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Preface 

Purpose 

As the title implies, The Information System Consultant’s Handbook: Systems
Analysis and Design, was written for professional systems analysts, system
designers, and information system consultants. 

The premise is simple. If you are an information system professional,
you often work with existing documentation and are frequently assigned to
a new system development project in midstream, after considerable work
has already been done. In both cases you are likely to encounter unfamiliar
documentation, tools, techniques, and methodologies. The schedule is
(always) tight, so you must quickly get “up to speed” and begin contribut-
ing. This book is written to help you quickly get up to speed. 

Assumed background 

The Information System Consultant’s Handbook: Systems Analysis and Design
assumes that you have a firm grasp of basic information processing technol-
ogy and that you have had some experience analyzing and designing infor-
mation systems. Consequently, you understand the underlying principles.
The material contained in this book builds on those principles. 

Content 

The book is organized into eight parts: 

• Principles 
• Information gathering and problem definition 
• Project planning and project management 
• Systems analysis 
• Identifying alternatives 



• Component design 
• Testing and implementation 
• Operation and maintenance 

Except for Part I, which reviews basic underlying principles, the parts cor-
respond to the primary stages in the system development life cycle. 

Each of the 82 chapters covers a single tool, technique, set of principles,
or methodology and contains the following major topics: 

• Contents –– A list of the chapter’s key topics. 
• Purpose –– A brief, single-paragraph statement of the chapter’s pur-

pose and content. 
• Strengths, weaknesses, and limitations. 
• Inputs and related ideas –– Things you must know before using the

tool; links to other related chapters in this book. 
• Concepts –– Explanations, in-context definitions, examples, and so

on. 
• Key terms –– An alphabetized list of the chapter’s key words with

definitions. 
• Software –– A list of programs and other software resources that sup-

port the tool or technique. 
• References –– Citations, web pages, and suggestions for additional

reading. 

Clearly, it is impossible to fully cover every detail of 82 different sys-
tems analysis and design tools, techniques, principles, and methodologies
in a single volume; complete books have been written on virtually every
topic in this book. In selecting the material to cover, we relied on Pareto’s
law (Chapter 11), sometimes called the 80 : 20 rule. For most tools, tech-
niques, principles, and methodologies, knowledge of a relatively small sub-
set (perhaps 20 percent) of the underlying concepts and terminology is suf-
ficient to understand the lion’s share (perhaps 80 percent) of the topic’s
functionality. Our objective was to identify and clearly explain that crucial
20 percent. 

Features 
The reference value of the book is enhanced by several features, including: 

• Contents in brief –– A list of chapter titles. 
• Detailed contents –– A complete listing of the chapter’s contents at

the beginning of each chapter. 
• Glossary –– A consolidated list of key terms from all the chapters,

with chapter references. 
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• Index 
• Trademarks –– A list of sources for all the software products refer-

enced in this book. 
• Chapter cross-references –– Each chapter contains hyperlink-like refer-

ences to other related chapters. 
• References –– The end-of-chapter references suggest sources for fur-

ther in-depth study of the topic. 

Note that the chapters are written to stand on their own, so, except perhaps
for the specific topics mentioned in Inputs and related ideas, you can go directly
to the material you actually need.

We enjoyed preparing this book. We hope you find it useful. 

1999 by CRC Press LLC



1999 by CRC Press LLC

Authors/editors 
William S. Davis Professor of Decision Sciences and Management
Information Systems, Miami University, Oxford, OH. Professor Davis is the
author of thirty textbooks on various computer-related topics. 

Dr. David C. Yen Department Chair and Professor of Decision Sciences
and Management Information Systems, Miami University, Oxford, OH. Dr.
Yen is an experienced researcher and the author of numerous professional
journal articles. 



1999 by CRC Press LLC

Acknowledgements 
Jerry Papke was responsible for signing this project. Enjoy your retirement,
Jerry. Suzanne Lassandro and Sue Zeitz managed the production process,
and Jane Stark was our marketing manager. Additionally, we would like to
acknowledge the contributions of the rest of the editorial, production, and
marketing staff at CRC Press. 

Portions of this book were derived from or based on three titles previ-
ously published by William Davis: 

• Business Systems Analysis and Design, Wadsworth, Belmont, CA, 1994. 
• Systems Analysis and Design: A Structured Approach, Addison-Wesley,

Reading, MA, 1983. 
• Tools and Techniques for Structured Systems Analysis and Design,

Addison-Wesley, Reading, MA, 1983. 

Finally, we would like to thank the contributors, who are listed on a sepa-
rate page. 

William S. Davis 

David C. Yen



1999 by CRC Press LLC

Contributors 
Dr. John “Skip” Benamati 
Department of Decision Sciences
and Management Information Systems

Miami University 
Oxford, Ohio 

Dr. Bruce L. Bowerman 
Department of Decision Sciences
and Management Information Systems

Miami University 
Oxford, Ohio 

Dr. Michael S. Broida 
Department of Decision Sciences
and Management Information Systems

Miami University 
Oxford, Ohio 

Dr. David C. Haddad 
Professor and Dean 
School of Applied Sciences 
Miami University 
Oxford, Ohio 

Dr. Timothy C. Krehbiel 
Department of Decision Sciences
and Management Information Systems

Miami University 
Oxford, Ohio 

Dr. Neil B. Marks 
Department of Decision Sciences
and Management Information Systems

Miami University 
Oxford, Ohio 



1999 by CRC Press LLC

Richard T. O’Connell 
Department of Decision Sciences
and Management Information Systems

Miami University
Oxford, Ohio 

Dr. Eleni Pratsini 
Department of Decision Sciences
and Management Information Systems

Miami University
Oxford, Ohio 

Dr. T. M. Rajkumar 
Department of Decision Sciences
and Management Information Systems

Miami University
Oxford, Ohio 

Maria Scott 
Software Architects
Columbus, Ohio 

Dan Michael Terrio 
Director 
P&G Center and SBA Technologies 
Richard T. Farmer
School of Business Administration 

Miami University 
Oxford, Ohio 



1999 by CRC Press LLC

Contents 

Part I: Principles 

Chapter 1 The systems development life cycle 
William S. Davis

Chapter 2 Information engineering
David C. Yen and William S. Davis

Chapter 3 Structured analysis and design
William S. Davis and David C. Yen

Chapter 4 Structured requirements definition
David C. Yen and William S. Davi

Chapter 5 CASE
T. M. Rajkumar

Chapter 6 Object-oriented concepts 
William S. Davis

Chapter 7 Expert system analysis and design
David C. Yen and William S. Davis

Part II: Information gathering and problem definition 

Chapter 8 Interviewing
William S. Davis

Chapter 9 Sampling
Michael S. Broida

Chapter 10 Control Charts
Timothy C. Krehbiel

Chapter 11 Pareto diagrams
Timothy C. Krehbiel

Chapter 12 The problem statement
William S. Davis



Chapter 13 The feasibility study
William S. Davis

Chapter 14 Joint application design (JAD)
David C. Yen and William S. Davis

Chapter 15 Problem analysis paradigms
David C. Yen and William S. Davis

Chapter 16 Requirements analysis paradigms
David C. Yen and William S. Davis

Chapter 17 Survey planning and questionnaire design
Bruce L. Bowerman and Richard T. O’Connell

Chapter 18 Cause-and-effect diagrams
John “Skip” Benamati and Timothy C. Krehbiel

Chapter 19 Simulation
Eleni Pratsini

Part III: Project planning and project management 

Chapter 20 Gantt charts
William S. Davis

Chapter 21 Project networks, PERT, and CPM
William S. Davis

Chapter 22 Crash mode analysis
David C. Yen and William S. Davis

Chapter 23 Inspections and walkthroughs
William S. Davis

Part IV: Systems analysis 

Chapter 24 Data flow diagrams
William S. Davis

Chapter 25 The data dictionary
William S. Davis

Chapter 26 Entity-relationship diagrams
William S. Davis and David C. Yen

Chapter 27 Inverted-L charts
William S. Davis and David C. Yen 

Chapter 28 Data normalization
William S. Davis and David C. Yen

1999 by CRC Press LLC



1999 by CRC Press LLC

Chapter 29 Object-oriented methods
T. M. Rajkumar

Chapter 30 State transition diagrams
David C. Yen and William S. Davis

Chapter 31 Prototyping
William S. Davis and David C. Yen

Chapter 32 Rapid application development (RAD)
David C. Yen and William S. Davis

Chapter 33 Warnier-Orr diagrams
David C. Haddad and William S. Davis

Chapter 34 Expert system problem-solving analysis
David C. Yen and William S. Davis

Chapter 35 The requirements specification
William S. Davis

Part V: Identifying alternatives 

Chapter 36 Automation boundaries
William S. Davis

Chapter 37 System flowcharts
William S. Davis

Chapter 38 Cost/benefit analysis
William S. Davis

Chapter 39 Risk-payoff analysis
David C. Yen and William S. Davis

Chapter 40 Business function-task analysis
David C. Yen and William S. Davis

Chapter 41 Competitive procurement
William S. Davis

Part VI: Component design 

Chapter 42 Hardware interface design
David C. Yen and William S. Davis

Chapter 43 Data structures
William S. Davis and David C. Yen

Chapter 44 Traditional file design
William S. Davis



Chapter 45 Database design
John “Skip” Benamati

Chapter 46 Data entry forms and screens
William S. Davis

Chapter 47 Report design
William S. Davis

Chapter 48 User interface design
David C. Yen and William S. Davis

Chapter 49 Dialogue design
David C. Yen and William S. Davis

Chapter 50 Window design 
David C. Yen and William S. Davis

Chapter 51 Web page design
William S. Davis

Chapter 52 Network models
David C. Yen and William S. Davis

Chapter 53 Network analysis
David C. Yen and William S. Davis

Chapter 54 Network routing tools and techniques
David C. Yen and William S. Davis

Chapter 55 Logic (process) flowcharts
William S. Davis

Chapter 56 Nassi-Shneiderman charts
William S. Davis

Chapter 57 Decision trees
William S. Davis

Chapter 58 Decision tables
William S. Davis

Chapter 59 Pseudocode
William S. Davis

Chapter 60 Structured English
William S. Davis

Chapter 61 Process design
David C. Yen and William S. Davis

Chapter 62 Structured program design
William S. Davis

1999 by CRC Press LLC



1999 by CRC Press LLC

Chapter 63 Structure charts
William S. Davis

Chapter 64 HIPO (hierarchy plus input-process-output)
William S. Davis

Chapter 65 Action diagrams
David C. Yen and William S. Davis

Chapter 66 Object-oriented software design
T. M. Rajkumar 

Chapter 67 Knowledge representation
David C. Yen and William S. Davis

Chapter 68 Natural language processing
David C. Yen and William S. Davis

Chapter 69 Customizing commercial software
Dan Terrio and Maria Scott 

Chapter 70 Documentation design
David C. Yen and William S. Davis

Chapter 71 Security
David C. Yen and William S. Davis

Chapter 72 General systems design principles
David C. Yen and William S. Davis

Chapter 73 Real-time system design
David C. Yen and William S. Davis

Part VII: Testing and implementation 

Chapter 74 The test plan
David C. Yen and William S. Davis

Chapter 75 Test data
David C. Yen and William S. Davis

Chapter 76 Implementation
David C. Yen and William S. Davis

Part VIII: Operation and maintenance 

Chapter 77 System controls
William S. Davis and David C. Yen

Chapter 78 Performance analysis
David C. Yen and William S. Davis



Chapter 79 Queuing Theory
Neil B. Marks

Chapter 80 Configuration management
David C. Yen and William S. Davis

Chapter 81 Maintenance
William S. Davis and David C. Yen

Chapter 82 Database administration
John “Skip” Benamati

Glossary
Trademarks

1999 by CRC Press LLC



part one

Principles

1999 by CRC Press LLC



1999 by CRC Press LLC

chapter one

The systems development
life cycle
William S. Davis

Contents

1.1 Purpose
1.2 Strengths, weaknesses, and limitations
1.3 Inputs and related ideas 
1.4 Concepts

1.4.1 Information systems
1.4.2 The system life cycle  
1.4.3 Methodologies
1.4.4 The waterfall method  

1.5 Key terms
1.6 Software
1.7 References

1.1 Purpose
The purpose of a methodology is to specify a set of well-defined steps or
phases, coupled with a set of clear, measurable exit criteria, for solving a
complex problem (such as developing an information system). The system
development life cycle (SDLC) is a set of steps that serves as the basis for
most systems analysis and design methodologies.

1.2 Strengths, weaknesses, and limitations
A methodology (such as the system development life cycle) acts as a memory
aid by imposing discipline, thus reducing the risk that key details will be
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overlooked. Communication is enhanced because the methodology imposes
a consistent set of documentation standards. The steps in the methodology
enhance management control, providing a framework for scheduling, bud-
geting, and project management. The tools associated with a good method-
ology make it easier to solve the problem. Finally, a good methodology
increases the likelihood that significant errors are detected early.

There are dangers associated with using a methodology, however. Some
people become so bogged down in the mechanics of following the steps and
completing the exit criteria that they fail to solve the real problem. (There is
a fine line between discipline and rigidity.) Additionally, no matter what
methodology is chosen, there will be problems for which that methodology
is (at best) inappropriate, and it is a mistake to try to force the application to
fit the tool.

There is always a concern that the system developed may not accurately
reflect the current business environment. The elapsed time between the initial
proposal and system completion can be quite lengthy (often one or more
years). Many methodologies require that specifications be “frozen” as work
progresses from one step to the next, and user requirements do change over
time. Given the fast pace of technology, this problem is particularly acute
with hardware and/or software selected early in the process.

The traditional methodologies are not optimal for developing some
types of information systems, such as expert systems and real-time 
processing systems. Additionally, fourth-generation, fifth-generation, and
objected-oriented languages require modifications to the traditional
approach.

Sometimes management is tempted to believe (or hope) that technology
can replace technical experts. A good methodology makes a competent 
analyst more productive, but no methodology can convert an unskilled,
untrained person into a competent analyst.

1.3 Inputs and related ideas
The system development life cycle provides a framework or structure for
virtually all the tools and techniques discussed in this book.

The system development life cycle implies a phased approach, with
complex tasks decomposed into smaller phases (stages, steps) that are easier
to achieve, control, and manage. Many traditional methodologies, such as
Martin’s information engineering (Chapter 2) and Orr’s structured require-
ments definition (Chapter 4), emphasize the phased approach, with clearly
defined entrance and exit criteria for each individual phase. Practicing ana-
lysts often deviate from the rigidly phased approach defined by the method-
ology, however.

The project management life cycle is similar to the system development
life cycle, with stages or phases defining a schedule and triggering resource
allocations. Note, however, that a given project might encompass several
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related systems, and a given system might be divided into several sequen-
tial or concurrent projects.

1.4 Concepts
A system (Figure 1.1) is a set of interrelated components that function
together in a meaningful way. A system is delimited from its environment
(its suprasystem) by a boundary. A system accepts inputs at its boundaries.
Outputs flow back across the boundaries. A process is an activity that
changes the system in some way. Of particular interest are the interfaces, the
points at which the various systemcomponents communicate or interact. As
a general rule, the more interfaces a system contains, the more complex the
system.

In addition to inputs, processes, interfaces, and outputs, the system also
includes control and feedback mechanisms that together allow the system to
determine if it is achieving its purpose. Feedback is the return of a portion of
the system’s output to its input. If the feedback suggests a deviation from the
expected value (the control), the system reacts by attempting to adjust itself.

1.4.1 Information systems

This book is concerned with the analysis and design of information systems.
An information system is a set of hardware, software, data, human, and

Figure 1.1 A system.
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procedural components intended to provide the right data and information
to the right person at the right time.

1.4.2 The system life cycle

Every system has a life cycle (Figure 1.2). An information system is “born”
when a problem is recognized. After the system is developed, it grows until

Figure 1.2 The system life cycle.

it reaches maturity. Eventually, a change in the nature of the problem or
increasing maintenance costs degrade the value of the system, so it “dies”
and a new or replacement system is born to take its place.

1.4.3 Methodologies
A methodology is a body of practices, procedures, and rules used by those
who work in a discipline or engage in an inquiry. Often, a methodology is
implemented as a set of well-defined steps or phases, each of which ends
with a clear, measurable set of exit criteria. A key purpose of a methodology
is ensuring that nothing is overlooked in the process of solving a complex
problem (such as developing a complex information system).
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1.4.4 The waterfall method

The basis for most systems analysis and design methodologies is the system 
development life cycle or SDLC (Figure 1.3). It is sometimes called the
waterfall method because the model visually suggests work cascading from
step to step like a series of waterfalls. (Note: In reality, there is considerable
feedback between the various steps or phases.)

The first step is problem definition. The intent is to identify the problem, 
determine its cause, and outline a strategy for solving it.

Given a clear problem definition, analysis begins. The objective of analy-
sis is to determine exactly what must be done to solve the problem. Typically,
the system’s logical elements (its boundaries, processes, and data) are
defined during analysis.

The objective of design is to determine how the problem will be solved.
During design the analyst’s focus shifts from the logical to the physical.
Processes are converted to manual procedures or computer programs. Data
elements are grouped to form physical data structures, screens, reports, files,

Figure 1.3 The system development life cycle is sometimes called the waterfall
method.
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and databases. The hardware components that support the programs and
the data are defined.

The system is created during development. (Note: Because the entire
process is called the system development life cycle, some experts prefer to use
other labels, such as system creation, for this stage.) Programs are coded,
debugged, documented, and tested. New hardware is selected and ordered.
Procedures are written and tested. End-user documentation is prepared.
Databases and files are initialized. Users are trained.

Once the system is developed, it is tested to ensure that it does what it
was designed to do. After the system passes its final test and any remaining
problems are corrected, the system is implemented and released to the user.
After the system is released, maintenance begins. The objective of mainte-
nance is to keep the system functioning at an acceptable level.

1.5 Key terms
Analysis — To attack a problem by breaking it into sub-problems. The

second step in the system development life cycle (following problem
definition) during which the responsible people determine exactly
what must be done to solve the problem.

Boundary — An entity that serves to delimit or separate a system from
its environment.

Control — An expected value that can be compared with feedback. If
the feedback suggests a deviation from the expected value (the con-
trol), the system reacts by attempting to adjust itself.

Design — The third step in the system development life cycle (follow-
ing analysis and preceding development) during which the responsi-
ble people determine how the problem will be solved by specifying
the system’s physical components.

Development — The fourth step in the system development life cycle
(following design and preceding testing) during which the system is
created.

Feedback — The return of a portion of the system’s output to its input.
Implementation — The sixth step in the system development life cycle

(following testing and preceding maintenance) during which the 
system is installed and released to the user.

Information system — A set of hardware, software, data, human, and
procedural components intended to provide the right data and infor-
mation to the right person at the right time.

Interface — A mechanism or point of interaction between two or more
system components.

Maintenance — The final step in the system development life cycle
(following implementation) intended to keep the system functioning
at an acceptable level.
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Methodology — A body of practices, procedures, and rules used by
those who work in a discipline or engage in an inquiry. Often imple-
mented as a set of well-defined steps or phases, each of which ends
with a clear, measurable set of exit criteria.

Problem definition — The first step in the system development life
cycle during which the problem is identified, its cause determined,
and a strategy for solving it developed.

Process — An activity that changes a system in some way.
Suprasystem — A system’s environment.
System — A set of interrelated components that function together in a

meaningful way.
System development life cycle (SDLC) — A set of steps for solving

information system problems; the basis for most systems analysis and
design methodologies.

System life cycle — A model that stresses the stages of system useful-
ness. The stages are birth, development, growth, maturity, and death. 

Testing — The fifth step in the system development life cycle (following
development and preceding implementation) intended to ensure that
the system does what it was designed to do.

1.6 Software
Not applicable.

1.7 References
1. Davis, W. S., Business Systems Analysis and Design, Wadsworth Publishing,

Belmont, CA, 1994.
2. Fertuck, L., System Analysis and Design with CASE Tools, William C. Brown

Publishing, Dubuque, IA, 1992.
3. Kendall, K. E. and Kendall, J. E., Systems Analysis and Design, Prentice-Hall,

Englewood Cliffs, NJ, 1992.
4. Laudon, K. C. and Laudon, J. P., Managing Information Systems: A Contemporary

Perspectives, 2nd ed., Macmillan, New York, 1991.
5. Modell, M. E., A Professional’s Guide to Systems Analysis, McGraw-Hill, New

York, 1996.
6. Whitten, J. L., Bentley, L. D., and Dittman, K. C., Systems Analysis and Design

Methods, Richard D. Irwin, New York, 1997.
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chapter two 

Information engineering 
David C. Yen and William S. Davis

Contents

2.1 Purpose
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2.3 Inputs and related ideas
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2.4.1 Strategic requirements analysis
2.4.2 Information analysis
2.4.3 Procedure formulation
2.4.4 Data use analysis
2.4.5 Implementation strategies
2.4.6 Distribution analysis
2.4.7 Physical database design
2.4.8 Fourth-generation language
2.4.9 Program specifications synthesis

2.5 Key terms
2.6 Software
2.7 References

2.1 Purpose 
Initially proposed by James Martin and Clive Finkelstein, the purpose of the
information engineering methodology is to investigate the data and data
relationships among different disciplines, and then organize those data to
match the corporation’s goals and objectives. A user-driven system is then
developed using a top-down approach. 
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2.2 Strengths, weaknesses, and limitations 
The information engineering methodology relates well to the corporate 
mission. The analyst is expected to relate all the essential information system
components and match those functions to corporate objectives before per-
forming data analysis. The link to the corporation’s goals and objectives
adds a high-level, executive, strategic perspective to the methodology. The
methodology has a strong data orientation, leading to clearly-defined and
documented data and data relationships. It enforces data normalization,
which greatly reduces data redundancy and, hence, increases the accuracy
and reliability of the database. 

Information engineering is not a good candidate for designing real-time
systems or systems in which the data have a strong time dimension because
the methodology is based on a static data model. 

2.3 Inputs and related ideas 
The information engineering methodology can be viewed as a special case
of the system development life cycle introduced in Chapter 1. Relevant tools
are covered in problem analysis paradigms (Chapter 15), systems analysis
(Part IV), and component design (Part VI). 

2.4 Concepts 
The steps in the information engineering methodology are summarized in
Figure 2.1. 

2.4.1 Strategic requirements analysis 

During the strategic requirements analysis stage, the responsible personnel
study the corporation’s objectives, access the corporation’s industry and
competitive environment, and examine the corporate-wide impact of the
proposed system. Key tools and techniques are covered in problem analysis
paradigms (Chapter 15) and systems analysis (Part IV). 

2.4.2 Information analysis 

During the information analysis stage, a data model is created. The 
analyst begins by analyzing (organizationally and/or functionally) 
the information gathered during the first stage and further defining the 
system objectives. Next, the system’s data requirements are defined, 
the necessary entities, related attributes, and keys are identified, and the
appropriate data characteristics (length, type, alias, etc.), structure (name,
address, etc.), and relationships are documented in the data dictionary.
Given the data dictionary entries, the data are partitioned and normalized.
Finally, the results are compared with the predetermined system 
objectives. 
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Figure 2.1 The steps in the information engineering methodology. 
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Many of the tools and techniques covered in Part IV can be used to 
perform information analysis, particularly, data flow diagrams (Chapter 24),
data dictionary (Chapter 25), entity-relationship models (Chapter 26), and
data normalization (Chapter 28). 

2.4.3 Procedure formulation 

During this stage, the analyst determines the operational procedures (add,
delete, update, read, write, etc.) implied by data identified in the previous
step. Additionally, physical file attributes (read-only, read-write, etc.) are
identified for the subsequent physical database design step. 

2.4.4 Data use analysis 

During this stage, such data requirements as throughput, turnaround time,
file size, and the number of records in each file are defined. 

2.4.5 Implementation strategies 

Such key decisions as the testing philosophy, hardware and software speci-
fications, development strategy, software make-or-buy decisions, outsourc-
ing/reengineering decisions, and so on are made during this stage. 

2.4.6 Distribution analysis 

Such factors as the management philosophy (centralized versus distrib-
uted), network analysis and design, the need for remote access, and the use
of the Internet are considered during this stage. Such tools as network 
models (Chapter 52) and location connectivity models (Chapter 53) are 
commonly used. 

2.4.7 Physical database design 

As the name implies, the database is designed during this stage (Chapter
45). Other major concerns include screen design and output design
(Chapters 46 through 51). 

2.4.8 Fourth-generation language 

The information engineering methodology recommends that non-procedur-
al, fourth-generation languages (CASE generators, screen generators, report
generators, object-oriented language, html, Java, etc.) be used to develop the
system. 
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2.4.9 Program specifications synthesis 

During the final stage, such details as output specifications (query versus
report), the physical relationships among the various files, and the precise
structure of the menus (icon, abbreviated, and traditional) are defined. 

2.5 Key terms 
Data model — A logical model that emphasizes or is driven by a sys-

tem’s data. 
Data normalization — A formal technique for designing easy-to-main-

tain, efficient logical data structures. 
Data redundancy — The state that occurs when the same data are

stored in two or more different files. 
Fourth-generation language — A programming language that allows

the programmer to describe (in some way) the logical procedure and
then let the language translator determine how to implement it; also
called a nonprocedural language.

Generator — A program that starts with information in graphical, nar-
rative, list, or some other logical form and outputs the appropriate
source code; also called an application generator, code generator or a pro-
gram generator.

Information systems strategy — High-level information system goals
and objectives, often derived from or compatible with corporate goals
and objectives. 

Logical model — A model that exists on paper or in an analyst’s mind.
Logical models are easily manipulated; contrast with physical. 

Make-or-buy decision — A decision to purchase or build internally
software (or some other component).

Outsourcing — Subcontracting work outside the organization. 
Physical — Real; actual, operational hardware, software, or data; con-

trast with logical.
Procedure — Guidelines, rules, or instructions for performing a task.
Reengineering — Rethinking and redesigning business processes. 
Throughput — The amount of work flowing through a process, a com-

ponent, or a system. 
Turnaround time — The time between a request for a service and the

completion of that service. 

2.6 Software 
Not applicable. 
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3.1 Purpose 
”Structured Analysis and Design” is divided into two components: structured
analysis as defined by DeMarco2 and structured design as defined by Yourdon
and Constantine4. Structured analysis is a front-end methodology that allows
users and/or systems analysts to convert a real-world problem into a pictori-
al diagram or other logical representation that can subsequently be used by
the systems developers and/or programmers to design an information sys-
tem. Structured design is concerned with physical design based on the results
of structured analysis. More generally, structured analysis transforms the
abstract problem into a feasible logical design, while structured design con-
centrates on converting the logical design into a physical information system. 

3.2 Strengths, weaknesses, and limitations 
Structured analysis and design may be the best known analysis and design
methodology. It features a top-down, hierarchical approach that tends to
generate well-organized systems. Its step-by-step approach (parallel to the
system development life cycle described in Chapter 1) simplifies project
management, risk management, and resource management. Additionally,
this methodology’s tools and techniques can all be used to support other
methodologies.

Managing and/or controlling the amount of data created by the struc-
tured analysis and design methodology can be time-consuming.
Maintaining, updating, and documenting a complete set of data flow 
diagrams and a complete data dictionary are significant data management
tasks in their own right. The step-by-step design philosophy makes this
methodology inflexible. System and data requirements must be frozen at the
beginning of the life cycle, so the actual systems developed may not reflect
the current data and system requirements. Compared with other method-
ologies, structured analysis and design is not very user-friendly. 

3.3 Inputs and related ideas 
The structured analysis and design methodology can be viewed as a special
case of the system development life cycle introduced in Chapter 1. Relevant
tools include data flow diagrams (Chapter 24), data dictionaries (Chapter
25), decision trees (Chapter 57), decision tables (Chapter 58), structured
English (Chapter 60), and structure charts (Chapter 63). Structured program
design (Chapter 62) discusses the structured design process. 

3.4 Concepts 
Structured analysis and design is divided into two components: structured
analysis as defined by DeMarco and structured design as defined by
Yourdon and Constantine. 



3.4.1 Structured analysis 

The major steps in structured analysis are outlined in Figure 3.1. 

3.4.1.1 Study the current business environment 
The purpose of the first step is to study the old system, perform a market
analysis to analyze the current business environment, perform a functional
end-user analysis to determine the new data requirements, and perform a
needs analysis to determine if a new system is necessary. Many of the tools
and techniques described in Part II are used. 

3.4.1.2 Model the old logical system 
The objective of this step is to construct a logical model that captures the
essence of the current environment by eliminating operational and physical
details. Typically, the logical model consists of a data flow diagram (Chapter
24), a data dictionary (Chapter 25), and other models as appropriate. 

3.4.1.3 Model the new logical system 
Based on the old system model, a new, improved logical model is created.
New user requirements are added, redundant requirements are eliminated
and consolidated, and existing data requirements are updated. Complex
primitives are decomposed into simpler primitives and/or more thoroughly
documented. Finally, the data flows are verified. 

3.4.1.4 Model the new physical environment 
In this step, the necessary physical details are added back to the new logical
design created in the previous steps. As appropriate, design options (hardware,
software, platform, and interface) are identified for each of the primitives.

3.4.1.5 Evaluate alternatives 
During this step, a cost estimate, a schedule, an estimate of resource require-
ments, a cost/benefit analysis, and similar parameters are prepared for each
design option using the tools described in Part V. 

3.4.1.6 Select the best design 
The best alternative is selected using the tools described in Part V. 

3.4.1.7 Create the structured specification 
The purpose of the step is to prepare a recommendation for management’s
approval and to provide documentation for structured design. 

3.4.2 Structured design 

The major steps in structured design are outlined in Figure 3.2. See struc-
tured program design (Chapter 62) for additional depth on many of the 
topics overviewed in this section. 
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Figure 3.1 The major steps in the structured analysis process.
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3.4.2.1 Construct a structure chart 
As the name implies, the purpose of this step is to construct a structure chart
(Chapter 63) that shows the hierarchical relationship and structure of all the
data flows identified during structured analysis. In addition, control flows
are added to the model to facilitate subsequent systems development. 

Figure 3.2 The major steps in the structured design process.
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3.4.2.2 Examine the coupling (interdependency) relationships 
A key objective of structured design is to define loosely coupled, independent
modules. Generally, a module’s degree of independence is inversely propor-
tional to the number of data elements (or composites) that flow between the
module and the rest of the system. Consequently, the focus of this step is to
increase module independence by identifying and restructuring modules
with excessive data flows. 

3.4.2.3 Examine module cohesion 
A second objective of structured design is to define cohesive modules that per-
form a single, complete function. The focus of this step is on combining mod-
ules that perform common functions, consolidating functions to reduce the
number of interfaces, and relocating modules to increase system efficiency. 

3.4.2.4 Refine the structure chart 
Using the results of the previous two steps, a final version of the structure
chart is prepared. 

3.4.2.5 Perform transform analysis 
The purpose of transform analysis is to group together the modules (or
processes) that manipulate a particular set of data or a particular data struc-
ture. For example, the processes that accept inventory transaction data,
modify inventory levels, and update the master inventory data are probably
related. The afferent (input), efferent (output), transform (data modifica-
tion), and coordinate (controlling) modules are identified first. Grouping the
modules to form a control structure might involve designating one module
as the master (promoting a boss) or creating a new master (hiring a new
boss). The subordinate modules are called slaves. 

3.4.2.6 Perform transaction analysis 
The purpose of transaction analysis is to group all modules (or processes)
triggered by the same transaction to form a transaction center. For example,
all the tasks performed in response to the arrival of an order from a supplier
are related. Often, the control center serves as a control module. 

3.4.2.7 Create module specifications 
The primitives defined in the data flow diagram are defined in terms of log-
ical sequence, selection, and repetition blocks. 

3.4.2.8 Package the physical modules 
The key purpose of this step is to ensure that the parent-child relationships
between the modules are preserved when the procedures are grouped to
form physical load modules for efficient execution on a computer. Often, a



procedural analysis is performed to determine which procedures must be
grouped within the same load module to avoid severe execution and/or
testing errors. 

3.5 Key terms 
Cohesion — A measure of a module’s completeness. 
Control flow — The transfer of control into or out from a module. 
Coupling — A measure of a module’s independence; fewer parameters

flowing into or out from a module imply looser coupling. 
Data dictionary — A collection of data about a system’s data. 
Data flow — Data in motion; the transfer of data into or out from a 

module. 
Data flow diagram — A logical model of the flow of data through a sys-

tem. 
Load module — The unit of program logic that is physically loaded

and executed on a computer. 
Logical model — A model that exists on paper or in an analyst’s mind;

logical models are easily manipulated; contrast with physical.
Module — A portion of a larger program that performs a specific task. 
Physical — Real; actual, operational hardware, software, or data; con-

trast with logical.
Primitive — A process (or transform) that requires no further decom-

position. 
Process — An activity that changes, moves, or manipulates data. 
Requirement — An element (process, data, etc.) that must be part of a

system. 
Structure chart — A hierarchy chart on which the data flows and con-

trol flows between modules are traced. 
Structured analysis — A set of tools and techniques intended to trans-

form an abstract problem into a feasible logical design. 
Structured design — A set of tools and techniques intended to convert

a logical design into a concrete information system. 
Transaction — Typically, one occurrence of a business activity; for

example, a single customer order or a single shipment from a suppli-
er; an event. 

Transaction analysis — The act of grouping all modules (or processes)
triggered by the same transaction to form a transaction center. 

Transform analysis — The act of grouping together the modules (or
processes) that manipulate a particular set of data or a particular data
structure. 

3.6 Software 
Not applicable. 
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4.1 Purpose 
Structured requirements specification, a data driven, output-oriented, 
bottom-up methodology, was initially proposed by Orr2 and builds on the



work of Warnier.4,5 The focus of this methodology is designing a system to
provide the right outputs to satisfy the user’s needs. 

4.2 Strengths, weaknesses, and limitations 
The methodology’s output orientation gives it a strong user focus; the objec-
tive is to provide the users with exact data they need to perform their jobs.
The bottom-up approach tends to reinforce the output orientation because
the methodology starts by investigating the necessary outputs, uses those
outputs to determine the data and data structures, and then uses the data
structures to suggest the necessary functions and/or modules. The method-
ology’s tools and techniques, such as Wanier-Orr diagrams (Chapter 33), can
be used to support other systems analysis and design methodologies. 

In part because of the bottom-up orientation, data redundancy is a 
concern. The methodology’s report and/or output orientation can lead the
analyst to overlook such significant design criteria as the business environ-
ment, corporate policy and goals, and upper management philosophy. Also,
this methodology lacks a strategic perspective. 

4.3 Inputs and related ideas 
The structured requirements definition methodology can be viewed as a
special case of the system development life cycle introduced in Chapter 1.
Relevant tools include entity-relationship diagrams (Chapter 26) and
Warnier-Orr diagrams (Chapter 33). 

4.4 Concepts 
Structured requirements specification, a data driven, output-oriented, 
bottom-up methodology, was initially proposed by Orr and builds on the
work of Warnier. 

4.4.1 System outputs 
The methodology is output oriented. It focuses on the system outputs, the
exact data the users need to perform their jobs. More specifically, the 
analyst’s objective is to define:

1. The layouts, formats, volumes, frequencies, and response times of the
system outputs. 

2. The risks, costs, and benefits associated with the system outputs. 
3. The assumptions, constraints, and limitations that restrict and/or

impact the system outputs. 
4. The definitions, attributes, descriptions, and relationships of the data

and the data structures needed to generate the system outputs. 

1999 by CRC Press LLC



4.4.2 The logical definition phase 

The analyst begins by analyzing and designing a logical system and then
specifying the system’s logical requirements. The steps in the logical design
phase are outlined in Figure 4.1. 

4.4.2.1 Define the application context 
The first task is to define a separate entity diagram for each major user. An
entity diagram is a simplified entity-relationship diagram (Chapter 26)
that identifies a major user’s primary data entities (the things about which
data are stored) and shows how those entities are related without regard
for cardinality. 

Next, the individual user entity diagrams are combined to form a
merged entity diagram and eventually an application entity diagram. The
application entity diagram can be viewed as an initial entity-relationship
diagram that does not detail the attributes associated with each entity or
specify the cardinality of the relationships. 

Key objectives of this first phase include establishing a clear boundary
for the proposed application or system and identifying the application’s
internal and external entities. Next, the system’s major functions (the tasks
or processes the system must perform) are defined and translated into
measurable system objectives. The major functions produce the desired
system outputs. Note that the objectives are stated in terms of the required
system outputs. 

4.4.2.2 Define the application functions 
The entities and relationships (the interactions between the entities) are
defined in the entity diagram, but the process details are not yet known.
Thus, the next step is to add process information to the functions implied by
the entity diagram by identifying the mainline functional flow (the primary
logical path) through the system. 

After studying the interrelationship between various entities in the
application entity diagram, the analyst prepares a mainline functional flow
diagram (analogous to an assembly line) to sequentially link all the processes
in the proposed system (Figure 4.2). Key data entities are shown inside doc-
ument symbols, with the related processes listed below. Note (in Figure 4.2)
that once the Customer order is completed, the processes that generate a
Reorder can be performed concurrently with the processes that generate a
Delivery document. 

After the mainline functional flow diagram is completed, the inputs,
outputs, and processes are analyzed and the time frame factor (or execution
frequency) is added to the diagram, yielding a sense of the system’s scope, or
magnitude. (In this methodology, scope refers to input, processing, and out-
put time, not cost, although the methodology does not exclude estimating
system size or cost.) For example, billing is a monthly, process, delivery
occurs daily (or on demand), and so on. 
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Figure 4.1 The steps in the logical design phase.

Figure 4.2 A mainline functional flow diagram.



Given a sense of the mainline functional flow, the complex functions
and/or processes are decomposed into feasible, simple sub-functions.
Decomposition continues until the sub-functions at the lowest level accom-
plish a single task. As part of this process, the logical data structures associ-
ated with the key data entities are defined. The detailed data structures are
further defined in the next stage (Section 4.4.2.3).

Finally, such factors as user needs (output data and form), system objec-
tives (query versus report), and the constraints and/or requirements placed
on the results are used to define the system’s decision support (decision-
making) functions. These less tangible factors are significant when the 
logical data structures developed previously are converted into physical
data structures. 

4.4.2.3 Define the application results 
For each process, a Warnier-Orr in-out diagram (Chapter 33) is prepared and
all the required inputs and outputs are generated. Data layouts for each 
output are determined, samples of the various output forms (including such
specific data as heading, title, date, page number, etc.) are prepared, the out-
put structures are defined, and the logical structures (sequence, selection, and
repetition) implied by the data structures are identified. The data items are
documented in the data dictionary. Finally, during the organizational cycle
analysis step, the report frequency (annually, quarterly, monthly, weekly,
daily, hourly, on demand, and interactive) is defined. 

4.4.3 The physical design phase 

The physical design phase converts the detailed requirements determined
by the logical design phase into a physical specification for developing the
system. The steps are outlined in Figure 4.3. 

4.4.3.1 Determine the constraints 
During this step, system performance requirements (throughput, response
time, and turnaround time) are set; system features such as security, locking,
authentication, control, and audit are specified; and operating/execution
requirements (processing speed and storage space) are defined. 

4.4.3.2 Identify alternatives 
Several alternatives for implementing the system are identified and 
documented. 

4.4.3.3 Perform cost/benefit and risk analysis 
Tangible and/or intangible benefits, costs, and associated risks are identified
for each alternative. Cost/benefit and risk analyses are then performed for
each alternative using the tools and techniques described in Part V. 

1999 by CRC Press LLC



1999 by CRC Press LLC

Figure 4.3 The steps in the physical design phase.

4.4.3.4 Select and recommend the best alternative 
The best alternative is selected and recommended. 

4.4.3.5 Prepare requirements definition document 
A final report containing all analysis and design documents is prepared. 

4.5 Key terms 
Application entity diagram — An entity diagram that combines all 

the user entity diagrams and merged entity diagrams for the entire
application. 



Bottom-up — A methodology that starts with the details and works
upward. 

Cardinality — A measure of the relative number of occurrences of two
entities. 

Data dictionary — A collection of data about a system’s data. 
Data-driven — A methodology or tool that starts with the data and

derives the processes. 
Data structure — A set of related data elements. 
Decision support function — A function or operation that supports

managerial decision making, often based on responding to “what-if”
questions. 

Entity — A thing about which data are stored. 
Entity diagram — A simplified entity-relationship diagram that uses

bubbles instead of rectangles and ignores cardinality. 
Entity-relationship diagram — A model of a system’s data that shows

how the primary data entities are related. 
Function — A meaningful operation or process that produces a desired

result for a proposed system; similar to a process. 
Logical data structure — A set of related data elements that ignores

how the data are physically stored. 
Logical design phase — The phase in the structured requirements def-

inition methodology during which the system’s logical requirements
are defined. 

Mainline functional flow diagram — A diagram that sequentially
links all the processes in a proposed system. 

Merged entity diagram — An entity diagram that combines the lower-
level entity diagrams from two or more major users. 

Output oriented — A methodology or tool that works backward from
the output, through the processes, to the input. 

Physical data structure — A set of related data elements as they are
physically stored. 

Physical design phase — The phase in the structured requirements 
definition methodology during which the detailed requirements
determined by the logical design phase are converted into physical
specifications for developing the system. 

Process — An activity that changes, moves, or manipulates data. 
Scope — In the structured requirements definition methodology, an 

estimate of input, processing, and output time; more generally, size or
magnitude; often, a preliminary estimate of the size or cost of an
information system. 

System objective — A desired function of and/or operation performed
by a proposed system. 

System outputs — The exact data the users need to perform their jobs. 
Time frame factor — A processing cycle; e.g., annually, monthly, daily,

hourly, on demand, and so on. 
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4.6 Software 
The diagrams in this chapter were prepared using Visio. Other charting 
programs (such as Micrografx’s Flowcharter and SPSS’s allCLEAR) and
most paint programs can be used to create Warnier-Orr and related 
diagrams. Some CASE tools support this methodology. 
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5.1 Purpose 
The analysis, design, development, testing, and maintenance of software are
complex processes that must be managed and controlled. Computer aided
software engineering (CASE) is a technology that aids in this process. CASE
can be broadly defined as a set of automated tools that assist in the entire
software engineering process. Properly used, CASE tools help improve pro-
ductivity during the development process and the quality of the resulting
system. 

5.2 Strengths, weaknesses, and limitations
The major benefit attributed to CASE is improved productivity. When used
properly, CASE significantly reduces development time. A major reason is
automation. CASE replaces many tedious manual procedures with auto-
mated tools. 

Another major benefit of CASE is improved quality. CASE tools help
enforce style conventions, validate syntax, perform consistency checks
across models, generate highly maintainable code, and improve quality.
CASE can also be used to track the progress of a project and maintain trace-
ability from analysis, through design and implementation. 

CASE aids in managing the ripple effects that result from a change to a
model. In response to a change, CASE makes the necessary changes in all
affected models, so the analyst does not have to redraw the diagrams.
Consequently, the analyst is more likely to try more alternatives and develop
better solutions. 

A secondary benefit of CASE is better documentation because the sys-
tem makes it easy to create, assemble, and maintain high quality documen-
tation. Because of improved system quality and better documentation, using
CASE often results in reduced software maintenance costs. Also, CASE docu-
mentation provides a new form of corporate memory that survives staff
changes and the limits of paper documentation. 

Some CASE tools are based on a specific methodology or do not support
the modeling conventions required by a given project. As a result, they
sometimes force the users to adopt and use the approach imposed by the
CASE tool. It is the analyst’s responsibility to choose the right tool for the
application. The application should not be forced to fit the tool. 

While most research indicates that CASE helps in the development
process and improves productivity, various studies have shown that CASE
is often not used uniformly across the organization, is used by only one
group, or is never used.5 A possible reason is that the perceived complexity
outweighs the advantages of using the CASE tool. Given proper training, if
users perceive that CASE tools provide them a relative advantage they are
likely to use them voluntarily. Also, management commitment and support
is essential. 
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The benefits of using CASE are rarely achieved unless the CASE tools
are implemented correctly and managed carefully. CASE is not an end in
itself. The real goal is not a successful CASE implementation, but the
improvement of the software development process. Without continuous
improvement in the software development process, CASE may be more
detrimental than beneficial.2

Successfully implementing CASE tools requires that a structured or
object-oriented systems methodology be in place. The CASE tool is used to
facilitate the chosen business methodology, not to replace it. Unless the 
organization realigns its CASE technology goals with its business goals, the
results are likely to be disappointing. 

5.3 Inputs and related ideas 
CASE incorporates and integrates many of the tools described in Parts III,
IV, V, and VI. CASE tools are sometimes used during the information 
gathering and problem definition stage, particularly to support conducting
a feasibility study (Chapter 13) or a JAD session (Chapter 14). 

Unlike CASE, a programming environment supports programming
activities and provides little or no support for analysis and design. 

5.4 Concepts 
CASE is a mechanism for automating system development methodologies.
CASE tools typically: 

• Support the notation conventions of a specific development method
and enforce the method’s rules. 

• Support teams of analysts and designers working together on a 
project. 

• Allow the user to navigate freely between different models and sup-
port automatic transformations from one stage to the next where
appropriate. 

• Support activities across the life cycle, from requirements to code. 
• Support maintenance of traceability and configuration management

information to help management control the development process. 
• Support checking and testing the internal consistency of models. 
• Support testing to ensure that a model is consistent with the real-

world problem it represents. 

5.4.1 CASE architecture 

CASE is an environment that supports the software engineering process. The
environment usually consists of distinct tools, such as editing tools, program-
ming tools, verification and validation tools, configuration management tools,
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Figure 5.1 A standard CASE architecture.

metrics and measurement tools, project management tools, housekeeping
tools, reengineering tools, and miscellaneous tools.3 These tools are linked via
the central repository, the most critical component in a CASE environment.
Figure 5.1 shows a standard CASE architecture. 

5.4.1.1 Editing tools 
Editing tools include traditional tools (such as word-processing and pro-
gramming editors) that help in creating documentation and diagramming
tools that provide graphical capabilities such as drawing a data flow diagram
(Chapter 24), entity-relationship diagram (Chapter 26), or class-structure
diagram (Chapter 29). 

5.4.1.2 Programming tools 
Coding and debugging tools are the standard tools used to compile (or inter-
pret), run, and debug a program. Code generators are tools that write code
from a high-level specification of an application. For example, in an object-
oriented application a code generator might write the code for the class
given the object-class diagrams. In a visual programming environment, a
code generator might write the code for the underlying interface given a user
interface. Restructuring tools help in analyzing and reformatting existing
code by removing unnecessary go-to statements or other unreachable 
portions of code. 



5.4.1.3 Verification and validation tools 
Verifiers ensure that the syntax is correct. Validation tools ensure that the
requirements are correct and the product functions are the functions desired
or requested by the customer. 

Within this classification is a variety of tools. Static analyzers generate
cross-references, check for syntax, and enforce standards on a program 
without executing the code. Dynamic analyzers, such as tracers and profilers,
monitor program execution. Comparators check for differences or similarities
between files; they are used for checking test output and expected program
results. Correctness proof assistants support formal techniques to help prove
mathematically the correctness of the code and evaluate the consistency
between the code and the specification. Test management tools (Part VII)
include test case generators that generate a variety of input test data based on
the test criteria and the program’s input data structures. They also include
tools to manage the results, verify checklists, and run regression checking. 

5.4.1.4 Configuration management tools 
Configuration management tools help coordinate and manage software
development. Version management tools help maintain the various versions
of code and ensure that the correct copy of the code is incorporated in 
subsequent work. Librarians control the checkin and checkout of software
from the repository. 

Building an application involves preprocessing, compiling, and linking
a variety of software components. Configuration builders ensure that the
correct version of each component or piece of software is included in the 
finished product. These tools become critical when the same product is
being built for different target platforms such as Unix or Windows because
they keep track of the components used for each target platform. 

When changes are made to one software component, other components
are affected. If a given component is used in multiple software projects or by
multiple designers or developers, then the changes must be synchronized
across all developers and projects to ensure that all products continue to
work correctly. Change control monitors help with this synchronization. 

5.4.1.5 Project estimation and management 
Developers and planners have expressed concern over their inability to
accurately predict costs and estimate efforts, human resource requirements,
and project duration. CASE provides modules that can help in the estima-
tion process. For example, the COCOMO model (constructive cost model)1

is integrated into some CASE software. Function point models are common,
too. The scope of the necessary effort can be estimated by counting the num-
ber of business activities called function points. The basic idea is to deter-
mine problem complexity, code complexity, and data complexity so that a
reasonable estimate can be derived. 
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Typical project management tools enable managers to create and use
detailed work plans for resource allocation, identify and track task depen-
dency relationships, implement project tracking, maintain charge-back allo-
cations, and create PERT (Chapter 21) and Gantt (Chapter 20) charts. 

A third sub-class of project management tools (email, bulletin boards,
shared whiteboards) supports group work and may include tools to record
various decisions taken during the system development process. 

5.4.1.6 Reengineering tools 
Legacy code (for example, old programs that must be modified for Year 2000
compliance) often lack structure, and in some cases, the source code may not
even exist. Reengineering is the process of revising application software
using a CASE tool. With reverse engineering, the existing application soft-
ware is studied to understand its design. Forward engineering involves a
complete redesign of the system to take advantage of new technologies such
as client server computing. 

CASE provides several tools to support reverse engineering.
Documenters read the program code and generate high-level information
about the system, such as cross-referencing information. Restructurers
change the unstructured code into something more structured. Analyzers
evaluate the strength and weaknesses of the system. Diagrammers read
database code and generate such graphical tools as hierarchy diagrams
(Chapters 62, 63, and 64) or entity-relationship diagrams (Chapter 26). To
support forward engineering, CASE provides standard software develop-
ment life cycle tools for redesigning the existing system. 

5.4.1.7 Metric tools 
Metric tools collect data on programs and program execution; for example,
evaluating a set of code based on such metrics as McCabe statistics. Other
tools are used to gather program run-time statistics. 

5.4.1.8 Housekeeping tools 
Housekeeping tools generate user accounts, generate and control repository
access privileges, implement backup and recovery, and perform other
housekeeping functions. 

5.4.1.9 The repository 
All the tools are integrated via the repository. The repository is a holding
area for storing and integrating diagrams, descriptions, specifications, test
data, and other items relevant to the development process. The repository
allows users and developers to share information, supports team-based
developmental activities, provides a mechanism for integrating a diverse set
of CASE tools, and maintains a secure source of storage for software
resources. 
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Additionally, the repository maintains information about the interrela-
tionships between the various (logical and physical) models, and even with
models related to implementations outside the repository (such as within
programs). For example, if a logical definition of a process is related to its
implementations, a repository can search for and retrieve all the implemen-
tations (programs, etc.) of that process in the MIS application environment. 

Repository models must be open and extensible (in other words, they
must accommodate other vendors’ tools). The market is currently moving
toward standardization, and CASE vendors are starting to provide hooks to
allow their models to be stored in other vendors’ repositories. For example,
Rational’s CASE tool allows the import and export of their models to
Microsoft’s repository product. Vendors are also starting to provide access to
the data in their repositories via the World Wide Web. 

Typically a separate repository is maintained for each project and a cen-
tral repository maintains the details for all projects. Version control software
is used to check in and check out the various project repositories from the
central repository. 

5.4.2 Workbenches 

Integration in a CASE environment takes place along four dimensions4.Data
integration ensures that the data are managed in a consistent manner across
the entire environment. Control integration allows for combining the 
various tools and functions according to the needs of the project and the
environment it supports. Presentation integration allows the users to see a
consistent interface across the entire tool spectrum. Process integration
ensures that tools interact effectively in support of a specific process. 

Workbenches provide integration for only a portion of the system devel-
opment life cycle. Upper CASE tools support the earlier phases (problem
definition, analysis, and design), but provide little or no support for the back
end (code generation, implementation, etc.). Lower CASE tools support the
design, implementation, testing, and maintenance phases of the system
development life cycle (in general the back end). Typical lower CASE tools
include application generators for dialogue design, screen painting, code
generation, etc. They provide little or no support for the earlier phases of the
development life cycle. Both upper and lower CASE tools work in conjunction
with implementational or programming workbenches (editors, compilers,
debuggers, test tools, etc.). 

5.4.3 Object-oriented CASE tools 

Object-oriented CASE tools6 support diagramming techniques for such
basic object-oriented concepts as classes, inheritance, etc. (Chapter 6). Code 
generation and integration with other repositories and tools is also essential.
Many CASE tools support the unified modified language (UML) notation
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(Chapter 29). The UML, a standard approved by the Object Management
Group, integrates the notation used in various object-oriented methods such
as Booch, OMT, or Objectory (Chapters 29 and/or 66) into a single object-
oriented modeling language. 

An object orientation requires changes in the way CASE tools operate,
however. For example, a CASE code generator must not only generate
object-oriented code in languages such as C++ or Java, but also allow for
modification of such code by the programmer. Any programmer modifica-
tions must be synchronized with the underlying diagrams, so the CASE tool
must have the ability to maintain bi-directional synchronization between the
graphical models and the generated code. In other words, the code, whether
generated by the CASE tool or the programmer, must be integrated with the
CASE tool. 

Object-oriented CASE tools must support consistency checks and pro-
vide error checking capabilities. If the CASE tool is to perform error checking,
it must support encapsulation, inheritance, message passing, and other
object-oriented characteristics (Chapter 6), and users must be able to view an
object on screen, and not rely simply on the diagramming techniques. 

Browsing capabilities and the need to hide and reveal portions of the
model are unique to object-oriented CASE tools. Browsing is essential
because object-oriented development stresses reuse, which means the
designer must find potentially reusable classes rather than reinventing the
wheel. Reuse librarian software (a library of components and query retrieval
mechanisms) helps retrieve software components for reuse. 

Much of this browsing does not fit such standard techniques as search-
ing by keyword. Various object-oriented CASE tools are intended to help the
analyst or designer visualize and understand the abstraction and specializa-
tion process during class definition and classification. For example, the 
analyst might browse through a hierarchy or might wish to determine all
classes that use a specific class or all the component classes in a given class. 

To make the browsing process more effective, the analyst might want to
hide or expand certain details. For example,6 the analyst may require that
the CASE tool support hiding or revealing the attributes or operations in an
object class, the relationships between object classes, parameters of messages
between object classes, or sequences of messages between a specified group
of collaborating object classes 

5.4.4 CASE environments 

The term environment is reserved for the complete set of automated facili-
ties (such as the operating framework) required to support all the activities
in the systems development life cycle, including facilities that allow users to
switch easily from one activity to another. An environment must support
reusability of tool components, ease of tool integration, prototyping, and
support for system development life cycle activities in big multi-user, multi-
project software environments. 
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An environment must be extensible. New tools are likely to emerge 
during the lifetime of the CASE product, and the environment must be capa-
ble of augmenting its tool capabilities and integrating the new tools easily.
Extensibility is more easily achieved when the environment is open. An
environment must also support interconnectivity, the smooth integration
and maintenance of multiple users working on various projects over a 
network. The infrastructure needed to provide extensibility and intercon-
nectivity exceeds the capabilities of the base operating system. 

Examples of environments include IBM’s AD/Cycle and Digital
Equipment Corporation’s Cohesion. These two environments provide basic
tools, workbenches, and an integrating platform that lets other companies
enrich the environment with additional products or tools. 

5.5 Key terms 
CASE (computer-aided software engineering) — A set of automated

tools that assist in the entire software engineering process. 
Environment — A collection of tools and workbenches that support the

entire software process. 
Forward engineering — Completely redesigning a system to take

advantage of new technologies such as client server computing. 
Lower CASE — A set of tools that support the design, implementation,

testing, and maintenance phases of the system development life cycle
(in general the back end). 

McCabe statistics — A complexity metric based on a count of the number
of decisions in a program. An indicator of the testability and maintain-
ability of software. 

Reengineering — The process of revising application software using a
CASE tool. 

Repository — An integrated holding area where diagrams, descriptions,
specifications, test data, and other items are stored and integrated. The
repository is the most critical component in a CASE environment. 

Reverse engineering — The process of studying the existing application
software to understand its design. 

Tool — Software that supports a specific task in the software development
process. 

Upper CASE — A set of tools that support the earlier phases (problem
definition, analysis, and design) of the system development life cycle. 

Workbench — A single application that integrates several tools, providing
a consistent user interface, consistent invocation of tools and tool-sets,
and access to a common data set from a repository (data integration). 

5.6 Software 
Several software companies and their CASE products are listed in Table 5.1.
This list is by no means comprehensive nor does it represent the author’s
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recommendations. For a more up-to-date list, please visit one of the follow-
ing World Wide Web sites: 

1. http://www.qucis.queensu.ca/Software-Engineering/vendor.html 
2. http://www.yahoo.com/Business_and_Economy/Companies/

Computers/Software/Programming_Tools/Computer_Aided_
Software_Engineering__CASE/

Note: In the second URL, there are two underline characters ( __ ) between
Engineering and CASE. 
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Table 5.1 A Representative List of CASE Products

Company Products

Microsoft Visual Modeler, Visual
Source Safe 

Rational Rational Rose 
Digital Equipment Corp. Cohesion 
Intersolv Excelerator II, PVCS 
Andersen Consulting Foundation 
Sterling Software Composer 
Popkin Software System Architect 
Hewlett Packard Softbench 
Oracle Designer 
PowerSoft Power-Designer 
LogicWorks ERWIN, BPWIN, OOWIN
IBM CMVC, AD/Cycle 

http://www.qucis.queensu.ca/Software-Engineering/vendor.html 
http://www.yahoo.com/Business_and_Economy/Companies/Computers/Software/Programming_Tools/Computer_Aided_Software_Engineering__CASE/
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6.1 Purpose 
The objective of the object-oriented approach to software development is to
support creating software that is easier to change, debug, and maintain than
is traditional software. Today, object-oriented principles are also applied to
system development. 

6.2 Strengths, weaknesses, and limitations 
The object-oriented approach offers many advantages over traditional soft-
ware (and system) development. Object-oriented software and systems are
intuitive. Objects are things that really exist, events are things that really 
happen, and real-world objects really do respond to something like signals. 
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Object-oriented software and systems are easier to change, debug, and
maintain than are traditional structured software and systems because they
are highly modular. Because the modules reflect natural classifications, they
tend to be more independent and more stable than the somewhat arbitrary
modules suggested by traditional structured techniques. Because data and
methods are grouped in the same object, ripple effects are isolated and thus
easier to trace. 

The object-oriented approach to software development supports
reusable code. The principle of reusability is imbedded in the theory that
underlies object-oriented software. 

Object-oriented software is often less efficient than structured software
on traditional single-processor computers. Note, however, that object-
oriented software may actually be more efficient on the parallel systems that
are evolving. 

More significantly, relatively few programmers are trained in the object-
oriented approach, leading to personnel shortages, and adding to software
development expense. Current academic curricula are beginning to stress
object-oriented software, however, so this problem may grow less severe
given time. 

6.3 Inputs and related ideas 
Object-oriented analysis is discussed in Chapter 29. Object-oriented soft-
ware design is discussed in Chapter 66. 

6.4 Concepts 
An object is a thing about which data are stored and manipulated. It might
be a physical thing such as a person, a customer, a book, or an item in inven-
tory. It might be an abstract thing such as a model, a concept, or a process.
Unlike many technical terms, the word object means what people intuitively
think it means. 

6.4.1 Objects and object types 

To avoid being swamped by the sheer number of objects, similar objects are
grouped to form classes or object types. Classifying or grouping objects
makes it easier to track them. 

An individual object is a single instance (or occurrence) of an object class
(or object type). For example, a given computer (the object itself) has a
unique serial number. That particular computer is but one instance of a
given model. Moving up the classification hierarchy, a store might distin-
guish between tower, desktop, laptop, and hand-held computers. Finally,
computers, printers, boards, software, supplies, books, and services clearly
represent different categories. 
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6.4.2 Encapsulation 

Both data (attributes) and methods (processes) are associated with an object.
For example, an item in inventory might be described by listing such attri-
butes as its product code, a brief description, its selling price, and so on. A
method is a process that accesses an object. For example, associated with a
given product in inventory are methods for placing it in inventory, changing
one of more of its attributes, removing it from inventory, and so on. Methods
define how the object’s data are manipulated. 

In an object-oriented program, an object’s data and methods are bun-
dled so that the only way to access the data is through the object’s own
methods. Hiding implementation details in this way is called encapsulation.
The only way other objects can obtain a given object’s data is through one of
that object’s own methods. 

6.4.3 Signals 

Because the objects in a well-designed object-oriented system are encapsu-
lated, they are isolated from each other and changes to one object cannot
inadvertently affect others. Objects do not exist in a vacuum, however. They
interact with other objects by transmitting and responding to signals. 

Signals are generated by events. An event occurs when an object’s state
changes. A change in state usually implies a change in the value of one of the
object’s attributes. The only way to change an attribute is through one of the
object’s own methods, so events imply methods. 

An operation is an external view of an object that can be accessed by
other objects. An operation is implemented by one of more methods. In
effect, an operation is a method (or methods) that responds to or generates
external signals. 

Note that a given event does not direct its signal to a specific target
object. Instead, the initiating event simply broadcasts the signal. Other
objects might respond to the signal or ignore it, but the source object neither
knows nor cares. In this case, indifference implies independence. 

6.4.4 Inheritance 

A Mazda Miata can be described as a small, sporty, two-seat automobile.
Because it is a type (subclass) of automobile, all the attributes the Miata
shares with other automobiles (four wheels, an engine, a cooling system,
methods for propulsion, steering, and stopping) can be assumed. 

Moving down another level, a specific Mazda Miata (an object) can be
described in terms of the attributes that make it unique (red, convertible
top, serial number), and the attributes it shares with other Miatas (small,
two seats, sporty) can be assumed. In effect, each subclass borrows (or
inherits) attributes and methods from its superclass. This concept is called
inheritance. 
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6.4.5 Polymorphism 

A given operation or method is considered polymorphic if it produces sim-
ilar results in different objects or at different levels. For example, a customer
sale, a customer return, the arrival of a shipment, and the completion of a
physical inventory are all events that can change the value of the inventory
stock-on-hand for a given object type. The general structure of the invento-
ry update method might be inherited from the highest-level class, and then
customized for each of these special cases. 

6.5 Key terms 
Class (object type) — A group of similar objects. 
Encapsulation — Hiding implementation details by bundling an

object’s data and its methods so that the only way to access the data
is through the object’s own methods. 

Event — An occurrence that generates a signal. 
Inheritance — The principle that allows an object to get attributes and

methods from its superclass. 
Method — A process that accesses an object. 
Object — A thing about which data are stored and manipulated. 
Object type (class) — A group of similar objects. 
Operation — An external view of an object that can be accessed by

other objects. 
Polymorphism — The property of an operation or method that allows

it to produce similar results in different objects or at different levels. 
Signal — A message that allows objects to interact with other objects. 
State — A set of attribute values for an object. 

6.6 Software 
Not applicable. 

6.7 References 
1. Budd, T., An Introduction to Object-Oriented Programming, Addison-Wesley,

Reading, MA, 1991. 
2. Davis, W. S., Business Systems Analysis and Design, Wadsworth, Belmont, CA,

1994.
3. Martin, J. and Odell, J. J., Object-Oriented Analysis and Design, Prentice-Hall,

Englewood Cliffs, NJ, 1992. 
4. Winblad, A. L., et al., Object Oriented Software, Addison-Wesley, Reading, MA,

1990.
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7.1 Purpose 
An expert system (or knowledge-based system) is a computer program that
emulates the thought process of a human expert. This chapter defines sev-
eral key terms and examines the process of creating an expert system. 



1999 by CRC Press LLC

7.2 Strengths, weaknesses, and limitations 
Expert systems differ in important ways from both conventional informa-
tion systems and systems developed in other branches of artificial intelli-
gence. Among the characteristics that make expert systems distinctive are
symbolic representation, symbolic reasoning, natural language processing,
heuristics search, and reasoning processing capabilities. 

Expert systems are valuable in applications that call for judgment and
inference based on incomplete data. They are particularly good at extracting
the best alternatives from a long list of options. Over time, as users interact
with an expert system, the system senses patterns in those interactions,
incorporates the new knowledge into its knowledge base, and, in effect,
learns. 

Perhaps most importantly, an expert system captures and stores exper-
tise in a permanent, consistent, affordable, well-documented, easily trans-
ferred form. In contrast with artificial expertise, human expertise is perish-
able, difficult to transfer and document, unpredictable, and expensive. 

In the medical field, expert systems are used to screen patients, provide
second opinions, and check the accuracy of a diagnosis. Geologists use
expert systems to help locate oil and mineral deposits. Business expert
systems support such tasks as training, capital resource planning, loan
application analysis, and strategic planning. Telephone companies use
expert systems to route telephone traffic during peak hours and to suggest
the best type of phone service for their business customers. Computer man-
ufacturers use expert systems to help configure computer systems. “Smart”
bombs are guided by expert systems. 

Generally, expert systems should be considered only when the need for
judgment and/or the lack of complete data make traditional algorithm-
based systems unacceptable. Expert systems are difficult to create.
Identifying the necessary inference rules depends on the cooperation of an
expert, and even experts sometimes behave as they should (rather than as
they normally do) while under observation. Creating an expert system is an
open-ended process that is difficult to manage using such traditional tools
as budgets and schedules. Additionally, expert systems can be expensive to
operate and maintain. 

7.3 Inputs and related ideas
The process of creating an expert system parallels the system development
life cycle introduced in Chapter 1. Developing an expert system implies
developing a prototype (Chapter 31). Selected knowledge engineering and
problem solving tools are discussed in Chapter 34. Knowledge representa-
tion is discussed in Chapter 67. Prototyping techniques (Chapter 31) are
often used to develop an expert system. 
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7.4 Concepts 
An expert system (or knowledge-based system) is a computer program that
emulates the thought process of a human expert. 

7.4.1 Expert system components 

An expert system (Figure 7.1) is built around a rule base that incorporates
knowledge, algorithms, and heuristic rules. The process of creating a rule
base begins with a human expert whose expertise is captured, encoded by a
knowledge engineer, and entered through a knowledge acquisition facility.
In addition to the rule base, most expert systems also incorporate a database,
a model base, and a graph base. 

A user accesses the system through a user interface called the expert sys-
tem shell and enters the parameters of a problem to an inference engine.
Often, the expert system shell incorporates natural language processing. The
inference engine uses the input parameters to access the rule base, the data-
base, the model base, and the graph base. Based on the available information
and its reasoning capability, the inference engine reaches a conclusion and
offers expert advice. Most expert systems also contain an explanation 
facility that reproduces the logic the inference engine followed to reach its
conclusion. 

Figure 7.1 The components of an expert system.
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7.4.2 Creating an expert system 

The steps in a typical expert systems analysis and design methodology are
summarized in Figure 7.2. 

7.4.2.1 Identification phase 
The first step in the identification phase, Identify problem, is similar to the
problem definition phase in the traditional systems development life cycle.
The objective is to identify, characterize, and define the problems the system
will be expected to solve and then partition the problem into appropriate
sub-tasks. 

Figure 7.2 The steps in a typical expert systems analysis and design methodology.



Once the problem is defined, the resources necessary for acquiring
knowledge, implementing the system, and testing the system are identified.
Typical resources include knowledge, time, computing facilities, and money.
Because expert systems are expensive and creating one takes considerable
time, a feasibility study (Chapter 13) is often conducted before work pro-
gresses beyond this point. 

In addition to identifying resources, the expert system analysts and/or
designers also identify the system’s goals and objectives. It is helpful to
identify and explicitly document the goals because certain design ap-
proaches, such as heuristic search, breadth search, depth search, and rea-
soning are goal-driven. 

7.4.2.2 Conceptualization phase 
The central task of the conceptualization phase is to diagram the system’s
key concepts and relations to define a conceptual base for a prototype 
system. Key objectives include separating the inference engine from the
problem domain, factoring (analyzing) the problem into meta-problems,
identifying the system’s key concepts and relations, and testing those 
concepts and relations by challenging them (with specific examples of 
problem-solving activities) to ensure that they cover every general case.
Many of the tools and techniques described in Part II are used in this
phase. 

7.4.2.3 Formalization Phase 
The formalization phase involves mapping key concepts, sub-problems,
and information flow characteristics isolated during conceptualization into
more formal representations based on various knowledge engineering and
problem solving tools (Chapter 34) and knowledge representation frame-
works (Chapter 67). The key objectives are to identify the solution space (a
domain with a collection of all possible solutions), the hypothesis space (the
hypothetical solution space), the underlying model, and the characteristics
of the data. 

To define the structure of the hypothesis space, the systems analysts or
designers must formalize the concepts (knowledge in an abstract format
that can be used to guide a searching or reasoning process) and determine
how they are joined to form a hypothesis. The concepts provide clues
about the nature of the space such as if it is finite, if a hierarchy must to be
considered, if certain levels of abstraction can be applied, and if a specific
class of the concept must be generated. Such searching techniques as blind
search, heuristic search, and abstracting the solution space (Chapter 34) are
often used. Reasoning techniques such as assumption building, justifica-
tion building, and the constraints and goal technique (Chapter 34) help to
identify the underlying model of the process used to generate solutions in
the domain. 
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7.4.2.4 System design phase 
During the system design phase (sometimes called the logical design phase)
the analyst and/or designer specifies how the system will meet the require-
ments identified during the previous three phases. Typically, the reports and
other outputs the systems must produce are defined first. This phase is sim-
ilar to the design stage in the traditional systems development life cycle.
Note, however, that the representation schemes used to describe knowledge
(Chapter 67) differ from traditional methodologies. 

7.4.2.5 System development phase 
A prototype (Chapter 31) expert system is created during the system devel-
opment (or physical design) stage. This stage is similar to the development
stage in the traditional system development life cycle. 

7.4.2.6 Testing and evaluation phase 
During this phase, the prototype system is evaluated. This phase parallels
the testing stage in the traditional system development life cycle. However,
in addition to the testing tools and techniques described in Part VII, expert
systems utilize a dynamic testing technique to verify the reasoning and/or
inference process. 

7.4.2.7 Prototype revision phase 
An expert system evolves over time, calling for almost constant revision, a
trait expert systems share with most prototypes. Based on the results of the
testing/evaluation phase, concepts and relations are refined, the solution
space, the model, and the data characteristics are reformalized, and the sys-
tem is redesigned. 

7.5 Key terms 
Breadth search — A searching technique that investigates all the nodes

at a given level before moving down to the next level. 
Concept — Knowledge in an abstract format that can be used to guide

a searching or reasoning process. 
Depth search — A searching technique that investigates all lower-level

nodes before considering the next node at the same level. 
Domain — A possible problem space in which searching or reasoning

techniques can be applied. 
Expert system (knowledge-based system) — A computer program

that emulates the thought process of a human expert. 
Expert system shell — The user interface to an expert system. 
Explanation facility — An expert system component that reproduces

the logic the inference engine followed to reach its conclusion. 
Factoring — A technique for grouping several sub-problems into a

meta-problem. 
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Graph base — A database with a collection of graphs or graphing tools;
for example, most graphic software implements a graph base of cus-
tomized symbols or pictures. 

Heuristic rule — A specific rule of thumb or common sense that can be
used to restrict a search to a subset of a problem domain. 

Heuristic search — A search technique that applies heuristics to reduce
the size of a problem domain. 

Heuristics — General rules derived from experience, common sense,
inferences, and intelligent trial and error. 

Hypothesis space — A mathematical term for a space that is defined
abstractly; generally, the subset of a solution space to be considered. 

Inference engine — The component of an expert system that uses input
parameters to access the knowledge base, reach a conclusion, and offer
expert advice. 

Knowledge acquisition facility — Aset of software tools for capturing and
encoding a human expert’s expertise and creating a knowledge base. 

Knowledge base — A collection of data, algorithms, and heuristic rules
that forms the core of an expert system. 

Knowledge engineer — A person who captures and encodes a human
expert’s expertise and creates a knowledge base. 

Machine learning –– The capacity of a machine (or an expert system) to
“learn” from experience. 

Meta-problem — A problem that is synthesized or generalized from sev-
eral lower level sub-problems. 

Model base — A collection of models that support decision making
and/or data analysis; an example is a collection of different forecasting
models. 

Natural language processing — Hardware and/or software that allows
people to communicate with computers in much the same way they
communicate with other people. 

Partition — To decompose a large problem into several smaller problems. 
Prototype — A reasonably complete, working model of a system. 
Reasoning — The act of using inference to lead to a conclusion based on

existing knowledge and/or data. 
Reasoning capability — An inference engine feature that reaches a con-

clusion by applying the rules in the rule base. 
Relation — An association or link between two objects or entities. 
Rule — A formal specification or description of a unit of knowledge. 
Rule base — A collection of executable rules; the rule base is accessed by

the inference engine to support reasoning. 
Solution space (problem space) — A mathematical term for the set of all

possible solutions. 
Symbolic reasoning — A technique for performing reasoning or infer-

ence with symbolic data such as graph, image, and/or picture. 
Symbolic representation — A technique for representing symbolic

data or knowledge. 
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7.6 Software 
LISP (list programming language) and PROLOG (programming logic lan-
guage) are popular expert system programming languages. Variations
include common LISP, Franz LISP, CProlog, Knowledge Workbench,
Quintus Prolog, Prolog-2, Arity Prolog, UNSW Prolog, and Turbo Prolog. 

Popular systems building products include Expert-Ease, ADVISE,
RULEMASTER, SEEK, and RULE WRITER. Other relevant products include
KEE, KMS, RLL, SRL, SRL+ (frame-based), APES and HSRL (logic based),
ROSS, SMALLTALK, and KBS (object oriented), INTERLISP and PSL
(procedure-oriented), and ARS, ART, EXPERT, EXPERT-II, OPS5, RITA, and
ROSIE (rule-based).
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8.1 Purpose 
During the problem definition, feasibility study, and analysis stages, 
interviewing is one of the analyst’s most important sources of information
about the present system and the user’s requirements. The purpose of this
brief introduction is to provide some suggestions for planning and conduct-
ing an interview. 
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8.2 Strengths, weaknesses, and limitations
Written documentation often provides a one-dimensional view of the 
problem. Interviews, in contrast, give the analyst the opportunity to sit
down face to face with the affected people, investigate their opinions, 
feelings, and goals (as well as the facts), observe nonverbal behavior, and
probe for additional feedback. An interview can serve as an effective entry
point to the problem definition and analysis stages, identifying relevant
personnel and specific topics that must be investigated in more depth.
Interviews are excellent tools for achieving user involvement in the system
development process and for verifying information collected using other
tools. 

Interviewing is time consuming and costly. Its effectiveness is a function
of the interviewer’s skill. Not all subjects are comfortable being interviewed,
and many people react negatively or defensively to an interviewer’s 
questions. Interviewing is not particularly effective for uncovering technical
or operational details.

8.3 Inputs and related ideas
Interviews can be used in virtually any stage of the system development life
cycle. Interviewing is often one of the first tasks performed during the infor-
mation gathering and problem definition stage. Interviews are often 
performed as part of conducting a survey (Chapter 17). 

8.4 Concepts 
During the problem definition, feasibility study, and analysis stages, inter-
viewing is one of the analyst’s most important sources of information about
the present system and the user’s requirements. The purpose of this brief
introduction is to provide some suggestions for planning and conducting an
interview. 

8.4.1 Preparing for the interview 
People resent interviewers who waste their time, so do your homework.
Good interviewers do not just “wing it.” Effective interviewing requires
careful preparation. 

Study the user’s environment. Identify the people responsible for the
problem area. Study the organization chart and learn what those people do.
Familiarize yourself with the available reports, documents, and procedures,
note unanswered questions, missing pieces, and ambiguities, and develop a
specific set of objectives for the interview. Unless you know what you want
to learn (more accurately, unless you know what you do not know), you 
cannot ask intelligent questions. 
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Given a set of objectives, the next step is to select the person (or the
group) to be interviewed. The organization chart is a good starting point.
Interview the responsible manager first, get an overview of the problem,
request the names of the people who know the details, and request permis-
sion to interview them. Failing to obtain appropriate authorizations for an
interview is usually a mistake. 

8.4.2 Scheduling the interview 
Interviews should be scheduled; do not simply drop in unannounced and
expect cooperation. Remember that you are the one who needs information
and that you are asking another person to give up his or her time to help you
achieve your goals, so you must be willing to meet at the subject’s conve-
nience. Also, limit the length of the interview to no more than an hour; half
an hour is better. 

Before you meet the subject, prepare a list of questions you hope to
answer. The purpose of the list is to help you remember your objectives and
to help you prevent the interviewee from dragging the interview off topic.
Interviewees will talk about the details of their jobs, and it is easy to become
distracted. 

8.4.3 The Interview Itself 
A well-conducted interview has four parts: an opening, a body, a closing, and
follow-up. 

8.4.3.1 The opening 
Be on time. If you know you are going to be late, call and give the subject the
option to reschedule. 

The point of the opening is to establish rapport and to encourage the
subject to respond freely. Identify yourself, the topic to be discussed, the
purpose of the interview, and how long you expect the interview to last. Tell
the subject why he or she was selected for the interview. Where appropriate,
identify the manager or managers who authorized the interview. 

In an attempt to establish a relaxed atmosphere, many good inter-
viewers begin with a period of small talk. While this technique can be
effective, it can also backfire. Avoid wasting the subject’s time. When in
doubt, get to the point. 

8.4.3.2 The body
You are conducting the interview, so you are responsible for getting things
going. Have your first question prepared. Many interviewers like to start
with an open-ended question, such as: 

When I read the documentation for this system, I had
some trouble with (mention the part or section). Can
you explain it to me? 
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Consider asking the subject how his or her job relates to the project.
Another good opener is to ask the subject to walk you through some process
or to explain how he or she uses the data in a report. 

Listen to the answer. A good technique is to say something like, “Let me
see if I understand what you’re saying,” and then offer a brief summary. If
you are wrong, the subject will probably tell you. If you can paraphrase 
correctly, you establish that communication is taking place. 

Check your list of questions occasionally. As the subject responds to an
open-ended question, he or she will answer some of them before they are
asked. Unanswered questions tell you what to ask next. Use follow-up 
questions, such as, “Why?” or “Can you give me an example?” to probe for
additional details. Listen for the answers to questions you did not include on
your list, too. 

One advantage of starting with an open-ended question is that (almost by
definition) the subject knows more about the topic than you do. Consequently,
your prepared questions might focus on the wrong issues or force the subject
to cover key points in the wrong order. If you can get the subject to tell you
what you should know, you can learn a great deal very quickly. ‘

Not all interviewers are comfortable with open-ended questions, how-
ever, and the interviewee might be nervous or even hostile. In such cases, it
might be better to start with closed-ended questions that can be answered
with a few words. (A forced-choice survey is an extreme example.) The
answers to those questions, in turn, might suggest more open follow-up
questions. 

Generally, skilled interviewers start with open-ended questions for
their initial interviews, particularly with higher-level managers. As they
learn more about the system and begin to hone in on specific issues, the
questions become more closed and specific. Beginners, on the other hand,
should consider preparing (perhaps with the help of an experienced inter-
viewer) a list of closed questions, and let the responses suggest follow-up
questions. 

During the interview, be careful not to concentrate so intently on your
next question that you miss the answer to the current one. (This is a common
beginner’s mistake.) Your list of prepared questions should be used as a
guide or as a memory jog, not as a script. 

Listen to the answers. Delete questions that seem unimportant. Skip
questions you know your subject cannot or will not answer. Bypass 
questions that have already been answered. Avoid needlessly complex 
or multi-part questions; ask one clear question at a time. Be flexible. Try to
stick to the subject, and do not allow the interviewee to drag the interview
off topic, but do allow a certain amount of spontaneity. You might learn
something. 

Avoid technical jargon; take the time to learn the subject’s application-
specific language. An interview is not a trial. Ask probing questions, but do
not conduct a cross-examination. Finally, avoid attacking the subject’s
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credibility or implying that you know more about the topic than the inter-
viewee. (If the assumption is true, why conduct the interview?) You will sit
through an occasional useless interview. An early closing might be in order,
but always act professionally in spite of your disappointment. 

Unless you have an incredible memory, take notes. One suggestion is to
leave space for notes on your list of questions or your interview outline. Do
not take dictation, however. When you try to write down every word, you
miss the speaker’s meaning, and you cannot ask probing follow-up 
questions if your attention is focused on a piece of paper. Be honest with 
yourself. If you feel compelled to take dictation, request permission to tape
the interview or bring a secretary with you. 

8.4.3.3 The closing 
Pay attention to the time. If the interview runs longer than expected, ask 
permission to continue and offer to reschedule a follow-up interview. 

When you have the information you need, ask if there is anything you
missed. (At this point, let the subject take the lead.) When the interview
ends, thank the subject for cooperating and offer to make your written 
summary available for review. If you anticipate a follow-up or subsequent
interview, say so. 

Some interviewers like to “wind down” with a brief period of casual
conversation. If you feel comfortable with this approach, use it. Do not force
it, though. Remember: avoid wasting the subject’s time.

8.4.4 Follow-up 

As soon as possible after the interview, transcribe your notes. Ideally, they should
identify key points; use your memory to fill in the details. (Don’t wait too long,
you might forget something important.) If you recorded the interview, listen to
the tape and compile a set of selective notes. If appropriate, prepare a transcript. 

Type the summary. Identify the person, the date, the place, and the primary
topic. Offer to share your summary with the subject; it is good public relations
and it provides an excellent opportunity for correcting misunderstandings and
errors. Also, the subject might add something you forgot. 

One or more follow-up interviews might be necessary. Consider using e-mail
or the telephone to ask a question or two. If you need more than five minutes,
schedule an appointment. 

8.5 Key terms

Interview — A face-to-face meeting between two (or more) people 
in which one person obtains information from another by asking
questions. 



8.6 Software 
Not applicable. 
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9.1 Purpose 
Sampling is a technique for obtaining an estimate from a population by
studying, measuring, or interviewing a subset (or sample) of that popula-
tion. This chapter discusses basic sampling concepts.
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9.2 Strengths, weaknesses, and limitations 
A well-selected sample yields an estimate of the target parameters in much
less time and at much less cost than studying, measuring, or interviewing
the entire population (conducting a census). It is often impossible to achieve
100 percent response because some of the entities to be studied, measured,
or interviewed are unavailable or do not respond. A sample is sometimes
more accurate than a census because obtaining numerous measurements
introduces errors owing to fatigue, inaccurate or inconsistent data entry, and
the use of less qualified personnel. 

The sample answer, called an estimate, is almost never exactly the same
as the corresponding population value. (This difference is called error.)
Additionally, before a statistically valid sample can be selected, a great deal
of information about the population must be available. 

9.3 Input and related ideas 
Before conducting a sample, it is necessary to define the specific information
being sought and the population from which the sample will be drawn. For
example, if an analyst needs information about perceived weaknesses in the
existing sales order tracking system, the population would consist of all the
people who utilize the existing system. 

Sampling can be used to select the subset of a population to be inter-
viewed (Chapter 8), the members of a JAD team (Chapter 14), or the 
members of an inspection team (Chapter 23). Sampling is an effective way
to study an existing system by selecting the entities, transactions, occur-
rences, or personnel to be observed and measured. Sampling is an effective
tool for estimating population characteristics when using such mathemati-
cal tools as simulation (Chapter 19) and queuing theory (Chapter 79).
During the testing phase of the system development life cycle (Part VII),
sampling is used to generate test data and select the specific events to be
monitored. During the operation and maintenance phase (Part VIII), sam-
pling is an effective tool for evaluating and monitoring performance and for
implementing system controls (Chapter 77). For example, quality 
control is often implemented by taking random samples of a process.
Sometimes the estimates generated by sampling a process are plotted on a
control chart (Chapter 10) to determine if the process is in control. 

9.4 Concepts 
Sampling is a technique for obtaining an estimate from a population by
studying, measuring, or interviewing a subset (or sample) of the population.
This chapter discusses basic sampling concepts. 

9.4.1 Why sample? 
Every year, Consumer Reports magazine conducts tests on new automobiles
and reports its findings to its readers. Given the (literally) millions of 
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automobiles that roll off the assembly lines every year, testing the entire
population would be incredibly time consuming, prohibitively expensive,
and practically impossible, so the test results are based on a sample. 

In many cases, testing a sample is actually more accurate than testing
the entire population. A tester’s reactions and perceptions are likely to
change between the first car and the tenth car, if only because of fatigue.
Multiple tests mean considerable data, and data entry errors are inevitable.
Multiple tests also imply multiple testers, not all of whom are equally
skilled. Finally, the test conditions and criteria will almost certainly change
over time. For example, if enough cars are crashed into a barrier, the barrier
will eventually be deformed, thus changing the test conditions. 

If the sample is drawn properly, it is reasonable to assume that the sam-
ple estimate reflects the population. The balance of this chapter discusses the
process of drawing a good sample. 

9.4.2 Sample size and sampling error 
The difference between the sample estimate and the true population value is
called error. As a general rule, the sampling error decreases as the sample
size increases. For example, assuming a 95 percent confidence interval, a
sample of 1,000 voters might predict the outcome of an election with an error
of slightly more than plus or minus 3 percent. Increase the sample size to
4,000, and the error drops to plus or minus 1.5 percent, while a sample size
of 10,000 reduces the error to less than plus or minus 1 percent. 

A useful formula for computing the sample size is: 

n = (z2�2) /E2, (9.1)

where z is a number from the normal distribution table that corresponds to
the desired confidence interval, � is the standard deviation of the popula-
tion as estimated by the sample standard deviation, and E is the maximum
acceptable error between the sample mean and the actual population
mean. For a 95 percent confidence interval, use z = 1.96. For a 99 percent
confidence interval, use z = 2.575. As a practical matter, one-fifth the sam-
ple range can be used as an estimate of the standard deviation. 

For example, suppose you want to estimate the average amount of
money a state university student spends on food and beverages in an 
average week. The maximum acceptable error is $2. Based on a prelimi-
nary sample, � is estimated to be $8. The desired confidence interval is 95
percent. Plugging those numbers into Equation (9.1) suggests a sample
size of: 

n = [(1.962)(82)] / 22 = 62.426 

or 63 students. (It is impossible to sample a fractional student, and rounding
up yields a confidence interval slightly higher than 95 percent.) Assuming
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the students answer truthfully, averaging the weekly food expenditures of
63 randomly selected university students will yield a value that is within $2
of the population average with 95 percent confidence. To put it another way,
there is a 0.95 probability that the sample mean will lie within $2 of the true
mean. (Note: A real statistician would probably argue that the last statement
is not technically correct, but in most cases it is a reasonable way to visualize
a confidence interval.) 

9.4.3 Bias 
Simply selecting the right sample size is not enough, however. For example,
a sample taken outside an expensive restaurant and a sample taken outside
a food bank will almost certainly yield two very different (and equally
invalid) estimates of the weekly food expenditures of university students
because those samples are likely to be biased. A biased sample systematically
favors some members of the population over others. To cite another exam-
ple, if a telephone book is used to select a sample, people with unlisted 
numbers, people who have recently moved into that telephone market, and
people with no telephone are automatically excluded from the sample. 

Non-response bias occurs when one or more members of the selected
group are not included in the sample. A survey that includes information
only from people who answer their telephones at a certain time of day
excludes one subset of the population. Dismissing or excluding people who
refuse to answer certain questions is another source of non-response bias. Be
aware of non-response bias. Before taking a sample, study the sampling
process, identify subsets of the population that might be excluded or choose
not to participate, and adjust the sampling process as necessary. 

9.4.4 Random sampling 
One relatively easy way to avoid introducing bias is to sample randomly. A
sample is considered random if each member of the population has the same
chance of being selected. Random samples yield unbiased estimates.
Generally, an unbiased estimate is high about half the time and low about
half the time. 

There are two commonly used techniques for selecting a random sam-
ple. If the population is small, the members (or slips of paper representing
each member) can be mixed thoroughly and the sample selected directly
(like bingo markers or lottery tickets). For larger populations, assign each
member a number and use a random number generator or a table of random
numbers to select the sample. 

9.4.5 Random-like samples 
In cases where it is impossible or inconvenient to select a true random sam-
ple, the objective is to generate estimates that behave as though they were
based on a random sample. The key to successful, almost random sampling is
to avoid introducing bias. For example, imagine a grocer inspecting a ship-
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ment of fruit. An estimate based on a sample taken from a single box or even
from the tops of several boxes is unlikely to accurately reflect the quality of
all the fruit. However, if the grocer selects several boxes and then selects
fruit from the top, the middle, and the bottom of each, the sample is likely
to be random-like. 

On an assembly line, selecting every tenth, hundredth, or thousandth
item (generally, every nth item) as it flows by might be an effective way to
select a random-like sample. An option is to select every m ± nth item),
where n is a random number (for example, every 100 ± 5th item. 

Avoid predictability when sampling human beings, however, because it
often introduces bias. For example, if the boss walks through the work area
every hour on the hour, he or she is likely to find everyone hard at work. If
another boss were to use a random number table to define the times for 
random visits to the work area, he or she is likely to gain a more accurate
picture of the employees’ work habits. 

9.4.6 Stratified random sampling 

With stratified random sampling, a population of size N is divided into m
subgroups. Each subgroup is called a stratum, and each member of the
population must lie in exactly one stratum. For example, dividing a group
of people by sex yields two strata (male and female); dividing a group of 
voters into Democrat, Republican, Independent, and Socialist yields four
strata; and comparing the products produced on the first, second, and
third shifts calls for three strata. Samples are taken randomly within each
stratum. 

Stratified random sampling is important if the different strata have 
different means and/or different levels of variability. For example, suppose
the newer, relatively inexperienced employees who work the third shift 
produce markedly more errors than the people who work the other two
shifts. In such cases, stratified sampling tends to yield more accurate 
estimates than simple random sampling. 

9.4.6.1 Proportional allocation 
One technique for distributing a sample across several strata is called 
proportional allocation. If 200 employees are distributed over three shifts
with 100 on first shift, 60 on second shift, and 40 on third shift, a reasonable
sample distribution might be 50 percent first shift, 30 percent second shift,
and 20 percent third shift. 

9.4.6.2 Optimal allocation 
If one stratum exhibits significantly more variability than the others, 
proportionally more samples should be taken from the inconsistent stratum.
Also, if one stratum is more costly to measure or interview than another,
proportionally fewer samples should be taken from the expensive stratum.
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Optimal allocation is a technique for distributing a sample across 
several strata that considers variability and cost. The optimum allocation
formula is:

(ni/ n) = [Wi�i/ (Ci
1/2)] / � [Wi�i / (Ci

1/2)], (9.2)

where ni is the number of samples in stratum i, n is the total sample size, Wi
is the percentage of the population in stratum i, �i is the standard deviation
of stratum i, and Ci is the cost to sample stratum i. The formula calculates a
relatively larger sample size for a given stratum if its variability (measured
by �i) is higher than average or if the cost of sampling from that stratum is
lower than average.

For example, suppose n, the total sample size, is 500. The population is
divided among three strata, with costs to sample of $3, $4, and $5 per item
for strata 1, 2, and 3 respectively (C1 = $3, C2 = $4, and C3 = $5). Stratum 1 
contains 50 percent of the population (W1 = 0.5), stratum 2 contains 30 per-
cent of the population (W2 = 0.3), and stratum 3 contains 20 percent of the
population (W3 = 0.2). Finally, the estimated standard deviations for the
three strata are �1 = 1.5, �2 = 2, and �3 = 2.5. 

First calculate 

�(Wi�i/(Ci
1/2)) = [W1�1/(C1

1/2)] + [W2 �2/(C2
1/2)] + [W3�3/(C3

1/2)] 

= [0.5(1.5) / (31/2)] + [0.3(2) / (41/2)] + [0.2(2.5) / (51/2)] 

≈ 0.433 + 0 .300 + 0.224 = 0.957. 

Next, compute 

n1/n = 0.433/0.957 = 0.452

n2/n = 0.300/0.957 = 0.314

n3/n = 0.224/0.957 = 0.234.

Those numbers suggest that n1 (the stratum 1 sample size) should be
45.2 percent (or 226 units) of the total sample size (500 items), n2 should be
31.4 percent (or 157 units), and n3 should be 23.4 percent (or 167 units). 

9.5 Key terms
Bias — Any factor that systematically favors some members of the population

over others when a sample is drawn. 
Census — A set of measurements (or interviews) for every element of a

population. 
Confidence interval — A range of numbers around an estimate that 

contains the corresponding population parameter with the stated prob-
ability. For example, a 95 percent confidence interval for an estimate of
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the population mean is a range of numbers that contains the popula-
tion mean with 95 percent certainty. 

Error — The difference between the value of a parameter as estimated by
a sample and the actual value of that parameter for the entire popula-
tion. 

Estimate — A value of a parameter determined by a sample. 
Mean — An arithmetic average; the sum of all the observations divid-

ed by the number of observations. 
Non-response bias — A form of bias that occurs when one or more

members of the selected group are not included or choose not to par-
ticipate in the sample. 

Population — The entire set of relevant entities or measurements. 
Random sample — A sample in which each item in the population has

the same chance of being selected. 
Range — The difference between the highest value and the lowest

value in a set of measurements. 
Sample — A selected subset of a population. 
Standard deviation — The square root of the variance. 
Strata — The set of subgroups in a stratified random sample. 
Stratified random sampling — A random sampling technique in

which the population is divided into subgroups called strata such
that each element of the population lies in exactly one stratum; sam-
ples are taken randomly within each stratum. 

Stratum — A single subgroup in a stratified random sample. 
Unbiased estimate — An estimate that is high about half the time and

low about half the time. 
Variance — The average of the squared differences between the indi-

vidual population values and the population mean. 

9.6 Software 
Random number tables are found in many statistics textbooks and/or in the
software packages that accompany those books. Random number functions
are found in most spreadsheet programs. SAS users can generate random
observations from a binomial distribution (RANDBIN), an exponential 
distribution (RANEXP), a normal distribution (RANNOR), a Poisson distri-
bution (RANPOI), or a uniform distribution (RANUNI). Minitab for
Windows users should check the RANDOM DATA sub-window on the
CALC pull down window. 
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10.1 Purpose 
Information systems contain interrelated processes. Control charts are
proactive management tools that can be used to help control, predict, and
improve the processes found in information systems as well as processes in
general. A control chart allows an analyst to categorize a process as either
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stable or unstable. The output from a stable process is predictable and 
consistent over time, while an unstable process is chaotic and produces
unpredictable output. To truly judge the capability or usefulness of a
process, it must be stable, i.e., predictable. When encountering an unstable
process, the process must first be brought into a stable state before assessing
its usefulness to the overall system. Control charts are also useful in moni-
toring stable processes and notifying the analyst if and when a given process
moves to an unstable state. 

10.2 Strengths, weaknesses, and limitations 
Control charts have been proven effective in a wide range of diverse appli-
cations. Wherever business activity can be characterized as a process, con-
trol charts can be applied to monitor, predict, and ultimately help improve
the output from those processes. The managerial implications associated
with control charts are enormous. Perhaps the most important is that it
allows managers to distinguish between common causes of variation and
assignable causes of variation. Quality guru Deming1 often stressed that the
failure to identify and distinguish these two types of variation was the most
common mistake in modern management practice. 

Control charts are used to distinguish common cause variation from
assignable cause variation, not to determine whether or not the output from
a process meets certain specifications. In general, it is incorrect to compare a
control limit from a control chart to a specification limit. 

The calculation of the control limits may seem difficult and unintuitive
to someone untrained in statistics. The use of a statistical package should
avoid calculation problems. When an analyst is constructing control charts
from a spreadsheet or graphing package that does not have control chart
procedures built in, extreme care must be taken to insure that the correct for-
mulas are used. 

Effective setup and analysis of control charts requires a certain amount
of statistical sophistication. Although initial training in control chart tech-
niques may be necessary, the long-term economic benefits should greatly
outweigh the short term costs of training. 

10.3 Inputs and related ideas 
The use of control charts is a central part of the TQM movement as espoused
by Deming1 and other quality gurus. In general, the seven tools for quality
improvement (Pareto diagram, cause-and-effect diagram, control chart,
process flow diagram, checksheet, scatter diagram, and histogram) serve as
a complimentary tool set that has been proven to be effective in improving
many systems. Errors or out of control conditions suggested by control
charts are commonly used to identify possible errors during the problem
definition stage (Part II) of the system development life cycle. Pareto dia-
grams are discussed in Chapter 11. During the operational stage (Part VIII),
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control charts are commonly used to support system controls (Chapter 77)
and performance analysis (Chapter 78). 

10.4 Concepts 
A process is the transformation of inputs to outputs. Control charts are 
statistical tools that help analysts determine whether the output from a
process is predictable or unpredictable. Control charts are also used to mon-
itor a process to detect changes in the process and, therefore, changes in the
outputs from the process. The basic philosophy behind control charting is
that if the process can be controlled, then the output from the process can be
controlled. Used correctly, control charts can detect changes in a process
before those changes produce undesirable output. 

In this chapter, we will consider the operation of a local area network
(LAN) from a process perspective. A quality characteristic of the network
operation is application turnaround time. To monitor this, a benchmark 
program will be run every hour and the time required to complete the pro-
gram recorded. 

10.4.1 Run charts 

In this section a run chart is constructed and analyzed. A run chart plots
individual observations versus the time the observations are taken. In
Figure 10.1, the times required to complete a benchmark program on a LAN
are plotted. The horizontal axis indicates that one observation was taken per
hour. The times are recorded in microseconds, thus observation one indi-
cates that the benchmark time for the first hour was approximately 625,000
ms. The slowest time recorded was observation 14 at approximately 670,000
ms. The figure illustrates the variability in the time to run the benchmark
program. If the LAN was consistently slowing down or speeding up, a
noticeable trend would have appeared on the run chart. For this example,
there are no trends, but observation 14 appears to be quite a bit slower than
the others. Is this slow time due to inherent variability in the design of the
LAN, or is it due to an outside effect that comes and goes periodically? In
other words, is it a time we should expect to see when the LAN is operating
correctly, or is it an abnormally slow time? A run chart cannot answer this
question. 

10.4.2 Types of variation 

Variation in the output of a process is owing to either common cause variation
or assignable cause variation. Common cause variation is inherent to the
process, e.g., it is the variation that is owing to the machines, methods, mate-
rials, and so on, that constitute the process itself. In other words, common
cause variation is owing to the process design and, therefore, can affect all the
outputs from the process. All processes exhibit common cause variation. 
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Assignable cause variation is owing to sources outside of the process. A
process experiencing assignable cause variation is operating in a fashion dif-
ferent than would be expected from the process design. By definition,
assignable cause variation can only affect a subset of output. Possible rea-
sons for assignable cause variation include a hardware malfunction, a power
surge, or operator error. 

10.4.3 Constructing a control chart 

A control chart plots statistics on the vertical axis while the horizontal axis
represents time, like a run chart. Unlike a run chart, a control chart also con-
tains a centerline, a lower control limit and an upper control limit. When
points are plotted within the control limits, the process is said to be stable. If
points lie outside the control limits, the process is said to be unstable. See
Section 10.4.4 for more details on analysis. 

Figure 10.2 presents a control chart for the benchmark program example
discussed earlier. The centerline for a control chart is the mean of the statistic
being plotted. The mean may be a known value or it may be an estimated
value of the mean. In this example, the mean of the benchmark times is
assumed to be 600,000. The control limits are placed three standard devia-
tions away from the mean. The standard deviation for the benchmark times
is assumed to be 30,000; thus the control limits are drawn at 510,000 and
690,000. The reason for using three standard deviations is that most obser-
vations should lie within three standard deviations of the mean. Any points
plotted outside these limits would be unusual observations. 

Figure 10.1 Run chart produced by Minitab for Windows.
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Figure 10.3 Individuals chart produced by Minitab for Windows illustrating an 
unstable process.

10.4.4 Analyzing a control chart 

A process is said to be unstable if a point plotted on a control chart is out-
side the control limits. A point outside a control limit indicates that the cause
of the unusually low or high number must be owing not to common cause
variation, but to assignable cause variation. In Figure 10.2 all the points are
contained within the control limits and the process is said to be stable. Thus,
although observation 14 is higher than the other benchmark times, it is an
observation that is consistent with the way that the process is currently oper-
ating. In contrast, in Figure 10.3, a point is outside the control limits and the
process is said to be unstable. 

Figure 10.2 Individuals chart produced by Minitab for Windows illustrating a
stable process.
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If a process is stable and is producing output that is acceptable to man-
agement, then the process should be allowed to continue on its normal path.
The stable process should continue to be control charted so that if at a later
date it becomes unstable, the analysts will be quickly notified of the change
in the process. 

A stable process is not necessarily a good process, it simply means that
the process is consistent, and the output is known and predictable. If the out-
put from a stable process is unacceptable, then the process itself must be
changed. In other words, the process is stable but owing to a large amount
of common cause variation, the process is consistently producing output
that is unacceptable. In Figure 10.2, the control chart indicates that the
process is stable and, therefore, the variation in the benchmark times is 
consistent and predictable. If the times being observed are acceptable to the
analyst, then the LAN (i.e., the process) as it is currently designed is suffi-
cient. If the times are too slow, then a fundamental change in the LAN must
occur in order for the LAN to operate at an acceptable level. 

When encountering an unstable process, the analyst must determine the
sources of the assignable cause variation. The reason for the assignable cause
must be investigated and in most cases eliminated. The actual 
capability of the process cannot be determined until the process actually per-
forms as it was designed, i.e., until all assignable cause variation is removed.
In some cases, the assignable cause variation may actually improve the out-
put and in this case the process needs to be redesigned to include the newly
discovered improvement. In Figure 10.3 an unstable point is observed and,
therefore, the network at time period 21 must be investigated. At this time,
an assignable cause is responsible for the slow benchmark time; i.e., a root
cause outside of the design process must have been affecting the output. The
analyst must identify the source and then institute change that will not allow
this type of output to reappear at a later time. 

More sophisticated rules than the “single point outside a control limit”
have been developed to help identify unstable processes. This rule, howev-
er, is the most important and is often the only one used. For a discussion of
these additional rules, the reader is referred to Montgomery2.

10.4.5 Types of control charts 

In the above example, the statistic being plotted is an individual measure-
ment and the control chart is known as an individuals chart. It is the 
simplest type of control chart. An individuals chart is appropriate when the
data are collected one at a time and are distributed, or approximately dis-
tributed, as a normal random variable. Other common types of control
charts are listed below. 

1. C chart For use when the data appear to come from a Poisson distri-
bution; for example, the number of network crashes in a day. 
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2. P chart For use with binomial data; for example, the proportion of
time a network server is active. 

3. X-bar and R charts For use with normal, or approximately normal,
data which are collected in samples of size two or more; for example,
every hour we could run a benchmark program ten times and calcu-
late the mean, X-bar, and the range, R, for those ten measurements. In
general, the X-bar and R charts are more sensitive to changes in a
process than an individuals chart. 

10.4.6 Rational subgrouping 

The individuals control charts discussed in this chapter require the simplest
sampling scheme of any control charts. As noted above, only one observa-
tion per time period is collected. In many cases, to set up a control chart
repeated process samples of size two or more must be collected. For exam-
ple, it is common to use samples of size four or five when using X-bar and
R charts. A P chart typically requires rational subgroups of size 30 or more.
Process samples taken for the purpose of constructing control charts are
called rational subgroups. 

A rational subgroup should be a sample collected in such a manner as
to maximize the probability that the sample captures common cause vari-
ability and that any possible assignable cause variability occurs between
rational subgroups. If a rational subgroup is too small, the sample will not
be subject to all the common cause variability in the process. This will lead
to control limits that are too narrow and may ultimately result in labeling a
stable process as unstable, which is referred to as a false alarm. If a rational
subgroup is too large, the sample may contain common cause and assigna-
ble cause variation. This will result in control limits that are too wide and
may result in unstable processes going undetected. 

10.4.7 Estimating limits 

In many instances the mean and standard deviation of the statistic being
plotted will not be known. The analyst must then estimate these parameters
using the data contained in the chart. The reader is referred to Montgomery2

for details on proper estimation procedures. 

10.5 Key terms 
Assignable cause variation — Variation that is not part of the design of

the process; the sources or factors producing assignable cause varia-
tion can, by definition, only affect a subset of the output from that
process. Assignable cause variation is sometimes referred to as 
special cause variation. 

Common cause variation — Variation that is inherent to a process; 
common cause variation has the ability to affect all output from a
process. All processes are subject to this form of variation.
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Control limits — The upper and lower boundary lines of a control
chart; the control limits are typically placed three standard deviations
above and below the centerline. The centerline is usually the mean of
the statistic being charted. 

Rational subgroup — A sample of measurements taken from a process
in such a manner that will maximize the probability that the sample
captures common cause variability and that any possible assignable
cause variability will occur between rational subgroups. In other
words, the variation in the rational subgroup should be the result of
common causes of variation only. 

Stable process — A process that only exhibits common cause variation.
In other words, the output from a stable process produces a popula-
tion of items which has a constant mean and a constant variance. A
stable process is predictable and, therefore the output from a stable
process is predictable. If a stable process is generating output that is
undesirable, then the process itself must be redesigned. A stable
process is sometimes called an in-control process. If a process is not
stable, it is said to be unstable. 

Unstable process — A process that exhibits common cause and assign-
able cause variation; an unstable process is unpredictable and, there-
fore, the output from such processes cannot be predicted. Thus,
before the true capability of a process can be determined, all assigna-
ble causes of variation must be eliminated from the process, i.e., the
process must become stable. An unstable process is sometimes called
an out-of-control process. 

10.6 Software 
Most statistical software packages have the ability to produce control charts.
The control charts in this chapter were made using Minitab for Windows. In
SAS, the most commonly used control charts are in the Shewhart procedure.
Spreadsheet packages like Excel require add-in packages to construct the
charts automatically, however, the charts can be easily constructed from any
spreadsheet package assuming a book of statistical tables and formulas is
available. 

10.7 References 
10.7.1 Citations 
1. Deming, W. E., Out of the Crisis, MIT Center for Advanced Engineering Study,

Cambridge, MA, 1986, chap. 11. 
2. Montgomery, D. C., Statistical Quality Control, 3rd ed., John Wiley & Sons, Inc.,
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11.1 Purpose 
In most systems, quality related problems are owing to numerous factors,
but the vast majority of the problems are the result of only a small subset of
those factors. A Pareto diagram is used to separate the few significant fac-
tors from the trivial many. Identification of the most important sources of
problems can help managers to prioritize and allocate resources. 

11.2 Strengths, weaknesses, and limitations 
The Pareto diagram has proven to be a very quick and easy graphical
method to identify when the Pareto principle holds, and to identify the sig-
nificant factor or factors at play. When used correctly, the Pareto
diagram is an important tool in quality improvement efforts because of its
ability to help focus attention on the area or areas where attention is 
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warranted. Practice has shown that the Pareto principle holds in many
different situations, thus the Pareto diagram can be quite useful in a large
range of applications. 

The most common mistake when constructing Pareto diagrams is not
categorizing the data correctly. If categories are defined too broadly, then too
few categories are present in the diagram. If categories are defined too nar-
rowly, then too many categories are present. In both cases, little or nothing
is learned by constructing the diagram. The process of collecting data and
constructing the diagram can often lead to better definitions. At any time
during the process, one can redefine the categories and then reclassify the
data. If the diagrams are being constructed by hand or with software not
specifically tailored to produce Pareto diagrams, a common mistake is not
to rank order the categories from left to right. The resulting diagrams are
misleading and not of great interest. 

The greatest weakness of the Pareto diagram is the subjectivity inherent
in using categorical data. In many situations, the definitions of the cate-
gories are quite subjective and the measurement process of placing obser-
vations into the correct category is subjective as well. Furthermore, like all
graphical methods, the information relayed by a Pareto diagram is subject
to personal interpretation. 

11.3 Inputs and related ideas 
Brainstorming is a useful tool when developing a list of categories to be
used in a Pareto diagram. Once the Pareto diagram is drawn, it is often help-
ful to use cause-and-effect diagrams (Chapter 18) to study the cause-and-
effect relationships associated with the significant factors. In general, the
seven tools for quality improvement (Pareto diagram, cause-and-effect 
diagram, control chart, process flow diagram, check sheet, scatter 
diagram, and histogram) serve as a complimentary tool set that has been
proven to be effective in improving many systems. 

11.4 Concepts 
In most systems, quality related problems are due to numerous factors, but
the vast majority of the problems are the result of only a small subset of
those factors. This phenomenon is called the Pareto principle. The concept
is named after the Italian economist Alfredo Pareto who recognized that a
large proportion of the wealth in Italy was in the hands of a small number
of people. A Pareto diagram is used to separate the few significant factors
from the trivial many. Identification of the most important sources of prob-
lems can help managers to prioritize and allocate resources. 

A Pareto diagram can help to identify the important factors leading to a
specific event. For example, consider a systems analyst interested in 
evaluating the causes of downed servers. The first step in the construction
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of the diagram is to collect data pertaining to past episodes of downed
servers, and then categorizing the factor responsible for each event.
Categories must be selected so that each observation of the downed server
is in one and only one category. For example, Table 11.1 lists six factors caus-
ing a downed server and the count associated with each. Count simply
refers to the number of times, or frequency, a particular factor is deemed
responsible. The table also lists the percent of times a certain factor is
responsible for a downed server. 

A Pareto diagram is a specialized bar chart. The horizontal axis lists the
categories of interest, the left-hand vertical axis represents counts, and the
right-hand vertical axis represents percent. Note that the categories must be
rank ordered left to right according to the count for each category. As you
can see in Figure 11.1, the most common factor associated with a downed
server is that the server is out of memory. 

Across the top of the bars in Figure 11.1 is a line (the cum-line) identify-
ing the cumulative count and the cumulative percentage. In our example,
over 88 percent of the time a server went down the cause was an error with
the server software or a lack of server memory. All of the other 
factors leading to a downed server resulted in less than 12 percent of the
problems. Thus the Pareto principle holds and the systems analyst should
focus attention on the two significant factors identified in the diagram. Note
that in situations where the Pareto principle holds, the cum-line will have a
very pronounced bend between the few significant factors and the trivial
many. In situations where the principle does not hold, the cum-line will take
on the appearance of a piece-wise arc. In all cases, the cum-line will reach
100 percent in the final category. 

Selecting the appropriate number of categories to include in the dia-
gram is critical. In general, at least five categories should be used. In cases
where there are a large number of factors, the maximum number of cate-
gories actually charted is usually determined by when the cumulative per-
cent reaches 95 percent. At this point, all the remaining categories are typi-
cally combined together in an “other” category. 

In some situations it is helpful to use multiple levels of Pareto diagrams.
In our example it might be helpful to produce two more diagrams, one

Table 11.1 Six Factors Causing a Downed Server 

Factor Count Percent

Server out of memory 28 47.5 
Server software 24 40.7 
Power failure 3 5.1 
Physical connection 2 3.4 
Server hardware 1 1.7 
Inadequate bandwidth 1 1.7 
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addressed at server software problems and one addressed to the memory
problems. Consider the server memory problems. The systems analyst will
need to critically examine all of the 28 cases categorized as out of memory
problems. A new Pareto diagram and analysis can then take place with the
event of interest being memory problems and the factors being the underly-
ing reasons for the memory shortages. It may very well be that even though
there are many possible factors leading to memory errors, the vast majority
of those errors can be traced to a few significant factors. 

11.5 Key terms 
Count — The number of observations in a category. 
Cumulative count — The total number of observations in all the cate-

gories up to and including the category of interest; for example, the
cumulative count corresponding to the third category is the sum of
the counts for categories one, two, and three. 

Cumulative percent — The combined percentages of all the categories
up to and including the category of interest; the cumulative percent
for the last category will always be 100 percent. 

Pareto principle — In many different situations, the majority of out-
comes are the result of a few significant factors. The remainder of the

Figure 11.1 A Pareto diagram produced by Minitab for Windows.
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outcomes is owing to a large number of less important factors. This
concept is named after the Italian economist Alfredo Pareto who 
recognized that a large proportion of the wealth in Italy was in the
hands of a small number of people. 

11.6 Software 
Most statistical or quality improvement software has the ability to produce
Pareto diagrams. Construction of Pareto diagrams using Minitab for
Windows is very easy and flexible. In SAS, use the Pareto procedure.
Statistical add-ins for Excel and Lotus are available which have the capabil-
ity to produce Pareto diagrams. By not including the cumulative frequency
line, a simplified version of a Pareto diagram can be easily produced in
spreadsheet packages by constructing a bar chart. 

