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ix

General preface

Nowadays there are many books on mathematical theory of optimal
control of systems with distributed parameters, but as a rule they are
devoted to the systems with regular control. The theory of optimization
of systems with singular control (including important applied problems
such as point, pulse, mobile optimization etc.) is much less elaborated.

The book is written by the professor of the Kiev National Taras
Shevchenko University S.I.Lyashko. The author made an attempt to
create the general theory of optimization of linear systems (both
distributed and lumped) with a singular control. This book touches upon
wide range of issues such as the solvability of boundary values
problems for partial differential equations with generalized right-hand
sides, the existence of optimal controls, the necessary conditions of
optimality, the controllability of systems, numerical methods of
approximation of generalized solutions of initial boundary value
problems with generalized data, and numerical methods for
approximation of optimal controls. In particular, the problems of
optimization of linear systems with lumped controls (pulse, point,
pointwise mobile and so on) are investigated in detail.

The book undoubtedly will awake the interest of all who is engaged
in the theory of optimal control of linear systems and its application in
physics, ecology, economy, medicine and other fields.

Academician
of the National Academy of Sciences
of Ukraine I.V.Sergienko
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Preface

Intensive development of science and technology put the
optimization of various systems in the forefront of applied mathematics
and cybernetics.

The fundamental results of the optimal control theory were obtained
by L.S.Pontryagin, V.P.Boltyansky, R.V.Gamkrelidze, and Y.F.Mi-
schenko [1, 2], A.A.Feldbaum [3], R.Bellmann [4], V.M.Tikho-
mirov [5], N.N.Krasovsky [6], B.N.Pshenichny [7-9], B.S.Mordu-
khovich [10], J.Varga [11] and others mathematicians. The theory of
control of systems with finite-dimensional phase space was elaborated.
But in many technical applications objects have spatial length and its
state is described by some classical or non-classical equations of
mathematical physics (so called systems with distributed parameters)
The investigation of such objects requires considerable generalization
of methods of analysis of systems with distributed parameters. The
solutions of such problems were obtained by A.Bensoussan [12],
B.N.Bublik [13], A.G.Butkovsky [14-16], F.P.Vasilyev [17], A.I.Ego-
rov [18-20], Yu.M.Ermoliev [21-25], V.I.Ivanenko and V.S.Mel'-
nik [26], J.-L.Lions [27-34], Lurje K.A. [35], A.G.Nakonechny [36],
Yu.S.Osipov [37], Yu.I.Samoylenko [16, 38], T.K.Sirazetdinov [39],
R.P.Fedorenko [40], V.A.Dykhta [41] etc.

Many problems in physics, economics, ecology, medicine etc. are
reduced to the problems with state equations, whose right-hand sides
include finite order distributions (pulse, point and other controls) [14-16,
42-45].

These problems of singular optimal control yield a series of difficult
problems. Although some results were obtained already, but the
complete theory was not developed yet.

The problem of optimal pulse control of systems with distributed
parameters was solved in [6] by introducing into consideration the
Stiltjes integral and using the moment L -problem methods. This
problem was investigated in [46] as a game one. The papers [47, 48]
were devoted to the necessary conditions of optimality in the form of
the Pontryagin maximum principle. In [12, 33, 49] the problem of
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synthesis of the optimal control was reduced to solving of a quasi-
variational inequality. In the paper [50] the problem of pulse
optimization was solved with the help of extension of variational
problem and its further analysis in the class of distributions. In [51-53]
the problem of point optimal control of systems with distributed
parameters was investigated with the help of the semi-group theory. In
the paper [20] the pulse position control was obtained for the heat
transport equation as a result of solving of some linear problems. The
problem of the optimal pulse control was studied in the stochastic
formulation in the monograph [12] It should been noted that the
introducing of noise into considered systems is equivalent to the
regularization and very simplifies the investigation of the optimal
controls existence. As regards the necessary conditions of optimality
the situation is inverse. The introducing of noise make the formulation
of the stochastic maximum principle very complicated.

In investigation of controllable systems the problem of its
controllability is one of the most important. The problem of
controllability of linear systems with lumped parameters, which allow
generalized controls, was investigated in [6]. In this paper it was
shown that the introducing of such controls does not extend the
R.Kalman's conditions of complete controllability. In the case of
systems with distributed parameters the state of affairs is much more
complicated. It was shown in [14] that the controllability of distributed
systems with point controls could be essentially dependent on the
numerical nature of the point of the application of control force. Some
problems of optimization of systems with generalized controls were
considered in the papers [54-61].

Though many problems were solved, numerous urgent problems of
generalized control of systems with distributed parameters still either
unsolved (for example, problems of pulse controllability and numerical
methods) or incompletely investigated (existence of optimal controls,
necessary and sufficient conditions of optimality).

This monograph describes the investigations in the field of the
theory of optimal control of linear systems with distributed parameters
with the help of non-linear generalized impacts (including pulse). In
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book the theory of optimization of distributed systems elaborated on the
basis of a priory inequalities in negative norms is stated. V.P.Didenko
[62-64] first obtained the inequalities in negative norms and the method
of its proving (integral abc-method) at the early 1970's. This method of
investigation of generalized optimization problems is very effective. It
allowed to researchers to obtain the results on existence and
uniqueness of solutions of initial-boundary value problems, on existence
of optimal controls, on necessary and (in some cases) sufficient
conditions of controllability in the classes of various generalized
impacts. Basing on this method, it is possible to construct numerical
methods of generalized optimization (including the methods of solving
initial boundary value problems with finite-order distributions in the
right-hand sides of its state equations).

The book's content is aimed to verify the following theses:
1. In the theory of optimal control of distributed systems we often

deal with non-smooth singular controls. That is why we must
investigate differential equations in classes of distributions.

2. The Sobolev spaces with negative index and a priori inequalities
in negative norms are very suitable for these goals.

3. These methods can be very useful not only in the field of
singular control.

The first chapters of the book are devoted to the general theory of
optimization of linear systems with generalized impacts, for which the a
priori inequalities in negative norms hold true.

In the following chapters we consider the applications of the
general theory to systems described by classical and non-classical
equations of mathematical physics, proving. For these systems the
validity of these inequalities in negative norms. Also, we construct and
investigate numerical methods (analogues of the Galerkin method) to
find approximate solutions of initial boundary value problems.

Chapter 10 is devoted to the systematic investigation of
controllability of systems with pulse, point and similar control.

Last chapter contains the recent results and generalizations. We
think that the section devoted to generalized solvability of operator
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equalities in linear topological spaces is the most interesting. These
results undoubtedly will be applied to the control theory.

In the book we use the following system of numeration and
references. In each section we use a separate numeration of formulae,
theorems and definitions. In the frame of single chapter (section) a
number of this chapter (section) in references may be omitted. For
example, Theorem 1 means the first theorem of the current section in
the current chapter, Lemma 1.2 is the second lemma of the first
section in the current chapter, (1.2.3) is the third formula of the second
section of the first chapter and so on.

The book is addressed to the broad sections of readers – students,
post-graduates and scientific researchers – who deal with partial
differential equations and optimal control.

The work on book teaches to be modest, as far as the author
realizes, in addition, how much he depends on others people. I would to
thank my colleagues from the Institute of Cybernetics of National
Academy of Science of Ukraine (NANU) and from the Kiev National
Taras Shevchenko University, and also others people, who stimulated
(knowingly or unknowingly) my work during long time. The first place
in the list of my personal thanks belong to NANU academician
Yu.M.Ermoliev and professor V.P.Didenko, who are responsible for
the awakening of my interest to the theory of optimization and to the
issues of the solvability of differential equations with non-smooth data.
Also, I am very grateful to my colleagues, who has an influence on the
content of my book: NANU academicians I.V.Sergienko,
B.N.Pshenichny, N.Z.Shor, correspondent-members of NANU
B.N.Bublik, V.S.Mel'nik, Yu.I.Samoilenko, V.V.Skopetzky,
A.A.Chikriy, professors A.G.Burkovsky, Yu.M.Danilin, A.I.Egorov,
N.F.Kirichenko, A.G.Nakonechny. I would to mark with gratitude the
activity and enthusiasm shown by my young disciples, especially
D.A.Nomirovsky and V.V.Semenov, whose results I used in the book
in them kind consent.

D.A.Nomirovsky and D.A.Klyushin translated the manuscript from
Russian to English. The general editing of the book was performed by



xv

D.A.Klyushin. Without him insistence (up to the willingness to share
with author the responsibility for possible mistakes) the book would be
never completed.

Finally, I am very thankful to the employees, post-graduates and
students of the Department of Computational Mathematics of the
Faculty of Cybernetics and the Department of Differential and Integral
Equations of the Mechanics and Mathematics Faculty of the Kiev
National Taras Shevchenko University, and also to all listener of my
lectures and the readers of the preliminary versions of this book.

I am very grateful to the editors of the Kluwer Academic
Publishers for their remarkable work. Especially, I would like to thank
Ms. Angela Quilici for her kind help during the preparation of the book.

Please, inform the author about all found mistakes and misprints via
e-mail addresses: sil@dialektika.com, vm214@dcp.kiev.ua.

S.I.Lyashko



Chapter 1

OPTIMIZATION OF LINEAR SYSTEMS
WITH GENERALIZED CONTROL

1. FORMULATION OF OPTIMIZATION
PROBLEM FOR DISTRIBUTED SYSTEMS
AND AUXILIARY PROBLEMS

Consider a system which functioning is described by linear partial
differential equation [11, 14-17,19, 30, 65-73]

in a tube domain where is an unknown

function depended on a spatial variable and a time variable
is a bounded domain in with smooth boundary

D(L) is a set of the functions which are sufficiently smooth in and

satisfy some conditions (bd) on the boundary of the domain Q .

Let us consider that operator L mapping into

where is the space of functions, which are measurable

and square integrable on the set Q. Note that the set D(L) is dense

in therefore we can correctly define an adjoint by Lagrange

operator with the domain of definition

which is the set of functions, which are sufficiently smooth in and

satisfy adjoint boundary conditions
Let the following chains of equipped Hilbert spaces are constructed

with respect to
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where are the completions of D(L) with respect to

some positive norms; are the completions of

with respect to the same norms. Negative spaces are

constructed with respect to and to the corresponding positive
spaces.

Hereinafter we shall obtain a priori estimations with respect to
negative norms for various specific types of operators L :

where is the operator adjoint to L by Lagrange,
c, C here and below with indices and without

them denote positive constants not depending on the functions u(t,x),

v(t,x),

in addition, these embeddings are dense and operators of embedding
are completely continuous.

Spaces are Hilbert ones endowed with the

norms satisfying the inequalities

Denote by bilinear forms constructed by extending

the inner product in on continuity to bilinear forms on

and                           respectively. By we

understand analogous bilinear form.
It follows from the above mentioned inequalities (2) that operator

L  (       respectively) may be extended on continuity to an operator
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them the previous denotations) for any

For operators L and the following identity holds true

The solutions of the original and the adjoint problems

we shall mean in the sense of the following definitions.
D e f i n i t i o n 1. The solution of the problem (3) with a right-

hand side is a function for which there

exists a sequence of such functions that

D e f i n i t i o n 2 (strong solution). The strong solution of the

problem (3) with a right-hand side is such a function

that

in the space

D e f i n i t i o n 3 (weak solution). The weak solution of the
problem (3) with a right-hand side is such a function

that the following equality

holds true for any functions

continuously mapping whole space           (            respectively) into

space             ( respectively). It should been noted that the

inequalities (2) hold true for extended operators also (we shall save for
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In a similar way we introduce the definitions for solutions of the
equation (4).

L e m m a 1. Let the inequalities (2) hold true for the
operators L and Then Definitions 1,2,3 are equivalent.

P r o o f . We shall carry out the proof following the scheme

Let u(t,x) be a solution of the problem (3) in the sense of
Definition 1. Then taking into consideration the inequalities (2) with the
help of passing to the limit we conclude that the value of the extended

operator on the element u(t,x) obviously equals to

F , i.e. Lu = F in the sense of the equality of the elements in the

space

Vice versa, let u(t,x) be a solution of the problem (3) in the sense

of Definition 2. Choose an arbitrary sequence such

that Further, we have

As far as the second term at the right-hand side

equals to 0. Taking into account (2) and the linearity of the operator
L we obtain

Thus, the equivalence of the Definitions 1 and 2 is proved.
It is not difficult to prove also the equivalence of Definitions 2 and

3. Indeed, the statement is obvious. Let us prove that
Let u(t,x) a the solution of the problem (3) in the sense of
Definition 3:
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By virtue of the arbitrariness of we obtain that Lu = F

in

Remark. Analogous statements hold true for solutions of the
adjoint equation (4).

T h e o r e m 1. Let the inequalities (2) hold true for the
operators of the problems (3) and (4). Then for any element

there exists a unique solution of the problem (3) in the

sense of Definitions 1-3, where is a negative space

constructed with respect to and

P r o o f . Consider the functional on functions

By the Schwarz inequality and (2) we obtain

Hence the functional l(v) may be considered as a linear

continuous one dependent on According to

the Hahn-Banach theorem [76] extend the functional linearly and

continuously onto whole space On the basis of the theorem

about common form of a linear continuous functional defined in

[77] there exists a function such that

for any Consider this functional on the elements

Then
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Hence, By virtue of the

arbitrariness of we obtain that Lu – F = 0 in the space

The uniqueness of the solution follows from the left-hand side

of the first inequality in (2) and from the embedding The

theorem is proved.
T h e o r e m 2. Let the inequalities (2) hold true. Then for any

element there exists a unique solution of the problem (4)

in the sense of the analogues of Definitions 1-3 for the problem
(4).

P r o o f of Theorem 2 is similar to the proof of Theorem 1.
It is possible to consider the generalized solution from more wide

class.
D e f i n i t i o n 4. The solution of the problem (3) with a right-

hand side is a function for which there

exists a sequence of such functions that

D e f i n i t i o n 5 (weak solution). The weak solution of the

problem (3) with a right-hand side is a function

such that the equality

holds true for any functions

The generalized solutions of the problem (4) are defined in a similar
way.

L e m m a 2. Assume that the inequalities (2) hold true for the
operators L and Then Definitions 4 and 5 are equivalent.
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P r o o f . Let u(t,x) be a solution of the problem (3) in the sense

Choose a sequence such that in

Then, if is a solution of the problem in the

sense of Definition 1 (which exists by virtue of Theorem 1) then
according to Lemma 1 we have

Hence,

and therefore,

i.e. the sequence is fundamental in

Moreover, taking into consideration (2) we obtain

Thus, is a fundamental sequence in hence, there

exists such that

Further, we have

of Definition 5, and
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Passing in the last equality to the limit as we obtain

Taking into consideration the fact that the last equality holds true

for arbitrary and the relations (5), we state that

in            and as far as then

also Granting (6), we convince oneself that

u(t,x) is the solution of the problem (3) in the sense of the
Definition 4.

Let us prove the inverse statement. Let u(t,x) is a solution of the
problem (3) in the sense of Definition 4. Then

Taking into account (2), let us estimate the first and the third terms
in the right-hand side of (7).

Passing to the limit in (7) as we obtain the required equality
(5).

T h e o r e m 3. Let the inequalities (2) hold true for the

operators of the problems (3), (4). Then for any element

there exists a unique solution of the problem (3) in the sense of
Definitions 4-5.
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P r o o f . The set is dense in Hence, for any element

there exists a sequence such that

It follows from Theorem 1 that for any function there

exists a unique solution of the problem (3) in the sense of

Definition 1. Using the inequality (2), we obtain

Thus, by virtue of the completeness of the space there exists

a function On the other hand,

by Lemma 1 for any function the following equalities hold

true

or

Passing to the limit as in the last equality, we obtain

Let us prove the uniqueness. Let be one more

generalized solution of the problem (3) in the sense of Definitions 4-5.

Then Theorem 1 implies

that So  in           The proof is complete.
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T h e o r e m 4. Let the inequalities (2) hold true for the

operators of the problems (3), (4). Then for any element

there exists a unique solution of the problem (4) in the sense of
the analogies of Definitions 4-5 for the problem (4).

P r o o f of Theorem 4 is similar to the proof of Theorem 3.
L e m m a 3. Let u(t,x) be a solution of the equation (3) with

a right-hand side in the sense of Definitions 4-5, then

the following estimation holds true

P r o o f . At first, we shall show that the following positive
estimations follow from the a priori estimations with respect to the
negative norms (2):

Indeed, by virtue of Theorem 3 there exists a unique generalized

solution u(t,x) of the problem (3) with the right-hand side

and this solution belongs to the space It follows from Lemma 2

that for any and for any such that the

following equality holds true

Using the Schwarz inequality we obtain
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The Banach-Steinhaus theorem [76, 78] implies that the set of

functions is bounded with respect to the norm of the

space and this proves that the inequality (10) holds true. The

inequality (9) is proved in a similar way.
Let us prove that (8) holds true.
Applying to the right-hand side of the equality (11) the Schwarz

inequality and (10), we obtain

that implies (8).

Remark. In a similar way we can prove the inequality

where v(t, x) is a solution of the equation (4) with a right-hand

side in the sense of Definition 4.

L e m m a 4 . Let u(t,x) be a generalized solution of the
problem (3) with a right-hand side F in the sense of

Definitions 4-5 and Then u(t,x) is a generalized

solution of this problem in the sense of Definitions 1-3.

P r o o f . Let v(t,x) be an arbitrary smooth in function, which

satisfies the boundary conditions
Consider . We have
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where is a sequence, which determines the solution u(t, x) by
Definition 4. Let us estimate each terms in the right-hand side.

As far as v(t, x) is a smooth function, which satisfies the

conditions then

Moreover,

i.e.

where v(t, x) is an arbitrary function from a set which is dense in

Hence,

Thus, u(t,x) is a generalized solution of the problem (3) by
Definition 2.

Remark. The similar statement holds true for solutions of the
problem (4).

Taking into account the above-mentioned facts, we shall further
consider the following optimization problem.

Let the functioning of a system is described by a partial linear
differential equation:

where is a given element. The control of the system (12) is

carried out by choosing the controls h which are defined on a set of
admissible controls     from a reflexive Banach space of controls

H; is an operator, possibly non-linear, On

the solutions of the equation (1) we define a functional
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which is weakly lower semicontinuous with respect

to a state of the system and which must be minimized on the set

2. EXISTENCE OF OPTIMAL CONTROL

Consider the optimal control problem described in Section 1. Let a
state of the system is determined by the equation (1.12):

The state function u(t,x) depends on (via the right-hand side of

the equation) from a control h defined on the set of admissible
controls which belongs to the space of controls H . On the

solutions of the equation we define some weakly semicontinuous with
respect to the system state functional which must

be minimized on the set Of course, it is necessary to require that

the functional should been defined correctly of the solutions
of the equation. For example, if

then the solution u(t,x,h) must belong to the space If

then u(t,x,h) must belong to the Sobolev space (such

situation we denote as and
respectively). It is clear that the smoothness of the solution u(t,x,h)
depends on the smoothness of the right-hand side of the equation (see
Section 1). Therefore, the more wide space of mappings

we consider, the more narrow class of

functionals we may investigate.
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T h e o r e m 1. Let a system state be determined as a solution
of the problem (1.12) under the following assumptions:

1) the performance criterion is a functional

which is weakly lower semicontinuous with respect to the system

state

and below bounded;
2) the set of admissible controls is bounded, closed

and convex in H ;
3) H is a reflexive Banach space;
4) is a weakly continuous operator mapping H into

5) the estimations (1.2) for the operators L and are valid.
Then there exists the optimal control of system (1.12), i.e. such

control                  that 

P r o o f . Choose a minimizing sequence of controls

i.e.

this sequence a subsequence which weakly convergences in

H to some As far as operator is weakly continuous,

the corresponding sequence is weakly convergent, and by

the Eberlein-Shmulyan theorem [78] this sequence is bounded in the

space

Since the set is weakly compact ( is bounded,

closed and convex in the reflexive space H), we may extract from
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Lemma 1.3 and above-mentioned reasoning imply that the

sequence which corresponds to the subsequence is

bounded in the norm of the space and hence, we may extract

from it some weakly convergent subsequence in

Granting both the facts that is a solution of the

equation (1.12) when and the relations (1.5), we obtain

for any function such that where

As far as weakly in H, and is weakly

continuous mapping of H into then

In addition, due to the fact that we obtain

Thus, passing to the limit in (2) as we conclude that

is a solution of the equation in the sense of
Definition 1.5, and hence, in the sense of Definition 1.4 also.

Since the performance criterion J(h) is weakly lower
semicontinuous with respect to u(t, x) ,
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Hence, is the optimal control and Theorem 1 is proved.
T h e o r e m 2. Let a system state be determined as a solution

of the problem (1.12) under the following assumptions:

1) the performance criterion is a functional

which is weakly lower semicontinuous with respect to the system
state u(t,x,h) and below bounded;

2) the set of admissible controls is bounded, closed

and convex in H ;
3) H is a reflexive Banach space;
4) is a weakly continuous operator mapping H into

5) the estimations (1.2) for the operators L and are valid.
Then there exists the optimal control of system (1.12).
P r o o f is similar to the proof of the previous theorem.
Remark. As far as the operator is non-linear then the

functional may be not convex and the optimal control may be

non-unique.
Consider the application of these theorems in the case of the

optimization of distributed systems with point controls. The urgency of
such investigations is stipulated both by the development of new
technologies and by the simplicity of the control realization.

In view of specific character of control in these problems it is
possible to obtain more interesting results [80-86]

Let the studied system be described by the linear partial differential
equation

Consider the optimal control problems for the systems, which are
described by the equation (3) with right-hand sides in the following
forms:
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where is the Dirac function.

Consider every variant of the mapping separately.

where and

The control is

where is bounded, closed and convex set in
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By we shall mean a functional defined

on smooth functions in in the following way:

Suppose that

where is a completion of the space of smooth in

functions with respect to the norm

and also let

We shall prove that in this case i.e. it is possible to

extend up to a linear continuous functional on Indeed,

the linearity of the functional

is clear.
Let us prove the boundedness of this functional. By the integral

Cauchy inequality we obtain



It is easily seen [74] that the following inequality holds true:

Granting this and (9), rewrite (11) in the following form:

Returning to the inequality (10), we finally obtain

that proves the boundedness of the functional on the set of

smooth in functions v(t, x). Applying the Hahn-Banach theorem

we expand on continuity the functional up to the linear

continuous functional which is defined on the whole space
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Since the set is bounded in
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Thus, it is proved that and hence, by

Theorem 1.3 there exists the unique generalized solution of the
problem in the sense of Definition 1.4.

Let us prove that the mapping is

weakly continuous. be some weakly convergent in

sequence As far as the weak and strong
convergences are equivalent in the finite-dimensional space,

strongly in under arbitrary Put

Let us prove that for every

Indeed,

Since the set of smooth in functions v(t, x) from is dense in

we may take supremum only on these functions. Therefore, the

last expression may be rewritten as



OPTIMIZATION OF LINEAR SYSTEMS ... 21

Let us estimate the numerator

Applying the integral Cauchy inequality to the right-hand side of this
identity, we obtain

Taking into account (13), let us apply the Cauchy inequality once
more:

By virtue of the inequalities and the

relations (12) and (14), we obtain:
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As far as weakly converges to in by Eberlein-

Shmulyan theorem [78] the sequence of the norms is

bounded, and hence

So,

Now, let us prove that for an arbitrary smooth in function

v(t, x) from     we have

Indeed,

Passing to the limit in the last equality is correct as far as

weakly in



OPTIMIZATION OF LINEAR SYSTEMS ... 23

Due to the fact that the sequence of the norms

is bounded (proof is similar to the proof of

the boundedness of it is easily to prove that for an arbitrary

function

Taking into account all above-mentioned facts, we have

where

Let The first term tends to zero, as far as by the Schwarz
inequality

The second term tends to Thus, for any

function

i.e. the mapping is weakly continuous.
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Thus, we obtain
T h e o r e m 3. Let a system state be determined as a solution

of the problem (1.12) under the following assumptions:

1) the performance criterion is a functional

which is weakly lower semicontinuous with respect to the system
state u(t,x,h) and below bounded;

2) the set of admissible controls is bounded, closed

and convex in H ;

5) the estimations (1.2) and (9) are valid.
Then there exists the optimal control of the system (1.12).
Remark. As it was shown above, there exists a sequence of

controls which weakly converges to the optimal one

Hence, the problem of optimization may

be ill posed [88-92] in the above selected metrics, that can yields
significant difficulties in computation of the optimal pulse control.
This circumstance may be overcame by using the regularization of

the control. Let be a convex, closed and bounded set in

In this case from the sequence we can extract a

subsequence which is weakly converges to in

Due to the fact that is bounded and has sufficiently smooth
bound, it is follows from Kondrashow theorem [27, 93] that the
imbedding operator of into is completely

continuous and, hence, the sequence is strongly

3)

4)
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convergent in to Thus, the considered problem of

optimization will be well posed in
In the similar way we can prove the following
T h e o r e m 4. Let a system state be determined as a solution

of the problem (1.12) under the following assumptions:
the performance criterion is a functional
which is weakly lower semicontinuous with respect to the
system state u(t,x,h) and below bounded;
the set of admissible controls is bounded, closed and
convex in H ;

the estimations (1.2) are valid, and the following imbeddings
and inequalities hold true

1)

2)

3)

4)

5)

Then there exists the optimal control of system (1.12).

2.

where is the k -th Sobolev derivative of the

The control is

where is bounded, closed and convex in

and
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By we shall denote a

functional, which is defined on smooth in functions in the following
way:

where is the k -th derivative of the function v(t,x) with

respect to the variable t .

Suppose that and

pa

where is the completion of the space of smooth in
functions with respect to the norm

and let

Similarly to the previous cases we can prove that

i.e. the mapping defines a

linear continuous functional on and is weakly continuous

mapping, and hence,

T h e o r e m 5 . Let a system state be determined as a solution
of problem (1.12) under the following assumptions:

1) the performance criterion is a functional

which is weakly lower semicontinuous with respect to the system
state u(t,x,h) and below bounded;
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 the set of admissible controls is bounded, closed
and convex in H;

 the estimations (1.2) and (15) are valid.
Then there exists the optimal control of the system (1.12).
In a similar way we can prove the following
T h e o r e m 6 . Let a system state be defined as a solution of

the problem (1.12) under the following assumptions:
 the performance criterion is a functional

which is weakly lower semicontinuous with respect to the system
state u(t,x,h) and below bounded;

 the set of admissible controls is bounded, closed
and convex in H ;

 the estimations (1.2) hold true, and also the following
imbedding and inequalities are valid:

and

Then there exists the optimal control of system (1.12).
In studying of the optimal control existence in the case when the

right-hand side of the equation is defined by one of the mappings

we shall suppose for simplicity that the set is a tube domain

with respect to the variable       i.e.

2)

3)

4)

5)

1)

2)

3)

4)

5)
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3.

when

The control is

where is a bounded, closed and convex set in

By we shall denote a

functional, which is defined on smooth in functions in the following

way:

Suppose that and

where is the completion of the space of smooth in

functions with respect to the norm

and let

Similarly to the previous cases we can prove that

Let us prove the weak continuity of the

mapping
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Let We shall prove that

Let v(t, x) is an arbitrary smooth in function, which satisfies the

conditions Then similarly to the previous cases we obtain

Taking into account the boundedness of the set of functions

and the definition of the negative norm, we obtain (17).

Further proof is similar to the case of

T h e o r e m 7. Let a system state be determine as a solution
of the problem (1.12) under the following assumptions:

1) the performance criterion is a functional

which is weakly lower semicontinuous with respect to the system
state u(t,x,h) and below bounded;

2) the set of admissible controls is bounded, closed

and convex in H ;

3)

4)

5) the estimations (1.2) and (16) are valid.
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Then there exists the optimal control of system (1.12).

In a similar way we can prove the following
T h e o r e m 8. Let a system state be determined as a solution

of the problem (1.12) under the following assumptions:

1) the performance criterion is a functional

which is weakly lower semicontinuous with respect to the
system state u(t,x,h) and below bounded;

2) the set of admissible controls is bounded, closed and

convex in H ;

3)

4)

5) the estimations (1.2) hold true, and also the following
imbeddings and inequalities are valid:

Then there exists the optimal control of the system (1.12).

