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Preface

Over the past several years, significant advances have been made in developing the 
discontinuous Galerkin finite element method for applications in fluid flow and 
heat transfer.  Certain unique features of the method have made it attractive as an 
alternative for other popular methods such as finite volume and finite elements in 
thermal fluids engineering analyses. 

This book is written as an introductory textbook on the discontinuous finite 
element method for senior undergraduate and graduate students in the area of 
thermal science and fluid dynamics. It also can be used as a reference book for 
researchers and engineers who intend to use the method for research in 
computational fluid dynamics and heat transfer. A good portion of this book has 
been used in a course for computational fluid dynamics and heat transfer for senior 
undergraduate and first year graduate students. It also has been used by some 
graduate students for self-study of the basics of discontinuous finite elements. 

This monograph assumes that readers have a basic understanding of 
thermodynamics, fluid mechanics and heat transfer and some background in 
numerical analysis. Knowledge of continuous finite elements is not necessary but 
will be helpful. The book covers the application of the method for the simulation of 
both macroscopic and micro/nanoscale fluid flow and heat transfer phenomena. 
Background information on the subjects that are not covered in standard textbooks 
is also presented. Examples of different levels of difficulty are given, which help 
readers understand the concept and capability of the discontinuous finite element 
method and the computational procedures involved in the use of the method. 

Chapter 1 of the book presents a brief review of fundamental laws and 
mathematical equations for thermal and fluid systems including both 
incompressible and compressible fluids and for generic boundary and initial 
conditions.

In Chapter 2, different approaches to formulate discontinuous finite element 
solutions for boundary and initial value problems are discussed. The numerical 
procedures for the discontinuous finite element formulation, elemental calculations 
and element-by-element solution are discussed in detail through simple, elementary 
and illustrative examples. The advantages and disadvantages of the discontinuous 
finite element formulations are also given. 
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Chapter 3 is concerned with the development of shape functions and elemental 
calculations for discontinuous finite elements. The Lagrangian basis functions, 
hierarchical shape functions, spectral elements and special elements are discussed. 
A majority of discontinuous finite element formulations use unstructured meshes 
made of triangular/tetrahedral elements. Construction of these elements from the 
Lagrangian interpolation functions or from coordinate transformations of the 
existing finite elements is presented. Numerical integration and elemental 
calculations are also given. 

Starting with Chapter 4, we discuss the application of the discontinuous finite 
element methods for the solution of thermal and fluids problems. Chapter 4 deals 
with the heat conduction problems. Heat conduction is the first mode of heat 
transfer and the simple mathematical form of the governing equation serves as a 
good entry point for a numerical analysis of thermal problems. We present the 
detailed discontinuous formulations for both steady state and transient heat 
conduction problems. The stability analysis and selection of numerical fluxes for 
discontinuous finite element solution of diffusive systems are discussed. 

Convection-dominant problems are discussed in Chapter 5, which covers pure 
convection, diffusion-convection, and inviscid and viscous nonlinear convection. 
The stability analysis and selection of various convection fluxes are also discussed. 
Both steady state and transient problems are considered. A good portion of the 
discussion is devoted to the numerical stability analysis and control of numerical 
oscillations.

Incompressible flow problems are discussed in Chapter 6, where the 
discontinuous finite element formulations for both isothermal and non-isothermal 
systems are given. The formulations are further used in the later chapters. 

Chapter 7 is concerned about computational compressible flows using the 
discontinuous finite element method. The numerical procedure for both Euler and 
Navier–Stokes equations is presented. The use of various numerical fluxes, flux 
limiter and slope limiters in both 1-D and multidimensions is also discussed. 

Chapter 8 discusses the discontinuous Galerkin boundary element method for 
the numerical solution of external radiation problems. Most numerical books on 
thermal and fluid flow analysis either have no or give very little coverage of the 
topic of radiation heat transfer. We present the discontinuous concept and its 
numerical implementation with the selection of kernel functions for external 
radiation calculations. Shadowing algorithms are discussed for detecting the 
internal blockages in 2-D, axisymmetric and 3-D enclosures. 

Internal radiation occurs in many high temperature processes and is governed 
by the radiative transfer equation. The solution of the radiative transfer equation 
governing internal radiation is discussed in Chapter 9. This type of equation is 
difficult to solve using continuous finite elements but is almost ideal for 
discontinuous finite element computations. Detailed procedures for the numerical 
solution of the internal radiation problems are given. The analytical formulae for 
typical elements used for the discontinuous finite element formulation of 1-D, 2-D 
and 3-D simulations are given. Numerical examples include both simple pure 
internal radiation systems and complex thermal systems in which multiple heat 
transfer modes occur. 
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Chapter 10 discusses the use of the discontinuous finite element method for the 
solution of free and moving boundary problems. Both moving and fixed grid 
methods are discussed and the discontinuous finite element based algorithms for 
the solution of these problems are given. The concepts of the methods for moving 
boundary problems such as the volume of fluid method, the marker-and-cell 
method and the level set method are discussed. Incorporation of these fixed grid 
methods and moving grid methods into discontinuous finite element solvers using 
both structured and unstructured meshes are presented. The discontinuous finite 
element formulation of the phase field model, which has emerged as a powerful 
tool for modeling moving boundary problems at local scales, is also given, along 
with the 1-D, 2-D and 3-D examples of the evolution of very complex moving 
boundaries in phase change moving boundary problems. 

The use of the discontinuous finite elements for the simulation of microscale 
and nanoscale heat transfer and fluid flow problems is discussed in Chapter 11. 
Some of the recently developed models describing the microscale heat transfer 
phenomena have mathematical forms that are particularly suited for the 
discontinuous finite element formulations. The numerical solution of non-Fourier 
heat transfer equations and the lattice Boltzmann equation is also given. 

Chapter 12 deals with the discontinuous finite element solution of the thermal 
and fluid flow problems under the influence of applied electromagnetic fields. The 
basic theory of electromagnetism is presented. Numerical examples are given on 
the discontinuous finite element simulation of electroosmotive flows in 
microchannels, microwave heating and electrically-induced droplet deformation. 

This book is printed in shades of grey. Color versions of some of the figures in 
this book can be downloaded in a pdf from springer.com. Computer codes used for 
some of the calculations may also be downloaded from the same web site. 

Both the theory and applications of the discontinuous finite element method are 
still evolving and writing a book on this particular subject proved to be a major 
task. It was impossible to accomplish this task without assistance from various 
sources. I am most grateful to those whose contributions have made this 
monograph possible. I am indebted to Professors C.-W. Shu at Brown University 
and P. Castillo at University of Puerto Rico for helpful discussions on the 
mathematical theory of the discontinuous Galerkin finite element method. My 
appreciation also goes to Professor K. J. Bathe at Massachusetts Institute of 
Technology for sharing some of his latest work on the mixed finite element and the 
ALE methods and for stimulating comments. Professor H.-M. Yin of Department 
of Pure and Applied Mathematics, Washington State University, provided 
constructive comments on the basic theory of error analyses. I wish to thank my 
current and former graduate students, in particular, Drs. X. Ai, Y. Shu, B. Xu and 
X. Cui, who have helped in checking the examples and the exercises. I am also 
grateful to Ms. K. Faunce for her assistance in preparing the manuscript and 
formatting the final layout of the book, and to Messrs. A. Doyle and O. Jackson of 
Springer-Verlag and Ms. S. Moosdorf of LE-TeX for their continuous support. 

Ben Q. Li 
January, 2005 





Contents

1 Introduction....................................................................................................... 1
 1.1 Conservation Laws for a Continuum Medium........................................... 1 
  1.1.1 Conservation of Mass ..................................................................... 1 
  1.1.2 Conservation of Momentum........................................................... 2 
  1.1.3 Conservation of Energy .................................................................. 2 
  1.1.4 Constitutive Relations..................................................................... 3 
 1.2 Governing Equations in Terms of Primitive Variables.............................. 5 
  1.2.1 Vector Form.................................................................................... 5 
  1.2.2 Component Form in Cartesian Coordinates.................................... 5 
  1.2.3 Component Form in Cylindrical Coordinates................................. 6 
  1.2.4 Summary ........................................................................................ 8 
 1.3 Species Transport Equations...................................................................... 8 
 1.4 Governing Equations in Translating and Rotating Frames 
  of Reference............................................................................................... 9 
 1.5 Boundary and Initial Conditions................................................................ 9 
  1.5.1 General Boundary Conditions ...................................................... 10 
  1.5.2 Free Boundary Conditions............................................................ 11 
  1.5.3 Moving Interface Conditions........................................................ 12 
  1.5.4 Phase Change Conditions ............................................................. 12 
 1.6 Governing Equations for Flows Through Porous Media ......................... 13 
 1.7 Governing Equations in Conservation Form ........................................... 15 
 Exercises........................................................................................................... 17 
 References......................................................................................................... 18 

2 Discontinuous Finite Element Procedures .................................................... 21
 2.1 The Concept of Discontinuous Finite Elements....................................... 22 
  2.1.1 Weakly Imposed Cross-element Continuity ................................. 23 
  2.1.2 Numerical Boundary Fluxes for Discontinuity............................. 25 
  2.1.3 Boundary Constraint Minimization .............................................. 26 
  2.1.4 Treatment of Discontinuity for Non-conservative Systems.......... 27 
  2.1.5 Transient Problems....................................................................... 28 
 2.2 Discontinuous Finite Element Formulation ............................................. 29 



xii Contents 

  2.2.1 Integral Formulation ..................................................................... 29 
  2.2.2 Time Integration ........................................................................... 30 
 2.3 Solution Procedures ................................................................................. 31 
 2.4 Advantages and Disadvantages of Discontinuous Finite Element 
  Formulations ............................................................................................ 32 
  2.4.1 Advantages ................................................................................... 32 
  2.4.2 Disadvantages............................................................................... 33 
 2.5 Examples.................................................................................................. 34 
 Exercises........................................................................................................... 42 
 References......................................................................................................... 42 

3 Shape Functions and Elemental Calculations .............................................. 45
 3.1 Shape Functions....................................................................................... 46 
  3.1.1 1-D Shape Functions .................................................................... 46 
  3.1.2 2-D Shape Functions .................................................................... 50 
   3.1.2.1  Triangular Elements....................................................... 50 
   3.1.2.2 Quadrilateral Elements................................................... 54 
  3.1.3 3-D Shape Functions .................................................................... 58 
   3.1.3.1 Tetrahedral Elements ..................................................... 58 
   3.1.3.2  Hexahedral Elements ..................................................... 60 
 3.2 Construction of Special Elements ............................................................ 65 
  3.2.1 Non-standard Elements................................................................. 65 
  3.2.2 Construction of Element Shape Functions by  
   Node Collapsing ........................................................................... 66 
  3.2.3 Spectral Elements ......................................................................... 67 
 3.3 Hierarchical Shape Functions .................................................................. 69 
  3.3.1 1-D Hierarchical Correction ......................................................... 69 
  3.3.2 Canonical Square and Cubic Elements......................................... 71 
  3.3.3 Triangular and Tetrahedral Elements ........................................... 73 
  3.3.4 Obtaining Hierarchical Elements Through Coordinate 
   Transformations............................................................................ 77 
  3.3.5 Orthogonal Mass Matrix Construction ......................................... 78 
 3.4 Interpolation Error Analysis .................................................................... 80 
  3.4.1 Hilbert Space and Various Error Measures .................................. 80 
  3.4.2 Interpolation Error Analysis for 1-D Elements............................. 84 
  3.4.3 Interpolation Error Analysis for 2-D/3-D Elements ..................... 87 
 3.5 Numerical Integration .............................................................................. 88 
  3.5.1 1-D Numerical Integration............................................................ 88 
  3.5.2 2-D and 3-D Numerical Integration.............................................. 90 
  3.5.3 Integration for Triangular and Tetrahedral Elements ................... 91 
 3.6 Elemental Calculations ............................................................................ 93 
  3.6.1 Domain Calculations .................................................................... 93 
  3.6.2 Boundary Calculations ................................................................. 98 
 Exercises......................................................................................................... 102 
 References....................................................................................................... 103 



 Contents xiii 

4 Conduction Heat Transfer and Potential Flows......................................... 105
 4.1 1-D Steady State Heat Conduction ........................................................ 106 
 4.2 Steady State Heat Conduction in Multidimensions ............................... 113 
 4.3 1-D Transient Heat Conduction ............................................................. 122 
  4.3.1 Alternating Upwinding Scheme ................................................. 124 
  4.3.2 Central Fluxes............................................................................. 125 
  4.3.3 Unified Representation ............................................................... 125 
  4.3.4 Numerical Implementation ......................................................... 126 
  4.3.5 Runge Kutta Time Integration................................................... 128 
  4.3.6 Computational Procedures.......................................................... 129 
 4.4 Transient Heat Conduction in Multidimensions .................................... 131 
 4.5 Potential Flows and Flows in Porous Media.......................................... 137 
 4.6 Selection of Numerical Fluxes............................................................... 138 
  4.6.1 Stability for Steady StateProblems ............................................. 139 
   4.6.1.1  Stability and Numerical Fluxes.................................... 139 
   4.6.1.2  Discontinuous and Mixed Finite Element 
    Formulations ................................................................ 142 
  4.6.2 Stability for Time Dependent Problems ..................................... 144 
   4.6.2.1 Numerical Fluxes for Transient Problems ................... 144 
   4.6.2.2 Stability Analysis Using Matrix................................... 145 
  4.6.3 Fourier Analysis ......................................................................... 147 
 Exercises......................................................................................................... 152 
 References....................................................................................................... 155 

5 Convection-dominated Problems ................................................................ 157 
 5.1 Pure Convection Problems..................................................................... 158 
  5.1.1 1-D Pure Convection .................................................................. 158 
   5.1.1.1 Method of Characteristics ............................................ 158 
   5.1.1.2 Discontinuous Finite Element Formulation ................. 162 
  5.1.2 Pure Convection in Multidimensions ......................................... 166 
  5.1.3 Stability Analysis........................................................................ 169 
   5.1.3.1 L2-Stability – Integral Analysis.................................... 169 
   5.1.3.2 L2-Stability – Discretized Analysis .............................. 171 
   5.1.3.3 Fourier Analysis........................................................... 176 
 5.2 Steady State Convection-diffusion......................................................... 181 
  5.2.1 1-D Problem ............................................................................... 181 
  5.2.2 Origin of Oscillatory Stability .................................................... 185 
  5.2.3 Steady Convection-Diffusion in Multidimensions ..................... 187 
 5.3 Transient Convection-diffusion ............................................................ 191 
  5.3.1 Multidimensional Problem ......................................................... 191 
  5.3.2 Stability Analysis........................................................................ 195 
   5.3.2.1 L2-Stability – Integral Analysis.................................... 195 
   5.3.2.2 L2-Stability – Discretized Analysis .............................. 198 
   5.3.2.3 Fourier Analysis........................................................... 199 
 5.4 Nonlinear Problems ............................................................................... 202 
  5.4.1 1-D Inviscid Burgers’ Equation.................................................. 202 
   5.4.1.1 Basic Considerations.................................................... 202 



xiv Contents 

   5.4.1.2 Discontinuous Finite Element Formulation ................. 204 
  5.4.2 Multidimensional Inviscid Burgers’ Equation............................ 209 
   5.4.2.1 Discontinuous Finite Element Formulation ................. 209 
   5.4.2.2 Characteristic Decomposition ...................................... 211 
  5.4.3 Higher Order Approximations and TVD Formulations.............. 212 
   5.4.3.1 Concept of Total Variation Diminishing...................... 212 
   5.4.3.2 Flux Limiters................................................................ 214 
   5.4.3.3 Slope Limiters.............................................................. 218 
   5.4.3.4 TVD-Runge Kutta Schemes ....................................... 227 
 5.5 Viscous Burgers’ Equations................................................................... 235 
  5.5.1 1-D Burgers’ Equation................................................................ 235 
  5.5.2 2-D Viscous Burgers’ Equation.................................................. 239 
 Exercises......................................................................................................... 241 
 References....................................................................................................... 243 

6 Incompressible Flows ................................................................................... 247
 6.1 Primitive Variable Approach ................................................................. 248 
 6.2 Fractional Step (Projection) Approach .................................................. 258 
 6.3  Vorticity and Stream Function Approach .............................................. 260 
 6.4  Coupled Flow and Heat Transfer ........................................................... 265 
 Exercises......................................................................................................... 269 
 References....................................................................................................... 270 

7 Compressible Fluid Flows ............................................................................ 273 
 7.1 1-D Compressible Flows ....................................................................... 274 
   7.1.1 Governing Equations .................................................................. 274 
  7.1.2 Basic Properties of the Euler Equations ..................................... 275 
  7.1.3 The Rankine–Hugoniot Conditions ............................................ 278 
  7.1.4 1-D Riemann Solver – Exact Solution........................................ 281 
  7.1.5 1-D Riemann Solver – Approximate Solution............................ 283 
  7.1.6 Discontinuous Finite Element Formulation................................ 284 
  7.1.7 Low Order (Finite Volume) Approximations ............................. 287 
   7.1.7.1 The Godunov Scheme.................................................. 288 
   7.1.7.2 The Roe Scheme .......................................................... 289 
  7.1.8 High Order TVD Approximations.............................................. 290 
  7.1.9 Numerical Examples................................................................... 291 
 7.2 Multidimensional Inviscid Compressible Flows.................................... 295 
  7.2.1 Governing Equations .................................................................. 295 
  7.2.2 Basic Properties of the Split 3-D Euler Equations...................... 296 
  7.2.3 Discontinuous Finite Element Formulation................................ 298 
 7.3 Multidimensional Compressible Viscous Flows.................................... 299 
 7.4 ALE Formulation................................................................................... 304 
  7.4.1 ALE Kinematic Description ....................................................... 304 
  7.4.2 Conservation of Mass ................................................................. 308 
  7.4.3 Conservation of Momentum....................................................... 309 
  7.4.4 Conservation of Energy .............................................................. 310 
  7.4.5 Summary of ALE Equations ...................................................... 311 



 Contents xv 

  7.4.6 Constitutive Relations................................................................. 311 
  7.4.7 ALE Description of Compressible Flows................................... 311 
  7.4.8 Discontinuous Finite Element Formulation................................ 312 
 Exercises......................................................................................................... 313 
 References....................................................................................................... 316 

8 External Radiative Heat Transfer ............................................................... 319 
 8.1 Integral Equation for Surface Radiation Exchanges .............................. 320 
  8.1.1 Governing Equation.................................................................... 320 
  8.1.2 Kernel Functions ........................................................................ 323 
 8.2 Discontinuous Galerkin Finite Element Formulation ............................ 325 
 8.3 Shadowing Algorithms .......................................................................... 327 
  8.3.1 Shadowing Algorithm for 2-D Geometry................................... 329 
  8.3.2 Shadowing Algorithm for Axisymmetric Configurations .......... 334 
  8.3.3 Shadowing Algorithm for 3-D Geometry................................... 339 
 8.4 Coupling with Other Heat Transfer Calculations................................... 345 
  8.4.1 Direct Coupling .......................................................................... 347 
  8.4.2 Iterative Coupling....................................................................... 348 
 8.5 Numerical Examples.............................................................................. 349 
 Exercises......................................................................................................... 359 
 References....................................................................................................... 360 

9 Radiative Transfer In Participating Media ................................................ 363 
 9.1 Governing Equation and Boundary Conditions ..................................... 364 
  9.1.1 Radiative Transfer Equation....................................................... 364 
  9.1.2 Boundary Conditions.................................................................. 366 
 9.2 Approximation Methods ........................................................................ 367 
  9.2.1 The Discrete Ordinate Method ................................................... 368 
  9.2.2 The Spherical Harmonics Method .............................................. 368 
 9.3 Discontinuous Finite Element Formulation ........................................... 376 
 9.4 Numerical Implementation .................................................................... 389 
  9.4.1 2-D Calculations......................................................................... 389 
  9.4.2 3-D Calculations......................................................................... 396 
  9.4.3 Integration of the Source Term................................................... 399 
   9.4.3.1 The Emitting Contribution........................................... 399 
   9.4.3.2 The Scattering Contribution......................................... 400 
 9.5 Radiation In Systems of Axisymmetry .................................................. 403 
  9.5.1 Governing Equation in Cylindrical Coordinates......................... 403 
  9.5.2 Volume Integration..................................................................... 405 
  9.5.3 Surface Integration Over p........................................................ 406 
  9.5.4 Integration Over ..................................................................... 408 
  9.5.5 Mapping ..................................................................................... 410 
  9.5.6 Treatment of the Emitting and Scattering Term ......................... 411 
 9.6 Use of RTE for External Radiation Calculations................................... 412 
 9.7 Coupling of the Discontinuous Method with Other Methods ................ 415 
 9.8 Constant Element Approximation.......................................................... 416 
 Exercises......................................................................................................... 424 
 References....................................................................................................... 426 



xvi Contents 

10 Free and Moving Boundary Problems ........................................................ 429 
 10.1 Free and Moving Boundaries................................................................. 430 
 10.2 Basic Relations for a Curved Surface .................................................... 431 
  10.2.1 Description of a Surface ............................................................. 431 
  10.2.2 Differential and Integral Relations for Curved Surfaces ............ 436 
 10.3 Physical Constraints at a Moving Boundary.......................................... 441 
  10.3.1 Kinematic Conditions at a Moving Boundary ............................ 441 
  10.3.2 Stress Condition at a Moving Interface ...................................... 442 
  10.3.3 Thermal Conditions at a Moving Interface................................. 444 
 10.4 Moving Grids vs. Fixed Grids for Numerical Solutions ........................ 447 
 10.5 Moving Grid Methods ........................................................................... 448 
  10.5.1 Moving Boundaries Between Fluids .......................................... 449 
  10.5.2 Moving Phase Boundaries .......................................................... 454 
   10.5.2.1 Solid Liquid Phase Transition .................................... 454 
   10.5.2.2 Liquid Vapor Phase Transition ................................... 457 
 10.6 Fixed Grid methods ............................................................................... 458 
  10.6.1 Volume of Fluid Method ............................................................ 459 
   10.6.1.1 Structured Mesh........................................................... 460 
   10.6.1.2 Unstructured Mesh....................................................... 464 
  10.6.2 The Marker-and-Cell Method..................................................... 468 
  10.6.3 The Level Set Method ................................................................ 469 
  10.6.4 Fixed Grid Methods for Phase Change Problems....................... 473 
   10.6.4.1 Flow-based Methods.................................................... 473 
   10.6.4.2 Enthalpy-based Methods.............................................. 474 
 10.7 Phase Field Modeling of Moving Boundaries ....................................... 476 
  10.7.1 Basic Ideas of Phase Field Models ............................................. 476 
  10.7.2 Governing Equations for Interfacial Phenomena........................ 479 
  10.7.3 Discontinuous Finite Element Formulation................................ 482 
  10.7.4 Phase Field Modeling of Microstructure Evolution.................... 483 
   10.7.4.1 Governing Equations ................................................... 483 
   10.7.4.2 Discontinuous Formulation.......................................... 485 
   10.7.4.3 Numerical Examples .................................................... 486 
  10.7.5 Flow and Orientation Effects on Microstructure Evolution........ 489 
   10.7.5.1 Flow Effects on Microstructure Evolution................... 489 
   10.7.5.2 Microstructure Evolution During Polycystalline  
    Solidification................................................................ 490 
 Exercises......................................................................................................... 494 
 References....................................................................................................... 498 

11 Micro and Nano Scale Fluid Flow and Heat Transfer............................... 501
 11.1 Micro Scale Heat Conduction................................................................ 502 
  11.1.1 Two-temperature Equations ....................................................... 502 
  11.1.2 Phonon Scattering Equation ....................................................... 503 
  11.1.3 Phonon Radiative Transfer Equation.......................................... 506 
 11.2 Discontinuous Finite Element Formulation .......................................... 507 
 11.3 Micro and Nano Fluid Flow and Heat Transfer ..................................... 513 



 Contents xvii 

 11.4 The Boltzmann Transport Equation and Numerical Solution................ 517 
  11.4.1 The Boltzmann Integral-Differential Equation........................... 518 
  11.4.2 Numerical Solution of the Boltzmann Transport Equation ........ 523 
 11.5 The Boltzman BGK Equation and Numerical Solution........................ 524 
  11.5.1 The Boltzmann BGK Equation ................................................. 524 
  11.5.2 Discontinuous Finite Element Formulation................................ 525 
 11.6 The Lattice Boltzman Equation and Numerical Solution ...................... 526 
  11.6.1 Derivation of the Lattice Boltzmann Equation ........................... 527 
  11.6.2 Boundary Conditions.................................................................. 533 
   11.6.2.1 Bounce Back Boundary Conditions (No Slip) ............. 533 
   11.6.2.2 Symmetric Boundary Conditions (Free Slip)............... 533 
   11.6.2.3 Inflow and Outflow Boundary Conditions 
    (No Gradient) ............................................................... 534 
   11.6.2.4 Force Field Conditions................................................. 534 
   11.6.2.5 Moving Wall Conditions.............................................. 534 
  11.6.3 Discontinuous Finite Element Formulation................................ 534 
 Exercises......................................................................................................... 538 
 References....................................................................................................... 540 

12 Fluid Flow and Heat Transfer in Electromagnetic Fields ......................... 543 
 12.1 Maxwell Equations and Boundary Conditions ...................................... 544 
  12.1.1 Maxwell Equations..................................................................... 544 
  12.1.2 Boundary Conditions.................................................................. 545 
   12.1.2.1 Interface Boundary Condition...................................... 545 
   12.1.2.2 Perfect Conducting Surface ......................................... 546 
   12.1.2.3 Impedance Condition ................................................... 547 
   12.1.2.4 Sommerfield Radiation Condition ............................... 547 
   12.1.2.5 Symmetry Boundary Condition ................................... 548 
 12.2 Maxwell Stresses and Energy Sources................................................... 548 
 12.3 Discontinuous Formulation of the Maxwell Equations ......................... 549 
  12.3.1 Solution in Time Domain ........................................................... 549 
  12.3.2 Solution in Frequency Domain................................................... 550 
  12.3.3 Solution in Other Forms ............................................................. 550 
 12.4 Electroosmotic Flows ............................................................................ 550 
  12.4.1 Governing Equations .................................................................. 551 
  12.4.2 Discontinuous Finite Element Formulation................................ 553 
 12.5 Microwave Heating................................................................................ 556 
 12.6 Electrically Deformed Free Surfaces ..................................................... 557 
 12.7 Compressible flows in Magnetic Fields................................................. 566 
 Exercises ........................................................................................................ 568 
 References....................................................................................................... 569 

Index .................................................................................................................... 571 





1

Introduction

In this chapter, the governing equations of fluid dynamics and heat transfer are 
described. The readers are assumed to have already acquired an adequate 
background in the area. Thus, a complete description of these governing equations 
is not included, but is well documented in the references at the end of the chapter. 
For convenient discussion in subsequent chapters, various forms of the governing 
equations used for discontinuous finite element formulations are also described. In 
general, fluid dynamics and heat transfer problems are classified as boundary value 
problems. Therefore, the standard boundary conditions and initial conditions 
required for the solution of these equations are given for various classes of 
problems. 

1.1 Conservation Laws for a Continuum Medium 

Conservation laws describe the physical principles governing the fluid motion and 
heat transfer in a continuum medium [1 26]. The continuum description is based 
on the basic continuum assumption that all macroscopic length and time scales are 
considerably larger than the largest molecular length and time scales. The 
mathematical formulations of these conservation laws are given below. 

1.1.1 Conservation of Mass 

Conservation of mass is a fundamental law governing the behavior of a continuum 
medium. It states that the total time rate of change of mass in a fixed region is 
identically zero. Physically, this means that the rate of change of the density of a 
fluid in motion is equal to the sum of the fluid convected into and out of the fixed 
region. Mathematically, the conservation of mass is described by the equation of 
continuity,

0D
Dt

u  (1.1) 
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where  is the density of the fluid, u the velocity vector, and D/Dt the material 
derivative defined as follows: 

D
Dt t

u  (1.2) 

Here  is a vector differential operator, 

ˆˆ ˆi j k
x y z

 (1.3) 

with ,î ,ĵ  and k̂ being the unit vectors. If the density is a constant or its material 
derivative is zero (that is, D /Dt = 0), then the flow is incompressible and the 
equation of continuity is simplified to 

0u  (1.4) 

Mathematically, the above equation means that the velocity field of an 
incompressible flow is divergence free. This constraint is important in the 
numerical solution of the fluid dynamics equations. 

1.1.2 Conservation of Momentum 

The law of momentum conservation for a continuum medium is Newton’s second 
law of motion. For a moving flow field, the law states that the total time rate of 
change of linear momentum or acceleration of a fluid element is equal to the sum 
of externally applied forces on a fixed region. Mathematically, Newton’s second 
law is expressed as 

D
Dt

u
bf  (1.5) 

where  is the Cauchy stress tensor and fb is the body force per unit volume. The 
conservation of angular momentum leads to the symmetry condition on the stress 
tensor, that is, 

1.1.3 Conservation of Energy 

The law of conservation of energy is the first law of thermodynamics, which states 
that the time rate of change of the total energy is equal to the sum of work done by 
external forces and the change of heat content per unit time. For an incompressible 
fluid, the law of conservation of energy has the form of 
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p
DTC Q
Dt

q  (1.6) 

In the above equation, T is the temperature, q the flux, Cp the specific heat at 
constant pressure, and  the viscous dissipation, 

: D  (1.7) 

where  is the viscous part of the stress tensor  and D the strain rate tensor. 
Physically,  represents the energy resulting from the friction between the fluid 
elements. The strain rate tensor is defined by the following relation: 

0.5 ( )TD u u  (1.8) 

In Equation 1.6, Q is the internal energy generation, which is a lumped sum of 
all source contributions, 

s r R cQ Q Q Q Q  (1.9) 

where Qr is the heat source degenerated during chemical reactions; QR is the heat 
source resulting from internal radiation; Qc = –p u is the energy source resulting 
from mechanical work, which is zero for incompressible fluids; and Qs refers to all 
other applied heat sources. 

1.1.4 Constitutive Relations 

All materials are expected to satisfy the fundamental conservation principles of 
physics stated above. The dramatic differences in the behavior of different 
materials, such as solids, fluids, and viscoelastic materials, stem from the 
differences in the way that they resist deformation; or, more generally, in the way 
they respond when taken out of equilibrium. The mathematical specification of 
these “material response” laws is referred to as the set of constitutive relations for 
the material at hand. The mathematical expression of the constitutive relations is 
the statement of the dependence of the stress tensor and/or the heat flux q on the 
fields D(x,t), T(x,t), and u(x,t). We note here that since the stress rate does not 
enter the constitutive relation for fluids, the frame independence principle is 
automatically satisfied [2]. 

In general, the Cauchy stress  in a viscous fluid is decomposed into 
hydrostatic and viscous parts, 

pI  (1.10) 

where p is the hydrostatic pressure (or the thermodynamic pressure) and I the unit 
tensor. The viscous stress tensor  is related to the strain rate tensor by the 
following constitutive relation: 
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: D  (1.11) 

where  is the constitutive matrix and is a fourth order tensor. 
For isotropic fluids, that is, fluids with properties independent of direction, the 

fourth order tensor is defined by two material constants,  and . Consequently, the 
constitutive relation takes the Navier–Stokes relation, that is, the shear stress is 
linearly proportional to the strain rate, 

DID 2)tr(  (1.12) 

Here the trace of the strain rate tensor, trD, represents a volumetric deformation. 
For an incompressible fluid, trD = 0.

For incompressible Newtonian fluids, the relation between the shear stress and 
the strain rate is given by Newton’s hypothesis: 

D2  (1.13) 

where  is the viscosity of the fluid. Note that for a solid the analogous linear 
constitutive relation is that of a Hookean solid. 

The constitutive relation for heat conduction is the Fourier law, which states 
that the heat flux is proportional to the temperature gradient, 

Tq  (1.14) 

where  is the thermal conductivity tensor of order two. For an isotropic medium, 
is determined by a single constant, 

I  (1.15) 

where  is the thermal conductivity of the medium. 
In general, the thermodynamic pressure of a fluid is a function of density and 

temperature, p = p( , T). For an ideal gas, the following relation exists: 

RTp  (1.16) 

where R is the gas constant. 
For an incompressible fluid under non-isothermal conditions, the Boussinesq 

approximation is often used, which relates the density to the temperature in a 
linearized form, 

))(1(0 rTT  (1.17) 

where Tr is a reference temperature, 0 is the density evaluated at Tr, and  denotes 
the thermal expansion coefficient, 
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rTT0

1  (1.18) 

In all the above equations, the fluid properties, such as Cp and are a function 
of the fluid temperature and pressure, although the dependence on the latter is 
negligible for incompressible fluids. For non-Newtonian fluids, the viscosity and 
conductivity may also depend on the flow field, or strain rates, and temperature. 

1.2 Governing Equations in Terms of Primitive Variables 

For many fluid dynamics and heat transfer applications, the mathematical 
formulations described above are often written in either the vector form or in the 
component forms for various coordinate systems. These types of formulations are 
given below for convenience and will be used in subsequent chapters. 

1.2.1 Vector Form 

By directly applying the constitutive relations given in the last section to the 
conservation equations, one obtains the governing equations for fluid flow and heat 
transfer in primitive variables. For isotropic, Newtonian and incompressible fluids, 
the governing equations take the following familiar forms: 

0u (1.19)

( ) ( )T
rp T T

t
u u u u u gf  (1.20) 

p p
TC C T T Q
t

u  (1.21) 

where the Boussinesq approximation has been used and f is the body force 
excluding the gravitational force. 

1.2.2 Component Form in Cartesian Coordinates

In the Cartesian coordinate system, the kinematic and constitutive relations are 
written in the indicial notation, 

ijijij p ; ijij D2    (1.22)

i

j

j

i
ij x

u
x
uD 5.0  (1.23) 
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The conservation equations for mass, momentum, and energy now become 

0
i

i

x
u

 (1.24) 

( )ji i i
j i i r

j i j j i

uu u p uu f g T T
t x x x x x

(1.25) 

ijij
jjj

jpp DDQ
x
T

xx
TuC

t
TC 2  (1.26) 

It is noted that the above equations are written in the Eulerian frame of 
reference, with indices i, j = 1, 2, 3. The Einstein convention on repeated indices is 
also applied. 

1.2.3 Component Form in Cylindrical Coordinates 

In a cylindrical coordinate system (r, , z), the vector differential operator and the 
material time derivative operator are defined by 

z
i

r
i

r
i zr

ˆ1ˆˆ  (1.27) 

r z
D uu u
Dt t r r z

 (1.28) 

where (ur, u , uz) are the velocity components and ( rî , î , zî ) the unit vectors in 
the r, , and z directions, respectively. For curvilinear coordinates, the unit vectors 

are not necessarily constant. In fact, rî  and î  are a function of angular coordinate 
,

i
ir ˆ
ˆ

; ri
i ˆ
ˆ

 (1.29) 

The constitutive relations and the rate of strain tensors are 

rrrr Dp 2 ; Dp 2 ; zzzz Dp 2  (1.30) 

rr D2 ; zz D2 ; zrzr D2  (1.31) 
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r
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u
rr

u
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uD 1
2
1 ;

r
uu

r
D r1  (1.32) 

z
uD zz

zz ;
r
u

z
uD zr

zr 2
1 ; z

z
u

rz
uD 1

2
1   (1.33) 

With the above notations, the governing equations for the cylindrical coordinate 
system can be written in the following form: 

01
z

uu
rr

u zr  (1.34) 

rz
r

r
r

r
f

r
u

Dt
Du zrrrr

r
r )()(12

)( rr TTg   (1.35) 

rz
r

r
r

r
f

r
uu

Dt
Du rzrr )()(1

)( rTTg   (1.36) 

)()()(1
rz

zzzzr
z

z TTg
z

r
r

r
r

f
Dt

Du  (1.37) 

p r z
uT T T TC u u

t r r z

Q
z
Tk

z
Tk

rr
Trk

rr zzrr 2
11   (1.38) 

where the stress components are known in terms of the velocity components, and 
the viscous dissipation  may be explicitly written as 

2222 12 rzrr u
r

u
r

u
z

u
r

uu
rr

u

221
r

u
z

u
z

uu
r

zrz (1.39) 
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1.2.4 Summary 

The fundamental equations presented above, in terms of primitive variables 
(velocity, pressure and temperature), are most commonly used in computational 
fluid dynamics and heat transfer. Other simplified forms of description for specific 
cases are also used. For example, equations utilizing the stream function are 
employed along with the energy equation to analyze convection problems in 2-D 
and axisymmetric geometries. The advantage of the stream function formulation is 
that the pressure does not need to be calculated directly during the solution phase. 
In discontinuous finite element literature, the fluid dynamics and heat transfer 
equations sometimes are written in conservation forms to facilitate computations. 
These conservation forms are particularly useful for the solution of compressible 
flow problems and will be discussed later in the chapter. For most of this book, the 
primitive variable formulations are used, as they are convenient for problems 
involving free surfaces, phase changes and regions with multiple connections. 

1.3 Species Transport Equations 

For flows in which transport processes for other species present in the system are 
important, scalar transport equations are needed. Because of convection, these 
equations are classified into the advection-diffusion category and are generic in the 
sense that they are not specially associated with a particular physical process. 
These equations are often used to simulate certain types of chemical reactions, and 
to predict the volume fraction of particle orientation for flows containing 
suspended particles or fibers. It is often convenient to write the transport equation 
for a scalar quantity Ci (i=1, 2, …, n) as follows: 

i i i
j i i

j j j

C C Cu R
t x x x

D (1.40)

where Di is a diffusion coefficient and Ri is a volumetric source term for Ci, which 
may be attributed to chemical reactions or other mechanisms. 

The presence of chemical species may change the density of the fluid and hence 
the flow field. To account for this effect in a non-isothermal multi-component flow 
system, a generic Boussinesq approximation may also be used to represent the 
buoyancy forces caused by variations in the auxiliary variables Ci,

0 1 1 1, ,[1 ( ) ( ) ( )]r r n n n rT T C C C C  (1.41) 

where i = (1/ 0)( / C)|Ci,r is a scalar expansion coefficient and subscript r refers 
to a reference condition at which 0 is evaluated. This variation in density is only 
permitted in the body force term and is used in place of the buoyancy term in 
Equation 1.20 for a multi-component system. 
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1.4 Governing Equations in Translating and Rotating Frames  
of Reference 

For some applications, the external boundary to a fluid is also in motion. It is often 
more convenient to write the equation in a frame of reference in which the 
boundary is at rest. Cases like these happen when the moving frame of reference is 
translating with a given linear velocity U, or rotating with a given angular velocity 

. The equations for these cases can be easily reduced from the equations written 
for a frame of reference with arbitrary acceleration (or non-inertial frame). For 
momentum equations, the absolute acceleration of a fluid element in a fixed 
reference frame related to a reference frame with an arbitrary acceleration in the 
following fashion [7]: 

2 ( )f rf r r
r r

D D D
Dt Dt Dt t
u u u u u r  (1.42) 

where subscripts f and r refer to fixed and arbitrary coordinates, and urf is the 
velocity with which the non-inertial frame moves relative to the fixed frame. Note 
that the derivative on the right refers to the arbitrary coordinate system, but not to 
the non-inertial frame. Thus, when the reference frame translates with a constant 
linear velocity U, urf =U. For this case, the governing equations remain invariant, 
and only the boundary conditions are translated. In the case of a frame rotating 
with a constant, but without the translation urf = 0, the acceleration of a fluid 
particle, with respect to this rotating frame of reference, becomes 

2 ( )f r
r r r r r

D
Dt t
u u u u u u  (1.43) 

where r means the derivative with respect to the coordinates of the rotating frame. 
Thus, by substituting the above relation into the governing equations given in the 
above sections, one has the equations written for the rotating frame of reference in 
terms of the variable ur.

1.5 Boundary and Initial Conditions 

The governing equations presented above will not have unique solutions unless 
appropriate boundary and initial conditions are specified. These conditions are, in 
essence, the physical constraints associated with specific thermal and fluids 
systems and are described below [1 26]. While specific forms may differ from 
application to application, the boundary conditions are derived based on the 
conservation principles: that is, the principles of mass, momentum and energy 
conservation, and the principle of thermodynamic equilibrium, applied across the 
boundary or interfaces. The jump conditions across a shock wave are discussed in 
Section 1.7, in the context of conservation forms of governing equations. 
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1.5.1 General Boundary Conditions 

On each segment of the boundary of a computational domain , it is necessary to 
prescribe appropriate boundary conditions. The boundary conditions relating to the 
momentum equation are either the specification of velocity components, 

),( tsuu (1.44) 

or the specification of surface stresses, 

),(),( tsts an n (1.45) 

where t is time, s is a parameter measuring position along the relevant boundary 
segment, and n(s,t) is the outward unit normal to the boundary. Note that n and a
are vectors. Subscript a denotes a prescribed quantity. This use of the subscript is 
the same hereafter in this chapter until otherwise indicated. 

For the solution of the temperature field, the thermal balance on the boundary 
demands that either the temperature profile is specified, 

),( tsTT a (1.46) 

or a heat flux is prescribed, 

),( tsqTkq an (1.47) 

where qa includes contributions from both convective and/or radiative heat transfer 
along the boundary. 

The boundary conditions relating to the chemical species are obtained based on 
the mass balance across the boundary, which leads to the specification of the 
concentration boundary conditions similar to those of temperatures, 

),(, tsCC aii  (1.48) 

or to the prescription of the mass flux, 

),,( ,, aiaiiii CtsqCq Dn (1.49) 

For a mixture of M components, the boundary conditions take the form of 

ii
i

Tii rCTTC unnn )(D , 1,...,1 Mi          (1.50) 

and
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1

M

n
n

ru n  (1.51) 

where )(i
T  is the thermal diffusion coefficient, and ri is the rate of chemical 

reaction for species i.
Initial conditions for all the primitive variables take the following generic 

forms: 

)()0,( 0 xxu u (1.52) 

)()0,( 0 xx TT  (1.53) 

)()0,( 0 xx ii CC  (1.54) 

where superscript 0 stands for a prescribed initial quantity. 

1.5.2 Free Boundary Conditions 

A free boundary refers to the interface between a liquid and a gas phase, when the 
latter can be approximated as an effective vacuum. Situations like these occur 
where the gas phase has little or no motion. The boundary conditions along the 
interface can be derived from the kinematic continuity and mechanical equilibrium 
principles. The former requires that the interface remains a free surface, while the 
latter demands that the stress is continuous across the interface. Mathematically, 
these conditions are stated as follows: 

0),( tS x  (1.55) 

0S
t
S u  (1.56) 

sambcn pH nn )2(    (1.57) 

where S defines the free surface. Comparison with Equation 1.45 shows that the 
right hand terms replace a, and represent the gas phase effect. In Equation 1.57, 
pamb is the ambient pressure in the gas, Hc is the mean curvature of the surface, and 
 is the surface tension. Also, s = n(n ) is the surface vector differential 

operator [22, 27]. 
When contact lines (liquid gas solid interfaces) are present, an additional 

condition is needed to model the dynamics of the contact line. A commonly used 
approximation is the Navier slip condition on the liquid at the solid surface, 

tuunt )( s
ia  (1.58) 
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Here t is the tangential vector to the surface, ui
s is the velocity of the solid surface, 

and a is a constant of proportionality known as the slip coefficient. 

1.5.3 Moving Interface Conditions 

Across a moving interface between two fluids, the kinematic condition and the 
condition of stress continuity apply. In addition, a no-slip condition at the interface 
is required. With superscripts 1 and 2 denoting the two liquids across the interface, 
the interface boundary conditions are 

0),( tS x  (1.59) 

021 S
t
SS

t
S uu (1.60) 

scnn H n221  (1.61) 

0)( 21 uun       (1.62) 

where the normal n points from liquid 1 into liquid 2. 

1.5.4 Phase Change Conditions 

An important category of moving boundary problems in fluid dynamics and heat 
transfer is phase change problems, which describe the phase transition from liquid 
to solid, or liquid to gas, or vice versa. For these problems, the mass continuity, 
mechanical equilibrium and energy balance equations must also be satisfied across 
the interface. With superscripts L and S denoting the liquid and solid respectively, 
these conditions are 

Gc
mSL HTTT 2 (1.63) 

)( mSSSSLL LTkTk uunnn    (1.64) 

)()( mSSmLL uunuun (1.65) 

0)( SL uun (1.66) 

Here Tm is the phase change temperature, um is the velocity of the interface; and G

= / sf is the Gibbs–Thompson coefficient, with sf being the entropy change 
between the liquid and solid per unit volume; and L is the latent heat per unit mass. 
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The normal n points from the liquid into the solid. If solidification involves solutal 
elements, their effects on the interface shape and the phase change temperature 
need to be included as well: 

)()/()( mLL
SL

mSS CC uunuun

SSLL
SL CC nn DD)/(   (1.67) 

LS CC (1.68) 

Gc
LmSL HCmTTT 2  (1.69) 

Thus, Equation 1.69 is used in place of Equation 1.63, and Equation 1.67 replaces 
Equation 1.65. In the above equations, m = dT/dCL is the rate of change of the 
melting temperature with concentration. It is important to note that Equations 1.68 
and 1.69 are obtained from the thermodynamic equilibrium principle governing the 
behavior of materials at the liquid-solid interface. 

In the case of liquid to vapor transition, some modifications are needed, though 
the basic principles are the same. The modification is to replace the above 
quantities for the solid phase (denoted by subscript S) in Equations 1.63–1.66 with 
those for the gas phase. Also, Equation 1.61 is used to satisfy mechanical 
equilibrium. In addition, the requirement of the equal chemical potential at the 
liquid gas interface leads to the Clausius–Clapeyron expression for the relation 
between the pressure and the liquid gas transition temperature: 

m
m

m T
C

dT
dp  (1.70) 

where Cm = L/(vg vl), and vg and vl are the specific volumes of gas and liquid, 
respectively.

1.6 Governing Equations for Flows Through Porous Media 

The above equations are written for single-phase flows. Many engineering 
processes involve the movement of gases and liquids through porous media. 
Typical examples include distillation and absorption columns that are filled with 
various types of particles, fuel cells with porous electrodes and package beds 
and/or woods being dried. A complete discussion on the derivation of volume-
averaged governing equations is given by Bear [16]. Here, the main ideas and 
mathematical formulations are summarized. 

Let us suppose that within the domain of interest , there is a region V
containing a rigid porous material saturated with a viscous incompressible fluid, 
and a region f occupied entirely by fluid. The saturating fluid in V is the same as 
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in f, if the two regions share a common permeable interface. Otherwise, the two 
fluids may be different. If Vf is the volume occupied by the fluid, and Vs is the
volume occupied by the solid, then V = Vs + Vf ; and the porosity of the porous 
medium is = Vf /Vs. Assuming that the porous medium is homogeneous and 
isotropic and the fluid and solid are in local thermal equilibrium, the field variables 
can be averaged over Vf and V, with the former referring to the pore average and 
the latter, volume average. The averaging process gives rise to the following forms 
of the governing equations: 

0)( u
t

 (1.71) 

1/ 2 1ˆ mc
t
u u K K u

( ( ) )Tp u u f   (1.72) 

( ) ( )p e e
Tc T k T Q
t

u  (1.73) 

RqcDC
t
C

ceu  (1.74) 

where the pore average and volume average quantities are denoted by an overbar 
and over-hat respectively, 

1

ff V
a adV

V
, 1ˆ

V
a adV

V
 (1.75) 

with a being any quantity (scalar, vector or tensor). Note here that in the above 
equations, the “^” on u, p, and T were dropped for simplicity. Also, K is the 
permeability, a tensor of second order; it may take the following values: K–1,ij =
(1/ki) ij, and K–1/2,ij = ( 1/ ik )ij; ĉ  is the inertia coefficient; is an effective 
viscosity; and || ui || is the magnitude of the velocity. In the above equations, 
subscript e indicates an effective property, which is a function of porosity and the 
properties of fluids and solids and is calculated by the following expressions: 

( ) ( ) (1 )( )p e p f p sc c c  (1.76) 

 ( ) (1 )e f sk k k  (1.77) 

where subscript s refer to solid matrix properties. Properties without subscripts are 
those of fluids.  
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The above equations represent a generalization of the standard Darcy equations 
for non-isothermal flows in a saturated porous medium. This system is sometimes 
referred to as the Forchheimer–Brinkman model for porous flows. With an 
appropriate selection of the coefficients, a number of standard flow models can be 
derived. For example, if 0ĉ , a Brinkman model is obtained, while if 0ĉ ,
the standard Darcy formulation is recovered. The porous flow equations are very 
similar in form to the equations of a viscous fluid flow, except that the convection 
terms in the momentum equation are replaced by the Darcy–Forchheimer term. 

1.7 Governing Equations in Conservation Form 

While the governing equations given above are widely used in incompressible fluid 
flow applications, for compressible fluid flows, the governing equations often are 
written in the conservation form. By definition, a system of partial differential 
equations assumes a conservation form if it can be written as follows: 

JuFu )(
t

, )()0,( 0 xuxu , 0, tx  (1.78) 

where F is a tensor and J a vector. Systems not written in this form are non-
conservative systems. By this definition, all the governing equations presented in 
the above sections, either in indicial, component, or vector notation, are in non-
conservation form. 

The conservation laws of mass, momentum and energy can be recast in the 
following conservation form: 

J
z
H

y
G

x
F

t
U  (1.79) 

where U, F, G, H, and J are column vectors defined by 

)2/)(( uue
w
v
u

U (1.80) 
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yzyyyx

yz

yy

yx

wvuyTkpvve
wv

pv
uv

v

G

)2/)((

2

uu

 (1.82) 

zzzyzx

zz

zy

zx

wvuzTkpwwe
pw

vw
uw

w

H

)2/)((

2

uu

(1.83) 

qwfvfuf
f
f
f

J

zyx

z

y

x

)(

0

(1.84) 

In the above equations, the shear stresses ij (i, j = x, y, z) are calculated by the 
following expressions: 
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Here, some explanations of these terms may be helpful. The column vectors F, G
and H are referred to as the flux vectors, and J represents a source term. The 
velocity vector u has three components: u, v, and w. The column vector U is the 
solution vector. In writing this generic equation in terms of column vectors, we 
note that the first elements of the U, F, G, H and J vectors, when added together 
via Equation 1.79, reproduce the continuity equation. The second elements of the 
U, F, G, H and J vectors, when added together via Equation 1.79, reproduce the x-
momentum equation, and so forth. 
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When the viscous effects are neglected, ij = 0 (i, j = x, y, z) and the above 
equations reduce to the Euler equations for inviscid fluids. The Euler equations are 
often used to predict the shock wave behavior in high speed flows. By definition, a 
shock wave is a surface of discontinuity (in the field variables), which is capable of 
propagating relative to the material. Common examples of shock waves include the 
crash of thunder, the crack of a whip, or the sound of a gunshot or firecracker. The 
jump condition across a shock wave can be obtained by integrating the balance 
equations in the conservation form, and for an inviscid fluid the jump condition is 
given by 

0][ nV  (1.85) 

0][ nVmp  (1.86) 

0][ nV  (1.87) 

0])(5.0[ 2nVh  (1.88) 

where V = u  v is the velocity of the fluid relative to the shock surface, v is the 
velocity of the shock surface, m = 1 V· n1 = 2 V· n2 is the mass flux through the 
shock surface, and h = e + p/ is the fluid enthalpy. The brackets denote the jump 
in the indicated quantity across the shock, [A] = A2 A1, where A is any quantity 
and subscripts 1 and 2 denote conditions just before and just after the shock. 

The conservation form of the governing equations provides a convenience in 
numerical computation in that the continuity, momentum and energy equations can 
all be expressed in the same generic equation. This is useful for developing 
numerical schemes and integral solutions to the equations. In fact, one can easily 
derive the integral control volume equations from the local (i.e., differential) 
equations once they have been placed in the conservation form. An important 
advantage of writing the governing equations in the conservation form is even 
more compelling when it comes to the compressible flow calculations. With the 
use of the conservation form, the shock capture scheme has a better numerical 
quality because the changes in the flux variables are zero across the shock waves. 

Exercises

1. Set up a differential volume in a moving fluid and derive the mass 
conservation equation. 

2. For the same differential volume, apply Newton’s second law to derive the 
momentum balance equation. 

3. For the same differential volume, apply the first law of thermodynamics to 
derive the energy balance equation. 

4. Derive the differential form for axisymmetric flow field by simplifying the 
governing equations written in the cylindrical coordinate system. 
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5. Show that the conservation law forms of governing equations reduce to the 
Navier–Stokes equations, when the incompressibility condition is enforced. 

6. Derive the boundary force balance equation for a curved liquid-liquid 
interface.

7. Starting with the Euler equations, derive the jump conditions across a 
shock wave. 
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2

Discontinuous Finite Element Procedures 

The discontinuous finite element method makes use of the same function space as 
the continuous method, but with relaxed continuity at interelement boundaries. It 
was first introduced by Reed and Hill [1] for the solution of the neutron transport 
equation, and its history and recent development have been reviewed by Cockburn 
et al. [2,3]. The essential idea of the method is derived from the fact that the shape 
functions can be chosen so that either the field variable, or its derivatives or 
generally both, are considered discontinuous across the element boundaries, while 
the computational domain continuity is maintained. From this point of view, the 
discontinuous finite element method includes, as its subsets, both the finite element 
method and the finite difference (or finite volume) method. Therefore, it has the 
advantages of both the finite difference and the finite element methods, in that it 
can be effectively used in convection-dominant applications, while maintaining 
geometric flexibility and higher local approximations through the use of higher 
order elements. This feature makes it uniquely useful for computational dynamics 
and heat transfer. Because of the local nature of a discontinuous formulation, no 
global matrix needs to be assembled; and thus, this reduces the demand on the in-
core memory. The effects of the boundary conditions on the interior field 
distributions then gradually propagate through element-by-element connection. 
This is another important feature that makes this method useful for fluid flow 
calculations. Computational fluid dyanmics is an evolving subject, and very recent 
developments in the area are discussed in [4]. 

In the literature, the discontinuous finite element method is also called the 
discontinuous Galerkin method, or the discontinuous Galerkin finite element 
method, or the discontinuous method [1, 2, 3, 5, 6]. These terms will be used 
interchangeably throughout this book. 

This chapter introduces the basic ideas of the discontinuous finite element 
method through simple and illustrative examples. The keyword here is  
discontinuous. Various views have been adapted to interpret the concept of 
discontinuity and three widely accepted ones are presented below [5, 7]. The 
discontinuous finite element formulation for boundary value problems, and overall 
procedures for numerical solutions are presented. The advantages and 
disadvantages of the various methods are also discussed, in comparison to the 
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continuous finite element method. Examples used to illustrate the basic features 
and the solution procedures of the discontinuous finite element formulation are 
given. 

2.1 The Concept of Discontinuous Finite Elements

To illustrate the basic ideas of the discontinuous finite element method, we 
consider a simple, one-dimensional, first order differential equation with u
specified at one of the boundaries: 

0)()( uf
dx
duuC ; ],[ bax  (2.1) 

auaxu )(  (2.2) 

where, without loss of generality, the coefficient C(u) is considered a function of 
the field variable u.  By defining dF = C(u) du, the above differential equation may 
be further written as 

0)(uf
dx
dF  (2.3) 

The domain is discretized such that j = [xj, xj+1] with j = 1, 2, …, N.  Then, 
integrating the above equation over the element j, j, with respect to a weighting 
function v(x),

1

( ) ( ) 0
j

j

x

x

F f u v x dx
x

 (2.4a) 

and performing integration by parts on the differential operator, we have  

)())(()())(( 11 jjjj xvxuFxvxuF

1 ( ) ( ) ( ) 0
j

j

x

x

v xF v x f u dx
x

 (2.4b) 

On j = [xj, xj+1], u is approximated by uh H, H being an appropriate function 
space of finite dimension, and v by vh taken from the same function space as uh,
with j = 1, 2, …, N. Upon substituting (uh, vh) for (uh, vh) in Equation 2.4b, we have 
the discontinuous Galerkin finite element formulation: 

)())(()())(( 11 jhjhjhjh xvxuFxvxuF
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1 ( )( ) ( ) ( ) 0

j

j

x
h

h h h
x

v xF u v x f u dx
x

 (2.5) 

In the continuous finite element approach, the field variable uh is forced to be 
continuous across the boundary. As we know, this causes a problem of numerical 
instability, when | c(uh) | is large. The essential idea for the discontinuous method is 
that uh is allowed to be discontinuous across the boundary. Therefore, across the 
element, the following two different values are defined at the two sides of the 
boundary: 

)(lim xuu h
xx

j
j

  and   )(lim xuu h
xx

j
j

 (2.6) 

Furthermore, we note that uh is discontinuous only at the element boundaries. 
The solution u and F(u) are smooth within (but excluding) the boundary. By this 
definition, the above equation contains the variables only within the integral limits 

j. There is no direct coupling with other intervals or other elements. The field 
values at a node, or the interface between two elements, are not unique. They are 
calculated using the two limiting values approaching the interface from the two 
adjacent elements. This feature is certainly desirable for problems with internal 
discontinuities, such as those pertaining to shock waves. We will discuss these 
specific problems in the chapters to follow. 

The discontinuous formulation expressed in Equtation 2.5 may be viewed from 
different perspectives, which all involve the cross-element treatments either by 
weakly imposing the continuity at the element interface, or by using numerical 
fluxes, or by boundary constraint minimization. These views are discussed below, 
so that the reader can fully appreciate the concept of discontinuity embedded in the 
formulation. 

2.1.1 Weakly Imposed Cross-element Continuity 

For the continuous finite element solution of boundary value problems, the 
consistency condition often requires that the field variable and its derivative be 
continuous in the computational domain, which implies the cross-element 
continuity requirement for these variables [8, 9]. In the continuous finite element 
formulation, the cross-element continuity is strongly enforced. The discontinuous 
formulation relaxes this continuity requirement, so that the cross-element 
continuity is weakly imposed. This is accomplished if F(u), at the element 
boundaries, is chosen as follows [3, 5]: 

)())(( iih uFxuF   ; )())(( iih uFxuF (2.7)

so that the upstream value outside the element interval j is used, following the 
well known treatment for finite difference schemes. With Equation 2.7 substituted 
into Equation 2.5, the following integral equation is obtained: 
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(2.8)

This is one popular formulation for discontinuous finite element solutions. 
Equation 2.8 may be integrated once again with the result, 

1 1( ( )) ( ) ( ) ( )h j h j j h jF u x v x F u v x

1( ( ( )) ( ) ( ) ( ))h j h j j h jF u x v x F u v x
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F u x f u v x dx
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   (2.9) 

Here we stay with the upwinding rule at xj, because only one boundary 
condition is available and it is applied at xj. For this first order equation, F(uh

+) = 
F(uh(xj+1)) at xj+1. If one works with a second order equation, a similar rule may be 
applied at xj+1. This point will be discussed further in Chapter 4. With these 
choices, the above equation is simplified as: 

1 ( ( ))
( ) ( ) ( ) ( ) ( ) 0
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j j h j h h
x

F u x
F u F u v x f u v x dx
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  (2.10) 

or more often, it is written in terms of a jump across the element boundary, 

1 ( ( )) ( ) ( ) [ ( )] ( ) 0
j

j

x
h

h h j h j
x

F u x f u v x dx F u v x
x

 (2.11) 

where the jump is defined by 

)]([ juF = )()( jj uFuF  (2.12) 

In deriving the above equations, we have used the upwinding rule: +F(uh(xj)) = +
F(uj

+). This procedure is graphically illustrated in Figure 2.1. 
We now look at the implication of the above equation, i.e., Equation 2.12.  

Here, in essence, the continuity condition at xj is satisfied weakly with respect to 
the weighting function v(x). Note that xj can be an internal boundary or external 
boundary. This is in contrast to the continuous finite element formulation, by 
which the continuity conditions are satisfied strongly across the element 
boundaries, [F(uj)] =0. 
 We note that since v(x) is arbitrary, Equation 2.11 is equivalent to the following 
mathematical statement: 



Discontinuous Finite Element Procedures 25 

Figure 2.1.  An illustration of the jump across xj of element j: xj and xj+1 mark the 
boundaries of the element 

0)()( jj uFuF for   x=xj (2.13) 

0)(
))((

uf
x

xuF
      for    x (xj, xj+1) (2.14) 

Here, 0)()( jj uFuF also implies that jj uu  for monotone F(u). Thus, 
Equation 2.11 is the weak form of Equations 2.13 and 2.14.

2.1.2 Numerical Boundary Fluxes for Discontinuity 

Another treatment of the cross-element continuity is based on the use of a 
numerical flux to model F(u). This is demonstrated by Cockburn et al. [2, 3]. 
Using this approach, F(u) is replaced by the following flux expressions: 

),())(( 111 jjjh uuhxuF ; ),())(( jjjh uuhxuF  (2.15) 

with an imposed consistency condition, 

)(),( uFuuh     (2.16)

Many different types of flux expressions have been used in the literature for 
this purpose, and have been reviewed in a recent paper by Arnold et al. [10]. To 
reproduce Equation 2.5, we may use the following definition for the numerical 
flux:

)(),( jjj uFuuh     (2.17)

which basically states that the flux at the element boundary is equal to the flux of 
the upstream element. With the numerical flux, the discontinuous finite element 
formulation for the 1-D problem is recast as 

)(),()(),( 111 jhjjjhjj xvuuhxvuuh

xj+1

jx jx

  xj
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v xF u v x f u dx
x

    (2.18) 

It is apparent from the above discussion that construction of consistent 
numerical fluxes is important in discontinuous finite element calculations. These 
fluxes need to be chosen to satisfy numerical stability conditions and various forms 
of numerical fluxes and their stability conditions are given in [3,10]. We note that 
different forms of numerical fluxes may be used to model various types of 
differential equations, and, as such, Equation 2.18 is more general. Selection of 
appropriate numerical fluxes for computational fluid dynamics applications is 
discussed in Chapters 4 7.

2.1.3 Boundary Constraint Minimization 

The third view of the discontinuous treatment across the element boundaries is 
from the element boundary constraint minimization approach. To illustrate this 
view, we apply the Weight Residuals method to both the elements and their 
boundaries,  

1

1 1

( ( )) ( ( ))( ) ( ) ( ) 0
j j

j j

N Nx x

x xj j

dF u x dF u xf u v x dx v x dx
dx dx

(2.19)

Performing integrating by parts on Equation 2.19 and noting that the test 
function does not have to be continuous across the boundaries because of the 
intrinsic assumptions associated with a discontinuous finite element formulation, 
we have the following expression: 

1

1

( ( )) ( ) ( )
j

j

N x
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h h
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dF u x f u v x dx
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1

( ) ( ) ( ) 0
N

j hj
j

F u F u v x dx     (2.20) 

where (u, v) are approximated by (uh, vh). Different forms of the weighting function 
may be used. One of the simple forms uses a linear combination of vh(x), defined 
on two adjacent elements as 

jjjh vvxv )1()(     (2.21)

With the above equation substituted into Equation 2.20, one obtains the 
following formulation: 
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This expression of the formulation is also general. In fact, when  = 1, one 
recovers the upwinding approach, as in Equation 2.11. On the other hand, if we 
carry out the integration once more and define the numerical flux as follows:  

)()1()(),( jjjj uFuFuuh     (2.23)

then Equation 2.22 reduces to Equation 2.18. 
From the examples given above, a discontinuous element formulation can be 

constructed in three different ways: (1) by weakly imposed boundary conditions 
across element boundaries (Equation 2.11), (2) by the use of numerical flux 
expressions at the element boundaries (Equation 2.18), and (3) by the minimization 
of constraints across element boundaries (Equation 2.22). We note that while these 
three approaches treat cross-element discontinuities differently, they all fall into the 
general category of the Weighted Residuals method [6]. The first two involve the 
integration by parts, while the third one does not. If equations are written in non-
conservative form, or if a conservative form does not exist, it is not straightforward 
to perform partial integration of the equations, because there is no “flux”. In this 
case, the boundary minimization is more convenient for developing a 
discontinuous finite element formulation for these equations. 

2.1.4 Treatment of Discontinuity for Non-conservative Systems 

As stated in Section 1.7, a system of differential equations may be written in the 
“divergence” or “conservation law” form. By the definition given in Section 1.7, 
Equation 2.3 is in a conservative form, while Equation 2.1 is not. 

In numerical analyses, the primitive variable is often solved instead of the flux 
function F(u), and thus Equation 2.1 needs to be applied directly. In this case, from 
the definition, dF(u)=C(u) du, we may write, 

1/ 2
1
2

1/ 2
( ) ( ) ( ) [ ] [ ] ( )

i

i

u

i i i ii i
u

F u F u C u du u C u t u u dt

(2.24) 

where iii uuu][  is the jump across the element boundary. Since u is a smooth 
function, and [u] i is small, we may numerically approximate the integral by a mid-
point rule, 



28 Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer 
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2 2
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[ ] ( ) ( ) ([ ] )i i i ii iC u t u u dt C u u O u     (2.25) 

The relations given in the above two equations allow us to rewrite Equation 
2.22 in the following form: 
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The last term, however, can be discarded without affecting the accuracy [3]. 
Thus, for the non-conservative equation stated in Equation 2.21, the discontinuous 
formulation is: find uh(x) Pl ( j) such that 
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h h h
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du xC u f u v x dx
dx

    1 1
2 2(1 ) ( ) [ ] ( ) ( ) [ ] ( )j j j j j j j h jC u u u v x C u u u v x

3([ ] ) 0h jO u , )()( jlh VPxv    (2.27) 

where Pl ( j) is a piecewise polynomial of degree l defined over the interval j = 
[xj, xj+1]. The boundary terms are set at 0

1
0 uu and 1 1.N Nu u

2.1.5 Transient Problems 

The discussion thus far has been limited to steady state problems. As with other 
methods, the treatment of the cross-element discontinuities can be readily extended 
to develop discontinuous finite element formulations for transient problems. Let us 
illustrate this point by considering a 1-D transient problem of hyperbolic type, 
sometimes referred to as convective wave equation, or convection equation, which 
is mathematically stated as 

0
x
uc

t
u ,            c > 0, [ , ],x a b 0t     (2.28)

where c is a constant. Any of the above formulations can be applied to develop the 
needed integral formulation for a discontinuous finite element solution. Here we 
take the boundary constraint minimization approach and integrate the above partial 
differential equation with respect to a weighting function v(x), whence we have the 
following result: 
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For a typical interval, j = [xj, xj+1], j = 1, …, N, the above equation reduces to 
the following form after integrating the second term: 
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                                (2.30)

Comparing this with Equation 2.22, and noticing that F(u) = cu for this problem,  
we see that the transient term enters the integral description directly, as in the 
continuous finite element method.   

2.2 Discontinuous Finite Element Formulation 

We may extend the discussions on the 1-D examples to consider a more general 
class of problems and formally introduce the discontinuous finite element 
formulation for boundary value problems.  

2.2.1 Integral Formulation 

Let us consider a partial differential equation, written in the form of the 
conservation law for a scalar u,

0)( bu
t
u F ; )(),0( 0 xx uu , 0, tx     (2.31)

To start, the computational domain is broken into a tessellation of finite 
elements 1 .N

j j  The field variable u is approximated by the interpolation 
function uh, defined on each element j. Since the function uh is allowed to be 
discontinuous across the element boundaries for discontinuous formulations, the 
finite element space, over which uh is defined, is sometimes referred to as finite 
element broken space, to differentiate it from continuous finite element space [11]. 
The broken space is denoted by j

hV and 2 ( )j
hV L , where L2( ) is the Lebesgue 

space of square integrable functions, defined over .
 If the above equation is integrated over j with respect to a weighting function 
v, one has the weak form expression: 
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We now perform integration by parts on the second term involving the 
divergence of flux and obtain the nornal fluxes along the boundary. This procedure 
yields the following result:  

( ) ( ) 0
j j
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h h h h h h

uv u v bv dV v u dS
t

F F n ,

j
h hv V  (2.33) 

where n is the local outnormal vector on the element boundary j. By substituting 
numerical fluxes along the element boundaries,  

),( uuFnnF       (2.34)

Equation 2.33 can be integrated numerically. The construction of numerical fluxes 
is important, and there are many different fluxes for popular fluid flow and heat 
transfer problems. These fluxes will be discussed in subsequent chapters for 
specific applications. 

The integration of Equation 2.33 with an appropriate choice of numerical fluxes 
will result in a set of ordinary differential equations, 

)()(
)(

jj
j

dt
d

FKU
U

M  (2.35) 

where U(j) is the vector of nodal values of variable u associated with element j, K
the stiffness matrix, M the mass matrix, and F(j) the force vector consisting of 
contributions from the source and boundary terms.  

2.2.2 Time Integration 

Time integration can proceed, in theory, by using the general approaches for the 
solution of initial value problems. Two important points, however, are noted when 
the time integration is carried out for Equation 2.35. First, since the discontinuous 
formulation is a local formulation, it often leads to standard explicit structures. 
Thus, the explicit methods for time integration are preferred with discontinuous 
finite element formulations, whenever possible. Of course, this does not mean that 
the implicit method is not possible. In practice, both explicit and implicit 
integrators can be applied, though the latter is much less frequently used with 
discontinuous formulations. Second, since the explicit methods are prone to 
numerical instability, appropriate stability analysis is needed for the time 
integration schemes [13–15]. Fortunately, stability criteria have been established 
for the most commonly used time integration methods for the fluid flow and heat 
transfer applications. 

The following equations show some of the commonly used time integration 
schemes for the discontinuous finite element applications.  
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(1) First order Euler forward:  
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(2) Second order scheme: 
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(3) Third order scheme: 
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(4) Fourth order scheme: 
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In the above schemes, ).),(),((),( 1 n
j

nn
j
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j tttH UUKUFMU  Since these 

schemes are explicit, the time step has to satisfy the CFL (Courant–Friedrich– 
Lewy) condition for stability. While they represent some of the popular choices, 
other schemes are also possible. For example, a Total Variation Diminishing (TVD)
scheme has been used for oscillation-free shock wave simulations [15]. It is noted 
that time integration can be most efficiently calculated if the mass matrix is 
diagonalized when an explicit scheme is used. For this purpose, the orthogonal 
hierarchical shape functions presented in Chapter 3 have been proven to be 
extremely useful. The use of these transient schemes will be discussed in 
subsequent chapters for the numerical solution of specific problems of fluid 
dynamics and heat transfer. 

An implicit time integration scheme may also be used with a discontinuous 
finite element formulation. However, the use of an implicit scheme results in an 
even larger global matrix than a conventional finite element formulation, thereby 
eliminating the advantage of localized formulation associated with discontinuous 
finite elements. Consequently, almost all discontinuous finite element formulations 
presented thus far use the explicit time integration scheme for the solution of 
transient problems, for the purpose of facilitating the parallel computation 
associated with a local formulation. 
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2.3 Solution Procedures  

We now consider the general computational procedure by which the discontinuous 
finite element method is used to obtain numerical solutions. From the above 
discontinuous formulations, it is clear that this method is local, in that the weakly 
imposed across-element boundary conditions permit the element-wise solutions. 
For each element, the elemental calculation is required, and is essentially the same 
as that used in the continuous finite element method. Also, as for the continuous 
counterpart, the discontinuous Galerkin formulation is obtained when the same 
interpolation functions are used for both unknowns and the trial functions.  

One important implication of the above discontinuous formulation is that, 
because of a weakly imposed boundary condition across adjacent elements, a 
variety of elements or shape functions, including the discontinuous shape 
functions, can be chosen for computations. As a result, the discontinuous 
formulation embeds the continuous finite element and the finite volume/finite 
difference formulations. If, in particular, a constant element is chosen, then the 
formulation boils down to the traditional finite difference method. On the other 
hand, if the continuous function is chosen, and the cross-boundary continuity is 
enforced, one implements the continuous finite element method.  

We note that the discontinuous finite element method falls also into the general 
category of the Weighted Residuals method for the solution of partial differential 
equations. Various familiar forms of domain- and boundary-based numerical 
methods can be derived from this general integral formulation, depending upon the 
choice of the weighting functions. For the Galerkin formulation, the weighting 
functions are chosen the same as the shape functions. The weighting functions, 
however, may be chosen differently from the shape functions. For example, if 
Green’s functions are chosen as weighting functions, then the well known 
boundary element formulation of boundary value problems is obtained [16].

2.4 Advantages and Disadvantages of Discontinuous Finite 
Element Formulation 

In comparison with the other numerical methods (finite difference and finite 
elements), the discontinuous finite element formulations have both advantages and 
disadvantages. It is important to understand these issues for developing specific 
applications.

2.4.1 Advantages 

In discontinuous formulations, the interelement boundary continuity constraints are 
relaxed. Various upwinding schemes, proven successful for convection-dominant 
flows, can be easily incorporated through element boundary integrals that only 
involve the spatial derivative terms in the equations. Inside the elements, all terms 
are treated by the standard Galerkin method, leading to classical symmetric mass 
matrices and standard treatment of source terms. 
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Higher order approximations are obtained simply by increasing the order of the 
polynomials or other basis functions. The decoupling of the upwinding convection 
terms, and the other terms, yields a very attractive feature of the discontinuous 
method, especially in the case of convection-dominant problems. This method 
performs very well, and in fact it is often better than the SUPG method, for 
advection type problems. Even for linear elements, this method performs 
remarkably well [6]. 

The coupling between element variables is achieved through the boundary 
integrals only. This means that u/ t and the source terms are fully decoupled 
between elements. The mass matrices can be inverted at the element level, 
rendering the U(j)/ t explicit. With an appropriate choice of orthogonal shape 
functions, a diagonal mass matrix can be obtained, thereby resulting in a very 
efficient time marching algorithm. 

The discontinuous finite element formulation is a local formulation and the 
action is focused on the element and its boundaries. Whatever the space dimension 
or the number of unknowns, the formulation remains basically the same and no 
special features need to be introduced.  

Because of the local formulation, a discontinuous finite element algorithm will 
not result in an assembled global matrix and thus the in-core memory demand is 
not as strong. Also, the local formulation makes it very easy to parallelize the 
algorithm, taking advantage of either shared memory parallel computing or 
distributed parallel computing.  

Also, because of the local formulation, both the h- and p-adaptive refinements 
are made easy and convenient. Compared with the continuous finite element 
method, the hp-adaptive algorithm based on the discontinuous formulation requires 
no additional cost associated with node renumbering.  

2.4.2 Disadvantages 

Like any other numerical methods, the discontinuous finite element method has its 
drawbacks. The blind use of this method would certainly result in a very inefficient 
algorithm. In comparison with finite elements using continuous basis functions, the 
number of variables is larger for an identical number of elements [7, 17]. This is 
obvious from the formulations given above, and is a natural consequence of 
relaxing the continuity requirements across the element boundaries. 

Since the basis and test functions are discontinuous across element boundaries, 
second order spatial terms (diffusion) need to be handled by mixed methods, which 
enlarge the number of unknowns, or other special treatments. This is a serious 
drawback, when compared to the continuous methods where elliptic operators are 
handled relatively easily. Also, our experience with the heat conduction or 
diffusion problems indicates that if stabilization parameters are not used, the 
element matrix may become singular and thus pollute the numerical solution. The 
solution algorithm, based on the discontinuous formulation in general, is inferior to 
the continuous finite element method in its execution speed for pure conduction or 
diffusion problems, in particular steady state heat conduction and diffusion 
problems. Thus, for these problems, if memory is not a constraint in applications, 
the discontinuous formulation should be avoided. 
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In computer-aided thermal and fluids engineering design applications, complex 
numerical models are often required to represent a wide range of thermal and fluid 
flow phenomena. It is, therefore, unlikely that one single method would be best 
suited for modeling all the physical phenomena in a thermal/fluid system. Thus, a 
combination of methods, best suited for modeling certain types of phenomena, 
would be required, in order to develop the most efficient algorithms for specific 
applications. These issues are explored further in subsequent chapters of this book. 

2.5 Examples 

The examples in this chapter are selected for the purpose of illustrating the basic 
concepts of the discontinuous finite element formulation, and the general solution 
procedures for the numerical solution to boundary value problems. As a result, 
very simple problems are considered.  

Example 2.1. Apply the discontinuous Galerkin finite element method to obtain the 
numerical solution of the following initial value problem: 

   1
dx
du        with     u(0) = 0; ]2,0[x  (2.1e) 

and compare the numerical results with the analytical solution with the domain 
discretized by two linear elements.   

Solution. The analytic solution to the problem is simple, u = x. Now, following the 
procedure in Section 2.1 leading to the element-wise formulation, we have the 
following integral equation with F replaced by uh and v by i:

   
1 ( ) ( ) ( ) 0

j

j

x
h

h i j i jj
x

du x f u x dx u u x
dx

  (2.2e)    

where i is the shape function. Now the domain is discretized into two elements, as 
shown in Figure 2.1e. 

For simplicity, a linear interpolation is used for each of the elements. When an 
isoparametric shape function is used, we have the following relations: 

Figure 2.1e.  Discretization of the domain into two elements 

x = 0 x = 1 x = 2 
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Applying Equation 2.11 to the first element x [0, 1], and making use of the 
condition )0(0 uu = 0, one has 

   
1

0
0

1 ( ) (0) 0h
i i

du x dx u
dx

     (2.3e) 

Now with 10 uu , 1)1()0( 11 x , and 2)1( uxu  and with the 
unknown variable replaced by its local approximation using interpolation functions 
in Equation 2.3e, the following expression is obtained for the first element: 

   
1 1

1 1 1 11 2

0 02 2 2 2

1 0
,

0 0
u ud d dx dx

dx dx u u
     (2.4e) 

For this problem, the integration can be carried out analytically, whence we 
have the results, 

1 1
1 1 2

0 12

11, 1, 1
4 1

d d dx d
dx dx

1

1

1 , 11
4 1 , 1

d =
4,4
4,4

8
1 =

1,1
1,1

2
1      (2.5e) 

121 1
1 1

120 12
1

(1 )(1 )1 1
2 8(1 ) (1 )

dxdx d
d 1

1
2
1

4
4

8
1

       (2.6e) 

Substituting Equations 2.5e–2.6e into Equation 2.4e yields the follwing matrix 
equation,

   1 1

2 2

1, 1 1 0 11 1
2 21, 1 0 0 1

u u
u u

     (2.7e) 

which can be solved for u1 and u2,
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   1

2

1, 1 1
1,1 1

u
u

    =>       
1
0

2

1

u
u

 (2.8e) 

where )0(1 uu  and )1(2 uu .
Now the same procedure is applied to the second element x [1, 2] with the 

result,

2

1

( ) 1 ( ) (1 ) (1 ) ( ) 0h
i i j

du x x dx u u x
dx

 (2.9e) 

At this point, u(1 ) = u2 is known from Equation 2.8e. Furthermore, if the 
upwinding scheme is used, the following matrix equation is then obtained: 

2
1 1 11 2

1 2 2 2

1 0
,

0 0
u ud d dx

dx dx u u
1

1

0 2 2

1 0 (1 )
0 0

udx
u

  (2.10e) 

The detailed integration is almost the same as for the first element,  

1 1

2 2 2

1, 1 1 0 1 1 0 11 1
2 21, 1 0 0 1 0 0

u u
u u u

 (2.11e) 

Rearranging, we have the solution for the second element, 

1

2

1, 1 3
1, 1 1

u
u

    =>   
2
1

2

1

u
u

 (2.12e) 

where u1 = u(1+) and u2 = u(2 ). The numerical results for this elementary example 
are: u0 = 0, u1 = 0.5(u(1+) + u(1 )) = 1 and u2 = 2.

As discussed above, the discontinuous shape functions may be used because the 
field variable is considered discontinuous across the boundary. The use of 
discontinuous shape functions to obtain the same numerical results is illustrated in 
the following example.  

Example 2.2. Re-solve the problem defined in Equation (2.1e) using geometrically 
discontinuous linear elements. 

Solution. For the purpose of demonstration only, we consider the discontinuous 
shape function for the first element that is normalized at x1 = 0.2 and x2 = 0.8, 
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which corresponds to  =0 and  =1 respectively, as shown in Figure 2.2e. Thus the 
following expressions are obtained: 

2211 uuuh ; )8.0/1(5.0)(1

2211 xxx ; )8.0/1(5.0)(2

4/35.08.0/)(5.0 122211 ddxxxdxddx

2
2

1
1 u

x
u

xx
uh ;

6.0
1

2.08.0
8.02

8.02
111

xx

6.0
1

2.08.0
8.02

8.02
122

xx

Figure 2.2e.  An illustration of two linear discontinuous elements 

To calculate the integration limits for the normalized coordinate  that 
correspond to x = 0 and x = 1, we make use of the isoparametric element to obtain 
the integration limits: 

8.0)8.0/1(5.02.0)8.0/1(5.00 2211 xxx  => 4 / 3

8.0)8.0/1(5.02.0)8.0/1(5.01 2211 xxx  => 4 / 3

These expressions and integration limits are now substituted into Equation 2.11 
for the first element and the resultant equation can be integrated analytically, 
whence we have 

1
1 11 2

0 2 2
,

ud d dx
dx dx u

1
1 1 1

1 2
02 2 2

4 / 3
4 / 3 , 4 / 3

4 / 3
u

dx
u

 (2.13e) 

x = 0 x = 1 x = 2 

0.8 1.20.2 1.8
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1
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0 2
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2
1  (2.14e) 
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1
1 2

2

4 / 3 4 / 3
4 / 3 , 4 / 3 4 / 3, 1/ 3

4 / 3 1/ 3

14
416

9
1      (2.16e)

The above results are combined to yield a matrix equation for the first element,  

1,1
1,1

2.1
1 +

14
416

9
1 =

3,3
3,3

6.3
1 +

4.0,6.1
6.1,4.6

6.3
1

 =
4.3
4.1

,6.4
,4.3

6.3
1      (2.18e)

1

2

3.4, 1.41
3.6 4.6, 3.4

u
u

=
1
1

2
1  (2.17e) 

Equation 2.17 is then solved to obtain the numerical solution, 

1

2

3.4 1.4 1.8
4.6 3.4 1.8

u
u

=>
2

1

u
u

=
8.0
2.0

 (2.19e) 

We see that u1 = u(x = 0.2) = 0.2 and u2 = u(x = 0.8) = 0.8, which match with the 
exact solutions. It is a simple exercise to show that the calculations for the second 
element yield the same results as in Example 2.1.   
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Example 2.3. Consider this internal radiation problem, defined by the following 
differential equation and boundary condition: 

1u
dx
du ,   with    00xu    (2.20e)

Obtain the numerical solution using the discontinuous Galerkin finite element 
formulation with two linear discontinuous finite elements, and compare the results 
with the exact solution. 

Solution. We first obtain the analytical solution to the problem above. The problem 
is solved by direct integration and the solution is u(x) = 1 e x.  Application of the 
discontinuous finite element formulation for the first element gives the result, 

1

0
0

1 ( ) (0) 0h
h i i

du u x dx u
dx

   (2.21e)

where we have applied u0  = u(0 ) = 0. Now with u0
+ = u1 = 0,  1(x = 0) = 1(   =  

–1), u(x  = 1) = u2 substituted, one has 

1 1
1 1 1 1 11 2

1 2
0 02 2 2 2 2

1 0
, ,

0 0
u u u

dx dx
x x u u u

1
1

0 2
dx    (2.22e)

The detailed calculations are the same as before, whence we have the following 
expressions: 

1
1

0 2

11
2 1

dx ;
1

1 1 2

0 2
, dx

x x
=

1,1
1,1

2
1    (2.23e) 

The additional term comes from the treatment of u(x),

1 1
1 2
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Assembling these expressions into Equation 2.33, one has the matrix equation, 

1 1 1

2 2 2

1, 1 2, 1 1 0 11 1 1
2 6 21, 1 1, 2 0 0 1

u u u
u u u

 (2.25e) 

Simplifying, we have the following numerical results for the first element: 

1

2

5, 4 3
2,5 3

u
u

 =>
0.636

091.0
)1(
)0(

2

1

u
u

u
u

 (2.26e) 

where u1 = u(0+) and u2 = u(1 ).  This compares with the analytical solution: u(0) = 
0 and u(1) = 0 .632.   

For the second element, the same procedure is applied with the result, 

11 1 1

2 2 2 2

1, 1 2, 1 1 0 1 1 01 1 1
2 6 21, 1 1, 2 0 0 1 0 0

u u u u
u u u u

(2.27e)

Rearranging and setting u1
– = u(1 ), we have the numerical values for the second 

element, 

1

2

5, 4 75 11
2,5 3

u
u

 =>
0.868
0.669

)2(
)1(

2

1

u
u

u
u

 (2.28e) 

which compares with the analytical solution: u(2) = 0.865. 
For this simple example, the solutions can be readily obtained using the 

continuous finite element method or the finite difference method. For comparison, 
the numerical results using different methods are listed in Table 2.1e, and 
compared with those calculated using the analytic solution. 

Table 2.1e.  Comparison of numeric results with analytical solution 

x 0 1 2 
DFEM u(x) 0.04545 0.653 0.868 

Analytic (1 e x) 0 0.632 0.865 

DFEM u(x ) 0 0.636 0.868 
FEM 0 0.643 0.857 
FD 0 0.500 0.750 

In Table 2.1e, the values of DFEM u(x) are obtained using the averaged 
quantities across the element boundary: that is, u(x) = 0.5(u(x ) + u(x+)). The 
solution is better approximated if we take u(x) = u(x ), as shown by those given in 
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the row associated with DFEM u(x ). The standard continuous finite element 
solution (FEM) is reasonably good, although not as good as the discontinuous 
finite element solution (DFEM u(x )). The standard finite difference approximation 
(FD), with upwinding, seems to be least accurate for this problem.    

Example 2.4. Consider a two-dimensional convection problem defined by the 
following differential equation and boundary condition: 

0
y
u

x
u

t
u ],0(],[],[ Tx  (2.29e) 

with periodic boundary conditions and initial data 

)sin()sin(0,, yxtyxu  (2.30e) 

Obtain the numerical solutions using the discontinuous finite element method and 
discuss parallel computing performance.   

Solution. This problem was solved by Biswas et al. [18], and is used here as an 
example to demonstrate the parallel performance of the discontinuous finite 
element method. Their algorithm employed a discontinuous Galerkin finite element 
discretization, with a basis of piecewise Legendre polynomials. Temporal 
discretization employes a Runge–Kutta method. Dissipative fluxes and projection 
limiting prevent oscillations near the solution discontinuities. Parallel computing 
used from 1 to 256 processors. The computed results are given in Table 2.2e.  It is 
seen from the results that, as the number of processors increases while keeping the 
work per processor constant, the discontinuous finite element method achieves a 
very impressive parallel computing performance. 

Table 2.2e. Scaled parallel efficiency: solution times (without I/O) and total execution 
times, measured on the nCUEE/2 

Number of 
processors

Work (W) Solution 
time (s) 

Solution
parallel

efficiency

Total
time (s) 

Total parallel 
efficiency

1 18432 926.92 927.16
2 36864 927.06 99.98% 927.31 99.98% 
4 73728 927.13 99.97% 927.45 99.96% 
8 147456 927.17 99.97% 927.58 99.95% 

16 294912 927.38 99.95% 928.13 99.89% 
32 589824 927.89 99.89% 929.90 99.70% 
64 1179648 928.63 99.81% 931.28 99.55% 
128 2359296 930.14 99.65% 937.67 98.88% 
256 4718592 933.97 99.24% 950.25 97.57% 
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Exercises

1. Show that when a delta function is chosen as the weighting function, the 
Weighted Residuals formulation gives the finite volume scheme.  

2. Solve the problem defined by Equation 2.1e using five linear elements and 
compare with the analytic solution. 

3. Solve Example 2.1e using five linear continuous finite elements and five 
finite volume cells. Compare the results with the results in Exercise 1 and 
the analytical solution. 

4.  Complete the calculations in Example 2.2e for the second element and 
compare with the analytic solution. 

5.  Apply a discontinuous finite element formulation to solve the problem 
defined by Equation 2.20e when the domain is discretized into six linear 
elements. 

6.  Solve Equation 2.20e using six linear continuous finite elements and six 
finite volume cells respectively and compare the results with those obtained 
in Exercise 5. 

7. Use discontinuous finite element formulation and three quadratic elements 
to solve Equation 2.20e and compare with the results obtained in Exercise 5. 

8. Develop a computer code for a discontinuous finite element solution to 
Equation 2.20e, and compare the results obtained from the code with those 
calculated in Exercises 6 and 7. 
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3

Shape Functions and Elemental Calculations

Like its continuous counterpart, the discontinuous finite element method employs 
shape functions for local approximations. The use of 1-D linear shape functions 
was demonstrated in the last chapter for the discontinuous Galerkin solution of 
boundary and initial value problems. There, it was also shown that a discontinuous 
finite element formulation hinges critically on local interpolation functions and 
involves computations at the element level. The calculations for higher dimensions 
require interpolation functions or shape functions defined in multi-dimensions. For 
many engineering applications, elements based on linear and quadratic 
interpolations may be sufficient. Because the elements for the discontinuous finite 
element formulations are embedded in a finite element broken space, and because 
the formulations are localized, higher order polynomial interpolation functions can 
be easily incorporated in the solution procedure. This flexibility in local 
approximation has motivated researchers to develop and apply more accurate, local 
spectral basis functions for higher order analysis. 

In this chapter, the shape functions, numerical integration, and elemental 
calculations used for discontinuous finite element calculations are discussed. The 
chapter starts with the procedure and basic criteria for the construction of the 
simple 1-D finite elements. The idea is then extended to establish a general 
framework for developing standard finite elements in multi-dimensions. A brief 
discussion is given on the construction of spectral elements, which are known for 
their higher order accuracy of approximations. Hierarchical elements are widely 
used in p-type adaptive analysis; and the construction of a variety of hierarchical 
shape functions and the selection of hierarchical polynomials for certain 
applications are also discussed. The techniques for constructing special elements 
and transition elements through coordinate transformation are also presented. 
Interpolation error estimates for uniform and non-uniform meshes are presented by 
introducing various norms for error measures. These error estimates are of crucial 
importance in developing adaptive algorithms for discontinuous finite element 
computations. Numerical integration is discussed and the Gaussian quadrature is 
given for various classes of elements. Elemental calculations are an important part 
of a discontinuous formulation, and are discussed for 2-D and 3-D volume and 
surface elements. 
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3.1 Shape Functions 

Shape functions are local functions restricted to an element, and are of vital 
importance to discontinuous finite element approximations. Here, we discuss the 
basic ideas for constructing shape functions developed from the Lagrangian 
interpolation theory. The Lagrangian interpolation functions make a natural 
candidate for local finite element approximations, because of their simplicity        
[1–3]. The 1-D shape functions are discussed first and the concept is extended to 
the higher dimensions. The elements discussed in this section are generally 
classified as standard elements. 

3.1.1 1-D Shape Functions 

Application of the discontinuous finite element formulation starts with breaking the 
computational domain into a tessellation of elements. The shape function is then 
constructed over each of the elements.  Consider the 1-D discretization as shown in 
Figure 3.1, where the domain is discretized into N = 5 elements. 

Figure 3.1. Discretization of a 1-D domain into 5 linear finite elements. Dots denote the 
nodal points 

For element j, j = [xj, xj+1], and by the Lagrangian interpolation theory, the 
unknown function u is approximated by a function uh(x) local to the element, 

bxaxuh )(  (3.1) 

At two end points of j, we require that the approximate function uh(x) assumes 
the values of the unknown function, 

jjh uxu )( ; 11)( jjh uxu  (3.2) 

With these relations substituted into Equation 3.1, the two constants, a and b,
can be determined. The linear functions are re-written in terms of the nodal values 
of u,

)()()( 11 xuxuxu jjjjh       (3.3) 

In the above equation, i(x) (i = j, j+1) is the shape function defined over j,

Element j

xj xj+1
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j xx

xx
x

1

1)(  and 
jj

j
j xx

xx
x

1
1 )( , jVx           (3.4)

Here x j applies to every x in j. While simple, the shape functions in Equation 
3.4 display two important properties: (i) j(x) is unit at the node j or xj, and (ii) it is 
non-zero on j and is zero everywhere else. The first property ensures that a local 
interpolation function satisfies the conditions stated in Equation 3.3, while the 
second property is the statement of element locality. The shape functions above are 
called linear shape functions because they vary linearly over j.

For practical applications, the isoparametric approximation is often used, by 
which the shape functions are constructed over a normalized coordinate system. 
The element defined in a normalized coordinate system is referred to as a canonical 
element. To recast the shape function in normalized coordinates, a normalized 
parameter ( [–1,+1]) is introduced, and is related to x in the following way: 

jj

jj

xx
xxx

1

12
           (3.5) 

This is equivalent to transforming j from the x coordinate to the  coordinate, 
or natural coordinate, as shown in Figure 3.2. 

Figure 3.2. Mapping of an element, defined on x  [xj, xj+1], to a canonical element defined 
on  [ 1, +1]. The known functions uj and uj+1 are mapped as u1 and u2 in the  coordinate 
system  

Using the transformation rule given in Equation 3.5, the linear shape functions 
i(x) (i = 1, 2) may now be written in terms of the  coordinate system, 

)1()( 2
1

1  and )1()( 2
1

2                                         (3.6) 

The shape functions, as shown in Figure 3.3, vary linearly over the normalized 
range, [ 1, +1]. With the shape functions defined in this way, the unknown 
function is transformed as a function of ,

)(u )()()( 2211 uuu (3.7) 

As shown above, a shape function can be constructed either in the original 
coordinate system or, more conveniently, in a normalized coordinate system. 
While the above discussion illustrates the construction of a linear shape function, 

xj+1xj

uj uj+1

= –1 = +1

u2u1
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the same procedure can be applied to develop higher order shape functions. As 
seen above, a linear element has two nodes at its ends. For higher order elements, 
more nodes are required and at each node the basic condition is satisfied: uh(xj) = 
uj, with j being the node number. For example, a quadratic element has 3 nodes and 
a cubic element has 4 nodes. These higher order shape functions can also be 
expressed in terms of the natural coordinate  [ 1,1]. For a quadratic element, 
the above procedure leads to a set of three shape functions, all of quadratic order:

Figure 3.3. Linear element shape functions 

)1()();1)(1()();1()( 2
1

322
1

1    (3.8) 

These shape functions and node arrangement for a quadratic element defined over 
[ 1,1] are graphically displayed in Figure 3.4. 

(a)

(b) 

Figure 3.4. Quadratic element shape functions for a 1-D canonical element: (a) shape 
functions and (b) node arrangement 

= 1 = +1
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1 2 3
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Similarly, cubic shape functions can be constructed, and when written for a 
canonical element {  [ 1,1]}, they assume the form of 
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43
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27

3   (3.9)  

(a)

(b)

Figure 3.5. Cubic element shape functions for a 1-D canonical element: (a) shape functions 
and (b) node arrangement 

The shape functions of even higher orders may now be constructed readily by 
following the same procedure. These functions are in the general class of the 
Lagrangian interpolation polynomials of the nth order, ),(xn

k  which are defined 
by  

0,

( )
( )
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n
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k
k jj j k

x x
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x x
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)())(())((

1110
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nkkkkkkk
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xxxxxxxxxx
xxxxxxxxxx   (3.10) 

where the subscript k is the kth interpolation point, and the superscript n + 1 the 
total number of interpolation points. Clearly, the Lagrangian interpolation basis 
given above maintains the two important properties for shape functions of any 
order,

1 2 3 4
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0
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njjkn
k xxx

xxxx
x  (3.11) 

where kj is the delta function: kj = 1 if k = j and kj = 0 if k  j.
As we shall show below, the Lagrangian polynomials are also useful for 

constructing elements in multi-dimensions. Before we do so, let us look at one 
simple example illustrating the use of Equation 3.10. 

Example 3.1. Use the Lagrangian interpolation formulae to construct the quadratic 
shape functions over a canonical element { [ 1,1]}. 

Solution. Let x = . For a quadratic approximation, three interpolation points are 
taken: x0 = 0 = –1, x1 = 1 = 0.0, and x2 = 2 = 1. From Equation 3.10, we have 

)1(
2
1

)11)(0.01(
)1)(0.0(

))((
))((

)()(
2010

212
01 xxxx

xxxxxk

(3.1e) 

Similarly, the other two shape functions, i.e. 2( ) and 3( ), are obtained by 
setting k =1 and k = 2 in Equation 3.10. 

3.1.2 2-D Shape Functions  

For two dimensional analyses, shape functions defined over 2-D geometries are 
needed. The triangular and quadrilateral elements are perhaps the most frequently 
used elements in thermal and fluids engineering analysis.   

3.1.2.1 Triangular Elements 
As in the 1-D case, linear elements are considered first. For a linear triangular 
element, the unknown function u within each element is approximated as 

cybxayxuh ),(  (3.12) 

where a, b, and c are constant coefficients to be determined. A linear triangular 
element has three nodes located at the vertices of the triangle (see Figure 3.6a). The 
nodes are numbered counterclockwise by numerals 1, 2, and 3, with the 
corresponding values of u denoted by u1, u2 and u3, respectively. Enforcing 
Equation 3.2 at the three nodes, one has 

11111 ),( cybxayxuu h ; 22222 ),( cybxayxuu h ;

33333 ),( cybxayxuu h
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Figure 3.6. A 3–node triangular element and its shape function: (a) numbering sequence and 
(b) distribution of function (x,y)

Solving for the constant coefficients a, b, and c in terms of uj, and substituting 
them back into Equation 3.12, one has  

3

1

( , ) ( , )h j j
j

u x y x y u  (3.13) 

where j(x, y) is the interpolation or shape function given by  
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1),( ycxbayx e
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e
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e
jej , j = 1, 2, 3 (3.14) 

in which 

eeeee xyyxa 32321 ; eee yyb 321 ; eee xxc 231
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 = area of the eth element 

In the above equations, xj
e and yj

e (j = 1,2,3) denote the coordinate values of the jth
node in the eth element.  
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From Equation 3.13, we see that the interpolation functions have the following 
important property: 

1
( , )

0
e e

i j j ij
i j

x y
i j

 (3.15) 

Thus, at node i, u(xi, yi) in Equation 3.13 reduces to its nodal value ui. Another 
important feature of j(x,y) is that it vanishes when the observation point (x,y) is 
on the element side opposite to the jth node. Therefore, the value of u at an element 
side is not related to the value of u at the opposite node; rather it is determined by 
the values at the two endpoints of its associated side. This important feature 
guarantees the continuity of the solution across the element sides. These features 
are shown in Figure 3.6a, which displays the interpolation functions j(x,y) for a 
triangular element. 
 Shape functions for triangular elements can also be expressed in normalized 
area coordinates. If we join any point P in the triangle to the vertices of the 
triangle, we have three sub-triangles with areas, A1, A2, and A3, as shown in Figure 
3.7. Then the shape functions can be written in terms of normalized area 
coordinates j,

e
jjjj Ayx ),,(),( 321 , j = 1, 2, 3 (3.16)

with j satisfying the normalization relation, 

1321  (3.17) 

The higher order shape functions can be constructed similarly.  

Figure 3.7. Area coordinates for a triangular element 
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Alternatively, the shape functions can be constructed directly, in terms of the 
normalized area coordinates. One simple recursive relation is derived for shape 
functions for triangular elements [1], 

   )()()(),,( 321),,(321
K
K

J
J

I
IKJIj  (3.18) 

where k
n( l) (l=1, 2,  3) is given by the Lagrangian polynomials, and I+J+K=M

is the order of the polynomial. This relation can be used to generate shape 
functions of any order. 

Example 3.2. Develop shape functions from the recursive relation for 3– and 6–
node triangular elements. 

Solution. For a linear triangle, the highest order of a polynomial is M = 1. From 
Equation 3.14, we have in reference to Figure 3.1e (a), 
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Similarly,  

33
1
1)1,0,0(321322

1
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This is a different approach to the same problem. 