11.7 References 
1. Gitlow, H., Oppenheim, A., and Oppenheim, R., Quality Management: Tools and

Methods for Improvement, 2nd ed., Irwin, Burr Ridge, Illinois, 1995, chap. 9. 
2. Ozeki, K. and Asaka, T., Handbook of Quality Tools: The Japanese Approach,

Productivity Press, Cambridge, MA, 1990, chap. 11. 
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12.1 Purpose 
A good problem statement lists symptoms, suggests the problem’s likely
causes, and estimates the resources needed to solve the problem. It serves to
communicate to the user, to management, and to the technical people the
analyst’s understanding of the nature of the problem and an initial sense of
the problem’s resource implications. 

12.2 Strengths, weaknesses, and limitations 
A well-written problem statement is an effective means of communicating
the analyst’s understanding of the problem and its causes to the user, tech-
nical personnel, and management, thus helping to ensure that the right
problem is solved. The focus on symptoms, objectives, and scope supports
high level verification.
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The problem statement is, by its very nature, preliminary. By itself, 
it does not represent a sufficient base for selecting, designing, or
implementing a specific physical system. In particular, the scope should be

viewed as a ballpark or order of magnitude cost estimate. Common 
mistakes include suggesting possible physical solutions to the problem
rather than logical objectives for solving the problem, treating the prelimi-
nary estimate of system scope as a serious cost estimate, and writing a prob-
lem statement that includes too much technical detail.

12.3 Inputs and related ideas 
The problem statement often serves as a “charter,” or formal authorization
for the information gathering and problem definition phase (Part II). The
problem statement is often based on a limited number of preliminary inter-
views (Chapter 8) or observations. The detailed system requirements
defined at the end of the analysis stage (Part IV) often reference the objec-
tives in the initial problem statement. Detailed cost estimates, schedules, and
budgets are typically based on the requirements and prepared before the
design stage begins. 

12.4 Concepts 
Once a problem is defined, a sense of its causes and its likely resource impli-
cations must be communicated to the user, to management, and to 
technical personnel. Generally, this communication takes the form of a writ-
ten problem statement, sometimes called a statement of scope and objec-
tives, a user needs assessment, an operations concept document, or a mis-
sion statement. 

12.4.1 Problem statement components 

The precise form of the problem statement varies from organization to orga-
nization. The ideal length varies from project to project. No matter what for-
mat is used, however, a good problem statement includes the following ele-
ments (Table 12.1): 

• A list of observed symptoms (the things that are wrong) stated in mea-
surable form. The more specific the symptoms, the more likely it is
that the problem will be solved. 

• A list of suspected causes stated as measurable business (or applica-
tion) objectives. The objectives, if met, are likely to contribute to solv-
ing the problem (or fixing the symptoms). 

• A preliminary estimate of the problem’s resource implications, or
scope, typically (but not always) stated in financial terms. The scope
represents the analyst’s sense of the problem’s magnitude. 
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12.4.2 Verification

The first step in verifying the problem statement is to compare the symp-
toms to the objectives. Each symptom should be addressed by one or more
objectives, because orphan symptoms are not likely to be corrected. 
Each objective should address one or more symptoms, because orphan
objectives suggest overlooked symptoms or superfluous features. 

Comparing the scope to the symptoms allows the user to judge if solv-
ing the problem is worth the cost. Comparing the scope to the objectives
allows the technical personnel to judge if they can achieve the objectives
given the scope. The scope, by itself, allows management to determine if
adequate resources are available. The combination of the symptoms, the
scope, and the objectives allows users, management, and technical personnel
to independently determine if the problem is worth solving. 

Table 12.1 The Contents of a Good Problem Statement

A. The problem A list of measurable symptoms. 

Examples: Inventory value is $100,000 too high. 

Our competitor can process an order in
one day but we need three.

B. The objectives The likely cause or causes, usually stated
as measurable objectives that, if
achieved, are likely to contribute to solv-
ing the problem. 

Examples: Reduce average stock time by two days. 

Reduce inventory cost by $100,000 by
eliminating obsolete inventory. 

Reduce inventory cost by $100,000 by
reducing safety stock to a level sufficient
to cover expected reorder time plus five
days. 

Reduce sales order processing time by
one day by improving paperwork flow. 

C. The scope A sense of the problem’s magnitude,
often stated as a preliminary cost 
estimate. 

Examples: The estimated cost of this system is
$10,000 plus or minus 25 percent. 

Preliminary estimates suggest that a
team of three analyst/programmers will
need six months to solve this problem. 



1999 by CRC Press LLC

12.5 Key terms 
Objective — A measurable goal which, if met, is likely to contribute to

solving the problem. 
Problem statement — A written statement that defines a problem by

listing its symptoms, identifying a set of objectives for solving the
problem, and indicating the problem’s scope. 

Scope — A sense of the problem’s magnitude; often, a preliminary 
estimate of the problem’s resource implications or cost. 

12.6 Software 
Not applicable. 

12.7 References 
1. Blanchard, K. and Johnson, The One Minute Manager, William Morrow, New
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2. Davis, W. S., Business Systems Analysis and Design, Wadsworth Publishing,
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Problem REALLY Is, Dorset House Publishing, New York, 1990. 
4. Paulos, J. A., Innumercy, Vintage Books, New York, 1988.
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13.1 Purpose 
A feasibility study is a compressed, capsule version the analysis phase of the
system development life cycle aimed at determining quickly and at a rea-
sonable cost if the problem can be solved and if it is worth solving. A feasi-
bility study can also be viewed as an in-depth problem definition. 

13.2 Strengths, weaknesses, and limitations 
A well-conducted feasibility study provides a sense of the likelihood of suc-
cess and of the expected cost of solving the problem, and gives management
a basis for making resource allocation decisions. In many organizations, the
feasibility study reports for all pending projects are submitted to a steering
committee where some are rejected and others accepted and prioritized. 
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Because the feasibility study occurs near the beginning of the 
system development life cycle, the discovery process often uncovers 
unexpected problems or parameters that can significantly change the
expected system scope. It is useful to discover such issues before significant
funds have been expended. However, such surprises make it difficult to
plan, schedule, and budget for the feasibility study itself, and close man-
agement control is needed to ensure that the cost does not balloon out of
control. The purpose of a feasibility study is to determine, at a reasonable cost,
if the problem is worth solving.

It is important to remember that the feasibility study is preliminary. The
point is to determine if the resources should be allocated to solve the prob-
lem, not to actually solve the problem. Conducting a feasibility study is time
consuming and costly. For essential or obvious projects, it sometimes makes
sense to skip the feasibility study. 

13.3 Inputs and related ideas 
The feasibility study begins with the problem description (Chapter 12) pre-
pared early in the problem definition phase of the system development life
cycle. Often, the feasibility study report is the primary input to the steering
committee that authorizes further work on the project. 

The feasibility study is, in essence, a preliminary version of the analysis
phase of the system development life cycle. Depending on the nature of the
problem, the analyst uses various tools from Parts II, IV, and V. The infor-
mation collected during the feasibility study is used during project planning
to prepare schedules, budgets, and other project management documents
using the tools described in Part III. Prototypes (Chapter 31) and simulation
models (Chapter 19) are sometimes used to demonstrate technical feasibili-
ty. Economic feasibility is typically demonstrated using cost/benefit analy-
sis (Chapter 38). 

13.4 Concepts 
Developing a new system is a form of investment. Any investment carries
risk, and it makes sense to investigate the likelihood of success before com-
mitting resources. Thus, problem definition is often followed by a feasibility
study, a capsule version of the analysis phase of the system development 
life cycle aimed at determining quickly and at a reasonable cost if the 
problem can be solved and if it is worth solving. 

Note that the feasibility study is optional. On some small or obvious 
projects it is a waste of time. Other jobs simply must be done. For example,
if federal income tax rates change, a firm has no choice but to update its pay-
roll system. Fixing a bug in a critical program is another example. There is
little point trying to prove feasibility when the problem must be solved
(although the analyst might want to investigate the relative feasibility of
alternative approaches). However, doing a feasibility study should be the
default, and the burden of proof should be on skipping this step. 
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13.4.1 The cost of a feasibility study 

The point of the feasibility study is to determine, at a reasonable cost, if the
problem is worth solving. Thus the cost of the feasibility study should 
represent a small fraction of the estimated cost of developing the system,
perhaps five or ten percent of the scope. 

13.4.2 Types of feasibility 

Four types of feasibility are considered: 

• Technical feasibility—Is it possible to solve the problem using existing
technology? Typically, the analyst proves technical feasibility by citing
existing solutions to comparable problems. Prototypes (Chapter 31),
physical models, and analytical techniques [such as simulation
(Chapter 19)] are also effective. 

• Economic feasibility—Do the benefits outweigh the cost of solving the
problem? The analyst demonstrates economic feasibility through
cost/benefit analysis (Chapter 38). 

• Operational feasibility—Can the system be implemented in the user’s
environment? Perhaps a union agreement or a government regulation
constrains the analyst. There might be ethical considerations. Maybe
the boss suffers from computer phobia. Such intangible factors can
cause a system to fail just as surely as technology or economics. Some
analysts call this criterion political feasibility. 

• Organizational feasibility—Is the system consistent with the organiza-
tion’s strategic objectives? If the answer is no, funds might be better
spent on some other project. 

Note that not all organizations consider all four types of feasibility. 

13.4.3 The steps in a typical feasibility study 

The steps in a typical feasibility study are summarized in Figure 13.1. 
Starting with the initial problem description (Chapter 12), the system’s

scope and objectives are more precisely defined. The existing system is stud-
ied, and a high-level logical model of the proposed system is developed
using one or more of the analysis tools described in Part IV. The problem is
then redefined in the light of new knowledge, and these first four steps are
repeated until an acceptable level of understanding emerges. 

Given an acceptable understanding of the problem, several possible
alternative solutions are identified and evaluated for technical, economic,
operational, and organizational feasibility. The responsible analyst then
decides if the project should be continued or dropped, roughs out a devel-
opment plan (including a schedule, a cost estimate, likely resource needs,
and a cost/benefit analysis), writes a feasibility study report, and presents
the results to management and to the user. 
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Figure 13.1 The steps in a typical feasibility study. 



13.4.4 The feasibility study report 

Assuming that one or more feasible solutions exist, the analyst prepares a
feasibility study report that identifies several alternatives and recommends
a course of action. Table 13.1 shows a typical feasibility report outline. 
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Table 13.1 An Outline of a Typical Feasibility Study. 

1. Title page—Project name, report title, author(s), date. 
2. Contents—A list of report sections with page numbers. 
3. Problem definition—A clear, concise, one-page description of

the problem. 
4. Executive summary—A clear, concise, one-page summary of

the feasibility study, the results, and the recommendations.
Include necessary authorizations, key sources of information,
alternatives considered, and alternatives rejected. Highlight
the costs, benefits, constraints, and time schedule associated
with the recommended alternative. 

5. Method of study—A description of the approach and proce-
dures used in conducting the feasibility study. Mention
sources and references; identify key people; and briefly
describe the existing system (if appropriate). Much of the
detail belongs in the appendix; include only those facts direct-
ly relevant to the study or to your conclusions. 

6. Analysis—A high-level analysis of the proposed logical sys-
tem. Include an expanded statement of the system objectives,
constraints, and scope; include a logical model (data flow dia-
gram, and entity-relationship model) and perhaps a prelimi-
nary data dictionary for the proposed system; and identify
key interrelationships with other systems. 

7. Alternatives considered—For each alternative seriously con-
sidered, include a statement of its technical, economic, opera-
tional, and organizational feasibility, a rough implementation
schedule, and a high-level system flow diagram or other sys-
tem description. Note: Much of the detail belongs in the
appendix. 

8. Recommendations—Clearly state the recommended course of
action. Provide material to support and justify your recom-
mendation. In particular, provide a cost/benefit analysis. 

9. Development plan—Include a projected schedule and pro-
jected costs for each step in the system life cycle, assuming
that the recommended course of action is followed. Provide
detailed time and cost estimates for the analysis step. 

10. Appendix—Charts, graphs, statistics, interview lists, selected
interview summaries, diagrams, memos, notes, references, key
contacts, acknowledgements, and so on; in short, the details
that support the study. 



13.5 Key terms 
Economic feasibility — Proof that the likely benefits outweigh the cost 

of solving the problem; generally demonstrated by a cost/benefit
analysis. 

Feasibility study — A compressed, capsule version of the analysis
phase of the system development life cycle aimed at determining
quickly and at a reasonable cost if the problem can be solved and if it
is worth solving. 

Operational feasibility — Proof that the problem can be solved in the
user’s environment. 

Organizational feasibility — Proof that the proposed system is consis-
tent with the organization’s strategic objectives. 

Steering committee — A committee consisting of representatives from
various user groups that accepts, rejects, and prioritizes information
system proposals. 

Technical feasibility — Proof that the problem can be solved using
existing technology 

13.6 Software 
Not applicable. 

13.7 References 
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14.1 Purpose 
IBM coined the term joint application design (JAD) in 1970, but some
experts prefer joint application development. The key idea to organize 
a team consisting of major users, managers, and systems analysts (or 
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information consultants) and to charge that team with quickly determin-
ing, in an intensive session, the requirements for a proposed new or
replacement information system. 

14.2 Strengths, weaknesses, and limitations
The cost and time associated with data collection, analysis, and require-
ments definition can be significantly reduced by using the JAD technique.
The input from numerous people provides different perspectives on the
desired system and often generates creative ideas. Because all interested par-
ties are represented on the JAD team, conflicts and discrepancies can be
identified and resolved during the problem definition stage. Because they
are involved in system planning, the participants feel a sense of system own-
ership. JAD is particularly suited to projects that face tight time and sched-
uling constraints, and it is an excellent choice for developing a system from
scratch. 

Sometimes, so many ideas are generated that additional sessions and
meetings are needed to resolve the conflicts. Strong or influential users can
easily dominate a session, leading to a skewed sense of the users’ needs. JAD
is not a good technique for systems with relatively few inputs and outputs
or for highly computational, process-oriented systems. 

14.3 Inputs and related ideas
JAD is used to determine the system requirements during the problem def-
inition (or information gathering) phase of the system development life
cycle. Often, a preliminary problem definition (Chapter 12 and other Part II
tools) precedes the JAD session. JAD can also be used to perform feasibility
analysis (Chapter 13), cost/benefit analysis (Chapter 38), and risk analysis.
Often, such design specifications as data flow diagrams (Chapter 24), entity
relationship diagrams (Chapter 26), and system flow diagrams (Chapter 37)
are generated during the JAD session. 

14.4 Concepts
Joint application design (JAD), also know as joint application development,
is a technique for quickly determining system requirements by obtaining
input from a representative cross section of interested parties. An ad hoc
team composed of major users, managers, and systems analysts (or infor-
mation consultants) is assembled. The team then meets in an intensive ses-
sion to gather data, brainstorm, discuss ideas, reconcile differences, identify
and prioritize requirements, and generate desirable alternative solutions.
The primary steps in a JAD session are summarized in Figure 14.1. 
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14.4.1 Organize the JAD team

The members of a JAD team consist of end users from the relevant business
functional areas, managers from those same functional areas, systems ana-
lysts or information consultants, and appropriate systems specialists. The
moderator or session leader is usually the senior systems analyst or infor-
mation consultant. A scribe takes notes, records all discussions, and orga-
nizes and compiles the necessary documents. 

Figure 14.1 The primary steps in a JAD session. 
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14.4.2 Develop the JAD workbook

The JAD workbook consists of a management definition guide, information
relevant to the project, any special criteria or constraints, any assumptions,
an overview of existing technology and standards, a statement of the sys-
tem’s scope and objectives (Chapter 12), and information about the existing
system and/or relevant new technology. The purpose of the workbook is to
help the team members understand the proposed project. The design of the
workbook should facilitate note taking. 

14.4.3 Locate the JAD facilities

As a minimum, a conference room large enough to accommodate all the
team members and equipped with whiteboards or chalkboards, an over-
head projector, and a slide projector must be available. With the emergence
of the electronic meeting systems (EMS), group decision support systems
(GDSS), and computer aided software engineering (CASE) tools, addition-
al requirements might include computers for conducting an electronic
meeting, teleconferencing facilities, and a master station equipped with
CASE software. 

14.4.4 Conduct the JAD session

A JAD session is an intensive (typically) two- or three-day meeting of the
complete JAD team. Team members are expected to give the JAD session
their complete attention, scheduling no other conflicting activities. 

14.4.4.1 Preparation
Before the JAD session begins, the responsible systems analysts or informa-
tion consultants must:

• Define the system scope.
• Identify the problems, limitations, and constraints.
• Estimate the resource needs (time, budget, personnel) for developing

the system.
• Identify preliminary costs, benefits, risks, and impacts of the project.
• Identify the nature and major attributes of the project, the project

dependencies, and the project interrelationships. 
• Identify appropriate sub-projects. (The project is sometimes, decom-

posed into several sub-projects owing to the timing and/or bud-
getary constraints.) 

• Perform the background analysis necessary to define such key para-
meters as the number of users, the size of the database, the required
throughput, and the minimum acceptable response times. 

• Plan the JAD session.



In performing these tasks, the responsible analysts utilize many of the
tools and techniques described in Part II.

14.4.4.2 The session
A JAD session begins with an overview of the material collected during the
preparation stage. Once the participants understand the problem, the
process of identifying the problem’s dimensions, possible causes, require-
ments, and alternative solutions begins. 

During a JAD session, it is the moderator ‘s responsibility to effectively
manage session time, to ensure that the team stays focused on the agenda
items, to encourage all team members to participate, and to resolve any con-
flicts generated during the session. Because the team is composed largely of
non-technical personnel, it is important that the systems analysts or infor-
mation consultants minimize the use of technical terms. 

14.4.4.3 Brainstorming
The process of soliciting ideas often involves brainstorming. A specific ques-
tion is raised; for example, the moderator might ask the JAD team to suggest
possible causes of a specific problem or sub-problem. The participants are
then invited to suggest ideas, and as suggestions are made they are posted
for all to see. Ideally, at some point in the brainstorming session, a synergy
begins to emerge, with one participant’s contribution eliciting new and 
creative suggestions from other participants. 

The time allocated to a brainstorming session is limited to (perhaps) half
an hour, and the time limit is announced to all participants before the ses-
sion begins. The focus is on soliciting and listing ideas, not on attacking,
defending, or investigating those ideas. Often, targets are set; for example, a
brainstorming group might be challenged to list 25 possible (direct or con-
tributing) causes of the problem under study. Sometimes, the JAD team is
divided into several brainstorming sub-teams, and a friendly competition is
launched to see which sub-team can list the most ideas. 

14.4.4.4 Investigation, consolidation, resolution, and tabulation
Following a brainstorming session, the JAD team divides into sub-groups to
investigate the ideas on the various lists. Vague or unclear ideas are refined
and rephrased. Similar or redundant ideas are categorized and consolidated,
and the resulting meta-ideas are reconciled. 

Meanwhile, other sub-groups might conduct additional brainstorming
and/or discussion sessions to consider other sub-problems or identify and
resolve conflicts within and between the meta-ideas until, eventually, a con-
sensus is reached. The consensus ideas are then tabulated and distributed to
the JAD team members for feedback. The session ends with a presentation
of the final results. 
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14.4.5 Finalize the JAD report 

After the JAD session is concluded the responsible systems analysts or infor-
mation consultants update the necessary documents and prepare a final
report that summarizes all discussions, facts, findings, and conclusions.
They then construct a plan for action and a schedule for developing the sys-
tem. If follow-up sessions are required, they collect the required additional
information. 

There is no standard format for a JAD report, although the feasibility
study report outline (Table 13.1) suggested in Chapter 13 is a good model. 

14. 5 Key terms 
Brainstorming — A small-group technique for soliciting and consoli-

dating ideas and thoughts about a problem, a problem’s possible
causes, system requirements, alternative solutions, and similar issues. 

JAD workbook — A workbook designed to provide JAD team mem-
bers with necessary information about the project and to facilitate
note taking. 

Joint Application Design (JAD) — A technique for quickly determin-
ing system requirements in an intensive session attended by a team
consisting of major users, managers, and systems analysts. 

Management definition guide — A portion of the JAD workbook that
lists and defines technical terms related to computing platforms,
computer technology, and other elements relevant to the problem
under study. 

Moderator — The person responsible for conducting a JAD session. 
Project dependency –– A dependency relationship between two or

more sub-projects. For example, the input(s) to one sub-project are
typically output from another sub-project. 

Project interrelationship — A link or relationship between two or
more sub-projects. For example, the successful completion of one sub-
project might be a prerequisite for several other sub-projects. 

Scope — A sense of a problem’s magnitude; often, a preliminary esti-
mate of the problem’s resource implications or cost. 

Scribe — During a JAD session, the person responsible for taking
notes, recording all discussions, and organizing and compiling the
necessary documents. 

14.6 Software
There is no software specifically designed to support a JAD session.

However, certain groupware, such as Lotus Notes, supports limited com-
puter mediated conferencing. 
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15.1 Purpose 
This chapter introduces several paradigms for locating, pinpointing, and
identifying a problem or an opportunity, including decomposition, factor-
ing, synthesis, and generate and test. These paradigms can also be applied
to problem solving. 

15.2 Strengths, weaknesses, and limitations 
The strengths and weaknesses of each paradigm will be noted in context. 
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15.3 Inputs and related ideas 
These paradigms serve as the philosophical basis for numerous tools, tech-
niques, and methodologies. Significant links will be noted in context. 

15.4 Concepts 
This chapter introduces several paradigms for locating, pinpointing, and
identifying a problem or an opportunity. These paradigms serve as the
philosophical basis for numerous problem-solving tools, techniques, and
methodologies. 

15.4.1 Decomposition 

Decomposition is a top-down, goal-oriented approach that is used when the
problem is too complex or too abstract to study directly. The idea is to divide
(or decompose) the problem into logically consistent, more manageable sub-
problems, and then to attack the sub-problems. Much as a book can be bro-
ken into chapters, sections, and then paragraphs, the decomposition
approach divides a large, abstract problem into several small, concrete 
sub-problems, each with clear goals or specific tasks to perform. 

For example, imagine that a firm requires seven days to process an
order and deliver the merchandise to a customer, but a competitor needs
only three days to perform the same service. Rather than trying to solve the
excessive turnaround time problem directly, it might be more effective to
decompose the problem into order taking, order entry, order authorization,
order filling, and shipping components, and then independently study
those sub-problems. 

The primary weakness of decomposition is that it can be difficult to
track the interrelationships between the sub-problems. Additionally, inde-
pendently solving a number of sub-problems can be time consuming.
Determining acceptable criteria for decomposing the main problem can also
be a difficult task. 

Decomposition is used throughout the information engineering
(Chapter 2) and structured analysis and design (Chapter 3) methodologies
and plays an important role in such tools and techniques as data flow 
diagrams (Chapter 24), data normalization (Chapter 28), functional decom-
position (Chapter 62), and HIPO (Chapter 64). Although this paradigm
might be applied to selected sub-problems, decomposition is not as effective
for bottom-up, data-oriented, or output-oriented tools and techniques. The
decomposition paradigm is widely used in database design and is some-
times called normalization. 

15.4.2 Factoring 

The essential idea of factoring is to merge several small, isolated, overlap-
ping, or related problems to form a meta-problem. Generally, a problem can
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be reformulated by identifying those sub-problems that share similar char-
acteristics, and then grouping the related sub-problems. 

For example, a system analyst investigating low profits might identify
several possible causes, including excess warehouse personnel, sales floor
understaffing, high stock expenses, poor quality control, poor sales effort,
inadequate advertising, product shortages, excessive rework, and so on.
With so many possible causes to consider, it is difficult to distinguish the
trivial from the significant. Consequently, the analyst might begin studying
the low profit problem by factoring the sub-problems to form the following
meta-problems: 

• High production costs resulting from poor quality control and exces-
sive rework. 

• Low sales resulting from poor sales effort, inadequate advertising,
and sales floor understaffing. 

• High shipping and handling costs resulting from high stock expenses,
product shortages, and excess warehouse personnel. 

Focusing on the meta-problems is likely to be more efficient than
attempting to independently analyze the sub-problems. 

The factoring process calls for judgment. Often, a given problem can be
factored in several different ways, and individual systems analysts or infor-
mation system consultants might reasonably view the same problem differ-
ently. Consequently, it is essential that agreement on the sub-problems, the
factoring criteria, and the meta-problems be reached early in the process. 

Factoring is a bottom-up approach that lends itself to data-oriented
methodologies and tools, such as the structured requirements specification
methodology (Chapter 4) and Warnier-Orr diagrams (Chapter 33).
Additionally, this method is widely used by expert systems (Chapter 7) to
perform reasoning.

15.4.3 Synthesis 

Synthesis is an evolutionary paradigm. It starts with a major or influential
user’s viewpoint and expands (perhaps with revisions and/or modifica-
tions to the original problem description) by incorporating other users’ 
perspectives until all relevant viewpoints are included. It is useful when the
core problem is well-defined and well-structured and the sub-problems are
simple add-on functions that use the core as a base.

Inventory is a good example of a core problem. The starting viewpoint
might be that of the functional group in charge of the warehouse. Once an
effective inventory control system is implemented and a stable inventory
database is established, other viewpoints can be considered. For example, 
the system might be enhanced to incorporate time-to-ship commitments 
for the sales department, on-demand inventory status reports and queries for
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the purchasing department, a just-in-time inventory system for production,
such applications as inventory aging, continuous physical inventory, and inven-
tory shrinkage analyses for accounting, and so on. Note that the sub-problems
cannot be solved until the core problem (inventory control) is solved.

The major concern with synthesis is correctly identifying the core prob-
lem. Also, comprehensive testing is difficult because of the evolutionary
nature of the paradigm. However, once the core problem is identified and
solved, it becomes relatively easy to identify and solve the sub-problems.
Prototyping (Chapter 31) is particularly effective for problems that fit the
synthesis paradigm. 

15.4.4 Generate and test

Generate and test is a hierarchical, test-oriented paradigm that is used in
expert systems to define a solution that meets certain criteria or constraints.
The technique starts at the top of a hierarchy with the main problem and
continues down the hierarchy through the sub-problems, conducting tests
of the appropriate criteria and constraints at each level until the bottom is
reached and no more testing is necessary.

For example, imagine that an analyst has identified three problems, all
of which contribute to lower than expected profits (the main problem): 

• Production costs are too high. 
• Sales revenues are too low. 
• Inventory costs are too high. 

Management is concerned about the lower than expected profits and
expects to see results within one month (a time constraint). 

An initial study suggests that high production costs are probably the
result of poor quality control, excessive rework, and frequent shortages of
essential raw materials. Solving the first two sub-problems (quality control
and rework) will require the purchase of new inspection equipment.
Delivery time on that equipment is two months, which clearly exceeds man-
agement’s time constraint. Raw material shortages result from poor pro-
duction planning and inadequate coordination between the production and
the warehouse. Consequently, the raw material shortage problem must be
solved in concert with certain warehousing problems. 

The likely causes of low sales revenue appear to include poor sales
effort, inadequate advertising, and understaffing in the sales department.
The solutions to these three sub-problems might include better management
and the reallocation of resources, and those solutions can be implemented
within management’s one-month target. 

High warehousing and distribution costs result from poor materials
handling procedures and poor inventory management. Preliminary analysis



suggests that solving the materials handling sub-problem will require a
lengthy study of the existing materials handling procedures followed by the
purchase of new materials handling equipment and several weeks of
employee retraining. Total elapsed time to complete these tasks is expected
to be three to four months. The inventory management sub-problem
appears to be related to production’s raw material shortage sub-problem, so
a one-month study of the relationship between production and inventory
will be needed before the true scope of the problem can even be determined. 

The initial low profit problem can now be viewed as five sub-problems: 

1. Poor quality control and excessive rework. 
2. Raw material shortages. 
3. Poor sales effort, inadequate advertising, and understaffing in the

sales department. 
4. Poor materials handling procedures. 
5. Poor inventory management.

Solving sub-problem 1 or sub-problem 4 will exceed management’s time
constraint. Sub-problems 2 and 5 are interrelated, and the need to study
inventory management for a month before the true scope of the problem can
be estimated means that it, too, will exceed management’s constraint.
Consequently, in the short run the analyst should start by attacking sub-
problem 3 (poor sales effort, inadequate advertising, and understaffing in
the sales department) because it is the only sub-problem that has a chance
of yielding results within the time constraint imposed by management.

The generate and test paradigm can be used to pinpoint the correct sub-
problem to be solved, particularly for complex (large domain) problems
with time and budgetary constraints and additional constraints on specific
sub-problems. Perhaps the most important strength of the generate-and-test
paradigm is its focus on real world constraints. Note, however, that other
paradigms may be needed to identify the main problem and the sub-
problems. Also, selecting a small set of sub-problems based on artificial
constraints can lead to sub-optimization and may increase the time and cost
to solve the main problem.

15.5 Key terms 
Bottom-up — An approach to problem solving that starts with the

details and works upward. 
Data-oriented — A tool or technique that starts with the data and

derives the necessary processes. 
Decomposition — A problem analysis paradigm that calls for  break-

ing a problem into more manageable sub-problems and then  attack-
ing the sub-problems. 
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Factoring — Merging several small, isolated, overlapping, or related
problems to form a meta-problem. 

Generate and test — A hierarchical, test-oriented paradigm that starts
at the top of a hierarchy with a main problem and continues down
the hierarchy through the sub-problems, conducting tests of the
appropriate criteria and constraints at each level until the bottom is
reached and no more testing is necessary. 

Goal-oriented — A method or technique which searches through a
process until a predefined goal is accomplished. 

Meta-problem — A large problem defined by combining several small-
er problems. 

Sub-problem — A problem that is part of a larger problem. 
Synthesis — An evolutionary paradigm that starts with a major or

influential user’s viewpoint and incorporates other users’ perspec-
tives until all relevant viewpoints are included. 

Top-down — An approach to problem solving that starts with the
high-level control structures and works down to the details. 

15.6 Software 
Not applicable. 
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16.1 Purpose 
This chapter introduces several paradigms used to identify and prioritize
potential information system problems and opportunities and to establish
certain high-level criteria for performing requirements analysis.

16.2 Strengths, weaknesses, and limitations
The strengths and weaknesses of each paradigm will be noted in context. 
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16.3 Inputs and related ideas 
Not applicable. 

16.4 Concepts
This chapter introduces several requirement analysis paradigms.

16.4.1 The behavior-oriented paradigm 

The basic idea of the behavior-oriented approach is to study the behavior,
the decision-making style, and the data utilized by the responsible execu-
tives, and to use the resulting information to provide a crucial strategic-level
framework for defining system requirements. After performing the back-
ground analysis needed to understand a specific problem (or opportunity),
the analyst uses case study techniques to study how the responsible execu-
tives have historically dealt with similar problems. The top executives are
then interviewed to determine the main causes of the new problem before
detailed information about the problem is gathered and summarized. 

Matching system development with the problem-solving and decision-
making styles of the responsible executives tends to produce systems that
are consistent with the organization’s strategic direction. This approach is
particularly valuable when developing executive information systems or
top-level decision-support systems. Care must be taken to avoid overlook-
ing the needs or middle managers, supervisors, and operational personnel,
however, because they are usually the primary users of an information 
system. Additionally, executive behavior is difficult to quantify, and a lack
of concrete, systemic data can lead to misunderstandings during the analy-
sis and design stages. 

16.4.2 The information-oriented paradigm 

The focus of the information-oriented approach is on the information sys-
tem products actually used by supervisory and middle managers. Studying
management’s information needs gives the analyst a baseline against which
to prioritize or assess the requirements associated with a new problem or
opportunity. 

Because this approach focuses on how the major users actually utilize
information system technology, it tends to produce functionally useful sys-
tem. However, the information-oriented paradigm largely ignores organiza-
tional, environmental, and strategic issues, and the “existing system” 
orientation tends to encourage gradual modifications to the old system and
to discourage creative new approaches. Finally, the middle management
and supervisory focus ignores the needs of operational personnel. 
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16.4.3 The industry analysis paradigm 

The industry analysis paradigm rests on an assumption: To survive in the
marketplace, a firm needs information systems that are at least comparable
to its competitors’ systems. Information about competitors’ information sys-
tem spending (personnel, hardware, software), new information system
product development, and improvements in existing information services is
obtained from such sources as industry associations, trade magazines,
newspapers, professional journals, hardware and software vendors, and
consultants. Comparing a firm’s own internal figures to the industry norms
suggests relative strengths and weaknesses and provides a basis for defin-
ing the requirements for a proposed system or opportunity. 

Comparing a firm to its competitors stresses real-world marketplace
problems and can yield solid, quantitative data that suggest specific, con-
crete actions. Information technology evolves more quickly than such data
suggest, however. Different companies have different information struc-
tures and operating environments, and it is not always possible to general-
ize industry trends to a given firm. Collecting appropriate data for a new
industry can be particularly difficult. Finally, applying industry-wide data
to a specific development project is at best tricky. 

16.4.4 The project-oriented paradigm 

The project-oriented paradigm starts by studying the requirements of a par-
ticular information system’s end users. The idea is to establish a group of
users who represent all the affected functional areas and work through
those users to study the existing system, identify new needs or opportuni-
ties, and define the new system’s requirements. Such techniques as JAD
(Chapter 14) and RAD (Chapter 32) are good examples of this paradigm. 

The project-oriented approach is the most responsive to end user needs
and often produces a more user-friendly system. However, end users typi-
cally lack an organizational and/or strategic perspective and cannot be
expected to have the broad vision needed to implement a global information
system or a company-wide network. Also, information systems often cut
across functional boundaries, and it can be difficult to resolve the conflicts
that arise from conflicting functional objectives. 

16.4.5 The critical success factors paradigm 

The critical success factors paradigm starts by identifying and prioritizing
corporate-level information system goals and objectives. Based on these
goals and objectives, critical success factors are then defined for each major
functional group within the organization. These critical success factors sub-
sequently suggest, prioritize, and shape the requirements associated with
specific information system projects. 
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Focusing on critical success factors helps to encourage a strategic per-
spective and ensure that information system development is consistent with
the corporation’s mission, goals, and objectives. However, it is difficult to
define quantitative, measurable critical success factors, to resolve the con-
flicts between inconsistent critical success factors, and to prioritize critical
success factors. Additionally, local, divisional, and organizational critical
success factors can conflict, and that can lead to confusion. 

16.5 Key terms 
Behavior-oriented paradigm — An approach to requirements analysis

in which the analyst observes and investigates the problem from the
strategic level by focusing on executive decision-making and
problem-solving styles. 

Critical success factor — A target that must be met or an event that
must occur if an organization is to accomplish its strategic goals and 
objectives. 

Critical success factors paradigm — An approach to requirements 
analysis that starts by identifying and prioritizing corporate-level
management information systems goals and objectives and then
defining critical success factors for each major functional group with-
in the organization. 

Industry analysis paradigm — An approach to requirements analysis
in which the responsible analysts study competitors’ information
systems and use the resulting information as a primary factor in
defining internal information system requirements. 

Information-oriented paradigm — An approach to requirements
analysis that focuses on the information system products actually
used by supervisory and middle managers. 

Project-oriented paradigm — An approach to requirements analysis
that focuses on end user requirements. 

16.6 Software 
Not applicable. 
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17.1 Purpose
Surveys and questionnaires are among the analyst’s most important sources
of information about user problems, user requirements, user satisfaction,
and similar system parameters. In this chapter, we briefly discuss sample
surveys and questionnaire design.
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17.2 Strengths, weaknesses, and limitations
A sample survey is taken when it is not practical or convenient to conduct a
census of an entire population. A sample survey is less expensive and less time
consuming than a census. Moreover, the use of an appropriate sampling
design allows the analyst to make valid statistical inferences about the popu-
lation. In fact, survey results based on a proper sampling plan can be more
accurate than the results of a census of an entire population. This can happen
because a survey can often be conducted by a small number of highly trained
field workers who are far less apt to make mistakes than are the possibly large
number of field workers who would be needed to conduct a census.

On the other hand, errors can occur when a sample survey is employed.
Sampling error occurs because we do not examine the entire population
when we conduct a sample survey. Thus, a survey result is likely to be less
accurate than the result of an accurate census. Other errors of non-observa-
tion can occur when certain segments of the population are not represented
in the sample. Errors of observation can occur when the information
obtained from a survey is not the truth. However, it is possible to minimize
the impact of such errors by intelligently designing the survey instrument or
questionnaire.

17.3 Inputs and related ideas
Sample surveys and questionnaires might be used in any stage of the system
development life cycle, but they are particularly valuable during the infor-
mation gathering and problem definition stage (Part II). Sampling 
techniques are discussed in Chapter 9.

17.4 Concepts
The purpose of this chapter is to give a brief overview of how to plan a 
survey and of how to design a questionnaire. For additional details, see
Scheaffer et al5.

17.4.1 Planning a survey
In their discussion of survey sampling, Scheaffer et al.5 present a checklist 
containing eleven items that need to be considered when planning a survey
(Table 17.1). In much of the remainder of this chapter, we will concentrate on
the measurement instrument; more particularly, we will discuss how to
design a useful questionnaire.

17.4.2 Errors in survey sampling
There are several common sources of error that are encountered when con-
ducting a sample survey. These errors can be divided into two categories:
errors of non-observation and errors of observation.
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Table 17.1 A checklist of items to be considered when planning a survey.5

1. Statement of objectives A set of simple objectives must be clearly stated
and must be understood by everyone working on
the survey.

2. Target population The population to be sampled must be clearly
defined using terminology that everyone under-
stands. The population must be defined clearly
enough so that a sample can be selected from the
population.

3. The frame The frame is a list of sampling units from which 
the sample will be selected. The frame must be
defined so that it closely agrees with the target
population.

4. Sample design The sample design must be chosen so that the sam-
ple will provide enough information to fulfill the
survey objectives. Several sample designs (for
instance, the simple random sample) are briefly dis-
cussed in Chapter 9.

5. Method of measurement Several different measurement methods, such as
interviews, questionnaires, direct observation, etc.,
are available, and the method to be used for the
survey must be chosen. Interviews are discussed in
Chapter 8. Questionnaires are discussed in this
chapter.

6. Measurement instrument The survey instrument (for instance, the question-
naire or script of questions to be asked in an inter-
view) must be carefully designed in order to mini-
mize bias in the survey results.

7. Selection and training of The field workers actually collect the data. For 
field workers instance, they administer questionnaires, conduct

interviews, and so forth. These people must be
carefully trained so that how they do their job does
not have a detrimental effect on the survey results.

8. The pretest In a pretest the measurement instrument is field
tested on a small preliminary sample of respon-
dents. Changes suggested by the pretest results are
made before full-scale sampling is done.

9. Organization of fieldwork Carefully plan and organize how the field workers
will do their jobs and clearly define who has the
authority in various situations.

10. Organization of data Carefully plan how the survey data will be processed,
managed, and analyzed at all stages of the survey
process.

11. Data analysis Specify in detail exactly how the data will be ana-
lyzed and carefully plan what information is to be
included in the final survey report.
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only some (not all) of the elements in the target population. Such errors can
be due to sampling, coverage, or non-response. Sampling error refers to
the difference between an estimate based on a sample and the true value
of the population parameter being estimated. This type of error will
always exist because a sample is being taken instead of a census. Errors of
coverage occur when the sampling frame is not identical to the target pop-
ulation. For instance, a list of local businesses obtained through the
Chamber of Commerce will not be completely up to date and, therefore, a
sample randomly selected from the Chamber of Commerce list is not a ran-
dom sample of all businesses in the locality. Non-response occurs when a
sampled element (person, business, etc.) cannot be contacted, when a
respondent is not able to answer a question, or when a respondent refuses
to answer.

Errors of observation occur when the survey data that has been collected
is different from the truth. Such errors can be caused by the data collector
(the interviewer), the survey instrument, the respondent, or the data col-
lection process. For instance, the manner in which a question is asked can
influence the response. Or, the order in which questions appear on a ques-
tionnaire can have an influence on the responses. Or, the data collection
method (telephone interview, questionnaire, personal interview, or direct
observation) can influence the survey results.

17.4.3 Questionnaire design

One of the best ways to reduce error when conducting a sample survey is to
carefully design the questionnaire to be used. There are several important
considerations that must be kept in mind when designing a questionnaire. 

17.4.3.1 Question ordering
The order in which questions are asked can affect the responses to the ques-
tions. One reason for this is that respondents try to answer questions in a
consistent fashion. As an example, we consider an example originally dis-
cussed in Schuman and Presser6. An experiment involved asking two 
questions:

1. Do you think the United States should let Communist newspaper reporters
from other countries come in here and send back to their papers the news as
they see it?

2. Do you think a Communist country like Russia should let American news-
paper reporters come in and send back to America the news as they see it?

In surveys conducted in 1980, when question 1 was asked first, 54.7 per-
cent of respondents answered yes to question 1 and 63.7 percent answered
yes to question 2. When question 2 was asked first, 74.6 percent answered

Errors of non-observation occur because the elements in a sample are
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respondents’ sense of fair play led more respondents to approve of
Communist reporters being allowed to report news in the United States as
they see it when they had first approved of U.S. reporters doing the same in
Communist countries.

We should also point out that a respondent’s reaction to a question can
be set by asking preliminary questions dealing with the same topic and that
the first question asked is often thought of differently from questions that
follow. For instance, the responses to a question about government spend-
ing might be very favorable to increased government spending if the ques-
tion is preceded by several questions emphasizing useful services provided
by the government. In contrast, the responses might be opposed to increased
government spending if the question is preceded by several questions
emphasizing government waste and inefficiency. 

As an example of how the first question asked can be thought of differ-
ently from the questions that follow, when questions ask the respondent to
supply ratings, the first question tends to be given the most extreme rating.
For instance, when people are asked to rate the appeal of resort hotels based
on descriptive materials, if the first hotel seems appealing it would likely be
rated higher than other appealing hotels that are subsequently rated. On the
other hand, if the first hotel is not appealing, it would likely be rated lower
than other equally unappealing hotels that are subsequently rated.

In addition, the ordering of question responses can also influence survey
results. Often, the first choice (or first several choices) in a list of choices are
more likely to be selected than are later choices. Moreover, if a choice is long,
complicated, or difficult to understand or interpret, the choice that precedes
the difficult choice is likely to be selected.

In order to reduce the impact of question ordering and response order-
ing, one strategy is to vary the orders of questions and/or responses 
presented to different respondents. Another approach is to carefully
describe the context in which each survey question was asked in the analy-
sis of the survey results.

17.4.3.2 Open questions and closed questions
When an open question is posed, the respondent is allowed to formulate any
answer that he or she wishes. On the other hand, a closed question requires
one of several predetermined choices (such as a, b, c, or d) or requires a sin-
gle numerical response (such as the number of years a respondent has spent
in his or her current job position). Closed questions are advantageous
because it is easy to summarize and analyze the responses to such questions
(especially when a computer is used). On the other hand, open questions
allow the respondent to express ideas and nuances that the designer of the
questionnaire may not have considered. However, it might be very difficult
to summarize and interpret the responses to open questions because the
responses cannot be easily quantified. 

yes to question 1 and 81.9 percent answered yes to question 2. Evidently, the



1999 by CRC Press LLC

What do you like most about this product?

This question would elicit a wide variety of responses, while a closed
question such as:

What I like most about this product is its:
(a) price (b) quality (c) design (d) styling

would produce responses that are more easily summarized but might force
a respondent to choose a response that would not be his or her best
response. As a compromise, a questionnaire will often contain a few open
questions in addition to a number of closed questions. If only closed ques-
tions are to be employed, a good strategy is to use open questions on a pre-
liminary survey to develop the responses for the closed questions to be
asked.

17.4.3.3 Response options and screening questions
When a question is posed, sometimes the respondent would like to answer
by stating that he or she has no opinion or does not know how to answer.
Therefore, when constructing a questionnaire, one must decide whether a no
opinion option will be included among the responses to the various ques-
tions. Generally, no opinion responses provide little useful information, and,
therefore, such responses are often not allowed. On the other hand, it does
not seem reasonable to require a response when the respondent may not
have the information needed to intelligently formulate a response.

As a general rule, when a question requests an opinion about a subject
that everyone (or almost everyone) is familiar with, a no opinion option is not
allowed. For instance, a question about whether federal income taxes are too
high might be posed without a no opinion option. On the other hand, a ques-
tion whose answer requires a specialized background or very specific
knowledge might be posed with a no opinion option. For example, a question
about a little known and seldom used tax provision would probably include
a no opinion option. 

A common strategy is to use screening questions. Such questions are
posed in order to determine whether or not a respondent has enough
knowledge or information to answer the main question. If a respondent
does not know enough to answer the main question, the main question is
skipped. If a respondent does have the needed background, he or she is
asked to answer the main question and this main question is posed without
a no opinion option.

Besides deciding whether to include a no opinion option, one must
decide how many options will be employed. Because middle ground
responses often give respondents an easy out, questions are often posed
without a middle ground or neutral option. For instance, the question:

For instance, in a market research study we might ask the open question:



attempts to elicit a response on one side of the taxation issue or the other
with no neutral response allowed. If we believe that it will be too difficult for
many respondents to choose one side or the other, then more response
options should be included. In general, however, it is a good idea to keep the
number of response options as small as possible.

17.4.3.4 Wording of questions
The language and phrasing used in constructing questions is also an impor-
tant consideration. In the book Essentials of Marketing Research, Dillon et al.2
present seven basic principles of question construction. Their principles are
summarized in Table 17.2.

Table 17.2 Seven basic principles of question construction.2

1. Be clear and precise. A question must be understandable
and must elicit a precise answer. For
instance, the question How many cola
drinks do you consume? is too vague. A
better version would be: Here is a 16
ounce bottle of a cola drink. If all of the
cola you drink came in 16 ounce bottles,
how many would you consume in a week?
State a number.

2. Response choices should not overlap The response choices should not over-
and should be exhaustive. lap and should cover all relevant pos-

sibilities.
3. Use natural and familiar language. Questions should be phrased using

words and expressions that respon-
dents will understand. For instance,
the question, Do you think that every
public building should be equipped with 
a bubbler?, will be understood in
Wisconsin because in that state a
water fountain is called a bubbler, but
this question will not be understood
elsewhere in the United States.

4. Do not use words or phrases that Do not use wordings that suggest what 
show bias. the answer to a question should be

(that is, do not use loaded questions). In
addition, questions should be asked in
a balanced way. For instance, the ques-
tion, Do you favor the death penalty?
should be asked in the more balanced
form, Do you favor or oppose the death
penalty? 

5. Avoid double-barreled questions. Double-barreled questions are ques-
tions that ask the respondent to
answer two questions at the same time.
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In your opinion, are taxes in the United States too high or too low?



slow paced and are too expensive?, con-
tains two questions. They should be
separated.

6. State explicit alternatives. For instance, if we wish to investigate
the desirability of DSS satellite sys-
tems, the question, Would you purchase
a DSS satellite system?, does not supply
as much information as the question,
If you currently subscribe to cable televi-
sion and DSS satellite television were
available to you, would you: 

1. subscribe to cable only,

2. purchase a DSS satellite system only,

3. subscribe to cable and purchase a DSS
satellite system.

7. Questions should meet criteria of Questions must measure what the
validity and reliability. researcher is trying to measure (validi-

ty) and responses should be able to 
be replicated by other researchers 
(reliability).

When designing questions one must keep in mind that people do not
remember facts very well. Also, people do not determine frequencies by
counting. Rather, they determine a rate for a shorter period and then multi-
ply (for instance, I consume 3 cases of soft drinks per month, which when
multiplied by 12 gives a yearly consumption of 36 cases). Finally, people tele-
scope easily remembered events so that they believe that they occurred in a
shorter period of time than they actually did. On the other hand, events that
are difficult to remember are believed to have occurred longer ago than they
actually did.

17.5 Key terms
Census — A set of measurements (or interviews) for every element of a

population.
Closed question — A question that requires one of several predeter-

mined choices or that requires a single numerical response.
Double barreled question — A question that asks the respondent to

answer two questions.
Errors of coverage — Errors owing to the sampling frame differing

from the target population.
Errors of non-observation — Errors that occur because the elements in

the sample are not all of the elements in the target population.
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For instance, the question, Do you feel
that major league baseball games are too



ferent from the truth.
Frame — A list of sampling units from which the sample will be selected.
Loaded question — A question whose wording suggests what the

answer should be.
Non-response — A type of sampling error that occurs when a sampled

element (person, business, etc.) cannot be contacted, when a respo-
dent is not able to answer a question, or when a respondent refuses
to answer.

Open question — A question for which the respondent is allowed to
formulate any answer he or she wishes.

Population — A set of units that we wish to study.
Sample — A subset of the units in a population.
Sampling error — The difference between an estimate based on a sam-

ple and the true value of the population parameter being estimated.
Screening questions — Questions posed in order to determine

whether or not a respondent should answer the main question.

17.6 Software
Not applicable.
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Errors of observation —  Errors that occur when the survey data is dif-
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18.1 Purpose
A cause-and-effect diagram is a graphical representation of the cause and
effect relationships present in an information system or a system in general.
The diagram can be used to conduct a root cause analysis, to help design or
redesign systems, and to help create or redefine operation standards. The
diagrams are sometimes referred to fishbone diagrams, because of their
appearance, or Ishikawa diagrams in reference to the quality expert Kaoru
Ishikawa who championed their use.

18.2 Strengths, weaknesses, and limitations
A correctly constructed cause-and-effect diagram will lead to a better under-
standing of the system of interest. The underlying causal relationships
among the subsystems and processes comprising the system should become
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clear to the people constructing the diagrams and the people interpreting
them. The diagram can then be used as an effective tool for identifying the
root cause of an undesirable system effect. The diagram is also helpful in
facilitating a wide range of discussions concerning the system and efforts to
improve the system. Moreover, a detailed cause-and-effect diagram can be
used as a technical source for a wide range of purposes including the devel-
opment and revision of technical, operating, and inspection standards.

The effectiveness of the cause-and effect diagram is directly related to
the quality of the work that goes into developing the diagram. Everyone
involved with the system must participate in the construction process by
offering their input concerning all the factors involved in the problem. These
factors must be placed into categories that are relevant and properly
defined. The relationships among the categories must also be correctly iden-
tified. If possible, causal relationships should be verified with regression
analysis or other statistical techniques.

Three common mistakes in constructing cause-and-effect diagrams are
not clearly defining the categories, improper verification of the causal 
relationships, and not having enough detail in the diagram. Teamwork and
dedication to detail should overcome these problems.

18.3 Inputs and related ideas
Cause-and-effect diagrams are useful tools for identifying the likely causes
of a problem during the problem definition stage (Part II) of the system
development life cycle. Brainstorming (Chapter 14, Section 14.4.4.3) is a
valuable tool when developing a list of possible activities to be used in a
cause-and-effect diagram. Once the cause-and-effect diagram is drawn, it is
often helpful to use it in conjunction with a Pareto diagram (Chapter 11) to
help prioritize and allocate resources. In general, the seven tools for quality
improvement (Pareto diagram, cause-and-effect diagram, control chart,
process flow diagram, check sheet, scatter diagram, and histogram) serve as
a complimentary tool set which has been proven to be effective in improv-
ing many systems.

18.4 Concepts
A cause-and-effect diagram is a graphical representation of the causal rela-
tionships inherent in a system. Constructing a cause-and-effect diagram
requires a team composed of people knowledgeable about the system of
interest. In the following example, a cause-and-effect diagram for evaluat-
ing client server application failures is presented.

18.4.1 Constructing the diagram

The first step in constructing a cause-and-effect diagram is to develop a clear
definition of the effect or outcome of interest. Then all possible causes 
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leading to that outcome are brainstormed. It is important in the brainstorm-
ing period to consider all possibilities so that no important factors are over-
looked. Unimportant causes can be dropped later.

In our example a client server application failure is the system event of
interest and is placed in the box on the right side (the effect side) of the dia-
gram, as shown in Figure 18.1. Next, the main arrow pointing into the effect
box (the trunk) is drawn.The trunk is in the left side of the diagram (the
causal side).

Four to six branches are then selected to represent the main causes of the
main effect. The branches represent cause-and-effect relationships with the
main effect of interest. Leading into the big branches, are medium branches
which are used to represent the next layer of causal relationships. Note that
the cause-and-effect relationships should move in the direction of the
arrows in the figure. For example, a software bug leads to a middleware
problem, which leads to the client server application failure. Or, a broken
physical connection can lead to a network problem, which results in the
client server application failure.

A cause-and-effect diagram can contain as many different levels of
branches as necessary. Typically two to five levels are used. If four or five
levels are used, it is often helpful to produce the diagram in pieces. Note
that in Figure 18.1 the big and medium branches are displayed, while in
Figure 18.2 the small and tiny branches attached to the Client hardware fail-
ure medium branch (a horizontal arrow near the lower right of Figure 18.1)

Figure 18.1 The main portion of the cause-and-effect diagram for the client server
application failure.
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are displayed. Three small branches are used to identify the main causes for
this type of failure, and sub-categories within the small branches are dis-
played in the tiny branches. For illustrative purposes, only one of the medi-
um branches in Figure 18.1 is expanded, but in practice any or all of the
medium branches could be broken down and illustrated in detail.

18.4.2 Root cause analysis

A correctly constructed cause-and-effect diagram is very useful for con-
ducting a root cause analysis. For example, suppose that a client server
application failure has occurred. The cause-and-effect diagram shown in
Figure 18.1 suggests that the cause is one of the following four factors: mid-
dleware, server, network, or client. Assuming that the problem is deter-
mined to be with the client, we now investigate the possible sources within
the client, listed in Figure 18.1 as human error, client hardware failure, appli-
cation software failure, and system software failure.

Suppose that the problem was determined to be with the client hard-
ware. Next, we turn our attention to Figure 18.2 and try to determine if the
client hardware failure was owing to a processor problem, a memory prob-
lem, or a hard drive problem. Assuming that it was a hard drive problem,
the cause-and-effect diagram gives three possibilities for such an event: disk
head crash, hard drive full, and driver failure. Answering this question
leads to the root cause of the client server application failure. Suppose that

Figure 18.2 The detailed portion of the cause-and-effect diagram associated with
client hardware failure.
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the hard drive was found to be full. The full hard drive is said to be the root
cause of the client server application failure. Reaching the root cause
required a series of four questions each probing a causal relationship one
step further.

A root cause analysis is only possible when the causal relationships in a
cause-and-effect diagram are valid. An analyst should verify the structure of
the branches and the direction of the arrows beginning with all tiny branches
before using the diagram. For instance, tracing the logic presented above, the
analysts should have previously verified that a full hard drive can lead to a
hard drive problem, which can lead to a client hardware failure, which can
lead to a client problem, which can lead to the client server application failure.
If possible, these paths should be verified with data and statistical models.

18.5 Key terms
Branches — The factors causing the effect of interest; branches are sub-

divided into big, medium, small, and tiny branches. When the term
fishbone diagram is used, branches are referred to as bones.

Effect of interest –– A characteristic or event of a system that the cause-
and-effect diagram is meant to study; typically, a problem or unde-
sirable event.

Root cause analysis — Identification of the initial factor resulting in an
effect of interest; the root cause is usually found in a tiny branch. This
initial factor starts a chain reaction of cause and effect situations,
moving from a tiny branch to a small branch to a medium branch to
a big branch, and ultimately resulting in the effect of interest.

Sources of variability — Many different things can affect the outcomes
from systems, including the effects of workers, machines, materials,
methods, measurements, and the environment. These six sources of
variation are sometimes used as the big branches on a cause-and-
effect diagram.

Trunk — The trunk is the central part of the diagram to which the big
branches are attached. When using the term fishbone diagram, the
trunk is referred to as the spine.

18.6 Software
Most graphing packages have the ability to produce cause-and-effect dia-
grams. For example, the chapter figures were produced with Microsoft
PowerPoint.

Many statistical or quality improvement software packages can be used
to produce cause-and-effect diagrams. Construction of cause-and-effect dia-
grams using Minitab for Windows is easy, but not very flexible. In SAS, use
the Ishikawa procedure.
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19.1 Purpose
Simulation is the use of a mathematical model that behaves in the same
manner as the system under study. The purpose of a simulation model is to
give management an insight into the behavior of the system and to give
information about possible alternative actions. By changing parameter 
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values and testing different proposed solutions to a problem, simulation can
provide an insight on how the system behaves under various conditions
and help management evaluate the available options.

19.2 Strengths, weaknesses, and limitations
The information obtained from the simulation model can be used to study
the behavior of the system without disturbing the system, or to compare
various proposed solutions and actions without actually implementing
those actions. It is generally easier to understand a simulation model than
an analytical model (although an analytic model, if one exists, is preferable
to a simulation model). Furthermore, with the recent technological
advances, computer animation can give a visual representation of a model
and enable managers to better understand the model. Finally, simulation is
very flexible and can be used to represent very complex systems that cannot
be otherwise studied.

The quality of results depends on the quality of inputs. Gathering data
to generate input values can be time consuming and expensive. Building a
model requires time, effort and expertise, and the output can be hard to
interpret. Simulation cannot prescribe a solution; it merely describes the
behavior of a system under various inputs. Thus, the analysis will not detect
the existence of a better action that was not tested. 

Note that several simulation trials are necessary before inferences about
an output variable can be made. In discrete simulations, multiple runs are
necessary, and the mean of the average values obtained from each run
serves as the point estimate for the measure of interest.

19.3 Inputs and related ideas
Before building a simulation model, you must:

1. Formulate the problem and identify a clear objective for the model.
Identify output variables and specific issues to be addressed. Decide
on budget and time restrictions. 

2. Define the probability distributions of all stochastic inputs. These
input distributions are obtained or estimated from empirical data or
through heuristic procedures if no data are available.

3. Obtain a good understanding of the system and determine a level of
detail for the model.  

Once the model is developed, verify that it is free of any programming
mistakes. Throughout the entire simulation process, validate the model to
ensure it represents the system under study. Use pilot runs to test the
model’s behavior to small changes. Use real output data, if available, to
evaluate simulated output. After verifying and validating the model, make 
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multiple simulation runs to gather output data. Use statistical techniques 
to analyze the output and make inferences about the performance of partic-
ular designs.

Simulation and queuing theory (Chapter 79) are mathematically-based
techniques that can be applied to similar problems. Simulation is often used
to support network analysis (Chapter 53) and network routing (Chapter 54).

19.4 Concepts
Simulation models imitate real life systems. The models frequently deal
with stochastic rather than deterministic inputs. These inputs have proba-
bilistic components that can be modeled through the use of random 
numbers. Simulation languages and spreadsheets have built-in probability
functions that allow the user to generate values from certain probability
distributions.

Simulation models can be categorized into three groups: Monte-Carlo
simulations, discrete simulations, and continuous simulations. Discrete and
continuous simulations are often called systems simulations. The main dif-
ference between Monte-Carlo and systems simulations is the effect of time.
In Monte-Carlo simulations time plays no substantive role, while in systems
simulations time is an important part of the model. In discrete simulations
variables change instantaneously at particular points in time, while in con-
tinuous simulations, variables change continuously. Continuous models
typically use differential equations and have applications in the engineering
field. Thus, they are not discussed in this chapter.

19.4.1 Monte-Carlo simulation

Monte-Carlo simulations have one or more random inputs and the passage
of time plays no substantive role. Random numbers are used to generate
values from the input distributions. Typically, the output depends on these
probabilistic inputs and takes on different values with repeated simulation
trials. The outcomes of consecutive simulation trials are independent of
each other, and standard statistical methods can be used to analyze the
results. Moreover, risk analysis can be performed to evaluate the potential
loss resulting from a decision. Most popular spreadsheets have build-in
probability functions and allow repeated sampling. Furthermore, spread-
sheet add-ins make it much easier to perform simulations and generate
important statistical information that facilitates the analysis of the output.

The following example is used to demonstrate the application of Monte-
Carlo simulation. Albert’s Bakery Store specializes in fruitcakes. Daily
demand for cakes is normally distributed with a mean of 12 and a standard
deviation of 2. Production cost is $3.10 per cake and the unit selling price is
$5. Any cakes not sold at the end of the day are given to the free store. Albert
would like to know how many cakes to make at the beginning of the day in
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order to maximize his profit. Furthermore, he believes that it is important to
have a profit of at least $5, and would like to minimize the probability of not
meeting this minimum profit.

The unit production cost and the unit selling price are found in cells B3
and B4 of the Excel spreadsheet in Figure 19.1. The decision on daily pro-
duction is shown in cell B6. Cell B7 generates demand using the normal dis-
tribution and rounds the value to the nearest integer. Production cost is in
cell B8, revenue is in cell B9, and profit is the difference between revenue
and cost as shown in cell B11. It is good practice to have the input values at
a designated place in the spreadsheet and refer to them for the calculation
of the various costs. That way, sensitivity analysis can be performed by sim-
ply changing the values of the input cells (and not the cell formulas).

19.4.1.1 Output analysis
The output variable in this example is profit. Whenever demand changes in
cell B7, profit also changes. Furthermore, the daily production value in cell
B6 affects profit.

To analyze this problem, multiple simulation trials are necessary for
each production value. Using a two-way table in Excel, the profit was gen-
erated for 1000 simulation trials and 6 different production values. For each
production value, the average, standard deviation, minimum, and maxi-

Figure 19.1 Spreadsheet setup for Albert’s Bakery Store.
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Figure 19.2 Simulation results for Albert’s Bakery Store.

Table 19.1 Confidence Intervals

mum profit values were calculated using the =AVERAGE, =STDEV, =MIN,
and =MAX functions.

The summary statistics of the simulation trials are shown in Figure 19.2.
A daily production value of 12 maximizes average profit at 19.335 with a
standard deviation of 5.652. A daily production value of 11 gives an average
profit at 19.245 and a standard deviation of 3.95. This option gives a lower
profit but has less variability. 

The formula for computing a 95 percent confidence interval of the aver-
age profit given a specific production value is shown in Table 19.1 (Formula
19.1). x––– is the average profit, s is the standard deviation, n is the number of
simulation trials, and Z0.25 is 1.96, and is obtained from the standardized
normal tables. The 95 percent confidence interval for a daily production
value of 11, is 19.245 � 1.96(3.95/10001/2), or from 19.000 to 19.490. For a
daily production value of 12, the 95 percent confidence interval is 18.985 to
19.685. Again, the intervals indicate that a production of 12 has a higher
average value but also a higher variability.
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Since simulation trials are independent of each other, other statistical
methods (for example, hypothesis testing) can be used to analyze and com-
pare the various decisions.

19.4.1.2 Risk analysis
Risk is the potential occurrence of an undesirable outcome when a decision
must be taken in the presence of uncertainty. In the Albert’s Bakery Store
example, the undesirable outcome is a profit less than $5.

For each production value, the number of simulation trials having a
profit less than $5 can be obtained using Excel’s =COUNTIF(range,”<5”)
function. This number is divided by the total number of simulation trials
(1000) to give the risk or probability of profit being less than $5 (Figure 19.2).

Risk is minimized when daily production is 9, but profit is low at this
level. Compare the two production values with the highest average profit.
A production quantity of 12 has the highest average profit with a risk of 3.4
percent. A production quantity of 11 has a slightly lower profit with a lower
risk at 0.8 percent.

19.4.2 Discrete simulation

Discrete simulations represent systems in which changes occur instanta-
neously at particular points in time. They model a sequence of events that
occur over time and are typically used for inventory, queuing, and manu-
facturing analyses. Lately, their applications have been extended to the ser-
vice and public policy sectors among others.

Even though the analysis of such models can be done manually or in
spreadsheets, the amount of information that must be kept can be over-
whelming and the use of computer simulation languages is recommended.

Queuing applications of discrete simulations abound. In these studies,
the characteristics of the system change with the occurrence of two events:
arrival of entities and departure (or end of service) of entities. The simula-
tion clock is advanced to the time when the next event takes place, and the
changes in the system are recorded. Thus, the models are frequently called
next-event simulations.

Consider the example of Harry, the barber (Chapter 79). Customers
arrive at Harry’s shop at the average rate of 4 per hour, according to a
Poisson distribution. Harry’s average service rate is 3.2 customers per hour,
exponentially distributed. Chapter 79 shows the calculation of performance
measures (length of queue, waiting time in queue, etc.) using an analytical
approach. In this chapter, the same analysis is performed with the help of a
simulation language.

Using SLAM II,1 the graphical network of the problem is shown in
Figure 19.3. The first node in the network creates arrivals at an average rate
of one every 0.25 h. The customers are routed to a queue (HARRY) where
they wait for service. Average service time is 0.2 h, and after service they
leave the system.
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Figure 19.3 SLAM II network for Harry’s barbershop.

Figure 19.4 SLAM II output for Harry’s barbershop.

The simulation was run for 4000 h and statistics were cleared after 1000
h in order to eliminate any effects of transient state. The output statistics in
Figure 19.4 represent steady state statistics for one run. Average length of
the queue is 3.189 and average waiting time is 0.795 h or 47.7 min. These val-
ues can be found under “FILE STATISTICS” and are in agreement with the
analytical values (Chapter 79) of 3.2 and 48 min.

Consider the same example with the following extension: There is a 50
percent chance that an arriving customer will balk if there are more than 4
customers waiting. The new network in Figure 19.5 shows conditional as
well as probabilistic branching. Variable NNQ(1) refers to the number of
customers waiting for service. The condition and probabilities on the
branches indicate that 50 percent of the arriving customers leave if the line
is greater than 4. As expected, the average length of the queue decreased to
1.692, and average waiting time is 0.444 h or 26.64 min (Figure 19.6).
Furthermore, the output indicates that during the 3000 simulated hours, 722
customers left the system without receiving service (regular activity statis-
tics) while 11,443 customers received service (service activity statistics).
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Figure 19.5 SLAM II network for Harry’s barbershop with probabilistic balking.

Figure 19.6 SLAM II output for Harry’s barbershop with probabilistic balking.



19.4.2.1 Stopping rules
In the preceding example, the model was run for a fixed amount of time.
The simulation lasted 4000 h and the statistics were cleared after 1000 h in
order to eliminate transient state effects. If the transient state is of interest,
then statistics are collected over the initial stages of the simulation.

Other stopping rules for discrete simulations can depend on the num-
ber of entities that go through the system. It is possible to generate only 100
customers for Harry’s barbershop, and end the simulation when the last
customer leaves the system. Alternatively, it is possible to keep generating
customers, but end the simulation when the 100th customer leaves the sys-
tem. In the first example, the system is empty when the simulation termi-
nates, while in the latter example, there can be customers in the system at
the end of simulation. The performance measures of the two scenarios will
probably be different.

19.4.2.2 Output analysis
Statistical analysis of discrete simulations is not as straightforward as in
Monte-Carlo simulations because observations are not independent. For
example, the waiting time in queue for the 10th customer is correlated with
the waiting time of the 9th customer. If customer 9 was in line for a long
time, most probably, customer 10 will be in line for a long time. Multiple
simulation runs are necessary, with each run lasting a reasonable amount of
time or processing a large number of entities. If the transient state is not of
interest, statistics should be collected after the steady state has been reached.
A popular technique for collecting statistics is the batch means approach.
One long simulation run is used instead of many shorter ones. Statistics are
cleared after the warm-up period in order to eliminate the transient state.
The remaining length of the simulation is divided into the desired number
of batches. Statistics are collected at the end of each batch and then cleared
in order to start collection for the next batch. For each batch, the average
value of a performance measure is calculated. The 95 percent confidence
interval for a performance measure is given by Formula 19.2 in Table 19.2. 
x––– is the mean of all batch averages, n is the number of batches (which is 
typically small), t0.25 has n�1 degrees of freedom and is obtained from the 
t-tables, and s is the standard deviation of the average values, given by
Formula 19.3, where xi is the average value of the ith batch. 
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Table 19.2 Discrete Simulation Output Analysis



The simulation model for Harry’s shop with probabilistic balking
(Figure 19.5) was run for 16,000 h; statistics were cleared after the first 1000
h, and then collected, and subsequently cleared at 3000 h intervals. The
average queue-lengths for the five batches are: 1.692, 1.507, 1.715, 1.633, and
1.585. The mean, x–––, is 1.6264 and the standard deviation, s, is 0.0839. The 95
percent confidence interval for the length of the queue is 1.6264�
2.776(0.0839/5 1/2) or 1.522 to 1.730. In other words, there is a 95 percent
chance that the length of the queue is between 1.522 and 1.730.

19.5 Key terms
Analytic model — A mathematical equation(s) that will give the value

of an output when an input value is specified.
Balking — The act of walking away from a queue; usually occurs when

the queue is either too long or at maximum capacity.
Continuous simulation — A simulation model of a system in which

changes occur continuously.
Deterministic model — A model having all inputs fixed and known

(or assumed known).
Discrete simulation — A simulation model of a system in which

changes occur instantaneously at particular points in time.
Entities — Units such as people, parts, jobs, etc., that flow through a

system.
Monte-Carlo simulation — A simulation with one or more random

variables where the passage of time plays no substantive role.
Random numbers are used to generate values from probability dis-
tributions.

Risk analysis — An analysis of the potential occurrence of an undesir-
able outcome when a decision must be taken in the presence of uncer-
tainty.

Simulation — The use of a mathematical model that behaves in the
same manner as the system under study.

Steady state — The end of transient state as the system reaches normal
operations.

Stochastic or probabilistic model — A model having some data
described by probability distributions.

System — A set of components (entities, machines, etc.) that interact to
perform an operation that is of interest to the modeler.

Transient state The beginning or warm-up period of a model as activ-
ity builds up.

19.6 Software
Most standard spreadsheet programs are sufficient for Monte-Carlo 
simulations. Build-in probability functions give the analyst the capability to
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sample from certain distributions. However, the number of available distri-
butions is limited. Furthermore, it can become cumbersome to generate
thousands of trials of a simulation model. Spreadsheet add-ins (@RISK
Crystal Ball, etc.) provide a wide variety of probability distributions, and
make it much easier to perform multiple trials, and generate important sta-
tistical information to facilitate the analysis of the output.

Both general-purpose languages (C, C++, Fortran, etc.) and simulation
languages (SLAM II, SIMSCRIPT, GPSS, Extend, etc.) can be used for dis-
crete simulation. Even though general-purpose languages offer greater flex-
ibility, simulation languages can be more efficient as far as computing time
and effort. Simulation languages provide most of the features required in a
simulation model and are easier to change. 

For a comprehensive survey of available simulation software see
Swaim.2

19.7 References
19.7.1 Citations
1. Pritsker, A. B., Introduction to Simulation and SLAM II, 3rd ed., Halsted Press
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19.7.2 Suggestions for additional reading
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chapter twenty

Gantt charts

William S. Davis 
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20.1 Purpose
A Gantt chart is a tool for graphically depicting a schedule. Gantt charts can
be used to plan, record, and document the schedule, and to track actual
results against the schedule.

20.2 Strengths, weaknesses, and limitations
Gantt charts are easy to create and easy to understand. They are particular-
ly useful for planning relatively small projects because they can often show
the entire schedule at a glance.

A Gantt chart is primarily a planning tool. Gantt charts are not as useful
for project control because the percent completion depicted by a bar is based
on subjective judgment. Also, a Gantt chart does not show the precedence
relationships between the tasks. Consequently, project networks (Chapter
21), PERT, and CPM are better for larger projects.
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20.3 Inputs and related ideas
Before preparing a Gantt chart the tasks or activities to be performed 
must be identified and each activity’s duration, start time, and end time esti-
mated. A project network (Chapter 21) is a better tool for scheduling a large
project.

20.4 Concepts
On a Gantt chart (Figure 20.1), the activities (or tasks) are listed at the left
and time progresses from left to right across the top. In this example, time is
shown in days.

Each activity is represented by a horizontal bar. The bar’s left edge indi-
cates when the activity begins, its length corresponds to the activity’s dura-
tion, and its right edge shows when the activity ends. Typically, a vertical
line identifies the current day. Often, the bars that represent the plan are
shown in one color and the actual results are shown in a contrasting color.
The result is an easily visualized comparison between the plan and actual
performance.

The Gantt chart in Figure 20.1 assumes that all work will be done by one
programmer/analyst and one data entry clerk, with the bulk of the work
beginning after the customer’s new computer is installed. Figure 20.2 shows
a different Gantt chart for the same project. On this schedule, design work
begins as soon as the new computer is ordered and a programmer writes the
necessary code. Note that the work is completed in significantly less time
because more tasks are done in parallel.

Figure 20.1 A Gantt chart shows the schedule for all a project’s activities at a glance.
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20.5 Key terms
Activity — A task to be completed.
Duration — The elapsed time required to complete an activity.
Gantt chart — A chart that shows a project schedule as a series of 

horizontal lines or bars.
Schedule — A series of events or activities with estimated completion

times or target dates.

20.6 Software
The Gantt charts in this chapter were created using the Visio Timeline
Wizard. Most project management software tools (such as Microsoft Project,
Primavera’s Suretrack Project Manager, and CA-SuperProject) support
Gantt charts.

You can also create a Gantt chart using spreadsheet software such as
Excel, Lotus 1-2-3, or Quattro Pro. List the activities in column A, their start
times (in days, weeks, months, or other time units from the beginning of the
project) in column B, and each activity’s duration in Column C. Plot the data
as a horizontal, stacked bar chart and select attributes that make the first bar
(the start times) invisible.

20.7 References
1. Badiru, A. B. and Whitehouse, Computer Tools, Models and Techniques for Project

Management, TAB Books, Blue Ridge Summit, PA, 1989.
2. Davis, W. S., Business Systems Analysis and Design, Wadsworth, Belmont, CA,

1994.

Figure 20.2 On this Gantt chart, several activities are performed in parallel.
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21.1 Purpose
A project network chart is a tool for graphically depicting a schedule and
serves as a basis for PERT and CPM. Project networks can be used to plan,
record, and document a schedule and to track actual results against the
schedule.



21.2 Strengths, weaknesses, and limitations
Project networks are excellent tools for planning, tracking, and managing
large projects. They are not particularly useful for small projects, however.

PERT (Program Evaluation and Review Technique) is useful in research
and development projects where the times required to complete the various
activities are uncertain. The critical path is the primary focus of manage-
ment control, and monitoring the critical events provides an early warning
if estimates are inaccurate.

CPM (Critical Path Method) is used to help solve scheduling problems
when the activity times are known more precisely. Only by shortening the
critical path can the project completion time be improved. Consequently, the
critical path defines those activities into which additional resources might
be poured to accelerate the schedule.

Creating a project network is a complex undertaking. The computations
are straightforward, but non-trivial. Without appropriate software tools,
maintaining or changing a project network can be difficult.

The accuracy of the project network is no better than the estimated
duration of each of the activities. The lack of a relationship between an activ-
ity’s duration and the length of the arrow that represents the activity can
lead to misunderstandings. Errors in computing earliest event times, latest
event times, and slack times are not always apparent, so all computations
should be checked carefully.

21.3 Inputs and related ideas
Before preparing a project network, the tasks or activities to be performed
must be identified and each activity’s duration (the time required to com-
plete the activity) estimated. Additionally, the sequential relationships
between activities must be known. The necessary information is typically
collected during the problem definition and information gathering stages of
the system development life cycle (Part II).

A Gantt chart (Chapter 20) may be a better tool for scheduling a small
project. The project network is the basis for crash mode scheduling
(Chapter 22).

21.4 Concepts
A project network chart is a tool for graphically depicting a schedule and
serves as a basis for PERT and CPM. Project networks can be used to plan,
record, and document a schedule and to track actual results against the
schedule.

The examples in this chapter are based on the activities listed in Table
21.1. Figure 21.1 is a project network for these activities.
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Figure 21.1 A project network for an inventory system.



21.4.1 Events and activities

Each activity (a line or an arrow) in the project network begins and ends
with an event (a circle or a bubble). The events are numbered (the numbers
do not necessarily imply sequence), and a given activity is identified by the
numbers associated with its beginning and ending events. Order hardware
and software is activity 1-2. Shipment time (activity 2-5) begins with event 2
and ends with event 5. Note that events are points in time, while activities
consume both time and (usually) resources. 

Each activity’s duration is shown just above its arrow. Note that there is
no relationship between the length of an arrow and the duration of the 
activity. The arrows identify dependency relationships; all activities that
enter a given event must be completed before that event occurs.

21.4.2 Precedence

The project network defines event precedence. For example, to the right of
Figure 21.1, event 13 must occur before activity 13-14 or activity 13-15 can
begin, and event 16 does not occur until activities 13-16, 14-16, and 15-16 are
all completed. Activities on parallel paths can be performed in parallel.

The path through a project network is said to diverge when a single-line
path splits into multiple paths. For example, a single path (activity 12-13)
enters event 13, and three paths (13-14, 13-15, and 13-16) leave event 13.
Paths are said to merge when multiple input paths lead to a single output.
For example, activities 3-12 and 11-12 both end at event 12, and only activi-
ty 12-13 leaves event 12.
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Table 21.1 A List of the Activities Associated 
with an Inventory System

Description Duration Activity

Order hardware and software 2 1-2
Shipment time 5 2-5
Clarify manual procedures 1 3-12
Design files 4 4-7
Prepare site and install 1 5-7
Design record shipment program 1 6-10
Initialize vendor file 1 7-8
Initialize customer file 1 8-9
Initialize inventory file 1 9-10
Write record shipment program 1 10-11
Customize reports 1 11-12
System test 1 12-13
Train inventory manager 1 13-14
Train sales clerks 2 13-16
Train clerical personnel 0.5 14-16
Train store manager 1 15-16



21.4.3 Dummy activities

Some of the activities in Figure 21.1 are shown as dashed lines. These
dummy activities link parallel events and consume neither time nor
resources. They show dependency relationships that are not associated with
activities.

21.4.4 The earliest event time

The project network defines the dependency relationships between the
events. Given a clear sense of the order in which events must occur, the ana-
lyst can prepare a schedule. 

The first step is to compute the earliest event time (EET) for each event.
The EET is the earliest time the event can possibly begin. By convention it is
zero for the first event. To compute the earliest event time for all the other
events, work from left to right and follow these three rules:

1. Select all activities that enter the event.
2. For each entering activity, sum the activity’s duration and the EET of

its initial event.
3. Select the highest computed EET and record it in the upper right

quadrant of the event circle.

An event occurs when all the activities that enter it are completed. That
is why the highest computed EET is selected.

In Figure 21.1 the earliest event times are shown at the upper right
quadrant of each circle. For example, consider event 2. There is only one
entering activity, 1-2. Activity 1-2’s initial event is 1. Event 1’s EET is 0 and
activity 1-2’s duration is 2 d, so the earliest event 2 can possibly occur is 2 d
after the project begins.

Next, consider event 10. It has two entering activities (6-10 and 9-10), so
two computations are needed. Event 6’s EET is 2 and activity 6-10’s dura-
tion is 1 d, so the computed EET is 3 d. Event 9’s EET is 10 and activity 9-
10’s duration is 1 d, so the second EET is 11 d. The highest computed EET
for event 10 is 11 d, so record 11 at the top right of the bubble that represents
event 10.

21.4.5 The latest event time

The latest event time (LET) is the latest time an event can occur without
impacting the project schedule. By convention, the LET of the last or termi-
nal event is equal to its earliest event time, so 16 d is both the EET and the
LET for event 16 (Figure 21.1). To compute the latest event time for all the
other events, work from right to left and follow these three rules:
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1. Consider all activities that leave an event.
2. Subtract each activity’s duration from the LET of its terminal event.
3. Select the smallest computed LET and record it in the lower right 

quadrant of the event circle.

For example, consider event 13. Three activities (13-14, 13-15, and 13-16)
leave event 13. Event 14 has a latest event time of 15.5 d and activity 13-14
has a duration of 1 d, so event 13’s first computed LET is 14.5 d. Event 15
has a latest event time of 15 and activity 13-15 has a duration of 0 d (it is a
dummy activity), so the second candidate LET is 15 d. The computation for
activity 13-16 yields 14 d. Because the smallest computed LET is 14 d, the lat-
est event time for event 13 is 14 d. 

Why pick the smallest LET? The idea is to allow enough time for the
most lengthy activity or series of activities. If event 13 actually occurs at time
15.5, event 14 cannot possibly occur before day 16.5 because activity 13-14
takes 1 full day to complete. That would impact the schedule. 

Next, consider event 12. Only one activity (12-13) leaves it. The LET for
event 13 is 14 d and the duration of activity 12-13 is 1 d, so event 12’s LET is
13 d.

21.4.6 The critical path

Note that the earliest and latest event times are the same for several events
(Figure 21.1). Those events define the critical path, which is marked by a
heavy black line. If the project is to be completed on time, the critical events
must begin on time and the critical activities must require no more than
their estimated duration.

21.4.7 Slack time

Activities not on the critical path can (to a point) start late or exceed their esti-
mated duration without affecting the schedule. The extra time associated
with an activity, called slack or float, is computed by subtracting from the
latest event time of its terminal event both the activity’s duration and the ear-
liest event time of its initial event:

Total slack = (LET)t � (EET)i � duration. (21.1)

Slack time is enclosed in parentheses and recorded below the activity arrow
(Figure 21.1). Note that critical path slack times are all 0.

For example, consider activity 6-10. The LET of its terminal event (10) is
11 d, the EET of its initial event (6) is 2 d, and its duration is 1 d. Plug those
numbers into the equation and you get a slack time of 8 d.

Slack represents the maximum time the activity can slip without affect-
ing the project schedule. If an activity begins late, of course, its available
slack is reduced.
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21.4.8 PERT and CPM

The project network is the foundation of both PERT and CPM.
PERT gained prominence during the late 1950s when it proved invalu-

able in scheduling and controlling the Polaris missile program. It is particu-
larly useful in research and development projects where the times to com-
plete the various activities are uncertain. The critical path is the primary
focus of management control, and monitoring the critical events provides an
early warning if estimates are inaccurate.

Industry developed CPM (Critical Path Method) to help solve schedul-
ing problems when the activity times are known more precisely. Only by
shortening the critical path can the project completion time be improved.
Consequently, the critical path defines those activities into which addition-
al resources might be poured to accelerate the schedule. An application of
the critical path method to crash mode development is illustrated in
Chapter 22.

21.5 Key terms

Activity — A task to be completed.
CPM (Critical Path Method) — A project management technique

based on a project network; the focus of CPM is project planning,
with the critical path defining those activities into which additional
resources might be poured to accelerate the schedule.

Critical path — The path through a project network that links the crit-
ical events that must begin on time and the critical activities that
must require no more than their estimated duration if the project is to
be completed on time.

Diverge — To split a single input path into multiple paths.
Dummy activity — An activity that links parallel events, but consumes

neither time nor resources.
Duration — The elapsed time required to complete an activity.
Earliest event time (EET) — The earliest time the event can possibly

begin.
Event — The beginning or end of an activity.
Latest event time (LET) — The latest time an event can occur without

impacting the project schedule.
Merge — To combine two or more input paths into a single output

path.
PERT (Program Evaluation and Review Technique) –– A project

management technique based on a project network; with PERT, the
critical path is the primary focus of management control and moni-
toring the critical events provides an early warning if estimates are
inaccurate.

1999 by CRC Press LLC



1999 by CRC Press LLC

Project network — A bubble chart that graphically depicts activities,
their starting and completion times, and their interrelationships.

Slack — The maximum time an activity can slip without affecting the
project schedule.

21.6 Software
Such project management software products as Microsoft Project, Primavera
Suretrack Project Manager, SuperProject from Computer Associates,
Harvard Project Manager from Software Publishing Company, and Project
Management Workbench from Applied Business Technology support pro-
ject networks, PERT, CPM, and related techniques. Such charting or draw-
ing tools as Visio and Flowcharter by Micrografx can be used to create a
project network, although the project management tools are much more
effective.
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22.1 Purpose
A project network is a tool for graphically depicting a schedule. This chap-
ter discusses the use of project networks and the critical path method to
evaluate options for developing a system in crash mode.

22.2 Strengths, weaknesses, and limitations
CPM (Critical Path Method) is used to help plan and monitor a project
schedule when the activity times are known with reasonable precision. Only
by shortening the critical path can the project completion time be improved.
Consequently, the critical path defines those activities into which addition-
al resources might be poured to accelerate the schedule.

Creating a project network and performing crash mode analysis are
complex undertakings. The computations are straightforward but non-
trivial. Errors in computing earliest event times, latest event times, and slack



times are not always apparent, so all computations should be checked care-
fully. Finally, the accuracy of the project network is no better than the 
activity duration estimates, and the accuracy of the cost computations is no
better than the cost estimates.

22.3 Inputs and related ideas
This chapter assumes that the reader understands the concepts and tech-
niques introduced in Chapters 20 (Gantt charts) and 21 (project networks).
Before preparing a project network, the tasks or activities to be performed
must be identified and each activity’s duration (the time required to com-
plete the activity) and cost must be estimated. Additionally, the precedence
relationships between activities must be known. The necessary information is
typically collected during the problem definition and information gathering
stage of the system development life cycle (Part II).

22.4 Concepts
This chapter discusses the use of project networks and the critical path
method to evaluate options for developing a system in crash mode. Often,
it is possible to expedite a project by pouring additional resources (person-
nel, computing power, etc.) into one or more critical path activities, essen-
tially trading cost for time. Crash mode analysis is a technique for studying
the cost/time tradeoff by manipulating the project network (Chapter 21).

Table 22.1 lists the activities associated with a generic system develop-
ment project. The initial project network is shown as Figure 22.1. The time
to complete each activity is shown above the activity arrow. The earliest
event time and latest event time for each event are noted to the right of the
event circle. Note that there are two critical paths, 1-2-3-7-8 and 1-2-3-4-7-8.

Table 22.2 provides additional information about the completion times
and costs for each of the activities. For example, the normal completion time
for activity 1-2 is 2 weeks, but the crash mode time (the shortest possible
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Table 22.1 The Activities Associated with
the Chapter Example

Duration
Activity Description (Weeks)

1-2 Study the old system 2
2-3 Interview users 6
2-4 Determine user needs 4
2-5 Examine old system requirements 2
3-7 Analyze interview results 4
4-7 Define new system objectives 5
3-6 Resolve conflicts 3
7-8 Determine new systems specifications 2
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Table 22.2 Normal and Crash Mode Activity Times and Costs

Activity
Time (weeks) Cost ($) Cost Cost

Normal Crash Saved Normal Crash increase week

1-2 2 1 1 5,000 8,000 3,000 3,000
2-3 6 4 2 14,000 20,000 6,000 3,000
2-4 4 3 1 8,000 10,000 2,000 2,000
2-5 2 1 1 4,000 6,000 2,000 2,000
3-7 4 3 1 5,000 10,000 5,000 5,000
4-7 5 3 2 9,000 15,000 6,000 3,000
3-6 3 2 1 4,000 6,000 2,000 2,000
7-8 2 1 1 3,000 4,000 1,000 1,000

Total 52,000 79,000

Figure 22.1 The initial project network for the chapter example.

time for completing the activity) is only 1 week. Saving that week is 
expensive, however. Normally, activity 1-2 is expected to cost $5000, but
operating in crash mode will increase the cost by $3000 to $8000. Thus, the
cost per week saved (the cost increase divided by the number of weeks
saved) is $3000.

Read through Table 22.2. The time and cost columns are estimates. Cost
per week is computed by dividing the extra cost for crash mode by the num-
ber of time periods (in this example, weeks) saved.

Given the data in Table 22.2, the project network can be modified
(Figure 22.2) to show crash time (next to the normal time, in parentheses)
and the cost per week (below the activity line) for each activity. The next
step is to investigate the impact of performing one or more of the activities
on the critical path in crash mode. Generally, those activities with a smaller



cost per week saved promise a greater return (time saved per dollar spent).
Obviously, those activities with the greatest difference between normal and
crash mode time have the greatest potential for shortening the schedule.

For example, suppose the system designer decides to crash those activ-
ities that promise to save the greatest amount of time (2-3 and 4-7). Figure
22.3 shows the new project network; note that activities 2-3 and 4-7 use the
crash mode time estimates while the other activities use the normal time
estimate. Changing some of the activity times changes the computed earli-
est and latest event times which, in turn, (potentially) changes the critical
path. The new project network has a single critical path (1-2-3-7-12). The
total elapsed time is 12 weeks, a saving of 3 weeks. From Table 22.2, the extra
cost associated with activity 2-3 is $6,000, and the extra cost associated with
4-7 is $6,000, so the total project cost is $64,000, an increase of $12,000 over
performing all activities in normal mode.

Additional alternatives can be considered. For example, Figure 22.4
shows the project network for performing only activity 2-3 in crash mode.
Once again there are two critical paths. The total elapsed time is 13 weeks
and the total system cost is $58,000, an increase of $6,000 over performing all
activities in normal mode.

Table 22.3 summarizes the elapsed times and total system costs for sev-
eral alternatives, including performing all activities on the critical path in
crash mode. Clearly, the option of crashing 4-7 (14 weeks, $58,000) can be
eliminated because crashing 2-3 (13 weeks, $58,000) saves an extra week for
the same cost. Note that crashing activity 7-8 (14 weeks, $53,000) saves one
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Figure 22.2 The project network with crash times and crash costs per week saved.



week at a cost of only $1,000, an outcome consistent with the cost per week
saved computations in Table 22.2. Although the optimal solution is not obvi-
ous, the cost/time tradeoff is clearly defined, giving the responsible man-
agers the information they need to make a decision.
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Figure 22.3 The project network with activities 2-3 and 4-7 performed in crash
mode.

Figure 22.4 The project network with only activity 2-3 performed in crash mode.



22.5 Key terms
Activity — A task to be completed.
CPM (Critical Path Method) — A project management technique

based on a project network; the focus of CPM is project planning,
with the critical path defining those activities into which additional
resources might be poured to accelerate the schedule.

Crash mode — Pouring additional resources into an activity in order to
complete the activity in the shortest possible time.

Crash mode analysis — An analysis technique that involves modify-
ing a project network to study time and cost tradeoffs.

Critical path — The path through a project network that links the crit-
ical events that must begin on time and the critical activities that
must require no more than their estimated duration if the project is to
be completed on time.

Duration — The elapsed time required to complete an activity.
Earliest event time (EET) — The earliest time the event can possibly

begin.
Event — The beginning or end of an activity.
Latest event time (LET) — The latest time an event can occur without
impacting the project schedule.
Project network — A bubble chart that graphically depicts activities,

their starting and completion times, and their interrelationships.

22.6 Software
Such project management software products as Microsoft Project,
Primavera Suretrack Project Manager, SuperProject from Computer
Associates, Harvard Project Manager from Software Publishing Company,
and Project Management Workbench from Applied Business Technology
support project networks, PERT, CPM, and related techniques. Such chart-
ing or drawing tools as Visio and Flowcharter by Micrografx can be used to
create a project network, although the project management tools are much
more effective.
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Table 22.3 Several Alternatives

Crash Total Time Total Cost
None 15 weeks $52,000
2-3, 4-7 12 weeks $64,000
2-3 13 weeks $58,000
4-7 14 weeks $58,000
7-8 14 weeks $53,000
All 10 weeks $68,000
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23.1 Purpose
An inspection is a formal review of a set of documentation conducted by
technical personnel. The intent is to determine the technical accuracy of the
documentation. When a set of documentation passes an inspection, it is



reasonable to assume that the work is both technically acceptable and
consistent with the system’s objectives. An inspection often marks the
completion of a stage or activity in a larger project. In some companies, an
inspection is a prerequisite to a management review.

A walkthrough is an informal inspection. Although valuable at any
stage in the system development life cycle, walkthroughs are particularly
useful during the implementation stage as a means of checking the accura-
cy of the code.

23.2 Strengths, weaknesses, and limitations
Because an inspection is a formal review of the exit criteria conducted by
technical personnel, it is an excellent quality control tool. Passing an inspec-
tion can be viewed as an event that marks completion of a life cycle phase or
an activity.

The formal nature of the process puts pressure on both the creators and
the inspectors. Meeting objectives “to the letter” does not necessary guaran-
tee quality, particularly when requirements and/or technology change. An
inspection is performed by human beings, and people sometimes find it 
difficult to maintain objectivity.

Excessive management involvement can blunt the effectiveness of the
inspection process. A manager’s comments tend to take on added signifi-
cance simply because they come from a manager. Misusing the error reports
generated during the inspection session is a particularly significant problem.
People naturally fear that an error report will in some way be used against
them and that error rates will eventually creep into personnel evaluations.

A walkthrough is, in effect, a “dry run” inspection without the formality.
Consequently, walkthroughs provide many of the benefits with few of the
problems. However, because they lack formality, walkthroughs cannot serve
as dependable quality control mechanisms.

Inspections and walkthroughs are time consuming and, as is the case with
any product, it is impossible to inspect quality into a set of documentation.

23.3 Inputs and related ideas
Inspections and walkthroughs can be conducted on the exit criteria from 
virtually any stage or any activity in the system development life cycle.
Inspections are sometimes used as a part of the testing process (Chapter 74)
and to support certain system controls (Chapter 77).

23.4 Concepts
An inspection is conducted by a team consisting of technical personnel
and/or skilled-users. An inspection team normally consists of four individ-
uals: the moderator, the author, and two inspectors.
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23.4.1 The inspection team

The moderator runs the inspection, scheduling all meetings, distributing all
necessary documentation, conducting all sessions, and making certain that
the inspection is both thorough and fair. The ideal moderator enjoys the
respect of his or her technical peers and is unbiased, with no direct involve-
ment in the project. Without management’s authority, the moderator must
perform several management-like functions, so management’s support is
essential.

The author is usually the person (or the project leader) who prepared the
documentation being inspected. The author’s primary responsibility is to
answer technical questions and to avoid defending the work.

The inspectors are technical professionals or skilled users who, while
not directly involved in preparing the documentation, have a stake in the
outcome; e.g., the individual responsible for the previous step or a member
of the group that will perform a subsequent step. Normally, two inspectors
are assigned, but the team can be larger or smaller.

23.4.2 The inspection process

As soon as the documentation for a given step is completed, the author con-
tacts the moderator and asks that the inspection process begin. The steps in
the inspection process are summarized in Figure 23.1.

23.4.2.1 Planning
The first task is to select an inspection team. In many organizations, the
moderator selects the team; in others, management assumes this responsi-
bility. Once the team has been named, the moderator distributes all relevant
documentation and schedules the inspection meeting or meetings.

23.4.2.2 Overview
If a project is particularly extensive or involves a number of concepts or
techniques that are not apparent to the inspectors, the author might be
asked to present a brief technical overview of the project and the documen-
tation. Note that the overview is optional.

The objective of the overview session is to save the moderator and the
inspectors some time. The author’s presentation should stick to the facts,
stressing what and how, not why. Only later, after the other members of the
team have had an opportunity to review and understand the documenta-
tion, should the reasons behind the technical decisions be considered.

23.4.2.3 Preparation
The preparation step calls for individual work on the part of each of the par-
ticipants. The moderator and the inspectors read the documentation and
note any questions or potential problems. In some organizations, contact
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between the inspectors and the author during the preparation step is offi-
cially prohibited, but such rules are difficult to enforce. At the very least the
participants should be aware of the potential for bias, and should avoid
non-essential contact with the author.

23.4.2.4 The inspection session
The moderator conducts the inspection session. One of the inspectors (not
the author) serves as the reader and reads aloud or paraphrases the 
documentation. During the inspection session, the author’s primary respon-
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Figure 23.1 The steps in the inspection process.



sibility is to answer technical questions and to avoid defending his or her
work.

The inspection session should be limited to perhaps 90 min, and all par-
ticipants should be aware of the time limit. The objective is to find errors. All
participants, including the moderator, the author, and the reader, are
encouraged to identify errors. Note, however, that the inspection team
should not suggest corrections. That is the author’s job.

During the inspection session, the moderator maintains an error log,
noting each error and estimating its severity (trivial, moderate, significant,
severe, or fatal). Estimating the severity of errors is a common point of 
contention. The author may see an error as trivial, while an inspector may
consider it severe. The result could well be a protracted argument. After a
reasonable discussion, the moderator must break in, arbitrarily assign a
severity level to the error, and move on. The important thing is that the error
be detected; its classification is secondary.

Several problems can occur during the inspection session. Rather than
inspecting the work, the author might act as a proponent or defender and
attempt to discredit the errors identified by the other committee members.
One or more inspectors might conduct a “witch hunt” rather than an inspec-
tion. An individual inspector might dominate the inspection by force of per-
sonality. It is the moderator’s job to avoid or minimize the impact of these
problems.

Inspecting incomplete or sloppy documentation is a waste of time, so if
excessive errors are encountered the moderator has the authority to termi-
nate and reschedule the inspection session. Finally, the moderator can, if
necessary, schedule a reinspection after rework has been completed.

23.4.2.5 Rework
Following the inspection, the moderator and the author meet to discuss the
results. The focus of this meeting is the error list compiled during the inspec-
tion session. Each error is discussed, and the rework time estimated.

The responsibility for actually doing the rework rests with the author. As
each error is corrected, the author notes the actual rework time. Often, esti-
mated and actual rework times are entered into an inspection database and
combined with other historical data to help improve the estimation process.

23.4.2.6 Follow-up
When the rework is completed, the author and the moderator meet once
again to review the results. If the moderator is satisfied with the rework, the
inspection process ends. If not, the moderator may request additional
rework and another follow-up session, or even schedule a reinspection. If a
reinspection is necessary, the inspection team is reconvened, and the inspec-
tion session, rework, and follow-up steps are repeated. In some organiza-
tions, a reinspection is a formal part of the process, and the moderator is
given the authority to cancel this step if appropriate.
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23.4.3 The management review

Following the successful completion of an inspection, the moderator for-
mally notifies management that the project has been technically reviewed
and found acceptable by (depending on the organization) writing a memo,
completing a standard form, or signing the error list (complete with rework
notations). In the subsequent management review, technical aspects of the
system can be assumed valid and management can concentrate on costs,
benefits, and the schedule.

23.5 Key terms
Author — In an inspection, the person (or the team leader) who pre-

pared the documentation or the code being inspected.
Inspection — A formal review of a set of exit criteria conducted by

technical personnel.
Inspector — A technical professional or a skilled user who participates

in an inspection.
Moderator — The individual who runs an inspection, scheduling all

meetings, distributing all necessary documentation, conducting all 
sessions, and making certain that the inspection is both thorough and
fair.

Walkthrough — An informal inspection.

23.6 Software
Not applicable.
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24.1 Purpose
A data flow diagram is a logical model of the flow of data through a system
that shows how the system’s boundaries, processes, and data entities are
logically related.

24.2 Strengths, weaknesses, and limitations
A data flow diagram is an excellent tool for summarizing and organizing
detailed information about a system’s boundaries, processes, and data enti-
ties, providing the analyst with a logical map of the system. Documenting
the system’s boundaries by drawing a context diagram helps the analyst,
the user, and the responsible managers visualize alternative high-level logi-
cal system designs. The elements of a data flow diagram lead directly into
physical design, with processes suggesting programs and procedures, data
flows suggesting composites, and data stores suggesting data entities, files,
and databases.

Creating a data flow diagram is a process driven task. Consequently, it
is relatively easy to overlook key data elements and composites. Balancing
a data flow diagram verifies the model’s internal consistency, but does not
necessarily reveal missing elements. Attempting to balance a significant log-
ical model without appropriate software (such as CASE software) is at best
difficult and can be misleading. Beginners and users often confuse data flow
diagrams with process flowcharts.

24.3 Inputs and related ideas
The first step in creating a data flow diagram is to prepare a list of the 
system’s boundaries, data, and processes using the tools covered in Part II.
Data flow diagrams are a significant part of the structured analysis and
design methodology (Chapter 3). A data flow diagram is sometimes created
in conjunction with an entity-relationship diagram (Chapter 26) or data 
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normalization (Chapter 28). Processes are documented using one or more of
the process description tools in Part VI (Chapters 55 through 60). The data
elements and data composites are documented in the data dictionary
(Chapter 25). The data flow diagram is sometimes included in the require-
ments specification (Chapter 35). A completed data flow is required by the
automation boundaries technique described in Chapter 36. 

24.4 Concepts
A data flow diagram is a logical model that shows the flow of data through
a system.

24.4.1 Data flow diagram symbols

Using Gane and Sarson’s notation,4 four primary symbols are used to create
a data flow diagram (Figure 24.1). A source or destination (sink) is repre-
sented by a (shaded) square. Sources and destinations define the system’s
boundaries; each one represents a person, organization, or other system that
supplies data to the system, gets data from the system, or both. A process,
or transform, (a round-cornered rectangle) identifies an activity that
changes, moves, or otherwise transforms data. A data store (an open-ended,
horizontal rectangle) represents data at rest and implies that the data are
held (for some logical reason) between processes. A data flow (an arrow)

1999 by CRC Press LLC

Figure 24.1 These four symbols are used to construct a data flow diagram.
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represents data in motion. Additionally, Gane and Sarson use thick arrows
to show physical or material flows.

Using Yourdon7 and DeMarco’s2 notation, sources and sinks are repre-
sented as rectangles, processes as circles, and data stores as horizontal rec-
tangles open at both ends (two parallel horizontal lines). Data flows are
shown as arrows. There is no symbol for a material flow.

24.4.2 Conventions
The following conventions are used.

24.4.2.1 Legal and illegal data flows
All data flows must begin and/or end with a process (Figure 24.2). Data
cannot legally flow directly from a source to a destination or between a
source/destination and a data store unless they pass through an intermedi-
ate process.

Figure 24.2 All data flows must begin and/or end with a process.



24.4.2.2 Data flow lines
Multiple data flows between two components can be shown by two data
flow lines or by a two-headed arrow. Some analysts use two flow lines when
the input and output data flows are different and a single two-headed arrow
when they are the same. For example, a process that gets data from a store,
updates the data, and then sends the same data elements back to the store
calls for a two-headed arrow.

24.4.2.3 Naming
A process name consists of a verb followed by a noun. By convention, the
names of the sources, destinations, and data stores are capitalized, while
process names and data flows are shown mixed case.

24.4.2.4 Numbering
By convention, the processes in a level 1 data flow diagram are numbered 1, 2,
3, and so on. The numbers do not imply sequence; they are for reference only.

The sub-processes in an exploded data flow diagram are assigned num-
bers starting with the parent process’s number. For example, level 1 process
4 might be exploded into level 2 processes 4.1, 4.2, 4.3, and so on, while level
2 process 4.3 might be decomposed into level 3 processes 4.3.1, 4.3.2, 4.3.3,
and so on.

Many analysts use the letter D followed by a number to identify the
data stores. For example, in an inventory system, INVENTORY might be D1,
SALES might be D2, and so on. Some analysts identify the sources and des-
tinations as well.

24.4.2.5 Duplicate symbols
Symbols can be repeated if doing so makes the diagram easier to read. For
example, duplicating a symbol might be clearer than drawing lengthy or
crossing data flows. Duplicate symbols are usually marked in some way; for
example, source/destinations might be marked with a slash in the lower-left
corner and data stores might be marked with an extra vertical line.

24.4.3 Underlying principles

Two general principles guide the creation of a data flow diagram: the prin-
ciple of data conservation and the principle of iteration.

24.4.3.1 The principle of data conservation
There are no miracles, and there are no black holes. A given process can nei-
ther lose nor create data. Any data that flow into a process must be used by
or output by that process. Any data output by a process must be input to or
created by an algorithm within that process. Except for constants, any data
used by an algorithm within a process must first flow into the process.
Finally, any data created by an algorithm must either be used by another
algorithm within the same process or output by the process.

1999 by CRC Press LLC



24.4.3.2 The principle of iteration
High-level processes are decomposed into lower-level processes. At the low-
est level are primitive processes that perform a single function (or algorithm).
Note that a lower-level process gets its data from its higher-level parent.

24.4.4 The context (level 0) diagram

A context (level 0) diagram documents the system’s boundaries by high-
lighting its sources and destinations. Documenting the system’s boundaries
by drawing a context diagram helps the analyst, the user, and the responsi-
ble managers visualize alternative high-level logical system designs.

For example, Figure 24.3 shows a context diagram for a typical invento-
ry system. The system itself is shown as a single process. It provides data to
the FINANCIAL SYSTEM. It both provides data to and gets data from
MANAGER, SUPPLIER, and CUSTOMER. Note that the data flows are
labeled with (at this level) composite names.

Moving the boundaries significantly changes the system, and the abili-
ty to visualize the implications of different boundary assumptions is a pow-
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Figure 24.3 A context diagram.



erful reason for creating a context diagram. For example, in Figure 24.3 the
financial system and the inventory system are independent. An alternative
logical design might move the financial system inside the inventory system
(or vice versa), effectively integrating them. The result would be a some-
what more complex (but perhaps more efficient) system.

24.4.5 The level 1 data flow diagram

A level 1 data flow diagram shows the system’s primary processes, data
stores, sources, and destinations linked by data flows. Generally, a system’s
primary processes are independent, and thus, separated from each other by
intermediate data stores that suggest the data are held in some way between
processes.

For example, Figure 24.4 shows a level 1 data flow diagram for an
inventory system. Start at the upper left with source/destination FINAN-
CIAL SYSTEM. Data flow to FINANCIAL SYSTEM from process 9, Report
cash flow. Data enter process 9 from data store D1, SALES. Data enter D1
from process 2, Sell appliance. Process 2 gets its data from CUSTOMER and
from data stores D1, D3, D5, and D6, and so on. Note how intermediate data
stores serve to insulate the primary processes from each other and thus pro-
mote process independence.

A level 1 process is a composite item that might incorporate related pro-
grams, routines, manual procedures, hardware-based procedures, and other
activities. For example, process 2, Sell appliance might imply (in one alterna-
tive) a set of sales associate’s guidelines, while another alternative might
include a point-of-sale terminal equipped with a bar code scanner and nec-
essary support software. In effect, the level 1 process Sell appliance represents
all the hardware, software, and procedures associated with selling an appli-
ance. As the data flow diagram is decomposed, the various sub-processes
are eventually isolated and defined.

24.4.6 Documenting the model

The data flow diagram shows the data flows between the system’s sources,
destinations, processes, and data stores. 

24.4.6.1 The data dictionary
The data elements are recorded in the data dictionary (Chapter 25). As work
progresses, the data elements that occupy the same data store or share a data
flow form composite items or data structures that are also documented in
the data dictionary. For example, Supplier name, Supplier address, Description,
Reorder quantity and other data elements flow to SUPPLIER from process 4
and form a data structure that might be called Reorder.
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24.4.6.2 Process descriptions
Each process is defined in a process description that notes its input and
output data elements and composites and briefly describes the tasks or
activities it performs. (Process description tools are described in Part VI.)
Process (or data transform) descriptions are sometimes recorded in the
data dictionary.

24.4.6.3 The CASE repository
In most CASE products (Chapter 5), the data descriptions and process
descriptions are stored in the CASE repository.
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Figure 24.4 A level 1 data flow diagram. 



24.4.7 Verifying the model

The point of verification is to ensure that the model is complete and inter-
nally consistent.

24.4.7.1 Syntax checking
Every data flow must begin and/or end with a process and have at least one
arrowhead to define the direction of data movement. Every process and
every data store must have at least one input data flow and at least one out-
put data flow. If the inflow is missing, the source of the data is unknown. If
the outflow is missing, that process or store acts like a black hole. In either
case, something is wrong.

Other syntax checks involve judgement. Process names should imply
their function. Component names should be unique because redundant
names are confusing.

24.4.7.2 Tracing data elements
Following the principle of data conservation, each data element in a level 1
data flow diagram must be rigorously traced from its destination, through
the model, back to its source. If the source of every data element is account-
ed for, the data flow diagram is internally consistent.

24.4.7.3 Cross referencing
On the data flow diagram, each data element, data store, and data flow must
appear in the data dictionary, and each process must have a matching
process description.

In the data dictionary, each logical data structure must match a data
flow or a data store, and each data element must appear at least once on the
data flow diagram. Additionally, each data element and each logical data
structure must appear in the input or output list of at least one process
description. There are two possible explanations for unused data elements:
Either they are not needed by the system, or the analyst overlooked them.

Each process description must match a process on the data flow dia-
gram, and the input and output lists must match the data flows. Every data
element entering or leaving a process must appear in the data dictionary.
Unused processes may have been overlooked when the data flow diagram
was created. If not, they are unnecessary.

24.4.7.4 Tracing objectives
Note that if a significant feature of the system was overlooked, verification
will not necessarily find the error. Consequently, the logical model should
always be checked against the system objectives and the process or process-
es that contribute to meeting each one identified. If an objective cannot be
matched with at least one process, that objective may have been overlooked.
If a process cannot be matched with at least one objective, that process might
be unnecessary.

1999 by CRC Press LLC



24.4.8 Exploding the processes

A level 1 data flow diagram is a high-level logical map of the system. It
shows the key relationships but hides most of the details. Consequently, the
next step is to explode the processes by taking advantage of the principle of
iteration. The act of exploding a data flow diagram is sometimes called func-
tional decomposition.

24.4.8.1 Level 2
Each level 1 process consists of several sub-processes that are listed on the
process description. To explode the data flow diagram, the analyst creates an
independent level 2 data flow diagram for each level 1 process.

For example, Figure 24.5 shows a level 2 data flow diagram for process
4, Reorder stock (Figure 24.4). Note the numbering scheme. Processes 4.1, 4.2,
4.3, 4.4, and 4.5 are sub-processes of level 1 process 4.
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Figure 24.5 A level 2 data flow diagram for process 4.



24.4.8.2 Local and global data
Global data are shared by two or more higher level processes. Local data are
known only within one part of the system; intermediate computations are a
good example. For example, in Figure 24.5, the data elements in data store
D7, REORDER DATA are known only within the level 2 explosion of process
4 (and its sub-processes).

Mistakes made while working with local data tend to be limited in
scope, but global data errors can ripple throughout the system. Local data
elements should be recorded in the data dictionary and identified as local. If
they already exist, they might not be local; perhaps a global data element
was overlooked.

24.4.8.3 Balancing the level 2 explosion
An exploded data flow diagram must be balanced by accounting for each
input from the parent level and each output to the parent level. Checking to
ensure that an explosion is balanced is similar to tracing data elements from
their destination (output) back to their source (input). The only difference is
that the higher-level process’s outputs are traced back to the higher-level
process’s inputs through the exploded data flow diagram.

Every global data element (or composite) input to the lower level must
be used by at least one lower-level sub-process. Every global data element
(or composite) output to the higher level must either be input to the lower
level or generated by an algorithm within a lower-level sub-process. Each
data element or composite input to or used by an exploded process must be
defined in the higher-level process.

Note that a higher-level composite might be decomposed into data ele-
ments or sub-composites at the lower level. Local data (by definition) are
neither input to nor output from the explosion.

24.4.9 Functional primatives

A functional primitive is a process (or transform) that requires no further
decomposition. The process description for a functional primitive is some-
times called a mini-spec. The system’s discrete physical components lie one
step below a functional primitive.

24.4.10 The configuration item level

The functional primitives and the data stores that appear at the lowest level
of decomposition are called configuration items. A configuration item is a
composite rather than a specific physical component; for example, a com-
posite item might represent a program and the computer on which it runs,
or a database and the device on which it resides. In a complete logical
model, all the processes are decomposed down to the configuration item
level, an imaginary line that links the system’s configuration items.
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24.4.11 The complete logical model

A logical model consists of a complete set of balanced data flow diagrams,
a data dictionary, and one process description for each process at each level
down to the configuration item level. Note that some processes will be
exploded only to level 2, others to level 3, and so on, so the configuration
item level does not necessarily correspond to a single, consistent data flow
diagram level.

The documentation package for a large system can be quite lengthy.
Processes above the configuration item level are purely logical; their process
descriptions consist of little more than lists of sub-processes. Those sub-
processes can be obtained from the exploded data flow diagram, so some
organizations exclude them from the finished model process descriptions
above the configuration item level.

The configuration item level processes will decompose into the system’s
programs and procedures. The data stores will map into files and databas-
es. The data flows will become reports, screens, forms, and dialogues.
Above the configuration item level, the logical relationships between the
components support planning, coordination, and control.

