Operator Theory for Electromagnetics



Springer Science+Business Media, LLC



George W. Hanson Alexander B. Yakovlev

Operator Theory for
Electromagnetics

An Introduction

With 77 Illustrations

aaaaaa



George W. Hanson

Department of Electrical Engineering
and Computer Science

University of Wisconsin

Milwaukee, WI 53211

USA

george @uwm.edu

Alexander B. Yakovlev

Department of Electrical Engineering
University of Mississippi

University, MS 38677

USA

yakovlev@olemiss.edu

Library of Congress Cataloging-in-Publication Data
Hanson, George W., 1963—
Operator theory for electromagnetics : an introduction / George W. Hanson, Alexander
B. Yakovlev.

p. cm.
Includes bibliographical references and index.
ISBN 978-1-4419-2934-1 ISBN 978-1-4757-3679-3 (eBook)

DOI 10.1007/978-1-4757-3679-3

1. Electromagnetic theory. 2. Operator theory. I. Yakovlev, Alexander B. II. Title.
QC670.7.H36 2001
530.14"1—dc21 2001020438

Printed on acid-free paper.

© 2002 Springer Science+Business Media New York
Originally published by Springer-Verlag New York, Inc. in 2002.

Softcover reprint of the hardcover 1st edition 2002

All rights reserved. This work may not be translated or copied in whole or in part without the
written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York,
NY 10010, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer soft-
ware, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the
former are not especially identified, is not to be taken as a sign that such names, as understood by the
Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Production managed by Lesley Poliner; manufacturing supervised by Joe Quatela.
Photocomposed copy prepared from the authors’ ISTX files by Macrotex, Savoy, IL.

987654321
SPIN 10833374



To
Sydney, Eric, and Anastasia



Preface

The purpose of this book is to describe methods for solving problems in
applied electromagnetic theory using basic concepts from functional anal-
ysis and the theory of operators. Although the book focuses on certain
mathematical fundamentals, it is written from an applications perspective
for engineers and applied scientists working in this area.

Part I is intended to be a somewhat self-contained introduction to op-
erator theory and functional analysis, especially those elements necessary
for application to problems in electromagnetics. The goal of Part I is to ex-
plain and synthesize these topics in a logical manner. Examples principally
geared toward electromagnetics are provided.

With the exception of Chapter 1, which serves as a review of basic
electromagnetic theory, Part I presents definitions and theorems along with
associated discussion and examples. This style was chosen because it allows
one to readily identify the main concepts in a particular section. A proof
is provided for all theorems whose proof is simple and straightforward. A
proof is also provided for theorems that require a slightly more elaborate
proof, yet one that is especially enlightening, being either constructive or
illustrative. Generally, theorems are stated but not proved in cases where
either the proof is too involved or the details of the proof would take one
too far afield of the topic at hand, such as requiring additional lemmas that
are not clearly useful in applications.

The material introduced in Part 1 is subsequently applied in Part II to
problems in classical electromagnetics. A variety of problems are discussed,
with some emphasis given to spectral formulations. Although the problem
formulations and solution procedures are largely taken from the applied
electromagnetics literature, the intrinsic connection to mathematical oper-
ator theory is highlighted, and the benefits of abstracting problems to an
operator level are emphasized. For example, the completeness property of
the eigenfunctions associated with many differential waveguide operators
(justifying associated modal expansions) follows immediately after identi-
fying the operators as being of the regular Sturm-Liouville type. Similarly,
the fact that discrete, real-valued resonance frequencies occur in perfectly
conducting electromagnetic cavities follows from spectral properties of the
Laplacian operator. Many other examples that illustrate related concepts
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are provided in the text.

Note that functional analysis and operator theory is covered in a vast
mathematical literature, and a considerable amount is at a level appropri-
ate for applied scientists. However, the application-related texts are geared
principally toward quantum mechanics, not electromagnetics. On the other
hand, classical electromagnetic theory is presented in a wide array of excel-
lent texts. The majority of these texts make use of operator theory either
implicitly or explicitly, although the governing operator theory is often cov-
ered briefly and, understandably, in an ad-hoc manner. The present work is
intended to provide both the background functional analysis and operator
theory and its associated applications to electromagnetics.
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Part I
Basic Theory

The basic theory part of the text consists of five chapters. Chapter 1
presents some fundamental concepts from classical electromagnetic the-
ory. The chapter begins with a presentation of the governing (Maxwell’s)
equations for macroscopic electromagnetic phenomena, relevant constitu-
tive parameters and boundary conditions, and time-domain and transform-
domain formulations. Wave equations are formulated for both fields and
potentials, and methods for solving the various wave equations are dis-
cussed in some detail. Green’s functions are developed, reading to im-
proper integrals and a careful treatment of the source-point singularity.
The volume equivalence principle is presented, leading to the formulation
of domain integral equations, and surface integral equations are developed
for perfectly conducting scatterers. The chapter concludes with conditions
under which solutions of the wave equations are unique.