Figure 3.1e. Triangular elements and their shape functions: (a) linear element and (b) 
quadratic element 
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For a quadratic triangle or 6–node triangle, the polynomial has an order of M = 
2. Let us consider node 1, 

])()][()()[(
])(][)([

)(),,(
11210121

111011
1

2
2)0,0,2(3211

)12(
)5.01)(01(

)5.0)(0(
11

11 (3.3e) 

By the same token, the corner nodes have a similar form, that is, j( 1, 2, 3) = 
j(2 j 1). For the mid-node, say, node 4, we have the following result in 

reference to Figure 3.1e(b): 

1 1 0 2 2 01 1
4 1 2 3 (1,1,0) 1 1 1 2

1 1 1 0 2 1 2 0

[ ( ) ] [ ( ) ]( , , ) ( ) ( )
[( ) ( ) ] [( ) ( ) ]

1 2
1 2

( 0) ( 0) 4
(1 0.5) (1 0.5)

(3.4e) 

Other mid-node terms can be obtained similarly [1].    

3.1.2.2 Quadrilateral Elements 
There are four nodes in a rectangular element. This allows us to construct an 
interpolation function in the following form, which contains four coefficients a, b,
c, and d,

dxycybxazyxuh ),,(  (3.19) 

Now, we may follow the same procedure given above to obtain shape functions j,
j = 1, 2, 3, 4, which may then be written in normalized coordinates through 
coordinate transformation.   

Alternatively, the shape functions are formed by taking products of one-
dimensional Lagrangian polynomials. Multi-dimensional polynomials formed in 
this manner are called “tensor-product” approximations. Let us consider the 2 2
square {( , ) 1 , 1} shown in Figure 3.8. For simplicity, the vertices of the 
element are indexed with double subscripts as (0,0), (1,0), (0,1), and (1,1), which 
correspond to node numbers 1, 2, 4 and 3, respectively. With nodes at each vertex, 
we now construct a bilinear Lagrangian polynomial by tensor-product [1], 

)()(),(),(
n
l

m
klk , k, l  = 0, 1 (3.20)

where the Lagrangian polynomials j
i are used and m and n are orders of 

interpolation functions. Written with the node number as the subscript, the shape 
functions for the 4–node element take the following form: 
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where the Lagrangian interpolation functions in Equation 3.10 have been used. The 
tensor product is general, and can be easily extended to the shape functions of 
higher order. This is illustrated through an example below.

Figure 3.8. A canonical square element with 4 nodes: (a) double indexed and (b) node 
arrangement

Example 3.3. Construct the shape functions for a 9–node element defined over a 
square {( , ) 1 , 1} and selectively display the function over the 2-D 
domain. 

Solution. For a 9–node element, the tensor product formula given in Equation 3.14 
is extended to the quadratic order in both  and ,

)()(),(),(
n
l

m
klk , k, l = 0, 1, 2; m, n = 2 (3.5e) 

Using Equation 3.5e and noting the correspondence between the node number and 
subscript index in 1-D shape functions, as shown in Figure 3.2e, one has the shape 
functions for a 9–node element, 
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Figure 3.2e. A canonical square element with 9 nodes: (a) coordinates and double indexed 
node arrangement, and (b) single indexed node arrangement 

Figure 3.3e. The distribution of selected shape functions for a 9–node quadratic element 
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Three of these shape functions are selectively plotted in Figure 3.3e. 
For engineering analyses, 8–node elements are used frequently. The shape 

functions for this type of element may be constructed by starting with the general 
interpolation function, solving for the coefficient constants, and then transforming 
them into normalized coordinates. This procedure can be very tedious. 
Alternatively, they can be constructed by a combination of 1-D and 2-D shape 
functions of mixed orders, as shown in the example below. 

Example 3.4. Develop shape functions for an 8–node element from shape 
functions given for a 9–node element. 

Solution. A shape function at a node i needs to satisfy two conditions: (1) i =1 at 
node i, and (2)  i = 0 at other nodes. We start with the mid-point, say, node 5, as 
shown in Figure 3.4e. The conditions are satisfied if a Lagrangian interpolation of 
a quadratic  linear type is used, 

)1)(1(, 2
2
1

5 (3.7e) 

The other mid-nodes have a similar form; e.g., the shape function for node 8 is 

)1)(1(, 2
2
1

8  (3.8e) 

We next consider corner node 1. If we start with the a linear interpolation, 

Figure 3.4e. A canonical square element with 8 nodes
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)1)(1(),( 4
1

,1 trial  (3.9e) 

It is clear that 1,trial  = 1 at node 1, 1,trial  = 0 at nodes 2, 3, 4, 6, 7, but 1,trial  = 0.5 
at nodes 5 and 8. The shape function is zero at nodes 5 and 8 if the following 
correction is made, 

),(5.0),(5.0),(),( 85,11 trial
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1 (3.10e)

The shape functions for other corner nodes can be obtained similarly. These shape 
functions are given in Table 3.1. 

3.1.3 3-D Shape Functions 

Three-dimensional element shape functions can be constructed very similarly, 
following the procedures illustrated for 2-D elements.  

3.1.3.1 Tetrahedral Elements  
These elements are the simplest geometric units to approximate 3-D geometries. In 
a similar fashion to that discussed for 1-D and 2-D elements, an unknown function 
u can be interpolated in a tetrahedron [1, 2].  

dzcybxayxuh ,  (3.21) 

The coefficients a, b, c, and d can be obtained in terms of ui at the nodal points, 
and then substituted back to yield the final form of the interpolation,  

44332211),( uuuuyxuh  (3.22) 

where i is defined as 
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Here the above coefficients are determined from the following relations:  
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where xi
e, yi

e, zi
e, ui

e are x, y, z coordinates, and ui values at node i. From the above 
equations, the coefficients ai

e, bi
e, ci

e, di
e are readily obtained by expansion. In fact, 

they are the determinants of the cofactors of the relevant matrices. 

Figure 3.9. Tetrahedral edge element with edge and node numbering. P is an internal point 
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Similar to the 2-D triangular case, we may also use the volume coordinates to 
express the shape functions. This is constructed in the same manner as the area 
coordinates. As shown in Figure 3.9, the volume coordinate is defined by the ratio 
of the subvolume, constructed from point P inside the tetrahedron, connected to 
three vertices of a face triangle, 

e
P VV /2341 ; e

P VV /3412 ; e
P VV /4123 ; e

P VV /1234  (3.24) 

Thus, the shape function takes the following form for a linear element: 

ii , i = 1, 2, 3, 4 (3.25)

The following simple recursive relation may also be used to express the shape 
functions in terms of the volume coordinates [1], 
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where I + J + K + L = M is the higher order of the polynomial. This relation can be 
used to generate shape functions of any order for 3-D tetrahedral elements. 

3.1.3.2 Hexahedral Elements 
Following the above procedure, an interpolation function is constructed for an 8–
node brick element, which contains 8 coefficients a, b, c, d, e, f, g, and h:

hxyzgxzfyzexydzcybxayxuh ),(  (3.27) 

The coefficients are now determined to obtain shape functions j, j=1,…,8. A 
typical 8–node brick element is shown in Figure 3.10. These shape functions, 
written in (x, y, z) coorindates may then be written in normalized coordinates 
through coordinate transformation.  

Figure 3.10. A brick element with 8 nodes 
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An easier way is to construct the shape functions by taking products of one-
dimensional Lagrangian interpolation functions. Thus, for the 2  2 2 cube, {( , ,
) 1 , , 1}, shown in Figure 3.11, the vertices of the element may be 

indexed with triple subscripts as (0,0,0), (1,0,0), (1,1,0), (0,1,0), (0,0,1), (1,0,1), 
(1,1,1), and (0,1,1), which correspond to single number indexed shape functions 1, 
2, 3, 4, 5, 6, 7, and 8. With a node at a vertex, we construct a bilinear Lagrangian 
polynomial by tensor product,  

)()()(),,(),(
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J
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I
klk , k, l, m = 0, 1 (3.28)

A hexahedron can be transformed into a canonical element, as in the 1-D and 2-
D cases. With the isoparametric transformation, this is easily achieved, as shown in 
Figure 3.11. Often the isoparametric transformation is made using the following 
transformation rules: 

1 1
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i i i i
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x x y y
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eN

i i
i

z z (3.29)

where Ne is the number of nodes of the element or number of nodes used for 
parametric transformation. 

Figure 3.11. A hexagon is transformed into a canonical cube in 3-D: (a) the hexagonal 
element and (b) the canonical cube 
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Both linear and higher order shape functions can be obtained using this relation. 
The procedure is identical to the 2-D case and thus is omitted here. Also, shape 
functions for 20–node elements can be described in a precisely analogous way to 
that given for 2-D 8–node elements. 

The commonly used shape functions for 1-D, 2-D and 3-D elements are 
summarized in Table 3.1. 

Table 3.1. Elements and shape functions 

Elements Shape functions 
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Table 3.1. Continued 
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Table 3.1. Continued 
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d = e = 1, f = 0, for i = 1, 2,3,4 
l = m = 0, n =1 for i = 1,6 
l = n =0, m = 1 for i = 2,4 
m = n = 0, l = 1 for i = 3,5 
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3.2 Construction of Special Elements

For many applications, elements of mixed order are needed for analysis. When this 
happens, transition elements are often used. These elements are not listed in 
standard element libraries. Below, we consider a technique to construct these 
elements from those in the standard libraries. 

3.2.1 Non-standard Elements 

We consider a case illustrated in Figure 3.12, where the transition elements are 
needed to patch the domain approximation from 4–node elements to 9–node 
elements. The transition element has 5 nodes with three nodes on the side shared 
with the 9–node element. To construct the shape functions for the 5–node element, 
we first consider node 5 for which the shape function has a quadratic  linear type,

)1)(1(, 2
5 2

1 (3.30) 

Figure 3.12. A 5–node rectangular element patches meshes of 4–node elements to meshes 
of 9–node elements: (a) mesh and (b) a 5–node transition element 

The addition of node 5 affects only nodes 2 and 3, for which shape functions 
need to be corrected. We consider the correction for node 2 first. The shape 
function for a linear interpolation has the form, 

)1)(1(),( 4
1

,2 trial   (3.31) 

which is equal to 0.5 at node 5.  This leads us to the following correction to ensure 
that the final shape function is zero at node 5 as well: 

2 2, 5( , ) ( , ) 0.5 ( , )trial

(a) (b)

1 2 

34

5

1 2

34

5
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21 1
4 4              (1 )(1 ) (1 )(1 )

1
4              (1 )(1 )( ) (3.32) 

Similarly, the shape function for node 3 needs to be corrected, 

)1)(1()1)(1()1)(1(),( 4
1

4
1

4
1 2

3  (3.33)  

Techniques for constructing variable-number-nodes elements are also given in [4]. 

3.2.2 Construction of Element Shape Functions by Node Collapsing 

There are occasions where linear triangle elements need to be expressed in terms of 
normalized elements in ( , ). While one can follow the procedure illustrated in 
Section 3.1 to obtain the shape functions, an easier way is to collapse a 4–node 
element into a 3–node element. As shown in Figure 3.13, one intends to merge 
nodes 3 and 4 of a quadrilateral element into node 3 of a new triangular element. 
The shape functions for nodes 1 and 2 are unchanged as they are not affected by 
the action along the edge defined by nodes 3 and 4. For the new node 3, the shape 
function is constructed by adding the shape functions for the old nodes 3 and 4, 

 ),(),(),( ,4,33 oldold

)1()1)(1()1)(1( 2
1

4
1

4
1 (3.34) 

This technique also can be applied to other elements in both 2– and 3-dimensions.  

Figure 3.13. Nodes 3 and 4 are collapsed to transform a rectangular element (a) to a 
triangular element (b) 

(a) (b) 
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3.2.3 Spectral Elements 

For some applications, spectral elements are required to provide needed high order 
spatial resolution. The spectral elements are constructed using the orthogonal 
functions, which can be useful to develop diagonalized element matrices and thus 
speed up calculations. We consider a 1-D case here. The extension of the 1-D 
shape functions to multidimensional elements can be obtained using the tensor 
product approach discussed in Section 3.1.2.2. 

For a 1-D element, the following interpolation function is constructed using the 
Chebychev polynomial Ti( ) [5]: 

0

( ) ( )
sN

i i
i

u a T   (3.35) 

where Ns is the number of Chebychev polynomial terms used in the approximation. 
The expansion coefficient ai is calculated using the orthogonality condition for the 
Chebychev polynomials:

1

1
( ) ( ) ( ) 0i jT T w d i j (3.36) 

where 211)(w is the weighting function.  Thus, we have 

1 1

1 1
( ) ( ) ( ) ( ) ( ) ( )i i i iT w u d a T T w d  (3.37) 

In the spectral approximation, the Gauss–Lobatto rules are used to evaluate the 
above integrals on both the left and right sides, although the latter can be evaluated 
analytically [6].  Applying this rule, we have 

1

1

2,  0,
( ) ( ) ( ) ,

2 1,   1 1
s

i i i i
s

i N
T T w d C C

i N
 (3.38) 

and

1

1 0

( ) ( ) ( ) ( ) ( )
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i i j j j
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u T w d T u w  (3.39) 
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68 Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer 

Substituting back into Equation 3.37, we have the coefficients for the 
Chebychev polynomials, 

0

2 1 ( ) ( )
sN

i i j j
s i jj

a T u
N C C

 (3.41) 

Since Ti( ) is defined as  

)cos(cos)( 1iTi ,        i = 0,1,2, ... (3.42) 

the use of the Gauss–Lobatto [6] rules leads to the following expression: 

s
ji N

ijT cos)(  (3.43) 

which may be substituted back into Equation 3.41 with the result, 

0

( )2 cos
sN

j
i

ss i jj

r ija
NN C C

 (3.44) 

Clearly, this is nothing but a cosine transformation, and the fast Fourier 
Transformation (FFT) can be readily applied to expedite the calculations. With 
Equation 3.44 substituted back into the original approximation for u, one has the 
following expression:  

0

( ) ( ) ( )
sN

j j
j

u u  (3.45) 

where j( ) is the spectral interpolation shape function, and is calculated by 

0

( ) ( )2( )
sN

i j i
j

s j ii

T T
N C C

 (3.46) 

From the above two equations, it is obvious that the shape function has the 
desired property,

ijij )(  (3.47) 

While the spectral elements here are constructed using the Chebychev 
polynomial, the procedure applies to any other orthogonal functions. 
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3.3 Hierarchical Shape Functions

Shape functions are the functions restricted to an element, and all the above 
elements satisfy two important local constraints: (1) j(x) is unity at node j and 
vanishes at all other nodes and (2) j(x) is only non-zero on those elements 
containing node j. The elements satisfying these constraints are called standard 
shape functions [1]. Hierarchical shape functions, however, maintain only the 
second property. They are constructed by adding, hierarchically, higher-degree 
corrections to the lower-degree shape functions. Specifically, a hierarchical basis 
of degree p + 1 is constructed as a correction to the degree p basis, and the entire 
basis need not be reconstructed when the polynomial degree is increased. In this 
section, we consider the construction of hierarchical shape functions, which have 
been shown to be particularly useful for the discontinuous finite element solution 
of certain types of problems [7].  

3.3.1 1-D Hierarchical Correction  

Let us consider what happens when we add the quadratic correction to the linear 
shape function over an element. This means that we construct a piecewise 
quadratic hierarchical shape function. The restriction of this function to a canonical 
element  [–1, +1] has the hierarchical form, 

0 0 1 1 2 2( ) ( ) ( ) ( )u u u a (3.48) 

with the hierarchical shape functions,

1
0 2( ) (1 ) ; 1

1 2( ) (1 ) ; 2 ( ) (1 )(1 )   (3.49) 

Here a2 is a constant, but not equal to u2. In fact, du( )/d = –2a2. This 
interpretation gives a general meaning, but is not necessary. The coefficient a2
needs to be obtained as part of the numerical solution. We note, however, that 

0( 1) = 1(+1) = 1 for the hierarchical functions. The above hierarchical shape 
functions are plotted in Figure 3.14. It transpires that only one shape function is 
quadratic, and the other two are actually linear, unchanged from the linear 
approximations. This is different from the standard quadratic shape functions, 
which are all quadratic (see Equation 3.8). Also for the standard element shape 
functions, all the coefficients of j were equal to the variables uj.

Hierarchical polynomials of higher order can be constructed similarly by 
simply adding the higher order corrections. For example, for a cubic hierarchical 
approximation, we may add to Equation 3.48 the following term: 

)1()( 2
3  (3.50) 
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Figure 3.14. A hierarchical element of quadratic order 

with a3 being the corresponding coefficient. In general, we can conveniently 
construct the hierarchical approximations by adding the hierarchical shape 
functions in increased orders, 

odd
even

!/)1(
!/)1()( 1 k

k
k

k
k

k

k (3.51) 

where k  2 is the order of the polynomial and k! is included for convenience, but 
not necessary.  

For discontinuous formulation with explicit time integration for transient 
problems, there is an advantage of using orthogonal functions to diagonalize the 
mass matrix [7]. One of these hierarchical shape functions is based on the 
Legendre polynomials [2], which are defined by the following differential equation 
[6]:

,0)()1(
)(

2
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)1( 2

2
2

i
ii Pii

d
dP

d
Pd

0,1,1for  i  (3.52a) 

or by the Rodrigues formula [8]: 

])1[(
!2

1)( 2 i
i

i

ii d
d

i
P , i  0 (3.52b)

The Legendre polynomials have the following useful properties:  

1

1

2
( ) ( )

2 1
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i jP P d
i

; 1)1(iP ; )()1()( i
i

i PP , i  0  (3.53) 
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dx
dP

Pi
dx

dP i
i

i )(
)()12(

)( 11  , i  1  (3.54) 

)()()12()()1( 11 iii iPPiPi  , i  1 (3.55) 

The hierarchical shape functions using the Legendre polynomials are defined by 

)1()( 2
1

,0 p , )1()( 2
1

,1 p  (3.56) 

2
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2 2 1

i i
i p i

i P PP d
i

,

,for ( 1) 0,   2i p i   (3.57) 

where the subscript p on  denotes the basis of the Legendre polynomials for p  2. 
A useful property of the above functions is that the bilinear form of the first order 
derivatives is orthogonal, 

1
, ,

1

( ) ( )j p i pd d
d

d d

1

1 1 ,
1

2 1 ( ) ( )
2 j i i j

i P P d ,

i, j  2 (3.58) 

where the first property of Equation 3.53 has been used. This procedure will 
diagonalize the submatrix of the diffusion stiffness matrix, starting from (i = 2, j = 
2).  

3.3.2 Canonical Square and Cubic Elements 

As for the standard shape functions, the hierarchical shape functions for the 
rectangular and brick elements can be constructed using the tensor product of the 
1-D shape functions. Thus, making use of Equation 3.51, we have the hierarchical 
shape functions 

( , ) ( ) ( )kl k l , k, l > 1 (3.59)

for a canonical square element {( , ) | ,  [–1, +1]}, and  

)()()(),,( mlkklm , k, l, m > 1 (3.60)

for a canonical cubic element {( , , ) | , ,  [–1, +1]}. In the above equation, 
the basis function j( ) is given by 0( ) = 0.5(1 – ) and 1( ) = 0.5(1 + ), and for 
j  2, j( ) takes either the regular polynomials (Equation 3.51) or the Legendre 
polynomials (Equation 3.57) [2, 3, 9].  
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The field variable can be interpolated using the hierarchical shape functions 
over the canonical element, 

( , , )
0 0 0

( , , ) ( , , ) 
p p p

k l m klm
k l m

u a

( , , )
0 0 0

( ) ( ) ( )
p p p

k l m k l m
k l m

a (3.61)

where p is the order of approximation, and a(k,l,m) (k, l,m =0,1) corresponds to the u
value at each corner of the element, and a(k, l, m) (k, l, m 2) is constant.   

Example 3.5. Find the hierarchical shape functions for an 8–node square element 
using the 1-D interpolation function given by Equations 3.49 and 3.51, and write 
the explicit form of the interpolation function for the field variable u.

Solution. We use the tensor product rule to obtain the needed shape functions for 
vertices and sides of the 8–node element shown in Figure 3.5e. 

For the four vertices, we have the linear functions, 

)1)(1(),();1)(1(),( 4
1

0,14
1

0,0

)1)(1(),();1)(1(),( 4
1

1,04
1

1,1   (3.11e) 

For the four sides, we have the quadratic functions, 

Figure 3.5e. An 8–node element showing the number convention used for the hierarchical 
shape functions. The numbers in the brackets are coordinates, and the number pairs without 
brackets are used to denote the nodes

( 1, 1) (1, 1)

( 1,1) (1,1)

0,0 1,0 2,0

0,1 2,1

0,2 1,2 2,2
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)1)(1)(1()();1)(1)(1()( 2,10,2

)1)(1)(1()();1)(1)(1()( 2,01,2  (3.12e) 

With the above hierarchical shape functions, we obtain the interpolation for u( , )
over the element, 

( , )
0 0

( , ) ( ) ( )
p p

k l k l
k l

u a

0,0 0 0 1,0 1 0 1,1 1 1          ( ) ( ) ( ) ( ) ( ) ( )u u u

0,1 0 1 2,0 2 0 2,1 2 1                ( ) ( ) ( ) ( ) ( ) ( )u a a

)()()()( 202,0212,1 aa (3.13e)

3.3.3 Triangular and Tetrahedral Elements 

For triangular and tetrahedral elements, the area (volume) coordinates can be used. 
Again, for linear functions, we have 

11 ; 22 ;      33  (3.62) 

Consider the triangle shown in Figure 3.15. Along side 1 2, 3 = 0 and thus, 

121  (3.63) 

The higher order function has the form given by Equation 3.51. Since 1 +1 
along the side 1 2, a simple coordinate transformation yields along the side, 

Figure 3.15. A quadratic triangular element with 6 nodes
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122 12  (3.64) 

This then allows us to write the higher order polynomials given by Equation 
3.51 in terms of 12 ,

odd
even

!/])())[((
!/])()[(),( 1

21
1

2212

2112
2121, k

k
k

k
kk

kk

k

(3.65)

where k 2 is the order of the polynomial. Similarly, we can write the higher order 
functions (k 2) for the other two sides, 
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(3.66)
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The above functions define the polynomials along the three edges. Internal 
hierarchical functions are also needed for cases where k  3. These internal 
functions are called bubble functions, and satisfy the condition that they become 
zero along all three edges of the triangular element, 

KJI
ik 321321, ),,( , I + J + K = k – 3  0 (3.68) 

where k is the highest order, and the subscript i denotes the interior interpolation. 
In constructing the hierarchical shape functions for the orders of p  2, we have the 
following expressions by the tensor product rule: 

jimjim ,321 ),,( , for mid-nodes on the edge i – j (3.69)

inn ,321321 ),,( , for nodes inside triangle (3.70)

The construction of the hierarchical polynomials for tetrahedral elements 
follows the same procedure as described above for each face, and then adds the 
additional higher functions for the interior nodes. The numerical details involved in 
construction are given in [10]. Thus, in addition to the above functions for each 
face of a tetrahedron, the hierarchical shape functions are needed for nodes inside 
the tetrahedron, 
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vqq ,4321321 ),,(  (3.71) 

where q vanishes on all faces as desired, and q,v is the polynomial correction, 

LKJI
vq 4321321, ),,( , I + J + K + L = q – 4  0 (3.72) 

with v denoting the nodes inside the polynomial.   
The above procedure is general. If the Legendre polynomials are used for 

higher approximations where k  2, then one can show, by exactly the same 
arguments given above, that the polynomial corrections along the edges are 

2
,

,, )(1
)(4

),(
ij

ijpk
jijipk  for edge i – j (3.73) 

where )(, ijpk  is defined by Equation 3.57. Szabo and Babuska [2] suggest 
that the correction to the interior points in the triangle takes the following form: 

)12()(),,( 312321,, PPpk , 3k , k  3 (3.74) 

With these corrections, the hierarchical shape functions of quadratic order or 
higher can be obtained by the simple multiplication process, 

jipmjim ,,321 ),,( , for mid-nodes on the edge i – j (3.75) 

),,(),,( 321,,321321 pnn , for inside nodes  (3.76) 

Similarly, the expression for a tetrahedron is obtained by repeating the above 
process for each face. For the nodes inside the tetrahedron, the hierarchical shape 
functions have the form [3], 

)12()12()(),,( 43124321321 PPPk ,

4k , k  4 (3.77) 

Example 3.6. For a 7–node triangular element, derive the hierarchical order term 
for the mid-edge nodes and the interior node using the Legendre polynomials as 
correction terms.  Develop hierarchical shape functions for the element. 

Solution. We first draw a 7–node triangular element as shown in Figure 3.6e. Let 
us then consider node 4, the mid-node for edge 1–2. Along this edge, 3 = 0 and 1
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+ 2 = 1.  Establishing the coordinate  along the edge such that –1 +1, we 
have the following coordinate transform: 

2/)1(1 ; 2/)1(2 ; 03 , 12 (3.14e)

Also, from Equation 3.57, the edge shape function is described by 

)1)((3)( 2
1

,2 Pp ; )13(5.0)( 2
2P  (3.15e) 

Since 2 = 0 along the edge 1 3, and 1 = 0 along edge 2 3, the quadratic 
hierarchical shape function for node 4 in general should have the form of 

)(),,( 21,,221321
4
2 p  (3.16e) 

where the superscript denotes the node number. Along the edge 1 2, the above two 
equations must be equal, and thus we have 

)()()1)(1(25.0)()0,,( ,221,,221,,22121
4
2 ppp

(3.17e)

that is, 

6)1(3)1(2)1/()(4)( 222
,221,,2 pp  (3.18e) 

The hierarchical shape function for node 4 then becomes 

211221,,221321
4
2 6)(),,( p  (3.19e) 

Figure 3.6e. A 7–node triangular element 
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The shape functions for nodes 5 and 6 can be obtained similarly. For node 7 inside 
the triangle,  = 0, which leads to  

32132100,,3321321
7
3 ),,(),,( p  (3.20e) 

In summary, the hierarchical shape functions for the 7–node element are given by 

1321
1 ),,( ; 2321

2 ),,( ; 3321
3 ),,(

21321
4 6),,( ; 32321

5 6),,(

13321
6 6),,( ; 321321

7
3 ),,(  (3.21e) 

3.3.4 Obtaining Hierarchical Elements Through Coordinate Transformations 

Hierarchical shape functions for various element shapes can also be obtained 
through coordinate transformations between other shapes and a 2-D or 3-D 
canonical element [7, 9, 11].  

We illustrate this point by considering a transformation between a triangle and 
a square as shown in Figure 3.16. Here the triangular element defined in (s1, s2)
coordinates is mapped to a square element defined in (t1, t2). Note that the vertical 
lines (t1=constant) in the square domain become the lines radiating from the point 
( 1, 1) in the triangular domain. The ray (t1 = constant) is multi-valued at (s1 = 1, 
s2 = 1). We then easily develop a hierarchical shape function for the triangular 
elements by the substitution of (s1, s2) for (t1, t2),

)),(()),(()()(),( 2122112121 sstsstttss lklkkl  (3.78) 

The above procedure may also be applied to develop 3-D transformations 
between various shapes, such as hexahedrons, prisms, pyramids and tetrahedrons, 
and canonical cubic elements {(t1, t2, t3) | t1, t2, t3  [ 1, +1]} [7, 11]. For a 
tetrahedron defined in coordinates (s1,   s2, s3), the hierarchical shape functions are 

)),,(()),,(()),,((),,( 321332123211321 ssstssstssstsss mlkklm (3.79)

where the (t1, t2, t3) to (s1,s2,s3) transformation is given by  

1)1(2

32

1
1 tt

ts ; 1
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)1(2

3

2
2 t

ts ; 33 ts  (3.80) 

The transformation rule given by Equation 3.79 maps the four vertices of the 
tetrahedron in (s1,s2,s3); which are defined at ( 1, 1, 1), (1, 1, 1), (1, 1, 1) and 
( 1, 1,1), to the eight vertices of a cubic element as shown in Figure 3.17. 
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Figure 3.16. Transformation between a triangular element and a rectangular element 

Figure 3.17. Transformation from a tetrahedron to a canonical cube element 

3.3.5 Orthogonal Mass Matrix Construction 

For explicit time integration, a diagonalized mass matrix is beneficial for  
stabilizing the time marching process with a larger time step. For continuous finite 
element approximations, a common procedure to obtain a diagonalized mass 
matrix is to use either the Newton–Cotes integration rules; or more simply, to sum 
the off-diagonal terms of a row, and then add to the diagonal term of the row        
[1, 12]. While this procedure can still be used in the discontinuous algorithm, the 
localized nature of the discontinuous formulation makes it very convenient to 
develop basis functions for diagonalizing the mass matrix. In this regard, there are 
many candidates from the class of special functions [6]. 

Let us illustrate this point by considering a 1-D case. The idea is similar to 
Equation 3.58, except that we seek the following term for diagonalizing  

1 1

, , ,
1 1

2 1( ) ( ) ( ) ( )    for , 2
2j p i p j i i j

id P P d i j

 (3.81) 
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Clearly, this property is easily satisfied when the shape function is defined by  

2 1
, 2( ) ( )i

i p iP  (3.82) 

Thus if the approximate solution is expressed as  

2 1
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i
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u a a P  (3.83) 

then the mass matrix will be diagonalized with the ith element calculated by  
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k
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i

u d a d a  (3.84) 

In this approximation, however, the coefficient ai is not equal to the value of u at 
node i. This is unimportant to the discontinuous formulation since the field values 
are updated during element-by-element calculations. This approach is equivalent to 
treating each element as a separate domain, over which the spectral method is 
applied [5]. Of course, when needed, shape functions with this orthogonal property 
can be constructed using the procedure given in Section 3.2.3.  

This idea can be readily extended to multidimensional problems, and can also 
be extended to other element shapes. One of these approaches was reported by 
Lomtev et al. [7], who proposed to use the Jacobi polynomial as the principal 
function for hierarchical shape functions that preserve the orthogonality property 
for mass matrices. These principal functions assume the following form: 
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where )(,
lP  is the Jacobi polynomial with the following properties,  
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1
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1
(1 ) (1 ) ( ) ( )n m nmx x P x P x dx  (3.87) 

With these definitions, the hierarchical shape functions for various 
multidimensional elements can be constructed, which possess the property of mass 
matrix diagonalization [7].
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3.4 Interpolation Error Analysis 

Error estimates are important for numerical analysis. In finite element analyses, 
both post priori and a priori estimates are computed using various error measures.  
Here we consider interpolation errors associated with shape functions.  

3.4.1 Hilbert Space and Various Error Measures 

Different measures are used for the purpose of error estimates in finite element 
calculations. We discuss below the interpolation error analysis, which is perhaps 
the most important error analysis.  

Useful concepts associated with the mathematical analysis of the finite element 
methods, which also apply to local analysis, are discussed in detail in [13, 14]. 
Some concepts and definitions from linear analysis, which are essential for the 
measurement of basic interpolation errors, are presented here. Additional 
information may be found in references [13–15]. First, if V is a real linear space, 
then the mapping a(.,.) : V V R is called an inner product if (i) a(.,.) is 
symmetric, i.e., a(v, w) = a(w, v), v, w V,  (ii) a(v, v) is a scalar product, i.e., a(v,
v)  0, v V, (iii) a(v, v) = 0 if and only if v = 0, and (iv) a(v, w) is linear with 
respect to v, i.e., a( v1+ v2, w) = a(v1, w) + a(v2, w) for any scalars , R
and v1, v2,w V. Second, if a(.,.) is an inner product, then for v V, the associated 
norm ||•|| is defined by 

1/ 2|| || [ ( , )]v a v v ,   v V   (3.88) 

If a(.,.) is an inner product with the corresponding norm ||•||, then we have the 
Cauchy–Schwarz inequality, 

|||||||||),(| wvwva , v, w V    (3.89) 

We now define the Hilbert space: V is a Hilbert space if V is complete (that is, 
every Cauchy sequence is convergent with respect to ||•||) and V is a linear space 
with an inner product with the corresponding norm ||•||.  

A sequence of v1, v2, v3, …, of elements vi in the linear space V is a Cauchy 
sequence if for all  > 0 there is always a natural number N > 0 such that || vi – vj ||
<  if i, j > N. Further vi converges to v if || vi – v || 0 as i .

An L2-function is often used in the literature and it refers to a class of functions 
that are square integrable. An L2-function is a member of the L2 space, 

2 2( ) { |  is defined on  and }L f f f dx  (3.90) 

with the corresponding L2-norm defined as 
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2

1/ 2
2|| ||Lf f dx  (3.91) 

where f = f(x) is a real-valued function defined on . The L2-norm is a widely used 
measure for error analysis in finite element calculations. We note that the L2 space 
is a special case of the Lebesgue space [14]. A Lebesgue space is defined by the 
following expression: 

( ) { : is measuableon and | ( ) | }p pL f f f x dx     (3.92) 

with the corresponding norm given by 

1/
|| || : | ( ) |p

p
p

L
f f x dx    for 1 p <  (3.93a) 

1/
lim | ( )| ess sup | ( )|

m
m

L m x
f f x dx f x   for p =    (3.93b) 

In finite element literature, the class Hm( ) of functions is also used to quantify the 
smoothness and regularity of functions. To define the class Hm( ), we first define 
g as the th weak partial derivative, written as [14] 

1

1 1

| |

1 1

n

n n
w

n n

f f fg D f
x x x x

 (3.94a) 

if f, g 1 ( )locL and if there exists  

| |( 1)wf D dx g dx  (3.94b) 

for all testing functions ( ),cC with ( )cC being the space of infinitely 
differentiable functions with compact support. In the above equations, 1, 2, , n

are non-negative integers, and |  | = 1 + 2 + + n.
Now we define the class Hm( ) by 

2 2( ) | ( ), ( ),| |m
wH f f L D f L m  (3.95a) 

where fD w  denotes the weak derivatives of order |  [14] with the following 
inner product, 
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1 2 1 2
| |

( , ) ( )w w
m

a f f D f D f dx , )(,for 21
mHff  (3.95b) 

It is noted that Hm( ) is a special case of the more general Sobolev space, 
which is defined by )(k

pW ,

)(
1 ||||)()( k

pWloc
k
p fLfW  (3.96) 

where )(1
locL is the locally integrable Lebesgue function and the Sobolev norm is 

defined by [14] 

1/

( ) ( )
| |

|| || || ||k w p
p

p

p
W L

k

f D f  for 1 p <  (3.97a) 

)(||)(
||||max|||| LkW

fDf wk  for  p =  (3.97b) 

In finite element analysis, seminorms are also used. The Sobolev semi-norm is 
defined by [14] 

1/

( ) ( )
| |

| | || ||k w p
p

p

p
W L

k

f D f  for 1 p <  (3.97c) 

)(||)(
||||max|| LkW

fDf wk  for  p =  (3.97d) 

The Sobolev space has important properties, and some of these useful for error 
analysis are summarized here. First, we have  )()( k

p
m
p WW  for 0 < k m and 

1 p , and )()( k
p

k
q WW  for k < 0 and 1   p q . By definition, we 

have  )()( |||||| k
p

k
p WW ff . Also, for an n-dimensional domain  with Lipschitz 

boundary,  we have the following important estimate: 

)()(
|||||||| k

p
m WW

fCf  , )(k
pWf (3.97e) 

for k > m > 0, 1 p , k – m n when p = 1, and k – m > n/p when p > 1. A 
particularly useful relation is also obtained when m = 0, 
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)()(
|||||||| k

pWL
fCf  , )(k

pWf (3.97f) 

The boundary estimates are also important. For  with boundary  being of 
Lipschitz type, we have the following relation [14]: 

p
W

p
LL p

pp ffCf /1
)(

/11
)()( 1||||||||||||  , )(1

pWf (3.97g) 

for 1 p .
We note that, from the above definitions, we establish the following useful 

relations: Hk( ) = )(2
kW  and H0( ) = L2( ) = )(0

2W .
We may further define two measures for error analysis. The first is the Hm-

norm, which is defined by 

22 2
( )

| |

|| || || || mm wH
m

f f D f d  (3.98a) 

The second is the seminorm, which is also used in finite element calculations, and 
is defined in this book as 

1/ 2
2

( )m wm H
m

f f D f dx  (3.98b) 

Here | f |H m
( ) measures the L2-norm of the partial derivatives of f of order exactly 

equal to m. Obviously, these two measures are special cases of the Solobev norm 
and seminorm, respectively. 

With the above definitions, the following norms can be used as error measures.  
For illustrative purposes, 1-D problems are applied to define the measure. Similar 
forms can be constructed for multidimensional problems.  

The L2-norm error measure is given by 

1/ 2
2

0 0( ) ( ) ( ) ( ) ( )
b

h h
a

e x u x u x u x u x dx  (3.99) 

The maximum norm measure is defined as 

)()()()()( xuxumaxxuxuxe h
bxa

h  (3.100) 

The H1-norm measure is given by 
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1/ 2
2 2

1( ) ( ( ) ( ) '( ) '( ) )
b

h h
a

e x u x u x u x u x dx  (3.101) 

Here to simplify the notation, we have used the following defintions: ||•||1 =         
||•|| H 

1
( )  and ||•||0 = ||•|| L 

2
( ).

3.4.2 Interpolation Error Analysis for 1-D Elements 

An important part of error analysis in finite element solutions is related to the 
errors associated with interpolation functions. Consider a function u( ) over an 
interval [ 1, +1] and its Lagrangian interpolation,  

0
( ) ( ) ( )

p

k k
k

u u e  (3.102) 

where e( ) is the error of the interpolation and is calculated by the following 
expression [6]: 

( 1)
( 1)

0 0

( )
( ) ( ) ( )

( 1)!
( ) ( )

p pp
p

i i
i i

u
e Cu

p
,

(  (–1, +1) (3.103) 

Here C is a constant independent of . The interpolation is exact up to order p.
Like the continuous finite element analysis, the discontinuous solutions have a 

variety of error estimates. We consider below the L2 and H1 error estimates, which 
are most frequently used in the analysis. Let us consider a linear (p = 1)
approximation for a 1-D problem, [ 1, +1]. Here, the error for the 
approximation is 

)1)(1")( )((Cue ,  (–1, +1) (3.104)

where C0 = 1/2! = ½. Its maximum possible error is obviously bound by  

|)("||1||)("||1||)("|)(
11

2

1111

2|| umaxCmaxumaxCuCe

(3.105)

An element, for example, element j, x  [xj, xj+1] is transformed into a canonical 
element [ 1, +1] by  = (2x – xj+1 – xj)/(xj+1 – xj) = (2x – xj+1 – xj)/hj so that one 
has the result below: 
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2

222

2

2

2

2 )(
4

)()()("
dx

xudh
d
dx

dx
xud

d
udu j (3.106)

Furthermore, the local maximum norm for a function f(x) defined on [xj, xj+1] is 
given by 

|)(|)(
1

,|||| xfmaxf
jj xxx

j  (3.107) 

where (•) means that the actual normal is independent of x  [xj, xj+1]. We can write 
the above error estimate (Equation 3.105) as 

||)("||||)("|||)("|)( 2
,

2
4
1

11
|| uhCuhCumaxCe jj  (3.108) 

where jNj
hh

1
max and j

Nj
uu ,

1
||)("||max||)("|| , with N being the number of 

elements. 
The L2-norm in local definition is given by 

1
1/ 2

2
0,( ) ( )|| ||

j

j

x

j
x

e e x dx  (3.109) 

where the subscript j means that the estimate is local to element j. For x  [xj, xj+1],

12 2
0,( ) ( )|| ||

j

j

x

j x
e e x dx

1 1
2 2 2

1 1
                [ "( ( ))( 1)] [ "( ( ))]

2
j

j
h

C u d Ch u d  (3.110) 

where we have used ( 2 – 1)2 1. We assume that varies smoothly with , and 
expand u  in the Taylor series,    

))(()("))((" )3(uuu ,

)(")()(" 1uCOu   where ),(  (3.111) 

with C1 being a constant. Here, we have also assumed that for a smooth function, 
the term O(  – ) is proportional to u ( ) [14], and the proportional constant is 
absorbed into the constant C1. Thus, the error estimate is determined by the 
following expression: 
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11
2 2 4 21

1 80, 1
( ) [ "( ( ))] [ "( )]|| ||

j

j

x

j jj x
e C h u d Ch u x dx

2
,0

4 |||| )("
jj uCh  (3.112) 

where C is a constant and use has been made of Equation 3.106. The L2-norm error 
estimate is now calculated by summing the contributions from all the elements, 

2
0

42
0 |||||||| )(")( uChe  (3.113) 

where 

12 2 2
0 0,

1 1
( ) ( ) ( )|| || || ||

j

j

N Nx

jxj j
f f x dx f  (3.114) 

We now consider the error estimate measured by the H1-norm. By definition, 
the H1-norm for the error takes the following form: 

12 2 2
1( ) [ ( ) ' ( )]|| ||

j

j

x

x
e e x e x dx  (3.115) 

We need to calculate the term involving e´(x). Differentiating the error term (i.e. 
Equation 3.104), and assuming that d /d  is bounded, we obtain 

)1(
2

))((
))((")(' 2

)3(

d
duue  (3.116) 

and

1
2(3)1

2 2

1

2 ( ( ))' ( ) "( ( )) ( 1)
2

j

j

x

x j

u de x dx u d
h d

(3.117)

We then notice that from Equation 3.106 

42222 )(")]("[))(("))((" ][][ jhxCuuCuu  (3.118) 

      
2 2(3) 2

2( ( )) ( ) ( 1) "( ( )) ( )[ ] [ ]u d d C u d d h

2][ ))(("3 huC  (3.119) 

where C1, C2 and C are arbitrary constants.  Using the same argument, we obtain 
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2
,0

22
,0 |||||||| )(")(' jjj uChe  (3.120) 

Summing over the N elements, we have  

2
0

22
0 |||||||| )(")(' uChe  (3.121) 

With this we have the final error estimate as h  0, 

      2
0

22
0

222
0

2
0

2
1 |||||||||||||||||||| )(")(")1()(')()( uChuchCheee

  (3.122) 

where c and C are two constants. 
The above analysis is for a linear element. The procedure can also be extended 

to higher order elements. Thus, we have the general expression, 

0
)1(1

0 |||||||| pp
p uhCUu , (3.123a) 

0
)1(

1 |||||||| pp
p uhCUu  (3.123b) 

for the polynomial interpolant U of order p and u Hp+1. Here Cp depends on p. It 
is further shown [13] that  

n
mn

m uChUu ||||||||  (3.124) 

for 0 m n and C is a constant. Additional informion on interpolation error 
estimates in terms of the Sobolev norms can be found in [14]. 

3.4.3 Interpolation Error Analysis for 2-D/3-D Elements 

The interpolation errors for multidimensional elements are obviously more difficult 
to assess than the 1-D elements as shown above. The basic procedure, however, 
remains the same. The error estimates for a non-uniform mesh are given by [13] 

1

1
(sin )

|| || | |
p s

s ps
Ch

u U u      for 1,0and)(1 sHu p  (3.125) 

for triangular and tetrahedral elements, and  

1
1 |||||| p

sp
s
p

s uh
C

Uu      for 1,0and)(1 sHu p  (3.126) 
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for rectangles and bricks. Here h is the largest edge of the elements,  is the 
smallest angle of the triangle or tetrahedron, and  is the smallest aspect ratio of 
the rectangle or brick elements.  

A mesh is considered uniform if all angles of all elements are bounded away 
from 0 and p and all aspect ratios bounded from zero as the element mesh size h
0. For a uniform mesh, it can be shown that the error estimate is given by [13,14] 

1
1

1
1 |||||||||| ' p

sp
p

sp
s uChuhCUu

 for 1,,1,0and)(1 psHu p  (3.127) 

where the polynomial interpolant U is of order p and u Hp+1 and C and C' are two 
constants.

3.5 Numerical Integration 

Numerical integration for discontinuous finite element calculations often is carried 
out using the numerical quadrature formulae. For some simple cases, analytical 
integration is possible and formulae for these cases are included. Since the 
Gaussian integration quadrature formulae present the best accuracy for a given 
number of points, emphasis will be given to this type of numerical integration 
procedure. 

3.5.1 1-D Numerical Integration   

One-dimensional numerical integration primarily consists of finding the area under 
the curve defined by a function f(s). By the Gaussian integration rule, an integral 
can be computed using the following formula: 

1

1 1
( ) ( )

n

i i
i

f s d w f s (3.128) 

where si denotes the integration points, wi are the associated weighting parameters, 
and n is the total number of integration points. These points are given in Table 3.2. 
The error associated with the above quadrature is O(d2nf(s)/d2ns). This means that 
an exact integration can be obtained for a polynomial f(s) of up to (2n 1) degree, 
if n integration points are used. 

Example 3.7. Evaluate the integral 1

1
2 )]2/cos([ dxxxI  using three-point 

Gaussian quadrature.  
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Table 3.2. Abscissae and weight coefficients of the Gaussian 
quadrature formula 

1

1 1

( ) ( )
n

j j
j

f x dx w f a

a                                      w
n = 1 

0.000 000 000 000 000            2.000 000 000 000 000 
n = 2 

0.577 350 269 189 626            1.000 000 000 000 000 
n = 3 

0.774 596 669 241 483            0.555 555 555 555 555 
0.000 000 000 000 000            0.888 888 888 888 888 

n = 4 
0.861 136 311 594 953            0.347 854 845 137 454 
0.339 981 043 584 856            0.652 145 154 862 546 

n = 5 
0.906 179 845 938 664            0.236 926 885 056 189 
0.538 469 310 105 683            0.478 628 670 499 366 
0.000 000 000 000 000            0.568 888 888 888 889 

n = 6 
0.932 469 514 203 152            0.171 324 492 379 170 
0.661 209 386 466 265            0.360 761 573 048 139 
0.238 619 186 083 197            0.467 913 934 572 691 

n = 7 
0.946 107 912 342 759            0.129 484 966 168 870 
0.741 531 185 599 394            0.279 705 391 489 277 
0.405 845 151 377 397            0.381 830 050 505 119 
0.000 000 000 000 000            0.417 959 183 673 469 

n = 8 
0.960 289 856 497 536            0.101 228 536 290 376 
0.796 666 477 413 627            0.222 381 034 453 374 
0.525 532 409 916 329            0.313 706 645 877 887 
0.183 434 642 495 650            0.362 683 783 378 362 

n = 9 
0.968 160 239 507 626            0.081 274 388 361 574 
0.836 031 107 326 636            0.180 648 160 694 857 
0.613 371 432 700 590            0.260 610 696 402 935 
0.324 253 423 403 809            0.312 347 077 040 003 
0.000 000 000 000 000            0.330 239 355 001 260 

n = 10 
0.973 906 528 517 172            0.066 671 344 308 688 
0.865 063 366 688 985            0.149 451 349 150 581 
0.679 409 568 299 024            0.219 086 362 515 982 
0.433 395 394 129 247            0.269 266 719 309 996 
0.148 874 338 981 631            0.295 524 224 714 753 
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Solution. From Table 3.2 for the three Gauss points and weights, we have x1 = x3 =
0.77459…, x2 = 0.000…, w1 = w3 = 5/9, and w2 = 8/9. Then we have  

2 25 8
9 9( 0.77459) cos( 0.5 0.77459) 0 cos 0I

2 5
9   (0.77459) cos(0.5 0.77459) 2.585 (3.22e)

The integral can be calculated analytically with the result, 

11
2 3

1 1

1[ cos( / 2)] 2sin 2.585
3 2

xI x x dx x  (3.23e) 

In this example, the three-point Gaussian quadrature yields the exact answer to 
four significant figures. 

3.5.2 2-D and 3-D Numerical Integration  

The above 1-D integration quadrature formulae can be easily extended to multi-
dimensions,  

1 1

1 1 1 1

( , ) ( , )
n n

i j i j
i j

f s t dsdt w w f s t dsdt   (3.129) 

and

1 1 1

1 1 1 1 1 1

( , , ) ( , , )
n n n

i j k i j k
i j k

f s t u dsdtdu w w w f s t u dsdtdu

(3.130)

The same integration points listed in Table 3.2 can be used to carry out the 
numerical integration in each of the dimensions. 

Example 3.8. Evaluate the integral drdssr 241
1

1
1 using two-point Gauss 

quadrature and compare it with the analytic solution. 

Solution. The weights and abscissas are given in Table 3.2. Choosing points n = 3
for the r direction and n =2 for the s direction, we have 

4 41 1 1
4 2 2

1 1 1

5 3 5 3
9 95 5

r s drds s ds
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2 21

2

1

2 2 1 1 41 1
5 5 153 3

s ds

The analytical solution for the problem can be easily calculated as well, 

1 1 1 14 2 5 3
1 11 1

1 4
15 15

r s drds r s

We can see that the selected integration points are enough to exactly evaluate the 
integral.

3.5.3 Integration for Triangular and Tetrahedral Elements  

Numerical integration over a triangle can be performed more conveniently using 
the area coordinates, 1, 2 and 3,

21 1

1 2 3 1 2 1, 2, 3,
0 0 1

( , , ) ( , , )
m

i i i i
i

f d d f w  (3.131) 

This formula is credited to Hammar et al. [15]. The triangular integration points 
and the associated weighting factors are listed in Table 3.3, where m indicates the 
integration order. If m =1, an exaction integration can be obtained for a polynomial 
of degree p = 1. For m = 3, integration is exact for p 2; and for m = 7, p 4.
Similar weights also exist for tetrahedral elements, which are listed in Table 3.4. 

Besides the numerical quadrature rule above, for certain cases the following 
analytical integration formulae may also be used for triangular elements to 
expedite the calculations: 

21 1

1 2 3 1 2
0 0

! ! !
( 2)!

l m n l m nd d
l m n

(3.132) 

The above numerical and analytical formulae may also be readily extended to 3-D 
integration over a tetrahedral element,   

2 2 31 1 1

1 2 3 4 1 2 3
0 0 0

( , , , )l m n qf d d d

1, 2, 3, 4,
1

( , , , )
m

i i i i i
i

f w (3.133)

for the use of numerical quadrature, and 
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12
3

4

2 2 31 1 1

1 2 3 4 1 2 3
0 0 0

! ! ! !
( 3)!

l m n q l m n qd d d
l m n q

 (3.134) 

for analytical integration. 

Table 3.3. Numerical intergration formulae for triangles 

Order (m) Figure Error Points
Triangular
coordinates Weights

Linear
(m = 1)

R=O(h2) 1 3
1

,
3
1

,
3
1

1

Quadratic 
(m = 2) 

R=O(h3)

3

3

3

2
1

,
2
1

,
2
1

2
1

,
2
1

,0

2
1

,0,
2
1

3
1

3

1

3

1

Cubic
(m = 3) 

R=O(h4)
1

2
3
4

3
1

,
3
1

,
3
1

6.0,2.0,2.0
2.0,6.0,2.0
2.0,2.0,6.0

48
27

48
25

Quintic 
(m = 7)

R=O(h6)

1

7
6
5

4
3
2

3
1,

3
1,

3
1

1 1 1

1 1 1

1 1 1

2 2 2

2 2 2

2 2 2

, ,
, ,
, ,

, ,
, ,
, ,

0.225 000 0000 

0.132 394 1527 

0.125 939 1805 

1 1

2 2

0.059 715 8717, 0.470 142 0641
0.797 426 9853, 0.101 286 5073

2

1
3

1
6

3 4
5

7

2
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1

Table 3.4. Numerical integration formulae for tetrahedra 

Order (m) Figure Error Points 
Triangular
coordinates Weights 

Linear 
(m=1)

R=O(h2) 1 4
1

,
4
1

,
4
1

,
4
1

1

Quadratic 
(m=2)

R=O(h3)

1
2
3
4

,,,
,,,
,,,
,,,

25.0
25.0
25.0
25.0

60196138.0,20410585.0

Cubic
(m=3)

R=O(h4)

1

2

3

4

5
2
1

,
6
1

,
6
1

,
6
1

6
1

,
2
1

,
6
1

,
6
1

6
1

,
6
1

,
2
1

,
6
1

6
1

,
6
1

,
6
1

,
2
1

4
1

,
4
1

,
4
1

,
4
1

20
9
20
9
20
9
20
9
5
4

3.6 Elemental Calculations 

The first step in applying the discontinuous finite element method to a given 
boundary value problem is the discretization of a computational domain into a 
collection of elements. The calculations are then performed over an element. In 
almost all cases, the isoparametric elements are used in calculations. We present 
below the use of isoparametric elements for 2-D and 3-D domain calculations and 
boundary calculations. 

3.6.1 Domain Calculations 

For an isoparametric formulation, the points in the elements are mapped to a unit 
(or canonical) element, and all ensuing calculations are performed in the mapped 
element, which is called the master element. This is shown in Figure 3.18, where a 
curvilinear element is mapped to its corresponding master element in the 
normalized coordinate system. The transformation between the finite element and 

1

2

3

4

2 4

31

5
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the master element of a simple shape is invertible; or simply put, the Jacobian of 
the transformation matrix is positive. For simplicity, the master element is chosen 
to be a square, where local coordinates  and  are normalized, {( , ) | , [ 1, 
+1]}.

As discussed above, any variables defined on the element can be approximated 
using the shape functions in the form, 

1
( , ) ( , )

eN

h i i
i

u u   (3.135) 

where Ne is the number of nodes of the element under consideration. 
If we now treat the coordinate variables x and y themselves as functions on ,

then the shape functions may be used to construct the mapping, 

1
( , ) ( , )

eN

i i
i

x x ;
1

( , ) ( , )
eN

i i
i

y y  (3.136) 

Here (xi, yi) are the (x,y) coordinates of local nodal point i in element e. Note that 
by this transformation, every element in the discretized mesh can be mapped onto 
the master element. This will make the program phase convenient. 

Several important properties of this isoparametric mapping need to be 
discussed before we consider the detailed computational procedures. First, we note 
that the functions x and y are differentiable with respect to the local coordinates 
and ,

Figure 3.18. Transformation of an element in (x,y) (a) into a canonical element in ( , ) (b) 

(1,1)( 1,1)

(1, 1)( 1, 1)

dxdy d  d

(a) (b)

y

x
e
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1 1

( , ) ( , )( , )
e eN N

i i
i i

i i

y ydy d d y d y d    

(3.137)

1 1

( , ) ( , )( , )
e eN N

i i
i i

i i

x xdx d d x d x d

(3.138)

In matrix notation, 

d
d

d
d

yy

xx

dy
dx

J    (3.139) 

where the 2×2 matrix is the Jacobian matrix of the transformation. The invertibility 
condition requires that the determinant of the Jacobian be non-zero at , .
Thus we have 

dy
dx

d
d 1J   (3.140) 

where the inverse of the Jacobian matrix is calculated by 

yx

yx
||

11

J
J   (3.141) 

For an affine transformation, that is, for a one-to-one mapping from e to the 
master element , it is necessary that 

,,0|),(| J (3.142) 

Let us now take a closer look at the physical meaning of the Jacobian J. For this 
purpose, we construct a differential area in the master element, da = d d . When 
inverted back, dA has its image in the x–y plane as dA = dxdy = |J|d d . Thus, |J| is 
just the ratio of areas of elements at points (x,y) and ( , ), i.e., |J| = dA/da.

The above procedure can be directly extended to 3-D calculations. In 3-D 
domains, the master element is often chosen to be a cube defined by {( , , ) | , ,
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 [ 1, +1]}. The transformation between a finite element and the master element 
can be constructed via 

1
( , , )

eN

i i
i

x x ;
1

( , , )
eN

i i
i

y y ;
1

( , , )
eN

i i
i

z z    (3.143) 

where Ne is the number of nodes of the element under consideration. This will 
allow element e to be completely determined by specifying the (x, y, z)
coordinates of all the nodal points of e. With this, the following transformation 
property is established between (x,y,z) and ( , , ):

x x x

dx d
y y ydy d

dz dz z z

;

x y zd dx
d dy

x y z
d dz

x y z

 (3.144) 

from which the Jacobian of the transformation and its inverse are calculated by 

zzz

yyy

xxx

J ;

zyx

zyx

zyx
1J  (3.145) 

We may apply the above mapping to calculate the quantities needed for the 
element matrices for each element in the mesh. With the function values treated as 
boundary conditions at the cross element boundaries, the element matrix is then 
inverted and unknowns are obtained at the nodal points. 

Example 3.9. Consider a rectangular element as shown in Figure 3.7e(a) below. 
The temperature is (100,105,120,89) at the four corner points. Evaluate J and the 
derivatives of the temperature field at = 0 and =0.

Solution. For a 4–node element, Ne = 4 and the transformation Jacobian is 
calculated explicitly by substituting the transformation rule given in Equation 
3.136, 
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21

43

21

43

21

43

21

)1()1(
)1()1(

)1()1(
)1()1(

)1()1(
)1()1(

)1()1(
)1()1(

4
1

yy
yy

yy
yy

xx
xx

xx
xx

J
2221

1211

JJ
JJ

 (3.24e) 

Substituting the coordinates of (x,y) at the four nodal points, we have the Jacobian 
evaluated at (  = 0,  = 0), 

J
)1()1(
)1()1(

)1(2)1(2
)1(2)1(2

4
1

2
10
01

 (3.25e) 

or

detJ = |J |  = 1/2 (3.26e)

The inverse of matrix J at (  = 0,  = 0) becomes 

20
01

det
1

1121

12221

JJ
JJ

J
J  (3.27e) 

dddddxdy 5.0det J                     (3.28e)

To calculate the temperature derivatives at ( = 0, = 0), we use the following 
formulae: 

Figure 3.7e. Transformation of a rectangular element (a) into a canonical element (b) 

(0,0) (2,0)

(0,1)

1 2

34 (2,1)

y

x
1 2

(1,1)( 1,1)

(1, 1)( 1, 1)

4 3

(a) (b)



98 Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer 

y
T
x
T

= J–1
T

T

=
1121

1222

det
1

JJ
JJ

J T

T

                         (3.29e) 

4

1
4

1

( )

36
7( )

i
i

i

i
i

i

T T

T
T

 (3.30e) 

With these quantities, we have the needed temperature derivatives with respect 
to the x and y coordinates, 

y
T
x
T

=
20
01

7
36

=
14
36

(3.31e)

These expressions will be used in the derivation of the element stiffness matrix for 
the element. 

3.6.2 Boundary Calculations  

The boundary for a 2-D domain is basically a curve. For a curved element 
boundary, the same isoparametric principles presented above for domain 
calculations are applicable. In this case, the curve is mapped onto a canonical 1-D 
element by the following transformation: 

1
( ) ( )

en

i i
i

x x ;
1

( ) ( )
en

i i
i

y y  (3.146) 

where ne is the number of nodes per boundary element. This is illustrated in Figure 
3.19.  

Thus, a differential arc-length ds in the (x,y) plane can be written in terms of 
the normalized coordinate ,

2/122

|)(|)(
d
dy

d
dxdds J  (3.147) 

with the Jacobian of the transformation calculated by
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Figure 3.19. Mapping of a 2-D curve into a 1-D unit element: (a) 2-D boundary element and 
(b) 1-D canonical element

|)(|
2/122

d
dy

d
dxJ

1/ 22 2

1 1

( ) ( )e en n
i i

i i
i i

d dx y
d d

(3.148)

The isoparametric treatment of a 3-D surface element is not as simple as that of 
the 2-D curve boundary. The calculations can be complex if the local normal and 
tangential components of the velocity field need to be specified along a curvilinear 
surface. This requires a tedious geometric treatment that involves differential 
geometry operations, and the rotation of the matrix in local coordinates at the 
surface, for the purpose of appropriately imposing velocity and surface stress 
boundary conditions [16, 17]. One approach is presented here, which makes use of 
local surface coordinates and of sharp edges with a specified local coordinate 
system, as well as consistent surface normals. With reference to Figure 3.20, a 
local coordinate system ( , , n) is defined at a point on the surface. Note that 
during calculations, this local system may be (although it is not required to be) 
chosen conveniently so as to be coincident with the normalized coordinate system 
for the isoparametric calculations at the element level. The xyz and n coordinate 
systems are related by the following coordinate transformation, 

z

y

x

zyx
zyx
zyx

z

y

x

n
nnn ,,,

,,,
,,,

J  (3.149) 

where the subscript , refers to the derivative, e.g., x,n = x/ n.

x

y

(a)

(b)

2

1

1 2



100 Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer 

In constructing the Jacobian matrix, we used the following differential 
geometry relations: 

1
ˆˆ ˆ, , ,x i y j z kr ; 2

ˆˆ ˆ, , ,x i y j z kr  (3.150) 

1 2
ˆˆ ˆ, , ,n n n nx i y j z kr r r

ˆˆ ˆ    , , . , ( , , , , ) , , , ,y z z y i x z z x j x y y x k  (3.151) 

The Jacobian matrix may be inverted analytically with the following result:  

,,,,),,,,(,,,,
,,,,,,,,),,,,(
,,,,),,,,(,,,,

11

xyyxxyyxxyyx
xzzxxzzxxzzx
yzzyyzzyyzzy

nnnn

nnnn

nnnn

J
J

(3.152)

Furthermore, a shape (or any) function f( , ) defined over the surface is a 
function of ( , ) only, and hence f( , )/ n. With these relations, one may then 
relate the volume differential operator to the surface operator, 

nz

y

x
1][J  (3.153) 

Figure 3.20. Transformation between local curvilinear and global Cartesian coordinate 
systems 
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which may be written in the terminology of differential geometry [18], 

FE
H

FG
H

k
y

j
y

i
x 2212

11ˆˆˆ rr

(3.154)

with 2222
1 ,,, zyxE r , ,,,,,,21 zzyyxxF rr , H2 = EG – F2,

2222
2 ,,, zyxG r . It is stressed that in Equation 3.154, ( , ) is not 

necessarily orthogonal so long as they are not collinear. This is important in that 
irregular quadrilateral surface elements can be readily handled in 3-D finite 
element calculations presented here. 

For flow calculations, the consistent normal of the surface at node i is required, 
which must satisfy the continuity equation [19], 

1 1 1; ;i i ii i i
x y z

i i i
n dV n dV n dV

n x n y n z
 (3.155) 

where  

1/ 22 2 2
i i i

in dV dV dV
x y z

 (3.156) 

Note that the integration is carried over all the elements sharing node i. Once the 
normal is known, the two tangential directions t1 = ( 111 ,, zyx ttt ) and t2 = ( 222 ,, zyx ttt )
can be easily calculated using the cross product relations, t1 = b × n, in which b is 
an arbitrary space vector such that b × n  0, and t2 = n ×b.  This ensures that the 
local coordinate system defined by t1 × t2 × n forms an orthogonal triplet at any 
node (e.g., node i). This is a strict condition, different from that imposed on ( , ,
n). The velocities (or any other vector quantities) defined in the t1 × t2 × n system 
are now related to those in the xyz system through the following transformation: 

n

t

t

U
U
U

1

2

=

1 1 1

2 2 2
x y z x

x y z y

x y z z

t t t U
t t t U
n n n U

 (3.157) 

Note that the above transformation also applies to force vectors. 
 The above procedure can be particularly useful for surface tension driven flows 
in which the surface stress tensor is a function of the local surface gradient of 
temperature or concentration or both. One such calculation is presented for a 3-D 
surface driven flow [17]. There, to calculate the surface tension contributions, the 
integration of the  term is calculated using the relation given by Equation 3.154. 
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The velocities defined in the (x,y,z) coordinates will be converted to those in the 
t1 t2 n system using Equation 3.157. For 3-D flow calculations, sharp edges are 
formed by the intersection of two surfaces where the t1 t2 n system is not 
uniquely defined by the above computational procedure. This causes difficulty 
when appropriate velocity and stress boundary conditions are specified along the 
edge. To overcome the problem, the normal of the edge needs to be associated with 
one of the two joining surfaces, and an additional constraint needs to be imposed 
on the selection of a tangential direction. The detailed treatment and examples of 
the above surface calculations can be found in [17].  

Exercises

1. Starting with the general interpolation function uh(x) = a + bx + cx2,
determine the coefficients a, b, c, and construct the shape functions on an 
element. Show that these shape functions are the same as given by 
Equation 3.8 when defined on  [–1, 1]. 

2. Obtain the coefficients e
i

e
i

e
i

e
i dcba ,,, by expanding the tetrahedral equations 

and prove that these coefficients are determents of a relevant cofactor 
matrix.

3. Derive the shape functions for a linear tetrahedral element using the 
recursive relation in terms of volume coordinates. 

4. Obtain shape functions for an 8–node element using tensor product. 
5. Obtain shape functions for a 20–node element using the analogous 

approach to that given for the 8–node element in Example 3.3. 
6. Using a 2 2 integration rule, evaluate the integral numerically by Gaussian   

integration,

1 3
2 3

0 1
( )x y xy dxdy

Integrate the above expression analytically and compare it with the 
numerical integration. 

7. Develop a computer program to perform the element calculations for 
triangular and quadrilateral elements. 

8. Consider a quadrilateral element with four corners defined at (1,1), (4,1), 
(6, 6) and (1,5), which correspond to nodes 1, 2, 3, and 4. Using the 2 ×2
integration rule and Gaussian integration, apply the computer code to 
calculate the inverse of the Jacobian matrix at every integration point. 

9. Prove the relation given in Equation 3.154. Note that the surface vector 
differential operator is related to the volume operator: s = n  n ,
where s is the surface vector differential operator.  

10. Construct a 2-D spectral shape function using tensor product. 
11. Derive shape functions for a 5–node pyramid element by collapsing the 

nodes 5, 6, 7, 8 into one node as shown in the figure below. 
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4

Conduction Heat Transfer and Potential Flows 

In this chapter, the discontinuous finite element formulation for heat conduction 
and potential flow problems is discussed. Heat conduction is perhaps the simplest 
heat transfer mode, but plays an important role in thermal science and engineering 
analyses. For introductory purposes, a simple, steady state 1-D heat conduction 
problem in a solid slab is considered first. Through this example, we will illustrate 
the similarities and dissimilarities between the discontinuous and continuous 
methods for the solution of this class of problems. This is followed by a discussion 
on steady state heat conduction problems in multidimensional geometries. The 
same discussion style is then followed to present the discontinuous finite element 
solution of the transient heat conduction problems. The potential flow problems 
and flows in porous media have a similar mathematical structure, and thus can be 
analyzed similarly.  

One of the important issues in a discontinuous finite element formulation is the 
appropriate selection of numerical fluxes across the discontinuous inter-element 
boundaries. The theory underlying the selection of numerical fluxes is discussed. 
By the general classification of partial differential equations, the steady state 
conduction equations are elliptic, and the transient heat conduction equations are 
parabolic. The former have no real characteristics, while the latter have one family 
of characteristic curves. A simple difference between these two types of equations 
is that for a steady state heat conduction problem, a solution is required over an 
entire domain, whereas for the transient heat conduction problems, it is possible to 
obtain a solution in a small time interval. This difference also determines the 
numerical schemes to be applied, and the stability results for the selection of 
numerical fluxes. Various consistent and stable numerical fluxes are given for the 
discontinuous formulation of both steady and transient heat conduction problems. 

For time dependent problems, an appropriate time step is important for 
numerical solutions. This remains true with the discontinuous finite element 
method; in fact it is even more so because most discontinuous formulations use the 
explicit time scheme for marching in time. Higher order accuracy schemes, such as 
Runge Kutta time integrators, are also discussed. The matrix method and the 
Nuemann method are presented for analyzing the numerical stability of a time 
integration scheme and for selection of a critical time step for transient problems. 
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4.1 1-D Steady State Heat Conduction 

From the standpoint of heat transfer, this is perhaps the simplest type of problem; 
and it offers an entry point into thermal analysis. Many numerical methods such as 
the finite element and finite difference/finite volume methods treat this type of 
problem as an introductory example. Here it is also used as the first heat transfer 
problem for the discontinuous Galerkin finite element solution. The 1-D steady 
state heat conduction problem is given by the following equations:  

0
2

2

dx
Td , 0)0(xT  and 1)1(xT on ]1,0[x                  (4.1) 

for which the analytical solution is of a simple form: T(x) = x. Here T is the 
temperature. 

In finite element literature, Equation 4.1 is referred to as the irreducible form 
[1]. The equation can also be written in a mixed form, which splits the second 
order equation into two first order differential equations,  

0
dx
dq

; 0
dx
dTq ]1,0[x  (4.2) 

The boundary condition remains the same. For this system of equations, the first 
equation in Equation 4.2 has q as its variable and the temperature is not involved. 
Consequently, there is a lack of direct coupling of the temperature T with the heat 
flux q. This lack of T q coupling has an implication in numerical stability, which 
will be discussed later. 

We now apply the discontinuous solution procedure to solve for the 
temperature distribution. To do that, the domain is first discretized into N elements 
with (N + 1) nodes. For an element defined on j = [xj, xj+1], we follow the 
procedures given in Chapter 2 to integrate the two equations with respect to testing 
functions w and v, and subsequently perform integration by parts, with the 
following result: 

1

1 1ˆ ˆ 0
j

j

x

h j j j j
x

dwq dx q w q w
dx

 (4.3a) 

1 1

1 1
ˆ ˆ 0

j j

j j

x x

h h j j j j
x x

dvq vdx T dx T v T v
dx

 (4.3b) 

where the temperature T and the heat flux q at the element boundaries are replaced 
by the generic numerical fluxes, T̂ and q̂ . Other quantities used in the formulation 
are given in Figure 4.1. 

Selecting the appropriate flux expressions is by no means trivial. A good choice 
of the numerical fluxes should satisfy the conditions for the existence and 
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uniqueness of the solution, and should make the numerical scheme stable. 
Fortunately, for this type of problem, a variety of numerical fluxes that meet these 
conditions have been proposed, and their numerical properties have been studied 
comparatively in two recent papers [2, 3]. We will return to this subject in the next 
section when we discuss the multidimensional problems.  

Figure 4.1. Illustration of boundary interfacial quantities for element j

At this moment, let us say we have found and constructed suitable numerical 
fluxes, which take the following forms: 

12

,     
ˆ 0.5( ) C ( ), 2,

,      

j

j j j j j

j

T j
T T T T T j N

T j N
(4.4a) 

11

11 12

11

( ), 1
ˆ 0.5( ) ( ) ( ), 2, ,

( ), 1

j j j

j j j j j j j

j j j

q C T T j
q q q C T T C q q j N

q C T T j N
 (4.4b) 

where C11 and C12 are two constants, the selection of which is discussed later, and 
where we have incorporated the boundary conditions at nodes  j = 1 and j = N + 1
into the numerical flux expressions. 

With these numerical fluxes, the element matrix can be formed from the 
integral equations. For simplicity, we select the linear elements for the calculations.  
Then for the jth element, j = [xj, xj+1], the shape functions are given by  

)1()( 2
1

1 ; )1()( 2
1

2  (4.5) 

The temperature T and flux q are interpolated over an isoparametric linear 
element, 

121 )()()( jjh TTT ; 121 )()()( jjh qqq

121 )()()( jj xxx ; jjj xxh 1)(

+ +

j j+1
x
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)(

1 1

jhx
;

)(

2 1

jhx
        (4.6)

By the Galerkin method, the weighting functions are taken the same as the 
shape functions,

Tv )}(),({ 21 ; Tw )}(),({ 21  (4.7) 

Substituting Equations 4.4–4.7 into the integral formulation (Equation 4.3) 
yields the following expressions for element j:

1 12 111
1 2

1 12 1 11 12

( 0.5)
,

( 0.5)

j

j

x
j j j

x j j j

q C q C Td dx dx
q C q C Td dx

111

11

112

12

)5.0(
)5.0(

j

j

j

j

TC
TC

qC
qC

 (4.8a)

1 1
1 1

1 2 1 2
1 12 2

, ,
j j

j j

x x
j j

x xj j

q Td dxdx dx
q Td dx

112

12

112

12

)5.0(
)5.0(

)5.0(
)5.0(

j

j

j

j

TC
TC

TC
TC

(4.8b)

These matrix elements are readily calculated using the computational 
procedures detailed in Chapter 3. After some algebrea, the following results are 
obtained: 

1 ( )1
1 2

2

2 1
,

6 1 2

j

j

x
j

x

h
dx                                    (4.9a) 

1
1

1 2
2

1 11,
2 1 1

j

j

x

x

d dx dx
d dx

                        (4.9b) 

With Equations 4.8 and 4.9 substituted into Equations 4.8a and 4.8b and 
combining relevant terms, one has the matrix equations for the discretized 
temperatures and heat fluxes, 

12 11 12 11

12 111 1 12 1 11 1

1/ 2 0 (1/ 2 )
1/ 2 0 (1/ 2 )

j j j j

j j j j

C Cq T C q C T
C Cq T C q C T

(4.10a)
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     ( ) 12 12

121 1 12 1

2 1 1/ 2 (1/ 2 )
6 1 2 1/ 2 (1/ 2 )

j j j j

j j j

h Cq T C T
Cq T C T

 (4.10b)   

Incorporating the boundary conditions and combining the above two equations, 
one has the following numerical implementation: 

  (1) Element j = 1   

( ) ( ) 1 1

( ) ( ) 12 2 12 2

11 1 11 1

12 11 2 12 2 11 2

/ 3 / 6 1/ 2 1/ 2
/ 6 / 3 1/ 2 (1/ 2 )

1/ 2 1/ 2 0
1/ 2 0 (1/ 2 )

j j

j j

h h q T
h h C q C T

C T C T
C C T C q C T

 (4.11a) 

 (2) Element j = 2, , N  1 

           

( ) ( ) 12 12

( ) ( ) 12 1 12 1

12 11 12 11

12 11 1 12 1 11 1

/ 3 / 6 1/ 2 (1/ 2 )
/ 6 / 3 1/ 2 (1/ 2 )

1/ 2 0 (1/ 2 )
1/ 2 0 (1/ 2 )

j j j j

j j j j

j j j

j j j

h h C q C T
h h C q C T

C C T C q C T
C C T C q C T

 (4.11a) 

 (3) Element j = N

( ) ( ) 12 12

( ) ( ) 1 1

12 11 12 11

11 1 11 1

/ 3 / 6 1/ 2 (1/ 2 )
/ 6 / 3 1/ 2 1/ 2

1/ 2 0 (1/ 2 )
1/ 2 1/ 2 0

j j N N

j j N N

N N N

N N

h h C q C T
h h q T
C C T C q C T

C T C T
(4.11c)

Here the boundary conditions are applied such that )0(1 xTT  and 

).1(1 xTTN  The above equations may be written in matrix form, 

FKU , T
jjjjj TTqq },,,{ 11)(U , j = 1, 2, , N (4.12) 

which can be easily inverted to obtain solution U,

FKU 1  (4.13) 
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The numerical solution to the above equations can be solved iteratively, using 
the successive substitution method. A typical computational procedure is as 
follows. To start, all the variables are initialized to zero. Equation 4.11a is solved 
to obtain the data for the first element, where boundary conditions are specified. 
Some of these are then used as input data into Equation 4.11b until the last element 
is reached, and then Equation 4.11c is completed for solution. Then one can move 
backward to start from Equation 4.11a with updated data, and so on, until the 
convergence is achieved. Like the continuous finite element method, the L2-norm 
error for all unknowns is used to determine the convergence for a discontinuous 
finite element solution, 

1/ 2

2 2 2 2
, 1 , , 1 ,, 1 , , 1 ,

1

2 2 2 2
, 1 , 1, 1 ,

1

( ) ( ) ( ) ( )
N

j k j k j k j kj k j k j k j k
j

N

j k j kj k j k
j

T T T T q q q q

T T q q

(4.14) 

where   is the preset tolerance and the subecript k refers to the kth iteration.  
For this problem, one may also form a large global matrix and then invert the 

matrix to obtain the solution once, as is done using the continuous finite element 
method. This would involve solving the matrix approximately of dimension 4N
4N. This approach would generally defeat the advantage of locality associated with 
the discontinuous Galerkin finite element method, since the matrix is considerably 
larger than when the standard finite element method is applied with the irreducible 
form.  

Another way of solving the above equations could be to eliminate the variable 
q and solve for the temperature T only. This would almost certainly speed up the 
calculations, but also increase the bandwidth of the element matrix. We will show 
this through an example in Section 4.6, where the stability analysis is carried out. 
Further comparison shows that the saving in CPU time for solving T alone is less 
significant than the q–T iterative solution, in particular, for 3-D problems. Let us 
look at two specific examples. 

Example 4.1. Discretize the domain [0, 1] into three linear elements and use the 
successive substitution method to solve element-by-element for the steady state 
temperature distribution stated by Equation 4.2. Compare the results obtained, 
using different combinations of two stabilization constants C12 and C11.

Solution. Let us illustrate the solution procedure by setting C11 = 4, C12 = 1/2 and h
= 1/3. Also 01T  and 14T . The coefficient matrix K for the three elements can 
be analytically calculated and inverted.   

 (1) Element j = 1 
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402/12/1
042/12/1

2/12/19/118/1
2/12/118/19/1

1K ;

22

1
1

2

1

2

1

4
0
0
0

)(

TqT
T
q
q

K  (4.1e) 

 (2) Element j = 2 

402/12/1
042/12/1

2/12/19/118/1
2/12/118/19/1

2K ;

33

2

2

1
2

3

2

3

2

4
4

0
)(

Tq
T

T

T
T
q
q

K  (4.2e) 

 (3) Element j = 3 

402/12/1
042/12/1
2/12/19/118/1
2/12/118/19/1

3K ;

4
4

1
)(

3

3

1
3

4

3

4

3

T

T

T
T
q
q

K  (4.3e) 

 The calculation starts with all the variables initialized to zero except the 
boundary values. The successive substitution method is used to carry out the 
iteration process. No under- or over-relaxation parameters are used. The iteration 
sweep is from elements j = 1 through j = 3. The results are shown in Table 4.1e, 
where the nodal values of q and T are averaged values. As is seen from the table, 
after the first iteration, the effect of node 4 is felt at node 3 and the other two nodes 
are practically zero, because of the boundary condition at node 1. The results 
converge to the analytical solution (T(x) = x, and q = 1) in about 30 iteration 
sweeps.  

Table 4.1e. Convergence of the 1-D solution (C11 = 4) 

Node 1 Node 2 Node 3 Node 4 Number of 
Iterations T q T q T q T q 

1 0.0000 0.0000 0.0000 0.0000 0.1378 1.4841 0.9523 2.2049 
10 0.0002 1.0198 0.3393 1.0052 0.6729 0.9931 1.0039 0.9783 
20 0.0000 0.9998 0.3333 0.9999 0.6666 1.0001 1.0000 1.0002 
30 0.0000 1.0000 0.3333 1.0000 0.6667 1.0000 1.0000 1.0000 

  The procedure above is applied to the same problem, but with different 
combinations of C12 and C11, to test the sensitivity of these parameters. The results 
are given in Table 4.2e, where all the results are terminated at the 20th iteration for 
the purpose of comparison. All these results eventually converge to the exact 
solution. From the table, we see that a combination of C11 = 4 and C12 = 0 gives  
better accuracy than other combinations. This is not totally unexpected, because for 



112 Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer 

this problem, there is a lack of conviction as to which direction to upwind; and 
thus, an averaged value (C12 = 0) seems to be a reasonable choice [4]. Stability 
theory states that other C12 values are also possible [2]. 

Table 4.2e. Effect of stabilization constants on convergence (terminated at the 20th 
iteration)

Node 1 Node 2 Node 3 Node 4 
T q T q T q T q 

C12 = 1/2 0.0000 0.9996 0.3332 0.9997 0.6666 1.0001 1.0000 1.0003 
C12 = 0 0.0000 0.9998 0.3333 0.9999 0.6666 1.0001 1.0000 1.0002 C11 = 4

C12 =1/2 0.0000 0.9996 0.3332 0.9999 0.6665 1.0004 1.0000 1.0007 
C11 =1 0.0007 1.0121 0.3363 0.9995 0.6694 0.9961 1.0011 0.9819 
C11 = 4 0.0000 0.9998 0.3333 0.9999 0.6666 1.0001 1.0000 1.0002 C12 =0
C11 =10 -0.0003 0.9807 0.3270 0.9908 0.6604 1.0092 0.9997 1.0193 

Example 4.2. Study the effects of mesh on the accuracy of the solution for the 
temperature distribution for 1-D steady state heat conduction, with a prescribed 
heating source Q = 1, 

02

2

Q
dx

Td  , 0)1()0( xTxT  on ]1,0[x   (4.4e) 

Solution. The discretized equations are the same as those given in Equation 4.1e, 
except that the body source is added to the force term. The results obtained using 
different meshes, with the parameters C12 = 0, and C11 = 4, are given in Figure 
4.1e. As expected, the denser mesh yields a closer match between the numerical 
and analytical solutions. 

x

T

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

N = 2
N = 4
N = 10
Exact solutions

Figure 4.1e. Effect of the mesh size on the accuracy of numerical solution 
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4.2 Steady State Heat Conduction in Multidimensions  

The above example has demonstrated the basic procedure for the discontinuous 
finite element solution of 1-D steady state heat conduction problems. We may now 
continue with the ideas and solve the heat conduction problems in 
multidimensions. Again, convection and other modes are not considered. We have 
seen that the numerical fluxes are important. In fact, since the discontinuous 
formulation of the heat conduction problem is very similar to the mixed finite 
element formulation of second order differential equations, certain conditions must 
be satisfied in order to guarantee the stability of the numerical method. We will 
discuss this issue more specifically in Section 4.6. 
 In what follows, we present the formulation and the computational procedure 
for the discontinuous finite element solution of the heat conduction problems over 
a multidimensional domain. For these purposes, we consider the heat conduction 
problem schematically shown in Figure 4.2, 

Figure 4.2. Definition of 2-D steady state heat conduction problem 

0QT  (4.15a) 

DTT D  (4.15b) 

)( TThT Nqnn N  (4.15c) 

where subscripts D and N refer to the Dirichlet and Neumann boundary conditions, 
respectively, T is the temperature,  the thermal conductivity, Q the heat source, h
the heat transfer coefficient and T  the temperature of the environment. 
 To develop a discontinuous Galerkin finite element formulation, we first re-
write the problem as a system of first order differential equations, as has been done 
for the 1-D problem illustrated in the last section. In doing so, we have the 
following set of differential equations: 

Prescribed 
heat flux 

Prescribed 
temperature

D

N
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2

NB,1

     j

n1

1
3

n2

n3

(2) (2)

(1)

(3)

(1)

(3)

(3)

(2)

(1)

NB,3

NB,2

Tq ; Qq  (4.16) 

 The domain is now discretized with finite elements. Let us consider the 
formulation over an element, say, the jth element, as shown in Figure 4.3, which 
schematically shows the geometric arrangement of element j and its neighbors in a 
typical 2-D mesh. The local numbers of the elements are also marked to show the 
relation between element j and its neighbors. Furthermore, the elements are 
separated in order to show the inter-element boundary quantities. In the real mesh, 
however, the elements are not geometrically separated. Multiplying the first and 
second equations in Equation 4.16 by test functions w and v and integrating over 
the element, one has  

j j

dV T dVq w w  (4.17a) 

j j

v dV vQdVq  (4.17b) 

Integration-by-parts once yields the following weak formulation for the 
discontinuous finite element solution: 

( )
j j j

jdV T dV T dSq w w n w   (4.18a) 

Figure 4.3. Geometric relation between element j and its neighbors. The elements are 
separated to better illustrate inter-element quantities  
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j j j
jv dV vQ dV v dSq q n  (4.18b) 

where nj is the outward normal unit vector to j, the boundary of the element.  
 We now seek to approximate the exact solution (q,T) with functions (qh,Th) in 
the finite element broken space, whence we have the following results: 

ˆ( )
j j j

h h h jdV T dV T dSq w w n w  (4.19a) 

ˆ
j j j

h h jv dV vQdV vdSq q n  (4.19b) 

where the numerical fluxes ( ,ˆ hq hT̂ ) are the approximations to (q, T) on the 
boundary of element j. To complete the discontinuous finite element solution, these 
numerical fluxes must be specified in terms of qh and Th, and in terms of the 
boundary conditions. These numerical fluxes must be suitably selected to render 
the discontinuous formulation stable. 
 Many numerical fluxes have been reported in the literature [2, 3, 5]. Recently, 
Arnold et al. [3] have presented a critical review of these fluxes and analyzed their 
suitability for the numerical solution of steady state heat conduction problems. 
Castillo et al. [2] also performed error analysis of these numerical fluxes for 
elliptical problems. Table 4.1 lists the numerical fluxes that are considered 
consistent and stable for the solution of the steady state heat conduction problems.    

Table 4.1.   Numerical fluxes for steady state heat diffusion calculations 

Method hq̂ hT̂
LDG [6] ][][}{ 1211 hhh TC qCq ][}{ 12 hh TT C

DG [2] ][][}{ 1211 hhh TC qCq ][][}{ 2212 hhh CTT qC

Brezzi et al. [7] )][(}{ h
r

h Tq }{ hT

IP [8] ]}{ 11 hh TCT }{ hT

Bassi-Rebay [9] )][(}{ h
r

h TT }{ hT

NIPG [10] ][}{ 11 hh TCT ][}{ hjh TT n
Note: C11, C22, C12  and C21 are constant matrices, and nj is the outward normal of the boundary of 
element j.

 In Table 4.1, the operators that calculate the averages and jumps between the 
local element and its neighbors are defined for the local element. Referring to 
Figure 4.4, the unit vectors n+ and n¯ are the boundary outnormal vectors to 
elements j+ and its neighbor j¯, respectively. The average and jump operators in the 
table are defined as follows: 
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)(5.0}{ qqq ; nqnqq][ (4.20a)

)(5.0}{ TTT ; nn TTT ][  (4.20b) 

where we have used the underscored curly and square brackets to denote these 
special averages. It is noted that this use of underlined brackets will be implied 
throughout this book, unless indicated otherwise. 
 By these definitions, the jump ][q  is a scalar function of q, which involves the 
normal components only; and the jump ][T  is a vector function of T. The 
advantage of these definitions is that they do not depend on assigning an ordering 
to the elements.  

Figure 4.4  Element j (j+) and its neighbor j–

 With the numerical fluxes taken from [2], and substituted into Equation 4.19, 
one has the final integral representation: 

( )
j j

h hdV T dVq w w

               12 22({ } [ ] [ ]) 0
j

h h h jT T C dSC q n w   (4.21a)  

11 12({ } [ ] [ ])
j j j

h h h h jv dV C T vdS vQdVq q C q n (4.21b)

The functions T and q are assumed to vary over the element, according to the 
space shape functions such that  

1
( ) ( )

eN
T

h j j
j

T Tr r T  ; , ,
1

( ) ( )
eN

T
h i j i j i

j
q qr r q , i = x, y, z

(4.22)

n
n

K

j–

j+

nj
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where  = ( , , , …, Ne)
T and Ne is the number of nodes per element.  

Substituting the above local approximation into Equation 4.21, we have the 
following expressions: 

22[ ( )]
j j j

T T TdV dV C dSq T nn q

12(1/ 2 )
j

TC dSn T 12 ( )(1/ 2 )
j

T
NBC dSn T

22 ( )
0

j

T
NB

C dSn n q  (4.23a) 

12( ) (1/ 2 )
j j

T TdV C dSq n q

12 11( )
(1/ 2 )

j j

T T
NB

C dS C dSn q T

11 ( )
j j

T
NBC dS QdVT  (4.23b) 

where n = nj and n = (nx, ny, nz) to simplify notation;  is the dyadic operator, 
(u v) w = (w v)u or u v = uv; subscript (NB) refers to the quantities belonging to 
the neighboring elements; and q = (qx, qy, qz). Also, in deriving the above equation, 
the following relations have been used (see Figures 4.3 and 4.4 for relevant 
geometric relations):  

q+ = q+·n+, n+ = –n–; q– = q– · n+ = – q–·n–

C12·n+ = C12 = –C12·n–, n+ = nj,

By the Galerkin procedure, the trial functions (v and w) are approximated in the 
same way as the unknown variables (T and q). With these functions substituted 
into Equations 4.23a and 4.23b, the following matrix equation is obtained for the 
element j:

, , , ,

, , , ,

, , , ,1
, , , ,

x xx xx i xy i xz i x i
NS

y yx i yy i yz i y iy y

z zx i zy i zz i z iiz z
x y z x i y i z i T i

q qE 0 0 H E E E H
q q0 E 0 H E E E H

0 0 E H E E E Hq q
J J J 0 J J J GT T
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, , , , , , , ,

, , , , , , , ,

, , , , , , , ,1
, , , , , , , ,

( , )

xxx B i xy B i xy B i x B i
NS

yx B i yy B i yz B i y B i y

zx B i zy B i zz B i z B ii z
x B i y B i z B i T B i T

NB i

qE E E H 0
qE E E H 0

E E E H 0q
J J J G ST

  (4.24) 

where NS is the number of sides of the element and the matrices are calculated as 
follows:

,
( )

j

k
l km m

dH dV
dl

, l = x, y, z

,
j

k
l km m

dJ dV
dl

, l = x, y, z

j
km k mE dV ;

,
, , , , , 11

j i
T i km T B i km k mG G C dS

   
,

, , , , , 22
j i

lr i km lr B i km k m l rE E C n n dS ,    l, r = x, y, z

,

1
12, , 2( )

j i
k m ll i kmH C n dS , l = x, y, z

,

1
, , , 122( )

j i
l B i km k m lH C n dS , l = x, y, z

,

1
, , 122( )

j i
l i km k m lJ C n dS , l = x, y, z

,

1
, , , 122( )

j i
l B i km k m lJ C n dS , l = x, y, z

,
j

T k kS QdV

with j,i denoting the interface between the element j and its neighbor element i:
j = NS

i ij1 , .
 The above matrices can be further combined to yield the following resultant 
matrix:
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FKU  (4.25) 

where K is the stiffness matrix, U = [qx
T, qy

T, qz
T, TT]T = [qx,1, qx,2, …, qx,Ne, qy,1,

qy,2, …, qy,Ne, qx,1, qx,2, …, qx,Ne, T1, T2, …, TNe]T., and F is the source vector. 
 The computational procedure is similar to the 1-D case. Once again, three 
different approaches can be implemented to solve the problem. It is recommended 
that the element-by-element sweeping method, with successive substitution, be 
used for a large-scale problem, for which the discontinuous finite element method 
has the distinct advantage. If the element-by-element iterative solution scheme is 
employed, then information on the neighboring elements that is available during 
computation can be treated as the source term, and moved to the right hand side. 
Let us now consider an example below. 

Example 4.3. Consider a two-dimensional steady heat conduction problem defined 
over a square, 

02

2

2

2
Q

y
T

x
T  on ]1,1[]1,1[yx  (4.5e) 

where the heating source Q is given by )](exp[),( 22 yxyxQ , and the 
boundary condition is T = 0 at all the edges of the square.  

Solution. We consider the use of linear elements for the calculations. The domain 
is discretized using the linear triangular elements, which are shown in Figure 4.2e. 
For an element, the discontinuous finite element formulation can be developed as 
described above. For this problem, we set C22 = 0. 

The definition of the numerical fluxes on the boundary is given as follows: 

qq , DgT , 2/112 nC  and 2/112 nC  on D  (4.6e) 

Ngq , TT , 2/112 nC  and 2/112 nC  on  N    (4.7e) 

For a linear triangular element, the matrices given in Equation 4.24 can be 
calculated analytically. Consider a canonical element shown in Figure 4.3e. The 
shape function for this element takes a simple form,  

y
x

xyyxyx
xyyxyx
xyyxyx

S
yx
yx
yx

yx
1

2
1

),(
),(
),(

),(

12211221

31133113

23232332

3

2

1

 (4.7e) 

where S is the area of the element. For element j, S is calculated by the following 
expression: 
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Figure 4.2e. Unstructured mesh used for computation of the 2-D steady heat conduction 
problem

)])(())([(
2
1

2
1

31323231
3231

3231 yyxxyyxx
yy
xx

S    (4.8e) 

and the single-indexed subcscripts refer to the node number local to the element. 
Also, xij = xi – xj and yij = yi – yj.

Taking the derivative of the shape functions, we have 

y
x
x
x

S
x

y
y
y

S
yx
yx
yx

yx ˆ
2
1ˆ

2
1

),(
),(
),(

),(

12

31

23

21

13

32

3

2

1

 (4.9e) 

Figure 4.3e. Geometric relation in a single element used for elemental calculations 
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With Equations 4.7e and 4.8e, the element stiffness matrices are calculated 
analytically with the results,  

2 1 1
1 2 1

12
1 1 2j

T SdVE (4.10e) 

23 23 23

31 31 31

12 12 12

1
6j

T
x x

y y y
dV y y y

x
y y y

H J  (4.11e) 

32 32 32

13 13 13

21 21 21

1
6j

T
y y

x x x
dV x x x

y
x x x

H J  (4.12e) 

, , , 0lr i lr B iE E  (4.13e) 

,

1 1
, , , 12 122 2( ) ( )

j i

T
l i l B i l l iC n dS C nH J C  (4.14e)

,

1 1
, , , 12 122 2( ) ( )

j i

T
l B i l i l l iC n dS C nH J C  (4.15e) 

, , , 11T i T B i iCG G C  (4.16e) 

where l,r =x, y; i = 1, 2, 3, and 

210
120
000

6
1

1
LC ;

201
000
102

6
2

2
LC ;

000
021
012

6
3

3
LC

Note that numerical integration may also be applied to obtain the same results. 
With Equations (4.10e 16e) substituted into Equation 4.24, we have the 

following matrix equation for element j:

3 ,

,
1 , , ,

0 0 0
0 0 0

0

x x ix x

y y iy y
ix y x i y i T i

q qE H H
E H q H q

J J J J GT T



122 Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer 

3 , ,

, ,
1 , , , , , ,

( , )

0 0
0 0 0

x B i x

y B i y
i x B i y B i T B i

NB i

qH
H q

J J G T

(4.17e)

The above matrices can be combined with the following resultant matrix: 

FKU  (4.18e) 

where U is the unknown vector, and K and F are defined as follows: 

,3

,
1

, , ,

0 0 0
0 0 0

0

x x i

y y i
i

x y x i y i T i

E H H
K E H H

J J J J G

3 , ,

, ,
1 , , , , , ,

( , )

0 0
0 0

x B i x

y B i y
i x B i y B i T B i

NB i

qH
F H q

J J G T

The calculations start with an element located at the boundary, and 
progressively sweep into the domain element-by-element. The successive 
substitution method may be used for the iterative solution.The calculations require 
3000 iterations to converge within a tolerance of  = 10 6. Considerably fewer 
iterations are needed if the tolerance is not set so stringent. Stabilization constants 
chosen are C12 = 0 and C11 = 50. The computed temperature contours and a 3-D 
view of temperature distribution are given in Figure 4.4e. It is seen that the highest 
temperature occurs at the center of the square where the heating source is at its 
maximum, which is consistent with the principle of heat conduction. It is noted that 
this problem has a four-fold symmetry and, as a result, only a quadrant is needed to 
speed up the computations.  

4.3 1-D Transient Heat Conduction

In the above two sections, we discussed the discontinuous finite element 
formulation for steady state heat conduction problems. Following the same 
development style, we now consider the solution of transient heat conduction 
problems using the discontinuous method. Again, to illustrate the basic ideas and 
solution procedures, we start with a simple transient 1-D heat conduction problem,  

2

2

x
T

t
T , ],[ bax  (4.26) 
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(a) 2-D contours 

(b) 3-D view 

Figure 4.4e. Discontinuous finite element solution for the 2-D steady heat conduction 
problem: (a) 2-D isothermal contour plot and (b) 3-D view of the temperature distribution 
where U = [qx

T, qy
T, TT]T = [qx,1, qx,2, …, qx,Ne, qy,1, qy,2, …, qy,Ne, T1, T2, …, TNe]T, and K 

and F are calculated as follows: 

with periodic boundary conditions, and the initial condition T(x,0) = sin(x). For 
simplicity, all properties assumed to be unity. 

To apply the local discontinuous Galerkin method, the heat conduction problem 
is first split into a system of two first order equations for variables q(x,t) and T(x,t),

0
x
q

t
T ; 0q

x
T  (4.27) 
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To obtain a discontinuous finite element formulation, the domain is discretized 
into N number of elements. Integration of the above equation over element j      
[xj, xj+1], with respect to weighting functions v and w, yields 

1

( ) 0
j

j

x

x

T q v x dx
t x

;
1

( ) 0
j

j

x

x

Tq w x dx
x

 (4.28) 

We follow the same procedure as discussed in the last section and integrate by 
parts once on the spatial derivatives to obtain 

      
1

1 1( ) ( ) ( ) ( ) 0
j

j

x

j j j j
x

T vv q dx q x v x q x v x
t x

 (4.29a) 

1

1 1( ) ( ) ( ) ( ) 0
j

j

x

j j j j
x

wqw T dx T x w x T x w x
x

 (4.29b)  

We now face the choice of selecting the quantities at the element boundaries, 
),( 1jxq ),( 1jxq )( 1jxT and ).( 1jxT Before generalizing the choice of numerical 

fluxes, we consider below two other simpler options for the choices. It is noted that 
for the transient problems, the time dependent term makes a coupling between the 
temperature field and the heat fluxes, and this linkage provides a natural 
stabilization factor for the discontinuous numerical scheme.  

4.3.1 Alternating Upwinding Scheme 

One choice is intuitive, as suggested in Chapter 2, which is to take the upwinding 
value. By this choice, the following values may be used for the interface quantities 
in reference to Figure 4.1,  

111 )()( jjj qxqxq ; 111 )()( jjj TxTxT  (4.30a) 

jjj qxqxq )()( ; jjj TxTxT )()(  (4.30b) 

These selections may be interpreted as meaning that the available values at the 
neighboring boundary are considered known, and are applied as the boundary 
conditions for element j, whenever they become available during the iteration. This 
approach was first proposed by Cockburn and Shu [6] and has an order of accuracy 
of k+1 for an interpolation of order k [4,11]. With these selections, the weak form 
equations can be written as 

1

1
j

j

x

j j
x

T vv q dx q q
t x

      (4.31a) 
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1

1
j

j

x

j j
x

wqw T dx T T
x

                             (4.31b) 

where )( jxv = )( jxv = )( 1jxw = )( 1jxw =1 has been used.  

4.3.2 Central Fluxes  

Bassi and Rebay were the first to apply the discontinuous finite element method for 
the solution of diffusion-type problems. In their original approach [12], they 
proposed the simplest central flux expression, and applied the scheme for 
compressible flow calculations, obtaining quite satisfactory results. Their central 
scheme basically uses the average of the two values across the boundary,  

)(5.0)()( 1111 jjjj qqxqxq                                  (4.32a)   

)(5.0)()( 1111 jjjj TTxTxT                                                (4.32b)  

Here, we could choose q and T so that they satisfy the LBB condition for the 
mixed finite element formulation. This means that different functional spaces may 
need to be used for q and T. However, Bassi and Rebay [12] argue that the fluxes 
can be chosen from the same function space. Cockburn and Shu [6] later studied 
this method and proved that the method converges at a rate of one order lower 
from optimal; that is, where the error estimate is of order k for piecewise 
polynomials of degree k [11]. 
 With Equation 4.32 substituted into Equation 4.29, the following weak form 
solution for q and T is obtained, 

1

1 10.5 0.5 0.5 0.5
j

j

x

j j jj
x

T vv q dx q q q q
t x

 (4.33a) 

1

1 10.5 0.5 0.5 0.5
j

j

x

j j jj
x

wqw T dx T T T T
x

              (4.33b)  

4.3.3 Unified Representation 

The above discontinuous finite element formulations can be expressed in a unified 
fashion as follows: 

1

1ˆ
j

j

x
h

h h j
x

Tv q dx q
x

ˆ 0jq  (4.34a) 
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1
ˆ

j

j

x
h h

h j
x

T qv dx T
t x 1

ˆ 0jT       (4.34b) 

where Th is substituted for T, qh for q, and vh for v and w, j = 1, 2, ···, N and the 
numerical fluxes are defined by 

)()(5.0ˆ 12 qqCqqq ; )()(5.0ˆ
12 TTCTTT  (4.35) 

with C12 = 0 for the central scheme, and C12 = 0.5 for the alternating upwinding 
scheme. 

