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General preface

Nowadays there are many books on mathematical theory of optimal
control of systems with distributed parameters, but as a rule they are
devoted to the systems with regular control. The theory of optimization
of systems with singular control (including important applied problems
such as point, pulse, mobile optimization etc.) is much less elaborated.

The book is written by the professor of the Kiev National Taras
Shevchenko University S.I.Lyashko. The author made an attempt to
create the general theory of optimization of linear systems (both
distributed and lumped) with a singular control. This book touches upon
wide range of issues such as the solvability of boundary values
problems for partial differential equations with generalized right-hand
sides, the existence of optimal controls, the necessary conditions of
optimality, the controllability of systems, numerical methods of
approximation of generalized solutions of initial boundary value
problems with generalized data, and numerical methods for
approximation of optimal controls. In particular, the problems of
optimization of linear systems with lumped controls (pulse, point,
pointwise mobile and so on) are investigated in detail.

The book undoubtedly will awake the interest of all who is engaged
in the theory of optimal control of linear systems and its application in
physics, ecology, economy, medicine and other fields.

Academician
of the National Academy of Sciences
of Ukraine I.V.Sergienko
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Preface

Intensive development of science and technology put the
optimization of various systems in the forefront of applied mathematics
and cybernetics.

The fundamental results of the optimal control theory were obtained
by L.S.Pontryagin, V.P.Boltyansky, R.V.Gamkrelidze, and Y.F.Mi-
schenko [1, 2], A.A.Feldbaum [3], R.Bellmann [4], V.M.Tikho-
mirov [5], N.N.Krasovsky [6], B.N.Pshenichny [7-9], B.S.Mordu-
khovich [10], J.Varga [11] and others mathematicians. The theory of
control of systems with finite-dimensional phase space was elaborated.
But in many technical applications objects have spatial length and its
state is described by some classical or non-classical equations of
mathematical physics (so called systems with distributed parameters)
The investigation of such objects requires considerable generalization
of methods of analysis of systems with distributed parameters. The
solutions of such problems were obtained by A.Bensoussan [12],
B.N.Bublik [13], A.G.Butkovsky [14-16], F.P.Vasilyev [17], AIEgo-
rov [18-20], YuM.Ermoliev [21-25], V.LIvanenko and V.S.Mel'-
nik [26], J-L.Lions [27-34], Lurje K.A. [35], A.G.Nakonechny [36],
Yu.S.Osipov [37], Yu.L.Samoylenko [16, 38], T.K.Sirazetdinov [39],
R.P.Fedorenko [40], V.A.Dykhta [41] etc.

Many problems in physics, economics, ecology, medicine etc. are
reduced to the problems with state equations, whose right-hand sides
include finite order distributions (pulse, point and other controls) [14-16,
42-45].

These problems of singular optimal control yield a series of difficult
problems. Although some results were obtained already, but the
complete theory was not developed yet.

The problem of optimal pulse control of systems with distributed
parameters was solved in [6] by introducing into consideration the
Stiltjes integral and using the moment L -problem methods. This
problem was investigated in [46] as a game one. The papers [47, 48]
were devoted to the necessary conditions of optimality in the form of
the Pontryagin maximum principle. In [12, 33, 49] the problem of
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synthesis of the optimal control was reduced to solving of a quasi-
variational inequality. In the paper [50] the problem of pulse
optimization was solved with the help of extension of variational
problem and its further analysis in the class of distributions. In [51-53]
the problem of point optimal control of systems with distributed
parameters was investigated with the help of the semi-group theory. In
the paper [20] the pulse position control was obtained for the heat
transport equation as a result of solving of some linear problems. The
problem of the optimal pulse control was studied in the stochastic
formulation in the monograph [12] It should been noted that the
introducing of noise into considered systems is equivalent to the
regularization and very simplifies the investigation of the optimal
controls existence. As regards the necessary conditions of optimality
the situation is inverse. The introducing of noise make the formulation
of the stochastic maximum principle very complicated.

In investigation of controllable systems the problem of its
controllability is one of the most important. The problem of
controllability of linear systems with lumped parameters, which allow
generalized controls, was investigated in [6]. In this paper it was
shown that the introducing of such controls does not extend the
R.Kalman's conditions of complete controllability. In the case of
systems with distributed parameters the state of affairs is much more
complicated. It was shown in [14] that the controllability of distributed
systems with point controls could be essentially dependent on the
numerical nature of the point of the application of control force. Some
problems of optimization of systems with generalized controls were
considered in the papers [54-61].

Though many problems were solved, numerous urgent problems of
generalized control of systems with distributed parameters still either
unsolved (for example, problems of pulse controllability and numerical
methods) or incompletely investigated (existence of optimal controls,
necessary and sufficient conditions of optimality).

This monograph describes the investigations in the field of the
theory of optimal control of linear systems with distributed parameters
with the help of non-linear generalized impacts (including pulse). In



book the theory of optimization of distributed systems elaborated on the
basis of a priory inequalities in negative norms is stated. V.P.Didenko
[62-64] first obtained the inequalities in negative norms and the method
ofits proving (integral abc-method) at the early 1970's. This method of
investigation of generalized optimization problems is very effective. It
allowed to researchers to obtain the results on existence and
uniqueness of solutions of initial-boundary value problems, on existence
of optimal controls, on necessary and (in some cases) sufficient
conditions of controllability in the classes of various generalized
impacts. Basing on this method, it is possible to construct numerical
methods of generalized optimization (including the methods of solving
initial boundary value problems with finite-order distributions in the
right-hand sides of its state equations).

The book's content is aimed to verify the following theses:

1. In the theory of optimal control of distributed systems we often
deal with non-smooth singular controls. That is why we must
investigate differential equations in classes of distributions.

2. The Sobolev spaces with negative index and a priori inequalities
in negative norms are very suitable for these goals.

3. These methods can be very useful not only in the field of
singular control.

The first chapters of the book are devoted to the general theory of
optimization of linear systems with generalized impacts, for which the a
priori inequalities in negative norms hold true.

In the following chapters we consider the applications of the
general theory to systems described by classical and non-classical
equations of mathematical physics, proving. For these systems the
validity of these inequalities in negative norms. Also, we construct and
investigate numerical methods (analogues of the Galerkin method) to
find approximate solutions of initial boundary value problems.

Chapter 10 is devoted to the systematic investigation of
controllability of systems with pulse, point and similar control.

Last chapter contains the recent results and generalizations. We
think that the section devoted to generalized solvability of operator
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equalities in linear topological spaces is the most interesting. These
results undoubtedly will be applied to the control theory.

In the book we use the following system of numeration and
references. In each section we use a separate numeration of formulae,
theorems and definitions. In the frame of single chapter (section) a
number of this chapter (section) in references may be omitted. For
example, Theorem 1 means the first theorem of the current section in
the current chapter, Lemma 1.2 is the second lemma of the first
section in the current chapter, (1.2.3) is the third formula of the second
section of the first chapter and so on.

The book is addressed to the broad sections of readers — students,
post-graduates and scientific researchers — who deal with partial
differential equations and optimal control.

The work on book teaches to be modest, as far as the author
realizes, in addition, how much he depends on others people. I would to
thank my colleagues from the Institute of Cybernetics of National
Academy of Science of Ukraine (NANU) and from the Kiev National
Taras Shevchenko University, and also others people, who stimulated
(knowingly or unknowingly) my work during long time. The first place
in the list of my personal thanks belong to NANU academician
YuM.Ermoliev and professor V.P.Didenko, who are responsible for
the awakening of my interest to the theory of optimization and to the
issues of the solvability of differential equations with non-smooth data.
Also, I am very grateful to my colleagues, who has an influence on the
content of my book: NANU academicians I.V.Sergienko,
B.N.Pshenichny, N.Z.Shor, correspondent-members of NANU
B.N.Bublik, V.S .Mel'nik, Yu.I.Samoilenko, V.V.Skopetzky,
A.A.Chikriy, professors A.G.Burkovsky, Yu.M.Danilin, A.LLEgorov,
N.F Kirichenko, A.G.Nakonechny. I would to mark with gratitude the
activity and enthusiasm shown by my young disciples, especially
D.A Nomirovsky and V.V.Semenov, whose results I used in the book
in them kind consent.

D.A.Nomirovsky and D.A.Klyushin translated the manuscript from
Russian to English. The general editing of the book was performed by



XV

D.A Klyushin. Without him insistence (up to the willingness to share
with author the responsibility for possible mistakes) the book would be
never completed.

Finally, I am very thankful to the employees, post-graduates and
students of the Department of Computational Mathematics of the
Faculty of Cybernetics and the Department of Differential and Integral
Equations of the Mechanics and Mathematics Faculty of the Kiev
National Taras Shevchenko University, and also to all listener of my
lectures and the readers of the preliminary versions of this book.

I am very grateful to the editors of the Kluwer Academic
Publishers for their remarkable work. Especially, I would like to thank
Ms. Angela Quilici for her kind help during the preparation of the book.

Please, inform the author about all found mistakes and misprints via
e-mail addresses: sil@dialektika.com, vm214@dcp.kiev.ua.

S.I.Lyashko



Chapter 1

OPTIMIZATION OF LINEAR SYSTEMS
WITH GENERALIZED CONTROL

1. FORMULATION OF OPTIMIZATION
PROBLEM FOR DISTRIBUTED SYSTEMS
AND AUXILIARY PROBLEMS

Consider a system which functioning is described by linear partial
differential equation [11, 14-17,19, 30, 65-73]

Lu=F+ Ah, ue D(L) (1)
in a tube domain Q= (O,T)XQ , where u(t,x) is an unknown
function depended on a spatial variable x€ € and a time variable
te (O,T ), Q is abounded domainin R" with smooth boundary 02,
D(L) is a set of the functions which are sufficiently smooth in é and
satisfy some conditions (bd) on the boundary of the domain Q.

Let us consider that operator L mapping D(L) clL, (Q) into
L, (Q), where L, (Q ) is the space of functions, which are measurable
and square integrable on the set Q. Note that the set D(L) is dense
in L, (Q) therefore we can correctly define an adjoint by Lagrange
operator L :L,(Q)— L,(Q) with the domain of definition D(L'),
which is the set of functions, which are sufficiently smooth in § and
satisfy adjoint boundary conditions (bd *).

Let the following chains of equipped Hilbert spaces are constructed
with respect to L, (Q) [74,75):

DOW,] 2.OW, oL (Q)DW,, D. W, D..

-n -1 i n
~DOW, . D.OW,, > L,(Q) DW .D.DOW.. D.,
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where Wb';, n=12,., are the completions of D(L) with respect to

some positive norms; Wb'; ., n=12..are the completions of D(L')
with respect to the same norms. Negative spaces Wb;l, Wb;'+ 1 (&

constructed with respect to L, (Q) and to the corresponding positive

spaces.
Hereinafter we shall obtain a priori estimations with respect to
negative norms for various specific types of operators L :

"u"H;, =C “Lu“wb} < Cz"“"w,,’d

I <6l
where L is the operator adjoint to L by Lagrange,
ue D(L),ve D(L'), ¢, C here and below with indices and without
them denote positive constants not depending on the functions u(z,x),
v(t,X),

)

*
g = cl"L v
bd*

W +
bdt

L(Q)2H, 2W,;, L@ 2H,. 2%,

in addition, these embeddings are dense and operators of embedding
are completely continuous.

Spaces H ; 25 Hb} , Wb;', are Hilbert ones endowed with the
norms satisfying the inequalities

il 2 bl 2o <Pl 2 il 2 ML

Denote by <~,-)WM . (-,-)W bilinear forms constructed by extending
bt

the inner product in L, (Q) on continuity to bilinear forms on
+1 -1 -1 ! .
W,, xW,, and Wbd, XW;;, , respectively. By <.’.)Hu ) (-,-)Hw we
understand analogous bilinear form.
It follows from the above mentioned inequalities (2) that operator

L (L', respectively) may be extended on continuity to an operator
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continuously mapping whole space W;’ ( W*, , respectively) into

space Wb; (Wb:, respectively). It should been noted that the

inequalities (2) hold true for extended operators also (We shall save for
them the previous denotations) for any u (t x)E Wb o (t,x)e Wb’;l, .

For operators L and L the following identity holds true
(Lu,v)“,w - (“’L“’>wbd’ Vuew,; ,vew’,
The solutions of the original and the adjoint problems
Lu=F, G)
Lv=0G, @)
we shall mean in the sense of the following definitions.
Definition 1. The solution of the problem (3) with a right-

hand side F € Wb;', is a function u(t, x)e b d , for which there
exists a sequence of such functions u,(t,x) € D(L), i=L12,.. that
le, =y, —==0. L, = Flly -+ —==—0-
bd*
Definition 2 (strong solution). The strong solution of the

problem (3) with a right-hand side F € Wb ;ﬁ is such a function
ult,x)e W', thar

bd ’
Lu-F =0
in the space W;;ﬁ ;
Definition 3 (weak solution). The weak solution of the
problem (3) with a right-hand side F € Wb:zl* is such a function

u(t,x)e W,/ that the following equality
(u,L‘v)WM =(Fv),

holds true for any functions v € W[;', .
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In a similar way we introduce the definitions for solutions of the
equation (4).
Lemma 1. Let the inequalities (2) hold true for the

operators L and L . Then Definitions 1,2,3 are equivalent.
Proof. We shall carry out the proof following the scheme
123,

Let u(t,x) be a solution of the problem (3) in the sense of

Definition 1. Then taking into consideration the inequalities (2) with the
help of passing to the limit we conclude that the value of the extended

operator L : be/ — Wb;l* on the element u(z,x) obviously equals to
F,ie. Lu = F in the sense of the equality of the elements in the
space Wb;'+ .

Vice versa, let u(t,x) be a solution of the problem (3) in the sense
of Definition 2. Choose an arbitrary sequence u, (t,x)e D(L) such
that ||, — |

w+ —5=—>0. Further, we have
bd

|Lu, - F||,« =||Lu,- Lu+ Lu-F| . <
ot bd*
<|\\Lu, - Lul|,+ +||Lu-F},- .
ba* bd"

As faras Lu=F in Wb;’+ , the second term at the right-hand side

equals to 0. Taking into account (2) and the linearity of the operator
L we obtain

"Lui - F"wb;+ = ”Lui - Lu”wb‘} < c”ui —Uu

w0

Thus, the equivalence of the Definitions 1 and 2 is proved.
It is not difficult to prove also the equivalence of Definitions 2 and
3. Indeed, the statement 2 = 3 is obvious. Let us prove that 3= 2.

Let u(t,x) a the solution of the problem (3) in the sense of
Definition 3:

<u,L‘v)WM = <Lu’v>”'w = (F ,V)WM , Vve Wb:l*'
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By virtue of the arbitrariness of v & Wb‘;' , we obtain that Lu = F

inw .
bd
Remark. Analogous statements hold true for solutions of the
adjoint equation (4).

Theorem 1. Let the inequalities (2) hold true for the
operators of the problems (3) and (4). Then for any element

Fe Hb'd+ there exists a unique solution of the problem (3) in the
sense of Definitions 1-3, where H;d, IS a negative space
constructed with respect to H,;, and L,(Q).

Proof. Consider the functional I(v)=(F,v), on functions
bd*
VE Wb:ﬁ . By the Schwarz inequality and (2) we obtain

N =KFYy |<UF ML, <L,

Hence the functional I/(v) may be considered as a linear

H
bd*

continuous one dependent on L've Wb:,l (l( v)=1 (L'v)). According to
the Hahn-Banach theorem [76] extend the functional / () linearly and
continuously onto whole space Wb;l. On the basis of the theorem
about common form of a linear continuous functional defined in Wb;l
[77] there exists a function wu(t,x)€ Wbl  such that I(w)={(u, W)WM
for any we ij. Consider this functional on the elements

w=Lvve Wb’;' . Then

l-(w) = <u, L.V>W = (Lu,v)ww = (F, V>HM* = (F, V)WM’ :

bd
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=0, Vve W;ﬂ. By virtue of the

+

Hence, (Lu-F,v),
bd

arbitrariness of v €& ijzl* , we obtain that Lu— F =0 in the space
Wb;'+ . The uniqueness of the solution follows from the left-hand side

of the first inequality in (2) and from the embedding W;;I C H,,. The
theorem is proved.

Theorem 2. Let the inequalities (2) hold true. Then for any
element G€ H,, there exists a unique solution of the problem (4)

in the sense of the analogues of Definitions 1-3 for the problem

).

Pro o fof Theorem 2 is similar to the proof of Theorem 1.

It is possible to consider the generalized solution from more wide
class.

Definition 4. The solution ofthe problem (3) with a right-
hand side F € W;ﬁ is a function u(t,x)€ H,,, for which there
exists a sequence of such functions u,(t,x)€ D(L),l' =1,2,... that

”ui _u”H F >0, ”Lui _F”uﬂ i—yeo >0.
] bd*

Definition 5 (weak solution). The weak solution of the

problem (3) with a right-hand side Fe& Wb ;ﬂ is a function

u(t,x)€ H, ,» such that the equality
<u,L v) b, = (F ,v),,,bd+

holds truefor any functions v € Wb;'+ :Lve H e

The generalized solutions of the problem (4) are defined in a similar
way.

Lemma 2. Assume that the inequalities (2) hold true for the
operators L and L. Then Definitions 4 and 5 are equivalent.
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Proof. Let u(t,x) be a solution of the problem (3) in the sense

of Definition 5, i.4. u(¢,x)€ H . and
Lv) ={F, , 5
<u’ v>”bd ( v)Wbd* ( )

weW", :Lve H,,.
bd

Choose a sequence F. € H™, suchthat F,————F in W' .
P bd P po bd

Then, if u, (t,x)e Wb;' is a solution of the problem Lu = F, in the

sense of Definition 1 (which exists by virtue of Theorem 1) then
according to Lemma 1 we have
_ +/
(Lup,v)w ) —(Fp,v>w K Yve WMV
bd bd
Hence,

LY adl ‘<F; ~ F’v> bd*+

<Lu —F,v)
14 '4 _ | W ,
(g1 [/
bd* bd

and therefore,
"L“p -F "wb-;, = "Fp -F "wb-} —=—0, (6)

oo

Le. the sequence {Lu p} is fundamental in Wb;l, .

p=t
Moreover, taking into consideration (2) we obtain

iy P o
Ilul’l uPz IH;.: Lul’l LuPz Wb'} 0

PPy
oo . . +
Thus, {u p} , s a fundamental sequence in H,
p:

»g» Dence, there

exists " (t,x)€ H,, such that “up —u'| 0.

Hyy P

Further, we have

(up,L'v)HM =<uP,L‘v>WM = <Fp,v>w o

bd
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weW' :Lve H,,.
bd
Passing in the last equality to the limit as p — e, we obtain
(u sL V) Hyy = <F,V)WM

Taking into consideration the fact that the last equality holds true
forarbitrary ve€ W;‘;ﬂ :Lve H,, and the relations (5), we state that

u(t,x)=u'(t,x) in H,,, and as faras "up —u'"m —=-—>0, then

also "u p U ——————)0 Granting (6), we convince oneself that

H bd
u(t,x) is the solution of the problem (3) in the sense of the
Definition 4.

Let us prove the inverse statement. Let u(z,x) is a solution of the
problem (3) in the sense of Definition 4. Then

(u,L‘v)H = (ui,L'v>H +<u —u,.,L'v>H =
bd bd bd
= <Lu,., v)WM+ +<u - u,.,L'v>H =

bd (7)
=(Lu,-F, v)Ww +(F,v)Ww + (u —u, L v)H

bd
Taking into account (2), let us estimate the first and the third terms
in the right-hand side of (7).

(Lui -F, v)w s "v"u/*’ "Lui _F"W" _"T-TJ_)O’
<u—u,,L'v) <"Lv |l — 4, IIHIM———“_)O

Passing to the limit in (7) as [ — oo, we obtain the required equality
).
Theorem 3. Let the inequalities (2) hold true for the

operators of the problems (3), (4). Thenfor any element F € Wb;,,

there exists a unique solution of the problem (3) in the sense of
Definitions 4-5.
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Proof. The set H ;d, is dense in Wb;', . Hence, for any element
Fe Wb;l, there exists a sequence F; € Hb'd, such that
IF,~ Fl, ., —==0.
It follows from Theorem 1 that for any function F; € Hb'd+ there

exists a unique solution u, € W,;’ of the problem (3) in the sense of
Definition 1. Using the inequality (2), we obtain

< ”Lu, —Luj”"'ﬂ* = ”E -F, 0.

el -2, ly;d w1, o

Thus, by virtue of the completeness of the space H,, there exists

a function u(t, x)e H; % Hui —u” ;, ——=—>0. On the other hand,

by Lemma 1 for any function ve& Wb:’ﬂ the following equalities hold

true
(L), =(E),

bd*
or

<u,.,L v)HM = (E,V)Ww ,
weW" Lve H,.
bd
Passing to the limit as i — = in the last equality, we obtain
(u,L'v> =(F,v), ,weW" :LveH,.
Hy, b bd

Let us prove the uniqueness. Let lT(t,x)E H,, be one more
generalized solution of the problem (3) in the sense of Definitions 4-5.
Then <u -q, L‘v) =0 WeW": Lve H, . Theorem 1 implies

bd

H bd

that L‘(W;’,)Q H; .So u—u=0in H,, . The proof is complete.
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Theorem 4. Let the inequalities (2) hold true for the
operators of the problems (3), (4). Then for any element GEW,,

there exists a unique solution of the problem (4) in the sense of
the analogies of Definitions 4-5 for the problem (4).

P r oo f of Theorem 4 is similar to the proof of Theorem 3.

L e m m a 3. Let u(t,x) be a solution of the equation (3) with

a right-hand side F & Wb;l, in the sense of Definitions 4-5, then
the following estimation holds true

||u| H}, SC"F”W;’IQ' ®

Proof. At first, we shall show that the following positive
estimations follow from the a priori estimations with respect to the

negative norms (2):
ellyy < CNEetl- ©)

My, <€ (10)

Indeed, by virtue of Theorem 3 there exists a unique generalized
solution u(z,x) of the problem (3) with the right-hand side F € Wb;ﬂ

Lv

Hyq

and this solution belongs to the space H ; - It follows from Lemma 2

that forany F € I’I"b;'+
following equality holds true

u,L'vy =(F,) . 11

< > Hy, ( ) 4 od" ( )

Using the Schwarz inequality we obtain

and forany v€ W*' suchthat L've H,, the
bd

v
F T <[l -

Hul w,
bd
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The Banach-Steinhaus theorem [76, 78] implies that the set of

v
functions ——L-.—- is bounded with respect to the norm of the
v
£,
space Wb:l+ and this proves that the inequality (10) holds true. The

inequality (9) 1s proved in a similar way.
Let us prove that (8) holds true.

Applying to the right-hand side of the equality (11) the Schwarz
inequality and (10), we obtain

Lv
U= < C"F“ -l
< 2 vu> w0

VE W;’, :L've H,,, that implies (8).
Remark. In a similar way we can prove the inequality
"v"Hbd < C"G"w,,;’ »
where v(t, x) is a solution of the equation (4) with a right-hand
side G€ Wb'; in the sense of Definition 4.

Lemma 4. Let u(t,x) be a generalized solution of the
problem (3) with a right-hand side F in the sense of
Definitions 4-5 and u(t,x)€ Wb;I. Then u(tx) is a generalized
solution ofthis problem in the sense of Definitions 1-3.

Proof. Let v(z,x) be an arbitrary smooth in @ function, which

satisfies the boundary conditions (bd ™).
Consider (Lu - F,v),, . Wehave
bd*

<

(Lu-F, v)Ww

(Lu ~Lu, ,v) +

b
Wbd*

(Lui 'F’v>ww
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where u,(¢,x) 1s a sequence, which determines the solution u(, x) by

Definition 4. Let us estimate each terms in the right-hand side.
As far as v(¢, x) is a smooth function, which satisfies the

conditions (bd ™) then

(Lu- Lui,v>W I(u u, Lv) v, =l(u—u‘.,L'v>HM <
SHu—mmﬁjL4Lh—7:r+0
Moreover,
(Lu,—ﬁgﬁ <"Lu-—F”-,WﬂWH——v——+0

1e.

=0,

(Lu-Fv),

bd*

where v(¢, x) is an arbitrary function from a set which is dense in
W* . Hence, Lu-F =0 W~ .

bd bd

Thus, u(t,x) is a generalized solution of the problem (3) by

Definition 2.

Remark. The similar statement holds true for solutions of the
problem (4).

Taking into account the above-mentioned facts, we shall further
consider the following optimization problem.

Let the functioning of a system is described by a partial linear
differential equation:

Lu= f+Ah), (12)

where f € Wb'd', is a given element. The control of the system (12) is

carried out by choosing the controls # which are defined on a set of
admissible controls U, from a reflexive Banach space of controls

H, A() is an operator, possibly non-linear, 4:U_, € H — Wb;'+ . On

the solutions of the equation (1) we define a functional
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J (h) = (D(u (h)), which is weakly lower semicontinuous with respect

to a state of the system and which must be minimized on the set
U,cH.

2. EXISTENCE OF OPTIMAL CONTROL

Consider the optimal control problem described in Section 1. Let a
state of the system is determined by the equation (1.12):

Lu=f+A).
The state function u(t,x) depends on (via the right-hand side of
the equation) from a control s defined on the set of admissible
controls U _,, which belongs to the space of controls H. On the

solutions of the equation we define some weakly semicontinuous with
respect to the system state functional J(h)=®(u(h)), which must

be minimized on the set U_, . Of course, it is necessary to require that

the functional ®(u(4)) should been defined correctly of the solutions
of the equation. For example, if

@(u(h) = [ ¢,x,h)dQ,
0
then the solution u(f,x,h) must belong to the space L,(Q). If
<1>(u(h))=ju2 +ul + Y uldQ,
0 i=]

then u(t,x,h) must belong to the Sobolev space WZ'(Q) (such
situation we denote as ®(): L,(Q) = R' and ®(): W, (Q)— R,
respectively). It is clear that the smoothness of the solution — u(z,x,h)

depends on the smoothness of the right-hand side of the equation (see
Section 1). Therefore, the more wide space of mappings

F(t,x,h)= f +A(h) we consider, the more narrow class of
functionals ®(u(A)) we may investigate.
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Theorem 1. Let a system state be determined as a solution
of the problem (1.12) under the following assumptions:

1) the performance criterion (D(-):H ; g2 R is a functional
which is weakly lower semicontinuous with respect to the system
state u(t,x,@) ( ie u—2—>u' in H}, = Q(u')sj]l_r;_d)(ui))

~>00
and below bounded;

2) the set of admissible controls U, C H is bounded, closed

and convex in H ;
3) H is a reflexive Banach space;
4) A() is a weakly continuous operator mapping H into

w
bd+ ’
5) the estimations (1.2)for the operators L and L are valid.
Then there exists the optimal control of system (1.12), i.e. such

control h € U, that J(h*)= hlerzl/f J(h).

Proof. Choose a minimizing sequence of controls {hk };1,
heU,,ie
J(h)—==> inf J(h) M
€U g

Since the set U, , is weakly compact (U, C H is bounded,
closed and convex in the reflexive space H), we may extract from
this sequence a subsequence {hk }" e which weakly convergences in

nn=

H to some h' € U,,. As far as operator A(-) is weakly continuous,

the corresponding sequence {A (hk‘ )}“ is weakly convergent, and by

n=1

the Eberlein-Shmulyan theorem [78] this sequence is bounded in the
space Wb;i .
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Lemma 1.3 and above-mentioned reasoning imply that the
sequence {u k }” . which corresponds to the subsequence 4, 2 18
" ‘n= nn=

bounded in the norm of the space H b+ ,» and hence, we may extract

. w .
from it some weakly convergent subsequence #, (¥, —u in
"y ny

H,).

Granting both the facts that », = u(t,x,hk ) is a solution of the
n Ilj

J
equation (1.12) when A = h,‘” and the relations (1.5), we obtain

<u,,” , L‘V>H,,,, = (F(hk”j )v)w * )

for any function v(t,x)e W* ~such that L've H W Where
bd

F(r)= 1+ 4(h).

As far as h,‘”j -H—”)h* weakly in H, and F () is weakly

continuous mapping of H into Wb;l, , then

(F (hk”, )V> == F (7)),

w +
bd* bd

In addition, due to the fact that u, 5y , We obtain
"y

- *
<uk ,L'v> , u ,Lv) .
2 H, 77 Hy,

Thus, passing to the limit in (2) as j— e, we conclude that
u'(t, x) is a solution of the equation Lu=F (h‘) in the sense of
Definition 1.5, and hence, in the sense of Definition 14 also.

Since the performance criterion J(h) is weakly lower
semicontinuous with respect to u(z, x) ,

J(h')<lm J(h, )= iof J(h).

i—yoo
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Hence, A" is the optimal control and Theorem 1 is proved.
Theorem 2. Let a system state be determined as a solution
of the problem (1.12) under the following assumptions:

o ! 1. :

1) the performance criterion (D(-):Wb; — R is a functional
which is weakly lower semicontinuous with respect to the system
state u(t,x,h) and below bounded;

2) the set of admissible controls Ua g B H is bounded, closed
and convex in H ;
3) H is a reflexive Banach space;

4) A() is a weakly continuous operator mapping H into
H- + ;
bd
5) the estimations (1.2) for the operators L and L are valid.
Then there exists the optimal control of system (1.12).
Proof is similar to the proof of the previous theorem.

Remark. As far as the operator A() is non-linear then the

functional J () may be not convex and the optimal control may be
non-unique.

Consider the application of these theorems in the case of the
optimization of distributed systems with point controls. The urgency of
such investigations is stipulated both by the development of new
technologies and by the simplicity of the control realization.

In view of specific character of control in these problems it is
possible to obtain more interesting results [80-86]

Let the studied system be described by the linear partial differential
equation

Lu= f+A(h). 3)

Consider the optimal control problems for the systems, which are

described by the equation (3) with right-hand sides in the following
forms:
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L AQ =Y d0-1)®0,(x),

mo={(t,0,6D). s 4
2. 4,0=38%(-1)®0,(),

}; ={t. 0,0 (5)
3. A()= ZzS(xl ~% )® O (t,%,0 X, )

h = {00k ; ©
4 A() = zis(t—t,.)caa(xl %, )®0, (X%,

3 =J{(t..,xl,,.,<p,.,. CRES)| odF @

5. 4= 318(x, - a,(0) ®,(t,%,%,),
i=|

hy ={(a,(0), 0,0}, ; (8)
where 8(:) is the Dirac function.

Consider every variant of the mapping 4, () separately.

L 40)=Y8¢-)®¢,),

where #,£,€ [0,T], and @,(x) € L,(Q).
The control is

h = {0, e U, cH, =[0,T] x(L,(Q)),

where U_, is bounded, closed and convex setin .
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By 4()= 2 3(t —1,) ®@,(x) we shall mean a functional defined

i=l
on smooth functions in 5 in the following way:
LW = J'Zv(ti, x)p, (x)d<Q .

Q i=l
Suppose that

W, cW*(Q) W < #,°(Q)) & Hlypng) <y,
(Hlvsoi0) < ey ) - ©

where W,* (Q) is a completion of the space of smooth in @

functions with respect to the norm

1
2
"v"Wz""(Q) = (J.vz +";2dQ) ’

0
and also let f € Wb'dﬂ .

We shall prove that in this case 4, (k)€ Wb;l, , 1.e. it is possible to

extend /, (,,l)(v) up o a linear continuous functional on W, :ﬂ . Indeed,

the linearity of the functional

L (h,)(") = J‘Zv(ti ,x)(p‘. (x)dQ
Q i=
1s clear.
Let us prove the boundedness of this functional. By the integral
Cauchy inequality we obtain
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<y

i=l

J-Z v(t,, x)p,(x)dQ

Q¢

j W2, x), (x)dQf <

Q

(10)

<3 [ xdsz] e

=l

Since the set U, is bounded in H,

fz (¢, x)0,(x)dQ} <c2(j t,,x)arsz)l an

Q i=l

It is easily seen [74] that the following inequality holds true:
1 1

oy : (¢, . 2

J'v (£,x)dQ | <c fv (t,x)+v (t,x)d0

\Q \ @

Granting this and (9), rewrite (11) in the following form:

|

[ 3ole sl <°ZU t,,xdg)b

Q =l i=l

< ({_ivz (£,x)+ V2 (2, x)a’Q)2 = CMly100) < C“"“wbj; (@)

Returning to the inequality (10), we finally obtain
)| = [ >t %o, (x)ac < ),

Q i=l
that proves the boundedness of the functional 7, (,,l)(v) on the set of

ol,

smooth in Q_ functions v(¢, x). Applying the Hahn-Banach theorem

we expand on continuity the functional / 4 (h) (v) up to the linear

continuous functional which is defined on the whole space Wb:ﬁ ;
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Thus, it is proved that F()= f+ Al()e Wb:/’* , and hence, by
Theorem 1.3 there exists the unique generalized solution of the
problem Lu = f + A,(h) in the sense of Definition 14.

Let us prove that the mapping 4() 25(t t)®@,(x) is

weakly continuous. Let A be some weakly convergent in H,

sequence A™—* 5 p". As far as the weak and strong
convergences are equivalent in the finite-dimensional space,

t,.('")———)t.' strongly in R' under arbitrary i =1s. Put

A,"” Eﬁ(t t )®(p(’")(x) Let us prove that for every i =1,s

i=1

nyoe

8¢ -y @ 0" (1) -8t 1) @ ¢ ()], . —55=0.
ba*

Indeed.
e - @ 0 -80-) @02, =

(8¢ -1 @ 9" (x) - (- 1) ® " (x),v), -

bf

= sup

. M-
v#0

Since the set of smooth in Q functions v(¢, x) from W . 1S dense in

W '+ , we may take supremum only on these functions. Therefore, the

last expression may be rewritten as

I8 -4 )@ 0/ (x)-8(e~ 1 )@ (x), ., =

bd*

[ (™, v(e, 0 Jol™ (x)d2 (12)
= sup .
‘eC:J, W0 nvﬂ W;}
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Let us estimate the numerator
(m)
4

V("0 - e x) = [y, xdn.
I
Applying the integral Cauchy inequality to the right-hand side of this
identity, we obtain

(M)

fv 9|

n

< - [jv (n,x)dn) (13)

Taking into account (13), let us apply the Cauchy inequality once
more:

<

’v(tf’"), x) —-v(t:,x)l

< |dm —g |

e, - 0™ (x)de) <
Q

<(j (it x) - v(t,,x))deJ ( j ‘""(x))zdsz} <
Q

flam - (v(mx)dn] ]]lcp (S IR
(m)

o
e

By virtue of the inequalities "v'" Lo S "V”Wzl,o( 0 S c”v"",u and the
bd*

relations (12) and (14), we obtain:
ns(t_ti(m) Em)

<™~ o

(m)

m)

LQ)’
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As far as {(pf'")} weakly converges to @; in L,(£), by Eberlein-

Shmulyan theorem [78] the sequence of the norms "(p:" "14(9) 18

bounded, and hence

[s¢-£")r@ 0" ()-8t -1 ) @™ ), <
A
<l —t,.‘|%'m—_m+o.
So,
A7 - 81-£)®¢" (x|  ———0.
i=1 w!

bd*

Now, let us prove that for an arbitrary smooth in @ function

v(t, x) from Wb:' we have

<26(:—t:>®cp,-‘"')(x),v> ———(4Ex, 1)),

3 bt
Indeed,
<28(t—t:)®<p$-""<x>,v> = ¥ [ve, D (x)de =
i=1 LA i=l

= g(v(t: ")’(pﬁm) ('))Lz(ﬂ) = g (V(t: ")’ (p: ('))L2 @ =

3

= Iv(t:,x)¢:(x)dg =<A|(t’x’h‘)’ v>w

i=l g bd*

Passing to the limit in the last equality is correct as far as
O] () 5= ¢, (x)  weakly in L,(9Q).

n—»oo
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Due to the fact that the sequence of the norms

a1 )® <P§"')(x*

i=l

1s bounded (proof is similar to the proof of

-1
Wbd*

the boundedness of / Al(,,l)(v)), it is easily to prove that for an arbitrary

function v € Wb}

<§5(l‘ —t,") ® (Pgm)(x), v>W __;’,:le_)(Al(t, X, h‘), V)WM
bd*

Taking into account all above-mentioned facts, we have

(4™ v), =<A,‘"”—25(t-t;)®<pf.“’(x),v> +
bd* i=1

Wbd"

+<25(t—t;)®<p§m>(x),v> :
i=l W
bd*
where v € ij;l+ .

Let m — oo, The first term tends to zero, as far as by the Schwarz
inequality

<A,‘"”—25(:-5)®<pf.""(x),v> <

14
bd*

<[4m =Y 8¢ -)@ ¢ @) My, —m0-
il w bdt
»d*
The second term tends to <A,(t, x,h‘),v>w . Thus, for any

bd*

(A7), A i),

ba*

function v € Wb:ﬁ

i.e. the mapping 4, (-) is weakly continuous.
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Thus, we obtain

Theorem 3. Let a system state be determined as a solution
of the problem (1.12) under the following assumptions:

1) the performance criterion (I)(-):sz —R'is a functional
which is weakly lower semicontinuous with respect to the system
state u(t,x,h) and below bounded;

2) the set of admissible controls Ua Pl H is bounded, closed

and convex in H ;

3) H=[0,T] x(L,(Q))
4) 4()=38-1)®0x);

5) the estimations (1.2) and (9) are valid.
Then there exists the optimal control of the system (1.12).
Remark. As it was shown above, there exists a sequence of

*

controls (t ,(p;), which weakly converges to the optimal one

k
(7',65') in RY XL]2v (Q) Hence, the problem of optimization may

be ill posed [88-92] in the above selected metrics, that can yields
significant difficulties in computation of the optimal pulse control.
This circumstance may be overcame by using the regularization of

the control. Let (p; € d)a 4 be a convex, closed and bounded set in
W, (Q)In this case from the sequence {([),r L, We can extract a

subsequence {(p\;l}l:, which is weakly converges to 65‘ in Wzl (Q)

Due to thefact that & is bounded and has sufficiently smooth
bound, it is follows from Kondrashow theorem [27, 93] that the

imbedding operator  of Wz1 (82) into LZ(Q) is completely

*
continuous and, hence, the sequence {(pk, }:_l is strongly
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convergent in L,(Q) to @ . Thus, the considered problem of
optimization will be wellposed in R" XL;V(Q).

In the similar way we can prove the following
Theorem 4. Let a system state be determined as a solution
of the problem (1.12) under the following assumptions:

1) the performance criterion CD(-):W,;'-—:oR] is a functional
which is weakly lower semicontinuous with respect to the
system state u(t,x,h) and below bounded;

2) the set of admissible controlsU , C H is bounded, closed and
convex in H;

3 H=[0,r x(LQ)

9 A40)=380-1)®0(x);

i=l
5) the estimations (1.2) are valid, and thefollowing imbeddings
and inequalities hold true

iy, <w(0) (H;, <W°(@) ¢ Moy S el

(IHIW,‘-“(Q) S C|H|H;,)'

Then there exists the optimal control ofsystem (1.12).

2. A4txk) =380 (-1)®0,(),

i=|

where 8)(-) is the k-th Sobolev derivative of the 8(-)-function,
t,t,€[0,T], and @,(x)€ L(RQ).
The control is
hy ={(1,0.00}., €U, © H, = 0,7 x(L,(Q)),

where U, is bounded, closed and convex in H,.
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By A4 (txh)= 28(" "(t-t)®@,(x) we shall denote a

i=l
functional, which is defined on smooth in @ functions in the following
way:

Lyo)= (1 [ S 5o (x)a2,

Q =l
where v (¢,x) is the k-th derivative of the function w(tx) with

respect to the variable ¢ .
. +{ k+1,0
Suppose that Wb;’+ c Wi (Q) (Wb AN (Q)) and

Hheraigy Scltlyr, Ihseoigy S el @9

where W+ (Q) is the completion of the space of smooth in Q
functions with respect to the norm

Miere [ fi(vf“)zdg} |

0 =0
and let € Wb;l+

Similarly to the previous cases we can prove that
F(-)= f+A2()e Wb" , i.e. the mapping F(')= f+A2(-) defines a

-
linear continuous functional on Wb ;’, ,and A4, () is weakly continuous
mapping, and hence, F (): S +4, ()

Theorem 5. Let a system state be determined as a solution
of problem (1.12) under the following assumptions:

1) the performance criterion CI)(-):H = R' is a functional
which is weakly lower semicontinuous with respect to the system
state u(t,x,h) and below bounded;
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2) the set ofadmissible controls U ,C H is bounded, closed

and convex in H;

3) H=[0,T] x(L,(Q)) :
1) 4Exh=Y80(1-1)®¢,();

i=]

) the estimations (1.2) and (15) are valid.

Then there exists the optimal control ofthe system (1.12).

In a similar way we can prove the following

Theorem 6. Let a system state be defined as a solution of
the problem (1.12) under thefollowing assumptions:

1) the performance criterion ®(): Wb“;[ — R' is a functional
which is weakly lower semicontinuous with respect to the system
state u(t,x,h) and below bounded;

2) the set of admissible controls U , C H is bounded, closed

and convex in H;

3) H=[0,T] x(L,(Q));
4) 4,xh)=Y 80 -1)®0,x):;

i=l
5) the estimations (1.2) hold true, and also the following
imbedding and inequalities are valid:

H;d - W;H‘O(Q) (H:d* - W2k+1,o(Q))

Hnessior < s, Wlhznniey S el )

Then there exists the optimal control of system (1.12).
In studying of the optimal control existence in the case when the

right-hand side of the equation is defined by one of the mappings 4,

and

i =3,5 we shall suppose for simplicity that the set € is a tube domain
with respect to the variable x,, i.e. @ =%, % JxQ'.
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3. A,(t,x,h)= ES(x —x, ) ®,(t, %>, %, ),

when x,,x,, E[xl,x] @,(t,x,,.. x)EL((O T)xQ').

2 Jutoy
The control is

h, ={(xl,,.,(p,.(t,xz,xp...',x,,))}j=l eU,CH,=
=[5, %] x(Z,((0,7)x L)),

where U, is a bounded, closed and convex setin H,.
By 4,(t,x,h)= 28(.761 -x,,)®9,(t,x,,...,x,) we shall denote a
i=|

functional, which is defined on smooth in Q functions in the following

way:
Lyolv)=
= [ vl e )0, (6, AR X[0,T)),
Q’x[0,r] i=t
Suppose that Wl;i C Wzo”’O (Q) (Wb‘: C W20,1,0(Q)) and
Hlvsssior < el (Hllnsssigy < ez ) - (16)

where Wzo"’o (Q) is the completion of the space of smooth in Q-
functions with respect to the norm

1
2
”Vquo,l,o(Q) '-'—'[IVZ + V:dQ} )

[
and let f € Wb;’+

Similarly to the previous cases we can prove that
F ()= f+ A3()E Wb:;+ . Let us prove the weak continuity of the

mapping 4, ()
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Let A" —¥— h* in H,. We shall prove that
"5(x] - xif)) ® (pf."')(t,xz,...,xn)——
-8(x, - x;,)®0"(¢,%,,....%,)

Let v(¢, x) is an arbitrary smooth in Q function, which satisfies the

(17)

5

conditions (bd ¥ ) Then similarly to the previous cases we obtain
(5(xl —xl(;f')) ®(pf.m) @, Xypoos X, ) =
-d(x, —x:‘.)®(p§"')'(t,x2,...,xn),v> =

W
bd*

= [ [l ) = V(X %)) @7 (1, Al <
Q

S 08y =5 Pl

Taking into account the boundedness of the set of functions

o'——.*!

{(pfm)}; and the definition of the negative norm, we obtain (17).
Further proof is similar to the case of 4, (¢, x, /).

Theorem 7. Let a system state be determine as a solution
of the problem (1.12) under the following assumptions:

1) the performance criterion d)(-):H;d — R is a functional
which is weakly lower semicontinuous with respect to the system
state u(t,x,h) and below bounded;

2) the set of admissible controls U , C His bounded, closed

and convex in H ;

3) H=[x,%] xL((0,T)xQ’Y;

4) At xh)= 25(xl ~%,)®0,(t,%,,... %) ;
i=1
5) the estimations (1.2) and (16) are valid.
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Then there exists the optimal control of system (1.12).

In a similar way we can prove the following
Theorem 8. Leta system state be determined as a solution
of the problem (1.12) under the following assumptions:

1) the performance criterion @(-):W;’ —R' s a functional
which is weakly lower semicontinuous with respect to the
system state u(t,x,h) and below bounded;

2) the set ofadmissible controls Ua g = H is bounded, closed and
convex in H;

3) H=[%,%] <L, ((0,T)xQ"Y ;
9 Ak = Y8 -x,)® 0%,
i=]

5) the estimations (1.2) hold true, and also the following
imbeddings and inequalities are valid:

Hb+d+ c W (Q) (H;; c WzOJLO(Q)) é ”'”W;’M(g) <d

(”'”W;’»""(Q) < C" H,,*,,)'

Then there exists the optimal control of the system (1.12).

o+ .
bd*

s P
4. A,txn) =Y 3(t-1)®8x —x )®0,(x,,.,X,),

i=l Jj=l1
where 2,¢, € [0,T], X%, € [371,3_51], (pij(xz,...,xn)e Lz(Q').
The control is
h, = {(t,.,x,’j,(plj(xz,...,x”))}:”ji €U, CH,=
=[0,TY x[x, %} x(L,(Q))",

where U, is a closed and bounded setin H, .
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By
s P
A,xm) =YY 8(-1)®8(x, -x, )®Q,(x,,...,x,)
iz Jj=i
we shall denote a functional defined on smooth in @ functions in the
following way:

s P
ZA4(')(V) = J.ZZV(t,.,xl,j,xz,...,xn )(pij(xz,...,x,l HeY .

o =l j=1

Suppose that Wb“;’+ cw (0) (W,:,I C WZHO(Q)) and

"'”W{“(Q) < c”'"Wb*dﬁ ("'"W;"'“(Q) < c” W,;,,’)’ (18)

where W;’I’O(Q) is the completion of the space of smooth in @
functions with respect to the norm

1
2
"v”WZl,l,()(Q) = ['[Vz +V,2 + le + V;ldQJ 3

4

=t
and let f € Wbd*.

Completely similarly to the three previous cases it is possible to
prove that

At x,h) =

s P

25(1_ 1)®8(x, —x, )®P,(x,,...,x,) € Wb}.

i=l j=1
Let us prove that A4,(¢,x,4) is a weakly continuous mapping. Let
h" —2—h"in H,.We shall prove that for any i, j
[3¢ -£")®8(x, - X"y @ ¢l (x,5.0.,%,) -
=8t -1))®8(x,— x, )@@\ (x,,....x,)

[——)
w

n—yoo
bd*

Similarly to the previous cases let us consider
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I={8¢t-t")®8(x, - x")®¢\" () -
-8(t=1])®8(x,~x; )@ (),v)

bd*

.f(v(t u)’xz’ wX,) = V(% xz,..,xn)) E.jf")(-)dQ',

b lj
Q

(19)

where v(#, x) is an arbitrary smooth in Q function.

Using the Newton-Leibniz formula, we obtain
{m)

I= fjv(n,xlj,xz, , X, )an+

’l

(m)

xl,j
+ J.vxI (ti('"),g’xz’-"’x,.)dé cofj")(-)dgz’_
%
Applying the integral Cauchy inequality and the inequality
(a+b)* <2(a’ +b%), we have
£m 2
<2t J' J.V,(n,xf’j,xz,...,x,,)dn
Q ’l
1 (20)
'11 2 2

f (t'" Xy5en X, )G | dQ' ”(py ”L(Q)<

“l/

,(m)

<2(” 5 jv (M. X, %000, %, )| +

f

+ U.[ (t('" ,8,%, 5%, )AEMQ 2-|

xU

('n)

@

L&)y
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The Sobolev imbedding theorems imply that for any function
g(x)€ W,!(a,b) the following inequality holds true [74]

maxle(x) <C{Jg '{ Zi) de' )

2
Y (M X, 5 X5, X,) S

Therefore,

¥ , @
J.v, (n,i,xz,...,x”)-%-vul(n,i,xz,...,xn)dé ,
and
vil (tl.('"),ﬁ,xz,...,xn)s
5 ) (23)
< val(n,i,xz,...,xn)+vul(n,é,xz,...,xn)dn
0
Substituting (22) and (23) into (20), we obtain
(m)
I<2¢(It '~ J'“'v (P B s
Qo
'*'sz M, & x,,....x, )dedndQ| + I —% .‘x
(M) 3
jjjv (MEo%, 0%, )+ V5, (0,00, )ANAEALY| | X

Q\'U

“(p "LZ(Q)
Note, that as far as the sequence (p‘.j is weakly convergent, and

hence, it is bounded, we have
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ISC(tf'")

<l

1

L
—t;|jvr2+v;dQ+lx§j IJHV +V dQ]

—aJMuH>=
q l I _xlf

Whence,
B¢~ 4™) ®8(x, - XY © 9 (x,1..x, ) -

-8t 1)) ®8(x, —x, )®(pu )(x

2 LER )
bd*

¢ —x:,,-l)i—;:—»o.
Finally, we obtain
lim [|4, ")) -
‘ii&f —)®8(x, ~x )OO (x,,x, )| =0.
=l j=l ) -l

bd*
Now, let v(¢z, x) is an arbitrary function from W; :ﬂ . It is clear that

the following identity holds true

(A, K™y = A,(0)Y) = (4, (H") =

S

i=l

14
25(t—t§‘)®5(xl—xlfj)®(pfjf")(x2,-..,x,,),\/> +
J=1

PPN LR AON L ORI OH Y, @y

i= j=1
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It follows from the previous reasoning that the first term tends to
zero. Since (p; 0] —-(p:j () weakly converges to zero in L,(Q), the
second term tends to zero also. Thus, we have proved that the
mapping A, (t, x, h) is weakly continuous.

Theorem 9. Let a system state be determined as a solution
of the problem (1.12) under thefollowing assumptions:

1) the performance criterion ,(ID(-):H;‘,,-—>R1 is a functional
which is weakly lower semicontinuous with respect to the
system state u(t,x,h) and below bounded;

2) the set ofadmissible controls Ua . C H is bounded, closed and
convex in H;

) H=[0.17 <[5, 51 < (L@

4 A@xh) =YY 8(t-1)®3x —x, )®Q, (x,,..x,);

=l j=I
5) the estimations (1.2) and (18) are valid.

Then there exists the optimal control of the system (1.12).

In a similar way we can prove the following

Theorem 10. Let a system state be determined as a

solution of the problem (1.12) under thefollowing assumptions:

1) the performance criterion d)(-):W;d' — R' is a functional
which is weakly lower semicontinuous with respect to the
system state u(t,x,h) and below bounded;

2) the set of admissible controls U, , C H is bounded, closed

and convex in H ;

by H=0T X[ Z P (@)

) AEun) =Y Y8 -1)®8(x ~5,,)®0,(X, %)}

=l =l
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5) the estimations (1.2) are valid, and also the following
imbeddings and inequalities hold true

H;f - ng’l’o (Q) (H:d c Wz"I'O(Q)) é “'“Wz"‘-"(g) < c"'"H’:j+

“HI%‘"”(Q) s + )

Then there exists the optimal control ofthe system (1.12).
5. A(t,x,h) =) 8(x, — a () ®¢,(t,%,,.... %, ).

The control is

b ={(a 0O, € U, c H,=
= 7 0,1 x(L,((0,7)x&)).
By A(t,x,h) we shall denote a funct10na1 defined on smooth in
-Q— functions in the following way:

lAs(v)—_[va(ta(t) Xypres X, )0, (6, X,y X, )AQ diE

0 q i=l

where v(z, x) is a smoothin Q function.

Suppose that Wb;i C Wzo’l’0 (Q) (W;I - WZO’]’O(Q)) and

Hlugssr S b, (Hbgngy S ) e

where W,"'° (Q) is a completion of the space of smooth in Q

functions with respect to the norm

—

2
IMIW;’-W(Q) = jvz + Vil ag | ,

Q
-1
and let f € Wbd+

We shall prove that the functional / 4 (v) is bounded. Indeed, using
the integral Cauchy inequality, we obtain
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INOE U j o' (1, xz,...,x")dQ’dtj; x

1

r 2

x( j j v2(t,ai(t),xz,...,x”)dQ'dt] .
0q

Using inequalities (21) and (24), we have
IZAS(V)I < c@"(pi "L,((o,r)xsz) X

1

B}

T X 2
X[J‘ f (t,n,xz,...,xn)%-vfl(t,n,xz,...,xn)dndQ'dt] <
o

.S c}:"(pi".r.z((o,r)xn')”v”u/b:+ :
i=l
that proves the boundedness of the functional / 4 (V) ; the linearity of

/ 4 (v) is obvious.
Let us prove that f, (h(m))"_w_)fAs () in Wb:il* ’

is some weakly convergent in H sequence: A =¥ 5 Note,

.= 18 bounded in

where 4™

that being weakly convergent the sequence { ,.( )(z‘)}
the space W,(0,T), and since the imbedding of the space W, (0,T)

into C ([O, T ]) is compact, we obtain
a" () —=>a ()

with respect to the norm of the space C ([O,T ]) , and, hence,
a" (©)-a] (9] S €, —z0.

relo,7]
The sequence of the functions {(pfm)(t,xz,...,x”)}:=l weakly

converges to (p: (£, %,,.., ) in Lz((O,T)XQ').
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At first, let us prove that
”5(x —af'") (t))(p(m)(t,xz,...,x”)—
=805, ~a; ()" (t, %,
To do this let us consider

=804 = a™ )" (¢, %00 %,) -

= 8(x, =0 )"t xs3,)V),

bd

, ————0.
m==pee

b

for any smooth in Q function v(z, x). Applying the Newton-Leibniz
formula we obtain

I= JT.J.(pf.'")(t,xz,...,xn)x
0
X (v, @™ (1), %, e, ) = V(1, 0] (0), 3,03, ) A | =

T ")
- IIQEM)(t,xz,...,xn) fyx] (8, M, X, . X, )dNAQdt|
0o aj ()
Applying the integral Cauchy inequality to the right-hand side, we
obtain:

I< Uf (™) (1, %0000, ))det]_x

1
a{™() 2 2

X z i aJ(.:xl(t,n,xz,...,xn)dn Q| <
e’

"0),,

L(X0,T))
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i
(m) =
x f j la’©)-a" ) J.(v)fl(t,n,xz,...,xn)dn dQds 2 <
0Q

a; (1)

(m) 3
< ”(p, "L2(52'>(0,T))8;' ”v”W;} '
Thus, we have
(8Cx, —a™ ()0\™ . ) - 8(x, — & (Nl @, x),v),

| bd* | <
M

N (m
SE,f,"‘Pf- )"Lz (@%(0,7))

As far as {(pgm)(t,xz,...,xn)};‘ is weakly convergent, then the

sequence of the norms Il(p:" Q is bounded. Granting that the

Ly(@%(0,T))

set of smooth in Q functions v(z, x) is dense in Wb;i , we have

“50& - )" (t,x,,..x ) -

—S(XI —a:(t))(pf-m)(t,xzy'"’x,,) W S
bd*
, i
2l i) H
<g? Lcg? ———ouw
SEID: L(Rx(0,7)) S8, s G

The last expression implies that
— 0. (25)
W_[ ni-—>o0

lAs(t, x,h‘”’)—iscxl =&, ()" (8, %5001 %,)

To finish the proof we have to verify that for any v(¢,x)€ Wb ;ﬁ :

<26(x1 —a:(r>><pf-””(t,x2,...,x">-As(t,x,h‘),v> = 0.(26)
el WM" o
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Indeed,
<28(x1—a;‘(t))(pf.'"’(t,xz,...,x”)-As(t,x,h"),v> o
i=l W
bd*
S T
=X [ [vt.a; @, %5050 - 6, Jaat| <
00’ )

as far as {(p,(.m) (')}:=1 weakly convergesto @, (-) in L, ((O,T )XQ').
Thus, taking into account (25) and (26), we obtain

%“}(As(z, xh") - Ay, 0, v)

bd

<

+

< lm <A5(t,x,h('”))—zs:6(xl—a:(t))(pﬁ'")(t,xz,...),v> +
i=]

n—yeol
W hd
bd

+ <216(xl ~a ()" (t,x,,..) — A (2, %, h*),v>W =0,
= T bdt

for an arbitrary function v(¢,x) € Wb‘:+ .

In other words, the mapping
A(t,x,h) = 38, - ,(1) ® 9, (t,%,5..%,)
i=l

is weakly continuous.
Theorem 11. Let a system state be determined as a
solution of the problem (1.12) under the following assumptions:
1) the performance criterion CI)(-):HZ‘,—-LR1 is a functional
which is weakly lower semicontinuous with respect to the
system state u(t,x,h) and below bounded;



OPTIMIZATION OF LINEAR SYSTEMS ... 41

2) the set of admissible controls Ua y C H is bounded, closed
and convex in H ;

3) BH=(mOD) x(L((0,7)xQ))

5 Atxh) =85 - a,() ®Q,(t,% %, )

i=]
5) the estimations (1.2) and (24) are valid.
Then there exists the optimal control ofthe system (1.12).
Similarly we can prove the following
Theorem 12. Let a system state be determined as a
solution ofthe problem (1.12) under thefollowing assumptions:

1) the performance criterion (I)(-):Wb;[ — R' is a functional
which is weakly lower semicontinuous with respect to the
system state u(t, x, h) and below bounded;

2) the set of admissible controls U, C His bounded, closed
and convex in H ;

3) H=[W0.D) x(L,((0.7)x));
4) A(t,x,h)= zs',ﬁ(xl ~a,(D)® Q. (t, X,y X, );

5) the estimations (1.2) are valid, and also the following
imbeddings and inequalities are valid:

H,,. < 120(Q) (11, < W2 (0) ¢ My < bl

UI'”W;"'-"( 0) S c"'"ygd ) :

Then there exists the optimal control ofthe system (1.12).
Note, that we may consider the problem of optimal control when
the right-hand side of the state equation is a linear combination of the

functionals 4;, i = B
Consider, for example, the problem

Lu= f+A(t,xh), 7
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where 4, (t,x,h) = isa -7)®T, (x)+§:8(1)(t— 1)®F(x).
i=l i=l

The control is

s,

he =1, 0.0, (), € U,y < H, =[0,TT X (L)
By

«il

3

A (t,x,h) = iS(t ~-1)® Zpi(x)+i8“)(t-—— 1)®T (x)

we shall denote a functional defined on smooth in § functions in the
following way:

IAZ(_)(v) = J‘(Zv(f‘.,xmi(x))—(z 2 ('t:i,x)ﬁi(x))dﬁ ,
Q\ i=l i=1
Suppose that szl* (- WZZO(Q) (Wb;l (= W;O(Q)) and
Hlvzser < Al (Hloar < i) @)
and let f € Wb;l+ :

As far as W, "° (Q)C WZ'Z’O(Q), where WZ'I’O(Q), w20 (Q) are
negative spaces constructed on the pairs W, ’O(Q),Lz (Q) and
WZZ’O(Q), L (Q), similarly to the cases Al(-) and Az(-) we shall
prove that the right-hand side of (27) belongs to the space Wz'z'0 (Q),

and hence, to the Wb ;i .
Let us prove that A (¢, x,h): H, — W;;i is a weakly continuous

mapping. Indeed, let hém) is a weakly convergent in H, sequence

i) —>» 5 k. Inis clear that

hé'") - Eé('") xE(m)’
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where 7% = 17,0, T = @, 57) and R T i
H,h™ -2k in H,.

That is why from the results of this section we have that

AR )4 ) in #;°(0),
A D S Oy n #:(0).

Since W,** (Q)CWZ'O (Q), the bilinear forms (-,-)Wzl,o apsto and
<- ,')sz,oxwz-z,o coincide for the pairs from W;"*XW}>°, hence,

7 (m)\ W 7* . -2,
Al(h6 ) aAl(hs)szzo(Q)'

That is why

Aty = A (6,6, B+ 4, (xR ") s A (8,1, 5)) +

+ A (1,x,5) = A, %, ),

weakly in W, *° (Q), and hence, in Wb;l+ also. Thus, the following
theorem holds true:

Theorem 13. Let a system state be determined as a
solution ofthe problem (1.12) under the following assumptions:

1) the performance criterion (I)(-):H;d — R is a functional
which is weakly lower semicontinuous with respect to the
system state u(t, x, h) and below bounded;

2) the set of admissible controls Ua 4 C H is bounded, closed
and convex in H ;

3) H= [O,T]}‘+? X (L2 (Q))F+? .

4) A(t,x,h)= iS(t—i;)@@(x)-i-iSm(t ~L)®T(x);
i=1 i=l1

5) the estimations (1.2) and (28) are valid.
Then there exists the optimal control of system (1.12).
In a similar way we can prove the following
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Theorem 14. Let a system state be determined as a
solution of the problem (1.12) under the following assumptions:

1) the performance criterion (D(-):Wb:,l — R' is a functional
which is weakly lower semicontinuous with respect to the
system state u(t, x, h) and below bounded;

2) the set of admissible controls U, C H is bounded, closed

and convex in H ;
3) H= {O,T]EH'-‘ X(Lz(g))ﬁF .
Y Axh)=Y80-1OT )+ Y8 (- OTw):
i=1 i=1

5) the estimations (1.2) hold true, and also the following
imbeddings and inequalities are valid

iy, <122(0) (f5, < w3°(0) & iz St

Ul'”wf”(g) s c“'lH,j,,)'
Then, there exist optimal controls of the system (1.12).




Chapter 2

GENERAL PRINCIPLES OF
INVESTIGATION OF LINEAR SYSTEMS
WITH GENERALIZED CONTROL

1. DIFFERENTIAL PROPERTIES OF
PERFORMANCE CRITERION

Depending on the properties of the operators L and L it is
possible to consider various controls and performance criteria.
Hereinafter we shall study the differential properties of integral,
quadratic with respect to the system state performance criterion for
the problem of pulse optimal control and later we shall generalized the
corresponding theorems for the case of the problem of the optimal
control with an arbitrary right-hand side.

In the case when the following inequalities are valid for the

operator L
Ikl = G Ml = Gl

"" "l-z(Q) =G "L‘ullng =t "u"W;,ﬁ

and the right-hand side F () of the equation (1.1.12) is of the form
N

F=f+A(h)= f+25(t -1)®,(x)€ Wb;’, (the first case
i=1

considered in Section 1.1.2) we consider the performance criterion:
2
VOETTOEEN N T2 (1)

where z , is a function describing the desired functioning of the

system, z_, € LZ(Q).
The functional (1) is defined correctly as far as Theirem 1.1.3
guarantees that the function u(z,x, k) belongs to the space LZ(Q).
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Suppose  that W;{ﬂ cC '([(),T ];L2 (Q)), and moreover this

imbedding is continuous.
Theorem 1. Provides that conditions above mentioned are
satisfied, the functional (1) is differentiable by Gdateaux in the

space RY x L;‘] (Q) and its gradient is of theform:
grad J(h)=
= Uv:(tl,x)(p‘(x)dg,..,fv:(t)y,x)(pN (x)dQ,v(q,x),..,v(tN,x) !
Q Q
where h= (t',(p‘)= (t, ...tN,(pl(x)...(pN(x))E H is a control,
v(t, x) is a solution ofthe problem
Lv =2(u —zad), VE Wb;’

Proof. Let (t*,(p*)=(t1,...tN,(pI(x),...(pN(x)) and

(t* +AAL @ +}»A(p*) be some elements belonging to U_, >0,

u(t*,(p') and u(t. +7\.At*,(p* +7\,A(p*) are solutions of the boundary
problem (1.1.12) corresponding to these controls. Denote
Au = u(t* +AAL, @ + kA(p*)— u(t*,(p*) .
Then the increment of the performance criterion may be
represented in the following form

AJ= J(t* +AAL Q" +}»Acp*)—J (t",(p')=
= I{ [u(t'+}»At‘,(p’ +kAcp*)—zad]2 —[u(t*,(p*)— zad]z}d 0=
0
= fAu[u(t‘ FAAL,Q +AAQ )+ u(t*,cp*)—zzadT 0. @

Define the adjoint state as a solution of the problem

Lv=2u(t,0)- z,).
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It follows from the results of Chapter 1 that there exists a unique
solution of this problem in the class of functions belonging to Wb‘;’ ;

Then (2) we may rewrite in the following form
AT = (A”’L‘V)LZ(Q) + ”A””i,(g)

Obviously, Au 1is a solution of the problem

N N
LAu=Y'3(t—t, -AAL)® (0, +AAg,)- Y 8¢t —1) ®¢, .