4.

where

The control is

where is a closed and bounded set in
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By

we shall denote a functional defined on smooth in functions in the
following way:

Suppose that and

where is the completion of the space of smooth in
functions with respect to the norm

and let

Completely similarly to the three previous cases it is possible to
prove that

Let us prove that is a weakly continuous mapping. Let

in We shall prove that for any i, j

Similarly to the previous cases let us consider
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where v(t, x) is an arbitrary smooth in function.
Using the Newton-Leibniz formula, we obtain

Applying the integral Cauchy inequality and the inequality
, we have
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The Sobolev imbedding theorems imply that for any function
the following inequality holds true [74]

Therefore,

and

Substituting (22) and (23) into (20), we obtain

Note, that as far as the sequence is weakly convergent, and

hence, it is bounded, we have



34 Chapter 1

Whence,

Finally, we obtain

Now, let v(t, x) is an arbitrary function from It is clear that

the following identity holds true
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It follows from the previous reasoning that the first term tends to

zero. Since weakly converges to zero in the

second term tends to zero also. Thus, we have proved that the
mapping is weakly continuous.

T h e o r e m 9. Let a system state be determined as a solution
of the problem (1.12) under the following assumptions:

1)

2)

3)

4)

5)

the performance criterion , is a functional

which is weakly lower semicontinuous with respect to the
system state u(t,x,h) and below bounded;

the set of admissible controls is bounded, closed and

convex in H ;

the estimations (1.2) and (18) are valid.
Then there exists the optimal control of the system (1.12).
In a similar way we can prove the following
T h e o r e m 1 0 . Let a system state be determined as a

solution of the problem (1.12) under the following assumptions:

1)

2)

3)

4)

the performance criterion is a functional

which is weakly lower semicontinuous with respect to the
system state u(t,x,h) and below bounded;

the set of admissible controls is bounded, closed

and convex in H ;
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5) the estimations (1.2) are valid, and also the following
imbeddings and inequalities hold true

Then there exists the optimal control of the system (1.12).

5.

The control is

By we shall denote a functional defined on smooth in

functions in the following way:

where v(t, x) is a smooth in function.

Suppose that and

where is a completion of the space of smooth in

functions with respect to the norm

and let

We shall prove that the functional is bounded. Indeed, using

the integral Cauchy inequality, we obtain
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Using inequalities (21) and (24), we have

that proves the boundedness of the functional the linearity of

is obvious.

Let us prove that where

is some weakly convergent in sequence: Note,

that being weakly convergent the sequence is bounded in

the space and since the imbedding of the space

into is compact, we obtain

with respect to the norm of the space and, hence,

The sequence of the functions weakly

converges to                   in
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At first, let us prove that

To do this let us consider

for any smooth in function v(t, x). Applying the Newton-Leibniz

formula we obtain

Applying the integral Cauchy inequality to the right-hand side, we
obtain:
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Thus, we have

As far as is weakly convergent, then the

sequence of the norms is bounded. Granting that the

set of smooth in functions v(t, x) is dense in we have

The last expression implies that

To finish the proof we have to verify that for any
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Indeed,

as far as weakly converges to in

Thus, taking into account (25) and (26), we obtain

for an arbitrary function

In other words, the mapping

is weakly continuous.
T h e o r e m 11. Let a system state be determined as a

solution of the problem (1.12) under the following assumptions:

1) the performance criterion is a functional

which is weakly lower semicontinuous with respect to the
system state u(t,x,h) and below bounded;
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2)

3)

4)

5)

the set of admissible controls is bounded, closed

and convex in H ;

the estimations (1.2) and (24) are valid.
Then there exists the optimal control of the system (1.12).
Similarly we can prove the following
T h e o r e m 12 . Let a system state be determined as a

solution of the problem (1.12) under the following assumptions:

1)

2)

3)

4)

5)

the performance criterion is a functional

which is weakly lower semicontinuous with respect to the
system state u(t, x, h) and below bounded;

the set of admissible controls is bounded, closed
and convex in H ;

the estimations (1.2) are valid, and also the following
imbeddings and inequalities are valid:

Then there exists the optimal control of the system (1.12).
Note, that we may consider the problem of optimal control when

the right-hand side of the state equation is a linear combination of the
functionals

Consider, for example, the problem
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where

The control is

By

we shall denote a functional defined on smooth in functions in the

following way:

Suppose that and

and let

As far as are

negative spaces constructed on the pairs and

similarly to the cases and we shall

prove that the right-hand side of (27) belongs to the space

and hence, to the

Let us prove that is a weakly continuous

mapping. Indeed, let is a weakly convergent in sequence

In is clear that
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where in

That is why from the results of this section we have that

Since the bilinear forms and

coincide for the pairs from       hence,

That is why

weakly in and hence, in also. Thus, the following

theorem holds true:
T h e o r e m 1 3 . Let a system state be determined as a

solution of the problem (1.12) under the following assumptions:

1)

2)

3)

4)

5)

the performance criterion is a functional

which is weakly lower semicontinuous with respect to the
system state u(t, x, h) and below bounded;

the set of admissible controls is bounded, closed

and convex in H ;

the estimations (1.2) and (28) are valid.
Then there exists the optimal control of system (1.12).
In a similar way we can prove the following

in

in
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T h e o r e m 14 . Let a system state be determined as a
solution of the problem (1.12) under the following assumptions:

1)

2)

3)

4)

5)

the performance criterion is a functional

which is weakly lower semicontinuous with respect to the
system state u(t, x, h) and below bounded;

the set of admissible controls is bounded, closed

and convex in H ;

the estimations (1.2) hold true, and also the following
imbeddings and inequalities are valid

Then, there exist optimal controls of the system (1.12).



Chapter 2

GENERAL PRINCIPLES OF
INVESTIGATION OF LINEAR SYSTEMS
WITH GENERALIZED CONTROL

1. DIFFERENTIAL PROPERTIES OF
PERFORMANCE CRITERION

Depending on the properties of the operators L and it is
possible to consider various controls and performance criteria.
Hereinafter we shall study the differential properties of integral,
quadratic with respect to the system state performance criterion for
the problem of pulse optimal control and later we shall generalized the
corresponding theorems for the case of the problem of the optimal
control with an arbitrary right-hand side.

In the case when the following inequalities are valid for the
operator L

and the right-hand side of the equation (1.1.12) is of the form

(the first case

considered in Section 1.1.2) we consider the performance criterion:

where is a function describing the desired functioning of the

system,

The functional (1) is defined correctly as far as Theîrem 1.1.3
guarantees that the function u(t,x,h) belongs to the space
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Suppose that and moreover this

imbedding is continuous.
T h e o r e m 1. Provides that conditions above mentioned are

satisfied, the functional (1) is differentiable by Gâteaux in the

space and its gradient is of the form:

where is a control,

v(t, x) is a solution of the problem

P r o o f . Let and

be some elements belonging to

and are solutions of the boundary

problem (1.1.12) corresponding to these controls. Denote

Then the increment of the performance criterion may be
represented in the following form

Define the adjoint state as a solution of the problem
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It follows from the results of Chapter 1 that there exists a unique

solution of this problem in the class of functions belonging to

Then (2) we may rewrite in the following form

Obviously, is a solution of the problem

As a consequence of the results obtained in Chapter 1 there exists
a solution of this problem which is defined as a function

such that for all (including v(t, x))  the

following equality is true:

We obtain

Represent the increments                      from (3) as

We obtain
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We shall prove that

this fact proves the theorem. Here is an inner

product in H .
To do this we shall show that Using the

inequality we obtain a chain of the following

inequalities

According to the definition of the negative norm in and

continuity of the imbedding we obtain
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It follows from this that

The equality (5) implies that investigated performance criterion is

differentiable by Gâteaux in and its partial

derivatives are determined by the following expressions

Thus, the theorem is proved.
T h e o r e m 2. The performance criterion   is

continuously differentiable in

P r o o f .
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We shall prove that when the

expression in the right-hand side (8) also tends to zero. Let us convert
this expression adding and subtracting from each term in the first
square brackets the following expression

and from each term of the second sum —

Then, using the obvious inequalities

where (a,b,c) are real numbers, we obtain
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Denote the sums in the right-hand side of (9) by It is

required to prove that as

L e m m a 1. Let is a solution of the problem

Then for any the following inequality holds true

P r o o f of Lemma 1 for specific operator follows from the
positive inequalities, which are valid as a result of the inequalities
(1.1.2).

Denote

Then is a solution of the problem

where
Obviously that is a solution of the problem

Using Lemma 1 and the inequality

which validity were proved in Lemma 1.1.3, we obtain a chain of the
following inequalities
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According to the definition of the norm in and to boundedness

of the set of the admissible controls we obtain

Here we have used the integral Cauchy inequality.
Similarly, estimating the i-th term of the second summand in the

right-hand side (10), we obtain

Summing (11) and (12) with respect to i from 1 to N and
substituting into (10), we obtain

where

As far as the expression in the left-hand side of (13) is the i-th term
in the first sum in the right-hand side of (9) then with

The proof of the fact that with follows from

It follows from Lemma 1 and boundedness of that
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for all Then applying to the Cauchy inequality, we

obtain is estimated similarly to

The fact that as follows from the continuity

of the function v(t, x) with respect to the variable  t.

It follows from the proven theorem that the performance criterion
J(h) is continuously differentiable by Gâteaux, and hence, by Fréchet
and it is possible to express the necessary conditions in the following
way

where is the required solution.
In the similar way it is possible to investigate others problems of the

singular optimal control.
Let us generalize the results of the previous theorems for the case

of the problem of the optimal control with an arbitrary right-hand side.
Let a state of some system is described by the equation (1.1.12)

and for the operator L the following inequalities hold true

Suppose that the performance criterion is of the following form
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where are some known functions from

respectively, and

T h e o r e m 3. Let the state of the system is

determined as a solution of the equation (1.12) with the right-

hand side The performance criterion is of the form

(14). Then, if there exists the Fréchet derivative

of the mapping in some point then the

performance functional J(h) is also differentiable by Fréchet in

the point , and the derivative is determined by the expression

where v(t, x) is a solution of the adjoint problem

P r o o f . It is clear that the expression is correct as

far as the equation (16) has a unique solution

(Theorem 1.1.2) and

for any

Let is an increment of a control. Consider
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Let Then

It is obvious that is a solution of the following problem:

and hence, as far as then

Moreover, using (17) we obtain

Therefore
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As far as the Fréchet derivative of the

mapping then : it follows from the

inequality that

On the other hand, using the inequality of

Lemma 1.1.3 we obtain

Applying the inequality                                        and (18), we obtain
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Let

If then the inequality (18) holds true and

Thus, finally we obtain

as required.

T h e o r e m 4. Let the mapping has a

Fréchet derivative which is continuous in the point

Then the derivative is continuous in the point also.

P r o o f . Choose an arbitrary number and let h is an

arbitrary point from which is close enough to in order that

derivative exist, and hence, by Theorem 3 the derivative
exists also. Consider
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where and are solutions of the problem (16) with the right-hand

sides and respectively.

Since is continuous at the point , there exists

sufficiently small neighbourhood of the point (h we shall choose

namely from this neighbourhood) in which is

bounded . Let also

Applying the Schwarz inequality we obtain

Note that it follows from Theorem 1.1.2 and from the proof of
Lemma 1.1.3 that , where v(t, x) is a solution of

the equation (1.1.4). Therefore
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where (constant M exists by virtue of continuity,

and hence by virtue of boundedness of the functions in

Using the inequality  from Lemma 1.1.3 we have

Note that since are some known functions from

then and hence

Let us apply to the term the formula of the

finite increments:
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As a result we get

Whence choosing we have

The theorem is proved.

T h e o r e m 5. Let a mapping has a Fréchet

derivative in some bounded convex neighbourhood of a point

which satisfies the Lipschitz condition with an index

from the neighbourhood of the point such

that Then the derivative

satisfies the Lipschitz condition with the index
P r o o f . Let us prove that it follows from the Theorem

assumptions that the derivative is bounded in the neighbourhood

of the point Indeed, let h is an arbitrary point from the

neighbourhood of the point Then, obviously, the following
inequalities hold true

where d is the diameter of the neighbourhood of the point
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Now, let be arbitrary points from this neighbourhood.

Consider

where and are solutions of the adjoint problems (16) with the

right-hand sides          and            ,

respectively. Applying the Schwarz inequality we get

Note that it follows from the analogy of Theorem 1.1.1 and from
the proof of Lemma 1.1.3 that , where v(t, x) is a

solution of the equation (1.1.4). Therefore



62 Chapter 2

where in Using the inequality

from Lemma 1.1.3 we obtain

Note that as far as are some known functions from

then . Moreover,

and applying the formula of finite increments to the first term we get

taking into consideration that belong to the bounded set

i.e. , we get

Hence,
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Let us apply to the term the formula of finite

increments:

As a result we obtain

Whence,

The theorem is proved.

Remark. Granting that the mapping is of the

form and the functional does not depend

on the control we may rewrite the formula (15),

which define the gradient, in the following form

where is a Fréchet derivative of the mapping

, the function v(t, x) is chosen in a similar way as

in Theorem 3. Respectively, in Theorems 3 and 4 we may require
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that the assumptions of this theorem hold true for the mapping
instead of

Consider the application of the theorems of this section for the
cases of the right-hand sides of specific types. We shall consider

functions defined in Chapter 1.

1. Let where

and The control is

where is a convex, closed and bounded set in

Suppose that and

where is a completion of the space of smooth in

functions with respect to the norm

and also, let

Make sure that the mapping

is differentiable by Fréchet and its partial derivatives are of the form

Indeed, it is clear, that the expression
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defines a linear continuous operator

Let us estimate

Consider the numerator of this ratio. At first, let v(t, x) be some

smooth in function satisfying the boundary conditions Then

Let us use the Taylor formula.

where

Granting that the following inequality holds true
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we get

Applying the integral Cauchy inequality we obtain:

Using the fact that the set of the considered smooth functions

v(t,  x) is dense in we have

It is clear that such that the inequality

implies
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Hence, the mapping has a Fréchet derivative and by

Theorem 3 the functional J(h) in the problem of the optimal control

(1.1.12) with the right-hand side has a Fréchet derivative

also. Let us prove that satisfies the Lipschitz condition with the

index

Indeed,

Consider the numerator of this ratio. Let v(t, x) be a smooth in

function satisfying the conditions
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Let us use the integral Cauchy inequality:

Again, we use the integral Cauchy inequality:
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Granting that the set of the considered functions v(t, x) is dense in

we get that

Whence,

as far as , and is bounded.

Thus, satisfies the Lipschitz condition with the index

By Theorem 5 we may state that the derivative by Fréchet

satisfies the Lipschitz condition with the index and

hence is continuous with respect to h . Note that we may repeat

the previous reasoning concerning to the mapping (including

Theorem 3) and we can prove that
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i.e. with respect to the direction satisfies the Lipschitz

condition (with the index 1).

2. Let where is the

k -th Sobolev derivative of the and

The control is

where is a convex, closed and bounded set in

Suppose that and

where is a completion of the space of smooth in

functions with respect to the norm

and let

Similarly to the previous facts we can prove that the mapping
has a Fréchet derivative, which satisfy the Lipschitz

condition with the index      Applying Theorems 3 and 5 we state that

the performance criterion

is differentiable by Fréchet, and the corresponding derivatives are
defined by the expressions:
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where v(t, x) is a solution of the adjoint problem

The derivative satisfies the Lipschitz conditions with the

index      and with respect to the direction - with the index 1.

Consider the application of Theorems 3-5 of this paragraph in the
case when the right-hand side of the equation (1.1.12) is defined as

As in previous section we suppose that the set

Q is a tube with respect to the variable

and which is bounded, closed and convex set from the

Hilbert space of controls H.
3. Let the right-hand side of the equation is of the form

where The control

is

where is a convex, closed and bounded set in

Suppose that and

where is a completion of the space of smooth in

functions with respect to the norm
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and let

Similarly to the case of which was considered above it is

easy to see that the mapping has a Fréchet

derivative, which is defined as:

We shall prove that satisfies the Lipschitz condition with the

index       Consider

Let v(t, x) be a smooth in function from     .  Consider the

numerator of the ratio:
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Using the inequality

and the integral Cauchy inequality we get

Again use the Cauchy inequality:
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Whence we obtain

Taking into account that is bounded we have

Therefore, satisfies the Lipschitz condition

with the index      with respect to h . By Theorems 3-5 the

performance functional has a strong derivative in the region

which satisfy the Holder condition with the index     with

respect to h and is defined by the expression

Considering directly the performance functional we can prove

that

i.e. with respect to the direction the functional satisfies the

Lipschitz condition with the index 1 .
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4. Let

where

The control is

where is a convex, closed and bounded set in

Under

we shall mean the following functional:

where v(t,x) is a smooth in function.

Suppose that and

where is a completion of the space of smooth in functions

with respect to the norm:

and also let

Similarly to the previous facts it is easy to see that has a

strong derivative:
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and also that the derivative satisfies the Hölder-Lipschitz

condition with the index        and the performance functional has a

Fréchet derivative which also satisfies the Hölder-Lipschitz condition.
Consider the last case when the right-hand side of the equation is

defined as

5. Let

The control is

Under

we shall mean the following functional

where v(t,x) is a smooth in function.

Suppose that and
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where is a completion of the space of smooth in

functions with respect to the norm

Make sure that the mapping is strongly differentiable and the

derivative is defined by the expression

Indeed,

Whence

Using the fact that where is the

Sobolev space, we get . Therefore,
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This fact proves that is strongly differentiable. Similarly to

the previous facts we make sure that satisfies the Lipschitz

condition with the index

2. REGULARIZATION OF CONTROL

In the previous section the questions of performance, criterion
gradient existence and its continuity depend upon differential properties
of the right-hand side of state equation have been studied. In order to
calculate the performance criterion gradient in any point, it is
necessary to solve the direct and adjoint problems.

In this paragraph we shall study the optimization problem in the
case when optimal control exists, but the right-hand side are not
differentiable enough for calculation of performance criterion gradient
[80,94]. This difficulty can be remedied by regularization of control. As

in the previous sections we assume here that the operators L and
satisfy the inequality in the negative norms
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Consider the following averaging of the distribution F in the right-
hand side:

where

By the integral we mean the integral in the

sense of the distribution theory.
Instead of using distribution averaging, we may consider a

sequence of functions when

Consider a regularized problem of impulse optimal control.

where

We assume that (although all the theorems can be

generalized to the case

The vector is a control of the

optimization problem (l)-(3), where
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is bounded, convex and closed set of admissible

controls.
T h e o r e m 1. There exists an optimal control

(generally not unique) of the optimization problem (1)-(3).

P r o o f . Let be the minimizing sequence of the problem

(l)-(3). This means that

Since is bounded, convex, closed set and is Hilbert,

the set is weakly compact in . Set is

compact in Thus, there exists a subsequence (it is denoted by

again) such that in

weakly in

Let us introduce the following notation

We shall show that

weakly in

For every function and each number we have

By the Schwarz inequality
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Since in and

the first term of the right-hand side of (5) vanishes as

The second term of the right-hand side of (5) vanishes also,

because weakly in

Thus the formula (4) has been proved.

In accordance with the results of Section 1, a solution (in

the sense of Definition 1.1.1) of the problem (1) with the right-hand

side exists and unique. The solution satisfies

the equation

for all

Taking into account that the set is bounded, we have

It follows from the inequality (7) that there exists weakly

convergent to and so that in subsequence

. Passing to the limit as in the equality (6), we obtain

for all
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If we take into consideration the above equality, we conclude that

is solution of the problem (1) with the right-hand side

Since square of norm in the Hilbert space is weakly lower
semicontinuous, the functional (2) is weakly lower semicontinuous in

domain

Consequently, is an optimal control of the problem (l)-(3).

T h e o r e m 2. The set of the optimal controls of the
problems (1)-(3) contains a weakly convergent sequence

The sequence weakly converges to an

optimal control of the initial (non-regularized) problem,

the points of impulse being strongly convergent to

P r o o f . We shall show that at the fixed control we have

where          –  solutions of the regularized and initial problems,
respectively.

For all we have

Taking into account the definition of delta function we obtain
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Summing up the above inequalities over and considering

inequality of Lemma 1.1.3, we have (8).
By Theorem 1 for all there exists an optimal control

of the regularized problem. By virtue of the boundedness of

the set the set is weakly compact, hence, there exists a

subsequence which weakly converges to The

statement becomes apparent when the

equivalence between convergence in norm and weak convergence in
the finite-dimensional space is considered. From the weak

convergence of we find, as well, that

weakly in

Reasoning similarly, we have

weakly in
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Adding up these three relations, we have that

weakly in

Thus, we prove that sequence is

weakly convergent in the , space Therefore,

is bounded. By applying the inequality of

Lemma 1.1.3 we conclude that the sequence of solutions of the
problem (l)-(3) with right-hand sides

is also bounded, so that the sequence contains a weakly

convergent subsequence (which is denoted by again).

Since weakly in it is easy to prove that

weak limit of the subsequence in the space is the solution

of the initial optimization problem with the right-hand side

From this it follows that

The statement becomes apparent when it is

considered that for all in the norm of the

space Let be an optimal control of the initial optimization

problem. When it is taken into account that
the following relation is valid
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From (9) and (10) we obtain

Therefore, and is the optimal control of

the initial optimization problem as well as Since the optimal control
may be not unique, the controls and may be different.

Remark. If instead of we consider

then the sequence converges to the in norm

T h e o r e m 3. There exists a Fréchet derivative of the
performance criterion The Fréchet derivative is of the

following form
grad

where is a solution of the adjoint problem with the right-

hand side

P r o o f . We denote by an increment of a control h .
Corresponding solution of the system (1) has an increment

An increment of the performance

criterion can be represented in the form
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Adjoint state is defined as a solution of the following problem

As appears from Section 1.1, there exists a unique solution of this

problem belonging to the space The increment can be

transformed to the form

It is obvious that the increment is a solution of the

following problem

The results of Section 1 ensure the existence and uniqueness of the

solution of the above problem. The solution satisfies the

following equation

for all

Taking into account this relation, we have

An increment can be represented in

the form
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Considering this equation, we have

Taking into account the estimation

we have

which is what had to be proved.
The function can be approximated, very useful from practical

point of view, by the sum

where

An analogous theorem for such way of approximation holds true.
T h e o r e m 4. There exists a Fréchet derivative of the

performance criterion of the optimization problem with the

right-hand side This derivative satisfies the Lipschitz

condition and can be represented in the following form



88 Chapter 2

where is a solution of the adjoint problem with the right-

hand side

P r o o f . In the same manner as in the case of the previous
theorem we denote by an increment of control h . The
corresponding solution of the system (1) has an increment

An increment of the performance

criterion can be represented in the form

As usual, we use the adjoint state and obtain

Divide (12) by (12) and pass to the limit as
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which is what had to be proved in the first part of the theorem. The
Lipschitz condition of the performance criterion gradient follows from
the a priori inequalities in the negative norms and the inequality

We shall first prove the inequality (14) for a smooth function

In this case we have

Square the right and left-hand sides and integrate over the domain

which is what had to be proved in (14) for an arbitrary smooth function

The inequality (14) for all is proved by expansion by

continuity.
Next, in the same manner as in Section 2.1 we generalize above-

mentioned results for the systems with the right-hand side of the
general form.

As in the previous case, we assume that the operators L,
satisfies the inequalities in the negative norms
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We also assume that and the functional

is defined at every function u(t, x) from
Consider the regularized problem

where

It is required to minimize the functional

T h e o r e m 5. Consider the optimal control problems
(1.1.12) and (1)-(3). If

1) the admissible set of controls is convex, closed, and

bounded in the Hilbert space H ;
2) maps satisfy the conditions:

a) for

an arbitrary sequence

b) is weakly continuous,

c)  for all fixed

3) the performance criterion is upper semicontinuous and

weakly lower semicontinuous;

then there exist optimal controls of the problems (1.1.12)

and (1)-(3), there exists a weakly convergent subsequence

and an arbitrary weakly convergent subsequence converges

to weakly in H .
P r o o f . According to Theorem 1.2.1, the conditions 1), 2a), and

3) ensure the existence of optimal controls of the problems (1.1.12)

and (l)-(3). Consider a set Since the set is

bounded in the Hilbert space H, there exists a weakly convergent to
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subsequence Consider an arbitrary weakly

convergent subsequence Since the set is closed

and convex, the element belongs to Consider the sequence of

solutions By Lemma 1.1.3, we have

Taking into account the condition 2a), we have that

weakly in Therefore, the sequence of

the norms is bounded, so there exists a weakly

convergent subsequence Since are

solutions, we have

for all

Passing to the limit as in (17), we have

It is now clear that the element u is a solution of the problem

(1.1.12) with the right-hand side But there exists an unique

solution of the problem (1.1.12); therefore entire sequence

converges weakly to If there exists a weakly convergent to

any other function subsequence indeed, then we

can prove in much the same way, that is an other solution of the

problem (1.1.12) with the right-hand side contrary to the

uniqueness of the solution. Since the functional is weakly lower

semicontinuous, we have
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for all

Consider the sequence By Lemma 1.1.3, we have

Therefore, in the space Since the

functional is upper semicontinuous, it follows that

Employing the relations (19) and (20), we have

for all

To put it in another way, the control is optimal.
Consider the applications of this theorem.
1. Let there be given the right-hand side of the equation (1.1.12) in

the following form:

where

The control is

where the admissible set is bounded, closed and convex in

Suppose that and

We also assume that
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Set

where

The regularized control is

It is not difficult to prove that

Let us verity that maps satisfy the conditions 2a)-

2c) of Theorem 5, from whence it follows that maps

satisfy the same conditions 2a)-2c).
We shall test the condition 2a). Let be an arbitrary weakly

convergent sequence. Then

Let v(t, x) be an arbitrary smooth function in the domain      that

satisfies the conditions We have
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By the mean value theorem, we obtain

where

Consider the term

By the Schwarz inequality, we have:
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Since,

The expression vanishes for an arbitrary

smooth in function v(t, x). This set of functions is dense in

We shall show that

Let v(t, x) be an arbitrary smooth in function. Considering the
previous reasoning and the Schwarz inequality, we have

Applying the inequality

we obtain
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It follows from the weak convergence of that the sequence

is bounded. Taking into account relation (22), we arrive at the

following inequality.

Thus,

for all smooth in functions v(t, x).

Considering that this set of functions v(t, x) is dense in  we

claim that

The weak convergence of a sequence of functionals follows from
the pointwise convergence of a sequence of functionals in the dense
set and boundedness of the sequence of norms of functional. We
conclude that the condition 2a) of Theorem 5 is proved.

Reasoning similarly, we convince that map is weakly

convergent and for h .

Thus, we have proved the following theorem
T h e o r e m 6. Consider the optimal control problems

(1.1.12) and (15) with the right-hand sides of (21), (23),
respectively. If

1) the admissible set of control is convex, closed, and

bounded in the Hilbert space H ;
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2) the performance criterion is upper semicontinuous

and weakly lower semicontinuous,

then there exist optimal controls of the problems (1.1.12),

(21) and (15), (23), there exists a weakly convergent subsequence

and an arbitrary weakly convergent subsequence

converges to weakly in H .
Remark. The performance

satisfies the conditions of Theorem 6.
Consider the problem of the performance criterion differentiability

in the regularized optimal control problems.
The existence of an optimal control of the regularized problems

follows from the results of the previous section.
We shall prove that there exists a Fréchet derivative of a map

To prove this formulas, consider



98 Chapter 2

If a value of is sufficiently small, the first and second integrals

have intersecting intervals of integration:

Consider every summand of the right-hand side. By the mean value
theorem, we have
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where

We can now easily show that an order of smallness of the first

integral of the right-hand side equals to By the Schwarz inequality,

whence

Taking the analogous transformation of the second integral of the
right-hand side of (26), we have
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Finally, consider the third integral of (26)

We shall prove that the first and third integrals have the second
infinitesimal order of control. By the mean value theorem and the
inequality (24), we obtain

Reasoning similarly, it is easy to make sure that the third integral
has the second infinitesimal order of control. Returning to the formula
(26), we obtain
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or

as required in (25).
Consider the property of smoothness of a Fréchet derivative

For this purpose we study the norm

Analyse the numerator

Rearrange the summand in the following way:
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Since the set of smooth functions v(t, x) is dense in consider

only smooth function v(t, x). Consider all summands in the right-hand
side separately:

By the Schwarz inequality and the inequality (24), we obtain



GENERAL PRINCIPLES OF INVESTIGATION ... 103

Next, we have

Analogously, consider the second summand of (29)

Examine the third summand of (29)

By the Schwarz inequality,
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Returning to (29), we obtain

so that the equality (28) can be rewritten in the form

To put it in another way, the derivative satisfies the

Lipschitz condition with index By Theorem 1.5, we assert that

gradient of regularized performance criterion satisfies Lipschitz

condition with index also. When performance criterion gradient

is analysed directly (without Theorem 1.5), it should be seen that the
performance criterion directional gradient with correspondence to
direction satisfies the Lipschitz condition with index

Analogously, we could study the other right-hand sides

of the equation (1.1.12).
Let us show the specific cases of the regularization of the right-

hand side.
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2.

be the right-hand side of the equation, and

where

Assume that and

3.

where

Assume that and

4.
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where

Assume that and

5.

where

Assume that and



Chapter 3

NUMERICAL METHODS OF OPTIMIZATION
OF LINEAR SYSTEMS WITH GENERALIZED
CONTROL

1. PARAMETRIZATION OF CONTROL

In this section applying procedure of parametrization, the
minimization problem of the performance criterion J(h) in an infinite-

dimensional space we replace with the corresponding minimization
problem in a finite-dimensional space. This substitution allows us to
decrease the computational complexity of the implementation of the
gradient methods.