4.3.4 Numerical Implementation 

We further introduce the element shape functions k(x) as follows: 

( )

1
( ) ( )

eN
k T

h k
k

T x x T T ; ( )

1
( ) ( )

eN
k T

h k
k

q x x q q  (4.36) 

where Ne is the number of nodes of an element. Also, subscript (k) on T and q
refers to the kth node local to the element. Substituting these equations into 
Equation 4.34, followed by numerical integration, one obtains the results below: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1

ˆ ( )
e eN N

km m km m
j k jj j j j

m m
S q L T T x 1 1

ˆ ( ) 0j k jT x   (4.37a) 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1

ˆ ( )
e eN N

km m km m
j k jj j j j

m m
S T L q q x 1 1ˆ ( ) 0j k jq x  (4.37b) 

for k = 1, 2, …, Ne  (k being the kth node local to element j), with matrices )(
)(

km
jS

and )(
)(

km
jL  calculated by 

1( )
( )

j

j

x
km

k mj
x

S dx  ;
1( )

( )
j

j

x
km k

mj
x

dL dx
dx

(4.38)

where subscript (j) = 1, 2, …, N (N being the number of elements) refers to the jth
element. Note that subscripts j and j+1 without a round bracket refer to the two 
corner nodes of the jth element numbered globally, j = [xj, xj+1]. For a piecewise 
constant approximation, (j) and j refer to the same, in which case the the node and 
the element are numbered the same way. 
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The above equation can be rewritten in the matrix form of  

   0

)(

)(
)(

ˆ

)(

)(
)(

ˆ

1

12

11

1
2

1

)()()()(

jNe

j

j

j

jNe

j

j

jjjjj

x

x
x

T

x

x
x

TTLqS  (4.39) 
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)(
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ˆ

1
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11

1
2

1

)()()()(

jNe

j

j

j

jNe

j

j

jjjjj

x

x
x

q

x

x
x

qqLTS  (4.40) 

The mass matrices can be inverted on an element level and we find 

( ) 1 1( )( )
ˆ ˆ 0j j j j jjj

T Tq K T                (4.41a) 

( ) 1 1( ) ( )
ˆ ˆ 0j j j j jj j
q qT K q                (4.41b) 

where the following defintions have been used: 

1

21
( )
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( )

( )

( )

j

j
j j

Ne j

x
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x

S  ;

1 1

2 11
1 ( )

1

( )
( )

( )

( )

j

j
j j

Ne j

x
x

x

S

)(
1

)()( )( jjj LSK  (4.42) 

For convenience, the matrices for the interpolations of up to quadratic order are 
given below: 

(1) Piecewise continuous, Ne = 1:  

0)(1)(1
211121 jj

j
jj

j
j TaTa

h
TaTa

h
q  (4.43a) 

0)(1)(1
413143 jj

j
jj

j
j qaqa

h
qaqa

h
T  (4.43b) 

(2) Linear interpolation, Ne = 2:  
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(1) (1)
( ) ( ) (1) (2)

1 2( ) ( 1)(2) (2)( ) ( )( ) ( )

1 1 41 1 ( )
1 1 2

j j
j j

j jj j

q T
a T a T

h hq T

(1) (2)
( 1) ( )

( )

21 ( ) 0
4 j j

j
T T

h
(4.44a)

(1) (1)
( ) ( ) (1) (2)

3 4( ) ( 1)(2) (2)( ) ( )( ) ( )

1 1 41 1 ( )
1 1 2

j j
j j

j jj j

T q
a q a q

h hT q

(1) (2)
( 1) ( )

( )

21 ( ) 0
4 j j

j
q q

h
(4.44b)

(3) Quadratic interpolation, Ne = 3:

(1) (1)
( ) ( )

(1) (3)(2) (2)
1 2( ) ( 1)( ) ( )

( ) ( )
(3) (3)
( ) ( )

93 4 1
1 1 31 0 1 ( )

2
1 4 3 3
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j jj j
j j

j j
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a T a Tq T
h h

q T

   

0)(
9
2
3
3

1 )3(
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)(
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(4.45a)

(1) (1)
( ) ( )

(1) (3)(2) (2)
3 4( ) ( 1)( ) ( )

( ) ( )
(3) (3)

( ) ( )

93 4 1
1 1 31 0 1 ( )
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1 4 3 3

j j

j jj j
j j

j j

T q

a q a qT q
h h

T q

(1) (3)
( 1) ( )

( )

3
1 3 ( ) 0

2
9

j j
j

q q
h

(4.45b)

In the above equations, the overdot stands for time derivative and also we take a1 = 
a3 = a2 = a4 = 0.5 for the central scheme and a1 = a4 = 1 and a3 = a2 = 0 for the 
alternating upwinding scheme.

4.3.5 The Runge Kutta Time Integration 

Equation 4.41b requires a time integrator for a numerical solution. A commonly 
used time marching algorithm for discontinuous calculations is the explicit time 
integration. The various orders of the Runge Kutta (RK) schemes are given below. 
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(1) The first order RK method (the Euler forward method): 

k
j

k
j

k
j t )()(

1
)( )( TTT  (4.46) 

 (2) The second order RK method: 

)()( )()(1
k

jjt TTk  (4.47a) 

)()( 1)()(2 kTTk tt k
jj                                   (4.47b) 

)(
2
1

21)(
1
)( kkTT k

j
k

j                                        (4.47c) 

(3) The third order RK method: 

)()( )()(1
k

jjt TTk                                                        (4.48a) 

)
2
1()( 1)()(2 kTTk tt k

jj                                         (4.48b) 

)2()( 21)()(3 kkTTk ttt k
jj                          (4.48c) 

)4(
6
1

321)(
1
)( kkkTT k

j
k

j                                         (4.48d) 

where the superscript k refers to the kth time step. 
It is important to realize that the above explicit time schemes require time steps 

that are smaller than a critical value. Normally the CFL criterion for the time step 
applies. In Section 4.6.3, we show through stability analysis how to determine an 
adequate time step for numerical integration in time. 

It should be noted here that the implicit time scheme is also possible, but it can 
be cumbersome to use with the discontinuous finite element method and a global 
matrix of size larger than the continuous finite element method needs to be solved 
(see also discussion following Equation 4.14).

4.3.6 Computational Procedures 

One way to solve the above system is to use the iterative procedure as has been 
done for the steady state case. By this approach, q is solved first on the given 
values of T, and then time integration is applied to obtain T at t + t. This 
procedure continues from the boundary and sweeps through the entire domain, 
element by element, for every time step.  
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 Another approach is to eliminate the equation for q, and solve the combined 
equation for T. The element calculations, and time marching remain the same as 
above. This approach is possible because q is, in essence, an intermediate variable 
and can be eliminated. This is point is further discussed at the end of Example 4.4 
below.
 Yet another approach is to combine all the variables together to form a global 
matrix, which is then inverted by LU decomposition to obtain the solution and 
march in time. This approach is rarely used, but can be useful for implicit time 
marching schemes. 

Example 4.4. Calculate the evolution of the temperature distribution in a 1-D slab 
with a heating source Q = 1 using linear elements and the alternating upwinding 
scheme with the first order time integration. The boundary and initial conditions 
are: T(x=0, t)=T(x=1, t)=0, T(x,0)=0. Take all the properties to be one and derive 
a matrix equation for the temperature values T by eliminating the variable q.

Solution. The numerical implementation for the linear interpolation is given in the 
previous section. Therefore, we have 

(1) (1)
( ) ( ) (1) (2)

1 2( ) ( 1)(2) (2)( ) ( )( ) ( )

1 1 41 1 ( )
1 1 2
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h hq T
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(4.19e)
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( 1) ( )

( )

2 1
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4 1
k

j j
j

t q q t
h

  (4.20e) 

where superscript k denotes the kth time step and the last term results from the 
contribution of the body source. 

Choosing the time step t = 10 4 and h(j) = 0.01, we can proceed to do the 
calculations. The computational procedure is as follows. First, all the variables are 
initially set to the initial temperature and then qk is solved using the first equation. 
Then the time integration is performed to calculate Tk+1 using the second equation, 
and the result is then substituted back into the first equation to calculate qk+1. This 
process continues until the time reaches the specified total time. The calculated 
results are shown in Figure 4.5e.   

For illustration, we have chosen to solve the variables q and T simultaneously. 
For this problem, q is in fact an auxiliary variable, and thus can be eliminated at the 
element level to obtain a form for T as follows: 
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Figure 4.5e. Temperature distributions for the 1-D transient heat conduction problem 

k
jjjjjj

k
j

k
j t )( )()2()1()()1()2()(

1
)( QTETDTCTBTATT

(4.21e)

which spreads over five nodes. In the above equation, A, B, C, D, and E are 
coefficient matrices and Q is the source vector. This would speed up the 
calculations. The values of qk, if needed, can then be obtained by processing the 
data from {T}k. We note also that, for the alternating upwinding scheme, the spread 
is only over 3 points, and thus should be faster than the central scheme.  

4.4 Transient Heat Conduction in Multidimensions 

Let us now consider the discontinuous formulation for multidimensional problems. 
The mathematical equation for heat conduction in a multidimensional domain is 
given by 

p
TC k T Q
t

       (4.49a)

0TT D (4.49b) 

)( TThTkn N                   (4.49c) 
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)()0,( 0 rr TtT  (4.49d) 

To develop a discontinuous finite element formulation, Equation 4.49(a) is first 
split into two first order equations, 

Tkq ; p
TC Q
t

q  (4.50) 

After the domain is discretized, we apply the Galerkin procedure to develop a 
discontinuous finite element formulation for an element. This involves integrating 
the above equations with respect to the weighting functions (w, v) over element j (r

j),

j j

dV k TdVq w w  (4.51a) 

( )
j j

p
Tv C dV v Q dV
t

q  (4.51b) 

The relevant geometric arrangement of the element j and its neighbors is given in 
Figure 4.3. We now integrate by parts to obtain 

( )
j j j

jdV T k dV kT dSq w w n w  (4.52a) 

j j j j
p j

Tv C dV v dV vQdV vdS
t

q q n  (4.52b) 

where nj is the outward normal unit vector to j, the boundary of the element.  
 We now seek to approximate the exact solution (q, T) with functions (qh, Th) in 
the finite element broken space, whence we have the following results: 

ˆ( )
j j j

h h h jdV T k dV kT dSq w w n w       (4.53a) 

ˆ
j j j j

h
p h h j

Tv C dV v dV vQdV vdS
t

q q n      

(4.53b) 

where the numerical fluxes ( ,ˆ hq hT̂ ) are approximations to (q,T) on the boundary 
of element j. To complete the discontinuous finite element solution, these 
numerical fluxes must be specified in terms of qh and Th, and in terms of the 
boundary conditions. These numerical fluxes must be suitably selected to render 
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the discontinuous formulation stable. Besides those shown in Table 4.1, additional 
fluxes, simpler in form, also satisfy the stability criteria for transient calculations. 
For convenience, the widely used numerical fluxes tested for transient heat 
conduction calculations are listed in Table 4.2. Selection of the numerical flux in 
discontinuous continuous finite element formulations for diffusion problems is 
recently discussed in [13]. 

Table 4.2.   Numerical fluxes for transient heat diffusion calculations 

Method hq̂ hT̂
LDG [6] ][][}{ 1211 hhh TC qCq ][}{ 12 hh TT C

DG [2] ][][}{ 1211 hhh TC qCq ][][}{ 2212 hhh CTT qC

Brezzi et al. [7] )][(}{ h
r

h Tq }{ hT

IP [8] ][}{ 11 hh TCT }{ hT

Bassi et al. [9] )][(}{ h
r

h TT }{ hT

NIPG [10] ][}{ 11 hh uCu ][}{ hjh TT n

Bubaska Zlamal [14] ][ hj T
jhT |

Brezzi et al. [15] ][ hr T
jhT |

Bassi Rebay [12] }{ hq }{ hT

Baumann Oden [16] }{ hT ][}{ hjh TT n
Note: C11, C22, C12  and C21 are constant matrices, and nj is the outward normal of 
element j.

 The operators are the same as defined in Section 4.2. With the numerical fluxes 
defined by Equation 4.20 substituted into Equation 4.52a, b, one has the final 
integral formulation,  

 ( )
j j

h hdV T k dVq w w

12 22({ } [ ] [ ]) 0
j

jT T C q dSC n w  (4.53a) 

j j

h
p h

Tv C dV v dV
t

q

11 12({ } [ ] [ ])
j j

jC T q vdS vQdVq C n   (4.53b) 

This is very similar to Equation 4.21, except for the transient term.  
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Now with the unknowns approximated using a polynomial basis function, 
followed by tedious algebra, one has the final matrix equation for the 
discontinuous finite element formulation for the transient heat conduction problem, 

x xx

yy y

z
z z

x y yT

q qE 0 0 H0 0 0 0
q q0 E 0 H0 0 0 0

0 0 E H0 0 0 0 q q
J J J 00 0 0 M T T

, , , ,

, , , ,

, , , ,

, , , ,

xxx i xy i xz i x i
NS

yx i yy i yz i y i y

zx i zy i zz i z ii i z
x i y i z i T i

qE E E H
qE E E H

E E E H q
J J J G T

, , , , , , , ,

, , , , , , , ,

, , , , , , , ,

, , , , , , , ,
( , )

xxx B i xy B i xy B i x B i
NS

yx B i yy B i yz B i y B i y

zx B i zy B i zz B i z B ii i z
x B i y B i z B i T B i T

NB i

qE E E H 0
qE E E H 0

E E E H 0q
J J J G ST

    (4.54a) 

where the overdot denotes time derivative, e.g., ,/ tTT the mass matrix is 
calculated by 

,
j

T km p k mM C dV    (4.54b)  

and other matrices are calculated using the expressions given in Section 4.2. 
The above matrix form is useful to illustrate the effects of each term and their 

interactions. It is, however, inconvenient for computations, because the mass 
matrix is singular when an explicit scheme is used. To facilitate computations, the 
above equation is re-written in two separate matrx equations, 

, , , ,

, , , ,

, , , ,

x xx i xy i xz i x ix x

y yx i yy i yz i y iy y

z zx i zy i zz i z i
z z

q qE 0 0 H E E E H
0 E 0 q H T E E E q H
0 0 E H E E E Hq q1

NS

i

T

, , , , , , , ,

, , , , , , , , ( , )
1 , , , , , , , ,

( , )

NS xx B i xy B i xz B i x B ix

yx B i yy B i yz B i y B i NB iy
i zx B i zy B i zz B i z B i

z NB i

qE E E H 0
E E E q H T 0
E E E H 0q

(4.55a)



Conduction Heat Transfer and Potential Flows 135 

, , , ( , )
, , 1 1

NS NS

T l T i T B i NB il
l x y z i i

d
dt
TM J q G T G T

, , ( , )
1 , ,

( )
NS

l B i NB i Tl
i l x y z

J q S   (4.55b)  

With the above equations, the iterative solution can be obtained using the 
computational procedure as discussed in Section 4.3.6. 

Example 4.5. Show that the LDG numerical flux scheme in Table 4.2 is the same 
as the alternating upwinding scheme for the 1-D transient heat conduction problem. 

Solution. Let us consider element j  [xj, xj+1], as shown in Figure 4.6e. As usual, 
the second order differential equation is split into two first order differential 
equations, and this is followed by integration with respect to the weighting 
function pair (v, w),

1

( ) 0
j

j

x

x
x

T v x dx
t

q  and 
1

( ) 0
j

j

x

x
x

T x dxq w

(4.22e)
1j

j

x

x
x

Tv v dx
t

q

1 1( ) ( ) ( ) ( ) 0j j j jx v x x v xn q n q   (4.23e) 

1j

j

x

x
x

T dxq w w

1 1( ) ( ) ( ) ( ) 0j j j jT x x T x xn w n w  (4.24e)  

where ,ˆ)()( ixqxq ,ˆ xix  and .ˆ)()( ixwxw
To demonstrate that the LDG method listed in Table 4.2 leads to the alternating 

upwinding scheme, we start from the general form of the numerical fluxes, 

hq̂ = {qh}–C11[Th] –C12[qh];    hT̂  = {Th}+ C12·[Th]               (4.25e) 

At point j, we have  iq ˆq , and iq ˆq , 1212 CnC

11 12ˆ { [ ] [ ] 0.5( )C Tq n n q n n C q q n q n

11 12[ ] [ ]C T Tn n n n C q n q n

            ][)()(5.0 1211 qqCTTCqq   (4.26e) 
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Figure 4.6e. Illustration of various quantities for element j

][)(5.0][{ˆ
1212 nnCC TTTTTTT

][)(5.0 12 TTCTT (4.27e)

If we take C11 = 0, C12 = 0.5, then we have 

qqqCqq ][)(5.0ˆ 12nq ;

TTTCTTT ][)(5.0ˆ
12  (4.28e) 

At point j+1, iq ˆq , iq ˆq  and 12 12 ,C n C  whence one has 

11 12ˆ { [ ] [ ] 0.5( )C Tq n n q n n C q q n q n

11 12[ ] [ ]C T Tn n n n C q n q n

           ][)()(5.0 1211 qqCTTCqq   (4.29e) 

][)(5.0][{ˆ
1212 nnCC TTTTTTT

   ][)(5.0 12 TTCTT (4.30e)

If we take C11 = 0, C12 = 0.5, then the above two equations are simplified,  

              qqqCqq ][)(5.0ˆ 12nq ,

TTTCTTT ][)(5.0ˆ
12 (4.31e) 

With these relations, we have for the boundary terms of element j,

)()()()( 11 jjjj xvxxvx qnqn

                 jjjjjj qqxvqxvq 111 )()( (4.32e)

n+

+

j j+1
element j x

n +
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jjjjjj TTxxTxxT 111 )()()()( wnwn                   (4.33e) 

Substituting the above two equations into Equations 4.22e and 4.24e, and 
writing the results in terms of scalar quantities, we have the following expressions: 

1

1 0
j

j

x

jj
x

T wv q dx q q
t x

 (4.34e) 

1

1 0
j

j

x

j j
x

wq w u dx T T
x

 (4.35e) 

which are the same as Equation 4.53. 

The discontinuous finite element algorithm developed above may be applied to 
solve the transient heat conduction problems defined in a multidimensional 
domain. One of these calculations is given here. For this case, we consider the 
transient temperature distribution in a unit circle with a fixed temperature at its 
edge. The circle is heated by a Gaussian heating source. A problem of this type 
often occurs in laser heating processes.  

The mathematical statement of the problem is given by   

Q
y
T

x
T

t
T

2

2

2

2
 , 1222 yxr    (4.56) 

where the heating source Q is in the form of Q = Q0exp[–(x2 + y2)/a2], and the 
boundary condition is T = 0 at r = 1. Set Q0 = 1 and a = 1 for the calculations. The 
properties of the material are also set to unity. 

For this problem, the calculations used an unstructured triangular mesh with 
linear elements for both temperature and heat flux unknowns. The central flux 
approximation is used to approximate the numerical flux. The mesh distribution 
and computed temperature results are given in Figure 4.5. The temperature field 
calculated assumes perfect rotational symmetry, despite the unstructured mesh 
used, indicating the accuracy of the method. It is noted that for this simple problem 
the condition of rotational symmetry would allow us to use a 1-D model rather than 
a 2-D geometry. 

4.5 Potential Flows and Flows in Porous Media 

Both potential flows and flows in porous media have the same mathematical 
structure as the heat conduction problems discussed above (see Chapter 1). They 
are all classified as diffusion problems. The discontinuous formulation and solution 
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procedures are basically identical. For these cases, the flow field is derived from 
the gradient of a potential, which satisfies a Poisson equation. Some examples of 
the discontinuous finite element solution of porous flow problems are given in 
references [10, 17, 18].  

(a) (b) t = 0.0001 

(c) t = 0.01 (d) t = 0.1 

Figure 4.5. Computed temperature evolution in a unit circle heated by a Gaussian heating 
source: (a) unstructured mesh with linear triangular elements, and (b)–(d) temperature 
contour at different time steps 

4.6 Selection of Numerical Fluxes 

This section discusses the selection of numerical fluxes for diffusion problems. The 
selection of these numerical fluxes is based on the stability of a discontinuous 
finite element formulation. By the stability of a numerical formulation, one 
generally means that the consistency and convergence criteria of the formulation 
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are met in a discretized form. Mathematically, the transient and steady state heat 
conduction problems are classified into different types of differential equations and 
thus the stability criteria are not necessarily the same, though they may be closely 
related. For discontinuous calculations, numerical fluxes need to be selected so as 
to ensure that the formulation satisfies the consistency and stability conditions. 

4.6.1 Stability for Steady State Problems 

For numerical schemes, convergence of a numerical solution to an exact solution is 
required. For this convergence to occur, the requirements of consistency and 
stability must be met. The consistency requirement means that a numerical scheme 
represents the differential equations, and their boundary conditions, as the size of 
the elements approaches zero. The numerical stability requirement states that the 
solution of the numerical scheme for solving a well-conditioned problem changes 
only a small amount if the input data change a little. This means that any error 
committed in the early stages of iteration will not grow in an uncontrolled manner. 
A well-conditioned mathematical problem is one whose solution changes by only a 
small amount if the problem data are changed by a small amount. The convergence 
rate, or order of accuracy, is measured by the power of the element size h. In this 
context, a stable solution of a discretized system will not contain spurious modes 
that may pollute the solution, regardless of the size of the elements used. If the 
discretized system is represented in a matrix format, KU = F, as it often is, then the 
stability condition requires that the stiffness matrix K is non-singular with a 
uniformly bounded condition number [19]. The selection of the numerical fluxes 
thus needs to satisfy these basic requirements.    

4.6.1.1 Stability and Numerical Fluxes 
In this section, some basic steps are discussed regarding the stability and 
consistency studies, for the purpose of developing or selecting appropriate 
numerical fluxes for the discontinuous finite element simulation for steady state 
heat conduction problems. In the literature, these problems are classified as elliptic 
problems. There are several approaches to this type of problem. Here we follow the 
procedures outlined in a recent paper by Cockburn [5], using the theory of partial 
differential equations detailed by Evans [20].  

We consider below a heat conduction problem with T = 0 along the boundary, 

fT2 ; T = 0  (4.57) 

To check the consistency requirement, an integral form of the differential 
equation is derived, following essentially the same steps given in [16]. Integrating 
the above equation with respect to the exact solution T, and carrying out the 
integration by parts, we have the integral representation for Equation 4.57, 

2 2T dV dV fTdVq  (4.58) 
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where q = T, and use has been made of the condition T = 0 on the boundary. 
Equation 4.58 simply means that if the exact solution is used, this integral 
condition should be satisfied. We note that unlike the analysis of the finite 
difference method, the analysis of a discontinuous finite element method starts 
with the integral form of the differential equation. The consistency and stability 
requirements will then be analyzed for the integral form. 
 If the consistency requirement is to be met, then a choice of discretized qh will 
satisfy the above integral equation as the size h goes to zero. The discontinuous 
finite element formulation for the above problem is given by two integral equations 
for element j,

ˆ
j j j

h h h jdV T dV T dSq w w n w  (4.59a) 

ˆ
j j j

h h jvdV vf dV vdSq q n  (4.59b) 

Letting w = qh in the first equation and hTv  in the second equation, adding 
on the elements, one obtains 

2 ˆ 0
j j

h h h h h j
j

dV T dV T dSq q q n  (4.60a) 

ˆ
j j

h h h h j h
j

T dV T dS fT dVq q n  (4.60b)  

where  = U j. Adding the above two equations together yields the final 
expression for the discretized solution,  

2
h h hdV fT dVq  (4.61) 

where the extra terms are collected as the sum of flux terms across the element 
boundaries, 

ˆ ˆ( ) ( )
j j

h h h h h j h h j
j

T dV T T dSq q n q n (4.62) 

Comparison of Equations 4.58 and 4.61 suggests that if a numerical scheme is 
stable and iterates to a converged solution, then h must be non-negative and h

0 as h 0. Note that if h < 0, qh may be unbounded, which will cause 
Equation 4.61 to differ from Equation 4.58 and the solution becomes unstable. 
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Thus, consistent numerical fluxes hT̂  and hq̂  must be chosen such that they render 
h non-negative. Let us examine Equation 4.62 again: 

ˆ ˆ( )
j

h h h j h h j h h j
j N

T T T dSq n q n q n

ˆ ˆ
j

h h h h h h
j N

T T T dSq q q

,

ˆ ˆ([ ] [ ] [ ] )
j i

h h h h h h
j N

T T T dSq q q

ˆ ˆ( )h h h h h hT T T dSq q n q n

,

ˆ(({ } )[ ] [ ] ({ } ))
j i

h h h h h h
j N

T T T dSq q q

       ˆˆ( ( ) )h h h h hT T dSq q n q n (4.63) 

where N is the total number of elements, and j,i means integration once over a 
shared internal element boundary, j,i V +

m Vm .
If we take the following expressions for the fluxes at the internal element 

boundaries inside the domain ,

][][}{ˆ 1211 hhhh TC qCqq ; ][][}{ˆ
2212 hhhh CTTT qC  (4.64) 

and for those at the element boundaries that share with the exterior boundary of the 
domain ,

nqq hhh TC11ˆ ; 0hT  (4.65) 

then h is calculated by   

2 2 2
22 11 11( [ ] [ ] ) 0

ih

h h h h
ee

C C T dS C T dSq    (4.66)

provided C11 and C22 are non-negative. Note that the boundary conditions are 
imposed weakly through the definition of the numerical traces. It is apparent from 
the proof above that C12, which can be either negative or positive or zero, is 
selected to set boundary conditions [2]. The above proof shows that the parameters 
C11 and C22 play an important role in ensuring the stability and the accuracy of the 
discontinuous formulations. 
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Castillo et al. [2] show that to guarantee the existence and uniqueness of the 
approximate solution of the DG methods, the parameter C11 has to be greater than 
zero, and the local finite element spaces U( j) and Q( j) must satisfy the 
following compatibility condition: 

)( jh UT : 0, ( )
j

h jT vdV v Q    then 0hT  (4.67) 

To have a well-posed problem, the approximate solution to Equation 4.57 with  
f = 0 should be the trivial solution [20]. For this case, Equation 4.61 becomes  

2 2 2 2
22 11 11[ ] [ ] 0

ih

h h h h
ee

dV C C T dS C T dSq q (4.68) 

which implies that qh = 0, [Th] = 0 on , provided that C11>0. We can now 
rewrite the first equation defining the discontinuous method as follows: 

0,
j

h hT vdV v Q                                                         (4.69) 

which, by the compatibility condition, implies that Th = 0. Hence Th = 0, i.e., the 
trivial solution.

Cockburn and Shu [6] further show that when all the local spaces contain the 
polynomials of degree k, the orders of convergence of the L2-norms of the errors in 
q and T are k and k+1, respectively, when C11 is of order O(h 1).

The discontinuous method presented above is locally conservative. To see that, 
we re-write the two integral equations as follows: 

ˆ
j j j

h h h jdV T dV T dSq w w w n                    (4.70a) 

ˆ
j j j

h h jvdV fvdV v dSq q n  (4.70b) 

for all w, v Q( j) U( j).

4.6.1.2 Discontinuous and Mixed Finite Element Formulations 
Zienkiewicz et al. [21] argue that a discontinuous formulation is a mixed finite 
element method,  

0),(),( vTbva hhq ; )(),(),( wFwTcwb hwq , w, v hh UQ      
(4.71) 

where Qh and Uh are two finite element spaces, 
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})(:{ jjh QvvQ ; })(:{ jjh UwwU      (4.72) 

and the bilinear forms are defined as follows: 

22( , ) [ ][ ]
j jj

a dV C dSq r q w q w (4.73a) 

12( , ) ({ } [ ][ ]
j jj

b T T dV T T dSr w C w        (4.73b) 

         11 11( , ) [ ] [ ]
jj

c T v C T v dS C TvdS                         (4.73c) 

      ( )F fvdVr                                                        (4.73d) 

where  means integrating once along the boundary interface. As a consequence, 
the corresponding matrix equation may be arranged to take the following form, 
which we have seen in Section 4.2:  

   
    

qA B 0
B C FT

                                      (4.74) 

This matrix form is typical of the stabilized mixed finite element methods [1, 
21]; and the “stabilizing” form c( , ), usually associated with residuals, is 
introduced to meet the stability condition. Thus the relation between the 
discontinuous and the mixed finite element formulations is immediately clear. For 
discontinuous methods, the “stabilizing” form c( , ) solely depends on the 
parameter C11, and the jumps across elements of the function in Uh. Thus, the 
discontinuous finite element formulation stabilizes the numerical scheme by 
penalizing the jumps, with C11 being the penalization parameter [5, 6, 21]. A 
detailed derivation of discontinuous formulation from the standpoint of the mixed 
finite element formulation is given in [21].  
 We note that the matrix form similar to Equation 4.72 also results from a mixed 
finite element formulation and the inf-sup (or LBB) condition needs to be satisifed 
to ensure stability, which in turn requires the use of non-equal order interpolation 
functions for the temperature and its fluxes [19, 22]. Different types of stabilization 
have been applied to circumvent the inf-sup condition so that equal order 
interpolation polynomials may be applied to approximate both the temperature and 
its gradient components [23, 24]. 

For discontinuous finite formulations, penalizing the jumps is equivalent to 
introducing stabilization by using residuals. To see that the residuals are related to 
the jumps, we set R1 = qh uh  and R2 = qh Q  and use the weak formulation 
of the discontinuous method, and the numerical fluxes to get 
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1
1 12 222( ) [ ] [ ]

j j
h hdx T C dSR w n C q w n           (4.75a) 

     1
2 12 112( )[ ] [ ]

j j
h hR vdx C T vdSn C q n              (4.75b) 

for all w, v )()( jj UQ .
The above discussion indicates that the relaxation on the inter-element 

continuity allows a variety of different stabilization schemes to be developed. The 
available schemes published in the literature are all developed based on the 
stability requirements illustrated above. In Castillo et al. [2], a comprehensive 
study of these schemes is carried out in a unified approach. In Table 4.1, the 
function ar([Th]) is a special stabilization term introduced by Bassi and Rebay [9] 
and later studied by Brezzi et al. [7].  
 As mentioned above, the steady state heat conduction problems fall into the 
category of elliptic problems, whose governing equations do not have real 
characteristics; thus there are no characteristic curves as there are for hyperbolic 
equations (or wave equations) to carry the data into a region from the boundary. 
Therefore boundary conditions must be imposed on an elliptic equation. In general, 
elliptic problems are more difficult than their hyperbolic and parabolic counterparts 
because a solution must exist over an entire domain, whereas for the latter, it still 
may be of interest to obtain a local solution in some small interval of time. These 
characteristic differences are also reflected in their stability results.  

4.6.2 Stability for Time Dependent Problems 

A numerical scheme for time dependent problems needs to satisfy the consistency 
and stability requirements in the same way as described for steady state problems. 
We present L2-integral analysis, matrix analysis and Fourier analysis for time 
dependent problems. 

4.6.2.1  Numerical Fluxes for Transient Problems 
Here, we discuss the selection of numerical fluxes based on the L2-integral
analysis. For this, the procedure discussed in Section 4.6.1.1 is used to obtain the 
L2-stability for transient heat conduction problems. That is, we first derive the L2-
stability results for the continuous problem, and then enforce them on the 
discretized equations. To do that, we consider a somewhat simpler form of the 
transient heat conduction equation with properties set to unity, 

T
t
T 2  (4.76a) 

T = 0  (4.76b) 
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T(r,0) = T0(r)  (4.76c) 

The above equation is multiplied by T(r,t) and integrated in time and in space 
to give the following expression: 

2

0 0

TT dt dV T T dVdt
t

              (4.77) 

Carrying out the integration, and substituting the definition q = T, we have the 
final result for the L2-stability,

2 2 2

0

1 1( , ) | ( , ) | ( ,0)
2 2

T dV t dVdt T dVr q r r  (4.78) 

A procedure similar to that used for the stability analysis of steady state 
problems can then be applied. The resultant discretized solutions satisfy the 
following inequality:  

2 2

0 0

1 ( , ) ( , )
2 h h hT dV t dVdt dtr q r

                2 21 1( ,0) ( ,0)
2 2hT r dV T r dV (4.79) 

By forcing the third term on the right hand side to be non-negative, one can 
show that the stability of the scheme requires C11 and C12 to be non-negative. This 
procedure is similar to, but more involved than, that for the steady state case. This 
is detailed by Cockburn and Shu [6], who further proved that for transient heat 
conduction, C11 =0 and C12 = 0 can also be applied. This is different from the 
steady state case. Their analyses and numerical experiments indicate, however, that 
the order of the accuracy is sub-optimal for this choice. 

Numerical fluxes that pass the stability requirement posed by the above 
equation are given in Table 4.2. 

4.6.2.2  Stability Analysis Using Matrix
The L2- integral analysis given above is closely related to Lyapunov’s theory on 
the differential equations [18]. As a result, the matrix equations, resulting from the 
discontinuous finite element discretization, can also be used to carry out the 
stability analysis. To see that, we rewrite Equation 4.77 without time integration. 
The stability requirement is such that the solution of the resulting differential 
equation needs to meet the following condition if the solution is stable and unique 
[20]:

2 21 0
2

d T dV T T dV
dt

                            (4.80) 
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The discretized form of the equation takes the following form: 

ATT
dt
d                                                         (4.81) 

where A is an N N matrix independent of t and T is the vector of the N-
dimension. The solution is subject to the initial condition T0. Assuming that A has 
eigenvalues 1,  2, , N, and C is a positive constant, i.e., C > 0,  then we have 
the following stability theorem [25]:  

a. If Re( k) < 0, k = 1, , N, then for each T0 RN and suitably chosen positive 
constant  , we have  

0)(limand)( 0 teCt
t

t TTT              (4.82) 

b.If Re( k)  0, k = 1,…, N, where the eigenvalues with Re( k) = 0 are distinct, 
then T(t) is bounded for t  0,  

0)( TT Ct                                                        (4.83) 

c. If there exists an eigenvalue k with Re( k) > 0, then in each neighborhood of 
T0 = 0 there are initial values such that the corresponding solutions behave as 
follows:

)(lim t
t

T                                                       (4.84) 

In case a, the solution T0  = 0 is exponentially stable, in case b T0 = 0 is Lyapunov-
stable, and in case c, it is unstable. In all the above, ||•|| denotes the L2-norm. 
 In addition to the above, we also have the following stability theorem that can 
be very useful in our analysis. For a matrix equation given below, 

TBATT )(t
dt
d                                        (4.85) 

the solution is considered Lyapunov stable (or L2-stable), that is, for a constant C,
it satisfies the following inequality, 

0)( TT Ct                                                     (4.86) 

if all the eigenvalues of A are such that Re( k) < 0, k = 1, , N; and if 
dtt ||)(||0 B , that is, B(t) is bounded. 

In particular, for an equation of the form, 
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),( TfATT t
dt
d                                         (4.87) 

the solution is L2-stable, that is, 

0)( TT Ct                                                       (4.88) 

if all the eigenvalues of A are such that Re( k) < 0, k = 1, , N, and if the 
following condition is met on f(t,T):

0
||||

||),(||lim
0|||| T

Tf t
T

 uniformly in t                    (4.89) 

which means that ||f(t,T)|| c||T||, with c being a positive constant [26]. 
 The above theorem provides the basis for the Nuemann stability analysis, 
which is often employed to determine the time steps for transient calculations. The 
theorem also will be used in later chapters for stability analysis. 

4.6.3 Fourier Analysis 

Let us consider the Fourier analysis of the error and stability of the numerical 
schemes for the solution of transient problems. This type of analysis is based on 
Neumann’s spectrum analysis and gives the criterion for critical time steps 
required for the solution. This can be particularly useful for the discontinuous finite 
element methods in that the discontinuous schemes often use explicit methods for 
time marching. As usual, the analysis is applied to a 1-D problem, 

2

2

x
uD

t
u , ],[ bax  (4.90) 

with periodic conditions and the initial condition u(x,0) = sin(x) and D denotes the 
thermal diffusivity. 
 The above diffusion equation can be formulated using the discontinuous 
schemes presented in Section 4.3.1. The stability analysis of these schemes has 
been made recently by Zhang and Shu using the Fourier expansion technique [4]. 
 Here we perform the stability analysis of different, but more general, forms of 
the discontinuous finite element formulation using the Neumann stability analysis 
method. As discussed in Chapter 2, discontinuous formulations can come in 
various forms. The various forms presented so far have been based on the unified 
numerical flux approach. Here, as a variation, we consider the formulation based 
on the double integration approach or through weakly imposing the cross-element 
continuity (see Section 2.1.1). 
 Towards this end, we split the governing equation above into two first order 
differential equations and integrate them over element j  [xj, xj+1] with respect to 
weighting functions, 
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0
x
qD

t
T ; 0

x
Tq                           (4.91) 

1

( ) 0
j

j

x

x

T qD v x dx
t x

;
1

( ) 0
j

j

x

x

Tq w x dx
x

 (4.92) 

We integrate by parts twice and apply the appropriate upwinding scheme at the 
element boundaries to obtain the following expressions: 

1

1 1 11( ) (1 ) ( ) 0
j

j

x
h

h h h j h jj j
x

Tv q dx T v x T v x
x

(4.93a)

1j

j

x
h h

h
x

T qv D dx
t x

2 2 11( ) (1 ) ( ) 0h j h jj jD q v x D q v x  (4.93b) 

Here, values of the constant 1  and 2  are chosen to be 1 or ½, which correspond
to different schemes of flux calculations. That is,  it is the full upwind scheme if 1

= 2 = 1, the central scheme if 1 = 2 = ½, and the alternating upwinding if 1 = 0 
and 2 = 1 (or 1 = 1 and 2 = 0).  Also, [ ]j denotes the jump condition at the 
element boundaries,  

jjj qqq][ ; jjj TTT ][                           (4.94)

 To demonstrate that the above formulation is consistent with the alternating 
upwinding, we note that in the double integration approach, the values of q across 
one boundary of the element are the same, and reflects a jump condition on [T] at 
the same boundary. We do just the opposite to the other boundary of the element.  
 The discontinuous Galerkin solution procedure for Equation 4.88 yields the 
matrix equations, 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1

eN l
km m km m
j j j j

m m
S q L T

1 1 11( ) (1 ) ( ) 0k j k jj jT x T x   (4.95a)  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1

eN Ne
km m km m
j j j j

m m
S T D L q
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          0)()1()( 1122 jkjjkj xqDxqD  (4.95b) 

for j = 1, 2,  , N, N being the number of elements, and k = 1, 2,  , Ne, Ne being 
the number of nodes of element j. Also, subscript (m) on q and T with m = 1, 2, …, 
Ne refers to the node number local to the element and )(

)(
km
jS  and )(

)(
km
jL  are matrices 

calculated by

1
( )
( )

j

j

x
km

k mj
x

S dx   and   
1

( )
( )

j

j

x
km m

kj
x

dL dx
dx

 (4.96) 

where k(x) is the shape function. Since q = (q1, q2, …, qNe)T is an auxiliary 
variable, it is eliminated and the actual scheme for {T} takes a form similar to a 
continuous finite element scheme, 

)2()1()(1)-()2()( ++++ jjjjj-j TETDTCTBTAT  (4.97) 

where A, B, C, D, and E denote the coefficient matrices and again the subscript () 
refers to the element. The time step is selected based on the criterion for the 
numerical scheme to avoid numerical instability. We now perfom the linear 
stability analysis for the discontinuous finite element formulations with the 
Runge Kutta time integration schemes for time marching.   
 By Neumann’s theory, the round-off error may be expanded in a Fourier series,  

( , ) ( , ) ( , ) ( ) m mik x at ik x
exact m

m m
x t T x t T x t t e e e   (4.98) 

where T(x,t) is the numerical solution to Equation 4.90.  
It is often sufficient to consider a typical component of the series at a nodal 

point j,

jhikatxikatn
j

mnjm eeee (4.99) 

where h = x, xj = jh, and n is the nth time step. To simplify the notation, we will 
set k = km. The amplification factor is defined by 

ta
ikjhat

ikjhtta

n
j

n
j e

ee
eeG

n

n )(1

 (4.100) 

To prevent the error from growing in time, it is required that 

1|| G  or Re(a)  0 (4.101) 
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 This concept applies to any component of a polynomial of order l defined on an 
element, 

ikjh

l
j

j

j e
t

t
t

)(

)(
)(

)(
)(

)0(
)(

 (4.102) 

where as usual the subscript () refers to the element.  
 Setting T =  in Equation 4.97, one has the matrix equation for errors, 

( ) ( 2) ( -1) ( ) ( 1) ( 2)   +  +  +  + j j- j j j jA B C D E

2 2
( ) (  +  +  +  + )i kh ikh ikh i kh

je e e eA B C D E

)(),( jhkC (4.103)

Clearly, the resultant matrix C(k,h) plays the role of amplification factor. One is 
then able to use the theory of matrix stability to perform the L2-stability analysis of 
the numerical scheme ([4], also Section 4.6.2.2). Using Equation 4.103, we are also 
able to determine the critical time step for a particular time integration scheme.   

We illustrate the use of Equations 4.97 and 4.103 to study the numerical 
stability of the scheme, and to determine the time step for the explicit Runge Kutta
integration scheme of up to the third order for a piecewise constant approximation. 
Setting l = 0, Equation 4.97 takes the following form:  

jjjj TTT
h
DT )6331()4(( 2121121212212    

                      )1)(1()4332( 2112121 Tj   (4.104)  

Thus, we have the differential equation for the error, 

jj hkC ),(  (4.105) 

where the amplification matrix has only one term, C(k,h) = (D/h2)C, and C is given 
by 

)6331()4( 21212121
2

21 eeC ikhikh

         ikhikh ee 2
212121 )1)(1()4332(   (4.106) 

 From the theory of stability presented in the last section, the coefficient Re(C)
needs to be negative to ensure that Equation 4.104 has a stable solution. For 
example, if 1 = 2 = 0 is taken, C = (1 – eikh )2  0;  and thus the solution will be 
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unstable. This is confirmed by numerical experiments, as shown in Table 4.3a. 
Similarly, if 1 = 2 = 1 is taken, C = (1 – e ikh )2  0.
 We now obtain information on the time step required for a stable solution. Let 
us begin by considering the first order Runge Kutta scheme, which is the Euler 
forward method, for time integration. By this scheme, we have from Equation 4.99 

n
j

n
j

n
j C

h
D

t 2

1

 (4.107) 

Other discretization using the Runge Kutta schemes can be obtained 
similarly. With the definition of the amplification factor, ,/1 tan

j
n
j eG these

discretizations yield the following relations:  

zG 1  for first order (Euler forward) (4.108a)

2
2
11 zzG  for second order  (4.108b)

3
6
12

2
11 zzzG  for third order (4.108c)

where z = D t/h2. Here, is the eigenvalue of the matrix C.
 To avoid numerical instability, that is, to make the error smaller as time 
marching continues, it is required that |G|  1. Therefore, the stability condition for 
the discontinuous finite element scheme, with the Runge Kutta time integration 
schemes of difference order, is such that the time step t is chosen to satisfy

f
h

tDr
2

 (4.109) 

where f is determined by the most critical eigenvalue of C, which satisfies |G| 1.
The results using Equations 4.108 and 4.109 are given in Table 4.3.  

Table 4.3a. Stability criterion f for the first order Runge–Kutta scheme 

2                           1 0 0.5 1.0 
0 0.0 2.0 0.5 

0.5 2.0 2.0 2.0 
1.0 0.5 2.0 0.0 

Note: f = 0 means that the scheme is unconditionally unstable. 

Table 4.3b. Stability criterion f for the second order Runge–Kutta scheme 

2                              1 0 0.5 1.0 
0 0.0 1.3333 0.5 

0.5 1.3333 2.0 1.3333 
1.0 0.5 1.3333 0.0 

Note: f = 0 means that the scheme is unconditionally unstable.
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Table 4.3c. Stability criterion f for the third order Runge–Kutta scheme 

2                          1 0 0.5 1.0 
0 0.0 1.6 0.6282 

0.5 1.6 2.5128 1.6 
1.0 0.6282 1.6 0.0 

Note: f = 0 means that the scheme is unconditionally unstable. 

Exercises

1. Consider the problem defined below, 

   )(2

2
Tg

x
TD

t
T 0],1,0[ t

   )()0,( 0 xTxT ]1,0[

   0),1(),0(
x

tT
x

tT
    t > 0 

 with D > 0 and sup|dg(T)/dT| = M < . Defining the energy and its gradient 
at time t as 

1
2

0
( ) ( , )E t T x t dx ;

21

0

( , )( ) T x tF t dx
x

 Show that 

   
21

2

0

( ) 2( )dF t dTM dx
dt dt

 and further show that if M < 2,

21

0

( , )lim ( ) lim 0
t t

T x tF t dx
x

Hint: to prove the above relations, the Poincaré inequality may prove 
convenient. The Poincaré inequality is stated as follows: 

21 1
2 2

0 0

( ) ( )du x dx u x dx
dx

, if u(0) = u(1) = 0 
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a

a

Convection (hc, Tc)

T 0q 0

Figure 4.1p. 
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, if 0)1()0(
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du

where u is a function that is continuously difrferentiable. 
2. Consider a problem given by the following set of equations, 

   )(
2

2
Tg

x
TD

t
T , 0],1,0[ t

   )()0,( 0 xTxT ,   ]1,0[

   0),0(),0( tTtT , t > 0 

 with D > 0 and sup|dg(T)/dT| = 2 < . Show that if the solution to the 
above problem if unique, then 

1
2

0
lim ( ) lim ( , ) 0
t t

E t T x t dx

3. A wall 0.12 m thick having a thermal diffusivity of 1.5 10 6 m2/s is 
initially at a uniform temperature of 85 C. Suddenly one face is lowered to 
a temperature of 20 C, while the other face is perfectly insulated. (a) Using 
the explicit discontinuous finite element technique with space and time 
increments of 30 mm and 300 s, respectively, determine the temperature 
distribution at t = 45 min. (b) With x = 30 mm and t = 300 s, compute 
T(x,t) for 0 t tss, where tss is the time required for the temperature at each 
nodal point to reach a value that is within 1 C of the steady state 
temperature. Repeat the foregoing calculation for t = 75 s. For each value 
of t, plot temperature histories for each face and the mid-plane. 

4. Consider steady state heat conduction in a square region of side a (Figure 
4.1p). Assume that the medium has a thermal conductivity of k = 30 W/(m 
K) and a uniform heat generation of Q0 = 107 W/m3. For the boundary 
conditions shown in Figure 4.1p, form the discontinuous finite element 
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matrix equations for two different discretizations: (a) the domain 
discretized by one quadrilateral element and (b) the domain is discretized 
into two triangles. Compare the results obtained by these two different 
discretizations. Take hc = 60 W/(m2 C), Tc = 0.0 C, T0 = 100 C, q0 =
2 105 W/m2, and a = 1 cm.  

5. Consider a steady state heat transfer in a 2-D fin. The fin shown in Figure 
4.2p has its base maintained at 300 C and is exposed to convection on its 
remaining boundary. Write a discontinuous finite element formulation and 
develop a computer code to solve the problem. Use quadrilateral elements 
to calculate the temperature distribution. Take hc = 40 W/(m2 K), Tc

=20 C, and k = 5 W/(m K). Compare the results using constant, linear and 
quadratic elements. Compare the results obtained using different numerical 
fluxes.

6. For Problem 5 above, develop a transient discontinuous finite element 
program and solve the temperature distribution history, assuming T(x, t=0) 
=300oC.

7. Consider the square channel shown in the sketch (Figure 4.3p) operating 
under steady state conditions. The inner surface of the channel is at a 
uniform temperature of 600 K, while the outer surface is exposed to 
convection with a fluid at 300 K and a convection coefficient of 50 W/m2

K. From a symmetrical element of the channel, a two-dimensional grid has 
been constructed and the nodes labeled. The temperatures for nodes 1, 3, 6, 
8, and 9 are identified.    

(a) Beginning with properly defined control volumes, and following 
Example 4.3, derive a discontinuous finite element code for the solution of 
the problem using a triangular mesh with nodes shown in Figure 4.3p and 
determine the temperature T2, T4 and T7 (K).  
(b) Calculate the heat loss per unit length from the channel.     

k = 5 W/(m K), hc = 40 W/(m2 K), Tc = 20 C

T0 = 300 C, b=1 cm, a=2 cm 

6 7 8 9 10

11 12 13 14 15 

1 2 3 4 5 
a a  a  a 

b

Convection (hc, Tc)

Figure 4.2p.
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8. Apply the Fourier analysis to determine the critical time step for a 1-D 
transient heat conduction with the Runge–Kutta scheme of second order 
for time integration and with linear elements for spatial discretization. 
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5

Convection-dominated Problems 

Convection is the second mode for heat transfer. It plays a dominant role in 
determining the overall behavior of the fluid flow field and the redistribution of 
thermal energy in a wide range of thermal and fluids systems. The mathematical 
description of convection problems involves first order derivatives in the spatial 
coordinates, which differs from pure conduction, where the first order derivatives 
do not exist. These first order derivative terms are often the origin of spurious 
oscillations that pollute the numerical solution, regardless of the types of  
numerical techniques used. This is particularly true whenever there is not enough 
diffusion in the system. Many techniques have been designed to suppress these 
oscillations, and the discontinuous finite elements provide a natural formulation to 
minimize the oscillations while maintaining a high accuracy. The purpose of this 
chapter is to discuss the application of the discontinuous finite element method to 
the solution of the convection and convection-diffusion problems. 

The chapter starts with pure convection and then moves on to study the 
convection-diffusion problems. Various discontinuous formulations and their 
numerical implementation for these problems are presented. An important issue 
concerning the effective use of the discontinuous finite element methods is the 
choice of effective numerical fluxes. The selection of these fluxes is discussed in 
detail and the L2-stability analyses used for selecting these numerical fluxes are 
also presented for these problems. For transient problems, the von Neumann 
analysis is presented, which is a powerful tool for determining the critical time 
steps, or the so-called CFL conditions, for explicit time marching solutions using 
the discontinuous formulations. The subject of non-physical oscillation is discussed 
in detail for 1-D steady state convection-diffusion problems, and its origin is 
investigated in terms of the eigenvalues of the resultant matrix. Often in the study 
of convection problems of practical importance, the convective terms are nonlinear 
in nature. The subject of nonlinear convection is discussed in the context of 
Burgers’ problems. Various numerical algorithms, designed to minimize the 
oscillations associated with the discontinuous finite element solution of the 
Burgers’ equations, are presented. These algorithms include the TVD scheme and 
its variants for higher order approximations, along with the appropriate use of 
slope limiters or flux limiters. 
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5.1 Pure Convection Problems 

Pure convection problems are idealized systems where viscous effects are 
neglected. Without viscosity, the system develops sharp fronts and discontinuities 
in the mathematical solution. In the real world, thermal fluids systems in general 
are dissipative, meaning that the viscosity, however small it is, is present and plays 
an important role in smoothing out the sharp fronts. Nonetheless, a pure convection 
problem offers a system for analysis, and for the understanding of the nature of 
convection problems. In this section, we first develop a discontinuous formulation 
for a 1-D pure convection equation, and then generalize the formulation for 
multidimensional problems. 

5.1.1 1-D Pure Convection 

For the purpose of understanding the nature of this type of problem, the method of 
characteristics is discussed before the discontinuous finite element formulation is 
presented. 

5.1.1.1 Method of Characteristics 
The following linear partial differential equation describes the pure convection 
effect on the temperature field T(x,t):

0
x
Tu

t
T  (5.1) 

where u is the convection velocity and is taken to be a positive constant for the 
sake of simplicity. We consider a particular curve x = x(t) in the x t plane. Then 
the total derivative of T(x,t) along the curve is governed by the chain rule, 

0)()),(()),(()),((
dt

tdx
x

ttxT
t

ttxT
dt

ttxdT  (5.2) 

Comparison with Equation 5.1 indicates that the curve has a characteristic of 
dx(t)/dt = u. Thus we have the solution for the temperature T(x, t),   

0
dt
dT  along the characteristic curve u

dt
tdx )(  (5.3) 

Integrating the above equation yields the following results: 

                  const),( txT ; 0)( xuttx  (5.4) 

where x0  = x(0). Since T is constant along the characteristic curve, the solution 
may be written as
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)()0,(),( 0 utxTxTtxT  (5.5) 

We see that T(x, t) remains a constant along the curves x(t) – ut = x0, which are 
called characteristic curves. The constant x0 is a parameter. The solution T(x,t)
carries the initial data T(x0, 0) at the boundary into the x–t domain. A set of 
characteristic curves in the x–t plane is called the characteristic diagram. Figures 
5.1(a) and (b) show the characteristic curves in the x–t plane.   

(a)

(b)

Figure 5.1. Characteristic diagrams for pure convection problems: (a) 2-D view and (b) 3-D 
view

 In the fluids literature, the above solution method is called the method of 
characteristics [1, 2]. The method can also be employed to obtain a solution to a 
system of equations. Let us consider such a system, 

BTAT
xt

 (5.6) 

u0(x) u0(x ct)

x

u

Position

x

tu

u0(x)

u0(x ct)

ct

x ct = const.

t
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where A is an N N matrix, T = [T1, T2, …, TN]T is a vector of dimension N and B
= [B1, B2, …, BN]T is the source vector of dimension N. The superscript T denotes 
the transpose. If the above equation is to be written in the form of Equation 5.1, 
then we need to first find the eigenvalues  of matrix A,

IaAa  (5.7) 

where a is an arbitrary vector of dimension N and I is the identity matrix. For a 
pure convection (or hyperbolic) problem, the eigenvalues are distinct and the 
following eigenvalue eigenvector relation exists: 

AP P (5.8)

where  is a diagonal matrix with terms on the diagonal being the eigenvalues, ij

= j ij. P is the eigenvector matrix, P = [p1, p2, …, pN], where pi  of dimension N
being the eigenvector corresponding to the eigenvalue i.
 Premultiplying Equation 5.6 by P 1 gives 

1 1 1 1 1
t x t x
T T T TP P A P P P B  (5.9) 

and defining two new vectors w and g, both of dimension N,

TPw 1 ; BPg 1  (5.10) 

we can write Equation 5.9 in the following form: 

t x
w w g  (5.11) 

In component form, Equation 5.11 becomes 

i
i

i
i g

x
w

t
w ,        i = 1, 2, …, N (5.12)

 Following the steps leading from Equation 5.1 to Equation 5.3, we identify the 
characteristic curves for the system of equations as 

it
dx ,    i = 1, 2, …, N (5.13a)

along which wi is determined by the equation, 
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i
i g

dt
dw

, i = 1, 2, …, N (5.13b) 

With w so obtained, T is calculated by 

PwT  (5.14) 

 It is noted that the above equation is derived based on the assumption that A is 
a constant. The same procedure also applies when A = A (x, t, T1, T2, …, TN). In 
this case, one can show that the above equations remain the same, except that g
will be replaced by g'

1 1' [ ( ) / [ ] ( ) / ]t xg g P P Pw  (5.15) 

The solution procedure remains the same as above and thus needs no 
elaboration. Let us now discuss an example of using the method of characteristics 
for the solution of a pure convection problem. 

Example 5.1. Obtain the solution of the temperature distribution governed by the 
pure convection equation, 

0
x
Tu

t
T ],0[],[  (5.1e) 

)()0,( 0 xTtxT ],[x (5.2e) 

where u is the known velocity, which is taken to be a positive constant here, and T
is the temperature.  

Solution. The general solution of the above equation can be obtained using the 
method of characteristics, 

)(),()( 0 utxTutxTutxT  (5.3e) 

The solution represents a wave pack propagating with speed u. The solution (x1,
t1) is then related to t = 0 in the following way: 

)0,()(),( 1111011 utxTutxTutxT  (5.4e) 

 For this type of problem, the solution is a set of straight lines in the x–t plane 
originating from the boundary of t=0, and therefore depends strongly on the initial 
data. Two of these straight lines are plotted in Figure 5.1e. Both of the lines have 
the same slope, 1/u. Also, the solution carries the data from the boundary directly 
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to the x–t domain. Moreover, along the characteristics, T(x,t) remains constant, and 
is determined by its value at the boundary. 

Figure 5.1e. Illustration of the analytic solution of the temperature field 

5.1.1.2 Discontinuous Finite Element Formulation
Having understood the basic nature of pure convection problems, let us now turn 
our attention to the discontinuous finite element solution of the 1-D problem given 
by Equation 5.1. As usual, we start with discretizing the domain into a collection of 
N elements, and then integrating the above equation over element j  [xj, xj+1] with 
respect to a weighting function v(x),  

       
1

1 1 1( ) ( , )
j

j

x
h

h j j j
x

T vv uT dx v x uT T T
t x

0),()( jjj TTuTxv  (5.16) 

where we have replaced the convective temperature values at the element 
boundaries by the numerical flux expressions (see Figure 5.2 for geometric 
definitions). For a constant u or a linear problem, an effective numerical flux is 
given by the Lax–Friedrichs flux: 

2
||

2
),( abubaubauT  (5.17) 

   

Figure 5.2. Illustration of boundary interfacial quantities for element j

x

t

T(x1 ut1,0)

T(x1,ut1)

T(x2,ut2)

T(x2 ut2,0)

T(x,0) = T0(x)

+ +

j j+1
element j x
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which in essence is an upwinding scheme. The unknowns Th may be approximated 
with a polynomial of order k = Ne –1 as local basis functions, 

1
( , ) ( ) ( )

eN

h i i
i

T x t T t x  (5.18) 

with Ne being the number of nodes associated with an element. 
Substituting the above equations into Equation 5.16 and taking the Galerkin 

approximation, followed by numerical integration, we have the following matrix 
equation:

0UNUNUKKU
U

M )1(2,)1(1,)()(
)(

jBjBjBj
j

dt
d

 (5.19) 

where subscript () refers to the element. For example, U(j) denotes the unknowns 
belonging to element j, subscript B refers to the boundary, and U is the vector 
containing unknowns at the nodal points of the elements, 

T
jNj e

TTT )(21)( ],,,[U ; T
jNj e

T )1()1( ]0,,0,[U ;

T
jj T )1(1)1( ],,0,0[U

if the Lagrangian interpolation functions are used. The matrices, all of dimensions 
Ne × Ne, are calculated by 

1j

j

x

mn m n
x

M dx ,
1j

j

x
m

mn n
x

K u dx
x

, eNnm ,,2,1,

2
||

11,
uuKB ,

2
||

,
uuK

ee NNB

2
||

11,1,
uuNB ,

2
||

,2,
uuN

ee NNB

with all other elements in KB, NB,1, and NB,2 set to zero. 
 In particular, if k = 0, that is, if the constant element approximation is used, we 
recover the finite volume formulation. In addition, if u > 0, then we have the 
following matrices (m=n=1), 

jjmn xxxM 1 ; 0mnK ; 0,2,11, ee NNBB NK ;        
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uNK BNNB ee 11,1,,

The matrix equation is then simplified as 

0)1()(
)(

jj
j uTuT

dt
dT

x  (5.20) 

This is the simple upwinding finite difference (or finite volume) scheme. 
The above equations are ordinary differential equations, which can be 

integrated in time using various time integrators. For convenience, the matrix 
equation may be written in a generic form, 

)()( U
U

L
dt

d j  (5.21a) 

with the operator L defined by 

 )()( )1(2,)1(1,)()(
1

jBjBjBjL UNUNUKKUMU  (5.21b)  

If a simple Euler forward scheme is used, then we have the following time-
discretized form for Equation 5.21a: 

)()(
1
)(

nnn
j

n
j Lt UUU  (5.22) 

or explicitly, 

)( )1(2,)1(1,)()(
1
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1
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jB
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n
j

nn
j

n
j t UNUNUKKUMUU  (5.23)  

where superscript n denotes the nth time step and tn represents the time step, 
where the critical time step must be chosen to enforce the CFL condition. It is seen 
that the step involves the inversion of the mass matrix. For practical applications, 
the mass matrix M may be diagonalized, either through numerical quadrature or by 
constructing orthogonal basis functions, as discussed in Chapter 3, to speed up the 
calculations.    

Other high order explicit schemes, such as the Runge–Kutta integrator, may 
also be used. An implicit time scheme is also possible. It is noted that when an 
implicit time scheme is used, a global matrix needs to be assembled, which for this 
case would be larger than the global matrix generated by the continuous finite 
element formulation. In fact, for a 1-D problem, the matrix would be almost twice 
as big if linear elements are used, because every node is shared by two elements. 

The complete computational procedure for the solution of Equation 5.21 may 
now be described. To start, all the values are set to the initial data and a time step is 
selected. Then the calculation starts with a boundary where the boundary condition 



 Convection-dominated Problems 165

is prescribed and sweeps from this element forward until the entire domain is 
covered. After a sweep, the convergence is checked. If convergence is achieved, 
then the same procedure is applied for the next time step. This calculation is 
repeated for every time step until the time elapsed reaches the total time for 
simulation. It is noted that in this element-by-element approach, the terms 
associated with the adjacent elements are moved to the right of the equation and 
treated as source terms. These terms are updated with the U values as soon as they 
become available during the course of solution. 

It is obvious that the above procedure can be directly applied to the system of 
equations (i.e., Equation 5.6), when the system is appropriately decomposed, and 
the details are thus not elaborated. 

Example 5.2. Consider the following convection problem: 

0
x
Tu

t
T            ]1,0[x  (5.5e) 

with u = 0.1 and the initial conditions, 

0.11.0for
1.00for

0
)10sin(

)0,(
x

xx
xT  (5.6e) 

Solution. For illustrative purposes, only the linear elements are used. Following the 
procedure discussed above, we take the linear elements to discretize the domain 
equally, and to obtain the following matrix for a typical element: 

21
12

3
hM ;

11
11

2
uhK ;

uB 0
00

K ;

00
0

1,
u

BN ;
00
00

2,BN

where h = x. The explicit forward time integration is employed to march the 
solution in time. 
 The calculations used 200 elements and a time step of 1.0 10–4. The computed 
results are plotted in Figure 5.2e, along with the analytic solution. For comparison, 
the finite difference solution with upwinding is also given and plotted in the same 
graph. We can see that there is considerable numerical dissipation associated with 
the finite volume scheme with upwinding, and the peak is subdued substantially. 
The discontinuous finite element solution, even with linear element approximation, 
almost reproduces the analytic solution. A little overshoot near the two tails, 
however, is noticed.  
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Comments.  The finite difference (or finite volume) formulation based on the 
traditional control volume approach is discussed by Fletcher [3]. For this problem, 
the finite volume formulation was obtained from the above discontinuous 
formulation by using the piecewise constant approximation over an element. Here, 
the discontinuous finite element method is just an extension of the finite volume 
method, which is limited to the step function approximation. The discontinuous 
finite element method, on the other hand, easily employs the higher order 
approximation. 

Figure 5.2e. Comparison of numerical solutions for pure convection using constant and 
linear elements. In both cases, the upwinding scheme is used 

5.1.2 Pure Convection in Multidimensions 

As with the 1-D pure convection problems, a multidimensional pure convection 
problem takes a simple form,  

0T
t
T u ),0( T   (5.24) 

where, for simplicity, u is taken as a constant vector. To develop a discontinuous 
formulation, the domain is first discretized into a tessellation of finite elements, 
say, triangular elements for a 2-D geometry, and then the equation is integrated 
over an element j with the result, 

0
j j

j
Tv T v dV v T dS
t

u u n  (5.25) 
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where nj is the outward normal of element j, and j and j are its domain and 
boundary, as shown in Figure 5.3. The numerical fluxes now are needed to 
complete the formulation. For this purpose, the following definitions are used (see 
also Figure 5.4): 

)(5.0}{ TTT  ;           nn TTT ][  (5.26) 

Figure 5.3. Schematic of the triangularization of computational domain and element 
arrangements. 

Figure 5.4.  Element j (j+), its neighbor j– and other quantities used to define numerical 
fluxes

Again, the underscored brackets are associated with these definitions only. 
With the above equation, the consistent numerical fluxes are given by 

][}{ TTT uCuu  (5.27) 
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where Cu is a non-negative definite matrix depending on the value of u n. The 
relative relation of the quantities is schematically shown in Figure 5.4. 

With a choice of Cu = 0.5|u n|I, the numerical flux is calculated by the classical 
upwinding scheme, 

][||}{ 2
1 TTTh nuuu  (5.28) 

where I is the unit matrix. If, on the other hand, Cu = 0.5|u|I, then we have the local 
Lax–Friedrichs numerical flux, 

][}{ 2
1 TTTh uuu (5.29)

Once the numerical fluxes are selected, the unknowns can be interpolated using 
a polynomial basis function. With the Galerkin procedure, the element matrix can 
be calculated and the resultant matrix equation has the following form: 

, , ( , )
1 1

NS NS

B i B i NB i
i i

d
dt
U

M K K U N U 0  (5.30) 

where M is the mass matrix, K is the volume integral, KB,i and NB,i represent the 
boundary integral contribution associated with element j, U is the unknown vector 
for element j, NS is the number of sides of the element, and U(NB,i) is the unknown 
vectors associated with the neighboring elements. The above equation may be 
further written in the same generic form as Equation 5.21.  
 As discussed for the 1-D case, time integration can now be applied to obtain a 
solution from Equation 5.27 in time. Restriction on the time step applies when 
explicit numerical time integration schemes are used.  

Aside from the direct solution given above, another approach may also be 
applied to solve this problem. Since u is constant, the equation can be re-written as 
follows:

0||
us

Tu
t
T  (5.31) 

where su indicates that the directional derivative is along the u direction. This 
system is practically 1-D, and the above solution procedure for the 1-D problem 
may be applied directly. 

We will see some of these applications in the radiative transfer processes 
(Chpater 9) and in the discontinuous finite element solution of the lattice 
Boltzmann equations (Chapter 11).  

In passing, we note that selection of appropriate time steps and numerical 
fluxes for a meaningful numerical solution of pure convection equations requires 
requires stability analysis, which is to be discussed below. 
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5.1.3 Stability Analysis 

As for the solution of heat conduction problems, stability is a critical issue for the 
discontinuous finite element method for the solution of pure convection equations. 
Numerical fluxes must be selected to satisfy the stability condition. There are 
different approaches to stability analysis. In this section, we present the integral 
analysis, the discretized analysis and the Fourier analysis; the last also being used 
for the determination of the critical time step for explicit time integration, and for 
the study of dissipation and dispersion behavior of the numerical schemes. 

5.1.3.1 L2-Stability – Integral Analysis 
Integral analysis is based on the existence and uniqueness theory of partial 
differential equations and is a powerful tool for stability analysis. We have seen its 
use in considering the heat conduction problems in Chapter 4. Here again, we 
follow the approach given by Cockburn [4,5] and Evans [2]. Let us consider the L2-
stability for a pure convection problem, 

0)( T
t
T u       (0, T] (5.32) 

with periodic boundary conditions. The stability result is first obtained for the 
problem of a continuous case. To do that, we multiply the above equation by T and 
integrate over space and time to get 

2 2 2

0

1 1 1( , ) ( ) ( , ) ( ,0)
2 2 2

T

T t dV T t dVdt T dVr u r r  (5.33) 

where use has been made of the following vector identity: 

)),((),(2),()()),(( 22 tTtTtTtT rurruru  (5.34) 

Also the periodic condition causes the following integral on the boundary to 
vanish: 

2 2( ( , )) ( ( , )) 0T t dV T t dSu r n u r  (5.35) 

In particular, if u = 0 or u is a constant vector, a stability result is obtained as 
follows:

2 21 1( , ) ( ,0)
2 2

T t dV T dVr r  (5.36) 

The same procedure used for stability studies on the discontinuous finite 
element solution of heat conduction equations may be employed here to obtain the 
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same estimate. In essence, we compare the discrete system with the above analytic 
weak form solution, and enforce stability upon the discrete system. Towards this 
end, we set v = Th in the weak formulation (i.e., Equation 5.25) and then sum over 
all the elements with the result, 

2 2

0

1 1( , ) ( ) ( ,0)
2 2

T

hT t dV t dt T dVr r  (5.37) 

Equation 5.37 is required to converge to Equation 5.33 when the limit of the 
element size approaches zero. This requires that h(t)  0, and goes to zero as the 
limit is taken to ensure compatibility. The term h(t) collects all the boundary 
contributions: 
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where the second equation in Equation 5.26 has been used in the third step, and 
subscript je means integrating only once along the element boundary shared by two 
elements. It is important to stress that the subscript j means integration along the 
element boundary for every element and thus integration is carried out twice along 
the bondary of the shared elements. Consequently, if a numerical flux is defined as 
follows:

][}{ TTT Cuu  (5.39) 

which is Equation 5.27, then h(t) satisfies the stability condition, 

( ) [ ] ] 0
j

h h h
j

t T T dSC [  (5.40) 

provided that C is a non-negative matrix.  
 At this point, we note that for a piecewise constant approximation, Equation 
5.25 reduces to the familiar finite volume formulation,  
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0
j j

h
h

T dV T dS
t

u n  (5.41) 

In this regard, the finite volume method is just a subclass of the discontinuous 
finite element method, which is consistent with the previous discussions for 1-D 
problems.  

The discontinuous finite element method is a higher order method. Cockburn 
[4] shows that an order of convergence of k + ½ can be obtained with polynomials 
of degree k at most. Also Equation 5.37 provides a dissipative effect (equivalently 
the artificial viscosity) for the numerical scheme, where the dissipation is related to 
the across-element jumps. 

As we have discussed for the heat conduction problems, the residuals are also 
related to the stabilization. To see that, Equation 5.25 is integrated once again to 
produce

( ) ( )
j j j

h h
Tv T dV R v dV T v T v dS
t

u u n u n

(5.42)

In the case of upwinding, the above equation becomes 

2[ ]
j j

hR v dV T dSu                                             (5.43) 

which shows that the residuals are directly related to the inflow jump at the 
element boundary [4]. We have seen a similar role of residuals in the case of heat 
conduction problems (see Section 4.7). 

5.1.3.2 L2-Stability – Discretized Analysis 
The stability of a discretized system can also be carried out either by the Fourier 
series method, as seen for the transient heat conduction problems in Chapter 4 (see 
Section 4.7), or by the local method, which is discussed in this section. Let us 
illustrate this point by a 1-D example, 

0
x
Tu

t
T            [0,1] (5.44) 

For simplicity, we choose u > 0. We discretize the system into N equations, 
with nodes denoted by x1, x2, ···, xN+1, as shown in Figure 5.5. Over each element, 
the discontinuous procedure yields the following weak form solution: 
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where Pk(xj, xj+1) is a polynomial of order k defined over element j, x  [ xj, xj+1].
Note that if u < 0, the upwinding point would be at j + 1. In the jth element, an 
approximation of T is denoted by Th.

Figure 5.5. Discretization of the 1-D domain for a pure convection problem 

By choosing k = 0 (i.e., the space of piecewise constant functions) the 
discontinuous formulation reduces to the finite volume formulation, 

1
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x
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h j h j
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 (5.46) 

that is, 
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T
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Let us now examine the stability condition of the above discrete formulation. 
To do that, the Galerkin method is applied, that is, v(x) = Th(x), whence Equation 
5.45 becomes 

1

( ) ( ) ( )
j

j

x
h h

h h j h j jh
x

T TT u dx T x u T x T x
t x

  (5.48) 

This equation can be further written as 
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which is integrated over the element to give 
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Summing over all the elements, one has the following result: 
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where use has been made of the inequality 2ab a2 + b2 to arrive at the first 
inequality.

As we have seen before, the analysis of the discontinuous method uses the L2-
norm stability theory. Defining the L2-norm, 

1
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h h
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and using Equation 5.51, we have the following stability result: 
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where ||•||0 = ||•||L2 denotes the L2-norm. The above formula is useful to check for 
consistency. If two solutions are initially close with the same boundary condition 
imposed weakly at x0, then these two solutions are bounded by the following 
condition:

2
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TTd
 (5.54) 



174 Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer 

which means that if the time derivative is computed exactly, then the distance 
between the two solutions (measured in the L2-norm) will decrease in time.   

The above stability condition serves also as a basis for error analysis. For this 
purpose, it is often useful to project the solution into a polynomial space. Let us 
further assume that such a projection function exists. Then we have the following 
three equations: 
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 (5.55c) 

where Qk is the projection function, 
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Note that Equation 5.55a projects the exact equation, Equation 5.55b means that 
the projected exact solution is substituted into the weak formulation, and Equation 
5.55c is the basic numerical scheme used for numerical solution. We note that 
Equation 5.55b has the error term associated with the residual R.

Subtracting Equation 5.55c from Equation 5.55b and making use of the 
relation, T –(xj) = T+(xj), that is, the exact solution is continuous for a smooth 
solution, we obtain the following equation: 
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By setting )()()( xTxTQxv h
k , the preceding equation becomes 
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Use of the relation 2ab a2 + b2 allows the first term on the right and the 
second on the left to be combined,  
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Combining the above two equations yields the following estimate: 

2

0
k

h
d Q T T
dt

2 2
1 1

1

1 1( ) ( ) ( ) ( )
2 2

N
k k

j h j j h j
j

u Q T x T x Q T x T x

1

1

( , )
j

j

N x
k

h
xj

R x t Q T T dx

1

1

( , )
j

j

N x
k

h
xj

R x t Q T T dx

00 ( , )k
hQ T T R x t (5.59)

where use has been made of the Schwarz inequality,  
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The consistency analysis indicates that the numerical solution Th, and some 
projection of the exact solution T to the same space of polynomials that we use to 
represent Th, grow apart slowly in time, i.e., 
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00
2|)0(| kH

k
h

k TChRTTQ
dt
d (5.61) 

where we have used the basic estimate given by Cockburn [5], the subscript H k+2

(0,1) denotes a Hilbert space and T(0) = T(t = 0) H k+2 (0,1). Also, C is a constant 
depending solely on k, |u| and T. Integrating over time, we have the error T – Th
bounded by the following expression: 
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Here the first term represents the error between the exact solution and the projected 
solution in the finite polynomial space. The second term represents the error in the 
approximation of the initial data. The third term is the accumulation of truncation 
errors in time, which depend on the discretization and the total time T [4]. 

5.1.3.3 Fourier Analysis 
Fourier analysis is useful for determining critical time steps for transient 
calculations; and for the pure convection problems, it is also a valuable tool to 
analyze the numerical dispersion and dissipation phenomena associated with wave 
propagation. In pure convection problems, the system of equations is hyperbolic. 
The solution is characterized by a train of waves propagating with little or no loss 
of amplitude. It is important that the numerical solutions do not introduce non-
physical dissipation, which shows up as a broadening of the wave pack and 
reduced amplitude, that is, artificial diffusion. It is equally important that the 
numerical schemes do not introduce artificial dispersion. Dispersion refers to the 
change of the speed at which waves propagate, and it often shows up in a 
numerical solution as numerical oscillation [3]. 

Dissipation and Dispersion. Information on the numerical dissipation and 
dispersion introduced by a computational scheme can be obtained by comparing 
the Fourier representations of the exact and numerical solutions. For the problem 
given by Equation 5.44, the initial condition may be expanded in a Fourier series,  

( ,0) imx
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and the exact solution to the problem at any instant in time is also represented by a 
Fourier series, 

( )( , ) im x ut
ex m

m
T x t T e  (5.64) 

Clearly, all the Fourier components in the above equation convect with the 
same velocity u, and are not subject to any reduction in amplitude. This is simply a 
statement that there is no diffusion effect (or even order derivative) in the equation. 
Similarly, a numerical algorithm can be represented by a Fourier series. Taking 
into consideration the errors involved in numerical schemes, a numerical solution 
may have the following form of the Fourier expansion: 
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where we have taken (m) = ip(m) + mq(m). For an exact solution, p(m) = 0 and 
q(m) = u; thus there is no attenuation of the amplitude of Tm as the wave propagates 
with a speed u. In general, p(m 0 and q(m) u, that is, the amplitude is attenuated 
and the propagation speed is altered. For the latter case, if waves of more than one 
wavelength are present, they propagate at different speeds, i.e., they disperse. The 
change in wave propagation is often more pronounced for short waves (large m).

In the computational literature, dissipation is defined as the attenuation of the 
amplitude of the waves, and dispersion is defined as the propagation of waves of 
different wave numbers m at different speeds q(m). Dissipation is often associated 
with even order derivatives, and dispersion with odd order derivatives. 

In numerical analysis, the dissipation and dispersion behaviors of the system 
are studied using the amplification factor and the phase angle for a typical Fourier 
component. The amplification factor is defined by the ratio of the Fourier 
component at two consecutive time steps [6], 
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By this definition, the amplitude of G, |G|, is related to the dissipation at x and 
the phase angle  is associated with dispersion, 
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To use the Fourier analysis to understand the basics of numerical dissipation 
and dispersion, we consider the 1-D pure convection problem, 

0
x
Tu

t
T       (5.68)

with u > 0 and periodic boundary conditions. For the Galerkin approximation, we 
have the following discretized matrix equations: 
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where we have incorporated the upwinding scheme. For a three-element 
discretization with periodicity, the matrix system has the form of 
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 (5.70) 

This is a generalized eigenvalue problem for U, since we know K, M, KB, and 
NB,1. The dimension of the matrix is (k+1) (k+1) for a polynomial of order k.

We consider the dissipation and dispersion analyses below. Assuming that a 
Fourier component takes the following form:   

ximtmi
mmj eeTT )(

,  (5.71) 

and substituting the above equation into the matrix equations, one has an 
eigenvalue problem for ,

( ) 0i m x
mi m u u u eM D F G T  (5.72) 

If a piecewise constant approximation is taken to evaluate the matrices, then the 
following result is obtained: 
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with x = h. The solution to the eigenvalue problem for a non-trivial mT is given by 
the following expression: 
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which yields the values for p(m) and q(m) as follows: 
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h
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h
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The dissipation is measured by the amplitude of the amplification factor, 

))cos(1(exp))(exp(|| mhctmpG   (5.76) 

where c = u t/h is the Courant number, and the dispersion behavior is given by the 
phase  of the amplification factor, 

)sin()( mhctmmq  (5.77) 

For this problem, the exact solution can be easily obtained and its mth Fourier 
component has the form of 
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which has a phase over a consecutive time step t t+ t,

tumex  (5.79) 

The change of the phase for the mth wave component is given by 
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From the above analysis, it is clear that if the time integration is exact, then the 
spatial discretization would have attenuation and dispersion given by Equations 
5.76 and 5.80. In particular, we have from these two equations, 

1|| G , 1/ ex , as m  0 (5.81) 

Critical Time Step for Time Integration. As for the heat conduction problems, the 
Fourier analysis is also used to determine the critical time step for a time marching 
scheme for pure convection problems. In this use, the analysis is intended to 
prevent the round-off error from growing during time marching, which is 
considered as an important stability issue for time integration schemes. The round-
off error (x, t) is defined as the difference between the exact solution, computed 
with infinite accuracy, and the numerical solution with the actual machine. For 
illustrative purposes, we analyze an explicit time integration scheme applied to 
Equation 5.70,
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where n denotes the nth time step. The round-off error (x,t) is expanded in terms 
of a Fourier series, 
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Again, if the piecewise constant is used and the mth Fourier component is 
substituted for U in Equation 5.82, then the equation for error becomes 
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where subscript n denotes the nth time step. Following Neumann’s analysis, we 
assume m(t) = eat, and we have the following relation upon substitution: 
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where G is the amplification factor and c = u t/h. To prevent the error from 
growing in time, it is necessary that 

1)cos1)(1(21|)1(||||| mhccetuheG mhita    (5.86) 

This gives the well known Courant–Friedrichs–Lewy (CFL) criterion for 
stability,

1
h
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which is a restriction to be respected. It it noted that while the above restriction is 
obtained from the stability analysis, its physical meaning is such that the distance a 
particle travels over a time step can not be greater than the mesh size; otherwise the 
information about the traveling particle may be lost.   

While the Fourier analyses have been used to study different behaviors 
associated with a transient numerical scheme, the equation for the amplification 
factor (i.e., Equation 5.85) is basically the same as that obtained from Equation 
5.76, the two differing only in higher order terms [3, 6]. In fact, in numerical 
analysis literature, Equation 5.85 is often used as the amplification factor for 
dissipation and dispersion analysis [3]. 
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5.2 Steady State Convection-diffusion 

The above discussion has been concerned with pure convection problems where 
the viscosity is neglected, and their numerical solutions found using the 
discontinuous finite element approach. Pure convection is an idealization, since in 
the real world thermal fluids systems are dissipative. In this section, we focus on 
the numerical aspects of the discontinuous solution of convection-diffusion
problems. Convection-diffusion problems are known to exhibit oscillations in their 
numerical solutions and suppression of these types of oscillations requires 
consideration of various factors. The origin of numerical oscillation associated 
with a convection term, and its analysis, is also discussed. 

5.2.1 1-D Problem 

The steady state convection diffusion equation is a useful system to illustrate the 
oscillatory behavior of the numerical solution, when the exact solution changes 
rapidly across a thin boundary layer, over which the dissipative mechanism is 
significant. For a 1-D steady state convection-diffusion problem with temperatures 
fixed at the two boundaries, the mathematical statement is given below, 
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From the physical point of view, the above equation represents a balance 
between the convection and diffusion mechanisms in the system. The exact 
solution for the system is simple and has the following form: 
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 To develop a discontinuous finite element formulation, the equation is split into 
two first order equations, 
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The domain is then discretized into N elements as shown in Figure 5.5, and the 
above equations are integrated over element j. After integration by parts, one has 
the following results: 
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where two types of numerical fluxes are used, and subscript x denotes the 
derivative, e.g., wx = dw/dx. The numerical fluxes associated with diffusion are 
given by Equation 4.20, which, for 1-D problems, takes the following form: 
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For convection flux, a simple upwinding scheme is used, and one has the 
following convective fluxes: 
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The unknowns (qh, Th) may be approximated with a polynomial as local basis 
functions,
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where k is the order of the polynomial and for 1-D problems k+1 = Ne, with Ne
being the number of nodes per element. With the numerical fluxes for diffusion 
and convection defined above, and making use of the Galerkin approximation 
procedures, we obtain the following matrix equation: 
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where, as usual, subscript () refers to the element; subscript B denotes the matrices 
associated with element boundary integrals; and E, G, J, and N are matrices 
associated with element calculations. Note also that for this problem, J is related to 
H such that J = DHT. This suggests that appropriate scaling would render J to be H
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transposed [9]. The above matrix equation can be further written in a simplified 
form: 

FKU  (5.98) 

where K is the final matrix including the contributions from both the domain and 
boundary integrals, U = (qT,TT), and F is the source term. The unknowns U are 
obtained by inversion of the matrix equations above. 

The numerical procedure for the computations is essentially the same as for 
steady state heat conduction calculations discussed in Chapter 4. Again, it is worth 
emphasizing that the element-wise sweep, coupled with successive substitution, 
provides perhaps the most convenient, though arguably the most efficient, 
algorithm for a numerical solution. By this approach, the field is initialized as zero 
to start, and an element is selected at the boundary. The calculations are performed 
element by element to sweep through the entire domain. The unknowns obtained 
for an element are immediately available to the neighboring elements, and are 
applied in boundary source terms. The procedure is iterative and iteration is 
considered converged if the successive solutions are within a preset tolerance 
measured in a norm. 

Example 5.3. Consider the 1-D convection diffusion problem defined below, 

02

2

dx
TdD

dx
dTu      ]1,0[  (5.7e) 

0)0(T , 0.1)1(T  (5.8e) 

with u being the convection velocity. Calculate the temperature distribution using 
the discontinuous finite element method. 

Solution. In the following equations, )1(
12C and )2(

12C  are the values of C12 at the start 
and end points of each element. The following values were used for calculations: 

)1(
12C  = )2(

12C = 0 at inner nodes (central scheme); at the boundary j = 1, we set 
)1(

12C 1/2 and at j = N+1, )2(
12C –1/2. Also, we set C11~O(1/h). The matrix 

equations for (k = 0) and (k = 1) are given below. 
For a constant element approximation (k = 0), the matrix equation takes the 

following form: 

 for u > 0, 

(1) (2)
12 12

(1) (2)
1112 12

( )

( ) 2
jj

j

qh C C
TD C C DC u
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111111
)1(

121
)2(

12

1
)1(

121
)2(

12

)()2/1()2/1(
)2/1()2/1(

jjjjj

jj

uTTTDCqCDqCD
TCTC

(5.9e) 

 and for u  0, 

(1) (2)
12 12

(1) (2)
1112 12

( )

( ) 2
jj

j

qh C C
TD C C DC u

(2) (1)
1 112 12

(2) (1)
1 1 11 1 1 112 12

(1/ 2 ) (1/ 2 )

(1/ 2 ) ( 1/ 2 ) ( )
j j

j j j j j

C T C T

D C q D C q DC T T uT
(5.10e)

For the linear elements (k=1), the matrix equations have the forms below: 

 for u > 0, 

(1)
12

(2)
112

(1)
1112

(2) 11112

/ 3 / 6 1/ 2

/ 6 / 3 1/ 2

/ 2 / 2 / 2

/ 2 / 2 / 2

j j j

j j j

j

j

h h C q
h h C q

TDC D u DC u
TD DC u u DC

                 

1111
)2(
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11
)1(
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1
)2(
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jj

jj
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TDCqCD
TuDCqCD
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(5.11e)

 and for u  0, 

(1)
12

(2)
112

(1)
1112

(2) 11112

/ 3 / 6 1/ 2

/ 6 / 3 1/ 2

/ 2 / 2 / 2

/ 2 / 2 / 2

j j j

j j j

j

j

h h C q
h h C q

TDC D u DC u
TD DC u u DC
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1
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jj

jj

j

j

TuDCqCD
TDCqCD

TC
TC

(5.12e)
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 The above algorithm is implemented and numerical computations were made 
for various conditions, including the effects of mesh sizes and the velocity of 
convection. Some of these results are given in Figure 5.3e. 
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      (a)                                                                     (b)

Figure 5.3e. Computed results for 1-D steady state convection-diffusion problems: (a) effect 
of element numbers on temperature distributions (u = 100, D = 1), and (b) effect of u on 
temperature distributions (D = 1) 

5.2.2 Origin of Oscillatory Stability 

The above results show significant oscillation near the sharp front when 10 linear 
elements are used and u is large. These oscillations are clearly non-physical and are 
caused by the numerical approximation scheme. To understand this problem, we 
consider a piecewise constant approximation (the simplest case) and we also turn 
off the upwinding. This gives rise to the following equation:  

(1+0.5 ) Tj–1 + 2Tj (1 0.5 )Tj+1 = 0 (5.99)

where  = u x/D, i.e., is a local Peclet number based on the element length x. 
For this relatively simple case, an exact solution to the above discretized 

equation can be obtained [7], 

j

j BAT
5.01
5.01

00  (5.100) 

where A0 and B0 are chosen to satisfy the boundary conditions (Equation 5.88b). 
From the above equation, it is clear that the numerical solution will start to 
oscillate between the elements if  > 2, as the terms of (–1) j appear. The 
oscillations will not occur if  2, however.  
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We may also study the oscillation behavior in the numerical solution by 
analyzing the eigenvalues of the matrix of Equation 5.99 when combined with 
boundary conditions (Equation 5.88b). This system has the form 

2 1

3

1

1

       0
            
                
                      
                         0
                        

N

N N

b c T aT
a b c T

a b    c T
a    b T cT

(5.101) 

where a = (1+0.5 ), b = 2, and c = (1 0.5 ). The eigenvalues of the above 
tridiagonal matrix are calculated by  

)cos()(2 2/1
N
jacbj ,       j = 2, 3, …, N.  (5.102) 

The oscillatory solutions for this problem are associated with the occurrence of 
complex eigenvalues. It is seen from the above relation that the condition ac  0 is 
required for the eigenvalues j to be real. Substituting for a and c gives the 
condition

(1+0.5 ) (1 0.5 )  0   or   2.  (5.103) 

Once again,  > 2 leads to an oscillatory solution, which is consistent with the 
analysis following Equation 5.100. 

In general, bounds on the eigenvalues for a matrix A of dimension N N are 
given by the Gershgorin circle theorem [8], 

N

ii ij
j i

a a  (5.104) 

Thus, the eigenvalues of A lie in the union of circles associated with each row of 
A. Carey and Oden [10] use the Gershgorin circle theorem to analyze Equation 
5.101 for different values of . In the range 0< 2 the center of the Gershgorin 
circle lies at {–2D/ x2,0} in the complex plane, with a radius of 2D/ x2; and all 
eigenvalues of the matrix in Equation 5.101 lie on the negative real axis. Thus no 
oscillation occurs. As  increases, i.e., as D decreases, the radius reduces and the 
center of the circle moves closer to the origin. At  = 2 the centre is at (–u/ x, 0)
with radius u/ x = 2D/ x2. For  > 2 the radius remains constant at u/ x but the 
center migrates to the origin and the eigenvalues are complex, thereby producing 
oscillatory solutions. 
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Carey and Oden also studied the spectrum properties of discrete oscillatory 
matrices, which help to explain the origin of the numerical oscillations and 
dissipations in convection-diffusion problems. Their study led to the following 
conclusion: the eigenvalues of the matrix –A must all be negative and real if 
oscillation is to be avoided, where A is the matrix associated with Equation 5.101. 

As might be expected, an introduction of the upwinding scheme helps to 
prevent oscillation. If the same piecewise constant approximation is made, the 
discrete equation becomes as follows: 

(1+ ) Tj–1 + 2 (1 0.5 ) Tj  Tj+1 = 0 (5.105) 

Using the same method as discussed above, one can show that the matrix 
generated using Equation 5.105 has real eigenvalues for all values of . We note 
that in general, the upwinding solution is not oscillatory but can be overdissipative. 

5.2.3 Steady Convection-diffusion in Multidimensions 

With the understanding acquired from the study of the above problem, we now 
develop a discontinuous finite element formulation for the solution of the 
generalized multidimensional problems of convection and diffusion. We consider a 
convection-conduction problem defined below, 

0QTkTu   (5.106a) 

              0TT D   (5.106b) 

)( TThTkn N     (5.106c) 

where for simplicity, a constant velocity field u is assumed. The problem is also 
schematically shown in Figure 5.6. 

Again, we split the equation into a set of first order differential equations, 

Tkq ; 0QT qu  (5.107) 

The computational domain  is now discretized into N finite elements and the 
discontinuous formulation is considered for element j (see Figure 5.3). Multiplying 
the first and second equations in Equation 5.107 by test functions w and v and 
integrating over the element, one has  

j j

d k T dVq w w (5.108a)

j j j

v T dV v dV vQdVu q (5.108b) 
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Figure 5.6. Definition of a multidimensional steady state convection-diffusion problem 

Integration-by-parts once yields the following weak formulation for the 
discontinuous finite element solution, 

( )
j j j

jdV T k dV kT dSq w w n w    (5.109a) 

j j

v dV T v dVq u

j j j
j jvQdV vdS T vdSq n u n  (5.109b) 

where nj is the outward normal unit vector to j, the boundary of the element.  
 We now seek to approximate the exact solution (q,T) with functions (qh,Th) in 
the finite element broken space, whence we have the following results: 

   ˆ( )
j j j

h h h jdV T k dV kT dVq w w n w  (5.110a) 

j j j
h hv dV T v dV vQdVq u

ˆ
j j

h j h jvdS T vdSq n u n   (.5.110b) 

where two types of numerical fluxes need to be used. One type is the diffusion 
numerical fluxes, ( hh T̂,q̂ ), which can be taken from Table 4.1. The convection 
numerical fluxes are of the form given by Equation 5.27. For convenience, these 
consistent diffusion and convection numerical fluxes are given below: 

Prescribed
heat flux 

Prescribed
temperature 

T
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 Diffusion flux: ][][}{ˆ 1211 qCqq TC  (5.111a) 

 Diffusion flux: ][][}{ˆ
1222 TCTT Cq  (5.111b) 

  Convection flux: ][}{ TTT uCuu  (5.111c) 

Note that Cu is a matrix for convection flux. 
With the approximation of unknowns using the polynomial basis functions and 

the Galerkin approach taken, the following matrix equations are obtained: 

,

xx

y y

z
z

x y z T u

qE 0 0 H
q0 E 0 H

0 0 E H q
J J J G T

, , , ,

, , , ,

, , , ,1

, , , , , ,

xxx i xy i xz i x i
NS

yx i yy i yz i y i y

zx i zy i zx i z ii z
x i y i z i T i T u i

qE E E H
qE E E H

E E E H q
J J J G G T

, , , , , , , ,

, , , , , , , ,

, , , , , , , ,1

, , , , , , , , , , ,
( , )

xxx B i xy B i xz B i x B i
NS

yx B i yy B i yz B i y B i y

zx B i zy B i zz B i z B ii z
x B i y B i z B i T B i T u B i T

NB i

qE E E H 0
qE E E H 0

E E E H 0q
J J J G G ST

(5.112) 

where NS is the number of sides of the element, the matrices with subscript i under 
summation are those from the boundaries of element j, and those marked with 
subscript B represent the contributions from the neighboring elements. The 
subscript (NB, i) represent the ith neighbor element that shares the ith side of 
element j. The vector S on the right includes the contribution from the source and 
boundary conditions, if the element shares its element boundary with the domain 
boundary. See Figure 5.3 for element j and its geometric relation to its surrounding 
elements. 
 The above equation is very similar to its counterpart of the pure conduction 
matrix equation in Equation 4.24 except for the convection term, which comes 
from the convection effect on temperature only. This portion of the contribution to 
the matrix is calculated as 

,
, , ( )

j i
T u km k mG dSu  (5.113a) 
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,
, , , , , , ,

j i
T u i km T u B i km u k mG G dSu n n C n  (5.113b) 

where the definition of the shape functions k, and other matrix quantities in 
Equation 5.122, were given in Section 4.3. 

For actual computations, the matrices may be assembled such that all the 
unknowns of element j are stored in the column vector of U = [qx

T, qy
T, qz

T,TT]T = 
[qx,1, qx,2, …, qx,Ne, qy,1, qy,2, …, qy,Ne, qz,1, qz,2, …, qz,Ne, T1, T2, …, TNe]

T with Ne

being the number of the nodes of element j, and other available information from 
the neighbor elements is included in the force term F, which also includes the 
contribution from S. The final matrix equation takes the following form: 

FKU  (5.113c) 

where K is the resultant matrix having contributions from both the domain and the 
boundary. The computational procedure is exactly the same as used for the 
discontinuous finite element solution of the 1-D steady convection-diffusion 
problems discussed above, and thus is not elaborated upon here.  

We emphasize that the oscillatory behavior associated with the 1-D convection-
diffusion problems occurs also in multidimensional convection-diffusion problems. 
The analysis of this issue in multidimensional geometry, however, is much more 
difficult, because the matrix in general becomes much larger and more complex. 
The basic theorem governing the behavior of the matrix still holds, that is, the 
eigenvalues of the matrix must remain non-negative and real in order to avoid 
spurious oscillation in the numerical solutions.  

The above algorithm has been applied to obtain the solution for 2-D steady 
state heat convection-conduction problems. One of these results is plotted in Figure 
5.7. The solution shown is for the 2-D convection-diffusion problem defined by 

   2

2

2

2

y
T

x
TD

x
Tu  (5.114a) 

with the boundary conditions  

0)0,(xT ; 0)1,(x
y
T ;

5.00
5.01

),0(
y
y

yT  and 0),1( yT  (5.114b) 

The discontinuous finite element discretization used an unstructured triangular 
mesh. The convection flux (Equation 5.111c) is used to model the convective 
effect. From Figure 5.7, it is apparent that as the ratio of convection over diffusion 
progressively increases, convection plays a more important role and the 
temperature contour becomes more distorted, which is consistent with the theory of 
transport processes associated with this problem. 
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5.3 Transient Convection-diffusion

We now study the time dependent problems of convection and diffusion. Since 
much of the framework is the same as for the steady state convection-diffusion 
problems, only the general discontinuous finite element formulation for 
multidimensional problems is presented here. This is then followed by stability 
analyses.

5.3.1 Multidimensional Problem

A transient convection-diffusion problem defined in a multidimensional domain 
takes the following form: 

QTkT
t
T u ],0( T (5.115a)

DTT ],0( TD   (5.115b) 

)( TThTkn ],0( TN (5.115c)

)()0,( 0 rr TtT   (5.115d) 

To develop a discontinuous finite element formulation for the problem, the 
governing differential equation is split into a system of first order differential 
equations, 

Tkq ; 0QT
t
T qu  (5.116) 

 The domain is now divided into a set of elements, and we consider a typical 
element, say, the jth element as shown in Figure 5.3. Multiplying the first and 
second equations in Equation 5.116 by test functions w and v and integrating over 
the element, one has the following form of solution: 

j j

dV k T dVq w w   (5.117a) 

j j j j

Tv dV v T dV v dV vQdV
t

u q  (5.117b) 

Integration-by-parts and approximating the exact solution (q,T) with functions 
(qh, Th) in the finite element broken space, one obtains the desired discontinuous 
finite element solution, 
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(a) u/D = 1 

        
(b) u/D = 10 

        
(c) u/D = 100 

Figure 5.7. Computed results for a 2-D convection-diffusion problem showing the effect of 
convection on the temperature distribution in the system
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ˆ( )
j j j

h h h jdV T k dV kT dSq w w n w  (5.118a) 

j j j
h h

Tv dV v dV T v dV
t

q u

ˆ
j j j

h j h jvQdV vdS T vdSq n u n   (5.118b) 

where two types of numerical fluxes are used. One type is the diffusion numerical 
fluxes, ( hh T̂,q̂ ), which can be taken from Table 4.2. The convection numerical 
fluxes are of the form given by Equation 5.27. With the approximation of 
unknowns using the polynomial basis functions and taking the Galerkin approach, 
the following matrix equations are obtained: 

,

x xx

yy y

z
z z

x y z T uT

q qE 0 0 H0 0 0 0
q q0 E 0 H0 0 0 0

0 0 E H0 0 0 0 q q
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yx B i yy B i yz B i y B i y

zx B i zy B i zz B i z B ii z
x B i y B i z B i T B i T u B i

NB i

qE E E H
qE E E H

E E E H q
J J J G G T
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, , , , , ,
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0
0

xxx i xz i xy i x i
NS
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zx i zy i zz i z ii z
x i y i z i T i T u i T

qE E E H
qE E E H

E E E H q
J J J G G ST

    (5.119) 

where MT is the mass matrix associated with the temperature field, and the 
definitions of the other terms are the same as for the steady state parts (see Section 
5.2.3 and Equation 5.112). In principle, one could write the above equation in 
terms of  matrices and vectors, 

d
dt
UM KU F  (5.120) 

where M is the resultant mass matrix, which, in this case, has a contribution from 
the mass matrix associated with temperature.  
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From Equations 5.119–5.120, the matrix M is a singular matrix. Thus in 
applications, it is often useful to separate the matrix equations into two subsystems 
with one for fluxes and the other for temperature:  

, , , ,

, , , ,
1

, , , ,

NSx xx i xy i xz i x ix x

y yx i yy i yz i y iy y
i

z zx i zy i zz i z i
z z

q qE 0 0 H E E E H

0 E 0 q H T E E E q H

0 0 E H E E E Hq q

T

, , , , , , , ,

, , , , , , , , ( , )
1

, , , , , , , ,
( , )

NS xx B i xy B i xz B i x B i xx

yx B i yy B i yz B i y B i yNB iy
i

zx B i zy B i zz B i z B i z
z NB i

qE E E H S

E E E q H T S

E E E H Sq

(5.121a)

, , , , , , , , , ( , )
1 1

( ) ( )
NS NS

T T u T i T u i T B i T u B i NB i
i i

d
dt
T

M G T G G T G G T

, , , ( , )
, , 1 , , , ,

NS

l l i l B i Tl l l NB i
l x y z i l x y z l x y z

J q J q J q S  (5.121b) 

The computational procedures may now be described as follows. For a given 
time step, the calculations start from an element located at the domain boundary 
and sweep element by element through the entire domain. The unknowns obtained 
for the element are immediately available to the neighboring elements, and are 
used in boundary source terms. This way the terms with subscript (NB,i) can be 
moved to the right-hand side of the equation and added to the source. At every time 
step, the two equations above need to be solved iteratively. A typical procedure is 
as follows. The temperature is first calculated using Equation 5.121b with the q
values available, and then q is updated using Equation 5.121a. The procedure is 
iterative and iteration is considered converged if the successive solutions are within 
a preset tolerance (see Equation 4.14). Then the next time step is selected, and the 
above procedure is repeated until the total time is equal to the preset value. 

