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1 POLYTROPIC AND ADIABATIC PROCESSES

1.1 Basic Concepts

Provided that no chemical reactions are occurring, the thermodynamic state of a system of matter
can be described completely by three quantities: The pressure P, the absolute temperature T, and the
volume V or the rest mass density �. For any system of matter there exists a thermodynamic function F
or G connecting the three state variables

F (P, V, T ) = 0 or G(P, �, T ) = 0. (1.1.1)

By thermodynamic equilibrium we understand the state of a thermodynamic system of matter that
has come to a perfectly steady state, being in mechanical (hydrostatic) equilibrium and at uniform
temperature. Often, in larger systems of matter, thermodynamic equilibrium is satisfied only roughly or
even not at all. However, for most cases of interest large systems can be divided into smaller ones, where
thermodynamic equilibrium holds, at least to a good approximation. In this case we are speaking about
local thermodynamic equilibrium.

Thermodynamic changes of the state variables can be reversible processes or irreversible ones. Re-
versible thermodynamic processes are changes of the thermodynamic system when the system can be
carried through exactly the same thermodynamic equilibrium states in reverse order as in original or-
der, without supplying energy from outside to the system. When the thermodynamic system cannot
be brought back to its original state without supply of additional energy from outside, we are speaking
about irreversible processes.

A change of the state variables of a thermodynamic system that changes the state variables only
infinitesimally is called an infinitesimal process of the thermodynamic system. Infinitesimal processes
of a thermodynamic system can be carried out reversibly or irreversibly. A quasistatic process of a
thermodynamic system is an infinitesimal process which changes the state variables in such a way that
the system remains always very close to its state of thermodynamic equilibrium. Quasistatic processes
are always reversible thermodynamic processes, the notions of quasistatic process or reversible process
being synonymous. Infinitesimal quasistatic processes are a special class of infinitesimal processes and are
always reversible processes, whereas infinitesimal processes may be reversible or irreversible processes.

Thermodynamic processes in a system of matter that are taking place without exchange of thermal
energy with the outside of the system are called adiabatic processes. Perfect thermal insulation of a
system implies always adiabatic thermodynamic processes in the system.

Considering only thermal and mechanical infinitesimal processes in a system of matter, and neglecting
mass motions, the first law of thermodynamics (law of energy conservation) can be written as

dQ = dU + P dV. (1.1.2)

dQ denotes the infinitesimal quantity of heat energy added to the system which is used to increase
the system’s internal energy U by the amount dU and to effect the mechanical work P dV, where dV is
the infinitesimal change of the system’s volume V, and P the hydrostatic pressure force. The volume of
the thermodynamic system can be expressed by its average rest mass density � as V = m/�, where m
is the total constant rest mass of the system. In the nonrelativistic case, the rest mass will simply be
termed mass. Eq. (1.1.2) can be put into the form

dQ = dU − P d�/�2, (m = 1; dV = d(1/�) = −d�/�2), (1.1.3)

if the rest mass of the system is taken equal to the unit of rest mass m = 1. In this case the volume
is equal to the specific volume V = 1/�. “Specific” quantities will always be referred to the unit of rest
mass.

Generalizations of Eq. (1.1.2) are given by Cox and Giuli (1968) when the mixed components of the
pressure tensor are nonzero (Pik �= 0 if i �= k).

The second law of thermodynamics may be stated as follows (e.g. Cox and Giuli 1968, Landau and
Lifshitz 1971, Gerthsen et al. 1977): For each state of a thermodynamic system there exists a function

1
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of the state variables S = S(P, �, T ), called entropy. The change of entropy dS during thermodynamic
processes of the system is constrained by the equation

dS ≥ dQ/T, (1.1.4)

where dQ is the infinitesimal amount of heat added to the system, and T the temperature of the system.
For reversible processes dS = dQ/T, for irreversible ones dS > dQ/T. For reversible processes dS is an
exact differential.

An immediate corollary of the second law follows for adiabatically enclosed thermodynamic systems,
that means when dQ = 0, Q = const. Adiabatic reversible processes have dS = dQ/T = 0, (Q, S = const
– isentropic processes), and adiabatic irreversible processes have dS > dQ/T = 0, i.e. dS > 0, dQ =
0, (Q = const; S �= const). The entropy S of an enclosed thermodynamic system, excepting for completely
negligible fluctuations, can never decrease.

In principle, polytropic processes, to be defined in the next section, could be reversible or irreversible
processes. Generally we are dealing only with reversible (quasistatic) processes of systems in thermo-
dynamic equilibrium, without considering chemical or nuclear reactions. However, if shock waves occur
for instance, the physical processes become irreversible in the polytropic gas during the shock (cf. Secs.
6.3.4, 6.4.1, Landau and Lifshitz 1959, §82).

Generally, we make a clear distinction between polytropic (adiabatic) processes (changes) occurring
at a fixed location (e.g. local oscillations), and the spatial, overall distribution of matter obeying the
polytropic equation of state (1.3.29) or (2.1.6). This chapter is devoted exclusively to local polytropic
(adiabatic) changes occurring at a fixed space point.

1.2 Polytropic and Adiabatic Processes in a Perfect Gas

In order to better understand the definitions of the polytropic exponents and polytropic indices, it
seems worthwhile to pursue the historical development, and to define them at first for thermodynamic
systems obeying the equation of state of a perfect gas (Emden 1907, Milne 1930a, Chandrasekhar 1939,
Eddington 1959). We distinguish between the terms ideal gas and perfect gas. Ideal gases are called
systems of noninteracting particles. In practice, this amounts to systems where the energy of particle
interactions is negligibly small as compared to the kinetic energy of the particles (Landau and Lifshitz
1971). In other words, when we are studying the motion of ideal gases we can always neglect their
viscosity; energy dissipation during motion is negligibly small. Perfect gases are called ideal gases obeying
the Maxwell-Boltzmann statistics (perfect gas = nondegenerate, ideal gas). Completely degenerate gases
in our terminology are ideal gases too, but not perfect gases.

Let us suppose that we change during a reversible (quasistatic) process the amount of heat energy of
a thermodynamic system by dQ, thus changing its temperature by dT. We define the specific heat as the
differential quotient

c = dQ/dT. (1.2.1)

In other words, the specific heat of a thermodynamic system is the amount of heat that must be added
to a thermodynamic system in order to change its temperature by one degree Kelvin (dT = ±1). In this
book “specific heat” means the specific heat per unit rest mass. It is clear that the heat quantity dQ of
a system can be changed in infinitely different ways. It is therefore reasonable to define the specific heat
at constant α, where α is a specified function of the state variables:

cα = (dQ/dT )α. (1.2.2)

The most commonly used specific heats are those at constant pressure and constant volume (density).
Thus: α = P or α = V.

We define a polytropic change or a polytropic process as a reversible (quasistatic) change of a ther-
modynamic system of unit rest mass, occurring in such a way that the derivative dQ/dT, the “specific
heat”, varies in a prescribed manner during the reversible change:

c = dQ/dT = defined function, (m = 1). (1.2.3)
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A very important special case occurs when

c = dQ/dT = const. (1.2.4)

Although some statements and derivations are also valid with the more general definition (1.2.3),
it is generally assumed throughout this book that c = const. The definitions (1.2.3) or (1.2.4) yield a
second equation besides the equation of state (1.1.1); from this set of two equations we can eliminate
one of the three state variables P, �, T, and the polytropic thermodynamic system has therefore a single
independent state variable. Obviously, the definition of polytropic processes involves some arbitrariness.
We have adopted the most restrictive definition by defining polytropic processes as reversible (quasistatic)
changes of a thermodynamic system. Most equations of this chapter are valid only with this definition.
It is clear that, more generally, polytropic processes could also be irreversible processes. Quite generally,
polytropes could be defined as systems of matter where pressure and density are connected by a law
of the form (1.3.25); however, such a kind of definition entirely forgets the thermodynamic base of the
notion of polytrope.

If the specific heat c of the polytropic change is zero, the polytropic process becomes an adiabatic
one (dQ = 0). Also, if the specific heat of the polytrope is c = ±∞, the polytropic change becomes an
isothermal one (dT = 0). Thus, polytropic processes are intermediate between isothermal and adiabatic
processes. When the specific heat of the polytropic process c is equal to the specific heat at constant
pressure cP , the polytropic process is an isobaric process (P = const), and when c equals the specific
heat at constant volume cV , the polytropic process is an isometric one. Polytropic processes were first
considered by G. Zeuner in 1887 (cf. Chandrasekhar 1939).

For a perfect gas, the pressure is given by the equation

P = R�T/µ = RmT/µV = k�T/µH = kndT. (1.2.5)

µ is the mean molecular weight of the gas (the rest mass of free particles per mole [see Eq. (1.7.1)], and
the atomic mass unit H = 1.66055×10−24 g is defined as the sixteenth part of a neutral oxygen atom, or
as the twelfth part of a neutral carbon atom: H = m(16O)/16 = m(12C)/12. The mean molecular weight
µ can be expressed in g/mole or in atomic mass units H (see Sec. 1.7). One mole is the rest mass of
gas measured in grams, which is numerically equal to the mean mass of its individual particles measured
in atomic mass units H. In Eq. (1.2.5) k = 1.38062 × 10−16 erg K−1 denotes the Boltzmann constant,
equal to the number of ergs per degree Kelvin, R = k/H = 8.3143 × 107 erg K−1 mole−1 the perfect
gas constant, m the rest mass of gas inside volume V, and nd the number density of free particles, equal
to the number of free particles per unit volume. The number of free particles per mole NA (Avogadro’s
number) is numerically equal to the inverse of the atomic mass unit: NA = 1/H = 6.02217×1023 mole−1

(see App. A).
It should be noted that the perfect gas law (1.2.5) is valid for thermodynamic systems composed of

nondegenerate and noninteracting particles, both in the nonrelativistic limit (when the total relativistic
energy of particles is nearly equal to their rest energy), and in the relativistic limit (when the total
relativistic energy of the particles is not nearly equal to their rest energy), (Cox and Giuli 1968). For
relativistic particles the density from Eq. (1.2.5) has the same meaning as in the nonrelativistic case: �
is always equal to the rest mass density, to be defined below.

It is well known from the kinematics of special relativity that the total relativistic kinetic energy of
translational particle motion E

(kin)
r is related to the particle mass by (e.g. Landau and Lifschitz 1987)

E(kin)
r = mrc

2 = mc2
/
(1 − v2/c2)1/2, (1.2.6)

where c = 2.997925× 1010 cm s−1 is the velocity of light [not to be confused with the polytropic specific
heat from Eq. (1.2.3)], and v the velocity between particle and observer. mr denotes the relativistic mass
of the particle, and m the rest mass, when v = 0.

We use throughout the supplementary notation kin, if we wish to stress that only translational kinetic
energy is considered. This index is omitted in the general case, when besides of purely translational kinetic
motion, there are also taken into account the energy of particle interactions, of external force and radiation
fields, etc. From Eq. (1.2.6) follows

mr = m
/
(1 − v2/c2)1/2. (1.2.7)
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If v = 0, the relativistic kinetic energy E
(kin)
r of the particle is equal to its rest energy E :

E = mc2; E(kin)
r = E

/
(1 − v2/c2)1/2. (1.2.8)

Eqs. (1.2.6)-(1.2.8) are meaningful only for particles having nonzero rest mass m �= 0 and moving
with velocities v < c. Particles with zero rest mass (m = 0) are always moving with the velocity of light
v = c. Obviously, in relativistic kinematics the kinetic energy E(kin), (E(kin) ≈ mv2/2 if v � c) is just
the difference between total relativistic kinetic energy E

(kin)
r = mrc

2 and rest energy E = mc2 :

E(kin) = E(kin)
r − E = mc2[1

/
(1 − v2/c2)1/2 − 1]. (1.2.9)

In the general case, the total relativistic energy Er of a thermodynamic system contains besides its rest
energy E, the energy of translational kinetic motion E(kin), the energy of particle interactions (excepting
gravitational interactions) and of external force fields, radiation energy, etc. (e.g. Zeldovich and Novikov
1971, Landau and Lifschitz 1987). In this general case, Eq. (1.2.9) writes

E(int) = Er − E, (1.2.10)

where E(int) contains all forms of energy, excepting the rest energy of the system and gravitational
interactions. The equation of momentum is via Eq. (1.2.7) equal to

�p = mr�v = m�v
/
(1 − v2/c2)1/2 = E(kin)

r �v/c2. (1.2.11)

A useful relationship between the energy of translational kinetic motion and momentum can readily
be verified by direct substitution:

E(kin)
r = (p2c2 + m2c4)1/2. (1.2.12)

The kinetic translational energy is then obtained as [cf. Eq. (1.2.9)]

E(kin) = E(kin)
r − E = (p2c2 + m2c4)1/2 − mc2 = mc2{[1 + (p/mc)2]1/2 − 1}. (1.2.13)

The above equations are equally valid for microscopic particles and macroscopic bodies. The rela-
tivistic volume Vr occupied by a macroscopic body changes with its velocity v relative to an observer as
(e.g. Landau and Lifschitz 1987)

Vr = V (1 − v2/c2)1/2, (1.2.14)

where the proper volume or volume of rest V is obtained when v = 0. The total relativistic translational
kinetic energy E

(kin)
r contained in the unit of proper volume of a thermodynamic system is called rel-

ativistic energy density of translational kinetic motion ε
(kin)
r . Eq. (1.2.6) writes for the unit of proper

volume (E(kin)
r , E(kin), E → ε

(kin)
r , ε(kin), ε; mr, m → �r, �) :

ε(kin)
r = ε(kin) + ε = �rc

2 = �c2
/
(1 − v2/c2)1/2. (1.2.15)

ε = �c2 is the rest energy density, and ε(kin) the energy density of translational kinetic particle motion
[cf. Eqs. (2.6.114), (2.6.115)]. The relativistic density �r = ε

(kin)
r /c2 is equal to the relativistic mass in

the unit of proper volume, and the rest mass density � = ε/c2 is equal to the rest mass contained in the
unit of proper volume. As noted above, in the general case, the relativistic energy density εr contains
besides the rest energy density ε and the energy density ε(kin) of translational kinetic particle motion,
also the energy density of particle interactions (other than gravitational interactions), of external forces
and radiation fields, etc. Thus, quite generally

εr = �rc
2 = ε + ε(int) = �c2 + ε(int), (1.2.16)

where we simply call internal energy density ε(int) the difference between the total relativistic energy
density εr and the rest energy density ε = �c2 of the system.

The specific relativistic kinetic energy E
(kin)
r (relativistic energy per unit rest mass) is found from Eq.

(1.2.6):

E(kin)
r = c2

/
(1 − v2/c2)1/2, (m = 1). (1.2.17)
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Inserting into Eq. (1.2.15), we obtain an important relationship between relativistic mass density �r,

rest mass density �, and specific relativistic kinetic energy E
(kin)
r (e.g. Zeldovich and Novikov 1971, p.

186):

�r = �E(kin)
r /c2, (m = 1). (1.2.18)

After this brief excursion into special relativity, we return to the main subject of this section. The
specific internal energy U, (m = 1) of a perfect gas is a function only of the absolute temperature
U = U(T ), [cf. Eq. (1.7.61)]. According to Eqs. (1.1.2), (1.2.2) the specific heat at constant volume for
a perfect gas will be

cV = (dQ/dT )V = (∂U/∂T )V = dU/dT, (m = 1). (1.2.19)

The specific heat at constant pressure cP can be determined by differentiating the equation of state
(1.2.5) when m = �V = 1 :

P dV + V dP = R dT/µ. (1.2.20)

Introducing into Eq. (1.1.2), we get

dQ = dU + R dT/µ − V dP. (1.2.21)

Thus

cP = (dQ/dT )P = dU/dT + R/µ = cV + R/µ. (1.2.22)

To obtain the equation of a polytrope of specific heat c = const, we substitute Eqs. (1.2.4) and
(1.2.19) into Eq. (1.1.2):

dQ = c dT = cV dT + P dV = cV dT −RT d�/µ�. (1.2.23)

Or, because R/µ = cP − cV :

(cV − c) dT/T = (cP − cV ) d�/�, (m = 1). (1.2.24)

Provided that c, cV , cP = const, the integration of Eq. (1.2.24) yields for the equation of a polytrope
of specific heat c :

T�(cP −cV )/(c−cV ) = const. (1.2.25)

By convention, we define the polytropic index of a perfect gas n as (cf. Chandrasekhar 1939)

n = (cV − c)/(cP − cV ). (1.2.26)

If n = const, we obtain from Eqs. (1.2.25) and (1.2.26), with the aid of the equation of state (1.2.5),
three equivalent forms for the equation governing a polytropic process:

P�−1−1/n ∝ PV 1+1/n = const, (1.2.27)

PT−1−n = const, (1.2.28)

T�−1/n ∝ TV 1/n = const. (1.2.29)

From Eqs. (1.2.27) and (1.2.28) it is obvious that when n = −1, then P = const (isobaric polytropic
process). From Eq. (1.2.29) we observe that T = const if n = ±∞ (isothermal polytropic process). If
we rewrite Eq. (1.2.29) as T−n� ∝ T−n/V = const, we observe that if n = 0, we have � ∝ 1/V = const :
There occurs an isopycnic (� = const) or an isometric (V = const) polytropic process.

In analogy to the adiabatic exponent γ = cP /cV for a perfect gas, we can define the polytropic
exponent of a perfect gas by

γ′ = (cP − c)/(cV − c), (1.2.30)
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and taking into account Eq. (1.2.26), the polytropic index of a perfect gas is defined by

n = 1/(γ′ − 1); γ′ = 1 + 1/n. (1.2.31)

Only for an adiabatic (isentropic) perfect gas (c = dQ/dT = 0) we have γ′ = γ = cP /cV and
n = 1/(γ − 1). Eqs. (1.2.27)-(1.2.29) can be rewritten as

P�−γ ∝ PV γ = const; PT γ/(1−γ) = const; T�1−γ ∝ TV γ−1 = const,
(γ = γ′ = 1 + 1/n; S = const). (1.2.32)

It should be stressed that these equations are valid for adiabatic and reversible, i.e. isentropic pro-
cesses, as emphasized by Eq. (1.2.39). Since dissipative processes are absent by definition in a perfect
gas, the adiabatic perfect gas is always isentropic.

Using the logarithmic derivative of Eq. (1.2.5), dP/P = d�/� + dT/T, we can rewrite Eq. (1.2.24)
under the equivalent forms (cV − c) dP/P = (cP − c) d�/� and (cP − cV ) dP/P = (cP − c) dT/T. These
equations, together with Eq. (1.2.24), can be used to define the polytropic exponent from Eq. (1.2.30)
in the following three ways:

γ′ = d lnP/d ln � = −d lnP/d lnV ; γ′/(γ′ − 1) = d lnP/d lnT ;
γ′ − 1 = d lnT/d ln � = −d lnT/d lnV. (1.2.33)

Using the definitions (1.2.31) and (1.2.33), the polytropic index n for a perfect gas can be defined by
one of the three equations

1 + 1/n = d lnP/d ln � = −d lnP/d lnV ; 1 + n = d lnP/d lnT ;
1/n = d lnT/d ln � = −d lnT/d lnV. (1.2.34)

From Eq. (1.2.27) we obtain the polytropic equation of state for a perfect gas as

P = K�1+1/n, (K, n = const). (1.2.35)

If n = 0, it would seem that P = ∞, but this seeming singularity can be removed at once, if we
write Eq. (1.2.35) under the form P = L1/n�1+1/n, or Pn = L�n+1, (K = L1/n = const). If n = 0, we
observe that � = 1/L = const, irrespective of the value of P [cf. Eq. (1.2.27)]. It should be stressed
that whenever the factor K�1/n occurs, it can be replaced by P/� according to Eq. (1.2.35), and the
apparent singularity for n = 0 vanishes. Equating Eq. (1.2.35) with the equation of state (1.2.5), we find
the equation defining the polytropic constant K for a perfect gas:

K = RT/µ�1/n if n �= 0; K�1/n = RT/µ = P/� if n = 0. (1.2.36)

The so-called polytropic temperature Tp – a notion mainly of historical interest – can be defined from
Eq. (1.2.29):

Tp = T�−1/n = K�T/P and K = RTp/µ. (1.2.37)

Thus, the polytropic temperature is the temperature along a given polytrope for which the density
is just equal to unity. The polytropic temperature characterizes a one-parametric family of polytropes
in the (T, �)-plane. For an isothermal process (n = ±∞), we have from Eq. (1.2.37) T = Tp, i.e. the
polytropic temperature of an isothermal process agrees just with the real temperature.