Let the system state be a solution of the following initial boundary
value problem

where is an orthonormalized basis in

numbers are such that and is

closed, convex, and bounded set in

Let and c be a    matrix with rows

We denote by the space of control.

It is required to find a minimum of the following functional
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in the admissible set of control where

is closed, convex and bounded set in

T h e o r e m 1. There exists an optimal control

where is

defined in (2).

P r o o f. Let be a minimizing sequence. Since is

again). Since H is finite-dimensional space, the subsequence

converges to strongly in H, whence for any

number we have

Similarly to the previous sections we can prove that in

The fact that a norm is a continuous functional in a Hilbert

space implies that functional (2) reaches its infimum in the admissible
set (the space H is finite-dimensional).

Note that there exists a subsequence such that

strongly in

weakly in where element is a solution of

the initial optimization problem and

T h e o r e m 2. If (imbedding is

continuous), then performance criterion is differentiable

in the space and its gradient is of the following form

bounded, convex, closed set, the set ' is weakly compact. Thus

there exists a weakly convergence subsequence (it is denoted by
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hand side

P r o o f . Let and are arbitrary

elements from the admissible set and functions

are corresponding states of the system
(1). Denote an increment of the solution by

Then an increment of the
performance criterion (2) is of the following form

Define the adjoint state as a solution of the following equation

It follows from Section 1 that there exists the unique solution

of this equation. Therefore, the equation (3) can be rewritten

in the form

It is obvious that the increment is a solution of the equation

where v(t, x) is a solution of the adjoint problem with the right-
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It follows from Section 1 that there exists the unique solution
of this equation such that

for any

Let  y = v. Then using the previous equation, we have

The increment can be represented in the

following form

Substituting this equality in (4), we obtain

To prove the theorem, it is sufficient to show that
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where is a inner product in H.

For this purpose we shall show that By

the inequality we obtain

By the definition of the norm in the space and continuity of

the imbedding we conclude
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This proves that as required.

It follows from the inequality (5) that the performance criterion has

a Gâteaux derivative in and its partial derivative is of
the following form

2. PULSE OPTIMIZATION PROBLEM

Earlier the pulse and point-pulse optimization problems were studied
for some distributed systems. It was shown that a priori estimates in
the negative norms allows us to prove the existence of the optimal
controls of the investigated systems, to study the questions of its
controllability, and to write out explicitly the gradient of the
performance criterion of the original or regularized problems. In this
section gradient methods are proposed for solving the problems of
optimal control [95-100], which use an approximation of the
performance criterion at every iteration [82, 101].

This approach is based on idea of solving the limit extremum
problems [22, 102, 103].

At first, consider an optimization problem with pulse impact.
Suppose that system state satisfies the following linear equation

Remark 1. In the case of parametrization of other right-hand

sides of the state equation the analogous theorems

hold true.
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where L maps

In our case the right-hand size of the equation (1) is

where        is the Dirac delta-function. It is requested to find time

moments of pulse impacts on an admissible set

which minimize the following performance criterion

where is a known element  from              is closed and

bounded set from
Suppose that a priori estimates in the negative norm are valid:

where     is formally adjoint operator.
As it has been shown in the previous chapters, estimates (2) enable

us to prove the existence and uniqueness theorem for the generalized
solution of original and adjoint problems and the existence theorem for
the optimal control h*. If in addition the following imbedding

is valid, then we can find the performance criterion gradient explicitly.
Otherwise, we regularize the original problem. There exist optimal
controls of regularized problems and these controls converge to the
optimal controls of the original optimization problem as the parameter
of regularization vanishes. The regularized problem is of the following
form
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By the integral (6) we mean the bilinear form in the sense of the
theory of distributions. Hereinafter we shall omit in the regularized
problem.

In order to find the optimal control we may use different gradient
methods [104, 105]. It follows from the equation for gradient that to
find the gradient J'(h) it is necessary to solve direct and adjoint

problems and to differentiate and integrate some expressions. As a
rule, these procedures are implemented by numerical methods thus we
have only a uniform convergent sequence of approximations

instead of the exact value of

J'(h). Uniform convergence follows from the a priori inequalities in

the negative norms, where the constants do not depend on h. The
inequalities (2) enable us to consider the minimization problem for
some functional, which is equivalent to solving the initial boundary
value problem [62, 64,106]. In the following sections we shall also
discuss a projective numerical method for solving the initial boundary
value problem.

We shall build the procedures of minimization of gradient that use
the approximation on every iteration.

where when
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Note that the similar results were obtained for the problem of non-
linear programming in [24, 25]. In these papers the convex functional
J(h) was approximated by the convex functionals then the
derivatives were used in the numerical method. In our case the
original functional and its derivative are unknown, in addition they are
non-convex.

3. ANALOGUE OF THE GRADIENT
PROJECTION METHOD

In this section we shall suppose that the admissible set is a

convex compact in We shall use the sufficient conditions for the
convergence of non-linear programming algorithms [21, 107].

L e m m a 1. Suppose that a sequence of points satisfies the
following conditions:

1. is a compact set.

2. For an arbitrary convergent subsequence the

following assumptions holds true:

a) if

b) if then there exists such that

for any

3. There exists a continuous function   so that the set of its

values in is at most denumerable and    satisfies the
following inequality

then



116 Chapter 3

Then the sequence converges and all the limit points of

the sequence belong to

Suppose that Consider the following sequence of points

where is an approximation of the performance criterion J(h),

is a projective operator

is a step of the algorithm.

Note that if is a convex polyhedral set then calculation of a

value of comes to a quadratic programming problem:

In the case when there exist algorithms

which compute the value of the projective operator in a finite

number of operations.
T h e o r e m 1. Suppose that the sequence converges

to J'(h) uniformly in the set The set of values of the

function J(h) in the set

is at most denumerable, and

Then the limit of an arbitrary convergent subsequence of (7)
belongs to the set
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Note that for the convex functions the set is the set of
minimum points of the function J(h). In the other cases the set

contains all minimum points of the function J(h). The function J(h)
that is under consideration can be non-convex because of non-linear
state function dependence on the control h .

To prove the theorem we shall apply Lemma 1. It is obvious that
the conditions 1 and 2a of Lemma 1 are valid. Ensure that the other
conditions of the lemma are true also,

Suppose that there exists a subsequence

Choose a sufficiently small such that a 4 å -neighbourhood of

the point h´ and the set are mutually disjoint sets. By

the definition of the set there exists such that

Granting that for a sufficiently large k we have

Therefore, there exists such that

Let us show that for all k > N we have where the

sequence was defined in Lemma 1. Suppose the contrary. Then

for all thus and

Define a function W(h) in the following way: W(h) = J(h). It is

easy to see that the function W(h) satisfies all conditions of Lemma 1.

Thus for all we have



we obtain

Approaching the limit as in the inequality (10), we arrive at
the inequality, which contradicts the boundedness of the continuous
function W(h) on the compact set Therefore,

By the construction, so for

sufficiently large and, hence, in the case the inequality

(10) holds true by the same reasons as in the previous case. On the
other hand,

whence

Substituting (11) into (10), we find that

Approaching the limit as in (12), we obtain

Thus, all the conditions of Theorem 1 are valid, which is what had
to be proved.
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From continuity of the function J'(h), the inequality (8) and
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Remark 1. Since the a priori inequalities in the negative norms
hold true, there exists a uniformly convergent to J'(h) sequence

Remark 2. If the set of values of the function J(h) in the set

is at most denumerable, it is possible to prove that there exists
the subsequence (8), which is convergent to the set of solutions.

Remark 3. An analytic function satisfies the condition of
countability.

Remark 4. There exists a function J(h) from such that the

set of its value is at most denumerable in the set

4. ANALOGUE OF THE CONDITIONAL
GRADIENT METHOD

In the previous section applying the projective operation on the
admissible set, we solved the optimization problem. Note that in some
cases to execute the projective operation is very difficult. In this
section we consider other approach to solving an optimization problem
with constraints. Instead of projective operation the original
optimization problem is substituted by a minimization problem of a
linear function on the admissible set.

Suppose that the conditions of Section 2 hold true and

where is a convex, closed and bounded admissible set. The

sequence of controls is generated by the following algorithm:

where is a step of the algorithm, which is chosen by the rule
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T h e o r e m 2. Suppose that the conditions of Theorem 1 are
satisfied. Then the limit of an arbitrary convergent subsequence

(13), (14) belongs to the set
P r o o f. Apply Lemma 1. Conditions 1 and 2a hold true obviously.

Check on the other conditions of Lemma 1. Suppose that there exists a

subsequence Choose a sufficiently small

such that the of the point h´ and the set
are mutually disjoint sets. It follows from the definition of the set
that for a sufficiently large k the following condition holds true

Since as uniformly on we have

Let us show that for all k = 0,1,..., the value defined in

Lemma 1 is finite. Suppose the contrary. Then,

so that whence we have for

Suppose that W(h) = J(h) and Observe that the function

J(h) satisfies all the conditions of Lemma 1.
Then,

Since the first term becomes vanishingly small as and

for a sufficiently large k we have
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Taking into account continuity of the function J´(h) and the

inequality for a sufficiently small we have

Considering inequalities (16) and (15), we obtain

contradiction with the boundedness of the continuous function W(h)

as Thus, the sequence does not tend to infinity as

By the definition of the sequence we have

so for sufficiently large k

and, hence, in the case the inequality (17) holds true by the
same reasons as in the previous case. Also, we have

whence

Substituting this inequality into (17), we obtain

Approaching the limit as we find

Thus all the conditions of Lemma 1 are valid.
Remark. This approach based on Lemma 1 is very convenient

for proving convergence of a non-linear programming algorithm
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in the case of programmed control of the step On the other

hand, it should been noted that in the case of the step selection
based on the complete step condition the assumption 2a of the
Lemma is not valid. If proof of the assumption 2a is difficult or
impossible at all, it is useful to employ the modification of
Lemma 1 [108].

L e m m a 2. Suppose that a sequence of points

satisfies the following conditions:
1. is a compact set, s = l,2,....

2. If then there exists such that for all

we have

3. There exists a continuous function W(h) such that the set of

its values in the set is at most denumerable and W(h) satisfies
the following inequality

4. If then

Under these assumptions the sequence converges and

an arbitrary limit point of the sequence belongs to set

Remark 2. If the set of values of the function J(h) in the set

is at most denumerable, it is possible to prove that there exists
a subsequence of (7), which is convergent to the set of solutions.
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5. PROBLEMS OF JOINT OPTIMIZATION
AND IDENTIFICATION

5.1 Formulation of joint optimization
and identification problem

There are a lot of optimal control problems described by a model
with the vector a of unknown parameters. A sequence is
an observation over this unknown vector a . In this case it is necessary
to solve not only an optimization problem but also identification one.

There exist a lot of approaches to solving this problem. One can
first solve the identification problem with a given accuracy and then
find the optimal control, nevertheless this approach possess an
essential disadvantages:

unknown parameters are estimated inaccurately, so that in
solving the optimization problem the errors of control may be
accumulated,
in real time problems there are not enough observations for
identification of parameters of unknown vector.

The approach of  joint optimization and identification is much more
effective. This approach enables us to consider new optimization
problems being directly related to limit extreme problems [25].

Although the above mentioned extreme problems are the problems
of stochastic programming, it is necessary to develop special methods
because the general methods of stochastic programming are not
always effective.

The following simple example shows one aspect of necessity to
develop the special method of  joint optimization and identification.

It is requested to minimize positive quadratic form

in the admissible set
Assume that symmetric n×n matrix B is of the following form
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where is the positive defined (n – l)× (n –1) matrix.

We have independent observations

on an unknown parameter a .
This problem can be solved in two ways. In the first case using the

some observations we obtain an estimation of the
parameter a , and then we begin to solve the deterministic problem. In
the second case solving the identification problem we are making some
iteration of the basic optimization algorithm using the current value of

the estimate of the parameter a.
The first approach is automatically inconvenient for real time

problems. In addition, this approach can become incorrect. For
example, if the identically distributed random variables s = 0,1,...
take on the negative values much more frequently than the positive
ones, then the estimate of a may be negative and the function

may be non-convex. By we mean

In particular, this is due to

where p is probability,

Thus, possibility to solve the optimization problem by this approach
essentially depends on the accuracy of the estimation of the parameter
a. Conversely, the second approach is much more convenient for real
time optimization problem. The consecutive approximations of the
solution of the extreme problem are based on all currently observed
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information about the parameter a. In this approach it is not necessary
to find the vector a with high accuracy for concurrent execution of
algorithms. In addition, the approach enables us to vary a method of
step choice in the optimization algorithms.

In this section we consider the problem

where a is a vector of unknown parameters.
There are independent random observations such that

The estimates s =1,2,...

can be obtained in the same way as in the papers [109, 110].
To solve the optimization problem, we apply the algorithms similar

to the well-known mathematical programming algorithms [21] of
stochastic approximation.

To prove the following assertion, we shall employ well-behaved
sufficient conditions of convergence of stochastic programming
algorithms. Following the paper [22], let us formulate the conditions.

Let X be a set of solutions of some optimization problem,

and be a random sequence of points.

T h e o r e m 1. Suppose that for almost all
where s = 0,1,.... is a compact set. All convergent

1) if

2) if then there exists such

that for all a value where

3) there exists a continuous function W(x) such that the set of

its values in the set X  is at most denumerable and

subsequences are satisfy the following conditions:
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Under these assumptions the sequence is

convergent and all the limit points of the sequence

belong to the set X  for almost all
In the case when to verify the condition 1) is difficult, it is

convenient to employ other conditions of convergence.
T h e o r e m 2. Assume that for almost all the sequence

belongs to the compact set All convergent

subsequence satisfy the following conditions:

1) if then

we have where

2) there exists a continuous function W(x) such that the set of

its values in the set X  is at most denumerable and

3) if then

for almost all

Under these assumptions the sequence is

convergent and all limit points of the sequence belong

to the set X  for almost all

This theorem is proved in the same manner as the previous one.
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5.2 Analogue of the generalized gradient
projection method

Assume that a point belongs to the convex compact admissible

set of the problem (1), (2). For all a the function is
convex with respect to the variable x. A sequence of points is
generated by the algorithm

where is a generalized gradient of the function F(a,x), s is

a number of iteration, is an initial approximation, is a
projective operator to the set X; is iteration step of the algorithm.
The parameter a is determined by the rule

T h e o r e m 3. Let F(a,x) be a continuous separately with
respect to a and x,

Then with probability 1 the limit of an arbitrary convergent
subsequence of (3) belongs to the set of the solutions X of the

problem (1), (2), where

P r o o f . Apply Theorem 1. According to the algorithm, the

sequence belongs to the compact set X, s = 0,1,....

Henceforth, the dependence on shall be omitted.
The first condition of Theorem 1 is obvious
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Verify the other conditions of Theorem 1. Let be an

arbitrary convergent to a point subsequence. Then

Since the function F(a,x) is continuous and with

probability 1, from inequality

for a sufficiently large s, we have

From convexity of the function F(a, x) we have

Show that for all k. Suppose the contrary. Then

for all so that From this it follows

that for all Let

and then

From the inequalities (5) and for all we

have

Whence, for sufficiently large k we obtain the inequality
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Passing to the limit as in inequality (6), we obtain the

contradiction with the non-negativity of the function W(x). Therefore,

It is clear that then for all sufficiently

large and hence in the case inequality (6) is

true by the same reasons as in the previous case. On the other hand,

whence Substituting this inequality into (6), we find that

Approaching the limit as in the inequality (7), we obtain

Thus, all conditions of Theorem 1 hold true, which is what had to be
proved.

Remark. If in Theorem 3 the function F(a,x) is continuously

differentiable but non-convex, then an arbitrary convergent
subsequence of the sequence (3) converges to points of a set

with probability 1.

Summing up the inequality over all the values of s from to

r – 1, we have
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5.3 Analogue of the conditional gradient method

In this section to solve the problem (1), (2) we consider a sequence

The parameter a is identified in the same manner as in the case
discussed above

By a solution of the problem we mean the set X  which is defined
in previous remark.

T h e o r e m 4. Let be a continuously

differentiable function for all a and be

continuous one for all The set of values of the function

F(a, x) in set X is at most denumerable and

Then a limit of an arbitrary convergent subsequence belongs

to the solution set X with probability 1.
P r o o f . The first condition of Theorem 1 holds true obviously.

Assume that there exists a subsequence

Choose a sufficiently small such that the of

the point x´ and the set X are mutually disjoint. By the definition of
the set X,  we obtain the inequality

for sufficiently large k.
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Suppose the inequality holds true for all

Whence, we have for sufficiently large k. Thus,

the inequality (11) holds true for Assume that Consider

the continuous function W(x) = F(a,x) and Then

Since and

we have

for sufficiently large k.
Taking into account continuity of the function and

inequality for a sufficiently small we obtain

Considering the equalities (12) and (13), we find

Passing to the limit as we obtain that the function W(x ) is
unbounded, contrary to continuity of the function W(x) on the

compact set X. Thus,

From we have for

sufficiently large k. Then, in the case the inequality (14) holds

true by the same reasons as in the previous case. On the other hand,



132 Chapter 3

whence,

Substituting this inequality into (14), we find that

Approaching the limit as

Thus, all conditions of Theorem 1 hold true, which is what had to be
proved.

Remark. If the set of values of the function F(a, x) in the set

X is at most denumerable, it is possible to prove that there exists
a convergent to the set of solutions subsequence of (8).

6. GENERAL THEOREMS OF GENERALIZED
OPTIMAL CONTROL

In the following sections we shall prove different a priori
inequalities in the negative norms for different distributed systems, so
the general optimal control theorems of the previous chapter hold true
for this distributed systems. It is clear that the theorems from different
section have common structure. We shall not formulate all theorems
entirely in each section. We shall formulate only the changeable part of
these theorems. Therefore in this section we collect only templates of
the theorems of Chapters 1 and 2 in the convenient for the following
sections form.

Suppose the state function satisfies the following equation

we obtain
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with initial and boundary conditions (bd). (2)

From the general theorems of Section 1.2 we conclude that the
following theorems hold true.

T h e o r e m 1. Consider the problem of optimal control (1),
(2). If

1) performance criterion is weakly lower
semicontinuous;

2) the admissible set is bounded, closed, convex

in H;
3) H is a reflexive Banach space;
4) is a weakly continuous mapping of the space H into

5) the operator L, the spaces N and are chosen
from the following table

then there exists an optimal control of the system (1), (2).
T h e o r e m 2. Consider the system (1), (2) with the right-

hand side If the space and

mapping are chosen from the table below then the mapping

is weakly continuous

Consider the question of the differential properties of performance
criterion
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where are some functions from  and

respectively, and

Taking into account the general theorem from paragraph 1.4 and
inequalities in the negative norms, we have

T h e o r e m 3. Consider the problem (1), (2) with the right-
hand side If there exists a Fréchet derivative

of a mapping at the

certain point h * , then at the point h* there exists a Fréchet
derivative of the performance criterion J (h) in the following form

where v(t,x) is a solution of the adjoint problem

bilinear form is defined in the spaces

If in addition Fréchet derivative is

continuous at the point h* or satisfies the Lipschitz condition with
index in a bounded and convex neighbourhood of
the point h * , then the gradient has the same properties (is

continuous or satisfies the Lipschitz condition with index

where operator L, spaces are chosen form the

following table

P r o o f is followed from the theorems of 2.1 (Theorems 2.1.3-
2.1.5).

T h e o r e m 4. Consider the problem (1), (2) with the right-

hand side There exists Fréchet a derivative
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space and the mapping are chosen from the

following table.

The Fréchet derivative satisfies the

Lipschitz condition with index

Consider a regularized problem of optimal control

where

It is requested to minimize a functional

1) admissible set of control is convex, closed, and

bounded in the Hilbert space H ;
2) maps satisfy the condition:

a) in

for an arbitrary sequence

b) is weakly continuous,

c) for all fixed

d) the performance criterion is upper
semicontinuous and weakly lower semicontinuous.

of the mapping if the

The functional is defined on functions from

T h e o r e m 5. Consider the optimal control problems (1),
(2) and (3), (2). Let the following conditions hold true:
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Under these assumptions there exist optimal controls h*, of
the problems (1), (2) and (3), (2); there exists a weakly
convergent subsequence and an arbitrary weakly convergent

subsequence converges to h* weakly in H , where the

operator of initial boundary problem L , the space are
chosen from the table

T h e o r e m 6. Consider the regularized right-hand side of
the equation (1), (2) from Section 2.2. If the operator L, the
space the map are chosen from the following table,
then conditions 2a)-2d) of previous theorem hold true for the
maps

T h e o r e m 7. Consider the optimal control problems (3),

(2) with the right-hand size If the space

the exponent the map are chosen from the

following table, then there exists a Fréchet derivative

of the map the

derivative is defined in Section 2.2 and

satisfies the Lipschitz condition with index and directional
derivative with respect to satisfies the Lipschitz condition
with index
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PARABOLIC SYSTEMS

1. GENERALIZED SOLVABILITY
OF PARABOLIC SYSTEMS

Consider applications of the results of Chapters 1 and 2 to
investigation of systems governed by parabolic partial differential
equations. Note that despite of enormous number of papers devoted to
the parabolic systems there are many open problems such as the
problems of singular control and the problems of coefficient control.

Let the functioning of a system is described by the following
equation:

where u(t, x) is a function describing the system state in a region

is a bounded region of n -dimensional Euclidian

space with a smooth boundary
Let be functions which are continuously

differentiable in a closed region and c(x) is a continuous in

function such that

where the constant

Denote by a completion of the space of smooth functions

which satisfy the initial and boundary conditions

with respect to the Sobolev norm
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is a similar space but its smooth functions satisfy the boundary

conditions of the adjoint problem

By pairs of the spaces and we

construct negative spaces and as a completion of the space

of smooth in functions satisfying the conditions (2) or (3) with
respect to the norm

Let us study the properties of the differential operator (1), and also
the properties of the formally adjoint operator:

L e m m a 1. For any function u(t, x), which is smooth in
and satisfies conditions (2), the following estimation is valid:

P r o o f . The inequality is obtained as a result of applying of the
formula of integration by parts and the integral Cauchy inequality to the
expression which is written in the right-hand side of

definition of the negative norm. Indeed, let v(t, x) is a smooth in
function satisfying conditions (3). Then
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where

Taking into account the integral representation of the function

u(t, x) satisfying the initial condition we have

Applying to the following inequality
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we have

Applying to the first term in the Ostrogradski-Gauss formula and
taking into account the boundary conditions we conclude
that this integral is equal to zero. Applying the integral Cauchy
inequality to the second term in and taking into account that the

Let us apply to the third and fourth terms the inequality like

(5). We get

Finally, we have

Hence, the statement of lemma holds true for smooth functions
u(t, x) as far as the set of considered functions v(t, x) is dense in

and hence the supremum in the definition of the negative norm

we can take at such smooth functions.
Re m a r k . The proved inequality allows extension of the

operator L with respect to continuity on the whole space in

this case the inequality of the Lemma still valid for any function

u(t, x) of the space

functions are continuous, and hence they are bounded, we get
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L e m m a 2. For any function the following

estimation is valid

The P r o o f of Lemma 2 is similar to the proof of Lemma 1.

L e m m a 3. For any function the following

estimation is valid

P r o o f . Consider the following auxiliary integral operator defined

on smooth functions u(t, X) , which satisfy conditions (2):

where is a constant majoring which exists by virtue the

fact that the functions are continuous in n is the
dimension of the region

It is clear that the function v(t, x) satisfies conditions (3).

Expressing u(t, x) via v(t, x) we get

Consider

where
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Consider every term and separately.

Using the Ostrogradsky-Gauss formula and taking into account the
condition we can prove that the integral

is equal to zero. Let us apply to the

second term the formula of integration by parts:

Using the Ostrogradsky-Gauss formula we pass to the surface

integral in the term and take into

account the condition Applying to the second term the

inequality we have
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Consider the term

Consider the last term Applying the formula of intergation by

parts and taking into account the condition we get
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Finally, we obtain

by and taking into account the relation between u(t, x) and

v(t, x), we obtain

The validity of the inequality (7) on the whole space we prove

by passing to the limit.

L e m m a 4. For any functions the following

inequality holds true:

The P r o o f of Lemma 4 is carried out in a similar way as for
Lemma 3. The auxiliary operator is of the form

Applying the Schwarz inequality to              we obtain

Reducing the right-hand side and the left-hand side on the inequality
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T h e o r e m 1. For any function there exists a

unique solution of the problem (1), (2) in the sense of Definition
1.1.1.

T h e o r e m 2. For any functional then a unique

solution of the problem (1), (2) exists in the sense of
Definition 1.1.4.

2. ANALOGUE OF GALERKIN METHOD

Let us construct the method of numerical solving the parabolic
equation with a generalized right-hand side.

Consider the following equation

where u(t, x) is a system state defined on the set

Let the system state is described by the initial-boundary value
problem (1), (2),

We shall look for the approximate solution in the following form
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where is a orthonormal basis in which consists of

functions from the space and the functions are selected

as a solutions of the Cauchy problem for the system of N linear
ordinary equations:

L e m m a 1 . The following inequality is valid

P r o o f . Multiplying both parts of expression (5) by

and summing with respect to l from 1 to N and integrating with
respect to t from 0 to T , we obtain
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Integrating by parts and using the initial and boundary conditions,
we get the following expressions

Using the Ostrogradsky-Gauss formula we obtain that the first

integral in the right-hand side equals to Let us

apply to the second integral the integration by parts. Thus, we have

Applying the Ostrogradsky-Gauss formula again and taking into

account the coercitivity condition:

we obtain
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The term we estimate in the following way.

Let us apply to the term the formula of integration by parts.

Summing the obtained expressions, we have
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Comparing the obtained expressions with (6) and using the integral
Cauchy inequality, we obtain

Reducing both parts by we finish to prove Lemma 1.

T h e o r e m 1. Let The sequence of

approximations (4) converges to the solution u(t, x) of the
problem (1), (2) in the sense of Definition 1.1.1 with respect to the
norm of the space

P r o o f . By Lemma 1, we can extract the weakly convergent

subsequence from the bounded sequence Let

be weakly convergent to By the Banach-Sax

theorem, we can extract from it a subsequence such that

strongly converges in to the same function û , i.e.
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By virtue of the compactness of the imbedding it is

strongly convergent in
Taking into account the inequality of Lemma 2.1.1

and the linearity of the operator L , we get

By the fact that sequence is fundamental, we have

As far as the space is complete the fundamental sequence

has a limit i.e.

Remark. Element is identically defined by

and does not depend on the sequence

Let us prove that in the sense of the equality in the space

Let us multiply both parts of the equality (5) on an arbitrary

smooth function which satisfies the condition and

integrate it with respect to t from 0 to T. Denoting

we obtain
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On the basis of the definition of the function the following
equalities hold true

On the other hand, by the Schwarz inequality we have

By virtue of the above reasoning, the right-hand side of this
inequality tends to zero as That is why it follows from (7)
that

We can make the number be arbitrarily large (dropping the

necessary of the first terms of the sequence and repeating the

analogous reasoning). In view of the fact that the set of functions

we have in whence it is easy

to prove that û is the solution of the problem (1), (2) in the sense of
definition 1.1.1.

