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Preface 

This book is intended to provide an introduction to the techniques and 
theory of the frequency domain (spectral) analysis of time series. It has been 
written for use both as a textbook and for individual reading by a rather 
diverse and varied audience of time series analysis "users." For this purpose, 
the style has been kept discursive and the mathematical requirements have 
been set at the minimum level required for a sound understanding of the 
theory upon which the techniques and applications rest. It is essential even 
for the reader interested only in the applications of time series analysis to 
have an understanding of the basic theory in order to be able to tailor time 
series models to the physical problem at hand and to follow the workings of 
the various techniques for processing and analyzing data. Acquiring this 
understanding can be a stimulating and rewarding endeavor in its own right, 
because the theory is rich and elegant with a strong geometric flavor. The 
geometric structure makes possible useful intuitive interpretations of im- 
portant time series parameters as well as a unified framework for an other- 
wise scattered collection of seemingly isolated results. Both features are 
exploited extensively in the text. 

The book is suitable for use as a one-semester or two-quarter course for 
students whose mathematical background includes calculus, linear algebra 
and matrices, complex variables through power series, and probability and 
statistics at the postcalculus level. For students with more advanced mathe- 
matical preparation, additional details and proofs of several of the results 
stated in the text are given in the appendices. 

The basic geometry of vector spaces used throughout the book is sum- 
marized in Chapter 1 and the various (nonprobabilistic) models possessing 

xi 
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spectral decompositions required in later chapters are presented as applica- 
tions of the geometric theory. The univariate, continuous-time models 
used in spectral analysis are introduced in Chapter 2 and the discrete-time 
models are given in Chapter 3 along with a discussion of the sampling of time 
series. Chapter 4 contains a general discussion of linear filters while Chapter 
6 is concerned with a variety of special purpose filters in discrete time (digital 
filters). Multivariate time series models are introduced in Chapter 5 and a 
number of examples illustrating the use and interpretation of the multivariate 
spectral parameters are given. The standard finite parameter time series 
models are presented in Chapter 7 along with a discussion of linear prediction 
and filtering. 

The statistical theory of spectral analysis is covered in Chapters 8 and 9. 
The distributions of spectral estimators are derived in Chapter 8 and are 
applied to the calculation of confidence intervals and hypothesis tests for the 
more important spectral parameters. The properties of spectral estimators 
as point estimates are considered in Chapter 9. This chapter also contains a 
discussion of the experimental design of spectral analyses and of the various 
computational methods for estimating spectra. The necessary tables for the 
hypothesis tests, confidence intervals, and experimental design methods 
covered in the text are provided in the appendix to Chapter 9. 

This book contains no (formal) sets of exercises. It is my philosophy that 
a course in time series analysis should be tailored to the students' needs and 
this is best reflected in the kinds of activities required of them. In this regard, 
the exercises should be determined by the interests and preparation of the 
audience. For graduate students in mathematics and statistics, mathematical 
exercises will be appropriate, and several will be suggested to the instructor 
in the form of enlargements on the theory in the text and the appendices. 
Students with more applied interests should devote most of their effort to 
familiarizing themselves with the methods and computer programs for per- 
forming the analyses described in the text and to applying these techniques to 
simulated time series and to actual data from their fields of study. There is 
absolutely no substitute for practical experience in learning this subject. In 
fact, even the more theoretically oriented students of time series analysis 
should undertake some activities of this nature. 
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Preface to the Second Edition 

It has been over 20 years since the first edition of this text was published, 
and the analysis of time series using spectral (frequency domain) methods con- 
tinues to flourish. The increased emphasis on time domain methods, stimulated 
by the work of Box and Jenkins (1970), has not diminished interest in the appli- 
cation of frequency domain ideas and methods. In fact, there has been a merg- 
ing of techniques from the two domains through the use of frequency domain 
methodology to estimate parameters of time domain models [see Brillinger and 
Krishnaiah (1983), Chapter 11, by E. Parzen, for an extensive bibliography of 
this kind of application]. 

While there have been new developments in the theory of spectral analysis, 
such as the introduction of robust methods of estimating spectra [see Thomson 
(1982) and Brillinger and Krishnaiah (1983), Chapter 10, by R. Douglas Martin, 
for details and references], the basic theory given in this text still provides the 
necessary background for a good understanding of both the theory and the 
applications of frequency domain methods. 

Geophysics remains one of the most important areas of application for spec- 
tral analysis. The search for the influence of solar energy variation on terrestrial 
phenomena continues. However, in recent years electrical engineers interested 
in the design of filters for digital and analog signals have made significant uses 
of spectral methods. A comprehensive list of references detailing these applica- 
tions can be found in Steams and Hush (1990). 

To my mind, the blend of exquisite mathematics with interesting and impor- 
tant applications makes the spectral analysis of time series one of the most fas- 
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cinating topics in statistics. It is the one topic that I have kept coming back to 

with renewed interest throughout  my professional career. I hope that you will 

find it interesting as well. 
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C H A P T E R  

Preliminaries 

1.1 INTRODUCTION 

The first goal of this chapter will be to provide the reader with a prelim- 
inary idea of the scope of applicability of time series analysis. The physical 
processes that models of time series are designed for will be illustrated and 
some of the basic features of the models will be introduced. The central 
feature of all models is the existence of a spectrum by which the time series 
is decomposed into a linear combination of sines and cosines. Actually, 
several kinds of spectral or Fourier decompositions are used in time series 
analysis and it is somewhat of a problem to remember them clearly. Fortu- 
nately, they all have properties in common which are essentially geometric in 
character. Moreover, the same geometry, which is basically the geometry of 
vector spaces, plays a central role in the construction and interpretation of the 
important stochastic time series model to be introduced in Chapter 2. We will 
use this geometry wherever possible to unify and simplify the theory. A 
summary of the relevant geometry is given in Section 1.3. 

A summary of probability topics used in the book but not readily available 
in standard texts is provided in Section 1.4. 

1.2 TIME SERIES AND SPECTRA 

Time series analysis is primarily concerned with the study of the time 
variations of physical processes. If the " s t a t e "  of the process can be rep- 
resented by a vector of real numbers (measurements) with one or more 
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components at each relevant time point, then the variations of the process 
over time can be represented by a vector of real-valued functions 

/x~(t)\ 
x(t)--Ixz.(t) ) . (1.1) 

The value of xj(t) at any time t is called the amplitude of that component at 
that  time and the units of measurement are amplitude units. It is overly 
optimistic to think that a complex process can be completely described in 
this way. However, we will assume that the observed functions or time series 
characterize some interesting facet of the process and that an analysis of the 
time series will provide useful information about this aspect. The validity of 
this assumption clearly depends on the skill of the experimenter in selecting 
the right kinds of measurements. 

The analysis of time series will depend upon the construction of one or 
more mathematical models which "genera te"  time functions of the type 
under observation. The models will be constructed in such a way that the 
parameters of the models can be identified with or readily related to the 
important characteristics of the physical process. Thus, procedures designed 
to obtain information from the observed time functions about the model 
parameters will also provide information about the underlying process. 

To indicate the properties the models will have, we will look at some 
examples of time series to which they have been applied. Some time series of 
the type we will be interested in are graphed in Figs. l . l - l .6 .  Typically, time 

0 I00 200 :500 400  500 600 700 800 900 

Time (years) 

Fig. 1.1 Geological (varve) series. Nine hundred years of  data recorded at )'earl)' intervals 
(interpolated to yield continuous curve). Amplitude units--millimeters. Source: Anderson and 
Koopmans (1963); copyright by the American Geophysical Union. 

series are recorded either continuously in time by an analog device, as in 
Figs. 1.2 and 1.5, or at equally spaced time points as in Figs. 1.1, 1.3, and 1.4. 
Thus we will require both continuous-time and discrete-time models. Moreover, 
we will distinguish between unit'ariate time series, for which the vector func- 
tion (1.1) has only one component (p = 1) and multit'ariate time series for 
which p >_ 2. For the time being we will restrict our discussion to a univariate 
time series x(t). 
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Fig. 1.2 Three-dimensional seismic noise record. Continuously recorded data representing 
the vertical component of  earth motion at three recordin9 sites. Amplitude units--millimicrons. 
Source" Sandia Corporation, 1959. 

The time series in Figs. 1.1-1.5 have a common property of persistence or 
"ongoingness" and even a seeming "unchangingness" in character. One 
can imagine them as having originated at some time in the (distant) past and 
as continuing into )he future with roughly the same general characteristics 
throughout their entire history. This description is less palatable for the 
encephalogram records which clearly begin and end with the birth and death 
of the individual and also show some form of evolution during the person's 
lifetime. However, by restricting attention to relatively short time periods in 
which the person is in a given state of mental activity or mental condition 
such as illustrated in Fig. 1.5, a model which embodies the properties of 
persistence and "ongoingness" will produce time functions with the ap- 
propriate characteristics over the given time periods. The model can then 
be used to characterize and study the different states of mental activity. 

The record of aluminum production graphed in Fig. 1.6 is quite different 
from the others. It displays a distinctive trend which, because of t.he logarith- 
mic amplitude scale, would seem to indicate a nearly exponential growth in 
production. However, another important feature of this graph is the yearly 
fluctuations around this growth trend. There appear to be cycles in growth 
which could have important economic implications and would certainly be 
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Fig. 1.3 Two components of  wind velocity data recorded at lO00-feet altitude at half-day 
intervals (interpolated to yield continuous curve). Source" N.O.A.A., Las Vegas, Nevada. 

useful to take into account for purposes of predicting future production. A 
reasonable procedure would be to fit, say, an exponential function to the data 
and study the residual from trend as a time series in its own right. The loga- 
rithmic scale compresses the fluctuations for the most recent time period 
making it difficult to see whether a model with the properties of persistence 
and "unchangingness" would adequately describe this residual series. If not, 
by a time-varying scale transformation, these properties could be attained 
to a good degree of approximation. Then, the characteristics of the yearly 
fluctuations can be studied by the techniques we will develop. Thus, our 
methods can be used to obtain valuable information about a wide variety of 
time series by preprocessing the data to separate out the persistent residual for 
analysis. The trend term is usually treated by standard least squares techniques 
[see, e.g., Hannan (1970)]. We will concentrate on models which are designed 
primarily to provide information about the long term, "steady state" 
behavior of the residual term. 



1.2 T I M E  S E R I E S  A N D  SPECTRA 
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Day number 

Fig. 1.4 Rio Chagres, Panama, river runoff data. Flow recorded at daily intervals with 
day number 1 bein9 January 1, 1907. Source" J. W. Reed (1971). 

The Basic Parameter of the Model--Power 

In our model, we will idealize time to extend from the infinite past to the 
infinite future. That is, each time series x(t) will be defined for - c ~  < t < ~ .  
A useful measure of  the "activity" of the time series for the interval of time, 
- T _ <  t < T, is the mathematical version of energy 

T 
energy of x(t) for  - - T  ~ t _< T = f x2(t)  dr. (1.2) 

-T  
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1 

2 

3 

4 

5 

6 

7 

Scale ]50/a.V 
8 "1 s e c  

Fig. 1.5 Encephalogram record o f  an individual sufferin9 from left middle cerebral 
artery occlusion. Derivations 1-4 are taken from pairs o f  sites on the left side o f  the head and 
derivations 5-8 are taken from the correspondin#, symmetrically placed sites on the right 
(normal) side. Amplitude in microvolts, time in seconds. Source:  Veterans Adminis t ra t ion 
Hospital ,  Albuquerque,  New Mexico. 

However, an attempt to define the energy of x(t) for - ~  < t < ~ by letting 
T tend to infinity in (1.2) will lead to infinite energy for the time series models 
in which we will be interested. This is because we will formalize and preserve 
the property that x(t) has "roughly the same general characteristics through- 
out its entire history." This means that x(t) will have about the same energy 
in each of the time intervals n < t < n + 1 for n = 0, + 1, . . .  ; consequently, 
infinite energy overall. 

Physically, the above mentioned property implies that the mechanism 
generating the time series does not change significantly in time. This time 
invariance will be embodied in the stochastic time series model to be defined 
in Chapter 2 as the property of stationarity. 

A reasonable substitute for energy as a measure of "ac t iv i ty"  is the 
average energy per unit time 

(energy of x(t)for - T  < t < T) 1 (r  
--  --  --  j x 2 ( t )  dt. (1.3) 

2T 2T - r  

This quantity has the dimension of the physical parameter, power, described 
in mechanics (where it is actually the time rate of energy expenditure) and the 
terminology is carried over to designate the basic parameter of time series 
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Fig. 1.6 United States primary production of  aluminium from 1893 to 1970 in millions 
o f  pounds. Yearly recorded data interpolated to yield continuous curve. Source" The Alumin-  
um Associat ion.  

models. Passing to the limit in (1.3), the power in the time series x(t) is defined 
to be 

power of x(t) = lim x2(t) dt. (1.4) 
T~oo 2-T - T  

The implication of this definition is that the limit exists, in some sense, and 
is finite. Note that power has the units of squared amplitude [of x(t)]. 

Power is clearly not the only possible measure of "activity," but is dis- 
tinguished by the fact that a rich and physically meaningful mathematical 
theory can be associated with it. Nonpersistent (i.e., transient) time series for 
which the total energy [the limit of (1.2) as T-~  ~ ]  is finite, all have zero 
power, thus constitute a rather uninteresting class of time series for which 
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power exists. As we will see presently, examples of time series which have 
finite, nonzero power are x(t) = sin 2t and y(t) = cos 2t. In fact, these are the 
most important functions for which power is defined since they play a central 
role in spectrum analysis. We discuss this next. 

Sines, Cosines, Complex Exponentials, 
and Power Spectra 

We first introduce some of the terminology which will be needed through- 
out the text. Let 2 be a nonnegative number and consider the elementary 
time series 

x(t) = sin 2t. (1.5) 

The length of time T required for x(t) to go through one complete cycle is 
called the period. Since a complete cycle of sin 0 requires 2rt radians, the 
period satisfies the equation 

2T = 2ft. 

The frequency f in cycles per unit time is the reciprocal of the period 

f =  1/T. 

Thus, for example, a sinusoidal time series of period 2 seconds would have a 
frequency of �89 cycle per second. The angular frequency 2, measured in radians 
per unit time, is defined to be 

2 = 2~zf. 

This is easily seen to be the parameter which appears in (1.5). Hereafter, with- 
out fear of confusion, we will drop the term "angu l a r "  and call 2, simply, 

frequency. 
By introducing two additional parameters A and q~, called the amplitude 

and phase, respectively, a large variety of elementary time series with the 
same frequency as (1.5) can be generated 

x(t) = A sin(2t + qg), - ~  < t < c~. (1.6) 

The amplitude A, which would be more properly called the " m a x i m u m "  
amplitude by virtue of our previous use of this term, is a nonnegative number 
measured in the amplitude units appropriate to the study at hand. The phase 
is a dimensionless parameter which measures the displacement of the sinusoid 
relative to the given time origin. Because of the periodic repetition of the 
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- 0 -  6 2 ,-, 
�9 - -  co  

- rr/2 '7'- w---I I ~r/2 \ ~  3 rr/2 2 ~ /  0 : k t + r_.p (angular scale in radians) 
t (time scale in time units) 

Fig. 1.7 Graph o f  A sin(At + 99) with parameters indicated. 

sinusoid, the phase can be restricted to the range - rc  < tp < 7:. These param-  
eters are indicated in Fig. 1.7. 

In the same sense that  light of various colors is composed of a blend of 
monochromat ic  components  and musical tones are formed by a superposit ion 
of  pure harmonics,  time series can be constructed by composing a number  of 
" m o n o c h r o m a t i c "  or harmonic functions A~ sin(2t + tp~) with varying 
frequencies, amplitudes,  and phases, i.e., 

x(t) = ~ A~ sin(2t + 9~), - o o  < t < c~. (1.7) 
2 

The symbol ~ represents any of a number  of possible summing operations,  
including integrals, which will be considered more concretely later when we 
discuss specific models. Expression (1.7) is called the spectral representation 
of the time series and, as we will see, every time series model we will study has 
an explicit spectral representat ion of this type. 

Two alternate forms for the spectral representation are important .  The 
first, based on the t r igonometric  identity sin(~ + fl) -- sin ~ cos fl + cos cz sin fl, 
is 

x(t) = ~ (aa sin 2t + b~ cos 20, - oc < t < oo, (1.8) 
2 

where 

aa = A z cos ~o~, b~ = A z sin q~x. 

This is called the real or cartesian representation. Since cos2 t  = 
sin(2t + (n/Z)), each harmonic  A~ sin(2t + q ~ ) i s  represented as a linear 
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combina t ion  of  two elementary harmonics  with phases 0 and n/2 .  The anapli- 
tude and phase are readily recovered from a~ and b 4 by the relationships 

Ax = (a42 -Jr- b)Z) 1/2 and q~4 = Arc tan(ba /ax) .~ f  

The second al ternate representat ion,  called the c o m p l e x  r epresen ta t i on ,  is 

based on the identity 

sin 0 = (e io - e-io)/2i,  

which is a consequence of  the de Moivre relation e ~ = cos 0 + i sin 0. It is 

easily seen that  

A4 sin(At + q94) -- c4 e i~t + 74 e i ( -4) t ,  

where Co = A o and, for 2 > 0, 

c4 = A ~ ei*~/2i.  

Thus,  if we adopt  the nota t ion ,  

(1.8) can be written in the form 

x ( t )  = ~ c4 e 
+ 4  

C - 4 :  CZ, 

i,~t, - ~  < t  < ~ .  (1.9) 

The symbol __. 2 indicates that  the sum is taken over both positive and negative 
frequencies. Wherever  (1.7) has a harmonic  componen t  with frequency 2, the 
complex representat ion (1.9) will have two harmonic  components ,  one with 
frequency 2 and the other  with frequency - 2 .  Since [c4[ = �89 in effect the 
original  ampli tude is divided equally between the two complex harmonics  
e i'~t and e -ixt. The condi t ion c_x = 74 guarantees  that  x ( t )  will be real-valued. 

The complex representat ion (1.9) is nota t ional ly  the most  compact  of  the 
three and, as we will see in Chapter  4, it has significant advantages  f rom the 
viewpoint  of  describing linear filters. Consequent ly,  even at the expense of  
introducing the somewhat  artificial not ion  of  negative frequencies, we will 
restrict ourselves to the complex spectral representat ion hereafter.  

t Here and throughout the book the following extension of the usual principal com- 
ponent of the arctangent function (with range -zr/2 < arctan < zr/2), is used: 

f arctan(b/a), a > O, 
( ! )  |arctan(b/a) + zr, a < 0 ,  b > 0 ,  

Arctan - ~arctan(b/a) - 7r, a < O, b < O, 
[~r/2, a----0, b >0,  
\ - -  rr/2, a = 0 ,  b < 0 .  

This definition extends the arctangent to the range (-rr ,  zr] and has the effect of making 
Arctan(b/a) = arg(c), where c = a § ib. 
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The Power Spectrum 

In order to be somewhat more precise, we will, for the moment, consider 
a time series with only finitely many frequencies 

x ( t )=  ~ c j e  i~jt, 
j - -  m n 

where 2 o = 0, 2_j = - 2 j ,  and c _ j  = ?j .  We will calculate the power of x ( t )  

using this spectral representation. We first compute the average energy for 
the time interval - T  _< t < T: 

However, 

1 y T 1 f~ ( = ~ _ ) ( ~  ) = - C j  e ix  jr c k e iAkt  d t  xZ( t )  d t  - ~ _ r  j u , 
2 T  - r  . = -  

- -  C j C k  e i (Aj-Ak)t  d t  . (1.10) 
j =  - n  k = - n  - ~  - T 

e i~t d t  - (ei,~T - i 2  
2 T  - r  - e r ) / 2 i A T  = sin A T ~ A T ,  A 4: O. 

It follows that 

~ f~ ( ~ , e i~t d t  = lim ~-~ .~_ r 0, 
T--* oo 

A = 0 ,  
2 # 0 .  (1.11) 

Using this result in (1.10), we obtain 

lim ~-~ x2(t) d t  -- [cj] 2. (1.12) 
T - - * ~  - T  j =  - n  

It is easily seen by this calculation t h a t  ]Cjl 2 is the power of the harmonic 
term c j e  i~j', i.e., the power of x ( t )  at frequency Aj. Thus, (1.12) can be stated 
more intuitively as 

_E. n 
power ofx(t) = ~ [power of x ( t )  at frequency 2j]. 

j -  --?i 

This important equation means that the various frequency components of 
the time series contribute their power a d d i t i v e l y  to the total power of x ( t ) .  

That is, there is no interaction between different harmonic components in 
the sense that the amount of power contributed by one harmonic is inde- 
pendent of the amplitudes, phases, and frequencies of the other harmonics 
making up the time series. This is a consequence of expression (1.11) which 
we will return to in Section 1.3. 
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It is obvious from (1.12) that the power in the time series is known once 
the power in each harmonic component is known. The power at each fre- 
quency, as a function of frequency, is called the power spectrum of  the time 
series. The power spectrum provides a great deal more information about the 
time series than simply the total power. It exhibits all of the nuances and 
variations of power with frequency. These variations often have important 
interpretations for physical time series. For example, because of the additivity 
property, the power of x(t) in any set of frequencies S can be obtained by 
" s u m m i n g "  the power at each frequency in S, 

[power of x(t) for frequency set S] = ~ [power of x(t) at 2j]. 
AjES 

Thus, as is often the case in " r e a l "  time series, if different phenomena con- 
tribute power to different frequency ranges, the power attributable to each 
phenomenon can be "sorted ou t"  and evaluated by means of the power 
spectrum. In this book we will view the power spectrum as the fundamental 
"pa rame te r "  and object of study for time series. Examples and applications 
of the power spectrum will be given as our discussion develops beginning in 
Chapter 2. 

Now, recall that we started this section with elementary harmonic functions 
and built up more complicated time series by forming linear combinations of 
these harmonics. This led to the spectral representation (1.9) and then to the 
definition of the power spectrum. In applications, the "building up"  process is 
reversed" We start with a physical time series such as one of those pictured in 
Figs. 1.1-1.6. We will assume that this time series can be characterized by one of 
the mathematical models to be developed in Chapters 2-7. Each model will 
have a well-defined power spectrum with properties similar to those of the 
elementary time series given above. The principal goal of spectrum analysis is 
then to decompose the power of the given series into its harmonic components 
or, more precisely, to estimate the power spectrum from the available data. 
The estimated spectrum can then be used to gain information about the 
mechanism which generated the data. The techniques for estimating spectra 
will be covered in Chapters 8 and 9. 

Concerning the Rest of the Chapter 

The rest of this chapter covers the background material required for the 
more mathematical discussions in the book. The remainder of the book, 
starting with Chapter 2, has been written in a sufficiently self-contained fashion 
that by taking certain statements on faith and ignoring most references to 
Chapter 1 and to the Appendixes, a working knowledge of the theory and its 
applications can be obtained with relatively modest mathematical prepar- 
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ation. Section 1.3 contains material that is conceptually somewhat more 
difficult than that used in later discussions and the reader who is not particu- 
larly interested in the geometric setting of time series analysis can proceed to 
Chapter 2 at this point. A summary of probability topics used in the book but 
not readily available in s tandard texts is provided in Section 1.4. 

1.3 S U M M A R Y  O F  V E C T O R  S P A C E  G E O M E T R Y  

A real (complex) vector space is composed of a collection of t'ectors x, y, . . . ,  
the collection of real (complex) numbers called scalars, and two operations:  
vector addition, denoted x + y, and scalar multiplication, denoted ~x, which 
satisfy the system of axioms given, for example, by Halmos (1948, p. 1). 
The identity (zero) vector is denoted by 0 and the inverse of x by - x. Lengths, 
distances and angular measure are defined for vectors by means of an inner 
product ~x, y)  which assigns scalar values to pairs of vectors according to 

the axioms: (i) (x,  y ) =  (y,  x)>, (ii) <~x + fly, z ) =  ~(x, z~> + fl(y, z), 
(iii) <~x, x )  > 0 with equality if and only if x = 0. With the " o n l y  i f"  portion 
of this property deleted, the inner product is said to be indefinite. A vector 
space for which an inner product is defined is called an #mer product space. 
A measure of length is provided by the norm; l lxl l-  ((x,  X) )  1/2. The natural  
distance between vectors x and y is the length of the difference vector, 

] I x -  Y]I. 
The cosine of the angle 0x, y between x and y, generalized from the usual 

two-dimensional  situation as discussed by Halmos (1948, pp. 86-88), is 
defined to be cos 0x,y = <~x, y)/llxJi ]lyl]. Thus, it is geometrically sensible to 
call two vectors orthogonal, written x _J_ y, if (x,  y)  = 0. A collection of non- 
zero vectors {xl. x2 . . . .  } will be called orthogonal if xi 2- xj for all i 4= j and 
orthonormal if, in addition, J]x/ll = 1 for all i. A useful property of an or- 
thogonal set of vectors is the Pythagorean theorem 

i i 

Two important  inequalities valid for any inner product  space are the 
Minkowski inequality 

and the Schwarz inequaliO, 

11 x + y 1[ < II x [I + [I y I[, 

i<~ x, Y) I -< [IxJl IJyf]. 

Equality holds in both cases if and only if x = ~y for some scalar ~ or if 
y - 0. With the " o n l y  if"  part of this statement deleted, the two inequalities 
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are also valid when the inner product  is indefinite. Note  that the Schwarz 
inequality implies the well-known property of  cosines; ]cos 0x, y l < 1. 

A finite set of  vectors {Xl, x2 . . . . .  x,,} is called linearly independent if the 
only solution to the equat ion ~lXl + ~X2 X2 - ~ - " ' " - [ - ~ X n X n - - - 0  is 9~ 1 - - 0 ~ 2 - -  "" " 

= ~, = 0. An or thogona l  set is necessarily linearly independent .  
If a vector z can be represented as a linear combinat ion,  z = fll x~ + ,82 x2 + 

�9 -. +/3,, x , ,  of  the elements of  a linearly independent  set, then the coefficients 
/31,/32 . . . . .  fl, are unique. When the set is or thogonal ,  these coefficients have 
the explicit representat ion 

]~i - -  <Z,  Xi> / JlXi[I 2. 

These numbers  are called the Fourier coefficients of z relative to the or thogo-  
nal set. 

If  every element of  a vector space can be represented as a linear combin-  
at ion of  the elements of  a finite set of  vectors {xl, x2 . . . . .  x,}, this set is said 
to 9enerate the space. If the set is also linearly independent  it is called a basis 
for the vector space and if it is an or thogona l  (or thonormal )  set it is said to 
be an orthogonal (orthonormal) basis. The Fourier  coefficients relative to an 
o r thonorma l  basis satisfy an impor tant  equat ion called the Parset'al relation" 

IIz 2 = ~ I<z, xi> 12. 
i=1  

Infinite-Dimensional Inner Product Spacesm 
Hilbert Spaces 

Every basis for a finite-dimensional vector space has the same number  of  
elements. This number  is called the dimension of the space. For inner product  
spaces of  dimension 17, it is easily established that any set of  n nonzero 
or thogona l  vectors is a basis. This will not be true of  all inner product  spaces, 
however. 

Most  of  the vector spaces we will be interested in are not of  finite dimension.  
[See Halmos  (1951, p. 29) for a discussion of  dimension for Hilbert spaces.] 
This creates the problem of  developing a theory for general inner product  
spaces which preserves the more impor tant  features of  f inite-dimensional 
theory. To extend the above development,  for example, the theory should be 
extended to admit  infinite linear combinat ions  of  o r thogonal  vectors and 
infinite sums. Infinite sums are defined as limits of  finite sums in analysis and 
to carry this idea over to inner product  spaces, a concept of  limit is required. 

The above defined concept  of  distance leads to a natural  definition of  
convergence. Let {x,," n = 1, 2 . . . .  } be a sequence of  vectors in the space. 
The sequence is said to co,verge to an element x (of the space), denoted 
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x, ~ x, if l im,_~ Ilx, - xll = 0. From the Schwarz inequality it follows that  
if x, ~ x then ( x , ,  z)> ~ (x,  z)> for every z. (The arrow symbol will be used 
rather indiscriminately to indicate convergence. The type of convergence will 
be evident from the context.) Similarly, x, ~ x implies I[x.[[~ [Ix l[. These 
properties are termed continuity of the inner product  and norm, respectively. 

A sequence for which l i m , , , , ~  [[Xm -- X, [I = 0 is called a Cauehy sequence. 
By using the Minkowski  inequality it is easily seen that  every convergent se- 
quence is a Cauchy sequence. If, conversely, every Cauchy sequence converges 
to an element of the space, the space is said to be complete. A complete inner 
product  space is called a Hilbert space after the celebrated mathemat ic ian  
David Hilbert (1862-1943). All finite-dimensional inner product  spaces are 
complete, thus are Hilbert spaces. Other  examples will be given shortly. 

Hilbert spaces preserve many of the impor tant  properties of finite- 
dimensional spaces given above. For example, to define the infinite linear 
combinat ion of an or thonormal  set {Xl, x2, . . .} relative to scalar coefficients 
i l l ,  f12, " ' "  satisfying the condition ~'-~;=1 [flkl 2 < OO, define the finite partial  
sums z, = ~ : 1  figXk. For m > n show by the Pythagorean theorem that  
I Zm - -  Z .  II ~ - -  Y ; , ' :  2 ,+1[fig[ ~ 0 a s m ~ o o  a n d n ~ o o .  Thus the partial  sums 
form a Cauchy sequence and, by completeness, there exists a vector z in the 
space such that z, ~ z. The infinite linear combinat ion is now defined to be 
equal to z; z = y k'~:~ fig Xk. It is easy to show that fig = (Z, Xk)>. Then, con- 
tinuity of the norm implies the infinite-dimensional Parseval relation; 
I[ Z 12 -- ~-~k:l l (  Z, Xk~] 2. 

From the viewpoint of a number  of important  applications we will make 
of a part icular Hilbert space- - the  space of square integrable periodic functions 
(see Example 1.2)--it is of interest to ask what conditions must be imposed on 
an or thonormal  sequence in order that  erery vector in a Hilbert space of 
countably infinite dimension can be represented as an infinite linear com- 
bination of the elements of the sequence with square-summable coefficients. 
The orthonornTal sequence is called complete if whenever (z~ xj~> = 0 for 
j = 1, 2 . . . . .  then z = 0. It can then be shown that the or thonormal  sequence 
will have the desired property if and only if it is complete. This, in turn, is 
equivalent to the validity of the Parseval relation (Halmos,  1951, p. 27). 

Linear Subspaees and Orthogonal Projections 

A subset ~# of a Hilbert space is called a linear manifold if whenever 
x ~ ~///and y ~ J//, then ~x + fly ~ ~g{ for all scalars ~, ft. A linear manifold 
which contains the limit of every Cauchy sequence formed from its elements 
is called a linear subspace. A linear subspace of a H ilbert space is itself a 
Hilbert space. 

A set of vectors {x~: 2 E A} is said to 9enerate a linear subspace ~ if.//4' is 
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the smallest subspace containing all of the elements of the set. It is easily 
argued that ./g consists of all finite linear combinations of the xx's along 
with the limits of all Cauchy sequences formed from these linear combinations. 

I f . /g  is a linear subspace and x is an element of the Hilbert space not in ./g, 
then the distance from x to .///l is defined to be infy ~ ~ Ilx - y [1. An important  
property of Hilbert space is the existence of a unique element z e ./g for which 
this (minimum) distance is achieved. We will say that a vector y is orthogonal 
to a subspace vY', written y • vff, if y 2. v for every v ~ W.  Now, the element z 
which achieves the minimum distance from x to ,/g can be characterized by 
the properties: (i) z ~ ./g and (ii) ( x -  z ) •  ./g. For this reason, z is called 
the orthogonal projection of  x on ./g and will be denoted by 

z = ~ ( x l  ~ ) .  

An application of the Pythagorean theorem to z and x -  z yields the in- 
equality 

II ~ ( x l  Jg )  II -< II x II. (1.13) 

When . g  is generated by a set of elements {xx: 2 e A}, the condition (ii) is 
easily seen to be equivalent to ( x -  z)2. xx, thus ( x -  z, x x > -  0, for all 
2 e A. This produces the equations 

<z, x~> = <x, x~>, ~ ~ A, 

which, along with the condition z e .g ,  completely determines z. We will call 
this the criterion for determining orthogonal projections. 

When the Hilbert space is generated by a countable collection of orthog- 
onal vectors, {~.: n = 1, 2 . . . .  } and ./g is generated by a subset {~,: n e J}, 
it is easily checked that the orthogonal projection has the simple form 

<x, ~,.> 
~(x l . /g )  = ~ j  i~-i~ {,. (1.14) 

This expression and the following properties of projections will be needed in 
Chapter 7. 

The idea of a linear transformation will be familiar to the reader (Halmos, 
1948, p. 33). A linear transformation A on a Hilbert space into itself is called 
continuous if whenever x, ~ x, then A ( x , ) ~  A(x). An orthogonal projection 
(with .At fixed) is a linear transformation which is continuous because of 

(1.13): II~(x.I  ~ )  - ~ ( x l  ~ ' ) i l  = II~(x.  - x1.r162 _< IIx. - xll. 
If . g  and ,4/" are linear subspaces of a Hilbert space, then . g  is said to be 

orthogonal to .A/', written ./g • ./g', if x • y for every x e . g  and y e .A/'. The 
direct sum of ./g and .A/, J / @  , f ' -  {x + y: x e Jr y e .A/'}, is then the smallest 
linear subspace containing both subspaces (Halmos, 1951, p. 25). It can now 
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be shown that 

~ ( x l ~  ~) Y )  = ~(xl  ~ '  ) + ~ (x  I ,AP). (1.15) 

If ~ and Y are subspaces with ,/d' c ,/V, then the set of elements .//r177 in 
Y which are orthogonal to ~ ' ,  called the orthogonal complement of~g/l in ,IV, 
is a linear subspace such that ~ = ,//t' O, /d 'x  • (Halmos, 1951, p. 26). 
Applying the above property of projections to this expression, it is possible to 
derive the relation 

~ ( ~ ( x l  Y )  I -////) = ~ ( x l  ~ ' ) .  (1.16) 

Some Specific Hilbert Spaces 

A number of the properties of time series models that we will need in the 
book are simply the properties of vector spaces summarized above applied to 
particular Hilbert spaces. A rather diverse collection of results is unified and 
given a useful geometric setting by the recognition of this fact. To stress this 
point, we will present these topics as examples of the general theory. 

Example 1.1 Discrete-Time Periodic Time Series and the Finite Fourier 
Transform 

Let x(t), t = 0 ,  _+1, ... be a discrete-time, real-valued time series 
(sequence) and let N be a positive integer. Then the time series is said to be 
periodic ofperiod N if N is the second best integer for which 

x(t) = x(t + N) 

for every integer t. A definition of inner product for periodic time series will 
be motivated by the expression (1.4) for power. The discrete analog of 
this expression is 

1 L 
power of x(t) = lim ~ x2(t). (1.17) 

L--*oo 2L + 1 t=-L 

Now, a periodic time series is completely determined by its values over a 
single cycle. Thus, we can identify x(t), t = 0, _ 1 . . . .  with the N-dimensional 
vector x - (x(1), x (2 ) , . . . ,  x(N)). Moreover, it is easily argued that for periodic 
time series, the expression (1.17) is simply the time average over a single cycle: 

N 
1 ~ x2(t). power of x(t) = ~ ,=1 

The collection of all N-tuples of complex numbers, w = (%, W 2 . . . . .  WN) , 

with the complex scalars is a vector space under coordinatewise addition and 
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scalar multiplication: w + y = (w 1 + Y l  . . . .  , WN + YN), OtW = (~W 1 . . . .  , OtWN). 

The function 

1 N 
- -  Zwjyj 

(w,  y )  N j=l 

is an inner product for this space. Consequently, the class of discrete-time, 
real-valued time series can be viewed as a subset of this Hilbert space and the 
inner product is defined so as to make [power of x( t ) ]=  Ilxll 2. 

An expression which will be needed in this example and at other points 
later in the text is recorded here for reference purposes. It is a straightforward 
consequence of the formula for the sum of a finite geometric series and the 
trigonometric relation (e i~ - e- iO)/2i  = sin O: 

(ei~b+a)/2 sin 2 ( ( b - a + l ) / 2 )  2=/= 0, --- 

b sin(2/2) 
e izj = (1.18) 

j=a a + l ,  2 = 0 ,  

for any integers a < b. 
Let 2,. = 2 n v / N  and let [x] denote the largest integer not exceeding x. 

By means of expression (1.18) it is easy to show that the N vectors 

Zv = (e '~ ,  e i2zv , . . . .  eiNa'), --[(N -- 1)/2] < v < [N/2], 

form an orthonormal set, thus a basis for the vector space. It follows that 
every vector has the representation 

[ N / 2 ]  

W --" Z O~v Zv ' 
v =  - [ ( N -  1 ) / 2 ]  

where ~v is the Fourier coefficient, ~ = (w, z~). The corresponding expres- 
sions for the coordinates of the vector x are 

[ N / 2 ]  

x(t) - ~ ~v ei~~t, t -- 1, 2, . . . ,  N ,  (1.19)  
v - - [ (N - 1 ) /21 

and 

1 N 
= ~ x ( t ) e  -iavt --[(N - 1)/2] _< v _< [N/2]. (1.20) 

O~v N t ~ " l  

Since e iavt is periodic of period N in both v and t, both of these expressions 
remain valid if the range of values of t in (1.19) and v in (1.20) are extended to 
all integers. Then (1.19) is the spectral representation of the discrete periodic 
time series x ( t ) ,  t =  0, + 1 , . . .  in the form (1.9). The expression (1.20) by 
which x ( t )  is transformed into the frequency domain--i .e. ,  into a function of 
the frequencies 2v--is called t h e f i n i t e  Fourier  t rans form.  In a stochastic setting, 
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this t ransform will play a significant role in the distribution theory for 
spectral estimators in Chapter  8. 

The Parseval relation yields the expression 

IN/2] 
[[xll 2 - ~ I~x~l 2. (1.21) 

v =  - [ ( N -  1)/21 

But ]~12 = II~z~ll 2 is the power of the time series (vector) with components  
~ e  ~ ' .  Thus (1.21) represents the spectral decomposit ion of the total power 
of a discrete-time periodic time series into its frequency components  analogous 
to (1.12). The power spectrum of x(t) has value I~J 2 at frequency 2~ for 
- [ ( N  - 1)/2] < v < [N/2] with periodic extension of period N outside of this 
range. 

Example 1.2 Continuous-Time Periodic Time Series, Fourier Series, and the 
Space #2 

A real- or complex-valued, continuous-time function x(t), - ~  < t < ~ ,  is 
said to be periodic of period T (T > 0) if T is the smallest integer for which 

x~t + 7") = x(t) 

for all t. For the present, we will assume that T = 2~z. As in Example 1.1, it 
can be argued that x(t) can be restricted to the interval (-~z, ~z] and that  

lim ~-~ x(t)y(t) d t = ~ x(t)y(t) d t, 
T - - * ~  - T - ~  

when the integral is defined. 
Let 502(--7~, 7~), denote the collection of all complex-valued functions 

x = {x(t)" - n  < t < n} for which j'"__~ [x(t)[ 2 dt < ~ ,  where the integral is 
the Lebesgue integral. If vector addition and scalar multiplication are defined 
coordinatewise, 5 0 2 ( - n ,  n) is a Hilbert space with inner product  

l f "  (x ,  y> = ~ x(t)y(t) dt. 

(In fact, this is an indefinite inner product  and in order to form an inner 
product  space it would be necessary to take as elements the collection of 
equivalent classes under the equivalence relation x - y i f / Ix - Y/I = 0. This 
distinction will be ignored here and in future cases of indefinite inner 
products.)  

Now it is known from classical analysis that  if z, = {e i"'" -~z < t < ~z}, 
then {z," n = 0, +_ 1, . . .} is a complete or thonormal  sequence in 502(-~z, ~z). 
It follows from the above summary that x ~ 502( - ~z, ~z) if and only if there 
exists a sequence of complex numbers {ft," n = 0, 4- 1 . . . .  } with ~ =  _~ ]fl, [2 



20 1 PRELIMINARIES 

< ~ such that  x = ~=-oof lnZn .  The fin's are the Fourier  coefficients, 
ft, = <x, zn>. In coordinate notat ion,  

where 

oo 

x(t)  = ~ fln ein', (1.22) 
n - "  - -00 

ft, -- ~ x( t)e- int dr. (1.23) 
- - I t  

Expression (1.22) is the Fourier series representation of x(t),  which is a 
spectral representation of the form (1.9). The Parseval relation is 

2--~ Ix(t)[ 2 dt = ~ [fl,,] 2. 
- - / t  /1= --O0 

Denote by ~'2 the class of all complex sequences at = {~,: n = 0, _+ 1 , . . .}  
for which ~ = _ o o ] ~ , ] 2 <  ~ .  With complex scalars and coordinatewise 
definitions of addit ion and scalar multiplication this sequence space is a 
Hilbert  space with inner product  

O(3 

<~,P>= ~ ~.P.. 
n -  --cZ) 

Expressions (1.22) and (1.23) characterize a one-to-one mapping  ~ from 
.L~~ ~z) onto f2 which can be shown to preserve inner products.  The 
process of applying this mapping  is often described as Fourier transformation. 

Fourier  t ransformat ion has an important  property from the viewpoint 
of later applications. Define the convolution of functions x(t)  and y(t)  in 
" ~ 2 ( - -  7~, 7~) by 

z(t) = ~ x(u)y( t  -- u) du. 

By the Schwarz inequality, z(t) is in ~ ~  7~, 7~) and thus corresponds uniquely 
to a sequence in /2 .  It is not difficult to show that this sequence is {~nfln: 
n = 0, _+ 1, ...}, where 0t and p are the sequences corresponding to x(t)  
and y(t),  respectively. If we denote convolution by �9 and adopt  the notat ional  
convention, atp = {~nfln: n = 0, _+1 . . . .  }, this relationship can be represented 
symbolically as 

~ ( x  �9 y) = ~ ( x ) ~ ( y ) .  

If the discrete cont, olution of two sequences is defined by 7 = a t .  p, where 
7, = ~,o~=_oo am fin-m, then it is also easy to show that 

f f (xy)  = ~-(x) �9 i f (y) .  
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Here, xy is the coordinatewise product  of  the functions x and y: x y - -  
{x(t)y(t) : -- 7~ < t <_ re}. 

Now, ~ is invertible and these two relationships can be shown to imply 
the same two relationships for the inverse o f . ~ .  The inverse mapping  can also 
be legitimately described as Fourier  t ransformat ion  because of  its representa- 
tion by (1.22). Thus, these two expressions can be summarized by the follow- 
ing statement for the spaces /2 and ~ 2 ( - r c ,  r0: Fourier t ransformat ion 
converts convolution into mult ipl icat ion and mult ipl icat ion into convolution. 

A final consequence of  these relationships and the corresponding properties 
for multiplication is that  convolution is commuta t i ve  and associative: x �9 y = 

y ,  x and (x �9 y) �9 z = x �9 ( y ,  z). 
In a number  of  places in the text, we will need the analogs of  expressions 

(1.22) and (1.23) for periodic func t ions  o f  per iod  T. If x( t )  is such a function, 
then y(u)  = x(Tu/2Jz) has period 2re and (1 .22)and (1.23)apply.  Reversing the 
t rans format ion  we obtain the expressions 

x( t )  = ~ ~t, e ia"', - 7"/2 < t < 7/2,  (1.24) 
n -  --9C 

and 

l (T/2 
= x(t)e- i2, , t  dt, n = 0, + 1 . . . . .  (1.25) 

~ n  - T  ,~ - T / 2  

where 2,, = 2rrn/T. In the terminology of  Section 1.2, x( t )  has power 10~,,I 2 at 
frequency 2,.  Thus, the power  is distributed at equally spaced points on the 
frequency axis with spacing A2 = 2rc/T. 

Example 1.3 Almos t  Periodic Funct ions in Continuous and Discrete  T ime  

A function x(t) ,  - o o  < t < ~ ,  is said to be almost  periodic  if for every 
> 0 it is possible to find a positive number  I such that every interval of  the 

t-axis of  length l contains at least one number  "r such that 

Jx(t + T) - x(t)] < 

for - ~  < t < oo (Riesz and Nagy,  1955, pp. 254-256). 
A periodic function repeats itself at intervals of  T time units, thus, by 

induction,  at spacings of  n T  for n = +_ 1, + 2  . . . . .  It follows that for all n 
]x(t + nT)  - x(t)] = 0, - oo < t < oo. Thus, periodic functions are almost  
periodic with the r's equal to the quantities nT. The similarity between periodic 
and almost periodic functions suggests that a spectral representation resem- 
bling Fourier  series should exist for them. This representation will again be 
based on the definition of  the appropr ia te  Hilbert space. 

Let x = {x(t): - o o  < t < oo} and y = {y(t): - o o  < t < oo} be continuous,  
complex-valued almost periodic functions and define vector addit ion and 
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scalar multiplication coordinatewise as before. Define 

(x, y ) =  lim ~-~ x( t )y( t )  dt. 
T--* oo - T  

This quantity is an inner product for the class of continuous almost periodic 
functions. The resulting inner product space is not complete, however, and 
ideal elements must be added to the space to make it complete (Riesz and 
Nagy, 1955, p. 331). The result is the Hilbert space of almost periodic functions. 

It is easily shown by means of expression (1.11) that the class of functions 
z~ = {ei~t: - o o  < t  < oo} for - o o  < 2 < oo is an orthonormal  set. Since 
this class is uncountably infinite the dimension of the Hilbert space is 
uncountable and there is no possibility of expressing every element of the 
space as an infinite linear combination of a f i x e d  countable set of vectors as 
in Example 1.2. However, if x is a continuous almost periodic function, there 
will be an increasing sequence of (real) numbers . . . ,  2._ 1, 20,21 . . . .  (20 = 0), 
such that the Fourier coefficients ~x = (x, z~) are zero when 2 is not an element 
of this sequence. Let fig = C~;.k, k = 0, + 1 . . . . .  Now, it is easily established that 

r 2 cx~ 

X - -  Z flkZ2k = [ I x [ Z - -  Z Iflkl2" (1.26) 
k -  - ~  k =  - o o  

The fundamental theorem of almost periodic functions asserts that the 
Parseval relation [Ix[ 2= ~ = _ ~  [flk[2 iS valid for all continuous almost 
periodic functions. This and (1.26) imply that (in coordinate form) 

x(t)  = ~ flk eiakt. (1.27) 
k = - ~  

By the definition of inner product and the above discussion, 

~ = lim ~ x(t)e -i~t dt 
T~oo - T 

- otherwise. (1.28) 

Note that the Parseval relation implies ~ : _ ~  I flk[2 < ~ .  In fact if 
�9 . . ,  2-1, 2o, 21 . . . .  (;to = 0) is any increasing sequence of real numbers 
and {ilk: k = 0, +1 . . . .  } is any sequence of complex numbers for which 

oo 2 < then an element of the Hilbert space will be represented by 
expression (1.27) as a limit of partial sums. Moreover, (1.28) will be satisfied. 
This suggests an alternate definition of the H ilbert space of almost periodic 
functions as the class of all functions possessing spectral representations of 
the form (1.27) for sequences of frequencies 2k and square summable co- 
efficients fig. The frequencies and coefficients are uniquely determined by 
(1.28). 
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The convolution of two almost periodic functions 

z(z)  lim 1 fT = ~ x ( z  -- t )y( t)  dt  
T--.oo 2 T  - T  

is again almost periodic. Thus, in particular, a function of importance in the 
general time series model of Chapter 2, 

C(r) lim 1 f T  = - -  x ( t  + ~ ) x ( t )  d t, 
T - " * o o  2 T  - T 

will be almost periodic if x( t )  is. 
The spectral representation for discrete almost  periodic func t ions  x = 

{x(t): t =  0, _+1 . . . .  } parallels the above theory closely. The inner product 
is now 

1 L 
(x, y)  = lira ~ x ( t )y ( t ) ,  

L~oo 2 L  + 1 t=-L  

and it is easily shown by means of (1.18) that the sequences z~---(eiat: 
t = 0 ,  +_l . . . .  } for - a < 2 _ < r t  form an orthonormal set. Thus, for every 
discrete almost periodic function x( t )  there will exist an increasing sequence of 
frequencies . . . .  2_ 1, 20,21 . . . .  , with 2 o = 0 and - ~z < 2k _< rt for all k, and a 
square-summable sequence of complex numbers {ilk: k = 0, ___1 . . . .  } such 
that 

O(3 

x ( t ) =  ~ fig ei~k', 
k = - o o  

where 

1 L { 
lim ~ x(t)e-i'~t = ilk, 2 = 2  k, k = O, + _ 1 , . . . ,  
L-. ~ 2L + 1 t= -L 0, otherwise. 

In particular, if x( t )  is a discrete periodic sequence with spectral represen- 
tation (1.19) and (1.20), then since 

1 L 1 N 
lira ~ x( t )e  -i'~t _ ~ l X ( t ) e  -i~t 
L--,~ 2L  + 1 t=-L  N t= 

when X = 2 t r y ~ N , - [ ( N -  1)/2] <_ v < [N/2],  and is otherwise zero, the almost 
periodic spectral representation (1.27) and (1.28) reduces to (1.19) and 
(1.20). 

Example 1.4 A Spectral  Representat ion Based  on Finite Energy.  Fourier 
Integrals 

By extending the definition given in Section 1.2, the total energy of a 
complex-valued time series would be j'~_~ I x(t)l  2 dr. Taking the integral to 
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be the Lebesgue integral, the class of all functions for which this quantity 
is finite is a Hilbert space under coordinatewise vector addition and scalar 
multiplication with inner product 

I f  ~176 (x( t ) ,  y ( t )}  = -~g _ x(t)y(t)  dt. 
00 

This space is denoted by ~ 2 ( - ~ ,  oo) or, simply, ~ 2 .  
The functions e iz' are periodic, thus have infinite energy and are not in this 

Hilbert space. However, properly interpreted, an important spectral rep- 
resentation of the elements of ~2  still exists. 

Consider first a complex-valued function x(t) for which ~~163 o~ Ix(t)l dt < ~ .  
Define the generalized Fourier coefficients, 

g(2) = (x( t ) ,  e ia') = ~n _ x(t)e-iat  dt. 
oo 

(1.29) 

This function, called the Fourier integral (Fourier transJbrm) of x(t), is a well- 
defined bounded function, since 

Ig(2)l < ~n _ Ix(t)e-'X'l d t - -  ~n [x(t)l dt. 
O0 - - 0 ( 3  

It is also easily established that g(2) is continuous. Now, by analogy with our 
earlier examples, it would seem plausible that the appropriate spectral 
representation for x(t)  would be 

o0 

x(t)  = f g(2)e i~'d2. 
- - o 0  

(1.30) 

However, this integral need not exist, since although 9(2) is bounded, it need 
not be integrable. Of course, if ~~163 Ig(A)l dA < ~ then the roles of 9(2) 
and x(t)  can be reversed and (1.30) will be well defined. 

A more satisfactory situation holds for functions in Sa 2 [see Goldberg 
(1961)]. Briefly, for x ( t ) e  ~ 2  form 

1 f N = x(t)e-i~,  dt. 

These functions are well defined in the sense given above and it can be shown 
that this sequence of functions is a Cauchy sequence in i f2 .  By completeness, 
there exists 9(2) e ~ 2  such that 

iigN(2) _ g(X)ll2 1 ~ = ~ I gN(2)  - g ( 2 )  l 2 d~ ~ 0 
- - 0 0  
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as N -~ 0o. The Fourier integral is now defined to be this limit; 

g(2) = ~ _ x ( t ) e - U t  dt. 
o o  

Since g(2)e  ~ 2 ,  we can repeat this procedure and define 

f N  )~) ei)'t xN(t) = g( dt. 
-N 

This is again a Cauchy sequence in 502 and, moreover, it can be shown that 
its limit is x(t) .  That is, in the sense of -~2 limit, 

0(3 

x( t) : f g(}Oe i'~'t d2. 
~ o 0  

This is the desired spectral representation (1.30). 
The Parseval relation for -~'2 functions is 

2re - Ix(t)12 dt = Ig(2)l 2 d2. 

If 9(2) and h(2) are the Fourier integrals of x( t )  and y(t) ,  respectively, it can 
be shown that 

1 
f x ( t ) y ( z  - t ) d t  = f g(2)h(2)e  ir 

2It -oo - ~  

The left-hand side of this expression is defined to be the convolution of x( t )  
and y( t )  and will be denoted by x �9 y (r ) .  By the Schwarz inequality it can be 
seen that ~-oo [g(2)h(2)] d2 < 0o. It follows that x �9 y ( r )  is a bounded, con- 
tinuous function. If, in addition, ~_oo[g(2)h(2)] 2 d2 < ~ ,  then x �9 y ( z )  will 
also be in -~'2 and we will have 

1 f~  izr 9(2) h ( 2 ) = ~  _ e -  x , y (z) dr,. 
oo 

In the notation for Fourier transformation established in Example 1.2 this 
can be written 

o~(x �9 y)  = o~(x)o~(y) .  

The second relationship, 

o~(xy )  = o~(x )  �9 o~(y), 

also holds when ~- is given by (1.29). Thus, in a somewhat more restricted 
sense, Fourier transformation again converts convolutions to products and 
conversely. 
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1.4 S O M E  P R O B A B I L I T Y  N O T A T I O N S  A N D  P R O P E R T I E S  

For convenience, some probability topics needed in later chapters but not 
commonly available in standard texts are collected here. A good reference for 
the probability and statistics required in this book is the book by Tucker 
(1962). 

Here, Y~, 5e, P denotes a probability space consisting of a set (~) of ele- 
ments co, the collection 5~ of events, and a probability P. E(X)  or E X  will 
denote the expectation of a (real-valued) random variable X with respect to P. 
A complex-valued random variable, Z, can be defined by its representation in 
cartesian form, Z = X + iY, where X and Y are real-valued random vari- 
ables. Then, the distribution of Z is determined by the joint distribution of 
X and Y. Similarly, the joint distribution of several complex random vari- 
ables Zj = Xj + i Yj, j = 1, 2, . . . ,  n, is governed by the joint distribution 
of X1, . . . ,  Xn, Y1 . . . . .  }In. 

Expectation retains its linearity property, 

E ~ a jZ j  = ~ a j E Z j ,  
j = l  j = l  

when the coefficients and random variables are complex valued. In particular, 
EZ = E X  + iEY. This linearity property extends to random vectors and 
matrices X = [Xi,j], where this notation means that the real- or complex- 
valued random variable Xi, i is the i,./th element of the matrix. Expectation is 
defined componentwise; EX = [EXi,j]. Then if A and B are matrices of real or 
complex constants and A* denotes the conjugate transpose of A, 

E A * X B  = A * E X B .  

This linearity property for the expectation of random matrices will be needed 
in Chapter 5. 

Let V and W denote n x 1 dimensional random vectors and define 
lay = EV, law = EW, and Xv, w = E(V - lav)(W - law)*. Then, for example, 
Zv, v is the covariance matrix of the components of V. The multivariate 
normal distribution for (the components of) a real random vector X will be 
denoted by the symbol 9t(lax, Xx, x)- We will require the idea of a multivariate 
complex normal distribution in later chapters. If Z = X + iY is a n x 1 
complex random vector in cartesian form, then Z will be said to have a multi- 
variate complex normal distribution if the 2n • 1 random vector (x) has a 
(real) multivariate normal distribution. There is some possible ambiguity for 
the joint distribution of this random vector, however. It can be shown from 
the properties of expectation that Xz, z = Zx, x + Zr, r + i(Xr, x - Zx, r). 
Thus, if Zz, z = C + iQ is the cartesian representation for Zz, z, these 
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matrices are required to satisfy the equations 

Zx, x + Zv, r = C, 

~ , r , x - ~ , x , y = Q .  

Of the various possible solutions we will select ~ x , x -  ~r,  r -  �89 and 
~x, Y = ~ , ,  x = - � 89  where ' denotes transpose. (These are valid solutions, 
since it can be shown that C' = C and Q' = - Q . )  It follows that Z will have 
the multivariate complex normal distribution with mean It z = I t  x + lit r 
and covariance matrix ~z, z, denoted Z ~ 91c(it z, ~z, z), if and only if 

An important property of the complex normal distribution is the Isserlis 
theorem" Let Z = (Z,, Z : ,  Z3, Z4) have the multivariate complex normal 
distribution with mean ~tz = 0 and arbitrary covariance matrix. Then, 

E(Z1Z 2 Z 3 Z4) - -  E(Z1Z2)E(Z 3 Z4) --4-  E(Z1Z3)E(Z 2 Z4) -k- E(ZIZ4)E(Z 2 Z3). 

[See Blackman and Tukey (1959, p. 100) for the version for real-valued random 
variables.] 

Example 1.5 The Hilbert Space L2(P ) 
Consider the collection of all complex-valued random variables on a 

probability space ~, 5p, p for which 

EI XI 2 < ~ .  (1.31) 

By the inequality E[ XI _ 1 + E[ X] 2 it follows that E X  exists. With coordin- 
atewise addition and scalar multiplication (by complex scalars) the class of 
random variables satisfying (1.31) and the condition E X - 0  constitutes a 
Hilbert space with inner product 

<X, Y> = EXY. 

This space is denoted by L 2(P). We will occasionally distinguish this space 
from the Hilbert space of zero-mean, real-valued random variables satisfying 
EX 2 < ~, with real scalars and inner product (X, Y> = EXY, by designating 
the first, complex L 2(P) and the second, real L 2(P). 

Note that every random variable satisfying (1.31) becomes an element of 
L 2(P) by replacing X by X -  EX. The definition of covariance for random 
variables entails precisely this substitution; 

Cov(X, Y)= E(X-  EX)( Y -  EX) = <X- EX, Y -  E Y>. 
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Thus many of the more useful properties of correlation theory are simply the 
geometric properties of L 2(P). For example (assuming E X  = E Y = 0 again), 
the correlation coefficient in the notation of L2(P)inner product is 

Coy(X, r) (x, r> 
P = (Var(X)Var( y))~/z = [X[[ [[ Y[-----~ 

As we noted in the previous section, this is simply the cosine of the "angle"  
between the random variables X and Y. This observation and the intuition 
developed from the study of two-dimensional geometry make it possible to 
interpret geometrically the usual properties of correlation. Thus, for example, 
the conditions p = +_l of perfect correlation are interpreted to represent 
the colinearity of the "vectors"  X and Y, with the same or opposite orien- 
tation, while the condition p = 0 corresponds to orthogonality. Several other 
important properties of correlation are a consequence of the theory of orthog- 
onal projections summarized in Section 1.3. This will be illustrated in the time 
series context in Chapter 5. 

The concept of mean-square  convergence of random variables will be used 
at several points in the text. A sequence of random variables Y, is said to 
converge to Y in mean-square if lim,_.o~ E( Y , -  y ) 2 =  0. Because of the 
relation E ( X -  y)2 = [I X -  Yll 2, the properties of mean-square convergence 
are simply the properties of convergence in the distance function of L 2(P). 
Thus, for example, a mean-square Cauchy sequence will always have a limit 
in Lz(P). 

The L 2(P) spaces play a key role in time series analysis because of their 
relationship to the basic time series model, weakly stationary stochastic pro- 
cesses. We will establish this relationship in Chapter 2. The spectral represen- 
tations for these models rely heavily on H ilbert space arguments as will be 
outlined in the appendixes to Chapters 2, 4, and 5. Moreover, the geometry of 
L 2(P) is the natural setting for prediction theory to be studied in Chapter 7. 



C H A P T E R  

Models for Spectral 
Analysis The Univariate Case 

2.1 INTRODUCTION 

Historically, the introduction of models for time series which admit a 
spectral decomposition followed two lines of development. The first, originat- 
ing in the study of light in physics and motivated by the work of Sir Arthur 
Schuster (1898, 1906) in geophysics culminated in the treatise "Generalized 
Harmonic Analysis" by Wiener (1930). In this remarkable work, the spectral 
analysis for functions with finite power was completely detailed. Wiener's 
theory covered both univariate and multivariate time series, and applied to 
stochastic as well as nonstochastic series, although at that time the nature 
of the stochastic series, as stochastic processes, was not well understood. 

The second line of development began with a series of papers in 1932-1934 
by the Russian mathematician Khintchine who introduced both stationary 
and weakly stationary stochastic processes and developed the correlation 
theory for weakly stationary processes [see Khintchine (1934)]. This develop- 
ment was important not only for time series analysis but was also one of the 
pioneering works in the modern theory of stochastic processes. Later, 
Kolmogorov (1941a) developed the geometric theory of weakly stationary 
time series and Cram6r (1942) discovered the important spectral decomposi- 
tion of weakly stationary processes of which we will have many opportunities 
to take advantage in this book. 

The more recent work in time series analysis, both in the study of problems 
of a purely probabilistic nature and in the development of the statistical 

29 
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theory, has been based on the stationary models. As we will see in this and 
subsequent chapters, even the most commonly used examples of nonstationary 
models are obtained by modifying stationary stochastic processes in elemen- 
tary ways. Consequently, stationary models dominate the theory and their 
study will occupy us for the major part of the book. The basic theory for 
univariate weakly stationary processes is given in this chapter and the multi- 
variate theory is given in Chapter 5. 

From the viewpoint of applying the theory to real problems, the Wiener 
model provides some peace of mind to the experimenter who is concerned 
about the validity of his model, because it applies equally well to a large class 
of nonstochastic as well as stochastic time series. Moreover, the class of 
stochastic processes to which it applies is far larger than the class of weakly 
stationary processes. Some indication of the scope of applicability of the 
Wiener theory to stochastic processes will be given at the end of this 
chapter. 

The way we will go about estimating spectra in Chapter 8, though osten- 
sibly geared to the stationary model, actually provides an estimate of Wiener's 
power spectrum. Consequently, even if some of the hypotheses for statistically 
estimating spectra are violated (including the assumption that we are dealing 
with a stochastic process !), the existence of a spectrum and the validity of the 
method of estimation are guaranteed insofar as the more general Wiener 
theory is applicable. We will have more to say about this in Chapter 9. 

2.2 THE WIENER THEORY OF SPECTRAL ANALYSIS 

Let x(t), - ~  < t  < ~ ,  be a real-valued function (time series) with the 
property that 

1 f T C(z) = lira ~-T x(t + z)x(t) dt (2.1) 
T ~ o o  - T 

exists and is finite for every 3. The function C(z) is called the autocot'ariance 
function of the time series. Then 

1 f r C(0)-- lim ~-~ x2(t) dt 
T - ~  - T  

is the totalpower or simply, the power of x(t), and is finite by hypothesis. Note 
that a simple change of variables yields 

C(- r) = C(O. (2.2) 
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It is easily established that if y(t) and z(t) represent (possibly) complex- 
valued functions, then 

1/T 
(y(t), z(t)) = lim ~-~ y(t)z(t) dt 

T--* oo - T 

is an indefinite inner product (Section 1.3) for the collection of all functions 
for which (2.1) exists for all 1:. In particular, the Schwarz inequality can be 
applied to obtain 

I c (~ ) l -  I (x(t  + z), x(t)} I < Ilx(t + "r)ll IIx(t)ll. 

However, as is easily seen, [Ix(t + T)[] 2 -  IIx(t)ll 2 -  C(0). Consequently, we 
obtain the inequality 

I C(z)l _< C(O). (2.3) 

That is, the autocovariance function is always bounded in modulus by the 
power. 

The Spectral Representation of the Autocovariance 
Function 

Wiener established the existence of a bounded nondecreasing function 
F(2), called the spectral distribution function, such that 

t �9 o o  

C(~) = | ei~F(d2). (2.4) 
q d  

M O O  

This important expression is called the spectral representation of the auto- 
covariancefunction. The spectral distribution function determines a measure 
F(A) called the spectral distribution of the time series and (2.4) is an integral 
with respect to this measure. This theory can be outlined exclusively in terms 
of the distribution function without explicitly introducing the idea of measure. 
However, to do so has the disadvantage that simple and intuitive properties 
have rather clumsy and unpleasant notational expressions. Simply think of 
the spectral distribution F(A) as the amount of power in the harmonic com- 
ponents of the time series with frequencies in the set A. The spectral distri- 
bution and spectral distribution function are related by the expression 

= F ( ( -  

Thus, for example, F(2) is the power for frequencies less than or equal to 2. 
The symbol (a, b] denotes the interval {x: a < x < b}. This notation for 
intervals will be used throughout the book with the exclusion and inclusion of 
endpoints being indicated by round and square brackets respectively. 
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The integral (2.4) can be reduced to more familiar terms by the Lebesgue 
decomposition of F(A) [see Grenander and Rosenblatt (1957, p. 35)]. For 
models of practical interest this measure can be expressed as the sum of two 
components 

F(A) = Fd(A) + Fc(A). (2.5) 

The discrete spectral distribution Fa(A ) is completely characterized by a func- 
tion p(2), called the spectral function, which has the property that p(2) > 0 
for all 2 and p(2) > 0 only among a "d isc re te"  set of frequencies . . . .  2_1, 
20, 21 . . . .  , where 2_j = - 2 j  (thus 20 = 0). Then, 

Fo(A) = ~ p(2j). (2.6) 
2jeA 

The value of p(2) at frequency 2 is the spectral mass concentrated at that 
frequency and, thus, is related to the spectral distribution by the expression 

p(X) = F({X}), 

where {x} denotes the set consisting of the single element x. 
The continuous component Fc(A) is determined by the derivative of the 

spectral distribution function f ( 2 ) =  F'(2), where f(2)  is called the spectral 
density function, and the amount of continuous power or continuous spectral 
mass in a set of frequencies A is given by 

Fc(A) = f A f(u) du. (2.7) 

Since the derivative of a nondecreasing function is nonnegative, the spectral 
density function has the property 

f (2)  >_ 0 for all 2. 

It is sometimes useful to think of the continuous power in a set A as being 
given by the area under the curve y = f(2)  over the set A. 

The "spectral  mass"  or power in a set of frequencies A when both discrete 
and continuous components are present in the spectrum is 

F(A) = ~ p(2j) + f Af(2 ) d2. (2.8) 
2 j  ~ A  

The spectral representation of the autocovariance (2.4) can then be represen- 
ted in the form 

oo oo 

C(O = ~ e'Z~*p(2k) + f e'Z~f (2) d2. 
k - -  - o o  - o o  
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Obtaining the Spectrum from the Autocovariance 

From a practical viewpoint, spectrum analysis is based on the conversion 
of time-indexed data into estimates of the spectrum. One important method 
depends on the Fourier transformation of C(z) to obtain F(A). We now 
discuss the sense in which this Fourier transformation can be performed; first 
in the special cases of " p u r e "  spectral types. 

When the continuous component is missing, i.e., when f(2) = 0 for all 2, 
the time series is said to have a discrete spectrum. (Another commonly used 
term is pohlt spectrum.) Then, 

Moreover, 

C ( ' r ) :  ~ e'X~p(2k). (2.9) 
k - -  - o o  

O0 

y~ p(;,~)= c(o) < ~ .  
k ' -  - - a s  

Thus, since absolutely summable series are square summable, 

oo 

p~(~) < ~ ,  
k = - o o  

and by the theory of Example 1.3, (2.9) is the representation of C(z) as an 
almost periodic function. It follows that the spectral function can be obtained 
from the autocovariance by the expression 

1 fT p(2k) = lira ~ C(z)e - ~  dr. (2.10) 
T--*  oo - T  

In fact, this expression yields p(2) for all 2, since the limit is zero if 2 is not 
one of the 2k's. Now, Fd(A) is obtained by (2.6) if desired. It is a property of 
almost periodic functions that I C(z)I approaches C(0) arbitrarily closely for 
arbitrarily large values of [~]. Thus, in a rather strong sense, C(r) does not 
go to zero as [ r l ~ .  It is also the case that C(z) ~ 0 when the spectrum is 
of mixed type. 

The situation is not quite so simple in the case of a continuous spectrum. 
[Now p(2) = 0 for all 2.] The representation 

oo 

C(z) = f e~Z'f(2) d2 
--OO 

(2.11) 

is valid, and 

oo 

f f(2) d2 = C(O) < oo. 
- - o 0  
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In rather pathological situations, however, it may not be possible to invert 
the transform (2.11) to obtain f(2)  from C(r). In contrast to the discrete case 
it is always true that [ C(r)[ ~ 0 as I~l -~ oo. In fact, this serves as a useful 
theoretical criterion for distinguishing between time series with continuous 
and discrete or mixed spectra. However, it is possible that [ C(r) I goes to zero 
so slowly that the usual inversion methods fail. This is almost never the case 
in practice and for most models of interest we will be able to assume that 

oo oo 

f I C(v)I d l :<  oo or f I C(T)] 2 aT < oo. 
- - 0 0  - - 0 0  

Then (see Example 1.4), f(2)  has the representation, 

f(2)  = ~ C('c)e -i~'r dz. (2.12) 
- - 0 0  

Expressions (2.11) and (2.12) are called the Wiener-Khintchine relations. 
Although principally of theoretical importance, it is of some interest to 

know that there is a means for obtaining the spectrum from the autocovari- 
ance in any situation, discrete, continuous, or when both spectral types are 
present at the same time. It is shown by Doob (1953, p. 519) that if A~ < A2 
and p(A1) = p(A2) = 0, then 

1 f r  F((A~, A2) ) - lim ~ C(r)(e -~A'~ - e-~A~)/iz dr. (2.13) 
T ~ o o  - T  

It can then be argued that (2.13) determines F(A) for all sets A. Thus, expres- 
sions (2.4) and (2.13) assert the complete equivalence of the autocovariance 
function and the spectral distribution. That is, if either is known, the other 
can be determined exactly. However, these functions display different aspects 
of the correlation information about the time series. It is now commonly 
accepted that for practical purposes the spectrum is the more useful "pa-  
rameter." 

The Spectrum Is an Even Function 

One other property of importance is the following. Since we have taken 
x(t) to be real-valued, C(z) will also be real-valued and it follows that the 
spectrum is symmetric about 2 = 0. That is, for all 2, 

f ( -  2) = f(2),  p ( -  2) = p(/t). (2.14) 

This can be checked by a change of variables argument in (2.10) and (2.11). 
Moreover, if A is a set of numbers and - A  = { - 2 : 2  e A}, the set obtained 
by replacing each 2 in A by - 2 ,  then 

F ( -  A) = F(A). (2.15) 
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Properties (2.14) indicate that f(2)  and p(2) are even funct ions.  It is a general 
property of Fourier transforms that a real function has a conjugate even 

transform ( e . g . , f ( - 2 ) = f ( 2 ) ) .  This works in both directions. Consequently, 
in order for f(2) and p(2) to be real-valued, it is necessary that C(r) be even, 
but this is property (2.2) of C(r) given earlier. 

Representation of Total Power 

Finally, setting r = 0 in (2.8), we obtain 
0(3 o(3 

C(.O)= ~ P ( 2 k ) + f  f(2) d2. 
k " -  - o o  ~ o o  

That is, the total power in the time series is the sum of the power in the 
discrete and continuous components, and each of these, in turn, is the " s u m "  
of the power magnitudes at each frequency. This is the spectral decomposi- 
tion of the power into its harmonic components analogous to (1.12). The 
graph of a hypothetical spectrum is given in Fig. 2.1. 

Example 2.1 The Autocovariance and Spectrum o f  an A lmos t  Periodic 

Fun ct ion 

Let x(t)  -- ~j~= _~ c je  i~j' be an almost periodic function with 
o o  

I cjl z < ~ (Example 1.3). 
j - -  - - o o  

c(o) 

f'/" 
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I I 
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Fig. 2.1 Graphs of  the spectral density function, spectral function, and spectral distribu- 
tion function of  a hypothetical time series. 
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Using the properties of inner product and the orthonormality of the func- 
tions e ~'~jt we can calculate the autocovariance function for this time series 

C(z) = (x( t  + z), x(t))  = ~ cjeiZ~ei'~jt, 
j ~  ~o(3 

Ck e iAkt 

k = - ~  

c~3 c~3 

= Z Z cj ?k eiZJ~( e'zJ', eia~') 
j = - o o k = - o o  

00 

Z Icjl 2e'a~. (2.16) 
j ~  mo(3 

By comparing this with (2.9) it is seen that x(t) has a pure point spectrum with 
spectral function 

{Icjl ~, 
P(~) = 0, 

The total power is 

for 2 =  2j, j = 0 ,  _1 . . . . .  
otherwise. 

o6 

c(0)= Z I cjl ~. 
j - -  - - ~  

Note that the phase information contained in the complex coefficients 
Co, c+1 . . . .  is lost when the absolute values are taken to form C(r). Thus, 
knowledge of the power spectrum of x(t) is not sufficient to reconstruct the 
time series. This is true of power spectrum analysis in general. Loss of phase 
information is characteristic of the indifference to time origin built into the 
model. The properties of time series which the model is constructed to charac- 
terize are average properties over all time and no " natural" or intrinsic time 
origin exists. Consequently, phase values, which measure the displacements 
of the harmonic components relative to a fixed time origin, are not retained. 

Although we have taken the time series x(t) to be a nonrandom function, 
nothing precludes it from being a stochastic process if the integral and limit 
in (2.1) and (2.2) are interpreted properly. The only restriction is that the 
autocovariance function must be a nonrandom function. That is, the random 
quantities (1/2T)~T_Tx(t + r)x( t )dt  must settle down to a fixed limit as 
T--. ~ .  This actually occurs for a large class of stochastic processes. An 
example will be given in Section 2.9. 

The Wiener theory suffers from one serious drawback from the viewpoint 
of model construction. Although a general spectral representation of sorts 
exists for x(t), which expresses this function as a "linear combination" of 
complex exponentials (Wiener, 1930, p. 154), it cannot be used directly for 
the computation of the power spectrum. One of the essential reasons for the 
central position held by (weakly) stationary stochastic processes in time series 
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analysis is the existence of a spectral representation for the process from which 
spectral parameters can be directly computed. We will have ample oppor- 
tunity to appreciate the " p o w e r "  of this representation in later chapters. 

2.3 STATIONARY AND WEAKLY STATIONARY STOCHASTIC PROCESSES 

Let f~, 5e, P be a probability space. An indexed family of (real- or complex- 
valued) random variables {X( t ) : t  e T} defined on the space is called a (real 
or complex) stochastic process. If the index set T of the time variable t 
consists of equally spaced numbers k At, k = 0, ___1 . . . . .  At > 0, the process 
is called a discrete-time process. If T is the set of all real numbers, 
- ~  < t < ~ ,  it is called a continuous-time process. For this discussion, we 
will restrict ourselves to real, continuous-time processes. 

It is useful to think of a random experiment modeled by a stochastic 
process as follows: " N a t u r e "  performs a trial of the experiment governed by 
the probability P and obtains a value oJ e f2. You are then allowed to observe 
the function X(t, co), - o o  < t < oo, where X(t, o9) is the value of the random 
variable X(t) at o). The functions generated by varying o) over f~ are called 
the sample functions of the process. In a practical situation for which it is 
reasonable to assume that a probabilistic model is appropriate for the under- 
lying mechanism, the observed function of time is assumed to be one of the 
sample functions of a stochastic process. Thus, the functions graphed in 
Figures 1.1-1.6 would be thought of as sample functions from stochastic 
process models of the corresponding phenomena. By this view, a stochastic 
process can also be thought of as a probability distribution over the set of all 
possible sample functions. 

The stochastic process determines the set of finite-dimensional probability 
distributions, 

P ( X ( t l )  e S 1 , X ( / 2 )  • S 2 . . . . .  X(t,) e S,) (2.17) 

for all finite sets of time points tl < tz < " "  < t, and real events $1 . . . . .  S,,. 
A celebrated theorem of Kolmogorov (Kolmogorov, 1933, p. 29) asserts that 
the reverse is also true. Namely, if we are given a collection of functions 
P(tl . . . . .  t,; S1 . . . . .  S,) indexed by finite sets of times tl < tz < "'" < t, which 
are joint probability distributions in $1 . . . . .  5", and satisfy an additional con- 
dition which guarantees that these joint distributions have the same marginal 
distributions on common subsets of time points, then there exists a stochastic 
process for which these are the probabilities (2.17). In this sense, the finite- 
dimensional distributions completely determine the probabilistic structure of 
the stochastic process and any special properties desired of the process can be 
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imposed on these distributions. For example, a stochastic process is said to be 
Gaussian if the finite-dimensional distributions are multivariate normal distri- 
butions. We will use this fact again to define stationary processes. 

Stationary and Weakly Stationary Stochastic 
Processes 

A descriptive property of the time series discussed in Section 2.2 was an 
"unchangingness"  in time of the underlying generating mechanism. We can 
capture this property in the stochastic process model by making the finite- 
dimensional distributions time invariant. In the notation of (2.17) this 
property is 

P ( X ( q  + ~) ~ $1 . . . . .  X(t,, + "c) ~ S,,) = P (X(q )  ~ $ 1 , . . . ,  X(t,) ~ S,) (2.18) 

for all tl < " "  < t,,  real events $1 . . . . .  S,, and ~, - o o  < r < oo. Such a 
stochastic process is said to be (strictly) stationary. Note that the distributions 
depend on the relative time separations of the random variables, but not on 
their absolute time locations. That is, the stochastic process has the same 
probabilistic behavior throughout all time. 

If the mean and variance of the random variables exist, it is easily estab- 
lished that stationarity implies the properties, 

EX(t) = EX(O)= m, - o o  < t  < oo, (2.19) 

and 

EX(t  + z)X(t) = EX(z)X(O) = C(z), - o o  < t < oo. (2.20) 

That is, the mean values are constant in time and the covariances depend 
upon the time displacement z, but not on t. The function C(z) is called the 
autocovariance function of the process. 

Now, if we discard condition (2.18) and assume only that the random 
variables of the stochastic process have the property 

Var X(t) = C(0) < oo (2.21) 

and satisfy conditions (2.19) and (2.20), then the process is said to be weakly 
stationary. 

A weakly stationary process need not, in general, be stationary. Important  
exceptions are the (real or complex) Gaussian processes. Since the joint 
multivariate normal distributions of a weakly stationary Gaussian process 
depend only on the mean vector and covariance matrix of the random variables 
and these functions have properties (2.19) and (2.20), the joint distributions 
will have property (2.18). Thus, stationarity and weak stationarity are equiva- 
lent for Gaussian processes. 
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For reasons to be explained in the next section, we will develop the theory 
under the assumption that m - 0 .  Then condition (2.21) implies that 
X(t) ~ Lz(P ) for all t. (See Section 1.4.) Consequently, weakly stationary 
processes inherit the geometric properties of this Hilbert space. 

2.4 THE SPECTRAL REPRESENTATION FOR WEAKLY STATIONARY 

STOCHASTIC PROCESSESmA SPECIAL CASE 

We will first look at the spectral representation of a stochastic almost 
periodic function 

X(t) = ~ Zje  iajt, - o o  < t  < oo, (2.22) 
j - -  ~ n  

where 20,2•  1, - . . ,  2+, are fixed frequencies and the Zj's are complex-valued 
random variables. 

This expression actually defines a stochastic process through its spectral 
representation. However, without further conditions the process can be both 
complex-valued and nonstationary. We will now indicate the properties the 
Zj's must have in order that X(t) be a real-valued, weakly stationary process. 
This will provide some insight into the properties of the general spectral 
representation to be given in the next section. 

In order for X(t) to be real-valued, the 2j's must be symmetrically placed 
about 2 = 0, i.e., 2_j = - 2 j ,  and the random variables Zj must have the 
property 

Z_ j - Zj ,  j = O, +_ 1 . . . . .  +_ n. (2.23) 

Since X(t) is to be a weakly stationary stochastic process, the Zj's must 
satisfy conditions sufficient to guarantee properties (2.19) and (2.20). Taking 
the expectation of both sides of (2.22), the first condition implies that 

m = Z EZje  i~'jt. 
j " -  ~ n  

Now, this is an ordinary (nonrandom) almost periodic function and the 
coefficients EZj are the Fourier coefficients of the function on the left side, 

= m e  - i~ ' j t  dt. EZj lira ~ _r 

Since m is constant, we obtain 

E Z  0 - -  m and EZj = 0 for j 4 : 0 .  
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The constant mean m can be viewed as a special form of trend. If X(t) 
represented the amplitude of a fluctuating electrical current, m would be the 
(average) direct current (dc) amplitude. This terminology is traditionally 
carried over to nonengineering applications of time series analysis. It is 
common practice to deal with trend terms and the residuals from trend 
separately. For the present, we will restrict attention to the residual process 
X ( t ) -  m. Subtracting m from both sides of (2.22) has the same effect as 
setting m = 0. Thus, we will assume hereafter that m = O. 

To determine the implication of condition (2.20), we will compute 

EX(t + r)X(t). Since X(t) is real-valued, X(t) = X(t). Thus, 

= :__ ei;~J(t + ei;~kt) 

= ~ ~ ZjZkei(2J-;~U)te i'~j~ 
j=-nk=-n 

j=-n j=-nkej 
Then taking expectations, 

EX(t +'OX(t)= ~ EIZjl2e ~:  + ~ ~.,(EZjZke~'~:)e ~('~j-~)'. (2.24) 
j=--n j=-n k:/:j 

Viewed as an almost periodic function in t with z held fixed, condition (2.20) 
implies that the left side is constant. The argument just given can be applied 
again to yield (since e ia: is never zero), 

m 

EZj Zk = 0 for j ~ k. (2.25) 

Thus, in order that X(t) be a weakly stationary process, it is necessary that 
the random variables Zj be uncorrelated. 

If we draw the analogy between the stochastic definition of autocovariance 
(2.20) and the definition (2.1) given in the Wiener theory, the total power is 
now simply the variance of the process. 

From (2.24) and (2.25) we obtain the representation 

C('c)-- ~ ElZj]2e i)~:, --CX3 < * < m. (2.26) 
j =  - - t l  

With an interpretation of notation we will now show that this is the spectral 
representation of the autocovariance function. 

For any set of real numbers A, define 

Z(A) = Z zj ,  
2jEA 
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and 

Then 

F ( A ) =  ~ EIZjl 2. 
A j e A  

EIZ(A)I z -  Z Z EZjZk--  Z EIZjl z" 
2 j ~ A  2 k e A  2 j e A  

This yields the expression 

El Z(A) ]2 = F(A). 

For any two sets A and B, the same argument provides the more general 
relationship 

EZ(A)Z(B) = F(A ~ B). 

Here Z(A) can be thought of as a function which assigns a complex-valued 
random variable to each set A. In addition, it inherits from the Zj's the 
properties 

Z ( -  A) = Z(A) and EZ(A) = O. 

Thus, the Z(A)'s are members of complex L 2(P) (see Section 1.4). In the 
same sense that the sum (2.9) was represented by the integral (2.4), expressions 
(2.22) and (2.26) can be expressed in integral form as follows: 

oo 

X(t) = f eiatZ(d2) and 
-- OG 

oo 

C(z) = f eiarF(d)t). 
--or3 

2.5 THE GENERAL SPECTRAL REPRESENTATION FOR WEAKLY 

STATIONARY PROCESSES 

The last five displayed expressions carry over to the general case and 
constitute the basic properties of the spectral representation for weakly 
stationary processes. The details will now be summarized. 

Let X(t), - ~  < t < c~, be a real-valued weakly stationary process with 
EX(t) = 0 and autocovariance function C(r) = EX(t + r)X(t). For technical 
reasons [see, e.g., Rozanov (1967, p. 9)] it is assumed that C(r) is continuous 
at ~ = 0. It can then be shown that C(r) is continuous for all z. Stochastic 
processes for which this is not true have extremely unpleasant sample functions 
and are not generally useful as models for real phenomena. 

On the basis of these assumptions there exists a complex-valued random 
set function Z(A), called the random spectral measure of the process, and an 
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interpretation of integral such that the process has the spectral representation 
(3O 

X(t )  = [ eiatZ(d)O. (2.27) 
q d  

- - O O  

The derivation of this representation is sketched in the appendix to this 
chapter. We will restrict ourselves to the operational properties of the 
representation here. 

The random spectral measure has the following properties: 

Z ( -  A) = Z(A) (2.28) 

[this is a consequence of assuming X(t) to be real-valued]; 

[since EX(t) - 0]. 
If F(A) is defined by 

EZ(A) = 0 (2.29) 

F(A) = E] Z(A) ]2, (2.30) 

then F(A) is a measure and the relationship 

EZ(A)Z(B) -- F(A n B) (2.31) 

is valid. Note that if A and B are disjoint, EZ(A)Z(B)= 0. That is, the 
random variables Z(A) and Z(B) are uncorrelated or, in geometric terms, 
orthogonal. 

An Operational Convention 

A convention for representing these last two properties in an operationally 
convenient form is the following: The symbol d2, which has appeared 
previously in integrals such as (2.27) to indicate the variable of integration 
[or the type of integral as in (2.8)], is provided with two purely " fo rma l "  or 
intuitive interpretations. In the first interpretation d2 will be thought of as a 
"very small" interval containing the number 2. Also, dp, dv . . . .  will be 
"small  intervals" containing p, v, . . . ,  respectively. Then (2.30) and (2.31) 
are expressed by the single relationship 

IF(d2), if p = 2 ,  (2.32) 
EZ(d~)Z(d~)-  ~ O, if ~ ~ ~. 

That is, dp and d2 are thought of as being so small that if p 4: 2, they are 
disjoint. On later occasions, d2 will also be interpreted as the length of the 
interval. 

As an illustration of the use of (2.32) to evaluate an expectation involving 
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the spectral decomposition (2.27), we will derive the spectral representation 
of the autocovariance function C(r): 

C(z) = EX(t  + "c)X(t)= E eia(t+~ eiUtZ(dlO 
- - 0 0  - -  o 0  

O 0  O 0  

= E f f ei;~(t+~ 
- - o 0  - -  0 0  

_ __ foo f ~  ei(Z-U)teia~EZ(dA)Z(dl2) �9 
- -  0 0  - - 0 0  

Now, applying (2.32) this becomes 

oo 

C(z) = ~ e~Zr (2.33) 
i d  

Except for the way in which the autocovariance functions are defined, (2.4) 
and (2.33) are identical. Again F(A) is called the spectral distribution but now 
of the stochastic process X(t). 