If the polytropic processes in the perfect gas are reversible, the entropy is given via Eq. (1.1.4) by the
total differential

dS = dQ/T = cV dT/T −R d�/µ� = cV dT/T − (cP − cV ) d�/�

= cV dP/P − cP d�/� = cP dT/T − (cP − cV ) dP/P, (1.2.38)

where we have used Eq. (1.2.23) and the logarithmic derivative of the equation of state (1.2.5). Integration
yields

P/P0 = (�/�0)γ exp[(S − S0)/cV ] = (T/T0)γ/(γ−1) exp[(S − S0)/(cV − cP )];

�/�0 = (T/T0)1/(γ−1) exp[(S − S0)/(cV − cP )], (1.2.39)
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the zero indexed quantities denoting some initial state. Thus, the adiabatic relationships (1.2.32) of
a perfect gas hold for isentropic processes S = S0 = const. Likewise, Eq. (1.2.24) can be written as
dT/T = (γ′ − 1) d�/�. Eq. (1.2.38) becomes

dS = cV (γ′ − γ) d�/� = cV (γ′ − γ) dT/(γ′ − 1)T, (1.2.40)

or if γ′, γ = const :

S = cV (γ′ − γ) ln � + const = [cV (γ′ − γ)/(γ′ − 1)] lnT + const. (1.2.41)

For an adiabatic reversible process we have by Eq. (1.2.30): γ′ = γ, (c = 0). In this case the entropy
S remains always constant (isentropic process).

1.3 Polytropic Processes for a General Equation of State

When the equation of state is of the general form (1.1.1), the polytropic exponent is no longer the
same among the three equations (1.2.33). However, we can define analogously to Eqs. (1.2.33) the three
polytropic exponents (Chandrasekhar 1939, Cox and Giuli 1968)

Γ′
1 = d lnP/d ln � = −d lnP/d lnV ; Γ′

2/(Γ′
2 − 1) = d lnP/d lnT ;

Γ′
3 − 1 = d lnT/d ln � = −d lnT/d lnV. (1.3.1)

Below, we determine for a general equation of state

P = P (�, T ), (1.3.2)

the equations for the polytropic exponents (1.3.1) as a function of the specific heats cP , cV , and of the
partial derivatives

χ� = (∂ lnP/∂ ln �)T = −(∂ lnP/∂ lnV )T ; χT = (∂ lnP/∂ lnT )� = (∂ lnP/∂ lnT )V . (1.3.3)

Dividing in Eq. (1.3.1) the first equation by the third one, we obtain the useful identity

Γ′
1/(Γ′

3 − 1) = Γ′
2/(Γ′

2 − 1), (1.3.4)

which shows that only two of the three polytropic exponents are independent variables. Differentiating
logarithmically the equation of state (1.3.2), we obtain

d lnP = χT d lnT + χ� d ln � or Γ′
1 = χT (Γ′

3 − 1) + χ�. (1.3.5)

Thus, when the partial derivatives χ� and χT are computed from the equation of state (1.3.2) and if
one of the polytropic exponents (1.3.1) is known, the other two exponents can be computed according
to Eqs. (1.3.4) and (1.3.5). Regarding the specific internal energy U as a function of V and T, we can
rewrite Eq. (1.1.2) as follows:

dQ = [(∂U/∂V )T + P ] dV + (∂U/∂T )V dT. (1.3.6)

Since polytropic changes are by definition reversible processes, the second law of thermodynamics can
be written under the form

dS = dQ/T = (1/T )[(∂U/∂V )T + P ] dV + (1/T )(∂U/∂T )V dT. (1.3.7)

The entropy is an exact differential, so we have
{
∂[(1/T )(∂U/∂V )T + P/T ]

/
∂T
}

V
=
{
∂[(1/T )(∂U/∂T )V ]

/
∂V

}
T
, (1.3.8)

or by performing the derivation:

(∂U/∂V )T = T (∂P/∂T )V − P. (1.3.9)
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For the unit of rest mass we have (∂U/∂V )T = −�2(∂U/∂�)T , and Eq. (1.3.9) takes the logarithmic
form

(∂ lnU/∂ ln �)T = −(P/�U)[(∂ lnP/∂ lnT )� − 1] = −(P/�U)(χT − 1). (1.3.10)

Regarding the specific internal energy U as a function of � and T, the first law of thermodynamics
(1.1.3) becomes

dQ = [(∂U/∂�)T − P/�2] d� + (∂U/∂T )� dT = [(∂U/∂�)T − P/�2] d� + cV dT, (1.3.11)

since from the definition of the specific heat at constant volume we obtain, by using Eqs. (1.1.2) or
(1.1.3):

cV = (dQ/dT )V = (dQ/dT )� = (∂U/∂T )V = (∂U/∂T )�. (1.3.12)

Equating dQ from Eqs. (1.3.11) and (1.2.3), we find

(c − cV ) dT/T = [�(∂U/∂�)T − P/�] d�/�T, (1.3.13)

and finally the desired equation

Γ′
3 − 1 = d lnT/d ln � = [U(∂ lnU/∂ ln �)T − P/�]

/
(c − cV )T = PχT

/
(cV − c)�T, (1.3.14)

via Eq. (1.3.10). The above equation can be brought into a form equivalent to Eq. (1.2.24) by including
also the value of cP − cV . To this end, we recall the definition for the specific heat at constant pressure,
using the first law of thermodynamics (1.1.3):

cP = (dQ/dT )P = (∂U/∂T )P − (P/�2)(∂�/∂T )P . (1.3.15)

If P = const, we have dP = (∂P/∂�)T d� + (∂P/∂T )� dT = 0, and dividing this equation by dT, we
get for the second derivative on the right-hand side of Eq. (1.3.15):

(∂�/∂T )P = −(∂P/∂T )�

/
(∂P/∂�)T = −(�/T ) χT /χ�. (1.3.16)

To obtain also an expression for the first derivative (∂U/∂T )P from Eq. (1.3.15), we differentiate the
internal energy of the thermodynamic system in two ways, by taking U = U(�, T ) and U = U [P (�, T ), T ] :

dU = (∂U/∂�)T d� + (∂U/∂T )� dT and
dU = (∂U/∂P )T [(∂P/∂�)T d� + (∂P/∂T )� dT ] + (∂U/∂T )P dT. (1.3.17)

We find, by equating the terms near d� and dT, respectively:

(∂U/∂�)T = (∂U/∂P )T (∂P/∂�)T ; (∂U/∂T )� = (∂U/∂P )T (∂P/∂T )� + (∂U/∂T )P . (1.3.18)

Using successively Eqs. (1.3.18), (1.3.16), (1.3.12), (1.3.18), (1.3.3), and (1.3.10), we get from Eq.
(1.3.15) the important result

cP = (∂U/∂T )� − (∂U/∂P )T (∂P/∂T )� + (P/�T ) χT /χ�

= cV − (∂U/∂�)T (∂�/∂P )T (∂P/∂T )� + (P/�T ) χT /χ�

= cV − (U/T )(∂ lnU/∂ ln �)T χT /χ� + (P/�T ) χT /χ� = cV + (P/�T ) χ2
T /χ�, (1.3.19)

or

χ2
T = (cP − cV )�Tχ�/P. (1.3.20)

Eq. (1.3.14) can be written via Eq. (1.3.20) under the final form

Γ′
3 − 1 = d lnT/d ln � = (cP − cV )χ�

/
(cV − c)χT . (1.3.21)

The two other gammas can be readily found with the aid of Eqs. (1.3.4), (1.3.5):

Γ′
1 = d lnP/d ln � = (cP − c)χ�/(cV − c); Γ′

2/(Γ′
2 − 1) = d lnP/d lnT = (cP − c)χT /(cP − cV ).

(1.3.22)
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If c = dQ/dT = 0, we obtain from Eqs. (1.3.21), (1.3.22) the adiabatic exponents for the general
equation of state P = P (�, T ), calculated at constant entropy, since the considered processes are reversible
and adiabatic dS = dQ/T = 0 :

Γ1 = (∂ lnP/∂ ln �)S = cP χ�/cV ; Γ2/(Γ2 − 1) = (∂ lnP/∂ lnT )S = cP χT /(cP − cV );
Γ3 − 1 = (∂ lnT/∂ ln �)S = (cP − cV )χ�/cV χT . (1.3.23)

In terms of the ratio of specific heats

γ = cP /cV = Γ1/χ� = 1
/
[1 − χT (Γ2 − 1)/Γ2] = 1 + χT (Γ3 − 1)/χ�. (1.3.24)

The three adiabatic exponents are equal to the ratio of specific heats (Γ1 = Γ2 = Γ3 = γ) if and only
if χ� = χT = 1, as can be seen from Eqs. (1.3.1), (1.3.24). When χ� = χT = 1, the equation of state
must be of the form of the perfect gas equation (1.2.5): P ∝ �T. The three adiabatic exponents can be
equal among each other even if χ�, χT �= 1, but in this case Γk �= γ, (k = 1, 2, 3). Such a situation occurs
for instance for black body radiation, for a completely degenerate gas in the nonrelativistic and extreme
relativistic limit, and for electron-positron pairs (Secs. 1.4–1.6).

Analogously to Eqs. (1.2.33), (1.2.34) we define the polytropic index n for the general equation of
state by

1 + 1/n = Γ′
1 = d lnP/d ln � = (cP − c)χ�/(cV − c). (1.3.25)

The polytropic index can also be defined by (cf. Cox and Giuli 1968)

1 + n′ = Γ′
2/(Γ′

2 − 1) = d lnP/d lnT or 1/n′′ = Γ3 − 1 = d lnT/d ln �. (1.3.26)

From Eqs. (1.3.25), (1.3.26) we find relationships analogous to Eq. (1.2.31):

n = 1/(Γ′
1 − 1); n′ = 1/(Γ′

2 − 1); n′′ = 1/(Γ′
3 − 1). (1.3.27)

Generally, the polytropic indices n, n′, n′′ are different for the general equation of state (1.3.2). When
the polytropic indices are functions of a radial distance they are called effective polytropic indices.

In the particular case, when all polytropic exponents are constant, we can integrate Eq. (1.3.1), to
obtain a system equivalent to Eq. (1.2.32):

P�−Γ′
1 ∝ PV Γ′

1 = const; PTΓ′
2/(1−Γ′

2) = const; T�1−Γ′
3 ∝ TV Γ′

3−1 = const,
(Γ′

1, Γ
′
2, Γ

′
3 = const). (1.3.28)

From the first of these equations, together with the definition (1.3.25), we obtain the general equation
of state for a polytropic change in a form similar to Eqs. (1.2.27), (1.2.35):

P�−1−1/n ∝ PV 1+1/n = const or P = K�1+1/n, (K, n = const). (1.3.29)

K will be referred to as the polytropic constant. If n = −1 and K, � �= 0, we have P = K = const,
but generally this case will be excluded [cf. discussion subsequent to Eq. (2.1.8)]. If n = 0, we get
� = const, as already shown subsequently to Eq. (1.2.35), by writing Eq. (1.3.29) under the form
�1+n = Pn/L, (K = L1/n). And finally, if n = ±∞, we get P = K�. The equation of state (1.3.29) is
valid for polytropic processes obeying the general equation of state P = P (�, T ), but only in the somewhat
particular case Γ′

1, n = const. The more general definition (1.3.25) allows for a variable polytropic index
n, but this would introduce far too many degrees of freedom; generally, the polytropic index n will be
considered constant when used in connection with an equation of state of the form (1.3.29).

In the two last sections we have discussed polytropic processes for a perfect gas and for a general
equation of state. A very important class of polytropic changes are reversible adiabatic (isentropic)
processes dS = dQ/T = 0. In this case there is Γ′

k = Γk, (k = 1, 2, 3) via Eqs. (1.3.22), (1.3.23). The
corresponding polytropic indices from Eqs. (1.3.25), (1.3.26)

n = 1/(Γ1 − 1); n′ = 1/(Γ2 − 1); n′′ = 1/(Γ3 − 1), (S = const), (1.3.30)

generally vary between narrow limits for the simple thermodynamic systems considered in this chapter. In
the next three sections we will consider adiabatic processes in three other simple thermodynamic systems,
namely black body radiation, electron-positron pairs, and completely degenerate electron or neutron gas.
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1.4 Adiabatic Processes in a Mixture of Black Body Radiation and Perfect
Gas

At first let us consider an adiabatic enclosure of proper volume V containing black body radiation
without matter. The radiation pressure P and the internal energy U of black body radiation contained
inside volume V are given by (e.g. Chandrasekhar 1939, Menzel et al. 1963)

P = aT 4/3; U = εrV = aT 4V. (1.4.1)

a = 7.5647 × 10−15 erg cm−3 K−4 denotes the radiation pressure constant (Stefan constant). The
specific heat at constant volume of the black body radiation contained in volume V is

cV = (∂U/∂T )V = 4aT 3V. (1.4.2)

Photons have no rest mass in virtue of Eq. (1.2.7), and we infer from Eq. (1.2.16) that εr = �rc
2 =

ε(int) = U/V = aT 4. The specific heat at constant pressure can easily be found from Eq. (1.3.20)

cP = cV + (P/�T ) χ2
T /χ� = ∞, (1.4.3)

because

χ� = −(∂ lnP/∂ lnV )T = 0; χT = (∂ lnP/∂ lnT )V = 4. (1.4.4)

For the adiabatic exponents of black body radiation we find from Eq. (1.3.14), when c = dQ/dT = 0
and � → �r = εr/c2 = U/V c2 = 1/V, (U/c2 = mr = 1) :

Γ3 − 1 = PχT /cV �T → PχT /cV �rT = PV χT /cV T = 1/3. (1.4.5)

Eqs. (1.3.5) and (1.3.4) yield, respectively

Γ1 = χT (Γ3 − 1) + χ� = 4/3, (1.4.6)

Γ2/(Γ2 − 1) = Γ1/(Γ3 − 1) = 4. (1.4.7)

Therefore, in the case of black body radiation

Γ1 = Γ2 = Γ3 = 4/3 = const, (1.4.8)

and the equations for the adiabates are [cf. Eq. (1.3.28)]

PV 4/3 = const; TV 1/3 = const; PT−4 = const. (1.4.9)

Adiabatic processes in an enclosure filled with black body radiation behave like a perfect gas with
adiabatic exponent Γk = 4/3, (k = 1, 2, 3). However, the ratio of specific heats γ = cP /cV for black body
radiation is not equal to Γk, as in the perfect gas case. Instead, we have from Eq. (1.3.24)

γ = cP /cV = Γ1/χ� = ∞, (T �= 0). (1.4.10)

The equations for the adiabatic exponents and the specific heats are more complicated in the case of
a mixture of black body radiation and perfect gas; this case has ample application for polytropic stars.
The pressure can be split into two parts

P = Pg + Pr = R�T/µ + aT 4/3, (1.4.11)

where Pg means the gas pressure (1.2.5), and Pr the radiation pressure (1.4.1). We find by integration
of Eq. (1.2.19) the specific internal energy of a perfect gas

Ug = cV gT = RT/µ(γg − 1), (m = 1; cV g = const), (1.4.12)
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where the subscript g denotes values relative to the gas component (γg = cPg/cV g; cPg = cV g + R/µ).
The internal energy per unit mass of the mixture (specific internal energy) will be the sum of the gas and
radiation parts from Eqs. (1.4.12) and (1.4.1):

U = RT/µ(γg − 1) + aT 4/�, (m = 1). (1.4.13)

� is the rest mass density of the gas (� = 1/V ), the relativistic mass density �r = aT 4/c2 of black
body radiation being neglected; this approximation can be made for most cases of practical interest. Let
us denote by β the ratio between gas pressure and total pressure

β = Pg/P. (1.4.14)

Then

χ� = (�/P )(∂P∂�)T = R�T/µP = Pg/P = β, (1.4.15)

and

χT = (T/P )(∂P/∂T )� = (4aT 4/3 + R�T/µ)/P = 4Pr/P + Pg/P = 4 − 3β. (1.4.16)

For the specific heat at constant volume of the mixture, we get

cV = (∂U/∂T )� = R/µ(γg − 1) + 4aT 3/� = [R/µ(γg − 1)][12Pr(γg − 1)/Pg + 1]
= [R/µβ(γg − 1)][12(1 − β)(γg − 1) + β], (1.4.17)

and for the specific heat at constant pressure

cP = cV + (P/�T )(χ2
T /χ�) = [R/µ(γg − 1)][12(1 − β)(γg − 1) + β]/β

+R(4 − 3β)2/µβ2 = [R/µβ2(γg − 1)]
{
(γg − 1)[12β(1 − β) + (4 − 3β)2] + β2

}
. (1.4.18)

For the adiabatic exponents we obtain (Eqs. (1.4.5)-(1.4.7), Chandrasekhar 1939, Menzel et al. 1963)

Γ3 − 1 = PχT

/
cV �T = (4 − 3β)(γg − 1)

/
[12(1 − β)(γg − 1) + β], (1.4.19)

Γ1 = χ� + χT (Γ3 − 1) = β + (4 − 3β)2(γg − 1)
/
[12(1 − β)(γg − 1) + β], (1.4.20)

Γ2/(Γ2 − 1) = Γ1/(Γ3 − 1) =
[
12β(1 − β)(γg − 1) + β2 + (4 − 3β)2(γg − 1)

]/
(4 − 3β)(γg − 1),

(1.4.21)

and for the ratio of specific heats

γ = cP /cV = Γ1/β = 1 + (4 − 3β2)(γg − 1)
/
[12β(1 − β)(γg − 1) + β2]. (1.4.22)

If β → 0, Eqs. (1.4.19)-(1.4.22) become identical to those for black body radiation from Eqs. (1.4.8),
(1.4.10), and if β → 1 we recover the perfect gas case γg = γ = Γk. When ionization processes are
included, the adiabatic indices become considerably more complicated (e.g. Cox and Giuli 1968).