24.4.12 Logical and physical data flow diagrams

A logical data flow diagram’s symbols are used to describe logical not phys-
ical entities. A process might eventually be implemented as a computer pro-
gram, a subroutine, or a manual procedure. A data store might represent a
database, a file, a book, a folder in a filing cabinet, or even notes on a sheet
of paper. Data flows show how the data move between the system’s com-
ponents, but they do not show the flow of control. The idea is to create a log-
ical model that focuses on what the system does while disregarding the
physical details of how it works.

A physical data flow diagram uses data flow diagram symbols to repre-
sent the system’s physical processes (programs, manual procedures) and phys-
ical data stores (files, databases, reports, screens, etc.) and shows how the
system works. Some analysts like to start the analysis process by prepar-
ing a physical data flow diagram of the present system. Following the analysis
stage, physical data flow diagrams can be used to document alternative 
solutions.

24.5 Key terms

Balance — A characteristic of an exploded data flow diagram in which
each input from and output to the parent level is accounted for.

Composite — A set of related data elements; a data structure.
Configuration item –– A functional primitive that appears at the low-

est level of decomposition.
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Configuration item level –– An imaginary line that links the system’s
configuration items.

Context diagram (level 0 data flow diagram) –– A data flow diagram
that documents the system’s boundaries by highlighting its sources
and destinations.

Data flow –– Data in motion.
Data flow diagram — A logical model of the flow of data through a 

system.
Data store — Data at rest; implies that the data are held between 

processes.
Data structure –– A set of related data elements; a composite.
Destination (sink) — A person, organization, or other system that gets

data from the target system; a destination defines a system boundary.
Explode — To decompose a process in a data flow diagram to a lower

level.
Functional decomposition –– The act of exploding a data flow dia-

gram.
Functional primitive — A process (or transform) that requires no fur-

ther decomposition.
Global data –– Data elements or composites that are shared by two or

more processes.
Level 1 data flow diagram — A data flow diagram that shows the sys-

tem’s primary processes, data stores, sources, and destinations linked
by data flows.

Level 2 data flow diagram — An explosion of a level 1 process.
Local data — Data elements or composites that are known only within

one part of the system.
Logical data flow diagram — A data flow diagram that does not sug-

gest physical references but shows the system’s components as logi-
cal entities.

Mini-spec — The process description for a functional primitive.
Physical data flow diagram — A data flow diagram that identifies the

system’s physical processes and physical data stores.
Process (transform) — An activity that changes, moves, or otherwise

transforms data.
Source — A person, organization, or other system that supplies data to

the target system; a source defines a system boundary.

24.6 Software
Many CASE products support creating, modifying, maintaining, and bal-
ancing data flow diagrams. Charting programs, such as Visio and
Micrografx’s Flowcharter can be used to create data flow diagrams. The data
flow diagrams in this chapter were created using Visio.
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25.1 Purpose
A data dictionary is a collection of data about the data. Its purpose is to rigor-
ously define each and every data element, data structure, and data transform.

25.2 Strengths, weaknesses, and limitations
A data dictionary helps to improve communication between analysts and
users and between technical personnel by establishing a set of consistent
data definitions. If programmers develop data descriptions from a common



data dictionary, several potentially serious module interface problems 
can be avoided. At a higher level, different systems must often be linked
or interfaced, and a common set of data definitions helps to minimize
misunderstandings.

By highlighting already existing data elements, a data dictionary helps
the analyst avoid data redundancy. If all programs using a given data ele-
ment are cross-referenced in the data dictionary, assessing the ripple effects
of a change in the data is simplified.

25.3 Inputs and related ideas
The first step in creating a data dictionary is to identify the system’s data
elements and composites, a key objective of the information gathering phase
of the system development life cycle (Part II). The data dictionary is an
important adjunct to several analysis tools, such as data flow diagrams
(Chapter 24), entity-relationship diagrams (Chapter 26), and data normal-
ization (Chapter 28). Creating a data dictionary is an important step in
designing and developing traditional files (Chapter 44) or a database
(Chapter 45). The data dictionary often serves as a foundation for the
requirements specification (Chapter 35). Data structures are described in
Chapter 43. Inverted-L charts (Chapter 27) and Warnier-Orr diagrams
(Chapter 33) are useful for visualizing a data structure.

25.4 Concepts
A data dictionary is a collection of data about the data in which each 
and every data element, data structure, and data transform is rigorously
defined.

25.4.1 Data elements

The data dictionary defines each data element, assigns it a meaningful
name, specifies both its logical and physical characteristics, and records
information concerning how it is used. Table 25.1 summarizes the type of
information that might be recorded in the data dictionary. Figure 25.1 shows
a few partial (generic) data dictionary entries.

25.4.1.1 Data names
It is important to follow a consistent standard when assigning data names.
For example, an organization might use the rules imposed by its primary
programming language, database management system, data dictionary
software, or CASE product.

Some data elements are known by two or more names. This often hap-
pens when different groups use the same data for different purposes or when
several analysts work concurrently on the system. Rather than creating
redundant data dictionary entries, resolve any differences in the definitions
of the equivalent data elements, merge them, and record the alias name on
the primary description.
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If two clearly different data elements have similar names, change at
least one of them because similar names can be confusing.

25.4.1.2 Definitions
A good definition precisely indicates the data element’s purpose and clear-
ly distinguishes it from the system’s other data elements. Examples are use-
ful, particularly for identifying exceptions to a general rule.

25.4.2 Data structures or composites

Data structures (Chapter 43), also called group or composite data items, are
defined by showing the data elements and substructures that comprise
them. The symbols depicted in Table 25.2 (or their equivalents) are some-
times used to document (or partition) composite items. Figure 25.2 shows
how the data on a sales receipt might be defined using the symbols.
Inverted-L charts (Chapter 27) and Warnier-Orr diagrams (Chapter 33) are
other tools for visualizing a data structure.

Note that a data structure can contain both composite items and data
elements. In the data dictionary, composite items are decomposed or parti-
tioned down to the data element level, and each data element is fully
defined (as described earlier).

25.4.3 Keys and relationships

In a database, an entity is a thing about which data are stored and an occurrence
is a single instance of an entity composed of data elements (or attributes).
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Table 25.1 Information That Might Be Recorded 
for Each Data Element in a Data Dictionary*

General Usage characteristics
Data element name Range of values
Aliases or synonyms Frequency of use
Definition Input/output/local

Conditional values
Format Limits
Data type
Length Relationships
Picture Parent structures
Units (meters, pounds, etc.) Child structures
Composite description File or database

Key
Control Information Data flows
Source Processes
Change authorizations Reports
Access authorizations Forms
Security information Screens
Authorized users
Date of origin
*Note that not every entry is relevant to every data element.
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Figure 25.1 Some typical data dictionary entries.

Table 25.2 These Symbols Can Be Used to
Document a Data Structure

Symbol Meaning

= Contains, or is composed of
+ And
[ ] Selection
| Separator
( ) Optional
{ } Repetition



Physically, entities map to files, occurrences map to records, and attributes
map to fields.

Occurrences (records) are composite data structures. In addition to the
attributes that make up the composite, the key (the attribute or group of
attributes that uniquely distinguishes one occurrence of the entity) is docu-
mented in the data dictionary.

A database is composed of a set of related files (or entities). Typically,
the files are linked (or related) by storing an entity’s key in the related enti-
ty. These relationships are also documented in the data dictionary.

25.4.4 Transforms
A transform is a process or operation that modifies data. Many data dictio-
nary systems allow the analyst to name, define, and record data about the
transforms in the data dictionary.
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Figure 25.2 Documenting a data structure.



25.5 Key terms
Alias — An alternate name for a data element.
Attribute — A property of an entity.
Composite — A set of related data elements.
Data dictionary — A collection of data about the data.
Data element — An attribute that cannot be logically decomposed.
Data structure — A set of related data elements.
Database — A set of related files.
Entity — An object (a person, group, place, thing, or activity) about

which data are stored.
Field — A data element physically stored on some medium.
File — A set of related records.
Foreign key — A key to some other entity stored with the target entity.
Key — The attribute or group of attributes that uniquely distinguishes

one occurrence of an entity.
Meta-data — The contents of the data dictionary.
Occurrence — A single instance of an entity.
Record — The set of fields associated with an occurrence of an entity.
Relationship — A link between two data structures.
Transform — A process or operation that modifies data.

25.6 Software
Numerous data dictionary software packages are commercially available.
Some are associated with a specific database management system; others
are more general. Most provide data entry support. Some can prepare at
least part of the entry from programmer source code or generate source code
directly from the data dictionary. Data usage reports and queries are com-
mon features. Additionally, CASE software (Chapter 5) often incorporates a
data dictionary within the CASE repository.
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26.1 Purpose
Entity-relationship diagrams were first proposed as a means of quickly
obtaining, with minimum effort, a good sense of the structure of a database.
They are used to plan and design a database and to model a system’s data.



26.2 Strengths, weaknesses, and limitations
An entity-relationship diagram is an excellent tool for planning and des-
igning a database, particularly when used in conjunction with data nor-
malization. The entity-relationship model starts with the entities, data 
normalization starts with the attributes, and the two tools tend to verify
each other. The entity-relationship model’s entities, attributes, and relation-
ships map smoothly to a physical database.

During the systems analysis phase, an entity-relationship diagram gives
the analyst a clear, high-level view of the data. Used in conjunction with
data flow diagrams, an entity-relationship model gives the analyst an alter-
native logical view of the system. If a great deal is known about the data but
not much about the processes, an entity-relationship diagram is an excellent
starting point for modeling the system.

An entity-relationship model is data driven. The model implies
processes but does not clarify the processes. Non-technical people find
entity-relationship models difficult to understand and the nature of a rela-
tionship (one, many) confusing, and numerous notational variations some-
times make it difficult for even an experienced person to quickly grasp a
particular diagram.

26.3 Inputs and related ideas
Before creating an entity-relationship diagram, the analyst must have at
least a preliminary sense of the system’s logical entities, attributes, and data
structures. The necessary information is obtained during the information
gathering and problem definition stage (Part II). Data structures are dis-
cussed in Chapter 43. Other key data concepts are found in Chapters 25, 44,
and 45. Entity-relationship diagrams are important tools in the structured
requirements methodology (Chapter 4) and in database design (Chapter 45).
They are often used in conjunction with data flow diagrams (Chapter 24)
and data normalization (Chapter 28).

26.4 Concepts
Entity-relationship diagrams are used to plan and design a database and to
model a system’s data.

26.4.1 Entities and relationships

An entity is an object (a person, group, place, thing, or activity) about which
data are stored. A relationship links two entities and is shown by drawing a
line between them (Figure 26.1).

Logically, a relationship can be stated in the form of a sentence with a
verb linking the two entities, for example,
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Sales transactions are composed of products.
or

Products make up sales transactions.

The act of creating such sentences is a good test of the relationship’s
validity. In cases where the relationship is unclear, the sentence might be
written alongside the relationship line as shown in Figure 26.1. A given rela-
tionship can be mandatory (shown by a solid line) or optional (a broken line).

26.4.2 Cardinality

For a variety of reasons, some relationships are more stable and easier to
maintain than others. (A detailed discussion of the underlying database the-
ory is beyond the scope of this book.) Cardinality, a measure of the related
entities’ relative number of occurrences, is an important predictor of the
strength of the relationship.
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Figure 26.1 A relationship between two entities is shown by drawing a line
between them.



26.4.2.1 One-to-one relationships
In a one-to-one relationship, each occurrence of entity A is associated with
one and only one occurrence of entity B, and each occurrence of entity B is
associated with one and only one occurrence of entity A.

For example, imagine that an instructor maintains examination grades
for each student in his or her class. There are two entities in this example:
Students and Exams. For each Student there is one and only one Exam, and
for each Exam there is one and only one Student.

Graphically, a one-to-one relationship is described by drawing short
crossing lines at both ends of the line that links the two entities (Figure 26.2).
However, some practitioners simply show the relationship line with no
embellishment, and other symbols are used as well.

26.4.2.2 One-to-many relationships
In a one-to-many relationship, each occurrence of entity A is associated with
one or more occurrences of entity B, but each occurrence of entity B is asso-
ciated with only one occurrence of entity A.

For example, a student’s grade in most courses is based on numerous
grade factors (such as exams, papers, and projects). A given Student has sev-
eral different Grade factors, but a given Grade factor is associated with one and
only one Student.

Graphically, a one-to-many relationship is shown by drawing a short
crossing line (or no extra marking) at the “one-end” and a small triangle
(sometimes called a crow’s foot) at the “many-end” of the relationship line
(Figure 26.3). Some practitioners use other symbols, however.

26.4.2.3 Many-to-many relationships
In a many-to-many relationship, each occurrence of entity A is associated
with one or more occurrences of entity B, and each occurrence of entity B is
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Figure 26.2 In a one-to-one relationship, each occurrence of entity A is associated
with one and only one occurrence of entity B, and each occurrence of entity B is 
associated with one and only one occurrence of entity A.



associated with one or more occurrences of entity A. For example, a stu-
dent’s end-of-term Grade report can list several Courses, and a given Course
can appear on many students’ Grade reports.

Graphically, a many-to-many relationship is shown by drawing a crow’s
foot at both ends of the relationship line (Figure 26.4). Some practitioners
use other symbols, however.

26.4.2.4 Other relationships
Although this chapter will focus on one-to-one, one-to-many, and many-to-
many relationships, other types of relationships are possible. Sometimes
entities are mutually exclusive, with A linked to either B or C, but not both.
In a mutually inclusive relationship, if A is linked to B it must also be linked
to C. Zero cardinality implies that an occurrence of A means no occurrence
of B. Crosslinks and loops can exist, too. A recursive relationship is shown
by drawing a semicircle from the entity back to itself.
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Figure 26.3 In a one-to-many relationship, each occurrence of entity A is associated
with one or more occurrences of entity B, but each occurrence of entity B is 
associated with only one occurrence of entity A.

Figure 26.4 In a many-to-many relationship, each occurrence of entity A
is associated with one or more occurrences of entity B, and each occurrence of 
entity B is associated with one or more occurrences of entity A.



26.4.3 Analyzing relationships

For a variety of reasons, one-to-many relationships tend to be the most 
stable. Consequently, a primary objective of entity-relationship modeling is
to convert one-to-one and many-to-many relationships into one-to-many
relationships.

26.4.3.1 Resolving one-to-one relationships
One-to-one relationships can often be merged. Generally, entities that share
a one-to-one relationship are really the same entity and should be merged
unless there is a good reason to keep them separate.

Note that not all one-to-one relationships can be merged, however. For
example, imagine a relationship between athletes and drug tests. There is
one Drug test per Athlete and one Athlete per Drug test, so the relationship is
clearly one-to-one. In this case, however, because merging the entities
would probably violate security requirements (and possibly the law), there
is a good logical reason to maintain separate entities.

26.4.3.2 Resolving many-to-many relationships
Many-to-many relationships can cause maintenance problems. For example,
Figure 26.5 shows a many-to-many relationship between Inventory and
Supplier. Each product in Inventory can have more than one Supplier, and
each Supplier can carry more than one product. If a list of suppliers were
stored in Inventory, adding or deleting a supplier might mean updating 
several Inventory occurrences. Likewise, listing products in Supplier could
mean changing several Supplier occurrences if a single product were added
or deleted.
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Figure 26.5 A many-to-many relationship can often be converted to two one-to-
many relationships.



One solution is to create a new entity that has a one-to-many relation-
ship with both original entities. For example, imagine a new entity called
Item ordered (Figure 26.5). Given such a design, a given product in Inventory
can appear on several active Items ordered, but each Item ordered is for one
and only one product. Likewise, a given supplier can appear on several
active Items ordered, but each Item ordered lists one and only supplier. Note
that a given Item ordered links a specific product in Inventory with a specific
occurrence of Supplier. The many-to-many relationship has been converted
to two one-to-many relationships.

26.4.4 Creating an entity-relationship diagram

Assume a preliminary analysis of a retail sales application suggests four 
primary entities: customer, sales, inventory, and supplier.

The Sales, Customer, and Inventory entities are related as follows:

Customer initiates Sales.
Sales are drawn from Inventory.

The first relationship is one-to-many (Figure 26.6); a given Customer can
have many Sales transactions, but a given Sale is associated with one and
only one Customer. However, the second relationship is many-to-many
because a given Sale can include several products from Inventory and a given
product in Inventory can appear in many Sales.

To resolve the many-to-many relationship, create a new entity, Item sold,
that has a one-to-many relationship with both Sales and Inventory (Figure
26.7). A given Sales transaction can list many Items sold, but a given Item sold
is associated with one and only one Sales transaction. A given product in
Inventory can appear in many Items sold, but a given Item sold lists one and
only one product. (Think of an Item sold as one line in a list of products 
purchased on a sales invoice.)
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Figure 26.6 Customer has a one-to-many relationship with sales. The relationship
between sales and inventory is many-to-many.



There is one possible source of confusion about the Inventory entity that
might need clarification. A specific 19-inch color television set is an example
of a single occurrence of that entity, but Inventory might hold numerous 
virtually identical television sets. For inventory control purposes, tracking
television sets (a class of occurrences) is probably good enough. However,
the Customer purchases a specific television set (identified, perhaps, by con-
catenating the serial number to the stock number). Thus a given Item sold
lists one and only one occurrence of Inventory.

The relationship between Inventory and Supplier (Figure 26.8) is many-
to-many because a given product can have many suppliers and a given sup-
plier can supply many different products. Many-to-many relationships
must be resolved, so add a new entity called Item ordered to the model, yield-
ing two one-to-many relationships.
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Figure 26.7 Resolving the many-to-many relationship calls for a new entity.

Figure 26.8 The many-to-many relationship between supplier and inventory can be
resolved by creating a new entity called item ordered.
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Figure 26.9 The finished entity-relationship model.

Finally, the Inventory entity is related to both Item sold and Item ordered,
so combine the two partial diagrams to form a single entity-relationship
model (Figure 26.9).

26.4.5 Documenting composites and attributes

After the entities have been identified, each one is recorded in the data 
dictionary (Chapter 25) as a data composite and the attributes (or data ele-
ments) it contains are defined. Many analysts prepare inverted-L charts
(Chapter 27) to graphically represent the entities’ contents. 

26.5 Key terms
Attribute –– A property of an entity.
Cardinality –– A measure of the relative number of occurrences of two

entities.
Composite –– A set of related data elements.



Data element — An attribute that cannot be logically decomposed.
Data structure — A set of related data elements; a composite.
Entity — An object (a person, group, place, thing, or activity) about

which data are stored.
Entity-relationship diagram — A diagram that shows how a system’s

primary data entities are related.
Many-to-many relationship — A relationship in which each occur-

rence of entity A is associated with one or more occurrences of entity
B, and each occurrence of entity B is associated with one or more
occurrences of entity A.

Occurrence –– A single instance of an entity.
One-to-many relationship — A relationship in which each occurrence

of entity A is associated with one or more occurrences of entity B, but
each occurrence of entity B is associated with only one occurrence of
entity A.

One-to-one relationship — A relationship in which each occurrence of
entity A is associated with one occurrence of entity B and each occur-
rence of entity B is associated with one occurrence of entity A.

Relationship — A link between two data structures.

26.6 Software
The entity-relationship diagrams in this chapter were prepared using Visio.
Other graphing tools, such as Micrografx’s Flowcharter provide comparable
support. Additionally, many CASE products support entity-relationship
models.
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27.1 Purpose
An inverted-L chart is a tool for graphically representing a data structure.
Inverted-L charts are often used with entity-relationship diagrams to docu-
ment the attributes that make up an entity. The completed inverted-L charts
represent a preliminary set of logical data structures.

27.2 Strengths, weaknesses, and limitations
An inverted-L chart is a clear, easy-to-visualize, graphical model of a data
structure. The inverted-L model lacks many of the necessary details that
must be recorded in the data dictionary, however.

27.3 Inputs and related ideas
Before an inverted-L chart can be constructed, the data elements (or attributes)
that make up the data structure or entity must be known (Part II). If an



inverted-L chart is prepared in conjunction with an entity-relationship
model, the entity-relationship model (Chapter 26) is generally prepared first.

Alternatives for documenting data structures include the data dictio-
nary (Chapter 25) and Warnier-Orr diagrams (Chapter 33). Data concepts
are discussed in Chapters 43, 44, and 45.

27.4 Concepts
An inverted-L chart is a tool for graphically representing a data structure.
Inverted-L charts are often used with entity-relationship diagrams to docu-
ment the attributes that make up an entity. The completed inverted-L charts
represent a preliminary set of logical data structures.

Figure 27.1 shows two examples of inverted-L diagrams. The entity
name (or data structure name) appears at the top of the imaginary upside-
down letter L. Attributes are listed under the entity name, and some analysts
like to include the data type or a picture clause for each attribute. Note that
the key field (or fields) is clearly marked.

The entity’s links (or relationships) are listed below the attributes. For
example, note the link Supplied by supplier under Inventory. Move down to
the second inverted-L chart and find the link that reads Supplies inventory.
The same link appearing in inverse form under two entities defines the rela-
tionship between them. Some analysts add cardinality limits to the links; the
greater than (>) symbol implies a “many to” relationship.

27.5 Key terms
Attribute — A property of an entity.
Cardinality — A measure of the relative number of occurrences of two

entities.
Data element — An attribute that cannot be logically decomposed.
Data structure — A set of related data elements; a composite.
Entity — An object (a person, group, place, thing, or activity) about

which data are stored.
Entity-relationship diagram — A diagram that shows how a system’s

primary data entities are related.
Inverted-L chart — A tool for graphically representing a data structure.
Key — The attribute or group of attributes that uniquely distinguishes

one occurrence of an entity.
Relationship — A link between two entities or data structures.

27.6 Software
The inverted-L diagrams in this chapter were prepared using Visio. Other
graphing tools, such as Micrografx’s Flowcharter provide comparable sup-
port. Additionally, many tools for creating entity-relationship models also
support inverted-L charts.
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Figure 27.1 Two inverted-L diagrams.



27.7 References
1. Barker, R., Case Method: Entity Relationship Modelling, Addison-Wesley, Reading,

MA, 1990.
2. Davis, W. S., Business Systems Analysis and Design, Wadsworth, Belmont, CA,

1994.
3. McDermid, D. C., Software Engineering for Information Systems, Blackwell

Scientific, Oxford, U.K., 1990.

1999 by CRC Press LLC



1999 by CRC Press LLC

chapter twenty-eight

Data normalization
William S. Davis and David C. Yen

Contents

28.1 Purpose
28.2 Strengths, weaknesses, and limitations
28.3 Inputs and related ideas
28.4 Concepts

28.4.1 First normal form (1NF)
28.4.2 Second normal form (2NF)
28.4.3 Third normal form (3NF)
28.4.4 Boyce-Codd normal form (BCNF)
28.4.5 Fourth normal form (4NF)
28.4.6 Fifth normal form (5NF)

28.5 Key terms
28.6 Software
28.7 References

28.1 Purpose
Data normalization is a formal technique for converting preliminary data
structures into easy to maintain, efficient data structures.

28.2 Strengths, weaknesses, and limitations
Data normalization is a rigorous, formal technique for defining efficient data
structures. The resulting normalized data structures serve as a useful starting
point for file and database design. Normalized data tend to be relatively easy



to maintain. Additionally, data normalization helps to reduce data redun-
dancy, ensure that all non-key attributes are dependent on the key, eliminate
unnecessary dependency relationships within a database file, and facilitate
database design using a data definition language.

Data normalization is derived from the relational database model.
Consequently, the normalized data structures may not be optimal for other
database models or for traditional files. Also, when the data are physically
stored it is often necessary to modify the normalized data structures to gain
processing efficiencies.

28.3 Inputs and related ideas
Before a set of data structures can be normalized, the logical data structures
must first be defined. The necessary logical data structures might be derived
from a data flow diagram (Chapter 24), an entity-relationship model
(Chapter 26), a set of inverted-L diagrams (Chapter 27), a set of Warnier-Orr
models (Chapter 33), or a similar tool. Generally, the composites and attrib-
utes are documented in the data dictionary (Chapter 25).

Data normalization is often performed as a preliminary step to file
design (Chapter 44) or database design (Chapter 45). Relevant data concepts
are discussed in Chapters 25, 43, and 44.

28.4 Concepts
Data normalization is a formal technique for converting preliminary data
structures into easy to maintain, efficient data structures.

28.4.1 First normal form (1NF)

The first step is to transform the preliminary data structures into first 
normal form by removing any repeating sets of data elements. Data in first
normal form can be represented as one or more two-dimensional flat files
that resemble simple spreadsheets. Each column holds one attribute and
each row holds a single occurrence of the entity.

For example, assume that Table 28.1 is a list of the data elements associ-
ated with entity Sales. (Invoice number is the key attribute.) A customer can
purchase more than one item in a single transaction, so the set of data ele-
ments that describe an item sold might be repeated several times. To convert
the sales data to first normal form, the repeating substructure must be
moved to a new entity (Table 28.2).

Note that the key to the new entity, Item sold, is made up of two attrib-
utes, Invoice number and Stock number. (In other words, it has a concatenated
key.) The first half of the key links the item sold to the invoice and the 
second half points to an item on that invoice, so the concatenated key
uniquely identifies a specific item on a specific invoice.
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28.4.2 Second normal form (2NF)

A data structure in first normal form can still cause maintenance problems if
one or more data elements depend on only part of the key. To convert data
in first normal form to second normal form, concentrate on those records
with concatenated keys, check each non-key attribute to see if it depends on
the entire key, and move to a new entity any data element that depends on
only part of the key.

For example, consider the data structures in Table 28.3. The first entity,
Inventory, has a single-attribute key, Stock number, so it is already in second
normal form. However, the second entity (Supplier) has a concatenated key
(Stock number and Supplier code).

Two of the Supplier data structure’s attributes, Reorder time and Supplier
price, depend on both keys. They are both attributes of a given product, and
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Table 28.1 The Sales Entity Contains These
Data Elements

Sales

*Invoice number
Date-of-sale
Customer code
Customer name
Customer address
Item purchased (one or more)

Stock number
Description
Quantity
Unit price
Item total

Subtotal
Sales tax
Total due
An asterisk marks the key field, Invoice number.

Table 28.2 To Put Data into First Normal
Form, Move Repeating Substructures to New

Data Structures

Sales Item sold

*Invoice number *Invoice number
Date-of-sale *Stock number
Customer code Description
Customer name Quantity
Customer address Unit price
Subtotal Item total
Sales tax
Total due
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Table 28.3 The Inventory Data in 
First Normal Form

Inventory Supplier

* Stock number *Stock number
Description *Supplier code
Stock-on-hand Suppler name
Reorder quantity Supplier address
Reorder point Reorder time
Unit price Supplier price

Table 28.4 The Inventory Data in 
Second Normal Form

Inventory Item ordered Supplier

*Stock number *Stock number *Supplier code
Description *Supplier code Supplier name
Stock-on-hand Reorder time Supplier address
Reorder quantity Supplier price
Reorder point
Unit price

the Reorder time and Supplier price for a given item might vary from supplier to
supplier, so they depend on Supplier code, too.

The other two attributes, Supplier name and Supplier address, depend only
on the Supplier code, however, because Stock number does not uniquely define
the supplier. A supplier might sell numerous products. If a given supplier
moves to a new address, several different product/supplier records would
have to be changed, and that creates a maintenance problem. Consequently,
the Supplier data must be separated from the Item ordered data (Table 28.4).

28.4.3 Third normal form (3NF)

To be in third normal form, each data element in the structure must be a
function of the key, the whole key, and nothing but the key. That definition lacks
rigor, but it is easy to remember, and it expresses the essence of third normal
form.

More formally, to reach third normal form (3NF), all transitive depen-
dencies must be removed from a second normal form (2NF) data structure.
A transitive dependency occurs when a non-key attribute is determined by
the key and by another non-key attribute. For example, consider the data in
Table 28.5 and look at the first entity, Sales. Customer name and Customer
address both depend directly on the Invoice number (the key), but they also
depend on the Customer code which, in turn, depends on the Invoice number.

The process to reach a third normal form is simple: Review the struc-
ture’s non-key data elements, identify any that depend on an attribute other
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Table 28.5 The Sales Data in Second 
Normal Form

Sales Item sold Inventory

*Invoice number *Invoice number *Stock number
Date-of-sale *Stock number Description
Customer code Quantity Unit price
Customer name Item total
Customer address
Subtotal
Sales tax
Total due
Note that the third data structure holds Inventory data.

Table 28.6 The Data in Third Normal Form

Sales Customer Item sold

*Invoice number *Customer code *Invoice number
Customer code Customer name *Stock number
Date-of-sale Customer address Quantity
Subtotal Item total
Sales tax
Total due

Inventory Item ordered Supplier

*Stock number *Stock number *Supplier code
Description *Supplier code Suppler name
Stock-on-hand Reorder time Supplier address
Reorder quantity Supplier price
Reorder point
Unit price
Note that Description and Unit price are associated with Inventory data.

than the key, and move them to a new entity. Table 28.6 shows all the data
in third normal form. The fact that the Customer code appears in both Sales
(as a foreign key) and Customer links a given sales transaction to a specific
customer.

28.4.4 Boyce-Codd normal form (BCNF)

A relation is in Boyce-Codd normal form if and only if every determinant is
a candidate key. Boyce-Codd normal form is a special type of third normal
form. A relation in BCNF is also in 3NF, but a relation in 3NF may not be in
BCNF.

For example, a car has such attributes as license number, engine num-
ber, color, make, type (2-door, 4-door), and description (minivan, pickup,
4�4, sedan). Both the license number and the engine number are sufficient-
ly unique to be candidate keys.
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Table 28.7 Boyce-Codd Normal Form

License relation Vehicle relation

*License number *Engine number
Engine number Color

Make
Type
Description

Table 28.8 A Relation between Automobile
Dealers, Manufacturers, and Makes

Dealer Manufacturer Make

Bill’s Auto GM Chevrolet
Bill’s Auto GM Pontiac
Dave’s Auto GM Chevrolet
Dave’s Auto Chrysler Plymouth
Dave’s Auto Chrysler Dodge
Dan’s Auto GM Buick
Dan’s Auto GM Pontiac

This relation can be expressed in Boyce-Codd normal form by breaking
it into two groups (Table 28.7). The first group holds both candidate keys, the
license number (the key) and the engine number. The second group holds the
engine number (the key) and all the other attributes (color, make, type, and
description). Note that each group holds only a single candidate key.

28.4.5 Fourth normal form (4NF)

Fourth normal form emerged from third normal form to deal with the issue
of multi-value dependency. A multi-value dependency exists when one
attribute multi-determines (or is multi-determined by) the other attribute(s).
For example, in Table 28.8 three attributes (dealer, manufacturer, and make)
are associated with automobiles. Note that the manufacturer and the dealer
both determine the car make. Also, a manufacturer (GM) can produce sev-
eral makes (Chevrolet, Buick, Pontiac, Oldsmobile) and a dealer can sell 
several makes from GM (Pontiac, Buick) and several makes from Chrysler
(Plymouth, Dodge). Within this relation are multi-value dependencies
between dealers and makes and between manufacturers and makes.

A relation is in fourth normal form if and only if all existing multi-value
dependencies are converted into regular functional dependencies. In Table
28.8 three attributes (dealer, manufacturer, and make) are associated with
automobiles. To remove the multi-value dependencies described in the pre-
vious paragraph, this relation should be separated into two sub-relations
(Table 28.9), one with dealers and manufacturers and the other with manu-
facturers and makes. In sub-relation A, manufacture and dealer together
form a composite key. In sub-relation B, manufacturer and make form the
composite key.



28.4.6 Fifth normal form (5NF)

Fifth normal form is sometimes called projection-join normal form (PJNF).
Projection is the process of separating one relation into sub-relations. Join is
the process of consolidating sub-relations into one relation. Sometimes, join
and projection operations produce spurious values called join dependencies.

The key objective of fifth normal form is to remove any join dependen-
cies. For example, consider Table 28.10. The original relation between
authors, books, and school can be projected to form three sub-relations
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Table 28.9 Fourth Normal Form

Sub-relation A Sub-relation B

Manufacturer Dealer Manufacturer Make

GM Bill’s Auto GM Chevrolet
GM Dave’s Auto GM Buick
GM Dan’s Auto GM Pontiac
Chrysler Dave’s Auto Chrysler Plymouth

Chrysler Dodge

Table 28.10 Fifth Normal Form

1. The original relation

Author Book School

A1 B1 S1
A1 B2 S2
A2 B1 S2

2. After projection

Author Book Book School Author School

A1 B1 B1 S1 A1 S1
A1 B2 B2 S2 A1 S2
A2 B1 B1 S2 A2 S1

3. After the first two relations are joined

Author Book School

A1 B1 S1
A1 B1 S2 Spurious
A1 B2 S2
A2 B1 S1
A2 B1 S2 Spurious

4. The data in fifth normal form

Author Book School

A1 B1 S1
A1 B2 S2
A2 B1 S2



(authors and books, books and schools, and authors and schools). If the first
two sub-relations are joined by (or joined over) book, the result is a spurious
value; note that A2-B1-S2 did not exist in the original relation. Fifth normal
form is reached after the join dependency is removed. In this example, join-
ing the third sub-relation with the already-joined sub-relation yields the
original relation.

28.5 Key terms
Attribute — A property of an entity.
Boyce-Codd normal form — A relation is in Boyce-Codd normal form

(BCNF) if and only if every determinant is a candidate key.
Candidate key — A possible key; an attribute or group of attributes that

uniquely distinguishes one occurrence of an entity. Note that a given
entity can have more than one candidate key.

Composite — A set of related data elements.
Data element — An attribute that cannot be logically decomposed.
Data normalization — A formal technique for designing easy to main-

tain, efficient logical data structures (or relations).
Data structure — A set of related data elements.
Determinant — Usually, a key; the value of the key determines the val-

ues of all the non-key attributes because the key defines a unique
occurrence of the entity (a unique set of attributes).

Entity — An object (a person, group, place, thing, or activity) about
which data are stored.

Fifth normal form — A fourth normal form relation with all join depen-
dencies removed.

First normal form — A logical data structure that contains no repeating
sets of data elements.

Foreign key — A key to some other entity stored with the target entity.
Fourth normal form — A relation is in fourth normal form (4NF) if and

only if all existing multi-value dependencies are converted into regu-
lar functional dependencies.

Functional dependency — A situation that exists when a non-key
attribute is fully dependent on the key.

Join — The process of consolidating sub-relations into one relation.
Join dependency — A type of dependency that is created as a result of a

projection or join process. 
Key — The attribute or group of attributes that uniquely distinguishes

one occurrence if an entity.
Multi-determine — Determined (or defined) by more than one attribute;

for example, a value that is determined by the key and by some other
attribute is multi-determined.

Multi-value dependency — A situation that exists when one attribute
multi-determines (or is multi-determined by) another attribute or
attributes.
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Occurrence — A single instance of an entity.
Projection — The process of separating one relation into sub-relations.
Relation — An entity in tabular form, with attributes (fields) stored in

columns and tuples (records or occurrences of the entity) stored in
rows.

Relationship — A link between two data structures (or relations).
Second normal form — A first normal form relation from which any

data elements that depend on only part of a concatenated key have
been removed to a separate entity.

Third normal form — A relation in which each data element in the rela-
tion is a function of the key, the whole key, and nothing but the key.
To reach third normal form, all transitive dependencies must be
removed from a second normal form relation.

Transitive dependency — A non-key attribute that depends indirectly
(via a third attribute) on the key attribute.

Tuple — A row in a relation that holds one occurrence of the entity (or
one record).

28.6 Software
Many CASE products include data normalization algorithms that operate on
the information in the data dictionary or the repository.
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29.1 Purpose
This chapter describes object-oriented analysis. The purpose of object-
oriented analysis is to find and describe the business objects and to identify
the relationships between the objects via a conceptual model.

29.2 Strengths, weaknesses, and limitations
Presently, the dominant mode of analysis and design is the structured analy-
sis and design technique. Despite its dominance, this approach has limita-
tions in that it is not able to deliver robust systems on time or within budget
and is often not able to meet the complete needs of new client/server and
distributed systems. Increasingly, the industry is looking to object-oriented
analysis and design.

The architectures of object-oriented systems consist of networks of inter-
connected subsystems, with each subsystem encapsulating data and 
providing methods. Because the subsystems reflect natural classifications,
they tend to be independent and stable. The subsystems communicate via
messages and object-oriented analysis and design encourages platform
independent designs, leading to more reliable distributed systems.

Developer productivity is enhanced because objects and code can be
reused. Developers have a library of reusable classes and can create special-
ized subclasses from them by using inheritance. This reduces coding and
maintenance costs because the library of classes has been debugged prior to
inclusion in the system.

Object-oriented analysis and design leads to quicker development because
of the increased use of prototyping. Prototyping and reuse go together
because it is easier to prototype if there is a library of reusable classes.

In addition, there is a closer association between the real world object
and the system object. Business users tend to see the world in terms of
objects, so a program developed to reflect those objects is easier to commu-
nicate to the user. The object models lead to a more natural representation
because data and programs are stored together. In addition, a hierarchical
model structure is possible, with each layer showing greater levels of detail.
All these lead to object models that are easier to understand and use.

Programmer training is a problem. Most practicing programmers were
trained on structured programming techniques and on languages such as
COBOL. Writing object-oriented programs or designing object-oriented sys-
tems requires learning new languages and new ways to conceptualize logic.
This is a challenge.

Reuse is also difficult to achieve. Significant management, cultural, and
organizational issues must be tackled prior to achieving reuse. Management
commitment must be obtained before object technology provides any bene-
fits. In addition, a sizeable number of employees must be trained in object-
oriented techniques and technologies. Control issues also need to be 
handled such as: Should everyone be forced to use the standard version?
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Should adaptations be allowed? Who decides? Should designs, specifica-
tions, and architectures also be reused? Akin to the capability maturity
model, reuse maturity models exist that can guide organizations in their
implementations of the reuse process.

While objects are easier to communicate with users, it is naïve to expect
that system objects that mirror real world objects will result in software that
is easily maintainable, reusable and makes efficient use of resources.1 A
study of design patterns and modifying the system design to effectively uti-
lize true and tried methods in object-oriented design would, in general,
improve the quality of software that is developed, however.

In addition, the message passing mechanism used for communication
between objects does not always accurately reflect the way events occur in
the real world. For example, when two cars bump into each other, it cannot
be assumed that one car sent a bump ( ) message. Instead, an event has taken
place in which each car is a reluctant participant. Because of this, object-
oriented analysis and design approaches introduce messages late in the
design process.

29.3 Inputs and related ideas
Structured analysis and design pictures a software system as a collection of
data that are processed by functions (processes) external to the data. Analysts
and designers use data flow diagrams (Chapter 24), data dictionaries
(Chapter 25), and structure charts (Chapter 63) to develop systems. Entity
relationship diagrams (Chapter 26) stress the data and show how a system’s
primary data entities are related. These tools are appropriate for data-rich
systems (for example, systems that incorporate relational databases).

An object is a concept or thing about which information is stored. An
object consists of a set of related methods and attributes. Object-oriented
concepts are covered in Chapter 6. Object-oriented design is covered in
Chapter 66.

29.4 Concepts
In general, divide and conquer is the strategy used to deal with software
project complexity in both structured analysis and design and object-
oriented analysis and design (OOAD). In structured analysis and design, the
decomposition is performed via function or process, resulting in a hierar-
chical breakdown of processes made up of other subprocesses. In OOAD,
the decomposition is by objects rather than by processes or functions.
OOAD emphasizes considering the problem and its logical solution from
the perspective of objects (things, concepts, entities).

The object-oriented life cycle can be broadly thought of as including
analysis, design, and a construction phase. Analysis is the investigation of a
problem rather than a solution. Design emphasizes a logical solution and the
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design of a system that fulfills the requirements. Construction is developing
code, debugging, and testing the application.

In object-oriented analysis, the analyst finds and describes the objects.
For example, if we consider a student registration system at an university or
college, some objects of interest would be students, courses, and faculty.
During the design phase, the analyst defines software objects that ulti-
mately will be implemented in an object-oriented language. These objects
have properties (attributes) and methods. For example, a course may have
number, title, time, instructor and a print class rolls method. During con-
struction the design objects are implemented in an object-oriented language
such as C++, Java, or Visual Basic.

During the object-oriented analysis stage, the analyst defines the prob-
lem statement (the requirements), defines use cases both at a high level and
an expanded level, develops a conceptual model, and records the terms in a
glossary.

29.4.1 Requirements

Requirements are used to specify the overall goals, system functions, and
attributes. For example, imagine that the goals for an appliance store inven-
tory system are to reduce inventory by providing accurate, daily inventory
status data to support reorder and sale item decisions and to maintain the
new inventory levels into the future.

System functions identify what the system is supposed to do. Some sys-
tem functions implied by the inventory system goals include recording all
transactions, maintaining inventory of all items in some persistent storage,
reporting items to reorder, updating inventory when items are received, and
identifying items with excess stock.

System attributes are non-functional qualities such as operating system
and platform, response time, and interface (windows, GUI, etc.).
Requirements also include evaluating project feasibility (Chapter 13),
recording a list of key contacts, and documenting any constraints (such as
the maximum cost of the project).

29.4.2 Use case modeling

Use case modeling is a technique used to identify and define the business
objects. The objectives of use case modeling include identifying user require-
ments in a manner that can be clearly communicated to the user and devel-
opers, enabling the finding of objects in the real world, enabling the 
discovery of properties and methods for each object, and establishing a basis
for developing a test plan and user manuals.

A use case corresponds to a specific kind of system use. Use cases
describe the behavior of a system from a user’s point of view. A use case
begins with an actor (a person or entity external to the system) initiating
some business task. The system responds with a dialogue to which the user
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Table 29.1 A High-Level Use Case

Use case Buy appliance

Actors Customer, Sales representative

Description A customer talks to a sales repre-
sentative about appliances that
he/she is interested in buying,
and picks the item in consulta-
tion with the sales representa-
tive. The sales representative
then prepares the bill, and the
customer makes the payment.

Type Primary

responds and so on. The use case describes this sequence of events. Use
cases are not functional requirements per se but imply the requirements. Use
case modeling breaks down the entire scope of system functionalities by
specifying all the relevant ways of using the system.

29.4.2.1 High level use case
High-level use cases tersely describe the functionality required and are use-
ful to obtain a quick understanding of the overall processes in the system.
Table 29.1 describes a typical high level use case. It contains a title, the actors
involved in the use case (including the one who initiates), a brief description
of the case, and whether the use case represents a fairly important (primary)
business process or is of secondary importance.

29.4.2.2 Expanded use case
Expanded use cases are used to obtain an in-depth understanding of the
processes and requirements. In an expanded use case, in addition to the
high-level description, the purpose, and a typical or normal sequence of
actions are recorded. For example, Table 29.2 is an expanded description for
the high-level use case in Table 29.1.

Alternative courses (a cash payment, a disapproved credit card transac-
tion) are generally not included in the use case because the objective is
understanding the basic requirements, not the details. It is easier to read the
standard use case without being distracted by unusual cases, and the devel-
oper should focus more on the most common case. The alternate courses are
delineated and described later.

An assumptions section can also be added to the use case to deal with
important issues such as security and performance that do not fit the use
case scenario. For example, assumptions might state that no manufacturer’s
rebate coupons will be accepted, or no security or password is required for
the sales representative to enter the information into the system.



29.4.2.3 Identifying use cases
One method for identifying use cases is to start by identifying the actors and
then identifying the business processes each actor initiates or participates in.
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Table 29.2 An Expanded-Level Use Case

Use case Buy appliance

Actors Customer (initiator), Sales representative

Purpose Record the sale of an appliance to a customer

Description A customer, talks to a sales representative about appli-
ances that he/she is interested in buying, and picks
the item in consultation with the sales representative.
The sales representative then prepares the bill, and the
customer makes the payment.

Type Primary

Normal 1. Customer walks up to a sales representative and
course of discusses items to buy.
events 2. In consultation, customer decides on item to buy.

3. Sales representative enters the appliance identifi-
er and the quantity desired into the system.

4. System responds with the price, and verifies that
the appliance is in stock.
(Not in stock is not a normal course of events.)

5. If additional items are to be entered, sales repre-
sentative does so, and steps 3 and 4 are repeated.

6. System adds the amounts, calculates tax, and pre-
sents the total.

7. Sales representative informs the customer of the
total.*

8. Customer runs his/her credit card through the
verification system.

9. System receives credit approval and presents
credit card transaction form.

10. Customer signs the credit card transaction form.
11. System logs the details of the transaction, includ-

ing sales representative, customer, and item infor-
mation.

12. System updates the inventory and closes the
transaction.

13. System generates the receipt.
14. Receipt is handed by sales representative to cus-

tomer.
15. Customer leaves the premises with appliance.

Alternative courses: Note errors that can occur and how
they are handled can be described here.

*Assumption: the normal event is a credit card purchase. Cash purchases are described separately.



Actors are generally external to the system, so the system context diagram
(Chapter 24) may be a good place to start. Defining everything each actor is
able to do enables the analyst to document the complete functionality of the
system. Jacobson2 recommends that the analyst consider:

1. The main tasks of the actor,
2. The type of access to system information (read or update) the actor

requires,
3. The information about changes in the world outside the system the

actor is to send to the system,
4. The information the system is to send to the actor about changes of

which the system is aware.

Note that the use cases should describe real processes (such as process-
ing a sale) and not trivial events (such as printing the receipt for the cus-
tomer). In this example, the real process is the sale.

29.4.2.4 Use case diagrams
Use case diagrams depict:

1. A set of use cases for a system,
2. The actors,
3. The relations between the actors and the use cases. 

The purpose of the use case diagram is to present a context diagram. By
understanding the use case diagram, one can understand the actors external
to the system and the many ways in which the system is used by the actors.
In the unified modeling language (UML) notation,3 ovals represent use cases
and stick figures represent actors. For example, Figure 29.1 shows a sample
use case diagram for the appliance store.

29.4.2.5 Developing use cases
Use cases can be categorized as primary and secondary. Primary use cases
depict processes commonly seen in the business. Secondary use cases depict
processes used less often (such as deciding to order a new category of 
appliance).

Use cases are typically ranked using some sort of priority. For example,
the analyst might give priority to use cases that represent the primary func-
tions of the business, those that impact the design, those that enable easy
identification of objects, those that impact the architecture of the system
(database requirements, network requirements), those that implement com-
plex functions, and so on.

Once they are ranked, the more critical use cases are developed itera-
tively using a time boxed approach. For example, the Buy appliance use case
may first be written with just the typical course of events. In the second iter-
ation, the use case may be developed for handling credit refusals and cash
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payments. In the third iteration, handling check payments may be added to
the use case, and so on. Each assumption or simplification of the scenario
must be noted in the use case model at each stage.

Use cases are not object oriented. The objective is to create a first-cut
model from a business process or system perspective. The completed use
case diagram gives the analyst a view of the system and provides the tools
to identify the objects and build a conceptual model.

29.4.3 The conceptual model

In the conceptual model, the real world concepts (i.e., the objects) are explic-
itly identified, their attributes are documented, and the associations among
the objects are specified. Creating a conceptual model is the most important
object-oriented analysis activity.

In the unified modeling language, conceptual models are shown using
static diagrams. Static diagrams describe the different kinds of objects that
can exist in the system and the possible ways in which the objects can be
linked to each other. Typically, no methods or responsibilities are shown, as
static models do not contain information about how a system behaves. The
most important type of static diagram is the class-structure diagram. The
class-structure diagram defines the groups or classes the objects fall into and
defines the structural relationships between the groups.

It should be emphasized that during the analysis phase, the conceptual
model represents the real-world entities, not the software components. It
shows information on objects (concepts) in the application, how the objects
are associated with each other, and the attributes of each object. Figure 29.2
shows the UML notation for an object.
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Figure 29.1 A use case diagram for an appliance store.



29.4.3.1 Identifying objects
Objects are identified by extracting nouns (candidate classes/objects) from a
problem statement or from the expanded use case. A few of these noun
phrases may be candidate concepts; others may be attributes.

For example, the use case statements for an inventory application might
suggest such concepts (objects) as customer, sales representative, appliance
item, stock, payment, credit card, verification system, inventory, price, quan-
tity, total, transaction, receipt, and so on. A similar analysis is done for all use
cases, and a candidate list of objects is drawn up. Once this is done, the can-
didate list is cleaned up by looking for synonyms (inventory and stock), con-
cepts outside the scope of the system (the verification system), nouns that
are attributes (price), and so on. The reasons for keeping some nouns and
removing others from the list must be documented.

Once the key objects are identified, the next step is to group them to
form object classes. Certain objects, for example, objects that share attri-
butes, seem to naturally fit together. For example, the object appliance item
clearly belongs to a more general concept called inventory, and the data
associated with a receipt have a great deal in common with a sale.

29.4.3.2 Identifying associations
An association is a relationship between concepts that indicates some mean-
ingful and interesting connection. Much as objects correspond to nouns,
associations correspond to verbs.
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For each association, the analyst must decide if the association is useful
by checking if information about the association must be stored. For exam-
ple, consider the association between the sales representative and the actual
sale. If the store pays its sales representatives on a commission basis, then
the system must keep track of this association. However, if the appliance
store pays its sales representatives an hourly wage, the association may not
be needed. All necessary associations are assigned a name that clearly
reflects the purpose of the association.

Once the association (relationship) has been identified, the multiplicity
that governs the relationship must also be defined. Multiplicity defines the
minimum and maximum number of occurrences of one conceptual object
for a single occurrence of the other; the concept is similar to cardinality
(Chapter 26.) Since associations are bidirectional, multiplicity must be
defined in both directions for the association.

An example of an association and its multiplicities is shown in Figure
29.3. The association is customer purchases from inventory. The relationship is
many to many because a customer is associated with (may purchase) many
items in inventory and a given item in inventory may be purchased by many
different customers. Figure 29.4 summarizes several unified modeling lan-
guage multiplicity notations.
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Figure 29.3 Association in UML.

Figure 29.4 Representing multiplicity in UML.



Two objects can have more than one association. When several associa-
tions exist between two objects, then role names specified on either side of
the association are used to clarify the relationship. Role names are typically
nouns. For example, in Figure 29.5, the graduate student has two roles, one
as a student taking a course from the faculty member and the second as a
research assistant working for the faculty member.

29.4.3.3 Aggregation
An aggregation association depicts a complex object that is composed of
other objects. In general it models a whole-part relationship between objects.
An aggregation is used to express “part-of” associations between objects.
For example, a sale is composed of multiple sales line items, so a sale can be
modeled as an aggregation of sales line items. Figure 29.6 (top) depicts this
aggregation which is actually a composition. A composition is a stronger
form of aggregation, with the multiplicity at the composite end being at
most one (signified by a filled diamond).

A hollow diamond indicates a shared aggregation, and the composite
end may be more than one. For example, the second association in Figure
29.6 depicts an asymmetrical relationship where the parent takes care of the
children as a shared aggregation. An asymmetrical relationship is one in

1999 by CRC Press LLC

Figure 29.5 Roles in UML.

Figure 29.6 Composition and shared aggregation.



which one end plays a more significant role. Here, the parent object plays a
more significant role than the children. Note that a child can have at most
two (0 . . . 2) parents.

Booch4 suggests the following tests to determine whether a relationship
is an aggregation:

1. Is a part-of phrase used to describe it?
2. Are some operations of the whole applied automatically to the parts?
3. Are some attribute values propagated from the whole to the parts?
4. Is one object class subordinate to the other?

29.4.3.4 Generalization and specialization
Class hierarchies enable us to manage complexity by ordering objects with-
in trees of classes with increasing levels of abstraction. Generalization and
specialization are points of view that are based on class hierarchies.
Generalization consists of factoring out the common elements (attributes
and methods) from a set of classes into a more general class called a parent
class. The most general level is at the top, with the more specific object types
shown as children. The parent’s attributes and methods are then inherited
by the children. Generalization and specialization hierarchies describe sys-
tems that should be implemented using inheritance in an object-oriented
language.

Figure 29.7 depicts a common occurrence of a generalization/special-
ization in the real world. An employee can be either a salaried worker or an
hourly worker. A salaried worker may be a manager or a non-manager. In
the appliance sales example, payment has a hierarchy with sub-types credit
payment and cash payment.
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A conceptual model for the appliance store inventory project that inte-
grates the various objects is shown in Figure 29.8.

29.4.4 Glossary

A glossary is a document that defines terms. Conceptually, it resembles a
data dictionary (Chapter 25). The glossary lists and defines all the terms that
must be clarified. The objective is to reduce misinterpretation of the terms by
various analysts and to enhance communication by providing consistent
meanings for the various terms.

29.5 Key terms
Actor — A person or entity external to the system.
Aggregation — A description of part-of relationships among objects; 

the higher-level objects are completely described by all of their com-
ponents.

Association — A relationship between objects that indicates some mean-
ingful and interesting connection.

Capability maturity model — A comprehensive framework for describ-
ing and evaluating the software development capability of an organi-
zation.

Class structure diagram — A diagram that defines the groups or classes
the objects fall into and defines the structural relationships between
the groups.
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Composition — A stronger form of aggregation, with the multiplicity at
the composite end being at most one.

Concept — An object.
Conceptual model — A model in which the real-world concepts (i.e., the

objects) are explicitly identified, their attributes are documented, and
the associations among the objects are specified.

Expanded use case — A description of the step-by-step events in a
process; an expanded use case is more detailed than a high-level use
case.

Generalization — A technique wherein commonality among concepts is
identified and a general concept or super-type is defined. Subtypes
depict “type-of” relationships.

High-level use case — A brief, two, or three sentence description of a
process.

Multiplicity — The minimum and maximum number of occurrences of
one conceptual object for a single occurrence.

Object-oriented analysis — The investigation of a problem by identify-
ing and describing the objects.

Object-oriented design — The logical solution of a problem through a
set of interacting objects.

Reuse maturity model — A comprehensive model that measures the
extent of reuse of software components, architecture, and processes in
an organization.

Specialization — The creation of a subtype from a super-type by refin-
ing the super-type; the opposite of generalization.

Static diagram — A model that describes the different kinds of objects
that can exist in the system and the possible ways in which the objects
can be linked to each other; no methods or responsibilities are shown
because static models do not contain information about how a system
behaves.

Timed box approach — A project management approach that divides
the set of all requirements for a system into subsets, each of which is
implemented as a version of the system; the delivery of each new ver-
sion of the system in a regular and timely fashion is guaranteed by
this approach.

Unified modeling language — The universal language for object-
oriented modeling; its notation forms an object-oriented modeling
language and can replace the notation of various object-oriented
analysis methods.

Use case — The behaviorally related sequence of transactions that a user
performs in a dialogue with the system when he or she uses the 
system.

Use case diagram — A diagram that depicts the set of use cases for a sys-
tem, the actors, and the relation between the actors and the use cases.
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29.6 Software
CASE (Chapter 5) tools exist to help the analyst develop use cases, draw
class diagrams and enter terms in a data dictionary.
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30.1 Purpose
The purpose of a state transition diagram is to represent a system as a series
of states and related activities, display the interrelationships among the
states, show how the system moves from state to state, and document the
sequence and priority of the states. State transition diagrams were initially
developed to help design compilers. Systems analysts and information sys-
tem consultants use state transition diagrams to analyze and design real-
time and object-oriented systems.



30.2 Strengths, weaknesses, and limitations
State transition diagrams are excellent tools for representing the precedence
relationships between a system’s processes and states and for representing
recursive and feedback structures. They are particularly useful when a sys-
tem exhibits multiple changes of state or requires synchronization. A state
transition diagram is easily converted into object-oriented code.

State transition diagrams are used primarily in real-time and/or object-
oriented systems analysis and design and to support such computer science
applications as compiler design. They are not generally useful for designing
or documenting batch processing systems. Also, because they are not con-
sidered standard tools in the traditional systems analysis and design
methodologies, many systems analysts and information system consultants
are unfamiliar with them.

30.3 Inputs and related ideas
State transition diagrams are used primarily for analyzing and designing
real-time (Chapter 73) and object-oriented (Chapters 6, 29, and 66) systems.
They are sometimes used to support prototyping (Chapter 31) and rapid
application development (Chapter 32).

30.4 Concepts
A state transition diagram is used to represent a system as a series of states
and related activities, display the interrelationships among the states, show
how the system moves from state to state, and document the sequence and
priority of the states.

30.4.1 Basic elements

Figure 30.1 shows the basic elements of a state transition diagram. The vari-
ous states (or nodes) are shown as circles. State 0 is the initial (starting) state.
Arrows representing functions or activities link a state to its accepting (or fol-
lowing) states. An arrow that originates and returns to the same state repre-
sents a recursive loop. The initial and final states are shown as double circles.

On a non-deterministic state transition diagram, a given input function
is associated with more than one transition from the state. A deterministic
state transition diagram, in contrast, can have at most one transition from a
given state for any given input. Deterministic is a special case of non-
deterministic.

30.4.2 An example

Figure 30.2 shows, for example, an entity relationship diagram for a 
real-time system for producing grape jam. State 0 is the initial state. During
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activity A, the initial mix of raw materials is prepared and the production
process begins.

State 1 is a target temperature. The production process cannot move on
to the next state until the target temperature is achieved, so activity B is a
recursive loop during which the temperature of the mix is constantly moni-
tored and adjusted.

After the mix reaches the appropriate temperature, it moves on (activity
C) to the next state. State 2 is the target acidity ratio which must be
rechecked and balanced after each succeeding state is completed. Activity D
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Figure 30.1 The basic elements of a state transition diagram.

Figure 30.2 A state transition diagram for a real-time production system.



adds artificial color to the mix. State 3 is the target color. Activity E is a feed-
back loop to state 2, where acidity is rechecked.

When both acidity (state 2) and color (state 3) are in balance, sugar is
added to the mix (activity F) until the desired level of sweetness is reached
(state 4). Activity G is another feedback loop to state 2. Activity H returns the
process to state 4, where sweetness is rechecked. When the mix reaches the
desired acidity, color, and sweetness, it moves on to the packaging stage
(activity I), and the production process ends (state 5).

30.4.3 Fence diagrams

A state transition diagram can also be prepared in the form of a fence 
diagram. On a fence diagram, the states are shown as vertical lines and the
activities that move the system from one state to another are shown as hor-
izontal arrows.

For example, Figure 30.3 shows a fence diagram of the life cycle of a 
single object in inventory. Starting at the left, the object is ordered, received,
inspected, and either accepted or returned to the supplier (the left-pointing
arrow).

Once the object is accepted, it is stored in the warehouse. From the ware-
house, the object can be transferred to the showroom or returned to the sup-
plier. Objects in the showroom can be sold and delivered to a customer. If the
customer accepts the object, it is deleted from inventory records. If the cus-
tomer rejects the object, it is returned to the showroom where it can be resold
or returned to the warehouse.
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Figure 30.3 A fence diagram of the life cycle of a single object in inventory.



30.5 Key terms
Activity (function) — A process or event that moves a system from one

state to another.
Deterministic state transition diagram — A state transition diagram in

which a given input function is associated with at most one transition
from a given state.

Feedback — The return of a portion of a system’s output to its input; on
a state transition diagram, a feedback loop returns the system to a
previous state.

Fence diagram — A state transition diagram on which the states are
shown as vertical lines and the activities are shown as horizontal
arrows.

Node — A symbol (usually a circle) on a state transition diagram that
represents a state.

Non-deterministic state transition diagram — A state transition dia-
gram in which a given input function is associated with more than
one transition from the state.

Real-time system — A system designed to respond immediately to real -
world events.

Recursion — The ability of a subroutine to call itself.
State — A condition or mode of being, particularly with regard to phase,

form, composition, or structure. 
Transition — A movement or shift from one state to another.

30.6 Software
The state transition and fence diagrams in this chapter were prepared using
Visio. Other graphing tools, such as Micrografx’s Flowcharter provide com-
parable support. Additionally, many CASE products support state transition
models.
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31.1 Purpose
A prototype is a working physical model of a system or a subsystem.
Generally, the analyst’s (or information consultant’s) objective is to gather
information about the user’s requirements from the bottom up by allowing
the user to interact with the prototype. In effect, the prototype serves as a
preliminary version of the system or component from which requirements
are extracted and on which subsequent versions are based.

31.2 Strengths, weaknesses, and limitations
A prototype is an excellent tool for analyzing and designing an interactive
application and/or a user interface and to support object-oriented system



development. During the analysis stage, prototyping can be used to replace
or supplement logical modeling, particularly when the users are uncomfort-
able with abstract models. Prototyping is valuable on projects with long
development times because the user gets to see something physical.
Prototyping is an excellent tool when the requirements are highly uncertain
or too abstract to specify, or when no comparable system has been previ-
ously developed. Generally, if reaching a solution calls for simulation, exper-
imentation, or incremental evaluation, prototyping might be a reasonable
choice. 

Creating a large, complex system from the bottom up can be very diffi-
cult, and integrating subsystem prototypes can prove almost impossible
because there is no clear way (short of a parallel top-down logical or data
model) to visualize subsystem relationships. Prototyping is not a good
choice for algorithm-driven projects that involve heavy calculation.

Prototyping can bias the systems analysis process in subtle ways.
Because the prototype is developed on a computer, the system will almost
certainly be implemented on a computer and manual alternatives are
unlikely to be considered. Because it is a working model, people will
inevitably think of the prototype as the solution. A related danger is that 
the system will never be developed properly because the prototype seems
too good.

Prototypes generally lack security, auditing, and other controls (Chapter
77), and data integrity may be difficult to ensure. Additionally, prototypes
are often inefficient and difficult to maintain. For example, it is difficult to
trace the ripple effects that result from modifying a prototype, and that
affects maintainability. Economy of scale is another problem; prototypes that
test well sometimes fail when the number of users is dramatically increased.

31.3 Inputs and related ideas
Before creating a prototype, it is necessary to at least partially define the prob-
lem and gather preliminary information (Part II). Also, it may be necessary to
perform a preliminary analysis (Part IV) and/or create logical models to help
plan and (later) to supplement the prototype. A prototype is an excellent tool
for analyzing and designing an interactive application and/or a user inter-
face (Chapter 48) and to support object-oriented system development
(Chapters 29 and 66). During the analysis stage, prototyping can be used to
replace or supplement logical modeling (Chapters 24, 26, and 28). Variations
on the standard prototyping approach include evolutionary prototyping,
incremental prototyping, and middle-out prototyping (Chapter 72).

31.4 Concepts
Prototyping is a powerful, bottom up alternative or supplement to logical
modeling. The basic idea is to build a reasonably complete, working, 
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physical model (or prototype) of the system. As a minimum, the analyst can
use screen painters, menu builders, and report generators to prepare a “slide
show” of sample screens (Chapter 46), dialogues (Chapter 49), and reports
(Chapter 47). In a more complete prototype, preliminary working versions
of the system’s programs are created using a fourth-generation language,
spreadsheets, database software, or a similar end-user tool. 

31.4.1 The prototyping process

The prototyping process can be viewed as a loop (Figure 31.1). Following
problem definition and preliminary analysis, a first draft of the prototype is
created. The user then interacts with the prototype and identifies its
strengths and weaknesses. Assuming that the first draft is less than totally
acceptable, the prototype is modified to reflect the user’s suggestions and
the user interacts with the new, improved version. The refine-and-test cycle
continues until the user is satisfied that the prototype meets his or her
requirements.

During the refine-and-test cycle, the emphasis is on quick turnaround,
with changes made on the spot or within at most a few days. Instead of con-
ceptualizing needs, the users work with and react to the prototype and the
analyst observes and interprets their reactions. To many people, manipulat-
ing a working model seems more natural than answering questions in an
interview or trying to link an abstract model to reality.

Sometimes, the prototyping process continues until a finished system
emerges. Usually, however, the purpose of the prototype is to clarify the sys-
tem’s requirements. The tasks and queries performed by the prototype
demonstrate what the system must do and translate into processes. Screens,
dialogues, menus, reports, files, and databases map to the required logical
data structures. Once the requirements are defined (Chapter 35), design
begins and the prototype is discarded.

Variations on the standard prototyping approach include evolutionary
prototyping, incremental prototyping, and middle-out prototyping
(Chapter 73).

31.4.2 Prototyping vs. conventional approaches 

Conventional systems analysis and design relies on various models of the
system, and the logical analysis and physical design stages are clearly dis-
tinguished. Prototypes, in contrast, are generally created using a fourth-
generation language or an application generator using a mix of program-
ming and systems analysis skills because analysis, design, and program-
ming activities are often intermixed and difficult to distinguish.

Prototyping is (by its very nature) iterative. The process starts with a set
of partial requirements, and new or expanded requirements are contin-
uously incorporated into the system based on user feedback. Consequently,
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Figure 31.1 Prototyping is a cyclic process.



the requirements can be viewed as floating, or dynamic. In contrast, con-
ventional systems analysis and design calls for a full and complete set of
requirements, and the requirements are typically frozen at the end of each
stage in the system development life cycle.

31.5 Key terms
Application generator (generator, program generator) — A program

that starts with information in graphical, narrative, list, or some other
logical form and generates the appropriate source or executable code.

Fourth-generation language — A non-procedural language that gener-
ates the appropriate source or executable code from a programmer’s
definition or description of a logical operation.

Prototype — A preliminary, working, physical model of a system, a sub-
system, or a program.

Prototyping — The act of creating a prototype.

31.6 Software
Many CASE products support prototyping. Screen painters, menu builders,
report generators, fourth-generation languages, executable specification 
languages, spreadsheets, and database management programs are popular
prototyping tools.

31.7 References
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32.1 Purpose
Rapid application development (RAD) is a system development methodol-
ogy that employs joint application design (to obtain user input), prototyp-
ing, CASE technology, application generators, and similar tools to expedite
the design process.



32.2 Strengths, weaknesses, and limitations
Rapid application development promotes fast, efficient, accurate program
and/or system development and delivery. Compared to other methodolo-
gies, RAD generally improves user/designer communication, user coopera-
tion, and user commitment, and promotes better documentation.

Because rapid application development adopts prototyping and joint
application design, RAD inherits their strengths and their weaknesses. More
specifically, RAD is not suitable for mathematical or computationally-
oriented applications. Because rapid application development stresses
speed, quality indicators such as consistency, standardization, reusability,
and reliability are easily overlooked.

32.3 Inputs and related ideas
Rapid application development is an alternative to the traditional system
development life cycle (Chapter 1). The RAD methodology incorporates
joint application design (Chapter 14) and prototyping (Chapter 31). CASE
technology (Chapter 5) is often used to speed the development process.

32.4 Concepts
Rapid application development (RAD) is a system development methodol-
ogy that employs joint application design (to obtain user input), prototyp-
ing, CASE technology, application generators, and similar tools to expedite
the design process. Initially suggested by James Martin, this methodology
gained support during the 1980s because of the wide availability of such
powerful computer software as fourth-generation languages, application
generators, and CASE tools, and the need to develop information systems
more quickly. The primary objectives include high quality, fast develop-
ment, and low cost.

32.4.1 Components

Rapid application development focuses on four major components: tools,
people, methodology, and management. Current, powerful computing tech-
nology is essential to support such tools as application generators,
screen/form generators, report generators, fourth-generation languages,
relational or object-oriented database tools, and CASE tools. People include
users and the development team. The methodology stresses prototyping
and joint application design.

A strong management commitment is essential. Before implementing
rapid application development, the organization should establish appro-
priate project management and formal user sign-off procedures.
Additionally, standards should be established for the organization’s data
resources, applications, systems, and hardware platforms.
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32.4.2 Phases

Martin suggests four phases to implement rapid application development:
requirements planning, user design, construction, and cutover.

Requirements planning is much like traditional problem definition and
systems analysis. RAD relies heavily on joint application design (JAD) 
sessions to determine the new system requirements.

During the user design phase, the JAD team examines the requirements
and transforms them into logical descriptions. CASE tools are used exten-
sively during this phase. The system design can be planned as a series of
iterative steps or allowed to evolve (Chapter 72).

During the construction phase, a prototype is built using the software
tools described earlier. The JAD team then exercises the prototype and pro-
vides feedback that is used to refine the prototype. The feedback and modi-
fication cycle continues until a final, acceptable version of the system
emerges. In some cases, the initial prototype consists of screens, forms,
reports, and other elements of the user interface, and the underlying logic is
added to the prototype only after the user interface is stabilized.

The cutover phase is similar to the traditional implementation phase
(Chapter 76). Key activities include training the users, converting or
installing the system, and completing the necessary documentation.

32.4.3 Variations

There are several variations and/or extensions to the rapid application
development methodology.

Courbon et al.4 defines an evolutionary approach in which “progressive
designs” go through “multiple, minimum-length cycles” in which “succes-
sive versions of the system under construction are utilized by the end user.”
Courbon’s evolutionary approach5 is also called middleout, breadboarding,
and the iterative design approach.

The essence of the evolutionary approach is to have the user (or the
manager) and the builder agree on a small but significant subproblem, and
then to design and develop an initial system to support that immediate
need. After a short period of use (a few weeks for instance), the system is
evaluated, modified, and incrementally expanded. This cycle is repeated
three to six times over the course of a few months until a relatively stable
system that supports a cluster of related tasks evolves. The word relatively is
important because, although the frequency and extent of system change will
decrease or even cease, the system will never be truly stable. In effect, con-
stant change is a conscious strategy.

Note that the evolutionary approach requires an unusual level of user
(or management) participation. The user is actually the designer, and the
system analyst merely implements required changes or modifications. Note
also that this approach differs from traditional prototyping because the ini-
tial system is real, live, and usable, not just a pilot test.
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Sprague6,7 and Carlson’s1,2 quick-hit approach is designed to take
advantage of recognized high payoff application tasks for which a system
can be built very quickly. The basic idea is to gain user cooperation and con-
fidence by rapidly developing a highly usable system. For example, imagine
that a company is losing market share to a rival. Imagine further that a pre-
liminary study suggests that the primary factors contributing to the problem
are product quality, after-sale service, and brand recognition. Perhaps a sim-
ulation model that focuses on those factors can be designed and constructed
quickly, yielding information that can help management correct the prob-
lem. Note that the system is designed quickly to hit the main points; hence
the name quick hit approach. According to Sprague, the quick-hit approach is
low risk and has a high potential short run payoff.

32.5 Key terms
Application generator (generator, program generator) — A program

that starts with information in graphical, narrative, list, or some other
logical form and generates the appropriate source or executable code.

CASE (computer-aided software engineering) — A set of automated
tools that assist in the entire software engineering process.

Construction phase — The rapid application development phase during
which a prototype is built, exercised, and modified based on user
feedback.

Cutover phase — The rapid application development phase during
which the system is finalized and released to the user.

Evolutionary approach — An approach to rapid application develop-
ment in which progressive designs go through multiple, minimum-
length cycles in which successive versions of the system under con-
struction are utilized by the end user.

Fourth-generation language — A non-procedural language that gener-
ates the appropriate source or executable code from a programmer’s
definition or description of a logical operation.

Joint application design (JAD) — A technique for quickly determining
system requirements in an intensive session attended by a team con-
sisting of major users, managers, and systems analysts.

Prototype — A preliminary, working, physical model of a system, a sub-
system, or a program.

Prototyping — The act of creating a prototype.
Quick-hit approach — An approach to rapid application development

that takes advantage of recognized high payoff applications for
which a system can be built very quickly.

Rapid application development (RAD) — A system development
methodology that employs joint application design, prototyping,
CASE technology, application generators, and similar tools to expe-
dite the design process.
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Requirements planning — The rapid application development phase
during which the system requirements are defined using joint appli-
cation design and other tools and techniques; this phase is similar to
traditional problem definition and systems analysis.

User design phase — The rapid application development phase during
which the joint application design team examines the requirements
and transforms them into logical descriptions.

32.6 Software
Many CASE products support prototyping. Screen painters, menu builders,
report generators, fourth-generation languages, executable specification lan-
guages, spreadsheets, and database management programs are popular pro-
totyping tools. There is no software specifically designed to support a JAD
session. However, certain groupware, such as Lotus Notes, supports limited
computer mediated conferencing.
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33.1 Purpose
A Warnier-Orr diagram, a graphical representation of a horizontal hierarchy
with brackets separating the levels, is used to plan or document a data struc-
ture, a set of detailed logic, a program, or a system.

33.2 Strengths, weaknesses, and limitations
Warnier-Orr diagrams are excellent tools for describing, planning, or docu-
menting data structures. They can show a data structure or a logical struc-
ture at a glance. Because only a limited number of symbols are required, 



specialized software is unnecessary and diagrams can be created quickly by
hand. The basic elements of the technique are easy to learn and easy to
explain. Warnier-Orr diagrams map well to structured code.

The structured requirements definition methodology (Chapter 4) and,
by extension, Warnier-Orr diagrams are not as well known as other method-
ologies or tools. Consequently, there are relatively few software tools to cre-
ate and/or maintain Warnier-Orr diagrams and relatively few systems ana-
lysts or information system consultants who are proficient with them.

33.3 Inputs and related ideas
Before a Warnier-Orr diagram is created, the system’s primary data entities
and major tasks must be known. The necessary information is collected dur-
ing the problem definition and information gathering stage (Part II). A
Warnier-Orr diagram is an important tool in the structured requirements
definition methodology (Chapter 4). See Chapters 25 and 43 for explana-
tions of key data-related concepts. Entity-relationship diagrams (Chapter 26)
and data normalization (Chapter 28) are useful tools for planning data struc-
tures. See Chapter 62 for more on software design and program structures.

33.4 Concepts
The Warnier-Orr design methodology, also known as the structured require-
ments definition methodology (Chapter 4), was developed in the early 1970s
by Warnier and extended to system design by Orr. The first step in the
methodology is to create entity diagrams (simplified entity-relationship dia-
grams, Chapter 26) for each major user. The entity diagrams are then merged
to create a system entity diagram, and the major tasks that must be per-
formed are derived from the system’s data requirements.

33.4.1 In-out diagrams

A Warnier-Orr diagram shows a data structure or a logical structure as a hor-
izontal hierarchy with brackets separating the levels. Once the major tasks
are identified, the systems analyst or information system consultant 
prepares an in-out Warnier-Orr diagram to document the application’s pri-
mary inputs and outputs.

For example, Figure 33.1 shows an in-out diagram for a batch inventory
update application. Start at the left (the top of the hierarchy). The large
bracket shows that the program, Update Inventory, performs five primary
processes ranging from Get Transaction at the top to Write Reorder at the 
bottom. The letter N in parentheses under Update Inventory means that the
program is repeated many (1 or more) times. The digit 1 in parentheses under
Get Transaction (and the next three processes) means the process is performed
once. The (0, 1) under Write Reorder means the process is repeated 0 or 1
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Figure 33.1 An in-out Warnier-Orr diagram.

times, depending on a run-time condition. (Stock may or may not be
reordered as a result of any given transaction.)

Data flow into and out from every process. The process inputs and out-
puts are identified to the right of the in-out diagram. For example, the Get
Transaction process reads an Invoice and passes it to a subsequent process.
The last column is a list of the program’s primary input and output data
structures. Note how the brackets indicate the hierarchical levels.

33.4.2 Data structures

After the in-out diagram is prepared, the data structures are documented.
For example, Figure 33.2 shows the data structure for an invoice.
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Figure 33.2 A Warnier-Orr diagram of the Invoice data structure.



The highest level composite, Invoice, is noted at the left. The N in paren-
theses under the data name means that there are many (one or more) in-
voices. Moving to the right of the first bracket are the components that make
up an invoice. Invoice number, Date-of-sale, Customer telephone, Subtotal, Sales
tax, and Total due are data elements, while Customer name, Customer address,
and Item purchased are composite items that are further decomposed.

Consider the composite item Customer name. The composite name
appears at the left separated from its lower-level data elements by a 
bracket. Three of the data elements that make up Customer name are condi-
tional; Customer title (Dr, Mr., Ms.), Customer middle (not everyone has a mid-
dle name), and Customer suffix (Sr., Jr., III) may or may not be present on a
given Invoice. The entry (0, 1) under a data element name indicates that it
occurs 0 or 1 times.

A given sales transaction might include several different products, so
Item purchased is a repetitive data structure that consists of one or more 
sets of the data elements Stock number, Description, Units, Unit price, and
Item total. The letter M in parenthesis under Item purchased indicates that
the substructure is repeated an unknown number of times. (Note: M and
N are different values.) The composite item, Units, can hold either 
Weight or Quantity, but not both. The “plus sign in a circle” is an exclusive
or symbol.

33.4.3 Program (logic) structures

A key principle of the Warnier-Orr methodology is that the structure of a
well-written program is tied to the structure of its data. For example,
because the number of invoices is unknown, the primary structure of an
inventory update program designed to process the data described in Figure
33.2 will be a repetitive loop. At the second level, the number of items pur-
chased is unknown, suggesting another loop structure to compute and accu-
mulate the item costs. Finally, the exclusive or and the conditional items at
the data element level suggest selection logic.

33.5 Key terms
Composite — A set of related data elements.
Data element — An attribute that cannot be logically decomposed.
Data structure — A set of related data elements.
Entity — An object (a person, group, place, thing, or activity) about

which data are stored.
Entity diagram — A simplified entity-relationship diagram that uses

bubbles instead of rectangles and ignores cardinality.
Entity-relationship diagram — A model of a system’s data that shows

how the primary data entities are related.
In-out diagram — A Warnier-Orr diagram that documents the applica-

tion’s primary inputs and outputs.
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Warnier-Orr diagram — A diagramming technique that shows a data
structure or a logical structure as a horizontal hierarchy with brackets
separating the levels.

33.6 Software
The Warnier-Orr diagrams in this chapter were prepared using Visio. Other
graphing tools, such as Micrografx’s Flowcharter provide comparable 
support. Most popular paint or drawing programs incorporate text and
brackets and thus can be used to create Warnier-Orr diagrams. Some CASE
products support Warnier-Orr diagrams.
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34.1 Purpose
This chapter describes several problem-solving tools and techniques that are
used to analyze and design an expert system or, more generally, an infor-
mation system with a rule (knowledge) base.



34.2 Strengths, weaknesses, and limitations
Several inference-oriented, search-oriented, and reasoning-oriented problem-
solving tools and techniques will be explored in this chapter. Strengths and
weaknesses will be discussed in context.

34.3 Inputs and related ideas
Expert systems are introduced in Chapter 7. Knowledge representation is
covered in Chapter 67. The input information required by these tools is col-
lected during the problem definition and information gathering stage using
many of the tools described in Part II. Any specific input needed by a par-
ticular tool or technique will be discussed in context.

34.4 Concepts
During the analysis phase of an expert system or rule-based system devel-
opment project, the system’s data, knowledge, and rules are determined. A
rule is a formal specification or description of a unit of knowledge. Public
knowledge is from published literature. Common sense knowledge consists
largely of rules of thumb or heuristics.

34.4.1 Inference-oriented techniques

Inference-oriented techniques use inference to lead to a solution. The basic
idea (Figure 34.1) is to build a set of facts (a database) based on user input,
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Figure 34.2 Forward chaining.

match the facts with the rules in the rule base, execute the appropriate rule
to determine the solution, and continue the loop until the solution satisfies
the goal.

34.4.1.1 Forward-chaining inference
Forward chaining is a data-oriented approach that searches the solution
space from an initial state to a final goal state. Facts in the database are
matched with rules in the rule base, the appropriate rule(s) are executed,
and the resulting new fact(s) are added to the original database. This process
continues until the desired solution (or goal) is reached. 

For example, consider Figure 34.2. As the forward-chaining process
begins (top left), facts F1, F2, F5, F6 are known. In the first step, F1 and F2
are matched to the rule base and, because F1 and F2 lead to (or imply) F7,
F7 is added to the database. Next, F5 and F6 are matched to the rule base. F5
leads to F4, so F4 is added to the database, and F6 leads to F3, so F3 is added
to the database. Next, F8 is added by using the results from the previous
step and applying the rules F3 and F4 lead to F8. Finally, F9 is obtained by
applying the rules F7 and F8 lead to F9.



34.4.1.2 Backward-chaining inference
Backward chaining is a goal-oriented search technique that starts with the
desired goal state and works backward to the initial state by applying the
inverse operator.

For example, consider Figure 34.3. Once again, F1, F2, F5, F6 are known
as the process begins (upper left). The desired goal state is F9. According to
the rule base, F7 and F8 lead to F9, so F7 and F8 are needed. The next step
focuses on F7. The rule says F1 and F2 lead to F7. F1 and F2 are already
known, so F7 can be added to the database. F8 is needed next. The relevant
rule is F3 and F4 lead to F8. Neither F3 nor F4 is known, so the rule base is
checked for F3. The relevant rule is F6 leads to F3, and F6 is known, so F3
can be added to the database (lower left). The process continues until all the
relevant facts are known.

34.4.2 Search-oriented techniques

Search-oriented techniques focus on systematically searching the solution
space. Basically, the goals (the desired solutions) are identified, the initial
state (the source point for starting the search) is defined, and the problem
search space (a set of possible steps that lead to the completion of the goal)
is determined.

34.4.2.1 Blind search
A depth-first blind search is a search process that considers successive nodes
in the search space before considering alternatives at the same level. For
example, in Figure 34.4, path A-B-E-F-C-G-H-D describes a depth-first
search.

In contrast, a breadth-first blind search considers alternatives at the
same level first and then works down the hierarchy level by level until all
the nodes are exhausted. In Figure 34.4, path A-B-C-D-E-F-G-H describes a
breadth-first search. Generally, a depth-first search travels deeply into the
search tree and a breadth-first search descends uniformly across all nodes at
the same level.

Forward chaining, backward chaining, and bi-directional blind searches
are possible. The bi-directional approach is a combination of forward 
chaining and backward chaining, with searches conducted concurrently
from both ends (the initial state and the goal state) of the search space and
meeting somewhere in the middle.

Blind search techniques are time consuming and require considerable
memory or storage space. Blind search is not practical for large problems
because too many nodes must be visited before a solution is found. Writing
the code to implement a blind search is difficult because the logic calls for
complex, multiple-level logical structures.
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34.4.2.2 Heuristic search
Blind searches are orderly search approaches that assure a given solution
path is followed no more than once. For many applications, it is possible to
use specific problem-related information and rules of thumb (heuristic
information) to focus the search process on the most likely branches. The
process of using heuristics is called heuristic search.

For example, consider the problem of finding a route from Cincinnati,
Ohio to Washington, D.C. An appropriate heuristic rule is “head for the 
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Figure 34.4 A solution space to illustrate blind search techniques.

rising sun” because Washington is east of Cincinnati. By applying this heu-
ristic, all alternative paths that head north, south, or west are disregarded.

34.4.2.3 Abstracting the solution space
The basic idea of abstracting the solution space is to make the heuristic
search process faster and more efficient by focusing on a relatively small fea-
sible solution space. This technique reduces complexity, provides a clearer
and simpler picture of the problem, and makes it easier to represent the
problem in the rule base. Often, the original problem is broken into smaller
problems by applying heuristic principles to generate intermediate levels of
abstraction.

For example, consider the problem of finding the shortest route from
Cincinnati, Ohio to Los Angeles, California. The solution space can be visu-
alized as a search process that starts at Cincinnati, follows each local street
in turn, and enumerates paths from town to town until the fastest route to
Los Angeles is found.

The problem is that there are thousand of towns between Cincinnati and
Los Angeles, each of which has many streets and roads, so the search space
is huge. Such heuristic rules as “head south and west” can help reduce the
search space to perhaps one-fourth its original size, but even that reduced
space is much too large. Instead, the driver is likely to ignore the detailed
street maps of all the intermediate towns and start with a map of the inter-
state highway system. Using such an abstracted map of the search space
provides an efficient solution to the problem.



34.4.3 Reasoning-oriented techniques

Reasoning-oriented problem-solving techniques focus on accumulating
information until a solution is reached. Dependable data or knowledge (hard
facts) and unreliable data or guesses (soft facts) are both used to support rea-
soning. The basic idea is to continuously draw conclusions (based on data
and common sense knowledge) until the desired solution is reached.

Reasoning-oriented problem solving techniques have tremendous
potential in information systems analysis and design. The difficulties
include locating the pertinent common-sense knowledge, measuring the
accuracy of that common-sense knowledge, representing and interpreting
the common-sense knowledge correctly and accurately, and verifying the
justifications inferred by the reasoning process.

34.4.3.1 Assumption building
Information system researchers have discovered that common sense (which
is virtually taken for granted in human beings) is extremely difficult to
model. Common sense is, however, essential to the reasoning process. Real-
world decision makers often must act immediately despite a lack of facts,
knowledge, experience, supporting evidence, and time. Under these condi-
tions, the decision maker must draw conclusions from partial information
by applying common sense. Generally, common-sense reasoning requires
that a system be capable of revising its beliefs in light of new knowledge it
receives or derives.

Clearly, people are willing to accept plausible conclusions for which
they have no proof.2 For example, an automobile traveler is likely to check
the gasoline, the battery, and the tire pressure before taking a trip. During
the trip, the traveler will probably glance at the fuel gauge frequently, but is
unlikely to recheck the battery and the tire pressure. Why? Because a short-
age of gasoline is a plausible risk, but the battery seldom malfunctions with-
out warning and the tire pressure is almost certainly within acceptable lim-
its unless the car begins handling erratically. The assumptions that underlie
this brief scenario were built or derived from common sense and certain
contingent conditions.

34.4.3.2 Justification building
Before a problem solver revises a belief in response to new knowledge, he or
she must reason, weighing dependable variables against a current set of
beliefs. One common reasoning technique is called backtracking.3
Backtracking means reviewing or checking what has already been done in
an attempt to find another path or another way to accomplish the goal(s).
For example, when a search fails, the system might track back through all
actions and inferences since the most recent choice point and then continue
with the next alternative for that choice.
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One way to justify a reasoning process is to apply formal logic. For
example, suppose a reasoning system has the following two beliefs:

A. Rain is likely if the dew point is higher than the air temperature.
B. Rain becomes snow if the air temperature is low.

Given these two beliefs and applying the basic rules of logic, it is reasonable
to infer that:

C. Snow is likely if the dew point is higher than the air temperature and
the air temperature is low.

In this case, the result (belief C) is supported by beliefs A and B, and (logi-
cally) if A and B are both true, then C must be true. Backtracking might be
used to check temperature readings or request additional weather informa-
tion (such as air pressure and storm movement) to either reinforce belief C
or generate new conclusions (frozen rain or sleet).

Note how the combination of assumptions (the beliefs) and justification
(the logical reasoning process) combine to support the inference or reason-
ing process. Both assumptions and justifications are necessary.

34.5 Key terms
Backtracking — Reviewing or checking what has already been done

and attempting to find another path or another way to accomplish
the goal(s).

Backward chaining — A goal-oriented search technique that starts with
the desired goal state and works backward to the initial state by
applying the inverse operator.

Blind search — A search technique that visits every node in the search
space while following a given solution path no more than once.

Breadth search — A blind searching technique that investigates all the
nodes at a given level before moving down to the next level.

Depth search — A blind searching technique that investigates all lower-
level nodes before considering the next node at the same level.

Expert system (knowledge-based system) — A computer program that
emulates the thought process of a human expert.

Forward chaining — A data-oriented approach that searches the solu-
tion space from an initial state to a final goal state.

Goal — An objective.
Heuristic rule — A specific rule of thumb or common sense that can be

used to restrict a search to a subset of a problem domain.
Heuristic search — A search technique that applies heuristics to reduce

the size of a search space.
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Heuristics — General rules derived from experience, common sense,
inferences, and intelligent trial and error.

Inference — The act or process of deriving logical conclusions from
premises known or assumed to be true.

Inverse operator — An operator that works backward from the solution
and facts to return to the original state.

Justification — Proofs, facts, or reasons/rationales for assumptions.
Knowledge — The sum or range of what has been perceived, discov-

ered, or learned; specific information about something.
Knowledge base — A collection of data, algorithms, and heuristic rules

that forms the core of an expert system.
Problem domain — A collection of all types of knowledge (including

common sense and informed guesses), facts, and/or data related to a
defined problem.

Reasoning — The act of using inference to lead to a conclusion based on
existing knowledge and/or data.

Rule — A formal specification or description of a unit of knowledge.
Rule base — A collection of executable rules.
Search space (problem search space) — In a search-oriented problem-

solving technique, a domain with all possible sets of steps and/or
alternatives to support comprehensive searching for the completion
of a goal or goals.

Solution space — A mathematical term for the set of all possible solu-
tions. Solution space is a special type of search space. A desired solu-
tion can be obtained by searching all possible problem-solving alter-
natives in the space.

34.6 Software
Auto-intelligence 1.26, Level 5 supports backward chaining. OPS83 and
ART-IM support forward chaining. Advisor-2, Crystal, ESP advisor, EXSYS
Professional KnowledgePro, Level 5 Object, and Nexpert Object support
both techniques.
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35.1 Purpose
The requirements specification is a document that clearly and precisely
defines the customer’s logical requirements (or needs) in such a way that it is
possible to test the finished system to verify that those needs have actually
been met. The point is to ensure that the customer’s needs are correctly
defined before time, money, and resources are wasted working on the
wrong solution. Typically, writing a formal requirements specification is the
final step in the analysis phase of the system development life cycle.

35.2 Strengths, weaknesses, and limitations
The logical models and prototypes prepared during analysis are often less
than adequate as a foundation for system design. The requirements specifi-
cation builds on the logical models, providing an unambiguous, precise 
definition of the user’s needs. If work is outsourced or subcontracted, 
the requirements specification can be added to the contract to define the
deliverables.

Although a few pages might be enough to define a simple system’s
requirements, a complete requirements specification for a significant system
can be quite lengthy, and preparing one is both time consuming and expen-
sive. Requirements can change over time, and the requirements specifica-
tion must be flexible enough to change with them. Often, this is not the case.

35.3 Inputs and related ideas
Writing a formal requirements specification is the final step in the analysis
phase of the system development life cycle (Part IV). The system require-
ments are typically verified against the goals and objectives identified dur-
ing the problem definition and information gathering process (Part II).
The requirements are the basis for the subsequent design stage (Part VI)
and suggest test criteria (Chapter 74) and test data (Chapter 75). The 
sample requirements in this chapter correspond to specification levels
defined in the U.S. Department of Defense competitive procurement
process (Chapter 41).

35.4 Concepts
A requirement is something that must be present in the system. The require-
ments specification is a document that clearly and precisely defines the cus-
tomer’s logical requirements (or needs) in such a way that it is possible to
test the finished system to verify that those needs have actually been met.
The point is to ensure that the customer’s needs are correctly defined before
time, money, and resources are wasted working on the wrong solution.
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35.4.1 Types of requirements

A behavioral requirement defines something the system does, such as an
input, an output, or an algorithm. Under this category, a functional require-
ment identifies a task that the system or component must perform, and an
interface requirement identifies a link to another system component.

Non-behavioral requirements define attributes of the system. For exam-
ple, performance requirements specify such characteristics as speed, fre-
quency, response time, accuracy, and precision. Other non-behavioral
requirements might define such parameters as portability, reliability, securi-
ty, and maintainability.

Such constraints as physical size and weight, environmental factors,
ergonomic standards, and the like are listed in design requirements or con-
straint requirements. Quality requirements, often stated as an acceptable
error rate, the mean time between failures, or the mean time to repair, are
sometimes grouped with performance requirements, but many organiza-
tions list them separately. Firms that have adopted total quality manage-
ment often include additional measures of quality.

Economic requirements specify such things as performance penalties,
limits on development and operating costs, the implementation schedule,
and resource restrictions. They are more common in Europe than in the
United States. Occasionally, marketing and political requirements are added.

35.4.2 Characteristics of a good requirement

A good requirement is unambiguous, testable (or verifiable), consistent with
other requirements, correct (every listed requirement must actually be a
requirement), understandable, modifiable (requirements can change), and
traceable to both higher-level (parent) and lower-level (child) requirements.

35.4.3 Writing requirements

The examples shown below illustrate the types of requirements that might
be written at three key specification levels. Note that the data dictionary and
(perhaps) one or more logical models are often included in the requirements
specification as an appendix to provide clear definitions for the data 
elements, data structures, processes, and algorithms.

35.4.3.1 The high-level system/segment specifications
The high-level system/segment specifications identify the system and its
major segments at a conceptual level. Typically they define key terms and
identify broad, system-wide objectives and constraints down to the config-
uration item level. They are logical, describing what the system must do, not
how the system must work.
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For example, imagine that the objective for an inventory system (as
defined during the problem definition phase) is:

To reduce inventory cost by 10 percent by providing accu-
rate, daily inventory status data to support reorder and sale
item decisions.

What exactly does it mean to reduce inventory cost by 10 percent? Ten per-
cent of what? What exactly does providing accurate, daily inventory status data
mean? How accurate must the data be? What data must be provided? The
point of the system/segment specifications is to answer precisely these
kinds of questions.

Table 35.1 shows a (partial) set of high-level system/segment specifica-
tions for the objective listed above. Note that subspecifications (not shown)
are used to provide additional details. For example, the supervisory-level
managers responsible for making reorder and sale item decisions will
almost certainly be listed under specification 2.1. A well-written set of sys-
tem/segment specifications leaves no unanswered logical questions.
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Table 35.1 High-Level System/Segment Specifications

The system must:

1. Reduce inventory cost by 10 percent.

1.1 The 10 percent target represents a reduction from inventory levels as deter-
mined by the physical inventory completed on March 30, 1999.

1.2 A unique item in inventory is defined by a UPC code or by the item’s manu-
facturer code plus its model code.

1.3 Stock-on-hand is defined for each item in inventory as the sum of the num-
ber of units in the warehouse plus the number of units on the showroom
floor.

1.4 Inventory cost is computed by multiplying the stock-on-hand by the supplier
invoice cost for each item in inventory and then adding those products.

1.5 . . .

2. Provide accurate, daily inventory status data.

2.1 Inventory status reports must be available to the appropriate supervisory-
level managers no later than 7:30 a.m. on each working day.

2.2 A given day’s inventory status report shall reflect the status of inventory as
of 12 midnight on the previous day.

2.3 For each item in inventory (1.2), the inventory status report will list the item’s
unique identifier, description, stock-on-hand (1.3), the number of units in the
warehouse, and the number of units on the showroom floor.

2.4 . . .

And so on.



35.4.3.2 The lower-level system/segment specifications
The system/segment specifications form a hierarchy that logically defines
the system from the high-level objectives down to the configuration item
level. At the bottom of this hierarchy, one system/segment design docu-
ment is prepared for each configuration item.

For example, Table 35.2 shows several logical requirements for a config-
uration item named reorder stock. Note that the requirements are logical;
they specify what must be done but they do not specify or suggest a physi-
cal implementation. Note also that the requirements are not independent.
For example, it might be possible for a team of three or four clerks to man-
ually generate up to 50 reorders per week, including up to five emergency
reorders per day, but only if all those clerks and all their equipment can fit
into a relatively small room. If a given solution violates any single require-
ment, that solution is unacceptable.

35.4.3.3 The system/segment design documents
A low-level system/segment specification (Table 35.2) lists requirements that
help the analyst decide if the procedure should be performed manually or on
a computer. Once that decision has been made, system/segment design doc-
uments specify the high-level requirements for each physical component
implied by the decision.

For example, if the analyst decides to implement the reorder stock
process on a computer, both hardware and software are required. One sys-
tem/segment design document (Table 35.3) identifies the high-level require-
ments for writing the software but not for selecting the hardware. A
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Table 35.2 System/Segment Specifications for a Configuration 
Item Level Process Named Reorder Stock

2.1.1 The system must support the store manager’s stock reorder decisions.

1. Reorder decisions are made by the store manager based on sales and
inventory data.

2. All reorders identified during a business week must be ready to send
to the supplier no later than 3:00 p.m. on the last business day of that
week.

3. The system must be able to prepare an emergency reorder ready to
send to a supplier within 1 h of the time the need is identified.

4. The system must be able to generate at least 50 reorders per week,
including emergency reorders.

5. The system must be able to generate as many as five emergency
reorders on any given business day.

6. The space available for performing the reorder stock process is limited
to a 6 � 8 ft room.
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Table 35.3 Some Examples of System/Segment Functional Requirements

2.1.1.1 A program will be written to support the store manager’s stock
reorder decisions.

1. To minimize the risk of redundant reorders, the system must track
reorders that have been issued, but have not yet arrived.

2. The store manager must approve all reorders before they are sent to
the supplier.

3. The store manager must be able to modify the supplier name, the
reorder quantity, or any other reorder parameters before approving
the reorder.

4. Reorders must be prepared using the parent chain’s standard 
reorder form.

separate system/segment design document identifies requirements that are
relevant to selecting the hardware but not to writing the software.

System/segment design documents are prepared for each physical
component at (or immediately below) the configuration item level. They
define black-box level requirements. For example, a system/segment design
document might be prepared for a program, but the routines that make up
the program are below the configuration item level and thus are not defined
in a system/segment design document.

35.4.3.4 The software requirement and prime item development
specifications

The high-level design requirements associated with each system/segment
design document are defined in prime item development specifications
(hardware) or software requirements specifications (software). They define
how the solution will be implemented. For example, the software require-
ments specification for a reorder program might specify key algorithms, file
formats, input and output data structures, a programming language, a data-
base management system, or a high-level control structure. In short, the
software requirements specification contains enough information for a pro-
grammer to start writing the program or for an analyst to select the appro-
priate commercial software.

35.4.3.5 The flowdown principle
Within the requirements specification, the flowdown principle states that
each lower level requirement must be linked to a single higher level parent.
Note that parent requirements can be distributed downward to several dif-
ferent children, but each child requirement can have only one parent.
Tracing requirements is a form of verification.



35.5 Key terms
Behavioral requirement — A requirement that defines something the

system does, such as an input, an output, or an algorithm.
Black box — A routine, module, or component whose inputs and out-

puts are known, but whose contents are hidden.
Child — A related, lower-level requirement.
Configuration item — A composite entity that decomposes into specific

hardware and software components; in a data flow diagram, a func-
tional primitive that appears at the lowest level of decomposition.

Configuration item level — An imaginary line that links the system’s
configuration items; a system’s physical components lie just below
the configuration item level.

Design or constraint requirement — A requirement that specifies such
constraints as physical size and weight, environmental factors,
ergonomic standards, and the like.

Economic requirement — A requirement that specifies such things as
performance penalties, limits on development and operating costs,
the implementation schedule, and resource restrictions.

Flowdown — A principle that requires each lower-level requirement to
be linked to a single higher-level parent.

Functional primitive — A process (or transform) that requires no fur-
ther decomposition.

Functional requirement — A requirement that identifies a task that the
system or component must perform.

Interface requirement — A requirement that identifies a link to anoth-
er system component.

Non-behavioral requirement — A requirement that defines an attribute
of the system, such as speed, frequency, response time, accuracy, pre-
cision, portability, reliability, security, or maintainability.

Parent — A related, higher-level requirement.
Performance requirement — A requirement that specifies such charac-

teristics as speed, frequency, response time, accuracy, precision,
portability, reliability, security, and maintainability.

Prime item development specification — A set of high-level design
requirements associated with each hardware component defined in
(or implied by) a parent system/segment design document.

Quality requirement — A requirement that specifies a measure of qual-
ity, such as an acceptable error rate, the mean time between failures,
or the mean time to repair.

Requirement — Something that must be present in the system; a user
need.

Requirements specification — A document that clearly and precisely
defines the customer’s logical requirements (or needs) in such a way
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that it is possible to test the finished system to verify that those needs
have actually been met.

Software requirements specification — A set of high-level design
requirements associated with each software component defined in
(or implied by) a parent system/segment design document.

System/segment design document — A black-box specification defined
for each physical component at (or directly below) the configuration
item level.

System/segment specifications — A hierarchy of requirements specifi-
cations that logically defines the system from its high-level objectives
down to the configuration item level.

35.6 Software
The information stored in the CASE repository is an invaluable aid to creat-
ing a requirements specification. Functional and performance requirements
can often be taken directly from the repository, and logical models suggest
interface requirements. Perhaps most important is the ability of the CASE
software to trace requirements and thus automate flowdown.
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36.1 Purpose
Defining automation boundaries is a technique for generating alternative,
high-level, physical system designs.

36.2 Strengths, weaknesses, and limitations
Because the automation boundary technique builds on the logical models
developed during the analysis stage, the suggested alternatives are likely to
be logically consistent. A single set of automation boundaries defines a 



family of related alternatives, so this technique can be used to identify
numerous options (which can be viewed both as an advantage and a disad-
vantage). Using automation boundaries to identify alternatives requires
expertise in data flow diagrams.

36.3 Inputs and related ideas
The techniques described in this chapter require a complete logical model
consisting of a set of balanced data flow diagrams and supporting docu-
mentation (Chapter 24). Additionally, various system parameters identified
during the problem definition and information gathering stage (Part II) and
the analysis stage (Part IV) and documented in the requirements specifica-
tions (Chapter 35) are used to help identify feasible alternatives. Typically, a
few of the best alternatives are further documented using such tools as sys-
tem flow diagrams (Chapter 37), and a cost/benefit analysis (Chapter 38) is
performed for these options. The selected physical alternative forms the
basis for component design (Part VI).

36.4 Concepts
A logical model consisting of a data flow diagram (Figure 36.1) and associ-
ated documentation (Chapter 24) is the starting point for generating alter-
natives using automation boundaries.

36.4.1 Trigger events

The trigger event is the event that activates the process. For example, in
Table 36.1, Process shipment is triggered by the arrival of a shipment and the
activities associated with Sell appliance, Update appliance, and Reorder stock
are all triggered by a sales transaction. Because the manager will almost cer-
tainly need a week’s summary of sales to make decisions on sale items,
Identify sale item is a scheduled (batch) end-of-week activity, and so on.

36.4.2 Response time

Response time is the maximum allowable time to complete a process once
the trigger event has occurred. For example, in Table 36.1, Sell appliance is an
interactive task that must be completed while the customer is in the store, so
its response time is measured in minutes. The other processes in this system
can all be performed in batch mode, so their response time requirements are
identified as end of day, end of week, and so on. Note that the maximum
allowable response time is listed. For example, it would be perfectly accept-
able to update inventory within minutes of a sales transaction, but it would
not be acceptable to put off selling appliances until the end of the day.
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36.4.3 Defining automation boundaries

Given the trigger events and response time requirements for each process,
alternatives are generated by superimposing automation boundaries on the
data flow diagram. An automation boundary is simply a line drawn around
one or more processes. The idea is to group the processes enclosed by an
automation boundary to form a single program or procedure. Note that a set
of automation boundaries defines a family of alternative solutions.
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Figure 36.1 In this example, processes 3 and 4 are inside the same automation
boundary. Note that the data flows are not labeled to more clearly show the automa-
tion boundaries.



One possibility is to enclose each process within its own automation
boundary. In this family of alternatives (not illustrated, but refer to Figure
36.1), each process is implemented as an independent program or proce-
dure. A manual system might incorporate procedures to Process shipment,
Sell appliance, Update inventory, and so on. A second alternative might
include nine programs, one for each process. A third alternative might call
for a Process shipment program, a Sell appliance manual procedure, programs
to Update inventory and Perform physical inventory, and manual procedures to
perform the other tasks. Additional alternatives might be suggested by
studying the associated level 2 data flow diagrams.

Changing the automation boundaries yields a new family of alterna-
tives. For example, Figure 36.1 includes an automation boundary that
encloses processes 3 and 4. Because all the processes within a given bound-
ary are implemented in a single physical component or set of components
(e.g., a program and the computer on which it runs), the alternatives in this
family contain a single program or procedure that performs all the functions
associated with Update inventory and Reorder stock.

When two or more processes are merged, the shortest response time
applies to the new process. For example, Table 36.1 shows that inventory
must be updated at least daily and reorders must be issued at least weekly.
Daily reorders are fine, but weekly inventory updates are unacceptable, so
if processes 3 and 4 are merged, the resulting program or procedure must be
executed at least daily.

Processes 2, 3, and 4 are all triggered by a sales transaction (Table 36.1),
so it might make sense to define a new family of automation boundaries that
groups them (Figure 36.2). One possible physical alternative within this
family features a program to perform the functions associated with Sell
appliance, Update inventory, and Reorder stock. Stock might be reordered
weekly and inventory might be updated daily, but appliances are sold con-
tinuously as customers arrive. Because the tightest response time rules, the
program would have to run continuously and respond to sales transactions
in minutes. That, in turn, implies an on-line, interactive program.
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Table 36.1 The Trigger Events and Response Time Requirements for Each of
the Processes on the Data Flow Diagram Pictured in Figure 36.1

Process Trigger event Response time

1. Process shipment Shipment arrival End of day
2. Sell appliance Sales transaction Minutes
3. Update inventory Sales transaction End of day
4. Reorder stock Sales transaction End of week
5. Identify sale items End of week End of week
6. Physical inventory End of quarter End of quarter
7. Maintain customer Sales transaction End of day
8. Mail advertising End of month End of month
9. Report case flow End of day End of day



36.4.4 A strategy

Follow a systematic procedure to generate alternatives. Start by drawing a
separate automation boundary around each process. Then try grouping
processes by drawing a boundary around 1 and 2, then 1 and 3, and so on.
Next, try sets of two processes each; for example, group 1 and 2 within one
automation boundary and 3 and 4 within another. Gradually, move up to
groups of three, then groups of four, and so on, until every possible combi-
nation has been considered. The limit is a single automation boundary 
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Figure 36.2 This example groups processes 2, 3, and 4.



containing all the processes and suggesting (perhaps) an on-line, interactive
program that does everything.

Another option is to focus on grouping processes that have the same
response time requirement or trigger event or that share a common data
store. Processes calling for similar response times can often be merged to
form a single program or procedure. Processes that occur in response to the
same trigger event can often be performed concurrently. Processes that
manipulate the same data often belong together.

Given even a small data flow diagram, an amazing number of alterna-
tive solutions can be generated. Some, of course, will make no logical sense
and thus can be eliminated quickly; for example, because physical invento-
ry is performed quarterly, it would make no sense to combine processes Sell
appliance and Physical inventory. The scope is another useful screen. If the
cost of an alternative significantly exceeds the scope, that alternative is not
economically feasible. The idea is to identify two or three reasonable alter-
natives that are worthy of further study.

36.5 Key terms
Automation boundary — A line drawn around one or more processes

on a data flow diagram, thus grouping them to form a single pro-
gram or procedure; a set of automation boundaries defines a family
of alternative solutions.

Data flow diagram — A logical model of the flow of data through a 
system.

Level 1 data flow diagram — A data flow diagram that shows the 
system’s primary processes, data stores, sources, and destinations
linked by data flows.

Level 2 data flow diagram — An explosion of a level 1 process.
Response time — The maximum allowable time to complete a process

once its trigger event has occurred.
Trigger event — The event that activates the process.

36.6 Software
Many CASE products include routines that allow a user to graphically
define automation boundaries on a data flow diagram. The examples in this
chapter were prepared using Visio.

36.7 References
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37.1 Purpose
A system flowchart is a concrete, physical model that documents, in an 
easily visualized, graphical form, the system’s discrete physical components
(its programs, procedures, files, reports, screens, etc.).

37.2 Strengths, weaknesses, and limitations
A system flowchart is a valuable presentation aid because it shows how the
system’s major components fit together and interact. In effect, it serves as a
system roadmap. During the information gathering stage, a system 



flowchart is an excellent tool for summarizing a great deal of technical infor-
mation about the existing system. A system flowchart can also be used to
map a hardware system.

System flowcharts are valuable as project planning and project manage-
ment aids. Using the system flowchart as a guide, discrete units of work
(such as writing a program or installing a new printer) can be identified,
cost estimated, and scheduled. On large projects, the components suggest
how the work might be divided into subsystems.

Historically, some analysts used system flowcharts to help develop job
control language specifications. For example, IBM’s System/370 job control
language requires an EXEC statement for each program and a DD statement
for each device or file linked to each program. Consequently, each program
symbol on the system flowchart represents an EXEC statement and each file
or peripheral device symbol linked to a program by a flowline implies a
need for one DD statement. Working backward, preparing a system flow-
chart from a JCL listing is good way to identify a program’s linkages.

A system flowchart’s symbols represent physical components, and the
mere act of drawing one implies a physical decision. Consequently, system
flowcharts are poor analysis tools because the appropriate time for making
physical decisions is after analysis has been completed.

A system flowchart can be misleading. For example, an on-line storage
symbol might represent a diskette, a hard disk, a CD-ROM, or some combi-
nation of secondary storage devices. Given such ambiguity, two experts
looking at the same flowchart might reasonably envision two different
physical systems. Consequently, the analyst’s intent must be clearly docu-
mented in an attached set of notes.

37.3 Inputs and related ideas
The first step in drawing a system flowchart is to identify the system’s phys-
ical components by using such tools as automation boundaries (Chapter 36).
Some analysts prefer to use physical data flow diagrams (Chapter 24) to
document physical alternatives. A completed system flowchart is sometimes
used to support the project planning stage (Part III). During the design stage
(Part VI), a system flowchart serves as a high-level map of the system.

37.4 Concepts
A system flowchart (or system flow diagram) is a concrete, physical model
that documents, in an easily visualized, graphical form, the system’s discrete
physical components (its programs, procedures, files, reports, screens, etc.).

37.4.1 Flowcharting symbols and conventions

On a system flowchart, each component is represented by a symbol that
visually suggests its function (Figure 37.1). The symbols are linked by 
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Figure 37.1 System flowcharting symbols.

flowlines. A given flowline might represent a data flow, a control flow,
and/or a hardware interface. By convention, the direction of flow is from
the top left to the bottom right, and arrowheads must be used when that
convention is not followed. Arrowheads are recommended even when the
convention is followed because they help to clarify the documentation.

The symbols in Figure 37.1 conform to the International Organization
for Standards (ISO) recommendation R1028 and to the American National
Standards Institute (ANSI) Standard X3.5-1970, but other symbols are used,
too. A given organization might define a unique internal standard, and
some analysts substitute icons (or clip art images of physical components)
for the symbols.

37.4.2 Predefined processes

The flowchart for a complex system can be quite large. An off-page connector
symbol (resembling a small home plate) can be used to continue the flow-
chart on a subsequent page, but multiple-page flowcharts are difficult to
read. When faced with a complex system, a good approach is to draw a
high-level flowchart showing key functions as predefined processes and
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Figure 37.2 Use predefined processes to simplify a complex system flowchart.

then explode those predefined processes to the appropriate level on subse-
quent pages. Predefined processes are similar to subroutines.

For example, Figure 37.2 shows a system flowchart for processing a just-
arrived shipment into inventory. Note that the shipment is checked (in a
predefined process) against the Shipping documents (the printer symbol) and
recorded (the rectangle) in both the Inventory file and the Vendor file using
data from the Item ordered file.

Figure 37.3 is a flowchart of the predefined process named Check ship-
ment. When a shipment arrives, it is inspected manually and either rejected
or tentatively accepted. The appropriate data are then input via a key-
board/display unit to the Record shipment program (the link to Figure 37.2).
Unless the program finds something wrong with the shipment, the newly
arrived stock is released to the warehouse. If the shipment is rejected for any
reason, the Shipping documents are marked and sent to the reorder process.

37.4.3 Flowcharting a system

Figure 37.4 shows one physical alternative for implementing an inventory
system. At the top left, a Sales receipt is prepared as output from the Sell appli-
ance predefined process. The data from the Sales receipt are then input to the
Inventory program. Subsequently, a printed Cash flow report goes to the
Financial system. Below the symbols that represent the system files are pro-
cedures to send advertising to customers, perform a physical inventory,
process incoming shipments from suppliers, and reorder stock. Except for
the predefined processes, each symbol represents one of the system’s dis-
crete components at a black-box level.

Figure 37.5 shows a different alternative for the inventory system. In
this one, much of the system’s logic is incorporated in a single Manage inven-
tory program. Sales transactions, incoming shipments, and advertising still
require manual procedures, but clerical personnel access the Manage inven-
tory program to enter data and obtain information.



37.4.4 Supporting documentation

Note that each symbol on a system flowchart represents a discrete hardware
component and either software or data. A process symbol (a rectangle) can
represent a computer, a program, or both. An on-line storage symbol repre-
sents a disk drive, a file, or both. A printer symbol stands for a printer, a
report, or both. A display screen represents a display unit, the data 
displayed on the screen, or both. A given flowline represents a hardware
interface and a control or data flow. To further complicate matters, a given
symbol might represent multiple components. For example, an on-line stor-
age symbol might imply one or more hard disks, one or more CD-ROMs, or
one or more diskettes.