=1 i=1
As a consequence of the results obtained in Chapter 1 there exists

a solution of this problem which is defined as a function Au€ L, (Q)
such that for all (¢, x)E W;;I, : L'ye Lz(Q) (including v(t, x)) the

following equality is true:
N

(80,2 7), 100 = T o, +28t %)= (e, £) 0,(x), g +

A0l 180, 5 80,(x), o]
We obtain

AJ = 2[ t+AAL x) -2, x)<|>.(x))Lz(Q)+

A6 784,710, () IS
Represent the increments v(t‘. +}»Ati,x) (t,.,x) from (3) as

)

AN
v(t +AALx)-v (8, x)= I v, (¢, x)dt .
4
We obtain
L +AAY

a1
A=) — I v, (t,x)dt, @, (x) AAz, +
= }uAti ' - @

+A D (v(4,%),A0, (x))Lz(Q) *
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L+AAY
MZ[ J' (t,x)dt,A@; (x )J +||A”"iz(9)

L(Q)
We shall prove that
A S
lim — = (J'(h),AR), = Z(Vx (t{,x), (pi(x))Lz(Q)At' *

A0 }\'

i=1

N ®)
+ 2 (V(ti’ x)’ Ag, (x»Lz(Q) ’
=1

this fact proves the theorem. Here & =(t‘,(p*), (-,-)H 1S an inner
product in H .
To do this we shall show that K'IHAuHiZ( Q)——m—eo. Using the

inequality "un L,(0) SCHF HW-, we obtain a chain of the following
bd"
inequalities

"Au"Lz (0) Sc

N
Y 8(1=1,-hAt) ® (0, +AAQ,) -
i=1

<

N
-28<t —ti)®(pi
i=l

-l
W+

< ﬁg("(ﬁ(t— t,-AAL)-8(1-1))®0, "W_,
+8le~t-2a1)@ 80, |

According to the definition of the negative norm in Wb;[+ and

continuity of the imbedding Wb;'+ cc ([O,T ];L2 (Q)) we obtain
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"(S(t - —)\.At,.)—S(t - ))® (pi”Wb;;+ =
(y(ti + }\'Atw x) - y(ti’ x): () )LZ(Q)
= Sup

YW 20 ly

<

W +
bd*

”y”c‘([o,r];z,z(g))
SKAE“(P,-"LAQ) S}}P " “ S}\‘Ati”(pi”Lz(.Q)C'
yEWbd""y#o y Wb:+
It follows from this thatQ < xlllAu”iz(Q) < CAh———0.
The equality (5) implies that investigated performance criterion is
differentiable by Gateaux in H = R" XL;V (Q) and its partial

derivatives are determined by the following expressions

i :(J‘vi,<tl’x)(pl(x)dgr"’.“vtl(tN’x)(pN(x)de’ (6)

o’
oJ
—_—= (v(tl, x),..,v(tN, x)) @)
00
Thus, the theorem is proved.
Theorem 2. The performance criterion J(h) is

continuously differentiable in U ,.

Proof.

||Af||i1 =”J,(f‘ +AL,Q +A¢‘)_J,(tt’(p.1li _

N * * * *
=2[Iv{(ti+Ati,x;t +At,Q +AQ X(p,.+A(p,.)dQ— ®)
izl Lo

2
_J'vj(t,.,x;t*,cp')tp,.dsz} +

Q
2

+5:J.[v(ti + A, x; £ +AL, @ +A(p')— v(t‘.,x;t',(p' )] dQ .
=l Q

i=l
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—90 the

We shall prove that when

expression in the right-hand side (8) also tends to zero. Let us convert
this expression adding and subtracting from each term in the first
square brackets the following expression

J. vt’(t,. +Az, xt,Q )&p,. (x)dQ
Q
and from each term of the second sum —

fv'(t,. + At,.,'x;t*,(p*)dQ .
Q
Then, using the obvious inequalities

(a+b+c)f <3(a*+5 +c?),
(a+b) < 2(a® +1),

where (a,b,c) are real numbers, we obtain

A, < Bi“(v:(t, + A, x;f +ALLQ +A(p')_
i=l |

—-vt’(t,. +At‘.,x;t*,(p') AQf +

2
+3ZNL[J.( (t +AL, X8, q)) (t,.,x;t',(p*) xdQJ 3
Q

i=1

N 2
+3) [jv (h+ A, xf +a8, 0 +A(p*)A(p,.dQ} + O

i=1 | 0

N

+2 f t, + A, x;t "+ACLQ +A<p)

i=l Q
-—v(t‘. +At,x;t @ )] dQ+

N

+ 22 J. [v(ti +At,x; t, 0 )— v(t‘. ot ,(p*)]2 dQ.

i=l
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Denote the sums in the right-hand side of (9) by I, (i = -1-,_5-) It is
a0’
Lemma 1. Let y(t,x) is a solution of the problem
Ly=g, geL(@), yew" W cC'(0,T}L,(%))
Then for any T€E [0, T] the following inequality holds true

)| .
<C .
[P _<Clel,,

—0.

required to prove that I, — 0, i=1—,§ as ”At' ot

5(Q)

Proof of Lemma 1 for specific operator L follows from the
positive inequalities, which are valid as a result of the inequalities
(1.1.2).

Denote

Av(t,x) = v(t, Xt + AL Q +AQ )— v(t,x;t',(p‘ )

Then AV is a solution of the problem

L'Av=2Au, Ave W;{'+ ,

where Au = u(t,x;t' +At%, Q" +A(p')—u(t,x;t',(p').
Obviously that Au is a solution of the problem

Low =8t —1,- Ao, + Ag)-8(t— 1)) .

i=1

Using Lemma 1 and the inequality
“u"L2 () < C“F "Wb‘d’+ ’

which validity were proved in Lemma 1.1.3, we obtain a chain of the
following inequalities

"Av"(t‘. +Ati’x)"L2(Q) S C"Au"Lz(Q) <

< D06t -1, - At Yo, +A0) -3 ~t o] < (10

-4
Wbd*
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N

2 t=t _At S(t—tt)]q’i

-+

-1
Wbd"’

N

ZS(t -t —Ag, )A(pi

i=1

+C

-
w
bd*

According to the definition of the norm in W;;I+ and to boundedness
of the set of the admissible controls U . We obtain
“[S(t T At;) -S(t - ti)](pi"W"’ =

(y(t,-+At,-,x)—y(t x)w(X)) < i (1)

y#0, )’EWM», ")"I

L
Here we have used the integral Cauchy inequality.

Similarly, estimating the i-th term of the second summand in the
right-hand side (10), we obtain

Js(t—t,~ 81 )80, <Clae, o @

Summing (11) and (12) with respect to i from 1 to N and
substituting into (10), we obtain

/ 2 2 y i
ol + ) oy 56| S 00t + 10 )] 0.

i=1

1A%, — 0,

where Ah = (At*,A(p*)E U
As far as the expression in the left-hand side of (13) is the i-th term
in the first sum in the right-hand side of (9) then I — 0 with

|AA], —0.
The proof of the fact that I, = 0 with ||AA||, — 0 follows from
ve C([0.T} L,(@)).

It follows from Lemma 1 and boundedness of U wd that
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av!t, xt 0 ’

ot

SC<o
cllor)iL,()
for all (t*,(p')e U_,. Then applying to I, the Cauchy inequality, we

obtain I; = 0 as ||Ak]|, — 0. I, is estimated similarly to I, .
The fact that I, = 0 as ||Ahu y — 0 follows from the continuity

ofthe function v(¢, x) with respect to the variable .
It follows from the proven theorem that the performance criterion
J(h) is continuously differentiable by Gateaux, and hence, by Fréchet

and it is possible to express the necessary conditions in the following
way

he Uad

min (gradJ (k" ) h—1")= M“{Zf e xo; (el - £ )+

i=l o

N
<% [ Yoo -si(ska <o
i=l g
where B is the required solution.

In the similar way it is possible to investigate others problems of the
singular optimal control.

Let us generalize the results of the previous theorems for the case
of the problem of the optimal control with an arbitrary right-hand side.

Let a state of some system is described by the equation (1.1.12)
and for the operator L the following inequalities hold true

lell, 0 < € llLullW—f <Gy

M., = var < Gl

Suppose that the performance criterion is of the following form

J(h) = D(u(h)) = ijai(t, )uh)-u,f do, (14)

i=l 0

+!
Wbd

+I
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where U, (t,X), o, (t,x) are some known functions from L,(Q)
C (Q- ), respectively, and o, (¢,x) 2€ >0 & 0.

Theorem 3. Let the state of the system U(t,X) is
determined as a solution of the equation (1.12) with the right-
hand side F € Wb ;ﬂ. The performance criterion is of the form

(14). Then, if there exists the Fréchet derivative F;l () H-> W;;ﬁ
of the mapping F () H— Wb ;ﬁ in some point W then the
performance functional J(h) is also differentiable by Fréchet in
the point h*, and the derivative is determined by the expression
;0 =(F.00), . (1s)
where Vv(t, x) is a solution ofthe adjoint problem
* Y _ +/
Lv= Ziaj(u(h) uj), vew:. . (16)
Proof. Itis clear that the expression <F h,(-),v>W is correct as
bd*
far as the equation (16) has a unique solution v(t,x‘) & Wb;i
(Theorem 1.1.2) and
<u Lv (ZEOL u—-u ] , (17)
L(@)
for any 7 € Wb:I ‘
Let Ah is an increment of a control. Consider

J(h* +Ah)—J(h")—- ( .(AR),v ) =

Ioc (, x) u(h’ + Ah) —u, ) dQ -

-

_Mv
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3 [, (k) -, yao -( . (an),v), =

i=l g o

= i j o, - (k" + AR~ u(h’)) (u(h' +AR)+u(h')-2u,) dQ-
(o}

-(F, (an)v),

Let Au=u(h® + Ah)—u(h™). Then
J( + A= J(H)~(F.(AR)Y) =

bd

_jA”ia ¢ x) Au+2u(h) ~2u, )dQ < (Ah),v > -

bd*

j AuZoc(t x)2u(h") - 2u, dQ+j (Au) za(t x)dQ -

i=l i=l

-< h‘(Ah)’ >W

bd*
It is obvious that Au is a solution of the following problem:

LAu=F(h* +AR)-F "),

and hence, as far as V-€ Wb";l, , then
(Au,L v)WM =(F(" +Ah)~F (1), v}Ww .

Moreover, using (17) (7 =Au) we obtain

IAu ' ziai(t’x)(” —U, )dQ = <Au,L*v>W =
o =l

bd

=(F(h" +Ah)~F (h ),V)WM
Therefore
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J(h +AR) =T (')~ (F .(AR),v)

bd*

<\(Fln +ah)-F(5" )~ F.(aR)v)

bd"

+ j (Au)zioci(t,x)dQ <
o} i=l

<||F (" +an)-Fln')-

”V”W “ + c||A”"L2(Q)

As far as Fh, ():H— W;;ﬁ , the Fréchet derivative of the

mapping F(-):H — W;;ﬁ , then Ve>035, >0 : it follows from the
inequality ||AA|; <39, that

|F (" +an)-F(i)-F.(aR)| ., <

h

A, . @8)

2|v Il

On the other hand, using the inequality ||u|| L <c||F||,- of
bd*

Lemma 1.1.3 we obtain

lAulf; o, < c|[F(h* + Ah)—F(h*)||be_;+ <

<o »o8)- b )=t <o, )

Applying the inequality (a° + bz) < 2<a + bz) and (18), we obtain

2
lalf < 2cUlF(h* rah) - (1) -F, (o), ) R
2
+2c( I7,- (Ah)"wb;i ) <
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ol +2efl7- [ el

4 " IIW*’

Let

2
2¢ 82 +20“Fh,u2
4wy
bd
If "Ah" ; < rnin{ﬁl,ﬁ } then the inequality (18) holds true and

|| A “I-z(Q) ”Ah”/ Thus, finally we obtain

<e||an|, ,

bd"

'J(h +AR)=J(h) = (F.(AR),V)

as required.
Theorem 4. Let the mapping F(-):H——)Wb’d/+ has a

Fréchet derivative which is continuous in the point h

(Ve>03B>0: Vhe U, | -F () <e)

Then the derivative J,(-) is continuous in the point h" also.

Proof. Choose an arbitrary number €>0 and let & is an

arbitrary point from U ,, which is close enough to 4" in order that
derivative F, () exist, and hence, by Theorem 3 the derivative J,(:)

exists also. Consider
|, an) ~J,.am)| =

=|(F,, @Ah)v,), \ ‘(F p B2V, ) ¥ ls
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< (F;, (Ah),vh)ww _(F" (Bh), v )W R i
HB@ny, ), ~(Beny,), |-

1

) |<F;1(Ah)’ Vi T Ve )W + * «F;' - Fh')(Ah)’vh' )W

where v, and V. are solutions of the problem (16) with the right-hand

sides 2 i o, (u (h)- u,.) and 2 }p: di (u(h*) -u, ) ,respectively.

i=1 i=1

Since F, () H - Wb;[, is continuous at the point A" , there exists

sufficiently small neighbourhood of the point 2° (h we shall choose
namely from this neighbourhood) in which F, h() H— W;;/* is
bounded (|7, ()| <C,). Letalso ”h - h*H <d
Applying the Schwarz inequality we obtain
|7, (AR -J . (ah)| < I, anl,-, v -v.

) "W” T
bd*

+ =

- ], 1

+|E = F s [,

W+l
el ol

/4
bd"*

W+I
bat

<[N8l v, v, |

bd
bd* bd
Note that it follows from Theorem 1.1.2 and from the proof of

Lemma 1.1.3 that "vIW”+ Sc“G”LZ(Q), where (¢, x) is a solution of
bd

p
= Cznvh ¥y
\

the equation (1.1.4). Therefore
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+
L(Q)

2ioc,-<t,x>(u(h>—u<h‘>)‘

|7, (am) -7 . (ah)| < {Czc

+cg ”Ah", <
Lo

< (csz"u(h)—u(h*)]

ZX Oc‘.(t,x)(u(h*) "”;1

i=l

3
1L (2)

:
2 Mce(iluw*)ll,q@ +;|Iu,.lle<g>DfM”f ’

p
where 22 o, (t,x) <M (constant M exists by virtue of continuity,

i=1
and hence by virtue of boundedness of the functions «., (¢, x) in 0).
Using the inequality "u” 1@ < c”F |

w- from Lemma 1.1.3 we have
ba*

|J,, (AR -J (Ah)| < (csz"F(h) ~F(h")

w t
bat

b * Sl o

'y

+Mcs(”F(h*)
Note that since #,(¢,x) are some known functions from L,(Q)

then illui"Lz(Q) <M, and hence
i=1

[, ah) - (an)| < (Csz”F(h) —F(r), +

+Mc£(”F(h‘)”W_} +M, D]Ahn ;-

Let us apply to the term ”F (W)-F®")

'W_, the formula of the
bd"

finite increments:
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|y~ F ()|

2 S
Wbd*

, SC|n-#

i?;l’g Fh'+6(h—h') ()" "h B htl

As aresult we get

|J,, (k) -J. (Ah)l < (C,eMC,5 +

‘+Mec(“F(h')”W_,+ +M, DHAh" "

d

|1 <C.8.

2

Whence choosing & <€ we have

|V, (&h) -7 (AaR)| < Cellan],
[:0-7,.0] < Ce.

The theorem is proved.
Theorem 5. Let a mapping F() H— Wb;’+ has a Fréchet

derivative in some bounded convex neighbourhood ofa point h”
which satisfies the Lipschitz condition with an index ¢, 0 < (<1
(3C, >0 Vh

1
that “Fh, (')—th (-)”SC1 ”hl -hzn;x ). Then the derivative J,(-)

satisfies the Lipschitz condition with the index Q..
Proof. Let us prove that it follows from the Theorem
assumptions that the derivative F, (-) is bounded in the neighbourhood

, h, from the neighbourhood of the point h  such

of the point A°. Indeed, let 4 is an arbitrary point from the

neighbourhood of the point A". Then, obviously, the following
inequalities hold true

|7, 01RO~ F.0)+ 5.0 <clp-4
<cd® +|F.0||2¢,,

; *E-0) <

where d is the diameter of the neighbourhood of the point 4"
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Now, let A,h, be arbitrary points from this neighbourhood.

Consider

lJ w(BD)=J,, (Ah)] - ’(F RCOAA >WM - (Eu (AR),v,, )W &

od*

+

<{(F@in), (R @),
(F;'l (Ah), Vs )W - (F"Z (Ar), Vi )W .

-, |+ - AJen), |

where v h[ and Vy, are solutions of the adjoint problems (16) with the

+

-+

right-hand  sides ZEOL‘.(u(h1 ) - ui) and Zi o, (u (h,) - u‘.)

i=1

i=l

respectively. Applying the Schwarz inequality we get

IJ”l (AR) - J"z (Ah)l = HF’H (Ah)i w™ ,vhl ~Vh, “W*’+ T
* ”(Fhl - £, )(Ah)"wb_} “vhzl W, =
o R N P LA L N

vl ol

ot

=(c2 A e

Note that it follows from the analogy of Theorem 1.1.1 and from
the proof of Lemma 1.1.3 that ”vﬂw SC”G“LZ(Q) , where v(z, x) is a
bd*

solution of the equation (1.1.4). Therefore
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+

|V, (A -1, (ah)|<| Cpe
L)

2330, 6, )~ uth, >ﬁ

+Cielli = hl; s, <

25:0(‘;' (t7 x)(u(h2 ) - ui)
o L(©)
< (Csz”u(h1 )— u(hz)”Ll(Q) ¥

+ MG - b (uumz Mo+ 24|ui||Lz<Q>j)1|Ah||, ,
i=l

p o
where 22 o(,x)<M in Q. Usng the inequality
i=1

el o) S ellFly-: from Lemma 1.1.3 we obtain
bd*

b, @)=, @) < {CeMl[F )~ Fim) +

P
e Cell =l (1wl + Skl |

Note that as far as u(#,x) are some known functions from
L,(Q) then i"u, " L@ <M, .Moreover,
=1

lFN- <|F)-Fi|,. +|Fa)
bd bdt
and applying the formula of finite increments to the first term we get
”F(hz )”W,,;ﬁ Seil[lol?” Fh‘w(hz-h')(') '”hl “h*”; _*-“F(h*)|lwl;+ ’
taking into consideration that h*,h2 belong to the bounded set U,
ie. "h2 —-h*”[ <d ,weget
IFm),- <Cd+|F@)| - -
bd bd*

-l 9
IW
bd"

Hence,
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|7, (k)= J, (Aw)|< (Ceh|F(h) - )y +

+MCellh -hzll?(Czd+||F(h*)l LM, DIMIL .

ot
Let us apply to the term "F (h)-F (hZ)"W—I the formula of finite
bd*
increments:
17 )= F s < 5 [y O 1=l <
< Cz||h1 - hz”l ‘

As aresult we obtain

1, (&)=, (AR)| < (C,eMC, [, =yl +

+MCIc(C2d dra,. +M1D|hl h A,
Whence,
|Jh, (Ah) _th(Ah)l = C3”hl = h, ”(; ”Ah"/ ’
”Jh, 0)- th' ()” =G "hl —h, ”;1 :
The theorem is proved.
Remark. Granting that the mapping F () H— Wb ;ﬂ is of the
form F = f +A(h), and the functional f € Wb;i does not depend

on the control he€ Ua y cC H, we may rewrite the formula (15),
which define the gradient, in the following form

T =(4.()v)

where Ah.(~) is a Fréchet derivative of the mapping

W r
bd"

A() H— Wb:*, the function v(t, x) is chosen in a similar way as

in Theorem 3. Respectively, in Theorems 3 and 4 we may require
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that the assumptions of this theorem hold true for the mapping
A(") instead of F(")

Consider the application of the theorems of this section for the
cases of the right-hand sides of specific types. We shall consider

functions F' = f+A.(¢,x,h) (i =1,5 ) defined in Chapter 1.

L Let 4 (txh)=Y8(t-)®0,(x), where £,4,€ [0,T],

i=1

and @,(x) € L,(£2). The control is
b ={t. 0.} € U, < H, =[0,7] x(L,Q) .

where U, is a convex, closed and bounded setin H.

Suppose that Wb;’, cwr°(Q) (W;j’ c W;’O(Q)) and
”'”W;"’(Q) < C” W (”'”W;'"(Q) s c”'“w,;;)’ ©)

where VI/220(Q) is a completion of the space of smooth in Q

functions with respect to the norm

3
2
”VHW;,()(Q) = (J‘vz + vf‘ +vidQJ ;

0
and also, let f € W;;ﬂ .
Make sure that the mapping

4(t,x,h) = 28(:‘ ~1)®,(x)

is differentiable by Fréchet and its partial derivatives are of the form

M _ oo, 04 _ s—
== 8V (e t,‘)®(p,.(x),a(p.—5(t ).

Indeed, it is clear, that the expression

4,(AR) ==Y 80t ~1) ® ¢, (At + 3 8(t ~1) ® Ag,
i=l i=l

i i
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defines a linear continuous operator 14”1() H, —>Wb;l+ :

Let us estimate

[ 4,h+ Am) = 4,() — 4, A, -, =

\(Al(h + Ah) - A (h) - A, (AR),V),
= sup bd" |

VEW”+ » ”VNW +
bd
vl bd*

Consider the numerator of this ratio. At first, let v(¢, x) be some

smooth in O function satisfying the boundary conditions (bd ¥ ) Then
(4,(h + M) - 4,(h) - Ah(Ah),v)Ww =

= EJ‘V(Q +Ati,x)((pi(x)+ A<P,~(X))dQ _

“ij-v(ti,x)(p‘.(x)dg—
_SZJ.vt(ti sx)(Pi(x)A§ + V(t,.,x)A(p,.(x)dQ =
i=1 Q

S

=Y [(v0t, + At %) = v(8, %) = v, (£, 9AL )0, (x)+
Q

i=1
+(v(t, + A1, x) = v(t ,x)) AQ (x)dQ
Let us use the Taylor formula.

I={A(h+Ah)- 4 (h)- Ah(Ah)aV>wbd+ =

= i_‘.(vl(ti +0,A1,x) v, (1, )AL, (x) +

i=l Q
+v (¢, +0,At,x)At A (x)dQ,
where 0,0, € (0,1).
Granting that the following inequality holds true
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(Ivz t, x)dQ] S{I (t,x)+Vv2(t, x)dQT

£ Y
we get
1, +0AY t+0A
1=Y[ [um @+ J v x)enas g, ()
i=1g

Applying the integral Cauchy inequality we obtaln.

1< Y [loar) 2

i=l g

fv,,(n, | |t (ol+

0

T
+T %( f va(,x)dn T |A2,A0, (x)|dQ <
<3 (lAer||<o,.||L2<m|lv,,||LZ@ +c|Az,.|l|Acpi||L2(g,||v,,nw)]s

s(;lm,.r ol o+ CIAt,-IllAcpJIW)Iv

+H .

Using the fact that the set of the considered smooth functions
v(t, x) is dense in W;;ﬂ , we have

|4, (h+AR) - A4 (h) - 4, (Ah)”Wb} <
< Z_;lAfflz .Ml 0, + clAtllA@], ) <

<[l v o,

It is clear that V&> 035>0 such that the inequality [|A| ), S9

implies
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[leAtJ "(pi"Lz(g) +c|Af,.|) <Eg,.

Hence, the mapping 4, (h) has a Fréchet derivative and by
Theorem 3 the functional J(h) in the problem of the optimal control
(1.1.12) with the right-hand side A (#,x,4) has a Fréchet derivative
also. Let us prove that A, () satisfies the Lipschitz condition with the

index 0=~
Indeed,
4204, an).
||A1,,] 0= 4,,0|= vy AR, o
‘<Au.l (An)- 4, (N’)’V>W .
R A T P M

Consider the numerator of this ratio. Let v(#, x) be a smooth in Q_

function satisfying the conditions (bd +):

I=(4, (M)~ 4, (Ah)v), =

=3 (-8 gl +80~11)gt ) At +

i=l

+(5(t—fil)‘5(t"42))A(p"v>w B

M*

J'(v,(é,x)(P,! - (f, x)‘Piz) At +

i=l

+(W(#, %) -W(£, %) ) Ag dQ =

9
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s J'(v(t’ x) = v, (7 x))(pAt+v(t x)((p —¢ )At+

+[fv,(n,x)dn]A(oi dQ =

i

5 I('jv,,(n x)dTl}D At +(’:|.vn(n,x)dn]((pi - (pf)Ati X3

i=l ,, T

+[ [ v.(n,x)an )A(pi Q.

Let us use the integral Cauchy inequality:

l
1] < 2['41 ~ t,-ZI%IAtf |‘[valdnJ2 l(p: ldQ +
i=1 Qlo
1
L z 3
+ TﬂAtJf(fvf,dnJ I(p‘ -Q ldQ +

b
Again, we use the integral Cauchy inequality:

g 1
IE z[pf—t.2|z|At.|||v,,||Lz@
T

lt" —4 |2“vf”L2(Q)”A(pi “LZ(Q))

!

L (Q)
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Granting that the set of the considered functions v(z, x) is dense in

W* we get that
bd

4,00 -4, @), <
: !
<3 [lr:—tfuznm,-||l<p:-||w+r2nmmco. e+

sd-cFlhol o -
<t 312 ~1Flol, g, + o 01+t -0F

Whence,

[ 44,0)-4,0]<
s 1 1 L
o (R e L R

i=

s L ! I
! 2 - 7 < —_nilz
(£l 7 e -l <t

as far as zs:||(p1.”L2(Q) < ﬁ“hl”/l , and ”h]““ is bounded.
i=1

Thus, A,(") satisfies the Lipschitz condition with the index

1
o =3. By Theorem 5 we may state that the derivative by Fréchet

1
J, () satisfies the Lipschitz condition with the index O = 5 and

hence J, (-) is continuous with respect to /. Note that we may repeat
the previous reasoning concerning to the mapping A, (#) (including

Theorem 3) and we can prove that
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"J(f,‘spb(')_ thob) ' E ”(p (p“

ie. J,(-) with respect to the direction @(x) satisfies the Lipschitz

condition (with the index 1).

2. Let A (tx,h)=Y8%(-1)®¢,(x), where 8P () is the
i=l
k -th Sobolev derivative of the & -function, ¢, L€ [0,T], and

0 (x)e L,(Q).

The control is
hy ={(t,0,(x)}_ €U, c H, =[0,TT x(L,(Q)),
where U ad is a convex, closed and bounded setin A 5

Suppose that szl* - WZHZ’O(Q) (Wb;[ C W;”’O(Q)) and
||'||W2"*2’°(Q) < c” W, (”."WZ"J'Z"’(Q) < C“I Wyl )’ (10)

where W, kﬂo(Q) is a completion of the space of smooth in Q

functions with respect to the norm

k+2

IIVHWZ"*” IZV dQ ’

o n=0

and let f € Wb;l+
Similarly to the previous facts we can prove that the mapping
F()=f +A.2() has a Fréchet derivative, which satisfy the Lipschitz
condition with the index ), . Applying Theorems 3 and 5 we state that

the performance criterion

p
Jhy=Y f o, (t,%)(u(h) - u, f dO
i=l g
is differentiable by Fréchet, and the corresponding derivatives are
defined by the expressions:
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aJ (., x) oJ L0, x)
5"“— )_[ ak+l )dQ, ‘aa"‘(“l) '—57/(—’

where v(¢, x) is a solution of the adjoint problem
p
Lv=2Y o, lu(h) -u,).
i=1
The derivative J - () satisfies the Lipschitz conditions with the

index ¥ , and with respect to the direction @(x) - with the index 1.

Consider the application of Theorems 3-5 of this paragraph in the
case when the right-hand side of the equation (1.1.12) is defined as

A(t,x,h) (i =3,5). As in previous section we suppose that the set
Q is a tube with respect to the variable X, (Q =[0,TIx [)Tl ,'5_6'; ]XQ')
and heU .a» Which is bounded, closed and convex set from the

Hilbert space of controls H.
3. Let the right-hand side of the equation is of the form

A (t,x,h) = ZS(x—x“)@(p(txz,, )

where Xx,,x,; € [%,%], 0, (t Xy 5aepX, ) E LZ((O,T)XQ ) The control
is
By ={0, 013,255, ) € UL, ©
c H, =[%,% ] x(L,((0,T)xQ))
where U .a 18 aconvex, closed and bounded set in H 3

Suppose that Wb;l+ - Wzo'z’O(Q) (W;;l c WZO’Z’O(Q)) and
Hhgongr <y (g Sebll): 09

where WZO’Z’O(Q) is a completion of the space of smooth in O

functions with respect to the norm
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1
2
"v"WZO’Z’O(Q) =(J. V2 +V:} + Vj}x] dQ) s

Q
and let f € Wb;l*.
Similarly to the case of A (#) which was considered above it is
easy to see that the mapping AB()H ——)I/I/;;'+ has a Fréchet

derivative, which is defined as:

%:—8(1)(x1 -x,)®0,,x,,.,x ),
o, )

04 —

_aaj =08(x —x,), i=1s.

We shall prove that 4,, (-) satisfies the Lipschitz condition with the
index }; . Consider

|4, (A) = 4, (A1)
145, )= 4, ) = s ol =

(A‘s,,l (AR)- 4, (Ah), v>W

bd*

= sup sup -
e Hy veW M, ”Ah[ |H3 ”v”Wb:;+

Let v(z, x) be a smooth in Q function from W;ﬂ . Consider the

numerator of the ratio:

I'= <A3hl(Ah) ~ 4, (Ah), v>W =

S

T
! 2 1
= .”(vxx (8, ;5% 50003%,) = vxl(t,xl’i,xz,...,x,,))(p,.Ax,,,. T+
0

i=1

2 1 2
+vx] (t’xl,i’x2""’xn)((pi -0, 1,i +
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+(v(t, X 12Xy yeesX ) = V(XL X, ,xn))A(p dtdQ’ =

=2ff[fvm<t LR )dn]w Ax,, +
Ax

i=1 08|

2
+, (4, X%, Lt

2
X

+[ [ v, (t,n,xz,...,xn)dn}A(pi drdQ’ .

Using the inequality

1 1
2 2
[Jvz(ti, x)dQ} < C(Ivz (t,x)+ vf (t, x)a’QJ
Q o

and the integral Cauchy inequality we get

)
$ x}.i 2 xllj 2
I < Zj:_[[f dn] (fv_f}xl (t,n,xz,...,x")dngl(pf,Axml+

i=1 2
0Q Xiq X1

l
53

[fv Mty £ ) 4V (0T 5o ,t)dnJ o ¢, |

) 1
J‘},i E x:,i E
+ j an j V(115,50 %, ) | |00, |ded.
2 2
X4 X1
Again use the Cauchy inequality:

s L
15 Sl s

LZ(Q)|¢ " (0,7)xQ")

vxlxl

1

2
|L2( OT)XQ)(gvix +v§1X|dQ] +

| ol - ot
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<

[0,

IL2 (0,T)x@)

|, -

<32 Flot o
- \
- ]nAhu,,nv

Whence we obtain

xlxl

L(D)

ol =011,

OTxSZ

+ .
Wlxl*

400~ 4, 0] <
s u
<3 {5l

L
L R

Taking into account that U

ud 1S bounded we have

1 . . . . .o .
”(pi "12((0,7')7@.’) < C.Therefore, A,, () satisfies the Lipschitz condition

with the index /5 with respect to h. By Theorems 3-5 the
performance functional has a strong derivative J,(-) in the region

U,,, which satisfy the Holder condition with the index /4 with

respect to A and is defined by the expression J ()= < " (), v)W
bd*

Considering directly the performance functional J(-) we can prove
that

IARORANC E X0l =0 e

i.e. with respect to the direction @ the functional J,(-) satisfies the

Lipschitz condition with the index 1 .
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s P
4. Let 4,(t,x,h)=) > 8(-1)®8(x,—x )®Q,(x,,..%,),

i=l j=I
where #,¢, € [0,T], X%, € [J?],fl], (pij(xz,...,x")e Lz(Q'), i=i,—s,
j= G, s,pEN .
The control is
h, = {(t,.,xl,j,(py (%X, 500s X, ))},.s,’j;, ev,c
cH, =[0I x[E,F 1 x(L,©))”

where U ad is a convex, closed and bounded setin H .-
Under

s P
A,tx,h) =Y Y 3t —1)®8(x,—x, )®Q,(x,,....%,)

i=1 j=1
we shall mean the following functional:

lA4(_)(v)= J.S:iv(ti,xl’j,xz,...,xn )(p‘.j(xz,...,xn )dQ’ ,

Q'i=l j=1

where v(z,x) is a smoothin Q— function.
Suppose that szl* cW,) (0) (Wb;’ C W;(Q)) and
"’"W;(Q) < wel ("'”W;(Q) <cl| W;;)’ (18)

where W; (Q) is a completion of the space of smooth in Q functions

with respect to the norm:

2

_ 3, .2, % 3 5 2

”v”W;(Q) - IV +vr +vxl +v!x| +vmi +vtx,x1dQ 2
o

and also let f € W;ﬂ :

Similarly to the previous facts it is easy to see that 4,(#) has a

strong derivative:
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_aaA%= S50 -1) @ D8(x, =%, )@, (X, )
i J=1

-aa:; = —8(1)()(1 - xl,j) ® 26(1‘ - t,) ® (P,-j(xzs---,xn) ’
1) i=l

04
do

and also that the derivative A, () satisfies the Holder-Lipschitz

L= 8~ 1)®8(x, — %)

i

condition with the index % , and the performance functional has a

Fréchet derivative which also satisfies the Holder-Lipschitz condition.
Consider the last case when the right-hand side of the equation is
defined as

5. Let A,(t,x,k) = 38(x, - a,(1) ® 0, (6%,,.%,)
i=1
The control is

hy ={(a,(0,0,()}_€ U, C
< H, = (w,(0,T)) x(L, ((0,T)xQ")) .
Under

Zﬁ(x—a )@(p (t,%,500s%,)

we shall mean the followmg functional

,45() z_f t a xz,...,x")dQ"dt,

_00

where v(z,x) is a smooth in _Q— function.

Suppose that Wb:;l,, c Wzo’z’o(Q) (Wb;[ C W;’“(Q)) and

”'“W;’“(Q) < C”l W (IHIWZ"-“(Q) < C"'”W,;,‘ )’ 24)
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——

where WZO’Z’O(Q) is a completion of the space of smooth in Q

functions with respect to the norm

1

2, .2 2 g

||V|IW20,2,0(Q) = JV +Vx1 + vxmdQ .
o

Make sure that the mapping A4; () is strongly differentiable and the

derivative is defined by the expression

%A_s =—8(”(x1 ~a, (t))®(P,-(t,x2,---axn) 5
ai

04

a—(; = 8(x1 —4a,; (t)) .

i

Indeed,
F= (As (h+ Ah) - A5(h) - (gradAS,Ah),v>W =

d*

= 2}.,[(".‘, (t,a(t)+0Aa (1), x,,...., x,) —

=1 Q'
-V, (t,a (), x,,.., xn))Aai(t)(pi ¥
+(v(t, a(t)+Aa(t),x,,..x,)—
—v(t,a,(2), X, ..., X, YAQ,dQdL.
Whence

3 L

<3 o | v (o)t [, +
0 X,

5 2
[ f v, (t,x)d&,} A@.dQ dt.

X

D | —

+|Aa, ()

Using the fact that Aa(r)€ w, (0,1), where W;(O,l) is the

Sobolev space, we get r{g{l&)r(llAa(t)l < c"Aa" wi(o,) - Therefore,
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7]
1
2

s

r X
s [[ v | Jaaofyop ol ona
=\ 0QF

2 1
Vf, (t,x)d{:,dQ’dt ||.Aai(t)"pzvz‘(o,r)”A(pi“Lz((ONQ’) <

S

<3l

i=1

le— =it

< C M 184

This fact proves that A4 (-) is strongly differentiable. Similarly to

the previous facts we make sure that A, (") satisfies the Lipschitz

condition with the index % )

2. REGULARIZATION OF CONTROL

In the previous section the questions of performance, criterion
gradient existence and its continuity depend upon differential properties
of the right-hand side of state equation have been studied. In order to
calculate the performance criterion gradient in any point, it is
necessary to solve the direct and adjoint problems.

In this paragraph we shall study the optimization problem in the
case when optimal control exists, but the right-hand side are not
differentiable enough for calculation of performance criterion gradient
[80,94]. This difficulty can be remedied by regularization of control. As

in the previous sections we assume here that the operators L and L
satisfy the inequality in the negative norms

el ) < CllEally 1 < )

"v”Lz(Q) < Cl "L V”W,,'dl - CQHVI Wb:l+

+
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Consider the following averaging of the distribution F in the right-
hand side:

flt,x)=f+ Tme ()4t -7, x)dr= f + A4(h),
where -
o, (t)e C;’(R‘) e>0,w,()=0, ||2¢ 0, 20,
choE (t)dr=1.
By the integral [ ©,(t)4{t~7,x)d we mean the integral in the

sense of the distribution theory.
Instead of using distribution averaging, we may consider a

sequence of functions 4, € L,(Q): ” f+4, =F “W-, — 0, when
bd"

e —0.
Consider a regularized problem of impulse optimal control.
Lu, = f+4,(h), M
(1) = [l ()~ z,, P o, @
g
. =arghr£1}/rngE(h), 3)
where

A(t,x)= J:(oe('t)is(t_ti _Tpi (x)dt = ia)a(t_ti)(pi (x).

i=l i=l
We assume that f € L, (Q) (although all the theorems can be
generalized to the case f € Wb;’, ).
The vector hg={t‘.,(p‘.}‘_=m€U:d cU,, is a contol of the

optimization problem (1)-(3), where

U, =[e/2,T~e/2]"x(@,)" c R"xL}(Q)=H,,
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® , CL,(L2) is bounded, convex and closed set of admissible

controls.
Theorem 1. There exists an optimal control h"

(generally not unique) of the optimization problem (1)-(3).
Proof. Let {h:};l be the minimizing sequence of the problem
(1)-(3). This means that
J(ne)— inf 7, (n).

helU®

ad

Since (I)a 4 1S bounded, convex, closed set and 12 (Q) 1s Hilbert,
the set @_, is weakly compact in L, (Q) . Set [e/2,7-¢/2]" is

compact in K". Thus, there exists a subsequence (it is denoted by

* * . € €
{h,f};l again) such that ¢, ———#° in R', tigel:E,T-—E:’,

@ —==—0," weaklyin L,(Q), 9 e ® ,i=1N.

Let us introduce the following notation

Alk) =Y (-1, )ot, ().
i=1
We shall show that
N
40— £ = Dol - o (x) @

i=1

weakly in L,(Q).

For every function y€ L, (Q) and each number i =1, N, we have
N
(A05)-4.9) = Bl -
— 0,1 ot (D o, fe=1 fo, (-0 0} ),

By the Schwarz inequality

©)
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N

Zj.(we(t - tis,k) —,(t _t:s))(pf,k(x)dQ £
Q

i=

N

>

i=l

Since t;e = ti;Kl —%{tze}zl =£® in RY, W, € C:(Rl) and

«E
o, -t )-o(-1)

ik

L(Q) L)

< C, the first term of the right-hand side of (5) vanishes as

f* ”L2(Q )
k — oo. The second term of the right-hand side of (5) vanishes also,
because (pz = {(pzk }Z[ — {(p:s}i] = (p*E weakly in L;’(Q)

Thus the formula (4) has been proved.

In accordance with the results of Section 1, a solution u; € W by (D
the sense of Definition 1.1.1) of the problem (1) with the right-hand
side f +Ae(h:) exists and unique. The solution 1, € Wb;’ satisfies

the equation

<ll:, L*v>WM = <f + Ae (h,flv)w ) = (f +A5(h:)’v)1_:(g)’ (6)

bd

for all ve W* .
bd

Taking into account that the set U: , 1s bounded, we have

“u,‘:'wgé SC“f+Ad(hf)|Lz(Q) <C<oo. )

It follows from the inequality (7) that there exists weakly
convergent to u° € szl in Wb;l and so that in L,(Q) subsequence

{u:’ }; . Passing to the limit as £ — oo in the equality (6), we obtain
<uE ’ L‘v>wb,1 - <f +4, (hel V>WM+ - (f * A‘(ha l v)Lz(Q) ’

for allve W,
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If we take into consideration the above equality, we conclude that
u® is solution of the problem (1) with the right-hand side f + A (h*e )

Since square of norm in the Hilbert space is weakly lower
semicontinuous, the functional (2) is weakly lower semicontinuous in

domain U,
J,(h)< im. Je(h,f~)=hinUfe J, ().
ke €U 4

Consequently, h™ is an optimal control of the problem (1)-(3).

Theorem 2. The set of the optimal controls * of the
problems (1)-(3) contains a weakly convergent sequence

{h*ak}ksl’—;. The sequence {h*ak }k=;:; weakly converges to an
optimal control he U,, ofthe initial (non-regularized) problem,

the points of impulse £ being strongly convergent to t*.
Proof. We shall show that at the fixed control 4 € U: , we have

0, ()

===

where U°, u— solutions of the regularized and initial problems,
respectively.

Forall i =I,-ﬁ we have

e (¢ =1 ), (x)-dle-¢,) ||W
(0.6~ o)== 1)o )0, |
VRO EW ", | id W,

Taking into account the definition of delta function we obtain
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j (e =t [v(t.x)~ v(t,x))dr. (x)dQ

2 '

sup <
V¢O'VGW1;“ ”V W,,;I*
%J. (pi(x)dQ”vI Wb‘}
< sup 1-9 ‘ l———0.
ooy Ml

Summing up the above inequalities over i # I,—N and considering
inequality of Lemma 1.1.3, we have (8).
By Theorem 1 for all €>0 there exists an optimal control

KteU : , of the regularized problem. By virtue of the boundedness of

the set U, the set {hts }M 1s weakly compact, hence, there exists a

subsequence {h o }k=1’—w, which weakly converges to k. The
statement ¢ * —k_m—)t' € RN[O,T ] becomes apparent when the

equivalence between convergence in norm and weak convergence in
the finite-dimensional space is considered. From the weak

convergence of {hts" },m,,—w we find, as well, that
(p'e" —— (p‘~ € (CI)ad)N weakly in L’;' (Q)

Reasoning similarly, we have

=ﬁm€k (t—t:a")(p:e"(x)—ﬁu)ek(t t)(p —0,
iwek(t"’:)‘p ()_"i‘”ek(‘ t)Lp
Yo, (-1 k; (x)—mﬁfi(f ~;)®4)(x)= A(h‘)

weakly in W™,
bd
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Adding up these three relations, we have that A:k T_m—%A(h‘)

weakly in W™,
bd
" il wg *g
Thus, we prove that sequence Ae,‘ = Zwsk (t—t,. . )(pi * (x) is
i=1

weakly convergent in the , space Wb;l+ Therefore,

»* N *E *E
Aek = 20)8,‘ (t -t }pi g (x) is bounded. By applying the inequality of

i=1

Lemma 1.1.3 we conclude that the sequence u™ of solutions of the
problem (1)-(3) with right-hand sides

f+4, =f +imek (t—t:” )(pf"(x)
i=1 )

is also bounded, so that the sequence u™  contains a weakly
convergent subsequence (which is denoted by u again).
Since A:k —HT)A(h*) weakly in Wb;’+ it is easy to prove that

weak limit of the subsequence u™* in the space L, (Q) is the solution

u" of the initial optimization problem with the right-hand side f +A4".
From this it follows that

J(B)<tm g, (37). ©)
k —yo0
The statement J, (h)—;3—>J (k) becomes apparent when it is

considered that for all 4 € U, u*(h)——=5—u(h) in the norm of the

space L, (Q) Let A" be an optimal control of the initial optimization
problem. ~ When it is  taken info  account  that
inf J t‘:(/1) =J, (h b )S J, (h*l ), the following relation is valid

€
hel

fm.J, (n*)<J(n"). (10)

koo Gk
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From (9) and (10) we obtain
inf POBVGE lim J, (n™)<
<mJ (v )SJ(h )Shli][{d.](h).

Therefore, lm J,, (h & )< Jlh ( ) and A’ is the optimal control of

the initial optimization problem as well as 4"'. Since the optimal control
may be not unique, the controls 4" and A"' may be different.

Remark. If instead of @, we consider (D; =P, dﬂW;(Q),

then the sequence (p‘E" converges to the @ € LZ(Q) in norm
N
LY(Q).

Theorem 3. There exists a Fréchet derivative of the
performance  criterion Js(h). The Fréchet derivative is of the

following form
grad J (h)=

[ J'—mt £ )o,(x)v, tx)dQJ [fco t—t tx)dt] ,

=1

where v, (t, x) is a solution of the adjoint problem with the right-
hand side 2(u£—za d).

Proof. We denote by Ah an increment of a control £ .
Corresponding solution of the system (1) has an increment
Au, (h) = u, (h+ Ah)—u, (h). An increment of the performance

criterion J, (h) can be represented in the form
AJ (h) = J.(h+Ah - J (h) =
= [lu,(h + &)= 2, = lu, () - 2,,"d0 =
o
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= 2] Au, (W, (h) - z,,Jd0 + [ (8w, (W)} dQ.
g Qe

Adjoint state is defined as a solution of the following problem
. +/
Lv, = Z(us(h)—zad), V.EW ..
As appears from Section 1.1, there exists a unique solution of this

problem belonging to the space Wb;ﬁ . The increment AJ, (h) can be

transformed to the form

AT, (h)= (Bu (A),L'v,), o+ “A”e(h)”i,(g)

L(Q)
It is obvious that the increment Au, (h) is a solution of the
following problem
LAu,( 2(0 t—t —AL) (@, + A@,) Zm
i=1
The results of Section 1 ensure the existence and uniqueness of the

solution of the above problem. The solution Au, (h) € Wb;[ satisfies the

following equation
N

(8, 1), ), o, = Y (0,6~ 1~ 20) = 0, =)0, 7), g, +

i=
X ((De (t - t,- - At, )A(Pi: y>L2 ©) ]:'
for all y(t, x)e Wb;i ,LyelL, (Q)
Taking into account this relation, we have

= S (Al +7e)— A 1)1 5)o MO+

i=l 0
N
+AX [ A4, (151, +AAL, (6, x)80,(x]O+ [|Au (R) Q.
=g 0
An increment ®, (t =¥~ At‘.) - (De(t - t‘.) can be represented in

the form
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A, (t,x,h) =Y a, (£, x,t)0 ,(x) .
i=1

Considering this equation, we have

AJ,(h) = 2[ (-7m(t t)(p,,vj A, +

L,(Q)
+(@,0-1)80,v,), o, [+, B o, +o(IH)

Taking into account the estimation

|I| ( K, 1e(Ah) E(Ah)’v>w .

» 4
< el 1 = .-

we have

AJ (k)= 2{ (—m (t=1)9,, 6) At +
L)

+H0,(=1)80,,%,),, o [+ollAR]),

which is what had to be proved.
The function A4, () can be approximated, very useful from practical

point of view, by the sum
~ N
A = ZAE (62, )o,(x),
i=]

where
| € €
-, te[z‘i —h +ﬂ,
4,(60)=1"

0, t¢ [t. - E,t. + -8—}
H 2 1 2

An analogous theorem for such way of approximation holds true.

Theorem 4. There exists a Fréchet derivative of the
performance criterion J E(h) of the optimization problem with the
right-hand side f =ZB. This derivative satisfies the Lipschitz

condition and can be represented in the following form
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N
gde [ f(p, [ (, x)— ve(t,.—-;—,xﬂdQ) .
e y
J' [v. (t.x)dQat
g
2 i=1

where ve(t,x) is a solution of the adjoint problem with the right-
hand side Z(ue—zad).

Proof. In the same manner as in the case of the previous
theorem we denote by Ah an increment of control /. The

corresponding  solution of the system(l) has an increment
Au, (h) = u, (h+ Ah)~u,(h). An increment of the performance

criterion J, (h) can be represented in the form

AT (R)=J (h+?»Ah)—J(h)=
_2fAu e, (k)= z,,1dQ + [, (hY dQ.
o

As usual, we use the adjoint state and obtain

AJ (k) = ZJ' (e +AAL )~ A (652 ), (8, x )0 (xHO +
i=1 o a2)

+x}_j [ 4,(152, + 20, v, (1, x)00, ()20 + [ A () dQ.
Q

i=l g
Divide (12) by A (12) and pass to the limitas A — 0

fon = —fq)(x[( 2) (z~5xﬂdmz+
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o
+ i'l‘ f f v (1, x)dtAg,dQ, (13)
izl £Q

P,

)
which is what had to be proved in the first part of the theorem. The
Lipschitz condition of the performance criterion gradient follows from
the a priori inequalities in the negative norms and the inequality

“"”c({o',r],~L2(sz)) <Clv]

We shall first prove the inequality (14) for a smooth function
VE Wb:', . In this case we have

7 T 2 %
3 /(%8
()| = '[a—:dt ST}/({(-B_:) dtj .

Square the right and left-hand sides and integrate over the domain

Q
sup ( j vz('c,x)dﬁj <C j (ﬁ) do,
5 ot

(14)

w + .
ba*

L (¥
which is what had to be proved in (14) for an arbitrary smooth function
VE szl, .

The inequality (14) for all ve Wb;' is proved by expansion by
continuity.

Next, in the same manner as in Section 2.1 we generalize above-

mentioned results for the systems with the right-hand side of the
general form.

As in the previous case, we assume that the operators L, L
satisfies the inequalities in the negative norms
i1 < Cllaly - <Gl

M., <€

+
Wea ’

E bt Wb—dl = Cz"”llwb*}
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We also assume that F (t, x,h)e Wb 'dﬂ and the functional

J (h)=(1>(u(h)) is defined at every function u(z, x) from L,(Q).
Consider the regularized problem
Lu, =F,(t,x,h), (15)
where € > 0, F;(t,x,h)e Lz(Q).
It is required to minimize the functional
J, (1) = D, (). (16)
Theorem 5. Consider the optimal control problems
(1.1.12) and (1)-(3). If
1) the admissible set of controls U
bounded in the Hilbert space H ;
2) maps F,(h), F(h) satisfy the conditions:

a) (h, —L—hinH) = (F, (h )—L—F@h)yinW>.), for

Ex

.4 LIS convex, closed, and

an arbitrary sequence €, ——==—0,
b) F,(h), F(h) is weakly continuous,
c)’”Fe(h)-—F(h)”W-, ~———0 for all fixed he U,, C H.
bd*
3) the performance criterion ®(-) is upper semicontinuous and

weakly lower semicontinuous,

then there exist optimal controls h*,h: of the problems (1.1.12)

and (1)-(3), there exists a weakly convergent subsequence h:_
and an arbitrary weakly convergent subsequence h, converges
i

to h* weakly in H .
Proof. According to Theorem 1.2.1, the conditions 1), 2a), and
3) ensure the existence of optimal controls of the problems (1.1.12)

and (1)-(3). Consider a set {h:}, h €U, . Since the set U, is
bounded in the Hilbert space H, there exists a weakly convergent to
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h subsequence h;_ (8‘.—:;—)0). Consider an arbitrary weakly
convergent subsequence h; —_k—T)i{ . Since the set U_, is closed

and convex, the element A belongs to U_,. Consider the sequence of

solutions {uek (h;t )} By Lemma 1.1.3, we have
u, ()|, Sc|F, @)

Taking into account the condition 2a), we have that
Fe,‘ (h:k)—k_)—w>F (h) weakly in W;;ﬂ . Therefore, the sequence of

L (Q)

-
Wd*

is bounded, so there exists a weakly

the norms l

convergent subsequence (h )———)u Since {uek (h:k )} are

solutions, we have

(uekm (h:km),L*v) =(F,_ (5 w) (17

L,(©) "
for all v(t,x)€ W[;’, : Lve L(Q).

Passing to the limit as #m — <= in (17), we have
(0, L), ) = (F(R), o (18)
It is now clear that the element u is a solutlon of the problem
(1.1.12) with the right-hand side F(h). But there exists an unique
solution of the problem (1.1.12); therefore entire sequence {uh (h:k )}
converges weakly to u# = u(F). If there exists a weakly convergent to
any other function # #u(%) subsequence {usl (h;)} indeed, then we

can prove in much the same way, that 4 is an other solution of the
problem (1.1.12) with the right-hand side F(h), contrary to the
uniqueness of the solution. Since the functional ®() is weakly lower

semicontinuous, we have
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J(h) = D(u(h)) < im O, (h, ) =

(19)
=lin J, (k) <Im.J, (A),

k—yoa

forall ke U, C H.
Consider the sequence {u A (h)}. By Lemma 1.1.3, we have

u, () ~u(®), , <<F, ® —F(h)"W_;* —=0.

-

Therefore, ,, (h)——=—>u(h) in the space L,(Q). Since the
functional @©(-) is upper semicontinuous, it follows that
J(h) = ®(u(h)) 2 in D, (1) =lm J, ().  (20)
Employing the relations (19) and (20), we have
J(h) < llrig_}l:Jek )< /}ifg‘jﬁk (W<J(h),
forall he U, , CH.

To put it in another way, the control hois optimal.

Consider the applications of this theorem.

1. Let there be given the right-hand side of the equation (1.1.12) in
the following form:

=f+A4() f+28(t-—t)®(p(x) Q1)
where £,t,€ [0, T], ¢, (x)eL (sz)

The control is
h={t.0.cNf. €U, cH =[0T] x(L,(Q),

where the admissible set U _, is bounded, closed and convex in H,.

Suppose that szl* cw(Q) (Wb‘;l C W;O(Q)) and
"'”w;-"(g) = c”'”w;d'+ (”'“wz""(g) s c“ lw,;d’ ) (22)

We also assume that f € Wb;’+ .
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Set
F()= £, + 4, (), @)

where

Al,e (f’ Xy h) = zal,s(t’x’ti)(pi(x) 4
i=1 r

-I—,te [t —gt +¢,
a, ,(t,x,t)=12¢ ‘ ‘

0,te R\[t,—&,t, +€].
The regularized control is
W ={t, o)) e U, =
=le,T-efx(® )y cH =R (L, (Q)).
It is not difficult to prove that
”fs —f”W; _—e—)T—)O '

Let us verity that maps 4 (%), 4 ,(h) satisfy the conditions 2a)-

2¢) of Theorem 5, from whence it follows that maps F{%), F (k)

satisfy the same conditions 2a)-2c).
We shall test the condition 2a). Let hek be an arbitrary weakly

convergent sequence. Then
t,.Ek Tw—)t: in R' Vi= Ls,
O (x)—2L—0, in L, (Q) Vi=1s.
Let v(z, x) be an arbitrary smooth function in the domain Q that

satisfies the conditions (bd ¥ ). We have
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<A1,sk (hek)"’>w - (Ahek(hﬁk )’V)LZ(Q) -

= SZJ'(pfk l JtEk El-v(n,x)d‘r]dg.
=la ¥ -e, &

By the mean value theorem, we obtain
(4, @), =Y o +0,e,, x40,
ba* izl Q
where 6, € [— 11].

Consider the term

(e )= 4,0)),

sat

<

l(Am(hek) 4, (),

ba*

[t bl 40,801l )

Q
[Me ol -0}l

Jof bl
Q

Q

<Y +

i=|

A+ + <

s 0% 40,8, ik
s2lfor [vnxanal+|[ @ [v,(n x)dnae)+
i=l | £k Q P
+[vle, 2t - o )dﬂ’-
Q

By the Schwarz inequality, we have:
(Al,Ek (hek )= 4 (), v)Ww*

s 1
< 2’1|ei,,sk|5||¢f*||,q(g) "v, “LQ(Q) +
=

<
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1
+|t"€k 4 '2 “(p‘E k “Lz(g) “v'“‘Q(Q) *

+(((Pf* -0})O.v(#, -))m) .
Since,
t:k _k_—>T—>t: in Rl Vl.:-m,
Of ()20, in L(Q) Vi=Ts,
£, ——=—0in R,

(4, (h)=4 ("))

bd*

The expression vanishes for an arbitrary

smooth in Q function v(z, x). This set of functions is dense in W;;ﬂ .

We shall show that “Al»sk(hek)"u/-' <C.
bd*

Let v(7, x) be an arbitrary smoothin O function. Considering the
previous reasoning and the Schwarz inequality, we have

(4, G)) =3 e +6,¢,, 042

bd* i=l
S
<Y
i=|

&
L) b +6,¢,, x)||L2 -
Applying the inequality

<

€y
07|

[ | vz(ti,x)dQ]- <| | vz(t,x)-i-vtz(t,x)dQT . (2%
Q g
we obtain k

£y

@

2 1
Lz(Q)("v”iz @ ”"rlle(Q))/z .
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It follows from the weak convergence of (p:" (x) that the sequence

(pf" (x) is bounded. Taking into account relation (22), we arrive at the

following inequality.
(CIRCREIEED 3 L N (At Y G2 e
Thus,
I(Auk *, ), V>W,,d+ B
M Wi ’

for all smooth in Q functions v(z, x).
Considering that this set of functions v(z, x) is dense in W;;’ , We

claim that

|<A”€k (hak)’ V>W

< e,

4., ), = sop
bod" »eWbtﬁ_ w20 “V“Wb}

The weak convergence of a sequence of functionals follows from
the pointwise convergence of a sequence of functionals in the dense
set and boundedness of the sequence of norms of functional. We
conclude that the condition 2a) of Theorem 5 is proved.

Reasoning similarly, we convince that map 4 ,(#) is weakly

€

convergent and "Al,a(h)—A, (h)"W_, ———0 for k.
bd*

Thus, we have proved the following theorem
Theorem 6. Consider the optimal control problems
(1.1.12) and (15) with the right-hand sides of (21), (23),
respectively. If
1) the admissible set of control Ua , s convex, closed, and

bounded in the Hilbert space H ;



GENERAL PRINCIPLES OF INVESTIGATION ... 97

2) the performance criterion ®(:) is upper semicontinuous

and weakly lower semicontinuous,
then there exist optimal controls h*,h: of the problems (1.1.12),
(21) and (15), (23), there exists a weakly convergent subsequence

he, and an arbitrary weakly convergent subsequence hE,

converges to h“weakly in H.
Remark. The performance ériterion

p
J(hy = @)=Y [ ot x)uh) - u,} dQ
i=l g
satisfies the conditions of Theorem 6.
Consider the problem of the performance criterion differentiability
in the regularized optimal control problems.
The existence of an optimal control of the regularized problems
follows from the results of the previous section.
We shall prove that there exists a Fréchet derivative of a map

F(h)=f+ 4 (h):HW"
oF. 1

=0, ®@B(t—t ~&)-8(t~t.+€)), (252)
dF,

To prove this formulas, consider
I=(F (t,x,h+Ah)~F, (t,5,h),v), =

bd*
L+t 1+e

1 I
—v(M,D)dn - ¢, | —=v(n,x)dnd =
€ ,I_sze

15

=1

= f((pi +A(pi)

t+N;-€
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t;+ A~ t—€

s L+AL+E 1+E
- liq),{ [ 2—-v(n,x)dn—j-£;v(n,x)dn]d£2+

LHAL+E

+2fA(p,. f -iv(n,x)dndsz.

=l Q L+AL-¢

If a value of At, is sufficiently small, the first and second integrals
have intersecting intervals of integration:

I=(F (tx,h+MY-F, (t,x,h)v) =

bd*

ti+A+E t; +AL;—€
. e 1 e 1
= . — (1, x)dn - — (M, x)dn [dQ+ (26
i=l;’[(p‘[ x.‘[e 28 V(n X) n I,J:e 28 V(n X) n\] ( )
ti+ A +E

- 1
+X[80, [ vnxddQ=1+1+1,

i=l Q LA, -

Consider every summand of the right-hand side. By the mean value
theorem, we have

t+AL +e

1=Y[o | Zl—gv(n,x)dndQ=

i=l o 1 +E
=Y [oa Lyt +6, A +e,x)dQ =
i=l 2e ’
= f ®,AL, -21—(v(t’. +0, At +&,x)—v( + £,X))dQ +
i=l Q € ’

£ 1
+ 3 [ @86 =¥, +e,x)dQ =
i=l g 2¢
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s f,+ﬁ“Af,+e
- fwiAti—l—( ] v,(n,x)dn)dm
i=1 Q 28

tj+e

s —d(t~t,-€)®q,, Az,
fks-gons)

where 8, ;€ [0,1] :

We can now easily show that an order of smallness of the first

P
integral of the right-hand side equals to -5 . By the Schwarz inequality,

s £+, ;A1 +€
Zj ‘PiA’iglg fv,(n,x)dn)dsz <
b= ) 4+E
J

1 448, At+e 2 -;.
1l

o0 1M, gy < i, v

< ;Ilwi”Lz(n)

4 +Bl,Ar,+e 446 Al+e

f an- j Vi (M, x)dn|dQ

1,+E e

At —

- an’ ”12

|+I-

28 e

whence

N/ 1
=358t -e)@0uv) - an el bl
i=l be

Taking the analogous transformation of the second integral of the
right-hand side of (26), we have

t+At -¢€

I, -Ej(p J. —v(n,x)dndQ—

i=l g t,—¢
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i

_ <__21;5(,_,,,+8)®@,.,v> g+ AR

i=1 W

bd*
Finally, consider the third integral of (26)
t+AL+E
s i i 1
L=Y[ap [ —vinxdnQ =
’ ;i t+£ —€ 2e

27)
—ijp j-z-ev(n,x)dndm

=1 Q L+AY-€

tite

+y [ 2, j == (0, )dndQ +

i=l g t- e
s fbte
+;Z];A(p, tJ:-e E-E-v(n,x)dndQ.