1.5 Adiabatic Processes in a Mixture of Electron-Positron Pairs and Black
Body Radiation

The photons from a black body radiation field having energies in excess of the rest mass energies of
the electron and positron 2mec

2, (me = 9.10956 × 10−28 g – rest mass of the electron or positron) can
split to form electron-positron pairs (e±-pairs). The equilibrium concentration of electron-positron pairs
can be large at very high temperatures (> 109 K), and in the virtual absence of matter. In fact, some
matter must be present, in order to assure black body radiation and e±-pair production. No ionization
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electrons are assumed to be present, so the total number density nde± of e±-pairs is just twice the electron
number density nde :

nde± = 2nde. (1.5.1)

Since the e±-pairs are “dissociated” or “ionized” photons, they form an intrinsic part of the radiation
field, and therefore radiation pressure must be included when calculating the equation of state of the
mixture composed of e±-pairs and radiation. We neglect the pressure of nuclei, which generally obey the
perfect gas law (cf. Sec. 1.7). The total pressure of the mixture is split into two parts, the radiation
pressure Pr and the e±-pair pressure P±

e :

P = Pe± + Pr, (Pr = aT 4/3). (1.5.2)

The maximum of spectral emissivity of black body radiation occurs according to Wien’s law at a
photon energy of (e.g. Gerthsen et al. 1977)

e
(m)
ph = 2.82kT = 3.89 × 10−16T. (1.5.3)

In the nonrelativistic limit, the approximate mean photon energy from Wien’s law (≈ kT ) is much
smaller than the sum of the rest energies of electrons and positrons 2mec

2; most photons cannot split
into e±-pairs, and the mixture behaves almost like pure black body radiation, discussed in the previous
section. The pressure of electron-positron pairs obeys in the nonrelativistic limit nearly the perfect gas
law (e.g. Cox and Giuli 1968):

Pe± ≈ nde±kT = 2ndekT. (1.5.4)

Since kT � mec
2, very few e±-pairs exist, and Pe± � Pr :

P ≈ Pr = aT 4/3. (1.5.5)

In the extreme relativistic limit, at very high temperatures, we have kT 	 mec
2, and the pressure

exerted by the e±-pairs is (e.g. Cox and Giuli 1968)

Pe± ≈ 1.05nde±kT = 7Pr/4 = 7aT 4/12. (1.5.6)

The pressure exerted by the electron-positron pairs is just 7/11 parts of the total pressure, since
Pe±/P = Pe±/(Pe± +Pr) = 7/11. In virtue of Eq. (1.5.6), the equation of state of the e±-pairs is similar
in the extreme relativistic limit to that of black body radiation, and we get for the total pressure of the
mixture

P ≈ 11Pr/4 = 11aT 4/12. (1.5.7)

Since the pressure of the mixture in the nonrelativistic and extreme relativistic limit obeys nearly the
same form as for simple black body radiation, the equations for the adiabatic exponents are nearly the
same as for black body radiation (χ� = 0) :

Γ1 ≈ Γ2 ≈ Γ3 ≈ 4/3; γ = ∞. (1.5.8)

In the partially relativistic case when kT/mec
2 ≈ O(1), the equation of state of the e±–photon

mixture is complicated and will not be quoted. Because χ� = 0, there is always γ = ∞; numerical values
of Γk, (k = 1, 2, 3), as well as additional effects of ions are briefly discussed in Sec. 1.7.
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1.6 Adiabatic Processes in a Completely Degenerate Electron or Neutron
Gas

Obviously, a gas composed merely of electrons would be unstable; therefore the charge of the electrons
should be compensated by an equivalent number of ionic charges. Fortunately, the influence of the ions
on the pressure of the degenerate electron gas can be safely neglected as long as the rest mass density of
the mixture is � < 108 g cm−3, and the temperature is sufficiently small [cf. Eq. (1.7.28)]. However, it
will be shown that the ions strongly influence the values of the adiabatic exponents Γ2, Γ3 [Eqs. (1.6.14),
(1.6.16)]. The density of the mixture will be mainly given by the density of the ions. Complete degeneracy
implies zero temperature of the degenerate electron gas, so all subsequent equations are strictly valid only
if T = 0. When the gas is completely degenerate, the influence of electron-positron pairs is completely
negligible [cf. Eq. (1.5.5)].

At first we consider only the equations for the electron component of the plasma mixture [Eqs. (1.6.1)-
(1.6.11)]. The pressure of the completely degenerate electron gas in the partially relativistic regime is
given by (e.g. Cox and Giuli 1968, Landau and Lifschitz 1971, Zeldovich and Novikov 1971)

P = (πm4
ec

5/3h3)
{
x(x2 + 1)1/2(2x2 − 3) + 3 ln[x + (x2 + 1)1/2]

}
= Af(x);

A = πm4
ec

5/3h3; arcsinh x = ln[x + (x2 + 1)1/2]. (1.6.1)

The parameter x is defined through the so-called Fermi momentum pF of the electrons

x = pF /mec = (3h3nde/8π)1/3
/
mec. (1.6.2)

h = 6.62620 × 10−27 erg s is the Planck constant, c the velocity of light, me = 9.10956 × 10−28 g the
electron rest mass, and nde the number of free ionization electrons per cm3. The number density of free
ionization electrons is connected to the mean molecular weight per free ionization electron µe, and to the
rest mass density � of the gas by [cf. Eqs. (1.7.18)-(1.7.23)]

nde = NA�/µe. (1.6.3)

NA = 6.02217 × 1023 mole−1 denotes the Avogadro number. Inserting Eq. (1.6.3) into Eq. (1.6.2),
we obtain the parametric representation for the rest mass density of the completely degenerate electron
gas:

� = 8πm3
ec

3µex
3/3h3NA = Bx3; B = 8πm3

ec
3µe/3h3NA. (1.6.4)

Since the electrons are assumed to be noninteracting, their internal energy density ε(int) is equal to
their kinetic energy density ε(kin) from Eq. (1.2.15), (cf. Sec. 1.7, Schatzman 1958, Cox and Giuli 1968):

ε(kin) = (πm4
ec

5/3h3)
{
8x3[(x2 + 1)1/2 − 1] − x(x2 + 1)1/2(2x2 − 3) − 3 ln[x + (x2 + 1)1/2]

}
.

(1.6.5)

In the nonrelativistic limit (x � 1) we have P ∝ 8x5/5, and therefore the pressure is given for constant
µe by a polytrope of index n = 1.5, (P ∝ �5/3) :

P = (3/π)2/3h2n
5/3
de /20me = (3/π)2/3h2(NA�/µe)5/3/20me = 1.004 × 1013(�/µe)5/3 [dyne cm−2].

(1.6.6)

In the extreme relativistic limit (x 	 1) there is P ∝ 2x4, and the pressure is given for constant µe

by a polytrope of index n = 3, (P ∝ �4/3) :

P = (3/π)1/3hc n
4/3
de /8 = (3/π)1/3hc(NA�/µe)4/3/8 = 1.244 × 1015(�/µe)4/3 [dyne cm−2]. (1.6.7)

In the extreme relativistic limit, when � � �r, ε(kin) ≈ ε
(kin)
r = �rc

2, we get from Eqs. (1.6.1) and
(1.6.5): P ≈ ε(kin)/3 ≈ ε

(kin)
r /3 = �rc

2/3 [cf. Eqs. (1.7.37)-(1.7.39)].
When the degenerate gas is composed of neutrons instead of electrons, we have to replace in the

preceding formulas the rest mass of the electron me and the mean molecular weight per free ionization
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electron µe by the rest mass of the neutron mn = 1.67482 × 10−24 g and by the mean molecular weight
of the neutrons µn, (µn ≈ 1), respectively (cf. Sec. 1.7).

The expression for the adiabatic exponent Γ1 is given by Eq. (1.3.5) with χT = 0 and Γ′
1 = Γ1, Γ′

3 =
Γ3. Via Eqs. (1.6.1) and (1.6.4) we get

Γ1 = (∂ lnP/∂ ln �)S = χT (Γ3 − 1) + χ� = χ� = d ln f(x)/d lnx3 = 8x5
/
3(x2 + 1)1/2f(x). (1.6.8)

The equation for Γ3 is obtained in a considerably more involved way, since the temperature effect on
the equation of state has to be considered before turning to the limit T → 0. It can be shown that (e.g.
Schatzman 1958, Cox and Giuli 1968)

Γ3 − 1 = (x2 + 2)/3(x2 + 1). (1.6.9)

Using the identity (1.3.4) we obtain from Eqs. (1.6.8), (1.6.9):

(Γ2 − 1)/Γ2 = (Γ3 − 1)/Γ1 = (x2 + 2) f(x)/8x5(x2 + 1)1/2. (1.6.10)

The equation (1.3.24) for the ratio of specific heats is simply

γ = cP /cV = Γ1/χ� = 1, (1.6.11)

since according to Eq. (1.6.8) Γ1 = χ�. Numerical values of the gammas are quoted in Table 1.7.1.
The previous equations are strictly valid only for the completely degenerate electron component of

a gas, neglecting the influence of the nondegenerate ion component. It has already been noted that the
adiabatic exponents Γ2, Γ3 of a plasma composed of degenerate electrons and nondegenerate ions are
strongly affected by the ions, because of the temperature dependence of their equation of state. Note
however, that under certain conditions prevailing in white dwarfs the ions may arrange into a crystalline
lattice, their properties resembling those of an ordinary solid (Debye solid), rather than those of a perfect
gas (cf. Sec. 1.7).

Let us calculate the adiabatic exponents in a plasma mixture consisting of completely degenerate
electrons and of a nondegenerate ionic component, obeying the equation of state of a perfect gas. From
Eq. (1.3.14) we have for an adiabatic change

Γ3 − 1 = PχT /cV �T, (c = dQ/dT = 0; Γ′
3 = Γ3). (1.6.12)

Taking into account that χT = (T/P )(∂P/∂T )� and cV = (∂U/∂T )�, the equation (1.6.12) becomes

Γ3 − 1 = (1/�)(∂P/∂U)� = (1/�)(∂P/∂ε(kin))� (∂ε(kin)/∂U)� = (∂P/∂ε(kin))�, (1.6.13)

where ε(kin) is exactly equal to the energy density of internal energy ε(int) (internal energy per unit
volume), because only kinetic translational motions of noninteracting particles occur in the considered
system (cf. Eq. (1.7.59) if f = 3). If we denote by U the specific internal energy of the gas (internal
energy per unit rest mass), we can write ε(int) = ε(kin) = �U, and therefore (∂ε(kin)/∂U)� = �. We split
pressure and energy density of the plasma into the components of the completely degenerate electron gas
and of the nondegenerate ion plasma (P = Pi + Pe; ε(kin) = ε

(kin)
i + ε

(kin)
e ), and obtain via Eq. (1.6.13)

Γ3 − 1 = (∂P/∂ε(kin))� = [(∂Pi/∂T )� + (∂Pe/∂T )�]
/
[(∂ε

(kin)
i /∂T )� + (∂ε(kin)

e /∂T )�]

≈ (∂Pi/∂T )�

/
(∂ε

(kin)
i /∂T )� = (∂Pi/∂ε

(kin)
i )� = Γ3i − 1, (1.6.14)

because for the degenerate electron component we have (∂Pe/∂T )� → 0 and (∂εe/∂T )� → 0, as T → 0.
Noting that χ� → χ�e (contribution of ionic component to the pressure is negligible), and χT → 0 if
T → 0, we get according to Eq. (1.3.5):

Γ1 = χ� + (Γ3 − 1)χT ≈ χ�e = Γ1e. (1.6.15)

Hence

(Γ2 − 1)/Γ2 = (Γ3 − 1)/Γ1 ≈ (Γ3i − 1)/Γ1e. (1.6.16)

The ratio of specific heats is also in this case equal to its value (1.6.11) for the completely degenerate
electron gas:

γ = Γ1/χ� ≈ Γ1e/χ�e = 1. (1.6.17)
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1.7 Numerical Survey of Equations of State, Adiabatic Exponents, and
Polytropic Indices

In the equations of state quoted in the previous sections there appears frequently the mean molecular
weight of the gas µ and the mean molecular weight per free ionization electron µe. We briefly derive the
relevant equations. The mean molecular weight is defined as the mean rest mass per mole of free particles
(e.g. Chandrasekhar 1939, Cox and Giuli 1968):

µ = �NA/nd = �/Hnd. (1.7.1)

� denotes the rest mass density of free particles, nd the number density of free particles, NA Avogadro’s
number, and H = 1/NA the atomic mass unit. The quantitiy �/nd is just the mean rest mass of a free
particle, which yields the mean molecular weight µ, when multiplied by the number NA of free particles
per mole. The definition (1.7.1) is independent of relativistic effects, since only the rest mass density � is
considered. From the definition (1.7.1) it is obvious that µ is also equal to the average rest mass of free
particles measured in atomic mass units H :

µ = m/H, (1.7.2)

where m = �/nd means the average rest mass per free particle. Therefore, the mean molecular weight
can be expressed in g mole−1 or in atomic mass units H. If we denote by mk the rest mass of a free
particle of type k, and by ndk its number density, we have obviously

� =
∑

k

mkndk, (1.7.3)

where summation extends over all types of particles present in the gas. Also

nd =
∑

k

ndk, (1.7.4)

and

NA = 1/H. (1.7.5)

Inserting Eqs. (1.7.3)-(1.7.5) into the definition (1.7.1), we obtain

µ =
∑

k

mkndk

/
H
∑

k

ndk =
∑

k

Akndk

/∑
k

ndk, (1.7.6)

where Ak = mk/H is the mass of a free particle of type k measured in atomic mass units. Eq. (1.7.6)
can be transformed further by inserting the atomic mass fraction xk (relative mass abundance or shortly
abundance) of the particle of type k, which is equal to the mass measured in grams of particles of type
k present in one gram of gas. Therefore

xk� = ndkmk or ndk = �xk/mk = �xk/HAk. (1.7.7)

Since obviously∑
k

xk = 1, (1.7.8)

we get by substitution of Eqs. (1.7.7), (1.7.8) into Eq. (1.7.6):

µ = 1
/∑

k

(xk/Ak). (1.7.9)

Over most ranges in the temperature-density diagram from Fig. 1.7.1 the matter is partially or
completely ionized. The total number density nd can be written as

nd = nde +
∑

i

ndi, (1.7.10)
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where nde is the number density of free ionization electrons (no electrons from electron-positron pairs are
considered), and ndi the number density of all particles of type i, excepting electrons; we have changed
the summation index in order to distinguish summation over all particles (index k) from summation
over all particles other than electrons (index i). If each particle of type i contributes on the average νi

electrons, the number density of electrons is via Eq. (1.7.7):

nde =
∑

i

νindi = (�/H)
∑

i

νixi/Ai. (1.7.11)

Eq. (1.7.10) becomes, by using again Eq. (1.7.7) for
∑

i ndi :

nd = (�/H)
∑

i

(1 + νi)xi/Ai = (�/H)
∑

i

sixi. (1.7.12)

si = (1+ νi)/Ai is the total number of free particles per atomic mass unit H, contributed by particles
of type i. Introducing Eq. (1.7.12) into Eq. (1.7.1), we get

µ = 1
/∑

i

sixi. (1.7.13)

∑
i xi is slightly less than 1, since the summation is not extended over the electrons; the electron rest

masses are neglected. Possible occurrence of negative ions is neglected too. si from Eq. (1.7.13) changes
between 1/Ai (no ionization) and (1 + Zi)/Ai (complete ionization), where Zi denotes the atomic charge
number. Therefore, µ is contained between the limiting values for completely ionized and nonionized
material:

1
/∑

i

[xi(1 + Zi)/Ai] ≤ µ ≤ 1
/∑

i

(xi/Ai). (1.7.14)

For nonionized matter we have Zi = 0, and

1/µ =
∑

i

(xi/Ai) =
〈
1/A

〉
, (1.7.15)

where
〈
1/A

〉
, as defined by Eq. (1.7.15), is the average reciprocal mass of free particles with respect to

mass abundance, measured in atomic mass units H. For matter composed of single elements we have for
instance µ = 12 for C.

In the case of completely ionized material we obtain for hydrogen (1 + ZH)/AH = 2/1.008 ≈ 2, for
helium (1 + ZHe)/AHe = 3/4.004 ≈ 3/4, and for all elements heavier than helium (1 + Zi)/Ai ≈ 1/2.
Thus, in the case of complete ionization Eq. (1.7.14) becomes

µ ≈ 1
/[

2xH + 3xHe/4 + (1 − xH − xHe)/2
]

= 2
/
(1 + 3xH + xHe/2), (1.7.16)

where we have used
∑

i xi ≈ 1, and have denoted the mass fraction of H and He by xH and xHe,
respectively. The mean molecular weight of completely ionized matter is contained between the narrow
limits

1/2 ≤ µ ≤ 2. (1.7.17)

The lower limit obtains if xH = 1, xHe = 0, and the upper one if xH = xHe = 0, (0 ≤ xi ≤ 1).
For degenerate matter it is appropriate to use the mean molecular weight per free ionization electron

µe, instead of the mean molecular weight µ. In analogy to Eq. (1.7.1), we define the mean molecular
weight per free ionization electron as

µe = �/Hnde. (1.7.18)

This equation is also valid for a gas composed only of electrons. For a mixture of electrons and
nuclei Eq. (1.7.18) can be transformed further. The number density of free ionization electrons nde (the
contribution to nde from electron-positron pairs is not considered, though they may be present in this
context) can be obtained from Eq. (1.7.10) by using Eqs. (1.7.7), (1.7.12):

nde = nd −
∑

i

ndi = (�/H)
∑

i

sixi − (�/H)
∑

i

xi/Ai = (�/H)
∑

i

[(xi/Ai)(Aisi − 1)]. (1.7.19)



1.7 Numerical Survey of Equations of State, Adiabatic Exponents, and Polytropic Indices 17

For complete ionization there is si = (1 + Zi)/Ai, and therefore

nde = (�/H)
∑

i

xiZi/Ai. (1.7.20)

We insert Eq. (1.7.20) into Eq. (1.7.18):

1/µe =
∑

i

xiZi/Ai. (1.7.21)

For all elements heavier than hydrogen we have Zi/Ai ≈ 1/2. Therefore

1/µe = xH + (1 − xH)/2 = (1 + xH)/2, (1.7.22)

and

1 ≤ µe ≤ 2. (1.7.23)

The lower limit applies if xH = 1, the upper one if xH = 0.
In the case of completely ionized matter, the mean molecular weight µ is related to the mean molecular

weight per free ionization electron µe by

1/µ =
∑

i

[xi(1 + Zi)/Ai] =
∑

i

xi/Ai +
∑

i

xiZi/Ai =
〈
1/A

〉
+ 1/µe = 1/µi + 1/µe, (1.7.24)

where we have used Eqs. (1.7.14), (1.7.15), (1.7.21). µi = 1/
〈
1/A

〉
can be considered to represent the

mean molecular weight per ion.
Summarizing, for completely ionized matter µ and µe are contained within the narrow intervals [1/2, 2]

and [1, 2], respectively. For nonionized matter µ is approximately equal to the mean mass of free particles
measured in atomic mass units H.

We now turn to a brief discussion of the applicability of the simple equations of state outlined in
previous sections. We start with the lowest densities occurring in interstellar clouds (� ≈ 10−24 g cm−3),
where Eq. (1.4.11) for a mixture of perfect gas and radiation is applicable:

P = R�T/µ + aT 4/3. (1.7.25)

Radiation pressure is comparable to gas pressure if

� ≈ aµT 3/3R. (1.7.26)

This equation yields for µ = 1 (as for neutral hydrogen) the delimitation line between regions 1 and
2 in Fig. 1.7.1. In region 1 the equation of state is given by Eq. (1.7.25), or even simpler by P = aT 4/3.
In domain 2 the most appropriate equation is the perfect gas law

P = R�T/µ. (1.7.27)

When the density of matter increases, the volume of matter available for an atom becomes less than
the atomic dimensions, and the gas becomes a highly compressed electron-nucleon plasma. The Maxwell-
Boltzmann statistics of perfect gases is no longer applicable, and the electrons become degenerate, obeying
the Fermi-Dirac statistics.