Consequently, it is easy to misinterpret a system flowchart. Detailed
notes are often attached to the diagram to clearly explain the creator’s intent.

37.5 Key terms
Predefined process — On a system flowchart, a high-level process that

is more fully documented in a separate, lower-level flowchart.
System flowchart — A tool for documenting a physical system in which

each component is represented by a symbol that visually suggests its
function.
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Figure 37.3 A system flowchart for the predefined process named Check shipment.



1999 by CRC Press LLC

Figure 37.4 A system flowchart for one alternative inventory system.

37.6 Software
The system flowcharts in this chapter were prepared using Visio. Numerous
flowcharting programs are available, including Micrografx’s Flowcharter
and allCLEAR from SPSS.
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Figure 37.5 A second alternative inventory system.
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38.1 Purpose
Developing a system is a form of investment. The purpose of cost/benefit
analysis is to give management a reasonable picture of the costs, benefits,
and risks associated with a given system development project so they can
compare it to other investment opportunities. Cost/benefit analysis is the de
facto standard for demonstrating economic feasibility and for comparing
and selecting among investment opportunities.



38.2 Strengths, weaknesses, and limitations
The values generated by cost/benefit analysis resemble standard account-
ing and financial measures. Consequently, they are meaningful to manage-
ment and non-technical personnel, and can be used to compare a system
development project to other types of investment opportunities.

The accuracy of a cost/benefit analysis can be no better than the accu-
racy of the underlying cost and benefit estimates. The standard cost/benefit
models consider only tangible benefits. Using the tools described in this
chapter to compare investment opportunities of substantially different
duration can yield misleading results.

38.3 Inputs and related ideas
Before performing a cost/benefit analysis, the analyst must generate or 
otherwise obtain estimates of system development costs, tangible benefits
by time period, and operating costs by time period. The discount rate varies
from organization to organization and from time to time. It might reflect the
prime rate, a business concern’s typical profit rate, and/or perceived risk.
Additionally, many organizations specify a standard system or project life;
five years is common.

Cost/benefit analysis is the de facto standard for demonstrating 
economic feasibility in a feasibility study (Chapter 13) and is an important
element in project planning and project management (Part III).

38.4 Concepts
The purpose of cost/benefit analysis is to give management a reasonable
picture of the costs, benefits, and risks associated with a given system
development project so they can compare it to other investment opportu-
nities. Cost/benefit analysis is the de facto standard for demonstrating eco-
nomic feasibility and for comparing and selecting among investment
opportunities.

38.4.1 Costs and benefits

An investment opportunity represents a string of cash flows that occur over
time. Development costs are one-time costs that occur before the system is
released to the user. They include the personnel, hardware, and software
costs accumulated from the time the project is initially approved until the
system is released to the user. Benefits are advantages generated by or
derived from the system after it is released. Some systems reduce operating
costs. Others generate new revenues. The net benefit for any given time
period is computed by subtracting the new costs associated with achieving
the benefits from the related cost savings or new revenues.
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38.4.2 Discounting

Because money has time value, the best way to compare cash flows that
occur at different times is to convert all those cash flows to their present 
values. Most cost/benefit models assume that interest is compounded. The
future value (FV) of a sum of money invested today (the present value, or
PV) at a fixed interest rate (i) for a known number of time periods (n) is:

FV = PV(1+i) n. (38.1)

To compute the present value of a future sum of money, solve that equation
for the present value:

PV = FV/(1+i) n. (38.2)

Computing the present value of a future sum of money is called 
discounting. The interest rate is called the discount rate.

When performing interest computations, unless otherwise stated
always assume that the interest rate is expressed in annual terms. Also,
make sure the interest rate and the time period are consistent. For example,
if time is measured in months, divide the annual interest rate by 12 to get
the equivalent monthly interest rate.

38.4.3 Payback period

The payback period is a measure of the time it takes for accumulated bene-
fits to exactly match the development cost. The process of computing the
payback period is best shown by example.

In the Excel worksheet reproduced as Figure 38.1, the development cost
($100,000) is shown as a negative cash flow occurring at time zero and a
series of annual benefits are shown as positive cash flows. The discount rate
is 5 percent.

To compute the payback period, discount the benefits to their present
values, compute cumulative discounted costs and benefits, and determine
when accumulated benefits exceed the development cost (or when the
cumulative cash flow becomes positive). (Note: Some organizations com-
pute the payback period without discounting costs or benefits.) In this
example, accumulated cash flows total $14,163 at the end of year 4, so pay-
back occurs sometime during year 4.

To compute the point at which the accumulated benefits exactly match
development costs, extrapolate. At the end of year 3, accumulated cash
flows were $18,745 short of $100,000. During year 4, discounted benefits
totaled $32,908. Divide: (18,745)/(32,908) is 0.57, or 57 percent. Payback
occurs at a time 57 percent into year 4, so the payback period is 3.57 y.
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38.4.4 Net present value

Generally, system development costs (C) are assumed to occur at time zero
(0). Annual benefits (B1, B2, B3, . . . ) are assumed to occur at the end of year
1, year 2, year 3, and so on, throughout the system’s life. To compute the net
present value (NPV), those benefits are discounted back to their present 
values and added to the development cost (a negative cash flow):

NPV = �C + [B1/(1+i)1] + [B2/(1+i)2] + . . . + [Bn/(1+i)n], (38.3)

where n is the system’s life (the last period) and i is the discount rate. Note
that the accumulated totals used to illustrate the payback period in Figure
38.1 are equivalent to the net present value at the end of each year.

Most popular spreadsheet programs contain built-in functions to com-
pute net present value. For example, the general form of Excel’s net present
value (NPV) function is:

=NPV(rate, value1, value2, . . . )

where rate is the discount rate and value1, value2, . . . represent a series of
future cash flows (negative payments and positive incomes). Note that the
first cash flow (value1) occurs one time period from the present, the second
cash flow (value2) occurs two time periods from the present, and so on. Note 
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Figure 38.1 This Excel worksheet illustrates payback period and net present value.
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also that because the first cash flow in the function occurs at time 1, any cur-
rent (time 0) cash flows must be added to (or subtracted from) the value
returned by the NPV function.

In Figure 38.1, the development cost ($100,000) is shown as a negative
cash flow occurring at time 0 and a series of annual benefits are shown as
positive cash flows. The discount rate is 5 percent.

Look carefully at the formula in the formula bar (just above the column
identifiers near the top of Figure 38.1). It reads:

=(B5)+NPV(C1,B6:B10)

B5 is the development cost ($100,000); it is a cash outflow and thus is recorded
as a negative number. NPV is the Excel function name. C1 is the discount
rate. B6:B10 (B6 to B10) is the range that holds the benefits. Note (in cell C13)
that the computed net present value is $49,422, which matches the value in
cell D10.

38.4.5 The internal rate of return

Generally, the higher the net present value the better the investment, but
comparing the NPVs of projects with significantly different magnitudes can
be misleading. Consequently, many organizations use the internal rate of
return to rank their investment opportunities.

To compute the internal rate of return (IRR), start with the net present
value equation (38.3) and set NPV = 0:

0 = �C + [B1/(1+i)1] + [B2/(1+i)2] + . . . + [Bn/(1+i)n]. (38.4)

The initial investment cost (C) and the future benefits (B1, B2, B3, . . . ) are
known. Solve for the internal rate of return (i), the interest rate that yields a
zero net present value. Generally, the higher the internal rate of return, the
better the investment.

Most popular spreadsheet programs contain built-in functions to com-
pute the internal rate of return. For example, the general form of Excel’s
internal rate of return (IRR) function is:

=IRR(values,guess)

where values is a series of cash flows and guess is an initial estimate of the
internal rate of return. The list of values must include at least one negative
cash flow and at least one positive cash flow. If the initial guess is not coded,
0.1 is assumed.

In Figure 38.2, the development cost ($100,000) is shown as a negative
cash flow occurring at time 0 and a series of annual benefits are shown as
positive cash flows. The discount rate is 5 percent.
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Figure 38.2 This Excel worksheet illustrates internal rate of return.

Look carefully at the formula on the formula bar (just above the column
identifiers near the top of Figure 38.2). It reads:

=IRR(B5:B10,0.1)

The range B5:B10 (B5 to B10) holds the series of cash flows. The first cash
flow (the negative value in cell B5) is assumed to occur at time 0. The value
0.1 is an initial guess. The computed internal rate of return (cell C15) is 20
percent.

Polynomials such as the formula for computing the internal rate of
return have one possible solution for each sign change. If the string of ben-
efits contains one or more negative values in addition to the development
cost, the built-in function might return an incorrect answer.

38.5 Key terms
Benefits — Advantages generated by or derived from the system.
Development costs — One-time costs that occur before the system is

released to the user; they include the labor, hardware, and software
costs accumulated from the time the project is initially approved until
the system is released to the user.
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Discount rate — The interest rate used to discount a sum of money.
Discounting — The act of computing the present value of a future sum

of money.
Future value — The value of a sum of money at some future time.
Intangible benefits — Benefits that cannot be measured in financial

terms, such as improved morale or employee safety.
Interest rate — A charge for a loan or a payment for the use of money;

usually expressed as a percentage.
Internal rate of return — The interest rate that yields a zero net present

value.
Life — The number of time periods (usually years) during which the

system is expected to be in use.
Net benefit — Cost savings or new revenues minus the new cost asso-

ciated with achieving the benefit.
Net present value — The sum of discounted benefits minus the devel-

opment costs.
Operating costs — Continuing costs that begin after the system is

released and last for the life of the system; they include personnel,
supplies, maintenance, utilities, insurance, and similar costs.

Payback period — A measure of the time it takes for accumulated ben-
efits to exactly match the development costs.

Present value — The value of a (current or future) sum of money in
today’s dollars.

Risk — The likelihood that an investment will fail to return the expect-
ed benefits.

Tangible benefits — Benefits that can be measured in financial terms,
such as reduced operating costs or enhanced revenues.

38.6 Software
The standard cost/benefit criteria are incorporated in most spreadsheet pro-
grams as built-in functions. In Excel, the net present value function is = NPV
and the internal rate of return function is = IRR. In Lotus 1-2-3, the net pre-
sent value function is @NPV and the internal rate of return function is @IRR.
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39.1 Purpose
An organization is often faced with numerous information system develop-
ment opportunities and inadequate funds to pay for them all. Risk-payoff
analysis is widely used to evaluate and prioritize information system projects
based on their relative risks (and uncertainties) and their potential payoffs.

39.2 Strengths, weaknesses, and limitations
Risk-payoff analysis is a useful tool for screening out projects that are 
associated with large risks or uncertainties, thus saving resources for more
promising projects. Intangible risks and payoffs are very difficult to 



quantify, however, and other tools and techniques such as cost/benefit
analysis (Chapter 38) must still be used.

39.3 Inputs and related ideas
Before performing a risk-payoff analysis, a given project must be understood
in enough depth to reasonably estimate its likely risks, uncertainties, and
payoffs. Generally, such estimates cannot be made until near the end of the
problem definition stage (Part II), and estimates made after the analysis stage
(Part IV) is concluded are likely to be much more accurate. In some organi-
zations, risk-payoff analysis is performed when the feasibility study reports
(Chapter 13) for proposed projects are evaluated by a steering committee.

39.4 Concepts
Risk-payoff analysis is widely used to evaluate and prioritize information
system projects based on their relative risks (and uncertainties) and their
potential payoffs.

39.4.1 Risk and uncertainty

Every information systems project is associated with risk, uncertainty, or both.
Risks are possible negative outcomes that can be interpreted, estimated, or
quantified by applying past experience. Uncertainties are possible negative
outcomes that cannot be interpreted or estimated based on experience
because they never happened before. In the discussion that follows, the term
risk implies risk, uncertainty, or both. Note, however, that risk-payoff analy-
sis requires that all parameters, including uncertainty, be defined and docu-
mented in an easily quantifiable form.

Technological change is perhaps the most obvious risk associated with
developing an information system, but there are many others. User or tech-
nical personnel might be under-trained, inadequately skilled, or not suffi-
ciently computer literate. A project might be unexpectedly delayed or a
given phase might be rushed in an effort to stay on schedule. The need to
deal with side issues might slow progress. Poor user or data requirements
analysis or incomplete data collection during the problem definition or
analysis stages might cause delays during design. Inadequate testing or
poor implementation procedures can negatively impact training, mainte-
nance, or user acceptance of the system. The list is endless.

39.4.2 Quantifying risks, uncertainties, and payoffs

The first step in the risk-payoff analysis process is to investigate the pos-
sible risks associated with each project and categorize them as tangible or
intangible.
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The midpoint value associated with each tangible risk is estimated
based on such quantifiable parameters as cost, time, resource requirements
(people, computers, etc.), and experience. The midpoint is determined by
selecting a middle or average value from a range of reasonable estimates.
For example, if the cost of a delayed shipment is estimated to lie between
$50,000 and 150,000, the midpoint is $100,000.

The midpoint for each intangible risk is estimated using subjective or
objective judgment. Often, the informed opinions of several experts are
combined to form a range of reasonable values from which the midpoint is
selected. The risks (tangible and intangible) associated with a given project
are then summed to get a project total.

Quantifying risk is difficult (at best). An analyst might consider such
factors as expected failure or error rates, the average elapsed time for new
versions of relevant technology to reach the market, estimates of the com-
pleteness or quality of significant software, and typical or baseline values
associated with a given methodology (e.g., object-oriented, structured) or
operating concept (e.g., batch, client-server). Even given such factors, how-
ever, there is no way to perfectly quantify risk. Reasonable (or ballpark) 
estimates can usually be generated, however.

Given estimates of risk, the possible payoffs associated with each 
project are identified and categorized as tangible or intangible. Once again,
the midpoints for each tangible payoff are estimated using quantifiable
parameters, the midpoints for the intangible payoffs are estimated using
judgment, and the tangible and intangible values are summed.

39.4.3 The risk-payoff matrix

The final step is to construct a risk-payoff matrix (Figure 39.1), with risk on
the x-axis and payoff on the y-axis. The risk and payoff midpoints previ-
ously computed for each project are then used as x and y coordinates to
position each project on the matrix.

On the matrix, the average payoff (for all projects) defines a line mark-
ing the horizontal midpoint and the average risk defines a line marking the
vertical midpoint. Together, those two lines divide the matrix into four
quadrants. Area 1 (top right) is the high payoff, high risk quadrant. Area 2
(bottom right) is low payoff and high risk. Area 3 (top left) is high payoff
and low risk. Area 4 (bottom left) is low payoff and low risk.

If a given project lies in area 1, the recommended action is to wait until
additional analysis reduces the risk. If the project lies in area 2, the recom-
mended action is to stop immediately (abandon the project). If the project
lies in area 3, the recommended action is to advance immediately so the pro-
ject can be completed as quickly as possible. If the project lies in area 4, the
recommended action is to do nothing until adequate resources are available
or until the expected payoff increases.
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39.5 Key terms
Intangible — Difficult to define in concrete, physical (e.g., financial)

terms.
Midpoint — The middle or average value from a range of reasonable

estimated values for a parameter.
Payoff — A benefit.
Risk — A possible negative outcome that can be interpreted, estimated,

or quantified by applying past experience.
Tangible — Easily defined, concrete, physical; for example, payoffs,

risks, and uncertainties that can be expressed in financial terms are
considered tangible.

Uncertainty — A possible negative outcome that cannot be interpreted
or estimated based on experience because it has never happened
before.

39.6 Software
Not applicable.
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Figure 39.1 A risk-payoff matrix.
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40.1 Purpose
Business function-task analysis was developed by IBM in the 1960s to 
establish the relationships between an organization’s data, processes, and
organizational units.



40.2 Strengths, weaknesses, and limitations
Business function-task analysis is particularly valuable when an application
or a system development project starts from scratch (no existing system),
when a company is faced with a massive reorganization, or when a com-
pany’s data resources change substantially. Because so many users are
involved, it is relatively easy to obtain user buy-in. Once a business func-
tion-task analysis is completed, the results can be used to support further
system development and/or expansion.

Although the underlying idea is easy to understand, considerable time
and effort are required to perform a business function-task analysis. The 
relevancy of the data collected is not always clear, and no information is col-
lected from the operational level. Finally, this approach is quantitative, and
it fails to account for qualitative factors.

40.3 Inputs and related ideas
The results of a business function-task analysis can be used to prioritize
information system development projects or as a structure for defining
information system strategy.

40.4 Concepts
Business function-task analysis was developed by IBM in the 1960s to estab-
lish the relationships between an organization’s data, processes, and orga-
nizational units. It is also known as the enterprise analysis approach and the
business systems planning approach. The basic idea is to analyze the entire
organization in terms of organizational units, functions, processes, and data
elements.

40.4.1 The focus group

Business function-task analysis is performed by a focus group composed of
managers from all the functional units in the entire company. Depending on
the scope of an information system project, some functional units might be
grouped to form meta-units (e.g., an accounting unit might represent the
accounts payable, accounts receivable, and customer credit departments) or
divided into smaller subunits.

40.4.2 The 5W analysis

The first step in the process is to survey the focus group by asking the mem-
bers to answer five key questions (how, where, what, who, and when) about
relevant functions, processes, and data elements. This task is sometimes
called 5W analysis. Some examples of the kinds of questions that might be
asked are listed in Table 40.1.
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40.4.3 The organizational unit-process matrix

After the 5W analysis survey is completed, an organizational unit-process
matrix is constructed (Figure 40.1). The matrix shows the various organiza-
tional units along the horizontal axis and the processes the focus group
members perform along the vertical axis. Each cell in the matrix is marked
with an M (to indicate major involvement) or an S (to indicate some involve-
ment); blank cells indicate no involvement.

The purpose of the organizational unit-process matrix is to identify the
relationships between the organizational units and the processes and to
determine the degree of involvement of the various units in specific pro-
cesses. Subsequently, when information systems are developed to perform a
given process, the central focus should be placed on those organizational
units with major involvement in the process, while organization units with
some involvement should receive less attention until adequate resources are
available.

40.4.4 The process-data element matrix

The process-data element matrix (Figure 40.2) lists the data elements along
the horizontal axis and the processes the focus group members perform
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Table 40.1 Typical 5W Analysis Questions

1. How?
How is the information used?
How is the information processed and/or stored?
How are decisions concerning the information made?

2. Where?
Where does the information originate?
Where is the information delivered?
Where is the information used and/or modified?

3. What?
What objectives are associated with the information?
What are the data needs of the participants?

4. Who?
Who creates the data or information?
Who are the major users of the data?
Who is authorized to update and/or maintain the data?

5. When?
When and in what form are the data needed?
When are the data distributed to other branches?
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Figure 40.1 An organizational unit-process matrix.

along the vertical axis. Each cell in the matrix is marked with a U (to 
indicate a user of the data) or a C (to indicate a creator of the data); once
again blank cells indicate no involvement. Some organizations further clar-
ify the type of use by coding an M (for modify) or an R (for retrieve or read
only). Clusters of letters clearly identify the data required to support 
related processes.

40.4.5 Data analysis

Analyzing the wealth of information summarized in the unit-process matrix
and the process-data element matrix often reveals indirect relationship
between the organizational units, the functions, the processes, and the data
elements. Additional cross-checks and walk-throughs can help reduce
redundancies and resolve conflicts. The final step in the process is to docu-
ment the specific information requirements of all the functional units and
their related processes.

40.5 Key terms
5W analysis — The first step in the business function-task analysis

process during which the focus group is asked to answer five key



questions (how, where, what, who, and when) about relevant func-
tions, processes, and data elements.

Business function-task analysis — A methodology developed by IBM
in the 1960s to establish the relationships between an organization’s
data, processes, and organizational units.

Focus group — A group composed of managers from all the functional
units in the entire company that conducts a business function-task
analysis.

Organizational unit-process matrix — A table that identifies the rela-
tionships between the organizational units and the processes and
shows the degree of involvement of the various units in specific
processes.

Process-data element matrix — A table that shows the relationships
between the data elements and the processes.

40.6 Software
Although no software is specifically designed to support business function-
task analysis, spreadsheet software can be used to create and maintain the
organizational unit-process matrix and the process-data element matrix.
The matrixes in this chapter were created using Excel.
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Figure 40.2 A process-data element matrix.
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41.1 Purpose
Competitive procurement is a set of procedures for subcontracting work
through a bidding process. The intent is to solicit fair, impartial, competitive
bids.



41.2 Strengths, weaknesses, and limitations
Because the contract is typically awarded to the low bidder, the competitive
bidding process tends to minimize cost. Multiple bidders bring different
viewpoints to the process, and often suggest alternative solutions. The step-
by-step nature of the process provides the sponsoring organization with a
useful structure for managing subcontracted or outplaced projects.

Preparing specifications and bids is expensive. It is difficult (perhaps
impossible) to prespecify every detail of a complex system that will be
developed over several years. The competitive bidding process tends to be
rigid. Requirements change over time, and procedures for dealing with
changes are a major weak point.

Preparing and evaluating the documents submitted by numerous bid-
ders is incredibly time-consuming. In today’s economy, firms that cannot
react quickly to changing conditions find it difficult to compete, and the
delays caused by frequent bidding cycles are intolerable. Consequently,
many organizations that subcontract or outsource information system
development work use a streamlined version of the competitive bidding
process that sacrifices some control to gain time.

Low bids do not always imply high quality. In an effort to improve qual-
ity, many organizations have significantly reduced the number of projects that
go through the competitive procurement process and have chosen instead to
establish long-term relationships with a limited number of subcontractors.

41.3 Inputs and related ideas
Competitive procurement can occur during or immediately after the prob-
lem definition (Part II), analysis (Part IV), and design (Part VI) phases of the
system development life cycle, and specific subsystems or tasks can be put
out for competitive bids at any stage. The requirements specification
(Chapter 35) often serves as a basis for competitive procurement.

41.4 Concepts
The competitive procurement process was initially developed by the U.S.
Department of Defense as a means to minimize costs and ensure fair access
on major military-related projects. Today, the trend toward downsizing and
outplacement has led to an increase in the number of firms that subcontract
or outplace information system development projects. Many corporate com-
petitive procurement systems are modeled on the Department of Defense
standard.

41.4.1 Standards

There are several widely used standards for writing requirements. DoD-
STD-2167A2 defines procedures for defense system software development.
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DoD-STD-490 and DoD-STD-499 must be followed on most military con-
tracts. Other standards, such as IEEE STD-729 (a glossary) and IEEE STD-
830 are defined by civilian organizations1 (in this case, by the Institute of
Electrical and Electronics Engineers), and many companies have their own
internal standards.

41.4.2 Department of Defense Standard 2167A

Figure 41.1 shows a hurricane tracking system that consists of three major
subsystems. Outlined below are the key elements of a DoD-STD-2167A
requirements specification that might be prepared for such a system.

41.4.2.1 The system/segment specifications
Sometimes called the project or mission requirements, the system/segment
specifications (SSS), or A-specs, identify major systems and subsystems at a
conceptual level. For example, the highest-level system/segment speci-
fication for the system pictured in Figure 41.1 might identify such require-
ments as:

Locate the position of the hurricane’s eye within 500 m every 15 min.

Reproject the hurricane’s likely landfalls every 15 min.

Graphically display the hurricane’s most current position and likely
landfalls in a format acceptable to the television networks.

Note the nature of these requirements. They are logical. They describe what
the system must do, not how the system must work. The requirement that a
hurricane’s position be graphically displayed calls for both hardware and
software, making it a hardware/software composite item. Clearly, it speci-
fies more than a single physical component.
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Figure 41.1 A hurricane tracking system that consists of three major subsystems.



The system/segment specifications define the requirements down to,
but not including, the configuration item level. (The system’s physical 
components begin to appear at the configuration item level.) A high-level
mission requirement might be subdivided into several segments, and those
segments might be further subdivided, so there can be several levels of 
system/segment specifications.

41.4.2.2 The system/segment design documents
The system/segment design documents (SSDD), or B-specs, define, in
black-box form, the components that occupy the configuration item level.
For example, a system/segment design document might be prepared for a
program, but the routines that make up the program are below the configu-
ration item level and so do not appear in the SSDD.

Figure 41.2 shows that the Data collection subsystem consists of a Satellite
segment, an Observation plane segment, a Data preparation segment, and, per-
haps, several other discrete, high-level, physical components. In this exam-
ple, the Satellite segment is hardware and the Data preparation segment is 
software. If controlling the satellite calls for additional software, the appro-
priate program would appear as a separate segment. One system/segment
design document is prepared for each configuration item. These documents
summarize high-level design decisions, and they serve as a basis for defin-
ing the next lower level of requirements.

Like the system/segment specifications, the system/segment design
documents are logical, not physical. Each one describes a discrete physical
component, but they specify what that component must do, not how it must
work. For example, an SSDD for a microcomputer might specify such things
as weight and size limitations, response time requirements, and the number
of transactions that must be processed per unit of time, but it will not spec-
ify a particular model computer or distinguish between a Dell Dimension
system and an Apple Macintosh.
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41.4.2.3 The software requirements specifications
Each subsystem that is to be implemented in software is called a computer
software configuration item (CSCI) and is documented in a software
requirements specification (SRS). These documents consist of program
design specifications. They are prepared after key design decisions have
been made. Unlike the SSS and SSDD specifications, they define how the
solution will be implemented.

41.4.2.4 The prime item development specifications
Each subsystem that is to be implemented in hardware is called a hardware
configuration item (HWCI) and is documented in a prime item develop-
ment specification (PIDS). These documents consist of hardware design
specifications. They are prepared after key design decisions have been
made. Unlike the SSS and SSDD specifications, they define how the solution
will be implemented.

41.4.3 The procurement process

Figure 41.3 summarizes the competitive procurement process. Note that few
organizations seek competitive bids at each stage, so the process is much
more flexible than the flow diagram suggests.

The process begins during the problem definition and information gath-
ering stage of the system development life cycle (Part II). Based on a pre-
liminary analysis of the problem, user experts who work for the government
agency or the customer organization that is sponsoring the project define a
set of needs and write the system/segment specifications (A-specs), which
are then released for bids.

On a major system, several firms might be awarded contracts and
charged with preparing competitive system/segment design documents (B-
specs). The completed SSDDs are submitted to the customer and evaluated.
The best set is then selected and once again released for bids. Sometimes, the
firm that prepared the system/segment design documents is prohibited
from participating in the next round.

Based on the competitive bids, a contract to generate a physical design
and prepare a set of specifications based on the system/segment design
documents is subsequently awarded to one or (perhaps) two companies.
One PIDS (hardware) or SRS (software) is prepared for each SSDD. (In other
words, one physical design specification is created for each configuration
item.)

At the end of this phase, the PIDS and SRS documents are reviewed and
approved. The best design specifications are then released for a final round
of competitive procurement, with the winning firm getting a contract to
build the system. Clearly, the organization that created the final specifica-
tions has an advantage, but there are no guarantees. Sometimes a backup
supplier is awarded a portion of the contract.
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Figure 41.3 The competitive procurement process.



41.5 Key terms
Competitive procurement — A set of procedures for subcontracting

work through a bidding process.
Computer software configuration item (CSCI) — A subsystem that is to

be implemented in software.
Configuration item — A functional primitive that appears at the lowest

level of decomposition.
Configuration item level — An imaginary line that links the system’s

configuration items.
Hardware configuration item (HWCI) — A subsystem that is to be

implemented in hardware.
Prime item development specification (PIDS) — The documentation

for a hardware configuration item; a hardware design specification.
Software requirements specification (SRS) — The documentation for a

computer software configuration item; a program design specifica-
tion.

System/segment design documents (SSDD) (B-specs) — A set of spec-
ifications that define, in black-box form, the components that occupy
the configuration item level.

System/segment specifications (SSS) (A-specs) — A set of specifica-
tions that identify major systems and subsystems at a conceptual
level; the system/segment specifications define the requirements
down to, but not including, the configuration item level; sometimes
called the project or mission requirements.

41.6 Software
Not applicable.
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42.1 Purpose 
Hardware interface design is the process of determining, specifying, evalu-
ating, and acquiring of a set of hardware building blocks and analyzing
their relationships with each other. 



42.2 Strengths, weaknesses, and limitations 
This chapter focuses on several issues, techniques, and approaches related
to hardware interface design. Consequently, a discussion of specific
strengths, weaknesses, and limitations is not relevant. 

42.3 Inputs and related ideas 
Hardware interface design is the physical backbone that supports input,
output, database, and software design (virtually every chapter in Part VI). It
also impacts system controls (Chapter 77) and general system design
(Chapter 72). Hardware interface design is based on the requirements
defined during the analysis stage (Part IV) and documented in the require-
ments specifications (Chapter 35). 

42.4 Concepts 
Hardware interface design is the process of determining, specifying, evalu-
ating, and acquiring of a set of hardware building blocks and analyzing
their relationships with each other. 

42.4.1 Design issues 

This section briefly discusses several significant hardware design issues. 

42.4.1.1 Choosing a computer 
Computers fall roughly into four categories: supercomputers, mainframes,
minicomputers, and microcomputers. Given the mix of features available
from different vendors, however, these classifications are little more than
guidelines. Key factors that must be considered include compatibility with
existing systems, adaptability, security, and connectivity. Depending on the
organization’s management philosophy (centralized, decentralized, or dis-
tributed), the available choices range from stand-alone microcomputers; to a
centralized supercomputer or mainframe; to a network of microcomputers,
terminals, and workstations controlled by a central server; to a cooperative,
distributed, peer-to-peer network of sophisticated, co-equal computers. 

42.4.1.2 The impact of technological change 
The rapidly changing nature of information technology has forced the
designer to view the process of evaluating and acquiring hardware from a
different perspective. Today, the opinions of the end users are every bit as
important as the opinions of the specialists. 

For example, hardware interface design was traditionally the first step
in the systems design process, and the software, the database, and the other
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system components were designed in the context of a specific hardware
platform. Today, however, the required software or database capabilities
and functions are often considered first, and the hardware is subsequently
selected to fit the resulting requirements. For example, it is not uncommon
for a company to choose Oracle and then identify the hardware needed to
implement the tool. 

The nature of hardware interface design has itself changed, too.
Traditionally, such performance attributes as processing speed and through-
put drove the selection of the peripherals, the processor, and secondary 
storage. Today, however, such factors as user friendliness, flexibility, adapt-
ability, ease of learning, and ease of use are at least as important. 

42.4.1.3 The impact of industry standards 
Given the popularity of the Internet (and intranets), the system’s data com-
munication component has become a crucial consideration in hardware
interface design. For example, newly purchased microcomputers often
come equipped with a fax modem, communication protocols, and other
communication cards or boards. Additionally, sharing such resources as
files and network printers and allowing broad access to corporate data are
common system requirements. Consequently, conforming to such widely
accepted industry standards as open systems interconnection (OSI) has
become an important hardware interface design criterion. 

In some cases, hardware interface design is considered a subset of a net-
work design. The major network platform and associated capabilities are
defined first, and the hardware interface design for a local site or a branch
is performed in the context of the network. 

42.4.1.4 Environmental issues 
Hardware is sensitive to power losses, power surges, and similar power 
failures. Surge protectors and uninterruptible power supplies (UPS) help to
reduce the impact of power failures and are recommended for most 
systems. 

The cables used to connect a system’s hardware components must be
protected. One option is a raised floor, with load-bearing supports and a
grid of cross beams holding removable panels. The cables run under the
floor, out of the way, but accessible if connections must be added or
removed. A raised floor also helps to protect the hardware from standing
water and promotes air movement, thus dissipating heat. Network compo-
nents are sometimes linked through dedicated cabling conduits, with a cen-
tral cabling panel on each floor, risers connecting the panels between floors,
and distributing cables extending to each room. 

Fire protection is essential. This issue is more related to facility design
than hardware interface design, but given the electronic nature of computer
hardware, such traditional fire control techniques as sprinkler systems can
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damage the equipment. Some systems rely on fire retardant (but breathable)
gasses to control fires in the computer room. 

Heat dissipation and moisture prevention are crucial. Adequate ventila-
tion, auxiliary cooling, humidity control, and well-designed cabinets are
important elements in hardware interface design. 

42.4.1.5 Disaster recovery and planning 
The principle of redundancy calls for a second set of important hardware
components (a redundant file server, for example) ready to use in the event
of a disaster. System reliability is enhanced by redundancy, but the cost can
be quite high. 

Backup implies creating and storing a second copy of key software,
data, the commands needed to perform key operating system procedures
and reinstall hardware, and similar system elements. In the event of a dis-
aster, the backup copies are used to restore the affected components. Often,
the backup copies are maintained off site so a single disaster cannot destroy
both the system and the backup. 

42.4.2 Hardware interface design phases 

The steps in the hardware interface design process are summarized in
Figure 42.1. 

42.4.2.1 Planning 
The planning stage begins with an element analysis during which the
designer identifies the discrete components (processors, monitors, mice,
keyboards, secondary memory units, printers, etc.) required by the system.
Additionally, such required features as data communication and multime-
dia capabilities (fax modems, video accelerator cards, sound cards, and the
like) are specified. 

Configuration analysis deals with system behavior and performance.
Key issues include ensuring that the hardware meets response time, perfor-
mance, and reliability requirements. Sometimes a bottleneck analysis
(Chapter 79) is performed. Software issues add to the complexity of config-
uration analysis. Prototyping (Chapter 31) is an effective tool for pinpoint-
ing configuration problems. 

42.4.2.2 Evaluation 
During the evaluation stage, application analysis is used to study the inter-
actions and relationships between the hardware and software resources.
Typically, all the required software is installed on a test system and the
behavior of the hardware is evaluated as the applications run. For example,
a user evaluating a database application might issue a query, add, update,
or delete a record, generate a report, join two or more database files, create
a date entry form or screen, and so on. 
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Resource analysis is used to evaluate the capabilities of the hardware
components. For example, data on such factors as mean time between 
failures, the average number of instructions executed per second, clock speed,
multiple processor availability, and expandability might be collected to allow
the designer to compare several alternative processors. Demand/utilization
analysis focuses on such issues as throughput, average response time, con-
current incoming messages, simultaneous users, maximum data capacity, the
component’s ability to deal with peak demand, and so on. 
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Figure 42.1 The steps in the hardware interface design process. 



Benchmarking is a useful tool for comparing such component parame-
ters as input/output performance, storage capacity, I/O buffer size and
speed, searching speed, instruction fetch speed, data transmission speed,
and data transmission capacity. Parameter analysis is a useful tool for 
evaluating such factors as the time required to load a test image, the 
quality and sharpness of a displayed image, or the maximum number of
frames required to store a motion picture or display an animation.
Simulation (Chapter 19) and queuing theory (Chapter 79) can be used to
study queues and predict such statistics as average waiting time, average
processing time, and average queue size. 

42.4.2.3 Acquisition 
The requirements determined in the previous two steps are reviewed, and
additional requirements dealing with such issues as integration with exist-
ing hardware and/or software, implementation (e.g., installation support,
conversion, and testing), and maintenance (e.g., maintenance contracts,
training support, help desk support, and upgrade support) are incorpo-
rated. Given a complete set of requirements, a request for proposal (RFP) is
released and (often) competitive bids are solicited (Chapter 41). Bids are
then evaluated and the hardware is selected. Note that hardware can be
leased or purchased. 

42.4.2.4 Implementation 
During the implementation stage, the hardware is tested (Part VII), necessary
conversion tasks are performed, and the hardware is released (Chapter 76). 

42.4.4.5 Maintenance 
After the hardware is released, it must be maintained (Part VIII) and, as nec-
essary, upgraded. 

42.5 Key terms 
Adaptability — A measure of the ease of changing or modifying a sys-

tem, often in response to a technological change. 
Application analysis — A study of the interactions and relationships

between the hardware and software resources; typically, all the
required software is installed on a test system and the behavior of the
hardware is evaluated as the applications run. 

Backup — A duplicate copy of a set of data, a program, a hardware com-
ponent, or some other system element that is used to restore the sys-
tem in the event of failure. 

Benchmark — A standard program, procedure, or set of test data used
to measure such performance characteristics as a computer’s pro-
cessing speed. 
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Bottleneck analysis — A study of the waiting lines or queues that 
develop within a system; the objective is to find choke points, or bot-
tlenecks. 

Configuration analysis — A study of such system behavior and perfor-
mance characteristics as response time and reliability. 

Connectivity — In a network, the ability of a given hardware or soft-
ware component to cooperate with other components supplied by
other vendors. 

Demand/utilization analysis — A study that focuses on such utilization
issues as throughput, average response time, concurrent incoming
messages, simultaneous users, maximum data capacity, the compo-
nent’s ability to deal with peak demand, and so on. 

Element analysis — The process of identifying discrete hardware com-
ponents and required features. 

Expandability — The ability to add components to a system or features
to a component. 

Hardware interface design — The process of determining, specifying,
evaluating, and acquiring of a set of hardware building blocks and
analyzing their relationships with each other. 

Open systems interconnection (OSI) — An International Standards
Organization network model that specifies seven interconnection
layers. 

Parameter analysis — A study of such factors as the time required to
load a test image, the quality and sharpness of a displayed image, or
the maximum number of frames required to store a motion picture or
display an animation. 

Redundancy — Two (or more) copies of a hardware component. In the
event of component failure, the redundant copy provides backup. 

Request for proposal (RFP) — A formal (often advertised) request for
competitive bids based on a set of requirements. 

Resource analysis — An evaluation of such hardware component capa-
bilities as mean time between failures, the average number of instruc-
tions executed per second, clock speed, multiple processor availabil-
ity, and expandability. 

Simulation — The use of a mathematical model that behaves in the
same manner as the system under study. 

Surge protector — A device that protects electronic components against
sudden changes in electrical current.

Uninterruptible power supply (UPS) — A device that continues to sup-
ply electrical current in the event of a power failure; many uninter-
ruptible power supplies incorporate surge protectors. 

42.6 Software 
Not applicable. 
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43.1 Purpose 
A data structure is a way of organizing data that considers both the data
items and their relationships to each other. Selecting the right data structure



can improve memory utilization, improve processing efficiency, and reduce
development costs. 

43.2 Strengths, weaknesses, and limitations 
This chapter introduces several basic principles of data structures. The
strengths and weaknesses of individual data structures will be discussed in
context. 

43.3 Inputs and related ideas 
The study of data structures is an essential component of most computer sci-
ence curricula. Consequently, this chapter is aimed at non-computer science
graduates who have not been exposed to formal data structures. The
emphasis is on terminology and visualization rather than mathematics and
formal logic. Several relevant key terms are introduced in Chapter 25. Files
and databases are discussed in Chapters 44 and 45, respectively. 

43.4 Concepts 
A data structure is a way of organizing multiple data items (usually, data
elements or records) that considers both the data items and their relation-
ships to each other. Selecting the right data structure can improve memory
utilization, improve processing efficiency, and reduce development costs. 

43.4.1 Algorithms and recursion 

The study of data structures is tightly linked to algorithms for efficiently cre-
ating a structure, inserting data into or deleting data from the structure,
finding a specific data item, and traversing the structure. Sort and search
algorithms are of particular interest. 

A subroutine is considered recursive if it calls itself or if it initiates a cir-
cular chain of calls that returns eventually to itself. Many data structures are
inherently recursive, so the concept of recursion appears in numerous algo-
rithms and definitions. 

43.4.2 Data elements, arrays, and pointers 

A data element is the most basic unit of data that has logical meaning. A sin-
gle data element might hold an integer number, a floating-point number, a
character string, a Boolean value (true or false), or any other data type. In
this chapter, the term data item will be used to designate a data element, a
data composite, or a record. 

An array is an elementary data structure that resembles a table. A one-
dimensional array is sometimes called a vector; a two-dimensional array is
sometimes called a matrix. Typically, one data element is stored in each
array cell, and the cells are distinguished by subscripts. A transformation or
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mapping function is used to convert the subscripts to memory addresses.
Arrays are supported by most programming languages and, thus, are used
to implement several data structures. 

A pointer is a link to a data item. Typically, each data item contains the
data plus a pointer in the form of the address or the key of the target data
item. An access vector is a list of pointers providing access to a set of data
items. 

43.4.3 Lists 

The most basic data structure is a list (Figure 43.1). Each entry in the list is
called a node, and each node holds a single data item. In an ordered list, the
nodes are stored in data value or key order. 

43.4.3.1 Simple lists 
The simplest type of list is a set of data items stored in consecutive memory
locations. Such lists serve as a basis for comparison for more sophisticated
data structures. For example, searching a simple list for a specific data item
means, on average, testing half the list’s entries. The efficiency of a search
algorithm can be measured by comparing the number of tests it needs to
find the target data item to the average number of tests required in a simple
list. 

43.4.3.2 Linked lists 
In a simple list, inserting a node means shifting the existing nodes to make
room. Similarly, deleting a node means shifting nodes to fill in the freed
space. Such data movement is inefficient. 

One solution is to create a linked list (Figure 43.2). In a linked list, each
node contains data plus a pointer to the next node. Note that the data items
need not be stored in adjacent memory locations because the pointers define
the list’s logical order. To insert a node into a linked list, locate the prior
node, change its pointer to the new node, and set the new node’s pointer to
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Figure 43.1 An ordered list. 

Figure 43.2 A linked list. 
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Figure 43.3 Inserting a node into a linked list. 

Figure 43.4 Deleting a node from a linked list. 

the next node (Figure 43.3). To delete a node from a linked list, change the
appropriate pointer to “jump over” the deleted node (Figure 43.4). 

In a singly linked list, each node points only to the next node. In a cir-
cular linked list, the last node points back to the first node. A doubly linked
list contains both forward and backward pointers; in other words, each node
points to the previous node and to the next node. In a multi-linked list, each
node contains two or more pointers to different data items; for example, a
personnel record might contain pointers to a department record and a skills
inventory record. 

Linked lists are used in a variety of applications. In many operating sys-
tems, the set of control blocks that hold the data necessary for dispatching
and memory allocation is implemented as a linked list. In MS-DOS, the file
allocation table is a linked list of clusters. 

43.4.3.3 Stacks 
A stack is a special type of linked list in which all insertions and deletions
occur at the top. Access to the stack is controlled by a single pointer (Figure
43.5). Adding an entry to the top of the stack is called pushing the stack.
Removing an entry from the top is called popping the stack. Because inser-
tions and deletions occur only at the top, the last item added to the stack is
the first item removed from the stack (last in, first out). Stacks are used for
a variety of applications, including tracking procedure calls to ensure that
returns are executed in the proper order, evaluating arithmetic expressions,
and parsing. 



43.4.3.4 Queues 
A queue is a special type of linked list in which insertions occur at the rear
and deletions occur at the front. Access to a queue is controlled by two
pointers (Figure 43.6), and the first item added to a queue is the first item
removed (first in, first out). 

43.4.4 Trees 

A list is one-dimensional. A tree is a two-dimensional data structure in
which the nodes form a hierarchy (Figure 43.7). Because memory addresses
are one-dimensional, implementing a tree requires a mapping function. 

43.4.4.1 Terminology 
A tree’s top (or base) node is called the root node. The root node is the par-
ent to one or more level-2 child nodes, and each of those children is (poten-
tially) a parent to children of its own. A parent of a parent (or the parent of
an ancestor) is called an ancestor; a child of a child (or the child of a descend-
ant) is called a descendant. Nodes that share the same level are called sib-
lings. A branch is a link between a parent and a child. A leaf (or leaf node)
is a node with no branches. A subtree is a subset of a tree that is itself a tree.
A tree can be defined recursively because each node is the root node of a
subtree. 
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Figure 43.5 Access to a stack is controlled by a single pointer. 

Figure 43.6 Access to a queue is controlled by two pointers. 



43.4.4.2 Binary trees 
In a binary tree, each node has two branches and holds a data item plus two
pointers, left and right (Figure 43.8). Often, the data items are stored in
default order, with the left child holding a value less than the parent and the
right child holding a value greater than the parent. To search the tree for a
particular data item, start at the top of the tree, go left if the search key is less
than the node’s value, and go right if the search key is greater than the
node’s value. Then repeat the process at the new node. Insertions are made
at the appropriate leaf node. A node is deleted by modifying a pointer. 

43.4.4.3 Multi-way trees 
In a multi-way tree, each node holds n (two or more) values and can have 
(n + 1) branches. For example, if the root node holds two values, it can have
three branches and thus point to three children (Figure 43.9), each of which
can hold up to two values and have up to three branches. All values in the
left node are less than the parent node’s minimum value. All values in the
right node are greater than the parent node’s maximum value. All values in
the center node lie between the parent node’s values. 

43.4.4.4 B-trees, or balanced multi-way trees 
A B-tree, or balanced multi-way tree is a multi-way tree that has all its leaf
nodes at the same level. Balance is achieved by building the tree from the
bottom up. New entries are placed in a leaf node if possible. If the target leaf
node is full, the leaf is split and the median value is moved up to the parent.
B-trees are commonly used to index records on a secondary storage device
without overflow. 
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Figure 43.7 A tree. 
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Figure 43.8 A binary tree. 

Figure 43.9 A multi-way tree. 



43.4.5 Graphs and networks 

In a tree, the nodes form a hierarchy. Graphs and networks are less restrictive. 
A graph is a set of nodes (or vertexes) linked by a set of edges. The edges

on an undirected graph have no direction (Figure 43.10); in other words, it
is possible to move between two nodes in any direction as long as they are
connected by an edge. 

On a directed graph, or digraph, each edge (or arc) has a direction
(Figure 43.11). A given node’s indegree is the number of entering arcs, and
its outdegree is the number of exiting arcs. A source is a node of indegree 0,
and a sink is a node of outdegree 0. 

A path is a sequence of edges that links a set of nodes; on a digraph, the
path’s direction is significant. A cycle is a path that leads from a node back
to the same node. In many operating systems, the set of requests for
resources is modeled as a graph, and the graph is evaluated for cycles,
which imply deadlock. 
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Figure 43.10 An undirected graph. 

Figure 43.11 A directed graph. 



On a network, or weighted graph, the edges have values. For example,
a communication network might be modeled as a weighted graph with such
values as Baud rate, distance, or cost associated with each edge. 

The process of traversing a graph or network involves identifying 
subtrees or spanning trees within the graph, and then working with the sub-
trees. A minimum spanning tree is a subtree or spanning tree for which the
sum of arc weights is minimal. For example, a project network (Chapter 21)
is a network and the critical path is a minimum spanning tree. 

43.5 Key terms 
Access vector — A list of pointers providing access to a set of data items. 
Algorithm — A rule for arriving at an answer in a finite number of steps.
Ancestor — A parent of a parent (or an ancestor). 
Arc — An edge on a directed graph. 
Array — An elementary data structure that resembles a table; typically,

one data element is stored in each array cell and the cells are distin-
guished by subscripts. 

Attribute — A property of an entity. 
Binary tree — A special type of tree in which each node has two branches.
Branch — On a tree, a link between a parent and a child. 
Child — An immediate lower-level node in a tree. 
Circular linked list — A linked list in which the last node points back to

the first node. 
Cycle — On a graph, a path that leads from a node back to the same

node. 
Data element — An attribute that cannot be logically decomposed; the

most basic unit of data that has logical meaning. 
Data structure — A way of organizing data that considers both the data

items and their relationships to each other. 
Descendant — A child of a child (or a descendant). 
Directed graph (digraph) — A graph on which each edge (or arc) has a

direction. 
Doubly linked list — A linked list in which each node contains both for-

ward and backward pointers. 
Edge — On a graph, a link between two nodes. 
Entity — An object (a person, group, place, thing, or activity) about

which data are stored. 
Field — A data element physically stored on some medium. 
File — A set of related records. 
Graph — A set of nodes (or vertexes) linked by a set of edges. 
Indegree — On a directed graph, the number of arcs entering a given

node. 
Key — The attribute or group of attributes that uniquely distinguishes

one occurrence of an entity. 
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Leaf (leaf node) — On a tree, a node with no branches. 
Linked list — A list in which each node contains data plus a pointer to

the next node. 
List — A series of nodes each of which holds a single data item; the most

basic data structure. 
Matrix — A two-dimensional array. 
Minimum spanning tree — Within a graph, a subtree or spanning tree

for which the sum of arc weights is minimal. 
Multi-linked list — A linked list in which each node contains two or

more pointers, thus providing access to two or more other nodes. 
Multi-way tree — A tree in which each node holds n (two or more) val-

ues and can have (n + 1) branches. 
Network (weighted graph) — A graph on which the edges have values. 
Node — An entry in a list; often, a single data element or a single record. 
Occurrence — A single instance of an entity. 
Ordered list — A list in which the nodes are stored in data value or key

order. 
Outdegree — On a directed graph, the number of arcs exiting from a

given node. 
Parent — The immediate higher-level node in a tree. 
Path — On a graph, a sequence of edges that links a set of nodes; on a

digraph, the path’s direction is significant. 
Pointer — A link to a data item; typically, a key value or an address. 
Pop — To remove an entry from the top of a stack. 
Push — To add an entry to the top of a stack. 
Queue — A special type of linked list in which insertions occur at the

rear and deletions occur at the front. 
Record — The set of fields associated with an occurrence of an entity. 
Recursion — A subroutine calling itself; a subroutine initiating a circu-

lar chain of calls that returns eventually to itself. 
Root (root node) — A tree’s top (or base) node. 
Siblings — Two or more nodes that share the same level. 
Singly linked list — A linked list in which each node points only to the

next node. 
Sink — On a directed graph, a node of outdegree 0. 
Source — On a directed graph, a node of indegree 0. 
Stack — A special type of linked list in which all insertions and deletions

occur at the top. 
Subtree (spanning tree) — A tree within a graph; a subset of a tree that

is itself a tree. 
Tree — A two-dimensional, hierarchical data structure; a tree can be

defined recursively because each node is the root node of a subtree. 
Undirected graph — A graph on which the edges have no direction. 
Vector — A one-dimensional array. 
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43.6 Software 
Not applicable. 

43.7 References 
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44.1 Purpose 
A file is a repository for a set of related data records, a program, a document,
a spreadsheet, an image, an object, or some other logical entity. Most infor-
mation systems create, process, and/or manage data files. This chapter
focuses on design options for data files. 

44.2 Strengths, weaknesses, and limitations 
The strengths and weaknesses of specific file organizations are briefly
described in context. 

44.3 Inputs and related ideas 
A database (Chapter 45) is a set of related files. The individual files that
make up a database are defined using the techniques described in this chap-
ter. The first step in designing a data file is to compile the relevant logical
data structures using such tools as data flow diagrams (Chapter 24), entity
relationship diagrams (Chapter 26), data normalization (Chapter 28), or
Warnier-Orr diagrams (Chapter 33). Typically the data elements and com-
posites (the data structures) are documented in the data dictionary (Chapter
25). Data structures are discussed in Chapter 43. 

44.4 Concepts 
A file can hold data, a program, a document, a spreadsheet, an image, an
object, or virtually any imaginable logical entity. This chapter focuses on
data files. 

44.4.1 The data hierarchy 

The data in a file are typically structured using the standard field/
record/file data hierarchy. A field is a data element that cannot be logically
decomposed. (A field’s individual digits or characters have logical meaning
only in aggregate.) Logically related fields are grouped to form records. A
file is a set of related records. To put it another way, fields hold attributes,
each record holds a single occurrence, and a file holds all the occurrences of
an entity. The key field (or key attribute) uniquely identifies a single record
(a single occurrence of the entity), distinguishing it from all other records. 

44.4.2 File types 

A master file holds permanent data that are managed or maintained over
time. A transaction file holds data that describe current transactions. Often
the data in a transaction file are used to update (or maintain) a master file.
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A temporary file holds intermediate results and exists for only a brief time;
for example, in a bill processing application a temporary file might be used
to hold a set of records between the sorting and processing steps. A backup
file is a copy of a master or transaction file used to recover data if disaster
strikes. A history file (or archive) holds already processed transactions or
non-current master records. 

44.4.3 Logical and physical I/O 

Logically, a single record is read (input), its fields processed, and the results
written (output). Then a new logical input/process/output cycle begins.
The physical input/output process is a bit more complex, however. 

44.4.3.1 Open and close 
When a data file is first created, its name and physical secondary storage
location are noted in a directory maintained by the operating system.
Subsequently, in response to a user (or application program) command, the
operating system opens the file by searching the directory by name, extract-
ing the file’s secondary storage address, and (perhaps) transferring all or
part of the file into memory. Once a file is opened, its records can be accessed
by the application program. The active link to the file is broken by a close
command. 

44.4.3.2 Physical and logical records 
Programmers and users visualize a logical record that holds the set of related
fields needed to complete a single input/process/output cycle. A physical
record, in contrast, is the unit of data that moves between the peripheral
device and main memory. Note that, the logical record and the physical
record can be different. 

44.4.3.2.1 Blocking For example, most disks are divided into concen-
tric circles called tracks which, in turn, are divided into fixed-length sectors,
and it is the contents of a sector that move between memory and the disk’s
surface. Assume the sector size is 512 bytes and picture a series of 
100-byte logical records. If a single 100-byte logical record is stored in each
512-byte sector, 412 bytes per sector are unused. However, if five of those
100-byte logical records are blocked to form a 500-byte physical record and
that physical record is stored in a single sector, only 12 bytes per sector are
wasted. 

With one block per sector, data move between the disk’s surface and the
computer’s memory one block at a time. Software (the database manage-
ment system, the operating system, a device driver, or an access method) is
used to assemble a program’s output logical records to form blocks, which
are subsequently transferred to disk. The same software disassembles input
blocks to get the logical records the program needs. 
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44.4.3.2.2 Spanned records On a large file, even a few slack bytes per
sector can add up to a great deal of wasted space. Additional space efficiency
can be obtained by using spanned records. For example, imagine that five
complete 100-byte records plus the first 12 bytes of the sixth record are
stored in the first sector. The second sector contains the last 88 bytes of the
sixth record, the next four 100-byte records, and the first 24 bytes of record
11, and so on. Spanned records are also used when the logical record length
exceeds the sector size. 

The problem with spanned records is that two or more physical I/O
operations might be required to access a single logical record. In the exam-
ple above, the first 12 bytes of record number 6 are stored in the first sector
and the remaining 88 bytes are stored in the second sector, so the only way
to get logical record number 6, is to read both sectors. Because only one sec-
tor can be read at a time, two physical I/O operations are needed, and each
I/O operation takes time. Using spanned records sacrifices speed for stor-
age efficiency. 

44.4.3.3 Primitives 
Each peripheral device is controlled by its own set of primitive commands.
Consequently, if data are to be transferred between the peripheral device
and main memory, the user’s logical I/O request must be translated into an
appropriate set of primitive commands. For example, physically reading
data from a disk is a two-step operation: 

1. Move the access mechanism to the target track (seek). 
2. Copy (read) the contents of the target sector into memory. 

Logically, the user requests a record. Physically, that request is translated into
two physical primitives: seek and read (or seek and write). The translation
from a logical request to physical I/O commands is typically performed by
the operating system, an access method, or a device driver and is transpar-
ent to the user. 

44.4.4 File organizations 

Logically, the data in a file are read and written one record at a time.
Consequently, it must be possible to distinguish the individual records. The
task of distinguishing the records is greatly simplified if they are stored
using a consistent set of rules defined by a file organization. Sequential, ran-
dom, and indexed sequential are three common file organizations. 

44.4.4.1 Sequential files 
On a physical sequential file, records are read and written in physical 
storage order. For example, transactions might be captured, stored on disk
or magnetic tape, and subsequently processed in time order. Often, 
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transactions or master file records are sorted on a key field and then
processed in key sequence. 

Sequential files are excellent for high activity applications in which a
large percentage of the records are processed each time the application is
launched. Traditional batch processing tasks (such as preparing monthly
bills or a weekly payroll) are good examples, and generating a control
breaks report (Chapter 47) is an inherently sequential activity. Sequential
files should not be used if the system requires quick access to specific
records, however. 

44.4.4.2 Random or direct access files 
The records on a direct access or random access file can be read or written
in any order. Because a program can directly access a specific record,
response time is very good. As a general rule, master files that support inter-
active or real-time applications should be organized randomly rather than
sequentially. 

Compared to a sequential file, a random access file has more overhead
and thus needs more space to hold the same amount of data. Additionally,
average processing time per transaction is higher because it takes longer to
process a given number of direct access records than an equivalent number
of sequential records. Direct access’ response time advantage applies to a
specific transaction, not the average of all transactions. 

44.4.4.2.1 Indexes One way to achieve random access is to maintain
an index listing of the record key and the associated physical disk address
for each record in the file. Depending on the system, the index is maintained
by the operating system, by an access method, by the database management
system, or by other support software. Often, the index is read when the file
is opened and held in storage until the file is closed. When a logical read or
write command is issued, the index is searched by key for the record’s phys-
ical location. 

An index can also be used to support logical sequential processing.
Logical sequential processing implies key order, but not necessarily physi-
cal storage order. For example, the records in a database might be processed
in index order even though they are not stored in physical sequential order. 

44.4.4.2.2 Relative addressing Relative addressing is an alternative to
maintaining an index. One approach is to assign each record a number indi-
cating its position relative to the beginning of the file; the first record is 0, the
second record is 1, the third record is 2, and so on. The record’s relative
record number might be used as a key, or the record’s logical key might be
translated to a relative record number using an algorithm (see Section
44.4.4.2.3). 

Instead of a relative record number, some systems view the data in a file
as a string of bytes or characters and distinguish the records (and fields) by
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relative byte address. A relative byte (or relative character) address repre-
sents the byte’s location relative to the beginning of the file; in effect, relative
byte addresses resemble main memory address. Relative byte addresses are
easily mapped to relative record addresses; for example, if the record length
is 100 bytes, records begin at relative byte 0, relative byte 100, and so on. 

44.4.4.2.3 Hashing Using a logical key as a relative record number
means assigning one physical storage slot for every possible key. For exam-
ple, using a social security number as a key implies 999,999,999 possible
records (there is no social security number 000-00-0000). The result is a sig-
nificant waste of storage space; for example, a university that enrolls 20,000
students would use only a fraction of the available storage slots to hold stu-
dent records. Consequently, logical keys are converted into relative addresses
using hashing (or scatter storage) algorithms. 

Truncation algorithms select a portion of the logical key as the relative
address. For example, using the last four digits of a social security number
implies a need for only 9,999 record slots. Folding algorithms partition the
logical key and add the parts. For example, adding the first three, the mid-
dle three, and the last three digits of a social security number generates a
number between 0 and 2,997. A variation of the folding technique partitions
the logical key, multiplies the parts, and uses the product (or a portion of the
product) as a relative record number. 

Perhaps the most common type of hashing algorithm is the division/
remainder method. Start with a reasonable estimate of the expected number
of records to be stored, and divide the logical key by that value. The remain-
der, a number between 0 and the divisor, becomes the relative record num-
ber. Note that the estimated number of records must be odd. Ideally, the
divisor is a prime number slightly larger than the estimated number of
records. 

Using a hashing algorithm generates collisions (two or more logical
keys that yield the same relative record number). When collisions occur, a
secondary algorithm is used to determine where the new record is stored.
Sometimes, the next available storage location is used. Sometimes, the new
record is displaced by a constant number of record slots. Sometimes, a sec-
ond hashing algorithm is used. 

44.4.4.2.4 Chaining An alternative to maintaining an index or using
a hashing algorithm is to maintain a linked list (Chapter 43) of logical keys.
This technique is called chaining. 

44.4.4.3 Indexed sequential files 
An indexed sequential file is a compromise between sequential and random
access. Records are physically stored in key order, so they can be accessed
sequentially. Additionally, an index is maintained relating logical keys to
physical disk addresses, so the data can be accessed randomly. Examples
include IBM’s ISAM and VSAM and Control Data’s SCOPE. 
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Problems occur when records are added to or deleted from an indexed
sequential file. Rather than moving all the records, new records are stored in
an overflow area and the space associated with deleted records is unused.
Over time, slack space and overflow data can severely impact the efficiency
of both sequential and direct access, so frequent file reorganization is neces-
sary. Do not use indexed sequential files when the data are volatile (in other
words, when records are frequently added or deleted). 

44.5 Key terms 
Attribute — A property of an entity. 
Backup file — A file that holds a copy of a master or transaction file;

backup files are used to recover data if disaster strikes. 
Block — Two or more logical records stored together as part of the same

physical record. 
Chaining — Maintaining a linked list of the logical keys of the records

in a file. 
Collision — An event that occurs when two or more logical keys input

to a hashing algorithm yield the same relative address. 
Data dictionary — A collection of data about the data. 
Data element — An attribute that cannot be logically decomposed. 
Data structure — A set of related data elements. 
Database — A set of related files. 
Direct access (random access) — Reading records from or writing

records to a file in any order. 
Directory — A list of the names and addresses of every file stored on a

disk (or other secondary storage device). 
Entity — An object (a person, group, place, thing, or activity) about

which data are stored. 
Field — A data element physically stored on some medium. 
File — A set of related records. 
File name — A unique logical identifier assigned to a file (usually by the

user). 
Hashing — Using an algorithm to convert a logical key to a relative

address. 
History file (archive) — A file that holds already processed transactions

or no longer current master records. 
Index — A list of the record keys and the associated physical disk

addresses for each record in a file. 
Indexed sequential file — A file on which records are stored in key

order and an index is maintained, thus allowing the records to be
accessed sequentially or randomly. 

Key — The attribute or group of attributes that uniquely distinguishes
one occurrence of an entity. 

Logical record — The set of related fields needed to complete a single
input/process/output cycle. 
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Master file — A file that holds permanent data that are accessed over a
period of time. 

Occurrence — A single instance of an entity. 
Physical record — The unit of data that moves between the peripheral

device and main memory. 
Primitive — A command that tells a peripheral device to perform one of

its basic functions. 
Random access (direct access) — Reading records from or writing

records to a file in any order. 
Record — The set of fields associated with an occurrence of an entity. 
Relative addressing — Assigning each record (or byte) in a file to an

address that represents its position relative to the beginning of the
file. 

Sequential access — Reading records from or writing records to a file in
key and/or physical storage order. 

Spanned record — A logical record that extends over two or more phys-
ical records. 

Temporary file — A file that holds intermediate results and exists for
only a brief time. 

Transaction file — A file that holds current data; a transaction file is
often used to update (or maintain) a master file.

44.6 Software 
Most programming languages support the file organizations described in
this chapter. 
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45.1 Purpose 
Database design is the process of gathering data requirements for an orga-
nization, a business process, or a proposed information system, and trans-
forming these requirements into a set of specifications that can be used to
create a database. 



45.2 Strengths, weaknesses, and limitations 
This chapter discusses several database design principles. Relevant
strengths, weaknesses, and limitations will be discussed in context. 

45.3 Inputs and related ideas 
The primary inputs to database design are the user’s views of the informa-
tion as defined during the problem definition (Part II) and analysis (Part IV)
stages of the system development life cycle. In addition to the existing
views, new information requirements may be included in the system
design. 

Key data concepts are defined in Chapters 25, 43, and 44. Commonly
used database design tools and techniques include data dictionaries
(Chapter 25), entity-relationship models (Chapter 26), and data normaliza-
tion (Chapter 28). Additionally, information concerning the application
design is also relevant. In particular, database design influences or is influ-
enced by hardware interface design (Chapter 42) and software design
(Chapters 62, 66, 67, and 69). 

45.4 Concepts 
Database design is the process of gathering data requirements for an orga-
nization, a business process, or a proposed information system, and trans-
forming these requirements into a set of specifications that can be used to
create a database. The goal of database design is not only to provide the abil-
ity to capture all necessary information, but to organize that information in
an efficient and usable way. To do so requires knowledge about what the
information is and how it will be used, as well as information about the
computing environment in which the database will be implemented. 
The computing environment typically includes a database management sys-
tem, a network, and the computing platforms upon which the information
system will be installed. 

45.4.1 Database structures 

The simplest database structure is called a flat-file database. All the data in
a flat-file database are stored in a single, spreadsheet-like table that is not
linked with any other files. The advantage is simplicity. Although technically
not databases, flat files are fine for many personal computer applications. 

In a hierarchical database, the file links form a hierarchy; for example,
Figure 45.1 shows a student name and address file with links or pointers to
an academic file, a financial file, and an activity file. In this example, the
name and address file is the parent and the other files are its children.
Database access starts at the top of the hierarchy and flows downward, so it
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Figure 45.1 A hierarchical database. 

Figure 45.2 A network database. 

is possible to access a student’s academic file starting from his or her name
and address record, but not vice versa. Note that a parent can have many
children, but a child can have only one parent. 

In a network database (Figure 45.2), the links or pointers can describe
relationships between any two files in any direction, so a child can have
many parents. For example, if the name and address file contains a link to
the academic file and the academic file also contains a link to the name and
address file, a given student’s grade report might be prepared starting with
either file. Because links are relatively easy to add to a data structure, the 
distinction between hierarchical and network databases has practically dis-
appeared. 

The files that form a relational database are best visualized as two-
dimensional tables that resemble spreadsheets. In a given file, each column
holds values of a single field (or attribute) and each row holds a single



record (a single occurrence of the entity). Files are linked by pointers or,
more generally, relationships. The relational model has become a de facto
standard, and data normalization (Chapter 28) suggests logical data struc-
tures that are compatible with a relational database. 

As the name implies, an object-oriented database holds objects (Chapter
6) and defines the links or relationships between them. An object includes
both the data and the procedures to manipulate the data. The objects can be
traditional data oriented objects, but often are more complex. For example,
an object-oriented database can define and hold such objects as sounds,
videos, graphics, and spreadsheets. 

45.4.2 Database administration 

The responsibility for database design often resides in a database adminis-
tration group. The database administrators must work closely with the
application designers throughout the system design process. Maintaining
the integrity of the database is another database administration responsibil-
ity. See Chapter 82 for additional details about this group. 

45.4.3 Database design methodologies 

Many organizations have a formal process for designing application data-
bases. Because database design is a key part of information system design,
the database design methodology is generally integrated into the design
phase of the organization’s application development methodology.
Although the specific steps and tools vary considerably from organization
to organization (and even across a given organization), the process is gener-
ally divided into two primary stages: logical (or conceptual) database
design and physical database design. 

Changes in the physical database design can affect the logical design.
Consequently, these two steps are tightly integrated, with numerous feed-
back cycles. Note, however, that the application design and the logical data-
base design must be completed before the physical database design can be
finalized. 

45.4.3.1 Logical database design 
Logical or conceptual database design is concerned with defining and doc-
umenting the database in user terms. The objective is to formally define the
user’s understanding of the data and how the various data elements and
composites are interrelated. This phase is geared to a non-technical audi-
ence. From the user’s standpoint, it is the database design. 

The process starts with a study of the user’s data views and data uses in
the context of the application. Following the organization’s standards, data
elements and composites are defined, named, and documented in the data
dictionary (Chapter 25). Additionally, the relationships between the entities
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are studied and documented, often using such tools as entity relationship
models (Chapter 26) and/or data normalization (Chapter 28). The output of
the logical design process is a set of detailed documentation for all the data
that will be stored in the database and for the interrelationships between
those data. 

45.4.3.2 Physical database design 
The objective of physical database design is to produce a blueprint for phys-
ically implementing the database. (The resulting documentation is intended
for a technical audience.) In addition to the logical database design, inputs
to this stage also include key elements of the application design. The logical
database design defines the data requirements. The application design
defines how the data will be used. The goal is to design a physical database
that implements the logical design and efficiently provides for all appropri-
ate uses of the data. 

The physical database design process starts with transaction analysis, a
study of expected usage levels associated with the various application func-
tions. Future users are usually involved in this process because they know
how much work they do. The application design identifies points where the
application accesses data, and these data interfaces (or transactions) provide
a focus for transaction analysis. Generally, statistical information about the
level of use is collected for each transaction type. 

Based on these usage levels, decisions about how the data will be phys-
ically implemented are made. Note that high volume portions of the data-
base receive more attention than those accessed less frequently. One option
is to index high volume information for quicker access. Indexes improve
performance, but maintaining them adds to system overhead. 

Another physical database design requirement is ensuring the integrity
of the database. Many database management systems provide features that
help ensure database integrity, and integrity enforcement can also be imple-
mented through the application software. The physical database design
describes the methods that will be used for enforcing data integrity. 

45.4.3.3 Modifying the logical design 
Because physical design decisions can affect the logical design, logical and
physical database design are not independent. Consequently, logical and
physical database design can be viewed collectively as an iterative process
with numerous feedback loops. 

For example, based on a transaction analysis, it might be necessary (for
performance reasons) to store a small percentage of the data redundantly.
Altering the logical database design to include the redundant data is called
denormalization. Like indexing, denormalization can improve perfor-
mance, but at the cost of more overhead. 

Most applications include information that is calculated from other
information in the database; a sales commission (a percentage of sales 
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revenue) is a good example. A choice must be made between physically
storing such values in the database or calculating them as needed. This
decision is based on how often the computed value is needed and how
much information is needed to calculate it. Note that storing the computed
value means computing it only once and subsequently reading it on
demand. Stored calculated fields must be added to the logical database
design. 

The application design can also be altered to avoid projected perfor-
mance problems. For example, it is not unusual for a large, high frequency
transaction to provide more information than is needed for most of its invo-
cations. Such transactions might be broken into a primary transaction that
accesses only the data needed most of the time and a supplemental transac-
tion that accesses the remaining information only when needed. 

45.4.3.4 Schema and subschema 
Finally, consider the database’s schema and subschema. The database’s
physical contents are defined in a schema, a general description of the entire
database that shows all the record types and their relationships. A large
database might contain scores of files, but most users will access only a few
of those files. To minimize the risk of a user accidentally accessing confi-
dential data or changing data in an unneeded file, custom subschema that
include only those records and relationships needed by a particular user or
class of users can be defined. Clearly, the subschema must be consistent with
the user’s logical view of the data. Consequently, defining the schema and
the subschema affects both logical and physical database design. 

45.5 Key terms 
Child — A lower-level record in a hierarchical database structure. 
Composite — A set of related data elements. 
Conceptual database design — See logical database design. 
Data administration — The administrative function charged with the

overall responsibility for data resources in an organization. 
Data dictionary — A collection of data about the data. 
Data element — An attribute that cannot be logically decomposed. 
Data structure — A set of related data elements. 
Database — A collection of interrelated and shared data of different

types organized into a structure that minimizes redundancies and
enhances the manipulation of the data; generally, a set of related files. 

Database administration — The technical function charged with physi-
cally managing an organization’s databases, including such issues as
backup and recovery, performance, and security enforcement. 

Database integrity — The state of a database that is protected against
loss or contamination. 

Database Management System (DBMS) — A software package that
provides the means to define, maintain, control, and administer a
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database and its applications; a set of software routines that define
the rules for creating, accessing, and maintaining a database. 

Denormalization — Altering the logical database design to include
redundant data. 

Entity — An object (a person, group, place, thing, or activity) about
which data are stored. 

Filter — A set of logical conditions used to screen records in a query. 
Flat-file database — A database (more accurately, a file) in which all the

data are stored in a single, spreadsheet-like table that is not linked
with any other files. 

Hierarchical database — A database in which the file links (or relation-
ships) form a hierarchy. 

Index — A list of the keys and physical locations of each record in a file. 
Logical database design — The database design stage concerned with

defining and documenting the database in user terms. 
Network database — A network in which the links or pointers can

describe relationships between any two files in any direction, so a
child can have many parents. 

Parent — A higher-level record in a hierarchical database structure. 
Physical database design — The database design stage during which a

blueprint for physically implementing the database is produced. 
Query — A question; usually, a request for data or information. 
Relation — A table (analogous to a file) in a relational database. 
Relational database — A database in which the files (or relations) are

visualized as two-dimensional tables with each column holding val-
ues of a single field (or attribute) and each row holding a single
record (a single occurrence of the entity). The files are linked by
pointers or, more generally, relationships. 

Relationship — A link between two data structures or entities. 
Schema — A general description of the entire database that shows all the

record types and their relationships. 
Subschema — A subset of the schema that includes only those records

and relationships needed by a particular user or class of users. 
Transaction — The sequence of steps required to carry out an event

about which data are recorded or processed; also, a single occurrence
of a business activity; for example, a single sale or the receipt of a sin-
gle order from a supplier. 

Transaction analysis — A study of expected usage levels associated
with the various application functions. 

View — A subset of the database that includes only selected fields from
the records that meet a set of conditions defined in a logical filter.

45.6 Software 
Many CASE products (Chapter 5), such as Texas Instrument’s Information
Engineering Facility (IEF), include software to provide integrated support
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for both database and application design. Other tools such as automated
data dictionaries (Chapter 25) provide support as well. Access, Paradox,
dBase, Filemaker Pro, Approach, 4th Dimension, and Alpha Four are popu-
lar microcomputer database management programs. Examples of main-
frame database software include DB2, IDMS, and ORACLE. 

Most database management systems include a data definition language
(DDL) for specifying file structures, relationships, schema, and subschema.
Once the database is created, its contents are accessed and maintained using
a data manipulation language (DML). Most database management systems
incorporate a query language (such as Structured Query Language, or SQL)
and a report generator. The database administrator uses a data control lan-
guage (DCL) to perform such activities as backing up files, keeping track of
user names and passwords, and monitoring system performance. 
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46.1 Purpose 
A form is a document (or a simulated document on a screen) that is used to
capture data. This chapter discusses several basic form design and screen
design principles and identifies some input controls that can be used to
screen input data. 



46.2 Strengths, weaknesses, and limitations 
Paper forms are extremely flexible. They can be carried virtually anywhere
and completed using such simple technology as a pen or a pencil. Except for
running out of forms or ink, they are not subject to failure. However, the
data recorded on a paper form must subsequently be entered into a com-
puter through a keyboard, a scanner, or similar equipment. Because the data
capture and data entry steps are separated by time, the data might not be
available in a timely fashion, and the process of obtaining the feedback
needed to correct errors is lengthy and complex. 

Although laptop computers are quite portable, screens generally require
the user to stay near a source of electrical power and to avoid certain envi-
ronments, and a screen can fail. (Field personnel sometimes carry an appro-
priate set of paper forms as a backup.) However, because a screen is directly
linked to a computer, the data can be utilized as soon as they are entered
(thus enhancing timeliness) and verified and corrected interactively (thus
enhancing data accuracy). 

46.3 Inputs and related ideas 
Forms and screens are important parts of the user interface (Chapter 48).
The contents of a given form or screen can often be derived from the logical
data structures identified during the analysis stage of the system develop-
ment life cycle by using such tools as data flow diagrams (Chapter 24), pro-
totypes (Chapters 31 and 32), and Warnier-Orr diagrams (Chapter 33). The
data are typically documented in the data dictionary (Chapter 25), and
important form and screen design criteria can often be found in the require-
ments specification (Chapter 35). At the high-level physical design stage,
symbols on the system flowchart (Chapter 37) identify necessary screens
and forms. Prototyping (Chapter 31) and rapid application design (Chapter
32) are useful tools for designing forms and screens. 

Related concepts include survey instruments (Chapter 17), report
design (Chapter 47), user interface design (Chapter 48), dialogue design
(Chapter 49), windows design (Chapter 50), web page design and hyper-
links (Chapter 51), and system controls (Chapter 77). The contents of forms
and screens are an important source of information about the existing sys-
tem during the problem definition and information gathering stage (Part II)
of a subsequent system development life cycle. 

46.4 Concepts 
A form is a document (or a simulated document on a screen) that is used to
capture data. This chapter discusses several basic form design and screen
design principles and identifies some input controls that can be used to
screen input data. 
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46.4.1 Data capture and data entry 

As the term implies, data capture is the process of initially capturing source
data. Data entry, in contrast, is the process of converting the source data into
a machine-readable form and entering the data into a computer. 

In a batch environment, data capture and data entry are sometimes
viewed as separate steps. First, the data are captured on paper or some other
medium and collected over time. Then the data are entered using such
equipment as a keyboard, a MICR reader, an optical character recognition
(OCR) scanner, a regular scanner with OCR software, a mark sense reader,
and so on. 

In an on-line or interactive environment, data capture and data entry are
combined in a single step. For example, when a customer uses an ATM
machine to perform a banking transaction, the data are captured in elec-
tronic form and immediately processed, eliminating the need for a subse-
quent data entry step. 

46.4.2 Designing forms 

Many applications call for forms; for example, Figure 46.1 shows a sales
receipt (or sales invoice) form. Forms are used to capture source data, and
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the forms themselves are sometimes retained in long-term storage.
Completed forms can be scanned or the data can be input to a computer
through a keyboard. Alternatively, a form image can be displayed on a
screen and used as a template for on-line or interactive data entry. 

Form design is an art, but a few simple guidelines can help. The start-
ing point is the necessary data. Analyze the appropriate data flow diagrams,
data dictionary entries, data structures, requirements, and other analysis
documentation and identify all the data elements or fields that must appear
on the form. 

A key consideration in designing a form is anticipating how the user is
likely to scan the form. In Western societies, people read from left to right,
starting at the top left and preceding down the page. Consequently, users
naturally look first at the upper left of a document and follow a left to right
and top to bottom pattern from the starting point. A well-designed form
takes advantage of that natural tendency. For example, the invoice pictured
in Figure 46.1 features a prominent logo at the upper left (the starting point),
positions customer information (the first data to be entered) to the right of
the logo, and then provides a series of lines for entering the item purchased
data. Notice how the lines and boxes tend to guide the eye and suggest the
proper order for entering data values. 

A second primary objective is to make sure the form itself does not
introduce errors. Allow enough space for each field. Although it is tempting
to try to avoid the need for a second form, jamming too much information
on a single page virtually guarantees that important data will be missed or
recorded incorrectly. Clearly distinguish captions, directions, and other sup-
porting information from the data. For example, set the supporting infor-
mation in a unique font or color that cannot possibly be mistaken for source
data. The preprinted invoice number on Figure 46.1 is another good exam-
ple; note that it is set in a font that clearly distinguishes it from the pre-
printed captions. Finally, avoid the temptation to overdo fonts, colors,
graphics, and special effects. The focus should be on the data, not the form. 

A well-designed form can help to enhance data accuracy. For example,
related fields should be entered together. Proximity implies association, so
use lines, boxes, color, and white space to group related fields and to visu-
ally separate the groups. Group fields (or attributes) that are associated with
the same entity; for example, the customer’s name, address, and telephone
number are grouped in a box at the top right of Figure 46.1 and the data
associated with sales are grouped in the lower box. Consider the source of
each field and group fields from the same source. Anticipate the order in
which the user is likely to enter the data and try to follow that natural order
(e.g., name first, then street address, then city, etc.). 

Provide clear, unambiguous directions and captions, and include exam-
ples where appropriate. Some fields call for free-form data recording; the
lines for entering customer data on Figure 46.1 are good examples.
Sometimes, single-character blocks or (lightly) printed examples or 
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templates show the user exactly where and how to record the values for 
specific fields. Blocks are particularly useful for fixed length fields (Figure
46.2). Templates are particularly useful for numeric only or character only
fields. Check lists are also popular; the available choices are listed on the
form and the user selects an entry by marking it in some way or clicking on
a box (Figure 46.3, lower right). It is not unusual for a given form to incor-
porate different data recording techniques for different fields. 

Common or “standard” forms can be purchased from most office sup-
ply stores, and many form design software packages include libraries of
sample forms and form templates that can be customized. 

46.4.3 Designing scr eens 

A screen can be used to display a report or to electronically simulate a form,
but more dynamic images can be displayed, too. Like form design, screen
design is a bit of an art, but once again a few simple guidelines can help. 

The principles of form design still apply to screen design. The starting
point is the necessary data. People still read a screen from left to right and
from top to bottom. The screen itself must not introduce errors, so allow
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enough space for each field and clearly distinguish captions, directions, and
other supporting information from the data. Use lines, boxes, color, and
white space to group related fields and to visually separate the groups.
Provide clear, unambiguous directions and captions, and provide examples
where appropriate. 

Design for the user. Get the user involved in the process by prototyping
the screens. Take advantage of what the user already knows by simulating
existing forms and reports on the screen and by following the conventions
of applications the user already knows. Always provide feedback; following
any transaction or operation, tell the user what happened. Never leave the
user hanging. As a minimum, provide features to support easy recovery
from errors and to facilitate backward migration. For example, allow the
user to back up one screen by pressing the escape key. 

Extend the idea of grouping related fields by designing a set of related
screens so that each screen supports a complete operation or a complete set
of related operations. For example, consider using one screen to collect cus-
tomer data (Figure 46.2) and another screen to collect item purchased data
(Figure 46.3), and so on. When data must be entered through a set of related
screens, be consistent. Use the same conventions on all parts of the screen
and on all screens. 

Unlike paper forms, screens support numerous features (such as color
changes, font changes, reverse video, blinking characters, variable lines,
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boxes, shapes, graphics, and animation) that can be used to dynamically
capture the user’s attention or communicate information. For example,
graying out or ghosting unavailable options can help to avoid confusion,
and blinking a field, displaying it in reverse video, or pointing to it with
an animated arrow can call the user’s attention to a data entry error.
(People notice things that move, change, or are different.) Avoid adding
special features just because they are technically feasible (or just to show
off), however.

Monitor capability is an important factor in determining what can be
displayed on a screen. For example, resolution, the level of detail a screen
can show, is a function of the number of pixels (or dots) on the screen. A
CGA (Color/Graphics Adapter) monitor supports low-resolution (640 �
200 pixels, 2 color or 320 � 200 pixels, 4 color) graphics. The VGA (Video
Graphics Array) standard supports higher resolutions (640 � 480, 256 col-
ors), and superVGA (SVGA) increases the resolution to at least 800 � 600
pixels and makes more colors available. An XGA (extended graphics array)
monitor supports 1024 � 768 pixels. A detailed discussion of the related
hardware concepts is beyond the scope of this book. 

Traditionally, screens are used to display output, echoing the characters
typed through a keyboard or displaying selected data stored in memory, but
new technology makes it possible to use a screen as an input device.
Hyperlinked screens are used to support graphic presentation such as a
slide show, with the hyperlinks controlling slide sequence. An icon input
screen allows the user to trigger the execution of a related routine by click-
ing on an icon. Finally, a graphic input screen, or touch screen, allows a user
to input a command or request information by pointing; the touch screens
in shopping mall kiosks are a good example. 

Screen design tools are often incorporated in prototyping and CASE
software. 

46.4.4 Input controls 

The objective of input controls is to screen out and (if possible) correct bad
data before they enter the system. Validity tests are used to ensure that each
input field is the right type (numeric, alphabetic), that the value of a given
field is within upper and lower bounds, that fixed length fields (e.g., social
security number, telephone number) are the right length, and so on.
Exception tests are used to screen such “exceptional” values as a zero in a
field that will be used as a divisor. Reasonableness tests are used to screen
invalid values (e.g., anything but F or M in a single-character sex or gender
field). 

Input controls are implemented at data entry time. If the data capture
and data entry steps are separated by time, the input controls are used to
flag erroneous transactions for subsequent review. In some cases, the bad
transactions can be corrected in time for processing with the current batch.
In other cases, the flagged transactions are corrected off-line and must wait
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until the next scheduled batch run. However, if the data collection and data
entry steps are combined in an on-line, interactive system, errors can be
identified and corrected as they are entered. 

46.5 Key terms
Data capture — The process of initially capturing source data. 
Data entry — The process of converting source data into a machine-

readable form and entering them into a computer. 
Exception test — A test used to screen such exceptional values as a zero

in a field that will be used as a divisor. 
Form — A paper document (or a simulated document on a screen) that

is used to capture data. 
Graphic input screen (touch screen) — A screen that allows a user to

input a command or request information by pointing. 
Hyperlinked screens — A set of screens connected by hyperlinks; for

example, in a slide show presentation, hyperlinks are used to control
slide sequence. 

Icon input screen — An input screen that allows the user to trigger the
execution of a related routine by clicking on an icon. 

Input control — A test or control, designed to screen out and (if possi-
ble) correct bad data before they enter the system. 

Pixel — A picture element; a dot on a screen. 
Reasonableness test — A test used to screen invalid values (e.g., any-

thing but F or M in a single-character sex or gender field). 
Resolution — The level of detail a screen can show, a function of the

number of pixels (or dots) on the screen. 
Screen (display screen) — An output device that resembles a television

screen. 
Source data — The original data that describe a transaction. 
Validity test — A test used to ensure that each input field is the right

type (numeric, alphabetic), that the value of a given field is within
upper and lower bounds, that fixed length fields (e.g., social security
number, telephone number) are the right length, and so on. 

White space — Space on a form or a screen that contains no information;
empty space. 

46.6 Software 
Form Designer (The Learning Company), Formtool 97 (International
Microcomputer Software, Inc.), Informs (Novell), and Jetform Design
(Jetform Corporation) are examples of form design software packages.
Screen design tools are often incorporated in prototyping and CASE 
software. 
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47.1 Purpose 
A report is a formal, organized presentation of data, often in the form of a
printed document or a set of screens. Reports are an important part of a sys-
tem’s user interface. This chapter discusses text-only reports. 

47.2 Strengths, weaknesses, and limitations 
Reports were common long before computers were invented. They are
excellent tools for organizing and summarizing large amounts of data. 



Traditionally, reports were static and often suffered from information
overload, but such modern software as report generators and query lan-
guages have made it possible to select on demand only the desired data
from a file or database. 

47.3 Inputs and related ideas 
Reports are an important part of a system’s user interface (Chapter 48).
Before a report can be prepared, the data must exist, usually in the form of
one or more files (Chapter 44) or databases (Chapter 45). During the high-
level system design phase (Part V), reports are identified as data flows to
users. The contents of a report can often be derived from the logical data
structures identified during the analysis stage by using such tools as data
flow diagrams (Chapter 24), prototypes (Chapters 31 and 32), and Warnier-
Orr diagrams (Chapter 33). Reports are an important source of information
about the existing system during the problem definition and information
gathering stage (Part II). 

47.4 Concepts 
A report is a formal, organized presentation of data, often in the form of 
a printed document or a set of screens. This chapter discusses text-only
reports. 

47.4.1 Report format 

Figure 47.1 illustrates the format of a traditional control breaks report. It
begins with a report header or a report title that identifies the report. Other
identifiers, such as the report date and the person or department responsi-
ble for compiling the report, are often included in the report header.
Sometimes, a separate title page is printed or displayed. On multiple page
reports, the report title is often repeated at the top of each page or screen. 

The body of the report is divided into an imaginary grid of columns and
rows (or lines). Column headers near the top of each page or screen iden-
tify the field displayed in each column. Each row holds a single detail line
that displays the appropriate field values from a single input record (e.g.,
from a single sales receipt) or a single set of related input records. 

Note in Figure 47.1 that the stock number and the description are
repeated on each detail line for stock number 17593, but the repetitive val-
ues are suppressed on the detail lines for the second item, stock number
17594. Suppressing repetitive data makes the report easier to read, but either
approach is acceptable. 

The data used to generate a report are often sorted or indexed by one or
more key fields. (In Figure 47.1, the stock number serves as the key.) Because
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the source records are accessed in key order, the detail lines for all records
with the same key value are grouped together on the report. For example,
all the records for stock number 17593 will be read (and, thus, be printed or
displayed) before the first stock number 17594 record is read. 

A change in the value of the key field is called a control break. For exam-
ple, when the first record for stock number 17594 is read, it is reasonable to
assume that all the stock number 17593 records have been processed. When
a control break occurs, a summary line (Figure 47.1) can (optionally) be
printed. Summary lines typically hold a count of the number of records
and/or the sums of selected fields in the control group. 

Some reports feature multiple control fields, with primary control
breaks, secondary control breaks, and so on. If desired, summary lines can
be printed at each level control break. In some reports, the detail lines are
suppressed and only summary lines are printed.

Most reports end with a report summary line, section, or page. On 
multiple-page reports, page summaries are common, too. Page numbers
and a page header are usually added to lengthy reports. 
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47.4.2 Types of reports 

A detail report lists data for each input record or transaction. As the name
suggests, a summary report summarizes data accumulated or derived from
several detail records, often showing only the summarized data. An excep-
tion report lists or summarizes only the data for input records that pass a
predefined condition or filter, for example, listing only overdue accounts 
or only items than have been in inventory for longer than 30 days. An
unusual occurrence report lists or summarizes data describing only abnor-
mal or out of the ordinary occurrences. 

A scheduled report is prepared at a predetermined time; for example, at
the end of the day, the week, the month, the quarter, or the year. A key indi-
cator report is a form of scheduled report that summarizes critical activities,
often on a daily basis. A demand report, in contrast, is created on request.
Often, end users are given the ability to create their own demand reports
using a query language. 

47.4.3 Report layout 

To lay out a report, start by defining the report title and the page title lines.
Be sure to include the report date and page numbers (if necessary). 

Then, turn to the body of the report. Any number of lines can be printed
or displayed, but the number of characters that can be arrayed across a page
or a screen is limited, so width is the primary constraint on report design.

To determine the column width for each of the report fields, start with
the column headers. Lengthy, multiple-word headers can be spread over
two or more lines, so for each column count the number of characters in the
widest header line and record the header widths. Then count the number of
characters (including decimal points, commas, plus signs, minus signs, dol-
lar signs, and other punctuation) needed to display the biggest (or smallest)
possible value for each field and record the data widths. Finally, working
across the report one column at a time, compare the header width and the
data width for each column and select the larger value. That number is the
column width. Add the widths for each of the columns to get the number of
characters needed to display the data. 

Next, consider the blank space (or white space) needed to separate the
columns. A single space might be enough for closely related columns, but
additional column separation normally enhances readability. Add white
space to the sum of the column widths to get the report width. If that num-
ber is bigger than the paper or screen width, modify or delete one or more
columns, use a smaller font, reduce the amount of white space, or change
the (printed) report orientation from portrait to landscape. Otherwise, sub-
tract the report width from the paper or screen width to get the number of
unused spaces that can be distributed across the line to enhance the balance,
symmetry, overall appearance, and readability of the report. 

1999 by CRC Press LLC



47.4.4 Report design guidelines 

Historically, reports were designed on paper using report layout forms.
Modern report generators (software) have simplified the task by suggesting
a reasonable report layout given only a list of the fields to be included, but
the designer may still want to fine-tune the suggested layout to enhance
clarity. Report design is a bit of an art, but there are several guidelines that
can help. 

The first guideline is to include all the necessary data, but only the nec-
essary data. The temptation is to list every available field. Don’t. Be selec-
tive. Note that no report generator, no matter how sophisticated, can select
the correct fields for the designer. 

A second set of guidelines is intended to make the data easy to read.
Start by using clear, meaningful, descriptive column headers. Visually dis-
tinguish the data from the descriptive information; for example, set column
headers in uppercase, italic, or boldface and the data in a basal (regular)
font. Group closely related fields in adjacent columns. Use white space to
separate loosely related and adjacent positioning to group closely related
fields. Avoid using too much white space to separate columns (four or five
spaces are usually plenty), because too much separation makes it difficult to
visually align the rows. Use a visual clue (such as an asterisk, a different
type font, and/or blank lines or horizontal spacing) to identify summary
lines. 

To clarify the meaning of the data, make sure the headers and the asso-
ciated data are visually aligned. Generally, left-justify character fields and
their headers and right-justify numeric fields and their headers, or center
the data under the header. If a numeric field includes digits to the right of
the decimal point, make sure all the decimal points are aligned. The easiest
way to control decimal point alignment is to display the same number of
digits in all the values and to right-justify the numbers. 

With some type fonts, it is easy to mistake a dollar sign for the digit 8,
so by convention, dollar signs are displayed only on column or row totals
and (optionally) on the first value in a column. Negative signs are easy to
overlook in a column of numbers, so the negative sign (or other designa-
tor, such as DB for debit or CR for credit) is typically printed to the right
of the negative number. An option is to enclose negative numbers in
parentheses. 

Some reports print or display negative numbers in red, but relying
strictly on color is dangerous because most standard office copiers show red
as black. Also, avoid using light blue. Many office copiers are blind to light
blue. 

The final rule is a simple one: Be consistent. Changes in rules from col-
umn to column, row to row, or page to page are confusing and lead to inter-
pretation errors. The reader should not be expected to learn the formatting
rules more than once. 
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47.5 Key terms 
Column header — Documentation at the top of each page or screen

that identifies the field displayed in each column. 
Control break — A change in the value of a key field. 
Demand report — A report that is created on request. 
Detail line — A single report row that displays the appropriate field

values from a single report file record. 
Detail report — A report that lists data for each input record or trans-

action. 
Exception report — A report that lists or summarizes only the data for

input records that pass a predefined condition or filter. 
Field — A data element; a single, logically meaningful unit of data. 
File — A set of related records. 
Key indicator report — A form of scheduled report that summarizes

critical activities, often on a daily basis. 
Record — A set of related fields. 
Report — An organized presentation of data, often printed or dis-

played in text form. 
Report header (report title) — A page, screen, or section that (typical-

ly) precedes and identifies the report. 
Report summary — One or more lines, a section, or a page that sum-

marizes the entire report. 
Scheduled report — A report that is prepared at a predetermined time. 
Summary line — On a report, a line (or row) that holds summary

information, such as counts or sums; summary lines are typically
printed or displayed following a control break. 

Summary report — A report that summarizes data accumulated or
derived from several input records, often showing only the summa-
rized data. 

47.6 Software 
Most programming languages can be used to create a report. Most database
management programs and many CASE products, screen design tools, and
prototyping tools incorporate a report generator or a report layout facility.
Some languages, such as RPG, were specifically designed to create reports. 

47.7 References 
1. Davis, W. S., Business Systems Analysis and Design, Wadsworth, Belmont, CA,

1994. 
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48.1 Purpose 
A user interface is a point in the system where a human being interacts with
a computer. This chapter discusses several different types of direct (human/
computer) interfaces and the interface design process. 

48.2 Strengths, weaknesses, and limitations 
This chapter introduces some important principles of user interface design.
The strengths, weaknesses, and limitations associated with specific inter-
faces or interface design techniques are discussed in context. 

48.3 Inputs and related ideas 
Before designing a user interface, the analyst or designer must first know
the user and understand the task to be performed. Much of the necessary
information is collected during the problem definition and information
gathering (Part II), analysis (Part IV) and high-level design (Part V) stages of
the system development life cycle. On a data flow diagram (Chapter 24),
processes and data flows from sources and to destinations might suggest a
need for user interfaces. The data elements that are input by or output to
users are typically documented in the data dictionary (Chapter 25). The
requirements specification (Chapter 35) identifies user needs, user charac-
teristics (skill, training, etc.), and task requirements. At the high-level phys-
ical design stage, symbols on the system flowchart (Chapter 37) identify
necessary reports, screens, forms, and keyboard operations. Prototyping
(Chapter 31) and rapid application design (Chapter 32) are useful tools for
designing a user interface. 

This chapter focuses on certain general principles associated with direct
user interface design. The contents of the screens that make up a direct user
interface are discussed in Chapter 46 (screen and forms design), Chapter 49
(dialogue design), and Chapter 50 (windows design). Related concepts
include report design (Chapter 47), web page design (Chapter 51), and
natural language processing (Chapter 68). 

48.4 Concepts 
A user interface is a point in the system where a human being interacts with
a computer. The interface can incorporate hardware, software, procedures,
and data. The interaction can be direct; for example, a user might access a
computer through a screen and a keyboard. Printed reports and forms
designed to capture data for subsequent input are indirect user interfaces.
This chapter focuses on direct computer interfaces. 
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48.4.1 The end user 

Generally, the purpose of any information system is to provide the right
data and information to the right person at the right time. That “person” is
an end user. 

An end user is any person who needs the output generated by the com-
puter and/or any person who interacts with the computer at an operational
level. Examples include a manager reading a report, a clerk entering data,
an engineer using a CAD program to prepare a technical diagram, a pro-
duction supervisor using software to plan a work schedule, and a technical
writer using a word processor to prepare a manual. The end user commu-
nicates with the system through the user interface. 

48.4.2 Types of user interfaces 

There are several different types of direct user interfaces. 

48.4.2.1 Command interfaces 
Some user interfaces rely on abbreviated commands or acronyms. MS-DOS
line commands, the single-letter slash commands used by early spreadsheet
programs, and the keyboard shortcuts and function key commands avail-
able on many word processors are good examples. 

Such cryptic commands save a sophisticated user the time that might
otherwise be spent traversing menus or windows. Using cryptic commands
also reduces the time needed to design the menus and the screens.
Command-based interfaces require considerable user training, however,
and it is unreasonable to expect users to memorize all the commands with-
out referencing a command template. 

48.4.2.2 Menu interfaces 
A menu consists of a list of the options available to the user. Typically, the
user selects the desired option by typing the option’s letter or number, high-
lighting the option and pressing enter, or pointing to the option and clicking
a mouse button. Often, selecting a given option leads to a second menu list-
ing suboptions, so a set of related screens and windows must be designed
and implemented to support a menu-driven interface. 

On a well-designed traditional interface, the relevant commands, sub-
commands, and/or menus should be logically grouped, and the design of
the hierarchy should be intuitive to the user. Hidden commands or menus
should be avoided. The commands and menus (as well as any related win-
dows or screens) should be easy to access and to terminate. 

Compared to cryptic commands, menus are more flexible, easier to use,
and easier to learn. Traversing multiple menus can be time consuming, how-
ever, and creating a set of linked menus adds to system development time.
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Also, on large or complex systems, the menus occupy a great deal of ran-
dom access memory (RAM). 

48.4.2.3 Object-oriented interfaces 
Object-oriented interfaces, also called icon-based interfaces or graphic user
interfaces (GUIs), have become increasingly common since the introduction
of the Apple Macintosh and Microsoft’s Windows operating systems.
Windows, icons (graphic symbols that represent processing options, files, or
executable routines), menus, and pointers are the key elements of an object-
oriented interface. (Consequently, they are sometimes called WIMP inter-
faces.) Generally, the user points to the desired element and clicks a mouse
button to trigger the associated action. 

On a well-designed object-oriented interface, the meaning of each icon
is apparent (almost intuitively obvious) to the user. Embedded or linked
objects are clearly defined in the icon’s menu structure. Finally, each icon
has a single entry and a single exit. 

Object-oriented interfaces are easy to understand, learn, and use, and
because all the available choices are displayed on the screen, there is no need
for the user to memorize anything. They are also easy to maintain because
each icon (or window, or menu) is implemented as an independent module.
The windows, icons, and menus and the pointer logic consume considerable
processor time and a great deal of memory, however. 

48.4.2.4 Expert system interfaces 
Expert system interfaces utilize natural language processing (NLP) (Chapter
68). Key elements include the ability to parse and comprehend human sen-
tences and paragraphs, voice recognition, and voice data entry. Such hard-
ware as keyboards, pointing devices, and microphones might be used for
input. Speakers provide audio output. Natural language processing requires
a very powerful computer with a great deal of memory and a fast processor. 

48.4.2.5 Web-form interfaces 
Web-form interfaces (Chapter 51) follow the metaphor established by the
Internet and the World Wide Web. Files and executable routines are viewed
as hyperlinked pages. Some of those pages are designed to resemble forms
that users either fill in directly or complete by selecting answers from a
default list. 

On a well-designed web-form interface, the layout of all forms is clear
(almost intuitively obvious) and data entry is always verified. Additionally,
the data entry process is supported by appropriate and meaningful prompts. 

48.4.3 User interface design criteria 

In the past, when computers were expensive and people were (relatively)
cheap, users were expected to interact with the computer on the machine’s
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terms, but that is no longer true. Given today’s technology, a user interface
must be designed to allow the user to perform his or her job as effectively as
possible. Machine efficiency should, of course, be considered, but only if it
does not conflict with the primary objective. 

Generally, a good interface is easy to use, easy to maintain, easy to learn,
and incorporates readily available on-line help. Also, a good interface never
leaves the user hanging, providing (as a minimum) a clear exit path from
any operation. 

48.4.3.1 System type 
The precise nature of the user interface is a function of the type of system to
be developed. For example, a typical management information system
(MIS) incorporates numerous forms, reports, and access controls. A decision
support system (DSS) emphasizes dialogues, windows, and interfaces
between a database, a model base, a graph base, and/or a text base. An
expert system needs interfaces between a rule base, a database, and/or a
natural language processing (NLP) facility. Group decision support systems
(GDSS) and/or electronic meeting systems (EMS) need interfaces with facil-
ities that transmit and/or share data, such as the network. 

48.4.3.2 The mental model 
People tend to form their own mental model of a system. For example, a
video card game player visualizes cards on a table, a video golf game play-
er can image actually playing golf, and a flight simulator gives the user a
realistic sense of flying an airplane. The mental model helps the user under-
stand how the system works. A good mental model allows the user to pre-
dict the system’s response to a given stimulus, and the more accurate those
predictions, the more intuitive the system appears. When the user under-
stands the system at an intuitive level, the need for training declines, the
error rate improves, and the user becomes more efficient. 

When designing a user interface, the designer should try to select a
mental model that makes sense to the user. For example, if the user filled out
a paper form in the old system, that form might be simulated on the screen.
If the mental model cannot be based on the user’s experience, the user must
be trained to understand the new mental model and the designer must be
prepared to adjust the model if the user has trouble understanding it. A
good approach is to adopt a known metaphor such as the Microsoft
Windows desktop. There is no point reinventing the wheel, and time spent
on Windows training might simplify training for future applications. 

48.4.3.3 Environmental issues 
The system environment represents a potential constraint on interface
design. For example, it is unreasonable to expect an automobile mechanic
whose hands are covered with grease to enter data directly into a computer,
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and people whose work takes them away from sources of electricity or a sys-
tem access port require special equipment to capture data electronically.
Consider the nature of the end user, too. Such variables as education, train-
ing, skill, and handicaps serve to limit what a given person can reasonably
be expected to do. The system must fit the user. 

Other environmental factors have legal, moral, and ethical (as well as
financial) implications. For example, over the past several years researchers
have identified a variety of problems associated with video terminal use
ranging from repetitive stress injuries, to eyestrain, to the possibility that
exposure to low-level radiation might represent a hazard for pregnant
women. Such factors must be taken into account when the user interface is
designed. Many organizations have adopted explicit ergonomic standards
for user interfaces. 

Finally, consider legal and auditing requirements. For example, if a com-
pany’s auditing rules specify that a physical (printed) copy of each sales
receipt be retained for a period of one full year, the ability to create, store,
and retrieve those copies must be built into the system, perhaps through the
user interface. If state law requires that all documents used to compute an
employee’s pay be retained until six months after the fiscal year ends, and
pay is computed in part as a commission on sales, then there is a legal rea-
son to maintain a file of sales receipts. Such details can make the difference
between a successful system and an embarrassing failure. 

48.4.4 The user interface design process 

End user involvement is valuable throughout the system development life
cycle, but it is essential during interface design. By definition, supporting the
end user is the ultimate objective of any information system. To the end user,
the user interface is the system. Consequently, user interface design must be
user-centered. 

Interface design can be viewed as a complete system analysis and
design project in its own right, but given the need for user involvement, pro-
totyping (Chapter 31) and rapid application design (RAD, Chapter 32) are
highly recommended. The basic idea is to gradually enhance an initial set of
generalized, but inefficient (soft) capabilities until an easy-to-use, efficient,
user-friendly system evolves. This soft capability approach allows the inter-
face designer to build on a relatively small set of requirements and con-
tributes to a more bug-free conceptual design. Also, as the system evolves,
the soft capabilities are easily replaced by newly available technology, lead-
ing to an advanced interface design with greater power at a lower cost. 

Figure 48.1 outlines the steps in the interface design process. 

48.4.4.1 Overview and define 
The first step is to identify and define the interface requirements (including
the criteria described in Section 48.4.3) in enough detail to begin building a
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prototype. The nature of the proposed system must be known, and any
important environmental factors must be identified. The nature and charac-
teristics of the user tasks supported by the interface, the user needs implied
by the interface, and any links between the interface and the rest of the sys-
tem must also be known. 

This information can usually be obtained from the documentation
developed during the problem definition and information gathering (Part
II), analysis (Part IV), and high-level design (Part V) stages of the system
development life cycle. For example, a properly drawn system flowchart
(Chapter 37) shows all the system elements (manual procedures, input doc-
uments, output documents, display screens, etc.) that call for user interfaces
and the links between those elements and the rest of the system. 
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48.4.4.2 Design and construct 
The key objective of this stage is to construct a prototype based on the avail-
able information. Often, the first step in the process is to construct a hierar-
chy chart that shows the required windows or screens and the paths or links
between them. For example, the hierarchy chart in Figure 48.2 shows the
relationships between a menu screen and its immediate subscreens. By con-
vention, control flows from top to bottom and back again, and the user can
exit the system only from the top. 

A hierarchy chart is an excellent tool for evaluating and planning the
value, path, and destination associated with each user choice. The value or
response associated with a given choice is an input value that activates the
choice; for example, a four-choice menu might recognize as valid only choices
1, 2, 3, or 4. Choice 1 follows a path to a single destination (a single lower-
level window or a single subscreen). Choice 2 follows a different path to a
different destination, and so on. 

Related links should be grouped together; for example, in a menu, input
options should be grouped to form one subcategory and output options
should be grouped to form a different subcategory. A good design leaves
room for expansion, too; for example, a given menu might be initially
designed to hold only items 1 through 6, leaving items 7 through 9 for new
links. 

Consistency is a particularly important design criterion. Values must be
consistent, for example, a given set of related menus might use alphabetic
characters or digits, but not both. Also, certain options (0 for return to main
menu, 9 for exit the system) might appear on all menus to provide a consis-
tent set of basic navigating rules. Many organizations impose user interface
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“syntax” rules, often in the form of a standard set of user interface objects, to
encourage consistency from application to application and code reusability. 

Once the screens and menus are designed, the associated dialogues
(Chapter 49) are coded and the prototype is constructed. 

48.4.4.3 Test and evaluate 
Before the prototype is turned over to the user, its stability must be tested.
The basic idea is to trace the top down and bottom up links between the var-
ious screens and windows to ensure that elements are called in proper
sequence and the necessary parameters are passed between levels. This
process helps to correct any inconsistent paths (such as an exit from any-
thing but the top level), eliminate infinite-loops, and fix other problems that
might cause the user to lose navigational control. Several CASE tools,
fourth-generation languages (4GL), and object-oriented tools contain
embedded routines, modules, or functions that allow the designer to run the
prototype and test for stability. For example, FOCUS has a feature called
window paint that tests the prototype’s links and connections. 

Once the prototype is stable, the user begins to exercise it. The combi-
nation of user feedback and designer observation helps to identify unclear
or inconsistent elements in the prototype design. Other test criteria include
the objectives of the interface, the requirements of any procedures that
access or rely on the interface, and such performance factors as error or fail-
ure rates, stability, linking sequence, and related systems performance.
Essentially, the prototype is compared to the desired and/or expected
results. If the prototype interface is acceptable, the next phase is skipped and
the interface design is completed. 

48.4.4.4 Feedback and refine 
If user feedback or other test results suggest a need for reconceptualization,
the design process returns to the first phase (overview and define) and the
nature of the proposed interface is reevaluated. If user feedback or other test
results suggest a need for redevelopment to correct design defects, the
design process returns to the second phase (design and construct) and the
prototype is modified. If the problems are concerned with the test criteria,
test procedures, or test data, the design process returns to the third phase
(test and evaluate) for retesting. 

48.5 Key terms 
Command-based interface — A user interface that relies on cryptic

commands and/or specific keystrokes to identify the desired action. 
Direct user interface — A user interface through which a user directly

accesses a computer (for example, via a screen and a keyboard). 
End user — Any person who needs the output generated by the com-

puter and/or who interacts with the computer at an operational
level. 

1999 by CRC Press LLC



Ergonomics — The study of the relationship between human beings and
their workplaces. 

Expert system interface — A user interface that utilizes natural lan-
guage processing. 

Graphic user interface (GUI) — A user interface that features win-
dows, icons, menus, and pointers; generally, the user points to the
desired element and clicks a mouse button to trigger the associated
action. The Apple Macintosh and Microsoft Windows interfaces are
common examples. 

Icon — A graphic symbol that represents a processing option, a file, or
an executable routine. 

Indirect user interface — A user interface that does not involve direct
computer access; for example, a printed report or a form designed to
capture data for subsequent input. 

Menu interface — A user interface in which the list of the options avail-
able to the user is displayed in a table or menu. 

Natural language processing — Hardware and/or software that allows
people to communicate with a computer in much the same way they
communicate with each other; voice recognition is an example. 

Object-oriented interface — A user interface that features windows,
icons, menus, and pointers; generally, the user points to the desired
element and clicks a mouse button to trigger the associated action;
also called an icon-based interface, a graphic user interface, or a WIMP
interface. 

Prototype — A working physical model of a system or a subsystem. 
User interface — A point in the system where a human being interacts

with a computer. 
Web-form interface — A user interface that follows the metaphor estab-

lished by the Internet and the World Wide Web. 

48.6 Software 
Many CASE products support prototyping. Screen painters, menu builders,
report generators, fourth-generation languages, executable specification
languages, spreadsheets, and database management programs are popular
prototyping tools. 

The Apple Macintosh operating system and Microsoft Windows are
examples of graphic user interfaces. Dragon Systems’ Naturally Speaking and
IBM’s ViaVoice Gold are voice recognition software packages that might be
used to support an expert system user interface. Netscape and Microsoft’s
Internet Explorer define the metaphor for web-form interfaces. 
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49.1 Purpose
A dialogue is the exchange of information between a computer and a user.
This chapter discusses several different types of dialogues and the dialogue
design process.

49.2 Strengths, weaknesses, and limitations
This chapter introduces some important principles of dialogue design. The
strengths, weaknesses, and limitations associated with specific dialogue
types and dialogue design techniques are discussed in context.



49.3 Inputs and related ideas
Dialogue design is typically performed in the context of user interface
design (Chapter 48). Dialogue design focuses on the contents of specific
screens, while interface design is more concerned with defining the struc-
ture, the links, and the execution sequence associated with the complete set
of screens and windows that defines a user interface. To put it another way,
dialogue design is concerned with the data, while user interface design is
more action-oriented.

Much of the specific information needed to define the dialogue is col-
lected during the problem definition (Part II) and analysis (Part IV) stages of
the system development life cycle. Dialogues often utilize windows
(Chapter 50). Data entry concepts are discussed in Chapter 46.

49.4 Concepts
A dialogue (or dialog) is the exchange of information between a computer
and a user. Reports, forms, and individual screens are static; think of them
as individual slides or still pictures. A dialogue, in contrast, is dynamic and
interactive.

Dialogue design is closely linked to user interface design (Chapter 48).
During the user interface design process, the designer identifies the neces-
sary screens and defines how those screens are linked. During the dialogue
design process, the designer creates the contents of those screens.

49.4.1 Types of dialogue

The purpose of instruction dialogue (sometimes called the systems infor-
mation interface) is to provide instructions and other information about the
system’s operations, functions, and structure. The information might be pre-
sented in text or graphic form (e.g., a hierarchy chart or a table of menus).
The taskbar that shows the open or active programs at the bottom of a
Microsoft Windows 95 screen and a detailed Microsoft Word help screen on
a particular topic are good examples.

Assistance dialogue is an interactive process intended to help the user
find something; the help index and the little character in the corner of a
Windows 95 screen are good examples. Note that the detailed explanation
displayed at the end of the help process is instruction dialogue. Assistance
dialogue normally requires a response of some type; instruction dialogue
often does not.

Question-answer dialogue is designed to solicit user input. Action-
oriented question-answer dialogue requires only a single keystroke. For
example, in many situations, typing Y (for yes) or N (for no) provides the
system with enough information to trigger an action, and typing a single 
letter or digit is often enough to select a choice from a list of options.
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Figure 49.1 A portion of the Library of Congress Advanced Search screen showing
an example of information-oriented question and answer dialogue.

Information-oriented question-answer dialogue asks the user to provide
more information (a sentence, a paragraph, some data), and the input infor-
mation is generally not used to directly trigger execution. For example,
Figure 49.1 shows a portion of the Library of Congress Advanced Search
screen.

Explanation dialogue is widely used in multi-media and other hyper-
linked structures. The supporting material appears in a separate window or
screen and provides a sentence or a paragraph of explanation, often for a hot
word or hot phrase. In effect, explanation dialogue performs a glossary
function. For example, when the mouse is held on a Microsoft Windows 95
icon, a brief description of the icon’s function appears in a small dialogue
bubble. The status window that appears on some mailers after an e-mail
message is sent is another example.

Graphics display dialogue is common in installation or system evalua-
tion routines. For example, the bar chart near the bottom of the FORMAT
window in Figure 49.2 gives the user a clear sense of the progress of a for-
mat operation. The animated bar chart that shows percent completion while
an installation routine runs is another example.



