Marion Walter, "Do We Rob Students of a Chance to Learn?" For the Learning of Mathematics, 
7(3), 1981, pp. 16-18. 
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FIG. 23. 

Still, it is worthwhile to stop to examine even such a routine construction using 
the "What-If-Not" technique, when we have a quiet moment and wish to explore, 
rather than merely respond to someone else's demands. What are some attributes of 
the hexagon construction in Figure 23? They include: 

1. The polygon formed is a regular hexagon. 
2. Only straightedge and compass were used. 
3. The end result is a drawing. 
4. A circle was used. 
5. One circle was used. 
6. Six arcs were drawn on the circle. 
7. It assumed that the student knew how to do it. 
8. It requires accuracy. 
9. It basically makes use of 60° angles. 

Figure 24 shows some drawings that suggest alternate ways of constructing 
regular hexagons and new related objects on which to pose questions about 
construction. 

For example, Figure 24(a) might suggest the question, "How can you construct a 
regular hexagon without drawing a circle?" Figure 24(d) might prompt you to ask, 
"How can you use a circle to find a different construction?" Figure 24(e) may 
suggest asking how overlapping equilateral triangles can make a hexagon. 

Now that you have examined these drawings in the spirit of a "What-If-Not," 
you have probably uncovered several properties of a regular hexagon that you had 
not been aware of when you made use of only the standard construction. 



FIG. 24.


90 
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Another Problem: An Inscribed Square 

Find the area of the square that is inscribed in a right triangle such that it has one 
side on the base of the triangle (Figure 25a). 

In solving this problem you have to decide what really is being asked for in the 
request to inscribe a square. George Polya has an elegant discussion of the problem 
of inscribing a square in a right triangle.16 He points out that the squares with one 
side on the base of the triangle and with one vertex on the side AC of the triangle 
ABC are related by an enlargement (dilation) with center A. Hence the "free" 
fourth vertex (e.g., G) of each square of the family of squares will lie on a straight 
line through A and G (Figure 25b). To construct the fourth vertex of the required 
inscribed square, all you have to do is to construct the intersection of AG and CB. 

The situation is ripe with possibilities for a "What-If-Not" approach, so we can 
begin by listing some attributes17: 

1. The problem deals, in part, with a triangle. 
2. The problem deals with a right triangle. 
3. The problem deals with an inscribed figure. 
4. The inscribed figure is a square. 
5. The inscribed figure is to have one side on the base of the triangle. 
6. The problem deals with the area of the square. 
7. The outside shape is a triangle. 
8. Two different shapes are involved. 
9. The shapes are in the plane. 

George Polya, How To Solve It. Princeton: Princeton University Press, 1973, pp. 23-25; it is also 
mentioned in George Polya, Mathematical Discovery: On Understanding, Learning and Teaching 
Problem Solving, Vol. I. New York: John Wiley and Sons, 1962, p. 18 and p. 155. 

Marion Walter, "A Few Steps Down the Path of a Locus Problem," Mathematics Teaching, 53, 
1970, pp. 23-25. 
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After looking at this list you might wonder "What-If-Not" attribute 6? What could 
the problem deal with if not with area? A common alternative people choose is 
perimeter. However, because of Poly a's use of loci to solve the original problem, we 
were led to think about loci in doing a "What-If-Not." Thus, we make the substitution 
"the problem deals with loci" in attribute 6. We choose to look at the locus on the 
fourth vertex of the square. It is a straight line, as we saw earlier. You may not find that 
fact interesting, but it led us to ask questions about loci under alternate possibilities. 

For example, look at attribute 1. (See Figure 26.) What if the triangle were 
not a triangle? Suppose first that it is a semicircle. (The "base" of the triangle 
becomes a diameter and the "roof is changed.) What is the locus of the fourth 
(free) vertex? 

FIG. 26. 

Or suppose we maintain the original figure as a semicircle, and create an 
inscribed figure which is not a square, but a circle. See Figure 27. What is the locus 
of the centers? 

FIG. 27. 

We next considered several alternatives—several "What-If-Nots" on our partial 
list of attributes—and we drew pictures. You may wish to add to the array of 
pictures after forming your own attributes and your own "What-If-Nots." 

The first drawing in Figure 28 indicates the problem as given. Figures 28(b) 
through 28(h) show some of our alternatives. For each picture in Figure 28, we 



FIG. 28. 
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could ask a question about the areas, perimeters, or loci, or even about some other 
concept, for there are numerous questions to ask. What questions occur to you? 

Polya investigates both cases (a) and (h) of Figure 28. We decided to compare the 
two areas of the squares—R and S. We were surprised when we found that l/R -l/S=l 
if we take the hypotenuse of the right triangle to be of unit length. Just seeing these two 
squares inscribed in this way made us think of other diagrams. Do the diagrams in 
Figure 29 encourage you to pose some further problems? 

FIG. 29. 

An Activity: Looking at Boxes 

We are surrounded by three-dimensional boxes of many different shapes and sizes, 
made in different ways and fabricated out of numerous types of materials. Have 
you ever wondered how they are made? Actually, there are a surprising number of 
practical and theoretical problems to consider when pondering this question. 
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Suppose we idealize the situation and start by considering a cubical box made of 
six squares and no flaps. How do you think this box could be put together from one 
connected piece of cardboard? Try to visualize it!18 

The first one most people draw looks like this: 

Some people draw a different one, or more than one pattern. Check to see if the 
two patterns in Figure 30 fold into a cube. Just finding all the possible patterns that 
fold into a cube (still ignoring flaps) is a problem in itself. Since the problem of six 
squares is quite an involved one, let us step back and consider instead the somewhat 
simpler one of investigating all possible patterns for making a box without a top, a 
five-sided box in the shape of a cube. Figure 31 (a) shows a few of them. There are 
eight possible patterns that fold into a cubical box without a top, if you agree to 
count two shapes, such as shown in Figure 31(b), as the "same" because they are 
congruent. (You can get one from the other by "flipping.") 

FIG. 30. 

Now that we have slightly simplified the task, let us complicate life by returning 
to the original one. We will list some attributes of the original activity—that of 
arranging six squares that fold into a cubical box. 

1. There are six squares. 
2. Whole edges are touching. 
3. The squares are congruent. 

Marion Walter, "Polyominoes, Milk Cartons and Groups," Mathematics Teaching, 53, 1968, pp. 
12-19; "A Second Example of Informal Geometry: Milk Cartons," Arithmetic Teacher, 16(5), 1969, pp. 
368-370. Some of the ideas from both of these articles appear in Boxes, Squares and Other Things: A 
Teacher's Guide to a Unit on Informal Geometry (Reston, VA: National Council of Teachers of 
Mathematics, 1970, fifth printing, 1995). 
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(b) 

FIG. 31. 

4. The pattern folds into a solid. 
5. The pattern has congruent faces. 
6. The solid is regular. 
7. The solid is a cube. 
8. The shapes are quadrilaterals. 
9. The shapes are rectangles (and are squares). 

10. The segments are straight. 
11. The pattern is in the plane. 
12. All the shapes are of one kind. 
13. Two patterns are given. 
14. The faces are regular. 

Now here are a few questions that can come from a "What-If-Not" on this list of 
attributes and from asking either new questions or recycling old ones. 

1. What other solids can you make that have six congruent faces? 
2. What six-sided shapes can you make that have six faces, none of which are 

quadrilaterals? 
3. What six-faced shapes can you make from parallelograms? 
4. What solids can you make from squares that do not have six faces? 
5. How would you recycle all of the above replacing six by five? 
6. What solids can you create with equilateral triangles? 

Having started with the rather limited problem of how many square patterns there 
are that fold into a cubical box, we have widened our explorations considerably. 
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Prime Numbers19 

The concept of prime number is a central one in number theory. Recall that a 
number is prime if it has exactly two different divisors. So 2,3,5,7,11 are the first 
few primes in the set of natural numbers. Prime numbers have a history that goes 
back a long way. Over 2,000 years ago, Euclid settled the question of how many 
there are by proving that there must be an infinite number of primes—a proof that 
is brief but one of the most elegant mathematical proofs. 

Knowing that there are an infinite number of prime numbers immediately 
suggests that we might be interested in finding some simple formula that would 
always yield a prime. 

Mathematicians have devoted long periods of time to search for such a 
formula. In the 16th through the 18th century, men of the caliber of Mersenne, 
Fermat, and Euler each had some interesting simple formulas that supposedly 

generated primes (e.g., 2^ ' + l,«2 + n + 41) but that also broke down at certain 
points. In 1947, Mills produced a formula that he proved would always yield 
primes. He showed that [a3" ] had to work for a fixed a and for every natural 
number n.20 The "joke," as you would expect, is that no one knows what a must be; 
it is only known that there must exist such an a. 

One interesting and unsolved problem was created by Goldbach in the early 
18th century. He came up with a conjecture that every even number greater than two 
can be represented as the sum of two primes. Thus: 

4 = 2 + 2 

6 = 3+ 3 

12 = 7+ 5 

18 = 7 + 11 

In a period of over 250 years, no one has either proven or disproved that 
conjecture, although interesting (and sometimes humorous) headway has been 
made on the problem. 

There are many properties about prime numbers that do not generate either the 
mysteriousness of Goldbach's conjecture or the tantalizing quality of Mills's formula. 
Even gradeschoolers feel comfortable with the observation that every number that is 
not prime can be expressed as the product of primes in essentially one way. Thus, 630 

19
See Stephen I. Brown, "Of 'Prime' Concern: What Domain," Mathematics Teacher, 58(5),1965, 

pp. 402-407; "'Prime' Pedagogical Schemes," American Mathematical Monthly, 75(6), 1968, pp. 
660-664. Some of the ideas from these articles also appear in Some Prime Comparisons (Reston, VA: 
National Council of Teachers of Mathematics, 1978, third printing, 1991). 

The definition of [x] is that it is the greatest integer less than or equal to x. So [3.7] = 3. 
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can be expressed a s 2 » 3 » 3 » 5 » 7  , and no other primes will multiply to yield 630. Not 
only do youngsters believe the result, but it is something that can be readily proven. 

In all of our discussion so far, it is worth pointing out that our analysis—be it 
simple, complicated, surprising, or expected—makes an important assumption 
about the nature of the particular set we are investigating. It is that number theory in 
general, and prime number theory in particular, assumes that the set we are 
interested in exploring is that of N, the natural numbers, the positive integers. 

Once we make that observation explicit, we open up the possibility of 
challenging that attribute in a "What-If-Not" spirit. Suppose, for example, that 
instead of N = {1,2,3,4,5,6,.. .} we select the set E = {1,2,4,6,8,10,...}, where 
E is the set of even numbers together with 1. In this new system, some operations, 
such as addition, are not closed (that is, when we add two numbers we may "leave" 
the original set). Other operations are closed, however. For example, when we 
multiply any two numbers in E, we end up with a number in E. Since E is closed 
under multiplication, it makes sense to try to develop the concept of prime there. 
Notice that if we accept the same definition of prime for E that we did for N, then 6 
is prime in E, for there are only two divisors of 6 in E. Two cannot divide 6 in E in 
the same way that 2 cannot divide 5 in N! Remember that although 2*3 = 6 in N, 3 is 
not a member of E. You may wish to explore what other numbers are prime in 
E—and you will be surprised by the regularity of the primes in E. 

As you move your focus from N to E, here are three starting points (again, you 
will find numerous surprises): 

1. After defining even in E, explore Goldbach's conjecture in that system. 
2. In N, we know that every number is either prime or can be represented 

uniquely as the product of primes. In E, look at several nonprimes and see 
what happens (include 72 as a start), remembering that 5 • 2 is not an 
allowable factoring in E, because 5 does not belong to E. 

3. Ulam's Spiral 
Ulam, a former colleague of Einstein's, was doodling one day and found 

that if he spiraled the natural numbers as shown in Figure 32, some diagonals 
are prime-rich and some prime-poor, although none consist only of primes.21 

Thus, the diagonal with numbers 73, 43, 21, 7, 1, 3, 13, 31, 57, 91 has a 
relatively large proportion of primes. Compare that diagonal with the 
numbers along the diagonal 69,39,17,35,61,95. Now take the same spiral 
pattern and fill in the boxes using only elements of E. Investigate the nature 
of primes along diagonals. 

If you begin to explore some of the "What-If-Not" suggestions implied in the 
investigation of E, you will find that some unsolved problems (unsolved for 

21 See M. L. Stein, S. M. Ulam, and M. B. Wells, "A Visual Display of Some Properties of the 
Distribution of Primes," American Mathematical Monthly, 71, 1964, pp. 515-20. 
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FIG. 32. 

centuries) in N have solutions so simple in E that they can be produced by a talented 
junior high school student. This is the case, for example, with Goldbach's 
conjecture, which you have already explored. If you maintain the same definition of 
even in E as you do in N (that a number must be divisible by 2 to be even), then the 
even numbers greater than 2 are 4, 8, 12, 16, 20, .... That is, with the exception of 
the number 2, only numbers of the form 4n for n belonging to N are even numbers in 
E. All other numbers except 1 are prime (why?), and can be expressed as two less 
than the even numbers in this set. Thus the primes can be expressed as 4n - 2 for n 
belonging to N. Now, how do you represent any even number greater than 2 
(expressible in the form 4ri) as the sum of 2 primes? One obvious way is: 

4n = (4n-2) + 2 

and a problem that has plagued mathematicians for centuries in N curls up in 
embarrassment in E! 

Thus in exploring the "What-If-Nots" of E derived from N you can gain a better 
appreciation for the depth of certain properties and characteristics of N. You can do 
even better than that, however, for you get a glimpse of a very interesting 
phenomenon that is more general. You sometimes discover that when you make 
modifications in something you are investigating, it turns out to have drastically 
different consequences than you might have anticipated! 
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"Rational" Behavior22 

It has become standard fare in algebra courses to take equations and graph them. It 
is done so unreflectively that we frequently neglect to appreciate the ingenuity of 
the idea, an ingenuity that barkens back several centuries to the mind of Descartes. 
The basic notion is that we can establish a correspondence between points in the 
plane and pairs of real numbers (the coordinates of the points). That corres­
pondence enables us to reduce what appears to be a problem in algebra to one in 
geometry and vice versa. From this association between points and pairs of 
numbers we can investigate properties, such as conditions of intersection for 
straight lines, by interpreting the task as involving the solution of equations. 

In that spirit, we reduce information about a given line to an equation of the form 
y = mx + b, where m is the slope of the line, b is the y intercept, and (x,y) represents 
an arbitrary point. Given the pairs of coordinates for any two points, we can easily 
come up with the equation for a straight line connecting those points. If we take two 
such equations for any two lines in the plane, we can find their point of intersection. 

All of this leads to results that are expected and somewhat dull. One way to put 
some life into a dull situation is to explore some of the standard material with an 
interesting "What-If-Not." Let us, for example focus on the nature of the points we 
select in the plane. We know, for example, that some numbers (like ½, — ) are 
rational numbers, and others (like -s/2, ̂ /%) are not rational; that is, they cannot be 

reduced to some number of the form a/b for a and b integers. By looking at the 
rational/irrational nature of points along a line, we find that there is a fascinating 
and hidden world still to be uncovered even after we know how to locate the 
intersection points of straight lines, either algebraically or geometrically. 

Let us now begin an investigation of straight lines in the plane by focusing on only 
rational points (Figure 33). Take any two points in the plane, each of which has two 
rational coordinates. For example, choose R(%, n/6) and S(3%,23/l2). Connect the 
points with a straight line. Select any other two points both of which have two rational 
coordinates, for example, P(5/4,'%) and Q(3%,15/16) and do the same. Now, calculate 
the coordinates of the point of intersection T of the two lines and notice the nature of 
its coordinates. Are both coordinates of T rational? Irrational? Or are they mixed? 

From an algebraic point of view, the nature of the coordinates—that they are 
both rational—is not surprising. Try a few more rational choices for coordinates for 
points P, Q, R, S. You may wish to prove that for any rational choices of coordinates, 
the intersection point T will also be rational. 

From the point of view of probability theory, however, the conclusion of 
rationality for the point of intersection is surprising because the probability that the 
coordinates of a point in the plane selected at random will be rational is zero. This 
suggests that the attribute of rationality associated with each of the coordinates may 

22See Stephen I. Brown, "Rationality, Irrationality and Surprise," Mathematics Teaching, 55, 1971, 
pp. 13-19. 
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FIG. 33. 

be more special than we would have guessed. It was the disparity between an 
algebraic and a probability expectation that accounted for our initial interest in this 
phenomenon. 

Now direct your attention to the attribute of rationality and investigate the 
implications of some alternatives. We will first need to clarify the concept of 
rationality and its variation in our investigation. One way to begin would be to 
define a point as: 

• rational if both coordinates are rational (as we have done here); 
• irrational if both coordinates are irrational; 
• semi-rational otherwise. 

As a start, we might consider the concept of rationality (and variations of it) for: 

(a) points along a line, or 
(b) intersection points of lines. 

We might begin our investigation of (a) by asking questions like: 

1. Can you have a straight line with only one rational point? 
2. Can you have a straight line with only two rational points? 
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3. Can you have a straight line with only three rational points? 
4. How are our answers affected by replacing rational with irrational or 

semirational in the questions above? 

After investigating these questions for the lines themselves, look at the nature 
of (b)—pairs of lines intersecting. Once you appreciate that it is more of a surprise 
than originally anticipated for any two lines, each having two pairs of rational 
coordinates, to intersect in a rational point, you will have acquired a much more 
skeptical mind-set with regard to expectations for the case of irrational or 
semi-rational coordinates. 

"Distributing" Things23 

One of the hallmarks of a modern mathematics program is its focus on the 
axiomatic nature of a system. Looking, for example, at the natural numbers, we 
can observe that among the critical properties for addition and multiplication are 
the commutative and the associative properties. Thus: 

a + b = b + a; a • b = b • a (commutative properties) 

a + (b + c) = (a + b) + c; a • (b • c) = (a • b) • c (associative properties) 

There has been a lot of controversy since the early 1960s regarding the value of 
basing a mathematics program primarily on the axiomatic structure, and recently 
there has been a resurgence of interest in such areas as application to the real world 
and to problem solving in general as alternatives. 

Although these alternatives are certainly worth taking seriously, one reason a 
structural approach has received considerable criticism is that it tends to engender a 
"much ado about nothing" attitude—that is, people find a complicated way of 
justifying something they believed to be true without all the fanfare. It is often claimed, 
for example, that every child knows that 5 + 7 = 7 + 5, regardless of whether or not he or 
she is aware that the name of the property that justifies it is the commutative property. 