The kind of derivation which led to (2.33) will be useful in the construction 
of models for time series and the steps should be carefully noted. The use of 
different variables of integration is standard in the first step. Then, the 
complex conjugate is brought inside the second integral and the result is 
written as a "double"  integral as in the calculus. The next step--the inter- 
change of expectation and integral signs--is permitted by the theory governing 
(2.27). The exact limitations on this operation will be spelled out presently. 
Also, the complex exponentials are constants relative to the expectation and 
the third line of the derivation is obtained. Finally, by (2.32), the integral with 
respect to d# vanishes except where/t  = 2 and we are left with (2.33). These 
are the basic steps in a type of calculation that will make it possible to derive 
with ease the spectral parameters of rather complicated time series through the 
use of the spectral representation of the process and expressions such as (2.32). 

The limitation on the interchange of expectation and integral is given in 
the following important statement which we will refer to as the basic property 
of the spectral decomposition. 

Basic Property Let g(A) and h(2) be (nonrandom) complex-valued functions 
such that 

Then 

O0 

f Ig(2) l  F(d2) < 
- - 0 0  

O0 

and f ] h(2)[ 2F(d2) < oo. (2.34) 
- - 0 0  

g(2)Z(d2) and h(2)Z(d2) 
- -  0 0  - -  o 0  
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are well-defined, complex-valued random variables with zero means and finite 
variances such that 

In particular, the variance o f  ~-o~ 9(2)Z(d2) is, 

E 9(2)Z(d2)  = l g(2)]Zf (d2) .  
* ~ 0 0  ~ o 0  

This last expression is obtained by setting h(2) = 9(2) in (2.35). 

(2.35) 

(2.36) 

This rather formidable statement is a consequence of the spectral repre- 
sentation of the process (2.27) (see the derivation in the Appendix). We will use 
it for two basic purposes. First, conditions (2.34) provide the justification for 
the interchange of expectations and integral in the above calculation. To see 
this, set 9(2) = e i~(t T M  and h(2) = e iat  (t and r are taken to be fixed). Then, since 
l eial = 1, (2.34) is satisfied because SFo~ F(d2)= C(0)<  ~ .  Now, the 
quantities in the first and last steps of the above calculation can be equated 
because of (2.35). Thus, this result not only justifies the intermediate steps 
but appears to make them unnecessary? However, not all of the calculations 
we will encounter are this straightforward and it will be most beneficial to 
have a step-by-step procedure for evaluating such expressions. 

The second consequence of the basic property is that it gives a condition 
under which integrals of functions other than e i~t can be defined with respect 
to Z(A).  To "be  defined" means that the integral is a random variable in 
the collection we were dealing with--namely, those with zero mean and finite 
variance. The following is an example of how this property is to be used. 

Example 2.2 The Derivative o f  a Weakly Stationary Time Series 
If the time series had representation (2.22), the definition of the derivative 

would not be in question, since the basic linearity property of the derivative 
would yield 

dt dt j= _. 

dei2Jt 
= Zj  

j= - ,  dt 

-- ~ Zj  iAj e i;~jt. 
j -  -n 
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That is, the interchangeability of derivative and sum would be retained in the 
stochastic setting. To define the derivative of a general weakly stationary 
stochastic process, it is reasonable to extend the linearity property by inter- 
changing derivative and integral in the spectral representation (2.27), 

d oo (oo deis t  
f((t) = ~ ,  f e'a'Z(d2) = j - - ~  Z(d2). 

However, in order for this exchange to be valid, the resulting integral must 
"make  sense." By the basic property, this will be the case if we assume that 

oo deiat  2 oo 

Under this condition, for each t the derivative is then defined to be 

oo 

f((t) = f i2eiX'Z(d2). 
t l  

- -  O G  

Since the right-hand side is a random variable for each t, this is again a 
stochastic process. Moreover, 

Ef((t) = 0 

and the covariance function can be computed from (2.35), 

Cx(z) = EX(t + r)~'(t) 

= E(f~i;~e~a('+~)Z(d2))(f~| 

o o  

= f 22e ia~F(d2 )  �9 
~ 0 0  

This function depends only on z, so )f(t) is a weakly stationary process. The 
random spectral measure and spectral distribution of ~'(t) are obtained 
directly from these calculations and are related very simply to the corre- 
sponding entilies of the X(t) process, 

and 

Zx(d2 ) = i2Z(d2) (2.37) 

Fx(d2 ) = 22F(d2). (2.38) 

Not all weakly stationary processes can be differentiated in the sense we 
have defined since .~oo 22F(d2) can be infinite while j'~oo F(d2) is finite. We 
will interpret this physically in the next chapter when we discuss linear filters 
of which the derivative is an important special case. 
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Decomposition of the Spectrum into Discrete 
and Continuous Components 

A decomposition of the spectral distribution into discrete and continuous 
components exists just as in the Wiener theory of the last section. Again a 
spectral function p(2) and spectral density function f (2)  determine the discrete 
and continuous parts of the spectrum, respectively, and the spectral mass of 
the stationary time series in a set A is given by (2.8). 

In terms of the convention for the use of the symbolic intervals d2 given 
above, this can be restated in the form 

F(d2) = p(2) + f (2)d2 .  

Intuitively, the power in d2 consists of the discrete power at 2 plus the con- 
tinuous power represented by the area of a rectangle of height f (2)  and base 
length d2. Here, we encounter the interpretation of d2 as the length of the 
interval of the same name. 

Thus, aside from the different definitions of the autocovariance functions, 
the two spectral theories are quite parallel. However, as we will see in the 
next section, an additional decomposition of the random spectral measure 
exists for weakly stationary processes. 

2.6 THE DISCRETE AND CONTINUOUS COMPONENTS OF THE PROCESS 

There is an additional bonus to be derived from the spectral representa- 
tion of the stochastic process. A decomposition of the random spectral 
measure Z(A) into discrete and continuous parts also exists, 

with 

Z(A) = Zd(A ) + Zr (2.39) 

and 

Fc(A) = El Zc(A) [ 2, (2.42) 

it follows from (2.39) and (2.40) that 

F(A) = Fd(A ) + Fr 

EZd(A)Zc(B ) = 0 for all A, B. (2.40) 

That is, the discrete and continuous components are uncorrelated. Then, if 

Fd(A ) = EIZd(A)] 2 (2.41) 
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This is precisely the Lebesgue decomposition (2.5). By using the convention 
introduced in the last section, these results can be summarized in a form con- 
venient for use in calculations as 

EZa(d2)Zc(d~) = 0 for all 2, p, (2.43) 

Fd(d2 = p(2), p = 2, (2.44) 

[Fc(d2) = f ( 2 )  d2, p = 2, (2.45) 
EZc(d;OZ~(d~) = (o, ~, ~ ,~. 

Now substituting (2.39) into the general spectral representation (2.27) we 
obtain 

X(t) = Xd(t) + Xc(t), (2.46) 

where 

Xa(t) = f ei~'Zd(d2) (2.47) 
M e t 3  

and 
t *  

X~(t) = ~ e'~'Z~(d2). (2.48) 
QI 

Based on (2.43), the covariance of Xd(t) and Xc(s) can be computed for any 
pair of times t and s, 

(f~176 e'~" (d2)) (f~176 e 'u~ (dp)) EX, , (OX~(s )  = E, Z,, Z~ 
- - o o  \ - -  oo / 

oo or3 

= f f ei'~'-Us'EZd(d2)Zr : O. 
- - 0 0  - - 0 0  

We will say that two stochastic processes are uncorrelated if every random 
variable of one is uncorrelated with every random variable of the other. It 
follows than that processes Xa(t) and X~(t) are uncorrelated. 

Analysis of the Discrete Component 

A more careful analysis of the discrete component is possible. If 2 i , j = 0, 
+ 1, . . . ,  are the points for which the spectral function p(2) is positive, from 
(2.41) we obtain 

El z~(A)L ~ = Y~ p(~j). 
~ . j E A  

Thus, if A contains none of the 2j's, it follows that EI Zd(A)I 2 =  O, thus, 
Zd(A) is the zero random variable. Consequently, Zd(A) is nonzero only when 
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A contains one or more frequencies 2j and, in fact, if we let Zj = Z({2i}),  
it follows t h a t  EIZj[ 2 - -  p(2j) and 

Z~(A) = Z z j .  
~ . j e A  

By the symmetry property (2.28) we have 

Z_j  = Zj .  

Moreover, 
oo 

EIZ~I 2 =EXa2(t) < oo. 
j " -  - - o o  

Thus (2.47) can be written as 

(2.49) 

oo 

Xd(t)= ~ ei~q'Zj. 
j ' -  - - o o  

By comparing this with (2.22) (see also Example 1.3), it is seen that Xa(t ) 
is a stochastic almost periodic function. Condition (2.49) is the Parseval 
relation. Thus, not only is it the case that every stochastic almost periodic 
function has a discrete spectrum, but also every weakly stationary process 
with a discrete spectrum is of this form. This makes the spectral represen- 
tation somewhat more concrete. 

Unfortunately, a comparable representation of the continuous component 
does not exist, in general. That is, we cannot define a " random spectral 
density" Z(2), say, such that 

Zc(d2) = Z(2) d2 and E l Z(~)I z - f(2). 

This minor flaw in the nature of the representation is unfortunate from a 
notational viewpoint but inconsequential in the final analysis, since results 
calculated as though such a representation were valid turn out to be quite 
correct! A different kind of representation of the continuous component will 
be given in Chapter 7. 

Extension of the Basic Property 

The following extension of the basic property is easily verified" I f  g(2)  
is a complex-valuedJ'unction for which 

oo 

f Ig(2)] 2F(d~.) < ~ ,  
- -00  

then 
oo oo oo 

f g(~)z(a~)= f g(~)z~(d~)+ f g(~)Zo(d~), 
- - 0 0  --0 '3  - - 0 0  
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where the random variables on the right-hand side are uncorrelated. Moreover, 
the first term can be written in the form 

CX3 Or3 

f g(2)Zd(d2)= ~ g(2j)Zj, 
- - 0 0  j =  - - ~ 3  

where Zj = Z({2i} ) and the 2j's are the frequencies for which p(2) is positive. 
Let h(2) be a second function satisfying the condition 

oo 

f I h(;OI 2F(d2) < oo. 
- - o 0  

Then, 

oo oo 

= Z g(2j)h(2j)p(2j) + f g(2)h(2)f(2)d2. 
j= -oo -oo 

In particular, 

Var g(2)Z(d2) -- ~ 19(2j)lZp(2j) + f Ig(2)lef(2) d2. (2.50) 
j - -  --0(3 --0(3 

2.7 PHYSICAL REALIZATIONS OF THE DIFFERENT KINDS OF SPECTRA 

Physical realizations of the three types of spectra we have studied-- 
discrete, continuous, and mixed--exist in a variety of contexts. Discrete 
spectra are usually generated by mechanisms that operate with extreme 
precision and regularity. Thus, light spectra produced by the motion of 
electrons between prescribed energy levels in atoms are discrete. A laser 
produces light at (very nearly) a single frequency. The frequency decomposition 
of a tone produced by the human voice or a musical instrument is discrete 
because only finitely many "modes" of vibration are possible in human 
vocal cords and the vibrating mechanism of the instrument. 

Continuous spectra and continuous spectra with a superimposed discrete 
component (the mixed case) are by far the most commonly occurring spectral 
types. Continuous spectra are generated by complex mechanisms which have 
so many modes of vibration that the frequencies of the waves produced 
"run together" into a continuum. An ordinary light bulb produces a con- 
tinuous light spectrum. The relative intensity of the light in various frequency 
ranges (as measured by the spectral density function) determines the color 
of the light. Red light is characterized by a preponderance of low-frequency 
power and blue light by a preponderance of high-frequency power. A uniform 
(fiat) light spectrum is characteristic of white light. 



50 2 UNIVARIATE SPECTRAL M O D E L S  

Almost all forms of noise, for example, electronic static, seismic noise, 
computer roundoff error, etc., have continuous spectra. An interesting 
carry-over of terminology from the field of optics to time series is the use of 
the term "white noise" to describe weakly stationary stochastic processes 
with continuous spectra and constant spectral density functions. 

The time series of interest in virtually all fields--engineering, geophysics, 
economics, medicine, etc.--have continuous spectra. This is not to say, 
however, that the spectra actually observed are always purely continuous. 
Due to a variety of causes, the continuous part of the spectrum often has 
superimposed on it one or more spectral lines (which show up in estimated 
spectra as narrow peaks for reasons to be explained in Section A8.2). Thus, 
in effect, the observed spectrum is of mixed type. In many cases, the discrete 
part of the spectrum is inadvertently contributed by the electronic gear used 
in recording, amplifying or transcribing the time series, thus has nothing at all 
to do with the phenomenon of interest. In fields such as economics and 
geophysics, regular daily, monthly, or yearly cycles introduce peaks of intense 
power into the spectrum which mask and "contaminate"  the more subtle 
variations of the continuous spectrum. An excellent example of this phe- 
nomenon is provided by the river runoff data to be discussed in Chapter 6. 
The spectrum of this data is given in Fig. 6.12 and a graph of a section of the 
data itself is given in Fig. 1.4. In such cases the discrete spectrum, which can 
be thought of as a form of trend, must be removed by some means in order 
to study the continuous component of the spectrum. We will consider the 
problem of trend removal later in this and in succeeding chapters. 

The methods for estimating spectra to be presented in Chapter 8 have the 
flexibility necessary to allow the time series analyst to study spectra of all three 
varieties. A spectrum analysis is, consequently, often the first type of analysis 
performed on data. Extraneous features of the data, such as unexpected 
peaks due to improperly operating recording equipment, will show up and 
their frequencies and power can be precisely pinpointed for future removal. 
Other forms of data processing, especially linear filtering, will be suggested by 
the spectrum analysis and the actual design of the filter can be based on the 
estimated spectrum. Spectrum analysis as a descriptive and analytic tool has 
few peers and a sampling of the wide variety of applications that have been 
and can be made will be given as the theory is developed. 

2.8 THE REAL SPECTRAL REPRESENTATION 

The spectral representation of the previous sections is occasionally 
encountered in the time series literature in real or cartesian form, and the 
computational procedures leading to estimates of multidimensional spectral 
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parameters depend upon this form of the representation. The relationship 
between the real and complex decompositions is quite analogous to that given 
in Section 1.2. However, a few special features make it worthwhile to consider 
the stochastic process case separately. 

The real representation is based on the introduction of two real-valued 
random spectral measures which are (nearly) the real and imaginary parts of 
Z(A): Let 

It follows that 

U(A) = Z(A)  + Z(A),  

V(A) = i (Z(A)  - Z(A)) .  

Z(A)  = � 8 9  iV(A) ) .  

Since Z ( - A )  - Z (A), we have 

U ( -  A) = U(A), 

V ( - A )  = - V ( A ) .  

In particular, 

(2.51) 

(2.52) 

(2.53) 

(2.54) 

U({0}) = 2Z({0}) and V({0}) = 0. 

The random variables U(A) and V(A) have zero means for all A and 
covariances can be calculated from (2.51) and (2.52) as follows" 

E U ( A ) V ( B )  - i [EZ (A)  Z(B)  - E Z ( A ) Z ( B )  + E Z ( A ) Z ( B )  - E Z ( A ) Z ) B ) ]  

-- i [ E Z ( A ) Z ( -  B) - E Z ( A ) Z ( B )  + E Z ( A ) Z ( B )  - E Z ( A ) Z ( -  B)]. 

We now use the facts that E Z ( A ) Z ( B )  = F(A m B) and F(A)  is real-valued to 
conclude that 

E U ( A ) V ( B )  -- 0 for all A, B. (2.55) 

That is, the real and inlaginary components are uncorrelated. The same kind 
of computation leads to the expressions 

E U ( A ) U ( B ) -  2[F(A ~ B ) +  F(A m - B ) ] ,  (2.56) 

E V ( A ) V ( B )  = 2[F(A r~ B ) -  F(A n -B)] .  (2.57) 

Now, by the de Moivre formula for e i~ 

X( t )  
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This integral is broken up into three parts with the ranges ( - c o ,  0), {0}, 
and (0, 0o). The imaginary component  of the integral, sin2tU(d2)-  
cos 2t V (d2) is an odd function and is zero at 2 = 0 and its integrals over the 
symmetric intervals ( -  co, 0) and (0, co) cancel one another.  The real compo- 
nent is an even function and has the value U({0})/2 = Z({0}) at 2 = 0. Thus, 
the representation can be expressed as an integral over the nonnegative 
frequency range as 

o3 

X(t) = �89 + [ cos 2tU(d2) + sin 2tV(d2), (2.58) 
"Jo + 

where 0 + indicates that 0 is not included in the range of integration. This is 
the real spectral representation of the process. 

The corresponding spectral representation of the autocovariance function 
can be obtained in a similar fashion by setting A = d2 and B = dp in (2.55)- 
(2.57), then by employing the type of calculation used to arrive at (2.33). 
Since 2 and/x  are restricted to the interval (0, co) these expressions become 

EU(d2)V(dlt) = 0 for all 2, p, (2.59) 

2F(d2), 2 = p, (2.60) EU(d~OU(d~) = EV(d~)V(d~,) = 0, ~ ~ ~. 

Then, by means of the tr igonometric identity c o s ( ~ - / 3 )  = cos ~ cos/3 + 
sin ~ s i n / / i t  is easy to show that 

~c 

C(r) = p(0) + 2 [ cos 2r F(d2), 
Jo + 

where p(2) is the spectral function and F(A) is the spectral distribution of 
the process. 

Finally, a real spectral distribution G(A) can be defined, which concentrates 
the spectral mass on the nonnegative frequency axis. If A c [0, co), then 
G(A) combines the original spectral mass from the sets A and - A  with 
the exception that the mass at ), = 0 is only counted once. In essence, the 
negative axis is folded over onto the positive axis with the fold at 2 = 0. This 
is most easily expressed in terms of the relationships between the spectral 
functions and spectral density functions of G(A) and F(A), 

tp(O), 2 = 0, (2.61) 
Pc().) = i Zp()0 ' 2 > 0, 

fs()O = 2f(2), 2 > 0. (2.62) 

These two functions completely determine G(A) and the spectral represen- 
tation of the atttocovariance can be written in the final form 

C(r) = [ cos 2r G(d).). (2.63) 
'o 
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2.9 ERGODICITY AND THE CONNECTION BETWEEN THE WIENER 

AND STATIONARY PROCESS THEORIES 

The Wiener and weakly stationary process definitions of the spectrum 
differ in only one essential--namely in the definition of the autocovariance 
function. In the Wiener theory, the autocovariance is defined by a time averaye 

lfT 
Cw(z) = lim ~ x( t  + z)x( t)  dt. (2.64) 

T ~ o v  - T  

In the weakly stationary process theory, it is defined as an average with re- 
spect to the probability distribution of the process or, as it is often called, 
an ensemble at, era#e, 

C(z) -- E X ( t  + z) X(t).  

When we try to apply the Wiener definition of autocovariance to a sto- 
chastic process, three questions arise: In what sense is the integral in (2.64) 
defined ? In what sense and under what conditions does the limit exist ? If a 
limit exists, how is it related to the autocovariance for the process C(r)? 
In particular, under what conditions is it equal to C(~:)? 

Since the definition given by Wiener pertains to ordinary functions of time 
it is reasonable to attempt to deal with these questions in terms of the in- 
dividual sample functions of the process. This is especially true since, in 
particular, only one sample function (or more accurately a part of a sample 
function) will be available for analysis. The integral would then be an ordinary 
integral and the limit a numerical limit in the usual sense. If the integral and 
limit are defined except for an ~o-set of probability zero, they are said to be 
defined ahnost sttrely. When the stochastic process is strictly stationary, the 
integral and limit exist in this sense under surprisingly weak and reasonable 
conditions from a practical viewpoint. The essential assumption is that EX2( t )  
be finite. This result is part of the individual ergodic theorem which is 
considered one of the most significant achievements in probability theory. 
Excellent treatments of this theorem are given by Doob (1953) and Rozanov 
(1967). 

The third question proves to be the most difficult to answer in simple 
terms. If a constant limit exists, that is, a limit which does not depend upon 
the particular sample path, then it is easy to show that the limit must be 
C(z). Stationary processes with this property are said to be er#odic. Processes 
which are not ergodic are easily found. As an example, suppose that A is a 
random variable such that 

EA = 0  and EA Z = p2 r  
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(Note that A is nondegenerate, since Var A ~- 0.) Define a random process as 
follows: For each ~o ~ ~, let 

X(t ,  ~o)=  A(~o), - ~  < t < ~ .  

That is, the sample functions are all horizontal lines. This process is strictly 
stationary and its mean and autocovariance functions are 

EX(t) = 0 and C(r) = p 2 ,  - - c t 3  < T < c~). 

Now for each oJ, 

lfT 
- -  X(t  + r, ~ ) X ( t ,  ~o) dt = A2(o~). 
2T - r  

Consequently, the limit as T tends to infinity exists for each ~o and, in fact, 
Cw('r) is simply the random variable A 2. Thus, Cw(r) is not constant in this 
case and its value depends on the particular sample function observed. 
Note that ECw(r)= C(r). This is true in general but is of little comfort if 
there is only one sample function with which to deal. 

Conditions under which a general stationary process is ergodic are rather 
involved and difficult to apply in practice. Intuitively, in order for a process 
to be ergodic, the stochastic dependence between parts of the process which are 
separated by an interval of time must approach zero "sufficiently rapidly" as 
the length of the time interval increases to infinity. 

One would hope that conditions of this sort could be made to hold in 
practice by modifying the process to remove the dc component and any other 
components of the process which might contribute to the kind of behavior 
exhibited in the example. This is indeed possible, in principle, for the follow- 
ing reason. For practical purposes, the main impediment to ergodicity is the 
discrete component of  the spectrum. In the case of Gaussian processes and 
certain other special kinds of processes, it can be shown that this is the only 
impediment. That is, in these cases a continuous spectrum implies ergodicity. 
One of the important reasons for the decomposition of a stationary process into 
discrete and continuous components is that it is then reasonable to make the 
added assumption that the continuous component is ergodic. This is a com- 
mon assumption for signal-plus-noise processes encountered in engineering in 
which the noise component is invariably taken to have a continuous spectrum. 

A Class of Nonstationary Processes Possessing 
Spectra 

The signal-plus-noise processes also provide one of the most important 
examples of a class ofnonstat ionary stochastic processes for which spectra 
exist in the Wiener sense. A special case is detailed in the following example: 
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Example 2.3 A Nonstationary Process with a Wiener Spectrum 
Let N(t) be a stationary, ergodic, stochastic process with E N ( t ) = 0  

and autocovariance function CN(7:), and let S(t) be a real-valued, nonrandom 
function for which 

Cs(z)-- lim ~-~ S(t + z)S(t) dt 
T ~  - T  

exists and is finite for every z. Further, assume that 

lim ~ S(t + r)N(t) dt = O, 
T-,~ oo - T 

where the limit is defined almost surely. Now, let 

X(t) - S(t) + N(t), - c~ < t < ~ .  

Then, the observed process X(t) can be viewed as a nonstochastic signal 
masked by stationary random noise. This is a useful model in many appli- 
cations. Except in the rather uninteresting case in which S(t) is constant for all 
t, the process X(t) is nonstationary. However, by the above assumptions and 
the ergodic theorem, 

Cx(~C) = lim ~ X(t + ~c)X(t) dt 
T--* oc - T 

= Cs(~C) + CN(r), almost surely. 

Consequently, X(t) has the Wiener spectral distribution 

Fx(A) = Fs(A) + FN(A), 

where Fs(A) and FN(A) are defined in Sections 2.2 and 2.3, respectively. If, 
in addition, it is assumed that N(t) is Gaussian, then the spectrum of N(t) 
is necessarily continuous and the discrete and continuous components of 
X(t) are determined by the spectral function and spectral density 

px(;~) = p~(2), fx(X) =A(x) + f~(2). 

2.10 STATISTICAL ESTIMATION OF THE AUTOCOVARIANCE AND 

THE MEAN ERGODIC THEOREM 

In the statistical theory of time series, the autocovariance C(T) is viewed 
as a parameter of the time series which must be estimated on the basis of a 
finite length of data. If the process X(t) is observed over the time interval 
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( - T ,  T), then [setting X(t  + z ) - - 0  whenever It + v l > T], the random 
variable 

- -  X ( t  + z ) X ( t )  dt 
2T  - r  

is one of the possible estimators for C(z). An important measure of the effec- 
tiveness of an estimator is the mean-square error; 

['s Dr = E _ r X ( t  + z )X( t )  dt - C(O �9 (2.65) 

If Dr  ~ 0 as T ~  oo, it will follow that the estimator is consistent. It is 
easily seen that it is unbiased. [Recall from statistics that an estimator (sequence 
of estimators) 0, is unbiased for a parameter 0 if E0, = 0 and is consistent 
if lim,_~ oo P(]0 ,  - 0] > e) = 0 for every e > 0. Consistency is a consequence of 
the condition limn-.oo E ( O , -  0 ) 2 =  0 because of the Chebyshev inequality. 
For  details see Tucker (1962, p. 98).] 

Theorems which deal with the convergence of Dr  as T tends to infinity 
are called mean ergodic theorems. The mathematical setting in which mean 
ergodic theorems are studied is the geometry of square integrable random 
variables. [See the discussion of L2(P) in Section 1.4.] The stochastic process 
is taken to be weakly stationary which makes available to us all of the theory 
developed earlier in this chapter. The appropriate definition of the integral 
and the conditions under which Dr  tends to zero will be given in the special 
case of a Gaussian process. However, we first look at a somewhat simpler 
situation which is of interest in its own right. 

The Convergence of (I/2T) S~ r X(t)dt 

Take X(t)  to be weakly stationary with E X ( t ) =  0. The time average of 
x(t) 

- -  X ( t )  dt 
2T  -7" 

is the time series equivalent of the sample mean, which is the usual statistical 
estimate of the population mean. In the statistical context, X1, X2, . . . ,  X, 
are taken to be independent random variables with common mean EXi  = m 
and common variance a 2. Then by a well-known result from probability 
[Tucker (1962, p. 98)], the sample mean 

_ 

X n  --. _ Y i  , 
H i = l  

has the property 

E ( X .  - m) 2 ---, 0 as n ~ oo. (2.66) 
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In the time series context the random variables are not independent, and, 
for the present, time is taken to be continuous rather than discrete. However, it 
is still possible to evaluate the time series equivalent of (2.66)which, since 
EX(t )  -- 0, is 

E _ x ( t )  dr . 

The integral of X(t) is defined by means of the spectral representation of 
the process as was the derivative, 

= ei'~tZ(d2) dt 
2T - r  X(t) dt 2-T -T -oo 

f~176 ( 1 dt)Z(d2) ,  fT  e i;~t 
- - o o  " 2 - ' T  ~' - T 

where, by the basic property, the last expression is a well-defined random 
variable provided 

However, 

~-T _re ixt dt F ( d 2 ) < o o .  

1 f T sin 2T/2T,  2 :/: O, e i'~t d t = 
2T J - r  1, 2 = 0 .  

Thus, extending the definition of sin 2T/2T to equal 1 at 2 = 0, we have 
[sin 2T/2T I < 1 for all T > 0 and 2. It follows that the definition of the 
integral 

X(t )  dt = (sin 2 r / 2 r ) Z ( d 2 ) ,  0 < r < oo, 
2T - r  -oo 

is valid for every weakly stationary process. 
Now, by (2.36), we obtain 

X(t )  dt = E (sin 2T/2T)Z(d2)  E ~-~ - r  -~  

oo 

f I s i n 2 r / R r l e F ( d 2 )  

oo 

- ~ I sin 2 j r / 2 j r l e p ( 2 j )  
j - "  - - o o  

c~3 

+ f I sin 2T/2TI2f(2)  d2. 
- - o 0  

(2.67) 
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The function sin 2T is bounded between - 1  and 1. Thus, 

sin 2T/2T ~ 0 as T ~ ~ ,  2 #- 0. 

It follows that the integrand of the integral in the last line of (2.67) vanishes 
as T ~ ~ except at 2 - 0  and that the integral, viewed intuitively as the area 
under the curve, also vanishes. An important theorem, the dominated 
convergence theorem from the theory of measure, justifies this conclusion. 
Similarly, all of the terms of the sum in (2.67), except the one corresponding 
to 2 = 0, tend to zero and we are left with the result 

X(t )  dt = p(0), (2.68) 
T~oo - T  

where p(0) is the discrete power at zero frequency. Unless this term is zero, 
convergence of the estimator to the mean does not occur. In fact, repeating 
this argument on 

 (2+s _ rX(t)  dt - Z({0))) , 

we would find the limit as T-~ oo would now be zero. That is, 

X(t) dt -~ Z({0}) as T ~ ~ .  
- r  

Thus, with a somewhat enlarged definition of consistency, (1/2T) ~T r X(t) dt 
is a consistent estimator of the dc component of the time series. In fact, if 
EX(t)  = m 4: O, we would have 

lim 1 f r X(t )  d t = m + Z({0}). 
T---~ oo 2 - T  - T  

Thus the sum of the random and nonrandom dc components is consistently 
estimated. 

In practice, then, a reasonable procedure for removing the dc component, 
to the extent possible on the basis of data observed for the time interval 
( -  T, T), would be to replace the original time series by the residual time series 

- X ( u )  du. x(t) ~ - ~  

From the viewpoint of spectral estimation, the extraction of the dc component 
is the most important preprocessing operation performed on a time series 
before estimates of the spectrum are computed. This is the most popular 
procedure for doing so. The rationale for removing the dc term will be dis- 
cussed in Chapter 9. 
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Complex Demodulation 

As we will see shortly, it is also desirable to have estimators for the other 
coefficients Z j = Z({2j}) in the discrete component of the spectrum so that 
these terms can be removed from the time series to the extent possible with a 
finite length of data. One estimation procedure, known as complex  de- 
modulation,  is as follows: Let 

Xu (t)  = e - i u t x ( t ) ,  - ~ < t < ~ .  

That is, " m i x "  the original time series with a periodic complex exponential. 
Then, by the spectral representation of X ( t ) ,  

(X3 

Xu(t ) = f ei(~-u)tZ(d)O, 

and the steps leading to (2.68) can be repeated to obtain 

lim ~ (t) dt  = Z({p}). 
r-.oo 2T 

Moreover, if the observed time series has a nonstochastic, almost periodic 
trend component, this estimator will also account for the trend coefficients. 
That is, if 

oo 

Y( t )=  ~ c j e i U J t + X ( t )  
j - - -  - -o(3  

and if we let 

Cj, 
c(~)  = o, 

if p = p j ,  j=O,+__l  . . . . .  
otherwise, 

then for all p, 

lim 1 fT e- iUty( t )  dt  = c(p) + Z({p)). 
T-.~ 2 T  - r 

(2.69) 

Thus, the estimator in (2.69) will "pick up" the spectral mass at each 
discrete frequency p whether this mass is of random, nonrandom, or mixed 
origin. By subtracting from Y(t)  the estimates of both the random and non- 
random discrete components based on the available data, the resulting 
residual process 

_ e - i~ . juy (u )du  eiZJ t Y ( t ) -  �9 ~ - r e  iuJ"Y(u) du e ' u j ' -  . ~ -T  

will be a good approximation, in the sense of mean-square error, to the con- 
tinuous component of the process X(t) .  This is the basis for one of the more 
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popular techniques for removing periodicities from time series. Other methods 
based on linear filtering will be considered in Chapter 6. 

Convergence of Dr 

Now, let us return to the discussion of the limiting behavior of Dr as 
T ~  c~ when X(t) is a stationary Gaussian process. (A weakly stationary 
Gaussian process is automatically stationary.) The usual procedure is to fix a 
value of �9 and form the process 

r , ( t )  = x ( t  + ~) x ( t )  - c (~) .  

Even without the Gaussian assumption, if the X(t) process is assumed to have 
fourth-order moments which behave like the fourth moments of a stationary 
process, then Y,(t), - ~  < t < ~ ,  will be weakly stationary and the con- 
vergence of Dr can be dealt with in the same manner as was the convergence 
of (1/2T) It__ r X(t) dr. 

However, it is difficult to relate the spectrum of Y,(t) to that of X(t) 
and the conditions under which Dr ~ 0 are not easy to apply in practice. 
[See Hannan (1970, p. 210) for a good discussion of this.] The evaluation of 
lira Dr as T ~ ~ in the Gaussian case embodies all of the important features 
of the general result and, in addition, provides a simple criterion for guaran- 
teeing that lira Dr = 0. 

It is shown in the appendix to this chapter that if X(t) is a Gaussian 
process, then 

oo 

l imDr  = ~ (1 + e2ia/~)p2(2j) 
Y--* oo j =  - o o  

oo oo 

E p2(~j)+ E P2()'J) e2ixj~" 
j =  - o o  j =  - o o  

Consequently, in order that Dr ~ 0 for every z, it is necessary and sufficient 
that 

O(3 

Z dJ e2i'~j~'-O for a l l r ,  

where, assuming 2 0 = 0  as before, do = p 2 ( 0 ) +  ~j~176 and dj = 
p2(2j) for j 4: 0. However, since such expansions are unique, it follows that 
dj = 0, thus 

p(2j) = 0 for all j. 

This implies 

lim 1 f r  X(t  + z)X(t) dt = C(z). (2.70) 
T--,oo 2T -T 

That is, (2.70) holds if and only if the discrete component of the spectrum is 
absent. 
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The degree to which the mean-square error Dr can be made to approach 
zero by increasing the length of data is limited by the power in the discrete 
spectral component. This is one of the more important reasons for estimating 
and attempting to remove these terms from the time series. 

A P P E N D I X  T O  C H A P T E R  2 

A2.1 The Spectral Representations of the 
Autocovariance and the Process 

A complex-valued function of a real variable C(r) is said to be nonnegative 
definite if for every n and every set of complex numbers Cl . . . . .  c, and real 
numbers t l ,  , . . . ,  tn ,  

i ~CjCkC(tj--tk)>-O" 
j - -1  k = l  

It is easy to check that both autocovariance functions defined earlier are 
nonnegative definite. A celebrated theorem due to Bochner states that 
to every continuous nonne#ative definite function C(z) for which C(O) is 
finite there corresponds a nondecreasing bounded function F(2) such that 

oo 

C(r) = f eia~F(d2), - ~ < z < ~ .  (A2.1 ) 
q d  - - O ( 3  

A proof of Bochner's theorem is given by Goldberg (1961). In the time series 
context, this is the spectral representation for the autocovariance function. 
Bochner's theorem also provides the basis for the spectral representation 
(2.27) of a weakly stationary process. The following sketch of this result is 
based on the derivation given by Crambr (1951b). 

A correspondence is established between elements of complex LE(P ) 
(see Section 1.4) and the elements of LE(F ), the set of complex-valued functions 
of a real variable for which 

f [g(2)l 2F(d2) < 

Here F(A) is the spectral distribution of the process obtained from Bochner's 
theorem. The correspondence is first defined between elements of the process 
an d the complex exponentials by 

X (  t ) ~--~ e i ~ t, - ct3 < t < ct3 . 

This correspondence is extended by linearity to finite linear combinations 

E aj X(tj)~-~ E aJ eix'j, 
j J 
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where the aj's are complex numbers, and then by continuity to limits of 
Cauchy sequences of such linear combinations. An important feature of 
Lz(F ) is that every element of this space can be obtained in this manner. 
That is, the complex exponentials generate Lz(F ) in the sense defined in 
Section 1.3. Consequently, this extension establishes a unique correspondence 
between the elements of Lz(F) and the elements of JC/x, the subspace of L2(P) 
generated by the random variables of the stochastic process. Note also that by 
(A2.1), 

( x (o ,  X(s)),, = EX(OX(s) = C ( t -  s) 

= fe*Z(t-~)F(d2) 

= f e i~teizsF(d2) = (, e i~', e i~s) F ,  

where ( )p and ( )v are the inner products in the Hilbert spaces L2(P) 
and Lz(F). That is, the correspondence preserves inner products for the 
generating elements. This property is preserved by the formation of linear 
combinations and passage to the limit. Consequently, if g(2) and h(2) are 
any elements of Lz(F) and G and H are the random variables in J /x  such 
that 

a ,-+ g(2) and H ~-~ h(2), 

then 

E a R  = f g(~)h(~)F(d;~). (A2.2) 

Now, if A is any Borel set and/,1 is the set characteristic function of A 
defined by 

1, 2 ~ A ,  
/'4(2) = 0, 2 r A, 

then, clearly, 1,4 ~Lz(F). Thus, there is a random variable Z(A) in dgx 
such that 

Z(A)~---~IA. 

As a function of A this random set function is precisely the spectral measure 
of the process. It is defined for every Borel set A and actually possesses the 
properties of a complex-valued measure in that the expressions Z ( ~ )  - 0 a.s. 
and Z(~TAi )  = ~ T  Z(A,) a.s. for disjoint sets Ai are valid, where the series 
converges in the mean-square sense. Moreover, by (A2.2), 

EZ(A)Z(B) = f la(2)IB(2)F(d2 ) = F(A n B), 

since Ia IB = Ia ~ B. 
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The spectral representation (2.27) is a result of the following observation. 
Every function g ~ L2(F) can be represented as a limit of finite linear combi- 
nations of set characteristic functions 

aj Ia~(2), 
J 

where the sets A j are disjoint. In fact, for each j the constant aj can be thought 
of as being a " typica l"  value of g(2) for 2 e Aj. Under the above corre- 
spondence, 

aj Ia.i(,~ ) ~ ~ aj Z(A fl. (A2.3) 
J J 

The sum ~ j  aj Z(Afl is reminiscent of the approximating sum of an integral. 
Consequently, upon passage to the limit it is natural to denote the limit of 
the right-hand side of (A2.3) by 

f g(~lZ(d~). 
This limit enjoys the basic properties of an integral almost surely. For example, 
the limit is independent of the particular sequence of simple functions used to 
approximate g(2). 

It follows that S g(2)Z(d2) is the element of ~[x such that 

f g(;gz(d,~). g 

Moreover, by (A2.2), 

This is the major statement of the basic property of the spectral represen- 
tation. 

Finally, since e i~t corresponds (uniquely) both to X(t) and j" ei'~tZ(d2) 
we have 

X(t) = f eiatZ(d).). 

An alternate derivation of this result, due basically to Kolmogorov, is given 
by Rozanov (1967, p. 14). See also Doob (1953, p. 527) for additional details. 

A2.2 Evaluation of limr_. ~o D r  in the Gaussian Case 

Recall that X(t) is a stationary Gaussian process and 

L( t ) - -  X(t + z ) X ( t ) -  C(z). 
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Consequently, 

= Y,(t) dt �9 Dy E - ~  - T 

First, note that the spectral representation of X(t) yields 
oo oo 

C(z) + Y,(t)= f f e'(Z+U)'eiZ~Z(d2)Z(dll). 
- - o 0  - - 0 0  

isiT (, s T ) Y~(t) dt = e it~+u)r dt ei~Z(d2)Z(dp). 
+ - o o  - o o  

= foo foo sin(2 + la)r ei,Z~Z(d).)Z(dla). 
-~  -oo (2 + I~)T 

Squaring both sides and taking expectations, since EYe(t )= 0, we obtain 
(dropping limits of integration) 

E(  1 r ~ T )2 C2(T) + f Y~(t) dt 

ffffsin(  + v)T sin(~ + fl)T 
-- E (2 + la)T (~ + fl)T ei( + 

~ ~ Z (d2)  Z (d].~) Z (d(~) Z (d[~). 

However, the second term on the left side is DT. Thus, moving the expectation 
inside on the right side, 

f f f f sin(2 + la)T sin(a + fl)T 
C2(r)--',- DT = (2 +/~)T (~ + fl) 

x ei(Z+"*EZ(d2)Z(dla)Z(d~)Z(dfl). (A2.4) 

Now, by the Isserlis theorem for complex Gaussian random variables (Section 
1.4), we obtain 

EZ(d2)Z(dl~)Z(d~)Z(dfl) = EZ(d2)Z(dl~)EZ(d~)Z(dfl) 

+ EZ(d2)Z(da)EZ(dl~)Z(dfl) 

+ EZ(d2)Z(dfl)EZ(dt~)Z(d~). (A2.5) 

Substituting this expression into (A2.4), the right-hand side can be written 
as the sum of three integrals, say, 11, 12, 13 , which are labeled in the same 
order as the terms in (A2.5). 

Recall the Z ( - A )  = Z(A) and 

if 7 = 6 ,  
E Z ( . ) Z ( d 6 ) =  {O F(*) '  otherwise. 

Then 
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Thus, the first term on the right side of (A2.5) is 

EZ(d,~)Z( @)F_.Z(d~)Z(dfl) = EZ(d2)Z(  - @)EZ(d~)Z (  - dfl) 

=IF(d2)F(d~), if 1 , = - 2  
[0, otherwise. 

It follows from (2.33) that 

/sin(0)T] 2 e ̀ (;~ +')~F(d2)F(d~) i,= ff (O)T ] 

and fl -- -~t, 

= f e'Z~F(d),) f e~'~F(d~) = C(r)2. 

Consequently, from (A2.4) 

D~=I2 +I3. 

The second term on the right-hand side of (A2.5) is 

EZ(d2)Z(d~)EZ(@)Z(d f l )  = 
F(d~,)F(@), 
O, 

Thus 

Similarly, 

(sin(A + / 0 T ]  2 

(A2.6) 

F(d~)F(@) .  

(sin (2 A-/t)T] 2 

ei( Z- U )~F(d).) F(dlt ). 

Combining these integrals and using the decomposition of F(A) into discrete 
and continuous components, (A2.6) becomes 

o0 oo ] D r =  Z Z (sin(2 '+2k)T 2 

{sin(2 + !d)T] 2 ei(X 
+ f f  \ -~ ~ -ui- ~ ,] (l + -u)~)f(2)f(la) d). d,u 

+ Z 5-i'4~ (2 + e '(zj-")~ + e""-~J)*)f(/~) d/t p(2j). 
j =  - o e  - o o  

(A2.7) 

Now as T ~  oe, the integrals in (A2.7) tend to zero by the dominated con- 
vergence theorem. The remaining sum converges to zero except at those 
values of j  and k for which ).j + )~k = 0. It follows that 

oo 

l i m D r =  ~ (l+e2i~j~)p2(2j). 
T - ~ o v  j =  - o o  

if c~= - 2  and f l= - / t ,  
otherwise. 



C H A P T E R  

Sampling, Aliasing, 
and Discrete-Time Models 

3.1 INTRODUCTION 

In this chapter we will consider the basic operation of sampling a time 
series which converts a time series in continuous time to one in discrete time. 
This is a necessary step in the preparation of the series for manipulation by a 
digital computer. When the original series is modeled by a weakly stationary 
stochastic process, the sampled series will be a weakly stationary process in 
discrete time, complete with its own spectral representation and power 
spectrum. 

The relationship between the spectrum of the continuous-time series and 
that of the sampled series is quite important, since estimates of the spectrum 
for the sampled series must be used to estimate the spectrum of the original 
series. Proper selection of the sampling rate will guarantee good agreement 
between the two spectra, thus the possibility of forming good estimates of 
the continuous-time spectrum. Improper selection of the sampling rate intro- 
duces the problem of aliasing whereby the agreement between the two spectra 
is, to varying degrees, destroyed. We will study the aliasing problem and the 
means by which it can be avoided. A sampling theorem is given which relates 
the required rate of sampling to recover all of the information in the time 
series to bounds on the "wid th"  of the spectrum. 

In some fields, time series occur naturally in discrete form. Hourly tem- 
perature readings on a hospitalized patient, daily closing stock averages, 
monthly sunspot averages, and tree ring thicknesses are examples of discrete 

66 



3.2 SAMPLING AND THE ALIASING PROBLEM 67 

time series. However, even these series are, more often than not, sampled 
versions of an underlying continuous process. Thus, though the discrete time 
version of the spectrum is the one of interest, it is important to know how this 
spectrum can be affected by features of the underlying process through 
aliasing. 

The general features of discrete-time, weakly stationary models will be 
summarized in this chapter in order to unify our treatment of linear filters in 
Chapter 4. Specific discrete-time models used in practice, the important finite 
parameter models, will be discussed in Chapter 7. 

3.2 SAMPLING AND THE ALIASING PROBLEM 

Suppose that X(t) is a time series in continuous time. We will restrict our 
attention to weakly stationary stochastic processes, but the results we obtain 
for the relationship between the sampled and unsampled spectrum will also 
be valid for the broader class of time series considered in Section 2.2. We also 
restrict our attention to equispaced sampling which, in any event, is the most 
important type of sampling in practice. 

To sample X(t), a positive quantity At, called the sampling interval, is 
required. This quantity determines the length of time between sampled values. 
The number of values sampled per unit time is called the sampling rate and is 
equal to I/At. Thus, for example, a time series which is sampled at intervals 
of At = 0.02 sec has a sampling rate of 50 observations/sec. The time series 
X(t) is replaced, through sampling, by the discrete-time series 

(3.1) 

3At 

That is, the value of the discrete series at time k is the value of the continuous 
series at the time instant k At. 

Now, through sampling, certain harmonics in the spectral decomposition 
of X(t) become indistinguishable from one another. This is illustrated in 
Fig. 3.1. Note that for the given sampling interval it is impossible to tell which 
of the two harmonics is being observed. Thus, the power attributed to the 
more slowly varying harmonic will be, in some sense, the combined power of 

Xa,(k) = X(k  At), k = 0, + l , . . . .  

Fig. 3.1 Illustration of two sinusoids made indistinguishable by sampling at intervals of 
length At. 
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all harmonics which are made indistinguishable from it (i.e., are aliased with it) 
by sampling. In order to provide a more quantitative account of this phe- 
nomenon, we now give an intuitive derivation of the spectral representation 
of the sampled processs. 

Recall that the continuous-time series has the spectral representation 

Thus, 

O0 

X( t )  = f e~Z'Z(d2). 

oo 

Xat(k ) = f e izk atZ(d2). 
--OO 

(3.2) 

This can be thought of as a "linear combination" in 2 of the periodic func- 
tions of k 

q;~(k) = e i~k a,, 

with coefficients Z(d2). (See Example 1.1.) Fix 2 in ( -  x/At ,  n/At] and consider 
the corresponding periodic function at frequency 2 + (2re~At)" 

q)x+(z,,/ao(k) = exp(i(2 + 2rt/At)k A t ) =  exp(i(2k At + 2rtk)) 
= e i~.k At(eZ,,i)k 

= ei~a at  = q ~ ( k ) .  

Thus, because we are, in effect, sampling the periodic functions e ~t at time 
points At units apart, the function qg~(k) is indistinguishable from the function 
at the higher frequency 2 + (2rt/At). What this means is that the complex 
amplitude at frequency 2 + (2rt/At), which we will denote by Z(d2 + (27~/At)), 
will appear as a contribution to the amplitude of qgx(k). 

Now, if 1 is any integer, positive or negative, an identical computation 
yields 

(Px +(2=l/At~(k) = q~x(k). 

Thus, all of the amplitudes Z(d2 + (2rcl/At)), I = 0, + 1, . . . ,  contribute to the 
coefficient of qg).(k). For 2 in the frequency range - x / A t  < 2 < x/At, let 
ZAt(d2 ) represent this coefficient. Then by collecting all coefficients of gox(k) 
in the " s u m "  (3.2) we can write 

where 

n/At 
f ei2kAtZAt(d,~O, (3.3) 

oo 

ZAt(d2) = ~ Z(d2 + (2rd/At)). (3.4) 
l -  - - o o  
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This is the spectral representation of the sampled process. This purely intuitive 
argument can be made mathematically acceptable. Details are left to the 
reader. 

If/~ is any number and A any set of numbers, the set A +/~ is defined to be 

A + p = { 2 + ~ t ' 2 6 A } .  

Then (3.4) can be viewed as a special case of the expression 

0(3 

Zat(A ) = ~ Z(A + (2rtl/At)), (3.5) 
l = - - ~  

where ZAt(A) is the random spectral measure for the discrete process Xat(k) 
and (3.5) is the basic relationship between the spectral measures of the original 
process and its sampled version. We now investigate the relationship between 
the spectra implied by this expression. 

If A is a subset of the interval (-re/At, re~At], then the sets A + (2rtl/At), 
l = 0, ___ 1, . . . ,  are all disjoint and property (2.31) of spectral measures 
yields 

(x) ct3 

ElZat(A)12= ~ ~ EZ(A +(2rcl/At))Z(Z +(2rtm/At)) 
l = - ~  m = - ~  

0(3 

= Z F(A + (2tel~At)). 
l =  - - ~  

Thus, defining the spectral distribution of the sampled process by 

we obtain 

FAt(A) = EIZA,(A)I 2, 

FAt(A) = ~ F(A + (2rcl/At)). (3.6) 
l =  - -c t3  

That is, the power in the sampled time series concentrated in the set of 
frequencies A c ( -n /At ,  n/At] is the accumulation of power of the original 
process from all of the sets of frequencies A + (2hi/At). For any 2 in 
( -n /At ,  n/At], the frequencies 2 + (2hi/At), l = + 1, + 2, . . . ,  are called the 
aliases of 2. 

The spectral distribution FAt(A) is determined by a spectral function 
PAt(2) and a spectral density function fat(2) which are related to the corre- 
sponding functions of the original process through (3.6) as follows: 

~3 

Pat(2) = ~ p(2 + (2rcl/At)), (3.7) 
l =  - - o o  

oo 

fat(A) = ~ f ( 2  + (2rtl/At)), -re~At < 2 < re~At. (3.8) 
l =  - - o o  
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Expression (3.8) is obtained by differentiating the series for the spectral 
distribution function term by term, provided the series of derivatives converges. 
This will be the case for all spectral densities of practical interest. 

Thus, all of the spectral lines (points of discrete power) in the original 
spectrum will appear as lines in the spectrum of the sampled process in the 
range ( -n /A t ,  n/At], and the continuous power will be " fo lded"  into this 
range to make up the continuous component of the sampled process spectrum. 
This is illustrated in Fig. 3.2. The upper limit of the range of the sampled 

Power transfer Power t ransfer  

I ~ ' "  Fold p points Original . 
I /.~,.,~/~F " ' i  I ~- --'1~",,~ I alscrel'e ana 

I , , I spec t rum 

' " ' -  ' " ' - - -  I "-~-~" . . . .  -'" I 

- .  I . . .  - , .  . . . .  , ,  ; - - " .  . . . . . . . . . . . .  - . - - 2 "  - - -  I - " i  . . . .  " . . . . . . . . . .  " : : ' - ' - ~ ; - ' - =  : " "  . . . . . . . .  " ' " "~ "  Sampled process 
discrete and 

[ I continuous 
' J I I I i l  ' spectrum 
' I i I ' 

' ' , I I  = i " -  
-*- ' ,  I 2 I I I ', 

', I : : 
i I : : I , , ~ ' .  I ! i ! 

-3~ -2,,- f - ~  o ~ 2,,- 3 ~  x 
At LXt ~ LXt 

Xs 

Fig.  3.2 Illustration o f  the folding o f  the power o f  the continuous-time series spectrum 
into the range (--)~N, )~N] to form the sampled time series spectrum. Aliased power is cross- 
hatched. 

process spectrum is called the Nyquist folding frequency. It can be evaluated 
by the expression 

2N = n/At (radians per unit time) 
or (3.9) 

fN = 1/2 At (cycles per unit time). 

Note that in terms of 2N,  the aliases of a frequency 2 in the range 
- 2 N  < 2 < 2N are of the form 

2 + 2/2N, l = -t-1, _+2, . . . .  

The selection of the sampling interval At is equivalent to selecting the Nyquist 
frequency. In fact the criterion for determining At in the design of a spectrum 
analysis is virtually always given in terms of conditions on the Nyquist 
frequency. An illustration of a poor choice of At is given in the following 
example. 
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E x a m p l e  3.1 An Illustration of  the Effect of  Sampling 
Suppose that a time series of ocean levels is sampled once each week to 

look for possible cycles in the data. Then, if time is measured in days, At = 7 
days and the Nyquist folding frequency is 

AN = ~Z/7 rad/day. 

Because of the regular daily tides--which we will idealize as having a period 
of exactly one day--there will be a spectral line of substantial power at 
2 = 2~z rad/day. Now, 

2TC = 0 + (2~Z(7)/7)= 0 + 142N 

and, from the above theory, it follows that 2n is aliased with zero frequency. 
Thus, the power at one cycle per day will be added to the power at zero 
frequency and thus will simply appear as a contribution to the mean sea 
height. This can be seen intuitively, since if the weekly observations were 
always taken at the time of day, for example when high tide occurred, it 
would appear as though the mean sea level were elevated by an amount 
depending on the power in the daily cycle. It follows that this selection of At 
is a particularly poor one from the viewpoint of analyzing the daily cycle. This 
is a rather extreme example of what is known as the aliasing problem. 

The Aliasing Problem and a Sampling Theorem 

The aliasing problem arises when the spectrum of interest is that of the 
original, continuous-time series. To estimate this spectrum using digital 
methods it is necessary to sample the time series. However, the spectrum for 
which estimates will then be obtained is, unavoidably, the spectrum of the 
sampled series. The two spectra are related by expressions (3.6)-(3.8), but they 
can be quite different as is illustrated in Fig. 3.2. Consequently, even very 
accurate estimates of the sampled process spectrum may be poor estimates 
of the original spectrum. 

This problem can be avoided or at least reduced to an acceptable level 
by an intelligent choice of At. By the natural high-frequency attenuation of 
physical processes and the limitations of recording equipment, for all practical 
purposes, the power in any real time series will be contained in a finite interval 
of frequencies. Consequently, realistic models will have spectra that tend to 
zero rapidly with increasing values of 12l. More precisely, there will exist a 
frequency bound A such that if A is a set of frequencies which lies outside of 
the range ( - A ,  A), then F(A)~-O. Now, if At is taken small enough to 
ensure that 

2N = g/At > A, (3.10) 
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it will follow from (3.6) that 

FAt(A) ~- F(A), 

since each of the frequency sets A + (2rtl/At) for l 4:0 will lie outside of 
( - A ,  A). Similarly, if (3.10) is satisfied, 

pA,(2) --- p(2), - A  < 2 < A (3.11) 

and 

fat(2) --~f(2), - A  < 2 < A. (3.12) 

Thus, over the frequency interval containing the major portion of the power, 
a proper choice of At will guarantee that the spectral functions and spectral 
density functions of the sampled process and continuous-time process are 
essentially identical. In this case, the aliasing problem does not arise. Note, 
for example, that the aliasing problem in Fig. 3.2 could have been avoided by 
selecting 2N roughly three times larger than indicated--which corresponds to 
a sampling interval At one third as large. 

The dependence of the sampling rate on the range of the spectrum is 
graphically demonstrated by the following theorem. 

Sampling Theorem I f  for some number A, the spectrum of  X(t) is zero 
outside of  the frequency interval - A  < 2 < A, then the time series can be 
exactly reconstructed from its values at the time points 

nk/A,  k = O, ++_1,.... 

More precisely, 

X ( t ) =  Z s i n A ( t - ( r t k / A ) ) x  - ~ < t < ~ .  (3.13) 
A(t- 

The proof of this theorem depends on the Fourier series expansion of ei;~t: 
Let e~ t denote the function of 2 which is equal to e i~t for - A  < 2 < A and is 
the periodic extension of this function (of period 2A) outside of this interval. 
The Fourier coefficients of e~* are easily computed from expression (1.25) 
and the Fourier series expansion (1.24) is 

oo 
e~ '=  Z sin A(t-(r tk/A))  ei;~(,~k/A ) 

k=-~ A(t -(rtk/A)) 

Now, by hypothesis, F(d2)=0,  thus Z(d2)= 0 for [2] > A. Conse- 
quently, 

A 

X(t)  = f ei;"Z(d2)= f ei;~tZ(d2) for every t. 
- - o o  - A  
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Finally, 

A A 

X(t) = f eiZtZ(d2)= f e~tZ(d2) 
- A  - A  

oo 

sin A ( t -  (~zk/A)) J rhAeiX(,~k/h)Z(d). ) 
E  --oo A ( t -  _ 

= 2 s i n A ( t -  (rck/A)) 
A ( t -  X . 

[For the justification of the mean-square convergence of this sum and the 
interchange of sum and integral see Rozanov (1967, pp. 26, 27).] 

Expression (3.13), due to Shannon (1949), has been utilized extensively in 
applications, especially in engineering. From the viewpoint of spectrum 
analysis, this theorem implies that if the sampling interval is taken to satisfy 
the inequality 

At < 7t/A, 

which is equivalent to selecting the Nyquist folding frequency to satisfy 

then 
2N__> A, 

F~,(A) = F(A) for all A. 

That is, no error is made by using FAt(A) in place of F(A). However, there 
are practical limitations to the usefulness of this result. It may not be feasible 
for one reason or another to sample at a rate sufficient to make 2N > A. For 
example, if a long stretch of data must be sampled at a high rate it is rather 
easy to over-run the storage capacity of even the larger modern computers. 
It may be necessary to put up with a small amount of aliasing in order to 
fit the data into the machine. In Chapter 6 we will discuss the procedure of 
filtering and decimation by which the Nyquist folding frequency, thus the 
sampling rate, can be made smaller without significantly increasing the amount 
of aliasing. Once sampled, the number of data points can be reduced to any 
fraction of the initial number by this procedure. However, any aliasing intro- 
duced by the original sampling will remain. 

In the case of a very broad-band spectrum (A large) it is possible to use 
an analog filter on the continuous-time data to decrease A before sampling in 
order to achieve the inequality 2N > A for an acceptable sampling rate. Even 
then, high-frequency noise is often reintroduced by the digital processing 
equipment. Consequently, in most practical applications it is necessary to 
strike a balance between the sampling rate and the amount of aliasing to be 
incurred. Details concerning the selection of the sampling rate to estimate 
spectra will be given in Chapter 9. 
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3.3 THE SPECTRAL MODEL FOR DISCRETE-TIME SERIES 

Discrete time parameter, weakly stationary stochastic processes have a 
spectral theory which exactly parallels that given for continuous-time pro- 
cesses in Chapter 2. Although this theory can be derived quite independently, 
it necessarily agrees with the results for sampled processes derived in the last 
section. In fact, it is convenient to think of discrete processes as being sampled 
processes for which the sampling interval At is the "na tu ra l "  unit of time. 
This is equivalent to setting At - 1 in the expressions of the last section. Let 
X(k), k = 0, 4- 1, . . . ,  denote a weakly stationary process with discrete time 
parameter. Then the spectral representation of X(k)is 

X(k) = f e~akZ(d2), k = 0, + 1, . . . .  (3.14) 

Although (3.4) and (3.5) have no real interpretation when an underlying 
continuous process does not exist, they still indicate an important property 
of the spectral measure Z(A): It is easily seen from (3.5) that 

Z(A + 2 ~ ) =  Z(A). (3.15) 

Thus, with a slightly extended interpretation of the term, Z(A) is periodic 
of period 2re. 

Similarly, the spectral distribution 

F(A)= EIZ(A)[ 2 

is periodic in the same sense, 

F(A + 2 n ) =  F(A). (3.16) 

The spectral distribution function is now given in terms of .F(A) by the 
expression 

F(2) = r ( ( -  n, 21). (3.17) 

As before, the spectral function and spectral density function are, respectively, 

p(2) = F({2}) (3.18) 

and 

dF(2) 
f(2)  - (3.19) 

d2 

It follows from (3.3) that p(2) and f(2)  are periodic.fimctions of period 2n in 
the usual sense. Thus, if we were to take At = 1 in Fig. 3.2, the graphs of 
p(2) and f(2)  would extend periodically outside of the interval ( - n ,  rt] as 
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indicated by the dashed lines. Since periodic functions are completely deter- 
mined by their values on a single cycle, it suffices to restrict attention to the 
interval ( - n ,  n]. 

The autocovariance function 

C(k) = E X ( j  + k)X( j )  

has the spectral representation 

C(k) = ( e'XaF(d2) (3.20) 
qd 

as can be easily shown from (3.14). In the case of  a discrete spectrum we have 

oo 

j ~  DOG 

where the points of positive power 2j satisfy the relations 

2_j = - 2 j  

for 2j 4: n and -~z < 2j < n. That is, if 2j = n is a point of positive power, 
then 2_j is excluded from the interval. 

Now from the theory of almost periodic functions in discrete time covered 
in Example 1.3, for a process with discrete spectrum the spectral function is 
determined from the autocovariance by the expression 

1 L 
p(2) = lim ~ e-iXkC(k) for --r~ < 2 < zr. (3.21) 

a-*o~ 2L + 1 a=-L 

When the spectrum is continuous, we have 

7r 

C(k) = f eiZa f (2)  d2. (3.22,) 
,d 

If~=-oc [ C(k)[ 2 < oO, as is the case in most applications, then the numbers 
C(k)/2n are simply the Fourier coefficients of the Fourier series expansion of 
the periodic function f(2),  

oo 

1 ~ e-iXaC(k). (3.23) f (2)  = ~ k=-~  

(See Example 1.2.) Note that (3.23) also follows from the condition 
~ = - o o  ]C(k)] < oo, since an absolutely summable series is automatically 
square summable. Expressions (3.22) and (3.23) are the discrete-time version 
of the Wiener-Khintchine relations. 

As in the continuous-time case there is a general expression for obtaining 
the value of the spectral distribution F for every interval of the form (A~, Az] 
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for which p(A1)= p(A2)= 0. This determines F(A) for every (measurable) 
set A and is valid for every type of spectrum--discrete, continuous, or mixed 
(Doob, 1953, p. 474). The expression is 

L 

F((A1, A2]) = ~ A2 - A1)C(0) + lim Z 
L--*oo k =  - L ,  k # O  

e- i A l k  ~ e-  i A 2 k  

ik 
C(k)}. 

(3.24) 

Finally, the ergodic theorems in Sections 2.9 and 2.10 carry over word 
for word to discrete-time processes by the simple expedient of replacing every 
occurrence of the average 

by the average 

1 ~  T 
lim ~-T 
T--* oe - T  

1 L 
lim ~ 

L ~  2L + 1 k=-L 

~ d t  

Thus, for example, when the process has zero mean and no added non- 
stochastic almost periodic term, 

1 L 
lim ~ e- 'aaX(k)= Z({2}). (3.25) 
L--,oo 2L + l k=-L 

If the process is Gaussian with continuous spectrum, we have 

1 L 
lim ~ X(k  + r ) X ( k ) =  C(r). (3.26) 
L ~  2L + 1 k=-L 

Both limits are limits in mean-square as before. 

Example 3.2 Discrete-Time Periodic Processes 
A discrete weakly stationary time series is periodic of period N if 

X(k  + N ) =  X(k),  k = O, +_ 1 , . . . .  

By the mean ergodic theorem (3.25) and a change of variables argument, it 
can be shown that 

lim 1 L 
EZ({2})Z({p}) L--,~ 2L + 1 ~ e-'a'C(r)' ~ r----L 

t O, 

2 = p ,  

2 # p .  
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But C(r)  is seen to be periodic of period N, since X ( k )  is. Thus (see Example 
1.3), 

E i Z({2})[ 2 ~ e-ia~C(r), 2 - - = ~=1 N '  2 

0, otherwise. 

] v 

Let 2v = 2rtv/N, Z~ = Z({2~}), and pv = E]Zv] 2. We then have 

[ N / 2 ]  

C(r) = ~ eiavrp~ , 
v = - [ ( N  - 1 ) / 2 ]  

which implies that all of the power in the time series is concentrated at the 
equally spaced frequencies 2v. That is, the spectrum of the time series is 
discrete with spectral function 

lp~, 2 = 2rtv 
p(2) = N ' 

0, otherwise. 

IN; 

The spectral representation of the process is 

[ N / 2 ]  

X ( k )  -- ~ ei'~"kz v , 
v =  - [ ( N -  1 ) / 2 ]  

k = 0, _+1,... (3.27) 

and (see Example 1.1) 

1 N 
Zv = -N k= e- '~vkX(k) .  (3.28) 

This is the f in i te  Fourier transform of the discrete stochastic process. In 
Chapter 8, X(1), X(2), . . . ,  X ( N )  will represent the available observations 
from a discrete process or a sampled continuous-time process and a normalized 
version of the finite Fourier transform will be computed for this data. Then 
expression (3.27) will produce a periodic extension of the original process 
which repeats these N values over and over. A convenient relationship be- 
tween the spectrum of the original time series and the spectrum of the induced 
periodic process will allow us to use the finite Fourier transform to estimate 
the spectrum of the underlying process. Moreover, the distribution theory for 
these spectral estimators will be especially simple and useful. Consequently, 
these expressions will play a fundamental role in the statistical theory of 
spectrum analysis. 
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Example 3.3 White Noise 
Let X ( k ) : k  = 0, _1  . . . .  be a sequence of uncorrelated, zero-mean 

random variables with common variance a 2. That is, 

and 

EX(k)  = 0 

Io "2, if j = k ,  
E X ( j ) X ( k )  = ~0, if j 4= k. 

Such a sequence is easily seen to be a weakly stationary process with auto- 
covariance function 

{a 2, k = 0, 
C(k) = O, k # o. 

Now, since this autocovariance satisfies the condition C(k)-+ 0 as k ~ 
(in a rather trivial sense), this time series has continuous spectrum and, in 
fact, (3.23) can be applied to obtain the spectral density 

f (2 )  = aZ/2rc, ~. 

That  is, the time series has a spectral density which weighs all frequencies 
equally. Because white light is popularly considered to be composed of a 
uniform mix of all light colors, a time series with a constant spectral density 
is called a white noise process. As we will see in Chapter 7, the more important  
discrete time series models are based on linear transformations of white 
noise processes. 



C H A P T E R  

Linear Filters--General Properties with 
Applications to Continuous-Time Processes 

4.1 INTRODUCTION 

This chapter will be devoted to outlining the basic properties of linear 
filters. The various roles played by linear filters in both the theory and 
applications of time series analysis are among the most important features of 
the subject. Linear filters provide an important class of models for physical 
transformations. For example, to a good degree of approximation, the earth 
behaves like a linear filter to seismic waves and the ocean to ocean waves. 
To a more restricted extent such phenomena as economic systems and bio- 
logical systems behave like linear filters for restricted lengths of time. 

Linear filters transform time series into new time series where the term 
"time series" can be interpreted in the broadest sense as meaning any 
numerical function of time whether continuous or discrete, random or non- 
random. Because of this feature, an important topic is the construction of 
special purpose linear filters to modify data to meet particular objectives or 
to display specific features of the data. Methods for combining linear filters, 
by which a variety of special filters can be obtained, will be given in this 
chapter. We will show how high-pass, band-pass, and notch filters can be 
constructed from low-pass filters. Although much of the necessary filtering 
can be done electronically when the data is still in analog form, it is often 
more convenient to do the filtering after sampling the series. Thus, these con- 
structions are also of considerable importance for the design of digital filters 
which will be considered in Chapter 6. 

79 
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The importance of linear filters in the construction of stochastic time 
series models is due to the fact that they convert weakly stationary stochastic 
processes back into weakly stationary processes in an easily describable way. 
Because of this technical feature, they are used to provide the "dynamic"  
connecting links between time series in virtually all of the useful stochastic 
models employed in applications. Examples will be given in Chapter 5. 

The important continuous-time linear filters will be defined in this 
chapter and their properties illustrated. Linear differential equations with 
stochastic inputs will be seen to be a special topic that can be dealt with under 
the more general theory of inverting linear filters. 

4.2 LINEAR FILTERS 

Because of the applicability of linear filters to a variety of different time 
series models, it is instructive to discuss them initially at a more or less 
intuitive level that isolates the features common to all models. A more 
precise discussion for the case of weakly stationary processes is given in the 
Appendix. The name "linear filter" is used in place of the more accurate 
(but more cumbersome) title "time-invariant linear transformation." The 
natural domain of a linear transformation is a vector space. Without being 
specific about the particular space in question, the vectors of the space will be 
(possibly) complex-valued time series {x(t)}, stochastic or nonstochastic, and 
in continuous or discrete time. The bracket notation will be used for a brief 
time to distinguish between the entire time series 

{X(t)} = {X(t) : - - ~  < t < ~} 

and its value at time t which is denoted by x(t). 
We define two time series to be equal, 

{x(t)} = {y(t)}, 

if x(t) = y(t) for all t. 
The operations of scalar multiplication and addition are defined coordi- 

natewise by the expressions 

~{x(t)} - (~x(t)}, 

where ~ is a complex constant and 

{x(t)} + {y(t)} = {x(t) + y(t)}. 

That is, c~{x(t)} is obtained by multiplying each component x(t) by ~ and 
{x(t)} + {y(t)) is the time series obtained by adding x(t) and y(t) at each time t. 
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The complex constant ~ will, in some cases, be a random quantity. " C o n s t a n t "  
is interpreted to mean " n o t  a function of t." 

A linear filter L transforms a time series {x(t)}, the input, into an output 
time series {y(t)}, 

{y~t)} = L({x(0)) .  

Time-invariant, linear transformations have three basic properties: (i) scale 
preservation, (ii) superposition, and (iii) time invariance. These properties 
can be expressed symbolically as follows: 

(i) scale preservation: 

C (o~{x(t)}) = ~L ({x(t)}); 

(ii) 

(iii) 

the superposition principle." 

C({x(t)} + {y(t)}) = C({x(t)}) + L({y(t)}); 

time invariance: If L({x(t)})= {y(t)}, then 

L({x(t + h)}) -- {y(t + h)} 

for every number h, where {x(t + h)} and {y(t + h)} are the time series whose 
values at time t are x(t + h) and y(t + h), i.e., the time series obtained from 
{x(t)} and {y(t)} by shifting the time origin by the amount h. 

These properties can be described, in words, as follows: a transformation 
preserves scale if an amplification of the input by a given scale factor results 
in the amplification of the output by the same factor. The superposition 
principle states that if two time series are added together (in the sense that 
the amplitudes at each point are summed) and presented as the input to the 
filter, then the output will be the sum of the two time series which would 
have resulted from using the two initial series as inputs to the filter separately. 
The time invariance property requires that if two inputs to the filter are the 
same except for a relative displacement in time, then the outputs will also be 
the same except for the same time displacement. Intuitively, this means that 
no matter what time in history a given input is presented to the filter, it will 
always respond in the same way. Its "behav io r"  does not change with time. 

The first two properties combine to express the linearity of L :  

L(c~{x(t)} + fl{y(t)}) = ~L({x(t)}) + flL({y(t)}). 

By applying this expression inductively the linearity property can be extended 
to any finite number of time series {xj(t)} and complex constants ~j, 

j = 1 , 2 , . . . , N ,  

(jN.~= IOtj{xj(t)}) N L = ~ o~j L{xj(t)}. (4.1) 
j=�94 
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Moreover, under suitable conditions, the linearity property is preserved or, 
more properly, can be defined to hold "in the limit" as N-~ oo. The actual 
type of limit will depend on the particular model. In some cases the sum in 
(4.1) will become an infinite series and in others an integral. We will combine 
all possibilities symbolically by the expression 

L ( ~  o~3.{x3.(t)}) = ~ 

where c~3. and {x3.(t)} are, respectively, complex constants and time series 
belonging to infinite collections indexed by the parameter 2. 

At this point, we will drop the bracket notation L({x(t)}) in favor of the 
more commonly used notation L(x(t)). This notation will be subject to a 
certain amount of abuse in what follows. In some instances, L(x(t)) will 
denote the entire output series with input {x(t)}. In others, it will denote the 
value of the output series at time t. Thus, for example, the time invariance 
property can be written L(x( t ) )= y(t) implies L(x(t + h)) = y(t + k), with 
the understanding that L(x(t + h)) is the response of L at time t to the entire 
input series whose value at time t is x(t + k). 

With the substitution x3.(t) = e iz', the above expression becomes 

This is an extremely important relationship because it implies that for any 
time series which can be represented in the form 

x(t) = ~ ~3. e iz', (4.3) 
3. 

tke action of  a linear filter on x(t) is completely determined by wkat it does to 
the complex exponential functions e ~' for all 2. However, every type of time 
series we have considered in Chapters 1 and 2 has a representation of this 
form (although the ensuing results cannot in general be applied directly to 
the functions of Section 2.2). Almost periodic functions and functions 
possessing Fourier transforms have this form virtually by their definitions. 
Weakly stationary stochastic processes have the spectral representation 
given by (2.22). Thus, the description of the output of a linear filter L to any 
of these inputs depends only on the value of L(e ~3.t) for each 2. We will now 
show that properties (i)-(iii) of a linear time-invariant transformation com- 
pletely determine the form of L(e ~') in a simple and elegant way. 

The Form of L(e ~') 

Let L be any linear filter and for fixed 2, denote the response of L to 
e iz' at time t by q)a(t), 

L(e iz') = r 
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By property (iii), for any h, 

L(eiZt,+h)) = q~(t + h). 

However e ia(t+h) =eiZhe i~t. Consequently by property (i), since e iah is a 
complex number which does not depend on t, 

L(eiX(t +h)) = L(eiZheiZt) 

= ei~'hL(e i;tt) = ei~'hq~.(t). 

By the definition of equality for time series, these expressions yield the 
equation 

q~(t + h) = ei~hq~(t) for all 2, t, h. 

Now, set t = 0. This yields 

~p~(h) = ~oz(0)e izh. 

Then, since h is simply a value of the output time parameter, we can set h = t 
to obtain the important result 

L(e i~t) = B(2)e i~t, (4.4) 

where B(2)= q~(0). It follows that each linear filter L transforms e izt back 
into e i~t multiplied by a factor B(2) called the transfer function o f  the filter. 
Moreover, this function is uniquely determined by the response of the filter 
to the input e i~'t. 

Combining (4.4) and (4.2) we obtain 

L (x(t)) = ~ o~,~ B(2)e '~t. (4.5) 
A 

This expression represents the output of the filter in the same form as the 
input with the amplitudes c~x replaced by ccxB(2). It shows that the action o f  
L on x(t) is completely determined by the transfer function o f  the filter. The 
right-hand side will "make  sense" and the interchange of L and sum in (4.2) 
will lead to a well-defined time series if whatever conditions required of 
~ to validate the representation (4.3) are also satisfied by c~ zB(2). We will 
discuss this in the various particular cases of interest below. A better feeling 
for the effect of the filter on time series can be obtained by writing (4.3) in 
the form 

X(t) = y '  10r l e i(a' +~,(a)), 
X 

where I c~xl is the amplitude and ~(2) is the phase angle of cr Write B(2) in 
polar form, 

B(2) = IB(X) le ~~ (4.6) 
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Then (4.5) becomes 

Z(x(t)) = ~ Io~al [n(fl)le i(a'+~'(a)+a(a)). 

That is, the amplitude at each frequency fl is multiplied by the factor I B(fl)[ 
and the phase is changed from ~(fl) to ff(fl)+ 0(fl). This completely specifies 
the action of  the filter on the input. 

This property provides an important characterization of linear filters. 
Thus, for example, transformations for which the amplitudes and phases 
change as a function of time or for which power is transferred from one 
frequency to another are either nontime-invariant or nonlinear. In particular, 
a linear filter cannot convert a time series with a discrete spectrum into one 
with a continuous spectrum nor can the reverse conversion take place. Thus, 
the discrete component of  the input spectrum is always mapped into the discrete 
component of  the output by a linear filter and the same is true of  the continuous 
spectral component. 

The functions [ B(2)] and 0(fl) = arg B(fl) are called the gain and phase(shift) 
functions of the linear filter. In all cases of interest, x(t) is a real-valued time 
series, which implies that ~_ ~ = ~ .  Since ~ B(2) is the coefficient of e iat in the 
representation of L(x(t)), the filter output will be real-valued only if 

B ( -  2) = B(2). 

It follows that the gain and phase functions satisfy the relationships 

] U ( - 2 ) ]  = I B(2)[ (4.7) 

and 

0 ( - 2 )  = -0(2) .  (4.8) 

These functions provide an equivalent but somewhat more convenient 
representation of a linear filter than does the transfer function. Thus once 
these functions are known, the filter is completely specified. 

Before looking at specific kinds of linear filters we will investigate the 
conditions under which (4.5) holds for the various time series models we have 
considered. These conditions are called matching conditions, since they match 
the filter to the input to produce a "va l id"  output. 

The Matching Condition for a Nonstochastic 
Almost Periodic Function 

An almost periodic function with finite power has the representation 

oo 

x( t) = ~ Ck e iak', -- o0 < t < o0, 
k = - o o  
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with ~ff=_oo I Ck[ 2 < c~. If L is a linear filter with transfer function B(2), it 
follows that 

c o  

L(x(t))= ~ CkB(2k)e i~'. 
k -  - 0 o  

This output will be a well-defined almost periodic function with finite 
power if 

O(3 

I Ck 12[B(/~k) 12 < ~ .  (4.9) 
k - -  - ~  

This is the matching condition. 

The Matching Condition for Nonstochastic 
Functions with Finite Energy 

If x(t) is a real-valued function for which 

o(3 

f x2(t) dt < ~ .  
- - C O  

then, as was seen in Example 1.4, 

O(3 

x(t) = f h(X)e~' d,~ 
- - 0 ( 3  

with 

Now, if 

it follows that 

o(3 

- - 0 ( 3  

O(3 

f [h(A)[21B(A)[ ~ dA < o0, 
- - o ( 3  

(4.10) 

o(3 

L(x(t)) = f h(2)B(A)ei~' d2 
- -  0 0  

is a well-defined function with finite energy. Thus, the matching condition is 
(4.10). 

The Matching Condition for Weakly Stationary 
Stochastic Processes 

This is the case in which we will be most interested. If X(t), - ~  < t < ~ ,  
is weakly stationary (in continuous or discrete time), then the spectral 
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representation theorem yields 

X( t) = f ei~tZx(d2). 

The limits of integration are - ~ ,  ~ and - n ,  n in the continuous- and 
discrete-time cases, respectively. The condition that X(t) has finite power is 

(Fx(d2) = C(O) < ~ .  
, I  

Now, 

Y(t) = L(X(t)) = f eiatB(2)Zx(d2) 

represents the output of L as a weakly stationary process with spectral measure 

Zr(d2 ) = B(2)Zx(d2 ). (4.11) 

Thus, 

Fr(d2) = El Zy(d2) [ 2 -- ] B(2) lZFx(d2), (4.12) 

and the output will have finite power if S Fr(d2) < oo. Therefore, the matching 
condition is 

f [B(2)[ZFx(d2) < oo. (4.13) 

Relationship between Input and Output Spectral Functions 
and Spectral Density Functions 

By (4.12) the spectral functions and spectral density functions of input 
and output are related by the expressions 

pr(~) -- I B(A) 12Px(2), (4.14) 

fr(2) = IB(2) 12fx(2). (4.15) 

The simplicity of these relationships is one of the most important reasons 
for preferring the frequency domain representation of time series to the 
equivalent time domain representation. 

It is important to note that even though the spectral representation of the 
time series defined in Section 2.2 cannot be used directly to compute spectra, 
the properties of the spectra under linear transformation are precisely the 
same as those for weakly stationary processes. Thus, if the matching condition 
(4.13) is satisfied, where Fx(2) now represents the Wiener spectral distribution 
function of the input, then the output spectrum is again given by the first 
and last expressions of (4.12) and by (4.14) and (4.15). Consequently, from 



4.2 L I N E A R  F I L T E R S  87 

the viewpoint of computing spectra for time series models, ifa stochastic or 
nonstochastic function of finite power is included in the model, it can be 
replaced, operationally, with a weakly stationary process and the resulting 
calculations will be correct. 

Specific Types of Linear Filters for Continuous-Time 
Processes 

We now look at some important types of linear filters for continuous- 
time processes. First, observe the following, easy-to-remember principle for 
computing the transfer functions of linear filters based on expression (4.5). 
Apply the filter to the time series x ( t )= e i~t. The coefficient of  e iat in the 
the resulting output expression is the transfer function B(2). 

The Derivative and High-Pass Filters 

We look at the derivative defined in Example 2.2 from the viewpoint of 
linear filtering. From the discussion given above, the derivative can be defined 
for a variety of continuous-time series. Using the principle for deriving the 
transfer function just given, 

d e  iAt 
L ( e  i~'t) = = iAe i~t. 

dt 

From this we have 

Thus, the gain function is 

and the phase shift is 

B(2) = i2. 

I B(2) I = 121, 

0(2) = arg B(2) = t {re/2, 
-= /2 ,  t 

2_>0, 
2 < 0 .  

It is customary (though not universal) to graph the square of the gain 
function IB(2)12 rather than the gain function itself since this is the factor 
which multiplies the input spectrum to obtain the spectrum of the output. 
This function is given for the derivative in Fig. 4.1. Note that the power in 
small frequencies is attenuated or decreased while the power in higher fre- 
quencies is magnified. 

A filter which passes high frequencies and cuts out low frequencies is called 
a high-pass filter. The gain function of an ideal high-pass filter is given in 
Fig. 4.2. Note that the ideal is to completely eliminate the power below a 
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-I I h 

Fig. 4.1 Graph of the squared gain function for the derivative. 

given frequency 20, called the cutoff frequency, and to pass unchanged the 
power above this value. 

Clearly, the derivative is anything but ideal as a high-pass filter. It magni- 
fies the power in the high frequencies to such an extent that for some time 
series the input cannot be matched to the derivative. Intuitively, the derivative 
magnifies the power in the higher frequencies in such a manner that the output 
has infinite power. For example, a time series with continuous spectrum 
defined by the spectral density function 

t, I 1<1, 
f(2) = 1/22 , 1, 

would not have a derivative. Now, it is an important fact from the theory 
of stochastic processes that if a valid spectrum (or autocovariance function) is 
specified, then there exists a stationary Gaussian process with that spectrum. 
Thus, models of time series which cannot be differentiated are easy to con- 
struct, in theory. These models will not apply to time series encountered in 
"real-life" since the power in real time series is effectively zero for large 

1 
I 

I 
-X  0 

18(x) l  2 

I 
I 

I 
ho 

Fig. 4.2 Squared gain function of ideal hi#h-pass filter which passes the frequencies 
I,~1--- ,Xo. 
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enough values of 12[. However, they do crop up as theoretical models for 
such phenomena as turbulence. 

The Convolution Integral 

Let h(u) be a real-valued function. One of the most important time domain 
representations of a linear filter is the convolution integral 

oo 

L(x(t)) = f h(u)x(t - u) du, 
- - ( 3 0  

- ~  < t  < c~. (4.16) 

It is easy to check that the three properties of a linear filter are satisfied 
by this type of operation on time series. The properties of the filter are com- 
pletely determined by the function h(u) called the impulse response function. 

Although we will make little use of generalized functions in this book, it is 
instructive to introduce the usual model for an impulse, the Dirac delta 
function 6(t), in order to understand the reason for the term "impulse 
response." The delta function has the property that for every " reasonable"  
function 9(t), 

t ~  oo  

| g(t)cS(t) dt = g(O). 
i i  

- - ( 3 0  

That is, the delta function has a spike at t = 0 which picks out the value of 
the function 9(0 at that point. 

Now, if the delta function is used as the input to the convolution integral, 
we obtain 

, , o 0  

L(O(t)) : J h(u)6(t - u)du = h(t). 
- -  0 0  

That is, h(t) is the response of the filter to the impulse function input. 
Some condition must be imposed on the impulse response function to 

guarantee a proper match of the filter to various inputs. Note, that by the 
principle for obtaining the transfer function of the filter, 

) L(e iat) = f h(u)e i~(t-u) du = h(u)e -u" du e i~'. 
- - ( 3 0  - - 0 0  

Thus, the transfer function is the Fourier transform of  the impulse response 
function, 

o o  

B(2) = f h(u)e- i,~, du. (4.17) 
- - ( 3 0  

In Example 1.4 we saw that if 

(3O 

f Ih(u)l du<c~, 
- - O 0  

(4.18) 



90 4 L I N E A R  F I L T E R S m G E N E R A L  PROPERT I ES  

then B(2) is a bounded function. It is easily checked that the filter will then 
match any of the time series models given above. 

A linear filter is said to be stable if whenever the input is bounded, the 
output is also bounded. Consider a convolution filter with impulse reponse 
function h(u) and let the input satisfy the inequality 

Then, since 

Ix(t)l ~ M, - o o  < t < ~ .  

oo oo 

[y(t) l ~ f I h(u)] Ix(t -- u) l du <~ M f  [h(u) l du, 
- - O O  - - O O  

it follows that (4.18) is a sufficient condition for the filter to be stable. If 
h(u) = 0 for u < 0, then the convolution integral becomes y ( t ) -  L(x(t))= 
~ h(u)x(t - u) du, and the output at time t is seen to depend on the input only 
for times s _< t, i.e., on the present and past of x(t). Filters with this property 
are called realizable. 

When the input is a weakly stationary process, the usual condition im- 
posed on the impulse response function is 

(X3 

f h2(u) du < (4.19) oo. 

In this case, by the Parseval relation, we have 

oo 

f I B(~)I ~d~< oo. 
- - o 0  

If the input process has a continuous spectrum, then, because of expression 
(4.15), the matching condition will be satisfied it' the spectral density is 
bounded. In fact, the spectral density need not even have a finite integral. 
This makes it possible to consider generalized stochastic processes with 
bounded spectral densities but possibly infinite power as the inputs to such 
filters with perfectly well-defined, finite-power outputs. 

For example, a generalized weakly stationary stochastic process which is 
often used as the input to convolution filters is the continuous-t#ne white noise 
process ~(t), - ~  < t < ~ .  This is a weakly stationary process with zero mean 
and autocovariance function 

0 2 > 0 ,  r = 0 ,  
C(~) = 0, r # 0. 

Since this function is not continuous at r = 0, the sample functions of the 
process are exceedingly jumbled. However, the process has a continuous 
spectrum and the spectral density is 

f(2) = a2/2n, - o o < 2 < o o .  
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This function has infinite integral, thus the total power of the process is 
infinite. However, the spectral density is bounded and the output Y(t)  of 
any convolution filter with input e(t) will have spectral density function 

fy(2) = (a2/2~) I B( ;)12, - o o < 2 < o o .  

Since this function is integrable as a consequence of (4.19), the output has 
finite power. A standard application of the continuous white noise process is 
given in the following example. 

Example 4.1 First-Order Linear Differential  Equations with White  Noise 
Inputs 

A simple physical system subjected to a random input might be described 
in terms of the differential equation 

dX( t )  
+ aX( t )  = ~(t), 

dt 
- - ~  < t <  cx3. 

The solution of this equation over a time interval - b  < t < ~ is 

t 
X ( t )  = ce -"~t+b' + e -"t  f e""e(u) du 

-b 

f ~ + t ave( = ce -a(t+b) + e -  t -- v) dv. 

If a > 0, the transient term c e x p ( - a ( t  + b)) "washes o u t "  as b ~ m and 
the s teady state solution for the time interval - ~  < t < ~ is 

O(3 

X(t )  = fo e -  a"e(t - v) dr. 

Thus the solution is the output of a convolution filter with impulse response 
function 

e-  ,u, u > 0, 
h (u )=  0, u < 0 .  