The pressure of the degenerate gas at densities 108 g cm−3 is due mainly to the degenerate electrons,
the influence of the nondegenerate ions being negligible (e.g. Cox and Giuli 1968, Landau and Lifschitz
1971). A rough delimitation between the nondegenerate perfect gas and the degenerate electron gas
is given by equating the perfect gas pressure from Eq. (1.7.27) to the pressure of the nonrelativistic
completely degenerate electron gas from Eq. (1.6.6), (Schwarzschild 1958):

R�T/µ ≈ 1.004 × 1013(�/µe)5/3. (1.7.28)

This equation yields with µ = µe = 1 (pure hydrogen) the delimitation line between domains 2 and 3
from Fig. 1.7.1. The delimitation line between the nonrelativistic degenerate electron gas and the extreme
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Fig. 1.7.1 Temperature – rest mass density diagram showing the principal domains where the equations of
state discussed in this chapter are roughly valid (µ = µe = µn = 1). Domains 1 and 2 constitute the nondegenerate
region, domains 3-5 are degenerate regions. Domain 1 is the radiation pressure dominated region with the equation
of state (1.7.25) below the broken line (1.7.30), and with Eqs. (1.5.5), (1.5.7), (1.7.31) above the broken line,
when the influence of electron-positron pairs becomes important. Domain 2 is the perfect gas region with Eq.
(1.7.27). Domain 3 is the nonrelativistic completely degenerate electron gas with Eq. (1.6.6). Domain 4 is the
extreme relativistic degenerate electron gas with Eq. (1.6.7). Domain 5 is the nonrelativistic degenerate neutron
gas with Eq. (1.7.34). Domain 6 is the nuclear interaction domain with Eqs. (1.7.35), (1.7.43). The hatched
area in domain 3 is the region of planetary pressures, densities, and temperatures (planetary subregion), where
Eq. (1.7.44) may be appropriate. The delimitation lines are obtained from left to right by Eqs. (1.7.30), (1.7.26),
(1.7.28), (1.7.29), (1.7.36), (1.7.33), and (1.7.35), respectively.

relativistic degenerate electron gas (domains 3 and 4) can simply be found by equating the corresponding
pressures from Eqs. (1.6.6) and (1.6.7), (µe = 1) :

1.004 × 1013(�/µe)5/3 ≈ 1.244 × 1015(�/µe)4/3 or � ≈ 1.90 × 106 g cm−3. (1.7.29)

Above the broken line in the radiation pressure domain 1, the influence of electron-positron pairs be-
comes important, when the mean photon energy ≈ 2.82kT [see Wien’s law from Eq. (1.5.3)] is comparable
to the minimum energy 2mec

2 required to produce an electron-positron pair. Thus

2.82kT ≈ 2mec
2 or T ≈ 4.21 × 109 K. (1.7.30)

For instance, in the extreme relativistic limit, the pressure above the broken line should be calculated
by [cf. Eq. (1.5.7)]

P = R�T/µ + 11aT 4/12, (kT 	 mec
2). (1.7.31)

When the gas is highly degenerate (regions 3-5), electron-positron pairs are never important (Cox and
Giuli 1968).

The broken line in Fig. 1.7.1 constitutes also an approximate delimitation between nonrelativistic and
extreme relativistic nondegenerate electrons, since in this case the kinetic electron energy 3kT/w, [1 ≤
w ≤ 2, Eq. (1.7.55)] is of the same order of magnitude as the electron rest energy mec

2. We find, similarly
to Eq. (1.7.30)

kT ≈ mec
2 or T ≈ 5.93 × 109 K. (1.7.32)

Protons become relativistic only at temperatures of order T ≈ mpc
2/k = 1.09 × 1013 K, where

mp = 1.67261 × 10−24 g denotes the proton rest mass. The relativistic nondegenerate domains are not



1.7 Numerical Survey of Equations of State, Adiabatic Exponents, and Polytropic Indices 19

shown separately, because the equation of state is invariant with respect to the rest mass density � (cf.
Sec. 1.2).

The equation of state in domains 5 and 6 at ultrahigh densities is uncertain. Similar to the degenerate
electron gas, the temperature influence to the equation of state is generally modest, and the equation
of state can be represented approximately by a pressure-density power law, resembling the form of the
general polytropic equation of state (1.3.29), (cf. Zeldovich and Novikov 1971, Schaeffer et al. 1983,
Shapiro and Teukolsky 1983). At densities above about 108 g cm−3 the neutronization of matter becomes
possible through the so-called inverse β-process, i.e. capture of electrons by a nucleus and transformation
of the protons inside the nucleus into neutrons. At still higher densities the neutron-rich nuclei decay
with emission of a free neutron, and finally all the matter becomes a degenerate neutron gas. The above
mentioned processes are important at densities between about 108 − 1012 g cm−3, depending on nuclear
composition. Zeldovich and Novikov (1971, p. 182) find that at a rest mass density

� ≈ 1.5 × 1012 g cm−3, (1.7.33)

the pressure 6.6× 1029 dyne cm−2 of relativistically degenerate electrons is equal to the pressure (1.7.34)
5.461× 109[(�− 4× 1011)/µn]5/3 exerted by a nonrelativistic degenerate neutron gas of rest mass density
(� − 4 × 1011) g cm−3, when there is equilibrium between neutron-rich heavy nuclei of density 4 ×
1011 g cm−3, degenerate neutrons of density (�−4×1011) g cm−3, and relativistically degenerate electrons.
The approximate density value from Eq. (1.7.33) is taken somewhat deliberately as the delimitation line
between domain 4, where the pressure is assumed to be caused mainly by the completely degenerate
relativistic electrons and domain 5, where the pressure may be due mainly to the nonrelativistic degenerate
neutrons (cf. Zeldovich and Novikov 1971, p. 184). The pressure of the nonrelativistic degenerate neutron
gas is given analogously to Eq. (1.6.6) by

P = (3/π)2/3h2n
5/3
dn /20mn = 5.461 × 109(�/µn)5/3 [dyne cm−2], (1.7.34)

where mn denotes the rest mass of the neutron, ndn the number density of neutrons, and µn ≈ 1 the
mean molecular weight of the neutrons from Eq. (1.7.1).

At still higher densities, of the order of nuclear densities � ≈ 2×1014 g cm−3 and greater, interactions
between neutrons becomes increasingly important. The neutrons can no longer be treated as separate
particles – rather they form a gigantic nucleus. At these densities transformation of neutrons into other
elementary particles may occur. A relativistically degenerate neutron gas cannot come to existence,
because its equation of state would be pertinent only at densities � ≈ 1.2 × 1016 g cm−3, as can be
seen at once by equating the pressure (1.7.34) of the nonrelativistic degenerate neutrons to the pressure
1.244×1015(�/µn)4/3 [dyne cm−2] of relativistically degenerate neutrons from Eq. (1.6.7), (µe → µn ≈ 1).

As an example of an equation of state of the form (1.7.43), which may be valid at densities � �
1013 g cm−3, we quote from Zeldovich and Novikov (1971, p. 200) the relationships P = �2c2/5 ×
1015, �r = � + �2/5 × 1015. We have �r ≈ � if � � 1013 g cm−3, and �r = �2/5 × 1015, (P = �rc

2) if
� 	 5×1015 g cm−3. An approximate delimitation line between domain 5 (nonrelativistically degenerate
neutron gas) and the nuclear interaction domain 6 can be obtained by equating the previous equation of
state to Eq. (1.7.34):

P = �2c2/5 × 1015 = 5.461 × 109(�/µn)5/3 [dyne cm−2] or � ≈ 2.8 × 1013 g cm−3. (1.7.35)

The delimitation of domain 4 towards high temperatures is approximately found by equating the
perfect gas law to the pressure of the relativistically degenerate electron gas (µ = µe = 1) :

R�T/µ = 1.244 × 1015(�/µe)4/3. (1.7.36)

This equation yields a line with the same slope (� ∝ T 3) as the delimitation line between the two
nondegenerate domains 1 and 2, and opens in domain 2 a small window towards the region of ultrahigh
temperatures and densities, where the simple perfect gas law is valid.

Note, that we base our discussion of the equation of state on oversimplified forms, which often agree
only very roughly with more realistic equations of state. For instance, our adiabatic exponents in domains
4 and 5 should be Γ1 = 4/3 and 5/3 by Eqs. (1.6.6) and (1.7.34), respectively, whereas they may change
between 0 and 2 for various proposed equations of state (e.g. Shapiro and Teukolsky 1983, Fig. 2.3).

The border of domains 5 and 6 towards high temperatures has deliberately been taken equal to the
upper delimitation line of domain 4.
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For the study of relativistic polytropes it will be important to discuss the form of the equation of state
in the extreme relativistic limit. Recall that degenerate electrons start to become relativistic already at
1.90× 106 g cm−3 [cf. Eq. (1.7.29)]. In the nondegenerate Maxwell-Boltzmann regime, electrons become
relativistic at about 5.93 × 109 K [cf. Eq. (1.7.32)], and protons at about 1.09 × 1013 K.

For systems of noninteracting particles, the pressure is given by (e.g. Landau and Lifschitz 1987)

P = �v2
/
3(1 − v2/c2)1/2, (1.7.37)

where v denotes the mean velocity of microscopic kinetic translational motion of particles. Combining
the above equation with Eq. (1.2.15) for the relativistic kinetic energy density of translational motion
ε
(kin)
r , we obtain

P = ε(kin)
r v2/3c2 = �rv

2/3, (1.7.38)

since for systems of noninteracting particles the pressure is equal to the transfer of kinetic momentum of
the particles across a surface.

Because v ≤ c, Eq. (1.7.38) shows that for systems of noninteracting particles there is always

P ≤ ε(kin)
r /3. (1.7.39)

In the extreme relativistic case v = c we have according to Eq. (1.7.38) P = ε
(kin)
r /3 = �rc

2/3, and
the adiabatic velocity of sound is

a2 = (∂P/∂�r)S = c2/3; a = c/31/2, (dQ = 0; S = const). (1.7.40)

On the one side, this result is reasonable since the particles are moving nearly with the velocity
of light - in all directions however. On the other side, it would be difficult to conceive that relativistic
considerations would lead to anything else than to the condition a ≤ c, and not a ≤ c/31/3 (e.g. Zeldovich
and Novikov 1971). To obtain an equation of state compatible with relativistic principles, we generalize
Eq. (1.7.38) for systems of interacting particles, by including in the pressure P also contributions from
particle interactions, force and radiation fields, but exclusive of gravitational fields:

P = βεrv
2/c2 = β�rv

2, (ε(kin)
r → εr). (1.7.41)

We have β = 1/3, if only translational kinetic particle motions are present. In the extreme relativistic
limit Eq. (1.7.41) becomes P = βεr = βc2�r, and the velocity of sound is

a2 = (∂P/∂�r)S = βc2. (1.7.42)

The condition a ≤ c leads to β ≤ 1; thus, we get in the extreme relativistic limit the equation of state

P = βεr = βc2�r ≤ εr = c2�r, (0 ≤ β ≤ 1). (1.7.43)

This equation of state is also assumed by Eqs. (4.1.84), (4.1.86) in the extreme relativistic limit:
P = (γ − 1)c2�r = c2�r/n. Such an equation of state is employed in cosmology for the study of initial
isotropic singularities (e.g. Anguige and Tod 1999).

For systems of noninteracting particles, and even for electromagnetically interacting particles, Eqs.
(1.7.37)-(1.7.40) remain valid. As outlined in Eq. (1.2.16), the total relativistic energy density of matter
εr is composed of the rest energy density ε = �c2, and of the internal energy density ε(int). The internal
energy density ε(int) itself is composed of the sum of the energies of microscopic particle motions, particle
interactions (other than gravitational), external forces and radiation fields, etc. The internal energy
density ε(int) for systems of noninteracting particles is generally composed of the energy density of (i)
kinetic translational motion ε(kin), (ii) rotation and vibration energies in molecules, (iii) potential
energy of external forces and radiation fields. The sum of the energies of translation, vibration, and
rotation of the particles is called internal energy U. When monoatomic or completely ionized perfect
gases, degenerate electrons (neutrons) or photons are considered, the particles possess only translational
kinetic energy density ε(kin), which is just equal to the internal energy density ε(int). At nonrelativistic
energies (v � c), in the case of molecular perfect gases, additional degrees of freedom of the molecules
(rotation and vibration of molecules) lead to an internal energy density ε(int) that could be considerably
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larger than the translational kinetic energy density ε(kin), as will be obvious from Eqs. (1.7.58) and
(1.7.59).

It should be noted that the temperature-density diagram from Fig. 1.7.1 is only a crude estimate.
The quoted simple equations of state are very rough approximations near most delimitation lines. Also,
in the hatched area of domain 3 (terrestrial and planetary gases, liquids, and solids) where interactions
between atoms, molecules, ions, and electrons (Van der Waals forces, Coulomb interactions, etc.) are
not negligible, the equation of state deviates considerably from that of a simple degenerate electron
plasma or from the perfect gas law (e.g. Landau and Lifshitz 1971, Hubbard 1978, Robnik and Kundt
1983). However, as pointed out for instance by Slattery (1977), matter inside the giant planets obeys
approximately a “perturbed” polytropic equation of state

P = K�1+1/n exp
( s∑

k=0

Xk�k
)
, [Xk = Xk(T )], (1.7.44)

where the exponential correction factor is generally of order unity
∑s

k=0 Xk�k � 1, and the polytropic
index is n ≈ 1 (Table 6.1.2, Öpik 1962, Hubbard 1978).

We now turn to the numerical evaluation of the adiabatic exponents and of the corresponding poly-
tropic indices for adiabatic changes occurring in the simple thermodynamic systems discussed in the
previous sections. Recall that the adiabatic exponents and the isentropic polytropic indices are given via
Eqs. (1.3.25), (1.3.26), (1.3.30) by

1 + 1/n = Γ1 = (∂ lnP/∂ ln �)S ; 1 + n′ = Γ2/(Γ2 − 1) = (∂ lnP/∂ lnT )S ;
1/n′′ = Γ3 − 1 = (∂ lnT/∂ ln �)S , (dQ = 0; S = const). (1.7.45)

At first we discuss an important relationship between pressure P and kinetic energy density ε(kin) for
noninteracting particle systems. To this end we insert into Eqs. (1.7.37), (1.7.38) the equation (1.2.15)
for the relativistic mass density �r, and the absolute value of the momentum p from Eq. (1.2.11), by
observing that the rest mass density can be written as � = ndm, (m = mass of a single particle):

P = ε(kin)
r v2/3c2 = �rv

2/3 = ndmv2
/
3(1 − v2/c2)1/2 = ndpv/3. (1.7.46)

In virtue of Eq. (1.2.15) the kinetic energy density of translational motion is

ε(kin) = ε(kin)
r − ε = nde

(kin), (1.7.47)

where e(kin) is the translational kinetic energy per particle. Equating Eqs. (1.2.6) and (1.2.12), we get

e(kin)
r = mc2

/
(1 − v2/c2)1/2 = (p2c2 + m2c4)1/2. (1.7.48)

The last equality from Eq. (1.7.48) yields

v = pc
/
(p2 + m2c2)1/2. (1.7.49)

On the other hand, we obtain from Eqs. (1.2.9) and (1.7.48) for the kinetic energy of a particle

e(kin) = e(kin)
r − e = (p2c2 + m2c4)1/2 − mc2 = c

[
(p2 + m2c2)1/2 − mc

]
, (1.7.50)

where e = mc2 denotes the rest energy of a particle. We eliminate for instance, the factor c between Eqs.
(1.7.49) and (1.7.50):

v = pe(kin)
/[

p2 + m2c2 − mc(p2 + m2c2)1/2
]
. (1.7.51)

The result is introduced into Eq. (1.7.46):

P = ndp
2e(kin)

/
3
[
p2 + m2c2 − mc(p2 + m2c2)1/2

]
= ε(kin)p2

/
3
[
p2 + m2c2 − mc(p2 + m2c2)1/2

]
.

(1.7.52)

Inserting in virtue of Eq. (1.2.11) p2 = m2v2
/
(1 − v2/c2), we obtain further:

P = ε(kin)v2
/
3c2[1 − (1 − v2/c2)1/2] = ε(kin)[1 + (1 − v2/c2)1/2]/3 = wε(kin)/3;

w = 1 + (1 − v2/c2)1/2. (1.7.53)
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In the nonrelativistic limit v � c the factor w is 2, and in the extreme relativistic limit v ≈ c this
factor becomes 1. Therefore

1/3 ≤ P/ε(kin) ≤ 2/3. (1.7.54)

Eqs. (1.7.46)-(1.7.54) apply to any system of noninteracting particles, whether degenerate or nonde-
generate.

(i) Perfect Gases. Equating the perfect gas pressure (1.2.5) to the pressure (1.7.53), we get

P = kndT = wε(kin)/3. (1.7.55)

From Eq. (1.7.55) we observe that the kinetic energy density of a perfect gas is ε(kin) = 3kndT/w,
and therefore the energy associated with a single particle equals e(kin) = 3kT/w. For a perfect gas there
is valid the principle of equipartition of energy between various degrees of freedom of particle motion.
Since a single particle has only three spatial degrees of freedom, the energy per degree of freedom of a
particle in a perfect gas is e(kin)/3 = kT/w. We rewrite Eq. (1.7.55), using Eqs. (1.2.5), (1.2.22):

P = wε(kin)/3 = R�T/µ = (cP − cV )�T = (γ − 1)cV �T. (1.7.56)

From the definition of the specific heat at constant volume cV = (∂U/∂T )V , we find for a perfect gas
with constant specific heats

cV = U/T, (1.7.57)

where U denotes the specific internal energy, (U = internal energy per unit rest mass). Combining Eqs.
(1.7.56) and (1.7.57), we find (�U = ε(int)) :

P = (γ − 1)�U = (γ − 1)ε(int) = wε(kin)/3 or ε(int) = wε(kin)/3(γ − 1). (1.7.58)

As the energy per degree of freedom and per particle is kT/w, the internal energy density of particles
having f degrees of freedom is

ε(int) = fkndT/w = wε(kin)/3(γ − 1) = kndT/(γ − 1) or γ = (f + w)/f. (1.7.59)

For the polytropic indices we get (cf. Sec. 1.2)

n = n′ = n′′ = 1/(γ − 1) = 1/(Γk − 1) = f/w, (f ≥ 3; 1 ≤ w ≤ 2; γ = Γk; k = 1, 2, 3). (1.7.60)

For completely ionized or monoatomic gases (e.g. He, Ar, Hg, etc.) we have f = 3, γ = 1+w/3, (4/3 ≤
γ ≤ 5/3) and n = 3/w, (1.5 ≤ n ≤ 3). Diatomic or multiatomic molecules exist only at nonrelativistic
particle velocities v � c, and therefore the energy associated with each degree of freedom in molecules
is kT/2, (w = 2). Generally, a molecule composed of j atoms can be considered to possess roughly 3j
degrees of freedom, stemming from the 3 degrees of freedom of translational kinetic motion of each of the
j atoms (Landau and Lifschitz 1971): γ = (3j + 2)/3j. If j 	 1, then γ → 1 and n → ∞. Similarly, a gas
undergoing ionization behaves as having a large number of degrees of freedom: f 	 1, and consequently
γ ≈ 1. In ionization (dissociation) zones all gammas are approximately equal, and can attain in the
midstages of ionization values as low as γ ≈ Γ1 ≈ Γ2 ≈ Γ3 ≈ 1.1 − 1.25 (Cox and Giuli 1968).

We also note the equations for the specific heats at constant volume and constant pressure for a
perfect gas with constant specific heats. From Eq. (1.7.59) we get for the specific internal energy

U = ε(int)/� = fkndT/w� = fkT/wµH, (1.7.61)

and from Eq. (1.7.57)

cV = U/T = fknd/w� = fk/wµH = fkNA/wµ = fR/wµ;
cP = cV + R/µ = (R/µ)(f/w + 1), (R = kNA = k/H; 1 ≤ w ≤ 2). (1.7.62)

For crystalline solids, as well as for the nondegenerate ion lattice in a degenerate electron gas, the
specific heats at constant pressure and constant volume are nearly equal (γ ≈ 1), and are given by cP ≈
cV ≈ 3R/µ (Dulong-Petit value) when T 	 TD = 3.4 × 103(Z/A)�1/2, and cP ≈ cV ≈ 12π4RT 3/5µT 3

D
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Table 1.7.1 Intervals of variation of the adiabatic exponents Γk, (k = 1, 2, 3), of the ratio of specific heats
γ = cP /cV , and of the corresponding isentropic polytropic indices n, n′, n′′ from Eqs. (1.3.30), (1.7.45) for the
simple thermodynamic systems discussed in the text.