It is possible, however, to use parts of the structure of mathematics to 
encourage inquiry that is not a trivialization of axioms already understood in 
some intuitive sense. Let us choose to do a "What-If-Not" on the distributive 
property as an illustration. The distributive property asserts algebraically 
something that is more easily conveyed in the picture of the rectangular region 
(Figure 34). Notice that the area of the entire rectangle can be gotten by adding the 

9areas of A and B. Thus a'(b + c) = a9b + a c. This algebraic statement is referred 

23Stephen I. Brown, "Multiplication, Addition and Duality," Mathematics Teacher, 59(6), 1966, pp. 
543-550. 
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FIG. 34. 

to as the distributive property, and, like the commutative and associative 
properties, is something we use intuitively to help us do shortcut calculations. For 
example, if we calculate 20 • 32 in our heads by doing (20 • 30) + (20 »2), we are in 
fact using the distributive property. Among the attributes of that property is the 
observation that unlike the associative and commutative ones, it ties together the 
two operations of addition and multiplication in one statement. 

There are a various "What-If-Nots" you can generate based on this observation. 
Consider one that suggests switching the roles of the two operations: What if we did 
not have af(b + c) but rather a + (b • c) as our point of entry? Then, an analogy with 
the traditional distributive property would suggest that a + (b • c) = (a + b) • (a + c), a 
"dual" of the distributive property, instead of the standard distributive law. 

Now a little exploration reveals that this dual distributive property does not hold 
in general in the set of real numbers (or even in the set of natural numbers for that 
matter). For example, 2 + (3 • 7) does not equal (2 + 3) • (2 + 7). But the fact that 
something sometimes fails does not imply that it always fails. If a = 0, it seems 
pretty straightforward to observe that a + (b • c) = (a + b) • (a + c). Are there any 
other cases of success? 

7With only a slight desire to tease, we suggest you try a = y3, b =l/5, c = /l5. Check 
l  7it out. Now what is so special about the triple l/3, /5, /5, that yields a true instance of 

the dual of the distributive property? Try adding up the three fractions, and you'll 
get a clue. Try to state and prove a conjecture based on this observation. 

In closing this section, we should point out that an exploration of the disparity in 
truth value between the original distributive property and its dual has the possibility 
of leading to some fascinating investigation. If we create a dual by switching 
addition and multiplication, we notice that both commutative and associative 
properties have duals that are true, while the distributive property has a dual that 
fails. It was this observation that first served as a general starting point for our 
investigating the concept of dual in the set of real numbers. It led to the analysis of a 
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question that you might wish to investigate further, "How can you tell before trying 
to prove any theorem in a system such as that of the real numbers, whether or not it 
is necessary to invoke the distributive property in the proof?"24 

There are several messages embedded in this example that outstrip a particular 
focus on the distributive property. In investigating the dual, what we have done in a 
more general way is perform a reversal. That is, we noticed one attribute of the 
distributive property. The property links addition with multiplication. Then we 
switched the roles of addition and multiplication, as indicated here: 

Standard property: a • (b + c) = (a • b) + (a • c) 

New property: a + (b • c) = (a + b) • (a + c) 

So, we have varied an attribute in a very special way—by interchanging the two 
operations. After varying the attribute in this special way, we, of course, had 
another step to perform, as indicated in the "What-If-Not" scheme. That is, we had 
to ask a question. Let us look at what went on in this example in "slow motion" so as 
to reveal some issues of a more general nature. 

Salvaging a Question 

When first looking at the new distributive property, our inclination was to ask 
if it always holds, just as the standard distributive property holds for all numbers. 
An example chosen at random revealed that it did not always hold. Our first 
inclination was to move on, rather than to think about further investigation. It took 
a few seconds, however, to disengage the investigation of the new property from 
the old, and venture a question about the new one that we never would have asked 
about the old—namely, "Does it ever hold?" We showed by producing one 

l  7example (a =l/3,b = /5 and c = /l5) that it does hold in at least one case and implied 
that it might hold in others as well. 

Further investigation of this observation led to an analysis of the fascinating 
question we mentioned earlier, "How can you tell before proving a theorem (in a 
field structure) whether or not the distributive property is needed?" A more general 
question might be, "How can you tell before trying to prove anything in a system 
whether or not a specific property of the system is needed?" It is not always possible 
to find the answer for this question, but in those cases in which we can find an 
answer, we reveal more about the structure of the system than we ever imagined. 

For an analysis of this and unexpected finds about the distributive property, see the article cited in 
footnote 23. 
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There is much embedded in the observation that we modified the question in the 
new setup from "Does the dual of the distributive property always hold?" to "Does 
it ever hold?" 

Recall that earlier we claimed that foolish or nonsensical questions might be a 
hair's breadth away from worthwhile ones. It is also the case, however, that questions 
that are initially meaningful may lead to results that are not too interesting (e.g., that 
the new distributive property is not always true). A slight modification of a 
meaningful but dull question, however, can lead to astounding results. 

Look again at our handy list of questions at the end of chapter 3. Do the questions we 
have asked about the dual of the distributive property appear there? Perhaps you would 
like to add new ones suggested by this exploration that do not appear. 

The Anatomy of Reversals 

Reversal is a kind of "What-If-Not" we performed on the attribute of operations 
in this example. We just switched addition and multiplication signs and asked some 
new questions. But there are many ways in which we can try to reverse an attribute 
or a phenomenon. Let us look at our previous section on prime numbers, for 
example. There we spoke about Goldbach's conjecture in the set of natural 
numbers: that any even number greater than two can be expressed as the sum of two 
primes. In that section, we did a "What-If-Not" on the conjecture to see what 
happens if we investigate an old question in a new set. 

We could, however, have not challenged the given set of numbers (changing 
from the natural numbers to the even numbers together with 1) but rather asked a 
kind of question again suggested in Strategy for Phase One Problem Generation in 
chapter 3. A beautiful pseudo-historical question might be, "How did anyone ever 
come up with that conjecture?" 

If we are doing pseudo-history, we are not concerned about historical accuracy. 
One conjecture that comes to mind is suggested by a different conception of 
reversal than we have demonstrated so far. Suppose we look at a converse of 
Goldbach's conjecture: Any two primes added together yield an even number. As it 
stands the converse is false, for if exactly one of the primes is 2, then the sum will be 
odd. Let us modify the converse slightly, however: 

The sum of any two primes (excluding the number 2), is an even number. 

That is a true statement if we observe that all primes in N other than 2 are odd 
numbers, and if we appreciate that the sum of any two odds is an even number. The 
statement is not only true, but child's play to prove, while Goldbach's conjecture 
has challenged the best of mathematicians for 250 years! 

Now, given the preceding discussion, how might Goldbach have come up 
with his conjecture? A good pseudo-historical approach would be to suggest 
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that after playing with the "trivial" observation that primes added in pairs yield 
even numbers (well almost always), he may very well have asked himself, 
"What if I look at the converse?" 

So far, then, we have looked at two kinds of reversal: switching the operations 
of a statement, and switching the logic of a statement (looking at the converse). 

Thus, we have a tool (reversal) for: 

1. Modifying attributes. 
2. Asking questions. 

In a Pulitzer prize-winning book of 1980, Douglas Hofstadter also explores 
the issue of reversal, but from a slightly different point of view.25 He locates the 
roots of creativity in the fields of mathematics, music, and art in a special kind of 
reversal, the reversal of "figure and ground." He points out how creative work in 
all these fields frequently depends on switching what is in the forefront of 
investigation with what is in the background. Perceptually, the expression is 
conveyed by such drawings as in the sketch below. 

Is it a vase or two people facing each other? 
Hofstadter goes on to indicate that Bach fugues were created in a similar vein, 

and he then points to the roots of some deep metamathematical results (Godel's 
theorems) through figure-ground reversal. 

So far, then, we have described three different conceptions of reversal. Can you 
come up with others? Try to use these conceptions of reversal in new applications of 
the "What-If-Not" scheme. 

25Hofstadter, Douglas H., Godel, Escher, and Bach: An Eternal Golden Braid, New York: Vintage 
Books, 1980. 
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Use of Technology : Starting with an Equilateral Triangle Problem 

Eric Knuth, in his article "Fostering Mathematical Curiosity,"26 makes rich use of the 
"What-If-Not?" problem-posing scheme. He presents two problems that illustrate 
ways for teachers to engage students in problem posing and in so doing to foster 
mathematical curiosity. Here we wish to focus on his second problem because he 
gives both a technology-based solution and an analytic solution for it. He starts with 
the simple diagram shown in Figure 35(a) for which he says students are often asked 
only to prove that the area of triangle DEF is one fourth the area of triangle ABC. 

FIG. 35. 

Before reading his very enticing discussion, you might first want to ask yourself 
what problems you can pose in a free association way without using any special 
problem-posing techniques that we have discussed in this book. Then continue by 
using any of the techniques we have explicitly discussed (such as "What-If-Not?," 
creating reversals, and so forth) or perhaps by using questions we have raised only 
in passing. Finally, you might want to record any new kinds of questions or problem 
posing techniques you created that went beyond free association. 

In making use of the "What-If-Not?" scheme, one of the questions Knuth asks is 
the following : "What if we place each of the points D, E, and F one-third of the way, 
three-fourths of the way, or any other fractional part of the way from one end of their 
line segments to the other?"27 See Figure 35(b). For these changed situations, Knuth 
then explores the original question of how the areas of such inner and outer triangles 
compare. He first gives a technologically based solution using the Geometer's 
Sketchpad. He does this by creating a dynamic triangle, which, as he drags a vertex, 
shows not only midpoints and trisection points but all other divisions. For each of 
these selections, Knuth asks the Geometer's Sketchpad to calculate and show the 
ratio of the area of the inner to the area of the outer triangle. If you have the Sketchpad 
or any other such program, we urge you to replicate all that Knuth did and watch what 
happens to the ratios of the areas as you change the division point of the sides. 

26Eric J. Knuth "Fostering Mathematical Curiosity," Mathematics Teacher, 95(2), 2002, pp. 126-130. 

Eric J.Knuth, "Fostering Mathematical Curiosity," op.cit., p. 127. 27
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Knuth then asks: "Does a general relationship exist between the ratio of the sides 
and the ratio of the areas? 28 He explores and then answers that question in the 
form of a conjecture by using the help of various features of the Geometer's 
Sketchpad. He then also offers an analytic proof of his conjecture. Knuth raises 
other questions. What if the triangle is not equilateral? What if the original 
polygon is not a triangle but a square? He uses the Geometer's Sketchpad to help 
him investigate these questions as well. Solutions to these problems, as well as 
additional extensions, are provided in a follow-up article, "Fostering Math­
ematical Curiosity: Highlighting the Mathematics."29 What do you think some of 
these extensions were? 

A Second Use of Technology: An Unexpected Hexagon 

As in the previous example, the starting point is a simple diagram. Draw any triangle 
and its three medians. What do you notice? The fact that the three medians meet in a 
point is something that students can conjecture easily after drawing several different 
triangles and their medians. By using a dynamic geometry program and dragging a 
vertex, we can observe that as the triangle changes, the medians remain concurrent. 
That really strengthens the belief in the conjecture that the medians of a triangle are 
concurrent—something that can be proved analytically. 

Here we focus on changing just one attribute of the diagram, namely: Each 
vertex is joined to the midpoint of the opposite side. Let us then ask: What if it were 
not so? One possible "What-If-Not?" for your diagram is to ask: What if you join 
each vertex of the triangle, not to the midpoints of the opposite sides, but to some 
other locations on the opposite sides? One alternative is to join each vertex to the 
two trisection points of the opposite sides. Try doing this using a dynamic geometry 
program. Even if you do not have one, however, you can proceed by drawing the 
diagram. Look at your new diagram carefully. The six segments you drew in your 
triangle no longer pass through one point. Notice that a hexagon appears. For the 
medians, a question we might have posed is: Are the medians always concurrent? 
What new question can you ask now? There are of course many questions we could 
ask. Among them are: Is a hexagon always formed? Is this hexagon ever regular? If 
so, when? Or we could ask: What is the area of the hexagon? 

We can ask the Geometer's Sketchpad to calculate the area of the hexagon as 
well as the area of the outside triangle. For each triangle formed, as the vertex is 
dragged, the answers are shown on the screen of the Sketchpad program. There 
are many ways in which you might want to compare the area of each hexagon with 
the area of the triangle in which it was formed. What are some ways that occur to 

28Eric J. Knuth, "Fostering Mathematical Curiosity," op.cit., p. 128. 
29Eric J. Knuth and Blake E. Peterson "Fostering Mathematical Curiosity: Highlighting the 

Mathematics," Mathematics Teacher, 96(8), 2003, pp. 274-279. 
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you? We focus on just one: What is the ratio of the area of the hexagon to the area 
of the triangle? Would you like to guess the answer to that question? We place the 
result in a footnote so as not to ruin the surprise, which led to a conjecture that was 
subsequently established as a theorem.30 

Notice that so far, in this example, we focused only on one attribute and one 
"What-If-Not?" for it. You will find it worthwhile to explore other "What-If-
Nots?" and to explore some of the new conjectures you may make. Can you see 
that if you then go back and focus on one or more different attributes you will get 
much material for further explorations and conjectures? Because a dynamic 
geometry program can produce not only the drawings we instruct it to make but 
can also calculate quantities like area, length, angle, sums, differences, and 
ratios, the output of such a tool can help us greatly to make conjectures.31 While 
we are usually aware of the fact that a conjecture is not a proof, it is possible to 
be lulled into believing otherwise when the computer supplies us with so many 
positive instances. 

SUMMARY 

In this chapter, we have chosen a diverse set of mathematical ideas as starting 
points. We have selected concepts from algebra, geometry, number theory and 
have even had some probability theory sneak its way in. As in chapter 3, we have 
exemplified a different type of diversity as well. We have used data, a problem, an 
algorithm, and even an activity as points of departure for problem generating. In 
all of these variations, we have tried to uncover not only a sense of creativity 
associated with "What-If-Not," but have tried to show how this process frequently 
enables us to uncover unsuspected depth in starting points that may appear 
pedestrian. We have done this in part by demonstrating how even apparently slight 
modifications of a phenomenon frequently have a drastic effect. Problems that 
have been unsolved for centuries in one context reveal themselves with ease in 

If each vertex of a triangle is joined to the trisection points of the opposite sides then the ratio of the 
area of the hexagon that is formed to the area of the triangle is 1/10. This statement was conjectured in 
1991 as Marion Walter carried out the explorations described. She was being shown how to use the 
"Geometry Inventor" dynamic geometry program by staff members of the Education Development 
Center, which included Al Cucuo and Paul Goldenberg. Prior to asking the dynamic geometry program 
to calculate the ratios, no one present guessed correctly that the constant ratio was, surprisingly, 1/10. No 
attempt was made that afternoon to give a proof of the conjecture. However, a proof was later given by Al 
Cucuo, who named it the Marion Walter Theorem. The proof of the theorem, together with many 
references, projects, and other information, can most easily be found by looking at several sites found on 
the Web under "Marion Walter Theorem." 

For information about the Geometer's Sketchpad, including a lengthy bibliography and ideas for 
projects, check out the Web under "Geometer's Sketchpad." See also: Geometry Turned On!: Dynamic 
Software in Learning.Teaching and Research, James R. King and Doris Schattschneider, Eds., 
Washington, DC: Mathematical Association of America, 1997. 
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others (as in the case of Goldbach's conjecture, as well as in many of the other 
number theory problems). What we take for granted as easy and unsurprising 
reveals itself as possessing unsuspected depth when subjected to a "What-If-Not" 
procedure. On the other hand, we have shown that the existence of surprise can act 
as an invitation to perform a "What-If-Not" in the first place. 

In addition, we exhibited throughout this chapter a phenomenon alluded to 
earlier. That is, we showed how apparently meaningless observations or questions 
can be significantly rejuvenated through the injection of a "What-If-Not" point of 
view. In many of the examples here, we made use not only of the "What-If-Not" 
scheme, but of the problem generating strategies described in chapter 3—strategies 
such as using pseudo-history, distinguishing between internal and external 
exploration of phenomena, and employing the handy list of questions. 

We also explored the category of reversals (conceiving of the phenomenon in 
several different ways) as a way of both modifying attributes and of asking new 
questions. 

We ended this chapter with two mathematical examples that made use of one 
technology tool—a dynamic geometry program.32 Both these examples illustrate 
the power of just one technology tool, the Geometer's Sketchpad. We suggest you 
look back at some of the other snippets in this chapter and ask yourself where you 
might want to use technology to see if it would enhance your inclination to generate 
and verify new conjectures.Using also other starting points, we encourage teachers 
and students to employ problem-posing techniques using dynamic software or 
other technology tools to help you make conjectures. 

Despite the fact that the technology has been helpful, it is important to 
appreciate that the conjectures just made depended on noticing something special 
that could be modified in an original situation. In an important sense then, although 
technology has been helpful, it cannot in and of itself replace imagination and an 
inclination to see things differently. 

After engaging in a lot of What-if-Not activity and also in the other techniques of 
problem posing that we have discussed, you too will find yourself making use of the 
various levels summarized in Figure 11, but withoutexplicitly going through them.33 

The Geometer's Sketchpad is only one example of a dynamic geometry program; which, in turn, is 
only one type of technological aid. For a brief discussion of available technology see, for example, Rose 
Mary Zbiek, "Using Technology to Foster Mathematical Meaning through Problem Solving," Chapter 7 
in Teaching Mathematics through Problem Solving Grades 6—12, Harold L. Schoen and C. I. Randall, 
Eds. Reston, VA: National Council of Teachers of Mathematics, 2003, pp. 93-104. 

For a few other examples of problem posing see, for example, the following: Paul E. Goldenberg 
and Marion I Walter, "Problem Posing as Tool for Teaching Mathematics," Chapter 6, pp. 69-84 in 
"Teaching Mathematics through Problem Solving Grades 6-12," loc. cit: Marion Walter, "Looking at a 
Pizza with a Mathematical Eye," For The Learning of Mathematics, Vol. 23, No. 2, pp. 3-10; and the 
essays in Stephen I. Brown and Marion I. Walter, Problem Posing: Reflections and Applications, loc. cit. 
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Some Natural Links 

Between Problem Posing 
and Problem Solving 

We have been discussing and analyzing problem posing, and in the process we 
became involved in problem solving as well. In this chapter, we pinpoint a number 
of ways in which the two activities illuminate each other in subtle and not so subtle 
ways. For example, we review and further explore how solving a problem may not 
only enable us to come up with an answer to a problem that has been posed, but 
may also help us to appreciate unexpected features of the problem as well. In the 
process, we will demonstrate the richness and ambiguity of the meaning of "why." 
We begin by looking at one example. 

ONE EXAMPLE IN DETAIL 

Consider the following problem: 

Given two equilateral triangles, find a third one whose area is equal to the sum of the 
areas of the other two. 

Try to solve it before reading on. 

111 
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A Beginning 

There are many questions you may be asking at this point, such as: 

1. We have been provided with neither the lengths nor the areas of the two 
original triangles. Are we to find the area of the third triangle without that 
information? What context is assumed and what theorems are relevant? 

2. Not only have we not been given specific lengths or areas, but the lengths or 
areas of the two triangles have not been denoted by variables. Are we 
expected to solve this problem algebraically using variables? 

3. Since in the preceding problem no numbers are associated with line 
segments or regions, can we construct the answer purely geometrically? 