49.4.2 Dialogue design issues

An ideal dialogue is consistent (in sequence, operation, and/or execution),
easy to understand, and easy to use. Each element of the dialogue is built
from simple, easy-to-understand, grammatically correct sentences.
Computer jargon and abbreviations are used only when absolutely neces-
sary. As a minimum the user is able to exit (or escape) and undo (undelete
or cancel) any operation without losing already completed work. The ele-
ments of the various dialogues are grouped in a logically consistent manner.
When errors must be communicated (for example, through assistance 
dialogue), all errors are identified and clearly defined, and consistent termi-
nology is used to describe the errors.

Feedback is essential. The user should always be given status informa-
tion, clear and appropriate prompts and cues, and (when necessary) clear
warning messages.

Data entry (Chapter 46) should always be verified. Validity tests are
used to ensure that each input field is the right type (numeric, alphabetic),
that the value of a given field is within upper and lower bounds, that fixed
length fields (e.g., social security number, telephone number) are the right
length, and so on. Exception tests are used to screen such “exceptional” 
values as a zero in a field that will be used as a divisor. Reasonableness tests
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are used to screen invalid values (e.g., anything but F or M in a single-
character sex or gender field). The objective is to screen out and (if possible) 
correct bad data before they enter the system.

Default or assumed values can help, too. For example, if an input field
is empty (or null), a blank space might be assigned to a literal, and the value
zero might be assigned to a null numeric field. Sometimes, default values
are preassigned to a field or included in a list or menu from which the user
can select. Finally, confirmation controls ask users to verify their inputs
(often by responding to one or more yes or no questions) before advancing
to the next screen or window.

Response time is a very important criterion for a dialogue-driven 
system. Traditionally, response time is defined as the interval between the
instant a command is issued and the instant the response begins to appear
on the screen, but that definition ignores the user. A more useful definition
of dialogue response time includes the following elements:

1. System response time—The traditional definition.
2. The display rate—A hardware parameter that determines how quickly

the complete screen appears.
3. User scan/read time—A measure of how long it takes the user to read

and understand the screen.
4. User think time—Think time includes a cognitive phase during which

the user evaluates the screen and a perceptive phase during which the
user decides what to do.

5. User response time—User response time includes a motor phase dur-
ing which the user performs a physical action (press a key, point,
and click) and a sensory phase during which the user waits for feed-
back.

6. Error time—The time spent making and recovering from errors; this
factor does not occur on all the screens. It is often expressed as an
expected value (the time multiplied by the probability of occurrence).

Response time can be estimated or measured for each screen.
Transaction response time is the sum of the response times for all the screens
in the dialogue.

49.4.3 The dialogue design process

Dialogue design is typically performed in the context of user interface
design (Chapter 48), program design, or subsystem design. The user inter-
face design defines the required set of screens and windows and the order
of execution for the various dialogue elements. A dialogue is designed and
created for each screen or window in the user interface.

Much of the specific information needed to define the dialogue is col-
lected during the problem definition (Part II) and analysis (Part IV) stages of
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the system development life cycle. Such design requirements as response
time and throughput are key criteria, but the dialogue designer’s most
important task is to study the users, their needs, their interests, and their
capabilities. If the dialogue is not meaningful to the user, system perfor-
mance will be negatively affected.

Once the required dialogue type is defined, the initial draft of the dia-
logue to support a given screen or window is often prepared using struc-
tured English (Chapter 60). After the draft version is desk checked, shared
with the user, and approved, the necessary code is incorporated into the
user interface prototype, tested, and modified as necessary. When an accept-
able user interface prototype (with acceptable dialogues in place) emerges,
the dialogues are converted into the finished code using a programming
language, a screen generator, or some other tool.

49.5 Key terms
Action-oriented question-answer dialogue — A form of dialogue that

requires a single keystroke response to trigger an action.
Assistance dialogue — A form of dialogue designed to provide help

with command syntax, error messages, error identification, error
symptoms, and so on.

Dialogue — The exchange of information between a computer and a
user.

Explanation dialogue — A form of dialogue that performs a glossary
function.

Graphics display dialogue — A form of dialogue that shows informa-
tion in graphical form.

Information-oriented question-answer dialogue — A form of dialogue
that asks the user to provide information (a sentence, a paragraph,
some data) that is generally not used to directly trigger execution.

Instruction dialogue (systems information interface) — Dialogue that
provides instructions and other information about the system’s oper-
ations, functions, and structure.

Question-answer dialogue — A form of dialogue designed to solicit
user input.

Response time — Traditionally, the interval between the instant a com-
mand is issued and the instant the response begins to appear on the
screen; dialogue response time includes system response time, the
display rate, user scan/read time, user think time, user response
time, and error time.

Transaction response time — The sum of the response times for all the
screens in the dialogue.

User interface — A point in the system where a human being interacts
with a computer.
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49.6 Software
Many CASE products support dialogue prototyping. Screen painters, menu
builders, report generators, fourth-generation languages, and executable
specification languages are popular tools for creating dialogues.
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50.1 Purpose
A window is a screen box or a portion of a screen that holds a message, a
menu, or some other unit of information. With the growing popularity of
Microsoft Windows and the Apple Macintosh platforms, windows have
become a de facto user interface standard. This chapter discusses several
different types of windows and the windows design process.



50.2 Strengths, weaknesses, and limitations
Most users are familiar with the Microsoft Windows and Apple Macintosh
interfaces. Consequently, adopting windows as a user interface standard
means reduced user learning time because of skill carryover. Key windows
design elements exist as standard reusable objects in Visual BASIC and
other windows-oriented programming tools, and such reusable code can
significantly reduce programming, debugging, and maintenance costs. A
windows-based interface requires a great deal of memory and a relatively
powerful processor, however.

50.3 Inputs and related ideas
Windows are typically designed in the context of a user interface (Chapter
48). The user interface defines the required set of screens and windows and
their order of execution. A dialogue (Chapter 49) is designed and created for
each screen or window in the user interface. Windows design provides a
template for dialogue design. Much of the specific information needed to
define and test the windows is collected during the problem definition (Part
II) and analysis (Part IV) stages of the system development life cycle.

50.4 Concepts
A window is a screen box or a portion of a screen that holds a message, a
menu, or some other unit of information. With the growing popularity of
Microsoft Windows and the Apple Macintosh platforms, windows have
become a de facto standard for user interface design.

50.4.1 Types of windows

Menu bars (or command bars) appear at the top of most Microsoft Windows
and Apple Macintosh application screens. Major functions (e.g., file, edit,
view, help) are displayed on a horizontal menu bar. The subcommands
related to a particular function are displayed in a pull-down or drop-down
menu when the user clicks or selects the function; for example, save, save as,
and print might be listed under the file option. Third and fourth level menus
are used to select additional details, such as a data type (percentage, cur-
rency, comma) or a font (12-point, Times New Roman).

Button bars usually appear under the command menu bar, but buttons
are sometimes displayed at the edge or the bottom of the screen, too. Each
button holds a symbol or icon that represents a function and provides a
short cut to the function. Generally, there is no hierarchy of subfunctions
associated with a button, although pop-up windows are sometimes used to
display available options (e.g., a color palette).
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Split screens allow the user to divide a screen into several subscreens (or
subwindows). For example, most spreadsheet programs allow the user to
freeze columns, freeze rows, and define custom windows to simplify work-
ing with large spreadsheets. Typically, specific commands or actions allow
the user to split the screen, return to the original screen, hide, recall, size, or
move a window. The contents of a given window can usually be manipu-
lated (paged, scrolled, etc.) independent of the other windows. Because 
certain operations are valid only on the active window, a command (or some
other mechanism) to transfer control between windows is essential.

Icon windows display multiple icons. Each icon is essentially a shortcut
to an executable routine, a file, or an application. The initial (post-startup)
Microsoft Windows 95 screen is a good example; note such icons as My
Computer above the Start button.

Some windows are designed to provide feedback. For example, most
installation routines display a window that shows an installing message or
a bar chart that indicates percentage completion. Consider also the status
windows that display loading, searching, or working messages; the 
FORMAT window shown in Figure 50.1 is a good example.

Other windows provide prompts or cues. For example, the user might
be asked to input some data by typing a value (e.g., a social security 
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Figure 50.1 A FORMAT window provides feedback.



number or a user name and a password), filling out an electronic form,
pressing Y or N, or selecting a choice from a list or a menu.

Windows are also used to provide error messages and warnings. For
example, in response to an error, a window might appear showing a symbol
(a question mark, a stop sign) followed by a header and an error message,
an error code, or a warning number, perhaps accompanied by a button to
request additional details. Some error or warning windows give the user a
set of options (yes, no, cancel, retry, help, etc.).

Finally, many windows provide help. Help windows can be organized
by command and/or syntax (often in alphabetical order), error or warning
message number, or by function (e.g., file, view, edit, etc.).

50.4.2 Opening a window

A given window can be opened (activated, triggered, launched) in several
different ways. The most common approach is to use a mouse to point to the
desired icon or menu choice and then left click (to make a selection), right
click (to cancel a selection), or double click (to open an application). An
option is to open a specific window in response to pressing a function key.
The function key approach is particularly suited to such tasks as switching
back and forth between the windows on a split screen.

In some cases, pressing a hot key (usually, a combination of several
keys) triggers a response. For example, most of the sample screens that
appear throughout this book were captured using a program named HiJaak.
To activate HiJaak, the author displayed the screen to be captured and then
pressed the hot key combination Ctrl, Shift, and C. Hot keys should be used
only for experienced users.

50.4.3 Designing windows

Windows are typically designed in the context of a user interface (Chapter
48). The user interface defines the required set of screens and windows and
their order of execution. A dialogue (Chapter 49) is designed and created for
each screen or window in the user interface. Windows design provides a
template for dialogue design. In effect, the window is the vessel and the 
dialog is the content.

An ideal windows design incorporates all the parameters associated
with an ideal user interface design (Chapter 48) and an ideal dialogue
design (Chapter 49). Additionally, a well-designed window is easy to access
(maximize, minimize), easy to operate (move, resize, hide, and recall), easy
to maintain (modify, add, and/or delete a menu item), and easy to exit.

50.4.3.1 Define window contents
For each window required by the user interface, the designer identifies and
documents such parameters as the window name, the window objectives,
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the window type (Section 50.4.1), the information that must appear in the
window, any constraints that affect the window, and additional information
about the window as appropriate. Many organizations have standards
(often in the form of reusable objects) for each window type.

Menu bar windows require additional planning because they are typi-
cally linked to lower-level pull-down menus. Consequently, the designer
must study the system objectives, identify the primary functions, determine
the relevant subcommands, generate a command hierarchy, and test the
design.

Note that sophisticated users and naive users have very different pref-
erences. Consequently, a good understanding of the user is an essential com-
ponent of windows design. If a given window is not meaningful to the user,
system performance will be negatively affected.

50.4.3.2 Verify window flow and sequence
The user interface design defines window flow and sequence, but the
designer often performs additional tests before beginning detailed design
and writing the code to implement the windows.

Window flow analysis is a preexecution analysis technique used to
determine if the sequence of calls to and exits from the various windows is
correct. Unidirectional flow implies that control is transferred from the top-
level (calling) window to a lower level (called) window. Bidirectional flow
implies that the called window can transfer control back to the calling win-
dow after execution.

Window sequence analysis is particularly important when menus are
used. The objective is to ensure that each window is properly linked to the
next window during execution. Basically, the designer documents the return
value (the value returned when the user selects a particular option) and the
goto value (the name of the next menu) for each menu item in the window.
For example, Table 50.1 shows the menu options, return values, and goto
values for a retail customer transaction. Some designers use such tools as
data flow diagrams (Chapter 24) and simple hierarchy charts (Chapters 48
and 62) to support this step.
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Table 50.1 The Menu Options, Return Values, and 
Goto Values for a Retail Customer Transaction

Menu option Return Goto value

Help 0 Main help window
Enter sales transaction 1 Sales transaction window
Enter customer return 2 Customer return window
Enter customer special order 3 Customer special order window
Request special order status 4 Special order status window
Return to main menu 9 Core window
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Figure 50.2 A Microsoft Excel screen with several key windows elements 
identified.

50.4.3.3 Design each window
Figure 50.2 shows a Microsoft Excel screen with several key windows ele-
ments identified. Each of these elements exists as a standard reusable object
in Visual BASIC and other windows-oriented programming tools. Standard
objects or templates also exist for other window types. Windows designers
are strongly urged to follow the established standards whenever possible.

The detailed content of each window (the specific menu items, the narra-
tive wording, etc.) is defined during the dialogue design process (Chapter 49).

50.4.3.4 Test each window
The purpose of this step is to test the paths and execution sequences so any
operational errors or difficulties can be identified and corrected before the
windows are released to the user. Most fourth-generation languages and
CASE packages that support prototyping allow the designer to test the win-
dows, screens, and menus. After the paths and execution sequences are test-
ed, the windows undergo user testing as part of the user interface design
process (Chapter 48).

50.5 Key terms
Bidirectional flow — A control flow in which the called window can

transfer control back to the calling window after execution.
Button bar — A set of buttons that (typically) appears under the menu

bar; each button holds a symbol or icon that represents a function and
provides a short cut to the function.

Dialogue — The exchange of information between a computer and 
a user.



Hot key — A key or (more commonly) a combination of keys that trig-
gers a response.

Icon — A graphic symbol that represents a processing option, a file, or
an executable routine.

Icon window — A window that displays multiple icons.
Menu bar (command bar) — A window that (typically) appears at the

top of the screen and lists such major functions as file, edit, view, and
help; the subcommands related to a particular function are displayed
in a pull-down or drop-down menu when the user clicks or selects
the function.

Pull-down menu (drop-down menu) — A menu of detailed options that
appears when the user clicks or selects a major function on a menu
bar.

Split screen — A windows technique that allows the user to divide a
screen into several subscreens or subwindows.

Unidirectional flow — A transfer of control from the top-level (calling)
window to a lower level (called) window.

User interface — A point in the system where a human being interacts
with a computer.

Window — A screen box or a portion of a screen that holds a message,
a menu, or some other unit of information.

Window flow analysis — A preexecution analysis technique used to
verify that the sequence of calls to and exits from the various win-
dows is correct.

Window sequence analysis — An analysis technique intended to ensure
that each window is properly linked to the next window during 
execution.

50.6 Software
Standard window templates exist as reusable objects in Visual BASIC and
other windows-oriented programming tools. Windows designers are
strongly urged to follow the established standards whenever possible. Most
fourth-generation languages and CASE packages that support prototyping
allow the designer to design, create, and test windows, screens, and menus.
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51.1 Purpose
As web use has grown, the web has become a de facto standard, and design-
ing for World Wide Web compatibility has become an important informa-
tion system criterion. This chapter discusses several basic web page design
concepts and principles.

51.2 Strengths, weaknesses, and limitations
The strengths and weaknesses associated with specific tools and techniques
will be discussed in context.

51.3 Inputs and related ideas
The basic principles and guidelines discussed in Chapters 46 (form and
screen design), 47 (report design), 48 (user interface design), 49 (dialogue
design), and 50 (windows design) pertain to web page design. Prototyping
(Chapter 31) and rapid application development (Chapter 32) are useful
tools for designing web pages. Network concepts are discussed in Chapters
52, 53, and 54.

51.4 Concepts
Over the past several years, the World Wide Web has become a de facto stan-
dard, and designing for web compatibility has become an important infor-
mation system criterion. This chapter discusses several basic web page
design concepts and principles.

51.4.1 The World Wide Web

The World Wide Web is a massive, Internet-based, international collection of
hyperlinked pages. The basic structure of the web is designed around a
client/server concept. Users (clients) request specific pages through their
own computers or workstations. Page requests flow through the Internet to
the computer on which the requested page is stored (the server). The
requested page is then sent to the client (via the Internet) for display.

51.4.1.1 Web addresses and hyperlinks
Each accessible page on the web is assigned a unique URL (uniform
resource locator) address (Figure 51.1); for example, the URL that uniquely
identifies the official White House home page (or initial starting page) is
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http://www.whitehouse.gov. The addresses of other pages on the White
House web site are defined by suffixing server and file information to the
home page address; for example, http://www.whitehouse.gov/WH/
Welcome.html is the complete URL address of the site’s welcome page
(Figure 51.2).
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Figure 51.1 The structure of a URL.

Figure 51.2 The official White House welcome page (after scrolling).

http://www.whitehouse.gov
http://www.whitehouse.gov/WH/Welcome.html
http://www.whitehouse.gov/WH/Welcome.html


Rather than requiring the user to know the URL for each desired page,
the World Wide Web relies on symbolic, logical connections called hyper-
links. For example, the White House welcome page contains a set of icons
and menus that identify links to the President and the Vice President, an
interactive citizen’s handbook, commonly requested federal services, and so
on. Associated (transparently) with each of those links is the URL of the
appropriate web page, and clicking on one of the links initiates a request for
the page using the hidden URL. Consequently, a person looking for a spe-
cific White House press release can reach the proper page by following a
series of logically meaningful key words and icons even if he or she does not
know the URL.

51.4.1.2 Browsers
The program that converts hyperlinks into the associated URLs, requests
pages from the Internet, and displays those pages is called a browser.
Netscape and Microsoft’s Internet Explorer are the two best known
browsers.

51.4.1.3 Hypertext markup language (html)
A browser relies on hypertext markup language (html) to tell it how to map
a page to the screen. When a web page is created, html tags are added to the
text, graphics, sounds, and other objects that make up the page. When the
browser reads the page, it relies on the html tags to tell it where each object
should be placed on the screen, how to format the text, what colors and
backgrounds to use, and so on. Table 51.1 summarizes the kinds of tags that
can be defined in html.

51.4.1.4 Plug-ins
A plug-in is a program that plays or displays special files that are beyond
the capability of a standard browser. Literally hundreds of plug-ins are
available, and many can be downloaded free. For example, Adobe Acrobat
Reader (Adobe Systems) allows a user to view and print Adobe portable
document format (PDF) files. Cosmo Player (Silicon Graphics) is a virtual
reality markup language (VRML) viewer popular with game players.
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Table 51.1 Html Tags Are Used to Define
These Parameters

Structure Colors
Formatting Special characters
Links Forms
Graphics Tables
Dividers Frames
Lists Java
Backgrounds Scripts



QuickTime Viewer (Apple) is used to display movies. RealPlayer
(RealNetworks) supports video, audio, and animation. Shockwave Player
(Macromedia) supports interactive games. Many applications allow the user
to download a copy of the appropriate plug-in on request.

51.4.2 Web sites

A web site is a collection of related, hyperlinked pages. For example, the
White House web site includes numerous pages pertaining to the President,
the Vice President, various federal programs, press releases, and so on.

51.4.2.1 Site structure
Traditionally, the pages that make up a web site are organized in a hierarchy
(Figure 51.3), with a high-level home page providing hyperlinks to several
secondary pages, each secondary page providing hyperlinks to lower-level
pages, and so on. Many modern web sites (sometimes called third-
generation sites) add an entry page and (perhaps) an exit page to the core
structure (Figure 51.4). Typically, the entry page serves as a hook to catch the
visitor’s attention, and the site’s real content starts with the core page. Some
designers add one or more pages to form an entry (and/or exit) tunnel or
chimney between the entry page and the core page (or the core page and the
exit page). For example, the entry tunnel might invite the visitor to complete
a registration form while allowing an already registered repeat visitor to go
directly to the core page.
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51.4.2.2 Navigation
Navigation through a site is controlled by hyperlinks. The standard
browsers provide such default navigational links as Back (return to the 
previous screen), Home (return to the user’s home page, usually on a differ-
ent web site), vertical and horizontal scroll bars (for on-page navigation),
and so on. Additionally, a well-designed site contains its own default inter-
nal navigational links designed to move the user quickly to significant pages
within the site and/or to specific topics on a page. For example, many web
sites display in the same place on every page a navigational bar with links
to the site’s home page and the most important secondary pages.

51.4.2.3 Themes and metaphors
The appearance and ease of navigating a web site can be improved by
applying a theme or metaphor. A theme features a consistent use of color,
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fonts, icons, logos, and sound, a consistent page layout and appearance, and
consistent navigational rules. A metaphor relies on a familiar object or a
familiar pattern of behavior to suggest how the user might interact with the
site. For example, Microsoft Windows and the Apple Macintosh interface
use a point-and-click desktop metaphor, and adopting the same metaphor
for a web site means that anyone experienced with Windows or a Macintosh
already knows the basic operations needed to navigate the site. Many
newspaper sites are designed to resemble an electronic version of a news-
paper. A library site might present the user with an electronic card cata-
logue. An on-line shopping service might display a virtual bookshelf to
browse, and so on. A well designed, well-implemented metaphor makes
navigating a site seem natural, almost intuitive.

51.4.3 Web pages

The basic principles and guidelines discussed in Chapters 46 (form and
screen design), 47 (report design), 48 (user interface design), 49 (dialogue
design), and 50 (windows design) also pertain to web page design.

51.4.3.1 Html editors
To achieve maximum control over appearance, many web page designers
work directly with the html tags to code (or fine tune) their pages. However,
such easy to learn html editors as America OnLine’s AOLPress (freeware),
Trellix Corporation’s Trellix, and Microsoft’s Front Page do a good job of
converting the contents of a WYSIWYG (what you see is what you get)
screen into an html document. Additionally, many full-feature word proces-
sors (Microsoft Word, WordPerfect, Word Pro), spreadsheets, and other 
popular programs allow a user to save a document in html format and sub-
sequently display that document as a web page.

51.4.3.2 Objects
On a web page, each physical entity (a block of text, a graphic image, a 
photograph, an animation, a sound clip, a video clip, a Java applet, etc.) is
treated as an object. For example, a designer might use a word processor to
create a block of text, a graphics program to create a logo, a scanner to cap-
ture a photographic image, and a spreadsheet to create a chart. Each object
is physically stored as a separate file. The web page designer surrounds a
file reference to each object with the appropriate html tags to control the
object’s placement on the screen, its size, and so on. Note that the process of
downloading a page from the server to the browser involves transferring
the contents of a separate file for each object.

51.4.3.3 Frames
Some pages are subdivided into frames (like windows), with each frame
holding a separate html document. When frames are used, a frameset 
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document that defines the relative and/or absolute sizes and positions of
each of the windows is sent to the client computer first, followed by the indi-
vidual html documents and the object files. The client computer’s browser
then displays each html document in the appropriate window (or frame).
For example, one common application is displaying a standard navigation
bar in the same relative position (the same frame) on every screen by simply 
referencing the same navigational html document on each frameset.

Using frames gives the designer considerable control over exactly what
is displayed on the client’s screen and saves the time needed to redundant-
ly code the html for a common object that appears on several pages.
However, because each frame is, in effect, an independent page, frames
(unless carefully used) can break the metaphor, leading to user confusion.
For example, a print command will print only the contents of the active
frame (the one most recently clicked), and not the entire screen as most users
(reasonably) assume.

51.4.3.4 Interactivity
Because the web page is displayed on the client computer, interactivity
implies executing code on the client computer. Downloading executable
code is potentially dangerous, so tight security controls are essential. Java
(Sun Microsystems), a platform independent, object-oriented programming
language that incorporates excellent security features, has become a de facto
standard for such applications. JavaScript is a relatively easy to learn, Java-
based scripting language that can be used to perform such basic interactive
tasks as requesting a choice (yes or no) from a user or supporting the com-
pletion and return of a simple form. Each Java or JavaScript applet is viewed
as an object in the html stream.

51.4.3.5 Page design constraints and tradeoffs
A page designer faces two, often conflicting objectives. The first objective is
to catch the user’s attention. The second is to provide enough content to sat-
isfy the user’s needs.

51.4.3.5.1 Real estate The user actually sees only one screen at a time,
and the available viewing space is further constrained by the browser’s but-
ton bars, scroll bars, and so on. Technically, a page (or frameset) can be almost
any length because the user can scroll through the contents if the page
exceeds a single screen, but many potential users are reluctant or unwilling
to scroll until after they are hooked. Consequently, particularly on entry or
core pages that are designed to quickly capture the viewer’s attention, the
effective real estate is limited to a single (roughly) fifteen-line window.

51.4.3.5.2 Flash and content Flash can be defined as everything but
content. Examples include animations, sounds, graphic images, pho-
tographs, colors, backgrounds, lines, patterns, and other elements intended
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make the page look neat rather than to deliver real content. A visitor’s inter-
est is peaked by flash. Without some flash, a visitor is not likely to bother
looking at a site in sufficient detail to assess its content. Return visitors
(users) are interested in content, however, so flash without content is useless
in the long run. Typically, the designer tries to catch the user’s attention on
the entry page and the core page. Detailed content is delivered further down
the page hierarchy, with the amount of flash diminishing by level.

51.4.3.5.3 Depth and breadth Breadth is a measure of the number of
items (for example, menu choices) on a single page. Depth is a measure of
the number of levels (the number of mouse clicks) a user must navigate to
reach the desired content. Excessive breadth leads to pages that are difficult
to understand. Excessive depth implies time lost navigating through multi-
ple intermediate screens. Depth and breadth are tradeoffs. More choices per
page (more breadth) mean fewer hierarchical levels (less depth), and more
levels (more depth) mean fewer choices per page (less breadth). A common
rule of thumb is to include between five and nine choices on a page.

51.4.3.5.4 Page load time Page load time is an important variable
because potential users who become frustrated and exit a slow-to-load page
are not likely to become repeat visitors. Load time is a function of the num-
ber of bits that must be transmitted from the server to the client and the
transmission speed of the intermediate lines.

Simple text pages load quickly but contain little to catch the user’s
attention. Pages that contain sophisticated graphics, sounds, animations,
and Java applets are interesting but load slowly because such objects tend to
be rather large and each object is stored in a separate file that must be trans-
ferred from the server to the client. Somewhere between those two extremes
is a mix of flash and content that loads quickly, catches the viewer’s atten-
tion, and convinces the visitor to investigate the site in more depth.

Compression techniques can help to reduce the number of bits actually
transmitted. For example, a bitmap takes up a great deal of memory because
it consists of every dot or pixel that makes up an image. The amount of
memory space and, hence, transmission time can be substantially reduced if
graphic images (lines and shapes) are converted to gif (graphic interchange
format) and photographs are converted to jpeg (Joint Photographic Experts
Group) format.

51.5 Key terms
Applet — A small application program that performs a single task.
Breadth — A measure of the number of items (for example, menu 

choices) on a single page.
Browser — A program that converts hyperlinks into the associated

URLs, requests pages from the Internet, and displays those pages.
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Client/server computing — A form of networked computing in which 
a computer that needs a service (the client) requests help from a
computer that has the ability to provide the service (the server).

Compression — Conserving memory, secondary storage space, and
data transmission time by removing repetitive or unnecessary bits
from data.

Core page — The highest-level page in a web site’s content hierarchy.
Depth — A measure of the number of levels a user must navigate to

reach the desired content.
Entry page — The first page a visitor encounters when accessing a web

site.
Entry tunnel (entry chimney) — One or more pages between the entry

page and the core page.
Exit page — The last page a visitor encounters just before exiting a web

site.
Exit tunnel (exit chimney) — One or more pages between the core page

and the exit page.
Frame — A window-like unit that holds and displays the contents of a

single html document.
Frameset — A document that defines the relative and/or absolute sizes

and positions of several related frames. Using the frameset as a guide
or framework, the client computer’s browser displays each html doc-
ument in the appropriate frame.

Gif (graphic interchange format) — A popular compression algorithm
for graphic images.

Home page — An initial starting page.
Html (hypertext markup language) — A hypertext language used to tell

a browser how to map a page to the screen. When a web page is cre-
ated, html tags are added to the text, graphics, sounds, and other
objects that make up the page. When the browser reads the page, it
relies on the html tags to tell it where each object should be placed on
the screen, how to format the text, what colors and backgrounds to
use, and so on.

Hyperlink — On the World Wide Web, a symbolic, logical connection
that represents a URL.

Internet — A well-known, widely accessed, international network of
computers; the set of continuously connected computers that use
Transmission Control Protocol/Internet Protocol (TCP/IP).

Java — A platform independent, object-oriented programming language
developed by Sun Microsystems that incorporates excellent security
features and has gained wide acceptance on the World Wide Web.

JavaScript — A relatively easy to learn, Java-based scripting language
that can be used to perform basic interactive tasks.

Jpeg (Joint Photographic Experts Group) — A popular compression
algorithm for photographic images.
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Metaphor — A design element that relies on a familiar object or a famil-
iar pattern of behavior to suggest how the user might interact with a
web site.

Navigation — The act of moving from page to page through a web site.
Object — A thing about which data are stored.
Page — The basic unit of information transferred between a server and

a client on the World Wide Web.
Page load time — A measure of the elapsed time between a request for

a page and the display of the complete page on the client computer’s
screen.

Plug-in — A program that plays or displays special files that are beyond
the capability of a standard browser.

Theme — A recurrent idea; on a web page or web site, the consistent use
of color, fonts, icons, logos, and sound, a consistent page layout and
appearance, and consistent navigational rules.

URL (uniform resource locator) — The address of a page on the World
Wide Web.

Web site — A collection of related, hyperlinked pages.
World Wide Web — A massive, Internet-based, international collection

of hyperlinked pages.

51.6 Software
Netscape and Microsoft’s Internet Explorer are the two best known
browsers. America OnLine’s AOLPress (freeware), Trellix Corporation’s
Trellix, and Microsoft’s Front Page are examples of html editors. Many full-
feature word processors (Microsoft Word, WordPerfect, Word Pro) and other
common software tools allow a user to save a document in html format and
subsequently display that document as a web page.

Numerous plug-ins are available to supplement the standard browsers.
Adobe Acrobat Reader (Adobe Systems) allows a user to view and print
Adobe portable document format (PDF) files. Cosmo Player (Silicon
Graphics) is a virtual reality markup language (VRML) viewer. QuickTime
Viewer (Apple) is used to display movies. RealPlayer (RealNetworks) sup-
ports video, audio, and animation. Shockwave Player (Macromedia) 
supports interactive games.

51.7 References

51.7.1 Web sites
1. The Bare Bones Guide to html, http://www.werbach.com/barebones.
2. The WWW Help Page, http://www.werbach.com/web/wwwhelp.html.
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51.7.2 Suggestions for additional reading
1. Evans, T., 10 Minute Guide to Html 4.0, Que Education and Training,

Indianapolis, IN, 1997.
2. Kidder, G. and Harris, S., Official Html Publishing for Netscape: Your Complete

Guide to Web Page Design & Production, Ventura Communications Group,
Research Triangle Park, NC, 1997.

3. Morris, M. E. S. and Hinrichs, R. J., Web Page Design: A Different Multimedia,
Prentice-Hall, Englewood Cliffs, NJ, 1996.

4. Siegel, D., Creating Killer Web Sites, 2nd ed., Hayden Books, Indianapolis, IN,
1997.

5. Tittel, E. and James, S., HTML for Dummies, IDG Books Worldwide, Foster City,
CA, 1997.
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52.1 Purpose
Network models are used to determine the physical configuration of the
computers and peripherals that form a network or distributed environment.
This chapter describes several common network topologies. 

Network design is a highly specialized discipline in its own right, and a
detailed explanation of network analysis tools and techniques is beyond the



scope of this book. This chapter is written for systems analysts and infor-
mation system consultants who must work with network specialists.

52.2 Strengths, weaknesses, and limitations
The strengths, weaknesses, and limitations of the various topologies will be
discussed in context.

52.3 Inputs and related ideas
This chapter is concerned with the overall design of a network or a distrib-
uted system. The process of analyzing and design a given network is cov-
ered in Chapter 53. Chapter 54 discusses the process of routing messages
among a network’s nodes. Network design is related to hardware interface
design (Chapter 42). The hardware interface is affected by the network
topology, and each network node can be viewed as a hardware interface.

Readers who are not familiar with data communications theory and
concepts should review the data communications chapter in an introduc-
tory management information systems or computer information systems
textbook.

52.4 Concepts

Network models are used to determine the physical configuration of the
computers and peripherals that form a network or distributed environment.
This chapter describes several common network designs, or topologies. The
terms network design and topology design are sometimes used to describe the
process of designing a network topology.

A network consists of two or more computers linked by a communica-
tion line. The line might consist of coaxial cables, telephone wires, fiber optic
cables, microwave signals, satellite signals, or some combination of media.

The computers that form a local area network are usually located in
close geographic proximity (for example, within the same building, complex
of buildings, or campus) and are generally linked by direct lines. The com-
puters that form a wide area network are usually geographically disbursed
and are often linked by common carriers. Each computer in a wide area net-
work is called a host. Each connection point (computer, workstation, periph-
eral, concentrator, etc.) in the network is called a node.

52.4.1 Star topology

On a star network, all messages must pass through a central computer before
they are passed to the destination computer. A simple star network (Figure
52.1) consists of several computers and/or peripherals each linked to a cen-
tral host computer via a dedicated line. A variation of a simple star network
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features several computers, terminals, and/or peripherals connected to a
cluster controller and sharing a communication link from the controller to
the central computer.

Two or more simple star networks can be linked to form a complex star
network as shown in Figure 52.2. Generally, one of the hub computers (usu-
ally, a powerful mainframe or minicomputer) serves as central boss and con-
trols the network by scheduling, prioritizing, and holding incoming and
outgoing messages. For example, in Figure 52.2, hub 2 and hub 3 must com-
municate with each other through hub 1, the central node or boss. If there is
no single, clear, dominant, central node, several hub computers can work
together as partners to relay messages.

Because dedicated lines are used to connect the remote nodes to the cen-
tral node, star topology is the simplest but most expensive topology. The
central node makes centralized supervisory and control functions relatively
easy to perform. However, the entire network goes down if the central node
goes out of service unless funds are spent to provide a reliable backup for
both hardware and software. Many telephone company computer systems
use star topology.
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52.4.2 Mesh topology

A mesh network allows any two remote computers to communicate directly,
although there may be cases when a third computer relays a message from a
source to a destination. In a fully connected mesh network every computer is
directly connected to all the other computers in the network (Figure 52.3)
In a partially connected mesh network, every computer is connected (either
directly or via a relay computer) to at least two other computers in the net-
work by more than one path (Figure 52.4).

Mesh topology is the most reliable and most expensive network topol-
ogy. Most mesh topology networks belong to the government, the military,
or a big corporation that needs a secured path to transmit data.
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Figure 52.3 A fully connected mesh network.

Figure 52.4 A partially connected mesh network.

52.4.3 Bus topology

On a bus network (Figure 52.5), the host computer is located at one end of a
common communication line and all the other computers and peripherals in
the network are attached to the same line.

A bus network is relatively inexpensive and easy to expand because all
the nodes share a common communication path. However, traffic is heavy on
the common line, and the network tends to degrade as the number of nodes
increases. The location of the host node (relative to certain other nodes) can
create an unbalanced network and negatively impact network performance.
One host node may not be sufficient to handle all the traffic, and sophisti-
cated equipment and software are needed to control the network.



52.4.4 Tree topology

Tree topology (or hierarchical topology) is a hybrid topology. Generally, 
two  or more star or bus networks are connected to form a tree network. A
rooted tree network (Figure 52.6) is a tree network with a clearly defined
root node that serves as a base for the entire network. An unrooted tree net-
work (Figure 52.7) has no clearly defined base root. Instead, there are sever-
al nodes that act as major hubs to relay messages or perform limited super-
visory functions.

Tree topology is easy to implement using gateways, bridges, and/or
routers. A major problem is that bottlenecks can develop in the equipment
that connects the subnetworks.
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Figure 52.6 A rooted tree network.

Figure 52.7 An unrooted tree network.



52.4.5 Ring topology

A ring network (Figure 52.8) consists of a series of nodes connected to form
a ring. Each message is received, repeated, and retransmitted by each node
as it works its way around the ring in a predetermined direction. A loop is
a variation of a ring network with controlling nodes in the ring.

Because a ring or loop network transmits information in one direction
only, transmission speed tends to be faster than with the other topologies.
Ring networks are usually implemented using a token-passing protocol,
which tends to limit network size, however. (For example, the nodes on a
500-node network can face lengthy delays waiting for the token.) The need
for a special token symbol and procedures to enforce the direction of flow
adds to the complexity of ring network design.
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52.5 Key terms
Bus network — A network in which the host computer is located at one

end of a common communication line and all the other computers
and peripherals in the network are attached to the same line.

Complex star network — A network that consists of two or more linked
simple star networks.

Data communication — The act of transmitting data from one compo-
nent to another.

Fully connected mesh network — A mesh network in which every com-
puter is directly connected to all the other computers in the network.

Host — A computer in a wide area network.
Local area network (LAN) — A network in which the nodes are located

in close geographic proximity and are generally linked by direct lines
(such as hard wires).

Mesh network — A network that allows any two remote computers to
communicate directly.

Network — Two or more computers linked by a communication line.
Node — A connection point (computer, workstation, peripheral, con-

centrator, etc.) in a network.
Partially connected mesh network — A mesh network in which every

computer is connected (either directly or via a relay computer) to at
least two other computers in the network by more than one path.

Ring network — A network that consists of a series of nodes connected
to form a ring.

Rooted tree network — A tree network with a clearly defined root node
that serves as a base for the entire network.

Simple star network — A network that consists of several computers
and/or peripherals, each linked to a central host computer via a ded-
icated line.

Star network — A network on which all messages must go through a
central computer before they are passed to the destination computer.

Token passing — A network management technique in which an elec-
tronic token is passed continuously from node to node around the
network and a given node can transmit a message only when it holds
the token.

Topology — A map of a network; a physical arrangement of the nodes
and connections in a network.

Tree topology (hierarchical topology) — A hybrid topology that usually
consists of two or more linked star or bus networks.

Unrooted tree network — A tree network with no clearly defined base
root; instead, there are several nodes that act as major hubs to relay
messages or perform limited supervisory functions.

Wide area network (WAN) — A network in which the nodes are (usu-
ally) geographically disbursed and linked by common carriers.
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52.6 Software
Not applicable.
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53.1 Purpose 
The purpose of this chapter is to overview the key activities in the network
analysis and design process. Network analysis is a highly specialized disci-
pline in its own right, and a detailed explanation of network analysis tools
and techniques is beyond the scope of this book. This chapter is written for
systems analysts and information system consultants who must work with
network specialists. 

53.2 Strengths, weaknesses, and limitations 
Not applicable. 



53.3 Inputs and related ideas 
Network topologies are discussed in Chapter 52. Location connectivity
analysis is covered in Chapter 54. Simulation (Chapter 19) and queuing the-
ory (Chapter 79) are two mathematical tools that are often used to support
network analysis. The cost estimating process might include a cost/benefit
analysis (Chapter 38). Network consultants often develop detailed cost esti-
mates in response to a competitive procurement opportunity (Chapter 41).
The need for a network is established during the analysis (Part IV) and high-
level design (Part V) stages of the system development life cycle. Key net-
work design parameters are documented in the requirements specifications
(Chapter 35). 

53.4 Concepts 
The purpose of this chapter is to overview the key activities in the network
analysis and design process. A detailed explanation of network analysis
tools and techniques is beyond the scope of this book. 

53.4.1 Requirements identification 

The purpose of requirements identification is to ensure that the network
designers have clear definitions and a detailed understanding of the essen-
tial network requirements and related network design attributes. 

Geographical requirements analysis begins with a careful study of the
system’s geographical locations (i.e., buildings and areas) and focuses on
such issues as topology (Chapter 52) and transmission media (dedicated
cable, microwave, satellite, common carrier). Traffic flow pattern analysis is
also used to help define the network’s topology (Chapter 52) and connec-
tions (Chapter 54) as well as message volumes associated with the various
data flows. 

Traffic load analysis includes such elements as peak load analysis, mes-
sage duration analysis, and busy hour analysis. Together, they are used to
determine the required number of communication lines, the maximum
required capacity for each line, the time slots during which the communica-
tion lines are likely to be busy, and several related network performance
parameters. The purpose of availability requirements analysis is to deter-
mine and document the effect of time differences (time zone shifts) between
the different geographical areas covered by the network. 

As the name implies, response time analysis is concerned with deter-
mining the system’s response time requirements (e.g., interactive, store and
forward, real-time, etc.). Reliability requirements analysis provides infor-
mation that helps the designer develop a back-up plan or create necessary
redundancies. 

Hardware analysis is used to define the requirements for the personal
computers, workstations, terminals, peripherals, communication interfaces,
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modems, and other hardware that will be attached to the network.
Additionally, such software as the operating system and communication
protocols must be specified. Future projection analysis focuses on parame-
ters that affect capacity planning, storage requirements, transmission speed,
connections with the Internet, and the highway (or Turnpike) effect. 

53.4.2 Network design 

Based on the network requirements identified in the previous stage, the net-
work is physically designed. 

Topology determination focuses on physically laying out the network
using such tools as location connectivity diagrams (Chapter 54). The
required line speeds are defined based on such criteria as transmitted char-
acters per day, computer time (input, output, and processing) per message,
and the required response time. Concentration point determination is con-
cerned with the system’s concentration points (or hubs). Such factors as the
number of hubs, the capacities and related requirements for the lines that
link the hubs, and the number of clients per server (or per hub) must be
weighed against network efficiency. 

Bottlenecks (or choke points) are places in the network where message
flow exceeds capacity, resulting in delays and even lost messages.
Bottleneck analysis (an application of queuing theory, Chapter 79) is a use-
ful, mathematical tool for identifying choke points and for evaluating how
various line capacities, transmission speeds, and hardware options (pro-
cessing speed, storage capacity) affect performance. Queuing theory can
also be used to gauge the sensitivity of a network design to such variables
(or assumptions) as average message length, message duration, and busy
hours. Simulation (Chapter 19) is another useful mathematical tool that can
help identify and solve many network design problems. The advantages of
using mathematical tools such as queuing theory and simulation include
quick feedback, the flexibility to consider numerous variables or assump-
tions, and low cost. 

53.4.3 Cost estimating 

Networks are expensive to develop and to operate. Clear, accurate develop-
ment, and operating cost estimates are essential before the final decision to
implement a network is made. The cost estimating process might include a
cost/benefit analysis (Chapter 38). Network consultants often develop detailed
cost estimates in response to a competitive procurement opportunity (Chapter 41). 

53.4.4 Documentation 

Once the network analysis is completed, the various design decisions must
be carefully documented. Connection diagrams define the topology, 
connection points, and traffic flows. Key supporting details include the
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types of transmission media, the desired technology (e.g., T1, ISDN, fiber
optics, satellite, microwave), the capacities, speeds, and costs of those
media, and a back-up plan. The act of preparing the connection diagrams
and supporting documentation is sometimes called logical documentation
and preparation. 

During the physical documentation and preparation phase, a complete
component list is prepared for each node in the network. Key parameters
include the brand name, model, speed, and other relevant specifications for
such hardware components as the computers, the modems, and related
peripherals (printers, scanners, etc.), and the nature and description of all
cables and connectors. Sometimes, hierarchy charts (Chapters 48 and 62) are
prepared to help document the components that form a subnetwork con-
trolled by a hub. 

The network specifications incorporate all the information related to 
the network. In addition to the documentation described above, routers,
bridges, and other message switching equipment or devices must be docu-
mented in detail. Finally, such details as floor plans, rising cables, distribut-
ing cables, central switch boxes, server locations, telephone jack locations,
and power outlets must be documented in a wiring diagram. 

53.5 Key terms 
Availability requirements analysis — A network analysis process that

helps to determine and document the effect of time differences (time
zone shifts) between the different geographical areas covered by the
network. 

Bottleneck (choke point) — A place in the network where message flow
exceeds capacity, resulting in delays and even lost messages. 

Bridge — A computer that links two networks with similar protocols. 
Client — A computer (more generally, a node) that requests a service

from a server. 
Client/server — A network in which client computers request services

from a central server computer. 
Concentration point determination — A network analysis process that

is concerned with the system’s concentration points (or hubs). 
Connection diagram — A diagram that shows the topology, connection

points, traffic flows, and patterns of a network. 
Data communication — The act of transmitting data from one compo-

nent to another. 
Distributing cable — Generally, a cable that links the computers or

nodes on a single floor. 
Future projection analysis — A network analysis process that focuses

on parameters that affect capacity planning, storage requirements,
transmission speed, connections with the Internet, and so on. 
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Gateway — A computer that links two or more networks with different
protocols. 

Geographical requirements analysis — A preliminary network analysis
process that begins with a careful study of the system’s geographical
locations and focuses on such issues as topology and transmission
media. 

Hardware analysis — A network analysis process that helps to define
the requirements for the personal computers, workstations, termi-
nals, peripherals, communication interfaces, modems, and other
hardware that will be attached to the network, and such software as
the operating system and communication protocols. 

Highway effect (turnpike effect) — The tendency of users to quickly
adopt new technology as soon as it proves its usefulness; because of
the highway effect, the demands placed on a system often exceed
projections. This term was initially coined in the 1950s when the traf-
fic load on the Pennsylvania Turnpike exceeded the designers’ long-
term, worst-case projections soon after the road opened.

Host — A computer in a wide area network. 
Hub — A central controlling device, point, or node in a network. 
Local area network (LAN) — A network in which the nodes are located

in close geographic proximity and are generally linked by direct
lines. 

Message switching — The process of routing a message from its source
to its destination; note that sometimes messages are decomposed into
packets that reach their destination via different transmission paths. 

Network — Two or more computers linked by a communication line. 
Network topology — A map of a network; a physical arrangement of

the nodes and connections in a network. 
Node — A connection point (computer, workstation, peripheral, con-

centrator, etc.) in a network. 
Protocol — A set of rules that governs data communication. 
Reliability requirements analysis — A network analysis process that

helps the designer develop a back-up plan or create necessary redun-
dancies. 

Response time analysis — A network analysis process that helps to
determine the system’s response time requirements (e.g., interactive,
store and forward, real-time, etc.). 

Rising cable — Generally, a cable that runs between two floors in a
building. 

Router — An intelligent device that provides network connections and
performs such services as protocol conversion and message routing. 

Server — A computer that holds centralized resources and provides
them to clients on request. 

Token passing — A network management technique in which an elec-
tronic token is passed continuously from node to node around the
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network and a given node can transmit a message only when it holds
the token. 

Topology — A map of a network; a physical arrangement of the nodes
and connections in a network. 

Topology determination — A network analysis process that focuses on
physically laying out the network using such tools as location con-
nectivity diagrams. 

Traffic flow pattern analysis — A network analysis process that helps to
define the network’s topology and connections as well as the mes-
sage volumes associated with the various data flows. 

Traffic load analysis — A network analysis process that helps to deter-
mine the required number of communication lines, the maximum
required capacity for each line, the time slots during which the com-
munication lines are likely to be busy, and several related network
performance parameters. 

Wide area network (WAN) — A network in which the nodes are (usu-
ally) geographically disbursed and linked by common carriers. 

53.6 Software 
Not applicable. 
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54.1 Purpose 
This chapter focuses on several common network routing techniques (gen-
erally, location connectivity analysis). The major objectives of these routing
techniques include controlling network data flow, determining the status of
the sending and the receiving nodes, identifying the best (sometimes opti-
mal) route to transmit data, reducing transmission delays and related errors,
and preventing the overuse of a particular route or node. 



Network design is a highly specialized discipline, and a detailed expla-
nation of location connectivity analysis tools and techniques is beyond the
scope of this book. This chapter is written for systems analysts and infor-
mation system consultants who must work with network specialists. 

54.2 Strengths, weaknesses, and limitations 
The techniques described in this chapter are used to estimate and/or predict
data flows and minimize data congestion in a distributed information sys-
tem. Using these techniques can help reduce transmission problems owing
to the speed and capacity constraints imposed by the transmission media. 

It is difficult to measure the highway effect or to match users needs with
emerging computing technology using these techniques. Also, the tech-
niques described in this chapter do not always yield the best route for data
transmission. 

54.3 Inputs and related ideas 
Network topologies are discussed in Chapter 52. Network analysis is cov-
ered in Chapter 53. The need for a network is established during the analysis
(Part IV) and high-level design (Part V) stages of the system development
life cycle. Key network design parameters are documented in the require-
ments specifications (Chapter 35). 

54.4 Concepts 
A network consists of a set of nodes (computers, routers, etc.) linked by
communication lines. When a source node transmits a message, there are
typically several possible paths the message can take from node to node
through the network to reach its destination. The specific path selected for a
given message is called a route. Location connectivity analysis is used to
control network data flow, determine the status of the sending and receiv-
ing nodes, identify the best (or optimal) route, reduce transmission delays
and related errors, and prevent the overuse of a particular route or node.
This chapter focuses on several common routing techniques. 

54.4.1 Centralized routing 

Centralized routing is used when the distributed network is centrally con-
trolled. The basic idea is to provide the central node with super-authority
over all the other nodes. The network routing software installed on the cen-
tral node can be used to overview the operation of the entire network, locate
bottlenecks and underutilized nodes, calculate and recompute the optimal
path between a sending node and a receiving node, and adjust the routing
path by constructing a new routing table. 

1999 by CRC Press LLC



Centralized routing provides centralized control, integrated supervi-
sion of the network, very good security, and excellent back-up control. The
central node is relatively expensive to operate and maintain, however, and
the entire network goes down if the central node fails. Some operating inef-
ficiency is possible because the central node must perform all routing calcu-
lations. Also, the calculated optimal paths may not reflect the current status
of the network if they are based on (even seconds old) historical network
information. 

54.4.2 Distributed routing 

Distributed routing relies on each node to compute its own routing table
and build the required connections with its neighbors. Ideally, the network
operation, status, and architecture of each node is transparent. Distributed
routing is more flexible than centralized routing because each node handles
its own routing. The result is often improved system performance. 

54.4.2.1 Static routing 
Static routing establishes routine paths between sending and receiving
nodes based on a data flow analysis of historical data. With static routing,
the path is selected from a predefined table, so there is no need to readjust
paths or compute the next node. However, if the established link between
any pair of nodes fails, static routing cannot adjust. Also, as transmission
patterns change, static routing patterns can quickly become inefficient. 

Fixed routing always utilizes a predetermined fixed route when trans-
mitting between a specific pair of nodes. Fixed routing is widely used in
mesh topology networks, particularly when reliability and security are pri-
mary objectives. 

With weighted routing, different routing paths are selected for each
message based on a predetermined desirable utilization rate. For example,
imagine that there are three paths (via node A, B, or C) between the source
node and the destination node (Figure 54.1). The objective is to transmit 50
percent of all messages via node A, 30 percent via node B, and the remain-
ing 20 percent via node C. The source node uses a random number genera-
tor to select the route based on the predetermined probabilities. 

54.4.2.2 Adaptive routing 
Adaptive routing, also called dynamic routing, selects the best route based
on such criteria as the speed, capacity, or cost of the link, the utilization rate
of a particular node, the failure rate of a particular path, the type of data to
be transmitted, response time, throughput, and so on. Often, a prioritized
list of decision criteria (called a portfolio) is used. 

The objective of the quickest route algorithm is to send the message 
to the next available neighboring node (other than the sending node) as
quickly as possible. The advantage is fast transmission, but there is no 
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guarantee that the node selected will be closer to the destination. In some
cases, the quickest route algorithm can increase the time required to deliver a
message. 

The best route algorithm uses such parameters as the type of message,
the rate of under-utilization or over-utilization of a particular node, and the
number of intermediate nodes between the source and the destination. Such
tools as linear programming, goal programming, and similar management
science techniques can be used to select and rank the different routing alter-
natives based on the established criteria. 

54.4.2.3 Broadcast routing 
With broadcast routing, a header containing the address of the receiving
node is added to the message. The message is then transmitted to all the
nodes in the network, and the node whose address matches the header
reacts to the message. Note that each node must have a list of addresses of
all the nodes in the network. Security is a major concern because every node
receives a copy of the message. Broadcast routing is popular in collision
detection networks. 
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54.5 Key terms 
Adaptive routing — A distributed routing technique that selects the

best route based on such criteria as the speed, capacity, or cost of the
link, the utilization rate of a particular node, the failure rate of a par-
ticular path, the type of data transmitted, response time, throughput,
and so on; also known as dynamic routing. 

Best route algorithm — An adaptive routing technique that uses such
parameters as the type of message, the rate of under-utilization or
over-utilization of a particular node, and the number of intermediate
nodes between the source and the destination. 

Bottleneck (choke point) — A place (usually, a node or a path) in the
network where message flow exceeds capacity, resulting in delays,
and even lost messages. 

Broadcast routing — A routing technique in which a header containing
the address of the receiving node is added to the message; the mes-
sage is then transmitted to all the nodes in the network, and the node
whose address matches the header reacts to the message. 

Centralized routing — A routing technique in which the central node
has super-authority over all the other nodes. 

Collision detection — A network management technique in which the
nodes are allowed to transmit at any time; if two messages collide,
the collision is sensed and the messages are retransmitted. 

Distributed database — A database with different subsets of data dis-
tributed among several sites that are connected by a network. 

Distributed routing — A routing technique that relies on each node to
compute its own routing table and build the required connections
with its neighbors. 

Fixed routing — A static routing technique that always utilizes a pre-
determined fixed route when transmitting between a specific pair of
nodes. 

Highway effect (turnpike effect) — The tendency of users to quickly
adopt new technology as soon as it proves its usefulness; because of
the highway effect, the demands placed on a system often exceed
projections. This term was initially coined in the 1950s when the traf-
fic load on the Pennsylvania Turnpike exceeded the designers’ long-
term, worst-case projections soon after the road opened. 

Location connectivity analysis — A network and distributed database
design technique used to help control network data flow, determine
the status of the sending and receiving nodes, identify the best route
to transmit data, reduce transmission delays and related errors, and
prevent the overuse of a particular route or node; also known as con-
nectivity analysis or routing analysis. 

Network — Two or more computers linked by a communication line.
Node — A connection point (computer, workstation, peripheral, con-

centrator, etc.) in a network. 
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Path — A group of connected links that allow the transmission of infor-
mation from a source to destination(s). 

Portfolio — A prioritized list of routing decision criteria. 
Protocol — A set of rules that governs data communication. 
Quickest route algorithm — An adaptive routing technique that sends

the message to the next available neighboring node (other than the
sending node) as quickly as possible. 

Route — The path(s) or subset used to actually transmit information
from a source to a destination(s). 

Router — An intelligent device that provides network connections and
performs such services as protocol conversion and message routing. 

Routing — The process of determining the best available path (or path
segment) to transmit a message. 

Static routing — A distributed routing technique that establishes rou-
tine paths between sending and receiving nodes based on a data flow
analysis of historical data.

Token passing — A network management technique in which an elec-
tronic token is passed continuously from node to node (following the
direction of flow) around the network and a given node can transmit
a message only when it holds the token. 

Topology — A physical arrangement of the nodes and connections in a
network. 

Weighted routing — A static routing technique in which different rout-
ing paths are selected for each message based on a predetermined
desirable utilization rate. 

54.6 Software 
Not applicable. 

54.7 References 
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55.1 Purpose 
A logic or process flowchart is a graphical representation of the flow of logic,
control, data, or paperwork through a program, a routine, a module, or a
process. The flowchart specifies or documents the order in which tasks are
performed. Flowcharts are used for documentation and for planning. 



55.2 Strengths, weaknesses, and limitations 
A properly prepared flowchart can illustrate logical flow at a glance.
Flowcharts are useful for describing or planning the logical flow through a
relatively small module, routine, or process. A flowchart is a good choice for
describing or planning a decision-based algorithm where the number of
alternative paths does not exceed three. 

Logic flowcharts should not be used for documenting complete 
programs or large routines. Flowcharts extending over multiple pages are
difficult to follow, and flowcharts (of any size) are difficult to maintain. If a
flowchart spills beyond a single page (or a single screen), combine several
steps to form a subroutine (or predefined process), link to the subroutine
from the primary routine, and independently flowchart the subroutine. 

Algebra, pseudocode (Chapter 59), and structured English (Chapter 60)
may be better choices for describing or planning algebraic algorithms with
no decisions. Decision trees (Chapter 57) and decision tables (Chapter 58)
may be better for describing or planning complex case structures. Nassi-
Shneiderman charts (Chapter 56) are better for planning and documenting
structured program logic. Hierarchy charts (Chapter 62) or structure charts
(Chapter 63) are better choices for describing or planning the overall logical
structure of a program. 

55.3 Inputs and related ideas 
Before creating a logic or process flowchart, the designer must understand
the algorithm or procedure. The necessary information might be compiled
from direct observation, extracted from existing documentation, or derived
from the information gathered during the problem definition (Part II) and/or
systems analysis (Part IV) stages of the system development life cycle. 

Other tools for documenting or planning routines or processes include
Nassi-Shneiderman charts (Chapter 56), decision trees (Chapter 57), deci-
sion tables (Chapter 58), pseudocode (Chapter 59), structured English
(Chapter 60), and input/process/output (IPO) charts (Chapter 64). A rou-
tine often exists in the context of a larger program. Tools for documenting or
planning program structure include structure charts (Chapter 63) and HIPO
(Chapter 64). 

Logic flowcharts are sometimes confused with system flowcharts
(Chapter 37). A system flowchart documents the physical relationships
between a system’s physical components. A logic flowchart shows the flow
of logic, control, or data through a routine or a procedure. 

55.4 Concepts 
A logic or process flowchart uses seven standard symbols (Figure 55.1). A
terminator marks the beginning or end of the flowchart. A process symbol
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Figure 55.1 Standard flowcharting symbols. 

indicates an operation that changes or manipulates data in some way (e.g.,
arithmetic, move, or copy). A data symbol (a parallelogram) indicates an
operation that inputs or outputs data. A diamond indicates a decision. A
connector (a small circle) means that the logic is continued at another place
on the same page. An off-page connector (home plate) indicates that the
logic is continued on another page. A rectangle within a rectangle indicates
a predefined process (or subroutine). 

The symbols are linked by flowlines that show the sequence and direc-
tion of flow. By convention, logic flows from the top down and from left to
right, and arrowheads are added to the flowlines to indicate deviations from
this standard pattern. Arrowheads make a flowchart easier to read even
when the direction of flow follows convention. 

55.4.1 Program logic 

Flowcharts with multiple entry or exit points are difficult to follow and can
easily be misinterpreted. As a general rule, each routine or process should
have a single entry point and a single exit point. 

Program logic can be expressed as combinations of three basic patterns:
sequence, decision, and repetition (Chapter 62). A program is composed of
combinations of these three basic structures. 

The sequence pattern (Figure 55.2) implies that the logic is executed in
simple sequence, one block after another. Note that each block might repre-
sent one or more actual instructions. 



A decision block implies IF-THEN-ELSE logic (Figure 55.3). A condition
(the diamond symbol) is tested. If the condition is true, the logic associated
with the THEN branch is executed and the ELSE block is skipped. If the con-
dition is false the ELSE logic is executed and the THEN logic is skipped.
Note that the THEN and ELSE blocks might represent one or more actual
instructions. Note also that a given THEN or ELSE block might incorporate
an additional decision block, yielding nested decision logic. 

There are two basic patterns for showing repetitive logic: DO WHILE
and DO UNTIL (Figure 55.4). In a DO WHILE block, the test is performed
first and the associated instructions are performed only if (while) the test
condition is true. In a DO UNTIL block, the associated instructions are exe-
cuted first and then the exit condition is tested. Note that the logic block
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Figure 55.2 Sequence logic. 
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Figure 55.3 Decision logic. 

Figure 55.4 Repetitive logic. 



associated with a DO WHILE or DO UNTIL might represent one or more
actual instructions. 

55.4.2 A module flowchart 

Figure 55.5 shows a flowchart for computing an average. It begins with
sequential logic to initialize a counter and an accumulator and to read the
first data value. (Technically, additional logic should be added to this flow-
chart to ensure that the initial value of X is not negative.) The loop counts
and accumulates values of X while X is greater than or equal to zero. The
program ends by computing the average and outputting the results. 

55.4.3 Predefined processes 

Logic flowcharts extending over multiple pages are difficult to follow. If a
flowchart spills beyond a single page (or a single screen), combine several
steps to form a subroutine (or predefined process), link to the subroutine
from the primary routine, and independently flowchart the subroutine. 

For example, Figure 55.6 shows a flowchart for a routine that accepts a
transaction and, based on the transaction type calls another routine that
adds, deletes, or modifies a record. The predefined process symbols indicate
that the detailed logic is flowcharted elsewhere. In effect, using predefined
processes allows the designer to decompose the logic. 

55.4.4 A process flowchart 

Figure 55.7 shows a flowchart for performing a manual procedure: waiting
on a customer in a retail store. Note how the logical flow guides the sales
clerk’s actions. Once again, the predefined processes indicate subprocesses
that are flowcharted in more detail elsewhere. 

55.4.5 Connectors 

Crossing flowlines are very difficult to follow and can easily be misinter-
preted. To eliminate crossing flowlines, move one or more symbols or use an
on-page connector. Generally, on-page connectors are shown in numbered
pairs. For example, if the logic flows into a small circle marked 3, look for
another small circle marked 3 with a flowline that rejoins the flowchart at
some other point. 

Off-page connectors are used when the logic is continued on another page
or another screen. If a flowchart requires multiple off-page connectors, the
flowchart is probably too big. One possible solution is to group some of the
logic into one or more predefined processes and reduce the number of symbols
on the page. Perhaps a better option is to consider using a different tool. 

1999 by CRC Press LLC



1999 by CRC Press LLC

Figure 55.5 A flowchart for computing an arithmetic average. 
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Figure 55.6 A data maintenance routine. 

55.5 Key terms 
Connector — A flowcharting symbol that indicates that the logic is con-

tinued at another place on the same page. 
Data symbol — A flowcharting symbol that indicates the input or out-

put of data. 
Decision — A point in a program where the logical path is determined

by a run-time condition. 
Flowline — On a flowchart, a line, often terminating in an arrowhead,

that indicates the sequence and direction of flow between two 
symbols. 
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Figure 55.7 A flowchart for a manual procedure. 



Logic flowchart (process flowchart) — A graphical representation of
the flow of logic, control, data, or paperwork through a program, a
routine, a module, or a process. 

Module — A portion of a larger program that performs a specific task. 
Off-page connector — A flowcharting symbol that indicates that the

logic is continued on another page. 
Predefined process — A flowcharting symbol that indicates that the

logic is flowcharted in more detail elsewhere. 
Procedure — Guidelines, rules, and instructions that tell people how to

perform a task; often, a manual procedure. 
Process — A set of steps for performing a task. 
Process symbol — A flowcharting symbol that indicates an operation

that changes or manipulates data in some way. 
Routine — A set of instructions that performs a specific, limited task. 
Terminator — A flowcharting symbol that marks the beginning or end

of the flowchart. 

55.6 Software 
ABC Flowcharter (Micrografx.), allCLEAR (SPSS), and Visio (Visio
Corporation) are three popular flowcharting programs. The examples in this
chapter were created using Visio. 

55.7 References 
1. Bohl, M., Flowcharting Techniques, SRA, Chicago, 1971. 
2. Boillot, M. H., Gleason, G. M., and Horn, L. W., Essentials of Flowcharting, 5th

ed., Business and Educational Technology, Dubuque, IA, 1995. 
3. Chapin, N., Flowcharts, Auerbach, Princeton, NJ, 1971. 
4. Davis, W. S., Business Systems Analysis and Design, Wadsworth, Belmont, CA,

1994. 
5. Davis, W. S., Systems Analysis and Design: A Structured Approach, Addison-

Wesley, Reading, MA, 1983. 
6. Silver, G. A. and Silver, J. B., Computer Algorithms and Flowcharting, McGraw-

Hill, New York, 1975.
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56.1 Purpose 
Nassi-Shneiderman charts were developed by Nassi and Shneiderman as an
alternative to traditional logic flowcharts. Their intent was to provide a
structured, hierarchical, graphical view of the flow of logic through a pro-
gram, a routine, a module, or a process. Nassi-Shneiderman charts are used
to document, plan, and design detailed program logic. 

56.2 Strengths, weaknesses, and limitations 
A properly prepared Nassi-Shneiderman chart can illustrate the flow of
logic through a module or routine at a glance. Nassi-Shneiderman charts are



useful for describing or planning relatively small modules, routines, or
processes. They can be used to clearly show nesting and recursion, and are
easily converted to structured code. 

Nassi-Shneiderman charts should not be used for documenting com-
plete programs or large routines. As a general rule, Nassi-Shneiderman
charts should be limited to a single page with no more than 20 subdivisions.
For larger routines, combine several steps to form a subroutine, link to the
subroutine, and independently chart the subroutine. 

Traditional logic flowcharts (Chapter 55) are more familiar to most users
and information system professionals. Algebra, pseudocode (Chapter 59),
and structured English (Chapter 60) may be better choices for describing or
planning algebraic algorithms with no decisions. Decision trees (Chapter 57)
and decision tables (Chapter 58) may be better for describing or planning
complex case structures. Hierarchy charts (Chapter 62) or structure charts
(Chapter 63) are better choices for describing or planning the overall logical
structure of a program. 

56.3 Inputs and related ideas 
Before creating a Nassi-Shneiderman chart, the designer must understand
the algorithm or procedure. The necessary information might be compiled
from direct observation, extracted from existing documentation, or derived
from the problem definition (Part II) and/or analysis (Part IV) stages of the
system development life cycle. 

Other tools for documenting or planning routines or processes include
logic flowcharts (Chapter 55), decision trees (Chapter 57), decision tables
(Chapter 58), pseudocode (Chapter 59), structured English (Chapter 60), and
input/process/output (IPO) charts (Chapter 64). A routine usually exists in
the context of a larger program. Tools for documenting or planning program
structure include structure charts (Chapter 63) and HIPO (Chapter 64). 

56.4 Concepts 
A Nassi-Shneiderman chart describes within a single rectangular box the
flow of logic through a module or a routine. Control enters at the top, drops
through the box, and exits at the bottom, yielding a single entry point and a
single exit point. No branch instructions are permitted. 

56.4.1 Program logic 

Within a Nassi-Shneiderman chart, sequential, selection, and repetitive logic
(Chapter 62) are shown as a set of stacked, horizontal subdivisions. Each
sequence logic step occupies a single subdivision or line (Figure 56.1). Note
that a sequential logic block might represent one or more actual instructions
or a reference to a subroutine. 
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A selection (or decision) block implies IF/THEN/ELSE logic (Figure 56.2)
and is documented in two parts. The top part is divided into three triangles
showing, the condition (top), the path to be taken if the condition is true (left),
and the path to be taken if the condition is false (right). The THEN logic is
entered below the “true” triangle, and the ELSE logic is entered below the
“false” triangle. Nested selection logic is documented by showing another
IF/THEN/ELSE block on the appropriate path (Figure 56.3). Case structures
(Figure 56.4) are documented by showing a separate path for each case. 

There are two patterns for showing repetitive logic: DO WHILE and DO
UNTIL (Figure 56.5). In a DO WHILE block, the test is performed first and
the associated instructions are performed only if (while) the test condition is
true. In a DO UNTIL block, the associated instructions are executed first and
then the exit condition is tested. Note that the logic block associated with a
DO WHILE or DO UNTIL might represent one or more actual instructions. 
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Figure 56.1 Sequence logic. 

Figure 56.2 Selection logic. 

Figure 56.3 Nested selection logic. 



56.4.2 Some examples 

Figure 56.6 shows a Nassi-Shneiderman chart for computing an average.
Figure 56.7 shows a Nassi-Shneiderman chart for a routine that accepts a
transaction and, based on the transaction type, calls another routine that
adds, deletes, or modifies a record. 
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Figure 56.4 A case structure. 

Figure 56.5 Repetitive logic. 
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Figure 56.7 A data maintenance routine. 

Figure 56.6 A Nassi-Shneiderman chart for computing an arithmetic average. 



56.5 Key terms 
Module — A portion of a larger program that performs a specific task. 
Nassi-Shneiderman chart — An alternative to traditional logic flow-

charts that provides a structured, hierarchical, graphical view of the
flow of logic through a program, a routine, a module, or a process. 

Process — A set of steps for performing a task. 
Routine — A set of instructions that performs a specific, limited task. 

56.6 Software 
The examples in this chapter were prepared using Visio. Other charting pro-
grams (such as Micrografx’s Flowcharter) can also be used. 

56.7 References 
1. Martin, J. and McClure, C., Diagramming Techniques for Analysts and

Programmers, Prentice-Hall, Englewood Cliffs, NJ, 1985. 
2. Nassi, I. and Shneiderman, B., Flowchart techniques for structured program-

ming, ACM SIGPLAN Notices, 8(8), 12, 1973. 
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57.1 Purpose 
A decision tree is a two-dimensional graphic representation of the decisions,
events, and consequences associated with a problem. Decision trees are
decision science tools typically used to determine probabilities and/or
expected values and to illustrate alternative system strategies. They can also
be used to plan or document all possible paths through a series of nested
decisions. 

57.2 Strengths, weaknesses, and limitations 
When an algorithm involves more than two or three nested decisions, a
decision tree gives a clear and concise picture of the logic. Such algorithms



are difficult to describe using logic flowcharts (Chapter 55), Nassi-
Shneiderman charts (Chapter 56), pseudocode (Chapter 59), or structured
English (Chapter 60). 

Decision trees are not useful for planning or documenting non-decision
algorithms. Many technical people are unfamiliar with decision science, so
a decision tree might not be an effective communication tool. 

57.3 Inputs and related ideas 
Before creating a decision tree, the designer must understand the algorithm
or procedure. The necessary information might be compiled from direct
observation, extracted from existing documentation, or derived from the
problem definition (Part II) and/or analysis (Part IV) stages of the system
development life cycle. 

Other tools for documenting or planning routines or processes include
logic flowcharts (Chapter 55), Nassi-Shneiderman charts (Chapter 56), deci-
sion tables (Chapter 58), pseudocode (Chapter 59), structured English
(Chapter 60), and input/process/output (IPO) charts (Chapter 64). A rou-
tine usually exists in the context of a larger program. Tools for documenting
or planning program structure include structure charts (Chapter 63) and
HIPO (Chapter 64). 

57.4 Concepts 
Decision trees are decision science tools that can be used to plan or docu-
ment nested decision logic. 

57.4.1 Decisions, events, and outcomes 

Imagine a company has an opportunity to purchase for $500,000 exclusive
rights to market a new product. If the product succeeds, the company stands
to make $1,000,000. On the other hand, if the product fails, the company
loses its entire investment. 

The decision tree pictured in Figure 57.1 graphically represents the
problem. The tree starts (on the left) with an act fork (a small box) that indi-
cates a decision. Emanating from it are two branches representing the two
choices: buy or do not buy the rights. 

Move along the buy branch. The circle represents an event fork. An
event is an occurrence that is not entirely subject to the decision-maker’s
control. (In other words, an event carries risk.) Coming from the event fork
are branches representing all possible consequences (or outcomes) of the
decision. (In this case, the product is either a success or a failure.) At the far
right, each branch terminates in an outcome. If the product is successful, the
company stands to make $1,000,000. If it fails, the company loses $500,000.
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Go back to the act fork. Before the decision is made, the company has an
option not to buy the rights. Clearly, this decision will cost nothing. There
are no consequences associated with this choice, so the outcome is zero
whether the product is successful or not. 

The oval symbols at the right of the decision tree list all possible out-
comes. At this point, a management scientist or decision scientist might
associate probabilities with each outcome, compute the expected values,
and determine whether or not rights should be purchased. 

57.4.2 Nested decisions 

Decision trees can also be used to model nested decisions. Assume, for
example, that the men’s basketball coach wants to look through the student
records and produce a list of all full-time male students who are at least 6
feet 5 inches (or 77 inches) tall and who weigh at least 180 pounds. The algo-
rithm consists of a series of four nested questions or decisions (Figure 57.2),
each one represented as a box (an act fork). 

Start with the first question: Is the student at least 77 inches tall? There
are only two possible answers. If the student is less than 77 inches tall, he or
she is rejected. If the student is greater than or equal to 77 inches tall, a sec-
ond question is asked, and so on. Follow each branch on the tree to its logi-
cal outcome. Note that a student’s name and address are listed only if the
student meets all four criteria. 

57.4.3 Decision algorithm efficiency 

Once a decision tree is drawn, probabilities can be associated with each
branch and the expected values of the outcomes computed. The systems
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Figure 57.1 A decision tree. 



analyst can take advantage of this idea to improve the efficiency of an 
algorithm. 

Consider, for example, the basketball problem. Rank the tests from most
to least discriminating. The height requirement will eliminate all but a hand-
ful of the students. Significantly less than half the students will meet the
180-pound requirement. The gender question (male or female) will elimi-
nate roughly half the students. The credit hour question is the least dis-
criminating because, on a residential campus, most students take at least
twelve hours, and on a commuter campus, most students do not. 

If the height requirement is tested first, only perhaps 5 percent of the
records will pass and thus be subject to subsequent tests. If, on the other
hand, the credit hour test is conducted first, as many as 90 percent of the stu-
dents (on a residential campus) might pass the first test and thus be subject
to additional tests. In general, performing the most discriminating test first,
the second most discriminating test second, and so on results in fewer total
tests actually being executed. 

57.5 Key terms 
Act fork — A point on a decision tree (represented by a box) where a

decision is made. 
Event — An occurrence that is not entirely subject to the decision-

maker’s control. 
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Figure 57.2 A decision tree can be used to model nested decisions. 



Event fork — A point on a decision tree (represented by a circle) where
subsequent branches identify the consequences (or possible out-
comes) of a decision. 

Outcome — On a decision tree, a final result of a series of decisions
and/or outcomes. 

57.6 Software 
The decision trees in this chapter were prepared using Visio. Other charting
programs (such as Micrografx’s Flowcharter) can also be used. 

57.7 References 
1. Brown, R. V., Kahr, and Peterson, Decision Analysis for the Manager, Holt,

Rinehart & Winston, New York, 1974. 
2. Davis, W. S., Systems Analysis and Design: A Structured Approach, Addison-

Wesley, Reading, MA, 1983. 
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58.1 Purpose 
A decision table is a two-dimensional table that shows the action to be taken
following a series of related decisions. 

58.2 Strengths, weaknesses, and limitations 
When an algorithm involves more than two or three nested decisions, a
decision table gives a clear and concise picture of the logic. Such algorithms
are difficult to describe using logic flowcharts (Chapter 55), Nassi-
Shneiderman charts (Chapter 56), pseudocode (Chapter 59), or structured
English (Chapter 60). Additionally, decision tables are relatively easy for
non-technical users to follow. 

Decision tables are not useful for describing non-decision algorithms.
They were common in the 1970s and 1980s, but few modern analysts or pro-
grammers are familiar with them. 



58.3 Inputs and related ideas 
Before creating a decision table, the designer must understand the algorithm
or procedure. The necessary information might be compiled from direct
observation, extracted from existing documentation, or derived from the
problem definition (Part II) and/or analysis (Part IV) stages of the system
development life cycle. 

Other tools for documenting or planning routines or processes include
logic flowcharts (Chapter 55), Nassi-Shneiderman charts (Chapter 56), deci-
sion trees (Chapter 57), pseudocode (Chapter 59), structured English
(Chapter 60), and input/process/output (IPO) charts (Chapter 64). A rou-
tine usually exists in the context of a larger program. Tools for documenting
or planning program structure include structure charts (Chapter 63) and
HIPO (Chapter 64). 

58.4 Concepts 
Assume that the men’s basketball coach wants to look through the student
records and produce a list of all full-time male students who are at least 
6 feet 5 inches (or 77 inches) tall and who weigh at least 180 pounds. 

A decision table for an appropriate algorithm is shown as Figure 58.1. It
is divided into four sections: a condition stub at the upper left, a condition
entry at the upper right, an action stub at the lower left, and an action entry
at the lower right. The questions are listed in the condition stub; note that
each question requires a yes/no response. The associated actions are listed
in the action stub. The responses (Y or N) are recorded in the condition
entry, while the appropriate action is indicated in the action entry. 
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The easiest way to understand a decision table is to read one. Start with
the first question: Is the student male? There are two possible answers: yes
(Y) or no (N). If the answer is no, then the student is not male, is not a can-
didate for the men’s basketball team, and can be rejected. Move down the
column containing the N and note the X on the action entry line following
the action Reject the student. If the answer is yes, however, the coach cannot
yet make a decision to add the student to the list because the student must
first pass three more tests. 

Move on to the second question: Is the student taking at least 12 credit
hours? Again, there are two possible answers: yes or no. Note how the
answers are recorded on Figure 58.1. The second Y is directly under the first
one, implying that the answers to both questions (plus two more) must be
yes before the action identified by an X in that column’s action entry can be
taken. If the answer to the second question is no, however, the student can
be rejected. Note that any single N, by itself, is enough to reject the student. 

Read the rest of the table. It clearly shows that the student’s name and
address will be listed only if the answers to all four questions are yes, but
that the student will be rejected if the answer to any one question is no. 

58.5 Key terms 
Action entry — The box at the lower right of a decision table where the

appropriate action is indicated. 
Action stub — The box at the lower left of a decision table where the

possible actions are listed. 
Condition entry — The box at the upper right of a decision table where

the responses (Y or N) to the questions in the condition stub are 
listed. 

Condition stub — The box at the upper left of a decision table where
the questions (or decisions) are listed. 

Decision table — A two-dimensional table that shows the action to be
taken following a set of related decisions. 

58.6 Software 
Decision tables can conveniently be constructed using a spreadsheet pro-
gram. The decision tables in this chapter were prepared using Visio. Other
charting programs (such as Micrografx’s Flowcharter) can also be used. 

58.7 References 
1. Brown, R. V., Kahr, A. S., and Peterson, C., Decision Analysis for the Manager,
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59.1 Purpose 
Pseudocode is a tool for planning, defining, or documenting the contents of
a program routine or module. As the name implies, pseudocode is similar to
(and often based on) real code. 

59.2 Strengths, weaknesses, and limitations 
Pseudocode is an excellent tool for planning or designing program logic and
computational algorithms. Because it resembles real code, programmers



find it easy to use and to understand. Pseudocode is not a good tool for
describing control structures, particularly when several nested decisions are
involved. Because pseudocode resembles a programming language, it is not
well suited to planning or designing manual procedures. 

In part, because pseudocode so closely resembles real code, some
designers tend to write (rather than plan or design) the code. Writing the
code twice (once in pseudocode and once in real code) is a waste of time.
When the designer worries about coding details, crucial design considera-
tions can easily be overlooked. Also, programmers resent such over specifi-
cation. 

Even if the pseudocode is well done, programmers sometimes resent it.
Specifying algorithms in what is essentially a high-level language limits the
programmer’s flexibility. Additionally, the programmer can fail to distin-
guish between the analyst’s coding technique and the analyst’s design, and
the result may be criticism (even rejection) of a perfectly good design based
on inappropriate criteria. 

59.3 Inputs and related ideas 
Before writing pseudocode, the designer must understand the algorithm or
procedure. The necessary information might be compiled from direct obser-
vation, extracted from existing documentation, or derived from the problem
definition (Part II) and/or analysis (Part IV) stages of the system develop-
ment life cycle. 

Other tools for documenting or planning routines or processes include
logic flowcharts (Chapter 55), Nassi-Schneiderman charts (Chapter 56),
decision trees (Chapter 57), decision tables (Chapter 58), structured English
(Chapter 60), and input/process/output (IPO) charts (Chapter 64). A
pseudocode routine usually exists in the context of a larger program. Tools
for documenting or planning program structure include structure charts
(Chapter 63) and HIPO (Chapter 64). The basic software logic blocks are
defined in Chapter 62. 

59.4 Concepts 
With pseudocode, such details as opening and closing files, initializing
counters, and setting flags are explicitly coded, but language-dependent
details (such as the distinction between subscripts and indexes or the differ-
ence between real and integer numbers) are ignored. The idea is to describe
the executable code in a form that a programmer can easily translate into
real code. 

There is no standard pseudocode; many different versions exist. Most,
however, capitalize key words and operations and use indentation to show
the logical relationships between blocks of code. 
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59.4.1 Sequence 

Perhaps the easiest way to define sequential logic is by coding an algebra-
like expression, for example, 

COUNT = 0 

or 

STOCK = STOCK + QUANTITY

Such details as the sequence of operations and the rules for using parenthe-
ses should be consistent with the language to be used for writing the actual
code. Data names should be taken from the data dictionary. 

Input and output instructions are explicitly defined in pseudocode; for
example, 

READ data FROM source 

and 

WRITE data TO destination 

where data is a list of variables, a data structure, or a record, and source and
destination refer to a file or a database. 

59.4.2 Blocks of logic 

A block can contain any set of sequence, decision (selection), and/or repeti-
tion (iteration) logic. Once defined, the block’s instructions can be refer-
enced by coding a PERFORM instruction: 

PERFORM block 

For example, the instructions 

COUNT = 0 

ACCUMULATOR = 0 

might be assigned the block name INITIALIZE. Subsequently, the instruction 

PERFORM INITIALIZE 

executes all the instructions in the block. 

1999 by CRC Press LLC



To distinguish between formal subroutines and internal procedures,
some analysts use: 

PERFORM block USING list 

for a subroutine, where list designates a list of variables passed between the
calling routine and the subroutine. 

59.4.3 Decision or selection 

The general form of a decision (selection) block is: 

IF condition 

THEN 

PERFORM block-1

ELSE 

PERFORM block-2 

ENDIF 

For example, 

IF HOURS > 40 

THEN 

PERFORM OVERTIME 

ELSE 

PERFORM REGULAR 

ENDIF 

By convention, the THEN block is executed if the condition is true and
the ELSE block is executed if the condition is false. 

Note the ENDIF. A feature of most pseudocodes is that each block of
logic is clearly delimited. A decision block always begins with IF and ends
with ENDIF, so there is no ambiguity. Note also the use of indentation. It
makes the block easy to read. 

It is possible to nest decision logic. For example,

IF condition-1 

THEN 

IF condition-2 
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THEN 

PERFORM block-a 

ELSE 

PERFORM block-b 

ENDIF 

ELSE 

PERFORM block-c 

ENDIF 

Note how indentation highlights the relationship among these instructions.
Note also how IF and ENDIF clearly delimit both decision blocks. 

59.4.4 Repetition or iteration 

DO WHILE logic tests for the terminal condition at the top of the loop. For
example, 

WHILE condition DO 

PERFORM block 

ENDWHILE 

Note the use of indentation and the way WHILE and ENDWHILE delimit
the block. The REPEAT UNTIL structure tests for the terminal condition at
the bottom of the loop: 

REPEAT 

PERFORM block 

UNTIL condition 

Some analysts use a pseudocode structure much like a DO loop to define a
count-controlled loop: 

DO index = initial TO limit 

PERFORM block 

ENDDO 

Again, note the indentation and the ENDDO. 
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59.4.5 The case structure 

A common programming problem involves selecting among several alter-
native paths. Although nested decision statements could be used to define
such logic, the case structure is a better option when nesting goes beyond
three or four levels. 

The general form of a case structure is: 

SELECT variable 

CASE (value-1) block-1 

CASE (value-2) block-2 

. 

. 

. 

DEFAULT CASE block-n 

ENDSELECT 

The option selected by the case structure depends on the value of the 
control variable following the keyword SELECT. If the variable contains
value-1, then block-1 is executed; if it contains value-2, then block-2 is exe-
cuted, and so on. The DEFAULT CASE is coded to define the logic to be 
executed if the control variable contains none of the listed values. A case
structure is delimited by ENDSELECT. Once again, indentation makes the
structure easy to read. 

For example, the following pseudocode routine accepts a code (the
TRANSACTION TYPE) and, based on the value of the code, passes control
to one of three lower-level routines. 

SELECT TRANSACTION TYPE 

CASE (modify) PERFORM MODIFY STOCK 

CASE (add) PERFORM ADD RECORD 

CASE (delete) PERFORM DELETE RECORD 

DEFAULT CASE PERFORM TRANSACTION ERROR 

ENDSELECT 

59.5 Key terms 
Module — A portion of a larger program that performs a specific task. 
Procedure — A set of guidelines, rules, and instructions for performing

a task; often, a manual procedure. 
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Pseudocode — A tool for planning, defining, or documenting the con-
tents of a program routine or module that resembles real code. 

Routine — A set of instructions that performs a specific, limited task. 

59.6 Software 
Few software tools are designed to produce pseudocode. Word processors
and text editors are sometimes used. 

59.7 References 
1. Davis, W. S., Systems Analysis and Design: A Structured Approach, Addison-

Wesley, Reading, MA, 1983. 
2. Gane, C. and Sarson, T., Structured Systems Analysis: Tools and Techniques,

Prentice-Hall, Englewood Cliffs, NJ, 1979.
3. Gillett, W. D. and Pollack, S. V., An Introduction to Engineered Software, Holt,

Rinehart & Winston, NY, 1982. 
4. Peters, L. J., Software Design: Methods and Techniques, Yourdon Press, NY, 1981. 

1999 by CRC Press LLC



1999 by CRC Press LLC

chapter sixty 

Structured English 
William S. Davis

Contents 

60.1 Purpose
60.2 Strengths, weaknesses, and limitations
60.3 Inputs and related ideas
60.4 Concepts

60.4.1 Sequence
60.4.2 Blocks of logic
60.4.3 Decision or selection
60.4.4 Repetition or iteration

60.5 Key terms
60.6 Software
60.7 References

60.1 Purpose 
Structured English is a very limited, highly restricted subset of the English
language used to plan, design, or document program routines, modules,
and manual procedures. 

60.2 Strengths, weaknesses, and limitations 
Structured English is useful for planning or designing program routines,
modules, and manual procedures. It resembles a programming language, so
programmers find it easy to understand. The base for structured English is,
of course, English, so users find it easy to follow, too. 



Structured English is excellent for describing an algorithm, particularly
when user communication is essential. If the main concern is communica-
tion with the programmers, however, pseudocode may be a better choice.
Structured English is not a good choice for describing a high-level control
structure or an algorithm in which numerous decisions must be made; logic
flowcharts, decision tables, and decision trees are better for such tasks. 

60.3 Inputs and related ideas 
Before writing structured English, the designer must understand the algo-
rithm or procedure. The necessary information might be compiled from
direct observation, extracted from existing documentation, or derived from
the problem definition (Part II) and/or analysis (Part IV) stages of the sys-
tem development life cycle. 

Other tools for documenting or planning routines or processes include
logic flowcharts (Chapter 55), Nassi-Schneiderman charts (Chapter 56),
decision trees (Chapter 57), decision tables (Chapter 58), pseudocode
(Chapter 59), and input/process/output (IPO) charts (Chapter 64). A
pseudocode routine usually exists in the context of a larger program. Tools
for documenting or planning program structure include structure charts
(Chapter 63) and HIPO (Chapter 64). The basic software logic blocks are
defined in Chapter 62. 

60.4 Concepts 
There are several variations of structured English, none of which can be con-
sidered a standard. Consequently, view this chapter as a guideline. 

A good structured English statement reads like a short imperative sen-
tence. By convention, only key words such as IF, THEN, SO, REPEAT,
UNTIL, DO, and so on are capitalized; data names and the general English
needed to complete a sentence or a phrase are lower case. Many sources rec-
ommend that a data name defined in a data dictionary be underlined, and
that convention will be followed in the examples shown below. 

60.4.1 Sequence 

Sequence statements begin with commands such as MOVE, GET, WRITE,
READ, or COMPUTE followed by the name or names of the associated data
elements or data structures. For example, 

COMPUTE gross pay. 

ADD 1 to counter.

MULTIPLY hours worked by pay rate to get gross pay.
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GET inventory record. 

MOVE customer name to invoice.

WRITE invoice.

60.4.2 Blocks of logic 

It is often convenient to group several structured English statements into a
block, assign a name to the block, and reference the block by coding a single
sequence statement. For example, all the instructions required to compute
gross pay might be grouped in a block under the name compute gross pay.
Subsequently, the statement 

DO compute gross pay. 

references the entire block. 
Note that a block can contain any combination of code, including deci-

sions, repetitive logic, and even other blocks. Indentation should always be
used to show the relationship between the parts of a block. 

60.4.3 Decision or selection 

Decision (or selection) logic follows an IF-THEN-ELSE structure: 

IF condition 

THEN block-1 

ELSE (not condition) 

SO block-2. 

The key word IF is followed by a condition. If the condition is true, the block
following THEN is executed. ELSE identifies the negative of the condition. SO
precedes the block to be executed if the initial condition is false. For example, 

IF stock-on-hand is less than reorder-point

THEN turn on reorder-flag

ELSE (stock-on-hand not less than reorder-point

SO turn off reorder-flag.

Indenting makes the IF-THEN-ELSE logic easier to read. (Note: The negative
condition following ELSE is often assumed and not explicitly coded.) 

Nested decisions are also supported: 



IF condition-1 

THEN IF condition-2 

THEN block-a 

ELSE (not condition-2) 

SO block-b 

ELSE (not condition-1) 

SO block-c. 

Note that any or all of block-a, block-b, or block-c could contain yet another
decision. 

60.4.4 Repetition or iteration 

Repetitive (or iterative) logic defines a block of structured English that is
executed repetitively until a terminal condition is reached. For example,
such instructions as: 

REPEAT UNTIL condition-1 

block-1 

or 

FOR EACH TRANSACTION 

block-a 

imply both repetitive logic and the condition used to terminate that logic. 

60.5 Key terms 
Module — A portion of a larger program that performs a specific task. 
Procedure — A set of guidelines, rules, and instructions for performing

a task; often, a manual procedure. 
Routine — A set of instructions that performs a specific, limited task. 
Structured English — A very limited, highly restricted subset of the

English language used to plan, design, or document program rou-
tines, modules, and manual procedures. 

60.6 Software 
Few software tools are designed to produce structured English. Word
processors and text editors are sometimes used. 
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61.1 Purpose 
This chapter briefly discusses several general process design principles and
guidelines. 

61.2 Strengths, weaknesses, and limitations 
Not applicable. 



61.3 Inputs and related ideas 
Processes are designed in the context of a system. The information to sup-
port process design is collected during the problem definition (Part II) and
analysis (Part IV) stages of the system development life cycle, and the
processes are identified during the high-level design stage (Part V). Problem
analysis techniques are discussed in Chapter 15. Process design tools and
techniques include data flow diagrams (Chapter 24), Warnier-Orr diagrams
(Chapter 33), system flowcharts (Chapter 37), logic flowcharts (Chapter 55),
Nassi-Shneiderman diagrams (Chapter 56), decision trees (Chapter 57),
decision tables (Chapter 58), pseudocode (Chapter 59), structured English
(Chapter 60), and structure charts (Chapter 63). Such concepts as decompo-
sition, cohesion, coupling, and span of control are discussed in Chapter 62. 

61.4 Concepts 
This chapter briefly discusses several general process design principles and
guidelines. 

61.4.1 Factors that influence process design 

Before starting process design, the analyst or designer must carefully con-
sider the process in the context of the system. For example, on-line, batch,
and real-time systems (Chapter 73) are inherently different, and process tim-
ings must be consistent with system timings. 

A complex process might be converted into several smaller and more
feasible subprocesses using decomposition techniques (Chapter 15).
Numerous, small processes create numerous interfaces that can lead to
operational complexity. An option is to merge several subprocesses into one
process by using factoring techniques (Chapter 15). 

In some cases, abstraction might be used to transform an abstract prob-
lem into a form that is more easily understood by the user. Abstraction is a
problem-solving technique that focuses on investigating the most critical
aspects of a problem and using the results to suggest a solution. Such tools
as searching, generate-and-test, and justification building (Chapter 15) can
be used to abstract a problem. 

Transform-oriented processes create and/or derive new information
based on the input data. For example, a payroll process calculates an
employee’s net income given such input as hours worked, pay rate, federal,
state and city income tax rates, and so on. Such processes can usually be
divided into input (afferent), output (efferent), and process (transform)
modules to form a high-level control structure (Chapter 62). 

Transaction-oriented processes transmit or route the right information
to the right process and are typically decomposed to form a case structure
(Chapter 62). For example, after receiving a customer order, an order rout-
ing process might be used to check the order type and then transmit 
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backorders to a back order subprocess, new customer orders to a new cus-
tomer subprocess, orders from existing customers to a customer verification
subprocess, and so on. 

The available technology also affects process design. For example,
CASE tools, screen, and form generators, and prototyping fundamentally
change the process of designing processes. To cite one example, the CASE
repository (Chapter 5) might serve as database for designing a new process
based on existing similar processes. 

61.4.2 Process content 

Before starting detailed process design, the analyst or designer must define
both static and dynamic information for each process. Static information
includes such attributes as the process name, the process number (and other
process identifiers), any algorithms or logic associated with the process, the
inputs to the process, and the outputs from the process. Dynamic informa-
tion includes such attributes as the processing cycle (daily, weekly, monthly,
quarterly, annually), the nature of the output (query, periodic report), any
parameters that vary over time (e.g., the price of gasoline), and any other
parameters not subject to the organization’s control (e.g., Internal Revenue
Service regulations). 

61.4.3 Process data 

Once the process contents are defined, the analyst or designer must check
the process’s data flows. Except for constants, input data elements must
either flow from a source or a prior process and output data elements must
flow to a following process. Any data stores associated with the process
must be mapped to a file or a database. A data flow diagram (Chapter 24) is
an excellent tool for checking data flows. 

61.4.4 Process design guidelines 

Listed below are several general process design principles and guidelines. 

61.4.4.1 Stepwise refinement 
Stepwise refinement is a top-down strategy for dealing with complex or
abstract processes. The basic idea is to study the process and define it in a
conceptual level, analyze the conceptual knowledge and describe it at a log-
ical level, and transform the logical information into corresponding physi-
cal specifications. The structured analysis and design methodology
(Chapter 3) utilizes stepwise refinement. 

61.4.4.2 Modularization 
A complex process is normally implemented as a set of linked, single-task
modules (Chapter 62), with a high-level control module calling subordinate
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modules in the proper order. The control modules and their subordinates
must be designed in such a way that they can be easily linked and can share
common information. Only those data elements directly relevant to its sub-
task should be passed to or returned by a submodule, and a called module
should store no global data elements. A called module should always return
control to the calling module. 

Coupling is a measure of module interdependence. Generally, coupling
is a function of the amount of data passed between the calling module and
its subordinate, and more data implies tighter coupling. A major objective of
process design is to reduce coupling. Structured walkthroughs and inspec-
tions (Chapter 23) can help. 

Cohesion is a measure of a module’s completeness. A well-designed
module performs a single, complete task. If a module must be decomposed,
each submodule should perform a single, complete subtask. 

Span of control is another important criterion. Generally, a super-
process should control no more than seven subordinate subprocesses. 

61.4.4.3 Information hiding 
The information hiding principle suggests that all information not directly
relevant to a given process should be hidden from that process. Only essen-
tial data elements should be passed to a process when the process is called.
No subprocess should be allowed to access or modify any global data ele-
ment that is not explicitly passed to it. If a given process utilizes local data
elements, the local data should be known only within that process. A called
process should be designed to react only when the correct information is
passed to it. 

61.5 Key terms 
Abstraction — A problem-solving technique that focuses on investigat-

ing the most critical aspects of a problem and using the results to sug-
gest a solution. 

Afferent process — A process that gathers and prepares input data. 
Cohesion — A measure of a module’s completeness. 
Control structure — A hierarchical model of the flow of control through

a program. The control structure resembles a military chain of com-
mand or an organization chart. At the top is a main control module
that calls secondary control structures. At the bottom are the compu-
tational routines, each of which implements a single algorithm. 

Coupling — A measure of a module’s independence; fewer parameters
flowing into or out from a module imply looser coupling. 

Decomposition — A problem analysis paradigm that calls for breaking
a problem into more manageable subproblems and then attacking the
subproblems. 

Dynamic information — Time-related parameters, or process informa-
tion that can change; for example, the processing cycle, the nature of
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the output, any parameters that vary over time, and any other para-
meters not subject to the organization’s control. 

Efferent process — A process that structures and/or transmits output
data. 

Factoring — Merging several small, isolated, overlapping, or related
problems to form a meta-problem. 

Functional decomposition — A program design methodology in which
the program is broken down (or decomposed) into modules based on
the processes or tasks they perform. 

Information hiding — A principle that suggests that all information not
directly relevant to a given process should be hidden from that
process. 

Span-of-control (breadth) — A measure of the number of modules
directly controlled by a higher-level routine. 

Static information — Process information that is not likely to change;
for example, the process name, the process number, necessary algo-
rithms, inputs, and outputs. 

Stepwise refinement — A top-down strategy for dealing with complex
or abstract processes. 

Transaction-oriented process — A process that transmits or routes the
right information to the right process. 

Transform process — A process that converts the input data to output
form. 

Transform-oriented process — A process that creates and/or derives
new information based on the input data. 

61.6 Software 
Not applicable. 
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62.1 Purpose 
This chapter discusses the basic principles that underlie structured program
design and functional decomposition. The objective of functional decompo-
sition is to design structured programs that are easy to test, debug, and
maintain. The basic idea is to break down (or decompose) a program into
logically independent modules based on the processes or tasks they 
perform. 

62.2 Strengths, weaknesses, and limitations 
Because the detailed computational logic is grouped into independent, sin-
gle function modules, well-structured programs are easier to test, debug,
and maintain than are unstructured programs. Independent modules can be
independently coded and tested. The control structure allows the entire pro-
gram to be tested top down, one module at a time. When an error occurs, it
is often possible to quickly isolate the likely cause to a single module.
During the maintenance phase, independent modules can be replaced or
modified with minimal ripple effects. 

Functional decomposition is a process driven methodology.
Consequently, although the logic modules are independent, the data are 
not, and that can lead to ripple effects during testing, debugging, and 
maintenance. 

62.3 Inputs and related ideas 
Before starting to design a program using functional decomposition, the nec-
essary logical data structures and the primary processes must be defined
during the systems analysis phase (Part IV) of the system development life
cycle. Often, the results of analysis are documented in the requirements spec-
ification (Chapter 35). Additionally, it is useful to define the physical data
structures, file structures, and database structures (Chapters 43, 44, and 45),
the required input and output data structures (Chapters 46 through 51), and
the algorithms (Chapters 55 through 60) before starting program design. 

The design of a structured program is sometimes documented using the
HIPO technique (Chapter 64). Structure charts (Chapter 63) are useful plan-
ning tools. Such tools as logic flowcharts (Chapter 55), Nassi-Shneiderman
charts (Chapter 56), decision trees (Chapter 57), decision tables (Chapter 58),
pseudocode (Chapter 59), structured English (Chapter 60), and IPO charts
(Chapter 64) are used to document the modules. 

62.4 Concepts 
Functional decomposition is a popular structured program design
methodology. The basic idea is to break down (or decompose) a program
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into logically independent modules based on the processes or tasks they
perform. 

62.4.1 The control structure 

A well-designed structured program consists of a set of independent, single
function modules linked by a control structure that resembles a military
chain of command or an organization chart (Figure 62.1). Each module is
represented by a rectangle. At the top of the control structure is a single
module called the root (or the main control module). All control flows from
the root which calls (or invokes) its level-2 child (or son) modules. The level-2
modules, in turn, call their level-3 children, and so on. The calling module
(sometimes called the parent) passes data and/or control information to the
child and receives data and/or control information back from the child; 
otherwise, the modules are viewed as independent black boxes. Note that
control always returns to the calling module. 

A module with no children (a lowest-level module) is called a leaf and
often implements a single algorithm. Library modules (e.g., a standard sub-
routine) are indicated by a rectangle marked with two vertical lines; see the
leaf labeled Library module in Figure 62.1. Note that a library module can be
called by more than one parent. 

The modules are often assigned identifying numbers or codes that indi-
cate their relative positions in the hierarchy. For example, the root might be
designated module 1.1, the level-2 modules might be designated 2.1, 2.2, 2.3,
and so on. Other designers use letters (or even Roman numerals) to 

1999 by CRC Press LLC

Figure 62.1 A well-designed structured program consists of a set of independent
single function modules linked by a control structure. 



designate levels; for example, module A.1 is the root, module B.3 is the third
module at level 2, module C.6 is the sixth module at level 3, and so on.
Sometimes, more complex numbering schemes are used to indicate a path
through the hierarchy. The key is consistency. 

62.4.2 Designing a control structure 

The first step in decomposing a program is to define its high-level control
structure. The primary inputs come from the logical models developed dur-
ing the systems analysis phase (Part IV) and from the requirements specifi-
cation (Chapter 35). More specifically, the high-level functions to be per-
formed by a given program can often be obtained from the appropriate con-
figuration item’s process description. 

62.4.2.1 Afferent, transform, and efferent processes 
One approach to designing a control structure is to divide the functions (or
subprocesses) into three groups (Figure 62.2). The afferent processes gather
and prepare input data. The efferent processes structure and transmit out-
put data. In the middle, the transform processes convert the input data to
output form. Identifying the afferent, transform, and efferent processes sug-
gests a basic input, process, output control structure. 

62.4.2.2 Trigger events 
An alternative is to start with the program’s trigger event, the event that
activates the program or causes it to change from a wait to a run state. Some
programs are triggered by an asynchronous event such as the arrival of a
transaction or an interrupt. Other applications are clock driven; for example,
a batch program might be run at the same time every week, and a scientific
data collection routine might take a sample every few seconds. A program’s
high-level control structure should reference those tasks that are performed
in direct response to its trigger event. 

62.4.2.3 Data structures 
Another technique for designing a high-level control structure is to analyze
the data structures. The point of any program is to accept the input data and
convert them to the form required for output, so the data actually drive the
program design process. 

Analyze the output data and determine the order in which the various
output substructures are assembled. Then define the input substructures and
the algorithms that generate the data elements in a given output substruc-
ture. The data structures will, essentially, dictate both the order in which the
logical tasks must be performed and the logical structures needed to support
those tasks. Generally, sequential data structures call for sequential logic,
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conditional structures call for conditional logic, and repetitive structures call
for repetitive logic. 

62.4.2.4 Logical access maps 
Logical access maps were initially proposed by Martin4 to help the designer
determine the logical execution sequences or access paths through a pro-
gram. This technique recognizes that each user (or class of users) has a
unique logical accessing perspective. For example, a sales associate might
start with a customer order and follow the order through order fulfillment,
shipping, and so on. In contrast, warehouse personnel might start with the
arrival of a shipment from a supplier, track the shipment into inventory, and
view a customer order as nothing more than a transaction that deletes indi-
vidual items from inventory. The point of logical access mapping is to exam-
ine the logical accessing sequence of a system’s programs and a program’s

1999 by CRC Press LLC

Figure 62.2 Afferent, transform, and efferent processes. 



modules from multiple perspectives and to use the consensus view as a
design criterion. 

62.4.3 Evaluating the control structure 

A well-designed control structure exhibits a regular morphology (form, or
structure) and achieves a balance between breadth and depth. 

62.4.3.1 Morphology 
One way to evaluate a control structure’s design is to examine its morphol-
ogy (form or structure). Each module decomposes into several lower-level
routines, so the number of modules should increase from level-2 to level-3,
perhaps increase again at level-4, and so on. Eventually, however, only some
modules require additional decomposition, so the number of routines at
each level begins to stabilize and then to decline. 

For example, Figure 62.3 shows a control structure for an inventory
management program. Figure 62.4 is a simplified version of the control
chart that emphasizes the number of modules at each level. Note the shape;
some people describe it as a mosque or a cigar. Most good control structures
have a similar shape, with the number of modules at each level increasing,
then stabilizing, and then decreasing. 

Morphology is subjective; over the years, people have noticed that good
designs tend to have that characteristic shape. The designer should not con-
sciously try to make the control structure resemble a mosque. Instead, 
morphology should be checked after the design is complete. If the shape
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Figure 62.3 A control structure. 



seems reasonable, the design is probably a good one. If the design deviates
significantly from the expected shape, it should be restudied. 

62.4.3.2 Depth and breadth 
A well-designed control structure balances two conflicting objectives: depth
and breadth. Depth is the number of levels in the control structure. Because
each call to a lower level is a potential source of error, shallow structures
tend to be better than deep structures. Breadth, or span-of-control, is a mea-
sure of the number of modules directly controlled by a higher-level routine.
Too many subordinates adds to complexity, so narrow structures tend to be
better than broad structures. 

Narrow structures are usually deep, so reducing breadth tends to
increase depth, and vice versa. One rule-of-thumb for balancing these two
parameters suggests that no module should directly control more than
seven subordinates. If a given routine has too many subordinate modules,
adding a secondary control structure drops some of them to a lower level. 

Module size is another useful screen; one page of source code is a com-
mon limit. If a module’s logic exceeds roughly 50 lines of code, decompose
it. If, on the other hand, the logic in a subordinate routine can be merged
into its parent without violating the single page rule, merge it. Remember,
however, that rules-of- thumb are not absolute. If breaking one means a bet-
ter design, break it. 
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Figure 62.4 The morphology of a good design resembles a mosque or a cigar.



62.4.3.3 Structure clash and boundary clash 
Structure clash occurs when corresponding elements of two related data
structures are incompatible. For example, imagine that customer social secu-
rity number is the key for an invoice file and customer zip code is the key
for a name and address file. Because the files are (presumably) stored in dif-
ferent record sequences and accessed by different keys, it is difficult to
design a program to efficiently merge them. 

A boundary clash occurs when the physical data structures are incom-
patible. For example, if a program sets a nonstandard (9 � 12) page size and
the printer is loaded with standard (8.5 � 11) paper, the resulting boundary
clash produces poorly aligned output. 

Structure clashes and boundary clashes lead to errors and inefficiencies.
The program designer should carefully evaluate both the logical and 
physical data structures and change the program design, the data structures,
or both to eliminate structure clash and border clash. 

62.4.4 Module design 

A good module is cohesive and loosely coupled. 

62.4.4.1 Cohesion 
Cohesion is a measure of a module’s completeness. Every statement in the
module should relate to the same function, and all of that function’s logic
should be in the same module. When a module becomes large enough to
decompose, each submodule should perform a cohesive subfunction. 

The best form of cohesion is called functional cohesion. A functionally
cohesive module performs a single logical function, receives and returns no
surplus data, and performs only essential logical operations. Functional
cohesion is the designer’s objective. A module is not considered function-
ally cohesive if it exhibits other forms of cohesion. 

Coincidental cohesion is the weakest type. In a coincidentally cohesive
module, there is little or no logical justification for grouping the operations;
the instructions are related almost by chance. In a logically cohesive mod-
ule, all the elements are related to the same logical function; for example, all
input operations or all data verification operations might be grouped to
form a module. The elements that form a temporally cohesive module are
related by time; for example, a setup module might hold all operations that
must be performed at setup time. 

Procedural cohesion is an intermediate form of cohesion, halfway
between coincidental cohesion and functional cohesion. All the elements in
a procedurally cohesive module are associated with the same procedural
unit, such as a loop or a decision structure. Communicational cohesion
groups elements that operate on the same set of input or output data (more
generally, on the same data structure). With sequential cohesion, the mod-
ules form a chain of transformations, with the output from one module 
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serving as input to the next. The three types of cohesion described in this
paragraph often result from viewing the program as a flowchart. 

62.4.4.2 Coupling 
Coupling is a measure of a module’s independence. Perfect independence is
impossible because each module must accept data from and return data to
its calling routine. Because global data errors can have difficult-to-trace rip-
ple effects, a module should never change the value of any global data ele-
ment that is not explicitly passed to it. If that rule is enforced, the list of para-
meters becomes a measure of how tightly the module is linked to the rest of
the program. Fewer parameters imply looser coupling. 

With data coupling (or input-output coupling), only data move between
the modules. Data coupling is necessary if the modules are to communicate.
Control coupling involves passing control information (e.g., a switch 
setting) between the modules. Hybrid coupling is a combination of data
coupling and control coupling. For example, if module A modifies an
instruction in module B, the operation looks like data coupling to module A
and control coupling to module B. Whenever possible, control and hybrid
coupling should be eliminated. 

With common-environment coupling, two or more modules interact
with a common data environment, such as a shared communication region
or a shared file. With content coupling, some or all of the contents of one
module are included in the other. This problem often occurs when a module
is given multiple entry points. Both common-environment and content cou-
pling can lead to severe ripple effects, and should be avoided. 

Binding time, the time at which a module’s values and identifiers are
fixed, is another factor that influences coupling. A module can be fixed
(rendered unchangeable) at coding time, at compilation time, at load time,
or at execution time. Generally, the later the binding time the better the
module. 

62.4.4.3 Sequence, selection, and repetition 
The modules that form a well-structured program are composed of three
basic logical building blocks or constructs: sequence, selection (or decision),
and repetition (or iteration). Go to or branch instructions are not permitted. 

Sequence (Figure 62.5) implies that the logic is executed in simple
sequence, one block after another. Note that each block might represent one
or more actual instructions. 

Selection (or decision) logic provides alternate paths through the block
depending on a run-time condition. With IF-THEN-ELSE logic (Figure  62.6),
if the condition is true the logic associated with the THEN branch is exe-
cuted and the ELSE block is skipped. If the condition is false the ELSE logic
is executed and the THEN logic is skipped. A case structure (Figure 62.7)
provides more than two logical paths through the block of logic based 
(usually) on the value of a control variable. 
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Figure 62.5 Sequence.

Figure 62.6 Selection. 
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Figure 62.7 A case structure. 

Figure 62.8 Repetition. 



There are two basic patterns for showing repetitive logic: DO WHILE
and DO UNTIL (Figure 62.8). In a DO WHILE block, the test is performed
first and the associated instructions are performed only if (while) the test
condition is true. In a DO UNTIL block, the associated instructions are exe-
cuted first and then the exit condition is tested. 

62.5 Key terms 
Afferent process — A process that gathers and prepares input data. 
Binding time — The time at which a module’s values and identifiers are

fixed; for example, coding time, compilation time, load time, or exe-
cution time. 

Breadth (span-of-control) — A measure of the number of modules
directly controlled by a higher-level routine. 

Case structure — A selection structure with multiple alternative paths;
the path through the structure is normally based on the value of a
control variable. 

Child (son) — An immediate lower-level module in a control structure.
Control passes from the parent to the child and then returns to the
parent. 

Cohesion — A measure of a module’s completeness. 
Coincidental cohesion — The weakest type of cohesion in which the

elements are related almost by chance. 
Common-environment coupling — A form of coupling in which two or

more modules interact with a common data environment, such as a
shared communication region or a shared file. 

Communicational cohesion — A form of cohesion that groups elements
that operate on the same set of input or output data or on the same
data structure. 

Configuration item — A functional primitive; above the configuration
level are the system’s logical, composite elements. Below the config-
uration level are the system’s physical components, including the
programs. 

Content coupling — A form of coupling in which some or all of the con-
tents of one module are included in the other. 

Control coupling — A form of coupling in which control information
(e.g., a switch setting) is passed between the modules.

Control structure — A hierarchical model of the flow of control through
a program. The control structure resembles a military chain of com-
mand or an organization chart. At the top is a main control module
that calls secondary control structures. At the bottom are the compu-
tational routines, each of which implements a single algorithm. 

Coupling — A measure of a module’s independence; fewer parameters
flowing into or out from a module imply looser coupling. 

Data coupling (input-output coupling) — A form of coupling in which
only data move between the modules. 
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Depth — The number of levels in the control structure. 
Efferent process — A process that structures and/or transmits output

data. 
Function cohesion — The strongest type of cohesion in which a given

module performs a single logical function, receives and returns no
surplus data, and performs only essential logical operations. 

Functional decomposition — A program design methodology in which
the program is broken down (or decomposed) into modules based on
the processes or tasks they perform. 

Hybrid coupling — A combination of data coupling and control cou-
pling. 

Leaf — Amodule in a control structure with no lower-level (child) modules. 
Logical access map — A program design tool used to help the designer

determine the logical execution sequences or access paths through a
program. 

Logical cohesion — A form of cohesion in which all the elements are
related to the same logical function. 

Morphology — Form or structure. 
Procedural cohesion — A type of cohesion in which all the elements in

a module are associated with the same procedural unit, such as a
loop or a decision structure. 

Repetition (iteration) — A block of logic that is executed repetitively as
long as (while) an initial condition holds or until a terminal condition
occurs. 

Root — The module at the top of a control structure from which all con-
trol flows. 

Selection (decision) — A block of logic that provides alternate paths
through the block depending on a run-time condition. 

Sequence — A block of logic in which the instructions are executed in
simple sequence, one after another. 