System Γ1 Γ2 Γ3 γ n n′ n′′

Perfect gas Γ1 = Γ2 = Γ3 = γ n = n′ = n′′

– nonrelativistic [1, 5/3] [1, 5/3] [1, 5/3] [1, 5/3] [1.5,∞) [1.5,∞) [1.5,∞)

– extreme relativistic [1, 4/3] [1, 4/3] [1, 4/3] [1, 4/3] [3,∞) [3,∞) [3,∞)

Black body radiation 4/3 4/3 4/3 ∞ 3 3 3

Mixture of black body radi-
ation and electron-positron
pairs

[1.22, 4/3] [1.28, 4/3] [1.27, 4/3] ∞ [3, 4.5] [3, 3.6] [3, 3.7]

Completely degenerate elec-
tron or neutron gas

[4/3, 5/3] [4/3, 5/3] [4/3, 5/3] 1 [1.5, 3] [1.5, 3] [1.5, 3]

Table 1.7.2 Values of the adiabatic exponents Γk, (k = 1, 2, 3) and of the polytropic indices n, n′, n′′ for
a mixture of a completely degenerate electron gas and a nonrelativistic, nondegenerate ion plasma according to
Eqs. (1.6.12)-(1.6.17), (γ = 1). The relativity parameter x is given by Eq. (1.6.2), (Schatzman 1958).

x Γ1 Γ2 Γ3 n n′ n′′

0 5/3 5/3 5/3 1.50 1.50 1.50
0.5 1.6168 1.7017 5/3 1.62 1.43 1.50
1 1.5333 1.7693 5/3 1.88 1.30 1.50
1.5 1.4701 1.8298 5/3 2.13 1.21 1.50
2 1.4299 1.8735 5/3 2.33 1.14 1.50
4 1.3669 1.9521 5/3 2.73 1.05 1.50
10 1.3397 1.9905 5/3 2.94 1.01 1.50
∞ 4/3 2.0000 5/3 3.00 1.00 1.50

if T � TD. The symbol TD denotes the Debye temperature, Z the atomic charge number, and A the
atomic weight expressed in atomic mass units H (e.g. Cox and Giuli 1968, Landau and Lifschitz 1971).

Matter in planetary interiors, including crystalline solids, obeys roughly the perturbed polytropic
equation of state (1.7.44). For instance, inside Jupiter we have γ ≈ 1, Γ1 ≈ 2, Γ3 ≈ 1.64, Γ2 =
Γ1/(1 + Γ1 − Γ3) ≈ 1.47, (n ≈ 1, n′ ≈ 2.13, n′′ ≈ 1.56), (Hubbard 1978).

(ii) Mixture of Black Body Radiation and Perfect Gas. For pure black body radiation we
have shown in Sec. 1.4 that Γ1 = Γ2 = Γ3 = 4/3 and γ = ∞, and therefore n = n′ = n′′ = 3. For a
mixture of black body radiation and perfect gas the problem is somewhat more complicated, but as a
general rule the gammas and polytropic indices are contained between the extreme values obtained for
each component of the mixture separately [cf. Eqs. (1.4.17)-(1.4.22)]: 1 ≤ Γk ≤ 5/3, 1.5 ≤ n, n′, n′′ ≤ ∞,
and 1 ≤ γ ≤ ∞. Concrete values for a mixture are extensively published in the astrophysical literature
(e.g. Chandrasekhar 1939, Cox and Giuli 1968).

(iii) Gas Composed of Electron-Positron Pairs and Black Body Radiation. A numerical
evaluation of the gammas in the partially relativistic regime shows that they attain minimum values of

Γ1 ≈ 1.22, (n ≈ 4.5); Γ2 ≈ 1.28, (n′ ≈ 3.6); Γ3 ≈ 1.27, (n′′ ≈ 3.7), (1.7.63)

if α = kT/mec
2 = O(1). They approach 4/3 in the nonrelativistic limit (α � 1) and in the extreme

relativistic limit (α 	 1), (Cox and Giuli 1968). If nuclei are also present, they would tend to make
Γ1 = Γ2 = Γ3 = 5/3 in the nonrelativistic limit.

(iv) Completely Degenerate Electron and Neutron Gas. The relevant equations for Γk, (k =
1, 2, 3) and γ are Eqs. (1.6.8)-(1.6.11), (Table 1.7.1). Obviously, the adiabatic exponents are contained
between the values in the nonrelativistic limit Γ1 = Γ2 = Γ3 = 5/3, (x � 1), and those in the extreme
relativistic limit Γ1 = Γ2 = Γ3 = 4/3, (x 	 1). Also, 1.5 ≤ n, n′, n′′ ≤ 3, and γ = 1 for any x. The
values of the specific heats at constant pressure and volume are nearly equal for degenerate matter, and
for temperatures well below the degeneracy temperature we have for degenerate electrons cP ≈ cV ≈
4π8/3k2T/32/3h2n

2/3
e in the nonrelativistic case, and cP ≈ cV ≈ 2π7/3k2T/31/2chmen

1/3
e in the extreme

relativistic case (e.g. Landau and Lifschitz 1971). A rough approximation for the degeneracy temperature
of the electron gas is Eq. (1.7.28) in the nonrelativistic case, and Eq. (1.7.36) in the extreme relativistic
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case, shown graphically in Fig. 1.7.1 by the delimitation lines between domain 2 on the one side, and
domains 3, 4 on the other side.

(v) Mixture of Completely Degenerate Electron Plasma and Nondegenerate Nonrela-
tivistic Ion Plasma. When appreciable amounts of ions are present in the mixture, its thermal
properties are determined by the ions, whereas the pressure is due mainly to the degenerate electrons.
The ratio of specific heats γ = Γ1/χ� will remain 1, since it is determined by the pressure-density rela-
tionship dominated by the degenerate electrons. The same is true for Γ1, (4/3 ≤ Γ1 ≤ 5/3; 1.5 ≤ n ≤ 3),
but the value of Γ3 is entirely determined by the ions, obeying the perfect gas law: Γ3 = 5/3, (n′′ = 1.5).
The value of Γ2 is partly determined by the electrons, partly by the ions: 5/3 ≤ Γ2 ≤ 2, (1 ≤ n′ ≤ 1.5),
(cf. Table 1.7.2 and Eqs. (1.6.12)-(1.6.17), Schatzman 1958)

Finally, we wish again to draw attention that the brief survey presented in this section yields several
useful approximations, but does not provide exact equations of state and accurate values of the adiabatic
exponents for most cases; also, it largely ignores the effects produced by chemical and nuclear reactions,
superfluidity, ionization, etc.

It is obvious that for most adiabatic changes of simple thermodynamic systems the corresponding
polytropic indices from Eq. (1.7.45) are contained between narrow limits 1.5 < n, n′, n′′ < 3 (cf. Table
1.7.1). We briefly discuss the important generalization achieved by the introduction of a polytropic
equation of state with indices in the much larger interval −∞ ≤ n ≤ ∞. For many applications the thermal
properties of matter are negligible or can be ignored, and the systems are described by simple pressure-
density relationships of the form P = K�1+1/n. Sometimes even the spatial structure of collisionless
systems (e.g. stellar clusters) is described by a polytropic “pressure-density” law. The sole pertinent
polytropic index for many practical problems is n = 1/(Γ′

1 − 1) = 1/(d lnP/d ln � − 1), the two other
indices n′ and n′′, connected with the thermal properties of matter, being ignored. Polytropic equations of
state can be successfully used (preferentially with variable polytropic index) whenever equations involving
the temperature are not well established or can be ignored (e.g. neutron stars, planetary interiors, solar
wind, interstellar clouds with negative polytropic index, etc.).

The success encountered by the notion of polytropes (polytropic changes) becomes now more obvious:
(i) It offers a concise and concrete equation of state, containing only two state variables P and �, once
the polytropic index n and the polytropic constant K are fixed. (ii) For certain ranges of n the polytropic
equation of state is valid – at least approximately – for many thermodynamic systems occurring in the
Universe: Convective zones of ordinary stars, convective stellar and planetary atmospheres, planetary
interiors, interstellar matter, black and white dwarf stars, neutron stars, solar and stellar winds, mass
distribution in stellar systems, black body radiation fields, electron-positron pairs, etc.

1.8 Emden’s Theorem

Theorem. If two polytropes AB and CD with constant polytropic exponents Γ′
11, Γ′

21, Γ′
31 are

intersected by an arbitrary polytrope with constant polytropic exponents Γ′
12, Γ′

22, Γ′
32, (Γ′

k1 �= Γ′
k2, k =

1, 2, 3), then the ratio of the polytropic state variables P, T, �, V in the two points of intersection is constant
for all polytropes having polytropic exponents Γ′

k2.

Proof. Let AB and CD be two polytropes of specific heat c1 and with constant polytropic exponents
Γ′

k1, (k = 1, 2, 3). Let AD and BC be two other polytropes of specific heat c2 and with constant polytropic
exponents Γ′

k2, (k = 1, 2, 3), (see Fig. 1.8.1). Let the four polytropes intersect at points A, B, C, D. Let
PX , TX , �X , and VX be the values of the state variables at point X, (X = A, B, C, D).

Polytropic changes are by definition reversible processes, and therefore the line integral
∮

dS =
∮

dQ/T = 0, (1.8.1)

is exactly zero, when the system goes through the closed cycle ABCDA. For a polytropic change we have
by definition dQ = c1 dT over the parts AB, CD, and dQ = c2 dT over the parts AD, BC. Eq. (1.8.1)
becomes

∮
dQ/T = c1

∫ B

A

dT/T + c2

∫ C

B

dT/T + c1

∫ D

C

dT/T + c2

∫ A

D

dT/T = 0, (1.8.2)
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Fig. 1.8.1 Emden’s theorem. The polytropes AB, CD (polytropic exponent Γ′
11) and the polytropes BC,

AD (polytropic exponent Γ′
12) are shown schematically in a pressure-density diagram.

and by integrating

c1 ln(TB/TA) + c2 ln(TC/TB) + c1 ln(TD/TC) + c2 ln(TA/TD) = 0, (1.8.3)

or

(c1 − c2) ln(TBTD/TATC) = 0, (c1 �= c2), (1.8.4)

or

TA/TD = TB/TC . (1.8.5)

Thus, the theorem has been proved for the temperature T. The proof for the other state variables is
readily made by observing that according to Eq. (1.3.28)

TA/TB = (�A/�B)Γ
′
31−1 = (VA/VB)1−Γ′

31 , (1.8.6)

and

TD/TC = (�D/�C)Γ
′
31−1 = (VD/VC)1−Γ′

31 . (1.8.7)

Division of Eqs. (1.8.6) and (1.8.7) yields

TATC/TBTD = 1 = (�A�C/�B�D)Γ
′
31−1 = (VAVC/VBVD)1−Γ′

31 , (1.8.8)

or

�A/�D = �B/�C ; VA/VD = VB/VC . (1.8.9)

Similarly, we derive

PA/PD = PB/PC . (1.8.10)

In Chandrasekhar’s (1939) formulation, Emden’s theorem may be stated as follows: A polytrope
AB with constant polytropic exponents Γ′

k1, (k = 1, 2, 3) is cut at point A by another polytrope AD
belonging to another class of polytropes with constant polytropic exponents Γ′

k2, (k = 1, 2, 3). Along
the polytrope AD we consider the point D, such that the ratio PA/PD (or TA/TD, �A/�D, VA/VD) is a
certain constant. If AD is any polytrope belonging to class Γ′

k2, (k = 1, 2, 3), then the geometric locus
of D is another polytrope belonging to the class Γ′

k1, (k = 1, 2, 3).
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2 UNDISTORTED POLYTROPES

2.1 General Differential Equations

In an inertial frame the equation of motion of a viscous fluid under the influence of body forces and
magnetic fields can be written as (e.g. Landau and Lifshitz 1959, Alfvén and Fälthammar 1963, Tohline
1982)

� D�v0/Dt = −∇P + ��F + (1/4π)(∇× �H) × �B + ∇ · τ. (2.1.1)

� denotes the density, D�v0/Dt = ∂�v0/∂t + (�v0 · ∇)�v0 the material derivative (B.23) of the velocity
�v0, (v0 � c), P the hydrostatic pressure of the fluid, �F the body force (e.g. gravitation) acting on
the unit of mass, �B the field vector of magnetic induction in the unrationalized CGS-system (Gaussian
system), and �H the magnetic field intensity vector, displacement currents being neglected. The influence
of dissipative forces of arbitrary origin (e.g. ordinary viscosity, turbulence, radiative viscosity, dissipation
by gravitational radiation reaction) is represented by the viscous stress tensor τ, which for the moment
needs no further specification (see however Secs. 3.5, 5.8.3, 5.8.4). In the case of hydrostatic equilibrium
(�v0 = 0), without energy dissipation and magnetic fields, Eq. (2.1.1) simplifies considerably:

∇P = ��F . (2.1.2)

If the body force per unit mass �F possesses a potential function Φ, (∇Φ = �F ), the hydrostatic
equation writes as

∇P = � ∇Φ. (2.1.3)

The only body force to be considered will be gravitation, so that Φ is equal to the internal Newtonian
gravitational potential, obeying Poisson’s equation

∇2Φ = −4πG�. (2.1.4)

Chandrasekhar (1939) pointed out that there can be introduced instead of the polytropic equation of
state (1.3.29), the more general form

P = K�1+1/n + D, (K, n, D = const), (2.1.5)

pertinent for example to solid state matter (� �= 0 if P = 0). Most of our equations are valid with this
more general form, but we will preserve for simplicity the usual equation (1.3.29) with D = 0 :

P = K�1+1/n, (K, n = const). (2.1.6)

(i) n �= −1,±∞.n �= −1,±∞.n �= −1,±∞. Introducing Eq. (2.1.6) into the hydrostatic equation (2.1.3), we get

(1 + 1/n)K�1/n ∇� = � ∇Φ, (2.1.7)

and by integration

Φ − Φ0 = (n + 1)K(�1/n − �
1/n
0 ) = (n + 1)(P/� − P0/�0)

= (n + 1)Kn/(n+1)[P 1/(n+1) − P
1/(n+1)
0 ]. (2.1.8)

Φ0, �0, and P0 denote central values, and we may take without loss of generality Φ0 = 0.
As we have already stressed subsequently to Eqs. (1.2.35) and (1.3.29), the pressure from Eq. (2.1.6)

apparently becomes infinite if n = 0. This singularity can be removed at once, if we rewrite Eq. (2.1.6)

27
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under the form P = L1/n�1+1/n, (K = L1/n); if n = 0, we have � = Pn/(n+1)/L1/(n+1) = 1/L = const
for any P, L �= 0.

We briefly discuss the special isobaric case n = −1. Let us suppose that K, �, �0 �= 0 if n = −1.
The equation of state (2.1.6) becomes P = K = const, and Eq. (2.1.8) would yield Φ − Φ0 = 0. But
if Φ = Φ0 = const, Poisson’s equation (2.1.4) would imply �, �0 = 0, which is contradicted by our
assumption �, �0 �= 0 (cf. Horedt 1971, 1989). Therefore, no hydrostatic solution can be given in terms
of physical variables for the special case n = −1, although this case appears as the limit of physically
possible hydrostatic models having n ≈ −1, as will be obvious from the next equations. For the reasons
stated above, the hydrostatic case n = −1 will be generally excluded from our discussion (see however
Fig. 2.5.1, and Sec. 6.3.1 for a polytropic flow with n = −1).

The case n = ±∞ is another special case; generally, this case must be treated separately. In particular,
for a polytropic configuration consisting of a perfect gas, the case n = ±∞ corresponds to an isothermal
configuration T = const, according to Eq. (1.2.29).

We introduce Φ from Eq. (2.1.8) into Poisson’s equation (2.1.4):

(n + 1)K ∇2�1/n = −4πG�. (2.1.9)

If n = 0, this equation becomes, by replacing K�1/n with P/� : ∇2P = −4πG�2, (� = �0 = const).
The function �1/n under the Laplace operator takes the simplest dimensionless form, if we put �1/n =

const θ, or

� = �0θ
n; P = P0θ

n+1. (2.1.10)

Eq. (2.1.9) becomes

[(n + 1)K/4πG�
1−1/n
0 ] ∇2θ = −θn. (2.1.11)

In N -dimensional polar coordinates the Laplace operator ∇2θ is given by Eq. (C.15), and Eq. (2.1.11)
takes for radial symmetry θ = θ(r) the simple form

[(n + 1)K/4πG�
1−1/n
0 rN−1] d(rN−1 dθ/dr)

/
dr = −θn, (N = 1, 2, 3, ...). (2.1.12)

In one-dimensional space r is the distance from the central symmetry-plane of a polytropic slab, in
two-dimensional space r is the distance from the central symmetry-axis of a polytropic cylinder, and
in N -dimensional space r is equal to the distance from the central symmetry-point of a N -dimensional
sphere (N ≥ 3). Polytropic slabs and cylinders have always infinite extension along their symmetry-
plane and symmetry-axis, respectively. Values of the geometric index N differing from natural numbers
(N = 1, 2, 3, ...), as considered for instance by Abramowicz (1983), do not seem to have any physical
significance (see App. C).

If we insert the dimensionless radial coordinate ξ = r/const into Eq. (2.1.12), we find that with

r = const ξ = [±(n + 1)K/4πG�
1−1/n
0 ]1/2ξ = [±(n + 1)P0/4πG�2

0]
1/2ξ = αξ, (2.1.13)

the equilibrium equation of a polytrope with radial symmetry obeys the well known Lane-Emden equation

∇2θ(ξ) = ξ1−N d(ξN−1 dθ/dξ)
/
dξ = θ′′ + (N − 1)θ′/ξ = ∓θn, (θ′ = dθ/dξ; θ′′ = d2θ/dξ2).

(2.1.14)

The upper sign corresponds always to values of the polytropic index −1 < n < ∞, the lower one
to −∞ < n < −1. The special case n = −1 appears as the limiting case of two polytropic sequences
having −1 < n < ∞ and −∞ < n < −1, respectively. From a formal viewpoint Eq. (2.1.14) holds also
if the minus sign on its right-hand side is associated with polytropic indices −∞ < n < −1, and the
positive sign of θn with −1 < n < ∞. But an inspection of Eq. (2.1.13) quickly shows that in this case
the radial distance r becomes imaginary (r2 < 0), and therefore these unphysical imaginary polytropic
sequences will generally not be considered further (see however Figs. 2.4.1, 2.5.1). Likewise, as outlined
subsequently to Eq. (2.1.8), the unphysical special case n = −1 will generally not be considered, although
it represents the limiting case of physically possible hydrostatic polytropes. It should be stressed that the
Lane-Emden equation (2.1.14) in terms of the variables ξ, θ is solvable for the whole range −∞ < n < ∞,
with both signs in front of θn (cf. Sec. 2.5, Fig. 2.5.1).
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For a sphere N = 3 Perov and Frolova (1994) have generalized Eq. (2.1.14) to the case when n is a
function of radius [effective polytropic index from Eq. (1.3.25)].

(ii) n = ±∞n = ±∞n = ±∞. The polytropic equation (2.1.6) becomes

P = K�, (2.1.15)

and we have to integrate the hydrostatic equation (2.1.7) ex novo, to obtain

Φ − Φ0 = K ln(�/�0) = K ln(P/P0). (2.1.16)

Inserting for Φ, Poisson’s equation (2.1.4) becomes

K ∇2 ln � = −4πG�. (2.1.17)

If we put ln � = const − θ, or

� = �0 exp(−θ); P = P0 exp(−θ), (2.1.18)

Eq. (2.1.17) takes the simple form

(K/4πG�0) ∇2θ = (K/4πG�0r
N−1) d(rN−1 dθ/dr)

/
dr = exp(−θ), (N = 1, 2, 3, ...). (2.1.19)

The scale factor for the dimensionless radial coordinate ξ is found by inserting r = const ξ into Eq.
(2.1.19):

r = const ξ = (K/4πG�0)1/2 ξ = αξ. (2.1.20)

Introducing Eq. (2.1.20) into Eq. (2.1.19), we obtain the Lane-Emden equation for the polytropic
index n = ±∞ :

∇2θ(ξ) = ξ1−N d(ξN−1 dθ/dξ)
/
dξ = θ′′ + (N − 1)θ′/ξ = exp(−θ). (2.1.21)

This equation is sometimes referred to as the isothermal equation, a terminology that is correct only
for the particular case of a perfect gas (cf. Sec. 1.2).