By virtue of the uniqueness of the solution of the problem (1), (2),

all sequence converges to û with respect to the norm

Let us consider the case when the right-hand side of the equation

(1) is an element of the negative Hilbert space Granting the

density of the space let us select a sequence

(we can do it applying the well-

known procedure of averaging).
Consider the problem (1), (2) with the right-hand side We

shall look for the approximate solution of this problem in the form



152 Chapter 4

where is above defined orthonormal basis in and

is determined from the solution of the Cauchy problem for the

system of linear ordinary differential equations:

As far as the estimations in the negative norms are valid for the
operator L passing to the limit we shall obtain that the
following statement holds true

obtained by the method (9), (10) with the help of

the special choosing of N = N(p), which necessarily exists,

converges to the generalized solution from the space (in

the sense of Definition 1.1.4) of the problem (1), (2) in the
following sense

P r o o f . By Theorem 1, sequences of the approximations

converge to the generalized solutions of the problems

with respect to the norm i.e.

T h e o r e m 2. Let Then the sequence



PARABOLIC SYSTEMS 153

Let us show that the sequence is fundamental in the

space We have

Next,

Here we used the estimation of Lemma 1 and the triangle
inequality.

Let us pass to the limit with respect to We shall obtain

that Hence, there exists

a function such that It follows

from the proof of Theorem 1.1.3 that the function is a

generalized solution of the problem (1), (2) in the sense of

Definition 1.1.4 with the right-hand side

Consider On the basis of Theorem 1 we can

choose N = N(p) such that where

is a sequence of positive numbers converging to zero.
Hence,

The theorem is proved.
Thus, in the case when the right-hand side belongs to the negative

space it is necessary to solve the Cauchy problem (10) and to

co-ordinate the parameters N and p in a special manner.
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3. PULSE OPTIMAL CONTROL
OF PARABOLIC SYSTEMS

Let us consider the problems connected with the pulse optimal
control in the case when the function of the system state is a solution
of the Dirichlet initial-boundary value problem for parabolic equation:

All notations correspond to Chapter 1, where we proved the
inequalities in the negative norms for the parabolic operator.

Using the templates of the theorems mentioned in Chapter 3, let us
write the tables for this theorems.
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Let us investigate the problem of the existence of the optimal
control of coefficients of the equation.

Let the system state is described by the following equation:
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where u(t, x) is a function describing the system state in the domain

is a bounded domain in n -

dimensioned Euclidian space with smooth boundary which is
a tube with respect to the variable The control of the system is

carried out with the help of control impacts

The functional which is to be minimized on the set

of admissible controls, is defined on the solutions of the problem

(3) and is weakly lower semi-continuous with respect to the system
state u(t, x).

Let be continuously differentiable function in

the closed domain and be continuous function in We

shall assume that are some numerical parameters and

for all values of this parameters

where the constant

Let us consider the specific case of the control impact which arise
in practice and investigate the problem of existence of the optimal
controls.

Let the following conditions are satisfied:
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where the vector is a control.

Then the following statement holds true.
T h e o r e m 10. Let the system state is determined as a

solution of the problem (3), (2) and the following conditions are
satisfied:

1) the performance criterion is a weakly

lower semi-continuous with respect to the system state
functional;

2) the set of admissible controls is bounded,

closed and convex in H;
3) H is a reflexive Banach space;
4) f is a weakly continuous operator mapping H into

Under these assumptions there exists an optimal control of
system (3), (2).

P r o o f . Note that by virtue of the relations (4), (5) all statements
proved in the Section 1 for the parabolic operator are valid for
differential operators (3). Moreover, the constant C in the estimations
with respect to the negative norms (Lemmas 1.1-1.4) does not depend

on the control Hence, the proof of Theorem 1 is

completely similar to the proof of the general theorem about existence
of optimal control (Theorem 1.2.1)
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Remark. As far as the operator f is non-linear then the

functional J(h) may be non-convex and the optimal control may

be non-unique.
Let the functioning of the system is described by the equation (3)

with the conditions (4), (5).
Let us investigate the differential properties of the performance

criterion

where are some unknown functions from

and respectively, and in for the case of

the optimal control of the system coefficients.
Let us give to the control h an increment

where
Let us introduce the adjoint state as a solution of the following

problem

Then we may write the increment of the performance criterion in
the following form:
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As far as

then, obviously, satisfies the equation

It follows from the results of Section 1.1 that the solution of this
problem exists, it is unique and it is determined as a function

such that for any

(including v(t, x)), the following equality holds true:

Thus,
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Dividing both parts by and passing to the limit as we
have

Thus, we have proved the following statement.
T h e o r e m 11. The gradient of the performance criterion

(6) is of the following form:
gradJ (h) =

Remark. It should been noted that the passing to the limit in (8)
was done formally, but its justification can be proved easily.
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PSEUDO-PARABOLIC SYSTEMS

In order to solve many applied problems of science and engineering
it is necessary to study optimal control problems for pseudo-parabolic
systems:

where A, B are second order elliptic differential operators.
Seemingly one of the first paper on pseudo-parabolic equation is

[111], where the equation was obtained from the research of heat
transport processes in the heterogeneous environment, as more
adequate model of the processes. Pseudo-parabolic equations arise in
researches of the fluid and gas filtration in the fissured and porous
medium [112-116]; the heat conduction in the heterogeneous
environment [111], the ion migration in soil [111-113, 117], the wave
propagation in the disperse medium and in the thin elastic glass [118].
Nowadays , there are many papers on pseudo-parabolic equations [51,
52,90,119-128].

1. GENERALIZED SOLVABILITY OF PSEUDO-
PARABOLIC EQUATIONS (THE DIRICHLET
INITIAL BOUNDARY PROBLEM)

Consider equation (1) in a tube where is a

regular domain in with a piecewise-smooth boundary The
operators A,B are defined as
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where are

continuously differentiable functions in the closed domain and
a(x) , b(x) are continuous functions in the

We suppose that the differential expression (2a) is positive definite
and the differential expression (2b) is nonnegative in the domain i.e.

where is a positive constant,

We also suppose that

Introduce into consideration the following spaces. Let be a

completion of the set of the smooth functions in the domain which
satisfy the conditions

in the norm

Let be a completion of the set of the smooth functions in the

domain which satisfy the adjoint conditions

in the same norm (5); are corresponding negative spaces

Let be a

completion of the set of the smooth functions in the domain which
satisfy the conditions (4) by the norm
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be completion of the set of the smooth functions in the domain

which satisfy the conditions (6) in the same norm. Let

be corresponding negative spaces.

L e m m a 1. For all functions the following

inequality is true

P r o o f. First consider a smooth function u(t, x), that satisfies the

conditions (4), then applying expansion by continuity of operator

and passing to the limit, we shall obtain the inequality for all functions

By the definition of the negative norm, we have

Consider Employing the integration by parts, the

Schwarz inequality and the conditions (6), we obtain

Here we apply the inequality

In the same manner, we have

Using the integration by parts, we find
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Passing to the integration over surface and taking into account the.
conditions (6), we conclude that

Using the Schwarz inequality again, we obtain

Analogously

Substituting the inequality into the parity (7), we have the desired
inequality.

The analogous lemma is valid for the adjoint operator

L e m m a 2. For all functions the following

inequality is true

where

It follows from these lemmas that the operator L (and can be

extended to the continuous operator mapping (and

respectively) into

L e m m a 3. For   all   functions                           the   following

inequality is true
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P r o o f. First consider a smooth function u(t,x), which satisfies
conditions (4).

Let v(t, x) be an auxiliary function in the form

It is obvious that Prove the following inequality

Using the integration by parts, the relationship between u(t, x) and

v(t, x), the boundary conditions, we have

Next, in much the same manner, we have

Employing the integration by parts, we have
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Passing to the surface integral, since the symmetry and non-

negativity of the matrix we arrive

Substituting (10) into (9) from the obtained inequalities, we have

whence, applying the obvious inequality

we conclude that the inequality (8) is valid.
By the Schwarz inequality, we have

Reduce by and take account the relationship between

u(t,x) and v(t,x). Whence we have that desired inequality of the
lemma is true for a smooth function. Passing to the limit, we obtain the

inequality for all functions

L e m m a 4. For  any   function                          the   following

inequality holds true
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Since the matrix is symmetric and nonnegative, we have

the inequality

Proof. Let first            be a smooth function, which

satisfies conditions (6). Prove the following inequality

where

Using the integration by parts and the definition of the function
u(t,x),we have

Since the functions u(t,x) and v(x,t) satisfy homogeneous conditions
on the border of the set [0,T] , we have:

Next, we obtain
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Taking into account (12), (13) and the inequality

we obtain (11). Next, in much the same manner as in Lemma 3,
applying the Schwarz inequality and passing to the limit, we prove

desired inequality for all

Based on Lemmas 1-4 and results of Chapter 1, we have the
following theorems.

T h e o r e m 1. For all there exists a unique

solution of the problem (1), (4) in the sense of  Definition 1.1.1.

T h e o r e m 2. For all there exists a unique

solution of the problem (1), (4) in the sense of  Definition 1.1.4.

2. GENERALIZED SOLVABILITY OF PSEUDO-
PARABOLIC EQUATIONS (THE NEUMANN
INITIAL BOUNDARY PROBLEM)

In this section we shall consider the simpler (comparing to the
general equation (1.1)) pseudo-parabolic equations. This simplification
enables us to consider the initial boundary value problem with usual
von Neumann conditions (compare with the initial boundary conditions
of pseudo-hyperbolic systems).

Consider the partial differential equation:

in a tube where u(t, x) is a sought function,

is a bounded domain in with a smooth border

is a Laplacian, k is a nonnegative constant.
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Together with the equation (1), consider the boundary conditions

where is a normal vector to the surface

Introduce the following denotation. Let be a completion of the

set of the smooth in functions, which satisfy the condition (2) in the
norm

is an analogous space, but functions satisfy the adjoint

conditions

are corresponding negative spaces.

L e m m a 1. For all functions the following

inequality is true

P r o o f. First prove the lemma for smooth functions

which satisfy the condition (2), and then passing to the

limit, we shall obtain the inequality for all functions

By definition of the negative norm in we have
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Since the bilinear form on the smooth functions coincides

with the inner product in we obtain

Consider

Let us show that

First consider the integral

Using partial integration and the conditions (2), we find

Passing to the surface integral, we obtain

Employing the Schwarz inequality, we have
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Applying the Schwarz inequality to (5), we have

In the same manner, we prove that

Finally, we obtain

Returning to (4), we have

as required.
In the same manner, we prove the following lemma.

L e m m a 2. For all functions the following

inequality holds true

where is a formally adjoint operator

L e m m a 3. For all functions the following

inequality is true

(since                       and, thus,                       ).
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P r o o f. First prove the lemma for smooth functions u(t,x),

which satisfy the condition (2), and then passing to the limit, we obtain

the inequality for all functions

Consider an auxiliary operator

Evaluate

Applying the integration by parts and the conditions (2) and (3), for

functions u(t, x) and v (t, x) we have

Substituting the equality into (7) and replacing a(t) by – (t + 1),
we have

From the Schwarz inequality, we obtain

Reducing each part by we find
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which is what had to be proved.

L e m m a 4. For all functions         the following

inequality holds true

From Lemmas 1-4 we have the existence and uniqueness
theorems.

T h e o r e m 1. For all functions there exists a
unique solution of the problem (1), (2) in the sense of
Definition 1.1.1.

T h e o r e m 2. For all functions there exists a

unique solution of the problem (1), (2) in the sense of Definition
1.1.4.

3. PULSE CONTROL OF PSEUDO-PARABOLIC
SYSTEMS (THE DIRICHLET INITIAL BOUNDARY
VALUE PROBLEM)

Apply the obtained results for the optimization problem of pseudo-
parabolic systems (the Dirichlet initial boundary value problem). We
use the same denotations as in Section 1.

Let the state function satisfies the pseudo-parabolic equation

Using the template theorems of Section 3.6, fill in the tables for the
pseudo-parabolic equation (the Dirichlet initial boundary value
problem).
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Table 4 is e m p t y.
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4. PULSE CONTROL OF PSEUDO-PARABOLIC
SYSTEMS (THE NEUMANN INITIAL BOUNDARY
VALUE PROBLEM)

Apply the obtained results for the optimization problem of pseudo-
parabolic systems (the Neumann initial boundary value problem). We
use the same denotations as in Section 2.

Let the state function satisfies the pseudo-parabolic equation
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Using the template theorems of Section 3.6, fill in the tables for the
pseudo-parabolic equation (the Neumann initial boundary value
problem).

Table 4 is e m p t y.
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Chapter 6

HYPERBOLIC SYSTEMS

1. GENERALIZED SOLVABILITY OF HYPERBOLIC
SYSTEMS (THE DIRICHLET INITIAL BOUNDARY
VALUE PROBLEM)

This Section is devoted to thé research of hyperbolic partial
differential equations. A lot of the mechanic and physics problems
such as a chord, bar and membrane oscillation, an electromagnetic
oscillation etc. are described by the hyperbolic equations [98, 129-133].

Consider a linear partial differential equation

in a tube domain is a bounded domain of

variation with a smooth domain boundary The

elliptic operator B does not depend on the temporary variable t and is
of the following form

Suppose that the matrix is symmetric

the matrix cells and the functions are

continuously differentiable in the domain and for all vectors

the following inequalities hold true
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Since the functions are continuous on the compact set

there exists a constant such that for all

We denote by a completion of the set of smooth in

functions satisfying the following conditions

in the norm

Analogously let be a completion of the set of sn.

functions satisfying the following conditions

in the same norm

Let be corresponding negative spaces.

following inequalities

L e m m a 1 . For all

hold true, where an operator L is formally adjoint to the
operator L :

and the



HYPERBOLIC SYSTEMS 181

P r o o f . Consider first a simpler case, when u(t, x) is a
continuous function satisfying the conditions (2). By the negative norm
definition, we have

since for smooth functions u(t, x) satisfying the condition (2), the

bilinear form coincides with the inner product in
Consider the term of the right-hand side of the fraction (4):

Applying the partial integration, the Schwarz inequality and the
initial conditions (2), (3), we obtain

Next,

In the same manner, we have



182 Chapter 6

Returning to the equality (4), we obtain the lemma assertion for
smooth functions u(t, x), which satisfy the condition (2). Passing to

the limit, we obtain the lemma assertion for all functions

The second inequality is proved in the same manner.

L e m m a 2 . For all functions and

the following inequalities hold true

P r o o f . Consider the first inequality. Suppose first that a function
u(t, x) is smooth and satisfies the condition (2).Consider the following

integral operator

where is a positive constant.

It is obvious that Consider

Estimate the every summand in the right-hand side.
Applying the integration by parts, we have

Since we obtain
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Taking into account that

we arrive

and so

The other summands of the equality (5) are estimated in the same
manner as the previous one. Consider the second summand:

Next, estimate the third summand of (5):
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Examine the last summand of (5):

Applying the all acquired estimation, we have

Since we arrive
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can be made positive by choosing the constant It suffices to put

We have

Thus,

Employing to the left-hand side the Schwarz inequality, we obtain

Dividing by we arrive the following inequality:

Taking into account the definition of the function v(t, x), we have

The term
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whence we finally obtain

This inequality can be extended to any function by

passing to limit.
The second inequality is proved in the same manner.

T h e o r e m 1. For all functions there exists a
unique solution of the problem (1), (2) in the sense of Definition
1.1.1.

T h e o r e m 2. For all functions there exists a

unique solution of the problem (1), (2) in the sense of Definition
1.1.4.

2. GENERALIZED SOLVABILITY
OF HYPERBOLIC SYSTEMS (THE NEUMANN
INITIAL BOUNDARY VALUE PROBLEM)

Suppose that a state function is described by the hyperbolic
equation

where B is an elliptic operator in the following form

the functions are continuously differentiable in

the domain The operator B is uniformly elliptic in
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The equation (1) is considered in the tube domain

Introduce the following denotations. Let be a completion of

the set of smooth in functions, which satisfy the following

conditions

in the norm

where is a normal vector to the surface of the domain

at a point

The boundary condition

can be written in the form

where is the inner product in is the following co-normal

vector

wherå A is a matrix of elements

Let be a completion of the set of smooth in functions,

which satisfy the following conditions
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in the norm (5). According to the pairs of sets and

consider the negative spaces

Prove a priori inequalities in the negative norms for a hyperbolic
system.

L e m m a 1 . For all functions the following

inequality holds true

P r o o f . Prove first the inequality for smooth functions u(t, x) ,
which satisfy the conditions (4).

By the definition of the negative norm, we have

since for a smooth function u(t, x) the bilinear form equals to

the inner product in the space

Consider the equality (7). Applying partial integration and the
conditions (4), (6), we have

Adding the equalities and using the Schwarz inequality, we find
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Substituting the inequality into (7) and dividing by we obtain

the desired inequality for all smooth functions u(t, x), which satisfy
the condition (4).

Considering the continuous extension of operator L on the space

we have the desired inequality for all functions from

L e m m a 2. For all functions the following

inequality holds true

where L is the adjoint operator.
The p r o o f of Lemma 2 is completely analogous to the previous

lemma.
The inequalities from Lemma 1 and 2 show that the operators L

and L  map continuously the spaces and into and

respectively.

L e m m a 3. For all functions the following

inequality holds true

P r o o f . We first prove the lemma for a smooth function, which
satisfies the conditions (4).

Consider an auxiliary function v(t, x)

For all functions v(t, x) we shall prove the following inequality
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Consider the inner product

Employing the integration by parts and relation between the
function u(t, x) and v(t, x), we have

Next, in the same manner, we have

where

Taking into account symmetry of the matrix and applying

integration by parts, we find

Substituting the inequality into (10), we arrive

From (9) and (11) we have inequality (8).
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Employing the Schwarz inequality to the left-hand side of (8), we
obtain

Comparing formulae (8) and (12), dividing by and taking into

account the relation between u(t, x) and v(t, x), we have the

assertion of Lemma 3 for a smooth function u(t, x), which satisfies
the condition (4). Passing to the limit, we obtain the assertion for all

functions

L e m m a 4. For all functions the following

inequality holds true

P r o o f . Let first v(t, x) be a smooth function that satisfies the

condition (6). Consider the following auxiliary function u(t, x):

Show the inequality

Applying the integration by parts, relation between u(t, x) and

v(t, x), we have

In the same manner, consider the other summands of



192 Chapter 6

Substituting (14) and (15) into (13), we obtain the assertion of
Lemma 4 for a smooth function Passing to the limit, we

obtain the assertion for all functions

Applying the theorems of Section 1.1, we have the following
theorems for the problem (1), (4).

T h e o r e m 1. For all functions there exists a
unique solution of the problem (1), (4) by Definition 1.1.1.

T h e o r e m 2. For all functions there exists an

unique solution of the problem (1), (4) by Definition 1.1.4.

3. GALERKIN METHOD FOR
HYPERBOLIC SYSTEMS

In this section we consider the application of the Galerkin method
for approximate solving the hyperbolic equation (the Dirichlet initial
boundary value problem).

We shall find the approximate solution of the equation

in the form
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where is an orthonormalized basis of the space The

functions satisfy the following conditions

are chosen as a solution of the Cauchy problem

for the following set of the linear ordinary differential equations:

From the set of equations (3) it follows that

L e m m a 1. The following inequality holds true

P r o o f . Multiplying both the left and right hand sides of the

equation (4) by where the constant was defined in

Section 1, and summing up over j from 1 to k, we obtain:
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Applying the integration by parts, passing to the surface integration
and taking account the boundary conditions

we find

Next, in the same manner, we have

Since and thus we conclude that first

integral of the right-hand side is equal to zero. Consider the second
integral of the right-hand side:
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Consider the third and fourth summands of (5):

Summing up the obtained inequalities, we have
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Taking into account the value of the constant we obtain

that

Thus,

By the Schwarz inequality, we have
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Dividing by we obtain the desired inequality.

From the lemma it follows that the sequence is bounded in

the space so there exists a weakly convergent to

subsequence To prove the strong convergence, consider

the following spaces.
Let be a completion of the set of smooth in functions,

which satisfy boundary conditions in the norm

Denote by and completions of the set of smooth in
functions, which satisfy conditions (2), in the following inner products:

respectively.
Integrating by parts and passing to the surface integration, it is easy

to prove the following lemma.
L e m m a 2. For all smooth in functions u(t, x), which

satisfy the conditions (2), the following inequality holds true
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Assume that function f (t, x) satisfies conditions and

Differentiating the both right-hand and left-hand sides of (3) with
respect to t , we obtain

Multiplying the both right-hand and left-hand sides by

summing up over j from 1 to k and integrating over t from 0 to

T, we have

Consider the integrands of the left-hand side of (6).

We have by choosing the function f(t,x).

Next, we have
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In the same manner as in Lemma 1, consider the other integrands.

Summing up the obtained inequalities, we have
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Taking into account the value of the constant we

obtain

Since (6), we conclude that

Applying to the right-hand side the Schwartz inequality, we find

Thus, the sequence is a weakly compact set in the spaces

so there exists weakly convergent to

subsequence. From (7), we have



HYPERBOLIC SYSTEMS 201

Whence, there exists a weakly convergent to

subsequence In the same manner the weak convergence of the

other partial derivative sequences may be proved.
Thus, we obtain

Observe that for all functions

where is the bilinear form being generated in the triple of Hilbert

spaces

Since the functions satisfy equality

rewrite the relation (8) in the following form:

On the other hand, from the equality (3) we have that right-hand
side of (9) equals to zero.

Thus, the sequence is strong convergent to in the space

and, hence, in space From Lemma 1.1 it follows that the
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sequence is fundamental in the complete space so

Multiplying the both right-hand and left-hand sides of (4) by a
smooth function g(t) (g(T) = 0) and integrating over t from 0 to
T, we obtain:

Approaching the limit as we have

Since the set is total in the space we conclude that

in the space thus the function is a solution of

the problem      in the sense of Definition 1.1.2 and, hence, in the
sense of Definition 1.1.1. We note that there was no necessity to

choose a subsequence because of uniqueness of the solution.

The obtained result we formulate in the following theorem.
T h e o r e m 1. For a function

the approximate sequence (3) converges to the solution of the
problem (1), (2) in the sense of Definition 1.1.1 in the norm of the

space

Taking into account the density of the considered functions f(t,x)

in the space it is easy to prove the following theorem.

T h e o r e m 2. For all functions the approximate

sequence (3) converges to the solution of problem (1), (2) in the

sense of Definition 1.1.1 in the norm of space
Consider theapplication of the Galerkin method when the right-hand

side of the state equation belongs to the negative space
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Let be an arbitrary function  from       By virtue of the

density of the space in the space there exists a

sequence of functions such that

In this case, we consider the approximate sequence in the following
form:

where

the function is a solution of the following set of ordinary

differential  equations

By Theorem 2 the sequence converges to the solution

of the problem in the norm of space Consider the

sequence By the Lemma 1.1.3, we have

Thus the following theorem holds true.

T h e o r e m 3. For all functions the

approximate sequence (11) converges to the solution of the
problem (1), (2) in the sense of Definition 1.1.4 as

in the norm of space
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4. PULSE OPTIMAL CONTROL OF HYPERBOLIC
SYSTEMS (THE DIRICHLET INITIAL
BOUNDARY VALUE PROBLEM)

Using the template theorems from Section 3.6, we shall fill in the
following tables.



HYPERBOLIC SYSTEMS 205



Chapter 7

PSEUDO-HYPERBOLIC SYSTEMS

GENERALIZED SOLVABILITY OF PSEUDO-
HYPERBOLIC SYSTEMS (THE DIRICHLE
INITIAL BOUNDARY VALUE PROBLEM)

1.

1.1 Formulation of the problem. Main notations.

In this chapter we shall consider the problems of optimization of the
systems described by the pseudo-hyperbolic equations. Such equations
arise, for example, in the investigations of mass transport in
heterogeneous porous media [134]. In addition, many processes are
described by non-stationary equations with small viscosity. For
instance, torsion oscillations of metallic cylinder with inner friction,
propagation of perturbations in viscous and elastic rod, one-dimensional
flow of isotropic viscous liquid, sound propagation in viscous gas and
similar processes are described by the model equations in the following
form:

where is a parameter, is a small viscosity.

There are well-known the equations of viscous and elastic medium
[135]

are the Lame constantswhere

are the viscosity constants, is density.

For example, the equations of longitudinal oscillations of viscous and
elastic rod has the following form [136]:
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where is density of the medium, E is the

elasticity coefficient, is the viscosity coefficient.
The equation of the propagation of initial perturbations in viscous

gas has the following form:

where C is the sound velocity in the absence of viscosity, is the
cinematic coefficient of viscosity.

Pseudo-hyperbolic systems were investigated in papers [137-
140,172,176].

Let us consider the system with distributed parameters and pseudo-
hyperbolic state equation.

P r o b l e m 1 . Find    a    function   u(t,x)    satisfying    the
following equation

where u(t, x) is defined in the domain
is a bounded domain with a sufficiently smooth bound

Suppose that
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are continuously differentiable in the closed domain functions,

are continuously differentiable in the closed domain

The adjoint equation has the following form

Let the system state satisfies the following conditions:
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Let us introduce the following notations.

is a completion of the space of smooth functions, which satisfy

the conditions (5), in the norm

is the same space, but the functions satisfy the following

conditions

are the analogous spaces obtained by completing of

smooth functions satisfying the conditions (5) and (7), respectively, in
the norm

are the correspondent negative spaces.

The following imbeddings are valid:

and, moreover, imbeddings are dense and the imbedding operators are
completely continuous.

P r o b l e m 2. Consider the same equation when its
coefficients do not depend on time
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where u(t, x) is defined in the domain

is a bounded domain with a sufficiently smooth bound
Suppose that

are continuously differentiable in the closed

domain functions; a(x ), b(x) are continuous in functions;

In Problem 2 we shall consider the same boundary conditions and
chains of Hilbert spaces as in Problem 1.

P r o b l e m 3 . We shall investigate the equation
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where

u(t, x) is defined in the domain is a

bounded domain with sufficiently smooth bound

Suppose that are

continuously differentiable in the c1osed domain functions,
M = M(x) is continuous in the closed domain function;

where are positive constants.

Let us introduce the following denotations: is the completion
of the space of smooth functions, which satisfy the condition (5), in the
norm

is the same space, but the functions satisfy the conditions of

the adjoint problem (7); are the corresponding negative
spaces.

1.2 Properties of pseudo-hyperbolic operator
in Hilbert space

Let us investigate the properties of the operators and At

first, we shall show that the operator is extendable to the operator,

which continuously maps the whole space into space .
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L e m m a 1 . For the functions the following a

priori inequalities holds true:

where C hereinafter is some positive constant.
P r o o f . At first, we shall prove the lemma for smooth functions

u(t, x), which satisfy the condition (5), and later we shall obtain the

validity of the lemma for any extending in the

correspondent way the operator and passing to the limit.
By definition of the negative norm, we have

as far as for smooth u(t, x), which satisfy the condition (5), the

bilinear form coincide with the inner product in Let us

consider the numerator in the right-hand side of (11):

Using the integration by parts, the integral Cauchy inequality and
granting the initial conditions, we can write
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Next,

In a similar way,
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From the written above we obtain

Using obtained inequality, we have

for smooth functions u(t, x), which satisfy the condition (5).
Using the inequality (10), we can extend the operator which is

defined on smooth functions satisfying the condition (5) to the whole

space (continuity extension).

For extended operator we shall save the previous notation and
hereinafter we shall consider only extended operator.

Passing to the limit, we obtain the validity of the lemma for any

functions



216 Chapter 7

Remark 1. The inequality (10) imply that the linear operator

continuously maps the whole space into

In a similar way we can prove that extended operator

continuously maps the whole space into the space

L e m m a 2 . For all functions the following

inequality holds true

S t a t e m e n t 1 . Let then the following

equality holds true

For Problem 2 the following lemmas hold true.

L e m m a 3 . For all functions the following a

priori inequality holds true:

The proof of Lemma 3 is analogous to the proof of Lemma 1.
L e m m a 4. For all functions the following

inequality holds true

The proof of Lemma 4 is similar to the proof of Lemma 2.
For Problem 3 the following lemmas hold true.
L e m m a 5 . For all functions the following a

priori inequality holds true

The proof of Lemma 5 is similar to the proof of Lemma 1.
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L e m m a 6 . For all functions the following

inequality holds true

The proof of Lemma 6 is similar to the proof of Lemma 2.