As an alternative treatment, the vector q may be eliminated by combining the 
two equations above. If this is done, then we have the matrix equation in terms of 
T only, 

    FTKTM
dt
d

T  (5.122) 

where K is the combined element stiffness matrix and F is the combined source 
vector. Equation 5.122 can then be integrated using a time integrator.  

Whichever procedure one chooses, the oscillatory behavior associated with 
steady convection-diffusion problems may also appear in transient solutions. In 
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particular, they may occur near the sharp fronts if appropriate conditions are not 
satisfied. To perform the analysis of spurious oscillations in the solution, it is often 
more convenient to assemble the element equations shown in Equation 5.122 into a 
global matrix equation,  

1 1g
g g g g g

d
dt
T

M K T M F AU B  (5.123) 

where subscript g denotes global quantities, A = Mg
–1Kg and B = Mg

–1Fg. Carey 
and Oden [10] analyzed the eigenvalues for the above equation system and show 
that, as a rule of thumb, the eigenvalues of the matrix –A must be negative and real 
in order to eliminate unphysical oscillations in the numerical solution.  

The additional integral and Fourier analysis of the transient convection-
diffusion problems will be discussed in the next section. An important point to 
remember is that if an explicit time step is used, the critical time step needs to be 
selected.  Here, let us consider some calculated results. 

The above algorithm, based on Equation 5.121, has been applied to solve a 2-D 
convection-diffusion problem. The governing equation for the problem has the 
following statement: 

2

2

2

2

y
T

x
TD

x
Tu

t
T ],0(]1,0[]1,0[     (5.124a)   

 with the boundary conditions  

0),0,( txT ; 0),1,( tx
y
T ;

5.00
5.01

),,0(
y
y

tyT  and 0),,1( tyT

(5.124b) 

and the initial data 

5.00
5.01

),,(
2

y
yx

tyxT  (5.124c) 

An unstructured mesh and linear triangular elements are used to carry out the 
calculations. An explicit time integration is used with a time step selected to satisfy 
the restricted CLF condition. The computed results are given in Figure 5.8. 

5.3.2 Stability Analysis 

5.3.2.1 L2-Stability – Integral Analysis 
A complete L2-stability analysis, including error bounds, has been given by 
Cockburn and Shu [11] for general nonlinear convection-diffusion problems. For a 
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basic understanding, a linear problem is analyzed here to show how the stability 
criterion from the theory of partial differential equations [2] can be used to enforce 
stability on a numerical scheme, and thus to provide guidance on the choice of 
numerical fluxes.  

The linear convection-diffusion problem to be analyzed is mathematically 
stated as 

TDT
t
T 2)(u  (5.125) 

t = 0.00125                                            t = 0.0025

t = 0.005                                            t = 0.0075

Figure 5.8. Evolution of temperature distribution in a convection-diffusion problem 
calculated using the discontinuous finite element method (D/u = 0.01) 
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with a periodic boundary condition. Here u is a constant vector. As usual, we first 
work out the L2-stability result for the continuous case, and enforce the condition 
on the discontinuous formulation. Thus, the above equation is integrated with 
respect to T over the spatial domain, 

( ) ( )TT dV T T dV T T dV
t

u  (5.126) 

Integrating by parts, one has 

2
21

2 2
d T dV T dS TD T dS D T TdV
dt

u n n

(5.127) 

Applying the periodic boundary conditions in Equation 5.127 yields the 
following equation, 

2
0

2
d T dV dV
dt

q q    with    TDq  (5.128) 

Here, q is defined following Cockburn and Shu [11]. Integrating over t [0, T],
one has the stability result for the continuous case, 

2 2

0

1 1( , ) ( ,0)
2 2

T

TT dV dV T dVr q q r  (5.129) 

For the discontinuous finite element formulation, we obtain the following 
equation by summing up the contributions from all elements: 

2 2 2
,

0

1 1( , ) ([ ]) ( ,0)
2 2

T

h T h T C hT dV q dV T dVr w r

(5.130) 

where ])([, wCT  represents the errors due to the jumps across the inter-element 
boundaries. It is calculated by 

,
01

([ ]) [ ( )] [ ( )]
T

j

N
T

T C E
j

t t dS dtw w C w  (5.131a) 

where [w(t)] is defined as 

T
hzhyhxh qqqTt ,,, ,,,)(w  (5.131b) 
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and CE is a matrix:  

0002/
0002/
0002/

2/2/2/2/||

D
D
D

DDDu

EC  (5.131c) 

From Equation 5.130, it transpires that one needs to have 0])([, wCT to 
ensure the stability. 

5.3.2.2 L2-Stability – Discretized Analysis 
Here we consider the stability analysis of discretized equations. Toward this end, 
we consider the 1-D convection-diffusion problem as follows:  

2

2

x
TD

x
Tu

t
T (5.132) 

To simplify the notation below, an inner product operator is introduced, 

( , )a b a b dV  (5.133) 

For an element, e.g., element j, we have the following discretized discontinuous 
finite element formulation: 
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where v is the weighting function, and the operator a(s1, s2) is defined by the 
following expression: 
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For a 1-D case, Warburton [12] shows that the above operator may be written 
in a general form,
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This will equip the operator with the following property: 
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TvaTav ,)1,1()1,1(,  (5.137) 

Consequently, we have the following relation: 
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A combination of the two equations above yields 
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Setting v = T, and summing up over all elements, one has the following stability 
result:
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5.3.2.3 Fourier Analysis 
We present a generalized Fourier analysis for the transient convection-diffusion 
problems in this section, and will use the analysis to determine the critical time 
steps for explicit time integration for the solution of the problem. Toward this end, 
we consider the discretized ordinary different equation system of the form, 

   BAUU
dt
d  (5.142) 
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If the simple Euler forward scheme is used for time integration, then the 
following numerical implementation is obtained: 

ttttt BUAIU )()()(  (5.143) 

For the purpose of determining the critical time step, B = 0 may be set. As a result, 
the above equation can be written for errors, 

)()()( tttt AI  (5.144) 

where (t) = U(t) – Uexact(t). Repeated application of the above recursive relation 
gives the following equation: 

 )0()())1(( 1AI mttm  (5.145) 

For a stable time marching scheme, the amplification factor should decrease,  

1
|)0(|

|))1((| tm  (5.146) 

This condition requires that | I – A t|m+1 < 1, which means 

1|1| ti   or  it max/2  (5.147) 

where i is an eigenvalue of the matrix A. The convection often causes matrix A to 
be asymmetric and the eigenvalues may be complex. Assuming  i j , we 
then have the stability constraint that defines the critical time step used for the 
explicit time marching, 

2t  (5.148) 

Here the imaginary part  provides the oscillation, but not growth. The above 
critical time step is obtained from the time marching stability consideration, which 
requires that the errors at every ensuing step are not larger than the previous error. 
For convection-diffusion problems, the convection term causes numerical 
oscillation, as we have seen in the steady state case. For the transient case, the 
oscillation levies another time step constraint on the time marching scheme.  

Let us determine the time step from the requirement that unphysical oscillation 
be suppressed. Using the exponential matrix exp(At), the exact solution to the 
differential equation (Equation 5.142) may be written as [13] 

BAUA )exp())(exp( t
dt

td  (5.149) 
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On integration over [t0, t], one has the following result: 

BAAUAU 1
000 ))(exp(1)())(exp()( tttttt  (5.150) 

Given the initial data )0(U = 0, the above recursive relation will become, after 
m time steps, 

BAAU 1)}exp(1{)( tmt  (5.151) 

where we have used t = t0+ t. To avoid numerical oscillation, we need to have the 
condition,

0)exp( tA  (5.152) 

Otherwise, exp(–mA t) will change sign from one time step to the next, which 
causes oscillation. Carey and Oden [10] showed that the exponential matrix can be 
calculated using the Pade approximations, 
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where P(A t) and Q(A t) are polynomials of A t. In a simple Euler forward 
scheme, P(A t) = I – A t and Q(A t) = I. Thus the solution will oscillate if  
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Therefore, if no numerical oscillation occurs for this time scheme, then the time 
step must be such that 

i

t
max

1  (5.155) 

In comparison with Equation 5.147, we see that the time step limit to suppress 
oscillations due to integration is half that required for stability of the forward time 
integration scheme. 

Additional analysis of the problem is also given in the context of finite volume 
methods, where the time step required for explicit time integration is discussed for 
various schemes [3]. Warburton [12] argues that the critical time step should take 
into account both the convection and diffusion effects, and he showed that t = 
min (c1uh/k2, c2Dh2/k4) to ensure stability, where h is the mesh size, k is the order 
of polynomial, and c1 and c2 are two Courant constants. The first term accounts for 
convection, while the second accounts for diffusion. This argument is consistent 
with the analysis above.
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5.4 Nonlinear Problems

Thus far, our attention has been on the linear convection and diffusion problems. 
Another major class is the nonlinear convection-diffusion problems, where 
nonlinear convection plays a crucial role in generating and propagating sharp 
fronts and discontinuities such as shock waves in compressible flows. Benchmark 
problems for nonlinear convection and diffusion are Burgers’ equations. We 
consider both inviscid and viscous forms of Burgers’ equations. 

5.4.1 1-D Inviscid Burgers’ Equation 

5.4.1.1 Basic Considerations 
Let us start with a 1-D inviscid Burgers’ equation, which is an idealized case for 
shock wave and rarefaction wave phenomena in compressible fluid flow and heat 
transfer systems. The 1-D inviscid Burgers’ equation has the following statement: 

0
x
uu

t
u  (5.156a) 

with the initial data given by 
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For this problem, the characteristic curve along which u is constant is given by 

Cu
dt
dx ; 0

dt
du  (5.157) 

where C is a constant. By integrating the above equation, the following expressions 
for the characteristic curves are obtained: 

0xCtx ; Cu  (5.158) 

The two constant regions in the initial data are carried into the domain from the 
boundary, and remain constant along the characteristic curves, which become, on 
applying the initial data, 

Ctxx0 ; Ctx  (5.159) 

Over the range – < x0 , the characteristic curves are dependent upon the 
relative values of uL and uR. In the case of uL < uR,



 Convection-dominated Problems 203
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If the limiting case is taken such that x0  0, then we have the following 
limits for u:   
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where the first equation is in the region – <x0<0 and the second equation is taken 
in the region 0<x0<– Thus, the solution becomes 

RL u
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t
xu  (5.162) 

If uL > uR, however, the above limiting process would imply that uL<uR, which 
would violate the given condition. Let us then consider the limiting process: x0

0,
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We thus have the following consistent expressions: 
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To summarize the above results, for initial data, 
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we have the following solution for u(x, t):
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and for initial data, 
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the solution for u(x, t) is given by 
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These results are plotted in Figures 5.9 and 5.10, where rarefaction waves and 
shock waves are generated depending on the initial data. For the case of initial data 
uL < uR, rarefaction waves are generated and the fan of characteristics populate the 
area that emanates from the origin, as shown in Figure 5.9. For the case of initial 
data uL > uR, a shock wave is degenerated and the discontinuity present in the 
initial data propagate from the left to the right, as sketched in Figure 5.10. This 
basic understanding will guide us to develop various discontinuous finite element 
algorithms, which allow appropriate handling of these discontinuities. 

5.4.1.2 Discontinuous Finite Element Formulation   
We now consider the discontinuous finite element formulation for the inviscid 
Burgers’ equation, 

0
x
uu

t
u              )()0,( 0 xuxu  (5.169) 

with the boundary conditions u(0) = 1 and u(1) = 0. The above equation may be 
written in a generic form, 
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where f(u) = 0.5u2.
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uL = 0 uR = 1 

Fan of characteristics 

x

(a)

x

u

t
u = x/t 

uR

uL

(b)

Figure 5.9. Solution of an inviscid Burgers’ equation with initial data: uL < uR, which gives 
rise to the rarefaction waves: (a) characteristic curves – a fan of characteristics emanating 
from the boundary singularity as if a fluid flows out of a source, and (b) a 3-D view of a 
wave profile at time t evolving from that at t = 0: u varies from 0 to 1 along the 
characteristic fan indicating expansion (or rarefaction) waves spreading out as time 
increases
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 To apply the discontinuous finite element method, the domain is first 
discretized into N elements. The above equation is then integrated with respect to 
the weighting function v over element j,

1

1 1 1
ˆ( ) ( ) ( , )
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j
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h j j j
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u vv f u dx v x h u u
t x

x

u
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uL = 1 uR = 0 

x = 0.5(uL+uR)t
shock path 

x

t

(a)

Figure 5.10. Solution of an inviscid Burgers’ equation with the initial data: uL > uR. Shock 
waves are generated and propagate from left to right: (a) characteristics of shock waves and 
(b) 3-D view of shock wave in motion  
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0),(ˆ)( jjj uuhxv   (5.171) 

where the numerical fluxes (a,b) have been used at the element boundaries.  
Cockburn [4, 5] showed that a well behaved numerical flux needs to satisfy the 

following conditions: (i) locally Lipschitz and consistent with the flux f(u), i.e., 
(u,u) = f(u), (ii) a non-decreasing function of its first argument, and (iii) a non-

increasing function of its second argument. Some of the numerical fluxes have 
been widely used in the definite difference approximations, and are found also to 
satisfy these consistency conditions. These fluxes are listed below for convenience: 

(i) the Godunov flux: 
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(ii) the Engquist–Osher flux: 
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(iii) the Lax–Friedrichs flux: 
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(iv) the local Lax–Friedrichs flux: 
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(v) the Roe flux with “entropy fix”: 

otherwise),(ˆ
)],max(),,[min(for0)('if),(
)],max(),,[min(for0)('if),(

),(ˆ

a,bh

babauufbf
babauufaf

bah
LLF

Reo  (5.176) 



208 Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer 

For an inviscid Burgers’ problem, the Godunov flux G may be used, which is 
known to produce the smallest amount of artificial viscosity. The local Lax–
Friedrichs flux produces more artificial viscosity than the Godunov flux, with 
similar numerical performance. Cockburn [4] shows that as the degree k of the 
approximate solution increases, the choice of the numerical flux does not have a 
significant impact on the quality of the approximations. 

The calculations can begin once the numerical flux is selected. The unknowns 
may be approximated with a polynomial as local basis functions, 
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where k + 1 = Ne, with Ne being the number of nodes per element. Substituting the 
above equations into Equation 5.171 and taking the Galerkin approximation by 
setting v = uh, followed by the numerical manipulations, we have the following 
matrix equation: 

)()( U
U

M L
dt

d j (5.178) 

where the subscript ( ) refers to the element. For example, U(j) denotes the 
unknowns belonging to element j, and U is the vector containing unknowns at the 
nodal points of the elements, 
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The operator L depends on the choice of the numerical functional flux and it can be 
written in general as 
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 Time integration is now applied to solve the ordinary differential equations 
resulting from the spatial discretization. If a simple Euler forward scheme is used, 
then we have the following time-discretized form for Equation 5.178:  
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n
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where the superscript n denotes the nth time stepping and tn is the time step, for 
which the critical time step must be chosen to enforce the CFL condition. Various 
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integration schemes, discussed for linear convection-diffusion equations, can also 
be employed to integrate the above system of equations in time. It is noted that the 
above approach is linear in accuracy, because of the use of the numerical fluxes 
presented above. Higher order schemes require additional considerations, which 
will be discussed in Section 5.4.3. 

5.4.2 Multidimensional Inviscid Burgers’ Equation

The discontinuous finite element method for 1-D pure convection problems 
discussed above is extended to solve multidimensional inviscid Burgers’ problems 
in this section. We discuss below the formulation and the use of the chracteristics 
decomposition method for the computation of numerical fluxes required to 
complete a discontinuous finite element formulation. 

5.4.2.1 Discontinuous Finite Element Formulation
Let us consider the generalized Burgers’ equation in a multidimensional domain, 

),,()( urGuFu tt 0t  (5.183a) 

0ru )0,( (5.183b)

where ut = u/ t, the nonlinear function F(u) and its derivative are defined as 

)](),(),([)( uhugufuF ;
zyx

)()()()( uhugufuF  (5.184) 

As usual, to develop a discontinuous formulation for the problem, the domain is 
first partitioned into a set of finite elements and a weak form solution is 
constructed over an element, say, element j. The procedure involves integrating the 
differential equation with respect to a weighting function v, and integration by 
parts, to generate a flux term at the boundary, 

:
j j j j

t dV dS dV dVv u v F n F v v G    (5.185a) 

where n is the outward normal of the element and F: v is defined by  

vuhvugvufvF zyx )()()(:  (5.185b) 

and v F n is calculated by  

zyx nnn )()()( uhvugvufvnFv  (5.185c) 
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Since only the normal fluxes are involved in surface integration, the 1-D forms 
of numerical fluxes discussed in the previous section may be used in the normal 
direction for this problem. These normal numerical fluxes Hn can be constructed 
using the values available from adjacent elements during computation and, as in 
other cases considered so far, replace the term F n in the above formulation. This is 
very similar to the procedure discussed above for 1-D inviscid Burgers’ equations, 
and thus all the flux expressions (such as the Godunov flux, etc.) presented in the 
previous section are candidates for multidimensional numerical fluxes, Hn.

Let (NB,k) (k = 1, 2, 3, …, NS) denote the indices of the NS elements that are 
neighboring elements of element j and let j,k, k = 1, 2, 3, …, NS, be the faces of 

j, which are shared with the neighboring elements. See Figure 5.3 for the 
geometric arrangement of element j and its neighbors. Then the weak form integral 
is written as 
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j j
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where uh,j is the nodal values of element j.
For discontinuous formulations, inter-element continuity is not required. Thus, 

virtually any polynomial basis functions can be used to construct the approximate 
solutions to uh on j. For multidimensional problems, the use of tensor products is 
a common approach to construct local interpolation functions. Various forms of 
interpolation functions were discussed in Chapter 3. The discontinuous finite 
element solution has the usual form over a canonical 3-D element, 
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where nk is the number of terms in a complete polynomial of degree k. With these 
substituted into the formulation, and applying the Galerkin approximation, 
followed by extensive but routine algebra, we obtain the final matrix form for 
Equation 5.187, 

SKU
U

M
dt

d j)(  (5.188) 

where U is the unknown vector, M is the mass matrix, K is the stiffness matrix, 
including the portion of normal numerical flux, and S is the source vector, 
including contributions from the neighboring elements. The matrix equation, and 
hence the unknowns, can be solved using the same procedure as described in the 
previous sections.  
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5.4.2.2 Characteristic Decomposition  
For a multidimensional problem, the characteristic decomposition method, also 
called the flux-vector splitting method, may be used to assist in constructing 
numerical fluxes needed for discontinuous finite element formulations. In general, 
a flux vector may be expressed as 

uuFAuuF u )()(  (5.189) 

For a hyperbolic system, the Jacobian A may be diagonalized as shown in 
Section 5.1 to yield  

1( )F u P Pu  (5.190) 

where the diagonal matrix  contains the eigenvalues of A,
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The matrix may be further decomposed into two components, 

 (5.192) 

where and  are composed of non-negative and non-positive parts of ,

2
ii

i                 i = 1, 2, …, N (5.193) 

The flux vectors are now written as two components, 

1( ) ( ) ( ) ( )F u P Pu F u F u  (5.194) 

with the positive and negative fluxes calculated by 

1( )F u P Pu A u ; 1( )F u P Pu A u  (5.195) 

where A+ contains only rightward-moving characteristic information, and A–

carries only leftward-moving characteristic information: A = A+ + A–. For scalar 
linear advection this is just the upwinding flux. 
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The characteristic decomposition of the flux vector allows us to construct the 
numerical fluxes at the boundary more effectively. Consider a constant element 
approximation. Then we can write 

12/1 jjj uAuAF  (5.196) 

Thus the flux at the interface can be evaluated using the upwinding methods, and at 
the interface xj, F(u)+ is calculated by u(xj, t) and F(u) – by  u(xj+1, t).
 In passing, we note that the above formulation and decomposition method can 
also be used to solve a system of hyperbolic problems, in which case there is a 
system of variables defined in either one spatial dimension or multiple dimensions.  

5.4.3 Higher Order Approximations and TVD Formulations 

In many applications, the linear accuracy approximations presented above are not 
adequate, and higher order interpolations are needed. For nonlinear inviscid 
convection problems, a higher order discontinuous method is particularly 
attractive. It not only provides higher accuracy, but also is more efficient in 
suppressing the spurious oscillations appearing in the numerical results, especially 
around discontinuities, provided that the higher order scheme is constructed 
correctly. For the use of higher order spatial approximations, the order of the time 
integration scheme has to be compatible to maintain accuracy. Merely increasing 
the spatial resolution may not eliminate these oscillations, as the numerical 
schemes may not satisfy the Total Variation Diminishing (TVD) property. To avoid 
these oscillatory problems, a numerical scheme needs to be constructed that 
satisfies the TVD property, by using a second order accurate numerical scheme on 
smooth solutions and adding diffusion to the numerical scheme near 
discontinuities. Such numerical schemes, which are often referred to as high 
resolution schemes in the literature, are at least second order accurate on smooth 
solutions, and minimize the spurious oscillations present near discontinuities.
Cockburn and Shu [14–17] show that for a polynomial of order k, the order of an 
explicit temporal integration needs to be k+1 to achieve the desired effects. 
 To be fully consistent with the literature on the subject, we use j =[xj–1/2, xj+1/2]
to define the domain of element j for 1-D problems for both constant and higher 
order polynomial approximations. This use will be exclusively for this section 
(Section 5.4.1). As such, uj refers to the value at the center of the element j and j is 
the averaged value over element j. Note that uj is the same as j for a constant 
element approximation formulation. The difference between uj and j is important 
for constructing slope limiters for higher order approximations.

5.4.3.1 Concept of Total Variation Diminishing 
Much of the work on higher order approximations has been discussed along with 
the TVD scheme. Cockburn and Shu [14] recommend a total variation diminishing 
Runge–Kutta scheme; however, Biswar et al. [18] point out that the classical 
Runge–Kutta was equally satisfactory. For most applications, an explicit time 
integration is used. Since TVD schemes are only first order accurate at the local 
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extrema, alternative reconstruction procedures, for which some growth of the total 
variation is allowed, have also been developed. Among those, we mention the total 
variation bounded (TVB) schemes [14–17], the essentially non-oscillatory (ENO)
schemes [20], and the least extremum diminishing (LED) schemes [19]. 

To illustrate the concept of a total variation diminishing (TVD) scheme, we 
consider a 1-D scalar conservation law, or inviscid Burgers’ equation, 
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x
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t
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where f(u) = 0.5u2 is the flux function. The total variation (TV) of the solution to 
the above problem is defined as  

( ) uTV u dx
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and the total variation for the discrete case is given by 
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A numerical method is considered total variation diminishing, or TVD, if the 
following condition is satisfied: 

)()( 1 nn uTVuTV ; 1( )n n n
j j

j
TV u u u  (5.200) 

where n is the nth time step and subscript j refers to nodal point j. Harten [21–24] 
proved that a TVD scheme is monoticity preserving and a montonic scheme is 
TVD.

Harten [21–24] studied the central finite difference (or constant element) 
scheme for the above equation, 
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Here subscript j denotes nodal point j, which, for a piecewise constant element 
approximation, is the same as the element j. Also, subscripts j+1/2 and j 1/2 
represent the values at the two boundaries of element j. These geometric relations 
are shown in Figure 5.11. Harten proved that the scheme is total variation 
diminishing, provided that it can be written in the form of 
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j uucuuc

dt
du

(5.202)
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with non-negative coefficients cj–1/2  0, cj+1/2  0, and for an explicit scheme   
t(cj–1/2 + cj+1/2)  1. The coefficiens cj–1/2 and cj+1/2 may be nonlinear. Furthermore, 

an explicit time integration scheme is required to satisfy the CLF condition.

Figure 5.11. Construction of a flux limiter, using constant element approximation. The 
nodal value is at the center of the element, and the boundaries of element j are marked by  
xj–1/2 and xj+1/2

 The spatial and explicit time discreitization may also be written in the 
following form: 
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where C is an arbitrary constant. Harten’s theorem states that the algorithm given 
in a general form of the above equation is TVD, i.e., the criterion expressed by 
Equation 5.200 is satisifed if  the constants are such that 
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One thus needs to construct a numerical flux that satisfies the above TVD
criterion. It is important to note that an explicit time scheme may not be TVD even 
if it satisfies the CFL condition. For example, one can show that an explicit Lax–
Wendroff scheme does not satisfy the TVD conditions in the range of time steps 
that satisfy the CFL condition [6]. It is worth noting that the corrections making a 
method TVD are always associated with nonlinear limiting even for linear 
convection problems. We consider these limiting corrections below. 

5.4.3.2 Flux Limiters 
The flux limiter approach is based on the idea of approximating flux expressions to 
obtain higher accuracy, while maintaining the TVD property. We limit the flux of u
between elements and subsequently limit spurious growth in u near discontinuities. 
Godunov [6] further proved that a linear TVD scheme is doomed to be first order 
accurate. To overcome this difficulty, numerical fluxes are constructed by 
combining the high and low order approximations,  

uj

uj+1

uj 1

xj 1 xj xj+1xj 1/2 xj+1/2

element j
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][ 2/12/12/12/12/1
L
j

H
jj

L
jj ffff  (5.205) 

where superscripts L and H are the low and high order approximations of f, and  
j 1/2 is a correction factor referred to as the flux limiter, and is designed in a 

numerical algorithm to satisfy Harten’s TVD condition. Here, to make the 
presentation clear, we consider the constant element approximation, which is 
equivalent to the finite volume scheme. The purpose of the limiter is to regulate the 
diffusion to the solution. It acts as a nonlinear anti-diffusion factor to the lower 
order flux approximation, in order to improve its accuracy without generating 
spurious oscillations and violating the TVD property. All the numerical fluxes 
using flux limiters are constructed similarly and consist of two pieces: a high order 
flux (e.g., the Lax–Wendroff flux) for smooth regions of the flow, and a low order 
flux (e.g., the flux from some monotone method) near discontinuities. 

We illustrate this point through a simple case study. Consider a pure convection 
problem with a constant velocity c>0,

0
x
uc

t
u  (5.206) 

The flux functions for a constant element scheme may be approximated by the 
following flux functions: 

j
L
j cuf 2/1                                for upwinding  (5.207a)

        )(5.0 12/1 jj
H
j uucf              for central scheme (5.207b)

If a combined approximation with a flux limiter is used, the numerical flux takes 
the form of 

][5.0 12/12/1 jjjjj uuccuf  (5.208) 

and the other term fj–1/2 is constructed by substituting j = j –1 into the above 
equation. Equation 5.208 shows that the flux at the element boundary is 
constructed by multiplying the jump in u there by a limiting function. To control 
the anti-diffusion correction, the flux limiter should vary depending upon the local 
condition of the solution. A suitable choice is to examine the solutions at the 
adjacent elements (see Figure 5.11). It is suggested that the limiter be designed to 
be a function of the slope ratio of the velocities near the element boundary xj+1/2,
rj+1/2,

jj

jj
j uu

uu
r

1

1
2/1                                                              (5.209) 
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With this definition, (r) = 0 if r  0 and j+1/2 = (rj+1/2). Jameson [25] 
suggests that the flux limiter be expressed in terms of a special operator , which is 
a function of two variables and defines (1, r) = (r).  The operator needs to have 
the following four properties: 

 1. ),(),( abba  (2.110) 

 2. ),(),( abccbca  (2.211) 

 3. aaa ),(  (2.212) 

 4. 0),( ba  if ab  0 (2.213)

As shown from Example 5.4 below, the flux limiter is related to the operator, 

)/1()/1,1(),1()( rrrrrr  (5.214) 

),())(( 1112/1 jjjjjij uuuuuur ))(/1( 12/1 jjj uur
   (5.215) 

Using the operator, the problem of dividing by zero can be eliminated. With 
these relations, one can show that the constant element scheme satisfies the TVD
condition if the coefficients are calculated using the following expressions: 

2/1

2/1
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)(2
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j
jj r

r
r

x
cc ; 02/1jc    (5.216) 

with cj–1/2  0 and tcj–1/2  1.  

Example 5.4. Prove the relations given in Equations 5.214, 5.215 and 5.216.  

Solution. The proofs can be made using the definitions of the operator and its 
properties:

)/1()/1,1()1,/1()1,(),1()( rrrrrrrrr  (5.13e) 

),(),1()())(( 112/1112/1 jjjjjjjjjj uuuuruuuur

)/1()()1,/1()( 2/112/11 jjjjj ruuruu  (5.14e) 

To prove Equation 5.216, we start with the constant element (or finite 
difference) equation, 
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x
ff

dt
du jjj 2/12/1  (5.15e) 

Substituting the numerical flux, combined from the upwinding and central 
differencing, one has 

)(5.0)(5.0 12/1112/1 jjjjjjjj
j uuuuuu
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x
c  (5.16e) 

Comparison with Equation 5.216 gives the needed result immediately. 

Further analysis shows that the discretized form using a flux limiter can also be 
written in the general form given in Equation 5.203 (see Example 5.5 below) with 
the following coefficients:  
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where  = c t/ x. In this case, the Harten TVD conditions reduce to ,10 1
n
jC
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This will hold true if  

2)(0
r
r ; 2)(0 r 0r   (5.219) 

In addition,we require that r if r < 0, as stated above. 
A variety of flux limiters is devised in the literature and some of the popular 

ones are plotted in Figures 5.12 and 5.13. They are given below also for 
convenience: 
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 For linear methods ( (1, r) = (r)):

 Godunov slope: 0)(r  (5.220) 

 Centered slope (Fromm): )1(5.0)( rr  (5.221) 

  Upwinding slope (Beam–Warming): rr)(  (5.222) 

  Downwinding slope (Lax–Wendroff): 1)(r  (5.223) 

For higher order methods: 

 Minmod: |}||,min{|),(),( babaSba  (5.224) 

 Van Leer: 
||||
||||2),(),(

ba
babaSba  (5.225) 

 Monotonized central: ||2|,|2,
2

||||min),(),( bababaSba  (5.226) 

 Superbee: |}|2|,min{||},||,|2max{min{),(),( bababaSba  (5.227) 

where S(a, b) = 0.5(sgn(a)+sgn(b)).
As can be seen above, the linear methods do not give rise to a TVD scheme. To 

guarantee second order accuracy and avoid excessive compression of solutions, 
Sweby suggested a reduced portion of the TVD region as a suitable range for the 
flux limiting function. The Sweby TVD region and the nonlinear flux limiters are 
illustrated in Figure 5.13. 

5.4.3.3 Slope Limiters  
As shown above, the way the element boundary fluxes are computed determines 
the spatial order of accuracy of the numerical algorithm and controls the amplitude 
of the local jumps at an element interface. If these jumps are monotonically 
reduced, the scheme provides more accurate initial guesses for the solution of the 
local Riemann problems (the average values give only first order accuracy). 
Besides the flux limiters for reconstructing numerical fluxes, the slope limiters are 
also commonly, maybe more commonly, used for the TVD schemes. Van Leer 
[26]  discussed the second order, piecewise-linear reconstruction in the design of 
the MUSCL (Monotonic Upstream Scheme for Conservation Laws) scheme. The 
third order, piecewise parabolic reconstruction scheme was developed by Colella 
and Woodward [27] in their Piecewise Parabolic Method (PPM). We consider 
below slope limiters for discontinuous finite element applications. 

A slope limiter method is based on a geometric approach to construct a higher 
order approximation for the fluxes in Equation 5.201. The idea is to reconstruct the 
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variable u at the element boundaries from the values in the element and its 
neighbors and then use the variable in the flux expressions. We illustrate the 
concept using the piecewise constant approximation. Knowing the numerical data 
u(xi, tn), we can construct a piecewise approximation to u,

Figure 5.12. The shaded region is the TVD region and four slope limiters for linear methods 

Figure 5.13. The Sweby TVD region (marked by shading) and nonlinear slope limiters: 
thicker solid line – minmod, double-dot dash curve – the monotonized central limiter, dash 
line – superbee, and lighter solid line – van Lear  
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)(),(),(~
j

n
j

n
j

n xxtxutxu , 2/12/1 jj xxx  (5.228) 

and the approximation (x, tn ) is then used to calculate the numerical fluxes at the 
element boundaries at x = xj–1/2 and x = xj+1/2. In Equation 5.228, ,( )nju x t is the 
averaged value over element j (see Figure 5.11 and also Equation 5.230 below) and 
the slope is interpolated using the averages at the element boundary from adjacent 
elements, 

xu jj
n
j  (5.229) 

One could choose the central flux or upwinding flux for j
n. Whatever the 

choice may be, it needs to produce a polynomial for u(x, tn ) such that the average 
over the element is the same, 

1.2

1.2

1( , ) ( , )
j

j

x
n n

j
x

u x t u x t dx
x

 (5.230) 

Thus, one has the freedom of constructing any slope as needed, so long as the 
above condition is satisfied. Figure 5.14 shows the procedure by which a piecewise 
approximation is made from the element-averaged values. 
 Some of the standard formulae for slopes (assuming same-size elements) are 
given as follows: 

  Godunov slope: 0n
j  (5.231) 

Figure 5.14. Reconstruction of u(x) in an element from element-averaged values (horizontal 
lines) and extratpolate u at the element boundaries. Over each element an approximation to 
the slope is made. The reconstructed solution passes through the element average at the 
element center and has the computed slope (slant lines) 

xj 1 xj xj+1

n
ju 1

n
ju

n
ju 1
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 Centered slope (Fromm): 
j

n
j

n
jn

j x
uu

2
11  (5.232) 

  Upwinding slope (Beam–Warming): 
j

n
j

n
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j x
uu 1  (5.233) 

 Downwinding slope (Lax–Wendroff): 
j

n
j

n
jn

j x
uu 1  (5.234) 

By the Taylor expansion, one can show that the latter three methods (Fromm, 
Beam–Warning, Lax–Wendroff) are second order accurate for sufficiently smooth 
solutions. This is one order better that the straight upwind version (assuming zero 
slope). Numerical experience indicates that the use of the above standard numerical 
fluxes sometimes would actually introduce oscillation near the discontinuity as 
shown in Figure 5.15. This is because the values used for numerical flux estimation 
are extrapolated to the element boundaries without error control. Thus special care 
has to be taken to construct a slope limiter that is both higher order accurate and 
oscillation free.

Figure 5.15. A linear function causes oscillation at the shock front. The solid line is the 
exact solution and the dots are numerical solutions 

Several choices of slopes that satisfy the TVD condition are reported in the 
literature, which include: 

 Setting slope to zero: Godunov method: 0n
j  (5.235) 

Piecewise
linear function 

u

 u(x,tn)  un
j+3

xj xj+1 xj+2 xj+3 xj–1 x
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 Minmod slope limiter: |}||,min{|),(),mod(min babaSban
j (5.236)

 Monotonized central: ||2|,|2,
2

||||
min),( ba

ba
baSn

j  (5.237) 

where a and b are the upwinding and downwinding fluxes, respectively, which are 
calculated by 

x
uu

a
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j
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j 1 ;

x
uu

b
n
j

n
j 1  (5.238) 

The concepts for both slope limiters and flux limiters can be extended to 
multidimensional calculations in regular grids with ease. For unstructured meshes, 
however, a procedure can be tedious [19]. In general, it involves: (1) reconstruction 
of a local 1-D stencil, by inserting equidistant dummy nodes on the continuation of 
each mesh edge, (2) interpolation/extrapolation using the adjacent elements 
containing node j, (3) interpolation using the actual triangle T containing the 
dummy node k, and (4) extrapolation, using a least square reconstruction (L2-
projection) for the gradient at node j. The detailed procedures for each of these 
steps are discussed in Kuzmin and Turek [19]. 

Example 5.5. Consider a pure convection problem with a constant convective 
velocity c,

0
x
uc

t
u , t > 0   (5.17e)

)()0,( 0 xuxu  (5.18e) 

Develop discontinuous finite element formulations using the constant element 
approximation incorporating (1) a slope limiter and (2) a flux limiter. 

Solution. The spatial discretization using a constant element gives the following 
conservation expression: 

0
)),(()),(( 2/12/1

x
txuftxuf

dt
ud jjj  (5.19e) 

where the overbar denotes the average over an element and f = cu. We construct 
the slope limiter from the calculated values in the elements, 
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jj

n
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n xxtxutxu )(),(),(~  (5.20e) 
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Since the propagation speed c is a constant, we can use a method of 
characteristics to evaluate the flux integral (for the reconstructed solution as it 
propagates through the end points of each element). A fairly standard approach is 
to linearize the flux function about some appropriate mean state, decompose the 
solution into characteristic variables of the linearized system and perform the same 
kind of linear wave propagation analysis. 

In the space-time plane we can plot the characteristics for the advection 
equation for the outflow condition (see Figure 5.4e). If the discretization for the 
slopes only includes the jth and (j + 1)th elements, then the time step must satisfy 
c t x. Otherwise we would have to use the reconstruction from the (j – 1)th 
element. Similarly, we can plot the characteristics for the advection equation for 
the inflow condition (see Figure 5.5e) and we back-track into the (j–1)th element 
to evaluate the inflow flux for element j.

We now use values of the polynomial reconstructed u at the nth time level to 
evaluate the flux integral at the inflow and outflow boundaries. Given a piecewise 
linear reconstructed solution each of the flux integrals can be evaluated. Thus, we 
have the flux expression at xj+1/2,
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In deriving the above, we back-track along the characteristics to find the value u~
at (xj+1/2, t) for (tn, tn+1). A similar expression can be obtained for the inflow integral 
using the information from the neighboring elements. 

Thus, one can express approximations for the right hand integrals in terms of 
element averages:  
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Re-arranging, one has the final expression, 
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 (5.23e) 

where  is the slope limiter, which one can choose from the list of the slope 
limiters discussed in Section 5.4.3.2. 

Figure 5.4e. Characteristics plots in the x–t plane.  Initial data at t at element j is carried 
over into the domain and leave out the out-flow boundary of element j.

Figure 5.5e. Characteristics plots in the x–t plane.  Initial data at t at element j–1 is carried 
over into the domain and enter through the left-hand boundary of element j
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We now turn to the derivation of a flux limiter expression. We start with 
Equation (5.19e) and integrate it using a Euler forward scheme to obtain the 
following result: 

n
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j FF

x
tuu 2/12/1

1  (5.24e) 

where F is the averaged boundary flux and is calculated by (see also Equation 
5.21e) 
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The two equations above are nothing but the flux formulations with piecewise 
reconstruction.

So far we have assumed c > 0 but we can also obtain the flux expression for the 
condition of c < 0 using the same approach. The results for both cases may be 
summarized as follows:  
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 (5.27e) 

The flux expression may be further written in a simplified version, 
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where  = 1( , )n n
j jxg with g being a function of 1,n n

j j is the flux limiter, and 
c– and c+ are calculated by the following expressions: 

2
|| ccc ;

2
|| ccc  (5.29e) 

By writing the time interval averaged flux function in this way, we have 
changed the numerical strategy from a local element reconstruction approach 
towards controlling the flux contribution from jumps in the averages between 
elements. In particular, we use the flux limiter, intead of the slope limiter, to 
approximate the numerical fluxes at the element boundaries. Equations 5.27e and 
5.28e also reveal the relation between a slope limiter and a flux limiter. 
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From the analysis of the units of , we devise the flux limiting function, which 
allows us to control the boundary flux by multiplying the jump in element averages 
by a flux limiting function, 
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where the flux limiter is calculated by 
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The ratio rj–1/2 can be thought of as a smoothness indicator near the element 
interface at xj–1/2. If the data is smooth we expect the ratio to be approximately 1 
(except at extrema). Near a discontinuity we expect the ratio to be far away from 1. 
The flux limiter, , will range between 0 and 2. The smaller it is, the more limiting 
is applied to a jump in element averages. Above 1 it is being used to steepen the 
effective reconstruction. 

Using this notation one can write down the scheme in terms of the flux limiter 
( = c t/ x),

))((
2

)1()( 12/11
1 n

j
n
j

n
j

n
j

n
j

n
j

n
j uuruuuu

))(( 12/1
n
j

n
j

n
j uur  for c > 0 (5.33e)

))((
2

)1()( 12/11
1 n

j
n
j

n
j

n
j

n
j

n
j

n
j uuruuuu

))(( 12/1
n
j

n
j

n
j uur  for c < 0 (5.34e)

In the above equations, the second term represents the upwinding scheme flux 
contributions, the third term the limited downwinding element interface flux 
contribution, and the fourth term the upwinding element interface flux 
contribution. The above equation can be written in a general form, 
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which has been used in the discussion of TVD with flux limiters in Section 5.4.3.2. 
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5.4.3.4 TVD-Runge–Kutta Schemes 
In a series of recent papers [14–17], Cockburn and Shu presented a TVD-Runge–
Kutta scheme for the discontinuous finite element solution of nonlinear hyperbolic 
conservation equations. Their procedure essentially involves three steps: (1) 
discontinuous finite element space discretization, (2) explicit Runge–Kutta time 
integration and (3) generalized slope limiters to ensure the TVD properties. Their 
schemes are, strictly speaking, TVB (total variation bounded), which is a 
modification of TVD.

These steps may be better illustrated through an example, for which the 
Burgers’ equation should serve the purpose, 

0)(
x
uf

t
u  (5.239) 

where f(u) = 0.5u2 is the flux function. 
The first step involves the space discretization of the domain into a collection 

of elements and integrating locally over an element (say, element j) to obtain the 
weak form solution, 
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where integration by parts has been taken, and the boundary fluxes have been 
replaced by the numerical fluxes h(u).  

For this type of problem, the numerical fluxes can be taken as the approximate 
Riemann solver. Some examples of the numerical fluxes that satisfy the stability 
criteria are the following: 

(1) the Godunov flux: 

otherwise
if

)(max
)(min

),(
ba

uf
uf

bah
aub

bua  (5.241) 

(2) the Engquist–Osher flux: 
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(3) the Lax–Friedrichs flux: 
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228 Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer 

These fluxes are part of the list discussed in Section 5.4.2.1, but given here for 
convenience. The above fluxes are useful for piecewise constant approximations 
and, when used with an explicit Euler forward time integrator, give linear order 
accuracy. These fluxes are not suitable for high order TVD schemes without slope 
or flux limiters. By interpolating unknowns using polynomial basis functions, and 
carrying out the necessary element calculations, one generally arrives at a system 
of ordinary differential equations, 

( ) ( )jd
L

dt
U

U  (5.244) 

where L is the operator and U(j) = [u(xj–1/2,t), …, u(xj,t), …, u(xj+1/2,t)]T are the 
unknowns, or coefficients of the polynomial basis functions, associated with 
element j. Also, U includes unknowns from neighboring elements. Note that for 
hyperbolic problems, the discontinuous finite element method has order k + ½ 
accuracy when polynomials of degree k are used. 

The second step for the calculations involves the Runge–Kutta time integration. 
This is an explicit Runge–Kutta method specially modified for the discontinuous 
finite element solutions [14]. If [0, T] is partitioned into N time steps with tn = tn+1

– tn, n = 0, 1, …, N–1, then the time-marching algorithm is numerically 
implemented as follows: 

 Set 0
0 UU

 For n = 0, 1, …, N – 1, calculate 1nU from nU  by the following procedures:  

(1) Set nUU ]0[

(2) For i = 1, 2, …, K (= k + 1) compute the intermediate functions, 
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(3) Set ][1 Kn UU

where k is the order of the spatial polynomial. 
Gottlieb and Shu [28] show that the following properties are required of the 

coefficients il and il in order for the scheme to be TVD:

if il  0 then il  0, 

il  0 

11
0 ij

i
i

and if the single Euler forward time step (that is, )()/( ][][ l
ilil

lil tL UUW )
satifies the CFL condition [4, 5],  
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Thus, the stability of the Runge–Kutta schemes follows from the stability of the 
intermediate steps for the mapping U[l] Wil : Wil = U[l] + ( il/ il) t(U[l]). In other 
words, to render a Runge–Kutta scheme stable, every single Euler forward 
intermdiate step needs to be stable. This is a crucial aspect of the TVD-Runge–
Kutta scheme.  

Since a TVD-Runge–Kutta scheme is explicit, the round-off errors must be 
fenced in. For a discontinuous formulation using polynomials of order k, a (k+1)-
stage Runge–Kutta scheme (i.e., order k +1) must be used. A von Neumann 
analysis shows that for a 1-D problem with f(u) = cu or ( / / 0u t c u x ), c
being a constant, the following CLF condition is required to ensure the stability: 

12
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tc  (5.245) 

where k is the order of polynomials for space discretization [5]. This is much 
smaller than a Euler forward scheme alone, which is easily recovered from the 
above equation by setting k = 0. 
 For discontinuous finite element space discretizations, Cockburn [4, 5] shows 
that the Euler forward mapping U[l] Wil is not stable in the L2-norm, except in 
the case where polynomials of degree 0 are used. If the polynomials of degree k are 
used, the intermediate single Euler forward step may not be stable. For example, 
for k = 1, that is, a piecewise linear approximate solution, the single Euler forward 
step is unconditionally unstable for any fixed ratio of t/ x. On the other hand, if a 
Runge–Kutta method of second order (k + 1 = 2) is used, it is conditionally stable 
for |c| t/ x  1/3. This means that even though a single Euler forward step is not 
stable, the TVD-Runge–Kutta scheme is stable according to Equation 5.221. Thus, 
the stability of the complete Runge–Kutta scheme cannot be deduced from the 
stability of the single Euler forward step. 

It is shown that with the use of a piecewise constant approximation the TVD
property means 

1
1

( ) | |n
j j

j N
TV u u u (5.246)

where the overbar represents the element-averaged value. Note that for a constant 
element approximation, U(j) = uj. For discontinuous solutions that are not piecewise 
constant, the above result still holds if the following sign conditions are met for a 
single Euler forward step mapping u  w [4, 5]: 

)(sgn)(sgn 12/12/1 jjjj uuuu ;



230 Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer 

)(sgn)(sgn 12/12/1 jjjj uuuu  (5.247) 

For higher-order approximations, these properties need to be ensured by the 
generalized slope limiter. Note that the result expressed by Equation 5.246 is, 
strictly speaking, the total variation diminishing in means (TVDM) for a higher 
order approximation [5]. 

The generalized slope limiter is constructed in a procedure similar to that 
discussed above for slope limiters for constant elements. For a piecewise linear 
approximation of u over the element for the purpose of evaluating fluxes,  

x
txuxxutxu

n

j
n
j

n ),()(),(~ , ],[ 2/12/1 jjj xxx  (5.248) 

The generalized slope limiter SP(·) is then defined as 
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where j = xj+1/2 – xj+1/2 and also

otherwise0
sgn(c)sgn(b))sgn(if),,,min()sgn(
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cba  (5.250) 

At the boundary of element j, the projection has the following form: 
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where ( , )n njju u x t  and the values at the boundary are calculated by the 
following expression: 
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j
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j
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x
u

xxtxutxvv )(),(),( , ],[ 2/12/1 jj xxx  (5.252) 

Two of the slope limiters used for discontinuous formulations are given in Figure 
5.16. The limiting procedure prevents the overshooting at the boundaries: the 
overshooting causes the oscillation in solution near the discontinuities.
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(b)

 Thus, we have a complete TVD-Runge–Kutta scheme for the numerical 
solution of inviscid Burgers’ equation using a discontinuous Galerkin formulation. 
Let [0, T] be partitioned into N time steps with tn = tn+1 – tn (n = 0, 1, …, N – 1) 
and let SP(·) be the generalized slope limiter. Then the time-marching algorithm is 
numerically implemented as follows: 

 Set )( 0
0 UU SP

 For n = 0, 1, …, N – 1, calculate 1nU from nU  by the following procedures:  

(1) Set nUU ]0[

(2) For i = 1, 2, …, K (= k + 1) compute the intermediate functions, 

1
[ ]

0

i
i il

il
l

SPU W ; ][][ l

il

illil tL UUW

(3) Set ][1 Kn UU

where k is the order of the spatial polynomial. 
 We consider below an example illustrating the difference between a TVD-
Runge–Kutta scheme and a non-TVD-Runge–Kutta scheme. 

Figure 5.16. Slope limters: the MUSCL limiter (a) and the less restrictive SP limiter (b). 
Local means are denoted by the horizontal solid line. Also shown are the linear function u in 
the element of the middle before limiting (dashed diagonal line) and the resulting function 
after limiting (diagonal solid line) 

(a)
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Example 5.6. Consider the 1-D inviscid Burgers’ equation, 

0
2

2u
xt

u  (5.36e) 

with discontinuous initial data 

0if
0if

,5.0
,0.1

)0,(
x
x

xu  (5.37e) 

Develop a discontinuous finite element formulation with the TVD-Runge–Kutta 
time integration, with the MUSCL slope limiter, and compare the results obtained 
without the use of a TVD scheme.  

Solution. Let f(u) = 0.5u2. Then the discontinuous formulation has the form, 

ˆ( ) ( ) 0
j j j

j
u vv dV vh u i dS f u dV
t x

n ,

],[ 2/12/1 jjj xx  (5.38e) 

For a piecewise constant approximation, the above can be integrated to yield 
the result, 

)(1
2/12/1 uLhh

xdt
du

jj  (5.39e) 

where to simplify the notation, the subscript on u has been dropped. We take the 
slope limiter as follows: 

112/1 ,modmin
2
1

jjjjjj uuuuuu  (5.40e) 

jjjjjj uuuuuu 11212/1 ,modmin
2
1  (5.41e) 

and use the Godunov flux as the monotone numerical flux, 
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jj  (5.42e) 

For this choice, the time step is restricted to 
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||max n
jua

xt  (5.43e) 

The TVD second order accurate Runge–Kutta (RK) scheme is given by 

)(]1[ nn utLuu  (5.44e) 

)(5.05.05.0 ]1[]1[1 utLuuu nn  (5.45e) 

The non-TVD method is  

)(20]1[ nn utLuu  (5.46e) 

)()( ]1[
40
1

40
411 utLutLuu nnn  (5.47e) 

Gottlieb and Shu [28] solved the program using the above algorithm and the 
results are given in Figure 5.6e. Clearly, the TVD-RK scheme is superior, and 
shows no oscillation near the discontinuity. 

(a)                                                                    (b)

Figure 5.6e. Comparison of numerical solutions to the inviscid Burgers’ equation obtained 
from the TVD and non-TVD-Runge–Kutta discontinuous methods: (a) with TVD and (b) 
without TVD [28] 

For multidimensional problems, the construction of a slope limiter can be 
complex and difficult. Cockburn and Shu [17] give the general procedure for 
constructing such a limiter for various elements. Here we consider the triangular 
elements only, as they are the most frequently used for discontinuous finite 
element analyses. As for the 1-D case, the linear slope needs to satisfy the 
following conditions: 

1. If uh is linear, then SP(uh) is linear, 

2. For every element of the triangularization, the mass is conserved, 
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( )
j j

h hSP u dV u dV

3. On each element, the gradient of the SP(uh) is not bigger than that of uh.

To construct the slope limiter for a triangular element that satisfies the above 
properties, the following procedure is taken. First, the element and its neighbors 
are defined as shown in Figure 5.17, when m is the middle point of the edge on the 
boundary of element j, and bi denotes the center of the triangle i, i = 0, 1, 2, 3. 
Then, the averaged value of u is calculated by 

1 ( )
i

j
h h i

i
u u dV u b , i = 0, 1, 2, 3. (5.253)

and

)()()(),(~
02010 21101 uuuuumumu h

),( 01mu (5.254)

For a piecewise linear function, 

0

3 3

0
1 1

( , ) ( ) ( , ) ( , ) ( , )h h i i h i i
i i

u x y u m x y u u m x y  (5.255) 

where mi(i = 1, 2, 3) is the middle point of the ith edge of the triangle (see Figure 
5.17). 

Figure 5.17. Geometric relations used to construct general slope limiters in a triangular 
mesh 

1

     
3

2

b3

b2

b1

m1
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The slope limiter can be constructed for the triangle as follows:  

0

3

1

( ) ( max(0, ) max(0, )) ( , )h i i i
i

SP u u x y  (5.256) 

where the following definitions are used: 
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              )),(),,(~( 00 iihi mumum  (5.258) 

In the above a modified minmod function is used, 

),mod(min
||if,),(

2

ba
Mhaabam  (5.259) 

where h is the size of the element, and M is a given constant. 
Cockburn and Shu [17] developed a discontinuous finite element method for 

the solution of a double Mach problem, a benchmark problem used for fluid 
dynamics calculations. The results are presented in Figure 5.18.  

5.5 Viscous Burgers’ Equations

The preceding section has been focused on inviscid Burgers’ equations when the 
system exhibits no dissipation, because the viscosity is neglected. In the real world, 
viscosity is always present, and plays an important role in both providing 
stabilizing effects for the Galerkin based numerical algorithms, and smearing the 
sharp discontinuity in the solution.  

5.5.1 1-D Burgers’ Equation 

Let us consider the 1-D Burgers’ equation, 

2

2

x
uD

x
uu

t
u , ]1,0[x  (5.260) 

with the boundary conditions u(0, t) = 1 and u(1, t) = 0 and the initial condition u(x,
0) = 0. 

To develop a discontinuous formulation, the above equations are first split into 
two first order differential equations, 
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Figure 5.18. The TVD-Runge–Kutta discontinuous finite element solution of a double Mach 
benchmark problem [17] 

x
uq ;

x
qD

x
uu

t
u  (5.261) 

The domain is now discretized and integration is carried out over element j        
[xj, xj+1]. After integration by parts, we arrive at the weak form integrals (see Figure 
5.2 for geometric relations), 

Rectangles P1, x = y = 1/60

Rectangles P1, x = y = 1/120

Rectangles P1, x = y = 1/240

Rectangles P1, x = y = 1/480 
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where two types of numerical fluxes are used. The numerical fluxes associated 
with diffusion are given by Equation 4.20, 

)()()(5.0ˆ 1211 qqCuuCqqq  (5.263a) 

)()(5.0ˆ 12 uuCuuu  (5.263b) 

The convective numerical flux ĥ may be approximated in two ways: one is to use 
the convective numerical flux given by Equation 5.27, and the other is to choose 
one from the function fluxes defined by Equations 5.172 5.175 [19]. If Equation 
5.27 is used, u u/ x is treated approximately as uc u/ x, where uc is assumed a 
constant, but changes its value during each iteration. This should give the first 
approximation as shown in the example below. 

The unknowns (qh,uh) may be approximated with a polynomial as local basis 
functions,
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where k is the order of the polynomial and k +1 = Ne, Ne being the number of nodes 
per element. With the numerical fluxes for diffusion and convection defined above, 
we may start to carry out calculations. If the convective numerical flux is used and 
the Galerkin approximation is invoked, then we have the following matrix 
equation:

( ) ( ) ( )

B B

B Bj j j

q q q0 0 E H E H
0 M J G J Gu u u

,1 ,1 ,2 ,2

,1 ,1 ,2 ,2( 1) ( 1)

B B B B

B B B Bj j

q qE N E N 0
J G J G 0u u

 (5.265) 

where the overdot denotes the time derivative, subscript () refers to the element, 
subscript B denotes the matrices associated with element boundary integrals, and 
E, G, J, and N are matrices associated with element calculations, but they can be a 
function of u because of the need to update the variable during each iteration.  



238 Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer 

The above equation is very similar to that given in Section 5.4.2 and thus the 
same method can be applied to solve it, the difference being that, in this case, the 
variable u (hence uc) needs to be updated during each iteration, since the problem 
is nonlinear.

Example 5.7. Develop a discontinuous formulation for the 1-D viscous Burgers’ 
equation defined by Equation 5.260 and discuss the results. Use linear elements 
and the convective numerical flux approximation. 

Solution. The domain is discretized to N  elements. For linear element 
approximations, we have 

)()()()(),( 2211 xtuxtutxuh ; )()()()(),( 2211 xtqxtqtxqh  (5.29e) 

The diffusion numerical fluxes then become  
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If the convective numerical fluxes are used, then we have 
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The final matrix equations, after some algebra, take the following forms: 
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For the calculations, C12 = 0 in the interior. To incorporate the boundary 
conditions, we set (1)

12C 1/2 when j = 1 and )1(
12C 1/2 when j = N+1. For the 

results shown below in Figure 5.7e, the Euler forward time scheme is used and the 
time step was t = 10–4. From these results, it is clear that upwinding seems to give 
the best results and downwinding is simply a disaster. The mesh size is important, 
as a coarse mesh generates considerable oscillation, particularly near the 
discontinuity front. As the mesh size progressively reduces, the resolution becomes 
better. For this problem, a mesh of 100 linear elements provides the best results. 

5.5.2 2-D Viscous Burgers’ Equation 

Just as the one-dimensional heat conduction equation has a multidimensional 
counterpart, so can the one-dimensional Burgers’ equation be extended to 
multidimensions. The two-dimensional Burgers’ equation is written as 
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The two-dimensional Burgers’ equations are basically two-dimensional momentum 
equations for incompressible laminar flow, with the pressure terms dropped. 

Like the one-dimensional Burgers’ equation, exact solutions can be constructed 
[3] using the Cole–Hopf transformation. In two dimensions, the Cole–Hopf 
transformation introduces a single function , to which u and v are related as 

x
D

u
2

; x
D

v
2

 (5.267) 

As a result, Equations 5.266a–b are transformed to a single equation, 
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Figure 5.7e. Calculations for the viscous Burgers’ equation (D = 0.001): (a) effect of 
upwinding schemes (N = 20, t = 0.5), (b) effect of mesh size (upwinding, t = 0.5) and (c) 
evolution of variable u at different times (N = 100, upwinding)
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 (5.268) 

which is the two-dimensional diffusion equation. With appropriate boundary 
conditions, the above equation can be solved and the velocities can be derived 
using Equation 5.267. Of course, Equation 5.266 can be solved directly using a 
discontinuous fintie element scheme presented in this chapter. 

If convective numerical fluxes are used to approximate the convection term, 
then the final matrix equation would be very similar to Equation 5.119 and the 
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computational procedure then follows from the discussion ensuing there. However, 
better approximations are expected if the viscous effects are very small and if the 
TVD-based approach is used. In deriving the discontinuous finite element 
algorithm for the solution of the multidimensional Burgers’ equation, the TVD-
Runge–Kutta discontinuous scheme should be an attractive approach, especially 
when the viscous term is small in comparison with the convection. Kuzmin and 
Turek [19] show that for a convection-dominant Burgers’ equation, the slope 
limiter is required to obtain a higher resolution scheme for a numerical solution.  

Exercises

1. Starting from Equation 5.6 and assuming A is a function of T, derive 
Equation 5.14. 

2. Consider the first order hyperbolic equation, 
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0

0
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1
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Calculate the characteristic curves and plot the characteristic curves 
emanating from x = 0.5 and x = 1.5. Calculate the time at which the two 
curves meet. 

3. Develop a discontinuous finite element formulation for the two-
dimensional wave problem, 

0
y
uc

x
uc

t
u

 and compare the results with those reported in Biswas et al. [18]. 
4. Consider a convection-diffusion equation with the initial and boundary data 

given below: 
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T , 0],1,0[ t

   )()0,( 0 xTxT , ]1,0[

   0),1(),0( tTtT , t > 0 

 with D > 0 and sup|g(T)| = M < . Defining the energy at time t as 
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 we then have the derivative of the above term, 
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 Show that the energy for this system is bounded by the following 
expression: 
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 Hint: to prove the above relation, the inequalities of Hölder, Poincaré and 
Young may be needed. 

   a) Holder’s inequality: if p,q R, p,q > 0, 1/p + 1/q = 1, then 
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| | | | | |
p qb b b

p q
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uv dx u dx v dx

   b) Young’s inequality: if p,q R, p,q > 0, 1/p + 1/q = 1, f and g are real 
positive quantities, then 
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ffg

p

 The Poincaré inequality is given in Problem 1 in Chapter 4. 
5. Consider the pure convection system, 
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A
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uu , 0],1,0[ t

   )()0,( 0 xx uu , ]1,0[

   0),1(),0( tt uu , t > 0 

 where A is a constant matrix with A = AT. Show that 
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  . 
1

0
0Td dx

dt
u u

 where u is a vector of n dimensions. 
6. Consider Burgers’ equation with the initial and boundary data: 

   2
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x
uD

x
uu

t
u , 0],1,0[ t

)()0,( 0 xuxu , ]1,0[

   0),1(),0( tutu , t > 0 

 with D > 0. Let w = u1– u2, where u1 and u2 are two solutions to the above 
problem. Define the energy term,  
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 and show that 
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4

dE t u u w x t dx CE t
dt x

 Further show that since E(t) = 0, then E(t) = 0, so long as |C| < .
7. Develop a discontinuous finite element code to solve a 1-D pure 

convection problem. Compare the results obtained with linear and higher 
order elements. Use different time marching schemes. 

8. Develop a discontinuous finite element code to solve a 1-D convection-
duffision problem. Compare the results obtained with linear and higher 
order elements. Perform the stability analysis. Compare the results obtained 
using different numerical fluxes. 

9. Develop a discontinous finite element code to solve a 1-D viscous Burgers’ 
equation and study the solution as a function of diffusion coefficient. 
Compare the results obtained using constant, linear and quadratic elements 
and using linear and higher order Runge–Kutta time integrators.  
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6

Incompressible Flows 

Incompressible flows occur in a wide range of thermal and fluids systems, where 
the transport of energy and species is dominated by the convection mechanism. 
Understanding of the flow field distribution and its effect on thermal and species 
transport is thus of critical importance in these systems. The general mathematical 
description of fluid motion is given in Chapter 1, which consists of balance 
equations for momentum, mass and energy, the latter being required for a non-
isothermal fluid flow system. These equations consist of a set of coupled, 
nonlinear, partial differential equations in terms of the velocity components, 
pressure and temperature. The momentum balance equations are also referred to as 
the Navier–Stokes equations. For an isothermal flow system, or a system in which 
the thermal field has a negligible effect on flow, the energy equation may be 
decoupled from the Navier–Stokes equations and the continuity equation.  

For the purpose of numerical computations, the Navier–Stokes equations are 
often solved using two approaches: the primitive variable (e.g., velocity–pressure) 
approach and the vorticity–stream function (or derived variable) approach. While 
the derived variable approach is popular for 2-D problems, its extension to a 
general 3-D description can be rather complex and thus there have been limited 
applications of a 3-D derived variable approach. Probably the majority of 
numerical simulations have employed the primitive variable approach. Most of the 
computational fluid dynamics codes commercially available today are also 
developed on the primitive variable formulation. An important advantage of the 
primitive variable formulation is that the extension of a 2-D formulation to its 3-D 
counterpart is straightforward. 

In practical applications, flows often are in the turbulence regime. The effects 
of turbulence on incompressible viscous flows are usually modeled using the 
concept of eddy viscosity, which is computed from a k–  engineering turbulence 
model or its variations. The differential equations for k and  are structurally 
similar to the energy transport equation and are usually discretized and calculated 
in the same way, except in the near wall region, where a special treatment is 
required for the standard k–  model. Of course, for stratified flows, additional 
terms need to be added due to buoyancy effects. The actual implementation for 
flow calculations involves the use of an effective viscosity in place of the laminar 
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viscosity. Consequently, the computational algorithms used for laminar flow 
simulations can be modified relatively easily for incompressible turbulent flow 
calculations.

This chapter starts with a discussion of the discontinuous finite element 
solution of the Navier–Stokes equations for isothermal incompressible flows using 
the primitive variable approach. Other variations of the formulation are then 
discussed. This is followed by the discontinuous formulation, using the derived 
variable approach. The chapter ends with a discussion on the discontinuous 
formulation for non-isothermal fluid flow problems. 

6.1 Primitive Variable Approach 

The primitive variable approach refers to the direct solution of the Navier–Stokes 
equations in terms of velocity and pressure. This is in contrast with the derived 
variable approach by which the velocity field is derived from other field variables. 
The primitive variable approach is perhaps the most widely used method for the 
numerical solution of the Navier–Stokes equations. A major advantage of this 
approach is that the formulations and numerical algorithms developed and tested 
for 2-D calculations can be directly extended to 3-D calculations. The 
incompressibility constraint, however, poses a considerable difficulty for numerical 
algorithm development.  

 In the finite element solution of incompressible flow problems, the study of the 
divergence-free constraint leads to the well known LBB (or inf-sup) condition, by 
which the interpolation order for the pressure field is required to be one order 
lower than that for the velocity field, in order to have a stable numerical solution  
[1, 2]. The LBB condition is, in essence, a modification of the coersiveness 
condition of the Lax–Milgram theory [3] for a mixed finite element setting, and is 
a key condition required for a mixed finite element procedure to be well-posed and 
optimal [2, 4, 5]. The inf-sup condition may also be derived from convergence 
considerations or the finite element matrix equations [6, 7]. The use of the LBB
condition for the stability analysis of various mixed finite element formulations can 
be found in [6–10]. From the constrained optimization point of view, the pressure 
field is a Lagrangian multiplier and the continuity is the constraint. The saddle 
point of the augmented dual optimization, or variational, functional gives the 
solution to the Navier–Stokes equations. Strictly speaking, this saddle point is 
derived for the Stokes flow problems [1]. Since the discontinuous finite element 
method is in some sense a stabilized mixed finite element method, it inherits 
certain features of the continuous finite element method, for the incompressible 
fluid flow calculations in particular. 

 The development of a discontinuous finite element formulation for 
incompressible fluid problems is based on the ideas and methodologies discussed 
in Chapters 4 and 5. We consider the continuity and the Navier–Stokes equations, 
written in terms of velocity and pressure [11], 

0u  (6.1) 
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fuuuu 2

Re
1)( p

t
    (6.2)

auu   (6.3) 

where u = (ux, uy,uz) is the velocity field, p is the pressure, f is the external body 
force, and Re is the Reynolds number, defined by Re = U L where  is the 
density of fluids,  is the viscosity, and U and L are the characteristic scales of 
velocity and length associated with the flow fields. Here we take  to be the 
bounded domain with its boundary denoted by , where for illustrative purposes 
a simple Dirichlet boundary condition is imposed. It is noted that other types of 
boundary conditions can be readily incorporated.  

To develop an integral formulation suitable for a discontinuous finite element 
solution, the governing equations (Equations 6.1–6.2) are split into a set of first 
order partial differential equations,  

0u  (6.4) 

u
Re
1 (6.5) 

fuuu pt )(  (6.6) 

where ut = u/ t.
The Dirichlet boundary condition remains unchanged. The computational 

domain is now discretized into a finite number of elements. Multiplying the above 
equations by smooth test functions v,  and v respectively, and integrating by parts 
over an arbitrary element j (see Figure 4.3), we have the following integral 
representation: 

0
j j

vdV vdSu u n  (6.7) 

1 1:
Re Rej j j

dV dV dSu u n  (6.8) 

( )
j j j j

t dV dV ds p dVu v u v u u nu v v

: : ( )
j j j j

p ds dV ds dVv n v v n f v  (6.9) 
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where  is the dyadic operator, (u v) w = (w v)u. In some literature, u v is also 
written as uv, i.e., u v = uv. Also, use has been made of the following relation: 
v (u u) = (u (v u)) u (v u) and of the boundary condition. The above 
equations define the weak form of the incompressible Navier–Stokes equations. To 
develop numerical solutions, the exact solution (p u) is approximated with 
functions (ph h uh) in the finite element broken space and the function fluxes at 
the interface of the elements are replaced by the numerical fluxes. We then have 
the discontinuous finite element formulation of the incompressible fluid flow 
problems, 

ˆ = 0
j j

p
h hdV dSu u n (6.10) 

1 1 ˆ:
Re Rej j j

hh hdV dV dSu u n  (6.11) 

ˆ( )
j j j

c
t h h h hdV dV dSu v u v u u nu v

ˆ :
j j j

h h hp dV p dS dVv v n v

ˆ : ( ) =
j j

h ds dVv n f v  (6.12) 

Here, c
hû , p

hû , hû ,
h

ˆ and hp̂ are the numerical fluxes, which are discrete 
approximations to traces on the boundary of elements, where hû and

h
ˆ are referred 

to as the diffusive numerical fluxes, c
hû  is referred to as the convective numerical 

flux, and p
hû  and hp̂  are referred to as the incompressible numerical fluxes which 

are related to the incompressibility condition on the velocity. Also, n is the 
outward normal of element j.

With this discontinuous finite element formulation, the same order 
approximation can be used for the pressure and the velocity fields [12]. To ensure 
the numerical stability of the discontinuous finite element method, the numerical 
fluxes must be chosen carefully. These numerical fluxes are defined in terms of the 
jump operators introduced in Chapters 4 and 5. Thus, on the interface of the 
interior elements j,i

+
 j  j , the mean values {} and jumps [] for p,  and u

are defined as follows: 

)(}{ 2
1 ppp ; nn ppp][  (6.13a) 

)(}{ 2
1 ; nn][ (6.13b) 
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)(}{ 2
1 uuu ; nunuu][  (6.13c) 

Note that the jumps }{p and ][  are both vectors, and jump ][u is a tensor of rank 
two. Also, + and – refer to the inside and outside element j (see Figure 4.4). 

For incompressible fluid flow calculations, Cockburn et al. [12 – 16] suggest 
the use of three different numerical fluxes. The first one accounts for viscous 
diffusion, which is based on the study of heat conduction problems in Chapter 4; 
the second for convection, which was discussed in Chapter 5 for convection-
diffusion problems; and the third for the incompressibility condition. 

The diffusive numerical fluxes are constructed as follows. If j lies inside the 
domain , the diffusive fluxes hû  and h  are taken in the form of    

12][}{ˆ Cuuuh ; 1211 ][][}{ˆ CuCh (6.14a)

If j lies on the boundary, the diffusive fluxes are taken in the form of  

ah uû ; nuu )(}{ˆ 11 ah C (6.14b) 

The purpose of parameter C11 and C12 is to enhance the stability and accuracy of 
the discontinuous finite element method. It is worth noting that since the numerical 
flux hû  is independent of the variable , it is possible to eliminate it from the 
equations by using Equation 6.11 to solve  in terms of u in an element-by-
element manner.  

 The convective numerical fluxes are constructed based on the local flow 
conditions. For the convective flux c

hû  in Equation 6.12, the standard upwinding 
flux scheme is used, namely, 

)(limˆ
0

xuxuuc
h (6.15) 

The numerical fluxes p
hû  and hp̂  are related to the incompressibility condition on 

the velocity. They are constructed as follows. If j lies inside the domain , p
hû

and hp̂  are taken in the form of    

)][(][}{ˆ 1211 uDuu trpDp
h ; ][}{ˆ 12 ppph D (6.16a) 

where D11 and  D12 are constant and constant matrix respectively. On the boundary, 
they can be defined by 

a
p
h uû ; pphˆ  (6.16b)
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As usual, the unknowns can be approximated using the local polynomial basis 
functions,

1

eN
T

h i i
i

u u u ;
1

eN
T

h i i
i

p p p ;
1

eN
T

ih i
i

where Ne is the number of nodes associated with the element, and the unknown 
functions are found as follows: 

kji zyxzyx
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T
Ne
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zx zy zz

,1 ,2 ,, , ,
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km km km Nkm  with k, m = x, y, z

T
Ne

),,,( 21

With these numerical fluxes substituted, and making use of the Galerkin 
approximation, Equations 6.10–6.12 can be calculated. The discretized form of 
each of these equations is presented below.  

To obtain the discretized form for Equation 6.10, that is, the continuity 
equation, we set D12 = 0 and obtain from Equation 6.16 

)()(5.0][}{ˆ 1111 nnuuuu ppDpDp
h  (6.17)  

With this choice substituted into Equation 6.10, one has the following integrals: 

11( ) 0.5
j j j
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0.5 0

j j

T T
NB NB

dS D dSn u p  (6.18) 
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The above can be further written in matrix form, 

, , , 1,
1 1

NS NSx x

x y z x i y i z i iy y
i i

z z

u u
K K K u E E E u H p

u u

, , , 1, ( , )
1 1

( , )

0
NS NSx

x i y i z i iy NB i
i i

z NB i

u
E E E u H p

u

 (6.19) 

where NS is the number of boundary nodes per element, (NB, i) represents the 
neighboring element sharing the ith side of element j, and other quantities are 
defined by the following expressions: 

j
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x
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j

T
y dV

y
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j

T
z dV

z
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,

, , ˆ0.5 ( )
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,
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,

, ,
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j i

T
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,

1, 11
j i

T
i D dSH

Here nj,i denotes the normal pointing outward from the ith side of element j. Also, 
j,i represents the interface between element j and its neighbor element i: j = 

NS
i ij1 , . The above matrices can also be written in terms of the component form. 

For example, an element in matrix Ez,i is calculated by 

,

, , ,
ˆ0.5 ( )

j i

z i qr q r j iE k dSn ,                q, r = 1, 2, …, Ne

We now turn to the calculation of Equation 6.11. By selecting the following 
numerical flux, 

)()(5.0][}{ˆ 1212 nununuuCuuu Ch

uu )5.0()5.0( 1212 CC  (6.20) 

and with C12 = C12 n+, Equation 6.11 becomes 

1 ˆ( )
Rej j

T T
kkm mdV e dV u
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12
1 ˆ(0.5 ) ( )
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k m NBC e dSn u ,      (k, m = x, y, z)   (6.21) 

where .ˆˆand,ˆˆ,ˆˆ kejeie zyx  The result can also be written in the following 
matrix form: 
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Re Re Re
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i i
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 where the matrices are calculated by 
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At last, we consider Equation 6.12. To obtain a discretized form, the 
appropriate numerical fluxes are selected, 
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Substituting the above numerical fluxes into Equation 6.12 yields the following 
integrals:
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with = / .u u t  The corresponding matrix equation is given by 
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where the source term and the matrices are calculated by 
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Equations 6.19, 6.22 and 6.25 represent the discretized discontinuous finite 
element formulation for the Navier–Stokes equations with the continuity 
constraint. The unknown variables for this system include three components of 
velocity field, pressure and nine stress components. An iterative computational 
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procedure is required to solve these equations. In practice, the successive 
substitution method works well for this type of problem. A typical computational 
procedure starts with the initial condition for velocity and then the pressure and 
stresses are calculated using the element-by-element sweep. To carry out a time 
marching, Equation 6.25 is solved using an explicit time scheme, with a time step 
selected to satisfy the CFL condition, to advance the velocity field (un+1) with the 
known pressure (pn) and the stress components (  n) and the velocity field (un) at 
the previous time steps. The pressure (pn+1) and the stresses ( n+1) are then 
calculated from this velocity field un+1 using Equations 6.19 and 6.22. Because of 
the nonlinearity, (pn+1), ( n+1) and un+1 at the time step (n+1) need to be determined 
iteratively using, say, the successive substitution method. The iteration continues 
until convergence is achieved at the time step (n+1). This procedure repeats for 
every element and every time step. 

The above discontinuous finite element formulation has been applied to 
simulate incompressible fluid flows driven by a moving lid in a 2-D cavity. The 
dimensionless governing equations for this problem take the following component 
form: 
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with the following boundary conditions: 

0),0(),0( yxvyxu , 0),1(),1( yxvyxu  (6.26d) 

0)0,()0,( yxvyxu , 1)1,( yxu , 0)1,( yxv  (6.26e) 

where the lid velocity is normalized to one and the motion is from the left to right 
or in the positive x direction. 

The computations were made using an unstructured mesh with linear triangular 
element approximation. Since this is a steady state case, the transient terms are set 
to zero. The iterative procedure starts with an initial guess of the field variables, 
followed by the element-by-element computation of the velocity, the stress and the 
pressure, with imposed boundary conditions. The successive substitution method is 
applied to perform the iteration until the variables converge within a preset 
tolerance. The finite element mesh and computed results are given in Figure 6.1 for 
different Re numbers.  



258 Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer 

(a) mesh (b) Re = 50 

(c) Re = 100 (d) Re = 1000 

Figure 6.1 Computed results of a velocity field in a lid-driven cavity: (a) unstructured mesh, 
(b–d) velocity at (b) Re = 50, (c) Re = 100 and (d) Re = 1000 

6.2 Fractional Step (Projection) Approach 

The fractional step method is based on the operator splitting concept and has been 
widely used in the framework of finite difference approximations. The method was 
first proposed by Chorin [17] and is also known as the projection method. This 
method is considered useful for the solution of transient Navier–Stokes equations. 
There are many variations of the projection method. However, it essentially 
involves a two-step approximation for any time step. Two time steps are used in 
the formulation. In the first time step, a provisional velocity u* is obtained. In the 
second step, the velocity then is corrected by accounting for a pressure gradient 
and an equation of continuity. 

We consider splitting the velocity into two parts, 

"* uuu  (6.27) 

such that u* is made to satisfy the momentum equation without the pressure, 
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uuuu 2
*
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t
 (6.28) 

and the "u is made to satisfy a portion of the pressure p,

p
t

"u  (6.29) 

If the explicit time marching scheme is used, then the provisional velocity field 
u* is calculated with information available at the nth time step by integrating 
Equation 6.28, 

nn tt uuuuu *2**

Re
)(  (6.30) 

This is a convection-diffusion and reaction equation. The provisional velocity 
field is then corrected to account for the pressure using Equation 6.29, 

11 * nn ptuu  (6.31) 

and the pressure correction term is calculated using the Poisson equation: 

*12 1 u
t

pn  (6.32) 

which is obtained by making the final velocity un+1 satisfy the continuity condition, 

12*10 nn ptuu  (6.33) 

We note here that in this version of the projection method, the pressure field is 
solved from a Poisson equation with the source term coming from the divergence 
of the provisional velocity field.  Also, the source term in the momentum involves 
only the information required at the previous time step. Consequently, this 
approach does not need to satisfy the LBB condition, and an equal order 
interpolation can be applied for both the velocity and the pressure fields. 

 In the actual implementation, however, it is more convenient to define a 
potential function such that 

*2 u  (6.34) 

and relates the potential to the pressure variation (see Equation 6.32),  

tpn /1  (6.35) 
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With this definition, we can show that  

2 *dS dV dV
n

u  (6.36) 

In practice, / n = 0 is imposed at a solid boundary but the values on an open 
boundary are adjusted so that the above relation is satisfied. To ensure the no-slip 
condition, it is often necessary to impose the following relation: 

*
n

s
u  (6.37) 

where s is the tangential direction.  
 The governing equations developed above using the fractional step approach 

can be solved using the discontinuous finite element. In fact, we treat the first 
equation (Equation 6.30) in the sequence as a convection-diffusion and reaction 
equation, for which the discontinuous Galerkin formulation has been developed 
(see Chapter 5); and the Poisson equation (Equation 6.34) can be solved using the 
discontinuous schemes that have been discussed in Chapter 4. For a moderate size 
problem, the continuous finite element method may be used to solve for the 
Poisson equation, whereas the discontinuous finite element method is employed for 
the solution of the convection-diffusion and reaction equation in vector form. This 
combined approach has been presented in the context of the solution to an 
incompressible flow problem over a 2-D domain using the derived variable 
approach.

6.3 Vorticity and Stream Function Approach 

The Navier–Stokes equations can also be written in terms of vorticity and stream 
functions. This approach is one of the most popular methods for the solution of 
incompressible fluid flow problems in 2-D geometries. This approach is also called 
the derived variable method, because the velocity field is not directly calculated 
from field equations, but derived from the stream function field. A major 
advantage of this approach is that the staggered-grid arrangement is not required 
when the finite difference method is used. In the context of finite elements, the 
unequal order interpolation becomes obviated. The staggered-grids and unequal 
order interpolations, which sometimes complicate programming procedures, need 
to be used when the primitive variable approaches are employed for the solution of 
the Navier–Stokes equations. Another major advantage associated with this 
approach is that the pressure field, which can be troublesome to treat in a 
numerical scheme, is eliminated from the formulation, and is not required to be 
solved. This can be particularly useful for thermal fluids systems in which 
information on a pressure distribution is not needed. The applications of this 
method include the convective heat and mass transfer in materials processing 
systems. 
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 In general 3-D formulations, the stream function is generalized as a vector 
potential, because the concept of a stream function does not apply. First, we 
consider the general 3-D vorticity–vector potential formulation and its variation, 
and then deduce from them, the 2-D dimensional formulation.  

 In the fluid dynamics literature, the vorticity  and a vector potential  are 
related to the velocity field u through the following two relations:  

u  (6.38) 

u  (6.39) 

Note that the second equation comes directly from the incompressibility (or 
divergence free) condition, 

( ) 0u (6.40) 

With the above definitions, the Navier–Stokes equations can now be written in 
terms of the vorticity and the potential vector, 

2 (6.41)

21( ) ( ) 0
Ret

u u (6.42)

The first equation above is simply a vector Poisson equation, and is obtained by 
combining Equations 6.38 and 6.39, with  = 0 imposed on the vector function. 
Apparently, this imposed divergence free condition is consistent with Equation 
6.40 can be used freely for an arbitrary vector . To derive the second equation, 
which is the momentum balance equation, one needs to take the curl of the Navier–
Stokes equations (Equation 6.2) and substitute into it the definition of vorticity (i.e., 
Equation 6.38). Note that the pressure has been eliminated from the equation, 
because of the vector identity, p = 0. For confined flows, boundary conditions 
for both vector potential and vorticity may also be derived by substituting vorticity 
and vector potential functions into the no-slip conditions along the walls [18 – 20]: 
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We note that Equation 6.42 has three components, but only two of them are 
independent. This approach requires at least two components of the vorticity 
equation and three components of the vector Poisson equation. However, Aziz and 
Hellums [20] reported that the vorticity–potential approach was faster and more 
accurate than a method based on the primitive velocity–pressure formulation.     

 For unconfined flows, such as flows involving inlets and outlets, Harasaki and 
Hellums [21, 22] showed that the boundary conditions for the inflow and outflow 
can be simplified, if two potentials are used in lieu of . Their formulation is based 
on the basic vector decomposition theorem that an arbitrary vector can be split into 
a curl free and a divergence-free (or solenoidal) part. Thus, with a dual potential 
approach, the velocity is defined by 

u  (6.43) 

Clearly, this definition of velocity satisfies Equation 6.36. The continuity condition 
on the velocity field immediately leads to the following Laplace equation for :

02  (6.44) 

Because p = 0 and  = 0, other governing equations are the same as before. 
The boundary conditions for the potential are of the Neumann type, 

unn  (6.45) 

On a solid boundary, n = 0. There were also other choices for the potential ,
which can also be applied to make it even easier to specify certain inflow and 
outflow boundary conditions [18 – 21]. It is noted that the potential  satisfies the 
Laplace equation, which along with the preceding condition gives a solution  = 0, 
if there exists no flow throughout.  

 Other hybrid forms of the velocity and vorticity approach have been reported. 
One of the approaches uses the dependent variables as the vorticity and velocity 
components. The vorticity dynamics equations are the same as Equation 6.42 and 
the velocity components are solved from the following vector equation: 

   2u  (6.46) 

which is easily obtained by taking the curl of Equation 6.38 and using the 
condition u

 The use of the derived variable approaches described above, and the details of 
numerical implementation, including the boundary conditions, can be found in the 
works of  Liu and Shu [19].  

 Compared with the limited use of the general 3-D vorticity–vector potential 
approach, the 2-D vorticity–stream function is far more popular among the 
computational fluid dynamics and computational heat transfer communities. The 
vorticity–stream function form of the Navier–Stokes equations can be rather easily 
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deduced from the above vorticity–vector potential equations. For a 2-D geometry, 
only one component of the vorticity and stream function fields survives and other 
components vanish. Without loss of generality, we take the two velocity 
components in the x–y plane. Then we have z and  = z,

uk̂ ; j
x

i
y

ˆˆu (6.47)

Equations 6.41 and 6.42 now reduce to two scalar equations for the variables 
and ,

2 (6.48)      

2

Re
1)(u

t
  (6.49)    

0uu (6.50)    

Here, for an illustrative purpose, a simple velocity boundary condition is applied. 
Other boundary conditions can also be employed for computations. From the 
definition of stream functions, the no slip boundary condition puts the following 
constraint for ,

0unn   (6.51)

The equations can be solved using the discontinuous finite element method. 
They can also be solved using the combined continuous and discontinuous finite 
element methods. The latter is used below, as this gives an opportunity to illustrate 
the combined approach to fluid flow problems. For this problem, the stream 
function field is solved using the continuous finite element method, whereas the 
vorticity field is solved using the discontinuous finite element method. To develop 
the required discontinuous finite element formulation, the higher order derivatives 
are split into first order derivatives, 

Re
1 (6.52) 

u )(
t

(6.53)

We discretize the domain into a collection of elements of finite size, and 
integrate the above equations over a typical element with respect to weight 
functions v and s, followed by integration by parts to obtain the discontinuous 
finite element formulation, 
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ˆRe
j j j

h h hdV dV dSs s s n (6.54) 

j j j

h
h h h hv dV vdV vdS

t
u u n

ˆ
j j

h vdV vdSn   (6.55) 

where n is the normal pointing outward from element j. In the above formulations, 
the numerical fluxes are used and they are defined as a central flux, 

)(5.0ˆh ; )(5.0ˆ h (6.56) 

where + and – refer to element j and its neighbors (see Figure 4.4). The numerical 
fluxes for convection are modeled differently using the upwinding scheme, 

0for
0for

,
,

nu
nu

h

h

h

h
h (6.57) 

or the Lax–Friedrichs upwind biased flux, 

)()(
2
1

hhhhhhh nunu (6.58) 

where  is the maximum of | nuh | either locally or globally. 
 For the stream function field, the continuous finite element formulation may be 

applied, which takes the following form: 

j j
h hwdV wdV (6.59) 

Note that the inter-element jump terms vanish, since the continuity is enforced 
across element boundaries for the continuous finite element method. For this 
reason, C0 elements are required for the finite element solution of the stream 
function . It is also remarked that the equation for the stream function field may 
be solved using the discontinuous finite element method. In fact, the formulations 
presented in Chapter 4 for the steady state heat conduction equations with an 
applied source may be directly employed here. For a moderate sized 2-D pure 
diffusion problem, however, the continuous finite element method often performs 
better.

Once the stream function field is obtained, the local velocity is derived from the 
following relation: 
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x
j

y
ih

ˆˆu (6.60) 

Liu and Shu [13] showed that the above numerical scheme, combining the 
continuous and discontinuous formulations, has a stability property 

0||||2|||| 2

h
h

dt
d (6.61)

The general solution procedure may be described as follows: (1) specify the values 
for  and  at time t = 0, (2) solve the vorticity transport equation for  at time t + 

t using the discontinuous formulation and element-by-element sweep starting at 
the boundary, (3) iterate for new  values at all points by solving the Poisson 
equation, applying the new  using the continuous finite element method, (4) find 
the velocity components u = / y and v = / x, (5) determine the values of 
on the boundaries using  and  values, and (6) return to Step 2 if convergence is 
not achieved. 

 Two of the calculated results derived from the approach above are given in 
Figure 6.2 for two different Re numbers [18]. In Figure 6.2a, a uniform rectangular 
mesh of 256 × 256 was used with the P2/Q2 method at t =8 for Re = 70000/2 . In 
Figure 6.2b, a mesh doubling both the x and y directions was used with the P1/Q1

method at t = 8 for 20000/(2 ). For both cases, the shear layers are dominated by 
thin layer structures and the flow develops roll-up structures. Further numerical 
simulations with various grids and conditions indicate that physical viscosity 
dominates the numerics at these high Reynolds numbers, suggesting that the built 
numerical dissipation of the discontinuous finite element method is rather small. In 
general, higher order methods have a better resolution and a minimized 
contribution from numerical viscosity.   

 6.4 Coupled Flow and Heat Transfer 

In this section, a coupled fluid flow and heat transfer analysis is made of natural 
convection in a square cavity. The governing equations for this problem can be 
written in the dimensionless form as follows: 

0
y
v

x
u  (6.62) 

2

2

2

2PrPr
y

u
x

u
Rax

p
Ray

uv
x
uu  (6.63) 

T
y

v
x

v
Ray

p
Ray

vv
x
vu

2

2

2

2PrPr  (6.64) 



266 Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer 

(a)

(b)

Figure 6.2 Contour of vorticity distribution at t =  8. Thirty equally spaced contour lines 
between  = –15 to  = +15. (a) Results are computed for Re = 70000/2  using a 256 × 256 
mesh with the P2/Q2 method. (b) Results are computed for Re = 20000/2  using a 512 × 512 
mesh with the P1/Q1 method [18]   
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where U =  (Ra Pr)1/2/L; L and L/U are used as the velocity, length and time 
scales. Also, Ra ( Ra = g(T2

*–T1
*)L3/  ) is the Raleigh number, Pr ( Pr )
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is the Prandtl number,  is the thermal diffusivity,  is the molecular viscosity,  is 
the density,  is the thermal expansion coefficient, and g is the gravity acceleration.   
Moreover, the dimensionless temperature is written as T = (T* – T1

*)/(T2
*–T1

*), 
where the superscript * denotes the dimensional temperature. The dimensionless 
boundary conditions on temperature are prescribed as follows: 

0),0( yxT ; 1),1( yxT ; 0)1,()0,( yx
y
Tyx

y
T  (6.66) 

The velocity boundary conditions are such that all velocity components are set to 
zero on all walls.  

Temperature field                                Velocity field 
Pr = 1.0 and Ra = 1 104

Temperature field                                     Velocity field 
Pr = 1.0 and Ra = 5 104
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Temperature field                                 Velocity field 
Pr = 1.0 and Ra = 1 105

Temperature field                                   Velocity field 
Pr = 1.0 and Ra = 5 105

Figure 6.3. Numerical results obtained from the discontinuous finite element formulation 
for natural convection in a square cavity for different Ra numbers 

For this coupled problem, the thermal and fluid flow fields need to be solved 
simultaneously. For the purpose of demonstrating the usefulness of the 
discontinuous algorithms, the discontinuous finite element formulation is used for 
the solution of both fluid flow and heat transfer equations. The flow is assumed 
incompressible and thermal effects are accounted for using the Boussinesq 
approximation. The discontinuous formulation for the fluid flow is given in Section 
6.2, while that for convection is taken from Chapter 5. The solution procedure is 
iterative and requires updating of both fluid flow and thermal fields. The 
computations used unstructured mesh, with linear triangular elements used for 
fluid flow, pressure, and temperature fields. The computed results are shown in 
Figure 6.3. As can be seen, fluid flow has a very strong effect on temperature 
distribution. The calculations here compare very well with reported results for this 
problem. 
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Exercises

1. Consider an incompressible, inviscid fluid flow of constant density in an 
open domain  with smooth boundary. The flow is governed by the 
following continuity and momentum equations, 

0u ,t > 0 

p
t

uuu , t > 0 

 and is subject to the following boundary conditions: 

0un , t > 0 

0)( tr,u , t = 0 

where u is the velocity and p is the pressure. Using the techniques 
discussed in Chapters 4 and 5, show that 

( ) ( , ) ( , ) (0)E t x t x t dV Eu u , t > 0 

2. Consider an incompressible, viscous fluid flow in an open, bounded region 
. The flow is governed by the continuity and the Navier–Stokes 

equations, 

0u , t > 0 

fuuuu p
t

, t > 0 

 and is subject to the following boundary conditions: 

0u , t > 0 

0)( tr,u , t = 0 

where u is the velocity, f is the body force and p is the pressure. Using the 
techniques discussed in Chapters 4 and 5, show that 

( ) ( , ) ( , ) (0) (1 ),a t a tCE t x t x t dV E e eu u t > 0 

where C and a are two positive constants. 
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3. Develop a discontinuous finite element code for simulating incompressible 
flows in a channel. Perform the calculations using different orders of 
approximations and compare the results. 

4. Develop a discontinuous finite element code for simulating natural 
convection and heat transfer in a 2-D cavity. Apply the code to study the 
fluid flow with various Rayleigh numbers. 

5. Develop a discontinuous finite element code, using the projection method 
and the primitive variable formulation, for simulating transient flows in a 
2-D cavity. Compare the results with those obtained using the derived 
variable approach presented in [13]. 
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7

Compressible Fluid Flows 

In this chapter, we discuss the application of the discontinuous finite element 
method for the solution of compressible fluid flow equations. One of the major 
challenges in compressible flow calculations is to devise a numerical scheme for an 
effective treatment of various discontinuities existing in the solution. In our study 
of inviscid Burgers’ problems in Chapter 5, we showed through very simple 
examples how a discontinuity present in the initial data is being carried into the 
domain by the motion of a compressible fluid. This type of discontinuity occurs in 
various forms including shock waves, rarefaction waves and contact 
discontinuities. These discontinuities represent, mathematically, the singularities at 
which multiple solutions exist. Development of an effective algorithm in a general 
compressible flow setting requires, therefore, a careful consideration of the local 
behavior of the fluid flow field. 
 The discontinuous Galerkin finite element method has been developed to 
provide a higher order computational algorithm for the calculation of high speed 
compressible fluid flow problems with various discontinuities. The relaxation of 
the cross-element continuity requirement permits a variety of choices to 
incorporate different types of numerical fluxes to enhance the computational 
performance. Many of these numerical fluxes have their origin from finite 
difference approximations, which we know now are just the consequence of using 
lower order polynomials (i.e., the piecewise constant or zero order polynomial) in 
the discontinuous finite element formulation. These numerical fluxes have also 
been tested succesfully in the finite difference calculations for lower order 
approximations. An extension of the numerical fluxes to the higher order setting 
embedded in the discontinuous finite element fommulation has been a subject of 
recent research. 
 This chapter starts with the study of 1-D inviscid compressible fluid flow 
problems. The basic properties of the Euler equations, the exact and approximate 
Riemann solvers, and the low and high order discontinuous finite element 
formulations are discussed. We then extend the discontinuous formulation to the 
cases of the inviscid and viscous compressible flows in multidimensional 
geometries. The arbitrary Lagrangian–Eulerian (ALE) description of the 
compressible flow problems is then discussed. The discontinuous finite element 
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formulations within the ALE framework and the computational procedures are 
presented.

7.1  1-D Compressible Flows 

This section is concerned with some basic properties of the Euler equations, the 
Riemann solvers, and the discontinuous finite element solution of the equations in 
1-D geometry. The shock tube problem is studied as a numerical example. 

7.1.1  Governing Equations  

General equations for compressible fluid flows were given in Section 1.8. In the 
absence of diffusive phenomena due to viscous stresses, a 1-D compressible flow 
problem is described by the following hyperbolic equation set, namely the Euler 
equations, representing the conservation of mass, momentum, and energy: 

0)(
x
UF

t
U  (7.1) 

where the U and F are vectors defined as 

e
uU ,

uh
pu

u
F 2  (7.2) 

In the above equation,  is the density, u is the momentum, e is the energy, p is 
the pressure, and h is the dynamic enthalpy. This last variable is related to the other 
quantities by the following relation:  

peh , 2

2
1 uEe  (7.3) 

with E being the internal energy. This system of three differential equations in four 
independent variables ( , u, eandh) is closed by the equation of state, which is 
derived from thermodynamic principles. If the gas is calorically perfect and 
polytropic, then the pressure is related to the other variables by the relation,  

2

2
1

)1(
upe  (7.4) 

where  is the ratio of specific heats and takes the value of 1.4 for an ideal gas–air 
is often approximated as an ideal gas in compressible flow studies [1, 2]. Unless 
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otherwise indicated, the ideal gas law is assumed for the equation of state in this 
chapter.

7.1.2 Basic Properties of the Euler Equations 

Understanding of the basic structure of the solution of the Euler equations is of 
great importance, both in developing an effective numerical scheme and in 
interpreting numerical solutions. To study the basic properties of the Euler 
equations, it is constructive to write Equation 7.1 in a quasi-linear form, 

0)(
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t
U A  (7.5a) 

where A is the Jacobian matrix, 
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or explicitly, 
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with a = ( p )1/2 being the speed of sound.   
 Further we assume that the initial data has a discontinuity at x = 0, 

0if
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L  (7.5d) 

This is the well known Riemann problem, which has played a fundamental role in 
compressible flow studies. Figure 7.1 schematically sketches the Riemann 
problem. 

The Jacobian matrix A has three distinctive eigenvalues, 

au1 ; u2 ; au3  (7.6a) 

which is sometimes written as an eigenvalue matrix ,
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3
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0 0

 (7.6b) 
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Figure 7.1. Schematic of the Riemann problem

Corresponding to these eigenvalues are the right eigenvector matrix R and its 
inverse R–1,
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where 1 and each eigenvector R(i) is calculated by substituting each 
eigenvalue into the matrix equation, 
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i RRA  (7.7c) 

Similarly, one has the left eigenvector matrix L,
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where L(i) is the row vector and is obtained by the following relation: 

)()( i
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i LL A  (7.8b) 

We further have the bi-orthonormal condition for L(i) and R(j),

x = 0 x

U(x,t)
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UR
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and the inverse relation, 

1RL  and RL 1  (7.8d) 

 From the study of the inviscid Burgers’ equation, it is known that the three 
eigenvalues ( 1, 2, 3) correspond to three characteristics, which imply three 
different jump discontinuities in the solution of the Euler equations. The 
characteristics and the structure of the solution of the Euler equations are shown in 
Figure 7.2. These characteristics are useful in sampling the solution to the Riemann 
problem from data, and are discussed below 

Associated with 2 is the contact discontinuity,  

2(U*L) = 2(U*R) = S2 (7.9a)

where S2 is the speed of the movement of the contact discontinuity. This is a linear 
degenerate case. The rarefaction wave corresponds to the condition, 

)()( *11 LL UU  (7.9b) 

and the shock wave satisfies 

)()( *333 RR USU  (7.9c) 

with S3 being the shock wave speed. The cases of 1 and 2 are the nonlinear-
genuine cases. 

Figure 7.2. Structure of the solution of the Riemann problem in the x–t plane for the time 
dependent, 1-D Euler equations
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7.1.3  The Rankine–Hugoniot Conditions 

Conditions for the jump discontinuities may be obtained by a direct integration of 
the Euler equations. To do that, we define the variable and the operator, 

),( UFG  ; 
t

i
x

i tx
ˆˆ  (7.10) 

whence the 1-D Euler equations become 

0G  (7.11) 

Consider a control volume shown in Figure 7.3, which contains a jump 
discontinuity marked by S. Integration of Equation 7.11 over the control volume, 
followed by the use of the Gaussian theorem, yields 

0
CV CS

dV dSG G n  (7.12) 

where CV and CS are the volume and surface of the control volume. As shown in 
Figure 7.3, the discontinuity S  divides the control volume into two parts (CS = 
CS1UCS2), which allows Equation 7.12 to be rewritten for each of the subcontrol 
volumes (i.e., CV1 and CV2),

1 1 1 1( )
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CV CS S CS S
dV dS dS dSG G n G n G n

(7.13a)

Figure 7.3. Control volume and control surfaces used to derive the jump conditions
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2 2 2 2( )
0

CV CS S CS S
dV dS dS dSG G n G n G n    

(7.13b)

Adding the two equations together, noting that S = CS1 CS2 and n = nS1
 = – nS2

,
and then making use of Equation 7.12, one has the jump discondition across the 
discontinuity,

[ ] 0
S

dSG n  (7.14) 

where [•] is used to denote the jump, 

21][ GGG  (7.15) 

with subscripts 1 and 2 denoting regions 1 and 2, respectively. 
Thus, for 1-D Euler equations, the jump conditions across a discontinuity are 

written as 
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If the discontinuity S is parameterized such that S = x(t), c =  x(t)/dt, and  
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then one has, upon substitution of the above equation into Equation 7.16, 

0uc  (7.18a) 

02 puuc  (7.18b) 

0uhec  (7.18c) 

where [g] = gb – ga, with gb being the data behind and ga ahead of the discontinuity 
and c (c =  x(t)/dt) is the velocity with which the discontinuity moves. 