We have the same equation of state for the polytropic indices n = −∞ and n = ∞, since according
to Eddington (1931) the polytropic index changes from positive to negative values through the infinity
points n = ±∞; a physical condition corresponding to values of the polytropic index intermediate between
n = −n0 and n = n0 corresponds to values n ≤ −n0 and n ≥ n0, and not as it might seem at first sight
to polytropic indices −n0 ≤ n ≤ n0, (n0 > 0). Therefore, Kimura and Liu (1978), and Kimura (1981a)
employ another normalization procedure, introducing Φ from Eq. (2.1.8) into Poisson’s equation (2.1.4):

K2n/(n+1)P
(1−n)/(1+n)
0 ∇2{(n + 1)[1 − (P/P0)1/(n+1)]} = 4πG(P/P0)n/(n+1), (n �= −1,±∞).

(2.1.22)

Putting

ϕ = (n + 1)[1 − (P/P0)1/(n+1)] = (Φ − Φ0)/Kn/(n+1)P
1/(n+1)
0 , (n �= −1,±∞), (2.1.23)

we find from Eq. (2.1.22)

(K2n/(n+1)P
(1−n)/(1+n)
0 /4πG) ∇2ϕ = [1 − ϕ/(n + 1)]n. (2.1.24)

With

r = (K2n/(n+1)P
(1−n)/(1+n)
0 /4πG)1/2 η = (K/4πG�

1−1/n
0 )1/2 η, (n �= −1,±∞), (2.1.25)

we get the Kimura-Liu form of the Lane-Emden equation (2.1.14), that will be shown to be also valid in
the limit n = ±∞ :

∇2ϕ = d2ϕ/dη2 + (N − 1)(dϕ/dη)
/
η = [1 − ϕ/(n + 1)]n, (n �= −1). (2.1.26)
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Comparing Eqs. (2.1.13) and (2.1.14) with Eqs. (2.1.25) and (2.1.26), we observe that (cf. Hunter
2001, App. C)

ξ = η/[±(n + 1)]1/2, (n �= −1,±∞), (2.1.27)

and

θ = 1 − ϕ/(n + 1), (n �= −1,±∞), (2.1.28)

since dθ(ξ)/dξ = [±(n + 1)]1/2 dθ(η)/dη = ∓[dϕ(η)/dη]
/
[±(n + 1)]1/2 and d2θ(ξ)/dξ2 = ∓ d2ϕ(η)/dη2.

To compare the Lane-Emden variables ξ, θ with the variables η, ϕ for the case n = ±∞, we turn in Eq.
(2.1.28) to the limit n → ±∞. We have (e.g. Smirnow 1967)

lim
n→±∞ θ = 1; lim

n→±∞ θn = lim
n→±∞[1 − ϕ/(n + 1)]n = lim

n→±∞(1 − ϕ/n)n = exp(−ϕ);

lim
n→±∞[(n + 1) dθ/dη] = −dϕ/dη. (2.1.29)

Thus, by turning in Eqs. (2.1.25), (2.1.26) to the limit n → ±∞, we get

r = (K/4πG�0)1/2η, (n = ±∞), (2.1.30)

and

∇2ϕ = d2ϕ/dη2 + (N − 1)(dϕ/dη)/η = exp(−ϕ), (n = ±∞). (2.1.31)

Comparing Eqs. (2.1.30) and (2.1.31) with Eqs. (2.1.20) and (2.1.21), we observe at once that for the
special case n = ±∞ there is identity between the two kinds of variables:

ξ = η; θ = ϕ, (n = ±∞). (2.1.32)

Eq. (2.1.26) has the advantage that it offers a unified description of polytropes, including the case
n = ±∞. However, because all the relevant literature is given in terms of the ξ, θ-variables, we use
exclusively the Lane-Emden variables instead of a description in terms of the Kimura-Liu variables η, ϕ.

The Lane-Emden equations (2.1.14), (2.1.21), and (2.1.26) govern the hydrostatic distribution of
matter in any region where the polytropic equation of state (2.1.6) is valid. The Lane-Emden equation
describes the structure of a complete polytrope, if Eq. (2.1.6) is valid over the whole configuration. In
this case P0 and �0 can be taken equal to the central pressure and density of the configuration at r = 0.
To integrate the second order Lane-Emden equation, we also need the value of dθ/dξ = θ′ at ξ = 0. This
value can be easily found by writing down the radially symmetric form of Poisson’s equation (2.1.4), [cf.
Eq. (C.15)]:

r1−N d(rN−1 dΦ/dr)
/
dr = −4πG�. (2.1.33)

Integration yields

dΦ/dr = −r1−N

∫ r

0

4πG�r′N−1
dr′; (dΦ/dr)r=0 = 0. (2.1.34)

Inserting into the radially symmetric form of the hydrostatic equation (2.1.3) we get [cf. Eq. (C.12)]

dP/dr = � dΦ/dr = −4πG�r1−N

∫ r

0

�r′N−1
dr′. (2.1.35)

If n �= −1,±∞, we insert P and � from Eq. (2.1.10) to obtain

(n + 1)P0θ
n dθ/dr = −4πG�0θ

nr1−N

∫ r

0

�r′N−1
dr′. (2.1.36)

Since θn is not identical to zero, we can simplify and write

dθ/dξ = −[4πGα�0/(n + 1)P0]r1−N

∫ r

0

�r′N−1
dr′. (2.1.37)
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If r = αξ → 0, the density can be approximated by its value at the origin � = �0θ
n(ξ) ≈ �0θ

n(0).
Thus

dθ/dξ ≈ −[4πGα�2
0θ

n(0)/(n + 1)P0] r1−N

∫ r

0

r′N−1
dr′ = −[4πGα2�2

0θ
n(0)/(n + 1)NP0] ξ

= ∓ξθn(0)/N, (n �= −1,±∞; r = αξ ≈ 0). (2.1.38)

In the limit ξ → 0 we get (dθ/dξ)ξ=0 = 0. Eq. (2.1.38) corresponds with Eq. (2.4.21). If n = ±∞, we
find in the same manner by virtue of Eq. (2.1.18)

P0 exp(−θ) dθ/dr = 4πG�0 exp(−θ) r1−N

∫ r

0

�r′N−1
dr′, (2.1.39)

and

dθ/dξ = (4πGα�0/P0)r1−N

∫ r

0

�r′N−1
dr′ ≈ {4πGα2�2

0 exp[−θ(0)]/NP0} ξ = ξ exp[−θ(0)]/N,

(n = ±∞; r = αξ ≈ 0). (2.1.40)

In the limit ξ → 0 we have (dθ/dξ)ξ=0 = 0, and Eq. (2.1.40) corresponds with Eq. (2.4.36). Thus,
we arrive to the following theorem (cf. Chandrasekhar 1939 if N = 3) :

Theorem. The derivative dθ/dξ = θ′ must be zero at the origin ξ = 0 for any solution θ of the
Lane-Emden equation that is finite at the origin, provided that n �= −1.

If not stated explicitly otherwise, we will always assume the initial conditions to be equal to

θ(0) = 1, θ′(0) = 0 if n �= −1,±∞, and θ(0) = 0, θ′(0) = 0 if n = ±∞, (2.1.41)

for the Lane-Emden equations (2.1.14) and (2.1.21) in the case of radially symmetric complete polytropes.
For the initial conditions (2.1.41) P0 and �0 are always equal to the pressure and density at the origin ξ =
0. Solutions of the Lane-Emden equation obeying this most important special type of initial conditions are
called Lane-Emden functions. The next sections will be devoted to the study of analytical and numerical
forms of Lane-Emden functions.

The spherical N = 3 Lane-Emden equations (2.1.14), (2.1.21) can also be written under the form
(2.1.47), (2.1.48) of a Volterra type integral equation (Schaudt 2000). The general solution of the three-
dimensional Poisson equation (2.1.4) at position vector �r can be written via Green’s first formula under
the well known form (e.g. Courant and Hilbert 1962)

4πΦ(�r) = −
∫

V

∇2Φ(�r′) dV/|�r − �r′| +
∫

S

[∇Φ(�r′) · �ν(�r′)] dS/|�r − �r′|

−
∫

S

Φ(�r′) [∇�r′(1/|�r − �r′|) · �ν(�r′)] dS, [∇2Φ(�r′) = −4πG�(�r′)], (2.1.42)

where �r′ is the position vector of a current integration point inside volume V or on its surface S. The
unit vector along the exterior normal to the surface element dS is denoted by �ν = �ν(�r′), (|�ν| = 1). The
right-hand side of Poisson’s equation ∇2Φ = −4πG� does not appear explicitly in Eq. (2.1.42), so the
general solution of the Lane-Emden equations ∇2θ(�ξ) = ∓θn(�ξ) or ∇2θ(�ξ) = exp[−θ(�ξ)] can be obtained
at once by replacing Φ, �r, �r′ with θ, �ξ, �ξ′, respectively:

4πθ(�ξ) = −
∫

V

∇2θ(�ξ′) dV/|�ξ − �ξ′| +
∫

S

[∇θ(�ξ′) · �ν(�ξ′)] dS/|�ξ − �ξ′|

−
∫

S

θ(�ξ′) [∇�ξ′(1/|�ξ − �ξ′|) · �ν(�ξ′)] dS. (2.1.43)

We particularize this equation to spherical symmetry by integrating over a sphere of radius ξ0 [Eq.
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(B.34)]. In this case we have ∇f(�ξ′) · �ν(�ξ′) = df(ξ′)/dξ′, (�ξ′ = ξ′�ν(�ξ′); ξ′ = |�ξ′|), and

4πθ(ξ) = −
∫ ξ0

0

dξ′
∫ π

0

dλ

∫ 2π

0

∇2θ(ξ′) ξ′2 sinλ dϕ/(ξ2 + ξ′2 − 2ξξ′ cos λ)1/2

+ξ2
0θ′(ξ0)

∫ π

0

dλ

∫ 2π

0

sinλ dϕ/(ξ2 + ξ2
0 − 2ξξ0 cos λ)1/2 + ξ2

0θ(ξ0)

×
∫ π

0

dλ

∫ 2π

0

(ξ0 − ξ cos λ) sin λ dϕ/(ξ2 + ξ2
0 − 2ξξ0 cos λ)3/2, (N = 3; ξ = |�ξ|; ξ < ξ0 = ξ′0).

(2.1.44)

We perform the elementary integration over the angular coordinates, taking into account that ξ +ξ′−
|ξ − ξ′| equals 2ξ if ξ < ξ′, and 2ξ′ if ξ > ξ′ :

θ(ξ) = −(1/ξ)
∫ ξ

0

∇2θ(ξ′) ξ′2 dξ′ −
∫ ξ0

ξ

∇2θ(ξ′) ξ′ dξ′ + ξ0θ
′(ξ0) + θ(ξ0). (2.1.45)

Since the first integral vanishes in the limit ξ → 0, the initial conditions θ(0) = 1 if n �= −1,±∞, and
θ(0) = 0 if n = ±∞ yield

ξ0θ
′(ξ0) + θ(ξ0) =




1 +
∫ ξ0

0
∇2θ(ξ′) ξ′ dξ′ n �= −1,±∞

if∫ ξ0

0
∇2θ(ξ′) ξ′ dξ′ n = ±∞

(2.1.46)

We insert this into Eq. (2.1.45), substituting also for ∇2θ via Eqs. (2.1.14) and (2.1.21), respectively:

θ(ξ) = 1 ∓
∫ ξ

0

ξ′(1 − ξ′/ξ) θn(ξ′) dξ′, (N = 3; n �= −1,±∞), (2.1.47)

θ(ξ) =
∫ ξ

0

ξ′(1 − ξ′/ξ) exp[−θ(ξ′)] dξ′, (N = 3; n = ±∞). (2.1.48)

There are two, generally quite different physical parameters inside a polytrope: (i) The polytropic
index n = 1/(Γ′

1 − 1) from Eq. (1.3.25) is defined with the aid of the polytropic exponent Γ′
1, and

determines the global overall properties of the polytropic model under consideration. (ii) The adiabatic
exponent Γ1, (generally Γ1 �= Γ′

1 = 1 + 1/n) from Eq. (1.3.23) characterizes the local behaviour of
polytropic matter when performing adiabatic oscillations, for instance [Rosseland 1964, p. 27; Zeldovich
and Novikov 1971, p. 252; Shapiro and Teukolsky 1983, p. 133)]. The squared adiabatic sound velocity
within a polytrope of index n is obtained from Eqs. (1.7.42), (1.3.23)

a2 = (∂P/∂�)S=const = Γ1P/�, [�r = �; Γ1 = (�/P )(∂P/∂�)S ], (2.1.49)

rather than from Eq. (2.1.6), (P = K�1+1/n) :

a2 = (∂P/∂�)S=const = (1 + 1/n)K�1/n = (1 + 1/n)P/� = Γ′
1P/�. (2.1.50)

The adiabatic sound velocity is determined at constant entropy S, in order to stress that the underlying
physical process is adiabatic and reversible (quasi-static). Eq. (2.1.50) would lead, among many other
inconsistencies, to the absurd result that the sound velocity within a homogeneous Newtonian polytrope
n = 0 is infinite. The correct delimitation of the sound velocity inside a polytrope comes from the
relativistic considerations of Eq. (1.7.43), where the obvious constraint a ≤ c leads to Eq. (4.1.68).
Only for isentropic polytropes Eq. (2.1.50) subsists too, and we have by virtue of Eqs. (1.3.22), (1.3.23),
(1.3.25), (1.3.30):

Γ1 = Γ′
1 = 1 + 1/n, (S, Q = const). (2.1.51)
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2.2 The Homology Theorem and Transformations of the
Lane-Emden Equation

2.2.1 The Homology Theorem

Theorem. If θ(ξ) is a solution of the Lane-Emden equation (2.1.14) or (2.1.21) then
A2/(n−1)θ(Aξ), (A = const) is also a solution of Eq. (2.1.14), and θ(Aξ) − lnA2 is also a solution
of Eq. (2.1.21).

Proof. (i) n �= ±1,±∞.n �= ±1,±∞.n �= ±1,±∞. The case n = 1 has to be excluded, but it will be shown in Sec. 2.3.2 that
for n = 1 the Lane-Emden equation can be solved explicitly in terms of Bessel functions. The proof can
be most easily made by substituting directly A2/(n−1)θ(Aξ) instead of θ(ξ) into the Lane-Emden equation
(2.1.14). We get

ξ1−N d[ξN−1A2/(n−1) dθ(Aξ)/dξ]
/
dξ = ∓A2n/(n−1)θn(Aξ). (2.2.1)

We rearrange the exponents of A to obtain

(Aξ)1−N d[(Aξ)N−1 dθ(Aξ)/d(Aξ)]
/
d(Aξ) = ∓θn(Aξ), (2.2.2)

which shows that A2/(n−1)θ(Aξ) indeed satisfies identically the Lane-Emden equation when ξ → Aξ.

(ii) n = ±∞.n = ±∞.n = ±∞. We substitute in Eq. (2.1.21) θ(Aξ) − lnA2 instead of θ(ξ) to obtain

(Aξ)1−N d[(Aξ)N−1 dθ(Aξ)/d(Aξ)]
/
d(Aξ) = exp[−θ(Aξ)]. (2.2.3)

This proves the theorem also in the special case n = ±∞.
Thus, if one solution θ = θ(ξ) of the Lane-Emden equation is known, we can derive a whole homologous

family {θ(ξ)} of solutions. In particular, if θ is just the Lane-Emden function defined by the initial
conditions (2.1.41), then its homologous family {θ(ξ)} defines a whole set of solutions that are all finite
at the origin ξ = 0. Solutions that are finite at the origin are called E-solutions and denoted by θE . The
Lane-Emden function defined by the initial conditions from Eq. (2.1.41) is just a particular member of
the set {θE(ξ)} of E-solutions. All E-solutions can be found from the Lane-Emden function through the
homology transformations

θ(ξ) → A2/(n−1)θ(Aξ), (n �= ±1,±∞), (2.2.4)

and

θ(ξ) → θ(Aξ) − lnA2, (n = ±∞). (2.2.5)

According to the theorem from the previous section any solution θE = θE(ξ) that is finite at the
origin ξ = 0 is an E-solution, and its derivative is zero (dθE/dξ)ξ=0 = 0. The general solution of the
second order Lane-Emden equation must be characterized by two integration constants. According to
the homology theorem one of the two constants must be “trivial” in the sense that it defines merely the
scale factor A of the homology transformation, and we should be able to transform the second order
Lane-Emden equation into a first order differential equation (Chandrasekhar 1939). Below, we present
the most important transformations of the Lane-Emden equation.
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2.2.2 Milne Homology Invariant Variables

Milne’s homology invariant variables are introduced by the equations (Chandrasekhar 1939)

u = u(ξ) = ∓ξθn/θ′; v = v(ξ) = ∓ξθ′/θ, (n �= −1,±∞), (2.2.6)

and

u = u(ξ) = ξ exp(−θ)/θ′; v = v(ξ) = ξθ′, (n = ±∞). (2.2.7)

(i) n �= ±1,±∞.n �= ±1,±∞.n �= ±1,±∞. At first we prove that u and v are indeed homology invariant functions with respect
to the transformation of the homology theorem

θH(ξ) = A2/(n−1)θ(Aξ), (n �= ±1,±∞). (2.2.8)

To this end it is convenient to introduce instead of the variable ξ from the homology transformation
(2.2.8), the variable ξ/A. Eq. (2.2.8) takes the equivalent form

θH(ξ/A) = A2/(n−1)θ(ξ). (2.2.9)

Eq. (2.2.9) means that if θ(ξ/A) is a solution of the Lane-Emden equation

d[(ξ/A)N−1 dθ(ξ/A)
/
d(ξ/A)]

/
d(ξ/A) = ∓(ξ/A)N−1θn(ξ/A), (2.2.10)

then θH(ξ/A) = A2/(n−1)θ(ξ) is also a solution of Eq. (2.2.10); this can be easily shown by direct
substitution of θH(ξ/A) instead of θ(ξ/A) into Eq. (2.2.10). The homologous transformation uH(ξ/A) of
u(ξ) is according to Eqs. (2.2.6) and (2.2.9) equal to

uH(ξ/A) = ∓(ξ/A) θn
H(ξ/A)

/
[dθH(ξ/A)

/
d(ξ/A)] = ∓A2n/(n−1)(ξ/A) θn(ξ)/

[A2/(n−1) dθ(ξ)/d(ξ/A)] = ∓ξθn(ξ)
/
[dθ(ξ)/dξ] = u(ξ), (n �= ±1,±∞). (2.2.11)

The invariance of v with respect to the homology transformation (2.2.9) is proved analogously:

vH(ξ/A) = ∓(ξ/A)[dθH(ξ/A)/d(ξ/A)]
/
θH(ξ/A) = ∓A2/(n−1)(ξ/A)[dθ(ξ)

/
d(ξ/A)]

/
A2/(n−1)θ(ξ)

= ∓ξ [dθ(ξ)/dξ]
/
θ(ξ) = v(ξ), (n �= ±1,±∞). (2.2.12)

Since u and v are homology invariant functions, we can reduce with the aid of these functions the
second order Lane-Emden equation (2.1.14) to one of the first order. We have, by using Eq. (2.1.14)

du/dξ = ∓θn/θ′ ∓ nξθn−1 ± ξθnθ′′/θ′2 = −ξθ2n/θ′2 ∓ nξθn−1 ∓ Nθn/θ′

= (∓θn/θ′)(±ξθn/θ′ + nξθ′/θ + N) = (u/ξ)(−u ∓ nv + N), (2.2.13)

and

dv/dξ = ∓θ′/θ + ξθ′′/θ ± ξθ′2/θ2 = ξθn−1 ± ξθ′2/θ2 ± (N − 2)θ′/θ

= (∓θ′/θ)(∓ξθn/θ′ − ξθ′/θ − N + 2) = (v/ξ)(u ± v − N + 2). (2.2.14)

Dividing Eq. (2.2.14) by (2.2.13) we obtain a first order differential equation in the homology variables
u and v, equivalent to the Lane-Emden equation (2.1.14):

dv/du = v(u ± v − N + 2)
/
u(−u ∓ nv + N), (N = 1, 2, 3, ...; n �= −1,±∞), (2.2.15)

where the upper sign holds if −1 < n < ∞, and the lower one if −∞ < n < −1.
(ii) n = ±∞.n = ±∞.n = ±∞. We can analogously show that for the homologous transformation

θH(ξ/A) = θ(ξ) − lnA2, (n = ±∞), (2.2.16)
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u and v are homology invariant functions:

uH(ξ/A) = (ξ/A) exp[−θH(ξ/A)]
/
[dθH(ξ/A)

/
d(ξ/A)] = A2(ξ/A) exp[−θ(ξ)]

/
[dθ(ξ)

/
d(ξ/A)]

= ξ exp[−θ(ξ)]
/
[dθ(ξ)/dξ] = u(ξ), (2.2.17)

and

vH(ξ/A) = (ξ/A)[dθH(ξ/A)
/
d(ξ/A)] = (ξ/A) dθ(ξ)

/
d(ξ/A) = ξ dθ(ξ)/dξ = v(ξ). (2.2.18)

The reduction to the first order of Eq. (2.1.21) proceeds as follows:

du/dξ = exp(−θ)/θ′ − ξ exp(−θ) − ξθ′′ exp(−θ)/θ′2 = −ξ exp(−2θ)/θ′2 − ξ exp(−θ)
+N exp(−θ)/θ′ = [exp(−θ)/θ′][−ξ exp(−θ)/θ′ − Nξθ′] = (u/ξ)(−u − v + N), (2.2.19)

dv/dξ = θ′ + ξθ′′ = ξ exp(−θ) + (2 − N)θ′ = θ′[ξ exp(−θ)/θ′ − N + 2] = (v/ξ)(u − N + 2).
(2.2.20)

Dividing the two last equations, we obtain a first order equation in the homology invariant variables
that is equivalent to the Lane-Emden equation (2.1.21):

dv/du = v(u − N + 2)
/
u(−u − v + N), (N = 1, 2, 3, ...; n = ±∞). (2.2.21)

Besides the Milne variables u and v we can form an arbitrary large number of other homology invariant
functions, defining other first order differential equations, all equivalent to the usual second order Lane-
Emden equations (2.1.14) or (2.1.21).