1.3. The existence and uniqueness of solution
of initial boundary value problem

To investigate the solvability of an initial boundary value problem
we shall use equipped Hilbert spaces, a priori estimations in negative
norms, and modified method of deriving of energetic inequalities in
negative spaces.

P r o b l e m 4 . We shall investigate the solvability of the
following problems

where u, v are unknown elements, and      are given elements.
The solutions of the problems (12), (13) we shall consider as

generalized solutions in the following sense.
D e f i n i t i o n 1 . The generalized solution of the problem

(12) is a function such that there exists a sequence of

smooth functions which satisfy the condition (5) and

D e f i n i t i o n 2 . The generalized solution of the problem

(12) is a function such that the identity
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holds true for any smooth functions v(t,x) satisfying the condition
(7).

In a similar way we can introduce the definition of a generalized
solution of the adjoint problem.

L e m m a 7 . For any function the  following

inequality holds true

P r o o f . At first, let us prove the inequality for smooth functions
u(t, x) satisfying the condition (5). Introduce an auxiliary function

v (t, x) in the following way:

where

The definition of the function V(t, X) implies that

Note that

Let us prove the validity of the following inequality:

Consider
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Using the integration by parts, relation between u(t, x) and

V(t, X), and initial conditions, we obtain that

Granting initial and boundary conditions, we have

In a similar way,



220 Chapter 7

Granting the fact that the matrix is symmetric and

nonnegative we conclude that the following relation is valid:

Next,
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Note that it is possible to prove the convergence of the improper
integrals, which are the terms of the sums.

Thus,

The proved relations imply that (15) holds true. Applying the
Schwarz inequality to (15), we obtain:

Reducing by we have the following inequality:

Next, let us consider

Applying to the right-hand side the theorem of the mean, we have
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where θ is some mean value from the interval (0, T).
Granting the relation between u(t, x) and V(t, X), we prove  tha t

the inequality holds true for smooth functions u(t, x)  satisfying the

condition (5):

The validity of the inequality (14) for any can be

proved by passing to the limit.

L e m m a 8 . For any function the following

inequality holds true

P r o o f . At first, let us prove the inequality for smooth functions
V(t, X) satisfying the conditions (16). Introduce an auxiliary function

u(t, x) in the following way:

The definition of the function u(t, x) implies that

Note that
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Let us prove that the following inequality holds true

Consider

Using the operation of differentiation by parts, relation between
u(t, X) and v(t, x ) , and initial conditions, we obtain

Granting initial and boundary conditions, we have
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In a similar way,
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It is follows from the fact that the matrix is symmetric

and nonnegative that

Next,
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Note that it is possible to prove the convergence of the improper

integrals, which are the terms of the sums.

Thus,

The relations mentioned above implies the fact that (17) holds true.

Applying the Schwartz inequality to (17), we obtain:
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Reducing by and accounting the relation between v(t, x )

and u(t, x) , we obtain that the inequality holds true for smooth

functions v(t, x) satisfying the conditions  (7):

The validity of the inequality (16) for any function is

proved by passing to the limit.

T h e o r e m 1. For any function there exists

a unique generalized solution of the problem (12) in the sense of

Definition 1. The similar statement holds true for the adjoint

problem.

P r o o f . Theorem 1 follows from general Theorem 1.1.1

Next, we shall investigate the solvability of the problem

where u(t, x ) , v( t , x ) are unknown elements, and f, g are given

elements.

By the solutions of the problems (18), (19) we shall mean the

generalized solutions in the following sense.

D e f i n i t i o n 3. The generalized solution of the problem
(18) is a function such that there exists a sequence

of smooth functions        which satisfy the condition (5) and
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It should been stressed that the difference between generalized

solution in the sense of Definition 1 and the generalized solution in the

sense of Definition 3 is that the corresponding sequences of smooth

functions must converge in the different metrics.

D e f i n i t i o n 4 . The generalized solution of the problem

(18) is a function such that the identity

holds true for any smooth function v(t, x) satisfying  the

conditions (7).

In a similar way, we can define a generalized solutiion of the adjoint

problem.

T h e o r e m 2. For any function there exists

a unique generalized solution of the problem (18) in the sense of

Definition 3. Analogous statement holds true for the adjoint

problem.

R e m a r k . The inequalities (14), (16) are not only sufficient

but also necessary conditions of the existence of a unique

generalized solution.

Corollary. The inequalities (14), (16) imply more positive

inequalities:

P r o b l e m 5 . We shall investigate the solvability of the

following problems
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where u(t, x), v(t,x) are unknown elements, and f,  g are

given elements.

By solution of problem (22), (23) we shall mean a generalized

solution in the following sense.

D e f i n i t i o n 5. The generalized solution of the problem

(21) is a function such that there exists a sequence

of smooth functions         satisfying the conditions (5) and

The generalized solution of the adjoint problem is defined in a

similar way.

L e m m a 9 . For any functions and

the following inequalities hold true

The proof of Lemma 9 is similar to the proofs of Lemmas 7 and 8.
T h e o r e m 3. For any function there exists

a unique generalized solution of the problem (22) in the sense of

Definition 5. Analogous statement holds true for the adjoint

problem.

P r o o f of Theorem 3 is analogous to the proof of Theorem 1.

Next, we shall investigate the solvability of the following problems
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where u(t, x ), v(t,x) are unknown elements, and f , g are given

elements.

By solutions of the problems (26), (27) we shall mean generalized

solutions in the following sense.

D e f i n i t i o n 6. The generalized solution of the problem

(26) is a function such that there exists a sequence

of smooth fucntions satisfying the conditions (5) and

In a similar way, the generalized solution of the adjoint problem is

defined. It should been stressed that the difference between the

generalized solution in the sense of Definition 5 and the generalized

solution in the sense of Definition 6 is that the corresponding

sequences of smooth functions must converge in the different metrics.

T h e o r e m 4 . For any function there exists a

unique generalized solution of the problem (26) in the sense of

Definition 6. The analogous statement holds true for the adjoint

problem.

Remark. The inequalities (24), (25) are not only sufficient, but

also necessary conditions of the existence of a unique generalized

solution.

Corollary. From the inequalities (24), (25) follows more

positive inequalities
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P r o b l e m 6 . We shall investigate the solvability of the

following problems

where u(t, x), v(t, x) are unknown elements, and f , g are given

elements.

By solution of the problems (30), (31) we shall mean a generalized

solution in the following sense.

D e f i n i t i o n 7. The generalized solution of the problem

(30) is a function such that there exists a sequence

of smooth functions satisfying the conditions (5) and

The generalized solution for the adjoint problem is defined in a

similar way.

L e m m a 10 . For any functions the following

inequality holds true

P r o o f . Let us prove the inequality for smooth functions
u(t, x) satisfying the conditions (5). Introduce an auxiliary operator in

the following way:
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where

If the function u(t, x) satisfies the boundary conditions (5), then

the function v(t, x) defined above satisfies (7), furthermore, the

following relation holds true:

Denote the expression

Applying the operation of integration by parts, the Ostrogradsky-

Gauss formula, and granting the boundary conditions in the passing to

the integration on the boundary, we obtain

where
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Therefore,

Applying the Schwartz inequality ,to the left-hand side of (34), we

have:

Hence,

From the relation (33) we obtain

Thus, the inequality (32) holds true for smooth functions u( t, x)

satisfying the conditions (5). The validity of (32) for any

is proved by passing to the limit.



PSEUDO-HYPERBOLIC SYSTEMS                                                237

L e m m a 1 1 . For any functions the

following inequality holds true

P r o o f . The proof of Lemma 11 is similar to the proof of

Lemma 10. The integral operator in this case has the following form

where

T h e o r e m 5. For any function there exists a

unique generalized solution of the problem (30) in the sense of

Definition 7. The analogous statement holds true for the adjoint

problem.

The proof of Theorem 5 is similar to the proof of Theorem 1.

Next, we shall investigate the solvability of the following problems

where u(t, x) , v(t, x) are unknown elements, and f , g are given

elements. By solution of problems (36), (37) we shall mean a

generalized solution in the following sense.
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D e f i n i t i o n 8 . The generalized solution of the problem

(36) is a function such that there exists a

sequence of smooth functions satisfying the conditions

(5), and

The definition for the adjoint problem is similar.

It should been stressed that the difference between the generalized

solution in the sense of Definition 7 and the generalized solution in the

sense of Definition 8 is that the corresponding sequences of smooth

functions must converge in the different metrics.

T h e o r e m 6. For any function there exists a

unique generalized solution of the problem (36) in the sense of

Definition 8. The analogous statement holds true for the adjoint

problem.

The proof of Theorem 6 is similar to the proof of Theorem 2.

R e m a r k . The inequalities (32), (35) are not only sufficient,

but also necessary conditions of the existence of a unique

generalized solution.

Corollary. The inequalities (32), (35) implies the positive

inequalities (obtained by many authors):
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2. GENERALIZED SOLVABILITY OF PSEUDO-

HYPERBOLIC SYSTEMS (THE NEUMANN
INITIAL BOUNDARY VALUE PROBLEM)

2.1 Main notations and auxiliary statements
Consider the linear partial differential equation:

in a tube domain where u(t,x) is an unknown

function depending on spatial variable and time

is a bounded simply connected domain in with smooth boundary

The operators and do not depends on t and they are

defined by the following differential expressions:

and

are

defined in a closed domain Let
be continuously differentiable, and

C(x) , D(x) be continuous in the closed domain functions.

Functions
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We shall suppose that the differential expression (2) is uniformly
elliptic, and the expression (3) is non-negative in i.e. for any

and any the following relations hold
true

where are constants which do not depend on X and
Suppose also that

D e f i n i t i o n 1 . the gradient of the function u(t, x)
(denoted as is a vector-column

where

In the matrix form

where A and B are matrices n × n consisting of the elements
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D e f i n i t i o n 2 . of the function u(t, x)
with respect to the normal to the surface ( denoted as

is the following inner product in

In the expanded form can be written as

where is i -th component of the vector at the point

of the surface

Let us introduce the following notations: (Q) is the space of

measurable square integrable on the set functions, D(L) is the set

of smooth (infinitely differentiable) in functions, which satisfy the

following conditions:

We shall assume that the operator maps (Q) into (Q)

and has the domain of definition Note that the set

D(L) is dense in the space (Q), and therefore it is possible to

define correctly the adjoint operator whose

domain of definition is the set of functions v(t, x) for which there

exists an element    (such element is equal to that the

following identity holds true

for any

Thus, the formally adjoint operator has the following form:
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with boundary conditions

The notations introduced above give the possibility to consider the
second initial boundary value problem.

P r o b l e m 1 . To find a function u(t, X), which satisfies the

equation (1) in the domain     and the conditions (4) on the
boundary

P r o b l e m 2 . To find a function v(t,x ) which satisfies the

equation (5) in the domain     and the conditions (6) on the
boundary

Note that simultaneously with the common equation of pseudo-
hyperbolic type (1) we shall investigate also some simpler version of
this equation, for which it is possible to obtain more interesting results.

Let

where the operator and the functions C(x) , D(x) satisfy the
same conditions as in the case of the operator and be a non-
negative constant. Let the domain of definition of the operator

is the set of smooth in functions u(t, x) , which satisfy

conditions

where is a co-normal to the surface which is defined as:
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where is an outward normal to the surface A is a matrix
n × n consisting of the elements

Note that despite of the difference between the boundary
conditions (4) and (8) all results, which shall been obtained for the
operator can be easily adopted for the operator

We shall consider the operator

where

In this case the domain of definition of the operator is the set
D(L) . Thus, the operator converts to the operator if in

we put Since, all results concerning
the operator are valid for the equation (9). But in contrast to the
operators and which map the operator

can be considered in other pairs of spaces also. Denote by

the completion of the set of smooth in functions with respect
to the norm generated by the following inner product:

Since the boundary conditions (8) are not held in this norm (10), it is
clear that the set is dense in the space as far as by

completing the set in the norm (10) we shall obtain the same

space (it is the same situation as in the case of density of finite

functions of the class in the space (Q) ). Taking into account
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the density of in we shall consider that the operator

maps and also we shall define the formally

adjoint operator

with the conditions

Now it is possible to formulate the following problems.
P r o b l e m 3 . To find a function u(t, x) satisfying the

equation (9) in the domain Q and the conditions (8) on the

boundary

P r o b l e m 4 . To find a function v(t, x) satisfying the

equation (11) in the domain Q and the conditions (12) on the

boundary

Since the right-hand side of Problems 1-4 can be a discontinuous
function or even a Schwarz distribution then it is possible that there are
no any classic solutions of this equations, therefore we must consider
some generalizations of the solutions and the extensions of the
operators and respectively.

Let us introduce the following notations. Let be

completions of the set D(L) in the norms
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respectively; be completions of the set of smooth in

functions satisfying the conditions (6) in the same norms (13)-(15),

respectively. It is easy to test whether the expressions (13)-(15)
satisfy the norm axioms using the boundary conditions (4), (6) and
Minkowsky inequality.

Let us build on the pairs        and and also

       and the negative spaces and

respectively, as completions of the set in the norm

and

respectively.

In a similar way we can build the negative spaces

and on the pairs and and  also       and

The following imbeddings are valid:

Let us introduce some additional notations. Let be

completions of the set in the norms
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respectively; be completions of the set of smooth in

functions satisfying the conditions (12) in the norms (20)-(22).

Let us introduce the negative spaces and but in

this case we construct their on the pairs and and

also and as completions of the set in the norms

and

In a similar way we can construct the spaces and

Now, the following imbeddings are valid:
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2.2 A priori inequalities in negative norms

L e m m a 1 . For arbitrary smooth in functions u(t,x)
and v(t, x) satisfying the conditions (4) and (6), respectively, the
following inequalities hold true:

where the constant c does not depend on the functions u(t, x)
and v(t, x).

P r o o f . By definition of the negative norm, we have

Consider the numerator. Applying to it the formula of integration by
parts, the Ostrogradsky-Gauss formula and taking into account the
conditions (4) and (6), we obtain

Applying to the right-hand side the Cauchy inequality ,we have
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Taking into account that C(x) , D(x) are

continuous in and since, they are bounded, and granting the
inequalities (16) and (21), it is easy to see that every term in the right-
hand side does not exceed and as far as the

number of these terms is finite then

This completes the proof of the theorem. The proof of the second
inequality is the same.

In a similar way it is possible to prove the following three lemmas.
L e m m a 2 . For arbitrary smooth in functions u(t, x)

and v(t, x) satisfying the conditions (4) and (6), respectively, the
following inequalities hold true:

where a constant c does not depend on the function u(t, x ) and
v(t, x).

L e m m a 3 . For arbitrary smooth in functions u(t, x)
and v(t, x) satisfying the conditions (8) and (12), respectively,
the following inequalities hold true:

where a constant c does not depend of the functions u(t, x)  and
v(t, x).

L e m m a 4 . For arbitrary smooth in functions u(t, x)
and v(t, x) satisfying conditions (8) and (12), respectively, the
following inequalities hold true

where constant c does not depend on the functions u(t, x) and
v(t, x).
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Note that Lemmas 1-4 give the possibility to consider some

extensions of the operators and

For example, the first inequality of Lemma 1 gives the

possibility to extend with respect to continuity the operator and

consider it as an operator mapping into We save the

previous notations for the extended operators

and as far as they will be specified by context.

Note that the inequalities in Lemmas 1-4 hold true for the extended

operators also but on the whole space The proof of this fact

follows from the passing to limit in the inequalities for smooth
functions.

L e m m a 5 . Let u(t, x) be an arbitrary smooth in

function satisfying the condition (4), and is the integral

operator defined by the following expression:

where

Then,



250                                                                                       Chapter 7

P r o o f . At first, note that Indeed, the initial

conditions in (6)

are valid at the expense of the form of the operator Concerning
the boundary conditions in (6)

it should been noted that the function not necessarily satisfies
this condition, as far as in completion of the set of smooth functions in
the norm (13) this condition becomes not valid. Let us express u(t, x)
through v(t, x) using (13).

Consider the left-hand side (32). Applying the formula of
integration by parts, the Ostrogradsky-Gauss formula and the
conditions (4), (33), which are satisfied by the functions u(t, x) and

v (t, x) we have

Consider every of the last terms separately.
l. Then,

Applying the formula of integration by parts to the second term, we
obtain
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Whence using the Ostrogradsky-Gauss formula and the initial
conditions, we obtain

Thus,

Granting the conditions imposed on and we have

2. Let us apply the formula of integration by parts to the second
term in (34):

Using the Ostrogradsky-Gauss formula, we obtain

As far as u(t, x) satisfies the conditions (4), then the first integral

equals to zero. Let us execute some transformations with the second
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integral. We shall apply to it the formula of integration by parts and the
Ostrogradsky-Gauss formula:

Since u(0,x)= 0 and v (T, x) = 0 then the first integral equals to
zero, and therefore

Consider every of the last integrals separately.
a) Granting that we have

Applying to the first integral the formula of integration by parts, we
obtain:

Passing in the first term to the integral on surface and taking into
account the conditions of the uniform ellipticity of and also the

relations we have
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b) Consider the second term in (35):

Applying to the first integral the formula of integration by parts, we
have:

In the first term we pass to the surface integral, join the second
term with the fourth, apply the formula of integration by parts, and
take into account the condition for the third term

Then we obtain
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Taking into account the fact that the operator is non-negative
and the values of the constants and we obtain

Thus, taking into account the results of the subsections a) and b),
and returning to the identity (35), we obtain
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Convince us that the second and the third terms in the right-hand
side are non-negative. Indeed, as far as

then

Therefore, the second term is non-negative. Furthermore,

that proves the non-negativity of the third term.
Finally, we have

Consider the third and the fourth terms in (34).
3. For the third term we have the following estimation:
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Applying to the integral in the right-hand side the formula of the
integration by parts and the Ostrogradsky-Gauss formula, we obtain

Thus,

4. The fourth term is estimated in the following way:

Integrate by parts the first term in the right-hand side and pass to
the surface integral:

Apply again the formula of integration by parts to the last term:
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Hence,

Thus, every of the four terms in (34) are considered. Taking into
account the transforms carried out, we have

This proves the lemma..

Corollary. For an arbitrary function the

following inequality holds true:

P r o o f . The lemma implies that for an arbitrary smooth function
u(t, x) satisfying the condition (4) the following inequality holds true:

Apply to the left-hand side the Schwartz inequality:
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Reducing by we obtain the inequality

Now we must to justify the following inequality:

that proves the required inequality for smooth functions u(t, x) .

Taking into account that operator is continuous and

passing to the limit, we prove the required inequality for an arbitrary
function

L e m m a 6 . Let v(t, x) is an arbitrary smooth in

function satisfying the conditions (6), and is the integral

operator defined by the following expression:

where

Then,

The proof of this lemma is similar to the previous one, therefore
we shall write only calculations.

The inverse operator to is
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Applying to the formula of integration by parts, we

have

Consider every of the four terms of the right-side hand separately .
1. The first term is estimated in the following way:

2. Now, let us estimate the second term.



260 Chapter 7

Integrating by parts, we obtain

Taking into account the relations

and integrating by parts, we have
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Making obvious reductions, we obtain

3. The third term is estimated in the following way:
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Integrating by parts, we have

Thus,

Corollary.  For an arbitrary function  the

following inequality holds true

The proof is similar to the proof of the corollary of Lemma 5.
Thus, granting Lemma 1 and the corollaries of Lemmas 5 and 6,

we have



PSEUDO-HYPERBOLIC SYSTEMS 263

D e f i n i t i o n 3 . A generalized solution of Problem 1 is

such function that there exists a sequence of

smooth in functions         satisfying the conditions (4) and

D e f i n i t i o n 4. A generalized solution of Problem 1 is
such function that there exists a sequence of

smooth in functions         satisfying the conditions (4) and

L e m m a 7. Let u( t ,x ) be an arbitrary smooth in

function satisfying the conditions (4), and is the integral

operator defined by the following expression:

Then,

P r o o f. As in the proof of Lemma 5 note that

Indeed, the initial condition v(T, x) = 0 holds true at the expense of

the form of the operator Remaining conditions (6) do not
hold true after completion of smooth functions in the norm of the

space

Consider

where
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Consider every of these term separately.
1. Applying the formula of integration by parts, we obtain

To calculate the first integral we use the Ostrogradsky-Gauss
formula and also the conditions u(0, x) = v(T, x) = 0 . In the second

integral we take into account that (37) implies that

Integrating the last expression by parts, we obtain

2. Applying the formula of integration by parts, the Ostrogradsky-

Gauss formula and taking into account the condition

we have
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Consider both terms separately.
a) To calculate the first integral, we use the formula of integration

by parts. We obtain that

Passing to the integral on surface in the first term and taking into
account the conditions u(0, x) = v(T, x) = 0, we have that this
integral equals to zero. To calculate the second integral, we use the
condition and also take into account the uniform

ellipticity of the operator

b) Consider the second term. It is clear that the following identity
holds true
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Let us prove that the last expression in non-negative. To do this,
we apply the operation of integration by parts and take into account
the conditions

Hence,

Thus,

Consider and
3. Similarly to the previous reasoning we have

4. Analogously,
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Thus, summarizing all written above, we have

Let us prove that Indeed,

Hence, The lemma is proved.

Corollary.  For an arbitrary function the
following inequality holds true

P r o o f . Applying to the left-hand side of the inequality the
Schwartz inequality, we have:

Reducing by we obtain

Taking into account (38), we obtain

that proves the required inequality for smooth functions u(t, x) .

Taking into account that the operator is continuous

and passing to the limit we find that the required inequality holds true.
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L e m m a 8. Let v(t, x) be an arbitrary smooth function

satisfying the conditions (6), and is the integral

operator defined by the following expression

Then,

The proof of this lemma is similar to the previous, therefore we
represent it in brief version. Let us write

where

Thus,
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Taking into account the form of the operator we obtain
the required inequality.

Corollary.  For an arbitrary function the

following inequality holds true

The proof of the lemma is similar to the proof of Lemma 7.
Thus, by Lemma 2 and Corollaries of Lemmas 7 and 8, the

following inequalities hold true:

D e f i n i t i o n 5. A generalized solution of Problem 1 is
such function that there exists a sequence of smooth

in functions ( t , x) satisfying the conditions (4) and

D e f i n i t i o n 6 . A generalized solution of Problem 1 is such
function that there exists a sequence of smooth in

functions satisfying the conditions (4) and

In a similar way the definitions for Problem 2 are formulated.
L e m m a 9. Let u(t, x)is an arbitrary smooth function

satisfying the conditions (8), and is the integral operator
defined by the following expression

where
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Then,

P r o o f. It is easily to see that as far as all the

conditions (12) hold true. Consider

where is the inverse operator to and the operator:

Then,

The first term is considered in a similar way as in Lemma 5:

where
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Consider the second term in (40)

where

Integrating the second term by parts, we have



272 Chapter 7

Note that granting that and the conditions (8), we have

Therefore, applying to the first integral the

Ostrogradsky-Gauss formula, we obtain that it equals to zero. Thus,

Similarly to the previous case, we have

Applying to the first integral the operation of integration by parts,
we obtain
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Let us integrate by parts the second term again:

Integrating by parts the first term, we obtain:

Whence, we have
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Thus, granting that the operator is uniformly elliptic, we finally

obtain:

Taking into account the values of the constants and carrying

out the obvious estimations, we obtain
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Taking into account the uniform ellipticity of the operator we
obtain

Note that for the elliptic operators the inequality of coercitivity
holds true [74]:

Taking into account the inequality of coercitivity with s = 0, we
have

Corollary.  For an arbitrary the following

inequality holds true

The proof of is similar to the previous proofs of the corollaries of
the lemmas.



276 Chapter 7

L e m m a 1 0 . Let v(t, x) is an arbitrary smooth in

function from and v is the integral operator

where

the constants and are defined as and

Then,

P r o o f . Let us express from v(t, x) through u(t, x) from (41).

Consider

where
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Finally, we have
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Applying the inequality of coercitivity as in Lemma 9, we obtain
that the lemma holds true.

Corollary.  For an arbitrary function the

following inequality holds true:

The proof is similar to the previous ones.
Thus, by Lemma 3 and the corollaries of Lemmas 9 and 10, we

find that the following inequalities hold true

for an arbitrary functions and

D e f i n i t i o n 7. A generalized solution of Problem 3 is
such function that there exists a sequence of

smooth in functions satisfying the conditions (8) and
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D e f i n i t i o n   8 . A generalized solution of Problem 3 is

such function that there exists a sequence of

smooth in functions satisfying the conditions (8) and

In a similar way the definitions for the adjoint Problem 4 are
introduced.

L e m m a 11 . Let u(t, x) be an arbitrary smooth in

function satisfying the conditions (8), and is the integral

operator defined by the following expression:

Then

The proof is similar to the previous ones.
C o r o l l a r y . For an arbitrary function the

following inequality holds true

The proof is similar to the previous ones.
L e m m a 12 . Let v(t, x) be an arbitrary smooth in

function satisfying the conditions (12), and is the

integral operator defined by the following expression

Then
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The proof is similar to the previous Lemma.
C o r o l l a r y . For an arbitrary function the

following inequality holds true

By Lemma 4 and the corollaries of Lemmas 11 and 12 the
following inequalities hold true

D e f i n i t i o n 9 . A generalized solution of Problem 3 is such
function that there exists a sequence of smooth in

functions   satisfying the conditions (8) and

D e f i n i t i o n 1 0 . A generalized solution of Problem 3 is
such function that there exists a sequence of

smooth in functions satisfying the conditions (8) and

The definitions of Problem 4 are formulated in a similar way.
Using the results obtained above and applying the general theorems

from Chapter 1, we obtain the following
T h e o r e m 1 . For an arbitrary functions              there

exists a unique solution u(t, x) of Problem 1 in the sense of
Definition 3.

T h e o r e m 2 . For an arbitrary function there

exists a unique solution u(t, x) of Problem 1 in the sense of
Definition 4.
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T h e o r e m 3 . For an arbitrary function

, respectively) there exists a unique solution u(t, x) of Problem 1
in the sense of Definition 5 (Definition 6, respectively).

T h e o r e m 4 . For an arbitrary function

respectively) there exists a unique solution u(t, x) of

Problem 3 in the sense of Definition 7 (Definition 8, respectively).

T h e o r e m 5 . For an arbitrary function

respectively ) there exists a unique solution u(t, x) of

Problem 3 in the sense of Definition 9 (Definition 10,
respectively).

The proofs of these theorems follow from general Theorems 1.1.1
and 1.1.3

Similar theorems hold true for Problem 2 and 4, also.

3. ANALOGIES OF GALERKIN METHOD
FOR PSEUDO-HYPERBOLIC SYSTEMS

Consider Galerkin’s method for second boundary value problems
for pseudo-hyperbolic systems, which was studied in paragraph 2 of
the chapter. All denotations of the following correspond to paragraph 2
ones.

Let the right-hand side f(t, x) of equation (2.1) be a smooth in

function, that satisfies the condition: Consider approximate

solution of problem (2.1) in the following form
where is a solution of the Cauchy problem for the set of linear
ordinary differential equations with constant coefficients.
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where is a sequence of smooth in functions, that the set

is total in is a smooth function:

Denote by H' the completion of set of smooth in functions that

satisfy the conditions (2.4), in the norm

L e m m a 2 . Consider the differential operator

then for an arbitrary function u(t, x) the following

inequality is true

where by the bilinear form we mean
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Denote by H' the completion of set of smooth in functions that
satisfy the conditions (2.4), in the norm

L e m m a 2 . Consider the differential operator

then for an arbitrary function the following
inequality is true

where by the bilinear form we mean

P r o o f . Consider an arbitrary smooth in function u(t, x), that
satisfies the conditions (2.4). Applying he Schwarz inequality, we have

Taking into account the continuity of the functions
C(x), D(x), in the domain and a(t),b(t) in

[0, T], we have that each norm in the right-hand side not exceed the

that is what had to be proved for the right-hand side of the
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desired inequality. To prove the left-hand side, consider the following

expression where u is a smooth function. Transforming

the in the much the same way as in Lemma 2,6, we have

the desired inequality for smooth functions. To prove the inequality for
all functions u form H' it is necessary to pass to the limit. Let
u(t, x) be a function from H' and be a sequence of smooth

functions, that satisfy the conditions (2.4) and

Since

then the sequences

converge to respectively, in the space

(Q) (by the derivatives we mean derivatives of the distributions). It

is clear, that thus

It is what had to be proved.
L e m m a 3. Consider the differential operator

then for an arbitrary function the

following inequality is true



PSEUDO-HYPERBOLIC SYSTEMS 287

P r o o f . Let u( t , x) be a smooth in function, that satisfies the

conditions (2.4). Consider

where

Thus,

The verity of the inequality for all functions we obtain

by passing to the limit. The right-hand side of the inequality is proved in
the same way as the previous one.