We shall prove that the first and third integrals have the second
infinitesimal order of control. By the mean value theorem and the
inequality (24), we obtain

s, | —5vm,x>dndsz

=l Q t;+At,-¢

qu)Az -2——v(t + 6 Ar, ~ €, x)dQ|<

i=l o

SEE;INJ “A(pi”LZ(Q)"v(ti +6:Att —S,x)"L2 @ ~

St e <
< S Mo+ ) 55

Reasoning similarly, it is easy to make sure that the third integral
has the second infinitesimal order of control. Returning to the formula
(26), we obtain
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1=(F (0,0 +8)=F, (x,m),), =

M*

sof 1
= —0, Q(d(t—t —e)-8(t—t¢ At
i=1<28(pl ( ( ‘ 8) ( l+8)> ‘ v>Ww *

+2<a1,e (t,x, 4 )A(pi ) V)WM+ + c"Ah"ﬁl ""uv;,a '
=1
or

I 88~ F, )= a0, <l

as required in (25).
Consider the property of smoothness of a Fréchet derivative

F Al e() For this purpose we study the norm
|7 (8)=Fii (00,
[Fisot)=Fers O = S0 -
<E:",X,E(Ah) g la(Ah) >W i
= sup Ssup - M2 (28)
I Hy,h#0 vel 1 w0 "v“ W, “Ah”H,

Analyse the numerator

I=(F,, (AW ~F, (Ah).Y), =

bd*

Z<_1_ 8 - t[—e)—é(t—t;+e))-Ati,v> -

2

m

= Wbd*
2<i(p.® t—t'—¢)-8(t—t/+ e))-At,,,v> +
i=l 2e Wbd“

+ i <aU3 (t, X, tf.)A(pi , v)W . - 2 (aLE (t, X, tl.”)A(p,. ,v)w )
i=1 b b

i=1
Rearrange the summand in the following way:
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1 =(Fy (M) =Fyy, (M)v), =

=3 _1_.((p.'®8(t—t.’—e)—(p.”®8(t—t."—e))-At.,v A
i=1 28 ’ : ’ ‘ ‘ Wbd*
< (0;®3(¢—1/+¢)- (pf@S(t—tf%—E))-Ati,v) +
i=1 ‘ WM+

+2((a1,s (tx,t)-a,, (t,x,t,."))A(pi ,V)W -
i=l

M+
=1 +1+1.
Since the set of smooth functions v(¢, x) is dense in Wb :/, , consider

only smooth function v(z, x). Consider all summands in the right-hand
side separately:

f= 2< (¢ ®8(t -t/ —¢)- cpj.’®8(t—t,.”—~e))-At,.,v> =

w

_ . i ’_ ” T .
- 1=1<28 (((P,- (pi)®8(t ! 8)> Ati’v>ww "
: 1 ” 4 ”
$(lore Ble-/-e)-3(- —8>>>-Af~’>,h )

i

=2(28 AtJ.vt+8x )d§2+
i=l Q

+i(28)_‘ At,j(p"(v (4 +e,x)—v(1+e x))dQ
i=l

Q

By the Schwarz inequality and the inequality (24), we obtain



GENERAL PRINCIPLES OF INVESTIGATION ... 103

HE

2(28 At _[(p t+&,x)-v(t/+€,x))dQ|<

i=1

s ! :
<f{ (s -o7"aa] (fvw:»e,x)dsz) Jor,
i=l\ Q Q. ]

ZAt f(p, J x)dndQ)|.

l+€

i(ZS)_‘ At f V(£ +¢,x)(9; —@7) dQ| +
i=)

Q

+c

Next, we have

LR A I (e T ¢ T
s 1
t c;”Ah"Hl"(mez(Q)lti “ﬂZH‘ﬂNLZ(Q) <
: 1
3l =l 0ol 4 o b

< dfjaa], |

Analogously, consider the second summand of (29)
’ » %
|| < el Ve 113~ 11,

Examine the third summand of (29)

I =Y (o, (t5.8) - a, (t,5,1) A(p,,v>W

i=l

‘ZIM’[I v(nxKin - 'I?»(n,x)dn}m.

i=1 Q t+e

By the Schwarz inequality,
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¥
1+E

|I3|= (p, f n,x)dn—fv(n,x)dn dQ| <

i—€ f+e

<3 flso -

=€ '2_ f+e 2
X J- Vv (nx)dn | + J. V(nx)dn| [dQs<
t-€ H+e

s 1 1
= C;k - ti,lz "A(p,. IILQ(Q) "v"bz(Q) <c||n”- hllE{, "AhHH1 "v"WlL’,,

Returning to (29), we obtain

1| =|(F,,.(AR) = F,. ., (AR),v)

|l =R o

so that the equality (28) can be rewritten in the form
| O F O S llt” = A1,

To put it in another way, the derivative Fme(’) satisfies the

S S 1
Lipschitz condition with index O = —2- . By Theorem 1.5, we assert that
gradient of regularized performance criterion satisfies Lipschitz
condition with index o = 3 also. When performance criterion gradient

is analysed directly (without Theorem 1.5), it should be seen that the
performance criterion directional gradient with correspondence to

direction (p(x) satisfies the Lipschitz condition with index o/ =1.
Analogously, we could study the other right-hand sides 4 (¢, x,h)
(i =2,5) of the equation (1.1.12).

Let us show the specific cases of the regularization of the right-
hand side.



GENERAL PRINCIPLES OF INVESTIGATION ...

2 Fy= f+ 4,51 =3 8"(t-1)®¢,(x)

i=1

be the right-hand side of the equation, and
4, (x50 =Y a,, (t,x,1)9,(x),
i=l

where

(1
. tel =t +e—et +e+e’),
4e”
2 2
%EQJJJ=<273tE]é=&~€—8,Q—8+€L
’ €

0,te R\(I,U1,)

Assume that Wb";i - W;"O (Q) (W;’ C W;’O(Q)) and

Hhoer < ol (Hhenigr <elileg )

3. A, (t,x,h)= Z 8(x, ~ x,) ®,(4, %y, X,)
i=1

S
A (tx,h)= 2 a, (t,%,%,)9,(t,X,...5X, ),
i=1

where

1
—,x, €1 =[x —&,X .+8],
a, (t,xx;)= 27! WETE

0,t€ R\ 1.
Assume that W;;I* C Wzl‘O’O(Q) (ij C W22’0<Q)) and

Hhgoer< el (Hgoa < blg)

105

s P
4 Atx,h)=Y Y 8(t-1)®8(x, -x, )®Q, (X,,.,X,),

=l =1
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s.F
A, 6xm) =YY a, (4,x,8,% )0, (%, X,),

=l j=l
where
1 x €l = [xl’,. —-&,X, +e],
a,,(tx,t,x )= 48 te I,=[t,-&1 +¢],
0, (x;t)e R*\(I,x1I,)
Assume that Wb*} - W;‘I’O(Q) '(Wbt,l - Wzl'l'O(Q)) and

[Hgroigy S cltll, (Hlgaog) < el

5. 4,5 = Y 8(x, ~ a, () @0, (1, %y %,)

i=1

A, (k) =Y a,, (4,%,a,)0,(tx,,.,%,),

i=1

where

1 x, €1, =a,t)-¢,a,(t) +¢]

aS,E(t’x’ai(t))z 28’ 1 1 i bAad s
0, otherwise.

Assume that Wb;/+ C WZO’I’O(Q) (W+1 C WO'I’O(Q)) and

bd 2

”'”Wf"'“(g) S C”'"Wb*;, (IHIWZO’]'O(Q) = c"'”w,,;’)'



Chapter 3

NUMERICAL METHODS OF OPTIMIZATION
OF LINEAR SYSTEMS WITH GENERALIZED
CONTROL

1. PARAMETRIZATION OF CONTROL

In this section applying procedure of parametrization, the
minimization problem of the performance criterion J(4) in an infinite-

dimensional space we replace with the corresponding minimization
problem in a finite-dimensional space. This substitution allows us to
decrease the computational complexity of the implementation of the
gradient methods.

Let the system state be a solution of the following initial boundary
value problem

Lu =§N:6(t—ti)®(pf(x), (1)

i=l

where @] (x) =icik0)k,{u)k(x)} is an orthonormalized basis in
k=1 k=]

=
L, (Q) , numbers {c,.k }k

closed, convex, and bounded set in L,(Q).

are such that @' (x)e H_,, and H,, is

=T

Let ¢ = {t‘. }‘,:W € RN[O, T], and ¢ be a NXn matrix with rows

¢ = (cn ,..,cm). We denote by H = R X(R"Y, the space of control.
It is required to find a minimum of the following functional

It c)= J.[u(t,x;t',c)—zad]de @)

0
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in the admissible set of control U, =RN[O, T ]X(R:d )N, where

(R:d )N is closed, convex and bounded set in ( R” )N

Theorem 1. There exists an optimal control
(i',En)e U, J(Z',E”)s J(z‘*,c),V(t*,c)E U,,  where J(t*,c) is
defined in (2).

Proof. Let (t: ,"ck)be a minimizing sequence. Since U _, is
bounded, convex, closed set, the set ' Ua , 1s weakly compact. Thus
there exists a weakly convergence subsequence (it is denoted by

(t;,ck) again). Since H is finite-dimensional space, the subsequence

(t;,ck) converges to (Z,*,En )E U,, strongly in H, whence for any

n N
] n -~n __ ~ :
number 1 <i< N we have @, ——-—0, = E c,0, in LZ(Q).
.

Similarly to the previous sections we can prove that ¥, ————u in
L, (Q) The fact that a norm is a continuous functional in a Hilbert

space implies that functional (2) reaches its infimum in the admissible
set U_, (the space H is finite-dimensional).

Note that there exists a subsequence (7*,5,,’) such that

y

T s 7" e RY[0,T] strongly in RY, @' —H—w——->q5: €L, Q)

i

~

weakly in Lz(Q),i =m, where element (t (T)) is a solution of

the initial optimization problem and ¢~ = {(I), }i =
Theorem 2. If Wb’;'+ CCI([O,T];LZ(Q)) (imbedding is

continuous), then performance criterion J (t*,c) is differentiable

in the space R" X(R")N and its gradient is of the following form



NUMERICAL METHODS OF OPTIMIZATION... 109

gradJ(t‘,c)=

=((Iv"(t,.,x)ic‘.kmp(x)dgj ,(J‘v(t‘.,x)mk(x)dgj ],
Q p=l N i=1,N k=l

LN \ &
where v(t, x) is a solution of the adjoint problem with the right-
hand side 2(u—z;d).
Proof. Let (t*,c) and (t‘ +MAF ¢ +7xAc) are arbitrary

elements from the admissible set U

o and functions

u(t*,c), u(t' +7\.At‘,c+7»Ac) are corresponding states of the system
(1). Denote an increment of the solution by
Au = u(t' +AAL ¢ +7»Ac)—u(t*,c). Then an increment of the
performance criterion (2) is of the following form

AJ =J(f +AAF e+ AAc)- J(f )=
= I[u(t* +}»At*,c+}»Ac')— zad]2 —[it(t*,c)— zadlde = )
Q2

= ZJAu[u(t*,c)— z, ]dQ +I|Azt|20{Q :
g o
Define the adjoint state as a solution of the following equation
Ly= 2(u(t*, c)— Z )
It follows from Section 1 that there exists the unique solution
ve W;ﬂ of this equation. Therefore, the equation (3) can be rewritten

in the form
AJ = (AuaL*v)Lz(Q) + ”Au”iz(g) )

It is obvious that the increment Au is a solution of the equation

N n
LAu=Y'8(t-1, -2t ®Y (c, +AAc, o, -
i=1 k=1

—i&(r-—p@flcikmk.
i=1 k=1
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It follows from Section 1 that there exists the unique solution
Aue L,(Q) of this equation such that

N n
(Au’L*y>L2(Q) = 2{(}/(2‘,. +AAL, ,x) - y(ti’ x), zcikmk) L
k=l

= Li@)

+){y(z‘i +?»Ati,x),2Acikcok) }
k=1 L, (@)

for any y(t,x)e WbZi: LyeL,(0).

Let y = v. Then using the previous equation, we have

AT = ZKHMM 41:5) 30 ) +

i=] (Q)

+?\(v(ti +?\At,.,x),2Acik(0k] :"*'”A““Z(Q)
L,(Q)

k=1

)

The increment v(ti +7»Ati,x)- v(ti,x) can be represented in the

following form
v(t, + AA2, x )= v(t,,x) = J‘:ﬁm[ v (¢,x)dt .

Substituting this equality in (4), we obtain

—2[ J‘MN t,x) dthka)kj At +

L (@)
+Ai(v(4,x),ﬁ%%wk) *
i=l k=l Ly(Q)
1,+/1,
3170 aSsa) sl

To prove the theorem, it is sufficient to show that
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N n
hmy- (J’(h),Ah)H=Z( (t,,x)Zc,kwk) At, +
bl L(@)

i=1

N _n
+ 2 z(v(ti’ X), (Dk )Lz(g) Ac.'k ]

i=1 k=l
where h = (t*,c), (-,-)H is a inner product in H.
For this purpose we shall show that K"IIAu"iz(Q)—-EO——)Q By
the inequality [jul[, o) < ¢||F]|, - » we obtain
2 »dt
N

<[y, 8(r -t -2at)® " (c4 +24c, Jo, -

k=1

A, 0 2

S35(-1)8 3,0
k=1

i=1

<

+
w!

< ﬁi( (8(s =1, —AAz)-8(s -1, ))®2cikwk

i=1
-t
W
bd* ]

By the definition of the norm in the space Wb Zl and continuity of

the imbedding Wb‘;’+ c C'([0,T]; L,(K)), we conclude

"(5(t—t,.—/lAt,.)—cS(t—t,.))®ic,.,,cok

k=l

( (¢, +Adt, x) - Zc,ka)k)
L@) .

+
Wy | IIWn

+MIS( -+, —kAt,.)@iAq@k

k=1

W—I

b



112 Chapter 3

sup "y"Cl([(),T};Lz(.Q))

SAMC .
(@) YW e ¥ #0 ||y||w,;+

n
At zc,.ka)k
k=1

This proves that 0 £ X! ||Au||212 (o) S CA—=5—0, asrequired.
It follows from the inequality (5) that the performance criterion has

a Gateaux derivative in H = R ><(R"yV and its partial derivative is of
the following form

at Vi(t, x zc,kmk )dQ, i=1,N, ©6)

Q

ac —f (1, x)o, (x)dQ, i =T,V ,k=T1n. )
Q

Remark 1. In the case of parametrization of other right-hand
sides (A;, 1=2,5) of the state equation the analogous theorems

hold true.

2. PULSE OPTIMIZATION PROBLEM

Earlier the pulse and point-pulse optimization problems were studied
for some distributed systems. It was shown that a priori estimates in
the negative norms allows us to prove the existence of the optimal
controls of the investigated systems, to study the questions of its
controllability, and to write out explicitly the gradient of the
performance criterion of the original or regularized problems. In this
section gradient methods are proposed for solving the problems of
optimal control [95-100], which use an approximation of the
performance criterion at every iteration [82, 101].

This approach is based on idea of solving the limit extremum
problems [22, 102, 103].

At first, consider an optimization problem with pulse impact.
Suppose that system state satisfies the following linear equation
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Lu= f+A(h), (1)
where L maps D(L)C LZ(Q) into R(L)C W;};’+ .

In our case the right-hand size of the equation (1) is
A(k) = Ed(t =k )®gj(x) ,SEN,
Jj=l

where 5() is the Dirac delta-function. It is requested to find time

moments of pulse impacts k=(tl ,...,ts> on an admissible set

U_, € R’, which minimize the following performance criterion
J(h) = [lu(h)-z,|"dQ,
Y

where z , is a known element from LZ(Q), U,, is closed and

bounded set from R’.
Suppose that a priori estimates in the negative norm are valid:

”ul H}, < Cl‘lL”“Wﬂ < Cz"““w;j ’
bd

My, <Gl <Cll

where " is formally adjoint operator.

As it has been shown in the previous chapters, estimates (2) enable
us to prove the existence and uniqueness theorem for the generalized
solution of original and adjoint problems and the existence theorem for

the optimal control A". Ifin addition the following imbedding
w. < C'(0,7],L,())

is valid, then we can find the performance criterion gradient explicitly.
Otherwise, we regularize the original problem. There exist optimal
controls of regularized problems and these controls converge to the
optimal controls of the original optimization problem as the parameter
of regularization vanishes. The regularized problem is of the following
form

@)
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h, = arg hmlljn J(h), 3)

J,(h)=[|u,(r)-z,,['dQ, @
Q

Lu,=F(txh), u,e W, ()

Fy=f+[a(t)A(r-ix)di , ©)
Rl

where @, (1)e C:(R') £>0, ®,(1)=0 when [f|2e, o, (+)20,

J']oag(é)diz 1.

By the integral (6) we mean the bilinear form in the sense of the
theory of distributions. Hereinafter we shall omit € in the regularized
problem.

In order to find the optimal control we may use different gradient
methods [104, 105]. It follows from the equation for gradient that to
find the gradient J'(h) it is necessary to solve direct and adjoint

problems and to differentiate and integrate some expressions. As a
rule, these procedures are implemented by numerical methods thus we
have only a uniform convergent sequence of approximations

J/(h),s=0,,... J.(h)— J'(h),s — e instead of the exact value of
J'(h). Uniform convergence follows from the a priori inequalities in

the negative norms, where the constants do not depend on 4. The
inequalities (2) enable us to consider the minimization problem for
some functional, which is equivalent to solving the initial boundary
value problem [62, 64,106]. In the following sections we shall also
discuss a projective numerical method for solving the initial boundary
value problem.

We shall build the procedures of minimization of gradient that use

the approximation J:(h): J'(h)— J(h), s — oo on every iteration.
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Note that the similar results were obtained for the problem of non-
linear programming in [24, 25]. In these papers the convex functional
J(h) was approximated by the convex functionals J, (h) ,then the

derivatives J!(h) were used in the numerical method. In our case the

original functional and its derivative are unknown, in addition they are
Nnon-convex.

3. ANALOGUE OF THE GRADIENT
PROJECTION METHOD

In this section we shall suppose that the admissible set U_, is a

convex compactin R*. We shall use the sufficient conditions for the
convergence of non-linear programming algorithms [21, 107].

L em m a 1. Suppose that a sequence of points satisfies the
following conditions:

1. h’ € K is a compact set.
2. For an arbitrary convergent subsequence {hs"}k=o—; the

following assumptions holds true:

a) if ,](l'LTLhS" =h e® then

hSk+1 “hSk“—k:“—)O =
b) ’fll‘lm B =He®d then there exists &, >0 such that

T, =rnin{s: h’—h“l > e}<oo

S>Sk

for any €:0<e<e,.

3. There exists a continuous function W(h) so that the set of its
values in @ is at most denumerable and W (h) satisfies the
following inequality

Em W (h* )< im w(n* ).

k=yoo k—>o0
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Then the sequence W(hs) converges and all the limit points of
the sequence {hs}um—; belong to ®".

Suppose that A= U ,, - Consider the following sequence of points
wi=o, (h-aJ(h) s=01.., 9
where J ;(h) is an approximation of the performance criterion J(h),

‘8 Ua.:(') is a projective operator

8, (WeU,;|h-6, (W|<|o-HVoeU,,
7 is a step of the algorithm.
Note that if U_, is a convex polyhedral set then calculation of a

value of nUad(') comes to a quadratic programming problem:

_ . _ 2
éuad(h)—argg%”h o| .

In the case when U, = {h :Zc,.hi Sb} there exist algorithms

i=1
which compute the value of the projective operator 7t v, (h) in a finite
number of operations.
Theorem 1. Suppose that the sequence J!(h) converges
to J'(h) uniformly in the set U,,. The set of values of the
function J(h) in the set

<I>'={h'eUad

is at most denumerable, and

min (J(r" ) h - 1")= o},

hel 4

oo

Y A =eo, i, ———0, 7, >0, s=0,,.

s—yoo
5=0

Then the limit of an arbitrary convergent subsequence of (7)
belongs to the set ®' .
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Note that for the convex functions the set @ is the set of
minimum points of the function J(h). In the other cases the set ®°
contains all minimum points of the function J(k#). The function J(h)

that is under consideration can be non-convex because of non-linear
state function dependence on the control / .

To prove the theorem we shall apply Lemma 1. It is obvious that
the conditions 1 and 2a of Lemma 1 are valid. Ensure that the other
conditions of the lemma are true also,

Suppose that there exists a subsequence

s hed, ko oo,

Choose a sufficiently small € > 0 such that a 4d-neighbourhood of
the point A~ (U 4E(h')) and the set ®" are mutually disjoint sets. By
the definition of the set @, there exists Y >0 such that

: ’ K< -
min (J'(#),h - h)<-2y<0.

ad

Granting that J (h)e C' [O,T ] , for a sufficiently large k we have
min (7/(n** ) h - 1" )< -y <0,

el ,
Therefore, there exists >0 such that

s hmy,(a = oo (7))~ )< 2B, <0. @®)
Let us show that for all k > N we have T, <eo, where the

sequence T, was defined in Lemma 1. Suppose the contrary. Then
ke Us(hs") forall s>, ,thus A€ Ue(hsk) and h° e U,,(K).
Define a function W(h) in the following way: W(h) = J(h). It is

easy to see that the function W(h) satisfies all conditions of Lemma 1.

Thus forall s>s, we have
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win ) -w(n)= (1 K -1 )+o(e) =

= Si(J’(hS* ),h"“ - h")+ o(g). ©

i=s,
From continuity of the function J'(h), the inequality (8) and
heU . (hs" ), we obtain
=1

W(hs)s W(h’* )— 2[32;),.+0(8). (10)

=5,
Approaching the limit as s — o= in the inequality (10), we arrive at
the inequality, which contradicts the boundedness of the continuous

function W(h) on the compact set Uza(h'). Therefore,T, < oo.
By the construction, e Ue(hs" ), so h'*e U“(h') for

sufficientlylarge k € N and, hence, in the case s =7, the inequality

(10) holds true by the same reasons as in the previous case. On the
other hand,

e<|n*-nt| < 2] - < cipi ,
whence - h
T, ~1
Spi Z%. 1)

[=sk

Substituting (11) into (10), we find that
w ()< wipe) -8, (12)
c

Approaching the limitas & — co in (12), we obtain
fim (1™ ) < lim W (k" ).
k— o k—y o0

Thus, all the conditions of Theorem 1 are valid, which is what had
to be proved.
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Remark 1. Since the a priori inequalities in the negative norms
hold true, there exists a uniformly convergent to J'(h) sequence

A
Remark 2. Ifthe set of values of the function J(h) in the set

@ is at most denumerable, it is possible to prove that there exists
the subsequence (8), which is convergent to the set of solutions.

Remark 3. An analytic function satisfies the condition of
countability.

Remark 4. There exists afunction J(h) from C™ such that the

set ofits value is at most denumerable in the set ©".

4. ANALOGUE OF THE CONDITIONAL
GRADIENT METHOD

In the previous section applying the projective operation on the
admissible set, we solved the optimization problem. Note that in some
cases to execute the projective operation is very difficult. In this
section we consider other approach to solving an optimization problem
with constraints. Instead of projective operation the original
optimization problem is substituted by a minimization problem of a
linear function on the admissible set.

Suppose that the conditions of Section 2 hold true and R eU e
where U_, is a convex, closed and bounded admissible set. The

sequence of controls &' A%,.. is generated by the following algorithm:

R = 4p (B =k )s =0,L,.., (13)
(o b i) = min (7 (4 ) ), (14)

where ., is a step of the algorithm, which is chosen by the rule

p,—==0, Y'p =, p € (01]>0, s=0L.

s=0
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Theorem 2. Suppose that the conditions of Theorem 1 are
satisfied. Then the limit of an arbitrary convergent subsequence

(13), (14) belongs to the set @ .
Proof. Apply Lemma 1. Conditions 1 and 2a hold true obviously.
Check on the other conditions of Lemma 1. Suppose that there exists a

subsequence A°* —>A'& @, k — oo, Choose a sufficiently small
€ > 0 such that the 4€ -neighbourhood of the point /~ and the set ®°

are mutually disjoint sets. It follows from the definition of the set &’
that for a sufficiently large k the following condition holds true

min (75" |- 1* )< 4y <0,
Since J’(h)— J'(h) as s — co uniformlyon U_,, we have
(7 (e} B = n )< min (07 (57 ) - % )< =3y

heU ,* %k
Let us show that for all k£ =0,1,.., the value 6k defined in
Lemma 1 is finite. Suppose the contrary. Then,

i e U, ()= - h*|| <ef vs>s,
so that A'€ Ue(h"‘), whence we have h°e€U,,(K) for s>s,.
Suppose that W(h) = J(h) and s>s,. Observe that the function

J(h) satisfies all the conditions of Lemma 1.
Then,

w(e')-m(e")=7(¢)-7(0")=
= (I (0")- 4 (0% ),0" —0* )+ (7% (0" ), 0 - 0" ) +o(e)
Since the first term becomes vanishingly small as kK — oo and

B—-ht = ip,(ﬁl —h’), Vs>s,,

I=5,

for a sufficiently large £ we have
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wi)-win )< So, (7 ()7 - )+ ofe). (5

I=s,
Taking into account continuity of the function J(h) and the
inequality ”hs" -—h'” <¢ forasufficiently small € > 0, we have

( ;k(h”)ﬁ’~h’)<-—2y. (16)
Considering inequalities (16) and (15), we obtain
s=1
W(h’)s W(h"‘)—yZp, +0o(g), (17)

I=s,
contradiction with the boundedness of the continuous function W(h)
as §—»oo. Thus, the sequence ¢, does not tend to infinity as
k— . By the definition of the sequence &,, we have
eu, (hs* )C U, (7),s0 h"*eU,, (k) for sufficiently large k
and, hence, in the case s=4, the inequality (17) holds true by the
same reasons as in the previous case. Also, we have

é,~1 j -1
I+1 ~
<[ -h‘||$M§‘,n,,
=3, I=s,
2p1>—

I=5,

Substituting this inequality into (17), we obtain

W(h"‘ )< W(h” )—% +o(e).

o

a<l||n* -#

whence

Approaching the limit as £ — oo, we find
b T . Sy
mW (o™ )< lm W(o" ).
Thus all the conditions of Lemma 1 are valid.
Remark. This approach based on Lemma 1 is very convenient
for proving convergence of a non-linear programming algorithm
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in the case of programmed control of the step P,. On the other

hand, it should been noted that in the case of the step selection
based on the complete step condition the assumption 2a of the
Lemma is not valid. If proof of the assumption 2a is difficult or
impossible at all, it is useful to employ the modification of

Lemma 1 [108].
Lemma 2.Suppose that a sequence of points {hs}s:;,;;

satisfies the following conditions:
1. W’ € K is a compact set, s =12,....

2. If }IIT] Wt =K ¢ ®then there exists g, such that for all

€:0<€e<g; we have T, = min{s :“/f -hs"” > e}< CH
S>Sk
3. There exists a continuous function W(h) such that the set of

its values in the set ® is at most denumerable and W(h) satisfies
the following inequality

Tm (5™ ) < lim W (3" ).

k—oo k~yoo
4. Ifhi,ng, ht "/’l*l —T_—;”—)O then
=

w(n )= w(h* )——=—0.
Under these assumptions the sequence W (hs) converges and

an arbitrary limit point of the sequence {hs}x 5= belongs to set

=0,
o,
Remark 2. If the set of values of the function J(h) in the set

@ is at most denumerable, it is possible to prove that there exists
a subsequence of (7), which is convergent to the set of solutions.
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S. PROBLEMS OF JOINT OPTIMIZATION
AND IDENTIFICATION

5.1 Formulation of joint optimization
and identification problem

There are a lot of optimal control problems described by a model
with the vector a of unknown parameters. A sequence AW R® s

an observation over this unknown vector a . In this case it is necessary
to solve not only an optimization problem but also identification one.

There exist a lot of approaches to solving this problem. One can
first solve the identification problem with a given accuracy and then
find the optimal control, nevertheless this approach possess an
essential disadvantages:

e unknown parameters are estimated inaccurately, so that in
solving the optimization problem the errors of control may be
accumulated,

e in real time problems there are not enough observations for
identification of parameters of unknown vector.

The approach of joint optimization and identification is much more
effective. This approach enables us to consider new optimization
problems being directly related to limit extreme problems [25].

Although the above mentioned extreme problems are the problems
of stochastic programming, it is necessary to develop special methods
because the general methods of stochastic programming are not
always effective.

The following simple example shows one aspect of necessity to
develop the special method of joint optimization and identification.

It is requested to minimize positive quadratic form

J(h) = (Bh,h)+ (b, 1)

in the admissible set U_, € R".
Assume that symmetric nxn matrix B is of the following form
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_{a 0
5[ 5

where B, is the positive defined (n —1)x (n —1) matrix.
We have independent observations
KR, a=MR, s=0)12,.., a>0.
on an unknown parameter a .
This problem can be solved in two ways. In the first case using the

some observations A',A%,...,h°, we obtain an estimation a® of the

parameter a, and then we begin to solve the deterministic problem. In
the second case solving the identification problem we are making some
iteration of the basic optimization algorithm using the current value of

the estimate a® of the parameter a.
The first approach is automatically inconvenient for real time
problems. In addition, this approach can become incorrect. For

example, if the identically distributed random variables A°, s = 0,1,...
take on the negative values much more frequently than the positive
ones, then the estimate of @ may be negative and the function

J (h)= (B h, B+ (b, )

may be non-convex. By B, we mean

a, O
B, = :
{O Bl:l

In particular, this is due to

{1000 p =001, _ .
h' = s=0,l,..., where p is probability,
-1 p=0,99,

a=Mnr =9,01>0.

Thus, possibility to solve the optimization problem by this approach
essentially depends on the accuracy of the estimation of the parameter
a. Conversely, the second approach is much more convenient for real
time optimization problem. The consecutive approximations of the
solution of the extreme problem are based on all currently observed
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information about the parameter a. In this approach it is not necessary
to find the vector a with high accuracy for concurrent execution of
algorithms. In addition, the approach enables us to vary a method of
step choice in the optimization algorithms.
In this section we consider the problem
Fla,x)— min,, (1)

x€ X, @
where a is a vector of unknown parameters.
There are independent random observations h',h*,..., such that

MW =a, s=12,., M h5|

can be obtained in the same way as in the papers [109, 110].

To solve the optimization problem, we apply the algorithms similar
to the well-known mathematical programming algorithms [21] of
stochastic approximation.

To prove the following assertion, we shall employ well-behaved
sufficient conditions of convergence of stochastic programming
algorithms. Following the paper [22], let us formulate the conditions.

2
< oo, The estimates a’, s=1,2,...

Let X* be a set of solutions of some optimization problem,
andx°(®), x'(w),..., WE Q be a random sequence of points.

Theorem 1. Suppose thatx*(w)e M(w) for almost all
®, where s=01,.. M(®) is a compact set. All convergent

subsequences x™*(®) are satisfy the following conditions:

1) if lim x™ (0)€ X, then "xs*” —x“”%—) 0;

2) U‘&xsk(m)e X', p=1, then there exists €,(w)>0 such
that for all €(®), 0 <e(w) <€ () a value 0, () < oo, where

> e(co));

3) there exists a continuous function W(x) such that the set of

T, ()= min(s :”xs —xs"l

S>Sk

its values in the set X* is at most denumerable and
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lm W(x”‘ (0))) < }ci{)an(xs* (0)))

k—yoo

Under these assumptions the sequence {W(xs ((D))}FO— is

(@)=

s

convergent and all the limit points of the sequence {x

belong to the set X* for almost all .

In the case when to verify the condition 1) is difficult, it is
convenient to employ other conditions of convergence.

Theorem 2. Assume thatfor almost all ®, the sequence

x° ((1)), s€ N belongs to the compact set M (®) . All convergent
subsequence x™* () satisfy the following conditions:
1) if lﬁnwx’*(m)=x’(m)e X', then 3d(0)>0 Vo),
0 < g(w) < d,(w) we  have 8, (w) <eo, where

6, ()= rsrglsr: (s.'”xs -x* " > ci(ﬂ)));
2) there exists a continuous function W(x) such that the set of
its values in the set X"is at most denumerable and
}cin}o W(xé" (co)) < ]111’11 W(xs"(m)> g
3) if inf [[x" = x| =0, then
X €./

W(xs"ﬂ((n))— W(xs"((n))———>0

k->e0

for almost all .

Under these assumptions the sequence {W(xs ((0))};— is

=0, 00

convergent and all limit points of the sequence {xs((l))}

5

7= belong

to the set X* for almost all .

This theorem is proved in the same manner as the previous one.
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5.2 Analogue of the generalized gradient
projection method

Assume that a point x, belongs to the convex compact admissible

set X C R" ofthe problem (1), (2). For all a the function F (a, x) is

convex with respect to the variable x. A sequence of points is
generated by the algorithm

=m0, Ffa’,x7), ®)
where F,_(a,x) is a generalized gradient of the function F(a,x), s is

a number of iteration, x’€ X is an initial approximation, 7, is a
projective operator to the set X; p, is iteration step of the algorithm.
The parameter a is determined by the rule

at =2’ +85(h5“_as), s=0,1,.... )

Theorem 3. Let F(a,x) be a continuous separately with
respect to a and X,

b~ X, =0, B, —mz0. 28, =0, 28, <o0.
=0 =0 §=0

Then with probability 1 the limit ofan arbitrary convergent

subsequence of (3) belongs to the set of the solutions X~ of the
problem (1), (2), where

X ={ex: F(a,x)—-F(a,x')Z 0, Vxe X}.

Proof. Apply Theorem 1. According to the algorithm, the
sequence  x° (0)) belongs to the compact set X, s=0,1,..
Henceforth, the dependence x° (Cl)) on O shall be omitted.

The first condition of Theorem 1 is obvious
0, ,ﬁx(as,x‘),s M <o

ps—;T
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Verify the other conditions of Theorem 1. Let {xs" }k=ﬁ be an

arbitrary convergent to a point x’ & X ) subsequence. Then
Je>0:Vxe U, (x")={xe X :|x— x| < 4¢},

F(a,x)—F(a,x*)Z §>0, x € X",

Since the function F(a,x) is continuous and a’ —5o—a with
probability 1, from inequality

F(a, x)- F(a*, x) + F(a*, x) - F(as,x') +Fla* x') - Fla,x)=8
for a sufficiently large s, we have

a0
F(as, x) - F(as,x )2-2—
From convexity of the function F(a, x) we have

(Fx<as,x),x—x')2-2-,VXEU”(X’), s=01.... (O

Show that & <eo for all k Suppose the contrary. Then

x'eU, (xs") forall s>s, sothat x'e U, (xs" ) From this it follows

that  x*'eU,(x) for all  s>s,k=0l.. Let
W(x)= inf, lx—x*”2 and s>, , then
xeX
W(xs+‘)= Xi_g){. x™ _X.nz = ,}'2}5‘ 77;)(()(S —-psﬁx(as,xs))— 'Y “2 <

ﬁx(as,xs)lz.

From the inequalities (5) and Iﬁ; (as,xsx <M forall s>s5,, we

SW(x')-2 inf p,(F (2’ x)x = x ) +0]

have
w(x) <w(x*)-8p, +p> M*.

Whence, for sufficiently large k we obtain the inequality

w(x) < w(x*) —--;-Sps.
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Summing up the inequality over all the values of sfrom s, to
r — 1, we have

1 r-1
w(x') < W(x“)—EBZpS. 6)

S=Sk
Passing to the limit as r — oo in inequality (6), we obtain the
contradiction with the non-negativity of the function W(x). Therefore,

0, <,VkeN.

It is clear thatx™ ™ € U e(XS‘) c U,,(x’), then for all sufficiently
large k, x™ €U, e(x'), and hence in the case » =6, inequality (6) is
true by the same reasons as in the previous case. On the other hand,

e < s She - u S,

S=Sk

T, —1
€
whence 2 p, 2 —1\7 Substituting this inequality into (6), we find that
€d
Wix™) < Wx*)—-—. )
() < wla) -2

Approaching the limit as £ — oo in the inequality (7), we obtain
fim #/(x* ) < m w{x* ).

k— oo k=3 o0
Thus, all conditions of Theorem 1 hold true, which is what had to be
proved.

Remark. If in Theorem 3 the function F(a,x) is continuously

differentiable but non-convex, then an arbitrary convergent
subsequence ofthe sequence (3) converges to points ofa set

X = {x‘ € X :min (Fx(a,x*),x— x')= O},
xe X
with probability 1.
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5.3 Analogue of the conditional gradient method

In this section to solve the problem (1), (2) we consider a sequence

vl

™= x +ps(§S - xs), (8)
(Fax')%)=min(F, 2" " )x). ©)

The parameter a is identified in the same manner as in the case
discussed above

a* =a’+8,(h" -2a°), (10)
MK =a, Mlhs

By a solution of the problem we mean the set X* which is defined
inprevious remark.
Theorem 4. Ler E (x)=F(a,x) be a continuously

a

2
<oo, 5=0,,...

differentiable function for all a and IEX (a) = F(a,x) be
continuous one for all x€ X. The set of values of the function
F(a, x) in set X*is at most denumerable and

P, e(O,l], Ds—:ﬁO.ips = oo, 265 = 6, ié‘)i < oo,

5=0 5=0 s=0

Then a limit of an arbitrary convergent subsequence belongs

to the solution set X" with probability 1.
Proof. The first condition of Theorem 1 holds true obviously.

Assume that there exists a subsequence x* —k:w——>x' ¢ X,

Choose a sufficiently small € >0 such that the 4€ -neighbourhood of
the point x” and the set X *are mutually disjoint. By the definition of
the set X, we obtain the inequality

min(F (as",xs" ),x—xs")s—2y< 0. (1

xex V¥

for sufficiently large k.
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Suppose the inequality "xs —xs"" <€ holds true for all s>s,.

Whence, we have x° € Uza(x'), s > s, for sufficiently large k. Thus,
the inequality (11) holds true for x°. Assume that §, =<=. Consider
the continuous function W(x) = F(a,x) and s > s, . Then
W(xs)— W(xs‘ )= (Fx(a,xs"),xs —x™* >+ o(e)=
= (Fx(a, X’ )— Fx(as" S ), x*—x* ) + (F;(a”‘ Xk ) xt — xs")-f- ofe).

. =]
Since @’ —£=a and

5 =00
s—1 ; /
5 i
¥ —xt = Y pF -¥),
1

=Ji

we have
s=1
e )-we) - §

I:_\‘k

p,(Fx(aS*,xs" ) X - x’)+ o(e) (12)

for sufficiently large k.
Taking into account continuity of the function F;(a,x) and

inequality "x’ —x* ” < g, forasufficiently small € we obtain

(F a2 )% -2 )<=2y. (13)
Considering the equalities (12) and (13), we find
s=1
wlx)<w(x*)-yD.p, +0(e) . (14)

I=s,
Passing to the limit as s — oo, we obtain that the function W(x) is
unbounded, contrary to continuity of the function W(x) on the

compact set X. Thus, § <eo.

From x*"'eU, (xs" )C U, (x'), we have x*eU, (x") for
sufficiently large k. Then, in the case s= 4, the inequality (14) holds
true by the same reasons as in the previous case. On the other hand,
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€<

T,-1

7 5
D
l=s;

7,-1
S —x’”S szl ,

I=5,
whence,
T, -1

£

Seizy
I=sk

Substituting this inequality into (14), we find that
T s €
W(x ")S W(x ¢ )—-}74- o(e).

Approaching the limit as k& — oo, we obtain
m 7 {x™ )< Iim 77 (x* ).
Thus, all conditions of Theorem 1 hold true, which is what had to be
proved.

Remark. Ifthe set of values of the function F(a, x) in the set

X" is at most denumerable, it is possible to prove that there exists
a convergent to the set of solutions subsequence of (8).

6. GENERAL THEOREMS OF GENERALIZED
OPTIMAL CONTROL

In the following sections we shall prove different a priori
inequalities in the negative norms for different distributed systems, so
the general optimal control theorems of the previous chapter hold true
for this distributed systems. It is clear that the theorems from different
section have common structure. We shall not formulate all theorems
entirely in each section. We shall formulate only the changeable part of
these theorems. Therefore in this section we collect only templates of
the theorems of Chapters 1 and 2 in the convenient for the following
sections form.

Suppose the state function satisfies the following equation

Lu= f+ Ah), (1)
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with initial and boundary conditions (bd). 2

From the general theorems of Section 1.2 we conclude that the
following theorems hold true.

Theorem 1. Consider the problem of optimal control (1),
(2). If
1) performance criterion (I)() :N = R' is weakly lower
Semicontinuous;

2) the admissible set U,, C H is bounded, closed, convex
in H;

3) His a reflexive Banach space;

4) A(-) is a weakly continuous mapping of the space H into

w(Q); few (Q):
5) the operator L, the spaces N and W_(Q) are chosen
from the following table
N Operator L Space N | Space W~ (Q)

k;
then there exists an optimal control ofthe system (1), (2).
Theorem 2. Consider the system (1), (2) with the right-

hand side F(-)=f+Ai(-), fe W'(Q). If the space W‘(Q) and
mapping A,() are chosen from the table below then the mapping
F() H - W'(Q) is weakly continuous

N Mapping 4,(-) Space W~ (Q)
L

Consider the question of the differential properties of performance
criterion

J(h) = ®(u(h)) = f: [ o6, 0wy -, f dg,

i=1 0
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where u,(f,x), o, (¢,x) are some functions from L,(Q) and C @- ),
respectively, and o, (¢,x)2 €>0 in 0.
Taking into account the general theorem from paragraph 14 and

inequalities in the negative norms, we have
Theorem 3. Consider the problem (1), (2) with the right-

hand side f € W‘(Q). If there exists a Fréchet derivative
fh.(-):H—->W_(Q) of a mapping f(-):H—)W'(Q) at the

certain point h", then at the point h” there exists a Fréchet
derivative of the performance criterion J (h) in the following form

JeO= (£ (M), 0

where v(t,x) is a solution of the adjoint problem
Lv= 220(1. (u(h*) - u, )
bilinear form (), o is deﬁne; in the spaces W (Q)xW*(Q).
If in addition Fréchet derivative f,(-):H—>W (Q) is

continuous at the point h" or satisfies the Lipschitz condition with
index o, 0 < <1 in a bounded and convex neighbourhood of
the point h", then the gradient J . () has the same properties (is
continuous or satisfies the Lipschitz condition with index ),

where operator L, spaces W*(Q) e W“(Q) are chosen form the

following table
N Operator L Space W*(Q) Space W™ (Q)
1.

Proof is followed from the theorems of 2.1 (Theorems 2.1.3-
2.1.5).
Theorem 4. Consider the problem (1), (2) with the right-

hand side fe€W(Q). There exists Fréchet a derivative
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A‘,,h,(-) :H —> W (Q) of the mapping AC:H->W(Q), if the

space W'(Q) and the mapping A() are chosen from the
following table.
N Space W (Q) Map A4()
1.
The Fréchet derivative A .():H — W Q) satisfies the

Lipschitz condition with index -1-
Consider a regularized problem of optimal control
Lu = F;(t,x,h), 3)
where € >0, Fe(t,x,h)e L, Q).
It is requested to minimize afunctional
J (h)=D(u (h)).
The functional @(-) is defined on functions (t,}c) from L, (Q) .

Theorem 5. Consider the optimal control problems (1),
(2) and (3), (2). Let thefollowing conditions hold true:
1) admissible set of control Ua 4 s convex, closed, and

bounded in the Hilbert space H ;
2) maps F,(h),F(h) satisfy the condition:

a) (h, ——h in H) = (£, (h, )—2—F(h) in
w- (Q)) for an arbitrary sequence €, ——==—0,

b) F.(h), F(h) is weakly continuous,

c) "Fs(h)—F(h)”W-(Q)——e_—m——)O, for all  fixed
heU, CH;

d) the performance criterion ®D() is upper
semicontinuous and weakly lower semicontinuous.
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Under these assumptions there exist optimal controls h’, h: of
the problems (1), (2) and (3), (2); there exists a weakly
convergent subsequence h; and an arbitrary weakly convergent

subsequence k. converges to h" weakly in H, where the
i

operator of initial boundary problem L, the space W (Q) are
chosen from the table
I, Operator L Space W™ (Q)

1
Theorem 6. Consider the regularized right-hand side of
the equation (1), (2) from Section 2.2. If the operator L, the

space W (Q), the map A,.(-) are chosen from the following table,
then conditions 2a)-2d) of previous theorem hold true for the
maps Af-), 4.0).

N | Operator L Map A(-) Space W~ (Q)
1
Theorem 7. Consider the optimal control problems (3),

(2) with the right-hand size f,+ 4 € W"(Q). If the space
W_(Q) the exponent O., the map A, (") are chosen from the

following  table, then there exists a Fréchet derivative
A _(OV:H-W(Q) of the map 4,0):H—->W(Q), the
derivative 4 _..():H -—-)W“(Q) is defined in Section 2.2 and
satisfies the Lipschitz condition with index O. and directional
derivative with respect to (p(x), satisfies the Lipschitz condition
with index oL.=1.

N Index o Space W"(Q) Map AJ‘.E (-)
L
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PARABOLIC SYSTEMS

1. GENERALIZED SOLVABILITY
OF PARABOLIC SYSTEMS

Consider applications of the results of Chapters 1 and 2 to
investigation of systems governed by parabolic partial differential
equations. Note that despite of enormous number of papers devoted to
the parabolic systems there are many open problems such as the
problems of singular control and the problems of coefficient control.

Let the functioning of a system is described by the following
equation:

Luz-ai—ia Zb —+c) = f(t,x), (1)

where u(t, x) is a function descnbmg the system state in a region
0= (O,T )XQ , € is a bounded region of n -dimensional Euclidian

space R" with a smooth boundary 9Q .
Let aij.(x)=aﬂ(x>, b(x) be functions which are continuously

l

differentiable in a closed region Q ,and c(x) is a continuous in Q

function such that

Sagt 20,38, etz T2, el 20,

i,j=1
Vxe Q, vE e R',

where the constant o, , > 0.

Denote by Wb , @ completion of the space of smooth functions
which satisfy the initial and boundary conditions
u'r:o =0 z B x€0Q 0 (2)

with respect to the Sobolev norm
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\ /i
_ 2 2
el ( i +2“x,dQJ ,

0 i=]
Wb } is a similar space but its smooth functions satisfy the boundary

conditions of the adjoint problem
vli 0 leeaﬂ (3)

By pairs of the spaces W;d, Lz,(Q) and W; :f , LZ(Q) we
construct negative spaces W, , and Wb ;* as a completion of the space

of smooth in Q functions satisfying the conditions (2) or (3) with
respect to the norm

(/)
”f”W,;, = Sl:}? l ” ” ' or “f“W : = VES:VII?

Let us study the properties of the differential operator (1), and also
the properties of the formally adjoint operator:

I'y = at 2 ax] ii(bi(x)v)-i-c(x)v. “4)

ljl i=]

Lemm a 1. For anyfunction u(t, x), which is smooth in Q
and satisfies conditions (2), the following estimation is valid:

oy < Cl
bd

Proof. The inequality is obtained as a result of applying of the
formula of integration by parts and the integral Cauchy inequality to the

expression (th,v)Lz(Q) which is written in the right-hand side of

definition of the negative norm. Indeed, let v(z, x) is a smooth in Q
function satisfying conditions (3). Then
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|(209), 0=
au 4 3 du u du
+ ) b X)m—-+ , <
En ,_8x % )Bx ;'(x)ax. exuv
s L,(Q)
<I+L+1+1,
I, = ?ﬂ,v) <
o )i

(,E;,Bx ax jv}
- L,(Q)
fzax . ]dQ+fZau(x —aiﬂdg

where

””z ”Lz(Q) ""“LZ(QP

Q= gi=l

- "b,.(x)_”,v] <
tZ‘ )0

I, = |(C(x)”, v)Lz(Q)| s qlu”[,z(Q)”v”Lz(Q)

Taking into account the integral representation of the function

(Q)"v“bz(Q)

u(t, x) satisfying the initial condition ”L:o =0, we have

|u tx|—J. (n, x)dn| <
! o !
t 2 1t 2 2
< fdn J'uf(nxa’n SC(_[u,z(n,x)dn) :
0 0 0

Applying to /; the following inequality
"“"Lz(g) = C“ut“Lz(Q)’ )
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we have
I = ”ut”Lz(Q)"v“Lz(Q) S C"ur"Lz(Q)”Vt"LZ(Q) < Clleelly M
Applying to the first term in 7, the Ostrogradski-Gauss formula and

taking into account the boundary conditions v[xe s =0, we conclude

that this integral is equal to zero. Applying the integral Cauchy
inequality to the second term in I, and taking into account that the

b Ml -
bd bd"

functions a; (x) are continuous, and hence they are bounded, we get

L du oJv
I = z {x)——d0| <
i Eijﬂay(x) dx, ox, Q
] ' OX,
< 2 ) N
_Ci,j2=1 ux’ “Lz(Q) vx’ Ly(o) C“ul Wha v”W,,f

Let us apply to the third and fourth terms 7,, I, the inequality like
(5). We get

\%

Ve ||L2(Q) s C”u Wiy le} !

n
L<CY lul,.
=1

[, <Cl, "Lz( 0) I "Lz(Q) = C”””W,;,”V
Finally, we have
|(Z1t,v) 9| < Clely, I

Hence, the statement of lemma holds true for smooth functions
u(t, x) as far as the set of considered functions v(z, x) is dense in

—_
ba*

L MMl -
bd bd*

Wb} , and hence the supremum in the definition of the negative norm

we can take at such smooth functions.
Rem ark. The proved inequality allows extension of the

operator L with respect to continuity on the whole space Wb":,, in
this case the inequality of the Lemma still valid for any function

u(t, x) ofthe space Wb:,.
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Lemma 2. For any function V€ Wb; the  following

estimation is valid

L (6)

The Pro o f of Lemma 2 is similar to the proof of Lemma 1.
Lemma 3. For any function u(t, x)e WI; the following
estimation is valid
”u”g(Q) s CIILullwb;+ : ()
Proof. Consider the following auxiliary integral operator defined
on smooth functions u (¢, X), which satisfy conditions (2):

where C, is a constant majoring |bi(x)l, which exists by virtue the

fact that the functions b,.(x) are continuous in (i =-1_,7), n is the
dimension of the region €2 .

It is clear that the function wv(f, x) satisfies conditions (3).
Expressing u(t, x) via v(t, x) we get

G,
u(t,x)=—e ™ v, (t,x).

Consider
* o x
(Lu,v), 0 =(u,L V)LZ(Q) =| —e™ v (t,x),Lv =
L(@)
=l +L+1,+1,,
where
C2 nCl

I= f"‘“vdgf-f“jvz( ) 0,

i, j=1
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o i=l 0 i=l axi
Consider every term 7,, I;,and 7, separately

L=]e sz( v, ) do=[ e

i,j=1 0hJ=

G ncg .
I, = J.z":e—#‘bi(x)v,v&dQ; I, = —Je ay (c(x)— Zib.’i(_x)_}tde'

Y u j dQ_

2
n

I
-[ T a, (v, v, 0
Qi J=l
Using the Ostrogradsky-Gauss formula and taking into account the

condition v,| _,,=0 we can prove that the integral

nCl
IZ e v, U X, ) dQ is equal to zero. Let us apply to the
Ql o =1

*

second term the formula of integration by parts:

[;-jﬁ‘,e'U ()x,de=——f tj(x)viv dQ +

{,j=1

an

t

e a(x )vlv dQ.

Using the Ostrogradsky-Gauss formula we pass to the surface

f
integral in the term ——f Zea” y x)vavxj dQ and take into
i, j=1
t

account the condition v|,=T =0. Applying to the second term the

inequality Za && > ZE_, ,we have

i,j=1
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1 n n_CL
I, =——2-J. Ee“‘ aij(x)vxivx/ do +
ol =t
t
n 2 "Czt
+1J. nCy _&f ()vv dQ>
2Q‘J' A
CZ
_—IZa vV, dQ+—IZnC2e“‘ v dQ>
.QU— ' jr:O Q‘“
ant
_—-J‘ZnC2 4 x,
Ql =1

Consider the term 1

n
—£

T —J.Ze “ b(xv a'Q>—J.2Ce°“ |v|| |

o i=l o i=l
Consider the last term [, . Applying the formula of intergation by

L . & 0b,(x)
parts and taking into account the condition ¢(x)> z 3
X

=l 1

J’ea,q ( ab( )}'de=
’ = ax,.
1 ';A
=——|le
2 26, n
_J‘"C = [ ZagiX)}deZ
i=| i

> Ei(C(X) —

, we get

dQ2=0.
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Finally, we obtain

i=l i=l

C f (v + Z v
Applying the Schwarz inequality to Lu v) L) We obtain
Il M > R = M

Reducing the right-hand side and the left-hand side on the inequality
by “v"W+ and taking into account the relation between u(t, x) and
bd*

v(t,x), we obtain
Il > Clpl. = Cllall. > Cll

The validity of the inequality (7) on the whole space Wb“; we prove
by passing to the limit.
Lemma 4. For any functions v(z‘,x)e Wb} the following

inequality holds true:
M0 <€A

The Proof of Lemma 4 is carried out in a similar way as for
Lemma 3. The auxiliary operator is of the form
u= Iv=je % y(t,x)dr.

!
0

Woa
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Theorem 1. For any function f € LZ(Q) there exists a

unique solution of the problem (1), (2) in the sense of Definition
1.1.1.

Theorem 2. For any functional f €W, then a unique

bdf!
solution of the problem (1), (2) exists in the sense of
Definition 1.1.4.

2. ANALOGUE OF GALERKIN METHOD

Let us construct the method of numerical solving the parabolic
equation with a generalized right-hand side.
Consider the following equation

ou 0
Lu—-(,;—‘ Bxi ] Zb —+c = f(t,x), (1)

ul_, =0, ulxeag @
where u(t, x) is a system state defined on the set

0=(0,T)xQ,QcR",
a,(x)=a,(x)e Cl(Q), b(x)e C'(Q), c(x)e C(Q),

Za,j L, 2 2&, ,VE eR , c(x20, [p(x)<C;, B

i,j=1

Let the system state is described by the initial-boundary value

problem (1), (2), f(t,x)€ L,(Q).

We shall look for the approximate solution in the following form

x>=legi<r>wi<x>, @
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where (Di(‘x) is a orthonormal basis in LZ(Q), which consists of

functions from the space Cg (ﬁ), and the functions g‘.(t) are selected
as a solutions of the Cauchy problem for the system of N linear

ordinary equations:

N[ dg 2 0 o
=t +g|=-Y—a—*+|+

Z( dt k gk ,'j—ax[ Uax4J

2 0m
+ 3 b, —t +co, ,co,) =(/,0), q > ©)
L(@)

g(0)=0,i=IN,I=1,N.

Lemma 1. The following inequality is valid
e w, S Clf "Lz(Q)

2nCh
Yo, dg,

Proof. Multiplying both parts of expression (5) by e * ”

and summing with respect to / from 1 to N and integrating with
respectto ¢ from O to T, we obtain

2nC 2nC
. Bu B’ au 8u
LuN,e =|e -
ot ot
L,{0) L,(Q)
ZnCZE n
+
e v L(0)
2
6
210G 2nCj ©
oo du, <, du, e‘_E'aA du,, o B
or ‘< ox, or >V
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mc:
= au
=l +L+1+1,=|e X f
L(9)
Integrating by parts and using the initial and boundary conditions,

we get the following expressions
2nC3

'—“‘au au
li=)e i at ’
L(Q)
2C2
I =- e—.za_AQI aMN : a auN o
2= o | o
Ly(g)

C3 242G
=_J_e____lr§”: 0 (auN }Q_*_J‘Ze_a;l 8 Uy BuNd

A =AM “ox, = ¥ 0xdt Ox,

Using the Ostrogradsky-Gauss formula we obtain that the first

Uy
— |0 =0]. Let us

integral in the right-hand side equals to zero(

ot
apply to the second integral the integration by parts. Thus, we have
2nCE a a
"—“a duy, duy,
== j 2 “a X140 +
d 8 ax

Qljl

gy N__dQ
3o o, o,

Applying the Ostrogradsky—Gauss formula again and taking into

2nCt H oy du,
-IZ”

account the  coercitivity  condition: Zaqéﬁ 2 2& ,
i,j=1

VxeQ, VE € R', we obtain
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The term I we estimate in the following way.
ey
M u, &y, Ou
d at ’ i=1 . ax,.

ot | | ox,
Let us apply to the term [/, the formula of integration by parts.
2nC‘2

2nC2
2 Ou, 12nC: ”';“
I, =|e —— Gty —j

ot

u,dQ020.
o
ey 2 7

Summing the obtained expressions, we have
2n (o} B, 2n cl B,

2
. L Ouy Lu, >J~ (811 )+
ot
20C; ey 2 _2_ng2b . au
+nCle ™ 2[ N} -Ce ™

<3t
2nc%t 2 _M’ n
= J‘-l-e 7] -a-u—N + e 2] ZL
5 2 at 2n

%ﬂ Q:
]+

duy

ox,

1

duy|
at

i=l
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nC; L[ duy 1 -2 gy Y
dO2|=e ¥ | —it] +
E( ) o ~Q’.2e dt

]
_.2_"93., nC2 n au 2
+ LdOo>
¢ 2 2_:( ax, 2

wcf ]+ 33 oozl

i=]

Comparing the obtained expressions with (6) and using the integral
Cauchy inequality, we obtain

2nC’2 au
“f“LZ(Q)”uNlW,,; an”lq(Q) aA atN
L,(9)
M
' du
>| £, i >C
fre ™ = I
L(Q)

Nl wy, s We finish to prove Lemma 1.

Theoreml Let f€ LZ(Q). The  sequence  of
approximations (4) converges to the solution u(t,x) of the
problem (1), (2) in the sense of Definition 1.1.1 with respect to the
norm of the space L,(Q).

Proof. By Lemma 1, we can extract the weakly convergent

Reducing both parts by ”u

subsequence {u v, }:ﬂ from the bounded sequence {u N};=1 . Let
{u v, }:=1 be weakly convergent to #€ W,, By the Banach-Sax

theorem, we can extract from it a subsequence {”N, }" such that
i Tf=]

def 1 &
~ . + . A .
uv = — uN Strongly converges 1n Wbd to the same function 7 , L.E.
Vig H
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i, — |, —==0.

%
Wbd V=) 00

By virtue of the compactness of the imbedding W; - LZ(Q), it is

strongly convergentin L, (Q) .
Taking into account the inequality of Lemma 2.1.1
el <Cli

Wha
and the linearity of the operator L, we get
”Lui —Luj"W_ < C“u,. —U;
bd*

Wy
By the fact that sequence {ﬁv };] is fundamental, we have
||L1/li —Luj“W_ ——;;—_)T-‘)O .
sd"
As far as the space Wb (‘f is complete the fundamental sequence
{Ld,}", has a limit £ € w.ie.
"Lz?v -f I

Remark. Element f € VV;;+ is identically defined by @€ W,,

—0.
V—yoe

w-
bd*

and  does not depend on the  sequence U, € Wb; :
”um —u”Wb*d Mmoo 0.

Let us prove that f = f in the sense of the equality in the space
W;} . Let us multiply both parts of the equality (5) on an arbitrary

smooth function @, (t) , which satisfies the condition @, (0) =0 and

integrate it with respect to ¢ from 0 to 7. Denoting
P, =V,

we obtain

(WI’LuN)Lz(Q) =(W1’f)L2(Q) ’ l=19N .
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On the basis of the definition of the function #, the following
equalities hold true
(Vi ey = WLt ) g = Wi Lty ), (1= T, ). )
On the other hand, by the Schwarz inequality we have

I(W!’Lﬁzv —f)g(g)! s |’W1I’Wb;+ ”Lﬁzv _j“"'b} s

By virtue of the above reasoning, the right-hand side of this
inequality tends to zero as N — oo. That is why it follows from (7)
that

(W])f)la(g) = (‘ul’f)Lz(Q) b l = l’Nk1 & (8)
We can make the number N, be arbitrarily large (dropping the

necessary of the first terms of the sequence %, and repeating the
analogous reasoning). In view of the fact that the set of functions
{\|I, -, is total in Wb} ,wehave f = f in LZ(Q), whence it is easy

to prove that # is the solution of the problem (1), (2) in the sense of
definition 1.1.1.
By virtue of the uniqueness of the solution of the problem (1), (2),

all sequence {u N };=1 converges to i@ with respect to the norm

L(Q).

Let us consider the case when the right-hand side of the equation
(1) is an element of the negative Hilbert space Wb} . Granting the

density of the space LZ(Q) in Wb} , let us select a sequence
fp € LZ(Q): "f"f,,”w- —5=—0 (we can do it applying the well-
od*

known procedure of averaging).
Consider the problem (1), (2) with the right-hand side £,(t,x). We

shall look for the approximate solution of this problem in the form
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N
uy, = 2,8,(00(x), ©)

where (D‘.(x) is above defined orthonormal basis in L, (Q) , and
g, (t) is determined from the solution of the Cauchy problem for the

system of linear ordinary differential equations:

dn{fha ] e,

p’
g,0=0,i=IN, =]
(10)

As far as the estimations in the negative norms are valid for the
operator L passing to the limit p — oo we shall obtain that the

following statement holds true
Theorem 2. Let f € Wb} : Then the sequence

{uN( p)’P(t,x)}:zl, obtained by the method (9), (10) with the help of

the special choosing of N = N(p), which necessarily exists,

converges to the generalized solution from the space Lz(Q) (in
the sense of Definition 1.1.4) of the problem (1), (2) in the

following sense
”uN(P):P _uuzg(g) —==0

Proof. By Theorem 1, sequences of the approximations
{u Nop (t,x)}:;_1 converge to the generalized solutions of the problems

Lu, = f, withrespect to the norm L, (Q),ie.

"uN:P _ul’”Lz(Q) =0
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Let us show that the sequence {up (t,x)tﬂ is fundamental in the
space L,(Q). We have

"up -—u," - " uNP”L2 +"uN,p “Uwy "zz(g) +nuNJ —u/".r,z(g) :
Next,
”“P - ui‘lg(g) = ”“p - uN’P”Lz(Q) +C7, - fl""',,}* +pen, _uI”Lz(Q)
Here we used the estimation of Lemma 1 and the triangle
inequality.
Let us pass to the limit with respect to N — eo. We shall obtain

that "up _ullle(Q) < C“fp —f,“w —m—>0 Hence, there exists

a function u € L,(Q), such that “u -u,

L,(0) ——‘E_,T')O . It follows

from the proof of Theorem 1.1.3 that the function € L, (Q) is a
generalized solution of the problem (1), (2) in the sense of
Definition 1.1.4 with the right-hand side f (t, x)E Wb;+

Consider "uN,p —up“ L) On the basis of Theorem 1 we can

choose N = N(p) such that ”uN(p),p —-u, ”Lz(Q) <5p, where {BP}FI
is a sequence of positive numbers converging to zero.
Hence,

"“N(p).p B u"zz(g) = ””N(p),p —upl Lot "u!’ _u“sz) &

< SP +“up —ulllq(g) —0.

poee

The theorem is proved.
Thus, in the case when the right-hand side belongs to the negative

space Wb} , it is necessary to solve the Cauchy problem (10) and to

co-ordinate the parameters N and p in a special manner.
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3. PULSE OPTIMAL CONTROL
OF PARABOLIC SYSTEMS

Let us consider the problems connected with the pulse optimal
control in the case when the function of the system state is a solution
of the Dirichlet initial-boundary value problem for parabolic equation:

Lu=f+ A(h), (1)
uly =0, |0 =0, ¥)

All notations correspond to Chapter 1, where we proved the
inequalities in the negative norms for the parabolic operator.

Using the templates of the theorems mentioned in Chapter 3, let us
write the tables for this theorems.

xE0Q

Table 1.
N Operator Space N Space W'(Q)
L - L(Q) W
2. L w,, L, (Q)
Table 2.
N Operator Space W_(Q)
4 ()
1 4, () Wz:g'
2 4,() W
3 AS () We:f
Table 3.
N Operator L Space W'(Q) Space W+(Q)
1. - .
L bd* bd”
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Table 4.
N Space W‘(Q) Mapping 4, (")
1
Table 5
N Operator L Space W'(Q)
L. L w-
bd*
Table 6.
N | Operator L Mapping 4,(-) Space W~(Q)
I L Al) W,
bd
2 L A() e
3 L - :
A0 v
Table 7.
N Index o Space W-(Q) Mapping 4, (")
1. 12 - .
4.0
.5 12 = :
bd* A3,g( )
3. 12 - .
bd* As,s( )

Let us investigate the problem of the existence of the optimal

control of coefficients of the equation.
Let the system state is described by the following equation:
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Lu=2%_% —a—(a-—(x;h, )_a_u_]+ ib,»(x?hz )gu;+ clxsh Ju = 3)

ot  [Shox| ¥ ox; | i3 ;
=f(x;h4),
u|t=0=0; uxE&Q =O’

where u(t, x) is a function describing the system state in the domain
0=(0,T)xQ, Q= [xl',x:]XQ' is a bounded domain in 7 -

dimensioned Euclidian space R” with smooth boundary d€2, which is
a tube with respect to the variable x,. The control of the system is

carried out with the help of control impacts 4 = (htg.l),h.(z),h(a),h(“)).