2.2.3 Emden Variables

(i) n �= ±1,±∞.n �= ±1,±∞.n �= ±1,±∞. It will be shown in Eq. (2.3.70) that the Lane-Emden equation (2.1.14) has a solution
of the form θ = const ξ2/(1−n). Therefore, Emden (1907) makes the transformation (cf. Chandrasekhar
1939)

θ(ξ) = Bξ2/(1−n) z(ξ), (B = const; n �= ±1,±∞), (2.2.22)

with the scope to reduce the order of Eq. (2.1.14). We have

dθ/dξ = B[ξ2/(1−n) dz/dξ + 2ξ(1+n)/(1−n)z/(1 − n)]; d2θ/dξ2

= B[ξ2/(1−n) d2z/dξ2 + 4ξ(1+n)/(1−n) (dz/dξ)/(1 − n) + 2(1 + n)ξ2n/(1−n)z/(1 − n)2]. (2.2.23)

Eq. (2.1.14) becomes

ξ2 d2z/dξ2 + [3 + N + n(1 − N)]ξ (dz/dξ)/(1 − n) + 2[N + n(2 − N)]z/(1 − n)2 ± Bn−1zn = 0.
(2.2.24)

With the further change of variable

ξ = exp(−t), (2.2.25)

we find

d2z/dt2 + [2 + N + n(2 − N)](dz/dt)/(n − 1) + 2[N + n(2 − N)]z/(n − 1)2 ± Bn−1zn = 0,
(2.2.26)

where

dz/dξ = −ξ−1 dz/dt; d2z/dξ2 = ξ−2(dz/dt + d2z/dt2). (2.2.27)
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The new variable

y = dz/dt = (dz/dξ) dξ/dt = −ξ dz/dξ = −(ξ2/(n−1)/B)[2θ/(n − 1) + ξ dθ/dξ]

= −2z/(n − 1) − (ξ(n+1)/(n−1)/B) dθ/dξ, (2.2.28)

transforms Eq. (2.2.26) into the first order equation

y dy/dz + [2 + N + n(2 − N)]y/(n − 1) + 2[N + n(2 − N)]z/(n − 1)2 ± Bn−1zn = 0,

(N = 1, 2, 3, ...; n �= ±1,±∞), (2.2.29)

where d2z/dt2 = dy/dt = (dy/dz) dz/dt = y dy/dz.
(ii) n = ±∞.n = ±∞.n = ±∞. Since the Lane-Emden equation (2.1.21) admits for n = ±∞, N ≥ 3 the singular solu-

tion θ = ln[ξ2/2(N − 2)] from Eq. (2.3.74), we employ the transformation (Emden 1907, Chandrasekhar
1939)

θ(ξ) = ln ξ2 − z(ξ), (n = ±∞). (2.2.30)

We have

dθ/dξ = 2/ξ − dz/dξ; d2θ/dξ2 = −2/ξ2 − d2z/dξ2. (2.2.31)

Eq. (2.1.21) becomes

ξ2 d2z/dξ2 + (N − 1)ξ dz/dξ + exp z + 2(2 − N) = 0. (2.2.32)

With the change of variable (2.2.25) we finally find

d2z/dt2 + (2 − N) dz/dt + exp z + 2(2 − N) = 0. (2.2.33)

The first order equation – equivalent to the Lane-Emden equation (2.1.21) – is

y dy/dz + (2 − N)y + exp z + 2(2 − N) = 0, (N = 1, 2, 3, ...; n = ±∞), (2.2.34)

where we have introduced the new variable

y = dz/dt = −ξ dz/dξ = ξ dθ/dξ − 2. (2.2.35)

It remains to show that z and y are invariant with respect to the homologous transformations (2.2.9)
and (2.2.16).

(i) n �= ±1,±∞.n �= ±1,±∞.n �= ±1,±∞. According to Eqs. (2.2.9) and (2.2.22) we have

zH(ξ/A) = (ξ/A)2/(n−1)θH(ξ/A)/B = (ξ/A)2/(n−1)A2/(n−1)θ(ξ)/B = ξ2/(n−1)θ(ξ)/B = z(ξ),
(2.2.36)

and via Eq. (2.2.28)

yH(ξ/A) = −2zH(ξ/A)/(n − 1) − [(ξ/A)(n+1)/(n−1)/B] dθH(ξ/A)
/
d(ξ/A)

= −2z(ξ)/(n − 1) − (ξ(n+1)/(n−1)/B) dθ(ξ)/dξ = y(ξ). (2.2.37)

(ii) n = ±∞.n = ±∞.n = ±∞. In virtue of Eqs. (2.2.16) and (2.2.30) we have

zH(ξ/A) = ln(ξ/A)2 − θH(ξ/A) = ln(ξ/A)2 − θ(ξ) + lnA2 = ln ξ2 − θ(ξ) = z(ξ), (2.2.38)

and by Eq. (2.2.35)

yH(ξ/A) = (ξ/A) dθH(ξ/A)
/
d(ξ/A) − 2 = (ξ/A) dθ(ξ)

/
d(ξ/A) − 2 = ξ dθ(ξ)/dξ − 2 = y(ξ).

(2.2.39)

This demonstrates completely the homology invariance of Emden’s transformation.
The connection between Emden’s variables from Eqs. (2.2.22), (2.2.28), (2.2.30), (2.2.35) and Milne’s

homology invariant variables from Eqs. (2.2.6), (2.2.7) follows easily by taking the arbitrary constant
B = 1 (Chandrasekhar 1939):

z = ξ2/(n−1)θ = (ξ2θn−1)1/(n−1) = (uv)1/(n−1); y = −2z/(n − 1) − ξ(n+1)/(n−1)θ′

= −[2/(n − 1)](uv)1/(n−1) ± [ξn+1(∓θ′)n−1]1/(n−1) = −[2/(n − 1)](uv)1/(n−1) ± (uvn)1/(n−1),

(n �= ±1,±∞), (2.2.40)

z = ln ξ2 − θ = ln[ξ2 exp(−θ)] = ln(uv); y = ξθ′ − 2 = v − 2, (n = ±∞). (2.2.41)
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If N = 2, we put

x = ln ξ, (2.2.42)

and Eq. (2.1.14) becomes

exp(−2x) d2θ(x)/dx2 = ∓θn(x), (N = 2; n �= −1,±∞), (2.2.43)

since dθ(ξ)/dξ = ξ−1 dθ(x)/dx, d2θ(ξ)/dξ2 = −ξ−2 dθ(x)/dx + ξ−2 d2θ(x)/dx2.
If N = 3, Eq. (2.1.14) turns with the transformation

x = 1/ξ, (2.2.44)

into

x4 d2θ(x)/dx2 = ∓θn(x), (N = 3; n �= −1,±∞), (2.2.45)

since dθ(ξ)/dξ = −ξ−2 dθ(x)/dx, d2θ(ξ)/dξ2 = 2ξ−3 dθ(x)/dx + ξ−4 d2θ(x)/dx2.
In the particular case n = ±∞, Eq. (2.1.21) becomes in the same way

exp(−2x) d2θ(x)/dx2 = exp[−θ(x)], (N = 2; n = ±∞), (2.2.46)

and

x4 d2θ(x)/dx2 = exp[−θ(x)], (N = 3; n = ±∞). (2.2.47)

The plane-parallel Lane-Emden equation (N = 1) lacks already in its original form for the first order
derivative, and needs therefore no transformation of the previous kind.
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If not stated explicitly otherwise, we will always restrict to solutions obeying the usual initial conditions
from Eq. (2.1.41). The exact solutions can be grouped into four classes and are generally valid for any
positive integer value of the geometric index N. Medvedev and Rybicki (2001) claim that the Lane-
Emden equation (2.1.14) possesses in the spherical case N = 3 only a zero-dimensional Lie group algebra,
indicating its global nonintegrability if n �= 0, 1, 5.

2.3.1 Ritter’s First Integral n = 0n = 0n = 0

Eq. (2.1.14) takes the simple form of a second order differential equation without θ-term:

d(ξN−1 dθ/dξ) = −ξN−1 dξ, (n = 0; N = 1, 2, 3, ...). (2.3.1)

A first elementary integration yields

dθ/dξ = −ξ/N + Cξ1−N . (2.3.2)

After a second integration we get

θ = −ξ2/2N + Cξ2−N/(2 − N) + D, (N �= 2), (2.3.3)

and if N = 2

θ = −ξ2/4 + C ln ξ + D, (N = 2). (2.3.4)

With the usual initial conditions θ(0) = 1, θ′(0) = 0 we obtain C = 0, D = 1, and

θ = 1 − ξ2/2N, (n = 0; N = 1, 2, 3, ...). (2.3.5)

2.3.2 Ritter’s Second Integral n = 1n = 1n = 1

In this case the Lane-Emden equation (2.1.14) becomes a somewhat more complicated, second order,
linear homogeneous equation of a form similar to a Bessel differential equation:

ξ2θ′′ + (N − 1)ξθ′ + ξ2θ = 0, (n = 1; N = 1, 2, 3, ...). (2.3.6)

Quite generally, any differential equation of the form

x2 d2y/dx2 + (2α + 1)x dy/dx + (α2 − β2ν2 + β2γ2x2β)y = 0,

(y = y(x); α, β, γ, ν = const; β, γ �= 0), (2.3.7)

can be transformed into the Bessel equation

ξ2 d2u/dξ2 + ξ du/dξ + (ξ2 − ν2)u = 0, (2.3.8)

with the change of variables (Smirnow 1967)

x = (ξ/γ)1/β ; y(x) = x−αu(ξ). (2.3.9)

The general solutions of the Bessel equation are (e.g. Spiegel 1968, Bronstein and Semendjajew 1985)

u(ξ) = C1Jν(ξ) + C2J−ν(ξ), (ν �= 0, 1, 2, 3, ...), (2.3.10)
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and

u(ξ) = C1Jν(ξ) + C2Yν(ξ), (all ν). (2.3.11)

C1, C2 are integration constants, Jν(ξ) is the Bessel function of order ν, and Yν(ξ) the Bessel function
of second kind of order ν, also called Neumann or Weber function. There is

Jν(ξ) = [ξν
/
2νΓ(ν + 1)][1 − ξ2

/
2(2ν + 2) + ξ4

/
2 × 4(2ν + 2)(2ν + 4) − ...]

=
∞∑

k=0

(−1)k(ξ/2)ν+2k
/
k! Γ(ν + k + 1), (2.3.12)

and

ν = 0 : Y0(ξ) = (2/π)
[
ln(ξ/2) + ε

]
J0(ξ) − (2/π)

∞∑
k=0

(−1)kΞ(k) (ξ/2)2k
/
(k!)2;

ν = 1, 2, 3, ... : Yν(ξ) = (2/π)
[
ln(ξ/2) + ε

]
Jν(ξ) − (1/π)

ν−1∑
k=0

(ν − k − 1)!(ξ/2)2k−ν/k!

−(1/π)
∞∑

k=0

(−1)k
[
Ξ(k) + Ξ(ν + k)

]
(ξ/2)2k+ν

/
k!(ν + k)!; Ξ(k) =

k∑
j=1

(1/j) if k = 1, 2, 3, ...;

Ξ(0) = 0; ε = 0.5772... = Euler′s constant. (2.3.13)

The gamma function Γ(ν) is defined by Eq. (C.9) or by the recursion formula (C.11):

Γ(ν) = Γ(ν + k)
/
(ν + k − 1)(ν + k − 2)...(ν + 1)ν, (k = 1, 2, 3, ...). (2.3.14)

For our special equation (2.3.6), the transformation (2.3.9) becomes

x ≡ ξ; y(x) ≡ θ(ξ) = ξ(2−N)/2u(ξ), (2.3.15)

since α = ν = (N − 2)/2, and β, γ = 1.
Inserting Eq. (2.3.15) into Eq. (2.3.6), we obtain the Bessel equation

ξ2 d2u/dξ2 + ξ du/dξ +
{
ξ2 − [(N − 2)/2]2

}
u = 0. (2.3.16)

Since N is a positive integer, we have to write down the solution of this equation only for integer and
half integer values of ν = (N − 2)/2. If ν = 0, 1, 2, 3, ..., i.e. N = 2, 4, 6, 8, ..., the solution of Eq. (2.3.16)
is given by Eq. (2.3.11). The integration constant C2 is zero in this case, as follows from the initial
conditions (2.1.41): According to Eqs. (2.3.13) and (2.3.15) Yν(0) is unbounded if ν = 0, 1, 2, 3, ..., while
u(0) must be finite if N ≥ 2. If ν is a positive half integer ν = 1/2, 3/2, 5/2, ..., i.e. if N = 3, 5, 7, ..., the
solution of Eq. (2.3.16) is given by Eq. (2.3.10). The integration constant C2 vanishes again, because
according to Eqs. (2.3.12) and (2.3.15) J−ν(0) is unbounded if ν = 1/2, 3/2, 5/2, ..., and u(0) = 0 if
N ≥ 3. Consequently, for all values of N ≥ 2 the solution of Eq. (2.3.16) is

u(ξ) = C1J(N−2)/2(ξ), (2.3.17)

and the solution of Eq. (2.3.6) amounts to

θ = C1ξ
(2−N)/2J(N−2)/2(ξ), (n = 1; N = 2, 3, 4, ...). (2.3.18)

The integration constant C1 can be determined from Eqs. (2.3.12) and (2.3.18), by observing that

θ(0) = 1 = C1

/
2(N−2)/2Γ(N/2). (2.3.19)

Thus

θ = Γ(N/2) (ξ/2)(2−N)/2J(N−2)/2(ξ) =
∞∑

k=0

(−1)k(ξ/2)2kΓ(N/2)
/
k! Γ(N/2 + k),

(n = 1; N = 2, 3, 4, ...). (2.3.20)
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Via Eq. (2.3.14) and with the relationships for the Bessel functions of integer and half integer values
we obtain further (Smirnow 1967, Ostriker 1964a if N = 2)

θ = (N/2 − 1)!(ξ/2)(2−N)/2J(N−2)/2(ξ)

= (N/2 − 1)!(ξ/2)(2−N)/2(1/π)
∫ π

0

cos[(N − 2)ϕ/2 − ξ sinϕ] dϕ, (n = 1; N = 2, 4, 6, ...),

(2.3.21)

θ = (N − 2)(N − 4)...5 × 3 × 1 × (π/2)1/2ξ(2−N)/2J(N−2)/2(ξ)

= (N − 2)(N − 4)...5 × 3 × 1 × (−1)(N−3)/2 d(N−3)/2(sin ξ/ξ)
/
(ξ dξ)(N−3)/2,

(n = 1; N = 3, 5, 7, ...), (2.3.22)

where we have used the familiar notation from the theory of Bessel functions

dkf(ξ)/(ξ dξ)k = (1/ξ) d[dk−1f(ξ)/(ξ dξ)k−1]
/
dξ, (k = 1, 2, 3, ...). (2.3.23)

If N = 3, the general solution (2.3.10) of Eq. (2.3.6) may be written under the form (2.8.83),
(Chandrasekhar 1939).

The case N = 1, (ν = −1/2) needs special discussion. The solution of Eq. (2.3.16) is given by Eq.
(2.3.10), where ν = (N − 2)/2 = −1/2 :

u(ξ) = C1J−1/2(ξ) + C2J1/2(ξ), (n = 1; N = 1). (2.3.24)

Using Eq. (2.3.15) and J1/2(ξ) = (2/πξ)1/2 sin ξ, J−1/2(ξ) = (2/πξ)1/2 cos ξ, we find for the solution
of Eq. (2.3.6):

θ = ξ1/2
[
C1J−1/2(ξ) + C2J1/2(ξ)] = (2/π)1/2(C1 cos ξ + C2 sin ξ). (2.3.25)

With the initial conditions θ(0) = 1, θ′(0) = 0 we get C1 = (π/2)1/2 = Γ(1/2)
/
21/2 and C2 = 0 via

(2.3.19). Therefore

θ = cos ξ = (πξ/2)1/2J−1/2(ξ), (n = 1; N = 1). (2.3.26)

Of course, this result can be obtained much easier by direct integration of Eq. (2.3.6), (cf. Harrison
and Lake 1972). Thus, by virtue of Eqs. (2.3.22) and (2.3.26) – when N equals an odd integer – the
solution of the Lane-Emden equation (2.1.14) for n = 1 can always be expressed in closed form with the
aid of trigonometric functions.