Before discussing these matters, we should point out that when the kind of 
information just requested is provided at the outset, our view of the problem may be 
limited as we are robbed of the opportunity of asking these kinds of questions. 

Let us now take each of the queries, in turn, to see how each leads to a different 
kind of approach, understanding, and insight. 

Three Different Analyses 

For Those Who Like to Start With Numbers 

Consider 3 and 7 as our given lengths. Let us rephrase the problem: 

Find the length of the side of an equilateral triangle whose area is equal to the sum of 
the areas of two equilateral triangles of sides 3 and 7 (Figure 36). 

FIG. 36. 
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Using the Pythagorean theorem (and assuming hr h2, and /z3 are the three 
altitudes) we obtain: 

Then using the fact that the area of a triangle is one half the length of the base 
times the altitude, if the areas are A,, A2 and A3: 

To find the side /3 of the required new triangle, using the formula for the area of 
an equilateral triangle, we might proceed as follows: 

Therefore, 

so 

This solves the problem of finding the length of the side of the required triangle. If 
we had wanted the area, we could have stopped when we found that 
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Do you have any new insights or new questions at this point? Perhaps you might 
want to try this example with different numbers, such as 3 and 3, 3 and 4, or 9 and 
40, in order to get a feeling for approaching the problem by choosing specific 
numbers for the lengths of the sides. 

This is, of course, just one way of interpreting the problem. Let us now turn to a 
closely related second method. 

For Those Who Prefer to Start With Variables 

Find the length t3 of the side of an equilateral triangle whose area is equal to the 
sum of the areas of two equilateral triangles of sides ?, and tr (See Figure 37.) 

FIG. 37. 

Following the arguments from the previous section, we have 

2Therefore t3=^tl
2 +t2 . Do you have any further insights at this point? 

For Those Who Enjoy Using Segments and Regions 

Look back at the two previous approaches. What is suggested by those analyses? 
If r, and t2 are given line segments, how can we construct line segment t,? Using a 
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straightedge and compass, we could construct t2 from t{, t2
2 from t2, and then 

y/,1 +?  2 
2 .  ' Notice that unlike the problem of merely adding two line 

segments—by joining them without actually measuring their lengths—this 
construction requires the provision of a unit length as well. 

However, there is a way out that does not require a unit. Since t3 is equal to 
2^t}

2 +t2
2 , we are reminded of the Pythagorean relationship ?3 = t2 + t2

2. 

Therefore, we could have solved the problem as indicated in Figure 38. 
Notice that solving the problem this way does not require that we be given r, 

and t2 relative to a unit length. Despite the elegance of this solution, however, a 
mystery prevails. Although the algebra suggests this geometric approach, the 
algebraic link is not particularly illuminating. Is there some essentially 
geometric rather than algebraic way of seeing directly why we are led to the 
Pythagorean theorem? 

FIG. 38. 

The construction of •\jtl + t2 depends on the two theorems suggested by the pictures here: 

Therefore x is equal to t, . 

First construct r," as on the left. Do the same for t2 . Then combine to get ?, + t2 , and construct the 

desired result as indicated by the drawing on the right. Note that a unit length is assumed for both 
constructions. 
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PROBLEM SOLVING YIELDS PROBLEM POSING 

Asking "Why" 

The question just posed (Is there some essentially geometric way of seeing 
directly why we are led to the Pythagorean theorem?) suggests that "Why?" is an 
ambiguous question. The reply that it follows from the calculation (because 
t3

2 = t^ +?2
2) , an answer that is often given, seems at first to be satisfying. 

However, on further reflection, this reply provides little insight into the situation 
and, in fact, does not really explain why this result might be expected. The "why" 
to which we seek an answer here is of a different type; it calls for an explanation 
that gives us both understanding and insight into the situation. We are left 
wondering if the solution of our equilateral triangle problem—leading us to the 
Pythagorean theorem—may be a coincidence or an accident of calculation. 
Rather, it could be the result of deeper connections, connections we are striving 
to understand more clearly. The connection is not illuminated by merely 
carrying out the calculation, although of course it was the calculation that made 
us aware of the connection originally. We are really asking, "Could we have 
suspected that the solution of our problem would involve the Pythagorean 
theorem without doing any algebraic-type calculation?" When our conclusions 
surprise us and we wish to know why they occurred (in the sense of what 
"caused" the result), a reply that merely retreads the steps of the solution is often 
not satisfying. 

There are other interpretations of "Why?" however. Frequently, when we ask 
why something is the case in mathematics (after having received some answer), 
we are really asking, "Is this a special case of a broader generalization or is it a 
fluke that stands alone?" For instance, if we discover that the medians of a 30°, 60°, 
90° triangle meet in a point, we might be tempted to ask "Why?" even after we 
have demonstrated it, to determine if it is a specific instance of a more general 
case. However, when we find out that 5 + 3 + 13 = 21 (assuming no further 
context), we would probably not ask "Why?" because we would be satisfied that 
if follows directly from calculation. 

As you can see from these few examples, it seems that asking the question 
"Why?" can be done on several levels. Let us note that one of the prime problem 
posing strategies in mathematics—asking why—is more complicated and 
interesting than appears on the surface. 

Now, let us turn to one way of answering "Why?" more specifically, for the 
problem concerning the construction of an equilateral triangle equal in area to the 
sum of the areas of two given equilateral triangles. 
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Answering "Why?" 

Background 

We have a feeling that the Pythagorean theorem is at the root of this problem. Let 
us examine it once more. When considered as a geometric statement, the theorem 
says that the square on the hypotenuse of a right triangle equals the sum of the 
squares on the other two sides. In a specific example in which two legs are 3 and 4, 
we can come up empirically with 25 as the area of the square on the hypotenuse by 
drawing an "accurate" picture (see Figure 39). 

FIG. 39. 

How might we gain a deeper understanding of the Pythagorean theorem? Look 
once more at the statement describing the geometric interpretation of a theorem. What 
is it talking about? For one thing, it is saying something about the relationship of areas. 

Suppose we squint a little and try to find a less literal or a broader interpretation 
of that relationship. The three figures on the sides are special figures, namely, 
squares. Instead of drawing only squares on the three sides, what other shapes 
might we consider? (See Figure 40.) 

If we depict the sides by a, b, c and the areas by I, II, and III, respectively, what 
relationships might we search for? Holding the Pythagorean theorem in mind, we 
might be inclined to ask, "Which figures (see Figure 40) have areas that are 
additive?" (That is, I + II = III.) 

For some of the figures it is fairly straightforward to calculate areas of regions 
drawn on the sides of a right triangle. For example, in Figure 40(a), the three 
semicircles have area: 
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and I + II = III. Look at Figure 40(c)—parallelograms with indicated dimensions. 
Once more, we get from straightforward calculation that I + II = III. 

Examine Figure 40(b), (d), and (e). Although the calculation is also straight­
forward, we need to make use of the Pythagorean theorem in order to demonstrate 
additivity, despite the fact that we are no longer dealing with squares on the three 
sides of the right triangles. 

It comes as a real surprise that not only are the areas additive for squares, but they 
are also additive for sets of other figures. Is there some phenomenon more general 
than squareness that accounts for additivity? Notice that in all cases but Figure 

FIG. 40.
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40(c), the shapes are similar! Can you now rephrase the Pythagorean theorem in a 
more general form? Although there are many ways of generalizing it, we should 
like to focus on this conjecture: 

If three similar figures are constructed on three sides of a right triangle, then the areas 
are additive; that is, the sum of the areas on the legs equals the area on the hypotenuse. 

Notice, then, that the Pythagorean theorem itself is a specific example of this 
conjecture—namely, the special one when the three figures are squares. 

Back to the Equilateral Triangle 

Now that we have extended our view of the Pythagorean theorem, let us see if it 
can help us gain insight into the solution of our problem and help us answer 
why—other than as a surprise consequence of calculation—the Pythagorean 
theorem is implicated in a problem dealing with equilateral triangles. If this 
conjecture is true, then we can finally see why they Pythagorean connection to our 
original problem for equilateral triangles makes sense. Figure 41 is just an instance 
of the more generalized Pythagorean theorem, with the similar figures being 
equilateral triangles. We could therefore solve the problem that appeared at the 
beginning of this chapter by constructing two segments joined at right angles so that 
each segment is a side of the given equilateral triangle. If we now join the ends of 
the two segments, we have the hypotenuse of a right triangle, and the segment along 
the hypotenuse is then the side of the desired equilateral triangle. Thus, by drawing 
an equilateral triangle on the hypotenuse, we obtain an equilateral triangle equal in 
area to the sum of the other two! 

Notice that here we have an elegant solution to our original problem (finding an 
equilateral triangle equal in area to the sum of the areas of the two given equilateral 
triangles). The solution is elegant because it is simple, unexpected, and requires 

FIG. 41. 
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that only the sides of the two equilateral triangles be given rather than the lengths of 
the sides or the areas of the original triangles. We have thus answered "Why?" in a 
way that places the problem in a broader perspective than if we had merely 

calculated to find t3 

REFLECTIONS ON NATURAL LINKS 

"The After Effect" 

There are a number of interesting problem-posing issues beneath the surface in the 
previous example. First, we allowed ourselves and encouraged you to explore a 
problem that was vaguely defined. We did not stipulate at the beginning whether 
numbers (lengths or areas) were to be associated with the equilateral triangles or 
segments or regions. We did not specify whether we were looking for algebraic or 
geometric solutions, nor did we indicate the geometric tools of analysis that were 
to be considered relevant. 

We may well be robbed of a great deal of serious thinking by insisting on 
clarity at early stages in the definition of problems. It is worthwhile to investigate 
all the different ways in which "the given" can be interpreted, as well as how the 
analysis might depend on the different assumptions and tools we allow ourselves 
to use. In fact, we frequently prevent ourselves from seeing that the clarification 
of a problem is itself a significant intellectual task. It can lead to posing and 
solving many interesting problems along the way, as well as to a deeper under­
standing of what is involved. Unfortunately, many of us equate "clearly stated" 
with "good" in the posing of problems. 

The second problem-posing issue we have suggested is that it is worth asking 
"Why?" with many different intentions; that is, some "whys" call for calculation, 
some for insight into a gestalt, some for a broader generalization. 

But there is a third point embedded here that is even more critical for the purpose 
of exposing natural links between problem posing and problem solving: It is after 
we have supposedly solved a problem that we are pressed to ask some new 
questions. It is because we are surprised, puzzled, or confused by an approach we 
have taken or a conclusion we have reached that we feel compelled to ask a new set 

2 
For further development of the ideas described in this section, see George Polya, Mathematics and 

Plausible Reasoning, Princeton, NJ: Princeton University Press, 1954, Vol. 1, pp. 15-17, and Marion I. 
Walter and Stephen I. Brown, "Problem Posing and Problem Solving: an Illustration of Their 
Interdependence," Mathematics Teacher, 70(1), 1977, pp. 4-13. Much of the analysis in the latter piece 
was inspired by the aforementioned section of Polya's book, in which he offers a brilliant analysis of the 
relationships among generalization, specialization, and analogy in mathematical thought. 
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of questions. Indeed, why do the areas of equilateral triangles add up on the sides of 
a right triangle the way the squares do in the Pythagorean theorem? 

In the previous section of this chapter, we jumped rather quickly to the hunch 
that perhaps the shared property of similarity among the three polygons (for 
equilateral triangles and squares) accounted for the unexpected conclusion. You 
could, of course, explore other first hunches for why the areas are additive. Perhaps 
the fact that the polygons are regular (equilateral and equiangular) might account 
for the result, or could it be that there is some other explanation? 

Our main point here is that frequently it is only after we have solved a problem 
that we are in a position to pose a new set of questions that we did not see as 
relevant beforehand. 

We now have both a logical observation that connects problem solving with 
problem posing and a new problem generating heuristic: Take an alleged proof that 
either surprises you or lacks illumination. Then generate new sets of questions 
which might diminish the surprise or increase the illumination. 

Here is another example to illustrate the point. In chapter 4, we alluded to the 
Gauss example for finding the sum of the numbers from 1 to 100. We suggested 
a strategy for solving, namely, to observe that if properly perceived, we really 
had many pairs of numbers with sums of 101. In this way we can get the solution 
to the original problem. However, most people who see this approach are 
prompted to ask a number of new questions because they are still puzzled. 
Looking back, do you find yourself dissatisfied? If so, what questions does your 
discomfort spark in you? 

Here are some questions that we have found others asking after they had been 
shown the Gauss solution and after they had played around with the problem for 
a while: 

1. How did anyone even come up with this approach? 
2. Suppose the last number in the original sum were not 100, but some other 

number. Would it still work? 
3. Is there something special about the fact that the last number is even? What 

would happen if the sum ended at 99 instead of 100? 
4. Is there some general formula that captures this clever observation? 
5. To what extent can I capture the overall, general situation in this specific 

observation? 

There are of course many other questions that you might ask here. We could 
even ask how these questions might be different if you had seen the geometric 
approach to the sum of consecutive integers described in chapter 5 (footnote 8). We 
should clarify that here we are not trying to generate new questions, as we did when 
we were "What-If-Not-ing"; rather, we are trying to generate questions with a 
specific goal in mind—namely, to help us understand why a particular conclusion, 
which has supposedly been proven, is meaningful. 
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The "Prior Effect" 

There is a second natural link between problem posing and problem solving—one 
in which the temporal order just described is reversed. That is, we need not wait 
until after we have solved a problem to generate new questions; rather, we may be 
logically obligated to generate a new question or pose a new problem in order to be 
able to solve a problem in the first place. 

We illustrate this point with another problem that we would like you to think 
about. First look at the problem, and then write down, as accurately as you can, all 
of the ideas that occur to you as you try to solve it in the next 10 minutes. 

A fly and train are 15 km apart. The train travels toward the fly at a rate of 3 km/hr. The 
fly travels toward the train at a rate of 7 km/hr. After hitting the train, it heads back to 
its starting point. After hitting the starting point, it once more heads back toward the 
train until they meet. The process continues. What is the total distance this fly travels? 

With some insight, it is possible to solve the problem with almost no machinery, 
despite the fact that it first may appear to be a problem involving an infinite 
geometric progression. What is that insight? 

It is clear from the question that we are being asked to focus on the fly. That is 
the object whose distance we wish to calculate. Yet a brief disengagement from 
our focus that directs our attention (even momentarily) to the train has the 
potential of unleashing some powerful insights. If we ask, "How far does the train 
travel?" then the problem becomes easier to analyze. We were given this 
information in the problem. Having asked that new question which redirects our 
perspective on the problem, it takes only a small leap to ask, "How long does it 
take the train to travel that distance?" 

With some additional visual imagery, we might reach the conclusion that the 
time of travel is the same for both objects. This observation essentially unlocks 
the problem. 

Now there are many ways of gaining insight on this problem, and you need not 
necessarily follow the chain of thinking just outlined. What we are claiming, 
however, is that something tantamount to the generation of some new question(s) is 
part of the problem-solving act. 

Before turning to a less fanciful example, we would like to pass on a delightful 
story told about this problem. John Von Neumann (1903-1957) was a Hungarian 
mathematician who emigrated to the United States in 1930. The founder of game 
theory and other important mathematical topics, he was capable of calculating in 
his head at a speed that compared favorably with the computers of his day. When a 
friend gave him the fly/train problem, he got the answer in less than a second. When 
his friend congratulated him on his solution, telling Von Neumann that most people 
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try to get the answer by finding the sum of an infinite progression—a quite 
time-consuming task—Von Neumann responded, "Is there any other way to do it"? 

A More Mundane Example 

The Art of Problem Posing came close to reaching a disastrous fate as we argued 
over the inclusion of the preceding example. One of us wanted to delete the 
previous subsection because the example seemed too "slick" for the point being 
made. Finally, we decided to keep the point but to test it against a more mundane 
example, one that many of us have been taught in secondary school-the quadratic 
formula. Does our problem generation "prior effect" point still hold? Here goes: 

Suppose you have the equation ax2 + bx + c = 0 and want to derive the "quadratic 
formula," where x is a variable, and a, b, and c are constants. 

We know how to solve some quadratics by factoring, but not all. How can we 
proceed? We know that when we solve linear equations, we isolate variables on one 
side and the constants on the other. So let us write: 

It is a start that, by the way, requires no new question asking for most people. 
Now what? Anyone seeing this problem for the first time, and who has some 
background and wants to solve it, might proceed by observing, "I know how to 
solve linear equations, some quadratics by factoring and even some equations of 
higher degree" (each of which you know how to solve) like: 

where y is a variable and the other letters are constants. A natural inclination would 
be to ask: "How can I view (i) so that it is like something in (ii)?" 

Pursuing this heuristic does lead to a solution (one that involves a technique 
called "completing the square"). But a shift of focus away from the familiar leads to 
something as dramatic as our approach to the fly/train problem. 
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We illustrate this approach by selecting a special case of the quadratic equation. 

Consider: 

Let us challenge rather than accept some well-entrenched method of solving 
equations. We are searching for an alternative to completing the square, as well as 
to collecting unknowns on the same side of the equation. Thus we employ a 
"What-If-Not" approach on a universally accepted procedure that is frequently 
unquestioned. 

(1) Let us start by splitting up the x's: 

(2) Then (x + 1) • (x - 1) = -x by factoring, 
(3) Then 

Well, we have what we asked for. We split up the x's in step (1)—an unconventional 
approach—but we have not gotten anywhere because they are still split in step (4): 

Nevertheless, continue by replacing the x on the right-hand side by 

since 
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Thus, transforms to ­
l + x 

But don't stop here; replace x again by 

What would you estimate the expression on the right to be? How would you 
calculate it? Compare it to what you get when you use the quadratic formula in this 
special case.3 As an aside you might find it enlightening to also compare what you 
are finding out here with what you explored in the first example of chapter 5-the 
Fibonacci sequence.4 

Our apologies for teasing you in this last example! We obviously did not apply 
the well-known equation-solving strategies here. Quite the contrary, we solved this 
problem by violating one of the most fundamental rules of equation solving: We do 
not split up the unknowns on both sides of the equation. Of course this all was a 
digression from the main point of indicating how problem generation is a necessary 
condition for problem solving. It was a useful digression, however, for we have 
once more been able to show the power of "What-If-Not" thinking. We negated the 
attribute that says, "The solution of equations in general requires that we collect all 
of the unknowns on one side and the constants on the other." 

This digression, although not the main point, is not so far from the mark of this 
reflection section, however. For now that you realize (or are coming to realize) 
that you can solve this quadratic equation with this method, you probably are 
stimulated to ask a number of new questions, such as, "What's so special about 

If you are puzzled as to how to calculate, just "top off or eliminate" succeeding parts of the 
continued fraction just as you would do if you have to approximate .3333.... Thus calculate, in turn, 

The special case of the quadratic equation we used to generate this continuous fraction is actually 
the same as the one described in footnote 1 of chapter 5. We are once again bumping up the famous 
"golden ratio." In addition to the sources mentioned in footnote 2 of chapter 5, there is a best-selling 
novel in which variations of the golden ratio appear. See Dan Brown, The Da Vinci Code, New York: 
Doubleday, 2003. 
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using the splitting unknowns procedure on this particular quadratic? Can we use it 
on others? on all?" 