1

The functional (D(u(h)) =J (h) , which is to be minimized on the set
U

ad
(3) and is weakly lower semi-continuous with respect to the system

state u(t, x).

of admissible controls, is defined on the solutions of the problem

Let a, (x) =a, (x) , b (r) be continuously differentiable function in
the closed domain €, and c(x) be continuous functionin Q. We
shall assume that hiﬁ.l), h‘.(z), h® are some numerical parameters and
for all values of this parameters

Yatt za, Ve, VEER,
i=1

ij=1
1, 9b,(x)
2 ), 4
c(x) Zl o “)

c(x)20,
where the constant &, > 0.

Let us consider the specific case of the control impact which arise
in practice and investigate the problem of existence of the optimal
controls.

Let the following conditions are satisfied:
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a..(x'hg.‘))=a.( )h,j’), hv [au by ]CR ( >0 ),
b (x;4?)= b (x)n®, K¥[8 6| R, (a‘2’> ), ©
c(x;h“’): c(x)n®, i e [a“),b(”]c R, (a“) >0},

m

f(t,x,h“))=[2h,‘,4>wk(t, X ))®a(x ~t,),

k=1
where the vector h h,(z), hm, h£4) is a control.

Then the followmg statement holds true.

Theorem 10. Let the system state is determined as a
solution of the problem (3), (2) and the following conditions are
satisfied:

1) the performance criterion (I)(-):LZ(Q)—-) R' is a weakly
lower semi-continuous with respect to the system state
u(t,x;Q) functional;

2) the set of admissible controls U, , C His bounded,

closed and convex in H;
3) His a reflexive Banach space;
4) fis a weakly continuous operator mapping H into

bd*’

Under these assumptions there exists an optimal control of
system (3), (2).

Proof. Note that by virtue of the relations (4), (5) all statements
proved in the Section 1 for the parabolic operator are valid for
differential operators (3). Moreover, the constant C in the estimations
with respect to the negative norms (Lemmas 1.1-1.4) does not depend

on the control hg) , h,.(z), Al Hence, the proof of Theorem 1 is

completely similar to the proof of the general theorem about existence
of optimal control (Theorem 1.2.1)
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Remark. As far as the operator f is non-linear then the
functional J(h) may be non-convex and the optimal control may

be non-unique.

Let the functioning of the system is described by the equation (3)
with the conditions (4), (5).

Let us investigate the differential properties of the performance
criterion

p
J() =2@m) =Y [, )ut)-ufd2, @

i=1 0
where u,(t,x), o, (¢,x) are some unknown functions from L,(Q)
and C @ ), respectively, and o (f,x)2€>0 in O for the case of

the optimal control of the system coefficients.
Let us give to the control & an increment AAA :

AJ(h)=J(h +AAR) = J(h) =

I

foc (t ) Aulu(h + AAR) + u(h) — 2u, )dQ =
¢

=2 j (t, x)Aulu(h) - 2u,) dQ+ifoc (t, )|’ dQ.

_]Q

lO

where Au = u(h + AAR) —u(h).
Let us introduce the adjoint state as a solution of the following
problem

p
Lv=2Y [o,@x)(uh)-u,)dQ, 0
i=1 Q
Vhar =0, Veag =0.
Then we may write the increment of the performance criterion in
the following form:

AJ(h) = (A, L), o+ [, 0)|Auf dQ.
-IQ
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As far as
Lyl +280)— L, (u(B)) = (5 +2880) - £ (),
then, obviously, Au satisfies the equation
0Au l)aAu aAu )
b,(x APy =
ot gax y } 2 + c(x)h,YAu

i=l ,

au(h+7»Ah) _
S 2 J

N
Y Ab(x)AR? Qf‘ﬁ‘aﬁi@ ()M + AAR) +
i X

+)uE:Ah,E“)\uk(t,xz,...,x”)®5(xl —&k).
k=1
It follows from the results of Section 1.1 that the solution of this

problem exists, it is unique and it is determined as a function
Aue L(Q) such that for any y(,x)e W;}: Lye Lz(Q)

(including v(¢, x)), the following equality holds true:

. ou(h+AAR) dy
(AusLy)Lz(Q)—f[ Eka )Ahé}) u( - )ax’_

[_]—l J i

N
=Y Ab,(x)AR? Ju(h+AA%) y —Ae(x) AR u(h +AAR) yJa’Q +

ox,
+ I }\.ZAh,S4)\uk(t,x2,...,x,,)y(t,&k,xz,...,xn)dtaQ'.
o, Ty k=l
Thus,

) Ou(h+AAR) dv

_ f[_ Dha (WAh) — e -

1] ihj=1 J i
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= be AR —a—t-l—(—}—lai&-A—hzv—Kc(x)Ah,.(s)u(h +Mh)v}dQ +

i=l X

i

b [ A AR, (e W B e, Y+

[o.TkQ" 4=l

+ i.[oci(t,x)lAulde :
i=] o)
Dividing both parts by A and passing to the limit as A — +0, we
have

AR, & du(h) & 4y
T Ve £[2<> e 3

& youlh) o 0)
- Y'b,(x) = VAR, — c(oc)u(h)vAn, ]dQ+ ®)

+i fwkv(t,ék,xz,...,xn)dtm’-Ah,E4)

k=1 [0,T]xQ
Thus, we have proved the following statement.

Theorem 11. The gradient of the performance criterion
(6) is of the following form:
gradl (h) =

[ N
[-gag(x)a;‘i)ax Q) ;Hb’( )aai)vdg] ;

\
—j mvdQ 5| [ wv(tE 5, did Q'
[0,Txe’

k=t
Remark. It should been noted that the passing to the limit in (8)
was done formally, but its justification can be proved easily.

m
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PSEUDO-PARABOLIC SYSTEMS

In order to solve many applied problems of science and engineering
it is necessary to study optimal control problems for pseudo-parabolic
systems:

Lu= (Au), +Bu = f(t,x), 1)
where A, B are second order elliptic differential operators.

Seemingly one of the first paper on pseudo-parabolic equation is
[111], where the equation was obtained from the research of heat
transport processes in the heterogeneous environment, as more
adequate model of the processes. Pseudo-parabolic equations arise in
researches of the fluid and gas filtration in the fissured and porous
medium [112-116]; the heat conduction in the heterogeneous
environment [111], the ion migration in soil [111-113, 117], the wave
propagation in the disperse medium and in the thin elastic glass [118].
Nowadays , there are many papers on pseudo-parabolic equations [51,
52,90,119-128].

1. GENERALIZED SOLVABILITY OF PSEUDO-
PARABOLIC EQUATIONS (THE DIRICHLET
INITIAL BOUNDARY PROBLEM)

Consider equation (1) in a tube Q=(0,7)xQ, where Q is a
regular domain in R” with a piecewise-smooth boundary 9. The
operators A,B are defined as

n

Au=- Z(aij (x)“,, ) +a(x)u, (23)

i,j=1 *;

Bu = —i(b‘.j(x)ux/ )X +b(x)u, (2b)

i,j=1
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where aij(x)=aﬁ(x), by =b,(x); {au}:',-n’ {U}:'“ are

continuously differentiable functions in the closed domain Q, and
a(x), b(x) are continuous functions in the Q .

We suppose that the differential expression (2a) is positive definite
and the differential expression (2b) is nonnegative in the domain €2 i.e.

Yatk, _aZé, ; Zb,,c';& 20, ©
1,/=1 hj=1
where @ is a positive constant, &i eR', i=0n.
We also suppose that a(x) 20, b(x)= 0.
Introduce into consideration the following spaces. Let W;d be a

completion of the set of the smooth functions in the domain § , which
satisfy the conditions

u|,.,=0; u

x€9Q = 0 ’ (4)
in the norm

|

Let Wb‘;+ be a completion of the set of the smooth functions in the

L
[J.u +2aU U, ] . 5)

7.]‘

domain O , which satisfy the adjoint conditions
Mir =05 Veaq =0 ©)
in the same norm (5); W, ,, W ooare corresponding negative spaces
W CL(Q)CW,,, W' . CL(Q)CW ). Let H,, bea

completion of the set of the smooth functions in the domain 0 , which
satisfy the conditions (4) by the norm

uuu:=f(u +Sau,0 }f ,

0 i =l
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H ;d* be completion of the set of the smooth functions in the domain

Q , which satisfy the conditions (6) in the same norm. Let H, b 3 H -
be corresponding negative spaces.
Lemma 1. For all functions u(t,x)€ W, bd the following
inequality is true
ey <l
Pro of. First consider a smooth function u(z, x), that satisfies the
conditions (4), then applying expansion by continuity of operator L()

and passing to the limit, we shall obtain the inequality for all functions

ucw,, .
By the definition of the negative norm, we have
lzuf,- = |(Luv)| v)| - l(Lu, V)Lz(Q)l o
v£0, vsW ” v#0, ‘eWM, ”V“W+
v

Consider (Lu,V) L(Q) - Employmg the integration by parts, the

Schwarz inequality and the conditions (6), we obtain
172 112
2 2
J.a(x)u,de < J.a(x)v dQ J'a(x)u, dQ
g g g

Here we apply the inequality
1/2

j vdQ | <M,
Q bd
In the same manner, we have

1/2 1/2

[b(x)uvdg|<| [b(xpvdQ | | [b(x)vdQ <Ml el
Q 4 2

Using the integration by parts, we find
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(Sl -
-| 2(%% ,V) dQ+ | Za,j 49

i, J=1 gh ,j=1
Passing to the integration over surface and taking into account the.
conditions (6), we conclude that

-[ z(aqux ‘v) dQ=0.
0 i, j=1
Using the Schwarz inequality again, we obtain

-[ ¥, ), va0l=|{ Y.v,a,1,,d0|< ol Mol
ghJ=l giJ
Analogously

[$ ) a0l bl
- 7%, bd
giJ=l

Substituting the inequality into the parity (7), we have the desired
inequality.

The analogous lemma is valid for the adjoint operator L.

Lemma 2. For all functions v(t,x)€ Wb} the following

i

where L'v = —Av, + By

inequality is true

bd

< Clul,

It follows from these lemmas that the operator L (and L*) can be

extended to the continuous operator mapping Wb ,» (and Wb :* ;

respectively) into Wb} (Wb;)

Lemma 3. For all functions u(t,x)€ Wbt, the following

inequality is true
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|Zacly- = Cllly,»-
bd

Proof. First consider a smooth function u(z,x), which satisfies
conditions (4).
Let v(¢, x) be an auxiliary function in the form

v(t,x) = —j('Hl)'l u(T, x)dr.

It is obvious that ve Wb} . Prove the following inequality

(L“"’)Q(Q) 2 C”V”fa,
®

Using the integration by parts, the relationship between u(#, x) and
v(t, x), the boundary conditions, we have

fva(x)u,dQ = f (va(x)u),dQ+ f (t+Dalxv’dQ 2
0 1]

Q
> fa(x)v,de 20,

jvb(xudQ Ivb(x t+1dQ =—-— I(b(x)(t+1) )dQ+
29

te £ b(x)'dQ =~ J b<x>v2|,=od9+-2- 2 b(x)'dQ 20.

Next, in much the same manner, we have

[ e, ) d02¢f $a,m, v, d0.

i,j=1 Qi Jj=l

‘f E(M)dQ ft+1)2v, W40 ©)

i,j=1 i,j=1
Employing the 1ntegrat10n by parts, we have
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- j t+l)2bvvx‘vx A0 =

i,j=1

250m

i,j=1
since the symmetry and non-

=——f( (t+1) Zb,,vx,vx )dQ+ _[Ebu"x,"x dQ.

Passing to the surface integral,

negativity of the matrix {b,.j }" _, we arrive
j:

fz+1 Yo,y v, 40 = (10)
i, j=1
=—J‘2byvx Ve,

dQ +—I Zbuvx v, dQZ 0.

Q’ =t t=0 Ql j=1
Substituting (10) into (9) from the obtained inequalities, we have

(Lu,v), >C[I2av x,v“dQ]

g hJ=l
whence, applying the obvious inequality

[ Y, 402 Il -

Q=1
we conclude that the inequality (8) is valid.
By the Schwarz inequality, we have

C”v If,,b} <(Lu, V)za(g) < ||Lu||Wb-d+

Reduce by [v],- and take account the relationship between

u(t,x) and v(t,x). Whence we have that desired inequality of the
lemma is true for a smooth function. Passing to the limit, we obtain the

. . . +
inequality for all functions u € W, .

Lemma 4. For any function v(¢,x)€ Wz;* the following

inequality holds true
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nL*v

2 Clv| .-
Wy " “Hbf
Proof. Let first v(¢,x)e Wb’;, be a smooth function, which

satisfies conditions (6). Prove the following inequality
. 2
W,L V)Lz(g) 2 C"ul W (1)

where
u(t,x) = f QT -1 Wz, x)dt .
0

Using the integration by parts and the definition of the function
u(t,x),we have

- [ualx)v,dQ = ~[ (ua(x),dQ+ [ 2T - a(x)u} dQ =
o 4

e

= [@r -nalxldQz 0.
o

Since the functions u(z,x) and v(x,) satisfy homogeneous conditions
on the border of the set [0,7] , we have:

[ub(xydQ = jub )(2T - t)udQ_—j )T - t)u®),dQ +

(o]
—-jb dQ_—jb (x)Tu?), dg+jb(x)u2szo.
Q

Next, we obtam

j a, u)dQ>j(2T t)ZaU“u“dQ

ljl ‘J_

-I (o, ) do- f(zf 03 bu, u, dO.

i,j=1 i, f=1

(12)

Since the matrix {blj}:j_l 1s symmetric and nonnegative, we have

the inequality
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[er-1 Zbuux u, d020. (13)
0 i,j=1
Taking into account (12), (13) and the inequality

C{Iu + za,} y ,,dQ} jza,, o

i,j=l Qi J=l
we obtain (11). Next, in much the same manner as in Lemma 3,
applying the Schwarz inequality and passing to the limit, we prove
desired inequality for all v € W;+ :

Based on Lemmas 1-4 and results of Chapter 1, we have the
following theorems.

Theorem 1. For all fe€ Hb“d+ there exists a unique

solution ofthe problem (1), (4) in the sense of Definition 1.1.1.
Theorem 2. For all fe Wb;“ there exists a unique

solution ofthe problem (1), (4) in the sense of Definition 1.1.4.

2. GENERALIZED SOLVABILITY OF PSEUDO-
PARABOLIC EQUATIONS (THE NEUMANN
INITIAL BOUNDARY PROBLEM)

In this section we shall consider the simpler (comparing to the
general equation (1.1)) pseudo-parabolic equations. This simplification
enables us to consider the initial boundary value problem with usual
von Neumann conditions (compare with the initial boundary conditions
of pseudo-hyperbolic systems).

Consider the partial differential equation:

Lu=u, - A(ut + ku)z f(t,x), 1))
inatube Q= (O,T )XQ , where u(z, x) is a sought function, x € Q,
te (0,T), Q is abounded domain in R" with a smooth border 9Q,
A is a Laplacian, k is a nonnegative constant.
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Together with the equation (1), consider the boundary conditions

0
a—;ﬁ- wa =0, @

where 7 is a normal vector to the surface 9.

ult=0 =0,

Introduce the following denotation. Let W; be a completion of the

set of the smooth in @ functions, which satisfy the condition (2) in the
norm

12
uuuw,,f[f u3+2ui,,dg) |

0 i=l

W;} is an analogous space, but functions satisfy the adjoint
conditions
v
vlr:r =0, %’xean=0’ )

Wy be are corresponding negative spaces.

Lemma 1. For all functions u(t,x)e Wb; the following

inequality is true

+ o
Wbd

e, s el

Proof. First prove the lemma for smooth functions
u(t,x)e Wb; which satisfy the condition (2), and then passing to the
limit, we shall obtain the inequality for all functions u(t, x) € Wb’; :

By definition of the negative norm in Wb} , we have

W

(Lu,v) )
il =sop L2l

"*3;,{ “""Wb+ e

bd*
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Since the bilinear form (-,-)W on the smooth functions coincides

bdt

with the inner productin L, (Q), we obtain

(Lu,v)

“L“"wy = sup I bz(Q)I
s w20 "V

) W+
+
LA bd*

@)

Consider
l(Lu, v)Lz(Q)] = f[vu, + vAu, + viduldQ
o

Employing the Schwarz inequality, we have

2 A /i
fvu,dQ 5{,”“:' dQ) [J‘Mde] <
Q o 12
< Jlu wy, V”L,(g) S cllu Wy, ""Wb}-
Let us show that
J.vAu,dQ <clv| we IW;,, ,
e
J.VkA“dQ SC"V”W:f ”u”W,;,‘
Q
First consider the integral J.vAu 40|.
0

Using partial integration and the conditions (2), we find

~ [vaudo=-Y (v, ) do+¥ [vu,do. ©
0 i=l g ! i=l g
Passing to the surface integral, we obtain

$ b do- [ +Zaorrm)-o.

=l g (0,7 MaQ
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=( and, thus, -Q-uLl .
on'’

=0).

u
(since — o7 | 3

Applying the Schwarz inequality to (5), we have

ZJ.VX U, dQ|< fv ”u,dQ <

)
< 2{ [ viidQT[ | u;dQT <
=\e 0

In the same manner, we prove that

<My lbdly, -

vau do| =

i=l

Ml -
sat

f viAudQ
e

'(L”’ V)Lz(Q), s c"v""’b} ”u”W,,*,, :

Returning to (4), we have

Finally, we obtain

Eadly - < el (©)

as required.
In the same manner, we prove the following lemma.
Lemma 2. For all functions v(t, x)e Wb} the following

inequality holds true
”L 1%

where L' is aformally adjomt operator
Lu=-y —A(-v, +kv).
Lemma 3. For all functions u(t, x)e Wb; the following

inequality is true

C”“”LZ(Q) s
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Proof. First prove the lemma for smooth functions wu(t,x),
which satisfy the condition (2), and then passing to the limit, we obtain

. . . +
the inequality for all functions u(t, x)E Ry g

Consider an auxiliary operator 1, :
t
v(t,x) = I = J.a"l(s)u(s,x)ds, a(s)< 0, a,(s)<0, se [0,7].
T
Evaluate

(T Lu), gy = (L Luu), ) = 7
=(=v, +Av, - Akvav, )Lz(Q) =0+ +1.
Applying the integration by parts and the conditions (2) and (3), for

functions u(t, x) and v (z, x) we have

L= —IavfdQ,
0

I, = J‘avrAv,dQ = —J.aivitdQ :
o) i=1

o

I, = _£ av kAvdQ = JQ.akg v, vrx,dQ = %‘Qf[akgvi ],dQ -

—lja,kﬁvjdg=—f@jkivf|,=0ds2—-l-ja‘k§"]vjdg.
2y T T P T ARG

i=l

Substituting the equality into (7) and replacing a(t) by — (t+1),
we have

(Lu,Tu )Lz(Q) > c|p|

2 2
W’:l+ z C"I;""wb; 2 C”"‘"Z(g)-
From the Schwarz inequality, we obtain

(Lu’ [tu)Lz(Q) s IlLuIIW'+IIItuIIW*+ :
bd bd

Reducing each part by ”[ i””w* , we find
b
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ey >l o
which is what had to be proved.
Lemma 4. For all functions v(t,x)e Wb} the following

[, 2 Moy

From Lemmas 14 we have the existence and uniqueness
theorems.

Theorem 1. For all functions fELZ(Q) there exists a

unique solution of the problem (1), (2) in the sense of
Definition 1.1.1.

Theorem 2. For all functions f € W . there exists a

inequality holds true

unique solution of the problem (1), (2) in the sense of Definition
1.14.

3. PULSE CONTROL OF PSEUDO-PARABOLIC
SYSTEMS (THE DIRICHLET INITIAL BOUNDARY
VALUE PROBLEM)

Apply the obtained results for the optimization problem of pseudo-
parabolic systems (the Dirichlet initial boundary value problem). We
use the same denotations as in Section 1.

Let the state function satisfies the pseudo-parabolic equation

LusA(%?)+B(u)=f+Ah, )

u|,, =0; =0, @

=0
Using the template theorems of Section 3.6, fill in the tables for the
pseudo-parabolic equation (the Dirichlet initial boundary value
problem).

ulxeag
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Table 1.

1 Operator Space N Space W'(Q)

L. L(") H, 0.

2. L(‘) W;(—f H;d+
Table 2.

r, Operator A4 (-) Space W~ (Q)

D 40 W

2. A4,() Wb;, ’H;d*
Table 2 (continuation).

1 Operator 4.() Space W~ (Q)

3 A, () Wb;

4. . J '

As( ) WM+ ’Hbd*

Table 3.

1 Operator Space W‘(Q) Space W+(Q)

L())
L. : - -
L( ) Wbd+ Wbd*

Table 4 is empty.
Table 5.

L Operator L() Space W~ (Q)

1. . .

() W
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Table 6.
s Operator A4,(-) Space W~ (Q)
L 4() i
. 4,() Lo
3. 4,0) o
% 4() ("
Table
L, Exponent o Space W~ (Q) Map 4, ()
L. 12 » 4,0
2. 12 n 4,.()
3. 12 il s 4.()
4. 12 e 4,.0)
3 12 i 4 ()

4. PULSE CONTROL OF PSEUDO-PARABOLIC
SYSTEMS (THE NEUMANN INITTIAL BOUNDARY
VALUE PROBLEM)

Apply the obtained results for the optimization problem of pseudo-
parabolic systems (the Neumann initial boundary value problem). We
use the same denotations as in Section 2.

Let the state function satisfies the pseudo-parabolic equation
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-9u ou
Lu=-5?—A(-é?+ku)= f + Ah, 4y
ou
0. =] san = 0. @

Using the template theorems of Section 3.6, fill in the tables for the
pseudo-parabolic equation (the Neumann initial boundary value
problem).

Table 1.

1 Operator Space N Space W'(Q)

L 0) L,(0) W,

7 ) W L(Q)
Table 2.

g Operator A4 (*) Space W~ (Q)

L 4() b;*

2 40 W

3. A4 (’) b;,+

4 Al) 5
Table 3.

L Operator Space W“(Q) Space W+(Q)

L(-)
L L() W, B
bd bd

Table 4 is empty.
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Table 5.
) Operator L(*) Space W~ (Q)
1. . J
L ( ) bd*
Table 6.
1, Operator 4,(-) Space W~ (Q)
1. . i
‘A] ( ) bd*
2. . j
Aj( ) bd"
3 . r
4,() _r
4, . )
Aﬁ( ) bd*
Table 7.
1 Exponent Space W~ (Q) Map A,-,E(')
04
1. 12 - :
PVbd' Ale( )
2 1/2 - '
bd* A“( )
3. 12 - :
bd* A”( )
4, 1/2 - g
bd* A4’E( )
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HYPERBOLIC SYSTEMS

1. GENERALIZED SOLVABILITY OF HYPERBOLIC
SYSTEMS (THE DIRICHLET INITIAL BOUNDARY
VALUE PROBLEM)

This Section is devoted to thé research of hyperbolic partial
differential equations. A lot of the mechanic and physics problems
such as a chord, bar and membrane oscillation, an electromagnetic
oscillation etc. are described by the hyperbolic equations [98, 129-133].

Consider a linear partial differential equation

Lu=u,+Bu=f(tx), )
in a tube domain Q=(0,7)xQ, Q is a bounded domain of

Xy, Xy5..., X, variation with a smooth domain boundary 0. The

elliptic operator B does not depend on the temporary variable ¢ and is
of the following form

Bu = —zn: (aij(x)uxj )x k- ibi(x)uxl +e(xhu.
ij=1 =l ’

Suppose that the matrix A4 ={a,.j(x)}:j=l 1S symmetric

a,(x)=a i (x), the matrix cells a,(X) and the functions b,(x) are
continuously differentiable in the domain Q and for all vectors

E= (&l 5 &2, i .,E_,n )E R" the following inequalities hold true

Enlal.j(x)&iﬁj > oci?;f , O=const>0,
i=1

i,j=1
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Since the functions b, (x) are continuous on the compact set €,
there exists a constant ¢, >0 such that lbi(x)l <c, forall x€ Q,

i=Ln.

We denote by W,, a completion of the set of smooth in QO

functions satisfying the following conditions
U] ey =],y =0, u

0.

x€dQ =
in the norm

: Vi
b, | [+ a0
Q i=1
Analogously let Wb:, be a completion of the set of sn.

functions satisfying the following conditions
vll:T =vt|t=T =0 y ¥

0 3)

xcdQ =
in the same norm

. v
M, ( v +2v:,dQJ .
19) i=1

Let W,,, W;* be corresponding negative spaces.

Lemma 1. For all u(t,x)e W,; and v(t,x)eW'  the

following inequalities

”Lu”Wb“d+ S C"u”W;,, i
L'vl <C|M

hold true, where an operator L is formally adjoint to the
operator L :

= + s
Wbd Wbd+

n

Lv=v, - Z(GU(X)VJ:, )x‘ - i(bi(x)v)x‘ +e(x)v.

i,j=1 i=1
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Proof. Consider first a simpler case, when u(f,x) is a

continuous function satisfying the conditions (2). By the negative norm
definition, we have

l (Lu,v), l (L
e, = 22 Iu L @

ve W
bd* bd*

since for smooth functions u(z, x) satisfying the condition (2), the

bilinear form coincides with the inner product in L, (Q)
Consider the term of the right-hand side of the fraction (4):

I(Lu V) I—[u —zn:(avux) +2bu +cu v]

if=1

Ly(Q)
Applying the partial integration, the Schwarz inequality and the
initial conditions (2), (3), we obtain

J'u"del = J.(u,v)!dQ—J.utv,dQ =
0

Q )

A %
S{J.ufdQ) vadQJ <
Q g
Next,

[v 2( s, ) dg|= fZ(vau ) dQ - jzvxauuxde

g i.Jj=I Qi J=1 gij=l

jzv dQ]y[ju dg)%_

Pe} i=l
In the same manner, we have

(ibiux,’vJ <2" i x,
i=1 L) =

_[ uy,dQ| <

o

* H]

ol
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l(cu’v)Lz(Q)| < “cu"Lz(Q)“v“lQ(Q) < C"”“W,,“d"vl

Returning to the equality (4), we obtain the lemma assertion for
smooth functions u(z, x), which satisfy the condition (2). Passing to

w, "
bd*

the limit, we obtain the lemma assertion for all functions u(z,x)€ W,
The second inequality is proved in the same manner.
Lemma 2. For all functions u(t,x)eW,,  and

v(t, x)E T/T/'b";+ the following inequalities hold true

IIU”LZ(Q) < qILLIIIWb;+ ’
"V"LZ(Q) < C"L“ﬂw;'

Proo f. Consider the first inequality. Suppose first that a function
u(t, x) is smooth and satisfies the condition (2).Consider the following

integral operator
&

v(t, x) = —J.e"“u(T,x)d’v ,
T
where @ is a positive constant.

It is obvious that # = —e™v . Consider

n

(Lu’v)LQ(Q) = (un’v)Lz(Q) _(Z(Qijuxj )xi ,V] - +
L(g

i)j=‘

+(2biuxl,v) +(cu, V), (0)- &)
i=]

L(Q)
Estimate the every summand in the right-hand side.
Applying the integration by parts, we have
(u,,, v)Lz(Q) = f(z:,v), dQ ——J.u,v,dQ = Ju,vl:i dQ —J.u,v,dQ :
o o Q 1]
Since u,(0,x) = W(T,x) = 0, we obtain
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(u,, ,v)LZ(Q) = —fu,v,dQ.

)
. . 13
Taking into account that u = —€”'v, and so u, = —e“v, —we®v,,
v, (O,x)= 0, we arrive

(,,v), Lie) = —Iu,v,dQ = J.e vv,,dQ+je°"mv dQ =
2

0

- -;—g(e‘“‘vf )do-> Jeorldg [ ndg -

= —fe VAT, x)dQ+ —fe ‘ov’dQ 2 —Je ‘ov’dQ .
2 2 2
Q 0 o
The other summands of the equality (5) are estimated in the same
manner as the previous one. Consider the second summand:

—(ﬁ:(aijuxj )X ,vJ J.Z(vauux ) dQ+
" L)

ij=l Qi /=l
+I2a,,l‘xjv dQ = J‘Zau”x,v dQ =
g, j=l ghi=l
=—J'2a e’ v R dQ———J'( a-emrvx v, ]'dQ'*'
gi.Jj=! ol ij=l t t
+—_[2a03e V, Vs ag= Izau v, i|,=0d£2+
Q,, =1 Qu-
—J.Z e, de>—fZ wtde
Q’J =l Q i=l

Next, estimate the third summand of (5):

(.n biuxi,vj Zj buv dQ Zj.buv dQ -

llQ i=1 g



184 Chapter 6

- 2 J. ude = zn: J.bl.e""vtvx[ dQ + i-“(b,. )x, e"vydQ 2>

ilQ tlQ l]Q

>3 (),e™*) do-

=l g i=l g
_%,ang(bi)x‘ (DemtVZdQ = —Zlicbewtlvfl' v"l
15 10), LS 1 00
1_1 o i=l g

Examine the last summand of (5):

(cu,v)(0) = —Je“"cv de———J. e""cv2 dQ+

+= JQ’ we”ev’dQ = > f V|, d0 += g we®ev’dQ.

Q
Applying the all acquired estimation, we have
(Lu,v), _—fwem’ 2dQ+—ZJ‘ V2 d
i=l Q

S [ bl b, zj(c-i( ))v | adQ+
i=l g Q i=1

1 3 wr 2
+‘2'£(C—§(b:)x,}"e vidQ.

Since ¢(x) 2 Zibé‘—(—x—) , We arrive
i=1 x,‘

(Lu,v), (o) 2 —fa)e“” 2a7Q+--—2J'e“"v2 dQ -

_lQ
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n
- 2_[ c,e” v, v, |d

( .f(ne“"vde +—Z J.e“"v2 dQJ

=l g =l g
l o, 2 wt o, 2
+| —| we™v 'dQ - ce'lv
[foenvao-$eehi b fao- 5 0
The term
Jwew'v2dQ ch e”v,| v e”v;
i=l g =l g

can be made positive by choosing the constant . It suffices to put

{4
w=c, 2n . We have

[ J(z)e“”v%iQ chb |

i=l 0 i=l o

_cewgg[ ‘/5'7 szQ_
ZN v |~ any, [ a0

x-l 0

e®v? dQ |=

v, —lV

Thus,

(Lu,v), _£_ [ ey 2dQ+—z fe 2dQJ>C||v|
i=1 0
Employing to the left-hand side the Schwarz inequality, we obtain

NEadly - My, 2 (Zusv)
bd bd

W+

Ly(g) =
Dividing by "v"w,, , we arrive the following inequality:
bd"

|Lally- 2 Clv
bd*

by -
bd*

Taking into account the definition of the function v(z, x), we have
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M

el >l

This inequality can be extended to any function u(z,x)€ W;"; by

we, 2 Cllleig)-

whence we finally obtain

passing to limit.
The second inequality is proved in the same manner.
Theorem 1. For all functions f € L,(Q) there exists a

unique solution of the problem (1), (2) in the sense of Definition
1.1.1.

Theorem 2. For all functions f € Wb;” there exists a

unique solution of the problem (1), (2) in the sense of Definition
1.14.

2. GENERALIZED SOLVABILITY
OF HYPERBOLIC SYSTEMS (THE NEUMANN
INITIAL BOUNDARY VALUE PROBLEM)

Suppose that a state function is described by the hyperbolic
equation
Lu=u,+Bu=f(tx), (1)
where B is an elliptic operator in the following form
=—2( S, ) @
i,j=

the functions a; =a {a,j} _, are continuously differentiable in

the domain Q . The operator B is uniformly elliptic in Q:

Zayéi _oc2§ V€. ER, 3)

i j=1
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The equation (1) is considered in the tube domain
0=(0,T)xQ, QCR.
Introduce the following denotations. Let Wb; be a completion of

the set of smooth in Q functions, which satisfy the following

conditions
u't=6 =i |t=0 = Eau x x = Oa (4)
, b=l xe0Q
in the norm
"ul AV J.ll + Zay xux dQ (5)

i,j=1

where 7 = (nx — N ) s a normal vector to the surface of the domain
1

n

€2 at a point (xl,xz, xn).

The boundary condition

Zau :, =0,

i,j=1 anQ
can be written in the form

Za u.n, -(gradu,u)—
ij=1
where (-) is the inner productin R", fl is the following co-normal

vector
A-n
Al
wherd A is a matrix of elements a,,(x) .
Let Wb } be a completion of the set of smooth in § functions,

which satisfy the following conditions
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W =v|.,=0, Za,“ n| =0, ©6)
ij=1 x3Q
+

in the norm (5). According to the pairs of sets L, (Q) ,Wb , and
L, (Q),T’Vb‘;+ consider the negative spaces Wy, W .

bd?

Prove a priori inequalities in the negative norms for a hyperbolic
system.

Lemma 1. For all functions u(t,x)e Wb"; the following
inequality holds true

[ Zull, - <
bd
Proof. Prove first the inequality for smooth functions u(t, x),

which satisfy the conditions (4).
By the definition of the negative norm, we have

ILu] <L”’V>WM+ I(Lu v) l @
uyl.,-. = sup = Ssup ————-—
oo My e Pl

VEWM* bd ‘éWbd*

since for a smooth function u(t, x) the bilinear form (-,-)W equals to
bd"

the inner product (-,") L,(g) in the space L, (Q)

Consider the equality (7). Applying partial integration and the
conditions (4), (6), we have

fvu dQ= —-fv

—J- Z(a u ) dQ= J.Zauvxiux dQ.

g hi= =1 ohj= 1
Adding the equalities and using the Schwarz inequality, we find
(Lu,v)

L(Q) =
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Substituting the inequality into (7) and dividing by ||V we obtain

w*r o
bd*
the desired inequality for all smooth functions u(#, x), which satisfy

the condition (4).
Considering the continuous extension of operator L on the space

W;d , we have the desired inequality for all functions from W, .

Lemma 2.For all functions v(t,x)e Wb; the following

inequality holds true
HL*v

Wy < C“V"Wb} ’

where L’ is the adjoint operator.

The proof of Lemma 2 is completely analogous to the previous
lemma.

The inequalities from Lemma 1 and 2 show that the operators L

and L" map continuously the spaces W, and Wb; into W;; and

W,, , respectively.

Lemma 3. For all functions u(t,x)e Wb; the following
inequality holds true

"L“"Wb'd, 2 c||u||L2(Q).

Proof. We first prove the lemma for a smooth function, which
satisfies the conditions (4).

Consider an auxiliary function v(t, x)
t

v(t, x) = —J.('c +1) (T, x )t .

T
For all functions v(f, x) we shall prove the following inequality

(Lu,v)y (g 2 C""“:vb; o ®)
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Consider the inner product
(Lu, v)Lz(Q) = (u,, + Bu, v)Lz(Q).

Employing the integration by parts and relation between the
function u(t, x) and v(z, x), we have

fvu,,dQ fvu dQ+j t+1v,,dQ+jde- ©)

= jvu | de +-j(z +1)V [ dQ +—jvfdQ z-jvfdQ.
9 i 2 o 2 o
Next, in the same manner, we have

(Bu,v), =—j v lau, ) do= (10)

i, J=1

= —j 2(vaijuxj ) do+ j va aM, dQ=

Qij=1 giJj=i

- J. ayuxjnxdl" IZ t+1auvxvxtdQ=

i,j=1 Ql]—

=_J‘Z t+1hz] x xt

QihJj=l1
where ' =(0,7)x0Q .

Taking into account symmetry of the matrix {au }"

L el and applying

integration by parts, we find

~[ 3 e+ Dayv, v v, 402~ J‘Zayvxlvx do.

gi.j=! Q: Jj=l
Substituting the inequality into (10), we arrive
(Bu,v), __.J'Z a,v, d0. (11)
Ql j=1

From (9) and (11) we have inequality (8).
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Employing the Schwarz inequality to the left-hand side of (8), we
obtain
(Lu,v), g S|V

Comparing formulae (8) and (12), dividing by ||y

Lu”Wb} . (12)

W+
bd*

W, and taking into
d

account the relation between u(t,x) and v(f,x), we have the

assertion of Lemma 3 for a smooth function u(t, x), which satisfies
the condition (4). Passing to the limit, we obtain the assertion for all

functions u(t,x)€ W,

Lemma 4. For all functions v(t,x)€ W;: the following

IL*Vi Wy, 2 c”V“bz(Q')'

Proof. Let first v(¢, x) be a smooth function that satisfies the

inequality holds true

condition (6). Consider the following auxiliary function u(?, x):
u(t,x) = I(ZT— 7)"'v(t, x)dT .
0
Show the inequality

(“,L*V)ug) > clull,

..
Wea

Applying the integration by parts, relation between u(f, x) and
v(t, x), we have
[uv,d0 = [uv|iZhdQ + [uld0 - [ 2T - thuu,dQ 2
0 Q 0 o

(14)
1p 2
2= i u’dQ.

In the same manner, consider the other summands of (u,L*v) L)
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_( ,E(aijvxj) ) =—J.u A,.jvx/nx‘df‘ + J. Z a,.jux‘vx}sz
L{g) T H=l

i, j=1 * ij= Q’,j=1

n

2 1
= — >
I(2T t).Zal.jux‘ux}dQ b 2J‘. ‘ aijux’uxde. (15)
Q i,j=l1 Qi j=l
Substituting (14) and (15) into (13), we obtain the assertion of
Lemma 4 for a smooth function v €& Wb;* . Passing to the limit, we

obtain the assertion for all functions v & Wb} .

Applying the theorems of Section 1.1, we have the following
theorems for the problem (1), (4).

Theorem 1. For all functions f € L,(Q) there exists a
unique solution ofthe problem (1), (4) by Definition 1.1.1.

Theorem 2. For all functions f € Wb;, (Q) there exists an
unique solution ofthe problem (1), (4) by Definition 1.1.4.

3. GALERKIN METHOD FOR
HYPERBOLIC SYSTEMS

In this section we consider the application of the Galerkin method
for approximate solving the hyperbolic equation (the Dirichlet initial
boundary value problem).

We shall find the approximate solution of the equation

W &0 Ju n ou
—= ) —la (X)— |+ ) b(x)—+ =, 1
81‘2 - axi (azj (X) axj ] g ,(x) axi C(x)u f ( )
U e = 4] = 0, 8] 0= 0 ©)
in the form



HYPERBOLIC SYSTEMS 193

where {(D,. (x)} is an orthonormalized basis of the space L,(Q). The
=0,

fe LZ(Q), g,(t) are chosen as a solution of the Cauchy problem
for the following set of the linear ordinary differential equations:

functions @, satisfy the following conditions ,(x)

x€0Q

d’ gj
+§gl (B(DI’O‘) )12(9) = (f’mj)lq(g)’ (3)
(0 — —
gl(o) = dgg}g ) = O’Z =lskaj =1)k'
From the set of equations (3) it follows that
(Luk’ )L ,(R) (f’(Dj )LZ(Q)
du(0,x) . — — @)

1, (0,x) = =0,i=Lk,j=1Lk

ot

Lemm a 1. The following inequality holds true
b ellys, < 1AL, 01
Proof. Multiplying both the left and right hand sides of the

equation (4) by e'""—dgi, where the constant @ was defined in
t

Section 1, and summing up over j from 1 to k, we obtain:

( _m, aukj azuk —w O,
Lu,e —= = = -
ot )i | Ot ot "
_(i_ﬁ_(aﬁgﬂ_}e-w@}_} +(ibi(—9ﬁ,e"°'%t—{"—) +
imox| 7 ox, ot Loy U ox, t o 5

+(cu e”“"-ai"—J -( [ == au")
k? - )
9 i) o ) i0)
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Applying the integration by parts, passing to the surface integration
and taking account the boundary conditions

&) =0,

uk lt:O a
we find

U, -w du, I 7H
’ - =— d +
[aﬁe az]m 2£(€ (ath

~<nT a
-t auk —(t auk :
+_2_-9"('06 ( ot j dQZEiwe ( ot j a0

Next, in the same manner, we have

S U LT I
f,-=1ax. ”ij i ot L)

fzak }qu 0 5o

=0,

x€0Q

giJ=l
- | iaue-“" 9%, 0%, ,d([0,T]x2Q)+

[0,T xaQ i»J=1 ax K3
+J' 2":6_&, alt % a0
= v ax axat
Since ukl ese = 0 and thus —ét—"lxeag =0, we conclude that first

integral of the right-hand side is equal to zero. Consider the second
integral of the right-hand side:
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9 du, | _,, ou, n . Ou, 0u,
—_ ——— ;| 0! s (] . ———-—-d =
(,.%ax,(“v axj]e at] i e
L(9)

o\ iJ=l 'ja—x;ax, 2Q i, j=1 ' axj ox,
1 r du, du, 1 du, du
— - - —=].. Q+_ W e—wta k k 10 >
2!;,;1 Yox. d l'Td 2'(’; ,Zjl_l Ydx, dx 0
2
1 du, du 1 5 u
S=lw) g —teLtdO>=|ay e | —~ | d
2'£ i,j=1 U& ,ax‘ Q 2'£ ; [ x‘.J Q

Consider the third and fourth summands of (5):
" b, ?ﬁk‘,e—mtéﬂ“ Z_J.Cbewzn: %, .19 dg,
i=1 ax, at L , ' ax. at
f 2(Q)
~00 au ~0t
cu,, e —= =-1-J‘(ce (uk)z)dQ+
at LZ(Q) 2 Q !

1
2

+ —12-JQ‘ cwe ™ (u, ) dQ =

1 .
+—fc0)e “(u,)'dQ = 0.
2 12
Summing up the obtained inequalities, we have

2
(Luk,e"’”@-"—) > ljlme"“”(iui) dQ +
ot Lio) 2 5 ot

_1_ ”—mr%_z _ —w:”%_auk -
+2£(00ci§=;e [ax‘)dQ ‘!;Cbe ; o | [ 0=
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1
s (w—(l)t
o5
1o ., du,
t=|e | | —&
4 ot

du, | |0u,

] dQ +-jma2 [

Chapter 6

Je:
ox,

4

o

i

ot

+oo 2(%@] }dQ
i=1 x,‘

o ,4n :
Taking into account the value of the constant (= ¢, o/— , we obtain

Lu, e

k

|

-wt auk

that

j >
L(9)

1

4

-t

ot

[we

Y

o
du,
i)

&

+1J.m0t2n:e'“” gty 2dQ
4% i ox,

2
C, NN - (04 : «/——‘auk ou, ou,
P | _onal 2l |2 4 oy L >
Jana & ie [( a:) " o 17" 5 ) [
ou ) ¥ 8uk\2
>CJ-( atj +l=21[—a;:- do+
g, & ou lou, |\
e S oo 24 - /el | ao s
Jano ‘S £€ (at "o axi] ¢
Thus

ot OU,

ot

%

] =(Luk,e
L(Q)

k

By the Schwarz inequality, we have

ou 2
- > ..
at LQ) > il
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ou,

ou
f 2(f7e-w __k') =
9t liz, ) L o ot )ii0)

d
= (Luk ’e"(’” _u_k)
ot Ji0)

we obtain the desired inequality.

Dividing by {ju [}, .

From the lemma it follows that the sequence u, (¢,x) is bounded in
the space W,,, so there exists a weakly convergent to u,€ W,
subsequence {u K t, x)} To prove the strong convergence, consider

the following spaces.
Let H* be a completion of the set of smooth in Q functions,

which satisfy boundary conditions u| =0, in the norm
du du
= 3o, 2 20
i,j=1Q

Denote by H, and H, completions of the set of smooth in Q
functions, which satisfy conditions (2), in the following inner products:

u v & o'u v
, =|l— —+ Ya, —dQ,
V), 20’ 3 ,.,jzﬂ Y 9rax, ordx, =
1 -t -t
(usV)H2 = E((Lu’e v’)Lz(Q) +(Lv’e ut )LZ(Q))’

respectively.
Integrating by parts and passing to the surface integration, it is easy
to prove the following lemma.

Lemma 2. For all smooth in G functions u(t, x), which
satisfy the conditions (2), thefollowing inequality holds true

ol o, 2 el 2 colledln,
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Assume that function f(z, x) satisfies conditions f | (0 = 0 and

f e L(0).

Differentiating the both right-hand and left-hand sides of (3) with
respect to ¢, we obtain

o, ) +(Bau" 03) =(f,0,)
at3 g’ . or’ J L) i)

w98,
Multiplying the both right-hand and left-hand sides by e o L

dt?

summing up over j from 1 to k and integrating over ¢t from 0 to

’

T, we have

u, _o0u, O, _u0'u,
ar ¢ o T v B
Ly(Q) L(RQ)

2
ot L(Q)

Consider the integrands of the left-hand side of (6).
3 2 2 2
[a L:" e d L;") =lf e’m'(———-a l;"J do+
ot o ) o 2 dt ,
1 _of 0u,
+—| we ™ dQ =
2~[ ( o’ ] 0=
2
1 —or| O, of 07U,
== Zok | dQ+= !
2£e (atJl I (at]Q

2

(©)

u
We have _a—fk_|1=° = 0 by choosing the function f{(z,x).
¢

Next, we have
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(,Zai{ azax]e_ z;;k] )

L{o)
2 u, du,
—w! o (—— d +
5o % atax axat2 'Q([l.-, j=le % 0tdx, Ox,0t 1 0
0 uk 0%u,

+—j(x)2 Y atax otox, 0=

i, j=1

=-fZ ot 0’u, aztkl,=rdg+

gtj— j atax atax
—u)r uk azuk
+=l® — ]
£ Z, “ 3tox, orox, 0=

2
_ o Uy 0* uk _
—- wl - w? d |
£m2 e, e, f Y (atax] .

i,j=1

J- g Oy, Py, =%

In the same manner as in Lemma 1, con51der the other integrands.

%, o%u, 2 (9%u 8 u,;
—u)t > _ ~wt u, d .
205 o L ic”e 2 (arax| [37 |2

2 2
Cia.u—k’e_wt -?-ilz-k—] = l-.’.[ce—“”(iuk—} } dQ+
ot a oo 20 o ) )

1 ol OU —of OU,
=5‘J;ce (-gt"—jl dQ+—_[c(D [ 2y j dQ=0.

Summing up the obtained 1nequahtles, we have

Q
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2 2 \2
(L[ %%, ) e - } = j '“"( g4 do+
ot ot o Z5 )

1 N & |0, | |0%u
+__ wt k d - Wt _._k__‘ kd —
zg‘”‘-‘*Ze (aax.) - £“b" 2| T3 12

1 0’u of 3,
_-cho (at JdQ+-—_[mocz; [atax)dQ+

0
32uk azuk 0’u, §
wo 3i0x dQ.

1 0’u,
+Z,.=l£ “{ ] [, | o7

o ’ 4n
Taking into account the value of the constant W= ¢, 4/—, We
(04

obtain
2 2. N\, 2
FENESCANS LA S e
ot ot Lo © ot &'\ dwdx
- c, iJ‘e-wr 3211,, _‘/;la"azuk 2dQ>c||u "
«/4nat i=l o atz al‘axi B e

Since (6), we conclude that

sl 82u ou =@ 82u 2
[fne a'tzk'J =(L( atk ),e t atzk) 2 C"”k”y,-
L(Q) Ly(Q)

Applying to the right-hand side the Schwartz inequality, we find
140, 0 2 elleell, - 7

Thus, the sequence { uk} 1s a weakly compact set in the spaces

H,H, W, L (Q), so there exists weakly convergent to U, € H,

subsequence. From (7), we have
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2
du,

ot

9%
dat

Sc1||uk”Hl 516,

L(Q)

u
Whence, there exists a weakly convergent to 8—0 € LZ(Q)
t

Ju

k
subsequence —5-—'- In the same manner the weak convergence of the
t

other partial derivative sequences may be proved.
Thus, we obtain

im o, =, =t [, =20, ), + Il )=

{500

=i o, [, I, )

Observe that for all functions U € H i

||u”2,2 = ?(Lu,e'“"u)dt ,

0
where (,) is the bilinear form being generated in the triple of Hilbert

spaces H* ¢ L,(Q)c H™.

Since the functions U, satisfy equality

Ju ou
e, = Lu ,e-w'_ﬁ.j =( f,e“‘"——") |
et ‘ o Jui0 o )i

rewrite the relation (8) in the following form:

T

On the other hand, from the equality (3) we have that right-hand
side of (9) equals to zero.

Thus, the sequence {uk,} is strong convergent to U, in the space

H2 and, hence, in space W;. From Lemma 1.1 it follows that the
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sequence {Luk,} is fundamental in the complete space VV;;+ , SO

lim Lukl =Lu,.

I-300

Multiplying the both right-hand and left-hand sides of (4) by a
smooth function g(f) (g(T) = 0) and integrating over ¢t from 0 to
T, we obtain:

(Luklvgmj)Lz(Q) = (f’ gmj)Lz(Q) *

Approaching the limit as / — oo, we have

(Lugg0,), =(f 20, )Lz(Q)'

i
Since the set {g&)}.} is total in the space W;} , we conclude that
Lu, = f in the space Wb ;+ , thus the function uo(t;, X) is a solution of
the problem Lu = f in the sense of Definition 1.1.2 and, hence, in the
sense of Definition 1.1.1. We note that there was no necessity to
choose a subsequence Uk,(t ,X) because of uniqueness of the solution.
The obtained result we formulate in the following theorem.
Theorem 1. For a function f(t,x): fe LZ(Q),fIt=0 =0

the approximate sequence (3) converges to the solution of the
problem (1), (2) in the sense of Definition 1.1.1 in the norm ofthe

space W, .
Taking into account the density of the considered functions f{(z,x)
in the space Lz(Q) , it is easy to prove the following theorem.

Theorem 2. For all functions f€L, (Q) the approximate

sequence (3) converges to the solution of problem (1), (2) in the

sense of Definition 1.1.1 in the norm of space W,;.
Consider theapplication of the Galerkin method when the right-hand
side of the state equation belongs to the negative space Wb;+ .
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Let f, be an arbitrary function from W;w By virtue of the
density of the space L,(Q) in the space W ., there exists a
sequence of functions f, € L, (Q) such that ||, = £]|,- —==—0.

bd*

In this case, we consider the approximate sequence in the following
form:

(Luy,0 ) =(£,0,), (10)

where
k
ullf = Zgi,i(t)(l)i()(f), (11)
i=l

the function g, ,(f) is a solution of the following set of ordinary

differential equations

d’
gk' +ngl (B(D:’(D )L(Q (f“wj)Lz(g)

dgk,i(o) ; = =

]
(0)= =0,i=Lk j=Lk
g,,(0) " J

By Theorem 2 the sequence {u k}k=l converges to the solution Ué

| (12)

of the problem Lu= f, in the norm of space W,,. Consider the
sequence {ué } By the Lemma 1.1.3, we have
!
"“o —-u0”L2(Q) <, _fo"wb-d+ —=—0.

Thus the following theorem holds true.
Theorem 3. For all functions f(t,x)€ Wb} the

approximate sequence (11) converges to the solution of the
problem (1), (2) in the sense of Definition 1.1.4 as k —>oo,] — o0

in the norm of space L, Q).
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4. PULSE OPTIMAL CONTROL OF HYPERBOLIC
SYSTEMS (THE DIRICHLET INITIAL
BOUNDARY VALUE PROBLEM)

Using the template theorems from Section 3.6, we shall fill in the
following tables.

Table 1.
N Operator Space N Space W~ (Q)
1. L i
Lz (Q) bd“
Table 2
N Operator A(-) Space W~ (Q)
| 8 . +
4() W
2. : +
A() W),
3. . +
A1) W),
Table 3
N Operator L Space W~ (Q) Space W' (Q)
8 L = +
bd" bd*
Table 4 is empty.
Table 5.
N Operator L Space W~ (Q)

L

bd*
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Table 6.
N Operator L Map A(") Space W~ (Q)
1. ) . -
A1( ) bd*
2 g . -
40
3. ) . '
AS( ) bd+
Table 7.
N Exponent O Space Map 4 ()
w(Q)
172 & .
bd* A”( )
2 172 - .
ba* Aja( )
3. 172 & :
bd* A5 ’5( )
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PSEUDO-HYPERBOLIC SYSTEMS

1. GENERALIZED SOLVABILITY OF PSEUDO-
HYPERBOLIC SYSTEMS (THE DIRICHLE
INITIAL BOUNDARY VALUE PROBLEM)

1.1 Formulation of the problem. Main notations.

In this chapter we shall consider the problems of optimization of the
systems described by the pseudo-hyperbolic equations. Such equations
arise, for example, in the investigations of mass transport in
heterogeneous porous media [134]. In addition, many processes are
described by non-stationary equations with small viscosity. For
instance, torsion oscillations of metallic cylinder with inner friction,
propagation of perturbations in viscous and elastic rod, one-dimensional
flow of isotropic viscous liquid, sound propagation in viscous gas and
similar processes are described by the model equations in the following
form:

o’u _y 9’u N 0’u
of  owx’ ox*’
3
010x*

There are well-known the equations of viscous and elastic medium
[135]

)

where Y =const >0 is aparameter, Y is a small viscosity.

2
p%t—? = (A +2M )div (gradu) - Mrotrotu, )

where A =7\.+?»'ai, M=y +Y'-a§-, A,y are the Lame constants
¢ t

?\.',Y' are the viscosity constants, P is density.
For example, the equations of longitudinal oscillations of viscous and
elastic rod has the following form [136]:
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azu 2 a u 2 a U
—f =1,
ot dtdx’ ox

where a = J‘ [ p is density of the medium, E is the

elasticity coefficient, y 1is the viscosity coefficient.

The equation of the propagation of initial perturbations in viscous
gas has the following form:

azu_cz d’u _iyazu
ot drox* 3 ox’

where C is the sound velocity in the absence of viscosity, 7Y is the

=0,

cinematic coefficient of viscosity.

Pseudo-hyperbolic systems were investigated in papers [137-
140,172,176].

Let us consider the system with distributed parameters and pseudo-
hyperbolic state equation.

Probleml. Find a function u(tx) satisfying the

following equation

ou { du (¥ du
L= 5 Zata L a,(t, X)-aTJ]JrE(Zai(t’x)—a;]Jr

i,j=1

©)

where u(t, x) is defined in the domain Q=(0,T)xQ, QcCR"
(Q is a bounded domain with a sufficiently smooth bound 0).
Suppose that
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a,(tx)=a,, a )€ CA(D) 5,0 =b, (bW}  —

iJ=1
are continuously differentiable in the closed domain € functions,

{a(t,x)} eCh(Q); alt,x)eCX(0); btx)eCr(0);

{ (t, X)}1 _, are continuously differentiable in the closed domain
O functions;

Za,j t,x)EE, 2 A Zé,,Zb (x)€.€,20,VE, eR',

i, j=1 i, j=1
LN, A, = const >0;
N 9%a —_—
Z—i—«&& Z—i——éé <0.¥E e R,i=LN;
i,j=1 i,j=1

Y, 0a, da(tx) ¥ 0'a d a(tx) & d'a,
2a(tx) 2 A > L, < i
altx) Zax ar . E_;Btax o 2

b(t,x) 2 A,,A, =const >0;
le, (2, x)} +|a,(z,x)| < X, =const >0,i = LN;

de (1, abt ac (t,x)
b(t, x)>22 C( V)’ 2 2 orox,
=1 i=!

The adjoint equatlon has the following form

+2 azv +

0 B‘c at
Yoo dv d M9 ov
+;5;(a (1, x)g—}—a(t,x)gj-— Z-a;[b,j(x)-éx—)— (4)

i,j=1

_i%(ci(t,x)v)+b(t,x)v = g(t,x).

Let the system state satisfies the following conditions:
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du
ult=0 = E‘-

Let us introduce the following notations.

|t=0= 0 4 ”Ixeag = 0. (5)

Wbt, is a completion of the space of smooth functions, which satisfy
the conditions (5), in the norm

|wm—(u+z%}g Q

Wb} is the same space, but the functions satisfy the following

conditions
=0; ™)
H ;,H * . are the analogous spaces obtained by completing of

smooth functions satisfying the conditions (5) and (7), respectively, in
the norm

lells;, = [ + D ul)d0
o i=]

w, d,W H, d,H . are the correspondent negative spaces.

The following imbeddings are valid:
W*cH cL,(QcH cW-,
and, moreover, imbeddings are dense and the imbedding operators are
completely continuous.

Problem 2. Consider the same equation when its
coefficients do not depend on time
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ou Y0 ou
+§<a<x>u>—§‘g‘_(bq<x)§)+ ®

where u(t, x) is defined in the domain Q = (O,T)XQ, Qc RV
(Q is a bounded domain with a sufficiently smooth bound 0Q).
Suppose that

a,(x)=a,;b(x)=b,, {aU(x)}N ;{bU(x)}N

i.j=1 1, j=1;
N N . . . .
{af(X)}:=1; {CI(X)}’_=1 are continuously differentiable in the closed

domain £ functions; a(x), b(x) are continuous in Q functions;

Eau (xXE, }\.EQ,Z x)ﬁ,E_,jZO,Vé,.eRI,

i,j=1 ij=l
z=1,N;7La = const > 0;
b(x)= A, A, = const > 0,
|e,(x)|+]a,(x)| <A, =const >0,i =1 N;

B( )>2Zac(") 2a(x)2 3245

1 i= i
In Problem 2 we shall consider the same boundary conditions and
chains of Hilbert spaces as in Problem 1.
Problem 3. We shall investigate the equation

0’u ou Ju
L = _— B
U= % 5+ M ) A( ; )-*- )= f(t x) C))
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d
where A(G)=- . B()=-~
0= 2 ,,aJ ()= Z ua]
u(t, x) is defined in the domain Q =(0,T)xQ, QC RN (Q isa
bounded domain with suﬁ‘iciently smooth bound o).

Suppose that A, (x) = A,, B,(x) = Bﬂ,{ } {U}Ul are

continuously differentiable in the closed domain € functions,
M = M(x) is continuous in the closed domain € function;

ZAU&& }‘Zéwk eré 2 EE, 20,

i,j=1 i=l i,j=1

vE e RLi=LN;M 20,

where A A,K p are positive constants.

Let us introduce the following denotations: Wha is the completion
of the space of smooth functions, which satisfy the condition (5), in the
norm

N /A
s, ( [ + zuzgdg) ;
Q0 i=]

—+ . . . .
W is the same space, but the functions satisfy the conditions of

the adjoint problem (7); Wya,W s+ are the corresponding negative
spaces.

1.2 Properties of pseudo-hyperbolic operator
in Hilbert space

Let us investigate the properties of the operators L, and L:. At

first, we shall show that the operator L, is extendable to the operator,

which continuously maps the whole space W,; into space I/If;j+



PSEUDO-HYPERBOLIC SYSTEMS 213

Lemma 1. For the functions u(t,x)€ W, the following a
priori inequalities holds true:
MLy - < Clidl,- (10)
where C hereinafter is some positive constant.
Proof. At first, we shall prove the lemma for smooth functions
u(t, x), which satisfy the condition (5), and later we shall obtain the

validity of the lemma for any u(f,x)€ W,, extending in the

correspondent way the operator I, and passing to the limit.
By definition of the negative norm, we have

(L u, v) ,
TN L L B T
= T ML

vit0

v(t,x)€ Wb’;, , 11
as far as for smooth u(t, x), which satisfy the condition (5), the

bilinear form coincide with the inner product in Lz_(Q). Let us
consider the numerator in the right-hand side of (11):

0 0’ 0 0
i(Llu,V)LZ(Q)l':[atu g-:;atax { i BJI: J*‘(T);(au)_

N
-Z b, o Zc —+bu v .
=L a\’ k=l L(@)

Using the integration by parts, the integral Cauchy inequality and
granting the initial conditions, we can write

fuvdol =][(wv), do - [uvd Q)= fu,v,dgls
o Q

e o
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% /2
s@uzdg] (;vdgj <P I, -

Q
8
b ,J_Iatax ”8x
ji 2 Q- IZv——a—a—u-dQ
e a | = Y ox,
=' J.Z(v,ayuxj) dQ+j2v,x au, dQl_

QiJj=1 QiJ=l

<c[ | 3 dQ]/[ju aIQ]}é <

0 i=]
< GIMly- lell < Collly - el
Hiy bd*

In a similar way,

Next,

gv%(au)dQ = i(vau),dQ—'Q[v,audQ <
A A
<c| [viag| |[vdo| <

o

g
<Gl Nl iy, < G- Nicly-

[v Z-—(b i]dg

0 lj]

i(vbuuxl) —f Zv b,jur dQ| <

i, j=1 0] i, j=1

}
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/i A
<C, (j v;dg] (j ufde] <G, L, <

o o
<Gl we, Wéllyg,

jvzcu do| < [j 2ng [qu dQJ%s

<C IIVII < C'IIVII

A %
J'vbudQ{ {f deJ U udeJ <
<C IIVII llull —C'IMI Hull

From the written above we obtaln

R L

Using obtained inequality, we have

Lu,v ‘
Jal. =sp 5 htel
Wit vA0 | -

W+
bd*

Cllv ullwb,
<sup
e

for smooth functions u(z, x), which satisfy the condition (5).

Using the inequality (10), we can extend the operator L;, which is
defined on smooth functions satisfying the condition (5) to the whole
space Wb; (continuity extension).

For extended operator we shall save the previous notation and

hereinafter we shall consider only extended operator.
Passing to the limit, we obtain the validity of the lemma for any

functions u (¢, x)€ W,
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Remark 1. The inequality (10) imply that the linear operator
L, continuously maps the whole space Wb; into Wb;

In a similar way we can prove that extended operator 11

continuously maps the whole space W; into the space W, .

Lemma 2. For all functions v‘(t,x)e W;, the following

Statement 1. Let ue W, ,veW’' , then the following

inequality holds true

of =<cl
Wi "

equality holds true
(L), =(Lva),, -
For Problem 2 the following lemmas hold true.
Lemma 3. For all functions u(t,x)e W,; the following a

priori inequality holds true:
IL.al, <cll

Wig *
The proof of Lemma 3 is analogous to the proof of Lemma 1.
Lemma 4. For all functions v(t,x)e W;;* the following

inequality holds true

A, <M

The proof of Lemma 4 is similar to the proof of Lemma 2.
For Problem 3 the following lemmas hold true.

Lemma 5. For all functions u(t, X) e W the following a
priori inequality holds true

I, < i

The proof of Lemma 5 is similar to the proof of Lemma 1.

Weg *

Wey
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Lemma 6. For all functions v(t,x)E 171;;* the following

I, <

The proof of Lemma 6 is similar to the proof of Lemma 2.

inequality holds true

.

1.3. The existence and uniqueness of solution
of initial boundary value problem

To investigate the solvability of an initial boundary value problem
we shall use equipped Hilbert spaces, a priori estimations in negative
norms, and modified method of deriving of energetic inequalities in
negative spaces.

Problem 4. We shall investigate the solvability of the
following problems

Lu=f,feH ueW, (12)

Lv=g,geH, ve Wb}, (13)
where u, v are unknown elements, and f, g are given elements.