Sequential cohesion — A form of cohesion in which the modules form
a chain of transformations, with the output from one module serving
as input to the next. 

Span-of-control (breadth) — A measure of the number of modules
directly controlled by a higher-level routine. 

Temporal cohesion — A type of cohesion in which the elements are
related by time. 

Transform process — A process that converts the input data to output
form. 

Trigger event — The event that activates a program or causes it to
change from a wait state to a run state. 

62.6 Software 
Not applicable. 
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63.1 Purpose 
A structure chart is a hierarchy chart with arrows showing the flow of data
and control information between the modules. Structure charts are used as
design tools for functionally decomposing structured programs. 

63.2 Strengths, weaknesses, and limitations 
A structure chart graphically highlights tightly coupled, excessively depen-
dent modules that can cause debugging and maintenance problems. A struc-
ture chart is an extension of a hierarchy chart, so the core of this tool is con-
sistent with other tools. A complete structure chart that shows all the data
and control flows for a program can be very difficult to read, however. 



63.3 Inputs and related ideas 
A structure chart is a functional decomposition tool (Chapter 62) based on a
hierarchy chart (Chapters 62 and 64). Before a structure chart is prepared,
each module’s inputs and outputs must be known. The necessary logical
data structures and the program’s primary processes are defined during the
systems analysis phase (Part IV). Often, the results of analysis are docu-
mented in the requirements specification (Chapter 35). Additionally, it is
useful to define the physical file and database structures (Chapters 43, 44,
and 45), the required input and output data structures (Chapters 46 through
51), and the algorithms (Chapters 55 through 60) before starting to create a
structure chart. 

63.4 Concepts 
A structure chart is a hierarchy chart that shows the data and control infor-
mation flows between the modules. (Figure 63.1 shows a partial structure
chart.) Each module is represented as a rectangle. Each data flow (or data
couple) is shown as an arrow with an open circle at the origin end. A control
couple (a flow of control information such as a flag or a switch setting) is
shown as an arrow with a solid circle at the origin end, see the control cou-
ple labeled Reorder flag between Process sale and Process transaction in Figure
63.1. (Note: In this program design, Initiate reorder is an independent (not
shown) level-2 module called by Process transaction when the Reorder flag is
set.) As appropriate, the names of the data elements, data composites,
and/or control fields are written alongside the arrows. 

A structure chart does not show the program’s sequence, selection, or
repetitive logical structures; those details are inside the modules, which are
viewed as black boxes. However, some designers identify high-level case
structures by adding a transaction center to a key control module. For exam-
ple, the solid diamond (the transaction center symbol) at the bottom of the
Process transaction module indicates that, based on the transaction type,
either Process sale, Process customer return, or Process shipment arrival is called. 

A data couple might list a composite item; for example, Get data passes
a complete transaction and the associated master record back to Process
transaction. Higher-level modules generally select substructures or specific
data elements from a composite and pass them down to their children. At
the bottom of the structure, the detailed computational modules accept and
return data elements. 

The structured program designer’s objective is to define independent,
cohesive, loosely coupled modules. Coupling is a function of the amount of
data and control information flowing between two modules, and the struc-
ture chart graphically shows the data and control flows. An excessive num-
ber of data or control flows suggests a poor design or a need for further
decomposition. 
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Figure 63.1 A partial structure chart. 



63.5 Key terms 
Cohesion — A measure of a module’s completeness. 
Control couple — A flow of control information, such as a flag or a

switch setting, between two modules. 
Control structure — A hierarchical model of the flow of control through

a program. The control structure resembles a military chain of com-
mand or an organization chart. At the top is a main control module
that calls secondary control structures. At the bottom are the compu-
tational routines, each of which implements a single algorithm. 

Coupling — A measure of a module’s independence. Fewer parameters
flowing into or out from a module imply looser coupling. 

Data couple — A flow of a data composite and/or data element between
two modules. 

Functional decomposition — A program design methodology in which
the program is broken down (or decomposed) into modules based on
the processes or tasks they perform. 

Hierarchy chart — A diagram that graphically represents a program’s
control structure. 

Structure chart — A hierarchy chart with arrows showing the flow of
data and control information between the modules. 

63.6 Software 
McDonnell Douglas Automation Company’s STRADIS/DRAW is a useful
tool for creating and evaluating structure charts. Numerous CASE products
support structure charts. 

63.7 References 
1. Martin, J. and McClure, C., Diagramming Techniques for Analysts and

Programmers, Prentice-Hall, Englewood Cliffs, NJ, 1985. 
2. Yourdon, E. and Constantine, Structured Design, Prentice-Hall, Englewood

Cliffs, NJ: 1979. 
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64.1 Purpose 
The HIPO (Hierarchy plus Input-Process-Output) technique is a tool for
planning and/or documenting a computer program. A HIPO model con-
sists of a hierarchy chart that graphically represents the program’s control
structure and a set of IPO (Input-Process-Output) charts that describe the
inputs to, the outputs from, and the functions (or processes) performed by
each module on the hierarchy chart. 



64.2 Strengths, weaknesses, and limitations 
Using the HIPO technique, designers can evaluate and refine a program’s
design, and correct flaws prior to implementation. Given the graphic nature
of HIPO, users and managers can easily follow a program’s structure. The
hierarchy chart serves as a useful planning and visualization document for
managing the program development process. The IPO charts define for the
programmer each module’s inputs, outputs, and algorithms. 

In theory, HIPO provides valuable long-term documentation. However,
the “text plus flowchart” nature of the IPO charts makes them difficult to
maintain, so the documentation often does not represent the current state of
the program. 

By its very nature, the HIPO technique is best used to plan and/or doc-
ument a hierarchically structured program. 

64.3 Inputs and related ideas 
During the analysis stage of the system life cycle (Part IV), the analyst cre-
ates logical models using such tools as data flow diagrams (Chapter 24) and
entity-relationship diagrams (Chapter 26). Given those models as a base, the
analyst then identifies several alternative solutions during the high-level
system design stage (Part V) using such tools as system flow diagrams
(Chapter 37) to document them. The alternatives usually identify, at a black
box level, one or more programs. HIPO is a tool for planning and/or docu-
menting the programs. 

The HIPO technique is often used to plan or document a structured pro-
gram (Chapter 62). A variety of tools, including pseudocode (Chapter 59)
and structured English (Chapter 60), can be used to describe processes on an
IPO chart. System flowcharting symbols (Chapter 37) are sometimes used to
identify physical input, output, and storage devices on an IPO chart. 

64.4 Concepts 
A completed HIPO package has two parts. A hierarchy chart is used to rep-
resent the top-down structure of the program. For each module depicted on
the hierarchy chart, an IPO (Input-Process-Output) chart is used to describe
the inputs to, the outputs from, and the process performed by the module. 

64.4.1 The hierarchy chart 

Table 64.1 summarizes the primary tasks to be performed by an interactive
inventory program. Figure 64.1 shows one possible hierarchy chart (or vis-
ual table of contents) for that program. Each box represents one module
(Chapter 62) that can call its subordinates and return control to its higher-
level parent. 
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At the top of Figure 64.1 is the main control module, Manage inventory
(module 1.0). It accepts a transaction, determines the transaction type, and
calls one of its three subordinates (modules 2.0, 3.0, and 4.0). 
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Table 64.1 A Set of Tasks to Be Performed by
an Interactive Inventory Program 

1.0 Manage inventory 

2.0 Update stock 

2.1 Process sale 

2.2 Process return 

2.3 Process shipment 

3.0 Generate report 

3.1 Respond to query 

3.2 Display status report 

4.0 Maintain inventory data 

4.1 Modify record 

4.2 Add record 

4.3 Delete record 

Figure 64.1 A hierarchy chart for an interactive inventory control program. 



Lower-level modules are identified relative to their parent modules; for
example, modules 2.1, 2.2, and 2.3 are subordinates of module 2.0, modules
2.1.1, 2.1.2, and 2.1.3 are subordinates of 2.1, and so on. The module names
consist of an active verb followed by a subject that suggests the module’s
function. 

The objective of the module identifiers is to uniquely identify each mod-
ule and to indicate its place in the hierarchy. Some designers use Roman
numerals (level I, level II) or letters (level A, level B) to designate levels.
Others prefer a hierarchical numbering scheme; e.g., 1.0 for the first level;
1.1, 1.2, 1.3 for the second level; and so on. The key is consistency. 

The box at the lower-left of Figure 64.1 is a legend that explains how the
arrows on the hierarchy chart and the IPO charts are to be interpreted. By
default, a wide clear arrow represents a data flow, a wide black arrow rep-
resents a control flow, and a narrow arrow indicates a pointer. 

64.4.2 The IPO charts 

An IPO chart is prepared to document each of the modules on the hierarchy
chart. 

64.4.2.1 Overview diagrams 
An overview diagram is a high-level IPO chart that summarizes the inputs to,
processes or tasks performed by, and outputs from a module. For example,
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Figure 64.2 An overview diagram for process 2.0. 



Figure 64.2 shows an overview diagram for process 2.0, Update stock. Where
appropriate, system flowcharting symbols (Chapter 37) are used to identify
the physical devices that generate the inputs and accept the outputs. The
processes are typically described in brief paragraph or sentence form.
Arrows show the primary input and output data flows. 

Overview diagrams are primarily planning tools. They often do not
appear in the completed documentation package. 

64.4.2.2 Detail diagrams 
A detail diagram is a low-level IPO chart that shows how specific input and
output data elements or data structures are linked to specific processes. In
effect, the designer integrates a system flowchart into the overview diagram
to show the flow of data and control through the module. 

Figure 64.3 shows a detail diagram for module 2.0, Update stock. The
process steps are written in pseudocode. Note that the first step writes a
menu to the user screen and input data (the transaction type) flows from
that screen to step 2. Step 3 is a case structure. Step 4 writes a transaction com-
plete message to the user screen. 

The solid black arrows at the top and bottom of the process box show
that control flows from module 1.0 and, upon completion, returns to mod-
ule 1.0. Within the case structure (step 3) are other solid black arrows.
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Figure 64.3 A detail diagram for process 2.0. 
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Figure 64.4 A detail diagram for process 2.1. 

Following case 0 is a return (to module 1.0). The two-headed black arrows
following cases 1, 2, and 3 represent subroutine calls; the off-page connector
symbols (the little home plates) identify each subroutine’s module number.
Note that each subroutine is documented in a separate IPO chart. Following
the default case, the arrow points to an on-page connector symbol num-
bered 1. Note the matching on-page connector symbol pointing to the select
structure. On-page connectors are also used to avoid crossing arrows on
data flows.

Often, detailed notes and explanations are written on an extended
description that is attached to each detail diagram. The notes might specify
access methods, data types, and so on. 

Figure 64.4 shows a detail diagram for process 2.1. The module writes a
template to the user screen, reads a stock number and a quantity from the
screen, uses the stock number as a key to access an inventory file, and
updates the stock on hand. Note that the logic repeats the data entry process
if the stock number does not match an inventory record. A real IPO chart is
likely to show the error response process in greater detail. 

64.4.2.3 Simplified IPO charts 
Some designers simplify the IPO charts by eliminating the arrows and sys-
tem flowchart symbols and showing only the text. Often, the input and out-



put blocks are moved above the process block (Figure 64.5), yielding a form
that fits better on a standard 8.5 � 11 (portrait orientation) sheet of paper.
Some programmers insert modified IPO charts similar to Figure 64.5 di-
rectly into their source code as comments. Because the documentation is
closely linked to the code, it is often more reliable than stand-alone HIPO
documentation, and more likely to be maintained. 
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Figure 64.5 A simplified IPO diagram. 



64.5 Key terms 
Detail diagram — A low-level IPO chart that shows how specific input and

output data elements or data structures are linked to specific processes. 
Hierarchy chart — A diagram that graphically represents a program’s

control structure. 
HIPO (Hierarchy plus Input-Process-Output) — A tool for planning

and/or documenting a computer program that utilizes a hierarchy
chart to graphically represent the program’s control structure and a
set of IPO (Input-Process-Output) charts to describe the inputs to, the
outputs from, and the functions performed by each module on the
hierarchy chart. 

IPO (Input-Process-Output) chart — A chart that describes or doc-
uments the inputs to, the outputs from, and the functions (or 
processes) performed by a program module. 

Overview diagram — A high-level IPO chart that summarizes the
inputs to, processes or tasks performed by, and outputs from a 
module. 

Visual Table of Contents (VTOC) — A more formal name for a hierar-
chy chart. 

64.6 Software 
In the 1970s and early 1980s, HIPO documentation was typically prepared
by hand using a template. Some CASE products and charting programs
include HIPO support. Some forms generation programs can be used 
to generate HIPO forms. The examples in this chapter were prepared using
Visio.
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65.1 Purpose 
Action diagrams are used in Martin’s information engineering method-
ology2 to plan and document both an overview of program logic and the
detailed program logic. 

65.2 Strengths, weaknesses, and limitations 
Action diagrams are relatively easy to draw and require no special tools.
Unlike most software design tools, action diagrams can be used to describe
both an overview of program logic and the detailed program logic. In addi-
tion to documenting logical relationships and structures, action diagrams



provide details about tests and conditions. The action diagrams are rela-
tively easy to convert into program code. The structure of an action diagram
helps to reduce such errors as infinite loops. 

Often, program logic is more easily described by using such tools as
pseudocode (Chapter 59) and structured English (Chapter 60). Relatively few
analysts or information systems consultants are familiar with action dia-
grams. Some advanced features require knowledge of data normalization. 

65.3 Inputs and related ideas 
Programs are designed in the context of a system. The system is planned
during the systems analysis stage of the system development life cycle (Part
IV). Pseudocode (Chapter 59) or structured English (Chapter 60) are used
within the context of an action diagram to describe detailed program logic.
The basic logical structures (sequence, selection, and iteration) are discussed
in Chapter 62. 

Other tools for documenting or planning routines or processes include
logic flowcharts (Chapter 55), Nassi-Shneiderman charts (Chapter 56), deci-
sion trees (Chapter 57), decision tables (Chapter 58), pseudocode (Chapter
59), structured English (Chapter 60), and input/process/output (IPO) charts
(Chapter 64). Tools for documenting or planning program structure include
Warnier-Orr diagrams (Chapter 33), structure charts (Chapter 63), and
HIPO (Chapter 64). 

65.4 Concepts 
Action diagrams are used in Martin’s information engineering methodology
to plan and document both an overview of program logic and the detailed
program logic. 

65.4.1 Conventions 

The basic building block of an action diagram is a bracket that represents a
program module. Within the bracket, the module’s code is designed using
pseudocode, structured English, or fourth-generation language statements.
Action diagrams are assembled from sets of brackets. The brackets can be
any length, and they can be nested (Figure 65.1). 

Figure 65.2 shows the action diagram notation for a simple IF-THEN-
ELSE block and for a case structure. Note how horizontal lines are used to
partition the bracket into mutually exclusive routines. 

Figure 65.3 shows three repetition structures. A double line at the top of
the bracket indicates a DO WHILE loop, while a double line at the bottom
indicates a DO UNTIL loop. Some designers use an arrow pointing inside
the bracket to indicate the next iteration of a loop (Figure 65.3, bottom). 
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Figure 65.1 The basic building block of an action diagram is a bracket that repre-
sents a program module. The brackets can be any length, and they can be nested. 

Figure 65.2 Decision (or selection) logic. 
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Figure 65.3 Repetition (or iteration) logic. 

An arrow drawn through a bracket (or set of brackets) represents a ter-
mination action, such as EXIT, QUIT, or BREAK (Figure 65.4). A dotted
arrow represents an intentional break such as a GOTO statement. 

Subprocesses, subprocedures, subroutines and subsystems are shown
by round-cornered rectangles (Figure 65.5). A vertical line near the left of the
round-cornered rectangle indicates a common subprocedure (e.g., a square
root function). Some designers add a wavy line at the right of the rectangle
to indicate a not-yet-designed subprocedure. The detailed logic associated
with the subprocedure is documented in a separate action diagram. 

65.4.2 Some examples 

Figure 65.6 shows an overview action diagram for a sales database mainte-
nance program that documents the primary options available on the pro-
gram’s main menu. Given an overview diagram, the designer decomposes
the high-level routine by creating an action diagram for each primary 



function; for example, Figure 65.7 shows the Maintain customer function. The
subprocesses are documented in lower-level action diagrams. 

65.4.3 Input, output, and database operations 

Sometimes, a bracket is expanded into a rectangle to show the data entering
and leaving a process (Figure 65.8). By convention, input data are noted at
the top right and output data are noted at the bottom right of the rectangle.

Simple database actions (e.g., CREATE, READ, UPDATE, or DELETE a
single record or transaction) are represented by a rectangular box inside the
bracket (Figure 65.9). The type of action is noted to the left of the box, and
the record is identified inside the box. 

Compound database actions (CREATE, READ, UPDATE, or DELETE a
whole file, and such functions as SEARCH, SORT, SELECT, JOIN, PROJECT,
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Figure 65.4 An arrow drawn through a bracket (or set of brackets) represents a ter-
mination action. 

Figure 65.5 Subprocesses are shown by round-cornered rectangles. 



and DUPLICATE) are represented as a double rectangular box (Figure 65.9,
bottom). The type of action is noted to the left of the box, the record is iden-
tified inside the box, and any conditions are noted to the right of the box. 

A concurrency relationship exists between two processes that can be
performed concurrently. An arc connecting the two processes’ brackets des-
ignates a concurrency relationship. 

65.5 Key terms 
Action diagram –– A tool used in Martin’s information engineering

methodology to plan and document both an overview of program
logic and the detailed program logic. 

Bracket –– The basic building block of an action diagram. 
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Figure 65.6 An overview action diagram for a sales database maintenance program. 



Concurrency relationship –– A relationship between two (or more)
processes that can be performed concurrently. 

65.6 Software 
The action diagrams in this chapter were created using Visio. 
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Figure 65.7 A detailed action diagram for the Maintain customer function. 
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Figure 65.8 A bracket can be expanded into a rectangle to show the data entering
and leaving a process. 

Figure 65.9 Database actions. 
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66.1 Purpose 
This chapter describes object-oriented design. The purpose of object-
oriented design is to transform the object-oriented analysis model into a
design class diagram that specifies a software solution. 

66.2 Strengths, weaknesses, and limitations 
Object-oriented analysis and design is primarily use case driven. The major
benefit of the use case approach is traceability. If there is a change in one use
case, its ripple effect can be traced into the design. This lessens the impact
and risk of changes to the project. 

A weakness of use case-driven design is that the use cases may be con-
sidered in isolation and the global picture may be missed. Testing the solu-
tion across the different use cases helps to ensure that the global picture 
is not missed. In addition, a use case-driven design may be significantly
affected by small changes in user requirements. This problem can be miti-
gated by selecting a good design architecture and designing for reuse. 

Like use cases, object interaction diagrams are useful because they are
intuitive and express well the dynamic interaction between objects. Using
object interaction diagrams leads to a complete solution and brings to the
surface issues that must be resolved at design time. However, like use cases,
interaction diagrams depict only one scenario at a time, and a system can
consist of hundreds of scenarios under different assumptions. To counter
this problem, the designer should start with the interaction diagrams that
have the greatest impact on system architecture or that perform key system
functions. 

Using design patterns means incorporating proven robust design deci-
sions in a system design. Well-chosen and applied design patterns tend to
provide clean designs, and patterns also enable designers to communicate
their ideas effectively with each other. However, patterns can be misused,
particularly if designers strive to force fit a pattern to a problem. Also, if
only one designer in a team uses patterns, the result can be miscommuni-
cation. In addition, patterns are not a solution to designer incompetence. 
A designer must be well versed in the standard principles of system 
design. 

66.3 Inputs and related ideas 
Object-oriented concepts are covered in Chapter 6. Object-oriented analysis
(Chapter 29) focuses on the domain objects and results in use cases and the
development of a conceptual model using class diagrams (static modeling).
Object-oriented design focuses on defining a solution based on classes.
Object interaction diagrams capture the communicational aspect of the
objects, but do not provide a convenient picture of its complete behavior.
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State transition diagrams (Chapter 30) provide an overview of an object’s
total behavior. 

66.4 Concepts 
This chapter concentrates on developing a logical object-oriented design.
Logical design is free from implementation considerations and is portable
across various interfaces, languages, and computers. 

66.4.1 Boundary, control and entity objects 

A widely used approach to object-oriented design is to separate the bound-
ary (interface) and control objects from the entity (domain) objects.1 The
main purpose is to develop maintainable systems. Entity objects are objects
in the business domain. Boundary objects communicate with the user or
with other systems. 

Boundary objects are responsible for translating user input into a form
that can be used by the system to process the business event and to translate
the data from the entity object back to the user. Boundary objects make up
the presentation dependent part of the system and isolate the behavior 
related to user and mechanical interfaces from the entity objects. This ensures
that changes in the boundary objects are less likely to affect the core entity
objects.

A control object performs use case-specific behavior and contains the
application logic or business rules for managing the interaction among mul-
tiple entity objects. For example, in an appliance store inventory system,
Store and BuyAppliance are possible control objects. Using control objects
leads to a more robust and maintainable system. 

Note that boundary, control, and entity objects equate well with the three-
tier client server model. Presentation is the responsibility of the client (bound-
ary object). Business logic is the second tier and is the responsibility of the 
control object. The data layer is the responsibility of the server (entity object). 

Typically, one boundary object is allocated for each use case actor or
major peripheral device. For example, in an appliance store, the sales repre-
sentative uses a point-of-sale terminal to enter the details of a sale and a card
reader to read the customer’s credit card number. Aggregation can some-
times be used for interface objects; for example, a point-of-sale terminal 
consists of a display unit and a printer (for printing the receipt and the 
credit card statement). Once the boundary object has been identified, the
attributes and operations for that object must be identified. Operations that 
present information to the external system or request information from
external systems (such as requesting credit card approval from a central
bank or approval station) are allocated to the boundary object. 

Control objects often act as buffers between boundary and entity objects.
Initially, define one control object for each use case. After the appropriate
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responsibilities have been assigned to each entity or boundary object, any
remaining behaviors are assigned to the control object. The types of behav-
iors typically allocated to control objects include behaviors that are
unchanged if the surrounding objects change, behaviors that affect multiple
entity objects, and state dependent or control logic for a use case. Since con-
trol objects are typically used to carry methods that do not fit elsewhere,
they generally do not have many attributes. 

66.4.2 Identifying operations 

An operation provides a service. Whenever a service exists, the object has a
responsibility to provide that service to other objects that request it. A
method is the implementation of an operation for a specific object class. 

66.4.2.1 The CRC technique 
One way to find operations is to use the Class, Responsibilities, and
Collaborations (CRC) technique.2 In CRC, a class is a generic specification
for an arbitrary number of similar objects. Responsibilities include the
knowledge (data) an object maintains and the actions (services) an object
can perform. Whenever a service or data is provided by one object to 
another, there is a client-server relationship. The client object requests a ser-
vice from the server object, which performs the service or returns data. A
given object can be a client at times and a server at other times. 

A collaboration is the embodiment of a contract between a client and a
server and takes place when a class has a responsibility it cannot fulfill alone
and thus requests the necessary service from a server. The pattern of collab-
oration within the application reveals the flow of information and control
during execution. These collaborations represent interaction paths or com-
munication between classes. 

To identify responsibilities, start with a class’s responsibility and deter-
mine if it can fulfill the responsibility itself or must collaborate with 
another class to acquire what it needs. If collaboration is necessary, start
with the class and trace the flow of collaborations until the responsibility is
completely fulfilled. Similarly for each class, ask what the class does or
knows and identify the other classes that need the result or information. If a
class has no interactions with other classes, discard it. 

Like use cases, CRC is a responsibility driven technique. Start by iden-
tifying the classes, responsibilities, and collaborations that are necessary to
support each use case. For each new class, write the class name (singular
nouns) on an index card (Figure 66.1). Then partition the index card, writing
the responsibilities of the class on the left side and the collaborating classes
required to fulfill the responsibility (the servers) on the right side. 

The CRC development process is interactive among the analysts and
designers. Each individual is assigned a set of index cards and is asked to
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think like the object he or she is assigned. The individual then acts out the
roles the class fulfills when applied to different use cases. The information
on the index card is kept to a minimum. Quick iterations encourage search-
ing for classes and the interactions between classes. This is a cheap and
highly object-oriented way of identifying the classes and their interactions.
It is particularly suited for brainstorming. 

An application of this technique to the use case provided in Table 66.1
(a copy of Table 29.2) may yield (among others) the classes SalesInvoice and
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Table 66.1 An Expanded Level Use Case

Use case Buy Appliance 

Actors Customer (initiator), Sales Representative 
Purpose Record the sale of an appliance to a customer 
Description A customer, talks to a sales representative about appli-

ances that he/she is interested in buying, and picks the
item in consultation with the sales representative. The
sales representative then prepares the bill, and the cus-
tomer makes the payment. 

Type Primary 

Normal Course  1. Customer walks up to a sales representative and 
discusses items to buy. 

2. In consultation, customer decides on item to buy. 
3. Sales representative enters the appliance identifier

and the quantity desired into the system. 
4. System responds with the price, and verifies that

the appliance is in stock. (Not in stock is not a nor-
mal course of events.) 

5. If additional items are to be entered, sales repre-
sentative does so, and steps 3 and 4 are repeated. 

6. System adds the amounts, calculates tax, and pre-
sents the total. 

7. Sales representative informs the customer of the
total.
* Assumption: The normal event is a credit card pur-
chase. Cash purchases are described separately. * 

8. Customer runs his/her credit card through the ver-
ification system. 

9. System receives credit approval, and presents 
credit card transaction form.

10. Customer signs the credit card transaction form. 
11. System logs the details of the transaction, including

sales representative, customer, and item information.
12. System updates the inventory and closes the 

transaction. 
13. System generates the receipt. 
14. Receipt is handed by sales representative to cus-

tomer. 
15. Customer leaves the premises with appliance.

Alternative courses: Note errors that can occur and
how they are handled can be described here. 

of Events



SalesLineItem (Figure 66.1). For the SalesInvoice class, the operations are
PrintSale and CalculateTotal, and for SalesLineItem the operations are
CalculateExtendedPrice and PrintLineItem.

66.4.2.2 Use case object interactions 
A second technique used to identify operations is to look at the object inter-
action required to support each use case scenario and to prepare an object
interaction diagram for each use case. Typically, the developer starts with a
normal scenario and then expands the interaction to include alternative
courses of events. 

From the conceptual model (Chapter 29) for the domain objects, iden-
tify the domain objects used in the use case and the control and interface
objects (Section 29.4.1) applicable to the use case. Then consider the object
interactions required to provide the functionality in each use case by view-
ing the system as a black box and, for each actor, identifying the events the
actor generates in the use case. These object interactions are events, and each
use case is started by an event. 

For example, the use case description in Table 66.1 suggests that the
salesperson generates events enterSalesItem, enterPayment, and endSale, and
the customer generates the event scanCard. Also, it is reasonable to assume
that the sales representative interacts with the boundary object point-of sale
terminal and the customer interacts with the boundary object card reader.

For each initial external event, identify the internal events needed to
communicate between the objects that support the normal sequence in the
use case. Internal events are messages sent from one object to another in
order to invoke the operation. For example, the SalesInvoice object would
raise a calculateExtendedPrice on the SalesLineItem object. 

For each event, identify the operations, the required parameters, the
preconditions, and the post conditions. A parameter is information that
must be passed so the receiving object can perform the operation. The type
of parameters (mandatory or optional) and the possible range of values
must be identified. For example, the enterSalesItem operation’s parameters
would include the UPC number and the quantity required. Both parameters
are mandatory. 

Post conditions include objects that were created, associations that were
formed or broken, and any attributes that were modified during an oper-
ation. Preconditions include objects that must exist for an event to take
place. The enterSalesItem operation’s post conditions would include the
SalesLineItem that was created, the SalesLineItem that was associated with the
SalesInvoice, the SalesLineItem that was associated with a ProductSpecification
based on the match on UPC code, the SalesLineItem quantity that was set to
the quantity required (attribute modification), the SalesLineItem that was
associated with the Inventory based on a match on UPC code, and the
reduced quantity on hand (by the quantity purchased). The precondition is
that the UPC code must exist in ProductSpecification.
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66.4.3 Object interaction diagrams 

Once the operations are identified, an object interaction diagram is drawn.
Object interaction is concerned with identifying how objects work within
the system to satisfy the requirements. Interaction diagrams represent
objects and show how they communicate with each other in an interaction. 

66.4.3.1 Collaboration diagrams 
In a collaboration diagram, objects are represented as rectangles with links
between objects that interact. Links are instances of associations that are 
present in the conceptual model. Arrows represent messages, and are
labeled with their names and arguments. The message function being sent
must exist as an operation (method) of the receiving object. The order of the
messages is shown in by a number placed at the head of the the message. 

For example, Figure 66.2 shows the representation of a simple collabo-
ration diagram. An object instance A sends a message (M1) to the object
instance B. Subsequently, B sends a message (M2) to itself (representing an
activity within itself). Finally, B sends a message M3 to object instance C.
The colon (inside the box) represents an anonymous object of the specified
type (e.g., Faculty as opposed to Rajkumar). An object is an instance of a
class, and underlining differentiates an object from a class. For example, :A
indicates a generic class and :A indicates a generic object.
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Figure 66.3 The UML notation for a sequence diagram. 

66.4.3.2 Sequence diagrams 
Figure 66.3 shows an equivalent sequence diagram. Note that the message
time line is explicitly represented. A vertical bar represents each object and
time elapses from top to bottom, so numbering the messages is optional.
Both collaboration diagrams and sequence diagrams show the same infor-
mation; the choice is a matter of preference. 

66.4.3.3 Drawing interaction diagrams 
Collaboration (or sequence) diagrams should be drawn for each interaction
in the use case. The diagrams for each of the interactions are subsequently
merged to create a single collaboration diagram. 

For example, Figure 66.4 is a collaboration diagram for enterSalesItem.
The boundary object is the POST object, and other interacting domain
objects include SalesInvoice, SalesLineItem, ProductSpecification, and Inventory.
The POST boundary object is used by the salesperson to interact with the
system and to enter the sale information. The post conditions specify that
enterSalesItem, is sent to a SalesInvoice object, which creates a SalesLineItem.
The SalesLineItem matches the product specification to retrieve the product
information, and also reduces the inventory by the quantity purchased. 

Before an object can send a message to another object, it must be visible
to the object. (In other words, it must be able to see or have a reference to the
other object.) Figure 66.4 assumes that the SalesInvoice has already been cre-
ated (and thus is visible) and shows the messages for any additional items
purchased. To enable visibility (Figure 66.5), show the creation of the
SalesInvoice itself via a second message (2.1: createSalesInvoice) that is sent to
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Figure 66.4 A collaboration diagram for enterSalesItem interaction. 

Figure 66.5 A modified collaboration diagram that resolves visibility conditions for
enterSalesItem interaction. 



the SalesInvoice object and by modifying the existing message 2 to 2.2:
enterSalesItem. 

Similarly, Figure 66.5 assumes that the ProductSpecification and Inventory
objects have been created by some other initial process. A complete collabo-
ration diagram would establish the visibility of all objects. 

66.4.4 Design patterns 

Design patterns codify the solutions expert designers use to solve common-
ly recurring object-oriented design problems and provide guidelines on
how to customize the solution. In its simplest sense a pattern describes a
problem and (at an abstract level) a solution. Since the solution is a template,
using a pattern means tailoring and adapting the solution to the unique
needs of the problem. Patterns provide a solution to a problem, are applica-
ble in a variety of domains, are a literary form designed to convey proven
solutions based on the wisdom of expert designers, and enable skilled
designers to effectively communicate design decisions. 

For example, Larman3 identifies five patterns for assigning responsibil-
ities to classes. The expert pattern suggests that responsibility should be
assigned to the class that contains the necessary information. The creator
class suggests that the responsibility for creating an instance of A be
assigned to the class that contains, has the initializing data for, uses, aggre-
gates, or records A. The controller pattern suggests that a responsibility be
assigned to the class responsible for handling a related system event. As the
names imply, the objective of the low coupling pattern is to keep coupling
low, and the objective of the high cohesion pattern is to keep cohesion high. 

These patterns can be used to verify the responsibilities of the object in
the collaboration diagram. For example, consider Figure 66.5. Should the
POST object or some other object create a SalesInvoice? The creator pattern
states that the object that uses or records the other object is a good choice.
Because the POST object records a sales invoice, POST is the right object to
create the SalesInvoice instance, and the choice shown in the collaboration
diagram is a good one. 

The next step might be to evaluate the design and check how the
ProductSpecification object is created, because it must be visible for the col-
laboration diagram to work. Using the creator pattern and the controller
pattern, it becomes clear that a Store object is necessary to create this object.
In addition, if the POST object is viewed as one instance of a point-of-sale
terminal, the Store object must create the POST object. Taking these 
modifications into account results in the collaboration diagram shown in
Figure 66.6. 

In a similar fashion collaboration diagrams should be drawn for each
use case and the design refined using the patterns. These steps lead to a
robust, and maintainable logical design. 
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Figure 66.6 A modified collaboration diagram that reflects the application of
design patterns for enterSalesItem interaction. 

66.4.5 Design class diagrams 

Design class diagrams specify the software classes and interfaces in an
application.3 In general, they include classes, attributes, their operations or
methods, and the associations between the classes. Note that the design
class diagram represents software entities rather than the conceptual
model’s conceptual entities. 

A design class diagram is drawn by first identifying all the software
classes from the interactions (the collaboration diagrams) that participate in
the solution. Start with the conceptual model (Figure 66.7, from Chapter 29,
Section 29.4.3). Add the attributes to the objects that are similar to the con-
ceptual model. Add the method names by analyzing the interaction dia-
gram. Add associations represented in the conceptual model and shown as
links in the collaboration diagrams. Add any other association necessary to
maintain visibility. A design class diagram for the appliance store is shown
in Figure 66.8; note both the similarities to and the differences from the con-
ceptual model.

Once a design class diagram has been drawn, it must be documented
with all information that an implementation team would require to imple-
ment the system. 



66.5 Key terms 
Actor — A person or entity external to the system. 
Association — A relationship between objects that indicates some mean-

ingful and interesting connection. 
Boundary object (interface object) — An object that communicates with

the user or with other systems. 
Class (object type) — A group of similar objects. 
Class, responsibilities, and collaborations (CRC) technique — A tech-

nique for identifying operations. 
Collaboration — The embodiment of a contract between a client and a

server; the interaction that takes place when a class has a responsi-
bility it cannot fulfill alone and thus requests the necessary service
from a server. 

Collaboration diagram — A diagram that shows the basic message flow
between objects and implies the associations between them. 

Control object — An object that performs use case-specific behavior and
contains the application logic or business rules for managing the
interaction among multiple entity objects. 

Design class diagram — A diagram that specifies the software classes
and interfaces in an application. 

Entity object (domain object) — An object in the business domain. 
Event — An occurrence that generates a signal. 
Method — The implementation of an operation for a specific object

class. 
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Figure 66.7 The conceptual model (from Chapter 29, Section 29.4.3). 



Object — A thing about which data are stored and manipulated. 
Object interaction diagram — A graphical depiction of the way objects

interact and collaborate to realize a use case. 
Object-oriented analysis — The investigation of a problem by identify-

ing and describing the objects. 
Object-oriented design — The logical solution of a problem through a

set of interacting objects. 
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Figure 66.8 A design class diagram. 



Object type (class) — A group of similar objects. 
Operation — A service provided by an object. 
Parameter — Information that must be passed so the receiving object

can perform the operation. 
Pattern — A named problem/solution pair that can be applied in new

contexts, along with advice on how to apply it. 
Post conditions — Objects that were created, associations that were

formed or broken, and any attributes that were modified during an
operation. 

Preconditions — Objects that must exist for an event to take place. 
Responsibility — A contract or obligation of a type or class, including

both responsibilities of knowing and responsibilities of doing. 
Sequence diagram — A type of interaction diagram, drawn using the

UML notation, that depicts the interaction between objects and
shows the detailed message flow between objects in a use case; the
time axis is directed downwards and the objects are represented in a
vertical column. 

Signal — A message that allows objects to interact with other objects. 
Unified modeling language (UML) — The universal language for object-

oriented modeling; its notation forms an object-oriented modeling 
language and can replace the notation of various object-oriented 
analysis methods. 

Use case — The behaviorally related sequence of transactions that a user
performs in a dialogue with the system when he or she uses the 
system. 

Use case diagram — A diagram that depicts the set of use cases for a sys-
tem, the actors, and the relation between the actors and the use cases. 

Visibility — An object has visibility to a second object if it has a refer-
ence to the second object. 

66.6 Software 
CASE (Chapter 5) tools exist to help the designer develop CRC cards, col-
laboration diagrams, sequence diagrams, and design class diagrams. 
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67.1 Purpose 
This chapter describes typical expert system applications and briefly des-
cribes knowledge representation techniques. 



67.2 Strengths, weaknesses, and limitations 
The strengths and weaknesses associated with each knowledge representa-
tion technique will be discussed in context. 

67.3 Inputs and related ideas 
Chapter 6 discusses basic object-oriented principles. Chapter 7 discusses
expert systems. Chapter 34 discusses expert system problem solving analy-
sis techniques. Chapter 43 discusses data structures. 

67.4 Concepts 
This chapter discusses typical expert system applications and briefly
describes knowledge representation techniques. 

67.4.1 Types of expert systems 

Interpretation systems are used primarily to explain data by providing
appropriate symbolic meanings and describing the situation and/or state
that accounts for the data. Applications include surveillance, image analy-
sis, speech understanding, chemical structure analysis, and signal interpre-
tation. For example, PROSPECTOR is a geological expert system, and
HEARSAY II is concerned with understanding speech. 

Prediction systems are used to infer likely consequences from a given
situation. Applications include weather forecasting, demographic predic-
tions, traffic predictions, crop estimates, and military forecasting. For exam-
ple, SPERIL was developed at Purdue University to analyze structures for
possible earthquake damage. 

Diagnosis systems are used to relate observed behavioral irregularities
with underlying causes. These systems combine knowledge of system
design with knowledge of potential design, implementation, or component
flaws to diagnose malfunctions or recommend further investigation.
Applications are found in medicine and in electronic, mechanical, and soft-
ware design. For example, DART was developed jointly by Stanford
University and IBM to determine computer faults, and MYCIN was devel-
oped at Stanford University to diagnosis blood infections. 

Design systems construct descriptions of objects in various relation-
ships with each other and verify that the resulting configurations conform
to known constraints. These systems often incorporate goal-seeking behav-
ior and attempt to minimize an objective function and accomplish the goal.
Applications include circuit design, building design, and budgeting. For
example, SYN was developed at MIT to perform electronic circuit analysis. 

Monitoring systems compare observations of system behavior to 
features that seem crucial to successful outcomes. Applications include 
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fiscal management, regulatory enforcement, disease monitoring, and air
traffic control. For example, IMS was developed by Carnegie Mellon
University to perform automated factory monitoring and CALLISTO was
developed by Digital Equipment Corporation to perform project manage-
ment activities. 

Planning systems employ models of agent behavior to infer the results
and outcomes of the agent’s activities. Applications include automated pro-
gramming, robotics, routing, data communication, and military planning.
For example, PECOS was developed at Stanford to model oil exploration
and ISIS-II was developed by Carnegie Mellon University for job shop
scheduling. 

Debugging systems are used to prescribe remedies for malfunctions
and/or failures. Applications include computer programming, software
development, text editing, question and answer systems, natural language
processing, and computer-aided instruction. 

Repair systems develop and execute plans to administer a remedy for
some diagnosed problem. Applications include communications networks
and computer maintenance. Repair systems are relatively new, and success-
ful implementations are just beginning to emerge. 

Instruction systems are used to diagnose and debug system behaviors
and to provide the decision-maker with trouble-shooting support.
Applications include student instruction and animal behavior explanation
systems. For example, GUIDON was developed by Stanford University to
provide medical instruction and WUMPUS was developed by MIT to pro-
vide athletic coaching instruction. 

A control system adaptively governs the overall behavior of a system,
repeatedly interpreting the current situation, predicting the future, diagnos-
ing the causes of anticipated problems and/or symptoms, and formulating
a plan to monitor execution to ensure success. Air traffic control, business
management, battle management, and mission control are possible applica-
tion areas. 

67.4.2 Knowledge representation techniques 

The purpose of knowledge representation is to organize the required infor-
mation into a form that the expert system can readily access for decision
making, planning, recognizing objects and situations, analyzing scenes,
drawing conclusions, and other cognitive functions. 

67.4.2.1 First-order predicate logic 
First-order predicate logic is commonly used in mathematics to prove theo-
rems. The idea is to use qualifiers and logical operators to describe objects,
properties, situations, and relationships. The process is natural, precise, flex-
ible, and modular, providing simplicity of notation and well-understood
formal semantics. On the other hand, this technique lacks organizational
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principles, has weak manipulation procedures, and does not represent pro-
cedural or heuristic knowledge well. 

67.4.2.2 Frames and slots 
A frame is a complex data structure representing a stereotyped situation,
such as an object, an activity, or a person. Slots are frame-like structures for
representing stereotyped sequences of events or values. For example, in a
frame that describes a bank account, the slots can be used to represent the
account number, the account type, and the account balance. Generally, a
frame is composed of a concept, one or more slots, one or more values, and
one or more attached procedures (Figure 67.1). 

Figure 67.2 shows a set of frames that represent information about
bank accounts. A bank representative opens the account file for a customer
by soliciting, entering, and verifying all the required information. The
associated expert system then automatically triggers an attached proce-
dure that asks the representative to select a transaction type (for example,
add a new customer, update customer information, delete a customer, and
so on). The expert system then responds by triggering the appropriate 
procedure. 

Frame and slots were developed at about the same time object-oriented
techniques (Chapter 6) were developed. A frame is similar to an object. A
slot holds properties or attributes, a value is an actual instance of a particu-
lar property, and an attached procedure is similar to a method. 

Using frames and slots facilitates certain predetermined information
processing activities (such as add, delete, or update an account) and orga-
nizes the knowledge for easy retrieval, reference, and maintenance. Not all
real-world situations can be resolved by predetermined logic, however,
and new situations (e.g., adding a new feature such as a debit card) are 
not easily accommodated without major changes to the frames and slots
structure. 
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Figure 67.2 A set of frames that represent information about bank accounts. 



67.4.2.3 Property lists 
The property lists approach uses objects and lists of their properties (or
attributes) to describe the state of the world. This method is borrowed from
the object-oriented approach (Chapter 6). All appropriate properties for an
object are grouped into a list, and lists are easily structured in LISP, a popu-
lar expert system programming language. However, property lists are not
very effective for inference-oriented operations (Chapter 34). 

67.4.2.4 Semantic nets 
The semantic net technique describes the state of the world through a col-
lection of nodes that represent objects, object properties, concepts, events,
and arcs of links (Figure 67.3); see Chapter 43 for a discussion of the graph
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Figure 67.4 A semantic net of bank account information. 
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data structure. For example, Figure 67.4 shows the bank accounts from
Section 67.4.2.2 as a semantic net. 

Like an object-oriented class structure, the objects at the bottom of the
top-down hierarchy inherit properties from higher-levels but also possess
unique properties. For example, an individual checking account inherits
such properties as an account number and an account type, but such prop-
erties as overdraft protection, minimum balance, and linkages to other
accounts can change from account to account. 

With a semantic net, important associations and relationships can be
described explicitly, and the inheritance hierarchy is easy to understand and
revise. Consequently, it is easier to add new situations to a semantic net than
to a set of slots and frames. Also, the relevant facts can be found within the
hierarchy, so it is not necessary to search through a large database to find
specific information. Establishing an inheritance hierarchy is a difficult task,
however, and determining the unique (non-inherited) properties for each
low-level node calls for (subjective and/or objective) judgment. 

67.4.2.5 Direct representation 
Direct representation (or analogical representation) is based on analogy.
Using direct representation, certain properties of a new situation can be
described by reference to a known situation, and the known situation’s rec-
ommended course of action can be borrowed by an expert system faced
with a new but similar situation. For example, to a weather forecasting
expert system, the atmospheric conditions (except for the air temperature)
that produce a rainstorm and a snowstorm are similar, so once a rainstorm
is fully described, many of the parameters associated with a snowstorm are
already known. 

Direct representation facilitates searching because the important con-
straints are already known. Also, the known situation provides a base of
established information that might prove relevant to the new situation.
Direct representation is not suitable for all expert system tasks, however. For
example, it is inappropriate when the problem calls for generalizing several
specific cases into a generic meta-problem. 

67.4.2.6 Procedure/subroutine 
In the procedure/subroutine approach, knowledge about the world is con-
tained in procedures, small programs that know how to do specific things
(such as proceed in a well-defined situation). This technique is particularly
well suited to tasks that require searching a problem domain. In computer
program design, this technique views each intelligent routine as an agent
that works independently to accomplish a specific task and then passes the
results back to the main program (which resolves the meta-problem). 

The procedure/subroutine approach is good for representing heuristic
knowledge, modeling complex meta-problems, and performing extended
logical inferences and reasoning. Procedures and subroutines are difficult to



verify or change, however, and the information needed to control the sub-
routines can limit or even exclude significant alternatives or information. 

67.4.2.7 Procedural/production system 
In this technique, knowledge is represented by a collection of loosely cou-
pled procedures, which may be organized into sets. For example, imagine a
planning or brainstorming session in which numerous participants (multi-
ple independent knowledge sources) nominate ideas that are recorded on a
blackboard. Subsequently, the elements of a procedural/production system
analyze the contents of the blackboard, locate similarities, distinguish dif-
ferences, and merge similar ideas to form aggregate categories. Note that the
control mechanism is part of an expert system. 

Using this technique, information can be easily added, removed, and
updated, and it is relatively easy to keep track of changes. Additionally, the
procedural/production system technique is consistent with compiler
design. Because of the complexity of the logic, program execution is ineffi-
cient, however, and the process is constrained by the predetermined control
flow imposed by the program. 

67.5 Key terms 
Control system — A type of expert system that adaptively governs the

overall behavior of a system, repeatedly interpreting the current sit-
uation, predicting the future, diagnosing the causes of anticipated
problems and/or symptoms, and formulating a plan to monitor exe-
cution to ensure success. 

Debugging system — A type of expert system used to prescribe reme-
dies for malfunctions and/or failures. 

Design system — A type of expert system that constructs descriptions
of objects in various relationships and verifies that the resulting con-
figurations conform to known constraints. 

Diagnosis system — A type of expert system used to relate observed
behavioral irregularities with underlying causes. 

Direct representation (analogical representation) — A technique that
allows an expert system to analyze the properties of a new situation
and use the course of action for an old situation to deal with it. 

Expert system (knowledge-based system) — A computer program that
emulates the thought process of a human expert. 

First-order predicate logic — The type of logic used in mathematics to
prove theorems. 

Frame — A complex data structure composed of a concept, one or more
slots, one or more values, and one or more attached procedures; a
frame represents a stereotyped situation. 

Goal — An objective. 
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Heuristics — General rules derived from experience, common sense,
inferences, and intelligent trial and error. 

Inference — The act or process of deriving logical conclusions from
premises known or assumed to be true. 

Instruction system — A type of expert system used to diagnose and
debug system behaviors and to provide the decision-maker with
trouble-shooting support. 

Interpretation system — A type of expert system used to explain data
by providing appropriate symbolic meanings and describing the sit-
uation and/or state that accounts for the data. 

Knowledge — The sum or range of what has been perceived, discov-
ered, or learned; specific information about something. 

Language parser — A routine that executes correctly interpreted com-
mands to accomplish the tasks determined by the program. 

Lexical analyzer — A component of a compiler that deals with the inter-
pretation and understanding of the commands and related syntax. 

Monitoring system — A type of expert system that compares observa-
tions of system behavior to features that seem crucial to successful
outcomes. 

Prediction system — A type of expert system used to infer likely conse-
quences from a given situation. 

Procedural/production system — A technique that analyzes informa-
tion from multiple independent knowledge sources, identifies simi-
larities, distinguishes differences, and merges similar ideas and con-
cepts to form aggregate categories. 

Procedure/subroutine approach — An approach to knowledge repre-
sentation in which knowledge about the world is contained in proce-
dures, small programs that know how to do specific things. 

Property lists approach — An approach to knowledge representation
that uses objects and lists of their properties (or attributes) to describe
the state of the world. 

Reasoning — The act of using inference to lead to a conclusion based on
existing knowledge and/or data. 

Repair system — A type of expert system used to develop and execute
plans to administer a remedy for some diagnosed problem. 

Rule — A formal specification or description of a unit of knowledge. 
Semantic net technique — An approach to knowledge representation

that describes the state of the world as a collection of nodes that rep-
resent objects, object properties, concepts, events, and arcs of links in
a graph. 

Slot — A frame-like structure for representing stereotyped sequences of
events. 

Stereotype — A description that embodies a set image or type; a 
template. 
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67.6 Software 
Not applicable. However, the chapter did reference LISP, a popular expert
system programming language. 
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68.1 Purpose 
The ultimate objective of natural language processing is to allow people to
communicate with computers in much the same way they communicate
with each other. This chapter briefly introduces key natural language pro-
cessing concepts and terminology. 



68.2 Strengths, weaknesses, and limitations 
Natural language processing removes one of the key obstacles that keeps
some people from using computers. More specifically, natural language pro-
cessing facilitates access to a database or a knowledge base, provides a
friendly user interface, facilitates language translation and conversion, and
increases user productivity by supporting English-like input. 

As of mid-1998 when this chapter was written, natural language pro-
cessing was not yet capable of supporting true conversational input. Most
commercially available software limits the number of different users and/or
such parameters as the user’s vocabulary, syntax, or speed, and free-form
English input must occasionally be supplemented with commands. Most
natural language processing software is designed to locate key words first
and then interpret the meaning of a sentence or a phrase, which increases
programming time and program execution time. Additionally, special
equipment is needed to support natural language processing. 

68.3 Inputs and related ideas 
Natural language processing is a major area of research within the field of
artificial intelligence. It is closely related (either as a front end or a user inter-
face) with expert systems (Chapter 7), and shows great promise as a user
interface (Chapter 48). State transition diagrams (Chapter 30) are sometimes
used to model natural language processing tasks. 

68.4 Concepts 
The ultimate objective of natural language processing is to allow people to
communicate with computers in much the same way they communicate
with each other. This chapter briefly introduces key natural language pro-
cessing concepts and terminology. A detailed discussion of the underlying
technology is beyond the scope of this book. 

68.4.1 Phases 

Natural language processing starts with the input of a string of plain English
words (Figure 68.1). The first phase in the process is word recognition. The
objective is to restructure the input string as a series of noun phrases, verb
phrases, prepositional phrases, adjective phrases, and so on. A state transi-
tion diagram (Chapter 30) is sometimes used to model the process. 

Next the words and phrases are analyzed to check the integrity of the
sentences and to clarify any ambiguities. The knowledge base stores gen-
eral knowledge (words, linguistic concepts, etc.) and application-specific
knowledge. A lexical analyzer is a routine that performs semantic analysis,
checking every word in a sentence against the correct spellings stored in the
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knowledge base and listing all the possible alternative meanings for the sen-
tence. If necessary, an expert system is consulted to deduce the meanings of
ambiguous terms and expressions based on context, questions asked earlier
in the session, organization-specific rules, and other factors stored in the
knowledge base. 

Once the words are properly defined, a parser routine performs syntactic
analysis, essentially diagramming the sentence to form a parse tree. Finally,
during the natural language implementation phase, a generator outputs one
or more commands based on the meaning deduced from the word meanings
and the parse tree. For example, a plain English query might be converted to
a set of SQL commands. The computer then executes the commands. 

68.4.2 The natural language shell 

The natural language processing routine is typically visualized as a shell.
The user communicates with the shell by entering plain English character
strings. The shell translates the plain English strings into the appropriate
commands and passes the commands to an application program. Using a
common shell makes more sense than duplicating the same complex logic in
multiple application programs. 

68.4.3 Speech recognition 

Speech recognition is an extension of natural language processing. The idea
is to use a speech recognition routine (or a chip) to break continuous speech
into a string of words, input the string into a natural language processing
routine, and then pass the resulting commands to an application program. 

One problem with speech recognition is that human language is impre-
cise and many words have multiple meanings that depend on context. Add
multiple languages, dialects, and accents, and the problem becomes very
complex. Additionally, few people are skilled at issuing orders or using lan-
guage with precision. 
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68.4.4 Other applications 

Natural language processing can support several types of translation.
Language-to-language systems translate between two languages; English
and Chinese, for example. Compiler and interpreter systems convert
English-like commands into executable machine or low-level language
codes. Code-to-code translators are common in word processing software,
supporting conversions between Microsoft Word, ASCII, and WordPerfect
formats, for example. 

As the term implies, grammar analysis systems are used to check spelling
and grammar. For example, the grammar analysis facility in Microsoft Word
for Office 97 continuously underlines spelling errors in red and grammatical
errors in green as the user types. In addition to highlighting misspellings,
commonly misused words, awkward sentence structures, awkward phrases,
and incorrect punctuation, a sophisticated grammar analysis system can also
provide substitutes for specific words, determine the reading level of a docu-
ment, and provide status and statistical data for further analysis. 

Record management systems read the contents of records (received,
stored, and transmitted), analyze the contents, sort the records into proper
categories, and add meaningful indexes or key words and phrases for future
reference. 

A natural language processing system can serve as a user interface to a
database system, an expert system, or a specific application. A SQL com-
mand generator is a good example of a database system interface. Natural
language interfaces show great promise for expert systems, and consider-
able research has already been done. Other natural language interfaces are
used in data communications, manufacturing, and office automation. 

Natural language processing will play an important role in future robotic
systems. Robotics combines such features as speech recognition, natural lan-
guage processing, natural language translation, image processing, and pat-
tern recognition, and is beyond the scope of this book. 

68.5 Key terms 
Expert system (knowledge-based system) — A computer program that

emulates the thought process of a human expert. 
Generator — A routine that outputs one or more commands that the

computer can execute. 
Knowledge base — A collection of data, algorithms, and heuristic rules

that forms the core of an expert system. 
Lexical analyzer — A routine that performs semantic analysis, checking

every word in a sentence against the correct spellings stored in the
knowledge base and listing all the possible alternative meanings for
the sentence. 

Natural language processing shell — A natural language processing
user interface. The user communicates with the shell by entering
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plain English character strings. The shell translates the plain English
strings into the appropriate commands and passes the commands to
an application program. 

Parse tree — A hierarchical representation of words (conceptually simi-
lar to a diagrammed sentence) arranged in a form that allows a com-
puter program to trace relationships and infer meanings. 

Parser — A routine that performs syntactic analysis, essentially dia-
gramming a sentence to form a parse tree. 

Semantic analysis — A technique in which the system determines the
meaning of each word by looking it up in a dictionary or a knowl-
edge base. 

Speech recognition — An extension of natural language processing that
uses a speech recognition routine (or a chip) to break continuous
speech into a string of words, inputs the string to a natural language
processing routine, and then passes the resulting commands to an
application program. 

Syntactic analysis — A technique that allows a parser routine to, essen-
tially, diagram a sentence to form a parse tree. 

Word recognition — The process of restructuring an input string into a
series of noun phrases, verb phrases, prepositional phrases, adjective
phrases, and so on. 

68.6 Software 
Dragon Systems’ Naturally Speaking and IBM’s ViaVoice Gold are voice recog-
nition software packages that might be used to support a speech recognition
system. Other examples include Intellect from Artificial Intelligence Corp.,
RAMIS II English from Mathematica, Inc., Spock from Frey Associates, Inc.,
and NaturalLink from Texas Instruments. 
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69.1 Purpose 
Software customization allows for the modification of commercial software
in order to meet the unique requirements of an organization. This chapter
briefly describes several customization techniques. 

69.2 Strengths, weaknesses, and limitations 
Utilizing commercial software saves design, programming, and testing
time, significantly reduces the time frame for implementing a new system,
and significantly reduces system development costs. The software vendor
may provide maintenance, support, upgrades, and enhancements, thus
reducing maintenance costs. Commercial software is often modular, so the
organization can pick the pieces that meet its needs. 

Commercial software packages are written to the lowest common
denominator. For complex applications, customizing commercial software
may be more time consuming and costly than developing and implement-
ing a custom system. Also, because commercial software is widely available,
customizing commercial software compromises any competitive advantage
the organization may have gained had it developed the application in
house. 

69.3 Inputs and related ideas 
Before choosing between customizing commercial software and building a
new system in house, management and information systems personnel
must clearly understand the business problem and the system objectives.
The necessary understanding is based on the results of the problem defini-
tion (Part II) and analysis (Part IV) stages of the system development life
cycle. Cost/benefit analysis (Chapter 38) is an important part of the make or
buy decision; note that the potential loss of a competitive advantage is a sig-
nificant intangible cost. Customizing commercial software promotes early
user acceptance because prototypes (Chapter 31) are easily created using the
software. 

One method of customizing commercial software is to create a front end
(Chapters 48 and 49) to a database (Chapters 43 and 45). Another approach
is to customize the software to match the organization’s forms and reports
(Chapters 46 and 47). With the growing popularity of the World Wide Web,
customization may also include web page design (Chapter 51). 

69.4 Concepts 
Software customization allows for the modification of commercial software
in order to meet the unique requirements of an organization. This chapter
briefly describes several customization techniques. 
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69.4.1 Simple customization 

Some customization tools require relatively little technical expertise. 

69.4.1.1 Macros 
A macro is an instruction (or set of instructions) that performs a series of
keystrokes or commands to carry out a specific task. Macros are created to
help reduce keystrokes. The user activates the macro feature, performs the
target task, and captures the sequence of keystrokes in a file. The macro is
subsequently executed by pressing a hot key (or key combination), clicking
an icon or a button, or selecting the macro from a menu. 

For example, if a Microsoft Word for Office 97 user wants to double-
space a block of text, he or she must highlight the text to be double-spaced,
open the Format menu, select Paragraph, select Line spacing, and then select
Double. To create an equivalent macro, the user first highlights the text to be
double-spaced and then selects Macro from the Tools menu. After the user
clicks on Record new macro, a window opens. In the window, the user gives
the macro a name, assigns the macro to a toolbar, the keyboard, or both, and
then goes through the steps required to double-space the highlighted text.
When the user stops recording (by clicking Stop recording on the toolbar), the
keystrokes and commands are captured and saved. Once the macro is
recorded, the captured steps can be repeated by clicking on the associated
toolbar icon or pressing the associated key combination. 

The process of creating a macro is similar in other software tools. 

69.4.1.2 Styles 
A style is a font, a point size, and a set of text formatting rules. For example,
a major heading might be centered in 18-point, boldface Arial. 

To create a style in Microsoft Word, the user first formats and highlights
the target paragraph or block of text, opens the style window (at the left of
the tool bar), and types the name of the new style in the style window. An
option is to select Style from the Format menu to open the style window
(Figure 69.1) and either select New or Modify (to change an existing style).
Once a style is set, the user can select it by highlighting the affected text and
selecting the style by name from the style menu. The process of creating a
style is similar in other software tools. 

69.4.1.3 Templates 
Templates are documents that contain predefined styles and macros. For
example, a user might create a template for a memo that includes the com-
pany’s logo, the date, such headings as TO, FROM, and SUBJECT, and a set
of text styles. When the template is opened, the user selects the text to be
changed and types the new content. The template defines the document lay-
out, eliminating the need to retype redundant material and ensuring a 
consistent appearance. 
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To create a template, the user typically enters the initial version of the
document and then saves it as (SAVE AS) a template. For example, in
Microsoft Word, templates are stored as template files and subsequently
accessed by opening the File menu, selecting New, and then selecting the
template by name. Figure 69.2 shows a Microsoft Word memo template for
a memo. The process of creating a template is similar in other software tools. 

69.4.2 Advanced customization 

Such customization techniques as creating a front end for a user to access,
query, and/or change a database, or creating a bridge routine to convert the
data from the old database to a format the new system can use require more
advanced programming skills. 

69.4.2.1 Visual basic 
The Microsoft suite of packaged software uses the VBA (Visual Basic for
Applications) programming language to add custom procedures to a stan-
dard program. Other manufacturers support Visual Basic or comparable
languages. 
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69.4.2.2 Forms 
Forms (data entry screens with fill-in-the blank or select-an-option win-
dows) are a common type of front end. (Such forms are examples of infor-
mation-oriented question-answer dialogue, Chapter 49.) A set of forms
might be created to allow a user to define queries or add, delete, and edit
records in a database. For example, Figure 69.3 shows a form for finding a
customer in a Microsoft Access database. Visual Basic is sometimes used to
create and execute the forms. 

69.4.2.3 Web customization 
With the increasing popularity of the World Wide Web, customization often
includes web page design (Chapter 51). For example, using a product such
as Cold Fusion, a programmer can create custom web pages that allow the
user to enter and/or modify data in the organization’s database. Web access
is platform independent, so a user can browse the web site via any computer
platform (e.g. Macintosh, Windows, Unix, and so on), and off-site access to
the company’s Intranet is possible through any Internet service provider.
Security is a major concern, however. 

For example, Miami University (Oxford, Ohio) is currently creating web
access to parts of its new administrative and student databases. When the
system is completed, students will be able to view transcript data and 
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register for classes through the web. Security will be implemented using
encryption techniques. 

Java1 is an object-oriented programming language that was designed for
secure use across platforms. A programmer can write a Java applet to
implement a form or perform a set of functions within the context of a web
page. Another option is to build a search engine to query a database through
a web site. Examples include an airfare reservation system and the Library
of Congress catalogue search engine (Figure 69.4). 

69.5 Key terms 
Bridge — A routine that converts the organization’s current data to a

format that is compatible with the purchased software. 
Commercial software package — A set of prewritten application pro-

grams that are commercially available for purchase or lease. 
Customization — The modification of a software package to meet an

organization’s unique requirements without destroying the integrity
of the package software. 

Form — A data entry screen with fill-in-the blank or select-an-option
windows. 
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Front end routine — A routine that accepts input data and formats it for
a commercial program. 

Java — An object-oriented, platform independent programming lan-
guage from Sun Microsystems. 

Macro — An instruction (or set of instructions) that performs a series of
keystrokes or commands to carry out a specific task. 

Style — A font, a point size, and a set of text formatting rules. 
Template — A document that contains predefined styles and macros. 

69.6 Software 
Below is a list of software tools that can be used to customize commercial soft-
ware. The list is not exhaustive and does not constitute a recommendation. 

Clipper Java 
Cold Fusion Microsoft Visual Basic 
Dbase Oracle Developer 2000 
Delphi Paradox 
Foxpro PowerBuilder 
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69.7 References 

69.7.1 Web sites 
1. Java information can be found at http://sunsite.unc.edu/javafaq/javafaq.html. 

69.7.2 Suggestions for additional reading 
1. Laudon, K. C. and Laudon, J. P., Essentials of Management Information Systems:

Organization and Technology, Prentice-Hall, Englewood Cliffs, NJ, 1995. 
2. Lin, F., The Visual Basic Coursebook, Scott/Jones, El Granada, CA, 1997. 
3. Perry, G., Visual Basic 5 Night School, QUE (Macmillan Computer Publishing),

Indianapolis, IN, 1997.
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70.1 Purpose 
Documentation consists of the specifications, instructions, tutorials, refer-
ence guides, and similar materials that accompany and explain a piece of
software or a hardware component. Documentation serves as a communi-
cation vehicle, provides a useful reference, and facilitates management’s
control of the system development process and of system operation. This
chapter briefly discusses documentation types and documentation contents
and offers several tips for producing good documentation. 

70.2 Strengths, weaknesses, and limitations 
Documentation serves as a communication vehicle, provides a useful (test-
ing, debugging, maintenance, and operational) reference, enhances produc-
tivity, supports user training, and promotes continuity and consistency.
Additionally, it facilitates management’s control of the system development
process and of system operation. Other information system development
projects can sometimes borrow components and/or ideas from (or reuse)
existing documentation. Details concerning modifications to and versions of
an information system are important system validation criteria.

On the negative side, creating and maintaining effective documentation
is expensive. However, the benefits almost always outweigh the cost. 

70.3 Inputs and related ideas 
Documentation is created throughout the system development life cycle.
Good documentation is essential during the testing, implementation, and
maintenance stages (Parts VII and VIII). 

Many of the tools and techniques discussed in this book can be used to
generate charts, diagrams, narratives, and other forms of documentation. In
particular, see screen and forms design (Chapter 46), report design (Chapter
47), user interface design (Chapter 48), dialogues (Chapter 49), windows
design (Chapter 50), web page design (Chapter 51), logic flowcharts
(Chapter 55), decision trees (Chapter 57), decision tables (Chapter 58), and
HIPO (Chapter 64). A technical inspection (Chapter 23) is an excellent tool
for evaluating the quality of the documentation. 

70.4 Concepts 
The quality of an information system depends not only on such attributes as
flexibility, user-friendliness, reliability and performance, but also on the
quality of the documentation. In fact, to the user, the documentation and the
user interface are the system. 

Documentation consists of the specifications, instructions, tutorials, ref-
erence guides, and similar materials that accompany and explain a piece of
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software or a hardware component. Good documentation is complete, clear,
understandable, current, and reusable. 

70.4.1 Documentation types 

Internal documentation consists of specifications, records, and manuals that
are stored, maintained, and used by technical professionals. (It is “internal”
because it is kept within the technical facility.) Examples include system doc-
umentation, program documentation, operations manuals, command manu-
als, input/output specifications, interface specifications and descriptions,
sample input/output records and forms, system analysis documentation, sys-
tem design documentation, and related data descriptions and specifications. 

External documentation, in contrast, is kept at the user’s location (or
some other remote site) and is designed primarily for the user. Examples
include user manuals, execution guides, error manuals, assistance manuals,
guidelines, operating procedures, and so on. 

Command-oriented documentation contains all the commands used by
the system and/or the program, usually arranged in alphabetical order.
Typically, the syntax, options, formats, attributes, and one or more examples
are listed for each command. Operation-oriented documentation groups
commands based on the nature of the operation. For example, commands
might be grouped into such categories as file, edit, help, tools, and format. 

Execution-oriented (or application-based) documentation is designed to
support an application. Typically, such details as operating procedures, exe-
cution sequence, the rules and privileges associated with accessing a file,
and various restrictions associated with the system are documented. On-line
help is an example of execution-oriented documentation. Diagnosis-
oriented documentation describes the type and the nature of warning messa-
ges and error messages and explains the causes of and solutions for each error. 

Generally, the systems manual is a combination of command-oriented
and diagnosis-oriented documentation. The user manual is often a combi-
nation of execution-oriented and operation-oriented documentation. 

It is also possible to classify documentation by system development life
cycle phase. Requests for proposal (RFP), requests for quotation (RFQ), the
requirements specification, various process and data analysis models, and
the feasibility study report are examples of analysis documentation. Data
flow diagrams, the data dictionary, and other types of data and design spec-
ifications are examples of design documentation. Change reports, version
control specifications, the system manual, the user manual, and similar
manuals and specification are examples of maintenance documentation. 

70.4.2 Documentation contents 

The precise content of a unit of documentation depends on its intended use.
For example, a source code listing might be appropriate for a maintenance
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programmer, but the end user of that program will need a clear explanation
of exactly how to work with the user interface. Form affects content, too;
printed documentation and on-line documentation are inherently different. 

Documentation is prepared for future reference, so most documentation
contains a table of contents and/or an index that makes it easy to find key
topics. For example, many on-line help features include a help contents win-
dow, an index, and a search facility. 

Often, one of the first pages or screens in the documentation is an intro-
duction that explains the purpose of the documentation, identifies the
intended audience, and identifies the people responsible for creating the
documentation and for answering questions about the documentation. A
glossary is often included, too. With the growing acceptance of the Internet
and the World Wide Web, some on-line documentation packages now fea-
ture key words hyperlinked to a glossary entry. 

The detailed contents of the documentation can take many different
forms, from pure narrative, to graphics, to interactive dialogue, to hybrid
multimedia presentations. Functional narratives are common. For example,
a user manual might feature a series of annotated user interface screens 
with explanations, or an annotated sample report. Play script style features
two (or more) columns, with key actions listed in the left column and the
associated explanation listed in the right column. See the chapters listed
under Inputs and Related Ideas for other tools that might be used to prepare
documentation. 

70.4.3 Documentation tips 

Listed below are several tips for creating effective documentation. 

70.4.3.1 Write for the user 
A basic principle of any kind of writing is to write for the intended audience.
Effective documentation begins with a thorough understanding of the user,
the user’s needs, and the user’s technical expertise. Analysis-oriented docu-
mentation should be written for the analyst. Detailed program documen-
tation should be written for the programmer. The user manual should be
written for the end user. 

The principle seems obvious, but it is frequently ignored. All too often,
documentation is prepared by technical personnel who either do not under-
stand the user, do not care about the user, or care more about impressing
their technical peers than communicating effectively with the user.
Documentation that is not written for the intended reader will not be used.
Unused documentation is a waste of time and effort. 

One final point: Many sources cite ease of use as a primary documenta-
tion criterion. Ease of use is a relative concept. The only valid basis for mea-
suring ease of use is the intended user. 
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70.4.3.2 Never leave the user hanging 
Good documentation never leaves the user hanging. All explanations should
be written in user terms, using words the user understands. Technical terms
should be clearly defined in context or in a glossary. The use of acronyms
should be kept to a minimum. When an acronym is used, its meaning should
be spelled out on each page where it appears. 

70.4.3.3 Design for easy reference 
People rarely read documentation from cover to cover. Instead, they use
such features as a table of contents, an index, thumb tabs, or a search tool to
quickly find a specific answer to a specific question. Effective documenta-
tion is designed with such use in mind. 

Design the contents to be easy to find. Use a table of contents and/or an
index. Put the entries in alphabetical order or group them by function. If the
documentation is on line, provide a key word search facility. 

Redundancy can be valuable. For example, different users might visu-
alize a document as a page, a form, or a screen. Rather than training every-
one to use the same term, it might be better to provide links to the right
information from all of those aliases, or from any appropriate starting point.
To cite another example, imagine that two topics are closely related. It is
unreasonable to assume that a user searching for topic B has previously read
topic A, so redundant elements of the explanation should be repeated for
both topics. 

Not all users need the same amount of detail, so drilldown is another
useful principle. For example, each topic might be organized as a pyramid,
with general concepts on top, a typical or most likely scenario in the middle,
and exceptions or special cases at the bottom. Given such a structure, a
given user can “drill down” only as far as necessary to answer his or her
question. 

70.4.3.4 Be consistent 
Consistency is crucial. Consider, for example, the graphic user interface
defined by the World Wide Web. Once a user learns how to access and nav-
igate one site, the same point and click operations work on virtually any site.
Similarly, if all the elements in a given documentation package are designed
with a consistent look and feel, the user’s training time is greatly reduced. 

Perhaps the best example of a consistent look and feel is the desktop
metaphor defined by the Apple Macintosh and Microsoft Windows. A few
basic operations (point, click, drag) are used to manipulate a few basic 
elements (windows, icons, menus) in virtually every application.
Consequently, given a little practice, the basic operations and elements
become almost intuitive, so the user can effectively ignore them and focus
on the task at hand. Similarly, the physical structure of the documentation
should make access almost intuitive, and not get in the user’s way. In fact,
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because so many people are already familiar with the metaphors, it often
makes sense to design the documentation to resemble a Windows or World
Wide Web application. 

70.4.3.5 Plan 
Good documentation does not just happen; it must be carefully planned. In
fact, many software developers view documentation as a discrete phase that
is performed concurrently with analysis, design, and implementation, and
every organization should (at the very least) have in place a formal docu-
mentation process complete with formal procedures and standards. 

As a minimum, for each unit of documentation, the content, the organi-
zational structure, the sequence of topics, the intended level of detail, the
presentation methods and approaches (print, graphics, interactive, multi-
media, etc.), and the users’ comprehension level must be clearly defined
before detailed writing begins. Additionally, a budget, resource allocations
(personnel, equipment), quality standards, timing constraints, and approval
procedures must be established for the documentation. 

70.4.3.6 Concurrently develop the documentation and the system 
Generally, the documentation and the system should be developed con-
currently, because if the documentation is viewed as an afterthought, its
quality will reflect that point of view. Ideally, the appropriate documenta-
tion is a measurable exit criterion from each step in the system development
life cycle. In other words, if the documentation is not complete, the step is
not complete. 

70.4.3.7 Test 
The only way to be sure the documentation is good is to test it. The ultimate
purpose of the documentation is to support the user. Consequently, the
user’s opinion is the one that counts, and user involvement in the docu-
mentation testing process is essential. 

In some organizations, the technical professionals create the documen-
tation, but technical personnel often lack a user prospective and many con-
sider documentation a waste of time. In other organizations, technical 
writers, subcontractors, temporary workers, and other support personnel
create the documentation, but less-technical people often lack technical
understanding. A technical inspection (Chapter 23) is an excellent tool for
evaluating the quality of the documentation, particularly if the inspection
team includes both technical personnel and users. 

Standards are important. Some standards are procedural. Start with a
plan, have management and the user approve the plan, and conduct regu-
lar inspections to enforce the plan. Other standards can be applied to the
content. For example, there are several easily computed readability indexes
that can be correlated to the reading level of the intended users. 
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70.4.3.8 Get management committed 
People do things they are rewarded (financially or emotionally) for doing
and they avoid things they are penalized for doing. If management treats
documentation as a necessary evil, rewards those who ignore the documen-
tation in order to get the “real” work done, and penalizes those who insist
on doing the job “right” in spite of the schedule, then the documentation
will not be done properly. Good documentation is produced by organiza-
tions that make good documentation a priority. 

70.4.3.9 Learn from what works 
Perhaps the best way to improve documentation is to start with documen-
tation that works well, study it carefully to find out why it works, and then
use the good documentation as a model. 

70.5 Key terms 
Command-oriented documentation — Documentation that contains all

the commands used by the system and/or the program, usually
arranged in alphabetical order. 

Diagnosis-oriented documentation — Documentation that describes
the type and the nature of warning messages and error messages and
explains the causes of and solutions for each error. 

Documentation — The specifications, instructions, tutorials, reference
guides, and similar materials that accompany and explain a piece of
software or a hardware component. 

Execution-oriented documentation (application based documenta-
tion) — Documentation designed to support an application. 

External documentation — Documentation that is kept at the user’s
location (or some other remote site) and is designed primarily for the
user. 

Internal documentation — Specifications, records, and manuals that are
stored, maintained, and used by technical professionals. 

Operation-oriented documentation — Command-oriented documenta-
tion that groups commands based on the nature of the operation. 

70.6 Software 
CASE software is particularly useful for developing analysis and design
documentation. Word processing, graphics, and desktop publishing soft-
ware are also useful. Additionally, many of the tools and techniques dis-
cussed in this book produce charts, diagrams, and other materials that can
serve as documentation. 
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71.1 Purpose 
The objective of security is to protect the hardware, software, data, and other
system resources from unauthorized, illegal, or unwanted access, use, 
modification, or theft. This chapter describes several information system



security risks, outlines some strategies for countering them, and briefly dis-
cusses how security is designed into a system. 

71.2 Strengths, weaknesses, and limitations 
This chapter focuses on concepts and principles. Where appropriate, the
strengths and weaknesses of various approaches will be discussed in 
context. 

71.3 Inputs and related ideas 
During the problem definition (Part II) and analysis (Part IV) stages of the sys-
tem development life cycle, the system’s security exposures and risks are
identified. The costs associated with appropriate countermeasures are a part
of the cost/benefit analysis (Chapter 38). At the end of the analysis stage, the
necessary security measures are documented in the requirements specifica-
tion (Chapter 35). Virtually any system component can present a security risk.
Consequently, security is an important consideration in the design of almost
every system component and is relevant to most of the chapters in Part VI.
System controls, including security controls, are discussed in Chapter 77. 

71.4 Concepts 
The objective of security is to protect the hardware, software, data, and other
system resources from unauthorized, illegal, or unwanted access, use, mod-
ification, or theft. In a traditional information system constructed around a
centralized mainframe the computer and most of its peripherals are locked
in a restricted access room. Such lock and key security is not very useful on
a modern network, however. The combination of large numbers of users
and physically unsecured peripherals, cables, communication lines, and
access points make modern network-based systems particularly tempting
targets. The Internet complicates the problem. 

This chapter describes several information system security risks, out-
lines some strategies for countering them, and briefly discusses how security
is designed into a system. 

71.4.1 Security threats 

To an expert, an item is considered secure if the cost of breaking security
(including the risk of getting caught) exceeds the item’s value. To some peo-
ple, such things as military secrets or a corporation’s strategic data are con-
sidered priceless. Consequently, perfect information system security may be
an impossible goal. 

A good way to visualize security threats is to imagine the system as a
chain and look for weak links. Exposures can come from people, hardware,
and/or software. 
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71.4.1.1 People 
Recently, hackers and crackers have received a great deal of publicity.
Originally, a hacker was an expert programmer with a knack for creating
elegant software. Today, however, the term is more commonly applied to
someone who illegally breaks into computer systems. Within the program-
ming community, hackers are viewed as relatively harmless, while crackers,
people who break into computers (generally over a communication line)
with malicious intent, are viewed as criminals. In popular usage, hacker (the
more common term) is applied to both benign and malicious intruders. 

In spite of all the publicity about hackers and crackers, such insiders as
employees, former employees, consultants, clients, and customers commit
most security violations. Unlike hackers, insiders have relatively free access
to the system. Industrial spies have been known to approach insiders with
offers of money in exchange for sensitive information or software.
Disgruntled information system employees (both current and former) are
particularly dangerous.

Even honest insiders can represent a security risk. People are not always
careful about protecting their passwords, security codes, telephone num-
bers, equipment, and work places. For example, hackers have been known
to guess casually selected passwords, obtain passwords and other security
information by going through paper waste (dumpster diving), or passing
themselves off as authorized users and convincing an employee to give
them the information they need (social engineering). 

71.4.1.2 Hardware 
The personal computer or workstation is one of the weakest links in net-
work security. Users upload and download data to and from the Internet,
share public domain software, and share common peripherals, any of which
can constitute a security threat. Unauthorized access to the server’s public
access files and peripherals (magnetic tape, printers, plotters, and so on)
complicates security. 

The physical network is also vulnerable. Intruders have been known to
tap a cable or a telephone line or intercept satellite and microwave commu-
nications. Dial-in access is particularly difficult to control because an incom-
ing call can originate anywhere. In fact, hackers and crackers sometimes run
programs that dial thousands of numbers in sequence and note only the
numbers that return a modem tone (power dialing). Those numbers are later
used as possible access points to a system. 

The theft of laptop computers is a growing problem. In addition to the
value of the hardware and software, a laptop’s hard disk might hold corpo-
rate data, passwords, access codes, and other sensitive information. 

71.4.1.3 Software 
Execution errors and inaccurate input data generated by both authorized
and unauthorized users present a special challenge for network security
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design because backtracking to the point when the affected information was
correct is very difficult given the number of concurrent users and active
tasks. Additionally, unauthorized access, whether malicious or benign,
makes it difficult to certify the integrity of a database, particularly if there is
a chance that the contents were modified. 

Other software problems are a bit more dramatic. A time bomb is a pro-
gram that executes on a particular date or when a particular condition is
met. A Trojan horse is a seemingly harmless program that invites an unsus-
pecting user to try it. Some time bombs and Trojan horses set off logic
bombs, programs that (symbolically) blow up in memory, perhaps trashing
a hard disk or selected data. 

A rabbit is a program that replicates itself until no memory is left and no
other programs can run. For example, one well-known rabbit creates two
copies of itself and then starts them. A few microseconds later there are four
rabbits running. Then eight, then sixteen, and so on until the rabbit is out of
control. 

A virus is a program that is capable of replicating itself and spreading
between computers. Like its biological namesake, a virus is a parasite that
attaches itself to another program to survive and propagate. (The boot rou-
tine found on every diskette is a common target.) Viruses typically spread 
to other computers through infected diskettes or downloaded copies of
infected programs. 

A virus needs a host. A worm, in contrast, is a program that is capable
of spreading under its own power. One common technique is to send out
small, virus-like scout programs from a source computer. Once the scout is
established on the target computer, it sends a message back to the source
computer requesting transmission of the rest of the worm. 

In addition to the logic needed to replicate and establish itself on a new
computer, a virus or worm can also carry a payload that holds a logic
bomb, a time bomb, a rabbit, or some other type of destructive code.
Viruses and worms have been known to erase disks, crash programs, and
modify data. 

71.4.2 Counter measures 

There are numerous tools and techniques for countering a security threat. 

71.4.2.1 Physical Security 
Physical security is concerned with denying physical access to the sys-
tem, preventing the physical destruction of the system, and keeping the 
system available. For example, mainframe computers are often located in
controlled-access rooms and personal computers are sometimes cabled to
work tables or placed in locked cabinets when they are not in use. Access to
a secure area can be controlled by issuing identification cards, badges, keys,
or personal identification numbers (PINs) to authorized personnel, and 
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surveillance cameras are becoming increasingly common. Modern biomet-
ric devices can be used to identify an individual via retinal scan, fingerprint
analysis, voiceprint, or signature analysis. 

The Internet is a significant source of security intrusions. Consequently,
many organizations use firewalls (Figure 71.1) to insulate their internal net-
work from the Internet (or from other public networks). A firewall is a set of
hardware, software, and data that sits between the internal network and the
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Internet, screens all incoming and/or outgoing transactions, and allows
only authorized transactions to get through. Often, the firewall is imple-
mented on a physically separate computer, with a public host (the computer
that is linked to the Internet) outside the firewall and the internal server
inside the firewall. Additionally, critical software can be kernelized, or parti-
tioned to make unauthorized access more difficult. 

A disaster plan is essential in the event of such physical threats such as
fire, flood, earthquake, or power loss. Environmental controls might be
needed to regulate heat, moisture, dust, and so on. Backup copies of all soft-
ware and data and redundant hardware components are important ele-
ments of a recovery plan. 

71.4.2.2 Logical security 

Logical security is implemented by the system as it runs. For example, on
most network-based systems, each authorized user is assigned a unique
identification code and a password. In some cases, additional passwords are
required to access certain critical data or to execute sensitive programs.
Often, access privileges are assigned in layers, with most users restricted to
read-only access, a smaller group given the authority to change selected
data (perhaps subject to independent verification), and only a few people
assigned system operator (sysop) status (which implies the authority to
access and change anything). Typically, the operating system checks a user
profile or an access control matrix to verify a given user’s access privileges. 

Just having a valid user code and password does not necessarily prove
that a user is who he or she claims to be. Authentication, the process of ver-
ifying the user’s identity, often relies on remembered information (such as a
PIN or a mother’s maiden name) or variations of the biometric devices
described in Section 71.4.2.1. 

Callback is another useful authentication tool. After a user logs on from
a remote workstation, the host computer verifies the user code and pass-
word, breaks the connection (hangs up), looks up the authorized telephone
number for that user’s workstation, and then redials the workstation. 

Viruses can be difficult to detect or remove, so the best defense is 
prevention. Personnel should not accept “free” software (on diskette, 
CD-ROM, or via the network) unless the source is known to be clean. 
Anti-virus software is designed to recognize certain code patterns (called
virus signatures) and sound an alarm when a virus is detected. Such soft-
ware should be used to screen all foreign disks, CD-ROMs, and down-
loaded software (including software from “legitimate” sources) before
they are released for use. On many systems, anti-virus software runs 
continuously in the background. 

Other techniques are intended to provide recovery information or legal
documentation when a security breech does occur. A transaction log is a list
of all of a system’s recent transactions. A comparator is a software routine
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that compares the contents of a file or a record before and after a transaction
and reports any differences. Audit trails and audit procedures can help, too. 

71.4.2.3 Personnel security 
People cause most security problems. Consequently, although they are
expensive and sometimes controversial, such personnel controls as pre-
employment screens, periodic background checks, and rotating job assign-
ments are necessary. A basic accounting principle suggests that no single
individual should ever be allowed to place an order and pay the resulting
bill. Similarly, systems are often designed to segregate such related func-
tions as data entry and data verification by assigning the responsibility to
different departments. 

Standard operating procedures, policies, and/or security manuals are
an important part of any security plan, and training is crucial. Employees
must understand how to implement the security procedures. Perhaps more
important, they must know why a given security procedure is necessary. 

For example, given a choice, most people select an easy to remember
(and thus easy to guess) password that they never change. Standard proce-
dures can be implemented by the system to force users to change their pass-
words at regular intervals. The password selection software can be designed
to help the user select a better password by rejecting dictionary words,
requiring a minimum password length, requiring a combination of letters
and digits, and so on. Additionally, explaining why security is necessary
and outlining some of the tricks hackers use to guess passwords can help
encourage employees to do a better job. 

71.4.2.4 Encryption 
To make sensitive information difficult to read even if a message is inter-
cepted, the data can be encrypted (converted to a secret code), transmitted,
and then decrypted at the other end of the line. The U.S. National Bureau of
Standards’ Data Encryption Standard (DES) is considered very difficult
(perhaps impossible) to break. A public/private key system, DES is used for
secure government transmissions and for most electronic funds transfers.
Another popular public/private key encryption algorithm called PGP
(Pretty Good Privacy) was created without government support and is
available on the Internet. 

As the name implies, a two-key or public/private key system uses two
keys. The recipient’s public key, which is published or readily available on-
line, is used to encrypt the message. Once the message is received, only the
secret private key can be used to decrypt it. 

71.4.3 Security design 
Every organization should have established security standards and guide-
lines that apply to all information systems. Such standards help to ensure
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that security is not overlooked during the system development process and
provide the designer with a security template. 

An important element of any set of security standards is the recognition
that not all systems, or even all components of the same system, require the
same level of security. For example, using retinal scans to control access to a
file of press releases is silly, and such inappropriate precautions can destroy
the credibility of legitimate security. The standards should identify several lev-
els of security risks and suggest security precautions consistent with the risk.

To an expert, an item is considered secure if the cost of breaking security
exceeds the item’s value. Consequently, the appropriate level of security for
a given system or component is a function of the value of that system or
component to those who might be tempted to access or steal it. The objec-
tive is to balance cost and risk. During the problem definition and analysis
stages of the system development life cycle, the security exposures and risks
should be identified. The costs associated with appropriate countermea-
sures should be a part of the cost/benefit analysis. At the end of the analy-
sis stage, the necessary security measures should be documented in the
requirements specification. 

Security cannot be added onto a system; it must be designed into the
system. A system-wide security plan should be created early in the design
process. Once the approach to system security is selected, appropriate secu-
rity features should be designed into the hardware, the software, the data,
and the procedures. Virtually any system component can represent a secu-
rity risk. Consequently, security is an important consideration in the design
of almost every system component. 

During the operation and maintenance stage of the system development
life cycle, system controls (Chapter 77) play an important role in supporting
system security. In addition to the security controls, operational controls,
data integrity controls, and auditing controls can provide an early warning
of security problems. 

71.5 Key terms 
Anti-virus software — Software designed to recognize certain code pat-

terns (called virus signatures) and sound an alarm when a virus is
detected. 

Authentication — The process of verifying the user’s identity. 
Biometric device — A system component that can identify an individ-

ual based on such biological criteria as a retinal scan, a fingerprint
analysis, a voice print, or a signature analysis. 

Callback — An authentication tool in which the host computer verifies
the user code and password, breaks the connection (hangs up), looks
up the authorized telephone number for that user’s workstation, and
then redials the workstation. 
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Comparator — A software routine that compares the contents of a file or
a record before and after a transaction and reports any differences. 

Cracker — A person who breaks into computers (generally over a com-
munication line) with malicious intent. 

Data encryption standard (DES) — A public/private key encryption
system used for secure government transmissions and for most elec-
tronic funds transfers. 

Dumpster diving — Searching for passwords and other security infor-
mation by going through paper waste. 

Encrypt — To convert to a secret code. 
Firewall — A set of hardware, software, and data that sits between the

network and the Internet (or other public network), screens all
incoming and/or outgoing transactions, and allows only authorized
transactions to get through. 

Hacker — Originally, an expert programmer with a knack for creating
elegant software; today, the term is more commonly applied to some-
one who illegally breaks into computer systems. 

Kernel — A unit of code or a routine that is physically and/or logically
isolated from other software and consequently protected. 

Logic bomb — A program that (symbolically) blows up in memory. 
Logical security — Security features implemented by the system as it runs. 
Password — A secret word or string of characters used to uniquely iden-

tify a given user. 
PGP (pretty good privacy) — A popular public/private key encryption

algorithm that was created without government support and is avail-
able on the Internet. 

Physical security — A set of security features concerned with denying
physical access to the system, preventing the physical destruction of
the system, and keeping the system available. 

Power dialing — Running a program that dials thousands of numbers
in sequence and notes only the numbers that return a modem tone. 

Public/private key system — An encryption system that uses two keys;
the message is encrypted using the published public key and
decrypted using the secret private key. 

Rabbit — A program that replicates itself until no memory is left and no
other programs can run. 

Security — Hardware, software, and procedures intended to protect the
hardware, software, data, and other system resources from unautho-
rized, illegal, or unwanted access, use, modification, or theft. 

Social engineering — The act of pretending to be an authorized user
and attempting to convince an employee or other human source to
divulge sensitive information. 

Time bomb — A program that executes on a particular date or when a
particular condition is met. 
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Transaction log — A list of a system’s transactions. 
Trojan horse — A seemingly harmless program that invites an unsus-

pecting user to try it. 
Virus — A program that is capable of replicating itself and spreading

between computers by attaching itself to another program. 
Worm — A program that is capable of spreading from one computer to

another under its own power. 

71.6 Software 
The following World Wide Web sites are excellent sources of information on
various types of security software: 

Encryption software http://www.pgp.com 
Firewall software http://www.sctc.com 
Security software products http://www.datafellows.com 
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72.1 Purpose 
This chapter discusses several general system design topics that are not fully
covered in other chapters, including the system life cycle, important factors
that affect system design, system attributes, and system design strategies. 

72.2 Strengths, weaknesses, and limitations 
Where applicable, strengths and weaknesses will be discussed in context. 

72.3 Inputs and related ideas 
The concepts discussed in this chapter can be applied to most of the
methodologies, techniques, and tools in this book. Specifically, this chapter
references expert systems (Chapter 7), prototyping (Chapter 31), hardware
interface design (Chapter 42), file design (Chapter 44), database design
(Chapter 45), report design (Chapter 47), network design (Chapter 52 to 54),
program design (Chapter 62), and real-time systems (Chapter 73). 

72.4 Concepts 
This chapter discusses several general system design topics that are not fully
covered in other chapters, including the system life cycle, important factors
that affect system design, system attributes, and system design strategies. 

72.4.1 The system life cycle 

The system life cycle (Figure 72.1) focuses on various stages of system use-
fulness. In contrast, the system development life cycle (Chapter 1) emphases
the development stages associated with a new or replacement system. 

During the system birth stage, the existing system’s problems, errors,
and missing features are identified and investigated, and new opportunities
suggested by emerging technologies and user requests are examined and
evaluated. A systems analysis is then performed, and if the outcome is pos-
itive, a new or improved system is developed. This stage encompasses the
problem definition, information gathering, and systems analysis stages of
the system development life cycle. 

During the system development stage, the design, development, con-
version, testing, and implementation stages of the system development life
cycle are performed. 

The growth stage corresponds with the operation and maintenance
stages of the system development life cycle. During this stage, usage grows
as users become familiar with the new system, and system behavior is
adjusted to improve performance and efficiency. 
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When the system reaches the maturity stage, its efficiency can no longer
be enhanced and performance deficiencies may begin to appear. At this
point, such options as upgrading the system, adding new functions, and
expanding existing functions must be considered. 

During the death stage, the system is investigated to determine if a new
system should be developed on a new platform, if a new system should be
developed on the existing platform, or if the existing system should be
installed on a new platform. Once the platform decision is made, the system
birth phase begins for a new system. 

72.4.2 Factors that affect system design 

Several factors have a broad impact on systems design. 

72.4.2.1 The degree of automation 
The degree of automation, the extent to which automated or computer-
related components are used in a system, affects the design of virtually
every system component. At one extreme are manual systems that incorporate
few (if any) computer-related components. (Manual systems are not a pri-
mary concern of this book). At the other extreme, fully automated systems
involve few (if any) human components. Most modern information systems
lie between those two extremes. 

72.4.2.2 Processing techniques 
Batch processing is a transaction-oriented information processing technique
in which transactions are accumulated over time and the system’s status is
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updated at the end of a business cycle. Transaction files and master files
must be designed, sequential access techniques are often employed, and
such reports as transaction listings, master file content listings, exception
reports, summary reports, and utility documents (such as paychecks) are
typical outputs. Batch processing is still common in banking and financial
applications. 

On-line processing is the de facto standard in today’s business environ-
ment. Typically, a transaction is used to update the relevant master file
record as soon as it is received. User-friendliness and response time are
important considerations, direct (or random) access is usually employed,
and query support is at least as important as report generation.
Additionally, database and network design are important considerations. 

A real-time system responds to events as they occur and (typically) pro-
vides immediate feedback to influence or control those events in “real” time.
Real-time systems use such tools as probes, sensors, and scanners to get
direct input and automatically convert the data to a format that can be
processed by the computer. Interrupt handling is particularly important on
real-time systems. 

72.4.2.3 Management and control 
A centralized management philosophy provides integrated top-down con-
trol, centralized resource allocation, and good security while minimizing
incompatibility problems. The disadvantages include a lack of flexibility,
limited local processing power, and localized inefficiency. 

Given the pace of information technology development and the growing
popularity of microcomputers and networks, a distributed management phi-
losophy is much more common today. Consequently, such topics as net-
working and hardware interface design have become increasingly important. 

72.4.2.4 Information system types 
A transaction processing system (TPS) accepts and processes transactions in
either batch or on-line mode. The data generated by a transaction process-
ing system are stored in traditional files or databases. Higher-level informa-
tion systems are constructed on the resulting data platform. 

A management information system (MIS) emphasizes report genera-
tion. A decision support system (DSS) is more response-oriented and user-
controlled. For example, a manager might use a DSS to download a set of
data from a central database and then use a fourth-generation language or
a spreadsheet program to manipulate the data to generate the information
needed to support a decision. A group decision support system (GDSS) adds
communication capability and interaction to a DSS. An executive informa-
tion system (EIS) is designed to support high-level decision-making based
(typically) on aggregate and graphic data. An expert system (ES) relies on
expertise, a rule base, a control engine, and an expert system shell, and uti-
lizes such development languages as LISP and PROLOG. 
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72.4.3 System attributes 

A system’s scope is a sense of its size or magnitude and is often expressed
as an estimate of the system’s resource implications or cost. Scope is largely
a function of the degree of automation, the type of information system, and
the complexity of the system. 

A system’s boundaries define its limits. Boundary-related concerns
include interfaces with other systems, the system’s ability to be integra-
ted into a super-system, its compatibility with other systems, and any 
customized routines that might be needed to perform cross-system data
conversions. 

Common criteria for measuring and evaluating system behavior
include throughput, response time, on-line query support, report frequency
and timeliness, integration, flexibility, user-friendliness, execution effi-
ciency, fault tolerance, and so on. Note that several of the criteria conflict. 

72.4.4 System design strategies 

The system design strategies discussed in this section can be applied to vir-
tually any system analysis and design methodology. 

72.4.4.1 Top down 
Top down-design is goal driven. Basically, the modules (and/or subsys-
tems) at the top of the hierarchy (usually, the broad, control-oriented mod-
ules) are designed first and modules at the bottom of the hierarchy (the
detailed, computational modules) are designed last. Typically, the designer
starts by building a hierarchical structure that defines the links between all
the subsystems, modules, subroutines, and/or functions in the proposed
system. All the elements at one hierarchical level are then developed before
work progresses to the next lower level. 

72.4.4.2 Bottom up 
Bottom-up design is data driven. Work begins at the lowest level, typically
with the detailed, computational modules. When all the modules at one
level are completed, work progresses to the next higher level. Bottom-up
development is an excellent choice for a project with massive volumes of
data. 

72.4.4.3 Middle out 
As the term suggests, the middle-out approach starts from the middle of the
hierarchy. For example, the design of a student database might start with a
student file. Subsequently, lower-level files (to hold data about courses,
grades, finances, etc.) and higher-level files (to hold data about student
organizations, the students enrolled in a given course, athletic teams, etc.)
are designed. 
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72.4.4.4 Evolutionary 
The evolutionary (or stepwise refinement) approach is similar to the proto-
typing methodology described in Chapter 31. The idea is to start with a
small program or subsystem and continuously refine it by adding new func-
tions and/or by modifying features. 

72.4.4.5 Incremental 
The incremental or sequential increment approach starts with any module,
subroutine, or subsystem. A second module is then developed and those
two modules are integrated before work begins on the third module. This
process continues until all the modules are developed. 

72.5. Key terms 
Analysis — To attack a problem by breaking it into subproblems. 
Batch processing — A processing technique in which transactions are

accumulated over time and the system’s status is updated at the end
of a business cycle. 

Birth — The system life cycle stage during which the existing system’s
problems, errors, and missing features are identified and investi-
gated, and new opportunities suggested by emerging technologies
and user requests are examined and evaluated. 

Bottom-up design — A data-driven design strategy in which work
begins at the lowest level, typically with the detailed, computational
modules; when all the modules at one level are completed, work pro-
gresses to the next higher level. 

Boundary — An entity that serves to delimit or separate a system from
its environment. 

Centralized management — A management philosophy based on inte-
grated top-down control. 

Data driven — A tool or technique that starts with the data and derives
the necessary processes. 

Death — The system life cycle stage during which the decision is made
to replace the system. 

Decision support system (DSS) — An information system that adds
response orientation and user control to a management information
system. 

Degree of automation — The extent to which automated or computer-
related components are used in a system. 

Development — The system life cycle stage during which the system is
designed, developed, tested, and implemented. 

Distributed management — A management philosophy that distributes
responsibility and authority from the top to the bottom levels of the
organization. 
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Evolutionary design (stepwise refinement) — A design strategy that
starts with a small program or subsystem and continuously refines it
by adding new functions and/or modifying features. 

Executive information system (EIS) — An information system
designed to support high-level decision making based (typically) on
aggregate and graphic data. 

Expert system (knowledge-based system) — A computer program that
emulates the thought process of a human expert. 

Goal driven — A method or technique that works through a process
until a predefined goal is accomplished. 

Group decision support system (GDSS) — An information system that
adds communication capability and interaction to a decision-support
system. 

Growth — The system life cycle stage during which usage grows as
users become familiar with the new system, and system behavior is
adjusted to improve performance and efficiency. 

Incremental design — A design strategy that starts with any module,
subroutine, or subsystem; a second module is then developed and
those two modules are integrated before work begins on the third
module. This process continues until all the modules are developed. 

Information system — A set of hardware, software, data, human, and
procedural components intended to provide the right data and infor-
mation to the right person at the right time. 

Management information system (MIS) — An information system that
emphasizes report generation and combines such attributes as cen-
tralized data management, integrated applications, distributed
access, and interactive processing to support operational-level deci-
sion making. 

Maturity — The system life cycle stage during which the system’s effi-
ciency can no longer be enhanced and performance deficiencies
begin to appear. 

Methodology — A body of practices, procedures, and rules used by
those who work in a discipline or engage in an inquiry; often imple-
mented as a set of well-defined steps or phases, each of which ends
with a clear, measurable set of exit criteria. 

Middle out — A design strategy that starts from the middle of the 
hierarchy. 

On-line processing — A processing technique in which a transaction is
used to update the relevant master file record as soon as it is received. 

Real-time system — A system that responds to events as they occur and
provides immediate feedback to influence or control those events in
“real” time. 

Response time — The elapsed time between a request for service and
the delivery of that service. 
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Scope — A sense of a problem’s (or a system’s) magnitude; often, a pre-
liminary estimate of the problem’s resource implications or cost. 

System — A set of interrelated components that function together in a
meaningful way. 

System development life cycle (SDLC) — A set of steps for solving
information system problems; the basis for most systems analysis
and design methodologies. 

System life cycle — A model that stresses the stages of system useful-
ness; the stages are birth, development, growth, maturity, and death. 

Throughput — A measure of the amount of work going through a com-
puter or a system; often expressed as a percent utilization. 

Top-down design — A goal-driven design strategy in which the mod-
ules (and/or subsystems) at the top of the hierarchy (usually, the
broad, control-oriented modules) are designed first and modules at
the bottom of the hierarchy (the detailed, computational modules)
are designed last. 

Transaction processing system (TPS) — An information system that
accepts and processes transactions in either batch or on-line mode. 

72.6 Software 
Not applicable. 
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73.1 Purpose 
This chapter briefly overviews real-time information processing systems.
The technical details associated with real-time systems are beyond the scope



of this book. This material is intended as background for systems analysts
or information system consultants who must communicate with real-time
specialists and/or vendors. 

73.2 Strengths, weaknesses, and limitations 
A real-time system should be considered when response time requirements
are extremely tight. Real-time systems tend to be more expensive to 
develop and to operate than are online, interactive, and batch systems. 

73.3 Inputs and related ideas 
Developing a real-time system is much like developing any system. Many
of the tools discussed in Parts II, IV, V, and VI are used. State transition dia-
grams (Chapter 30) are valuable for planning and documenting changes in
state. Stacks and queues are explained in Chapter 43. Chapter 78 provides
some insight on the process of evaluating computer hardware and periph-
erals. Chapter 79 discusses queuing theory and bottleneck analysis. 

73.4 Concepts 
A real-time system responds to events as they occur and (typically) provides
feedback to influence or control those events. For example, the system that
guides a smart bomb to its target is a real-time system. A production control
system that monitors and controls a modern steel mill is another example. 

The technical details associated with real-time systems are beyond the
scope of this book. The material in this chapter is intended as background
for systems analysts or information system consultants who must commu-
nicate with real-time specialists and/or vendors. Note that numerous refer-
ences are listed at the end of this chapter. 

73.4.1 Events and states 

Most real-time system actions and behaviors are performed in response to
asynchronous (hence unpredictable) external events. A given external event
triggers a change in state (e.g., a change in value, status, or behavior) and
the real-time system reacts by taking a pre-specified action or actions.
Consequently, real-time system design is sometimes called event-driven
design. 

73.4.2 Design considerations 

In addition to the problems associated with developing a traditional infor-
mation system, the analyst or designer of a real-time system faces significant
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constraints and must consider numerous interrelated hardware, software,
and data issues. 

73.4.2.1 Constraints 
Real-time systems typically operate under very tight time constraints. For
example, on a production control system, certain crucial events may require
response times of a fraction of a second or the transfer of a certain amount
of data between two components in a brief period of time. Additionally,
high reliability (as measured by mean time between failures) is often essen-
tial. For example, the failure of a production control system can literally put
a company out of business. 

Concurrency, a measure of the number of tasks the system can process
concurrently, is another important criterion. Asynchronous events can (by
definition) occur at any time and are not synchronized with other events.
Consequently, two or more events can occur concurrently or even simulta-
neously, and the response time constraint might require a response to both
events within a very brief time. 

73.4.2.2 Hardware 
To achieve rapid response time, most real-time systems are dedicated to a
specific realtime application (or set of related applications) and designed to
be under-loaded. The designer might analyze all possible events, define
worst case scenarios (for example, the maximum possible number of con-
current events), determine the processor and memory configuration needed
to provide peak load computing power, and then specify double (or triple,
or more) than that level of power. Excess computing power means rela-
tively low percentage utilization, but low utilization means that events
rarely wait for the system. 

Reliability is usually achieved through redundancy. Fault tolerant com-
puters incorporate redundant circuits and components, and in some cases
the entire system (the processor, memory, the database, etc.) is replicated. In
the event of a system or component failure, special hardware and software
automatically switches control to the backup system or component.
Uninterruptable power supplies also contribute to reliability. 

To achieve concurrency, a computer must support multi-tasking, the
ability to concurrently process several tasks. (A task is a single program or
routine in memory and available to be executed.) On many systems, multi-
tasking is implemented by the operating system (Section 73.4.2.3). 

A computer with a single processor can execute only one instruction at
a time. Such computers implement multi-tasking by quickly switching the
processor’s attention from one task to another and back again. If the com-
puter is equipped with multiple processors, however, several instructions
(one per processor) can be executed simultaneously. The simultaneous 
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execution of two or more instructions on a multiple processor system is
called multi-processing or parallel processing. 

73.4.2.3 The operating system 
Multi-tasking would be impossible without the operating system. A serial
batch (or single-stream) operating system supports one program or routine
at a time. A multi-programming operating system manages the concurrent
execution of multiple tasks on a single processor by switching the proces-
sor’s attention from task to task. A time-shared operating system manages
concurrent execution by assigning the processor to the active task for a brief
time slice before moving on to the next task. Multi-processing systems man-
age the allocation of multiple concurrent or simultaneous tasks to multiple
processors. 

The operating system routine that manages the processor’s time is
called the dispatcher. The dispatcher is responsible for managing the tasks
that are already in memory. The operating system’s queuing and scheduling
routines manage pending tasks until the memory and processor resources
needed to execute them are available. 

Multi-tasking implies multiple tasks in memory and executing.
(Generally, only key portions of active programs are physically loaded into
memory.) Multiple tasks sharing memory implies, in turn, a need for mem-
ory management and memory protection. Common memory manage-
ment techniques include virtual memory, continuous memory allocation,
dynamic memory management, fixed partition memory management, and
roll-in/roll-out schemes. The purpose of resource allocation is to prevent (or
resolve) the deadlocks that can occur when two concurrent tasks request the
same resource (e.g., a peripheral or a record) at the same time. 

73.4.2.4 Interrupt handling 
On many real-time systems, the external event that triggers a change in state
generates an interrupt. An interrupt is an electronic signal that causes the
computer to stop what it is doing and activate one of the operating system’s
interrupt handling routines. The operating system responds to the interrupt
signal by activating the routine associated with the particular change in state. 

When planning an event-driven real-time system, the designer must
specify the status and nature of each interrupt, including the associated
state, the address (or name) of the task to be given control, related warnings
or error messages, appropriate corrective actions, and so on. After the inter-
rupt is processed, the system must be restored to its original (or pre-
interrupt) state. Procedures must also be developed to deal with deviations
and/or unexpected actions or behaviors and to log the time, date, precipi-
tating event, and so on for all interrupts. Because interrupts are asynchro-
nous events, the system must also incorporate procedures to deal with 
concurrent and simultaneous interrupts. 
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73.4.2.5 Task synchronization and task sequencing 
Given the asynchronous nature of real-time events and the need for rapid
response, task synchronization and task sequencing are important issues.
On many systems, when an interrupt occurs the information needed to acti-
vate the associated task is placed on a stack or a queue (Chapter 43). If the
various tasks (or events) carry significantly different priorities, however, it
may be necessary to implement a prioritization scheme (perhaps in the dis-
patcher) to ensure that the interrupts are processed in the appropriate order.
Additionally, some tasks might be linked; for example, it might be necessary
to interrupt task A to perform task B because A depends on B. 

73.4.2.6 Event monitoring 
Generally, a log is maintained listing (for each real-time event) the preced-
ing event(s), the following event(s), any dependency relationships between
the events, any associations among the events (e.g., merging, diverging,
converging), any special requirements (e.g., recursive loops, repetitive
loops), and any data required or generated by the event. One use for the
data generated by event monitoring is establishing the precise state of the
system in the event of system failure. State transition diagrams (Chapter 30)
are often used to plan and/or document event monitoring. 

73.4.2.7 Real-time languages 
Such general-purpose third generation languages as C and Pascal have been
used to develop real-time systems. Real-time languages (such as Modula-2
and ADA) are preferred, however, because they incorporate embedded real-
time features to concurrently handle asynchronous events, an automatic
debugger, and such real-time oriented functions as on-line testing and on-
line execution simulation. 

73.4.2.8 Real-time databases 
Such features as concurrency control, locking, and time stamps are ex-
tremely important in real-time system database design. Concurrency control
synchronizes the database and ensures that all copies of a given file contain
the same version of the available information. Locking prevents a user from
updating or modifying a record while another user is accessing that record.
Time stamps allow the system to monitor the access or processing status of
a record. 

73.4.3 Developing a real-time system 

Developing a real-time system is much like developing any system, and
many of the tools described in Parts II, IV, V, and VI are used. This section
outlines some parameters that are unique to real-time systems. 
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Special attention must be paid to time constraints, events, and other per-
formance factors. Also, the analyst must carefully examine the relationships
between the system and its input and output operations, clearly identifying
the event that triggers each data movement or change in state. 

Performance issues must be investigated thoroughly, too. Workload
performance analysis focuses on such criteria as throughput, response time,
turnaround time, the frequency and size of transactions, and regular and
peak time workloads. System performance analysis focuses on such criteria
as processing speed in MIPS (millions of instruction per second) or MFLOPS
(millions of floating point operations per second), information access time,
data transfer rate, instruction execution time, and so on. Other key perfor-
mance criteria include mean time between failures (MTBF), the nature and
frequency of interrupts, the signals and requirements associated with trig-
gering each event, and so on. 

A real-time task can be viewed as a program or routine that is executed
in response to an event. System control usually depends on events, the
inputs to a particular task, and the current state of the system. Consequently,
the designer must decide how to synchronize the tasks and must determine
the priority of each task. Given the task synchronization rules and priorities,
the relevant triggers, inputs, and states for each task are studied. Finally, a
table listing each task, its trigger(s), its related inputs, its preceding and fol-
lowing states, and other control criteria is developed as a logical map for
system design. Often, one or more state transition diagrams (Chapter 30) are
prepared during this stage. 

Monitors are programs or hardware devices that detect and report a
real-time system’s processing and/or input/output activities. Monitors are
used to control, adjust, and/or correct unexpected behaviors in a real-time
system. The process of collecting the information needed to define the mon-
itors is called demand analysis. Program profilers are used to track the
resources requested and services utilized by a particular program as it exe-
cutes and, thus, supports utilization analysis. Procedures for incorporating
monitors and program profilers into the system must be developed during
real-time system design. 

73.5 Key terms 
Association — A link between two or more events defined by prece-

dence requirements and similar conditions. 
Asynchronous event — An event that can occur at any time and is not

synchronized with other events. 
Concurrency — A measure of the number of tasks a system can process

concurrently. 
Concurrency control — A database feature that synchronizes the data-

base and ensures that all copies of a given file contain the same ver-
sion of the available information. 

Concurrent — Within the same time period. 
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Convergence — A process in which several preceding events are com-
bined to form one following event; the opposite of divergence. 

Deadlock — A situation that occurs when two tasks each control a resource
needed by the other and neither task is willing to relinquish control. 

Dependency — A relationship in which the implementation of the fol-
lowing event(s) depends on the completion of the preceding event(s). 

Dispatcher — The operating system routine that manages the proces-
sor’s time. 

Divergence — A process in which one preceding event is separated into
several following events. 

Event — An occurrence. 
Event-driven — A system that responds to events. 
Fault tolerant computer — A computer that incorporates redundant cir-

cuits and components to improve reliability. 
Interrupt — An electronic signal that causes the computer to stop what

it is doing and activate one of the operating system’s interrupt han-
dling routines; generally, the information needed to restore the sys-
tem to its pre-interrupt state is captured by hardware as part of the
interrupt process. 

Locking — A technique that prevents a user from updating or modify-
ing a record while another user is accessing that record. 

Merge — See convergence. 
Monitor — A program or hardware device that detects and reports a

real-time system’s processing and/or input/output activities. 
Multi-processing (parallel processing) — The simultaneous execution

of two or more instructions on a multiple processor system. 
Multi-programming — Concurrently executing multiple tasks on a sin-

gle processor by switching the processor’s attention from task to task. 
Multi-tasking — Concurrently or simultaneously processing several

tasks on a single computer. 
Program profiler — A routine or device that tracks the resources

requested and services utilized by a particular program as it executes. 
Real-time system — An information system that responds to events as

they occur and (typically) provides feedback to influence or control
those events. 

Redundancy — The duplication of components to provide backup in
case of failure. 

Reliability — A measure of the likelihood that a system or a component
will function properly over time; often measured by the mean time
between failures. 

Response time — The elapsed time between a request for service and
the delivery of that service. 

Simultaneous — At the same instant. 
State — A condition; often, the complete set of attribute values and set-

tings that describes the precise condition of a computer system at a
specific instant in time. 
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System performance analysis — A type of analysis that focuses on such
criteria as processing speed, information access time, data transfer
rate, instruction execution time, and so on. 