The above equations are written with the frame at rest. Consider that the 
discontinuity is a shock wave, which moves at a speed of S3. Written in the frame 
that moves with the shock wave speed S3, these jump conditions in the star region 
(see Figure 7.4: the star region is the region where quantities with subscript * 
reside) become 
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RRuu ˆˆ**  (7.19a) 
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with û*= u*– S3 and ûR = uR – S3. From the above relations, it is straightforward to 
show that the shock wave speed S3 is calculated by the following expression: 
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Then, the other variables of interest can also be determined [2].  

Figure 7.4. Four different solutions of a general Riemann problem (from left to right): (a) 
rarefaction, contact discontinuity and shock (RCS), (b) shock, contact discontinuity and 
rarefaction (SCR), (c) rarefaction, contact discontinuity and rarefaction (RCR), and (d) 
shock, contact discontinuity and shock (SCS). W = ( , u, p)T
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7.1.4 1-D Riemann Solver – Exact Solution 

The above discussion can be extended to the general Riemann problem, for which 
possible wave patterns are shown in Figure 7.4. The start region, whose properties 
are marked with subscript *, contains a contact discontinuity and is the region 
between the left and right waves. 

The solutions for the pressure and the particle velocity for the Riemann 
problem defined by Equations 7.8 7.9 are summarized in the equations below, 
assuming that the ideal gas law applies. The detailed derivation of these equations 
can be found in [3]. 

The solution of the pressure p* is given by the root of the algebraic equation, 

0),,,(),,,( LRRRRRLLLL uupupfpupf  (7.21a) 
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and the solution for the particle velocity u* is 
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 The solutions to other quantities are considered below, depending upon the 
specific conditions: 
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 (i) Left shock wave (left region of Figure 7.4(b), x < 0), 
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(ii) Right shock wave (right region of Figure 7.4(a), x > 0), 
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(iii) Left rarefaction waves (left region of Figure 7.4(a), x < 0) 
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  The rarefaction waves are enclosed by the head and tail, whose speeds are 
given by the following characteristics: 
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and the waves in the fan are given by 
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(iv) Right rarefaction waves (right region of Figure 7.4(c), x > 0) 
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 The above equations provide the exact solution of the complete wave structure 
of the Riemann problem at any point (x, t) in the relevant domain of interest xR<x<
xL; t>0, with  xL <0 and xR >0. The numerical solution of the above equations is 
discussed in Toro and Reimann [3], and Gottlieb and Groth [4].

7.1.5 1-D Riemann Solver – Approximate Solution 

Numerical schemes for compressible flow calculations require the solution of the 
Riemann problem, and for many schemes the solution is needed for every element 
boundary at each time step. The exact solution shown above requires a Newton 
iteration procedure and thus can be computationally expensive. This has motivated 
researchers to develop approximate Riemann solvers that can reduce computational 
time. One of the popular ideas in this category is the approximation proposed by 
Roe [5]. Roe’s algorithm rests with the linearizing of the nonlinear term and thus 
the Roe solver is less expensive than the exact solver.
 Roe’s solver was derived based on the finite volume approach, which is in 
essence the constant element approximation used in discontinuous finite elements. 
According to Roe, the linearized Euler equation for the 1-D compressible flow 
problem is given by 

0
x
U

t
U A (7.26)

with the matrix A  evaluated at the interface j+1/2 (see Figure 7.5), 
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where to be consistent with Roe’s original derivation, the constant element 
approximation has been used. Note that for a piecewise-constant approximation, 
the node number coincides with the element number (see Figure 7.5). Three 
conditions are imposed on the matrix: (1) locally Lipshitz, Fj+1–Fj= 2/1jA (Uj+1–

Uj), (2) 2/1jA  is diagonalizable and all its eigenvalues are real, and (3) 
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2/1jA (U,U) = jA (U). These conditions will make the numerical scheme 
conservative and consistent with the original differential equation.  

Figure 7.5. Constant element spatial discretization for the derivation of Roe’s solver: ( )
marks the element  boundaries and ( ) the center of the element 

In the case of the Euler equations, the linearized Jacobian matrix 2/1jA  may 
be calculated using an averaged state, 

),( RL
Roe UUUU  (7.28) 

where subscripts L and R denote a left and right state, respectively. For a first order 
scheme, Roe’s average is calculated by 
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For the linearized Riemann problem, the flux can be calculated using the 
following expression: 

1
1/ 2 0.5[ ( ) ( )] 0.5 | | ( )j L R L RF F U F U U UR R  (7.30) 

where subscripts L and R denote the values to the left and right of the interface j+
1/2 and also we have the following decomposition relation for matrix A= F/ U,

1R AR  (7.31) 

with R being the matrix of the right eigenvectors of A.

7.1.6 Discontinuous Finite Element Formulation 

Let us now consider the discontinuous finite element solution to the 1-D Euler 
equations. As usual, the domain is discretized into N elements and the governing 
equation is integrated with respect to a weighting function W over element j [xj,
xj+1],

Element j 

 xj 1/2  xj+1/2xj xj 1 xj+1

+
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 (7.32) 

 Integration by parts of the spatial derivative term yields the following weak 
form solution: 

1 1j i
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where, as usual, the element boundary function terms have been replaced by 
appropriate numerical fluxes, 
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By introducing the element basis functions )()( xl  as follows: 
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with Ne being the number of nodes per element, Equation 7.33 can be written in a 
matrix form, 
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where U = (U (1), U(2), …, U (Ne))T and the matrices are calculated by 
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 Some terms of various orders are explicitly written below for the convenience 
of the subsequent discussions:  
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where the overdot denotes the time derivative, superscript () refers to node number 
local to the element and subscript (j) refers to the jth element. Note that in Equation 
7.38a, subsecript j refers to the jth node number, which is the same as the jth
element for a constant polynomial approximation. Equation 7.36 can be expressed 
in the form of ordinary differential equations, 

)()( U
U

L
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where L is the operator and U without subscript includes the variables both in 
element j and its neighboring elements. 

Time integration can be carried out numerically, for example, using the Runge–
Kutta integration schemes. With the generalized slope limiter, the Runge–Kutta 
methods can be described as follows. Let [0, T] be partitioned into N time steps 
with tn = tn+1 – tn (n = 0, 1, …, N–1) and SP(·) be the generalized slope limiter, 
then the time-marching algorithm is numerically implemented as follows: 

 Set )( 0
0

)( UU SPj
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 For n = 0, 1, …, N – 1, calculate 1
)(

n
jU from n

j)(U  by the following procedures:  
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where k is the order of the spatial polynomial and superscript [•] denotes the 
intermediate time steps of the Runge–Kutta scheme. This process repeats for each 
element and marches to the next time step.  

It is important to stress here that a Runge–Kutta scheme is explicit and thus the 
time step chosen for the simulations need to satisfy the CFL condition. For a 
spatial discretization using polynomials of degree k, a (k+1)-stage Runge–Kutta 
scheme of order k+1 needs to be used. 

7.1.7 Low Order (Finite Volume) Approximations 

It is easily shown that if the shape function is taken as a step function valid only 
within the element, we have from Equation 7.38a the classical finite volume 
formulation (or the piecewise constant discontinuous finite element formulation), 
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where the node number and element number are the same, which is denoted by 
subscript j. For piecewise constant element approximations, the Euler forward 
scheme may be used. Thus, the above equation becomes 
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where superscript n denotes the nth time step and t = tn+1 – tn. We consider now 
how to incorporate the Godunov and Roe flux expressions into the above equation 
for a low order solution.  
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7.1.7.1 The Godunov Scheme 
The variable update in Godunov-type schemes is done on the cell-averaged 
conservative variables [6–8]. The update requires an estimation of numerical fluxes 
at cell interfaces and a successive integration in time over a time step. Hence, the 
first step of a Godunov scheme approximates the point values of the solution at 
each interface by a piecewise-constant reconstruction. The values of the 
conservative variables at a grid point are considered to be a piecewise-constant 
approximation of the true solution over the cell, centered at that grid point, which 
is a cell average of the solution. So, the spatial error is of the same order as the cell 
size x, and the scheme is only first order accurate in space. High order accuracy 
generalizations of the scheme have been proposed based on high order polynomial 
reconstructions of pointwise values from cell-averaged values. Let us illustrate this 
step by applying the operator P to the ensemble of the cell-averaged state values, 
with (tn) representing the solution at time tn. Hence, P( , (tn)) will represent the 
high order accuracy polynomial approximation inside any cell of the computational 
domain at time tn. This reconstruction produces a discontinuity in the state 
variables at each interface, which is taken as the initial condition for the local 
Riemann problem,  
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This is shown in Figure 7.6.  

Figure 7.6. Schematic of the Godunov scheme for velocity update: open square ( )denotes
the element interface or cell boundary and a dot denotes ( ) the middle point of the element

 Consider the point xj+1/2 at time t n, where n
jU  and n

jU 1  are the values to the 

left and right of the point. Within a neighborhood of xj+1/2, the classical Riemann 
problem applies. This is schematically shown in Figure 7.6. For example, if n

jU  > 

x

U

xjxj 1 xj+1

U n
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U n
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n
jU 1  > 0, we have a shock moving from the left to the right. Hence n

ju  is the 

solution at (xj+1/2, t n). On the other hand, if n
jU < n

jU 1 < 0, we have a rarefaction 

moving to the left and n
jU 1  is the solution at (xj+1/2, tn). These quantities will be the 

solution until a shock/rarefaction moves in from adjacent cells. If  n
jU < 0 and 

n
jU 1 >0, we have a rarefaction wave that will give a constant value at xj+1/2. As 

long as the CFL condition for time stepping is satisfied, the value at xj+1/2 is a 
function of n

jU  and n
jU 1  only. The solution to the Riemann problem is given by 
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j UUU  Thus the Godunov scheme is given by the following expression: 
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The requirement that the shocks or rarefaction waves from adjacent grid points do 
not touch leads to the CFL condition, 
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which needs to be respected during transient calculations. 

7.1.7.2 The Roe Scheme 
The Godunov scheme requires the solution of the Riemann problem locally at each 
grid point and is thus computationally intensive. In Roe’s scheme, an approximate 
Riemann solver is applied. Applying Roe’s approximate solver at xj+1/2, we have 
the following Riemann problem: 
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The numerical fluxes are calculated using Equation 7.30 and thus the Roe scheme 
may be written as follows: 

)])[/( 2/12/1
1

iij
n
j

n
j FFhtUU  (7.47) 

Besides the two flux schemes described above, other flux schemes have been 
developed, and are summarized in Chapter 5. Some of these schemes, for example, 
the Lax Friedrichs fluxes, do not require the solution of the local Riemann 
problem. These flux schemes can be extended to high order approximations. 
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7.1.8 High Order TVD Approximations 

We take the quadratic approximation to illustrate how numerical fluxes and slope 
limiters can be applied in a TVD scheme for compressible flow calculations. As an 
alternative to other fluxes considered in Section 7.1.6 above, we employ the local 
Lax Friedrichs flux [9 11], 

)]()()([
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bauba

 (7.48b) 

))(',)('max( bFaF  for convex F(U) (7.48c) 

 In the case of low order (FV) approximations, the Lax Friedrichs fluxes take 
the following form: 
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 Use of a TVD-Runge Kutta scheme requires the construction of the general 
slope limiter, U = SP(W). The limiter is generalized from the inviscid problems 
discussed in Chapter 5, and is calculated by the following procedures: 

Compute an intermediate value W,

))((),( 1jjjj UUxUUtxW , ],[ 2/12/1 jj xxx

Compute 2/1jU  and 2/1jU  by  

),,( 112/12/1 jjjjjjjj WWWWWWmWU

),,( 112/12/1 jjjjjjjj WWWWWWmWU

If 2/12/1 jj WU  and 2/12/1 jj WU , then WU

If not, then )(),,( 11 xUWWWWWmWU jjjjjjj

where the overbar on W and U denotes the averages over element j. The function 
m() is the modified minmod function defined in Section 5.4.3. 
 With U evaluated at the boundaries of the element as described above, and 
substituted into Equation 7.48, the numerical fluxes are calculated. These 
numerical fluxes are then substituted into Equation 7.38 or 7.39, which is then 
integrated using the Runge Kutta scheme as described in the paragraph below 
Equation 7.39. 
 Take as an example the second order accurate Runge Kutta scheme for a linear 
spatial approximation ( k =1 ), we then have the following four steps: 
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7.1.9 Numerical Examples 

We consider three examples in this section. In the first example, the evolution of a 
scalar function is calculated. The problem is defined as follows: 
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t
u , ]1,0[x  (7.50a) 
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with periodic boundary conditions at x = 0 and x = 1. 
 For this case, the local Lax Friedrichs flux is used along with various orders of 
approximation. For constant elements, the first order Euler time integration method 
is used without the slope limiter. For linear elements, the second order 
Runge Kutta method is used with the general slope limiter. For quadratic 
elements, the third order Runge Kutta method is used with a linear slope limiter. 
The computed results are plotted in Figure 7.7, showing the effects of 
discretization and order of approximations.  

Figure 7.7(a) compares the numerical results at t = 0.5 obtained using the 
different types of approximations but with the same number of elements (N = 51), 
N being the number of elements. Examination of these results indicates that 
considerable numerical dissipation occurs with the piecewise constant element 
(FV) approximation, as is evident by the strong flattening of the sharp edge of the 
square pulse. As discussed in Chapter 5, this dissipation comes from the numerical 
approximation and the behavior of the exact solution should be such that the initial 
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rectangular-shaped wave remains its shape and the data is carried into the domain 
from the boundary. The use of linear elements improves the results substantially 
and shows considerably less dissipation.  
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Figure 7.7. Computed results of pure convection using different types of approximations at t
= 0.5: (a) different space discretizations (N=50) and (b) effects of the number of elements (t
= 0.5 and with quadratic elements)
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Figure 7.7(b) plots the results at t = 0.5 obtained using different numbers of 
linear elements. With N = 21, the results are already improvements over the 
constant element approximation as shown in Figure 7.7(a). Continued 
improvements are obtained as the discretization is refined. With N = 160, the 
results match almost exactly with the analytic solution.

As the second example, we consider the nonlinear transport of a scalar 
function, which is the typical inviscid Burgers’ equation, 

0
2

2u
xt

u , ]1,0[x  (7.51a) 

u(x, t =0) =u0(x) =0.25 +0.5sin( x) (7.51b) 

with periodic boundary conditions at x = 0 and x = 1. 
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Figure 7.8. Computed results for Burgers’ equation at different time steps using linear 
elements. Data used for calculations: N = 80, t = 10–4, linear spatial approximation with a 
second order Runge–Kutta method

For this problem, the solution is smooth up to t = 2/ , and then it develops a 
moving shock wave, which interacts with a rarefaction wave. This results in  a 
sonic wave. The calculations were made using a linear approximation with the 
second order Runge–Kutta time integration. The general slope limiter is used. 
Figure 7.8 shows the numerical results.  

The third problem is the shock-tube problem. This is a very interesting test case 
because the exact time dependent solution is known and can be compared with the 
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solution computed by applying numerical discretizations. The problem is 
schematically illustrated in Figure 7.9. The initial solution of the shock-tube 
problem is composed of two uniform states separated by a discontinuity that is 
usually located at the origin. This particular initial value problem is known as a 
Riemann problem. The initial left and right uniform states are usually introduced 
by giving the density, the pressure, and the velocity. This initial set represents a 
tube where the left and right regions are separated by a diaphragm, and filled by 
the same gas in two different physical states. If all the viscous effects are negligible 
along the tube walls and it is assumed that the tube is infinitely long in order to 
avoid reflections at the tube ends, then the exact solution of the full Euler equations 
can be obtained on the basis of a simple wave analysis. At the bursting of the 
diaphragm, the discontinuity between the two initial states breaks into leftward and 
rightward moving waves, which are separated by a contact surface. Each wave 
pattern is composed by a contact discontinuity (C) in the middle, and a shock (S) or 
a rarefaction wave (R) at the left and the right sides separating the uniform state 
solution. All the available combinations produce four wave patterns: RCR, RCS, 
SCR, and SCS, which are self-similar, that is they depend only on x/t. These four 
patterns are illustrated in Figure 7.4. A fifth pattern is possible in theory, and it 
contains a vacuum state between two central contact discontinuities, which occur 
between two rarefaction waves. This case is of theoretical interest only, because it 
expresses the limit of the perfect gas equations at zero pressure and temperature, 
but it can never occur in reality. 

Figure 7.9. Schematic of a shock tube problem: (a) initial condition and (b) wave 
propagation

The shock tube test case corresponds to the Riemann problem. The governing 
equations for the above problem, with viscous effects neglected and the gas 
property of = 1.4, are the Euler equations, 
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where initial conditions are given by 
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0125

h
uU R  (7.52c) 

 The results are obtained using the TVD RK scheme with the slope limiter. The 
following data were used for calculations: N=101, t=10–4, t up to 0.5, and linear 
elements with a second order Runge–Kutta method. The results of the transient 
flow for density, velocity, energy and pressure at t=0.5 are shown in Figure 7.10, 
which compares well with the exact solution [2, 4]. 

The solution is composed of, from left to right, a constant undisturbed left state, 
then a continuous expansion wave moving to the left, followed by a constant state, 
a contact discontinuity moving to the right, followed by a constant state, and then a 
shock wave moving to the right in the undisturbed right state. 

x
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Figure 7.10. Computed results for the shock tube problem

7.2 Multidimensional Inviscid Compressible Flows

We now consider the discontinuous finite element formulation for  computational 
compressible flows in multidimensions. 

7.2.1 Governing Equations 

The full three-dimensional Euler equations in a multidimensional domain are 
written in conservation form as follows: 
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0)(U
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U F  (7.53) 

where U is a vector of dimension 5 and F is a tensor, 
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 Before discussing the discontinuous finite element formulation, let us consider 
some of the basic properties of the 3-D Euler equations. 

7.2.2 Basic Properties of the Split 3-D Euler Equations 

The basic properties of a split Euler equation system are similar to those seen in   
1-D Euler equations. The x-split, 3-D Euler equations have the following form: 

0)(
x
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U x (7.55)

with the Riemann boundary conditions,
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 The Jacobian matrix A for the problem is given by 
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where 

12
1 2ah uu ; 1~ ; Twvu ),,(u  (7.58) 

 The x-split system is hyperbolic in nature and has the real eigenvalues, 

;1 au ;432 u au5  (7.59) 

The matrix of the corresponding right eigenvectors is given by  
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and its inverse is given by 
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 These quantities are useful for constructing Roe’s approximate solver for the 
Riemann problem. The characteristics and structure of the solution of the x-split
Euler equations are very similar to the 1-D Euler equations and are plotted in 
Figure 7.11.  

Figure 7.11. Structure of the solution of the x-split 3-D Riemann problem
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7.2.3 Discontinuous Finite Element Formulation 

To develop a discontinuous finite element formulation, the computational domain 
is first discretized into a tessellation of elements. Over a typical element, say, 
element j, Equation 7.53 is integrated with respect to a testing function vector W.
Upon integration by parts, we obtain the weak statement of the problem,  

( ) : ( ) 0
j j j

UW dV W U dS W U dV
t

F n F  (7.61) 

 We now replace the function fluxes at the element boundaries by numerical 
fluxes and (W, U) by the approximations (Wh, Uh) to complete the discontinuous 
finite element formulation, 

ˆ ( ) ( ) 0
j j j

h
h h h h h

UW dV W H U dS W F U dV
t

 (7.62) 

where  are the numerical fluxes. Various numerical fluxes suitable for the 
solution of the inviscid Burgers’ equation were listed in Chapter 5. These 
numerical fluxes are equally applicable for the multidimensional calculations with 
relevant changes. 
 If, for example, the Roe flux function is chosen,  

)()]()([),(ˆ
2
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2
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hhhhhh UUUUUUH AnFF

)()( hhh UUU AnF   (7.63) 

and the Galerkin approximation is used, then the integral equation for the 
discontinuous formulation becomes 
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h
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( )
j

i hU dVF
j

i hU dSA   (7.64) 

In the above two equations, i is the shape function and A is the n-split Jacobian 
matrix, evaluated using the Roe averages. The other terms are defined as follows: 

| | | |A L R , 1A L R  (7.65) 

| | (| |)kdiag , (min( ,0))kdiag  (7.66) 

with L and R being the matrices of the left and right eigenvectors of A.
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 For flows that involve discontinuities, slope or flux limiters must be used to 
suppress the oscillations as shown above. These limiters are the extension of the   
1-D counterparts discussed in Chapter 5. Construction of these limiters for an 
unstructured mesh in a multidimensional domain is not trivial [12].  
 With these considerations taken into account, the solutions are approximated 
using the local polynomial basis functions. Then, one obtains a system of ordinary 
differential equations, 

)()( U
U

L
dt

d j  (7.67) 

where L is the operator and U(j) is the vector of unknown variables defined at the 
nodal points of element j.
  Equation 7.67 can be integrated using the Runge–Kutta integration scheme. 
The TVD scheme can also be used, provided that appropriate limiters are used. 
This integration procedure and also the computational process are very similar to 
the 1-D case and thus require no further elaboration. 
 Bassi and Rebay [13] were among the first to propose the discontinuous finite 
element scheme, and applied it to study the compressible flow around a cylinder.  
Their results show that accurate solutions can be obtained on a relatively coarse 
mesh using a higher order representation of the unknowns and of the geometry of 
the domain boundary. They further show that no limiting procedure is needed if the 
solution is sufficiently smooth. They caution, however, that the discontinuous 
finite element method requires a higher order approximation of curved boundaries, 
if accurate numerical results are to be computed. They recommend that for curved 
boundaries, elements of the order of m  2 be used. Some of their results are given 
in Figure 7.12. 

7.3 Multidimensional Compressible Viscous Flows

The compressible viscous flows are governed by the Navier–Stokes equations, 
which may be written in conservation form,

0),()( UUUU vct FF  (7.68a) 

where U and Fc are the vector, and the convective Euler flux tensor, defined by 
Equation 7.54. The viscous flux tensor is given by 
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Figure 7.12. Computed results for 2-D compressible flows passing around a cylinder, using 
the discontinuous finite element method: (a) meshes (128  32) used for calculations and (b) 
March contour [13] 
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Tq  (7.68k) 

where b is the bulk viscosity. 
The vector Fv(U, U) is a function of U, which leads to second order 

derivatives when the viscous fluxes are evaluated. The second order derivatives are 
not accommodated directly in a weak formulation using a discontinuous finite 
element space. Thus, as for the incompressible flows, the auxiliary variables are 
introduced to split the second order derivative terms into a system of first order 
partial differential equations, 

0US  (7.69a) 

0),()( SFF UUU vct  (7.69b) 

 Following the procedure given for the inviscid compressible flow calculations, 
the discontinuous finite element formation starts with the integration of the 
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governing equations with respect to a testing function W over element j. Upon 
substituting numerical fluxes for the function fluxes at the element boundaries, and 
replacing the exact solution with approximate solutions taken from the finite 
element broken space, we have the integral formulation of the Navier–Stokes 
equations, 

ˆ 0
j j j

h hW d WUdS WU dS  (7.70a) 

ˆ ( ) ( )
j j j

h h h
d WU d WH U d W U d
dt

F
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v h h v h hWH U d W U dS F S  (7.70b) 

 For this problem, three different types of numerical fluxes are required. First, 
the convective fluxes  may be selected as either the Godunov fluxes or the Roe 
approximate fluxes or other qualified numerical fluxes. With these fluxes, the 
discontinuity at the element boundaries is treated as an n-split Riemann problem, n
being the boudnary normal of element j. We saw in the last section how the Roe 
flux functions are incorporated into the discontinuous formulation. Second, the 
viscous fluxes v need to be constructed. The theoretical basis for the construction 
of these viscous fluxes was given in Chapter 4. Thus, in principle, the fluxes listed 
in Table 4.2 can be used. For the simplest case, a central approximation, which 
gives a suboptimal convergence rate, was chosen first by Bassi and Rebay [14]. 
This same idea can also be applied to the U fluxes, Û. If these choices are made, 
we then have the following numerical fluxes for the discontinuous finite element 
formulation of the Navier–Stokes equations: 

 (i) Convective fluxes, 

)()]()([),(ˆ
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hhhhhh UUUUUUH AnFF
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 (ii) Viscous fluxes 
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 (iii) U fluxes 

)n(n hhhh UUUUU 2
1);,(ˆ  (7.71c) 

 With these flux expressions substituted into Equation 7.69, followed by 
numerical integration, one has the following ordinary differential equations, 
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)()( U
U

L
dt

d j  (7.72) 

where L is the matrix operator and U(j) is the vector of unknown variables defined 
at the nodal points of element j.
 The system can be integrated using the Runge–Kutta time integrator as 
discussed in Section 7.1.6. 
 Bassi and Rebay [14] applied the above discontinuous finite element 
formulation to solve the Navier–Stokes equations for compressible flows in a 2-D 
domain. They used the Godunov fluxes, instead of Roe’s approximate fluxes, for 
the convective fluxes, and simple central schemes for U fluxes and viscous fluxes. 
Some of their results obtained using the constant, linear, quadratic and cubic 
approximations are given in Figure 7.13. 

(a)            (b) 

(c)            (d) 

Figure 7.13. Numerical results of compressible viscous flows over an airfoil computed 
using the discontinuous finite element method: (a) finite element mesh, (b) linear element 
approximation, (c) quadratic approximation and (d) cubic approximation [14]
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 Baumann and Oden [15] present a discontinuous Galerkin finite element 
method technique to obtain a compact, higher order accuracy and stable solver. 
The method involves a weak imposition of continuity conditions on the state 
variables and on inviscid and diffusive fluxes across inter-element and domain 
boundaries. Auxiliary variables are not needed in numerical fluxes constructed by 
them. Dolejsi [16] recently presented a discontinuous finite element formulation, 
which employs the internal and boundary penalty terms to provide numerical 
stability. These methods are applied to the compressible viscous flow calculations. 

 7.4 ALE Formulation

The arbitrary Lagrangian–Eulerian (ALE) formulation is developed as a moving 
grid treatment of discontinuities in compressible flow fields. In this Section, we 
discuss some basics of the formulation, and the discontinuous Galerkin solution of 
the ALE equations for compressible fluid flow problems. The theoretical 
background of the ALE description of continuum mechanics problems can be 
found in the work of Huge and others [17–20], answering the need for a general 
framework within which flow structure interactions can be effectively modeled. 

7.4.1 ALE Kinematic Description 

We consider, as shown in Figure 7.14, three different coordinate systems to 
describe the motion of a particle.  

First, the motion of particle p, initially located at X, is described by (X, t). At
t, its position is x = (X,t). If we fix our focus at x, then the particle occupying x
can be considered coming from its position at x̂  , and follows the motion described 
by (x̂x̂x̂x̂  , t). Likewise, the particle occupying x̂x̂x̂x̂   may be considered coming from that 
located at X, and follows the motion of (X,t). Thus, the particle motion may be 
considered coming from X via (X,t), or via a combined motion of (X, t) and 
(X, t). Different views of motion can be made, depending upon which coordinates 

or descriptions are used. All these descriptions, however, refer to the same global 
inertia frame with its origin at O (see Figure 7.14).

Perhaps, what is important for dynamics is the velocity and acceleration, which 
are related to the motion. Thus, a time derivative of (X, t) with X fixed, 

( , ) ( , )t t
t tX X

x Xu u X

is the velocity of the particle observed by a person standing still at O. Here the 
particle is identified, with its initial position at X.  However, its current position is 
at x= (X, t) at t, and x1= (X,t1) at t1, etc. In this view, the eyes of the person are 
fixed on the particle as it moves through space. This is the so-called Lagrangian 
description, as discussed above, where X and t are independent variables to 
describe the motion. 
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Figure 7.14. Various configurations used for the ALE description.

If, on the other hand, a probe is placed at x all the time, then it will pick up the 
velocity of the particle when the particle passes x at t. Later, it will pick up the 
velocity of another particle that occupies x at t1 > t. The same person, standing still 
at O, with his eyes focused at position x, will observe a velocity at x and at t as 
u(x,t),

1( , ) ( ( , ), ) ( , )t t t t
t t tX X X

x X xu u x  (7.73) 

and at different t1 , he observes another velocity u(x, t1) at x. This velocity u(x, t1) is 
no longer the velocity associated with the particle originally at X. In fact, in this 
description, the observer cannot remember, and does not care, who passes through 
x at any time. We take t and x as the independent variables. This is the Eulerian 
description. 

If the person standing still at O focuses his eyes at position x̂  , he will observe a 
velocity at x̂   and at t as w(x̂  , t), which is calculated by taking the time derivative of 

 with X fixed, 
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( , ) ˆ( , )t t
t X

Xw w x  (7.74) 

and at different t1 , he observes another velocity w(x̂  , t1) at x̂  .   
If, now, the person changes his position and stands at x̂ , then with his eyes 

focused at x, he will observe a velocity at x and at t as v(x̂  , t),
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ˆ( , ) ˆ( , )t t
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xv v x  (7.75) 

These velocities observed above are related. To derive a relation, we note that 

x = (X,t) = (x̂,t) (7.76)

Taking the time derivative and utilizing the relation x̂ = (X,t), we have by the 
chain rule of differentiation, 
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Here, xi/ x̂j represents the scale change of the particle when it passes through the 
referential frame x̂  , and is often called the deformation tensor. 

We may also write 

iij
j

i vuw
x
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ˆ

 (7.79) 

Let us now consider the acceleration. By definition, the material time derivative is 
the acceleration, 
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t ),(),(),(),( xuxuxuxu  (7.80) 

where use has been made of the chain rule and the relation x= (X, t).
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Again the left is the acceleration of the particle identified by X, and the 
observer’s eyes are fixed on the particle. The two terms on the right represent the 
local time derivative (time rate reading of a probe fixed at x) and the effect of 
neighboring points when the observer’s eyes are focused on the position x.

We also have the acceleration for the referential frame, 
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where ˆ = / x̂ . Note that the velocity u is the same quality and represents the 
velocity of the particle.  Thus, we have 
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 (7.82) 

In general, for a physical property g, we have the following relation:
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Clearly, v = 0 corresponds to the Eulerian description, v = 0 to the Lagrangian, and 
v = u = to the referential. Any mixed description can also be written. These 
relations will be useful for deriving conservation laws in the ALE description.

7.4.2 Conservation of Mass 

We are familiar with the equation of mass conservation in fluids, which is 
expressed in spatial coordinates as 

 0= tt
t

t ,,, xxux

   = tttt
t

t ,,,,, xxuxuxx

   = tt
Dt

tD ,,, xuxx  (7.84) 

For incompressible fluids in particular, we have 

0, txu  (7.85) 

where  is the vector differential operator with respect to x. Let us now consider 
mass conservation in the Lagrangian description. We have then for two different 
configurations, 0 at t = 0 and  at t = t,

)()( 0 Xx dddm o  (7.86) 

Since d  = Jd 0, we have J = 0 and J is the determinant of the Jacobian, J =
| x/ X|. We can choose an initial configuration in which 0 = constant. Then we 
have the following relation: 

0J
dt
d

t
J

X
(7.87) 

where d/dt refers to the time derivative in the Lagrangian frame with X fixed. Now 
carrying out the operations, we have 

0uu J
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JJ
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where  is expressed in terms of spatial coordinates x. This is the same as the 
spatial description. 

The change of volume is then given by the following expression: 

00 d
J
JdJJd

dt
dd

dt
d  (7.90) 

with the time derivative of the Jacobian calculated by 

1
1det tr( )det( ) det( )tr( )J

t t
F F FF F F F

1tr( ) tr( ) tr( )J J J JF F D ul l

Note that we have used the following relations: tr(F–1lF) = F–1:lF=lF: F–1 = tr(l), F
= x/ X, D = 0.5( u+( u)T) and J = det(F), where l = u is the velocity gradient 
tensor.
 The equation for the conservation of mass in the ALE description is obtained 
by substituting the relation in Equation 7.83d into Equation 7.84, 
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7.4.3 Conservation of Momentum  

By definition, Newton’s law applies only to the inertial frame. For the case under 
consideration, it means that it applies only to the observed acceleration by the 
person standing still at O with his eyes fixed on the particle. More specifically, 
Newton’s law is written as 

),(),(),(),( tftf
dt

tdt SB XXXuX  (7.92) 

where superscript B and S represent the body and surface forces acting on the 
particle identified by X. This is the Lagrangian description, and the law of 
conservation of momentum or Newton’s second law. It is noted here that the 
independent variables here are X and t.   

If we now write the above conservation law in terms of x and t, then we have 

),(),(),(),(),(),( tftftt
t

tt SB xxxuxuxux
x

 (7.93) 

which is the Eulerian description. Note that subscript x here refers to the Eulerian 
coordinates.



310 Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer 

If we express the conservation of momentum in the mixed frame, we then have 

),()),(),()(,(),(),(
ˆ

tttt
t

tt xuxvxuxxux
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= ),(),( tftf SB xx

(7.94) 

which is sometimes called the mixed description.   
If the conservation of momentum is written in the referential frame, then we 

have
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 = ),ˆ(),ˆ( tftf SB xx  (7.95) 

where we have the Jacobian J and the deformation gradient tensor F defined as 
follows:

jiij xxF ˆ  or )ˆ,( xxJ = |ˆ||| jiij xxF (7.96) 

and also use has been made of the following relation:  
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Equation 7.95 is called the referential description. 

7.4.4 Conservation of Energy 

The same approach presented above can be employed to obtain the equation for the 
conservation of energy. Let us consider the Eulerian description of energy 
conservation,

)()( fuuu E
t
E  (7.98) 

 Once again, with the relations in Equation 7.83 substituted into the above 
equation, we have the ALE description for the conservation of energy, 
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7.4.5 Summary of ALE Equations 

Donea et al. [20] showed that all of the above descriptions (Lagrangian, Eulerian, 
mixed and referential) can be generalized as follows: 
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where e = 0.5ui
2 + E and E is the internal energy. Also, the right hand side is the 

time derivative in the Lagrangian description, and the right hand side refers to the 
derivative in the Eulerian description (see Equation 7.83b). The Jacobian is given 
by 

X
x̂~J  (7.100d) 

7.4.6 Constitutive Relations 

Constitutive relations must be invariant under changes of reference frames. This 
means that the quantity remains the same under arbitrary rigid body rotation, which 
is referred to as material-frame-independence. This constraint has important 
implications in solid mechanics as it involves the specification of the material’s 
behavior as a function of stress rate. Often the Jaumann rates, or similar types of 
stress rates, need to be used. For fluids, the constitutive relations involve only 
stresses, which are frame-indifferent. Thus the same constitutive relations for the 
Eulerian frames should be applicable to the ALE description [21]. 

7.4.7 ALE Description of Compressible Flows 

With the above results, the governing equations for compressible flows in an ALE 
framework are written as follows [22, 23]: 

0),()( uFF XX UUU vct  (7.101a) 

where the vector of variables, and convective and diffusive fluxes, are given by the 
following expressions: 
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where u = (u1, u2, u3) = (u, v, w) and Vg = (V1
g, V2

g, V3
g) is the velocity of the grid 

movement. It is seen that the grid movement affects the convection terms only, and 
the diffusion fluxes are the same as before, thanks to the constitutive relation. 
 We further note that the above formulation is general. Compared with Equation 
7.83d, we have v = Vg. When the grid velocity Vg is set to zero (Vg = 0) the 
Eulerian description of the Navier Stokes equations are recovered. Furthermore, if 
grid velocity is set to the local velocity u, we have Lagrangian fluid equations 
where material interfaces are exactly resolved. 

7.4.8 Discontinuous Finite Element Formulation

The discontinuous finite element formulation is also very similar to that already 
given in Section 7.4, aside from the factor ij. The computational procedures are 
thus very similar. An important computational issue of solving the Navier Stokes 
equations in an ALE frame is the determination of the grid velocity. A common 
approach to update the grid velocity is to solve the following diffusion equation: 

0))(( gx V  (7.102) 

with (x) being a parameter, and Dirichlet conditions on both the moving wall 
boundary and on the outer boundaries of the computational domain. 

The above equation may be solved like the classical elliptic equations. An 
alternative approach is proposed by Lomtev [22], who used concepts from graph 
theory to update the grid movement; and thus, no matrix inversion is needed, with 
the additional advantage of minimizing the grid distortion. 



Compressible Fluid Flows 313 

The use of the ALE formulations for compressible flow calculations, with and 
without shock wave formations, and some of the computational details are given in 
[23]. 

Exercises

1. Consider the nonlinear pure convection (inviscid Burgers’) equation, 

0
x
uu

t
u , , t > 0 

2)0,( xxu , x , t > 0 

Find the characteristics, sketch the characteristics diagrams and find the 
solution.

2. We consider a simplest detonation model (or Semenov’s model), which is 
obtained by simplifying the compressible flow equations and has the 
following form: 

),,( 00 TCr
t
C ,   t > 0 

),,( 00 TCQr
t
P

t
TC p , t > 0 

TRP 0 ,       t > 0 

subject to the initial conditions: 

0)0( TT ; 0)0( CC

where 0 is the density of the combustable reactant, C is the concentration, 
Cp is the specitic heat, r is the reaction rate, Q is the heat generation of the 
combustion reaction and T is the temperature. For this particular model, 

0, that is, the density is a constant. 
Show that for a reaction rate expressed by the Arrhenius equation, 

exp Er K C
RT

the above equation set can be combined to yield one equation for the 
temperature, 
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RT
ETTK

t
T

b exp)( ; T(0) = T 0 

where Tb is a constant given by 

)0()0(
)(0

TC
RCC

QT
pp

b

Solve the equation to obtain T(t) and plot and discuss the evolution of the 
temperature for the detonation process. 

3. Consider the 1-D Euler equations for isentropic compressible flows. Show 
that the flows are governed by the following equations: 

0)(
x
UF

t
U

u
U ,

pu
uUF 2

2
)(

Cpp )(

 Study the characteristics of the above partial differential equations. 
4. Consider the small perturbations u and  to a motionless gas. Let u and 

=  + , where  is a constant density value. Show that when linearized, 
the isothermal Euler equations reduce to 

00 x
u

t
, 0

0

2

x
a

t
u

Analyze the characteristics of the Jacobian matrix of the above equations. 
Show also that the combination of the above two equations yields 

02

2
2

2

2

x
a

t

where a is the speed of sound, 

)( 02 p
a

5. Develop a discontinuous finite element code to solve 1-D Euler equations 
for compressible flows. The code should allow us to use different orders of 
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approximation in space and in time and also different types of flux 
approximations. 

6. Consider the 1-D Euler equations for compressible flows through a 
diverging channel, 

0H
x
F

t
U

where 

u
E

U  ; pu
u

upE
AF 2 ; p

dx
dAH

0

0

The channel is 3.3 m long, with its cross section given by 

2m)48.0(tanh347.0400,1)( xxA

Inlet:    M  =  1.5,  p = 47880  Pa , = 1.22145  kg/m3

u =  429.2101 kg/m2s, E = 19909.39  J/m3

Exit:    either  supersonic  or  subsonic. 

Solve with the discontinuous finite element code developed in Problem 5 
using (1) Lax Friedrichs explicit, (2) Godunov explicit, and (3) TVD.
Employ constant, linear, quadratic and cubic approximations. Compare and 
discuss your results. 

7. Solve  the  Euler  equations for  the two-dimensional  domain  shown 
below.

1.0 1.0 1.0

0.8

0.2

1.0

Inflow

0
i

i

x
F

t
U ,      iV

E
U ,        ijji

i

ii

pV
V

pVEV
iF
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Inlet: M =2,  = 1.4, K288.33T

340.4616 m sa RT , 3kg/m1.225571

s,m680.9232u v = 0,   2kg/m10331.22p

2 2 21 54800.37 kg m
21

pE u v

Initial conditions:  Use inlet conditions as initial conditions for all nodes. 
Boundary conditions for the problem: Supersonic inlet. Supersonic exit. 
Slip wall  conditions. 
Develop a discontinuous finite element code to solve the above equations. 
Use constant, linear and quadratic approximations on a triangular mesh.

8. For the 2-D problem shown in Problem 4, the Navier–Stokes equation has 
the form given below. Develop programs to solve the Navier–Stokes 
system of equations for Problem 4 using the discontinuous finite element 
method. Repeat these programs for a geometry in 3D with the depth of  x3
direction given as 1 in the figure.  

0
i

i

i

i

xxt
GFU

iV
E

U ; ijji

i

ii

i pV
V

pVEV
F ;        ij

ijij

i

qV

0
G

9. Formulate the shock tube problem in an ALE configuration and develop a 
discontinuous finite element code to solve the Riemann problem for the 
shock tube using the ALE Euler equations. 
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8

External Radiative Heat Transfer  

Thermal transfer by radiation is an important heat transfer mechanism in thermal 
systems. Unlike heat conduction and convection, thermal radiation does not require 
direct contact between the heat transfer parties. Rather, it is a result of the 
electromagnetic energy radiated from a body at a temperature above absolute zero. 
In general, thermal radiation problems are classified into two categories. The first 
category is concerned with the thermal radiation exchange between surfaces, which 
involves no intervening media. The second category deals with the thermal 
radiation transfer through absorbing and scattering media. In the heat transfer 
literature, the former is often referred to as external radiation, while the latter as 
internal radiation. The mathematical formulations are different for these two 
categories, and therefore, naturally lead to the use of different computational 
approaches.  

Thermal radiation problems can be difficult to solve, and thus there are only 
limited cases where simple solutions are possible. For most practical applications, 
in which heat flows and temperatures need to be found, numerical solutions are 
often needed, and may require considerable computational effort. Many methods 
have been reported in the literature and an extensive review of the methods 
available today is documented in Modest [1] and Siegal and Howell [2]. Here we 
focus on the numerical algorithms that have been developed on the basis of the 
discontinuous Galerkin finite element formulation for the solution of thermal 
radiation problems. Since the external and internal thermal radiation problems are 
described using different mathematical equations, it is convenient to discuss the 
subject in two consecutive chapters. 

In this chapter, we consider the solution of the external radiation exchange 
problems by the discontinuous Galerkin finite element method. We start with the 
basic concept of external radiation between surfaces, and develop an integral 
representation of the surface energy exchange in an enclosure, on the basis of 
thermal energy balance. The use of the discontinuous Galerkin method for the 
solution of the integral equation is then discussed for 2-D, 2-D axisymmetric and 
3-D geometries.  

Perhaps the most important part of algorithm development for the numerical 
solution of external radiative heat transfer is an accurate estimation of kernel 
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functions, which would require the detection of a third party blockage in complex 
geometric arrangements. The calculations involving blockage detection can be 
difficult, cumbersome, and time consuming. Various ideas have been developed in 
the past [3 7] but a systematic description of the algorithms for geometries of all 
dimensions appears to be lacking. Undoubtedly, the algorithms should have some 
common features. However, the enclosures of different dimensions can have very 
different geometric complexities that warrant different numerical treatments. A 
systematic description of these shadowing algorithms is provided in this chapter. 
This allows for a better appreciation of these common and different features, and 
thus helps to develop more efficient algorithms. The detection algorithms described 
in this chapter combine the best ideas published in the literature. These techniques 
make use of the organized data structure and the advanced computer graphics 
schemes used for hidden line removal [3 11]. These algorithms could be 
considered to be the most efficient schemes to date for the numerical solution of 
external radiation problems.  

The numerical solution of mixed heat transfer problems involving conduction, 
convection and radiation is discussed. A solution strategy is presented, which is 
based on a combination of the discontinuous Galerkin method and the conventional 
finite element method. Of course, the solution of these mixed mode heat transfer 
problems can be obtained using the discontinuous Galerkin method alone. 
However, for engineering applications, and for multiphysics model development, a 
combined approach can be more beneficial if it enables the use of the best 
properties of each of the methods, or if it is built within an already existing 
software framework. 

For illustrative purposes, some simple examples are presented and discussed in 
detail. The chapter ends with several more examples of varying degrees of 
difficulty, covering 2-D, 2-D axisymmetric and 3-D geometries with and without 
internal geometric blockages.   

8.1 Integral Equation for Surface Radiation Exchanges

If the media are not radiatively participating, the thermal radiation energy will 
exchange between surfaces, which in many engineering applications define an 
enclosure, as shown in Figure 8.1. The surface radiative energy transfer depends on 
the local surface temperature of the enclosure and the properties of the surfaces, 
but not upon the intervening media, which neither absorb, emit, nor scatter. This 
condition is often satisfied by a vacuum or a transparent medium. This section 
discusses the basic concept for surface radiation transfer and the equation 
governing the heat flux distribution along the surfaces. 

8.1.1 Governing Equation 

Let us now consider the radiation exchange among surfaces that form an enclosure, 
as illustrated in Figure 8.1. It is assumed that there are no radiation-absorbing or 
scattering media in the enclosure. Surface element J emits the thermal energy to 
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the other surfaces of the enclosure, while receiving the energy from these surfaces. 
The heat flux q(rj) is supplied to the surface element J to sustain the radiation heat 
transfer, and is determined by the heat balance on point j, involving incoming and 
outgoing radiation energy fluxes. Referring to Figure 8.2, the general expression 
for the heat flux exchange between two surfaces I and J is given by the following 
integral [1,2]:

Figure 8.1. Schematic of thermal radiation exchanges among surfaces in an enclosure
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where the radiation intensity emitted from point j is defined by 
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(8.2)

In the above equations,  is the frequency of the thermal rays, or essentially 
electromagnetic waves,  is the radiant intensity,  is the emissivity,  is the 
reflectivity,  is the angle between the normal of the surface and radiation 
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exchange direction, and is the azimuthal angle. Note that in this chapter the 
radiant intensity I always has subscripts. This should not be confused with the use 
of I (which does not have a subscript) for surface or surface elements. Also, 
subscript b refers to the blackbody radiation, and thus by its definition the 
blackbody radiation intensity is directionally independent. Subscript r refers to the 
reflected radiation. Also, r,j is the angle between the normal of the differential 
element centered at point j and the direction of the reflected radiation at point j and 

r,j is the azimuthal angle similarly defined. The geometric relations of these 
quantities are illustrated in Figure 8.2. 
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Figure 8.2. Schematic representation of the surface energy interchange between two 
surfaces I and J. (a) Energy exchange between surfaces Ai and Aj, where S = |ri – rj| and (b) 
spherical coordinates showing the angular relations 

0  2 , 0 
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 While the above formulations are general, for most engineering applications, 
the surfaces of an enclosure can be well approximated as gray, diffuse surfaces [2]. 
Within the framework of these approximations, the integration over the wavelength 

 can be carried out analytically. After these analytical operations and 
rearrangement, the following boundary integral formulation is obtained for the 
radiative heat flux q(r) at the surface of an enclosure: 

b bq E K E q d1 ( ')
( ) ( ) ( ) ( ) ( , ') ( ') ( ') ( ')

( ')
r

r r r r r r r r r
r

 (8.3) 

 where Eb is the blackbody emissive power and is calculated by the integration of 
the blackbody radiation intensity over the entire spectrum of wavelengths, 
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with s being the Stefan Boltzmann constant. Here, use has been made of the 
spectral distribution of Planck’s blackbody radiation [1], 
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where  is the Planck constant, c0 is the speed of light, and kB is the Boltzmann 
constant. Notice that the subscript i on ri has been dropped out and rj replaced by r
to simplify the notation. This will remain true hereafter unless indicated otherwise. 

8.1.2 Kernel Functions 

In Equation 8.3, K(r,r’) is the kernel function for the integral, which for 3-D 
problems takes the following form [1]: 

2
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4 '

coscos

'

''')',(
rrrr

rrnrrnrr rrK    (8.6) 

where  assumes a value of one when the surface element I sees the surface 
element J, as illustrated by the ray connecting i to j; otherwise it is zero if the ray is 
blocked. Also, r is the angle at point r, and r’  at point r . This is illustrated in 
Figure 8.2. Thus the parameter  is a strong function of the geometric 
configuration, which makes the kernel function highly irregular for a geometrically 
complex enclosure. 
 Equation 8.6 is the kernel function for a general 3-D geometry. For 2-D and 
axisymmetric configurations, the kernel function can be analytically integrated 
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along the z or direction. For 2-D geometry, the integration of the kernel function 
is straightforward, 
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(8.7)  

For an axisymmetric configuration, however, integration along the  direction 
is much more involved. The derivation is given here for completeness. Referring to 
Figure 8.3, n denotes the unit normal of element I at the azimuth angle  being 
zero, and n  refers to the unit normal of element J with any azimuth angle . The 
mathematical expressions for n and n  are as follows: 

)sin,0,(cosn  and )'sin,'sin'cos,'cos'(cos'n  (8.8) 

Substituting these terms into Equation 8.6, the kernel function is rearranged in 
terms of the azimuth angle ' ,

2)'cos(
)'cos"")('cos''()'(

dc
dcdcK  (8.9) 

where the coefficients are calculated by the following expressions: 

Figure 8.3. Schematic of thermal radiation exchanges between two ring surfaces I and J in a 
cylindrical enclosure 
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Integration with respect to  and making use of the following relation: 
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one has the final expression for the kernel function, 
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where the coefficients are given by 
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Further integration of Equation 8.11 requires knowledge of the geometric 
configuration, which is discussed in Section 8.3.2.

8.2 Discontinuous Galerkin Finite Element Formulation 

We now derive the discontinuous Galerkin finite element formulation for the 
surface radiative energy exchanges in an enclosure. By the Galerkin method, the 
global residuals are forced to zero by use of the orthogonality condition, thereby 
minimizing the error that could arise from the integral stated in Equation 8.3. More 
importantly, the double integral enables the shadowing elements to be detected that 
could be missed by the direct application of the traditional boundary element 
method [3,11]. Thus, Equation 8.3 is integrated once again over the entire surface, 
with shape functions i used as the weighting functions,  

( ) ( ) ( )bq Er r r
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 (8.12)  

Equation 8.12 involves integration over the surface only, and thus the surface 
element method can be applied naturally to discretize the domain and obtain the 
solution [12]. Both Eb and q can be interpolated over each of the boundary 
elements by use of the shape functions discussed in Chapter 3,  
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Now, with the boundary discretized and the shape functions chosen as described 
above, Equation 8.12 becomes 
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Following standard boundary element procedure, the above equation may be 
written in matrix notation, 

bEBqA  (8.15) 

where an underscore beneath the boldfaced letter denotes the vector, and the 
elements of matrices A and B are calculated by the following expressions: 
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Depending on the boundary conditions, Equation 8.15 can be rearranged into a 
standard matrix form, 

FKU  (8.18) 

where K is the global matrix, U the vector containing unknowns, and F the force 
vector. The solution of the above equation can be solved using the standard LU
decomposition method. 
 Several points are worth noting. First, Equation 8.12 permits the use of both 
continuous and discontinuous shape functions. In some of the literature, Equation 
8.12 is referred to as the Galerkin boundary integral formulation, as the field 
variable is defined on the surface only. In the discontinuous finite element sense, 
cross-boundary continuity is not required as a result of the use of the kernel 
function. Second, for this particular formulation, the final matrix is not local to an 
element only. The kernel function links all the surface elements together; 
consequently, the global matrix involves contributions from all surface elements, 
although discontinuous elements are used. This is different from the discontinuous 
finite element formulations discussed in previous chapters. Third, the kernel 
function is not based on the diffusion theory, and thus it does not necessarily 
satisfy the diffusion with a point source. In fact, the kernel function describes the 
straight line path relation between two points on two surface elements, which is 
much different from commonly known diffusion behavior. Therefore, if there 
exists a blockage between the two surfaces, then the thermal ray emitted from one 
surface will not be able to reach the other surface. In the case of diffusion, 
however, the field variables would bend around or diffuse through the blockage to 
reach the other surface. Because of these characteristics, the kernel function can be 
discontinuous, and thus special treatments must be applied to ensure correct 
detection of these internal blockages in complex geometries, in order to obtain an 
accurate evaluation of the kernel functions.  

8.3 Shadowing Algorithms 

The evaluation of kernel functions for surface radiative energy exchange 
calculations can be carried out in a fairly straightforward manner, if the internal 
blockages are not present, and the surface of the enclosure is convex everywhere 
[13, 14]. We will illustrate this point in Example 8.1 below. When a blockage 
occurs between the surface elements either by the internal structures or by the non-
convexness of the enclosure surface, an accurate evaluation of the kernel functions 
requires a tedious procedure to detect these geometric blockages [3 11]. While the 
idea is to find out if a line emitted from a point on a surface element is intercepted 
by any objects in the enclosure before it reaches its designated point on another 
surface element, a general, efficient computational procedure – namely the 
shadowing algorithm – for this type of calculation requires careful geometric and 
floating point considerations. Perhaps the most important aspect of surface 
radiation exchange computations is the design and implementation of a shadowing 
algorithm that allows an efficient and effective detection of any geometric 
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obstructions by third parties embedded in a configuration (see Figures 8.1 and 8.3). 
This is also the most difficult, time consuming, and error-prone part of a 
computational scheme for thermal radiation exchange calculations, without which 
these computations can be carried out routinely using essentially any integration 
algorithms available [12 14].  

Initialize the list for element I

Choose a pair of elements I & J

Delete element J
from the list

Initialize 3rd part list for mutually seen elements
I & J

Primary clipping

Seen each
 other ?

Are all integration
points of elements I & J

checked?

LUD

Not blockingTotal blockage Partial blocking

Check partial blocking
between elements I & J by

element K

Adaptive integration  & checking
between elements I & J

Are all
pairs checked?

0

Are all elements
checked?

No

No

No

No

Figure 8.4. Outline of the shadowing algorithm for detection of third body blockages during 
external radiation calculations 
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Two mechanisms can prevent a radiation ray from reaching its designated 
destination, and must be identified in the algorithm. In the first case, the surface 
element does not see at all the destination point the ray is supposed to reach. This is 
essentially the case of self-blocking, which occurs with a curved or ring element. In 
the second case, the ray is blocked by a third party element, due to a geometric 
configuration, which is coined third party blocking. In both cases, the kernel 
function is zero. The blockage of a ray can be further differentiated into the 
categories of partial blocking and total blocking, for which special treatments are 
required. While kernel functions can be evaluated by integration with final 
checking alone for every pair of elements, this brute force approach can be 
prohibitively expensive, especially for large-scale calculations involving complex 
3-D geometries, and thus should be avoided whenever possible. An efficient 
algorithm should be able to eliminate all those elements that are not needed, and to 
perform only on those elements that are absolutely necessary for the 
computationally intensive integration with blockage detection. The shadowing 
algorithms developed based on these ideas for the detection of blockages in 2-D, 
axisymmetric and 3-D configurations are described below. These algorithms all 
involve data structure creation, sorting, primary and secondary clipping, and 
adaptive integration, but differ in the details of geometric treatments. The outline 
of the shadowing detection and adaptive integration algorithm is illustrated in 
Figure 8.4. Although the general procedures are the same for the geometric 
configurations of all dimensions, the details are sufficiently different that the 
detection algorithm development for the 2-D, axisymmetric and 3-D geometries is 
discussed in separate sections. 

8.3.1 Shadowing Algorithm for 2-D Geometry 

The shadowing scheme for a 2-D geometry is considered first, because it is the 
most intuitive and easy to envision. Before starting the search and sort procedure, a 
list of elements actively engaged in thermal radiation with element I, from which 
radiation emits, is created and initialized. The data structure creation follows a 
similar procedure to that given in Bastian and Li [15], and should be applicable to 
the problems of all dimensions. This list is updated as the procedure proceeds. The 
first step tests the signs of the product of the surface normals of the two elements 
(e.g., elements I and J) with the vector connecting the two elements (i.e., R in 
Figure 8.5). This is equivalent to testing the sign of n (r – r ) n (r – r ). If the sign 
of n (r – r ) n (r – r ) is positive, the two elements can see each other. If the sign 
of n (r – r ) n (r – r ) is zero or negative, the two elements are considered to be 
unable to see each other. Based on this sign test convention, elements I and J can 
see each other, whereas elements I and J’ cannot, as shown in Figure 8.5. After this 
test, the elements that are unseen by element I are discarded from the list. The 
kernel function for them is set to zero, and no further considerations are given to 
them in terms of thermal radiation exchange with element I.
 For those elements remaining in the list, a test is conducted to determine the 
blockage. The procedure involves additional three steps, the basic idea of which is 
illustrated in Figure 8.6. Again, before the test is started, another list of third party 
elements is created and initialized for each pair of mutually seen surface elements, 
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determined as described in the previous paragraph. The algorithm here consists of 
the coarse screening and the detailed checking. First, a rectangular primary window 
is set up using the maximum and minimum coordinates of the pair of mutually seen 
elements, i.e., elements I and J (see Figure 8.6). For this purpose, the standard clip 
algorithm routinely used in computer graphics for clipping objects, proves to be 
extremely effective, is thus directly applied [16 18]. The elements lying outside 
the window are deleted from the list of blocking elements. This check will throw 
out a majority of unblocking third party shadowing elements from the list of 
blocking elements. Those screened through this check are further clipped out and 
discarded from the list of blocking elements, if they lie outside the irregular 
window defined by 1 2 12. The algorithms used to clip out the elements out of the 
irregular window, such as 1 2 12, are more involved and computationally intensive. 
However, the basic procedure is the same as for clipping against a triangle, which 
is performed during the integration. Thus, the elements are discarded from the list 
if they lie outside the window 1 2 12. Those lying partially or completely inside the 
window are further checked for blocking while integration is performed.   

Figure 8.5. Geometric relations between mutually seen and unseen elements: radiation 
emitted from point i can reach point j but is unable to reach point j  because of the self-
blockage by the element J

For those elements remaining in the list, a test is conducted to determine the 
blockage. The procedure involves an additional three steps, the basic idea of which 
is illustrated in Figure 8.6. Again, before the test is started, another list of third 
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party elements is created and initialized for each pair of mutually seen surface 
elements, determined as described in the previous paragraph. The algorithm here 
consists of the coarse screening and the detailed checking. First, a rectangular 
primary window is set up using the maximum and minimum coordinates of the pair 
of mutually seen elements, i.e., elements I and J (see Figure 8.6). For this purpose, 
the standard clip algorithm routinely used in computer graphics for clipping 
objects, proves to be extremely effective, is thus directly applied [16 18]. The 
elements lying outside the window are deleted from the list of blocking elements. 
This check will throw out a majority of unblocking third party shadowing elements 
from the list of blocking elements. Those screened through this check are further 
clipped out and discarded from the list of blocking elements, if they lie outside the 
irregular window defined by 1 ,2 ,1,2. The algorithms used to clip out the elements 
out of the irregular window, such as 1 ,2 ,1,2, are more involved and 
computationally intensive. However, the basic procedure is the same as for 
clipping against a triangle, which is performed during the integration. Thus, the 
elements are discarded from the list if they lie outside the window 1 ,2 ,1,2. And 
those lying partially or completely inside the window are further checked for 
blocking while integration is performed.   

Figure 8.6. Primary and secondary clip windows for screening out third party shadowing 
elements for blocking the radiation exchange between elements I and J

Numerical integration is performed to compute Aij and Bij for each pair of 
mutually seen elements I and J, while checking for blockage by each remaining 
element in the list of partial blocking elements attached to the pair. Some of these 
partially blocking elements may or may not block every ray between the two 
elements. To determine if a third party element actually blocks a ray between 
elements I and J, the third party element is first checked against a triangle, formed 

Third party 
partial blocking 

Primary clip 
window 

Second clip 
window 

Element
eliminated after 
first check 
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by an integration point on element I and element J. The detailed algorithm for 
clipping against the triangle is given in Figure 8.7, where three different scenarios 
are depicted. For case 8.7a, the third party element K lies outside the triangle, and 
thus integration along element J from point i is not affected. As a result, numerical 
integration is carried out for element J and point i without further checking. For 
case 8.7b, the third party completely blocks a ray from point i to any points on 
element J. Thus, the kernel function is set to zero and no integration is carried out 
for element J. For case 8.7c, which is the most common, the third party element is 
partially blocking, and therefore every ray from point i to any integration point on 
element J needs to be further checked (see the next paragraph for detail). To 
determine to which case the third party element K belongs, the following rule 
based on the geometric considerations is applied. The nodes of the triangle formed 
from point i and element J are numbered anti-clockwise, which allows one to 
determine the surface normal, ns, of the triangle as positive, when pointing out of 
the paper. Two vectors are created by connecting one point of element K, say a
(see Figure 8.7c), to two end points of one side of the triangle, e.g., 1l  and 2l . The 

cross product of the two vectors, ,12 ll  is then dot with the surface normal ns of 
the triangle. If the dot product is positive, then the element K is inside the triangle 
and belongs to the category of Figure 8.7c. If both 12 llsn  and 34 llsn  are 

negative, and il  (i =1, …, 4) is formed from the same side of the triangle, then the 

third party element K belongs to the category of Figure 8.7a. If both 12 llsn  and 

34 llsn  are positive and il  (i =1,…,4) is formed from two different sides of the 
triangle, then the element K belongs to the category of Figure 8.7c, where a third 
party element totally blocks the point to element J.

For the case illustrated in Figure 8.7c, an adaptive integration algorithm is 
applied, while the ray connecting point i to an integration point on element J is 
checked for blockage, as illustrated in Figure 8.8. In this case, the interception 
point P is calculated by simultaneously solving the two linear equations describing 
lines a b  and ij. The blockage occurs if P lies on line a b  or element K; otherwise 
line ij is not blocked. In applying the adaptive integration, two successive 
numerical integrations, with twice as many integration points in the current step as 
those in the preceding one, are employed. The error between the two successive 
integrations is checked and the calculation is considered converged, when it is 
smaller than a preset value. Our experience indicates that a preset value of 0.001 as 
a relative error with respect to the diagonal term yields a reasonably fast 
convergence with sufficient accuracy.   

At this point, it may be constructive to revisit the treatment of the third party 
blockage when a single surface integration is applied. The drawback associated 
with the traditional boundary element algorithm is the possible miss in detecting 
the third party shadowing in some special cases. This point is illustrated in Figure 
8.9. Because the numerical integration is carried out between the nodal points (1  or 
2 ) and element J, and point a is not included in integration (see Equation 8.3), the 
shadowing effect of element L, a third party element that actually partially blocks 
the view between elements I and J, is not accounted for, thereby resulting in 
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numerical errors. The Galerkin boundary element method, however, requires the 
double integration of elements I and J, which in turn requires the use of internal 
points on either elements, and thus will be able to detect the existence of element L.    
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Figure 8.7. Three geometric arrangements for third party obstruction of radiation exchange 
between point i and element J in relation to the testing triangle: (a) no obstruction, (b) total 
obstruction and (c) partial obstruction 
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Figure 8.8. Detailed testing of blockage of radiation between points i and j by a third party 
element K

Figure 8.9. Comparison of strategies for detecting third party shadowing by the traditional 
and Galerkin boundary element methods. The traditional method uses the triangle formed by 
1 12, where the Galerkin used triangle 1 12 and other triangles such as a12

8.3.2 Shadowing Algorithm for Axisymmetric Configurations 

The geometric considerations for an axisymmetric configuration can be quite 
different from the simple 2-D case, although there are some similarities. This is 
because the self-blocking must be checked, even if a linear surface element is used. 
This is shown in Figure 8.3. 

As in the 2-D case, the shadowing algorithm starts with the creation of a list of 
elements actively engaged in thermal radiation with element I, from which 
radiation emits. This list is updated as the procedure proceeds. The first step tests 
the signs of the product of the surface normals of the two elements (e.g., elements I
and J) with the vector connecting the two elements, i.e., R in Figure 8.3. This is 
equivalent to testing the sign of (n R) (n R). If the sign is negative, the two 
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elements can see each other. Otherwise, the two elements are considered as not 
seeing each other. In axisymmetric cases, the following rule is very useful and can 
be easily proved. Elements I and J are not mutually seen, if element I cannot see 
both sections of element J at  = 0 and  = , as shown in Figure 8.10. In other 
words, elements I and J are unseen by each other, if both (n Rp) (np Rp) and (n Rb)
(nb Rb) are positive or zero. After this test, the elements that are unseen by element 
I are discarded from the list. The kernel function for them is set to zero and no 
further considerations are given to them in terms of thermal radiation exchange 
with element I.

Figure 8.10. Geometric relations between mutually seen and unseen elements: radiation 
emitted from point i can partially reach element L, but is unable to reach element J

For those remaining in the list, further testing is performed to determine the 
blockage. The procedure is identical to that used for 2-D calculations, except that 
the detection for axisymmetric geometry uses the window as shown in Figure 8.11. 
This check eliminates a majority of unblocking third party shadowing elements 
from the list of blocking elements. Those screened through this check are further 
clipped out and discarded from the list of blocking elements, if they lie inside the 
two triangles defined by iibit and itjbjp, as illustrated in Figure 8.12. Based on 
this criterion, element K does not block elements I and J that see each other. Thus, 
those lying partially or completely outside these two triangles are further checked 
for blocking while integration is performed.   

The blocking region on element J by the third party element K is determined by 
the azimuthal angle ranging from 1  to 2 . This region is calculated analytically in 
this study. Due to the fact that the geometry is symmetric with respect to the 
plane  = 0, the blocking region on element J is confined from  = 0 to  = .
The surface of the third party element K shown in Figure 8.13 can be expressed as   

0)1( 2222
IRktyx       (8.19) 
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where the parameters are defined as t = z/zj , RI = (RaZb – RbZa)/(Zb –Za), k = (RJ – 
RI)/RI , and RJ = (Rb – Ra) (ZJ –Za)/(Zb – Za) + Ra. The normal vector on the surface 
of element K is obtained by the gradient of Equation 8.19, 

}/)1(,,{ 2
jIk zkRktyxn  (8.20) 

The ray emitted from element I can be described as the following equations 
with the parameter t:

tabax )'cos( ; 'sinbty ; tzz j  (8.21) 

Figure 8.11. Clip windows used for primary checking of shadowing elements for 
axisymmetric configurations 

Figure 8.12. Two triangles formed by iibit and itjbjp provide un-shadowing zones between 
point i and contour j
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Figure 8.13. Detailed geometrical description between point i and contour j by a third party 
element K

Therefore, the normal vector of element K can be further expressed in terms of the 
parameter t and the azimuth angle ,

}/)1(,'sin,)'cos({ 2
jIk zkRktbttaban  (8.22) 

The criteria for which the ray cij  is tangent to the surface of element K must 

satisfy the relation, 0cijnk . This gives 

12
)()('cos

2222

t
ktk  (8.23) 

where  = a/RI  and  = b/RI.
The solution of the above equation, t , represents the minimum angle that does 

not block the ray cij  reaching the contour j on element J at z = zj. The intersection 

of cij and the surface of element K can be determined by the solution of Equations 
8.19 and 8.21, i.e., 

22222 )1('sin))'cos(( kttt  (8.24) 

The location, where the ray cij is tangent to the surface of element K, is calculated 
by solving for t and is written as follows: 

)2(
))2(1)(1()1(

22

222

kk
kk

t  (8.25) 
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If the solution of Equation 8.23 exists but the parameter t falls out of the range 

jbja zztzz , the ray cij may intersect the end disks at the top or the bottom of 
the third party element K. The intersections are defined by two azimuthal angles, 

)1(2
)(2)(

cos
222222

'

tt
tt a

a (8.26)

where ja zzt  and Iaa RR ; and 

)1(2
)(2)(
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222222

'

tt
tt b

b  (8.27) 

where jb zzt  and  .Ibb RR
To effectively determine the shadowing regions on element J, blocked by the 

third party element K, the following algorithm is developed. In the algorithm, every 
third party element blocking the ray from the radiating point i and the contour j is 
treated as a hollow cone. Three angles defined in Equations 8.23, 8.26 and 8.27 are 
used for determining any possible blocking regions. 

(1)    for any third party element K
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Go to (1) to check next possible third party element. 

The process will continue until all possible third party elements are checked. The 
final blocking region is determined by 1 min, max,,Nk

K K K , where KN  denotes the 
total number of third party elements. Therefore, the integration in Equation 8.11 
should be evaluated in the regions 1 ,min, max,(0, ) .Nk

K K K

8.3.3 Shadowing Algorithm for 3-D Geometry 

The shadowing algorithm for a 3-D configuration also follows the outline given in 
Figure 8.7. As in the 2-D case, the algorithm starts with sorting by signs. Prior to 
the four-step procedure, a list of elements actively engaged in thermal radiation 
exchange with element I from which radiation emits is created and initialized. This 
list, labeled as the main list, may be taken as the entire set of surface elements if 
there exists no prior information on inter-element relations, which would be the 
case with I = 1. The list initiated may be shorter, starting with I  2, because 
information obtained from the previous testing can be used to preclude some 
elements from the list to speed up the computation. For example, if elements 1 and 
2 are not seen by each other, then element 1 would be excluded from the list for 
element 2 when it is created. Once it is created, the list is updated as the 
searching/sorting procedure proceeds. As the first step, elements are sorted by 
testing whether two elements can see each other at all. To do that, we consider the 
signs of the dot product of the surface normals of the two elements (e.g., elements I
and J) with the vector connecting the two elements (i.e., Rij in Figure 8.14). This is 
equivalent to testing the signs of n (r – r ) and n (r – r ). The thermal rays may 
reach each other between the two elements, or the two elements can see each other, 
if n (r – r ) and n (r – r ) have different signs. Otherwise, the thermal rays emitted 
from either of the elements cannot reach the other, or the two elements cannot see 
each other. Based on this sign test convention, elements I and J can see each other 
(see Figure 8.2), whereas elements I and J cannot, as shown in Figure 8.5. After 
this test, the elements that are not seen by element I are discarded from the main 
list. The kernel function related to them is set to zero and no further considerations 
are given for them in the procedures ensuing. 

The primary clipping is now performed on the elements remaining in the main 
list, which are considered mutually seen at this moment, to determine the foreign 
elements for the potential third party blockage of surface radiation exchanges 
between an element pair of element I and one other element (say element J)
selected from the main list. The basic idea of the primary clipping is illustrated in 
Figure 8.15. Again, before the test is started, another list of third party elements, or 
the blocking list, is created and initialized for each pair of mutually seen surface 
elements in the list. This third party or blocking list is a subset of the main list 
excluding, but attached to, the pair of mutually seen elements, i.e., elements I and 
J. To begin, a primary window of brick shape is set up using the maximum and 
minimum coordinates of the element pair. The elements in the blocking list are 
checked against the primary window. For this purpose, the standard 3-D clip 
algorithm routinely used in computer graphics for clipping objects, proved to be 
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extremely effective, is thus directly applied [18]. The elements lying outside the 
window cannot possibly block the thermal rays traveling between elements I and J,
and thus are deleted from the blocking list. This check will delete a majority of 
unblocking third party shadowing elements from the blocking list. For example, as 
shown in Figure 8.15, this procedure will drop out element L from further 
consideration but still keeps element K, which is considered a potential candidate 
for a third-party blockage. Depending on the relative geometric positions of mutual 
elements I and J, a good portion of the elements can be eliminated, thereby 
reducing the computational burden for the most tedious ray-tracing checking and 
adaptive integration.

Figure 8.14. Schematic illustration of two 3-D surface elements unseen by each other 

The next step involves the secondary clipping, which eliminates the elements 
not blocking any ray from element I to element J from the active list. This is done 
as follows. A pyramid is formed by selecting a corner point, say point i, of element 
I and connecting it to all the corners of element J. A remaining third party element, 
or active element in the blocking list, is now checked against the pyramid. The 
detailed algorithm for clipping against the pyramid is given in Figure 8.16, where 
three different scenarios are depicted. For case 8.16a, the third party element K lies 
outside the pyramid. For case 8.16b, the third party totally blocks a ray from point i
to any points on element J. For cases 8.16c and 8.16d, which are the most common 
scenarios, the third party element is partially blocking, and therefore every ray 
from point i to any integration point on element J needs to be further checked; that 
is, the final checking is required during detailed integration.   

To determine which of the three cases the third party element K belongs to, the 
following rule, based on the geometric considerations, is applied. A pyramid is 
formed by four lines, which all originate from point i, and each connect to a 
different vertex of element J. Each of these four lines may pass through the plane 
defined by element K. One of these lines, marked by ij, is illustrated in Figure 
8.16c. By the similarity rules of plane triangles ipq and icr, we have the 
following relation: 
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Figure 8.15. Primary testing window against which unblocking elements are eliminated and 
potentially blocking elements are retained 

JicJijipic tt nrrnrrmrrrrm )()(;;)(  (8.28)      

where p is the interception point of line ij with element J, and nJ is the outnormal 
of element J. Note that pq = | Jij nrr )( |, which is the distance between point i
and plane J. Thus, if 0 < t < 1 or t < 0, then element K lies outside the pyramid, that 
is, either above element J or below point i. The element is then eliminated, and a 
new check for a different element is started. The third party element, or element K,
blocks the ray from point i to element J if the following two conditions hold for 
any one of the four lines connecting point i to the four corners of element J:

t > 1 and p  is inside element J.

To test if p is inside element J, the algorithm as illustrated in Figure 8.17 is 
employed. The nodes (1,2,3,4) of element J is set up clockwise, and two vectors 
are created by connecting the interception point p to two nodes of one side of 
element J, e.g., p1 and p2. The cross product of the two vectors, p1 p2, is then 
dotted with the surface normal nJ of element J. If the dot product is positive, then 
the point j (or p) is inside the element J. If the points inside are less than the 
number of corners of element J, then element K is partially blocking, as in case 
8.16c. If all corner points of element J are inside the shadowing area, then element 
K is totally blocking (see Figure 8.16b). If, during checking, a totally blocking 
element (or case 8.16b) is found, then the kernel function is set to zero, and a new 
round of checking starts with a new Gaussian point on element I. If there are 
partially blocking elements but no totally blocking elements, then final checking is 
required.     
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(a)                                                (b) 

(c)                                                                     (d) 

Figure 8.16. Four different scenarios of third party element blockage of thermal rays 
emitted from point i to element J: (a) no third party blocking, (b) total third party blocking, 
(c) and (d) partial third party blocking 

Figure 8.17. Procedure for testing if p is inside element J; nJ is the normal of the element 

The above procedure, however, cannot positively determine cases illustrated in 
Figures 8.16b and 8.16d, which show that element J may be either totally or 
partially blocked, even if all interception points lie outside element K. Thus for all 
those elements whose intersection points are all outside, but 0 < t <1, additional 
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checking is required. This check involves calculating the intersection point k with 
element K by line ij. Point k can be calculated by simply exchanging the 
corresponding points of element J with element K, or 

KijKicikij tt nrrnrrmrrrrm )()(;);( 11   (8.29) 

Thus, element K blocks the view from point i to element J, if 0 < t < 1 and k is 
inside element K. Of course, the same procedure sketched in Figure 8.17 can be 
used to determine if k is inside element K.

It is noted that the purpose of this secondary check is to establish the active list 
of partial blocking elements and can be expensive since all the corners of the 
elements must be checked. Hence if either p or k is considered blocking during 
checking, then element K remains in the active list for final integration and a new 
check is started for the next element waiting to be checked. After this secondary 
checking procedure, the active list contains only those elements that will most 
likely block the view between elements I and J. Whether or not they indeed block, 
will be checked during final integration, which is described below.  

(a)                                                         (b)

Figure 8.18. Procedures used to determine the blockage of the thermal ray emitted from i to 
j by element K. (a) Element K is not parallel ( Knm 0) to the thermal ray ij and k is the 
interception point between the thermal ray and element K. (b) third party elements are 
parallel ( Knm  = 0) to the thermal ray ij, and element K blocks thermal ray ij, but element 
L does not 

After the secondary clipping of partial blocking elements as described above, 
the actual integration over elements I and J is now performed, along with the 
detailed final check of the third party element blockage of the thermal ray 
originating from an integration point on element I to another on element J (see 
Figure 8.18). In this study, the Gaussian integration quadrature is used. Other 
integration rules can also be applied. If the blocking list is empty, or no active 
element is in the list, the integration is carried out without further checking. 
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Otherwise, final checking of blockage is performed for those elements active in the 
blocking list, when integration is taken over element J.  In this case, each line (or 
light ray emitting from integration point i on element I, and ending at integration 
point j on element J) is checked against all partially blocking elements active in the 
blocking list, determined from the secondary clipping. If the ray connecting two 
integration points of respective elements I and J is blocked by the third party 
element K, the value of integration is set to zero. If not, this integration is 
calculated. The idea of determining various scenarios of third-party blocking 
during final numerical integration is illustrated in Figure 8.18. Here a line is 
constructed between points i and j, and the interception point k of the line with the 
third-party element K is calculated by substituting relevant parameters into 
Equation 8.29. The interception point k is then tested using the same procedure as 
illustrated in Figure 8.17 to see if it lies inside element K.    

When the line ij is parallel (i.e., m nK= 0) to the third party element (see Figure 
8.18b), Equation 8.29 is no longer applicable. In this case, care is taken to ensure 
that the line passes through the element, and the interception points between the 
plane edges and the line are calculated. If one of these interception points is 
between points i and j, then the third party element blocks. If none of these points 
lie on the line between points i and j, then the third party element does not block. 

In order to obtain an accurate value of integration, an adaptive integration is 
applied. Two successive numerical integrations, with twice as many integration 
points in the current step as those in the preceding one, are employed in the present 
study. Other ways of refinement are also possible; for instance, two successive 
orders of numerical integration may be used instead. The error between the two 
successive integrations is checked, and the calculation is considered converged, if 
the error is smaller than a preset value. Our experience indicates that a preset value 
of 0.001 as a relative error, with respect to the diagonal term, yields a reasonably 
fast convergence with sufficient accuracy.   

The Galerkin formulation requires surface integration over both elements I and 
J. This mandates that the above search and integration algorithm is carried out for 
integration of element J with every integration point i on element I and then 
integration of element I with every integration point j on element J.

The above procedure continues until the initial list associated with element I is
exhausted. Then a new surface element is selected and a list of candidate elements 
is created. The three-step searching and integration computational process is 
followed. This is repeated until every surface element is calculated.   

It is noted here that there are similarities between the secondary clipping and 
the final check for blockage during adaptive integration, though the latter is 
computationally more involved. Thus some procedures described in the secondary 
clipping are applicable to the final check. Additional checks as shown in Figure 
8.18 are also employed in this final check stage, to ensure all blockages are 
detected accurately. Since both procedures can be very time consuming, the 
secondary clipping helps to save time if the integration points per element exceed 
the number of corners of the element. For relatively simple geometries and 
relatively few elements, few integration points are needed and thus the secondary 
clipping may not necessarily speed up the calculations significantly. For complex 
geometries, partial blocking occurs very frequently and often the number of 
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integration points needed to accurately integrate the kernel functions is 
significantly larger than the number of corners. For these cases, the secondary 
clipping provides a useful means to shorten the list to be checked during 
integration, and thus allows savings in computing time. 

8.4 Coupling with Other Heat Transfer Calculations 

In most engineering applications, surface radiation often is not the only heat 
transfer mechanism, and other phenomena also coexist, such as heat conduction, 
fluid convection, phase changes, etc. Thus it is required to couple the discontinuous 
Galerkin surface method described above with other methods to solve the problems 
involving mixed heat transfer mechanisms. Here we consider the procedure for 
coupling the discontinuous and convectional finite elements for the analysis. A 
similar idea can also be applied for the coupling of surface calculations with other 
domain methods. Below, a coupling problem is considered for a 3-D thermal and 
fluid flow system, in which the surface radiation, heat conduction, Marongani 
convection, and buoyancy driven flow are all present. Figure 8.19 shows the finite 
element mesh used to model the furnace. The chamber of the furnace has a 
cylindrical roof and a protruded blockage. The roof is fixed at a higher 
temperature, and by surface radiation the liquid pool below is heated up. The 
outside of the chamber is at room temperature and the system loses heat to the 
environment through radiation, which follows the Stefan Boltzmann law. Because 
the free surface of the metal is exposed to the radiation, the surface temperature is 
not uniform. As a result, the Marangoni convection and buoyancy flow arise due to 
the surface tension and gravity effects. The melt flow and heat transfer are 
governed by the Navier Stokes equations and the energy balance equations within 
the solid wall, the melt, and the surroundings. The governing equations for the 
fluid flow and heat transfer phenomena are given as follows: 

0u  (8.30) 
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where u is the velocity,  is the density, T is the temperature,  is the viscosity,  is 
the thermal expansion coefficient, g is the gravity, Cp is the specific heat, Tref is the 
reference temperature, and k is the thermal conductivity. The above equations, 
along with Equation 8.3, describe the surface radiation exchanges in the enclosure 
formed by the liquid surface, and the surfaces of the furnace facing the liquid. The 
boundary conditions for the problem are:  
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Figure 8.19. Schematic of an industrial furnace, where surface radiation, conduction, and 
convection coexist.   

                 )( 44 TTTkn 1                  (8.33)
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where 1 is the outer surface of the furnace, 2 is the top liquid surface, 3 is 
the top inner surface, and  is the surface tension, which may be a function of 
surface temperature. Note that Equation 8.34 represents a shear stress balance 
along the interface, which causes a fluid motion when the surface temperature is 
not uniform. This type of flow is often referred to as the Marangoni flow, or 
surface tension driven flow. The finite element discretization for the solution of 
convection and conduction heat transfer leads to the following matrix equations 
[19 23]: 
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where  is the penalty number. This matrix equation is then solved together with 
the matrix, which describes the surface radiation exchange between the liquid 
surface and surfaces of the furnace above it, in order to obtain information on fluid 
flow and temperature distribution in the system. The elements of the matrices are 
calculated using the following expressions [19 23]: 

T
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B g t

       ˆ T
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where  is the shape function and ).ˆ,ˆ,ˆ(ˆ,ˆ,ˆ zyxkji  The coupling of surface 
radiation calculations with the finite element calculations is represented by the term 
GT. Here qT for the liquid is calculated by the external radiation calculations. The 
numerical algorithm integrating the external radiation and finite element 
calculations can be developed with either direct coupling or iterative coupling. 
These two types of coupling strategies are described below. The merits and 
drawbacks of both direct and iterative coupling schemes, as applied to mixed mode 
heat transfer calculations, are discussed along with Example 8.5 in Section 8.5. 

8.4.1 Direct Coupling

While there are many different ways to couple the boundary and finite element 
methods, the simplest and most natural way is to make use of the physical 
constraints for the flux and field variables along the common boundaries [24 26].
This is the approach taken here. To facilitate computation, the direct matrix 
inversion procedure is replaced by one LU decomposition procedure and n + 1
times of back-substitutions. To do that, Equation 8.15 is re-written as follows: 

nInIIILUILU ,1,2,1, qqqqAqA

1 ,1 2 ,2 ,b b n b nE E EB B B (8.38)

where ALU stores the LU-decomposed matrix of A, Bi the ith column of the 
matrices B, and EbI the ith element of the vector E. With ALU, one back-substitution 
is needed to solve for q I,i from the following equation: 
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iLUiI BAq ,'  (8.39) 

The result is multiplied by Eb,i = ( sTi
3)Ti  to give q i = [q i( sTi

3)]Ti. Applying this 
procedure to each column of B and summing up the results, one has the following 
expression: 

3
,

1
( )

n

I i s i i
i

T TIq q  (8.40) 

The advantage of this approach is that q I,i is constant if i is constant, and thus 
needs to be calculated only once. Also, in deriving Equation 8.40, we have 
assumed the temperature at the node points does not experience a jump. With 
Equation 8.40 substituted into Equation 8.37, the final expression is obtained for 
the vector potential distribution within the finite element region, 

FUK  (8.41) 

where K is the resultant stiffness matrix, U is the unknown potential vector in the 
finite element region, and F  is the modified force vector that represents the effects 
of the applied heating source. 

8.4.2 Iterative Coupling 

The direct coupling procedure described above can be difficult to apply and may 
also be slow for large scale problems. For these cases, an iterative coupling 
procedure may be employed instead. The iterative procedure starts with an initially 
guessed wall temperature distribution to calculate the radiant boundary heat flux 
distribution using the discontinuous Galerkin method. The calculated heat flux 
values are then input back into the algorithm for the calculation of fluid flow and 
temperature distributions in the system. The wall temperature distributions are then 
updated and the radiant boundary heat flux distribution is recalculated. This 
recalculated heat flux is then used to update the fluid flow and temperature field 
and so on and so forth. The procedure continues until the criterion set for 
convergence is met.  

In practice, both direct and iterative procedures have been applied. While it is 
difficult to draw a precise guideline for which of these coupling procedures should 
be used for what conditions, a rule of thumb is that the direct method can be more 
effective for 2-D, or small to moderate size problems, whereas the iterative 
procedure outperforms the direct coupling for large scale problems. In addition, the 
iterative solver does not require the temperature at nodal points to be the same, and 
thus the usual jump condition for a discontinuous formulation needs not be 
modified. A more thorough discussion on the subject is given at the end of this 
chapter through a numerical example, i.e., Example 8.5. 
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8.5 Numerical Examples 

The numerical examples selected here are intended to illustrate the external 
radiation computational procedures and the performance of the discontinuous 
Galerkin boundary element method as applied to the external radiation 
calculations. We start with a 2-D problem of simple geometry without internal 
obstruction, and detail the basic computational procedure for the solution of the 
problem using a few elements for discretization. This same problem is then solved 
using the discontinuous Galerkin boundary element method with a refined 
discretization for a more detailed description of heat flux distribution along the 
walls. The criterion is also given to check the accuracy of the numerical 
computations for external radiation problems. The problems of more complex 
geometries, involving internal extrusions that block the radiative energy exchange 
between surface elements, are then considered. These complex problems are not 
examined in full detail, but are sufficiently complete to demonstrate the capability 
of the algorithms described. As the last example, a coupled problem involving 
conduction, convection, and external radiation phenomena is discussed.  

Example 8.1. As a first example, we consider surface radiation in a 2-D cavity. 
The cavity is 3 m 3 m in cross section, with side wall and roof at 1700 K and 
1400 K, respectively. The radiant heat fluxes along the four walls need to be 
determined when the bottom wall is at 600 K. All the surfaces are taken to be gray 
and diffuse and have an emissivity of 0.5. The problem is illustrated in Figure 8.1e. 

Solution. This problem is solved both analytically and numerically, using the 
discontinuous Galerkin method described. In the analytical approach, a few 
elements are used for the sake of demonstrating the computational procedure. The 
numerical approach uses a mesh of considerably more elements for a refined 
description of the heat flux distribution. For both approaches, the criterion for 
checking the accuracy of the solutions is discussed.

Analytical Approach. This problem may be solved using radiosity and emissive 
power as variables, which are given in introductory heat transfer books [25, 26]. 
Here we solve the problem analytically from the discontinuous Galerkin solution 
procedure described above. This will allow us to illustrate the computational 
procedure in full detail. For this purpose, the cavity is discretized into four 
elements, with each wall treated as an element. Further we use the constant element 
approximation, which means that the temperature and heat flux are approximated 
using a box function over each element. Thus, Equations 8.16 and 8.17 are 
simplified as,

iijiijiij LFLA )1(  (8.1e) 

iijiiijiij LFLB  (8.2e) 
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Figure 8.1e. Surface radiation exchange in a simple 2-D cavity 

where the subscript i and j refer to the ith and jth elements, respectively, and Fij is a 
geometric factor calculated by the following expression: 

1 ( , ') ( ') ( )
i j

ij
L Li

F K d d
L

r r r r  (8.3e) 

Since K(r,r ) is a function of both geometric location and the product of the 
cosines between the normals of the two participating walls and the vector 
connecting two points on the two surface elements, its evaluation has to take into 
account the relative geometric orientations of the two walls. For two adjacent 
walls, say, elements 1 and 2, which are perpendicular each other, the factor F12 is 
calculated as follows: 
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where we have used cosine instead of vectors for convenience. From Figure 8.2e, 
we have the following geometric relations: 

22)3( iijiij yxrrs  (8.5e) 

22)3(
cos

ii

j

ji

j
i

yx

yy

rr
 (8.6e) 

22)3(

)3()3(
cos

ii

i

ji

i
j

yx

xx
rr

(8.7e) 

24

1

3

 3 m 

3 m

600 K

1400 K

1700 K



External Radiative Heat Transfer 351 

Figure 8.2e. Illustration of the integration procedure for geometric factor calculations 

Substituting these relations into Equation 8.4e, F12 is calculated analytically, 

F12=0.293

The same procedure may be applied to other pairs of participating elements. 
Without repeating the numerical details, we give the results for these Fij factors,  

414.042243113 FFFF

293.01243341441322321 FFFFFFFF

0.044332211 FFFF

The last relation should be obvious from the geometric relation shown in Figure 
8.2e. Substituting these factors, and the sides of the elements, into Equations 8.1e 
and 8.2e, we can calculate the coefficients Aij and Bij. For example, with 1 = 2 = 3
= 0.5, A12 and B12 are calculated with the results, 

4395.03293.05.0)1( 112112 LFA

4395.03293.05.0112112 LFB

Note here that both A12 and B12 have a length unit (m). Furthermore, the 
temperatures of all the walls are known, which allow us to calculate the blackbody 
emissive power at each wall, 

2484
11 kW/m348.7)600)(1067.5(TEb
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2484
22 kW/m6.473)1700)(1067.5(TEb

2484
33 kW/m8.217)1400)(1067.5(TEb

2484
24 kW/m6.473)1700)(1067.5(TEb

With the coefficients Aij and Bij calculated as described above and substituted 
into Equation 8.15, we have the following matrix equation: 

1

2

3

4

 3.0000   -0.4395   -0.6210   -0.4395
-0.4395    3.0000   -0.4395   -0.6210
-0.6210   -0.4395    3.0000   -0.4395
-0.4395   -0.6210   -0.4395    3.0000

q
q
q
q

-1.5000    0.4395    0.6210    0.4395 7.348   5
  0.4395   -1.5000    0.4395    0.6210 473.6
  0.6210    0.4395   -1.5000    0.4395 217.8
  0.4395    0.6210    0.4395   -1.5000 473.6

40.5262
-317.3419
   94.1575

-317.3419

Inverting the above matrix using Gaussian elimination, or any other matrix 
methods, we obtain the heat fluxes along the four walls, 

97.4039-
35.7678
97.4039-
159.040

4

3

2

1

q
q
q
q

Here the heat flux is in kW/m2. As a check, the total heat flow balance in the cavity 
is calculated,

4 4
10

1 1

10 Wi i i
i i

Q q L

This shows that the total radiative energy in the cavity is conserved, which 
confirms that the calculated results are correct. 

Discontinuous Galerkin Approach. Figure 8.3e compares the heat flux distributions 
along the surface of a simple 2-D cavity, which are calculated using the analytical 
method and the Galerkin boundary element scheme with 32 constant elements or 
32 linear elements. The linear boundary element mesh is also shown, and the 
constant elements are defined such that the quantities such as heat flux and 
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emissive powers are evaluated at the center of the element. The numerical 
calculations used 5 integration points, which seems to be a reasonable choice, 
resulting in an error of less than 0.001% in identity at worst. This means that all 
radiation leaving point r must be intercepted by the enclosure surfaces, 

( , ') ( ') 1K dr r r  (8.8e) 
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Figure 8.3e. Discontinuous Galerkin solution of external radiation energy exchange using a 
refined mesh: (a) mesh discretization with dots representing the nodal points, and (b) 
comparison of the numerical results with the analytic solution for boundary heat flux 
distributions. Here  is the non-dimensional length of side: x/L (or y/ L)

For this simple problem, one integration point gives an error of about 3 5%.
Larger errors occur near the corner. Inspection of these results shows that the 
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numerical results using both types of elements are in good agreement with the 
analytical solutions. We note here also that the analytical solutions used the view 
factor, and assumed a constant heat flux along one side. As such, the analytical 
solutions should be viewed as an approximation, or a reference, with which 
numerical solutions are compared. A further check of the overall heat balance gives 
a relative error of 0.02% for constant element. Here, the error being measured is 
the difference between the analytical solution and the average of the numerical heat 
fluxes along one wall, divided by the analytical value. The negative sign for the 
heat flux indicates that the heat flows into the surface or out of the square 
enclosure. These results are consistent with the physical processes. For instance, 
the fluxes are higher near edges of the bottom wall and lower at the center, which 
is attributed to the fact that the edges are influenced more by the side walls at 
higher temperatures. This is seen in the computed results by both linear and 
constant elements. The results from the linear elements, however, show 
discrepancies at the corner where the heat flux is physically discontinuous, because 
of an abrupt change in curvature from one side to the adjacent one.    

Example 8.2. Develop a discontinuous Galerkin boundary element algorithm for 
the numerical solution of surface radiation heat transfer in a 2-D cavity with 
geometric obstruction. 

Figure 8.4e. Boundary heat flux distribution in a 2-D enclosure with complex geometric 
blockages. The insert shows the 2-D geometric configuration used for calculations. 
Significant blockage occurs between surface elements of the cavity: = 0.5, x* = x/3, y* = 
y/7, width of the bottom = 3 and height of the block = 7 

Solution. In this example, a 2-D cavity with various geometric obstructions is 
considered. The problem definition and the discretization for numerical 
computations are given in Figure 8.4e. The discontinuous Galerkin solution used 
64 constant elements and adaptive integration algorithms were invoked to treat the 
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kernel function for the elements that are partially shadowed by the third party 
elements. The normalization factor is also checked for this computation and the 
error is less than 0.5%. The calculated results are consistent with thermal radiation 
heat transfer principles and the temperature distribution along the left sidewall 
shows a perfect symmetric profile [1, 2].   

Example 8.3. Implement the discontinuous Galerkin boundary element algorithm 
described in Section 8.3.2 for the numerical solution of radiative heat transfer in a 
cylinder with internal blockage as shown in Figure 8.5e(a).
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Figure 8.5e. A cylindrical cavity with two internal concentric cylinders that result in partial 
blocking of radiation between some surfaces of the enclosure: (a) geometric arrangement 
and (b) heat flux distribution along the right side wall of the outer cylinder. Parameters used 
for calculations: for all walls and other conditions are shown in the figure 
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Solution. As in the 2-D case, the numerical algorithm for an axisymmetric 
geometry is also checked by analytically calculating the geometric factors and the 
heat fluxes for an axisymmetric cavity without internal blockages. The procedure is 
very similar to that given in Example 8.1. It is important that this checking be 
carried out after the blockage detection algorithm has also been implemented. As 
expected, for the case without internal blockage, the detection scheme should 
signal a full view between any two surface elements in the cavity.        

After this checking, the discontinuous Galerkin algorithm then can be used to 
predict the surface radiation exchange in more complex configurations involving 
geometric blockages. One of these calculations for a hollow cylindrical geometry 
with two cylindrical rings lying inside the cylindrical cavity is shown in Figure 
8.5e(a). For the calculations, 80 constant elements are used, which are determined 
following the usual procedure for mesh independence check, and adaptive 
integration algorithms were invoked to treat the kernel function for the elements 
that are partially shadowed by the third party elements. The calculated results are 
shown in Figure 8.5e(b), which are consistent with thermal radiation heat transfer 
principles. The identity condition is checked as well and the worst error is less than 
0.2%. For the axisymmetric problems, the identity condition is slightly different 
from 2-D and 3-D cases, and is given by the following expression: 

'( , ') ( , ') ( ') 1r K dr r r r r  (8.9e) 

The heat flux distribution along the right side wall shows the clear shadowing 
effects provided by the two internal hollow cylinders. The thermal radiation from 
the left surface at a higher temperature impinges upon the right surface. In the 
region where the internal blockages occur, a lower heat flux is calculated. In the 
region corresponding to the gap between the two internal blockages, the heat flux 
is high, which is attributed to the fact that the thermal radiation from the left 
surface is not blocked.  

Example 8.4. Consider the radiative heat transfer in a 3-D cavity with blockages 
and calculate the heat fluxes at the walls of the enclosure using the algorithm 
discussed in Section 8.3.3. 

Solution. This example considers the surface radiation exchange in a rather 
complex 3-D closure with several internal blocks of various heights. The boundary 
element meshes and boundary conditions used for computations are given in Figure 
8.6e(a). The computed results are selectively plotted in Figures 8.6e(b) and (c). To 
check the calculations, the identity condition is also calculated and the error is less 
than 2%. Detailed analysis shows that a major portion of the error comes from the 
integration between two surface elements that are very close together. The error 
can be reduced with a further refinement of mesh sizes. It is worth noting that in 
some calculations reported in the view factor calculations, an error of as high as 
70% in identity condition was reported, when much less complex blockages are in 
place [5].    
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(a)
q/

(
T4 )

(b)                                                                (c) 

Figure 8.6e. Surface radiation calculations in a complex 3-D geometry: (a) meshes and 
thermal conditions used for calculations, (b) heat flux on the left lateral surface of the 
enclosure and (c) heat flux on the top surface of the enclosure. The dimensions of the 
enclosure is 1.2 m  1.2 m  1.2 m, and the temperature used to normalize the heat flux is 
1400 K. Emissivity of all surfaces is 0.5, and side surface temperatures of the internal 
obstructions vary from 400 K to 1700 K. The front surface is removed for the purpose of 
illustration

Example 8.5. Calculate the temperature distribution and fluid flow in a furnace as 
shown in Figure 8.19.  

Solution. This example considers calculations involving combined heat transfer 
modes are presented. The radiation algorithm described in Section 8.3.3 has been 
successfully integrated with a finite element code, following the procedure given in 
Section 8.4. The finite element code is capable of performing steady state and 
transient fluid flow and heat transfer calculations in 2-D, 3-D and axisymmetry 
geometries [20 22]. The computed results for an industrial processing system are 
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shown in Figure 8.19, where the coupling of conduction, convection, and radiation 
is considered.  

      
(a) (b) 

     
(c)                                                                   (d) 

Figure 8.7e. Calculated results of mixed mode heat transfer in an industrial furnace using 
the coupled Galerkin boundary/finite element method: (a) temperature distribution in the 
furnace, (b) body-cut view of temperature distribution, (c) body-cut view of velocity 
distribution in the liquid pool – maximum velocity is 1.9 mm/s and (d) particle trajectory 
plot. Parameters for calculations: liquid pool is 0.15 m  0.3 m  0.3 m and filled with Ga 
melt. The top surface temperature is 340 K and the environment is at 295 K. The emissivity 
of all surfaces is 0.5 and the thermal conductivity and specific heat of the furnace walls are 
10 W/m K and 130 kJ/kg K, respectively. The gravity is in the opposite x direction (see 
Figure 8.19). The maximum temperature is 340 K and the minimum temperature is 328 K 
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The calculations used 25984 8–node brick finite element elements, which are 
determined to be the “optimal” mesh for the simulation after a grid independence 
check [20]. There, a total of 2400 constant boundary elements was used for surface 
radiation calculations. The nonlinear solution is obtained using the successive 
substitution method. Because Eb is proportional to the fourth power of local surface 
temperatures, a relaxation parameter of 0.1, which is common in mixed mode 
calculations, was used to obtain converged results. The convergence was achieved 
in 21 iterations and residuals are progressively smaller. For this problem, the 
criterion for nonlinear convergence is set, such that the relative error is less than    
1 10 4.