The solutions of the problems (12), (13) we shall consider as
generalized solutions in the following sense.
Definition 1. The generalized solution of the problem

(12) is a function u(t,x)e W;: such that there exists a sequence of
smooth functions U, (t X) which satisfy the condition (5) and
b, by, —=— 0l = A, - —=0-
Definition 2. The generalized solutlon of the problem
(12) is a function u(t,x)€ WZ{ such that the identity

(L:"’ u)Lz(Q) ={/. V)H;d
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holds true for any smooth functions v(t,X) satisfying the condition

(7).
In a similar way we can introduce the definition of a generalized
solution of the adjoint problem.

Lemma 7. For any function u(t,x)€ Wb: the following
inequality holds true
Il > Clel- 4)
Proof. At first, let us prove the inequality for smooth functions
u(t, x) satisfying the condition (5). Introduce an auxiliary function
v(¢, x) in the following way:

p(9)
where
. T |T—t
SIN — o ———
1 _ VT
NAE )
p(t) m’
e
The definition of the function V(f, X) implies that u=-—pV,
viel0,T).
Note that
op(t) _ NA,
)21, —=>—=plt), vVt |0,T).
P21, 50> e pl0).vie 0.)
Let us prove the validity of the following inequality:
(L V) (0 2 € "V”:V : (15)
bd
Consider

(gmﬁuq=L+g+g+g+g+g+L.
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Using the integration by parts, relation between u(#, x) and
V(t, X), and initial conditions, we obtain that

I = (v,u")LZ(Q) = J.(vut)tdQ—Jv,utdgz
= Ipvt "dQ+J.prvt dQ=
Q
= L[(pv?)do-=| py2dQ+ [ pyiaQ 2
¥ 2y’ 0

2 ljp,vfdQ > CzjvfdQ.
2Q Q

Granting initial and boundary conditions, we have

v 9? ou
I, =—v, a,— =
2 ( fz‘ atax"[ 0%, DLZ(Q)

|| S o] a0+ [ e -

i,j=1 i,j=1

= [ Slae, ) do+[p3v, apm,d0>
Q

Qij! i,Jj=1

—7\ JZV,X dag +——K Ipz v, 40 .
o =t
In a similar way,

0¥ du
13 =| Vye— a‘.— =
( at( =l axi ]}Lz(Q)

N N
= j(vz au,, ) dQ + J‘pv, Za,.vm dQ =
0 i=1 i Ie} i=1
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lfpi av;) dQ—-pr— Q-—-—fpz?ff‘-de
g = %

N

i i

I, =(v,-—a—-(au ) =f(vau ,dQ—fav,udQ = fpav, dg.
ot Lg) ¢ 0 0

N
Granting the fact that the matrix {bU}ij 1 is symmetric and

nonnegative we conclude that the following relation is valid:

_ (. w9 _
i (V,idz‘laxi (bijux’ )JLZ(Q) )
= Sbau, ) do- [ P, b, dO =

oiJj=1 iJj=1

=——f(p2 Wby, )dQ+ [2, Z v, by, d0=

ij=1 i,j=1

=— f p(O)Zv (0,x)8,3, (0, )dQ +~ j 2 va,b,jvx dQ 2 0.

i, j=l1 i,j=1

( EJ-V; 5}1)11(9):
=_fpzvcv d0= -\ jpzlvl ., |22

g =
L =(v, bu =—fpbvde—

Next,

1 2 2
=-3£(pr )'dQ+-5.£p,bv dQ+-2-£pb,v dQ =
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N |-

[ p(0)5(0,x)v* (0,x)dQ +-1-jp,bv2dQ +ljpb,v2dQ >

J.p,bvde >__jp2v do.
a o i=l
Note that it is p0531ble to prove the convergence of the improper
integrals, which are the terms of the sums.
Thus,

(v, Lu) h &G, f(v + Zvu )dQ +
1 Al )\42 2 2
+—2"J.p2(>\; a txi]dQ'*'

0 i=}

10a, ), .-
+ a-=) —tydQz
'O[p( 2 =] a‘C ! Q

2 Gl —j pz(—lvl ~JApy ]dQ Gl

The proved relations imply that (15) holds true. Applying the
Schwarz inequality to (15), we obtain:

C\M ;zyb} S(V’Llu)Lz (©) SIM'W,;*

Reducing by ”v”,,” ,we have the following inequality:
bd*

Gl <l

N,
!

IX

Next, let us consider

( (v +§MXJJQ) =[ (u +zu )JQ)

Applying to the right-hand side the theorem of the mean, we have
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up1< {+3 )dQJyz
- [j( 3 ]dojy=—-|lu||

where 0 is some mean value from the interval (0, 7).
Granting the relation between u(f, x) and V(z, X), we prove that
the inequality holds true for smooth functions u(f, x) satisfying the

condition (5):

el =Cly

The validity of the inequality (14) for any u(t,x)e W, can be
proved by passing to the limit.
Lemma 8. For any function v(t,x)'e WI;+ the following

. '
[, 2
Wea

Proof. At first, let us prove the inequality for smooth functions
WV(t, X) satisfying the conditions (16). Introduce an auxiliary function

inequality holds true

(16)

u(t, x) in the followirg way:

.0 |t
¢ v(6,%) 1 '.2"];
u(tx)= _[ —dé .

(
———=db, wh = :
400 0, where 20 "o

€a€p

0

The definition of the function u(s,x) implies that v=du,
vtel[0,T).
Note that
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T dd(e ), 2N
d 2 llb [+ , ,
(t)=e =5 “ d(t),vte[0,T)

Let us prove that the following inequality holds true
* 2
@, Ly), o) 2C, ||u"Wb§ : (17)

Consider

(wmﬂMm=L+g+g+L+g+a+L.

Using the operation of differentiation by parts, relation between
u(t, X) and v(t, x), and initial conditions, we obtain

I] = (ua v")Lz(Q) = I(tlv,)'dQ—Iv‘uldQ=
o
=-jdu, ,,dQ+jdufdQ=
=——jdu Q0 +— jd,u,dQ jd,u,dQ—

=——de 2d0 > cfde

Granting initial and boundary conditions, we have

& {”igf[“’ a?:;t]] -£Z (”[“‘f ox, at]] e

TS a0 [Sfuam, )dQ+Jzuma,de+

sz- ij:% sz=l

+jzu —v do= jdz a, ,de+jd2u

g hJ=! i, j=1 i, j=1
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Q;:\ Q‘-—1
=—f(§:u adeQ+Jd§N: audQ+Ilel "—UdQ—
o\ i=l 0 =1

=%jdi(au dQ - —fdz—-iztde+f[dZLz —ude—
o = X,
Jd Zu —ua’Q deu dQ deu ——udQ-

S j dZ udQ+ j d(T (T,x) a"'g x)u(T,x)dQ—

——fd,ﬁ’:( J dQ+-fd2 a ude

i=1

_fdiz,,, = udQ—-deN)[ ldQ+

1
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-] dza" 1d0-

_Idzu,x-a—ud@ jdz zde

Q i=1
8a
=fa 22dO —
+2£ ,Z*at "0, .
1 X, 0a (7, ) 2 ~ oa. |,
- gd(T)é o x)dQ —Ja’Z—:u do.

F, = —-J'uav'dQ = —J. uav ,dQ+JLtlade+fua,VdQ =
0 g o Q
= J.a’au,de+l_[ (da,uz),dQ—l.[d,a,ude—
0 25 22
_1 [ da, a0 L [d(T)a, (T (T, x)dQ+ [ dar’dQ -
27 23 0

1 2 1 2
~—\|dau'dQO——\|da u dO.
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N
It is follows from the fact that the matrix {b’j}u-l is symmetric

and nonnegative that

]5=—(uia(bux)J =
719 " L)
—jz(ub v, ) dQ+fd Zuxlb,jutx d0 =

QiJ=l i,j=1

=%é[(dzu* s )dQ——jd Zux by, dQ=

i, j=l i, f=1

=—Id(T)2u (T, )b, (T,x)dQ-

i, j=l1
——Id Z“x,bu“x dQ=0.
i, j=l1

Next,
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jdzc, ,xudQ—%fdi(%uZJ 4o+

i=l

» ; :
_fdzatacy; dQ = jd }; (T,2)c,(T,x)), dQ -

- f d(T)ZMuZ,(T,x)dQ +

1o &0,
+3£d12 C.
>_;_J.d’290_u2dQ+ jdz 2820 jd2cu udQ-

Q

dQ+= Idzaa' —tdQ- decu udQ >

de,( T,x 5
—Eg[d(T)z—_—ax,- u(T,x)dQ.

i=l

I = (u,bv)Lz(Q) = Idbuu,a’Q =
0

_ 1 2 _l 2 __1_ 2 _
= £ (abu?)do > i d bu*dQ ngb,u dQ

1
= % [ d(T)b(T,x)uz(T,x)dsz-l j d bu*dQ ——jdb,ude >
Q

__jd (T, xdQ ~ _jdb u*dQ +

A _= 2
+-2—}:£d§ude zidb,u dQ >

1 )
2 i d(T)b(T,x)u’(T,
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Note that it is possible to prove the convergence of the improper
integrals, which are the terms of the sums.
Thus,

( L), >CI(u +2u,x)dQ+

¢, +—= udQ+
) e+ 5 e

+ —}»adeu,xldQ +

+.£ i o'a J (T, %)dQ -

1 ol 2a, ;
—EQ ,( Z tax}u —J-d( a‘,}A do +

—jd T){b ( )] (T, x)Q -

=1

N9 ) N . )
——jd( 2 CJ dQ+3-Q|‘d(§ataczé._b'}‘dQ2

i=1 x,

}\’2
Wiy +—J.dz( Cuz tx;
i=] a

oo

The relations mentioned above implies the fact that (17) holds true.

IZARR 24

2 Clul;

+hu,, )d0 2

tx,

Applying the Schwartz inequality to (17), we obtain:
Gl <(aLiv)< by |23,
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Reducing by ||u||W+ and accounting the relation between v(t, x)
bd*

and u(t, x) , we obtain that the inequality holds true for smooth
functions v(¢, x) satisfying the conditions (7):
L, 2 Clidyg, > i

w HY . *
bd pat

The validity of the inequality (16) for any function v(¢,x)e W:; is

proved by passing to the limit.
Theorem 1. Forany function f(t,X) € H;d+ there exists

a unique generalized solution of the problem (12) in the sense of
Definition 1. The similar statement holds true for the adjoint
problem.

Proof. Theorem 1 follows from general Theorem 1.1.1

Next, we shall investigate the solvability of the problem

Lu=f,feW  ueH; (18)

Lv=g,geW,, ve H ., (19)

bd?
where u(t, x), v(t, x) are unknown elements, and f, g are given

elements.

By the solutions of the problems (18), (19) we shall mean the
generalized solutions in the following sense.

Definition 3. The generalized solution of the problem
(18) is afunction u(t,x)€ H ; , such that there exists a sequence
of smooth functions u,.(t, X) which satisfy the condition (5) and

"ui —u“H* —5—0, "Llui - f""’,,_p —=—0.

bd
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It should been stressed that the difference between generalized
solution in the sense of Definition 1 and the generalized solution in the
sense of Definition 3 is that the corresponding sequences of smooth
functions must converge in the different metrics.

Definition 4. The generalized solution of the problem
(18) is a function u(t,x)€ H;d such that the identity

() =S
holds true for any smooth function v(t, x) satisfying the
conditions (7).
In a similar way, we can define a generalized solutiion of the adjoint

problem.
Theorem 2. For any function f(t,x)€ Wb} there exists

a unique generalized solution of the problem (18) in the sense of
Definition 3. Analogous statement holds true for the adjoint
problem.

Remark. The inequalities (14), (16) are not only sufficient
but also necessary conditions of the existence of a unique
generalized solution.

Corollary. The inequalities (14), (16) imply more positive
inequalities:
leelw, < C"Llu“H;m for any u(t,x)e W}, Lue H ., (0

d?
||"||Wb+d+ < CIILMIH;dfor any v(t,x)e W, Lve H,. (@D

ProblemS. We shall investigate the solvability of the

following problems
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bd?

Lu=f,feH  ucWy; 22)

Ly=ggeH, veW' , (23)

where u(t, x), v(t,X) are unknown elements, and f, g are
given elements.

By solution of problem (22), (23) we shall mean a generalized
solution in the following sense.

Definition 5. The generalized solution of the problem
(21) is a function u(t,x)e Wb:', such that there exists a sequence

of smooth functions u,(t, X) satisfying the conditions (5) and
”u,. _u”W,;, =0, ”I‘zui —f"Wb'd* 0.
The generalized solution of the adjoint problem is defined in a
similar way.
Lemma 9. For any functions u(t,x)€ Wb:, and
v(t, x)E Wb ;, the following inequalities hold true
e =Cl
bd*

The proof of Lemma 9 is similar to the proofs of Lemmas 7 and 8.
Theorem 3. Forany function f(t, X) € H;d+ there exists

(24)

i+ s
Fba

Qmmzcw

(25)

H+ .
bd*

a unique generalized solution of the problem (22) in the sense of
Definition 5. Analogous statement holds true for the adjoint
problem.

Proof of Theorem 3 is analogous to the proof of Theorem 1.

Next, we shall investigate the solvability of the following problems
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Lu=f,feW., ue H}; (26)

Lyv=g,geW, ve H ., 27

bd?

where u(t, x), v(t,x) are unknown elements, and f, g are given

elements.

By solutions of the problems (26), (27) we shall mean generalized
solutions in the following sense.

Definition 6. The generalized solution of the problem
(26) is a function u(t,x)€ H : . Such that there exists a sequence
of smooth fucntions U, (t ; X) satisfying the conditions (5) and

o=l —0, st~ 7 0.

In a similar way, the generalized solution of the adjoint problem is
defined. It should been stressed that the difference between the
generalized solution in the sense of Definition 5 and the generalized
solution in the sense of Definition 6 is that the corresponding

sequences of smooth functions must converge in the different metrics.
Theorem 4. For any function f(t,x)€ Wb} there exists a

unique generalized solution of the problem (26) in the sense of
Definition 6. The analogous statement holds true for the adjoint
problem.

Remark. The inequalities (24), (25) are not only sufficient, but
also necessary conditions of the existence ofa unique generalized
solution.

Corollary. From the inequalities (24), (25) follows more

positive inequalities
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el < C“%“”gf Jor any u(t,x)e W, Luc H ,, (28)
"V“W:,r < C“L;v“H;d for any v(t,x)e Wb} ,LveH . (29

Problem 6. We shall investigate the solvability of the
following problems

Lu=f,fe L(QhueW,; (30)

Lyv=g,geL(Q)ve W', (3D

where u(t, x), v(t, x) are unknown elements, and f, g are given

elements.

By solution of the problems (30), (31) we shall mean a generalized
solution in the following sense.

Definition 7. The generalized solution of the problem

(30) is a function u(t,x)€ W a- such that there exists a sequence

of smooth functions satisfying the conditions (5) and
b =7, —5==0, Lt = Sl —m=0.

The generalized solution for the adjoint problem is defined in a
similar way.
Lemma 10. For any functions u(t,x)€ Wi the following
inequality holds true
Il 2 Cllel, 0)- (32)
Proof. Let us prove the inequality for smooth functions
u(t, x) satisfying the conditions (5). Introduce an auxiliary operator in

the following way:
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t 4
v(t,x) = [ 0(&) [wmu(n, x)inde,

where
() = exp(~exp(X, X5 (T = 1)),
W (t) = exp(exp( A, A5 (T ~1)) + X, X, (T —1)).
If the function u(z, x) satisfies the boundary conditions (5), then

the function v(¢, x) defined above satisfies (7), furthermore, the

following relation holds true:
u(t,x) = exp(X, X, (t =T, (t,x) - X A,v,(1,%). (33)
Denote the expression
(Lpt,V) 00 = (u,L;v)bl(Q) =

~1q - g -1 .
= (exp(A A, (t—=T))v, ‘-}\,A}\.th,L3V)L2(Q).
Applying the operation of integration by parts, the Ostrogradsky-

Gauss formula, and granting the boundary conditions in the passing to

the integration on the boundary, we obtain

(Lyu, V)Lz (o)~ (exp(?CjN,; =TV, vtt)Lz(Q) u

; %xjx; (expOVJX, (¢ =TV, A, 00 +
+I+ L+ L+, +1+1 +1 + 1,
where
I = ~(exp(N A, (1=T)v,, B(U,)),, ) +
+ A, (v, A0, i) 2

2 -—(vt ,B(V’ ))Lz(Q) +A'—/:x1; (vt’ A(vt ))Lz(Q) 2
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> [ S0z d0+ 35 [ 307 do =0;
g i=l ' o i=l ‘
I, =10 O Ty, B, 20
1, .-
L= -é'}\-,],}\gl'(vy B(v))le'g)z) 20;
1 la -
I, =_2.exp(-x AT, AW, )~
1 acin_ 1A=
——2-)\,;}\.1; exp(—}\,Al}\.BlT)(V,, B(vr))Lz(Q) 2
1 14 -1 N 2
2 '2'}"/1 exp(_}\'A)“BT)J. szx‘
[} i=l'

l}\‘ A &2
—5 4 €XP(—A BT).[ thr.
) o

dQ -

1=0

dQ =0,

=]’ t=0

I; = —exp(-N, X, T)(v,, BOD)|_ o, +
b gga i .
+ -2-}»,:?»31 exp(—}»Al?\.BlT)(v,B(v))le(g)+

1 —lA -
+ =0 b X0 (AT BOD @0 =

235

| SR Iy -
= —2-}\/:?»3' exp(—A A, T)(A Ay, —v), B(A Ay, —v))|L2 = 0

[6 = —(GXP(A'-,;A'_; (¢- T))Vtt’va)Lz(Q) -
= exp(—)\,_A‘M;T W, My, )I L #

(2)
0

=t

+ XA (exp(M K, = T))v,, Mv,) () +
+(exp(X X, (t=T))v, M) ) =
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1 ik
=2 exp(—lp»;T)(VpM"x)lem) +

+—12-7C;}C; (exp ?C/:)C; t-T)v,Mv), 20
[7 = )\,:11}\,—51(\), ,Mvt )L2 (Q) Z O;

B P | ~14 =1
18 = —A’A}\'B (vl’vtt )Lz(Q) ='}\'A}\'B (v”v’)le(Q) +

=0

+ }\’_/:x—l; (vr ’vr)Lz(Q) + }\'—; )\'-Bl (V”, v')Lz(Q) =

1 ncina | QU
= E}\'A}\’B (v:’vt)ll,z(j)z) +-2-}"A}\’B1(vt’v’)lq(9) 20.

Therefore,
(LBu’v)Lz(Q) 2 Cl"‘)“f‘t}b'*r' (G4
Applying the Schwartz inequality ,to the left-hand side of (34), we
have:
I(L3u, V)LZ(Q)| < ||L3UI|W;,, (M,
Hence,

G “"“n;} 3"1*3“”@, :
From the relation (33) we obtain
[l (2, )| Lio) = ”exp ()CA’K];(t—T ))v" (, x)—)»j?»;vt(t,x)”Lz(Q) <
= Cznvtt||1.2(g) <Gyl

W‘+ .
bat
Thus, the inequality (32) holds true for smooth functions u(t, x)

satisfying the conditions (5). The validity of (32) for any u(¢,x)€ W;d
is proved by passing to the limit.
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Lemma 11. For any functions Vv(t,x)€ Wi the
following inequality holds true

||L‘3v (35)

2

w, L{Q)

Proof. The proof of Lemma 11 is similar to the proof of

Lemma 10. The integral operator in this case has the following form

, e
u(t, %)= [ 0,(5) w, (v(n,x)and,

where

@, (2) = exp(—exp(A, A, 1)), W(t) = exp(exp( A, X, £) + A, A, 1).
Theorem 5. For any function f(t,X)E LZ(Q) there exists a

unique generalized solution of the problem (30) in the sense of

Definition 7. The analogous statement holds true for the adjoint

problem.

The proof of Theorem 5 is similar to the proof of Theorem 1.

Next, we shall investigate the solvability of the following problems

Lu=f,feW, ueL(Q), (36)

Lv=g,geW,,ve L(0), (37

where u(t, x), v(t, x) are unknown elements, and f, g are given

elements. By solution of problems (36), (37) we shall mean a

generalized solution in the following sense.
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Definition 8. The generalized solution of the problem
(36) is a function u(t,x)€ L,(Q) such that there exists a

sequence of smooth functions u,(t,x) satisfying the conditions

(5), and

:

"“i _u”Lz(Q)T—)O’ "L3ui - f"W;d+ =—0.

The definition for the adjoint problem is similar.

It should been stressed that the difference between the generalized
solution in the sense of Definition 7 and the generalized solution in the
sense of Definition 8 is that the corresponding sequences of smooth

functions must converge in the different metrics.
Theorem 6. For any function u(t,x)€ Wb;+ there exists a

unique generalized solution of the problem (36) in the sense of
Definition 8. The analogous statement holds true for the adjoint
problem.

The proof of Theorem 6 is similar to the proof of Theorem 2.

Remark. The inequalities (32), (35) are not only sufficient,
but also necessary conditions of the existence of a unique
generalized solution.

Corollary. The inequalities (32), (35) implies the positive

inequalities (obtained by many authors):

lleell- < C||L3u||L2(Q) forany ult,x)e W', Lue L,(Q),  (38)
Ml s cl[v, o, or any viex)e W) Lve 1,@). (39)
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2. GENERALIZED SOLVABILITY OF PSEUDO-
HYPERBOLIC SYSTEMS (THE NEUMANN
INITIAL BOUNDARY VALUE PROBLEM)

2.1 Main notations and auxiliary statements

Consider the linear partial differential equation:
Lu=u, +"A(u, )+ B(u)+ Cu, +Du = f(t,x), (1)
in a tube domain Q = (O,T )XQ, where u(t,x) is an unknown
function depending on spatial variable x € £ and time ¢ € (O,T ), Q

is a bounded simply connected domain in R" with smooth boundary

Q.
The operators A(-) and B(-) do not depends on ¢ and they are

defined by the following differential expressions:
d o )
==Y — ¥))
( ) ‘% ax [ if a ]

and

B()=- 2 B~ ] 3

Functions A, (%), U(X) , C(X) , D(x) (i, j=m) are

defined in a closed domain Q. Let

A, (9=A,(x), B;(x)= B, (x) be continuously differentiable, and

C(x) , D(x) be continuous in the closed domain Q functions.
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We shall suppose that the differential expression (2) is uniformly
elliptic, and the expression (3) is non-negative in ﬁ, re. for any
E=(.E,....5 )ER" and any x€Q the following relations hold
true

HUEDFICIELH Y

~ =l ij=l

o, EE ZB,,(x)ii 20,

i, j=1
where o ,,0,>0 are constants which do not depend on X and &.

Suppose also that ’
C(x)=0,D(x)=0
Definition 1. L{(-)- the gradient of the function u(t, x)
(denoted as grad  u(t, x)) is a vector-column
d,u d a
grad u(t, x)= L2 9.0 yoers M 2
ox, Ox ox,

! 2

where
o, u 0’u du
—=— =Y A4 (xX)=——+ B (x)—,
ax] £ ll(r) axiat + Ix(r) ax‘.
ou azu E)u
=Y A4 (: —_—
axn l=l ﬂl(x) axi ni (x)

In the matrix form

grad , u(t, X)= Agradu, + Bgradu,
where A and B are matrices n x n consisting of the elements

Ju oJu ou i
{A, (%} and {BU(X)}' gradu =(8x1 ’axz yeees Bx,,j .
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Definition 2. L()-derivative of the function u(t, x)
with respect to the normal §i fo the surface 9Q ( denoted as

AW o . pn
—=—) is thefollowing inner product in R":

on
o,u
—— = (grad ,u, 7).
on
In the expanded form L(-) -derivative can be written as
o _ A ou
x) -n + B (x)—n_,
on ,121 v s - H axj K

where n, is i-th component of the vector 11 at the point

(Xl Xy e, Xn) of the surface Q2.
Let us introduce the following notations: L, (Q) is the space of
measurable square integrable on the set Q functions, D(L) is the set

of smooth (infinitely differentiable) in @ functions, which satisfy the

following conditions:

ul _ a_u yr d,u

. AL ¥
We shall assume that the operator L(-) maps L, (Q) into L, (Q)

and has the domain of definition D(L) < L,(Q). Note that the set

D(L) 1is dense in the space Lz (Q), and therefore it is possible to

define correctly the adjoint operator L () Lz ) — lz , whose
domain of definition is the set of functions v(z, x) for Wthh there

e =0 @)

exists an element f (such element is equal to L' (V) ) that the
following identity holds true
(Lu, V)L @ = = (u, ) L,(Q)
for any ue D(L) .
Thus, the formally adjoint operator has the following form:
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, O ov ov
Lv=—s—-A(—)+B(v)-C—+ Dy, 5
Ve —AG)+BO)=Cot Dy, ()
with boundary conditions
v 0.v
v‘t:T =5;|:=T =V —aL—fi- x€0Q =0. (6)

The notations introduced above give the possibility to consider the
second initial boundary value problem.
Problem 1. Tofind afunction u(t, X), which satisfies the

equation (1) in the domain Q and the conditions (4) on the
boundary 8Q.

Problem 2. To find afunction v(t,x) which satisfies the
equation (5) in the domain Q and the conditions (6) on the
boundary Q.

Note that simultaneously with the common equation of pseudo-
hyperbolic type (1) we shall investigate also some simpler version of
this equation, for which it is possible to obtain more interesting results.

Let

du du

0%u
= — —+ku |[+C
Lu W + ey +ku ”

where the operator A(-) and the functions C(x) , D(x) satisfy the

+Du, 0

same conditions as in the case of the operator L(-),and k;, be a non-
negative constant. Let the domain of definition of the operator L, (-
is the set D(L,) of smooth in Q functions u(t, x) , which satisfy
conditions

du du
= —_— = O,———
t=0 at ,I=0 aaA

where L, is a co-normal to the surface d€2, which is defined as:

lt' x€0R = O ’ (8)
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_zﬂ

|47’

where 1 is an outward normal to the surface dQ, A is a matrix
n x n consisting of the elements {A, (X)} .

B,=

Note that despite of the difference between the boundary
conditions (4) and (8) all results, which shall been obtained for the
operator L(), can be easily adopted for the operator

L():L, (Q - L (Q.
We shall consider the operator
9% au ' du
L2u = 5;— klu) 23, e & k3u %)

where k,,k,,k; 20.

In this case the domain of definition of the operator L2 () 1s the set
D(L) . Thus, the operator L, () converts to the operator L, (), ifin
L () weput C(x)=k,,D(x) =k, . Since, all results concerning
the operator L(?) are valid for the equation (9). But in contrast to the
operators L() and L, () ,whichmap L,(Q)— L, (Q), the operator
L,(-) can be considered in other pairs of spaces also. Denote by
WZO'1 the completion of the set of smoothin O functions with respect
to the norm generated by the following inner product:

A
(u,v) i =(Iuv+ ZA (x)u, v, dQ} . (10)

i,J=1
Since the boundary conditions (8) are not held in this norm (10), it is
clear that the set D(L,) is dense in the space WZO’1 as far as by

completing the set D(Lz) in the norm (10) we shall obtain the same
space WZO" (it is the same situation as in the case of density of finite

functions of the class C; in the space L, (Q) ). Taking into account
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the density of D(L,) in W,*', we shall consider that the operator

L,() maps W' — W' and also we shall define the formally
adjoint operator

. 0% ov ov
L2VE~55-+A(-—67+ klv)—-kz-5;+k3v (1
with the conditions
v dv
v ==—|  =0—] . =0. 12
lt:T at It:T anA X€ 92 ( )

Now it is possible to formulate the following problems.
Problem 3. To find a function u(t, x) satisfying the

equation (9) in the domain Q and the conditions (8) on the
boundary 9Q.

Problem 4. To find a function v(t, x) satisfying the
equation (11) in the domain Q and the conditions (12) on the
boundary 9Q.

Since the right-hand side of Problems 14 can be a discontinuous
function or even a Schwarz distribution then it is possible that there are
no any classic solutions of this equations, therefore we must consider
some generalizations of the solutions and the extensions of the

operators L(-), L (-)and L, ("), respectively.
Let us introduce the following notations. Let W™ ,W,",H, be
completions of the set D(L) in the norms

el

A2 .2 %
W = J.u”+2uxi,dQ ; (13)

0 i=|

el

vy = Iztf+§n:u:‘dQ , (14)
i=l

Q
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1
= fuz +2u2dQ § (15)
H2+ - x 2
i=]

e
0

respectively; Wl+ ,WZJ.r ,H;. be completions of the set of smooth in

-Q— functions satisfying the conditions (6) in the same norms (13)-(15),

respectively. It is easy to test whether the expressions (13)-(15)
satisfy the norm axioms using the boundary conditions (4), (6) and
Minkowsky inequality.

Let us build on the pairs L, (Q) and W,.+ (i=12), and also
L,(Q and Hj , the negative spaces W, (i=12) and H, ,
respectively, as completions of the set L, (Q in the norm

(g,u)
llglly- = sup ,—W‘L‘Q—" (i=12) (16)
i w}
and
lll,;- = sup '(g,_u),q—(gﬂ’ (17
e [l
respectively.

In a similar way we can build the negative spaces Wi: i=12)
and H,. on the pairs [, (Q) and W:+ (¢=12),and also L, () and
H..

2
The following imbeddings are valid:

WreW,"cH/c L, (Q) c H, cW, cW", (18)
W:cW.cH,.c L,(Q c H,.cW.cW. . (19)
Let us introduce some additional notations. Let W;" ,W,",H; be

completions of the set D(L,) in the norms
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s

ells =| foz + X}, + D0, dQ | 20)
0 i=l ij=1
( . Vi
e Wy = f “,2+ZH:X,fdQJ , @1)
\o i1 ,

/ 5 VA
el =) [ +Zuf,x,dQ) , (22)
e

respectively; W1+ W; ,H;. be completions of the set of smooth in

Q functions satisfying the conditions (12) in the norms (20)-(22).
Let us introduce the negative spaces W, (i =3,4) and H, , butin
this case we construct their on the pairs W' and W;' (i =3,4), and

also W' and H} , as completions of the set W' in the norms

(g)e|
liglly- = sup ‘== (=3,4) (23)
ueW;’ “u"u/‘.+
and
)(g,u)
lgll; = sup ‘o=t (24)

ueHy "””H;‘

In a similar way we can construct the spaces W (i =3,4) and
i

H: . . Now, the following imbeddings are valid:
Wy W, cH c W' c H; cW, W, (25)
WecW.cH.cW' cH.cW.cW, . (26)
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2.2 A priori inequalities in negative norms

Lemma 1. For arbitrary smooth in Q functions  u(t,x)

and v(t, x) satisfying the conditions (4) and (6), respectively, the
following inequalities hold true:

”Lu""'E < c|ully. and ”L v“Wl_ <c|v|

wer (€>0), (@27

where the constant ¢ does not depend on the functions u(t, x)
and v(t, x).
P ro of. By definition of the negative norm, we have

L l
ILa]],. = sup I_(__‘_V)Lz<_®
S

W
1
Consider the numerator. Applying to it the formula of integration by

parts, the Ostrogradsky-Gauss formula and taking into account the
conditions (4) and (6), we obtain

(Lu,v) i) = WehV) ) +

n
+ Z((Aijuxi', vXj )L2 (Q) + (Buuxl ’vx/ )L;(Q) J +

i, j=1
o (Cut,v)Lz(Q) + (Du,v)L2 ©)

Applying to the right-hand side the Cauchy inequality ,we have

I(Lll, V)Lz(Q)l < “un "L2 (Q)"v”L2 @t

+ Au ‘v “ +”B..u
Zl( *illL,(0) oK

l it ¥
+ ||Du

Ly (Q) “ oy

Li(D)
+|[Cau

e
L(Q)

"LZ(Q)"v"L: (Q)

L, (Q)"V”L2 Q@)
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Taking into account that A (x),B,;(% , C(x), D(x) are

continuous in Q, and since, they are bounded, and granting the

inequalities (16) and (21), it is easy to see that every term in the right-

hand side does not exceed Zllull,-|[Vl|,+ (€ >0), and as far as the
1 e

number of these terms is finite then
I(Lu’V)Lz(Q)[S C““"W{

This completes the proof of the theorem. The proof of the second
inequality is the same.
In a similar way it is possible to prove the following three lemmas.

Lemma 2. For arbitrary smooth in Q functions  u(t, x)
and v(t, x) satisfying the conditions (4) and (6), respectively, the
following inequalities hold true:

NZatlh < el

. (c>0), (28)

- and

- <cM,

where a constant ¢ does not depend on the function u(t, x) and
v(t, x).

Lemma 3. For arbitrary smooth in Q functions  u(t, x)
and Vv(t, x) satisfying the conditions (8) and (12), respectively,
the following inequalities hold true:

"L]u”W <clu|, . and “le|ij_ <
where a constant ¢ does not depend of the functions u(t, x) and
v(t, x).

(c>0), (29)

Lemma 4. For arbitrary smooth in Q functions  u(t, x)
and v(t, x) satisfying conditions (8) and (12), respectively, the
following inequalities hold true

"LluH < c|u, ; and "L v“ (c>0), (30

where constant cdoes not depend on the functlons u(t, x) and
v(t, x).
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Note that Lemmas 14 give the possibility to consider some
extensions of the operators L() (L () ), L,(9) (L;(-)) and L, (")

(L; (). For example, the first inequality of Lemma 1 gives the
possibility to extend with respect to continuity the operator L() and

consider it as an operator mapping W' into W.. We save the
previous notations for the extended operators L() (L' () ),L ()
(Ll* (-))and L, (") (L; () ) as far as they will be specified by context.
Note that the inequalities in Lemmas 14 hold true for the extended
operators also but on the whole space W*. The proof of this fact

follows from the passing to limit in the inequalities for smooth
functions.

Lemma 5. Let u(t,x) be an arbitrary smooth in Q

function satisfying the condition (4), and v=1 :u is the integral
operator defined by the following expression:

1 §
v(t,%) = [ 0,8)[ v, m)u(n, x)dndg, (1)
where
0.&)= exp(— 0,50 0, (0,500 0, +L,E+1,) )
(&)
1
VO e @e®’
o) =exp(2(ct,c1,)"'E) 1 = sup(D(x))+1,
L = 2sup (D(x))- exp(2(ox @, )T )+ 2.

Then,

(Lu,l ,‘u) = (Lu,V), o) 2 c|v (32)

2
L,(Q) Iw,: '
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Proof. At first, note that v=1 fu € W; . Indeed, the initial
conditions in (6)

=0 (33)

are valid at the expense of the form of the operator [ ,1 u. Concerning

the boundary conditions in (6)
d oY

D
it should been noted that the function V= I u not necessarily satisfies

this condition, as far as in completion of the set of smooth functions in
the norm (13) this condition becomes not valid. Let us express u(, x)

through v(z, x) using (13).

ult, x) = Dv—exp( t)v“ l+lt)v—
=o(t), (1+1z)v

Consider the left-hand side (32). Applying the formula of
integration by parts, the Ostrogradsky-Gauss formula and the
conditions (4), (33), which are satisfied by the functions u(#, x) and

er)Q =

v(t, x) we have
(Lu,v) o) = Wy V) 1 + (Aly) + B(W),V) ) +
+(Cu,,v) Lo T (Du,v) LQ = (u, VH)LZ(Q) + (A(u) + (34

+ B(u),v) L@ ~ (u,Cv,) LT (u, Dv) L,(Q)

Consider every of the last terms separately.
1. Then,

(u"’u)L o " (Dlv,v" )L © -
= (O'(t)V” ,V“ )L 2(Q) ((l t+1 )V tt )L @

Applying the formula of integration by parts to the second term, we
obtain
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(t+19,,), g = j (Lt+1)vy dQ =

e

j((lm)v2 do - j1t+1)v, v,d0 - [1,v}dQ
g2

Whence using the Ostrogradsky—Gauss formula and the initial
conditions, we obtain

(Le+1)v, v“@ jzl, ,dQ— j vdQ.
Thus,
1 l
(#9,) 0 = | cs(t)vf,arQ+5 [1v7]..0de +5 [1yldo.
o Q o
Granting the conditions imposed on I, and I,, we have

(%), o) jv,,dQ+j 1D +1)v’dQ +— jDv |,.,dQ.
2
2. Let us apply the formula of integration by parts to the second

term in (34):

(A(u,)+ B(x) L(Q)z_fz o, +Bu, )xde+

oiJj=1
+j2‘ Aqu, +Bu, )ij dQ
gij=
Using the Ostrogradsky-Gauss formula, we obtain
(A(w, )+ Bu)v), ) = ”— vdoQat +
0 ag
+J.2 i xt Q+IzBuuxvxldQ

Q iJj=t QiJ=t

As far as u(t, x) satisfies the conditions (4), then the first integral

equals to zero. Let us execute some transformations with the second
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integral. We shall apply to it the formula of integration by parts and the
Ostrogradsky—Gauss formula:

f Ap, v, dQ= _[ zAqulv)r ) —f ZAqu v,,d0.
=l Qi Jj=1 gij=1
Since u(0,x)= 0 and v(7, x) = O then the first integral equals to
zero, and therefore

(A(u,)+B(u), L(Q) _[ZAU”X,V““'Q*
oL (35)
+f EBUuX v, dQ

l_}—

Consider every of the last integrals separately.
a) Granting that u(t, x) = D, v, we have

- J. ZAU x; x] dQ I Zc(t)Auvx "vx de+

Q=1 ghJj=l

+f2 (4 + L) 4w, v, 4O
giJj= =]
Applying to the first integral the formula of integration by parts, we

obtain:
_J'ZAU Vs ,dQ = —-—J‘(ZO’ t)Avatvx ,J dQ +

ghj=!1 ij=1

+[ Y04y, v, d0+| 2(1 +1,04, v, 40
g hJj=l ohj=l
Passing in the first term to the integral on surface and taking into
account the conditions of the uniform ellipticity of A(-), and also the

relations o (¢) = 2(ct,, 1, ) '6(f), we have
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—J‘ZAU x xldQ——_’.zAu xt xt dg+
Q ¥=l : Q:_/..
+J'2( 'o(t)+1 +1 t)Ava v, 402
gije1
fzv“ dsz+j2a o(t)+10 )Zv dQ

Q i=l o =1

b) Consider the second term in (35):

[ ZBuux v, d0 = | Z o(HByy, v, 0~

Qij=l Q if=l

-fZ (b + Lt)Byy, v, dO
Qx J=1
Applying to the first integral the formula of integration by parts, we

have:
J.ZBUuX v, dQ = I[ Zc(t)B,,Van Ja’Q—

Qi,jl i, j=1

—fzo(t) eV, 40

Ql_/l

—jZo ViV, 40 - jz (L + LBy, v, dO
Q=1 giJj=1
In the first term we pass to the surface integral, join the second
term with the fourth, apply the formula of integration by parts, and
take into account the condition for the third term

a“‘Z& > ZB,,(x)éé
Then we obtain



254 Chapter 7

IZBquv d0 >~ fZ VerVe, |0 42

0=l Qi =l

~[ Dol o) +1 +4e)B,v, v, dO-
giJ=1

- ia;lc(t)vi‘,dQ =~ ZIBUVX Y, LodQt
g i= Qi

+—122a oy )" + 4BV, |,0dQ+

9111

—J. Z t)+1 )B‘jvx‘ Ve, dQ -
2 g0
_ £ ; oc;’cs(t)vi do.
Taking into account the fact that the operator B() is non-negative
and the values of the constants /, and ,, we obtain

j ZBqu v, 402
il
&1
ZJ. -2_( Bljvx vx - szvxtvx t= 0
Qi j=1 i,j=1

- [ Yo olent,do
0 i=l :
Thus, taking into account the results of the subsections a) and b),
and returning to the identity (35), we obtain
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(4lu, )+ B(u),v), ,, 2

2o J.ZvndQ+_[ val‘ ZBUVX‘vx +

o) i=l i,j=1
+ Z s) By, |.0dQ2
lj—
f dQ+f R Yol SR I o
g i= —1 i,j=l 2
1 -
gJ;xJZ.l [ xt x1 —vx‘:vxj +-2—(a,4a8) lvxivxj )t:OdQ

Convince us that the second and the third terms in the right-hand
side are non-negative. Indeed, as far as

38 = 3 B,WEE, 20,
then

Z xt_'a ’ ZByvxrvx/t'
i j"
Therefore, the second term is non-negative. Furthermore,

= a o 1
478 Pl =
EBU( 5 VerVes = VesVs, ¥5 5 (o,0,) VoV J_
2

ij=1
20‘ O, igllB"(aAaavx,.r - in)(aAaBijz —ij)

that proves the non-negativity of the third term.
Finally, we have

(4 + BGY), g 2 35 0.
o=
Consider the third and the fourth terms in (34).
3. For the third term we have the following estimation:

0
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(u,—Cv,), 0 =(Dy,~Cv,), = (o(t)v,,~Cv )L a5 ™
(4 +16W,,0v,), ) 2=[o(O)Cx)v,v,d0.
0

Applying to the integral in the right-hand side the formula of the
integration by parts and the Ostrogradsky—Gauss formula, we obtain

—jc x)v,vdQ = jc x| 0 AR+
+—jo xW}dQ > 0.
Thus,
(u—Cv)L w020

4. The fourth term is estimated in the following way:
(1, D(x)v), N (Dv D(x)V)L 20

= [o(t)v,D(x)vd@-[ (i, +1,t,D(x)vdQ.
Q Q

Integrate by parts the first term in the right-hand side and pass to
the surface integral:

(4, D(x)v),, o) = ID XV, dQ -
—fc(t) tdQ- J' 1)+1 +1,6)D(x)vvdQ
0

Apply again the formula of i 1ntegrat10n by parts to the last term:
—j t)+1 +1,t)D(x)vvdQ =

=——I( t)+1 +1t)D(x)v )dQ+
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1y , ,
+5£(0 (O)+ 1) D x) v’ dQ =

=2 @@,0,) 0O+ 1D 6] o+
Q

” 2 1 2
= £ (0"()+ ) D x)7d02 = j D)V |, 492

Hence,

(1, D(x)V),, 9y 2 j X, +-2—D(x)v2|,=od£2—

—jc(t xW2dQ.

Thus, every of the four terms in (34) are considered. Taking into
account the transforms carried out, we have

y
2 2
(Lu,v),, o 2 cjv,, +val,dQ+
0 i=]

+'[ D(x)vv +— D(x W], dQ Zcﬂ\}”;: +

+ j v, =), 2422 M,

This proves the lemma..
Corollary. For an arbitrary function u(t,x)e WT the
following inequality holds true:

il < il

Proof. The lemma implies that for an arbitrary smooth function
u(t, x) satisfying the condition (4) the following inequality holds true:

(Lu,v)lz(g) >

Apply to the left-hand side the Schwartz inequality:
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il Ml 2 () 2
Reducing by ||\f], . , we obtain the inequality
1

“Lu”u/l: 2 C”V”Wl: ’

Now we must to justify the following inequality:
I wi T "] fj”"wl: 2 [lull, o)

that proves the required inequality for smooth functions u(t, x) .

Taking into account that operator L(-):W" — W is continuous and

passing to the limit, we prove the required inequality for an arbitrary
function u(t, x) € W".

Lemma 6. Let v(t, x) is an arbitrary smooth in Q

function satisfying the conditions (6), and u=1I ,l' V is the integral
operator defined by the following expression:

’ 4
u(t,x) = [ ¢, (&) w,.(nh{n,x)dnat,

where

(pl,(i) = exp (—O.SOLAOLB (O.SZZ,OLAocB +1. —lz,,(é—T))G)(?;),
v.E= (—po-l-%, L. =§1:E(D(x))+1, L.=2l..
Then,

> |lu

* 1* _ *
(L v,]’ v)Lz(Q) - (L v’u>Lz(Q)
The proof of this lemma is similar to the previous one, therefore

we shall write only calculations.

2
wre

The inverse operatorto u= I v is
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v(t,x)=D u= exp(—— 2o 0t )”t)u" + ((ll ~L.Jt = T)))u’ =
=07u, +(l. - 1.(t-T)k,

Applying to (L'v, I :v)

G the formula of integration by parts, we
2

have
(L*v, u)Lz(Q) = (V;,’”)Lz(g) + (-A(V,)'l' B(v)’u)Lz(Q) -
Uy, +(Dv, u)Lz(Q) =(V’u")Lz(Q)+
+(= A + B ), ) + (v, Cu, ) o+ (v, D))

Consider every of the four terms of the right-side hand separately .
1. The first term is estimated in the following way:

(v,u")Lz(Q)=J.G'lu2dQ+ J.l u |t FAQ+

+.1_J.12.u,2dQ.>_ cfuidQ +

Y
—J x)+1u dQ+ J.O' )D(x)u|,.r dO.
2. Now, let us estimate the second term.

(— A(v,) +B(v), u Lo~ _[ZAU Vial, dQo+

QiJj=1

+.[zBu v, 4, d0 = IZG A u,,dQ+

Q =1 Q=1

+f 2(1 ~1, (¢ =T)) Ay, u,,dQ+

U'
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+f 2 o 1Buuwu dQ+

+j2(1 ~1.¢~-T)Bu,u,d0

lj—-

Integrating by parts, we obtain

17y
(-A(vt)+B(v),u)[2(Q)=-2-E[i,j=1 (T4, |40+
—J. 22 (X a’B AuuxtuxtdQ+
ij =|

+j21 ~1(t=T)Au,u, dO+

o=l
+J‘ZG U Uy |t LA~ J'zo. ]B‘jumu“dQ+
Q ij=1 sz*l

+J.2 o ,0L,0) +ll,—lz.(t—T))B,.juxi,uxde.

Q ij=l
Taking into account the relations

FE 23 AR, 2o, TE

Z& ZB,,(x)& g, 2

and integrating by parts, we have
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(— A(v ) +B(v),u)L2(Q) 2

6 (T)Bu, u | dQ+

§rxt xt

Q ij=1

+J.26 i xt xtdQ+IZl "l (t" ))Auux’u“dQ-f-

g ¥= g =

+f20" ot r 2= [ 307 By, 40+

Q =1 giji=l

—-fz (o, 00,0(T +l )B,juxux

lj-

_J'Z( (o0, c‘l+l )B,,”x“x do.
tj—
Making obvious reductions, we obtain

(- A(v)+B(v)uL(Q)_j ol .l dO+
Qll

_l oL,
+ f 2 Y ( x,luxlt +_

Q =1

rd82+

n
U u + l Z—I 2 do.
Xt x; z(aAaB)uxi lx,}lt:?'dg Q;le,-t Q

3. The th1rd term is estimated in the followmg way:

(v.Cu), jo Cup,dQ+ j I~ .(t-T))CudQ 2

2= i o™ (T)Cu| . dQ+— £ 2(ot,0,6)" Cu’dQ 20

(v, Du),, g = [ 0™ Dun, dQ + (1.~ 1 .(t~T))Du, udQ =
10 o
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= [6™(T)Du,u,_,dQ@~ [o™'DuldQ +
Q )
_[(2 o,0,0)" +1. —1.(t —T))Du, udQ.

Integrating by parts, we have
(v, Dt )0y 2 fc T)Du, u|,_,dQ - '[G"Dude+

+EI(2(aAa o) +l Jpu?|,_do+
Q
+%J-(4(0‘40‘3)-2 c” +lz,)Du2dQ2
0

1
2 [0 (T')Du,u+ Eo“ (T)Du?|,_,dQ~ [ Du’dQ.
Q Q

Thus,

n
* : 2 2
(L v,u)LZ(Q) 2 cj u, + E u, dQ+
i=l

@

1=T

+J.-— T)D(u’ +2u,u +u )l dQ = c|ju ;;;-.

Corollary. For an arbitrary function V(t,x) €W. the

following inequality holds true

C”V"LZ(Q) <

The proof is similar to the proof of the corollary of Lemma 5.
Thus, granting Lemma 1 and the corollaries of Lemmas 5 and 6,
we have

¢l gy < WEally; < ey - (362)

<o, <

¢ ||v"L2(Q) (36b)
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Definition 3. A generalized solution of Problem 1 is
such function u(t, x) € W' that there exists a sequence of
smooth in Q functions u, (t,X) satisfying the conditions (4) and

b, =lly, —==—=0. iz, = fll,. —==0.

Definition 4. A generalized solution of Problem 1 is
such function u(t,x) € L,(Q) that there exists a sequence of
smooth in Q functions u, (t,X) satisfying the conditions (4) and

"ui "L (Q)—_)O "Lui - f"Wr: —==—0.

Lemma 7. Let u(t,x) be an arbitrary smooth in Q

function satisfying the conditions (4), and v =1 tzu is the integral
operator defined by the following expression:

v(t,x) = [ € "u(n, x)dn. (37)
T
Then,

(Lu, I}y, o, = (Lu,v), ) 2

Wz‘: )

Proof. As in the proof of Lemma 5 note that v = I[2 ue Wzt .
Indeed, the initial condition v(7, x) = 0 holds true at thé\expense of
the form of the operator v =1 f u. Remaining conditions (6) do not
hold true after completion of smooth functions in the norm of the
space W .

Consider

(Lu,V) o =L+, + L+ 1,
where
I =(u. %) 0>
1, = (A(u,) + B(u),v)

I =(Cu,,v)L2(Q),

Li(g)’
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I,=(Du,v) L(0) "

Consider every of these term separately.
1. Applying the formula of integration by parts, we obtain

1= [uvdQ = (uv),d0-[uvdQ.
Q Q e

To calculate the first integral we use the Ostrogradsky-Gauss
formula and also the conditions u(0, x) = v(T, x) = 0. In the second

integral we take into account that (37) implies that v, = —e~‘u.

I = J.e uvl, 0d§2+fe uudQ = J.e uudQ.

Integrating the last expression by parts, we obtain

I = je uudQ_-j “u?) dQ—-j ) utdQ =

=—f Ty _dQ +—je"z¢2dQ2 cfude.
29 0

2. Applying the formula of integration by parts, the Ostrogradsky-

Gauss formula and taking into account the condition =0,

x€3Q

it
ori

- j(,,-lA'”“ +3 B, Jde=

i,j=1

we have
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+jZAu xt dQ+J.ZB.ux'_vxde=

Q‘J .. gl
—f J'——-vdzd)sz +fz v, O+
oasz =1
+J'ZBqulvx dQ = IzAuu“v dQ+.[ ZB:,”x v, dQ.
i j=1 Qi J=1 i Jj=1

Consider both terms separately.
a) To calculate the first integral, we use the formula of integration
by parts. We obtain that

IZAUt“vx dQ = J[ZAU v )dQ—jZAuuxvx dQ.

QiJ=l o\ iJj=l Qi j=l

Passing to the integral on surface in the first term and taking into
account the conditions u(0, x) = v(T, x) = 0, we have that this

integral equals to zero. To calculate the second integral, we use the
condition V,, =-€‘u, and also take into account the uniform
J J

ellipticity of the operator A(") :

f Vs, dQ —f Zn:e ‘Au, u, dQ = aAJ.e"iufidQ.
Q i=1

Qi j=1

b) Consider the second term. It is clear that the following identity
holds true

I Byuxvx dQ = .[2 ( Ie u']vxde=

giJj=1 Qi j=l

= —f Ze By, :Vx,dQ

QhJj=l
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Let us prove that the last expression in non-negative. To do this,
we apply the operation of integration by parts and take into account
the conditions

oc"Z& B, ()%, 20,

i,j=1

Hence,
—fZe A dQ———J.(ZeBuvxvx ]dQ-!—
0 j=l i,j=1 t
—J‘ Ze B,,Vx v, dQ=
29
1
:5.!2[, By, v, |42 +—£;‘e By,v, d020.
Thus,

L2 ocAfe"ZuidQ > C,[Z“: dQ.
0 i=1 0 i=1
Consider I, and I, .

3. Similarly to the previous reasoning we have

[3 = (Cu’ " V)Lz(Q) = J.Cu'de = J.(Cuv),t dQ_
2 0

- ICZtv,dQ = f e'Cu’d0>0.
0

(0]

4. Analogously,
I= (Du,v),_z(g) = fD(x)ude =
o

= J‘—L_tD(x{—j.e““udnJ vdQ = —J.etD(x)V,VdQ =
o € T Y

t

1 lp,
-2—§J;Dv2|,=0 dQ + a—ie D(x)v*dQ = 0.
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Thus, summarizing all written above, we have

n
(Lu,v)L2 - cfu2 + ZufldQ > c||u“22, .
0 i=

Let us prove that ”w”i,2 va”;: . Indeed,
2
n ! 2
M, = [+ Svido =J[ Je-“udn] '
0 i=1

o\T t
+ i[je’”udﬂ] dQ = J‘e_z'(u2 +§":ui )dQ < ||u||i,2+.
i=l\ 1 0 i=1

Hence, (Lu,v), g 2 C”"“iy - The lemma is proved.
2

(38)

2

X ‘I

Corollary. For an arbitrary function u(t,x) €W, the
following inequality holds true

el 1l

Proof. Applying to the left-hand side of the inequality the
Schwartz inequality, we have:

”L””WZ: “V”w;. 2 (Lu,v) 0, Zc”"”;;,-
Reducing by ||V|,,- , we obtain
~

2. = bl
Taking into account (38), we obtain
”v”;/2 = J.e“z'[u2 + iu}f‘ JdQ 2 cffu
Q0 i=1
that proves the required inequality for smooth functions u(t x) .

2
Hy?

Taking into account that the operator L(-) :W; - WZT 1S continuous

and passing to the limit we find that the required inequality holds true.
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Lemma 8. Let v(t,x) be an arbitrary smooth function

satisfying the conditions (6), and U= I,Z‘V is the integral
operator defined by the following expression

u(t,x) = je“v(n,x)dn.

Then,

(L*;),If v)L o (L v, “)Lz(g)

The proof of this lemma is similar to the previous, therefore we
represent it in brief version. Let us write
(Luv), o =L+ L+ 1+,
where

L =@,,1), g = —;—J.vzltsodﬁ +—;—J.e'v2dQ > cvadQ,

Q o

I, = (~4(v) + B)u),. ) = f Y 4y, v, dO+

i, j=1

—j Ze '‘Byu,u, 40+

sz =1

-—f ze Bju, u, |. rdQ 2 cfi vidQ,

Ql Jj=1 g =1

I, = (=Cv,,u), o = ['CV’d0 20,

0
_ _ 1 -T 2 1 -t 2
I=(Dv,u), o, ==[eTDu’|,_;d@+=[e ' D(x)u’dQ2 0.
2© "2 27
Thus,
(L'v, 1) iy 2 c||v||2+. :
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Taking into account the form of the operator u= I f Vv, we obtain
the required inequality.
Corollary. For an arbitrary function v(t,x)e€ W the

following inequality holds true
c"v“{i} < "L‘v"wz_.

The proof of the lemma is similar to the proof of Lemma 7.
Thus, by Lemma 2 and Corollaries of Lemmas 7 and 8, the

following inequalities hold true:
el <Nzl . <l (9%)

-1 *
!l <2, <l (39

Definition 5. A generalized solution of Problem 1 is

such function u(t,x) € W, that there exists a sequence of smooth
in O— functions u,(t, X) satisfying the conditions (4) and
”ui —u"w* _—i::—l)o' "Lui —f”W' '_i—:_>0'
2 2*

Definition 6. A generalized solution of Problem 1 issuch
function u(t, x) € H  that there exists a sequence of smooth in
0 functionsu, (t, X) satisfying the conditions (4) and

i, ~1f,; —=0. [l = £l —0.
2 2*
In a similar way the definitions for Problem 2 are formulated.
Lemma 9. Let u(t x)is an arbitrary smooth function

satisfying the conditions (8), and v =1 fu is the integral operator
defined by the following expression

! g
v(t,%) = [ 0,(8) [ w,(mu(n, x)andt,,

where
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1 ’ 7 ’ -2 l
0,(8) = exP(“Z(lz +2l +218)e g)’ v, (6) =W,

I/ =k e +k,+1, I} =2ke* +1.
Then,

(Lzu,]fu)u,2 =(Lu v)

Proof. It is easily to see that v = I,au = WBJ:, as far as all the
conditions (12) hold true. Consider

(Lyu,v) 00 = (U, L), 00 = (D3v, V)

0,1 0,19
W, W,

where u= D,v is the inverse operatorto V= I ,3 u and the operator:
2t
Dyv=e"v, = (Il +Lt)v,
Then,

(Lo, vy = (D, Lv), ) + [ D, 4, (D), (zv), do.@o
0 =

The first term is considered in a similar way as in Lemma 5:

(D3v,L2v)L o = hr L+ I+,

where
[ =(Dy,v,) =je2’v2+ [vdQ +— jl’z
Q
I, =(Dyv=Av,)), =—j2 AR Y X
Qtj—l

j(e W o)

0 i,j=1
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I =(Dy, A(ky)), o, =

ll
=—klszva,vx -(1-{»2)”_1 i x,  x,

Qi j=i

+f ke ZAva,vx , +k(2e2' +=10 ]’ZAUVX v, 40,

i, /=1 J=1

S22+

14 = (D3v’—k2v')L2(Q) =

=%Jk2vf|,=0d£2+ [l + 1 +1ep2d,
I = (D), Ikvvll 40~ [loe"vid0+

+ £ k3(2e2’ +51; }de+ £ k{l +El;}v-j,=odsz.

Consider the second term in (40)

J.ZAI(D:’V)-‘:(LZV)"de = [6 +[7 +]s +19 +[10,

Qi.j=l
where
£ ij=1 i % dQ =
= J. EA: eztvm m dQ- f Z l +1 t)vtr rzx
er =] Qi,j:l

Integrating the second term by parts we have

I6=I Aez'vmvm dQ +— J‘ZA Ve Vi,

QhJ=l Ql_/—l

—J.ZAU 21 vax &,

Qljl

LA+
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iy j=1
3 ( V)
+J.Z AU(D:!v)x /XI(A(vt)ﬂQ
pi,J=1
Note that granting that u= D,v and the conditions (8), we have
dD,v _ . .
——aﬁ e = 0. Therefore, applying to the first integral the
A

Ostrogradsky-Gauss formula, we obtain that it equals to zero. Thus,

I,= —gA(D3V)A(V,)dQ=% J(AG o2+
+ —12- f (& +1+ l;t)(A(v, )} do,

I=[ ¥ 4,0, (kv), d0.
Q=]

Similarly to the previous case, we have

I, = [ A(DyYA(kv)dQ = [ ke* A(v, N 4(v)HO -
2 0
— [k (1 + L) A(v, ) A(v))d0.

Applying to the first integral the operation of integration by parts,
we obtain

ij=1

I, =~ 3k AW)(A0)|, 02 -
@

2

[k (26¥ + 1+ L) Av) (A(V)dQ- [ ke ( Av)" dO.

Q Q
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Let us integrate by parts the second term again:
1
Iy = J ~k AW )(A(v)) + kl(l +—2-11’)(A(v))2|(=0 do +
Q

+[ - ke*(Aw))’ +kl(2e2{+%1gJ( A(v))' dQ.

IL=[Y 4,Dy), (-kv,), d0= jk ZAUvu Vo dQ +
0i =1 i, j=1
+ [k (e +1+ lgt)ZAUvu v, dQ,
0 ij=1
L= " 4,(Dy) ( J‘ZA( ), (k ), 40~
Qi,j=l gij=1

jk 19> 4y, v, dO.

i, j=1

Integrating by parts the first term, we obtain:

& ——fk EAUV” Ve |

i,j=1 i,j=1

—J.k & +l+lt)2AUvu Ve,

i, j=1

LdQ - fkez'ZAv v, dO-

g

Whence, we have
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1oodS2 +

f k, ZAUv,xvx +k( )EAUVXVX

i,j=1 i, j=1

+J‘ kez'ZAjvuiv ‘+k(262t +— ZJIEA‘] ; vxde.

i, j=1 J=1

Thus, granting that the operator A() is uniformly elliptic, we finally

obtain:
(Lu,v), J‘ —1-l; —ke P+
Q 2

+(l{—k += l— 2’)2/1[””,

lj—

+ & VA, + I - kel ) do+

i, j=1
1, 1
+ I(El v? kv, +5k3v2)+
( ZAUVX Peg~ ZAva Ve, +k, l ZAyvx,vv )

tj-'l i, j=1 i j=1

l EAU xt xt_ BZAuvxtvx +k Alj Xgx; +

i,j=l ij=l 1_/1

1 2 1, 2
+(—2-<A<v,>> A AO) + O a2

Taking into account the values of the constants I/ ,I; and carrying

out the obvious estimations, we obtain
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Lu,v) . 2c v +v + y Av. v +(Av )] dO+
2 w, t

i xt xtl
i j=1

+f v —2vv+v)

+—2Alj(xt x/: -2kyv_ v +kV Ve )+

lxtx
l_jl

+k A(l““ 2vv+vv.)+
2,,, ?

#2403} =2k AGAO) + KA 00

Taking into account the uniform ellipticity of the operator AY), we
obtain
2
(L u, v) o _CJ; vn+2 vxl,,dQ+c||A ||L © v le(o)‘
Note that for the elhptlc operators the inequality of coercitivity
holds true [74]:

| Aullis e, + pld’, o) 2 dullises ),

Taking into account the inequality of coercitivity with s = 0, we
have

n
(Lu,v) 01>cjv +Zv + vf’xj,dQ=

i, j=1

Corollary. For an arbitrary UueW, the following
inequality holds true

C"””W;’-‘ S"Lz”"w; :

The proof of is similar to the previous proofs of the corollaries of
the lemmas.
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Lemma 10. Let v(t, x) is an arbitrary smooth in a

function from W;, and u=1 ts v is the integral operator

) t 4
ut, =1 v={p.E) v, v xdnde, @)

ke U E
<p3.(a)=exp(—ﬁz;, -z;.(z;-r)drazz} . ]

e2k,§

U@(&FW»

where

the constants [. and I, are defined as 1. =k;+1 and
I =2I..

Then,

* 3 2
(V)0 2 el
Proof. Letus express from v(z, x) through u(z, x) from (41).
2kt F T
v(t,x)=D u=e""u,+ (ll, —lz,(t—T))u,.

Consider

(L*zv,u)wz =(v,L u)wo1 —(D3.u,L2u)Wm =1 +1,+.+1,,

2

where

I = D U, _[ '2"" 24 u dQ+J u Ir LAQ >
° -2kT
>cu? +u2dQ+jk3u dQ+f a9,

o
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I = (DuA(u) IkZezk‘Au u_dQ+

o
ij=1
n

ZAUu,X 4, |, dQ + f I-T.(t- T))ZAUuu u, do,

if=1 if=1

-2kT

S

1,=(D A(ku) sze 4 u, |, Q-
ij=1
f k e A, u, dQ+
ij=1
+j( ke M 4k L ]EA,Juxux L dQ+
ij=1
I,
+[ | 2k + L Au u, dQ>
0 2 Jim
- k2 =2k,T ”
ijl ZkTA,}x“ +- ZAuuxux |,.,dQ -
Q =t ! ij=1 b
_._[k Ze 2'”Auum u, dQ,
ij=1
I, —(D u,kzu, J.k 2T 2| dQ +

+J'k (k e+ (1 ~1.(t-T))k}dQ> 0,

I,=(D.u, ku jke “Tuu, |, dQ~ (ke uldQ +

e
]
& T ot ot e
+_[k[ } dQ+fk(2k 7Juaer
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Q

I, fEAU x ), d0 =

lj—

Zflge_u‘r[uu, u;) dQ— J.k u2

n

l
- ‘21(1! -2_‘_
= j.e Aijuxl”uxj” + 5 ZA.j“:x,“zx, do+
!