But that takes us right back to the first portion of this reflection section, to the 
"after effect," in which we discussed how it is that we did not appreciate our 
solution to a problem until we had begun to ask and analyze a new why question that 
went beyond the desire to calculate the original answer. 

SUMMARY 

In earlier chapters of this book, we first argued for the value of problem generation 
apart from its intimate and immediate relationship to problem solving. In addition, 
we have suggested specific strategies for such activity. In this chapter, however, we 
have been less concerned with specific strategies for problem posing and more 
interested in exhibiting a strong connection between problem posing and problem 
solving. We have shown not only that problem solving may lead to problem posing, 
but that frequently we do not appreciate the significance of an alleged solution 
without generating and analyzing further problems or questions. Second, we have 
claimed that the act of problem solving often requires some reformulation of the 
original problem that is essentially a problem-generating activity. 

Although the focus has been less explicitly on discovering the significance of an 
alleged solution, there has been some interesting empirical research in mathematics 
education in recent years on the two aspects of problem posing that we have 
highlighted in this chapter. That is, in relating problem posing to solving, 
researchers have investigated the nature, intensity, and intention of problem posing 
that takes place at various stages of problem solving—before, during, and after the 
activity of trying to solve a problem. Furthermore, there was some effort to 
determine the extent to which problem generation was done in a systematic manner 
such that it could be hypothesized that subjects were operating from the perspective 
of some cognitive commitment. Here is an excerpt from an abstract of one such 
research paper by Silver et al. that investigated problem posing by middle school 
and prospective secondary school teachers.5 

[Teachers] worked either individually or in pairs to pose mathematical problems 
associated with a reasonably complex task setting, before and during or after 
attempting to solve a problem within that task setting. Written responses were 
examined to determine the kinds of problems posed in this task setting, to make 
inferences about cognitive processes used to generate the problems, and to examine 
differences between problems posed prior to solving the problem and those posed 
during or after solving. Although some responses were ill-posed or poorly stated 

Edward A. Silver, Joanna Mamona-Downs, Shukkwan S. Leung, and Patricia Ann Kenney, "Posing 
Mathematical Problems," Journal for Research in Mathematics Education, 27(3), 1996, pp. 293-309. 
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problems, subjects generated a large number of reasonable problems during both 
problem-posing phases, thereby suggesting that these teachers and prospective 
teachers had some personal capacity for mathematical problem posing. ... A sizable 
portion of the posed problems were produced in clusters of related problems, thereby 
suggesting systematic problem generation. Subjects posed more problems before 
problem solving than during or after problem solving, and they tended to shift the 
focus of their posing between posing phases based at least in part on the intervening 
problem-solving experience. Moreover, the posed problems were not always ones 
that subjects could solve, nor were they always problems with "nice" mathematical 
solutions, (p. 293) 

This research is valuable from many points of view. It does draw on the sorts of 
relationships between problem posing and solving that we have depicted in this 
chapter. At the close of chapter 8, however, we offer what may be an alternative 
paradigm for thinking about problem posing as an educational program. 



7

Writing for Journals of Editorial 

Boards: Student as Author 
and Critic 

How might a college or university instructor, a teacher educator, or a classroom 
teacher organize a course that makes use of the problem-generating ideas we have 
developed in this book?1 There are certainly many possibilities, but we would like 
to suggest the bare outline of a scheme we developed over a period of several years. 
The central concept is that of student as author and as editorial board member. 
Placing the student in such a role is a radical notion because it assumes a kind of 
expertise normally reserved for researchers or educators and not for their students. 
Such a reversal of role, however, is consistent with our fundamental notion that 
students ought to participate actively in their own education and not be mere 
recipients of knowledge. 

In addition to the dominant scheme, which we depict as writing for journals in 
the context of editorial boards, we will be exploring an additional model—that of 
a secular Talmud—which is actually a modification of the journal/editorial board 
scheme. Although it has been implemented several times, it is in early stages of 
development and we present it in a sketchy format. We invite all readers who try 
out and modify further either of these schemes to contact us to let us know how 
they work out. 

The two schemes as outlined in this chapter will most likely be easier for a college or university 
instructor of mathematics or mathematics education to implement in a full blown manner than for a 
teacher of younger students. It is possible, however, for the latter to modify and use bits and pieces of 
these schemes with a younger audience. 

128 
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As will become apparent as you view descriptions of some of the articles 
produced by the students for journals, very little in the way of technical knowledge 
was required, although it was assumed that the students had acquired an 
appreciation for the nature of mathematical thinking. 

Communication has become one of the central themes developed in the 
"Standards" and elsewhere. As such, journal keeping is included as an important 
element in many recent documents.2 Although these documents focus on the keeping 
of personal journals as a valuable way of recording and sharing emerging under­
standing of ideas, the scheme we have in mind is somewhat different. As will become 
apparent when the story in this chapter unfolds, our scheme involves communication, 
negotiation, persuasion, and evaluation by students in a manner that is not usually 
part of the experience of keeping a personal journal. Though the models we will 
advocate appeal in a full-scale manner to these writing qualities, there have been 
some authors—at a variety of educational levels—who, in recent years, have created 
schemes that explore some elements of these models.3 

COURSE DESCRIPTION 

As a start, we reproduce a catalogue description of our course: 

Generating and Solving Problems in Mathematics 

The main purpose of this course is to provide a context which will counteract an 
approach to mathematics which is characterized by clear organization of content, 
clearly posed problems, logical development of definitions, theorems, proofs. We 
intend instead to provide students with some feeling for mathematics-in-the-making. 
We will engage in and explore techniques for generating problems, solving problems, 
providing structure for a mass of disorganized data, reflecting on the processes used in 
the above activities, analyzing moments of insight, analyzing "abortive" attempts. 

The main structural feature of the course, which provides a focus for other activities, 
is the creation of several journals—which are essentially collections of articles written 
and edited by groups of students throughout the semester. By the end of the semester, 
each small group produces a final version which is shared with all members of the class. 

2 
See National Council of Teachers of Mathematics (2000); Principles and Standards for School 

Mathematics (Reston, VA: Author) for numerous suggestions about personal journal writing. 

For a range of sources that speak of other means of student writing in mathematics, see also Paul 
Connolly and Teresa Vilardi, Writing to Learn Mathematics and Science, Teachers College Press, New 
York and London, 1989; Eileen Phillips and Sandra Crespo, "Developing Written Communication in 
Mathematics Through Math Penpal Letters," For the Learning of Mathematics, 16(1), 1996, pp. 15-22; 
Margaret Stempien and Raffaella Borasi, "Students Writing in Mathematics: Some Ideas and 
Experiences," For the Learning of Mathematics, 5(3), 1985, pp. 14-17; Andrew Sterrett (Ed.), Using 
Writing to Teach Mathematics. Washington, DC: Mathematical Association of America, 1990. 
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To create the journal, the class is divided into several editorial boards (usually 
with three to five members on a board). Throughout the semester students write 
papers, which they submit to boards other than their own. Each board offers written 
criticism to authors and passes judgment on the papers submitted. The boards 
decide to accept, reject, or require revisions of student papers. After they have had 
some practice in constructively criticizing papers, each board begins to establish a 
policy indicating what kind of material and what writing style it most admires. 
Once a policy is established, each board publicizes it so that students can decide to 
submit to a board that is most sympathetic with their point of view. 

Sources for journal articles include: 

1. Problems or situations arising out of class discussions. 
2. Problems or situations suggested by instructors every so often. 
3. Articles on problems appearing in professional journals. 

The papers can be a student's first attempt at defining, analyzing, or solving a 
problem. The students can also extend, solve, analyze, or criticize one of the topics 
previously dealt with in the course. We stress that if a problem is selected as a 
starting point it is not necessary that it be solved. Papers include discussions of false 
starts, introspection on insights or misconceptions, and a list of related topics and 
specific problems generated while solving the original problem. 

Not only are attempts (even unsuccessful ones) to solve problems valued, but 
other activities not strictly related to solutions at all are considered worthwhile. On 
some occasions, for example, students decide to write about their efforts to 
understand the significance of a problem. Others even decide to write about what 
they imagine the history of the problem might have been. Still others choose to 
focus on problem posing in a way that may be very loosely connected to problem 
solving. Some even choose to analyze the dynamics of our classroom itself as a 
problem posing/solving situation. 

Besides the articles themselves, the journals produced by the editorial boards 
include: 

• Each editorial board's policy. 
• An abstract for each accepted article. 
• Letters of acceptance (or required revisions) sent to the author. Sometimes 

the original draft, a letter requiring revision, and the final draft all appear in 
the journal. They indicate the kind of reflection encouraged among students. 

• A list of interesting problems that come up in class or in small group or 
editorial board discussions. 

• A list of books or articles either related to specific problems that have been 
explored or that provide general background for topics or articles. 
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As the boards define their policy, they broaden their role from that of merely 
receiving papers to actually soliciting those that reflect their emerging policy. Some 
boards have requested criticism and evaluation of the course; others have called for 
additional problem posing strategies beyond those discussed in class; still others 
have run contests for the most interesting pedagogical or mathematical problem 
students have experienced. 

ORGANIZATION OF THE COURSE 

Phase 1: Group Interaction and Note Taking 

The style and content of the course change as the term progresses. In the first phase 
of the course the instructor usually selects topics that are rich as a potential source 
for solving problems. Although some problem posing is encouraged, the primary 
focus at the beginning of this phase is on solving problems individually, in small 
groups, and in a large group discussion. 

In order to enable students to become aware of different approaches to problem 
solving among their peers, we occasionally pair students and have them observe each 
other's effort at working on a problem. They take notes on strategies used and we 
discuss the different styles exhibited. At this stage, we attempt to maintain a descriptive 
rather than a judgmental tone, for we are not so much trying to evaluate how students 
approach problems, as we are hoping to make people sensitive to what they actually do. 
If it does not appear to interfere unduly with their activity, students (especially when 
they are paired up to listen to each other) think out loud during problem solving in order 
to aid in a diagnosis of their style of approach. In order to gain a clearer picture of the 
problem-solving strategy used, it is helpful at this stage to give the students problems 
that require a minimal amount of technical knowledge and that require some 
manipulation of actual materials rather than pencil and paper alone. The geoboard is a 
good source of problems for this purpose; so are problems involving objects like 
toothpicks and discs. The famous Tower of Hanoi puzzle (moving discs of different 
diameters from one spindle to another according to certain rules) is a good one to use. 
So are ones like the cherry-in-the-glass problem as described here: 

Four toothpicks enclose a cherry. What is the minimum number of picks you can 
move so that the cherry is outside the "glass"? 
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At this stage, students look back at the notes they have taken, and discuss with the 
entire class what they have found out. They do not yet write articles for editorial boards. 

Phase 2: Beginning Writing for Editorial Boards 

After students have begun to be familiar with different approaches to problem 
solving with their peers, we introduce some readings that (a) describe heuristics of 
problem solving, (b) distinguish styles of thinking and problem solving, and (c) 
suggest "blocks" to the activity as well. We continue to assign readings throughout 
the rest of the course, but neither in this phase nor in later ones do we have a 
preestablished set of readings. Although the three categories just described are 
usually represented, selections are made based on the interest and mood of the 
students. Many of the readings are selected from the bibliography of this text. 

Among "classics" that we have found useful for such exploration are those by 
Adams (on blocks to problem solving), Polya (on heuristics for problem solving), 
and Ewing (on styles of problem solving). We should stress, however, that these are 
all popular categories in mathematics education and in psychology as well, and in 
addition to these references (listed in the bibliography), there is a growing body of 
literature that is both expanding and refining issues in each of these areas. Anyone 
teaching a course of this sort would most likely receive considerable help by 
reviewing recent issues of professional journals in mathematics education and 
psychology, by visiting the "Standards" documents produced by the National 
Council of Teachers of Mathematics, by consulting with colleagues from related 
fields as well as by exploring the internet. 

Gradually, we begin to encourage students to pose problems based on the ones 
they have attempted to solve, but at this stage no explicit problem-generating 
strategies are discussed. At this stage, too, we encourage students to record their 
attempted solutions, insights, and newly generated problems, and to discuss them in 
class. After about three or four class sessions, we encourage students to state 
explicitly some of the problem-posing techniques they have used implicitly in the 
first phase of the course. At this stage we begin to formalize some of the strategies we 
have developed in chapters 3 and 4 of the text. During this second stage, students 
begin the writing for journal activity. We introduce them to new problems as potential 
starting points for their articles, and also encourage them to return to the problems 
they worked on during the first phase— this time armed with some explicit strategies 
for generating new problems from what was perceived to be "milked dry." 

Among the criteria we have used to select mathematical topics for the first two 
phases of the course are the following: 

1. All students most likely have enough familiarity to understand what is 
being asked in the problem. Some might make use of special cases and 
diagrams; others might deal more abstractly with the topic. 
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2. Topics should lend themselves to examination from a number of different 
perspectives (e.g., algebraic, geometric, number theoretic points of view). 

3. Although innocent looking on the surface, topics should have unsuspected 
depth. 

4. Problems should be such that students can be enticed by easily suggested 
"situations" that require a relatively small amount of formal definition. 

What satisfies the criteria just listed depends on the background and sophistication 
of the students. One could select from an endless number of topics or situations that 
would both meet the criteria and satisfy the appetites of students ranging from those in 
elementary school to those doing doctoral work. Many of the topics discussed earlier in 
this book have made excellent points of departure for journal writing. 

At some point toward the end of this phase, we form the editorial boards. They 
may not at this point have articulated a board policy, but after they have made 
decisions about how to respond to the first round of submitted papers, and after they 
have reflected on their implicit criteria, they are in a position to state their board 
policy at least tentatively. It is important to give the students an opportunity to 
discuss what they would like to consider in helping to compose their editorial 
boards. Do they want the boards to reflect diversity in subject matter interest? In 
grade levels they may be teaching? In mathematical versus pedagogical focus? We 
do leave the opportunity open for reconstituting boards once they are formed, but 
this is a delicate matter, and we do so with reluctance and caution in order not to 
offend either boards or individuals when reformulation takes place. Such 
reformulation of course is considerably less threatening than "reality TV" in which 
(for example) one publicly decides which potential mates will be dropped and why. 

Phase 3: Writing for Journals in Full Bloom 

Once students begin to feel comfortable writing articles and receiving criticism 
from their peers (usually after the first round) we move into the third phase of 
the course, in which we select content based on specific interests of editorial 
boards and students. In order to help orient them to the kinds of topics they 
might consider, especially with regard to problem posing, it is helpful to assign 
essays from our book of readings that we mentioned in chapter I.4 We 
encourage them to collaborate not only in their thinking about problems but in 
their writing as well. We also have them begin to reflect (in their articles) on 
their idiosyncratic styles of thinking. 

Once the editorial boards are formed, however, we are cautious about the 
composition of writing teams. That is, we want to avoid the prospect of having 

See Stephen I. Brown and Marion I. Walter, Eds., (1993), Problem Posing: Reflections and 
Applications, loc. cit. 
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editorial boards evaluate papers that have their own members as authors 
(reminiscent of the famous Groucho Marx line, "I would never join a group that 
would accept me as a member"). 

The following is a typical group writing assignment: 

Choose a question or observation related to Pythagorean triples and work on it in 
a small group for a while. For next week each member of the group should focus 
(in three pages or so) on a different question of the sort indicated below: 

1. What did your group find out mathematically? 

2. What were some of the problem solving strategies that were used? 

3. What things that you tried as a group were abortive? 

4. How does the group problem solving strategy in this case compare with your 
problem solving strategies in others? 

5. What other problems came up or were created when you worked in this group? 

6. What were your emotional reactions? What turned you on? Off? 

7. What were the different roles played by people in the group? 

8. Other? 

We encourage students to reflect on how their styles of thinking affect their ability 
to work in collaboration with others, and also to see how they perform as a function of 
who initiates the task they work on. Thus, we encourage students to work at least once 
in each of the following four conditions, and to reflect in writing (for at least one 
paper) on the difference in their performance under these varying circumstances. 
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Once the students have reached this phase of the course, they are prepared to put into 
action some of the board-initiated activity we described earlier (such as a call for papers 
on topics of their own choosing, and refining their earlier editorial board policy). 

A WORD OF CAUTION 

It is worth stressing that, despite an air of excitement and commitment, we 
sometimes reach a point of discomfort (usually about one-third of the way through 
the course or just prior to the requirement that an article be submitted to editorial 
boards, whichever occurs first) among several of our students. Some students are 
very concerned about submitting a paper to be evaluated by an editorial board 
comprised of peers—in light of the fact that abortive as well as valuable efforts are 
disclosed, and in which no final solution of a problem is necessarily expected. 

Some students are especially concerned about "airing their dirty linen" in 
public, especially if they have an image of mathematics as "polished" and 
"impersonal." We have found it to be both essential and valuable to allow students' 
discontent to surface and especially to encourage discussion among class members 
over the issues involved. We have found it worthwhile to encourage students to 
submit an article to one of the editorial boards in which they try to express these 
emotional issues. The experience of the course is a threatening one, in part because 
students' prior mathematical experience has taught them to operate in a relatively 
dispassionate and receptive mode, and to do so noncollaboratively.5 

It will be necessary, therefore, for teachers who wish to adopt this model to 
consider different methods of easing students into the role of author and critic. The 
manner and degree of acclimatization will depend on such factors as age, 
intellectual sophistication, and ability of students to handle peer criticism. 

It is important for instructors of such a course to find ways of allaying some of 
the aforementioned fears that students may have in order to pave the way for 
significant growth. In order to encourage them to take the kinds of risk we have 
described, we have found it helpful to assume a grading policy that offers a number 
of different opportunities to display their many talents. The following is an excerpt 
of a memo of ours from one of our courses on teaching problem posing/solving to 
graduate students in mathematics education. 

Grading 

Since we want to encourage you to (1) reflect upon your abortive as well as successful 
efforts in thinking about problems, (2) express your feelings (in writing and orally) 
about your work on activities associated with the course and (3) accept in a 

This array of attitudes was more prevalent when we first started teaching the course in the middle 
1960s than it is today. Students have become more accustomed to working collaboratively in recent 
years. Nevertheless, there are students who are uncomfortable working in groups and reflecting on their 
thinking and evaluating the work of colleagues. 
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non-threatened way the evaluation of your colleagues, it would be unusual indeed for 
students who attend the class regularly and who participate in good faith with the class 
requirements to receive a grade that is not satisfactory. 