This function clearly satisfies (4.19). Note also that this filter is realizable. 
This is an important property, since it is implicitly assumed that the filter is 
operating in real time, i.e., on the present and past of the input. If a < 0, 
then a real-time stationary solution does not exist. 

Now, by (4.17), 

B(2) = fo e - " " e -  ~'' du = 1/(a + i2) = (a - i2)/(a 2 + 22). 
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The squared gain is 
[B(2) I 2 = 1/(a 2 + 22). 

Thus, the spectral density function of the process X(t) is 

fx(2) = az/zrt(a 2 + 22). 

Low-Pass Filters 

Intuitively the filter in Example 4.1 attenuates the high-frequency power 
of the input to such an extent that the remaining power is finite. A filter that 
attenuates high frequencies and passes low frequencies relatively unchanged 
is called a low-passfilter. An ideal low-passfilter would cut off all of the power 
above a prescribed frequency 21, and leave untouched the frequencies below 
that point. The squared gain function of such a filter is shown in Fig. 4.3. 

IB(X) I  2 

- k  1 0 k 1 
k 

Fig. 4.3 Gain function of  ideal low-pass filter which passes frequencies I AI ~ A,. 

The filter of Example 4.1 is a good illustration of a low-pass filter that 
can be (nearly) realized in practice. The recursive exponential filter to be 
discussed in Chapter 6 is the discrete-time equivalent of this filter with 
comparable transfer function characteristics. See Fig. 6.3 for the gain 
function of the exponential filter. 

The attenuation of high-frequency power leads to time series with smooth- 
er, less erratic appearance. For this reason, low-pass filters are often called 
smoothin9 filters. An example in which the smoothing is a natural and desir- 
able operation is the following: 

Example 4.2 Accumulated Processes and Their Aliased Spectra 
In many instances, discrete time series are obtained as the accumulation of 

"mater ia l"  during equally spaced intervals of time. Thus, for example, the 
thicknesses of tree rings are the yearly accumulations of wood produced by 
the continuous growth process of the tree. The daily receipts of a business 
are the total of funds accumulated on a minute by minute basis during the 
business day. 
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A mathematical model of an accumulated series is the following. Let X(t) 
be a weakly stationary time series which represents the instantaneous activity 
of the underlying process and let Y(t) denote the accumulated process. Then, 
in a time interval of length du centered at t = u, the contribution to Y(t) 
is X(u) du. If the length of time over which the accumulation takes place is T, 
then we can represent Y(t) as a function of X(t) by the expression 

t ~  t 

Y(t) = | X(u) du. 
.' t - T  

Next, a discrete time series is formed by sampling Y(t), most commonly 
at a sampling interval At < T. Thus, indirectly, the variations in the discrete 
process Ya,(k)= Y(k At) are due to variations in the X(t) process and this 
dependence can be easily understood by obtaining the transfer function of the 
transformation of X(t) into Y(t). 

For simplicity, rescale X(u) by the factor lIT. Then, by the change of 
variables v = t -  u, the above representation can be written in the form 

Y(O = =r x ( t -  v) av. 

This is a convolution filter with impulse response function 

[ I/T, O<_ ~<_ V, 
h(v) = ~0, otherwise. 

The transfer function of this filter is 

B(2) = -~ e -lay dv = e-iar/2 sin(2T/2). 
27"/2 

Consequently, the gain function is 

I B ( 2 )  I - 
sin(2T/2) 

27"/2 

A graph of the squared gain function is given in Fig. 4.4. 
Now, maximum aliasing occurs for At = T. The Nyquist folding frequency 

is then 
2N = ~/T. 

Thus, from Fig. 4.4 it is seen that the power from frequencies rc/T < 12[ < 2rc/T 
is folded back into the range ( -2N ,  2N] but essentially no power from other 
frequencies contributes to the aliasing problem. Moreover, the low-frequency 
part of the aliased spectrum will be virtually identical to the spectrum of X(t) 
over the same range. Since it is generally the low end of the spectrum that is of 
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Fig. 4.4 Squared gain function o f  the accumulation filter.['or At -- T with aliasedpower 

range cross-hatched. 

interest and since it is characteristic of physical time series that the high- 
frequency power of the X(t) series is significantly smaller in magnitude than the 
power in the lower frequencies, aliasing will generally not be a problem. 
Thus, for example, an 11-year period which might be discovered in (yearly) 
tree ring data could be expected to be due to an I 1-year cycle in the growth 
mechanism of the tree rather than to its closest alias, an 11/12-year or 334 +- 
day cycle. Aliasing will be even less of a problem for smaller At. 

The following example illustrates the ideal version of a type of linear 
filter of practical interest. 

Example 4.3 The Ideal Amplifier 
Electronic amplifiers are complex and expensive pieces of equipment 

involving both linear and highly nonlinear components. The sum purpose of 
these devices (aside from suppression of extraneous noise) is to convert a 
weak signal into a strong version of the same signal with as little distortion as 



4.2 LINEAR FILTERS 95 

possible. The more closely the amplifier approaches the ideal of no distortion 
over a wide band of frequencies, the more complicated and expensive it 
must be. 

As will be argued shortly, since amplifiers are constrained to operate in real 
time, they will necessarily shift the phases of the incoming signal to some 
extent. To avoid distortion, the ideal would be to shift all phases in such a 
manner that the frequency components of the output are displaced in time 
relative to those of the input by the same amount ~. In this way, the entire 
input would be simply displaced by ~ time units. Thus, the mathematical model 
for a realizable ideal amplifier could be described by the expression 

A(x( t ) )  = cx(t  - z), 

where the positive constant c is the amplification factor and �9 is the time delay 
imposed on the input x(t).  However, this is easily seen to be a linear filter. 
Moreover, by applying the filter to e ia', it can be checked that the transfer 
function is 

B(2) = ce-i2~. 

Thus, the gain and phase functions are 

[B(2) I = c and 0(2) = - z2. 

That is, the response (gain function) of an ideal amplifier is " f la t "  and the 
phase shift is a linear function of 2. 

Modern high-fidelity amplifiers come very close to achieving the ideal over 
rather wide frequency ranges. This has made possible the accurate ampli- 
fication of signals previously recorded with low fidelity or not recorded at all. 
Thus, for example, the detailed analysis of such data as electroencephalo- 
grams, electrocardiograms, seismograms, and cosmic ray records has been 
made a reality in large part by the development of modern recording and 
amplifying equipment. 

The Time Shift Parameter 

Example 4.3 suggests the definition of a new parameter equivalent to 
the phase shift. Whereas 0(2) measures the angular displacement of the output 
phase relative to the input at frequency 2, the parameter 

r(2) = 0(2)/2, 2 4= 0, (4.20) 

which we will call the time shift funct ion,  measures the phase shift in time units. 
Thus, if I B(2)] and 0(2) are the gain and phase shift of a linear filter L, 
respectively, we will have 

L(e i~t) = ] B(2) [ e ia('+~)). 
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Consequently, L displaces the time origin of the harmonic of frequency 
2 by T(2) time units. Note that since both 0(2) and 2 are odd functions, r(2) 
is an even function of 2. 

In the example of the ideal amplifier, 

,(2) = - , ,  - o o  < ;t < oo. 

That is, all harmonics were displaced back in time by the same amount. 
When this is not the case, phase distortion takes place. Thus, for example, 
the derivative, for which 

suffers greatly from phase distortion when 12l is small but less so as [2[ 
becomes larger. Since the lower-frequency components are greatly attenuated 
relative to those with higher frequencies [[B(2)[ 2 =1212], relatively little 
phase distortion would actually be observed in the output. 

Symmetric Filters 

A convolution filter for which r ( 2 ) -  0 ( 2 ) -  0 for all A will necessarily 
have a symmetric (even) impulse response function and, for this reason, is 
called a symmetric filter. 

To see why this is true, observe that 0(2) = 0 for all 2 only if B(2) is real- 
valued. Moreover, this function is the Fourier transform of the impulse 
response function by (4.17). However, as is easily argued, the Fourier transform 
of a real-valued function can be real-valued only if the function is even. Note 
that since symmetric filters operate simultaneously on the past and future 
of the input series, they cannot be realizable unless they are instantaneous, 
i.e., unless L(x(t))= cx(t) for some constant c. It follows that noninstan- 
taneous realizable filters will always have 0(2)4:0 for some (usually most) 
values of 2. This was noted in our last example. Symmetry of the filter is 
necessary but not sufficient for 0(2) = 0 for all 2. The condition a filter must 
satisfy to guarantee this property is discussed in Section A6.2. 

4.3 COMBINING LINEAR FILTERS 

Two important methods of combining linear filters to produce new 
filters are the following: 

(i) Linear combinations of filters: I f  L1 and L2 are linear filters with 
transfer functions B1(2) and B2(2), both matched with the input x(t), then the 
transformation L3 = aLl + bL2, defined by 

L3(x(t)) = aLl(x(t)) + bLz(x(t)), 
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is again a linear filter, matched with x(t) for any pair of complex numbers 
a and b. Moreover, the transfer function of this filter is 

B3(,~ ) - - a B e ( 2 )  + bBz(2 ). 

(ii) Sequential application of filters: I f  L 1 and L 2 are linear filters with 
transfer functions B1(2 ) and Bz(2 ) such that L 1 is matched with x(t) and L z is 
matched with L,(x(t)), then the transformation L 4 = L 2 L,, defined by 

L4(x(t)) = L2(Lx(x(t)), 

is a linear filter matched with x(t) with transfer function 

B4(2) = B2(2)B,(2). 

The inputs can be of any type for which a spectral representation is defined 
and a matching condition is satisfied. However, to simplify the ensuing 
discussion we will restrict attention to weakly stationary processes. The theory 
can be applied to processes in either continuous or discrete time by the appro- 
priate interpretation of the transfer functions. This fact will be utilized in 
Chapter 6. 

That the linear combination filter L3 matches X(t) if Lx and Lz do is a 
simple consequence of the Minkowski inequality (Section 1.3). The order 
in which the terms appear is quite immaterial. That is, aL 1 + bL2 = bLz + aLl. 
This is not the case with the sequential filter, however. Although the transfer 
function of L 4 is the product BI(2)B2(2) and this product commutes, the 
order in which the matching conditions are to be satisfied does not. The 
matching conditions for the filter L 2 L~ are 

f [B~(2)lEF(d2) < oo and f IB~(2)Bz(2)[EF(d2) < oo. (4.21) 

The second condition is a consequence of the fact that the spectral distribu- 
tion of the process L~(X(t)) is IBI(2)JZF(d2) and this time series is the input 
to L2. It is possible for both of these conditions to be satisfied but for 

[Bz(2)]ZF(d,~) t o  be infinite. Then, L 2 does not match X(t) and the filter 
L1L 2 would not be defined. However, if, in addition to the above conditions, 

f[Bz(2)[ZF(d2) < oo, (4.22) 

then L 4 = L 2 LI = L1L2. 
The gain and phase functions of the sequential filter are related to those of 

L1 and L 2 in a simple way; 

[ B4(2) I - I B,(2)I I Bz(2) 1, (4.23) 

,94(2) = 01(2 ) + 02(2). (4.24) 
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Explicit expressions for the gain and phase shift functions of Lz must be 
determined in each case from the real and imaginary components of B3(2). 
No simple general expression in terms of the gain and phase shift functions 
of L1 and L 2 exists. We now give some applications of these methods for 
combining filters. 

Construction of High-Pass Filters from Low-Pass 
Filters 

The identity filter, or do-nothin9 filter, as it is sometimes called, is defined 
by 

I(X(t))  = X(t). 

The transfer function is easily seen to be 

B(2) = 1. 

This filter matches any input. Let L be any low-pass filter matched to the input 
X(t). For convenience take L to be the ideal symmetric low-pass filter with 
transfer function 

1, < 
3(2) = I B(2)[ = 0, otherwise. 

Now pass X(t) through L and subtract the result from X(t). Call this series 
Y(t); 

Y(t) = X(t) - L(X(t)) .  

These operations define the linear combination filter 

L 3 = I - L  

which has the transfer function 

B3(2 ) = 1 - B(2) 

_ t o, I l-< ,h,  
1, otherwise. 

This is the ideal symmetric high-pass filter with transfer function graphed in 
Fig. 4.2 with cut-off frequency 20 = 21. 

This example illustrates an important general rule for constructing high- 
pass filters from low-pass filters; 

high-pass(X(t)) = X ( t ) -  low-pass(X(t)). 
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The transfer function of the high-pass filter I - L  is always 1 - B ( 2 ) ,  
where B(2) is the transfer function of the low-pass filter L. The gain and 
phase shift of I -  L can be obtained from the expressions 

I1 - B ( 2 ) [ -  [(1 - Re B(2)) 2 + (Im B(2))2] '/2, 

arg(1 - B(2) )=  A r c t a n [ - I m  B(2)/(1 - Re B(2))]. 

Band-Pass Filters 

A high-pass and low-pass filter can be combined sequentially to produce 
a filter that removes or attenuates all but a band of frequencies from the 
input. Again, for illustrative purposes, we will consider the ideal symmetric 
high- and low-pass filters of Section 4.2. Let L~ be the low-pass filter with 
transfer function 

l, 
B~(2) = 0, otherwise, 

and L2 the high-pass filter with transfer function 

0, 
B2(2) = 1, otherwise, 

where 0 < 2o < 22. Since both filters match any input of finite power and 
B~(2)B2(2) < B1(2), both (4.21) and (4.22) are satisfied and the order in 
which the filters are applied is immaterial. Thus L4 = L 1 L 2 - - L 2 L 1  has 
transfer function 

1, Ao _< IAI _< 21, 
B4(2) - B~(}t)B2(2 ) -- 0, otherwise. 

This is simultaneously the transfer function and gain function of an ideal 
symmetric band-pass filter. See Fig. 4.5 for a graph of this function. The 
interval [20, 21] is called the pass-band of the filter. 

i - - l ~  

i I 
I 
! 

I ,i 
-X, -~'o Xo 

Fig. 4.5 Graph of the transfer functions of an ideal symmetric band-pass filter and the 
high- and low-pass filters from which it is obtained. ' --- ,  BI(A)" �9 , B2(A)" --, B4(A). 
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As a general principle, any properly overlapping high- and low-pass 
filters can be used to obtain a band-pass filter; 

band-pass(X(t)) = high-pass(low-pass(X(t))) 

= low-pass(high-pass(X(t))). 

Band-pass filters are used, for example, when the properties of the time series 
attributable to a prescribed range of frequencies are to be studied. One of the 
oldest methods of spectrum analysis, used primarily on analog data but with 
recent digital applications, is to estimate the power in a given frequency band 
A by filteringthe time series with a band-pass filter having a pass-band as close 
as possible to A then measure the power of the filtered series. The filtering 
and power measurement operations are carried out electronically in the 
analog situation. 

By taking a sequence of such filters with pass-bands covering the entire 
frequency range, an overall view of the spectrum can be obtained. For multi- 
channel discrete time series data with a large number of channels this tech- 
nique has also been used by employing digital band-pass filters. This method 
does not yield the degree of spectral resolution obtainable by most of the 
techniques we will discuss in Chapters 8 and 9. However, it has the advantage 
that large quantities of data can be processed with reasonable dispatch. 
Moreover, it permits real-time estimation of the spectrum which has advan- 
tages if the time series is nonstationary. For then, " loca l"  estimates of the 
spectrum can be obtained as time progresses. 

Notch Filters 

By the operation 

L ( X ( t ) )  = X( t )  - band-pass(X(t)), 

a notch f i l ter  is formed which deletes a band of frequencies from a time series. 
If the ideal symmetric band-pass filter given above were used, the transfer 
function of the corresponding ideal symmetric notch filter would be 

0, 
B(2)= 1, otherwise. 

If several band-pass filters L~, L 2 ,  . . . ,  L, with nonoverlapping pass-bands 
A I ,  A 2 . . . . .  A n are applied to X ( t ) o n e  at a time and the filtered series sub- 
tracted from X(t) ,  the result, 

L -- I -  (L1 + t 2 + " ' "  + L,), 

is a notch filter with notches A1, A2, . . . ,  A,. A graph of the squared gain 
function of such a filter based on ideal band-pass filters is given in Fig. 4.6. 
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A1 A2 A4 

X 

Fig. 4.6 Squared gain function of  an ideal notch filter with four notches. 

Since 9ain functions are always symmetric about 2 = 0, we will, hereafter, 
9raph them only for 2 > O. 

In theory, notch filters can be used to eliminate lines from the spectrum. 
A narrow notch is simply located over each line. Then, since the output spectral 
function is related to that of the input by 

po.t(A) = I B(A)lZpi.(A), 

any line occurring at a frequency 2 for which B(2)= 0 will be removed. 
This will also affect the continuous part of the spectrum, however, since 

.fou,(2) = I B(2)[~f~n(2).  

Realizable notch and band-pass filters will not have the sharp "cutoff"  
features of the ideal filters. It is not possible, for example, to construct a 
notch filter for which ]B(2)[ = 0 for intervals of frequencies. Thus, spectral 
lines, which actually appear as narrow peaks in the spectrum for reasons which 
will be given in Section A8.2, can be largely but usually not entirely removed 
with notch filters. 

It is interesting to reflect on the fact that all of the above filters were 
constructed from low-pass filters by the two basic operations for combining 
linear filters. Thus, with a single computer package of low-pass filters with 
various cutoff frequencies, a large variety of special purpose filters can be 
designed for processing time series. This important feature will be exploited 
in the design of digital filters in Chapter 6. 

The sequential application of filters also admits the possibility of con- 
structing filters by repeating the same linear filter several times. This topic is 
considered next. 
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Repeating Linear Filters 

If a linear filter L with transfer function B(2) is applied n times to a weakly 
stationary time series X(t) with spectral distribution F(A), the resulting 
operator Ln will be a linear filter matched with X(t) provided 

f IB(2) IZkr(d2) < oo for k = 1, 2 . . . .  , n. 

The transfer function of L n is then Bn(2), the nth power of B(2). Moreover, 
from (4.23) and (4.24), the gain and phase shift functions are I B(A)]n and 
n0(2), where 0(2) = arg B(2). 

As an example of a family of low-pass filters generated by repeating a given 
low-pass filter, consider the filter L of Example 4.1 which has squared gain 
function 

IB( )I  = l/(a 2 + 21). 

Then, taking a = 1, the squared gain of L" is 

I B(~) I z" = 1/(1 + 22) ". 

1 
n=1 

.n-2 

0 X 

Fig. 4.7 Squared gain functions of low-pass filters generated by repeating a given 
/ow-pass fi/ter. 

The squared gain functions are plotted in Fig. 4.7. Note the decreasing length 
of the pass-bands as well as the increasing sharpness of the "cutoff"  with 
increasing n. Repeated linear filters have other important applications as is 
illustrated by the following example. 

Example 4.4 Hiyher-Order Derivatives and Differential Operators 
It is convenient to change the notation for the derivative to conform to 

our filter notation. Thus hereafter D will denote 

D(X(t)) = 
dX(t) 

dt 
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In Section 4.2, the transfer function for D was shown to be 

B(2) = i2. 

Now, D 2, the second derivative, is defined by D 2 ( X ( t ) ) -  D(D(X(t)))  and, 
in general, the nth derivative is the repeated filter D". Consequently, if 

f,~2kF(d~) < for k = 1, 2 O(3 H, 

the time series possesses n derivatives with transfer functions (i2) k, k = 1, 
2 , . . . , n .  

Now, an nth order linear, constant coefficient differential operator L is a 
linear combination of these derivatives 

L = a , D " + a , _ ~ D  "-~ + ' " + a x D + a o L  

where the a f s  are real-valued coefficients and a, 4= 0. This is a linear filter 
which matches an input X(t) provided all indicated derivatives of X(t) 
exist. The transfer function of L is 

B(2) = a.(i2)" + a n _ l ( i ) O  n - 1  + " ' "  + al(iA ) + no.  

The characteristic polynomial of L is defined to be 

P(z) = a,z" + a,_ 1 z"-  ~ + . . .  + a~ z + no, 

where z is a complex variable. It follows that the transfer function is the 
restriction of P(z) to the imaginary axis, 

B(2) = P(i2). 

The characteristic polynomial plays an important role in determining the 
solutions of linear constant coefficient differential equations, where a solution 
is a function x(t) which satisfies the equation 

L(x(t)) = y (  t ) 

over a specified range of t values for a given forcing function y(t). We will 
discuss the solution of such equations when y(t) is a weakly stationary 
stochastic process in the next section. 

Combined and Repeated Convolution Filters 

If Lt and L 2 a re  convolution filters with impulse response functions 
hi(u) and hz(u ) which are bounded and satisfy (4.18), then the operator 
L = L 2 L1 = LIL2 is again a convolution filter which matches any input with 
finite power. The impulse response function of L can be calculated as follows: 
Since 

0(3 

L~(X(t)) = f h,(v)X(t  - v)dr,  
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we have 

L(X( t ) )  = L2(Lx(X(t))  ) = f h2(u ) h, (v )X( t  - u -- v) dv du. 
--00 --00 

By the change of variables w = u + v this becomes 

L(X(t)) = f h2(u)  h,(w- u)X(t-  w)dw du 
~ 00  - - 00  

O0 

= f h ( w ) X ( t -  w)dw,  

where 

oo 

h(w) = f h2(u)hl(W - u) du. 
--00 

This expression is the impulse response function of L. The exchange of in- 
tegrals is justifiable and the operations can be carried out in either order. It 
follows that 

oo oo  

f h 2 ( b l ) h l ( W  - - l d ) d u  --- f h l ( l l ) h 2 ( w  - u ) d R .  
-oo -oo 

Moreover, L is a stable operator if both hi(u) and h2(u ) are square integrable; 
for then 

f I h(w)l dw <_ h,2(u) du hz2(U) du 
-- 00 --00 --00 

by the Schwarz inequality. It is also easily seen that i f  both L1 and L 2 a r e  

realizable, then L is realizable. 
Condition (4.18) and the boundedness condition can be replaced by (4.19). 

If both hi(u) and hE(U) satisfy (4.19), then h(u) is integrable as was just ob- 
served. Thus, the convolution filter will match any input with finite power. 
If, as is often the case, h(u) also satisfies (4.19), then the convolution filter will 
also match inputs with continuous, bounded spectra. 

Since the impulse response function and transfer function are related by 
Fourier transformation, if Bl(2)B2(2 ) is integrable or h(w) satisfies (4.19), 
we can obtain the impulse response function of L = LIL 2 by the expression 

I f  ~176 h(w) = -~n B,(2)B2(2)e izw dZ. 
--00 

These results immediately generalize to repetitions of the same convolution 
operator. Thus, if L has impulse response function h(u), L" will have impulse 
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response function h(n)(u) determined iteratively by the expression 

o o  

h(k~(u) = f h~k-l~(v)h(u - v) dv 
- - 0 0  

O0 

= f h(v)hCk-1)(u - v) dv, k = 2, 3, . . . ,  n, 
- - 0 0  

where h (l~(u) = h(u), or directly by Fourier transformation from 

I f  ~~ h(n)(u) = ~ Bn(2)e i~u d2 

whenever Bn(2) is integrable or square integrable. 
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A commonly occurring question in time series analysis is the following: 
A linear filter L with transfer function B(2) has been applied to a time series 
X(t), to which it was matched, resulting in an output Y(t), 

L(X(t))  = Y(t). (4.25) 

When is it possible to apply another linear transformation, say L*, to Y(t) 
and exactly reproduce X(t) ? This question has a simple answer with important 
consequences. Again we restrict attention to weakly stationary time series. 

Note that if 

B(2) :# 0 for all 2, 

then, taking L* to be the filter with transfer function B*(2)= l/B(2), it 
follows that 

and 

f ]B(2)]ZFx(d2) < oo, 

f IB*(A)B(A)IZFx(d2)- f Fx(d2) < oo. 

Consequently, the filter L*L is well defined and is identical to the do-nothing 
filter I which has transfer function identically equal to 1. By (4.21) it follows 
that L* is matched to Y(t) and 

X(t) = L*L(X(t))  = L*( Y(t)). 

The spectrum of X(t) can be recovered from that of Y(t) by the expression 

Fx(d2) = (1/I U(2)[2)Fr(d2). (4.26) 
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Thus, the invertibility of L follows immediately from the condition B(2) -r 0 
for all 2. 

If B(2) = 0 on a set of frequencies A, then, necessarily, the output spec- 
trum will have zero power on A, since 

Fy(A) = fAJB(2)IZFx(d2). 

Thus, any power the X(t) process might have had for frequencies in A will be 
lost Once lost, this power can never be recovered by an inverting filter, since a 
linear filter cannot create power or transfer it from another frequency range. 
However, if L* is taken to be the linear filter with transfer function 

[l/B(2), 2 r A, 
B*(2) = [0, 2 6 A, 

say, then L*(Y(t)) will be well defined and the spectrum of L*(Y(t)) will 
agree with that of X(t) on A c. 

There is an important application of these results to the statistical esti- 
mation of spectra. As mentioned before, it is often necessary to prefilter a time 
series before estimating the spectrum. The prefiltering can be carried out by a 
(compound) linear filter L and the transfer function B(2) of L can be computed 
by the techniques described above. The spectrum of interest is that of the 
input X(t). However, estimates will actually be obtained for the output 
spectrum. Iffx(2) and fy(2) denote the spectral density functions of input and 
output, and fx(2) and fy(2) denote statistical estimates of these parameters, 
then it is reasonable to take 

fx(2) = (l/IB(2)lz)fr(2). (4.27) 

That is, relation (4.26) is used to define a procedure for correcting the estimates 
for filter bias. This method is quite successful except at frequencies for which 
I B(2) I 2 is near zero. For such frequencies very small variations in fr(2), due, 
for example, to noise or the inherent variability of the estimation process, are 
greatly magnified leading to essentially useless estimates. 

A second question, similar to the one stated above, but not to be confused 
with it, can be posed as the following problem: Given a linear filter L with 
transfer function B(2) and a time series X(t), find a linear filter L* which 
matches X(t) such that the time series 

Y(t) = L*(X(t)) (4.28) 

satisfies the equation 

X(t) = L(Y(t)). (4.29) 
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This is a stochastic functional equation which is to be solved for Y(t). There 
can be a variety of solutions or no solution depending on the interval of time 
for which the equation is to be satisfied, the properties of L and of X(t).  
We will be concerned here only with weakly stationary (steady state) solutions 
which are defined on the interval ( - o o ,  oo). We now indicate the conditions 
under which (4.28) will provide such a solution to the equation. 

Note that there is only one function B*(2) which can qualify as the transfer 
function of L* and produce the result 

L(Y( t ) )  -- L(L*(X( t ) ) )  -- X(t). 

This function is 

B*(2) = l/B(2). 

Thus, the key  condition for  the existence o f  the solution to (4.29) is the matchin 9 
condition for  L* and X(t); 

j_ (1/f B(2)I2)Fx(d2) < oo. (4.30) 
(3O 

For integrals, we assume that the convention 0/0 = 0 holds. Thus, this con- 
dition can be satisfied even when B(2) = 0 on a set A provided it is also true 
that Fx(A)  = 0. If this condition is satisfied, the solution to (4.29) is given by 

Y( t) = _ ~ (1/B(2))e~a'Zx(d2). (4.31) 

To see this, suppose A = {2: B(2)=  0}. Then, since we have assumed that 
f x ( A )  = 0, we will have ElZx(d, Ole - r~(dX) - 0 ,  thus Zx(d2) = 0 for all 
2 e A. It follows that 

Y(t) = fac (1/B(2))e~atZx(d2). 

Then, as before, L matches Y(t)  and 

L(Y(t)) = "a(c B()O(1/B()O)eiatZx(d)O 

= fac ei2tZx(d'~) 

= _ooei'~tZx(d]t) = X(t) .  

If X(t)  has continuous spectrum and the spectral density function fx(2) is 
bounded, then (4.30) will be satisfied if the following condition holds; 

f (J/f 8(;)1:) dx < - -OG 
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The solution can then be put in the form of a convolution integral, since 
l/B(2) has a square integrable Fourier transform h(u); 

It follows that 

oo 

1 _ f h(u)e-ia, du. 
B(2) - oo 

Y(t) -oo ( -oo h(u)e 

h(u) = f _ ~  ( _~ U)Zx(d2)) du 

ii O0 

= | h (u )X( t -  u) du. (4.32) 
QI 

- - 0 0  

This yields an explicit time domain representation for the solution. 
If Y(t) is to depend only on the present and past of the X(t) process, i.e., if 

the filter is to be realizable, additional conditions will have to be imposed on 
L. We will see an example of this shortly. Solution (4.31) is unique for every 
forcing function X(t) satisfying (4.30) if B(2)4= 0 for all 2. 

If B(2) is zero on a set ,4 of positive measure, then many solutions (no 
longer of the form (4.28)) can exist. For example, suppose that X(t)has a 
continuous spectrum with spectral density fx(2) and let U(t) be any weakly 
stationary process with continuous spectrum for which the spectral density 

satisfies fu(2) - 0 on A c. 

By the Schwarz inequality, ]EZx(d2)Zv(d2)[2 <fx(2)fv(2)(d2)Z = 0, since 
we must have fx (2 )=  0 on ,4 in order to satisfy (4.30). Thus, U(t) and X(t) 
are uncorrelated processes. Let 

Y(t) -- fA~ (l/B(2))eiZtZx(d,~) + U(t). 

This process has spectral density 

fv(2) = (1/]B(2) 12)fx(2) + fu(2) 

and, since I z = 0 ,  w e  obtain 

[ B(2) [ zfv(2) = fx(2). 

It follows that Y(t) matches L. Moreover, since B(2)Zv(d2)= 0 for all 2, 

oo 

L(Y(t)) = f A ~eiZtZx(d2) + f -oo B(2)eiZtZu(d)t) 

oo 

= f eiZtZx(dA.)-- X(I). 
- - o 0  
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Thus, Y(t) is a weakly stationary solution of (4.29). Needless to say, the 
important situation is the one in which the solution is unique and can be 
expressed as a convolution integral. We give an illustration of the application 
of these results in an important special case. 

Example 4.5 Linear Constant Coefficient Different&l Equations 
In the notation of Example 4.4 an nth order, linear, constant coefficient 

differential equation with forcing function X(t) can be written in the form 

a,,D"(Y(t)) + a,-x D"-l(Y(t))  + . . .  + a  1D(Y(t)) +ao Y(t) = X(t). (4.33) 

We assume that X(t) has continuous spectrum with bounded, nonzero spectral 
density function. In particular X(t) could be taken to be the continuous-time 
white noise process e(t). The condition under which a unique weakly station- 
ary solution Y(t) exists is extremely simple and pleasant as we now show. 

The characteristic equation of (4.33) is 

P(z) = O, 

where P(z) is the characteristic polynomial defined in Example 4.4. A unique 
solution of the differential equation exists if  none of  the roots of  the characteristic 
equation lie on the imaginary axis (i.e., have zero real parts). The solution 
can always be expressed as a convolution filter operating on X(t), 

t �9 o 0  

Y(t) = | h(u)X(t - u) du, 
qd 

- - 0 0  

and the filter is always stable. Moreover, (f all of  the roots of  the characteristic 
equation have negative real parts, the solution only depends on the past and 
present of the X(t) process, i.e., the convolution filter is realizable. 

The first two statements follow immediately from the fact that if P(z)~  0 
for z on the imaginary axis, then the transfer function of the differential 
operator, B(2) = P(i2), is bounded away from zero for all 2. Thus, 1/[B(2)i 2 
is bounded from above and goes to zero as [21 ~ ~ at least as fast as 1/2 2. 
It follows that 

oo 

< o0, 

and (4.31) and (4.32) apply. Note that if the real part of any root of P(z) = 0 
is zero, then (4.30) cannot hold since we have assumed fx(2) to be nonzero. 
Thus, the condition that the real parts of all roots be nonzero is necessary as 
well as sufficient for the existence of a solution of the differential equation. 

The argument demonstrating the realizability and stability of the solution 
will be sketched for the second-order equation (n = 2). This derivation contains 
all of the salient features of the general case. 
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By dividing both sides of the differential equation by the coefficient of 
DZ(Y(t)), we obtain an (equivalent) equation of the form 

D2(Y(t)) + aD( Y(t)) + b Y(t) = X(t) 

with characteristic equation 

P(z) = z 2 --[-- a z  .-[- b = O. 

Let zj = ~j + iflj, j = 1, 2, denote the two roots of this equation. The char- 
acteristic polynomial can also be written in factored form as P(z )=  
( z -  z~)(z- z2). 

Suppose, first, that Zl 4: z2. Then, by a partial fraction expansion, 

1 1 A1 A2 
- -  4 -  ~ �9 

P ( Z )  ( Z -  Z 1 ) ( Z -  Z2) Z -  Z 1 Z -  Z 2 

The constants are easily computed by putting both sides of this equation over 
a common denominator and equating the coefficients of like powers of z. 
In this case it can be shown that A2 = -A~.  Then, 

1 1 A 1 A 2 
_ _  + �9 

B(2) P(i2) i(2 - fl~) - ~ i(2 - f12) - r 

This is the transfer function B*(2) of L*. 
Let 

Bj(2) = 1/(i(2 - flj) - ~j), j = 1, 2. 

Then, the impulse response function h(u) of L* will be 

h(u) = Alhl(u ) + A z h2(u), 
where 

t ~  o o  

B j(2) = [ hj(u)e-iz, du. 
d - - o 0  

Now, a simple integration establishes that 

e (~+/p~)", u > 0 ,  if a j < 0 ,  
hi(u) = {0, u < O, 

0_, u > 0, if 0. ~j > (4.34) 
= e(~+ iflj)u, U < O, 

It is immediate from this and the expression for h(u) that the filter will be 
realizable, i.e., h(u)= 0 for u _< 0, if and only if the real parts ~1 and ~2 are 
negative. If one root has positive real part and the other negative real part 
(which can only happen if both roots are real), h(u) will be nonzero for all u 
and the convolution filter will depend on both the future and the past of the 
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process. If both real parts are positive, the filter will depend only on the 
future. 

Note that although hi(u) and hz(u ) a re  complex-valued, since A2 = -A~ 
and complex roots appear in conjugate pairs for algebraic equations with real 
coefficients, h(u) will always be real-valued. Moreover, since ~j < 0 if u > 0 
and ~j > 0 if u < 0 in (4.34), we always have 

f Ih(u)l du< ~ .  
- - o 0  

Thus, in all cases, the convolution filter is stable. 
In the case of a repeated root (z~ = z2), necessarily fll = 131 = 0. Then, 

B*(2) is simply 

I/B(2) = 1/(i2 - ~1) 2. 

This is the transfer function of two applications of the convolution filter with 
impulse response function (4.34). Since this is a convolution filter which is 
realizable when the component filters are, it follows that condition al < 0 is 
again necessary and sufficient for realizability. The filter is also stable since 
the impulse response function (4.34) is square integrable. 

For a general, nth order differential equation, the partial fraction expan- 
sions are longer and may contain higher powers of the terms Bj(2), but other- 
wise the argument is the same. The impulse response function of the convolu- 
tion filter will always be composed of linear combinations of the functions 
hi(u) given by (4.34) and higher-order convolutions h~.k)(u) as defined in the 
last section. Thus, it is possible to obtain an explicit time-domain solution to 
any linear, constant coefficient differential equation excited by a weakly 
stationary forcing function which satisfies the conditions given above. 

If the forcing function is a continuous-time white noise process and the 
zeros of P(z) have negative real parts, the resulting weakly stationary process 
is called a continuous-time autoregression for reasons that will become clear 
in Chapter 7. These processes depend on only a finite number of parameters 
and have been the subject of a number of interesting applications of spline 
functions to time series. An expository paper which discusses these applica- 
tions and provides a good bibliography is by Davis (1972). 

4.5 NONSTATIONARY PROCESSES GENERATED BY TIME VARYING 

LINEAR FILTERS 

Two important properties of models for real phenomena are that they 
should be both broadly applicable and computationally tractable. We have 
discussed one important nonstationary model which is both easy to handle 
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mathematically and which fits a large number of physical problems; the 
signal-plus-noise process with weakly stationary noise and (more or less) 
arbitrary signal. A second type of model which also has both of these virtues 
is obtained as follows: Recall that a linear, time invariant transformation is 
determined by a transfer function B(2). The properties of the filter could be 
made to change with time if the transfer function were allowed to depend on 
the time parameter t as well as on 2. If B(2, t) denotes the transfer function 
of the time varying filter and if X(t) is a matched weakly stationary stochastic 
process with random spectral measure Z(d2), then the output of the filter 
would be 

Y(t) = f B(2, t)ei~tZ(d2). (4.35) 

The Y(t) process is nonstationary, and an easy computation yields 

Cov(Y(t), Y(s)) = f B(2, t)B(2, s)ei'~'-S)F(d2), 

where F(A) is the spectral distribution of the X(t) process. Thus, EY( t )=  0 
and the variance of Y(t) is 

E(y2(t)) = f JB(2, t)12F(d2). (4.36) 

Now, a stochastic process U(t) is said to be a second-order process if 
E(U2(t)) < oo for all t. It follows that the matching condition which makes 
Y(t) a second-order process is the finiteness of the integral (4.36) for all t. 

Example 4.6 Linear Differential Equations with Time-Dependent Coefficients 
If the coefficients in the differential operator of (4.33) are allowed to 

depend on t, we obtain the equation 

a,,(t)D"(Y(t)) + a,_l(t))D"-l(Y(t)) + " "  + al(t)D(Y(t)) + ao(t)Y(t) = X(t), 

where we assume that the forcing function X(t) remains as before. The solu- 
tion Y(t) will now be a nonstationary process of the type defined by (4.35). In 
fact, by analogy with the development in the last section, the time varying 
transfer function is 

B(2, t) = [an(t)(i2) n + " "  + ax(t)(i2 ) + a0(t)] -1. 

If the zeros of the characteristic equation 

an(t)z" + an_l(t)z "-1 + " "  + al(t)z  + ao(t) = 0 

are bounded away from the imaginary axis, the theory of the last section can 
be carried over to obtain an explicit time domain representation of Y(t) in 
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terms of X(t). This will no longer be a simple convolution but rather will have 
the form 

where 

o o  

Y(t) -- f h(u, t)X(t  - u) du, 
- - 0 0  

o o  

B(2, t) = f h(u, t)e-iZ"du for each t. 
- - o 0  

The partial fraction expansion method can again be used to obtain h(u, t) 
in terms of the roots of the characteristic equation. The stability and realiza- 
bility of the operator can be described in terms of these roots or, alternatively, 
in terms of conditions on the coefficients. 

Differential equations of this type arise in a number of physical situations. 
For example, the characteristics of a simple structure subjected to random 
vibrations can change due to fatigue damage. The response of the system 
would be described by such a differential equation where the time varying 
coefficients depend on the "stress history" of the structure. 

Example 4.7 A Model for  Stochastic Transients 
A model for the (potential) accelerograms of strong motion earthquakes 

used in earthquake engineering [see Wirshing and Yao (1971)] is the following: 
A "broad-band"  stochastic process X(t), for example, a white noise process, 
is passed through a band-pass filter with transfer function B(2). The resulting 
time series is then tapered by a weight function G(t) for which j'~o~ GZ(t)d t < ~ .  
A tapering function used in the above reference is 

{(e -~' - e-Pt), t > O, 
G(t )=  0, otherwise, 

where 0 < a < ft. By proper selection of a and fl and the pass-band of B(2), 
the sample functions of the process can be made to closely resemble actual 
accelerogram records. The output of the filtering and tapering operations is 

Y(t) = a(t) f B(2)e'~'Z(d2), 

where Z(d2) is the spectral measure of the input process. This nonstationary 
process is of the above form with 

B(2, t) = G(t)B(2) 

and the matching condition is satisfied since 

ct)  t ~ o o  

| I B(L t) lZF(d,~)= G 2 ( t ) |  I B(~)I2F(d,~) < ~ .  
M 

- - , 3 0  - - 0 0  
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Moreover, it can be argued that 
oo oo 

oo oo 

-- f G2(t) dt f [ B(X) 12F(d,~) < o0. 

It follows that the energy of the output process, 

oo 

f Y2(t) dt, 
- - o 0  

is a well-defined random variable with finite mean. Thus, Y(t) can be viewed 
as a stochastic process with finite energy and, as such, provides a good model 
for many kinds of transient random phenomena. Bounds on level crossing 
probabilities for Gaussian processes of this type are given by Koopmans et al. 
(1973) in a special case and by Koopmans and Qualls (1972) in the general 
case. Several examples of models covered by the general representation (4.35) 
are given by Granger and Hatanaka (1964). Other work on models of this 
variety has been carried out by Priestley (1965). 

APPENDIX TO CHAPTER 4 

A4.1 Linear Filters for Weakly Stationary 
Processes 

The spectral representation theorem given in Chapter 2 and its appendix 
provides the basis for a mathematically satisfactory discussion of linear filters 
for weakly stationary processes. Let X(t), - o o  < t < 00, be a zero-mean, 
weakly stationary process with spectral distribution F and random spectral 
measure Z. Recall that the mapping 

g(2),-+ f g(2)Z(d~) 

is an inner product preserving isomorphism of L 2(F) with dd x, the linear 
subspace generated by the process. 

We define a family of linear transformations Ut, -oo < t <  oo, as 
follows: First, for fixed t, Ut is defined on the generators of dg x by 

u,  ( X(s)) : X(s  + t), --o() < S <  ~ .  

Note that Ut preserves inner products on this set of elements, since 

( u , (x ( s ) ) ,  u,(x( , . , )))  : ( X ( s  + t), x ( u  + O) = C(s - ~,) 

-- (X(s ) ,  X(u) ) ,  
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where C(~) is the autocovariance function. This property is preserved in the 
following extensions: Ut is extended by linearity to finite linear combinations, 

Ut ( ~  ~j X(tj)) = ~ ~j Ut(X(tj)), 
\ j  / J 

and by continuity to limits of Cauchy sequences of linear combinations, 

Ut (lim X, )  = lim, Ut(X,). 

As a result, Ut is a well-defined, inner product preserving, linear transforma- 
tion on////x to / / /x .  Although this will not be used here Ut, - ~  < t < ~ is 
a group of unitary transformations under the operation of composition; 
Ut" Us = Ut+s, where Uo is the identity transformation and Ut -1 = U-t .  
This fact has important consequences in the study of the mathematical struc- 
ture of weakly stationary processes. 

Now, a linear filter is defined to be a linear transformation L with domain 
~ (L)  ~ / # x  and values in d//x with the property 

L U t =  UtL for - ~ < t < c o .  

This is the time invariance property. 
We will now sketch a proof of the following basic characterization of 

linear filters: Linear filters are completely determined by their values at the 
random variable X(0). The class of linear filters is in one-to-one correspondence 
with L 2(F). The correspondence is L ~ B(2) i f  

= f B(2)Z(d2), (A4.1) L( X(0)) 

where the function B(2) ~ L 2(F) is the transfer function of the filter. 
The action of L on ,//x can be described as follows: Let U ~ ~#x and let 

U+--~g(2) for g ~ L 2(F). Now, U ~ ~(L ) if, in addition to the condition 
j" ]g(2) l 2F(d2)< ~ ,  we have 

Then 

f Ig(2)121B(2)12F(d)t) < co. 

L(U) = f g(2)B(2)Z(d2). 

In particular, since X( t) .-~ e i~t, we have 

(A4.2) 

L(X(t)) = f e'~tB(2)Z(d2). 
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We indicate briefly how (A4.1) leads to (A4.2). Since B()O~_L2(F), 
B(2) = lim. B.(2), where B.(2) is a Cauchy sequence of finite linear combina- 
tions of complex exponentials, 

B.(2) = ~ a.,je -iz'",j. 
j e J n  

Thus, 

L(X(O)) = lim f B.(2)Z(d2) = lim E a., j f e-iZt",JZ(d2) 
n n j e J n  

= lim ~ a. , jX(- t . , j ) ,  
n j e J n  

by the spectral representation of the process. However, time invariance and 
the properties of Ut imply 

L(X(t)) = LUt(X(O))= U,L(X(O)) 

= lim Z a., j U, (X ( -  t., j)) 
n j e J n  

- lim ~] a., j X(t - t., j). 
n j 6 J n  

Again the spectral representation yields 

(A4.3) 

L(X(t)) = lim Z a.,j f eia(t-'"'J)Z(d2) 
n j ~ J n  

-- lira f ei;~tBn(/],)Z(d~) 

= f ei~tB(2)Z(d2) �9 

Now, suppose that U = [. g(z)Z(d2) with 

f Ig(A)12F(d&) < c~) , 

and assume in addition that 

f [g(A)[2lB(A)lZF(dA) < oo. (A4.4) 

That is, both g(2) and g(2)B(2) are in L 2(F). Then it can be shown [e.g., 
Koopmans (1964a)] that g(2) = lim g,(2), where g,(2) is a sequence of finite 
linear combinations of complex exponentials, 

: e i~ . t ,  k, 

k e K,, 
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such that both g.(2) and g,(2)B(2) are Cauchy sequences in L 2(F). It follows 
that 

U = lim f g,,(2)Z(d2) = lim ~ bn, k X(tn,k). 
n n ke.  Kn  

Then, by the linearity and continuity properties of L we have 

L(U) = lim 2 b.,k L(X(t.,k)) 
n k e K n  

= lim E b~,k f eiZ"~B(2)Z(d2) 
n k e K n  

= lim f g~(2)B(2)Z(d2) 
t l  

= f g(2)B(2)Z(d2). 

It follows that (A4.4) is the condition that U e ~(L).  
Now, starting with any B(2)~ L E(F ) and defining L(X(O)) by (A4.1), a 

linear filter can be constructed by this process. Moreover, every linear filter 
(with respect to the given process) is of this type. Consequently, the class of 
linear filters which match this process is in one-to-one correspondence with 
L 2(F). 

In theory, then, linear filters can be constructed to perform a great 
variety of operations on time series. It is only necessary to specify the desired 
transfer function and the filter is completely determined. In practice, only 
restricted classes of filters are used. The convolution filters and linear com- 
binations of derivatives predominate. In general these filters constitute a 
rather small subclass of the collection of possible filters, but, fortunately, most 
of the important practical filters are in this class or can be closely approxi- 
mated by members of the class. For example, most filters of interest have 
bounded transfer functions [B(2)[ _< M. The various ideal filters given in the 
text have this property. If X(t) is a process in continuous time which has a 
continuous spectrum with bounded spectral density, then, as was seen in the 
text, ~ 2  c L2(F), where ~'2 is the class of functions g(2) such that 

[g(2) ] 2 d2 < 00. However, every element of~P2 corresponds to a convolution 
filter, since if D(2)~ s then 

D(2) = f e-i~"h(u) du, 

with ~ h2(u) du < ~ .  Thus, if L ~-~ D(2), 

L(X(t)) = f eitZD(2)Z(d2) 

= f h(u)X( t  - u) du. 
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Now, if B(2) is a bounded transfer function corresponding to a filter L,  taking 

IB(2), 12] _ K, 
B~(2) = [ 0, I~1 > K, 

K can be made large enough so that 

f [ u(2) - Br(2)[2F(d2) < e 

for any prespecified ~ > 0. However, Br(2) ~ ~,~~ 2 and the corresponding con- 
volution filter 

L K(X(t)) = f hr(u)X(t - u) du 

then has the property 

E(L r(X(t)) -L(X( t ) ) )  2 < e for all t. 

Consequently, in this sense, convolution filters can be made to approximate 
a large class of filters of practical interest when the input is a weakly stationary 
process. This accounts for the widespread use of convolution filters in 
practice. As we will see in Chapter 6, the discrete analogs of convolution 
filters play an even larger role in filtering discrete-time series. 



C H A P T E R  

Multivariate Spectral 
Models  and Their Applications 

5.1 I N T R O D U C T I O N  

It is more the rule than the exception that real, time-varying physical 
processes require more than one measurement to adequately describe their 
behavior. Thus, the position or state of the process at each instant of time 
will be represented by a vector of time-dependent measurements 

x(t) = I 
Xl(t)\  

x401 , 
X;(t)/ 

called a multivariate (vector, multidimensional) time series. We will consider 
only those multivariate time series models for which the components are 
univariate time series, either all in continuous time or all in discrete time, 
possessing power spectra. As in Chapter 2, will will deal most extensively 
with stochastic models for which the components are stationary processes. 

These models apply quite well to a variety of real phenomena. In geo- 
physics they are used, for example, to describe wind velocities (two com- 
ponents of velocity at each of, say, n levels leads to a 2n-dimensional series), 
the oscillation of the earth at a given location (the vertical and two com- 
ponents of horizontal motion produce a three-dimensional time series) and 
sea state over a given region (sea heights at p locations in the region generate 
a p-dimensional series). Economic systems characteristically require several 
descriptive variables such as price, available supply, and demand among 

119 
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others. Under stable conditions, the "stat ionary" models are reasonably 
accurate. Even when conditions are not stable, these models provide useful 
results over restricted time periods. Early applications of multivariate time 
series analysis were made in engineering, particularly in the areas of commu- 
nication and control theory. Since then, applications of these methods based 
on the models of this chapter have pervaded almost all of the physical and 
engineering sciences. A bibliography of applications of both the univariate 
and multivariate theory to the physical sciences and engineering is given 
by Tukey (1959). 

More recently, these models have been applied to problems in the social, 
biological, and medical sciences as quantitative measurement techniques have 
been developed. Time series with large numbers of components are common 
in these areas. For example, the recording of EEG data for the study of brain 
function [see Walter et al. (1966)] often requires in excess of ten recording 
channels and results in a time series of as many dimensions. The future of 
time series analysis in these disciplines appears especially promising. 

Time series models can be constructed with varying degrees of complexity 
depending on the purpose to which they are to be put and the knowledge 
available about the physical mechanism generating the data. At the purely 
descriptive level, a simple model can be fitted to the data much as polynomials 
are fitted to regression curves in statistics. The object is to fit the model to 
the data as closely as possible without trying to "understand" the underlying 
generating mechanism. For reasons that will be discussed in Chapter 7, the 
finite-parameter models defined therein and their multivariate counterparts 
are the ones most widely used for this purpose. Many important applications 
of time series analysis can be effectively made at this level. This is amply 
demonstrated by Box and Jenkins (1970), for example. 

However, one of the more important uses of time series analysis is to 
improve our understanding, either qualitatively or quantitatively, of various 
properties of the generating mechanism. For this purpose, it is convenient to 
have the natural parameters of the time series model related in a simple way 
to the physical characteristics of the mechanism--or more precisely--to the 
parameters of a mathematical model of the mechanism. The spectra of the 
models to be discussed in this chapter will be seen to have this property in 
many applications. Since spectra can be readily estimated by the methods to 
be covered in Chapter 8, the validation of physical models by comparing 
predicted and measured spectra and the estimation of model parameters can 
be readily carried out. 

We will see that by a simple application of the rules for operating with 
expectations summarized in Section 1.4, the spectra of time series derived 
from other time series via linear filters can be readily calculated. In this way 
a large and flexible class of models can be generated which has a number of 
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important applications and for which the parameters are easily computed. 
This will be illustrated by means of applications many of which have been 
taken from the time series literature�9 

5.2 THE S P E C T R U M  OF A MULTIVARIATE TIME SERIES- -WIENER 

THEORY 

Let 

/x,(t)\ 
X(t)= lX2.(t) I --cx3 < t < o O  

\x)t)/ 
be a vector of real-valued functions for which all limits of the form 

Cj, k(T ) lim 1 r j r  = xj(t + Z)Xk(t )dt 
T--* oo 2-T - T 

(5.1) 

exist for 1 < j, k < p, and - ~  < z < ~ .  Although we treat the continuous 
time parameter case in this definition, all of the theory applies to discrete 
time series as well with the modifications spelled out in Chapter 3. 

The functions Cj, j(r) are the autocovariances of the time series xj(t) 
defined in Section 2.2. For j # k, Cj, k(r) is called the cross-covariance 
function of xj(t) and Xk(t). An application of the Schwarz inequality yields 

[Cj, k(T,)[ ~_ (Cj ,  j(O)Ck,k(O)) 1/2, --(X3 < T < 0(3. ( 5 . 2 )  

Consequently, all covariance functions are bounded. Moreover, by a change 
of variables it is easily seen that 

Cj, k(-  r) = Ck, j(Z). (5.3) 

Thus, although the autocovariances are even functions, as was previously 
noted in Section 2.2, the cross-covariance functions are not. This has an 
important effect on the spectral representation of the cross-covariances. 

For each j r k there exists a (unique) measure Fj, k(A), called the cross- 
spectral distribution of xj(t) and Xk(t), such that 

Cj, k(75) "-- f ei~rFj k(d2). (5.4) 

In order to deal with the discrete and continuous time parameter cases 
together, we will not explicitly specify the frequency range in expressions 
involving the frequency variable. Thus, the limits of integration are omitted 
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in (5.4) with the understanding that they are - o o  and oo in the continuous- 
time case and -rc  and ~ for discrete time. 

As indicated in Section 2.2, in order for the Fourier transform of a real- 
valued function to be real-valued, it is necessary that the function be even. 
Since the cross-covariance function fails in this respect, the cross-spectral 
dis:tribution is 9enerally complex-valued (with nonvanishin9 imaginary part). 
In this it differs from the spectral distributions Fj,s(A). 

A partial symmetry results from (5.3); namely, 

Fj, k(-- A) = Fk, j(A). (5.5) 

(Recall that - A  = { - 2  : 2 ~ A}.) To see this, note that 

Cj, k(-- r) = f ei;~(-~ k(d).) = f eiU*Fj, a(-dp)  

by the change of variables p = - 2 .  However, by (5.3) this is the spectral 
representation of Ck,j(r). The uniqueness of the spectral distribution then 
yields (5.5). 

Similarly, it can be shown that 

Fj. k(A) = Fk, s(A). (5.6) 

This and other properties of the spectral distribution are easily demonstrated 
using the stochastic model of the next section. Consequently, we will defer 
the statement of these results until later. 

The matrix representation of the auto- and cross-spectral distributions is 
quite useful. It is 

F(A) = F2' !(A) F2' ,2.(A) "'" F2',p..(A) (5.7) 

Fp ,(A) Fv, ~(A) . . .  Fp, v(A)J 

Hereafter, we will denote such arrays more briefly by using the symbol [as, k] 
to represent the matrix with element aj, k in the j th row and kth column. 
Relation (5.6) indicates that F(A) is a Hermitian matrix. 

In the models we will consider, the spectral distribution matrix (5.7) or 
its equivalent, the matrix of auto- and cross-covariances, 

C(r)  = [Cs, k(r)], 

constitutes the complete set of parameters for the multivariate time series 
x(t). Consequently, the only new elements presented by the multivariate theory 
are the relationships between each pair of time series measured by the cross-- 
spectra or the cross-covariances. 
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As we will see, this restriction to what are called second-order parameters 
still allows a rich and useful theory of interrelationships to be developed 
which very closely parallels the multivariate correlation theory of statistics. 
This will be discussed in Section 5.6. 

The decomposition of  F(A) into discrete and continuous components is 
accomplished as in the univariate case. The spectral functions are 

Pj,k(2) = Fj,k({2}) (5.8) 

and the discrete spectral distributions are then 

F~d)k(A) = ~ pj, k(2,) (5.9) 
A r e A  

where 21, '~2 . . . .  are the frequencies for which Pj, j(2)Pk, k(2)> 0 for at 
least one pair of indices j, k. In matrix notation, 

p(2) - -  [pj, k ( ) ~ ) ]  

and 

F(O)(A) = [F}d,)k(A)]. (5.10) 

As in Section 2.2, when the spectrum is discrete, the cross-spectral functions 
can be obtained from the cross-covariances by the expression 

Pj, k(2) lim 1 f r  -"- ~ e - / A R C '  
T-+ ~ 2T  - r - - j , k ( T )  dr 

in the continuous-time case and by the corresponding limit 

1 L 
pj, k(•) -- lira ~' e - i~  

L-~  2L + 1 ~=-L Cj'k(Z) 

for discrete time. The spectral distribution functions are, respectively, 

Fj, k(2) = Fj, k((--c~,).]) and Fj, k((--~z,2]). 

The spectral density fimctions are then the derivatives of these distribution 
functions; 

f j, k(2) = dFj, k(2) 
d2 (5.11) 

and the continuous component of F(A) is 

F(r = [F(f)k(A)], (5.12) 

where 

F(C) Id ( j ,k ," )  = fj, k(2) d2. JA (5.13) 
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When I_~163 ICj, ( )i dz < oo or ~ ~oolCj, k(~)12dT < O0 in the case of con- 
tinuous time, the spectral densities can be obtained by Fourier transformation 
(Example 1.4); 

1 foo _iX~ci f J' k(2) -- "~n - e , k(Z) dz. 
oo 

(5.14) 

In discrete time, if ~_~ I Cj, k(~)l 2 < c~, then 

1 oo iAzCJ 
f = Z e- , 

"~-- - - 0 0  

(5.15) 

(See Example 1.2.) 
An important (multidimensional) parameter of the process is the spectral 

density matrix 

= [fj 
The standard measures of association will be defined only when the time series 
has a continuous spectrum and, thus, will be functions of the elements of 
f (2). For this reason, the elements of this matrix will be the objects of interest 
for the statistical procedures to be derived in Chapter 8. 

As in the univariate case, it should be stressed that the multivariate 
spectrum is defined for a large class of time series models both stochastic 
and nonstochastic and the weakly stationary processes form a rather small 
subclass of these models. Consequently, the idea of a spectrum and the 
various measures of association among time series to be derived in this 
chapter are much more widely applicable than one would surmise from our 
rather disproportionate coverage of weakly stationary processes. However, 
from the viewpoint of constructing probability models which have the general 
spectral structure of the Wiener theory, the weakly stationary processes play 
a central role. We consider them next. 

5.3 MULTIVARIATE WEAKLY STATIONARY STOCHASTIC PROCESSES 

Let {Xj(t); j = 1, 2, . . . ,  p; - o o  < t  < oo} be a family of real-valued 
random variables on the same probability space. In order for the vector of 
stochastic processes 

/ X l ( t )  

X(t) = 122.  (t) , 

\ X p ( t )  

- o o  < t  < ~ ,  
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to be a multivariate weakly stationary stochastic process, each univariate 
process Xi(t  ) must be weakly stationary in the sense defined in Section 2.3 
and, in addition, the correlation between processes must be stationary. These 
hypotheses can be summarized as follows. 

(i) E X j ( t )  - m j ,  j = l , 2 ,  . . . ,  p .  

As before, the constants mj will all be set equal to zero by the expedient of 
replacing each process by the residual Xj(t) - mj.  Then we assume that the 
covariances are all finite and satisfy the conditions 

(ii) EXj( t  + Z)Xk(t ) -- Cj, k(Z), --oO < t, Z < C~, 1 < j, k < p. 

That is, the covariances depend on z, the lag between the time arguments, but 
not on t. When j - - k ,  this is the condition of covariance stationarity (2.20) 
which was basic to the theory of Chapter 2. When j 4: k, it is the condition of 
stationary correlation between processes. 

With these assumptions, the covariance functions Cj, k(Z) enjoy all of the 
properties of the Wiener covariances defined by (5.1). Consequently, the 
spectral representation (5.4) and the subsequent properties of the spectrum, 
(5.5)-(5.13), are valid. A direct and useful method for deriving properties of 
the spectrum is obtained from the multivariate version of  the spectral represen- 
tation theorem. This method will be demonstrated in Section 5.4. As before, 
since each univariate series Xj(t) is weakly stationary a spectral representation 
exists, 

Xj(t) = f ei~tZj(d2). 

The random spectral measures Zj(A) have as values complex-valued random 
variables for eachj and each set A. They are related to the spectral distributions 
by the basic expression 

EZj(A)Zk(B) = Fj, k(A n B). 

As before, EZj(A) - 0  for all j and A. 
By the Schwarz inequality, applied to the inner product 

(5.16) 

(Zj(A),  Zk(A)) = EZj(A)Zk(A), 

we obtain the inequality 

]Fj, k(A)[ ~_ (Fj, j(A)Fk, g(A)) 1/2. (5.17) 

It follows from this that the cross-spectral measure Fj, k(A) can be nonzero 
only if both component processes Xj(t) and Xk(t) have positive power on A. 
Auxiliary inequalities which follow from this are 

(5.18) 
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and 

Ifj, ~(~)I ~ (fj, j(2)fk, k(2)) 1/2 (5.19) 

for the spectral functions and spectral densities. 
In terms of the symbolic intervals discussed in Section 2.5, expressions 

(5.16) and (5.17) can be combined to yield 

EZj(d2)Zk(dp)= O, 
if p = 2 ,  
if p 4= 2. (5.20) 

This expression can be used operationally as indicated in the following 
statement: 

Extension of the Basic Property I f  g(2) and h(2) are complex-valued 
functions Jot which 

then 

f Ig(~)[2Fj, J(d~) < and f [h(2)lEFk, k(d2) < ~ ,  

f g(2)Z~(d2) and f h(2)Zk(d2) 

are well-defined random variables ~'ith zero means and finite variances. 
Moreover, 

f g(2)h(2)Fj, k(d2). (5.21) 

The equality of the first and last expressions in (5.21) is guaranteed by the 
theory outlined in the Appendix. Convention (5.20) leads to the correct 
result in this and other calculations in which it will be used later in the chapter. 
This will prove to be a most useful method for calculating spectra in appli- 
cations of the theory. In particular, with g(2) = e i~(t+~) and h(2) = e i~t, (5.21) 
yields the spectral representation (5.4) of the auto- and cross-covariances. 

Properties (5.6) of the cross spectra follow easily from (5.16). Expression 
(5.5) requires the additional relation 

Z j ( -  A) = Zj(A), (5.22) 

also noted in Section 2.4. 
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If we write the spectral measures in vector form 

Z(A) = I Z z ! A ) I ,  

\Zt, iA),/ 

then condition (5.16) implies that Z(A) is uncorrelated with Z(B) if A and B 
are disjoint sets. If the multivariate process X(t) is Gaussian, then with the 
additional condition A n - B  = ~ ,  Z(A) and Z(B) are independent. 

The spectral representation of the process can be written in vector form as 

X(t) = S ei'~rZ(d2)' (5.23) 

with the understanding that the integral is applied to each coordinate of the 
vector eiatZ(d2). 

The correlational relationship (5.16) can be written succinctly in matrix 
form as 

EZ(A)Z(B)* -- F(A n B), (5.24) 

where �9 denotes the combined operations of taking the transpose and forming 
the complex conjugates of the vector elements. In terms of this operation, 
the Hermetian relation (5.6) can be written 

F(A) = F(A)*. 

The decomposition of the multivariate spectral distribution of X(t) into 
discrete and continuous components can be given in terms of the symbolic 
interval d2 as 

F(d2) - p(2) + t"(2)d~, 

where, on the right-hand side, d2 represents the (scalar) length of this interval. 
The linearity property of expectation for random matrices given in Section 

1.4 permits us to establish another important property of F(A): If a denotes 
any p • 1 vector of complex numbers, then 

Ela*Z(A)[ 2 > 0 for every A. 

However, 

I a*Z(A) I 2 = a*Z(A)(a*Z(A)) 

= a*Z(A)(Z(A)*a)= a*Z(A)Z(A)*a. 
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Here, we have used the fact that a*Z(A) = (a*Z(A))* and that �9 operates on 
matrix products according to the rule 

(UV)* = V ' U * .  

Then taking expectations and using the fact that the expectation of a non- 
negative random variable is nonnegative, we obtain 

a*F(A)a > 0. 

This establishes that the matrix of spectral distributions is nonnegative 
definite (Tucker, 1962, p. 144). (An alternate terminology is positive semi- 
definite). This is an important property which carries over to the matrices of 
spectral functions and spectral density functions p(2) and f(2) as well. Among 
the many implications of this property are inequalities (5.17)-(5.19). Various 
features of the multivariate spectral parameters to be defined later also 
depend on this property. 

If two component processes Xj(t), Xk(t) are uncorrelated (Section 2.6), 
then 

Cj, k ( ~ ) = 0 ,  - ~  < ~ < ~ .  

By the uniqueness of the spectral representation of the covariances (5.4), this 
implies that the cross-spectral distribution is everywhere zero, 

Fj, k(A) = 0 all A. 

More Than One Vector Process 

Let X(t) and Y(t) be p x 1 and q x 1 multivariate weakly stationary 
processes, respectively. When we consider more than one vector process it 
will be tacitly assumed that all components of all processes are stationarily 
correlated. In fact, all properties of such processes can be derived from 
the theory for a single weakly stationary vector process by forming the 
"s tacked"  process 

[X(t)~ 
W(t) = ~Y!t)}. 

In particular, the p x q matrix of covariances of X(t) and Y(t) has elements 

X,u Cj, k (z) = EXj(t + z)rk(t). 

In vector notation, 

C x' r ( z ) =  EX(t + z)Y(t)*. (5.25) 

If the spectral distribution of these processes is defined by 

F x' r(A c~ B) = EZX(A)Zr(B) *, 
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then the matrix version of the calculation which yielded (5.21) can be used to 
derive the spectral representation of C x' r(r) as follows: 

C x' r(z) = E X ( t  + r)Y(t)* 

= E ( f e i a ( t + ~ ) Z X ( d A . ) ) ( f e ~ ' t Z r ( d p ) ) *  

= f f  ei~eiC~-")tEZX(d2)Zr(dP) * 

f eiX~F x' r(d2). 

The vector processes X(t) and Y(t) are said to be uncorrelated if every 
component of X(t) is uncorrelated with every component of Y(t). Equivalent 
conditions are C x' r ( r ) _  0 for all r, thus F x' r(A) = 0 for every A, where 0 
is the p x q matrix with all zero elements. 

The decomposition 

F x, r(d2) = pX, r(2) + fx, r(2 ) d2 

holds in the case of two vector processes, where pX, r(2) and fx, r().) are 
obtained from F x' r(A) as in (5.8) and (5.11). 

5.4 LINEAR FILTERS FOR MULTIVARIATE TIME SERIES 

We again restrict our attention to the weakly stationary model, although 
the results we will derive for spectra are valid for the more inclusive model of 
Section 5.2. Let X(t) and Y(t) be weakly stationary processes with p and q 
components, respectively. The new feature of a multivariate linear f i l ter  with 
input X(t) and output Y(t) is that each component of Y(t) will, in general, be 
influenced by every component of X(t). The "black box"  representation of 
such a filter is pictured in Fig. 5.1. The nature of the influence of Xk(t)  

X2Ct) 

xp (t} 

- . . .  ;-._;.:.." 

~ )"q ( t )  

Fig. 5.1 Representation of a multivariate linear filter as a black box with p input leads 
and q output leads. Each output is coupled with each input. 
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on Yi(t) is that of an ordinary linear filter in the sense discussed in Chapter 4. 
Then, the total influence of all components of X(t) on Yj(t) is simply the sum 
of the contributions of each component. This can be stated more precisely 
by using the spectral representations of the input and output processes" 
Let B j, k(2) denote the transfer function of the linear filter from Xk(t) to 
Yj(t). This would be represented by the "black box"  with all inputs except 
Xk(t) turned off and measurements being made only at the Yj(t) terminal. 
With all inputs running, what would be observed at this terminal is 

p 

Yj(t) = k~=, f ei~'Bj k(2)ZkX(d2) 

- f e  (5.26) 
k = l  

where ZkX(d2) is the random spectral measure of Xk(t). That is, the spectral 
measure of Yj(t)is 

p 

ZjV(d2) = ~ Bj, k(2)ZkX(d2). 
k = l  

This can be written conveniently in matrix notation as 

ZV(d2) = B(2)ZX(d2), (5.27) 

where B(2) is the (q x p)-dimensional matrix, 

B() . )  = [nj, k(2)] .  

If we let L denote the multivariate linear filter represented by the "black 
box," then B(2) is its transfer function and (5.26) can be written in matrix 
form as 

V(t) = L(X(t)) = f ei'~tB(2)ZX(d2). (5.28) 

The multivariate filter will match the input if each term of the output in 
(5.26) has finite variance (power). That is, we require that 

f ]Bj, k()OlZrXk(d}~)k, < ~ ,  (5.29) 

for j = 1, 2, . . . ,  q and k = 1, 2 . . . .  , p. As we show in the Appendix, along 
with a more theoretical discussion of multivariate filters, this matehin9 
condition can be represented in matrix form as 

tr B(2)F (d2)B(2) <oe ,  (5.30) 

where tr denotes the trace of the matrix. Moreover, the spectral distribution 
of the output can be calculated using matrix algebra and the linearity property 
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of expectation for random matrices (Section 1.4)" From (5.27), 

FY(d2) = E(B(2)ZX(d2))(B(2)ZX(d2)) * 

= EB(2)ZX(d2)ZX(d2)*B(2) * 

- B(2)(EZX(d2)ZX(d2)*)B(2).* 

Thus, 
Fr(d2) = B(2)FX(d2)B(2) *. (5.31) 

This implies that the spectral functions and spectral density functions of input 
and output are 

pY()~)-- B(2)pX(2)B(2) * (5.32) 

and 
fY() , )  = B(2)fx(2)B(2) *. (5.33) 

Example 5.1 Filters Which Transform Component Time Series Independently 
Suppose X(t) and u are both p-dimensional processes and let Lj be a 

univariate filter with transfer function Bj(2) such that 

rj t) = Lj(Xj  t)) 

for j = 1, 2, . . . ,  p. This situation occurs, for example, when each component 
has its own linear transmission channel which is completely separate from 
the channels of the other components�9 A prime example of this would be a 
telephone trunk line which carries thousands of individual, separate conversa- 
tions within a single cable�9 Moreover, it is often the case that when multi- 
variate time series are being prepared for spectrum analysis, different pre- 
processing filters are used on each component. The input and output spectra 
are then related by the expressions of this example. This model in some 
instances also applies to the same linear mechanism within which the compo- 
nent signals are polarized into noninterferring modes of transmission. Thus, 
two beams of light polarized at right angles to one another would be trans- 
formed simultaneously but independently by a piece of colored glass. To a 
great extent, the horizontal and vertical components of most types of seismic 
waves travel through the earth and are recorded independently. Coding 
techniques allow many signals to be mixed, transmitted, then unscrambled 
into their original form. 

This type of filter has a simple matrix representation. The transfer func- 
tion is 

B~(2) 0 "-" 0 

B(2) = 0 B2(2) .. .  0 
�9 . . . .  �9 . 

�9 . . 

0 0 . . .  Bp(2) 
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That is, the one-dimensional transfer functions appear on the diagonal of the 
matrix and the off-diagonal elements are all zero. From the component 
representation 

zjY(d~.)-- Bj(~.)zjx(d~.), 
the output spectral distributions are seen to be 

Fj r, k(d2) = EZjr(d2)Zkr(d2) 

= Bj(2)BR(2)F x ,(d2). (5.34) 

This is also an immediate algebraic consequence of the form of B(2) and 
expression (5.31). If L is the multivariate linear filter with this transfer func- 
tion, then L matches any input X(t) for which Lj matches the component 
Xj(t) for each j = 1, 2 . . . .  , p. 

A Method for Calculating Spectral Parameters 

An important method for computing spectral parameters will be intro- 
duced in the next example. 

Example 5.2 The Multivariate Distributed Lay Model and a Method for 
Computin9 Spectra 

A discrete-time, weakly stationary, time series model that has been used 
in various fields, notably geophysics (Hamon and Hannan, 1963) and 
economics [see Fishman (1969) for a bibliography] can be written in the form 

r 2  

Y(t) = ~ a ( s ) X ( t -  s) + q(t), (5.35) 
S - -  - - r l  

where Y(t) and Tl(t) are (q x 1)-dimensional weakly stationary processes 
and X(t) is a (p x 1)-dimensional process. This is the multivariate distributed 
lag model. In economics the coordinates of X(t) are called the exogenous 
variables, those of Y(t) the endogeneous variables, and q(t) is a vector process 
of  residuals. For simplicity we assume all processes have zero means. A key 
assumption concerning this model is that the processes X(t) and q(t) are 
uncorrelated. 

The objective of a statistical analysis of this model is to estimate, for given 
rl and r2, the coefficients of the rl + r2 -1- 1, (q • p)-dimensional matrices 
a(s). Excellent treatments of this estimation problem are given by Fishman 
(1969) and Hannan (1970). We will be content to demonstrate a direct method 
for calculating the spectrum of Y(t) and the transfer function of the linear 
filter operating on X(t) which uses the spectral representations of the processes. 
This method of calculation is of fundamental importance for the determin- 
ation of the spectral parameters of a large class of time series models. 
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The method is based on the following observations" Let 

r2 

W(t) = Y ( t ) -  ~ a (s )X( t -  s) - q(t). 
S----- - - r l  

Then, W(t)= 0. This implies that the covariance matrix of W(t), cW(~), is 
identically zero for all ~, thus 

However, then, 

FW(A) = 0 for all A. 

ZW(A) = 0 for all A. (5.36) 

Now, applying the spectral representation (5.23) to both sides of (5.35), 
we obtain 

o r  

where 

f dz'ZV(d2) - ~ a(s) f eiZ"-'ZX(d3.) + f e'Z'Z"(d2), 
S = - - r l  

W(t) = feiX'[Zr(d2)- B(2)ZX(d2)- Z"(d2)], (5.37) 

r 2  

B(2)= ~ a(s)e -ix~. (5.38) 
S = - - r l  

Now, the bracketed expression in (5.37) is ZW(d2). Thus, if we apply (5.36) 
to ZW(d2), the original equation (5.35) is equivalent to the symbolic equation 

Z r(d2) = B(2)ZX(d2) + Z"(d2) for all2. (5.39) 

This is the key equation of the method. All spectral parameters will be obtained 
from this expression by the application of standard rules of matrix algebra 
and expectation to Z r(d2), ZX(d2) and Z"(d2) as though they were vectors of  
valid, complex-valued random variables with finite variances. 

Note that this equation could have been written from (5.35) "by in- 
spection." The form of the transfer function of the filter is a consequence of 
an easy multivariate extension of the rule for calculating transfer functions 
given in Section 4.2. Thus, it is generally a simple matter to obtain expressions 
such as (5.39) directly from the time domain representations of the processes. 

We first calculate the spectral distribution Fr'X(d2) by multiplying both 
sides of (5.39) on the right by ZX(d2) * and taking expectations: 

Y X , F r 'X(d2)-  EZ (d2)Z (d2) 
X X = E[B(2IZ (d2)Z (d21* + Z"(d2)ZX(d2) *] 

: B(2)FX(d).). 
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We have used the fact that EZ"(d2)ZX(d2)*= 0 because X(t) and q(t) are 
uncorrelated processes. 

Recall that 

FX(d2) = pX(2) + fx(2) d2 and F x, r(d2) = p r, x(2 ) + fv, x(2 ) d2. 

Thus, in the pure discrete case, the expression 

B(2) = p r, x(2)pX(2 )-  1 

determines the transfer function at those values of 2 for which pX(2) is non- 
singular. However, we will be primarily interested in the case of pure con- 
tinuous spectra, since it is common practice to estimate and remove the 
discrete spectral component before analysis. Then, 

B(2) = f Y, x(2) fx (2 ) - i  (5.40) 

whenever fx(2) is nonsingular. In this expression and all comparable expres- 
sions hereafter, when d2 represents the length of the infinitesimal interval it is 
treated as though it were a positive number. Thus, it is simply cancelled when 
it appears to the same power in numerator and denominator of a ratio. 
Now, estimates of the spectral densities will provide an estimate B(2) of 
B(2) at a finite set of frequencies and, since (5.38) represents this function as a 
Fourier series, estimates of the coefficient matrices can be obtained from a 
discrete version of the inversion formula, 

lf~ fi(s) = ~nn e'~B(2) d2. 

This is the estimation procedure detailed by Hannan (1970, p. 475). 
Returning to (5.39), the spectral distribution of Y(t) can be calculated as 

Fr(d2) = E[B(2)ZX(d2) + Zn(d2)][B(2)ZX(d2) + Z~(d2)] * 

= E{B()OZX(d2)ZX(d2)*B(2) * + Z~(d2)ZX(d2)*B(2) * 

+ B(2)ZX(d2)Z~(d2) * + Zn(d2)Z"(d2)*}. 

The expectation of the second and third terms are zero, since X(t) and tl(t) 
are uncorrelated. Consequently, moving the expectation inside the braces, we 
obtain 

Fr(d2) = B(2)FX(d2)B(2) * + P(d2). 

In the case of continuous spectra, this yields the following expression for the 
spectral densities, 

fr(2) = B(2)fx(2)B(2) * + f"(2). 
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Now, substituting (5.40) for B(2) into this equation, we obtain 

fr(2 ) = fr,x(z)fx(Z ) - ~fx, r(2 ) + f'~(2), 

where we have used the easily established result 

fr '  x(2)* = fx' Y(2). 

This provides the following expression for the residual spectral density in 
terms of the spectral densities of the observed processes, 

U(2) = fr(2) - fY' x(2)fx(2)- lfX, r(2). (5.41) 

Since q(t) measures the difference between Y(t) and the best "explanation" 
of Y(t) in terms of a linear function of X(t - s), - r l  < s < rz, the elements 
of P(Z) provide a measure of how good this "explanat ion" is as a function 
of frequency. A perfect fit, for example, would yield U(2)=  0 for all 2. An 
estimate of the residual spectral density can be obtained from estimates of the 
spectra of the observable processes by means of (5.41). 

5.5 THE BIVARIATE SPECTRAL PARAMETERS, THEIR INTERPRETATIONS 

AND USES 

Hereafter, we will restrict our attention to multivariate stochastic processes 
X(t) with continuous spectra, unless otherwise specified. Consequently, the 
basic (second-order) parameter is the spectral density matrix 

f ( ;O = [L-, ~(,~)]. 
In this section we will be interested in the interrelationships between pairs of 
component series Xj(t) and Xk(t). These relationships are necessarily deter- 
mined by the three bivariate parameters f i ,  i(Z), fk, k(2), and fj, k(Z) for each 
j 4: k. We will take j and k to be fixed but arbitrary indices in this section. 
These parameters provide the information available in the correlation between 
Xj(t) and Xk(t) in the most useable form. Two sets of real-valued parameters 
will be defined which are equivalent to the three bivariate spectral parameters 
but which display the correlational information in different ways. 

The two sets of parameters depend on the two standard representations 
of a complex number in terms of real numbers. The cartesian form leads to the 
representation 

f j, k(;,) = cj,  k(;O - iqj, k(2), (5.42) 

where the real-valued functions cj, k(2) and qj, k(2) are called the cospectral 
density (cospeetrum) and quadrature spectral density (quadspectrum), re- 
spectively. As we will see, the minus sign in (5.42) is a consequence of the 
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choice of the sign in the exponent of the spectral representation 

= ~ Jj, k(2) d2. 

In all cases of practical interest, this expression can be inverted to yield 

1 foo i2tcJ f J' k(~) = ~n e- ., k(r) dr 
- - 0 0  

(5.43) 

in the continuous-time case. Now, we expand the exponential to obtain 
e-ia, = cos 2r - i sin 2z and write 

Cj, k(r) = Cj, k(r) +2CJ, k(-- r) + C i, k(Z) -2CJ, k(-- r) 

The first term on the right-hand side of this expression is an even function 
and the second an odd function. Substituting these expressions into (5.43) 
we obtain 

l f~o {cj k(r)--~-Cj, k(--T)} dz 
f/,k(2) = ~ cos 2r ' 2 

- - o 0  

1 f sin 2z Cj, k(Z) -- Cj, k(--r) dr. 
- i2rc -~o 2 

The products yielding odd functions integrate to zero in this result since the 
integrals are over symmetric intervals. Thus, we obtain the continuous-thne 
inversion formulas 

and 

1 f ~176 {Cj, k(Z)+Cj, k(--Z)} dr cj, k(;t) = ~ cos ~ 2 
- - o 0  

(5.44) 

i f  oo {cj,~(,)- cj,~(-r)} dr. 
q j, k().) = ~ sin 2z 2 

- - 0 0  

(5.45) 

Note that this computation and the definition of qj, k(2) given by (5.45) 
account for the minus sign in (5.41). 

The discrete-time versions of these formulas are 

1 o~ {C j, k(Q -t- C j, k(--r)} 
ci,~(;0 = ~ Z cos  ~.~ 2 ' 

' ~ - "  ~ 0 0  

qi, k('~') --" ~ ~ sin 2z 2 " 
~ - -  - - o 0  

(5.46) 

(5.47) 
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These expressions play an important role in the computation of cross-spectral 
density estimators for one of the methods of spectral estimation to be discussed 
in Chapter 8. Note that the real-valued parameters cj, k(2), qj, k(2), fj, j(2), 
fk, k(2) are equivalent to the original set of bivariate spectral parameters. 

The polar representation of fj, k(2) yields another set of spectral para- 
meters. Write 

and let 

f j ,  k(/~) -- If j ,  k(2)[ ei~ (5 .48)  

pj, ~(x) = I f  j, ~(x) l / ( f  j, j (x)A ,~(x)) ' /~. (5.49) 

The functions 0j, k(2) and pj, k(2) are called the phase [phase lead of Xj(t) 
over Xk(t)] and coherence (coefficient of coherence), respectively. The function 

~J, ~(~) = f J, ~(x)/(L, r  ~(;0) 1/~ 

is called the complex coherence. It will play a role in the computation of higher 
order coherences in the next section. By property (5.19), the coherence 
satisfies the inequality 

0 _< p j, ~(~) _<1 (5.50) 

wherever the ratio (5.49) is well defined. At frequencies for which fj, j(2)fk, k(2) 
= 0, we will define p j, k(2)= 0. 

It is easily seen that p j, k(2), 0j, k(2), fj, j(2), and fk, k(2) constitute a set of 
spectral parameters equivalent to the original set. These parameters are 
obtainable from the spectral densities, cospectrum, and quadrature spectrum 
by means of the relations 

and 

2 2 1 

P j, k(/].) -- \ f j ,  j (2)fk,  k(~,) ] 

Oj, k(2) = --Arctan(qj, k(,~)/Cj, k(~t,)). 

(5.51) 

[The minus sign again results from the fact that qj, k ( 2 ) = - - I m f j ,  k(2).] 
By expanding (5.48) in cartesian form, the cospectrum and quadspectrum 
can be obtained from the spectral densities, phase and coherence by means of 
the expressions 

cj. ,,(x) = pj. ,,(,~) cos oj. ,,(x)(.6. j(x)f,,.,,(;O) '/~ 

qj, k(2) = -- Pj, k(2) sin 0j, k(2)(fj, j(2)fk, k(2)) 1/2 

(5.53) 

(5.54) 

The phase and coherence are, perhaps, the most useful parameters for 
measuring the relationship between Xj(t) and Xk(t) because the values of these 
functions can be interpreted quantitatively. We consider this next. 

(5.52) 
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Interpretation of Phase and Coherence 

Suppose that the random spectral measures of Xj(t) and Xk(t) could be 
represented in the form 

Zj(dX) - ei~'~*)lZj(dA) [ , Zk(d~) -- e'W~Z)[Zk(dA)[, 

where q~j(2) and r are nonrandom phase functions. That is, the phase 
functions are the same for all sample functions of the process. We would 
then have 

fj, k(2) d2 = EZj(d2)Zk(d2i= e'Cq"tz)-~~ 

from which it would follow that 

0j, ~(~) = ~oj(~) - ~o~(~). 

That is, in this special case, the phase function is simply the difference in phase 
of the two time series at frequency 2 or, more precisely, the phase lead of 
Xj(t) over Xk(t) at 2. In the usual situation wherein qgj(2) and qgk(2 ) are 
random quantities, this interpretation can be largely retained if now 0j, k(2) 
is thought of as an (ensemble) average of the random differences qgj(2)- 
qgk(2 ). Thus, O j, k(2) is commonly interpreted as bein9 the average phase lead 
o f  Xj(t) over Xk(t) at frequency 2. 

Recall from Section 4.2 that the phase shift of a linear filter at frequency 2 
can be given in time units by dividing by 2. In the same sense, the parameter 

tj, k(2) = Oj, k(2)/2 
is the time lead of the harmonic of Xj(t) at frequency 2 over that of Xk(t). 

An important property of the phase parameter is the following: I f  the 
univariate processes Xj(t) and Xk(t) are independently passed through linear 
filters with transfer functions Br and Bk(2) and if Yj(t) and Yk(t) are the 
outputs, then 

ff, k(2) = Bj(2)Bk(2)J).X,k(2) 

by (5.34). Thus, if 0~(2) and Ok().) are the phase shifts of the two filters, the 
phase of the output is related to that of the input by the expression 

05,~(~) = 0j~ ~(~) + 0 j ( ~ ) -  0~(~). 

Consequently, if it is important that the phase relationships remain undis- 
turbed when the time series are processed by linear filters, filters with the same 
phase shift must be used on both series. A class of symmetric filters, called 
nonnegative definite filters, are important from this viewpoint in that they 
have zero phase shift for all frequencies. This is nearly true of all properly 
designed symmetric filters as well. See the discussion of this topic in Section 
A6.2. 
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The interpretation of coherence is somewhat more involved, but cor- 
respondingly more important than that of phase. As might be guessed, the 
term "coherence" is borrowed from the study of light. The term was first 
applied to time series by Wiener (1930). Because of the symbolic representation 

pj, = I EZj(d )Z (d  I/(EI Zj(d   I 

[see (5.20) and (5.49)], it is reasonable to expect that the coefficient of coherence 
will have the properties of the absolute value of a correlation coefficient at 
each frequency 2. In particular, the extreme values, zero and one, should 
correspond to complete lack of correlation and the maximum degree of 
correlation possible for a definition of correlation that makes sense in the time 
series context. Moreover, values of coherence other than zero and one should 
have some reasonable quantitative interpretation. We investigate the basis 
for such an interpretation in what follows. 

The correlation coefficient measures the degree of linear association between 
two random variables. That is, it represents the degree to which one random 
variable can be represented as a linear function of the other. The term 
"associat ion" rather than "dependence" is used because a large correlation 
need not indicate a causal relationship between the random variables. 
Similarly, the term "regression" is used to describe a directed relationship 
of one random variable with another. That is, whereas we speak of the linear 
association between X1 and X2, treating X1 and X2 on equal footing, when we 
speak of the linear regression of X1 on X2 we think of )(1 as the dependent 
and )(2 the independent variable in some sort of functional relationship. 
This distinction marks the difference between correlation theory and regres- 
sion theory. The form of regression considered here differs from the theory 
more commonly taught in statistics wherein the independent variable is 
assumed to be nonrandom. The terms and interpretations of statistical 
correlation and regression theory will carry over to the time series context 
with little change. We do not distinguish between the two topics in this section 
in order to concentrate on the interpretations of the parameters. In the 
multivariate theory of the next section, these topics will be treated separately. 