Q ij= ij=1

+J. ZAyux Myl

ij=1 0 =1

dQ>cJ‘ Au u_ dO+

X xtr

+Ik S A, u, dQ+I S W o)

ij=1 ij=1

L=[3 4(D.u) (4)), d0=

Q = 1

= (ke +1, ~L.(t-T)YA(w,)} dO+
Q

1.
+| ~e (A, )Y),-, 49,

Q

I = sz D, u Alk u))xj = J.kle—“‘TA(Lt)A(ut )::r dQ -

Q =1 Q

l_; 3
—J'k]e—Zk" (A(u, 40+ J'(klze—zk.r +k ?}(A(ut))'lmr dQ +
Q

2

+ £ k][zkfe‘“" + %‘-J(A(u))zdg >
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> j‘e_zk‘r[klA(u)A(u, )+k7'2(/1(u, i ),=ng2_
_ f ke (alu, )V dg,
L= ZA D.u) ), 40 =

0 U=

=_J‘k _ZkTZAJ x1 xl

ij=1

k™ + (1 -T.¢-1)Y 4, 1, 4020,

o] ij=1

Jm=j " A‘,(DB,u)XI (ku), d0 =
(2]

ij=l

rdS2 +

_J‘k e’z"‘TzAju\,’ X,l_TdQ J.k e'z""ZA,jux,u dQ +

g=1

T
+jk (keﬁk: +-'5-]2A s d@

if=1

+J‘ k, [2/(1294./«,: +%]i A u, dQ 2
ij=1
> Ik ettt (Z Ap o, += ZIA,ju JL:T ds -
ij= 24z

-[k ZAJ x',ux,dQ.

Finally, we have
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(L;V’u)w CI u:21 + jZ]AU xtt Xy ttdQ +
]

+c(nA<u, W+l )+

+'[—;-k3e'2k‘r(u,2 + 2uu, + u2)+
+';'e—2klr((,4(ut))2 +2k1A(u, )A(u)'*-k]?'(A(”, ))2)+
+lk3e—2qu( A (u +u )(u L tu ))'*‘
2 ij=l1 v Y v
2 Sl b o, b, ]

i, j=1
Applying the inequality of coercitivity as in Lemma 9, we obtain
that the lemma holds true.

Corollary. For an arbitrary function V€ W.  the
following inequality holds true:

C"\)"Wzo,l < “L;v”W :
3

The proof'is similar to the previous ones.
Thus, by Lemma 3 and the corollaries of Lemmas 9 and 10, we
find that the following inequalities hold true

el < sl <l

c_l”v”%o.x < ||L;v”W3_ <

for an arbitrary functions u € W," and ve W,..

(42a)

Wt
3

(42b)

Definition 7. A generalized solution of Problem 3 is
such function u(t,x)e W, that there exists a sequence of
smooth in Q functions u, (t, X) satisfying the conditions (8) and
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Ilui "””w; TO' ”Lui —f||W3: —_i—_-):o—)o
Definition 8. A generalized solution of Problem 3 is
such function u(t,x) € W20,1 that there exists a sequence of
smooth in Q functions u, (t, X) satisfying the conditions (8) and
I, =l 30~ Al 0

In a similar way the definitions for the adjoint Problem 4 are
introduced.

Lemmall. Let u(t,x) be an arbitrary smooth in Q—

function satisfying the conditions (8), and V=1 fu is the integral
operator defined by the following expression:

v(t,x) = —J. e "u(n, x)dn.
T

Then

(Lot T ) o =(Lytoy) ,, Z el
The proofis similar to the previous ones.
Corollary. For an arbitrary function U€EW, the

following inequality holds true

el <1l
The proof'is similar to the previous ones.
Lemma 12. Let v(t,x) be an arbitrary smooth in Q—

function satisfying the conditions (12), and u=1 f V is the

integral operator defined by the following expression
t

u(t,x)= Ie"v(n,x)dn.

0
Then
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(Lz*v,lf*v) =(L*zv,u) IZc||u|

2
o " W
The proofis similar to the previous Lemma.
Corollary. For an arbitrary function V(t,x) €W, the
following inequality holds true

bl <[fzv

IW;'
By Lemma4 and the corollaries of Lemmas 11 and 12 the
following inequalities hold true

¢ hllyy < 0Ll < cllelly (432)

e < “L;u”%_ ‘Sc||u|

(43b)

L

Wi’
4
Definition 9. A generalized solution of Problem 3 is such
function u(t,x) € W, that there exists a sequence of smooth in
O functions u,(t, X) satisfying the conditions (8) and
Wi e >0, ”L“i —f”W’ p— 0

4

“ui —ul
Definition 10. A generalized solution of Problem 3 is
such function u(t,x)e€ H; that there exists a sequence of
smooth in Q functions u, (t, X) satisfying the conditions (8) and
H} —5=—0, ”Lui —f||W4: —-—0

”ll‘. —u

The definitions of Problem 4 are formulated in a similar way.

Using the results obtained above and applying the general theorems
from Chapter 1, we obtain the following

Theorem 1. For an arbitrary functions f € L,(Q) there

exists a unique solution u(t, x) of Problem 1 in the sense of
Definition 3.

Theorem 2. For an arbitrary function fEWl: there
exists a unique solution u(t, x) of Problem 1 in the sense of
Definition 4.
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Theorem 3. Foran arbitrary function f € H. (f€ w.

, respectively) there exists a unique solution u(t, x) of Problem I
in the sense of Definition 5 (Definition 6, respectively).
Theorem 4. For an arbitrary function f € V‘éo‘]

(fe W3: , respectively) there exists a unique solution u(t, x) of

Problem 3 in the sense of Definition 7 (Definition 8, respectively).
Theorem 5. For an arbitrary function [ € H;.

(fe W4:, respectively ) there exists a unique solution u(t, x) of

Problem 3 in the sense of Definition 9 (Definition 10,
respectively).

The proofs of these theorems follow from general Theorems 1.1.1
and 1.1.3

Similar theorems hold true for Problem 2 and 4, also.

3. ANALOGIES OF GALERKIN METHOD
FOR PSEUDO-HYPERBOLIC SYSTEMS

Consider Galerkin’s method for second boundary value problems
for pseudo-hyperbolic systems, which was studied in paragraph 2 of
the chapter. All denotations of the following correspond to paragraph 2
ones.

Let the right-hand side f{t, x) ofequation (2.1) be a smooth in 6

function, that satisfies the condition: I 1-0= 0. Consider approximate

solution of problem (2.1) in the following form
where g, (t) is a solution of the Cauchy problem for the set of linear

ordinary differential equations with constant coefficients.



284 Chapter 7

= ar

i(d o ((Di,mf)lq(ﬁ) M

dg,(t)| & 0w, 00,
+—=— Ay ——— +1|Cw,,w, +
dt Z{[ ¥ ox, ’ ox, @ ( f)um

. ao‘)i amj —
+g,(¢ %{Bkzas"gflz(m+(D-(°i’(°f)zz(9) —(‘f’wj)Lz(Q)’

j=1,s, @)

5 0="220, i=T5, ®

where {OJi(x)} is a sequence of smooth in Q functions, that the set
{(p(t)(y.),.(x)};.m=1 is total in W, @) is a smooth function:
oT)=0,(T)=0.

Denote by H' the completion of set of smooth in Q functions that
satisfy the conditions (2.4), in the norm

, b
2 2
1]l =(J.u" + zum‘a’QJ .
0 i=1
Lemma 2. Consider the differential operator D1‘ ()

D, u=exp(-2(c,0,)" O, +
+(L, =1 (t=T)u, = a(O)u, +blt,
then for an arbitrary function u(t,x) € H the following

inequality is true
el < (L. Do), <l

where by the bilinear form (Lu,Dl.ul> we mean
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Denote by H' the completion of set of smooth in Q functions that
satisfy the conditions (2.4), in the norm

n 2
2 2
|l =[qu + Zu”x'dQ .
0 i=].
Lemma 2. Consider the differential operator Dl. ()
D.u = exp(-2(c,0,) " D, +
+(L, =1 (t=T))u, = a(tyu,, +b(t)u,

then for an arbitrary function u(t,x) € H’ the following
inequality is true

¢, |lu] ,2,,]+ < (Lu, Dl,u>I <c|lul’,,

where by the bilinear form <Lu,Dl,ul> we mean

<Lu,Dl,u>1 =(u, +Cu, + Du,D_u), o+

+ Z(Ak,uxk, +Bu, ,Dl.uxl) L,(0)"

k=1
Proof. Consider an arbitrary smooth in Q function u(z, x), that
satisfies the conditions (2.4). Applying he Schwarz inequality, we have

(L D) <[ty 0|2, *

+lcull, P, o, +IDul, oD

+
L;(Q)‘ l i “LZ(Q)

+ ZQIAH”;:,,:

k,l=1
Taking into account the continuity of the functions
C(x), D(x), A,(x),B,,(x) in thedomain @, and a(f),b(f) in
[0, T, we have that each norm in the right-hand side not exceed the
M]|d],; , that is what had to be proved for the right-hand side of the

Ly(@)

)D.u
LypyAl v

+ "B U .
L(Q) L L, ()
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desired inequality. To prove the left-hand side, consider the following

expression <Lu,Dl,u>1 , where u is a smooth function. Transforming

the (Lu,Dl,u>l in the much the same way as in Lemma 2,6, we have

the desired inequality for smooth functions. To prove the inequality for
all functions u form H' it is necessary to pass to the limit. Let
u(t, x) be a function from H' and u, be a sequence of smooth
functions, that satisfy the conditions (2.4) and ”u - uk” e,

Since
|Iu“L2(Q) S cl””r”Lz(Q) = c2||utt“L2(Q) = C3”u“ij’ ?

Uy

-l

i, L) <o

174
Xyt

<gc
L(©) L@ ~ |

du,) (0%, ) (9w, [ 9"
then the sequences {uk },{ gltk },{ a;k }’{ ab;k }’ {axtgt }’ {Bx gltc 2 }
! ! /

ou du du, d'u
ot’ dt* "9x,” ox,0t 9x ot
L,(Q) (by the derivatives we mean derivatives of the distributions). It

is clear, that "u k“W1+ — |«

|<L“k’D1~“k >l - (Lu, Dl,u>l| <

< KLuk - Lu, Dl.u)1| +KLuk,D].uk - Dl,u>l|—k—_)—;—>0.

It is what had to be proved.

Lemma 3. Consider the differential operator Dz* ()

(D,.u= e"'u,), then for an arbitrary function u(t,x) € H’ the

converge to u, > » respectively, in the space

|Wl+ . thus

following inequality is true

c “u“,z,,2+ < <Lu,D2,,u>1 < czllu”f{.
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Proof. Let u(t, x) be asmoothin —Q— function, that satisfies the
conditions (2.4). Consider

(Lu,Dz_u>‘ =1 +..+ 1,

where

I = (u",e"'u,)Lz(Q) = -:lzfe'rufltﬂdﬂ +%fe"ufdQ > cJ.ufdQ,
0 0

Q

I,=(Cn.e"u) g 20,

I, =(Du,e'u), o = j e 'Du’l, dg+%je"0u2dgzo,

Z( Yy o€ xl)Lz(Q)_(x _[ 2” dQ>CJ.2u 40,

k,i=1 Ql-

I, = X(Bkluxk’e—’ux )LI(Q) J.e_T E e, ,,t:TdQ+

k=1 ki=1
+—Ie ZB 1”x,,”x,dQ 20.
k=1
Thus,

2, N2 2
<Lu,D2.u>1 2 cfu, + Eux‘,dQ 2 C]“””;V; :
1} i=|
The verity of the inequality for all functions u(t,X) € H’ we obtain
by passing to the limit. The right-hand side of the inequality is proved in
the same way as the previous one.
Lemma 4. For the functions us(t,X) , which have been
defined in (1), thefollowing inequality is true
o <
ot ||y

M = el=;
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L 0%,
Proof. Let Tu,=e W Prove that
t
au Y]
O—1Tu ) 2cllu ..
(45 ) 2ele
Consider

<L(a” ]Tu> =1 +..+1,,
ot |

._.(u

where

sm’ Slt )L2 @) =

j snl T ;J. Uslo= odg+2J. ) StzrdQ

Q Q @

I =(Cu,.e"n,), o 20,
I,=(Du,,e"

N|>—*

su)Lz(Q) =

_ -T

@@= j e Du,dQ> 0,
Q

n
-t
I, = Z(Aklusxktt’e U idnioy 2

k,i=1

20 f 2 aQzc[Yu? do,

Qtl

1
- -t - -T
I “Z (Byu,, e U)o = zfe ZBM”m Uy,

ki=1 kl=1

o7 dQ +

n

1
+—'|.e“z B,u,, u, dQ>0.
2 Q kl=1 , !

Thus,
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1
(Lu,,Tu ), 2_2"‘ o) +cIu +2uulndQ
Q 1
Prove, that J.usil .08 =0. Multiplying the both right and left

Q
2

hand sides of (2) by dgz'j and summing up over j from 1 to s, we
t
obtain

(um +Cu + Dsu,um)Lz(g) +

n \
+ z(Aklusx t +Bkl sx‘,’u.m)L L(R) = (f’ustt)L2 Q)"

ki=]
Substitute =0 into the relation and take into account that

du (0
u (0) = ( ) _ fl,.o =0, whence _“u:,I,:on =0. Thus,

Q

2\ 2
(Lu“,Tus>l 2 cJ.um + Zuu’”dQ 2 |u
o) i=1

Consider the relation (2) again. Differentiating the relation (2) with
2

respect to #, multiplying by e’ ==, summing up over j from I to

s and integrating with respect to ¢ from O to 7, we have

d
<L( aut ] Tu > - (f"Tu‘)Lz(Q) S"-f;"H'.”Tus H
i 2

From the previous inequality we find

o <IN T

It remains to mark that |7 }| .. < |lu , which is what had to be
shia, siH

proved.
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By Lemma 4, we obtain that the sequence {us}; is bounded in

the space H', thus there exists a function U~ and a subsequence

{us"}k=1: ”sk‘—k‘sw—)”* weakly in H' It is clear that the

sequences of norm

ausk
ot

ou,

0%u
Sk

0x.0t

Ly(Q) N V()

0*u
Sk

b4 2
ot
L L,(2)

i

are bounded (since {usk}k 1 is bounded in H'), and then there exists

subsequence (which is denoted by U, again), that

2
ou, ou,
X *)u.l 3 2k T >u-2 ’
or ot A
2
ausk y 0 u, y
ox, heper TR ox,0t v

weakly in L, (Q) . Since u, —g==—>t" weakly, it is easy to prove
that
ou” o'u’ ou” 0%u”

= s Uy = y Uy = Uy = ’
L VR 3 ox, 4 ox,0¢

where derivatives of the function y* are understood in the sense of
distributions.

Theorem 2. For all smooth in the domain Q function

)

u,

f(t,x): f l -0=0 the approximate sequence {us}: converges to

=1
the solution of Problem 2.1 in the sense of Definition 2.3 in the
norm of space W;" and ”Lus —f”w_ —0.

“

Pro o f. Multiplying the relation (2) by



PSEUDO-HYPERBOLIC SYSTEMS 291

2

2.4°g;
exp(—2(a ,0tp) 1) "

dg
J
+ (l]. = 12.(t— T))E—,
summing up over j from 1 to s and integrating with respect to ¢
from O to 7, we obtain

(Lu,D.u) ={f.D.u)

L)’
thus,

Lu =( D.,u )
sk,Dl'uxkl f’ e, 0y

where the sequence { usk}k | converges weakly to y* in the space

H' . Taking into account the relation (4), we have that
D.u, —== Dl.u weaklyin L, (Q),

SO

) =(r.p.u). (5

hm<Lu Dl,usk> =lim(f,D U o3 -

-
k=00 koo U

From Lemma 2 we find

c

iVl* < <L<u5k —u’ )’Dl‘ (usk —u’ )>1
- <L“s,, ’Dl‘usk >] - <Lusk ,Dl,u*>‘ - (6)

—<Lu* D.u, >l+<Lu',D],u*>l.
Prove that <Lu D .u >1 (f D.u )

*®
U —lt‘

Sk

L (0)
Multiplying  the equality (2) by a function (pj(t):

99, . .
(pj(T)=——a—t-—(T)=0, summing up over j form 1 to p and

integrating with respect to ¢ from 0 to 7, we have

<Lusk,i(pjmj> =(f,i(pjcoj] ,  p=Ls,.
= ) =

L (@)
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p
Let 7, = z;(p j(oj , then
j:

(Lusk,vp)l =(f,vp)L2(Q), p =f:v:‘

From the equalities (4), we obtain

<Lusk,vp>l—t;_e—-><Lu',vp>‘.

<Lu ’VP>1 =(f,vp)L2(Q).
By virtue of the totality of the system {(p(t)(D,. (x)}‘;:l in the space

H+

2"

Therefore,

there exists sequence V; — Q U in space H;. , then
x 2 * *
<Lu ,vp)l ——p—_;.e><Lu ,Dl.u >1,
4 *
(f’vp)Lz(Q) pore (f’D]'u )LZ(Q).
That is why <Lu*,Dl.u*>l = (f,Dl,u') ; Returning to (6), we

Ly(Q
have

*
U —Uu

Sk

cl “2",‘ S(LuSk ,D.u, >1 —(Lush ,Dl,u*>1 - -

<L”*’D1'”sk )1 + (f’Dl‘“*)Lz(Q)’

From (4), we find
(Lu, Do) —=—(Lu",Du") =(f,Du")

k=300 L@’
<Lu ’Dl'usk >1 koo <Lu ’Dl'u >l = (f’Dl'u )Lz @

Passing in the (7) to the limit and taking into account (5)
: «||2 . . " _
climllu, —u ||W <lm (Lu, ,D.u, ) ~lim (f,Du") =0

k—ro0 k—yoo k—o0 L (@)

Therefore, there exists a function y* and a sequence {USk}k iy

which converges to the function y* in the norm of space W,". Prove
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that the function u” is a solution of Problem 2.1. Applying the
inequality of Lemma 2.1, we have

“Lusk —Lusp v Sc"usk —u, "Wf——_)o' 8

kyp—roo

So that, the sequence L”sk is fundamental in the complete space

W., thus there exists an element .f € we: "Lusk -~ f "W—TZ"")O'
l.

Prove that f = f in the space W.. Multiply the equality (2) by a
function  A(t) : i(T) = h'(T)=0, and let ¥,=h(t)0 (x).

Integrating the both right and left-hand sides of the equality (8) with
respect to ¢ from O to 7, we have:

<Lusk,wj>l = (f’wf)g(g)'
Pass to the limit as k — oo
(f’wf>w[, =(f’wf)L,(Q)'

Since the totality of the set {w f};x in the space Wlf, we obtain

f=f. Using the convergence of the sequence {Us, }:;1‘ and (8), it’s

easy to prove that the function y* is a solution of Problem 2.1 with the
right-hand side f(¢, x) in the sense of Definition 2.3. It remains to

mark that by Theorem 2.1 the solution is unique, thus it is not

necessary to choose the subsequence {USk }H. If there is an

accumulation point of the sequence {us} in fact that differ from

s=1
u” , then by the same reasoning Problem 2.1 has another solution.
Theorem 3. For an arbitrary smooth in Q  function

converges to
s5=]

f(tx):f I 1=0=0 the approximate sequence {us}
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the solution of Problems 2.1 in the sense of Definition 2.5 in the
norm of space W," and ||Lus --f"W- i)
2’!
Proof is analogous to the reasoning of previous theorem.

Now, consider the case f € L, (Q) . Consider the approximate

sequence in the form of the relations (1)-(3).
Lemma 5. Thefollowing inequality is valid

e <N,

Proo f. Reasoning as in the proof of Lemma 2.6, we prove that

for a smooth in Q_ function u(#, x), which satisfy conditions

ul 1m0 =%£:—| .- =0 the following inequality c|ju f,,l < <Lu,D],u>1 is

valid. Choose the sequence of smooth on [0,7] functions gjk (1) :

dg; (0
g:‘ 0)= --g’—t(l =0, that converges to the solution of the set of the

differential equations in the space HZ[0,T], where HZ[0,T] is the
Sobolev space of functions v(f) : v(0) =v10) =0 .

Prove that
—0,

~k
us _us W k —eo0

where i?sk = 2 g,.k (H)w,(x) .

i=]

Actually,
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~ k2
. -
5

S liw

= j[ﬁ(gf (r)—gi(t)),,wi(x>) -

Q =
a ®, ZdQ<
ox -

J

+ ( g(t) g(t)

cz [((gk)-£,0),0,0) +
=i

+;{(g (0-2,0), 3}6} dQ]

=c ((g(t) g ) dtjm(x) dQ +

w3 (e - £.0) )dzj[ J ]

J=l o

s
=4 2 - "g, Ei H%[o,r] =d
j=

~k
Therefore, "u -u “ — 0.
S s vt k —eo

Wy
Since the function " =2g‘.k(t)0)‘.(x) is smooth in @, then
Lemma 2 is valid. Thus, C”ﬁsk"i; <(LiI!,D &) . We have
(Lu, D, ) =(Llu, -} } D.u,) +
+(1a',D (u, - it)) + (L& ,D &) 2 ©)
> (L, !} D.w,) +(Li!,D fu, ~&i! ) +c|F ||fy .

It is easy to show that
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(L(us - Esk),Dl,us> ——0,

1 k300
~k ~k 5
<Lus ’ Dl‘ (us - us )) k—oo 0 3
thus passing to the limit in the inequality (9) as k — e, we obtain that

<Lus,Dl.us >l 2 cllu

s

A
Now, we return to the relations (2). Multiplying the relations (2) by
d’g. dg .
= Ty o) - = TY) L
xp(=2(et, ) )= (=L (=T~

summing up over j from 1 to s and integrating with respect to ¢
from O to T, we obtain

(Lu,.D.u,) =(f.D., )Lz@ |71, 10
Whence,

L@

2
<
el e <1 o2 L@
To prove the lemma, it suffices to mark that
D.u <cjju || .. The lemma is proved.
“ sy ) I St P

Theorem 4. For an arbitrary function f(t x) € L,(Q)

the approximate sequence {u }1—1 converges to the solution of

Problem 2.1 in the sense of Definition 2.3 in the norm of space
W and |1, = 1l —0.
Proof. Choose the sequence of smooth in  functions f:

o =0 such that fm—f”la(g)—-m—_ﬁo. Let uy be the

S

approximate sequence (1) of the problem with the right-hand side f,,.

=

By Theorem 2, the sequence ul converges to the solution 7" as

S—eo. Prove that the sequence T" is fundamental in the space
W*. In fact, by Lemma 5 we have
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7" -, s " '”sm”w; i ) Y e
S"ﬂ"’ -u |Wl*+c"fm—fn Uy =
By Theorem 2,
|2 -7}, —=—0
and
ll;n -u” W —'HT)O

From the other hand, since || f=f " L@ ———0, the sequence

—————0. Therefore,

f is fundamental, whence ILT T

m Wl mn—soe
there exists such element T € L, (Q) T —u” —
Consider
= | m - — 1 —
Ius -Uu W <, —us we + Ius —-Uu Iw,* +||u —-u .
By Lemma 4
m E
Ilus —le Wt < C"f_ fm"Lz(Q) m—yeo 0
Thus,
— m —rn bt L] o
us —u Wl+ Scllf—f;n”[,z(g) + us —u W"’ +”u —u W]"
Approaching to the limitas S— oo, we have
— < —m T I
Hm”” ”" AW = fullyor * e
Making m—> e, we have
“u —u" =0. (10)
S—yoa

Prove that #(¢,x) is a solution of Problem 2.1 with the right-hand
side f(t, x) in the sense of Definition 2.3:

”Lus _f"W— _”Lu -Lu?| . +"Lus'" -

W] : m

= A

W
1"
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Prove that every summand in the right-hand side vanishes. By
Lemmas 2.6 and 5, we have

“Lus —Lu

v: Sclu, -ul - Sc2||f—-fm|'|L2(Q)—m—_;——>0.

By Theorem?2, "Lusm - fm"W_ —==—0. Thus,
ll
lm [|Lu, = f1,.. < + D/, = Sy —5z=0- AD
S—yoo - " ‘ M 1*
Applying (10) and (11), it is easy to prove that T is a solution of
Problem 2.1 by Definition 2.3. Now the theorem is proved.

Let fe Hz_‘ and the approximate sequence of solution {Us} is

defined in (1)-(3) (in the case the integrals are defined in the sense of
distribution theory).
Lemma 6. The following inequalities is valid

us |W2+ < C"f"H_‘ :
2

The lemma can be proved in much the same way as Lemma 5 (it is

necessary to substitute the space W for the space W,", the operator
Dl. for Dz. , and to apply the Schwarz inequality to the right-hand

side of the following expression .

<Lus,D2‘us>l = <f,D2.us>H

2

Theorem 5. For every function f € Hz"‘ the approximate
sequence {us}: converges to the solution of Problem 2.1 in the

=1
sense of Definition 2.5 in the norm of the space W, and
M, = flly . —==—0-

The Proof is completely analogous to that of Theorem 4.
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Now, let f{t, x) be an element of the negative space Wl._, f, be
a  sequence of functions from L,(Q) such that
"fm - f”wt: m—eo 0.

Consider the approximate sequence U ,, (t,X) of the form

6,9 = Y 8, (00, (2), 12

where functions g, , (f) are solutions of the following system

(d’g,, )
Z(———(oo,,o)j)L2 .

i=1

dg, ”,(t) . ,-]

kl
ki l ax ax[

L, @) i 13)

+glm(t) P (‘B g’_a;j—) (D(l),,(l) )L (Q) =

k
=(fm’0’)j)Lz(Q)?j =5Ls

dg, (0 _
8,m(0)= g‘;’;( Joo,  i=Ts, (14)

Theorem 6. Let £, be an arbitrary number sequence

g, >0, ————0. Therefore, for each integer s(m) :
"Lus(m),m - f;n

right-hand side f € W{._ , the approximate sequence Ug,, .

<€ _, (which exists necessarily), and for each

- m 2
we

converges to the solution of Problem 2.1 in the sense of Definition
2.6 in the norm of space L, (Q) .
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Proof. By Theorem4 the approximate sequence U, (t.x)
converges to the solution of the following equation Lu= f, with

§—> oo, then there exists such function # " € W1+ , that

a— 11

J+... -

- 00

0, [t ], 0

Prove that the sequence ¥ € W.* is fundamental in the space
q 1 P

L(Q.

—TN Dl
7"

S”ﬁm—u

&
L, (@)

s,m

Ly (@)

-

s

u —u

s, sn

+|ju

Ly(Q) Ly@)

Using Lemma 2.5, we have

"LT'"-LT"' Sc”ﬁ"’—u “ ++c”Lu ~Lu , _+
L, (Q) 5,milw, s,m 5,n Wl"
-l e 111
+c||us)" ~ i lw; Sc"u —usymIWl+ +c"Lus’m b =
1
-
+ C"fm - f;! ”WI: + c”-f;l - Lus,n WI: + CI us,n —u Wl+'

Pass to the limit as $— ¢e. Then,
L(0O) S C“fm - f;l “W: m,n—eo O 2
R 1
and there exists a function 7(t,x)e L,(Q):

7 =7, ¢ —==0
L(Q)  moe

Consider

T P T

— _ =—n
—Uu

u

T _f"Wl:'
f

mm_ im

Choose s= s(m) such that ILLIS( e <g,, (by
l*

Theorem 4, the number s = s(m) exists). Thus,

”LuS(m),m - f”Wl.: s €, +"fm - f”Wl: _—;;::")O )
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and

Ju

i, <emn =7, o, 7,
sta)on L(Q®) sty L,(@) L@

S c"Lus(m),m _fm”py: +
1

<ce +||a’" —ﬁ"
m L, (Q)

e 11

m —E" <
Ly (@)

—0,

m—ee

which is what had to be proved.
If (¢, X) be an element of the negative space Wz:’ then choose

an arbitrary sequence of  functions f.€H,:

I~ ||W ———>0. Approximate sequence U, (#,x) is defined
2‘

in by the relations (12)-(14). In this case the following analogous of
Theorem 6 can be proved.
Theorem 7. Let €  be an arbitrary number sequence

g, >0, ————0. Therefore, for each integer s(m)

”Lus(m)’m— fm"W: <€,, (which exists necessarily), and for each
2

right-hand side f € W?_h., the approximate sequence U, .
converges to the solution of Problem 2.1 in the sense of Definition
2.6 in the norm of space H, .

Let the right-hand side f(z,x) of the equation (2.1) is a smooth in
Q function, that satisfies the following condition f I =0

Approximate solution can be found in the form
u,(,x) =Y g, ()0,x), (15)
i=l

where the function g; (#) is a solution of the Cauchy problem for the
set of differential equations with constant coefficients:



302 Chapter 7

S dg®)  , dg® _
z(a’ g +c""g"(t)]_ (16)

= (.fa (Dj +A((Dj))L2(Q)’j =1—a-‘;"

2 (0)=29 g i=1s, (17)
dt

: dw, 00,
a,= (m,w.) + )1 4,—
) i 7L, (Q) o ax ax i
T 2

W a(l) a(l)
b,.j=k2(0)i,(0j)“ - Z( kla K }LZ(Q)-*-

k=

where

(18)
+2( kla " ox, L(n) (A(wi)’A(wj))Lz<Q)’

k=1

o,
=k(0,0,) +k z " o —4, = +
I B =1 S A A B

+k2(ma a}wn k(4©), 4©), o

k=l

where {(Di (x)} is a sequence of smooth in € functions, which satisfy

0w, - +
the condition =—| ..o =0, and the set {(p(t)co,. (x)},.___l is total in W,

ot ,
where @(¢) is an arbitrary smooth function: ¢(T) =¢,(T)=0.

Denote by H” the completion of the set of smooth in Q@
functions, which satisfy the condition (2.4), in the norm

/5
”u“H' = (J.un + Zunx + zuttxx dQ} '

o ij=1
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Lemma 7. Let D3. () be the following differential

operator:

D, u=exp(-2kt)u,+ (.- 1.(t-D)u,

2
then for every function Uu(t,x)€ H” the following inequality is
valid

< (Lzu, D3,14>2 < cz||u||i,;,
where by (Lzu,D3,u>2 we mean
(Lzu,D3,u> =(u,+ku +ku, D u) o

+(4(u,) + k4@, DLu), " (A(u)+kA(u) A(D u)), o

Proof. Let u(z,x) be a smooth in Q function, which satisfy the

condition (2.8). Then, the right-hand side of the required inequality we
obtain by applying partial integration. To prove the left-hand side, it is
necessary to repeat the transformation of Lemma 2.10 with the

expression <Lu,D3,u>’ . The required inequality in the space H” can

be obtained by passing to the limit.

Lemma 8. Let D,.() be the following differential

operator: D4.u = e 'u,, then for every function u(t,x)e H"” the
following inequality is valid
wr S <Lu D u> < cz||u||2H,.

Proof is analogous to that of previous lemma.

Lemma 9. For functions u/(t,x), which were defined in
(15)-(17), the inequality is true

H_C

Proof. Prove that
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ou

(5 5e)) 2
ou,

<L( o )Tus>2 =d et Ly

'n

I = ,e'u) +Z(A u_,e'u ) .
1 sue? su’/Ly(0Q) &5 K s xpe? sxettlL, ()

Consider
where

Transform each summand as [; and I, in Lemma 4. Hence,

_ -t
[1 - (usm’e stt)l- (0) t Z(A uu,tt’e Sxktt) =

kyl=1 L, (Q)

2 cJ.uf" + ZukandQ - "21-,[“311 10 d82

Y

1

I, = (ku,, + ku, +k Ay,) . e'u,,) ) 20,

2 su

I = 2( e sx m’ Sx,zt)Lz(Q) =—I ZAklus::knusr,ult dQ2 -

k=1 kil=1

__'[ZAklunknusx,nt 0dg2+-J‘ ZAklusx n srn Q"

ka kl=1

>__f2 il sx S\:,tt' dsl,

gkll

=J. e 'k ZAH o ity “dQ + fe"k3 zn:Akzust,“sx,ndQ >
=

k=1

_j -Tk ZAklqu! J‘xt

k=1

- j ek, Y Ao 44020,

k,i=]

7 a8 +
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I =[(Al,) +k Aw,) ) Aleu,, ))do= j e'(Alu,) do+
Q

+[ek Aw,) Alu,, )dQ= f e (Alw,)) dQ+
Q
+%je'*k,(A(us,))2| +—je-‘1<( ) dQ>

Zcfe“( ( w)) dQ.
0

Therefore, we have

(G} 2efu+lat, -

@
- —J.usn + iz i Sttnusux dg
j.—

In a way analogous to Lemma 4, we prove that

J.u»ftf + Z U Stexy J'ttxj dg O

i,j=1
Taking into account the inequality of coercivity, we obtain
L ou, Tu ) 2 +2u +2 dQz= c||u“
2 _5;— ek 2, d u 5 1tx, .mx, H”
0 i

Differentiating the equality (16) with respect to t, multiplying on
o’g

2 3
t

- summing up over J from 1 to s and integrating with

respect to ¢ from O to 7, we have
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<Lz(a;fj ) =), <5l W,

Whence, we find

+ .

<A N7

u, |H,,.

It suffices to remark that ”T “s” g =
-

Theorem 8. For all smooth in @ functions

f@, x):fL ,=0 the approximate sequence {u } (see (15)-(17))
converges to the solution of Problem 2.3 in the sense of Definition
2.7 in the norm of space W' and "Lz“s -f "W- ——3 .

Theorem 9. For all smooth in Q functions
fxf I <o=0 the approximate sequence {us}; converges to
the solution of Problem 2.3 in the sense of Definition 2.9 in the
norm of space W, and ||L,u, —f”W_ —0.

Let f(z, x) be an arbitrary function from Wzo'1 , and approximate
sequence {us}; is defined by the equalities (15)-(17). Using the

results of Lemma 2.10 and repeating the proof of Lemma 5, the
following lemma can be proved.
Lemma 10. The following inequality is true

e <l e
Theorem 10. For all functions [(t, X)€W the

approximate sequence {US}H converges to the solution of

Problem 2.3 in the sense of Definition 2.7 in the norm of space
VV; and ||L2us = f||W3: ——s:.:—)O .
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In the case when the function f(¢,x) is from the space H;. , the

analogous results of convergence of the approximate solution (15)-(17)
can be obtained.
Lemma 11. The following inequality is true

|us w, < c"f“H;

Theorem 11. For all function f(t,x)eH,  the

approximate  sequence {u }; converges to the solution of

Problem 2.3 in the sense of Definition 2.9 in the norm of the space
VV: and ||L2us "‘f"W- ——;TO ;
Let f(#,x) be an arbitrary function from WS . Choose a sequence

of functions f_ from W20,1 such that M f=f ”W_ ———0, and

consider an approximate sequence of the solution
”.V,m(t’x) = zgj,m(t)wj (X), ) \(19) .
i=1

where g, () is a solution of the Cauchy problem, for the set of linear
differential equations with constant coefficients

o dg, (0 dg, ()
2 aij 2 +bij +ijglm(t) =
i=1 dat dt ’ (20)
=(f,, 0, +A(coj))L2(Q),j=1,_S
dg,. (0) —
(== =0, =D, 1)
g:,(0) ”
where the constants a,,b,,c, were defined in (18), the sequence

{0),. (x)} satisfies the same conditions as in (15)-(18).
Theorem 12. Let € be an arbitrary number sequence
g, >0,e ———0. Therefore, for each integer s(m) :
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"Lzus(m),m - fm”W: <€, , (which exists necessarily), andfor each
3

right-hand ~ side f €W, the approximate sequence Uy,
converges to the solution of Problem 2.3 in the sense of
Definition 2.8 in the norm of space Wzo'l.

Analogously for f(t,x) € W., we have.

Theorem 13. Let Em' be an arbitrary number sequence

g, >0,6 ———0. Therefore, for each integer s(m) :

m—roe

“LZus(m),m = fm”W: <g,, (which exists necessarily), andfor every
4

right-hand  side f eW., the approximate sequence Ugy,.,
converges to the solution of Problem 2.3 in the sense of

Definition 2.10 in the norm of space H: .

4. PULSE OPTIMAL CONTROL OF PSEUDO-
HYPERBOLIC SYSTEMS (THE DIRICHLET
INITTAL BOUNDARY VALUE PROBLEM)

Apply the obtained results to optimization of the pseudo-hyperbolic
systems. The denotations are the same as previous.
Consider the pseudo-hyperbolic equation

Lu= f+ A(h), (D
du
lt=0 =§'1=0=0; “Leag =0. (2)
where () is a one of the pseudo-hyperbolic operator L,.(-) (see

Section 1).
Using the template theorems od Section 3.6, complete the tables for
the pseudo-hyperbolic equation (the first boundary value problem).
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Table 1.
N Operator Space N Space W‘(Q)
1. . 5 B
Ll( ) Hbd bc;!i
2 : + =
Ll( ) W;; Hbd*
3. Ly() L(Q) i~
4 L) 7 L(9)
Table 2.
N Operator A(-) Space W~(Q)
1. A]() -i s__i
bd bd
2. ' = 77
A0, k=1
3. : W H-
A0
4. A() o
bd bd
5. : ~l -l e
A0 W
Table 3.
N Operator Space W'(Q) Space W+(Q)
L(")
L L() " Wos
2. L(") ) M
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Tabled.
N Operator L[-) Space Space H*
w(Q)
L. L}(') W;;{, H ; ’
2 : -1
13( ) bdt LZ (Q)
Table 5.
N Operator I{-) Space Space W+(Q)
w(Q)
1. , -1 +1
L() bd* bd*
5 , T 4l
LJ( ) bd* Wbd*
Table 6.
N Space W_(Q) Map A ()
1. W_i A1 ()
bd
Table 7.
N Operator L(-) Space W~(Q)
1. . =
L0
2, ; =1
L() W
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Table 8.
N Operator A(-) Space W“(Q)
1. Al(') =] ’W-.f
bd* ’ bd’
2. . = !
A0, k=1
3. . -l -l .
Aa( ) bd* * bd* ’Hbd*
4, A4 (.) =l -l
bd* ’ bd*
5. . -ty »
As( ) bd* * bd* T bd?
Table 9.
N Exponent 0. Space Map 4, ()
w-(Q)
1. 172 - gyt .
bd* ’Wbd* A”( )
2. | -t .
bd+ 14[,8()
3. 172 7 7aal] .
bd* ’H/;d* A“( )
4, 1 7 T .
ba‘+ [4'2.5()
5. 172 -t .
il 4,,()
i
bd
6. 172 nt 7 7iatd .
bd* ? bd* A""E()
7. 12 -l -l .
bd+ ] bd+’ AS.E()
5 S
bd
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5. PULSE OPTIMAL CONTROL OF PSEUDO-
HYPERBOLIC SYSTEMS (THE NEUMANN
INITIAL BOUNDARY VALUE PROBLEM)

Apply the results of Section 3.6 to optimization of the pseudo-
hyperbolic systems (the Neumann initial boundary value problem). The
denotations are the same as in Section 2 of this chapter.

Consider the pseudo-hyperbolic equation

Lu= f+ Ah), (1
where L[-) is a one of the pseudo-hyperbolic operator L,(-) (see
Section 1) with corresponding boundary conditions:

— au — . —

ult:O '”_L=o TV Ty |xed@ T
ot on g . ofi,
Using the template theorems of Section 3.6, complete the tables for

the pseudo-hyperbolic equation (the Neumann initial boundary value
problem).

ean =0 @

Tablel.

N Operator Space N Space W'(Q)
L 1) L(Q) W

2. L) H; w.

. L() Wy W;

4. L() H; W.

5 1) W L(9)

6 I0) W, H;

2 L0 W !

8 L0) W e
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Table 2.

N Operator A(-) Space W(Q)

L A() Wo W W W

2 A(), k=1 w:

> Al), k=1,0,eW,(Q) W LW

4 A) Wo W, H,

> A() W W

6 A() W2 W, H,

! A() W:
Table 3.

N Operator [{-) Space Space W+(Q)

w(Q)

L I0) W W

2 78 W, W

3 L,() W A

4 L,() W; A
Table 4.

N Operator L{-) Space W‘(Q) Space H*

: 1) W: L(Q

2 L) W, B

> L,() W W

4 L0 W H;
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Table 5.
N Operator Space W'(Q) Space W+(Q)
)
L L() W. We
Table 6
N Space W‘(Q) Map A ()
L. VVP_ A ()
Table 7
N Operator () Space W'(Q)
L L) W:
Table &
N Operator A(-) Space W_(Q)
) A0 W W W W
2. A(), k=1 W:.
3 A(), k=1,0,e7(Q) W
3 A) W2 W, H
5 () wo WL
6. () W W HL
% () w:
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Table 9.
N Exponent Space W'(Q) Map
a i ()
L 172 WL W W 4,()
2 I W LW 4,0)
3 12 Wo W WL W 4,,()
4, l Wo W2, 4,.()
5 % WL WL H 4,,()
6. Vi WL 4,.()
3 7 W: W, H 4,()

Remark that if we consider the problem (1), (2) with operator

l1 () , other theorems can be proved, because of the theorems of the

solvability of the equation L,u= F ensure smoother solution when the

right-hand side belongs to some positive spaces.

Let W; . be a negative space corresponding to the pair of spaces

W; ) Lz (Q) . Consider the problem of optimal control of the system

(1), (2) with the right-hand side F € Wz:' It requires to minimize the

performance criterion

J(h) = D(u(h)) =i fou 0w -u P do

Q)

where U, (t, X),Oci(t,x) is functions from W20.1 and C‘(Q), and

o,¢,x)2e>01in Q.

Theorem 10. Let the state function
problem (1), (2) with

right-hand  side

u(t, x) satisfy the
£(h) eV,
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Performance criterion is in the form (4). Ifthere exists a Fréchet
derivative f. () of the map f():H—W,, then the performance

criterion J(h) has a Fréchet derivative at the point h" in the
following form

Jh‘ (') = <./;,‘ (.),V>W‘ ’ (5)
where ("'>W' is a bilinear form on W ><W,, and v(t, x)is a
3'

solution ofthe adjoint problem'’

Ly= 2i a, (u(h*) —u,.), (6)
i=1
d d

Vour =5-|er = Qﬁ i =0. %

Proof. Prove, that v(t,x)eW;. Since f(h)eW., by
Theorem 2.3 the solution u(h*) belongs to H, . Since the spaces Hj
and W' have the equivalent norms, then we can consider that

p
ZZOLi(u(h*) - ui)e W20,1 . Applying the analogue of Theorem 2.4 for

i=]

the  adjoint operator, we have  V(t,x) €W.. Thus
J..() =< f, .(-),v)W :H — R is a linear continuous functional on

H. From the analogue of Theorem 2.4 we have that for all functions
u €W, the following equality is true
(L v, (22a u(h”) - u), J ®)
i=l
In the same way as Lemmas 2.1-2.4, we can prove that for all
functions v(t,x) € W

M, Selv

W;: ’
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thus L,ve H, . Therefore the equality (8) is valid for all Te€ H; .
Taking account that L, ve W', we have

(L), =(2iai(u(h')— u‘.),ﬂ} . ©

WZO,I
In a way analogous to that was made in Theorem 1.4,3, we obtain

O + W)= J(B) =
p . - (10)
= [ 8o (1, 0)2u(h') - 2u 0 + [ (8 Yer, (¢, 1),
0 i=l] ] i=l

where Au= u(h" +Ah)—u(h"). It is clear that the function Au
satisfies the equation

LAu=Af,
Jdu dAu
uL=0 =3t_‘t=0 =0’-a_’_i: x€dQ — O’

where Af = f(h"+AR) - f(h") e W,
By Theorem 2.3, we have that Aue H; . Since V& W; and
"sz"L2 < |y

who
3
we have that

Live L(Q)

and
(Au’L;v>L2(Q) = <Af’v)W2. an
Consider the equation
A(AT) + AT = Au,
dar
ot ,

As is well known from the theory of elliptic equations, the solution
of the equation exists and has the degree of the smoothness with

xedQ — V-
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respect to the space argument two orders higher than the right-hand
side of the equation Au. Thus,

(am.Lv),  =(A(AD) +AT, L)

L, (Q) L (Q)

and it is easy to see that

(4acam)+ A, L)

L@ (Au L v)

H,

Therefore,

(Au,L*v) <Au Lv) .

L, (@)

Substituting @ = A# into (9) and taking into account (11), we have

(22a u(h')- u),AuJ ={&f v}y -

=]

Since W, < W, we obtain

(& Vg, =& W)y [ZZOL(u(h) u)Au] =

Wz(],]

=Izzpla (u(h) —u, AT + 2/1,{220( (w(h") —u, )) AT dQ.

Q k=1 x;

AT

Using the condition ——
A

(& V)5, =4y, =
=j2ﬁ o, (u(h") - u)Au+2Ak,(220c(u(h) u)) AT, dQ =
g i=l

k=1 X g

=0, we have

x€dQ2

jfa(u(h) u)Au+2f:oc,(u(h) uYA(NT)Q =
0 i=l
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=[22p:0c,.(u(h’)—u,.),A(Am+Asz =

L(@)
=[22ai(u(h')—ui),Au]
i=l
Returning to (10), we have that
T+ AR =T (h°) = (& V), +j Au) ioc (t,x)dQ.

L(Q)

The further part of the proof repeats the reasoning of Theorem
2.13.

Theorem 11. If the mapping f(-):H—-)WZ'. has a

continuous ~ Fréchet  derivative ~ at a  point h’
(Ve > 03B >0: Vhe Uad"h— ' || < 5:||F,,(.)—Fh.(-)“ <g), then
the derivative J, () is continuous at the point h".

Proof is analogous to that of Theorem 2.1.4.

Theorem 12. If mapping f()H— W. has a Fréchet
derivative in a neighbourhood of a point h", that satisfies
Lipschitz condition with exponent o, 0 <o <1 (ECl >0:Vh,h,
from the neighbourhood of  the point h’

o
“fh, ¢) -fh2 ()” & "hl - hz"u >’
then the Fréchet derivative J, () satisfies Lipschitz condition with

the same exponent O..
Proof is analogous to that of Theorem 2.1.5.
Consider the case of another type of performance criterion. Let
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J(h) = D(u(h)) = i j o, (t,x)u(h) - u,f dQ +
, n i=l g (12)
+ Y [0, 0Y 4,(uth) -u,), (uh) -u,), do,

i=pl+lQ ki=1
where U, (t, X} are known functions from H,, that satisfy the
du,
condition 5—]1‘—|xeag =0,qa,(tx)€E c (Q_) and o,(t,x)2€>0 in
A
0.
Consider the pseudo-hyperbolic equation

0’u du du
Lu=—r—o-+ A(—a—t-+k,u)+ C(x)-5+ D(x)u, (13)

ou  ou
ulr:o s b =0 = 0’ e
ot ot ,
Consider the case when f():H— W.. By Theorem 1, the

functional (12) is defined correctly and if the conditions of the theorem
are valid the optimal control exists.
Theorem 13. Consider the problem (13), (14) with right-

hand side f(.): H— W... Performance criterion is in the form
(12). If there exists a Fréchet derivative f 5 ():H— Wz_ of the

reon = 0. (14)

mapping f(-): H— W. at apoint h*, then there exists a Fréchet

defivative of performance criterion J(h) at the same point h*, in
the form

JO=(£-0), . as)

where V(t, x) is a solution ofthe adjoint problem

Lv=23 o (ut)-u)+2 3 Alefuery-u), (16)

i=] i=p,+1
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ov ov
v'::T =_é7|r=1 =O’ ‘a_ﬁ—

A

wean =0. amn

Proof. We shall give the increment Ah to the control A*

J(H +AR) -J(h") = ifoc,(t,x)(u(h' + Ah)—u, ) dQ +
i=1 Q

+ i fac 9 4 u(h + AR -4, ), (" + k)~ u,) dO-

i=p;+lg k=1

-3t e ofuth) - fao -

i=1 Q

- 3 [t 3 4, () =), u(h)-u,), dO =

i=pl+lQ k,1=1 ¥

f:foc,(t,x)(u(h' +AR) = u(A)uh® + AR+ u(h”) - 2u, 4O +

i=] o
# 3 [o,tn) 3 A futh + &y -uh)),
i=p1+lQ k=1

ulh" + AR +u(hy - 2u,), dQ -

- i J.ai(z‘,x)i/lkl(u(h‘ +Ah)_ui)xk (u(h‘)—ui )x,dQ+

i=pl+1Q k=1

+ 3 f 0,(,) Y 4 (u (" + ARy —u,), () —u,), dO.

i=p;+lg k=1

Since the symmetry of matrix {AU(X)};_l , each of the last

summands is equal one another.
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J(h' +AR) - J(R) =

P

}
i=]

J'oc,.(t,x)(u(h* + AR)— u(h") u(h® + Ak)+u(h”) - 2u PO +
g

* i J.OL'. (t,) EnlAkz (”(h* + Ah) '“u(h*))xk -

i=p+lg k=1

(e + ARy + u(B)-2u,), dO=

= ijai(t, x)AuZ(u(h*) -u, }I'Q + ij'oc,. (t, x)Au’dQ +

i=l g i=l g

+2 }ij feut,) Y 4, (8u), () -4, ). do+

i=p+lg k=1
P .
+ Y, [0, %) X, 4,(8u),, (), dO.
i=p1+IQ k=1

By the definition of bilinear form (') o We have

JH +AR)=J(h') =

) <Au,[2iai(l‘a x)(u(h*)'—ui)‘F
+2 iA(OC,-(t,x)<”(h*)“u,-))J> +

i=pl+l

+ 3 foenaidos 3 a0 S 4,(8), (8u), dO.

=l g i=p+lg k,i=1
It is clear that the function Au satisfies the following equation
LAu= f(h" +AR) - f(h"),
ot o =0, o,

x€0Q = 0

U, =
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Since f(h"+Ah) - f(h") €W, then by Theorem 2.3. there
exists a solution Au€ H, of the equation such that for all functions

ve W; we have
(Au,Ljv)Hz =(f(h" +8R) - (), v)W‘ . (18)

From another hand, it is clear that the right-hand side of (16)
belongs to Hz'.. That is why by Theorem 2.3 there exists an unique

solution of the problem (16), (17) V(£ x) € W and for all functions
ue H;

(L’;v,u>ﬁ2 =

- <2p20ci(u(h')~ui)+2 iA(oc,.(u(h*)—u,.)),u> .

i=p+l
Let u= Au and take into account (18)
J(h' +AR) = J(h') = ( FH + M)~ f(R), v>W S+

+ij.oc,.(t,x)Au2dQ+ z,,: foci(t,x)iAH(zxu)xk(Au)xldQ,

i=1 Q i=p+lQ k=1
Prove that the derivative J,. () is defined by expression (15). To

prove this consider

T+ 8k -JG) ={f- )Y, |<

< +

(S0 +am= )~ £, ah)Y),
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& i [ o, x)au*d] +
i=] Q

< (19)

2 joc @, x)EAk, Au)_ (Au), dQ

i=p+l 0 k,l=1
<|re +AR)=f ()~ f,, (Ah)"Wz; “v“W;‘ + M ||ulf, .
Since f.():H—> W, is a, Fréchet derivative of the mapping

f():H— W.,then Ve>0 35 >0: from inequality AR, <3,
we obtain

x . €
|l (" +ar)- 1(n)- fh,(Ah)“Wz: < e IA%]

From another hand, applying the Lemma 1.1.3, we have

sl <cllr (0 +an}- s ), <
< {| e+ an)- )= £ (o)), 4] fh.(Ah)”W_J <
< c(| 7(5 +8)- 7)- 7, on),, <] fh.(Ahﬂ'Wz_J <

<2d|f (" +an)- 1(n')- £, (Ah)”;: +2d||f.. (Ah)”;:.

Taking into account the definition of number &,, we have that from

the inequality [|AAf|, <8, it follows

MAuy, <

2cMe?

AR, +2cM A
AV =2 aa, +2em |1, O 6l



PSEUDO-HYPERBOLIC SYSTEMS 325

Let
g

S, =

2

2cMe?
4,
If ||AA||, < min{8,,8,}, then
€
Ml <,
Returning to (19), we have

J(h" +8h)=J(K) = (£ .(aR),V)

2

A2 eu, o

€ €
<l =+="11AA
(55 ol

that 1s what had to be proved.
Theorem 14. If under conditions of Theorem I3 the

mapping f ()H- Wz: has a continuous Fréchet derivative at

the
pointh*(¥e>0 B >0

Vhe Uad”h—h'n<5=>"Fk(-)—Fk,(-)"<8), then the Fréchet

derivative J, () is continuous at the point h* also.
Proof is analogous to that of theorem 2.1.4.
Theorem 15. If under conditions of Theorem 13 the

mapping f(): H— W. has a Fréchet derivative in a bounded
neighbourhood of the point h*, that satisfies Lipschitz condition
with exponent 0., 0 < <1, then the Fréchet derivative Jh ¢

satisfies Lipschitz condition with exponent O, also.

Proof is analogous to that of Theorem 2.1.5.

Consider application of the theorems in the case when the right-
hand side of the equation (1) is defined as £, (¢,x,h) (i=3,5). Asin
previous sections, assume that the set (Q is cylindrical with respect to
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space variable X, (Q=[0,T]x[)?l,3?'l]><9') and heU_,, where
U

ad
control H.
Let the right-hand side of the equation be in the form

£,y =Y 80x, = x, ) ® @, (£, %,,...,X,)
i=1 ;

is a bounded, closed, and convex set in the Hilbert space of

It is easy to show that f, € H..,thus f; € W Analogously to the
right hand side f,(h) it is easy to prove that the mapping
f;:H— W3.— has a Fréchet derivative in the form

o, of
-ax—3~=—8(1)(xl _x1,1)®(pi(t’x2r--3xn)’ a(; S(tl x["')'

1, !

Prove that the derivative f,,(;) satisfies the Lipschitz condition
with exponent 5 Consider
s ol
o,

I5.0-10]- 52

(fo, (AR = £y, (AR, V) I
= sup su z
ATV

Let v(t, x) be a smooth in Q_ function from W3.+. Consider the

numerator of the fraction

1={4, (Ah)—ﬁhzmh),v),,,s_ =

T
= _H.(Vx, (it By By s 1 B, (s 2y M x,,))(p‘,.Axl,,. +
oQ
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2 { 2
+v, & %% ,...,x,,)((p,. -O; )Ax,,,' +
1 2
+(v(t, X135y 3eensX ) = V(X110 X, ,...,xn))A(pidtdQ'=

1
x4

= sZ'.T[.‘. J.vxxxl (ta n x, "'“’xn)dn :'Ax]’i +

i=l 00" Xlzl

+v, (t,xﬁ,.;xz,...,x,,)((pl,. —(pf)Ax,,, +
+| [ vy 0%y, ) (A, didQ).

Applying the inequality

b ) d 2 -;-
megecotsd oo

and the Schwartz inequality, we have

1 — —

1
i X0

s 2 )2 .
|1|s2h [ J‘vf]_rl(t,n,xz,...,xn)dn oAy, [+

i=1 2 2
0@ X1, 1,4

(?viu,n,xz,---,x")+v;, (t,n,xz,---,x»dnglwi-wfllml,.-l t
b4

1
1 =7 1

+ x.lr an 2 X:fivfl(t,n,xz,...,xn)dn ZIA(pilde’,

Apply the Schwarz inequality again:



328 Chapter 7

s 1
DN ALY U N L
Ill —Z‘le,i xl,i Axl,i vxﬁl Ly(Q) (pi Ly((0,7)xQ") +
i=
1

3
+ |, ! - o B «OJW)( i v +vf,x,dQJ +

1 215
+|x.—x.2v ,
XX |

L (Q)'”A(p' ”L2 ((0,T Q) <

S

9 (CIR L R L
oh - JnAhnH,nvnW

Whence,
1 O-£,0] <

1

S

< 2B =Pl o ren *

2[ w R Ly((0,T)x) *
i=

1
T~ g P F |
Taking account that the set Ua , 1s bounded, we have

1 . . . ..
“(p,, uz,z((o,r)xg') < C. Therefore, f,, () satisfies the Lipschitz condition

. : 1
with respect to i with exponent -5 Then, by the proved theorem the

performance criterion (4) has a Fréchet derivative J, () in the domain

U, that satisfies the Lipschitz condition with respect to h with

1
exponent —2- and is in the form J s O)= ( f3 e (-),v) . If we consider
3‘

the performance criterion J(h) directly, we prove that
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JARCENAING

(X{,p‘h) (xu Py )

< Cg"@: - (piz "Lz((o,r)xﬁ') ’

In same manner we can prove that the mapping f, (h) has a
Fréchet derivative:

%-fti =50 (t-t)® iéi(x1 -x,;)®0,(x,,...,%,),
i j=l
aiﬂ =—5“)(xl"xl,;)‘gis(t“f.-)®(D,,-(x2,...,xn),
LJj i=1
ad
8:;3. =3(t=1)®8(x ~x,;),

ij
the derivative f,,() satisfies the Lipschitz condition with the exponent

-;—, and the performance criterion J(h) has a Fréchet derivative, that

satisfies the Lipschitz condition with the same exponent also.
Consider the other right-hand side

£t 1) =3 805, - a () @@, (t,%,r0x, ).

Prove that the mapping f;() has a Fréchet derivative in the form

Wy o 59 a1 @O0,
da,

Ls — (3, - a0,

00,

Actually, we have
v, (,(1),%,,...)) Aa, ()@, +

+(v(t, g(D+Aa (), x,,...) = V(4 (1), x,,...)) AQ,dQ’dt .
Whence,
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1=(f; (h+ 8h)= £, (h) - (gradf; ,Ah), )y, =

S

= H( (1,4,(¢) +80a,(8), x,,..) -

*1

UE ffJAa..a)f( f e x)d&] 0, +

+|Ag, ()2 [ [V x)ng AQ,ddt.

Using the inequality — Aa() e W'(0,T), we

max Aa ()| < d|Adll,s o 7, - Thus,

|z|<c2[z
<3l

— =
sJ — M|

)

1

<M. Al

W;,

E 3
vi]xl(t,x)d&dg'dt] l|Aa, (t)||;2. (mucp‘."h

Chapter 7

obtain

(ore) T

z \
; <r,x>dadsz'dr) Y% IOV N

In the same manner, we prove that the mapping f;, () satisfies the

Lipschitz condition with the exponent —

Remark that there is not any Fréchet derivative of the performance
criterion (12) when the right-hand side of the equation (13) is function

f,() (i=15), because the mapping f,() has not any Fréchet

derivative in the space W2:. To solve the problem, one can apply the

method of regularization of control.



Chapter 8

SYSTEMS WITH HYPERBOLIC OPERATOR
COEFFICIENTS

In many applied problems of science and engineering such as
movement control, information transfer, radiolocation and object
discovering it is necessary to solve boundary problems for differential
equations with operator coefficients [141]:

Lu=u,+Bu= f(t,x).

Such problems with certain restrictions imposed for right-hand side
were investigated for the cases of some operator coefficients B in
Banach spaces in the papers [78, 141].

In the cases when the right-hand side is a distribution of finite order
the analogous problem was investigated in [62-64, 142, 143, 144]. The
Cauchy problem when B is a generator of a semi-group was studied
in [30, 78, 145]. If B is self-adjoint and positive definite operator,
mixed problems for systems of differential equations containing the
first and the second derivatives were been solved with the analogy of
the Galerkin method in [146].

1.HYPERBOLIC SYSTEM WITH
OPERATOR COEFFICIENT

Let us consider a system governed by the differential equation
Lu=u,+Bu=f(tx). (1)
Let B be a hyperbolic operator defined by the expression

n

Bu = Z( s, )xi -Du,,

ihJj=1

where 4; = 4 ji(x) ) {AU }:j=l are functions continuously differentiable

in some domain Q, which is determined later and supposed to be



332 Chapter 8

sufficiently smoothin R", D(x)> 0 is continuousin & function. The

expression z (A,.juxj )x is supposed to be uniformly elliptic in & , i.e.

i,j=1

YALE zadE, a=const>0, R, i=1n.
= pecll '

The functioning of the system (1) is investigated in a tube
0 =(O,T )XQ , QC R™' is a domain in the space of the variables

(xl,...,xn, y) , ¥20, bounded by the characteristic surface of the
equation (1) (p(x, y) =0, so that the values of the component n, of

the outward normal is positive. The reader can be convinced in the
existence of such domains himself.

Let us introduce the following denotations: Wl; is a completion of
the set of smooth in @ functions satisfying the conditions
u|_, =ul_, =0, u|y=o =u, L:O =0, )
in the norm
1
”u”fm = f u’ + ZAijux,.uxj + Dui Q.
0 i, j=1
Wb} is a completion in the same norm of the set of smooth functions
satisfying the conditions
V|t=o = V|I=T =0, vLP(x,y):O =0,
W

A Wb ;+ are associated negative spaces constructed by the space
of square integrable functions Lz(Q) and W, , Wb: , Tespectively.

Lemma 1. For any functions uEWbZ the following

relation holds true
e <l

+ .
Wbd
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Proof. Let us prove the lemma for smooth functions u(z, x, y)
satisfying the conditions (2). By definition of the negative norm

(Lu, v) L
"LunW‘ = sup Wbd" = sup '( u’v)Lz(Q)I , (3)
bd* V#O‘ VH,, + vt
e b+d*

as far as for smooth functions wu(z,x, y) the bilinear form (-,-)W
bd*

coincides with an inner product (@gy):{]in L, (Q) We shall suppose

that v(¢, x, y) is a smooth in Q function satisfying the conditions

v|r=0 = vll:T =0 » v’(p(x,y):O =0.

Let us consider the numerator in the right-hand side of (3)

|(Lu,v)L2(Q)| = J.(u” + _Sn:(Aijuxj)x —Duw}vdé.
0 i ;

Using the integration by parts, the Ostrogradsky-Gauss theorem
and taking into account the boundary conditions, we have

J-u,,de =I (u,v), dQ —f uv,dQ=- J‘u,v,dQ
0 2 0

9
Applying the integral Cauchy inequality, we obtain

% A
[ dQ‘ fuvaols| [viao| | wdo] <l s,
) o o o
Next,
IZ( ) x) W@ = IZ(A,,ux v) Q- jZAu v, dQ.
giJj=l gij=l Q=1

Passing to the integral on the surface in the first term in the right-
hand side and taking into account the boundary conditions, we obtain

IZ(A U v) dQ = J.ZAuux v, dl'=0.

Qi.j=| rij=\



334 Chapter 8

Here n, is the ith component of the vector of the outward normal

to the boundary I'. Applying to the expression J-ZAquj vxldQ the
gij=1
Cauchy inequality, we have

/i s

n n n
I z A,.juxjvxidQ < J.Z A‘.J.vxivxj dQ _[ 2 A.-j“x,.“xj o | ,
Qi Jj=t oij=t ' Qi J=1
whence
n
f Y (A;,“x, )x vdQ| < [vll,+ [l -
Qi J=l L L

Then, we obtain with the help of integration by parts and the
Cauchy inequality that
A %
[vou dol<| [Dvido | | [Dujdo| < ¥l
Y @ 2
Using obtained inequality, we find from (3) that the lemma holds

U

+
Woa

true for smooth functions #€ Wb; . Approaching the limit, we prove
that the lemma holds true for any % € sz .

Lemma 2. For any functions V€& W;} the following

relation holds true

L'y

ey

Wb;*
where L' is the operator ofthe adjoint problem.