There will be no examinations or traditional type term papers submitted at the end of 
the semester. The grade for each student will depend upon: 

1. participation in class discussions and group work 
2. participation as a member of an editorial board (judged both by the process of 

producing a journal and by the final product) 
3. the quality of the articles produced for the editorial boards 

While the instructors will determine that portion of the grade associated with (1) 
and (2) above, there will be heavy reliance upon the judgment of fellow editorial 
board members for (3). A student who has pursued the writing of journal papers 
seriously but has not had a stellar reception by the boards might still receive a good 
grade based upon performance in the other activities in the course. In addition, though 
the instructors do not wish to compete with the editorial board judgments during the 
course of the semester, they will be happy to render independent judgment on the 
quality of your submitted papers at the end of the semester should you feel that you 
have not received a fair hearing by your peers. 

Regardless of its relationship to grading, however, the role of critic is difficult for 
many students to assume without first discussing the matter explicitly. Students may 
wish to discuss both the value (and potential pitfalls as well) of criticizing the work of 
peers, and potential criteria to be used in constructive criticism.6 With some 
encouragement, we find that most students find good reasons for either replacing or 
supplementing the critical, judgmental, and helpful role normally assumed by the 
teacher. They come to appreciate that their colleagues may have a refreshingly open 
and sympathetic reaction to their efforts in approaching new and somewhat risky tasks. 
In addition, they frequently see their role of critic as one that has considerable potential 
to be turned "inward" for the purpose of improving their own writing as well. 

Once they are persuaded of the value of peer criticism, the editorial boards may 
need help in coming up with an interesting and coherent editorial board policy. 
Towards this end, we have found it helpful to have discussions that center on the 
creation of relevant categories even before positive or negative valences are placed 
on them. An example of such a category might be "style of exposition." Some 
boards will eventually select those papers that appear to be tightly argued in a way 
that may resemble familiar expositions. Others will prize papers that are more 
chatty in tone. Other "neutral" categories that students have found helpful for the 

we encourage them to think about categories of criticism such as editorial revisions, stylistic matters, 
aesthetic criteria, mathematical accuracy. We also draw their attention to issues such as manner of criticism 
(encouraging them to think about it not only as making a judgment, but maintaining dialogue). 
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purpose of beginning to think about the nature of their criticism are: relationship of 
problem posing to problem solving; creation of new territory versus reflection 
upon mathe- matical ideas with which the student has been familiar for a while; 
"heaviness of tone" (including, for example, the place of humor desired in the 
paper); degree of succinctness. There are many others that instructors and students 
will come up with in conversations over several weeks, but the important point we 
wish to stress is that it is helpful to discuss at early stages categories that appear 
relevant but at the same time are not "preachy" or value laden. 

Instructors who use this scheme will have to adapt and modify it so that it is 
appropriate for their particular class as well as their own style of teaching. In fact, we 
urge teachers who want to make use of our editorial board strategy to do a "What-If-
Not" on the scheme itself—depending on the specific circumstances of the students 
they teach, as well as their particular goals for teaching. We encourage teachers who 
are using our approach to adopt such an attitude, despite the sense of insecurity that 
may accompany it, for we believe not only that problem posing and problem solving 
are important activities for mathematics students, but that the teaching act itself ought 
to be viewed in a problematic way. In fact, we fear that despite a new interest in 
problem solving in the mathematics curriculum, many educators will try erroneously 
to persuade teachers that a particular package or program will guarantee success. We 
believe that teaching anything ought to be viewed as problematic, and this implies 
that no topic (especially not problem posing and problem solving) and no teaching 
approach should be viewed as something to be "bought" on someone else's say-so. In 
fact, we believe that all of us ought to be plagued regularly by questions like: 

• Why is problem solving being advocated so strongly as a national 
curriculum theme? 

• Why should it be taught? 
• How does problem solving fit in with other things that are important to 

learn? 
• What are the ways in which it makes sense to incorporate problem posing 

within a problem-solving agenda (and in what ways might it be disengaged 
from that agenda)? 

An advantage of adopting a problematic and "What-If-Not" attitude toward our 
proposed scheme is that it may become accessible not only to mathematics teachers 
who wish to focus on areas other than problem posing, but to teachers of other 
disciplines as well. 

"SNIPPETS" OF JOURNAL MATERIALS 

Keeping in mind the disclaimer on adapting a program based on the authority of 
others, it might be helpful to see some actual examples of material produced by our 
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students for the journal. The following are illustrations of editorial policy, letters to 
authors of articles, typical tables of contents for a complete journal, and excerpts 
from "published" articles. 

Editorial Board Policy Statements 

In order to gain some feeling for the diversity of editorial policies developed by 
students, we reproduce the following two statements from the journals entitled 
Looking Inside a Problem and Converging Corners, Diverging Directions. 

I. Looking Inside a Problem 

Contents: The board will accept articles on any topic that is interesting for the 
class and brings forth personal contributions. We would particularly 
like to receive articles that express your own thinking and feelings. 

Form: In order to be published, the article must be clear, interestingly and 
well written. There is no restriction on length. 

Revisions: Revisions will be concerned with the form of the article. We will only 
suggest modifications in the content: 
—when the writer has added something new to an argument already 

produced in class that would be worth adding to the article 
—if there is an overlap between two articles which we would like to 

accept; we may ask one of the two to re-write his/her article. We 
feel this will avoid too much repetition. 
We will be happy to discuss any of the suggested revisions if you 

feel it is necessary. We would like, in some cases, to have the right to 
summarize a collection of articles on a similar topic rather than 
publishing each of them independently. 

//. Converging Corners, Diverging Directions 

Our board is looking more for papers with some insight into the thinking process than 
for original solutions and problems. We do appreciate successful solutions and unusual 
problems in topics like number theory or geometry; however, we would prefer a paper 
that did not find a clear "answer" but was rich in discussion of the problem-solving and 
problem-posing styles. This is preferred to a straightforward proof. 

We are looking for papers that deal with issues such as style of problem solving, 
abortive efforts, how you were able to make certain insights, and other problems you 
generated. We add to this some related questions. Do you see points in your paper 
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where you could have used another method? Why did you choose the method you 
did? How did the wording of the question affect your style? How can your solution be 
applied to real-life situations in or out of the classroom? How can your insights to your 
problem-solving and problem-posing style be applied? We could go on indefinitely. 

We urge you to keep your scratch work and to be constantly aware of your 
thought pattern. Observe yourself while you are working. Ask yourself why you 
decided to do what you are doing. In math courses, we are trained to include only 
the "correct" answer. Please analyze and include some of your mistakes or dead-
end ideas. There are several reasons for this. Is it an error that you make 
repeatedly? Were you quick to recognize an error or did you make a series of 
assumptions based on your mistake? Maybe it wasn't really an error or a dead-end. 
Someone else might pick it up. 

We will not automatically exclude any paper that does not deal directly with 
aspects we have brought up. We will consider each submitted paper on its own merits. 
Our policies are not exclusive. 

Letters to Authors From Editorial Boards 

Not only do we encourage editorial boards to indicate in writing why they decide 
to require modifications of submitted articles or reject them, but we also have them 
provide reasons for acceptance. The following are two letters of acceptance—both 
with requests for minor revisions: 

Dear Ms. B, 

After careful consideration, we are pleased to inform you of our decision to accept 
your paper for publication. We hope you will continue to submit your papers to our 
journal in the future. 

The points of your article that convinced us to accept your work are your narrative 
style and your inclusion of the various attempts in solving the problem. The strongest 
point, we feel, is the paragraphs on similarities and differences of your and Mr. R's 
approach to the problem, including your comments on pressure and time restrictions. 

We would like to suggest a few slight revisions before publication. Please clarify the 
listings on the last page, possibly combining #3 and #6 into the same statement and 
especially your statement #5 which we feel is difficult to understand. Also, on page 
two, please reword the first sentence and place the diagram apart from the narrative. 

Again, we congratulate you on this fine article. 

Sincerely, 

Jay Cubed Enterprise 
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Dear Miss J, 

We are writing this letter to congratulate you on the acceptance of your paper, 
"Observations on the Fly-Train Problem," in our most distinguished journal. The fine 
qualities of the paper, such as your own personal touches, your conversational style of 
writing, and the contrast between your approach and that of your partner, all add to the 

excellence of your paper. 

There are several ideas we thought you may want to revise or add to... .In your paper, 
you discussed different approaches to problem solving. You mentioned particularly 
the abstract approach of the problem solver, in contrast to your own pencil and paper 
approach. We would be interested in finding out why you feel that the abstract 
approach is more beneficial to a problem solver. 

Do you believe it is always better? If so, can we develop or teach thinking in the 
abstract? 

These are just a few questions you may want to deal with in your next paper. 

With Curiosity, 

NARC 

Typical Tables of Contents 

Here are two tables of contents. Notice that the first entry of the first journal 
includes both the original submission and the one revised based on criticism made 
by the board. Notice also that some of the articles reflect on the problem-posing 
and problem-solving processes themselves. In each case, board members have 
prepared brief "blurbs" for accepted articles. 

Some of these topics may appear to be somewhat cryptic out of context, but it 
should be possible to gain an overall flavor for the kinds of topics that were 
explored and the kind of spirit engendered in the students' writing as you peruse 
the following annotated tables of contents. It is of course necessary to 
appreciate that each group of students puts its own distinctive mark on the 
content and style of the journal. 

/. Table of Contents of Board n 

GEOBOARD INSPIRED 

Squares on the Geoboard, Mr. W, 
• Original paper: How many different squares are there on an n x n geoboard? 
• Critique by Mr. J, 
• Revision of the original 
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Back to the Geoboard, Mr. Rj 
Counting all possible squares on an n x n geoboard. 

The Orchard Problem, Mr. A,, Mr. A2, Ms. C2, Mr. W, 
How can we tell if a particular tree is see-able in an infinite orchard? 

Circles on the Geoboard, Ms. K^ 
How many nails are on or inside the largest circle that fits within the 
geoboard? Relationships of the form a2 + b2 = c2 + k are investigated and 
some surprising relationships are found. 

The Rainy Day Seedlings Problem, Ms. C, 

An approximation of TC via the geoboard. 

Envelopes of Lines on the Geoboard, Mr. Rj 
Constructing envelopes on the geoboard. 

An Area Problem, Ms. K2 

Determining the area of a diamond figure that does not have a peg at each 
vertex on a 5 x 5 geoboard. 

MATHEMATICAL GAMES 

Lucks and Bagels, Mr. R2 

Mathematics in disguise. 

CIRCLES AND QUADRILATERALS 

Quadrilaterals Tangent to Two Circles, Mr. C2 

What is the smallest and largest quadrilateral in which two tangent circles 
can be inscribed? 

Geometry and Calculus Recalled, Mr. Fj 
An excursion abounding with errors and incompletion which might be the 
basis for critical analysis. 

MOTIONS IN THE PLANE 

Tessellations, Mr. R, 
Any quadrilateral tessellates the plane. 

Chocolate Chip Geometry, Mr. Rj and Ms. W! 
Rotating the plane about particular points. 

Translations, Rotations, and Flips in the Plane, Ms. C and Ms. Wj 
Exploring rigid motions of a figure in the plane. 

Messing Around with Math, Ms. A, 
Motions through matrices. 
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MIN-MAX TOPICS 

The Bridge Problem, Ms. A2 

The use of paper folding in finding minimum paths. 

Points, Lines, and Distances, Ms. W2 

Explores minimum paths between points and lines. 

Reflections on Polygons, Ms. C, 
Shortest paths within a polygon. 

POLYGONS 

Shortest Paths and Shortest Paths in 3-Dimensions, Mr. S, Ms. C, Ms. W2 

An analysis of shortest paths through reflections. 

Construction of Polygons, Given the Midpoints of the Sides, Ms. A2, Ms. A(, Ms. W2 

Polygon construction. 

Points In and around Polygons, Mr. W, 
The sum of the distances from a point in the interior of an equilateral 
triangle to its side is a constant. 

OTHER TOPICS 

An Application of "What-If-Not" in Problem Solving, Ms. A^ 

Exploring the construction of squares on the sides of a quadrilateral and 
connecting the centers of opposite squares. 

Some Observations on Multiplication Tables, Ms. Lj 
"Modifying multiplication. 

Are the Field Axioms Independent?, Mr. W2 

The formula a + b = b + ais proved from the other field axioms. 

A Curriculum Unit on Prime Numbers, Ms. W, 
A teaching unit on prime numbers. 

2. Table of Contents of Board X 

Butterfly Problem, by Ms. M, 

One cannot but help to be intrigued by the development of Ms. Mj's 
problem. One gets a good insight into her thought processes concerning the 

solution of this very difficult problem of geometry. 
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Butterfly Problem Re-visited, by Mr. O} 

Letter to Mr. O, from Board. 

A well organized description of several methods used in attacking the 
butterfly problem. These same methods can be applied to a large number of 
difficult geometry problems. 

A Generating Formula for Integral Solutions to a2 + b2 = c2, by Mr. G, 

This paper gives a well motivated discussion on a formula for primitive 
Pythagorean triples. The writer takes you step-by-step through his 
discovery of the result. The reader will especially enjoy the clarity as well 
as the content. 

Some Random Notes on Pythagorean Numbers, by Mr. G2 

Letter to Mr. G2 

Although this paper is entitled "Some Random Notes on Pythagorean 
Numbers," one finds very many deep number theoretic results in it. This is a 
must paper for those interested in number theory. 

Untitled, by Mr. G3 

Letter to Mr. G3. 

Many problems are deeply related to each other. Here is an exposition 
relating fractional solutions of the Pythagorean Formula to the circle. 
You will also notice the dependence of each topic on Pythagorean 
Numbers. 

On the Quadratic Triplets, by Ms. H3 

Letter to Mr. H3 from Board. 

An empirical approach has revealed several conjectures about rational 
solutions of the Pythagorean Formula. Some are quite surprising, and you 
may enjoy investigating them further. 

Some Interesting Problems, Books and Articles. 

Untitled, by Ms. M, 

The reader is given the pieces used in transforming a parallelogram into 
a square and shown how these pieces are used in a proof of the 
Pythagorean theorem. 
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Variations on a Theme by Pythagoras, by Mr. G, 

This paper looks at three twists on the old theme. Integer-sided 60° 
triangles, integer points on the ellipse, and the imperfect Pythagorean 
triplets generated by relations of the form a2 + b2 = c2 + k are investigated 
and some surprising relationships are found. 

Minimum Path Problems, by Mr. Gj 

Can we find a method which will help us to find the minimum path inside 
any polygon? 

What If Not "What-If-Not," by Ms. H3 

A critical analysis and discussion of the "What-If-Not" approach to 
problem posing. 

The Golden Section, by Mr. H1 

Showing a method of building a golden section segment using tangent and 
secant to a circle. The second part of the paper, showing extension to any 
segment, is needlessly involved. A much more direct method exists. 

Circular Reasoning, by Mr. G2 

A general problem with tangent circles involves some rather fancy 
reasoning, but a few of the specific cases are solvable with very elementary 
high-school geometry and a brief algebraic manipulation. One is solvable 
with little more than a clever elementary school trick. 

Matrices & Transformations: The Problem of Undoing, by Mr. G,, Ms. H3, Ms. 
M2, Mr. M, and Mr. G2 

Linear transformations have geometric interpretations, and can also be 
related to the algebra of matrices. This paper describes those relationships. 

A collection of interesting problems that have come up in class, by the editorial 
board of Journal. 

Excerpts From "Published" Articles 

The following are some brief excerpts from articles published in the class journals, 
which convey something not only of the mathematical investigation, but of the 
personal reflective spirit that some students were able to capture in the course—an 
introspective stance that was difficult for many students to express. We end the 
collection with an editorial that is not only reflective but self-serving (from our 
point of view). Perhaps it will counterbalance some of our words of caution and 
will inspire others to venture into a course of this type. 
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Final Group Paper on Pythagorean Triples, Mr. A,, Ms. Lv Mr. B2 

Working in the full class group Tuesday I found to be frustrating. My mind seemed 
to be reacting slowly to the suggestions and I felt that I wanted to follow through 
on some of the conjectures but my train of thought was constantly being 
interrupted. Obviously some stimulation was being generated since the thought 
that 32 - I2 = 8 came to me later as I was driving. In contrast on Wednesday in the 
small group, I found myself leaping from one line of reasoning to another without 
feeling frustrated. Was this due to the smallness of the group? Was it because the 
conjectures of the group were less diverse? Was it because I had an incubation 
period for the problem? Was it because I felt responsibility for seeing that the 
group was productive? Whatever the reason, the ideas seemed to come more 
readily in the small group than in the large class setting and my mind seemed more 
able to respond to the stimulus of suggestions from other members of the group. 
Might the key lie in a genetic or conditioned learning strategy? Perhaps I naturally 
prefer convergent thinking (successive scanning) and also tend toward reflective 
rather than impulsive responses in problem solving. 

A New Way to Look at a Circle, Ms. B2 

The following is an extension of my "What-If-Not" paper on the equation x2 + y2 = 25. 
I asked myself the question, What-If-Not this equation were graphed on regular 
coordinate axes? After having initially found some surprising discoveries, I become 
really interested in this and investigated further. What evolved, it seems to me, is the 
seed of a unit not only on graphing, but on circles and ellipses ... and perhaps with a 
little more imagination one might be able to incorporate parabolas and hyperbolas 
too. I'll explain this aspect of the paper further after you have been exposed to some of 
my ideas. 

What If Not "What-If-Not"?, Ms. H, 

The "What-If-Not" approach to mathematical situations is intriguing ... mostly 
because it is not clear whether it is really rich or fake rich. In this paper, I am not sure 
whether I am criticizing, asking for better definitions or talking about other possible 
use. I am probably doing all three. 

The stated objectives of the approach are to (1) encourage teachers and students to 
pose new questions about mathematical phenomena and (2) provide a model or 
technique for posing new questions. Hopefully this will lead to new curriculum ideas. 
Many of my questions crystallized as I tried to apply the What-If-Not technique to 
generate curriculum ideas for a 10th grade geometry class. I am using that attempt to 
illustrate the questions . . . . 



146 7. WRITING FOR JOURNALS: STUDENT AS AUTHOR AND CRITIC 

Under Observation, Mr. M, 

In our last session, I elected to be one of the observed. I felt pressure to produce while 
being observed and hence to alleviate some pressure I tried making myself comfortable. 

Initially the squaring problem looked routine, however, it did not prove to be routine and 
simple. After the session, I noted the following as my strategies for solving the problem: 

1. Obvious answer. If the answer was obvious, it could be seen quickly (insight 
required). I had NO LUCK. 

2. Trial and error. Make intelligent guesses and test solutions. NO LUCK again. 
3. Bulldozer method. Since answer was not obvious, search for a pattern by 

bulldozing out more numbers and discover a generator. NO LUCK. 
4. Normal approach. Look for a generalization by algebraic representation. NO 

LUCK. 

Later when I worked further on the problem, I noted the following strategies: 

5. What cannot work? Are there numbers that cannot work? Why? 
6. A re-look through algebra and a formalized approach (insight). 
7. Search for a pattern among selected components, i.e., break problem up into 

smaller parts that may be related (insight). 
8. Formalize any observations and patterns. 