It is reasonable to expect that the coefficient of coherence will, in some 
sense, measure the degree of linear association between the time series Xj ( t )  
and Xk(t) .  The only concept of linear function we have available for time series 
is that of a linear filter. Consequently, we can ask the question: To what 
degree can Xk(t)  be represented as the output of a linear filter with input Xj(t) ? 
If mean-squared error is taken as the measure of the difference between Xk(t)  
and filtered versions of Xj( t ) ,  this question can be rephrased to read: How 
small can we make 

a i. 2 = E(Xk( t )  -- L ( X j ( t ) ) )  2 
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by proper choice of the linear filter L? [Note that this expression does not 
depend upon t, since Xk( t ) -  L(Xj(t)) is weakly stationary.] If the linear 
filter L which minimizes ~L 2 can be found, then the degree of linear association 
between Xj(t) and Xk(t) can be assessed by comparing o-i.. 2, the power in the 
residual time series Xk(t) --L,(Xj(t)), with the power E(XR(t)) 2 of Xk( t) itself. 
The coefficient of coherence actually makes this comparison possible fre- 
quency by frequency. 

To see this, it is first necessary to construct the linear filter r,. Since 
filters are uniquely determined by their transfer functions, it suffices to compute 
the transfer function /~j, k(2) of L. This can easily be done by virtue of the 
following observation. Let L be any linear filter which matches Xj( t )and 
let B(2) be its transfer function. Then by the spectral representations of Xk(t ) 
and L(Xj(t)), 

trL 2 =  E{ f  ei~t[Zk(d2) - B(2)Zj(d2)]} f B(p)Zj(dp)] 

= fElZk(d2 ) - B(2)Zj(d~)[ 2. 

Now, the minimum value of trL 2 will be achieved for the linear filter whose 
transfer function minimizes the integrand of this expression for all frequencies 
2. That is, the problem of minimizing trL 2 is reduced to an infinite number of 
identical minimization problems, each involving the determination of a com- 
plex number/~), k(2) which minimizes the quantity 

E] Zk(d2) -- B(2)Zj(d2)] 2 

among all possible complex numbers B(2). However, viewing Zk(d2) and 
Zi(d2 ) as random variables in L2(P) as before, this quantity is the squared 
distance between Z k(d2 ) and an element in the linear subspace generated by 
Zi(d2 ), since all such elements are simply complex multiples of Zj(d2). The 
minimum distance is achieved by the orthogonal projection of Zk(d2 ) onto 
this subspace. By the criterion for determining orthogonal projections given 
in Section 1.3, this means that the projection Bj, k(2)Zi(d2) has the property 

• Zj(d ), 

since Zj(d2) is the only generator of the subspace. That is, 

E(Zk(d2) - Bj, k(2)Zj(d2))Zj(d2) - O. 

From this it follows that 

Bi, k(2) = EZk(d2)Zj(d2)/E[ Zj(/],) ] 2. 

Because of (5.20) and the restriction to continuous spectra, this becomes 

/~,, k(2) = fk, j(2)/fj, j(2). (5.55) 
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This is the transfer function of the filter L which minimizes O'L 2. Note that L 
matches Xj(t), since the condition p j, k(2) _< 1 implies 

f I = f (If , -, ;(;)) d; 

f ) ~(;)A ~(;)d;  < - -  p j ,  , 

The gain and phase shift functions of L are 

I B;, k(2) l = ]fk, ;(2)[/f j, ;(2) = p~, k(2)(fk, k(2)/fj, j(2))'/2 (5.56) 

and 

,gj, k(2) = arg(fk, j(2)) = -- Oj, k(2). (5.57) 

Thus, another interpretation of the phase angle 0j, k(2) is that it is the negative 
of the phase shift of the filter which transforms Xj(t) into the best linear 
approximation to Xk(t). In this sense, Xj(t) leads Xk(t) at frequency 2 by the 
angle 0j, k(2). 

In actual fact, this is the angle by which Xj(t) leads Xk( t )= L(Xj( t ) )a t  
frequency 2 and the degree to which it is a reasonable measure of the angular 
separation of Xj(t) and Xk(t) will depend on how close X k(t) and Xk(t) are 
at this frequency. To determine this, let 

Uk(t) = Xk(t) -- Xk(t). 

This is a weakly stationary time series with spectral measure 

z ~ ( d ~ )  = Z~X(d20 - ~j, ~(20Z~X(d~). 

Applying the Pythagorean theorem to the orthogonal elements ZkV(d2) and 

B~., k(2)zjx(d2)= ZkY~(d2), we obtain 

El zkx(d)OI 2 - El ZkV(d2) + Bj, k (&)zjx(d~)[ 2 

- El Z~(d~)l 2 + I g j, ~(;01ZEI zjx(d;OI ~. 

Consequently, the spectral densities of the processes Xk(t), )~k(t), and Uk(t) 
are related by the expression 

f~k(2) = f~,k(2) + f~,k(2), (5.58) 

where 

.fi,k(2) = I Bj, k(2)l zfxj(2). (5.59) 

Now, by the definition of a-zL, the minimum value of the error is 

d - -  
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Therefore, a frequency by frequency assessment of the magnitude of this 
error relative to the power in Xk(t) can be obtained by means of the ratio 
of spectral densities f]v, k().)/fk x, k(2). With only minor abuse of language, this 
ratio can be described as the proportion of the power in Xk(t) at frequency 2 
which cannot be explained by the linear regression of Xk(t) on Xj(t) [i.e., 
by L(Xj(t))]. Because of (5.58), the proportion of the power at frequency ). 

which can be so explained is f [  ~, k(2)/f~ k(2). However, from (5.56) and (5.59) 
we easily obtain 

fk{k(2) = p2, k(2)f~k(2 ). 

Thus, this proportion is p2, k(2). Moreover, repeating the above computations 
with j and k interchanged, the symmetry of the coefficient of coherence in j 

2 and k implies that pj, k()~) is also the proportion of the power in Xj(t) at fre- 
quency 2 which can be explained by the linear regression of Xj(t) on Xk(t). 

2 Thus, the squared coefficient o f  coherence pj, k(2) can be interpreted as the 
proportion of  the power at frequency 2 in either time series Xj(t), Xk(t) which 
can be explained by its linear regression on the other. 

This means that linear filters can be constructed by which 100 p2, k(2)% 
of the power at frequency 2 can be removed from either series by subtracting 
off the appropriate linearly filtered version of the other. This is the most useful 
interpretation of coherence. 

In addition, by (5.58) the proportion of the power in the residual series at 
2 frequency 2 will be 1 - p j, k(2). This yields the useful expression 

ff,  g(2) = (1 - p2, k(2))f~k(2 ) (5.60) 

for the residual spectral density. 
Note that if pj, k(2)= 0, the two series are completely unrelated at fre- 

quency ). in the sense that no linearly filtered version of one can be used to 
reduce the power in the other at that frequency. On the other hand, if p j, k(2) 
= 1, one series is exactly a linearly filtered version of the other at frequency 2. 
In fact, if pj, k(2)= 1 for all 2, both time series can be represented as the 
output of a linear filter with the other as input. For then, fly,, k(2) -- 0 which 
implies that at. 2 = E(Xk(t) - L(Xj(t))) 2 = 0. It follows that 

Xk(t) = L(Xj(t)) ,  -- oo < t < oo. 

The same argument applies with j and k interchanged. More generally, the 
coherence will vary with frequency indicating a changing pattern of linear 
association. Regions of high coherence usually have special significance in 
applications. We will now look at some examples in which the phase and 
coherence play a special role. 
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Example 5.3 An Experiment in Optics 
An experiment traditionally performed in courses in optics is the demon- 

stration of the nature of light coherence. This phenomenon, which makes the 
modern laser possible, has an analog in the mathematical model we have 
developed and, in fact, the mathematical coherence parameter is a useful 
quantitative description of light coherence. For simplicity we will consider two 
time series X~(t), Xz(t) which represent the amplitudes of corresponding 
components of the electromagnetic vectors for two monochromatic light 
beams. The two beams emanate from a common source and are constrained to 
travel different paths to a photometer as pictured in Fig. 5.2. The principle of 

Source 

Photometer measures 
power in 
$(t):x,(t) , G (t) 

Movable mirror 

Fig. 5.2 Schematic model o f  optical experiment to demonstrate coherence. 

this simple mechanism is identical to that of the Michelson interferometer. 
The actual operation of the Michelson interferometer is more complex, 
however [see, e.g., Jenkins and White (1950, p. 239)]. 

At the point where the two light beams are picked up by the photometer, 
the amplitudes are added and the power in the resulting sum S(t) = Xl(t)  + 
X2(t) is measured. If 2 denotes the frequency (velocity • wave number) of 
the light rays, then the photometer (effectively) records the spectral density 
fs(2) of S(t). In terms of our model, the random spectral measure of S(t) 
is the sum of the spectral measures of Xl(t)  and X2(t); 

Zs(d;t) = Z, (d)J  + Z2(d,~). 

Thus, by the properties of expectation, 

f s ( ; t )  d,~ = EZs(d ,~)Zs(d ,~)  

= [ f , , , (2 )+f~ ,  2(2) q-f2,1(,~) +f2,  2(2)] d2. 

However, since f z, 1(2) = f l ,  2(2) and ~ + u = 2 Re u, we obtain 

fs(2) =f1, , (2)  +f2,  2(2) + 2c,, 2(2). 
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If we assume that the two light beams are adjusted to have the same power, it 
will follow that f1,1(2)=f2,2()-) �9 Then because of relation (5.53), we have 

fs(2) = 2f,, 1(2)[1 + 01,2(2) cos 01,2(2)1. 

Now, if the source consists of two separate light producers, for example, 
two different light bulbs, then the two light rays will be completely incoherent 
(in theory) which implies that Pl, 2(2) = 0. The light power recorded at the 
photometer would then be 

fs(2) = 2f,, x(2). 

That is, the power would simply be twice that of each component ray. On 
the other hand, if the two light rays were perfectly coherent, a property 
which could be obtained by splitting a single ray into two beams, say, we 
would have p l ,2 (2)=  1 and 

fs(2) = 2fx, x(2)[1 + cos Ox, 2(2)]. 

Now, by varying the length of the path of Xz(t) by operating the moveable 
mirror, the phase angle 0x, 2 ( 2 ) ,  which measures the lead of X~(t) over Xz(t), 
will vary. When the two amplitudes are perfectly in phase, which occurs 
when 01,2(2) - ;tk for an even integer k, we will have 

A(2)  = 4A, x(2). 

Thus, the power will be twice that for incoherent light. On the other hand, if 
the amplitudes are 180 ~ out of phase [0~, 2 ( 2 )  - -  nk for an odd integer k], the 
amplitudes will "cancel"  and we will observe 

fs(~) = o. 

Thus, as the mirror is moved, the observed light power will vary from 0 to 
4fl, x(2). 

In actual experiments it is difficult to achieve perfectly coherent light rays, 
so, in fact, we will have 0 < Pl, 2(2) < 1 and the light power will vary over 
the less extreme range 2fx,x(2)(1- Px,2(2)) to 2f~,,(2)(1 + p,,2(2)) as the 
path length of X2(t) is changed. 

Example 5.4 Computin9 the Transfer Function of  an In-Service Linear 
Filter. Degree of Linearity, Signal-to-Noise Ratio 

The standard laboratory method for determining the transfer function 
B(2) of a linear filter L parallels our procedure for calculating transfer func- 
tions. For several values of 2, sinusoids e ixt are fed into the filter and the 
amplitudes and phases of the outputs B(2)e ixt are measured. When the filter 
cannot be taken out of service or if the filter is a complicated physical system, 
such as the earth between two observation points, it is necessary to be able to 
determine the transfer function by observing the normal input X~(t) and 
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output Xz(t) of the filter while it is in operation. This can be done if the input 
is sufficiently "b road -band" ;  that is if f1 ,1(2)> 0 over a wide range of 
frequencies 2. To see this, note that 

Thus, 

Z2(d2) = B(2)Z,(d2). 

A ,  ,(~) d2 = EZ~(d2)Z,(d2) 

= B ( 2 ) E I  Z , ( d 2 )  l ~ = B(2)A,,(2) d2. 

It follows that 

S(2) =f2,x(2)/fl,l(2) wherever f1,1().) > 0. 

Consequently, if the spectra are estimated from observed lengths of the input 
and output series, the gain and phase function of L can be estimated by 
means of the expressions 

I B(;01 = ]f,,2(2)l/f,,,(2) = (c~. 2(2) + q~,2(2))'/2/fl,,(2), 

3(2) = - 8 , ,  2(2) = Arctan(q,, 2(2)/cx, 2(2)), 

where f l ,  ~(2), cl, 2(2), and ql, 2(2) are replaced by the corresponding estimates 
(see Chapter 8). For an example of the determination of the transfer function 
of a linear system with servo control by cross-spectral methods; see Goodman 
and Katz (1958). 

By the theory of coherence given above, if X2(t) = L(Xx(t)), where L is a 
linear filter, then px,2().)= 1 for all 2. It follows that deviations of px,2().) 
from unity indicate the presence of nonlinearity in the system. (We use the 
term nonl&ear to mean that it is not true that X2(t) = L(Xx(t)) for a linear 
filter L. This is a mild abuse of standard terminology.) There are an infinite 
variety of types of nonlinearity and coherence does little to indicate which 
type is operating in the system. However, if the type of nonlinearity is known, 
its strength can often be related to the value of the coefficient of coherence. 

An important nonlinear model is that of a linear system L contaminated 
additively by random noise. This model can be represented by the expression 

X2(t ) = Y(t) + N(t), 

where Y( t )= L(XI( t ) )and the input Xl(t), and noise N(t) are uncorrelated 
time series. A schematic representation of this system is given in Fig. 5.3. 

/v(t) 

x,(,) I L Y(,) [ 
- ~ - @ - - x 2  ( t )  

-1 
Fig. 5.3 Schematic representation of a linear system contaminated by additive noise. 
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We will assume that both Xl( t )  and N(t) are weakly stationary. An important 
measure of the output signal fidelity is the signal-to-noise density ratio 

a(2) = f r (2) / f  N(),), 

which provides a frequency-by-frequency comparison of the power in the 
output signal relative to that of the noise. We will now show that the coeffi- 
cient of coherence between the "' observable" time series X~(t) and X2(t) 
is related to a(2) in a simple way. 

The spectral measure of the process X2(t) can be expressed as 

Z2(d2 ) = B(Z)Z,(d)o) + ZN(d2 ), 

where Zl(d2 ) and Zu(d2 ) are the spectral measures of Xl( t )  and N(t). Thus, 

EZ2(d2)Z~(d2 ) = B(2)EiZ,(d2)] 2 + EZN(d2)Z~(d2) 

and 

E] Z2(d)~)I 2 - I B(),)I2EI ZI(d),)[ 2 + B() , )EZI(d) , )ZN(d) , )  

+ B(2)EZN(d2)ZI(d2) + E[ZN(d2)I z. 

Since 2"1(t) and N(t) are assumed to be uncorrelated, 

EZu(d2)Zx(d2) = EZx(d2)Zu(d2) = O. 

Thus, the cross-spectral density of Xz(t )  and X~(t) and'spectral density of 
X2(t) are 

f2, ~(2) = B(;.)f~,x(2) (5.61) 

and 

A, 20.) = I B(;31~, 1(;0 + f~(~). 

It follows that the squared coefficient of coherence of Xl( t )  and X2(t ) is 

p~,2(2) = Ifz,,(2)lz/Y2,z(A)f,,,(2) 
- [B(2)]2f,. ,(2)/(lB().)lZf,. ,(2) + f . (2 ) )  = ~(2)/(1 + ~(2)). 

We have used the re la t ion fv(2)= [B(2)lzfl,~(2) and the definition of ~(2) to 
obtain the last expression. Thus, 

a(2) = p2,2(2)/( 1 _ p], z(2)). 

Since p2,2(2) can be estimated from samples of the processes Xl( t  ) and X2(t ) 
by techniques to be given in Chapter 8, the signal-to-noise ratio car, be 
estimated. Note that by using (5.61), the characteristics of the linear filter 
can also be estimated in terms of the observable processes as before. For 
regions of the spectrum for which p~, 2(2) is close to one, thus ~(2) is large, the 
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output of the linear filter is the dominant component of X2(t ). Thus, a signal 
with improved overall signal-to-noise ratio j" fy(2) d2/~ fN(2) d2 can be 
achieved by band-pass filtering Xz(t ) to eliminate bands of the spectrum for 
which ~(2) is relatively small. An application of these ideas to a problem in 
seismology was given by Koopmans (1961). We next look at a classical time 
series problem which is easily solved by the methods developed above. 

Example 5.5 The Historical Filtering Problem 
Let X(t)  and Y(t) be stationarily correlated univariate time series where 

Y(t) is thought of as being an observable process which is a distorted version 
of the unobservable process X(t).  The problem is to construct the linear 
filter L which, when applied to Y(t), best reproduces X(t). By "bes t "  we 
will again mean that L minimizes 

E(X(t)  - L( Y(t))) ~ 

among all linear filters L which match Y(t). Since L will be allowed to operate 
on Y(t) for all times t, - ~  < t < ~ ,  in theory, a complete sample function 
must be available before the process )~(t) = F~(Y(t)) can be.constructed. Con- 
sequently, this problem is called the historicalfiltering problem in contrast to 
the more difficult, real-timefiltering problem in which the filter is restricted to 
operate on the past and present of the process. We will consider this problem 
in Chapter 7. 

By the argument given earlier in this section, if C(2) is the transfer function 
of L, then 

E(X(t)  - L(Y(t)))  2 = JElZx(d20 - c(2)Zv(d)~)[ 2, 

and r the transfer function of L, minimizes 

El Zx(d ) - c(;oZ (d )l 

for each 2. The derivation leading to (5.55) produces 

C().) = fx ,  r (2) / f  r(2) 

in this case, wherefx, r(2) and f r(2) are the cross-spectral densities of X( t )and  
Y(t) and the spectral density of Y(t), respectively. Moreover, if r /( t)= 
X ( t ) -  X(t), then the degree to which the optimal filter fails to reproduce 
X(t) is 

E ( , ( , ) )  = 

where f,(2) is the spectral density of q(t). However, this is the analog of the 
residual spectral density (5.60), thus can be expressed in the form 

f ,(2) = (1 - p2, v(2))fx(2) ' 
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where Px, r(2) is the coefficient of coherence between X(t) and Y(t) and 
fx(2) is the spectral density of X(t). Thus, as would be expected, the repro- 
ducibility of X(t) by a linear filtered version of Y(t) depends on the degree of 
linear association between the two series as measured by the coherence. 

If 

Y(t)-- X(t) + N(t), (5.62) 

where N(t) is a noise process with spectral density fN(2), uncorrelated with 
X(t), then it is easy to check that 

fx, r(2) = fx(2) and fr(2) = fx(2) + fN(2). 

Thus, 

(~(2) = f x(2)/(f x(2 ) + fN(2)). 

Note that this transfer function is real-valued. Hence, the filter L is symmetric. 
Thus it is clear in this special case that this filter cannot be used in real-time 
filtering. When Y(t) has form (5.62), alternate forms for the transfer function 
are easily seen to be 

(~(2) = ~(2)/(1 + ~(2)), 

where c~(2) is the signal-to-noise density ratio a(2) = fx(2)/fN(2) and 

~2(,~) = p~, y(;,). 
Both of these expressions make sense, intuitively, since where the signal-to- 
noise ratio is high, and thus X(t) and Y(t) are nearly equal, the filter L passes 
Y(t) virtually unchanged. However, where the signal-to-noise ratio is low, 
which means that N(t) is the dominant component of Y(t), the filter sup- 
presses the noise by passing almost none of the power of Y(t). 

Since X(t) and N(t) are generally not observable separately, it is not 
always possible to estimate the transfer function C(2) from actual data. An 
exception is provided by the model of the last example in which the signal 
X(t) is the output of a linear system with observable input W(t). Then, even 
if the transfer characteristics of the linear system are unknown, the linear 
filter which, when applied to Y(t), best reproduces X(t) has the transfer 
function 

= Pw,  ~('~). 

This is an immediate consequence of a very useful property of coherence (to 
be considered next) which implies that p2 v(2) 2 = Pw, r(2). Thus, t~(2) can be 
estimated from observations on W(t) and Y(t) and the impulse response 
function of the corresponding convolution filter can be obtained by Fourier 
transformation. Consequently, the best noise suppression filter can be con- 
structed to a good degree of approximation in this case. 
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An Invariance Property of Coherence 

We saw in Section 1.4 that the correlation coefficient is a generalization of 
the cosine of the angle between vectors to the "ang le"  between random 

x variables. Since the coefficient of coherence Pj, k()O is essentially the correlation 
coefficient of the random spectral measures zjx(d2) and ZkX(d2) of two time 
series, it will also have the properties of the cosine. Cosines are invariant 
under scale changes of the component vectors, which corresponds to multiply- 
ing zjx(d).) and ZkX(d2) by complex quantities Bj(2) and Bk(2), respectively. 
However, this is equivalent to the modification of the spectral measures 
which results from the application of independent linear filters to Xj(t) and 
Xk(t). That is, i f  Yj(t) = Lj(Xj( t ))and Yk(t) -- Lk(Xk(t)), where Lj and Lk are 
any linear filters matching the corresponding inputs, then 

pj(~(~) = pj~, ~(~). 

This equation is valM for all 2 for lvhich the transfer functions of bothfilters are 
nonzero. This property of coherence, which we will call invariance under linear 
filtering, can be easily established by appealing directly to the definition of 
coherence and to expression (5.34). It has important practical consequences: 
Often, it is necessary to compute the degree of association between two time 
series which have been passed through a series of linear filters with possibly 
unknown characteristics. Because of this invariance property, the coefficient 
of coherence of the outputs is the same as that of the inputs. The next example 
illustrates the usefulness of this property. 

Example 5.6 The Detection of a Coherent Source of Ocean Waves 
Munk et al. (1959) considered the possibility of detecting and locating 

sources of distant underwater disturbances or storm centers by computing the 
spectral parameters of low-frequency ocean wave amplitudes at a number of 
stations. For convenience, we will deal with only two stations and will let 
Xl(t) and X2(t) denote the recorded amplitudes at these stations. A simple 
but reasonable model of the mechanisms generating these time series is the 
following. At the source of the disturbance the energy impressed on the sea 
surface can be represented by a time series Y(t). The resulting waves travel 
different paths to the two recording stations and if the sea is assumed to 
transmit energy linearly, the contributions to the variations in sea height due 
to the disturbance at the two stations will be Ul ( t )=  L I ( Y ( t ) ) a n d  
U2(t) = L2(Y(t)), respectively. Because both filters have the same input, the 
invariance of coherence under linear filtering implies that 

Now it is reasonable to assume that 

Xj(t) = Uj(t) + Nj(t), j = 1, 2, 
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where Nj(t) is the contribution to sea height due to causes other than the 
distant source modeled by Y(t). Moreover, by the definition of the Nj(t)'s it 
is reasonable to assume that U j(t) and Nk(t) are uncorrelated for j, k - 1, 2. 
Then, any correlation between Xl(t) and Xz(t ) can be attributed either to the 
correlation between Ul(t) and Uz(t ) or to that between N~(t) and Nz(t ). The 
simplest situation is that of rather widely separated recording stations for 
which N~(t) and Nz(t ) are locally generated, thus, uncorrelated. This precludes 
the existence of a second distant coherent source, for example. Then the 
presence of the original source would make itself known by a coefficient of 
coherence pX,2(2 ) near unity over regions of the spectrum for which the 
power in U~(t) and Oz(t ) dominates that of N~(t) and Nz(t). Since the power 
in locally generated sea waves will generally occupy a higher frequency range 
than that of waves which have traveled a very long distance, the computed 
coefficient of coherence provides an effective indicator for detecting distant 
coherent sources. 

Under the given simplifying assumptions, the coefficient of coherence 
between Xl(t) and Xz(t) can be shown to be 

ptX, 2(2) = (~x,(2)~2(2)/(1 + ~t(Z))(1 + cz2(2))) '/2, 

where aj(2) is the signal-to-noise density ratio for Uj(t) and Nj(t), 

~j(2) v 2 N 2 =f j ,  j( )/fj, j ( ) ,  j =  1 2. 

Consequently, it is possible to interpret the values of the coefficient of co- 
herence directly in terms of the relative signal and noise strengths. 

Example 5.7 An Economics Model and Its Spectral Parameters 
As another illustration of the use of the method for calculating spectral 

parameters given in the last section we will calculate the spectra, coherence, 
and phase for discrete time series X(t) and Y(t), which represent the deviations 
from their mean values of the price and available quantity of a given com- 
modity, respectively. These series are assumed to be related by the equations 

Y(t) = o~X(t - 1) + U(t), X(t) = - f lY ( t )  + V(t), (5.63) 

where U(t) and V(t) are taken to be zero-mean white noise processes, uncor- 
related with one another, with variances au 2, 6v  2. To obtain a reasonably 
realistic model, the "loading parameters" ~ and fl are both assumed to be 
positive. A further restriction will be indicated presently. 

The equations for the spectral measures of the various processes can be 
read off directly from (5.63), 

Zr(d2) = ~e-iXZx(d2 ) + Zv(d2), Zx (d ,~ )  = - ~ Z ~ ( d , ~ )  + Zv(d;,). 
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Here, we have used the fact that e - i)  is the transfer function of the linear 
filter which takes X( t )  into X ( t -  1). This is immediate from the usual rule 
for calculating transfer functions. Rewriting these equations as a pair of 
linear equations in the unknowns Zx(d2) and Zr(d2) ,  it is easy to obtain the 
solutions 

- f lZv (d2 )  + Zv(d2) ~e-'aZv(d2) + Zv(d2) 
Zx(d2) = 1 + ~fle -ix ' Z r ( d 2 ) =  1 + o~fle -ix 

Thus, the spectral density of X( t )  is 

fx(; .)  d;. = El Zx(d;312 = 

This yields, 

Similarly, 

and 

E[- f lZ~(d; . )  + Z~(d,~)][-flz~(d,~) + Zv(d~)] 
I 1 + ~fle- iit[2 

1 /~20"U2 -t- O'V 2 

2n 11 + ~fle- ia l 2 
d~. 

1 ~20"U2 -+- O'V 2 

fx(2) = ~ 1 + o~2fl 2 + 2~fl cos 2" 

1 ~20v2 -+- O'u 2 

fY('~) = ~ 1 + cd/~ 2 + 2~/~ cos  2 

1 - f lO'u  2 -a t-. o~ei2~v 2 

f x, r(2) = ~ l1 +o~fle-'a[2 

1 - f l a y  2 + o~av 2 cos 2 + iowv 2 sin 2 

2 n 1 + od fl 2 + 2 cz fl cos/l 

In these calculations we have used the relation 

EZv(d2)Zv(d2) = o 

and the expressions 

f u(}O = ff v2/2rC, fV(J . )  = 6v2/21r,  - n < 2 < n .  

for the spectral densities of the white noise processes. 
Now to guarantee that these spectral densities do not " b l o w  u p "  for some 

value of 2, that is, the denominators do not go to zero, it is necessary to take 
~fl 4: 1. As we will show in our discussion of finite parameter  models in 
Chapter 7, it is actually necessary to take I~/~1 < 1 in order for X( t )  and Y(t)  
to be realizable processes, certainly a desirable attribute in a realistic model. 
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Consequently, combining this with the earlier restriction on the parameters, 
we assume that 0 < ~/3 < 1. 

Finally, the squared coefficient of coherence of X(t)  and Y(t) is 

Ifx, 
fx(2)A03 

(-/~O'u 2 -[- (XO'v 2 c o s  ,~,)2 _[_ (o~O.v 2 sin/],)2 

(~20"U2 -+- O'V2)(CZ20"V 2 + O'U 2) 

/~20"04 + o~20"v 4 -- 2~xflO'u20"v 2 cos  2 

[32av 4 + ~2crv 4 + (1 + o~21~2)O'u20"v z '  

and the phase angle is 

Ox, y(2) = Arctan 
I m f x ,  r(2) 
Refx, y(2) 

0~O'V 2 sin 2 ) 
= Arctan _fl(Tu2 -[- o~O.v2 cos 2 " 

This model predicts the highest coherence between price and quantity in the 
high frequencies where the power in both series is greatest. This would lead 
to highly oscillatory price and supply series, which are characteristic of a 
rather unstable economy. For values of X beyond a point determined by 
0~, fl, 0"0 2, and av 2, oax, ~,(2) would be negative but close to zero, indicating 
that price follows the rise and fall of supply. Thus, this simple model displays 
a number of features one might expect of a real economic system. To deter- 
mine the adequacy of the model for a real system, it would be possible to 
compare the predicted spectral parameters computed above with estimates 
of the coherence, phase, and spectral densities based on actual observations 
of the two processes. The estimation of these parameters will be taken up in 
Chapter 8. 

5.6 THE MULTIVARIATE SPECTRAL PARAMETERS, THEIR 

INTERPRETATIONS AND USES 

There is a close relationship between the spectral parameters of time series 
analysis and the correlational parameters of multivariate statistics due to the 
virtually identical representations of inner products and linear transforma- 
tions for the vectors of spectral measures Z~(d2), . . . ,  Z~,(d2) of a multivariate 
time series on one hand and vectors of zero-mean random variables with finite 
variances on the other. Thus, as we saw, the coefficient of coherence is essen- 
tially the modulus of a correlation coefficient with the properties and inter- 
pretation one would expect of this parameter. The remaining multivariate 
spectral parameters are defined to retain this parallelism and, in fact, the 
relationship is so close that most of the spectral theory can be taken, with only 
minor modifications, from texts on multivariate analysis such as the one by 
Anderson (1958). See also Cramtr  (1951a). We will cover the essential features 
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of the theory without going into great depth. Additional details are covered 
by Hannah (1970) and Koopmans (1964b). Due to an important difference in 
emphasis, we will treat the correlation theory and regression theory separately. 

Multivariate Correlation Analysis 

If X(t) is a multivariate weakly stationary process with p > 2 components, 
then it is often important to account for the interaction among several of the 
components when the power in one of them is to be determined or when the 
association between two of the components is to be assessed. It may be the 
case, for example, that most of the power in a given series can be removed by 
subtracting off a function of various other of the components. This would 
indicate a relationship among the components which might arise, for example, 
as the result of a common "driving mechanism." 

Again the type of association to be considered is linear association. Thus, 
we will account for the influence of components Xm,(t), Xm2(t), . . . ,  Xmq(t) on 
Xj(t) by constructing the linear function of these series which best approxi- 
mates X j(t). That is, if 

Yj(t) -- L ( X , , , ( t ) , . . . ,  X,,q(t)) (5.64) 

denotes a multivariate linear filter with q inputs and one output, as described 
in Section 5.4, then the filter which best approximates Xj(t) is the one which 
minimizes 

E ( X j ( t ) -  Yj(t)) 2. (5.65) 

Let Xj.m(t ) denote the output of the minimizing filter, where m =  
(ml, m2 . . . .  , mq)'. Then, to measure the strength of the linear regression of 
Xj(t) on Xm,(t) . . . .  , Xm~(t) we can compare the power of Xj.m(t) with the 
power of X j(t). This comparison can be made frequency by frequency by 
using the coefficient of coherence of the two time series. This parameter, 
called the multiple coherence, is defined in terms of the spectral densities and 
cross-spectral densities of Xj(t) and Y,j.m(t). Consequently, it is important 
to be able to calculate these densities. 

The problem of describing the unconditional linear relationship between 
two component time series Xj(t) and Xk(t) was solved in the last section by 
the introduction of the coefficient of coherence. When the vector time 
series has other components, it is likely that part of the coherence between 
Xj(t) and Xk(t) can be attributed to the linear relationship each has with some 
or all of the others. To determine the coherence between Xj(t) and Xk(t) which 
is not attributable to the regression of these processes on Xm,( t ) , . . . ,  Xmq(t), 
say, it is reasonable to adjust each of the two processes by subtracting off its 
best "explanat ion"  as a linear function of the Xmj(t)'s. Thus, the partial 
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coherence is the coefficient of coherence of the residual processes Xj( t ) -Xj .  m(t) 
and Xk(t) -- Xk.m(t). Again, it is necessary to compute the spectral densities 
from which this parameter is calculated. To do this, we will use the spectral 
representation of X(t) and that of a multidimensional linear filter to obtain 
the random spectral measure of Xj.m(t). 

In spectral form, Eq. (5.64) can be written 

q 
Z j r (d2)= ~ Bj, r(2)zxr(d2), (5.66) 

r = l  

where the 1 x q vector Bj(2)= [Bj,,(2)] is the transfer function of L. The 
argument of the last section can again be applied to show that 

E(Xj(t)-  Yj(t))2= f E zjx(d2)- r=l ~ Bj'r(2)gXr(d2)12" 

Thus, the minimum of this expression occurs at the transfer function gj(2) 
which determines the projection of zjx(d2) on the linear subspace generated 
by zx,(d2),. . . ,  ZX(d2) for each 2. By the criterion for determining projec- 
tions given in Section 1.3, the elements of the transfer function must satisfy 
the conditions 

E[ Zjx(d2) - ,.=1 ~ Bj'r(2)zX"(d2)] [Zxs(d2")] = 0 ,  s =  1,2, . . . ,  q. 

In terms of the spectral density functions, these equations are 

q 
x 2 = , ., (5.67) Bj,,(2)fm x,,..(2) = f j, ms(), S 1 2,.. q 

r = l  

or, in vector form, 

n j (2 ) fmX( /~)  = fXm(/~),  

where fmX(2) and fXm(2 ) denote the q x q matrix and 1 x q vector of spectral 
densities indicated in (5.67). Thus, when the inverse exists, 

g j ( /~ )  = fXm( /1 , ) fmX(2) - l .  (5.68) 

When the inverse does not exist, it is still possible to define the transfer 
function by a formula of this type with the inverse replaced by what is known 
as a pseudo inverse [see, e.g., Koopmans (1964b)]. We will not be concerned 
with this, since the case in which the inverse exists is by far the more important 
one in practice. 

Now, by the definition of Xj.m(t) and by (5.66), the spectral measure of 
this process is 

Zff. m(d/~) -- fx m(2)fmX(,~.)-,ZmX(d2), (5.69) 
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where 

ZmX(d2) = (zX ( d 2 ) , . . . ,  zxM,~))  '. 

Moreover, 

ElZj .  ~ m(d~) I ~ = E(t x, m ( ~ ) t m X ( ; o  - ' Z m X ( d , ~ ) ) ( t  x m( '~) tmX(~)  - 'ZmX(d~)) * 

-- f2m(/~)fmX(2) - ' f f  m(,~)* d2 ,  

since 

EZmX(d~)ZmX(d~) * -- fmX(}~) d~. 

It follows, that the spectral density function of Xj.m(t) is 

fyx, j .  m(~) = ff, m(2)fmX(2) - ' fj, m()].)*. (5 .70)  

Thus, the multiple coherence o f  Xj( t)  on Xm,(t) . . . .  , Xm~(t), which is the 
proportion o f  the po~cer (density) at frequency 2 attributable to the linear 
regression o f  Xj(t)  on X~,(t)  . . . .  , Xm~(t), is given by 

2 
R j ,  m(/], ) _____ f j~j.m(~ ) / f  j, . 

_ f~,m(~)fmX(]t) - lfXm(/~), X /fj, j(z). (5.71) 

x m(d2), we have By the Pythagorean theorem, since (z,x(d2) - Zj .m(d2)) l  Zj. 

= - ~ m(d2) 12 EIZjX(d2)I z ElZ~.m(d2) l 2 + E l Z j X ( d 2 ) -  Z j .  . 

Thus, 

f~x/~) = f~j. .( ,~) + f ~ . . ( ~ ) ,  

where fff, j.m(2) is the spectral density of the residual process 

Vj.m(t ) -- X j ( t ) -  Xj .m( t  ). 

It follows from (5.71) and (5.72) that 0 < R2. m (2) < 1 as one would expect, 
and, moreover, the proportion o f  the power (density) in X j(t) at frequency 2 
not attributable to its linear regression on Xm,(t), . . . ,  Xmq(t ) is 

f jv, m(~)/fXj(~) 1--  2 j .  = Rj.  m(,~). 

This also yields the useful expression 

fjvj. m(/~)= (1 -Rj .2  m(2))fjx, j()[ ) 

for the residual spectral density. 
The partial coherence of X j(t) and X k(t) with the regression on 

Xm,(t), . . . ,  X,,,Jt) removed is the coefficient of coherence of Uj.m(t) and 
Uk.m(t). This parameter can now be computed. Moreover, the computation 

u m(d/]. ) _1_ 2 m(d/].) since x m(d2 ) can be simplified by the observation that Zj. Z k. , Z k. 

(5.72) 

(5.73) 
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is in the linear subspace generated by zx,(d2), . . . ,  zxq(d2). We can use this 
fact to write 

EZy. m(d2)Z~.m(d2 ) -- E(ZjX(d2)-  Z~.m(d2))(ZkX(d2)) 

_ (fXk(2) _ fx m(,~)fmX(,~)-,fx m(~). ) d2. k~ 

Thus, we obtain 

�9 k, m(2)*. (5.74) 

The ( p -  q) x ( p -  q) matrix fmV(2) with elements given by (5.74) as j and k 
range over the indices 1, 2, . . . ,  p excluding m~, m2, . . . ,  mq, is called the 
residual spectral matrix. The complex partial coherence is 

])j,k. m(~) -" fjV, k. m(~)/(fUj, m(~)fkUk �9 m(A)) 1/2 

--(1 -- R2, k . m ( ~ ) ) T j ,  k(/].)/((1 -- R2.m(2))(l -- R2.  m(/].))) 1/2, (5.75) 

where we have let 

- x ). R j  2 k �9 m(/]') -- fff, k . m(J . ) / fXk (~)  --  fX m(~.)fmX(/]. ) ' fXk,m(~.)*/fj,  k( ), (5.76) 

and yj, k(2) is the complex coherence of Xj(t) and Xk(t ). The partial coherence 
is then 

2 2 Pj,  k . m ( 2 )  = 11 - g j ,  k . m ( 2 ) l P j ,  k (2 ) / ( (1  --  Rj .m()0 ) (1  -- g2 .m(2 ) ) )  1/2. (5.77) 

The phase angle between the residual processes Uj(t) and Uk(t) is 

L,Qj, k.m(~) = if/j, k.m(/],) -I-- L,Qj, k(/~), (5 .78)  

where 

j,k. m(2) = arg(1 -- R~, k. m(2)). 

It can be seen from expressions (5.71), (5.76), and (5.77) that the multiple 
and partial coherence are elementary functions of the elements of the spectral 
density matrix fx().). The standard procedure for obtaining statistical esti- 
mates of these parameters is to first obtain estimates of the elements of fx(2), 
then enter these estimates in the above formulas in place of the corresponding 
parameters. Since this must be done for a variety of values of 2 and, often, for 
several selections of the indices j, k, and elements in m, the number of com- 
putations required can be quite large. Fortunately, convenient digital com- 
puter programs exist for carrying out these calculations. 

For example, matrices of estimated spectra and cross spectra can be 
calculated by means of the program BMDX92 (Dixon, 1969). This is used as 
input to the multiple time series spectral analysis program BMDX68 which 
computes the estimates of the residual spectral matrix, coherences, multiple 
coherences, and matrix transfer function (5.68), among other things. 
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Example 5.8 Calculation of  the Spectral Parameters in a Simple Case 
When m consists of a single index, the expressions for the spectral param- 

eters are especially simple. Suppose R~.3(2) and P1,1.3(2) are to be calcu- 
lated. Now, 

fmX(`1) = [f;x, 3(`1)] 

and it follows that 

R2.3(`1)  = f l  x m(~')fmX(2) - XfiX, m(2)/f~ 1(`1) 

---- [fi x 3(2) 1 2/flX, 1(`1)f3 x, 3(2) = p21,3(`1). 

The equality of the multiple and ordinary coherence agrees with the fact that 
the interpretations of the two parameters are the same in this case. From 
(5.76) and the definition of complex coherence, 

[1 - R~,2.3(2)]Y,, 2(2) 

_. (f~X 3(`1)fl X, 2(/~ ) _ f~.X 3(,,~)f;~X :(X))lfs ~(,~)(fX (,of x ~(;o),,2. 
Thus, from the second expression on the right-hand side of (5.75), we obtain 

~,,. 2 .30 . )  = 0 , , .  2(2) - ~,,, 3 (2)~ ,2 .3(2) ) / ( (1  - p21,3(2)) (1 - p~,  3(;t.)) ' /2.  

This is the complex analog of a well-known expression for correlation coeffi- 
cients. The partial coefficient of coherence is, then, 

Pl,2-3(`1) -- 3(, l )  1. 

Example 5.9 An Application of  Partial Coherence to a Biomedical Problem 
Gersh and Goddard (1970) considered the problem of determining the 

location of an epileptic focus in the brain of a cat based on EEG records from 
electrodes implanted in six deep sites in the brain. The goal of the study was 
to determine whether any one of the six sites could be interpreted as "dr iv ing"  
the others, based on recordings made during an induced epileptic seizure. 
The data, then, consisted of a six-dimensional time series recorded over the 
period of the seizure--some 8 seconds in the given record. 

If, for example, site 1 is "dr iv ing"  the remaining sites 2-6, one might 
postulate a model of the type pictured in Fig. 5.4. The noise processes 
Nj(t), j -  2 , . . . ,  6 are taken to be uncorrelated with each other and with 
Xl(t). This model could be "identif ied" over regions of the spectrum in 
which the noise power is relatively low by the fact that the pairwise coherences 
Pj, k(`1) would all be reasonably large as would all partial coherences 
PS, k.~(2) regressed on single series other than Xl(t), i.e., for l-r 1. This is 
true, since the dominant variation in each pair of series would be due to 
Xl(t). On the other hand, Pj, k.l(2) would be relatively small, since upon 
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Fig. 5.4 Schematic representation of  a six-dimensional time series in which Xl(t) 
"drives" the remaining components. 

removing the effects of Xl(t) ,  the comparison would be, principally, between 
the incoherent residual noises. 

By computing the coherences for each pair of series and for all pairs 
regressed on each single series, Gersh and Goddard were able to identify one 
of the series as having the characteristics of the "dr iv ing"  series in this model. 

Multivariate Spectral Regression Analysis 

In the regression context, the component processes of the multivariate 
time series are partitioned into two categories--the dependent processes and 
the independent processes. To emphasize this distinction, the dependent 
components will be assembled into a (q • 1)-dimensional vector process Y(t) 
and the independent processes will constitute a (p x 1)-vector process X(t). 
It is now assumed that 

Y(t) = L(X(t)) + q(t), (5.79) 

where L is a multivariate linear filter with unknown (q • p)-dimensional 
transfer function B(2) and q(t) is an unobservable (q • 1)-dimensional process 
uncorrelated with X(t). Thus Y(t) is assumed to arise from a fixed but unknown 
linear transformation of X(t) which is disturbed by an error process q(t). The 
extent of the deviation of Y(t) from a linear function of X(t) is measured by 
the unknown spectral density matrix f"(2). This matrix and the transfer 
function B(2), which indicates how the linear dependence is parcelled out to 
the various input and output time series, are the principal parameters of 
interest. 

Except for the more general form of the linear transformation, model 
(5.79) is identical to the distributed lag model of Example 5.2. Precisely the 
same argument can be used to calculate the transfer function of L and the 
spectral density function of q(t). Recall from Eqs. (5.40) and (5.41) that 

B(2) = f r' x(2)fx(2)- '  (5.80) 
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and 

where 

and 

f"(2) = f r(2) - f r, x(A)fx(2 )-  ~fx, r(2), (5.81) 

fx (2 )  d~ = EZX(d2)ZX(d2) *, f r(2) d2 = EZ r(d2)Z r(d2)*, 

fx, r(2 ) d2 = EZX(d2)Zr(d2) *. 

In the regression context, processes X(t) and Y(t) are observable. Conse- 
quently, estimates of f x(2), f r(2), and fx, r(2 ) can be obtained by the technique 
to be discussed in Chapter 8. By replacing the matrices of parameters in 
(5.80) and (5.81) by their estimators, estimates of B(2) and f"(2) can be com- 
puted. We will discuss some of the properties of these estimators in Chapter 8. 

A matrix parameter comparable to the coefficient of coherence can be 
defined which provides a more convenient measure of the extent of the linear 
regression of Y(t) on X(t) than does f"(2). If these processes were one- 
dimensional, the complex coherence would be 

~(2) = f x ,  r(2)/(fx(2)fr(2)),/2" 

The fact that fx(2) and fr(2) are nonnegative definite matrices (see Section 5.3) 
makes it possible to define a comparable expression in the multidimensional 
case. We need a few facts about nonnegative definite (Hermetian) matrices 
which can be found, for example, in the book by Graybill (1969)" The inverse 
of a nonnegative definite matrix, when it exists, is again nonnegative definite. 
The eigenvalues of such a matrix are all real and nonnegative. Thus, the 
inverse will fail to exist only when one or more of the eigenvalues are zero. 
Nonnegative definite matrices have well-defined square roots. That is, if A 
is a nonnegative definite matrix, there is a nonnegative definite matrix C 
such that CC - A. 

Combining these results, we can define the matrix complex coherence by 

~/(2) = fx(2)-~/2fx '  r(2)f r(2)-1/2, (5.82) 

where A-1/2 denotes the square root of the inverse of the matrix A. Now the 
matrix parameter 

p2(2) = 7(2)*7(2 ) = f r (2 ) - I /2 f r ' x (2 ) f x (2 ) -a f  x' r(2)fr(2)-a/2 (5.83) 

is comparable to the squared coherence. It can be shown to be a nonnegative 
definite matrix, consequently, all its eigenvalues are nonnegative. Moreover, 
from (5.81) we have 

f"(2) = f r(2)l/z(I - pz(2))f r(2)1/2, (5.84) 
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where I is the q x q identity matrix. When rl(t ) has no power in any com- 
ponent at frequency 2, i.e., f"(2) = O, we have 

p2(;0 = I 

[provided f r(2) is nonsingular]. In this case all eigenvalues of 02(2) are equal 
to 1. Now, it is easily shown from (5.84) that I -  02(2) is also nonnegative 
definite. Since the eigenvalues of this matrix are one minus the eigenvalues of 
02(2), it follows that the eigenvalues of 02(2) are all between zero and one. Thus 
the complete linear dependence of Y(t) on X(t) at frequency 2 corresponds to 
the extreme case in which all eigenvalues are one. On the other hand, if all 
eigenvalues of 02(2) are zero, then 02(2) is the zero matrix and (5.84) implies 
that f~(,~)= f r(2). In this case Y(t) is completely "explained" by the error 
term ~(t) at frequency 2 and no linear relationship between Y(t) and X(t) 
exists. 

More generally, (5.84) is seen to be the matrix version of (5.60). The 
eigenvalues of 02(2) can be used to assess the relative degree of linear regres- 
sion of Y(t) on X(t). Statistical estimates of these eigenvalues can be used to 
test various hypotheses about this regression. For example, the hypothesis of 
no linear regression at frequency 2 can be tested by comparing the estimated 
largest eigenvalue or the sum of the eigenvalues of 0200 with zero. The second 
possibility is equivalent to testing the trace of 02(2) to be zero. This hypothesis 
can also be framed as a hypothesis concerning B(2), since it is easily seen that 

02(2) = fr(2 )-  X/2B(2)fx(2)B(2),fy(2)-~/2. 

If fx(2) and f v(2) are nonsingular, the hypothesis of no regression at fre- 
quency 2 is equivalent to the hypothesis B(2) = 0. 

When the Y(t) series is one-dimensional, i.e., q = 1, expression (5.83) yields 

D2(j.) = f Y, X(,~)fX(~)- If  Y, X(2) , / f r (2 ) .  

Comparing this with (5.71), it is seen that p2(2) is simply the multiple coherence 
of Y(t) with X(t) as we would expect. Thus, the multiple coherence is an 
important regression parameter in this special case. When p -  1 it can be 
shown that 

p2(2 ) __ fx, r(2)f r(2 )-  ,f r, x(2)/fx(2), (5.85) 

the multiple coherence of X(t) with Y(t). This indicates that the matrix 
parameter p2(2) possesses a symmetry in the time series X(t) and Y(t) roughly 
analogous to that displayed by the coefficient of coherence. 

Finally, although we have derived the above regression theory model 
based on the assumption that all time series are weakly stationary processes, 
it is important to note that it is also possible to derive a statistical regression 
theory based on a model in which the X(t) time series is nonrandom. In this 
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theory, which has been developed by Brillinger (1970), the randomness is 
assumed to be due entirely to the error process ~(t) appearing in (5.79). The 
resulting model is closer to the standard regression theory of statistics than 
is the model we have discussed. In particular, although the spectral density 
function of the error process f"(2) is well defined, none of the other spectral 
densities need be. However, expressions (5.80) and (5.81) are still used to 
construct estimates of B(2) and f"(2) based on the same functions of the 
observed time series as would be used if the X(t) series were stochastic. 
Although the estimation procedures are essentially identical, the statistical 
distributions of the estimates are different [see Brillinger (1970)]. 

Some Spectral Regression Examples 

The following three examples will give some idea of the scope of applica- 
bility of spectral regression methods. Complete descriptions of the studies 
and their conclusions are not feasible here. Further details can be found in 
the indicated references. 

Example 5.10 An Application to Metallurgy 
The earliest time series study in which spectral regression techniques were 

used is attributed to Tick (1955) in which the variability of the hot metal 
output of a blast furnace was evaluated as a function of (i.e., was regressed 
on) such variables as hot blast temperature, wind rate, and amounts of 
ore, coke, and limestone. These variables unavoidably vary with time and 
are correlated with one another to different degrees making the time series 
model a natural choice. The dependence of the variability (power) of hot 
metal output on the regression time series was evaluated by integrating the 
appropriate estimated residual spectral densities over frequency. 

Example 5.11 A Study of the Relationship between Sun Spots and Meteoro- 
logical Data 

A contribution to the long-standing controversy concerning the influence 
of solar energy indicators, such as sun-spot numbers, on terrestrial time 
series, such as temperature and rainfall data, was made by Brillinger (1969). 
In this study the independent time series X(t) was taken to be the one- 
dimensional series of monthly relative sun-spot numbers. Three different 
sets of dependent series Y(t) were used; (i) Santa Fe, New Mexico rainfall 
( p -  1), (ii) English rainfall ( p -  1), and (iii) temperatures at 14 European 
stations (p = 14). The degree of linear regression of each dependent series on 
sun-spot numbers was evaluated by estimating the generalized coherence in 
form (5.85). Although the estimates showed a considerable variability with 
frequency, they were smaller than 0.5 at all frequencies in all three cases. The 
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sun-spot coherence was larger with temperature at almost all frequencies than 
with rainfall which supports the conclusion of other investigators that little 
relationship between rainfall and sun-spot numbers exists. A comprehensive 
summary of evidence for and against the existence of relationships between 
solar energy parameters and various terrestrial series is given by Monin and 
Vulis (1971). 

E x a m p l e  5.12 A Study o f  Sea Level  Data 
Groves and Hannan (1968) studied records of sea level, surface atmos- 

pheric pressure, and wind velocity components at Kwajelein and Eniwetok 
in the Marshall Islands for the purpose of determining oceanic influences on 
sea level records free from local weather noise. To do this, the two sea level 
series were taken as the dependent series and were regressed on the six series 
of pressure and wind velocities. The residual series of sea levels, with weather 
effects accounted for, were then compared. It was found that the partial 
coherence of sea level records at the two islands with weather effects removed 
was smaller than the ordinary coherence of these records. This indicates that 
most of the coherence in sea level records is probably due to coherent weather 
patterns rather than to coherent patterns of water movement from non- 
weather-induced phenomena. 

As with all studies of this type, the interpretation of results is subject to 
the statistical uncertainty of the estimates of the parameters. We will con- 
sider methods for evaluating and controlling this uncertainty in Chapters 
8 and 9. 

APPENDIX TO CHAPTER 5 

A5.1 The Multidimensional Spectral Representation 

The mathematical setting for the spectral representation of a multivariate 
weakly stationary process is somewhat more involved than that for the 
representation of one-dimensional processes, but many of the formulas carry 
over with little change. We will touch on only a few of the details here. More 
extensive analyses are given by Koopmans (1964a,b) and Wiener and Masani 
(1957, 1958). 

A vector analog of the space L2(P) is required. Take the process X(t) to 
be p-dimensional. For each t the vector X(t) is an element of the product space 
Lz(P ) = [Lz(P)] p of column vectors X = (X1, . . . ,  Xp)'  with E X j  = 0  and 
EI X j l  2 < ct3. This vector space is endowed with the norm 

1 I Xll = 1El x j l  z �9 
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Starting with finite linear combinations of the form 

Y = ~ AkX(tk), (A5.1) 
k 

where the Ak's are p x p matrices of complex numbers, and forming all 
possible limits of Cauchy sequences of such elements in the vector norm, we 
obtain the space 9enerated by the process jC/x. It is easily seen that 

~t/x= [~x]p, 

where ~/~x is the linear subspace of Lz(P ) generated by the elements of the 
component processes of X(t). On the other hand, if Z(A) is the vector of 
spectral measures of the component processes, (A5.1) becomes 

Y = Z Ak f ei;"~Z(d2) 
k 

= f B(2)Z(d2), 

where 

B(2)- ~ e i ' ~ t ~ A k  . 
k 

In the limit, every element of Jr x can be represented in the form 

Y = f B(2)Z(d2) (A5.2) 

for some p x p matrix of complex-valued functions B(2). 
Next we define a generalized inner product, the Grammian matrix, by 

<<X, Y))p = EXY*. 

Then, by (A5.2), if X = j" B(2)Z(d2) and Y = j" C(2)Z(d2), we have 

= fB(,~)F(d,OC(;.)*. 

Note that IIXll 2 = tr <<X, X))p = tr j" B(2)F(d2)B(2)*. 
Now, if L2(F) is the class of all p x p matrix-valued functions B(2) with 

complex entries such that 

f B(2)F(d2)B(2)* < oe, tr 

and if the Grammian of L2(F) is defined by 

<<B(2), C(2)}v = (B(2)F(d2)C(2)*, 
d 
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then the mapping Y +--, B(2) defined by (A5.2) is a one-to-one correspondence 
between da 'x and L2(F) which preserves the Grammian. This is the desired 
multivariate generalization of the spectral representation defined in the 
appendix to Chapter 2. 

A5.2 Multivariate Linear Filters 

To simplify the discussion of linear filters we will only consider filters 
with the same number of inputs and outputs. The generalized shift operator 
U, is taken to be the p • p matrix operator with the univariate operator U,, 
which was defined in Section A4.1, repeated down the main diagonal and 
O's in the off-diagonal positions. Then a multivariate linear filter L is a linear 
operator on a domain ~ ( L ) c  d/l x to d/l x which satisfies the condition 

L U  t = U t L  , - - o 0  < t < o0. 

By the same argument as the one given in Section A4.1, L is completely 
determined by its value at X(0). Since L ( X ( 0 ) ) ~  'x it follows that 

L(X(O)) = fB(2)Z(d2). 

The matrix function B(2) is, as before, the transfer function of the filter. 
Now, U e d//x is in 5~(L) provided 

f C(2)B(2)F(d2)B(2)*C(2)* < oo, tr 

where U = ~ C(2)Z(d2). Then, as in the one-dimensional case, it can be shown 
that 

L(U) = f C(2)B(2)Z(d2). 

In particular, since it is easily seen that X(t)~-~e~ZtI, where I is the p x p 
identity matrix, we have 

L(X(t)) = f ei~tB(2)Z(d2). 

This is the spectral representation of the filter output. The matching condition 

f B(2)F(d2)B(2)* < oo tr 

is now seen to be simply the requirement that X(t)~ ~(L) .  
Again, there is a unique correspondence between the class of all linear 

filters on da 'x and L2(F). Every element of this collection is the transfer 
function of some multidimensional linear filter. The various operations on 
filters detailed in Chapter 4 have natural extensions to the multivariate case 
but we will not pursue this topic further. 



C H A P T E R  

Digital Filters 

6.1 INTRODUCTION 

We will use the term "digital filter" to mean linear filter in discrete time. 
Thus, with minor modifications, the theory of Chapter 4 will apply in this 
chapter as well. The reason for treating filters in continuous and discrete time 
separately stems not from the difference in theory but rather from the differ- 
ence in application. Whereas continuous-time filters are used primarily as 
models for physical filters, digital filters are used for the purposeful modifica- 
tion of discrete-time data. Consequently, it is not only important to understand 
the operation of these filters but also to know how to select the "parameters"  
of the filters in order to achieve specific objectives of data modification. This 
selection of parameters is called filter design. 

Because of the many kinds of filtering operations investigators have found 
necessary or useful, the literature on digital filtering is extensive and diverse. 
In economics, for example, much attention is given to isolating or removing 
seasonal trends in order to detect weaker features of the spectrum. Geo- 
physicists are concerned with removing tidal effects and other low-frequency 
power to improve the characteristics of spectral estimates. (How this improves 
the estimates will be discussed in Chapter 9.) In many fields the suppression 
of extraneous noise to better define a weak signal is a problem of importance. 
(This is the "classical" filtering problem and the construction of digital 
filters to accomplish this goal is discussed in Chapters 5 and 7.) The removal 
or resolution of polynomial trends is also of importance in many fields of 
application. 

165 



166 6 DIGITAL FILTERS 

Often the techniques used in different areas for essentially the same purpose 
have been developed independently and are somewhat different. Because of 
this, a complete coverage of digital filtering in a single chapter is not feasible. 
Consequently, we will attempt to describe the basic features all digital filters 
share and to provide the rationale for a variety o f "  s tandard" filter construc- 
tion techniques. Some of the more interesting special purpose filters will be 
given as examples. A general reference for this material is Blackman (1965). 

6.2 GENERAL PROPERTIES OF DIGITAL FILTERS 

Most of the digital filters encountered in practice are of convolution type, 

O0 

L(x(t)) = ~ cjx(t  - j ) ,  t = 0, +__ 1 , . . . ,  (6.1) 
j - -  n o  0 

where the cj's are real numbers, called thefilter weights, satisfying the condition 

go 

cj 2 < oo. (6.2) 
j - "  - -oo  

An example of a digital filter which is not of convolution type will be given 
in conjunction with our discussion of prediction theory in Chapter 7. However, 
as is indicated in the Appendix, for time series with continuous spectra the 
class of convolution filters is quite adequate for all practical purposes. Again, 
although the theory is more generally applicable, we will restrict our attention 
to time series which are zero-mean, weakly stationary stochastic processes 
except where otherwise indicated. 

The principle for evaluating transfer functions in discrete time is the follow- 
ing straightforward analog of the continuous-time version" Apply the digital 
filter to the input x ( t )=  e i;~t, t = 0 +_ 1, . . . .  Then the output will be y ( t )=  
B(2)e i~t, where B(2) is the transfer function of  the filter. It follows, upon 
applying this criterion to (6.1), that the transfer function of  L is 

oo 

B(2) = ~ cj e-i~j, - ~ < 2 < n. (6.3) 
j ' -  - -oo  

From the discussion of Fourier series in Example 1.2, this is seen to be a 
periodic function of period 2rt, thus is completely defined by its values in the 
interval - r t  < 2 _< ~r, Moreover, the filter weights are uniqely determined 
from the transfer function by the expression 

lf" Ck = ~nn eiakB(2) d2, 
--lg 

k = 0, + 1 , . . . .  (6.4) 
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Parseval's relation implies that 

oo 

k ~ - o o  

1 f ~ Ck z = ~ IB(2)[ z d2. 

Now, from Example 1.2, any function B(2) for which the condition 
~"__, ]B(2)12 d2 < oo holds has a Fourier series expansion, thus is the transfer 
function of a convolution filter with weights determined by (6.4). Consequent- 
ly, in theory, a large variety of filter characteristics can be achieved by using 
convolution filters. These filters will match any weakly stationary process 
with continuous spectrum and bounded spectral density; for if 

fx(2) < M, 

then 

7t 

f 18(x) l fx(X) dX _<_ M f 18(X)I dX. 

If the filter weights satisfy the somewhat stronger condition 

oo 

Z [cj[ <oo,  (6.5) 
j - -  ~ )  

then the filter has a bounded, continuous, transfer function and, consequently, 
matches any weakly stationary input with finite power. To see this, note that 

/t  

I" IB(),)I~Fx(d).) <- K~ f ,Fx(d2) < oo, 
* '  ~ llP. 

where we have taken ]B(2)] < K. Since our principal interest will be focused 
on filters with only finitely many nonzero filter weights, the distinction between 
(6.2) and (6.5) and the concern for matching filters to inputs are rather 
academic and we will ignore them henceforth. The more theoretical relevance 
of these conditions is discussed briefly in the Appendix. 

Translation of Notation to an Arbitrary 
Sampling Interval At 

Here and throughout the rest of the book (with the exception of Chapter 9), 
discrete time series are treated as though they were sampled versions of a 
continuous time series with At = 1. This permits us to use the most convenient 
and economical notation for all expressions. Nothing is lost by this convention, 
since it is a simple matter to convert the spectral densities, transfer functions, 
etc. to the correct frequency units when At 4: 1. This is done automatically 
by most spectral analysis computer programs. 
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For example, treating the sampled autocovariance sequence C ( k ) =  
Cx(k At) as though At = 1, the spectral density is computed by the expression 

oo 

1 ~ C(k)e-iXk -- n < 2 < ~Z. (6.6) 
f(2) = ~ k=-oo 

[See expression (3.23).] However, the correct frequency variable is 

Ix = 21At, - x / A t  < Ix < ~zlAt, 

and the correct spectral density fAt(P) is 

oo 

At Z Cx( k At)e-iuk A,. f ~ , ( u )  = ~ ~--_ 

With the change of variable 2 = p  At in (6.6) we see, upon comparing the 
resulting expression with the last one, that 

fA,(IX) = At f(ix At), -~zlAt < Ix < 7~lAt. (6.7) 

In general, all spectral densities, including the cross-spectral densities intro- 
duced in Chapter 5, are rescaled according to this equation. Spectral functions 
are rescaled according to the expression 

PA,(P) = P(IX At). (6.8) 

Viewed slightly differently, if A represents any set of frequencies in the 
correct frequency units [in the interval (-z~/At, z~/At)] and if we define the 
set A At by the expression 

then 

A At = {y At: ~ e A}, 

FA,(A) = F(A At), (6.9) 

where FA, is the spectral distribution of the discrete-time process in the 
correct frequency units and F is the spectral distribution with At assumed to 
be one. Then, the spectral distribution functions, obtained by setting A = 
( - n / A t ,  IX], satisfy the relation 

FA,(IX) = F(IX At). 

Now, (6.7) is obtained by differentiating both sides of this expression. Equa- 
tion (6.8) is an immediate consequence of (6.9). 

The transfer functions are rescaled according to the equation 

BA,(IX) = B(IX At), (6.10) 
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since, by (6.3), 
o o  

B a , (p)  = ~_, c ,  e -  iuk at = B ( p  At). 
k = - o o  

Expression (6.4) for the filter weights can be put in the appropriate form by 
the change of variables p - 2~At; 

At ,~/At 
f ei~kat BAt(p) d~, k = 0, +_ 1 , . . . .  

Ck "-- ~ -n/At  

The notational convenience of assuming At == 1 can be appreciated by com- 
paring these two expressions. 

The Gain and Phase Functions for Digital 
Filters and Two Important Examples 

The properties of linear filters given in Chapter 4 carry over to digital 
filters without change. Recall that if L is a linear filter with transfer function 
B(2) and Y(t)= L(X(t)), then the spectral measure and spectral distribution 
of the output are, respectively, 

Zr(d2) = B(2)Zx(d2) and Fr(d2) = ] B(2)[ 2Fx(d2)" 

In particular, the spectral function and spectral density functions are related 
by the expressions 

pr(2) = [B(2) lZpx(2), fr(2) = [B(2)[Zfx(2). 

Now, however, these functions need only be given for the Nyquist range 
- n  < 2 < ~, since they are periodically repeated outside of this interval. 
The transfer function satisfies the property 

8 ( -  = 

in order that real-valued inputs result in real-valued outputs. This leads to 
the properties 

0 ( -  2) = -0(2) ,  0(a) = arg B(2), 

for the gain and phase shift functions. 
It is easily seen from (6.3) that if we take 

r  -- r 

for all j, then B(2) is real-valued and thus the phase shift can assume only the 
values 0 or _+ n. As in Section 4.2, digital filters with this property are called 
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symmetric filters. A special subclass of symmetric filters, called nonnegative 
definite f i l ters introduce no phase shift into the data, i.e., have 0(2)= 0 for 
all 2, and for this reason are of importance in data processing. Since the topic 
of nonnegative definite filters is somewhat specialized, it is discussed in the 
Appendix (Section A6.2). 

Example 6.1 The Difference Operator 
The difference operator A is defined by 

A(X(t)) = X ( t ) -  X ( t -  l). 

This is the digital filter with weights Co = I, c~ = - I ,  and cj = 0 otherwise. 
The transfer function of A is 

B(2) = 1 - e-ia = e-ia/2(eia/a - e-ga/2) 

= 2ie-ia/a sin(2/2) 

= 2e i((~-~)/2) sin(2/2) 

_ {~[sin(2/2)]e i((~-a)/2), 2 >  0, 
- ]sin(2/2)[e -i((=+a)/z), 2 < O. 

Thus, the gain and phase shift functions are 

I n(~)l  = 2[sin(;42) l 
and 

I( ~ - 2)/2, 2 >  0, 
~ = ,  (~ + ~)12, ~ < 0. 

A graph of the squared gain function is given in Fig. 6.1. 
As would be expected, the difference operator is a high-pass filter with 

properties similar to those of the derivative, since it is the discrete analog of 
the derivative. In particular, the squared gain function is of order 22 near 
2 = 0 and rises well above I at the high frequencies. Thus, it deviates sub- 
stantially from the squared gain function of an ideal high-pass filter. 

411B(• 2 

I 

- "n- -___T.~ 0 ~ vr 
2 2 

X. 

Fig. 6.1 The squared gain function for the difference operator. 
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Example 6.2 The Simple Averaging Filter 
For a positive integer R, let 

1 R-I 
= ~ o X ( k - J ) '  k = 0 ,  + l , . . . .  r(k) -k j_- 

This is a discrete convolution filter with Co = cl = " " - c n - ~  = 1/R and 
cj - 0 otherwise. The transfer function is 

1 n - 1  
-- ~ e - i~ j  

aO) R j = o  

= e -ia(R- 1)/2 sin(2R/2)/R sin (2/2), - r t  < 2 < ft. 

[We have used (l.18) to obtain this expression.] Thus, 

sin(2R/2) 
18(~)f = R sin(2/2) 

For  values of 2 > 0 for which sin(2R/2)> 0, the phase shift is 0 (2)=  
- ( ( R -  1)/2)2. These frequency components are displaced in time by an 
amount 3(2)= - ( R -  1)/2 which depends on the number of nonzero filter 
weights--a mildly unpleasant property. When s in ( [2]R/2)<0 ,  0(2)= 
- ( ( R -  1)/2)]21 + rc if 2 > 0 and the negative of this if 2 < 0. 

For R = 2, the trigonometric identity sin 2 = 2 sin(2/2)cos(2/2) can be 
used to reduce the gain function to the form 

IO(A) r - Icos(;,/2) l. 

The phase shift is of simple form in this case, 

0 ( 2 ) = / - 2 / 2 '  if 2 > 0 ,  

t1~1/2, if ~ < o. 

A filter with virtually no phase shift for any value of R can be obtained by 
using a symmetric average" Take R to be an odd integer and let 

l ( R -  1)/2 
r (k)  = - ~ x ( k  - j ) .  

R j =  ( - R +  1)/2 

The transfer function of this filter is 

sin (2 R/2) 
B(2) = , -~z < 2 < ~z. 

R sin (2/2) 

Thus, the symmetric average has the same gain function as the unsymmetric 
average, but the phase function is now 0(2)=  0 when sin(2R/2)> 0, 2 > 0, 
and 0(2)=  _+re otherwise. As is seen from the graph of ]B(2)I z given in 
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IB(X)I a 

-17"  - 2 7 r  --7/" 

3 3 
271" "17" ~r m 

3 3 

Fig. 6.2 Graph of  the squared gain function of a simple averagin9 filter of R = 3 terms. 

Fig. 6.2, the averaging filters are low-pass filters. Moreover, the value of this 
function are relatively small over the frequency range for which 0(2) # 0. Since 
this means that relatively little power will be transmitted by the filter in this 
range, the symmetric average will act as though 0(2) = 0 for all 2. This property 
is characteristic of "well-designed" symmetric filters. (See Section A6.2 for 
additional details.) 

The z-Transform and Some Useful Notation 
for Linear Filters 

If 

oo 

Y(t)  = ~ a i X( t  - j )  (6.11) 
j =  ~ o o  

is a digital filter, the z- transform o f  the f i l ter  is the complex-valued function 

oo 

sg(z)  = ~ aj z i. 
j ' -  ~ o o  

Important properties of the filter, such as stability, can be related to properties 
of the z-transform. This transform will also play an important role in pre- 
diction theory, to be discussed in Chapter 7. 

The transfer function of the filter, to be denoted by A(2), is related to the 
z-transform by the expression 

A(2) = a/(e- '~).  

Thus, the transfer function is the "va lue"  of the z-transform on the unit 
circle. 

The backward  shift  operator is the linear filter B such that 

B ( X ( t ) ) =  X ( t -  1). 
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This filter is easily seen to have transfer function e-i' .  Consequently, if we 
define the linear cornbina/ion$lter 

m 

d ( B )  = aj BJ ,  

where B-' = ( B - ' ) j  and B-' inverts B, then d ( B )  is the linear filter with 
transfer function A().) = d ( e - i A )  given above, i.e., (6.1 1) can be written as 

j=-ao 

W )  = d ( B ) ( W ) ) .  

This compact notation has some interesting operational properties which 
are used to advantage, for example, by Whittle (1963) and Box and Jenkins 
(1970). We will not use this notation extensively in this book. However, an 
illustration of its convenience is given in the following discussion of recursive 
filters. 

Recursive Filters 

A linear filter is said to be recursive if the output at time t depends (linearly) 
on a fixed number of previous input and output values. For example, 

4 

Y(9 = 1 ( - d j ) Y ( f  - j )  + f ck X ( r  - k )  
j =  I k = O  

is a recursive filter with input X ( t )  and output Y(t) .  This can be represented 
compactly by the equation 

where 

4 .  
9 ( B )  = C dj BJ ,  do = 1, 

j = O  

and 

g ( B )  = f ck Bk 
k = O  

Now, by the rules for dividing polynomials, we can obtain, formally, 

m 

d ( B )  = W ( B ) / 9 ( B )  = 1 a, Bk. 
k = O  

(6.12) 

(6.13) 

Then, under a condition to be specified presently, the recursive filter is equiv- 
alent to the filter 

W )  = 4 B ) ( W ) ) .  (6.14) 
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Thus, these operators, viewed as linear combination filters, can be manipulated 
algebraically using the standard techniques for adding, multiplying, and divid- 
ing polynomials and infinite series. 

A sufficient condition for d ( B )  to satisfy (6.2) is that the polynomial ~(z)  
have all of its zeros outside of the unit circle. For then, d (z )  = C~(z)/~(z) is 
analytic for [z] < p, where p is the minimum of the absolute values of the 
zeros of ~(z). Then for every p', 1 < p' < p, 

oo 

~(p ' )  = ~ ak(P') k < ~ ,  (6.15) 
k=O 

where the series is the power series expansion of d (z )  about z = 0 evaluated 
at p'. Since the terms of (6.15) tend to zero, there exists a constant K > 1 
such that 

]ak I < K(1/P') k for all k. (6.16) 

Thus, in fact, condition (6.5), which is stronger than (6.2), is satisfied and 
z~'(B) is a well-defined linear filter which matches any input. Moreover, it is 
immediate from the theory of sequential filters given in Section 4.3 that the 
input and output of (6.14) satisfy the recursive relation (6.12). 

The filter ~r is also stable, since if IX(t)] < M for all t, then 
oo 

I Y(t) l - I~r <_ M ~  [ail < ~ .  
j = 0  

It is a realizable filter, i.e., depends only on the past and present of the input, 
because of the one-sided (power series) expansion of d(z) .  This expansion 
depended on the zeros of ~(z) being outside of the unit circle. Thus, this 
condition can also be viewed as guaranteeing the stability and realizability 
of the recursive filter. 

Recursive filters can be designed to have exceptionally good response 
characteristics by proper selection of the filter weights Ck and dj and the 
integers p and q. A good discussion of the design of recursive low-pass filters 
is given by Enochson and Otnes (1968). 

As we will show in Chapter 7, the best linear predictor of a weakly station- 
ary process can be represented as a recursive filter for an important class of 
processes. Moreover, the Kalman filter (Kalman, 1960), which solves a 
special case of the real-time filtering problem to be discussed in Chapter 7, 
is of the recursive type. Consequently, recursive filters play an important role 
in time series analysis. The following example introduces a simple but exten- 
sively used recursive filter. 

Example 6.3 The Exponential Smooth&9 Filter 
The exponential smoothing filter is defined by the expression 

Y(t) = (1 - cOX(t ) + ~ Y(t - 1). 
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Put t ing this in the form of (6.12) we have ~ ( z ) =  1 - ~ z  and W ( z ) =  1 - ~ .  
The only zero of ~ (z )  is z = 1/~. Consequent ly ,  this is a valid digital filter 
if [ 1/~ I > 1, thus [~[ < 1. In fact, 

oo 

ag(B)  = Cg (B ) /~ (B )  = (1 - ~ ) / ( 1  - o~B) = (1 - ~ )  ~ ~ k B k  
k=O 

f rom the famil iar  sum of  a geometr ic  series. 
The t ransfer  funct ion of  this filter is 

A(2) = (1 - a)/(1 - o~e-ia), 

with squared gain and phase shift functions 

IAO)I z = (1 - ~)z/(1 - 2~ cos 2 + ~2), 

0(2) = - A r c t a n ( ( ~  sin 2)/(1 - ~ cos 2)). 

The squared gain funct ion of this filter is plot ted for several values of  
in Fig. 6.3. It is seen that  for 0 < ~ < 1 this is indeed a smooth ing  (low-pass) 

1.0 

a = 0 . 0 5  

"<--- 0 . 5  ,,q: 
a = 0 . 5 0  

= 0 . 2 5  

a = 0 . 7 5  

0 . 0  .... ~ i .~ 

0.0 w" 
2 
X 

Fig. 6.3 Graph of squared 9ain function of the exponential smoothin9 filter for several 
values of o~. 
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filter with characteristics selectable to a degree by varying ~. This filter has 
received considerable attention in economics and business [see Brown (1962) 
for further details]. 

Simulation 

Another important use of recursive filters is to simulate time series with 
prescribed spectral characteristics. By means of random number generators 
it is easy to construct sequences of numbers on a digital computer which can 
be thought of as the values of independent, identically distributed random 
variables with virtually any distribution. In particular these numbers can be 
viewed as a realization of a white noise sequence r/(t). As we have seen, the 
spectrum of such a process is continuous with spectral density function 

f~(/],) -"  0"2/2~Z, - - r t  < 2 ___ rt, 

where a z is the variance of r/(t). 
Now, if r/(t) is used as the input of the recursive filter 

q p 

Y(t) = ~ ( - d j ) Y ( t -  j) + ~ Cktl(t- k), (6.17) 
j = l  k=O 

then the output time series has spectral density function 

fr(2) = (a2/2n)I Cg(e - 'a)/~(e-'4)12 (6.18) 

as is easily obtained from the above theory. If all of the zeros of ~(z) are 
outside of the unit circle, it follows that Y(t) is a valid weakly stationary time 
series. Moreover, by proper choice of p, q, and the Ck'S and dSs, the rational 
function (6.18) can be made to approximate any given continuous spectral 
density function as closely as desired. Then, algorithm (6.17) will generate 
a sample function of a time series with the appropriate spectrum whatever 
white noise sequence is employed. 

This method of generating time series is used for many purposes. It 
provides a convenient source of time series for demonstrating the effects of 
filtering and prediction, for example, and for studying the properties of sta- 
tistical procedures used in time series analysis. 

6.3 T H E  E F F E C T  O F  F I N I T E  D A T A  L E N G T H  

As we saw in Section 4.3, virtually every filter of importance from the view- 
point of processing a time series can be constructed from a family of low-pass 
filters with a variety of cutoff points. Consequently, it seems reasonable to 
construct a family of ideal low-pass filters and use the members of this family 
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for all data processing purposes. In theory, this can easily be done. In fact, 
if we require the filters to be symmetric, the transfer function of the low-pass 
filter with cutoff frequency A. will be 

This function is square-integrable, thus corresponds to the convolution filter 
with (square-summable) weights 

sinA,k/nk, k =  + 1 ,  + 2  ,..., 
Aoln, k = 0. 

1 "  

2n - n  
ak =- B(A)eiAk dA = 

Unfortunately, the use of such a filter in practice is restricted by the fact 
that only a finite segment of the time series will be available. That is, instead 
of having the input X ( t )  available for all integer values o f t  we will have only 
a finite number of observations X(1), X(2) ,  . . . , X ( N ) ,  say. If we try to use the 
ideal low-pass filter on this data by setting X ( t )  = 0 for t 5 0 and t 2 N + 1 ,  
for example, we will clearly not obtain the same result as if the entire input 
series were used. Since the ideal characteristics of the filter are based on the 
assumption that the entire input is used, the actual output will deviate from 
the ideal in some way. We will now undertake a short analysis of this effect. 

A finite length of data can be viewed as the result of multiplying the original 
time series by a data window defined by the indicator function 

1 if I l t i N ,  
otherwise. 4 1 ,  N I ( 0  = ( o; 

Then, using the spectral representation for X ( t ) ,  the output of a linear filter 
with filter weights ak to the input I, ,  , N ] ( f ) X ( f )  is 

00 

u(r) = 1 ak I [ ,  , N ] ( f  - k)X(r - k,  
k = - m  

(6.19) 

The time series U ( t )  is the observed output of the filter when the data is 
of finite length and is to be compared to the desired output 

y(ti = 1 a,+ x(t - k )  = 1' ei"A(A)Zx(d1), 
m 

k = - m  - n  

where A(A) = C:= - ak e-  
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A reasonable measure of the deviation of U(t) from the ideal is 
E(U(t)  - Y(t)) z. This quantity depends on t and can be evaluated as follows" 

E(U(t)  Y(t)) 2 E _iat,A - = e tz~u,t(2)- A(2)]Zx(d2) 

f i2k  -- _ a k e 
d - -n  k < t - N , k > t -  1 

2 

Fx(d2). 

If X(t)  has a continuous spectrum with spectral density function bounded 
from above and away from zero, say, 

0 < m < fx(2) < M, 

then 

m f s ak e-ixk d2 < E ( U ( t ) -  Y(t)) 2 
- n  k < t - N , k > t - 1  

<__ M f ak e - i;k 
- n  k < t - N , k > t - 1  

By Parsevars relation, this is equivalent to 

2d2" 

2rcm Z ak z < E ( U ( t ) -  Y(t)) z < 2riM Z ak 2. (6.20) 
k < t - N , k > t -  1 k < t - N , k > t -  1 

Thus, in this commonly occurring case, the magnitude of the error at time t 
can be conveniently described by means of the quantity 

t - N - 1  oo 

Z ak 2--  Z a k Z + Z a k  2" (6.21) 
k < t - N , k > t -  1 k =  - o o  k = t  

Figure 6.4 is a plot of the weights of a hypothetical digital filter with the 
weights entering into the sum (6.21) cross-hatched. Note that the magnitude 
of the error depends on the data length N and on how rapidly the filter weights 
tend to zero with increasing values of I kl. Typically, the larger filter weights 

ok 

II I1,,  
^ ~ / / / A / l l l l / l l h / l l l # / l l , / / -  

t - A / - I  - 2  -I  0 t 

k 

Fig. 6.4 Graph of filter weights of a hypothetical digital filter. Cross-hatched weights 
contribute to the error at time t of applying the filter to data of finite length N. 
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(in absolute value) have indices k near zero. Consequently, the largest errors 
will be encountered for values o f t  at the extremes of the range 1 5 t 5 N .  

The most compelling reason for not using the ideal low-pass filters dis- 
cussed above is that the rate of decrease of the filter weights is very slow 
(ak' z l / k2) .  Thus, the actual outputs of these filters will differ substantially 
from the ideal. Put in another way, any attempt to explain the outputs of these 
filters to a finite length of data by the characteristics of the ideal filter will be 
in error. The magnitude of the error, which can be estimated from (6.20), 
will be uncomfortably large for all values off.  Thus, it is desirable to work with 
low-pass filters which are less than ideal but for which the actual filter 
characteristics are more closely described over the given range of t values by 
the transfer function of the corresponding linear filter. 

The recursive filters discussed in the last section are a substantial improve- 
ment over the ideal low-pass filters from this standpoint. It is seen from (6.16) 
that the filter weights are zero for k < 0 and fall off exponentially fast as 
k -+ co. Thus, by (6.20), we obtain 

a; 

E(U( f )  - Y(t))2 5 2nM z Uk2 5 CI' 
k = r  

for 1 I f I N ,  where I = ( [ I ' ) - ~  and C = 2 n M K ( l  - - l ) - ' .  It follows that 
after an initialization period for times near r = 1, the actual output of the 
recursive filter is very close to the output that would have been obtained for 
an input extending into the infinite past. 

Note that i f r  and 0 are positive integers sucli that ct + /I + I < N and if. 
digital filter has filter H,eiglits ak which are zero for k < - 2  and k > B, then 
U( t )  = Y ( t )  for + I 5 t 2 N - x .  That is, this section of the output data 
agrees exactly with the output of the linear filter to the entire input series 
and, consequently, the transfer function of the filter and the theory of 
Chapter 4 can be used to describe exactly its properties. In practice, the out- 
put is computed only for the range of times p + 1 <( t I N - s(. The fact 
that all of the theory of linear filters applies without approximation out- 
weighs the disadvantage of the loss of f l  points from the beginning and c( 

points from the end of the output series. For this reason, this type of filter 
has been used extensively in practice. We will consider such filters further 
in the next section. 

Example 6.4 
The effect of applying a simple symmetric averaging filter with R = 20 

(see Example 6.6) to a 100-year segment of a time series recorded at yearly 
intervals is illustrated in Fig. 6.5. Here, r = f i  = 10 and it is seen that 10 data 
points are lost from each end of the smoothed sequence. 

Eoect of Smoothing a Time Series 
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Fig. 6.5 Time series of  certain yearly recorded data before and after smoothin9 with a 
20-year symmetric averaye. Note loss of  10 years of  data from eachendof the smoothedseries. 

Linear Filtering by Fast Fourier Transform 

It should be noted that the extreme efficiency of the fast Fourier transform 
algorithm (to be discussed in Chapter 9) has made a different but rather 
natural kind of filtering not only computationally feasible but, for large N, 
actually superior to convolution filtering. The relationship 

7[ 

Y(t) = f e'~'C(2)Zx(d2) (6.22) 
-- / I ;  

for the output of a linear filter with input 

X(t) = f eia'Zx(d2) 
QI 

- - 1 [  

(6.23) 
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and transfer function C(2) suggests the following procedure" First, the finite 
Fourier transform of X(t) is obtained by the fast Fourier transform algorithm, 

1 N 
= ~e - i~v 'X ( t ) ,  (6.24) Z x ,  ~ ~,= 

where 2v = 2nv/N, - [ ( N  - 1)/2] < v _< [N/2]. Note that the inverse transform 
of (6.24) is a discrete analog of (6.23). Consequently, it makes sense to carry 
through this analogy to the filter output given by (6.22). To do this, Zx,  ~ is 
multiplied by the transfer function C(2) evaluated at the points 2~ and the 
product is transformed back into the time domain by the fast Fourier trans- 
form to obtain 

I N / 2 ]  

W(t) = Z eUv'C(2~)Zx,~ �9 (6.25) 
v = - [ ( N  - 1 ) / 2 ]  

It is reasonable to expect that W(t) and Y(t) will be "close together" 
because of the similarity in their generating expressions. Again, using the mean- 
squared error criterion, we will indicate in the Appendix that i f  the weiohts o f  
the filter are bk, k = O, +__ 1, . . . , and i f  the spectral density o f  the input satisfies 
the inequality 0 < m < fx(2) < M, then 

where 

and 

2nmS/'u, ' <_ E ( W ( t ) -  Y(t)) 2 < 2nMff'u, ,, (6.26) 

t - N - 1  oo t - 1  

5PN, t =  Z b* 2 + Z b* 2 + Z (bk--  /~k) 2 
k =  - 0 0  k = t  k = t - N  

oo 

bk = ~ bk + pU . 
p =  --o0 

Again assuming that the weights drop off reasonably monotonically in 
absolute value as [k[ --+ ~ ,  the largest values of ~ u , t  occur at the beginning 
and end of the range 1 < t < N. Thus, by dropping a number of output 
values for t near 1 and N, the number depending on the rate of decrease of 
the bk'S, this procedure will produce an output close to (6.22). It follows that 
the characteristics of the filtering operation will be well described by the trans- 
fer function C(2). 

Since the various ideal filters with rectangularly shaped gain functions 
have weights which decrease rather slowly with [k[, when they are used it 
will be necessary to discard a rather large number of output values or suffer 
a substantial discrepancy between the actual and ideal outputs. However, 
i f  we select a filter with finitely many weightsmthat is, i f  b k = 0 for  [k[ > K, 
say-- then it is easy to verify that 

~ N ,  t "-- 0 for K +  1 < _ t < N - K + I .  

Thus, i f  we discard exactly K + 1 values f rom each end o f  the output sequence, 
W(t) and Y(t) agree for  the remaining time points. From our previous results, 
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this means that for filters with finitely many weights, the fast Fourier transform 
method and the convolution method both lead to the correct output for the 
same segment of output data. Thus, aside from considerations of computa- 
tional accuracy, the choice between the two methods would reasonably be 
based on computing speed. 

We will now argue that the fast Fourier transform method is faster for 
moderate to large values of N and the relative time saving increases with N 
if K is also increased proportionately with N. The rationale for linking K and 
N in this fashion is discussed in the next section. 

A convenient if somewhat crude measure of computing speed is the order 
of the number of elementary operations (additions and multiplications) 
required by the method for a given number of data points. For N data points 
the number of operations is said to have order 9(N) if the actual number of 
operations divided by 9(N) tends to a finite, positive limit as N ~ oe. 