L e m m a 4 . For the functions which have been

defined in (1), the following inequality is true
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P r o o f . Let Prove that

Consider

Thus,

where
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Prove, that Multiplying the both right and left

hand sides of (2) by and summing up over j from 1 to s, we

obtain

Substitute t = 0 into the relation and take into account that

Thus,

Consider the relation (2) again. Differentiating the relation (2) with

respect to t, multiplying by summing up over j from 1 to

s and integrating with respect to t from 0 to T, we have

From the previous inequality we find

It remains to mark that which is what had to be

proved.
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By Lemma 4, we obtain that the sequence is bounded in

the space H', thus there exists a function       and a subsequence

weakly in H'. It is clear that the

sequences of norm

are bounded (since is bounded in H'  ), and then there exists

subsequence (which is denoted by again), that

weakly in                Since weakly, it is easy to prove

that

where derivatives of the function       are understood in the sense of
distributions.

T h e o r e m 2. For all smooth in the domain function

the approximate sequence converges to

the solution of Problem 2.1 in the sense of Definition 2.3 in the

norm of space

P r o o f. Multiplying the relation (2) by
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summing up over j from 1 to s and integrating with respect to t

from 0 to T, we obtain

thus,

where the sequence converges weakly to      in the space

H' . Taking into account the relation (4), we have that

so

From Lemma 2 we find

Prove that

Multiplying the equality (2) by a function

summing up over j form 1 to p and

integrating with respect to t from 0 to T, we have
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Let then

From the equalities (4), we obtain

Therefore,

By virtue of the totality of the system in the space

there exists sequence in space then

That is why Returning to (6), we

have

From (4), we find

Passing in the (7) to the limit and taking into account (5)

Therefore, there exists a function      and a sequence

which converges to the function       in the norm of space Prove
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that the function      is a solution of Problem 2.1. Applying the
inequality of Lemma 2.1, we have

So that, the sequence is fundamental in the complete space

thus there exists an element

Prove that in the space Multiply the equality (2) by a

function h(t) : h(T) = h ' ( T ) = 0 , and let

Integrating the both right and left-hand sides of the equality (8) with
respect to t from 0 to T, we have:

Pass to the limit as

Since the totality of the set in the space we obtain

Using the convergence of the sequence and (8), it’s

easy to prove that the function       is a solution of Problem 2.1 with the
right-hand side f ( t , x) in the sense of Definition 2.3. It remains to
mark that by Theorem 2.1 the solution is unique, thus it is not

necessary to choose the subsequence If there is an

accumulation point of the sequence in fact that differ from

      , then by the same reasoning Problem 2.1 has another solution.
T h e o r e m 3 . For an arbitrary smooth in function

the approximate sequence converges to
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the solution of Problems 2.1 in the sense of Definition 2.5 in the
norm of space and

P r o o f is analogous to the reasoning of previous theorem.
Now, consider the case Consider the approximate

sequence in the form of the relations (l)-(3).
L e m m a 5 . The following inequality is valid

P r o o f . Reasoning as in the proof of Lemma 2.6, we prove that
for a smooth in function u(t, x), which satisfy conditions

the following inequality is

valid. Choose the sequence of smooth on [0,T] functions

that converges to the solution of the set of the

differential equations in the space where is the
Sobolev space of functions v(t) : v(0) = v´(0) = 0 .

Prove that

where

Actually,
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Therefore,

Since the function is smooth in then

Lemma 2 is valid. Thus, We have

It is easy to show that
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thus passing to the limit in the inequality (9) as we obtain that

Now, we return to the relations (2). Multiplying the relations (2) by

summing up over j from 1 to s and integrating with respect to t
from 0 to T, we obtain

Whence,

To prove the lemma, it suffices to mark that

The lemma is proved.

T h e o r e m 4. For an arbitrary function

the approximate sequence converges to the solution of

Problem 2.1 in the sense of Definition 2.3 in the norm of space
and

P r o o f . Choose the sequence of smooth in functions

such that Let be the

approximate sequence (1) of the problem with the right-hand side

By Theorem 2, the sequence converges to the solution as

Prove that the sequence is fundamental in the space
In fact, by Lemma 5 we have
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By Theorem 2,

and

From the other hand, since the sequence

is fundamental, whence Therefore,

there exists such element that

Consider

By Lemma 4

Thus,

Approaching to the limit as we have

Making we have

Prove that is a solution of Problem 2.1 with the right-hand
side f(t, x) in the sense of Definition 2.3:
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Prove that every summand in the right-hand side vanishes. By
Lemmas 2.6 and 5, we have

By Theorem 2, Thus,

Applying (10) and (11), it is easy to prove that is a solution of
Problem 2.1 by Definition 2.3. Now the theorem is proved.

Let and the approximate sequence of solution is

defined in (l)-(3) (in the case the integrals are defined in the sense of
distribution theory).

L e m m a 6 . The following inequalities is valid

The lemma can be proved in much the same way as Lemma 5 (it is
necessary to substitute the space for the space the operator

for and to apply the Schwarz inequality to the right-hand

side of the following expression .

T h e o r e m 5. For every function the approximate

sequence converges to the solution of Problem 2.1 in the

sense of Definition 2.5 in the norm of the space and

T h e P r o o f is completely analogous to that of Theorem 4.
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Now, let f(t, x) be an element of the negative space be

a sequence of functions from               such that

Consider the approximate sequence                  of the form

where functions              are solutions of the following system

T h e o r e m 6 . Let be an arbitrary number sequence

Therefore, for each integer s(m) :

(which exists necessarily), and for each

right-hand side the approximate sequence

converges to the solution of Problem 2.1 in the sense of Definition
2.6 in the norm of space
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P r o o f . By Theorem 4 the approximate sequence

converges to the solution of the following equation with

then there exists such function that

Prove that the sequence is fundamental in the space

Using Lemma 2.5, we have

Pass to the limit as Then,

and there exists a function

Consider

Choose s = s(m) such that (by

Theorem 4, the number s = s(m) exists). Thus,
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and

which is what had to be proved.

If f (t, X) be an element of the negative space then choose

an arbitrary sequence of functions

Approximate sequence (t,x) is defined

in by the relations (12)-(14). In this case the following analogous of
Theorem 6 can be proved.

T h e o r e m 7. Let be an arbitrary number sequence

Therefore, for each integer s(m) :

(which exists necessarily), and for each

right-hand side the approximate sequence

converges to the solution of Problem 2.1 in the sense of Definition

2.6 in the norm of space
Let the right-hand side f (t,x) of the equation (2.1) is a smooth in

function, that satisfies the following condition

Approximate solution can be found in the form

where the function (t) is a solution of the Cauchy problem for the
set of differential equations with constant coefficients:
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where

where is a sequence of smooth in        functions, which satisfy

the condition and the set is total in

where is an arbitrary smooth function:

Denote by   the completion of the set of smooth in
functions, which satisfy the condition (2.4), in the norm
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L e m m a 7. Let be the following differential

operator:

then for every function the following inequality is

valid

where by we mean

P r o o f . Let u(t,x) be a smooth in function, which satisfy the

condition (2.8). Then, the right-hand side of the required inequality we
obtain by applying partial integration. To prove the left-hand side, it is
necessary to repeat the transformation of Lemma 2.10 with the

expression The required inequality in the space      can

be obtained by passing to the limit.
L e m m a 8 . Let be the following differential

operator: then for every function  the

following inequality is valid

P r o o f is analogous to that of previous lemma.
L e m m a 9 . For functions which were defined in

(15)-(17), the inequality is true

P r o o f . Prove that
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Consider

where

Transform each summand as and in Lemma 4. Hence,
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Therefore, we have

In a way analogous to Lemma 4, we prove that

Taking into account the inequality of coercivity, we obtain

Differentiating the equality (16) with respect to   , multiplying on

summing up over   from 1 to s and integrating with

respect to   from 0 to T, we have
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Whence, we find

It suffices to remark that

T h e o r e m 8 . For all smooth in functions

the approximate sequence (see (15)-(17))

converges to the solution of Problem 2.3 in the sense of Definition

2.7 in the norm of space and

T h e o r e m 9 . For all smooth in functions

the approximate sequence converges to

the solution of Problem 2.3 in the sense of Definition 2.9 in the

norm of space and

Let f (t, x) be an arbitrary function from and approximate

sequence is defined by the equalities (15)-(17). Using the

results of Lemma 2.10 and repeating the proof of Lemma 5, the
following lemma can be proved.

L e m m a 1 0 . The following inequality is true

T h e o r e m 1 0 . For all functions the

approximate sequence converges to the solution of

Problem 2.3 in the sense of Definition 2.7 in the norm of space

and
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In the case when the function f (t,x) is from the space the

analogous results of convergence of the approximate solution (15)-(17)
can be obtained.

L e m m a 11 . The  following inequality is true

T h e o r e m 11 . For all function the

approximate sequence converges to the solution of

Problem 2.3 in the sense of Definition 2.9 in the norm of the space
and

Let f (t,x) be an arbitrary function from      Choose a sequence

of functions from such that and

consider an approximate sequence of the solution •

where (t) is a solution of the Cauchy problem, for the set of linear
differential equations with constant coefficients

where the constants were defined in (18), the sequence

satisfies the same conditions as in (15)-(18).

T h e o r e m 1 2 . Let be an arbitrary number sequence

Therefore, for each integer s(m) :
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(which exists necessarily), and for each

right-hand side the approximate sequence

converges to the solution of Problem 2.3 in the sense of

Definition 2.8 in the norm of space

Analogously for we have.

T h e o r e m 1 3 . Let be an arbitrary number sequence

Therefore, for each integer s(m) :

(which exists necessarily), and for every

right-hand side the approximate sequence

converges to the solution of Problem 2.3 in the sense of

Definition 2.10 in the norm of space

4. PULSE OPTIMAL CONTROL OF PSEUDO-
HYPERBOLIC SYSTEMS (THE DIRICHLET
INITIAL BOUNDARY VALUE PROBLEM)

Apply the obtained results to optimization of the pseudo-hyperbolic
systems. The denotations are the same as previous.

Consider the pseudo-hyperbolic equation

where is a one of the pseudo-hyperbolic operator (see
Section 1).

Using the template theorems od Section 3.6, complete the tables for
the pseudo-hyperbolic equation (the first boundary value problem).
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5. PULSE OPTIMAL CONTROL OF PSEUDO-
HYPERBOLIC SYSTEMS (THE NEUMANN
INITIAL BOUNDARY VALUE PROBLEM)

Apply the results of Section 3.6 to optimization of the pseudo-
hyperbolic systems (the Neumann initial boundary value problem). The
denotations are the same as in Section 2 of this chapter.

Consider the pseudo-hyperbolic equation

where is a one of the pseudo-hyperbolic operator (see
Section 1) with corresponding boundary conditions:

Using the template theorems of Section 3.6, complete the tables for
the pseudo-hyperbolic equation (the Neumann initial boundary value
problem).
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Remark that if we consider the problem (1), (2) with operator

other theorems can be proved, because of the theorems of the

solvability of the equation ensure smoother solution when the

right-hand side belongs to some positive spaces.

Let be a negative space corresponding to the pair of spaces

(Q) . Consider the problem of optimal control of the system

(1), (2) with the right-hand side It requires to minimize the

performance criterion

T h e o r e m 1 0 . Let the state function u(t, x) satisfy the

problem (1), (2) with the right-hand side

where is functions  from     and  and
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Performance criterion is in the form (4). If there exists a Fréchet

where is a bilinear form on and v(t, x) is a

solution of the adjoint problem'

P r o o f . Prove, that Since by

Theorem 2.3 the solution  belongs to Since the spaces

and have the equivalent norms, then we can consider that

Applying the analogue of Theorem 2.4 for

the adjoint operator, we have Thus

is a linear continuous functional on

H. From the analogue of Theorem 2.4 we have that for all functions

the following equality is true

In the same way as Lemmas 2.1-2.4, we can prove that for all

functions

derivative of the map then the performance

criterion J(h) has a Fréchet derivative at the point    in the

following form
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thus Therefore the equality (8) is valid for all

Taking account that we have

In a way analogous to that was made in Theorem 1.4,3, we obtain

where It is clear that the function
satisfies the equation

where

By Theorem 2.3, we have that Since and

we have that

and

Consider the equation

As is well known from the theory of elliptic equations, the solution
of the equation exists and has the degree of the smoothness with
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respect to the space argument two orders higher than the right-hand
side of the equation Thus,

and it is easy to see that

Therefore,

Substituting into (9) and taking into account (11), we have

Since we obtain

Using the condition we have
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Returning to (10), we have that

The further part of the proof repeats the reasoning of Theorem
2.1.3.

T h e o r e m 11 . If the mapping has a

continuous Fréchet derivative at a point
then

the derivative is continuous at the point
P r o o f is analogous to that of Theorem 2.1.4.

T h e o r e m 12 . If mapping has a Fréchet

derivative in a neighbourhood of a point    that satisfies
Lipschitz condition with exponent

from the neighbourhood of the point

then the Fréchet derivative satisfies Lipschitz condition with
the same exponent

P r o o f is analogous to that of Theorem 2.1.5.
Consider the case of another type of performance criterion. Let



320 Chapter 7

where are known functions from      that satisfy the

condition and in

Consider the pseudo-hyperbolic equation

Consider the case when By Theorem 1, the

functional (12) is defined correctly and if the conditions of the theorem
are valid the optimal control exists.

T h e o r e m 1 3 . Consider the problem (13), (14) with right-

hand side Performance criterion is in the form

(12). If there exists a Fréchet derivative of the

mapping at a point    , then there exists a Fréchet

defivative of performance criterion J(h) at the same point    ,  in
the form

where v(t, x) is a solution of the adjoint problem
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P r o o f . We shall give the increment to the control h*

Since the symmetry of matrix each of the last

summands is equal one another.
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By the definition of bilinear form we have

It is clear that the function satisfies the following equation
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Since then by Theorem 2.3. there

exists a solution of the equation such that for all functions

we have

From another hand, it is clear that the right-hand side of (16)

belongs to That is why by Theorem 2.3 there exists an unique

solution of the problem (16), (17) and for all functions

Let and take into account (18)

Prove that the derivative is defined by expression (15). To

prove this consider
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Since is a, Fréchet derivative of the mapping

then from inequality

we obtain

From another hand, applying the Lemma 1.1.3, we have

Taking into account the definition of number we have that from

the inequality it follows
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Let

If min then

Returning to (19), we have

that is what had to be proved.
T h e o r e m 14 . If under conditions of Theorem 13 the

mapping has a continuous Fréchet derivative at

the
pointh*

then the Fréchet

derivative is continuous at the point   also.
P r o o f is analogous to that of theorem 2.1.4.
T h e o r e m 1 5 . If under conditions of Theorem 13 the

mapping has a Fréchet derivative in a bounded

neighbourhood of the point    that satisfies Lipschitz condition
with exponent then the Fréchet derivative

satisfies Lipschitz condition with exponent   also.
P r o o f is analogous to that of Theorem 2.1.5.
Consider application of the theorems in the case when the right-

hand side of the equation (1) is defined as As in
previous sections, assume that the set    is cylindrical with respect to
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space variable and where

is a bounded, closed, and convex set in the Hilbert space of

control H.
Let the right-hand side of the equation be in the form

It is easy to show that thus Analogously to the

right hand side it is easy to prove that the mapping

has a Fréchet derivative in the form

Prove that the derivative satisfies the Lipschitz condition

with exponent Consider

Let v(t, x) be a smooth in function from Consider the

numerator of the fraction
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Applying the inequality

and the Schwartz inequality, we have

Apply the Schwarz inequality again:
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Whence,

Taking account that the set is bounded, we have

Therefore, satisfies the Lipschitz condition

with respect to h with exponent Then, by the proved theorem the

performance criterion (4) has a Fréchet derivative in the domain

that satisfies the Lipschitz condition with respect to h with

exponent and is in the form . If we consider

the performance criterion J(h) directly, we prove that
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In same manner we can prove that the mapping has a

Fréchet derivative:

the derivative satisfies the Lipschitz condition with the exponent

and the performance criterion J(h) has a Fréchet derivative, that

satisfies the Lipschitz condition with the same exponent also.
Consider the other right-hand side

Prove that the mapping has a Fréchet derivative in the form

Actually, we have

Whence,
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Using the inequality we obtain

Thus,

In the same manner, we prove that the mapping satisfies the

Lipschitz condition with the exponent

Remark that there is not any Fréchet derivative of the performance
criterion (12) when the right-hand side of the equation (13) is function

because the mapping has not any Fréchet

derivative in the space To solve the problem, one can apply the

method of regularization of control.
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SYSTEMS WITH HYPERBOLIC OPERATOR
COEFFICIENTS

In many applied problems of science and engineering such as
movement control, information transfer, radiolocation and object
discovering it is necessary to solve boundary problems for differential
equations with operator coefficients [141]:

Such problems with certain restrictions imposed for right-hand side
were investigated for the cases of some operator coefficients B in
Banach spaces in the papers [78, 141].

In the cases when the right-hand side is a distribution of finite order
the analogous problem was investigated in [62-64, 142, 143, 144]. The
Cauchy problem when B is a generator of a semi-group was studied
in [30, 78, 145]. If B is self-adjoint and positive definite operator,
mixed problems for systems of differential equations containing the
first and the second derivatives were been solved with the analogy of
the Galerkin method in [146].

1. HYPERBOLIC SYSTEM WITH
OPERATOR COEFFICIENT

Let us consider a system governed by the differential equation

Let B be a hyperbolic operator defined by the expression

where are functions continuously differentiable

in some domain which is determined later and supposed to be
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sufficiently smooth in is continuous in function. The

expression is supposed to be uniformly elliptic in i.e.

The functioning of the system (1) is investigated in a tube
is a domain in the space of the variables

bounded by the characteristic surface of the

Let us introduce the following denotations: is a completion of

the set of smooth in functions satisfying the conditions

in the norm

is a completion in the same norm of the set of smooth functions

satisfying the conditions

are associated negative spaces constructed by the space

of square integrable functions and respectively.

L e m m a 1 . For any functions the following

relation holds true

equation (1) so that the values of the component of

the outward normal is positive. The reader can be convinced in the
existence of such domains himself.
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P r o o f . Let us prove the lemma for smooth functions u(t, x, y)

satisfying the conditions (2). By definition of the negative norm

as far as for smooth functions u(t,x, y) the bilinear form

coincides with an inner product in We shall suppose

that v(t, x, y) is a smooth in function satisfying the conditions

Let us consider the numerator in the right-hand side of (3)

Using the integration by parts, the Ostrogradsky-Gauss theorem
and taking into account the boundary conditions, we have

Applying the integral Cauchy inequality, we obtain

Next,

Passing to the integral on the surface in the first term in the right-
hand side and taking into account the boundary conditions, we obtain
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Here is the i th component of the vector of the outward normal

to the boundary Applying to the expression the

Cauchy inequality, we have

whence

Then, we obtain with the help of integration by parts and the
Cauchy inequality that

Using obtained inequality, we find from (3) that the lemma holds

true for smooth functions Approaching the limit, we prove

that the lemma holds true for any

L e m m a 2 . For any functions the following

relation holds true

where is the operator of the adjoint problem.

P r o o f. Let v(t,x,y) is a smooth function from By the

definition of the negative norm, taking into account the smoothness of

the function v(t,x,y), we can write
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Let us consider the numerator in the right-hand side of the equality

Using the integration by parts, the Ostrogradsky-Gauss theorem
and taking into account the boundary conditions, we have

Integrating by parts the last term in (4), we have

By the Ostrogradsky-Gauss formula, let us pass to the integral on
the boundary

By the condition For the normal vector we can write

Then,
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because the expression in the brackets coincides with the equation of
the characteristics.

To estimate the expression we use the Cauchy

inequality. Then, using the integral the Cauchy inequality, we shall

prove the lemma for smooth functions The final step

consists in the passing to the limit.

L e m m a 3 . For any function the following

inequality holds true

Proof. Let us prove that the lemma holds true for smooth
functions u(t,x, y) satisfying the conditions(2). For such functions

u(t, x, y) the following relation is valid

where

in the domain Q.

Indeed, by the definition of the function v(t,x,y), it belongs to

Consider the functional

Using the integration by parts, the relation between u(t, x, y) and

v(t, x, y) and the Ostrogradsky-Gauss formula, we can write
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In a similar way we investigate the second term in the right-hand
side of (6):

Next, for the third term in the right-hand side of (6) we obtain

Add the equalities (7), (8) and (9):

The second term in the right-hand side of (10) equals to zero, since
the integrand expression coincides with the equation of the
characteristics on the characteristics Hence, the relation (5) is

valid. Using the Schwarz inequality, we obtain
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Reducing both parts of the inequality by and using the

relation between u(t, x, y) and v(t, x, y) we prove that the lemma

holds true for smooth functions Passing to the limit, we prove

that the lemma holds true for any function

L e m m a 4. For any function the following

inequality holds true

P r o o f . Let v(t,x,y) be a smooth function from Let us

prove that for such functions the following relation holds true:

where

in the domain Q. By the definition of the function u(t, x,y), it belongs

to the space Consider the functional

Integrating by parts and applying the Ostrogradsky-Gauss formula
we obtain

In the similar way consider the second term in the right-hand side
of (12):
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Consider the last term in (12):

Add the expressions (14) and (15):
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since,

The last two expressions in the right-hand side of (16) equal to zero,
since it equals to zero on y = 0 and contain the expressions, which
are equal to zero on the characteristics.

Adding the inequalities (13) and (16) and applying the Schwarz
inequality, we obtain

Reducing both parts of the obtained inequality by and taking

into account the relation between u(t,x,y) and v( t ,x,y) , we obtain

that the lemma holds true for smooth functions Passing to

the limit, we prove the lemma for any function

The proven lemmas imply Theorem 1.
Using these lemmas and the results of Section 1.1, we have
T h e o r e m 1 . For any function there exists a

unique solution of the problem (1), (2) in the sense of
Definition 1.1.

T h e o r e m 2 . For any functional there exists a

unique solution of the problem (1), (2) in the sense of
Definition 1.4.
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2. GALERKIN METHOD FOR
DISTRIBUTED SYSTEM

In this section we study the Galerkin method of approximate solving
distributed system. Let the state function satisfies the boundary value
problem from Section 1,

where

Consider an approximate solution in the form

where is a twice continuously differentiable function, that

satisfies boundary condition of the problem, the set is

total in and the function is a solution of the set of

differential equations:

where

on the surface

Relation (2) can be written in the form

T h e o r e m  1 . For all functions the

approximate sequence converges to a solution
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in the sense that there exists a sequence of

functions that

P r o o f . Multiplying both right and left hand sides of the equality
(3) on the function summing up over i from 1 to n and

integrating with respect to t from 0 to T, we have

For all functions let us prove the following inequality

Assume that Consider a functional

Consider the every summand of the right hand side, separately. We
have

Summing up the equality over i and j from 1 to n and taking into

account that we obtain

Next, we have
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Integrate the expression over Q, and take account that

Passing to the surface integrals, we find:

In the second expression we use inequality on the

characteristic surface Whence, we conclude that

Next,

Consider the following expression

Pass to the surface integration
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We have

Consider the one part of the upper expression

By the data and hence

On the characteristic surface the co-ordinates of the normal vector
satisfy the equality

From (8) we have

Consider the other summands of (7):

It is easy to see that on the characteristic surface the integrated
function equals to zero.



SYSTEMS WITH HYPERBOLIC OPERATOR... 345

By this reasons, the inequality (6) is valid for all

Passing to the limit, we prove the inequality for all functions

By the inequality (6) and the Schwarz inequality

dividing by we have

From the inequality we conclude that there exists a weakly

convergent subsequence Let the subsequence

converges weakly to a function By the Banach theorem

there exists a subsequence that the sequence

converges to the same function in norm of the space

Multiplying the both right- and left-hand sides of (3) on a function

and integrating with respect to t from 0 to T, we

have

where

Consider fundamental sequence By Lemma 1.6.1. we have
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and hence

Since the sequence is fundamental in the complete space

there exists a limiting function of the sequence

Show that in the space By (9) and the definition of

function we have the following equality

By the Schwarz inequality,

The right-hand side of the inequality vanishes as From (10)
we have

Since the number i in (11) is arbitrary and the set of functions

is dense in the space we obtain That is why

and therefore the function u(t, x, y) is a solution of the problem in the
sense of Definition 1.1.1. Since the imbedding operator of the space

in is compact, the chosen weakly convergent

subsequence converges in the space hence,

u(t,x, y) is a solution of the problem in the sense of Theorem 1.

Remark. There is no necessity to choose a subsequence
because it follows from the results of Chapter 1 that there exists a
unique solution of the problem.
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3. PULSE OPTIMAL CONTROL OF THE SYSTEMS
WITH HYPERBOLIC OPERATOR COEFFICIENT

Consider the problems of impulse optimal control (Section 3.6) for
the systems with hyperbolic operator coefficient

The denotation is the same as in Section 6.1.
Consider the initial boundary value problem

Complete the table of the template theorems of Section 3.6.
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SOBOLEV SYSTEMS

In the chapter we study systems that don’t satisfy the conditions of
the Cauchy-Kovalevskaya theorem. These systems were investigated
in [147-150].

1. EQUATION OF DYNAMICS OF VISCOUS
STRATIFIED FLUID

Many applied problems (such as oceanographic research, oil
barging, etc.) are described by the dynamic equation of viscous
stratified fluid.

In the papers [151, 152] the equation of dynamics of plane motion
of viscous exponential stratified fluid was obtain by Boussinesk
approximation:

where is the Laplacian. In [152] the solvability of an initial boundary
value problem for this equation is studied. There were shown the
existence and uniqueness of a generalized solution with the right-hand
side from the negative Hilbert space with respect to  variable.

In this section we study the optimal control problems of the
generalized dynamic equation of viscous stratified fluid with the right-
hand side from the negative Hilbert space with respect to  and
variables.

Consider the system
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in the tube where is a regular domain with

boundary is the co-normal derivative, is

the normal vector to the surface is a matrix of

elements

Operators and are defined by the formal
expressions:

with sufficiently smooth coefficients in a closed domain . We
assume that the coefficients satisfy the following conditions:

for-all

Assume also that for all real

where are positive constants.

.
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Let be a space of measurable, squared integrable functions,

be a completion of the set of smooth in functions, that satisfy

conditions (2) in the norm

be a completion of the set of smooth in functions, that satisfy

adjoint conditions

in the same norm (3).

Let be corresponding negative spaces.

Prove the following lemmas.

L e m m a 1. For any function the following

inequality holds true

P r o o f. For smooth functions that satisfy the conditions

(2), we study the following expression

where is a bilinear form that is defined on

Applying integration by parts and passing to the surface integrals,
we have
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Estimate each summand in the right-hand side of the inequality (6).
Taking into account the Schwarz inequality, we obtain

To estimate the second summand of (6), we use the Schwarz
inequality and coefficient boundedness of the operator B :

In the same manner, we show that

Taking into account proven inequalities and (5), we obtain the

desired inequality for smooth functions Passing to

the limit, we have the inequality for all functions

In the same manner we prove the following assertion
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L e m m a 2 . For any function the following

inequality holds true

where is the adjoint operator

L e m m a 3 . For any function the following

inequality holds true

P r o o f. Show the desired inequality for smooth functions
that satisfy the conditions (2). Consider the auxiliary operator

where

For the functions prove the inequality

Since the function satisfies the conditions (2), then the

function satisfies the conditions (4). In addition the functions
satisfy the following relation

Estimate the expression
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Employing the integration by parts and passing to the surface
integrals, we obtain

where

Thus,
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Using inequality of coercivity [74] for uniformly elliptic operator B,
it is not difficult to prove, that

From the estimate of the norm of the elliptic operator B , we have

Applying to the left-hand side the Schwarz inequality, we find

then

From the relation between and we obtain

Thus, for all smooth functions that satisfy the conditions (2),

the inequality in Lemma 3 is proved.