Task — A single program or routine in memory and available to be exe-
cuted. 

Time-sharing — Concurrently executing multiple tasks by assigning the
processor to a given task for a brief time slice before moving on to the
next task. 

Workload performance analysis — A type of analysis that focuses on
such criteria as throughput, response time, turnaround time, the fre-
quency and size of transactions, and regular and peak time workloads. 

73.6 Software 
Real-time programming languages include Modula-2 and ADA. 
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74.1 Purpose 
The ultimate objective of testing is to ensure that the system performs as
designed and, by extension, to ensure that it meets the user’s needs. More
specifically, testing is the process of exercising the system and its compo-
nents to locate, investigate, and correct errors and bugs. 

74.2 Strengths, weaknesses, and limitations 
The strengths and weaknesses of specific techniques will be discussed in
context. 

74.3 Inputs and related ideas 
Chapter 75 discusses test data. Virtually every component described in Part
VI must be tested. General system design principles are discussed in
Chapter 72. Inspections (Chapter 23) support a form of testing that can be
performed on logical components. The joint application design technique
(Chapter 14) can be used to develop test procedures. Gantt charts (Chapter
20) and project networks (Chapter 21) can be used to plan, document, and
manage a test schedule. The requirements specification (Chapter 35) is an
important source of functional and performance requirements, and serves
as a base for establishing a test plan. Version controls (Chapter 80) are used
to ensure that the appropriate version of the code is tested. 

74.4 Concepts 
The ultimate objective of testing is to ensure that the system performs as
designed and, by extension, to ensure that it meets the user’s needs. Con-
sequently, user involvement is crucial in the testing process. 

More specifically, testing is the process of exercising the system and its
components to locate, investigate, and correct errors and bugs. The goals of
testing include ensuring that all system components work properly, finding
errors and identifying their causes, revising or modifying the software and
other components to eliminate errors, tracking the status of errors, and
adjusting system performance and/or operating procedures as appropriate. 

74.4.1 The test plan 

Effective testing does not just happen; it must be carefully planned. A complete
test plan incorporates testing strategies, testing procedures, test data, and a
testing schedule. Test data is covered in Chapter 75. The other three elements
of a test plan are discussed in this chapter. 

Tests are performed on the system’s physical components. Consequently,
although the logical models and design documentation prepared during the
analysis and design stages of the system development life cycle can (and
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should) be evaluated and inspected, testing does not begin until the imple-
mentation stage begins. However, the test plan should be developed in 
parallel with the design stage of the system development life cycle so it is
ready when implementation begins. The requirements specification (Chapter
35) is an important source of functional and performance requirements, and
serves as a base for establishing a test plan. 

Finally, note that the test plan is constrained by resources (the computing
platform, hardware, software, and peripherals), personnel, and time (in the
form of the project schedule). The test plan designer’s objective is to 
test the system as thoroughly and as effectively as possible within the 
constraints. 

74.4.2 Testing strategies 

Testing can be performed top down, bottom up, and/or middle out. Top-down
testing starts at the top (with the broad, control modules) and works
through the module hierarchy level by level until the bottom level (the
detailed computational modules) is reached. Bottom-up testing starts at the
bottom and works up through the hierarchy to the top. The middle-out (or
hybrid) approach starts in the middle of the hierarchy and moves bi-
directionally toward both the top and the bottom. 

With white-box testing, the objective is to directly verify and review the
logical structure, flow, and/or sequence of a proposed system by focusing
on such internal components as the code. White-box testing is employed
when the system is developed internally and the program structure,
sequence, and coding are completely understood. 

Black-box testing, in contrast, ignores the internal contents of the mod-
ule, program, subsystem, or system and considers only the inputs and the
outputs. Black-box testing is ideal for functional testing or for testing external
operations. Often, sophisticated test cases and associated test data sets are
designed to support black-box testing. 

Gray-box testing is a hybrid approach for testing both the functions and
the contents of major programs and/or modules that are likely to be internally
maintained, modified, or customized later. 

The correct testing strategy is a function of the specific test to be performed.
A given test plan might incorporate several different strategies. 

74.4.3 Test procedures 

Test procedures are needed to define the process for creating the test data,
determine the testing sequence, specify test logistics, and document the test
results. There is no standard format or style for developing test procedures,
although many organizations have implemented broad testing standards
and rely on a joint application design (JAD) session to define the specific
procedures for a given project. 
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The individual tests, the test criteria, and the associated test data must
be defined. The testing environment and necessary resources must be 
specified. The people who will conduct each test and the people who will
evaluate the results must be identified. (They should be different.) The test
scope and test boundaries must be clearly defined, and the tests should
overlap to make sure every aspect of the systems is covered. The criteria for
passing each test and person or persons responsible for the pass/fail deci-
sion must be specified. 

Library control procedures are used to create and maintain a test data
library and the relevant testing software. Change control procedures are
used to record, assess, control, and track all requests for change both during
and after the testing process. Typically, when a module or program is
changed, the original version, the revised version, and information about
the change (the initial proposal, justifications for the change, approvals, the
anticipated impact, etc.) are maintained by the change control procedures.
Reporting control procedures are used to document all test results. Version
controls (Chapter 80) are used to ensure that the appropriate version of the
code is tested and passed on to subsequent steps. 

74.4.4 Testing levels 

Testing occurs throughout the implementation process. Figure 74.1 shows
how the various levels of testing build on each other. 

74.4.4.1 Scaffolding 
Scaffolding is software written specifically to test the system. Scaffolding is
generally used to simulate the system environment or to initiate a calling
sequence to trigger the execution of selected modules in the proper order.
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It is not part of the final system. It exists for a limited period of time, and its
only purpose is to support testing. Scaffolding software typically contains
test drivers (to call modules in the proper order) and stubs (simplified ver-
sions of selected modules). Using stubs simplifies system behavior and
makes it easier to detect certain types of errors. 

74.4.4.2 Unit testing 
As the name implies, unit testing (or module testing) is conducted on a sin-
gle program, a single module, or a single component. The idea is to use test
data to check the behavior of a unit without regard for its interfaces or rela-
tionships with other units. Unit testing is typically performed at the devel-
oper’s site by the responsible programmers. 

74.4.4.3 Integration testing 
Integration testing focuses on two or more individual modules that are
grouped to form a partial system. Integration testing uses test data to evalu-
ate the individual units, their interfaces with each other, and their combined
behavior. Like unit testing, integration testing is usually performed at the
developer’s site by the responsible programmers and/or systems analysts. 

Integration testing can be performed top down, bottom up, or middle out.
A sequence of related tests can be conducted using a phased, incremental, or
evolutionary approach (Chapter 72). Black-box, white-box, and gray-box
testing are all possible. Note, however, that no matter which strategy is cho-
sen, integration testing must be performed every time the relevant partial
system is changed in any way. 

74.4.4.4 Function testing 
Function testing is performed on one or more partial systems that have
already been integration tested. The objective is to use test data and simu-
lated data (including range constraints, format constraints, etc.) to test a
user-defined function. Typically, the function tests are performed at the
developer’s site by the programmers and/or the systems analysts. 

74.4.4.5 System testing 
The system test is conducted on the entire system using both test data and
real, user supplied data. Generally, the system test is performed at the devel-
oper’s site using the developer’s own hardware and software. 

74.4.4.6 User acceptance testing 
User acceptance testing is a complete system test performed at the user’s
site, on the user’s hardware/software platform, under the user’s control,
using real data provided by the user. 

An alpha test is a controlled environment test. Often, the designers
demonstrate key system functions, perhaps selected by the users, and the
users manipulate the system under developer guidance. Typically, the 
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systems requirements, the general design philosophy, and selected portions
of the code and documentation are reviewed. 

The purpose of a beta test is to allow real users who are unfamiliar with
the technical details to “try out” a preliminary, pre-release beta version of
the system. The job of the beta testers is to exercise the system, identify its
strengths and weaknesses, document any errors they find, and report their
impressions back to the technical experts. Note that a beta test is conducted
by (selected) real users who use real hardware, real software, and real
(unplanned) data to work on real and imagined problems with any frequency
and in any sequence. Often, an automated testing tool or procedure is
employed to ensure that all the system’s functions and operations are tested
and none are ignored. 

Gamma testing checks such additional details as the system’s compatibility
with the old system and the system’s performance under peak demand, uti-
lizing such tools as data transform analysis, operator sequence analysis,
symbolic manipulation analysis, and so on. Data transform analysis is used
to test if the data generated from one platform can be transformed without
difficulty as an input to another platform. Operator sequence analysis is
used to check if the system can still be operated correctly and reliably when
the input sequence of different tasks or jobs is changed. Symbolic manipulation
analysis is used to test the ability of the system to operate given different
symbolic inputs, such as audio and/or video signals. 

74.4.4.7 Regression testing 

Regression testing complements unit, integration, function, or system testing
and is usually performed by technical personnel. The idea is to use old test
cases and test data on an updated or modified version of a system to ensure
that the changes have not affected the system’s ability to perform its fundamental
tasks. Usually, the old system is tested to establish a benchmark, the changes
are made, the new system is tested and a new set of benchmark values generated,
and the new and old benchmark values are compared. 

74.4.4.8 Systems performance testing 
Systems performance testing focuses on system behavior. Peak load testing
is intended to ensure that the system can handle the stress of a peak load
demand. Recovery testing simulates emergency situations such as power
failures, equipment malfunctions, database failures, and so on. 

74.4.4.9 Audit testing 
The purpose of an audit test is to verify that the system is free of errors. The
audit is usually conducted by an organization’s quality assurance group or
by qualified outsiders. The idea is to have objective technical experts with
no personal ties to the system conduct an in-depth, white-box evaluation of
the system and its components. 
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74.4.4.10 Testing the hardware and the procedures 
Many large organizations employ specialists to test, install, and maintain
hardware. A small firm might hire a consultant or rely on the analyst for
hardware testing. Some organizations rely on the equipment manufacturer’s
representatives. 

Basic electronic functions are normally tested first. Many hardware
components come with their own diagnostic routines, which should be run.
Modern electronic equipment is highly reliable; if a component survives the
first several hours of operation, it usually continues to work until the end of
its useful life. However, start-up failures are common, so many hardware
test plans include a burn-in period; for example, a disk drive might be tested
by repetitively reading and writing a set of test data for several hours. Stress
tests are also a good idea; for example, the system might be run at or near
its environmental (temperature and humidity) limits. 

Manual procedures, auditing procedures, and security procedures are
easily overlooked when the test plan is created. Initially, a draft procedure
might be tested in a controlled environment, with technical personnel read-
ing the instructions and doing exactly what they say. (The results can be
humorous.) Next come controlled user tests, with selected users walking
through the procedures and suggesting improvements. Finally come live
tests with real users and real data. 

74.4.5 The test schedule 

The test schedule defines the order in which key tests are performed. Gantt
charts (Chapter 20) and project networks (Chapter 21) are useful planning
and project management tools. Figure 74.2 summarizes the dependency
relationships between the various types of tests, a key factor in planning a
test schedule. For example, all unit testing must be completed before the
integration test is performed for a given subsystem, and all the subsystems
that contribute to performing a given function must be tested before the
function is tested. 

Finally, remember that testing is part of the system development life
cycle. Consequently, the test schedule is a subset of the system development
schedule. 

74.5 Key terms 
Alpha test — A controlled environment test in which the designers

demonstrate key system functions, perhaps selected by the users, and
the users manipulate the system under developer guidance. 

Audit test — An objective, in depth white-box evaluation of the system
and its components to verify that the system is free of errors. 

Beta test — A test conducted by (selected) real users who use real hard-
ware, real software, and real (unplanned) data to work on real and
imagined problems with any frequency and in any sequence. 
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Black-box testing — A testing strategy that ignores the internal contents
of the module, program, subsystem, or system and considers only the
inputs and the outputs. 

Bottom-up testing — A testing strategy that starts at the bottom and
works up through the hierarchy to the top. 

Burn-in period — An initial period during which a hardware component
is run continuously in an attempt to find and eliminate start-up errors. 

Change control procedures — A set of procedures for recording, assess-
ing, controlling, and tracking all requests for change both during and
after the testing process. 

Function test — A test performed on one or more partial systems that
have already been integration tested; the objective is to use test data
and simulated data to test a user-defined function. 

Gamma test — A test of such details as the system’s compatibility with
the old system and the system’s performance under peak demand. 
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Gray-box testing — A hybrid of white-box and black-box testing in
which both the functions and the contents of major programs and/or
modules that are likely to be internally maintained, modified, or cus-
tomized later are tested. 

Integration test — A test conducted on an aggregate of two or more
components or modules that focuses on the individual units, their
interfaces with each other, and their combined behavior. 

Library control procedures — A set of procedures for creating and
maintaining a test data library and the relevant testing software. 

Middle-out testing (hybrid testing) — A testing strategy that starts in
the middle of the hierarchy and moves bi-directionally toward both
the top and the bottom. 

Peak load test — A test designed to ensure that the system can handle
the stress of a peak load demand. 

Recovery test — A test that simulates emergency situations such as
power failures, equipment malfunctions, database failures, and so on. 

Regression test — A form of test in which old test cases and test data are
applied to a modified version of a system to ensure that the changes
have not affected the system’s ability to perform its fundamental tasks. 

Reporting control procedures — A set of procedures for documenting
all test results. 

Scaffolding — Software written specifically to support testing. 
Stress test — A test conducted under extreme conditions. 
System performance test — A test that focuses on system behavior. 
System test — A test conducted on the entire system that uses both test

data and real, user supplied data. 
Test plan — A plan for conducting the necessary tests that incorporates

testing strategies, test procedures, test data, and a test schedule. 
Testing — A front-end process intended to exercise the system and its

components to locate, investigate, and correct errors and bugs. 
Top-down testing — A testing strategy that starts at the top (with the

broad, control modules) and works through the module hierarchy
level by level until the bottom level (the detailed computational mod-
ules) is reached. 

Unit test (module test) — A test conducted on a single program or a sin-
gle module. 

White-box testing — A testing strategy in which the tester directly ver-
ifies and reviews the logical structure, flow, and/or sequence of a
proposed system. 

74.6 Software 
Visual Test (Relational Software), ATF (Softbridge), FERRET (Azor Inc.), and
QARun (Compuware) support GUI-related testing. Chariot (Ganymede
Software), ITE and SDTF (Applied Computer Technology), and FastBench
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Agent Tester (NETMANSYS) are communication-related software tools.
AdaTEST (IPL), C-Cover (Bullseye Testing Technology), and Code Wizard
(Parasoft) are used with C and C++. Web testing tools include Webexam and
Webload (Radview Software), WebART (OCLC), and TestWorks/Web
(Software Research). Performance-related software tools include
Silkperformer (Segue), QAStress (Compuware), Loadrunner and Astra
Sitetest (Mercury Interactive Corporation), and Benchmark Factory
(Client/Server Solutions Inc.). 
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75.1 Purpose 
The ultimate objective of testing is to ensure that the system performs as
designed and, by extension, to ensure that it meets the user’s needs. Test
data are developed to support the testing process, locate bugs, and facilitate
debugging. This chapter discusses the link between the requirements speci-
fication and testing, the types of bugs a system is likely to contain, common
testing techniques, some approaches to debugging, and several techniques
for generating test data. 

75.2 Strengths, weaknesses, and limitations 
Where appropriate, the strengths and weaknesses of various techniques will
be discussed in context. 

75.3 Inputs and related ideas 
Chapter 74 discusses the test plan. The requirements specification (Chapter
35) is an important source of functional and performance requirements, and
serves as a base for generating test data. Certain test data generation tech-
niques require an understanding of program structure (Chapter 62). State
testing applies primarily to real-time systems (Chapter 73). System controls
are discussed in Chapter 77. 

75.4 Concepts 
The ultimate objective of testing is to ensure that the system performs as
designed and, by extension, to ensure that it meets the user’s needs. Test
data are developed to support the testing process, locate bugs, and facilitate
debugging. Consequently, the test data designer must understand the sys-
tem requirements, the types of bugs that are likely to occur, the testing tech-
niques that are likely to be used, and the debugging process. 

75.4.1 The system requirements 

The system requirements are typically documented in the requirements
specification (Chapter 35). Test data must be designed to ensure that each
and every system requirement is tested. Additionally, the requirements
specify details (such as data types, data ranges, data volumes, data struc-
tures, etc.) that can be used to define test data values. 

75.4.2 Bugs 

Function-related errors are caused by such things as incorrect linkages,
incorrect control transfers between a calling and called routine, the inclusion
of one or more unnecessary or incorrect functions, and the omission of one
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or more necessary functions. Such errors are common on menu-based and
window-based systems that require frequent transfers of control. 

Systems errors are related to input, output, hardware, software, and
interfaces. Input errors include human data entry errors and data errors
generated by input devices. Output errors result from incompatible or 
inaccurate data conversion, data compression, and/or data encryption.
Hardware errors include data communication errors, data transmission
errors, and hardware incompatibilities or failures. Software errors are pro-
gram bugs and operating system errors. Interface errors, such as loading,
customization, and initialization errors, are particularly difficult to debug. 

Process errors include computational errors, comparison errors,
sequencing errors, and control logic errors. Data errors arise from incorrect
data specifications, incorrect formats, and insufficient value representation
(e.g., incorrect upper or lower boundary values). Coding errors are also
called syntax or command errors. 

75.4.3 Testing techniques 

Test data must be designed for each of the testing levels described in
Chapter 74, Section 74.4.4. Additionally, the testing techniques listed in this
section call for specific types of test data. 

75.4.3.1 Syntax testing 
Test data are needed to find high-level syntax errors that are not flagged by
the compiler or language translator. Such errors can cause a program to
accept bad data (e.g., non-numeric characters in a numeric field) or misin-
terpret good data (e.g., inconsistent data formats or data sequences in the
parameters lists of the calling and called routines). 

Perhaps the best way to test for bad input data is to imagine every data
entry mistake the user could possibly make and create test data values to
reflect each one. Structured walkthroughs and inspections are useful for
identifying inconsistent parameters lists, faulty logic, inefficient control
structures, and missing elements. Sets of test data that reflect all possible
combinations of variable length input fields can help identify data structure
inconsistencies. Some fourth-generation languages incorporate a debugging
tool (often embedded in the report or form design utility) that can help with
real-time data testing. 

75.4.3.2 Logic testing 
The point of logic testing is to check the flow of logic through a program.
The first step is to physically review (in a walkthrough, an inspection, or a
quality assurance review) the program code to make sure it is consistent
with the design specifications. Such manual checks are time-consuming, but
effective at finding errors of omission that are easily missed by more auto-
mated testing procedures. 
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Path testing is a second step. The idea is to trace the flow of logic through
a program and to force the program to follow every logical path. Entrance-
exit tests are used to verify that any called routine has only one entry point
and one exit point. Loop tests are used to verify the accuracy of a repetition
block. Decision tests are applied to case structures and decision logic.
Junction testing focuses on points where the control flow merges or diverges. 

75.4.3.3 Transaction testing 
Transaction testing, also called flow testing or sequence testing, is used to
verify the complete logical flow needed to accomplish a task. The idea is to
trace the flow of data and logic through the program or routine from the ini-
tial input to the final output. Transaction testing is a very effective way to
check the consistency and cohesiveness of related components and/or mod-
ules in a program or a system. 

75.4.3.4 State testing 
State testing applies primarily to real-time systems (Chapter 73). Key ele-
ments that must be checked include any events that cause a change in state,
any recursive loops, any backtracking flows, and the dependency relation-
ships among the states. 

75.4.4 Debugging 

Testing is a front-end process intended to discover errors and/or problems.
Debugging is a back-end process intended to correct errors and/or prob-
lems. Testing precedes debugging. The steps in the debugging process
include locating the cause of the error or problem, investigating alternative
solutions, and correcting the error or problem. 

Echo printing (printing or displaying each input value) is a relatively
easy way to check for input errors. Stepwise checking involves placing print
or write commands throughout the program and using the resulting mes-
sages to determine where the program fails or begins producing errors.
Backtracking involves tracing backward through the logic from the point
where an error is detected until the error’s cause is found. Simulated tracing
is used to debug selection and repetitive logic by tracing (or following) the
program’s logical flows. These debugging techniques can be performed
manually or by using trace features, step-by-step execution, and other soft-
ware debugging aids. 

75.4.5 Generating test data 

A key objective of testing is to try to break the system. Good test data antic-
ipates everything that could possibly go wrong and provides values that
potentially cause every conceivable error. Forcing errors during the testing
process increases the likelihood that they will be discovered and corrected
before the system is released to the user. 
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The test data should include historical data, hypothetical data, and real
data. Historical data (previously processed data) are necessary to check old
system and new system compatibility. Hypothetical data, or simulated data,
are created specifically for testing purposes. Real data are provided by the
user and reflect the system’s actual operating environment. Some of the test
data should represent normal or typical conditions. Other data should focus
on the extremes and incorporate both legal and illegal values. 

Listed below are several techniques for generating test data. 

75.4.5.1 Value analysis 
Value analysis generates test data based on the data values. Range con-
straint analysis, or boundary analysis, suggests test data to represent such
extreme values as upper bounds, lower bounds, and other exceptional val-
ues (e.g., a negative number or zero). Typically, both in-range and out-of-
range values are included. Format constraint analysis focuses on data type;
for example, a zero or a numeric digit might be placed in an alphabetic field,
non-digits might be inserted into a numeric field, or a value other than F or
M might be recorded in a single-character sex or gender field. Length con-
straint analysis generates test data with too many or too few characters or
digits; this technique is useful for testing such fixed length fields as a social
security number or a telephone number. 

Value analysis should be performed on the algorithms as well as the
input data. For example, a set of test data values might include two out of
range parameters (one high and one low) that, taken together, produce an
in-range answer. Other algorithm-based test data might reflect all possible
extreme (but legal) value combinations; for example, all parameters at the
upper limit, all parameters at the lower limit, one high and all others low,
and so on. 

75.4.5.2 Data analysis 
As described in Section 75.4.3.2, path testing, also called branch analysis or
loop analysis, is used to check the flow of logic through a program. The
idea is to trace the program listing, identify the branch points, and include
test data to force the program to follow each path. Generally, this tech-
nique relies on data values near the branch values to verify the program
logic. 

A variation called structured data analysis testing focuses on data struc-
tures, the relationships among the data, and such unique data as record
keys. For example, structured data analysis testing can be used to evaluate
the order of data within a file, a table, or a relation by creating test data with
all possible primary and secondary key combinations. A third variation is
called data volume analysis. Testing such parameters as response time
under peak load conditions calls for large volumes of test data. Data volume
can be achieved by replicating and reprocessing test data or by using his-
torical data. 
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75.4.5.3 Volume analysis 
Volume analysis, or control analysis, is intended to check the system’s
behavior. For example, control totals (Chapter 77) might be checked by pro-
cessing a set of test data, generating the totals, and then shuffling the trans-
action order and reprocessing the transactions to see if the same control total
is generated. 

75.4.5.4 Compatibility analysis 
Some applications are designed to access data from multiple versions of a
file or a database. For example, imagine a set of old data files developed
using the COBOL delimited file format and a new database designed for
SQL access. Occasionally, the system might be asked to convert the old
data file structure to support a query or to generate a report, and some
new transactions might trigger updates to the original file. Test data are
needed to force the program to obtain input from and send output to both
files. 

75.4.5.5 Partition analysis 
Partition analysis focuses on aggregate values. The reliability of a database
is a function of correctness and completeness. The correctness of each indi-
vidual transaction can be verified using data analysis techniques (Section
75.4.5.2) with discrete values. Aggregate data are developed to test com-
pleteness. For example, a type of aggregate value testing called existence
testing might be used to check a database record by simply checking its
record number or verifying that the record is referenced in the index. 

75.4.5.6 System-dependent test data 
Different types of systems call for special test data to test system-specific
parameters. For example, symbolic data are essential for testing expert sys-
tems, real-time systems require time-varying and environment-dependent
data, data communication systems require data to test transmission errors,
and so on. 

75.5 Key terms 
Backtracking — Tracing backward from an error until the error’s cause

is found. 
Branch analysis — A technique for generating test data by checking the

flow of logic through a program and providing data to ensure that
each logical path is followed; see also path test, junction test, and loop
test. 

Bug — An error or malfunction in a module, a program, a procedure, a
physical component, or a system. 

Coding error — A syntax or command error. 
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Compatibility analysis — A technique to generate test data to force a
program to obtain inputs from or send outputs to multiple versions
of a file or a database. 

Data error — An error that arises from incorrect data specifications,
incorrect formats, or insufficient value representation. 

Debugging — The process of removing bugs; a back-end process
intended to correct errors and/or problems. 

Decision test — A test used to verify a case structure or decision logic. 
Echo printing — Printing or displaying each input value. 
Entrance-exit test — A test used to verify that any called routine has

only one entry point and one exit point. 
Format constraint analysis — Generating test data based on data type;

for example, a zero or numeric digit might be placed in an alpha-
betic field, or non-digits might be inserted into a numeric field. 

Function-related error — An error caused by such things as incorrect
linkages, incorrect control transfers between a calling and a called
routine, the inclusion of one or more incorrect or unnecessary func-
tions, and the omission of one or more necessary functions. 

Hardware error — A data communication error, a data transmission error,
an error caused by hardware incompatibility or failure, and so on. 

Historical data — Data previously processed by the old system. 
Hypothetical data (simulated data) — Data created specifically for test-

ing purposes. 
Input error — A human data entry error or a data error generated by an

input device. 
Interface error — An error that results from such causes as incorrect

loading, customization, or initialization. 
Junction test — A test that focuses on points where the control flow

merges or diverges. 
Length constraint analysis — Generating test data with too many or too

few characters or digits. 
Logic test — A test of the logical flow through a program. 
Loop test — A test used to verify the accuracy of a repetition block. 
Output error — An error that results from incompatible or inaccurate

data conversion, data compression, or data encryption. 
Partition analysis — A technique for testing the completeness of a data-

base using aggregate values. 
Path test — A test that traces the flow of logic through a program; typi-

cally, test data are provided to make sure each logical path through
the program is followed. 

Process error — A computational error, a comparison error, a sequenc-
ing error, a control logic error, and so on. 

Range constraint analysis (boundary analysis) — Generating test data
to represent such extreme values as upper bounds, lower bounds,
and other exceptional values. 
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Real data — Data provided by the user that reflect the system’s actual
operating environment. 

Requirements specification — A document that clearly and precisely
defines the customer’s logical requirements (or needs) in such a way
that it is possible to test the finished system to verify that those needs
have actually been met. 

Simulated tracing — A technique for debugging selection and repetitive
logic by tracing the program’s logical flows. 

Software error — A program bug or an operating system error. 
State test — A test that focuses on a real-time system’s states. 
Stepwise checking — Placing print or write commands throughout a

program and using the resulting messages to determine where the
program fails or begins producing errors. 

Structure analysis testing — A technique for evaluating the order of
data within a file, a table, or a relation. 

Syntax test — A type of test designed to identify high-level syntax
errors that are not flagged by the compiler or language translator;
such errors can cause a program to accept bad data or to misinterpret
good data. 

System error — An error related to input, output, hardware, software,
and/or interfaces. 

Test data — Data that are developed to support the testing process,
locate bugs, and facilitate debugging. 

Testing — A front-end process intended to exercise the system and its
components to locate, investigate, and correct errors and bugs. 

Transaction test (flow test, sequence test) — A test designed to verify
the complete logical flow needed to accomplish a task. 

Value analysis — Techniques for generating test data based on the data
values. 

Volume analysis (control analysis) — A technique for generating test
data to check the system’s behavior. 

75.6 Software 
Visual Test (Relational Software), ATF (Softbridge), FERRET (Azor Inc.), and
QARun (Compuware) support GUI-related testing. Chariot (Ganymede
Software), ITE and SDTF (Applied Computer Technology), and FastBench
Agent Tester (NETMANSYS) are communication-related software tools.
AdaTEST (IPL), C-Cover (Bullseye Testing Technology), and Code Wizard
(Parasoft) are used with C and C++. Web testing tools include Webexam 
and Webload (Radview Software), WebART (OCLC), and TestWorks/
Web (Software Research). Performance-related software tools include,
Silkperformer (Segue), QAStress (Compuware), Loadrunner and Astra
Sitetest (Mercury Interactive Corporation), and Benchmark Factory
(Client/Server Solutions Inc.). 
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76.1 Purpose 
Implementation is the process of completing the system and turning it over
to the user. This chapter discusses site preparation, documentation prepara-
tion, personnel training, system cutover, and system release. 



76.2 Strengths, weaknesses, and limitations 
As appropriate, the strengths and weaknesses associated with various tech-
niques will be discussed in context. 

76.3 Inputs and related ideas 
Implementation occurs after the system has been analyzed, designed, con-
structed, and tested. Consequently, the results generated by all the tools and
techniques covered in all preceding chapters can be considered inputs to the
implementation phase. Additionally, the tasks performed during imple-
mentation set the stage for system operation and maintenance (Part VIII).

This chapter references (directly or indirectly) Chapters 31 (prototyp-
ing), 32 (rapid application development), 42 (hardware interface design), 67
(knowledge representation), 70 (documentation design), and 71 (security
design). 

76.4 Concepts 
Implementation is the process of completing the system and turning it over
to the user. This chapter discusses site preparation, documentation prepara-
tion, personnel training, system cutover, and system release. 

76.4.1 Site preparation 

Site preparation involves preparing the work environment, installing the
hardware, and configuring any new equipment to work with existing 
computers and peripherals. See Chapter 42 for a discussion of hardware
interface design. 

The work environment must include sufficient space to hold the com-
puter, its peripherals, desks, storage cabinets, printer stands, and other fur-
niture, and to store such supplies as paper, ribbons, disks, backup media,
forms, cleaning supplies, documentation, and procedure manuals. Wiring,
communication lines, and other physical connections must be installed. A
raised floor might be needed. Security features might be required. 

A dependable power supply is essential. Large computer systems often
require custom-designed power supplies. Although most small computer
systems run on standard household current, the equipment can easily tax
the limits of existing wiring (particularly in older buildings), so rewiring
might be necessary. Surge protectors and an uninterruptable power source
(UPS) are recommended for most systems. 

Air conditioning is another factor. Computers are heat sensitive, and
heat-related problems are difficult to trace. The computer itself generates
heat, and that can add to the air conditioning load. The cost of inadequate
air conditioning is often measured in excessive downtime and high mainte-
nance costs. 
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Ergonomic requirements are intended to provide the users with a 
comfortable working environment. Key parameters include lighting, glare,
airflow, noise, temperature, humidity, workspace, and the design of the fur-
niture. Many organizations have implemented ergonomic standards. 

76.4.2 Documentation preparation 

Documentation consists of the specifications, instructions, tutorials, refer-
ence guides, and similar materials that accompany and explain a piece of
software or a hardware component. A complete set of user documentation,
systems documentation, software documentation, and operations docu-
mentation must be available to support the implementation process. In
addition to procedures for performing system tasks, preparing paperwork,
entering data, and distributing output, documentation for backup, recovery,
auditing, and security procedures is also needed. Documentation tells the
users how to operate the system, helps to resolve problems and errors, and
supports the training process. 

76.4.3 Training 

Before the system is released, the users, system maintenance personnel, sys-
tem operators, and other people affected by the system must be trained. The
user manual and the written procedures form the core of the training plan.
Initially, the analysts and other technical experts should show the users how
to perform the various tasks. Gradually, the experts should do less and the
users more until the users clearly understand the system. Following the ini-
tial intensive training period, the users should begin to work on their own,
but the experts should be available to provide quick, accurate technical sup-
port. Over time the level of technical support should decline, but facilities
for answering user questions (e.g., a help facility) should be maintained for
the life of the system. 

In addition to the primary users and system support people, back-up
personnel must also be trained. Often the primary person trains his or her
backup. People retire, resign, suffer injuries and illnesses, and earn promo-
tions, so there will be turnover. Training does not end when the system is
released; it is an ongoing activity. 

In-house training is suitable when the system is developed internally.
The training can be tailored to the system and the organization’s environ-
ment, touching on the relationship between the new system and existing
systems and stressing user interests and needs. Unfortunately, users some-
times undervalue in-house training because they believe the in-house
experts will always be available to provide assistance on request. 

Third party training includes vendor-supplied training, developer-
supplied training, and training from independent outside services. Such train-
ing is common when a company lacks in-house information system support or
has no on-going training program, or when a third party develops the system. 
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Some training is done in a traditional classroom environment. In other
cases, the trainer goes to the trainee, perhaps providing one-on-one or 
small group training on specific equipment or in the user’s environment.
Videoconferencing is an economical training medium for a relatively brief
time (hours, days, or weeks). Distance learning (via satellite or other com-
munication media) is effective for longer periods (weeks, months, years).
Interactive training software (on tape or CD) is both popular and cost effec-
tive. Computer-based training (CBT) utilizes the computer as a training tool;
for example, an instruction system is a type of expert system (Chapter 67)
that implements computer-based training. 

76.4.4 Cutover strategies 

System cutover is the process of turning the system over (or releasing the sys-
tem) to the user. Some experts believe that a system should be released any
weekday before Thursday, thus giving the users at least one day (Friday) to
experiment and giving the installers the weekend to fix any last-minute
problems. Other experts believe that a system should be released on Friday,
thus giving the installers three full days to complete the installation before
the users begin working with it. Friday conversion is more conservative. 

Several cutover strategies are outlined below. 

76.4.4.1 Direct cutover 
With direct cutover (sometimes called crash cutover, or abrupt cutover), the
old system is discontinued on a predefined date (often corresponding to the
start of a new accounting period) and the entire organization switches
directly to the new system. Direct cutover is risky because, if the new sys-
tem fails, returning to the old system is virtually impossible. This strategy is
relatively inexpensive, however, and it tends to promote user acceptance
since there is no old system to serve as a basis for comparison. Direct cutover
is often used in response to a government mandate (such as the implemen-
tation of new income tax withholding rules) or other legal concerns. 

76.4.4.2 Parallel operation 
As the term suggests, parallel operation means that the old and the new sys-
tems run in parallel for a time. Typically, the source data are processed
twice, the results are compared, any discrepancies are carefully analyzed,
and appropriate corrections are made. Note that a discrepancy might repre-
sent an error in the old system. 

Parallel operation is less risky than direct cutover, but concurrently run-
ning two systems is expensive. Parallel operation tends to be most effective
when a computer-based system replaces a manual (or partially manual) sys-
tem because concurrently running two computer-based systems is very
expensive. It is an excellent choice when data accuracy, security, and/or reli-
ability are important concerns. One intangible benefit of parallel operation
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is the opportunity to build user confidence in the new system (assuming it
runs properly, of course) by comparing the new and old systems’ results. 

76.4.4.3 Gradual cutover 
Gradual cutover is a combination of direct and parallel. The idea is to run
the new and old systems concurrently and gradually increase the number of
transactions handled by the new system. Note that the data are not
processed twice. Instead, some transactions are processed by the old system,
some are processed by the new system, and the percentage sent to the new
system gradually increases until the old system fades away. 

76.4.4.4 Phased implementation 
In a phased implementation, or partial conversion, the new system is
released in stages, either by application or by location. For example, new
data collection procedures might be implemented first, followed by inven-
tory updating procedures, then new reorder procedures, and so on.
Alternatively, the system might be released in one subdivision or location
(e.g., a branch office) at a time. 

Phased implementation allows for gradual installation and training,
reduces user resistance to the new system, and gives the organization con-
siderable flexibility. The installation period is likely to be quite lengthy,
however, so phased implementation should not be used when the schedule
or the budget is tight. 

76.4.4.5 Pilot implementation 
In a pilot (or location) implementation, the new system is first released in a
single site, such as a branch office or a warehouse, thoroughly tested, and
then ported to the other sites. The pilot site is called the beta site. After a
pilot implementation, either direct cutover or phased implementation might
be used to release the system to the other sites. 

Pilot implementation is similar to phased implementation, but the sys-
tem can be changed based on experiences gained at the pilot site. Pilot
implementation is compatible with prototyping (Chapter 31) and rapid
application development (Chapter 32). The pilot study gives the developers
another opportunity to perfect the system and the rest of the organization is
not impacted until the new system (or its prototype) proves its usefulness
and reliability. On the other hand, user confidence in the system may be
damaged if too many changes are made after the pilot study begins, the
results may be biased by the unique characteristics of the pilot site, and sys-
tem release will be delayed in other parts of the organization. 

76.4.5 System release 

After the system is installed and stable, it is released, or turned over, to the
user. In most cases, the system release or system turnover process includes
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a formal user sign off that implies user acceptance of the system. If the sys-
tem was developed in-house, system release marks the end of the develop-
er team’s responsibility. If the system was developed by outside contractors
or consultants, system release implies successful completion of the contract. 

76.4.6 Post-implementation review 

A post-implementation (or post-release) review should be scheduled some
time after the system is released. During the post-implementation review
the developers should investigate any remaining problems and compare the
project’s objectives, cost estimates, and schedules to the actual outcomes.
The idea is not simply to find discrepancies, but to explain them. Knowing
why mistakes were made is the key to improving the organization’s analy-
sis, design, scheduling, and cost estimating procedures. 

During the post-implementation review, such general concepts as the
design philosophy and the design strategy should be discussed. The hard-
ware platform, the inputs, the outputs, the interfaces, the dialogues, the
processes, the files and databases, and the documentation should all be care-
fully studied to ensure that the system performs as designed. 

76.5 Key terms 
Beta site — The pilot site in a pilot implementation. 
Cutover — The process of turning the system over to the user; see also

system release. 
Direct cutover (crash cutover, abrupt cutover) — A system release strat-

egy in which the old system is discontinued on a predefined date and
the entire organization switches directly to the new system. 

Documentation — The specifications, instructions, tutorials, reference
guides, and similar materials that accompany and explain a piece of
software or a hardware component. 

Ergonomics — The study of the relationship between human beings
and their workplaces. 

Gradual cutover — A system release strategy in which the new and old
systems run concurrently and the number of transactions handled by
the new system is gradually increased. 

Implementation — The process of completing the system and turning it
over to the user. 

Parallel operation — A system release strategy in which the old and the
new systems run in parallel for a time. 

Phased implementation (partial conversion) — A system release strat-
egy in which the new system is released in stages.

Pilot implementation (location implementation) — A system release
strategy in which the new system is first released in a single site, such
as a branch office or a warehouse, thoroughly tested, and then por-
ted to the other sites. 

1999 by CRC Press LLC



Post-implementation review (post-release review) — A review of the
system development process conducted after the system is released. 

Site preparation — The process of preparing the work environment,
installing the hardware, and configuring any new equipment to work
with existing computers and peripherals. 

System release — The stage in the system development life cycle when
the system is turned over to the user. 

Training — Generally, a series of experiences designed to modify 
behavior; often, a set of activities designed to teach someone how to
do something. 

76.6 Software 
Not applicable. 
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77.1 Purpose 
This chapter discusses several system control tools and techniques that are
commonly used in information systems. 



77.2 Strengths, weaknesses, and limitations 
Where appropriate, the strengths and weaknesses associated with specific
controls will be discussed in context. 

77.3 Inputs and related ideas 
General system principles are discussed in Chapters 1 and 72. Key informa-
tion for defining system controls is documented in the requirements specifi-
cation (Chapter 35). Effective controls must be designed into a system, so
controls are an important consideration throughout the design process (Part
VI). Control charts are discussed in Chapter 10. Technical inspections are
discussed in Chapter 23. Several techniques for screening input data are
described in Chapter 46. Security is discussed in Chapter 71. Configuration
management and version controls are discussed in Chapter 80. 

77.4 Concepts 
In addition to inputs, processes, interfaces, and outputs, a system also
includes control and feedback mechanisms that together allow the system to
determine if it is achieving its purpose. Feedback is the return of a portion
of the system’s output to its input. If the feedback suggests a deviation from
the expected value (the control), the system reacts by attempting to adjust
itself. 

This chapter discusses several system control tools and techniques that
are commonly used in information systems. 

77.4.1 Auditing 

An audit is a study of a system or a process designed to ensure that the
established procedures and controls are followed. Note that the point of an
audit is not to correct errors. For example, a well-conducted audit might not
catch an incorrect value input by a data entry clerk, but it should flag an
attempt by an unauthorized person to change that value. 

One technique used by auditors is to follow an audit trail. Sometimes,
the auditor starts with selected input transactions and traces the data
through the system until they are eventually output. An option is to start
with selected outputs and trace the values back to the source data. Good
systems are designed to maintain such audit trails. 

Regression testing is a technique that compares the results obtained
when the system is being audited to the results obtained under normal con-
dition. Parallel simulation involves testing both the live system and a simu-
lated system with the same data. With both techniques, any discrepancies
are analyzed to determine the accuracy and reliability of the system. Finally,
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experimental design is used to audit system accuracy by building a pilot
prototype and testing it using controlled sample data. 

In addition to being significant in their own right, audits are an impor-
tant supplement to virtually all system controls. 

77.4.2 Information processing controls 

Information processing controls consist of input controls, processing con-
trols, and output controls. 

The objective of input controls is to screen out and (if possible) correct
bad data before they enter the system. Validity tests are used to ensure 
that each input field is the right type (numeric, alphabetic), that the value of
a given field is within upper and lower bounds, and that fixed-length fields
(e.g., social security number, telephone number) are the right length.
Exception tests are used to screen such “exceptional” values as a zero (0) in
a field that will be used as a divisor. Reasonableness tests are used to 
screen invalid values (e.g., anything but F or M in a single-character sex or
gender field). 

Record control is a simple processing control technique that involves
counting and verifying the existence of every record in a database. Error con-
trols are used to see if a program or routine can handle an unexpected
response or input. Interrupt controls involve intentionally restarting, aban-
doning, or abnormally terminating a system or program to determine if it is
capable of recovering. Transmission controls are used to ensure that there are
no missing, incorrectly converted, or wrongly transmitted data. Additionally,
audit trails (Section 77.4.1) are valuable processing control tools. 

Distribution controls are designed to ensure that all outputs are distrib-
uted to the right location at the right time. Quantity controls verify that the
correct number of copies is generated. Reconciliation controls are focused on
ensuring that the right amount of data is output to support daily statistical
analysis and decision-making activities. Finally, control totals (Section
77.4.3) help to detect other types of output exceptions and errors. 

77.4.3 Operational controls 

The purpose of operational controls is to provide an early warning in the
event of system malfunction. The idea is to collect data about system per-
formance (feedback), compare the feedback to established standards (the
controls), and sound an alarm if reality differs from expectation. 

It is impossible to directly monitor everything that happens on a 
computer-based information system, but control totals are both effective
and relatively easy to generate. A control total is an accumulated sum, a
count, or a similar value that summarizes the results of numerous compu-
tations or transactions. 
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For example, consider the process of printing paychecks. In many com-
panies, the necessary computations are performed by the payroll program
and stored on disk or magnetic tape. The output from that program also
includes such control totals as the number of checks to be printed, the sum
of the computed net pays for all those checks, and so on. Later, when the
check printing routine runs, it independently computes the same counts and
totals. If the control values generated by both programs match, it is reason-
able to assume that no one modified the payroll data between the time the
computations were made and the checks were printed. 

Control totals are sometimes monitored on control charts (Chapter 10).
For example, the number of inventory transactions per day might be a use-
ful control total for an inventory system. If the daily count lies between the
upper and lower control limits (numbers that should appear in some form on
the requirements specification), it is reasonable to assume that the inventory
system is functioning as expected. If, however, the transaction count is out of
control, management should look for the reason why. Note that the control
total does not indicate what is wrong, merely that something is wrong. 

Inventory controls help to ensure that the necessary software, hardware,
and other peripherals are properly maintained and connected for operation.
Documentation controls focus on the documentation library. Scheduling
controls are used to monitor input or output timings and provide early
warning of increasing queue lengths. Service controls measure such para-
meters as response rate, throughput rate, and turnaround time. 

Other operational controls are designed to ensure that backup and
recovery (and other operating procedures) are followed; logs and transac-
tion counts are common tools. Finally, audits are used to verify that the 
correct procedures are followed. 

77.4.4 Personnel controls 

Not all system activities take place on the computer, so personnel controls
are essential. One underlying principle is the segregation of functions. For
example, at a university, the registrar registers students for classes, the
finance department bills the students, and the bursar collects the payments.
When functions are segregated, it is relatively easy to design reports and
controls that, in essence, allow the different functional groups to check on
each other and allow an auditor to verify that the appropriate procedures
were followed. 

To cite another example, imagine that the requirements for an inven-
tory system specify that the warehouse is responsible for controlling inven-
tory and the shipping department is responsible for delivering the orders to
the customers. Given such a structure, comparing daily inventory transac-
tions to daily orders shipped might serve as an effective control on the 
performance of both groups. 
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77.4.5 Ensuring data integrity 

Data integrity is ensured by carefully controlling and managing data entry,
data maintenance, and data access from the time the data first enter the sys-
tem until they are of no further use. The process can be compared to a chain
of evidence in a criminal trial. Unless the police can account for a piece of
evidence from the instant it is collected to the instant it is presented in court,
that evidence is inadmissible. Similarly, unless the system can account for a
particular data element from the instant it is captured until the instant it is
no longer needed, that data element cannot be trusted. 

Only authorized personnel (as defined in the system requirements)
should be allowed to enter data, and clear, unambiguous, verifiable, easily
monitored data entry procedures are a must. Relatively few individuals
should be authorized to modify data, and steps must be taken to verify the
identity of anyone who attempts to change a data value. Similar restrictions
must be used to limit data access to authorized personnel. The key is build-
ing such controls into the system rather than simply adding them on after
the system is completed. 

Data integrity controls start with data entry, so the input controls
described in Section 77.4.2 are an important component. Often, transactions,
errors, and corrections are counted and plotted on a control chart, and data
entry procedures might be monitored electronically. Ensuring that only
authorized personnel enter, access, and modify data is a security function
(Section 77.4.6). Detailed logs of all changes to a database allow an auditor
to verify that the appropriate change procedures were followed. 

77.4.6 Security controls 

Security (Chapter 71) involves procedures and other safeguards designed to
protect the hardware, software, data, and other system resources from unau-
thorized access, use, modification, or theft. Once a system’s security is
breached, the data are particularly vulnerable because they are so easy to
copy or change. It is impossible to ensure data integrity if unauthorized peo-
ple can bypass the normal controls and access the system. 

Physical security is concerned with denying physical access to a sys-
tem. For example, mainframe computers are often located in controlled-
access rooms, personal computers are sometimes placed in locked cabinets
when they are not in use, and network connections can be deactivated
when an office is closed. Typical physical security controls include count-
ing and logging all attempts to access the system or facility. Procedures 
are needed for tracking keys and entry codes, changing codes regularly, 
and so on. 

Logical security is implemented by the computer itself. Typically, each
user is assigned a unique identification code and a password that must be
entered each time he or she logs onto the system. On some systems, 
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additional passwords are required to access more secure data or to execute 
sensitive programs. Logical security controls might include counts of 
successful and unsuccessful log-ons, detailed records of attempted break-
ins, statistics on password changes (on time, late), and so on. Procedures are
needed for screening out easy to guess passwords, ensuring that passwords
are changed regularly, quickly removing disallowed passwords from the
system, and so on. Audits help to verify that the appropriate procedures
were followed. 

77.4.7 Software development controls 

Software development controls are essential. Undocumented or rogue code
can cause debugging, testing, and maintenance nightmares. Hackers and
crackers routinely exploit Trojan horses, undocumented trap doors, and
known bugs to gain access to computer systems, and disgruntled program-
mers have been known to insert destructive logic into their code. 

The first key is insisting that all programmers follow well-defined 
coding standards. Special software tools can help. For example, a static code
analyzer is a program that scans (but does not execute) the code and flags
such potential errors as synonyms (different names for the same data 
element), poor structure, inconsistent usage, dead code (modules that can-
not be executed), unreferenced variables, and other deviations from 
coding standards. A clean code analyzer output is a prerequisite to code
approval. 

Another key is to conduct technical inspections of all software. A pro-
grammer is unlikely to insert unauthorized code into a program if the code
is subject to inspection by his or her peers. Inspections can also help to
ensure that the programmer does not deviate from the approved design. 

Version control (Chapter 80) provides a mechanism for enforcing soft-
ware development controls. Only the current version of a program is
approved for production. Programmers are not permitted to directly access
the production version, and all modifications are made to a test version.
Before the test version becomes the current version, it must generate a 
clean compilation and a clean code analysis, pass a technical inspection,
pass the appropriate acceptance tests, and be approved by the configuration
approval board. 

Functional segregation helps, too. For example, in most mainframe
environments, computer operators are not allowed to modify software and
programmers are not allowed to operate the computer. Unless that standard
is enforced, a programmer might be able sit down at the console and make
unauthorized changes to a program that cannot be detected by management
or by the normal controls. In fact, in many computer centers, banning “via
the console” debugging was one of the very first software development 
controls. 

Audits can help to verify that the appropriate procedures are followed. 
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77.4.8 Communication controls 

Encryption is a technique for encoding data, transmitting the data, and then
decoding the data at the receiving end for processing. Line monitoring
involves attaching special circuitry to the communication link to diagnose
problems. For example, using loop back analysis, all data received by a des-
tination node are automatically looped back to the transmitting node and
compared with the original data. 

77.5 Key terms 
Audit — A study of a system or a process designed to ensure that the

established procedures and controls are followed. 
Configuration approval board — A committee that reviews change

requests and proposed adaptive and perfective maintenance tasks,
authorizes work to begin, and schedules the work. 

Control — An expected value that can be compared with feedback. If
the feedback suggests a deviation from the expected value (the con-
trol), the system reacts by attempting to adjust itself. 

Control total — An accumulated sum, a count, or a similar value that
summarizes the results of numerous computations or transactions. 

Data integrity — The state of a database that is protected against loss or
contamination; data integrity is ensured by carefully controlling and
managing data entry, data maintenance, and data access from the
time the data first enter the system until they are of no further use. 

Distribution control — An output control designed to ensure that all
outputs are distributed to the right location at the right time. 

Documentation control — An operational control that focuses on the
documentation library. 

Encrypt — To convert to a secret code. 
Error control — A system control designed to determine if a program or

routine can handle an unexpected response or input. 
Exception test — A test used to screen such “exceptional” values as a

zero (0) in a field that will be used as a divisor. 
Experimental design — An auditing technique used to audit system

accuracy by building a pilot prototype and testing it using controlled
sample data. 

Feedback — The return of a portion of the system’s output to its input. 
Information processing control — An input, processing, or output 

control. 
Input controls — Tests used to screen out and (if possible) correct bad

data before they enter the system. 
Interrupt control — A control or test to determine if a system or pro-

gram is capable of recovering after it is intentionally restarted, aban-
doned, or abnormally terminated. 
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Inventory control — A type of operational control that helps to ensure
that the necessary software, hardware, and other peripherals are
properly maintained and connected for operation. 

Line monitoring — A communication control technique that involves
attaching special circuitry to the communication link to diagnose
problems. 

Logical security — Security precautions implemented by the computer
itself. 

Loop back analysis — The process of automatically returning all
received messages to the transmitting node where they are compared
with the original data. 

Operational control — A control intended to provide an early warning
in the event of system malfunction. 

Parallel simulation — An auditing technique that involves testing both
the live system and a simulated system with the same data. 

Physical security — Techniques and procedures concerned with deny-
ing physical access to a system. 

Processing control — A test or technique that measures and controls a
processing activity. 

Reasonableness test — A test used to screen invalid values (e.g., any-
thing but F or M in a single-character sex or gender field). 

Reconciliation control — An output control designed to ensure that the
right amount of data is output to support daily statistical analysis
and decision-making activities. 

Record control — A simple processing control technique that involves
counting and verifying the existence of every record in a database. 

Regression testing — An auditing technique that compares the results
obtained when the system is being audited to the results obtained
under normal conditions. 

Scheduling control — An operational control that is used to monitor
input or output timings and provide an early warning of increasing
queue lengths. 

Security — Procedures and other safeguards designed to protect the
hardware, software, data, and other system resources from unautho-
rized access, use, modification, or theft. 

Service controls — Operational controls that measure such parameters
as response rate, throughput rate, and turnaround time. 

Software development controls — A set of controls imposed on the
software development process. Examples include static code analyz-
ers, technical inspections, version controls, and so on. 

Static code analyzer — A program that scans (but does not execute) the
code and flags such potential errors as synonyms, poor structure,
inconsistent usage, dead code, unreferenced variables, and other
deviations from coding standards. 
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Transmission control — A processing control designed to ensure that
there are no missing, incorrectly converted, or wrongly transmitted
data. 

Validity test — A test used to ensure that each input field is the right
type (numeric, alphabetic), that the value of a given field is within
upper and lower bounds, that fixed-length fields (e.g., social security
number, telephone number) are the right length, and so on. 

Version control — A set of tools and procedures used to track and man-
age multiple versions of the system and its components. 

77.6 Software 
Not applicable. 
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78.1 Purpose 
This chapter briefly discusses system evaluation and explains three signifi-
cant performance criteria: reliability, productivity, and quality. 

78.2 Strengths, weaknesses, and limitations 
Not applicable. 



78.3 Inputs and related ideas 
Control charts are discussed in Chapter 10. The system requirements against
which performance is measured are documented in the requirements speci-
fication (Chapter 35). Performance analysis yields valuable information to
support future project planning (Part III) and future cost/benefit analysis
(Chapter 38). During the system evaluation process, the physical compo-
nents (as implemented) are compared to the design specifications, so any or
all of the design topics discussed in Part VI might be relevant. Performance
analysis is closely related to testing (Chapters 74 and 75), implementation
(Chapter 76), and to the other chapters in Part VIII. 

78.4 Concepts 
This chapter briefly discusses system evaluation and explains three signifi-
cant performance criteria: reliability, productivity, and quality. 

78.4.1 System evaluation 

After the system is released to the user, it should be evaluated to determine
how well it meets the user’s needs (as defined in the requirements specifi-
cation) and conforms to the design specifications. Davis and Olson1 suggest
three categories for system evaluation. Economic evaluation focuses on
comparing the project’s actual time, cost, and benefits to the estimates 
prepared after the analysis stage and/or during design. The objective is to
improve the estimating process. Technical evaluation deals with the tech-
nology and the system design and considers such factors as reliability, 
productivity, quality, efficiency, and effectiveness. Operational evaluation
focuses on such operational elements as system controls, interface design,
and security design and considers such factors as integration, flexibility,
compatibility, user friendliness, and system efficiency. 

Numerous hardware and software tools are available to support system
evaluation. IBM’s system management facility (SMF) is an example of a job
accounting system that can be used to project patterns of growth, manage and
plan capacity, and assess system efficiency. A software monitor is a bench-
marking program that can be used to measure program efficiency, measure
execution performance, keep track of resources used, and so on. System
access monitoring can be used to measure such parameters as throughput,
turnaround time, access time, and response time. A hardware monitor con-
sists of specially designed circuitry that can be used to measure such parame-
ters as average seek time, rotational delay, arm movement time, and so on. 

78.4.2 Reliability 

Reliability is the probability that a given component or system will perform
as expected (or will not fail) for a given period of time. Reliability is typically
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measured or estimated using probabilities or such statistical parameters as
means, modes, and medians. For example, the mean time between failures
(MTBF) is the sum of the mean time to fail (the average time between initial
use and failure) and the mean time to repair. 

There are many mathematically based reliability models2. For example,
the reliability growth modeling technique expresses cumulative failures as
a function of execution time. The reliability cost model describes the rela-
tionship between associated costs and failure intensity. System reliability
can also be measured by analyzing the relationship between completion
date and failure intensity. See Everett and Musa2 for additional details. 

Reliability is an extremely important performance criterion on most
computer-based systems, and explicit reliability targets or requirements are
often documented in the requirements specification. After the system begins
operation, all failures and their associated repair times should be docu-
mented in detail. Based on the failure and repair data, the mean time
between failures should be computed regularly and compared to the target,
perhaps by plotting a control chart. Less than acceptable system perfor-
mance suggests a need for corrective maintenance and/or system enhance-
ment. An evaluation of the causes of system failure can help to improve the
reliability of future systems. 

78.4.3 Productivity 

Productivity is defined as output per unit of labor, or more generally, output
per unit of input. Increased productivity reduces development time and
development cost. 

The first step in increasing productivity is to measure productivity.
After the system is released to the user, all (or most) of the costs and other
resources expended on creating the system (the inputs) and all of the sys-
tem’s components, features, and facilities (the outputs) are known. Given
the inputs and the outputs, various productivity measures can be computed
and compared to similar numbers for other systems.

Software productivity is sometimes measured by computing lines of
code per unit of time (for example, lines of code per programmer day). The
number of lines of code is taken from the program source listings.
Programmer time is taken from the appropriate labor or payroll statistics.
Comparing the resulting ratio to the same ratio for other projects can show
if the organization’s productivity is increasing, decreasing, or staying the
same. Explaining discrepancies between projects and linking those discrep-
ancies to other measurable project characteristics (e.g., the computing plat-
form, response time requirements, system type, programming language,
etc.) can help to improve the cost estimating process on future projects.
Tracking productivity can also help the organization determine if new 
technology (e.g., a fourth-generation language) really does lead to 
productivity gains. 
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Not all system development activities involve code, of course. Other,
more general measures of productivity include effort months per user sup-
ported, effort months per project or task completed, and reported defects or
repairs per user supported. 

The distribution of actual costs can also be significant. Assume, for
example, that historically 20 percent of post-analysis costs were spent on
design, 40 percent were spent on coding, and 40 percent were spent on
debugging and testing. On a new project that uses a fourth-generation lan-
guage, 45 percent of the post-analysis costs were spent on design, 30 percent
on coding, and 25 percent on testing and debugging. Assuming that design
is language independent, those numbers suggest that fourth-generation lan-
guages increase productivity. Additionally, the distribution of costs as a
function of language is a useful guide to future cost estimating. 

78.4.4 Quality 

Quality can be defined (narrowly) as conformance to requirements. In a
broader sense, quality implies that the requirements match user needs and
that the system meets the requirements. Quality measures are sometimes
implemented late in the system development life cycle, but they should be
considered during the analysis stage, and specific quality requirements
should be documented in the requirements specification. 

Quality is often measured by counting defects, where a defect is any
failure to meet requirements. The number of defects (perhaps categorized
by severity) discovered during testing is a measure of programming and
debugging quality. The number of defects discovered after the system is
released is a measure of overall system quality. Cost per defect is computed
by dividing total debugging or maintenance costs by the total number of
defects discovered, and is also used as a measure of productivity. Specific
targets (or limits) can be included in the requirements specification and used
to define control limits for a control chart. Declining numbers suggest
improving quality. Comparing defect statistics for a project developed using
traditional programming languages to a project developed using a fourth-
generation language will show if the newer technology improves quality. 

Quality assurance is a four-step process. The first step, review, involves
collecting quality-related information and identifying quality factors. Key
quality factors include correctness, reliability, efficiency, integrity, usability,
maintainability, testability, flexibility, portability, reusability, and interoper-
ability.3 During the study phase, a quality framework is identified by select-
ing and ranking the quality factors and choosing measurable quality attributes
for each one. In the implementation step, related quality attributes are
grouped (e.g., error tolerance, consistency, accuracy, and simplicity might be
grouped under reliability) and conflicting attributes (e.g., execution effi-
ciency and instrumentation, conciseness and completeness) are resolved.
During the documentation step, the quality attributes are expressed as mea-
surable system parameters, the appropriate quality information is collected,
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and quality is tracked. Note that the documentation process can reveal new
quality factors, which leads back to the review step. In other words, quality
assurance is a continuous process. 

78.5 Key terms 
Defect — Any failure to meet requirements. 
Economic evaluation — A type of system evaluation that focuses on

comparing the project’s actual time, cost, and benefits to the esti-
mates prepared after the analysis stage and/or during design. 

Hardware monitor — Specially designed circuitry that can be used to
measure such parameters as average seek time, rotational delay, arm
movement time, and so on. 

Mean time between failures (MTBF) — A measure of reliability; the
sum of the mean time to fail and the mean time to repair. 

Operational evaluation — A type of system evaluation that focuses on
such operational elements as system controls, interface design, and
security design and considers such factors as integration, flexibility,
compatibility, user friendliness, and system efficiency. 

Productivity — Output per unit of labor; more generally, output per unit
of input. 

Quality — Conformance to requirements; in a broader sense, quality
implies that the requirements match user needs and that the system
meets the requirements. 

Quality assurance — Goals, procedures, and techniques for measuring
and ensuring quality. 

Quality factor — A parameter that implies quality, such as correctness,
reliability, efficiency, integrity, usability, maintainability, testability,
flexibility, portability, reusability, and interoperability. 

Reliability — The probability that a given component or system will
perform as expected (or will not fail) for a given period of time. 

Software monitor — A benchmarking program that can be used to mea-
sure program efficiency, measure execution performance, keep track
of resources used, and so on. 

System access monitoring — Software and hardware used to measure
such parameters as throughput, turnaround time, access time, and
response time. 

Technical evaluation — A type of system evaluation that deals with the
technology and the system design and considers such factors as reli-
ability, productivity, quality, efficiency, and effectiveness. 

78.6 Software 
IBM’s system management facility (SMF) is an example of a job accounting
system that can be used to project patterns of growth, manage and plan
capacity, and assess system efficiency. A software monitor is a benchmarking
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program that can be used to measure program efficiency, measure execution
performance, keep track of resources used, and so on. System access moni-
toring software can be used to measure such parameters as throughput,
turnaround time, access time, and response time. 
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79.1 Purpose 
The purpose of this chapter is to provide the fundamental concepts and com-
putations required for the analysis of any system that features a waiting line
(queue). Examples of enterprises where these ideas are traditionally applied
include grocery stores, airline ticket counters, fast-food restaurants, retail
stores, auto license agencies, and banks. Queuing theory may also be used
where “customers” are inanimate objects, such as production processes,



though sometimes the mathematics becomes quite complex in these situa-
tions. In the context of information systems, queuing theory is commonly
used to help plan, design, and reconfigure communication networks. 

79.2 Strengths, weaknesses, and limitations 
Queuing analysis is a mathematical technique for analyzing waiting lines. In
a simple waiting line, a customer arrives, joins a queue, is serviced, and
leaves. That pattern is consistent with messages flowing through a network,
disk access transactions, interrupt processing, and several other activities
common to computers. Consequently, queuing theory is an excellent tool for
modeling such activities. Given the correct statistical values, a queuing
analysis can be completed rapidly using only an electronic calculator or a
relatively simple computer-based model. 

For some combinations of arrival pattern, service time distribution, and
number of servers, measures of performance are limited or unavailable.
Queuing theory assumes exponential arrival and service rates and, conse-
quently, should not be used if either rate is clearly not exponential. Other
inhibiting factors are prioritization of customers, a service rate that varies by
size of the waiting line, a restriction on queue length, and complexity of sys-
tem design. However, a computer simulation model (Chapter 19) can be
constructed easily to produce estimates of system performance measures in
most of these situations. 

79.3 Inputs and related ideas 
Queuing theory is commonly used to support planning, designing, and
reconfiguring a network. Relevant network concepts are introduced in
Chapters 52, 53, and 54. Hardware interface design is introduced in Chapter
42. Memory queues are described in Chapter 43. Simulation, another math-
ematical tool used to support similar applications, is discussed in Chapter
19. Performance analysis is discussed in Chapter 78 and system mainte-
nance is discussed in Chapter 81. 

79.4 Concepts 
The purpose of this chapter is to provide the fundamental concepts and
computations required for the analysis of any system that features a waiting
line (queue). In a simple waiting line, a customer arrives, joins a queue, is
serviced (by a server of some kind), and leaves. Queuing theory uses the
arrival rate and the service rate to quickly compute such statistics as the
time a customer spends in the queue and in the system, the expected line
length, and the expected number of customers in the system. 

In the context of information systems, queuing theory is commonly
used to help plan, design, and reconfigure communication networks, with
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each message representing a customer and each server, router, or other
device that holds and forwards or otherwise manipulates messages repre-
senting a server. Other applications include disk access, printer spooling,
interrupt management, process queuing, and so on. In all these activities,
messages (customers) arrive at random intervals and are held briefly for
processing by a server of some kind. 

79.4.1 Bottleneck analysis 

One of the more common information system applications of queuing theory
is bottleneck analysis, the study of choke points or bottlenecks in a network.
Bottleneck analysis is an important network routing tool (Chapter 54). 

As messages move from node to node across a network, they are held
and forwarded by one or more nodes. As message volume increases, the
number of messages waiting for a given server can grow exponentially, cre-
ating a bottleneck that slows or even halts traffic. Queuing theory can help
predict such bottlenecks by allowing the network analyst to mathematically
identify the network nodes most sensitive to message volume. When a 
bottleneck occurs, the network analyst is typically faced with numerous
alternative solutions. Using queuing theory, the analyst can often quickly
eliminate all but a few of those alternatives by making the changes mathe-
matically (in a matter of seconds) and studying the impact on queue length
and average wait time. Note that queuing theory does not necessary yield
the answer. Instead, it helps the analyst quickly narrow the set of feasible
solutions to a workable number. 

79.4.2 Terminology 

The fundamental result of a probabilistic experiment is an outcome.
Examples in queuing analysis are number of customers in line and interar-
rival time. The set, or collection, of all possible outcomes is known as a sam-
ple space, which may be either finite or infinite according to whether the
number of outcomes is countable. If there were a physical or practical limit
on queue length, using six as an example, the finite sample space would be
comprised of the integers 0, 1, 2, 3, 4, 5, and 6. Interarrival times form an infi-
nite sample space consisting of the positive real numbers since time may be
subdivided indefinitely. 

An event is a set of outcomes. The probability associated with event A is
the ratio of the number of outcomes in A to the number of outcomes in the
sample space. The interpretation of probability for the purposes herein is long
run relative frequency. That is to say, if A denotes “two customers in line” and
prob(A) � 0.27, then an observer of the queue over a very long period would
see event A occur 27 percent of the time (assuming the process is stable). 

A random variable is a symbolic representation of an outcome. Discrete
random variables are associated with finite sample spaces, their continuous
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counterparts with infinite sample spaces. A probability mass function (pmf)
is the mathematical relationship between the various values that a discrete
random variable may assume and their probabilities of occurrence. A hypo-
thetical probability mass function for the queue length (denoted Nq) exam-
ple above is shown in Table 79.1. A continuous random variable is defined
by a probability density function (pdf) specified on an interval, such as 
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Table 79.1 A Hypothetical 
Probability Mass Function 

N1 prob(N1)
0 0.05 
1 0.18 
2 0.27 
3 0.20 
4 0.14 
5 0.10 
6 0.06 

f(x) � (4 � x)/8, 0 ≤ x ≤ 4, 

� 0, otherwise. 

The probability that x lies on the interval a to b is the definite integral of f(x)
evaluated between those numerical values. 

The rth percentile of a probability distribution for random variable x is
a number xr such that prob(x ≤ xr) � r/100. In the distribution for Nq above,
the 90th percentile is 5 because prob(Nq ≤ 5) � 0.94. [Prob(Nq ≤ 4) � 0.84
makes this queue length incapable of being the 90th percentile.] For the con-
tinuous random variable above, the 90th percentile, 2.735, may be obtained
by applying the calculus and algebra. 

A random variable (call it y) has two important descriptive parameters,
E(y) (expected value or mean), a measure of central tendency, and Var(y)
(variance), a measure of dispersion about the mean. For the discrete case, the
formulas are

E(y) � Σ y�(y) 
all y

Var(y) � Σ [y � E(y)]2�(y).
all y

Analogous formulas using the calculus exist for continuous random
variables. The mean and variance of Nq based on the distribution above are
2.74 and 2.4524, respectively. The continuous random variable x has mean
and variance 1.333 and 0.889, respectively. 



79.4.3 General ideas 

In the simplest of queuing systems, operating characteristics may be
derived from knowledge of:

1. The customer arrival process. 
2. The service process. 
3. The number of servers available. 

Some situations featuring greater complexity are discussed briefly in
Sections 79.4.5 and 79.4.6, below. 

The exponential distribution is of fundamental importance in queuing
analysis. Its probability density function is: 

f(t) � �e��t, t > 0, 

� 0, otherwise, 

where t stands for time and � is the rate of the process under study. The rate
is always specified with reference to a time unit, such as 3 per min, 5 per h,
and 12 per d. The mean of an exponential distribution is the reciprocal of �,
and remarkably the variance is precisely the square of the mean. The graph
of this distribution (Figure 79.1) is asymmetrical, descending rapidly from a
height of � on the vertical axis, then curving suddenly and moving slowly
toward, but never reaching, the horizontal axis. Of the values on an expo-
nential random variable, 63 percent lie below the mean (in contrast to 
50 percent for the normal distribution). 

Notation for the simplest of queuing systems is of the form a/b/c, where
a identifies the interarrival time (IAT) distribution, b the service time (ST)
distribution, and c the number of servers. In the next section, formulas and
an example for the M/M/1 queue are given; “M” is the designation for
exponential distribution in queuing parlance. The M/M/1 designation indi-
cates exponential arrivals, exponential service times, and 1 server. 

79.4.4 The M/M/1 Model 

In this system, the arrival process draws customers at rate � from an unlim-
ited population. Customers move from the queue into service via a first
come, first served discipline, and the exponential service times have mean
1/� (implying also rate �). Note that both the arrival rate (�) and the service
rate (�) are exponentially distributed. For steady state probabilities to exist,
or to ensure that the queue will not grow to infinite length, the traffic inten-
sity � ( � �/�) must be less than 1. 

Steady state probabilities for the M/M/1 model are calculated as follows,
where n refers to the number of customers in the system (queue plus service): 
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p0 � 1 � �, (79.1)

pn � (1 � �)�n, n � 1, 2, 3, . . . . (79.2)

Important descriptive operating characteristics include the expected time in
queue, time in system, line length, and number (of customers) in the system: 

1999 by CRC Press LLC

Figure 79.1 An exponential distribution. 



Wq � E[time in queue] � �/[�(� � �)], (79.3)

W � E[time in system] � 1/(� � �), (79.4) 

Lq � E[line length] � �2/[�(� � �)], (79.5) 

L � E[number in system] � �/(� � �). (79.6) 

High percentiles (�) for q (time in queue) and w (time in system) may be cal-
culated as follows: 

�q[90] � W ln(10�), (79.7a) 

�q[95] � W ln(20�), (79.7b) 

�w[90] � W ln 10, (79.8a) 

�w[95] � W ln 20, (79.8b) 

where W is expected time in system [e.g., (4)], ln stands for natural logarithm,
and � is the system’s traffic intensity. These percentiles give likelihoods that
large waiting times and times in system will occur, knowledge of which is a
useful adjunct to means for decision-making purposes. 

As an example, consider a single chair barber shop operated by one
Harry Schaive. On an ordinary morning, customers arrive at the rate of 4 per
h, and the mean time for a haircut is 12 min. Based on extended observation
of the shop’s operation, Harry’s brother, Klaus, an industrial engineer, has
concluded that an M/M/1 model describes the system adequately. 

The information provided show that � � 4 per h and � � (1 per 12
min)� 5 per h. With � � 4/5 � 0.8, the formulas above yield: 

p0 � 0.20, p1 � 0.16, p2 � 0.128, p3 � 0.1024,

for the probabilities that 0, 1, 2, and 3 people are in the system. Thus Harry
is idle (0 people in the queue) 20 percent of the day and an arriving customer
has a 0.8 probability of having to wait before having his (or her) hair cut. 
Note also that prob(n ≤ 3) � 0.5904 (by addition), so there is a substantial
chance of finding four or more customers in the shop. The following quati-
ties [equations (3) – (6)] reveal the congested condition of this system: 

W � 1 h, Wq � 0.8 h � 48 min, 

L � 4 customers, Lq � 3.2 customers.

The ratio of mean time in queue to mean service time is four (48/12). Interest
in this number is based on the idea that a customer’s tolerance for waiting is
related to the time already committed to service. A high ratio translates to dis-
content over the delay involved. Finally, computing the high percentile times
in the queue and in the system [equations (7) and (8)]:
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�q[90] � 2.079 h � 2 h 5 min, 

�w[90] � 2.303 h � 2 h 18 min, 

reveals the astonishing fact that 10 percent of Harry’s customers must
endure a time in line exceeding 2 h 5 min! 

In a network model, the arrival rate (�) might be several messages per
second and the service rate (�) might be 1000 or more messages per second,
but the computations are much the same. 

79.4.5 Other models 

One solution to the congestion in Harry’s shop is to hire another barber for
a second chair. This would produce an M/M/2 model, a special case of the
general M/M/c queuing system. Solving the equations: 

p0 � 0.429, p1 � 0.343, p2 � 0.137, p3 � 0.055, 

W � 14.29 min, Wq � 2.29 min, 

L � 0.952 customers Lq � 0.152 customers,

�q[90] � 8.27 min,

suggests a vast improvement (at least from the perspective of the customers). 
If Harry chooses not to increase his serving capacity, it is possible that

customers will start to balk (leave without joining the queue) if the queue is
sufficiently long. This would give rise to the M/M/1/K model, where K is
the limit on number in system (imposed either by physical operating condi-
tions or by customer behavior). For example, the number of bytes in a mem-
ory queue imposes an absolute limit on the length of the queue. The
M/M/1/K/K queue is known as the machine repair problem. The popula-
tion consists of K machines that break down randomly to be repaired by a
lone technician. Naturally, there is a limit of K “customers” in this system.
Steady-state formulas exist for these models and their multi-server counter-
parts. The Erlang-k random variable, whose distribution is denoted Ek, 
is the sum of k identical exponential random variables. Operating charac-
teristics for the commonly observed M/Ek/1 and Ek/M/1 models can be
readily computed. 

79.4.6 Ancillary issues 

Whether to add a barber in the example above would depend on cost con-
siderations. The following simple formula may be used to determine the
total cost (TC) of operating a queuing system: 

TC � cwLq
+ csk, (79.9)
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where cw is the cost of one customer’s waiting time per hour, cs is the cost per
hour of employing a server, and k equals the number of servers. If it is
believed that there is a cost attached to the customer’s time in service, then
Lq (the mean line length) should be replaced by L (the mean number of cus-
tomers in the system). 

Close examination of equations (3) – (6) reveals the following relation-
ships which apply to all queuing systems: 

L � �W, (79.10a) 

Lq � �Wq, (79.10b) 

where � is the arrival rate, W is the expected time in the system, and Wq is
the expected time in the queue. These equations comprise Little’s rule,
named for the distinguished MIT professor who discovered them. Since 
W � Wq + (1/�), the last term being expected service time, knowledge of �,
�, and any one of the queue characteristics therein allows computation of
the other three. 

There are many waiting-line situations that cannot be analyzed using
formulas for any particular model. Simulation (Chapter 19) is a methodol-
ogy capable of handling such problems, as queuing systems in series
(unless interarrival time and service time are exponentially distributed),
prioritized customers, jockeys (line changes), reneges (departures from the
queue without receiving service), bulk arrivals (customers appear in
groups of 2, 3, 4, . . .), bulk service, service times dependent on line length,
and probabilistic balks. 

79.5 Key terms 
Arrival rate — The number of arrivals per unit of time. 
Balk — To leave without joining the queue. 
Bottleneck analysis — The study of choke points or bottlenecks in a network. 
Event — A set of outcomes. 
Interarrival time — The elapsed time between arrivals of successive

customers in a queuing system. 
Model — An abstract, mathematical representation of a physical system. 
Outcome — The fundamental result of a probabilistic experiment. 
Probability mass function (pmf) — The mathematical relationship

between the various values that a discrete random variable may
assume and their probabilities of occurrence. 

Queue — A waiting line. 
Random variable — A symbolic representation of an outcome. 
Sample space — The set, or collection, of all possible outcomes. 
Service rate — The number of customers served per unit of time. 
Service time — The time a customer spends receiving service in a queu-

ing system. 
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Steady state — A condition representative of a system’s long run behav-
ior; for example, an assembly line starting without parts in process
will be in a transient state until such time that the various stations are
being utilized at approximately their expected levels, at which point
steady state has been achieved. 

Stochastic process — A process organized into states in which move-
ment from state to state is governed by probabilities; examples
include the number of customers in a queuing system, levels of
inventory on hand, and brands purchased by consumers. 

Waiting time — The elapsed time between a customer’s arrival and the
beginning of service. 

79.6 Software 
SAS, MiniTab, and numerous other statistical programs support queuing
theory. The necessary computations can also be performed using spread-
sheets and most standard programming languages. 
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80.1 Purpose 
The purpose of configuration management is to define, manage, control,
and audit the changes made to the original system. This chapter considers



configuration management personnel and planning, configuration control,
and configuration auditing, and reporting. 

80.2 Strengths, weaknesses, and limitations 
As appropriate, the strengths and weaknesses associated with specific tools
or techniques will be discussed in context. 

80.3 Inputs and related ideas 
System control tools and techniques are covered in Chapter 77. Performance
analysis is discussed in Chapter 78, and maintenance is discussed in Chapter
81. Queuing theory (Chapter 79) can be used to perform bottleneck analysis.
Virtually all the documentation created during the systems analysis (Part IV),
design (Part VI), testing, and implementation (Part VII) stages of the system
development life cycle might be relevant to configuration management. 

80.4 Concepts 
The purpose of configuration management is to define, manage, control,
and audit the changes made to the original system. Typical enhancements
might include adding new features, adjusting operation procedures, chang-
ing execution priorities, fixing bugs, and modifying the original system to
accommodate new hardware or software. 

80.4.1 Personnel 

Many organizations assign change authorization responsibility to a config-
uration approval board chaired by the chief information officer (or a similar
high-level information system manager) and composed of representatives
from the user, the developers, the maintainers, and other systems profes-
sionals. The board reviews change requests and proposed adaptive and per-
fective maintenance tasks, authorizes work to begin, and schedules the
work. Depending on the project, individual managers, supervisors, or pro-
ject leaders assign the necessary resources, delegate responsibilities, and
monitor progress. The developers and maintainers are responsible for actu-
ally performing the work. On some smaller projects, the developers and
maintainers perform the management functions. 

80.4.2 Planning 

The first step in the process is to establish a configuration management plan.
The responsible developers and maintainers must be identified and a 
budget defined. Additionally, steps must be taken to ensure that the appro-
priate tools and documentation are available. 
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The configuration items, a set of resources to support configuration
management, are collected during this phase. There is no universally accept-
ed standard list; the configuration items are a function of the maintenance
project and are subject to time and budget constraints. Typically, system
specifications (both generic and detailed), design specifications (logical and
physical), manuals (user, operation, command, and system), program code
listings, and testing, operation, and execution plans, standards, and proce-
dures are all included. Additionally, such post-release materials as problem
and error reports, maintenance requests, change requests, and maintenance
standards and procedures might be considered configuration items. 

The configuration items are used to define configuration objects, con-
crete tools that can be used to support the change process. Examples include
documents and reports, test cases, input data sets, tools used to build the
system, and source code. Also, such parameters as exploded objects, meta-
objects, derived objects, imported objects, exported objects, source objects,
and detailed processing requirements help to define the relationships
between the various configuration entities. 

Configuration management standards help to enforce quality, increase
productivity, facilitate the management process, and reduce misinterpreta-
tion. Three well-known U.S. Government Department of Defense guidelines
are MIL-STD-483, DOD-STD-480A, and MIL-STD-1521A. Additionally, soft-
ware quality assurance standards are applied to configuration management. 

80.4.3 Configuration control 

A key responsibility of configuration management is to keep track of
changes (e.g., new features, upgrades, bug fixes, etc.). A system is composed
of numerous interrelated subsystems and/or programs. Each time a sub-
system or program is changed, a new version of the system is created.
Because the subsystems are interrelated, it is essential that the active version
be carefully controlled. For example, a change intended for version 2 may
not work or may introduce serious ripple effects if it is incorporated directly
into version 3. 

80.4.3.1 Establishing a baseline 
The term baseline comes from surveying. It refers to an initial line that serves
as a reference point for all other measurements. In configuration manage-
ment, the baseline is typically defined as an outcome or milestone of system
development; for example, the version of the system on which the final sys-
tem test is performed might serve as the initial baseline. All changes are
made relative to the baseline. 

80.4.3.2 Version control 
The objective of version control is to track and manage multiple versions of
the system and its components. As a minimum, version control should

1999 by CRC Press LLC



maintain for each system, subsystem, and/or program a production ver-
sion, the most recently changed version, and a test version. Additionally,
many organizations maintain a repository library of historical versions. The
most recently changed version (which presumably worked) serves as back-
up in the event of problems with the production version. Changes are made
only to the test version. After a change (or set of changes) has been thor-
oughly tested, the test version becomes the production version and a new
test version is initiated.

Often, multiple non-emergency changes are accumulated over time,
incorporated in the test version, and released at regular intervals. For exam-
ple, a university might accumulate changes throughout the first semester,
freeze the new version (Section 80.4.3.3) on the day the semester ends, test
the new version over the semester break, and release the new version to pro-
duction at the start of the next semester. Note that once the system is
released, no additional changes are permitted to the production version
until the next release cycle. The result is a stable, dependable production
system. Also, grouping changes makes it easier to identify ripple effects and
helps to ensure that the documentation is updated to reflect the changes.
Limiting changes to a scheduled release cycle can cause the system to lag
behind technological breakthroughs, however. 

80.4.3.3 Freezing the system 
Before the changes are implemented, the test system is frozen. The freezing
process involves archiving the entire system, including the executable pro-
grams, data files, source code, and related documentation. The usual prac-
tice is to store the archived file on a back-up medium, such as magnetic tape.
Should the system fail or become unstable when the changes are made, the
archive can be used to reestablish the pre-change version. 

80.4.3.4 Benchmarks 
At the time the system is frozen, benchmark measurements (execution time,
response time, and the like) should be taken for the system. The idea is to
establish concrete parameters for measuring baseline performance. Unless
the system’s pre-change performance is known, there is no way to measure
the effect of the change. 

80.4.3.5 Regression testing 
Once the changes are made, the system must be tested. Unit test all affected
programs or components. Then system test the application. Finally, perform
regression tests to measure how the change affected response time and other
standard performance metrics. The benchmark measurements taken on the
baseline is the key to regression testing. The idea is to prove that the old and
new versions of the system are functionally equivalent. 
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80.4.3.6 Establishing a new baseline 
After the changes have been implemented and thoroughly tested, the new
version is submitted to the configuration approval board. After approval is
granted, the production system is frozen, the new version of the test system
becomes the production system, and a new baseline (the old production sys-
tem or the new production system, depending on the configuration man-
agement standards in use) is established. 

80.4.4 Configuration auditing and reporting 

The purpose of configuration auditing is to ensure that the approved
changes (and only the approved changes) have been implemented. The
auditing process reviews all the changes, investigates any conflicts or ripple
effects, and looks for omissions or violations of configuration management
standards. An audit can be performed after all changes are implemented,
but intermediate audits following important changes are a good idea. The
purpose of configuration reporting is to ensure that the changes are broad-
cast so that everyone involved with the system is aware of the new version. 

80.5 Key terms 
Adaptive maintenance — Maintenance activities intended to enhance

the system by adding features, capabilities, and functions in response
to new technology, upgrades, new requirements, or new problems. 

Baseline — An initial line that serves as a reference point for all other
measurements; an established version of the system that serves as a
reference point for future changes. 

Benchmark — A set of performance measurements for the baseline. 
Configuration approval board — A committee that reviews change

requests and proposed adaptive and perfective maintenance tasks,
authorizes work to begin, and schedules the work. 

Configuration audit — An audit intended to ensure that the approved
changes (and only the approved changes) have been implemented. 

Configuration item — A resource that supports configuration management. 
Configuration management — The process of defining, managing, con-

trolling, and auditing the changes made to the original system. 
Configuration object — A concrete tool that can be used to support the

change process. 
Configuration reporting — The process of broadcasting (or reporting)

the changes so that everyone involved with the system is aware of the
new version. 

Freeze — To archive the entire system, including the executable pro-
grams, data files, source code, and related documentation, prior to
making a change. 
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Perfective maintenance — Maintenance activities intended to enhance
the system by improving efficiency, reliability, functionality, or main-
tainability, often in response to user or system personnel requests. 

Regression test — A test designed to measure how a change to a system
affects response time and other standard performance metrics. 

Version control — A set of tools and procedures used to track and man-
age multiple versions of the system and its components. 

80.6 Software 
Numerous configuration management and version control software pack-
ages are commercially available. Examples include CMVC (Configuration
Management Version Control) from IBM, PVCS from Intersolv,
SPARCworks/TeamWare from Sun Microsystems, STS/CM (Configuration
Management) from Neuma Technology Corporation, VCS-UX Version
Control System from Diamond Optimum Systems, Inc., and Visual
SourceSafe from Microsoft. QVCS (Quma Version Control System) is a
shareware product. This list is by no means complete, nor does it constitute
an endorsement. 
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81.1 Purpose 
The objective of the maintenance stage is to keep the system running at an
acceptable level. This chapter discusses types of maintenance and tech-
niques for managing maintenance. 

81.2 Strengths, weaknesses, and limitations 
Where appropriate, the strengths and weaknesses associated with specific
maintenance tools and techniques will be discussed in context. 

81.3 Inputs and related ideas 
Maintenance is the last stage in the system development life cycle and, con-
sequently, is affected by everything that happens in the previous stages.
Errors made during the analysis and design stages can significantly impact
maintenance. More specifically, maintenance relies on the documentation
created during the analysis (Part IV), design (Part VI), testing (Chapters 74
and 75), and implementation (Chapter 76) stages, and the system mainte-
nance life cycle parallels the system development life cycle. 

81.4 Concepts 
Maintenance begins when the system is released and continues for the life
of the system. Over a period of years, it is not unusual for the cost of main-
taining a system to significantly exceed the cost of developing it, so a pri-
mary objective is controlling maintenance costs. When the cost of maintain-
ing and operating an obsolete or inefficient system exceeds the cost of
replacing it, the system life cycle ends and a new life cycle begins. 

81.4.1 Development and maintenance 

The key to controlling maintenance costs is to design systems that are easy
to change, so the link between development and maintenance is very strong.
Using such tools as database management software (Chapter 45), data nor-
malization (Chapter 28), program generators, fourth-generation languages,
structured techniques (Chapter 62), and object-oriented techniques
(Chapters 29 and 66) forces the system designer to create independent mod-
ules, to separate the logic from the data, and to avoid programming “tricks.”
Coding standards can help to enforce a consistent software style that helps
to minimize the maintenance programmer’s learning time. Walkthroughs
and inspections (Chapter 23) are excellent tools for enforcing standards and
also help to familiarize personnel with the work of others. 

Many of the analysis and design methodologies, tools, and techniques
employed during system development can be applied to system 
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maintenance, but there are significant differences between development and
maintenance. System development (typically) focuses on new systems and
considers such issues such as functional productivity, flexibility, integrity,
and user friendliness. Maintenance, in contrast, is concerned with refining
and improving the operational efficiency and effectiveness of an existing
system and, consequently, is constrained by the existing system’s scope,
boundaries, and platform, and often must be performed in a short time
frame and with a limited budget. Development is a one-time activity, so out-
sourcing is a viable option. Maintenance is a continuing activity more
appropriately performed by in-house personnel. Finally, such resources as
test data and test cases, program code, and documentation must be created
by the system developers, but are available to the maintenance personnel. 

81.4.2 Types of maintenance 

There is much more to maintenance than fixing bugs. The categories sug-
gested by Swanson2 and extended by Reutter1 are widely accepted. 

81.4.2.1 Corrective maintenance 
The objective of corrective maintenance is to remove errors or bugs from the
software, the procedures, the hardware, the network, the data structures,
and the documentation. Corrective maintenance activities include both
emergency repairs (fire fighting) and preventive (or corrective) repairs. For
example, maintenance programmers are concerned with such tasks as
removing residual software bugs, improving the integrity and reliability of
the programs, streamlining and tightening data validation routines, correct-
ing invalid processing and reporting, and minimizing downtime. 

Maintenance programmers use such traditional debugging tools as sta-
tic code analyzers, on-line debuggers, and dynamic debugging tools. On-
line debuggers are used to trace the order in which modules are executed or
to exhibit the names and data values of selected variables as they change.
Dynamic debugging tools are used to identify all the possible paths to a
given statement, to flag all the statements that modify or access a given data
element, or to allow the programmer to determine what happens if the
value of a given variable is changed. 

In an ideal world, systems and software are so reliable that the need for
corrective maintenance does not exist, but that ideal world does not exist
and probably never will. However, using such tools as database manage-
ment software, application development systems, program generators,
fourth-generation languages, structured techniques, and object-oriented
techniques can significantly improve software reliability. 

81.4.2.2 Adaptive maintenance 
The point of adaptive maintenance is to enhance the system by adding fea-
tures, capabilities, and functions in response to new technology, upgrades,
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new requirements, or new problems. Note that adaptive maintenance is
reactive. The idea is to fix the system when the general business climate,
competition, growth, new technology, or new regulations make change 
necessary. The key to minimizing adaptive maintenance costs is to isolate
system-dependent features. 

81.4.2.3 Perfective maintenance 
The point of perfective maintenance is to enhance the system by improving
efficiency, reliability, functionality, or maintainability, often in response to
user or system personnel requests. Corrective and adaptive maintenance are
reactive. Bugs are fixed as they are discovered. An upgrade to an operating
system can necessitate a change to application software. Perfective mainte-
nance, in contract, is proactive. The idea is to fix the system before it breaks. 

Restructuring efforts are aimed at enhancing performance without
changing how the system works or what it does. The code might be con-
verted to a more efficient language or run through an optimizing compiler.
Code conversion software might be used to reorganize the code or convert
the logic to a more structured form. Note that the code is not rewritten, just
restructured. 

The point of reengineering is to change the system to make it better
without affecting its functionality or external behavior. The idea is to grad-
ually “clean up the mess” by doing such things as restructuring files and
databases and encasing old code in a wrapper of well-structured or object-
oriented code. Reengineered software is easier to reverse engineer or to farm
out to subcontractors. 

The objective of reverse engineering is to extract an abstract model from
the system’s physical documentation and then use the model as a base for
creating a functionally equivalent system. For example, an analysis of a set
of source code might generate a structure chart, a set of data dictionary
entries, or an entity-relationship diagram. Reverse engineering has been
applied to software almost as long as software has existed. For example,
Microsoft might reverse engineer its Excel spreadsheet program to produce
equivalent programs to run on different computers or to create an object-
oriented version of Excel. 

81.4.2.4 Preventive maintenance 
Although not explicitly part of the Swanson/Reutter model (except by
implication), ongoing preventive maintenance is an important part of any
system’s standard operating procedures. The objective of preventive main-
tenance is to anticipate problems and correct them before they occur. Files
and databases must be updated, periodically reorganized, and regularly
backed up. Control totals must be reset. New software releases must be
installed. 

System performance monitoring is an important key to preventive
maintenance. The idea is to conduct periodic audits and to run regular
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benchmark tests to determine if the system is continuing to perform to
expectations. Both hardware and software are monitored to measure system
load and system utilization. The information derived from performance
monitoring provides an early warning of potential system problems and
often initiates other forms of maintenance. 

81.4.3 Managing maintenance 

Maintenance is expensive. The elements of a system often interact in unex-
pected ways, and ripple effects (unexpected bugs or new errors caused by a
change intended to fix an initial problem) can be devastating. Sometimes,
apparently unrelated maintenance problems are tightly linked. Consequently,
maintenance must be carefully managed. Formal maintenance procedures are
the key to managing maintenance. 

81.4.3.1 The system maintenance life cycle 
The system maintenance life cycle is similar to the system development life
cycle. Configuration management (Chapter 80), the process of managing
and controlling changes to a system, defines a context or methodology,
including formal procedures for requesting, evaluating, and implementing
changes. Evaluation analysis (a phase that parallels the information gather-
ing and problem definition stage of the system development life cycle) is
used to assess the impact of a proposed change. The objective is to identify
and document the applications, programs, routines, and other components
that must be modified, the likely impact of the change on normal opera-
tions, and the time, cost, and other resources required to implement the
change. Next, the change is analyzed, designed, coded, and tested. After the
work is done, the change is released (Chapter 76). 

81.4.3.2 Prioritization 
Given the budgetary and resource constraints imposed on the system main-
tenance process, it is not unusual to have a backlog of change requests.
Some organizations rely on simple first-in-first-out or (less frequently) last-
in-first-out schemes to prioritize the requests. Other organizations prioritize
the requests based on a preliminary evaluation analysis (Section 81.4.3.1).
Note that a sound evaluation analysis is the key to deciding if maintenance
or new system development is needed to solve the problem. 

81.4.3.3 Fire fighting 
Some maintenance problems require an immediate response. Following a
system crash, a major integrity threat, the release of a new government reg-
ulation with a tight deadline, or a similar problem, a fix is needed right now,
and formal procedures must wait. Such fire fighting activities are (or should
be) relatively rare, however, and emergency patches should be formally
incorporated into a subsequent release. 
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81.4.3.4 Standards and quality assurance 
Many system developers (and many maintainers) view all maintenance as
fire fighting. Consequently, in their rush to get the job done, they sometimes
ignore or disregard quality assurance and other standards. It is important
that all changes be made in a consistent manner. Consequently, such stan-
dards as code efficiency targets, fault tolerance rates, operational sequence
optimization guidelines, and expected performance norms must be estab-
lished and enforced, and even true fire fighting activities must be brought
up to standards after the fact. 

81.5 Key terms 
Adaptive maintenance — Maintenance activities intended to enhance

the system by adding features, capabilities, and functions in response
to new technology, upgrades, new requirements, or new problems. 

Configuration management — The process of defining, managing, con-
trolling, and auditing the changes made to the original system. 

Corrective maintenance — Maintenance activities intended to remove
errors or bugs from the software, the procedures, the hardware, the
network, the data structures, and the documentation. 

Evaluation analysis — A maintenance phase (similar to the problem
definition stage in the system development life cycle) during which
the impact of a particular change is evaluated. 

Fire fighting — Making emergency repairs, often under extreme time
pressure. 

Maintenance — The final stage of the system development life cycle; a
continuing series of activities and costs intended to keep the system
running at an acceptable level. 

Perfective maintenance — Maintenance activities intended to enhance
the system by improving efficiency, reliability, functionality, or main-
tainability, often in response to user or system personnel requests. 

Preventive maintenance — Regularly scheduled maintenance activities;
the intent is to anticipate problems and correct them before they
occur. 

Reengineering — Changing a system to make it better without affecting
its functionality or external behavior. 

Restructuring — Efforts aimed at enhancing performance without
changing how the system works or what it does. 

Reverse engineering — Extracting an abstract model from a system’s
physical documentation and then using the model as a base for cre-
ating a functionally equivalent system. 

Ripple effects — Unexpected bugs or new errors caused by a change
intended to fix an initial problem. 

Static code analyzer — A program that scans (but does not execute) the
code and flags such potential errors as synonyms, poor structure,
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inconsistent usage, dead code, unreferenced variables, and other
deviations from coding standards. 

81.6 Software 
Numerous configuration management and version control software pack-
ages are commercially available. Examples include CMVC (Configuration
Management Version Control) from IBM, PVCS from Intersolv,
SPARCworks/TeamWare from Sun Microsystems, STS/CM (Configuration
Management) from Neuma Technology Corporation, VCS-UX Version
Control System from Diamond Optimum Systems, Inc., and Visual
SourceSafe from Microsoft. QVCS (Quma Version Control System) is a
shareware product. This list is by no means complete, nor does it constitute
an endorsement. 

Debugging tools, such as static code analyzers, on-line debuggers, and
dynamic debugging tools are found in most software development envi-
ronments. 
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82.1 Purpose 
The purpose of database administration is to provide reliable, consistent,
secure, and available corporate-wide data. This chapter discusses the roles
performed by database administration, distinguishes database administra-
tion and data administration, and describes several database operation and
maintenance issues. 

82.2 Strengths, weaknesses, and limitations 
Where appropriate, the strengths and weaknesses of various techniques will
be discussed in context. 

82.3 Inputs and related ideas 
Database administration uses such tools as CASE (Chapter 5), the data dic-
tionary (Chapter 25), entity-relationship models (Chapter 26), and data nor-
malization (Chapter 28). Database design is discussed in Chapter 45. System
controls are discussed in Chapter 77. Several key data concepts are intro-
duced in Chapters 43 and 44. 

82.4 Concepts 
The purpose of database administration is to provide reliable, consistent,
secure, and available corporate-wide data. This chapter discusses the roles
performed by database administration, distinguishes database administra-
tion and data administration, and describes several database operation and
maintenance issues. 

82.4.1 Database administration roles 

Although database administration (DBA) means different things to different
organizations, the overall objective is to achieve centralization and control
of the corporation’s data resource. 

82.4.1.1 Planning 
Database administration is responsible for developing a strategy for the 
control and use of corporate data and for developing, implementing and
supporting standards, guidelines, and tools that are consistent with the
strategy. The planning task includes performing strategic planning for 
managing and centralizing data; evaluating, selecting, and implementing a
database management system (DBMS) and related hardware and tools; and
ensuring that priorities for application development are consistent with the
long range data strategy. 
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82.4.1.2 Design 
Both conceptual and physical database design (Chapter 45) are database
administration (DBA) responsibilities. The DBA group provides technical
and design support for application developers and controls the conceptual
design to ensure that it is consistent with and integrated into the corporate
data strategy. Physical database design requires making effective use of the
database management system and related tools. Additionally, the DBA
group establishes corporate guidelines and standards to ensure data consis-
tency across applications. 

82.4.1.3 Operation and control 
The database administration group supports existing operational systems
and is responsible for data integrity, security, availability, and the perfor-
mance of the database management system. Database administration also
provides education and support for the use of the data standards, guide-
lines, and tools. 

82.4.1.4 Usage 
Database administration provides documentation and support for using
data by developing and enforcing standards for database content and use.
Data dictionaries (Chapter 25) and CASE (Chapter 5) are used to develop
documentation, enforce standards, and support design. Tools such as query
languages also fall under DBA control. Knowledge, education, and support
for all database-related software are other DBA responsibilities. 

82.4.2 Data administration 

The management side of the database administration group is sometimes
called data administration (DA). The data administration people are the pol-
icy setters and decision makers responsible for the corporate data. They pro-
vide an executive level vision of the corporate data needs. The broader data-
base administration group includes the technicians who implement and
enforce the decisions and standards the data administration people put in
place.1 Data administration tends to deal with the conceptual side of the
data and database administration deals with the physical side. 

Whether or not this break is formalized, database administration calls
for a blend of management, technical, and interpersonal skills. Data pro-
cessing skills are rarely used directly, but the database administration group
must have an appreciation for them. Technical skills are required to provide
ongoing support for the use of the data model. Interpersonal skills are
required because database administration must resolve across functional
boundaries any conflicts that concern how the data will be stored and pre-
sented. Data administration calls for stronger interpersonal skills to work
with the users during logical design. 
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82.4.3 Operation and maintenance issues 

This section covers several database administration operation and mainte-
nance standards, tools, utilities, and methods. 

82.4.3.1 Implementation guidelines 
Implementation guidelines define how applications will be developed and
installed with respect to data. The database administration role is primarily
physical database implementation and support, but some of the coding
effort may be defined and enforced by the DBA group. 

82.4.3.2 Error handling 
Database administration is responsible for the error-handling routines that
protect the integrity of the database. Techniques for handling errors may
require common error routines to ensure databases are rolled back to a point
of consistency in the event of an error. Typically, all transactions running 
in a database management system environment are logged on a transaction
log and the database is not permanently altered until the transaction is 
run to completion or committed. Error handling becomes more complex if
more than one database management system is involved in a transaction.
Techniques such as two-phase commits may be employed. Two-phase com-
mits synchronize the committing of transaction changes across multiple
database management systems to ensure that the transaction is either run to
completion or is rolled back on all of the systems. 

82.4.3.3 Security 
Security is a means of ensuring data integrity and protecting confidential
information by controlling who has the authority to view, alter, or delete the
data in a database. The ultimate responsibility falls on database administra-
tion, but the ability to grant authority can be delegated to other individuals
as long as DBA maintains control. Security can be implemented in the data-
base management system itself or controlled at the application level. 

82.4.3.4 Backup and recovery 
The responsibility for designing and implementing backup and recovery
procedures rests with database administration. Data can be lost in many
ways, including program errors, hardware failures, incorrect changes, and
bad input data. A backup copy is used to restore a table of data to the point
in time when the copy was made. Recovery procedures help to ensure that
the recovered data are correct. 

Backup copies of database tables and transaction log files are the pri-
mary inputs for backup and recovery. All changes of any type to the data-
base are stored on the log. With a backup copy of a table and the contents of
the log since that copy was made, a table can be recovered to the point
where the failure occurred. To avoid recovering “bad” transactions, a 
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well-designed recovery procedure allows the system to be recovered to any
point in the log. 

Synchronization is an important issue because simply recovering a table
does not mean that it is in synch with other related tables in the database.
For instance, a given table could contain data that are related to other tables,
because deleted data in other tables or the recovered data could contain 
broken relationships that point to non-existing data. The only way to ensure
data integrity is to recover the complete set of relationally connected tables
(a referential group) to a consistent or current point. 

Points of consistency can be established in two ways. The first is to dis-
able the database and backup the entire referential group. The database
must be disabled to ensure that no tables are changed from the time the
backup process starts until it is complete. Disabling the database while
backups are run is not always acceptable, however, because some applica-
tions cannot afford the downtime. 

Some database management systems provide a means for establishing a
synch point for a set of tables. As transactions are processed against the
tables, new transactions are held until the entire set of tables is free from
processing. At this time, all the tables are guaranteed to be in synch, and the
synch point is recorded on the transaction log. Although the act of estab-
lishing a synch point makes the tables unavailable for a time, the duration
is very short and, if run during off-peak hours, not noticeable. 

Synch points do not eliminate the need for backup; they simply elimi-
nate the need to take the database off-line to back it up. Backup copies
should still be taken prior to establishing the synch point. Recovery time
will then be short, because only a small piece of the log will be needed. 

Another option available on some database management systems is to
take incremental backups of tables. An incremental backup copy contains
only the data that have changed since the last full or incremental backup.
Recovery then starts with the latest full copy, adds any incremental changes,
and uses the log from that point. 

Note that the log is a finite file with a defined upper limit on its size, so it
must periodically be cleared so that changes can continue to be recorded. The
existing log information cannot be destroyed unless all the tables in the data-
base have been backed up since the log was previously cleared, but the log
may become full at any time. To get around these problems, the existing log
file is typically archived or backed up and then reset to empty. Subsequently,
the archived log files can be used should recovery become necessary. 

The goal is to create a complete backup and recovery plan that  . . .min-
imizes downtime (for taking backups) and also minimizes recovery com-
plexity and time. Backups can be scheduled, perhaps (depending on appli-
cation requirements) when the application is not running. Recovery howev-
er must be performed whenever the need arises (usually at the worst possi-
ble time). The issue becomes more complex when the data are centralized
and multiple applications access a single, corporate-wide database. 
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82.4.3.5 Concurrency control
Concurrency issues arise when multiple users can access a database simul-
taneously. If precautions are not taken, lost updates, uncommitted depen-
dencies, and inconsistent analysis problems can arise, all of which affect
database integrity. 

82.4.3.5.1 Locking The solution to these multi-user pitfalls is locking.
It is a simple concept. When the data must remain consistent during the
entire execution of a transaction, the application routine locks the relevant
data, thus denying other transactions the ability to change the data. The
transaction can then be processed to completion and concurrency-related
problems will be eliminated.1

Locking can be performed at many levels or granularities (e.g., the
entire database, individual tables, physical pages of data within tables, or
individual rows). Higher granularity (i.e., locking a bigger object) implies
lower lock maintenance overhead, but it also implies a lower level of con-
currency. In other words, granularity and concurrency are tradeoffs. In gen-
eral, choose the highest level of granularity that will support the required
level of concurrency. Some database management systems provide the abil-
ity to control the duration that locks are held by transactions, thus allowing
the level of concurrency to be increased in some situations. 

82.4.3.5.2 Optimistic concurrency A transaction that maintains locks
while information is displayed for update is considered to be a conversa-
tional transaction. On such transactions, there is active communication with
the database management system and the appropriate locks are maintained
for the duration of the transaction. Locking may be the only viable alterna-
tive, but it can cause problems. 

Consider, for example, the following scenario. A bank teller has just
begun updating a customer’s address when he or she is interrupted for
some reason. The appropriate data have already been accessed, and locks
are being held against the data displayed on the screen. If the locking level
is coarse (e.g., a page or a table), then locks are also being held against other
customers and no information can be updated for those other customers. If
the teller is distracted for a long period of time, other tellers and customers
will be inconvenienced. 

An alternative is to break the transaction into two transactions, one that
reads the information and displays it (TRANR) and another that interprets
data changes and updates the database (TRANU). An exposure exists
between the time the data are displayed and subsequently updated because
once the locks are released, another transaction might update the informa-
tion. This could lead to lost updates when TRANU writes old information
over a new change. 

The best way to avoid the problem is to determine if the data were
updated after the locks were released by TRANR. Typically, all update
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transactions are required to maintain in the database row-level timestamps
indicating the time of the most recent change. Copies of the rows that were
displayed by TRANR are maintained in memory. TRANU reads updated
timestamps from the rows it wants to change and compares the timestamps
to the copies in memory. If the timestamps match the ones in memory, then
no changes were made and the updates can be performed. If there is a con-
flict, then the application must resolve it, possibly by redisplaying the
changed row(s) and asking the user to resubmit the changes. 

This method of concurrency control, known as optimistic concurrency,
adds overhead to the system but greatly improves the concurrency poten-
tial. Once again, database administration is faced with a tradeoff, and 
the method chosen will vary from application to application based on
requirements. 

82.5 Key terms 
Backup and recovery — Logging transactions and database changes,

periodically making backup copies of databases, and recovering
databases in the event of a failure or loss of data. 

Checkpoint — A point at which the database and the transaction logs
are physically synchronized. 

Concurrency control — Ways of preventing data loss or data corruption
when multiple transactions can be updating a database at the same
time. 

Conversational transaction — A transaction that maintains locks while
information is displayed for update. 

Data administration (DA) — An administrative function charged with
the overall responsibility for data resources in an organization. 

Data integrity — The state of a database that is protected against loss or
contamination; data integrity is ensured by carefully controlling and
managing data entry, data maintenance, and data access from the
time the data first enter the system until they are of no further use. 

Database administration (DBA) — A technical group charged with the
physical functioning of an organization’s databases, including back-
up and recovery, performance, and security enforcement. 

Database management system (DBMS) — A software package that
provides a means to define, maintain, control, and administer a data-
base and its applications. 

Deadlock — A situation that occurs when two or more transactions are
waiting for a resource that the other transaction has locked; both
transactions will hold their locks waiting for the needed resource to
be unlocked. 

Granularity — The level of locking; for example, the entire database,
individual tables, physical pages of data within tables, or individual
rows. 
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Incremental backup copy — A backup copy that contains only the data
that have changed since the last full or incremental back up was per-
formed. 

Locking — The process of allocating control over a database resource to
a specific transaction to avoid problems associated with concurrent
use. 

Log — A file containing a record of all database changes. 
Optimistic concurrency — Breaking a transaction into two transactions,

one that reads the information and displays it, and another that inter-
prets data changes and updates the database, and releases locks
between those transactions. The system is optimistic that no other
users will change information between the read and update transac-
tions. If another user does change the information, the update trans-
action is lost. 

Referential group — A complete set of relationally connected tables. 
Security — Steps taken to protect a database from unauthorized access. 
Synch point — A point at which a complete set of relationally connected

tables (a referential group) is consistent. 
Synchronization — The act of ensuring that a complete set of relation-

ally connected tables (a referential group) is consistent. 
Transaction — The sequence of steps required to carry out an event

about which data are recorded or processed. 
Two-phase commit — A process of committing changes across multiple

database management systems. In the first phase each DBMS votes
on whether they can commit a transaction. If all vote yes, the trans-
action is committed on all. If any vote no, the transaction is rolled
back on all. 

82.6 Software 
Many CASE products (Chapter 5), such as Texas Instrument’s Information
Engineering Facility (IEF), include software to provide integrated support
for both database and application design. Other tools such as automated
data dictionaries (Chapter 25) provide support as well. Most full functioned
database management systems provide a set of utilities or commands that
support the creation, maintenance, control, and administration of data-
bases, including back up and recovery. Access, Paradox, dBase, Filemaker
Pro, Approach, 4th Dimension, and Alpha Four are popular microcomputer
database management programs. Examples of mainframe database soft-
ware include DB2, IDMS, and ORACLE. 
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Glossary 

5W analysis — (40) The first step in the business function-task analysis
process during which the focus group is asked to answer five key
questions (how, where, what, who, and when) about relevant func-
tions, processes, and data elements. 

A-specs (system/segment specifications) (SSS) — (35) A hierarchy of
requirements specifications that logically defines the system from its
high-level objectives down to the configuration item level. (41) A
set of specifications that identify major systems and subsystems at a
conceptual level; the system/segment specifications define the
requirements down to, but not including, the configuration item
level; sometimes called the project or mission requirements. 

Abrupt cutover (crash cutover, direct cutover) — (76) A system release
strategy in which the old system is discontinued on a predefined date
and the entire organization switches directly to the new system.

Abstraction — (61) A problem-solving technique that focuses on inves-
tigating the most critical aspects of a problem and using the results to
suggest a solution. 

Access vector — (43) A list of pointers providing access to a set of data
items. 

Act fork — (57) A point on a decision tree (represented by a box) where
a decision is made. 

Action diagram — (65) A tool used in James Martin’s Information
Engineering methodology to plan and document both an overview of
program logic and the detailed program logic. 

Action entry — (58) The box at the lower right of a decision table where
the appropriate action is indicated. 

Action-oriented question-answer dialogue — (49) A form of dialogue
that requires a single keystroke response to trigger an action. 

Action stub — (58) The box at the lower left of a decision table where
the possible actions are listed. 

Activity — (20, 21, 22) A task to be completed. 
Activity (function) — (30) A process or event that moves a system from

one state to another. 
Actor — (29, 66) A person or entity external to the system. 



Adaptability — (42) A measure of the ease of changing or modifying a
system, often in response to a technological change. 

Adaptive maintenance — (80, 81) Maintenance activities intended to
enhance the system by adding features, capabilities, and functions in
response to new technology, upgrades, new requirements, or new
problems. 

Adaptive routing — (54) A distributed routing technique that selects the
best route based on such criteria as the speed, capacity, or cost of the
link, the utilization rate of a particular node, the failure rate of a par-
ticular path, the type of data transmitted, response time, throughput,
and so on; also known as dynamic routing. 

Afferent process — (61, 62) A process that gathers and prepares input
data. 

Aggregation — (29) A description of part-of relationships among
objects; the higher-level objects are completely described by all of
their components. 

Algorithm — (43) A rule for arriving at an answer in a finite number of
steps. 

Alias — (25) An alternate name for a data element. 
Alpha test — (74) A controlled environment test in which the designers

demonstrate key system functions, perhaps selected by the users, and
the users manipulate the system under developer guidance. 

Analysis — (1, 72) To attack a problem by breaking it into subproblems;
the second step in the system development life cycle (following 
problem definition) during which the responsible people determine
exactly what must be done to solve the problem. 

Analytic model — (19) A mathematical equation(s) that will give the
value of an output when an input value is specified. 

Ancestor — (43) A parent of a parent (or an ancestor). 
Anti-virus software — (71) Software designed to recognize certain code

patterns (called virus signatures) and sound an alarm when a virus is
detected. 

Applet — (51) A small application program that performs a single task. 
Application analysis — (42) A study of the interactions and relation-

ships between the hardware and software resources; typically, all the
required software is installed on a test system and the behavior of the
hardware is evaluated as the applications run. 

Application based documentation (execution-oriented documenta-
tion) — (70) Documentation designed to support an application. 

Application entity diagram — (4) An entity diagram that combines all
the user entity diagrams and merged entity diagrams for the entire
application. 

Application generator (generator, program generator) — (31, 32) A pro-
gram that starts with information in graphical, narrative, list, or some
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other logical form and generates the appropriate source or executable
code. 