The convolution filtering method requires 2K + 1 additions and multi- 
plications for each value of t, thus ( N -  2K)(2K + l) = 2N2c~(1 - 2:0 in 
total, where we have taken K = aN, 0 < c~ < �89 Thus, the number of operations 
is of order N 2. However, as we will show in Chapter 9, the number of opera- 
tions required for a commonly used version of the fast Fourier transform is of 
order N log N. Thus, the two fast Fourier transformations [three, if C(2v) is 
to be determined from the filter weights] and N multiplications carried out 
in the present method still require an order of N log N operations. This 
increases more slowly with N than does N 2. Thus, there will be a sample size 
beyond which the fast Fourier transform method requires fewer operations 
thus less computing time than the convolution method. 

Unfortunately, an order argument does not provide much information 
about the sample size for which the fast Fourier transform method becomes 
more efficient than the convolution method in a given practical situation. 
There are many factors which control this cross-over point and little, short of 
comparing actual computing times, will determine it. Moreover, the average 
filter user will be restricted to " ready made"  computer routines and the 
particular method of calculation built into the program. Thus, it is not always 
possible to take advantage of the most efficient computing method even when 
it is known. 

6.4 DIGITAL FILTERS WITH FINITELY MANY N O N Z E R O  WEIGHTS 

One way to obtain a filter which has characteristics approximating those 
of an ideal filter, yet has the advantages of filters with finitely many nonzero 
weights, is to set the weights of the ideal filter equal to zero outside of an 
interval -c~ _< k _< ft. This process is called truncation. In fact, every filter with 
finitely many nonzero weights can be viewed as the truncated version of some 
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convolution filter. Consequently, it is important to know how the operation 
of truncation effects the characteristics of the filter. 

As a notational convenience, we will consider only symmetric truncations; 
that is, we will take ~ - - f l - -  K. This does not limit the applicability of the 
discussion to any extent. If It_x, re(k) is the indicator function 

1, - K < k < K ,  
I t -  K, K1(k) = 0, otherwise, 

the filter weights of the truncated filter are 

bk = I t -  K, Kl(k)ak, k = 0, +_ 1, . . . .  (6.27) 

The transfer function BK(2) of this filter is the Fourier transform of the 
weights bk. However, as was seen in Example 1.2, the Fourier transform of a 
product is the convolution of the Fourier transforms. Consequently, if B(2) 
is the transfer function of the filter with weights ak and CK(2) is the Fourier 
transform of l t_r .  Kl(k), we will have 

Now, an explicit expression for Ck(2) can be obtained as follows: Note that 
oo K 

CK(2) = ~ I t -K,r l (k)  e-iak= Z e-i~'k" 
k =  - o o  k =  - K  

Then from expression (1.18) we obtain 

CK(2) = sin((ZK + 1)2/2)/sin(2/2). (6.28) 

Consequently, the transfer function of the truncated filter is 

f B(/0 sin[(2K + 1)(2 - / 0 / 2 ]  BK(2) - ,  2rc sin((). - / 0 / 2 )  d#. (6.29) 

That is, at a given frequency 2, BK(2) is the average of the values of the ideal 
transfer function BOO with respect to the weight function or window, CK(/0/2rt, 
centered at 2. A graph of CK(2) is given in Fig. 6.6. 

To gain an intuitive understanding of expression (6.29) it is useful to 
introduce the generalized function 6p(2) which is the periodic version of the 
Dirac delta function defined in Section 4.2. This function has the property 

for every" well-behaved "periodic function B(2). This delta function is periodic 
of period 2~ and has a (formal) Fourier series expansion with coefficients 

I f  ~ 1 m ak = ~ 6p(2)e-i~.k d2 = 2re k = 0 ,  +1 . . . . .  
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2K+1 

- 3 ~  x - 

Fig. 6.6 Graph o f  the window function CKOt). Side lobes are cross-hatched, Ax = 
2~r / (2K + 1). 

Now, if these coefficients are used as the weights of the ideal filter in 
(6.27), then B(2)= dip(A) and the transfer function BK(2) of the truncated 
filter is simply Cr(2)/2rt from (6.29). Thus, Fig. 6.6 illustrates the effect of 
truncating the filter whose transfer function has a unit "spike" at 2 = 0 and 
is zero elsewhere in ( -  n, rt). The "spike" is broadened into a peak, called the 
main lobe, of width 4rt/(2K + 1). Thus, the sharp features of the original 
transfer function are smoothed and spread into neighboring frequencies. 

A more troublesome effect of truncation is the introduction of ripples or 
side lobes on either side of the main lobe of Cr(2). The side lobes are hatched 
in Fig. 6.6. We will illustrate the problems caused by the side lobes by looking 
at the truncated version of a filter discussed in Section 6.3. If B(2) is the 
transfer function of the ideal symmetric low-pass filter with cutoff frequency 
20, then the transfer function of the truncated filter is easily shown to be 

1 

= - , o  
(6.30) 

A graph of BK(2) superimposed on B(2) is given in Fig. 6.7 for K = 5. 
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I k J l  

o 

'~ ~.~Bx (X) 

I ......-a (X) 

Fig. 6.7 Graphs o f  the transfer functions B(A) and Bx(A) of  the ideal symmetric low-pass 
filter and the filter obtained by truncating the weights o f  the ideal filter at k -- -t- K, ho = zr/2, 
K - - 5 .  

From expression (6.30) and Fig. 6.6 it can be seen that the distortion and 
the size of the side lobes of BK(2) are accounted for by the large side lobes of 
Cr(/l), which are up to 20 % as large as the peak. Thus, instead of a sharp 
cutoff of power at +_/1o, the truncated filter allows through a sizeable amount 
of power from frequencies outside of the range [-/1o,/1o]. This is called filter 
leakage. Filter leakage can be a problem when the filter is used to preprocess 
data for spectrum analysis. The power allowed through the filter for fre- 
quencies [/1[ > / l  0 can seriously bias spectral estimates in the range 1/11 </1o. 

Filtering and Decimation 

Another standard use of low-pass filters is to process data in preparation 
for the operation of decimation. This term is used for the resampling of a time 
series at a sampling interval At' which is some integer multiple of the original 
sampling interval At, 

At' = s At. 

One effect of this procedure is to reduce the original number of data points 
N t o  

N ' =  N/s. 

This is sometimes necessary for data-handling purposes. Frola the theory of 
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Chapter 3, it is evident that the Nyquist folding frequency is also made 
smaller according to the relationship 

/~N t "-- t ~ N / S .  

Thus, in order to avoid aliasing, it is necessary to low-pass filter the time series 
before decimation by means of  a filter with cutoff frequency satisfyin9 the in- 
equality 

2o < 2N'. 

Any power left outside of the interval [21 < 2o due to filter leakage will 
contribute to the aliasing problem (Section 3.2). Thus, it is desirable to use a 
low-pass filter with side lobes as small as possible. 

We will consider methods for reducing the leakage of low-pass filters next. 
First, however, it should be noted that leakage problems are not peculiar to 
low-pass filters, but rather are present to some degree in all (interesting) 
filters with finitely many nonzero weights. Consequently, although we have 
concentrated on low-pass filters, the discussion is equally valid for filters of 
any type. 

Methods for Improving Filter Characteristics 

The most obvious way to improve the characteristics of a truncated-weights 
filter is to increase the sample size N so that K can also be made larger. Since 
by increasing K the weights of the filter become "untruncated," it is reason- 
able that the output of the truncated-weights filter should tend to the output 
of the corresponding ideal filter. Thus, for example, if we link K and N by 
making K = c~ N, 0 < ~ < �89 as in the last section, then an increase in sample 
size will be coupled with an output closer to that of the ideal filter and with 
useable length (1 - 2~)N which also increases with N. However, the sample 
size is not always at our disposal and it is important to have other ways to 
improve the characteristics of a truncated-weights filter. This requires an 
analysis of the distortion introduced by truncation. 

The amount of distortion evident in the transfer function of Fig. 6.7 is 
actually due to two causes. As indicated above, the large side lobes of CK(2) 
are a principal source of distortion. However, the sharp cutoff of the ideal 
low-pass filter at +20 also contributes to the problem. To see this, if we go 
to the extreme of using a filter with the smoothest possible transfer function-- 
namely, a simple amplification filter with constant transfer function 

B(2) = c, -rc < 2 < rt, 

then, since the integral of CK(2)/2n is equal to one, 
7[ 

B~(,l) = J" (B(p)CK(2 -- p)/2rt) d p =  c. 
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Thus, no distortion is introduced by truncation in this case. As the sharpness 
of the features of the transfer function progresses from the minimum repre- 
sented by a constant function to the right angles of an ideal low-pass filter, the 
distortion increases from zero to the degree represented in Fig. 6.7. 

This suggests that to improve the fidelity of filters with finitely many 
weights, one possibility is to require the transfer function of the underlying 
filter to be smoother. Thus, instead of attempting to approximate rectangular 
transfer functions, one might instead approximate rectangles with tapered 
edges in which the dropoff from one to zero is more gradual. An important 
filter of this type is the O r m s b y f i l t e r  which is available as a subroutine in the 
biomedical computer program package (Dixon, 1969, p. 208). The Ormsby 
filter is the truncated version of a symmetric low-pass filter with transfer 
function of trapezoidal shape. Band-pass Ormsby filters with easily selected 
pass-bands are also available in this reference. Further details concerning these 
filters are given by Enochson and Otnes (1968). 

It is also possible to reduce the distortion due to the side lobes of C~:(2) 
by another means. The key observation required is that the large side lobes 
of CK(,~ ) a r e  due to the " square"  shape of the indicator function I t_ K, Kl(k) �9 

If a truncation function is chosen which drops off from one to zero more 
gradually in the neighborhood of +__ K, a window function with smaller side- 
lobes would result. Such a truncation function is called a taper. Here we will 
apply tapers to the filter weights. However, the process of tapering is also 
applied to the time series data itself to improve certain properties of spectral 
estimates as we will see in Chapter 9. 

Tapering Filter Weights 

The effect of tapering the filter weights will be illustrated by means of a 
convenient and popular tapering function. To conform with the terminology 
associated with this function through its use in spectrum analysis we will call 
it the Hanning  taper. Let 

hK(k ) = !�89 + cos(nk/K)), 
~0, 

k = 0 ,  ___1,..., +K, 
Ikl > K, (6.31) 

Then, if the filter weights are defined by 

b k = hK(k)ak,  k = 0, 4- 1, . . . ,  

where ao, a_ l ,  . . .  are the weights of the filter with transfer function B(2), 
the transfer function of the tapered-weights filter is 

BK(2 ) = (B(Ia)HK(2 /x)/2~) at#, 
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o O  

Hr (2 )=  ~ hr(k)e -'ak. 
k=-oo 

This function is called the Hannin9 window. It is easily shown that 

HK(2) = �89 + �88 -- (z/K)) + �88 + (6.32) 

2K+1  

where Cr(2) is given by (6.28). Compare the graph of this function in Fig. 6.8 
with Fig. 6.6. Note that the side lobes of this window are substantially reduced 
in size relative to the height of the main lobe at the expense of doubling the 
width of the main lobe. Consequently, the sharp features of the underlying 

| 

- - ~ ; k x  - X K 
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Fig. 6.8 Graph of  the Hanning window Hx(A), hr  = 2zr/(2K + 1). 

transfer function will be smoothed to a greater extent and at the same time 
the side-lobe distortion will be diminished. This is illustrated for the ideal 
symmetric low-pass filter in Fig. 6.9 on the same scale as used in Fig. 6.7. 
Note that the side-lobe distortion is greatly reduced and the shape of the trans- 
fer function substantially improved. Consequently, from the viewpoint of 
preventing filter leakage, this filter would be preferable to the truncated 
weights filter of Fig. 6.7. Hanning-tapered, ideal symmetric low-pass filters 
are available as subroutines in the biomedical computer program package 
(Dixon, 1969). 

There is one sense in which the truncated-weights filters are optimal. 
We define the integrated squared error of approximating an ideal filter with 
transfer function B(2) and weights ak by a filter with transfer function BK(2) 
and weights bk to be 

7t 

= f 
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Fig. 6.9 Graphs o f  the transfer functions B(A) and BK(A) of  the ideal symmetric low-pass 
filter and the filter obtained by tapering the weights o f  the ideai filter using the Hanning taper, 
Ao = "rr/2, K - -  5. 

Then if br = 0 for [k[ > K, by the Parseval relation, 

K 

Jr=2rc  Z (ak--bk)Z+2rC ~ at z. 
k= -K Ikl>K 

Thus, the minimum integrated squared error is achieved by taking b k -- a k for 
I kl -< K. This is the truncated-weights filter. Any other filter with zero weights 
for I kl > K, including the tapered-weights filters, will have larger integrated 
squared error. By an argument similar to the one given in Section 6.3, if the 
input time series X(t) has spectral density function satisfying m _< fx(2) _< M 
and if Y(t) and Yr(t) are the outputs of the filters with transfer functions B(2) 
and BK(2 ), respectively, then the mean-square error of approximating Y(t) 
by Yr(t)satisfies the inequality 

m J r  < E ( Y ( t ) -  YK(t)) 2 _< MJK.  

Thus, although tapering improves the side-lobe characteristics of the truncated 
weights filter, it need not yield an output as close "on the average" to that of 
the ideal filter as does the truncated weights filter. Despite this, the suppression 
of side lobes is of sufficient importance that it is one of the principal goals of 
digital filter design. For an excellent discussion of the design of filters with side 
lobes controlled to be smaller than a prescribed magnitude, see Granger and 
Hatanaka (1964). This reference also has a good general discussion of digital 
filtering with some important applications to economics. 
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6.5 DIGITAL FILTERS OBTAINED BY COMBINING SIMPLE FILTERS 

Another approach to designing filters, which has the practical advantage 
of great flexibility, is to combine a number of simple filters by the methods of 
Section 4.3 to form more complex filters with the desired shape and side-lobe 
characteristics. This method requires only the most elementary computer 
programming ability and the filters can be constructed on a "cut-and- t ry"  
basis. For this reason, most of the time series processing done in the past has 
utilized this technique and it is safe to predict that much of it will be done this 
way in the future even though more sophisticated methods are available. 

Recall that if L~ and L2 are linear filters with transfer functions B~(2) and 
Bz(2), then the linear combination filter, CeLl + flL2, has transfer function 
~B1(2 ) + flB2(2) and the sequential filter L1LE has transfer function Bl(2)Bz(2 ). 
Starting with low-pass filters such as the averaging filters of Example 6.2, the 
transfer functions can be manipulated algebraically by forming linear com- 
binations and products to arrive at an acceptable transfer function for the 
desired filtering operation. Automatic plotting equipment is useful for graph- 
ing the gain and phase functions at the various stages of filter construction. 
The sequence of operations leading to the transfer function determines the 
sequence of filters to be applied to the data. 

When the desired sequence of filters has been decided upon, the data can 
be processed either by carrying out the operations step by step in several 
passes through the data or the filter weights of the overall filter can be com- 
puted and the filtering performed in one pass through the data. These weights 
can be determined by the following operations which are the discrete analogs 
of the results for convolution filters given in Section 4.3: I f  L~ has weights 
ak and Lz has weights bk, then the weights of thefilter ~LI + ~L2 are 

Ck = CCak + flbk 

and the weiohts of L1L2 are the discrete convolutions 

oo oo 

dk = ~ aj bk_j = ~ ak-j bj. 
j =  - o o  j =  - o o  

This method also allows us to calculate the transfer functions and weights 
of filters which are recognized to be the result of algebraically combining 
filters with known transfer functions. We now give some examples of these 
ideas. 

Example 6.5 An Alternate Form of the Backward Shift Operator 
If I denotes the "do-nothing"  filter with weights ao = 1, aj = O, j # O, and 

A is the difference filter of Example 6.1, then the weights of I - A  can be 
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calculated by the rules given above: 

c 0 = l - l = 0 ,  

cl = 0 -  ( - 1 )  = 1, 

cj -- 0 otherwise. 

An application of these weights yields (I - A)(X(t)) = X(t  - 1). It follows that 
I -  A = B, the backward shift operator defined in Section 6.2. The transfer 
function of the filter I -  A is B(2) = 1 - (1 - e-i~) = e-ia. This computation 
would also verify that ! -  A = B, since linear filters are uniquely determined 
by their transfer functions. 

Example 6.6 Symmetric  Averagin9 Filter with R Weights," The Case o f  R, 
An Even Number 

When R is an even number, the averaging filter of Example 6.2 must be 
modified in order to retain symmetry, since symmetry requires an odd number 
of weights. The simplest procedure is to split one of the extreme weights in 
half and apply it at both ends of the weight sequence. We then obtain 

R / 2  

L (X( t ) )  = 2 Ck X(t  -- k), 
k = - R / 2  

where 

[1/R, k = O, +_ 1 , . . . ,  +_(�89 - 1), 
ck = ~ l /2R,  k = + �89 

1 ,0 ,  otherwise. 

By observing that these are the sums of the weights of two filters L1 and L2, 
where L1 has weights 

1/2R, k = 0, +_1 . . . .  , +__(1R- 1), 
ak = 0, otherwise, 

and Lz has weights 

[1/2R, k -- 0, _+ 1 , . . . ,  _+IR, 
bk = [0, otherwise, 

we can calculate the transfer function of L from the relation B(2) = B1(2) + 
B2(2). However, B1(2) and B2(2) can be obtained from Example 6.2; 

B1(2) = sin(2(R - 1)/2)/2R sin(2/2), 

B2(2) - sin(2(R + 1)/2)/2R sin(2/2). 

Thus, 

B(~) = 
cos(2/2) sin(2R/2) 

R sin(~/2) 



192 6 D I G I T A L  F I L T E R S  

where we have used the trigonometric identity sin(or + f l )+  s i n (~ -  f l )= 
2 sin ~ cos ft. 

This same device can be used to construct and calculate the transfer 
function of filters with triangular and trapezoidal filter weight profiles. For 
example, the filter with weights 

( l / (2R + K +  1), k = 0 ,  + 1, . . . ,  +(2R + 1), 
= J(K+ l-l)/(K + 1)(2R + K + 1), k = +(2R + 1 + l), 

Ck 1= 1 , 2 , . . . , K ,  
~,0, otherwise, 

where R and K are nonnegative integers, is the sum of K + l filters Lj with 
weights S = 1/[(K + I)(2R + K + 1)] over the ranges - ( R  + j )  to (R + j )  for 
j = 0, 1 , . . . ,  K, and zero otherwise. These weights can be shown to sum to 
one. The transfer function is then 

K R+j  K 
B(2) = S ~ ~ e -'~" = S ~ sin(g + j + �89 

k=O r = - ( R + j )  j=O 

The profile of the weights is triangular when R -  0. Such weights can be 
viewed as tapered rectangular filter weights and will correspond to low-pass 
filters with smaller side lobes than the corresponding rectangular filters. 

Example 6.7 Improvin9 Side-Lobe Characteristics by Applyin9 Filters 
Sequentially 

Two low-pass filters can be used sequentially to obtain a filter with reason- 
able side-lobe size by applying the first filter to approximate the desired 
low-pass characteristics then using the second filter to reduce the side lobes 
of the first. Thus, for example, if a simple symmetric average LI with R 
weights (R odd) is applied first, the transfer function 

B,O) = 

sin(2R/2) 

R sin (,l/2) 

has its first side lobes symmetrically placed in the frequency range rt < 
]2R/21 < 2ft. Restricting attention to positive frequencies, the maximum 
height of the side lobe will occur at approximately the midpoint of this range, 
which is 

2 = 3n/R. 

Now it is reasonable to use a second symmetric average L 2 with R' weights, 
where R' is to be selected so that the first zero of B2(2 ) falls at approximately 
the point where the first side lobe of B1(2) is largest. Since the first zero of 
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B2(~, ) is at 2rt/R', equating this with the above frequency we obtain the follow- 
ing expression for determining R', 

R' '~ 2R/3.  

A graphical illustration of the effect of this procedure is given in Fig. 6.10. 
Actually, the side lobes will be substantially reduced in size simply by re- 
peating L~. However, this changes the shape of the main lobe of B~(2) more 
than does the operation L2L~. 

0 

"~'~.". ,,.., ,.. 

I 

i\ \ ' \  \~ "\. 

x _  

2 r  2 r  4E 6E 4~ 
R R ~ R R R' 

Fig. 6.10 Hlustration of  the suppression of  side lobes by the sequential application of  two 
simple averages LI and Lz with transfer functions B~(A) and Bz(A), w h e r e - - - :  IBI(A)I " 
-" - :  IB2(A)["--: IBI(A)B2(A)I. 

Example 6.8 Families o f  Band-Pass Fi l ters--Binomial  Filters 
An interesting method for generating band-pass filters which decompose 

the power of a time series into a number of different pass-bands is the follow- 
ing. Let L denote a low-pass filter with transfer function B(2) which is non- 
zero except at isolated points in ( - r t ,  ~). Then if I denotes the do-nothing 
filter, by the binomial theorem and our "algebra of filters," for any positive 
integer n we have 

7' = (L + (I - L))" = ~ (7,)Lk(I- L) "-k, (6.33) 
k=0 

where (7,)is the binomial coefficient, n !/(k! (n - k)!). The filter (7,)Lk(I -- L) "-k 
is the sequential filter obtained by applying L, the low-pass filter, k times and 
I -  L, the high pass filter, n -  k times, then multiplying by the factor (~,). 
The result is a band-pass filter with transfer function Bk(2)= (~)Bk(2)x 
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( 1 -  B(2)~ -k. Moreover, if we define Yk(t)= (7,)Lk(I--L)"-k(x(t))for an 
input series X(t), then (6.33) implies that 

X(t) = ~ Yk(t). 
k=O 

Thus, in this sense, the band-pass filters decompose X(t) into different pass- 
bands. However, because the pass-bands overlap, in general, it is not true 
that the power of X(t) is the sum of the power magnitudes of the Yk(t)'s. 
Thus, the Yk(t)'s do not represent a spectral decomposition of X(t), which 
entails the partitioning of the power of X(t) into disjoint frequency intervals. 
However, if the band-pass filters have reasonably well-defined pass-bands 
which do not overlap too much, a crude spectrum analysis can be achieved 
by using the power of Yk(t) as an estimate of the power of X(t) over the pass- 
band o f  (~)Lk(I  -- L )  n-k. 

Blackman and Tukey (1959) use a simple variant of this idea to perform 
a preliminary analysis of a time series for the purpose of designing appro- 
priate prefilters for a more careful spectrum analysis. They use the simple 
summation filter S(X( t ) ) -  X(t)+ X ( t -  1) for L in conjunction with the 
high-pass filter A(X(t))= X ( t ) -  X ( t -  1). It is easily seen that A = 2 I -  S. 
Consequently, by the binomial theorem, 

2 " , " =  ( s  + A) o = A 
k=O 

Thus, the band-pass filters Lk = (1/2")("k)S t A "-k can be used as described 
above. An algorithm for carrying out the spectral calculations is given by 
Blackman and Tukey (1959, p. 135). 

Finally, to illustrate another aspect of the use of simple filters to produce 
more complex filters~and to point out one of the dangers of this m e t h o d ~  
we give the following example which is also of independent historical interest. 

Example 6.9 The Slutsky Effect 
Slutsky (1927) demonstrated both theoretically and by computations on 

simulated time series that by applying a sequence of simple averaging and 
differencing operations to a discrete white noise process it was possible to 
obtain a nearly perfect sinusoid. This "effect" had a profound influence on 
the development of time series analysis since it pointed to a possible mecha- 
nism for producing cycles and periodicities in data other than that described 
by simple almost periodic functions with white noise residuals which had 
been the model considered up to that time. This opened the way for new time 
series models and, in fact, the important moving average processes to be 
studied in Chapter 7 were the outgrowth of the work of Slutsky and of Yule 
whose studies date from about the same time. 
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The Slutsky effect would seem to contradict the statement that linear 
transformations cannot transform processes with continuous spectra into 
processes with discrete spectra. However, the pure sinusoid is the limiting 
result of a sequence of linear operations and, in fact, the output of a finite 
number of these operations still has a continuous spectrum although the 
spectrum is sharply peaked about the frequency of the limiting sinusoid. 

The Slutsky effect has also, justifiably, been the object of concern among 
practicing time series analysts. As was mentioned earlier, it is often necessary 
or desirable to filter a time series before analyzing it. It is now possible that 
cycles detected in the analysis are actually a result of the filtering and are not 
characteristic of the underlying phenomenon at all! There is the possibility 
that some of the cycles noted in certain time series in economics and geo- 
physics were due to filtering. Fishman (1969, p. 45) gives an example from 
economics. This problem can be largely avoided by one simple expedient; 
namely, always calculate the transfer function of  the filter. This is one of the most 
important steps in analyzing time series. Since virtually every filter is composed 
of very simple filters combined by the two basic operations given above, the 
gain and phase shift functions are easily obtained. Then, potential difficulties 
with the filter can be detected and avoided. 

It is of some interest to explain, in elementary terms, another phenomenon 
noted by Slutsky in his simulation studies. When a sufficient amount of 
filtering had been done so that the gain function of the filter was sharply 
peaked about a frequency 2o, say, he observed that cycles of frequencies 
near 2o would appear and disappear then reappear with different phase, etc. 
This kind of phenomenon is often observed in real time series and is the basis 
for the term cyclic data. 

With a sharply peaked spectrum, only the frequencies in a small neighbor- 
hood (2o - e, 2o + e) are prominent in the data and the various harmonic 
components with these frequencies, although having nearly the same ampli- 
tude, can have quite different phases. The time series consists of a " s u m "  of 
these harmonic components. Take a simple situation in which only two terms 
of the sum are considered and suppose they are C c o s ( 2 o - e ) t  and 
C cos(2o + e)t. Now, from the identity cos(x - y) + cos(x + y) = 2 cos x cos y, 
we obtain 

C cos(2o - e)t + C cos(2o + e)t = 2C cos(et)cos(2o t). 

This is a periodic function of frequency 2o modulated by a periodic amplitude 
factor with frequency e. Thus, a cycle with frequency 2o will seem to appear 
and disappear at intervals of n/e time units. Since all components with fre- 
quencies in (2o - e, 2o + e) interact in this way, a varied and complex cyclic 
time series can result. Virtually the only way such a time series can be "sorted 
ou t"  is by spectrum analysis. 



196 6 DIGITAL FILTERS 

6.6 FILTERS WITH GAPPED WEIGHTS AND RESULTS CONCERNING 

THE FILTERING OF SERIES WITH POLYNOMIAL TRENDS 

In this section some miscellaneous topics of interest are considered. A 
number of methods for suppressing or revealing seasonal (periodic) trends 
are based on the simple idea of filters with gapped weights. This is considered 
first. Then we will look at a method for removing polynomial trends--the 
variate difference method of Tintner (1940)--and at a criterion that a low- 
pass filter must satisfy in order to pass polynomial trends due to Brillinger 
(1965). 

Filters with Gapped Weights 

If aj ,  j = 0, +__ 1, . . . ,  are the weights of a digital filter with transfer function 
B(2), then by separating these weights by K indices and assigning the interven- 
ing indices zero weights we obtain the corresponding filter with gapped weights 
of gap K, 

bj = t aj/r' j = O, +_K, 4-2K, . . . ,  
[0, otherwise. 

The transfer function of the gapped weight filter is 

BK(2) = B(K2). (6.34) 

This is easily verified: By the change of index 1 = j /K we obtain 

o o  

BK(~) = ~ bje-~aJ 
j - - -  m o o  

03 

= ~ al e-ixtrl) = B(K2). 
! = - - 0 3  

Thus, BK(2) is a periodic function of period 2rt/K which repeats the gain and 
phase characteristics of the original filter on (-re,  rt) over each interval 
( ( 2 j -  1)re~K, (2j + 1)rt/K)for j = 0, 4-1, _+ 2, . . . .  

Example  6.10 The Buys-Ballot Filter and Its Uses 
The gapped version of the simple symmetric averaging filter with R 

weights (R odd) is seen to have transfer function 

8~(~) = 
sin(2KR/2) 
R sin(K2/2) 

from Example 6.2 and expression (6.34). The following argument will be 
based on this rather than the more commonly used nonsymmetric filter for 
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ease of exposition. From the spectral representation of the X(t) process we 
can write 

i t  

Y(t) = f eia'Br(2)Zx(d2) 

7t 

-f ei~, sin(2KR/2) 
R sin(2K/2) Zx(d2). 

As R ~ ~ ,  the transfer functions sin(2KR/2)/R sin(2K/2) tend to zero for all 
frequencies 2 except those of the form 2rtl/K, 1 = 0, + 1, . . . . ,  at which they 
are unity. Thus, by the type of argument introduced in Section 2.10, it is seen 
that Y(t) has the mean-square limit 

[ K / 2 ]  

W(t) = ~ e'2"k'/KZx({2rck/K}). (6.35) 
k = - [ ( K  - 1 ) / 2 ]  

Thus, in the limit, the discrete spectral terms of the time series at the fre- 
quencies 'l]'k - -  2nk/K are isolated by this filter. 

For a finite length of data, X(1), X(2), . . . ,  X(N), if R is chosen as large as 
possible, a good approximation to this periodic limit is obtained. By varying 
K, an elementary sort of harmonic analysis can be carried out. This is one of 
the earliest methods of harmonic analysis originally done laboriously by hand 
in tabular form. The resulting tables, called Buys-Ballot tables after the orig- 
inator, are discussed by Wold (1938, p. 23). 

Now consider the nonsymmetric filter 

1 R 

Y(t) = ~ ~ X(t - Kj), t - 1, 2 , . . . ,  K, 
j = l  

where K is fixed and R -  [N/K]. This filter, which we will call the Buys- 
Ballot filter, also has gain function ] Br(2)]. A graph of this gain function for 
a variety of values of R is given in Fig. 6.11. Moreover, the phase shift is zero 
at the frequencies 2k. Consequently, since all other frequency components 
are averaged to zero as R ~ ~ ,  this filter has the same limit (6.35) as the 
symmetric filter and provides a well-resolved estimate of W(t) when R is large. 

Because of the limitation of data length and the selection of R, the given 
filter characteristics are valid only for the output segment Y(1), Y(2), . . . ,  
Y(K). However, since the limit (6.35) is strictly periodic of period K, it is 
customary to extend the output periodically to the original data length N 
by repeating this segment over and over, i.e., define the periodic extension 
Yp(t) of Y(t) to be 

r~(O = r ( t )  
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Fig. 6.11 Gain function o f  the Buys-Ballot filter for K = 6 and R = 2, 6, 10. 

if t = k + K l  for 1 < k < K and 0 < l < [N/K] .  Then, the Buys-Ballot filter 
can be used to suppress the periodic components in the original time series 
at frequencies 2k by forming the residual time series 

t/(t) = x ( o -  rp(t), t = 1 , 2 , . . . , N .  

An Application of the Buys-Ballot Filter 
to Rainfall Runoff Data 

The most common use of this filter is to isolate and/or eliminate the 
seasonal components of time series for which these components are strong 
and well defined. This situation occurs reasonably frequently in geophysical 
data and in time series studied in economics. An excellent example of this 
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type of time series is provided by Reed (1971) in a study of low-frequency 
cycles in the daily runoff data of the Rio Chagres River in Panama. The spec- 
trum of this data, given in Fig. 6.12, shows how the yearly periodicity and its 
harmonics at 6, 4, and 3 months dominate the spectrum making the activity 
below a one-year period difficult to resolve. The daily averages for each day 
of the year over a 57-year period correspond to the application of a Buys- 
Ballot filter with K = 365 days and R - 57 values per average. The filtered 
series was used to locate the times of maximum and minimum runoff and 
to study the general characteristics of the seasonal periodic components of 
the series. A graph of the daily averages, smoothed by a symmetric averaging 
filter with R - 20, is given in Fig. 6.13. The daily averages were then repeated 
periodically and subtracted from the runoff series to remove the yearly 
cycle and its harmonics. The degree of success in suppressing this periodic 
component is seen by comparing Fig. 6.12 with Fig. 6.14 which is a graph of 
the spectrum of the residual series. 
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Fig. 6.13 Rio Cha#res River daily averaye runoff data. Source: J. W. Reed (1971). 
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Example 6.11 The Quasi- Diflerence Filter and Its Gapped Version 
A family of high-pass filters which also pass selected amounts of power 

in the neighborhood of zero frequency are the quasi-diflerence $filters defined 
by the expression 

Y(t) = X ( t )  - aX(t - l), 

where a is a parameter restricted to the range 0 < a 5 1. When a = 1, this is 
the ordinary difference filter already studied. The transfer function of the 
quasi-difference filter is 

~ ~ ( 2 )  = 1 - ae-i' 

with gain and phase functions 

(1 : ::Oz 1). 
I B&) I = (1 - 2a cos A + a2)'/2 and 9,(1) = Arctan 

A graph of the gain function of this filter is given in Fig. 6.15. 
The quasi-difference filter is often used to balance the spectrum of a time 

series with a large power peak at low frequencies. The balancing process is 
calledprewhitening by Blackman and Tukey (1959). This filter has an advan- 
tage over the difference filter in that, since the power near zero frequency is 
not completely eliminated, good estimates of the spectrum in this range can 
be obtained by multiplying the estimates of the balanced spectrum at fre- 
quency A by 1/ I B,(A) I '. 

By gapping the quasi-differencing filter, the periodically repeated " valleys " 
in the gain function can be located over bothersome periodic components in 
the spectrum allowing these components to be suppressed to a selectable 
degree. Thus, the filter 

Y(t)  = X ( t )  - aX(t - K )  

has gain function 

I Ba, K(A) I = (1 - 2a cos KA + a')'/' 

which has minima at the frequencies Ak = 2nk/K, k = 0, f 1, . . . . Because 
these minima are rather broad, the suppression of periodicities is not as selec- 
tiveas with the use of the Buys-Ballot filter. However, this filter is very simple 
and has frequently been applied to data for which the spectral peaks to be 
suppressed are not well defined. Such data occur rather commonly in business 
and economics series [see Fishman (1969)l. This kind of filter is called a 
seasonal adjustment filter. For a discussion of the construction and use of a 
variety of seasonal adjustment filters in economics, see Granger and Hatanaka 
(1964). 

We next look at the use of filters to modify data with polynomial trends. 
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Fig. 6.15 Graph of the gain functions of the quasi-difference filter for several values of ~. 

Removing Polynomial Trends by Repeated 
Differencing; The Variate Difference Method 

A useful nonstationary time series model is that of a polynomial trend 
with a weakly stationary residual 

Y(t) = m(t) + X(t), t = 0 ,  + 1 , . . . ,  

where m(t) is a polynomial of degree n. It is assumed that the polynomial 
has known degree but unknown real-valued coefficients, and that X(t) is 
weakly stationary with continuous spectrum and spectral density function 
fx(2). The problem we wish to consider is the removal of the trend term by 
digital filtering to obtain the spectrum of the "uncontaminated" residual 
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process. This can be accomplished by means of the variate difference method 
(Tintner, 1940). 

The method is based on the important observation that any polynomial 
o f  degree n is eliminated by the repeated difference fi l ter A "+ 1. To illustrate this 
fact, consider the special case of a polynomial of degree 2; 

m(t) = at z + bt + c. 

Then 
A m ( t ) = a t  2 + bt + c - (a(t - 1 ) /  + b(t - 1 )  + c) 

= 2 a t - a + b ,  

AZm(t) = (2at - a + b) - (2a(t - 1) - a + b) 

= 2a, 

A3m(t) -- 2a - 2a = 0. 

This property is easily seen to hold for any n. Consequently, 

Z(t)  = A "+ '(Y(t)) = A "+ ' (m(t))  + A "+ ' (X( t ) )  

= A " +  

The gain function of A "+1 is ]2 sin(2/2)l "+1 from Example 6.1 and the theory 
of repeated linear filters. Thus, Z(t)  is a weakly stationary process with con- 
tinuous spectrum and spectral density functionfz(2) = 12 sin(2/2) ] z(,+ l~fx(2). 

We can solve for the spectral density of X(t)  in this equation if the spectrum 
of Z(t) is known. In general it will not be known, thus will have to be estimated. 
Then this equation can be used to obtain an estimate of the spectrum of X(t). 
Iffz(2) denotes an estimate of the spectral density of Z(t) ,  then 

fx(2) = [1/12 sin(2/2) [ 2("+ 1)] .~(2) 

will be a reasonable estimate of fx(2). Note that this estimate will be 
somewhat unreliable near 2 = 0 since sin (2/2) is close to zero there. (See the 
discussion of correcting filter bias in Section 4.4.) 

If n is also unknown but the polynomial model seems reasonable, it is 
common practice to plot the time series after each application of the difference 
filter. When no obvious trend remains, the differencing operations are termi- 
nated and the spectrum analysis is carried out as before. 

Filters Which Pass Polynomial Trends 

Occasionally it is of interest to construct a low-pass filter which passes a 
polynomial trend without change. Brillinger (1965) has shown that filters 
which do this can be characterized in terms of the derivatives of their transfer 
functions at 2 = 0. He showed that (f  B(2) is the transfer function o f  thefilter, 
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then a polynomial of  degree n will be passed through the fiBer unchanged if  and 
only i f  B(O)= 1 and B(r)(o)= 0 for 1 < r < n, where B(')(2) denotes the rth 
derivative of  the transfer function at 2. 

The proof of this result is simple and elegant: First note that if the monom- 
ials t" are passed for 1 < r < n, then any polynomial of degree n will be passed 
because of the linearity of the filter. If aj, j = 0, ___ 1, . . . ,  are the filter weights, 
then t" is passed if 

go 

a j ( t -  j ) ' =  t '  for all t. (6.36) 
j - -  - - o 0  

However, by the binomial theorem, 

( , - j ) ,=  (;)(- j) ' - ' , ' .  
/ = 0  

Thus, 

] aj(t -- j)r = ~ (--j)r- 'aj t', 
j =  - o o  / = 0  j =  - 0 0  

and identity (6.36) will hold if and only if 

( ; ) [ ;  - -  {, f o r ,  r 
( - i Y  0, for 0 < l < r - 1 ,  

j go 

Equivalently, since (6.36) is to hold for 1 < r < n, 

go t0, 1 < r _< n, (6.37) 
( - j ) ' a j =  [1, r = O .  

%-- - - - - j  

j =  - o o  

However, B(2 )=  2j~176 aje -iaj, and if the derivatives of order r exist for 
1 < r < n, [which will be true if B(n)(2) exists], they can be taken inside the 
sum to obtain 

go 

B(')(2) = ~ ( - j ) ra je  -iaj. 
j ' -  - - o o  

Thus, (6.37) is equivalent to B(0) = 1 and B(')(0) = 0, 1 < r < n, as was to be 
shown. 

From the above discussion of the variate difference method it is evident 
that the filter 

Ln = I -  A n+l 

passes polynomials of degree n. It is easy to check that Brillinger's conditions 
are satisfied by the transfer function of this filter. 
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APPENDIX TO CHAPTER 6 

A6.1 The Convolution Form of Digital Filters 

The discussion of linear filters given in Section A4.1 carries over to discrete 
processes and, in fact, the theory is somewhat simplified in that the trans- 
formations Ut for integer values of t are all obtained from a single unitary 
transformation U by the relation 

U t =  U t, t = O ,  + l , . . . .  

Thus, U is the forward shift transformation which takes X(t) into X(t + l) 
for all t. The backward shift transformation defined in Section 6.2 is, then, 

B - - U  -1. 

The general t ime-domain representation of a linear filter was shown to be 
(A4.3). In the discrete case this represents any linear filter L as a limit of 
convolution filters L ,  with finitely many nonzero weights, 

L .(X(t))  = Z a, , ,  X(t - t., j) 
j~Jn 

oo 
= 

k =  - o o  

where bn, k = an, j when k = t . , j ,  j e J,  and bn, k - - 0  otherwise. Even so, 
there is no guarantee that L is a convolution filter on X(t), since the bn, k'S 
need not converge to a square summable set of filter weights for L. However, 
we will now show t h a t / f  X(t) has a continuous spectrum and a spectral density 
function which is bounded from above and away from zero, 

0 < m < fx(2) < M, (A6.1) 

then not only does every convolution filter match X(t) but every linear filter 
matching X(t) is o f  convolution type. 

Let L denote a filter which matches X(t) and let B(2) be its transfer function. 
Then B(2) ~ ~ 2 ( -  re, n), since 

'~ 1 f" f IB(2) l 2 d2 < --  IB(2) 12fx(;O d2 < oo. 
- n D I  - n 

However, as was indicated in Example 1.2, every element of ..~a2(--/t, 71:) 
has a Fourier series expansion with square summable coefficients which con- 
verges in mean-square. That is, there exists a unique set of weights cj such that 

n ~., Cj 12 lim ( e-  i~j _ B(2) d2 = 0, (A6.2) 
n~oo a _n j= -n 
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and 

0(3 

E CJ 2 ~ ~ .  
j -  wo  O 

Now, consider the sequence of convolution filters 

L.(X(t))= ~ cjX(t-j). 
j ' -  w r l  

Then, 

E I L n ( X ( t ) ) -  g (x ( t ) ) l  2 - e f e ia~ cje -iaj 
- ~  ~ j=  - n  

=f~,, j~ cJ 

- B(2)}Zx(d2 ) 
2 

- B(2) fx(2) d2 

<_ M f cje  -i2j 
-- ~ j ti i 

This last term tends to zero as n ~ ~ by (A6.2). It follows that the partial 
sums L,(X(t)) have a mean-square limit and this limit is equal to L (X(t)). 
Thus, L has the convolution representation 

oo 

L (x ( t ) )  = y~ ~j x O  - Y). 
j =  --oo 

The limitations imposed by condition (A6.1) can be better appreciated by the 
following argument. If the time series X(t) has spectral density fx(2) which is 
equal to zero on a set A of positive measure, then it is possible to construct 
transfer functions B(2) for linear filters such that 

fAIB(~)I ~ d~ -- o0 yet f I n ( ~ ) l % ( O d ~  < oo 
- - / r  

Thus, these filters will match X(t) but will not be of convolution type. If 
fx(2) < M, then all filters of convolution type will match X(t) as was argued 
in the text. When fx(2) is unbounded this need not be the case since examples 
can be easily constructed for which 

~Z 

f I B(2)[ 2d2 < ~ but 
~ T t  

/r 

- - 7 [  

A6.2 Nonnegative Definite Filters 

From the definition of the transfer function B(2) and phase shift 0(2) of 
a linear filter it is easily seen that 0(2) = 0 for all 2 if and only if B(2) is real- 
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valued and  nonnegat ive  for all 2. Symmetric filters have real-valued but not 
necessarily nonnegative transfer functions, which leads to the possibility that 
0(2) = _+ rt for some frequencies. 

A digital filter with (real-valued) filter weights {Ck: k = 0, ___ 1, ...} is 
said to be nonnegat ive  definite if for every positive integer n and complex 
numbers ak, k = O, +_ 1, . . . ,  +_n, we have 

~ a j  (l k Cj-k ~ O. 
j = - n  k = - n  

(See Section A2.1 for the definition of continuous-time nonnegative definite 
functions. This definition and the theory given here can be adapted to give 
the comparable results for continuous-time convolution filters.) We now 
show that the transfer functions of nonnegative definite filters are, indeed, 
real-valued and nonnegative and conversely. Thus, in order for a filter not 
to shift phases, it is necessary and sufficient that it be nonnegative definite. 

First, taking a o -  1, aj = i, and ak = 0 otherwise, the above inequality 
becomes 2Co + i(cj - c_ j )  >_ O. However, this sum must be real-valued, which 
can happen only if ej = e _ j .  Thus, as is not surprising, nonnegative definite 
filters are always symmetric. It follows that the transfer function is real-valued. 

If B(2) is the transfer function of the filter with the given (square- 
summable) weight sequence, it follows from expression (6.4) that 

1 ~ ei2J = a j  

j - - n  k - - n  " - n 
d2 >_ 0. (A6.3) 

Clearly, this inequality holds if B(2) > 0 a.e. Thus, the filter is nonnegative 
definite if 0(2) = 0 a.e. Now, suppose that B(2) < 0 on a set A = B w ( - B )  
of positive measure in ( - r t ,  7t) and let IA(2) be the set characteristic function 
of this set. Since this is a square integrable function, it has a Fourier series 
representation 

O3 

I a (2 )=  ~ aj e iaj. 
j =  --o3 

The identity I a ( 2 ) =  [IA(/],)[ 2 implies the alternate representation 

i . ( ~ )  = 
o3 ]z 

a j e  iaj . 
j =  --oo 

Moreover, if 

/ a , . ( ~ )  = a j  e iaj 
j=  - n  
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it is easily argued that 

lim f B(2)IA,,,(2) d2 = f B(2)IA(2 ) d2. 

Since each term of the sequence of integrals is nonnegative because of (A6.3), 
it follows that ~ ~ B(2)IA(2) d2 > O. However, this is impossible if B(2) < 0 
on A. Thus, necessarily B(2) > 0 a.e. in ( - r t ,  rt). 

It is easily seen that all of the ideal symmetric filters discussed in the text 
are nonnegative definite, since the transfer functions were chosen to be non- 
negative. It is of interest to note that this property is lost by truncation as can 
be observed, tbr example, from the negative side lobes of the transfer function 
of the truncated weights filter in Fig. 6.7. When the filter is modified to mini- 
mize the side lobes as described in Section 6.4, then the power transmitted 
by the filter in frequency ranges for which 0(2) :/: 0 is extremely small. Thus, 
for practical purposes, properly designed symmetric filters have actual phase 
shift characteristics which are nearly identical to those of nonnegative definite 
filters. 

A6.3 The Error of the Fast Fourier Transform 
Filtering Method 

By substituting the spectral representation for the process X(t) in (6.24) 
and using the resulting expression in (6.25) we obtain 

W(t) = ~., e'~SH(t - s Z(d2), 
- n  s =  1 

where 

Now, 

thus, 

I N / 2 ]  

H(r) = Z C(20 eiav'' 
v= -[(N- I)/21 

o0 

C ( , ~ ) =  ~ e-i~'kb k, 
k =  - o o  

oo [N/21 

H(r )=  s bk Z eiav('-t)" 
k = - oo v = - [ ( N -  1 ) /21 

However, since 2, = 2nv/N, 

[N/21 {N, 
Z ei2v m = 

v=-[(N- 1 ) / 2 1  , 0 ,  

if m = p N ,  
otherwise. 

p = O ,  +1 . . . . .  
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This implies 
oo 

H(r)  = N ~_, b,+pN = Nbr .  
p - -  - -o0 

Then (6.26) is obtained from this expression and (6.22) exactly as was expres- 
sion (6.20) from (6.19). 

Finally, 

�9 

-- f-neiat  k=t-Ne-iAkbk Z(d2). 



C H A P T E R  

Finite Parameter Models, Linear 
Prediction, and Real-Time Filtering 

7.1 INTRODUCTION 

In the early years of the twentieth century, time series studies were based 
on an implicit model consisting of an almost periodic (nonstochastic) trend 
term with a white noise residual. This model was used to search for "hidden 
periodicities," primarily in geophysical data such as the Wolfer sunspot 
series. A graph of this historic series is given in Fig. 7.1. At first glance a model 
of pure sinusoids would seem reasonable. However, closer inspection revealed 
properties of the data that could not be readily accounted for by such a model. 
Observations of this nature caused early criticism of the "scheme of hidden 
periodicities" and prompted the search for models which better described 
the observed data. 

Yule (1921) considered the consecutive differences of a purely random 
series (the values of a series of independent, uniformly distributed random 
variables) and noted a "tendency toward regularity" in the resulting data 
similar to that exhibited in Fig. 7.1. Continuing this work, Slutsky (1927) 
studied sums and differences of purely random series and formulated the 
observed regular behavior discussed in Example 6.9 as one of the first proba- 
bilistic limit theorems for stochastic processes. He called the series resulting 
from the summing and differencing operations processes ofmovin9 summation. 
The more recent terminology, apparently dating from the definitive study of 
discrete models by Wold (1938), is movin9 average processes. This class of 

210 
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Fig. 7.1 Graph of Wolfer sunspot data. Annual mean sunspot numbers observed over a 
period of 265 years. 

processes remains one of the most important collections of finite parameter 
models and will be our first object of study in this chapter. 

In a study of the Wolfer sunspot series, Yule (1927) used techniques of 
regression analysis to approximate the value of the series at a given time as a 
linear function of a fixed number of previous values. The scheme implicitly 
defined by this procedure was termed the scheme o f  linear autoregression by 
Wold. Finite autoregressive processes,  as they are more commonly called 
today, constitute the second important class of finite parameter models to be 
considered in this chapter. 

Autoregressive processes appeared in economics during the 1930s in 
the work of Frisch (1933) and Tinbergen (1937), who first used stochastic 
elements in dynamic models of economic systems. Because of the great interest 
in forecasting future values of economic variables, the unique predictive 
feature of autoregressive processes (which we will illustrate in Section 7.3) 
played a significant role in the applications of these models. 
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In his 1938 monograph, Wold established a key decomposition of the 
general weakly stationary process which led to the formulation and solution 
of the linear prediction problem by Kolmogorov during the period 1939-1941 
[see Kolmogorov (1941 b)]. Independently, during roughly the same period, 
Wiener solved the linear prediction problem in an important special case 
and later extended his solution to a larger class of problems including the 
filtering problem. His work has had considerable impact on the field of 
communication theory [see Lee (1964)l. 

Kolmogorov also presented, for the first time, a geometric interpretation of 
weakly stationary processes which has greatly unified the subject and has 
proved most useful in the theoretical development of time series analysis. 
[see Kolmogorov (1941a)l. This geometric view of time series is one of the 
central themes of this book and some of the more significant applications of 
geometry to time series problems will be illustrated in this chapter. The 
basic features of the solution to  the linear prediction problem will be detailed 
and the solution of a more realistic version of the filtering problem than that 
considered in Chapter 5 will be sketched. 

For simplicity, only the univariate, discrete-time theory is considered 
here. The extension to discrete-time multivariate processes and continuous- 
time univariate processes is amply provided by Hannan (1970). 

7.2 MOVING AVERAGES 

Recall that a white noise process is a sequence of uncorrelated random 
variables <( t ) ,  t = 0,  +_ 1, . . . , with common mean €<(t) = 0 and variance 
Et2( t )  = 02. Then, a moving average process is defined by the expression 

n 

x(t) = 1 aj<(t  - j ) ,  t = o ,  + I ,  ..., (7.1) 
j = - m  

where m and n are nonnegative integers and the aj’s are realconstants. This is, 
more precisely, afinite moving average. By letting n and/or m tend to  infinity, 
with the added condition that 

f a j2<w0,  
j =  -a, 

an injinite moving average is obtained, i.e., 
m 

x(t) = 2 a j t ( t  - j ) .  
j =  - m  

(7.3) 

Then (7.1) is simply a special case of (7.3) with coefficients aj = 0 for 
j <  - m a n d j > n .  
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From the theory of digital filters given in Chapter 6, X(t) is the output of 
the linear filter with transfer function 

oo 
B(~) -- E aj e-i2j (7.4) 

j - -  ~oo 

to the white noise input. Since the spectrum of the white noise process is 
continuous with spectral density 

f~(2) = 0"2/2n, --n < ~ < n, 

the matching condition is satisfied by virtue of the Parseval relation (Example 
1.2) and condition (7.2)" 

OG 
f I B( /~)12f r  d/~ --- 0 -2 E aJ  2 < o o .  

j--- ~oo 

Thus, (7.3) defines a weakly stationary process with continuous spectrum 
and spectral density 

t7 2 

2n 

oo 

E aje_~M 
j -  - ~  

2 
�9 ( 7 . 5 )  

This process has zero mean and variance 6 2 ~j~-_-oo aj 2. 
The finite moving average model has a useful intuitive interpretation. 

At time t, " n a t u r e "  produces a random shock or innovation ~(t) which is 
unrelated to the shocks at other times. The observed quantity X(t) at time t 
is then an "average"  of the random shocks over times close to t. If m > 0 
and n > 0 in (7.1), then X(t) depends on innovations from the past, which 
corresponds to terms ~ ( t - j )  f o r . / =  1, 2 . . . .  , n, the present ~(t), and the 
future, which is determined by the terms ~ ( t - j )  for j = - 1 ,  - 2 ,  . . . ,  - m .  
With this interpretation it would be more realistic to consider models which 
depend only on the present and past, i.e., for which m = 0. This restriction, 
extended to (7.3), leads to the class of one-sided moving averages 

O(3 
X(t) = ~ a j ~ ( t - j ) ,  

j = O  

which will play an important role in prediction theory. By the change of 
index from j to j -  m in (7.1), we obtain 

m + n  

X(t)  = aj ~(t - j) = ~ aj-m ~(t - j + m). 
j =  - m  j = O  
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Now, rl(t ) -- ~(t + m), t = 0, _ 1 . . . . .  is another white noise process with the 
same mean and variance as ~(t). Thus, the finite moving average (7.1) can 
always be put in the form of a one-sided moving average 

p 

X(t) = ~ bj rl(t - j)  (7.6) 
j = 0  

with p = m + n and bj = aj_,,, j - O ,  . . . ,  p. This is the form most often 
found in the literature and we will adopt this definition in later sections. 
However, the applicability of finite moving average processes as models for 
weakly stationary time series is best illustrated in terms of the two-sided 
representation (7.1). 

The Approximation of Processes with Continuous 
Spectra by Finite Moving Averages 

Adopting E ( X - y ) 2  a s  the measure of (squared) distance between 
random variables as before, we will see that i f  Y(t) is any weakly stationary 
stochastic process with continuous spectrum and if  e is any positive number, 
then there is a two-sided, finite movin9 average process X(t) 9iven by (7.1) 
such that if  m and n are sufficiently large, we will have 

E ( X ( t ) -  Y(t)) 2 < e for  all t. 

That is, every weakly stationary process with continuous spectrum can be 
approximated arbitrarily closely in mean-square by a finite moving average 
process. This fact is a simple consequence of the even more remarkable fact 
that every weakly stationary time series with continuous spectrum can be rep- 
resented as a (possibly) infinite movin9 average. In Section 2.6 we saw that 
every process with a discrete spectrum is a stochastic almost periodic function. 
This provided a concrete representation of such processes as linear functions 
of the elementary sinusoidal functions. The expression of processes with 
continuous spectra as moving averages provides a comparable concrete rep- 
resentation of these time series as linear functions of elementary white noise 
processes. 

Every Weakly Stationary Process with Continuous 
Spectrum Has an Infinite Moving Average 
Representation 

This representation is relatively easy to establish and we carry out the 
derivation here for the case in which the spectral density function fy(2) is 
everywhere strictly greater than zero. We will show how to remove this re- 
striction in the appendix to this chapter. 

Let 0 "2 be a positive number. A linear filter for Y(t) is completely determined 
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by specifying its transfer function, provided the matching condition is satis- 
fied (see Section A4.1). Consider the linear filter determined by the transfer 
function 

a 1 
A(2) = (2rt)l/2 , , . . - . , , / 2  tJytZ)) 

Since fr(2) is strictly positive, there is no difficulty with the division by 
(fr(2)) 1/2. This filter does indeed match Y(t), since 

It 

f IA(A)12f~(~) dA--az. 

Thus, 

It 

~(t) = f ei;~tA(2)Zy(d2) 
-- I t  

is a well-defined, weakly stationary stochastic process. Moreover, the spec- 
tral density function of ~(t) is 

fr = [A(2)IZfr(2) = az/27t, - n <_ 2 < ~. 

That is, {(t) is a white noise process with variance a 2. 
The random spectral measure of this process is 

Z~(d2) = A (2)Z y(d2). 

Thus, since A(2) is never zero, Y(t) can be recovered from ~(t) by inverting 
the filter (Section 4.4)" 

1 (2701/2 
Zr(d2) - ~  Zr = ~ ( f  y(2))' = a /ZZg(d2)" 

Now, ((27z)'/Z/a)(fr(2)) 1/z is a square-integrable periodic function and by 
the theory of Example 1.2 it has a Fourier series expansion 

(2~Z)1/2 oo 
(fy().))l/2 __ Z a J  e - i 2 j "  

t7 j -  - oo 

The aj's are real constants and ~i~_o~ aj 2 < o0. Then, 

g ( o  = f ei~' ~ a je  -i~j Z~(d2) 
- n  j =  - m  

oo it oo 

= ~ a ; f  eiar162 ~ a j ~ ( t - j ) .  
j -  - oo - - i t  j =  - o o  

This is the desired moving average representation of g(t). 

(7.7) 
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This representation is by no means unique, however. Suppose that C(2) 
is a complex-valued function, nonvanishing for - r t  < 2 < rt and with the 
property 

fr(2) = (~r2/2~)lc(2)I z. (7.8) 

Then, taking A(2) = 1/C(2), the construction of a white noise process and the 
representation of Y(t) as a moving average with weights equal to the Fourier 
coefficients of C(2) can be carried out exactly as before. Thus, there are at 
least as many different moving average representations as there are different 
factorizations offr(2) of form (7.8). 

For example, if 0(2) is any valid phase shift function, 

(27z) 1/2 
C(2) = ~ (fy(2))i/2e ~(~) 

satisfies (7.8). Since the class of phase shift functions is quite large, so is the 
class of moving average representations of Y(t). 

An important question for prediction theory is whether one-sided moving 
average representations exist for Y(t). If, in addition to (7.8), C(2) satisfies 
the condition 

oo oo 

C(2) = ~ aje -iaj, ~ aj 2 < ~ ,  (7.9) 
j = O  j = O  

i.e., if C(2) has a one-sided Fourier series expansion, then the moving average 
will depend only on the past and present of the corresponding white noise 
process. Moreover, every one-sided moving average has a spectral density 
function of the form (7.8) with transfer function C(2) satisfying (7.9). Con- 
sequently, the construction of one-sided moving average representations for 
Y(t) is equivalent to finding functions C(2)which satisfy conditions (7.8) 
and (7.9). As we will see, the construction of these functions can be flamed as 
a problem in complex analysis. An elegant solution to this problem exists 
and will be discussed in Section 7.3 in the context of prediction theory. 

We now return to the justification of the use of finite moving averages as 
models for weakly stationary processes. If Y(t) is any weakly stationary 
process with zero mean and continuous spectrum and if 

oo 

Y(t)= ~ a j ~ ( t - j )  
j ~  ~ o 0  

is a moving average representation of this process, then a finite moving 
average 

x(t)  = ~ aj ~(t - j), 
j - -  - -m 
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using the same coefficients and white noise process, can be made arbitrarily 
close to Y(t) in mean-square by proper selection of m and n. To see this, note 
that since the ~(t)'s are uncorrelated, 

E(Y(t) - X(t)) 2 = E aj ~(t - j) + ~ aj ~(t - j) 
j m j > n  

= (j<Z_mCtj2 +jZ>naj2)0-2" 

However, since ~ = - o ~  aj 2 <  ~ ,  it follows that ~ j< -m aj 2 and ~ j > .  aj 2 
tend to zero as m and n approach infinity. Thus, E(Y(t) - X(t)) 2 can be made 
as small as desired for all t by selecting m and n large enough. 

There is an extensive literature on the statistical problem of fitting time 
series data by finite moving average schemes. We will not pursue this topic 
in this book. The interested reader is referred to the excellent treatments by 
Hannan (1970) and Anderson (1971). For practical applications of these 
techniques to problems of the forecasting and control of random processes, 
see Box and Jenkins (1970). 

7.3 AUTOREGRESSIVE PROCESSES 

Let ~(t), t =  0, +1, . . . ,  be a white noise process with zero mean and 
variance 0 -2 and let bo, bl, . . . ,  bq be real constants such that b o -  1 and 
bq ~ O. Then if X(t) is a weakly stationary process which satisfies the 
"difference" equation 

X ( t ) + b l X ( t -  1 ) + . . . + b q X ( t - q ) = ~ ( t ) ,  t - 0 ,  •  , (7.10) 

and for which 

EX(s)~(t)=O for a l l s ~ t - 1 ,  t = 0 ,  +1 . . . .  , (7.11) 

then X(t) is said to be a (finite) autoregressive process (autoregression). 
The number q is called the order of the autoregression. 

Similarly, an infinite (order) autoregression is required to satisfy conditions 
(7.11) and, in addition, equations of the form 

oo 

bk X(t - k) -- ~(t), t - 0, + 1, . . . ,  (7.12) 
k = O  

where bo = 1 and ~ff-o bk 2 < ~ .  

Existence of Finite Autoregressions 

Equation (7.10) is the discrete analog of the stochastic differential equa- 
tions of Section 4.4 and the theory of inverting linear filters can again be 
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applied to determine conditions under which a stationary solution exists. 
Recall that this theory was based on the characteristic equation of the differ- 
ential equation. The corresponding characteristic equation for the difference 
equation is 

~f'(z) = z q + blz q- 1 + . . .  + bq = O. 

It is customary to deal with a variant of this equation which is defined in 
terms of the z-transform of the linear filter determined by bo . . . .  , bq. In Chap- 
ter 6 we defined the z-transform of a linear filter V(t) = ~ j ~ - o o  aj U(t - j ) ,  y joo__ -oo aj 2 < oo to be the function 

oo 

- a j  z j 
j - "  ~oo  

This is viewed as a complex-valued function of the complex variable z. Note 
that the transfer function of the filter is obtained by replacing z by e-ix, i.e.., 
it is the " v a l u e "  of the z-transform on the unit circle, 

A(2) = d ( e - i ~ ) .  

The z-transform of the linear filter (7.10) which transforms X(t) into ~(t) is 

,~(z) = 1 + blZ + " "  + bqz q. 

This is a well-defined function over the entire complex plane. It is related to 
the characteristic polynomial o~'(z) by the expression 

~ ( z )  = zq gf~(1/z). 

Since we have assumed bq 4: 0, z = 0 is not a solution of either of the 
equations ~ ( z ) =  0 or ~ ( z ) =  0. Consequently, it follows that whenever z' 
is a root of ~(z) = 0, then 1/z' is a root of ~ ( z )  = 0, i.e., any zero of ~ ( z )  
inside the unit circle (z' = re i~ for r < 1) corresponds to a zero of ~(z) outside 
the unit circle [1/z' = (1/r)e-i~ and conversely. Since some of the literature 
concerning autoregressive processes deals with the characteristic equation 
while the rest is based on the z-transform, it is worthwhile keeping this relation- 
ship in mind. 

Since ~'(z) is a polynomial, if the transfer function B(2) = ~ ( e  -ix) :/= 0 
for --rt < 2 < rt [i.e., ~(z)  has no zeros on the unit circle], then B(2) is actually 
bounded away from zero. Writing I B(2)I > M > 0, the linear filter with this 
transfer function can be inverted, since 

f [1 /B(2)[2 fe(2)d2=(cr2/Zrc) f  [l/B(2)[ 2 d2 _< 0"2/1~//2. 

Thus, X ( t ) =  S"--, eiZt(1/B(2))Z~(d2) is a weakly stationary solution to (7.10). 
Moreover, since l/B(2) is square integrable, it has a (unique) Fourier series 
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expansion (Example 1.2); 

oo oo 

l /B(2)=  ~ aje  -izJ with ~ aj 2 < ~ .  
j =  - o o  j =  - o o  

It follows that the solution to (7.10) can be put in the form of a moving 
average 

oo 

X ( t )=  ~ a j ~ ( t - j ) .  
j ~ -  --(x) 

Not every such solution satisfies (7.11), however, thus not every polynomial 
~(z) of the above description leads to a finite autoregression. In order 
for the moving average to satisfy this condition it is necessary and sufficient 
that 

O(3 

EX(s)~(t) = ~ aj E~(s - j)~(t) = as-,  a 2 = 0 
j - -  --oo 

for s -  t -  1, t -  2, . . . .  That is, a_l = a-2 -- ' ' "  -- 0. Moreover, by the 
same computation, 

EX(t)~(t) = ao a z. 

However, from (7.10) and (7.11), 

EX(t )~( t )= E{[k~= ( - b k ) X ( t -  k) + ~(t)]~(t)} 

q 

= ~ ( - b k ) E X ( t -  k)~(t) + E ~ 2 ( t )  
k = l  

- -  E ~ 2 ( t )  - 0-2. 

It follows that ao = 1. Thus, we see that the above Fourier series expansion 
must be one-sided and have ao = 1 in order for (7.10) to have a weakly 
stationary solution satisfying (7.11). When this is the case, the solution is 
the one-sided moving average 

oo 

X(t) = ~ aj ~(t - j). 
j = 0  

It is convenient to be able to state the condition or conditions for the 
existence of an autoregression in terms of the z-transform M(z) alone. One 
simple and appealing condition suffices which will be seen to be a special case 
of a more general result to be stated in Section A7.2. However, this condition 
follows easily from elementary properties of analytic functions and power 
series and the argument will be given here. 
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Since aM(z) is a polynomial, if it does not vanish on the unit circle it will 
be nonzero in a region 1/p < I zl < p for some p > 1. Thus 1/aM(z) will be 
analytic and have a series expansion in positive and negative powers of z 
(Laurent expansion) in this region (Titchmarsh, 1939, p. 89). When z = e-ix, 
this series necessarily coincides with the Fourier series expansion of l/B(2). 
Thus, by the above argument, the coefficients of the negative powers of z 
must be zero. However, this corresponds to the case in which 1/aM(z) is 
analytic for [z[ < p. Equivalently, aM(z)is nonzero for this region. 

In summary, we find that in order for (7.10)to have a weakly stationary 
solution satisfyin9 (7.11), i.e., for a finite autoregression to exist, it is sufficient 
that all of  the zeros of  aM(z) lie outside of  the unit circle. The solution will be 
a one-sided movin9 average of  the definin9 white noise process with coefficients 
equal to those of the power series expansion of  l/aM(z). 

The equivalent condition that all of the zeros of aft(z) lie inside the unit 
circle is reminiscent of the condition leading to one-sided (realizable) solutions 
of the linear differential equations with random forcing functions considered 
in Section 4.4. In fact, this is not surprising since the methods of proof used 
in the two cases are quite similar. 

It is known that this condition is also necessary for the existence of a 
stationary autoregression [see Pagano (1973)]. Thus, the difference equation 
(7.10) can be treated by other methods and nonstationary solutions will be 
obtained if some of the roots of aM(z) lie on the unit circle. These solutions 
have received considerable attention in economics and form an interesting 
class of nonstationary processes. These processes are treated extensively by 
Box and Jenkins (1970). We will return to this topic briefly in Section 7.5. 

Infinite Autoregressions 

The conditions under which an infinite autoregression exists are somewhat 
less simple than those for a finite autoregression. If aM(z) is the z-transform of 
the filter defined by (7.12), 

oo 

aM(z) : ~ bk zk, 
k : O  

then it is no longer true, in general, that this function is defined over the 
entire complex plane. In fact, the domain of convergence of the infinite 
series is (or contains) the interior of a circle, often of finite radius, centered 
at z - 0 .  

If, for example, the domain of convergence is ~ = {z:[z[ < p} with 
p > 1 and if aM(z) #- 0 in this set, then l/aM(z) will have a power series expansion 

oo 

1/aM(z) = ~ aj z j 
j = O  
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valid for [z[ < p with ao = 1 / ~ ( 0 ) =  1/b o = 1. In particular, 1/~(z) will be 
bounded on the unit circle which implies that the linear filter with transfer 
function l/B(2), B ( 2 ) =  ~(e-iZ), matches the white noise input. Then the 
weakly stationary, one-sided moving average 

" ( % )  f~  ei~'t( /B(Jt))Zr f e i~'' -i~.j Z~(d~,) X( t )  = 1 = a je  
- - 7 [  - - -  7C 

~3 

= ~ a j ~ ( t - - j )  
j = O  

solves (7.10) as before. Now condition (7.11) is automatically satisfied. 
This is an excessively restrictive situation, however, since in order for the 

domain of convergence of ~(z)  to be .~ it is easy to show that the coefficients 
bk must satisfy inequalities of the form I b~l_< MI k, k = 0, l, 2, . . . ,  for some 
l such that l ip < 1 < 1. This is a substantially more demanding assumption 
than is the condition ~ = o  bk 2 < ~ .  The ak'S will satisfy the same inequali- 
ties (possibly with a different value of M) which implies, in particular, that 
~ff=0 ak 2 < ~ ,  as required by the theory. The best condition known for the 
existence of an infinite autoregression is quite close to this but requires a 
more delicate analysis. For a statement of this condition, the reader is referred 
to Section A7.2. 

Since autoregressive processes, finite or infinite, are expressible as linear 
transformations of white noise processes, they have continuous spectra with 
spectral densities of the form 

0 -2 1 0 .2 1 

fx(2)  = ~ ]B(2)] - - - - - ~  = 2---~ I~ff=o bke-iXk] 2" (7.13) 

Note that the z-transform d ( z )  of the one-sided moving average solution is 
always related to the z-transform B(z) of the autoregression by the equation 

~ ( z )  = 1/~(z).  (7.14) 

Thus, one means of obtaining the coefficients of the moving average 
solution is to explicitly expand I /~ (z )  in a power series for i zl < 1. This can 
occasionally be done rather simply. An example will be given shortly. 

Autoregressions with Nonzero Means 

It is sometimes of interest to consider autoregressive processes which 
satisfy (7.10) or (7.12) and (7.11) but for which the white noise process ~(t) 
has a nonzero mean, m. The above results remain valid up to the point where 
X(t) is expressed as a one-sided moving average. Rewrite ~(t) in the form 

~(t) = m + q(t) ,  
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where q(t) is a white noise process with zero mean. Then, X(t) can be written 
in the form 

oo oo 

X(t) = m Z ak + ~ akrl(t-  k) 
k = O  k = O  

provided both terms on the right make sense. The second term is well defined 
by the previous theory. However, the convergence of ~ = o  ak is not guaran- 
teed by the condition ~ = 0  ak 2 < o0. If the stronger condition 

oo 

Y lakl < oo 
k = 0  

holds, then both terms are well defined and X(t) becomes a standard auto- 
regression with a constant trend m ~ = o  ak. This condition is, in fact, satisfied 
for all finite autoregressions. It is also satisfied for the infinite autoregressions 
considered in the special case above. An example in which these considerations 
are important will be given below. 

Finite-order autoregressions are quite useful as models for observed time 
series and, as in the case of moving averages, a great deal of effort has gone 
into devising schemes for fitting them to time series data. The most popular 
method is based on the Yule-Walker equations, which comprise a set of linear 
equations relating the coefficients of the autoregression to its autocovariances. 
By estimating the autocovariances using observations from the given time 
series, the coefficients of the autoregression which best fits this series can be 
obtained by solving the equations with the estimated autocovariances in 
place of the real ones. An example of this procedure will be given in con- 
junction with the so-called autoregressive method of spectral estimation in 
Chapter 9. We now derive these equations. 

The Yule-Walker Equations 

From expression (7.10) and the fact that E~(t)X(t - 1) = Ofor I = 1 , 2 , . . . ,  q, 
we obtain 

E X ( t -  l) bk X ( t -  k) = 2 bk E X ( t -  l ) X ( t -  k )= 0 
k = 0  

for l = 1, 2 , . . . ,  q. However, by stationarity of the autocovariance C(z), 

E X ( t -  l ) X ( t -  k) = C ( l -  k). 

Thus, using the fact that bo - 1, these equations become 
q 

bk C ( l -  k) = -C(l).  l =  1, 2 , . . . ,  q. (7.15) 
k = l  

These are the Yule-Walker equations. 
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One additional equation is useful. Earlier we showed that 

EX(t)~(t)  : i f 2 .  

However, 

Thus, 
I q E X ( t ) ~ ( t ) - -  EX( t )  b k X ( t  - k) -- ~ b k C(k).  

k = 0  

q 

a 2 : ~ bk C(k). (7.16) 
k = O  

This equation makes it possible to estimate the variance of the white noise 
process from the estimates of the autoregressive coefficients and autoco- 
variances. A method for fitting the degree of the autoregression to the data 
based on this equation is given in the above mentioned discussion in Chapter 9. 

Physical Interpretation of the Autoregressive 
Model 

With the reassignment of parameters, Ck = - - b k ,  for k = l, 2, . . . ,  q, 
expression (7.10) can be put in the form 

q 

X(t) : ~ Ck X(  t - k) + ~(t). (7.17) 
k = l  

Thus, the value of the autoregression at any time t consists of a linear 
function of the values of the process for the past q observation times plus a 
random shock or innovation ~(t), which is unrelated to the past values of the 
process [condition (7.11)]. This is, perhaps, the simplest possible model for a 
stochastic process with a memory of fixed length. If X ( t -  1), . . . ,  X ( t -  q) 
were fixed, known functions, then (7.17) would be what is known as a regres- 
sion model in statistics. However, the process is regressed on its own past 
values; hence the name, autoregression. 

Autoregressive models and simple variants of them appeared in some of the 
earliest work on the construction of stochastic models for economic systems. 
The economics student will find the paper by Wold (1959) a most interesting 
and useful survey of this area. An example of a simple economics model, 
which is taken from Wold's paper, is the following. 

Example 7.1 A Simple Model  o f  Supply and Demand 
The (logarithmic) available supply s(t), demand d(t), and price p ( t ) o f  a 

given commodity for the time period t are assumed to satisfy the following 
relations: 

d(t) = o(1 - fllp(t - 1) + u(t), 

s(t) = ~2 + fl2P(t) + w(t). 
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Here, u(t) and w(t) are unpredictable random disturbances "independent" 
of the past. These equations reflect the assumptions that demand is adversely 
affected by the price over the previous time period and that the remaining 
stock will depend directly on the price charged for the commodity during the 
same time period. It is also assumed that supply and demand are in "instan- 
taneous equilibrium" 

d(t) = s(t ) = q(t), 

where the common value q(t) can be thought of as the quantity of the com- 
modity on hand during the time period t. 

Now, one of the principal objectives of this type of model is to forecast 
future values of p(t) and q(t) from values already observed. To do this, the 
above equations are reduced algebraically to a form in which the unknown 
quantities are written explicitly in terms of the known quantities (the prices 
up to time t -  1, say) and the random quantities u(t) and w(t). We obtain, 
after a little algebra, 

t~l - -  (~2 f l l  l l ( t )  - w ( t )  
p (  t)  = - -  - -  p (  t - 1 ) +  , 

f12 f12 f12 (7.18) 

q(t) = o~ 1 - fl, p(t  - 1) + u(t). 

Now, if cq = ~2 and if we assume that u(t) and w(t) are zero-mean white noise 
processes, uncorrelated with each other and with the past of the price time 
series, then p(t) has the form of a first-order autoregression 

p(t)  = bp(t - 1) + ~(t), 

where b = - f l x / f l 2 ,  ~ ( t ) =  ( u ( t ) - w ( l ) ) / f l  2 . Equation ~ ( z ) =  0 is, in this case, 

1 - b z  = 0 .  

Consequently, p(t)  will be a well-defined weakly stationary process if the root 
z = 1/b lies outside of the unit circle. That is, we must have [b I < 1, thus 
I fll[ < [f12[. In fact, the z-transform of the one-sided moving average is 
easily obtained from (7.14) in this case by means of the well-known formula 
for the sum of a geometric series; 

It follows that 

oo 

d ( z )  = 1/(1 - bz) = ~ bkz k. 
k = O  

oo 

p(t)  = ~ bk~(t - k). (7.19) 
k = O  

It is of interest to note that if ~1 4: t~ 2 , then the first equation in (7.18) can 
be put in the form 

p(t)  = b p ( t -  1) + (~(t) + m), 
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where m = (~1 - 0 ~ 2 ) / f l 2  may be viewed as a constant trend or nonzero mean 
in the random innovation. Now, repeating the steps leading to (7.19), we 
obtain 

oo 
p( t )=  m ~ b k+  Z bk~( t - k ) "  

k = O  k = O  

Since ~2=o bk is finite, this is a well-defined weakly stationary process with 
mean 

oo 

Ep(t) = m ~ b ~. 
k = O  

That is, the price time series now has a dc trend. It follows that this series 
has a mixed spectrum; a discrete term with power (m ~ = o  bk) 2 at  2 -  0 
and a continuous term with spectral density function 

0 "2 1 
fp(2) = 2---n ]1 - be-iA 12 

61 1 
- - 2 n l  + b  2 - 2 b c o s 2 '  - n < 2 _ < n ,  

where a 2 =  (a, 2 + awZ)/fl22 and a z, aw2 are the variances of u( t )and w(t), 
respectively. 

To obtain price and quantity predictions at time t + 1 under the assump- 
tion that prices are known up to and including time t, the following intuitive 
reasoning can be used. First, advance the time index by one in (7.18), 

u( t+  1 ) - w ( t +  1) p(t + 1) = ~ - ~2 _ fl_s p(t) + 

q(t + 1) = o q  - fliP(t) + u(t + 1). 

Now the values of u(t + 1) and w(t + 1) are completely unpredictable from 
values of p(s), u(s), and w(s) for s _< t, since these random variables are com- 
pletely uncorrelated with the present and past. Consequently, the best one can 
do is to estimate these quantities by their mean values Eu(t + 1) = Ew(t + 1) 
= O. Thus, the forecasts or predictions p(t + 1) and O(t + 1)ofp( t  + 1)and 
q(t + 1) are taken to be 

p(t + 1) : ~x - -  ~2  //x p(t), Ih Ih 

~(t + 1) -- ~l -- fliP(t) �9 

These are extremely simple and convenient predictors. 
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The same reasoning for the general qth order autoregression in the form 
given by expression (7.17) would lead to the predictor 

q 

) ( ( t +  1 ) = ~  c kX( t  + 1 - k ) .  
k = l  

Again, this is an extremely simple predictor and it is reasonable to ask 
whether it is not possible to do better by taking more complicated functions 
of the past observations. In fact, without some additional mathematical 
structure this question cannot be answered, since no means for evaluating 
predictors has been given. We now turn to the job of introducing a simple 
and elegant geometric structure which will make it possible to deal with this 
question. 

7.4 THE LINEAR PREDICTION PROBLEM 

Let X(t), t = 0, -+ 1, . . . ,  be a weakly stationary process with EX(t )  = O. 
The random variables of the process are elements of the Hilbert space of 
real-valued random variables X for which E X  = 0 and E X  z < ~ .  (This 
is the real L2(P) space discussed in Section 1.4.) The inner product for this 
space is (X,  Y ) = E X Y .  Thus X_LY i f E X Y = 0  and E ( X -  y)2 is the 
squared distance between the elements X and Y. 

The linear subspace j / x  9enerated by the process is the collection of all 
finite linear combinations of elements of the process and all limits of Cauchy 
sequences of these finite linear combinations (Section 1.3). We will call any 
random variable defined in this manner a linear function of the process. Thus 
~#x is the class of all such linear functions. 

We will also be interested in the linear subspace j / / x  generated by the 
elements X(s) for s < t. Thus ~l ,  x represents the (linear) past of the process 
up to time t in the sense that j/lt  x is the class of linear functions of the 
observations X(s), for s < t. 

This geometric setting provides a natural framework for stating (and 
solving) the problem of predicting future values of the process from values 
obtained in the past. Suppose a realization of the process for times s < t is 
available and the value of X(t  + v) for some v > 1 is to be predicted from this 
information. Since we will never know what particular realization is being 
observed, it is reasonable to select a function of the past observations, 

f (X ( t ) ,  X( t  - 1), ...), which is good " o n  the average." The distance function 
of the Hilbert space can be utilized for this purpose. That is, f can be selected 
to minimize the squared distance 

E ( X ( t  + v) - f (X(t),  X( t  - 1) . . . .  ))2. 
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With this measure of goodness and with the restriction that only linear func- 
tions are to be considered, the linear prediction problem can be stated as 
follows: Find the element ~v(t) in J / t  x which minimizes the squared distance 
E(X( t  + v) - y)2 amon9 all elements Y of  tilt x. The solution (if one exists), is 
called the best v-step predictor of  the process. 

The advantage of the Hilbert space setting now becomes apparent. The 
theory summarized in Section 1.3 guarantees the existence of a unique solution 
of the prediction problem, namely, the orthogonal projection of X(t + v) on 
the subspace ~r x. However, in order to be a useful solution it is necessary to 
be able to obtain an explicit expression for the coefficients of the predictor 
in terms of the "parameters"  of the process. The reason for restricting 
attention to linear functions is that the representation for the best linear 
predictor then depends only on a knowledge of the covariances or, equiva- 
lently, of the spectrum. When nonlinear functions are allowed, the problem 
becomes much more difficult. A good elementary discussion of nonlinear 
prediction is given by Breiman (1969). See Hannan (1970) for a more 
advanced treatment. 

We can extend the statement of the linear prediction problem to include 
the following requirements: Assumin9 that the spectrum (or autocovariance 
function) of  the process is known, 9ire an explicit expression for the linear pre- 
dictor Xv(t) and evaluate the mean-square prediction error E(X(t  + v) -Xv( t ) )  2. 
The solution to this problem will be sketched for the case when the predic- 
tion error is greater than zero--which is the most important case in any 
event. We will not always be able to fulfill the first requirement in a completely 
satisfactory manner from a practical standpoint. A convenient explicit repre- 
sentation of the predictor need not exist. However, such a representation does 
exist for autoregressive processes and we look at the solution of the prediction 
problem for them first. 

The Best Linear Predictor for Autoregressive 
Processes 

Write the general autoregression (7.12) (with index advanced one time 
unit) in the form 

O(3 

X(t + 1)=  ~ c kX(t  + 1 - k) + ~(t + 1), 
k = l  

(7.20) 

by setting c~ = --bk, k = 1, 2 . . . . .  It is assumed that the Ck'S are known 
which is seemingly a stronger condition than the knowledge of the spectral 
density function. However, as we will see later, the coefficients are actually 
uniquely determined by the spectral density function. 
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The criterion for determining orthogonal projections given in Section 1.3 
allows us to establish easily that the best (one-step) linear predictor of 
X(t  + 1)is 

oo 

Xa(t) = ~ CkX(t + 1 -- k). (7.21) 
k - ' - I  

Since this is clearly an element of de't x, in order to verify that it is the projec- 
tion of X(t  + 1) on ~//gx it is sufficient to show that X(t  + 1 ) -  )(~(t) is 
orthogonal to all of the generators X(s), s < t. Now, 

X(t  + 1 ) -  ) ~ l ( t ) =  ~(t + 1) 

by (7.20) and since ~(t + 1) _1_ X(s) for all s < t by (7.11) we are finished! 
The autoregressive form (7.20) clearly contains the most useful and explicit 

representation of the one-step predictor as a function of the past observations 
and the parameters of the time series. Thus, a weakly stationary process 
which has an autoregressive representation is in the most desirable form 
possible from the viewpoint of one-step prediction. The one-step prediction 
error is also immediately available, since 

E(X( t  + l) - ) ( l ( t ) )  2 - E~2(t + l) = o2, (7.22) 

the innovation variance. 
Note that this argument can also be used to justify the form of the one- 

step predictor obtained heuristically in Example 7.1 even when the random 
innovations have nonzero means. 

The criterion for determining projections is extremely useful and we will 
further demonstrate its utility by establishing that the following construction 
leads to the best v-step predictor for v > 1 in the autoregressive case. 

First, we obtain the best two-step predictor )(2(t). Advance the time index 
in (7.20) to t + 2 and write the expression as 

oo 

X(t  + Z) = el X(t  + l) + ~ CkX(t + Z - k) + r + 2). 
k = 2  

The heuristic reasoning of Example 7.1 is extended as follows" Replace 
~(t + 2) by its expectation as before and then substitute for the unobservable 
random variable X(t  + 1) its best prediction Xl(t) based on the observations 
X(s), s <_ t, 

OG 

Xz(t)  = cl~;l(t) + Z Ck X(t  + 2 - k). 
k = 2  

If this is the best predictor, then necessarily (X(t  + 2) - ~,~2(t)) _L X(s) f o r  all 
s < t. However, 

X(t  + 2 ) -  )~2(t)= cl(X(t  + 1 ) -  ) ( l ( t ) )+ ~(t + 2) 

-- cl~(t + 1) -I- ~(t -I- 2). 
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Now, by (7.11), ~(t + 1) • X(s), s < t and ~(t + 2) _1_ X(s), s _< t + 1. Thus, 
[cl~(t + 1) + ~(t + 2)] 3_ X(s), s < t. It follows that Xz(t) is indeed the 
projection of X(t  + 2) on all, x. Note that the prediction error for predicting 
two steps ahead is 

E(X( t  + 2) - )~2(t)) 2 = E(c,~(t + l) + ~(t + 2)) 2 

- -  ( C l  2 -~- l)a 2. 

This reasoning can be further extended to obtain the v-step predictor for 
any v > 1. The index in (7.20) is advanced to t + v and ~(t + v) is replaced by 
zero. Any random variable X(t  + k) which is not one of the observables 
X(s), s <_ t, is replaced by its best linear predictor based on the observable 
random variables. Thus, in general, 

v - - 1  oo 

.~v(t)= ~ c k .~_k( t )  + ~ c k x ( t  + v - -  k). 
k = l  k = v  

(7.23) 

This is a useful expression when predictors for several different steps are 
desired. The v-step prediction error E(X( t  + v ) -  )(v(t)) 2 can be obtained by 
expressing (X(t  + V) - Xv(t)) 2 in terms of the ~(t)'s and taking expectations 
as illustrated above for v = 2. 

The Best Predictor as the Output of  a Linear 
Filter 

By using (7.23) inductively in v, it is possible to express the predictors 
A'~(t) as explicit linear combinations of the random variables X(s), s < t; 

oo 

Xv(t) = ~ d~v)X(t - k). (7.24) 
k = 0  

Consequently, for  f i xed  v, the predictor )~(t) ,  viewed as a time series in t, is 
the output o f  a linear filter with input X(t)  and transfer function 

O(3 

DvO.) : Z d(k ~,e- ,Zk 
k = O  

This function necessarily matches the input, since the power in the series 
.~( t )  is the norm square of the projection of X(t  + v) on d/g, x and, as was 
indicated in Section 1.3, projections satisfy the inequality I I~(xl~) l l  < Ilxll. 

That the projection is time-invariant is not peculiar to autoregressive 
processes but is a consequence of two features of the general structure under 
consideration. First, X(t + v) is projected on a linear subspace which varies 
with t so as to remain exactly v steps behind this element. Second, X(t),  
t - 0 ,  + l  . . . .  , is a weakly stationary process and, because of this, the 
prediction error E(X( t  + v) - X,v(t)) 2 does not depend on t. Consequently, if 
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the linear function f ( X ( t ) ,  X ( t -  1) . . . .  ) produces the minimum prediction 
error at time t, the minimum error at time t + r will be achieved by 
f ( X ( t  + z), X ( t  + z - 1) , . . . ) .  Thus, the best predictor will always be expres- 
sible as the output of a linear filter. 