The calculated results are plotted in Figure 8.7e where the overall temperature 
distribution, the particle tracing, and the velocity fields in a few cutting planes are 
given. The metal surface is heated up by the radiation from the cylindrical roof at a 
higher temperature. As a result, the temperature at the middle of the surface is 
lower than that at the sides of the surface. This temperature field creates a surface 
force field such that a higher pulling force exists at the middle of the surface, 
which pulls the fluid particles on the surface from the side towards the center of the 
surface. Because of the mass conservation and also buoyancy forces, a 
recirculating flow pattern develops, which is clearly revealed in the cutting plane 
representations.

As shown in this example, the coupling of surface radiation calculations and the 
finite element calcualtions for engineering applications can be achieved either 
directly or iteratively. Numerical experience indicates that the coupling may be as 
tedious as it gets, or as easy as one would like, depending on the strategies to be 
implemented. The direct coupling involves incorporating the boundary element 
matrix A–1B into the finite element global matrix by treating the entire boundary 
integral as one macro-finite element. The implementation of this direct procedure 
can be very cumbersome and will result in a significant change in the finite 
element global matrix structure (see Section 8.5.1). For linear problems with a 
moderate boundary size, this approach is favored, in that the increase in the 
bandwidth of the global matrix is relatively small, and the results can be obtained 
directly without iteration between surface and domain calculations. On the other 
hand, for highly nonlinear problems with a large boundary element size, the direct 
coupling greatly increases the finite element global matrix bandwidth, and the 
iterative solution is thus more effective and also easy to implement. For cases 
falling in between, experience is the key to obtaining faster solutions.  

Exercises

1. A 10 m by 30 m rectangular cavity has an emissivity of 0.6 for the two 
longer walls, placed at the top and bottom, and 0.4 for the shorter ones, 
placed on two sides. The wall temperatures are uniform at 1000 C for the 
top and bottom walls, 300 C for the left side wall and 700 C for the right 
side wall. Using both the analytical and numerical methods, determine the 
net heat transfer along the four walls and compare the analytic and 
numerical results.  
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2. A cylinder 40 cm in diameter and 40 cm high has the bottom disk surface 
maintained at 950 K with = 0.75. The vertical cylindrical surface is 
perfectly insulated. The top disk has a 20-cm-diameter hole in the center 
with a surface temperature of 650 K and = 0.5. The top surface is a 
blackbody wall at 400 K. Calculate the heat loss, emissive power, and 
irradiation for all three surfaces to the top surface, and the temperature of 
the vertical cylindrical surface. 

3. A room is represented by the following 3-D enclosure of a rectangular 
prism, where the ceiling is 10 m  6 m with an emissivity of 0.8 and is kept 
at a constant temperature of 42 C by an embedded electric heater. Heaters 
are also used to maintain the floor at 50 C, which has an emissivity of 0.9. 
The right wall, 10 m  4 m in size, has an emissivity of 0.7 and reaches a 
temperature of 10 C during a cold, winter day. The front wall, 6 m  4 m 
in dimension, and also other walls, are all well insulated, with an 
emissivity of 0.65. Calculate the net radiation heat transfer from each 
surface, using one element for each wall and a constant element 
approximation. Calculate the heat flux distribution on the walls using the 
following mesh discretization consisting of a 1 m  1 m element with 
constant element approximation. Compare the calculated total heat flux for 
two different discretizations.

4. A 1 m diameter cylinder, 1 m long, is maintained at 1000 K and has an 
emissivity of 0.65. Another cylinder, 2 m in diameter and 1 m long, 
encloses the first cylinder and is perfectly insulated. Both cylinders are 
placed in a large room maintained at 300 K. Calculate the heat lost by the 
inner cylinder. 
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9

Radiative Transfer in Participating Media 

In the last chapter, surface (or external) radiation exchange between the walls of an 
enclosure was considered. An important assumption associated with external 
radiative heat transfer is that the enclosure either bounds a vacuum or is filled with 
non-participating media. A medium is considered participating in radiative thermal 
transfer if it absorbs, emits, or scatters a thermal ray as it travels through the 
medium. Radiative heat transfer in a participating medium is also referred to as 
internal radiation, which occurs in many engineering thermal systems. An example 
of internal radiation is a high temperature combustion gas mixture, which is known 
to absorb, emit, and scatter the thermal energy. Another example is the 
semitransparent melt from which optical single crystals are pulled out. For the 
problems of radiative transfer in a participating medium, the absorption, emission 
and scattering effects must be considered in order to provide an accurate estimate 
of thermal energy transfer in the system. 

Thermal radiation in participating media is governed by the radiative transfer 
equation, which describes the energy balance along a thermal ray. Owing to the 
importance of internal radiation transfer in thermal engineering applications, many 
numerical techniques have been developed to predict the phenomena and to assist 
in thermal designs involving radiative heat transfer. The widely used numerical 
algorithms include the finite difference, discrete ordinates, Monte Carlo, zonal 
method, and finite element methods as well as other approximation methods such 
as exponential kernel approximation, direct numerical integration, reduction of the 
integral order, and the YLX method. These methods have been documented in 
detail in two recent monographs on radiation heat transfer [1, 2].   

 This chapter discusses the discontinuous Galerkin finite element method for the 
solution of thermal radiative transfer problems involving participating media. The 
application of the discontinuous method to the solution of the internal radiative 
heat transfer problems has attracted attention only recently, and the literature is still 
expanding. It starts with the differential-integral equation governing the transfer of 
the radiation intensity and the boundary conditions required for the solution. Two 
popular approximation methods for the solution of the radiative transfer equation 
are also presented, which will be used to compare with the numerical solutions. 
The general discontinuous Galerkin formulation for the solution of the radiative 
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transfer equation is then presented. This is followed by a discussion of detailed 
numerical procedures. Analytic expressions are given for 1-D, 2-D and 3-D 
elemental calculations, whenever possible, so that they can be used to develop an 
efficient computer code. These expressions are derived for linear elements, which 
are the most frequently used elements in practical applications. Higher order 
elements in general would require numerical integration, for which the general 
expressions are also provided. 

 For the understanding of the discontinuous Galerkin procedure for numerical 
solution, examples are useful. A simple 1-D example, for which both analytic and 
approximate solutions are available, is considered first, and analyzed in detail. This 
simple example is chosen to illustrate the very basic steps to develop a 
discontinuous Galerkin solution procedure. Other more complex examples are 
given for both 2-D and 3-D geometries and for heat transfer problems involving 
conduction, convection and internal radiation. The chapter ends with an example of 
practical significance to show how the discontinuous Galerkin method can be 
combined with other numerical methods to develop numerical models for thermal 
system design applications.  

9.1 Governing Equation and Boundary Conditions 

Radiative transfer in a participating medium is described by the radiant intensity, 
and is affected by the interaction between the traveling thermal rays and the 
medium, which includes emission, absorption and scattering. The governing 
equation and the boundary conditions are derived based on the local optical or 
thermal balance. 

9.1.1 Radiative Transfer Equation 

The radiative transfer equation governs the distribution of the radiant intensity 
I(r,s), sometimes called radiation intensity, which is a function of both coordinates 
r and direction s [3]. The radiant intensity is defined as radiative energy flow per 
unit solid angle, and unit area normal to the thermal rays. The transfer equation is 
derived from the local conservation of radiative energy, as shown in Figure 9.1, 
and has the following general form [1, 2]: 

( , , ) ( , , )1 ( ) ( , ) ( ) ( , )b
I t I t

I t I t
c t s

r s r s
r r,s r r     

4

( ) ( , ) ( , ') '
4

I t dr r,s s s  (9.1) 

where (r) = (r) + (r) is the extinction coefficient, (r) is the absorption 
coefficient, s = sin cos î  + sin sin ĵ + cos ˆ,k s  is the solid angle associated 
with s, (r) is the scattering coefficient, and d = sin d d  is the differential 
solid angle. The phase function (s, s ) satisfies the following condition: 
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Figure 9.1. Schematic representation of internal radiation heat transfer and symmetry 
boundary condition 

4

1 ( , ') ' 1
4

ds s  (9.2) 

In Equation 9.1, c=ds/dt is the speed with which radiation intensity travels. All 
the quantities are a function of location in space, time and wave numbers. The 
intensity and the phase function are also dependent upon directions s and s´. For 
many engineering applications, thermal radiation reaches equilibrium far faster 
than other heat transfer mechanisms and thus a quasi-steady state approximation is 
often used. This allows us to drop out the transient term. To facilitate discussion, it 
is further assumed that all quantities are spectral independent, although the 
numerical algorithms discussed later in this chapter apply equally to the case where 
these quantities are spectral dependent as well. With these approximations taken 
into account, Equation 9.1 is simplified as 

4

( , ) ( )( ) ( ) ( ) ( ) ( ) ( , ') '
4b

I I I I d
s
r s rr r,s r r r,s s s   (9.3) 

This equation is a first order integral-differential equation for the radiant intensity, 
and is of the hyperbolic type. In Equation 9.3, the first term on the left measures 
the change in I(s, r) over a differential distance in the s direction, the first term on 
the right represents the loss to the medium due to absorption or scattering, the 
second is the local emission, and the third represents the contribution to the 
intensity in the s direction that results from the scattering of intensity in other 
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directions. The equation needs to be solved for I in each given direction s at every 
position.

9.1.2 Boundary Conditions

Like any other boundary value problems, the solution of the radiative transfer 
equation requires the knowledge of intensity distribution on the boundary 
surrounding the participating medium. For an opaque surface emitting and 
reflecting diffusively, the exiting intensity is independent of direction. At a point r
on a surface facing the participating medium, the thermal balance leads to the 
following equation for intensity I (see also Figure 9.1): 

' 0

1
( , ) ( ) ( , ') ' '

w

b wI I I d
s n

r
r s r r r s s n  (9.4) 

where n is the surface normal pointing into the medium and s´ is the direction of 
irradiation (i.e., incoming radiative heat flux). Here, the first term on the right 
represents the emission from the surface, and the second term on the right 
represents the reflected portion of the incoming thermal energy. In the case of a 
black surface, (r) =1 and the last term disappears. The boundary condition is then 
simplified to 

)(),( rsr bII  (9.5) 

In thermal radiation, an opaque surface is defined as the surface of a medium 
with transmitivity being zero, which means that radiation cannot penetrate it. For 
an opaque surface that emits diffusively but reflects specularly, the intensity 
leaving the surface has two contributions: one from diffusive emission and the 
diffusive part of reflection, and the other from the specular part of reflection. Thus, 
the thermal balance gives the following expression for the outgoing intensity: 
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where ss is the specular direction, defined as the direction from which a light beam 
must hit the surface in order to travel in the direction of s after a specular 
reflection. Also, d and s are, respectively, the diffusive and specular reflectivities 
of the surface. This direction can be determined using the kinematic relation 
between the incident and the reflected waves [2].  
 For an opaque surface with arbitrary surface properties, the reflectivity is a 
function of location and direction. Thus, we have for the outgoing intensity, 
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with = / . For a semitransparent surface, external radiation may propagate into 
the enclosure and an effective emissivity may then be used in the above equations. 
If the bounding surface is totally transparent or is an opening, then the emission 
from the boundary does not exist, or = 0.  

When systems possess certain symmetry, the symmetry boundary conditions 
can be applied, which take the following form:   

0
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nss

snsn

srsr II

 (9.8) 

where the s* is the symmetric radiation direction of s, in respect to the tangent of 
the boundary, with both s and s* lying on the plane of t–n (see Figure 9.1). 
 With the radiation intensity distribution known, various quantities of interest to 
radiation heat transfer can be calculated. Two of them are the heat fluxes and their 
derivatives, which are determined by the following expressions for gray media:  

4
ˆ( ) ( )iq I idr r,s s  (9.9) 

4

4
( ) (4 ( ) ( ) )sT I dq r r r,s  (9.10) 

Note that Equation 9.10 often appears as a source term in the thermal energy 
conservation equation.  

Another quantity that is also important for internal radiation calculations is the 
incident radiation G(r),

4
( ) ( )G I dr r,s  (9.11) 

where G is the irradiation or incident radiation onto a surface. 

9.2  Approximation Methods 

The integro-differential equation describes the radiative intensity that depends on 
five variables: three space coordinates (r) and two direction coordinates (s). The 
solution of the problem represents a challenging task. Before we present the 
discontinuous finite element formulation, it is constructive to discuss two popular 
approximation methods: the discrete ordinate method and the spherical-harmonics 
method. These methods are very often used to obtain the solution of the radiative 
transfer equation, and will be used later in this chapter to check the numerical 
solutions from the discontinuous finite element computations. 
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9.2.1 The Discrete Ordinate Method 

The discrete ordinate method was first proposed by Chandrasekhar [3] to study the 
stellar and atmospheric radiation phenomena. The method was later extended to 
study general radiative heat transfer problems [4, 5]. The basic idea of the discrete 
ordinates is that the integrals over directions are replaced by numerical quadratures 
of discrete different directions; that is 

4 1
( ) ( )

n
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i

I d w Ir,s r,s                                            (9.12) 

where the wi values are the quadrature weights associated with the directions si, i =
1, 2, 3, …, n. As a result, the integro-differential equation (i.e., Equation 9.3) is 
approximated by a set of n first order partial differential equations, 
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The boundary condition can be integrated following the same procedure. For an 
opaque, diffuse surface, 
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To carry out the numerical computation, a thermal ray is released from a point on 
the enclosure surface, sj·nw > 0, and is allowed to travel along the direction of si
until it strikes another point, sj·nw < 0, to be absorbed or reflected. Here nw is the 
surface normal pointing inward to the enclosure. The n equations can be solved 
using the standard numerical or analytical methods.    

9.2.2 The Spherical Harmonics Method 

The spherical harmonics method seeks the solution of I(r, s) by transforming the 
equation of radiative transfer into a set of simultaneous partial differential 
equations through eliminating the direction dependence. By this method, the 
radiative intensity at location r within the medium is treated as a scalar function on 
the surface of a sphere of unit radius surrounding the point r. As such, the intensity 
is expressed in terms of spherical harmonics, 
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where )(rm
lI  depends on r only and )(sm

lY is the spherical harmonics defined by 
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and satisfies the following eigenvalue differential equation: 
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Here  and  are the polar and azimuthal angles of the direction unit vector s, and 
m

lP (cos ) is the associated Legendre polynomials. To obtain the solution, Equation 
9.15 is substituted into the integro-differential equation, and then integrated over 
the solid angle of 4  with respect to the spherical harmonics as weighting 
functions. The use of the orthogonal property of the spherical harmonics then 
results in a set of (N+1)2 partial differential equations, where N is the highest order 
retained for l. Ou and Liou [6] gave the general expression for the intensity 
calculations for constant properties, 
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where  is the single scattering albedo. In practice, the approximations with 
N>3 are rarely used. Most applications use N= 1 or the P1 approximation. 
 For an isotropic medium, the governing equation for the P1 approximation may 
be expressed in terms of incident radiation G. With the lengthy derivations 
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relegated to the textbooks by Modest [1], and Siegel and Howell [2], only the 
governing equations are given below, 

bIGAG 4)1)(1(3 22  (9.18) 

and for an opaque, diffuse surface, the boundary condition becomes 

bwIGG
A

4
3

22 n  (9.19) 

The heat flux and its derivatives in the domain can then be calculated from 
Equations 9.9 and 9.10. The physical domain of participating medium radiation 
may be bounded or unbounded. In the case of a medium surrounded by opaque 
surfaces, the boundary condition is the Marshak type and the value of the constant 
A is equal to 2. If the model is a truncation of an infinite domain, the boundary 
condition is of the Mark type and A = 31/2 [1, 2]. 
 Below we consider an example of radiation in a 1-D slab with participating 
medium. The problem is solved analytically using different methds presented 
above and these analytic expressions will be used to check the numerical 
calculations using the discontinuous finite element method. 

Example 9.1. Raidation in a 1-D slab filled with an absorbing but non-scattering 
medium is perhaps the simplest configuration for radiative transfer study (see 
Figure 9.1e). Here, steady state radiation from a diffuse, gray source wall (1) across 
a non-scattering medium goes to a sink wall (2). Conduction and convection are 
neglected. The walls have prescribed temperatures T1 and T2, and are black ( l = 2

= 1). The medium is assumed to be adiabatic with an absorption coefficient of .
The spacing between the plates is L, and the optical depth is based on the 
coordinate normal to the plates, z. Derive analytic expressions for the radiative heat 
transfer.

Figure 9.1e. Radiative transfer in a 1-D slab

L

0

I(r,s)
z
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Solution. We will use three different analytical techniques to solve this same 
problem. These analytic solutions will be compared with the discontinuous finite 
element solutions discussed in the next example.  

Exact (analytic) solution. Because scattering is not present,  = . The different 
equation for the radiation intensity I, Equation 9.3, becomes

bII
ds
dI  (9.1e) 

From the theory of linear differential equations, the general solution for this 
first order differential equation is, 
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0 0 0
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bI I ds ds I ds ds

(9.2e) 

To obtain the exact form for this problem, I(0) needs to be specified. To do 
that, we select the following coordinates for the convenience of expressing the 
solution (see also Figure 9.1.1e): 

0
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z
dz ,    sz , cos

zs , ddzds  and 
0 0

' '
z s

dz ds

The radiation intensity I is a function of s; and, from the above, is a function of 
both position and direction or . Note that for the problem to be one-
dimensional, the intensity is constant along the azimuthal direction everywhere in 
space (see Figure 9.2e). For convenience, we may express the intensity in the 
following way:  

0
0

),(
I
I

I  (9.3e) 

then at the upper and lower walls (both being diffuse), 

qI )0( ,     qI L )(  (9.4e) 

where q denotes the heat flux supplied to the wall, and has only the z component 
for this problem. Here subscript + is used to indicate intensity in the forward 
hemisphere ( > 0), or from the lower surface to the upper surface, and subscript – 
indicates intensity in the backward hemisphere ( < 0), or from the upper surface 
to the lower surface. 
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Figure 9.2e. Coordinate system used for deriving analytic solutions 

If s is replaced by /  then the exact solution can be obtained as follows: 

0
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q dI I  (9.5e) 
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The first terms on the right-hand side of these two equations represent the 
contribution to the intensity at location  in direction  from the wall. The 
q/ terms represent the (diffuse) intensity leaving the walls, and the exponential 
terms are the transmissivities along the path. The second terms on the right-hand 
side represent the contribution to the intensity at location  in direction  from 
emission along the path between location  and the wall. The hemispherical fluxes 
at location  in the slab may be obtained by integrating the intensity field (see 
Equation 9.9), using the azimuthal symmetry (d d )

1

0
2q I d ;

1

0
2q I d (9.7e)

Substituting Equations 9.5e and 9.6e into the above relations gives 
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1

,1
0 0

' 12 exp ( ') exp 'bq q E d d   (9.8e) 

1

2
0

' 12 , exp ( ') exp '
L

L
bq q E d d

(9.9e) 

The net radiative flux at location then is obtained as follows: 
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where the exponential integral functions En have been used. These functions are 
defined as  
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Its properties and recursive relations are given in Modest [1], along with the values 
tabulated for n = 1, …, 4.  

Two-flux (S2) solution. Here we consider the solution of the problem using the 
discrete ordinates method, which is an approximate method. Since the medium 
does not scatter, the discrete ordinate equation simplifies (see Equation 9.13),
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where n is the number of discrete ordinates. The equations can be written in terms 
of the optical depth, and  may be used instead of s,
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where the same notations as in the exact solution are used here. Since Ib is constant, 
these equations may be integrated right away, leading to 

ieCII bi
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, , ieCII bi
/

,  (9.14e) 

 The integration constants C+ and C– may be found from the boundary 
conditions (Equation 9.4e) as 
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where I w1 = I+( = 0) and I w2 = I–(  = L). Thus, we have the results, 
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 So far, the derivation is general up to the nth order. For the non-symmetric S2

approximation, we have n = 2, w1  = 2 and 1 = 0.5. The flux is then calculated, 
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P-1 Solution. In terms of the optical depth , the governing equations for the P1
approximation can be written as
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Combining the two equations above, we have the second order differential 
equation for 0
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The general solution to the problem is given by  
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where C1 and C2 are two integration constants to be determined. The other term 
may now be calculated using either equation in Equation 9.20e. 

By the P1 approximation, the radiant intensity I( , ) is constructed in the 
following way: 
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At the two boundaries, the boundary condition is satisfied in an integral sense 
[2], 
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which, after I( , ) substituted, and integration is completed, yields the following 
boundary conditions: 
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These two boundary conditions then allow us to determine the integration 
constants C1 and C2,
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The heat flux at location  is then calculated by integrating the radiative intensity 
over the entire solid angle (see also Equation 9.9), 
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(9.26e)

Note that the solution for q may also be obtained by directly solving for the 
incident radiation G and then q.
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9.3 Discontinuous Finite Element Formulation 

We discuss below the application of the discontinuous finite element method to the 
solution of radiative heat transfer problems. The method was first used by Reed 
and Hill [7] to solve a neutron transport equation. An advantage of this method is 
that no inter-element continuity is enforced, and thus approximation functions are 
from a finite element broken space, which means that at the same geometric point, 
the field variable may be considered discontinuous (see Figure 9.2) [8].  

Figure 9.2. Finite element broken space 

To apply the method, the domain is first discretized into a collection of finite 
elements. In this study, unstructured meshes are used, with triangular elements for 
2-D problems and tetrahedral elements for 3-D problems. Let us take a 2-D 
problem to illustrate the integral formulation. Specifically, we consider the ith
element in a 2-D mesh, as shown in Figure 9.3, and integrate Equation 9.3 over the 
element with respect to a weighting function v( ,r),

( , )
l eA

v IdAdr s

( , ) ( , ) ( , )
l eA

v I S dAdr r r s r s   (9.20) 

where Ae is the area of the element under consideration (i.e., the ith element), r =
x î + ˆy j  and S(r, s) is the source function defined by  

4

( )( , ) ( ) ( ) ( ') ( , ') '
4bS I I drr s r r r,s s s  (9.21) 
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In the above equations, we have also used the definition, s I(r,s) = I(r,s) / s.
 Applying integration by parts once to Equation 9.20, we have the following 
expression: 

( , ) ( , )
l e lV

I v dVd v I d ds r r n s

( , ) ( , ) ( , )
l eV

I S v dVdr r s r s r  (9.22) 

where  is the boundary of the element and superscript + means taking the value 
outside the element boundary and where n is the outnormal of the element 
boundary. In deriving the above equation, we have used the divergence theorem,  

e eV V
I dA I dV IdVs n s s  (9.23) 

to convert the domain integral into the boundary integral. Note that in selecting the 
values of I on the boundary, we have chosen those lying just outside the element 
under consideration. This choice is made in order to be consistent with the 
upwinding scheme. 

We now integrate by parts once again and also use the divergence theorem to 
convert the volume integral into the surface integral. We then have the following 
integral formulation for the radiant intensity I:

(a)                                                                  (b)

Figure 9.3. Illustration of the discontinuous finite element formulation for 2-D internal 
radiation transfer in absorbing and emitting media using unstructured triangular meshes: (a) 
element i, its boundary normals, and its neighboring elements, and (b) local node number 
and side number of a typical triangular element (or ith element) 
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( , ) ( , ) [ ]
l e lV

v IdVd v I d dr s r n s

( , ) ( , ) ( , )
l eV

I S v dVdr r s r s r   (9.24) 

Note that in the conventional finite element formulation, the terms on the element 
boundary disappear when they are combined with neighboring elements or [I] = 0. 
In the discontinuous finite element formulation, however, these terms do not cancel 
each other when elements are assembled. Instead, the following limiting values are 
used: 

)(lim jj II
j

r
r

 and   )(lim jj II
j

r
r

 (9.25) 

where the superscripts + and – denote the front side and back side of the normal 
vector, respectively. By this convention, the values denoted by superscript “–” are 
inside the element and those by “+” are outside the element (see Figure 9.3b). This 
definition is slightly different from the one-D case [4] but the essential idea is the 
same.  

The above treatment assumes that the two values jI and jI across the element 
boundaries are not the same, and these jumps are often denoted by the following 
expression: 

jjj III ][  (9.26) 

These jumps may also be modeled by the generic numerical fluxes that are single-
valued at the boundaries and are a function of field values across the inter-element 
boundaries [8 10]. For the problems under consideration, the simplest and most 
effective treatment of the jump condition is by using the upwinding procedur there, 
which in the discontinuous finite element literature is sometimes referred to as the 
inflow boundary value,  

0
0

if
if

0
][

][
sn
snj

j
I

I  (9.27) 

Appropriate interpolation functions now may be chosen from the finite element 
broken space that does not demand continuity across the inter-element boundaries 
[8–10]. A natural choice of shape functions for internal radiation applications is 
made by taking a step function for the solid angle and a polynomial function for the 
spatial variation, v( ,r) = ( l) (r). Here ( l) is the step function of the solid 
angle differential centered at l, and (r) is the shape function of the spatial 
coordinates. Substituting this testing function into the integral expression and re-
arranging, one has the following relation: 
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( , ) [ ]
l e lV

I dVd I d ds r s n s

[ ( ) ( , ) ( , ) ]
l eV

I S dVdr r s r s        (9.28)        

which is the final form of the integral presentation of the radiative transfer 
equation. It is noted that Equation 9.28 reduces to the finite volume formulation if 
a constant shape function (r) is used, and to the finite element formulation, across 
the element interface, when [I] = 0 is enforced. From this perspective, Equation 
9.28 represents a general integral formulation for all these integral-based methods.
 Following the standard procedure for elemental calculations, Equation 9.28 can 
be readily calculated, once the shape functions are specified. Assembling all these 
discretized terms together for the element, the final results can be expressed in 
terms of the following matrix form: 

KU = F (9.29)

where U, as usual, contains the unknown intensity vector and  the matrix elements 
are summarized as follows: 

e l e l
ij i j i j

V V
K d dV dV ds               

1
max(0, )

l k

NS

k i j
k

d ds n (9.30)

( , )
e l

i i
V

F S dV dr s     

,
1

max(0, )
l k

NS

k i j NB j
k

d I ds n   (9.31) 

with NS being the number of boundaries associated with the ith element. 
For those elements associated with a boundary element, the boundary condition 

is imposed as follows if the boundary is gray: 

0, ' 0

1 ( )( , ) ( ) ( ) ( , ') ' '
j

N

l b j j j
j

I I I
s n

rr s r r r s s n     (9.32)       

where N  is the number of discretized solid angles.  
The following equation is used for the symmetry boundary condition: 

),(),( *
ll II srsr                                                      (9.33)
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Here s* is the symmetric direction of s with respect to the boundary. Equation 9.29 
can be obtained for each element and its neighbors, and the calculations are then 
performed element by element. Thus, with Equation 9.29, the calculation for the ith
element starts with selecting a direction and continues element by element until the 
entire domain and all directions are covered. Because of the boundary conditions, 
iterative procedures are required. Experience suggests that the successive 
substitution method seems to work well for these types of problems. 

A few points are worthy of noting. First, if the jump condition [I] is set to zero 
in Equation 9.28, which means that the inter-element continuity is enforced, then 
the conventional finite element formulation is recovered. Second, if the zeroth 
order polynomial is chosen as the spatial interpolation function, then we have the 
common finite volume formulation. Thus, in this sense, the finite volume method is 
a subclass of the discontinuous finite element method, and uses the lowest order 
approximation to the field variables.  

Before numerical implementation is discussed for multidimensional problems, 
we first consider two examples of internal radiation in a 1-D slab, which is filled 
with participating media. These examples are used here to illustrate in detail the 
discontinuous finite element procedure for the solution of internal radiation 
problems with and without a scatttering medium. Numerical results are obtained 
using both linear and constant element approximations, the latter being the same as 
the finite volume approach.  

Example 9.2. Solve the 1-D radiation problem defined in Example 9.1 using the 
discontinuous finite element method. Show the details of numerical 
implementation using three linear elements. Based on that, develop a discontinuous 
code and use the code to solve the radiative heat transfer problem using 20 linear 
elements. 

Solution. This is perhaps the simplest system for which the discontinuous 
computational procedures can be illustrated in detail. For this purpose, a mesh 
consisting of three equal-sized linear elements is used, which is shown in Figure 
9.3e, where Ej and Ni represent global element j and node i.
 In the discontinuous approximation, two values are associated with a node, 
which we denote by I + and I . For consistency, the value inside the element is I
and that outside is I +, as shown in Figure 9.2e(b).  

Now, let us consider the jth element denoted by Ej, Vj [zj, zj+1]. The 
discontinuous Galerkin formulation (i.e., Equation 9.28) gives  

1
1( )

j
j

j
l j l

z z
i i j z

z
Idzd I ds n s

1

( , ) ( , ) 
j

l j

z

i
z

I S dzdr r s r s   (9.27e) 

with nj being the outward normal of element j and subscript i refers to the local 
node number.
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   (a)             (b) 

(c)

Figure 9.3e. Discretization of a 1-D problem. (a) Element and node numbers and (b) jump 
condition across the element boundaries: 1 and 2 corresponding to “ – ” are the local node 
numbers of element j, (NB,1) and (NB,2) are the neighboring elements adjacent to 1 and 2, 
and nj,1 and nj,2 are outward normals of element j. Also, 1 and 2 corresponding to “ + ” are 
local node numbers of elements (NB,2)  and (NB,1). Note that node 1 of element j and node 
2 of neighboring element (NB,1) have the same coordinate zj, but have different values of I,
i.e., I  and I +.  (c) Control angle used for the calculations. 

First, the angular discretization is considered. For the 1-D problem, the 
radiation intensity is independent of , which means = 0, and = 2 , whence 
the integration over the lth discretized solid angle l can be carried out 
analytically,
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sin
l l

l d d d

)cos(cos2)cos)(cos( 212112   (9.28e) 

l
l ds s

1 2
ˆˆ ˆ 0 0 0.5 (cos 2 cos 2 )i j k ˆ

l k (9.29e)

Next we consider the spatial discretization. For a 1-D linear element, the shape 
function has the following properties: 
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where the subscript l denotes the lth direction, and j = (z2 – z1)j is the length of 
element j. Letting i = 1, 2 in Equation 9.27e and using the result from Equation 
2.5e, we have  
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(9.30e) 

for the first term on the left side of the equation, and  
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for the matrix coefficients of the first term on the right side of the equation. With 
S(r,sl) being a constant, the source term can be calculated analytically, 

1 1

2

j

l j

z

z
S dzd

1

1

1
4 1
l j S d =

2
Sjl  (9.32e) 

The element boundary terms represent jump conditions across the element 
boundary and require careful treatment. For element j, the shape function has the 
following values at the two boundaries: 

)( 11 jz = )1(1 = 0; )(1 jz = )1(1 = 1 
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This allows the boundary integration to be carried out analytically, whence we 
have the following results: 
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1 1 ,1 ,1 1[ ] ( ) ( ) [ ]
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The above two equations can be written in matrix terms,  
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where ik is the delta function, i.e., ik =1 if i = k and ik = 0 if i k. The application 
of the upwinding condition (i.e., Equation 9.27) yields the following results: 
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Note that to simplify the notation, the subscript Ej on the first term of the right 
hand side has been dropped. Equations 9.30e 9.32e and 9.36e 9.37e are 
substituted into Equation 9.27e to give 
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The above analytical expression can be derived for any elements and any solid 
angle discretization. A computer program can be readily developed to calculate 
these quantities efficiently. 

As a check, we consider the simple three equally sized element mesh, with the 
size j = 1/3 m. The absorption coefficient is 1.0 m–1,  the scattering coefficient is 0, 
and the temperature of the medium is T = 100 K. The angular space is discretized 
into 1 2, which denotes the azimuthal angle is parted into 1 angle, and the polar 
angle is parted into 2 angles. Therefore, there are two control angles in this 
problem, and the variables associated with the control angle l = 1, 2 can be 
calculated with the following results: 
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,2 2max(0, ) max(0, )jn s

,2 1max(0, ) max(0, ) 0jn s

,1 2max(0, ) max(0, ) 0jn s

The source of the element can be calculated by  

 S = kIb = 1.0 5.67 x 10–8  (100)4 = 805.1
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For element 1 as shown in Figure 9.1e, we have for l = 1 
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1, 1 2, 1 1 01 2
2 6 31, 1 1, 2 0 0

I
I
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1 02
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or
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I I
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              (9.40e) 

Similarly, for l = 2,

1,2

2,2 1,2 ( ,2)

02.269 1.920 1.890 0 0
1.222 2.269 1.890 0 NB

I
I I

 (9.41e) 

We can now apply the above formulae to obtain solutions element by element. 
The procedure is iterative, starting with the radiant intensity I initially set to zero 
everywhere and sweeping from one side of the boundary to the other. Let us start 
with element 1 for l =1, (I2,1)(NB,1) = Iw1,1 = 0, Iw1,1 being the value of the domain 
boundary. Consequently, Equation 9.40e is solved with the result for element 1, 

1
1,1

2,1

0.8804
8.8040

elemI
I

                                                (9.42e) 

We now proceed to calculate the values for element 2. Noticing that (I2,1)(NB,1) =
(I2,1)elem1 = 8.804 for element 2, we have again from Equation 9.40e 

2
1,1

2,1

0.9255
1.3313

elemI
I

                                               (9.43e) 

 Similarly, for element 3, (I2,1)(NB,1) = (I2,1)elem 2 = 1.3313. We thus obtain the 
solution for element 3 as follows: 

3
1,1

2,1

1.3544
1.5623

elemI
I

                                               (9.44e) 

The same procedure can be applied with Equation 9.41e except that (I1,2)(NB,1)
should be used instead. After all elements are calculated, the intensity at a global 
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node is obtained by simple averaging. For example, the first node is, with element 
1 only,  

1
1 1

elemI I (9.45e)
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Figure 9.4e. Comparison of the numerical and analytic solutions for 1-D radiation transfer 
problem: (a) boundary heat flux distribution and (b) distribution of divergence of the heat 
flux
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For the second node, the intensity is an averaged value, 

1 2
2 2 10.5( )elem elemI I I                                        (9.46e) 

 The intensities of other nodes of the mesh can be calculated by the same 
method. With this, the relative error is calculated and compared with the 
convergence criterion, 

1 1 6
, , ,

1 1 1

max 1.0 10
N N N

k k k
i j j i j j i j j

j j j
I I I    (9.47e) 

Here for the present case, the subscript k denotes the kth iteration, and the 
convergence criterion is set to 1.0 x 10 6. After the convergence is reached, the 
heat flux in the medium is calculated by Equation 9.9, and for the simple 3-element 
mesh and 2-solid-angle angular space discretization, the numerically calculated 
heat flux is compared with the analytical solution as in Figure 9.4e(a). 
 With the above data, a computer code is developed and the results using 20 (N
= 21) linear elements are also shown in Figure 9.4e. Clearly, excellent agreement 
exists between the numerical and analytic solutions, suggesting that the 
discontinuous finite element method is useful for this type of problem. Even a 3-
element mesh gives a reasonably good trend. It is noted, however, that the two-flux 
model gives an averaged value in the half sphere, and thus it lies in between the 
intensities at different directions. The computed results for the distribution 
divergence obtained from the two-flux model and the discontinuous finite element 
(DFE) method are also plotted in Figure 9.4e(b), along with the solutions obtained 
from analytical techniques. Examination of these results illustrates that the DFE 
results with linear elements match well with the analytic solutions. For comparison, 
results from a piecewise constant approximation are also shown and denoted by the 
finite volume method (FVM).   

Example 9.3. Solve the same problem of internal radiation in a 1-D slab but with a 
scattering medium.

Solution. One of the important phenomena in radiative transfer processes is 
scattering, which changes the local energy balance. This problem illustrates the 
effects of scattering medium on internal radiation. To describe the scattering effect, 
the source term is used such that the radiation intensity in one direction at a certain 
point is affected by the intensities in all directions at the point. The scattering effect 
can be rather easily handled by the discontinuous method as a source term S(r,sl),
and normally requires an iterative procedure. Some calculated results obtained 
using the discontinuous formulation for a 1-D radiation slab, filled with isotropic 
scattering media of different scattering paramters, are shown in Figure 9.5e.   

Inspection of these results shows that for a medium with a larger scattering 
coefficient, the scattering effect on the radiation intensity increases as the intensity 
is further away from the boundary at which it originates, and the largest effect 
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occurs when the intensity reaches the other boundary. In fact, for the intensity at 
= 0, the value of the intensity is reduced by 40% when it reaches the upper 

boundary with the scattering coefficient =1. The effect at the lower boundary at 
which I( = 0) originates, however, is rather small. As a result of scattering, the 
heat flux (absolute value) is smaller near the walls; however, the distribution is 
anti-symmetric, as expected. Figure 9.5e(b) compares the results of the boundary 
fluxes calculated using the DFE method for different scattering coefficients. 
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Figure 9.5e. Effect of scattering on radiative transfer calculated using the discontinuous 
finite element method: (a) intensity distribution and (b) wall flux distribution 

9.4 Numerical Implementation 

The above 1-D examples have illustrated some basic procedures involved in the 
use of the discontinuous finite element method for the solution of internal radiation 
problems. In this section, numerical details are given to form the matrix equations 
for the discontinuous Galerkin finite element formulation. We discuss these 
procedures for the 2-D and 3-D calculations. The 1-D case will be given in the 
example section.  The 2-D axisymmetric case requires special treatment, which we 
relegate to Section 9.6 for discussion.  

9.4.1 2-D Calculations 

Let us consider again the ith element and its neighbors as shown in Figure 9.3a. For 
the sake of discussion, the inter-element boundaries are plotted separately. The 
nodal values of the variable are defined within the element. Since discontinuity is 
allowed across the element boundaries, the common geometric node does not have 
the same field variable value. This is an essential difference between the 
conventional and the discontinuous finite element formulations.   

For a 2-D linear triangular element, the shape functions may be written in terms 
of natural coordinates,  



390 Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer 
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                                                                                 (9.34) 

Here j (j = 1, 2,3) is defined by the area ratio, j = Aj/Ae, where Ae is the area of the 
element and Aj the sub-triangular area formed from two vertices and point p inside 
the element (see Figure 9.3b). With relevant global coordinates substituted in j,
the shape functions take the following form: 
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                                            (9.35) 

where the definition of elements in the matrix of Equation 9.35 is given by the 
following equations: 
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                     (9.36) 

The radiation intensity inside the element is interpolated using the above shape 
functions,

),()(),()(),()();,( 332211 yxIyxIyxIyxI ssss         (9.37) 

Substituting the above equation into Equation 9.28, and noting that the intensity 
with control angles is constant due to a step function approximation, one has the 
following expression: 
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 For a 2-D triangular element, the above integration can be carried out 
analytically. Taking the derivative of the shape functions,  

1 23 23

2 31 31
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X Y
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A jX Y
                                                      (9.39) 

and noticing that i (i = 1, 2, 3) is independent of the area integral, one has 
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where D is a matrix and s  is calculated by 

321

321

321

lll

lll

lll

D
sss
sss
sss

                                                 (9.41a)  

      2 1 2 1

2 1 2 1

[0.5( ) 0.25(sin 2 sin 2 )]

ˆ ˆ[(sin sin ) (cos cos ) ]
l

l d

i j

s s

k̂))(2cos2(cos25.0 1212                    (9.41b) 

The second integral in Equation 9.38 represents the jump condition (or 
numerical fluxes) across the boundary of the ith element and its neighbor (see 
Figure 9.3a). For a linear triangular element, it is split into three terms, one for each 
side of the element,  
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The line integration associated with the element can be carried out analytically. 
For side 1,  and we therefore have the following matrix 
expression: 
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where L1 is the length of side 1 (see Figure 9.3b). The term involving the solid 
angle integration can also be treated analytically, 
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Note that for a 2-D problem, nz = 0. In the DFE treatment, the jump terms have 
to be selected depending on the sign of –n· ls  This is different from the 
conventional finite element formulation in which the across-element continuity is 
enforced, and the inter-element boundary terms cancel each other. One treatment 
that works effectively with linear elements is the upwinding scheme. By this 
scheme, one has 
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By the same token, the calculations for the other two sides can also be 
performed analytically. By definition, we have (Ij)(NB,1) = (Ij

+)elem i (see Figure 9.3b). 
Thus the calculated results for these two sides may be summarized below for 
convenience,  
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where Cof Bkl is a matrix obtained by setting to zero the elements in the kth row 
and lth column of matrix B, which is defined by 

2 1 1
1 2 1
1 1 2

B (9.46b)

The first term on the right hand side of Equation 9.38 represents the attenuation 
of radiation intensity due to extinction. It may be calculated analytically when (r)
is a constant with the result, 
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If all these discretized terms are assembled together, the equation for the 
element can be written in terms of the following matrix form: 

FKU (9.48)

where the expressions for the matrix elements are summarized as follows: 
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with NS being the number of boundaries associated with the ith element and Ne the 
number of the nodes of the element (see also Equation (9.62) below). The 
integration involving S(r,s) is discussed in Section 9.5.3.  

The calculations will start with those associated with a boundary element, 
where the boundary condition is imposed for a gray boundary as follows: 
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and the following equation is for the symmetry boundary condition, 

),(),( *
ll II srsr                                      (9.51) 

Here s* is the symmetric direction of s, with respect to the boundary, and can be 
calculated by Equation 9.8. Note that Equation 9.28 can be obtained for each 
element and its neighbors, and the calculations are then performed element by 
element. Thus, with Equation 9.28, the calculation for the ith element starts with 
selecting a direction and continues element by element until the entire domain and 
all directions are covered. Because of the boundary conditions, iterative procedures 
are required. The successive substitution method seems to work well for this type 
of problem. In the above, it is assumed that the medium is not scattering and thus 
the scattering term is set to zero. When the scattering term is known, the source 
term can be readily calculated using the Gaussian integration and included in the 
force vector {f}.
 Let us now illustrate the above procedure through a numerical example of 
radiation in a 2-D cavity. 

Example 9.4. We consider a 2-D problem of internal radiative heat transfer, which 
is schematically illustrated in Figure 9.6e(a). The cavity is filled with an absorbing 
and non-scattering medium. The absorptivity of the medium is = 1.0. The 
discontinuous finite element procedure discussed above is used to solve the 
problem. 

Solution. Since the medium is non-scattering,  = 0. At x = 0 and x = 1 the 
boundaries are black cold walls, that is, the emissivity and temperature of the wall 
are one and 0 respectively. Symmetry boundary conditions are applied at y = 0 and 
y = 1. The temperature is assumed to vary from the left to the right and the variation 
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is described by the function, T(x,y) = 100(1+0.75sin(2 x)). Since the symmetry 
boundary condition is applied at the top and bottom walls, and the temperature 
varies only with the x coordinate, the analytic solution for the problem can be 
obtained by integrating the radiative transfer equation as shown in Example 9.1, 

1

2 2
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( ) 2 ( ') ( ') ' 2 ( ') ( ' ) '
x

b b
x

q x I x E x x dx I x E x x dx    (9.48e) 
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(c)                                                                     (d)

Figure 9.6e. Internal radiation in a 2-D square: (a) prescribed temperature distribution and 
boundary conditions, (b) unstructured triangular mesh, (c) schematic of angular space 
discretization, and d) the heat flux qx distribution along x/L obtained by the discontinuous 
finite element (DFE) method and the analytical solutions for three extinction coefficients 

= 0.1, = 0.5 and = 1.0 

This problem is solved using the DFE method in a 2-D unstructured triangular 
mesh consisting of 1142 elements, as shown in Figure 9.6e(b). The unstructured 
mesh is generated using the front advancing technique. The angular space 
discretization is 2 8; that is, the angular space is divided into 2 in the azimuthal 
direction (  and 8 in the polar direction ( ), which is shown in Figure 9.6e(c). The 
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distribution of the non-dimensionalized radiative heat flux q* = qx/(1004
s) at 

boundary y = 0.0 is computed for various conditions, and is plotted in Figure 
9.6e(d), along with the analytical solutions. Apparently, excellent agreement is 
obtained between the analytical and the discontinuous finite element solutions for 
various  parameters.  

9.4.2. 3-D Calculations 

The above procedures are applicable to 3-D calculations. The element arrangement 
for 3-D is shown in Figure 9.4a. For a 3-D element, the area integral above is 
replaced by a volume integral, and the boundary line integral above by a surface 
integral, respectively. For a linear tetrahedral element, the integrations can be 
carried out analytically. 

In an analogy to a 2-D triangular element, the shape function for a tetrahedral 
element has the following form when written in the global coordinate system: 

1 234 234 234 234

2 341 341 341 341

3 412 412 412 412

4 123 123 123 123

1
1

6 e

V X Y Z
V X Y Z x

V V X Y Z y
V X Y Z z

                           (9.52) 

where the definition of elements in Equation 9.52 is as follows: 

                (a)                                                                         (b) 

Figure 9.4. Illustration of the discontinuous finite element formulation for 3-D internal 
radiation transfer in absorbing and emitting media using unstructured tetrahedral meshes: (a) 
element i, its surface normals, and its neighboring elements, and (b) local node number and 
side number of a typical tetrahedral element (or ith element) 
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Here the lower case xj, yj and zj denote the coordinates x, y, and z of the jth node of 
the tetrahedron under consideration (see Figure 9.4b).     

The radiation intensity within a tetrahedron is interpolated by 
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Substituting the above expression into Equation 9.28 yields 
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Once again, the derivative of the shape functions can be obtained analytically 
with the following result: 
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where J = 6Ve is the Jacobian of the tetrahedral element. 
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This will allow us to analytically integrate the volume terms in Equation 9.28. 
Following the same procedure as for the 2-D calculations, we have the following 
result for the 3-D tetrahedral elements: 
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where s  is the same as given by Equation 9.44. Note that, for linear elements, i
(i = 1, 2, 3, 4) is constant and is defined solely by the nodal coordinates of the 
tetrahedral element and thus can be taken outside the volume integral. The 
consideration for the solid angles and sign of –nj·s (j =1, 2, 3, 4) is also the same as 
for the 2-D case discussed above, except that n now refers to the outnormal of the 
boundary surfaces of the tetrahedral element and has three components. After some 
algebraic manipulations, one has the final result for the surface integral along the 
element boundary: 
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where Aj is the jth face of the element and CofC(k,l) is a matrix obtained by setting 
to zero the elements in the kth row and lth column of the matrix C, which is 
defined by 
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Also, the absorption term can be integrated analytically if  is a constant, 
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Again, the above equations for 3-D calculations can be summarized in the same 
matrix form as given by Equations 9.48 and 9.49. 

9.4.3 Integration of the Source Term 

The S(r,s) term has two contributions; one describes the emitting effect, and the 
other, the scattering effect. The integration of these two terms is now considered. 

9.4.3.1 The Emitting Contribution 
The emitting term is related to the temperature of the medium. For a gray medium, 
one has 

/)()( 4 rr TI sb                                                      (9.61) 

We can approximate the temperature at point r and then calculate Ib(r) using 
Equation 9.61. Alternatively, we can directly interpolate for Ib(r) using the shape 
function and the nodal intensity values. If the later is taken, then one has the 
following expression: 
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with Ne being the number of nodes of the element under consideration.  
Therefore, the integration of the emitting term is calculated by numerical 

quadratures, 
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where Ng is the number of integration points, wm the integration weights, and |J(rm)|
the Jacobian. If the absorption coefficient  is a constant, then the integration can 
be calculated analytically, 
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where matrices B and C are given by Equations 9.46b and 9.59, respectively.  

9.4.3.2 The Scattering Contribution 
It is known that particles present in a medium will scatter the radiative intensity 
traveling in one direction into all other directions. Likewise, the radiation in other 
directions may also be scattered by the particles into the given direction in a 
scattering medium. Scattering effects are usually classified into isotropic scattering 
and anisotropic scattering. The former scatters energy to all other directions with 
the same energy distribution, whereas anisotropic scattering redirects radiation 
energy in different directions with varying energy distributions. The isotropic 
scattering function is simple and easy to calculate, that is, 

1)',( ss     (9.65)

Anisotropic scattering is more complex and certainly needs more computing 
time since the scattering function is directionally dependent. There are two 
different models being used for anisotropic scattering functions: forward scattering 
and backward scattering. Forward scattering means more energy is scattered into 
the forward direction than the backward direction. Backward scattering means just 
the opposite, that more energy is scattered into the backward direction. The 
scattering functions, either forward or backward, may be described by the 
following generic expression:  
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where N  is the number of the terms used to represent  and is calculated by  
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and Pj is the Legendre polynomial, which has the following properties: 
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For the calculations given here, the values of coefficient cj in Equation 9.66 are 
taken from the work of Kim and Lee [11], where the coefficients of the polynomial 
for different models are obtained by slightly modifying the Mie coefficients [11, 
12].  

Equation 9.66 describes the dependence of the scattering function on the 
directions for anisotropic scattering phenomena. In calculations, the angular space 
is discretized into a finite number of control angles. While the scattering function 
at the axle direction of a control angle may be used as the average scattering 
function, a better approach is to average the scattering function over each control 
angle using the following expression [13]: 
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 The above computational procedure, and scattering functions, can be readily 
incorporated into the discontinuous finite element formulation as a source term. 
The integration of the source term may be made using the integration quadrature 
rules,
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where subscript i refers to the node number local to the element, N  is the number 
of discretized angles, and rm = (xm, ym,zm). The force, calculated as described above, 
is then added to the ith node of the element. 

Example 9.5. Employ the above numerical procedure to solve a 3-D cube filled 
with an absorbing, emitting and scattering medium.  



402 Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer 

Solution. This is perhaps the most general problem of internal radiation in a 3-D 
geometry. When the medium is scatterting, the radiation of a given direction is 
redirected into all other directions. Radiation in other directions may also be 
scattered into the direction under consideration in a scattering medium. The 
scattering effect is included as part of the source term for radiation. Scattering 
effects are usually classified into two categories: isotropic scattering and 
anisotropic scattering. The former scatters energy to all other directions with the 
same energy distribution, whereas the latter scatters radiation energy to different 
directions with varying energy distributions.  
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       (c)                                                                      (d) 

Figure 9.7e. Comparison of heat flux distributions computed using the DFE, FVM and 
Monte Carlo methods for radiative heat transfer in a cube filled with anisotropic scattering 
media. (a) Mesh distribution. (b) Scattering function distributions used for computations. (c) 
Heat flux qz* distributions along x/L at y/L = 0.5 and z/L = 0.5 on the top surface of the cube 
with scattering albedo =0.5 and . (d) Heat flux qz* distributions along x/L at y/L
= 0.5 and z/L = 1 on the top surface of the cube with scattering albedo = 0.5 and 

The calculated results for anisotropic scattering are given in Figure 9.7e. The 
present calculations are also compared with those obtained using the Monte Carlo 
method. The comparison between the DFE results and those reported in Jendoubi 
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and Lee [5] is gratifying for all these cases, suggesting that the DFE method is 
useful for the radiative heat transfer calculations. 

9.5 Radiation in Systems of Axisymmetry 

In some cylindrical systems, such as combustion chambers, boilers, gas turbines 
and optical crystal growth furnaces, an axisymmetric approximation often may be 
made to predict the thermal performance. An important implication of this 
approximation is that the axisymmetric and periodic conditions associated with 
these systems can be applied, and thus fully three-dimensional calculations may be 
replaced by the corresponding two-dimensional calculations, thereby resulting in 
savings in both computational cost and storage requirement. 

9.5.1 Governing Equation in Cylindrical Coordinates 

For the systems of axisymmetry, the cylindrical coordinate system is more 
convenient to use. For radiative heat transfer in the systems, the temperature and 
radiative properties vary only in the r and z directions, but not in the azimuthal 
direction c. Here, c is the azimuthal angle in the cylindrical coordinate system 
and independent of azimuthal direction angle . With the coordinate system shown 
in Figure 9.5, the radiative transfer equation can be written as 

Figure 9.5. Schematic illustration of an internal radiation problem in cylindrical coordinates 
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where  is the azimuthal direction of radiation intensity. From the geometric 
relation shown in Figure 9.5, it is clear that c+ = constant along s. It is important 
to note here that for an axisymmetric problem, the radiation intensity also depends 
on the polar (i.e., ) direction. However, as shown below, the axisymmetry and 
periodic conditions intrinsic with an axisymmetric problem may be used to map the 
quantities at any  using the data at = 0, thereby making the calculations possible 
over a 2-D mesh.  

Let us consider a typical element, that is, the ith triangular element and its 
neighbors, as shown in Figure 9.3a. Remember that this 2-D triangular element 
generates a corresponding 3-D element by rotating around the z axis at a prescribed 
angle. For the sake of discussion, the inter-element boundaries are plotted 
separately. The nodal values of the variable are defined within the element to 
conform to the rule of selecting interpolation functions from the finite element 
broken space. Because discontinuity is allowed across the element boundaries in 
the discontinuous formulation, the common geometric node does not have the same 
field variable value. This is a crucial difference between the conventional and the 
discontinuous finite element formulations.   

For a 2-D linear triangular element located on the r z plane, the shape 
functions may be constructed as follows: 
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where Ae is the area of the triangular element on the r z plane, and the definition of 
elements in the matrix of Equation 9.72 is as follows: 
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The radiation intensity inside the element is interpolated using the above shape 
functions,

),()(),()(),()();,( 332211 rzIrzIrzIrzI ssss               (9.74) 

Substituting the above equation into Equation 9.28, and noticing that the 
intensity with control angles is constant due to a step function approximation, one 
reaches the following expression: 
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9.5.2 Volume Integration 

Let us consider the first term in Equation 9.75, which involves the volume 
integration over a 3-D element generated by the ith triangular element. Taking the 
derivative of the shape functions,  
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one has the following result: 
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where s  is calculated by the expression, 
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k̂))(2cos2(cos25.0 1212  (9.78) 

and Aij is a vector given by 
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Here, the integral is evaluated numerically using the Gaussian quadrature. Ng is the 
number of integration points, and J is the Jacobian. 
 The first volume integral on the right hand side of Equation 9.75 may be 
calculated numerically with the result, 
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where the matrix element Bij is calculated by 
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The evaluation of the scattering term was discussed in Section 9.4.5. Below we 
discuss the integration over surfaces in Equation 9.75. As shown below, some of 
these calculations are simplified considerably with the use of the symmetric and 
periodic conditions associated with a cylinder.  

9.5.3 Surface Integration Over p

The second integral in Equation 9.75 represents the jump condition (or numerical 
fluxes) across the boundary of the ith element and its neighbor (see Figure 9.3b). 
For a linear triangular element, the second integral is split into three terms, one for 
each side of the element,  
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where L1, L2, and L3 are the lengths of the corresponding three sides of the 
triangular element on the symmetry plane (see Figure 9.3b).  

The surface integrals can be evaluated numerically. Thus, one has the following 
result for the surface integral: 
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where the elements of matrix Ck are calculated by the following numerical 
integration:
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Also, Cof(4 k, 4 k) (k = 1, 2, 3) means setting to zero the elements in the (4    k)th row 
and the (4 k)th column of the matrix with the index pair (4 k, 4 k) referring to 
the low double indexes of the matrix element C4–k, 4–k. For example, Cof(4 1, 4 1) =
Cof(3, 3) means forming a new matrix from matrix C1 by setting the elements in the 
column and row of C33 to zero. Note that the above expression has been written for 
a curved element. For a linear element, the Jacobian J is a constant, which can be 
taken out of the summation term. 

In the discontinuous finite element treatment, the jump terms at the element 
boundaries have to be selected depending on the sign of nj .s  This is different from 
the continuous finite element formulation in which the across-element continuity is 
enforced, and the inter-element boundary terms cancel each other out, such that a 
jump condition does not arise. One treatment of these jump terms that works 
effectively with linear elements is the upwinding scheme [4, 5]. This scheme is also 
used here, 
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Similarly, the calculations for the other two sides can also be performed 
analytically.

9.5.4 Integration Over 

The surface integration over  entails the evaluation of the following two terms:  
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where t and b denote the top and bottom surfaces, respectively (see Figure 9.6). 
 For an axisymmetric problem, the surface normals for these two surfaces are 

calculated by the following expressions: 

ji cct
ˆ)2/cos(ˆ)2/sin(n  (9.87) 

ji ccb
ˆ)2/cos(ˆ)2/sin(n  (9.88) 

 Examination of the integrals above shows that the surface integrals can be 
carried out over the triangular element on the r z plane. Consequently, we have the 
following expressions: 
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where the matrix element Dij involves a pure 2-D calculation and may be 
calculated numerically using the standard Gaussian quadrature, 
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Here r z means the area on the r z plane is used. Note that for a linear triangular 
element, the above expression may also be evaluated analytically, for the purpose 
of which some of the formulae given in Chapter 3 should be useful.  
 The jump conditions across the element interface can be treated using the 
upwinding scheme for both the top and bottom surfaces. The use of this scheme 
leads to the following expressions: 

Figure 9.6. Schematic illustration of the mapping of radiation directions for axisymmetric 
problems
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Here, NBt and NBb denote neighbor elements for the top and bottom surface, 
respectively. Note that only one neighboring element exists for the top or bottom 
surface, as shown in Figure 9.6.  

9.5.5 Mapping 

An important assumption in our calculations is that the intensities are needed only 
at the nodal points of the triangular element on the r z plane. The quantities are 
stored in memory during calculation. The intensities at any other location in the 
entire cylinder can be obtained from the intensity values stored at the triangular 
element through an appropriate mapping procedure. The mapping procedure 
exploits the symmetry and periodic conditions associated with the axisymmetry of 
the problem. If the angle of the rotation  is appropriately selected, then the 
intensities in the neighboring elements along the  direction can be mapped from 
those at nodes P1, P2, and P3, respectively. This procedure allows the 3-D 
calculations to be performed using the 2-D mesh on the r z plane only.  
 The mapping procedure for finite volume analysis of radiative heat transfer was 
studied by Chai et al. [13, 14]. Here, a similar idea is applied to incorporate the 
mapping into the DFE formulation to facilitate the radiative heat transfer 
calculations over a 2-D mesh. From Equations 9.91 and 9.92, it is clear that when 
the upwinding procedure is used, intensity values at the adjacent elements are 
needed in order to calculate the in-flow contributions from either the top or the 
bottom surface. Since the intensity is stored at the nodal points of the element on 
the r z plane, the intensity field at the neighboring elements may be obtained using 
the axisymmetry and periodic conditions. As shown in Figure 9.6, the element 
a b c d is on the middle (or r z) plane, and a b ct dt is the element that shares 
the same boundary with the top surface a b c d, while the element a b cb db

shares the same boundary with bottom surface a b c d. The angle between the 
lines P1P2 and P1tP2t, and that between the lines P1P2 and P1bP2b, is equal to 
and respectively, because of the angular discretization. 

Because the radiation intensity possesses axisymmetry or rotational symmetry, 
one thus has the following relation between the intensities at the three elements 
under consideration: 

)()()0( cicici III , i = 1, …, N                  (9.93) 
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where N  is the number of discretized polar angles. The indexes on i + 1 and i 1
are cyclic, such that i + 1 1 if i = N  , and i – 1 N  if i = 1. Thus, all the 
intensities on the other planes are the same as those on the symmetry (i.e., r z)
plane with an appropriate rotation. To comply with the condition of axisymmetry, 
the net radiation energy flux across any plane passing through the r = 0 axis should 
be zero. Thus, the following relation among the intensities at c = 0 is: 

)0()0( 1iNi II    (9.94)

This condition implies that, to avoid numerical errors, N  needs to be an even 
number, which imposes a constraint on the way the polar angle discretization is 
made. While this constraint may be a nuisance, it is beneficial in that only half of 
the radiation directions need be solved, thereby permitting an increasing speed of 
computation. 
 With reference to Figure 9.6, the intensity in the direction 1 at c = 0 is parallel 
to that in the direction 2 at c =  and also to that in the direction 6 at c = .
This periodic condition should hold true for other corresponding directions as well. 
This condition, in combination with the axisymmetry condition discussed above, 
allows us to obtain information on the intensities at the top t and bottom b from 
those saved at the element defined at the r z plane. To illustrate this, we first 
consider the intensity It2 of direction 2 at the top surface. The quantity It2 is mapped 
from the known values at the r z plane as follows: 

)0(22 ct II and )0()( 112 cct III                (9.95) 

The same relation applies to the intensities at the other directions. The mapping can 
be applied in a similar fashion to the intensities at the bottom surface with the 
results,

)0(22 cb II and )0()( 332 cct III           (9.96) 

Clearly, the same relation can be used for the other directions as well. Here, to be 
consistent with our notations, subscript + refers to the outside of the elements.  

9.5.6 Treatment of the Emitting and Scattering Term 

We may follow the same procedure in Section 9.5.3.1 to calculate the emitting 
term, taking into account the axisymmetry. Using quadrature rules, the integration 
can be carried out numerically, 
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The scattering term in the axisymmetric system may be treated in a very similar 
fashion to that given in Section 9.5.3.2 for 2-D and 3-D geometries. With the 
appropriate interpolation, the integration of the source term can be readily carried 
out over the r z plane only. If the numerical integration is used, we then have the 
following expression: 
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where subscript i refers to the node number local to the element and N  is the 
number of control solid angles for integration. The force, calculated as described 
above, is then added to the ith node of the element. 

Example 9.6. Use of the above numerical procedure to solve the internal radiation 
in an irregular 2-D cavity of axisymmetry filled with a cold medium.  

Solution. We consider a conical enclosure filled with a cold medium (Tref = 0.0). 
The enclosure is 2 m high with a top radius of 2.1547 m and a bottom radius of 1 
m. The top and side walls are black and cold, whereas the bottom wall is black and 
at Tw = 100 K. The extinction coefficient of medium  is 1.0 m 1, but the scattering 
albedo = / ) varies from 0.0 to 1.0. The computations used a mesh consisting 
of 400 linear triangular elements and an angular discretization of 12 8. With an 
increased scattering albedo, the boundary heat flux goes up because more energy is 
scattered to the boundary than is absorbed by the medium. The results calculated 
using the DFE method agree well with the finite volume results (FVM, [19]) for 
different scattering albedos, as shown in Figure 9.8e. 

9.6 Use of RTE for External Radiation Calculations 

Radiation exchange between surfaces is the other important category of radiation, 
and the solution of the external radiation problems using the discontinuous 
Galerkin boundary element method was discussed in Chapter 8. Unlike the 
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radiation in the absorbing medium, radiation between surfaces occurs in a vacuum 
or a non-absorbing medium. The prediction of external thermal energy exchange 
between surfaces is often complicated by the fact that some applications of surface 
radiation exchanges involve complex geometric arrangements that are either 
designed to obstruct radiation exchanges or are an integral part of an overall 
thermal system design. It was shown in Chapter 8 that a very complex, time 
consuming part of a numerical algorithm for external radiation heat transfer 
calculations is to detect these internal blockages between a thermal ray from one 
surface to another in an enclosure.  

Since the radiative transfer equation (RTE) describes the transfer of radiative 
energy in a medium, it should also be applicable to the special cases where the 
medium is not participating. Consequently, the RTE should be able to be used to 
solve the external radiation problems. There are perhaps two important advantages 
associated with this approach, though it rarely is considered in the literature. The 
first advantage is that a detailed geometric obstruction present in the enclosure 
needs no special treatment and the domain needs to be discretized as usual for 
internal radiation calculations. This eliminates a major headache in developing 
very precise third party detection algorithms. The second advantage is that if a 
code is developed for internal radiation calculations, then there is no need to 
develop another separate code for external radiation calculations. Both external and 
internal radiation problems can be handled using a unified approach, thereby 
simplifying the computational procedure. This is particularly important for 
developing multiphysics models for practical applications. 

Here we consider the use of the RTE to solve the external radiation problem on 
the basis of the discontinuous finite element procedures discussed above. We will 
further demonstrate this use of RTE through a 2-D example with internal blockage 
and compare the results with those obtained using the Galerkin discontinuous finite 
element method discussed in Chapter 8.  

Figure 9.8e. Comparison of computed non-dimensional heat flux along the outer sidewall of 
the cone filled with absorbing, emitting and scattering media with the results reported in the 
literature (FVM) for different scattering albedos = 0.0,  = 0.4,  = 0.8 and  = 1.0 
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The radiative transfer equation (RTE), when applied to a non-participating 
medium, reduces to a very simple form, 

0
s
I  (9.99) 

Here the transient effect is neglected.  
Taking a two dimensional domain, we have from Section 9.3 the following 

discretized form of discontinuous finite element formulation, 
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This can be further written in matrix form, as has been demonstrated repeatedly in 
the previous sections. 

Thus, the computational methodology developed for the solution of internal 
radiation in 1-D, 2-D, 3-D and axisymnmetric geometries can be directly applied to 
solve the external radiation problems. This is done by simply setting the relevant 
properties (i.e., absorptivity, scattering coefficient, scattering functions, and 
emissivity) of the medium to zero. The properties of the surface of the enclosure 
are considered in the boundary conditions for internal radiations. We present one 
numerical example below. 

Example 9.7. Consider a 2-D enclosure with an internal blockage as shown in 
Figure 9.9e(a), along with the temperature boundary conditions. The emissivity of 
all boundaries is 1.0, and the medium in the enclosure is non-participating. Solve 
the problem using both the discontinuous Galerkin boundary element method and 
the discontinuous Galerkin finite element method. Discuss the numerical results. 

Solution. Because the blockage exists in this enclosure, the calculation of radiative 
energy transfer between the surfaces requires the detection of the third party 
blockage. The algorithm developed in Chapter 8 is applied here. To ensure the 
numerical accuracy, a total of 320 boundary elements are used to discretize the 
boundary of the enclosure. On the other hand, the calculation using the RTE 
approach requires the full discretization of the domain. For this problem, a 
structured triangular mesh is used, which has 2304 elements, but the boundary is 
just discretized into 96 boundary elements, and the angular space discretization is 

×  = 2 × 80. The calculated heat flux of the bottom surface is calculated and 
compared with the solution of the boundary element method. The reuslts are shown 
in Figure 9.9e, where the results of the two methods agree very well, suggesting 
that the RTE can indeed be applied to solve the external radiation problems with 
good accuracy. To further compare the speed of the DFE method and the boundary 
element method, numerical experiments were performed, where both meshes for 
the boundary element and the discontinuous calculations have 120 boundary 
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elements. Since the geometry is symmetric, the symmetry boundary condition can 
be easily implemented using the discontinuous Galerkin method. Numerical 
calculations show that for this particular testing problem, the discontinuous finite 
element method is faster than the boundary element method to obtain the results of 
the same accuracy. 
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X/L

 Solution of BG method
 Solution of DFE method

(a)                                                              (b) 

Figure 9.9e. Comparison of external radiation transfer calcuations using the discontinous 
Galerkin boundary and finite element methods: (a) a 2-D cavity with internal blockage, 
along with the wall temperatures, and the cavity is filled with a non-participating medium 
and (b) calculated radiation heat flux distribution along the bottom wall 

9.7 Coupling of the Discontinuous Method with Other Methods 

There have been well-established numerical methods for the solution of a wide 
range of heat transfer problems such as heat conduction and convection. Thus, it is 
natural to test the idea of coupling the discontinuous Galerkin method with these 
well known methods for the mixed heat transfer calculations that involve internal 
radiation and conduction/convection. This way, the advantages of each method can 
be fully utilized. To demonstrate such a coupled approach, we again consider a 
problem of combined conduction and internal radiation in a gray medium. The 
differential heat balance equation may be readily written, 

( ) '''p r
TC k T q
t

q                                                     (9.101) 

with the term ·qr calculated using the radiative transfer equation as described 
above. The coupling entails the use of the conventional method for heat conduction
and the discontinuous method for the internal radiation calculations. Since the 
radiation heat flux contribution appears as a divergence term in the source part of 
the heat balance equation, it opens up two possibilities for coupling the 
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discontinuous and conventional finite elements for the mixed heat transfer 
calculations. The two coupling approaches are described below. 

In the first approach, the heat balance equation is formulated following the 
same procedure as used in the conventional finite element method. This will lead to 
a global matrix equation with the nodal temperatures as the unknowns. To 
incorporate the internal radiation effect, ·qr is calculated over a finite element 
where the internal radiation takes place and then is coupled to the global matrix 
equation as a source term. This represents a simple and direct approach. In this 
way, the boundary condition on n·qc is required, which of course must satisfy the 
total heat flux (qc +qr) balance along the boundary [8 10].   
 In the second approach, which is often taken by many researchers using the 
finite volume formulations for temperature calculations, the term ·qr is integrated 
out and n·qr at the element boundaries are used. If this approach is taken for the 
conventional and discontinuous finite element coupling, then one would have the 
following expression embedded in the conventional finite element formulation for 
the heat balance equation: 

i i i
r r r

V V V
dV dS dVq q n q    (9.102) 

Thus, this approach requires the information on qr in the interior of an element and 
along the domain boundaries. By this approach, a specification of total heat flux 
(n·qr and n·qc) at the boundary term is required, which is more convenient for 
problems involving different phases [10]. It is noted here that ·qr is not calculated 
using a numerical differentiation of qr, and thus there is no loss in numerical 
accuracy if ·qr is used. It is noted also that if the shape function  is chosen as a 
delta function, the volume term on the right hand side vanishes and the formulation 
reduces to the popular finite volume formulation.   

By either of these approaches, the combined heat conduction and radiation 
calculations require iterative procedures. In a typical iteration process, the 
temperature distribution is calculated using the conventional finite elements while 
the internal radiation intensities are calculated by the discontinuous finite elements. 
The iteration starts with the calculation of temperature without radiative heat 
transfer. The solution of the intensity distribution, and hence the divergence of heat 
fluxes, are then calculated using the temperature information. The radiation heat 
flux divergence is then treated as a heating source and the temperature distribution 
is updated. This process repeats itself until a convergence on temperature and 
intensity is obtained.

9.8 Constant Element Approximation 

As mentioned at the end of Section 9.4, the discontinuous Galerkin formulation 
includes the conventional finite element and finite volume formulations. The latter 
is recovered if one chooses to use the constant element formulation for the spatial 
approximations. This holds true for radiative transfer problems.  
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 Consider a 2-D case using a triangular mesh. The treatment is identical to other 
dimensional and/or other mesh cases, including the geometry of axisymmetry. Our 
starting point is Equation 9.28. If a constant element is applied, then for the 
element i under consideration, we have 

1j ; 0j  and 1jI  for  j = 1, 2, 3 (9.103)

Thus, the first term in Equation 9.28 vanishes. The second term becomes 
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The first and the second terms on the right can also be calculated easily, 
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 The above equations can be summarized 
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where SElemi is the source term evaluated using the information at element i. The 
source calculation can be done using numerical integration as stated in Section 9.4, 
with one integration point rule.

Example 9.8. Use both the analytical and discontinuous finite element methods to 
solve the problem of combined conduction and radiation in a 1-D slab, 
Solution. This example is concerned with a combined heat transfer problem that 
involves heat conduction and internal radiation. The problem is again 1-D with the 
wall set at different temperatures so that heat conduction is required to predict the 
temperature distribution. Here the first approach is taken to couple the 
discontinuous and conventional finite element methods for the combined 
calculations and the divergence of the radiation heat fluxes is treated as a 
volumetric source.  
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 We consider a stagnant, gray, non-scattering medium between black, parallel 
walls. The medium has a constant thermal conductivity k and a constant absorption 
(or extinction) coefficient Ka(= Ke). The medium is adiabatic (has no energy 
sources or sinks), and the walls are isothermal at temperatures T1 and T2. The exact 
formulation of the coupled radiative and conductive transfer in this problem is 
carried out as follows. 

Analytic solution. The conductive heat flux normal to the slab at any location z is

dz
dTkqc (9.49e) 

From Equation 9.9 and example 9.1, the radiative flux normal to the slab at any 
location is 

1
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where = z for independent of wavelength and position. The energy balance 
equation then becomes 

0
dz
dq

dz
dq cr  (9.51e) 

Making use of the Leibtnitz rule and introducing the non-dimensional 
temperature 1/ ,T T T  we obtain a nonlinear, integro-differential equation for the 
temperature distribution [2], 
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with boundary conditions 1)0(~T and L 2( ) .T T The parameter N is the 
conduction-radiation parameter based on T1,
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 (9.53e) 

where kr is the radiative conductivity. The conduction-radiation parameter is a 
measure of the relative importance of energy transport by radiation and conduction 



Radiative Transfer in Participating Media 419 

in a gray medium. For N  0 radiative transfer dominates (radiative equilibrium) 
and for N  conduction dominates (non-participating medium).  
 Integrating Equation 9.52e and evaluating at =0 gives 
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q dTN T E T E

dT
  (9.54e) 

This expression can be integrated numerically to obtain the temperature 
distribution in the slab [1, 2]. 

Discontinuous Galerkin Solution. The combined continuous/discontinuous finite 
element method is used, as discussed in Section 9.7. The calculated temperature 
distributions across the 1-D slab are depicted in Figure 9.10e as a function of 
radiation numbers. Shown also in the figure are the analytical solutions taken from 
Modest [1] and Siegal and Howell [2]. Once again, for the entire range of the 
radiation parameter, the comparison between the analytical and numerical solutions 
is excellent; validating the combined discontinuous/conventional finite element 
approach for the combined conduction/radiation problem. It is noted that the 
coupled thermal system, however, represents a highly nonlinear system, and 
appropriate relaxation parameters are required to obtain converged results. Our 
experience shows that selection of these parameters is often dependent on the 
radiation numbers. For the calculations shown in Figure 9.10e, for example, a 
relaxation value of 0.04 was used, when the radiation number is 0.001. 

Figure 9.10e. Dependence of temperature distribution across the slab bounded by two black 
walls upon the radiation number N. Combined heat conduction and internal radiation are 
considered. The parameters used for calculations: T(0) = 1, T(L) = 0.5, and Th = Thigh
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Example 9.9. Obtain numerical solution of mixed convection and radiation in a 2-
D cavity. 

Solution. In this example, natural convection in a simple cavity filled with a 
participating medium is considered. The two side walls of the cavity are fixed at 
two different temperatures, which combine with the gravitational forces to drive 
the melt flow in the cavity. As a result of the melt being thermally absorbing and 
emitting, internal thermal radiation plays an important role in redistributing the 
thermal energy. The mathematical equations governing the mixed heat transfer 
phenomena are given as follows: 

0u                                                                                 (9.55e) 

)1(RaPrPr 2 Tp
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uuuu                            (9.56e) 
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2 Rc qu                                                (9.57e) 

where ll /Pr , ,/Ra 3
,0 llmlT LTg  and 2 3Rc / .l m ln L T k The radiative 

heat transfer in both the melt and solid is described by an integral-differential 
equation, which becomes, when non-dimensionalized, 
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where )( L is the optical thickness,  is the extinction coefficient and  is the 
single scattering albedo.  

The divergence of the radiative heat flux in the energy balance equation can be 
calculated once the radiation intensity distribution is known, 

4

1 1ˆ ˆ4(1 ) ( , ) ( , )r bI I dq r s r s                        (9.59e) 

In the above equations, the following scale factors are used: L for length, Ll /  for 

velocity, lL /2  for time, mT  for temperature, 0g  for gravity, 0b  for magnetic 

field intensity, 42
ml Tn  for heat flux, and /42

ml Tn  for radiation intensity. 
 To solve the above equations, appropriate boundary conditions need to be 
applied. For the system under consideration, the following constraints are applied 
at the boundaries: 

0u  at all boundaries; 
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HTT  at 0x ; CTT  at 1x ;

0rc Rcqq  at y = 0 and y = 1  

ˆ ' 0

(1 )ˆ ˆ ˆ ˆ( , ) ( , ') ' ' ( ) ( )w w w w w b wI I d I
s n

r s r s n s r r  (9.60e) 

where Tw is the boundary temperature and  is its emissivity. The unit vector n̂  is 
the surface normal pointing out of the domain.   

(a) (b)

(c) (d)

Figure 9.11e. Internal radiation effects on melt flow and temperature distributions (Ra = 105,
0.1 ): (a streamline and b temperature) Rc = 0, and (a streamline and b temperature)     

Rc = 1 

The solution of the above problem is solved using the coupled discontinuous 
and conventional Galerkin finite element methods, with the former for the radiative 
transfer equation and the latter for other equations. The procedure follows the first 
approach described in Section 9.7. The calculated results are given in Figure 9.11e, 
which compares with fluid flow and temperature field distributions in the cavity 
with and without internal radiation considered. Clearly, the internal radiation has a 
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strong effect on flow and heat transfer in this system. When internal radiation is not 
considered, both flow and temperature distributions are anti-symmetric in the 
cavity. The flow is nested by two rotating vortices and the thermal boundary layers 
form along the vertical sidewalls, which is the well known natural convection 
phenomena in opaque fluids [16 18]. 

The flow and temperature distributions are sensitive to internal radiation when 
the medium inside the cavity participates in the energy transfer. Due to the fourth 
power law of radiation, the bulk temperature of the medium is increased. There are 
also dramatic changes in temperature distributions near hot and cold walls. The 
fluid near the hot wall is heated directly by the energy emitted by the high 
temperature wall, while the fluid near the cold wall has to release the heat to the 
low temperature wall in order to keep the energy balance within the cavity. 
Consequently, the temperature distribution is no longer anti-symmetric. The 
temperature gradient near the cold wall is much higher than that near the hot wall, 
and the contours of temperature near the boundaries are closer and almost parallel 
to the vertical walls. 

Example 9.10. A Multiphysics Model for Crystal Growth
This is a full numerical model for an industrial crystal growth process. This 
example is included here to show that the discontinuous and continuous finite 
elements can be seamlessly integrated using the approach discussed above to 
develop a comprehensive numerical model for thermal processing systems of 
practical significance.

We consider in particular a process for the single crystal growth from oxide 
melt. In this process the crucible is heated by Joule heating, which is induced by a 
set of surrounding coils, and is responsible for melting the material contained in the 
crucible through the combined mode of heat conduction, convection, and radiation. 
The whole furnace is placed in a container of much larger size whose wall 
temperature is controlled at a fixed value. During the growth, a seed crystal is 
dipped into the melt. With the dynamic control of the thermal environment in the 
furnace, a crystal grows as it is pulled from the melt. The crystal exchanges 
thermal radiation with the melt surface, the crucible wall and the inner surfaces of 
insulation materials, all of which are at different temperatures and exhibit different 
surface emissivities. In addition, internal radiation takes place within a semi-
transparent crystal and oxide melt. The system under consideration assumes 
axisymmetry. Other assumptions are given in Song et al. [17]. 
 The mathematical description of the above problem consists of the Maxwell 
equations for electromagnetic field distribution, the momentum equation for fluid 
flow, the energy balance equation for heat conduction and convection, the 
solid liquid interface energy balance for the moving boundary, radiative transfer 
equation for internal radiation, and the surface energy balance equation for external 
surface exchange between the melt and crystal surface and the furnace walls. 
 The comprehensive model is developed using a variety of different numerical 
methods and an iterative procedure is employed to couple these methods together. 
The electromagnetic field is described by the Maxwell equations, which are solved 
using a hybrid boundary element and finite element method [20]. The fluid flow, 
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convection and conduction equations are solved using the conventional Galerkin 
finite element method. The liquid solid front represents a free surface unknown a
priori and is solved using the deforming finite elements. The radiative heat transfer 
equation is solved using the discontinuous Galerkin method as described in this 
chapter and the external radiation exchange between the melt and crystal surfaces 
to the surface of the furnace is calculated using the discontinuous Galerkin 
boundary element method described in Chapter 8. The iterative coupling of the 
external and internal radiation calculations with the fluid flow calculations follows 
the iterative procedure described in Chapter 8 and the first approach in Section 9.7, 
respectively.

(a) (b)

(c) (d)

Figure 9.12e. The effect of optical thickness ( ) on the melt flow (a and c) and temperature 
distribution (b and d) in an optical single crystal growth process  
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 Figure 9.12e shows the results of the effect of the melt optical thickness on the 
temperature distributions in the melt and the crystal, melt streamline contours, and 
the solidification shapes. The melt is considered to be totally transparent when its 
optical thickness is zero, whereas it is opaque when its optical thickness tends to 
infinity. It is seen that the temperature gradient in the optically thin melt decreases 
as its optical thickness increases. This is attributed to the fact that the contribution 
of internal radiation is significant for the optically thin melt, and consequently, 
more Joule heating is required to maintain the constant radius of the crystal. The 
higher temperature gradient in the melt drives a stronger melt flow by thermal 
buoyancy and Marangoni-flow driving forces. As the optical thickness becomes 
high enough, the melt becomes nearly opaque and the heat conduction and 
convection dominate over the internal radiation. The interface shape in the 
optically thin melt tends to be flatter with an increase in the optical thickness of the 
melt. However, the shape becomes more deeply convex toward the melt, as the 
optical thickness of the melt continuously increases. In general, the interface shape 
is strongly dependent upon the temperature distributions in the melt and the crystal. 
For the case under consideration, the interface exhibits a higher deflection with a 
larger temperature gradient in the melt. Further calculations show that the melt 
becomes practically optically opaque when the optical thickness is about 10000. 
Additional information on model development and simulations can be found in 
Song et al. [17]. 

Exercises

1. A semi-infinite, absorbing-emitting, non-scattering medium 1 m thick at 
uniform temperature is in contact with a gray-diffuse wall at Tw = 3000 K 
and with emissivity w = 0/75. The medium is gray, and has a constant 
absorption coefficient  = 0.20 cm–1. Determine the net radiative heat flux 
at the wall (in W/m2).

2. Obtain an expression for the temperature distribution T(y) in a stagnant, 
conducting, absorbing, emitting, isotropic scattering, gray slab of thickness 
L, with no internal generation in terms of the wall temperatures T1,2 and 
emissivities 1,2 the thermal conductivity of the medium , the extinction 
coefficient Ke, and L.

3. A stagnant, conducting, absorbing, emitting, scattering, gray medium of 
thickness L = 10 cm is heated on one side with a constant heat flux of 1.588 
W/cm2. The other side is maintained at a constant temperature of 500 K. 
The effective (constant) thermal conductivity of the medium is 0.02 W /cm 
K and the effective extinction coefficient for isotropic scattering is 1 cm 1.
Both walls have an emissivity of 0.8. Determine the temperature of the 
heated wall. Compare this result with the limiting results of pure 
conduction and radiation. Compare the results obtained using the two flux 
(S2) method, the P1 method, and the discontinuous Galerkin method.   

4. Two infinite parallel plates at temperatures T1 and T2, having respective 
emissivities 1 and 2, and are separated by a distance D. The space 
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between them is filled with a gray medium having a constant absorption 
coefficient . Show that the temperature distribution in the medium is 
given by the solution: 4 4 4 4 1 1 1

2 1 2 1 1 2( ) /( ) ( 0.5) /( 1).T T T T
Use the discontinuous Galerkin method to obtain the temperature 
distribution and compare with the analytic solution. 

5. A gray gas is contained between two parallel plates, as shown below. The 
plates both have emissivity 0.5. Plate 1 is held at a temperature T1 =
1500 K, and plate 2 is at T2 = 700 K. The medium between the plates is 
also gray, non-scattering and has a uniform absorption coefficient of =
0.1m–1. The plate geometry is shown below.  

Predict the heat flux between the surfaces (W/m2) and plot the temperature 
profile )/(])([ 4

2
4

1
4

2
4 TTTT  in the gas with = x. Solve the problem 

using the two-flux method.   
6. A rectangular enclosure, infinitely long in directions normal to the cross 

section shown, has the conditions and properties listed in the figure. The 
enclosure is filled with an absorbing, emitting, non-scattering gray gas in 
radiative equilibrium (no heat conduction or convection and no internal 
sources). Find the heat flux that must be supplied to each surface to 
maintain the specified temperatures. Develop a discontinuous Galerkin 
finite element code for the numerical solution of the energy equation 
including radiative transfer. 

7. Develop a Galerkin finite element formulation for the two-dimensional 
analysis of radiative heat transfer with an emitting, absorbing, and 
conducting gray medium in a two-dimensional rectangular enclosure that is 
infinitely long in directions normal to the cross section shown. There is no 
scattering in the medium. The rectangular region has a uniform heating q'" 
W/m3 throughout its volume. The steady two-dimensional temperature 

L = 2 m

D =1 m
1,T1

3,T3
a=0.5 m 1

y

2,T2

4,T4

L=1 m =0.1 m 1
A1

A2
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distribution is to be determined. For simplicity, use a grid having the same 
increment size in both the x and y directions. All of the boundary walls are 
black and are at the same temperature Tw.

8. A parallel plate channel is heated with a uniform heat flux q along the 
outside of both of its walls. A semi-transparent absorbing, emitting, heat 
conducting medium is flowing between the walls with fully developed 
Poiseuille flow having a parabolic velocity distribution u(y). The medium 
has absorption coefficient a and thermal conductivity k. Thermal properties 
are assumed constant. The channel wall interior surfaces are black. Set up a 
discontinuous Galerkin finite element procedure to determine the 
distribution of temperature within the medium across the channel. 
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10

Free and Moving Boundary Problems 

Many different thermal fluids systems involve moving interfaces or internal 
boundaries. An important feature these systems often have in common is the 
presence, in the mathematical model, of an initially unknown (free) boundary or a 
boundary that moves throughout the analysis, the determination of which is an 
important part of the solution procedure. Practical examples involving a moving 
boundary include, but are not limited to, piston-driven flows, extrusion of liquids, 
bubble and droplet deformation and oscillation, solidification, epitaxial growth of 
thin films, electrodeposition, glass forming and coating of solid substrates. The 
effect of these moving interfaces often contributes significantly to the physics of 
the problems and it is thus essential to solve these problems accurately.  

Free and moving boundary problems are challenging owing to the complexity 
associated with the often severely deformed boundaries and/or broken surfaces, 
multiple time and length scales, and the nonlinearity resulting from the coupling of 
the interface dynamics with the dynamics of the material. Only in special cases can 
problems of this type be solved analytically. An accurate mathematical description 
of these problems of practical significance usually requires numerical solution. 
Ideally one would like to track the moving boundary as a sharp front (allowing 
discontinuities in quantities such as stress and energy across the interface) without 
smearing the information at the front. Also, one would like to solve the field 
equations within each region separated by the interfaces with a satisfactory 
accuracy. If the interfaces become multiply connected, it is desirable to follow the 
evolution of the interfaces through such topological changes.

Numerous numerical techniques have been developed for solving free and 
moving boundary problems, because of their great fundamental and practical 
signficance. The computational approaches in general fall into two main 
categories: (a) moving grid methods and (b) fixed grid methods. Floryan and 
Rasmussen [1] presented a survey of these methods. Recent advances in the area 
are discussed by Scardovelli and Zaleski [2]. A comprehensive review of level set 
methods and their applications, which have become increasingly popular for free 
and moving boundary problems, is given by Sethian and Smeraka [3]. Use of the 
phase field theory to model the moving surface phenomena driven by local 
curvature and surface energy is reviewed by Anderson and McFadden [4]. 
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This chapter discusses the numerical solution of free surface and moving 
boundary problems within the discontinuous finite element setting. A description 
of surface geometry and the differential and integral relations for curved surfaces 
developed from the theory of differential geometry are presented first. A derivation 
of the boundary conditions at moving boundaries is given within the framework of 
thermodynamics and fluid mechanics, which is valuable in appreciating both the 
physics governing these boundaries and the development of numerical schemes for 
the solution of these problems. These derivations rarely appear in a single 
textbook. This is followed by a discussion of both the moving grid and the fixed 
grid methods for free and moving boundary problems; these methods have been 
successfully implemented in the framework of other numerical methods such as 
finite volumes and finite elements. The procedures for incorporating these methods 
into the discontinuous finite element formulations are given. Recently, the phase 
field theory has received considerable attention for modeling microstructures and 
free/moving boundary problems. Unlike the numerical methods, which are 
developed to enforce the interface boundary conditions, the phase field model is 
developed based on the microscopic physics that governs the interfacial 
phenomena. The discontinuous finite element formulation of the phase field model 
for 1-D, 2-D and 3-D simulation of microstructure evolution in solidification 
systems is presented. The discontinuous finite element solution of coupled flow, 
thermal and phase field equations is discussed. Discontinuous algorithms are also 
presented for numerical analysis of grain misorientation and crystal lattice 
distortions as the source of the driving force for grain boundary interaction during 
polycrystalline liquid solid transformation.

10.1 Free and Moving Boundaries

In many fluid dynamics problems, the computational domain is restricted by a free 
or moving surface. A problem involving a free and a moving boundary is shown in 
Figure 10.1. An important feature of this type of problem is that the shape of the 
surface is unknown a priori as it is dependent upon the flow and temperature 
fields. The solution of these problems demands that the free/moving surface and 
the flow and thermal fields are determined simultaneously during a computational 
process. The equations for fluid flow and thermal transport defined in Chapter 1 
continue to apply in the case where free/moving boundaries are present. Because 
the position of the moving boundaries is not known before the solution, it is 
necessary to impose additional boundary conditions in order to determine the shape 
of the moving boundaries. While these boundary conditions may vary from 
problem to problem, the general requirement is that at the moving boundary, the 
kinematic and mechanical equilibrium conditions must be satisfied for fluid flow, 
and the energy and species conditions are met if the thermal and concentration 
fields are involved. The boundary conditions for moving and free surfaces were 
summarized in Section 1.6. They will be revisited in some detail in Section 10.3.  
 In the literature, a free surface is referred to as the interface between a gas and a 
liquid, as illustrated by the boundary between the gas and liquid 2 in Figure 10.1.  
This designation comes from the large difference in the densities of the gas and the 
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liquid (e.g., the density ratio for water and air is ~1000). A consequence of this 
large difference in density is that the inertia of the gas phase may be ignored in 
comparison with that of the liquid. Thus, the liquid flows independently, or freely, 
with respect to the gas and the free surface is unconstrained to move. The only 
influence of the gas is the pressure it exerts on the liquid surface. 

Figure 10.1. A two fluid system involving moving boundaries: a free surface defined by f2
and an internal moving boundary by f1

 A moving boundary, on the other hand, is referred to as the interface between 
phases of comparable densities, such as a phase boundary between a solid and a 
liquid or an internal moving boundary between two different liquids. In many 
studies, a free surface is also considered as a moving boundary or vice versa. This 
view is also taken in this book, because the numerical technique is essentially the 
same for both free and moving boundaries. A distinction between a free surface 
and a moving boundary to a large extent is arbitrary. However, they share a 
common feature, that is, the position of the interface or boundary, either free or 
moving, is unknown a priori and must be part of the solution. 

10.2 Basic Relations for a Curved Surface 

In this section, the basic relations for a curved surface are discussed. These include 
both the geometric relations and the differential and integral relations for curved 
surfaces. These relations are useful in describing the boundary conditions at a 
moving boundary and in developing numerical algorithms. 

10.2.1 Description of a Surface 

A moving boundary in essence is a surface in motion. Many different ways may be 
used to define the geometry of a moving boundary. The most common approach is 

Liquid 1 

Liquid 2 

Gas

Moving boundary 

1

2

3 n2

n1
t1

t2

f1

f2
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to define a 3-D surface by two surface parameters as shown in Figure 10.2. By this 
definition, a surface is traced out by a position vector, r,

)),(),,(),,(( zyxrr  (10.1) 

Clearly, a surface is mapped out by the above equation as  and  move on the 
surface.

Figure 10.2. Local ( , , n) and global (x, y, z) coordinates for a curved surface 

As shown in Figure 10.2, the global Cartesian coordinates (x, y, z) are a 
function of the local coordinates ( , , n), which are erected on the surface. For the 
convenience of subsequent discussion, we define the following geometric 
parameters (see also Section 3.6.2),  

;,, rrE ;,, rrF ;,, rrG

;nrL    ;nrM    nrN ;

2
1 FEGH ; ;/,ˆ Er G/,ˆ r (10.2) 

where subscript “,” denotes the differentiation, e.g., r,  = r/ , and the hat “^” on 
 and means the unit vector along the direction of  and , respectively.  

With the above notations, the unit normal vector to the surface is calculated by 
the following expression, 
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In a surface coordinate system, the normal vector varies along the surface. The 
tangential derivatives of the normal vector, which appear in various surface 
relations, are calculated by 

,,,
11

rrn
H

EMFL
H

GLFM  (10.4a) 

,,,
11

rrn
H

ENFM
H

GMFN  (10.4b) 

An important geometric property of the surface is the mean curvature, H, which 
is calculated by the following expression [5, 6]: 

2
22

FEG
LGMFENH s n  (10.5) 

where s is the surface vector differential operator [5] and its definition is 
discussed in the next section (see Equation 10.7). 
 For many applications, a surface may be more conveniently defined as a 
function of height, h = f(x, y, t). In this definition of a moving boundary, the 
surface normal and curvature can be readily calculated once the expression for f is 
known. For convenience, the formulae for the surface normal and the curvature of 
various common surfaces are listed in Table 10.1. These functions are useful when 
the moving boundary is single-valued. 

In the fluid mechanics literature, a moving boundary is also denoted by a 
phase-characteristic function ( x, y, z, t) with  = 1 in phase 1 and  = 0 in phase 2 
[2]. The advantage of this generic definition is that it is valid for both single-valued 
and multiple-valued surfaces.  

Example 10.1. Like vectors, we may define a curvature vector k for a curve as 
follows:

ds
dsk (10.1e) 

which points to the origin of  the curvature as shown for the curve in Figure 10.1e. 
This definition is independent of the orientation of the curve. The magnitude of the 
curvature is calculated by 

ds
dsk  (10.2e) 

which is related to the radius of curvature of the curve R by 
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Table 10.1. List of functions, normals and curvatures for various surfaces 

 Function Normal, n =  Curvature, 2H = 
y – f(x) = 0 
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Calculate the surface divergence of the normal vector for the curve shown in 
Figure 10.1e and discuss the meaning of the signs in terms of curvature vector.   

Solution. With the above definitions for the curvature, we may link k to the 
outnormal for the curve as shown in Figure 10.1e, 

)()( ss nk  (10.4e) 
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where n(s) (such as n1(s) and n2(s) as shown in Figure 10.1e) is the outnormal of 
the curve at any point on the curve. Its direction is defined by the right-hand rule 
such that the outnormal points to the right when one walks along the curve in the 
direction of s as marked in the figure. This is consistent with the line integral that 
the left side is the interior of the integral domain when one walks along the s
direction.  From Equation 10.4e, it is clear that  can be either negative or positive, 
depending on the relative orientation between k and n(s). If k and n(s) have the 
same direction,  = |k|; on the other hand, if k is opposite to n(s), then  = –|k|.

Figure 10.1e. A 2-D curve with local normals and curvature vectors 

By definition, the curvature can also be calculated by the surface divergence of 
the normal vector,  = – s n.  For a concave curve, one has from the geometric 
relation shown in Figure 10.1e, 

RRds
d

s
11 ttntn  (10.5e) 

The minus sign of  here is merely an indication that the curvature vector k is 
opposite to n(s) or k = n(s) = –(1/R)n(s).

For a convex curve, on the other hand, one can show that 

RRds
'ds

ds
d

s
11ˆ ttnntn  (10.6e) 

The minus sign of  in this case represents the fact that  is positive and k is in the 
same direction as n(s), or k = n(s) = (1/R)n(s).
 From the above two equations, we see that the radius of curvature for a curve 
can also be calculated by the following expression: 
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ds
d

R
1  (10.7e) 

This relation will be used in Section 10.3.2 for deriving stress balance relations at a 
moving interface.  

By definition, the Gaussian mean curvature for a curve is given by 

H2  (10.8e) 

which may be positive or negative in order to be consistent with .
This description should be valid for a 3-D surface, where the surface curvature 

or Gaussian mean curvature is given by the following relation: 

nsH 212  (10.9e) 

with and  being the two principal curvatures of the surface. 

10.2.2 Differential and Integral Relations for Curved Surfaces 

Some differential and integral relations developed in the area of differential 
geometry for a curved surface are useful for the description of moving boundary 
problems. These relations are briefly discussed here in vector notations. Detailed 
derivations of these relations, their tensor representations including the use of the 
Christoffel symbols and their applications to flows in a thin surface layer can be 
found in [5 7].  
 Perhaps a good starting point for the subject is the tangential derivative or 
surface gradient on a curved surface, which is denoted by s = t . Its use for 
general surface element calculations was discussed in Section 3.6.2. The surface 
gradient is also related to the spatial gradient as follows: 

)()( nnInns  (10.6) 

where I is the unit tensor, Iij = ij. A proof of this relation is straightforward and is 
left as an exercise at the end of the chapter. Written in surface coordinates only, the 
surface vector differential operator becomes 
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For a special case where the two parametric curves ( , ) on the surface are 
perpendicular, F = 0 and H1

2 = EG – F = EG, whence we have [5] 
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11 rr
GEs  (10.8) 
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 A vector may be represented using the local coordinates ( , , n) erected on a 
curved surface. Let this vector be V. When expressed in the local coordinate 
system, V takes the form of 

nrrV nVVV ,,  (10.9) 

The surface divergence of this vector can be written as  

)(),(),( nrrV nssss VVV  (10.10) 

Through vector analysis and the use of relations defined in Equation 10.2, it is 
straightforward to show that 
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The last term in Equation 10.10 has an important geometric implication and its 
expansion is given in detail here, 

)()(1)( ,2
1

nn
rn nn

ns
V

F
V

G
H

V

     
)()(1

,2
1

nn
r nn V

E
V

F
H

ns
nn VFE

H

V
FG

H

V
nnnrnnr ,,,2

1
,,,2

1

HV
H

GLFMENV nn 22
2

1

 (10.12) 

where use has been made of the relation, n s = 0 and those given in Equation 10.2. 
From the above equation, we have the vector identity for the surface divergence 
operator, 

nssnns VVV nnn)(  (10.13) 

If we further set Vn = 1, then we have the well known expression for surface 
curvature upon combining Equations 10.12 and 10.13: 

Hs 2n  (10.14) 

which is the relation that has been most frequently quoted in the literature on free 
surface calculations. 
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 Another vector identity for surface gradient is frequently used in surface related 
calculations,

VUUVVU sss )(  (10.15) 

which is useful for deriving the Stokes theorem on a curved surface [6]. 

Figure 10.3. Illutration of relations for curved surfaces, n, m and t are perpendicular to each 
other and form a right-hand system: n = m  t: (a) a 3-D surface and (b) a 2-D curve and the 
definition of contact angle 

 Some integral relations derived for solid geometry have their counterparts in 
the surface differential geometry. One often-used relation is the surface divergence 
theorem,  
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dS d dSV m V n n V  (10.16) 

It is important to note that the second term on the right of Equation 10.16 is an 
extra term arising from a curved surface, which shows the curvature contribution to 
the continuity. Here m is a unit vector normal to the curve bounding the surface 
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and is tangential to the surface. In this way, m is also related to the contact angles. 
A contact angle  is defined as the angle between two of the interfaces at the three-
phase line of contact, cos  =m . The relation between n and m is shown in Figure 
10.3 for both 2-D and 3-D cases. 

For a plane surface, n is not a function of ( , ) and the curvature of the surface 
is zero or s n = –2H = 0. Therefore, for a plane surface, the following relation is 
obtained: 

s
S S

dS dV m V  (10.17) 

which is nothing but the well known Gaussian divergence theorem for a 2-D 
coordinate system. 
 Some very useful relations can also be derived from Equation 10.15. If we let V
= c, c being a constant vector, then s V = s V + c s , whence we have the 
following relation: 

( )s s
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dS d dSc m c n n c  (10.18) 

This relation may be employed to project the curvature effect onto a plane surface; 
the technique is sometimes used in a deforming grid method to satisfy the normal 
stress balance condition along the moving interface [8]. From Equation 10.17 and 
noticing that c is an arbitrary constant vector, one can easily deduce the following 
vector relation: 
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S S S
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If  is chosen as a scalar constant, then we can convert the surface integral for a 
curvature calculation into a line integral along the curve bounding the surface, 

( )s
S S

d dSm n n  (10.20) 

This relation is considered useful for imposing the boundary conditions along an 
interface for the discontinuous formulation using piecewise constant approximation 
or finite volume method [9]. 