Proof. Let v(z,x,y) is a smooth function from Wb} . By the
definition of the negative norm, taking into account the smoothness of

the function v(z,x,y), we can write
Iy, = sup [l £v). o

LT
w Wya
A

Wya
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Let us consider the numerator in the right-hand side of the equality

(b0 ), o = ju(v +3 (4 x/)l—Dvw}’Q. @

0 i, j=1
Using the integration by parts, the Ostrogradsky-Gauss theorem
and taking into account the boundary conditions, we have

[w,d0| = |[(uv,),d0~[u,v,d0| <
Q Q Q
Integrating by parts the last term in (4), we have

fu( Sy, ) - v, }/Q [ 5y, ) do-

o \ b=l Qi =1

—IEA,,u v, dQ - juw dQ+ju Dv,dQ.
0 ij=1
By the Ostrogradsky-Gauss formula, let us pass to the integral on
the boundary I':

_[ i (uA,.jvx/ )x, dQ - J‘ (uDvy )de = J.u( ” ’A,»,-V,j n,—Dvn, de
i

ghi=l g r
By the condition u|y=0 = 0. For the normal vector we can write

V. Vy
n =_.._._'_._.’ N = —— .
K O 2,2 g o2, 2
EV +v EV +v
X y Xg y
k=1 k=1

J i(quij )x, dQ - J.(uDvy )y do=

0 i.j=l 0

1‘&?(‘;“ v, vaJd\‘:o,

Then,



336 Chapter 8

because the expression in the brackets coincides with the equation of
the characteristics.

To estimate the expression ZA v, » we use the Cauchy

i,j=l

if x

inequality. Then, using the integral the Cauchy inequality, we shall
prove the lemma for smooth functions V€& Wb}. The final step
consists in the passing to the limit.

Lemma 3. For any function Uu€E W;; the following
inequality holds true

”Lu”Wb—,f 2 c”u”Lz(Q) )

Proof. Let us prove that the lemma holds true for smooth

functions u(t,x, y) satisfying the conditions(2). For such functions

u(t, x, y) the following relation is valid
(Lu,v) L(0) >c||v”,,,,+ , (5)

where
v(t,x,y) = In u(t,x,n)dn
¢=0,y20
in the domain Q.

Indeed, by the definition of the function v(z,x,y), it belongs to

W, ,u=yv,. Consider the functional

bd
(Lu v Ly(0) = (u,, + Z(A U, ) = yy,v] . (6)
L,(0)

i, j=1
Using the integration by parts, the relation between u(z, x, y) and
v(t, x, y) and the Ostrogradsky-Gauss formula, we can write

Ju,,de =f (uv),d0- fvtyvy,dQ = -f v, dQ =
Q o Q

@



SYSTEMS WITH HYPERBOLIC OPERATOR... 337

1
2 2
=——j dQ+ j,dQ=-jv,dQ. 0
Q 2 1
In a similar way we investigate the second term in the right-hand
side of (6):

[Z(A o) L(Q [ 34 v) J0-

X

i, j=1 Q’] 1
[0, 40 55, A, d0- ®
pi.j=l ! Qi j=l ’ '
= ——I Z(A,jyvxiv ) dQ +_J. ZAUVY Ve, Q.
Q,, =1 Q‘J 1

Next, for the third term in the right hand side of (6) we obtain
- vau dQ= f vDu,, dQ +J.v Dyv,dQ + )

2 2 2
+'[Dvde = EJ. yDvy ) dQ+EJ‘Dvde :
o Q o
Add the equalities (7), (8) and (9):

1 n
(o[ S, -

Q i,j=1

(10)
___J‘(zAuy VoV, —yDv ]dQ
o\ iJ= | »

The second term in the right-hand side of (10) equals to zero, since
the integrand expression coincides with the equation of the
characteristics on the characteristics ¢ =0. Hence, the relation (5) is

valid. Using the Schwarz inequality, we obtain

Ml <L)y 0y <My L0l - -

w+ -
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Reducing both parts of the inequality and using the

relation between u(t, x, y) and v(t, x, y) we prove that the lemma
holds true for smooth functions # € W;; . Passing to the limit, we prove
that the lemma holds true for any function u € Wb; .

Lemma 4. For any function V€ Wb} the  following

inequality holds true

Wy = c”V”Lz(Q)

Proof. Let v(t,x,y) be a smooth function from Wb); . Let us

prove that for such functions the following relation holds true:
* 2
(1200 Il a

where
y

u(t, x, y) = =[ (e, x,n)dn

0
in the domain Q. By the definition of the function u(, x,y), it belongs

to the space W' , v =— y’lu . Consider the functional

bd ?

(u,L*v) (u v, + 2( ” x}) } (12)
; L(Q)

i, j=1
Integrating by parts and applying the Ostrogradsky-Gauss formula
we obtain

Iuv,,dQ =_|‘ (uv, )t d0 + _[u, y'u ,40 =

o 0
=-;—£(y“uf)de+; £ uldQ 2~ fy‘zuz (13)

In the similar way consider the second term in the right-hand side
of (12):
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( Sy, )‘lz(g) =[Sy, ) ag-

i,j=1 =
_IZ Uy J x/dQ J‘EUAUV n, dalr +
gi=! riJj=l
(14)
+J‘2uxA,jy u, dQ= J.ZuAJ y n dl+
ohs! Ti =l
_J.Z(A,y Uy Uy ) Q+—.(.Zy Au LR dQ
2505 2254
Consider the last term in (12):
—<u’DvW)=_J.(uDvy)de"jllyDy-luyde.;.
e 0
* J'Dy_zuidQ = _[uDvynyd[“ _
__J' -, 2 dQ+‘ij'2 de -

Add the expressions (14) and (15):

Sl -0, -

i, j=

:-J‘y [EAqu'ux + Du }VQ+

i,j=t

+JJ—[ Auvxlvx/ - Dv )a'l‘
Yol w? h!
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since,

v, v,
n =, A S e
4 n Y n
2 2 2 2
v. +v 0 %
Xk 1y Xy '
k=1 k=1

The last two expressions in the right-hand side of (16) equal to zero,
since it equals to zero on y = 0 and contain the expressions, which
are equal to zero on the characteristics.

Adding the inequalities (13) and (16) and applying the Schwarz
inequality, we obtain

VA
{Jy’zDuydej "u”WM < (u, L*v)LZ(Q) < |4 - |L*v v
o
Reducing both parts of the obtained inequality by ||u”m and taking

into account the relation between u(t,x,y) and v(t,x,y), we obtain

that the lemma holds true for smooth functions v€ W;; . Passing to

the limit, we prove the lemma for any functionv € W;;
The proven lemmas imply Theorem 1.
Using these lemmas and the results of Section 1.1, we have
Theorem 1.For any function f € L(Q) there exists a

unique solution of the problem (1), (2) in the sense of
Definition 1.1.

Theorem 2. For any functional f € Wb} there exists a

unique solution of the problem (1), (2) in the sense of
Definition 1.4.



SYSTEMS WITH HYPERBOLIC OPERATOR... 341

2. GALERKIN METHOD FOR
DISTRIBUTED SYSTEM

In this section we study the Galerkin method of approximate solving
distributed system. Let the state function satisfies the boundary value

problem from Section 1,

0’u

Lus——+Bu={f,
ot 4
where f € LZ(Q).

Consider an approximate solution in the form
t r Z gt x y), (1)

where ©, (x) is a twice contlnuously differentiable function, that

satisfies boundary condition of the problem, the set {a(P,(l),y} is

total in Wb; , and the function g,(t) is a solution of the set of

differential equations:

;glm(amiy’w ) —zgk (amxy’B(D ) L) =(ami)"f)L2(Q)’ (2)

where

gk!t.—_0=gkl,-_-r=0; k=1 1
a=a(y)< Oa,2c >0, a% S¢,<oo on the surface

(p(x,y) =0,y 20.
Relation (2) can be written in the form

(a0, Lu, ), o =60, 1), o 3)
Theorem 1.For all functions f(t,x,y)e L (Q) the

approximate sequence {lln} converges to a solution

n=1?



342 Chapter 8

u(t,x, y)e W, in the sense that there exists a sequence of

functions u, € C; : (Q) that

u, u”Lz(Q

Proof. Multiplying both rlght and left hand s1des of the equality
(3) on the function g, (z‘), summing up over i from 1 to n and
integrating with respect to ¢ from 0 to 7, we have

(au”y,Lu )Lz(Q) = (auny, )Lz(Q)' %)
For all functions # € Wb; let us prove the following inequality
(auy,Lu) (6)
Assume that u € Cb2 y (0). Consider a functional
Jd , 0
(au ,Lu) =|au,u, + ) —A4, -—u-—D
Y LZ(Q) i, j=1 ax y a’C

LZ(Q)
Consider the every summand of the right hand side, separately. We
have

1/ 1 5
au u =(au u) ——lau ) +—au’;
y Yyt y 2 t/y 2 yt

auy(Aqu ) =(auy Au ) —(aux Ap, ) +

X, 7%, i iy
+a Ayur i + (auxi Ay”y)xj —au, (A,.juxi )Xj.
Summing up the equality over i and j from 1 to n and taking into
account that A,.j = Aj,., we obtain

ia”y(Ag”x,) i(au A,,”x, )X _%i(a“x,-AU”x, )y +

i,j=l e i i,j=

+—Za Au u

ljxl X
,Jl

Next, we have



SYSTEMS WITH HYPERBOLIC OPERATOR... 343

1 1
~auDu = —E(aDu:)y +-a,Du;.

Integrate the expression over (, and take account that

ult,x,y)e Cbzd(Q).
J.auyuudg = J‘(auyut ): ag —%J. (au[2 )y dQ+ %J.ayutde.

Qo 1Y) o 0
Passing to the surface integrals, we find:

j-(auyu, ){ dQ = J.auyu,n,dl“ =0,
0

—-—J. au dQ—— fau n, dl" 2 0,

l"

In the second expression we use inequality an <0 on the
characteristic surface (p(x, y) =0,y 2 0. Whence, we conclude that

J.auyu“dQ > %.l;‘aufdQ.

0]

_fjauy(AUuX/) dgQ —jZ(au Au, ) dQ-

Next,

Q= Q hJj=!
—_J‘Z(aAu”x,ux ) dQ+= IZa A,,”x,“r do;
250 2065
- fal‘yD“wdQ = —%g(aDui )y dgQ +-;—£ayDuyde.

Consider the following expression

'[ 2‘ (aA,.juyu,\./ )x dQ- —J. 2 (aAqulux ) %J' (aDu ; )y do.
QhJ= Q ij=I 0
Pass to the surface integration
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J. XaA U U n ’%XGAU“X,.“X]% —-%aDujny

gy X
T =1 ij=l
We have
n n
J- .ZlaAijuyuxjnxl - .ZlaAijux,uxj n, +
L= i, J=
i )
+= ZaA uu, n, —=aDun, \dr.
l J=l 2
Consider the one part of the upper expression
n n
j ZaAUuyu,jnxi —ZaA,.juxiuxjny ‘ (8)
r\ ij=l i,j=1

=0.

By the data ”Ipo =0, and hence u_ .
Jiy=

On the characteristic surface the co-ordinates of the normal vector
satisfy the equality

u, u,
n = T —mmeee,
! ) 2 g N o 2
Zu +u Zu. +u
X Yy Xk Y
k=1 k=1

From (8) we have

au, n
_[ Au u EAu u,  |dlI' =0.
n . §ox, 7y e ;
r 2 2\ HJ=
E u +u
X y
k=1

Consider the other summands of (7):

1 ¢ 1 2
I > zaA,jux,ux/ny —EaDuyny
r i,j=l1
It is easy to see that on the characteristic surface the integrated
function equals to zero.
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By this reasons, the inequality (6) is valid for all u € Cb2 d(Q).
Passing to the limit, we prove the inequality for all functions
u(t,x,y)e W,..

By the inequality (6) and the Schwarz inequality

= <
(au ,Lu )IQ(Q) (au"y,f)Lz(Q) <

Khe oW
s[jazujydg) (jfzdg] <c,
g

v W e

o
dividing by “”n “W;d’ we have

, Sellfll

From the inequality we conclude that there exists a weakly

convergent subsequence {un }: . Let the subsequence {u”k}:l
£ k= =

converges weakly to a function @€ W+ By the Banach theorem
there exists a subsequence {“n,, }“ that the sequence u = —Zu
4 “i=t

i=1

converges to the same function # in norm of the space Wb J

0.
Woa 77

i, -4

Multiplying the both right- and left-hand sides of (3) on a function

(p,.(t)e W, ;* (0,7') and integrating with respect to ¢ from 0 to T, we
have

(VL) =(v,. 1), i=T o

where aQo, =V,

Consider fundamental sequence {ﬁ. - . By Lemma 1.6.1. we have

"z?,.—ft I "L(u 7 )" —“Lu -Lu, “ v

ybd
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and hence
— 0.

wo, e
Jo=

"Lﬁ. — L |
4 J

Since the sequence {Li}. is fundamental in the complete space

i=|

Wb} , there exists a limiting function f of the sequence
s, - 7. —==0.
bd*

Show that 7 = f in the space Wb; . By (9) and the definition of

function #, ,we have the following equality

(Wi f)=(w,Lu,)=(v,Li,). (10)
By the Schwarz inequality,

(\[I,.,Lﬁ" _jr> SHW"”W,,} La, —-}“Wb_d‘*'

The right-hand side of the inequality vanishes as # — o°. From (10)
we have

(W /Y= (W, Fhi=12,. an
Since the number i in (11) is arbitrary and the set of functions
{\p[}; is dense in the space Wb; we obtain f = f . That is why

and therefore the function u(z, x, y) is a solution of the problem in the

+2

ﬁv - u“Wbt, v—yoo 0’ ”Lﬁv - f”Wb-J* v—yo0 O’
sense of Definition 1.1.1. Since the imbedding operator of the space

W, in L, (Q) is compact, the chosen weakly convergent
subsequence {”n,, };_1 converges in the space Lz(Q), hence,

u(t,x, y) is a solution of the problem in the sense of Theorem 1.

Remark. There is no necessity to choose a subsequence
because itfollows from the results of Chapter 1 that there exists a
unique solution ofthe problem.
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3. PULSE OPTIMAL CONTROL OF THE SYSTEMS
WITH HYPERBOLIC OPERATOR COEFFICIENT

Consider the problems of impulse optimal control (Section 3.6) for

the systems with hyperbolic operator coefficient
2

o°u
Ly =—+Bu=F.
ot
The denotation is the same as in Section 6.1.
Consider the initial boundary value problem

Lu=f + A(h), 1)
du
= = O, == =0 2
ul!:() ult:T uly-O ay 0 ( )
Complete the table of the template theorems of Section 3.6.
Table 1.
N Operator Space N Space W~ (Q)
] I0) L,(0) W
73 () W, L,(0)
Table 2.
N Operator 4(*) Space W~(Q)
1. ) -
4() W
2. : -
4,() W,
3. d -
4,() W
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Table 3.
N Operator L() | Space w=(Q) Space W*(Q)
1. L(}) &/ W),
Table
N Space 7 (Q) Mapping 4, (")
1.
Table
N Operator L() Space
w(Q)
1. . -
L() W
Table
N Operator 4,(*) Space W ~(Q)
1 . y
4() W
2 . =
4,() "
3, . -
40
Table
N Exponent o Space W"(Q) Mapping A4 ()
1. 1/2 S .
W, 4,,()
2 1/2 - .
s 4,.()
3. 172 = .
bd* AS‘E( )




Chapter 9

SOBOLEV SYSTEMS

In the chapter we study systems that don’t satisfy the conditions of
the Cauchy-Kovalevskaya theorem. These systems were investigated
in [147-150].

1. EQUATION OF DYNAMICS OF VISCOUS
STRATIFIED FLUID

Many applied problems (such as oceanographic research, oil
barging, etc.) are described by the dynamic equation of viscous
stratified fluid.

In the papers [151, 152] the equation of dynamics of plane motion
of viscous exponential stratified fluid was obtain by Boussinesk
approximation:

az a 2 2 2

—Au~v—Au+wu_ =0, (x,x,)e R,

ot ot i
where A is the Laplacian. In [152] the solvability of an initial boundary
value problem for this equation is studied. There were shown the
existence and uniqueness of a generalized solution with the right-hand
side from the negative Hilbert space with respect to X variable.

In this section we study the optimal control problems of the
generalized dynamic equation of viscous stratified fluid with the right-
hand side from the negative Hilbert space with respect to t and x
variables.

Consider the system

2
Lu=¥Au+—%B2u+Cu=f, )]

Ju ou

_|r=0 =Y, ulxeaﬂ =
at auB x€0Q

=0, )

“lr:o =
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in the tube Q =(0,T)XQ, where Q CR" is a regular domain with
boundary 0Q 9 9 is the co-normal derivative, [i, =£¥-, il is
My IBnl

the normal vector to the surface 0Q, B= {BU}: is a matrix of

elements B, (x).

Operators A(): B() and C() are defined by the formal
expressions:

Au=- \ _a._ Aﬁ.l_ ,
| Vox,
) i J
Bu =- \ _a__ B’.j—al ,
,.,,=lax,.‘ 0x,

Cu=-3'9 c‘,]ﬁ”_
= ,ax Ox,

with sufficiently smooth coefficients in a closed domain Q. We

assume that the coefficients satisfy the following conditions:
A4,(x)=4,(x), B,(x)=B,(x), C,(x)=C,(x) for-all 1<, j < n.

ij g Y

Assume also that for all real & ,i=1,n:

Ei S ALE, ”Zi

ij=l

7»2& ZB,,éé NZ&,,

i,j=1

o< $icg S

i, j=1
where A, A - A, are positive constants.
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Let L2 (Q) be a space of measurable, squared integrable functions,

Wb:, be a completion of the set of smooth in Q functions, that satisfy

conditions (2) in the norm

i,j=1

=] (2 £yl }d ()

Wb} be a completion of the set of smooth in Q functions, that satisfy

adjoint conditions
ov ov
or =5 =0Vl =5—| =0, )
at t=T l:['1:? x€3Q

in the same norm (3).

Let W, W be corresponding negative spaces.

Prove the followmg lemmas.
Lemma 1. For any function uU€E Wb; the following

inequality holds true
e, <

Proof. For smooth functions u(t, x), that satisfy the conditions

(2), we study the following expression

“L“”W = Sip Kzuvl sup !(Lu’v)Lz(Q)
Ml |

®)

vz0

+
veW ve od*

where <,) is a bilinear form that is defined on Wb} X W; (}
Applying integration by parts and passing to the surface integrals,

we have

I(Lu, V)LZ(Q)I <

J. —a—Au +2-B2u + Cu}'Q
ot ot
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(6)

J.ZAUV,X u, dQ‘
Qhj=l

Estimate each summand in the right-hand side of the inequality (6).
Taking into account the Schwarz inequality, we obtain

Al A
IEijvu u,x dQ| £ I(ZAU Vi J ( A U Uy J dgQ| <

Qi =l o\ &=l i,j=1

(J.ZAU & ’x QJ (J' ZAU“:X U, dQ]
g =l ghJ=l

. Vi . VA
fie
Q i=l Q i=l

To estimate the second summand of (6), we use the Schwarz
inequality and coefficient boundedness of the operator B :

j (Bv)(Bu,)dQ

2 vx x; 2 urx, X,

i,j=1 i,j=t

j (Bv)(Bu,)dQ|+

f 2 Cyvx u, dQ.

ohJj=l

<[Vl ) 1B 0 =

<c

<clpl.
L,(Q)

L, (Q)
In the same manner, we show that

Iijvx u do|<
Qi, J=1 !
Taking into account proven inequalities and (5), we obtain the

desired inequality for smooth functions u(f,x)e G (Q). Passing to

the limit, we have the inequality for all functions u# € Wb;
In the same manner we prove the following assertion
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Lemma 2. For any function veE W;} the  following

inequality holds true
o

Wy S C”v”Wb} ’
where L'(-) is the adjoint operator

.9 9
Lv=—-—2-,Au——Bzu+Cu.
ot ot

Lemma 3. For any function ue€ Wb; the  following
inequality holds true

NLullyg, 2 cliell., )

Proof. Show the desired inequality for smooth functions u(t, x)
that satisfy the conditions (2). Consider the auxiliary operator

t &
v(t,x) = [ o) w(n)un, x)nd,

where
o(r) = exp(- 20 A2 (2 +2)exp(T —‘t)),
() = exp (- 2007 (¢ + 2)exp(T <1) +T ~1).
For the functions u(t,x),v(t,X) prove the inequality
(v, Lut) ) 2 C”V”;zyb; .
Since the function u(t,x) satisfies the conditions (2), then the

function v(t,x) satisfies the conditions (4). In addition the functions
u(t, x),v(t,x) satisfy the following relation

u(t,x)=exp(t—T)v,(t,x)= 2K A (¢ + 1, (¢, x).
Estimate the expression
(v L)y, ) = (“ ’L*V)Lz(Q) =
=(exp(t =T, - 250 (£ +1,, Lv),
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Employing the integration by parts and passing to the surface
integrals, we obtain

(v, Lu) ) =
= (exp(¢ =T v, - 2K X (¢ +1)v,, Av, — B, +Cv)

Lie) ~
= (exp(t=T)v,,Av

o A0t

+(G exp(t—T)+ 20 (¢ + 1)JBV, ,Bv,) "

Ly(0)
+L+ L+ L+ + 1 +1,
where

I =~(exp(t-T), Cv +)»1}» (v Av)

2 -2 (ZV,x }dQM_ ( ]V'Q U

I, = 2((exp(t T)+2?» A )v Cv) 20,

= Len By [, 20,

1 - o
I, =-—2-exp( )(v Cv) )I '*'}\Al}"é(vnAV:)Lz(g

>——x exp(~ f(z 1=0dsz+x I(ZV,XJ 20,

=0

I =}\.A]}»C(V,CV)LZ (Q)LO =20,

20.

t=0

I = -él-}»‘cl exp(-T)((v,-=v) C(v, —v))Lz(Q)

Thus,
(V:Lu)LZ(Q) [( n’Avu Ly(Q +“BV ” ] (7)
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Using inequality of coercivity [74] for uniformly elliptic operator B,
it is not difficult to prove, that

] b
nBvuLz(Q)z{ (2. }zQ} |
[} i, j=1

From the estimate of the norm of the elliptic operator B , we have

(00 Lo 2] (2 3, ]dQ =,

i,j=l
Applying to the left-hand side the Schwarz inequality, we find
I v, Lu

then
WLy =z |l -

From the relation between u(t x) and v(t x) we obtain
bl 0 = e (e =TI, — 2200y || s S el g <elbly

ATTC Tt

Thus, for all smooth functions u(t, x), that satlsfy the conditions (2),
the inequality in Lemma 3 is proved.

To prove the inequality for all functions €& W; , we employ
passing to the limit.

Lemma 4. For any function vE€E W;} the following
inequality holds true
2zl

Proof of Lemma 4 is much analogous the previous proof. The
auxiliary integral operator is of the form

u(t,x) = [ @) w, (), xkindE
where

0, ()= exp(- 2N (T -t + 2)exp (7)),
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v, (6)= o] (t)exp().
Theorem 1. For any function f € LZ(Q) there exists a

unique solution of the equation (1), (2) in the sense of Definition
1.1.1.

Theorem 2. For any function f € W;+ there exists a

unique solution of the equation (1), (2) in the sense of Definition
1.14.

2. ONE SOBOLEYV PROBLEM

Consider a function u(f,x) that is a solution of the following

differential equation:

aZ
Lu= A[—z‘}r B(u)=F 6
ot
with boundary conditions
ou
ul_ =‘(,;|,=0 =0, u],;0=0, )

where A, B are differential operators:

=320 49) g O|p)
ij=lax- Y ox, Shox,| Yox,
, i J Jx, W i i

where 4, =4, (x), B, = B,-,-(x)’ {A.

}" {B }" ti 1
i J; i = are continuous y

.’j=l b
differentiable functions in the domain €
The differential operators (3) satisfy the following conditions:

' 4,(xEE, 2aX e, 3B, (xEE, 20, @
i,j=1 =l 1

We study the system (1), (2) in atube Q =(0,7)xQ, QCR".

n

iJ=
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Let Wb; (Q) be a completion of the set of smooth in Q functions,
which satisfy the following conditions

du
u!=0 =§Ir=0 =0’ ulxeaﬂ =0
in the norm
”u":”;d = J[EAU xt xl + EBU XX J b (5)
o\ ij=l i,j=1

Wb} be a completion of the set of smooth in O functions, which

satisfy the adjoint conditions

W, =v].,=0, V] 0 =0, (6)

xe0Q

in the same norm (5), W, Wb;+ be corresponding negative spaces.

bd’

Lemma 1. For any function u(t,x)€ Wb; the following
inequality holds true

L, - <
bd

Proof. First prove the inequality for smooth functions u(¢,x)

which satisfy the conditions (2).
By the negative norm definition,

e, = sup K2l g [0 L0
W

0
” "W" v#
vel * veW*

bd*
Applying integration by parts and passing to the surface integrals,
we have

P(wd ), 3 dwd .
ng(M%XA'fK}Q'Iat( at,;?ax—. > }4
v
_j 1ax( ’axat}dQ+'[2Aj itk dQ =

: ™)

QiJ= Qi J=l
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—J‘Z uxt xt

Qz W Jj=1
Employing the Schwarz inequality, we obtain

7 (@ 0
ivat (Zax Vo,

i,/=l
In the same marfiner estimate the other summands of L :

fzx 'fax 50" JZax( Vox, }Q_

Ij—l Qi =l
—J.ZBUVX u, dQ =

Qi, Jj=l
Substituting these inequalities into (7) and dividing by ”v"W+ , We
bd"

obtain the desired inequality for smooth functions u (t, x), which satisfy
the conditions (2). Continuously extending the operator L to the space

W, , we have the inequality for all functions.
Lemma 2. For any function v(t,x)€ W;;+ the following

inequality holds true

nL*v Wop =

Lemma 2 is proved in much the same manner as Lemma 1.
From the proved inequalities it follows that the operators L and

L*(-) can be extended to the continuous operators mapping Wb:, and

W* into W™, and W_

y ot L > Tespectively.

Lemma 3. For any function u(t,x)e Wb; the following
inequality holds true

e
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where H : , s a completion of the set of smooth in Q functions,

which satisfy the conditions (2), in the norm
n
JZ Au, uxde .
Qi ,J=1
Proof. First prove the lemma for smooth functions u(t, x) that

satisfy conditions (2).
Consider the auxiliary functions v(t, x) of the form:

v(t,x) = j[tg(n%T)+1ru(T,x)dT

It is obvious that v € W+ . Prove the following inequality:
(v,Lu), (8)

Employing the integration by parts and takmg into account relation
between u(t,x) and v(¢,x) , we obtain

. 2
[v 24 %0
5 ,j_la dr, 7 0x,

ou
= S R A ?
'Q[(lj—]atax A‘jax}dQ J. ( 112‘] u }’ ()
T 2 2 Tt
+ _"J‘ 2 vrx, Aij cos 2 -27-‘)“1 dQ *

+ J(tg— + 1)2 Ay, vm

i,j=1

Passing in the formula (9) to the surface integration and taking into
account boundary conditions, we have

J' 8 8 Q>cJ’cos -2——‘ZAuvmvu ag. (10

‘/
Qo lJ"]at ax ax Q i,j=1
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In the same Way consider the other summands

.[Zax uax =402 J.COS _ZBU x,vde (11

i,j=l 1 Jj=1
Adding (10) and (11), we obtam (8). Applying the Schwarz
inequality to left-hand side of (8), we have desired inequality for

smooth functions u € Wb; Passing to the limit, we obtain the

inequality for all functions u € W), .
Lemma 4. For any function v(t,x)€ W;} the following

inequality holds true

”L*V"W,;, 2 c”v H

where H;w is a completion of the set of smooth in Q functions,

3 H
+

which satisfy the conditions (6), in the norm
M, fZA,, v, d0.
Qirs=1
The operators L and L are defined by the same differential

expression but D(L) # D(L). Lemma 4 is proved in much the same
way as previous one. The auxiliary function is in the form

u(t,x) = —j[ctg(n%T)+ 1Tlv(T, x)dt.

Theorem 1. For any function f€ Hz:d* there exists a

unique solution of the equation (1), (2) in the sense of Definition
1.1.1.

Theorem 2. For any function f € Wb} there exists a

unique solution of the equation (1), (2) in the sense of Definition
1.14.
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3. PULSE OPTIMAL CONTROL OF THE DYNAMIC
EQUATION OF VISCOUS STRATIFIED FLUID

Complete the templates of the theorems of Section 3.6

Table I.
N Operator Space N Space W_(Q)
s 1) Lz(Q) W;;
Table 2.
N Operator A (") Space W_(Q)
1. Al(.) W_+
bd
2. Ag(')1k=1 W_+
bd
3 A3() W_+
bd
Y A() W
bd
) . -
20
Table 3.
N Operator I{-) Space W_(Q) Space W+(Q)
1. ll() ;V'_+ ++
bd bd
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Table 4.
N Space W'(Q) Map A ()
1. W Al()
bd
2: W_' Ag(')
bd
3. I/V_+ Aq ()
bd
4, W“+ As(')
bd
Table 5.
N Operator I(-) Space W_(Q)
1. L) w-
bd
Table 6.
N Operator A, () Space W_(Q)
1. A () W,
bd
2. Ag () ' k=1 _+
bd
3. A,(%) W,
bd
4. A;() W_+
bd
5. : -
A() W
Table 7.
N Exponent o Space W'(Q) Map 4 ()
1. - g
1/2 =, 4,()
2. 12 W, 4,,()
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Table 7 (continuation)
N Exponent o Space W"(Q) Map 4, (")
3. 1/2 b;+ AB,e ()
4. - :
1/2 pd* A4,e( )
2 - i
2 2.0
4. PULSE OPTIMAL CONTROL OF ONE
SOBOLEYV SYSTEM
Using the templates of Section 3.6, complete the tables.
Table I
N Operator Space N Space W‘(Q)
L. L) H, s
2' l’{') Wb-:" H;d'+
Table 2
N Operator A,(-) Space W’(Q)
L A() "
bd
2. ( ) -’+ ] - +
bd bd
3. A‘l( ) ¥ +
bd
4. ik g
A0
Table 3.
N Operator () Space W_(Q) Space W *(Q)
1‘ 'L() W_.. ++
bd bd
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Table 4 isempty.
Table 5.
N Operator {-) Space W~(Q)
1. ~ L) =
bd
Table 6
N Operator A,(-) Space W™(Q)
L A() ”
bd
2' ( ) W_‘+ ’H_ +
bd bd
3. A,() =
bd
4' s -
Aﬁ( ) Wbd* ’Hbd*
Table 7.
N Exponent o Space W'(Q) Map
4,0
1. 172 - :
W, 4.,.()
2 12 = ;
W 4,,()
3. 172 - - :
bd* > bd* A]e( )
4. 172 . ;
bd‘ A4,E( )
>, 172 - - .
Wbd* > bt AS‘E( )
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CONTROLLABILITY OF LINEAR SYSTEMS
WITH GENERALIZED CONTROL

1. TRAJECTORY CONTROLLABILITY

In investigations of various dynamic systems the problem of its
controllability is one the most important.

The problem of the controllability was studied in [6] for the linear
ordinary systems, which allow the generalized controls. It was pointed
out there that the introduction of such controls does not extend the
conditions of the complete controllability. In the case of distributed
systems the situation is much more difficult. It was shown in the paper
[14] that the solvability of the problem of the controllability for
distributed systems with a point control significantly depends on the
fact whether the point of the control application may be approximated
by the Diophant approximations well enough. Various conditions of the
controllability of lumped and distributed systems were obtained, for
examples, in [30-32, 84, 86, 153-157, 177].

Let M =][/]|,,:-/ be a solution of the problem (1.1.1.12). By
controllability of the system (1.1.1.12) we shall mean the possibility to
reach any state u(t,x) as a result of admissible controls 2 € U w10
investigate the controllability, it is necessary to study the properties of
the operator L . This problem is solved with the help of the apparatus
of equipped Hilbert spaces and inequalities in negative norms [63, 122,
142, 143, 158-162, 177], and also with the help of correspondent
inequalities in positive norms, which follow from them.

Definition 1. The system is controllable in a Banach
space W by the set of admissible controls U, if the set

{u (t,x;h)lh eU, d} covers the space W, Le.
Vz(t,x)e W3h e U, : ult,x;h,)=z(t,x) in W.
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Definition 2. The system is €-controllable in the Banach

space. W by the set of admissible controls U_, if the set
{u (t,x;h)lh eU, d} is dense in W, Le.
Vze'L,(Q)Ve>0 h, €U, such that
lpe(r,,.)- 2|, <& )
Let the following inequalities in the negative norms still hold true for
ult,x)e W vt,x)e W,
liell, < Clally . < Cllullyy we Wi
+1 (2)
Mlg:, < C[|E o SCalllly ve WL

The inequalities in the negative norms and the results of Section 1
imply the following theorems.
Theorem 1 .If operator A() maps U_,C H surjectively

into the whole space Wb;ﬂ then the system (1.1.12) is controllable
in the space W;;I.

Proof. Let u"(¢,x) be an arbitrary element belonging to WE:,I.
Due to the inequalities (2), we obtain that Lu" (¢, x) € W;;ﬂ . As far as

the operator A() surjectively maps U _, C H into W;;ﬂ there exists
such element A" € U, ,cH that A(h*) =Lu*(t,x)—f in W;;i :

Hence, by Lemma 1.3, we obtain that

(ACEBETACE) ST FIGOEWES APy Bl

where u(t, x;h") is a solution of the problem (1.1.12) with the right-
hand side A(A")+ f in the sense of Definition 1.1.4. For this reason,

u(t,x;h"y-u"(t,x)=01in H,

., » and hence, in W;:,[ also. Taking into



CONTROLLABILITY OF LINEAR SYSTEMS ... 367

account that (¢, x)€ Wb: , we conclude that u(¢t,x;h’)€e Wb;[+ It

follows from Lemma 14 that #(f,x;A") is a solution of problem
(1.1.12) in the sense of Definition 1.1 also. Thus, the system is

controllable in Wb:;l.

Theorem 2. Ifoperator A() maps U, ,C H in Wb'd’ S0
that the set AU ) is dense in Wb;ﬁ, then system (1.1) is €-
controllable in H,,.

Proof. Let u*(t,x) is an arbitrary element belonging to H b+ e

+

Since Wb;[ is densely imbedded in FH,,, there exists a sequence

u'(t,x)e w*  such that llu, —u’|| , ———0. Consider
k bd k HY, k—eo
bd

Lu,(t,x)e Wb" with fixed k. As far as A(U,) is dense in I/Vb:il"’

d#

there exists a sequence of controls h: . such that

|r - L

——=—0. Choose such i=i(k)e N that

W—l
bd
uf(hi(k),k) —Lu,

the problem (1.1.12) with the right-hand side A(k;,,, )+ f in the
sense of Definition 1.1.4. Granting Lemma 1.3 we obtain
Iu. —u*l

*
i)k uy, = "ui(k),k - ”k|

< c”f(h,.(k)'k)— L"k"w-} +|
b

1
<—.Letu

w' Tk ik u(t,x;h‘.(k)‘k) be a solution of
bd

<

+ -

Hbd

+ "zf u
Hyy ¥

s,

bd

u, —u
C * *

S—+"u -u ” —>0.
k k HI:J k~yo0

In other words, the system is € -controllablein H, .
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It is well known [78], that the linear span of the functions

M ={g(t)- ofx)}, g(t)uC (0,T), w(x)e C;(Q) is dense in the
set L,(Q),, and hence in W;:ml+ ® L,(Q). also. On the other hand, it

is easy to prove that the sequence
zg t_t ( )(tx+]_ti)

converges to the function g( Jo(x), as the diameter of the

decomposition T ={t, 4,.,. t+1} of the interval (0,7) tends to zero.

Thus, the set
{gs(t—t,. )cp,.<x>}

is dense in W2 - ®L (Q), and hence, the previous theorems are

valid in the case of pulse controllability.

2. TRAJECTORY-FINAL CONTROLLABILITY OF
SOME LINEAR SYSTEMS

The problems of controllability of linear systems have one essential
difference from the classic problems for systems with concentrated or
distributed parameters. In this problems it is necessary to provide the
required state of the system with the help of controls during the whole
time interval of the system functioning (trajectory controllability) rather
than to transfer the system into a desired state in a finite time interval
(final controllability).

It is naturally to consider the problem of the final controllability in a
finite time interval in the case of linear distributed systems with
generalized controls. The singularity of the right-hand side makes this
consideration difficult enough, since the function u(7,x), x € €2 may
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does not belong to L, (Q), but it may be an element of some negative

space.

However, in the case of hyperbolic and pseudo-hyperbolic systems
it is possible to obtain a positive results concerning the final
controllability in a finite time interval. Moreover, it is possible to provide
the desired state of the system with an arbitrary given precision (in an
integral metrics). Thus, we may say about the trajectory-final
controllability.

Let us consider in detail the system described by the Newton
pseudo-hyperbolic initial boundary value problem.

Let Q be a bounded domain in R" with a regular bound 0Q2. The

state u(t,x) of the considered system is a solution of the following

problem
’u 9 .
Lu=———Au-Au=f(t,x;h) nQ=(0T]xQ, (1)
ot° ot
ou
u|t=0=5|,=0=0,x€ Q, ).
QM % oo =(0,7x0Q, O
ot on On

where the parameter 4 is a control from the set of admissible controls
U, CV, V isaspace of controls.

Remark. The following results will be valid also if we shall
replace the Laplacian by symmetric elliptic operators of the
second order with smooth coefficients and the conditions (3) will
be replaced by the corresponding Dirichlet or Neumann
conditions.

Next, we shall investigate the generalized solvability of the problem
(1)-(3), basing on which we can prove the trajectory-final €-
controllability of the system.
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2.1. Generalized solutions and €-controllability

Denote by Wb:, a completion of D(L) (the set of smooth in @
functions satisfying the conditions (2), (3)) in the norm

el = [ [ue zu:,dgj |
i=1

o
Wb} is a completion of ' D(L*) in the same norm. Here
L'v= g—z:—) + A%‘ti —Av, and D(L*) is the set of smooth in O
functions satisfying the adjoint conditions
o =20 =0, 7€ 2,
—:7%+%+v=0 on ['=(0,T]x9Q.

Let us construct on the space LZ(Q) the negative spaces W,,,

VI/b;+ using the positive spaces introduced above
Introduce the pair of the spaces H, H_ as completions of D(L),
D(L+) in the following norms

n p

|, = J.uz +Zu: dQ+J.uz|,=TdQ :
g i=] : Q

IVIH+ =(Iv2 +2vfidQ+J.v2|t=OdQ] ,
i=] Q

g
The spaces H, H, are isometric to the direct sum of the Hilbert

spaces (L2 (O,T )® W, (Q))@ Lz(Q) and there are no imbeddings
Hc L,(Q), H, c L,(Q) [74]
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Lemma 1. For any function ué€ D(L), VE D(L+ ) the
following inequalities holds true
ey el <e il @

Lt . 5
VI Wt ( )
Proof. Let us prove the inequality (4) ((5) can be proved in the

similar way). The right-hand side, of the inequality (4) is proved by
applying of the integration by part, the Ostrogradsky-Gauss formula

v

Sc]

H

i Sl

and the integral Cauchy inequality to (Lu,v) L(o)- Here v is an

arbitrary smooth in Q- function satisfying the adjoint boundary

conditions.
To prove the left-hand side of (5), consider the expression

e
(Lu,Tu), (o —fgLu(—Le u(T,x)d‘c)dQ,
where u € D(L) is an arbitrary smooth in Q function satisfying the
t
boundary conditions (3), (4). Note, that u = —L eu(t,x)dt e W;; .

Indeed, the initial condition Iul ,.r =0 holds true as a result of the

construction of the auxiliary operator. The others boundary conditions

disappear after completion of D(L*) in the norm IH

dlu

u in terms of /u , we obtain u = - 3—
t

w+ - Expressing
bd*

We have
(Lu, ]“)Lz(g) =J,+J,,

where
i = [u,dudQ , J,=-| (g—Au +Auj[udQ .
0 2 t

Consider every term J,, J, , separately.
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J,. Using the integration by parts and taking into account the
conditions

ou
u|1=0 = -é}-lt:o = Iu,r=T—

olu >
and the fact, that “_t— =-—e u, we have

J = [u,udQ = [ (u, 1), dQ - [ u,(u),dQ =
0 e o

= Z!.e_’uut dQ = %—é[e_t (u2 ), dQ = %J- (e_tllz ), dQ+

o

;je-’zﬁdQ J' - 2|, ng_)‘+..J'e’~([u)r(Iu),dQ2
0

1 2 |
25”(11,1),”L2<Q)+—2-6 _[u |t=TdQ'

Q

J, . Using the Ostrogradsky-Gauss formula and taking into account

0 du OJu

the boundary condition ——+—+ ul - =0, we have
otdn Odn

= j[ Au+AuJIudQ j(; ‘;“ g”jfzdm
t on n

+IZu Iu, dQ++J.Zu Tu dQ J.uludl"+

Q:l Qxl

+ IZux_,qu_ dQ + J. Zux_ Iu_dQ.
Q =l i i Q = i i
Consider every term separately.

a) fzt[udf‘=-J.e'lu(lu),df‘=——;—J.e'(lulu),dl“=
r r

r
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_%J'(e'Iqu), dF+%J‘e'IqudI‘ =

r

= fe Iulu|/Z; dOQ + —je‘luludr 0.
I"

b) To estimate the second integral, we must use the integration by

parts and the conditions u| = Iul = (. We obtain
Izunlu dQ = JZ u, du, dQ IZu (Iu) HdQ—
g i=l g i=l g i=l
= —IZ ux, (Iu )x,t dQ
o i=1
Granting that u, = —e' (Iu) , We can write
—fzu (Iu) “dQ J. 2 (1u) x, (Iu) x,
D il
> [ (), (1), 0.
1] i=t

c) Let us show, that the third integral in nonnegative. To do this, we
must apply the integration by parts.

| ) u, (lu),dQ =~ N e'(1u), (Iu),dQ =

Q0 i=l [} i=l

=[S (e ), () )dQ+-;—J.e'2(Iu)x,(fu)x,dQ=

Q i=l Q i=1

=-—f2e I, (Bu), | aQ+— j 'Y (fu), (Iu), dO2 0.

Qx-—l i=1

Collecting together all the obtained mequahtles and taking into
account, that (Ju), = —e™'u, we have
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. A
HLu“W-f je"z'(uz +2“i, )dQ 2(Lu,Iu), 2

g

>¢f e-z'(uz Y JdQ+ il o P s > .
0 i=]
2

2
bZ ab and

Applying to the right-hand side the inequality

reducing by I e (u 2+ i u :; )dQ ; we have
Q i=1
) < ||Lu”W_ . Granting that

bd"

n N\ VA
||Lu||W_+ > E(J.Qe-h(uz +Z“i JJQ) ’

we have that (4) is valid. The lemma is proved.
Basing on the right-hand sides of the inequalities (4), (5), we can

20|

r=T”L2(Q

extend with respect to continuity the operator L (L', respectively)

onto the whole space W; (Wb :'f , respectively) and consider that it

continuously maps into Wb} (W,,, respectively). We save the same
denotations for the extended operators. The inequalities (4), (5) are
valid also for the extended operators for any # € Wb; , VE W;} .

Using inequalities obtained above in the similar way, it is possible to
prove the unique dense solvability of the operator equations

Lu=f, fEWb;”
L'v=g, geW,,.
Let H,,, H ,,+ De the negative spaces constructed on L, (Q) and

. . . + . .
the corresponding positive spaces H,,, H;'d which, in turn, are

+
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completions of D(L), D (L+ ) in the norm
n A

||| = (J.Qu2 + Zui dQ) . The  imbeddings H,,CW,,,
i=]

H  cW”
bd

b are valid and dense. The following theorems hold true.

+

Theorem 1. For any element f € Hb'd, there exists a unique

solution u € Wb; of the equatioh Lu = f.
Theorem 2. For any element g€ H,, there exists a unique
solution v € Wb: of the equation L'v=g.

Let us define a generalized solution of the problem (1), (2), (3) as a
function ¥ € H for which there exists a sequence of smooth functions
u, € D(L), m=12,..., such that lum -u|H——>0,

nm-—e

”Lum _f"W,,jp Tm_)o '

It should been noted, that the similar conception of a generalized
solution of the operator equation with closed linear operator in a
Banach space was proposed in the paper [165].

Theorem 3. For any element f € Wb} there exists a unique
generalized solution u € H of the problem (1)-(3).

Proof. Let f € W;j+ . By virtue of the density H;d in Wb}

0.

+

there exists such sequence f, € H 1;1* , that “ =1

Wb_f C me—oee

By Theorem 1 for any function f € H b_d, there exists a unique
solution & € W,;, of the operator equation Lu = f,. Using the left-
hand side of the inequality (4) and the imbedding W:, C H, we have
W =cl .f‘ml_.f;n2 O

bat be

< 7 -
H_cl"Lum) Lu,

-0

m, mz

my,my—reo
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Thus, by virtue of the completeness of the space H there exists such
function u € H that Iu = Emlﬂ mcmsmer i)

Let us show that ¥ € H is desired generalized solution. From the
density D(L) in Wb’; it follows that for any natural number m there

exists a sequence of smooth functions u,, ; € D(L), i=1,2,..., such

W, ——=>0. Choose l(m) € N from the condition

that ||zT,,, —u,,

||_ ) [ < / and put u,, =, ). Then
|u—um|H < |u—um|H +|um —um|H < '”_‘TMIH +c||LTm -u, <
< 'u —fl-m H +i—m_—;:—)0
m
On the other hand,
"Lum -f”W' s ”Lum W +| Lo —f”W" sclju, mllwy, +
bd* bd* bd*

+I|fm —fIIWb;+ S%'*-”fm _f||Wb;+ ——0.

The uniqueness is proved in the standard way by contradiction. The
theorem is proved.

Definition 1. The system (1)-(3) is 8-controllable in the
space H by the set of admissible controls o0 If the set

h)|h eU,_,} is dense in H.

Theorem 4 .[fthe set f(Uad) is dense in W_ then the

system (1)-(3) is €-controllable in the space H.
Proof. Let an arbitrary function z € H be given. Consider the
space W, which is a completion of the set D(L) in the norm

||y =||Lul|,- . It is possible to prove that the imbeddings
bd"

W;d CW cC H are valid and dense, and in addition, the following
inequalities hold true



CONTROLLABILITY OF LINEAR SYSTEMS ... 377

Juls < iy < €l

Wb},VuEPVb;, IyIHScllyIW,VyeW.

Moreover, it follows from the proof of Theorem 3 that generalized
solutions belongto H AW and |u|, =||f]],- -
od*

As far as W is dense in H, there exists such sequence z, € W
that Iz = 'zl,lH——i—_-;:—)O. By virtue of the density of f(Uad) in W;+
for any natural number i there exists such sequence of the admissible
controls o, € U, that"Lz,. -f (h; )" < %n . Then, we have

oty )=, <[ult)- 2, +le =2l < cfelt)-2], +

+|z‘. —zIH S%+|z‘.—le—\%O.

The theorem is proved.
In this case the imbedding W ,(0,T )®L2 Q)cw:, is valid

2,bd* bd*
and dense, so we can conclude that the system (1)-(3) is trajectory-
final controllable in the class of pulse controls.

3. PULSE CONTROLLABILITY OF PARABOLIC
SYSTEMS

Next, we shall consider some other problems of controllability on
the examples of parabolic systems with impulse impact. Urgency of
such problems is stipulated by both the arising of new technologies and
the simplicity of the control on the basis of spatially distributed impulse
of given class with simply regulative control. For the system with
continuous and discrete control similar problems were posed and
investigated in [161, 162].
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Let the functioning of the system in a tube
0= (O,T )XQ ,& C R" with a regular boundary is described by the

equation

au 4

Lu =a—+Bu-ZS t-1)® Y c,0,(x), (1)
k=1

“L:o =0, .50 = @

= —Z (x) i +b(x)u, (3)

i j—l
where B is uniformly elhptlc operator in Q, b(x)eC (Q),
b,=b,, b(x)e C(ﬁ), b(x)>0. The control is made with the help

of coefficients ¢ = {C ,c€ R™, t, are moments of impulse

i= lNk !
impacts ¢, >, 0<t,<T, @, (x)€ L,(R). In consequence of the

presence of Dirac 8 -function with respect to the time variable in the
right-hand side of the equation (1) the solution of the problem (1), (2)

N
can be represented in the following form: (t, x) = Z Uy where ; is

the solution of the problem (1), (2) with the right-hand side 5(t -, ) fj,

f Zc,kcpk, LN.
Obviously, j( ; ) =0 when t < t, and satisfies the identity

(uj,L v)LZ(Q) = (u}.,L v)Lz([tj,T];Lz(Q)) = (v(tj,x),fj(x))Lz(Q) .4
It follows from the relation (4), thatin Q, = ltj,T JXQ the function

U, is a solution of the problem

Lu, =0, ujlmj = f,(x),

=0, ©)

u.
J 1xedQd
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which, as well-known, belongs to the space C (ltj,T J,Lz(Q)). Hence,
function %; is continuous on the segment [0,7] everywhere, except

the point t=tj ( j=LN ), and moreover, it is continuous from the

right.
The solution of problem (5) we may represent in the form [166]

) 0,0St<tj,
4 6x) = T(e-1)f (x)e 2, ©

where T (t) is a semi-group generated by the operator B .
Under the above mentioned restrictions the operator B generate
an orthonormal basis in L, (Q) which consists of the eigenfunctions

0
_ 1
By, =h 0, 0, €Wy, Ay >0, Ay >4 A e,

and, moreover, only finite number of the eigenfunctions

®, (k =1, mj.) may correspond to each eigenvalue ?\j .

For any fE LZ(Q)
T(e)f =ie4’t2ﬂk°’jk’fﬂ =(s y )Lz(m' 0
J=1 k=1

The solution the of problem (1), (2) at the moment =7, (i = m)

we may represent in the form

x)= 2T<ti =, )2 ¢, 0,(x)=
= 5: zcjkE(pkns(Dns (8)

j=ln=1 k=1

Qrns = ((pk’ @, )Lz(gy
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Definition 1. The system is impulse controllable if the
set {u(t,.,x;c),ce RN”,i=1,_]-V,N=1,2,...} is dense in LZ(Q)
where 0 <t <...<t;<..., b st

Definition 2. The system is impulse controllable at N
steps in G CLz(Q), if the set {u(ti,x;c),ce RY i =m,}, where
0<t <...<ty <T, isdense in G

Theorem 1. In order that the system (9), (10) be
controllable in the sense of Definition 1, it is necessary and
sufficient that for any n = 1,2,.., the following conditions is

satisfied
rank{(pkm}hms:m =m <p. 9)
Proo f. Sufficiency. On the basis of the criterion of the density in
L,(Q) the system (1), (2) is impulse controllable if for z(x)€ L,(Q)

it follows from the equality

(ult,x56)2), =0, cE R¥i=TNN=12.. (10
that z = 0. Granting the representation (8), in particular, we have that
ie'*"(“"’f)ﬁcpmzm =0, k=1p, i=12,. (1)
This impli;; lthat -
i(pklszls + ie-<k"-11)(ti-tl)i PpnsZ,s = 0. (12)
s=1 n=2 s=1

Under i — oo (hence, £, — o) the second term in the left-hand
side in (12) tends to zero. Hence,

my .
Z(pmzls =0, k=1p.

s=1

In the similar way, we can show that for any n = 1,2,... we have



CONTROLLABILITY OF LINEAR SYSTEMS ... 381

> 042, =0, k=1p. (13)
s=1
If condition (9) is satisfied then from (13) we obtain that
z, =0,n=12,..,s=1m_ .Hence, z=0.

Necessarily. Let the system (1), (2) is controllable in the sense of
Definition 1 but for some n the condition (9) is not valid. Then there

exists a nonzero element zZ€ L, (Q) such that the relation (11), and

hence (10), hold true, that contradicts to Definition 2.
Theorem 2. The system (1), (2) is not controllable in
L,(Q) in the sense of Definition 2.

This result follows from the fact that under finite number of
impulses N the system of linear algebraic equations (11)

(k =L pi=1,N ) with respect to the variables
z,,8= 1, m,n= 1,2,..., has infinite number of nonzero solutions.

Thus, the system is not controllable.
Denote by H,, a subspace generated by the eigenfunctions of the

operator B corresponding to the first eigenvalues, and let #, be an

approximate solution of the problem (1), (2) obtained by the Galerkin
method, where the same functions were taken as a basic ones. The, as
well-known [142] , uN(t,x)—Tm—:ou(t,x) strongly in LZ(Q). The

functions u N(t,x) at the points ¢, , i =1, N have the form

i N n,
uN(ti’ x) = Ze-}"'(t’_'f )ki Cjkz(plmswn:' (14)
=1

J=1 n=l 5=l
Theorem 3.In order that the system (1), (2) be
controllable in Hy, CL, (Q) in the sense of Definition 2

(At,.=t,. i = =c0nst) it is necessary and sufficient that the

condition (9) holds true for any n =1,_N.
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Proof. Sufficiency. Let z,(t,x) is an arbitrary element from
H,, . It is obvious, that

N ™
7, zzznm(nm(x), z = (Z’(Dnm)Lz(Q) :

n=1 m=l
The system (1), (2) will be controllable in the sense of Definition 2
if it follows from the equalities

(uylto %50} 24 ), ) = 0 c€ R, i=LN 15)
that z, =0. Granting (14), it follows from (15) that, in particular,
ie’*"("‘"‘)icpmzm =0, k=1,p,i=LN. (16)
Relationr:; (16) forn’ln :llle system of linear equations
®z =0, (17)

—e T .
where z-(zH,..,zlml,zm,..,zmz,..,ZMI,..,szM) , and matrix ®

has block form

m=1,—m'1- m=1,my
{(pklm k=1,p {(pkNm k=l,p
=h {1y ~t;) m=l,m, A y(ty-ty) m=l,my
D= { kim fgTp v € { kNm Jk =1, p
-haey 1) ’”=m ) “Mylty=1) m=lmy
€ { kim J4=T 5 € { ivm Se=T 5
. . T =
Introducing the notation F, = {(p,a.m :’_ﬁ')" ' i=1,N, we have
(E ) (FN )
-y (6 - “Aylta-1y
o=|€ B e Fy
'}‘1('.1\;"’1) —A'N(;A:;’l)
e F oun € o9

Solving the system (17) by the Gauss method, we transfer the
matrix to the following form:
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F F, .. F

1 N
(I)/z 00(22F2 (X’ZNFN ’ (18)
NNFN

0 0 .«

where O, (l =2,N,j=2,N,i< ]) are some constants and

o, (i =2,N ) do not equal to zero.

Indeed, to prove this fact we may just show that the determinant

1 1
e—M(Q—g) . e—ANUZ-q)

Fe=

-A t‘- " —-A ; -t
e I(N '1) e N(N 1)

does not equal to zero. It is easy to see that the determinant F is a
. ) - - -2
Vandermond determinant with respect to (e A‘A',e s - "’A'),

which does not equal to zero as faras A, # }\,j when I # j .

Granting (9) and (18) we can conclude that the rank of the matrix

N

®’, and hence D, is equal to Zmﬂ and coincide with the dimension
n=]

of the vector Z. It implies that the system (17) can have only zero

solution.

Necessarity. Suppose that for some n the condition (9) is not valid.
Hence, the rank of the matrix @ of the system of linear algebraic
equations (17) is less than the number of variables. It means that there
exist the nonzero solutions of the systems. Thus, there exists

z, #0, z, € H v such that (15) is valid, and hence the system (1),

(2) is not controllable.
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4. SUBDOMAIN CONTROLLABILITY
OF PSEUDO-PARABOLIC SYSTEMS

Consider a pseudo-parabolic system with controls concentrated in
subdomains of the space domain.

Remark. The result represented below holds true also for
the case of point control in a one-dimensional space domain. .

For hyperbolic equations one of the ways of the investigation of the
point controllability on the basis of the concept of “exact
controllability” described in the J.-L.Lions' work [31, 32].

Let the state of the system is a solution of the initial boundary value
problem

N
Lu=u +€e(du), + Au= Zij v, (x)n,(t)
j=1

in 0 =(0,7)xQ, )

U, =0, =0, @)

where ), is the indicator of the subset (subdomain) (Dj C Q with
7

positive Lebesque measure, v, € LZ'((Dj) is a given "elementary"

intensivities. The control of the system is carried out with the help of

the vector-function A(t) = (h (t),h,(t),...,hy(t)) € (ZQ(O,T))N :

The differential expression A has the form

Au= —i(aij(x)uxj )x, +a(xu,

a,(x)e C'(Q), aU =a,, a(x)€ (@), a(x)=0.

It is uniformly ellipticin &, € is a positive constant.
By virtue of the restrictions introduced above the differential

expression A yields in the space L, (.Q) a symmetric and positive

definite operator with a discrete spectrum, namely: there exists a
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countable set of the eigenvalues which can be arranged in ascending
order:
O<A, <A, <...<A.<..., A, ——+oc0,
1 2 Jj j jores

and a complete orthonormal in L,(Q) system of the corresponding
eigenfunctions u (3c)€ H 3 (Q), and only finite number of linearly
independent eigenfunctions 4, (x)’, k=1,m.  can be assigned to

every eigenvalue A .

The generalized solution the problem (1), (2) belongs to the space
C ([0, T ], H,; (Q)) , which is the space of continuous on [0, 7 functions

taking on values in the Sobolev space H ;(Q) It follows from the

imbedding of the space W™ into the space C ([O, TLH (])(Q)) With the

help of the Fourier method the solution of the problem (1), (2) can be
represented in the following form

u(t,x) ZEJ' "' h (1) d’rz U )y o u (x). @)

J=l n=l
It is requested to transfer the system to the desired state before the
time moment 7" with the help of the controls A(#). The controllability
of the system (1), (2) we shall mean in the sense of the following
definitions.
Definition 1. The system is a subdomain controllable one

ifthe set { T,x;h)| he (L ,(0 T)) } is dense in LZ(Q).
Theorem 1. The system (1), (2) is a subdomain
controllable one in the space L, (Q) if and only if for an
arbitrary natural number n the following condition is satisfied
rankI1, =m, <N, 4)

where
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(Vv“m)Lz(«».) ("v“nmn)Lz(w,)
Il,=
("N’“nt)L2(w~) (VN’”nm» )Lzm)
Proof. At first, let us prove the sufficiency. Let us show that for
any z(x)e L,(Q) the condition
(T, +3h)2), g = 0 VY he(L,(0,T))"

implies that z(x) =0 . Granting the representation of the solution (3),

we have
- le' IH“A dtZ( j’ ns) ’ ns)Lz(Q) =O’ (5)
h; € L,(0,T).
Whence,
oo .
for e T+, Z(VJ’u'”)Lz(m-)<z’u" ), }v (t)dt = )
n=l §= 4

h;e L,(0,T),j=1,
It follows from (6) that

(T-1) ™

ie 1+eA Z(vj’uns)Lz(m,)(z’u”S)Lz(ﬂ) ={ j= m @)

n=1 s=1

The function F(T) =i X Z( ns) zu )Lz(ﬂ) is

n=1

analytic in the right-hand complex half plane Re > O and it is equal
to zero in the interval (0, 7). Thus, F (’t) =0on Re 7> 0.Reasoning
as in the proof of Theorem 3.1, we obtain that

m,

Z(vj,unS)Lz(mj)(z,u”)Lz(Q)=O, j=LN, n=12,.... @®

=1
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Denote

(Z;u,,l )Lz(g)

_ (Z’“nz)Lzun

(Za Unm, >L2(Q) J
We can rewrite (8) in the form I1,Z, =0, n = 1,2,.... Since (4) is
valid, Z, =0,n =1,2,.... Thus, z(x) = 0.
Let the system (1), (2) is controllable in the sense of Definition 1
but for some natural number k the condition (4) does not satisfied.

The there exists such vector Z, € R™ that
zZ, #0,I1,Z, =0
Let the function z(x)E LZ(Q) be such that

(z,u,s)Lz(g) =0, s='1_,a—, [ # k and (Z_’“ks)LZ(g) =2y,

s=1lm,.

We have that for any n

m
———

z"(v/’uns)Lz(wj)(z’uns)LZ(Q) =0, j'= 1:N

s=1

Whence, we obtain
(u(T,3h),2),, ) =0 V he(L,(0,T))",

that contradicts to Definition 1. The theorem is proved.
The following example is sufficiently instructive. The system

Lu=u—~u_ —u, =%,k 8 0=(0, 7)x(0,1),

x=0 x=] = 0 2

is controllable if ot—f is irrational number and is not controllable if
o.—P is rational number ([OL, B]_C_ [0,1]).

u|,, =u|,_, =u
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Remark. For the case when € = (a,b) C R Theorem I can
be generalized for the systems with point controls

Lu=u, +¢e(Au), + Au = Z}j\;]cjﬁ(x o )® h,(t)
in Q=(0,T)x(a,b),
e =0, 4. =0, 10

in the following way: the system '(9), (10) is controllable if and
only if for an arbitrary natural n the following condition holds
true

©)

rankIl =1,
where
Gu, (xl )

el

n

CNun(xN)
Here u,,(x) is an eigenfunction of the operator A
corresponding to the eigenvalue }\.n. The condition vankll,k =1

is equivalent to the condition that not all components ofthe vector
IT, equal to zero.
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PERSPECTIVES

1. GENERALIZED SOLVABILITY
OF LINEAR SYSTEMS

1.1. Basic definitions and facts

Concept of a generalized solution of an operator equation
Lu=f (D
with an arbitrary linear closed operator L was proposed in [165].
Recall the basic principles of this approach.

Let E, F be Banach spaces and L be a closed linear injective
operator mapping E into F with everywhere dense in E domain of
definition D(L) and with dense in F' range of values R(L). In a
parallel way (1), we shall investigate the adjoint equation

LCo=1 )
where L:F* — E" is the adjoint operator.

Suppose also that the set D(L*) is total in F*,and the set R(L*)
is total in E*induality (F,F*).The condition of totality of R(L")
may be replaced by one of the following assumptions:

A) the kernel of L* consists of zero-vector Ker(L*)= {0} and
R (L*) is weakly dense in E* (this condition independently implies the
injectivity of L and the density of R( L) in F');

B) the operator L is continuous (D(L) = E) ;

C) the space E is reflexive (if in addition F is reflexive then the

set D(L*) is total in F* also).
Under the assumptions A) and C) the totality R(L') follows from
the well-known results, and in the case B) it follows from the formula



390 Chapter 11

R(L")'ND(L) = Ker(L), 3)

where M° C E is the polar of the set M C E” in duality (E, E*).

Let us prove that (3) holds true for an arbitrary closed linear operator
Ry ND(L)={ue E:ue D(L)I(u)=0Vie R(L )}=
={ue Eue D(L),p(Lu)=0Vee DL )}

as far as D(L*) is a total linear subspace then
R(L')ND(L)={ue E:ue D(L), Lu=0}= Ker(L).
Thus, the formula (3) is proved. It follows from (3) that
(R(L* } mD(L)) = (Ker(L))
If L 1is a continuous injective operator then D(L) = E,
Ker(L)={0}. Therefore,

(R(L"))" =(Ker(L)) = E".

Thus, the bipolar of the set R(L'), ie. the weak closure of R(L"),
coincides with E”, that implies the totality of R(L") in E”

Denote by E . the completion of the set E 1in topology
G(E ,R(L* )), as far as the sets E and R(L') are in duality then
E . 1s a separable locally convex linear topological space. Consider an
arbitrary linear functional ¢ € D(L*) . The equation (1) implies that

O(Lu)=@(f), l(u) = L'o(u) = (/).