This suggests that an alternative method for solving the prediction prob- 
lem would be to determine the transfer function Dr(2) of the best predictor, 
since a linear filter is completely and uniquely determined by its transfer 
function. This solution would be valid even in situations where the best 
predictor does not have an explicit representation of the form (7.24). It is 
actually in this form that the general prediction problem must be solved, since 
representation (7.24) is not universally valid, but, in fact, depends upon the 
possibility of representing the stochastic process under consideration as an 
autoregression. Unfortunately, this possibility cannot always be realized as 
we will see later. 

We will now show that the transfer function can be determined whenever 
the process has a one-sided moving average representation. As was seen in 
Section 7.3, every autoregression has such a representation. Consequently, we 
will first illustrate the construction of the transfer function in the autoregres- 
sive context. 

The Transfer Function of the Best Predictor 
in the Autoregressive Case 

By the one-sided moving average representation for an autoregression, 
every linear function of the random variables X(s)  for s < t can be expressed 
as a linear function of the random variables ~(s) for s < t. That is, dlr  x c d l ,  ~, 
where J / t  r is the linear subspace generated by ~(s), s < t. Conversely, because 
of the defining expressions (7.10) or (7.12), every linear function of the random 
variables ~(s) can be written as a linear function of X(s),  s < t. It follows 
that 

J l  t x = J/l t ~ 

for all t. As a consequence of this, )fv(t) can be computed as the projection 
of X ( t  + v) on J///,r 

Since the generators ~(s) of J l t  ~ are orthogonal, this projection is quite 
easy to construct. In fact, if 

O0 

X ( t  + v) = ~ a k~(t + v - k) 
k = O  

oo 

S'--  - - V  
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is the one-sided moving average representation derived in Section 7.3, then 
by (1.14), 

oo 

X'~(t) -- ~ a~+s ~ ( t -  s). 
s = O  

This expresses the projection as the output of a linear filter with input ~(t) 
and transfer function 

oo oo 

A~(2) = ~ a~+se-iZs= e iz~ ~_, ak e-i'~k. (7.25) 
s = 0  k = v  

It follows that the random spectral measures of the time series ~(t) and 
~v(t) are related by the expression 

Z~(d2) = Av(2)Zr 

From the one-sided moving average representation of X(t) we have 

Zx(d2) = A(2)Z~(d2), (7.26) 

where 

oo 

A(2) = ~ ak e-i~tk. (7.27) 
k = O  

Moreover, by the definition of Dr(2), 

Zs,~(d,~) = D~(~)Z x(d~). 

Thus, eliminating Zr in the first two expressions and equating the result 
with the third, we obtain 

D~(2) = A~(2)/A(2). (7.28) 

This expresses the desired transfer function uniquely in terms of the coefficients 
of the one-sided moving average representation of X(t). 

It is now quite easy to obtain an independent check that the filter with 
transfer function D~(2) matches the input X(t). By virtue of expression (7.5) 
for the spectral distribution of a moving average and by the Parseval relation 
of Example 1.2, 

o2 
I D~()')lEFx(d2) = A(2) ~ ]A(2) 12 d2 

0 . 2  7t oo 

= 2-~ f IA~(2)I ~ d2 = ~ E a, ~. 
- T t  k = v  

This quantity is finite, since ~ - - o  ak 2 < 00. 
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The prediction error E(X(t + v) - )(v(t)) 2 can also be computed in terms 
of the moving average coefficients" Let Xv(t) denote the time series obtained 
by shifting the time index of X(t) ahead v steps, 

Xv(t ) -- X(t-t- v). 
This defines Xv(t) as a linear transformation of X(t) with transfer function 
e ixv. (Here we have used the method for computing transfer functions given 
in Section 6.2.) Thus, the error time series X ~ ( t ) -  S;~(t) has the spectral 
representation 

.~(t) = f e';"'+')Zx(d2.) - f  ei~'tOv(2)Zx(d)Q X~(t) 

= f~,ei~t(e i~v -Dv(2))Zx(d2). 

That is, by (7.25)-(7.28), 

Zx _~(d~) = (e '~ - Dv(Z))Zx(d~) 

= e"~v(A(2)-Av(2)e-''~v) Zx(d2) 
A(~) 

v-1 ) 
_ - k e  Z ~ ( d 2 ) .  

Thus, by expression (2.31) and the Parseval relation, 

E(x( t  + v) - 2,( t))  ~ = f Fx~_ ~(dX) 

n v -1  12 = I Z ake-i~k (az/2rc) d2 
" - n  k=0 

v - I  
--- 0 - 2 E  ak 2. 

k=0 

It follows that the transfer function D~(2) and the prediction error can be 
obtained as soon as A(2) is available. Note that if we set v - 1 in this expres- 
sion for the prediction error, the result must coincide with (7.22). It follows 
that a o  2 - -  1. Of the two possibilities, we will take ao = 1 hereafter. 

The Transfer Function of the Best Predictor 
in the General Case 

Using the same technique, the transfer function of the best predictor can 
be obtained for any weakly stationary process X(t) possessing a one-sided 
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moving average representation in terms of a white noise process ~(t) for which 

j e t  r = / l / X ,  t = O, +__ 1, . . . .  (7.29) 

We will retain the name, innovation process, for a white noise process with 
this property. The only use made of the autoregressive representation was to 
establish (7.29). A key theorem due to Wold (1938) shows that, in fact, all 
weakly stationary processes which are " interest ing" from the viewpoint of 
the prediction problem can, after suitable preprocessing, be represented as 
one-sided moving averages satisfying (7.29). We consider this next. 

The Wold Decomposition Theorem 

The Wold decomposition theorem can be stated as follows. 

Theorem Let X(t), t = 0, +_ 1, . . . ,  be a zero-mean, weakly stationary 
stochastic process. Then X(t)  can be expressed as the sum of  two zero-mean, 
weakly stationary processes, 

X(t) = U(t) + V(t), (7.30) 
such that: 

(i) the process U(t) is uncorrelated with the process V(t); 
(ii) U(t) has a one-sided moving average representation 

oo 

U(t) = ~ ak ~(t -- k) 
k = O  

with ao = 1 and ~~ oak z < oO and the subspace generated by the unique 
white noise process ~(t) satisfies 

J ~ t  r = J ~ t  U 

for all t/ 
(iii) the V(t) process is completely determined by linear functions of  its 

past values in the sense that ~r v = ,/ht~ v for  every pair o f  integers t and s. 

In order to retain the continuity of the discussion, the proof  of  this 
theorem will be given in the Appendix at the end of the chapter. To see that 
(iii) implies what it says, note that, in particular, ~r v - ~g//t r for all t and v. 
Thus V(t + v), which is an element of~ 'v+v,  is also in .g t  v. Consequently, the 
projection of V(t + v) on J/c'f will be V(t + v) itself. It follows that once the 
process V(s) has been observed for times s _< t for any value of t, the remaining 
values V(t + 1), V(t + 2), . . .  can be obtained without error as linear functions 
of the observed random variables. Such a process is called deterministic. 

The moving average process U(t) is said to be nondeterministic. Its 
variance is 0.2 2~o=0 ak 2 by Parseval's relation, where 0 .2 is the variance of the 
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innovation process ~(t). The only way that U(t) can have zero variance, and, 
thus, equal 0 for all t, is for O "2 - -  0. In this case, X(t) = V(t) and the original 
process is deterministic. 

When a 2 > 0, the X(t) process is said to be regular. In this case, either 
the nondeterministic component U(t) is present alone or both components 
are present. Suppose both are present. Then, as we show in Section A7.3, the 
condition (7.30) and property (i) imply that 

.~v(t) = Uv(t ) + ~'v(t), 

where Xv(t)is the projection of X(t + v) on j/l, x, 0,.(t) is the projection of 
U(t + v) on ~#t v, and ~'v(t) is the projection of V(t + v) on J/ I f  [thus is 
equal to V(t + v)]. That is, the best v-step predictor of each component can 
be obtained separately and the results added to obtain the optimal v-step 
predictor for the original process. This result has practical value only if it is 
possible to separate the two components of the X(t) process so that they can 
be dealt with individually. This can be done in theory--and to a great extent 
in practice--when the process is regular because of the following consideration. 

The spectral distribution of X(t) can be evaluated in terms of the spectral 
distributions of U(t) and V(t). Because of (7.30) and property (i), 

Fx(d).) = Fu(d2) + Fv(d2). (7.31) 

However, the spectrum of U(t) is continuous because U(t) is a moving 
average process. In fact, 

0.2 oo 12 
= 2 ak e -  i,~k d2 r~(d2) ~ ~--o 

by the theory of Section 7.2. Now, it can be shown [see, e.g., Doob (1953, 
p. 569) or Hannan (1970, p. 140)] that for a regular process (7.31) is actually 
the Lebesgue decomposition of F into continuous and discrete components, 
respectively. Thus, in all cases of practical interest, the deterministic component 
is simply a stochastic almost periodic function. This term can be estimated 
without error by the technique outlined in Section 2.10 if the X(t) process is 
available from the infinite past. More realistically, it can be estimated with 
increasing reliability as more and more data is accumulated from the finite past 
as time progresses. In either case, the deterministic term can be (essentially) 
removed from X(t) and the more interesting problem of predicting the U(t) 
process can then be dealt with. 

We will obtain an expression for the innovation variance of X(t) shortly 
and it will be apparent that regular processes are by far the more important 
and commonly occurring from the viewpoint of modeling physical time 
series. For nonregular processes, linear prediction can, in theory, be carried 
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out without error. Nature is seldom so accommodating as to permit this 
to occur. 

Hereafter, we assume that X(t) is regular and that the V(t) term is missing 
in (7.30). Then X ( t ) =  U(t) has a one-sided moving average representation 
which satisfies condition (7.29). It follows that if we can determine the coef- 
ficients of A(2) in the moving average representation of X(t) and if the inno- 
vation variance a 2 can be determined, then the construction of the transfer 
function of the v-step predictor (7.28) can be carried out exactly as before. 
Also, the v-step prediction error can be computed. Thus, the solution of the 
general linear prediction problem hinges on the purely mathematical  problem 
of calculating the coefficients of the moving average representation and of 
determining a 2 from the spectrum of X(t). We discuss this next. 

Determination of the Moving Average Transfer 
Function A(A) 

Depending on the application, A(2) can be determined either by direct 
construction or by means of the following consideration: From the above 
discussion, it follows that X(t) has a continuous spectrum with spectral 
density function 

fx(2) = (a2/2n)]A(2)] 2, (7.32) 

where A(2) = ~ = o  aa e -iza, ao = 1, and ~2=o ak 2 < ~ .  In some problems it 
is possible to obtain the class of all functions satisfying these conditions. This 
will be the case, for example, for processes with rational spectral densities 
to be discussed in the next section. Then it suffices to be able to select A(2) 
from among the functions in this class. This requires an additional charac- 
terization of A(2) which, as we will see, depends on the z-transform of the 
sequence {a~}. We first characterize this class of functions. 

Let {bk : k > 0} be a sequence of numbers and consider its z-transform 

~(z) = ~ bk z k. (7.33) 
k = O  

Then 

B(2) = :~(e-'z) 

will satisfy the above conditions if 

(a) ~(z) is analytic in the region ~ = {z: ]z] < 1} with power series 
given by expression (7.33). Moreover, it will be necessary that ~(z) can be 
extended to the boundary of ~ in such a way that (7.33) remains valid there 
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(in some sense). [This will yield the one-sided Fourier expansion of B(2). One 
condition under which this holds is given in Section A7.2.] 

(b) Z~'=o bk z < oo, 
(c) fx(2) = (a2/2r0l~(e -'a) 12. 

The condition bo = 1 is equivalent to the requirement 

(d) ~ ( 0 ) =  1. 

We will gain some idea of the additional properties to be satisfied by the 
function ag(z) which determines A(2) by looking at a construction which 
will be shown to produce ag(z) in an important special case. The derivation 
is due to Whittle (1963, p. 26). 

Example 7.2 The Construction o f  A(2) in a Special  Case 
Suppose that ~-(z) is a complex-valued function such that 

f x(2) = ~ ' ( e  - 'a)  

and assume that log if(z) is analytic in a region ~ = {z: p < I z[ < I/p} for 
some p < 1. Then, log ~(z )  has a Laurent expansion 

oo 

log ~ ' ( z )  = ~ ck z k, 
k -  - o o  

valid in .~, where by the change of variables, z = e-ix, 

1 fl k-1 = z-  log ~(z )  dz 
Ck ~ zl = 1 

1 1,o 7t 

-- - -  j e uk log fx(2) d2. (7.34) 
2rt _,~ 

Since the Ck'S are the Fourier coefficients of an even, real-valued function 
they are also real-valued and even. Thus, 

~-(z) = exp ~ Ck Z k = e~~ - 1), 
k =  - o o  

where 

d (z )  = exp Ck Z k �9 (7.35) 
k 1 

Now, d ( z )  is analytic in the region N' = {z: I zl < 1/p} and d (0 )  = 1. Thus, 
d ( z )  has a power series expansion 

oo 

a i ( z )  = y" a7, z k, (7.36) 
k = 0  
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with ao = 1. Since this power series converges in ~ ' ,  the coefficients satisfy 
inequalities of the form l akl < M l  k for some M > 0  and p < l < l .  In 
particular, 

Moreover, 

oo 

Z ak < C~3. 
k = O  

fx(2) = ~ ( e - i a )  = eCOd(e - iz)z~,(eiZ ) 

= eC~ (2) 12. (7.37) 

Thus, zC(z) will satisfy properties (a)-(d) if it can be shown that e ~~ = aE/2rt, 
where a 2 is the variance of the innovation process guaranteed to exist by the 
Wold decomposition theorem. To show this, we establish that an auto- 
regressive representation for X(t)  exists in this special case. 

Note that d ( z )  is nonzero for z s ~ '  because of (7.35). Thus, 1/~r is 
analytic in this region and has a power series expansion, 

oo 

1 /d ( z )  = ~ u~ ? ,  Uo = 1. 
k = 0  

In particular, 

and 

oo 

l/A(2) = ~ Uk e-iak (7.38) 
k = 0  

oo 

- " U k  2 ~ 0 0 .  

k = 0  

Now, the construction given in Section 7.2 can be carried out to obtain the 
white noise process 

1 
~(t)-- J -~ A-~  Zx(d2). (7.39) eiAt 

The corresponding moving average representation is one-sided because of 
(7.36). Thus, we obtain 

oo 

X(t)  = ~ ak ~(t -- k). 
k = 0  

Note that this implies 

since 

X(s)  _1_ ~(t) for s < t - 1, (7.40) 

oo 

(X(s ) ,  ~(t)) = ~ a k ( ~ ( S -  k), ~(t)) - O. 
k = 0  
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Substituting (7.38) into (7.39) we obtain 

L f ei~'(t-k)Zx(d~') ~(t) -" u k 
- -  ~ 7 [  

o O  

= ~ Uk X ( t  -- k). (7.41) 
k=O 

This, along with condition (7.40), yields the autoregressive representation of 
x(t). 

Now, by the argument given in Section 7.3, it follows that 

o0 

Yt,(t) = ~ ( -  uk)X( t  + 1 -- k) (7.42) 
k = l  

is the projection of X ( t  + 1) on J l t  x. Thus, since the white noise process 
satisfies the equation 

~(t + 1)---- X(t  + 1 ) -  X,(t), 

it is precisely the innovation process of the time series X( t )  guaranteed by the 
Wold decomposition theorem. 

Identifying the expression for the spectral density of a moving average 
process with (7.37) we obtain 

e r176 = crZ/2rc. (7.43) 

Thus, the function JzC'(z) given by (7.35) satisfies all of the conditions (a)-(d) 
and, moreover, it determines the coefficients of the one-sided moving average 
representation of X( t )  as a function of its innovation process, i.e., A(2)= 
d(e- iZ) .  

The Construction of A(A) in the General Case 

The construction of A(2) in the general prediction problem is actually very 
similar to the one given in this example and some of the details will be 
sketched without proof. If we substitute the value of Co from (7.34) into (7.43), 
the following expression for the innovation variance is obtained: 

cr z = 2zt exp ~ log fx(2) d2 . (7.44) 

As was shown in (7.22) and again above, the innovation variance is the same 
as the one-step prediction error in the autoregressive case. This is true in 
general and (7.44) is a key expression for this error due to Szeg6 (1939) and 
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Kolmogorov [see Kolmogorov (1941b)]. By means of this expression, it is 
seen that a sufficient condition f o r  X ( t )  to be regular is 

log f x(2) d2 > - c~. (7.45) 

This is the condition upon which the solution to the general prediction 
problem rests. It is weaker than the analyticity of log ~(z) ,  assumed in the 
example, but with proper interpretation and substantially more mathematical 
labor, many of the details of the example can be preserved. For instance, 
expressions (7.35) and (7.36), properly interpreted, lead to the correct one- 
sided moving average solution to the prediction problem. However, (7.45) 
allows for the possibility that fx(2) has zeros in ( - r t ,  rt). Thus ~-(z) can have 
zeros on the unit circle in which case log ~(z)  cannot be analytic in a region 
containing the unit circle as was assumed in the example. Then, ~r will be 
analytic and nonzero for the restricted domain ]z] < 1 but the boundary 
value A(2)= d ( e  -i~) must be defined through a limiting process (see 
Section A7.2). This would rule out a one-sided expansion of l/A(2) such as 
(7.38) and thus, an autoregressive representation of X(t) will not always exist. 
The following example illustrates this situation. 

Example 7.3 A Nondeterminis t ic  Process  Which Does  N o t  H a v e  an Auto-  
reyressive Representat ion 

Let ~(t) be a white noise process with variance 0 -2 and define the process 
X ( t )  by 

X ( t )  = ~(t) - ~(t - 1). (7.46) 

This process is already in the form of a one-sided moving average with 
A(2) = 1 - e  -i~ so it is not surprising that (7.45) is satisfied. The (unique) 
autoregressive representation would be of the form 

oo 

~(t) -- ~ u k X ( t  - k).  
k = O  

However, by substituting this into expression (7.46) it is easily seen that the 
only solution has coefficients 

Uk = 1, k = 0 ,  1,2, . . . .  

This does not satisfy the necessary condition ~ff=o Uk 2 < o0 for the existence 
of a valid (weakly stationary) autoregression. 

However, the best one-step predictor )(l(t) is a well-defined element of 
j//t x as the above theory indicates. Hannan (1970, p. 131) shows that the 
following limit yields the correct element" 

N 

)(l(t) = lim ~ (1 - ( k / N ) ) X ( t  - k).  
N ~ o o  k = O  
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Now, recall that this projection can be viewed as a linear filter taking the time 
series X(t) into )~1 (t). Here we have an example, then, of a digital filter which 
is not of convolution type. 

Factoring the Spectral Density 

Finally, as stated earlier, in some instances the class of complex-valued 
functions ~(z)satisfying conditions (a)-(d) will be given, and the solution of 
the prediction problem then depends on being able to identify the element 
sC'(z) in this class. From expression (7.35) for ~r obtained in the example, 
it is seen that ~r is never zero as long as the power series in the exponent 
converges. In the general case, the domain of convergence of this power 
series will contain and often equal {z: I z] < 1}. Thus, along with the properties 
(a)-(d) the distinguishing feature we seek is that d(z)  is nonvanishing for 

< 1. 

In summary, A(2) = d(e  -i~) will be the transfer function of the one-sided 
movin9 average representation of X(t) in terms of its innovation process 
provided ~(z)  satisfies conditions (a)-(d) and, in addition, ~'(z) ~ 0 for 
I zl < 1. ~(z)  is uniquely determined by these properties. For a proof of this 
result in the general (univariate) case, see Doob (1953, pp. 569-579). 

The determination of the class of functions ~(z) satisfying (a)-(d) is 
known in prediction theory as the problem of factorin9 the spectral density 
function. A good treatment of the general factorization problem and its 
applications is given for multidimensional time series by Hannan (1970, p. 62). 
We illustrate the use of spectral density factoring in the next section. 

7.5 MIXED AUTOREGRESSIVE-MOVING AVERAGE PROCESSES AND 

RECURSIVE PREDICTION 

The equivalence between mixed autoregressive-moving average processes 
and processes with rational spectral densities will be established in this 
section. These processes will then be shown to have predictors which can be 
put in recursive form. Adaptive prediction for a class of nonstationary 
processes will be discussed briefly. 

The Mixed Autoregressive-Moving Average 
Model 

A natural generalization of both finite autoregressions and finite moving 
averages is to combine the two models by using a one-sided moving average 
in place of the white noise process as input to the stochastic difference 
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equation (7.10)" 

q p 

Z dj X ( t  - j)  -- ~ c k ~(t -- k), (7.47) 
j = 0  k = 0  

where ~(t) is a given zero-mean, white noise process with variance a 2. A 
weakly stationary solution X(t)  to (7.47) is called a mixed autoregressive- 
moving average process. It is usually assumed that Co = do = 1 and that Cg(z) 
has no zeros in (z: I zl < 1} and .~(z) has no zeros in {z: I z[ _< 1}, where 
~(z) - ~ ' : o  CkZ k and ~ ( z ) -  ~ = o  djz j. The reason for adopting these 
conditions will now be considered. 

Viewing X(t)  as the output of a linear filter with input ~(t), the transfer 
function A(2) can be obtained by substituting A(A)e i'~t for X(t)  and e ixt for 
~(t) in (7.47) and solving for A(2). The result is 

p 
A(2) = L e g  e -''~k I ~, dj e -i~'j (7.48) 

= / j = O  " 

In order for this filter to match the white noise input, it is necessary and 
sufficient that none of the roots of the equation ~(z) - 0 lie on the unit circle. 
With this restriction alone, A(2) has a Fourier series expansion 

oo 

A()  0 -- ~ aj e-i2j 
j - -  --0(3 

with ~ ; _ _ ~  aj2< ct3. This leads to the representation of a solution of 
(7.47) as a two-sided moving average in terms of the original white noise 
process, 

oo 

X ( t ) =  ~ a j ~ ( t - - j ) .  
j - "  - - o o  

The process clearly has a continuous spectrum and the spectral density func- 
tion is 

o2  21Z :ocke kl2 fx(2) = ~ IA(2)12 = ~ ~q'-o d-je::'77 �9 (7.49) 

If all of the zeros of ~(z) lie outside of the region {z: [z] < 1}, then 
d ( z )  = Cs is analytic, thus, has a power series expansion in a region 
containing this set. It follows that the above moving average is one-sided 
and depends only on the past and present of the ~(t) process. This is a reason- 
able property for the model to have, since the ~(t) process can again be 
viewed as a time series of unobserved shocks produced by the underlying 
physical process as time progresses. 

This does not imply, however, that this is the innovation process for X(t). 
That is, the pasts of the ~(t) and X(t)  processes need not coincide. 
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From our discussion of prediction theory, the given white noise process 
will be the innovation process for X(t) only if ~(z)  is analytic and non- 
vanishing for [z I < 1. This requires the additional condition that the zeros 
of cg(z) lie outside of the set {z: Izl < 1}. Moreover, to obtain the normal- 
ization ao = 1, it is necessary that e0 = do = 1. Thus, the conditions imposed 
on (7.47) are designed to guarantee that a weakly stationary solution of the 
difference equation always exists and that the given white noise process is 
the innovation process of the solution. 

Finally, note that if ~(z) has no zeros on ]zl = 1, then 1/J~C'(z) has a 
power series expansion which converges for Iz] < 1 and, thus, the X(t) pro- 
cess has an (infinite) autoregressive representation as well. 

Processes with Rational Spectral Densities 

A model for time series which has received considerable attention is that 
of a weakly stationary process X(t) with continuous spectrum and rational 
spectral density 

P "~J/ ~ 6k e-'ak (7.50) fx (2)=  ~ 7je-  
j = - p  / k=-q  

It is assumed that the numerator and denominator have no factors in common. 
The numbers p and q are nonnegative integers and the quantities 7j and 6k 
are real-valued parameters such that ~,_j = 7j and 3-k = 6k. In order for 
fx(,~) to be integrable it is necessary that the denominator of (7.50) not vanish 
for - n  < 2 < re. 

The importance of this model results from the fact that any continuous 
spectral density function can be approximated arbitrarily closely by a rational 
function such as (7.50) by proper choice of p, q and the other parameters. 
While this is also true of the spectral densities of finite moving averages and 
finite autoregressions, a model with a rational spectral density will almost 
invariably lead to a better fit with fewer parameters. Box and Jenkins (1970) 
call this property parsimony. The parameters of the process are usually 
estimated by statistical techniques which increase rapidly in computational 
effort with increasing numbers of parameters. Consequently, it is not only 
convenient but necessary to have relatively parsimonious models. We will not 
cover the statistical methods for estimating the parameters of a rational 
spectral density in this book. Excellent treatments giving a variety of methods 
and applications are provided by Anderson (1971), Box and Jenkins (1970), 
and Hannan (1970). 

It is easily seen that every mixed autoregressive-moving average process 
has a rational spectral density. The converse is also true in the sense that for 
every process X(t) with rational spectrum there exists a white noise process ~(t) 
and parameters dj, j = O, . . . ,  q and Ok, k = O, . . . ,  p, satisfying the conditions 
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specified for  the parameters  o f  a mixed  autoregressive-moving average model  
such that (7.47) holds. 

From our discussion of prediction theory and the fact that the condition 
imposed on (7.50) is sufficient to guarantee that the regularity condition (7.45) 
is valid, the innovation process ~(t) and the function d ( z )  which provides 
the parameters of the one-sided moving average representation of X(t )  are 
computable from the above theory. However, to show that X(t )  satisfies the 
difference equation (7.47), it is convenient in this instance to display the 
possible factors of the spectral densityfx(2) and select ~ (z )  from among them. 
The reason for this is that the factors are easily and explicitly obtainable in 
the form (7.48). The details of the factorization will only be sketched. An 
excellent treatment providing the missing mathematical steps can be found 
in the book by Hannan (1970, p. 62). 

The numerator and denominator of (7.50) are of the form 

l 

R(2)=  ~ rje- i~J 
j = - l  

where the rj's are real numbers for which r_j  = rj and rl ~ O. If 

l 

~ ( z )  = ~ rj z j 
j=- - l  

is the z-transform of these coefficients, then it is easy to see that 

~(z )  = ~(1 /z )  

for all z. In particular, if Zo is a number such that ~(Zo) = 0, then ~(1/z0) = 0 
as well. 

Now, let ~(z) = z ~ ( z ) .  Then by a change of index of summation, 

2/ 

~(z) = ~ rk-,  z k. 
k=O 

This is a polynomial of degree 21. Hence, it has 2l zeros. Moreover, by its 
relationship to ~'(z), whenever Zo is a root of ~ ( z ) =  0, so is 1/Zo. Thus, the 
2l roots can be grouped into I pairs, (zj ,  1/zj), j = 1, 2, . . . ,  l. Now, (I)(z) can 
be written in the form 

(I)(z) = const 1--I (z - zj)(zzj  - 1). 
j = l  

Thus, by associating one factor of 1/z with each term (z - z j)(zzj  - 1), ~(z) 
can be written in the form 

l 

~(z) = const 1-] (z - z j ) ( ( 1 / z )  - z j )  
j = l  

= const ~ ( z ) ~ ( 1 / z ) ,  
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where ~(z )  = I-I~= 1 ( Z -  Zj) contains one element from each of the I pairs 
of roots. The constants indicated above are different and will depend on the 
selection of roots, etc. Finally, by expanding the product, we can write 

Thus, 

l 

5"~(z) = ~ sj z j. (7.5 l) 
j = O  

ot 12 R(2) = ~(e-i2) _ _  const ~ s j  e-iaj . 
j= 

The constant can be adjusted so as to make So = 1. 
Applying this result to the numerator and denominator of (7.50) we obtain 

fx (2) = coast [ B(2)12 (7.52) 

where 

B(2) = ~(e  -ia) and M(z) = ~(z)/.~(z) 

with ~(z) and ~(z) both of form (7.51). A variety of functions M(z) can be 
obtained according to which roots of the various pairs (zj, 1/zj)are selected 
to make up c-g(z) and ~(z). By the initial condition on (7.50), .~(z) will h~ive 
no roots on the unit circle. Consequently, if ~(z) is selected to have all 
of its roots outside of the unit circle, M(z) will be analytic in a region con- 
taining the set {z: [z[ < 1}. The collection of functions ~(z) obtained by 
varying the roots in ~(z) is the collection of z-transforms of one-sided moving 
averages which satisfy conditions (a)-(d), above. The element d (z )  must, in 
addition, be nonvanishing for ]zl < 1. This function corresponds to the 
polynomial Z(z) with zeros selected to be outside or on the unit circle. 

With d (z )  so specified, from the prediction theory discussion we obtain 

c(~) 
Zx(d~) = A(OZ~(d)O = b-G) z~(d~), 

where 

P q 

C(2) = E Ck e-ixk, D(2) = E dJ e-ixj 
k--O j = O  

and {(t) is the innovation process for X(t). Thus, 
q lr 

Z dj X(t  - j) = f ei'~tD(/t)Zx(d2) 
j = O  - i t  

f 
~ 

= _,eiZtc(2)Zr 

P 

k = O  



7.5 A U T O R E G R E S S I V E - M O  VING A V E R A G E S  245 

This is precisely the mixed autoregressive-moving average representation 
(7.47). Because of (7.49), the constant in (7.52) must be a2/2rt, where a2 is the 
variance of the innovation process. 

Recursive Predictors 

For a process with rational spectral density, the best linear predictor can 
be put in a distinctive and computationally useful form. A predictor will be 
called recursive if it can be represented as a function of a f i x e d  number of 
previous observations and previous predictors, 

X~( t )  = f ( X v ( t  - 1), . . . ,  X v ( t -  r); X ( t ) ,  X ( t  - 1) . . . .  , X ( t  - s)). (7.53) 

More generally, we could allow this function to depend on previous predictors 
with different prediction steps v' < v, for example. However, we will restrict 
attention to this form here. The computational advantage of such an expres- 
sion is that it is only necessary to store r + s + 1 items of data to compute the 
next predictor at any given time. Contrast this with, say, the one-step auto- 
regressive predictor (7.21) which depends on the infinite past of the process. 
To use the autoregressive predictor in practice it would be necessary to carry 
along each value of the process as it is received in order to calculate the next 
prediction. This is, in fact, never done. The expression is truncated by setting 
cj = 0 for all "sufficiently large" values ofj .  The resulting expression is no 
longer that of the best one-step predictor except in the case of a finite auto- 
regressive process of the appropriate order. 

The truncation can be viewed as an attempt to fit the true process by a 
finite autoregression. As was discussed above, it is almost always preferable 
to approximate the process by a mixed autoregressive-moving average process. 
We will now see that a mixed autoregressive-moving average process always 
has a recursive representation of the form (7.53) in which the function f is 
linear. A complete treatment of the prediction of processes with rational 
spectral densities is given by Yaglom (1962). 

Construction of the Recursive Predictor for 
a Mixed Autoregressive-Moving Average 
Process 

Expression (7.28) for the transfer function of the best v-step predictor can 
be written in the form 

Dr(2) eiXv A(2) - ~ , -  ~ak e - i x ,  = �9 (7.54) 
A(2) 
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For mixed autoregressive-moving average processes, 

~ - ,  c~(,~) A(2) = C(2_____))= ~ aje_iZ j + , (7.55) 
D(2) s=o D(2) 

where C~(2) is the remainder after dividing the trigonometric polynomial 
C(2) by D(2) for v terms. The usual algorithm for dividing polynomials can 
be adapted to yield this result. When this expression is substituted into (7.54), 
we obtain 

Thus, since 

we have 

D~(2) = e iZvcv ( )O/C(~ , ) .  

Z~(d2)  = Dv(2)Zx(d2), 

C(2)Z ic,,(d2) = e'~v c,,(2)Z x(d2). 

Now, it is always possible to write C~(2) in the form 

p 

eiZvc,(2) = Z c~ v)e-i~'j" 
j = O  

Then, multiplying both sides of the previous expression by e ixt and integrating, 
we obtain 

p p 

Z Ck ~v (t -- k) = ~_~ c~)X(t  - j). 
k = O  j = O  

Since Co - 1, this is equivalent to 

p p 

f~( t )  = ~ ( - - c k ) X v ( t -  k) + ~3 c~.v)X(t- j). 
k = l  j = O  

This is the desired recursive form. The following (somewhat contrived) 
numerical example will illustrate these ideas. 

(7.56) 

Example 7.4 Construction o f  a Recursive Predictor 
Suppose that X(t) is a weakly stationary process with continuous spectrum 

and spectral density function 

2e -i~ + 5 + 2e iz 
fx(2) = _ 12e_i2~. + lle_i~ + 146 + l i e  i ~ -  12e i2;t" 

Let ~(z )  represent this expression with e -ix replaced by z. Then, normalized 
so that Co - d o  = 1, ~(z)  can be written in factored form as 

1 (�89 + 1)(�89 + 1) 
~(z)  = ~-~ (1 - �88 - �88 1)(]z + 1)(]z-1 + 1)" 
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The extent to which this example has been "manufactured"  is rather evident. 
In practice, the factorization of the spectral density function is the most 
difficult step in the process of determining the coefficients of the best predictor. 
This step relies on standard techniques for factoring polynomials which are 
available in texts on algebraic equations. 

The factor d (z )  is 

d(z) = 

�89 1 

(1 - �88189 z + 1) 

since this factorization puts the zeros of the polynomials in numerator and 
denominator outside of the unit circle. Also, since 

f x (2 )  = (tT2/2n)I~(e-%12, 

it follows that the innovation variance is 0 . 2  " - -  2n/36 = ~z/18. 
Now, ~ ( z ) -  1 + �89 and ~ ( z ) =  (1 -�88189 + 1)=  1 + l ~ z -  ~-z  2. Ex- 

pression (7.55) can be obtained by dividing ~(z) into Cg(z)then making the 
substitution z = e-ix. Carrying out the division for two terms yields 

Cg(z) = 1 + A z  _t_1 14 -Z2 "[- ]--~-4 -Z3 
~(z) ~(z) 

Thus, setting z - e - i ' ~  and comparing this expression with (7.55) we obtain 

ei2ac2(2) = T 7  + T�88 e -  ia. 

Since C(2) = 1 + �89 the best two-step recursive predictor is 

)(2(t) = -�89 - 1) + T~--xX(t) + T�88 -- 1). 

To use this predictor in practice, if we begin observing the time series at t - 1, 
say, we would have to "initialize" the prediction process by assigning values to 
X2(0) and X(0) in some fashion. This is usually done arbitrarily unless "natu-  
ral"  values of these variables are available from some source. After several 
predictions have been made, the dependence on the initializing values "washes 
out"  or, at least, becomes of negligible importance. The length of time for this 
to occur will depend on the magnitude of the initial errors so some care is 
warranted in the selection of the initial values. 

Adaptive Prediction 

In recent years, progress has been made in extending the design of pre- 
dictors of recursive type to more realistic prediction problems. Even when the 
standard weakly stationary prediction model is accurate, the parameters of the 
model will seldom be known. Then, if prediction is to be carried out in real 
time, one is faced with the problem of estimating the parameters at the same 
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time the predictions are being made. Thus, the usual prediction error is 
compounded by the error of estimation. It is desirable that the predictor 
"adap t  itself" to the underlying process so that the error of this adaptive 
predictor tends to the true prediction error as time progresses. Moreover, the 
rate at which this occurs should be as rapid as possible. The current state of 
investigation of this subject is summarized by Gardner (1962) and Davis and 
Koopmans (1970). 

The term "adaptive prediction" is also used to describe the situation in 
which the underlying model is nonstationary, but otherwise specified. Then, 
the predictor " adap t s "  if it follows the process as it evolves in time. Box 
and Jenkins (1970) skillfully exploit the use of an interesting nonstationary 
model which lends itself to adaptive prediction by recursive formulas. The 
model is an extension of the mixed autoregressive-moving average model and 
we discuss it here briefly. 

A Nonstationary Model and Its Prediction 

If B denotes the backward shift operator defined in Section 6.2, then the 
stochastic equation (7.47) can be represented in the form 

~(B)X( t )  = Cg(B)~(t). (7.57) 

In order for this equation to have a weakly stationary solution it is necessary 
that ~(z) have no zeros on the unit circle. If this condition is removed 
and Cg(z) and ~(z) are simply required to have no zeros for [z[ < l, then this 
equation will still have a solution for, say, t > 0, but the solution will now 
"evolve" as time progresses. 

To see this, write 

~(z )  = oU(z)~(z), 

where q/(z) is composed of the factors of ~(z) containing the roots which are 
strictly greater than one in absolute value, and let ~(z)  consist of the factors 
corresponding to roots lying on the unit circle. Then, if we define 

Y(t) = $"(B)X(t),  

it follows that Y(t) is to satisfy the equation 

ql(B) Y(t) = Cg(B)~(t). (7.58) 

This equation has a weakly stationary solution as we have seen. However, 
we can write 

~//'(B) = ~ vj B j, Vo = 1. 
j = 0  
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Thus, 

o r  

Y(t) = ~ vj X(t - j )  
j=O 

r 

X(t) = Y(t) + ~ ( -  vj)X(t - j). (7.59) 
j = l  

Consequently, once the X(t) process has been initialized through the speci- 
fication of X(1) . . . .  , X(r), its " law of evolution" is completely determined by 
(7.58) and (7.59). Box and Jenkins call these processes autoreyressive, inte- 
grated, moving average (ARIMA) models. 

One of the most important ARIMA models is that of a stochastic process 
with weakly stationary kth differences, where the process of kth differences has 
a rational spectral density. Such a process will satisfy a stochastic difference 
equation of the form (7.57) with 

~ ( B )  = ~ U ( B ) A  ~ = ~U(B)(1 - B )  ~. 

This model can be expected to fit a large number of practical problems. From 
our discussion of the variate difference method in Section 6.6, any process 
with a polynomial trend of degree k -  1 and weakly stationary, zero-mean 
residual with continuous spectrum will have weakly stationary kth differences. 
Then the spectral density function of the kth difference process can be ap- 
proximated as closely as desired by a rational function. Consequently, this 
model will represent a class of processes with polynomial trends. A theoretical 
account of stochastic processes with stationary differences was first given by 
Yaglom (1955). 

7.6 L I N E A R  F I L T E R I N G  IN R E A L  T I M E  

In this section we will treat briefly a more realistic version of the filtering 
problem than the one introduced in Section 5.5. Recall that X(t) and Y(t) 
were taken to be weakly stationary, stationarily correlated processes, X(t) 
unobservable and Y(t) observable. The filtering problem was to approximate 
X(t) as closely as possible by linearly filtering Y(t), assuming that Y(t) has 
been observed for -Go < t < ~ .  More precisely, we determined the linear 
filter L which minimized E(X(t) - L(Y(t))) 2. If both processes have continuous 
spectra with spectral densities fx(2), fl,(2) and cross-spectral density fxy(2), 
we showed that the transfer function of the filter L was 

B(2) = fxr(2)/fr(2). (7.60) 
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More realistically, for a given time t, observations on Y(s) will be available 
only for s < t. Consequently, we will now require the filter to be restricted 
to Y(s), s < t, and we will combine the filtering operation with prediction by 
asking for the " b e s t "  value of X(t + v) for some v > 0. That is, we will 
determine the filter Lv which minimizes E(X(t  + v ) -  L~(Y(t))) 2 among all 
linear filters restricted to Y(s), s < t. 

The solution to this problem is, clearly, the projection of X(t + v) onto 
the linear subspace j/c,r generated by Y(s), s _< t. A simple geometric obser- 
vation will permit us to find this projection by the techniques used to solve 
the prediction problem. The observation, which is based on expression (1.16), 
is that if,~/l and X are two subspaces with jlr ~ ./tl, then the projection of an 
element x onto ~r can be obtained by first projecting x onto j / ,  then pro- 
jecting the resulting element onto ~4/'. In our case, we take ~ = ~l,  r and 
J / =  .//4' r, the subspace generated by Y(t), - o o  < t < oo. Thus, L~ is the 
sequential filter 

L~ = ~ L ,  

where L is the projection of X(t + v) onto j~' r and ~ is the projection of the 
result on tilt r. The filter L is the one determined in the first version of the 
filtering problem but operating on Yv(t)= Y(t + v) rather than on Y(t). 
It follows that its transfer function is B(2)e ia', where B(2) is given by (7.60). 
In fact, if Xv(t) is the output of this filter, then 

2~(t) = f e 'a{t + ~)B(2)zr(d2). 
- - i t  

We will assume that Y(t) has a one-sided moving average representationwith 
respect to a white noise process ~(t) and that ~ / t r =  ~/'t r Then, 

Zr(d,~) = C(OZ~(dO 
with 

It follows that 

where 

oo 

C(2) = Z cj e-iaj, ~ cj 2 < ~ .  (7.61) 
j = O  

oo 

X~(t) = f ei~(t+~)D(2)Z~(d;t)= ~., dj~(t + v - j ) ,  

D(2) = C(2)B(2). (7.62) 

The filter with transfer function D(2) matches the white noise input. Con- 
sequently, 

oo 

D ( 2 ) -  Z dj e -  i~'j 
j =  -oo 

is a valid Fourier series expansion with ~j~_oo dj 2 < oo. 
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r has the rep- ~=/ff.t r, the projection of 37~(t) onto Jilt Now, since d/ t  
resentation 

O(3 O0 

~(2~(t)) = ~ dy~(t + v - j )  = ~ dy+~( t - j ) .  
j=-v j=O 

The process )~,.(t)= ~ ( . ~ ( t ) ) i s  L~(Y(t)), the solution of the problem, and 
it only remains to calculate the transfer function of this filter. However, 
note that 

Z£~(d2) = D~(2)Z¢(d2), 

where 

It follows that 

where 

o o  

D,,(2) -- ~ dy +~ e-i2j.  (7.63) 
j = O  

Z2~(d2) = A~(2)Zy(d2), 

A~(2) = D~(2)/C(2). (7.64) 

This is the transfer function of L~. Thus, in theory, if functions (7.60) and 
(7.61) are available, a contingency which depends on knowing fxr(2) and 
fy(2), then A,,(2) can be calculated from (7.62)-(7.64). If, in addition, fy(2) 
is bounded and A,.(2) has a one-sided Fourier series expansion with square- 
summable coefficients, then the projection will have an explicit representation 

O(3 

- ~) Y(t - k ) .  x , ( o  = Z 
k=O 

(See Section A7.2.) By truncating this expression for a "sufficiently large" 
value of k, a useful and nearly optimal filter can be constructed. 

The parameters of this filter can be estimated if records of both the X(t) 
and Y(t) processes are available for some interval of time. This situation 
occasionally occurs in practice. For example, if Y(t)= X(t)+ N(t), where 
N(t) is a noise process uncorrelated with X(t), then it is sometimes possible to 
obtain stretches of record in which either X(t) or N(t) is absent. Then fxr(2) 
=fx(2) and fy (2 )=fx(2)+fN(2)  can be estimated from the available data. 

For certain restricted classes of processes, explicit recursive filters can be 
constructed which are optimal within these classes. Particularly important 
work in this direction has been published by Kalman (1960, 1963) and Kalman 
and Bucy (1961). Kalman filters can be constructed for a large and useful 
class of multivariate nonstationary processes both in continuous and discrete 
time. These filters have been used widely in many diverse fields of application. 
As in the case of recursive predictors, recent work has been devoted to in- 
creasing the adaptive features of these filters by allowing for adjustments of 
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parameters as information about the process accumulates [see, for example, 
Bucy and Follin (1962)]. A good introduction to Kalman filtering is given by 
Hannan (1970). 

APPENDIX TO CHAPTER 7 

A7.1 Extension of the Moving Average Representation 
to Processes for Which the Spectral 
Density Can Have Zeros 

Let X(t) be a continuous-spectrum, weakly stationary process with spectral 
measure Zx(d2) and spectral density function fx(2) and let B denote the set of 
frequencies for which fx(2) = 0. It is always possible to extend the underlying 
probability space in order to construct on it a white noise process W(t) 
with spectral measure Zw(d2) such that W(t) is uncorrelated with X(t). 
[See, e.g., Doob (1953, p. 71).] Now, define the process Y(t) to have spectral 
measure 

[Zx(d2), if 2 ~ B c, 
Zr(d2) = [Zw(d2), if 2 ~ B. 

Then, fr(2) > 0 for all 2 and the theory for nonzero spectral densities given in 
the text yields 

oo 

Y ( t ) -  ~ a j ~ ( t - j ) ,  
j - -  - - o o  

where ~j%-oo aj 2 < cx3 and ~(t) is a white noise process with spectral measure 
Z,(d2). However, 

Zx(d2) = IBc(2)Zr(d2) = IBc(2)A(2)Z¢(d2), 

where IBc(2) is the set characteristic function of B c and A(2) -- ~j~-oo aj e-izj. 
Then, since 

it /t  

f ]IBc(2)A(2)[ 2 d2 < f IA(2)[ 2 d2, 

it follows that IBC(2)A(2) has a Fourier series expansion with square sum- 
mable coefficients bj and 

X(t) = f ~ bje-i~J eiZtZ~(d2) 
- n  j= -oo 

oo 

= ~ b j ~ ( t - j ) .  
j - -  m o o  

This is the desired moving average representation of X(t). 



APPENDIX TO CHAPTER 7 253 

A7.2 One-Sided Fourier Series Expansions 

The best available condition for a function to have a one-sided Fourier 
expansion with square summable coefficients is the following: I f  M(z) is an 
analytic function for [z I < 1 with power series expansion ~ ( z )  = ~joo= o aj z j, 
aj real-valued, and i f  

lim J [,~r 2 d2 < oo, (A7.1) 
r~ ' l  - n  

then A(2) = d ( e  -ix) is well defined as the .W2(-g , z~) limit of  zd(re -ix) as 
r ~ l, 0 < r < 1. Moreover, the power series expansion of  ~d(z) is valid for 
[z] = 1 with ~ j~  o aj 2 < oo and ~ j~  o aj e-ixj is the Fourier series expansion 
of  A(2). 

The proof of this important theorem is given by Grenander and Rosenblatt 
(1957, p. 288). 

The function A(2) defined in this way is called the radial limit of ~r 
Consequently, functions which are radial limits have one-sided Fourier series 
expansions. 

This theorem has the following corollary: I f  X(t) is a discrete-time 
weakly stationary process with zero mean and continuous spectrum and if  the 
spectral density function is bounded, then any linear filter L for which the 
transfer function A(2) is a radial limit can be represented in the form 

oo 

L(X(t)) = Z aj X(t - j ) ,  
j = 0  

where the coefficients aj are those of  the Fourier series expansion of  A(2). 
The proof of this corollary follows exactly the verification of the convo- 

lution representation of a digital filter given in Section A6.1. 
This result has a number of important implications. For example, the 

condition 

7[ 

f logf(2) d2 > - ~ ,  
- - / t  

encountered in prediction theory, implies the existence of a function ~(z)  
with a radial limit A(2) for which 

f(2) = }A(2)[ 2. 

This theorem, due to Szeg6 (1939), guarantees the existence of the one-sided 
moving average representation of the process which was basic to the Kolmo- 
gorov solution of the prediction problem. 

The existence of infinite autoregressive processes satisfying (7.12) is also 
covered by this result: Apply the theorem to ,~r 1/,~(z), where ,~(z) is 
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the z-transform of the filter determined by the difference equation (7.12). 
Thus, if 

lim j I 1/~(re-iZ)]2 d2 < oo (A7.2) 
r l ' l  - n  

and 1/~(z) = ~ = o  ak zk, it follows that 

oo 

Y(t) = ~ ak ~ ( t -  k) 
k = O  

will be a valid, zero-mean, weakly stationary process which satisfies (7.12) 
where ~(t) is the innovation process. (We implicitly use the fact that the spectral 
density of a white noise process is bounded.) In order for zg(z) to be analytic 
for ]z] < 1 it is necessary that ~(z) be analytic and nonzero in this region. 
Thus, if ~(z)  is analytic and nonzero for ]z] < p, p > 1, then (A7.2) is certainly 
satisfied. This contains the condition for finite autoregressions and is the 
special case for infinite autoregressions considered in Section 7.3. 

Finally, this theorem provides the best known condition for the existence 
of an autoregressive representation of a one-sided moving average pro- 
cess. Let 

013 

X(t) = ~ bk ~(t - k) 
k = 0  

where ~(t) is a white noise process and let 

oo 

M(z) = ~ bk Z k. 
k = 0  

Then if ~(z)  is analytic and nonzero for ]z] < 1 and if (A7.2) is satisfied, 
it follows that 1/B(2) = 1/~(e-i~) will have a one-sided Fourier series expan- 
sion, ~~ o cje -i~j, with ~~ o cj2 < ~ .  If, in addition, the spectral density of 
X(t), fx(2)=(~rZ/2rc)[B(2)l 2, is bounded, then ~ j ~ = o c j X ( t - j )  will be a 
well-defined element of L2(P) for every t. However, 

) Z cjX(t- j )  = f cje -i;q eiXtZx(d2) 
j = O  - i t  

= f (1/B(2))eiXtB()t)Z (d2) 

- ~(t). 

Thus, X(t) satisfies the difference equation of an infinite autoregression. 
Note that if B(2) is bounded and bounded away from zero, as is the case 

when .~(z) is a polynomial with all of its zeros strictly outside of the unit 
circle, then (A7.2) and the boundedness of fx(2) are immediate. Thus, a 
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finite-order, one-sided moving average for which the z-transform has all zeros 
outside of the unit circle can always be represented as an infinite autoregres- 
sion. 

A7.3 Proof of the Wold Decomposition Theorem 

We will show that although this theorem is concerned with weakly 
stationary processes, it is actually purely geometric in character. Let X(t) 
be a zero-mean, weakly stationary process in discrete time and, as in the text, 
let ~ t  x represent the subspace of L2(P) generated by the random variables 
X(s) for s _< t. In the notation of Section 1.3, let ) ~ l ( t -  1) - ~@(X(t)] d/x_1) 
and define the stochastic process ~(t) by 

~(t) = X ( t ) -  X l ( t -  1). 

The variance of ~(t) is, then, the one-step prediction error tr z. Note that by this 
construction, ~(t) _L d/,g x_ 1. 

Now ~(t) is a process of uncorrelated (orthogonal) random variables, 
since if t < s, then ~(s) _1_ d/s x_ 1, while ~(t)~ ~ , x  1- Thus, ~(t) _1_ ~(s). This 
is the innovation process of X(t) as we now show. 

Let all, ~ be the subspace of Lz(P ) generated by the random variables ~(s) 
for s < t. Since ~(s)~ ~r for all s, it follows that J / / t r  ~gr x. Let ,//r v 
be the orthogonal complement of oggt r in ~ t  x. Then, ~ / t x =  J//t~@ d4't v 
and, by expression (1.15), we have 

X(t) = U(t) + V(t), (A7.3) 
where 

U(t) = ~(X( t )  ] ~gt r and V(t) = ~(X(t)  ] .//[tv). 

This is statement (7.30) of the theorem. 
Since the generators of Jl't r are orthogonal, it follows from (1.14) that 

the projection of X(t) on ~///tr must be of the form 
O(3 

U(t) - ~ a k ~ ( t -  k), 
k=O 

where 

a k  --- 

<X(t), ~ ( t -  k)> 1 
II~(t - k)ll 2 = ~ <X(0), ~ ( - k ) >  

for k > 0 and 
oo 

~--' a k  2 < (30. 
k = 0  

Note that i"(0) = 2 1 ( -  1) + ~(0). Thus, since ~(0) _l_ 2 1 ( -  1), 

ao = (1/tr2)(~(0), ~(0)> = 1. 

This establishes statement (ii) of the theorem. 
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Now, if .//r v denotes the linear subspace spanned by the random vari- 
ables U(s) for s < t, then J/gt v = d//t ~ for all t. To see this, note that J/Ct v 
~r ~ by the one-sided representation of U(t) given above. To establish the 
reverse inclusion, take W ~ J//t ~. Since ~r ~ ~ ~r x, Wis the limit of a Cauchy 
sequence of finite linear combinations; W = lim. ~ j  cj, ,, X( t  - tj, .), t j , .  > O. 
But then, 

W = # (WI  J/t', r = lim ~ c j , , , # ( X ( t -  tj,,,)l d#, r 
n j 

= lim ~ c j , ,  U(t - t j, .) ~ d/l, U. 
n j 

(We have used the continuity of projections discussed in Section 1.3.) In 
the remainder of the proof  we will replace d///t r by d/lt v. 

Next, if s < t, then ~(s)s d/t', v. However, V(t) 2_ dr v, thus ~(s) _t_ V(t). 
Similarly, if s > t, then ~(s) 3_ j l x .  But V( t )~  d/l, x and again, ~(s)_1_ V(t). 
It follows that ~(s) _1_ V(t) for all s, t. Thus U(s) 3_ V(t) for all s, t. That is, the 
processes U(t) and V(t) are uncorrelated. This is statement (i) of the theorem. 
Again by (1.15), 

~(X(t)  [ ~ x -  1) - ~'(X(t) I ~ _  ~) + ~(X(t)  [ J [  v_ ,). 

However, U(t) _l_ Jevt_ ~ and V(t) _1. ,////v t_ ~, which implies that ~(U(t)[ ~ _  ~) 
- ~(V(t)I ~v_  ~) _ 0. Then, by (A7.3), we obtain 

)~x(t - 1) -- ~ ( X ( t ) I  ,/~X- 1) "-- ~ ( U ( t ) I  J//[v_l) -4- ~ ( V ( t ) ]  ,./~V_ 1). 

This expression is valid with the subscripts t -  1 replaced by s for any s _< t 
by exactly the same argument. We needed this fact at one point in the text of 
this chapter. 

Now, by an application of expression (1.14) we obtain 

Thus, 

oo 

~ (  U(t) l ~ u _  , ) __ ~ ak ~(t -- k). 
k = l  

~(t) -- X(t) - ~ , ( t  - 1) 

oo 

= u(t)  - ~ ak~(t - k) + v(t)  - ~(v( t ) l  ~ _ , )  
k = l  

= ~(t) + v ( t ) -  ~(v( t )  l ~ L , ) .  

From this we obtain 

V(t) - ~ (  V(t) l J/if_ a)). 

It follows that J/gt V ~ d//[_ 1. However, since ~ / - a  c j///v, this can only 
happen if J/4~v= ,~#t V for all s, t and the theorem is proved. 



C H A P T E R  

The Distribution Theory 
of Spectral Estimates with 
Applications to Statistical Inference 

8.1 INTRODUCTION 

The statistical analysis of time series actually predates the introduction of 
the models we have considered in previous chapters of this book. Early 
investigators, beginning with Schuster in the late nineteenth century, were 
interested in looking for periodicities in geophysical and economics data. 
The " too l "  adopted for such studies was the periodogram which is, es- 
sentially, the squared absolute value of the finite Fourier transform of the time 
series. Thus, Fourier analysis is not only one of the most important forms of 
analysis for time series, it is also one of the oldest. The distribution theory of 
the periodogram based on a trigonometric polynomial regression function 
with a white noise residual was derived by Fisher (1929) and was used as the 
basis for testing for the existence of periodicities. 

With the introduction of moving average and autoregressive processes by 
Yule in the 1920s, interest shifted away from the frequency domain anaJysis 
of time series to the time domain. This shift was accelerated after the time series 
models of Chapter 2 were introduced in the 1930s because the periodogram, 
which had demonstrated its value for locating periodicities, proved to be 
an erratic and unfaithful estimator of the newly introduced power spectral 
density. A considerable body of time domain techniques were developed 
during the period 1920-1950. This theory is summarized in detail by Ander- 
son (1971). 

257 
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Interest in the frequency domain analysis of time series was reawakened 
by a suggestion of Daniell (1946) to the effect that by averaging the periodo- 
gram in neighborhoods of each frequency of interest, well-behaved estimators 
of the spectral density function could be obtained. This idea was pursued by 
Bartlett (1948) and then by Tukey and Hamming (1949) who introduced the 
idea of the spectral window and investigated the properties of windowed 
estimators. These developments ushered in the modern era of time series 
spectrum analysis which has witnessed important contributions by a number 
of investigators. We will summarize their work in this and the next chapter. 

The distribution theory for standard estimators of the spectral density of a 
one-dimensional time series will be considered first. Then the theory for 
multivariate time series will be outlined and the distributions of the important 
spectral parameters considered in Chapter 5 will be given. The theory will be 
applied to the calculation of confidence intervals and the testing of hypotheses 
for these parameters. These results will be applied to the important problem of 
designing time series experiments in Chapter 9. 

8.2 DISTRIBUTION OF THE FINITE FOURIER TRANSFORM AND THE 

PERIODOGRAM 

Throughout this chapter we will assume that the time series under con- 
sideration are discrete, zero-mean, stationary Gaussian processes with con- 
tinuous spectra. The restriction to Gaussian processes simplifies the theory 
substantially and makes it possible to present a rather intuitive yet precise 
account of results. These results are actually valid for a much broader class 
of time series. That is, the theory is reasonably robust against deviations from 
the Gaussian assumption. For details of the more general theory the reader is 
referred to Grenander and Rosenblatt (1957) and Hannan (1970). 

In this section, X(t), t = 0, +_ 1 , . . . ,  will be a univariate process with 
spectral density function f(2). We assume that the process has been observed 
for times 1 < t _< N. Thus, N is the sample size and is one of the important 
parameters upon which the properties of spectral estimates will depend. 
We will be interested in the finite Fourier transform of the data. For reasons 
to be discussed presently, we take the following normalized version: 

1 N 
: , z~N) (2xN) 1/2 t= X(t)e-iavt (8.1) 

where 2v = 2roy~N, - [ ( N -  1)/2] _< v _< [N/2]. As before, [x] denotes the 
largest integer less than or equal to x. [Compare (8.1) with expression (3.28).] 

Since linear combinations of normal random variables are normal, the 
random variables z~ N) have a multivariate complex normal distribution with 
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zero means. We will also want to calculate the variance EI z~N)I2 of z~ N). 
To do this we substitute the spectral representation for X(t)  in (8.1)" 

where 

Then, 

z(N) = 1 u j.,~ (2rcN) '/z t= e-iavt -rre i'~tZ(d) 0 

717 

= f HN(2 -(2nv/N))Z(d2), 
--/17 

1 N 
--- ~ 

HN(2) (2rtN) '/2 t=, ~ ei~' 

(8.2) 

(8.3) 

E l  z ~ N ) I  = -Tr  --Tr H N ( I ~ "  - -  (27rv/N))HN(lt - (DtvlN))EZ(d2)Z(dl~)  

yr 

- f INN(2 - (2rtv/N))[2f(2)  d2, 

by the properties of random spectral measures given in Chapter 2. 
Now, by (8.3), 

1 N N 

[HN(~')[ 2 = 2rcN t~= , s~= l ei'~(t-s, 

--{ t ,S l } _ 1 N + e ia(t-s) . 
2rc N = = 

t # s  

It follows that 

(8.4) 

f_,~ ] HN(~ ) ]  2 d/~ = 2rcN1 2rcN + t~_, s~_, f_,~e ia(t-s) d~ 
r~: s 

=1 .  

Thus, the normalization of(8.1) by (2rrN) -1/2 was chosen to make the integral 
of the weight function [HN(2)] 2 equal to unity. Now, by expression (1.18), it 
is easily seen that 

sin 2 (2N/2) 
I HN(012 = 

2rtN sin2(2/2)" 

This is the so-called Fejer kernel of Fourier analysis and it is well known to 
have the delta funct ion property as N ~ ~ .  That is, for all "well-behaved" 
functions g(2), 

lim f I HN(~u -- 2)12 g(/~) d/~ = 9(2). 
N ~ o o  - ~  
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Except for the fact that all side lobes are positive, I HN(2)]2 looks very much 
like the window function of Fig. 6.6. Consequently, if the spectral density 
function is continuous, say, then for sufficiently large N, 

e l  z~ ~' I ~ -~ f ( ~ ) .  (8.5) 

The smoother f(2) is in the vicinity of 2~ the better is this approximation for 
moderate values of N. If f(2) were constant over (-z~, z0, equality would hold 
in (8.5) for all N. For this reason,f(2~) could be called the white noise variance 

(N) of zv . 
Expression (8.5) suggests that the statistic 

IN,~ [_(N) 2 1 [ ~  = ~ [ = ~ X( t )  e - i ~ t  
t = l  

(8.6) 

would be a reasonable estimator for the spectral density function at 2v. 
This estimator is the periodogram which has played such a significant role 
in time series analysis. We now investigate some of the more important sta- 
tistical properties of the periodogram. 

The Distribution of the Periodogram and Other 
of Its Properties 

In theory, the periodogram can be defined for all frequencies 2, - n  < 2 
< n, by the expression 

where 

8,(;0 : I z(~)O.)I ~, 

1 N 

z(N)(2) = (2~N)1/2 t~  1= X(t)e -ia`. (8.7) 

In practice, this finite Fourier transform can only be calculated at a finite set 
of frequencies. This presents no problem, since, in fact, function (8.7) is 
completely determined by its values at the frequencies 2 v = 2nv/N, - [(N - 1 )/2] 
<_ v < [N/2]. This follows from a discrete, frequency domain version of the 
sampling theorem of Section 3.2 which we present at this point" 

Frequency Domain Sampling Theorem Let a(t) be a function which is 
zero except fo r  the arguments t =  1, 2, . . . ,  R and let ,4(2) be its Fourier 

transform 

R 

A(2) = ~ a(t)e i~t, - r c  < 2 <_ ~z. 
t = l  
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Then, 

[ R / 2 ]  

A(2) = Z B~R)(2)A(Zrcv/R) , 
v = - [ ( R  - 1 ) / 2 ]  

(8.s) 

where, setting 2~ = 2try~R, 

s i n ( R ( 2 -  2v)/2) ( 
B(~R)(2) = R sin((2 - 20/2) exp - i ~  

R+1(2_2,) ~. ] 2 

Moreover,  i f  A(2) is any funct ion fo r  which representation (8.8) holds, 
then its Fourier coefficients a(t) are necessarily zero f o r  t < 0 and t > R + I. 

The proof  of this theorem closely parallels the proof of the sampling theorem 
in Section 3.2 and is left to the reader. 

With R = N and a(t) = X( t ) / (2nN)  1/2, we obtain 

[ N / 2 ]  

= B~ ( O z , ,  
v = - [ ( N -  1 ) / 2 ]  

where zv(N~ is defined at the frequencies 2~ = 2nv /N  by (8.1). This is the result 
we wanted. It implies that the periodogram is also determined by the z~N)'s. 
Consequently the statistical properties of Iu(2) depend only on the joint 
distribution of these random variables and we will first obtain the relevant 
properties of this distribution. 

A simple but useful observation, based on definition (8.1), is that 

z ~  ~,~ (8.9) - v  - -  

f o r  Iv] < [ ( N -  1)/2]. This result will be needed shortly. 
We now sketch an argument for the following important property: 

I f  the spectral density funct ion f(2) is continuous, then the random variables 
z ( N )  , - [ ( N -  1)/2] < v < [N/2] are asymptotically uneorrelated as N - ,  ~ .  
Since they are zero-mean, random variables, it suffices to show that the 
expected products tend to zero, i.e., 

lim Ez~ N) ~N~ = 0 for # # v. 
N - * o o  

From (8.2) we obtain 

7) u -v ) =  -,~ _71, i  - - EZ(d~)Z(df l )  

(8.10) 
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Now, except for a factor of absolute value 1, the function HN(ct - (2rc/~/N)). 

H,v(o~ - (2"av/N))is the product of two window functions of the type pictured 
in Fig. 6.6 centered at frequencies 2~, = 2rcp/N and 2~ = 2gv/N, respectively. 
When 2u and 2~ are well separated, the integrand, thus the integral, is essen- 
tially zero. When they are not, it follows from the continuity of f(2) that 
(8.10) is approximately equal to 

By using (8.3), we obtain 

since 

, ,  
1 N N ( 2~z~t ) 

- - : . - w . Z . . - \  - ,  , e 

1 ~ ( 2 n ( v - ~ ) t )  
= ~ exp i 

t = l  " N  ' 

( s:, i - ~  exp( i a ( t -  s)) da 

zv ~ N(0, f(2~)), 

f ~ [2n, k - 0, 
- n  eiak dot = ( O, k # 0 

The final expression is 0 when v # p and 1 when v = p. Consequently, 
the above approximations, being exact in the limit, we obtain 

lim_%E "(N)~(N)~.v = 0 for p # v. 
N-'* oo 

Moreover, if f(2)  is reasonably smooth, the approximations 

Ez(N)~(N ) ~ tf(2v), /~ = v, (8 11) 
-" -" [0, /~ # v, 

are quite good for sufficiently large N. The first statement is the same as (8.5). 
The distribution theory for  the z~N)'s is an asymptotic theory in the sense 

that it is based on replacing the approximate equality in (8.11) by equality and 
proceeding as though these random variables were uncorrelated with the in- 
dicated variances. The results derived using this convention will be asymptotically 
correct and will hoM to a good degree o f  approximation i f  N is not too small. 

Hereafter we will fix N and delete the superscript on the z~N)'s. Thus, 
according to the convention of the last paragraph, 
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and the z~'s, - [ ( N - 1 ) / 2 ]  < v < [ N / 2 ] ,  are uncorrelated. Now, represent z,, 
in Cartesian form: 

z~ = a~ - ibv. 

As in the representation of the co- and quad-spectral densities in Section 5.5, 
the purpose of the minus sign in this expression is to obtain the Fourier 
representations 

1 N 1 N 
av = ( 2 r t N ) l / 2  ~ = l X ( t ) c o s 2 v t  and b ~ = ( 2 r c N ) l / 2 t ~ = l X ( t ) s i n 2 ~ t  

from (8.7). Then, since 

av = (zv + ~,~)/2 (8.12) 

b v - - ( z v -  ~,)/2i,  (8.13) 

it fo l lows  that av and by are real-valued, zero-mean,  normal  random variables. 
Then, the vector pairs (av, b~) are uncorrelated, thus independent,  f o r  v > O. 

One additional important property is that av is independent o f  b~for  each v. 
To see this, first note that for v 4:0 and v ~ N/2 ,  

Ez~ z = Ez~ ~. _~ = O. 

This follows from (8.9) and the uncorrelatedness of the z/s. Similarly, E2v z = 0 
for v ~ O, N/2.  Consequently, by (8.11) and (8.12), 

Ea~ bv = - (1/4i)(Ezv z - E~v z) = O. 

For v = 0 and v = N/2  (which can occur only if N is even) this follows im- 
mediately from the fact that 

ao = Zo , bo = O, aN/Z - -  Z N ] 2  , bN/2 = O. 

The same technique is used to compute the variances of a~ and b~" 
From (8.11) and (8.12) we have 

Ea Z '�88 z + 2 E z ~  + E~.v2), v v~ O, N/2,  
= E l z ~ l  2, v = 0, N/Z,  

(�89 v 4: O, N/2,  
= ~f(0), v = 0, (8.14) 

I,f(rt), v = U/2. 

Similarly, 

/�89 v 4: O, N/2 ,  
EbNZ = ~0, v = O, N/2.  (8.15) 
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We now have all of the information needed to compute the asymptotic 
distribution of the periodogram at the frequencies 2~, - [ ( N - 1 ) / 2 ]  < v 
< [N/2]. From the definition of the periodogram, 

IN,  ~ - - l e v i  z - a~ 2 + by 2. 

However, for v ~ O, av/(�89 1/z and bJ(�89 ~/2 are independent N(0, 1) 
random variables. Consequently, 

Zz2,, = (av z + b,Z)1�89 

has the chi-square distribution with two degrees of freedom. Thus, 

IN,~ = �89 ~ for v r O, N/2. 

For v = 0, N/2, by the same argument, 

IN, o = ao 2 = f(0);~2x, o and IN, N/2 = a~/2 = f(rO~.], u/2, 

where X~,, is a random variable possessing the chi-square distribution with 
one degree of freedom. 

In summary, the periodogram ordinates IN, ~ = Iu(Av) are asymptotically 
independent for  v >__ 0 and have the asymptotic distributions o f  the indicated 
multiples o f  chi-square random variables. 

This result and the expressions 

E(X, 2) = r, Var(•, 2) = 2r 

for the mean and variance of a chi-square random variable with r degrees of 
freedom allow us to obtain the asymptotic mean and variance o f  the periodo- 
gram" 

and 

E(IN, ,) =f(2~),  

Var(Iu, ~) = �88 Var(zz z) 

= f2(2~), v r O, N/2, 

/ 2 f ~ ( 0 ) ,  v = 0 ,  
Var(IN, v) = ~2f2(rr), v = N/2. 

A more precise result is true. If 2 is any frequency in ( -zr ,  zr] and vN is a 
sequence of integers such that as N ~ oo, 

2~,+ = 2nvN/N ~ 2 

at the " r i g h t "  rate [see, e.g., Brillinger (1970)], then the mean and variance 
of IN, v,+ and IN(2) have the same limits and these limits are obtained from the 
above expressions by replacing 2v by 2. That is, 

lim E(IN(2))=f(2)  (8.16) 
N~oo  
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and 

(f2(2), 2 # 0, n, 
lim Var(IN(2))= {2f2(0), 2 = 0, (8.17) 

N-~ oo (2f2(n), 2 = n. 

The following results from statistics will be needed in the following discus- 
sions. The mean-square error of an estimator 0, of a parameter 0 is E(9, - 8)2. 
Consistency was defined in Section 2.10 where it was also stated that in or- 
der for an estimator to be consistent it is sufficient that lim,_.oo E(gn - 8) 2 
- 0. It can be argued that this condition is also necessary. Now, an elemen- 
tary application of the properties of expectation yields 

E(0, - 0 )  2 --- (E9  n - -  0 )  2 -~- Var(0.). 

The expression E 0 , -  0 is called the bias of the estimator. The estimator is 
said to be unbiased if EOn = 0 for all n and asymptotically unbiased if 
lim._,oo E0. = ,9. It follows that the estimator is consistent if and only if it is 
unbiased or asymptotically unbiased and lim,_,~ Var(0,) = 0. 

Expressions (8.16) and (8.17) reveal the basic mean-square properties of the 
periodogram as an estimator of the spectral density function. It is asymp- 
totically unbiased by (8.16). Thus, the asymptotic mean-square error is the 
same as the asymptotic variance. However, unless f ( 2 ) =  0 the asymptotic 
variance is not zero. Thus, in general, the periodogram is not a consistent 
estimator of  f(2). This (and the asymptotic independence of the IN, v's) 
largely accounts for the "erratic and unfaithful" behavior of IN(2) as an 
estimator for f (2)  mentioned in Section 8.1. In the next section we will 
consider estimators forf(2)  which avoid this shortcoming while retaining the 
desirable property of asymptotic unbiasedness. Thus, for these estimators the 
mean-square error will go to zero. The asymptotic distributions of these 
estimators will be derived from the distribution theory we have developed 
for the periodogram. 

8.3 DISTRIBUTION THEORY FOR UNIVARIATE SPECTRAL E S T I M A T O R S  

Because of the Fourier series representation 

oo 
1 ~ e-UkC(k) 

f =  --oo 

for the spectral density function [see expression (3.23)], a "na tu r a l "  estimator 
for the spectral density can be obtained by replacing C(k) in this expression by 
an estimate based on the observations X(1), X(2), . . . ,  X(N). From the dis- 
cussion of the ergodic theorems in Sections 2.10 and 3.3, a suitable choice 
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would be 

/1 
N-Ikl 
Z x(t + Ikl)X(t), Ikl -< N -  1, 

C(k) = ,=1 

O, Ikl > N -  1. 

(8.18) 

However, by a straightforward change of variables, it can be shown that 
oo 

1 ~ e-'ZkC(k) IN(2), 
2~  k=-oo 

(8.19) 

the periodogram. Thus, without further modification, this estimation scheme 
still leads to an inconsistent estimate of the spectral density. An analysis of 
the difficulty indicates the following: When the argument ]k] is large, i.e., 
near N - 1 ,  the random variables (~(k) are averages of a relatively small 
number of the products X(t + [k])X(t). Thus, the stabilizing influence of the 
averaging operation has not had a chance to take effect and these random 
variables retain about the same degree of variability no matter how large N is. 
This accounts for the fact that the periodogram has variance which never 
approaches zero with increasing N. 

This analysis also indicates a possible means for eliminating the incon- 
sistency of the periodogram without destroying its asymptotic unbiasedness. 
For an integer M < N, let wM(k), k = 0, +_ 1, . . .  be a sequence of weights 
with the properties 

(i) 0 _< WM(k) <_ WM(O) = 1, 

(ii) WM(--k) -- WM(k) for all k, 

(iii) wM(k)--O for I k [ > M .  

The specific weight sequences that have been used in practice will be discussed 
later. At present, only these general properties will be needed. 

Form the estimator 
oc) 

1 ~ e-i;'kwM(k)C,(k ). (8.20) 

This is called a weighted covariance estimator. This type of estimator was 
introduced by Tukey (1949) and was the first kind adapted extensively to 
digital computer calculations. Grenander and Rosenblatt (1957) provided the 
distribution theory for this class of estimators under rather general assump- 
tions about the underlying stochastic process. The weight function wM(k) is 
called a lag window and the integer M is the lag number. 

Note that by property (iii) of the lag window, the products wM(k)C(k) 
are zero for [k I > M. Thus, the more variable autocovariance estimates are 
omitted from (8.20) and by keeping M relatively small as N tends to infinity, it 
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is reasonable to expect that a consistent sequence of estimators can be con- 
structed. Moreover, by letting M tend to infinity it should be possible to 
design the weight sequence so as to retain the asymptotic unbiasedness of the 
estimator. The confirmation of these expectations will be indicated presently. 

First, we derive an equivalent form for the estimators (8.20). The spectral 

window WM(2), corresponding to the lag window wM(k), is its Fourier trans- 
form 

oo 

1 ~ e-iZkwM(k ). w ~ ( 2 )  = ~ ~- - -~  (8.21) 

From the properties of the lag window, it is easily seen that WM(2) is real- 
valued and has the properties 

(i) wM(-~)  = w . o ) ,  
# 

(ii) | WM(2) d2 - 1. 
~ d  

Note that (8.20) is the Fourier transform for the product wM(k)C(k) .  It 
follows from the discussion of Fourier series in Example 1.2, that the Fourier 
transform of this product is the convolution of the Fourier transforms. 
Consequently, (8.20) is equivalent to 

](~) = f w . ( ~ -  ~)i~(~,)d~. (8.22) 

An estimator with the same asymptotic distribution as (8.20) can be 
obtained by replacing the integral (8.22) by its Riemann approximat ing sum 

2re [N/z] 
f (A) = -  Z W . ( 2  - 2~)IN, ~ . 

N ~:_[(N_ ~)/2] 

Since 
7t 

2n tN/2] WM(2~) "~ f WM(2) d2 = 1 
N v= -[(~- 1)/2] - r t  

(Riemann approximation, again), this is asymptotically equivalent to an 
estimator of the form 

[ N / 2 ]  

f(~) = ~ K ( 2 -  2,) lu, , ,  (8.23t 
v=  - [ ( N -  1)/21 

where K(2) is a symmetric, periodic, real-valued weight function for which 
[ N / 2 ]  

K(;~v)  = 1. 
v=  - [ ( N -  1 ) /2 ]  

Estimators of this form are called smoothedper iodogram estimators. 
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This is the general form of the estimator first suggested by Daniell (1946). 
Since the fast Fourier transform algorithm was introduced by Cooley and 
Tukey (1965), the calculation of the periodogram has become extremely fast 
and for a period of time this type of spectral estimator largely replaced the 
weighted covariance estimator in applications of spectral analysis. As we 
will indicate in Chapter 9, the fast Fourier transform can also be used to 
calculate weighted covariance estimators and these estimators are experienc- 
ing a "comeback" in the rapidly changing spectral estimation scene. 

The distribution theory for smoothed periodogram estimators is rather 
easily derived from the theory generated for the periodogram in the last 
section. Because of the asymptotic equivalence of the weighted covariance 
and smoothed periodogram estimators, we will also be able to translate the 
results for the smoothed periodogram to the weighted covariance estimator. 
We first derive the asymptotic mean, variance, and distribution of a simple 
smoothed periodogram estimator. 

The Daniell Estimator and Its Moments 

The most basic smoothed periodogram estimator is the uniformly weighted 
average suggested by Daniell. If the average is taken over n neighboring 
frequencies 2v, this estimator at frequency 2k = 2rtk/N is 

1 k+[n/2] 
= - E I ,v. 

tl v=k - [ (n -  1) /2]  

For simplicity, in this discussion we will assume that/~k - -  '~v ~:  0, 7~ for all v. 
The asymptotic mean and variance of the estimator are easily calculated from 
the asymptotic theory of the last section: 

1 k+[n/2] 
E(f(2k)) = - E E(IN, ~) 

n v=k- [ (n -  1)/2]  

1 [n/2] 
- ~ f ( 2 k  + 2~). 
n v= - [ ( n -  1) /2]  

Similarly, because of the asymptotic independence of the IN, ~'s, 

1 k+[n/2] 
- -  Var(IN, ~) Var(f(2k)) = tl 2 ~=k-t(~, - 1)/2]  

1 [ n / 2 ]  
+ 

v = - [ ( n  - 1 ) / 2 ]  
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Now, if n is sufficiently small and N sufficiently large that f(2)  is effectively 
constant over every frequency interval of length 2rcn/N (the length of the 
intervals over which 2 k + 2v varies for - [ ( n  - 1)/2] < v < In/2]), then 

E(f(2k)) ~ f(2k) (8.24) 

and 

Var(f(2k)) ~ fz(2k)/n. (8.25) 

Moreover, the same type of computation can be used to calculate the asymp- 
totic covariance between estimators at frequencies 2k and 2~ yielding 

Ii - [ l -  k lf(2k)f(21 ) I 1 -  k[ < n 
112 ~ Cov(f(2k), f(2t)) ~ (8.26) 

, I I - k l > n .  

As in the case of the periodogram, this is an asymptotically unbiased 
estimator of the spectral density. However, there is an essential difference 
between this estimator and the periodogram. Note that if n is allowed to 
tend to infinity with N in such a way that the length 2rcn/N of the smoothing 
interval of frequencies tends to zero, then the variance of f(2k) tends to 
zero. That is, the estimator is both asymptotically unbiased and consistent. 
Also note that the estimators have zero covariance, hence are independent, 
for frequency spacings 2traiN or larger. Thus, the width of the rectangular 
smoothing band determines the spacing between independent estimators. 
This bandwidth can be viewed as a measure of the resolution of the estimator. 
Moreover, the covariance between estimators at every pair of distinct fre- 
quencies tends to zero if 27raiN ~ O. Thus, the estimators are asymptotically 
independent. As we will See presently, the same simple argument can be used 
to obtain comparable properties for the general smoothed periodogram 
estimator. First, however, the asymptotic distribution of the Daniell estimator 
will be obtained. 

Distribution of the Danieil Estimator 

Suppose that N and n are large enough to make the asymptotic theory 
valid to a good approximation and that n/N is small enough for f(2)  to be 
effectively constant over frequency intervals of length 2r~n/N. Then, as we 
saw in the last section, fixing k, the quantities IN, v/�89 are (essentially) 
independent, chi-square random variables for k - [(n - 1)/2] < v < k + [n/2], 
each with two degrees of freedom. (We will take 2k -~ 0, rt and assume that 
n/N is sufficiently small that v 4: 0, [N/2].) Consequently, since the sum of 
independent chi-square variables is again chi-square and the degrees of 
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freedom of the sum is the sum of the degrees of freedom [Tucker (1962, p. 75)] 
the random variable 

k+[n/2] 

Z IN,~/�89 = zz, 
v = k - [ ( n  - 1 ) / 2 ]  

has the chi-square distribution with 2n degrees of freedom. However, then 

^ 1 k+[,,/2"! f(2k ) 
- ~ In,~ = ~ Z2.. (8.27) 

f(2k) = n ~=k-t(.- 1)/25 2n 

In other words, 2nf(2k)/f(2k) has (asymptotically) the chi-square distribution 
with 2n degrees of freedom. This important result will be carried over, with 
an additional approximation, to the general smoothed periodogram. 

Asymptotic Mean and Variance of the General 
Smoothed Periodogram Estimator and the 
Weighted Covariance Estimator 

The asymptotic mean, covariance, and variance of the estimator (8.23) 
at frequencies 2v = 2nv/N can be written down immediately from the proper- 
ties of the periodogram; 

[ N / 2 1  

Ef(2a) = ~ K(2R- 2~)f(2~), 
v = - [ ( N  - 1 ) / 2 ]  

Cov(f(2k), f(2/)) = 2K(2k)K(2t)f2(O) 
[ N / 2 ]  

+ ~ K(2k-  2 , ) K ( 2 , -  2v)f2(2~) 
v = - [ ( N  - 1 ) / 2 ]  

( + 2K(2 k - n ) K ( 2 / -  n)fz(n)) ,  (8.29) 

and 

Var(f(2,)) = 2K2(2k)fz(o) 

+ 
[ N / 2 ]  

Z K2(2*-  2v)f2(2v) 
v =  - [ ( N -  1 ) / 2 ]  

(+  2KZ(2k -- n)fZ(n)). 

(8.28) 

(8.30) 

The terms in parentheses are included only when N is even. As in the case of 
the Daniell estimator, all interesting smoothing functions will depend on a 
parameter which, when increased, will cause the function to become more and 
more sharply peaked at 2 -  0. More precisely, for increasing parameter 
values, the functions K(2) will have the delta function property defined in 
Section 8.2. Since most of the important smoothing functions are (asymp- 
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totically) related to spectral windows of weighted covariance estimators by 
the expression 

X(,~) ~ (2~/N) WM(,~), 

it is convenient to return to this form of the smoothing function. This will 
allow us to use the lag parameter M to govern the delta function behavior of 
the smoothing function and, at the same time, obtain the properties of the 
weighted covariance estimators. 

With this substitution in (8.28)-(8.30) we can view the various sums as 
Riemann approximations to the corresponding integrals to obtain the 
asymptotic expressions 

2re is/z] 
" " - -  Wm(2k - 2v)f(2v) 

~- f WM(2k -- 2)f(2) d2, (8.31) 
q d  

- -717  

2~z f~ Cov(f(2k), f(2t)) ~ ~ WM(2k -- 2)WM(2~- 2)f2(2) d2 (8.32) 

if either 2k r 0, rC or 2~ r 0, rr, and 

2rr f~ 
Var(f(2k)) ~ -~- WM2(2k -- 2)f2(2) d2 (8.33) 

if 2k -r 0, rr. For the time being, we will deal only with estimates at frequencies 
other than 0 and rr. Then, the terms involving f2(0) and fE(rc) in (8.29) and 
(8.30) are negligible in comparison to the others for large M and N and have 
been deleted in (8.32)and (8.33). 

Now, if WM(2) is concentrated in a peak about 2 = 0 and f(2) is essentially 
constant over every frequency interval of length comparable to the width of 
the peak, then (8.31) and (8.33) reduce to 

and 

E f  (2k) ~ f(2k) (8.34) 

Var(f(2k)) ~ fa(2k) ~- WM2(2) d2. (8.35) 

These less precise expressions will be needed to establish the commonly used 
approximation to the distribution of f(2k) to be given shortly. 

One further refinement in this approximation is possible for most lag 
window-spectral window pairs used in practice. This refinement is based on 
the fact that the lag window sequence is almost always formed by scaling a 
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real-valued (piecewise) continuous function w(v) as follows. Let w(v) be 
zero for I vl > 1. Then, the lag window is given by 

wM(k) = w(k/M). 

Ifw(v) iseven and 0 < _ w ( v ) < w ( 0 ) = l  for Iv[ < 1  then this lag window 
has properties (i)-(iii) given earlier. By Parseval's relation and (8.21), 

n M 

2=f re  (x)dx= Z wE(k~ M) 
- n  k= - M  

M 

= M ~ w2(k/M)(1/M) 
k= - M  

1 

M f w2(v) dv. 
- 1  

It follows that (8.35) can be rewritten in the form 

Var f(Ek) ~ fE(~,k)Cw M/N, (8.36) 

where Cw = ~ 1 wE(v) dv = ~os do wE(v) dr. Thus, the variance depends on the 
specific window only through this integral. 

We show in Section A8.1 that the spectral windows corresponding to these 
lag windows have the delta function property as M --, ~ .  This establishes the 
asymptotic unbiasedness of the estimator. Moreover, if the rate at which 
M-~  do is controlled in such a way that M/N-~ O, then, by (8.36), the vari- 
ance goes to zero. Thus, the estimator is consistent. 

Asymptotic Distribution of the Smoothed Periodogram 
and Weighted Covariance Estimators 

From the results of the last section, if f (2)  is effectively constant over the 
width of the main lobe of WM(2), then 

2~ [N/El 
- -  W M ( ~ .  k - -  ,~v) IN,  v 

f (2k)rC tN/Zl w.(x,- 
N v= -[(N- 1)/2] 

where, for the values of v for which '~k - -  '~v falls in this main lobe, the quan- 
tities 

UN,~ = IN, J l  f(2k) 

are (asymptotically) independent chi-square random variables with two 
degrees of freedom. Thus, the approximate distribution of the spectral 
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estimator for large M and N is that of a linear combination of independent 
chi-square random variables. Unfortunately, this distribution is quite com- 
plicated and calculations are never made with it. Perhaps this is true because 
a useful " folklore"  approximation, sometimes called Satterthwaite's approxi- 
mation, is available which is correct asymptotically and very simple to use. 
This approximation was introduced to time series analysis by Tukey (1949). 
Effectively, the window WM(2) is replaced by a rectangular window as used in 
the Daniell estimator. In this case the distribution off(2k) is that of a constant 
multiple of a chi-square random variable, 

: (~k )  '~ CXr 2" 

Then, the constant c and degrees of freedom r are adjusted so that the first 
two moments of the given estimator and the estimator with rectangular 
spectral window agree; 

Ef  (2k) = E(CXr2), Var(f(Ak)) = Var(cx,2). 

However, recall that 

E(cx, 2) = cr and Var(cx, 2) = 2c2r. 