Editorial, Ms. H5 of the Phantom Board 

This course has made me more aware of the value of trial and error. Since I have been so 
conditioned to proving and disproving abstract concepts, I almost forgot the interesting 
questions and conjectures that can come out of trial and error. Examining many aspects of 
a problem has enabled me to have more insight into simple problems. 

Working with the Pythagorean triples has given me information that I have already used in 
my senior classes. Enriching ideas or comments add to the interest of a course. 

I have always been aware of the versatility of math, but now I stress this idea more in 
my classes. 

I have also observed in my classes that most average high school students rely 
heavily on the teacher as the main source of information. If they have confidence 
in your mathematical ability, they believe almost every concept presented to them 
by you. I would assume that in advanced classes, the students would challenge the 
teacher more. 

This course has been the most interesting and informative math education course that 
I have enrolled in here. This is the sixth math education course I've taken (two in 
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undergraduate school and three in graduate school) and the first that has challenged 
me and forced me to think about my role as an educator. 

SOME "MOORE" REFLECTIONS 
ON THE EDITORIAL BOARD SCHEME 

Deborah Moore-Russo joined the faculty of the Graduate School of Education at the 
University at Buffalo in 2003, and she decided to teach a problem solving/posing 
course in her first semester. Since she chose to make use of the editorial board 
scheme, we thought readers who might be thinking about adopting this scheme for 
the first time would be particularly interested in some of her criticisms, 
modifications, and innovations. Professer Moore-Russo was formerly an Associate 
Professor in the mathematics department at the University of Puerto Rico at 
Mayagiiez, and associate dean for research and academic affairs for the College of 
Arts and Sciences. Here are excerpts from an interview, with the authors of this 
book, about the design, implementation, and feedback from her students. 

A of PP: What was it that attracted you to the prospect of making use of the 
editorial board/journal writing scheme? 

Deborah: The uniqueness of the concept. I had never used this strategy before 
with students, but saw the obvious benefits that it offered. Very few 
things we do, even in graduate courses, really help students learn 
about the workings of a peer-review journal. At most, we might 
have them do readings or jointly submit research articles with us. 
The editorial board let them look at the entire peer review process 
from all sides. 

A of PP: In this chapter, we described three phases of the course. Can you tell 
us a little bit about how you made use of and how you modified any 
of the phases? 

Deborah: Though my students had previously engaged in problem solving as 
mathematics students and teachers, many of them did not have what 
they thought to be an adequate way of thinking about problem solving, 
especially in their role as teachers. In order to ease their transition into 
engaging in what you accurately described in the previous section of 
this book as anxiety-producing activity, I found it helpful to begin 
immediately with their reading of classics in the field. This was not 
done instead of, but in conjunction with their problem solving. They 
read the books at home, and this provided them with a vocabulary to 
talk about problem solving in their role as teachers. 

AofPP: Interesting. We discussed in this chapter how we selected 
problems for them to work on early in the course. We chose 
problems that were rather nontechnical and that required some 
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manipulation of concrete materials so that observers could get a 
clearer picture of "what might be in the problem solvers mind." We 
spoke of geoboards or the cherry in the glass problem. What kinds 
of things did you have in mind with early problems that you 
selected for them to work on? 

Deborah: I think there was much value in your selecting problems in the first 
phase of the course as you did. It provided students with the 
opportunity to observe each other and to hypothesize what they 
were thinking—especially as they supplemented these observations 
with class discussions. But when I realized that the students wanted 
to talk about how they might make use of what they were doing in 
their own teaching, I decided to introduce an array of problems 
early on that might appeal to a variety of grade levels. I also selected 
problems that I thought varied in overall quality. I did, however, try 
to make use of the four criteria you mention at the end of phase 2 in 
selecting problems for them to think about. (Authors' note: See pp. 
129-130 for discussion of these criteria.) 

A of PP: Though they might have been working on a variety of problems that 
spanned grade levels, to what extent were the students struck by 
common features among the many different problems? 

Deborah: Students were often struck by the variety of strategies used to solve 
a single problem. This itself led to an interesting discussion on how 
teachers can allow and encourage multiple strategies for problem 
solving in their classrooms. By considering an array of strategies to 
solve problems, students begin to see the problems from diverse 
perspectives. 

A of PP: Were there other ways in which you were able to encourage them to 
connect their problem solving to their own teaching? 

Deborah: Once students had this experience, I started asking their opinions 
about problems. Is this a good problem? Would you use this 
problem in the classroom? I was trying to get students to start 
evaluating problems on a very basic level. Students were then 
asked to submit their favorite problem and to relate why they 
believe it is a good problem. 

A of PP: What were some of the criteria that emerged for a problem being a 
"good problem"? 

Deborah: I found it helpful to have them read how some modern 
practitioners—viewed as experts in their areas—identified the 
qualities of a good problem. We used Marilyn Burns's criteria for 
mathematical problems to evaluate some of the problems we had 
done in class and others that the students had submitted individually. 
Burns lists the following criteria: 
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1. There is a perplexing situation that the student understands. 
2. The student is interested in finding a solution. 
3. The student is unable to proceed directly toward a solution. 
4. The solution requires use of mathematical ideas. 

Looking at her criteria, in addition to the NCTM Standards and 
Poly a's ideas, the students created their own scheme for evaluating 
a problem. The students did this first individually, and then in small 
groups. Each small group developed its own rubric for evaluating 
problems. Then the entire class created a single rubric to evaluate 
problems. The development of the class rubric involved some 
heated discussion among class members. I won't spoil the fun by 
revealing the rubric itself, but I will say that the process took a 
couple of hours. I was pleasantly surprised at the quantity and 
quality of discussion that went into developing the class rubric. We 
finally implemented a Robert's Rules of Order type structure to 
guide the discussion. Students submitted what they considered key 
criteria, and then the discussion was opened to speak either for or 
against the criteria in question. At the end we voted on the criteria to 
be included. Though we finally reached an agreement, there was 
enough diversity of opinion so that students began to wonder what 
sort of compatibility in opinions might be beneficial in the 
formation of editorial boards. 

A of PP: What other things did you do to help pave the way for editorial 
board activity? 

Deborah: In order for each board to be able to put together an entire journal, it 
is helpful for students to find out what a journal really is. Many 
students had been given assigned readings of journal articles in their 
course work; however, this did not require them to attend carefully 
to the actual components of a journal. At first, the students were 
asked to find journal articles related to problem solving. Then they 
were required to report back not only on the articles themselves but 
on the overall contents and composition of the journals, including 
such issues as the journals' calls for papers, general format, 
guidelines for submissions. 

A of PP: Wonderful idea. How did you prepare them to establish editorial 
boards once they had an idea of what was involved in the actual 
creation of a journal? 

Deborah: Since the editorial boards require a strong group dynamic among the 
editorial board members, I designed the course so that students 
engaged in group work throughout the entire semester. The group 
composition changed at regular intervals throughout the first half of 
the course, so that by the middle of the semester every student had had 



150 7. WRITING FOR JOURNALS: STUDENT AS AUTHOR AND CRITIC 

an opportunity to work with each person in the class. This way, they 
knew with whom they wanted to work when it came time to form 
editorial boards. The students felt that this sort of preparation was 
very important to the success of the editorial boards. They formed 
their own boards with people they knew they could work with. 

A of PP: That sounds like a good idea. Once the boards were formed, and the 
students began to write articles for the different boards, were you 
concerned with the fact that students on a board might find it 
difficult to evaluate an article submitted by classmates, especially if 
they knew the identity of the author? 

Deborah: Influenced in part by what the students found out in reading the 
policies of professional journals, the class decided that they wanted 
the editorial boards to have "blind review." The students either 
submitted multiple copies or electronically mailed their manu­
scripts to me, and then I passed them on anonymously to the 
editorial board. We also had something else interesting arise. Some 
of the students wanted to submit the same articles to more than one 
editorial board, in part to increase their chances of being 
"published." I explained that was not usually done in the "real 
world" but allowed it as long as all the receiving editorial boards 
agreed. As it turned out, the editorial boards were very happy to 
allow for multiple submissions since they all feared not having any 
submissions. In the end, all of the boards had at least three 
submissions each, enough that insured that they would be able to 
produce a viable journal. 

A of PP: Since this is the first time you taught a course that made use of the 
editorial board concept, can you tell us a little bit about the 
atmosphere of the class? 

Deborah: The students really "got into" their journals. One group went 
around to solicit advertisements from local merchants who were 
selling products that related to topics in their journal. Though 
they did not charge the merchants for their advertisements, they 
might have been able to use some compensation for the cost of 
photocopying issues of the journal for the entire class. When the 
others heard of this, I saw their wheels turning. Another group 
did a complete graphic layout for the cover of their journal that 
would rival any current journal in print. Another journal 
incorporated the use of mathematical cartoons to fill in the 
spaces between articles. The students really took ownership of 
their journals. 

Most, if not all, of the editorial boards met outside of class hours 
even though I dedicated the last half of class to the editorial boards to 
do their work. It was obvious that the members of the editorial boards 
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were also in constant communication electronically. Editorial board 
members frequently sent each other material via e-mail. 

I had required students to submit reflections on their readings 
during the course. One student in particular hated the emphasis I 
placed on writing in the course; however, she came to me during 
the editorial board process and said that she loved doing the 
editorial boards. She really felt that she gained a lot of insight 
reading other teachers' ideas. She also commented that even 
though she didn't enjoy the process, that the multiple written 
assignments that she had submitted really helped prepare her for 
writing and submitting her own article. 

A of PP: That's impressive. Were there any other signs that they were 
profiting from and enjoying the experience? 

Deborah: For one thing, a fallout that I had not anticipated before teaching the 
course was that two of the students wrote articles for the course that 
they will be submitting to one of the NCTM journals. I then tried to 
encourage the whole class to publish in the NCTM journal at their 
level. I announced all the Calls for Manuscripts for Teaching 
Children Mathematics, Mathematics Teaching in the Middle 
School, and The Mathematics Teacher. After the announcement, 
four students requested that I e-mail them this information. I don't 
know whether they will follow through with this inclination, but at 
very least, many of the students seemed to end up with a more 
positive attitude toward writing mathematics than they had before. 
Also, I mentioned that they took a lot of ownership of their journals. 
The fact that they also were able to assume a playful attitude is 
shown by the names they gave their journals: 

Eat My Pi: A journal dedicated to the use of problems in the classroom that 
involve food—mainly aimed at K-8 teachers. 

Problems, Problems, Problems or Problems: This board called for 
manuscripts that discuss field research, firsthand accounts, experiences, and 
clever anecdotes. 

Mathematics FUNdamentals: This board was devoted to improving math 
learning and instruction through motivational and creative activities. 

Broadening Problem Solving Horizons: This board mentioned the following 
in its call for manuscripts: How do teachers actively explore problem solving in 
the classroom to both hone in on and enhance their students abilities? 

The Early Years of Teaching Mathematics: This editorial board's aim was to 
help novice teachers in their first few years learn how to improve their 
mathematics instruction using problem posing and solving. 
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A of PP: Am I right in concluding that your students were accustomed to 
thinking of mathematics as a problem solving activity, even though 
they may not have had a language to talk about it, and even though 
they may not have reflected upon their own problem solving 
strategies very much in the past? Also, to what extent had they 
thought about problem posing as a part of the mathematical 
experience? And of relating problem posing to problem solving as 
we did in chapter 6? 

Deborah: The students had a much harder time trying to grasp the idea of 
problem posing. Most immediately saw its benefits, but still 
questioned how they, as teachers, could promote or even use the 
problem-posing process. Many expressed real concern about their 
K-12 students not being at a level of mathematical maturity to pose 
real problems. Others worried about how problem posing could 
really get them "off track" in terms of the required material they 
needed to cover. The single most successful activity in which the 
class engaged that involved problem posing was the following. I 
gave small groups a set of manipulatives (Alphashapes or Miras) 
with which they were not overly familiar. I then asked them to take 
the manipulative and to pose problems about it. They worked on this 
for about 15 minutes and then I shared with them printed resources 
on activities specifically designed for the manipulative. Then the 
groups switched manipulatives. The second round was much more 
productive. The groups seemed more comfortable forming 
problems the second time around. However, none of the groups 
really thought "outside of the box." Most of the problems they 
posed were somewhat obvious, but the activity was an important 
first step in the road to problem posing. 

The editorial boards really lent themselves well to problem 
posing. Students were told that they had to create a journal and an 
editorial board portfolio, but that was it. I was very vague, giving no 
specific directions, and just referred to The Art of Problem Posing as a 
reference. In the initial stages of the editorial boards, a lot of problem 
posing occurred. Students frequently posed problems as a way to 
better define and understand the unfamiliar task at hand. The boards 
went through many hypothetical scenarios in their discussions. I 
frequently heard questions starting with the phrase: "What if..." 

For example, one common question was: "What if nobody 
submits any articles to our journal?" The discussion would then 
ensue about how to make the journal sound interesting, how to make 
the submission process as easy as possible, and how to make the 
dates for submission as flexible as possible. Then the next question: 
"What if everyone submits their articles at the last minute, how will 
we review them all?" Then a discussion about submission dates 
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would begin. It was very interesting to see them grappling with a 
problem that they themselves had posed—a real problem that was 
extremely relevant to the situation at hand. 

A of PP: That's a fine segue into the rest of this chapter. We do have one more 
question, however. Can you mention briefly one or two things you 
might do differently if you were to make use of the editorial board as 
an organizing feature in a future course? 

Deborah: I might start the editorial board process a couple of weeks sooner in the 
semester. I had required that each student make a single submission; it 
might be better to ask students to make two submissions rather than 
one. That would give the editorial boards more experience evaluating 
their peers' work. Other than that, I would not change much. It has been 
a wonderful experience both for me and for my students. 

VARIATION OF EDITORIAL BOARD EXPERIENCE: 
A SECULAR TALMUD 

The most deeply embedded concepts in the design of a class around editorial 
boards and journal writing are those of dialogue and multiple perspective. In its 
call for papers, each board selects its own perspective and invites nonboard 
members to write from that point of view. The reaction of the boards to submitted 
papers begins a dialogue in which students are frequently asked to rethink what 
they have written. The revision is intended to improve not only the coherence of 
submitted papers, but to modify the scope as well, and to connect these papers with 
other themes that have been developed in the course. 

We hope that in reading about and experimenting with editorial board/journal 
writing in your classes, you will come up with variations of the scheme we have 
described in this chapter. The interview with Deborah Moore-Russo suggests one 
person's elaboration. Now we would like to suggest one variation that takes the root 
concepts of dialogue and multiple perspective, and further transforms the 
scheme—a transformation based on the Talmud. 

We coined the acronym T. A.L.M.U.D.—Teaching And Learning Mathematics 
Using Discourse—to indicate that we will use the ancient Talmudic format as a 
model for creating a secular modern version dealing with mathematical discourse.7 

The Talmud is a sacred text, considered to be second only to the Bible in Jewish tradition. The Mishnah 
was produced in the second century A.D. and is an attempt to codify traditions, especially in relation to the 
Bible. The Gemara, produced in the fifth and sixth centuries, is commentary on the Mishnah. For more 
detailed, readable descriptions of the Talmud and its format, see Joseph Lukinsky (1987), "Law in 
Education: A Reminiscence with Some Footnotes to Robert Cover's Nomos and Narrative," Yale Law 
Journal, 96(8), 1836-1859; Jacob Neusner (1984), Invitation to the Talmud, (San Francisco: Harper and 
Row); Adin Steinsaltz (1989), The Talmud: A Reference Guide (New York: Random House); Jonathan 
Rosen,"The Talmud and the Internet," The Key Reporter, 63(4), 1998, 8-11; Jonathan Rosen (2000), The 
Talmud and the Internet: A Journey Between Worlds (New York: Farrar, Strauss & Giroux). 
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As we did in discussing the original scheme, we begin this section with a 
catalogue description. 

TA.L.M.U.D.IC COURSE DESCRIPTION8 

Here is an excerpt from a catalogue description of the course offering. 

Catalogue Description 

Distributing Talmudic Thought 

Mathematics is frequently stereotyped as a technical discipline governed by logic 
alone. It is often seen as having little in common with the humanities and possessing 
minimal potential to illuminate matters of taste, aesthetics, emotionality and 
personhood. 

Using the distributive property [x • (y + z) = (x • y) + (x • z)] in mathematics as our 
peep-hole, and using problem posing as the driving force, we will reexamine some of 
the most fundamental but rarely articulated mathematical ideas that imbue 
mathematics with humanistic elements. ... Among the many themes we will explore 
by use of the distributive property are the following: 

a) Misconceptions of extending mathematical systems: "The Fallacy of Greed." 
b) The concept of "same" and "different" for (mathematical) objects and systems 

[the subtlety of "same" and "different"]. 
c) The role of metaphor in (mathematical) thinking. 
d) Visual/ geometric vs. linguistic/algebraic thinking. 
e) The place of surprise in individual (mathematical) thought and in the evolution 

of ideas. 
f) Connections between logic and intuition in mathematical thinking. 

Though we will be reading a number of professional articles at various points in the 
course, the main text will be created jointly by the students and the instructor. The text 

Though I—Stephen I. Brown—devised and taught this course (for several years at the University at 
Buffalo), I make use of the royal "we" in describing it in the sections that follow. I do so for two reasons: (1) 
ease of exposition, and (2) gratitude for the helpful criticism made by Marion I. Walter in numerous drafts 
of these sections. I was able to respond positively to virtually all of her criticism-except one. Against my 
better judgment, I decided not to accede to her urging to delete the section on dream (and surrounding 
references to isomorphisms) in the section entitled "A T.A.L.M.U.D.ic 'Snippet.'" I agree that it may be a 
bit obtuse, but I believe the reader will profit from attempting to unravel some of its cryptic meaning. If I am 
wrong, then please contact Marion Walter and let her know how much you appreciate her efforts—even in 
vain—to make the text more readable. Also, I am grateful to her for coming up with the acronym 
T.A.L.M.U.D. to describe the secular Talmud. 
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will be unconventional and will be designed in the spirit (but not the content) of the 
Talmud—an ancient text that has a most unusual conceptual scheme and format. 

Secular Talmud and Problem Posing: TA.L.M.U.D. 

The Talmud begins with two main structural devices that are repeated in each 
chapter: the Mishnah and the Gemara. The Mishnah presents a point of view that is 
for the most part to be taken for granted. The Gemara is a collection of commentary 
on the Mishnah. The Gemara not only looks for underpinnings for the Mishnah, but 
expands on and seeks variations and alternative ways of seeing what has been taken 
for granted. What is particularly appropriate for educational purposes is that the 
Gemara consists not only of logical analysis of the Mishnahic beginning, but also 
engages in associative thinking and storytelling that is suggested by the Mishnah. 

In addition to the Mishnah and Gemara, there is a third feature of the Talmudic 
text: commentary on the Gemara (commentary on the commentary). In the actual 
Talmud, the commentary is frequently associated with a particular person or a 
school of thought. In our T. A.L.M.U.D.ic transformation, we seek something a bit 
different-what we call "educational voices." 