By the Banach theorem about weakly continuous linear functional

[78], the functional ! = L*@ allows the unique extension by continuity

on the whole space | .
Definition 1. The generalized solution of the operator
equation (1) is an element u € E , obeying the relation
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u)=Lolu)=0(r)  voeD(L). @
Definition 2. The generalized solution of the operator
equation (1) is such element u € E . that there exists a sequence
u, € E (which we shall call as almost solution) obeying the
relations
u, = u in topology EL,lletn —f"F —0,asn—> (5)
The concept of a generalized. solution arises when the right-hand
side of the operator (1), i.e. the element f € F, does not belong to the
range of values R( L) of the operator L (in this case there are no any
classic solutions). But if f € R(L) than the generalized solution
becomes a classic one. In [165] the following theorem was proved.
Theorem 1. For any element f € F there exists a unique
element u € E . Which is a generalized solution of the equation

(1) in the sense of Definitions 1,2.
Let us introduce once more definition of a generalized solution.

Let E, is a completion of a linear set D(L) with the norm

”u”EL = ||Lu||,- . The equality ”“”EL = ||Lul|, allows extending L by

continuity from the set D(L) of the space E onto the whole space
2 - The extended operator we shall denote by L. The operator

L:E, — F is linear and continuous.

Definition 3. The solution of the equation (1) is such
element u € E L that the equality (1) holds true for the extended
operatorf.

It is easy to see that the extended operator L determine an
isometric isomorphism between the spaces E, , and F .

Theorem 2. For any element f € F there exists a unique

generalized solution of the equation (1) in the sense of
Definition 3.
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As well-known, the case of closed linear operator L reduced easy
to the case of a linear continuous operator L . Indeed, introducing the

norm of the graphics on D(L)

ell oy = Ml g + M1zl
relatively to which the linear set D( L) is a Banach space, we obtain
that the operator L;: D(L)— F’ is linear and continuous

(Llu = Lu,u€e D(L)). Taking into consideration the mentioned

above, we shall further investigate only the case of continuous linear
operator L (D(L) = E).

At first, we shall determine the relations between the solvability in
the sense of Definitions 1,2 and 3.

Theorem 3. The space E—L is algebraically and

topologically imbedded into the space E L
Proof. Let some net {ua }QEA ,u, € E converges to 0 in the
topology of the space E, .- Then Lu, — 0 in the space F, and

hence, (p(Lua )—> 0 forany @ € F*.Thus, {(u,)— 0Vie R(L*).
Whence, we have that the topology E, is weaker than the topology
E,. It still remains to prove that if u, — u in the topology of the
space E, and u, — 0 inthetopology E, then u =0 (the condition
T [165]). It follows from the condition u, — u in E . that
iu, )= Lo(u,)— o(Lu)Vie R(L'), and u, —0 implies that
lu, )— 0Vie R(L* ), whence we have that
(p(f u)=0vYoe D(L*). By the totality of the set D(L") and the

injectivity of the operator L we have that u = 0. Thus, E . C E L
Theorem 4. Definitions 1,2 and 3 are equivalent.
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Proof. Let us prove that the solution u€ EL in the sense of
Definition 3 is a solution in the sense of Definition 1 also (inverse
statement is obvious). Indeed, in E L there exists a solution % € E " of
the same equation Lu = f. It is clear that L'@(u) = @(f) = (p(z_u* )'.
Whence we have that u = Ou* is an operator of imbedding of the set
E , Into E,.

Often constructive description of the spaces E , and E . 18

sophisticated and in general case still be an unsolved problem.
Therefore it is necessary to find out an algebraic and topological dense

imbedding of the space E, or E . 1nto some other well-known

Banach or locally convex linear topological space H . In this section
we shall describe such spaces H . Besides, we shall investigate the
properties of the generalized solutions in these spaces H .

1.2 A priori inequalities

Taking into account the mentioned above, suppose that the space
E . 1s algebraically and topologically imbedded into the Banach space
H . By the condition of the topological imbedding c, ||u|| = ||ul| z, -
Whence, we conclude that

clully <liZully <cllull, VueE ©

where ¢, ¢, is positive constants.

The estimations of such kind are usual in applications and they are
called a priori inequalities. Except for (6), it is easy to see that the
following a priori inequalities hold true

¢z <lZull- < clull: vueE,
c, "u”H < "Lu"F < c2||u||EL YueE,.
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Note that the inequalities (6) themselves do not guarantee the
existence of a topological imbedding E , C H , but it only compare the

topologies induced by the norms ””EL and ||” y Inthe set E .

Hereinafter, we shall prove that the estimations (6) can serve as a
basis of the theory of the generalized solvability of the operator
equation (1).

1.3. Generalized solution of operator equation
in Banach space

It follows from the results of the previous subsection that the
inequalities (6) are necessary conditions for the construction of the
theory of generalized solvability of the operator equation in the Banach
space H . We shall prove that the inequalities (6) are also sufficient
conditions of the solvability of the equation (1) in some generalized
sense. Note that proposed scheme cover various approaches to the
construction of generalized solutions of differential equations (see
[167], for example).

Thus, we shall suppose that the linear operator
L(D(L))=E,R(L)=F satisfy the inequalites (6) where
u€ E,c,,c, >0, H is a completion of the space E with the norm
Huu y - It is clear that the. right-hand side of the inequalities (6) implies

the continuity of the operator L, and the left-hand side implies the
injectivity. Besides, by virtue of the density of the imbedding E C H

the set H* is total in E* and, hence, the spaces E and H” are in
duality.

Consider the operator L:H—>F (D(Z)=E) defined in the
following way: Lu=Luu€eE.

Lemma 1. The operator equation L'Q =1 is solvable in the

subset H ofthe space E.
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Proof. The left-hand side of the inequalities (6) implies the
correct solvability of the operator L. Consider also the adjoint

operator L":F* — H*,D(Z') C D(L') =F". It is clear that if
Qe D(F) then Z*(pl = =L@, where Z*(plE is a contraction of the
functional L'@ € H* from the set H onto E . As well known, the
correct solvability of the operator L' implies the everywhere solvability

of the operator E [165], whence, taking into account the mentioned

above, we obtain the solvability of the operator L on the set H°
(considered as a subspace of E ) of the right-hand sides in (2).
Remark 1. Ifthe operator L satisfies the inequalities (6)

then H” CR(L*)CE*.
Definition 4. A generalized solution of the equation (1)
with the right-hand side f € F is such element u€ H that the

equality
L*o(u) = o( 1) 7)
holds true for any @ € D(Z* )
It is obviously that the equality (7) is equivalent to
L"(p(u)=(p(f) Yoe F' . L'ge H".
Theorem 5. For any right-hand side f € F there exists

a unique solution u € H of the equation (1) in the sense of
Definition 4.
Proof. Choose a sequence fp S R(L) such that fp — f in

the space F. If u, € E is a solution of the equation Lu = f  then

granting (6) and the fact that the sequence {f p} is fundamental, we
have

—1
||u —u ” <c ”Lu —Lu | -0
P Py llH 1 141 Py F

— _] P
F ¢ Il‘fl’l sz

as pl’p2_>°°’
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Thus, there exists such u” € H that u, = u" in the space H .

Further, we have
L*(p(up)= cp(Lup)= (p(fp ) PEF".
Passing in the last equality to the limit as p — oo, we obtain
ro(u*)= (p(f) QgeF  L'peH".
Thus, u” is a solution of (1) in the sense of Definition 4.
Aslongas H* C R (L*) , the equality
(u")= L'o(u")=0 VoeF' L'oe H

implies that #* = 0, and hence, the solution is unique.

Definition 5.A generalized solution of the equation (1)
with the right-hand side f € F is such element u € H that there

exists a sequence u, € E satisfying the conditions
e, —ull, >0, |JLu, ~ ]|, =0 as i— oo

Theorem 6. Definitions 4 and 5 are equivalent.
P roof. Let u be asolution of the equation Lu = f in the sense

of Definition4, ie. L'¢(u)= (p( f ) Reasoning similarly to
Theorem 5, we conclude that # = u”, and hence, “itp - u”H —0.0n

the other hand, "Lup - f”F = ”fp —f”F — 0. Thus, u is a solution

of the equation (1) in the sense of Definition 5.
Let us prove the inverse assertion. Let u be a solution of the
equation (1) in the sense of Definition 5. Then,

L'¢g(u) = L*(p(u,.)+ L*(p(u-— u1)= (p(Lui)—i- L*(p(u— u,.) =
=(p(Lu, — f>+(p(f)+ L*(p(u—u,)

forany o € F*,L'¢p € H",
Estimate the first and third summands in the right-hand side
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|(p(Lui “f)l S"(p"F '"Lui —f”F =0,
IL'(p(u —u, )I < "L‘(p”ﬁ. e -u, >0 as i-—oo.
Whence we have that
L'¢(u) =(p(f), geF  L'ge H,
1.e. u 1is a solution of the equation (1) in the sense of Definition 4.
Remark 2. It is obviously that the solutions in the sense 4
and 5 coincide with a classic solution u€E if feR(L). It is

also easy to testify that in this case the classic solution is a
generalized one. In the case when the generalized solution u

belongs to D( L) itis a classic one,
Theorem 7. [fthe space EL is continuously imbedded

into H then Definitions 3, 4, and 5 are equivalent.

Proof. Let us prove that Definition 3 is equivalent to definition 5.
Let u€ H be a solution of (1) by Definition 5. As it was indicated
above, for any right-hand side f € F there exists a unique solution

u'eE , in the sense of Definition 3. Considering u* as an element of
the space H (by virtue of the imbedding E, , © H), we can prove
that u* = u. Indeed,
"u -u "H Sl =, +"ui —u*“H < e = |, +c[—‘"u[ - u*“EL =
=l —u, + c,"[”fu,. - fu'”F =
= ”u,. —u*”H +o |Lu, - f], 20 as i—eo

where u, € E is a sequence defining the solution u€ H .

Thus, u is a solution of (1) in the sense of Definition 3.
Let now, conversely, u be a solution of (1) by Definition 3. Choose

an arbitrary sequence u, € E such that ”u,. _”"E —0.
L

Then by the continuity of the imbedding E, € H we have
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"u - ui”H —0, "ul - “”E,_ = "I—‘ui —Zu"F = "Lu‘. —f"F —0
as i — 0.
That is what had to be proved.

Remark 3. The theorem implies that there exists a constant
c¢> 0 such that thefollowing inequality holds true:

bdly <c|fl,  VfeF(c>0),
where u is a solution of (1) with the right-hand side f in the
sense of Definition 3, 4, and 5.
Remark 4. The imbedding EL C H follows from the

density of D(f.*) in the space F~ in the weak topology G(F* ,F>

orfrom the fact that the operator L is closable.
Usually from the inequalities (6) for the operator L it is possible to
prove the similar inequalities for the adjoint operator

clloll, < I g e |||, VueF 8

where G is a completion of the set F* with some norm. Consider
this situation for reflexive Banach spaces E, F . In this case L™ =L
and similarly to Lemma 1 we obtain that the operator equation (1) is
solvable in G* C F . Besides, we have the theory of solvability of the
adjoint equation (2) (analogous of the Theorems 5, 6, and 7).
Theorem 8. There exists a constant ¢> 0 such that for

any fe€ G CF and any 1€ H® C E"the following inequalities
hold true

el < ell Ao ©
loll» = el (10)

where u€ E,@ € F* are solutions of the equations Lu= f and
Lu=1

Proof. Let us prove the inequality (9) (the inequality (10) is
proved in the similar way). As far as the equation (2) is solvable (in the
sense of the analogous of Definitions 4 and 5 for the adjoint operator)
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forany 1€ E” then for all u€ E:Lu€ G the following equality
holds true (the second adjoint space is identified with the original
space)

Lu(o) = u(1), an
where @ € G is a solution of (2) with the right-hand side /€ E~.
Whence, we have

(D) = [Lull - ol

(o o<t

Thus, the set of functional

=

is bounded in every point I € E *  and hence, by the Banach-Steinhaus

or

}:ue E,Luc G‘}cE"‘ =E

G‘

theorem it is bounded by the norm of the space E**= E , hence, the
inequality (9) is proved.
Theorem 9. There exists a constant c¢> 0 such that for

any f € F and any 1 € E” the following inequalities hold true
el <l 1)
Il <l 1)

where u € H,@ € G are solutions of the equations Lu = f and

L'u =1 in the sense of Definitions 4 and 5.
P ro of. Granting the inequality (11), we have

|o(La)} = [Lu()| < [l -l -

Applying to the right-hand side the inequality (9), we obtain
|o(Lu)| < cl|Luel- - V|-

or
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Il = llell- = sup X2 < ..

e’ [|Ltf-

Taking into account that G* < R(L), we obtain the inequality (13).
The inequality (12) is proved in the similar way.

Remark 5. As far as ||f||F'=||Lu||F =”””EL and the
inequality (12) holds true for any f € F it may be seemed that
(12) provides the existence of imbedding E . C© H. However, this

is not true. In the space E, really exists an element u” such that

*
U

7 ="qu But if the imbedding E—L C H is not proved, we
L

cannot to compare U € H as a solution of (I) in the sense of
Definitions 4 cnd 5 and u'e E, as a solution of (1) in the sense

of Definition 3.

1.4. Generalized solutions in locally convex
linear topological spaces

Let us introduse several more definitions of a generalized solution.
As before, we suppose that L is a linear continuous operator. Select

in the space E~ some total linear set M C R( L') CE".Let Misa
completion of the set E by topology O (E M ) By the Banach
theorem about weakly continuous linear functional [78] the functional
I=L'@e M allows a unique extension by continuity on the whole
space M.

Definition 6. A generalized solution of the equation (1) is an
element u € M obeying the relation

L“(p(u)=(p(f) VoeF ' L'ueM.
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Definition 7. A generalized solution of the equation (1) is an
element u € M for which there exists a sequence u, € E such that

u, = u intopology M, ”Lu‘.—-f“F —0 as i— oo,

In the case when M = R(L") Definitions 6 and 7 coincide with
Definitions 1 and 2 of a weak solution and an almost solution.

As in [165], we can prove the following

Theorem 10. Definitions 6 and 7 are equivalent andfor
any element f € F there exists a unique generalized solution
u€ M of the equation (1)in the sense of Definitions 6 and 7.

Remark 6. Definition 7 implies that if u€M is a
generalized solution of (1) then the point (u,f) is an point of
accumulation ofthe graphics (L) of the operator L, i.e. of the
set ‘

{(u,f):Lu=f,ue ECF}

in the topology M X F .

Remark 7. Moreover, the point (u, f) belong to the

sequential closure of the graphics T'(L) in the topology M X F and
hence, u€ M,, M , 1s a sequential closure of the set E in the

topology M .
Taking into consideration Remark 7, we could investigate the

concept of generalized solution in sequentially complete spaces M .-

In addition, it is easy to prove that a classic solution of (1) is a
generalized one in the sense of Definitions 6 and 7. If f € R(L) or
the generalized solution belongs to D( L) then the generalized solution
becomes classic.

As longas M C R(L*) then there exists such set M, € F~ that

M=L(M,).
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Theorem 11. In order that there exists an algebraic and
topological imbedding of the space E_L into the space M it is
necessary and sufficient that M be total linear subset of the
space F". In this case Definitions 6, 7 and 3 are equivalent.

Proof. Similarly to Theorem 3 we can prove that on the set E
the topology induced by the norm "“E'L stronger than the topology

o(E. M ). In the similar way we consider the condition 7. We have
that (p(f u)=0voe M - By virtue of the fact that the operator L

determines an isometric isomorphism between the spaces E, , and F,
we conclude that the condition u = 0 is equivalent to the totality of the
set M. The equivalence if the definitions is proved similarly to
Theorem 4.

Rem ark 8. Theorem 11 implies that the space M can be
introduced (under the assumptions of the theorem) as a

completion ofthe set E, by the topology O'(E .M )
Remark 9. Note that the condition of the totality of M,

has the principal character and not always holds true. It is easy to
give an example of a linear continuous injective operator
mapping not total sets into total.

Indeed, the operator A:l, — I, acting on the vector

x=(8.&. )

ae(bid
LTI D L
2°°2 2
is obviously injective, linear and continuous (even completely
continuous) operator that maps the vector system

g, =(1,2,0,00,...),
g, =(02,400,...),

according to the rule
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g, =(00,48.,0,...),

into the system

e =(1,1,00,0,...),
e, =(0,110.0,...),
e, =(0,0,1,10,...),

r es e

The vector system { g,} is orthogonal to the vector

. 11 1
Pl [ P,
2’4’ 8

and, hence, is not total, on the other hand the totality of the system
{ej} in the space I, is obvious.

Besides, if we suppose that the operator L obeys the a priori
inequalities (6), this implies the following

Theorem 12. The Banach space H is algebraically and
topologically imbedded into the space H*. Definitions 6 and 7 for
the set H™ and Definitions 4 and 5 , respectively, are equivalent.

Proof. It is clear that the topology induced by the norm |||| 2

stronger than the topology O'(E, H ) Let us test the condition 7. Let

the net {ua}aeA converges to u in the topology of the space H and

{ua }aeA —> 0 in the topology O'(E H '). Then by the Hahn-Banach

theorem the norm |||, may be represented in the form

! _—
= = sp e =d o
=2,

therefore, l(u o )——) / (u) Vie H. On the other hand,
l(ua)—-> 0Vi/e H” .Thus, (u)=0Vle H", andhence, u=0.
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Remark 10. The concept of a generalized solution
investigated in [167] is equivalent to the concept considered in
this subsection.

1.5 Connection between generalized solutions
in Banach spaces and in locally convex spaces

Note that the constructions of generalized solutions in the sense of
Definitions 4 and 5 and constructions of generalized solutions in the
sense of Definition 6 and 7 are analogous in some sense.

On the basis of the total set M C R(L*)C E” it is possible to

construct the Banach space M giving a generalized solution in the
sense of Definitions 4 and 5 in a way analogous to that used in the

construction of a separable locally convex linear topological space M

on the basis of the total set. Namely, let M isa completion of the set
E by the norm
50
|| 7 = sup J—-— (14)
" v [0l

The norm (14) can be rewritten in the form

|o(Lu)
Ul = sup :
Il = sup -
The spaces induced by the norms (15) were investigated in detail in
the case of total sets M, .

(15)

On the other hand if M = R(L") then the norm ”“"W coincides
with the norm of the space E , and hence, in this case M=F , (an

analogy of the space E . ). Indeed,

Zo)  Jo(Lu)

llelliz = sup = = sup e = | Lu
T veen flolle e 0l '
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The last equality holds true, since by the Hahn-Banach theorem for
any element Lu € F there exists such functional @ € F* with the

unit norm that@( Lu) = || Lu]|,. .
Lemma 2. If M CR(L*) and M, is total subset of the

space F* then EL algebraically and topologically imbedded into

the space M.
Proof. Totality ofthe set M, and injectivity of the operator L

implies the totality of the set M . In is easy to see that the norm “”EL
stronger than the norm |||y . It still remains to testify the condition 7.
Let the sequence u, € E converges to #€ E ; in the norm ”””EL and
also u, converges to zero in the norm |ju];, then on the one hand

©(Lu,)— @(Zu), but on the other hand (p(Lun) — 0 for any
@ € M .. Whence, (p(z_ u) =0Voe M, . By virtue of the totality of
M, and injectivity of L we have u = 0.

Remark 11. The theorem implies that under the
assumption of the totality of M the space M can be

constructed by completing the set E . With norm (14).

Thus, on the basis of any total set M C R(L*) it is possible to
obtain a priori estimation (under the assumption of the totality of M
we can prove this estimation even with the imbedding E -~ M)

cl"“"ﬁ s "Lu"F s Cz”u”b‘ VueE,

which implies the assertions about solvability of the equation (1) (in the
sense of Definitions 3, 4, and 5) similar to Theorems 5, 6 and 7.

It easy to see that the topology induced by the norm ""M on the set
E is stronger than the topology of the space M.
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Thus, developing the indicated idea about connection between
generalized solutions in Banach and in locally convex spaces, we could
represent the results of Subsection 1.3 in the style of Subsection 1.4
basing on the total linear subset of the set R(L"), and vice versa, we

could represent the results of Subsection 14 in the style of
Subsection 1.3 using the analogies of the a priori inequalities, i.e.
assuming that the separable locally convex topology defined on the set

E is weaker than the norm |5 -
L
Finally, note that as far as many aspects of the methods used above
have a topological character then the equation (1) we can investigate

using the same approach in a locally convex topological spaces E and
F (which can be, possibly, general topological spaces). In this case

the role of E, , 1s played by the completion of E by the topology
induced by the systems of semi-norms
pa,EL(u)=pa’F(Lu), aeR.

where { Po. F}aeen is a semi-norm system giving the topology of the

space F, and instead of the estimations (6) we obtain the chain of the
dense continuous imbeddings

EcE cH VueE
where H is a completion of the set E in some locally convex
topology which is weaker than the norm of the space E Iz

2. PARAMETRIZATION OF SINGULAR CONTROL
IN GENERAL CASE

Consider the general problem of singular optimal control of systems
with distributed parameters. Let L be a linear partial differential

operator (for example, pseudo-parabolic) defined in the space L, (Q)
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(Q= (O,T )XQ C R™' is a regular tube) and having the domain of
definition D(L) consisting of sufficiently smooth in § functions
obeying some uniform boundary conditions (bd ). The formally adjoint
operator and its domain of definition we shall denote by L' and
D(L+), respectively, where D(L+) is a set of smooth in @ functions

satisfying the uniform adjoint boundary conditions (bd ™).
Define on the linear manifolds D(L) , D(L+ ) the positive norms

“-”W , “ﬂ P ””W+ ) ““ y+» induced by the corresponding inner
products for which the following relations hold true

"u"LZ(Q) < Cl““ e S Gl Iw* (ue D(L)),

”v“Lz(Q) S C3I|V”H: < 04”\)”",: (ve D(L+‘)), c, > 0,i= 1,_4,
and the topological condition T [165] for the pairs of the neighbour

norms in the inequalities is valid. By completing D(L), D(L+) we
obtain the chain of the positive Hilbert spaces
w*c H' cL,(Q), W cH cL,(Q),

and this imbeddings are dense and the imbedding operators are
continuous. Adding to the chains spaces which are negative with
respect to L, (Q) and are constructed by the positive norm introduced
above, we obtain

WrcH'cL(QcH cWw,

wrcH cL(Q)cH. cw,.

Suppose that for the operators L, L' the following a priori

inequalities hold true

¢ lellye <lZully; <ol (ue D(L)),

M <2, <M (ve DL




408 Chapter 11

Then the operator L (L") can be considered as an operator
continuously mapping the whole space W* (W, )into W, (W™). For
the operator equation Lu = f the following results are valid:

1) for any element f & H_ there exists a unique function

u€ W* such that Lu = f and the estimation |l < C||f

q- 18
valid;

2) for any element f €W, there exists a unique function
ue H* such that (u,Iv) =(fy), VveWS: LveH"

(where ( e ) o (-,-)W are bilinear forms constructed with the help

of extension of the inner product (-, : )Lz(Q

WX W], respectively) by continuity and the following estimation
holds true |ju]|,,» < C|| A, --

Similar results are valid also for the equation with the adjoint

) onto H*x H™ and onto

operator L.
Let the system state u(h) € H" is a solution of the equation
Lu(h)= f(h), heU,,, 1)
in the sense 2), where f () V— W is a mapping of the reflexive

Banach space of controls V into the negative space W, , U,, is
bounded, closed, and convex subset of V. On the solutions of the

equation (1) some functional CD(-): H" — R is defined. The
optimization problem consists in finding out such controls A€ U, on

which the performance functional J(#) = (I)(u(h)) attains its minimal

values. The existence of the optimal controls is provided by the
following assumptions:

) CI)(-): H™ — R is a weakly lower semicontinuous functional;

b f () .V — W is a weakly continuous mapping.
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The natural and generally accepted idea of approximate solving
infinite-dimensional optimization problems consists in reducing this
problem to finite-dimensional extremal problems. Consider the general
principles allowing to approximate a solution of a singular optimization
problem by a solution of some finite-dimensional problem. This
approach we shall call parametrization of control.

Suppose that V' is a separable reflexive Banach space. Then there

exists a sequence of finite-dimensional subspaces (V) of the space

V  satisfying the condition of the boundary density:
lim inf ||/ -A||, =0 (he V).

s—reo h'eV,
Next, let (U :,1) be a sequence of closed arid convex subsets V.,

which are bounded uniformly with respect to s in the norm of V and
approximate the set of the admissible controls U, in the following
sense:

VheU, 3K €U, : " —=-—h stronglyin V', )

VheV, WWeU,:"———>h weaklyin V' = hel,. (3)

The issue of the nature of the spaces, which provide the best
approximation, is the most important and fine in the numerical analysis.

The problem of oprimization of the system (1) we replace by the
following problem:

J(h)= ®(u(h) - inf @
Lu(h)= f(h), heU:, cV, V. (5)

Theorem 1. Under the conditions a), b), (2), (3) and also
1) d)(-): H* - R is a strongly upper semicontinuous
functional;
2) f () V- — W_ is a strongly continuous mapping;
for an arbitrary s € {1,2,3,...} the optimal control problem (4), (5)

has a solution h; € U, and
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lim J( ) < inf J(h).

S—yoo
It is possible to extract from the sequence (hf ) such
subsequence (hf"’) thath," ———=—h.  weakly in V, where
h.€ U,, is an optimal control of the system (I).

Proof. Since the conditions a) and b) hold true and U: , are

closed and bounded subsets of the finite-dimensional subspaces ¥, , the
problem of optimal control of the system (1) and the problem (4) and
(5) are solvable. Let h. € U, be some optimal control of the system
(1), and (hf ): h. e U], is a sequence of solutions of the problems
(4) and (5). Then by the condition (2) there exists a sequence of
controls (hs): h*€ U,, such that ”hs —h,

L ——;)w—>0 X By virtue of

the strong continuity of the mapping f () 1V — W_, we have

|7(#)= 1R, —5=0. ®)
b SOl )= (1)

where u(hs)e H*, u(h.)e H* are generalized solutions of the state

N\
wo’

The a priori inequality ”u(hs)—u(h“»

equation of the system (1) corresponding to the controls h’and h.,
and (6) imply that
)t

Since CD(-): H*—> R is a strongly upper semicontinuous

S —=—0.

functional,

mJ (12 )< m.J (1 )= im @(u(h))< @(u(h.)) = inf J(h). )

Consider the sequence (hf ): h. e U;,. U., isbounded uniformly

with respect to s in the reflexive Banach space V. Thus, by the
Eberlein-Shmuljan theorem there exists such subsequence (A.™ ) that
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h." ——=—h, weaklyin V.
The condition (3) implies that A,€ U,;. The mapping
f () V' — W_ is a weakly continuous (assumption b)), hence
f(hf"’ )—-,—"::—-)f(h.) weakly in W,

The sequence —(f(hf’" )) is bounded in the norm W, . The
estimation “u(hf"’ )“H* SC” f (hf"’)‘w_ implies that (u(hf’" )) is a

sequence bounded in H*. Extract from (u( i )) weakly

convergent subsequence (u(hf”" ))
u(hf"* )Tu, weakly in H".

Let us prove that u, = u(fu). Indeed, we have
<u(h.mk ¥ W = <f(h,m),v>% VveW?: L've H™. (8

Passing to the limit in (8) as £ — oo, we obtain

<u.,L+v>H =<f(h,),v>w VveW!: L've H-

Thus, u., = u(/h )E H™ is a generalized solution of the system state
equation (1) corresponding to the control A, € U, . Since this solution
is unique, the sequence (u (hf"' )) weakly converges to u(h )€ H*.

Let us prove that s, € U, is the optimal control of the system (1).
The weak lower semi-continuity of the functional CI)(-): H" >R and
(7) imply that

J(h)< m J{re= )= lim Du(n))<
———

m—yoo

m-—yea m—roeo

<Tm @ (ufn~ )= Tm S (5" )< if J(h),

thus, J (h. ) = hinf J (h) , h.€ U, is the optimal control of the system
13

ad

(1). The theorem is proved.
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Remark. Ifthe functional (I)() is strongly continuous then
lim J (hf)=hirbf J(h). If the optimal control of the system (I)
€ Ugd

S—poo

h.€ U,, is unique then h, ——=> h. weakly in V.

3. DIFFERENTIAL PROPERTIES OF
PERFORMANCE CRITERION
IN GENERAL CASE

To solve numerically the problems of simulation and optimization of
systems the gradient descent methods are usually used. To use these
methods correctly we must at first to investigate the smoothness of the
performance functional and to prove that the necessary conditions of
optimality hold true.

The purpose of this section is to study the issue of the smoothness
of the performance functional for the singular optimization problem in
general case [169-172].

Consider the optimization problem for the system (2.1)

J(h)= @(u(r)) - inf Lu(h)= f(h), KeU,,.

Theorem 1. Let the system state u(h)e H" is defined as
a solution of the equation (2.1) with the right-hand side

f(Wew;. 1
1) there exists a Frechet derivative f, () of the mapping
fO):V > W, atthepoint he V ;
2) there exists a Fréchet derivative (Du(u(h))e H™ of the
functional ®(): H* = R at the pointu = ulh)e H*,
then the performance functional J () V' — R is differentiable by

Frechet at the point h€V and the derivative is defined by the
expression
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YAORIVAO RS
where v,€ W' is a solution of the adjoint problem
L'y, =, (ulh)).
Proof. It is clear that < fh(-), v,,)W+ is meaningful, since the

adjoint problem L'v, =®, (u(h)) has a unique generalized solution
v, € W' ,and f,(*) take on its values in W, . Since f, (-) is a linear

mapping, ( f h(-), v, >W is a linear functional in V, whose continuity
follows from the continuity of £, (-). Indeed, forall Z € V'

<ﬁr( > <"fl' 1; "w;SILﬂ":”"hnw;"z"r

Let AR €V is a increment of a- control. Consider
|70+ A= T(h) - (£,(8),v, ), | =
= |®(u(h+ AR) - @((h) - (£, (AR)Y,), |
Denote Au(h)= u(h+ Ah)—u(h)e H* . We have
|J(h + Ah) - J(h)~{ fh(Ah),vh')m <
< |<I>(u(h)+ Au)—(D —(Au (u(h)))H|+
+[(Au(r), @, @(BD), - (4,8, ), |
In is clear that Au (h)e H™ is a unique solution of the problem
(Au(h),L* V), =(f(h+h)= f(h)Y), VveW:L've H

Let the function v be a solution of the adjoint
problem L*v, =®, (1(h)). We can write that

(D) ®,(u(B)), = (1 (1+AR) = F(BY),,

and

|J(h +AR) = J(h)—( f,,(Ah),vh)ml <



414 Chapter 11

< | (k) + Au(h))~ D (u(h)) - (Au(h), @, (), |+ O
+[£h+ 8h)= £(B)- £, (8B Y,), |

Applying the Schwarz inequality to the second summand in the
right-hand side of (1), we have

[+ 80)= £ ()= 1, (80}, | <
<|lf -+ an)= £ ()= £ (8R) vl

For Au(h)e H™ the apriori estimation is valid
1au(BY] o < ClLf (+AR)= £ (2)y: S

<Cl|f(h+ AR = £(B) - f,8R),- +]1, (8R),- )<
< Cll £+ ) £ (1) 1, 0B, +) 5, )

The assumptions of the theorem imply that for any € >0
) 36,>0: ||Ah||V<5 =5

I+ )= £ (8)= ()l <0+
2y 3§,>0: “Au"H <82 =
ICD(u(h) +Au) - D(u(h)) - (Au, D, (u(h)))H‘ <
—— [Au--

oo 5+141
)

Choose 8 >0 such that § <min{d,,——2——¢. Then the

€
d5+m1)
condition ||AA||, <& implies that

|7+ 8- T () =(1, (), ), | <ela],

o T8k
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Thus, the theorem is proved..

Theorem 2. Let
1) the mapping f() V.— W_ has a Fréchet derivative in

the neighbour ofthe point h € V ,which is continuous at

the point-h ;

2) the functional ®(): H* = R has a Fréchet derivative
in the neighbour of the point @ = u(}T)E H™ \which is
continuous at the point U .

The derivative J, () of the performance functional is

continuous at the point heV
Proof. Let i is an arbitrary point in the vicinity of the point
heV . Consider forall A’V the following difference

(W) =) = (4B~ (1)),
(A=), (= £ J0)s),,
(A0 =), |+ = ));),,

where v € W', v, € W, is solutions of the adjoint problems:
L'y = @, (), L'v, =, (u(h)).

Using the Schwarz inequality and the continuity of the linear
operators £, (), f,-,-()
) = < Wl =l + 1= s )
Whence,
I = Tl <allls = el + 14 = s,

<

< +

’

hl

-
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The derivative of the mapping f () is continuous at the point

heV, since there exists a  neighbour 080 (ﬁ)
(O( { ”h h" <5}) in which ”fh||<C < +oo, Thus,

[ = Izl < Gl =vell, 117 - fz“”"zllw:
The following a priori estimation 1s Vahd
[ = vill: <l . BN,
therefore _
2. - 5l = | @.(ulw)- @, 6@, + 1 - £lilly: - @

The assumptions of the theorem imply that for any € >0
) 38, >0, <8 = | Sl <Sh+ sl )
y 38,>0:ue H, Ju-ulf) . <8,=
=@, 60, i), <

For u(h) - u(Tz)e H™ the following a priori inequality holds true:
)0, <o 1P,

Since the mapping f () has a Fréchet derivative at the point

heV , it is continuous at the point h ,l.e.

= — d

38,>0: h-k|, <8,= | f(n)-s@)],- <&
4

Choose such 8 >0 that 8 < min{5,,5,,8,}. Then the assumption

“h— }T“V <0 in (2) implies that “J,, - Jh-” <¢€. The theorem is

proved.
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Definition 1. A mapping F() from a linear normalized
space X into a linear normalized space Y obeys the Lipschitz
condition with index O.€ (0,1] inthe set, M C X if

3C>0: |[F()-F(x"), <Cl|l¥-x", vV{x¥,x}cM.
Theorem 3. Let
1) the mapping f(:):V — W, has a Fréchet derivative
obeying the Lipschitz condition with index OL€ (0,1] in
the bounded convex set U,, CV ;
2) the functional CD(~): H* = R has a Fréchet derivative
obeying the Lipschitz condition with index Pe (0,1] in
the space H” .

Under these assumptions the derivative J, () of the
performance functional satisfies the Lipschitz condition with index
vy = min {o,B} in the set U, .

Proof is similar to the proof of the previous theorem. Let %,, A,

be arbitrary points in the set U,,. Consider for all A€V the
difference

IJ,,I ()-J, (h’)| =

<f"x (h,)’v”n )ug B (f"z (h,)’v”z >W+
= th. ()., —v"z>w' "«f ) h.)(h')"’fJW;l <
. .(f’ﬁ(h/)’v"n ~h >W*l+ <(f"1 _f"z Xh,)’ Vi >W+' ’

where v, € R n € W, are solutions of the adjoint problems:

L'v, = @, (ulh,)), L'v, =@ (uln,)).
Using the Schwarz inequality and the continuity of the linear

operators £, (), £, ()
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PRGN ACHEL VAT PR W PR A | N 9

Whence,
2, = 2 A=l = vl +15, = 2l

Let us prove that the derivative ﬂ,() is bounded in the set Uy, .

Vi,
Let A" € U, ,and h is an arbitrary point that belongs to U, .

<
&

where d =diam(U_,)= sup ||F"= 4’| is the diameter of the

el  hel y,

Then the following inequalities are valid

AR A

set U, .
Next,
”th w ) ' (3)

vhzl *
i

- th l < Cz (”Vh, Y, ”W: T ”hl - hz ";

The following a priori estimations hold true (_h* €U, is some
fixed admissible control)
”v —v ” L SCG|| @, wlh))-@, (u(h))|,- <

< C,Jlu(h) - ulh, Xliﬂ <G| r(n)- f(n, )"fr/; '
”th ”W: < Csllq)u (u(h, )MH" <
sq”¢gw@n—¢ ), +c"¢ ulk’),. <

SRR L oclo .
<c||fw)-s nw+qul

M-
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Applying to || (%)= f (B, "f (h,)- S (h]|w the formula of

finite increments and taking into account the fact that f,, () is bounded

in U,, ,we have

f(hl)' f(hz llw: S eselﬁ)ljxyl|j;x+0(hzwh

|”hl - hz“v & Cxuhl _hzuw

)= 58N, < s, gl =2, < G
Next, we obtain
1., =7 = ol = mll + = 2],
Whence,
”Jh1 B th | = C9(”h1 - hz”?zm{a’ﬁH +1)|h1\— hz”xt <

<G, (@™ 1 1)jn - |1,

where Yy = min {OL,B}. The theorem is proved.

Consider applications of these theorems to the specific singular
optimization problems. Consider various performance functionals of the
systems (2.1) under the assumptions of Theorem 1 for the mapping

f-
1LIf ®u)= (p,u)Lz(Q p€ L,(Q), then the derivative of the

functional J ( ) defined by the formula
YAOLIVACR) W ©
and the adjoint problem has the form L*v=Op, where O is an
operator of imbedding of the space L, (Q) into H".
2. For the quadratic functional q)(u)=2:'=10‘i“”_”i”iz( o)
u,€ L,(Q), o, >0 Theorem 1 implies the formula:

L'v= 22::] o, Ou(h)~u,).
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3. If (D(u)=-;—||u—uad :

H*?

u,€ H", then the adjoint problem

has the form
L'v=1"(u(h) i),
where I™' is the inverse operator for the operator I, denning the

isometry between the whole space A~ and the whole space H " . In
the case of the pseudo-parabolic system investigated in Chapter 5 the

operator / ! is defined on the Smooth functions u € H* obeying the
conditions u,xeaﬂ =0 in the following way:

I'u=-Au+u.

4. Let (D(u)=%‘l’(||u|z+ ), where ¥()e C'([0,+s0)). The

derivative of the functional J () is defined by the formula (4), and the
adjoint problem has the form

L'v= ‘P'("u(h) " )I"u(h) ,

4. CONVERGENCE OF GRADIENT
METHODS ANALOGIES

The theorems of the previous Section allows us to construct
gradient iterative methods for finding out optimal controls of systems.
For this purpose at every step we must solve direct and adjoint
boundary value problems, which cannot be solved exactly in practice.
In addition, a singular right-hand side of the state equation are usually
approximated by piecewise constant or piecewise linear functions in
order to regularize problem for computer simulation. Computer
computations have round-off errors. Hence, it is necessary to
investigate convergence and stability of methods under the
perturbations of data. Since, perturbations and round-off errors in our
class of problems have an additive character, we shall consider only
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the case when the right-hand side of the system state equation is
perturbed and all sub-problems are solved exactly.
Consider the optimal control problem for the system

(1) = @(u(r) > inf , Lu(h)= 1(n),

where f () VoW ,U, is the set of admissible controls from the
Hilbert space of controls V. We suppose that the operator L, the
functional CI)() and the mapping f () obey the assumptions of
Sections 2 and 3, U, is compact in the strong topology and convex.

Although in the problems of oprimization of systems with distributed
parameters the strong compactness does not hold as a rule, using
parametrization or regularization we can approximate the original
problem in a such way, that the strong compactness holds.

Consider the problem with a perturbation in the right-hand side

Lu(h) = f*(h),
where {f a() VW }6>0 is one-parameter set of differentiable by

Fréchet mappings, which approximate in some sense the mapping
f(): ¥V — W] . Instead of the Fréchet derivative J,(-)={f,(-)v),,

we have its estimation J; () = < 50 v>W :

Since V is a Hilbert space, and J,(-), JF () is a linear continuous
functional in V, there exists such elements /€ V', €V that
J,(AR)=(1,AR),, Jt (Ah)=(l E,Ah),,, respectively. We  shall
denote them by [ = J'(h), I = J.(h).

The methods investigated below have the following structure: the
sequence of controls is constructed

hs+| =hs+ps(}—l_s _hs),
which satisfies the conditions A°€ U,,, and the control A° is a

solution of some auxiliary extremal problem. The precision of
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computation of the Fréchet derivative is selected according to the

conditions
|7 ()= 1o )]

where (8; ) 3 (8';) are infinitesimal sequences of positive numbers.

<e’,
5

’ 5:
W’ ~Eg ”f;z’ fh*

+

To prove the convergence of these methods we shall use the
sufficient conditions of the convergence of the algorithms of non-linear
and stochastic programming.

4.1 Analogy of Rosen's gradient projection method

Let the sequence of controls (hs) i1s generated by the following
procedure:
(i) Start from A° € U_,. Put s =0 .
(ii) For all integer positive s compute
=1 (- (),
W= wp (BT - h),
where s is the number of iteration, A°€U,, is the initial
approximation, () is the operator of projection in the set U, , p, is
the step multiplier selected by the condition
Yo P, =+, p,—=0,p,€(0]1).
This gradient procedure is an analogy of the well-known Rosen's
gradient projection method.

Consider the set U™ of admissible controls, for which the
necessary condition of the local minimum of the functional J () in the

set U,, holds true, i.e.

Ut={eu,:(J(1),h-1"),20,vheU,,}.
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The necessary condition of the local minimum can be written in the
form A" =1 (h' -J '(h* )), which is convenient for justification of the
convergence of the method.

Theorem 1. Let
1) f:V > W] be a differentiable by Fréchet mapping,
whose derivative obeys the Lipschitz condition with
index QL€ (O,l];

2) ©:H" — Ris a differentiable by Fréchet functional,
whose derivative obeys the Lipschitz condition with

index Be (0,1].

If the functional J () takes on at the most countable number of
the values in the set
v ={eu,, :(J(r),h-1"), 20,V he U, }, then all limit
points (which exist necessarily) of the sequence (hs) belong to the
compact connected subset U* and numerical sequence (J (hs»

has a limit.
Proof. Let us test the assumptions of the theorem of sufficient
conditions of the iterative algorithms convergence. By construction, all

entries of the sequence (hs) belong to the compact U, . Consider a
sequence ( * ): h* ———h’e U". We have
-"k"‘l_ Sk — T S AT
|+ = || =p, |5 -2
Let (h * ) is a subsequence convergent to the control A€ U~ . Let
us prove that there exists such 8, >0 that forall k and 8 € (0,80 ]

7, =min{s: |5 - k"

S>Sk

, Spsk diam(Uad )TO

V>8}<+oo.
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Suppose the contrary. Let for all &, >0 there exists such
ko =k,(8,) that [|B°—A""

, <9, for all §>s, . Then by the
triangle inequality we have
W €0, (hs"" )=> h* €0 (h”" )=>
W e O, (h“")=> I e U ()
for all s >s, . Here we use the notation 0 { “h h ” < 5}

Put W() =J () The assumption of the theorem implies that W()
is continuous in U, functional, the set W~ = {W(h) theU ‘} is at
the most countable, and also J () is differentiable t‘)y Fréchet
functional and the derivative J, () obeys the Lipschitz condition with

index Y = min {OL, B} in the set U, . Consider the expression
w(n ) -win)= (7(h +0,(h" =1 )" - 1), =
= (B = me ), + (w0, (B =R )= (e e - h ), <
<p (S(n*) " = n7), +prca™, ()
where s>, , 0, € [0,1], d = diam (U,, ) is the diameter of U, .
By the inequality (1), we shall estimate the value (J ’(hs),; - hs),, .
To do this put #"= I (W' —=J’(h’)) and write
VENE k), =WV ), U )TV R -0, =
= WNR = H), + (T H)L =1 ), + (TR =R, +
+(J’(h’)—J(h ) —h* )
Since A'g U,
The following inequality holds true:

(S (BLE =1, < -1,
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whence, we have
e =), < a0, (- w7, +|7 -7, )+
+ |7 )- )|, B - )|, <
<+ N - w1, + [ 7], )+ calp - w7
The value [[2° = 77|, we estimate in the following way
[ =#1, = fr (- (), <
<l -4, + ||J J’(h’)| .

14

Estimate the second summand in the right-hand side of the last
inequality

|2 ()= )|, sz ()= ), + ) -, <
<|vi @)= ), + e - #)
Next,
e )=o), =
= Ij}ulilk I2 (AR v(e, ))m = (. (an)vlr ))_m
< = £l N+l i) - ),, <
<]y eth+Mm—n%wnMM%”%wWMws

s+l =+l )- 4o
where v(E h’ ) wr, v(hs )E W} are solutions of the adjoint
problems
L*v(es,h“' ) =P, (u(as,h‘ )), L*v(h‘ ) = (I)“(u(h" ))
The following estimations are valid (we use the a priori estimations
of the solutions of the original and adjoint problems, the formula of

<

<¢|ble,
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finite increments and the fact that the derivatives f), () , @, () obey
the L1psch1tz condition):

[e. hXI scfo. ik, h)ll,,-s
<Gl 1)l )+l -0 b Gl - 5
sc )t +||f( 1.+ clloul, <
<C4(£’S‘5+Cd“)+C||<D (W)W,- € C, < +eo,
[ECRERIY <g e, ule,.7))- @, (n)),- <

<Cllule, b )-ulpe ), <Cre )= sle)] - <

We have
(7o) me =n0), <A+
N, R -, + e - #]L+
+€’C, +( - ’a+||fh||)Ce’ﬁ)
<-A+
+ ), (48, + C(28, ) +asc6+( C(28,F +[|, )c.e?)+
+Cd(28,)".

Choosing sufficiently small 8, >0 and large k,, we obtain
- A
4 § 8 s
(7(r* )5 - 1), <=2, 535,
Thus, ultimately we obtain

w(nt)-win )< - %ps +p.7Cd", s> 5. ()

Adding the inequalities (2) for s =s,, p, k >k, we obtain
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wloe)-wipn)s -2 S0, + cavr S

s=5; s=5;
Since = 0(p ) there  exist §2s5,: Vs=s
p’:Y ST P, - For  all p>s the estimation
Pl 14y A. p-1 }\, p-1 . X
Zm»ps < S Zs - ps =%ca™ ZS_Skp is valid. The

relation ZS ., P, =+eco implies the existence of such number "2,
=5k

¢ e A -1

»” 1+y P
|

that Vp>s E,Fsk P, = 3Cd™ 23=skps

If p > max{s’,s"}, then 2:: p. S o Zf Sl p,,ie.

e J-w o)== o, ®

S=Sk

Passing to the limit in (3) as p — e and taking into account the
condition 2: . P, =+oo, we arrive to contradiction with the fact that
=S5k

the continuous functional W() is bounded below on the compact U,

Thus, there exists 8, > 0 such that for all k and € (0,80]

7, =min{s: A -

S>Sk

e

However, taking sufficiently small 50 >0 and large k,, it is

possible to repeat the proof of the estimation (3) for s, <s<T,. On

L <l

the other hand

Tk -‘k
, < "h -

541 h” <d2p

Therefore,
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§o

s=s,
Granting the last inequality in (3), we have
Ad
wh™ |-wih' J< ——2.
-l )< 2
Whence,
i (") < m w(n*).
k— 00 k—oo
Thus, the sufficient conditions of the convergence hold true, and
hence, all limit points of the sequence (hs) belong to U* and the

numerical sequence (J (hs)) has a limit. The connectedness and
compactness of the set of limit points (hs) follows from the fact that

Ihsﬂ _hs IV - psuﬁs _hs

assertion: if the sequence of the points (xk) of the metric space X is

, = p,d ——J_—);:—->O and from the following

imbedded into some compact K, p X(xk L1 )‘W)O’ then the
set of limit points (xk ) is a connected compact.
If the assumption that the set of values of the functional J () is at

the most countable in the set U™ does not hold true, it is possible to
prove weaker assertion:

Theorem 2. [fthe assumptions 1) and 2) of Theorem 1
hold true, then the sequence (h“" has at least one limit point

belonging to the set U

4.2 Analogy of the conditional gradient method
with averaging

Consider the sequence of controls (hs) generated by the following
procedure:
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(i) Start from hOGUad, q0 =J (ho), h° =argir1f(q°,h)y.

€o
KU,
Put s = 0.
(ii) For all integer positive s compute

hs+1 - hs +p:(il-s _hs),
¢ =g +a, L, (")-q"),
E'S+l = arginf(qm,h),,,

hel
where s is the number of iteration, A°€U,, is the initial

approximation, P, O is the multipliers selected by the conditions
zszops = teo, ps—s—)T)O’ - ps E(Q’l),
as € (031)3 pZ/OCS —;T)O

Theorem 3. Let the assumptions 1) and 2) of Theorem 1
holds true. Ifthe functional J () takes on at the most countable
number of its values in the set
U ={n"eU,, :(J(r")h-h"), 20,V he U,,}, then all limit

points (which exist necessarily) ofthe sequence (h‘) generated by

oas. = +oo’

5=

the method (i), (ii) belong to the compact connected subset U%*
and the numerical sequence \J (h’)) has a limit.

Proof is similar to the proof of Theorem 1. Let us prove only that
for the sequence (h S*) which converges to the control #'& U there
exists such &,>0 that for all &k and &€(0,8,]:

v, = minfs: i = || >8}<+e.

S>Sk

Suppose the contrary. Let for all &, >0 there exist such
ko =ky(8,) that |[h° —h""

<9, forall s>s, . Then we have

14
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h'e O, (hsk" )=> h* €0, (hs"" )-_—> KeO, (hs"" )=>
h’e Uzso (H') for all s > 58,

Put W ()= J(-). Consider

win)-mlh+ )= J(w )= J() = Jp* )+ ()=
(7w +o ( Whw - 1), - (0 + 0l - )i =), =
)k = k), + (W6 = K) =T (R) b - 1), -
. (J’(h’),hs* 1), + (7Y =S+ & (i =0 =), <

< () =B ), +277C8 T =
= Zp( VB =R ), 228, @)

where §>s,, k > k {0 0 }C[O,l].
In the inequality (4) we estimate the value (J ‘(W),h" = h* ),, . For
this purpose put A’ = arginf (J(#'),h), and write

hel,,
()R =07), = (P (H) - " B2 =0"), +(g B =), <
<(J(H)y-q? K7 =1 ), +(g" T ~1"),.

But
(g% 7 =), =(g” - SWVH = w2 ), +(F W)= 0), +
+(J W)L H = 1),
Thus,
V)R =), <lg? = T W)H =), + (S (W) B =K, +
+(S W)k =n7), .

Since hWeU", there exists such A>0 that
(f(h'), h' - h'),, < —A, whence
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V)R =k, <A +d|q” -7

2,5,
The value ”q” -J '(h'jIV we shall estimate in the following way
o =7 ®), <la”=10)), + |t )- 0w, <
<|e” -s(#), + 278
Further (in Lemma 1) it will be proved that
m,=lo* =), =0

We have
( (7} B? = 17), <A+ dn, +dC278! +2)J'(H)), 8,
Choosing sufficiently small 8, > 0 and large k,, we obtain

(J'(h'),/_z” —h"),, S'—-g'-, p>s, .

Thus, ultimately we have
}\’ s} .
wine)-win)< 5 20, +2CE s> 5 25, ()
P=S

Passing to the limit in (5) as § — oo and taking into account the

condition Z: P, =+°°, we arrive to contradiction with the fact
=5k

that the continuous functional W() is bounded below in the compact
U, . Thus, there exists 8, >0 such that for all k and 8¢ (0,5, ]

R , >8}<+oo.

‘ck=mln{s:

S>Sk

Further, proof is similar to the proof of Theorem 1.
Lemma 1. Let the assumptions of Theorem 3 hold true.

Then
-],
Proof. Let us introduce the following notation
q° - J'(hsx :

14

—>0.

sy

n =
s
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Consider

qs+I_J/(hs+lx _

<l b, )4
<(t-a g -7,

S (S0 VA BN Ul EXA N G BV )
<(t-o,)m, +(t-o |/ (5°)- ()],

I (w)-aw)

Esn

n —

s+1 7

<

14

+

IA

14

+

+ O,

Since J '() obeys the Lipschitz condition with index Y = min {OL, B}
in the set U, ,
15 7{y 5+1 ¥ Y 7Y
Jw)-0w), ' <Cpld".
Let us estimate the value ”J / (hm )— J '(hs”]
s+ vV
the proof of Theorem 1, we have

J ()=

€sn

<c|ln - n

. Reasoning as in

,<C el +el).
Thus,
0z, <(l-o)m +vy,, (6)

where W, = (1-a )Cp'd" +a C(e”, +€* ).

s+!

It is clear that f, /o, ——=——0. Indeed,

W, pz ” B
&— =[O(.—_ pf JCOdY + C1(8s+1 + 8S+1)_::):-—)0 .

This relation and (6) imply that T, ————0.
If the assumption that the set of the values of the functional J () in

the set U~ is at most countable does not hold true, then it is possible to
prove the following weaker assertion.
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Theorem 4. [fthe assumptions 1) and 2) of Theorem I
holds true, then the sequence (h‘) generated by the method (i),

(ii) has at least one limit point which belongs to the set U*

5. OPTIMIZATION OF PARABOLIC SYSTEMS
WITH GENERALIZED COEFFICIENTS

The solvability of parabolic systems with discontinuous coefficients
were Investigated in [173,174,178] and in many others papers. In
partucular, these problem arise as a result of investigation of heat and
mass transport in heterogeneous media with non-ideal contact between
subdomains, with external condensed source and so on. In this
subsection the results obtained in [173,174] are extended and the issue
of optimization of parabolic systems with discontinuous solutions are
considered.

5.1 Main notations

Let the system state described by the function q(t, E.E, ... E_,n)
The heat and mass transport take place in a tube Q = {(0 T)x Q},
where € C R" is bounded regular domain of variation of space
variables & = (&,,....&,) withboundary 9Q.

Introduce the following notations. Let C,, (a) be a set of infinitely

differentiable in the domain Q functions satisfying the boundary
conditions
u|:=o = O’ulgeag =0,

W be a completion of the set C;, (§) in the norm

lullyss = [ u? +u?da, )
Q
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W' be a completion (the set of smooth in C~({J) functions) in the

norm

el = £ W’ +2(%} dg.

Denote also by W,'; a completion of the set C;, (Q ) consisting of

functions, which are smooth in the domain and satisfy the adjoint
conditions

Ul = 0’“|§eag =0,
in the same norm (1).

W, W, ' W, ;" are negative spaces constructed on the basis of
pairs W, (Q) = il ( Q) with corresponding indices.
In addition, introduce the following notations:

X =W x (o) y =Wt x ()
X, = x(L(Q)) ¥ =wp x(L(Q))

X, = L(Q)x(w3)" v, = L,(Q)x (W)
We shall also consider the spaces adjoint to X,Y, X, Y, X,.Y,.

n
)

For example, X, =W, x (L2 (Q))n . For every Cartesian product of

2

the original space and its adjoint space (for example, X and X*) the

bilinear form {:,),,,+, which is obtained by extension the inner

roduct in the space | L,{Q i by continuity, is defined
p P 2

Consider the problem of optimization of the system governed by the
equations of heat and mass transport in several heterogeneous media
with the conditions of non-ideal contact, external condensed source
and so on., which generalized the similar problem considered in [174]
(the Dirichlet problem)
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Lx = F(g). ?)
The operator L is defined by symbolic matrix
d d
2L s
ot | dg o,
3 u Jo
=| 3| Ou - 'Oy =" _| /£
L a&l L X F
—1 0 .. O
a&n nl nn )
where u is a function describing the heat and mass transport,
W= (w1 ..... Wn) is a vector of the substance flux.

The operator L maps X into Y with the domain of definition

D(L)=C;(@)x(c@)) .
The mapping F (possibly, non-linear) maps the Banach space of
controls V,, (with the domain of definition U,, ) into the space Y

The system coefficients obey the conditions:
be C‘([O, T]),b >0,6,=0,, in the equations (2) O,w, is
understood to be a linear functional defined in W,"" by the following

rule

T
(fa té)dx]neWz wEeW,, (3)

where G, ={(p,l,a,.j)},p,je W (Q).a, € c'([0.7]). W (Q) is a

space adjoint to the Sobolev space W' Q).

The functional (3) is defined correctly, since
T

[a,(Ow,(r.EM(T.E)dre W, (Q).

0
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We shall suppose that the coefficient matrix M = {0‘ U}j for all
ij=1

vector-functions M = (1’]1 ..... nn) obey the conditions

—Zp,,( ( J) n,(%En (r,é)dr]ZaMifn?dQ,

i,j=1 i=l g

}"jp,,[”’“ n (59 (r,a)dr]za,wijnfdg,

i, j=1 i=l g

>0, (a, (7). (T.E)n, (T.8)) 2

i, j=1

20,39, (a,(0):n, (0.8), (0,8)) 20,

i,j=1
where the constant O, >0 does nor depend on the functions

,r]l c M/ZO,I .

Note that all results obtained in this section can be generalized for
the functionals 0w of the form

zp,,[ [a}()w, (z.Em(x &)drj.

The oprimization problem consists in the finding out such control
@eU,CV, which provide the minimum of the performance

J(0)=,(9))+,(¢) > min

where @, P, are some functional, x( (p) is a solution of (2) under the
control @ €U, CV, .

functional

Denote by L* the adjoint by Lagrange operator
L'y=G, @
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where

LY~ X*,D(L')=C;, (Q')x(C”(Q'))”,y= (0,15+-5M, ).

5.2 Optimization of parabolic system
with generalized coefficients

Using the technique of the a priori inequalities in negative norms
[167], it is possible to prove that the following lemmas holds true.
Lemma 1. Thefollowing inequalities are valid
\Lx]|, < c||x|l,,¥xe D(L), )
"L‘y”r <c||y|l,,Vye D(Lf), 6)
where the constant ¢ > 0 does not depend on x,y.
The inequalities in Lemma 1 do not allow to extend by continuity

the operator L(L") to an operator continuously mapping the whole
space X(Y") into the space Y (X, respectively). In what follows,

we shall consider only extended operators denoting it by L ¢ L,
again.
Lemma 2. Thefollowing inequalities hold true
ol <L), Ve X, Lee , 0

g S ||L yIIXl,,Vy eV ,Lye X, (8)

clly

For a parabolic equation with usual coefficients the a priori
inequalities in negative norms were proved in [175].

The inequalities (5)-(8) allow us to prove the unique solvability of
the equations (2), (4).

In what follows, we shall suppose that the set R( LN Y, is dense

in the space Y,, and also R(L‘)ﬂ X, is dense in X,, where

29
R(L), R(L") are the ranges of values of the extended operatores (but
some assertions can be proved under weaker assumptions). In the
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case when the coefficient matrix M = {Gij};:x i1s generated by a

classic functions the density follows from the classic theorems of
solvability of parabolic equations.
Definition 1. A solution of the equation (2) is an element

x € X, such thatfor any yeY*,L'ye€ X the following equality
holds true: ,

<x’L*y>XlxX]‘ =(F,9)

Theorem 1. Forall FeY, there exists a unique solution

of the equation (2) in the sense of Theorem 1.
Definition 2. A solution ofthe equation (2) is an element

x € X, such thatfor any yeY*, L'y € X, the following equality
holds true:

<x’L*y>X2xX; = (F’ y)YxY‘-'

Theorem 2. Forall F €Y, there exists a unique solution

if the equation (2) in the sense ofthe Definition 2.
The proof of Theorems 1 and 2 are similar to [167].
Remark 1. Similar theorems hold true for the adjoint

operator. Namely, for any G € X, (G € Xl*) there exists a unique
solution y € Y,*(ye YZ*) of the equation (4) in the sense of the

analogy of Definition 1 (2, respectively) for the adjoint operator.
Remark 2. Ifxe X, is a solution ofthe equation (2) with

the right-hand side F €Y, in the sense ofDefinition 2 and y €Y

is a solution of the equation (4) with the right-hand side G € X,
in the sense of the analogy of Definition 1 then

(x, G)sz,\'; = (F Y >Y,xY,"
Similarly,forall F €Y, G € X, the following equality holds true

(x, G>X,><X,‘ = (F,y)YZX),Z.
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where x,y are solutions of the equations (2), (4) with the right-hand

sides F, G in the sense of Definitions 1 and 2, respectively.
Remark 3. Note that since Theorems 1 and 2 hold true for

arbitrary right-hand sides F (not only F = (fO,O, O)

considered in [173, 174]), the results proved above are
applicable not onlyto systems with singular coefficients, but also
to systems with singular right-hand sides. For example, the right-

hand side C\II(t)S(f;1 —C)(c = const) corresponds to
F= (O,w(t) sgn(&,l - C,)O ..... 0) ey

in the standard equation of heat and mass transport with
constant coefficients.

Theorem 3. Let the system state x((p) is definedfrom the
equations (2). If
1)the functionals (Dl,FDZ(D(CD‘).: Xl,D<CD2)= % ) are

¢
weakly lower semicontinuous in the spaces XV,

respectively;

2) the set of the admissible controls U, is weakly compact

¢
in the Banach space V,;
3) R(F) c Y, and the mapping F:V,—Y, is weakly
continuous,
then there exists a control @ € U, CV, providing a minimum of

the performance functional J .
Proof. Let us select a sequence @, €U, minimizing the

functional J,

inf J(0)=1im J(0,).

CPEU‘P

Granting the weak compactness of U, , we can consider that the

sequence @, weakly convergesto @ €U o 1n the space yef. Taking
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into account that F is weakly continuous, we have that F ((p k)

weakly converges to F ((p*) in Y,. Similarly to [167] we prove that
there exists such constant C > 0 (common forall F € Y,) that

L, = ClIELL,
where x is a solution of the equation (2) with the right-hand side F ,
whence we conclude that the sequence X((p k) of solutions of (2)
under the control @, is bounded in X, , and hence, we can extract

from it a subsequence, which weakly converges to x" € X, ( we
denote it by X( (0] k) again). Passing in the equality

(o, ),L'y)X]xX; =(F(p,), Wiy Y€V Lye X;
to the limit as k — oo, we obtain

(x*,L*y)XlxX[. =(F ((P*),y)yzxy; VyeY,Lye X/,

whence, we conclude that x* is a solution of (2) under the control ¢
Taking into account that functionals @ ,®, are weakly lower
semicontinuous we conclude that @ is an optimal control.

Remark 4. A similar theorem holds true in the case when

functional ®, is weakly lower semicontinuous in the space X,
and the mapping F:V, =Y, is weakly continuous.

1

Remark 5. Assuming that U(p is a compact set, we can
prove that any minimizing sequence @, converges to the set V*
of optimal controls (p(hk ,V*) - 0).

Remark 6. Asfar as the mapping F may be non-linear
and the optimization problem may be non-convex, an optimal
control may be not unique.



PERSPECTIVES 441

If we suppose that there exist the Fréchet derivatives
CD:(X((p)),CD;((p) of the functionals @ ,:X, — R, ®,:V, - R at

the points x((p) €X, 9€U,, and also there exists the derivative

’ . . .
F ((p) of the mapping F:V, — Y, at the point @ €U, then we can

2
investigate the differential properties of the functional J.
Theorem 4. Let the system state be defined by the
equations (2) and there exist the Fréchet derivatives

/

q):(x((p)), @, ((p) F’((p) . Then there exists the Fréchet derivative
J '((p) ifthe functional J defined by the following expressions

2 (80)= (F(0)a0) H0)); + @(0)A0). O

where x((p) =(u, W, ,...,Wn) € Xl,y(q)) = (U,n,,...,nn)e Y' are
the solutions ofthe operator equations

Lx = F(g). L'y = ¢(x(0)), (10)
the function G(x((p)) € X is defined by the Fréchet derivative

(D:(X((p)) by theformula (the Riesz theorem)
(D; (V((p))(Ax) = (G(x((p)):Ax>x,'xxl .

Remark 7. A similar theorem holds true in he case of the
functional ®,:X, = R and the mapping F:V, — Y.

Remark 8. Developing the technique proposed in [167] it
is possible to investigate the smoothness ofthe functional gradient

J on the basis of the relations (9), (10) and inequalities (5)-(8)
and to construct gradient type numerical methods of optimization.
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