Arc — (43) An edge on a directed graph. 
Archive (history file) — (44) A file that holds already processed trans-

actions or no longer current master records. 
Array — (43) An elementary data structure that resembles a table; typi-

cally, one data element is stored in each array cell and the cells are
distinguished by subscripts. 

Arrival rate — (79) The number of arrivals per unit of time. 
Assignable cause variation — (10) Variation that is not part of the

design of the process; the sources or factors producing assignable
cause variation can, by definition, only affect a subset of the output
from that process. Assignable cause variation is sometimes referred
to as special cause variation. 

Assistance dialogue — (49) A form of dialogue designed to provide help
with command syntax, error messages, error identification, error
symptoms, and so on. 

Association — (29, 66) A relationship between objects that indicates
some meaningful and interesting connection. 

Association — (73) A link between two or more events defined by prece-
dence requirements and similar conditions. 

Asynchronous event — (73) An event that can occur at any time and is
not synchronized with other events. 

Attribute — (25, 26, 27, 28, 43, 44) A property of an entity. 
Audit — (77) A study of a system or a process designed to ensure that

the established procedures and controls are followed. 
Audit test — (74) An objective, in depth white-box evaluation of the sys-

tem and its components to verify that the system is free of errors. 
Authentication — (71) The process of verifying the user’s identity. 
Author — (23) In an inspection, the person (or the team leader) who pre-

pared the documentation or the code being inspected. 
Automation boundary — (36) A line drawn around one or more

processes on a data flow diagram, thus grouping them to form a sin-
gle program or procedure; a set of automation boundaries defines a
family of alternative solutions. 

Availability requirements analysis — (53) A network analysis process
that helps to determine and document the effect of time differences
(time zone shifts) between the different geographical areas covered
by the network. 

B-specs (system/segment design document) (SSDD) — (35) A black-
box specification defined for each physical component at (or directly
below) the configuration item level; (41) a set of specifications that
define, in black-box form, the components that occupy the configu-
ration item level. 
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Backtracking — (34) Reviewing or checking what has already been
done and attempting to find another path or another way to accom-
plish the goal(s); (75) tracing backward from an error until the error’s
cause is found.

Backup — (42) A duplicate copy of a set of data, a program, a hardware
component, or some other system element that is used to restore the
system in the event of failure. 

Backup and recovery — (82) Logging transactions and database
changes, periodically making backup copies of databases, and recov-
ering databases in the event of a failure or loss of data. 

Backup file — (44) A file that holds a copy of a master or transaction file;
backup files are used to recover data if disaster strikes. 

Backward chaining — (34) A goal-oriented search technique that starts
with the desired goal state and works backward to the initial state by
applying the inverse operator. 

Balance — (24) A characteristic of an exploded data flow diagram in
which each input from and output to the parent level is accounted for. 

Balk — (79) To leave without joining the queue. 
Balking — (19) The act of walking away from a queue; usually occurs

when the queue is either too long or at maximum capacity. 
Baseline — (80) An initial line that serves as a reference point for all

other measurements; an established version of the system that serves
as a reference point for future changes. 

Batch processing — (72) A processing technique in which transactions
are accumulated over time and the system’s status is updated at the
end of a business cycle. 

Behavioral requirement — (35) A requirement that defines something
the system does, such as an input, an output, or an algorithm. 

Behavior-oriented paradigm — (16) An approach to requirements
analysis in which the analyst observes and investigates the problem
from the strategic level by focusing on executive decision-making
and problem-solving styles. 

Benchmark — (42) A standard program, procedure, or set of test data
used to measure such performance characteristics as a computer’s
processing speed; (80) a set of performance measurements for the
baseline. 

Benefits — (38) Advantages generated by or derived from the system. 
Best route algorithm — (54) An adaptive routing technique that uses

such parameters as the type of message, the rate of under-utilization
or over-utilization of a particular node, and the number of interme-
diate nodes between the source and the destination. 

Beta site — (76) The pilot site in a pilot implementation. 
Beta test — (74) A test conducted by (selected) real users who use real

hardware, real software, and real (unplanned) data to work on real
and imagined problems with any frequency and in any sequence. 
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Bi-directional flow — (50) A control flow in which the called window
can transfer control back to the calling window after execution. 

Bias — (9) Any factor that systematically favors some members of the
population over others when a sample is drawn. 

Binary tree — (43) A special type of tree in which each node has two
branches. 

Binding time — (62) The time at which a module’s values and identi-
fiers are fixed; for example, coding time, compilation time, load time,
or execution time. 

Biometric device — (71) A system component that can identify an indi-
vidual based on such biological criteria as a retinal scan, a fingerprint
analysis, a voice print, or a signature analysis. 

Birth — (72) The system life cycle stage during which the existing sys-
tem’s problems, errors, and missing features are identified and inves-
tigated and new opportunities suggested by emerging technologies
and user requests are examined and evaluated. 

Black box — (35) A routine, module, or component whose inputs and
outputs are known, but whose contents are hidden. 

Black-box testing — (74) A testing strategy that ignores the internal con-
tents of the module, program, subsystem, or system and considers
only the inputs and the outputs. 

Blind search — (34) A search technique that visits every node in the
search space while following a given solution path no more than
once. 

Block — (44) Two or more logical records stored together as part of the
same physical record. 

Bottleneck (choke point) — (53, 54) A place in the network where 
message flow exceeds capacity, resulting in delays and even lost 
messages. 

Bottleneck analysis — (42) A study of the waiting lines or queues that
develop within a system; the objective is to find choke points, or bot-
tlenecks; (79) the study of choke points or bottlenecks in a network. 

Bottom-up — (4, 15) A methodology (or an approach to problem solv-
ing) that starts with the details and works upward. 

Bottom-up design — (72) A data driven design strategy in which work
begins at the lowest level, typically with the detailed, computational
modules; when all the modules at one level are completed, work
progresses to the next higher level. 

Bottom-up testing — (74) A testing strategy that starts at the bottom and
works up through the hierarchy to the top. 

Boundary — (1, 72) An entity that serves to delimit or separate a system
from its environment. 

Boundary analysis (range constraint analysis) — (75) Generating test
data to represent such extreme values as upper bounds, lower
bounds, and other exceptional values. 
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Boundary object (interface object) — (66) An object that communicates
with the user or with other systems. 

Boyce-Codd normal form — (28) A relation is in Boyce-Codd normal
form (BCNF) if and only if every determinant is a candidate key. 

Bracket — (65) The basic building block of an action diagram. 
Brainstorming — (14) A small-group technique for soliciting and con-

solidating ideas and thoughts about a problem, a problem’s possible
causes, system requirements, alternative solutions, and similar
issues. 

Branch — (43) On a tree, a link between a parent and a child. 
Branch analysis — (75) A technique for generating test data by checking

the flow of logic through a program and providing data to ensure
that each logical path is followed; see also path test, junction test, and
loop test. 

Branches — (18) In a cause-and-effect diagram, the factors causing 
the effect of interest; branches are subdivided into big, medium,
small, and tiny branches. When the term fishbone diagram is used,
branches are referred to as bones. 

Breadth — (51) A measure of the number of items (e.g., menu choices)
on a single page. 

Breadth (span-of-control) — (61, 62) A measure of the number of mod-
ules directly controlled by a higher-level routine. 

Breadth search — (7, 34) A blind searching technique that investi-
gates all the nodes at a given level before moving down to the next
level. 

Bridge — (53) A computer that links two networks with similar proto-
cols; (69) a routine that converts the organization’s current data to a
format that is compatible with the purchased software. 

Broadcast routing — (54) A routing technique in which a header con-
taining the address of the receiving node is added to the message; the
message is then transmitted to all the nodes in the network, and the
node whose address matches the header reacts to the message. 

Browser — (51) A program that converts hyperlinks into the associated
URLs, requests pages from the Internet, and displays those pages. 

Bug — (75) An error or malfunction in a module, a program, a proce-
dure, a physical component, or a system. 

Burn-in period — (74) An initial period during which a hardware com-
ponent is run continuously in an attempt to find and eliminate start-
up errors. 

Bus network — (52) A network in which the host computer is located at
one end of a common communication line and all the other comput-
ers and peripherals in the network are attached to the same line. 

Business function-task analysis — (40) A methodology developed by
IBM in the 1960s to establish the relationships between an organiza-
tion’s data, processes, and organizational units. 
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Button bar — (50) A set of buttons that (typically) appears under the
menu bar; each button holds a symbol or icon that represents a func-
tion and provides a short cut to the function. 

Callback — (71) An authentication tool in which the host computer ver-
ifies the user code and password, breaks the connection (hangs up),
looks up the authorized telephone number for that user’s work-
station, and then redials the workstation. 

Candidate key — (28) A possible key; an attribute or group of attributes
that uniquely distinguishes one occurrence of an entity; note that a
given entity can have more than one candidate key.

Capability maturity model — (29) A comprehensive framework for
describing and evaluating the software development capability of an
organization. 

Cardinality — (4, 26, 27) A measure of the relative number of occur-
rences of two entities. 

CASE (computer-aided software engineering) — (5, 32) A set of auto-
mated tools that assist in the entire software engineering process. 

Case structure — (62) A selection structure with multiple alternative
paths; the path through the structure is normally based on the value
of a control variable. 

Census — (9, 17) A set of measurements (or interviews) for every ele-
ment of a population. 

Centralized management — (72) A management philosophy based on
integrated top-down control. 

Centralized routing — (54) A routing technique in which the central
node has super-authority over all the other nodes. 

Chaining — (44) Maintaining a linked list of the logical keys of the
records in a file. 

Change control procedures — (74) A set of procedures for recording,
assessing, controlling, and tracking all requests for change both dur-
ing and after the testing process. 

Checkpoint — (82) A point at which the database and the transaction
logs are physically synchronized. 

Child — (35) A related, lower-level requirement; (43) an immediate
lower-level node in a tree; (45) a lower-level record in a hierarchical
database structure. 

Child (son) — (62) An immediate lower-level module in a control struc-
ture; control passes from the parent to the child and then returns to
the parent. 

Choke point (bottleneck) — (53, 54) A place in the network where
message flow exceeds capacity, resulting in delays and even lost
messages. 

Circular linked list — (43) A linked list in which the last node points
back to the first node. 
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Class (object type) — (6, 66) A group of similar objects. 
Class, responsibilities and collaborations (CRC) technique — (66) A

technique for identifying operations. 
Class structure diagram — (29) A diagram that defines the groups or

classes the objects fall into and defines the structural relationships
between the groups. 

Client — (53) A computer (more generally, a node) that requests a ser-
vice from a server. 

Client/server — (53) A network in which client computers request ser-
vices from a central server computer. 

Client/server computing — (51) A form of networked computing in
which a computer that needs a service (the client) requests help from
a computer that has the ability to provide the service (the server). 

Closed question — (17) A question that requires one of several prede-
termined choices or that requires a single numerical response. 

Code generator — (2) A program that starts with information in graph-
ical, narrative, list, or some other logical form and outputs the appro-
priate source code; also called a generator or program generator. 

Coding error — (75) A syntax or command error. 
Cohesion — (3, 61, 62, 63) A measure of a module’s completeness. 
Coincidental cohesion — (62) The weakest type of cohesion in which

the elements are related almost by chance. 
Collaboration — (66) The embodiment of a contract between a client

and a server; the interaction that takes place when a class has a
responsibility it cannot fulfill alone and thus requests the necessary
service from a server. 

Collaboration diagram — (66) A diagram that shows the basic message
flow between objects and implies the associations between them. 

Collision — (44) In data management, an event that occurs when two or
more logical keys input to a hashing algorithm yield the same rela-
tive address. 

Collision detection — (54) A network management technique in which
the nodes are allowed to transmit at any time; if two messages col-
lide, the collision is sensed and the messages are retransmitted. 

Column header — (47) Documentation at the top of each page or screen
that identifies the field displayed in each column. 

Command-based interface — (48) A user interface that relies on cryptic
commands and/or specific keystrokes to identify the desired action. 

Command-oriented documentation — (70) Documentation that con-
tains all the commands used by the system and/or the program, usu-
ally arranged in alphabetical order. 

Commercial software package — (69) A set of prewritten application
programs that are commercially available for purchase or lease. 

Common cause variation — (10) Variation that is inherent to a process;
common cause variation has the ability to affect all output from a
process. All processes are subject to this form of variation. 
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Common-environment coupling — (62) A form of coupling in which
two or more modules interact with a common data environment,
such as a shared communication region or a shared file. 

Communicational cohesion — (62) A form of cohesion that groups ele-
ments that operate on the same set of input or output data or on the
same data structure. 

Comparator — (71) A software routine that compares the contents of a
file or a record before and after a transaction and reports any differ-
ences. 

Compatibility analysis — (75) A technique to generate test data to force
a program to obtain inputs from or send outputs to multiple versions
of a file or a database. 

Competitive procurement — (41) A set of procedures for subcontracting
work through a bidding process. 

Complex star network — (52) A network that consists of two or more
linked simple star networks. 

Composite — (24, 25, 26, 28, 33, 45) A set of related data elements; a data
structure. 

Composition — (29) A stronger form of aggregation, with the multiplic-
ity at the composite end being at most one. 

Compression — (51) Conserving memory, secondary storage space, and
data transmission time by removing repetitive or unnecessary bits
from data. 

Computer-aided software engineering (CASE) — (5, 32) A set of auto-
mated tools that assist in the entire software engineering process. 

Computer software configuration item (CSCI) — (41) A subsystem that
is to be implemented in software. 

Concentration point determination — (53) A network analysis process
that is concerned with the system’s concentration points (or hubs). 

Concept — (7) Knowledge in an abstract format that can be used to
guide a searching or reasoning process; (29) an object. 

Conceptual database design — (45) See logical database design. 
Conceptual model — (29) A model in which the real-world concepts

(i.e., the objects) are explicitly identified, their attributes are docu-
mented, and the associations among the objects are specified. 

Concurrency — (73) A measure of the number of tasks a system can
process concurrently. 

Concurrency control — (73) A database feature that synchronizes the
database and ensures that all copies of a given file contain the same
version of the available information; (82) ways of preventing data
loss or data corruption when multiple transactions can be updating a
database at the same time. 

Concurrency relationship — (65) A relationship between two (or more)
processes that can be performed concurrently. 

Concurrent — (73) Within the same time period. 
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Condition entry — (58) The box at the upper right of a decision table
where the responses (Y or N) to the questions in the condition stub
are listed. 

Condition stub — (58) The box at the upper left of a decision table
where the questions (or decisions) are listed. 

Confidence interval — (9) A range of numbers around an estimate that
contains the corresponding population parameter with the stated
probability; for example, a 95 percent confidence interval for an esti-
mate of the population mean is a range of numbers that contains the
population mean with 95 percent certainty. 

Configuration analysis — (42) A study of such system behavior and
performance characteristics as response time and reliability. 

Configuration approval board — (77, 80) A committee that reviews
change requests and proposed adaptive and perfective maintenance
tasks, authorizes work to begin, and schedules the work. 

Configuration audit — (80) An audit intended to ensure that the
approved changes (and only the approved changes) have been
implemented. 

Configuration item — (24, 41) A functional primitive that appears at the
lowest level of decomposition; (35, 62) a composite entity that
decomposes into specific hardware and software components; in a
data flow diagram, a functional primitive that appears at the lowest
level of decomposition; (80) a resource that supports configuration
management. 

Configuration item level — (24, 35, 41) An imaginary line that links the
system’s configuration items; a system’s physical components lie just
below the configuration item level. 

Configuration management — (80, 81) The process of defining, manag-
ing, controlling, and auditing the changes made to the original 
system. 

Configuration object — (80) A concrete tool that can be used to support
the change process. 

Configuration reporting — (80) The process of broadcasting (or report-
ing) the changes so that everyone involved with the system is aware
of the new version. 

Connection diagram — (53) A diagram that shows the topology, con-
nection points, traffic flows, and patterns of a network. 

Connectivity — (42) In a network, the ability of a given hardware or
software component to cooperate with other components supplied
by other vendors. 

Connector — (55) A flowcharting symbol that indicates that the logic is
continued at another place on the same page. 

Constraint requirement (design requirement) — (35) A requirement
that specifies such constraints as physical size and weight, environ-
mental factors, ergonomic standards, and the like. 
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Construction phase — (32) The rapid application development phase
during which a prototype is built, exercised, and modified based on
user feedback. 

Content coupling — (62) A form of coupling in which some or all of the
contents of one module are included in the other. 

Context diagram (level 0 data flow diagram) — (24) A data flow dia-
gram that documents the system’s boundaries by highlighting its
sources and destinations. 

Continuous simulation — (19) A simulation model of a system in which
changes occur continuously. 

Control — (1, 77) An expected value that can be compared with feed-
back; if the feedback suggests a deviation from the expected value
(the control), the system reacts by attempting to adjust itself. 

Control analysis (volume analysis) — (75) A technique for generating
test data to check the system’s behavior. 

Control break — (47) A change in the value of a key field. 
Control couple — (63) A flow of control information, such as a flag or a

switch setting, between two modules. 
Control coupling — (62) A form of coupling in which control informa-

tion (e.g., a switch setting) is passed between the modules.
Control flow — (3) The transfer of control into or out from a module. 
Control limits — (10) The upper and lower boundary lines of a control

chart; the control limits are typically placed three standard deviations
above and below the centerline. The centerline is usually the mean of
the statistic being charted. 

Control object — (66) An object that performs use case-specific behav-
ior and contains the application logic or business rules for managing
the interaction among multiple entity objects. 

Control structure — (61, 62, 63) A hierarchical model of the flow of con-
trol through a program. The control structure resembles a military
chain of command or an organization chart. At the top is a main 
control module that calls secondary control structures. At the bottom
are the computational routines, each of which implements a single
algorithm. 

Control system — (67) A type of expert system that adaptively governs
the overall behavior of a system, repeatedly interpreting the current
situation, predicting the future, diagnosing the causes of anticipated
problems and/or symptoms, and formulating a plan to monitor exe-
cution to ensure success. 

Control total — (77) An accumulated sum, a count, or a similar value that
summarizes the results of numerous computations or transactions. 

Convergence — (73) A process in which several preceding events are
combined to form one following event; the opposite of divergence. 

Conversational transaction — (82) A transaction that maintains locks
while information is displayed for update. 
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Core page — (51) The highest-level page in a web site’s content hierarchy. 
Corrective maintenance — (81) Maintenance activities intended to

remove errors or bugs from the software, the procedures, the hard-
ware, the network, the data structures, and the documentation. 

Count — (11) The number of observations in a category. 
Coupling — (3, 61, 62, 63) A measure of a module’s independence; fewer

parameters flowing into or out from a module imply looser coupling. 
CPM (critical path method) — (21, 22) A project management technique

based on a project network; the focus of CPM is project planning,
with the critical path defining those activities into which additional
resources might be poured to accelerate the schedule. 

Cracker — (71) A person who breaks into computers (generally over a
communication line) with malicious intent. 

Crash cutover — (abrupt cutover, direct cutover) (76) A system release
strategy in which the old system is discontinued on a predefined date
and the entire organization switches directly to the new system.

Crash mode — (22) Pouring additional resources into an activity in
order to complete the activity in the shortest possible time. 

Crash mode analysis — (22) An analysis technique that involves modi-
fying a project network to study time and cost tradeoffs. 

CRC (class, responsibilities and collaborations) technique — (66) A
technique for identifying operations. 

Critical path — (21, 22) The path through a project network that links
the critical events that must begin on time and the critical activities
that must require no more than their estimated duration if the project
is to be completed on time. 

Critical path method (CPM) — (21, 22) A project management tech-
nique based on a project network; the focus of CPM is project
planning, with the critical path defining those activities into which
additional resources might be poured to accelerate the schedule. 

Critical success factor — (16) A target that must be met or an event that
must occur if an organization is to accomplish its strategic goals and
objectives. 

Critical success factors paradigm — (16) An approach to requirements
analysis that starts by identifying and prioritizing corporate-level
management information systems goals and objectives and then
defining critical success factors for each major functional group within
the organization. 

Cumulative count — (11) The total number of observations in all the cat-
egories up to and including the category of interest; for example, the
cumulative count corresponding to the third category is the sum of
the counts for categories one, two, and three. 

Cumulative percent — (11) The combined percentages of all the cate-
gories up to and including the category of interest; the cumulative
percent for the last category will always be 100 percent. 
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Customization — (69) The modification of a software package to meet
an organization’s unique requirements without destroying the
integrity of the package software. 

Cutover — (76) The process of turning the system over to the user; see
also system release. 

Cutover phase — (32) The rapid application development phase during
which the system is finalized and released to the user. 

Cycle — (43) On a graph, a path that leads from a node back to the same
node. 

Data administration — (45, 82) The administrative function charged
with the overall responsibility for data resources in an organization. 

Data capture — (46) The process of initially capturing source data. 
Data communication — (52, 53) The act of transmitting data from one

component to another. 
Data couple — (63) A flow of a data composite and/or data element

between two modules. 
Data coupling (input-output coupling) — (62) A form of coupling in

which only data move between the modules. 
Data dictionary — (3, 4, 25, 44, 45) A collection of data about a system’s

data. 
Data-driven — (4, 72) A methodology, technique, or tool that starts with

the data and derives the processes. 
Data element — (25, 26, 27, 28, 33, 43, 44, 45) An attribute that cannot be

logically decomposed; the most basic unit of data that has logical
meaning. 

Data encryption standard (DES) — (71) A public/private key encryp-
tion system used for secure government transmissions and for most
electronic funds transfers. 

Data entry — (46) The process of converting source data into a machine-
readable form and entering them into a computer. 

Data error — (75) An error that arises from incorrect data specifications,
incorrect formats, or insufficient value representation. 

Data flow — (3, 24) Data in motion; the transfer of data into or out from
a module. 

Data flow diagram — (3, 24, 36) A logical model of the flow of data
through a system. 

Data integrity — (77, 82) The state of a database that is protected against
loss or contamination; data integrity is ensured by carefully control-
ling and managing data entry, data maintenance, and data access
from the time the data first enter the system until they are of no fur-
ther use. 

Data model — (2) A logical model that emphasizes or is driven by a sys-
tem’s data. 
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Data normalization — (2, 28) A formal technique for designing easy-to-
maintain, efficient logical data structures (or relations). 

Data-oriented — (15) A tool or technique that starts with the data and
derives the necessary processes. 

Data redundancy — (2) The state that occurs when the same data are
stored in two or more different files. 

Data store — (24) Data at rest; implies that the data are held between
processes. 

Data structure — (4, 24, 25, 26, 27, 28, 33, 44, 45) A set of related data ele-
ments; a composite; (43) a way of organizing data that considers both
the data items and their relationships to each other. 

Data symbol — (55) A flowcharting symbol that indicates the input or
output of data. 

Database — (25, 44) A set of related files; (45) a collection of interrelated
and shared data of different types organized into a structure that
minimizes redundancies and enhances the manipulation of the data. 

Database administration — (45, 82) The technical function charged with
physically managing an organization’s databases, including 
such issues as backup and recovery, performance, and security
enforcement. 

Database integrity — (45) The state of a database that is protected
against loss or contamination. 

Database management system (DBMS) — (45, 82) A software package
that provides the means to define, maintain, control, and administer
a database and its applications; a set of software routines that define
the rules for creating, accessing, and maintaining a database. 

Deadlock — (73, 82) A situation that occurs when two tasks each control
a resource needed by the other and neither task is willing to relin-
quish control. 

Death — (72) The system life cycle stage during which the decision is
made to replace the system. 

Debugging — (75) The process of removing bugs; a back-end process
intended to correct errors and/or problems. 

Debugging system — (67) A type of expert system used to prescribe
remedies for malfunctions and/or failures. 

Decision — (55) A point in a program where the logical path is deter-
mined by a run-time condition. 

Decision (selection) — (62) A block of logic that provides alternate
paths through the block depending on a run-time condition. 

Decision-support function — (4) A function or operation that supports
managerial decision making, often based on responding to “what-if”
questions. 

Decision-support system (DSS) — (72) An information system that
adds a response orientation and user control to a management infor-
mation system. 
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Decision table — (58) A two-dimensional table that shows the action to
be taken following a set of related decisions. 

Decision test — (75) A test used to verify a case structure or decision
logic. 

Decomposition — (15, 61) A problem analysis paradigm that calls for
breaking a problem into more manageable subproblems and then
attacking the subproblems. 

Defect — (78) Any failure to meet requirements. 
Degree of automation — (72) The extent to which automated or com-

puter-related components are used in a system. 
Demand report — (47) A report that is created on request. 
Demand/utilization analysis — (42) A study that focuses on such uti-

lization issues as throughput, average response time, concurrent
incoming messages, simultaneous users, maximum data capacity, the
component’s ability to deal with peak demand, and so on. 

Denormalization — (45) Altering the logical database design to include
redundant data. 

Dependency — (73) A relationship in which the implementation of the
following event(s) depends on the completion of the preceding
event(s). 

Depth — (51) A measure of the number of levels a user must navigate to
reach the desired content; (62) the number of levels in the control
structure. 

Depth search — (7, 34) A blind searching technique that investigates all
lower-level nodes before considering the next node at the same level. 

DES (data encryption standard) — (71) A public/private key encryp-
tion system used for secure government transmissions and for most
electronic funds transfers. 

Descendent — (43) A child of a child (or a descendent). 
Design — (1) The third step in the system development life cycle (fol-

lowing analysis and preceding development) during which the
responsible people determine how the problem will be solved by
specifying the system’s physical components. 

Design class diagram — (66) A diagram that specifies the software 
classes and interfaces in an application. 

Design requirement (constraint requirement) — (35) A requirement
that specifies such constraints as physical size and weight, environ-
mental factors, ergonomic standards, and the like. 

Design system — (67) A type of expert system that constructs descrip-
tions of objects in various relationships and verifies that the resulting
configurations conform to known constraints. 

Destination (sink) — (24) A person, organization, or other system that
gets data from the target system; a destination defines a system
boundary. 
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Detail diagram — (64) A low-level IPO chart that shows how specific
input and output data elements or data structures are linked to spe-
cific processes. 

Detail line — (47) A single report row that displays the appropriate field
values from a single report file record. 

Detail report — (47) A report that lists data for each input record or
transaction. 

Determinant — (28) Usually, a key; the value of the key determines the
values of all the non-key attributes because the key defines a unique
occurrence of the entity (a unique set of attributes). 

Deterministic model — (19) A model having all inputs fixed and known
(or assumed known). 

Deterministic state transition diagram — (30) A state transition dia-
gram in which a given input function is associated with at most one
transition from a given state. 

Development — (1) The fourth step in the system development life
cycle (following design and preceding testing) during which the sys-
tem is created; (72) the system life cycle stage during which the sys-
tem is designed, developed, tested, and implemented.

Development costs — (38) One-time costs that occur before the system
is released to the user; they include the labor, hardware, and software
costs accumulated from the time the project is initially approved until
the system is released to the user. 

Diagnosis-oriented documentation — (70) Documentation that
describes the type and the nature of warning messages and error
messages and explains the causes of and solutions for each error. 

Diagnosis system — (67) A type of expert system used to relate
observed behavioral irregularities with underlying causes. 

Dialogue — (49, 50) The exchange of information between a computer
and a user. 

Digraph (directed graph) — (43) A graph on which each edge (or arc)
has a direction. 

Direct access (random access) — (44) Reading records from or writing
records to a file in any order. 

Direct cutover (abrupt cutover, crash cutover) — (76) A system release
strategy in which the old system is discontinued on a predefined date
and the entire organization switches directly to the new system. 

Direct representation (analogical representation) — (67) A technique
that allows an expert system to analyze the properties of a new situ-
ation and use the course of action for an old situation to deal with it. 

Direct user interface — (48) A user interface through which a user
directly accesses a computer (e.g., via a screen and a keyboard). 

Directed graph (digraph) — (43) A graph on which each edge (or arc)
has a direction. 

Directory — (44) A list of the names and addresses of every file stored
on a disk (or other secondary storage device). 
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Discount rate — (38) The interest rate used to discount a sum of money. 
Discounting — (38) The act of computing the present value of a future

sum of money. 
Discrete simulation — (19) A simulation model of a system in which

changes occur instantaneously at particular points in time. 
Dispatcher — (73) The operating system routine that manages the

processor’s time. 
Distributed database — (54) A database with different subsets of data

distributed among several sites that are connected by a network. 
Distributed management — (72) A management philosophy that dis-

tributes responsibility and authority from the top to the bottom lev-
els of the organization. 

Distributed routing — (54) A routing technique that relies on each node
to compute its own routing table and build the required connections
with its neighbors. 

Distributing cable — (53) Generally, a cable that links the computers or
nodes on a single floor. 

Distribution control — (77) An output control designed to ensure that
all outputs are distributed to the right location at the right time. 

Diverge — (21) To split a single input path into multiple paths. 
Divergence — (73) A process in which one preceding event is separated

into several following events. 
Documentation — (70, 76) The specifications, instructions, tutorials, ref-

erence guides, and similar materials that accompany and explain a
piece of software or a hardware component. 

Documentation control — (77) An operational control that focuses on
the documentation library. 

Domain — (7) A possible problem space in which searching or reason-
ing techniques can be applied. 

Domain object (entity object) — (66) An object in the business domain.
Double-barreled question — (17) A question that asks the respondent

to answer two questions. 
Doubly linked list — (43) A linked list in which each node contains both

forward and backward pointers. 
Drop-down menu (pull-down menu) — (50) A menu of detailed

options that appears when the user clicks or selects a major function
on a menu bar. 

Dummy activity — (21) An activity that links parallel events but con-
sumes neither time nor resources. 

Dumpster diving — (71) Searching for passwords and other security
information by going through paper waste. 

Duration — (20, 21, 22) The elapsed time required to complete an activity. 
Dynamic information — (61) Time-related parameters, or process infor-

mation that can change; for example, the processing cycle, the nature
of the output, any parameters that vary over time, and any other
parameters not subject to the organization’s control. 
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Dynamic routing (adaptive routing) — (54) A distributed routing tech-
nique that selects the best route based on such criteria as the speed,
capacity, or cost of the link, the utilization rate of a particular node,
the failure rate of a particular path, the type of data transmitted,
response time, throughput, and so on.  

Earliest event time (EET) — (21, 22) The earliest time the event can pos-
sibly begin. 

Echo printing — (75) Printing or displaying each input value. 
Economic evaluation — (78) A type of system evaluation that focuses on

comparing the project’s actual time, cost, and benefits to the esti-
mates prepared after the analysis stage and/or during design. 

Economic feasibility — (13) Proof that the likely benefits outweigh the
cost of solving the problem; generally demonstrated by a cost/benefit
analysis. 

Economic requirement — (35) A requirement that specifies such things
as performance penalties, limits on development and operating costs,
the implementation schedule, and resource restrictions. 

Edge — (43) On a graph, a link between two nodes. 
Effect of interest — (18) A characteristic or event of a system that the

cause-and-effect diagram is meant to study; typically, a problem or
undesirable event. 

Efferent process — (61, 62) A process that structures and/or transmits
output data. 

Element analysis — (42) The process of identifying discrete hardware
components and required features. 

Encapsulation — (6) Hiding implementation details by bundling an
object’s data and its methods so that the only way to access the data
is through the object’s own methods. 

Encrypt — (71, 77) To convert to a secret code. 
End user — (48) Any person who needs the output generated by the

computer and/or who interacts with the computer at an operational
level. 

Entity — (4, 25, 26, 27, 28, 33, 43, 44, 45) A thing or object (a person, group,
place, thing, or activity) about which data are stored; (19) a unit, such
as a person, part, job, and so on, that flows through a system. 

Entity diagram — (4, 33) A simplified entity-relationship diagram that
uses bubbles instead of rectangles and ignores cardinality. 

Entity object (domain object) — (66) An object in the business domain. 
Entity-relationship diagram — (4, 26, 27, 33) A diagram or a model of a

system’s data that shows how the primary data entities are related. 
Entrance-exit test — (75) A test used to verify that any called routine has

only one entry point and one exit point. 
Entry page — (51) The first page a visitor encounters when accessing a

web site. 
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Entry tunnel (entry chimney) — (51) One or more pages between the
entry page and the core page. 

Environment — (5) A collection of tools and workbenches that support
the entire software process. 

Ergonomics — (48, 76) The study of the relationship between human
beings and their workplaces. 

Error — (9) The difference between the value of a parameter as estimated
by a sample and the actual value of that parameter for the entire 
population. 

Error control — (77) A system control designed to determine if a pro-
gram or routine can handle an unexpected response or input. 

Errors of coverage — (17) Errors owing to the sampling frame differing
from the target population. 

Errors of non-observation — (17) Errors that occur because the elements
in the sample are not all of the elements in the target population. 

Errors of observation — (17) Errors that occur when the survey data is
different from the truth. 

Estimate — (9) A value of a parameter determined by a sample. 
Evaluation analysis — (81) A maintenance phase (similar to the problem

definition stage in the system development life cycle) during which
the impact of a particular change is evaluated.

Event — (6, 66, 73) An occurrence that generates a signal; (21, 22) the
beginning or end of an activity; (57) an occurrence that is not entirely
subject to the decision-maker’s control; (79) a set of outcomes. 

Event-driven — (73) A system that responds to events. 
Event fork — (57) A point on a decision tree (represented by a circle)

where subsequent branches identify the consequences (or possible
outcomes) of a decision. 

Evolutionary approach — (32) An approach to rapid application devel-
opment in which progressive designs go through multiple, mini-
mum-length cycles in which successive versions of the system under
construction are utilized by the end user. 

Evolutionary design (stepwise refinement) — (72) A design strategy
that starts with a small program or subsystem and continuously
refines it by adding new functions and/or modifying features. 

Exception report — (47) A report that lists or summarizes only the data
for input records that pass a predefined condition or filter. 

Exception test — (46, 77) A test used to screen such “exceptional” values
as a zero (0) in a field that will be used as a divisor. 

Execution-oriented documentation (application-based documenta-
tion) — (70) Documentation designed to support an application. 

Executive information system (EIS) — (72) An information system
designed to support high-level decision making based (typically) on
aggregate and graphic data. 
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Exit page — (51) The last page a visitor encounters just before exiting a
web site. 

Exit tunnel (exit chimney) — (51) One or more pages between the core
page and the exit page. 

Expandability — (42) The ability to add components to a system or fea-
tures to a component. 

Expanded use case — (29) A description of the step-by-step events in a
process; an expanded use case is more detailed than a high-level use
case. 

Experimental design — (77) An auditing technique used to audit sys-
tem accuracy by building a pilot prototype and testing it using con-
trolled sample data. 

Expert system (knowledge-based system) — (7, 34, 67, 68, 72) A com-
puter program that emulates the thought process of a human expert. 

Expert system interface — (48) A user interface that utilizes natural
language processing. 

Expert system shell — (7) The user interface to an expert system. 
Explanation dialogue — (49) A form of dialogue that performs a glos-

sary function. 
Explanation facility — (7) An expert system component that reproduces

the logic the inference engine followed to reach its conclusion. 
Explode — (24) To decompose a process in a data flow diagram to a

lower level. 
External documentation — (70) Documentation that is kept at the user’s

location (or some other remote site) and is designed primarily for
the user. 

Factoring — (7, 15, 61) A technique for grouping several subproblems
into a meta-problem. 

Fault tolerant computer — (73) A computer that incorporates redundant
circuits and components to improve reliability. 

Feasibility study — (13) A compressed, capsule version of the analysis
phase of the system development life cycle aimed at determining
quickly and at a reasonable cost if the problem can be solved and if it
is worth solving. 

Feedback — (1, 77) The return of a portion of the system’s output to its
input; (30) on a state transition diagram, a feedback loop returns the
system to a previous state. 

Fence diagram — (30) A state transition diagram on which the states are
shown as vertical lines and the activities are shown as horizontal
arrows. 

Field — (25, 43, 44) A data element physically stored on some medium;
(47) a data element; a single, logically meaningful unit of data. 

Fifth normal form — (28) A fourth normal form relation with all join
dependencies removed. 
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File — (25, 43, 44, 47) A set of related records. 
File name — (44) A unique logical identifier assigned to a file (usually

by the user). 
Filter — (45) A set of logical conditions used to screen records in a query. 
Fire fighting — (81) Making emergency repairs, often under extreme

time pressure. 
Firewall — (71) A set of hardware, software, and data that sits between

the network and the Internet (or other public network), screens all
incoming and/or outgoing transactions, and allows only authorized
transactions to get through. 

First normal form — (28) A logical data structure that contains no
repeating sets of data elements. 

First-order predicate logic — (67) The type of logic used in mathematics
to prove theorems. 

Fixed routing — (54) A static routing technique that always utilizes a
predetermined fixed route when transmitting between a specific pair
of nodes. 

Flat-file database — (45) A database (more accurately, a file) in which all
the data are stored in a single, spreadsheet-like table that is not linked
with any other files. 

Flow test (sequence test, transaction test) — (75) A test designed to ver-
ify the complete logical flow needed to accomplish a task. 

Flowdown — (35) A principle that requires each lower level requirement
to be linked to a single higher level parent. 

Flowline — (55) On a flowchart, a line, often terminating in an arrow-
head, that indicates the sequence and direction of the flow between
two symbols. 

Focus group — (40) A group composed of managers from all the func-
tional units in the entire company that conducts a business function-
task analysis. 

Foreign key — (25, 28) A key to some other entity stored with the target
entity. 

Form — (46) A paper document (or a simulated document on a screen)
that is used to capture data; (69) a data entry screen with fill-in-the-
blank or select-an-option windows. 

Format constraint analysis — (75) Generating test data based on data
type; for example, a zero or numeric digit might be placed in an
alphabetic field, or non-digits might be inserted into a numeric field. 

Forward chaining — (34) A data-oriented approach that searches the
solution space from an initial state to a final goal state. 

Forward engineering — (5) Completely redesigning a system to take
advantage of new technologies such as client server computing. 

Fourth-generation language — (2) A programming language that
allows the programmer to describe (in some way) the logical 
procedure and then let the language translator determine how to
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implement it; (31, 32) a non-procedural language that generates the
appropriate source or executable code from a programmer’s defini-
tion or description of a logical operation. 

Fourth normal form — (28) A relation is in fourth normal form (4NF) if
and only if all existing multi-value dependencies are converted into
regular functional dependencies. 

Frame — (17) A list of sampling units from which the sample will be
selected; (51) a window-like unit that holds and displays the contents
of a single html document; (67) a complex data structure composed
of a concept, one or more slots, one or more values, and one or more
attached procedures; a frame represents a stereotyped situation. 

Frameset — (51) A document that defines the relative and/or absolute
sizes and positions of several related frames; using the frameset as a
guide or framework, the client computer’s browser displays each
html document in the appropriate frame. 

Freeze — (80) To archive the entire system, including the executable pro-
grams, data files, source code, and related documentation, prior to
making a change. 

Front-end routine — (69) A routine that accepts input data and formats
it for a commercial program. 

Fully connected mesh network — (52) A mesh network in which every
computer is directly connected to all the other computers in the net-
work. 

Function — (4) A meaningful operation or process that produces a
desired result for a proposed system; similar to a process. 

Function (activity) — (30) A process or event that moves a system from
one state to another. 

Function cohesion — (62) The strongest type of cohesion in which a
given module performs a single logical function, receives and returns
no surplus data, and performs only essential logical operations. 

Function-related error — (75) An error caused by such things as incor-
rect linkages, incorrect control transfers between a calling and a
called routine, the inclusion of one or more incorrect or unnecessary
functions, and the omission of one or more necessary functions. 

Function test (74) A test performed on one or more partial systems that
have already been integration tested; the objective is to use test data
and simulated data to test a user-defined function. 

Functional decomposition — (24) The act of exploding a data flow dia-
gram; (61, 62, 63) a program design methodology in which the pro-
gram is broken down (or decomposed) into modules based on the
processes or tasks they perform. 

Functional dependency — (28) A situation that exists when a non-key
attribute is fully dependent on the key. 

Functional primitive — (24, 35) A process (or transform) that requires
no further decomposition. 
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Functional requirement — (35) A requirement that identifies a task that
the system or component must perform.

Future projection analysis — (53) A network analysis process that
focuses on parameters that affect capacity planning, storage require-
ments, transmission speed, connections with the Internet, and so on. 

Future value — (38) The value of a sum of money at some future time. 

Gamma test — (74) A test of such details as the system’s compatibility
with the old system and the system’s performance under peak
demand. 

Gantt chart — (20) A chart that shows a project schedule as a series of
horizontal lines or bars. 

Gateway — (53) A computer that links two or more networks with dif-
ferent protocols. 

Generalization — (29) A technique wherein commonality among con-
cepts is identified and a general concept or super-type is defined;
subtypes depict “type-of” relationships. 

Generate and test — (15) A hierarchical, test-oriented paradigm that
starts at the top of a hierarchy with a main problem and continues
down the hierarchy through the subproblems, conducting tests of the
appropriate criteria and constraints at each level until the bottom is
reached and no more testing is necessary. 

Generator — (2) A program that starts with information in graphical,
narrative, list, or some other logical form and outputs the appropri-
ate source code; also called a code generator or program generator;
(68) a routine that outputs one or more commands that the computer
can execute. 

Geographical requirements analysis — (53) A preliminary network
analysis process that begins with a careful study of the system’s geo-
graphical locations and focuses on such issues as topology and trans-
mission media. 

Gif (graphic interchange format) — (51) A popular compression algo-
rithm for graphic images. 

Global data — (24) Data elements or composites that are shared by two
or more processes. 

Goal — (34, 67) An objective. 
Goal driven — (72) A method or technique that works through a process

until a predefined goal is accomplished. 
Goal-oriented — (15) A method or technique which searches through a

process until a predefined goal is accomplished. 
Gradual cutover — (76) A system release strategy in which the new and

old systems run concurrently and the number of transactions han-
dled by the new system is gradually increased. 

Granularity — (82) The level of locking; for example, the entire data-
base, individual tables, physical pages of data within tables, or indi-
vidual rows. 
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Graph — (43) A set of nodes (or vertexes) linked by a set of edges. 
Graph base — (7) A database with a collection of graphs or graphing

tools; for example, most graphic software implements a graph base of
customized symbols or pictures. 

Graphic input screen (touch screen) — (46) A screen that allows a user
to input a command or request information by pointing. 

Graphic user interface (GUI) — (48) A user interface that features win-
dows, icons, menus, and pointers; generally, the user points to the
desired element and clicks a mouse button to trigger the associated
action. The Apple Macintosh and Microsoft Windows interfaces are
common examples; sometimes called an object-oriented interface. 

Graphics display dialogue — (49) A form of dialogue that shows infor-
mation in graphical form. 

Gray-box testing — (74) A hybrid of white-box and black-box testing in
which both the functions and the contents of major programs and/or
modules that are likely to be internally maintained, modified, or cus-
tomized later are tested. 

Group decision support system (GDSS) — (72) An information system
that adds communication capability and interaction to a decision
support system. 

Growth — (72) The system life cycle stage during which usage grows as
users become familiar with the new system, and system behavior is
adjusted to improve performance and efficiency. 

Hacker — (71) Originally, an expert programmer with a knack for creat-
ing elegant software; today, the term is more commonly applied to
someone who illegally breaks into computer systems. 

Hardware analysis — (53) A network analysis process that helps to
define the requirements for the personal computers, workstations,
terminals, peripherals, communication interfaces, modems, and
other hardware that will be attached to the network and such soft-
ware as the operating system and communication protocols. 

Hardware configuration item (HWCI) — (41) A subsystem that is to be
implemented in hardware. 

Hardware error — (75) A data communication error, a data transmission
error, an error caused by hardware incompatibility or failure, and 
so on. 

Hardware interface design — (42) The process of determining, specify-
ing, evaluating, and acquiring of a set of hardware building blocks
and analyzing their relationships with each other. 

Hardware monitor — (78) Specially designed circuitry that can be used
to measure such parameters as average seek time, rotational delay,
arm movement time, and so on. 

Hashing — (44) Using an algorithm to convert a logical key to a relative
address. 
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Heuristic rule — (7, 34) A specific rule of thumb or common sense that
can be used to restrict a search to a subset of a problem domain. 

Heuristic search — (7, 34) A search technique that applies heuristics to
reduce the size of a problem domain or search space. 

Heuristics — (7, 34, 67) General rules derived from experience, common
sense, inferences, and intelligent trial and error. 

Hierarchical database — (45) A database in which the file links (or rela-
tionships) form a hierarchy. 

Hierarchical topology (tree topology) — (52) A hybrid topology that
usually consists of two or more linked star or bus networks. 

Hierarchy chart — (63, 64) A diagram that graphically represents a pro-
gram’s control structure. 

High-level use case — (29) A brief, two or three sentence description of
a process. 

Highway effect (turnpike effect) — (53, 54) The tendency of users to
quickly adopt new technology as soon as it proves its usefulness;
because of the highway effect, the demands placed on a system often
exceed projections. This term was initially coined in the 1950s when
the traffic load on the Pennsylvania Turnpike exceeded the designers’
long-term, worst-case projections soon after the road opened. 

HIPO (hierarchy plus input-process-output) — (64) A tool for planning
and/or documenting a computer program that utilizes a hierarchy
chart to graphically represent the program’s control structure and a
set of IPO (input-process-output) charts to describe the inputs to, the
outputs from, and the functions performed by each module on the
hierarchy chart. 

Historical data — (75) Data previously processed by the old system. 
History file (archive) — (44) A file that holds already processed trans-

actions or no longer current master records. 
Home page — (51) An initial starting page. 
Host — (52, 53) A computer in a wide area network. 
Hot key — (50) A key or (more commonly) a combination of keys that

triggers a response. 
Html (hypertext markup language) — (51) A hypertext language used

to tell a browser how to map a page to the screen. When a web page
is created, html tags are added to the text, graphics, sounds, and
other objects that make up the page. When the browser reads the
page, it relies on the html tags to tell it where each object should be
placed on the screen, how to format the text, what colors and back-
grounds to use, and so on. 

Hub — (53) A central controlling device, point, or node in a network. 
Hybrid coupling — (62) A combination of data coupling and control

coupling. 
Hybrid testing (middle-out testing) — (74) A testing strategy that starts

in the middle of the hierarchy and moves bi-directionally toward
both the top and the bottom. 
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Hyperlink — (51) On the World Wide Web, a symbolic, logical connec-
tion that represents a URL. 

Hyperlinked screens — (46) A set of screens connected by hyperlinks;
for example, in a slide show presentation, hyperlinks are used to con-
trol slide sequence. 

Hypothesis space — (7) A mathematical term for a space that is defined
abstractly; generally, the subset of a solution space to be considered. 

Hypothetical data (simulated data) — (75) Data created specifically for
testing purposes. 

Icon — (48, 50) A graphic symbol that represents a processing option, a
file, or an executable routine. 

Icon input screen — (46) An input screen that allows the user to trigger
the execution of a related routine by clicking on an icon. 

Icon window — (50) A window that displays multiple icons. 
Implementation — (1, 76) The sixth step in the system development life

cycle (following testing and preceding maintenance) during which
the system is installed and released to the user. 

In-out diagram — (33) A Warnier-Orr diagram that documents the
application’s primary inputs and outputs. 

Incremental backup copy — (82) A backup copy that contains only the
data that have changed since the last full or incremental back-up was
performed. 

Incremental design — (72) A design strategy that starts with any mod-
ule, subroutine, or subsystem; a second module is then developed
and those two modules are integrated before work begins on 
the third module. This process continues until all the modules are
developed. 

Indegree — (43) On a directed graph, the number of arcs entering a
given node. 

Index — (44, 45) A list of the record keys and the associated physical
disk addresses for each record in a file. 

Indexed sequential file — (44) A file on which records are stored in key
order and an index is maintained, thus allowing the records to be
accessed sequentially or randomly. 

Indirect user interface — (48) A user interface that does not involve
direct computer access; for example, a printed report or a form
designed to capture data for subsequent input. 

Industry analysis paradigm — (16) An approach to requirements analy-
sis in which the responsible analysts study competitors’ information
systems and use the resulting information as a primary factor in
defining internal information system requirements. 

Inference — (34, 67) The act or process of deriving logical conclusions
from premises known or assumed to be true. 
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Inference engine — (7) The component of an expert system that uses
input parameters to access the knowledge base, reach a conclusion,
and offer expert advice. 

Information hiding — (61) A principle that suggests that all information
not directly relevant to a given process should be hidden from that
process. 

Information-oriented paradigm — (16) An approach to requirements
analysis that focuses on the information system products actually
used by supervisory and middle managers. 

Information-oriented question-answer dialogue — (49) A form of dia-
logue that asks the user to provide information (a sentence, a paragraph,
some data) that is generally not used to directly trigger execution. 

Information processing control — (77) An input, processing, or output
control.

Information system — (1, 72) A set of hardware, software, data, human,
and procedural components intended to provide the right data and
information to the right person at the right time. 

Information systems strategy — (2) High-level information system
goals and objectives, often derived from or compatible with corpo-
rate goals and objectives. 

Inheritance — (6) The principle that allows an object to get attributes
and methods from its superclass. 

Input control — (46, 77) A test or control, designed to screen out and (if
possible) correct bad data before they enter the system. 

Input error — (75) A human data entry error or a data error generated
by an input device. 

Input-output coupling (data coupling) — (62) A form of coupling in
which only data move between the modules. 

IPO (input-process-output) chart — (64) A chart that describes or docu-
ments the inputs to, the outputs from, and the functions (or pro-
cesses) performed by a program module. 

Inspection — (23) A formal review of a set of exit criteria conducted by
technical personnel. 

Inspector — (23) A technical professional or a skilled user who partici-
pates in an inspection. 

Instruction dialogue (systems information interface) — (49) Dialogue
that provides instructions and other information about the system’s
operations, functions, and structure. 

Instruction system — (67) A type of expert system used to diagnose and
debug system behaviors and to provide the decision maker with
trouble-shooting support. 

Intangible — (39) Difficult to define in concrete, physical (e.g., financial)
terms. 

Intangible benefits — (38) Benefits that cannot be measured in financial
terms, such as improved morale or employee safety. 
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Integration test — (74) A test conducted on an aggregate of two or more
components or modules that focuses on the individual units, their
interfaces with each other, and their combined behavior. 

Interarrival time — (79) The elapsed time between arrivals of successive
customers in a queuing system. 

Interest rate — (38) A charge for a loan or a payment for the use of
money; usually expressed as a percentage.

Interface — (1) A mechanism or point of interaction between two or
more system components. 

Interface error — (75) An error that results from such causes as incorrect
loading, customization, or initialization. 

Interface object (boundary object) — (66) An object that communicates
with the user or with other systems. 

Interface requirement — (35) A requirement that identifies a link to
another system component. 

Internal documentation — (70) Specifications, records, and manuals
that are stored, maintained, and used by technical professionals. 

Internal rate of return — (38) The interest rate that yields a zero (0) net
present value. 

Internet — (51) A well-known, widely accessed, international network
of computers; the set of continuously connected computers that use
Transmission Control Protocol/Internet Protocol (TCP/IP). 

Interpretation system — (67) A type of expert system used to explain
data by providing appropriate symbolic meanings and describing the
situation and/or state that accounts for the data. 

Interrupt — (73) An electronic signal that causes the computer to stop
what it is doing and activate one of the operating system’s interrupt
handling routines; generally, the information needed to restore the
system to its pre-interrupt state is captured by hardware as part of
the interrupt process. 

Interrupt control — (77) A control or test to determine if a system or pro-
gram is capable of recovering after it is intentionally restarted, aban-
doned, or abnormally terminated. 

Interview — (8) A face-to-face meeting between two (or more) people in
which one person obtains information from another by asking 
questions. 

Inventory control — (77) A type of operational control that helps to
ensure that the necessary software, hardware, and other peripherals
are properly maintained and connected for operation. 

Inverse operator — (34) An operator that works backward from the
solution and facts to return to the original state. 

Inverted-L chart — (27) A tool for graphically representing a data 
structure. 
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Iteration (repetition) — (62) A block of logic that is executed repetitively
as long as (while) an initial condition holds or until a terminal condi-
tion occurs. 

JAD (joint application design) — (14, 32) A technique for quickly
determining system requirements in an intensive session attended by
a team consisting of major users, managers, and systems analysts. 

JAD workbook — (14) A workbook designed to provide JAD team
members with necessary information about the project and to facili-
tate note taking. 

Java — (51, 69) A platform independent, object-oriented programming
language developed by Sun Microsystems that incorporates excellent
security features and has gained wide acceptance on the World Wide
Web. 

JavaScript — (51) A relatively easy to learn, Java-based scripting lan-
guage that can be used to perform basic interactive tasks. 

Join — (28) The process of consolidating subrelations into one relation. 
Join dependency — (28) A type of dependency that is created as a result

of a projection or join process. 
Joint application design (JAD) — (14, 32) A technique for quickly deter-

mining system requirements in an intensive session attended by a
team consisting of major users, managers, and systems analysts. 

Jpeg (joint photographic experts group) — (51) A popular compression
algorithm for photographic images. 

Junction test — (75) A test that focuses on points where the control flow
merges or diverges. 

Justification — (34) Proofs, facts, or reasons/rationales for assumptions. 

Kernel — (71) A unit of code or a routine that is physically and/or log-
ically isolated from other software and consequently protected. 

Key — (25, 27, 28, 43, 44) The attribute or group of attributes that
uniquely distinguishes one occurrence of an entity. 

Key indicator report — (47) A form of scheduled report that summa-
rizes critical activities, often on a daily basis. 

Knowledge — (34, 67) The sum or range of what has been perceived,
discovered, or learned; specific information about something. 

Knowledge acquisition facility — (7) A set of software tools for captur-
ing and encoding a human expert’s expertise and creating a knowl-
edge base. 

Knowledge base — (7, 34, 68) A collection of data, algorithms, and
heuristic rules that forms the core of an expert system. 

Knowledge-based system (expert system) — (7, 34, 67, 68, 72) A com-
puter program that emulates the thought process of a human expert. 
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Knowledge engineer — (7) A person who captures and encodes a
human expert’s expertise and creates a knowledge base. 

LAN (local area network) — (52, 53) A network in which the nodes are
located in close geographic proximity and are generally linked by
direct lines (such as hard wires). 

Language parser — (67) A routine that executes correctly interpreted
commands to accomplish the tasks determined by the program. 

Latest event time (LET) — (21, 22) The latest time an event can occur
without impacting the project schedule. 

Leaf (leaf node) — (43) On a tree, a node with no branches; (62) a mod-
ule in a control structure with no lower-level (child) modules. 

Length constraint analysis — (75) Generating test data with too many
or too few characters or digits. 

Level 0 data flow diagram (context diagram) — (24) A data flow dia-
gram that documents the system’s boundaries by highlighting its
sources and destinations. 

Level 1 data flow diagram — (24, 36) A data flow diagram that shows
the system’s primary processes, data stores, sources, and destinations
linked by data flows. 

Level 2 data flow diagram — (24, 36) An explosion of a level 1 process. 
Lexical analyzer — (67) A component of a compiler that deals with the

interpretation and understanding of the commands and related syntax;
(68) a routine that performs semantic analysis, checking every word in
a sentence against the correct spellings stored in the knowledge base
and listing all the possible alternative meanings for the sentence.

Library control procedures — (74) A set of procedures for creating and
maintaining a test data library and the relevant testing software. 

Life — (38) The number of time periods (usually years) during which
the system is expected to be in use. 

Line monitoring — (77) A communication control technique that
involves attaching special circuitry to the communication link to
diagnose problems. 

Linked list — (43) A list in which each node contains data plus a pointer
to the next node. 

List — (43) A series of nodes each of which holds a single data item; the
most basic data structure. 

Load module — (3) The unit of program logic that is physically loaded
and executed on a computer. 

Loaded question — (17) A question whose wording suggests what the
answer should be. 

Local area network (LAN) — (52, 53) A network in which the nodes are
located in close geographic proximity and are generally linked by
direct lines (such as hard wires). 
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Local data — (24) Data elements or composites that are known only
within one part of the system. 

Location connectivity analysis — (54) A network and distributed data-
base design technique used to help control network data flow, deter-
mine the status of the sending and receiving nodes, identify the best
route to transmit data, reduce transmission delays and related errors,
and prevent the overuse of a particular route or node; also known as
connectivity analysis or routing analysis. 

Location implementation (pilot implementation) — (76) A system
release strategy in which the new system is first released in a single
site, such as a branch office or a warehouse, thoroughly tested, and
then ported to the other sites. 

Locking — (73) A technique that prevents a user from updating or mod-
ifying a record while another user is accessing that record; (82) the
process of allocating control over a database resource to a specific
transaction to avoid problems associated with concurrent use. 

Log — (82) A file containing a record of all database changes. 
Logic bomb — (71) A program that (symbolically) blows up in memory. 
Logic flowchart (process flowchart) — (55) A graphical representation

of the flow of logic, control, data, or paperwork through a program,
a routine, a module, or a process. 

Logic test — (75) A test of the logical flow through a program. 
Logical access map — (62) A program design tool used to help the

designer determine the logical execution sequences or access paths
through a program. 

Logical cohesion — (62) A form of cohesion in which all the elements
are related to the same logical function. 

Logical data flow diagram — (24) A data flow diagram that does not
suggest physical references but shows the system’s components as
logical entities. 

Logical data structure — (4) A set of related data elements that ignores
how the data are physically stored. 

Logical database design — (45) The database design stage concerned
with defining and documenting the database in user terms. 

Logical design phase — (4) The phase in the structured requirements
definition methodology during which the system’s logical require-
ments are defined. 

Logical model — (2, 3) A model that exists on paper or in an analyst’s
mind; logical models are easily manipulated; contrast with physical. 

Logical record — (44) The set of related fields needed to complete a sin-
gle input/process/output cycle. 

Logical security — (71, 77) Security features implemented by the system
or the computer as it runs. 
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Loop back analysis — (77) The process of automatically returning all
received messages to the transmitting node where they are compared
with the original data. 

Loop test — (75) A test used to verify the accuracy of a repetition block. 
Lower CASE — (5) A set of tools that support the design, implementa-

tion, testing and maintenance phases of the system development life
cycle (in general, the back end).

Machine learning — (7) The capacity of a machine (or an expert system)
to “learn” from experience. 

Macro — (69) An instruction (or set of instructions) that performs a
series of keystrokes or commands to carry out a specific task. 

Mainline functional flow diagram — (4) A diagram that sequentially
links all the processes in a proposed system. 

Maintenance — (1) The final step in the system development life cycle
(following implementation) intended to keep the system functioning
at an acceptable level; (81) a continuing series of activities and costs
intended to keep the system running at an acceptable level. 

Make-or-buy decision — (2) A decision to purchase or to build inter-
nally software (or some other component). 

Management definition guide — (14) A portion of the JAD workbook
that lists and defines technical terms related to computing platforms,
computer technology, and other elements relevant to the problem
under study. 

Management information system (MIS) — (72) An information system
that emphasizes report generation and combines such attributes as
centralized data management, integrated applications, distributed
access, and interactive processing to support operational-level deci-
sion making. 

Many-to-many relationship — (26) A relationship in which each occur-
rence of entity A is associated with one or more occurrences of entity
B, and each occurrence of entity B is associated with one or more
occurrences of entity A. 

Master file — (44) A file that holds permanent data that are accessed
over a period of time. 

Matrix — (43) A two-dimensional array. 
Maturity — (72) The system life cycle stage during which the system’s

efficiency can no longer be enhanced and performance deficiencies
begin to appear. 

McCabe statistics — (5) A complexity metric based on a count of the
number of decisions in a program; an indicator of the testability and
maintainability of software. 

Mean — (9) An arithmetic average; the sum of all the observations
divided by the number of observations. 
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Mean time between failures (MTBF) — (78) A measure of reliability;
the sum of the mean time to fail and the mean time to repair. 

Menu bar (command bar) — (50) A window that (typically) appears at
the top of the screen and lists such major functions as file, edit, view,
and help. The subcommands related to a particular function are dis-
played in a pull-down or drop-down menu when the user clicks or
selects the function. 

Menu interface — (48) A user interface in which the list of the options
available to the user is displayed in a table or menu. 

Merge — (21) To combine two or more input paths into a single output
path; (73) see convergence.

Merged entity diagram — (4) An entity diagram that combines the
lower-level entity diagrams from two or more major users. 

Mesh network — (52) A network that allows any two remote computers
to communicate directly. 

Message switching — (53) The process of routing a message from its
source to its destination; note that sometimes messages are decom-
posed into packets that reach their destination via different transmis-
sion paths. 

Meta-data — (25) The contents of the data dictionary.
Meta-problem — (7, 15) A problem that is synthesized or generalized

from several lower level sub-problems. 
Metaphor — (51) A design element that relies on a familiar object or a

familiar pattern of behavior to suggest how the user might interact
with a web site. 

Method — (6) A process that accesses an object; (66) the implementation
of an operation for a specific object class. 

Methodology — (1, 72) A body of practices, procedures, and rules used
by those who work in a discipline or engage in an inquiry; often
implemented as a set of well-defined steps or phases, each of which
ends with a clear, measurable set of exit criteria. 

Middle-out — (72) A design strategy that starts from the middle of the
hierarchy. 

Middle-out testing (hybrid testing) — (74) A testing strategy that starts
in the middle of the hierarchy and moves bi-directionally toward
both the top and the bottom. 

Midpoint — (39) The middle or average value from a range of reason-
able estimated values for a parameter. 

Mini-spec — (24) The process description for a functional primitive. 
Minimum spanning tree — (43) Within a graph, a subtree, or spanning

tree for which the sum of arc weights is minimal. 
Model — (79) An abstract, mathematical representation of a physical

system. 
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Model base — (7) A collection of models that support decision making
and/or data analysis; an example is a collection of different forecast-
ing models. 

Moderator — (14) The person responsible for conducting a JAD session;
(23) the individual who runs an inspection, scheduling all meetings,
distributing all necessary documentation, conducting all sessions,
and making certain that the inspection is both thorough and fair. 

Module — (3, 55, 56, 59, 60) A portion of a larger program that performs
a specific task. 

Module test (unit test) — (74) A test conducted on a single program or
a single module. 

Monitor — (73) A program or hardware device that detects and reports
a real-time system’s processing and/or input/output activities. 

Monitoring system — (67) A type of expert system that compares obser-
vations of system behavior to features that seem crucial to successful
outcomes. 

Monte-Carlo simulation — (19) A simulation with one or more random
variables where the passage of time plays no substantive role; random
numbers are used to generate values from probability distributions. 

Morphology — (62) Form or structure. 
Multi-determine — (28) Determined (or defined) by more than one

attribute; for example, a value that is determined by the key and by
some other attribute is multi-determined. 

Multi-linked list — (43) A linked list in which each node contains 
two or more pointers, thus providing access to two or more other
nodes. 

Multi-processing (parallel processing) — (73) The simultaneous execu-
tion of two or more instructions on a multiple processor system. 

Multi-programming — (73) Concurrently executing multiple tasks on a
single processor by switching the processor’s attention from task to
task. 

Multi-tasking — (73) Concurrently or simultaneously processing several
tasks on a single computer. 

Multi-value dependency — (28) A situation that exists when one
attribute multi-determines (or is multi-determined by) another
attribute or attributes.

Multi-way tree — (43) A tree in which each node holds n (two or more)
values and can have (n + 1) branches. 

Multiplicity — (29) The minimum and maximum number of occur-
rences of one conceptual object for a single occurrence. 

Nassi-Shneiderman chart — (56) An alternative to traditional logic
flowcharts that provides a structured, hierarchical, graphical view of
the flow of logic through a program, a routine, a module, or a
process. 
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Natural language processing — (7, 48, 68) Hardware and/or software
that allows people to communicate with computers in much the same
way they communicate with other people. 

Natural language processing shell — (68) A natural language process-
ing user interface. The user communicates with the shell by entering
plain English character strings. The shell translates the plain English
strings into the appropriate commands and passes the commands to
an application program. 

Navigation — (51) The act of moving from page to page through a web
site. 

Net benefit — (38) Cost savings or new revenues minus the new cost
associated with achieving the benefit. 

Net present value — (38) The sum of discounted benefits minus the
development costs. 

Network — (52, 53, 54) Two or more computers linked by a communi-
cation line. 

Network (weighted graph) — (43) A graph on which the edges have
values. 

Network database — (45) A database in which the links or pointers can
describe relationships between any two files in any direction, so a
child can have many parents. 

Network topology — (53) A map of a network; a physical arrangement
of the nodes and connections in a network. 

Node — (30) A symbol (usually a circle) on a state transition diagram
that represents a state; (43) an entry in a list; often, a single data ele-
ment or a single record; (52, 53, 54) a connection point (computer,
workstation, peripheral, concentrator, etc.) in a network. 

Non-behavioral requirement — (35) A requirement that defines an
attribute of the system, such as speed, frequency, response time, accu-
racy, precision, portability, reliability, security, or maintainability. 

Non-deterministic state transition diagram — (30) A state transition
diagram in which a given input function is associated with more than
one transition from the state. 

Non-response — (17) A type of sampling error that occurs when a sam-
pled element (person, business, etc.) cannot be contacted, when a
respondent is not able to answer a question, or when a respondent
refuses to answer. 

Non-response bias — (9) A form of bias that occurs when one or more
members of the selected group are not included or choose not to par-
ticipate in the sample. 

Object — (6, 29, 51, 66) A thing about which data are stored and manip-
ulated. 

Object interaction diagram — (66) A graphical depiction of the way
objects interact and collaborate to realize a use case. 
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Object-oriented analysis — (29, 66) The investigation of a problem by
identifying and describing the objects. 

Object-oriented design — (29, 66) The logical solution of a problem
through a set of interacting objects. 

Object-oriented interface — (48) A user interface that features win-
dows, icons, menus, and pointers; generally, the user points to the
desired element and clicks a mouse button to trigger the associated
action; also called an icon-based interface, a graphic user interface, or a
WIMP interface. 

Object type (class) — (6, 66) A group of similar objects. 
Objective — (12) A measurable goal which, if met, is likely to contribute

to solving the problem. 
Occurrence — (25, 26, 28, 43, 44) A single instance of an entity. 
Off-page connector — (55) A flowcharting symbol that indicates that the

logic is continued on another page. 
On-line processing — (72) A processing technique in which a transaction

is used to update the relevant master file record as soon as it is received. 
One-to-many relationship — (26) A relationship in which each occur-

rence of entity A is associated with one or more occurrences of entity
B, but each occurrence of entity B is associated with only one occur-
rence of entity A. 

One-to-one relationship — (26) A relationship in which each occurrence
of entity A is associated with one occurrence of entity B and each
occurrence of entity B is associated with one occurrence of entity A. 

Open question — (17) A question for which the respondent is allowed
to formulate any answer he or she wishes. 

Open systems interconnection (OSI) — (42) An International Standards
Organization network model that specifies seven interconnection
layers. 

Operating costs — (38) Continuing costs that begin after the system is
released and last for the life of the system; they include personnel,
supplies, maintenance, utilities, insurance, and similar costs. 

Operation — (6) An external view of an object that can be accessed by
other objects; (66) a service provided by an object. 

Operation-oriented documentation — (70) Command-oriented docu-
mentation that groups commands based on the nature of the 
operation. 

Operational control — (77) A control intended to provide an early warn-
ing in the event of system malfunction. 

Operational evaluation — (78) A type of system evaluation that focuses
on such operational elements as system controls, interface design,
and security design and considers such factors as integration, flexi-
bility, compatibility, user friendliness, and system efficiency. 

Operational feasibility — (13) Proof that the problem can be solved in
the user’s environment. 
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Optimistic concurrency — (82) Breaking a transaction into two transac-
tions, one that reads the information and displays it and another that
interprets data changes and updates the database, and releases locks
between those transactions. The system is optimistic that no other
user will change the information between the read and the update. If
another user does change the information, the update transaction is
lost. 

Ordered list — (43) A list in which the nodes are stored in data value or
key order. 

Organizational feasibility — (13) Proof that the proposed system is con-
sistent with the organization’s strategic objectives. 

Organizational unit-process matrix — (40) A table that identifies the
relationships between the organizational units and the processes and
shows the degree of involvement of the various units in specific
processes. 

Outcome — (57) On a decision tree, a final result of a series of decisions
and/or outcomes; (79) the fundamental result of a probabilistic
experiment. 

Outdegree — (43) On a directed graph, the number of arcs exiting from
a given node. 

Output error — (75) An error that results from incompatible or inaccu-
rate data conversion, data compression, or data encryption. 

Output oriented — (4) A methodology or tool that works backward
from the output, through the processes, to the input. 

Outsourcing — (2) Subcontracting work outside the organization. 
Overview diagram — (64) A high-level IPO chart that summarizes the

inputs to, processes or tasks performed by, and outputs from a 
module. 

Page — (51) The basic unit of information transferred between a server
and a client on the World Wide Web. 

Page load time — (51) A measure of the elapsed time between a request
for a page and the display of the complete page on the client com-
puter’s screen. 

Parallel operation — (76) A system release strategy in which the old and
the new systems run in parallel for a time. 

Parallel processing (multi-processing) — (73) The simultaneous execu-
tion of two or more instructions on a multiple processor system. 

Parallel simulation — (77) An auditing technique that involves testing
both the live system and a simulated system with the same data. 

Parameter — (66) Information that must be passed so the receiving
object can perform the operation. 

Parameter analysis — (42) A study of such factors as the time required
to load a test image, the quality and sharpness of a displayed image,
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or the maximum number of frames required to store a motion picture
or display an animation. 

Parent — (35) A related, higher-level requirement; (43) the immediate
higher-level node in a tree; (45) a higher-level record in a hierarchical
database structure. 

Pareto principle — (11) In many different situations, the majority of out-
comes are the result of a few significant factors. The remainder of the
outcomes is owing to a large number of less important factors. This
concept is named after the Italian economist Alfredo Pareto who rec-
ognized that a large proportion of the wealth in Italy was in the
hands of a small number of people. 

Parse tree — (68) A hierarchical representation of words (conceptually
similar to a diagrammed sentence) arranged in a form that allows a
computer program to trace relationships and infer meanings. 

Parser — (68) A routine that performs syntactic analysis, essentially dia-
gramming a sentence to form a parse tree. 

Partially connected mesh network — (52) A mesh network in which
every computer is connected (either directly or via a relay computer)
to at least two other computers in the network by more than one 
path. 

Partition — (7) To decompose a large problem into several smaller 
problems. 

Partition analysis — (75) A technique for testing the completeness of a
database using aggregate values. 

Password — (71) A secret word or string of characters used to uniquely
identify a given user. 

Path — (43) On a graph, a sequence of edges that links a set of nodes; on
a digraph, the path’s direction is significant; (54) a group of connect-
ed links that allow the transmission of information from a source to
destination(s). 

Path test — (75) A test that traces the flow of logic through a program;
typically, test data are provided to make sure each logical path
through the program is followed. 

Pattern — (66) A named problem/solution pair that can be applied in
new contexts, along with advice on how to apply it. 

Payback period — (38) A measure of the time it takes for accumulated
benefits to exactly match the development costs. 

Payoff — (39) A benefit. 
Peak load test — (74) A test designed to ensure that the system can han-

dle the stress of a peak load demand. 
Perfective maintenance — (80, 81) Maintenance activities intended to

enhance the system by improving efficiency, reliability, functionality, or
maintainability, often in response to user or system personnel requests. 
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Performance requirement — (35) A requirement that specifies such
characteristics as speed, frequency, response time, accuracy, preci-
sion, portability, reliability, security, and maintainability. 

PERT (program evaluation and review technique) — (21) A project
management technique based on a project network; with PERT, the
critical path is the primary focus of management control and moni-
toring the critical events provides an early warning if estimates are
inaccurate. 

PGP (pretty good privacy) — (71) A popular public/private key encryp-
tion algorithm that was created without government support and is
available on the Internet. 

Phased implementation (partial conversion) — (76) A system release
strategy in which the new system is released in stages. 

Physical — (2, 3) real; actual, operational hardware, software, or data;
contrast with logical. 

Physical data flow diagram — (24) A data flow diagram that identifies
the system’s physical processes and physical data stores. 

Physical data structure — (4) A set of related data elements as they are
physically stored. 

Physical database design — (45) The database design stage during which
a blueprint for physically implementing the database is produced. 

Physical design phase — (4) The phase in the structured requirements
definition methodology during which the detailed requirements
determined by the logical design phase are converted into physical
specifications for developing the system. 

Physical record — (44) The unit of data that moves between the periph-
eral device and main memory. 

Physical security — (71) A set of security features concerned with deny-
ing physical access to the system, preventing the physical destruction
of the system, and keeping the system available; (77) techniques and
procedures concerned with denying physical access to a system.

Pilot implementation (location implementation) — (76) A system
release strategy in which the new system is first released in a single
site, such as a branch office or a warehouse, thoroughly tested, and
then ported to the other sites. 

Pixel — (46) A picture element; a dot on a screen. 
Plug-in — (51) A program that plays or displays special files that are

beyond the capability of a standard browser. 
Pointer — (43) A link to a data item; typically, a key value or an address. 
Polymorphism — (6) The property of an operation or method that

allows it to produce similar results in different objects or at different
levels. 

Pop — (43) To remove an entry from the top of a stack. 
Population — (9, 17) The entire set of relevant entities or measurements. 
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Portfolio — (54) A prioritized list of routing decision criteria. 
Post conditions — (66) Objects that were created, associations that were

formed or broken, and any attributes that were modified during an
operation. 

Post-implementation review (post-release review) — (76) A review of
the system development process conducted after the system is
released. 

Power dialing — (71) Running a program that dials thousands of num-
bers in sequence and notes only the numbers that return a modem
tone. 

Preconditions — (66) Objects that must exist for an event to take place. 
Predefined process — (37) On a system flowchart, a high-level process

that is more fully documented in a separate, lower-level flowchart;
(55) a flowcharting symbol that indicates that the logic is flowcharted
in more detail elsewhere. 

Prediction system — (67) A type of expert system used to infer likely
consequences from a given situation. 

Present value — (38) The value of a (current or future) sum of money in
today’s dollars. 

Preventive maintenance — (81) Regularly scheduled maintenance
activities; the intent is to anticipate problems and correct them before
they occur. 

Prime item development specification (PIDS) — (35) A set of high-level
design requirements associated with each hardware component
defined in (or implied by) a parent system/segment design docu-
ment; (41) the documentation for a hardware configuration item; a
hardware design specification. 

Primitive — (3) A process (or transform) that requires no further decom-
position; (44) a command that tells a peripheral device to perform
one of its basic functions. 

Probabilistic model (stochastic model) — (19) A model having some
data described by probability distributions. 

Probability mass function (pmf) — (79) The mathematical relationship
between the various values that a discrete random variable may
assume and the probabilities of occurrence. 

Problem definition — (1) The first step in the system development life
cycle during which the problem is identified, its cause determined,
and a strategy for solving it developed. 

Problem domain — (34) A collection of all types of knowledge (includ-
ing common sense and informed guesses), facts, and/or data related
to a defined problem. 

Problem search space (search space) — (34) In a search-oriented prob-
lem-solving technique, a domain with all possible sets of steps
and/or alternatives to support comprehensive searching for the
completion of a goal or goals. 
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Problem space (solution space) — (7, 34) A mathematical term for the
set of all possible solutions. Solution space is a special type of search
space. A desired solution can be obtained by searching all possible
problem-solving alternatives in the space. 

Problem statement — (12) A written statement that defines a problem
by listing its symptoms, identifying a set of objectives for solving the
problem, and indicating the problem’s scope. 

Procedural cohesion — (62) A type of cohesion in which all the elements
of a module are associated with the same procedural unit, such as a
loop or a decision structure. 

Procedural/production system — (67) A technique that analyzes infor-
mation from multiple independent knowledge sources, identifies
similarities, distinguishes differences, and merges similar ideas and
concepts to form aggregate categories. 

Procedure — (2, 55, 59, 60) Guidelines, rules, and instructions that tell
people how to perform a task; often, a manual procedure. 

Procedure/subroutine approach — (67) An approach to knowledge
representation in which knowledge about the world is contained in
procedures, small programs that know how to do specific things. 

Process — (1) An activity that changes a system in some way; (3, 4) an
activity that changes, moves, or manipulates data; (55, 56) a set of
steps for performing a task. 

Process (transform) — (24) An activity that changes, moves, or other-
wise transforms data. 

Process-data element matrix — (40) A table that shows the relationships
between the data elements and the processes. 

Process error — (75) A computational error, a comparison error, a
sequencing error, a control logic error, and so on. 

Process flowchart (logic flowchart) — (55) A graphical representation of
the flow of logic, control, data, or paperwork through a program, a
routine, a module, or a process. 

Process symbol — (55) A flowcharting symbol that indicates an opera-
tion that changes or manipulates data in some way. 

Processing control — (77) A test or technique that measures and controls
a processing activity. 

Productivity — (78) Output per unit of labor; more generally, output per
unit of input. 

Program generator (application generator, code generator, generator) —
(2, 31, 32) A program that starts with information in graphical, narra-
tive, list, or some other logical form and outputs the appropriate
source or executable code. 

Program profiler — (73) A routine or device that tracks the resources
requested and services utilized by a particular program as it 
executes.
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Project dependency — (14) A dependency relationship between two or
more subprojects; for example, the input(s) to one subproject are typ-
ically output from another subproject. 

Project interrelationship — (14) A link or relationship between two or
more subprojects; for example, the successful completion of one sub-
project might be a prerequisite for several other subprojects. 

Project network — (21, 22) A bubble chart that graphically depicts activ-
ities, their starting and completion times, and their interrelationships. 

Project-oriented paradigm — (16) An approach to requirements analy-
sis that focuses on end-user requirements. 

Projection — (28) The process of separating one relation into 
subrelations. 

Property lists approach — (67) An approach to knowledge representa-
tion that uses objects and lists of their properties (or attributes) to
describe the state of the world. 

Protocol — (53, 54) A set of rules that governs data communication. 
Prototype — (7, 48) A reasonably complete, working model of a system;

(31, 32) a preliminary, working, physical model of a system, a sub-
system, or a program. 

Prototyping — (31, 32) The act of creating a prototype. 
Pseudocode — (59) A tool for planning, defining, or documenting the

contents of a program routine or module that resembles real code. 
Public/private key system — (71) An encryption system that uses two

keys; the message is encrypted using the published public key and
decrypted using the secret private key. 

Pull-down menu (drop-down menu) — (50) A menu of detailed options
that appears when the user clicks or selects a major function on a
menu bar. 

Push — (43) To add an entry to the top of a stack. 

Quality — (78) Conformance to requirements; in a broader sense, qual-
ity implies that the requirements match user needs and that the sys-
tem meets the requirements. 

Quality assurance — (78) Goals, procedures, and techniques for mea-
suring and ensuring quality. 

Quality factor — (78) A parameter that implies quality, such as correct-
ness, reliability, efficiency, integrity, usability, maintainability, test-
ability, flexibility, portability, reusability, and interoperability. 

Quality requirement — (35) A requirement that specifies a measure of
quality, such as an acceptable error rate, the mean time between fail-
ures, or the mean time to repair. 

Query — (45) A question; usually, a request for data or information. 
Question-answer dialogue — (49) A form of dialogue designed to solicit

user input. 
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Queue — (43) A special type of linked list in which insertions occur at
the rear and deletions occur at the front; (79) a waiting line. 

Quick-hit approach — (32) An approach to rapid application develop-
ment that takes advantage of recognized high payoff applications for
which a system can be built very quickly. 

Quickest route algorithm — (54) An adaptive routing technique that
sends the message to the next available neighboring node (other than
the sending node) as quickly as possible. 

Rabbit — (71) A program that replicates itself until no memory is left
and no other programs can run. 

RAD (rapid application development) — (32) A system development
methodology that employs joint application design, prototyping,
CASE technology, application generators, and similar tools to expe-
dite the design process. 

Random access (direct access) — (44) Reading records from or writing
records to a file in any order. 

Random sample — (9) A sample in which each item in the population
has the same chance of being selected. 

Random variable — (79) A symbolic representation of an outcome. 
Range — (9) The difference between the highest value and the lowest

value in a set of measurements. 
Range constraint analysis (boundary analysis) — (75) Generating test

data to represent such extreme values as upper bounds, lower
bounds, and other exceptional values. 

Rapid application development (RAD) — (32) A system development
methodology that employs joint application design, prototyping,
CASE technology, application generators, and similar tools to expe-
dite the design process. 

Rational subgroup — (10) A sample of measurements taken from a
process in such a manner that will maximize the probability that the
sample captures common cause variability and that any possible
assignable cause variability will occur between rational subgroups;
in other words, the variation in the rational subgroup should be the
result of common causes of variation only. 

Real data — (75) Data provided by the user that reflect the system’s
actual operating environment. 

Real-time system — (30, 72, 73) A system that responds to events as they
occur and provides immediate feedback to influence or control those
events in “real” time. 

Reasonableness test — (46, 77) A test used to screen invalid values (e.g.,
anything but F or M in a single-character sex or gender field). 

Reasoning — (7, 34, 67) The act of using inference to lead to a conclu-
sion based on existing knowledge and/or data. 
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Reasoning capability — (7) An inference engine feature that reaches a
conclusion by applying the rules in the rule base. 

Reconciliation control — (77) An output control designed to ensure that
the right amount of data is output to support daily statistical analy-
sis and decision-making activities. 

Record — (25, 43, 44) The set of fields associated with an occurrence of
an entity; (47) a set of related fields. 

Record control — (77) A simple processing control technique that
involves counting and verifying the existence of every record in a
database. 

Recovery test — (74) A test that simulates emergency situations such as
power failures, equipment malfunctions, database failures, and so on.

Recursion — (30, 43) The ability of a subroutine to call itself; a subrou-
tine initiating a circular chain of calls that returns eventually to itself. 

Redundancy — (42) Two (or more) copies of a hardware component; 
in the event of component failure, the redundant copy provides
backup; (73) the duplication of components to provide back up in
case of failure. 

Reengineering — (2) Rethinking and redesigning business processes;
(5) the process of revising application software using a CASE tool;
(81) changing a system to make it better without affecting its func-
tionality or external behavior. 

Referential group — (82) A complete set of relationally connected
tables. 

Regression test — (74) A form of test in which old test cases and test
data are applied to a modified version of a system to ensure that the
changes have not affected the system’s ability to perform its funda-
mental tasks; (80) a test designed to measure how a change to a sys-
tem affects response time and other standard performance metrics. 

Regression testing — (77) An auditing technique that compares the
results obtained when the system is being audited to the results
obtained under normal conditions. 

Relation — (7) An association or link between two objects or entities;
(28) an entity in tabular form, with attributes (fields) stored in
columns and tuples (records or occurrences of the entity) stored in
rows; (45) a table (analogous to a file) in a relational database. 

Relational database — (45) A database in which the files (or relations)
are visualized as two-dimensional tables with each column holding
values of a single field (or attribute) and each row holding a single
record (a single occurrence of the entity); the files are linked by point-
ers or, more generally, relationships. 

Relationship — (25, 26, 27, 28, 45) A link between two entities, data
structures, or relations. 

Relative addressing — (44) Assigning each record (or byte) in a file an
address that represents its position relative to the beginning of the file. 
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Reliability — (73) A measure of the likelihood that a system or a com-
ponent will function properly over time; often measured by the mean
time between failures; (78) the probability that a given component or
system will perform as expected (or will not fail) for a given period of
time. 

Reliability requirements analysis — (53) A network analysis process
that helps the designer develop a back-up plan or create necessary
redundancies. 

Repair system — (67) A type of expert system used to develop and exe-
cute plans to administer a remedy for some diagnosed problem. 

Repetition (iteration) — (62) A block of logic that is executed repetitively
as long as (while) an initial condition holds or until a terminal condi-
tion occurs. 

Report — (47) An organized presentation of data, often printed or dis-
played in text form. 

Report header (report title) — (47) A page, screen, or section that (typi-
cally) precedes and identifies the report. 

Report summary — (47) One or more lines, a section, or a page that
summarizes the entire report.

Reporting control procedures — (74) A set of procedures for docu-
menting all test results. 

Repository — (5) An integrated holding area where diagrams, descrip-
tions, specifications, test data, and other items are stored and
integrated. The repository is the most critical component in a CASE
environment. 

Request for proposal (RFP) — (42) A formal (often advertised) request
for competitive bids based on a set of requirements. 

Requirement — (3, 35) An element (process, data, etc.) that must be part
of a system; a user need. 

Requirements planning — (32) The rapid application development
phase during which the system requirements are defined using joint
application design and other tools and techniques; this phase is sim-
ilar to traditional problem definition and systems analysis. 

Requirements specification — (35, 75) A document that clearly and pre-
cisely defines the customer’s logical requirements (or needs) in such
a way that it is possible to test the finished system to verify that those
needs have actually been met. 

Resolution — (46) The level of detail a screen can show, a function of the
number of pixels (or dots) on the screen. 

Resource analysis — (42) An evaluation of such hardware component
capabilities as mean time between failures, the average number of
instruction executed per second, clock speed, multiple processor
availability, and expandability. 

Response time — (36) The maximum allowable time to complete a
process once its trigger event has occurred; (49) traditionally, the
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interval between the instant a command is issued and the instant the
response begins to appear on the screen; dialogue response time
includes system response time, the display rate, user scan/read time,
user think time, user response time, and error time; (72, 73) the
elapsed time between a request for service and the delivery of that
service. 

Response time analysis — (53) A network analysis process that helps to
determine the system’s response time requirements (e.g., interactive,
store and forward, real-time, etc.). 

Responsibility — (66) A contract or obligation of a type or class, includ-
ing both responsibilities of knowing and responsibilities of doing. 

Restructuring — (81) Efforts aimed at enhancing performance without
changing how the system works or what it does. 

Reuse maturity model — (29) A comprehensive model that measures
the extent of reuse of software components, architecture, and proc-
esses in an organization. 

Reverse engineering — (5) The process of studying the existing appli-
cation software to understand its design; (81) extracting an abstract
model from a system’s physical documentation and then using the
model as a base for creating a functionally equivalent system. 

Ring network — (52) A network that consists of a series of nodes con-
nected to form a ring. 

Ripple effects — (81) Unexpected bugs or new errors caused by a
change intended to fix an initial problem. 

Rising cable — (53) Generally, a cable that runs between two floors in a
building. 

Risk — (38) The likelihood that an investment will fail to return the
expected benefits; (39) a possible negative outcome that can be inter-
preted, estimated, or quantified by applying past experience. 

Risk analysis — (19) An analysis of the potential occurrence of an unde-
sirable outcome when a decision must be taken in the presence of
uncertainty. 

Root — (62) The module at the top of a control structure from which all
control flows. 

Root (root node) — (43) A tree’s top (or base) node. 
Root cause analysis — (18) Identification of the initial factor resulting in

an effect of interest; the root cause is usually found in a tiny branch.
This initial factor starts a chain reaction of cause-and-effect situations,
moving from a tiny branch to a small branch to a medium branch to
a big branch, and ultimately resulting in the effect of interest. 

Rooted tree network — (52) A tree network with a clearly defined root
node that serves as a base for the entire network. 

Route — (54) The path(s) or its subset used to actually transmit infor-
mation from a source to a destination(s). 
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Router — (53, 54) An intelligent device that provides network connec-
tions and performs such services as protocol conversion and message
routing.

Routine — (55, 56, 59, 60) A set of instructions that performs a specific,
limited task. 

Routing — (54) The process of determining the best available path (or
path segment) to transmit a message. 

Rule — (7, 34, 67) A formal specification or description of a unit of
knowledge. 

Rule base — (7, 34) A collection of executable rules; in an expert system,
the rule base is accessed by the inference engine to support reasoning. 

Sample — (9, 17) A selected subset of a population. 
Sample space — (79) The set, or collection, of all possible outcomes. 
Sampling error — (17) The difference between an estimate based on a sam-

ple and the true value of the population parameter being estimated. 
Scaffolding — (74) Software written specifically to support testing. 
Schedule — (20) A series of events or activities with estimated comple-

tion times or target dates. 
Scheduled report — (47) A report that is prepared at a predetermined

time. 
Scheduling control — (77) An operational control that is used to moni-

tor input or output timings and provide an early warning of increas-
ing queue lengths. 

Schema — (45) A general description of the entire database that shows
all the record types and their relationships. 

Scope — (4) In the structured requirements definition methodology, an
estimate of input, processing, and output time; (12, 14, 72) more gen-
erally, size or magnitude; often, a preliminary estimate of the size or
cost of an information system. 

Screen — (46) An output device that resembles a television screen. 
Screening questions — (17) Questions posed in order to determine

whether or not a respondent should answer the main question. 
Scribe — (14) During a JAD session, the person responsible for taking

notes, recording all discussions, and organizing and compiling the
necessary documents. 

SDLC (system development life cycle) — (1, 72) A set of steps for solv-
ing information system problems; the basis for most systems analysis
and design methodologies. 

Search space (problem search space) — (34) In a search-oriented prob-
lem-solving technique, a domain with all possible sets of steps
and/or alternatives to support comprehensive searching for the com-
pletion of a goal or goals. 
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Second normal form — (28) A first normal form relation from which any
data elements that depend on only part of a concatenated key have
been removed to a separate entity. 

Security — (71, 77, 82) Hardware, software, and procedures intended to
protect the hardware, software, data, and other system resources
from unauthorized, illegal, or unwanted access, use, modification, 
or theft. 

Selection (decision) — (62) A block of logic that provides alternate paths
through the block depending on a run-time condition. 

Semantic analysis — (68) A technique in which the system determines
the meaning of each word by looking it up in a dictionary or a knowl-
edge base. 

Semantic net technique — (67) An approach to knowledge representa-
tion that describes the state of the world as a collection of nodes that
represent objects, object properties, concepts, events, and arcs of links
in a graph. 

Sequence — (62) A block of logic in which the instructions are executed
in simple sequence, one after another. 

Sequence diagram — (66) A type of interaction diagram, drawn using
the UML notation, that depicts the interaction between objects and
shows the detailed message flow between objects in a use case; the
time axis is directed downwards and the objects are represented in a
vertical column. 

Sequence test (flow test, transaction test) — (75) A test designed to ver-
ify the complete logical flow needed to accomplish a task. 

Sequential access — (44) Reading records from or writing records to a
file in key and/or physical storage order. 

Sequential cohesion — (62) A form of cohesion in which the modules
form a chain of transformations, with the output from one module
serving as input to the next. 

Server — (53) A computer that holds centralized resources and provides
them to clients on request. 

Service controls — (77) Operational controls that measure such param-
eters as response rate, throughput rate, and turnaround time. 

Service rate — (79) The number of customers served per unit of time.
Service time — (79) The time a customer spends receiving service in a

queuing system. 
Siblings — (43) Two or more nodes that share the same level. 
Signal — (6, 66) A message that allows objects to interact with other

objects. 
Simple star network — (52) A network that consists of several comput-

ers and/or peripherals, each linked to a central host computer via a
dedicated line. 

Simulated data (hypothetical data) — (75) Data created specifically for
testing purposes. 
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Simulated tracing — (75) A technique for debugging selection and
repetitive logic by tracing the program’s logical flows. 

Simulation — (19, 42) The use of a mathematical model that behaves in
the same manner as the system under study. 

Simultaneous — (73) At the same instant. 
Singly linked list — (43) A linked list in which each node points only to

the next node. 
Sink — (43) On a directed graph, a node of outdegree 0. 
Sink (destination) — (24) A person, organization, or other system that

gets data from the target system; a destination defines a system
boundary. 

Site preparation — (76) The process of preparing the work environ-
ment, installing the hardware, and configuring any new equipment
to work with existing computers and peripherals. 

Slack — (21) The maximum time an activity can slip without affecting
the project schedule. 

Slot — (67) A frame-like structure for representing stereotyped
sequences of events. 

Social engineering — (71) The act of pretending to be an authorized
user and attempting to convince an employee or other human source
to divulge sensitive information. 

Software development controls — (77) A set of controls imposed on the
software development process; examples include static code analyz-
ers, technical inspections, version controls, and so on. 

Software error — (75) A program bug or an operating system error. 
Software monitor — (78) A benchmarking program that can be used to

measure program efficiency, measure execution performance, keep
track of resources used, and so on. 

Software requirements specification (SRS) — (35) A set of high-level
design requirements associated with each software component
defined in (or implied by) a parent system/segment design docu-
ment; (41) the documentation for a computer software configuration
item; a program design specification. 

Solution space (problem space) — (7, 34) A mathematical term for the
set of all possible solutions. Solution space is a special type of search
space. A desired solution can be obtained by searching all possible
problem-solving alternatives in the space. 

Source — (24) A person, organization, or other system that supplies data
to the target system; a source defines a system boundary; (43) on a
directed graph, a node of indegree 0. 

Source data — (46) The original data that describe a transaction. 
Sources of variability — (18) Many different things can affect the out-

comes from systems, including the effects of workers, machines,
materials, methods, measurements, and the environment. These six
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sources of variation are sometimes used as the big branches on a
cause-and-effect diagram. 

Span-of-control (breadth) — (61, 62) A measure of the number of mod-
ules directly controlled by a higher-level routine. 

Spanned record — (44) A logical record that extends over two or more
physical records. 

Spanning tree (subtree) — (43) A tree within a graph; a subset of a tree
that is itself a tree. 

Specialization — (29) The creation of a subtype from a super-type by
refining the super-type; the opposite of generalization. 

Speech recognition — (68) An extension of natural language processing
that uses a speech recognition routine (or a chip) to break continuous
speech into a string of words, inputs the string to a natural language
processing routine, and then passes the resulting commands to an
application program. 

Split screen — (50) A windows technique that allows the user to divide
a screen into several subscreens or subwindows. 

Stable process — (10) A process that only exhibits common cause vari-
ation; in other words, the output from a stable process produces a
population of items which has a constant mean and a constant vari-
ance. A stable process is predictable and therefore the output from a
stable process is predictable. If a stable process is generating output
that is undesirable, then the process itself must be redesigned. A
stable process is sometimes called an in-control process. If a process
is not stable, it is said to be unstable. 

Stack — (43) A special type of linked list in which all insertions and dele-
tions occur at the top. 

Standard deviation — (9) The square root of the variance. 
Star network — (52) A network on which all messages must go through a

central computer before they are passed to the destination computer. 
State — (6) A set of attribute values for an object; (30) A condition or

mode of being, particularly with regard to phase, form, composition,
or structure; (73) often, the complete set of attribute values and set-
tings that describes the precise condition of a computer system at a
specific instant in time. 

State test — (75) A test that focuses on a real-time system’s states. 
Static code analyzer — (77, 81) A program that scans (but does not exe-

cute) the code and flags such potential errors as synonyms, poor
structure, inconsistent usage, dead code, unreferenced variables, and
other deviations from coding standards. 

Static diagram — (29) A model that describes the different kinds of
objects that can exist in the system and the possible ways in which
the objects can be linked to each other; no methods or responsibilities
are shown, as static models do not contain information about how a
system behaves. 
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Static information — (61) Process information that is not likely to
change; for example, the process name, the process number, neces-
sary algorithms, inputs, and outputs. 

Static routing — (54) A distributed routing technique that establishes
routine paths between sending and receiving nodes based on a data
flow analysis of historical data.

Steady state — (19) The end of transient state as the system reaches nor-
mal operations; (79) a condition representative of a system’s long run
behavior; for example, an assembly line starting without parts in
process will be in a transient state until such time as the various 
stations are being utilized at approximately their expected levels, at
which point steady state has been achieved. 

Steering committee — (13) A committee consisting of representatives
from various user groups that accepts, rejects, and prioritizes infor-
mation system proposals. 

Stepwise checking — (75) Placing print or write commands throughout
a program and using the resulting messages to determine where the
program fails or begins producing errors. 

Stepwise refinement — (61) A top-down strategy for dealing with com-
plex or abstract processes; (72) a design strategy that starts with a
small program or subsystem and continuously refines it by adding
new functions and/or modifying features. 

Stereotype — (67) A description that embodies a set image or type; a
template. 

Stochastic model (probabilistic model) — (19) A model having some
data described by probability distributions. 

Stochastic process — (79) A process organized into states in which
movement from state to state is governed by probabilities; examples
include the number of customers in a queuing system, the stock lev-
els of inventory on hand, and the brands purchased by consumers. 

Strata — (9) The set of subgroups in a stratified random sample. 
Stratified random sampling — (9) A random sampling technique in

which the population is divided into subgroups called strata such
that each element of the population lies in exactly one stratum; sam-
ples are taken randomly within each stratum. 

Stratum — (9) A single subgroup in a stratified random sample. 
Stress test — (74) A test conducted under extreme conditions. 
Structure analysis testing — (75) A technique for evaluating the order

of data within a file, a table, or a relation. 
Structure chart — (3, 63) A hierarchy chart on which the data flows and

control flows between modules are traced. 
Structured analysis — (3) A set of tools and techniques intended to

transform an abstract problem into a feasible logical design. 
Structured design — (3) A set of tools and techniques intended to con-

vert a logical design into a concrete information system. 
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Structured English — (60) A very limited, highly restricted subset of the
English language used to plan, design, or document program rou-
tines, modules, and manual procedures. 

Style — (69) A font, a point size, and a set of text formatting rules. 
Sub-problem — (15) A problem that is part of a larger problem. 
Subschema — (45) A subset of the schema that includes only those

records and relationships needed by a particular user or class of
users. 

Subtree (spanning tree) — (43) A tree within a graph. A subset of a tree
that is itself a tree. 

Summary line — (47) On a report, a line (or row) that holds summary
information, such as counts or sums; summary lines are typically
printed or displayed following a control break. 

Summary report — (47) A report that summarizes data accumulated or
derived from several input records, often showing only the summa-
rized data. 

Suprasystem — (1) A system’s environment. 
Surge protector — (42) A device that protects electronic components

against sudden changes in electrical current. 
Symbolic reasoning — (7) A technique for performing reasoning or

inference with symbolic data such as graph, image, and/or picture. 
Symbolic representation — (7) A technique for representing symbolic

data or knowledge. 
Synch point — (82) A point at which a complete set of relationally con-

nected tables (a referential group) is consistent. 
Synchronization — (82) The act of ensuring that a complete set of rela-

tionally connected tables (a referential group) is consistent. 
Syntactic analysis — (68) A technique that allows a parser routine to,

essentially, diagram a sentence to form a parse tree. 
Syntax test — (75) A type of test designed to identify high-level syntax

errors that are not flagged by the compiler or language translator;
such errors can cause a program to accept bad data or to misinterpret
good data.

Synthesis — (15) An evolutionary paradigm that starts with a major or
influential user’s viewpoint and incorporates other users’ perspec-
tives until all relevant viewpoints are included. 

System — (1, 72) A set of interrelated components that function together 
in a meaningful way; (19) a set of components (entities, machines, 
etc.) that interact to perform an operation that is of interest to the 
modeler. 

System access monitoring — (78) Software and hardware used to mea-
sure such parameters as throughput, turnaround time, access time,
and response time. 

System development life cycle (SDLC) — (1, 72) A set of steps for solv-
ing information system problems; the basis for most systems analysis
and design methodologies. 
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System error — (75) An error related to input, output, hardware, soft-
ware, and/or interfaces. 

System flowchart — (37) A tool for documenting a physical system in
which each component is represented by a symbol that visually sug-
gests its function. 

System life cycle — (1, 72) A model that stresses the stages of system
usefulness; the stages are birth, development, growth, maturity, and
death. 

System objective — (4) A desired function of and/or operation per-
formed by a proposed system. 

System outputs — (4) The exact data the users need to perform their
jobs. 

System performance analysis — (73) A type of analysis that focuses on
such criteria as processing speed, information access time, data trans-
fer rate, instruction execution time, and so on. 

System performance test — (74) A test that focuses on system behavior. 
System release — (76) The stage in the system development life cycle

when the system is turned over to the user. 
System/segment design document (SSDD) (B-specs) — (35) A black-

box specification defined for each physical component at (or directly
below) the configuration item level; (41) a set of specifications that
define, in black-box form, the components that occupy the configu-
ration item level. 

System/segment specifications (SSS) (A-specs) — (35) A hierarchy of
requirements specifications that logically defines the system from its
high-level objectives down to the configuration item level; (41) a set
of specifications that identify major systems and subsystems at a
conceptual level; the system/segment specifications define the
requirements down to, but not including, the configuration item
level; sometimes called the project or mission requirements. 

System test — (74) A test conducted on the entire system that uses both
test data and real, user-supplied data. 

Systems information interface (instruction dialogue) — (49) Dialogue
that provides instructions and other information about the system’s
operations, functions, and structure. 

Tangible — (39) Easily defined, concrete, physical; for example, payoffs,
risks, and uncertainties that can be expressed in financial terms are
considered tangible. 

Tangible benefits — (38) Benefits that can be measured in financial
terms, such as reduced operating costs or enhanced revenues. 

Task — (73) A single program or routine in memory and available to be
executed. 

Technical evaluation — (78) A type of system evaluation that deals with
the technology and the system design and considers such factors as
reliability, productivity, quality, efficiency, and effectiveness. 
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Technical feasibility — (13) Proof that the problem can be solved using
existing technology.

Template — (69) A document that contains predefined styles and
macros. 

Temporal cohesion — (62) A type of cohesion in which the elements are
related by time. 

Temporary file — (44) A file that holds intermediate results and exists
for only a brief time. 

Terminator — (55) A flowcharting symbol that marks the beginning or
end of the flowchart. 

Test data — (75) Data that are developed to support the testing process,
locate bugs, and facilitate debugging. 

Test plan — (74) A plan for conducting the necessary tests that incorpo-
rates testing strategies, test procedures, test data, and a test schedule. 

Testing — (1) The fifth step in the system development life cycle (fol-
lowing development and preceding implementation) intended to
ensure that the system does what it was designed to do; (74, 75) a
front-end process intended to exercise the system and its components
to locate, investigate, and correct errors and bugs. 

Theme — (51) A recurrent idea; on a web page or web site, the consis-
tent use of color, fonts, icons, logos, and sound, a consistent page lay-
out and appearance, and consistent navigational rules. 

Third normal form — (28) A relation in which each data element in the
relation is a function of the key, the whole key, and nothing but the
key. To reach third normal form, all transitive dependencies must be
removed from a second normal form relation. 

Throughput — (2, 72) The amount of work flowing through a process, a
component, or a system; often expressed as a percent utilization. 

Time bomb — (71) A program that executes on a particular date or when
a particular condition is met. 

Time frame factor — (4) A processing cycle; for example, annually,
monthly, daily, hourly, on demand, and so on. 

Time-sharing — (73) Concurrently executing multiple tasks by assign-
ing the processor to a given task for a brief time slice before moving
on to the next task. 

Timed-box approach — (29) A project management approach that
divides the set of all requirements for a system into subsets, each of
which is implemented as a version of the system; the delivery of each
new version of the system in a regular and timely fashion is guaran-
teed by this approach. 

Token passing — (52, 53, 54) A network management technique in
which an electronic token is passed continuously from node to node
around the network and a given node can transmit a message only
when it holds the token. 

Tool — (5) Software that supports a specific task in the software devel-
opment process. 

1999 by CRC Press LLC



Top-down — (15) An approach to problem solving that starts with the
high-level control structures and works down to the details. 

Top-down design — (72) A goal driven design strategy in which the
modules (and/or subsystems) at the top of the hierarchy (usually, the
broad, control-oriented modules) are designed first and modules at
the bottom of the hierarchy (the detailed, computational modules)
are designed last. 

Top-down testing — (74) A testing strategy that starts at the top (with
the broad, control modules) and works through the module 
hierarchy level by level until the bottom level (the detailed computa-
tional modules) is reached. 

Topology — (52, 53, 54) A map of a network; a physical arrangement of
the nodes and connections in a network. 

Topology determination — (53) A network analysis process that focuses
on physically laying out the network using such tools as location con-
nectivity diagrams. 

Touch screen (graphic input screen) — (46) A screen that allows a user
to input a command or request information by pointing. 

Traffic flow pattern analysis — (53) A network analysis process that
helps to define the network’s topology and connections as well as the
message volumes associated with the various data flows. 

Traffic load analysis — (53) A network analysis process that helps to
determine the required number of communication lines, the maxi-
mum required capacity for each line, the time slots during which the
communication lines are likely to be busy, and several related net-
work performance parameters. 

Training — (76) Generally, a series of experiences designed to modify
behavior; often, a set of activities designed to teach someone how to
do something. 

Transaction — (3) Typically, one occurrence of a business activity; for
example, a single customer order or a single shipment from a sup-
plier; an event; (45, 82) the sequence of steps required to carry out
an event about which data are recorded or processed. 

Transaction analysis — (3) The act of grouping all modules (or pro-
cesses) triggered by the same transaction to form a transaction center;
(45) a study of expected usage levels associated with the various
application functions. 

Transaction file — (44) A file that holds current data. A transaction file
is often used to update (or maintain) a master file. 

Transaction log — (71) A list of a system’s transactions. 
Transaction-oriented process — (61) A process that transmits or routes

the right information to the right process. 
Transaction processing system (TPS) — (72) An information system

that accepts and processes transactions in either batch or on-line
mode. 
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Transaction response time — (49) The sum of the response times for all
the screens in the dialogue. 

Transaction test (flow test, sequence test) — (75) A test designed to
verify the complete logical flow needed to accomplish a task. 

Transform (transform process) — (25, 61) A process or operation that
modifies data; (62) a process that converts the input data to output
form. 

Transform analysis — (3) The act of grouping together the modules (or
processes) that manipulate a particular set of data or a particular data
structure. 

Transform-oriented process — (61) A process that creates and/or
derives new information based on the input data. 

Transient state — (19) The beginning or warm-up period of a model as
activity builds up. 

Transition — (30) A movement or shift from one state to another. 
Transitive dependency — (28) A non-key attribute that depends indi-

rectly (via a third attribute) on the key attribute. 
Transmission control — (77) A processing control designed to ensure

that there are no missing, incorrectly converted, or wrongly trans-
mitted data. 

Tree — (43) A two dimensional, hierarchical data structure; a tree can 
be defined recursively because each node is the root node of a sub-
tree. 

Tree topology (hierarchical topology) — (52) A hybrid topology that
usually consists of two or more linked star or bus networks. 

Trigger event — (36) The event that activates a process; (62) the event
that activates a program or causes it to change from a wait state to a
run state. 

Trojan horse — (71) A seemingly harmless program that invites an
unsuspecting user to try it. 

Trunk — (18) The trunk is the central part of a cause-and-effect diagram
to which the big branches are attached. When the term fishbone dia-
gram is used, the trunk is referred to as the spine. 

Tuple — (28) A row in a relation that holds one occurrence of the entity
(or one record). 

Turnaround time — (2) The time between a request for a service and the
completion of that service. 

Turnpike effect (highway effect) — (53, 54) The tendency of users to
quickly adopt new technology as soon as it proves its usefulness;
because of the highway effect, the demands placed on a system often
exceed projections. This term was initially coined in the 1950s when
the traffic load on the Pennsylvania Turnpike exceeded the designers’
long-term, worst-case projections soon after the road opened. 

Two-phase commit — (82) A process of committing changes across mul-
tiple database management systems. In the first phase each DBMS

1999 by CRC Press LLC



votes on whether they can commit a transaction. If all vote yes, the
transaction is committed on all. If any vote no, the transaction is
rolled back on all. 

UML (unified modeling language) — (29, 66) The universal language
for object-oriented modeling; its notation forms an object-oriented
modeling language and can replace the notation of various object-
oriented analysis methods. 

Unbiased estimate — (9) An estimate that is high about half the time
and low about half the time. 

Uncertainty — (39) A possible negative outcome that cannot be inter-
preted or estimated based on experience because it has never 
happened before. 

Undirected graph — (43) A graph on which the edges have no direction. 
Unidirectional flow — (50) A transfer of control from the top-level (call-

ing) window to a lower-level (called) window. 
Unified modeling language (UML) — (29, 66) The universal language

for object-oriented modeling; its notation forms an object-oriented
modeling language and can replace the notation of various object-
oriented analysis methods. 

Uniform resource locator (URL) — (51) The address of a page on the
World Wide Web. 

Uninterruptible power supply (UPS) — (42) A device that continues to
supply electrical current in the event of a power failure; many unin-
terruptible power supplies incorporate surge protectors. 

Unit test (module test) — (74) A test conducted on a single program or
a single module. 

Unrooted tree network — (52) A tree network with no clearly defined
base root; instead, there are several nodes that act as major hubs to
relay messages or perform limited supervisory functions. 

Unstable process — (10) A process that exhibits common cause and
assignable cause variation; an unstable process is unpredictable and
therefore the output from such processes cannot be predicted. Thus,
before the true capability of a process can be determined, all assign-
able causes of variation must be eliminated from the process, in other
words, the process must become stable. An unstable process is some-
times called an out-of-control process. 

Upper CASE — (5) A set of tools that support the earlier phases (prob-
lem definition, analysis, and design) of the system development life
cycle. 

URL (uniform resource locator) — (51) The address of a page on the
World Wide Web. 

Use case — (29, 66) The behaviorally-related sequence of transactions
that a user performs in a dialogue with the system when he or she
uses the system. 
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Use case diagram — (29, 66) A diagram that depicts the set of use cases
for a system, the actors, and the relation between the actors and the
use cases. 

User design phase — (32) The rapid application development phase
during which the joint application design team examines the require-
ments and transforms them into logical descriptions. 

User interface — (48, 49, 50) A point in the system where a human being
interacts with a computer. 

Validity test — (46, 77) A test used to ensure that each input field is the
right type (numeric, alphabetic), that the value of a given field is
within upper and lower bounds, that fixed length fields (e.g., social
security number, telephone number) are the right length, and so on. 

Value analysis — (75) Techniques for generating test data based on the
data values. 

Variance — (9) The average of the squared differences between the indi-
vidual population values and the population mean. 

Vector — (43) A one-dimensional array.
Version control — (77, 80) A set of tools and procedures used to track

and manage multiple versions of the system and its components. 
View — (45) A subset of the database that includes only selected fields

from the records that meet a set of conditions defined in a logical filter. 
Virus — (71) A program that is capable of replicating itself and spread-

ing between computers by attaching itself to another program. 
Visibility — (66) An object has visibility to a second object if it has a ref-

erence to the second object. 
Visual table of contents (VTOC) — (64) A more formal name for a hier-

archy chart. 
Volume analysis (control analysis) — (75) A technique for generating

test data to check the system’s behavior. 

Waiting time — (79) The elapsed time between a customer’s arrival and
the beginning of service. 

Walkthrough — (23) An informal inspection. 
WAN (wide area network) — (52, 53) A network in which the nodes are

(usually) geographically disbursed and linked by common carriers. 
Warnier-Orr diagram — (33) A diagramming technique that shows a

data structure or a logical structure as a horizontal hierarchy with
brackets separating the levels. 

Web-form interface — (48) A user interface that follows the metaphor
established by the Internet and the World Wide Web. 

Web site — (51) A collection of related, hyperlinked pages. 
Weighted graph (network) — (43) A graph on which the edges have

values. 
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Weighted routing — (54) A static routing technique in which different
routing paths are selected for each message based on a predeter-
mined desirable utilization rate. 

White-box testing — (74) A testing strategy in which the tester directly
verifies and reviews the logical structure, flow, and/or sequence of a
proposed system. 

White space — (46) Space on a form or a screen that contains no infor-
mation; empty space. 

Wide area network (WAN) — (52, 53) A network in which the nodes are
(usually) geographically disbursed and linked by common carriers. 

Window — (50) A screen box or a portion of a screen that holds a mes-
sage, a menu, or some other unit of information. 

Window flow analysis — (50) A pre-execution analysis technique used
to verify that the sequence of calls to and exits from the various win-
dows is correct. 

Window sequence analysis — (50) An analysis technique intended to
ensure that each window is properly linked to the next window 
during execution. 

Word recognition — (68) The process of restructuring an input string
into a series of noun phrases, verb phrases, prepositional phrases,
adjective phrases, and so on. 

Workbench — (5) A single application that integrates several tools, pro-
viding a consistent user interface, consistent invocation of tools and
tool-sets, and access to a common data set from a repository (data
integration). 

Workload performance analysis — (73) A type of analysis that focuses
on such criteria as throughput, response time, turnaround time, the
frequency and size of transactions, and regular and peak time work-
loads. 

World Wide Web — (51) A massive, Internet-based, international collec-
tion of hyperlinked pages. 

Worm — (71) A program that is capable of spreading from one computer
to another under its own power. 
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