To prove the inequality for all functions we employ

passing to the limit.

L e m m a 4 . For any function the following

inequality holds true

P r o o f of Lemma 4 is much analogous the previous proof. The
auxiliary integral operator is of the form

where
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T h e o r e m 1 . For any function there exists a

unique solution of the equation (1), (2) in the sense of Definition
1.1.1.

T h e o r e m 2 . For any function there exists a

unique solution of the equation (1), (2) in the sense of Definition
1.1,4.

2. ONE SOBOLEV PROBLEM

Consider a function that is a solution of the following

differential equation:

with boundary conditions

where A, B are differential operators:

where are continuously

differentiable functions in the domain
The differential operators (3) satisfy the following conditions:

We study the system (1), (2) in a tube .
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Let be a completion of the set of smooth in functions,

which satisfy the following conditions

in the norm

be a completion of the set of smooth in functions, which

satisfy the adjoint conditions

in the same norm (5), be corresponding negative spaces.

L e m m a 1 . For any function the following

inequality holds true

P r o o f. First prove the inequality for smooth functions

which satisfy the conditions (2).
By the negative norm definition,

Applying integration by parts and passing to the surface integrals,
we have



358 Chapter 9

Employing the Schwarz inequality, we obtain

In the same mañner estimate the other summands of L :

Substituting these inequalities into (7) and dividing by , we

obtain the desired inequality for smooth functions which satisfy
the conditions (2). Continuously extending the operator L to the space

we have the inequality for all functions.

L e m m a 2 . For any function the following

inequality holds true

Lemma 2 is proved in much the same manner as Lemma 1.
From the proved inequalities it follows that the operators L and

can be extended to the continuous operators mapping and

into and , respectively.

L e m m a 3. For any function the following

inequality holds true
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where is a completion of the set of smooth in functions,

which satisfy the conditions (2), in the norm

P r o o f . First prove the lemma for smooth functions that

satisfy conditions (2).
Consider the auxiliary functions of the form:

It is obvious that . Prove the following inequality:

Employing the integration by parts and taking into account relation
between and , we obtain

Passing in the formula (9) to the surface integration and taking into
account boundary conditions, we have
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In the same way consider the other summands

Adding (10) and (11), we obtain (8). Applying the Schwarz
inequality to left-hand side of (8), we have desired inequality for

smooth functions Passing to the limit, we obtain the

inequality for all functions

L e m m a 4 . For any function the following

inequality holds true

where is a completion of the set of smooth in functions,

which satisfy the conditions (6), in the norm

The operators and L are defined by the same differential

expression but Lemma 4 is proved in much the same
way as previous one. The auxiliary function is in the form

T h e o r e m 1 . For any function there exists a

unique solution of the equation (1), (2) in the sense of Definition
1.1.1.

T h e o r e m 2 . For any function there exists a

unique solution of the equation (1), (2) in the sense of Definition
1.1.4.
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3. PULSE OPTIMAL CONTROL OF THE DYNAMIC
EQUATION OF VISCOUS STRATIFIED FLUID

Complete the templates of the theorems of Section 3.6
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4. PULSE OPTIMAL CONTROL OF ONE
SOBOLEV SYSTEM

Using the templates of Section 3.6, complete the tables.
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CONTROLLABILITY OF LINEAR SYSTEMS
WITH GENERALIZED CONTROL

1. TRAJECTORY CONTROLLABILITY

In investigations of various dynamic systems the problem of its
controllability is one the most important.

The problem of the controllability was studied in [6] for the linear
ordinary systems, which allow the generalized controls. It was pointed
out there that the introduction of such controls does not extend the
conditions of the complete controllability. In the case of distributed
systems the situation is much more difficult. It was shown in the paper
[14] that the solvability of the problem of the controllability for
distributed systems with a point control significantly depends on the
fact whether the point of the control application may be approximated
by the Diophant approximations well enough. Various conditions of the
controllability of lumped and distributed systems were obtained, for
examples, in [30-32, 84, 86, 153-157, 177].

Let be a solution of the problem (1.1.1.12). By

controllability of the system (1.1.1.12) we shall mean the possibility to
reach any state u(t, x) as a result of admissible controls To

investigate the controllability, it is necessary to study the properties of
the operator L . This problem is solved with the help of the apparatus
of equipped Hilbert spaces and inequalities in negative norms [63, 122,
142, 143, 158-162, 177], and also with the help of correspondent
inequalities in positive norms, which follow from them.

D e f i n i t i o n 1 . The system is controllable in a Banach
space W by the set of admissible controls if the set

covers the space W, i.e.

in W.
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D e f i n i t i o n 2. The system is in the Banach
space W by the set of admissible controls if the set

is dense in W, i.e.

such that

Let the following inequalities in the negative norms still hold true for

The inequalities in the negative norms and the results of Section 1
imply the following theorems.

T h e o r e m 1 . If operator maps surjectively

into the whole space then the system (I .1 . I2) is controllable

in the space

P r o o f . Let be an arbitrary element belonging to

Due to the inequalities (2), we obtain that As far as

the operator surjectively maps into there exists

such element that A(h *) = Lu * (t, x) – f in

Hence, by Lemma 1.3, we obtain that

where         is a solution of the problem (1.1.12) with the right-

hand side         in the sense of Definition 1.1.4. For this reason,

in and hence, in also. Taking into
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account that we conclude that It

follows from Lemma 1.4 that       is a solution of problem
(1.1.12) in the sense of Definition 1.1 also. Thus, the system is

controllable in

T h e o r e m 2. If operator   maps in so

that the set is dense in then system (1.1) is

in

P r o o f . Let u* (t,x) is an arbitrary element belonging to

Since is densely imbedded in there exists a sequence

such that Consider

with fixed k. As far as is dense in

there exists a sequence of controls such that

Choose such that

be a solution of

the problem (1.1.12) with the right-hand side in the

sense of Definition 1.1.4. Granting Lemma 1.3 we obtain

In other words, the system is in
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It is well known [78], that the linear span of the functions

is dense in the

set and hence in also. On the other hand, it

is easy to prove that the sequence

converges to the function as the diameter of the

decomposition of the interval (0,T) tends to zero.

Thus, the set

is dense in and hence, the previous theorems are

valid in the case of pulse controllability.

2. TRAJECTORY-FINAL CONTROLLABILITY OF
SOME LINEAR SYSTEMS

The problems of controllability of linear systems have one essential
difference from the classic problems for systems with concentrated or
distributed parameters. In this problems it is necessary to provide the
required state of the system with the help of controls during the whole
time interval of the system functioning (trajectory controllability) rather
than to transfer the system into a desired state in a finite time interval
(final controllability).

It is naturally to consider the problem of the final controllability in a
finite time interval in the case of linear distributed systems with
generalized controls. The singularity of the right-hand side makes this
consideration difficult enough, since the function u(T,x), may
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does not belong to but it may be an element of some negative

space.
However, in the case of hyperbolic and pseudo-hyperbolic systems

it is possible to obtain a positive results concerning the final
controllability in a finite time interval. Moreover, it is possible to provide
the desired state of the system with an arbitrary given precision (in an
integral metrics). Thus, we may say about the trajectory-final
controllability.

Let us consider in detail the system described by the Newton
pseudo-hyperbolic initial boundary value problem.

Let be a bounded domain in with a regular bound The
state u(t,x) of the considered system is a solution of the following

problem

where the parameter h is a control from the set of admissible controls
, V is a space of controls.

Remark. The following results will be valid also if we shall
replace the Laplacian by symmetric elliptic operators of the
second order with smooth coefficients and the conditions (3) will
be replaced by the corresponding Dirichlet or Neumann
conditions.

Next, we shall investigate the generalized solvability of the problem
(l)-(3), basing on which we can prove the trajectory-final

of the system.
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2.1. Generalized solutions and

Denote by a completion of D(L) (the set of smooth in

functions satisfying the conditions (2), (3)) in the norm

is a completion of in the same norm. Here

and is the set of smooth in

functions satisfying the adjoint conditions

Let us construct on the space the negative spaces

using the positive spaces introduced above

Introduce the pair of the spaces H, as completions of D(L),

in the following norms

The spaces H, are isometric to the direct sum of the Hilbert

spaces and there are no imbeddings
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Lemma 1. For any function the
following inequalities holds true

Proof. Let us prove the inequality (4) ((5) can be proved in the
similar way). The right-hand side, of the inequality (4) is proved by
applying of the integration by part, the Ostrogradsky-Gauss formula
and the integral Cauchy inequality to Here v is an

arbitrary smooth in function satisfying the adjoint boundary

conditions.
To prove the left-hand side of (5), consider the expression

where is an arbitrary smooth in function satisfying the

boundary conditions (3), (4). Note, that

Indeed, the initial condition holds true as a result of the

construction of the auxiliary operator. The others boundary conditions

disappear after completion of in the norm Expressing

u in terms of Iu , we obtain

We have

where

Consider every term separately.
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Using the integration by parts and taking into account the

conditions

and the fact, that we have

Using the Ostrogradsky-Gauss formula and taking into account

the boundary condition we have

Consider every term separately.

a)
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b) To estimate the second integral, we must use the integration by
parts and the conditions We obtain

Granting that we can write

c) Let us show, that the third integral in nonnegative. To do this, we
must apply the integration by parts.

Collecting together all the obtained inequalities and taking into
account, that we have
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Applying to the right-hand side the inequality and

reducing by we have

Granting that

we have that (4) is valid. The lemma is proved.
Basing on the right-hand sides of the inequalities (4), (5), we can

extend with respect to continuity the operator L ( , respectively)

onto the whole space respectively) and consider that it

continuously maps into respectively). We save the same

denotations for the extended operators. The inequalities (4), (5) are

valid also for the extended operators for any

Using inequalities obtained above in the similar way, it is possible to
prove the unique dense solvability of the operator equations

Let be the negative spaces constructed on and

the corresponding positive spaces which, in turn, are
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completions of D(L), in the norm

The imbeddings

are valid and dense. The following theorems hold true.

Theorem 1. For any element there exists a unique

solution of the equatioh Lu = f .

Theorem 2. For any element there exists a unique

solution of the equation

Let us define a generalized solution of the problem (1), (2), (3) as a
function for which there exists a sequence of smooth functions

m = l,2,..., such that

It should been noted, that the similar conception of a generalized
solution of the operator equation with closed linear operator in a
Banach space was proposed in the paper [165].

Theorem 3. For any element there exists a unique

generalized solution of the problem (1)-(3).

Proof. Let By virtue of the density in

there exists such sequence that

By Theorem 1 for any function there exists a unique

solution of the operator equation Using the left-

hand side of the inequality (4) and the imbedding we have
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Thus, by virtue of the completeness of the space H there exists such
function that

Let us show that is desired generalized solution. From the

density D(L) in it follows that for any natural number m there

exists a sequence of smooth functions i = 1,2,..., such

that                                             Choose                    from the condition

On the other hand,

The uniqueness is proved in the standard way by contradiction. The
theorem is proved.

D e f i n i t i o n 1 . The system (l)-(3) is in the
space H by the set of admissible controls if the set

is dense in H.

T h e o r e m 4 . If the set is dense in then the

system (1)-(3) is in the space H.
P r o o f . Let an arbitrary function be given. Consider the

space W, which is a completion of the set D(L) in the norm

It is possible to prove that the imbeddings

are valid and dense, and in addition, the following

inequalities hold true
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3. PULSE CONTROLLABILITY OF PARABOLIC
SYSTEMS

Next, we shall consider some other problems of controllability on
the examples of parabolic systems with impulse impact. Urgency of
such problems is stipulated by both the arising of new technologies and
the simplicity of the control on the basis of spatially distributed impulse
of given class with simply regulative control. For the system with
continuous and discrete control similar problems were posed and
investigated in [161, 162].

Moreover, it follows from the proof of Theorem 3 that generalized
solutions belong to and

As far as W is dense in H, there exists such sequence

that By virtue of the density of in

for any natural number i there exists such sequence of the admissible

controls that Then, we have

The theorem is proved.

In this case the imbedding is valid

and dense, so we can conclude that the system (l)-(3) is trajectory-
final controllable in the class of pulse controls.
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Let the functioning of the system in a tube

with a regular boundary is described by the

equation

where B is uniformly elliptic operator in

The control is made with the help

of coefficients are moments of impulse

impacts In consequence of the

presence of Dirac with respect to the time variable in the
right-hand side of the equation (1) the solution of the problem (1), (2)

can be represented in the following form: where is

the solution of the problem (1), (2) with the right-hand side

Obviously, when and satisfies the identity

It follows from the relation (4), that in the function

is a solution of the problem
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which, as well-known, belongs to the space Hence,

function is continuous on the segment [0,T] everywhere, except

the point and moreover, it is continuous from the

right.
The solution of problem (5) we may represent in the form [166]

where is a semi-group generated by the operator B .

Under the above mentioned restrictions the operator B generate

an orthonormal basis in which consists of the eigenfunctions

and, moreover, only finite number of the eigenfunctions

may correspond to each eigenvalue

For any

The solution the of problem (1), (2) at the moment

we may represent in the form
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D e f i n i t i o n 1. The system is impulse controllable if the

set is dense in

where

D e f i n i t i o n 2 . The system is impulse controllable at N

steps in if the set where

is dense in G

T h e o r e m 1 . In order that the system (9), (10) be
controllable in the sense of Definition 1, it is necessary and
sufficient that for any n = 1,2,..., the following conditions is
satisfied

P r o o f . Sufficiency. On the basis of the criterion of the density in
the system (1), (2) is impulse controllable if for

it follows from the equality

that z = 0. Granting the representation (8), in particular, we have that

This implies that

Under (hence, the second term in the left-hand

side in (12) tends to zero. Hence,

In the similar way, we can show that for any n = 1,2,... we have
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If condition (9) is satisfied then from (13) we obtain that

Hence, z = 0 .

Necessarily. Let the system (1), (2) is controllable in the sense of
Definition 1 but for some n the condition (9) is not valid. Then there

exists a nonzero element such that the relation (11), and

hence (10), hold true, that contradicts to Definition 2.
T h e o r e m 2. The system (1), (2) is not controllable in

in the sense of Definition 2.

This result follows from the fact that under finite number of
impulses N the system of linear algebraic equations (11)

with respect to the variables

n = 1,2,..., has infinite number of nonzero solutions.

Thus, the system is not controllable.
Denote by a subspace generated by the eigenfunctions of the

operator B corresponding to the first eigenvalues, and let be an

approximate solution of the problem (1), (2) obtained by the Galerkin
method, where the same functions were taken as a basic ones. The, as
well-known [142] , strongly in The

functions at the points have the form

T h e o r e m 3 . In order that the system (1), (2) be

controllable in in the sense of Definition 2

it is necessary and sufficient that the

condition (9) holds true for any
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P r o o f . Sufficiency. is an arbitrary element from

It is obvious, that

The system (1), (2) will be controllable in the sense of Definition 2
if it follows from the equalities

that Granting (14), it follows from (15) that, in particular,

Relations (16) form the system of linear equations

where

has block form

and matrix

Introducing the notation we have

Solving the system (17) by the Gauss method, we transfer the
matrix to the following form:
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where are some constants and

do not equal to zero.

Indeed, to prove this fact we may just show that the determinant

does not equal to zero. It is easy to see that the determinant F is a

Vandermond determinant with respect to

which does not equal to zero as far as when

Granting (9) and (18) we can conclude that the rank of the matrix

and hence is equal to and coincide with the dimension

of the vector It implies that the system (17) can have only zero
solution.

Necessarity. Suppose that for some n the condition (9) is not valid.
Hence, the rank of the matrix of the system of linear algebraic
equations (17) is less than the number of variables. It means that there
exist the nonzero solutions of the systems. Thus, there exists

such that (15) is valid, and hence the system (1),

(2) is not controllable.
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4. SUBDOMAIN CONTROLLABILITY
OF PSEUDO-PARABOLIC SYSTEMS

Consider a pseudo-parabolic system with controls concentrated in
subdomains of the space domain.

R e m a r k . The result represented below holds true also for
the case of point control in a one-dimensional space domain. .

For hyperbolic equations one of the ways of the investigation of the
point controllability on the basis of the concept of “exact
controllability” described in the J.-L.Lions' work [31, 32].

Let the state of the system is a solution of the initial boundary value
problem

where is the indicator of the subset (subdomain) with

positive Lebesque measure, is a given "elementary"

intensivities. The control of the system is carried out with the help of

the vector-function

The differential expression A has the form

It is uniformly elliptic in is a positive constant.
By virtue of the restrictions introduced above the differential

expression A yields in the space a symmetric and positive

definite operator with a discrete spectrum, namely: there exists a
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countable set of the eigenvalues which can be arranged in ascending
order:

and a complete orthonormal in system of the corresponding

eigenfunctions and only finite number of linearly

independent eigenfunctions can be assigned to

every eigenvalue

The generalized solution the problem (1), (2) belongs to the space
which is the space of continuous on [0, T] functions

taking on values in the Sobolev space It follows from the

imbedding of the space into the space With the

help of the Fourier method the solution of the problem (1), (2) can be
represented in the following form

It is requested to transfer the system to the desired state before the
time moment T with the help of the controls h(t). The controllability
of the system (1), (2) we shall mean in the sense of the following
definitions.

D e f i n i t i o n 1 . The system is a subdomain controllable one

if the set is dense in

T h e o r e m 1 . The system (1), (2) is a subdomain
controllable one in the space       if and only if for an
arbitrary natural number n the following condition is satisfied

where
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P r o o f . At first, let us prove the sufficiency. Let us show that for
any the condition

implies that Granting the representation of the solution (3),

we have

Whence,

It follows from (6) that

The function is

analytic in the right-hand complex half-plane and it is equal

to zero in the interval (0, T ). Thus, on Reasoning
as in the proof of Theorem 3.1, we obtain that
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Denote

We can rewrite (8) in the form n = 1,2,.... Since (4) is

valid, n = 1,2,.... Thus,' z(x) = 0.

Let the system (1), (2) is controllable in the sense of Definition 1
but for some natural number k the condition (4) does not satisfied.

The there exists such vector that

We have that for any n

Whence, we obtain

that contradicts to Definition 1. The theorem is proved.
The following example is sufficiently instructive. The system

is controllable if is irrational number and is not controllable if

is rational number

Let the function be such that
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R e m a r k . For the case when Theorem 1 can

be generalized for the systems with point controls

in the following way: the system '(9), (10) is controllable if and
only if for an arbitrary natural n the following condition holds
true

where

Here is an eigenfunction of the operator A

corresponding to the eigenvalue The condition

is equivalent to the condition that not all components of the vector
equal to zero.
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PERSPECTIVES

1. GENERALIZED SOLVABILITY
OF LINEAR SYSTEMS

1.1. Basic definitions and facts

Concept of a generalized solution of an operator equation

with an arbitrary linear closed operator L was proposed in [165].
Recall the basic principles of this approach.

Let E, F be Banach spaces and L be a closed linear injective
operator mapping E into F with everywhere dense in E domain of
definition D(L) and with dense in F range of values R(L). In a
parallel way (1), we shall investigate the adjoint equation

where is the adjoint operator.

Suppose also that the set is total in F ,and the set

is total in E  in duality The condition of totality of

may be replaced by one of the following assumptions:

A) the kernel of L  consists of zero-vector and

is weakly dense in E  (this condition independently implies the

injectivity of L and the density of R( L) in F );

B) the operator L is continuous (D( L) = E) ;
C) the space E is reflexive (if in addition F is reflexive then the

set is total in F  also).

Under the assumptions A) and C) the totality follows from

the well-known results, and in the case B) it follows from the formula
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where is the polar of the set in duality (E, E*) .

Let us prove that (3) holds true for an arbitrary closed linear operator

as far as D(L*) is a total linear subspace then

Thus, the formula (3) is proved. It follows from (3) that

If L is a continuous injective operator then D(L) = E,
Ker(L)={0}. Therefore,

Thus, the bipolar of the set R(L ), i.e. the weak closure of R(L ),

coincides with E  , that implies the totality of R(L ) in E 

Denote by the completion of the set E in topology

as far as the sets E and R(L ) are in duality then

is a separable locally convex linear topological space. Consider an

arbitrary linear functional The equation (1) implies that

By the Banach theorem about weakly continuous linear functional
[78], the functional allows the unique extension by continuity

on the whole space

D e f i n i t i o n 1. The generalized solution of the operator
equation (1) is an element obeying the relation
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D e f i n i t i o n 2 . The generalized solution of the operator

equation (1) is such element that there exists a sequence
(which we shall call as almost solution) obeying the

relations

The concept of a generalized solution arises when the right-hand
side of the operator (1), i.e. the element does not belong to the

range of values R ( L ) of the operator L (in this case there are no any
classic solutions). But if than the generalized solution
becomes a classic one. In [165] the following theorem was proved.

T h e o r e m 1 . For any element there exists a unique

element which is a generalized solution of the equation
(1) in the sense of Definitions 1,2.

Let us introduce once more definition of a generalized solution.
Let is a completion of a linear set D(L) with the norm

The equality allows extending L by

continuity from the set D(L) of the space E onto the whole space

The extended operator we shall denote by The operator

is linear and continuous.

D e f i n i t i o n 3. The solution of the equation (1) is such
element that the equality (1) holds true for the extended

operator
It is easy to see that the extended operator determine an

isometric isomorphism between the spaces and F .

T h e o r e m 2. For any element there exists a unique

generalized solution of the equation (1) in the sense of
Definition 3.



T h e o r e m 4 . Definitions 1,2 and 3 are equivalent.

P r o o f . Let some net converges to 0 in the

topology of the space Then in the space F, and

hence, for any Thus,

Whence, we have that the topology is weaker than the topology

It still remains to prove that if in the topology of the

space in the topology then u = 0 (the condition

It follows from the condition in that

and implies that

whence we have that

By the totality of the set D(L ) and the

injectivity of the operator we have that u = 0. Thus,
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As well-known, the case of closed linear operator L reduced easy
to the case of a linear continuous operator L . Indeed, introducing the
norm of the graphics on D( L)

relatively to which the linear set D( L) is a Banach space, we obtain
that the operator is linear and continuous

Taking into consideration the mentioned

above, we shall further investigate only the case of continuous linear
operator L (D(L) = E).

At first, we shall determine the relations between the solvability in
the sense of  Definitions 1,2 and 3.

T h e o r e m 3 . The space is algebraically and

topologically imbedded into the space
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P r o o f . Let us prove that the solution in the sense of

Definition 3 is a solution in the sense of Definition 1 also (inverse

statement is obvious). Indeed, in there exists a solution of

the same equation Lu = f . It is clear that

Whence we have that u = Ou  is an operator of imbedding of the set
into

Often constructive description of the spaces and is

sophisticated and in general case still be an unsolved problem.
Therefore it is necessary to find out an algebraic and topological dense
imbedding of the space or into some other well-known

Banach or locally convex linear topological space H . In this section
we shall describe such spaces H . Besides, we shall investigate the
properties of the generalized solutions in these spaces H .

1.2 A priori inequalities

Taking into account the mentioned above, suppose that the space
is algebraically and topologically imbedded into the Banach space

H . By the condition of the topological imbedding

Whence, we conclude that

where is positive constants.
The estimations of such kind are usual in applications and they are

called a priori inequalities. Except for (6), it is easy to see that the
following a priori inequalities hold true



It follows from the results of the previous subsection that the
inequalities (6) are necessary conditions for the construction of the
theory of generalized solvability of the operator equation in the Banach
space H . We shall prove that the inequalities (6) are also sufficient
conditions of the solvability of the equation (1) in some generalized
sense. Note that proposed scheme cover various approaches to the
construction of generalized solutions of differential equations (see
[167], for example).

Thus, we shall suppose that the linear operator

satisfy the inequalities (6) where

H is a completion of the space E with the norm

. It is clear that the. right-hand side of the inequalities (6) implies

the continuity of the operator L, and the left-hand side implies the
injectivity. Besides, by virtue of the density of the imbedding

the set H* is total in E* and, hence, the spaces E and H  are in
duality.

Consider the operator defined in the

following way:

L e m m a 1. The operator equation is solvable in the

subset H  of the space E .

1.3. Generalized solution of operator equation
in Banach space

Note that the inequalities (6) themselves do not guarantee the

existence of a topological imbedding , but it only compare the

topologies induced by the norms in the set E .

Hereinafter, we shall prove that the estimations (6) can serve as a
basis of the theory of the generalized solvability of the operator
equation (1).
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P r o o f . The left-hand side of the inequalities (6) implies the
correct solvability of the operator Consider also the adjoint

operator It is clear that if

then where  is a contraction of the

functional  from the set H onto E . As well known, the

correct solvability of the operator implies the everywhere solvability

of the operator [165], whence, taking into account the mentioned
above, we obtain the solvability of the operator L  on the set H 
(considered as a subspace of E ) of the right-hand sides in (2).

R e m a r k 1 . If the operator L satisfies the inequalities (6)

then

D e f i n i t i o n 4. A generalized solution of the equation (1)
with the right-hand side is such element that the
equality

holds true for any

It is obviously that the equality (7) is equivalent to

T h e o r e m 5. For any right-hand side there exists
a unique solution of the equation (1) in the sense of
Definition 4.

P r o o f. Choose a sequence such that in

the space F . If is a solution of the equation then

granting (6) and the fact that the sequence is fundamental, we

have
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Thus, there exists such in the space H .

Further, we have

Passing in the last equality to the limit as we obtain

Thus, is a solution of (1) in the sense of Definition 4.

As long as the equality

implies that u* = 0, and hence, the solution is unique.
D e f i n i t i o n 5 . A generalized solution of the equation (1)

with the right-hand side is such element that there
exists a sequence satisfying the conditions

T h e o r e m 6. Definitions 4 and 5 are equivalent.
P r o o f. Let   be a solution of the equation Lu = f in the sense

of Definition 4, i.e. Reasoning similarly to

Theorem 5, we conclude that u = u  , and hence, On

the other hand, Thus,   is a solution

of the equation (1) in the sense of  Definition 5.
Let us prove the inverse assertion. Let   be a solution of the

equation (1) in the sense of Definition 5. Then,

for any
Estimate the first and third summands in the right-hand side



where is a sequence defining the solution

Thus, u is a solution of (1) in the sense of Definition 3.
Let now, conversely, u be a solution of (1) by Definition 3. Choose

an arbitrary sequence such that

Then by the continuity of the imbedding we have

i.e. u is a solution of the equation (1) in the sense of  Definition 4.
R e m a r k 2. It is obviously that the solutions in the sense 4

and 5 coincide with a classic solution It is

also easy to testify that in this case the classic solution is a
generalized one. In the case when the generalized solution u
belongs to D( L) it is a classic one,

T h e o r e m 7. If the space is continuously imbedded

into H then Definitions 3, 4, and 5 are equivalent.
P r o o f. Let us prove that Definition 3 is equivalent to definition 5.

Let be a solution of (1) by Definition 5. As it was indicated
above, for any right-hand side there exists a unique solution

in the sense of  Definition 3. Considering u  as an element of

the space H (by virtue of the imbedding we can prove

that u  = u. Indeed,

PERSPECTIVES 397

Whence we have that
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That is what had to be proved.
R e m a r k 3. The theorem implies that there exists a constant

c> 0 such that the following inequality holds true:

where u is a solution of (1) with the right-hand side f in the

sense of Definition 3, 4, and 5.
R e m a r k 4. The imbedding follows from the

density of in the space F  in the weak topology

or from the fact that the operator is closable.
Usually from the inequalities (6) for the operator L it is possible to

prove the similar inequalities for the adjoint operator

where G is a completion of the set F  with some norm. Consider
this situation for reflexive Banach spaces E, F . In this case
and similarly to Lemma 1 we obtain that the operator equation (1) is
solvable in . Besides, we have the theory of solvability of the
adjoint equation (2) (analogous of the Theorems 5, 6, and 7).

Theorem 8. There exists a constant c> 0 such that for
any and any the following inequalities
hold true

where are solutions of the equations Lu= f and

L u = l.
P r o o f. Let us prove the inequality (9) (the inequality (10) is

proved in the similar way). As far as the equation (2) is solvable (in the
sense of the analogous of Definitions 4 and 5 for the adjoint operator)



or

where are solutions of the equations Lu = f and

L u = 1 in the sense of  Definitions 4 and 5.
P r o o f. Granting the inequality (11), we have

Applying to the right-hand side the inequality (9), we obtain

is bounded in every point , and hence, by the Banach-Steinhaus

theorem it is bounded by the norm of the space E   = E , hence, the
inequality (9) is proved.