The second chapter covers some basic concepts from functional analysis,
including metric spaces, linear spaces, normed spaces, and inner product
spaces. The material in this chapter is intended to present, from an ap-
plied perspective, the concepts necessary for understanding the notion of
function spaces, particularly Hilbert and Banach spaces. Much of the pre-
sented material is associated with properties of operators encountered in
electromagnetic problems.

Chapter 3 introduces linear operator theory, primarily for Hilbert
spaces. In some sense this and the next chapter form the core of the first
part of the text, in that the basic properties of various types of operators
are presented. The main properties of linear operators and, as a subclass,
linear functionals are described, as are operator adjoints. Properties of var-
ious classes of operators, including self-adjoint, symmetric, normal, unitary,
and compact, are discussed. The important concepts of Green’s functions
and Green’s operators are introduced, and the chapter concludes with a
partial discussion of solvability conditions for operator equations.

The fourth chapter covers the spectral theory of linear operators in
Hilbert spaces, with special emphasis on the eigenvalue problem. The



2 Part I: Basic Theory

spectral properties of operators on both finite- and infinite-dimensional
spaces are described for a variety of operator types. Spectral theorems are
presented which describe classes of operators that admit relatively simple
spectral representations. Functions of operators are discussed, followed by
spectral methods for solving operator equations.

Chapter 5 is devoted to the important Sturm-Liouville operator. The
regular Sturm—Liouville problem is considered in detail, and salient points
from the theory of singular Sturm-Liouville problems are presented. Spec-
tral properties of Sturm-Liouville operators are discussed, both in the self-
adjoint and nonself-adjoint cases, and many examples directly applicable to
the waveguiding problems considered in Part II are presented. The chap-
ter concludes with a discussion of special functions and classical orthogonal
polynomials that arise from certain singular Sturm-Liouville problems.



Electromagnetic
Fundamentals

The coverage of electromagnetics in this chapter is somewhat brief, espe-
cially the physical aspects of the theory, since it is assumed that the reader
is familiar with basic field theory at an undergraduate or beginning gradu-
ate level. For a more extensive introduction to electromagnetic theory, the
references at the end of this chapter may be consulted.

The chapter begins with a presentation of Maxwell’s equations for
macroscopic electromagnetic phenomena, relevant constitutive parameters
and boundary conditions, and time-domain and transform-domain formu-
lations. Then some important field theorems are presented. They lead to
insight into the field theory and are necessary for formulating and solving
many problems in electromagnetics. Next, wave equations are formulated
for both fields and potentials in the form of vector Helmholtz equations and
vector wave equations. Methods for solving the various wave equations are
discussed in some detail. The topic of differentiating the weakly singular
volume integrals associated with solutions of the wave equations are con-
sidered for both the scalar and vector cases, leading to a discussion of the
depolarizing dyadic contribution for the electric dyadic Green’s function.
The volume equivalence principle is described, leading to the formulation of
domain integral equations. Surface integral equations are then developed
for perfectly conducting scatterers. The chapter concludes with conditions
under which solutions of the wave equations are unique.

3
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4 1. Electromagnetic Fundamentals

1.1 Maxwell’s Equations

1.1.1 Maxwell’s Equations—Differential Form

Classical macroscopic electromagnetic phenomena are governed by a set
of vector equations known collectively as Mazwell’s equations. Maxwell’s
equations in differential form are

V. D(I‘, t) = ﬂe(r,t),
V. B(r,t) = pm(r,t),

V x E(r,t) = —-g—tB(r,t) — Jp(r,t), (L.1)

VX H(e,1) = 5D, 1)+ L (r,1)

where E is the electric field intensity (V/m), D is the electric flux density
(C/m?), B is the magnetic flux density (Wb/m?), H is the magnetic field
intensity (A/m), p, is the electric charge density (C/m"), J is the electric
current density (A/m?), pn, is the magnetic charge density (VVb/rr13)7 and
J.n is the magnetic current density (V/ m2)7 and where V stands for volts,
C for coulombs, Wb for webers, A for amperes, and m for meters.!