We have offered a rough description of the three different writing styles in the 
Talmud, and discuss shortly how we have adapted these styles to the creation of a 
class text—a text that has some features in common with what we depicted earlier 
in this chapter in discussing the notion of student as author and critic. 

In addition to style, however, there is something quite unusual in the actual 
format of the Talmudic page itself. Here is a simplified sketch that depicts a typical 
page of the Talmud: 
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Both the Mishnah and Gemara comprise the center of each page. The 
commentary (educational voices), however, is found in the right-hand and 
left-hand margins, placed close to the source of the associated central text. 

The text itself thus surrounds and envelops the reader. Ideas that begin gently are 
elaborated on and eventually explored in a myriad of crisscrossing enticing ways. 

Some people have likened this two thousand year old tradition to the internet. 
Rosen claims that "[The Talmud] bears a certain uncanny resemblance to a home 
page on the Internet, where nothing is whole in itself but where icons and text-boxes 
are doorways through which visitors pass into an infinity of cross-referenced texts 
and conversations."9 Unlike the organization of most mathematical texts, it is 
assumed as soon as anyone begins to read any section of the Talmud that he or she has 
already read every other chapter—a "crazy" idea, but one that exemplifies the belief 
that everything is related to everything else and that we can draw on experiences in 
our lives that may not have been officially developed in the text. 

For the purpose of our course, we sometimes can achieve this "crazy" 
perspective by starting with ideas that are frequently viewed as obvious and 
nonproblematic, such as axioms, rules, readily accepted short-cuts, and definitions 
that are considered noncontroversial. 

Student as Author and Critic 

There are many ways in which this T.A.L.M.U.D.ic transformation was organized 
so as to replicate the author/critic role we described in relation to the creation of a 
journal. One way was to create editorial boards and to organize the course around 
the formation of several different Talmudic style texts. As in our initial discussion 
of editorial boards and journals in this chapter, each editorial board produced its 
own T.A.L.M.U.D. based on the writings of individual students or groups of 
students from other boards. 

Another option involved the creation of one T.A.L.M.U.D. produced by the 
entire class, but done in such a way that the students rotated the responsibility for 
producing the three different T.A.L.M.U.D.ic styles (Mishnah, Gemara, or 
commentary) for each chapter of the collection. Each board criticized a style 
submitted by individuals or groups of students not on their own board. 

ORGANIZATION OF THE TA.LM.U.D.ic COURSE 

Phase 1: Introducing Problem Posing, The Talmud, 
and the Distributive Property 

Problem posing pervades every aspect of the T.A.L.M.U.D.ic experience. In this 
phase of the course, students are introduced to the concept in a more accelerated 

See Rosen: "The Talmud and the Internet," op. ciL 
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way than in the original journal description. Although we discuss some material 
from the earlier chapters of this book, we focus primarily on the What-If-Not 
scheme of chapter 4.10 

Next, we discuss the format and style of the Talmud described in the earlier 
subsection entitled "Secular Talmud and Problem Posing: T.A.L.M.U.D." 
Although students may wish to read excerpts of some of the publications in 
footnote 7 of this chapter, for purposes of this course, the descriptions we have 
offered in that section should be adequate. 

Finally, we spend some time problem posing/discussing/reading about the 
major mathematical theme of the course: the distributive property. Although many 
other topics are appropriate to select, we have found this one to be particularly 
powerful by virtue of its apparent simplicity, familiarity, surprising anti-intuitive 
applications, unsuspected depth, connection with many aspects of mathematical 
thought (algebra, geometry, axiomatics), and applicability to many different grade 
levels. A review of the subsection of chapter 5 entitled "Distributing Things" will 
provide some indication of its unsuspected depth. For anyone who wishes to make 
use of the distributive property as a major theme in a T.A.L.M.U.D.ic course, it will 
be helpful to skim some easily accessible publications that cross-hatch categories 
(a) through (f) from the above catalogue description.'' 

Phase 2: Initial TA.L.M.U.D.ic Experience 

In this phase, we distribute excerpts from a secular T.A.L.M.U.D.ic text that are 
introduced by a Mishnah and followed by several beginning Gemara entries 

For additional references on the What-If-Not scheme as well as elaborations of its use in a class 
room setting, see Hana Lavy and Irena Bershadsky (2003), "Problem Posing via 'What-If-Not?' 
Strategy in Solid Geometry-A Case Study," Journal of Mathematical Behavior, 22, 369-387. 

The references to be cross-hatched (by Stephen I. Brown, unless otherwise noted) are mentioned 
here. The reader may contact the author at sibrown@acsu.buffalo.edu for help in finding references. 
"Multiplication, Addition and Duality," The Mathematics Teacher, 59(6), 1966, pp. 543-550 and 591 (a, 
f). "Prime Pedagogical Schemes," American Mathematical Monthly, 75(6), 1968, pp. 660-664 (b, e), 
"Signed Numbers: A Product of Misconceptions," The Mathematics Teacher, 62(3), 1969, pp. 183-195 
(a, f). "Rationality, Irrationality and Surprise," Mathematics Teaching, 55, 1971, pp. 13-19 (d, e). 
"Musing on Multiplication" (British Journal), Mathematics Teaching, 61, 1974, pp. 26-30 (b, c, d,e). 
"One Third Cherokee: Problem Solving, Teaching and Intuition" (with Gerald Rising), Educational 
Studies in Mathematics, 9(4), 1978, pp. 1-19 (c, d, e). "Some Limitations of the Structure Movement in 
Mathematics Education: The Meanings of 'Why,'" Mathematics Gazette of Ontario, 17(3), 1979, pp. 
35-40 (a, b,f). "Sharon's Kye," Mathematics Teaching, 94, 1981, pp. 11-17 (a, b). "Ye Shall Be Known 
by Your Generations," For The Learning of Mathematics, 3, 1981, pp. 27-36 (b, d, e, f). "Distributing 
Isomorphic Imagery," New York State Math Teachers Journal, 32(\), 1982, pp. 21-30 (b, d, f). Epilogue 
(chapter 6) of Some Prime Comparisons (Reston, VA: National Council of Teachers of Mathematics, 
third printing, 1991) (b, e). "Mathematics and Humanistic Themes: Sum Considerations,',' Chapter 26 in 
Problem Posing: Reflections and Applications edited by Stephen I. Brown and Marion I. Walter 
(Hillsdale, NJ: Lawrence Erlbaum Associates, 1993, pp. 249-278) (d, e). "Posing Mathematically," in 
Mathematics, Pedagogy and Secondary Teacher Education, edited by T. Cooney, S. Brown, J. Dossey, 
G. Schrage, and E. Wittman, (Portsmouth, NH: Heinemann, 1996) (b, c, d, e, f)-
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following it.12 Students work in pairs in order to (1) elaborate on the Gemara and 
(2) also create "educational voices" (commentary on commentary) that derive 
from the Gemara. 

We then discuss the various kinds of "voices" that students might create in the 
margin of the text. One voice that appeals to many students is that of the confused 
pupil. That voice speaks explicitly about why it might be difficult to understand an 
idea and why it may in fact make no sense. Another voice takes the opposite stance. 
It seeks to find confusion not as a vice, but as a virtue in generating thought. So, 
whenever an author presented an idea as clear and noncontroversial, the 
"confusion-seeking voice" would find ways of muddying it up. Another voice 
attempts to find applications of topics to other mathematical and nonmathematical 
contexts. Another explores the value of intentionally misunderstanding an idea 
developed in the Gemara, thus investigating the ways in which errors can be 
productive. Another voice talks about how the particular problem reveals 
something interesting about the nature of mathematics. Yet another seeks personal 
meaning in the what might look like a detached mathematical topic. 

Another T. A.L.M.U.D.ic voice is one that searches for what we described in chapter 
3 as "pseudo-history." This voice does not ask what actually happened, but what might 
have happened that created an interest in a particular topic, or what might have been an 
earlier rendition of an idea that was accepted in modern times. Additional voices are 
selected by the students as they begin to reflect on the voices they have created.13 

Phase 3: Negotiating Editorial Boards and TA.L.M.U.D.ic Writing 

Having worked in pairs to elaborate on the Gemara and to create marginal 
comments for a T.A.L.M.U.D.ic section initiated at first by the instructor, the 
students then shared their writing with the entire class and discussed how and why 
they produced their work. Here we learn about special interests of the students and 
how those interests affected the "educational voices" they adopted. 

12
This initial T.A.L.M.U.D.ic text material is usually created beforehand by the instructor or by 

students of a previous class. In the discussion that follows, whenever we refer to "Mishnah" or "Gemara," 
we mean secular material that either the instructor or the students created. For a more thorough description 
of the concept of a secular Talmud, see Joseph Lukinsky (1987), "Law in Education: A Reminiscence with 
Some Footnotes to Robert Cover's Nomos and Narrative," loc. cit. Some of these ideas are derived from 
Stephen I. Brown, Reconstructing School Mathematics: Problems with Problems and the Real World 
(New York: Peter Lang, 2001, pp. 215-233), and others from his essay, "A Modern/Ancient Encounter 
with Text," in Essays in Education and Judaism in Honor of Joseph S. Lukinsky, edited by Burton I. Cohen 
and Adina A. Ofek (New York: Jewish Theological Seminary of America, 2002, pp. 221-239). 

Although not directed to Talmudic study per se, Goldenberg describes other sorts of voices that were 
not explicitly intended for use in a Talmudic sort of text, but that could be incorporated in a Talmudic mode. 
See E. Paul Goldenberg, "On Building Curriculum Materials That Foster Problem Posing," in Stephen I. 
Brown and Marion I. Walter (Eds.), Problem Posing: Reflections and Applications, loc. cit., pp. 31-38. 
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We then negotiated as a class how we would proceed to create T.A.L.M.U.D.ic 
text material for the remainder of the semester. We reviewed some of the 
mathematical themes that we had read about in the first phase, and also considered 
how the editorial boards would participate in criticizing the work that was to be 
created for the remainder of the semester. 

There is much creative opportunity for instructors who wish to adopt and 
modify the T.A.L.M.U.D.ic format to orchestrate this final phase. We look forward 
to communicating with faculty about personal adaptations and also to reading 
about their efforts in professional journals. 

A TA.L.M.U.D.ic "SNIPPET" 

What we describe here is one T.A.L.M.U.D.ic beginning—one that was presented 
to students in Phase 2 of the course and that students embellished on as they 
worked in pairs.14 

The mathematical Mishnah begins with the simple observation that we can 
add numbers ending in zero by first ignoring the O's, getting their sum, and then 
"affixing" a zero to the answer.15 So, in the following diagram the addition 
problem in column (A) may be solved by associating each of the addends in 
column (A) with the same addend with a zero deleted (column B), adding the 
numbers depicted in (B) and then "affixing" a zero to the answer (69) to arrive at 
690 in (A): 

Thus we can arrive at the same destination by two different routes: 

This is actually a conglomeration of several different efforts that were created in conjunction with 
students in different courses over time. For ease of exposition, we give the impression that this is an accurate 
rendition of one T.A.L.M.U.D.ic chapter rather than a conglomeration. The purpose here is to be suggestive 
and exploratory, rather than to accurately portray what we did. This chapter is written as if all pairs of students 
joined in completing one text. Some of these ideas are derived from Stephen I. Brown, Reconstructing School 
Mathematics: Problems with Problems and the Real World, (pp. 215-233), loc. cit., and others from his essay, 
"A Modern/Ancient Encounter with Text," Essays in Education and Judaism in Honor of Joseph S. Lukinsky 
(pp. 221-239), loc. cit. Portions of this section, however, have not appeared in print before. 

See Stephen I. Brown, Reconstructing School Mathematics: Problems with Problems and the Real 
World, op. cit., pp. 123-125, 227-233. 
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{([1] and [2]) to [3] to [4]} 

vs. [5] directly 

The Mishnah then suggests that this simple shortcut for addition of numbers 
ending in the same digit does not work in general. So to add 657 + 137, we cannot 
ignore the 7's, just add 65 and 13, and then "append" 7 to the answer. 

Having such a simple beginning, the mathematical Gemara then poses a variety of 
problems. The first points out how one can explain or summarize what is happening 
by viewing this as an instance of the distributive property in a more straightforward 
way than depicted in the diagram just shown. The explanation (although slightly 
more complicated than the following equation) involves the observation that 

(47 + 22) x 10 = (47 x 10) + (22 x 10) 

A second Gemara (using the distributive property as in the preceding equation) 
then explores why the simple algorithm of ignoring and then "affixing" zeros does 
not work for numbers ending in 5. 

The Gemara then relinquishes the mathematical development and begins to talk 
of a dream of the narrator, whose daughter is pregnant. He wonders about the 
gender of his unborn grandchild. He is then whisked away in a chariot and visits a 
different land that is in every way like his own, except for the fact that time and 
space are contracted. Everyone is considerably smaller, and events are played out in 
a fraction of the time it would take in his "real world." Without amniocentesis, he is 
thus able to discover in a few seconds the gender of his unborn grandchild.16 

Having read through these beginnings that the instructor presented to the class, 
students then began to participate in creating the commentary "voices" in the 
margin of the text. They began to explore the mathematical rationale for the alleged 
shortcut of adding numbers ending in zero, as well as the relationship between the 
mathematical and the real world model. Assuming the voice of the "confused 
student," one pair of students wondered why complicating matters by moving from 
(A) to (B) was considered a short-cut at all. It appeared to them to be an unnecessary 
"long cut." Another pair of students responded in the margin by suggesting that the 
movement from (A) to (B) is merely an explanation—and not the shortcut 
itself—for why the shortcut is legitimate. 

Yet another pair, also resisting the movement from (A) to (B), was confused by 
the equation 

(47 + 22) • 10 = (47 • 10) + (22 • 10) 

See Stephen I. Brown, Reconstructing School Mathematics: Problems with Problems and the Real 
World, p. 229, loc cit., for further discussion of this story and its relevance to the mathematics. 
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They said that a focus on the actual short-cut in (A) suggested that the equation 
should be in the other direction: 

(47 • 10) + (22 • 10) = (47 + 22) • 10 

This raised a question for another pair of students of what the equals sign means 
in the first place. Is it intended for the sign to have a sense of directionality? Are 
there circumstances when that is the case and when it is not? Such questions 
challenge the notion that an equals sign just indicates that we have two different 
names for the same thing. 

Additional "voices" then wondered where in the world this dream came from. 
They were concerned with how it related to the mathematical example. 

Some found it appealing (and others distracting) to be subjected to this attempt 
at a supposed real-world connection. Different voices worked through the 
connection in different ways. In one of the most illuminating marginal comments, a 
pair of students—who were quite confused by what was going on in the case of the 
mathematics as well as the dream—decided to give up on finding a clear connection 
and sought instead to "squint" and look for similarities between the mathematics 
and the dream without recourse to details. They came up with the realization that in 
each of the two contexts there was an attempt to relate two systems that are different 
[(as are (A) and (B) in the mathematics, and the actual vs. shortened time span in the 
dream], but that are similar in other critical ways. 

Another pair of students who read this marginal comment began to wonder 
about the concepts of same and different as they had experienced them in 
mathematics. They saw congruence as an example of objects that may be different 
in some ways (e.g., location in space), but the same in others (identical shape). 

Eventually we had a class discussion about the fundamental mathematical 
concept of isomorphism, because this concept captures essential similarities among 
different systems. Some students went back to make additional marginal comments 
that attempted to see double isomorphisms in the distributive property and dream 
example. That is, it appeared that both the mathematics and the real-world example 
were illustrating efforts at isomorphiclike structures, and furthermore, the two 
systems looked as if they were almost isomorphic to each other}1 

Subsequently some students took a fine-grained rather than global look at the 
alleged isomorphic-like structures in each case and pointed out how there appeared 
to be difficulties connected with what might be the actual "operations" and what 
might be the "elements" in each of the structures. Others offered possible 
resolutions to their dilemma. One pair came up a way of seeing the distributive 

In some of the T.A.L.M.U.D.ic writing and especially in the use of marginal "voices" in relation to 
the concept of isomorphism, the instructor provided assistance (sometimes reading material) in helping 
to think through the material. 
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property in general as exemplifying an isomorphism from the real numbers on the 
real numbers. 

One pair, operating with a "pseudo-history" voice, questioned what it must have 
been like when people first discovered that numbers ending in zero can be treated in 
such a way that zeros can be "ignored" and then "resurrected." What might they 
have had to know? What kind of leap might have been required? Could this have 
been done without the ability to represent numbers in a base system? 

The instructor then provided students with a second Mishnah on the distributive 
property. This one depicted two adjoining rectangles with the same width but 
different lengths—as described in Figure 34 in chapter 5. 

The Gemara then explored the concept of the distributive principle in geometric 
terms. The Gemara stated that the algebraic and geometric conceptions of the 
distributive property are logically connected, but that the visual display may be 
more appealing than an algebraic one to those who are unfamiliar with algebra. 

Students then created commentary voices in the margin that posed problems 
about ways in which the algebraic and geometric representation might have a 
quite different effect upon people, even if they were thoroughly familiar with 
the distributive property. One issue raised is how each of these as a starting point 
might lead to different sorts of generalizations. One pair of students discussed 
what happened when they presented the distributive principle in the two 
different ways to two classes and asked the students to generalize. Another pair 
of students then discussed how these two embodiments might be viewed in three 
dimensions.18 

Later on in the course (Phase 3), some students chose the previously discussed 
Mishnah and Gemara that drew connections between algebra and geometry for 
another point of departure. Having the geometric equivalent of the distributive 
property, they created their own Gemara that pointed out that there are many 

1algebraic variations of the distributive property—such asx2 - y  = (x + y) (x - y)—and 
they explored what the geometric forms might look like. Again moving to 
"pseudo-history," they then wondered how Euclid might have expressed the property 
geometrically, because he did not have the general concept of lengths of line 
segments. Some commentary looked back at the development of the Pythagorean 
Theorem from a Euclidean point of view in chapter 4 in order to conjecture how he 
might have handled the geometric version of the property. 

OTHER TA.L.M.U.D.IC BEGINNINGS 

There are many other enticing beginnings that can be used to launch a T. A.L.M.U.D.ic 
writing project. We mention several others later, and although we highlight possible 

1 While the algebraic form led to generalizations that involved equations with more than three 
variables, the geometric one extended to irregular shapes that had at least one border in common. 
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connections with the distributive property, those who are interested in engaging in 
such a teaching project of course need not be limited by that theme. 

One beginning might involve the creation of mathematical Mishnah and 
Gemara from among the many easily accessible (but difficult to resolve) paradoxes 
(or paradox-like situations) in mathematics. Here is a variation of one such 
paradox—one that caught Einstein's attention despite the fact that on the surface it 
is quite a simple problem. Eventually, we discover that the solution is anti-intuitive. 

Ziporah (known more popularly as "Zippy") enjoys a winter skiing trip in Switzerland 

every January. Her favorite ski lift moves at a steady pace, and looking at markers along 

the way as well as her wrist watch, she notices that the lift moves one mile every four 

minutes. Looking for adventure of a new and different kind, Zippy asks the operator at the 

top, since it is her birthday, if he would arrange for a special trip down at the end of the day 

satisfying the following condition: The constant speed on the way down should be such 

that the average speed of the entire trip (up and down) is twice the speed of the trip up. 