Thus, r and c can be solved for to yield 

c = Var(cx~2)/2E(cx, 2) = Var(f(Ak))/2Ef(Ak) 

and 

r = 2[Ef(2k)]2/Var(f(2k)). (8.37) 

The parameter (8.37) is known as the equivalent degrees o f  freedom (EDF) 
of the spectral estimator and is one of the parameters used extensively in the 
design of spectral analyses as we will see in the next chapter. If we use the 
asymptotic expressions (8.34) and (8.35), an alternate form for the equivalent 
degrees of freedom can be derived; 

/ :  r = N rr WM2(,~) d2. (8.38) 

Then, the asymptotic relation (2rr /N)Wu(2)~-K(2)  leads to the smoothed 
periodogram equivalent degrees of freedom 

[N/21 
r = 2 ~ K2(2~). (8.39) 

v= -[(N- I)/2] 

By means of expression (8.36), weighted covariance estimators with lag 
windows of the form wM(k) = w(k/M) are seen to have EDF of the form 

r = 2N/cwM. (8.40) 



274 8 D I S T R I B U T I O N  T H E O R Y  A N D  STATISTICAL  I N F E R E N C E  

Moreover, from the same expression, we obtain 

c =f(2k)/r.  

Dropping the subscript k, if 2 is a frequency for which a spectral estimate is 
calculated, these results can be summarized as follows: I f  M and N are 
reasonably large or i f  N is large and K(2) well peaked at 2 = 0 and if  f (2)  is 
sufficiently smooth near 2 ' #  O, re, then the distribution o f  r f(2 ') / f (2 ')  is 
approximately chi-square with r degrees of  freedom--where r is the equivalent 
degrees o f  freedom of  the estimator given by (8.39) /f f(2 ')  is a smoothed 
periodogram estimator and by (8.38) or (8.40) i f  a weighted covariance esti- 
mator. 

Confidence Intervals for the Spectral Density 
and Log Spectral Density 

The above distributional results can be used to calculate confidence 
intervals for f (2)  and log f(2)  at frequencies 2' 4: 0, rc for which estimators 
are obtained. See Tucker (1962) for a discussion of the pertinent theory. A 
100(1 -~ )~o  confidence interval for f (2 ' )  is computed as follows: First, the 
equivalent degrees of freedom r must be determined from (8.39) or (8.40). 
From Table A9.1 of the chi-square distribution given in the appendix to 
Chapter 9, two numbers a and b can be determined which satisfy the equa- 
tions 

P(Z,. 2 < a) = ~/2, P(Z, .  2 N b )  = l - (o~/2). 

It follows that 

P(a < Zr 2 N b) = 1 - ~. 

Thus, by the above result, 

1 - e - ~ P  a N  f(2 ' )  Nb  

= P < f(2 ' )  _< 

It follows that 

A 

is a 100(1 - ~ ) ~  confidence interval for f(2') .  This is the equal tail proba- 
bility confidence interval. For the description of the so-called best unbiased 
confidence intervals with a reference to the pertinent tables, see Hannan 

b < f(2 ' )  < (8.41) a 
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(1970, p. 252). When the equivalent degrees of freedom is not too small, the 
two intervals are nearly the same. 

The length of the above confidence interval varies with the magnitude of 
f(2') .  Aside from the compression in scale realized by taking the logarithm, 
the most convincing reason for considering the log spectral density in practice 
is that a confidence interval of constant width (over frequency) can be realized 
for this parameter. This interval is obtained by taking the logarithm of all 
three terms of (8.41), 

log(r/b) + log f(2 ' )  < logf(2 ' )  < log(r/a) + log f(2 ') .  (8.42) 

This is a 100(1 -c~)~o confidence interval for log f (2 ' )  of length 

log(r/a) - log(r/b) = log b/a. 

Of course, plotting the confidence limits for f (2)  on a log scale has the same 
effect. As an illustration of the way these confidence intervals are displayed 
graphically, see Fig. 8.1. 

Example 8.1 A Spectral Density Confidence Interval Calculation 
Suppose that a spectrum analysis is performed on a time series with 

N = 1000 data points using a weighted covariance estimator with the lag 
window 

1, for Ikl 
WM(k) = 0, otherwise, 

and M = 100 lags. [This is the Bartlett (1) window of Table 8.1.] Now suppose 
that the estimated spectral density at 2 -- 2' rad/unit time is computed to be 
f(2 ' )  = 30. [The units of spectral density are squared amplitude per unit 
frequency. Thus, for example, if the time series were measured in centimeters 
and time in seconds, the units of f (2 ' )  and f(2 ' )  would be centimeters squared 
per radian per second.] We will find a 95 ~o confidence interval for f(2 ') .  

Either by direct calculation or from Table 8.1 we find the equivalent 
degrees of freedom for the Bartlett (1) window to be 

r = N / M  = 1000/100 = 10. 

Since ~ = 0.05, we must find the values of a and b from Table A9.1 which 
satisfy the equations 

P(g2o < a) = 0.05/2 = 0.025 and P(g~o < b) = 1 - (0.05/2) = 0.975. 

These values are seen to be 

a = 3.247, b = 20.483. 
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Fig. 8.1 Graphs of  estimated spectral densities, coherence, and phase from the Groves 
and Hannan study (1968) (Section 5.6) with indicated 95 ~ confidence limits. Source" Groves 
and Hannan (1968)" copyright by American Geophysical Union. 

Thus, the lower and upper limits of the 95 ~ confidence interval for f (2 ' )  are 

rf(2')/b = (10)(30)/20.483 = 14.65, 

rf(2')/a = (10)(30)/3.247 = 92.3. 

We can now assert that  with 95 ~ confidence, the true value of the spectral 
density at 2 = 2' lies in the interval 

14.65 < f (2 ' )  < 92.3. 
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Suppose we wish to test the hypothesis that f (2 ' )  = 50 against the alter- 
native f(2 ' )  4= 50 at significance level, c~ = 0.05. Since 50 is in the computed 
confidence interval we would accept this hypothesis [see Tucker (1962, p. 211)]. 
The extreme length of the confidence interval indicates that the power of this 
test is rather poor. In Chapter 9 we will show how to design time series 
experiments to meet prespecified power and confidence interval length 
criteria. 

Bandwidth of Spectral Estimators 

One final parameter of importance for comparing spectral estimators is 
bandwidth. If the smoothing function is that of the Daniell estimator; 

K ( 2 v ) -  {1/n,o, otherwise,- [(n - 1)/2] < v < [n/Z], (8.43) 

where 2v -- 2nv/N, then the width of the base of this rectangular window in 
frequency units, 

fl = 2nn/N, (8.44) 

is the natural definition of bandwidth. One possible definition of bandwidth 
for the general spectral estimators (8.20) and (8.23) again uses the device of 
replacing the spectral window of the general estimator by a rectangular one 
for which the first two moments of this estimator and the resulting Daniell 
estimator agree. The bandwidth will then be the length of the base of the 
fitted rectangle. To determine this length, note that the fitting criterion has the 
effect of equating the degrees of freedom of the Daniell estimator and the 
equivalent degrees of freedom of the general estimator; 

r --- 2n. 

However, by relationship (8.44), it follows that the equivalent bandwidth 
(EBW) of the general estimator will be 

= rcr/U. (8.45) 

This leads to the expression 

[N/21 

fl = 2rc N Z K2(20 (8.46) 
] v= - [ ( n -  1)/21 

for the equivalent bandwidth of the general smoothed periodogram estimator 
because of (8.39) and to 

fl -- 2rc/cwM (8.47) 

for the weighted covariance estimators for which wM(k) - w(k/M) by (8.40). 
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An interpretation of bandwidth as a descriptive parameter for spectral 
estimators will be given in Chapter 9. For the present, we will simply list the 
equivalent bandwidths of the more commonly used spectral estimators in 
Table 8.1. 

Some Windows Used in Practice 

The choice of the particular lag window to use in a weighted covariance 
estimator or the smoothing function for a smoothed periodogram estimator 
has received a great deal of attention in the time series literature. We will 
consider this question briefly in Chapter 9 when point estimates of time series 
parameters are discussed. For the present, we list in Table 8.1 several of the 
windows which have been used in spectral estimation studies along with their 
equivalent degrees of freedom and equivalent bandwidths. 

Example 8.2 Calculation o f  Approximate EDF and E B W  of  the Window 
Proposed by Jones 

Jones (1971) suggested the following procedure for generating lag and 
spectral windows which are very nearly shaped like normal density functions. 
The lag window weights are proportional to binomial coefficients and are 
generated recursively according to the following scheme: 

Wo-  1, 

L + l - k  
Wk -- Wk- ~, k - 1, 2 . . . . .  

L + k  

The integer L is determined as follows: When L is large, w k becomes very 
small with increasing values of k and computer underflow may be encoun- 
tered. To avoid this, the iteration is stopped when WR becomes smaller than 
some prespecified value e. The index k at which the truncation takes place is 
equated with the lag parameter M. Using the normal approximation for the 
binomial coefficients [see, e.g., Feller (1968, p. 183)], it can be shown that 

WR ~ exp( -  kE/L). (8.48) 

This leads to the approximate value for L as a function of e and M; 

L ~- [M2 / -  In e]. 

Substituting the (noninteger) value L -  M 2 / ( - l n  e) into (8.48), we obtain 
the approximate expression for the lag window; 

t exp( -  ( -  In e)v2), w(v) = I v l _ < l ,  
otherwise, 
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Table 8.1 

A Periodogram Smoothing Function and Several Covariance Weighting Functions 
Which Have Found Use in Practice along with Pertinent Parameters 

Proposer Window description CW EDF EBW 

Bartlett(1) w(u) = I [ - , ,  &)” 

Bartlett(2) 

Tukey w ( v ) ’ l - 2 a + 2 a c o s 7 r v  

w(u) = 1 - Iu I 

(i) a = 0.23(hamming) 

(ii) a = 0.25(hanning) w(u) = t ( l  + cos m) 

w(u) = 0.54 + 0.46 cos TU 

ParZen( 1) w ( v )  = 1 - u2 

Parzen(2) 

2.00 NIM d M  

0.61 3 NIM 3nlM 

N/M(l ~ 4a + 6a’) 2(1 - 4a + 6a2) n/M(I  - 4a + 6a’) 

0.80 2.50NIM 2 . 5 h l M  

0.15 2.67NIM 2.61nlM 

1 . O l  1.81NIM 1.81.rrlM 

0.54 3.1NIM 3.1xlM 

Jones w(u) 2 exp(1n E)u’, E = O.OOlb 0.48 4.18NIM 4.187rlM 

a I,@) denotes the set characteristic function of A. 
This window is discussed in Example 8.2. 
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and 

w k _~ w(k/M).  

It follows that the equivalent degrees of freedom and equivalent bandwidth 
can be determined from (8.40) and (8.47) after cw has been computed for this 
window. However, 

o o  o o  

Cw = f wE(v) dv ~- f e x p ( -  2 ( - I n  e)v 2) dr. 
m O O  - - O O  

Thus, evaluating this normal integral, we obtain 

~ 

Cw ~ - I n  e 

When e = 0.001, for example, - l n  e ~- 6.9 and we obtain 

Cw ~- 0.478. 

This value is rounded to two places in Table 8.1. 

8 . 4  D I S T R I B U T I O N  T H E O R Y  F O R  M U L T I V A R I A T E  S P E C T R A L  E S T I M A T O R S  

WITH APPLICATIONS TO STATISTICAL INFERENCE 

Suppose that 

( x ~ ( t ) ~  

X ( t )  - �9 , t - O, + 1 . . . .  , 

Xp(t)j 

is a multivariate, zero-mean, Gaussian process with continuous spectrum 
and (p x p) spectral density matrix 

f(2) = [ft,m(2)]. 

The multidimensional weighted covariance estimate of f(2) is based on the 
following covariance estimators: 

{1 N-k 

C ,, re(k) = ~ = Cm l ( -  k), 

~ 0 , '  

k = 0 ,  1, . . . , N -  1, 

k =  -1 ,  - 2 , . . . ,  - N +  l, 
Ikl N. 

(8.49) 

Let 

f:(k)  = [C,,m(k)]. 
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Then, the weighted covariance estimators can be represented in matrix form 
by the expression 

oo 

A 1 ~ e_i~kwM(k)~_.(k) ' 
f('~) = ~ ~=-~o (8.50) 

with the usual understanding that the indicated operations are performed 
coordinatewise. The lag window and spectral window are the same as in the 
univariate case. With the same convention, the vector finite Fourier transform is 

1 N 
z(2) = (2rtN)l/2 , ~X(t)e-iat=-a (8.51) 

and the periodogram matrix is 

IN(i ) = Z(i)Z(2)*. 

Then, the matrix analog of (8.22) is 

(8.52) 

f(~) _ wM(~ ~)IN(~) d~. (8.53) 

The multivariate smoothed periodogram estimator is 

I N / 2 ]  

f(2) = y' K ( 2 -  2v)Iu(2v), (8.54) 
v = - [ ( N  - 1 ) / 2 ]  

where 2~ = 2rtv/N. The argument outlined for the univariate case can be 
applied here as well to show that the distributions of both estimators (8.50) 
and (8.54) are asymptotically equivalent to the distribution of the Daniell 
estimator 

1 [ n / Z ]  

~(2k) = -  Z IN(2k- 20, (8.55) 
n v =  - [ ( n -  1 ) / 2 ]  

where n = r/2 and r is the equivalent degrees of freedom given by (8.38)- 
(8.40). Now, if the elements of f(2) are effectively constant over the equivalent 
bandwidth of the spectral window, it follows from (8.55) that nf(2k) is asymp- 
totically the sum of n independent, identically distributed random matrices 
of the form 

I~(L) = z(L)z(L)*,  

where z(2v) has the multivariate complex normal distribution with mean 0 
and covariance matrix f(2k). (See Section 1.4.) When 2, # 0, n, this sum has 
the complex p-dimensional Wishart distribution, denoted wpC(n, f(2,)), which 
was introduced into time series analysis by Goodman (1957). The reader 
is referred to Brillinger (1970) and Hannan (1970, p. 295) for properties of 
this distribution. Now, the asymptotic theory for estimators (8.50) and (8.54) 
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is based on the assumption that n~(Ak) has exactly the wpC(n, f(Ak)) distribution 
for 2k ~ O, ~Z, where n = I(EDF).  The distribution theory for estimators at 
2k = 0, ~Z is somewhat more delicate. In particular, the distribution for zero 
frequency depends on whether or not a dc correction is made (Hannan, 1970, 
p. 251). However, as before, we will be primarily concerned with the properties 
of estimators at frequencies 2 :~ 0, rt and results for 0 and rc will only occa- 
sionally be given. 

We will be interested in the distributions of the estimators of the various 
spectral parameters introduced in Chapter 5. Each parameter was seen to be 
a function of the components of the spectral density matrix f(2). Symbolically, 
if 1(2) is a vector of univariate spectral parameters, then 

1(2) -- h( f (2) ) ,  (8.56) 
where h(x) is a "well-behaved" function of a matrix variable. The standard 
procedure for estimating 1(2) is to replace f(2) by one of the estimators (8.50) 
or (8.54)--or, in certain cases to be discussed later, by an estimator with the 
same asymptotic distribution. Thus, the statistical properties of 

will depend on the statistical properties of f(2) and on the function h(x). In 
particular, the asymptotic distribution of 1(2) can be obtained by standard 
(but complicated) transformation of variables procedures applied to the 
asymptotic distribution of f(2) given above. 

Goodman (1957) accomplished the arduous task of obtaining the asymp- 
totic marginal and joint distributions of the estimators of the bivariate 
parameters introduced in Chapter 5 as well as several others not so widely 
used in practice. The asymptotic distributions of estimates of partial and 
multiple coherence were computed by Goodman (1963) and by Khatri (1964) 
and the distributions of the regression parameter estimates are given by 
Hannan (1970) and Brillinger (1970). The principal use made of the distribu- 
tion theory is to construct confidence intervals for the various spectral 
parameters. In the remainder of this section we will present the standard 
confidence intervals for these parameters and illustrate their uses. Some of the 
more interesting hypothesis tests will also be given. For details of the theory 
the reader is referred to the excellent summary by Hannan (1970). 

Confidence Intervals for Coherence 

The coefficient of coherence for two components Xj(t), Xk(t) of a multi- 
variate time series was defined in expression (5.49). The corresponding 
estimator, which we will call the sample coherence, is obtained as described 
above; 

P j ,  k( '~) - -  I f  j, k(Z) l/(f j, j(~)fk, k(~)) 1/2. (8.57) 
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The distribution of (8.57), based on the complex Wishart approximation 
for the distribution of ~(2), has been extensively tabulated by Amos and 
Koopmans (1963) and by Alexander and Vok (1963). Moreover, Enochson 
and Goodman (1965) have shown that for n > 20 and 0.4 < p2 _< 0.95, the 
random variable 

~0 = tanh-~(~) 

is approximately normally distributed with mean and variance 

E(cp) = tanh-l(p)  + (1/2(n - 1)), 

Var(~o) = 1/2(n - 1). 

In these expressions, p = p j, k(2), P = ~j, k(2), tanh-1 denotes the inverse 
hyperbolic tangent and 2n is the equivalent degrees of freedom of the esti- 
mator i'(2). This permits a straightforward calculation of a 100(1-  ~)~o 
confidence interval for p: If u~/2 is the upper ~/2 cutoff point for the standard 
normal (N(0, 1)) distribution, then 

P ( - U ~ / 2  ~ (q) - -  E(q~))/(Var(q~)) 1/2 < uot/2 ) = 1 -- c~. 

Thus, after some algebra, we obtain the 100(1-  ~)~o confidence interval 

p < p < ~3, where 

p = tanh{tanh-'(r - (U=/z)(2(n - 1)) -1/2 

fi = tanh{tanh-m(r + ( u ~ / 2 ) ( 2 ( n -  1)) -1/2 

- ( 2 ( n  - 1 ) ) - a } ,  

- ( 2 ( n  - 1 ) ) -  ~} .  
(8.58) 

These limits can be computed using standard tables of the normal distribution 
and the hyperbolic and inverse hyperbolic functions [see, e.g., Abramowitz 
and Stegun (1964)]. 

For selected values of n = 1EDF, convenient graphs of confidence limits 
for p are given by Amos and Koopmans (1963). These graphs are reproduced 
as Figs. A9.1 and A9.2. To obtain an 80 or 90 ~ confidence interval, draw a 
horizontal line on the appropriate graph from the observed value of r until 
it crosses the curves labeled with the given value of n. The values of p on the 
abscissa corresponding to these crossing points are the lower and upper 
limits of the confidence interval. If the upper curve is not intersected by the 
horizontal line, the lower limit is 0. 

Additional curves for other values of n or for a different confidence 
coefficient can easily be constructed from the Amos and Koopmans (1963) 
tables, or the confidence intervals can be calculated from the approximation 
(8.58). As an illustration of the way these intervals can be displayed graphically, 
95 ~ confidence intervals for coherence of the Groves and Hannan sea level 
data are plotted in Fig. 8.1. 
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Cutoff points for tests of the hypothesis p = 0 vs p > 0 can be obtained 
from Table A9.4 of the F distribution because of the fact that for 2 # 0, n, if 
p = 0, then 

( n -  1)#2/(1 - #2) = F2, 2c,-,) 

has the F distribution with 2 and 2 ( n -  1) degrees of freedom. Power curves 
for c~ = 0.10 and 0.05 and selected values ofn are given in Figs. A9.3 and A9.4. 
The cutoff values for these tests are given in Table A9.6. Power and cutoff 
values for unlisted degrees of freedom can be obtained by interpolating the 
graphical and tabulated values linearly in the reciprocals of the degrees of 
freedom. 

Example 8.3 Computation of a Confidence Interval for Coherence 
Suppose that the data of Example 8.1 is now assumed to be from a 

bivariate time series and we estimate the coherence at 2 -- 2' to be 

Pj, k(/t,') = 0 . 8 0 ,  

using the same weighted covariance estimator as before. Since this estimator 
has 10 equivalent degrees of freedom we obtain n = 5. Then, a 90 ~ confidence 
interval for Pj, k(2') can be obtained from Fig. A9.2. A horizontal line at 
/~ = 0.80 intersects the two curves labeled n = 5 at 0.34 and 0.91. Thus, with 
90 ~ confidence, 

0.34 < p j, k(~,') <~ 0.91. 

Confidence Intervals for the Gain of L 

We defined the gain function of the filter which transforms Xj(t) into the 
best mean-square approximation to Xk(t) in expression (5.56). The natural 
estimator for this parameter  is 

fij, k(/]') = l f j, l / f j, j(l~)" (8.59) 

Goodman (1957) obtained a 100(1 - ~) ~ (two-dimensional) confidence inter- 
val for the transfer function /~j, k(2) of this filter. Because of the inequality, 
] l x ] -  lY[[ < I x - y ] ,  a 1 0 0 ( 1 - ~ ) ~  confidence interval for the gain 
flj, k(2)= [/~i, k(2)] is the set of values of the parameter satisfying the in- 
equality 

(n -- l~f~, ).-(2-) F2'2"-2(~) ' 2 4- O, re, 

] fij, k(~) - -  flj, k(2)l 
t , ( ~ ) ,  ;t = O, = ,  

w h e r e v = n - 2 i f 2 = 0 a n d n - 1  i f 2 = r c .  

(8.60) 
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The quantities F2, 2n-2(90 and tv(c~) are the upper c~ cutoff points of the F 
and t distributions with the indicated degrees of freedom; 

e ( & ,  _< = - 

P ( t v  < = 1 - 

These cutoff values can be obtained from Tables A9.3 and A9.4. Cutoff values 
for unlisted degrees of freedom can be obtained from both tables by inter- 
polating linearly in the reciprocals of the degrees of freedom. 

This confidence interval is especially useful for establishing bands on the 
gain function of an in-service linear filter with output contaminated by noise 
as described in Example 5.4. When no noise is present, Pj, k(2) = 1 and thus 
Pj, k(,~t) = 1 with probability 1. In this case the measured (sample) gain is 
identical to the true gain which is reflected in the fact that the right-hand side 
of (8.60) is zero. 

Confidence Intervals for the Phase Angle 

The estimator for phase is 

O j, k(2) = -- Arctan Oj, k(2)/Oj, k(2), (8.61) 

where, e j, k(2) = ReL, k(2) and Oj, k(2) = -- Imf j ,  k(2) are the sample co- 
and quad-spectral densities [see expression (5.52)]. A 100(1 - c~)7o confidence 
interval for O j, k(2) is the set of all values of the parameter satisfying the 
inequality 

I sin(Oj'k(2) -- OJ'k(2))t < fijlk(2)-~-2n Z 2)J t2n-2 , 2 -r 0, n, (8.62) 

where t2n_ z(~/2) is the upper a/2 cutoff point of the t distribution with 2n - 2 
degrees of freedom [Hannan (1970, p. 257)]. 

Think of the frequency interval - n  < O < n as being formed into a circle 
by joining the endpoints -rc  and n as in Fig. 8.2. From tables of the arcsine 
function [e.g., Abramowitz and Stegun (1964)] one can solve for the angle 
O* for which sin O* equals the right-hand side of (8.62). Then, the confidence 

interval is 
9j,  k(~) -- O* ~ O j, k(~l,) ~ 9j,  k(~t,) "a t- 0".  

This interval may overlap the point +_ n in which case an " in terval"  consisting 
of two segments as pictured in Fig. 8.2 would be obtained when the circle is 
straightened into the usual linear scale for O j, k(2). 

Inequality (8.62) also determines a second interval of length 20* centered at 
O j, k(2) + n, because of the trigonometric relation 

sin(0 + n) = - s i n  O. 
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! 

Confidence interval on a circular scale 
?r 

0 - 

~.,,+e 

- - ' / r  . . . .  

x' x 
Confidence interval on a linear scale 

F i g .  8 .2  Illustration o f  a confidence interval for t~j,k()~') on a circular scale and on the 
corresponding linear scale. 

This interval is due to a possible (statistical) error in the sign of ~j, k(2)or 
O j, k(2) which would cause the displacement of the estimate of O j, k(2) by 
the amount ~z. When the coefficient of coherence is large, thus the right-hand 
side of (8.62) is small, an error in sign is improbable and the interval described 
above will have very nearly the quoted confidence coefficient. When p j, k(2) 
is small, this confidence coefficient is less credible for the given interval. 
However, it is common practice to use only the interval centered at oaj, k(2) 
until the right-hand side of (8.62) reaches or exceeds unity. At this point, the 
two intervals join and the "no  information" interval -~z < ~j ,k(2)< ~Z 
results. This phenomenon is illustrated by the confidence intervals for phase 
graphed in Fig. 8.1. Note how the lengths of the confidence intervals for phase 
vary with the magnitude of the coherence. 

Example 8.4 Calculation of a Confidence Interval for the Phase Angle 
Suppose that the data of Examples 8.1 and 8.3 yield an estimated phase 

angle of 

~j, k(2') = 3.15 rad, 
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and that a 95 ~ confidence interval for ,g j, k(2') is desired. Recall that n = 5 
and ~ j , k (2 ' )=0 .80 .  Entering Table A9.3 of Student's t-distribution with 
2n - 2 = 8 degrees of freedom, we obtain (since ct = 0.05), 

t8(0.025) = 2.306. 

This allows us to compute the right-hand side of (8.62); 

{(1 -- (0.8)2)/(0.8)2(8)}1/1(2.306) = 0.612. 

From the arcsine tables of Abramowitz and Stegun (1964) we find 

0* - arcsin(0.612) = 0.66. 

Thus, to two decimal places, the 95 ~ confidence interval is 

3.15 - 0.66 _< L,qj, k(~,' ) ~ 3.15 + 0.66 

o r  

2.49 < Oj, k(J,') <__ 3.81 rad. 

Now, the angles in this interval satisfying the inequality n < 0 < 3.81 
can be represented in the interval ( - n ,  n] by replacing each 0 by oa-  2n. 
Thus, using the approximation n ~- 3.14, we obtain the final 95 ~ confidence 
interval, 

- 3.14 < 0j, k(2') < -- 2.47 rad, 

2.49 < Oj, k(2') < 3.14 rad. 

Joint Confidence Intervals for Gain and Phase 

The Goodman (1957) confidence interval for the transfer function of [ 
can be converted into a joint 100(1 - ~)~o confidence interval of the following 
form for the gain and phase functions: 

flj, k(~) -- ~(,~) ~ flj, k(~) ~ flj, k(~) -~- S(I~), 

0j, k(2) -- A9(2) < O j, k(/~) ~ 0j, ,(2) + A9(2), 

2 4: 0, n, where 

and 

~ ( a )  = 
n - 1  

F2, 2 2(00[ 1 ^2 fJ, J('~) 
n -  - -  PJ' k('~')] fkl k(~) 

A9(2) = arcsin[~(2)/flj, ,(2)]. 

Note that the confidence interval for the gain is the same as before. 
These confidence intervals are useful for giving joint bounds on the gain 

and phase of a linear system for which the observed output is contaminated 
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by noise as in Example 5.4. It is easily seen that the lengths of both confidence 
intervals depend on the signal-to-noise ratio defined therein. The compu- 
tation of these intervals can be accomplished by means of the computer 
program BMDX68 (Dixon, 1969). 

Confidence Interval for Multiple Coherence 

The multiple coherence R 2. m(2) was shown in Section 5.6 to be an im- 
portant parameter both in multivariate spectral correlation analysis and regres- 
sion time series analysis. Recall that m = (m l, . . . ,  mq) represents the indices 
of the components of the random vector X(t) = ( X l ( t ) , . . . ,  Xp(t)) upon which 
Xj( t )  is being regressed. The number of elements q in the index set will be one 
of the parameters of the distribution of/~2. ,(2). Let t~x(2) represent one of the 
estimators of the spectral density matrix fx(2) given earlier in this section. 
Then, the estimator for multiple coherence is 

Rj."2 m(,~ ) = ~X m(,~)~mX(,~,) - ,  I~X m(,~,)/j~jX, j ( , ~ , ) , .  

x 2 where ~x m(2) is the 1 x q vector with elements f j , , , . ( ) ,  r -- 1 2, . . . ,  q, and 
fmX(2) is'the q x q matrix of elements Ax fro,, m,(2), r, s = 1, 2, . . . ,  q. The distri- 
bution of this estimator depends on n =  �89 q, and the " t r u e "  multiple 
coherence R 2 2 = R j .  m(2). The distribution for 2 = 0 is the same as for 0 < 2 
< rc except that q is replaced by �89 and n by l(n - 1). (This assumes the use of 
the standard mean correction wherein the sample mean is subtracted from 
each series.) For 2 = re, the same result holds with q replaced by �89 and n 
by �89 Tables of the cumulative distribution function are given by Alexander 
and Vok (1963). For our purposes, a convenient table of the upper and lower 
end points of 95 ~o and 99 ~o confidence intervals for R E is supplied by Groves 
and Hannan (1968). This table is reproduced as Table A9.5 in the appendix 
to Chapter 9. 

Example 8.5 Calculation o f  a Confidence Interval f o r  Multiple Coherence 
Suppose that a 95~o confidence interval for R2.m(2 ') at 2 '4 :  0, 7r is 

desired, where Xl( t )  is regressed on q = 4 other component time series. 
Suppose also that the estimator at 2' is based on 30 degrees of freedom and 
has the computed value 0.64. Using the notat ion/~ =/~1, m(2'), we can enter 
the table with ~ = 0.05, q = 4, n - q = 15 - 4 = 11 ~ 10 and/~ = 0.8 to obtain 
the confidence interval 

0.44 < R~. m(2 ')< 0.86. 

Rather crude forms of interpolation, such as plotting the confidence limits 
from the table on graph paper against the parameter of interest, should provide 
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sufficiently accurate confidence limits for other than the given values of q, n, 
and R. To obtain better accuracy, the more comprehensive tables of Alex- 
ander and Vok (1963) will be required. 

For the purpose of testing the hypothesis R 2. m(2) = 0 against the alternate 
2 Rj. m(2) > 0, it is important to note that when the parameter has the value 0, 

the statistic 

n - q ( ~ 2 . ~ _ ! 2 )  
q 1 -- /~j2... m(,~,) / = F2q, 2,,-2q 

has the F distribution with 2q and 2n - 2q degrees of freedom for 2 4: 0, n. 
This result makes it possible to establish the cutoff value for a test based on 
statistic/~2, m(2). For, if d = Fzq, 2,-2q(~) is the upper ct cutoff value of the 
F-distribution, the appropriate decision rule for a level ~ test is to reject the 
hypothesis if 

/~2. m(2) -> qd/(n + q(d + 1)). 

The value of d can be obtained from Table A9.4. However, the power of this 
test must be computed from tables such as those of Alexander and Vok 
(1963). 

Confidence Intervals for Partial Coherence 

The estimator of partial coherence can be obtained as described above 
from expression (5.77). Equivalently, the sample residual spectral matrix 
can be computed by inserting estimated spectral densities in (5.74), then 
calculating the ordinary coherence from the appropriate elements to obtain 
the sample partial coherence. This is the computational procedure used, for 
example, in the multivariate spectral analysis computer program BMDX68 
(Dixon, 1969). It is plausible from this method of computing the sample 
partial coherence that its probability distribution should be the same as that 
of the ordinary coherence with a reduction in the degrees of freedom to 
account for the data used to estimate the q regression coefficients. This is, in 
fact, the case and for 2 # 0 the asymptotic distribution of Pj,k.m(/],) is the 
same as that of the ordinary coherence with the parameter n replaced by 
n - q  + 1. For 2 = 0, n is replaced by n - q  [see Hannan (1970, p. 262)]. 
Thus, confidence intervals for the partial coherence can be obtained from 
Figs. A9.1 and A9.2. 

Moreover, the cutoff value for a test of zero partial coherence can be 
obtained from the fact that if p j, k.m (2) = 0, then, 

(n -- q)~2 k -- Pj, m(2) ) 
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has the F-distribution with 2 and 2(n - q) degrees of freedom. The power of 
this test for selected degrees of freedom can be obtained from Figs. A9.3 
and A9.4 for significance levels 0.10 and 0.05. Cutoff values for the degrees 
of freedom given in the graphs are listed in Table A9.6. 

Some Distributional Results for Multivariate 
Spectral Regression Parameters 

The regression model introduced in Section 5.6 is 

Y(t) = L(X(t))  + Tl(t), 

where X(t) is a p x 1 vector stochastic process and Y(t) and Tl(t) are q x 1 
processes, ~(t)uncorrelated with X(t). In addition, the processes are now 
assumed to be zero-mean Gaussian processes with continuous spectra. The 
important questions to be dealt with on the basis of this model concern the 
strength and form of the linear dependence of Y(t) on X(t). These questions 
can be suitably answered through hypothesis tests and confidence regions for 
the (q x p)-dimensional transfer function B(2) of L and for the generalized 
coherence 92(2) defined by expression (5.83). We give only a few details 
concerning the distribution theory required to carry out these procedures. For 
complete details both for this model and for the case in which X(t) is assumed 
to be nonstochastic, see Brillinger (1970). 

Joint 100(1- 0~)~ confidence intervals for the gain flj, k(2) and phase 
O j, k(2) of each component of B(2) at 2 # 0, n are as follows: 

/~j. ~(~) - ~j. ~(~) <_/~j. ~(~) _</~j, ~(~) + ~j, ~(~), 

~j,~ (~) - $j.~ (~) _< ~j,~ (~) ___ ~j,~ (~) + $ j,~ (~), 

where 

~,~(~)  = P fsr,,s(2)(1 - R~.p(2))(|'x(2)-l)k kF2p, 2,,-2p(oO 
n - - p  

and 

j, k(2) = arcsin(~j, ,(2)/flj, k(2)). 

The random variables /~.p(2) and (~X(~)-l)k,k are the multiple coherence 
of Yj(t) on all components of X(t) and the element in the kth row and column 
of f x(2)-~, respectively. Again, F2p,2n_2p(O0 is the upper ~ cutoff point 
of the F-distribution with 2p and 2 n -  2p degrees of freedom, where 2n is 
the equivalent degrees of freedom of the estimators of fx(2), It(2), and it, x(2) 
[see Bendat and Piersol (1966, p. 234)]. The estimators of fx(2) and fr(2) are 
given by (8.50) or (8.54) with X(t) and Y(t) entered in (8.49) or (8.51). The 



A P P E N D I X  TO CHAPTER 8 291 

estimator for fr, x(2 ) is obtained by replacing C(k) by the q x p matrix function 

1 N - k  
-- ~x Y(t + k)X(t)' ,  

N-  
Cr' X(k) -- IY(t)X(t + [kl)', 

~0, 

k - 0 ,  1 , . . . , N -  1, 

k = - 1 ,  - 2 ,  . . . ,  - N  + 1, 

Ikl>~N, 

in the weighted covariance case (8.50) and by replacing IN(2v) by 

I~, x(,L) = z~(~v)zX(,~v)* 

in (8.54) where zX(2) and zr(2) are the multivariate finite Fourier transforms 
of X(t) and Y(t), respectively, defined by expression (8.51). 

In the case of a single output series (q = 1), the matrix coherence pZ(2) 
was seen in Section 5.6 to reduce to the multiple coherence of Y(t) on X(t). 
Thus, confidence intervals for 91(2) can be obtained from the above results for 
multiple coherence. Note that the number of time series being regressed upon 
is p rather than q in this case. Moreover, the hypothesis of no linear regression, 
92(2) = 0, or equivalently, B(2)= 0, can be tested by means of the test for 
zero multiple coherence given above. 

These results hold equally well if the input is one-dimensional (p = 1), 
for then p/(2) reduces to the multiple coherence of X(t) on Y(t). Thus, 
confidence intervals and tests for 91(2)can again be obtained from those for 
multiple coherence. When both p and q are greater than one it is necessary to 
obtain the distributions of functions of the eigenvalues of 92(2) in order to 
obtain comparable information about this parameter. We will not pursue 
this topic in this book. 

A P P E N D I X  T O  C H A P T E R  8 

A8.1 Delta Function Property of the Spectral 
Window Corresponding to Lag Windows 
wM(k) = w(k/M) 

Let w(v) satisfy the conditions stated in the text which imply properties 
(i)-(iii) for wM(k ). First note that the Fourier transform 

w(~) = ~ w(v)e- '~ dv 

is bounded and continuous (Example 1.4). Moreover, it is easily shown to be 
absolutely integrable with 

oo 

f_ w(~) d~ = ~. 
oo 
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Since WM(k) is essentially a sampled version of w(v), by an argument 
similar to the one given in Section 3.2, it can be shown that the Fourier 
transforms of the two functions are related by the equation 

oo 

WM(2) = M ~ W(M2 + 2rcMk), -rc < 2 <_ re. 
k =  - o o  

Now, if g(2) is any bounded, continuous periodic function, we have 

f_,~ Wu(/~)g(2 - / 0  d/t = k=Z-oo f_MW(M(. + 2rrk))o(2 - /~)  d/z 

oo 

= Z  
k =  - o o  

M ~  

f_ W(v + 2nMk)g(2 - (v/M)) dv, 
M n  

by the change of variables v = Mp. Since W(2) is absolutely integrable and 
g(2) is bounded, we can choose a number A sufficiently large such that 

= maxx]g(2)[ ~lvl>al W(v)l dv is arbitrarily small. Then if m is chosen to 
exceed A/n, the absolute difference between 

/t 

f w.(~)g(2 - ~) d~ and faAW(v)g(2 -- (v/M)) dv 

will be no larger than ),. However, since g(2) is continuous, M can be chosen 
large enough so that l g ( 2 -  ( v /M) ) -  9(2)1 < v/~Aa] W(v)] dv for [v[ _< A. 
Then, the absolute difference between ~a_AW(v)g(2-(v/M))dv and 
g(2)~a_a W(v)dv will not exceed ~,. Finally, this last expression and g(2) do 
not differ by more than 7 in absolute value and we conclude that for M suffici- 
ently large, 

Thus, 

< 3~'. 

/t 

lim f WM(p)g(2 -- p) d# = g(2) 
M ~ o o  - r e  

as was to be shown. 

A8.2 Why a Spectral Line Appears as a 
Peak in the Estimated Spectrum 

By extending the definition of spectral density to the discrete component of 
the spectrum by means of the Dirac delta function of Section 6.4, we can 
use some of the expressions derived in this chapter to indicate why spectral 
lines show up as peaks in the estimated spectrum. Recall from expression 
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(2.6) that the discrete spectral distribution of a discrete-time weakly stationary 
process can be represented in terms of the spectral function as 

Fd(A ) = ~ P(~j)" 
;tj~A 

Then, if (~p(,~) is the periodic Dirac delta function introduced in Section 6.4, 
we can define a "density function" for this spectral distribution by the 
expression 

Note that, indeed, 

oo 

/d(~,) = ~ p(~j) t~p(~ -- /],j). 
j =  - - o o  

Fd(A ) = fafd(2 ) d2. 

Now, assuming for the moment that the spectrum is pure discrete, we 
obtain from (8.7) and an easy extension of (8.10) that 

E1u(Z) - f I H~(= - Z) I~A(=) d=. 
--/I; 

Substituting the above expression for fd(2) into this integral and (formally) 
evaluating the resulting sum, this becomes 

oo 

EIN(~ ) = ~ P(~j) I HN( ~ -- ~j) l 2. 
j-- --oo 

For a spectral estimator of the form (8.22), with N reasonably large in 
comparison to M, the approximation [HN(,~)[2 ~ 6p(2) is quite good. Thus, 
taking the expectation of this estimator, we obtain 

= WM(2 -- l~)EIu(l~) d~ 
oo 

~= Z P(~'j)WM(~'--~'j)" 
j =  - -oo  

A graph of this function consists of a series of peaks centered at the points 
of discrete spectral power. With high probability, this will also be the appear- 
ance of f(2). If a continuous spectral component is also present, then these 
peaks will be superimposed on the estimate of the spectral density. See 
Fig. 6.12 for an excellent example of this phenomenon. 

Note that the shape of the peaks will be roughly the shape of the spectral 
window. Thus, the peak at 2j will have height proportional to p(2j)/fl, where 
/3 is the bandwidth of the estimator, and width approximately equal to /3. 
In the ideal situation in which fl is small in comparison to the distances between 
peaks the spectrum will exhibit tall, narrow, isolated peaks as shown in Fig. 
6.12. 



C H A P T E R  

Sampling Properties of 
Spectral Estimates, Experimental 
Design, and Spectral Computations 

9.1 INTRODUCTION 

In this final chapter we will treat some of the more practical aspects of 
spectral analysis. First we will introduce exact expressions for the mean, 
variance, and covariance of spectral estimators in order to discuss the depen- 
dence of the bias and variability of these estimators on such parameters as the 
number of data points and the equivalent bandwidth. This will also allow us 
to discuss criteria for the selection of spectral windows. A special bias problem 
sometimes encountered when estimating coherence will also be considered. 

In some instances the time series analyst is pleasantly surprised by being 
consulted about the measurement of a spectrum before the data is gathered. 
This makes it possible to select the appropriate sample size and, in the case of a 
continuous-time series, the sampling rate, to produce spectral estimates with 
preselected attributes. We will consider the guidelines for experimental design 
which have been most useful in practice. 

Next, methods for computing spectral estimators will be discussed. The 
invention of the digital computer made applications of spectral analysis to 
real problems possible beginning in the 1950s. Since then, the spread of these 
techniques to more complex problems has been tied closely to advances in 
computer technology. A major breakthrough in the calculation of spectra 
was made possible by the introduction of the fast Fourier transform algorithm 
into time series analysis by Cooley and Tukey (1965). We will discuss this 
algorithm and its implications for the computation of spectra in this chapter. 

294 
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Finally various aspects of data modification and analysis such as re- 
moving "wi ld"  values and dealing with missing observations will be 
considered. 

9.2 PROPERTIES OF SPECTRAL ESTIMATORS AND THE SELECTION 

OF SPECTRAL WINDOWS 

The distribution theory of the last chapter is an asymptotic theory 
and the derived distributions provide good approximations to the true 
distributions only if M and N are reasonably large. Under the assumption 
that the underlying process is Gaussian, expressions for the mean, variance, 
and covariance of spectral estimators can be derived which are valid for all 
M and N. By studying these expressions we will be able to better understand 
the properties of spectral estimators as point estimators. This understanding 
will provide us with practical criteria for selecting spectral windows, thus lag 
windows, for weighted covariance estimators and smoothing functions for 
smoothed periodogram estimators. 

We again consider spectral estimation for univariate processes first. 
Thus, X(t), t = 0, + 1, . . . ,  will represent a real-valued, zero-mean, Gaussian 
process with continuous spectrum and continuous spectral density function 
f(2). For the purposes of this and succeeding sections it is convenient to base 
our discussion on the modified process 

be X(t), t = 0, + 1, . . . ,  (9.1) 

where bo, b_+l, . . .  is a sequence of real numbers called a data w&dow. 
By selecting particular values for the bt's, a variety of situations can be 
simulated. For example, the usual sample X(1), X(2), . . . ,  X ( N ) c a n  be 
viewed as arising from (9.1) through the use of the data window 

1, t = 1, 2, . . . ,  N, (9.2) 
b t =  O, otherwise. 

A sample with missing observations corresponds to taking bt = 1 when the 
value of X(t) is observed and bt = 0 when it is missing. We will also be 
interested in data windows for which the bt's tend gradually from one near 
t = N/2 to zero near t = 1 and t = N. Such windows are called tapers or 
faders and, as we will see, they have important uses for correcting bias in 
smoothed periodogram estimates. 

At present, we allow the values of  bt to be arbitrary for 1 < t < N and 
take be = 0 for t outside o f  this range. In this section, B(2) will denote the 
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Fourier transform of this sequence 

o o  

1 ~ e-i;"b t . 
B(~) = ~ ,=-oo 

The weighted covariance and smoothed periodogram estimators appro- 
priate to the windowed data (9.1) are obtained as follows. A modified auto- 
covariance estimator is defined to be 

o0 1 oo 
(2(k) = 2,= 2o0 b, 2 t- ~-oo bt+k X(t + k)btX(t),  k >_ O, (9.3) 

((~(- k), k <0. 

Observe that this reduces to our previous definition of the sample auto- 
covariance, (8.18), when the data window is given by (9.2). The weighted 
covariance estimator is then defined as before; 

o o  

1 ~ e_i~kWM(k)C(k)" 
f(~) = V .  ~-_oo 

The smoothed periodogram estimator is based on the following modifi- 
cation of the finite Fourier transform: 

( o o  ) - l/2 oo _i;ubt X(t)" (9.4) z(2)= 2z: E b, 2 ~ e 
t = - - o 0  t = - - o 0  

We will consider the following smoothed periodogram estimator of f(2) 
in this section: Let 1(2) = Iz(2)]2 and define 

t l  

= J W ( 2 -  #)I(~)d#, (9.5) 
- - T t  

where W(2) is a real-valued, symmetric weight function for which 

[ w(x) dZ = 1. 

This is actually equivalent to the more familiar form (8.23) for a smoothed 
periodogram estimator because of the frequency domain sampling theorem 
(Section 8.2). However, this form will better suit our needs here. 

The weight function W(2) is the Fourier transform of a square-summable 
weight sequence Wk in the time domain; 

o o  

1 ~ e-iakw k. 
w(2)  = ~ ~--oo 

The weights are necessarily real-valued, symmetric, and have Wo = 1. In all 
cases of interest [w,[___ Wo. Consequently, except for the fact that wk need 
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not be zero for [kl > M, this sequence has all of the properties of a lag window 
for a weighted covariance estimator (Section 8.3). 

It is now easy to show that both the weighted covariance and smoothed 
periodogram estimators can be written as the sum 

where 

O(3 oO 

f ( 2 ) =  Z ~ as , tX(s)X( t )e  -i;~(s-~ (9.6) 
S - - - - ~  t - -  - -  O0 

/27~ t oo as, t = bt ws-tbs ~ bt 2 (9.7) 
- "  ~ o o  

and wk = WM(k) in the weighted covariance case. Our treatment will follow, 
in most essentials, the paper of Jones (1971). First, as is shown in the Appen- 
dix, if A(2, #) is the two-dimensional Fourier transform of as, t, 

o o  o o  

A(2, p ) =  Z Z as, t e-i('~s-ut), (9.8) 
S - - - - 0 0  t " -  - -  O0 

then 

E ( f  (2)) - f A(2 - o~, 2 - ~z)f (oO dot. (9.9) 

It is also shown that A(2, 2) can be put in the form 

A(2, 2 ) =  f~,, [B(oOJ2W(2- -oOdoc/ f  "_~ [ B(o0 [ 2 d~. (9.10) 

Moreover, 

Cov(f(2), f(#)) = f f A(2 - ~, ;t - fl)A(p - ~z, p - fl)f(oOf(fl) dtz dfl 

+ f f A(2 - 0~, 2 - f l )a(# + fl, p + ~x)f(oOf(fl) d~z dfl. 

(9.11) 

Thus, 

Var(f(2)) = f f A(2 - o~, 2 - fl)A(2 - o~, 2 - ~ ) f ( o O f ( f l )  do~ dfl 
- - l g  * - - f g  

l g  l g  

+ f f A(2 - ~, 2 - fllA(2 +/~, 2 + oOfCoOf(~) do~ d~. 

(9.12) 

These are exact expressions based on the Gaussian assumption. Unfortunately, 
the ones for the variance and covariance are too complicated to be very useful 
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and, in fact, all useful expressions are approximations based on various simpli- 
fying assumptions. We now develop some of these expressions and indicate 
the assumptions on which they are based. 

Alternate Expressions for Variance and Covariance, 
Variance Leakage 

It is easy to check that A(2, #) = A ( - 2 ,  - # ) .  Moreover, in virtually all 
cases of interest, most of the "mass"  of A(~t, 2) will be concentrated in the 
vicinity of (#, 2 ) =  (0, 0). Consequently, the product A ( 2 -  ~, 2 -  f l )x 

A(# + fl,/~ + a) = A(2 - a, 2 - fl)A(-l~ - fl, - p  - ~) in (9.11) will be nearly 
zero for all ~, ft. Thus the integral will essentially vanish unless 2 is close to 
- g .  The corresponding integral in (9.12) nearly vanishes unless 2 ~ 0 or n, 
in which cases it equals the first integral. Consequently, ourfirst approximation 
will consist of  dropping the second terms in (9.1 l) and (9.12) with the under- 
standing that we will always be interested in the covariance of  estimators at 
frequencies of  the same sign and the expression for the variance off(2) is valid 
for 2 # O, 7t. This expression is to be multiplied by 2 at 2 = O, n. 

The next approximation is derived from assuming that for each 2, f(ct) 
and f(fl) are nearly constant, thus equal to f(2), for all values of a and fl for 
which A(2 - a, 2 - fl) is appreciably different from zero. This can be made to 
hold to a good degree of approximation by making the bandwidth of the 
spectral window sufficiently small. The adjustment of bandwidth is necessary 
to control bias as we will see presently. Thus, with these two assumptions and 
the observation that A(2,/~) is periodic of period 2rt and even in each variable, 
(9.11) and (9.12) become 

Cov(f(2), ?(~))  
/m It  I t  

~-f(~)f(~) | | A(~ - ~, ~ - a ) a 0 ,  - ~, ~, - #) d~ d/~ 
i /  - - i t  � 9  

I t  I t  

f (2)f ( /0  ._| J A(~,/~),4(~ - ~ + ~, ~ - ~ + /~ )  d~ d#. 
I t ~  - - g  

(9.13) 

Var(f(2)) f ! I - - Q /  
- - i t  - - i t  

i i /  

- - f 2 i t f ~ i t  2 _ f2(2) I A(ct, fl) l da dfl. (9.14) 

Jones (1971) calls these expressions the white noise variance and covariance, 
since if the spectral densities were those of white noise processes, they would 
be valid without anything being assumed about the bandwidth of the window. 
He also notes a situation of practical importance in which (9.14) is not an 
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especially good approximation to (9.12). When as, t depends on s and t only 
through the difference s -  t, which occurs only when the data window is of 
the form (9.2), it is easily shown that A(2,/0 is concentrated on the diagonal 
2 = #, - n  < # < ft. Thus, the variance off(2) is an average of the values of 
f2(~) for frequencies ~ near 2 by (9.12). If, as is the case for tapered or missing- 
value data windows, as, t is not a "difference kernel," then it is possible for 
A(2 - ~, 2 - fl) to have appreciable off-diagonal mass which can bring power 
into (9.12) from frequencies at some distance from 2. Jones calls this variance 
leakage. This phenomenon appears to be a problem primarily in the case of 
missing data when a large proportion of the sampled values are missing and 
when the missing values are rather regularly spaced (Jones, 1972). Otherwise, 
under the above stated condition, (9.13) and (9.14) are adequate approxi- 
mations. 

Convenient computing expressions for (9.13) and (9.14) can be obtained 
by substituting (9.8) into the expressions and evaluating the integrals. We find 
that 

t ~  tQ 

cO oo  

--4rc2 Z Z a2s,, ei'(s-'). 
S ' - - - ~  t ' -  - -  O0 

Now, with the substitution of (9.7) for as, t, a change of indices yields 
~3 

/-/(r) = Z cos rk, 
k =  - o o  

where 

dk = Z b2+k b, 2 b, 2 . (9.15) 
t - -  - - o 0  t--- - - o 0  

Thus, (9.13) and (9.14) become 

and 

oo 

Coy(f(2), f(p)) ~ f (2)f(p)  Z dT, Wk 2 COS(,,]. -- la)k 
k = - o o  

(9.16) 

If we denote the correlation coefficient off(#) and f(p - 2) by r(2), it follows 
that 

r (2 )~  ~ dk Wk 2 cos k2 dk Wk 2. 
k =  - ~  k oo 

(9.18) 

oo 

Var(f(2)) ~ f2(~) Z dk Wk 2" (9.17) 
k = - o o  
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This is an easily computable function which makes it possible to calculate the 
correlation between spectral estimators for any frequency separation 2 to 
the accuracy of the approximation leading to (9.13) and (9.14). Moreover, the 
variance of the spectral estimator is especially simple to evaluate by means of 
(9.17) to within the unknown factor f2(2). 

One further approximation is possible when the data window can be 
represented in the form 

b, = b(t/N), 

where b(v) is a nonnegative continuous function which is zero outside of the 
interval (0, 1 ]. This representation holds for most of the tapers considered in 
practice. Then, if N is large and w~ is (essentially) zero for indices [k[> M 
for M relatively small in comparison to N, we can write 

for [kl _< M. Thus, if we define 

xb = f2b4(v) dv /  (f2b2(v) dr) 2, 
it follows from (9.16) and (9.17) that 

oo 

Cov(f(2), f(#)) -~ f(2)/(U) rob Z Wk 2 COS(2 -- #)k, 
N k= -oo 

and 

f2(2) oo (9.19) 
Var(f(2))~ N Xb E Wk 2" 

k = - o o  

This leads to an approximation for the correlation coefficient of f(2) and 
f(#) which does not depend on the data window. This indicates, in some 
measure, the crudeness of the approximation. However, it does lead to 
expressions for the variance which can be used to modify the asymptotic 
expressions given in the last chapter for equivalent bandwidth and equivalent 
degrees of freedom when a taper is employed in the data. Thus, for example, 
if W(2) is the weight function of a smoothed periodogram estimator, the 
Parseval relation yields 

f_., wk 2 = 27r f W2(2) d~. 
k = - o o  - i t  
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and (9.19) becomes 

2~zf z(A) Xb 
f W2(2) d2. (9.20) Var(f(2)) ~- N -,~ 

This differs from expression (8.35) by the factor x b . 
Note that the Schwarz inequality yields 

where, to a scale factor, equality holds only if bZ(v) -- 1, 0 < v _< 1. However, 
since b(v) is nonnegative, this means that b(v)= 1, 0 < v < 1. It follows that 
•b > 1 and the inequality is strict except for the data window (9.2). Thus, 
tapering increases the variance of the usual estimator. 

In addition, when the weights wk are the lag window of a weighted co- 
variance estimator of the form 

Wk = w(k/m), 

where w(v) satisfies the conditions given in Section 8.3, then the analog of the 
variance approximation (8.36) for tapered data is 

Var(f(2)) ~- f2(A)x b cwM/N. (9.21) 

The following convention for correcting the EBW and EDF values in 
Table 8.1 can be obtained from these results: I f  (9.20) and (9.21) are used to 
calculate the equivalent bandwidth and equivalent degrees of freedom through 
the definitions given in Section 8.3, the values of these quantities given in Table 
8.1 can be corrected for the effects of  tapering by dividing by x o . For a more 
careful derivation which leads to the same result, the reader is referred to 
Brillinger (1970) and Hannan (1970, p. 265). Finally, a useful expression 
which relates the asymptotic variance to the equivalent bandwidth fl is 

Var(f(2)) -~ 2r~f2(2)/flN. (9.22) 

Example 9.1 Two Important Tapers and a General Method for Constructing 
Tapers 

Two useful tapers are obtained from the relation bt = b(t/N) for the 
following functions: 

Trapezoidal Taper" For 0 < a < �89 

l 
l 3 / a ,  

1, 
bl(v) = (1 - v)/a, 

O, 

O < v ~ a ,  
a <_v < 1 - - a ,  

1 - - a < v <  1, 

otherwise. 
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Cosine Taper: For 0 < a < �89 

�89 - cos (ztv/a)), 
1, 

b2(v) = �89 - cos (zt(1 - v)/a)), 
~0, 

O < v < a ,  
a < v < _  1 - a ,  
1 - a < v <  1, 
otherwise. 

More generally, if h(y) is any monotone continuous function on [0, 1] with 
h(0) = 0 and h(1)=  1, we can construct a tapering function b(v) by letting 

l 
h(v/a), 
1, 

b(v)= h ( ( 1 - v ) / a ) ,  

~,0, 

O < v < a ,  
a < v <  1 - a ,  
1 - a < v <  1, 
otherwise, 

for 0 < a < �89 The characteristic Xo is then easily computed as follows" 
For any integer n, 

1 1 - a  a 

fo = fo 
a 

= 1 - 2a + 2 fo hn(v/a)dv 

Then, 

= 1 - 2 a ( 1 - f ~ h " ( y )  dy) .  

Xb = [ 1 - - 2 a ( 1 - - f ~ h 4 ( y ) d y ) ] / [ 1  - 2 a ( 1 - f ~ h 2 ( y ) d y ) ]  2. 

For the trapezoidal taper, h(y )=  y and it follows that ~ h"(y)dy = 
1/(n + 1). Thus, 

%, = (1 - ~-a)/(1 - ~-a) 2. 

As a ranges from 0 to �89 %, varies monotonely from 1 to 1.8. Thus, the 
equivalent degrees of freedom and equivalent bandwidth are multiplied by 
a factor between 1 and 0.556. Nearly half the equivalent degrees of freedom 
are lost for the triangular taper corresponding to a = �89 However, normally 
a would be taken to be between 1/10 and �88 Thus a less extreme loss of stability 
would be incurred with this taper. 

We consider next the important topic of bias of spectral estimates. The 
loss of degrees of freedom for tapered series will be shown to have compen- 
sating advantages from the viewpoint of bias. 
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Bias of Estimates of the Spectral Density 

There are two principal sources of bias exhibited by estimators of the 
spectral density. The first is the inability of the estimators to distinguish fine 
structure in the spectrum under certain conditions. Thus, this type of bias is 
associated with the concept of resolution. The second type of bias is a distortion 
introduced by the side lobes of the spectral window when the underlying 
spectral density has one or more large peaks. We will discuss resolution first 
and indicate the role of bandwidth as a measure of resolution. 

Effect of Varying Bandwidth on Resolution 

We will first look at bandwidth in the case of the Daniell estimator of 
the last chapter when N is large. It was seen that if 2 is one of the frequencies 
2~k/N, then the (asymptotic) expectation of this estimator is 

1 [ n / 2 ]  

E(f(2)) = -  ~ f ( 2 -  2v). 
II v = - [ ( n -  1 ) / 2 ]  

From the natural definition of bandwidth 

= 2 ~ n / N ,  

this sum is the Riemann approximation to the expression 

1 fp/2 = f (2  - p) dp. (9.23) 

Thus, the expectation off(A) is the average of the true spectral density over 
an interval of frequencies of width equal to the bandwidth of the estimator 
centered at 2. 

A 

The bias of the estimator is E f ( 2 ) - f ( 2 ) .  Since we have assumed f(2) 
to be continuous, a basic theorem of the integral calculus yields 

lim l f~ / f / /  p-~o ~ - (~ - l,) du = f ( ~ ) .  

What happens is that as fl becomes smaller and smaller, f (#)  behaves more 
and more like a constant with value f(2) for frequencies near 2 and, effectively, 
f (2  - p) is factored out of (9.23) as this constant. It follows from this obser- 
vation that the bias of the estimator can be made as small as desired by taking 
the bandwidth small enough. That is, the resolution of the estimator can be 
improved by decreasing the bandwidth. Lack of resolution is due to the smudg- 
ing of the spectrum over the frequency interval of length ft. 

An alternate interpretation of the bandwidth for the Daniell estimator is 
that it is the spacing between (asymptotically) independent estimates of the 
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spectrum. This follows easily from properties of the periodogram given in 
Section 8.2. Another is that two sharp peaks in the spectrum will not be 
distinguished as separate features unless the bandwidth of the estimator is 
smaller than the spacing A2 between the peaks. This is illustrated in Fig. 9.1. 
The bandwidth at which the peaks start to become resolved is fl = A2. 

/ t 

x' x '+Ax 
(a) 

I E(PC• 

x 
Ib l  

, A X  , 

, AX 

Fig. 9.1 Illustration of  the manner in which two spectral estimators with different 
bandwidths resolve distinct spectral peaks. The peaks are resolved only i f  the bandwidth fl 
is smaller than the peak separation AA. (a) fl > AA; (b) fl < AA. 

For nonrectangular spectral windows and moderate values of N the 
equivalent bandwidth defined in Section 8.3 inherits these properties only in an 
approximate sense. The same is true of the other definitions of equivalent 
bandwidth which have been proposed [see, e.g., Grenander and Rosenblatt 
(1957) and Parzen (1961)]. However, it is useful to think of the equivalent 
bandwidth of a spectral estimator or spectral window as being the approxi- 
mate spacing between independent estimators and as having the above 
described connections with resolution. 

Hereafter, for convenience we will drop the modifier "equivalent" when 
discussing bandwidth and degrees of freedom. As is seen from Table 8.1, 
the bandwidths of weighted covariance estimators with lag windows trun- 
cated at + M  depend inversely on M. Thus, resolution increases as M 
increases. Moreover, once the window has been specified, the bandwidth 
of the estimator is completely determined by the value of M. Thus, in 
designing experiments in which a weighted covariance estimator with given 
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lag window is to be used, the number of lags can be determined on the 
basis of meeting some criterion for resolution. An illustration of the variation 
of resolution with M for a weighted covariance estimator is given in 
Fig. 9.2. 

Note from expression (9.22) for Var[f(2)] that by decreasing the band- 
width of the spectral estimator to gain resolution, the variance increases unless 
compensated for by an increase in sample size. If the sample size cannot be 
increased, stability and resolution must be traded off to achieve a reasonable 
compromise. This reciprocal relationship between resolution and stability 
is called the Grenander uncertainty principle after U. Grenander, one of the 
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early investigators in the field of statistical spectrum analysis. This principle 
is so named because of its similarity to the Heisenberg uncertainty principle of 
quantum mechanics. 

Side Lobe Distortion (Window Leakage) 

We return to expressions (9.9) and (9.10) for the expectation off(2). The 
expectation is a weighted average of the values off(p) with respect to a weight 
function or spectral window; 

- - I I  

where we have used the abbreviated notation A(2) = A (2, 2) for the spectral 
window. This window will have a main lobe centered at the frequency of 
interest and side lobes as pictured in Fig. 9.3. This figure illustrates the manner 

f (oc) 

_ _  A(X-o:) 

f 

�9 ~ Estimated value of f (  X ) 

Fig. 9.3 Illustration o f  the distortion introduced into an estimate o f  the spectral density 
at frequency A by the side lobes o f  the spectral window and a peak in the spectrum. The cross- 
hatched power is averaged into the estimate with negative weight. 

in which the side lobes can transmit power from peaks in the spectrum into 
estimates at frequencies some distance away. The side lobes permit features of 
the spectrum outside of the bandwidth of the estimator to influence the value 
of E(f(2)), thus, with high probability, the value off(2). In a situation such as 
that pictured in Fig. 9.3 it is quite possible for both E(f(/t)) and f(/l) to be 
negative. 

Not all spectral windows have negative side lobes as pictured in Fig. 9.3. 
Some lag windows, such as the two Parzen windows given in Table 8.1, are 
nonnegative definite and, thus, have nonnegative Fourier transforms. (See 
Section A6.2 for a justification of this statement.) These windows always lead 
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to positive spectral estimates--but they do not eliminate the bias due to side 
lobe distortion. Now, a spectral peak centered on a side lobe will lead to an 
overestimate of f (2)  rather than an underestimate. In either case, this form 
of bias can cause real difficulties in the interpretation of spectral estimates 
and steps should always be taken to minimize it. The easiest way to do this 
is to decrease the bandwidth of the spectral estimator until it is substantially 
smaller than the width of the narrowest spectral peak. This makes it im- 
possible for the kind of problem illustrated in Fig. 9.3 to occur. 

Unfortunately, because of the trade-off between bandwidth and stability, 
if the sample size is fixed it is not always possible to make the bandwidth as 
small as desired. Then, an attempt can be made to remove the peaks before 
estimation by a prewhitening technique (see Chapter 6) and a spectral window 
with minimal side lobes can be used. We now return to expression (9.10) and a 
discussion of the influence of the data window on the bias of the estimator. 

Reduction of Bias by Data Tapering 

From (9.10) it is seen that spectral window A(2) of an estimator based on 
tapered data is related to the weight function W(2) by the expression 

A(2) = f D(~)W(2 - ~) d~, 
- - T t  

where 

D(2)=  [B( ,~ ) I2 / /  IB(#)I 2 d#. 
lO_ /t 

Recall that B(2) is the Fourier transform of the data window bt. We first 
consider the weight function (9.2) for ordinary sampling. The following 
discussion parallels that of the modification of transfer functions by trunca- 
tion given in Section 6.4. The role of the ideal transfer function is played by 
the spectral window W(2) which is transformed into the spectral window A(A) 
by means of the averaging kernel D(2). This function depends on the rec- 
tangular data window and, in fact, D(2) is a normalized version of the square 
of the function Cr(2) pictured in Fig. 6.6, with 2K + 1 - N. Thus, except for 
the fact that the side lobes of D(A) are all positive, they still contain a sizeable 
portion of the total mass of the window. 

This fact is of little consequence for weighted covariance estimators 
where M is generally taken rather small in comparison to N and for which the 
spectral window W(2) is continuous and smooth. The reason for this is that 
the bandwidth of D(A) is of order 1IN while that of W(2) is of order 1/M. 
Thus, W(2) will appear to be nearly constant over every frequency interval of 
length equal to the bandwidth of D(A) and it will follow that 

A(2) ~ W(2). 
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Thus, the bias of the estimator will not depend to any extent on the data 
window. 

This is not the case with the Daniell smoothed periodogram estimator, 
however. For this estimator, the weight function W(2) is rectangular and the 
side lobes of D(~.) are transferred to the edges of this rectangle much as in 
Fig. 6.7. In the present context, W(2) is represented by the function B(2) of 
the graph and A(2) is comparable to Br(2). The technique for reducing the side 
lobes recommended by Cooley and Tukey (1965) is to taper the data. This 
is one of the methods we discussed in Section 6.4 for improving the fidelity 
of digital filters. The effect of using the Hanning taper, which is simply a 
cosine taper with a = 1, is comparable to that pictured in Fig. 6.9. 

It is evident that a substantial reduction in side lobe distortion can be 
achieved by tapering with only a modest loss in resolution. When it is suspected 
that the spectral density contains one or more peaks of substantial power it is 
highly advisable to use a data taper with the Daniell estimator and any other 
smoothed periodogram estimator with sharp window features. Additional 
details concerning data tapering are given by Cooley et al. (1967). 

Comparisons of untapered Daniell estimates and weighted covariance 
estimates demonstrating the effects of window leakage for some actual data 
are given by Edge and Liu (1970). 

The Selection of a Spectral Window 

Tapering can be viewed as a technique for modifying spectral windows to 
improve one of the properties of spectral estimators. The selection and modi- 
fication of spectral windows is a topic that has received a great deal of atten- 
tion in spectral analysis beginning with the pioneering work of Tukey (1948 
approx.) and continuing to the present. In order to make a selection from 
among the collection of possible windows it is clearly necessary to apply 
some goodness criterion or figure of merit for windows. It became apparent 
rather early in the history of the subject that no single figure of merit could 
suffice for all possible underlying spectra. Moreover, no single window can 
be best with respect to all of the possible criteria. Consequently, this subject 
has progressed through the introduction of windows by individual investi- 
gators who support their candidates on the basis of the properties they feel 
are most important. Table 8.1 contains the more commonly used windows 
and their proposers. The most complete discussion of the criteria underlying 
the selection of windows in vogue before the mid 1960s can be found in 
the papers of Parzen (1967). Since then, this field has remained alive through 
the development of new computational techniques which make the use of 
more esoteric windows possible and through new theoretical developments. 
See, for example, the recent introduction of spline spectral windows in the 
paper of Cogburn and Davis (1972). 
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In practice it has been found that when the sample size N is large enough 
to achieve adequate resolution with good stability most of the windows of 
Table 8.1 yield comparable estimators when properly matched for resolution 
and stability. The larger side lobes of the two Bartlett windows make them 
somewhat less desirable than the others. Also, the Daniell estimator should 
be used only with tapered data. The greatest difficulties occur when N is 
fixed at a value too small to achieve proper resolution and stability. Un- 
fortunately, this is often the situation with time series arising in such fields as 
economics. In this case although the selection of the spectral window is more 
important, it cannot solve all of the problems likely to be encountered. Various 
filtering and prewhitening operations will probably prove to be more critical 
than the selection of a particular spectral window. 

A further limitation on the selectability of spectral windows for the 
average time series analyst is that most standard computer routines make only 
one window available. For example, the biomedical weighted covariance 
program BMD02T (Dixon, 1970) uses the Hanning window. Even the more 
recent programs which calculate smoothed periodogram estimators generally 
use the Daniell estimator with a single tapering option. [See, for example, the 
program BMDX92 in Dixon (1969) which uses a cosine taper.] Consequently, 
unless one is disposed to constructing his own computer programs, the 
selection of windows is a moot point in practice. 

Coherence Bias 

A rather subtle form of bias occasionally affects the sample coherence 
r k(2). If the phase angle 0j, ~(2) is a rapidly varying function of 2 in a 
neighborhood of the frequency at which the coherence is to be estimated, the 
estimate can be biased downward to such an extent that a strong coherence 
will be masked. Intuitively, the expectation of the sample coherence at 2' 
can be thought of as being the absolute value of an average over frequency of 
the complex coherence pj. k(2)e i~,k(~. If 0j, k(2) ~ r2 and pj, k(2) ~ c 
(c near 1) over the interval (2' - (fl/2), 2' + (fl/2)), where fl is the bandwidth 
of the estimator, then the average over frequency will behave like the integral 

.~' +t /~/2)  cfie~,(~_zfl~/2 ) ce i~ d2 = e i~ du . 
' - ( ~ / 2 )  -~ r /2  

Now, the parenthetical expression will be close to zero if fir is large [see 
expression (1.11)]. 

One way to avoid this form of bias is to make the filter bandwidth small. 
If the sample size is limited and this cannot be accomplished, it is often 
possible to estimate r and realign the two series by displacing the time vari- 
able of Xj(t) by the estimate -t of r: 

x j ' ( t )  = x j (  t - ~). 
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This is equivalent to filtering Xj(t) with a linear filter with transfer function 
e -i~. If 0~,k(2) denotes the phase shift of Xj'(t) relative to Xk(t), then 

o'j,  ~(~ ' )  = o j ,  ~(~' )  - ~ '  ~- (~ - ~)~' ~- o.  

Since this transformation does not affect the coherence, the estimated co- 
herence will now approximate the true value of this parameter more closely. 
Other methods for dealing with this problem have been proposed by Shapiro 
(1962), Tick (1967), Jones (1969), and Hannan and Thomson (1971). 

We will consider next the problem of determining the bandwidth and 
degrees of freedom necessary to achieve the desired resolution and stability 
of a spectral estimator with a fixed but arbitrary spectral window. In general, 
we would use one of the windows listed in Table 8.1, but the results will apply 
equally well to any window for which the EBW and EDF are known. 

9.3 EXPERIMENTAL DESIGN 

It is almost always the case that physical time series are recorded in 
continuous-time (analog) form. Consequently, since we will only be concerned 
with digital estimation techniques, the first design problem is the determin- 
ation of the sampling interval At for analog-to-digital conversion. Then, after 
some preprocessing to be discussed in Section 9.4, the data would be ready for 
spectral analysis by one of the standard computer programs. The investigator 
is required to furnish the bandwidth of the estimator and the number of data 
points (sample size) N. Once N and At are specified, the total length T of 
analog record required for the analysis is 

T -  N At time units. 

With this parameter, the measurement and analysis of the data can begin. 
The selection of the design parameters At, N and bandwidth can be guided 

by the theory we have developed in this chapter and Chapter 8, but not 
completely determined by it. Other factors, such as physical or economic 
limitations on T and limited knowledge of the underlying spectrum, play a 
critical role, moving experimental design from the realm of science into the 
realm of"  art." Since different conditions and restrictions exist for time series 
in different fields of investigation, the required " a r t "  will not be exactly the 
same in any two fields. Only experience and a good understanding of the basic 
properties of the operations performed on the data can lead to the develop- 
ment of the necessary skills. In this section both the theoretical and the more 
generally applicable practical considerations of experimental design will be 
discussed. An example or two will be given to illustrate how one can occa- 
sionally take advantage of special information in designing experiments. 
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The Selection of At 

From the discussion in Section 3.2, the principal objective in the selection 
of the sampling interval is to avoid aliasing. To do this, it would seem natural 
to make At several times smaller than the most conservative value required to 
make the Nyquist folding frequency 2N = g/At  larger than the point beyond 
which the power in all component time series is essentially zero. There is a 
practical limitation on how small At can be taken, however. First, note that 
the expression for bandwidth, when At ~ 1, is 

= rtr/N At, (9.24) 

where r is the degrees of freedom. This follows from (8.45) and the method for 
converting frequencies to the correct units when At -r 1 discussed in Section 
6.2. If bandwidth and degrees of freedom are held constant, thus maintaining 
the same resolution and stability, N is seen to vary inversely with At. Con- 
sequently, a decrease in At must be accompanied by an increase in sample size. 
Although this is becoming less of a problem as computer speed and memory 
capacity increase, there are and will continue to be upper bounds placed on 
N by computer programs, especially for time series with several components. 
For example, BMD02T (Dixon, 1970) requires N < 1000. Even the program 
BMDX92 (Dixon, 1969) based on the fast Fourier transform can handle at 
most 1000 data points with 14 data channels (time series components) and 
2000 points with 6 channels. Other programs using disc or tape storage as 
"v i r tua l"  memories can accept larger sample sizes but at increased computing 
costs. Consequently, effective limitations on sample size, thus sampling 
interval, still exist. 

The selection of the appropriate value of At would seem to depend critically 
on knowing the shapes of the spectra of the component time series for large 
values of ]2l. In practice this is not often the case. The electronic and/or 
mechanical system which senses, records, and amplifies the physical time series 
is usually very nearly a linear filter with a known (or computable) transfer 
function. Invariably, the gain function of this mechanism tends to zero as ]2[ 
becomes large. The "fall-off" is usually quite rapid, dropping several orders of 
magnitude over a relatively short interval of frequencies. Since we observe the 
output of this filter, and since it is unusual for physical time series to have large 
concentrations of power in high frequencies, the spectra of the observed 
series will inherit the "fall-off" characteristics of the sensing-recording- 
amplifying system. Consequently, if B is the frequency at which the gain 
function of the recorder is down from its peak value by two or three orders of 
magnitude and we calculate At to satisfy the inequality 

27t/3B < At < rt/B, 
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then the Nyquist frequency will fall in the range from B to 3B. Using this 
criterion, the aliasing problem will not arise and a reasonable value of At 
from the viewpoint of sample size will usually be obtained. 

Many recorder-amplifier systems have built-in, selectable, analog low- 
pass filters. In this case, if estimates of the spectrum are desired only for 
frequencies [21 < 2*, a filter can be selected with gain function reasonably 
flat at 2* but down from its peak value two or three orders of magnitude at a 
point B larger than 2*. If At is selected as in the last paragraph using this 
value of B, no aliasing will occur. Moreover, except for a constant scale factor, 
the spectrum will not have to be corrected for filter bias over the frequency 
range of interest. In situations where it is necessary to correct for filter bias, 
the method discussed in Section 4.4 can be used. 

When nothing is known about the recording equipment or when the above 
discussion is otherwise inapplicable, a safe but rather expensive technique 
for avoiding aliasing is to perform complete spectrum analyses for two or three 
or possibly more values of At. When no appreciable difference in the shape of 
the estimated spectrum is observed in going from one value of At to a smaller 
value, it can be reasonably concluded that no aliasing is occurring. 

The Selection of Bandwidth 

The bandwidth is the most difficult of the design parameters to determine 
objectively. This is because bandwidth determines the resolution of the spectral 
estimator and the appropriate resolution to achieve a reasonably unbiased 
estimate of the spectrum depends on a knowledge of the fine structure of the 
spectrum. This is seldom available in advance of the analysis. 

The bandwidth for a weighted covariance estimator with lag window of 
the form WM(k) = w ( k / M )  is (asymptotically) 

fl = 2 n / c w M  At rad/unit time. (9.25) 

(This is expression (8.47) divided by At to correct for the fact that At # 1.) 
We assume that At has been determined and that w(v), thus cw, is fixed. 
With the exception of the Daniell estimator, the smoothed periodogram 
estimators of interest have weight functions of the form K(2) -~ (2rt/N)WM(2) 
where WM(2) corresponds to a lag window of this type. Thus, their bandwidths 
are (asymptotically) the same as the bandwidths (9.25)of the corresponding 
weighted covariance estimators. It follows that the selection of bandwidth for 
both kinds of estimators will be equivalent to the selection of the lag param- 
eter M. We will first determine M to achieve the desired resolution and then 
establish the value of N on the basis of one of the stability criteria to be dis- 
cussed in the next subsection. 
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The bandwidth of the Daniell estimator with taper weights b, = b(t/N) 
is (asymptotically) 

fl = 2rtn/Nxb At, (9.26) 

where n is the number of periodogram values included in the average. For 
this type of estimator the stability requirement is applied first to fix the degrees 
of freedom 2n/tr b and then N is determined by means of (9.26) to achieve the 
desired resolution. Consequently, the order of applying the resolution and 
stability criteria is reversed. However, with one exception, the criteria are the 
same for this estimator and those described above, and ~a discussion con- 
centrating primarily on weighted covariance estimators can be easily adapted 
to the Daniell estimator. 

In the unusual situation in which something of the fine structure of the 
spectrum is known, the bandwidth is relatively easy to specify. For example, 
if it is known that the spectrum contains two or more narrow peaks and the 
minimum separation of the peaks is known approximately, then all peaks will 
be resolved (with high probability) if the bandwidth is taken to be about �89 of 
the minimum separation. (The qualification "with high probability" requires 
an estimator with relatively good stability. Otherwise the variability of the 
estimator can mask peaks even when the bandwidth is adequate to resolve 
them.) Thus, for example, if A2 represents the minimum separation between 
peaks, the assignment 

leads to 

M ~ 47t/Cw A2 At 

lags for the weighted covariance estimator. 

Example 9.2 A Spectrum for Which the Minimum Peak Separation Was Given 
The earth responds to an earthquake like a huge spherical bell to the 

blow of a hammer and in the process of "r inging" it displays a series of 
characteristic harmonics. These harmonics appear as peaks in long period 
seismograph spectra, the positions of which are determined by the physical 
constitution of the earth. From partial knowledge of this constitution, 
geophysicists have constructed models which predict the positions of these 
peaks. With the installation of the appropriate instrumentation just prior to 
the Chilean earthquake of 1960 it was possible, for the first time, to run a 
spectrum analysis on an actual seismogram to precisely determine the 
positions and strength of the harmonics. The specification of the number of 
lags was based on the minimum peak separations predicted lzy the models. 
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For spectra with relatively broad peaks, it is often important to determine 
the shapes and scope of the peaks rather precisely. To do this, the bandwidth 
can be so determined that the width of the narrowest peak is three, four, or 
more bandwidths. Often the spectra of several time series of similar origins 
will be obtained and by experimenting with the resolution on the first few 
of them, a good selection of bandwidth can be made for all. 

A special property of weighted covariance estimators should be noted. 
Since we have assumed that lag windows WM(k) vanish for ]k[ > M, the 
weighted covariance estimator can be written in the form 

M 
At ~ e_gZkwM(k)~(k). 

Thus, by the frequency domain sampling theorem given in Section 8.2 
with the assignment R = 2M + 1, it is seen that f(h) is completely determined 
for all h by its values at the frequencies 

2v = 2nv/(2M + 1) At ~ nv/M At, - M  < v < M. 

Standard computer programs for calculating weighted covariance esti- 
mators produce estimates at the frequencies nv/M At for v = 0, 1, . . . ,  M. 
Estimates at all other values of h can then be obtained from expression (8.8). 
Note that the spacing of the computed estimates is smaller than the bandwidth 
of all but a couple of the windows of Table 8.1. Consequently, by using the 
above bandwidth criteria for resolution we are also guaranteed of having 
estimators sufficiently closely spaced to adequately define the spectral peaks 
without interpolation. Moreover, this observation leads to a quick, "band- 
width-free" method for determining M: Choose M so as to have 3 or 4 
estimates of the spectrum between peaks and 4 or more estimates within the 
narrowest peak to be defined. 

I t i s  sometimes important to estimate the lower portion of the spectrum 
beginning with some prescribed frequency 2*. Since the first nonzero estimate 
occurs at 21 = n/M At, the criterion 21 < h* determines a lower bound for M; 

M >__ n/h* At. 

It would seem that this device would not be necessary if we simply start 
with the estimator for 2 = 0 and use the interpolation formula from the 
frequency domain sampling theorem. However, the dc correction, which 
usually consists of subtracting the arithmetic mean from each term of the time 
series, biases the spectral estimate at zero frequency so that the first reliable 
estimate is at h~. Fishman (1969) gives a formula for correcting this bias and the 
bias at frequencies 0 _< h _< ha based on the (usually unsafe) assumption that 
the discrete power at zero frequency is zero. 
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When little is known about the underlying spectrum or if the information 
one does have is suspect, the safest procedure is to run two or more analyses 
with different values of M. One stops when a larger value of M produces no 
improvement in resolution. The ideal is to be able to select N to give the desired 
stability for the value of M required to achieve the maximum resolution. 
Even when this is not possible, however, it is desirable to obtain three esti- 
mates of the spectrum; one with a small value of M relative to N, e.g., such 
that N/M = 100 or more; one with an intermediate value of M (N/M ~- 20); 
and one with a large value of M (M ~ N). This provides three different pictures 
of the spectrum progressing from an accurate (stable) view of the gross trend 
in spectral power with frequency to a relatively unstable but highly resolved 
view. With this procedure there is little chance of overlooking unsuspected 
features of the data such as narrow peaks and it is often possible to arrive at a 
reasonable value of M for use in future studies of comparable data. We now 
give an example in which sufficient information is available to enable us to 
select At and M. 

Example 9.3 A Design Example from Seismology 
A seismogram is obtained by means of a linear system with a gain function 

down 3 orders of magnitude from is peak response at 10 Hz. The seismogram 
is known to consist of two principal peaks due to different kinds of seismic 
waves in the range 2-7 Hz. The physics of the waves and the transmission 
medium allow us to predict that the peaks will be separated by at least 0.5 Hz. 
A spectrum analysis is to be designed to resolve the peaks. The available 
computer program uses a weighted covariance estimator with the Hanning 
window. 

Presumably the output of the linear system does not have much power 
beyond 10 Hz, so the selection of the Nyquist frequency 

2N = 2rt(lO) rad/sec 

would seem reasonable. Since At = 7z/,~ N from expression (3.9) this yields the 
sampling interval 

At = 0.05 sec, 

or a sampling rate of 20 observations/sec. If we take the peak spacing to be 
A2 = 2rt (0.5) rad/sec and require that the bandwidth satisfy the equation 
/3 = �89 A2, then, as argued above, the number of lags can be computed as 

M ~ 4rt/Cw A2 At = 4rt/(0.75)(2rt(0.5))(0.05) = 106.6. 

The value of Cw for the Hanning window was obtained from Table 8.1. 
Since M must be an integer, we would take the next larger integer value, 

M = 107. 
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This number must be viewed as tentative and the analyst should be prepared 
to repeat the analysis with a more suitable value of M if the desired resolution 
of peaks is not realized. The results of the first analysis can be used to aid in the 
design of the second. 

Selection of N 

The last factor to control in the spectral estimation process is the vari- 
ability of the estimator. In fact, what will actually be controlled is the relative 
variance Var(f(2))/ f2(2),  which, by converting (9.22) to the correct frequency 
units, can be written 

V a r ( f  (2))/f2(2) ~- 2n/~N At. 

(Note that previous expressions involving bandwidth can be converted to the 
case At ~ 1 by simply replacing each occurrence of fl by fl At.) With the band- 
width and At determined by the above considerations, the relative variance 
depends only on the sample size. Consequently, any criterion which specifies 
the relative variance, directly or indirectly, will determine the sample size, 
thus the data length T = N At. 

Indirect control of the relative variance can be accomplished through 
specifying the maximum length of a confidence interval or the power of a 
hypothesis test for the spectrum itself or for one of the spectral parameters 
introduced in Chapter 5. Since the asymptotic distributions ofthe estimators of 
these parameters given in Chapter 8 depend directly on the equivalent degrees 
of freedom r or on the quantity n = kr, such specifications will lead to the 
determination of r. Then, the sample size can be obtained from the expression 
(8.45) for bandwidth; 

N = zr/fl At. (9.27) 

For smoothed periodogram and weighted covariance estimators associated 
with weight functions w(v), this expression can be converted to the following 
useful formula by means of (9.25); 

N = rcwM/2. (9.28) 

We will illustrate the use of this formula shortly. An example of the use of 
(9.27) to calculate the sample size for the Daniell estimator will also be given. 

Confidence Interval and Power Criteria for 
Determining Degrees of Freedom 

We will illustrate the calculation of the degrees of freedom and sample size 
in a few important instances. As is the case in determining sample size from test 
power and confidence interval criteria in statistics, a "na tu ra l "  power or 
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confidence interval length is seldom provided as part of the design speci- 
fications. Thus, there will almost always be an opportunity to balance power 
or confidence interval length against whatever limitations on sample size or 
data length may exist in the situation at hand. As argued earlier, it is never 
possible to escape the reality of some practical or physical limitation on the 
length of data to be used in the analysis. 

A restriction on data length is often imposed by the nature of the time 
series itself. The generating mechanism of virtually every real time series 
changes at some temporal rate. It is usually possible to divide time into 
epochs, within which the mechanism is essentially invariant. The lengths 
of the epochs will depend on how rapidly the mechanism is changing. Within 
epochs, the time series will be nearly stationary and each epoch will be 
characterized by its own spectrum. Thus, in order to estimate the spectrum 
for a given epoch, the data must be taken from the appropriate interval of 
time. This requires that the data length be smaller than the "scale of sta- 
tionarity" for the time series. This restriction can often be relaxed to some 
degree by correcting the time series for nonstationarity through a trans- 
formation of variables, removal of trend, or other procedure. This becomes 
especially critical when the "scale of stationarity" is very small compared 
to the data lengths required for an adequate analysis, such as frequently 
occurs with data from economics and medicine, for example. The type of 
data correction depends critically on the type of nonstationarity encountered. 
Granger and Hatanaka (1964) discuss the methods most commonly used in 
business and economics. However, their methods can also be applied to many 
other kinds of time series. 

At present, we will ~ssume that the above mentioned limitations on data 
length can be disregarded and we will base our calculations purely on con- 
fidence interval length and test power considerations. 

Prescribed Length Confidence Intervals for 
logf(,~) 

In Section 8.3 we showed that (asymptotic) 100(1-  ~)~o confidence 
intervals for f(2) and log f(2) are 

and 

rf (2)/b _ f ( 2 )  _< rf (2)/a 

log(r/b) + log f(2) < log f(2) < log(r/a) + log f(2), 

where r is the EDF and the numbers a and b are determined by the equations 

P(Xr 2 < a) = cz/2 and P(Xr 2 _< b) = 1 - (a/Z) 
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[see expressions (8.41) and (8.42)]. The length of the interval for log f(2) 
is log b/a and we will show how to design the experiment in order to guarantee, 
within the accuracy of the various approximations, that for a prescribed 
number L, 

log b/a <_ L. (9.29) 

Note that this criterion is equivalent to the specification that the ratio of the 
upper and lower confidence limits for f(2) not exceed exp(L). 