The equations are known, respectively, as Gauss’ law, the magnetic-
source law or magnetic Gauss’ law, Faraday’s law, and Ampére’s law. The
magnetic charge and magnetic current density have not been shown to
physically exist, and so often those terms are set to zero. However, their
inclusion provides a nice mathematical symmetry to Maxwell’s equations.
More importantly, they are useful as sources in equivalence problems, such
as in problems concerning aperture radiation (see, e.g., Chapter 9).

The constitutive equations

D(r,t) = ¢E(r,t) + P(r,t),

B(r,t) = poH(r,t) + poM(r, t), (1.2)

provide relations between the four field vectors in a material medium,
where P is the polarization density (C/ m®), M is the magnetization den-
sity (A/m), € is the permittivity of free space (~ 8.85 x 10712 F/m), and
to is the permeability of free space (=~ 47 x 10~7 H/m), and where F stands
for farads and H for henrys. For dimensional analysis, C = A.-s =F.V
and Wb =V .s=H- A, where s stands for seconds.

The form (1.2) notwithstanding, often the field quantities E, B are con-
sidered the fundamental fields because these are implicated by the funda-
mental Lorentz force law

F=¢(E+vxB)

!Rationalized mksA units are used throughout. For a detailed discussion of units,
see [38].
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where F' is the force on charge ¢, which has velocity v. However, there is
some debate on this issue [1].

The polarization and magnetization densities are associated with elec-
tric and magnetic dipole moments, respectively, in a given material. These
dipole moments include both induced effects and permanent dipole mo-
ments. In free space these quantities vanish.

In general, we will assume, unless otherwise noted, that all of the rel-
evant electromagnetic quantities are continuous and continuously differen-
tiable? at most points in space. If we apply multiple partial derivative
operators to quantities, it will be implicitly assumed that those quantities
are sufficiently differentiable, with the resulting differentiated quantities
being continuous. This allows, among other things, the free interchange
of the order of partial derivative operators® and the application of vari-
ous vector calculus theorems such as the divergence theorem. Additional
smoothness conditions are suggested by the time-harmonic or temporal
transform-domain quantities, as will be discussed later. Certain continuity
requirements are not necessarily expected at the location of sources or at
material boundaries.

In the preceding equations r is the “field-point” position vector r =
Z?:l X;r; in n-dimensional space, e.g., for n = 3 in rectangular coordi-
nates, r = Xz +yy +zz. Generally, a primed coordinate system will denote
the “source-point” position vector, e.g., r' = Xz’ + yy' + zz’. The vector
that points from the source point to the field point is denoted by

R(r,r')=r—-1r =R(r,r)R
with R(r,r’) = |r —r'| = R(r',r) and
R(r,r')=(r—r')/|r —¢| = —R(',1).

An important equation that demonstrates that charge conservation is
embedded in (1.1) is known as the continuity equation. Taking the diver-
gence of Ampere’s law we have

0=V-VXH:V-JE+V-%—?

2A function of one variable is said to be continuously differentiable in an open region
(a,b) if the first derivative is continuous in (a,b). For a function of n variables we
consider the open region 2 C R™ and the generalized partial derivative described on
p. 69.

31f 82 f(z,y)/0z Oy and 02 f(x,y)/dy Bz are both continuous in a region 2, then

0% f(z,y) _ 0% f(z,y)
Ox Jy Oy Oz
throughout that region [11, p. 36]. In fact, it is sufficient that 8 f(z,y)/0z, 0 f(z,y)/dy,
and either 82 f(z,y)/dz 8y or 02 f(x,y)/dy Oz are continuous in § for the equality of
the two second partial derivatives to hold.
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and, upon interchanging the spatial and temporal derivatives and invoking
Gauss’ law, we obtain the continuity equation

v;1+%k-a
Similarly, starting with Faraday’s law we obtain
0pm
V-Jn+—=0.
T o

Conversely, the two divergence equations are not independent equations
within the set (1.1), in the sense that they are embedded in the two curl
equations and the continuity equation. Therefore, in macroscopic electro-
magnetics for w # 0, one may consider the relevant set of equations to be
solved as

0

VX E(r,t) =~ B(r,t) = In(r,0),
Vme)*;D() +3.(r, 1), (1.3)
8pe(m) (I‘, t)

V'Je(m)(rvt):_ ot )
subject to appropriate boundary conditions. For w = 0, the divergence

equations must also be included in (1.3).

1.1.2 Maxwell’s Equations—Integral Form

Starting with the differential (point) form of Maxwell’s equations, an inte-
gral (large-scale) form may be derived. Applying the divergence theorem

/V~A