How can the operator accommodate Zippy's whim? 

Do you have a quick intuitive guess in answer to her question? If so, give the 
problem further thought to see how it holds up. Think about your first thoughts when 
you sought an average. Do those thoughts apply here? How would you decide?19 

Yet another beginning to the T.A.L.M.U.D.ic experience might involve an 
implicitly central feature of secondary school mathematics and beyond: the 
extension of number systems from the natural numbers {0, 1, 2, 3, ...} to the 
integers (the negative and positive numbers), to rational, complex, and imaginary 
numbers. Working in the set of real numbers, we can prove that there is no number x 
that satisfies the equation X2 + 1 = 0. Then later on, when we create the imaginary 
numbers, we appear to be claiming that this new system has everything we had in 
the old, except that in the new system there exists a number V-T = / that has the 
property that i2 - 1 = 0. What is going on here? How can we create a new system 
from the old one by claiming that something exists that we proved could not exist? 

Perhaps one of the most perplexing aspects of the extension of number systems 
is the realization that when we "extend," we not only "acquire" properties we 
previously did not have, but we must "relinquish" some as well.20 Of course, this 
calls into question what it means to extend a system. 

19For a discussion of the connection with the distributive property, see Stephen I. Brown, 
Reconstructing School Mathematics: Problems with Problems and the Real World, pp. 129-132, loc cit. 

See Stephen I. Brown, "Towards a Pedagogy of Confusion," in Essays in Humanistic Mathematics, 
Alvin White, (Ed.), (Washington, DC: Mathematical Association of America, 1993, pp. 107-122). For 
discussion of the relevance to the distributive property in relation to creating the negative numbers, see 
Stephen I. Brown, Reconstructing School Mathematics: Problems with Problems and the Real World, 
pp. 184-188, loc. cit. 



164 7. WRITING FOR JOURNALS: STUDENT AS AUTHOR AND CRITIC 

In closing, we would like to encourage the reader who is thinking about designing 
a T.A.L.M.U.D.ic course to read a comment made by a student who took such a 
course. He was a private person, who had just begun to teach, was highly talented 
mathematically (loved nothing more than solving mathematical problems that were 
"given"), and who, before engaging in the T.A.L.M.U.D.ic experience, detested the 
prospect of writing essays. This quote is offered not for self-serving purposes, but to 
provide a "courage injection" for readers who are intrigued by the possibility of 
offering such a course, but who are reluctant to jump into what may look like a black 
hole. It also should sensitize our colleagues to the frequently hidden desire of many of 
our students to see themselves in personal terms in relation to subject matter even 
when they would have us believe otherwise. 

This is truly a sad time. Yet still a time to rejoice. The semester is over. Yet so much has 
to be done. I am trying to think back to what I have immediately learned and accepting 
that in the future, I will inevitably see more. One of the most peculiar things I have 
begun to develop, and which I credit this class is a greater ... love of life in general.... 
This course is titled for mathematics education, and I feel I have learned a lot of ways to 
improve upon my mathematics teaching. But I feel that most of what I learned was how 
to be a better person.... I feel that what this course has done is keep the playful spirit of 
the child in our education, and reminded us to keep it in our classrooms and our lives. 

SUMMARY 

This chapter has provided a whirlwind of sorts. It has offered snapshots of schemes 
that we hope will provide teachers with a way of organizing their classes to enable 
students to be both authors and critics. 

With regard to the editorial board, we have offered brief descriptions together with a 
few short excerpts that has given you some insight into possible ways of incorporating 
problem-generating ideas. We are grateful to Deborah Russo-Moore for shedding 
some light on how it is possible to adapt some of what we have proposed. 

The T.A.L.M.U.D. is one more variation/extension of the original scheme—one 
that would most likely be appropriate in its full-blown manner with older students. 

Regardless of what scheme you use or adapt or create on your own, there are of 
course many issues that need to be taken into consideration. Among them are: level 
being taught, attitude of the students toward writing, the "press" of a heavily 
prescribed curriculum, the inclination of students to cooperate with each other, 
their propensity to disclose their evolving ideas in public, and your ability and 
desire to assume many different roles, not least of which is that of facilitator. Even if 
you do not have an opportunity to employ these writing schemes in a full-fledged 
way in your teaching, however, we hope that some of what we have proposed will 
influence your thinking about ways of introducing multiple ways of thinking about 
mathematics and dialogue in your classes. 
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Conclusion 

A LOOK BACK 

We have presented a rationale and set of strategies for the activity of problem 
generation. In so doing, we have suggested that although problem posing may 
have a life of its own, it is also a handmaiden of other aspects of mathematical 
activity—from problem solving to greater personal understanding. 

In chapter 3, we indicated how even a conservative conception of problem 
generation can both inform us of our preconceptions and widen our perspective. 
Although the strategies introduced in that chapter are useful for generating 
problems in which we "accept the given," they can be incorporated into 
"challenging the given" (the "What-If-Not" phase) as well. You may wish to look 
back on some of your favorite "What-If-Not" activities to determine where you did 
(or might) superimpose some of the tactics in chapter 3. To what extent did you 
make observations or, indeed, create conjectures, in addition to (or as a precursor 
of) generating questions—depicted in chapter 4 as Level III activity? 

Further, what questions attempted to get at the "internal" workings of what you 
were investigating? Which were geared to its "external" (or global) character? 
Were the questions framed in such a way that they required an exact answer, or was 
an approximation allowable (or perhaps even encouraged)? Did you ask questions 
of a pseudo-historical nature on the modified attributes? What questions from our 
handy list did you find useful? What new questions did you add to the handy list 
after the "What-If-Not" experience? 

The "What-If-Not" activity of chapters 4 and 5 has provided a vivid picture of an 
interesting irony—that we understand something best in the context of changing it. 
We also hope that it has given you an added sense of your own power as well. The 
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strategies presented should help you appreciate that the generation of questions is 
not exclusively the task of textbook writers, teachers or other people in authority. 

Just as you may enjoy returning to these chapters in an effort to reexamine the 
question-asking strategies of chapter 3, you will probably be surprised by how 
much more you are capable of uncovering now than when you began the journey. 
The achievement has been a significant one because, as we have suggested, merely 
seeing things that can be varied is not as easy as you might expect. Experience with 
the "What-If-Not" strategy will most likely have a positive effect on your ability to 
see phenomena as capable of modification. There are, however, many important 
factors that affect our ability to see what "resides" in an object. Why is it that the 
Inuit tribes see many different varieties of snow, and nomads can discriminate 
among hundreds of different kinds of camels? Even the most perceptive people in 
our modern technological society cannot see more than a limited variety of each of 
these. We are all affected by our personal history, by the cultural milieu, by special 
needs, and by what we expect to see as well.1 

PROBLEM POSING AND MATH ANXIETY 

In addition, we are affected by a host of emotional factors which might impede or 
encourage problem generation—factors such as praise by, fear of, or threat from 
others. With regard to such emotional factors, there is an interesting twist, a 
possible "chicken-and-egg" problem that is in need of further clarification and 
empirical investigation. Many people are interested in finding out why 
mathematics engenders so much fear in people who may otherwise be highly 
competent and functional. What are the causes of the "disease"—a disease 
referred to as mathophobia or math anxiety—and how might it be cured? 

Although there are many approaches to this (as yet) vaguely defined problem, 
we believe that problem generation is a critical component in trying to understand 
and confront the fear.2 There is good reason to believe that problem generation 
might be a critical ingredient in confronting math anxiety because the posing of 
problems or asking of questions is potentially less threatening than answering 
them. The reason is in part a logical one. That is, when you ask a question, the 
responses "right" or "wrong" are inappropriate, although that category is 
paramount for answers to questions. 

For a philosophical discussion of this phenomenon, see Thomas J. Kuhn, (1970), The Structure of 
Scientific Revolutions (Chicago: University of Chicago Press). A psychological analysis is provided by, 
Jerome S. Bruner & Leo Postman, "On the Perception of Incongruity: A Paradigm," Journal of 
Personality, XVIII, 1949, pp. 206-233. 

The expression "math anxiety" was first coined by Sheila Toabias in her book Overcoming Math 
Anxiety written in 1978. For an updated version, see Sheila Tobias, Overcoming Math Anxiety (New 
York: Norton, 1993). 
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Of course, it is true that some questions are better than others, and so perhaps there 
still is the potential to be intimidated in our efforts to inquire. But as we have seen in 
chapters 4 and 5, as soon as we begin to deviate from standard and well-trodden 
knowledge (as in the case of "What-If-Not-ing"), it is frequently difficult to judge the 
value of a question. Sometimes we do not know how simple, revealing, delightful, or 
foolish a question is until after considerable analysis has taken place. Since 
"What-If-Not-ing" leads so naturally to nonstandard curriculum, such problem 
posing has the potential to redress the balance between expert and novice. It is less 
easy for teachers to pass judgment on this aspect of the mathematical activity of their 
students. The sense of intimidation of our students is thus potentially lessened. 

A related reason that the threat of judgment becomes tempered in problem 
generation is that, as we pointed out in chapters 4 and 5, something that is silly or 
even meaningless may be a hair's breadth away from something that is significant. 

We are suggesting that although there are many factors that may impede our 
ability to even see things to modify in a "What-If-Not" spirit, the activity of problem 
generation might be one important element in confronting one of these factors: the 
fear of mathematics itself. How the potential relationship between fear of 
mathematics and seeing factors to vary works out for students of different interest and 
ability requires some empirical research that would be well worth conducting. 

But each of us can do investigation of sorts on ourselves without waiting for 
research findings. We might ask ourselves what kinds of encounters eventually 
enabled us to see the potential for modification when the "object" to be modified 
was not apparent on initial inquiry. Although we have not devoted a special section 
to it, at various places throughout the book we have reflected on our own use of 
devices of thought that are generally more closely associated with poetry and art 
than with mathematics. We have spoken about how it is that we caught ourselves 
making use of imagery or metaphor while engaging in "What-If-Not" activity. We 
indicated in chapter 4, for example, how "striving" was an image that enabled us to 
push toward a new way of conceiving of multiplication. 

PROBLEM POSING AND COOPERATION 

We can, however, do a lot more than reflect on our use of such devices as an effort 
to improve our capacity for problem generation. An important thing we can do is to 
learn to work productively and perhaps less competitively with others. Frequently 
others see what we neglect to see. If the links between problem generation and 
problem solving are often interdependent, as we have discussed in chapter 6, but if 
nevertheless individuals tend to have a dominant style that appreciates one domain 
over the other, then there is good reason to find ways for sharing our wares.3 

See Jacob W. Getzels & Philip W. Jackson, Creativity and Intelligence (New York: John Wiley and 
Sons, 1962), for an empirical argument that the two talents may be more diverse than is generally believed. 
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In chapter 7 we pointed to one model for having students draw on each other's 
strengths. Our model is that of student as editorial board member (which includes 
the variation of the Talmudic format as well). With regard to that model, we 
suggested many activities that might take place in an educational setting within 
which both creative and critical judgments can be encouraged. The general 
conception of organizing class work around several editorial boards (each of which 
creates its own policy of acceptance and produces a journal based on submission of 
articles by colleagues) is one that not only provides an atmosphere for encouraging 
problem generation, but fosters a spirit of adventure, intellectual excitement, and 
group unity as well. 

It is worth stressing that problem generation is not merely a new fad to be 
adopted in school settings in the same way that programmed instruction or team 
teaching washed over the scene decades ago. Problem generation has the potential 
to redefine in a radical way who it is that is in charge of one's education. As students 
are encouraged to raise questions and to pose problems of their own, rather than to 
merely "receive" the so-called wisdom of the ages, they take a new and more active 
role in their own learning. Exploration along the lines we have advocated in this 
book also reconceptualizes the concept of error or mistake. As one begins to adopt a 
"What-If-Not" mentality, then instances that falsify expected generalizations raise 
whole new possibilities for investigation rather than threaten our search.4 

But a problem-posing education has even deeper potential than what has been 
described so far. As a society, we are in need of seeing and standing on end many of 
the assumptions and conclusions that have been accepted for generations—at least 
as a heuristic for generating new perspectives, and to test the meaning of old ones. 
What if we assumed as a society that war was not inevitable? What if we assumed 
that the most distant foreigner shared the same fundamental beliefs and feelings 
that we did? Where would that lead us? What would be the implications? What 
would be our responsibilities? 

We certainly have to be clearer about the framing of these issues than we have 
been so far in order to begin to make sense out of them. However, unless we begin to 
pose problems that challenge some of the so-called wisdom of the ages, we are most 
certainly doomed as a civilization. As in the case of turning Euclid's parallel postulate 
inside out and asking "What-If-Not?" with regard to a 2000-year-old assumption, we 
need at the very least to entertain the possibility that our most cherished beliefs might 
not only be wrong and even harmful, but meaningless as well! 

A RESEARCH AGENDA 

We have been concerned in this book primarily with analyzing the roles of 
problem posing and its relation to problem solving, and in opening up teaching 

See, for example, Raffaella Borasi, "Exploring Mathematics Through the Analysis of Errors," For 
the Learning of Mathematics, 1(3), 1987, 1-8, and Lawrence N. Meyerson, "Mathematical Mistakes," 
Mathematics Teaching, 76, 1976, 38-40. 
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options that involve the dual role of student as author and critic. Research has not 
been part of our focus, except to mention a pocket of research briefly at the end of 
chapter 6. There is, however valuable research to be done that might very well 
affect the confidence we hold in our assertions in the previous two sections, and in 
fact throughout this book. How math anxiety and ability to work productively are 
affected by a curriculum that pays explicit attention to problem posing in relation 
to problem solving is a valuable research agenda. It is something that is worth 
investigating over a protracted period of time—beyond administering a brief 
paper-and-pencil test or even beyond interviewing subjects for only an hour or so. 

How students learn to cooperate as they engage in an editorial board (perhaps in 
the context of a T.A.L.M.U.D.ic experience) over a semester is something that 
could positively affect the design of curriculum. Are there stages that students pass 
through as they assume a critical role in evaluating the work of their peers? What 
sense of cooperation do they hold within their own editorial board and between 
themselves and the authors? 

In addition to research that integrates problem posing and solving, there is also 
research to be done that loosens the bond between them. Although it is true that 
problem solving does very much require problem posing as an important element, 
it is possible for problem posing to have a healthy life of its own as well. 

Why is it, for example, that we do not even notice so much of what is around us? 
What sort of problems posing does it take for us to get a clearer vision of what we 
may have taken for granted for so long? There are all sorts of prejudices that have 
haunted us for generations, and we never notice them until someone has the 
courage to at least pose a problem that was not even seen as a problem before. 

We pointed out in chapter 7 that the history of extending number systems 
uncovers a strong resistance to numbers that were called "imaginary" "irrational," 
"complex." What we believed to be "fictitious numbers" (negative integers) 
eventually (over hundreds of years) gave way to a more respectful stance toward 
such numbers. It took a lot more than solving problems to acknowledge our 
prejudices. It took the courage to ask why we were holding the prejudices toward 
what we viewed as fragile number systems. What were those factors that prevented 
people from admitting that alternatives to "real" numbers were in fact numbers? 
The answers could provide a clue as to what our students resist (and why there is 
resistance) as they are invited to admit new systems into their own mathematical 
world. Here is an area of research that joins history of a field with an attempt to 
understand the growth of our students. 

As we loosen the bonds even further between problem posing and problem 
solving, it would be interesting to investigate how "What-If-Not" thinking 
progresses among students who have been exposed to a problem-posing course. 
There are lots of issues here. To begin with, no one does a "What-If-Not" on 
everything. Choices have to be made. In our coursework, we as instructors 
provided the starting points for "What-if-Not" thinking. Eventually, the students 
made their own choices. What do they consider when they choose to do a 
"What-If-Not?" What kind of purpose do they have in mind? To what extent are 
their choices linked to anything related to problem solving? 
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It is one thing to do a "What-if-Not" on an element (word, phrase, idea) of a 
proposition or a statement or even a situation, or a physical object; it is another to do a 
What-if-Not" on the entire proposition, statement situation or physical object. It is yet 
another to be made aware of what we never noticed as a potential element to vary. What 
kind of education enables people to see what was not seen before? Will experiences of 
the sort encouraged in the courses we described have transfer value so as to enhance 
noticing the sorts of elements that were not previously noticed? This is an open 
question, but one that is worth investigating in the context of problem-posing courses. 

Another matter to explore is the nature of the mathematical mind of someone 
who is a good problem poser (ranging from investigating cases that are tied loosely 
to problem solving to those that are tightly connected). As we indicated in the 
previous section, there is some evidence that, although there is overlap, the talents 
seem to be separable in the population at large. 

In Krutetskii's classic work on mathematical talent, he makes use, among other 
things, of "think aloud" techniques, and has students express their thinking while 
working on problems.5 He points out that seeking clarity, simplicity, and elegance 
in solving problems distinguishes the youngsters who excel from others. 
Furthermore, aside from problem solving per se, these students both acquire and 
retain information in an economical manner so that they are not overloaded 
(Krutetskii's term) with surplus information. 

It is not clear how the language of clarity, simplicity, and elegance (language 
that is of an aesthetic nature) relates to the activity of problem posing, especially 
when it is not intimately connected with problem solving. Is there some analogous 
language that we can use to describe someone who is a talented problem poser? Our 
experience indicates that the activity of problem posing (especially when done in a 
"What-if Not" milieu) prizes ways of thinking that are much messier than what 
Krutetskii depicts as talent in problem solving. Talented problem posers (from a 
"What-if Not" point of view) may focus less on coming up with a clever 
denouement and more on appreciating the source and intention of questions, as 
well as their possible unanswerability.6 Again, these are all fascinating matters that 
require careful and open-minded empirical investigation. 

What would make this sort of research particularly appealing would be to have it 
not only investigate the concept of problem posing, but to do it in a problem-posing 
mode. Watching students and their instructors in action as they participate in a 
course on problem posing and trying to make meaning of their experience through 

See Vadim A. Krutetskii, "The Psychology of Mathematical Abilities in School Children," in 
Jeremy Kilpatrick and Izaak Wirszup (series Eds.), Soviet Studies in the Psychology of Learning and 
Teaching Mathematics, 1987, Chicago: University of Chicago Press. 

For further discussion of this idea, especially in relation to the idea of training students to think like a 
mathematician,, see Stephen I. Brown, Reconstructing School Mathematics: Problems with Problems 
and the Real World. New York: Peter Lang, 2001, p. 202. 
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protracted rather than brief interviews (and other means, not necessarily 
determined in advance) might be a bit messy. If done as a problem-posing 
enterprise, however, such research cannot only help to refine some of the questions 
we have suggested in this section, but might lead to the generation of a research 
agenda that would awaken us all to aspects of problem posing that we never 
dreamed possible. 
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