T h e o r e m 9. There exists a constant c> 0 such that for

any and any the following inequalities hold true

Thus, the set of functional

or

where is a solution of (2) with the right-hand side

Whence, we have

for any then for all the following equality
holds true (the second adjoint space is identified with the original
space)
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Taking into account that we obtain the inequality (13).
The inequality (12) is proved in the similar way.

R e m a r k 5 . As far as and the

inequality (12) holds true for any it may be seemed that

(12) provides the existence of imbedding However, this

is not true. In the space really exists an element u  such that

But if the imbedding is not proved, we

cannot to compare as a solution of (1) in the sense of

Definitions 4 cnd 5 and as a solution of (1) in the sense

of Definition 3.

1.4. Generalized solutions in locally convex
linear topological spaces

Let us introduse several more definitions of a generalized solution.
As before, we suppose that L is a linear continuous operator. Select

in the space E  some total linear set Let is a

completion of the set E by topology By the Banach

theorem about weakly continuous linear functional [78] the functional

allows a unique extension by continuity on the whole

space
D e f i n i t i o n 6 . A generalized solution of the equation (1) is an

element obeying the relation



Remark 7. Moreover, the point (u, f) belong to the

sequential closure of the graphics in the topology ,      and

hence, is a sequential closure of the set E in the

topology
Taking into consideration Remark 7, we could investigate the

concept of generalized solution in sequentially complete spaces
In addition, it is easy to prove that a classic solution of (1) is a

generalized one in the sense of Definitions 6 and 7. If or

the generalized solution belongs to D( L) then the generalized solution
becomes classic.

As long as then there exists such set that
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R e m a r k 6. Definition 7 implies that if is a

generalized solution of (1) then the point (u,f) is an point of

accumulation of the graphics of the operator L, i.e. of the
set

in the topology

D e f i n i t i o n 7. A generalized solution of the equation (1) is an

element for which there exists a sequence such that

in topology as

In the case when M = R(L ) Definitions 6 and 7 coincide with

Definitions 1 and 2 of a weak solution and an almost solution.
As in [165], we can prove the following
T h e o r e m 1 0 . Definitions 6 and 7 are equivalent and for

any element there exists a unique generalized solution

of the equation (1)in the sense of  Definitions 6 and 7.
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T h e o r e m 11 . In order that there exists an algebraic and
topological imbedding of the space into the space it is
necessary and sufficient that be total linear subset of the

space F . In this case Definitions 6, 7 and 3 are equivalent.
P r o o f. Similarly to Theorem 3 we can prove that on the set E

the topology induced by the norm stronger than the topology

In the similar way we consider the condition We have

that By virtue of the fact that the operator

determines an isometric isomorphism between the spaces and F ,

we conclude that the condition u = 0 is equivalent to the totality of the
set The equivalence if the definitions is proved similarly to

Theorem 4.
R e m  a r k 8. Theorem 11 implies that the space can be

introduced (under the assumptions of the theorem) as a
completion of the set by the topology

R e m a r k 9. Note that the condition of the totality of
has the principal character and not always holds true. It is easy to
give an example of a linear continuous injective operator
mapping not total sets into total.

Indeed, the operator acting on the vector

according to the rule

is obviously injective, linear and continuous (even completely
continuous) operator that maps the vector system



into the system
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The vector system is orthogonal to the vector

and, hence, is not total, on the other hand the totality of the system

in the space is obvious.

Besides, if we suppose that the operator L obeys the a priori
inequalities (6), this implies the following

T h e o r e m 1 2 . The Banach space H is algebraically and
topologically imbedded into the space . Definitions 6 and 7  for

the set and Definitions 4 and 5 , respectively, are equivalent.
P r o o f. It is clear that the topology induced by the norm

stronger than the topology Let us test the condition Let

the net converges to u in the topology of the space H and

in the topology Then by the Hahn-Banach

theorem the norm may be represented in the form

therefore, On the other hand,

. Thus, and hence, u = 0 .
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R e m a r k 10 . The concept of a generalized solution
investigated in [167] is equivalent to the concept considered in
this subsection.

1.5 Connection between generalized solutions
in Banach spaces and in locally convex spaces

Note that the constructions of generalized solutions in the sense of
Definitions 4 and 5 and constructions of generalized solutions in the
sense of Definition 6 and 7 are analogous in some sense.

On the basis of the total set it is possible to

construct the Banach space giving a generalized solution in the
sense of Definitions 4 and 5 in a way analogous to that used in the

construction of a separable locally convex linear topological space

on the basis of the total set. Namely, let is a completion of the set
E by the norm

The norm (14) can be rewritten in the form

The spaces induced by the norms (15) were investigated in detail in
the case of total sets

On the other hand if M = R(L ) then the norm coincides

with the norm of the space , and hence, in this case (an

analogy of the space Indeed,



R e m a r k 11. The theorem implies that under the

assumption of the totality of the space can be

constructed by completing the set with norm (14).

Thus, on the basis of any total set it is possible to

obtain a priori estimation (under the assumption of the totality of

we can prove this estimation even with the imbedding

which implies the assertions about solvability of the equation (1) (in the
sense of Definitions 3, 4, and 5) similar to Theorems 5, 6 and 7.

It easy to see that the topology induced by the norm on the set

E is stronger than the topology of the space

L e m m a 2. If and is total subset of the

space F  then algebraically and topologically imbedded into

the space
P r o o f. Totality of the set and injectivity of the operator L

implies the totality of the set M . In is easy to see that the norm

stronger than the norm It still remains to testify the condition

Let the sequence converges to in the norm and

also converges to zero in the norm then on the one hand

but on the other hand for any

Whence, By virtue of the totality of

and injectivity of we have u = 0.

The last equality holds true, since by the Hahn-Banach theorem for
any element there exists such functional with the

unit norm
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Thus, developing the indicated idea about connection between
generalized solutions in Banach and in locally convex spaces, we could
represent the results of Subsection 1.3 in the style of Subsection 1.4

basing on the total linear subset of the set R(L ), and vice versa, we

could represent the results of Subsection 1.4 in the style of
Subsection 1.3 using the analogies of the a priori inequalities, i.e.
assuming that the separable locally convex topology defined on the set
E is weaker than the norm

Finally, note that as far as many aspects of the methods used above
have a topological character then the equation (1) we can investigate
using the same approach in a locally convex topological spaces E and
F (which can be, possibly, general topological spaces). In this case
the role of is played by the completion of E by the topology

induced by the systems of semi-norms

where is a semi-norm system giving the topology of the

space F , and instead of the estimations (6) we obtain the chain of the
dense continuous imbeddings

where H is a completion of the set E in some locally convex
topology which is weaker than the norm of the space

2. PARAMETRIZATION OF SINGULAR CONTROL
IN GENERAL CASE

Consider the general problem of singular optimal control of systems
with distributed parameters. Let L be a linear partial differential
operator (for example, pseudo-parabolic) defined in the space
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is a regular tube) and having the domain of

definition D(L) consisting of sufficiently smooth in functions

obeying some uniform boundary conditions (bd ). The formally adjoint

operator and its domain of definition we shall denote by and

respectively, where is a set of smooth in functions

satisfying the uniform adjoint boundary conditions

Define on the linear manifolds the positive norms

induced by the corresponding inner

products for which the following relations hold true

and the topological condition [165] for the pairs of the neighbour

norms in the inequalities is valid. By completing we

obtain the chain of the positive Hilbert spaces

and this imbeddings are dense and the imbedding operators are
continuous. Adding to the chains spaces which are negative with
respect to and are constructed by the positive norm introduced

above, we obtain

Suppose that for the operators L, the following a priori
inequalities hold true



in the sense 2), where is a mapping of the reflexive

Banach space of controls V into the negative space is

bounded, closed, and convex subset of V. On the solutions of the

equation (1) some functional is defined. The

optimization problem consists in finding out such controls on

which the performance functional attains its minimal

values. The existence of the optimal controls is provided by the
following assumptions:

is a weakly lower semicontinuous functional;

is a weakly continuous mapping.

408 Chapter 11

Then the operator can be considered as an operator

continuously mapping the whole space into For

the operator equation Lu = f the following results are valid:

1) for any element there exists a unique function

such that Lu = f and the estimation is

valid;

2) for any element there exists a unique function

such that

(where are bilinear forms constructed with the help

of extension of the inner product onto and onto

respectively) by continuity and the following estimation

holds true

Similar results are valid also for the equation with the adjoint

operator

Let the system state is a solution of the equation
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The natural and generally accepted idea of approximate solving
infinite-dimensional optimization problems consists in reducing this
problem to finite-dimensional extremal problems. Consider the general
principles allowing to approximate a solution of a singular optimization
problem by a solution of some finite-dimensional problem. This
approach we shall call parametrization of control.

Suppose that V is a separable reflexive Banach space. Then there
exists a sequence of finite-dimensional subspaces of the space

V satisfying the condition of the boundary density:
lim inf

Next, let be a sequence of closed arid convex subsets

which are bounded uniformly with respect to s in the norm of V and
approximate the set of the admissible controls in the following

sense:

The issue of the nature of the spaces, which provide the best
approximation, is the most important and fine in the numerical analysis.

The problem of oprimization of the system (1) we replace by the
following problem:

T h e o r e m 1 . Under the conditions a), b), (2), (3) and also
1) is a strongly upper semicontinuous

functional;
2) is a strongly continuous mapping;

for an arbitrary the optimal control problem (4), (5)

has a solution and
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It is possible to extract from the sequence such

subsequence that weakly in V, where

is an optimal control of the system (1).

P r o o f . Since the conditions a) and b) hold true and are

closed and bounded subsets of the finite-dimensional subspaces the

problem of optimal control of the system (1) and the problem (4) and
(5) are solvable. Let be some optimal control of the system

(1), and is a sequence of solutions of the problems

(4) and (5). Then by the condition (2) there exists a sequence of

controls such that By virtue of

the strong continuity of the mapping we have

The a priori inequality

where are generalized solutions of the state

equation of the system (1) corresponding to the controls and

and (6) imply that

Since is a strongly upper semicontinuous

functional,

Consider the sequence is bounded uniformly

with respect to s in the reflexive Banach space V. Thus, by the

Eberlein-Shmuljan theorem there exists such subsequence that
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The condition (3) implies that The mapping

is a weakly continuous (assumption b)), hence

weakly in

The sequence is bounded in the norm The

estimation implies that is a

sequence bounded in Extract from a  weakly

convergent subsequence

weakly in

Let us prove that Indeed, we have

Passing to the limit in (8) as we obtain

Thus, is a generalized solution of the system state

equation (1) corresponding to the control Since this solution

is unique, the sequence weakly converges to

Let us prove that is the optimal control of the system (1).

The weak lower semi-continuity of the functional and

(7) imply that

thus, is the optimal control of the system

(1). The theorem is proved.

weakly in V.
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R e m a r k . If the functional is strongly continuous then

lim If the optimal control of the system (1)

is unique then weakly in V.

3. DIFFERENTIAL PROPERTIES OF
PERFORMANCE CRITERION
IN GENERAL CASE

To solve numerically the problems of simulation and optimization of
systems the gradient descent methods are usually used. To use these
methods correctly we must at first to investigate the smoothness of the
performance functional and to prove that the necessary conditions of
optimality hold true.

The purpose of this section is to study the issue of the smoothness
of the performance functional for the singular optimization problem in
general case [169-172].

Consider the optimization problem for the system (2.1)

T h e o r e m 1 . Let the system state is defined as

a solution of the equation (2.1) with the right-hand side

1)  there exists a Frechet derivative of the mapping

at the point ;

2) there exists a Fréchet derivative of the

functional at the point

then the performance functional is differentiable by

Frechet at the point and the derivative is defined by the
expression



and

In is clear that is a unique solution of the problem

Let the function v be a solution of the adjoint

problem We can write that
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where is a solution of the adjoint problem

P r o o f. It is clear that is meaningful, since the

adjoint problem has a unique generalized solution

take on its values in Since is a linear

mapping, is a linear functional in V, whose continuity

follows from the continuity of Indeed, for all

Let is a increment of a- control. Consider

Denote We have
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Applying the Schwarz inequality to the second summand in the
right-hand side of (1), we have

For the a priori estimation is valid

The assumptions of the theorem imply that for any

1)

2)

Choose such that Then the

condition implies that
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Thus, the theorem is proved..

T h e o r e m 2. Let
1) the mapping has a Fréchet derivative in

the neighbour of the point ,which is continuous at

the
2) the functional has a Fréchet derivative

in the neighbour of the point ,which is

continuous at the point
The derivative of the performance functional is

continuous at the point
P r o o f. Let h is an arbitrary point in the vicinity of the point

Consider for all the following difference

where is solutions of the adjoint problems:

Using the Schwarz inequality and the continuity of the linear
operators

Whence,



Choose such that Then the assumption

in (2) implies that The theorem is

proved.

Since the mapping has a Fréchet derivative at the point

it is continuous at the point i.e.

For the following a priori inequality holds true:

The assumptions of the theorem imply that for any

therefore

The following a priori estimation is valid
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The derivative of the mapping is continuous at the point

since there exists a neighbour

in which Thus,

1)

2)
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D e f i n i t i o n 1 . A mapping from a linear normalized

space X into a linear normalized space Y obeys the Lipschitz
condition with index i n the  set,                 i f

T h e o r e m 3. Let
1) the mapping has a Fréchet derivative

obeying the Lipschitz condition with index in

the bounded convex set

2) the functional has a Fréchet derivative

obeying the Lipschitz condition with index in

the space
Under these assumptions the derivative of the

performance functional satisfies the Lipschitz condition with index
in the set

P r o o f is similar to the proof of the previous theorem. Let

be arbitrary points in the set Consider for all the

difference

where are solutions of the adjoint problems:

Using the Schwarz inequality and the continuity of the linear
operators
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Whence,

Let us prove that the derivative is bounded in the set

Let and h is an arbitrary point that belongs to

Then the following inequalities are valid

where is the diameter of the

The following a priori estimations hold true is some
fixed admissible control)

set
Next,



and the adjoint problem has the form where O is an

operator of imbedding of the space

2. For the quadratic functional

Theorem 1 implies the formula:

where The theorem is proved.

Consider applications of these theorems to the specific singular
optimization problems. Consider various performance functionals of the
systems (2.1) under the assumptions of Theorem 1 for the mapping
f .

1. If then the derivative of the

functional defined by the formula

Whence,

Next, we obtain

finite increments and taking into account the fact that is bounded

in we have

Applying to the formula of
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The theorems of the previous Section allows us to construct
gradient iterative methods for finding out optimal controls of systems.
For this purpose at every step we must solve direct and adjoint
boundary value problems, which cannot be solved exactly in practice.
In addition, a singular right-hand side of the state equation are usually
approximated by piecewise constant or piecewise linear functions in
order to regularize problem for computer simulation. Computer
computations have round-off errors. Hence, it is necessary to
investigate convergence and stability of methods under the
perturbations of data. Since, perturbations and round-off errors in our
class of problems have an additive character, we shall consider only

4. CONVERGENCE OF GRADIENT
METHODS ANALOGIES

derivative of the functional is defined by the formula (4), and the

adjoint problem has the form

where is the inverse operator for the operator I , denning the

isometry between the whole space and the whole space In
the case of the pseudo-parabolic system investigated in Chapter 5 the

operator is defined on the Smooth functions obeying the

conditions  in the following way:

420 Chapter 11

3. If then the adjoint problem

has the form

4. Let where The
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the case when the right-hand side of the system state equation is
perturbed and all sub-problems are solved exactly.

Consider the optimal control problem for the system

where is the set of admissible controls from the

Hilbert space of controls V . We suppose that the operator L , the
functional and the mapping obey the assumptions of

Sections 2 and 3, is compact in the strong topology and convex.

Although in the problems of oprimization of systems with distributed
parameters the strong compactness does not hold as a rule, using
parametrization or regularization we can approximate the original
problem in a such way, that the strong compactness holds.

Consider the problem with a perturbation in the right-hand side

where  is one-parameter set of differentiable by

Fréchet mappings, which approximate in some sense the mapping

Instead of the Fréchet derivative

we have its estimation

Since V is a Hilbert space, and is a linear continuous

functional in V , there exists such elements that
respectively. We shall

denote them by

The methods investigated below have the following structure: the
sequence of controls is constructed

which satisfies the conditions and the control is a

solution of some auxiliary extremal problem. The precision of



This gradient procedure is an analogy of the well-known Rosen's
gradient projection method.

Consider the set U  of admissible controls, for which the
necessary condition of the local minimum of the functional in the

set holds true, i.e.

where s is the number of iteration, is the initial

approximation, is the operator of projection in the set is

the step multiplier selected by the condition

Let the sequence of controls is generated by the following

procedure:

(i) Start from Put s = 0 .

(ii) For all integer positive s compute

4.1 Analogy of Rosen's gradient projection method

where are infinitesimal sequences of positive numbers.

To prove the convergence of these methods we shall use the
sufficient conditions of the convergence of the algorithms of non-linear
and stochastic programming.

computation of the Fréchet derivative is selected according to the
conditions

Chapter 11422
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The necessary condition of the local minimum can be written in the
form  which is convenient for justification of the
convergence of the method.

T h e o r e m 1 . Let
1) be a differentiable by Fréchet mapping,

whose derivative obeys the Lipschitz condition with
index

2) is a differentiable by Fréchet functional,
whose derivative obeys the Lipschitz condition with
index

If the functional takes on at the most countable number of

the values in the set
then all limit

points (which exist necessarily) of the sequence belong to the

compact connected subset U* and numerical sequence
has a limit.

P r o o f. Let us test the assumptions of the theorem of sufficient
conditions of the iterative algorithms convergence. By construction, all
entries of the sequence belong to the compact Consider a

sequence We have

diam

Let is a subsequence convergent to the control Let

us prove that there exists such that for all k and



Since there exists such that

The following inequality holds true:

By the inequality (1), we shall estimate the value

To do this put and write

for all Here we use the notation

Put The assumption of the theorem implies that

is continuous in functional, the set is at

the most countable, and also is differentiable by Fréchet

functional and the derivative obeys the Lipschitz condition with

index in the set Consider the expression

424 Chapter 11

Suppose the contrary. Let for all there exists such

that for all Then by the

triangle inequality we have

where d = diam  is the diameter of
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whence, we have

The value we estimate in the following way

Estimate the second summand in the right-hand side of the last
inequality

Next,

where are solutions of the adjoint

problems

The following estimations are valid (we use the a priori estimations
of the solutions of the original and adjoint problems, the formula of



Chapter 11426

finite increments and the fact that the derivatives obey

the Lipschitz condition):

We have

Choosing sufficiently small and large we obtain

Thus, ultimately we obtain

Adding the inequalities (2) for we obtain



Therefore,

However, taking sufficiently small and large it is

possible to repeat the proof of the estimation (3) for On

the other hand

Passing to the limit in (3) as and taking into account the

condition we arrive to contradiction with the fact that

the continuous functional is bounded below on the compact

Thus, there exists such that for all k and

If p > max then

that

relation implies the existence of such number

is valid. The

For all the estimation

Since there exist

427PERSPECTIVES
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Granting the last inequality in (3), we have

Whence,

Thus, the sufficient conditions  of the convergence hold true, and
hence, all limit points of the sequence belong to U* and the

numerical sequence has a limit. The connectedness and

compactness of the set of limit points follows from the fact that

and from the following

assertion: if the sequence of the points of the metric space X is

imbedded into some compact then the

set of limit points is a connected compact.

If the assumption that the set of values of the functional is at

the most countable in the set U  does not hold true, it is possible to
prove weaker assertion:

T h e o r e m 2 . If the assumptions 1) and 2) of Theorem 1
hold true, then the sequence has at least one limit point

belonging to the set U .

4.2 Analogy of the conditional gradient method
with averaging

Consider the sequence of controls generated by the following
procedure:
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(i) Start from

Put s = 0.
(ii) For all integer positive s compute

where s is the number of iteration, is the initial

approximation, is the multipliers selected by the conditions

T h e o r e m 3 . Let the assumptions 1) and 2) of Theorem 1
holds true. If the functional takes on at the most countable

number of its   values in the set
then all limit

points (which exist necessarily) of the sequence generated by

the method (i), (ii) belong to the compact connected subset U*
and the numerical sequence has a limit.

P r o o f is similar to the proof of Theorem 1. Let us prove only that

for the sequence which converges to the control there

exists such that for all k and

Suppose the contrary. Let for all there exist such

that for all Then we have
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for all

Put Consider

where

In the inequality (4) we estimate the value For

this purpose put and write

But

Thus,

Since there exists such that

whence
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we shall estimate in the following wayThe value

Further (in Lemma 1) it will be proved that

We have

Choosing sufficiently small and large we obtain

Thus, ultimately we have

Passing to the limit in (5) as  and taking into account the

condition we arrive to contradiction with the fact

that the continuous functional is bounded below in the compact

Thus, there exists such that for all k and

Further, proof is similar to the proof of Theorem 1.
L e m m a 1 . Let the assumptions of Theorem 3 hold true.

Then

P r o o f. Let us introduce the following notation
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Consider

Since obeys the Lipschitz condition with index

in the set

Let us estimate the value Reasoning as in

the proof of Theorem 1, we have

Thus,

where

It is clear that Indeed,

This relation and (6) imply that

If the assumption that the set of the values of the functional in

the set U  is at most countable does not hold true, then it is possible to
prove the following weaker assertion.
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T h e o r e m 4 . If the assumptions 1) and 2) of Theorem 1
holds true, then the sequence generated by the method (i),

(ii) has at least one limit point which belongs to the set U*

5. OPTIMIZATION OF PARABOLIC SYSTEMS
WITH GENERALIZED COEFFICIENTS

The solvability of parabolic systems with discontinuous coefficients
were investigated in [173,174,178] and in many others papers. In
partucular, these problem arise as a result of investigation of heat and
mass transport in heterogeneous media with non-ideal contact between
subdomains, with external condensed source and so on. In this
subsection the results obtained in [173,174] are extended and the issue
of optimization of parabolic systems with discontinuous solutions are
considered.

5.1 Main notations

Let the system state described by the function

The heat and mass transport take place in a tube

where is bounded regular domain of variation of space

variables with boundary

Introduce the following notations. Let be a set of infinitely

differentiable in the domain functions satisfying the boundary

conditions

be a completion of the set in the norm



Consider the problem of optimization of the system governed by the
equations of heat and mass transport in several heterogeneous media
with the conditions of non-ideal contact, external condensed source
and so on., which generalized the similar problem considered in [174]
(the Dirichlet problem)

Chapter 11434

be a completion (the set of smooth in functions) in the

norm

Denote also by a completion of the set consisting of

functions, which are smooth in the domain and satisfy the adjoint
conditions

in the same norm (1).

are negative spaces constructed on the basis of

pairs with corresponding indices.

In addition, introduce the following notations:

We shall also consider the spaces adjoint to

For example, For every Cartesian product of

the original space and its adjoint space (for example, X and X*) the
bilinear form which is obtained by extension the inner

product in the space by continuity, is defined
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The operator L is defined by symbolic matrix

where u is a function describing the heat and mass transport,

is a vector of the substance flux.

The operator L maps X into Y with the domain of definition

The mapping F (possibly, non-linear) maps the Banach space of
controls (with the domain of definition ) into the space Y

The system coefficients obey the conditions:

in the equations (2) is

understood to be a linear functional defined in by the following
rule

where is a

space adjoint to the Sobolev space
The functional (3) is defined correctly, since
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We shall suppose that the coefficient matrix for all

vector-functions obey the conditions

where the constant does nor depend on the functions

Note that all results obtained in this section can be generalized for
the functionals of the form

The oprimization problem consists in the finding out such control
which provide the minimum of the performance

functional

where are some functional, is a solution of (2) under the

control

Denote by L* the adjoint by Lagrange operator
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where

5.2 Optimization of parabolic system
with generalized coefficients

Using the technique of the a priori inequalities in negative norms
[167], it is possible to prove that the following lemmas holds true.

L e m m a 1 . The following inequalities are valid

where the constant c > 0 does not depend on x,y.
The inequalities in Lemma 1 do not allow to extend by continuity

the operator L(L ) to an operator continuously mapping the whole

space X(Y  )  into the space Y ( X  , respectively). In what follows,

we shall consider only extended operators denoting it by L è L ,
again.

L e m m a 2 . The following inequalities hold true

For a parabolic equation with usual coefficients the a priori
inequalities in negative norms were proved in [175].

The inequalities (5)-(8) allow us to prove the unique solvability of
the equations (2), (4).

In what follows, we shall suppose that the set is dense

in the space and also is dense in where

R(L), R(L ) are the ranges of values of the extended operatores (but

some assertions can be proved under weaker assumptions). In the
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case when the coefficient matrix is generated by a

classic functions the density follows from the classic theorems of
solvability of parabolic equations.

D e f i n i t i o n 1 . A solution of the equation (2) is an element
such that for any the following equality

holds true:

T h e o r e m 1 . For all there exists a unique solution
of the equation (2) in the sense of Theorem 1.

D e f i n i t i o n 2. A solution of the equation (2) is an element
such that for any the following equality

holds true:

T h e o r e m 2 . For all there exists a unique solution
if the equation (2) in the sense of the Definition 2.

The proof of Theorems 1 and 2 are similar to [167].
Remark 1 . Similar theorems hold true for the adjoint

operator. Namely, for any there exists a unique

solution of the equation (4) in the sense of the
analogy of Definition 1 (2, respectively) for the adjoint operator.

Remark 2 . If is a solution of the equation (2) with

the right-hand side in the sense of Definition 2 and

is a solution of the equation (4) with the right-hand side
in the sense of the analogy of Definition 1 then

Similarly, for all the following equality holds true
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where x,y are solutions of the equations (2), (4) with the right-hand
sides F, G in the sense of Definitions 1 and 2, respectively.

R e m a r k 3 . Note that since Theorems 1 and 2 hold true for

arbitrary right-hand sides F (not only

considered in [173, 174]), the results proved above are
applicable not only to systems with singular coefficients, but also
to systems with singular right-hand sides. For example, the right-

hand side corresponds to

in the standard equation of heat and mass transport with
constant coefficients.

T h e o r e m 3 . Let the system state is defined from the

equations (2). If

1) the functionals are

weakly lower semicontinuous in the spaces

respectively;
2) the set of the admissible controls is weakly compact

in the Banach space

3) and the mapping is weakly

continuous,

then there exists a control providing a minimum of

the performance functional  .
P r o o f . Let us select a sequence minimizing the

functional ,

Granting the weak compactness of we can consider that the

sequence weakly converges to in the space Taking
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into account that F is weakly continuous, we have that

weakly converges to in Similarly to [167] we prove that

there exists such constant C > 0 (common for all that

where x is a solution of the equation (2) with the right-hand side F ,

whence we conclude that the sequence of solutions of (2)

under the control is bounded in and hence, we can extract

from it a subsequence, which weakly converges to ( we

denote it by again). Passing in the equality

to the limit as we obtain

whence, we conclude that is a solution of (2) under the control

Taking into account that functionals are weakly lower

semicontinuous we conclude that is an optimal control.

R e m a r k 4 . A similar theorem holds true in the case when
functional is weakly lower semicontinuous in the space

and the mapping is weakly continuous.

R e m a r k 5 . Assuming that is a compact set, we can

prove that any minimizing sequence converges to the set V*

of optimal controls

R e m a r k 6 . As far as the mapping F may be non-linear
and the optimization problem may be non-convex, an optimal
control may be not unique.



R e m a r k 7. A similar theorem holds true in he case of the
functional and the mapping

R e m a r k 8. Developing the technique proposed in [167] it
is possible to investigate the smoothness of the functional gradient
 on the basis of the relations (9), (10) and inequalities (5)-(8)

and to construct gradient type numerical methods of optimization.

the function is defined by the Fréchet derivative

by the formula (the Riesz theorem)

where are

the solutions of the operator equations

If we suppose that there exist the Fréchet derivatives

of the functionals at

the points and also there exists the derivative

of the mapping at the point then we can

investigate the differential properties of the functional  .
T h e o r e m 4 .  Let the system state be defined by the

equations (2) and there exist the Fréchet derivatives

Then there exists the Fréchet derivative

if the functional  defined by the following expressions
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