Now, log b/a depends on the degrees of freedom r and, as would be 
expected, as r increases this quantity decreases. Consequently, the appropriate 
value of r for the design is the smallest integer for which (9.29) is satisfied. 
The calculation of r is facilitated by the use of Table A9.2 in which log b/a 
is tabulated as a function of r for confidence coefficients 1 - ct - 0.90, 0.95, 
0.99. Read down the column corresponding to the given confidence coefficient 
until the first value of log b/a smaller than (or equal to) L is found. Then read 
the value of r at the beginning of that row. 

Example 9.4 Computation of Data Length for the Data of Example 9.3 
Suppose that in order to properly define the peaks in the spectrum of 

Example 9.3 it is desirable to make the lengths of the confidence intervals no 
longer than 1.5 units of log power. Moreover, 95 ~ confidence intervals are 
required. 

From Table A9.2 we find r = 15 to be the smallest value for which log b/a 
< 1.5. The sampling interval and bandwidth were computed to be At = 0.05 
sec and fl = 0.5rt rad/sec. Consequently, the sample size can be determined 
from (9.27) as 

N = rtr/fl At = rt(15)/(0.5rc)(0.05) = 600. 

This requires a data length of 

T = N At = 600(0.05) = 30 sec. 

Prescribed Maximum Length Confidence Intervals 
for Coherence 

It is argued by Amos and Koopmans (1963) that the longest confidence 
interval for coherence p - p j, k(2) in Figs. A9.1 and A9.2 occurs at the largest 
value of ~ for which the lower confidence limit is zero. This can be used to 
determine the value of n for which the maximum lengths of the 80 or 90 ~o 
confidence intervals do not exceed a presdesignated length L. This is accom- 
plished as follows: Locate the value p = L on the horizontal axis of the 
appropriate graph and draw a vertical line at that point. At the point where 
each upper curve intersects the vertical axis, draw a horizontal line to the 
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point of intersection with the lower curve labeled with the same value of n. 
The appropriate value of n for the design is then the smallest n for which 
this point of intersection lies to the left of the vertical line. This calculation 
can also be carried out numerically for more densely spaced values of n 
and for other confidence coefficients by appealing to the tables of Amos and 
Koopmans (1963). 

Example 9.5 Calculation of  Sample Size Based on the Maximum Confidence 
Interval Length Criterion for Coherence 

Consider the problem of determining the sample size required to obtain 
a 90% confidence interval for p of maximum length L = 0.4. A weighted 
covariance estimator with M = 100 lags, based on Jones' spectral window, is 
to be used in the analysis. 

Following the above procedure on Fig. A9.2, we find that the smallest 
value of n for which graphs are given and for which the maximum confidence 
interval length is smaller than 0.4 is 

n = 50. 

Thus, the EDF is 

r = 100. 

The value of Cw for the Jones' window is found in Table 8.1 to be 0.48. Thus, 
from expression (9.28) we obtain the sample size 

N = rcwM/2 = (100)(0.48)(100)/2 = 2400 data points. 

Prescribed Power for the Hypothesis Test 
of Zero Coherence 

It is frequently of interest to test whether or not the coherence between 
two time series at a given frequency is zero. If we require that the power of the 
test have a prescribed minimum value at a given positive value of p = p j, k(2), 
a (minimum) value of n to achieve this goal can be obtained for tests with 
significance levels ~ = 0.05 and 0.10 from Figs. A9.3 and A9.4. To illustrate 
this, and at the same time provide an example of a data length calculation for 
a Daniell estimator, consider the following computation. 

Example 9.6 Data Length Calculation for the Daniell Estimator Based on a 
Test for Zero Coherence 

A 5 % test of the hypothesis H: p = 0 vs A: p > 0 at a prescribed frequency 
is required to have power at least 0.75 at p = 0.30. The test rejects H in favor 
of A if/~ > c, where ~3 is the standard estimator for coherence based on the 
Daniell spectral estimator. A trapezoidal taper with a = 1/10 is to be used 
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on the data. In order to achieve satisfactorily resolved and unaliased spectral 
estimators, it has been determined that the bandwidth and sampling interval 
must be 

At = 10-2 hr and fl = 2.5rt rad/hr. 

Determine the data length required to meet the power criterion and the cutoff 
value r for the hypothesis test. 

S o l u t i o n :  It is seen from Fig. A9.3 that the curve corresponding to the 
smallest value of n which rises above 0.75 at p = 0.3 has the index n = 50. 
From Table A9.6, we find that the cutoff value for the test with n = 50 
is c = 0.244. That is, the hypothesis of zero coherence will be rejected if the 
sample coherence exceeds 0.244. 

Now, the EDF for the Daniell estimator with trapezoidal tapering is 

r = 2n/Kb, ,  

where Kbi is obtained from the expression in Example 9.1 with a - 1/10; 

This yields 

1r -- (1 -- 8 (1 ) ) / (1  -- 4(1ff))2 ~ 1.12. 

r -100/1.12 = 89.4. 

From (9.27) we obtain the (approximate) sample size 

N = ~r / f l  At - rff89.4)/(2.Sr0(10 -2) ~ 3580 data points. 

Thus, the required data length is approximately 

T =  (3580)(10 -2) = 35.80 hr. 

Criteria based on other time series parameters can be used to determine 
sample sizesand data lengths through comparable calculations. For example, 
the above calculations based on coherence can also be used for partial 
coherence with the appropriate adjustment in degrees of freedom (see 
Section 8.4). Also, Table A9.5 can be used to construct graphs similar to 
Figs. A9.1 and A9.2 from which prescribed maximum length confidence 
intervals for multiple coherence can be determined. Parameters such as 
phase and gain have confidence interval lengths which depend on estimators of 
other parameters and prescribed length confidence intervals cannot be con- 
structed for them based on a single sample. That is, it is not possible to 
determine a sample size in advance which will guarantee a prescribed con- 
fidence level and maximum confidence interval length. It is possible to obtain 
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such confidence intervals in two stages of sampling, however, based on 
techniques such as those given by Koopmans and Qualls (1971). In effect, 
the first stage of sampling is used to obtain high-probability bounds for the 
estimators involved in the endpoints of the confidence intervals. Then a 
second sample size can be determined which guarantees the prescribed length 
and confidence coefficient. In this way, prescribed length confidence intervals 
can also be obtained for the spectrum. A need for these intervals appears to 
occur rather seldom in practice. Moreover, the inconvenience of sampling 
time series in two stages restricts the appeal of these procedures. 

A final word concerning our discussion of experimental design is in 
order. Because of the many approximations involved, these procedures must 
be used with caution. They provide guidelines and not necessarily in- 
controvertible answers. In the final analysis, the " p r o o f "  of a good design is 
that the results of the analysis make physical sense. When this is not the case, 
one must make an educated guess as to what went wrong and redesign the 
analysis and/or preprocessing of the data accordingly. Only experience and 
experimentation with a variety of ideas and methods will lead to good results in 
some instances. 

It should be added that perhaps the most interesting use of spectrum 
analysis is as an exploratory tool for learning about a physical process. 
Thus, one welcomes unexpected features in the spectrum and other spectral 
parameters for the possible new information they convey. However, it is 
always necessary to make sure that the features are properties of the gener- 
ating mechanism and have not simply been imposed on the data somewhere 
in the chain of processing and analysis operations. To do this, it is necessary 
to be familiar with the workings and idiosyncracies of each operation. A 
good discussion of electronic data acquisition systems and analog-to-digital 
converters is given by Enochson and Otnes (1968) and they will not be 
considered in this book. We have discussed the operation and potential 
pitfalls of digital filters in Chapter 6. In the next section we will discuss the 
actual procedures that have been used and are being used for computing 
spectra. 

9.4 METHODS FOR COMPUTING SPECTRAL ESTIMATORS 

Early smoothed (or unsmoothed) periodogram estimators and weighted 
covariance estimators were calculated by carrying out all of the operations 
exactly as indicated in the defining expressions. Thus, the finite Fourier 
transformation of a sample X(1), . . . ,  X ( N ) f r o m  a univariate time series 
required N operations each of multiplication, addition and the calculation of 
a complex exponential for each of N frequencies 2v = 27tv/N, or an order 
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of N 2 operations (see the discussion of the order of the number of operations 
for a computing method in Section 6.3). With the additional operations 
required to form the smoothed periodogram estimator, the total number of 
operations remains of order N 2. The strain this amount of computing placed 
on primitive computing equipment, aside from the problems of instability 
suffered with the periodogram, would be enough to explain the early interest in 
weighted covariance estimators. 

For this type of estimator, the number of additions and multiplications 
required to calculate the covariances is of order N M  and the Fourier transform 
of the covariances by the standard method requires an order M 2 additional 
operations. To obtain an asymptotically unbiased and consistent estimator, 
M must tend to infinity with N at such a rate that M/N--+ O. This would be 
the case if, for example, we assume that M is of order log N. Moreover, the 
number of operations required to compute the weighted covariance estimators 
is then of order N log N. This is a substantial improvement over the smoothed 
periodogram calculation and it accounts for the dominance of the weighted 
covariance method until 1965. 

In that year, two publications appeared which initiated a swing back to 
smoothed periodogram estimators. In the first, Jones (1965) pointed out that 
with the computing equipment of that time, the actual computing times of the 
two methods were not too far apart for moderate sample sizes and by using the 
DanieU estimator, a nearly rectangular spectral window with the concomittant 
ideal properties described above and in the last chapter were available. More 
importantly, using the standard method of Fourier transformation, the 
smoothed periodogram method was faster than the weighted covariance 
method for spectral calculations involving multivariate time series of even 
relatively small dimension. The reason for this is that the smoothed periodo- 
gram requires only one Fourier transform per dimension, while a Fourier 
transform must be executed for each pair of coordinate series in the weighted 
covariance case. 

The most crucial factor in reviving interest in the smoothed periodogram 
was the publication in that year of the fast Fourier transform algorithm by 
Cooley and Tukey (1965). This algorithm had appeared in print earlier [see 
Cooley et al. (1967) for its history], but it required modern computing tech- 
nology and the current demands for Fourier computations in time series 
analysis for it to register the immense impact it has had. Virtually every method 
for computing spectra now uses the fast Fourier transform algorithm in 
some way. 

We will give a brief description of how the fast Fourier transform algo- 
rithm works and how it achieves an improvement in the order of the number 
of operations required to compute a finite Fourier transform. The algorithm 
also achieves an improvement in computing accuracy. For a discussion of this 
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and a more detailed description of the algorithm, how it is programmed, and 
its properties see Cooley et al. (1967). A precise error estimate is given by 
Gentleman and Sande (1966). 

The Fast Fourier Transform Algorithm 

Given numbers x(1), x(2) . . . .  , x(N), we have defined the finite Fourier 
transform to be 

N 

a(2v) = ~ x(t)e iav` 
t = l  

for the N frequencies 2~ = 2nv/N,  - [ ( N -  1)/2] < v < [N/2]. By extending 
x(t)  periodically outside of the range 1 < t _< N and letting a~ = a(2v) this 
transform can be expressed in a more convenient form for this discussion as 

N - 1  

a~ = X x(t)  e2'~ivt/N" (9.30) 
t = O  

Moreover, since the transform is periodic of period N, the range of the 
frequency index can be taken to be 0 < v < N -  1. 

Now, suppose that N can be expressed as the product of two factors, 
N = r ' s .  The index t can be written in the form 

t = r j + k  

and, as j takes on all integer values from 0 to s -  1 and k from 0 to r - 1, t 
will assume all values from 0 to N -  1. Then, (9.30) becomes 

s - 1  r - 1  

a~ = ~ ~ x(r j  + k)e 2~iv('j+k)/N. (9.31) 
j = O  k - O  

However, since r /N  = 1/s, we have 

e2 rriv(rj + k )/N __ e27rivj/se21rivk/N. 

Consequently, changing the order of summation in (9.31), we can write 

where 

r - 1  

av = ~, bk, v e 2~ivk/u, (9.32) 
k = O  

s - 1  

bk, v = ~ x(r j  + k)e 2~ivj/s. (9.33) 
j = O  

Thus, the Fourier transform can be computed in two stages. The Fourier 
transforms (9.33) are calculated first and then they are transformed by (9.32) 



324 9 EXPERIMENTAL DESIGN AND SPECTRAL COMPUTATIONS 

to obtain a~. The key observation to the efficiency of the algorithm is that, 
since (9.33) defines a function periodic of period s for each k, it follows that 

bk, ~ = bk, ~ + ts (9.34) 

for every integer 1. Thus, if transform (9.33) is carried out for each k and for 
0 < v < s -  1, the values of bk, v for all v, 0 < v < N -  1, are determined 
by (9.34). This reduces the number of operations (each consisting of a complex 
addition, multiplication, and exponential computation) in (9.33) from N s  to 
s 2 for each k. Thus, to compute bk, ~ for all values of k and v, rs 2 operations 
are required. In addition, (9.32) requires r operations for each v or N r  

operations in all. The total number of operations to compute the finite Fourier 
transform is then 

r S  2 -Jr" N r  = N ( r  + s). 

This is to be compared with N 2 operations for a direct computation of (9.30). 
Now, if 

N = p l . p 2 " " p r  

is the unique representation of N as a product of prime numbers, then the 
above process of decomposition can be carried out a number of times to 
obtain a sophisticated if somewhat complicated algorithm. The process is 
applied first with r = pl and s = P2"'" P r .  Then, a further decomposition 
with r =P2 and s - -P3  " ' "  PK can be made, etc. Ultimately, the process 
reduces to a large number of short Fourier transforms involving a total of 
N(p~ + P2 + " " + P r )  operations. The resulting algorithm can lead to a 
large time saving over the conventional method. 

For example, if N = 1500, the prime factor decomposition is 

N = 2 - 2 - 3 " 5 - 5 - 5 .  

Then, Px + "'" + P r  = 22 and 

N 2 / N ( P l  + "'" + PK) = 1500/22 ~- 70. 

Thus, the "ar i thmetic"  of the fast Fourier transform calculation is 70 times 
faster than that of the conventional method. 

If N is a power of 2, 

N = 2  p, 

then the number of operations for the algorithm is 2 p N  which is of order 
N log N. The algorithm for this configuration of sample size (the base 2 
algorithm) is the easiest to program and many fast Fourier transform com- 
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puter routines are of this type. By adding the appropriate number of zeros 
to the end of the data, every sample size can be put in this form. However, 
as N increases, the gaps between the appropriate powers of two become 
rather large, requiring an excessive amount of computing. Consequently, 
more sophisticated computer routines have been written to take advantage 
of the general form of the algorithm. Early programs appearing in the IBM 
support system SHARE are available to every IBM computer user. Spectral 
estimation programs based on the fast Fourier transform algorithm are also 
commonly available. For example, the time series spectrum estimation pro- 
gram BMDX92 (Dixon, 1969) uses the base 2 algorithm to compute Daniell 
estimates of spectra and cross-spectra for multivariate time series of several 
dimensions. 

Weighted Covariance Estimators Revisited 

As was indicated in Section 8.3, the following expression for the periodo- 
gram is an algebraic identity: 

1 N - 1  
" - - -  E e- i ;~kC(k)  , (9.35) 

lu(2) 2rt k=-U+ 1 

where (~(k) is the sample autocovariance function 

1 N-Ikl  
C(k) = ~[ ~ X(t + Ik l )X( t )  

t= l  

for [k[ < N - 1. If instead of extending this function to be zero for I kl >_ N 
we extend it to be periodic of period 2 N -  1, then (9.35) will represent 
the finite Fourier transform of C(k) at frequencies 2~'= 2 r t v / ( 2 N - 1 ) ,  
Iv] _< N -  1. Thus, by inversion, we can exactly reconstruct C(k) for ]k] < 
N -  1 from Iu(2) at these frequencies; 

2rt N-1 
C(k) = 2N 1 ~ eia"'klu(2v')" (9.36) 

v = - N + l  

This makes available an alternate method for computing covariances: 
First, the original data is Fourier transformed and the result "squared"  to 
obtain IN(2). Then the periodogram is Fourier transformed to obtain C(k). 
Note that a small problem occurs here. The finite Fourier transform, thus 
the method for calculating it, provides the same number of output values as 
input values. Thus, the transform of X(I) . . . .  , X ( N ) y i e l d s  periodogram 
values at 2v = 2nv/N for - [ ( N  - 1)/2] < v < [ N/2]. However, (9.36) requires 
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the periodogram ordinates at the 2 N -  1 frequencies 2(. The fast Fourier 
transform algorithm can be "tricked" into providing the periodogram at 
these frequencies by simply augmenting the original data set (or sets in the 
multivariate case) by N -  1 zeros at the beginning or end of the data, i.e., 
apply the algorithm to 

X(1), X(2) . . . .  , X(N) ,  O, 0 , . . . ,  O. 

N - 1  

Except for a scale factor, this set has the same finite Fourier transform as the 
original set and the transform will be given at the frequencies 2v'. 

Now, using the order for the base 2 fast Fourier transform for comparison 
purposes, this method for calculating covariances takes an order of N log N 
operations. The number of operations required to compute all covariances 
by the standard method is of order N 2. Thus, the double transform method is 
clearly superior. 

As we saw above, if a weighted covariance estimator is to be computed, 
only M covariances are required, where M is the number of lags. If M is of 
order log N, it follows that the number of operations required to compute 
first the covariances and then the weighted covariance estimates by fast 
Fourier transform is of order N log N as is the direct method for computing 
weighted covariances estimates. The smoothed periodogram estimators of 
practical interest, those having smoothing functions with nonzero weights for 
n periodogram ordinates, also require an order Nlog N operations if n is 
taken to be of order log N. [This produces asymptotically unbiased and con- 
sistent estimates, since the bandwidth is then of order (log N ) / N  and the vari- 
ance is of order 1/log N.] Thus, it is not possible to choose among these 
three methods for computing spectra on the basis of an order argument. 

Recently, evidence has been accumulating which favors the use of weighted 
covariance estimators computed by three applications of the fast Fourier 
transform [see, e.g., Parzen (1972)]. This method proves to be computation- 
ally faster than the others for many combinations of sample size and design 
parameters encountered in practice. Also, one has available the flexible 
family of lag windows which were developed during the period prior to 1965 
in which these estimators were predominant. 

Moreover, the newer developments in "window carpentry," such as the 
spline windows of Cogburn and Davis (1972) are producing lag windows 
which utilize all of the covariances. In doing so, much better rates of con- 
vergence of bias to zero and substantially better mean-square error prop- 
erties are possible than could be produced by earlier windows. To obtain 
comparable properties using the equivalent smoothed periodogram estimator 



9.4 M E T H O D S  F O R  C O M P U T I N G  S P E C T R A L  E S T I M A T O R S  327 

would require an order N 2 operations while the N log N order is retained by 
the weighted covariance estimators. Consequently, the fast Fourier transform 
version of the weighted covariance estimator is clearly favored. It is to be 
expected that packaged programs utilizing the fast Fourier transform to 
calculate weighted covariance estimates with the new types of lag windows 
will become commonly available in the near future. 

Other Forms of Spectral Estimation 

Other methods of computing spectral estimators have been considered in 
the course of the history of spectral analysis. Although they have not achieved 
the general popularity of the basic types of estimators discussed above, each 
has special features which have made it well suited to certain types of 
analysis. We will give a brief description of the more important methods here. 

The Autoregression Estimator 

An important recent method for estimating spectra is based on the finite 
autoregressive model of Section 7.3. This technique has been supported and 
used by Parzen (1972) and Gersh (1970), for example. The utility of this 
method is derived from two facts: First, virtually every time series encountered 
in practice (after appropriate preprocessing) can be approximated to any 
desired accuracy by a finite autoregressive model of sufficiently high degree. 
When the underlying spectrum is reasonably smooth, in fact the degree need 
not be too large. Second, there is a simple relationship between the coefficients 
of the autoregression and the covariances of the process. This relationship is 
embodied in the Yule-Walker equations derived in Section 7.3: 

p 

bk C(k  - l) = - C ( l ) ,  l =  1, 2 , . . . ,  p,  (9.37) 
k=l  

where the autoregressive process is 

p 

bk X ( t  - k)  - ~(t). 
k = O  

As before, bo = 1 and ~(t) is the innovation process defined in Section 7.3. 
Moreover, the innovation variance is 

p 

tr 2 - ~ bk C(k) .  (9.38) 
k = O  
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Recall that the spectrum of the process is an elementary function of the 
coefficients; 

f (2) =(t72/2~z)(1/ k~__obk e-i~kl2 ) . (9.39) 

Although we discuss only the case of a univariate process, the method can 
also be used for multivariate processes. 

The following procedure is suggested by expressions (9.37)-(9.39). First, 
estimate the covariances of the given process. The fast Fourier transform 
algorithm can be used for this purpose. By some procedure, fit a value of p 
to the process. Next, determine estimates of the coefficients by solving (9.37) 
with the C(k)'s replaced by their estimates. Finally, enter these values and the 
estimated innovation variance into (9.39) to obtain the estimated spectrum. 

The matrix of coefficients of (9.37) is of a special diagonal type known as a 
Toeplitz matrix. Especially efficient inversion programs are available which 
make it possible to solve this system of equations very quickly. A Fortran 
program for this purpose is given by Robinson (1967, p. 45), for example. 

A simple method for fitting the degree of the autoregression is to plot the 
estimated innovation variances, obtained by replacing C(k) and bk by their 
estimates in (9.38), for a number of values of p. As a rule, the estimated 
variances will decrease with p but will "level off" at some point. Then estimate 
p to be the first value for which this "leveling off" occurs [see Whittle (1963, 
p. 37) for an illustration of this method]. Another procedure is given by 
Akaike (1970). 

This method of spectral estimation works well and is computationally 
very efficient for time series with reasonably smooth spectra. However, the 
methods for estimating p and the bk'S are rather insensitive to sharp, local 
features of the spectrum. Consequently, it is not uncommon for rather prom- 
inent spectral peaks to be overlooked by this method. For this reason, it 
cannot be recommended for preliminary, exploratory analyses of data. 

Complex Demodulation 

This technique was discussed briefly in Section 2.10 for continuous-time 
series. The idea is to multiply the time series by a number of complex expo- 
nentials with different frequencies, forming complex-valued series 

X~,(t) - e-i~tx(t). 

By the spectral representation of the process, 

X~(t) = f ei(2-~)tZ(d,~) = f ei~tZ(# + d~). 
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Thus, the complex amplitude of Xu(t ) near zero frequency (~ = 0) is 
the same as the complex amplitude of X(t) near 2 =/~. Consequently, by 
subjecting Xu(t ) to a narrow-band, low-pass filter L one can very nearly 
isolate the spectral amplitude of X(t) in a small interval around/~; 

L(Xu(t) ) ~ Z(dl~) = IZ(dlOle i~(u). 

It follows that ]L(Xu(t))] 2 ~ [Z(dkt)[ z is an estimate of E]Z(dla)l 2 =f(/~)d/t. 
By varying # over the appropriate frequency range, an estimate of the spectrum 
can be obtained. Several possible low-pass filters are discussed in Chapters 4 
and 6. Note that this method also yields an estimate of the phase O~) of X(t) 
relative to the time origin of the data. This is a useful quantity in some time 
series applications. 

Another useful application of complex demodulation is to the study of the 
variation of power with time of a nonstationary process. Call the length of the 
smallest time interval [ - r  At, s At], containing, say, 95 ~ of the squared 
weight ~o=-o~ Wk 2 of a digital convolution filter, the operating length of the 
filter. By taking the operating length of the filter L short relative to the "scale 
of stationarity" of the series, the estimates will follow, continuously, the 
changes in the spectral density and phase of the process at each frequency as 
they evolve in time from one epoch to another. For applications of complex 
demodulation to neurophysiology, see Walter (1969). Early applications of 
the technique were made by Tukey (1961). 

The Faded Overlap Method 

One of the earliest methods of"  modern" spectral estimation, proposed by 
Bartlett (1948), was to subdivide the total data length into reasonably short 
pieces of equal length, estimate the spectrum for each piece, then average the 
resulting estimates frequency by frequency. There has been a continuing 
interest in a modified version of this idea. The modification consists of per- 
forming conventional spectral analyses on short, overlapping segments of the 
original data. Then, averages frequency by frequency can be formed or not as 
the application dictates. 

One advantage of this method is that a considerable saving in time can be 
realized by analyzing several short data lengths rather than a single long data 
length. [See Cooley et al. (1967) for actual time comparisons using smoothed 
periodogram estimates with tapering]. The statistical properties of this type 
of estimator are also analyzed by Groves and Hannan (1968). 

Another advantage of this method is that it provides another way to 
follow the variations of power of nonstationary series with time. Sequential 
plots of the spectra of the short segments provide useful visual displays of this 
variation. A plot of sequential spectra for a geological time series is given as an 
illustration in Fig. 9.4. 
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Fig. 9.4 Sequential power spectra of a geological time series. The spectra were computed 
for 200-year data lenyths with 100-year overlap using a weighted covariance estimator. 
Source: Anderson and Koopmans (1963). 

9.5 DATA PROCESSING PROBLEMS AND TECHNIQUES 

We have discussed a number of processing methods as illustrations of the 
theory throughout the text. In this section, we will reference them briefly as 
well as present other problems that can arise and techniques for dealing with 
them. 

Correcting Deviations from the Spectral Analysis 
Hypotheses 

We based the statistical theory of spectral analysis on certain hypotheses" 
(i) that the underlying process is stationary and Gaussian, and (ii) that the 
process mean is zero and the spectrum is continuous. Some of the pre- 
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processing operations ordinarily performed on data before a spectrum analysis 
is carried out are intended to bring the data into reasonable conformity with 
these hypotheses. For example, virtually every spectrum analysis program has 
a built-in routine for estimating and subtracting from each data point the line 
which best fits the data in the least-squares sense. There is usually an option 
for taking the slope equal to zero, which reduces the operation to the removal of 
the (constant) sample mean. In this way, the data is corrected for a nonzero 
mean and a possible linear trend, which can be either an indication of process 
nonstationarity or the effect of a "d r i f t "  in the recording equipment. In the 
first case, the linear term is retained as an important regression term and in the 
second it is simply discarded. The resulting residual will, in either event, con- 
form more closely to the stationarity hypothesis. 

It is particularly important that the sample mean be subtracted off. 
Recall that a nonzero mean m (the dc component) contributes a discrete 
component to the spectrum of power m 2 at 2 -  0. To the spectral analysis 
program this will appear as a peak of height proportional to N m  2 At 

over a frequency band of approximately one bandwidth, /7 = 7tr /NAt ,  

where r is the degrees of freedom of the estimator and N is the number of data 
points (see Section A8.2). Then, due to the inevitable side lobe distortion 
(filter leakage) of the spectral estimates, the estimates in the low end of the 
spectrum can be badly biased. For this same reason, discrete power peaks 
anywhere in the spectrum should be removed. See Sections 2.10 and 6.5 for 
suggested methods for removing peaks. 

Large peaks in the continuous spectrum should be reduced as much as 
possible for the same reasons. The prewhitening method discussed in Section 
6.6 will prove quite satisfactory in most instances. 

There is evidence that the distributions of the more important spectral 
parameters are not overly sensitive to deviations from the Gaussian hypoth- 
eses [see, e.g., Benningus (1969)]. This is fortunate, since there are few general 
methods for correcting the process for such deviations. The methods used to 
correct data for nonnormality found in standard statistics texts would, in 
general, change the covariances, thus the spectrum of the process. 

There are isolated techniques for removing various forms of nonstation- 
arity, but again, except in a few cases, it is difficult to relate the spectrum 
of the corrected process to properties of the original data and its generating 
mechanism. For a good compendium of methods, see Granger and Hatanaka 
(1964). 

One form of nonstationarity for which a great deal of theory exists is 
the case in which the process is a sum of a deterministic regression function 
of known form with a weakly stationary residual. Polynomial regression 
functions, of which the linear trend is a special case, are especially important. 
We gave one method for removing polynomial trends in Section 6.6. For 
details of the general regression theory, see Hannan (1970). 
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The Problem of Missing Data 

Because of the vagaries of nature and of recording equipment it is often 
the case that one or more data points will be missing from a set of time series 
observations. When the number of missing points is small, the simple expe- 
dient of interpolating the missing values from neighboring data points in any 
reasonable wayme.g., linearlymwill lead to a spectrum that differs very 
little from the one that would have been obtained if no data had been missing. 
Often, however, stretches of data will be missing at one or more places in the 
data because of such problems as intermittent recorder failure. Again, if 
sample values are available for a time series only on days during the business 
week, for example, the regularly spaced stretches of data corresponding to 
weekends will be missing. When the amount of missing data makes up a 
sizable part of the total data length, a substantial bias in the spectral estimates 
can result. 

Intuitively, it can be seen that different parts of the spectrum are biased to 
different degrees. For example, if missing values are regularly spaced, estimates 
for periods small in comparison to this spacing will be relatively unaffected, 
since there will be relatively long stretches of uninterrupted data for the 
construction of these estimates. Also, long period spectral estimates will be 
comparatively unaffected. To see this, note that a filtering and decimation 
procedure (Section 6.4) could be applied to lower the Nyquist folding fre- 
quency without affecting the statistical properties of the low-frequency 
estimates. However, in this case the missing values would constitute a 
substantially smaller proportion of the total length, thus less of a problem. 
For example, if data were missing on weekends for daily observations, 
by decimating to weekly observations there would be no data missing if, say, 
the Thursday data were used. Thus, estimates for frequencies smaller than 
�89 cycle per week would be unaffected by the missing data. 

The actual effect of missing data on properties of the spectral estimates 
can be evaluated by a method proposed by Jones (1971). The expressions 
developed in Section 9.2 are specifically designed for this purpose. First, re- 
call that a missing data window is a window bt such that bt = 0 for all t 
for which data is missing and bt = 1 otherwise. Weighted covariance and 
smoothed periodogram estimates are then based on the modified covariances 
and Fourier transforms (9.3) and (9.4). The asymptotic variances and co- 
variances of the estimates can then be conveniently calculated from (9.16) 
and (9.17). Some indication of bias can be obtained by looking at the modified 
spectral window (9.10). 

Jones actually proposed a weighted covariance estimator based on un- 
biased estimates of the covariances. This produces spectral estimates with 
the same expected values as the corresponding estimators when no data is 
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missing. The effects of the missing observations then show up as variance 
leakage, inflated variances, and decreased degrees of freedom. He demonstrated 
these effects by means of actual calculations for data with a large proportion 
(about 50%) of the observations missing. Surprisingly, reasonably good 
spectral estimates were still obtained. 

Outliers (Wild Values) and Their Influence 

Occasionally, numerical values will be found among observations on a 
time series which are obviously out of scale and, thus, not characteristic of 
the phenomenon under study. Sometimes the origin of these outliers can be 
pinpointed. Electrical "surges"  in recorders or other electronic processing 
equipment are not uncommon, for example. Whatever the cause, it is essential 
that outliers be removed. The simplest procedure is to replace them by inter- 
polated values from neighboring data. If there are many outliers and inter- 
polation is not practical or possible, it would be reasonable to set them all 
equal to zero and proceed as though they were missing observations. 

The reason it is essential to remove outliers is that they have large ampli- 
tudes, thus contain a substantial portion of the power in the data. They have a 
pronounced effect on the spectral estimates. Each outlier represents a " sp ike"  
in the time data which is converted into a periodic ripple in the frequency 
domain. This is a consequence of the correspondence between periodic 
components and spectral lines and the interchangeability of the Fourier 
transform domains. Since a periodic term in the time domain produces a 
line or " sp ike"  in the frequency domain, a " sp ike"  in the time domain 
produces a periodic term in the frequency domain. These periodic ripples 
give the appearance of a multipeaked spectrum when there are relatively few 
outliers. Consequently, interesting and provocative spectral peaks can be 
simply the result of not having corrected for outliers. When there are many 
outliers, the spectrum of interest is submerged in the outlier "noise"  spectrum 
and a meaningful analysis is usually impossible. 

Data Plots 

From the discussion of outliers it is evident that it would be very useful 
to have a graph of the data. Such a plot is also useful for other purposes, 
such as deciding on the regression function to be used to correct for non- 
stationarity, obtaining indications of other forms of nonstationarity or 
possibly estimating the "scale of stationarity" for the data. Occasionally, 
obvious periodicities or strong cycles can be detected visually and some 
indications of the type of filtering needed to remove or reduce them can be 
obtained. These plots are usually well worth the expense of making them. 
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Other Graphs and Plots 

Because of the vast amount of numerical information contained in the 
estimates of spectral parameters, graphs should be obtained for everything 
computed. Spectra, coherences, phase angles, gain and phase functions for 
filters should all be graphed against frequency. Spectral features which are 
difficult to see in lists of numerical output will show up at a glance in a graph. 
Fortunately, plotters are becoming increasingly available in even the smaller 
computer installations and graphs can be obtained by simply requesting 
them on the instruction cards for many standard spectrum programs. This is 
the case, for example, for the biomedical programs mentioned earlier in the 
text. 

APPENDIX TO CHAPTER 9 

A9.1 Sampling Properties of the Spectral 
Estimator (9.6) 

The expressions for the mean, variance, and covariance of (9.6) depend 
on the spectral representation for the process and its properties given in 
Chapter 2. Substituting the representation for X(s) and X(t) in (9.6), with an 
interchange of integrals and sums we obtain 

/ i  7~ 

- ! ! - - fl) Z(de)Z(dfl). 

This leads to expression (9.9) for E(f(2)),  since 

f f  de, if f l = e ,  
= 

otherwise. 

Expressions (9.11) and (9.12) follow from this result and the Isserlis theorem 
for normal random variables by a computation very similar to the one given 

in Section A2.2. Here, the computation is applied to Ef(p) f (2) .  The form 
of A(2, 2) given in (9.10) can be justified as follows. From (9.7) and (9.8) 
we obtain 

o o  

A(2 ,2)= ~ Ck Wk e i*k, 
k -  - o o  

where 

Ck = ~, b,+k b, bt 2. 
t = - - o 0  -" - - o 0  

Now, the Fourier transform of a product is the convolution of the Fourier 
transforms. Thus, 

A(2, 2) = f C(e)W(2 - e) de, 

where cO.) and W(2) are the Fourier transforms of the c~ and Wk sequences. 
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However, the numerator of the expression for Ck is the discrete convolution 
Sk of the sequences bt and r t = b - t ;  

oo 

Sk  --- Z r - k - t b t  " 
t = --o0 

Since bt is real-valued, it is easy to show that the Fourier transform of rt is 
the complex conjugate of the transform of bt. Thus, Sk has Fourier transform 

s(x) = IB(2)  I z. 

By the Parseval relation, 

CO 7~ 

t - -  - - 00  ~ /~  

It follows that the Fourier transform of Ck = Sk/(27r Z~=-~ b, 2) is 

c(~) = [B(~) ~ B(~) 

A9.2 Tables and Graphs for Confidence 
Intervals, Hypothesis Tests, and 
Experimental Design 

Table A9.1. 
Table A9.2. 

List  o f  Tables and Graphs 

Critical Values of the Chi-Square Distribution. 
Values of log b/a Versus Degrees of Freedom. (Confidence 
Interval Length for Log Spectral Density.) 

Table A9.3. Critical Values of Student's t-Distribution. 
Table A9.4. Critical Values of Fisher's F-Distribution. 
Table A9.5. Confidence Limits for Multiple Coherence. 
Table A9.6. Critical Values for Tests of the Zero Coherence Hypothesis. 
Figure A9.1. Graphs of Upper and Lower Confidence Limits for 80% 

Confidence Intervals for Coherence. 
Figure A9.2. Graphs of Upper and Lower Confidence Limits for 90% 

Confidence Intervals for Coherence. 
Figure A9.3. Graphs of the Power Functions of the Zero Coherence 

Hypothesis Tests, ~ = 0.05. 
Figure A9.4. Graphs of the Power Functions of the Zero Coherence 

Hypothesis Tests, a = 0.10. 
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Table A9.1 

Critical Values for the Chi-Square Distribution ~ 

r 0.005 0.025 0.05 0.95 0.975 0.995 

1 - 0.001 0.004 3.8/,1 .5.024 7.879 
2 0.010 0.051 0.103 5.991 7.378 10.597 
3 0.072 0.216 0.352 7.813 9.348 12.838 
4 0.207 0.484 0.711 9.488 11.143 14.860 
$ 0.412 0.831 1.143 11.071 12 �9 U33 16.750 

6 0.676 1.237 1.633 12.592 14.449 18.548 
7 O. 989 1.690 2.167 14.067 16.013 20. 278 
8 1.344 2.180 2.733 15.507 17 .$3 .5  21.9$$ 
9 1.735 2.700 3.325 16.919 19.023 23.589 

10 2.156 3. 247 3. 940 18. 307 20. 483 25.188 

11 2.603 3.816 4.575 19.675 21.920 26.757 
12 3.074 4.404 5.226 21.026 23.337 28.299 
13 3.565 $ .009 3.892 22.362 24.736 29.819 
14 4.075 $ .629 6.)71 23.683 26.119 31.319 
15 4.601 6.262 7.261 24.9% 27.488 32.801 

16 5.142 6.908 7.962 26.290 28.845 34.267 
17 5.697 7.$64 8.672 27.587 30.191 35.718 
18 6.265 8.231 9.390 28.869 31.526 37.156 
]:9 6.844 8.907 10.117 30.144 32.852 38.582 
20 7.434 9.$91 10.851 31.410 34.170 39.997 

21 8.034 10.283 11 .$91 32.671 35.479 41.401 
22 8. 643 10. 982 12.338 33. 924 36. 781 42. 796 
23 9.260 11.689 13.09t 35.172 38.076 44.181 
24 9.886 12.401 13.848 36.415 39.364 45.559 
23 10.520 13.120 14.611 37.652 40.646 46.928 

26 11.160 13.844 15.379 38.885 41.923 48.290 
27 11.808 14.573 16.151 40.113 43.194 49.645 
28 12.461 13.308 16.928 41.337 44.461 $0.993 
29 13.121 16.047 17.708 42.557 45.722 52.336 
30 13.787 16.791 18.493 43.773 46.979 53.672 

31 14.458 17.539 19.281 44.985 48.232 55.003 
32 15.134 18.291 20.072 46.194 49.480 56.328 
33 15.815 19.047 20.867 47.400 50.725 57.648 
34 16.501 19.806 21.664 48.602 51.966 58.964 
35 17.192 20.$69 22.465 49.802 53.203 60.273 

36 17.887 21.336 23.269 50.998 54.437 61.581 
37 18.586 22 .106  24 .075  52 .192  55 .668  62.883 
38 19.289 22.878 24.884 53.364 56.896 64.181 
39 19.996 23.654 23.695 54.572 58.120 65.476 
40 20.707 24.433 26.509 55.758 59.342 66.766 

41 21.421 25. 215 27.326 56. 942 60.561 68.053 
42 22.138 25.999 28.144 58.124 61.777 69.336 
43 22.859 26.78.5 28.965 $9.304 62.990 70.616 
44 23.584 27.575 29.787 60.481 64.201 71.893 
45 24.311 28.366 30.612 61.656 65.410 73.166 

~ Pr(x 2 r.v. with r degrees of freedom _< tabled value) = y. Source: D. B. Owen 
(1962), Handbook of  Statistical Tables, Addison-Wesley, Reading, Mass. Courtesy 
of U.S. Atomic Energy Commission. 
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Table A9.1 (Cont.) 

r 0.005 0.025 0.05 0.95 0.975 0.995 

46 25.041 29.160 
47 25. 775 29. 956 
48 26.511 30. 755 
49 27. 249 31.555 
50 27. 991 32.357 

51 28.735 33.162 
52 29.481 33.968 
53 30. 230 34. 776 
54 30. 981 35.586 
55 31.735 36.398 

56 32.490 37.212 
57 33.248 38.027 
58 34.008 38 .844  
59 34.770 39 .662 
60 35 .534 40 .482 

61 36.300 41.303 
62 37.068 42 .126 
63 37.838 42 .950 
64 38.610 43 .776 
65 39.383 44.603 

66 40.158 45.431 
67 40. 935 46. 261 
68 41.713 47 .092 
69 42 .494  47.  924 
70 43.275 48.758 

71 44 .058 49 .592 
72 44.843 50 .428  
73 45.629 51.265 
74 46.417 52.103 
75 47. 206 52. 942 

76 47.997 53 .782 
77 48.  788 54.623 
78 49 .582 55 .466  
79 50 .376 56 .309  
80 51.172 57.153 

81 51 .969  57 .998 
82 .52.767 58.845 
83 53 . .567  .59.692 
84 .54.368 60..540 
85 55 .170  61.389 

86 55.973 62 .239  
87 56.777 63 .089 
88 57 .582  63. 941 
89 58 .389  64. 793 
90 59 .196  65.647 

31 .439 
32. 268 
33.098 
33. 930 
34. 764 

35.6OO 
36.437 
37.276 
38.116 
38.9.58 

39.801 
40.646 
41.492 
42.339  
43.188 

44.038 
44. 889 
45.741 
46.595 
47.450 

48. 305 
49.162 
50.020 
50 .879 
51.739 

52.600 
53.462 
54.325 
55.189 
56 .054  

56. 920 
57 .786 
58 .654  
59 .522 
60.391 

61.261 
62.132 
63 .004  
63.876 
64 .749 

65.623 
66.498 
67.373 
68. 249 
69.126 

62.830 66.617 74.437 
64.001 67.821 75.704 
65.171 69.023 76. 969 
66.339 70.222 78.231 
67.505 71.420 79.490 

68.669 72.616 80.747 
69.832 73.810 82.001 
70. 993 75. 002 83. 253 
72.153 76.192 84.502 
73.311 77.380 85.749 

74. 468 78. 567 86. 994 
75.624 79.7.52 88.236 
76.778 80.936 89.477 
77.931 82.117 90.715 
79.082 83.298 91.952 

80. 232 84.476 93.186 
81.381 85.654 94.419 
82.529 86.830 95.649 
83.675 88.004 96.878 
84. 821 89.177 98.105 

85. 965 90. 349 99. 330 
87.108 91.519 100.554 
88.250 92.689 101.776 
89.391 93.856 102.996 
90.531 95.023 104.215 

91.670 96.189 105.432 
92.808 97.353 106.648 
93.945 98.516 107.862 
95.081 99.678 109.074 
96.217 100.839 110.286 

97.351 101.999 111.495 
98.48/ ,  103.158 112.704 
99.617 104.316 113.911 

100.749 105.473 115.117 
101.879 106.629 116.321 

103.010 107.783 117.524 
104.139 108.937 118.726 
105.267 110.090 119.927 
106.395 111.242 121.126 
107.522 112.393 122.325 

108.648 113.544 123.522 
109.773 114.693 124.718 
110.898 115.841 125.913 
112.022 116.989 127.106 
113.145 118.136 128.299 
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Table A9.1 (Cont.) 

r 0.005 0.025 0.05 0.95 0.975 0.995 

91 60 .005 66 .501  70 .003  
92 60 .815 67 .356  70 .882  
93 61 .625 68 .211 71 .760  
94 62.437 69 .068  72 .640  
95 63 .250  69 .925  73 .520  

96 64 .063 70 .783 74.401 
97 64 .878  71 .642  75 .282  
98 65 .694  72 .501 76 .164  
99 66 .510  73.361 77 .046  

100 67 .328  74 .222  77 .929  

102 68.965 75 .946  79.697 
104 70 .606 77 .672  81 .468  
106 72.251 79 .401 83 .240  
108 73 .899  81.133 85.015 
110 75.550 82.867 86.792 

112 77.204 84 .604  88.570 
114 78 .862  86 .342  90.351 
116 80 .522  88 .084  92 .134  
118 82.185 89 .827 93 .918  
120 83 .852  91.573 95.705 

122 85 .520  93 .320  97.493 
124 87 .192  95 .070 99 .283 
126 88 .866  96 .822  101 .074  
128 90.543 98 .576  102.867 
130 92 .222 100.331 104.662 

132 93. 904 102.089  106.459 
134 95. 588 103. 848 108. 257 
136 97.275 105 .609  110.056 
138 98. 964 107.372 111.857 
140 100.655 109.137 113 .659  

142 102.348 110. 903 115.463 
144 104.044 112.671  117 .268  
146 105.741 114.441 119.075 
148 107 . /441 116.212 120.883 
150 109.142  117.985 122.692 

200 152.241 162 .728  168 .279  
250 196.161 208 .098  214 .392  
300 240.663 253 .912  260 .878  
400 330.  903 346 .482  354.  641 
500 422 .303  439.  936 449 .147  

600 514 .529  534 .019  544.180 
700 607 .380  628 .577  639 .613  
800 700.725 723 .513  735 .362  
900 7 % . 4 7 5  818 .756  831 .370  

1000 888 .564  914.257 9 2 7 . 5 %  

114.268 119.282 129.491 
115.390 120.427 130.681 
116.511 121.571 131.871 
117.632 122.715 133.059  
118.752 123.858 134.247 

119.871 125.000 135.433 
120.990 126.141 136.619 
122.108 127.282 137.803 
123.225 128.422 138.987 
124.342 129.561 140.169 

126 .574  131 .838  142.532 
128 .804  134.111 144.891 
131.031 136 .382  147.247 
133.257 138.651 149 .599  
135 .480  140.917 151 .948  

137.701 143 .180  154 .294  
139.921 145.441 156.637 
142 .138  147.700 158.977 
144 .354  149.957 161 .314  
1/,6.567 152.211 163.648 

148.779 154.464 165.980 
150 .989  156 .714  168 .308  
153 .198  158.962 170 .634  
155.405 161 .209  172.957 
157 .610  163'.453 175 .278  

159.814 165.696 177.597 
162.016 167. 936 179. 913 
164.216 170.175 182.226 
166.415  172 .412  184 .538  
168.613 174.668 186.847 

170.809 176.882 189.154 
173 .004  179 .114  191.458 
175.198 181.344 193.761 
177 .390  183.573 196 .062  
179 .581  185.800 198.360 

233 .994  241 .058  255 .264  
287 .882  295 .689  311 .346  
341 .395  349 .874  366 .844  
4 4 7 . 6 3 2  457 .305  476 .606  
553 .127  563 .852  585 .207  

6 5 8 . 0 9 4  669 .769  692 .982  
762 .661  775.211 800.131 
866.911 880.  275 906. 786 
970. 904 985 .032  1013.036 

1074 .679  1089.531 1118.948 



340 9 EXPERIMENTAL DESIGN AND SPECTRAL COMPUTATIONS 

Table  A 9 . 2  

Tabled Value Is the Length o f  the 100(1-  ~)% Equal Tail Confidence Interval for Log 
Spectral Density Based on an Estimate with r Degrees o f  Freedom ~ 

1 - - ~  1 - - ~  

r 0.90 0.95 0.99 r 0.90 0.95 0.99 

2 4.07 4.39 6.96 90 0.492 0.587 0.773 
3 3.10 3.77 5.19 100 0.467 0.557 0.733 
4 2.59 3.14 4.27 120 0.427 0.508 0.669 
5 2.26 2.73 3.71 140 0.394 0.470 0.618 

160 0.368 0.440 0.578 
6 2.04 2.45 3.31 
7 1.87 2.25 3.02 180 0.348 0.414 0.545 
8 1.73 2.09 2.80 200 0.329 0.393 0.517 
9 1.63 1.95 2.61 220 0.134 0.375 0.492 

10 1.54 1.84 2.46 240 0.300 0.360 0.472 
260 0.288 0.345 0.453 

11 1.46 1.75 2.33 
12 1.40 1.67 2.22 280 0.278 0.333 0.437 
13 1.34 1.59 2.12 300 0.269 0.321 0.422 
14 1.28 1.53 2.04 400 0.232 0.278 0.365 
15 1.24 1.48 1.96 500 0.209 0.248 0.326 

600 0.191 0.227 0.299 
16 1.20 1.43 1.90 
17 1.15 1.39 1.83 700 0.176 0.209 0.276 
18 1.12 1.35 1.78 800 0.165 0.196 0.259 
19 1.10 1.30 1.73 900 0.156 0.185 0.243 
20 1.06 1.27 1.68 1,000 0.147 0.176 0.230 

2,000 0.103 0.124 0.163 
21 1.04 1.24 1.64 3,000 0.084 0.101 0.133 
22 1.01 1.21 1.60 4,000 0.073 0.088 0.114 
23 0.989 1.18 1.56 5,000 0.065 0.078 0.103 
24 0.965 1.15 1.53 10,000 0.047 0.055 0.073 
25 0.952 1.13 1.49 

26 0.927 1.11 1.46 
27 0.915 1.08 1.44 
28 0.889 1.06 1.41 
29 0.877 1.05 1.39 
30 0.864 1.03 1.36 

40 0.743 0.887 1.17 
50 0.663 0.792 1.04 
60 0.605 0.721 0.951 
70 0.560 0.667 0.880 
80 0.523 0.624 0.822 

a Source: Computed from Table 3.3, D. B. Owen (1962), Handbook o f  Statistical Tables. 
Addison-Wesley, Reading, Massachusetts. Courtesy of U.S. Atomic Energy Commission. 
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Table A9.3 

Critical Values o f  Student's t-Distribution ~ 

�9 75 .90 .95 .975 .99 .995 .9995 

1 1.000 3.078 6.314 12.706 31.821 63.657 636.619 
2 .816 1. 886 2. 920 4. 303 6. 965 9. 925 31. 598 
3 .765 1.638 2.353 3.182 4.541 5.841 12.941 
4 .741 1.533 2.132 2.776 3.747 4.604 8.610 
5 .727 1.476 2 015 2.571 3.365 4.032 6.859 

6 .718 1.440 1.943 2.447 3.143 3.707 5.959 
7 .711 1.415 1.895 2.365 2.998 3.499 5.405 
8 .706 1.397 1.860 2.306 2.896 3.355 5.041 
9 �9 703 1.383 1.833 2.262 2.821 3.250 4. 781 

10 .700 1.372 1.812 2.228 2.764 3.169 4.587 

11 .697 1.363 1.796 2.201 2.718 3.106 4.437 
12 .695 1.356 1.782 2.179 2.681 3.055 4.318 
13 .694 1.350 1.771 2.160 2.650 3.012 4.221 
14 .692 1.345 1.761 2.145 2.624 2.977 4.140 
15 .691 1.341 1.753 2.131 2.602 2.947 4.073 

16 .690 1.337 1.746 2.120 2.583 2.921 4.015 
17 .689 1.333 1.740 2.110 2.567 2.898 3.965 
18 .688 1.330 1.734 2.101 2.552 2.878 3.922 
19 .688 1.328 1.729 2.093 2.539 2.861 3.883 
20 .687 1.325 1.725 2.086 2.528 2.845 3.850 

21 .686 1.323 1.721 2.080 2.518 2.831 3.819 
22 .686 1.321 1.717 2.074 2.508 2.819 3.792 
23 .685 1.319 1.714 2.069 2.500 2.807 3.767 
24 .685 1.318 1.711 2.064 2.492 2.797 3.745 
25 .684 1.316 1.708 2.060 2.485 2.787 3.725 

26 .684 1.315 1 ..706 2.056 2.479 2.779 3.707 
27 .684 1.314 1.703 2.052 2.473 2.771 3.690 
28 .683 1.313 1.701 2.048 2.467 2.763 3.674 
29 .683 1.311 1.699 2.045 2.462 2.756 3.659 
30 .683 1.310 1.697 2.042 2.457 2.750 3.646 

40 .681 1.303 1.684 2.021 2.423 2.704 3.551 
60 .679 1.296 1.671 2.000 2.390 2.660 3.460 

120 .677 1.289 1.658 1.980 2.358 2.617 3.373 
~o .674 1.282 1.645 1.960 2.326 2.576 3.291 

a P(t r.v. with k degrees of freedom _< tabled value) --- 7'. Source: Table abridged from 
Table Il l  of Fisher, R. A. and Yates, F. (1938). Statistical Tables for Biological, Agri- 
cultural, and Medical Research. Oliver & Boyd, Edinburgh, by permission of the authors 
and publishers. 
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Table A9.4 

Critical Values of Fisher's F- Distribution" 

Y 
.90 
.95 
.975 
.99 
.995 
.90 
.85 
,975 
.99 
,995 
.90 
.95 
,975 
.99 
.995 
.90 
.95 
.975 
.99 
.995 
.90 
.95 
.975 
.99 
.995 
.90 
.95 
.975 
.99 
,995 
.90 
.95 
f975 
.99 
,995 
.90 
.95 
,975 
.99 
.995 

I k  

1 

2 

3 

4 

6 

8 

7 

a 



.90  

.95 

.975 

.99 
,995  
.90  
.95  
,975 
.99  
,995 
. 9 0  
.95  
,975 
.99  
,995 
.90  
.95 
,975 
.99 
,995 
.90  
.95 
,975 
.99  
,995  
.90  
.95  
,975 
.99  
,995 
.90  
.95  
,975  
.99 
,995  
. 9 0  
. 9 5  
.975 
.99 
,995  
. 9 0  
.95  
.975 
.99 
.995 

3 . 2 9  
4 . 9 6  
6 . 9 4  
10.0 
12 .8  
3 . 1 8  
4 . 7 5  
6 . 5 5  
9 . 3 3  
11 .8  
3 . 0 7  
4 . 5 4  
6 . 2 0  
8 . 6 8  
10.8 
2 .97  
4 . 3 5  
5 . 8 7  
8 . 1 0  
9 . 9 4  
2 . 8 8  
4 . 1 7  
5 . 5 7  
7 . 5 6  
9 . 1 8  
2 . 7 9  
4 . 0 0  
5 . 2 9  
7 . 0 8  
8 . 4 9  
2 . 7 5  
3 . 9 2  
5 . 1 5  
6 .85  
8 . 1 8  
2 . 7 1  
3 .84  
5 . 0 2  
6 .63  
7 . 8 8  

9 

10 

12 

15 

20 

30  

60 

120 

0 

2 . 9 2  2 .73  2 . 6 1  2 . 5 2  2 . 4 6  2 . 4 1  2 . 3 8  2 . 3 5  2 . 3 2  2 . 2 8  2 .24  2 . 2 0  2 . 1 5  2 .11  2 . 0 8  2 . 0 8  2 
4 1 0  3 . 7 1  3 . 4 8  3 . 3 3  3 . 2 2  3 .14  3 . 0 7  3 . 0 2  2 . 9 8  2 .91  2 . 8 4  2 . 7 7  2 . 7 0  2 . 6 2  2 . 5 8  2 .54  % 
5 . 4 6  4 . 8 3  4 . 4 7  4 . 2 4  4 .07  3 .95  3 . 8 5  3 . 7 8  3 . 7 2  3 . 6 2  3 . 5 2  3 . 4 2  3 .31  3 . 2 0  3 .14  3 . 0 8  
7 . 5 6  6 . 5 5  5 . 9 9  5 . 6 4  5 . 3 9  5 . 2 0  5 . 0 6  4 . 9 4  4 . 8 5  4 .71  4 . 5 6  4 .41  4 . 2 5  4 . 0 8  4 . 0 0  3.91 
9 . 4 3  8.08 7.34 6 .87  6.54 6 . 3 0  6 . 1 2  5 .97  5 . 8 5  5 . 6 6  5 .47  5 .27  5 .07  4 . 8 6  4 .75  4 .84  3 
2 . 8 1  2 . 6 1  2 . 4 8  2 . 3 9  2 . 3 3  2 . 2 8  9 . 2 4  2 . 2 1  2 .19  2 . 1 5  2 . 1 0  2 . 0 8  2 .01  1 . 9 8  1 . 9 3  1 . 9 0  C, 
3 . 8 9  3 . 4 9  3 . 2 6  3 . 1 1  3 . 0 0  2 . 9 1  2.85 2 . 8 0  2 7 5  2 . 6 9  2 . 6 2  2 . 5 4  2 . 4 7  2 . 3 8  2 .34  2 . 3 0  
5 . 1 0  4 .47  4 .12  3 . 8 9  3 . 7 3  3 . 8 1  3 . 5 1  3 . 4 4  3 . 3 7  3 . 2 8  3 . 1 8  3 .07  2 . 9 8  2 .85  2 . 7 9  2 . 7 2  2 
6 . 9 3  5 . 9 5  5.41 5 . 0 6  4 . 8 2  4 . 6 4  4 . 5 0  4 . 3 9  4 . 3 0  4 . 1 6  4 .01  3 . 8 8  3 . 7 0  3 .54  3 .45  3 . 3 8  
8.51 7 . 2 3  6 . 5 2  6 . 0 7  5 . 7 6  5 . 5 2  5 . 3 5  5 . 2 0  5 . 0 9  4 .91  4 . 7 2  4 . 5 3  4 . 3 3  4 . 1 2  4 . 0 1  3 .80  
2 . 7 0  2 . 4 9  2 .36  2 . 2 7  2 . 2 1  2 . 1 6  2 . 1 2  2 . 0 9  2 .06  2 . 0 2  1.97 1 .92  1 .87  1 . 8 2  1 .79  1 . 7 6  2 
3 . 6 8  3 . 2 9  3 . 0 6  2 . 9 0  2 . 7 9  2 .71  2 . 6 4  2 . 5 9  2 . 5 4  2 . 4 8  2 . 4 0  2 . 3 3  2 . 2 5  2 . 1 6  2 .11  2 .07  
4 . 7 7  4 . 1 5  3 . 8 0  3 . 5 8  3 .41  3 . 2 9  3 . 2 0  3 . 1 2  3.08 2 . 9 8  2 . 8 6  2 . 7 6  2 . 8 4  2 . 5 2  2 . 4 6  2 . 4 0  ’0 
6 . 3 6  5 . 4 2  4 .89  4 . 5 6  4 . 3 2  4 . 1 4  4 . 0 0  3 .89  3 . 8 0  3.67 3 . 5 2  3 .37  3 .21  3 . 0 5  2 . 9 8  2 . W  
7 . 7 0  6 . 4 8  5 . 8 0  5 .37  5 .07  4 . 8 5  4 . 6 7  4 . 5 4  4 . 4 2  4 . 2 5  4 .07  3 . 8 8  3 .69  3 . 4 8  3 .37  3 .28  
2 .59  2 . 3 8  2 . 2 5  2 . 1 6  2 .09  2 . 0 4  2 . 0 0  1 .96  1 .94  1 .89  1.84 1 . 7 9  1 .74  1 . 8 8  1 .84  1.61 
3 . 4 9  3 . 1 0  2 .87  2 . 7 1  2 . 6 0  2 . 5 1  2 . 4 5  2 . 3 9  2 .35  2 . 2 8  2 . 2 0  2 . 1 2  2 . 0 4  1 .95  1 . 9 0  1 .84  
4 . 4 6  3 . 8 6  3.51 3 . 2 9  3 . 1 3  3.01 2 .91  2 . 8 4  2 .77  2 . 8 8  2 . 5 7  2 .46  2 . 3 5  2 . 2 2  2 . 1 6  2 . 0 8  
5 . 8 5  4 . 9 4  4 . 4 3  4 . 1 0  3.87 3 . 7 0  3 . 5 6  3 . 4 6  3 . 3 7  3 . 2 3  3 .09  2 . 9 4  2 . 7 8  2 .61  2 .52  2 .42  
6 . 9 9  5 . 8 2  5 .17  4 . 7 6  4 .47  4 . 2 6  4 . 0 9  3 . 9 6  3 . 8 5  3 . 6 8  3 . 5 0  3 .32  3 . 1 2  2 . 9 2  2 .81  2 .69  
2 . 4 9  2 . 2 8  2 . 1 4  2 . 0 5  1 . 9 8  1 .93  1 . 8 8  1 . 8 5  1 . 8 2  1 .77  1 .72  1.67 1 .61  1 . 5 4  1 . 5 0  1 .46  
3 . 3 2  2 . 9 2  2 .69  2 . 5 3  2 . 4 2  2 . 3 3  2 . 2 7  2 .21  2 . 1 6  2 .09  2 .01  1 .93  1 .84  1 .74  1.88 1 .62  
4 . 1 8  3 . 5 9  3 . 2 5  3 . 0 3  2 .87  2 . 7 5  2 . 6 5  2 . 5 7  2 . 5 1  2 . 4 1  2 . 3 1  2 . 2 0  2 .07  1 .94  1.87 1.79 
5 . 3 9  4 . 5 1  4 . 0 2  3 . 7 0  3.47 3 . 3 0  3 .17  3 .07  2 . 9 8  2 . 8 4  2 . 7 0  2 . 5 5  2 .39  2 . 2 1  2 .11  2.01 
6 . 3 5  5 . 2 4  4 . 6 2  4 . 2 3  3 . 9 5  3 .74  3 . 5 8  3 . 4 5  3 . 3 4  3 . 1 8  3 .01  2 . 8 2  2 . 8 3  2 .42  2 .30  2 .18  
2 . 3 9  2 . 1 8  2 .04  1 . 9 5  1 .87  1 .82  1 . 7 7  1 .74  1 . 7 1  1 . 6 6  1 . 6 0  1.54 1 . 4 8  1 . 4 0  1.35 1 .29  
3 . 1 5  2 .76  2 . 5 3  2 . 3 7  2 . 2 5  2 .17  2 . 1 0  2 . 0 4  1 . 9 9  1 .92  1.84 1 .75  1 .65  1 .53  1.47 1 .39  
3 . 9 3  3 . 3 4  3 .01  2 . 7 9  2 . 6 3  2 .51  2 . 4 1  2 . 3 3  2 . 2 7  2 . 1 7  2 .06  1.94 1 .82  1.67 1 . 5 8  1 . 4 8  
4 . 9 8  4 . 1 3  3 .65  3 . 3 4  3 . 1 2  2 . 9 5  2 . 8 2  2 . 7 2  2 . 6 3  2 . 5 0  2 . 3 5  2 . 2 0  2 . 0 3  1 .84  1 .73  1 . 6 0  
5 . 8 0  4 . 7 3  4 . 1 4  3 . 7 6  3 . 4 9  3 . 2 9  3 . 1 3  3 .01  2 . 9 0  2 .74  2 .57  2 .39  2 . 1 9  1 .96  1.83 1 .69  
2 . 3 5  2 . 1 3  1 .99  1 . 9 0  1 .82  1 .77  1 . 7 2  1 . 8 8  1 . 6 5  1.60 1 .54  1 . 4 8  1 .41  1 . 3 2  1.26 1 .19  
3.07 2 . 6 8  2 .45  2 . 2 9  2 . 1 8  2 . 0 9  2 . 0 2  1 . 9 6  1 . 9 1  1 . 8 3  1 . 7 5  1 . 6 8  1 . 5 5  1 . 4 3  1 .35  1 .25  
3 . 8 0  3 . 2 3  2 . 8 9  2 . 6 7  2 . 5 2  2 .39  2 . 3 0  2 . 2 2  2 . 1 6  2 . 0 5  1 .94  1 .82  1 .69  1 . 5 3  1.43 1.31 
4 .79  3 .95  3 . 4 8  3 .17  2 . 9 6  2 .79  2 . 6 6  2 . 5 6  2 . 4 7  2 .34  2 .19  2 . 0 3  1 .86  1 .66  1 .53  1 . 3 8  
5 .54  4 . 5 0  3 . 9 2  3 . 5 5  3 . 2 8  3 . 0 8  2 . 9 3  2 . 8 1  2 . 7 1  2 . 5 4  2 .37  2 . 1 9  1 . 9 8  1 . 7 5  1 .61  1 .43  
2 . 3 0  2 . 0 8  1 .94  1 . 8 5  1 .77  1 . 7 2  1 .67  1 .63  1 . 6 0  1 . 5 5  1 .49  1 .42  1 .34  1 .24  1.17 1 .00  
3 . 0 0  2 . 6 0  2 .37  2 .21  2 . 1 0  2 . 0 1  1 . 9 4  1 .88  1 .83  1 . 7 5  1 .67  1 .57  1 . 4 6  1 .32  1 .22  1.00 
3 . 6 9  3 . 1 2  2 . 7 9  2 . 5 7  2 . 4 1  2 . 2 9  2 . 1 9  2 . 1 1  2 . 0 5  1 .94  1 . 8 3  1 .71  1.57 1 .39  1.27 1.00  
4 . 6 1  3 . 7 8  3 .32  3 . 0 2  2 . 8 0  2 . 6 4  2 . 5 1  2 . 4 1  2 . 3 2  2 . 1 8  2 . 0 4  1 . 8 8  1 . 7 0  1 .47  1.32 1 . 0 0  
5 . 3 0  4 . 2 8  3 . 7 2  3 . 3 5  3.09. 2 . 9 0  2 . 7 4  2 . 6 2  2 . 5 2  2 . 3 6  2 . 1 9  2 . 0 0  1 . 7 9  1 . 5 3  1 .36  1 . 0 0  

3 .36  3 . 0 1  2.81 2 . 6 9  2 . 6 1  2 .55  2 .51  2 .47  2 . 4 4  2 . 4 2  2 . 3 8  2 .34  2 . 3 0  2 .25  2 .21  2 .18  2 .16  L 
5 . 1 2  4 . 2 6  3 . 8 6  3 . 6 3  3 . 4 8  3 .37  3 .29  3 . 2 3  3 . 1 8  3 . 1 4  3 . 0 7  3 .01  2 .94  2 . 8 8  2 . 7 9  2 . 7 5  2 .71  
7 . 2 1  5 .71  5 . 0 8  4 . 7 2  4 . 4 8  4 . 3 2  4 . 2 0  4 . 1 0  4 . 0 3  3 . 9 8  3 .87  3.77 3 .67  3 . 5 6  3 . 4 5  3 . 3 9  3 . 3 3  2 
10.6  13 .6  I 8 . 0 2  10 .1  6 . 9 9  8 . 7 j  6 . 4 2  7 . 9 1  6 . 0 6  7 . 4 1  5 . 8 0  7.111 5 .61  6 . A  5 . 4 7  6.69i 5 . 3 5  6 . j  5 . 2 6  6 . 4 1  5 .11  6 . 2 1  4 .96  6 . A  4.81  5 . d  4 . 6 5  5 . 6 1  4 . 4 8  5 . 4 1  4 . 4 0  5 . 3 1  4 .31  5 .19  2 

“P(Fr .v .  with k ,  I degrees of freedom 5 tabled value) = y. Source: Merrington, M., and Thompson, C .  M. (1943). “Tables of per- 
w 
P w 

centage points of the inverted beta distribution.” Biometrika 33. 



Table A9.5 Upper and Lower Confidence Limits For Multiple Coherence R2 a 

(n - q) Values 

l i b  5 

0.0 0.00 0.00 
0.1 0.42 0.00 
0.2 0.57 0.00 
0.3 0.67 0.00 
0.4 0.75 0.00 
0.5 0.80 0.00 
0.6 0.86 0.00 
0.7 0.89 0.00 
0.8 0.93 0.09 
0.9 0.96 0.38 
1.00 1.00 1.00 

ri. 

10 

0.00 
0.38 
0.52 
0.61 
0.69 
0.75 
0.82 
0.87 
0.92 
0.96 
1 .00 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.07 
0.21 
0.39 
0.64 
1 .00 

0.00 
0.32 
0.45 
0.55 
0.64 
0.71 
0.78 
0.84 
0.89 
0.95 
1 .00 

20 

0.00 
0.00 
0.00 
0.00 
0.05 
0.14 
0.25 
0.39 
0.56 
0.75 
1 .oo 

- 
0.00 
0.26 
0.39 
0.49 
0.58 
0.66 
0.74 
0.81 
0.88 
0.94 
1 .OO 

40 80 1 60 

0.00 0.00 
0.00 0.21 
0.01 0.34 
0.07 0.44 
0.15 0.54 
0.25 0.62 
0.37 0.71 
0.50 0.79 
0.64 (0.84) 
0.80 (0.93) 
1 .OO 1 .00 

0.00 
0.00 
0.06 
0.14 
0.23 
0.33 
0.45 
0.57 
0.70 

(0.84) 
1 .00 

0.00 
0.18 
0.30 
0.40 
0.50 

(0.60) 
(0.69) 
(0.77) 
(0.85) 
(0.92) 
1 .oo 

0.00 
0.03 
0.10 
0.18 
0.28 
0.39 
0.50 

(0.62) 
(0.74) 
(0.87) 
1 .00 

0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.1 0.24 0.00 0.26 0.00 0.24 0.00 0.21 0.00 0.18 0.02 
0.2 0.43 0.00 0.41 0.00 0.37 0.00 0.33 0.04 0.30 0.08 
0.3 0.55 0.00 0.52 0.00 0.48 0.04 0.44 0.1 1 0.40 0.17 
0.4 0.64 0.00 0.61 0.00 0.57 0.11 0.54 0.21 0.50 0.27 
0.5 0.72 0.00 0.69 0.07 0.66 0.21 0.62 0.31 0.59 0.37 
0.6 0.79 0.00 0.76 0.18 0.74 0.33 0.71 0.43 0.68 0.49 
0.7 0.85 0.08 0.83 0.33 0.81 0.47 0.79 0.56 0.76 0.61 
0.8 0.90 0.29 0.89 0.51 0.87 0.63 0.86 0.69 (0.85) 0.73 
0.9 0.96 0.57 0.95 0.73 0.94 0.80 0.93 0.84 (0.93) (0.86) 
1 .o 1.00 1.00 1.00 1.00 1.00 1 .00 1.00 1 .oo 1 .oo 1 .OO 

0.00 
0.16 
0.27 
0.38 
0.47 

(0.58) 
(0.67) 
(0.75) 
(0.84) 
(0.92) 
1 .oo 

0.00 
0.04 
0.12 
0.21 
0.31 
0.41 

(0.52) 
(0.64) 
(0.76) 
(0.88) 
1 .OO 

a Values in parentheses are interpolated, not actually computed, but are believed accurate to at worst 10.02. Source: Groves, G. W., 
and Hannan, E. J. (1968). “Time series regression of sea level on weather,” Rev. Geophys. 6, 129-174. Copyright by American Geophysical 
Union. Values are for q = 2 and 1 - a = 0.99. Values are for q = 2 and 1 - a = 0.95. 
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Table A9.5 (cont.) 

(n - q )  Values 

5 10 20 40 80 1 60 
R d  

0.0 0.00 
0.1 0.00 
0.2 0.32 
0.3 0.49 
0.4 0.61 
0.5 0.70 
0.6 0.78 
0.7 0.84 
0.8 0.90 
0.9 0.96 
1 .O 1 .OO 

R e  

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.25 
1 .OO 

0.00 0.00 0.00 0.00 
0.17 0.00 0.21 0.00 
0.37 0.00 0.37 0.00 
0.51 0.00 0.49 0.00 
0.61 0.00 0.59 0.00 
0.70 0.00 0.68 0.08 
0.77 0.00 0.75 0.20 
0.83 0.11 0.82 0.35 
0.89 0.32 0.89 0.53 
0.95 0.59 (0.95) (0.72) 
1.00 1.00 1 .OO 1 .OO 

0.00 0.00 
0.21 0.00 
0.35 0.00 
0.46 0.04 
0.56 0.12 
0.64 0.22' 
0.72 0.35 
0.80 0.48 
0.87 0.64 

(0.94) (0.81) 
1 .oo 1 .OO 

0.00 
0.19 
0.32 
0.43 
0.52 
0.61 
0.70 
0.78 

(0.85) 
(0.92) 

1 .OO 

0.00 
0.00 
0.04 
0.12 
0.21 
0.32 
0.43 
0.56 
0.69 

(0.85) 
1 .OO 

0.00 
0.17 
0.29 
0.39 
0.50 

(0.58) 
(0.67) 
(0.76) 
(0.84) 
(0.91) 

1 .OO 

0.00 
0.02 
0.09 
0.18 
0.27 
0.38 
0.49 

(0.60) 
(0.72) 
(0.86) 

1 .oo 

~ ~~ ~ 

0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.1 0.00 0.00 0.03 0.00 0.13 0.00 0.16 0.00 0.16 0.00 
0.2 0.13 0.00 0.25 0.00 0.29 0.00 0.29 0 00 0.28 0.07 
0.3 0.33 0.00 0.40 0.00 0.42 0.00 0.41 0.08 0.39 0.15 
0.4 0.48 0.00 0.52 0.00 0.53 0.05 0.51 0.18 0.49 0.25 
0.5 0.60 0.00 0.62 0 00 0.62 0.16 0.61 0.29 0.58 0.36 
0.6 0.70 0.00 0.71 0.07 0.71 0.29 0.69 0.40 0.67 0.47 
0.7 0.79 0.00 0.79 0.24 0.79 0.43 0.77 0.54 0.76 0.60 
0.8 0.86 0.11 0.86 0.44 0.86 0.60 0.85 0.68 (0.84) 0.72 
0.9 0.93 0.47 0.93 0.69 0.93 0.79 0.93 0.83 (0.92) (0.86) 
1.00 1.00 1.00 1.00 1.00 1 .OO 1 .OO 1 .OO I .OO 1 .OO 1 .OO 

0.00 
0.14 
0.26 
0.37 
0.46 

(0.56) 
(0.66) 
(0.74) 
(0.83) 
(0.92) 

1 .OO 

0.00 
0.03 
0.11 
0.20 
0.30 
0.41 

(0.52) 
(0.64) 
(0.76) 
(0.88) 

1 .OO 

,I Values are for q = 4 and 1 - u = 0.99. 
Values are for q = 4 and 1 - a = 0.95. 

w 
P 
VI 



Table A9.5 (cont.) w 

(n - q) Values 

5 10 20 40 80 160 

% 

Rf 

0.0 0.00 0.00 0.00 0.00 0.00 
0.1 0.00 0.00 0.00 0.00 0.00 
0.2 0.00 0.00 0.07 0.00 0.21 
0.3 0.08 0.00 0.29 0.00 0.37 
0.4 0.31 0.00 0.44 0.00 0.50 
0.5 0.48 0.00 0.57 0.00 0.60 
0.6 0.62 0.00 0.68 0.00 0.69 
0.7 0.74 0.00 0.77 0.00 0.78 
0.8 0.83 0.00 0.86 0.16 0.86 
0.9 0.92 0.00 0.93 0.50 (0.94) 
1.00 1.00 1.00 1.00 1.00 1 .OO 

R g  

0.0 0.00 0.00 0.00 0.00 0.00 
0.1 0.00 0.00 0.00 0.00 0.00 
0.2 0.00 0.00 0.00 0.00 0.13 
0.3 0.00 0.00 0.15 0.00 0.29 
0.4 0.13 0.00 0.33 0.00 0.43 
0.5 0.34 0.00 0.47 0.00 0.54 
0.6 0.50 0.00 0.61 0.00 0.64 
0.7 0.65 0.00 0.71 0.06 0.74 
0.8 0.78 0.00 0.82 0.31 0.83 
0.9 0.89 0.27 0.91 0.61 0.92 
1.00 1.00 1.00 1.00 1.00 I .oo 

Values are for q = 8 and 1 - a = 0.99. 
Values are for q = 8 and 1 - a = 0.95. 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.10 
0.26 
0.46 

(0.68) 
I .OO 

0.00 
0.00 
0.00 
0.00 
0.00 
0.04 
0.18 
0.35 
0.54 
0.75 
1 .OO 

0.00 0.00 
0.11 0.00 
0.27 0.00 
0.39 0.00 
0.50 0.06 
0.61 0.17 
0.69 0.29 
0.78 0.44 
0.86 0.61 

(0.94) (0.78) 
1 .OO 1 .OO 

0.00 0.00 
0.05 0.00 
0.21 0.00 
0.34 0.01 
0.46 0.11 
0.56 0.22 
0.66 0.36 
0.75 0.50 
0.83 0.65 
0.92 0.82 
1 .oo 1 .OO 

0.00 
0.14 
0.28 
0.39 
0.50 
0.59 
0.68 

(0.77) 
(0.85) 
(0.93) 

1 .oo 

0.00 
0.11 
0.24 
0.36 
0.46 
0.56 
0.65 
0.75 

(0.83) 
(0.92) 
1 .OO 

0.00 0.00 0.00 v, 

0.00 0.14 0.00 
0.01 0.27 0.07 2 
0.08 0.38 0.16 2 
0.18 0.48 0.25 P 

5 
0.41 (0.67) 0.48 2 
0.54 (0.76) (0.60) 2 
0.68 (0.84) (0.72) b 

8 
$ 

0.03 0.25 0.09 % 
0.12 0.36 0.18 R 
0.22 0.46 0.29 2 
0.33 (0.55) 0.39 b 

0.45 (0.65) (0.50) n 
0.58 (0.75) (0.62) 0 

(0.86) (0.92) (0.87) C 

2 

0.29 (0.58) 0.36 

(0.83) (0.93) (0.86) 
1 .OO 1 .oo 1 .OO 

2 

0.00 5 0.00 0.00 
0.00 0.12 0.00 

1 

0.71) (0.83) (0.74) 5 
1 .oo 1 .OO 1 .OO 2 

5 
0 



Table A9.5 (coat.) ;a 
2 

(n  ~ 4) Values 2 
E 

5 10 20 40 80 I60 u 

h 

* R h  

0.0 0.00 
0.1 0.00 
0.2 0.00 
0.3 0.00 
0.4 0.00 
0.5 0.02 
0.6 0.29 
0.7 0.50 
0.8 0.69 
0.9 0.86 
1 .o I .oo 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
1 .oo 

0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 
0.00 0.00 0.12 0.00 
0.08 0.00 0.30 0.00 
0.30 0.00 0.45 0.00 
0.48 0.00 0.58 0.00 
0.63 0.00 0.70 0.09 
0.77 0.00 0.81 0.33 
0.89 0.31 (0.91) (0.59) 
1.00 1.00 1 .oo 1 .oo 

0.00 
0.00 
0.11 
0.27 
0.40 
0.52 
0.63 
0.73 
0.82 

(0.91) 
1 .OO 

0.00 0.00 
0.00 0.04 
0.00 0.20 
0.00 0.32 
0.00 0.44 
0.06 0.55 
0.20 0.64 
0.36 0.74 
0.55 (0.83) 

(0.74) (0.91) 
I .oo I .OO 

0.00 
0.00 
0.00 
0.02 
0.12 
0.24 
0.36 
0.50 
0.65 

(0.80) 
1 .OO 

0.00 
0.10 
0.23 
0.35 
0.45 

(0.55) 
(0.64) 
(0.74) 
(0.83) 
(0.91) 

1 .OO 

d 
0.00 0 

0.04 ?.J 

0.12 
0.22 
0.34 
0.46 

(0.59) 
(0.72) 
(0.85) 
1 .OO 

0.00 3 
2 
v) 

Ri 

0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 
0.2 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.16 0.00 0.20 0.05 
0.3 0.00 0.00 0.00 0.00 0.03 0.00 0.21 0.00 0.29 0.05 0.32 0.15 
0.4 0.00 0.00 0.00 0.00 0.21 0.00 0.35 0.00 0.40 0.16 0.43 0.25 
0.5 0.00 0.00 0.18 0.00 0.38 0.00 0.47 0.11 0.51 0.28 (0.53) 0.36 
0.6 0.11 0.00 0.38 0.00 0.52 0.00 0.59 0.26 0.62 0.40 (0.64) 0.48 
0.1 0.38 0.00 0.56 0.00 0.65 0.19 0.70 0.43 0.72 0.54 (0.73) (0.60) 
0.8 0.61 0.00 0.71 0.04 0.78 0.43 (0.81) (0.60) (0.83) (0.69) (0.84) (0.72) 
0.9 0.82 0.00 0.86 0.46 0.89 0.69 (0.91) (0.80) (0.92) (0.85) (0.93) (0.86) 
1 .o 1.00 1.00 1.00 1.00 1 .oo 1 .OO 1 .OO 1 .OO 1 .OO 1 .oo 1 .oo 1 .oo 

W 
P 
4 Values are for 4 = 16 and 1 - t~ = 0.99. 

' Values are for q : 16 and 1 - o( = 0.95. 



Table A9.5 (cont.) w 
% 

(n - q) Values 
I? 

5 10 20 40 80 160 

\o 
0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.14 0.00 h-i 

0.3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.00 0.28 0.06 8 
0.4 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.00 0.33 0.00 0.39 0.16 6 

2 0.5 0.00 0.00 0.00 0.00 0.14 0.00 0.36 0.00 0.46 0.12 (0.51) 0.29 

2 0.6 0.00 0.00 0.07 0.00 0.36 0.00 0.50 0.00 0.58 0.27 (0.62) 0.41 

2 0.7 0.04 0.00 0.36 0.00 0.54 0.00 0.64 0.21 0.69 0.43 (0.72) (0.55) 
0.8 0.41 0.00 0.59 0.00 0.71 0.07 0.77 0.43 (0.80) (0.61) (0.83) (0.69) b 
0.9 0.72 0.00 0.81 0.00 (0.87) (0.48) (0.90) (0.68) (0.91) (0.80) (0.93) (0.84) b 

1 .OO 1 .OO 2 1 .o 1.00 1.00 1.00 1.00 1 .00 1 .00 1 .OO 1 .oo 1 .OO 1 .oo 

R k  2 
5 
5 

k 
0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.00 
0.3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.00 0.25 0.08 
0.4 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.29 0.04 0.37 0.19 
0.5 0.00 0.00 0.00 0.00 0.04 0.00 0.30 0.00 0.43 0.17 0.48 0.32 

c5 

;a 
L- 

0 

2 
0.6 0.00 0.00 0.00 0.00 0.27 0.00 0.46 0.07 0.55 0.32 (0.60) 0.44 
0.7 0.00 0.00 0.24 0.00 0.47 0.00 0.61 0.28 0.67 0.47 (0.70) (0.58) 0 

5 
0.9 0.65 0.00 0.77 0.16 0.84 0.57 (0.89) (0.70) (0.91) (0.82) (0.91) (0.86) C 
1 .o 1.00 1.00 1.00 1.00 1 .oo 1 .OO I .oo 1 .oo 1 .oo 1 .oo 1 .OO 1 .oo 2 

Y 

5 

0.8 0.26 0.00 0.51 0.00 0.66 0.19 (0.76) (0.43) (0.80) (0.64) (0.81) (0.72) 

0 
'Values are for q = 32 and 1 - a = 0.99. 
Values are for q = 32 and I - a = 0.95. 
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Table A9.6 

Critical Values for  the Test o f  Hypothesis H: p = 0 vs A" p > 0 ~ 

n ~x = 0.05 o~ = 0.10 

2 0.975 0.948 
3 0.881 0.827 
5 0.726 0.662 

10 0.533 0.475 
15 0.440 0.390 
20 0.383. 0.338 
30 0.314 0.276 
50 0.244 0.215 
70 0.206 0.181 

100 0.173 0.152 
200 0.122 0.107 

"Table lists the values of v such that if p = 0, P(/3 > v) = 0~, where 
/3 is the estimate of coherence based on 2n degrees of freedom. Source" 
Amos, D. E. and Koopmans, L. H. (1963). "Tables of the distribu- 
tion of the coefficient of coherence for stationary bivariate Gaussian 
processes." Sandia Corp. Monograph SCR-483. Sandia Corp., 
Albuquerque, New Mexico. 
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Fig. A9.I Graphs of upper and lower confidence limits for 80 ~ confidence intervals for 
coherence. Degrees of freedom-- 2n. Source: Amos and Koopmans (1963). 
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Fig. A9.2 Graphs of  upper and lower confidence limits for 90 ~o confidence intervals for 
coherence. Degrees of  freedom = 2n. Source: Amos and Koopmans (1963). 



3 5 2  9 EXPERIMENTAL DESIGN AND SPECTRAL COMPUTATIONS 

1.0 

' " / ' t 

' i i  i l  i x' i i .  t / ! , i .. r 

Ii ! ~ ' !  i (  i t  i ' ! 
o.8 ~ i i . ! /i - 

�9 ' ; I I I I '  / : : -  ,__~/i r ,  J 1 ~d .t / i f i  1 ! i l  f i t  
. ! ::7 i ~ ,  i1 i t t t ,~. / l ---VI r--: 

i i  , l i - t : i  I i t i  ! [ - 7 - - - -  

i I " t ' i I ~ _ j  __~ ...... ~ .... ~ . . . . . . . . . . .  / t i , I I  i /  . ~ .4', t ! t l 
o~ ', i i t ~  L f -  t' l / i  I1 i i/ , ! i ! I i  t ! t -  1-:1i' 

" L . _ - L ;  . . . . .  _ ~ _ _ ~ . _ _ . _ t  : t ) t l  I t i  # 1  V' ~ ) / l  1 ) ! ,  ~ J' t- I L ~  
Q- L .  ! i i  ~#i :f i /1 I t i  /) I / ,  t ! i /  I i /  ) t / 

4 -  ', ! ! I J l i . ' 

' i J"! i/~ i 1 I 1 / !  i J ! / i - - I I  ~> a5 ; " ) I - , ~ ! i .. : jr : i 1 

o ._; t l  !<'! i .  = .GI?II I~/ 141/ 
o_ L_L___i~I__',_<~7 H_dl__~-!i. :!~./!. .~-/ ~ ... U / I  " 44 I ~ ~ 

I i i i ' 1  1! i ! I # '  
.... ~ ..... ~_l_i_Ll__/]_r____~ i I t ,' / !  1 / ' 1 I t i t i  
~ : ', l T l , / ' .  t i - , l i  t l  7 t I ~ t , f I ) I . , , '1  i , r  

' # t  I I I 1 ' I i , ' ' ' '  I ) , ,  i ~ t  / ~ . _  7, 
�9 I I ' i ' �9 ] . ]__L.7 .... /L /_ I_L  rt l  t t , 1 " t  .11 . l  . : Y  ~ t,,4 / t  I -1 

_7 I1  1 i ! ~ - / 1 1  1/I t,'i..I :1 I . t l i  -: - t . , ! " l  ] t " !  i 
i 

0 2 - - -  ~ 
�9 __~__i#./.lt ~ ?'v  I,,4i I . , ~  1 : t  t:A ' i : ' l t  .,,,4" I I I I J ,"  ] i /  ' p 

/ 1 ; / t / / 7  I.,,: t . I  
o, ~ t ! / / / / . , , ' iP . ; , 4 ,  ! ~  ::1 2..-.."T- -i . J ~ [  I. I I . . . . . . . . .  1 ..... 

Odd-i-! ~=i-O.lT ...... -~(~;-i--- ~ 8 !4 '  " ' 0:5 .... i~-~6 ,.-i .... ; '0!7 i i. i Oi8 ' . i 0!" ' Io0 

P 

Fig. A9.3 Graphs o f  power functions for the test o f  zero coherence. Significance level 
= 0.05. Degrees offreedom = 2n. Source" Amos and Koopmans (1963). 
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Fig. A9.4 Graphs of power functions for the test of zero coherence. Siynificance level 
--0.10. Degrees of freedom-- 2n. Source: Amos and Koopmans (1963). 
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