The Stokes curl theorem for a curved surface is now considered.  By taking V = 
c, c being a constant vector, and substituting it into Equation 10.14, we have the 
following relation upon the use of the divergence theorem: 
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The fact that c is a constant vector leads immediately to the Stokes theorem for a 
curved surface, 

( )s
S S S

dS d dSU m U n n U  (10.22) 

Once again, we see that an extra term arises from the effect of curvature. For a 
plane surface, the second term on the right vanishes and the relation becomes the 
well known Stokes theorem for a 2-D system. 
 A choice of V =  would give us the following differential and integral 
relations, when the divergence theorem is used,  

2)( sssss  (10.23) 
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Since n s  = 0, n being perpendicular to s, we have 

2( )s s s s
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Interchanging  and  in Equation 10.24 yields the following relation: 
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 Subtracting Equations 10.26 from 10.24, we have Green’s theorem for a curved 
surface,

2 2( ) ( )s s s s
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In particular, if   is a constant, one has the following simplified relation: 

2
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This is again the Green theorem for a 2-D coordinate system, which is known from 
calculus textbooks. 
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 It is noted that in the above formulae, s   is a vector tangential to the surface, 
and this choice causes the curvature term to vanish. If an arbitrary vector V is 
chosen to replace s  , then the curvature contributions will need to be included. 

10.3 Physical Constraints at a Moving Boundary 

We now discuss physical constaints imposed on a moving boundary, which lead to 
the kinematic, stress, and thermal conditions at the boundary. These conditions are 
required to determine the moving boundaries and the field variables during the 
solution phase. 

10.3.1 Kinematic Conditions at a Moving Boundary 

In Chapter 7, the Rankine Hugoniot condition was derived for a discontinuous 
boundary caused by a shock wave. This relation is also applicable here for a 
moving boundary. Let us assume that the interface moves at a velocity U with its 
normal component being Un = U n. Here n is the outnormal of the interface point 
from phase 1 to phase 2. In the case where there is no phase change, the interface 
velocity satisfies the following continuity relation: 

nunu 21nU  (10.29) 

 In the case of phase change, say, evaporation from the liquid to vapor phase, 
there may be a mass flow per unit surface m from phase 1 to phase 2. Written in 
the frame of reference to the moving boundary, we have the relative velocity u  = 
u n – Un. Applying the mass conservation over a different control volume across 
the interface, as was done in Chapter 7, we have the following relation, 

muu 2211 ''  (10.30) 

or in an Eulerian frame of reference, 

mUU nn )()( 2211 nunu  (10.31) 

In the case of  m =0, one recovers Equation 10.29 immediately. 
The tangential velocity is continuous across a moving boundary due to the no-

slip boundary condition.  
 For a person who sits on and moves along with the interface, he/she sees no 
rate change of the interface, d /dt = 0, with  being the interface parameter. 
Relating this Lagrangian description to an Eulerian description, one has  

0u
tdt

d (10.32) 
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The above equation should be interpreted in a weak form in that the derivatives 
of the discontinuous function  are singular or do not exist [2]. In this weak 
formulation, the equations are interpreted by the spatial integrals of the equations. 
Equation 10.32 may be further written as 

0nu
tdt

d ;   with 
||
 and

||
n  (10.33) 

Clearly, this equation represents volume evolution and corresponds to the interface 
motion with velocity u.

10.3.2 Stress Conditions at a Moving Interface 

Stresses develop in moving fluids and are a function of surface normal. A stress 
tensor  has 9 components, or ij ( i,j =1,2,3). Hence, n is the force acting on the 
surface whose normal is n. This force in general is in a different direction from 
normal and can be deomposed into tangential and normal components: t n and 
n n. A fluid element on a moving interface cannot exprerience an infinite 
acceleration. Consequently, the stresses must be continuous across the interface 
plus an additional surface force such as surface tension. 
 For a curved surface, the surface tension contributes to the stress balance to 
both the normal and tagential directions. This is shown in Figure 10.4a. 

To derive the needed relation, we consider a differential surface element as 
shown in Figure 10.4b. The balance of the normal stress balance across the 
interface yields the following relation along Sx:
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where  = (Sx, Sy) is the surface tension and in writing the above balance equation, 
we have combined the contributions in the normal direction, 
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A similar equation is derived for the variation along Sy. Furthermore, if d  is 
small, sin(d /2) d  /2, whence we obtain the following equation: 
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Making use of the definition of curvature (see Example 10.1), we have the final 
expression for the normal stress balance across the moving interface, 
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Figure 10.4. Stress balance on a curved surface: (a) overall balance, (b) normal stress 
balance and (c) tangential stress balance 
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We now consider the balance of the tangential stress in the x direction, 
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where  is the tangential (or shear) stress. Taking the differential quantities to their 
limit of zero gives the expression required for the tangential stress in the x
direction,

x
xnxn S1,2,  (10.39) 

Similarly, we have the tangential stress balance in the y direction,  

      
y

ynyn S1,2,  (10.40) 

The above relations for stress balance (i.e., Equations 10.37 10.40) can be 
summarized and written in vector notation: 
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or in tensor notation,  
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where we have used the relation: s  =  – n(n and n is the normal point 
from medium 1 to medium 2. 

If for a free surface, that is, medium 1 is a gas, then 1ij = – Pa ij. Thus we have 
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or
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In particular, for a spherical droplet with a constant surface tension and with flow 
stress neglected, 

12 RPP a  (10.43) 

which is the well known Laplace Young relation [10]. 

10.3.3 Thermal Conditions at a Moving Interface 

At a moving boundary, the thermal condition is derived based on the energy 
balance across the moving interface. Following exactly the same procedure as 
shown above for the mechanical balance, we obtain the energy balance statement 
across the moving interphase: 
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121211,2,1 nu inn Lqq  (10.44) 

where q1,n is the heat flux into the interface from phase 1, q2,n is the heat flux 
leaving the interface from phase 2, L21 is the heat released per unit mass at the 
boundary when phase 2 is converted to phase 1, u1i is the velocity of the interface 
with which phase 1 moves into phase 2 and n12 points from phase 1 to phase 2. 
Note that 1u1i n12 is the mass of phase 1 produced per unit surface per unit time at 
the moving boundary. 

Written explicitly for a phase change boundary, the above equation becomes 

t
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where qi,n = –n ki Ti and n = n12 have been substituted into Equation 10.44 and 
Equation 10.33 has been used. 

To be in thermal equilibrium, the temperature must be the same at the interface, 
and hence we have the following relation: 

iTTT 21  (10.46) 

where Ti is the interface temperature, which may depend on the concentration or 
other surface-related quantities at the interface.  
 When the interface is a boundary between two different phases, Ti = Tph is the 
temperature at which phase transformation takes place. Here subscript ph stands 
for phase. From thermodynamics considerations, Tph is a function of pressure, 
concentration and curvature of the interface. Although insignificant for most 
thermal fluids applications, the curvature effect becomes conspicuous for 
microscale problems, and is responsible for the interfacially driven phenomena 
such as solidification microstructure formation and spinodal decomposition.  

We consider a phase transformation of liquid to solid. The transformation may 
be denoted by the following reaction: 

sl SL  (10.47) 

where Ll stands for liquid and Ss for solid. An analysis of the Gibbs free energy at 
the phase interface shows that the phase transformation temperature Tph is given by 
[11], 

pgvHCmTTT LnGLLphphi )(/)(20  (10.48) 

where Tph
0 is the phase transformation temperature of a pure material at a flat 

surface and standard pressure (1 atm). Also, mL is the slope of the liquidus line in a 
phase diagram, CL is the liquid concentration, gL is the derivative of the 
temperature with respect to the pressure, and p is the pressure relative to the 
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standard pressure. In addition, H is the curvature, G = ( )Tph
0/( L) is the surface 

energy coefficient, vn the interfacial velocity in the normal direction, which is 
positive with the normal point from solid to liquid for a solid liquid phase 
transformation, ( ) is the interfacial mobility, which is related to the molecular 
kinetic coefficient, and  denotes the orientation of the crystal being grown from 
the liquid. The curvature term represents the classical Gibbs Thompson effect [11, 
35]. 
 For many thermal fluids systems, mass transfer is also involved. The boundary 
conditions at a moving interface involving species transport can be obtained in a 
manner similar to Equation 10.44 by considering the species conservation across 
the moving interface.  

Example 10.2. Derive the Gibbs Thompson relation and the interfacial kinetic 
effect term in Equation 10.48 for a sphere undergoing solidification. Assume that 
the properties of the liquid and the solid are the same and neglect the concentration 
effect.

Solution. We consider the Gibbs Thompson relation first. From the definition of 
the Gibbs free energy, we have for the liquid and solid phases, 

TSHG lll ; TSHG sss  (10.10e) 

where G stands for the Gibbs free energy, H for enthalpy, and S for entropy, and 
subscripts denote the liquid and the solid respectively.  

For solidification on a planar surface, the liquid and the solid are at the 
thermodynamic equilibrium, and thus Gl = Gs. Consequently, we have 
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where the lower case h and s denote the enthalpy and entropy measured per unit 
mass.  

 For solidification on a curved surface, an excessive energy is required to 
overcome the surface energy (tension) effect to create a near surface. The increase 
in the Gibbs free energy for the growth of a layer of solid with thickness R upon a 
spherical solid, due to the presence of the curvature, has to taken into account the 
surface energy required to growth the layer. Then the total Gibbs free energy 
change is thus given by 

RRRRsTLGGG isl 84)( 2 (10.12e)

The term means the excessive energy required to create the new surface. At the 
equilibrium, G = 0, whence we have the following result: 
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Gmmi HTsRTT 2)/(2  (10.13e) 

where G = / s = Tm/( L). This is the well known Gibbs Thompson relation 
Let us now consider the kinetic term. This term arises from the non-equilibrium 

effect at the interface between the solid and liquid. A non-equilibrium condition 
exists at the interface, because any motion of the interface requires a driving force 
at the interface, which causes departure from local equilibrium. This driving force 
is provided by the local kinetic motion of the molecules that go into and out of the 
liquid phase. The net rate of atomic jumps across the interface measures the growth 
rate due to the balance between the molecular attachment and detachment. This 
rate represents the growth of the solid and is calculated by the following relation: 
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where Rg is the gas constant. The free energy favors the growth of the solid phase 
for solidification, and is calculated by the following expression, 

TSTSTSTSHG MiMmMiMMM  (10.15e) 

where subscript M denotes quantities per unit mole and T= m i is the kinetic 
undercooling. Since the undercooling is small, we may expand the exponential 
term, and thus we have from Equation 10.14e 
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where use has been made of m i Rearranging, we have the expression, 
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We note that in general,  and  are a function of crystal orientations. 

10.4 Moving Grids vs. Fixed Grids for Numerical Solutions 

We now turn our attention to the numerical algorithms for the solution of moving 
boundary problems. Both the moving and fixed grid methods have been developed 
to solve free surface problems [1, 2]. The moving grid method is also called the 
Lagrangian method, whereas the fixed grid method is referred to as the Eulerian 
method. There are advantages and limitations associated with these methods.  
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In moving grid methods, the field equations are solved on a mesh that moves in 
accordance with the moving boundary, and the interfaces are represented by 
continuously updated discretization and/or remeshing. In a typical finite element 
algorithm using the moving grid technique, the moving or free surface shapes are 
the boundaries of separate flow regions, and the change of these shapes is 
constantly traced by deforming the elements in each of the regions. With the 
moving grids, boundary conditions at a moving interface are applied at the exact 
location of the interface. The moving grid approach provides an accurate account 
of the shape morphology but is limited to relatively simple shapes.   
 The fixed grid approach is based on the incorporation of the interface boundary 
conditions as sources in the momentum and energy equations. For example, in the 
case of solidification problems, the release of the latent heat can be incorporated 
into the source for the energy balance equation. In this approach, mesh is not 
deformed. Different flow regions are modeled by different material properties. 
There are different Eulerian approaches for moving boundary problems; the 
difference mainly lies in the way in which the interface is evolved and interpolated. 
Two popular and relatively straightforward approaches are the volume of fluid 
(VOF) and the marker in a cell (MAC) methods. One other approach is the level 
set method, where the interfaces are implicitly defined as the zero level set of a 
continuous function. This function is updated in order to capture the motion of the 
interfaces. A major advantage of the fixed grid approach is that it can handle 
complex geometry of free and moving surfaces with ease. Since the boundary 
conditions at a moving boundary are included in the governing transport equations, 
a fixed grid method leads to the smearing of boundary information. With extremely 
fine grids, however, the fixed grid techniques may also match the accuracy of the 
Lagrangian grid method. 

 Both the moving and fixed grid approaches can be incorporated into a 
discontinuous finite element formulation for moving boundary problems. In the 
next two sections, we discuss the basic ideas of the moving and fixed grid methods 
and the use of these methods in a discontinuous finite element setting for the 
numerical solution of problems involving free surfaces, internal moving interfaces 
and phase change boundaries. 

10.5 Moving Grid Methods 

In this approach, a free surface or moving boundary is tracked by constructing a 
Lagrangian grid that is embedded in and moves with the boundary. Because the 
grid and fluid move together, the grid is made to explicitly track the free surface or 
the moving boundary. 

The use of moving grids to solve thermal and fluid flow problems is not 
entirely new. In Section 7.4, the arbitrary Lagrangian Eulerian (ALE) formulation 
was introduced for computational compressible fluid dynamics involving shock 
waves and other discontinuities. The same formulation has also been applied to 
solve moving boundary problems involving incompressible fluid flows and flow 
structure interactions [12 14]. For modeling of geometrically complicated moving 
boundaries, a costly remeshing procedure is required with the Lagrangian approach 
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[15]. Most moving grid methods are applied to the surfaces of relatively simple 
geometry. To reduce the cost of remeshing, a simple and yet effective grid-moving 
strategy is employed, which may be considered as a special implementation of the 
ALE formulation [16]. It is noted that the moving grid technique provides the most 
precise means to exactly locate the interface positions, with the boundary 
conditions precisely applied along these boundaries. This is desirable for the 
problems where a precise knowledge of the moving boundary shapes is required. 
One such case is the deformation of a single droplet by electric forces (see Section 
12.6). We consider below the moving grid techniques and their application within 
the framework of the discontinuous fintie element formulations for numerical 
solution of two types of commonly encountered moving boundary problems: (a) 
moving boundaries between fluids and (b) interphase boundary between two 
phases. 

10.5.1 Moving Boundaries Between Fluids 

We consider a fluid flow system consisting of two immiscible fluids and a gas 
phase as shown in Figure 10.1. There two moving boundaries exist, with one 
marking the interface (i.e., free surface) between the liquid and the gas, and the 
other the interface between the two liquids. Further we assume that the fluids are 
both incompressible and isothermal. The temperature effects can be readily 
incorporated if needed. In reference to Figure 10.1, the mathematical description of 
the problem is given by the following equations: 
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where j (= 1, 2) refers to the two fluids. The solution of above fluid flow equations 
may be obtained by applying the appropriate boundary conditions discussed in 
Section 10.3. For the problem being considered, these conditions are expressed by 
the following equations: 
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12121111 2Hnnnn 21   (10.55) 
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where f represents the moving boundary, V0 is the initial volume of the fluids, and 
 = – pn + is the stress tensor. Note that Equation 10.54 combines Equations 

10.29 and 10.32.  
 The constraint of the volume conservation (i.e., Equation 10.58) means that the 
total mass remains unchanged for a closed system. This constraint is added to the 
system of equations and usually results in a unique additive pressure constant that 
satisifes the mass conservation of a constraned system. We note that this constraint 
applies to the steady state flows. In transient flows (with no net inflow or outflow), 
the volume is conserved naturally through initial conditions and problem 
definition.  

The basic idea of a moving grid method is such that the nodes (or grid points) 
on a moving surface move at the same velocity and remain on the moving surface 
by deforming the computational grids. Since the nodes always track the moving 
interface, the method is also called the front tracking technique. To avoid mesh 
distortion, the nodes in certain regions are also allowed to move during 
calculations. One simple way of deforming the mesh is illustrated in Figure 10.5, 
where nodes in the mesh are constrained to move in a designated direction.  

Since the moving boundaries are unknown a priori, the coordinates of the 
boundaries are constructed from the finite element interpolation basis functions, 
just as the variables are interpolated using the shape functions, 
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where s is the surface coordinates and ne is the number of nodes per each element 
lying along the moving boundary. During the calculations, (xi, yi, zi) is solved as 
part of the final solution and thus is updated at each time step. 

In writing Equation 10.50, the time derivative is the Eulerian time derivative: 
the nodal field values (i.e., U, f) are for nodes fixed in space. With a moving grid 
algorithm, the nodes are allowed to move so that the geometry of the moving 
boundary is precisely tracked. Consequently, these nodes are not fixed in the 
Eulerain frame of reference. Since the nodes are moved in certain designated 
directions so as to allow the instant positions of these nodes to be monitored, they 
are not fixed in the Lagrangian frame of reference carried by the fluid particles. 
Thus, the time derivative in Equation 10.50 must be transformed to time 
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derivatives that follow the moving nodes in the designated directions. This is 
essentially the mixed Lagrangian Eulerian description discussed in Section 7.4. 

The required transformation between the two time derivatives is given by the 
following relation: 
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where xm is the coordinates of a node point in the moving-node region,  is the 
spatial derivative with respect to the Eulerian frame of reference and / t is the 
Eulerian time derivative. This is precisely the same equation obtained by 
combining Equations 7.80 and 7.81 and identifying xm/ t as v in Equation 7.85, 
which is the velocity observed at a moving node. Consequently, to account for the 
effect of grid movement, the governing equations need to be modified only by the 
following substitution: 

Figure 10.5. Front tracking of moving and free boundaries using the Lagrangian method. 
The curved lines are grid lines in the moving mesh region and straightlines are non-moving 
grid lines. Dash lines are grid lines at t = t, which are moved to solid curves at t = t + t.
Note that all the nodes within the moving grid region, which in this case is defined by the 
free and the internal moving boundaries, are moved as so to miminize grid distortion. Here, 
nodes in the moving grid region are constrained to move in designated node-moving 
directions

Free surface 

Internal moving 
boundary 

x

y

Node-moving 
directions
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The treatment of these conditions at the non-moving (or fixed) boundaries is 
exactly the same as discussed in Chapter 6. The conditions at the moving 
boundaries, however, need to be added to the discretized momentum equations for 
these fluids. To incorporate the moving boundary conditions in a discontinuous 
finite element formulation, we consider a pair of elements that share a common 
moving surface as shown in Figure 10.6. Let us assume that the boundary is an 
internal moving boundary between the two liquids. Then, for element j2, a normal 
velocity un,2 (un,2 = uelement 2 n) and t1 1 n1 are assumed, and –t1 2 n1 = s 12 – 
t1 1 n1 is applied along the moving surface boundary. This allows the calculation 
of the tangential component of the velocity (i.e., ut,2 =t1 u2) and the normal stress 
component n1 2 n1. With these quantities known, n1 1 n1 = 2H 12 + n1 2 n1 and
t1 u2 are applied, and t1 1 n1 and un,1 (un,1 = uelement 1 n) are calculated for element 
j1. The differences, |un,1 – un,2| and |t1 1 n1 – t1 1 n1|, are included for convergence 
check. If convergence is not achieved, un,2 and t1 1 n1 are updated and the above 
calculations for elements j1 and j2 will be repeated.   

Figure 10.6.  Two elements share a common moving boundry

 It is noted here that the above scheme represents just one of the ways the 
interface boundary conditins are incorporated. One could also choose to specify 
other velocity and stress components to develop a different iterative procedure.  
 For a free surface problem, we partition the domain such that element j2 lies in 
the gas phase. Then 2 is known and no calculations will be required for element j2.
We can apply the stress conditions, both normal and tagential, on element j1 only 
and find all the component velocities at the free surface boundary.  
 An algorihtm for the discontinous finite element solution of moving surface 
problems now may be described as follows. We employ an explicit time scheme to 
be consistent with the field calculations. Then the free boundary position is 

Moving
boundary 

Element j2

Liquid 2 

Liquid 1 

Element j1
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calculated by integrating, along the free/moving surface boundaries, Equation 
10.51 and one of the relations in Equation 10.54, using the available information 
on the velocity field at the previous time step. Equations 10.49 and 10.50 for fluid 
flows are then solved as described in Chapter 6. For elements in the moving node 
region, Equation 10.61 is used instead to account for the node movement. For the 
two elements sharing the common moving boundary, the boundary conditions are 
applied as discussed above for Figure 10.6. The iterative procedure continues until 
convergence is achieved for this time step. This then is repeated for the next time 
step.

For steady state calculations, one can follow the above time marching scheme 
until steady state is reached. Alternatively, one can solve a steady state problem 
directly by setting transient terms to zero. A basic algorithm that works well for a 
continuous finite element solution using segragated solver should be applicable 
here. This algorithm is based on the updating of free surface using the normal 
velocity condition and is dsecribed below. One starts with an initial guess of the 
free/moving boundary location f, then the flow is calculated by applying the 
boundary conditions the same way as for the transient algorithm described above. 
Then the kinematic condition on the normal component of the velocity at the free 
boundary is used to update the location of the free surface f2,

022 nu 32   (10.62)

and the location of the internal free boundary f1 (see Figure 10.1), 

011 nu 21   (10.63) 

The calculations continue with updated f until convergence is achieved. 
 In the above algorithms, the normal stress component is applied as a stress 
boundary condition, which involves the calculation of the Gaussian mean 
curvature. The mean curvature is related to f by the following expression: 

nsH2 (10.64) 

where n is calculated using the relations developed in Section 10.2. The calculation 
for surface gradient appearing in the tangential stress balance can be carried out by 
following the procedure given in Section 3.6.2. 
 In the above discussion, the curvature contribution to the stress balance is 
assumed to be calculated by directly integrating Equation 10.64. This would 
involve a considerable effort in reconstructing the free surface in order to obtain a 
desired acuracy. A simplified procedure may be applied using the integral relations 
obtained from the theory of differential geometry in Section 10.2.2. We consider 
the stress term arising from the Galerkin formulation of the momentum equation, 

f l
i i i idV dS dS dVn n   (10.65) 
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where we have applied Green’s theorem and  = f U l with subscripts f and l
representing the moving and fixed boundaries, respectively. Since the standard 
procedure can be applied for the fixed boundary term, we single out the free 
boundary term for consideration. For simplicity, we consider the treatment of the 
free surface, 

2
f f

i amb idS p H dSn n n  (10.66) 

The second term involving the curvature is integrated further using the theorem of 
surface divergence given in Section 10.2.2,

2 ( )
f f

i s iH dS dSn n n

,
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f m f

i m s id dSm  (10.67) 

where n and m are surface normal and surface boundary normal, as shown in 
Figure 10.3. Note that the term involving m permits the prescription of contact 
angles between gas, liquid and solid. Clearly, the above idea directly applies to an 
internal moving boundary as well, with obvious substitutions. 
 For steady state calculations, an algorithm based on the normal stress balance 
may also be applied [17]. In fact, it becomes more efficient if curvature effects are 
strong. In this case, the function describing a free/moving boundary is first 
expanded globally over the entire surface and the normal stress balance equation is 
solved using the collocation method to determine the expansion coefficients for the 
surface function. For many applications, collocation points are taken to be the 
Gaussian integration points at a boundary element used for fluid flow calculations. 
This scheme was considered to converge very fast; the only drawback is the direct 
estimate of the curvature, which involves a second order derivative. Thus, a higher 
order approximation is necessary when this approach is taken [17]. 

10.5.2 Moving Phase Boundaries 

In thermal and fluids applications involving phase transitions, the phase boundaries 
are unknown and need to be determined as part of the solution. These problems are 
often encountered in the solid-to-liquid and liquid-to-gas transitions. We discuss 
these types of problems below. 

10.5.2.1 Solid Liquid Phase Transition 
For problems involving the solid liquid transformation, the moving boundary is 
marked by the inerface between the liquid and solid phases and at the boundary 
mass transfer may also take place if there are impurity elements in the phases. In 
reference to Figure 10.7, the governing equations for a solidification problem 
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decribing the conservation of momentum, energy and species are written as 
follows:

0u l (10.68) 
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Figure 10.7. Illustration of a moving phase boundary defined by the solid liquid interface 

where Cj (j =1,2) denotes the concentrations of the physical phases (liquid, solid) 
present in the system, f is the body force excluding the gravitational force, and the 
standard Boussinesq assumption has been used to account for solute and 
temperature effects. Also, C is the concentration of a foreign element, Qj and Rj are 
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the generation terms for the energy and species. Although written for a two-phase 
system, the equations can be readily modified to describe a multiphase system. For 
this type of problems, the velocity in the solid region is often specified by 
applications.
 The boundary conditions for the equations are standard for fixed boundaries. 
For a moving boundary, the kinematic conditions, species conservation and 
mechanical and energy balances must be satisifed. From discussion in Section 
10.3, these conditions are written as follows: 
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where L is the latent heat released when the liquid is converted to the solid, n is the 
normal pointing from the liquid to the solid, xf is the coordinates of the interface (ui

= xf/ t being the interface velocity at whcih the solid extends into the liquid) and 
Tm is the melting temperature. Here the pressure and curvature effects on Tm are 
neglected. Note that Equation 10.73 is obtained by letting s =1, l =2, L = L21, ui – us

= xf/ t – us = u1i, qj,n = n kj Tj (j = l,s)  and n = –n12 in Equation 10.44.  
 The deforming grid approach presented above for moving boundary problems 
can be modified for the numerical solution of a phase change problem. A major 
modification would be for the presciption of thermal boundary condition on the 
elements across the phase boundary. We consider this modification for a 
discontinuous finite element formulation. To accurately track the interface, we 
apply Equation 10.72 on element j2 (see Figure 10.6) and solve for kl Tl. Equation 
10.73 is then applied on element j1 and Ts is determined. Then |Ts–Tm| is used to 
check the convergence and Ts–Tm is used to determine in which direction to move 
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the boundary. Specific location xf is determined by the linear interpolation between 
the temperatures of the elements and xf/ t  (xf (t+ t) –xf (t))/( t). With this 
location determined, the whole procedure is repeated. Numerical experience with 
continuous finite element formulations shows that this type of approach based on 
the detection of the isothermal line provides a more accurate front tracking than the 
algorithm based on the energy balance equation [18, 19].  

A discontinuous-based algorithm for the solution of the above problem may be 
described as follows. At a typical time step, an inital phase boundary is available 
from the previous time step, and the governing equations for variables (u, , p, T,
q) are solved using the discontinuous formulations given in Chapter 6. For the 
elements across the moving boundary, the boundary conditions and moving 
boundary shape are determined as described above. The iteration continues with 
updated values until all variables are converged. The procedure is then repeated for 
the next time step. 

An important advantage of the above algorithm is that it works for both the 
steady state and transient simulations. Thus, for a steady state calculation, one 
simply turns off the transient terms and replaces xf/ t by a steady state velocity of 
phase boundary movement [20]. 

10.5.2.2 Liquid Vapor Phase Transition 
In the case of evaporation from liquid to vapor such as boiling, the algorithm above 
may be used with some straightforward modifications. If we consider a pure liquid 
evaporates into its vapor phase, then the fluid flow and heat balance equations 
apply to the liquid only, 

0u l (10.79) 
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The boundary conditions at the vapor liquid interface are again derived from 
the relations given in Section 10.2, 
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where subscript sat stands for saturation, Tsat is the saturation temperature at the 
liquid pressure,  n points from the liquid to the vapor phase, m  is the mass flux or 
rate of evaporation per unit area, and L is the latent heat released per unit mass 
when the vapor is condensed into the liquid. To obtain Equation 10.83, we have 
substituted l = 1, L = L21, xf/ t – ul = u1i, ql,n = –n kl Tl and n = n12 in Equation 
10.44 and used the definitions of m  = (u – ui) n and xf/ t = ui.

The numerical solution of these types of problems follows the procedure 
similar to that described above. These deforming grid methods would be useful for 
modeling the details of the vapor liquid interface.  

A typical algorithm using a discontinuous finite element formulation would be 
as follows. For a given time step, the calculation starts with an initial or previously 
determined interface shape. The governing equations are then solved using the 
discontinuous finite element method discussed in Chapter 6, with Equations 10.83
10.87 applied. Equation 10.83 is used to determine the mass flux m and the moving 
boundary coordinates are determined using Equation 10.84. The calculations iterate 
until convergence and continue for the next time step. 

10.6 Fixed Grid Methods 

In the fixed grid methods, the governing equations are solved in the Eulerian frame 
of reference. The interface mechanical balance conditions are written as a 
interfacial body force. The governing equations take the following form: 

0ju 21 (10.88) 
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where n is the interface normal pointing from fluid 1 to fluid 2, the terms involving 
 represent the contributions from the free/moving interfaces and  the delta function 

is defined as 
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The above equations can be solved using the discontinuous finite element 
method presented in Chapter 6, once the geometry of moving boundary xf is 
known. All the fixed grid methods involve two computational procedures for a 
free/moving surface problem: (1) solving the equations described above in an 
Eulerian mesh and (2) evolving a moving interface based on the flow calculations, 
using the volume grid, or surface (line) grid or particles. A typical senario of fixed 
grid methods for free surface calculations is shown in Figure 10.8. The 
discontinuous framework for the solution of transport equations in an Eulerian 
mesh was discussed in detail in Chapter 6. We consider below three popular 
methods for evoloing the moving surface: the volume of fluid (VOF) method, the 
marker and cell (MAC) method and the level set method.   

Figure 10.8. Illustration of fixed grid methods for free surface calculations 

10.6.1 Volume of Fluid Method 

The volume of fluid is based on the idea that the free surface is tracked by the 
following advection equation [1, 21], 

0F
t
F u  (10.91) 

where F is the volume of fluid, which is assigned a value of 1 in the liquid and 0 in 
the gas or the other fluid. Steep gradients in the variable F represent free surface 
locations.  

A general volume of fluid scheme consists of two distinct steps. In the first 
step, the fluid volume is reconstructed on the basis of the fractional fill states. This 
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reconstruction represents an estimate of the spatial location of the fluid within the 
mesh. The fluid volume is then advected on the basis of the reconstruction and a 
given velocity field. This advection itself leads to new fractional fill states. The 
reconstruction of the fluid volume within an element depends upon its fill state and 
the fill state of its neighbors. Neighbors are defined here as elements sharing a 
common side. For instance, for a structured mesh, a quadrilateral element has up to 
four neighbors sharing its four sides. A brick element has up to six neighbors. For 
an unstructured mesh, however, the number of the neighboring elements is not the 
same and is decided by a specific mesh generator. 

Slopes and curvatures are computed by using the fluid volume fractions in 
neighboring cells. The essential element in this process is to remember that the 
volume fraction should be a step function, i.e., having a value of either one or zero. 
Information on the volume fractions in neighboring cells can then be used to locate 
the position of fluid (and its slope and curvature) within a particular cell. 

We discuss below the implementation of the VOF method for structured and 
unstructured meshes. 

10.6.1.1 Structured Mesh 
An important step in the VOF method is the reconstruction of the free surface. 
Figure 10.9 illustrates the two ideas used for construction of the interfaces from the 
volume of fluid data. The SLIC, which stands for Simple Line Interface 
Calculations, was first proposed by DeBar [22]. The method, as shown in Figure 
10.9(a), applies the piecewise constant approximation to model the interface. An 
abrupt stair stepping interface is obtained, in contrast with the moving grid method, 
which constantly tracks the interface shape. A more popular method used today is 
the PLIC method, which stands for the Piecewise Linear Interface Calculations. 
The method was first introduced by Parker and Youngs [23]. The basic idea of the 
algorithm is illustrated in Figure 10.9(b). It is noted that across the element 
boundary, the interface has a jump. 

Surface Reconstruction. For simplicty, a two-dimensional (2-D) computational 
domain with square cells is considered. Other regular cells can be extended rather 
easily by following the same procedure. We further consider the VOF/PLIC 
method, by which the interface is constructed by cutting a cell using a straight line 
defined by the equation, 

ynxn yx  (10.92) 

The determination of the constants (nx,ny, ) of Equation 10.92 is in general carried 
out in two steps: (1) evaluation of the interface normal n = (nx, ny), and (2) 
determination of the line constant , so that the fraction of the cell area cut by this 
line and occupied by the reference phase is equal to F.

If the cut volume and the normal direction n in a computational cell are known, 
the constant is then obtained by a simple integration and by enforcing the 
volume conservation. This can be done either with a numerical rootfinding 
technique or directly with analytical formulae describing the relation =  (F).
For a 2-D problem, an analytic expression is derived to solve for  [2], 
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Heaviside function defined as 
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With the above equations,  can be calculated once the normal vector n and mesh 
size h are known. Also, for convenience of description, the double index is used. 

In the VOF/PLIC reconstruction the normal vector n is determined by the 
volume fraction gradient. A simple approach is the Parker and Youngs method 
[23], which has gained popularity in finite volume solutions. The method is 
illustrated using a 3  3 block of square cells shown in Figure 10.10, with x = y
= h. Here, the normal n is first estimated at the four corners of the central cell (i, j),
that is, element ij, with a finite difference formula, for example the x component nx
at the top-right corner is given by 

hFFFFn jijijijijix 2/)( ,1,,11,12/1,2/1,  (10.95) 

where Fij is the fraction of fluid volume in element ij and Hv is the
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(a)  SLIC 

Figure 10.9. Reconstruction of interfaces for a circle using the SLIC (a) and the PLIC (b) 
methods. The solid line is a smoothed line connecting the middle points of the reconstructed 
interfaces in each element. The SLIC method forces the reconstructed interface to align with 
one of the mesh coordinates. The PLIC method, on the other hand, allows the reconstruction 
to be tangential to the interface. Numbers indicate the fraction of fluid volume in the element 
[24].  
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Similar expressions can be derived for the y component ny and n at the other 
three corners. Then the required cell-centered vector is obtained by averaging the 
four cell-corner values 

4/)( 2/1,2/12/1,2/12/1,2/12/1,2/1,, jijijijijix nnnnn  (10.96) 

With n and  so determined using Equations 10.93 and 10.96, the interface in a 
cell is constructed as a straight line. The front of the surface is constructured with 
the above procedure applied to every qualified cell. There are many improvements 
to the above simple method since it was introduced [2, 9, 24, 25]. 

Figure 10.10. Illustration of the VOL/PLIC reconstruction of free surface [1]. Note that 
across the boundary there is a jump in F

Advection of Fluid Volume. The advection of the fluid volume stems from a mass 
balance around each element. This is done by integrating the equation for the 
volume of fluid, i.e., Equation 10.91, with the result, 
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where u = 0 is used [21, 24]. Here, Vi is the total volume of element i and the F
value under the surface integral is taken at the boundary of the element. To 
simplify the notation, we use a single index on an element. According to the 
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reconstruction procedure discussed above, the F value has a jump across the 
element interface (see Figures 10.9 and 10.10). The time rate of change of Fi is
approximated by a forward difference over a given time step, 
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where superscripts n and n+1 denote values from the two successive time steps. 
Obviously, the time step restriction applies here [21]. Also, Qik is the flow rate of 
fluid into element i across side k. The net flow rate into element i is simply the sum 
of Qik over all sides k. Once the various flow rates Qik are evaluated at a given time 
step n, the fluid volume can be advected by determining the new fractional fills 
Fi

n+1. By mass conservation, we have the relation for side k shared by elements i
and j,

jkik QQ (10.99) 

The treatment of the jump in F at the element boundary during advection is 
discussed in [21] and a similar idea is presented here. Consider the two elements i
and j in Figure 10.11 that are separated by a common edge k. We rewrite Qik as

ik ik
S

Q f dSu n ; 10 ikf  (10.100) 

where fik is the fraction of side k touched by fluid within element i, and n is the 
normal vector pointing outward from element i along side k. The integral in 
Equation 10.100 is evaluated over the entire area S of side k. The fractional area fik
contains information about the reconstruction of fluid along two elements sharing 
side k and is determined solely by the two elements. The use of fik should be 
obvious. In general, fik is taken as an averaged value of the two elements sharing 
side k, if both elements contain fluid, as shown in Figure 10.11(b). For the case 
where one of the elements is empty, the simple rule states that no fluid would come 
from the empty element. The empty element, however, can receive fluid from the 
adjacent element that contains fluid. Figure 10.11 shows the typical situations for 
the advection of fluid.  

The volume fraction obtained by the above VOF advection step needs to be 
adjusted locally and globally in order to eliminate unphysical partial elements and 
to satisfy the requirement of global mass conservation [21].  

One important correction is in the near wall region. When an element has one 
side attaching the wall, there may be a certain amount of volume left in the ith
element, which makes it practically impossible to empty these near-wall elements. 
As time advances, the bulk of fluid may leave behind a row of partial elements, 
forming artificial droplets, rather than empty elements. A practice is to reset a 
partial element to zero if it is not adjacent to at least one full element. Similarly, a 
partial element is reset to be full if its immediate neighbors are all full elements to 
avoid an isolated partial element inside the fluid bulk. 
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The global balance of the fluid volume is usually not maintained due to the 
imperfection of the velocity field. Since the continuity equation is expressed in a 
Galerkin weak form when the discontinuous finite element is applied, a 
divergence-free condition is not satisfied exactly. The error in the approximation 
will cause an artificial compressibility of the fluid during the Lagrangian advection 
step, and introduce local and global imbalance in the fluid volume. The error may 
accumulate with a time marching scheme and thus it is necessary to make 
adjustments to ensure the global balance of the fluid volume. One procedure is to 
adjust the volume fraction of partial elements by using the summation of local 
imbalances, 

i pipi
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where Fp and Vp are respectively the volume fraction and the volume of partial 
elements and the summation is taken over all partial elements. Also, Vimb is the 
amount of the total volume imbalance, which is the difference between the volume 
flowing across the external boundary (in–out) and the change of total volume 
inside the domain. During the process, if the volume fraction of a nearly full 
element has an unphysical value greater than one, it is reset to one. 

 (a)                                                                            (b) 

Figure 10.11. Schematic of advection of the volume of fluid across the element boundary: 
(a) advection of fluid into an empty element and (b) advection of fluid between two partially 
filled elements. The heavy dark vertical line indicates the fik values to be used for advection  

10.6.1.2 Unstructured Mesh  
The VOF method can also be incorporated into the computational algorithms using
an unstructured mesh, which often is the choice for the discontinuous finite 
element computations. While the basic concept and computational procedures 
remain the same as for the structured mesh, the actual implementation differs 
considerably, particular in the part of geometric considerations, because of 
different orientations and organization of the mesh used for specific applications 
[26, 27]. The VOF implementation for an unstructured mesh also involves two 
steps, which are described below.   
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Free Surface Reconstruction. For an unstructured mesh, the SLIC method is 
difficult to apply and algorithms are developed on the basis of the piecewise linear 
reconstruction. Unlike the structured mesh, the number of the neighboring 
elements is not necessarily the same for an unstructured mesh. Thus, additional 
local data and data structure need to be stored for calculations. Consider the case 
shown in Figure 10.12. The interface is determined from the intersection of the free 
surface and the the boundaries of the element under consideration, i.e., element i. 
Using the PLIC method, the intersection line is given by the following relation, 
which is the same as for the structured mesh 

0)( cg xnx  (10.102) 

If the unit normal vector n is known, the constant c is computed by requiring the 
volume fraction of the polygon of fluid enclosed by the corresponding line 
interface to be equal to the given volume fraction for element i.

For an unstructured mesh, the simple geometric relations developed in the last 
section are not applicable. For the purpose of computing n = F / | F |, the method 
of least squares gradient is useful [26]. By this approach, the volume fraction 
Taylor series expansions FTs are formed from the reference element volume 
fraction to each neighbor of known volume fraction Fk. The sum of the quantities 
(FTs Fk)2 over the list of immediate neighbors is then minimized in the least 
squares sense. This procedure results in a 2  2 linear system: 
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for element i with Ni immediate neighbors. Here, matrix Ai, force vector bi and 
unknown vector Fi are calculated by 
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with xik = xk
c –  xi

c, yik = yk
c – yi

c, Fik = Fk – Fi and dik = (xik
2 + xik

2)1/2. Also, 
superscript c denotes the value at the centroid of that polygonal element and 
subscripts i and k refer to the ith and kth elements, respectively.  

The solutions of the linear system (Equation 10.103) are obtained with the 
result,

 ( Fi)x = (b1A22 b2 A12)/( A11 A22 –A12 A21) (10.105a) 
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 ( Fi)y = (b2A11 b2 A21 )/( A11 A22 –A12 A21) (10.105b) 

The special case of ( A11 A22 –A12 A21)  0 corresponds to the physical condition of 
an almost constant volume fraction field in the neighborhood of element i. Thus the 
interface reconstruction procedure is applied only to wet elements (0 < F < 1). 

The computation of the line constant c in Equation 10.102 cannot be carried out 
analytically as is done for the structured mesh. If the conservation of fluid volume 
in the ith element is imposed, the line constant c is the root of the following 
equation [42, 43],

1)( n
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The root can be obtained numerically by a root finding algorithm. With c being 
known, the vertices of the reconstructed polygon of fluid delimited inside the ith
element by the interface line can be determined. The algorithm for this type of 
calculation is commonly applied for data visualization and established techniques 
can be used for this purpose [28 30]. 

Figure 10.12. Element i and its Ni(=9) neighbors for reconstruction of free surface [26]

VOF Evolution. The scheme presented above for the evolution of fluid volume in a 
structured mesh is not easily adapted here. Instead, for an unstructured mesh, a 
Lagrangian Eulerian advection seems to work well [26, 27]. The idea is to move 
the fluid portion of an element in a Lagrangian sense, and compute how much of 
the fluid remains in element i, and how much of it passes into each of its 
neighboring elements. The algorithm involves four basic steps, as illustrated in 
Figure 10.13.

To start, the fluid portion inside a non-empty element is used to construct a 
polygon in that element, which is denoted as element i in Figure 10.13(a). If the 
element is full, the polygon of fluid coincides with the element. The vertices of this 
polygon are material points in the fluid flow. Each material point undergoes a 
Lagrangian displacement ( , ) according to the velocity components (u, v),
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dt
du ;

dt
dv  (10.107) 

where the velocities are calculated by solving the governing equations.  
This polygon is then set in a Lagrangian motion and the vertices of this polygon 

at the end of the next time step are calculated by 

toldpnewp uxx ,,  (10.108) 

Figure 10.13. Illustration of the evolution of volume of fluids on an unstructured mesh 
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This procedure is shown in Figure 10.13(b). The resulting polygon intersects 
with the mesh and the budget of fluid volume in each of the involved neighboring 
elements is determined. This process is illustrated in Figure 10.13(c). The next step 
is to collect all the contributions to the fluid volume from all the adjacent elements 
and sum them as the final fluid volume in element i, as shown in Figure 10.13(d). 
This completes the VOF evolution. 

As for the structured mesh case, both local and global adjustments are needed 
to remove the unphysical fluid volumes and to ensure the global mass balance. 
This is identical to that discussed at the end of Section 10.6.1.1.2.  

10.6.2 The Marker-and-cell Method 

The marker-and-cell (MAC) method is perhaps the earliest and yet easiest 
numerical method devised for time-dependent, free-surface flow problems [31, 32]. 
This scheme is based on a fixed, Eulerian grid, structured or unstructured. The 
location of fluid within the grid is determined by a set of marker particles that 
move with the fluid, but otherwise have no volume, mass or other properties. A 
surface is constructed by the profiles of these particles. 

One of the most important atributes of the MAC method is its capability of 
capturing very complex free surface shapes. Figure 10.14 shows a typical free 
surface problem that can be solved using the MAC method. Here the complex 
rolling structure is faithfully represented by the profile of the marker particles. 
Both volume and surface markers have been used in the literature; the basic idea 
and algorithm are very similar. Here we outline the surface marker algorithm 
presented by Chen et al. [32] for a structured mesh computation. The same 
procedure is also applicable to an unstructured mesh. 

In the MAC method, evolution of surfaces is computed by moving the markers 
in accordance with local fluid velocities. Some special treatments are required to 
define the fluid properties in newly filled grid cells and to cancel values in cells 
that are emptied. 

To advect the marker particles, a simple bilinear interpolation is used to find 
the velocity inside an element, 
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where x and y are the coordinates of the marker point and Ne is the number of 
nodes per element. The marker particles are then advected in a Lagrangian manner 
using a straightforward first order explicit scheme, 
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where superscripts (i.e., n, n+1) represent the time step. Once the points have been 
advected, a parametric representation of the interface is constructured from the 
particle locations. 
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For a 2-D curve, a cubic polynomial with continuous first and second order 
derivatives, cubic splines, represents a good choice [32]. The parametric 
representation is often periodic as the interfaces are mostly self-connected (drops, 
bubbles, periodic wave trains, . . .). For a 3-D surface, construction of a smoothed 
surface from the marker particles can be time consuming. 

As the interface evolves, the markers drift along the interface following 
tangential velocities and more markers may be needed if the interface is stretched 
by the flow. The markers need to be redistributed in order to ensure a 
homogeneous distribution of points along the interface. This is done at each time 
step using the interpolating curve (x(s), y(s)). As s is an approximation of the arc 
length, if a redistribution length l is chosen, the new number of markers is Nnew =
sN/l and the points are redistributed as (xi

new, yi
new = (x(il), y(il)). Here l is usually 

chosen as h, which yields an average number of one marker per computational cell. 
Decreasing this length does not apparently improve the accuracy and in some cases 
leads to instabilities [32]. 

Figure 10.14. Mark-and-cell simulation of roll-up structure of fluid motion 

10.6.3 The Level Set Method 

The level set method is a computational technique for tracking a propagating 
interface over time. This method has been used in a variety of aspects of image 
processing and is now adopted for computational free surface flows [3, 33]. In the 
level set method, free surface flows are modeled as immiscible gas liquid two-
phase flows. The free surface is identified as a zero level set, i.e. (x, t) = 0, where 
x = (x, y) in two dimensions or x = (x, y, z) in three dimensions. The sharp jumps in 
density and viscosity at gas liquid interfaces can cause numerical instabilities if 
not treated properly. To ease this problem, fluid properties, such as density, 
viscosity, etc., are smeared over a narrow transition zone around the free surface.  
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As discussed in Section 10.2, the kinematic boundary condition at a free surface 
can be interpreted in a Lagrangian way: a particle on the surface always stays on 
the surface. This condition translates into a constraint for a level set value of a 
point on the contour with motion x(t). The value must always be zero on the 
surface,

0)),(( ttx  (10.111) 

where  is the level set function. By the chain rule, we have the differential 
equation,
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Written in terms of the interfacial velocity, the equation for the advection of the 
level set function is obtained, 

0u
t

 (10.113) 

where u = (u, v) in two dimensions or (u, v, w) in three dimensions is the fluid 
velocity. Thus, the evolution of the level set function defines the motion of a free 
surface.

Defining Fn as the speed in the outward normal direction,  
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the evolution for  is described by the Hamilton Jacobi equation, 

0||nt
F (10.115)

which shows that  evolves as a signed distance function. 
To model the free surface evolution, the level set function is initially assigned 

with a signed distance function, 

)surfacefree(
for
for
for

0

1

2

2

x
x
x

d

d
 (10.116) 

where d is the absolute normal distance to the free surface. For immiscible 
incompressible fluids, because of large density and viscosity jumps, particularly 
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the density jump, the properties are often calculated by modeling the surface with a 
small transition zone defined as | | , where , the half-thickness of the interface, 
is typically one or two grid distances. By defining an infinitely differentiable 
smoothed Heaviside function H( ) [3], 

if

if

if

1

sin1

0

)( 1
2
1

vH  (10.117) 

the density and viscosity are smoothed in such a way that they are ( 1+ 2)/2 and 
( 1+ 2)/2 at the surface front ( =0), respectively, and near the interface, 

( )= 2+( 2)Hv( ); ( )=  2+(  2)Hv( ) (10.118) 

The surface tension is spread over the transition zone as a -function-like 
volume force in the momentum equation [16], 

( ) ( )n + s ( ) = fb (10.119)

where fb is the body force, n is the normal, ( ) is the curvature that is computed 
in terms of ,

0
0)(2 nH  (10.120) 

and the delta function ( ) is obtained by taking the gradient of the smoothed 
Heaviside function,  
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Thus, the kinematic and dynamic boundary conditions at the free surface are 
automatically embedded in the formulation of the level set method. This is 
certainly a very useful feature when it comes to numerical implementation.  
 Since the level function is defined as the distance from the interface, it is 
necessary that  perserves this feature as evolution continues. This means that 
must be a distance function, and satisfies the following condition [3, 35]: 

1|)(| (10.122)

By Equation 10.113 (or equivalently Equation 10.115), the level set function 
will cease to be an exact distance function even after one time step. In moving 
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surface problems, it is possible that steep gradients develop in , making it difficult 
to maintain a finite thickness of transition zone. This would cause the numerical 
errors in computation of the normal and curvature of the moving surface. To avoid 
these problems, the level set function is reinitialized after evolution over a time 
step. One widely applied algorithm for reinitializing  to be an exact signed 
distance function from the moving boundary is to iteratively solve the following 
equation:

|)|1)(( 0S  (10.123) 

until it reaches a steady state, at which time the feature of signed distance function 
is preserved in ,

1||   at  (10.124) 

Note here that  is a pseudo-time introduced to satisfy the constraint of  being a 
signed distance function. Here x x t) and x t) is calculated using Equation 
10.115. Clearly, with Equation 10.123, given a function x  that is not a distance 
function, one can always evolve it into a function f that is an exact signed distance 
function satisfying Equation 10.124.  

To determine the level set function  from Equation 10.123, the sign function 
S  needs to be specified. Sussman et al. [35] suggest the use of the following 
equation for S :

22
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0 )(S  (10.125) 

where parameter  is taken to be on the order of the grid size. 
 Equations 10.115 and 10.123 both are of the Hamilton Jacobi type and are 
particularly suited for the numerical treatment using the discontinuous finite 
element schemes [34].  
 Thus, a typical level set algorithm for modeling the free-surface problems 
would involve the following computational steps: (1) the field variables are solved 
using the discontinuous flow solvers with a previously determined interface shape; 
(2) the function Fn in Equation 10.117 is then calculated from the field distribution; 
(3) the level set function (x, t) is initialized, if not yet, as a signed normal distance 
from the moving boundary; (4) the function (x, t) is evolved using Equation 
10.115 and the result (x, t+ t) is denoted as (x); (5) with (x), Equation 10.123 
is continued in marching until steady state and the result is denoted as (x, = );
(6) the level set function is reset to (x, = ), i.e.,  let (x, t+ t) = (x, = ).
Steps 1 to 6 are repeated for the next time step. For this explicit time scheme, a 
critical time step needs to be observed, that is, the time step needs to satisfy the 
CFL condition.
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10.6.4 Fixed Grid Methods for Phase Change Problems 

The fixed grid methods presented above for flow calculations may be considered as 
flow-based moving boundary methods and can be readily modified to predict the 
interface morphologies for phase change problems. An important aspect of this 
modification is to estimate the interface velocity. While in principle these methods 
can be used to solve phase change problems, only the level set method has gained 
popularity. There are also algorithms developed based on the enthalpy formulation, 
which is very effective in treating phase change phenomena and has been used in 
various applications. We discuss below these flow-based methods and enthalpy-
based methods.  

10.6.4.1 Flow-based Methods
As for the moving grids method, the flow-based fixed grid methods discussed in 
the previous sections can also be modified to solve the phase change problems. If 
pure materials are considered, the governing equations for the problems should 
also include the thermal balance equation, 

0ju 21 (10.126)

jjjj
j p

t
uu

u

Fxxnxx )()()(2 fsfH 21  (10.127) 

( )j s
p p j j j f j

T f
C C T L Q

t t
u q x x

21  (10.128) 

where fs/ t is the fraction of new phase formed (e.g., fs is the solid fraction if the 
solidification is considered), and F includes the drag forces resulting from phase 
change and/or solids [36]. Also, the properties of the materials are assumed to be 
the same for solidification problems. For liquid gas transition, the equations apply 
only to the liquid phase. 

To calculate the velocity of the phase boundary, the energy balance along the 
interface is often used, 

nunn iLTkTk 12211  (10.129) 

where n is the normal of the phase boundary pointing from phase 1 to phase 2 and 
ui is the interface velocity with which phase 1 moves into phase 2. At the 
interphase boundary, the temperature must be the same,  

pgvHCmTTT LnGLLphphi )(/)(20  (10.130) 
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where Ti is the interface temperature. Note that Equations 10.129 and 10.130 are 
the same Equation 10.44 and 10.48, which are reproduced here for convenience. 

For phase change problems, the velocity at which the moving interface evolves 
is often defined by the interfacial energy balance. Consequently, Equation 10.129, 
is used to calculate the velocity for the evolution of the phase interface. In the case 
of the level set method, this velocity will be used to estimate F also. In addition, 
the condition set by Equation 10.130 needs to be met. Thus, if the fixed grid 
methods described in the above sections, VOF, MAC and LSM, are used, some 
obvisous modifications are necessary, which often result in an iterative procedure 
within a time step [35, 37, 38]. 

We take the level set method as an example to illustrate the necessary 
modifications required to solve this type of problem. The level set method has been 
used in solving both solidification and vaporization problems within the framework 
of finite volumes [35, 38]. A typical level set algorithm, when incorporated into a 
discontinuous finite element formulation, involves 7 steps instead of 6, as 
discussed in Section 10.6.3. In step 2, Equation 10.129 is used to calculate velocity 
and hence Fn in Equation 10.115. Step 7 is added to check if T satisfies Equation 
10.130. This is usually done by interpolation to find the temperature at the interface 
Ti. If Equation 10.130 is satisfied, then the calculation continues with the next time 
step. If not, it will go back to step 1 and iterate between step 1 through step 7 until 
Equation 10.130 is satisfied. Then the calculation continues with the next time step.

It is worth noting here that when the properties of the materials cannot be 
assumed to be the same, such as for the case of liquid vapor transition occurring in 
boiling, the governing equations and boundary conditions need to be modified 
accordingly [37].

10.6.4.2 Enthalpy-based Methods 
Useful numerical methods, other than the three flow-based approaches described 
above, have been developed specifically to solve the phase change problems. These 
methods have met with success and can be readily incorporated into a 
discontinuous finite element setting as well. These methods are based on the 
enthalpy formulation and are very useful for phase change problems involving a 
transition temperature range, which is often characterized by a mushy zone [11, 36, 
39]. 
 By observing that the latent heat, L, corresponds to the isothermal change in the 
enthalpy, h, for a material at the transition melt temperature, Tm, the following 
relationship is introduced, 

( ) ( ) ( )
ref

T

p v m
T

h T C T dT LH T T  (10.131) 

where Hv is the Heaviside function. From the above definition, the equivalent (or 
effective) specific heat, Cp*, is then introduced by  
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where  is the delta function. Through the use of this formulation for the specific 
heat, the heat flux jump condition is eliminated from the problem. This approach is 
computationally effective since a two region problem with a jump condition has 
been reduced to a single region problem with rapidly varying properties. For 
application in a discontinuous finite element setting, the above equation is replaced 
by
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TdhTC mpp  (10.133) 

where  is the delta form function;  has a larger but finite value in the interval 
T entered about Tm and is zero outside the interval. The interval T is often 

referred to as the “mushy” zone and corresponds to the difference between the 
liquidus and solidus temperatures for a material. For pure materials that change 
phase at a specified temperature, this is an approximation; but it is accurate for 
non-pure substances that have truly distinct liquidus and solidus temperatures.  
 With the above definition of the effective heat capacity, the energy balance 
equation is simplified as 
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Though the equivalent specific heat model is useful for latent heat effects, 
caution needs to be exercised with regard to the time integration of this type of 
phase change model. In general, the transition temperature, T, is small compared 
to the overall temperature variation. Thus, the time-stepping algorithm must be 
controlled such that every node undergoing phase change attains a temperature 
value in the interval bracketed by T. If a nodal point steps over this temperature 
interval, the latent heat effect is not registered by the node and an incorrect 
temperature response and energy balance will be predicted. Some approaches have 
been developed to alleviate the problem and are described below.  

One approach is to evaluate the specific heat at a point by computing the slope 
of the enthalpy temperature curve based on the temperature at the point. The 
method performs satisfactorily if at a given time step the integration points in an 
element may not detect the presence of the solidification front in the element. An 
alternative approach, which is considered more accurate and convenient, is to 
compute the required specific heat at a point by the following expression [39, 40]: 
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* TT
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This equation is computed by first determining the enthalpy at the nodes of the 
element using the provided enthalpy temperature curve, that is, Equation 10.131. 
The element shape functions are then used to approximate the enthalpy distribution 
within the element as well as the temperature distribution in the usual manner. The 
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value of the Cp* at the integration point is then computed using the above formula. 
A drawback of this method is that if the time step is large enough so as to allow the 
solidification front to pass an element altogether, the proper amount of latent heat 
will not be released in the element, thereby resulting in a faster than desired 
temperature drop. Experience indicates that this method works best with linear 
elements [39].  

For transient problems, the change in enthalpy from the value at the previous 
time step and the change in temperature from the value at the previous time step 
may be used to construct an effective specific heat model,  
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where the superscripts refer to the time step numbers. As this method always 
detects the passage of the solidification front at an integration point, it performs 
better than the previous methods on coarser meshes. Equation 10.136 may also be 
evaluated using the nodal values, leading to yet another approximation. A 
deficiency of this approach is that even though the correct amount of energy is 
always released, the rate of release is typically lagged in time.  

10.7 Phase Field Modeling of Moving Boundaries 

The fixed and moving grid approaches presented above are devised to treat the 
boundary conditions for a continuum mechanics description of fluid flow and heat 
transfer involving moving boundaries. The physics governing the microscopic 
phenomena within the interfacial layer is not considered in these continuum 
descriptions. Phase field models present a statistical mechanics description of the 
interfacial phenomena within and near the interphase layer, with allowance for the 
molecular or microscopic physics, and have emerged as a viable approach to study 
both free and moving boundary problems [4, 40]. The phase field theory is 
particularly powerful in modeling the thermal and fluids phenomena driven 
dominantly by interfacial forces [4]. In what follows, we present the basic ideas of 
phase field models, their coupling with momentum and energy balance equations 
for thermal systems and the discontinuous finite element formulation for the phase 
field models. Numerical results are also given to illustrate the capability of the 
phase field model to resolve fine structures under various conditions. 

10.7.1 Basic Ideas of Phase Field Models 

The phase field theory is developed as a result of studying nonlinear critical 
phenomena during phase transitions in superconducting materials and other 
physical systems [40]. From the statistical mechanics perspective, particles are 
described by Langevin’s dynamic equation [41, 42], which incorporates the 
stochastic fluctuating forces, in addition to the systematic forces. The central idea 
in phase field modeling of phase transitions is the concept of localized statistical 
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averaging, that is, coarse-graining: which means that some of the microscopic 
degrees of freedom in a given system are integrated out, leaving an effective 
system (characterized by an effective free energy or Hamiltonian) with fewer 
degrees of freedom embodied by the coarse-grained order parameter (block 
magnetization in the Ising spin model, density difference for simple liquids, etc.). 
We have seen the volume averaged momentum equations for flows in porous 
media (see Section 1.7). The coarse grain averaging is similar, but is carried out 
over a molecular ensemble. 

 In statistical mechanics, all static thermodynamic quantities such as entropy are 
calculated from the partition function Z, which is related to the free energy F,
where Z = exp( F(T)/kbT), and kb is the Boltzmann constant. By the coarse-grain 
averaging process, a block is selected and averaging is carried out over a number of 
molecules in the cell for a microscopic quantity (e.g., magnetic spins in the Ising 
model) yielding a block quantity, and then summing over those microscopic 
quantities that give rise to a given block yields a localized partition function Z ,
which is related to a coarse-grained free energy F, where Z  = exp( F([ ], T)/kbT). 
Here  is the phase field parameter, which marks the change from one phase to 
another. In this way, Z is a sum of all Z  in the system. The square brackets indicate 
that F[ ] is a functional of the phase parameter . The phase field model for phase 
transition and interfacial phenomena is concerned about the behavior of the phase 
field parameter , which is related to the coarse grain free energy. In general, the 
free energy F([ ], T) is a functional of the phase field parameter  and it assumes 
the following form: 

2 21
2([ ], ) | ( ) | ( ( ), )F T f T dr r (10.137)

where  is the interfacial gradient thickness parameter and f( (r), T) is a potential 
function and is a function (but not functional) of (r) and temperature. Because the 
phase field model is formulated locally and is able to resolve the microscopic 
phenomena, it has been adopted to model the interfacial phenomena in thermal and 
fluids systems that are diffusive in nature [4, 43]. 

 Figure 10.15 shows a typical double wall function associated with phase 
transition as a function of the phase parameter for a 1-D system. At a temperature 
above the critical point, that is, the transition point, there exists only one stable 
phase corresponding to the minimum of the potential function. This is illustrated in 
Figure 10.15(a). When the temperature drops below the critical point, two phases 
will co-exist, as marked by the double dip in the potential function distribution, as 
shown in Figure 10.15(b). 

In a time-dependent system, an evolution of the phase parameter (r, t)
represents the evolution of the interface. The phase field model is derived based on 
the fact that the system evolves towards a state that minimizes the free energy, 
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where  is the relaxation time, and (r, t) represents the stochastic noise that 
describes the random effects of the environment, and is averaged to zero over the 
realization of the noise field (r, t). For most thermal and fluids applications, this 
term may be set to zero. At the static equilibrium, or the steady state,  

0F (10.139)

The variational derivative in Equation 10.138 can be carried out explicitly with 
time held constant, 

Figure 10.15. Potential energy above (a) and below (b) the cirtical temperature Tc for phase 
transition
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where (r)/ (r ) = f(r r ), f(r r ) being the delta function. With this substituted 
into Equation 10.138, we have the following evolution equation for the phase field 

(r, t):

f
t

22 (10.141)

With f known, this equation can be used to evolve the free surfaces and boundaries. 
The phase field model has been used in other physical systems and here it is used 
to describe some of the thermal fluids systems that involve free surface and 
interfacial boundaries.  

Figure 10.16 sketches the distribution of the phase field parameter  as a 
function of distance (x) across the interface or moving boundary. Far away from 
the interface (x = 0), the phase field  assumes constant values. Near the interface, 
there exists a very sharp change in (x). The change of (x) measured by (x)/ x
shows almost a delta function, and its width represents the interfacial thickness 
between the two phases. 

Figure 10.16.  1-D phase field model illustrating the phase transition at x = 0 and the 
derivative of the phase parameter with respect to the x coordinate 

It is noted that the phase field behavior shown in Figure 10.16 is very similar to 
that of the level set function. One should realize that the latter is based on a 
mathematical description of a signed distance function from the sharp interface, 
and the signed function needs to be adjusted during each time step. This is in 
contrast with the phase field model, which has its roots in statistical mechanics and 
the phase field parameter  evolves continuously based on the physical description 
of interfacial phenomena. 

10.7.2 Governing Equations for Interfacial Phenomena 

In the phase model description, the equations describing the interface balance are 
built into the governing equations and the interface boundaries are evolved using 
the phase field parameters. The phase field parameter  can be used to evolve a 
free or moving or phase boundary in thermal fluids systems [4, 44]. With  as a 

x

x
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parameter marking a moving interface, which itself evolves, the Navier Stokes 
equations and the energy balance equations for a moving boundary problem are 
written as 

0u (10.142)
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where  is the share stress, L is the energy release from one fluid to the other and c
is the chemical potential. For the sake of simplicity, subscript j denoting different 
phases is dropped and the materials properties are assumed to be a function of .
The above equations can be solved with the appropriate boundary conditions 
imposed [43]. Note that F contains the drag force result from liquid solid
transition, which is also a function of the phase field parameter. 

In the above equations, both phases across the interface boundaries are 
included. The interfacial contributions to the momentum and thermal balance 
equations are accounted for through two source terms including interfacial 
mechanical and thermal energies. To see that Equation 10.143 yields the interfacial 
mechanical force balance equation, we integrate the momentum equation over a 
small pillbox across the interface, and obtain the following equation: 

sHpp nnInI 2)()( 21 (10.146)

where subscripts denote different flow regions. This is nothing but the interfacial 
mechanical balance equation discussed in Section 10.2.3.    

Example 10.3. Derive an expression describing the expansion of a bubble in a fluid 
using the phase field model, neglecting the fluid motion. 

Solution. With the fluid motion neglected, the growth model can be readily 
derived. For this problem, a potential  is the difference between the energy inside 
and outside the bubble. The phase field model then becomes 
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We assume that the order parameter is a function of time and distance from the 
center of the bubble, 
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where R(t) is the radius at time t. Substituting into the phase field model, we obtain 
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The first two terms on the right cancel because of the following relation: 
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Equation 10.20e further is multiplied by / r and integrated from the center of the 
bubble to infinity, 

2 2
2

0 0 0

12 adR Vdr dr dr
dt r r r r

    (10.22e) 

Since  changes sharply near the interface, the second term can be 
approximated to the first order 1/r = ( r + R) = 1/R, whence we have the following 
differential equation for the rate change of the bubble radius: 

aV
Rdt

dR 22 (10.23e)

where Va =V( ) – V(0) and  is the surface tension, 

2
2

0
dr

r
 (10.24e) 

Integration of the equation over time with the initial condition R(t = 0) = R0
yields the change of the radius as a function of time, 
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)(22))(( (10.25e)

In the case of static equilibrium, the time dependent term in Equation (4.23e) 
disappears, and we recover the force balance equation at the bubble surface, 
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a
e

V
R
2 (10.26e)

which identifies the potential difference to be the pressure difference inside and 
outside the bubble. With Re, the solution for Equation 10.23e can be written as  
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We have two limiting cases, 

tVRtR a
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ctV
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2
0

2 4)(  if Re  (10.29e) 

The second limit clearly shows the curvature effect, which is typical for interfacial 
phenomena, and when it is neglected, the radius expands at a constant speed.  

There are certain advantages associated with the use of a phase field model for 
free surface and moving boundary problems. The model is, in general, easy to 
construct and non-equilibrium conditions can be imposed by boundary and initial 
conditions. The interface energy emerges naturally and is linked to microscopic 
states in the materials. Numerically, a unified equation makes the numerical 
formulation and computer implementation easy. At present, the phase field model 
has been primarily used in modeling phase change or phase transition problems, 
where the internal moving boundaries and inter-phase front morphologies often 
evolve in a rather complex pattern.

10.7.3 Discontinuous Finite Element Formulation 

The discontinuous formulations for the fluid flow and heat transfer problems 
presented in previous chapters should be directly applied here. The interfacial 
contribution may be treated as the source/sink terms and incorporated into the force 
term at the right hand side of the matrix equation. The phase field model is in 
essence a diffusion model with a nonlinear source term that drives the interface 
evolution. These equations can be easily discretized and solved using the 
discontinuous finite element formulation developed for heat conduction problems 
in Chapter 4. To illustrate the procedure of coupling a phase field model and other 
mechanical and thermal balance equations, a discontinuous formulation for a phase 
change problem that involves the evolution of a solid liquid interface is presented 
below. We first consider the cases without the fluid flow and other local 
phenomena. These complications are then included. These results demonstrate the 
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usefulness of the phase field theory for modeling interfacial phenomena driven by 
local forces. 

10.7.4 Phase Field Modeling of Microstructure Evolution 

Microstructure evolution during solidification represents a moving boundary 
problem with very complex internal boundary shapes. In addition, the spatial and 
temporal resolutions required to resolve these fine structures are so small that 
intensive computation warrants massive parallel computing for a realistic 
simulation. For this purpose, the discontinuous finite element method should be a 
very suitable candidate.  

10.7.4.1 Governing Equations 
Let us consider a typical solidification problem as illustrated in Figure 10.17, 
where the liquid solidifies as a result of applied cooling. Here we are concerned 
with the modeling of the microscale features such as dendritic structures formed 
during freezing. The governing equation for phase field modeling of the local 
solidification process is given by the following pair of equations describing the 
phase field evolution and temperature distribution, with convection neglected:  

T
t

g
St

T 2)('1  (10.147) 

2 2( ) [ (1 )](1 ) [ ]T
t

n  (10.148)    

where g( ) = (10 – 15 + 6 ) and  is a tensor of local materials properties and 
crystallographic orientations of the solid, 

Figure 10.17. Schematic of a solidification problem 

Solid

Liquid

Cooling
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with its components determined by the following expressions: 
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Here n is the normal of the moving surface and ( , ) the Euler angles. The 
outward normal n and other parameters are related to the phase field parameter, 

||
n ; )()( 2

0 nn sa , )()( 0 nn saWW (10.151)

where 0 and W0 are two parameters, and as is a complex function of the phase field 
parameter, 
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where 4 is the anisotropic parameter. For a 2-D problem, the phase field equation 
reduces to the well known expression [44], 
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In the above equation,  = [1+ cos(4 )]. Also, T represents the temperature,  is 
the phase field, S is the supercooling temperature, is a mean value of  which 
indicates interface thickness, 1 is the strength of anisotropy, and  is the angle 
between the normal of the interface and the positive direction of x axis. Also,  and 
m are the dimensionless parameters related to the local real material properties 
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such as interfacial energy, kinetic coefficient, specific heat, latent heat, thermal 
conductivity and the melting temperature. The detailed procedure to derive 
Equation 10.153 is given in Wang et al. [44].  

10.7.4.2 Discontinuous Formulation 
Equation 10.148 is basically a heat conduction equation, for which the 
discontinuous finite element solution was discussed in detail in Chapter 4. The 
matrix equation is the same as Equations 4.54 4.55. The only difference here is 
that the energy release due to solidification (i.e., the term associated with g( ) in 
Equation 10.149 needs to be included as a source term, which is trivial once the 
evolution of phase field parameter is known. 

The phase field equation, however, represents a rather complex nonlinear 
equation. To develop a discontinuous finite element formulation, the equation is 
split into the following first order differential equations: 

R (10.154)

Rn ),()( TQ
t

(10.155)

where Q( ) = [  – T(1 )](1 ).
The computational domain is now discretized into a tessellation of triangular 

finite elements in a 2-D geometry, or of tetrahedral elements in a 3-D geometry. 
Other shapes of elements are also possible. Following the procedures detailed in 
Section 4.5, the above two equations are multiplied by a pair of test functions (w,v)
and integrated over element j,

( )
j j

dV dVR w w (10.156a)
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We now integrate by parts and replace fluxes at the element boundaries with 
the qualified numerical fluxes to obtain the following integral representation of the 
phase field model equations: 
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where nj is the outward normal unit vector to j, the boundary of element j.
 Approximating the unknowns using the interpolation functions, selecting 

appropriate numerical fluxes and applying the Galerkin procedure, we obtain a set 
of ordinary differential equations for the discretized values for the phase field 
parameter. These equations are summarized together with the equations for 
temperature, 

)(RR LU (10.158a)

)(L
dt
d

M (10.158b)

)(TU qq L  (10.158c) 

)(TTM TT L
dt
d (10.158d)

where L is the operator,  is the vector for nodal values of the phase field 
parameter , and M is the mass matrix. The subscripts refer to the relevant 
variables. The two unknown vectors Uq and UR are defined as follows: 
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Equations 10.158a–d can be solved using an explicit time integration scheme. 
The computational procedure is given below: 

(1) Given the initial and boundary conditions, UR is obtained by solving 
Equation 10.158a; 

(2) Using UR, Equation 10.158b is solved to obtain / t;
(3) Equation 10.158c is used to obtain Uq;
(4) With UR and / t, T/ t is obtained by solving Equation 10.158d; 
(5) Advancing T and  by T = T +( t) T/ t and = +( t) / t;
(6) Repeat steps (1) to (5) until convergence is achieved. 

In performing time integration, the time step needs to be controlled to ensure 
numerical stability. 

10.7.4.3 Numerical Examples 
The above discontinuous finite element algorithm for coupled heat transfer and 
phase field distribution has been implemented to predict microstructure evolution 
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in solidification systems [45]. Numerical examples are presented here to illustrate 
certain features of the modeled microstructures. The examples include the 1-D,    
2-D and 3-D calculations, with the 1-D data primarily used to test the accuracy of 
the phase field model. 

Moving Boundary in 1-D Solidification. A 1-D solidification problem is useful for 
the purpose of checking the accuracy of the code and determining appropriate 
mesh sizes and other information used for adequate numerical simulations. The 
analytic solution to a 1-D problem is known [46]. A finite difference solution of the 
phase field model for 1-D solidification is also available in Fabbri and Voller [47]. 
For this problem, the initial temperature T0 = 0.015, and the temperature at the cold 
end is Tcold = 0.085. To start the process, the temperature distribution and interface 
location are calculated by the analytic solution after a short period of solidification, 
t0=0.1846 [47]. 

Figure 10.18 plots the temperature distribution at t = 0.8, from both the analytic 
solution and the numerical results obtained from the discontinuous Galerkin 
method described above. The CP and KP are two different versions of phase field 
models reported in the literature [4]. The mesh size is 0.004 and the time step is set 
to be 10 6.  From the figure, we can see that the KP model and the CP model render 
very similar results and both match well with the analytic solution [47].  
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Figure 10.18. Comparison of 1-D solidification between analytic solution and finite element 
formulation

Microstructure During 2-D Solidification. Figure 10.19 illustrates the evolution of 
dendritic structures formed during solidification, the typical structure found in ice 
freezing from water. In this case, the growth starts from a circle of solid nucleus, 
with a radius of 0.1, located at the center of the domain. Growth gradually occurs 
as atoms are frozen from the adjacent liquid onto the solid from all the directions. 
The strength of anisotropy is 0.04, and six modes were used in this simulation. 
From these figures, it is clear that with an increase in latent heat, the solid crystal 
evolves from a hexagon shape to a snowflake shape
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These results demonstrate that the discontinuous formulation of the phase field 
model is capable of modeling very complex moving boundary problems. In this 
sequence of figures, we see that the dendrite grows very fast in certain 
crystallographic orientations, of which  has the maximum value and the fastest 
growth rate. Some small side dendritic tips grow from the main root branch. 
Finger-shaped dendrite growth is obtained with tip splitting. However, the needle-
shaped crystal, which is demonstrated in Wheeler et al. [48], is not found in this 
calculation. The shape of dendritic tips can be determined by many parameters, 
such as the assumed interface thickness , the strength of anisotropy , the 
supercooling parameter S, as well as the calculated domain and its spatial 
resolution.  

Figure 10.19. Dendrite growth under adiabatic conditions for various latent heat: t =      
5.0 10 5, (a1) (a3) K = 0.8; (b1) (b3) K = 1.2; and (c1) (c3) K = 1.6. K is non-
dimensionalized latent heat 

(a1) t=0.04 (b1) t=0.04 (c1) t=0.04

(a2) t=0.12 (b2) t=0.16 (c2) t=0.16

(a3) t=0.20 (b3) t=0.28 (c3) t=0.36
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3-D Simulations. The discontinuous finite element phase field model is also 
applied to simulate a 3-D dendritic growth during solidification. As one might 
expect, these simulations are extremely computationally intensive because of very 
fine grids and the time resolutions required to obtain these fine features of 
microstructures. For this type of problem, the continuous finite element method 
would become rather inefficient, largely because of the huge global matrix formed. 
The discontinuous finite element method, however, does not require the assembly 
of a global matrix and it is thus less demanding for in-core memory. One of these 
structures obtained using the discontinuous finite element method is presented in 
Figure 10.20. The simulations used 2003 linear elements. 

(a)                  (b) 

Figure 10.20. A 3-D view of microstructure of a single dendrite during solidification 
predicted by the phase field model: (a) viewed from 45o and (b) viewed from 135o

10.7.5 Flow and Orientation Effects on Microstructure Evolution 

Solidification involves complex local phenomena, which can be affected by 
various parameters of both liquid and solid during solid liquid transitions and 
simulated using the phase field model. For instance, the formation of nuclei from 
the liquid phase can be simulated by introducing the noise term (r, t) in Equation 
10.138 [49]. Other effects such as fluid motion and crystal orientations on 
solidification microstructure formation can also be included in the phase field 
model. The discontinuous finite element method, being local in nature, presents a 
very powerful numerical tool for the phase field analysis of these problems. We 
present below the discontinuous finite element calculations of fluid flow and 
crystal orientation effects on the microstructure evolution during solidification.  

10.7.5.1 Flow Effects on Microstructure Evolution
Under certain conditions during solidification, microstructure features such as 
dendrites branch into the surrounding liquid and are known to be affected by the 
liquid convection. The basic equations governing fluid flow, heat transfer and 
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phase field evolution during a dendritic solidification process were given in Section 
10.7.2. These governing equations, that is, Equations 10.142 10.144 and (10.149), 
are solved using the discontinuous finite element method to study the effect of the 
fluid flow in the liquid pool on the microstructure formation. 

Assuming that the liquid is incompressible, an algorithm for the solution may 
be described as follows. For the fluid flow and thermal equations, Equations 
10.142 10.144 are solved using the discontinuous finite element methods 
presented in Chapter 6. The calculation of the phase field model, i.e., Equation 
10.148, is the same as described in the previous section.  

One of these calculations is given in Figure 10.21 for 2-D dendritic 
solidification for the non-dimensional times of 15, 66, and 96, with and without the 
fluid flow in the liquid pool considered. The shape of the dendrite is revealed by the 
phase field parameter. The left column shows the evolution of the dendrite with the 
liquid pool assumed to be quiescent at the three different times. The right column 
shows the velocity field around the dendrite and its effect on the morphology of the 
dendrite at the same times. Unlike the case of growth without flow, the temperature 
contours are not symmetric in all four directions, causing the dendrite to grow 
accordingly. The flow compresses the thermal boundary layer near the tip of the 
arm growing in the upstream direction while expanding it on the downstream side. 
The thermal boundary layer thickness near the tip of the dendrite arm 
perpendicular to the flow is not affected much by the flow. As a result of the 
smaller thermal boundary layer thickness near the tip of the upstream arm, and 
therefore higher temperature gradient, its growth rate is increased. The growth rate 
of the downstream arm, on the other hand, is reduced because of the lower 
temperature gradient there. The perpendicular arm is shifted slightly toward the 
flow direction with no significant effect on its growth rate. The higher temperature 
gradient on the upstream side also promotes the growth of side branches while on 
the downstream side the lower temperature gradient provides a more homogeneous 
temperature that inhibits the growth of side branches.  

10.7.5.2 Microstructure Evolution During Polycystalline Solidification 
The phase field model presented above assumes that a single grain grows into the 
liquid with and without being affected by local fluid flows. In many practical 
systems, grains with different orientations are nucleated and grow in a competitive 
environment. These grains will eventually meet and interact with each other. The 
evolution of a crystalline phase needs to include the physical effects of crystalline 
orientation, or of misorientation at grain boundaries. Developing numerical models 
to simulate these phenomena has received considerable attention recently and a 
comprehensive review on the subject and various models developed for this 
purpose is given by Granasy et al. [49]. 

The basic idea is to include extra terms in the free energy that are associated 
with the grain orientation effects. Various models have been proposed [48 50] and 
here we present the model for a pure material given by Warren et al. [50], 

22 2 21 1( , ) ( ) ( ) ( , )
2 2

F sg h f T dV

(10.160)
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without the flow field                                        with the flow field 
(a) t = 15 

without the flow field                                        with the flow field 
(b) t = 66 

without the flow field                                        with the flow field 
(c) t = 96 

Figure 10.21. Phase field modeling of evolution of solidification microstructure with and 
without fluid flow 
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(a1) t = 0                                (a2) t = 10                                 (a3) t = 20 

   
(b1) t = 0                                (b2) t = 10                                 (b3) t = 20

(c1) t = 0                                (c2) t = 10                                 (c3) t = 20 

Figure 10.22. Simulation of the impingement of four particles growing from the corners 

where the homogeneous free energy density f( , T) is a double-well potential that 
has its local minima at the values corresponding to the solid ( =1) and liquid (
= 0) phases,  is the gradient-energy coefficient related to the thickness of the 
interface, T is the temperature and  is the gradient penalty function  [50]. 

The two terms (second and third under integral) have been added, which 
represent the energy cost of grain boundaries. Here, the parameter  represents the 
local orientation measured with respect to a fixed axis of the crystal lattice. The 
values of  span /N < /N, where N is the rotational symmetry of the 
underlying crystal lattice. Also,  is defined as the direction of a normal to , i.e., 
tan( )=( / y)/( / x), s and  are the coupling constants, and g and h are 
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specified as a function of 2. The monotonic nature of g and h is required if the 
effects of crystalline orientation are to be reduced or eliminated in the liquid phase. 

By the same variational procedure given above, the following dimensionless 
governing equations for the evolution of phase parameter  and crystal orientation 

 are derived, 

2222 2)()1( sm
t

 (10.161) 

222)( s
t

P  (10.162) 

where m( ) =  – 0.5 +  (1– ). The defintions and paremeters for calculations 
are given in [50]. 

Equations 10.161, 10.162 and 10.147 describe the effect of the crystallographic 
orientation of the solid grains, once formed during solidification, on the growth of 
the crystals. This set of equations may be solved using the discontinuous finite 
element method. For the purpose of demonstrating the effects of orientation only, 
the fluid flow is neglected. The impingement and coarsening of the grains as a 
change in orientation is displayed in Figures 10.22 and 10.23. 

In Figure 10.22, three simulations of the impingement of four particles are 
plotted. In Figure 10.22a, the orientations of the two left grains are the same and 
differ by /4 from the right gains. The right and left grains coalesce with each 
other, respectively. A grain boundary is formed along the vertical centerline. In 
Figure 10.22b, the orientations of the two left grains are the same but the two right 
grains have different orientations. It shows a dihedral angle after impingement. In 
Figure 10.22c, orientations of the four particles are all different. This leads to an 
unstable quadrijunction.  

 (a)  t = 0                                   (b) t = 50                                 (c) t = 100

Figure 10.23. Simulation of the impingement and coarsening with many simultaneously 
introduced nuclei into an undercooled melt. Crystals with different orientations are obtained 
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Figure 10.23 shows an isothermal simulation of the impingement and 
coarsening with many simultaneously introduced nuclei into an undercooled melt. 
This is a case of multi-crystalline solidification, where grain boundary formation 
and grain coarsening are obvious. 

Exercises

1. A local coordinate system erected at a surface point is given by ( , , n)
with their unit vectors defined as kji zyx

ˆˆˆˆ , kji zyx
ˆˆˆˆ

and kjin zyx
ˆˆˆˆn . Show that a transformation can be constructed 

such that 
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 With the above transformation, further show that 
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 With the additional relation,  

dn
d

dn
d

dn
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SSs || nnnnnn

where S means evaluating the integral at the surface and s is the surface 
vector differential operator. 
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2. Consider a curved surface defined in a spherical coordinate system, 

0),(),,(),,( rRRFzyxFF

 Show that the spatial gradient of F is given by 
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 where “^” denotes the unit vector.  
Show that the tangential vectors in the polar and azimuthal directions for 
this surface are given by 

22

ˆˆ

rr

irir rt ;
222

2

sin

ˆsinˆ

rr

irir rt

 from which the normal vector can also be calculated, 
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Show that this gives the same expresion as calculated by taking the spatial 
gradient of n as follows: 
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Show that the curvature for the 3-D surface can be calculated by taking 
either the spatial gradient evaluated at F = 0 or the surface gradient, that is, 
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From the above curvature result, show that if the surface is axially 
symmetric, that is, independent of  , then 
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3. Consider a 3-D surface expressed in the spherical coordinates. Assume that 
the surface has a 3-D deformation given by the following expression, 

m
eemem YRar 1

 where Y is the spherical harmonics and  is the solid angle. 
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Show that with the definition of F,

01 m
eemem YRarF

the surface normal n and curvature H for this deformed surface are 
calculated, to the first order in ( em + Rem), by the following expressions: 
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4. Consider a solidification change problem that involves the motion of both 
solid and liquids, with us and ul denoting the solid and liquid velocities, 
respectively. Show that for this case, the velocities of the liquid and the 
solid relative to the interface are given by the following expressions: 

iss uuu ' ; ill uuu '

where ui is the interface velocity. Show that the mass balance and energy 
balance across the interface are expressed by the following expression: 

0'' lllsss nunu

and

0'' lllllsssss HH nqunqu

where H is the enthalpy and ns points from the solid to the liquid. Let L=
Hl – Hs, where L is the latent heat per unit mass, that is, the heat related 
when liquid converts into solid. Show further that the energy balance 
across the interface can be written as 

nununqq '' llsssl LL

Show that the above equation reduces to Equation 10.44 if us = ul = 0. 
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5. Integrate Equation 10.89 across a pillbox across a moving interface 
between two fluids and show that the resulting equation reduces to 
Equation 10.41, that is, the stress balance condition at the interface, as the 
size of the pillbox reduces to zero. 

6. Starting with the Clausius Clapeyron relation, 

i
i

flat dT
v
s
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dp

show that for constant properties, the integration of the above relation 
yields the following relation for a material undergoing solidification: 
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where v = l
1 – s

1, Tm is the melting temperature, s = sl – ss, H the 
curvature, and Ti is the interface temperature.  
Further show that if Cp = 0 and l = s, the above equation reduces to 
the classical Gibbs Thompson relation, 
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mi HT
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For the above case, show that the interfacial energy balance yields the 
following relation: 

nunn iimpllss TTCLTkTk )(

 Clearly, for Cp = 0, we have the same relation as Equation 10.44. 
7. A solid at the solidification (or melting) temperature Tm is confined to a 

half-space x > 0. At time t = 0, the temperature of the boundary surface at x
= 0 is raised to T0, which is higher than Tm and maintained at the 
temperature for times t > 0. As a result, melting starts at the surface x = 0 
and the solid liquid interface moves in the positive x direction. Write down 
the governing equations and boundary conditions for this problem and 
obtain the analytical solution for the problem using the method of 
separation of variables.  

8. Develop a discontinuous finite element code to calculate the temperature 
distribution and phase model, and compare the numerical solution and 
analytic solution derived in Exercise 7. 

9. Develop a discontinuous finite element code and incorporate the volume of 
fluid algorithm for free surface calculations. Compare the results with and 
without the global balance adjustment. 

10. Modify the code developed for Problem 8 and use the level set method to 
track the surface. Apply the code to solve a boiling problem and compare 
the results with those reported in [38]. 

11. Develop a discontinuous finite element code for a 2-D simulation of 
solidification using the phase field model given in Section 10.7.4. 
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11

Micro and Nanoscale Fluid Flow and Heat Transfer 

Recently, there has been much interest in understanding micro/nanoscale fluid flow 
and heat transfer phenomena. This interest is largely driven by rapid advances in 
micro devices for microelectronic, microeletromechanical and biomedical 
applications. Two recent monographs have been devoted to the topic of fluid flow 
in micro and nano channels and structures, and that of microscale heat transfer in 
rapid thermal laser processing of thin films, respectively [1, 2].  

Studies show that as the time and length scales are reduced, some of the 
assumptions used or implied in the macroscopic description of the fluid flow and 
heat transfer phenomena based on the continuum theorem may become invalid and 
modifications are needed to improve the mathematical description. For the cases of 
gas flow in microchannels, for example, the near-wall analysis suggests that the 
no-clip condition, which has been taken for granted in macroscopic fluid 
mechanics, is no longer valid. The collision of the molecules with the walls results 
in a slip of the molecules along the solid wall. There also have been attempts to 
directly apply the Boltzmann transport equation to describe the fluid flow 
phenomena at microscales. 
 One of the widely observed phenomena associated with the microscale thermal 
transport is the phase-lag behavior, which occurs in thin films under irradiation by 
a pulsing laser. When the pulse duration and the length scale are reduced to a level 
comparable with the mean free path of the phonons, the temperature gradient and 
the heat flux no longer travel at the same speed, making invalid the equal-speed 
assumption implied in the classical Fourier law for heat conduction. An appropriate 
description of the thermal phenomena at microscales thus requires the modification 
of the existing heat transfer equations. 
 Research indicates that a mathematical description of microscale heat transfer 
phenomena may be very similar to that for macro phenomena with relevant 
modifications for certain specific applications and that the description can be vastly 
different for other conditions. 

 In this chapter, we focus on two classes of mathematical description of fluid 
flow and heat transfer problems at micro and nanoscales for which the 
discontinuous finite element methods are particularly suited. The first class is 
based on the modification of the existing macroscopic theory for microscopic 
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description, whereas the second class is concerned with a direct description of 
microscopic phenomena on the basis of the Boltzmann transport theorem. Relevant 
background information on the fundamentals for these two approaches is provided. 
The numerical solution of the relevant governing equations arising from these two 
classes of mathematical description by the discontinuous finite element method is 
discussed, along with numerical examples for microscopic heat transfer in laser 
annealing of thin films and for the lattice Boltzmann solution of Taylor vertex 
flows and flow over a cylinder.   

11.1 Microscale Heat Conduction 

The classical heat conduction equation and its discontinuous formulation were 
presented in Chapter 4. An important assumption embedded in the equation is that 
the temperature gradient and heat flux propagate at the same speed in the media. 
As the scales, either spatial or temporal or both, become smaller, the local level 
phonon phonon interaction, the electron phonon interaction, and the phonon
photon interaction may become significant and must be specifically taken into 
consideration. These interactions can be especially important when the spatial 
scales are on the order of the mean-free path of phonons, and the time scales are on 
the order of relaxation times characterizing these microscale interactions. For 
metals, the relaxation time is around the order of a picosecond, whereas for 
dielectric crystals and insulators, the relaxation time is on the order of nanoseconds 
to picoseconds. These fast transient effects may dramatically change the heat 
transfer phenomena at a local level and it is known that the classical heat 
conduction models are inadequate to describe the microscale interactions [2]. 

 Different models have been proposed to characterize these interactions by 
adding additional terms to the classical heat conduction equation. For metals, the 
electron phonon interaction is dominant and is modeled by the electron-gas model. 
By this model, the electron gas and metal lattice are heated up in the medium by a 
mechanism that involves the excitation of electron gas, and heating of the metal 
lattice through electron phonon interaction in short time increments. For 
semiconductors, insulators and dielectric materials, however, the reference to free 
electrons is not applicable, because the electrons are bound more strongly to the 
lattices. The dominant local effect of these materials is phonon scattering and 
collision, and the contribution from electron gas is often neglected. The popular 
model describing these phonon phonon interactions is the phase-lag model. 
Phonon interaction may also be described by the phonon radiative transfer model, 
which assumes that the phonons propagate in the medium following an equation 
similar to that of radiative heat transfer. 

11.1.1 Two-temperature Equations 

The photon electron interaction is a dominant model for heat transport in metals. 
In the free electron model, the electrons are modeled as a gas and frequently collide 
with the lattices [3]. The heating mechanism involves two steps: the excitation of 
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the electron gas, and the heating of the lattice through phonon electron collisions 
in short time increments. The two-temperature model for electron phonon 
interaction involves two sub-models, with one for the temperature of the electron 
gas and the other for the temperature of the lattice. Mathematically, these processes 
are described by the following two equations [4]: 
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where the subscripts e and l refer to the electron gas and metal lattice, respectively. 
Also, C is the volumetric specific heat, and G is the electron phonon coupling 
factor determined by 
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where n is the number density of the electron gas, kb is the Boltzmann constant, and 
v is the speed of sound. The values of G for various metallic materials are given in 
[2].  

 The above two equations can be combined to produce a single temperature 
equation either in terms of the electron gas temperature Te or the lattice temperature 
Tl. In terms of the lattice temperature, the following single temperature is obtained: 
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The electron gas temperature is then calculated by Te = Tl + (Cl/G)  Tl/ t.
 From the computational point of view, the two-temperature model may be more 

efficient, and indeed it is particularly suitable for treatment by the discontinuous 
finite element formulation [5, 6].  

11.1.2 Phonon Scattering Equation 

In dielectrics, electrons are bound and not able to move freely in the structure. The 
thermal transport is dominated by phonon collision and scattering. The popular 
model describing the heat transfer by the phonon phonon interaction is the phase 
lag model, which consists of two equations, 
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where R is the relaxation time for the momentum-nonconserving process, N is the 
relaxation time for normal momentum-conserving process, C is the volumetric 
specific heat and c is the speed of sound (or phonon) in the solid. The first equation 
is the thermal balance equation for solids; Q is the external heating source. The 
second equation is a constitutive relation linking the heat flux q to the temperature 
gradient T, and the equation is derived from the generalized phonon thermal 
conductivity relation. The two relaxation times represent the microscopic effects on 
the heat transfer in solids. 

 The above equations may be combined by eliminating the heat flux, and with Q
set to 0, the resulting equation is written in terms of temperature, 
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which has the same form as the equation for the lattice temperature in the two-
temperature model. Comparison of Equation 11.4 to the preceding equation shows 
that the two equations have the same form, though the microscopic mechanisms are 
different. Equation 11.7 sometimes is referred to as the thermal equation. It is seen 
that with both R and N set to zero, but Rc2 being finite, we easily recover the 
classical heat conduction equation from Equation 11.7.  

 Equations 11.5 and 11.6 are related to the dual-phase-lag model, which treats 
the temperature gradient and heat flux in a cause effect relation. Mathematically, 
the model assumes the following form: 
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The first-order expansion of the above equation in both q and T gives the 
following equation: 
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Equations 11.5 and 11.9 may be combined to obtain a single equation for 
temperature distribution,  
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From Equations 11.9 and 11.10, the roles of q and T can be identified. 
Basically, q and T are two characteristic times or phase lags that relegate the 
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behavior of heat flux and temperature at the microscale. They represent the 
properties of materials, reflecting their internal structure responses to the applied 
conditions. If q < T , the heat flux travels faster and is the cause for the 
temperature gradient, which is the effect, and travels slower. If q > T , however, 
the temperature gradient precedes the heat flow, or the temperature gradient is the 
cause, and heat flow is the effect. If q = T, then the heat flow and temperature 
gradient travel at the same speed and we recover the classical heat conduction 
equation. To see that, we set q = T in Equation 11.10 to obtain 
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where  = k/C is the thermal conductivity. The above equation is satisfied by the 
following solution:  
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which is nothing but the classical heat conduction equation. Mathematically, the 
equation is parabolic in nature, of which the discontinuous finite element solution 
was discussed in Chapter 4. 

 If T = 0 and Q = 0, Equation 11.10 is simplified as the thermal wave equation 
hypothesized by Morse and Feshback [2], 
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The equation is hyperbolic in nature and its solution displays the wave 
behavior. Here the temperature disturbance propagates as a wave in a medium, and 
the thermal diffusivity appears as a damping effect in heat propagation. This is in 
contrast with the diffusive nature associated with the classical Fourier heat 
conduction equation. This is expected, in that when a cause effect relation does 
not exist, or the temperature gradient and heat flux travel at the same speed, 
diffusion becomes the dominant mode for spreading the temperature distribution. 

 Tzou [2] further shows that the relaxations are related to the two-temperature 
model constants and the phonon scattering constants, 
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In this way, the two phase-lag model includes both the two-temperature model and 
the thermal wave model. 
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11.1.3 Phonon Radiative Transfer Equation 

This model is obtained by solving the Boltzmann equation for an acoustically thin 
medium, in which the phonon mean free path is smaller than, or comparable to, the 
thickness of the film. The starting point is the 1-D Boltzmann equation with the 
relaxation approximation,  

eq
x ff

x
fv

t
f 11  (11.15) 

where f is the distribution function for phonons with a vibrating frequency , vx is 
the 1-D phonon velocity, and t is the relaxation time. Also, superscript eq
represents the equilibrium state.  

 The phonon intensity I in heat transport is obtained by summing up the 
distribution function over the three phonon polarizations p,

( , , , ) ( ) ( , , ) ( )
p

I x t v f x t h D  (11.16) 

where v is the speed of phonons in the direction defined by the solid angle , h is 
the Planck constant and D( ) is the density of states per unit volume in the 
frequency domain of lattice vibrations. The projection of the velocity to the x axis 
is vx = v( )cos( ) = v( ) . Note that use of f eq in Equation will give I eq.

 Substituting Equation 11.16 into Equation 11.15 and carrying out the algebra, 
we have the phonon radiative transfer equation, 
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which was first derived by Majumdar [7]. The above equation can be solved using 
the methods discussed in Chapter 9. The heat flux and internal energy at any point 
in space may be calculated by the following expressions (see also Chapter 9): 
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where d  = sin d d is the differential solid angle and D is the Debye cutoff 
phonon frequency. The two terms are related by the 1-D energy balance equation, 
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From the above equation, I eq can be expressed as an integral of I because I eq =        
I eq( , T(x)) only. This relation has been used in deriving Equation 11.17.  
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11.2 Discontinuous Finite Element Formulation

The discontinuous finite element formulation for the electron lattice model and the 
radiative transfer model are very similar to that discussed in Chapters 5 and 9, and 
thus will not be elaborated upon here. We mention, however, that in the electron-
gas temperature model the extra term can be simply treated as a source term. The 
radiative transfer equation describing the phonon interaction has a transient term 
and thus an additional time marching scheme is required to obtain the solution.  
Time integrators discussed in previous chapters (see Section 2.2.2, for example) 
can be used for this purpose. Such a scheme should be readily incorporated into the 
algorithms described in Chapter 9. It is worth noting that Equation 11.15 may be 
solved numerically using the lattice Boltzmann approach as discussed in Section 
11.5.
  Let us turn our attention to the two-phase lag model and consider the 
discontinuous finite element formulation for the numerical solution of the 
temperature distribution described by Equation 11.10. We study a general case of a 
pulsing laser heating process, where the length scale is comparable to the skin 
depth of the electromagnetic waves of the laser beam. To facilitate the 
discontinuous finite element formulation, Equation 11.10 is split into two first 
order partial differential equations, 

t
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For a thin film of thickness comparable to the skin depth of laser-induced 
electromagnetic waves, the general 3-D Gaussian laser pulses may be modeled as 
an internal energy source near the irradiating spot, namely, 
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where R is the surface reflectivity, tp is the characteristic duration time of the laser 
pulse, I0 is the laser intensity,  is the penetration depth of heating energy, and r is 
the radius of the laser beam. 

Because the physical dimensions of the media are small (in microns) and time 
duration is short (ps), a non dimensionalized equation is easier to work with for 
this type of problem. By introducing the following dimensionless parameters: 
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where T0 is the reference temperature. Equations 11.20 and 11.21 can be rewritten 
in the non dimensionalized form of  
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with  being the dimensionless heating source expressed as
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and ),,( ZYX .
The solution of the above equations requires boundary and initial conditions. 

For the calculations presented below, the following boundary and initial conditions 
are used, which in terms of dimensionless parameters, become  

0zzyyxx nwnwnwnw , ZYX ,,  (11.26a) 
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where n is the outward normal vector at the domain boundary . Note that the 
above boundary conditions on the temperatures approximate the situation where 
the heat transfer coefficient is very large at the two boundaries. Other boundary 
conditions such as periodic or reflection conditions may also be applied.  

To develop an integral formulation that is suitable for discontinuous finite 
element solutions, the computational domain is first discretized into a tessellation 
of finite elements, that is, triangles in 2-D geometries and tetrahedrons in 3-D 
geometries. Then, the governing equations (Equations 11.23 and 11.24) are 
multiplied by a pair of test functions (v,v) and integration over any of the elements 

j with the result, 
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0
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where v = (vx, vy, vz). Integration by parts of the flux term gives 
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where use has been made of the numerical fluxes ( )ˆ,/,ˆ,ˆ wh to replace the 
function fluxes at the element boundaries.  

By Galerkin’s approach, the shape function is taken in the same manner as the 
test function. Thus, the variables are interpolated over an element as follows: 
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where j is the shape function, Ne is the number of nodes per element and the dot 
on the top of a variable denotes the time derivative.  

As discussed in Chapters 4 and 5, a variety of numerical fluxes can be chosen 
for a discontinuous finite element solution. The fluxes in the above equations can 
be calculated by the following expressions:

))(1()(ˆ nwnwnw  (11.32) 
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ˆˆ (1 )T i T i T ih n n n

(11.33) 

where the indices – and + denote the back and front sides of the vector, n is the 
outward normal, î is the unit vector and ni = n î . Note that in the above definition, 

represents the use of the one-side upwinding scheme. Taking to be ½, one 
has the central flux approximations, which were first used by Bassi and Rebay [8] 
and will be used for the results calculated below as well. The central flux 
approximations provide the simplest and most efficient expressions for numerical 
flux calculations and their mathematical properties have been studied recently [9]. 
Other numerical flux expressions summarized in Table 4.2 may also be used for 
the calculations. 

Following the discontinuous finite element procedures outlined in Chapters 4 
and 5 and carrying out the calculations at the elemental level, one has the following 
matrix equation for the element: 
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where the unknown vectors, force vectors and matrices take the following forms:
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with = ( ) , and w = w( ) . The matrix elements are calculated using the 
following expressions: 
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where NS is the number of sides of element j.
The above algorithm has been applied to study the heat transfer phenomena in 

pulsing laser heating of thin films. The case studies include 1-D, 2-D and 3-D 
problems. These results are given in Figures 11.1–11.3. 

Figure 11.1 compares the analytic solution and the numerical results obtained 
using the discontinuous Galerkin finite element method as described previously. 
This is a 1-D problem for which the analytic solution is obtained using the method 
of Green’s function [6]. Numerical calculations used 200 linear elements and the 
time step is chosen as 0.001 to satisfy the stability criterion. As seen from the 
figure, excellent agreement exists between the analytic and the numerical solutions. 
At = 0.1, a thermal wave peak has just formed and the wave behavior of the 
thermal signal propagation is apparent in Figure 11.1, where a sequence of peaks 
indicates the propagation of the thermal wave initiated by the pulsing laser. At =
2.4, the thermal wave is reflected at the insulated end (X = 2) and propagates in the 
negative X direction. As time goes by, the temperature distribution along the bar 
becomes more and more even. Eventually the wave behavior disappears and a 
uniform temperature profile is attained.   

It is known that the dual phase parameter T provides the relaxation mechanism 
for the temperature gradient, and hence it is termed the phase lag of the 
temperature gradient. On the other hand, q describes the relaxation mechanism for 
the heat flux q, and therefore is termed as the phase lag of the heat flux. Physically, 
these two parameters characterize the thermal wave behavior in the medium. If T < 

q, then the temperature gradient is ahead of the heat flux, which means that the 
temperature gradient is the cause and the heat flux is the result. This is the case 
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where T (or T) = 0, which is shown in Figure 11.1(a). If T > q (i.e., T > 0.5), 
then the heat flux precedes the temperature gradient, which means that the heat 
flux is the cause and the temperature gradient is the effect. Thus, with an increase 
in T, the temperature gradient across the film is relaxed, or more specifically, 
delayed. One such case is calculated using the discontinuous finite element model 
and the results are shown in Figure 11.1(b), along with the analytic solutions.  

0 0.5 1 1.5 2
X
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1

2

3

4

analytic results

0 0.5 1 1.5 2
X
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1

2

3

4

analytic results

 (a)                                                               (b) 

Figure 11.1. Computed results of a thermal wave in a 1-D thin film: (a) comparison of the 
propagation of temperature distributions in the 1-D problem obtained analytically using the 
method of Green’s function, and numerically by the discontinuous Galerkin finite element 
method ( T = 0.0); and (b) transient development of temperature distribution with dual phase 
lags along the 1-D domain that is irradiated by a pulsing laser beam ( T = 1.0). Other 
conditions used for computations:  = 0.05 and p = 0.0 

Figure 11.2 plots the temperature propagation in a two-dimensional restricted 
converging diverging channel. The domain can be divided into four regions: the 
uniform inlet region, converging region, diverging region and uniform outlet 
region, as shown in Figure 11.2(a). A steady pulse laser beam with a width of 0.2 
and a characteristic duration of 0.1 irradiates a portion of the inlet of the channel 
with the heating source taken in the form of 
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The calculations used an unstructured mesh shown in Figure 11.2(b), which is 
obtained using the front advancing automatic meshing generation scheme [6]. The 
mesh consists of a total of 7610 linear triangular elements. Figure 11.2(c) depicts 
the time snap shots of temperature distributions in the plate with ( T = 0.0). At =
1.0, the thermal waves arrives at the two boundary walls (Y = 0.5) in the uniform 
inlet region, and the wave front starts to enter the compression region (X = 0.5). 
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At = 1.0, the thermal wave front reaches the diverging region while the wave 
reflections occur at the walls in the converging region. At = 1.5, the wave front is 
leaving the diverging region, and the whole thermal wave field evolves into a quite 
complex structure. Unlike the wave in the converging region, no strong wave 
reflection is observed at the boundary walls in this region because of the diffusive 
effect of the diverging region. At = 2.0, the wave arrives at the right side wall (X
= 1.0) and continues to evolve.  

In Figure 11.3, a simple cubic geometry is considered to illustrate the thermal 
wave propagation in a 3-D domain. The laser beam arrangement is schematically 
shown in Figure 11.3(a). The computational domain is a 2 2 0.5 cubic box, 
which is insulated from the ambient along the boundaries. A steady pulse laser 
beam with a radius of 0.1 and a characteristic duration of 0.1 irradiates a portion of 
the center of the top surface of the box with the heating source taken in the 
following form: 
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The unstructured mesh for the discontinuous finite element computations has a 
total of 96000 linear tetrahedral elements. Figure 11.3(b d) depicts the time 
evolution of the temperature distribution on the Z = 0.5 plane with T = 0.0. Once 
again, the wave-like characteristic of the propagation of the thermal wave in the 
system is observed.  

11.3 Micro and Nano Fluid Flow and Heat Transfer

Study of fluid flows in microscale systems has been documented in a recent 
monograph by Karniadakis et al. [1], where fundamental equations and their 
application to micro systems have been discussed. For incompressible flows in 
microscale systems, the Navier Stokes equations formulated for continuum media 
are also applicable under normal conditions, and the numerical techniques 
discussed in the previous chapters may be directly applied to perform flow 
simulations. One important point in this regard is that in order to numerically 
simulate these flows, the equations should be non-dimensionalized, using 
appropriate time and length scales, to prevent floating point problems from 
occurring and to ensure accuracy. For flows involving gases, however, the 
compressible effects may become important and the commonly used no-slip 
boundary conditions need to be modified to allow for the slip of fluid molecules 
along the walls.  

Theoretically, the Navier Stokes equations are the first order approximation of 
the Chapman Enskog solution to the Boltzmann equation, and are accurate only up 
to O(Kn) [10]. The Knudsen number (Kn) characterizes the regimes from free 
molecular to continuum flows and is defined as the ratio of the mean free path of 
the molecules over the characteristic dimension, 
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 (a)               (b) 

(c)         (d) 

 (e)        (f) 

Figure 11.2. Computed results of thermal wave propagation in a converging diverging
channel: (a) geometry and pulse laser heating arrangement for the 2-D 
converging diverging channel problem, (b) the unstructured triangular mesh for the 
discontinuous finite element computations, and (c f): evolution of temperature distributions 
at various instances: (b, wave-like) T = 0.0, (c)  = 0.1, (d)  = 0.5, (e)  = 1.0, and (f)  = 
1.5. Parameters used for calculations:  = 1.0 and p = 1.0 
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(a)            (b) 

(c)             (d) 

Figure 11.3. Evolution of temperature distributions of the 3D problem on the z = 0.5 plane 
at various instances (wave-like T = 0.0): (a) problem definition, (b)  = 0.1, (c)  = 0.5, and 
(d)  = 1.5. Parameters used for calculations:  = 1.0 and p = 1.0 
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where  is the mean free path of the molecules, d is the diameter of the molecules, 
H is the characteristic length, kb is the Boltzmann constant, T is the temperature, 
and p is the thermodynamic pressure. The Kn number may also be defined in terms 
of the non-dimensionalized numbers used in continuum fluid flow studies, 
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where  is the specific heat ratio, Ma = u/( RT)1/2 is the Mach number, R is the 
specific gas constant, Re = uH/  is the Reynolds number, and u is the flow 
velocity. The local Kn number is a measure of degree of rarefaction of gases in 
flows in microscale or nanoscale channels. Different regimes of fluid flow with Kn
as the indicator are schematically sketched in Figure 11.4. The continuum 
description of fluid flow motion is applicable within the range of Kn  0 to Kn = 
0.1. The no-slip boundary conditions at the walls, however, must be relaxed for the 
flows with Kn = 0.001 to 0.1. As the Kn number increases, the rarefaction effects 
become more pronounced and eventually the continuum assumption breaks down. 
The transition flow occurs when the characteristic dimension becomes comparable 
to the fluid mean path. In the range of Kn = 1 to Kn , the solution of free 
molecule flows is required, which needs to take into account the individual 
molecule behaviors. Thus, the streaming velocity at the wall is comprised of flows 
of incident molecules and the scattered molecules by the wall. 

Figure 11.4. Classification of flows from free molecular flows to continuum [11] 

 In Chapman Enskog’s perturbation theory, the system is considered as a first 
order perturbation from the equilibrium Maxwellian distribution, and the 
distribution function f is expressed in a power series, 

)2(2)1()0( fKnKnfff (11.40) 

where the small perturbation parameter is taken to be Kn [11]. Consistent with the 
Navier Stokes equations, which is accurate to O(Kn), the boundary conditions to 
the same order accuracy are needed for the velocity. This leads to the following 
slip condition of gas velocity at the wall: 
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where subscript s denotes the stream direction parallel to the wall, and n is the 
normal of the wall. Of course, in the direction perpendicular to the wall, the 
velocity is zero. 

This is consistent with Maxwell’s derivation for dilute, monatomic gases [12], 
which also includes the temperature effects and wall velocity uw,

s
T

Tn
uuu

gas

s
ws 4

32 (11.42) 

The corresponding temperature jump relation at the wall was derived by von 
Smoluchowski [11] as 
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Here, the parameter  measures the reflection of molecules diffusively from the 
walls. At  = 0, the molecules reflect specularly, indicating a reversal of their 
normal velocity due to normal momentum transfer to the wall. At  = 1, on the 
other hand, the molecules reflect diffusively when reflected from the wall with zero 
tangential velocity. Thus, the values of  and T depend on local characteristics 
near the wall including surface roughness, fluid temperature and pressure.  

 The above first order slip conditions are found to be applicable to the 
Navier Stokes equations when the Kn number is in the range of 0.001  0.1. For 
Kn > 0.1, further corrections may be needed. Karniadakis et al. [1] suggest the 
following correction in place of the no-slip condition: 
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where b is an empirical constant. Other higher order corrections to the boundary 
conditions may be obtained from the direct solution of the Boltzmann equation [13, 
14]. 

 For these flows, it is not difficult to devise the discontinuous finite element 
solution. In fact, the algorithms presented in the previous chapters can be directly 
applied, with allowance made for the slip conditions in the stream directions.  

11.4 The Boltzmann Transport Equation and Numerical Solution

One of the celebrated fundamental equations in statistical mechanics is the 
Boltzmann transport equation, which characterizes the kinetics and dynamics of the 
distribution of microscale particles, such as electrons, phonons, photons, 
molecules, etc. As suggested in Figure 11.4, the Boltzmann equation, which is an 
integral-differential equation, is applicable over the entire spectrum of Kn. We 
discuss the basics of the equation and its numerical solution in this section. 
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11.4.1 The Boltzmann Integral-Differential Equation 

The Boltzmann integral-differential equation (or the Boltzmann transport equation) 
describes neutral and charged particle transport phenomena and expresses the 
global non-equilibrium distribution in terms of the local equilibrium distributions. 
The equation enables application of the properties of equilibrium systems to the 
study of a non-equilibrium system. For a system with a non-uniform particle 
density and temperature, in each place there is a local range where the thermal 
velocities are given by an equilibrium distribution function. The distribution is 
temperature dependent and varies from place to place. Whenever a particle is 
scattered, or collides with the medium, its thermal velocity immediately after the 
collision will be that of the equilibrium distribution at the collision point. The 
equation is derived based on the balance of randomly moving particles within a 
medium with a temperature gradient and takes the following form [15, 16]:  
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where f(r, v, t) is the distribution function and its physical meaning is interpreted as 
the particle distribution at r, v and t, m is the mass of the molecule, F is the 
external force, and v is the velocity of individual molecules. The integration is 
carried out over the entire space of the velocity. Note that this equation involves 7 
independent variables (3 spatial variables, x, y, z; 3 velocity variables, vx, vy, vz; and 
time t). Also, c(v, v1, v , v1 ) is the differential scattering cross-section for the 
collision of two particles. These two particles have velocities (v, v1) before 
collision and (v , v1 ) after collision. In the equation,  = | v v1| = | v v1 | is the 
relative speed and f  = f(r, v , t), etc.

The above equation may also be written in a simplified form, 
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where d  = sin d d  is the differential solid angle subtended at the center of 
mass. In writing Equation 11.46, we have also used the following definitions: 
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The distribution function f is defined such that f(r, v, t)dxdxdydvxdvydvz = 
probability of finding a particle phase space volume dxdxdydvxdvydvz centered at r,
v and t. The distribution function f has a unit of m 3(ms 1) 3 and it satisfies the 
following conservation relation: 
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where n is the density of particles and N is the total number of the particles in the 
system.  

The Boltzmann integral-differential equation may also be written in a 
simplified form involving differential operators only, 
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where the left hand side represents the dynamics of the particle and the right hand 
side is the collision term, 
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This form is convenient for the derivation of the lattice Boltzmann equation, which 
has been used for simulation of various microscale flows (see Section 11.6 below). 

As the Boltzmann equation describes the microscopic phenomena, its use for 
the study of microscale thermal and fluid flow phenomena is obvious. It is known 
that a macroscopic description of transport phenomena is essentially an assemble 
average of microscopic phenomena. In fact, the continuity, the Navier Stokes and 
the energy balance equations can be directly derived from the Boltzmann equation. 
This allows us to establish the direct link between the microscopic and 
macroscopic descriptions of physical phenomena in thermal fluids systems. We 
outline basic procedures by which these macroscopic equations are derived from 
the microscopic Boltzmann equation. 

Let (r, v, t) be a generic variable for thermal fluids such as the flow velocity, 
momentum and kinetic energy. Microscopically, this variable is transported along 
with molecules. We obtain the transport equations for these quantities by 
integrating them with the Boltzmann equation over the entire velocity space, viz., 
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In the derivations given below, we will use the averages that are defined as 
follows:
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where the integration is carried out over the entire molecular velocity space. With 
the above definitions and noticing that F is a function of r only, but not of v, and 
making use of the symmetry condition of the scattering cross-section, we have the 
following transport or transfer equation: 
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where n is the number of particles per unit volume.  
It is known that before and after a collision of molecules, the mass, momentum 

and energy are conserved. These conservation properties are written as  

0'' 11 (11.55) 

This will make the collision term vanish, which basically means that the collision 
does not create or destroy conservation properties at a fixed location but only shift 
them in the velocity space. For example, a collision process conserves the 
momentum. The specific conservation properties of interest to thermal fluids, that 
is, mass (m), momentum (mu) and energy (mu2), are a function of velocity only,  
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Combining Equations 11.54 11.57, we have the governing equation for the 
conservation properties, 
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from which the equations for the conservation of mass, momentum and energy are 
derived. 

 Letting (r, v, t) = m and substituting into the above equation, we have the 
continuity equation, 
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where = nm and u = v . Note that u is the macroscopic velocity used in the 
Navier Stokes equations, which is just an assemble average of molecular velocity. 

To obtain the momentum equation, we let (r, v, t) =mv, and note that vi/ vj = 
ij, whence we have the macroscopic momentum equation for u,
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The second term can be further simplified such that  

))(( jjiijiji uvuvvvvv ,   with jj vu  (11.61) 

where by definition the second term is calculated by 

( )( ) ( )( )i i j j i i j jv u v u m v u v u f d
v

v  (11.62) 

Here w = v  u is the velocity of the particle relative to the local macroscopic flow 
velocity u and w 0. Further, the fluctuating velocity correlation term (i.e., the 
second term in Equation 11.56) may be decomposed into two components, 
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With u = v substituted, we thus have the momentum balance equation, 
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where ftot = F/m is the external force per unit mass including the contribution from 
gravity. This is the Navier Stokes equations for momentum transport. We see here 
that the shear stress is basically the transport of the fluctuating velocity momentum 
and the viscosity goes to oppose the shear motion and inter-molecular penetration. 

If the above equation is further combined with Equation 11.59, we have the 
following well known expression for the macroscopic momentum balance, 
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where ftot  = f + g has been subsituted and f is the external force excluding the 
gravitational force. 
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Letting (r, v, t) = mv2, and going through the same procedure above, one has 
the energy balance equation, 

uquu :pE
t
E (11.66) 

where the last term on the right side represents the viscous dissipation, E is the 
internal energy per unit mass and q is the heat flux representing energy flow per 
unit area per unit time, 
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In deriving the energy balance equation, we have used the continuity equation and 
the momentum equation to eliminate the term associated with F. In addition, the 
following statistic-averaging relations have also been applied, 
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Equations 11.59, 11.65 and 11.66 constitute the macroscopic description of 
hydrodynamics of a fluid in motion, which is derived from the statistical average of 
the Botlzmann transport equation. It is clear that the macroscopic variables, that is, 
mass ( ), velocity (u), heat flux (q), stress ( ij), pressure (p) and the internal energy 
(E), are linked to the microscopic variables through averaging processes. We 
summarize these macroscopic and microscopic relations below, 
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 The Boltzmann integral-differential equation is also useful for the calculation 
of transport properties such as viscosity, thermal conductivity and diffusivity for 
fluids. The mathematical theory developed for this purpose has been discussed in 
detail by Chapman and Cowling [10]. The use of the fluctuating theory for 
calculating the transport properties is also discussed by Isihara [15] and Kubo et al.
[16]. Boundary conditions for the solution of the Botlzmann equations in confined 
regions are discussed by Cercignani [17] and Harris [18]. They can also be used to 
provide higher order slip boundary conditions for gas flows in micro/nano 
structures.

11.4.2 Numerical Solution of the Boltzmann Transport Equation 

The Boltzmann transport equation (or the Boltzmann integral-differential equation) 
is a very complex mathematical expression. It has seven independent variables and 
it would be a formidable task to solve the Boltzmann transport equation directly. 
Two classes of computational techniques are devised to solve the transport 
equation [19 22].

The first class involves the deterministic methods, and the transport equation is 
discretized using a variety of methods and then solved directly or iteratively. 
Different types of discretization give rise to different deterministic methods. 
Methods in this category includes discrete ordinates, spherical harmonics, collision 
probabilities, nodal methods, spectral Galerkin methods, and others. By these 
methods, a discretization of the velocity space is made first, which transforms the 
equation into a system of linear, hyperbolic partial differential equations. The 
discontinuous Galerkin finite element method or other numerical methods are then 
used to discretize the physical space and solve the resulting system of differential 
equations.  

The second class of techniques includes the Monte Carlo methods. By these 
methods, a stochastic model is constructed in which the expected value of a certain 
random variable is equivalent to the value of a physical quantity to be determined. 
The expected value is estimated by the average of many independent samples 
representing the random variable. Random numbers, following the distributions of 
the variable to be estimated, are used to construct these independent samples. 
There are two different ways to construct a stochastic model for Monte Carlo 
calculations. In the first case the physical process is stochastic and the Monte Carlo 
calculation involves a computational simulation of the real physical process. In the 
other case, a stochastic model is constructed artificially, such as the solution of 
deterministic equations by a Monte Carlo technique. 
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 The direct solution of the Boltzmann equation has been used to study the flow, 
heat transfer and temperature distribution in a binary mixture of rarefied gases. To 
obtain the high order accuracy of the velocity distribution function, the complicated 
nonlinear collision integrals are computed by the deterministic numerical kernel 
method. The overall quantities (the heat flow in the mixture, etc.) and the profiles 
of the macroscopic quantities (the molecular number densities of the individual 
components, the temperature of the total mixture, etc.) are obtained once the 
distribution function is known. The use of the Boltzmann equation for the study of 
microscopic transport phenomena has been reported for a wide range of the Kn
number [19 21]. In a recent monograph, Aristov [22] has also documented various 
numerical schemes for the direct solution of the Boltzmann equation and their 
applications.

Perhaps the major difficulty with the direct solution of the equation is the 
precise treatment of the differential scattering cross-section associated with the 
molecular collision process. Fortunately, for a majority of thermal and fluids 
applications, approximations can be made to simplify the equation [23]. In the two 
sections below, we discuss the Bhatnagar Gross Krook (BGK) approximation and 
the discontinuous finite element solution of the Boltzmann BGK equation. 

11.5 The Boltzmann BGK Equation and Numerical Solution

In this section, we discuss the continuous Boltzmann BGK equation and the 
numerical solution of the equation using the discontinuous finite element method. 

11.5.1 The Boltzmann BGK Equation 

As discussed above, the Boltzmann equation describes the evolution of the 
distribution function f of a fluid. The fluid density, momentum and energy can all 
be found from the distribution function by considering the appropriate integral. In 
theory this appears straightforward; however in practice it can be difficult because 
of the complicated form of the collision term on the right hand side of Equation 
11.45. A large amount of the detail of the two-body interaction, which is contained 
in the Boltzmann collision operator, is unlikely to significantly influence the values 
of the macroscopic quantities [18]. Thus, the integral can be replaced by a 
simplified collision operator that retains only the qualitative and average properties
of the actual collision operator. Any replacement collision function, however, must 
satisfy the conservation properties, such as the conservation of mass, momentum 
and energy, imposed on the fluid system [23]. 
 A widely used approximate collision operator for thermal fluids applications is 
the BGK assumption by which the molecular collision operation is approximated 
by a time differencing using a single relaxation time [23], 
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where  is the relaxation time characterizing the molecular collision, and f (0) is the 
Maxwell Boltzmann equilibrium distribution function, 
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in which kb is the Boltzmann constant, d is the dimension of the space, m is the 
mass of the particle, and n, u (u = v ) and T are the macroscopic number density, 
velocity and temperature, respectively. It is noted that strictly speaking, the 
Maxwell Boltzmann equilibrium distribution function used in statistical mechanics 
is Equation 11.78 with u = 0 [15 18]; Equation 11.78 was used in the BGK 
approximation to the collision operator [23]. It is noteworthy also that other 
equilibrium distribution functions, such as the Bose Einstein distribution, may be 
used for other particle systems.
 Once the distribution function is known, the macroscopic properties can be 
calculated using the following definitions: 
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The derivative v f cannot be calculated directly because the dependence of the 
distribution function on the microscopic velocity is unknown. Following the 
procedures stated in [24, 25], the derivative may be approximated by 
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Then, defining an equilibrium distribution function as 
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we have the well known Boltzmann BGK transport equation, 

eqfff
t
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We note here that if the external force is absent (i.e., F = 0), f eq = f (0).

11.5.2 Discontinuous Finite Element Formulation 

For the purpose of numerical solution, Equation 11.82 may be more conveniently 
written with v normalized as a unit vector. This can be done by introducing a 
velocity scale v0, and thus we have the following equation: 
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with v̂ being the unit velocity vector, i.e., v̂ = v/v0.
The above equation is very similar in form to the radiative transfer equation for 

radiation intensity I, whose solution was discussed in Chapter 9, the only 
difference being the presence of a time derivative term here. Consequently, the 
discontinuous finite element procedure detailed in Chapter 9 for radiative transfer 
calculations can be directly applied here, with a straightforward modification for 
the transient term.  

Integrating the above equation with respect to a weighting function over 
element j yields the following integral representation: 
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where  is the control angle for the velocity space. Following the procedure 
given in Chapter 9, we can easily derive the following discretized formulation for 
element j,
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where f,(j) = [fi
(1), fi

(2), …, fi
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T, Ne being the number of nodes per element, M is 
the mass matrix, and K and F are caluclated in the same fashion as discussed in 
Chapter 9. The solution procedure involves an iterative process by which the 
numerical solution is obtained element-by-element, once an explicit time 
integration scheme is applied. 

11.6 The Lattice Boltzmann Equation and Numerical Solution

The Boltzmann BGK equation may also be integrated in certain discrete directions 
of velocity, similar in the way the discrete ordinates are applied in the solution of 
radiative transfer equation (see also Chapter 9). In the literature, the equation is 
discretized based on the quadrature rule that leads to the lattice Boltzmann 
equation, which has been widely used in simulating a variety of fluid flows and 
heat transfer at microscales [26, 27]. In this section, we discuss the derivation of 
the lattice Boltzmann equation from the Boltzmann BGK equation, the boundary 
conditions characterizing the interactions between gas molecules and the solid 
walls, the discontinuous finite element formulation, and the numerical procedures 
for the solution of the lattice equation. Numerical examples using the 
discontinuous formulation are given for Taylor vortex flows and flow pass over a 
cylinder.
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11.6.1 Derivation of the Lattice Boltzmann Equation 

The lattice Boltzmann equation can be derived in two ways [26]. One of them 
originates from the lattice gas automata model and the other from the Boltzmann 
transport equation. An important observation in the lattice gas automata 
simulations is that the fluid motion can be calculated by assuming that the 
molecules in the system are massless and the molecules move at the same speed 
but with different directions. From the lattice gas dynamics point of view, the 
density of molecules change as a result of collision and thus an accurate 
representation of the collision operator is important. The other approach to derive 
the lattice Boltzmann equation is by the direct integration of the Boltzmann 
transport equation. This approach  is considered more rigorous and is discussed 
below.

The starting point is the Boltzmann BGK equation (i.e., Equation 11.82). For 
the purpose of selecting appropriate discrete directions for integration over the 
velocity space, the equation is non-dimensionalized by using the reference time ts,
number density n0, temperature T and mass m0. In this case, the reference velocity 
can be chosen as cs = (kbT/m0)1/2, which is the speed of sound for an ideal gas 
consisting of molecules with mass m0 at temperature T. Non dimensionalized, the 
Boltzmann BGK equation takes the following form: 

*

)(**
***

*

* eqfff
t
f v  (11.86) 

where the non-dimensionalized equilibrium distribution function with F = 0 is 
given by the Maxwellian distribution, 

2
)(

exp
2
1 2**2/

*)0*()*( uvd
eq nff  (11.87) 

In the above equations, d is the spatial dimension, and the superscript * denotes the 
dimensionless quantity, f* = f/f0, u* = u/cs, n* = n/n0, t* = t/ts, and v* = v/cs. Also, 
the references of length l0, acceleration a0 and distribution function f0 are csts, cs/ts,
and n0/cs

d, respectively. 
In order to solve Equation 11.86 numerically, a discretized velocity and spatial 

space needs to be chosen. For this purpose, the distribution function f*(x*,v*,t*) is
expanded as a power series in v*. At a low Mach number, a Hermite polynomial is 
generally used because of its symmetric property [28 34]. The Hermite polynomial 
of order n is defined as [28] 

n
n

nH )1()( (11.88)

where the weighting function is defined as 
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1exp
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In the above equations, H(n) is the nth-order tensor and a polynomial of order n.
The differential operator is defined in [28] and some of the typical operations are 
given as follows: 
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The first few polynomials are given below [28]: 
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where the index i, j, k refers to the component of the velocity vector vi*.
With the Hermite polynomials defined above, the particle distribution function 

can be expressed as 

* * * * * ( ) * * ( ) *
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n

f t a t H
n

x v v x v (11.92) 

Here the subscript i is an abbreviation for the multiple indices {i1, i2, ..., in}.
Written in full, we should have the following expression: 

(0) (0) (1) (1) (2) (2) (3) (3)* *

0 , 0 , , 0

( )
N N N

i i ij ij ijk ijk
i i j i j k

f a H a H a H a Hv

    (11.93) 

If the velocity v has 3 components, then N = 3. In Equation 11.92, )(n
ia  is the 

Hermite polynomial coefficient, which is calculated by

( ) ( )* ( *) *n n
i ia f H dv v (11.94) 
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For the Maxwell Boltzmann equilibrium distribution function (Equation 11.87), 
the first few Hermite coefficients are calculated with the result, 

***)2(**)1(*)0( ;; jiijii uunaunana  (11.95) 

Since the Hermite expansion has the feature that a velocity moment of a given 
order is solely determined by the Hermite coefficients up to that order [29], the 
summation in Equation 11.92 can be truncated to several lower-order terms, 
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For a momentum calculation, M equals 2; for an energy calculation, M equals 3. 
We may now discretize the velocity space at each discretized space point x

using quadratures. Let vi* and wi (i = 0, 1, ..., NL) be the nodes and weights of a 
numerical quadrature (see also Chapter 3). If p(v*) is a polynomial with a degree 
not greater than 2NL+1, we have 
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1
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where NL is the order of integration. Thus, the Hermite polynomial coefficient can 
be calculated using the numerical quadrature, 
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For the same reason, we use numerical quadrature for macroscopic property 
calculations,
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where E* = E/E0 with E0 = cs
2. Equation 11.100 may be rewritten using the relation 

 = m* n*, with m* = m/m0, whence we have the following expressions for 
macroscopic variables: 
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By neglecting the high order terms, Equation 11.87 can be expanded as a power 
series up to the second order in u* [30 32],  
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By defining the following new variables, 
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we obtain the lattice Boltzmann equation in the form of, 
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where superscript ** means c = (3)1/2cs is used as the velocity scale instead of cs,
and the equilibrium distribution function is given by 
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Dropping out the superscript as often is done in the fluid mechanics literature, 
we have the lattice Boltzmann equation written in the following familiar form [26]: 
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and other related expressions are given as  
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where F = 0 has been assumed. 
 At this point, we may recall Equation 11.15, which was used in the derivation 
of the phonon radiative transfer equation in Section 11.1.3. Comparison of 
Equations 11.107 and 11.15 suggests that the BGK assumption was implied in 
Equation 11.5. For phonon scattering applications, however, the Bose-Einstein 
distribution function may be used instead [2].  

Turning to Equation 11.107, the numerical quadrature provides guidance on 
selecting the direction i in the lattice Boltzmann equation. Various quadrature 
schemes can be used. One popular scheme is the 9-bit lattice, which is shown in 
Figure 11.5(a). By this scheme 9 directions are selected in the phase space for 2-D 
problems, viz., 

)0,0(0e , i = 0, (11.110a) 

(cos( (  - 1) / 2), sin( (  - 1) / 2)), 1, 2,3, 4i i i ie  (11.110b) 

 2(cos( (  - 4.5) / 2), sin( (  - 4.5) / 2)), 5,6,7,8i i i ie  (11.110c)

with wi = 4/9, for i = 0; 1/9 for i = 1,…,4; 1/36 for i = 5,…,8. The 9-bit lattice can 
be easily extended to 3-D calculations. Application of the same numerical 
quadrature results in a 27-bit lattice for 3-D problems, 

0),0,0,0(0 ie  (11.111a) 

1,2,...,6),1,0,0(),0,1,0(),0,0,1( iie  (11.111b) 

7,8,...,18),1,1,0(),1,0,1(),0,1,1( iie  (11.111c) 

,20,...,2691),1,1,1( iie (11.111d) 
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with wi = 8/27 for i = 0; 2/27 for i =1, 2, …, 6; 1/54 for i =7, 8, …, 18; 1/216 for i = 
19, 20, …, 26. Construction of this 27-bit lattice for a cube can be a straightforward 
superposition of the 2-D 9-bit lattice in three dimensions. For 3-D problems, a 15-
bit scheme may also be employed [35], 

0),0,0,0(0 ie  (11.112a) 

1,2,...,6),1,0,0(),0,1,0(),0,0,1( iie  (11.112b) 

,8,...,147),1,1,1( iie (11.112c)

with wi = 2/9 for i = 0; 1/9 for i =1, …, 6; 1/72 for i =7, …, 14. The 15-bit lattice 
for 3-D calculations is illustrated in Figure 11.5(b). 

  (a)                                                     (b) 

Figure 11.5. Velocity lattices for lattice Boltzmann calculations: (a) a 9-bit lattice for 2-D 
computations and (b) a 15-bit lattice for 3-D computations [35] 

The lattice Boltzmann equation can also be used to derive the macroscopic 
Navier Stokes equations [26]. The procedure involves the small parameter 
expansion of the distribution function f similar to that used by Chapman Enskog’s 
approach [10] to the solution of the Boltzmann integral-differential equation and 
summing up in all discrete directions i. The detailed process is given in [26, 30], 
where it is shown that the relaxation time  is related to the kinematic viscosity as 
follows:
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6
12v  (11.113) 

It is important to note that the quantities in the above equation are dimensionless. 

11.6.2 Boundary Conditions  

In the lattice Boltzmann simulation, boundary conditions on the fluid velocity are 
usually imposed on the particle distribution function. Chen and Doolen [23] 
discuss this point in their review. Typically, the following boundary conditions are 
applied.

11.6.2.1 Bounce Back Boundary Conditions (No Slip)  
The no-slip velocity condition on a motionless wall is modeled by a particle 
distribution function bounce-back scheme. Bounce-back means that, when a 
particle distribution streams to a wall node, the particle distribution scatters back to 
the node it came from. For the 9 velocity 2-D lattice as shown in Figure 11.5(a), for 
instance, the idea of bounce-back can be illustrated in Figure 11.6(a). In this 
diagram, the physical boundary is assumed to lie midway between the closest 
lattice points in the flows and the closest boundary point (i.e., a point that lies 
inside the solid surface). This assumption is motivated by the analysis of Ziegler 
[36] who showed that, if the rigid boundary was located midway between the 
nearest lattice sites, the bounce-back scheme would produce second order 
accuracy.

(a) Bounce-back (no slip)               (b) Symmetric (free slip)  

Figure 11.6. Schematic illustration of the bounce-back (a) and symmetric (b) boundary 
conditions for lattice Botlzmann simulations 

11.6.2.2 Symmetric Boundary Conditions (Free Slip)  
On a free stress surface, one can use a symmetric boundary condition (“free slip”) 
on a particle distribution function. This condition states that a particle distribution 
function is equal to that on the opposite side of the symmetric surface with equal 
and opposite normal components of velocity. The free slip boundary condition is 
shown in Figure 11.5(b).  

25 6

748

25 6

7 4 8
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11.6.2.3 Inflow and Outflow Boundary Conditions (No Gradient)  
The additional two boundary conditions are inflow and outflow conditions, which 
are illustrated in Figure 11.7(a) and 11.7(b), respectively. These arrangemens result 
in no gradient of a particle distribution function in the inflow or the outflow.  

                    (a) Inflow                          (b) Outflow 

Figure 11.7. Inflow (a) and outflow (b) boundary conditions used for lattice Boltzmann 
simulations

11.6.2.4 Force Field Conditions 
Another way to treat a boundary is to impose an artificial force field to the fluid. 
This method was proposed by Goldstein et al. [37]. The main idea is to add an 
artificial body force to the Navier Stokes equation and choose an appropriate value 
so that the points inside the solid objects move with the correct velocity. This 
method was to impose boundary conditions on curved and moving surfaces in a 
lattice Boltzmann simulation of a turbulent stirred tank, and good agreement with 
experimental results was obtained for the mean flow and turbulent statistics [38, 
39]. The advantage of this technique is that it can provide a relatively simple way 
of handling complex geometries and moving objects such as the impeller blades in 
the stirred tank. 

11.6.2.5 Moving Wall Conditions 
In the case of moving solid wall or moving wall in the shear flow, besides the 
artificial force field, there is another approach to impose the boundary condition. 
The particle distribution function can be set as a bounce-back plus an extra term in 
order that the velocity on the solid wall is the same as the real value. This approach 
was used to simulate the solid fluid suspension systems [40, 41]. 

11.6.3 Discontinuous Finite Element Formulation 

To develop a discontinuous finite element formulation for the lattice Boltzmann 
equation (Equation 11.107), we integrate the equation with respect to the weighting 
function over element j,

5
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The above equation is integrated once and the fluxes at the element boundaries are 
replaced by numerical fluxes. This procedure yields the final integral 
representation for the lattice Boltzmann equation, 
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With an appropriate choice of numerical fluxes at the element boundaries and 
interpolation basis functions, the above equation can be readily integrated 
numerically. Following the procedures developed in Chapter 5, one reduces the 
original partial differential equation to a system of ordinary differential equations,
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(11.116) 

where L is the operator and Ui,(j) = [fi
(1), fi

(2), …, fi
(2), …, fi

(Ne)](j)
T. As usual, subscript 

(j) refers to the jth element and superscript (k) on f to the kth node local to element 
j. The equations can be integrated using the Runge Kutta time marching scheme to 
obtain a numerical solution. 

 The discontinuous formulation presented above is applied to simulate a two 
dimensional Taylor vortex flow in a rectangular domain (30 120) with periodic 
boundary conditions. The initial velocity field is as follows: 

)sin()cos()0,,( 21 ykxkyxux (11.117a)

)cos()sin()/()0,,( 2121 ykxkkkyxuy (11.117b) 

where k1 = k2 = /16.
For this problem, the analytic solution is also available, which takes the 

following form: 

)sin()cos())(exp(),,( 21
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)cos()sin())(exp()/(),,( 21
2

2
2

121 ykxkkkvtkktyxuy   (11.118b) 

which can be used to compare with numerical simulations. The simulation uses a 
structured mesh, with linear triangular elements used to approximate the local 
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distribution of the partition function f. The Euler forward time integration is used 
and the time step size is 0.01 to satisfy the CFL condition.  

(a)

(b)                                                                         (c) 

Figure 11.8. Discontinuous finite element solution of the lattice Boltzmann equation: (a) 
comparison with analytic solution, (b) 3-D view of the y component of the velocity field at t
= 100 and (c) vortex structure in the flow field at t = 100 
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(a)            (b) 

     (c)                   (d) 

       (e)             (f) 

Figure 11.9. Simulation of steady and unsteady flows passing a cylinder: (a,b) unstructured 
triangular mesh, (c,d) stream lines and vorticity distribution in a steady flow and (e,f) stream 
lines and vorticity distribution in an unsteady flow [42] 

The computed results for the Taylor vortex flow are given in Figure 11.8. As is 
seen, the computed results compare well with the analytical solution, validating the 
discontinuous finite element method presented. The 3-D view of the instantaneous 
flow distribution and the vector flow field at t = 100 are also plotted. Strong vortex 
flow is observed.  
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The discontinuous finite element procedure has recently been applied by Shi et 
al. [42], who used a spectral basis function for local interpolation. The numerical 
flux is approximated by Roe’s flux model. They applied the discontinuous finite 
element model to study the flow passing a circular cylinder. Figure 11.9, taken 
from their work, shows the unstructured meshes (a,b) and computed results include 
both steady state flows passing a cylinder (c,d) and vortex shedding (e,f).  

Exercises

1. Solve Equation 11.15 using the discontinuous finite element method. 
2. Consider that a 1-D domain is heated by a pulsing laser heating source 

irradiating at X = 0 along the X direction, with the heating source given by 
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Show that the analytic solution for the temperature distribution takes the 
following form: 
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where XL is the dimensionless length of the solid, = m
2  (1 + T m/2)2,

m = m /2, and N  is the number of the terms when  is changing from 
positive to negative. 

3. Develop a discontinuous finite element formulation for a 1-D laser heating 
problem and compare the results with the analytic solution shown above. 

4. The correlation function is defined by  

/ 2

/ 2

1( ) ( ) lim ( ) ( )
s

s s
X t X t X t X t dt

s

By the Fourier transformation, show that the above equation can also be 
written as 

0
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and further show that 
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4
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5. The Langevin equation is given by the following ordinary differential 
equation:

)(tXv
dt
dv

Using the equations derived in Problem 4, derive the relation, 
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Furthermore, show that if G( ) = const and <v2(t)> = kbT/m, then 
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which is the well known Green Kubo relation for calculating transport 
coefficients.
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6. From the definition of the heat flux, 
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derive the following relation: 
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where k is the thermal conductivity, and is calculated by 
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7. Derive the Navier Stokes equations, the equation of continuity, and 
Equation 11.113 starting with the lattice Boltzmann equation. 

8. Develop a discontinuous finite element code for the solution of the lattice 
Boltzmann equation for a 2-D channel flow. 
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12

Fluid Flow and Heat Transfer in Electromagnetic 
Fields

In many thermal and fluids systems, external fields such as the electromagnetic 
fields are imposed to achieve a certain desired performance through the interaction 
of the fluids, or fluid motion with the imposed fields. Practical systems include 
induction and microwave heating, electromagnetic stirring, magnetic control of 
turbulent flows and thermal fluctuations, plasma spaying and micro actuation in 
fluidic devices, etc. Strictly speaking, the general, rigorous mathematical 
description of the electromagnetic field in a moving medium and its mutual 
coupling with the thermal field and fluid motions in the medium should be made 
within the framework of Einstein’s relativistic theory. For most engineering 
applications, however, the speed of the motion is much smaller than that of the 
light, and thus the commonly known magnetohydrodynamic theory provides an 
adequate theoretical basis for the description of the electromagnetic, thermal and 
fluid flow fields and their interactions. The magnetohydrodynamic equations are a 
nonlinear set consisting of the Maxwell equations, the Navier Stokes equations 
and the thermal and species transport equations, with the coupling between the 
fields made through constitutive relations and sources/sinks. 

In order to accurately interpret the behavior of an electromagnetically assisted 
thermal fluid system for both fundamental understanding and process design, 
information on the distribution of the thermal, fluid flow and electromagnetic fields 
is required. This in turn requires the solution of the magnetohydrodynamic 
governing equations. Thus far, we have discussed extensively the application of the 
discontinuous finite element methods to the solution of the thermal and fluid flow 
equations for various systems. These methods, as will be shown below, may be 
applied with straightforward modifications in the source/sink terms, for the 
analysis of thermal and fluid flow systems under the influence of an 
electromagnetic field. The solution of the Maxwell equations is a subject of 
computational electromagnetics and many different techniques, both analytical and 
numerical, have been developed. Recently, the discontinuous finite element 
formulation has also been extended to solve the complete set of the Maxwell 
equations. One important aspect of the Maxwell equations, which is different from 
the thermal fluids equations, is that the former will in general transcend the region 
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of a conducting fluid and, ideally, extend to all of space. Consequently, the solution 
of these equations needs to discretize the entire space, even though the interest of 
the solution is primarily in a confined region for thermal fluids applications. This is 
in contrast with the solution of the thermal and fluid flow equations, which is often 
obtained only in a region of interest. 

This chapter is concerned with the discontinuous finite element solution of 
these electromagnetically induced thermal and fluid flow problems. It starts with a 
brief discussion of the magnetohydrodynamic theory of the electromagnetic field 
and its interaction with the thermal and fluid flow fields. The use of the 
discontinuous finite element method is then presented for the solution of the 
Maxwell equations. The coupled solution of electromagnetic and thermal fluids 
systems is also discussed. Numerical simulation of electromagnetically driven fluid 
flow and thermal systems is illustrated through examples taken from the 
applications in the areas of microwave heating, electrokinetically driven flows in 
microchannels and electrically induced free surface deformation.  

12.1 Maxwell Equations and Boundary Conditions 

In this section, we briefly discuss the Maxwell equations and the boundary 
conditions that are relevant to electromagnetically induced thermal and fluid flow 
applications. An in-depth discussion of the electromagnetic theory and its 
applications has been documented in well known textbooks [1 3]. 

12.1.1 Maxwell Equations 

The electromagnetic field distributions in continuum media are governed by the 
Maxwell equations, which represent one of the most elegant and concise ways to 
describe the fundamentals of electricity and magnetism. The Maxwell equations 
are four vector equations summarizing the basic laws governing the 
electromagnetic field behavior in a medium [1 3], 

t
BE  (12.1) 

JDH
t

(12.2)

0B (12.3)

eD (12.4)

where E is the electric field, D is the electric displacement field, B is the magnetic 
induction (magnetic flux density) field, and H is the magnetic field. Also, e is 
“free” (including both induced and impressed) electric charges, which do not 
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include bounded charges such as induced dipoles in dielectrics. The current density 
consists of both the impressed and induced contributions: J = Je + Ji, Ji being 
impressed and Je induced. The relations between E and D, and between B and H,
are specified by the constitutive equations,

EEPED e1000 (12.5)

HHMHB m1000 (12.6)

where 0 is the permittivity of free space, P is the polarization, 0 is the 
permeability of free space, and M is the magnetization. In a linear, isotropic 
medium, which we consider in this chapter,   and  are constants. In general H (or 
D) is not a unique function of B (or E), but depends upon the earlier time evolution 
(hysteresis). Also, 0 and 0 are related through the following relation: 

2
00 c (12.7)

where c is the speed of light.  
Just as the mass is conserved in a fluid flow system, so are the electric charges, 

which cannot be created or destroyed. The continuity equation for charge 
conservation has the form of 

0J
t
e (12.8)

which follows from the Maxwell equations. Specifically, Equation 12.8 is a 
combination of Equations 12.2 and 12.4. 

12.1.2 Boundary Conditions

As for other boundary value problems, boundary conditions need to be specified to 
obtain the electromagnetic field distribution in a domain. The boundary conditions 
that the electric and magnetic fields must satisfy can be deduced by a standard 
procedure, which involves creating a pillbox-shaped differential volume at the 
interface between two media, integrating the Maxwell equations over the volume 
and taking the relevant limits. We give below the boundary constraints for the 
electric and magnetic fields but omit the detailed procedures to derive these 
conditions, which one can find in standard textbooks [1, 2]. 

12.1.2.1 Interface Boundary Condition
At the interface between two media, the tangential electric field must be continuous 
and the normal component of the electric displacement field suffers a jump. These 
two conditions are mathematically stated as 

021 EEn (12.9)
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s21 DDn  (12.10) 

where s is the free surface charge density. Also, at the interface between two 
media, the tangential magnetic field experiences a jump, and the normal 
component of the magnetic induction field is continuous, 

sJHHn 21 (12.11)

021 BBn (12.12)

where Js is the tangential surface currents along the interface. Here the normal is 
outward from medium 2 to medium 1. We note that only two of the above four 
boundary conditions are independent: one from Equations 12.9 and 12.10 and the 
other from Equations 12.11 and 12.12. 

 Sometimes, when the current density is used as a variable, the boundary 
condition needs to be prescribed for it. The same pillbox procedure gives the 
surface charge conservation at the interface in the following form [4, 5]: 

t
s

ss JJJn 21 0 (12.13) 

where s is the surface derivative operator. Here, s includes both external and 
induced surface charges, but does not include the polarization surface charge on 
dielectric surfaces.  

 The above boundary conditions are general. For special cases, these conditions 
take simpler forms. We consider several special and yet commonly encountered 
situations below.  

12.1.2.2 Perfect Conducting Surface 
If medium 2 is assumed to be a perfect conductor, then E2 and B2 are zero and we 
have, E = E1 and B = B 1,

0En  and 0Bn  (12.14a) 

where n is outnormal pointing away from the conducting medium. Note that in this 
approximation, the conducting boundary can support a surface current and surface 
charge,

sDn  and sJHn   (12.14b) 

Here the physics is such that n D1 = es + n D2 = es + Ds, where es are “free” 
surface charges and Ds =n D2 induced charges. Thus strictly speaking, n D2 is not 
“truly” zero but its effect is simulated by Ds. These conditions are often used to 
model a metal surface of a waveguide or cavity, such as a microwave oven for 
thermal processing or hyperthermia. 
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12.1.2.3 Impedance Condition 
The impedance condition is often used in computational electromagnetics. By 
definition, impedance Z (Z = R + j L + 1/(j C)) is the input impedance for an R-
L-C circuit and we also have 1/Z as the admittance for an R-L-C circuit. But in 
general for an electric circuit, V=ZI, V being the voltage, and I the current. In this 
sense, the impedance acts as a resistance. 

For a distributed electromagnetic field, the impedance is calculated by the 
following expression: 

Hn
E

H
En

Z  (e.g., 
y

x

H
EZ  for a plane wave)  (12.15) 

Note that the analogy is such that E  V and H  I.
If medium 2 is an imperfect conductor (for example, a conductor coated with a 

thin layer of dielectric on the surface), then the following impedance condition 
applies at the interface: 

HnnEnE 0Z  or nHnHEn 0Z (12.16)

Note that E – (n E)n = n (n H). For the 2-D case, we have, with zEẑE and
ˆ ,zzHH

z
rz Ejk

n
E 1  or zr

z Hjk
n

H
1  (12.17) 

where = ( r1/ r2)1/2 is the normalized intrinsic impedance of medium 2 and Z0 =
( / 0)1/2 is the intrinsic impedance of free space. By definition, 1/  is the intrinsic 
admittance of medium 2. 

12.1.2.4 Sommerfield Radiation Condition 
If all sources are immersed in free space, then the electric and magnetic fields are 
required to satisfy the Sommerfield radiation condition, 

0
0

H
E

H
E

rjkr
r

ˆlim (12.18a)

where .222 zyxr  For a 2-D problem, 22 yxr and the above 
condition simplifies to 

0
0

z

z

z

z

r H
E

jk
H
E

r
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12.1.2.5 Symmetry Boundary Condition   
The symmetry boundary condition for the electromagnetic fields is applied as 
follows:

For calculating E,

0nH  (perfect magnetic conductor) (12.19a)

0nE  (perfect magnetic conductor)  (12.19b) 

For calculating H,

0nE  (perfect electrical conductor) (12.20a)

0nH  (perfect electrical conductor) (12.20b)

12.2 Maxwell Stresses and Energy Sources 

The Maxwell stresses and energy flux are important quantities that are directly 
responsible for fluid motion and thermal balance. They appear either as a source 
term in the momentum and thermal balance equations or as additional terms in the 
boundary conditions. 

The Maxwell stresses represent the interaction of the electric and magnetic 
fields and are of the following general form [2]: 

TT
T HHEEIBHDE 5.0    (12.21) 

In the Maxwell stresses, the first two terms are directly responsible for bulk flows 
and the last two terms cause the interface shape to change because they add to the 
pressure if  and  are constant. In the case that these properties are a strong 
function of the density, the last terms will also contribute to the flow motions, 
which are often referred to as the electrorestrictive and magnetorestrictive stresses. 
For simplicity, we take both /  and /  to be zero.   

When an electromagnetic field is present, the momentum balance for the fluid 
flow needs to include the Maxwell stress tensor,

BHDEu p
Dt
D      (12.22) 

and the thermal balance equation needs to incorporate the Joule heating effects, 

EJqu
Dt
DC (12.23)
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where q is the heat flux and the last term results from the self-interaction of the 
electric field, namely the Joule heating source. 

 The mathematical description of electromagnetically induced thermal and fluid 
flow problems consists of the Maxwell equations 12.1–12.4 and Equations 12.21–
12.23. These equations constitute the basis for the mathematical description of 
magnetohydrodyanmic phenomena. 

12.3 Discontinuous Formulation of the Maxwell Equations  

The use of the discontinuous finite element method for the solution of the Maxwell 
equations has recently received much attention. Some useful algorithms have been 
proposed and are discussed in this section. Their use for practical process design of 
electromagnetically assisted thermal and fluids systems, however, has yet to be 
tested. More information is also needed to assess the numerical performance of the 
discontinuous schemes in comparison with other established methods such as the 
finite element method, the boundary element method, the finite difference time 
domain method and the method of moments. 

12.3.1 Solution in Time Domain 

The Maxwell equations are first order vector partial differential equations. As a 
result, the discontinuous finite element method may be applied directly to solve 
these equations. To develop a discontinuous formulation, the Maxwell equations 
are re-written in the following conservation form [6, 7]:  

SFQ
t

(12.24a)

where the variables are defined as follows: 
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In the above equations, the superscript i denotes the incident fields, and ei is the 
unit vector in the ith Cartesian coordinate direction. 

 Following the general procedure for a discontinuous formulation of boundary 
value problems, the above equation is integrated over element j with respect to 
testing functions. With unknowns approximated using the polynomial basis 
function, followed by elemental calculations, one has the following equation: 

),( SFQ L
dt
d (12.25)

where L is the discretized matrix operator.  
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 The above matrix equation can then be integrated in time using the 
Runge Kutta integrator, once the numerical fluxes are determined. Kopriva et al.
[6] tested the above algorithm and used the fluxes by solving a Riemann problem. 
Their results compare well with the analytic solution for a 2-D scattering problem. 
Hesthaven and Warburton recently studied the stability, convergence and accuracy 
of the method [7]. The construction of a locally divergence-free function space for 
the discontinuous solution of the Maxwell equations has also been proposed, which 
uses the Lax Friedrichs fluxes [8, 9]. 

12.3.2 Solution in Frequency Domain 

For applications in electromagnetic wave propagation, the vector wave form of the 
Maxwell equations is may also be written in frequency domain. With E(x, t) (or 
H(x, t)) = E(x)exp(j t) (or H(x)exp(j t)), the frequency-based vector wave form 
for a charge-free medium can be obtained by combining the original Maxwell 
equations, 

JEE 0
2
0

1 )( jk cc (12.26)

0E (12.27)

where E = E(x) and, for convenience, this holds true for frequency-domain based 
method from here on unless indicated otherwise. In solving the above equations, 
the E = 0 condition may pose a problem. Perugia et al. [10] proposed a 
discontinuous finite element formulation with the constraint E=0 enforced by an 
internal penalty approach, which is often used in the calculations of incompressible 
fluid flows. Houston et al. [11] recently presented a non-stabilized discontinuous 
finite element formulation for the solution of the Maxwell equations in frequency 
domain. 

12.3.3 Solution in Other Forms 

For many thermal and fluid flow applications, the Maxwell equations may be 
reduced to the other forms that can be solved using the techniques discussed in 
Chapters 4 and 5. This is illustrated through numerical examples discussed below. 

12.4 Electroosmotic Flows 

Over the past decade, considerable attention has been received in the research area 
of electroosmotic flows in micro- and nano-channels, which are essential 
components for microfluidics or on-chip laboratories for biochemical applications. 
As the ratio of the volume over the surface area becomes small in these fluid 
systems, the surface and interfacial phenomena become increasingly important. In 
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this section, we discuss the basic principle of this type of electrically driven flow 
and the discontinuous finite element algorithms for the flow simulation. 

12.4.1 Governing Equations 

Electroosmotic flows, which were discovered many decades ago, are driven by the 
interfacial electric forces near the interface between the electrolyte and a solid wall 
[12]. The polarization of charges near the solid surface results in a double layer or 
Debye layer at the channel walls, where electrochemical reactions at the 
wall liquid interface cause a surplus of ions in the liquid near the wall surface. 
These ions are closely adsorbed near the wall surface and balance the negative 
charges on the wall so that the bulk of the liquid remains electroneutral. When an 
external electric field is applied along the channel, however, a shear force gradient 
is produced in the double layer, which causes a motion of bulk fluid or 
electroosmotic flow, thereby pumping the bulk electrolyte in the direction of the 
electric field. As a result of the motion, a drag will be produced at the wall, which 
as usual opposes the fluid motion. This flow is illustrated in Figure 12.1. 

Figure 12.1. Illustration of the Debye double layer near the solid wall and flow regions 
separated by the slip plane [11] 

 The thickness of the double layer or the Debye layer is typically on the order of 
1 10 nm. If the channel size is larger than the Debye thickness, then the 
description of the flow in the Debye layer may be decoupled from the bulk flow. 
Santiago [13] has recently analyzed the inner motion near a charged surface. 
According to his analysis, the electroosmotic flow velocity of the bulk fluid is 
proportional to the magnitude of the electric field E applied parallel to the wall, 
with a constant proportionality termed the electroosmotic mobility e. For these 
cases, the flow in the bulk channel can be modeled by a slip condition, where the 
velocity parallel to the walls us is given by 

Euu ewalls (12.28)
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with subscript s referring to the direction along the surface of the wall, e = / ,
and the -potential [13]. This condition is similar to the Maxwell correction to 
the gas flows in small channels. The slip condition, however, becomes invalid 
when the size of the channel is comparable to the Debye layer. Experiments 
suggest that the slip model breaks down in a channel of width below 100 nm [14, 
15]. 

 Studies further show that near the wall surface, the ion density follows a 
Maxwellian distribution [12], 

Tk
yyez
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i

i )(
exp

,
(12.29)

where ci is the concentration of species i, zi is the valence of species, e is the 
electric charge,  is the electric potential in the double layer, and kb is the 
Boltzmann constant. 
 For this type of problem, electrostatics is applicable and thus two of the 
Maxwell equations (Equations 12.1 and 12.4) can be combined, giving rise to the 
Poisson equation. Substituting Equation 12.29 into the Poisson equation, we have 
the following Poisson Boltzmann equation for :

2
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z e y ye z c
k T

(12.30)

where the right hand side represents the contribution from the ionic charges in the 
liquid solution (– e/ ), and the sum is taken over all ionic species. If we apply e x = 
1 – x + O(x2) and note that c ,izi = 0, then the above equation simplifies to 

2
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(12.31)

where D is the Debye length defined as 
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b
D cze
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22 (12.32)

We note that the Debye length increases with temperature and that the charge 
density in the system is given by 

2
D

e (12.33)
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Equation 12.31, coupled with the potential equation for the applied electric 
field distribution and the momentum balance equation, completes the mathematical 
description of electroosmotic flows in micro or nanochannels. We summarize these 
equations in non-dimensionalized form below for such flow in a microchannel, 

22 )(kh (12.34)

02 (12.35)

0u (12.36)

)()(Re 22 hHkp
t

uuuu (12.37)

where the length is scaled by the channel width h, the potential by the value of 
the applied potential ( ), the potential  by the zeta potential , the velocity u by 

/ H, where H is the distance between reservoirs 1 and 2 (or two electrodes), 
and the pressure by /hH. In the above equation, Re is the flow Reynolds 
number defined as 

Re h
H

(12.38)

It is noted that Equations 12.34 and 12.35 represent two contributions to the total 
electric field in the system, E = –   – .

12.4.2 Discontinuous Finite Element Formulation 

To implement the discontinuous finite element method, the governing equations 
(Equations 12.34 12.37) are rewritten as a set of first order differential equations, 

s (12.39)

2)(khs (12.40)

q (12.41)

0q (12.42)

0u (12.43)

u (12.44)
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fuuu pt )(Re (12.45)

qf )( 2hHk (12.46)

Multiplying Equations 12.39–46 by smooth test functions v,  , v, r, r, w and w
respectively, and integrating by parts over an arbitrary element j, followed by 
replacing the fluxes at the element boundary by numerical fluxes, we have the 
following integral representations: 

ˆ
j j j

h h h jdV dV dSs r r n r (12.47)

2ˆ ( )
j j j

h h j hr dV rdS kh r dVs s n   (12.48) 

ˆ
j j j

h h h jdV dV dSq w w n w   (12.49) 
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ˆ 0
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jh hdV dS dVv v n f v   (12.53) 

As discussed in Chapter 5, the numerical fluxes need to be selected based on 
the diffusion and convection mechanisms. With appropriate fluxes selected, and 
the unknowns approximated using the local interpolation functions, the matrix 
equations can be obtained for the above integral equations, 

FUK )( j (12.54)
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where U(j) is the vector containing the unknowns local to element j, , q, , u, ,
and p. The solution procedure is iterative and involves an element-by-element 
sweep over the entire computational domain as detailed in Chapters 4 and 6. 
 The above algorithm has been applied to simulate electroosmotic flows in a 
cross-channel configuration. An unstructured triangular mesh is used, as shown in 
Figure 12.2a. The conditions used for the calculations are such that an insulated 
condition is imposed at all walls for , and = 1 at the left entrance, = 0 at the 
right outlet, and =0.5 at the top and bottom outlets. For the potential field  due 
to the surface charge, the insulation condition is imposed at all entrances, and =

1 at the walls. For the flow field, u = (1, 0) at the entrance, and the outflow 
conditions are applied at all other outlets. The computed results are plotted in 
Figure 12.2. 

  (a)              (b) 

 (c)            (d) 

Figure 12.2. Computed results for electroosmotic flows: (a) unstructured mesh used for 
computations, (b) the potential distribution for the external electric field, (c) the electric 
potential distribtution due to charge distribution and (d) the velocity field 
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12.5 Microwave Heating 

Microwave heating has been widely used in the food and materials processing 
industries, and in hyperthermia treatment of cancer patients. The essential idea of 
microwave heating is that the resonance excitation of the dipoles in dielectric 
materials generates a heating source. The governing equations for the 
electromagnetic and thermal field distributions in general consist of the frequency-
based vector wave equation derived from the Maxwell equations and the energy 
equation [16],

JEE 0
2
0

1 jk c
c

(12.55)

*( )TC T
t

J E (12.56)

where superscript * denotes the complex conjugate. The thermal radiation 
boundary conditions are prescribed for the temperature solution. The condition for 
the electromagnetic field on the microwave cavity wall is such that the tangential 
electric field is zero, 

0EnE t (12.57)

where subscript t refers to the tangential component. Also, for the port with wave 
incident,

incn ( E) n (n E) U  (12.58) 

where Uinc is due to the incident wave and for the port with electromagnetic wave 
being transmitted, 

         0n ( E) n (n E)     (12.59) 

where c(= / o) is the relative magnetic permeability, c(= '-j e/( 0 )) results 
from a combination of the induced current ( E) and the displacement current 
(j 0( '–j '')E), with e = 0 ''+ , and k0 the system parameter, k0

2 = 2
0 0.

 We consider a hybrid continuous edge finite element and discontinuous finite 
element method for the solution of the electromagnetic and thermal field 
distribution in a microwave heating system.  

The edge finite element formulation starts with the three-dimensional wave 
equation in frequency domain, or Equation 12.55. After multiplying the equation 
by a vector weighting function W and integrating over the microwave cavity (or 
computational domain) and making use of the vector Green’s theorem identity and 
the boundary conditions, we have the integral representation of the vector wave 
equation [17 19],
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21
c i

r
k dV j dVE W W E W J

inc
e dSn E n W W U  (12.60) 

Following the standard finite element procedure and using the edge elements to 
approximate the unknown field, we have the final global matrix, 

KE = F  (12.61) 

where E is the unknown vector of nodal values of the electric field over the entire 
computational domain. Note that Equation 12.61 results from conventional edge 
finite element formulation and cross-element continuity is strongly enforced. This 
is in contrast with the discontinuous finite element formulation, which weakly 
enforces the across-element continuity. The solution of Equation 12.61 is obtained 
using the sparse matrix solver coupled with the matrix rearrangement using the 
minimum degree dissection. The detailed solution procedure is given in a recent 
paper [20]. 

The temperature calculations are obtained using the discontinuous finite 
element formulation stated in Chapter 4. In this case, the Joule heating is treated as 
a heating source for the balance equation and easily incorporated once the electric 
field distribution is known. The computational procedure for this type of problem 
can be either iterative or hierarchical. If the electrical conductivity is a function of 
temperature, then the solution requires an iterative procedure between the 
temperature and electromagnetic calculations over each time step. If the electrical 
conductivity can be taken as a constant, then a hierarchical coupling is possible. In 
this case, the electric field needs to be calculated once, and the Joule heating source 
is input into the thermal balance equation for the temperature distribution 
calculations. A set of these calculations is given in Figure 12.3. 

12.6 Electrically Deformed Free Surfaces 

Here we consider a problem involving a deformation of droplet surfaces by an 
electric force. The application of this phenomenon has been in electrospray and 
electrostatic levitation. Figure 12.4 illustrates the system to be analyzed. An 
electrically conducting droplet is charged positively and placed in an electrostatic 
field generated by a pair of electrodes far apart. The field is positioned upward 
such that the Coulomb force resulting from the interaction of the charges and the 
applied electric field will be able to levitate the droplet in air by counterbalancing 
the downward gravitational force. Aside from supporting the weight of the droplet, 
the electric field will also produce a normal stress. This electric stress is distributed 
non-uniformly along the surface, causing the shape of the droplet to deform. The 
equilibrium surface of the droplet is determined by the balance of normal stresses 
acting on the surface, which include the Maxwell stress, the hydrostatic stress and 
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surface tension effects. We note also that the tangential stress for the droplet under 
an isothermal condition is constant and thus does not induce an internal flow in the 
droplet. A thermally induced flow inside the droplet may also occur, the study of 
which has been presented elsewhere for electrostatic levitation applications [21]. 
Here we are concerned about the numerical calculation of the equilibrium shape of 
the droplet under both normal and microgravity conditions. 

(a) Calculated temperature profile 

     
(b) Cut-view of calculated temperature distribution 

Figure 12.3. Numerical results from a hybrid continuous edge finite element and 
discontinuous node element model for a microwave heating system used for food 
processing: (a) 3-D view of temperature distribution, and (b) cut-view of the temperature 
distribution in a food package subjected to microwave irradiation 
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For a general case of a droplet with a dielectric constant placed in an electric 
field, the Maxwell equations can be simplified in terms of a scalar potential or 
electric potential ,

e2
21 (12.62) 

21 21 (12.63) 

nn
2

0
1

21 (12.64) 

where e is the electrical charge and  the electric permittivity. Here the domain of 
the droplet is denoted by 1 and the free space outside the droplet by 2. When 
Equation 12.62 applies to the free space, e = 0. If the droplet is electrically 
conducting, for example, a semiconductor or metal melt droplet, the whole droplet 
is at the same potential and all the charges are distributed on the surface of the 
droplet.  Consequently, the above equations are simplified as 

02
2   (12.65) 

0inside 21   (12.66) 

en0 21   (12.67) 

2 2

0eds ds Qn 21  (12.68) 

cosEr r   (12.69) 

where 0 is a constant and is determined by Equation 12.69. In the above 
equations,  is the electric potential outside the droplet, e is the surface charge, 
the electric permittivity of the free space, E the applied electric field, and Q the 
total charge impressed on the droplet. Equation 12.68 represents the conservation 
of electric charges and the electric field generated by the electrodes is described by 
Equation 12.69. 

The surface deformation of an electrically levitated droplet is determined by the 
balance of the electrostatic pressure, hydrostatic pressure and surface tension along 
the surface. This balance equation is given by 

2
00 5.0 nn Pgzs  (12.70) 
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Equation 12.70 is basically the same as the normal stress balance equation 
discussed in Section 10.3, with modification made to take into account the electric 
effect.

Figure 12.4. Schematic representation of an electrically conducting droplet in an applied 
electric field. The electric field generated by a pair of electrodes placed far apart points 
upward to counterbalance the effect of gravity 

To compute the free surface shapes, the electric pressure must be resolved first. 
This requires the solution of the electric field, which in turn is affected by the 
shape deformation. Thus, an iterative procedure is needed to solve the field 
distribution and the force balance equation simultaneously. To calculate the electric 
field defined by Equation 12.65 for an electrically conducting droplet, the entire 
free space outside the droplet must be considered. We consider the use of the 
boundary integral method for the electric field calculations, which is then coupled 
with the weighted residuals method for the determination of the equilibrium shape 
of the droplet.  

To develop a boundary integral formulation of the electric potential in 2 that 
involves a boundary at infinity, it is perhaps more constructive to consider the 
closed computational domain as shown in Figure 12.5, and then to let the outer 
boundary approach to infinity. To facilitate the treatment of the boundry condition 
at infinity, we conisder a simple transformation,  =  + E0rcos  such that  =  
0 at infinity, a condition we need to take advantage of a boundary formulation. 
From the theory of electrostatics, the boundary integral formulation of the electric 
potential  may be obtained for any point ri in 2 using Green’s theorem [2], 

2

1 1 1
1 ( ) ( ) ( ) ( )

2 i iC G rd G rdr r n n

g
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2 2

1 1( ) ( )G rd G rd JGrdn n (12.71) 

where C(ri) is a geometric constant. The Green function G for an axisymmetric 
vector potential and its normal derivative can be derived from the consideration of 
a single current loop in free space [22], 
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Figure 12.5. Boundary element discretization. 2 is the exterior region modeled by 
boundary elements, 2 the interface,  the boundary at infinity, and  the node points 
along the interface, which are used for both the electric field and shape deformation 
calculations 
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where K( ) and E( ) are the elliptical integrals of the first and second kinds, 
respectively, and  the geometric parameter defined as 

22
2
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4

zzrr
rr

ii

i (12.74) 

The two integrals involving  represent the contribution from the boundary 

at R .  With the following asymptotic behavior of G and 1,

)(),( 2
1 RORri , 1 3( , ) ( )ir R O R

n
 as R  (12.75) 

)(),( 2RORrG i , 3( , ) ( )i
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n
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and also d = R ( ) d it is straightforward to show that the two integrals each 
approach to zero as R ,

1( ) 0G rdn and 1( ) 0G rdn as R  (12.77) 

With this relation, Equation 12.71 can be simplified to involve integrals along 
the boundary of the droplet only. This way, the condition at R  is directly 
incorporated into the boundary integral formulation.  

We now apply the inverse transformation,  = – Ercos  and obtain the final 
boundary integral equation for the electric potential ,

2 2

i i z i i
G GC d G En G Ez d C Ez
n n n

r

(12.78) 

Following the boundary element discretization [23, 24] and recognizing that the 
potential on the surface is a constant, one has the final matrix form for the 
unknowns on the surface of the droplet, 

0
zE E z

n n
H G G H  (12.79) 

This is then solved along with Equtation 12.68. 
 For the purpose of droplet shape calculations, the normal stress balance 
equation (i.e., Equation 12.70) may be more conveniently written in spherical 
coordinate system,  
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where a is the radius of the undeformed sphere, r the non-dimensionalized radial 
coordinate, K = a Po/ , B = ga2/  and Pm = – 0(n )2/2 for electrostatically 
levitated droplets. The Weighted Residuals method may be applied to solve the 
above equation once the potential field distributions are known. To do that, the 
surface of the droplet is discretized and defined by ri, the distance between the 
surface node and the center of the droplet, as shown in Figure 12.5.  The solution 
of Equation 12.80 by the Weighted Residual method is constructed by integrating 
the equation with respect to a weight function i along the droplet surface,  

1

2 2

2 2 2
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r r

r r r

2 2
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d rr aK Br P ds

d r r
      (12.81) 

where r  = dr/d .  Integrating by parts, one reduces the order of derivatives by one, 
that is, the second order derivative is reduced to the first order derivative. This 
allows Equation 12.81 to be written as 
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The variables r and r  are interpolated by  
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 (12.83) 

where Ne is the number of nodes per element and i is the shape function. 
The constraints of the volume conservation and the center of the mass of the 

levitated sphere are needed to determine the shape and position of the droplet. The 
aspect of imposing constraints for free surface problems was discussed in Chapter 
10. In dimensionless form, the two constraints are expressed as 

3

0
sin 2r d  (12.84a) 
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4

0

3 cos sin
8 cr d z  (12.84b) 

where zc is the center of mass.  The free surface may now be discretized into N

elements and Equations 12.82 12.84 are integrated numerically. Both continuous
and discontinuous elements can be applied. If a continuous element is applied, the 
results may be arranged in the following matrix form: 
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2,1 2,2 2,3 2 2 2
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where the coefficients aij, bj, cj and Fj are calculated by  
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Both discontinuous and continuous element approximations have been used for 
calculations. The accuracy for both approximations is the same, as expected. It is 
noted that even for continuous element approximations, the discontinuous elements 
provide a natural choice for the fluxes at the sharp corners, where a discontinuity in 
flux occurs. While other types of approximation may also be made to treat the 
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discontinuity (for example, the finite difference approximation may be used just for 
the elements having their notes at the corners), numerical experience suggests that 
discontinuous elements perform the best for this type of problem [24]. 
 The free surface deformation of a copper droplet levitated in a uniform electric 
field against gravity is shown in Figure 12.6.  The droplet is charged positively and 
the total charge is 1.56 10 9 (C) which is within the limit of Qc =1.06 10 6 (C) for 
droplet rupture [25]. The droplet deformation is such that the lower part of the 
surface is flatter and the droplet points upward in the direction opposite to that of 
gravity. For the system shown in Figure 12.4, the electrostatic force (the electric 
charge times the electric field) acting on the lower portion of the droplet is smaller 
and in the negative z direction, while the force on the upper portion is bigger and in 
the positive z direction. This, combined with gravity and the surface tension effect, 
gives the final shape as shown in Figure 12.6.   

As a contrast, Figure 12.6 also plots the surface deformation of a copper droplet 
in microgravity. This case represents a somewhat idealized situation in that there is 
no free charge impressed on the droplet against gravity. The deformation of the 
droplet in this case is caused by the interaction of the induced charges on the 
surface of the droplet with the applied electric field. As the induced surface charges 
are distributed symmetrically, the electrostatic forces are equal in magnitude and 
acting in the opposite directions on the lower and upper portions of the droplet, 
causing the droplet to deform symmetrically. 

Figure 12.6. Comparison of free surface profiles of a Cu droplet in normal and 
microgravity: (1) E0 = 3.3 106 V/m and Q = 1.56 10 9 C (Coulombs) (normal gravity), 
(2) E 0 = 3.3  106 V/m and Q = 0 C (microgravity gravity), and (3) un-deformed liquid 
sphere
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12.7 Compressible Flows in Magnetic Fields 

As a last numerical example, we consider a full 3-D calculation of compressible 
flows under the influence of magnetic fields. The discontinuous finite element 
algorithm for this type of calculation has been developed by Warburton and 
Karniadakis [26]. A locally divergence-free discontinuous finite element 
formulation was also presented in a recent paper by Li and Shu [27]. We consider 
below some of the essential ideas of the algorithm given by Warburton and 
Karniadakis and details of the algorithm development can be found in their original 
paper. 

The equations for compressible magnetohydrodynamics (MHD) may be written 
in conservative form using fluxes, 

zyxzyxt

Visc
z

Visc
y

Visc
x

Ideal
z

Ideal
y

Ideal
x FFFFFFU  (12.90) 

0B  (12.91) 

),,,,,v,( EBBBwu zyxU  (12.92) 

where the flux function is split into the inviscid and viscous fluxes, an approach 
similar to that discussed in Chapter 5 for general convection diffusion problems. 

The presence of the constraint ·B = 0 implies that the equations do not have a 
strictly hyperbolic character and thus require special treatment. Two ideas have 
been implemented. One is based on the introduction of a stream function for the 
magnetic field, similar to that used in incompressible flow calculations discussed in 
Chapter 6. The other is to reformulate the Jacobian matrix to include the divergent 
mode, which is suitable for 3-D simulations. This term is then included as a source 
contribution. 

The inviscid fluxes and their derivatives in the interior of the elements are 
evaluated and the correction terms (jumps) for the discontinuities in the flux 
between any two adjacent elements are added. A one-dimensional Riemann solver 
is used to model a numerical flux at the element interface. At a domain boundary 
the specified conditions are used. The exterior boundary is treated as the boundary 
of a “ghost” element, so that the same Riemann solver can be used at all element 
boundaries.  

The viscous terms are treated in two steps. First, the spatial derivatives of the 
primitive variables are calculated using the discontinuous Galerkin approach. This 
process is then repeated for each of the viscous fluxes using these derivatives. The 
Dirichlet boundary conditions for the momentum and energy characteristic 
variables are imposed weakly or explicitly after the fluxes have been evaluated and 
then the result is projected using the orthogonal basis. 

The main algorithm was developed by Karniadakis and Warburton for the 
discontinuous finite element solution of Equations 12.90 12.92, which involves 12 
major steps: 
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Step 1. Read in initial conditions U(x, 0) and evaluate all fields at all 
element quadrature points. Set n = 0. 
Step 2. Calculate the fluxes nF̂ at the Gauss quadrature points QI on the 
element interfaces. At domain boundaries use the prescribed boundary 
conditions for the exterior values of the fields. Interpolate the fluxes nF̂ to
the quadrature points QE. Scale the fluxes with the edge Jacobian divided 
by the volume Jacobian. 
Step 3. Calculate the inviscid flux terms Ideal

xF , Ideal
yF , Ideal

zF at the element 
quadrature points. 
Step 4. For each component of the state vector k

n
k t )),(( xUU calculate

( / / / ).Ideal Ideal Ideal
x y zx y zF F F

Step 5. Form In FF̂  (where FI is the flux at interior edge side) and add it 
to the divergence of the inviscid fluxes calculated in Step 4. 
Step 6. Calculate the spatial derivatives of the primitive fields.  
Step 7. Use the derivatives of the primitive fields to construct the viscous 
flux terms ,Visc

xF ,Visc
yF  and .Visc

zF

Step 8. Take the divergence of the viscous flux terms and subtract the 
results of Step 5. 
Step 9. Take the inner product of the result from Step 8 with the 
orthogonal basis. Evaluate the resulting polynomials at the quadrature 
points and place it in ( , ).n qtUf x
Step 10. Update the vector of the unknowns, that is, ),(),( 1 nn tt xUxU

),( qn
qq tt xUf using an Adams–Bashforth integration scheme. 

Step 11. Increase n by one. If tn < the termination time return to Step 2. 
Step 12. Output final values of the state vector ),( endtxU .

(a)         (b)     
Figure 12.7. Computed results for compressible magnetically driven flows in a 2-D 
geometry: (a) flow stream lines and (b) magnetic stream lines [24] 
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Their algorithm has been tested for a 2-D compressible magnetohydrodynamic 
problem and the results shown in Figure 12.7.  

Exercises

1.  Consider a conducting medium (1) in air (2). The medium is charged with 
surface charge density being s. Create a Gaussian surface as appears in the 
figure below. Show that 

2

s
sE      (points in the outnormal direction) 

and that the normal stress due to the charge and sE  is given by 

nnn
0

2

2
s

sss EF

This force tends to pull the interface towards the air, and to tear the 
medium one apart. Further show that the normal stress balance along the 
interface is given by 

HPagP s 22 0

2

0

 with H being the mean curvature. 
2. Develop a discontinuous finite element code for the simulation of 

electroosmotic flows in a microchannel following the integral formulation 
given in Section 12.5. 

3. Derive the boundary conditions (Equations 12.9 12.12) from the Maxwell 
equations. 

4. Assuming that the electromagnetic field oscillates time-harmonically with 
a frequency of , derive Equation 12.26 from the Maxwell equations. 

5. Starting with a differential volume, and applying the Newton’s second law, 
derive Equation 12.22. 

n

1

2

s

air
2

n

sE

Gaussian
surface

a
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6. Following the discontinuous finite element solution procedures, obtain the 
detailed matrix expression for the operator L in Equation 12.25. 
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440, 550, 566, 567 

dot product, 332, 339, 341 
double layer (or Debye double layer), 

551, 552 

eigenvector, 160, 276 
 left, 276 
 right, 284, 297, 298 
electric field(s), 544, 545, 549, 551, 552, 

553, 555, 556, 557, 559, 560, 565 
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electroosmotic flows, 550, 551, 553, 555 
element(s), 33, 119, 411, 414, 537
 4-node quadrilateral, see Table 3.1 
 8-node brick, see Table 3.1 
 9-node quadratic, see Table 3.1 
 linear, 33, 34, 36, 48, 50, 53, 60, 87, 

93, 107, 110, 119, 130, 137, 164, 
165, 166, 184, 185, 238, 239, 291, 
292, 293, 295, 303, 352, 354, 364, 
380, 382, 388, 392, 398, 407, 476, 
489, 511 

 master, 93, 94, 95, 96 
 rectangular, 54, 65, 66, 78, 96, 97 
 triangular, 50, 51, 52, 53, 66, 73, 74, 

75, 76, 77, 78, 91, 119, 138, 166, 
195, 233, 234, 257, 268, 376, 377, 
389, 391, 396, 404, 405, 406, 407, 
408, 409, 410, 412, 512, 535, 542 

 canonical, 47, 48, 49, 50, 61, 69, 72, 
77, 84, 93, 94, 97, 99, 119 

 curved, 98, 407 
 hierarchical, 45, 70, 77 
 spectral, 45, 67, 68, 569 
 tetrahedral, 58, 60, 73, 74, 87, 91, 

376, 396, 397, 398, 485, 513 
enthalpy, 17, 274, 446, 473, 474, 475, 

476, 496 
enthalpy-based method, 473 
equation(s)
 conduction, 144, 169, 239, 264, 423, 

485, 502, 504, 505 
 continuity, 16, 101, 247, 252, 464, 

520, 522, 545 
 convection, 28, 158, 161 
 diffusion, 147, 181, 240, 312 
 elliptic, 144 
 energy, 8, 247, 556 
 heat transfer, 8, 268, 501 
 hyperbolic, 274 
 magnetohydrodynamic, 543 
 Maxwell, 423, 543, 544, 545, 549, 

550, 552, 556, 559, 569 
 porous flow, 15 
 radiative transfer, 363, 364, 366, 368, 

379, 389, 395, 404, 414, 416, 423
error, 45, 84, 354, 359 
 estimates, 45, 80, 84, 87 
 relative, 332, 344, 354, 359, 388 
Euler equation, 283, 296 
Eulerian description, 305, 308, 309, 310, 

311, 312, 441 
Eulerian mesh, 459 

Eulerian method, 447 
Explicit time integration, 31, 70, 78, 128, 

169, 179, 195, 199, 201, 212, 214, 
486, 526 

external radiation, 319, 320, 329, 348, 
350, 354 

 kernel functions, 323, 324, 325 
 formulation, 326 
 Shadowing algorithm, 327, 328 
  2-D, 329, 331, 333 
  axisymmetry, 334, 337, 338 
  3-D, 339, 341, 343 
 coupled with other heat transfer 

modes, 345

finite difference, 21, 23, 32, 40, 41, 106, 
140, 164, 165, 166, 213, 216, 258, 
260, 273, 363, 461, 487, 549, 565 

finite element broken space, 29, 45, 115, 
132, 188, 191, 250, 302, 376, 378, 
404

finite element space, 29, 227, 229, 301 
finite volume, 21, 32, 106, 163, 164, 165, 

166, 170, 171, 172, 201, 215, 283, 
287, 379, 380, 388, 410, 412, 416, 
439, 461 

flow, 2, 8, 248, 274, 301, 473, 513, 566 
 compressible, 8, 125, 273, 274, 275, 

283, 290, 299, 301, 304, 313 
 free surface, 468, 469, 499 
 in lid-driven cavity, 258 
 incompressible, 2, 248, 260, 301, 513, 

566
 isothermal, 247 
 Stokes, 248 
 turbulent, 248, 543 
flow-based method, 473 
fluctuations, 543 
fluid, 2, 3, 4, 448, 470, 566 

compressible, 15, 202, 273, 274, 304, 
448

 incompressible, 2, 3, 4, 5, 13, 15, 248, 
250, 251, 257, 260, 308, 448, 470, 
550

 Newtonian, 4, 5 
 viscous, 3, 15, 269 
flux, 23, 25, 124, 222, 298, 391, 554, 566
 Engquest Osher, 207, 227  
 Lax Friedrichs, 162, 168, 207, 208, 

227, 289, 290, 291, 550 
 numerical, 23, 25, 26, 27, 30, 105, 

106, 107, 113, 115, 116, 119, 124, 
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126, 132, 133, 135, 137, 138, 139, 
141, 143, 144, 147, 157, 162, 167, 
168, 170, 182, 188, 193, 196, 207, 
208, 209, 210, 211, 212, 214, 215, 
217, 218, 220, 221, 225, 227, 232, 
237, 238, 240, 250, 251, 252, 253, 
254, 264, 273, 285, 288, 289, 290, 
298, 302, 304, 378, 391, 406, 485, 
486, 509, 510, 535, 550, 554, 566 

 Roe, 207, 287, 298, 302 
flux limiters, 157, 215, 217, 218, 222, 

226, 228, 299 
 Minmod, 218, 222 
 Van Leer, 218, 220, 245 
 Monotonized central, 218, 222 
 Superbee, 218 
formulation
 boundary constraint minimization, 23, 

26, 28
 discontinuous finite element, 21, 22, 

25, 26, 27, 29, 31, 33, 34, 39, 45, 
46, 105, 119, 122, 124, 132, 134, 
138, 140, 143, 147, 158, 181, 187, 
191, 197, 198, 204, 209, 232, 248, 
250, 256, 257, 263, 268, 273, 287, 
295, 296, 298, 302, 303, 304, 312, 
367, 377, 378, 396, 401, 414, 430, 
448, 452, 456, 458, 474, 476, 482, 
485, 503, 507, 526, 534, 539, 543, 
550, 557, 566 

 weakly imposed boundary condition, 
27, 32 

free boundary, 11, 453, 454 
free convection, see natural convection  
free energy, 445, 446, 447, 477, 490, 492 
free surface flows, 469, 499 

Galerkin method (or formulation), 21, 32, 
33, 108, 110, 123, 108, 110, 123, 
172, 260, 319, 320, 325, 344, 348, 
349, 363, 364, 380, 416, 417, 453, 
487, 523 

gas constant, 4, 447, 516 
Gauss Lobatto, 67, 68, 
Gauss Legendre (or Gauss) quadrature, 

90, 567 
Gibbs free energy, 445, 446 
Gibbs Thompson coefficient, 12 
Gibbs Thompson effect (or relation), 

446, 447, 497 
Godunov flux, 207, 208, 210, 227, 232 

gradient, 4, 138, 143, 222, 234, 258, 309, 
310, 336, 422, 436, 461, 465, 471, 
477, 490, 492, 501, 502, 504, 505, 
511, 512, 518, 534, 551 

 surface, 101, 436, 438, 453, 495
gravity, 267, 345, 358, 420, 521, 560, 565 
Green's theorem, 560 
 surface, 440, 454, 556, 560 
 vector, 566 
grid, 260, 288, 289, 304, 312, 359, 430, 

439, 448, 449, 450, 451, 468, 471 
 fixed, 429, 430, 447, 448, 458, 459, 

472, 473, 474 
 moving, 304, 429, 430, 447, 448, 449, 

450, 451, 460, 476 

Hermite polynomials, 528 
Hilbert Space, 80 
Hm( ), 81, 82 
hydrodynamics, 522 
hydrostatic pressure, 3, 559 
hyperbolic equation, 274 

incompressibility condition, 250, 251 
impedance, 547 
implicit scheme, 31 
indicial notation, 5 
inequality, 80, 145, 146, 173, 175, 242 
 Hölder, 242 
 Schwarz, 80, 175 
 Poincaré, 242 
 Young, 242 
inf-sup condition, 143, 248 
initial conditions, 1, 9, 130, 165, 295, 450, 

482, 508, 567 
inner product, 80, 81, 198, 567 
integration by parts, 22, 27, 30, 106, 139, 

181, 209, 227, 236, 263, 285, 298, 
377

inter-element boundaries, 105, 197, 378, 
389, 404 

internal energy, 3, 274, 311, 506, 507, 
522

internal radiation, 3, 39, 319, 363, 364, 
365, 367, 377, 378, 380, 388, 389, 
396, 402, 403, 412, 413, 414, 415, 
416, 417, 419, 421, 422, 423, 424 

1-D, 380, 388 
2-D, 377, 395, 412, 414 
3-D, 396, 402 
cylindrical (axisymmetry), 403 
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emitting/scattering, 319, 320, 363, 364, 
365, 365, 369, 385, 388, 389, 394, 
399, 400, 401, 402, 406, 411, 412, 
413, 414, 420, 550 

used for external radiation, 412, 413 
interpolation, 29, 32, 34, 35, 45, 46, 47, 

49, 50, 51, 52, 54, 55, 57, 58, 60, 
65, 67, 68, 72, 73, 74, 80, 84, 87, 
102 , 124, 127, 128, 130, 143, 
163, 210, 212, 222, 248, 259, 260, 
378, 380, 404, 412, 450, 457, 468, 
474, 486, 535, 538, 554 

 bilinear, 468 
 linear, 34, 57, 65, 130, 457, 468 
intersection, 337, 338, 342, 343, 465 
isoparametric, 34, 37, 47, 61, 47, 61, 93, 

94, 98, 99, 107 
 elements, 93 
 transformation, 61  
iteration, 110, 111, 112, 122, 124, 139, 

183, 194, 237, 238, 257, 283, 359, 
416, 457

Jacobian, 94, 95, 96, 97, 98, 100, 211,
275, 284, 296, 298, 308, 309, 310, 
311, 397, 400, 406, 407, 566, 567

 determinant, 95, 308 
 matrix, 95, 100, 275, 284, 296, 298, 

566
Joule heating, 422, 424, 548, 549, 557 
jump discontinuity, 278 
jump operator, 115, 250 

L2-norm, 80, 81, 83, 85, 86, 110, 146, 
173, 174, 229 

Ladyzhenkaya Babuska Brezzi condition 
(LBB), see also inf-sup, 125, 143, 
248, 259  

laser annealing, 502 
lattice Boltzmann equation, 519, 527, 

530, 531, 532, 534, 535, 536, 540 
least squares, 465 
Lebesgue space, 29, 81 
Legendre polynomials, 41, 70, 71, 75, 369 
level set function, 470, 471, 472, 479 
level set method, 448, 459, 469, 471, 473, 

474, 497 

Mach number, 516, 527 
magnetic field, 420, 422, 498, 543, 544, 

545, 546, 547, 548, 556, 566, 568 
magnetic permeability, 556 

magnetohydrodynamics (MHD), 566  
marker and cell (MAC), 459, 468  
mass
 conservation, 308, 359, 441, 450, 463 
 flux, 10, 17, 458 
 matrix, 30, 31, 33, 70, 78, 79, 134, 

164, 168, 193, 210, 486, 526
Maxwell equations, 422, 543, 544, 545, 

549, 550, 552, 556, 559, 568 
Maxwell stresses, 548  
Maxwellian distribution, 516, 527, 552 
mean 
 free path, 501, 502, 506, 513, 515 
 value, 250, 484 
micro system, 513 
microstructure evolution, 430, 486, 489 
microwave heating, 543, 544, 556, 558 
mixed finite element formulation (or 

method), 113, 125, 143, 248 
monotonic, 493 
moving boundary, 12, 422, 429, 430, 431, 

433, 436, 441, 444, 445, 447, 448, 
449, 450, 451, 452, 453, 454, 456, 
457, 458, 459, 472, 473, 476, 479, 
480, 482, 483, 488 

moving grid, 304, 429, 430, 447, 448, 
449, 450, 451, 460, 473, 476 

nanoscale flow and heat transfer, 501
natural convection , 265, 268, 420, 422 
natural coordinates, 389 
Navier Stokes equations, 247, 248 250, 

256, 258, 260, 261, 262, 299, 302, 
303, 312, 345, 480, 513, 516, 517, 
521, 532, 543  

nonlinear, 157, 195, 202, 209, 212, 214, 
215, 218, 219, 227, 238, 247, 257, 
277, 283, 293, 359, 418, 419, 429, 
476, 482, 485 524, 543 

 convection, 157, 195, 202 
norm, 80, 81, 82, 83, 85, 86, 110, 146 

173, 174, 183,229
normal derivative, 561 
no slip, 12, 260, 261, 263, 513, 516, 517 

533, 542
numerical
 dispersion, 176 
 dissipation, 165, 176, 178, 265, 291 
 integration, see quadrature 
 stability, 26, 105, 106, 139, 150, 250, 

304, 486 
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optical thickness, 420, 421, 423, 424 
ordinary differential equation, 30, 164, 

208, 228, 286, 299, 302, 486, 535, 
539

orthogonal, 31, 33, 67, 68, 69, 70, 71, 79, 
101, 164, 325, 369, 566, 567

parabolic, 105, 144, 218, 505 
partition, 209, 228, 231, 286, 452, 477, 

536
Peclet number, 185 
permeability, 14, 545, 556 
permeable interface, 14 
phase
 angle, 177 
 lag, 501, 502, 503, 504, 505, 507, 

511, 512 
phase change, 8, 12, 13, 345, 441, 445, 

448, 456, 473, 474, 475, 482, 483 
phase field model, 430, 476, 477, 479, 

480, 481, 482, 483, 485, 487, 488, 
489, 490, 497 

phase field theory, 429, 430, 476, 483 
phase transition, 12, 454, 476, 477, 478, 

479, 482 
piecewise, 28, 41, 69, 125, 128, 125, 218, 

219, 220, 225, 228 
 constant, 126, 150, 166, 170, 172, 

178, 180, 185, 187, 213, 219, 228, 
229, 232, 273, 283, 288, 291, 388, 
439, 460 

 linear, 218, 223, 229, 230, 234, 465 
 polynomial, 28, 125 
Poisson equation, 138, 259, 260, 261, 

262, 265, 552 
porosity, 14 
porous flow(s), 15, 138 
phonon radiative transfer equation, 506, 

531
phonon scattering, 502, 503, 505, 531 
Prandtl number, 267 
pressure, 3, 4, 5, 8, 11, 13, 239, 247, 248, 

249, 250, 256, 257, 258, 259, 260, 
261, 262, 268, 274, 281, 294, 295, 
431, 445, 446, 450, 456, 458, 482, 
517, 522, 548, 553, 559 

 electric, 560 
 hydrostatic, 3, 559 
 thermodynamic, 3, 4, 515 
primitive variables, 5, 8, 11, 566 

quadrature, 45, 88, 89, 90, 91, 164, 343, 
368, 399, 401, 406, 409, 411, 526, 
529, 531, 567

quadrilateral, 50, 66, 101, 460 

radiation heat transfer, 321, 354, 355, 
356, 363, 365, 367, 413 

 see also radiative heat transfer 
radiative heat transfer, 10, 319, 356, 363, 

368, 370, 376, 380, 394, 402, 403, 
410, 416, 420, 423, 502 

radius of curvature, 433, 435 
Rankine Hugoniot condition(s), 278, 441 
Rayleigh number, 270 
Reynolds number, 249, 265, 516, 553 
Riemann solver, 227, 273, 274, 283, 289, 

566
Riemann problem(s), 218, 275, 276, 277, 

280, 281, 283, 284, 288, 289, 294, 
297, 302, 550 

Runge Kutta (RK) method, 41, 105, 128, 
129, 149, 150, 151, 164, 212, 227, 
228, 229, 231, 233, 245, 286, 287, 
290, 291, 293, 295, 299, 303, 535, 
550

 TVD, 227, 229, 231, 232, 233, 236, 
290

scattering,
 anisotropic, 400, 401, 402, 541 
 backward, 400 
 cross-section, 518, 520, 524 
 forward, 400 
 isotropic, 388, 400, 402, 424 
scattering function, 400, 401, 414 
semi-norm, 82 
shape function, 21, 31, 32, 33, 34, 36, 45, 

46, 47, 48, 49, 50, 51, 52, 53, 54, 
55, 56, 57, 58, 60, 61, 62, 65, 66, 
67, 68, 69, 70, 71, 72, 73, 74, 75, 
76, 77, 78, 79, 80, 94, 102 , 107, 
108, 116, 119, 120, 126, 149, 190, 
325, 326, 327, 347, 378, 379, 382, 
383, 389, 390, 391, 396, 397, 399, 
404, 405, 416, 450, 475, 509, 563 

sharp front(s), 158, 185, 195, 202, 429 
shock, 9, 17, 23, 31, 202, 204, 206, 221, 

273, 274, 277, 279, 280, 281, 282, 
289, 293, 294, 295, 441, 448 

singular matrix, 194  
singularity, 205 
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slope limiter, 157, 212, 218, 219, 221, 
222, 224, 225, 227, 230, 231, 232, 
233, 234, 235, 286, 290, 291, 293, 
295

Sobolev space, 82 
solidification, 13, 424, 429, 430, 445, 

446, 447, 448, 454, 473, 474, 475, 
476, 483, 485, 487, 489, 490, 491, 
493

Sommerfield radiation condition, 547 
source/sink
 heat, 3, 113 
 volumetric, 8, 417 
space, 21, 22, 29, 33, 80, 81, 82, 101, 115, 

116, 125, 132, 142, 145, 169, 172, 
174, 176, 223, 227, 229, 288, 292, 
301, 304, 365, 367, 371, 424, 450, 
497, 506, 518, 519, 520, 523, 525, 
526, 527, 529, 531, 544, 550 

 broken, 29, 45, 115, 132, 188, 191, 
250, 302, 376, 378, 404 

 free, 545, 547, 559, 560, 561
spatial coordinates, 157, 308, 309, 378 
spurious oscillation, 157, 190, 195, 212, 

215
spectral element, 45, 67, 68 
speed of sound, 275, 503, 504, 527 
spherical coordinates, 322, 495 
stability condition, 26, 139, 151, 169, 170, 

172, 174, 270 
Stefan Boltzmann constant (law), 323, 

345
stream function, 8, 247, 260, 261, 262, 

263, 264, 566 
streamline, 421, 424
stress
 normal 439, 442, 443, 452, 453, 454, 

557, 560, 562, 568 
 tensor, 2, 3, 101, 442, 450 
surface
 deformation , 544, 559, 565 
 divergence, 434, 435, 437, 438, 454 
 normal, 99, 329, 332, 334, 339, 341, 

366, 368, 396, 408, 421, 433, 442, 
454, 496 

 radiation, 320, 327, 339, 345, 346, 
347, 349, 354, 356, 359, 413 

symmetry boundary conditions, 367 

tensor, 2, 3, 4, 6, 14, 15, 54, 55, 61, 67, 
71, 72, 74, 101, 210, 251, 296, 

299, 306, 309, 310, 436, 442, 444, 
450, 483, 528, 548 

 product, 54, 55, 61, 67, 71, 72, 74, 
210

test function, 26, 33, 114, 187, 191, 249, 
485, 508, 509, 554 

tetrahedral, 60, 73, 74, 87, 91, 376, 396, 
397, 398, 485, 513 

thermal conductivity, 4, 113, 345, 358, 
418, 485, 504, 505, 523, 540 

thermal radiation, 319, 320, 321, 324, 
328, 329, 334, 335, 339, 355, 356, 
365, 366, 420, 422, 556

thermal waves, 512 
time-dependent, 468, 477 
time step
 critical, 105, 147, 150, 157, 164, 169, 

176, 179, 195, 199, 200, 201, 208, 
472

total derivative, 158 
transition temperature, 13, 474, 475
transport equations, 8, 448, 459, 519, 543
trial function, 32, 117 
truncation error, 176 
TVB (Total Variation Bounded), 213, 227  
TVD (Total Variation Diminishing), 31, 

157, 212, 213, 214, 215, 217, 219, 
221, 226, 227, 228, 229, 230, 231, 
232, 233, 236, 290, 295, 299, 315 

two-temperature equation (or model), 502, 
503, 505 

unconditionally unstable, 151, 229 
upwinding, 24, 27, 32, 33, 36, 41, 112, 

124, 126, 128, 130, 131, 135, 148, 
163, 164, 165, 166, 168, 171, 172, 
178, 182, 185, 187, 211, 212, 215, 
217, 218, 219, 220, 221, 222, 226, 
239, 240, 251, 264, 377, 378, 384, 
392, 407, 409, 410, 510 

vector
 outward normal, 115, 132, 133, 167, 

188, 209, 250, 380, 381, 470, 484, 
486, 508, 510 

 unit, 2, 6, 115, 132, 188, 369, 421, 
432, 438, 486, 510, 525, 549 

view factor(s), 354, 356, 360 
viscosity, 4, 5, 14, 158, 181, 235, 248, 

249, 265, 267, 301, 345, 469, 470, 
471, 521, 523, 532   

viscous dissipation, 3, 7, 522 
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viscous stress tensor, 3 
volume
 coordinates, 60, 73, 102  
 integral, 168, 377, 396, 398, 406 
volume of fluid (VOF) method, 448, 459, 

460, 462, 464, 467, 497, 498, 499 
von Neumann analysis, 157, 229   
vorticity, 247, 260, 261, 262, 263, 265, 

266, 537

wave
 equation, 28, 144, 505, 556 
 front, 512, 513 
 number, 177, 365 

 propagation, 176, 177, 223, 294, 513, 
514, 550 

 reflection, 513 
weak form, 25, 114, 125, 143, 170, 171, 

174, 188, 209, 210, 227, 236, 250, 
285, 301, 442, 464 

weak formulation, 114, 143, 170, 174, 
188, 301, 442 

weighted residual formulation (or 
method), 27, 32, 560, 563 

weighting functions, 32, 108, 124, 132, 
147, 325, 369

well-posed problem, 142
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