2.3.3 Schuster-Emden Integral n = (N + 2)/(N − 2)n = (N + 2)/(N − 2)n = (N + 2)/(N − 2)

In this case Eq. (2.2.26) takes the simple form

d2z/dt2 + 2[N + n(2 − N)]z/(n − 1)2 ± Bn−1zn = 0, (n �= ±1,±∞). (2.3.27)

This equation can be simplified further, if we take the arbitrary constant B from Emden’s transfor-
mation (2.2.22) equal to

Bn−1 = −2[N + n(2 − N)]
/
(n − 1)2 = 4/(n − 1)2, [N = 2(n + 1)/(n − 1)]. (2.3.28)

Eq. (2.3.27) becomes

d2z/dt2 = 4(z ∓ zn)/(n − 1)2. (2.3.29)

After multiplication by dz/dt this equation can be integrated:

(dz/dt)2/2 = 4
[
z2/2 ∓ zn+1/(n + 1)

]/
(n − 1)2 + C. (2.3.30)
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We turn back to the original ξ, θ-variables by using Emden’s transformations (2.2.22), (2.2.25):

ξ = exp(−t); dξ/dt = −ξ; z = ξ2/(n−1)θ/B;

dz/dt = (dz/dξ) dξ/dt = −(ξ2/(n−1)/B)
[
2θ/(n − 1) + ξθ′

]
= −[(n − 1)ξ/2]2/(n−1)[2θ/(n − 1) + ξθ′], (B = [2/(n − 1)]2/(n−1)). (2.3.31)

Substitution of Eq. (2.3.31) into Eq. (2.3.30) shows that with the initial conditions θ(0) = 1, θ′(0) = 0
we have z = 0, dz/dt = 0 if ξ = 0 and n > 1. Consequently C = 0 if n > 1. From the initial assumption
n = (N + 2)/(N − 2) follows that N > 2 if n > 1. Thus, the plane-symmetrical and the cylindrical case
(N = 1, 2) of the Schuster-Emden integral need special discussion, and solution (2.3.36) is valid only if
N = 3, 4, 5, .... Then C = 0, and Eq. (2.3.30) becomes after some algebra via Eq. (2.3.31):

2θθ′/(n − 1) + ξθ′2/2 + ξθn+1/(n + 1) = 0, (n = (N + 2)/(N − 2) > 1; N = 3, 4, 5, ...). (2.3.32)

This equation can be written under the equivalent form

2dξ/(n − 1)ξ + dθ/2θ − d(ξN−1θ′)/(n + 1)ξN−1θ′ = 0, (2.3.33)

where we have replaced θn with −ξ1−N d(ξN−1θ′)/dξ in virtue of the Lane-Emden equation (2.1.14).
Integration of Eq. (2.3.33) yields

ξθ(n+1)/2/θ′ = C. (2.3.34)

To determine the new integration constant C, we use the series expansion of θ′ from Eq. (2.4.21):
θ′ ≈ −ξ/N, (ξ ≈ 0; n > −1). We obtain C = −N = −2(n + 1)/(n − 1). After a further elementary
integration of Eq. (2.3.34) we find eventually

2θ(1−n)/2/(1 − n) = (1 − n)ξ2/4(1 + n) + D. (2.3.35)

From the initial condition θ(0) = 1 follows D = 2/(1−n), and (Chandrasekhar 1939, Kimura and Liu
1978, Abramowicz 1983, Horedt 1986a):

θ = [1 + (n − 1)2ξ2/8(n + 1)]2/(1−n) = [1 + ξ2/N(N − 2)](2−N)/2,

(n = (N + 2)/(N − 2) > 1; N = 3, 4, 5, ...). (2.3.36)

The case n = 5, N = 3 is also known as the Plummer model (Eq. (2.3.90), Binney and Tremaine
1987).

Srivastava’s Solution if N = 3, n = 5.N = 3, n = 5.N = 3, n = 5. Srivastava (1962) has given an additional solution in closed
form, that may be applied to construct composite polytropic models (Sec. 2.8.1, Murphy 1980a, 1981).
The assumption C �= 0 in Eq. (2.3.30) generally involves elliptic integrals (Chandrasekhar 1939), but for
the particular choice C = 1/12 the right-hand side of Eq. (2.3.30) can be factorized:

(dz/dt)2 = −z6/12 + z2/4 + 1/6 = (z2 + 1)2(2 − z2)/12, (N = 3; n = 5). (2.3.37)

With the substitution z = tanχ, Eq. (2.3.37) assumes the form

121/2 cos χ dχ/(2 − 3 sin2 χ)1/2 = ±dt. (2.3.38)

Integration yields

2 arcsin[(3/2)1/2 sinχ] = ±t + C or sinχ = (2/3)1/2 sin[(±t + C)/2], (C = const). (2.3.39)

From Eq. (2.3.28) we obtain for the constant B

B = ±2−1/2, (N = 3; n = 5), (2.3.40)

and the Emden transformation (2.3.31) reads

θ = ±(2ξ)−1/2z = ±(2ξ)−1/2 tanχ = ±(2ξ)−1/2 sinχ/(1 − sin2 χ)1/2. (2.3.41)
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Eq. (2.3.41) transforms into Srivastava’s (1962) solution by using Eqs. (2.3.31), (2.3.39):

θ = ± sin(ln ξ1/2 + D)
/
ξ1/2

[
3 − 2 sin2(ln ξ1/2 + D)

]1/2
, (D = const; N = 3; n = 5). (2.3.42)

Because of the sine function this solution has an oscillatory behaviour, with the amplitudes growing
indefinitely as ξ → 0. We have θ → ±∞ if ξ → 0, and θ → 0 if ξ → ∞. The zeros of Srivastava’s integral
occur at ξ = exp[2(kπ − D)], where k is zero or an integer. Eq. (2.3.42) has some practical significance
only when θ > 0 (Eq. (2.8.50), Murphy 1980a, 1981, 1983b, Murphy and Fiedler 1985a, b).

We now discuss the cases N = 1, 2, left over from the preceding derivation.
Case N = 2N = 2N = 2. In this case n = (N + 2)/(N − 2) = ∞, and Eq. (2.2.33) takes the simple form

d2z/dt2 = − exp z, (n = ±∞; N = 2). (2.3.43)

Exactly as for Eq. (2.3.29) we find after multiplication with dz/dt and integration:

(dz/dt)2/2 = − exp z + C. (2.3.44)

With Eqs. (2.2.25) and (2.2.30) we turn back to the original (ξ, θ)-variables:

ξ2(2/ξ − θ′)2/2 = −ξ2 exp(−θ) + C. (2.3.45)

With the initial conditions ξ, θ(0), θ′(0) = 0, we find C = 2. If we replace exp(−θ) by ξ−1 d(ξθ′)/dξ
via the Lane-Emden equation (2.1.21), the preceding equation can be written under the equivalent form

−2dξ/ξ + dθ/2 + d(ξθ′)/ξθ′ = 0, (n = ±∞; N = 2), (2.3.46)

which integrates to give

ln(θ′/ξ) = −θ/2 + C. (2.3.47)

From Eq. (2.4.36) we have θ′ ≈ ξ/N, (ξ ≈ 0, n = ±∞), and the new integration constant becomes
C = − ln 2, by using the initial conditions at ξ = 0. A further integration of Eq. (2.3.47) yields the final
result (Stodólkiewicz 1963, Ostriker 1964a):

θ = 2 ln(1 + ξ2/8), (n = ±∞; N = 2). (2.3.48)

Case N = 1.N = 1.N = 1. In this case we would have n = (N + 2)/(N − 2) = −3, but already in the original
Lane-Emden equation the θ′-term is missing, as in Eqs. (2.3.27) or (2.3.43). Consequently, there is no
need to turn to the Emden variables t and z. We have

θ′′ = ∓θn, (n �= −1,±∞; N = 1), (2.3.49)

and

θ′′ = exp(−θ), (n = ±∞; N = 1). (2.3.50)

After multiplication with θ′, Eq. (2.3.49) can be integrated in the same way as Eq. (2.3.29):

θ′2/2 = ∓θn+1/(n + 1) + C, (C = const). (2.3.51)

With the initial conditions θ(0) = 1, θ′(0) = 0 we get

θ′ = ∓
{
2(1 − θn+1)

/
[±(n + 1)]

}1/2
, (n �= −1,±∞; N = 1), (2.3.52)

where we have used the fact that θ′ ≤ 0, θ ≤ 1 if −1 < n < ∞, and θ′ ≥ 0, θ ≥ 1 if −∞ < n < −1
(cf. Sec. 2.7). If θn+1 = 0, Eq. (2.3.52) yields an important analytical expression for the value of the
derivative at the finite or infinite boundary of the slab [cf. Eq. (2.4.67)]. We integrate Eq. (2.3.52)
further

ξ = ∓
∫ θ

1

[±(n + 1)/2(1 − τn+1)]1/2 dτ, (n �= −1,±∞; N = 1). (2.3.53)
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With the substitution

t = 1 − τn+1, (2.3.54)

Eq. (2.3.53) can be brought into the form of an incomplete beta function (Harrison and Lake 1972):

ξ = [±2(n + 1)]−1/2

∫ T

0

t−1/2(1 − t)−n/(n+1) dt, (n �= −1,±∞; N = 1; T = 1 − θn+1). (2.3.55)

The incomplete beta function (Smirnow 1967, Spiegel 1968)

BT (p, q) =
∫ T

0

tp−1(1 − t)q−1 dt, (p, q > 0; 0 ≤ T ≤ 1), (2.3.56)

is originally defined only for positive exponents p and q. If p > 0 and q ≤ 0, the incomplete beta function
becomes infinite merely for the upper limit T = 1 of the integration interval. Thus, we can extend the
definition of the incomplete beta function (2.3.56) to

BT (p, q) =
∫ T

0

tp−1(1 − t)q−1 dt, (p > 0; 0 ≤ T ≤ 1), (2.3.57)

with the understanding that BT (p, q) = ∞ if T = 1 and q ≤ 0. Using the above definition we write
instead of Eq. (2.3.55)

ξ = [±2(n + 1)]−1/2BT [1/2, 1/(n + 1)], (n �= −1,±∞; N = 1; 0 ≤ T ≤ 1). (2.3.58)

ξ from Eq. (2.3.55) or (2.3.58) becomes infinite only when n < −1 and T = 1 − θn+1 = 1, in full
accordance with the general behaviour of plane-symmetric solutions (cf. Sec. 2.7).

The integrand from Eq. (2.3.55) can be brought into a simpler form (Kimura and Liu 1978)

ξ =
{
2/[±(n + 1)]

}1/2
∫ X

0

(1 − x2)−n/(n+1) dx, (n �= −1,±∞; N = 1; 0 ≤ X ≤ 1), (2.3.59)

with the transformation of variables

x = t1/2 = (1 − τn+1)1/2; X = (1 − θn+1)1/2. (2.3.60)

From Eq. (2.3.59) it is obvious that solutions in closed form of Eq. (2.3.49) exist whenever −n/(n +
1) = k/2, where k is an integer or zero. In this case the integrand is of the form F [(1 − x2)1/2] and
can be integrated by standard methods, where F is a rational function of the argument (1 − x2)1/2. For
instance, when k takes values between -4 and 4, the corresponding values of n for which Eq. (2.3.49) can
be solved in closed form are n = −2,−3,±∞, 1, 0,−1/3,−1/2,−3/5,−2/3, respectively. For instance, if
n = 1, we recover at once from Eq. (2.3.59) the solution θ = cos ξ, obtained previously in Eq. (2.3.26).
If a solution ξ = ξ(θ) is available in closed form, we can find θn(ξ) = ∓d2θ(ξ)/dξ2 with the relationships
for the derivative of the inverse function:

dθ(ξ)/dξ = 1
/
[dξ(θ)/dθ]; d2θ(ξ)/dξ2 = −[d2ξ(θ)/dθ2]

/
[dξ(θ)/dθ]3. (2.3.61)

A closed solution of the Lane-Emden equation (2.3.50) exists if n = ±∞. Multiplication by θ′ and
subsequent integration yields (θ(0), θ′(0) = 0)

θ′ = 21/2[1 − exp(−θ)]1/2, (n = ±∞; N = 1). (2.3.62)

With the substitution x = [1 − exp(−θ)]1/2, we find

dξ = 21/2

∫ x

0

dx/(1 − x2), (2.3.63)

which can be integrated to give

ξ = 2−1/2 ln[(1 + x)/(1 − x)] + C. (2.3.64)

Since x = 0 if ξ = 0, the integration constant C turns out to be zero, and by moving back to the
original θ-variable, we find (Spitzer 1942, Harrison and Lake 1972)

exp(−θ) = 4
/
[exp(ξ/21/2) + exp(−ξ/21/2)]2 = 1

/
cosh2(ξ/21/2), (n = ±∞; N = 1). (2.3.65)

Thus, the intimate connection becomes obvious between the planar case N = 1 if n �= −1, the
cylindrical case N = 2 if n = ±∞, and the general case N ≥ 3 if n = (N + 2)/(N − 2) : In all these cases
the Lane-Emden equation can be brought to an integrable form without first order derivatives.
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2.3.4 Singular Solution

(i) n �= ±1,±∞.n �= ±1,±∞.n �= ±1,±∞. Let us rewrite Emden’s equation (2.2.29) under the form

dy
/{

[2 + N + n(2 − N)]y/(n − 1) + 2[N + n(2 − N)]z/(n − 1)2 ± Bn−1zn
}

= −dz/y,

(n �= ±1,±∞). (2.3.66)

The singular points of a first order differential equation, written under the form

dy/P (y, z) = dz/Q(y, z), (2.3.67)

are given by the solutions of the system

P (y, z) = 0; Q(y, z) = 0. (2.3.68)

Thus, the singular points are found from Eq. (2.3.66) to be

ys = 0; zs = 0 and ys = 0; zs = {∓2[N + n(2 − N)]/(n − 1)2}1/(n−1)/B. (2.3.69)

The first singular point ys = zs = 0 is trivial in this context, but the second singular point leads to a
singular solution in the ξ, θ-variables, as defined by Eq. (2.2.22):

θ(ξ) = Bξ2/(1−n)zs = {∓2[N + n(2 − N)]/(n − 1)2ξ2}1/(n−1), (n �= ±1,±∞). (2.3.70)

Since zs, (zs �= 0) must be a real number, there results the important additional constraint

∓[N + n(2 − N)] > 0 or n(N − 2) ≷ N, (n �= ±1,±∞). (2.3.71)

As familiar, the upper sign holds if −1 < n < ∞, the lower one if −∞ < n < −1. No singular solution
exists in the plane-symmetric case N = 1, since the condition (2.3.71) is not fulfilled. If N ≥ 2, the
singular solution (2.3.70) exists for polytropic indices obeying the constraint −∞ < n < −1. In addition,
if N ≥ 3, singular solutions exist also for polytropic indices obeying the inequality N/(N − 2) < n < ∞.

(ii) n = ±∞.n = ±∞.n = ±∞. We rewrite Emden’s equation (2.2.34) under the form

dy
/
[(2 − N)y + exp z + 2(2 − N)] = −dz/y, (n = ±∞), (2.3.72)

to obtain the singular point

ys = 0; zs = ln[2(N − 2)], (n = ±∞; N ≥ 3). (2.3.73)

The singular solution in the (ξ, θ)-variables is by virtue of Eq. (2.2.30) equal to

θ = ln[ξ2/2(N − 2)]; � = 2�0(N − 2)/ξ2, (n = ±∞; N ≥ 3). (2.3.74)

No singular solutions exist if n = ±∞, N = 1, 2.
The singular solutions (2.3.70) and (2.3.74) do not obey the initial conditions (2.1.41) for the Lane-

Emden functions. As will be obvious from the next section, the singular solutions of the Lane-Emden
equation are important for the study of the asymptotic behaviour of solutions when ξ → ∞.

So far, we have considered in this section all cases for which the Lane-Emden equations (2.1.14) and
(2.1.21), or their Emden transformations (2.2.26) and (2.2.33), can be brought to simpler differential
equations, integrable by standard methods. Below, we summarize the analytic solutions.

Polytropic Slabs, N = 1.N = 1.N = 1. The Lane-Emden equation

θ′′ = ∓θn, (n �= −1,±∞), (2.3.75)

has the solution

ξ = ∓
∫ θ

1

[±(n + 1)/2(1 − τn+1)]1/2 dτ, (n �= −1,±∞), (2.3.76)
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that can be integrated in closed form whenever 2n/(n + 1) is an integer or zero. For instance, if

n = 0 : θ = 1 − ξ2/2, (2.3.77)

n = 1 : θ = cos ξ = (πξ/2)1/2J−1/2(ξ). (2.3.78)

If n = ±∞, the Lane-Emden equation

θ′′ = exp(−θ), (n = ±∞), (2.3.79)

has the solution

θ = ln[cosh2(ξ/21/2)], (n = ±∞). (2.3.80)

No singular solutions exist for polytropic slabs.
Polytropic Cylinders, N = 2.N = 2.N = 2. The Lane-Emden equation

θ′′ + θ′/ξ = ∓θn, (n �= −1,±∞), (2.3.81)

has solutions in closed form if

n = 0 : θ = 1 − ξ2/4, (2.3.82)

n = 1 : θ = J0(ξ) =
∞∑

k=0

(−1)k(ξ/2)2k/(k!)2. (2.3.83)

There exists the singular solution

θ = [4/(n − 1)2ξ2]1/(n−1), (−∞ < n < −1). (2.3.84)

The Lane-Emden equation

θ′′ + θ/ξ = exp(−θ), (n = ±∞), (2.3.85)

has the solution

θ = 2 ln(1 + ξ2/8), (n = ±∞). (2.3.86)

Polytropic Spheres, N = 3.N = 3.N = 3. The Lane-Emden equation

θ′′ + 2θ′/ξ = ∓θn, (n �= −1,±∞), (2.3.87)

has solutions in closed form if

n = 0 : θ = 1 − ξ2/6, (2.3.88)

n = 1 : θ = sin ξ/ξ = (π/2ξ)1/2J1/2(ξ), (2.3.89)

n = 5 : θ = (1 + ξ2/3)−1/2. (2.3.90)

Srivastava’s (1962) integral

θ = ± sin(ln ξ1/2 + D)
/
ξ1/2

[
3 − 2 sin2(ln ξ1/2 + D)

]1/2
, (n = 5; D = const), (2.3.91)

does not obey the usual initial conditions θ(0) = 1 and θ′(0) = 0.
There exist the singular solutions

θ = [2(3 − n)/(n − 1)2ξ2]1/(n−1), (−∞ < n < −1), (2.3.92)

and

θ = [2(n − 3)/(n − 1)2ξ2]1/(n−1), (3 < n < ∞). (2.3.93)

The Lane-Emden equation

θ′′ + 2θ′/ξ = exp(−θ), (n = ±∞), (2.3.94)

has the singular solution

θ = ln(ξ2/2), (n = ±∞). (2.3.95)
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2.4 Approximate Analytical Solutions

2.4.1 Series Expansion of Lane-Emden Functions near an Interior Point

If not stated explicitly otherwise, we will only be concerned with solutions of the Lane-Emden equa-
tions (2.1.14) or (2.1.21) satisfying the constraints

ξ ≥ 0; 0 ≤ θ(ξ) ≤ ∞. (2.4.1)

Mostly these solutions are of practical interest, because according to Eqs. (2.1.10), (2.1.13), (2.1.18),
(2.1.20) we have r ∝ ξ, � ∝ θn, P ∝ θn+1, or r ∝ ξ, � ∝ exp(−θ), P ∝ exp(−θ), the pressure P being a
decreasing function as the radius r increases. Series solutions are important especially as a starting point
for numerical integrations, and for the elucidation of the general topology of the Lane-Emden equation. A
Taylor series expansion can be provided for intervals of ξ where the Lane-Emden function θ is continuous.
Quite generally, we are seeking a power series solution of the Lane-Emden equation in the neighborhood
of the initial conditions θ0 = θ(ξ0) and θ′0 = (dθ/dξ)ξ=ξ0 . The general convergence of series solutions for
the Lane-Emden equation will be touched subsequently to Eq. (2.4.39).

(i) n �= −1,±∞.n �= −1,±∞.n �= −1,±∞. If ξ0 �= ∞, we are seeking a solution of the Lane-Emden equation under the form
(Mohan and Al-Bayaty 1980)

θ =
∞∑

k=0

ak(ξ − ξ0)k. (2.4.2)

Raising a power series to a real power yields another power series

θn =
( ∞∑

i=0

aix
i
)n

=
∞∑

k=0

ckxk, (x = ξ − ξ0), (2.4.3)

with the coefficients (e.g. Gradshteyn and Ryzhik 1965, Seidov 1979)

c0 = an
0 ; ck = (1/ka0)

k∑
i=1

(−k + i + in)aick−i, (k ≥ 1; a0 �= 0). (2.4.4)

We insert Eq. (2.4.2) into the Lane-Emden equation (2.1.14) written under the from

(ξ − ξ0)θ′′ + ξ0θ
′′ + (N − 1)θ′ ± (ξ − ξ0)θn ± ξ0θ

n = 0, (n �= −1,±∞), (2.4.5)

to obtain
∞∑

k=0

[
(k + 2)(k + 1)ak+2(ξ − ξ0)k+1 + (k + 2)(k + 1)ak+2ξ0(ξ − ξ0)k

+(N − 1)(k + 1)ak+1(ξ − ξ0)k ± ck(ξ − ξ0)k+1 ± ckξ0(ξ − ξ0)k
]

= 0. (2.4.6)

Equating equal powers of ξ − ξ0, we get the identities, (ξ0, θ0 �= 0)

a2 = [∓c0ξ0 − (N − 1)a1]/2ξ0, (k = 0), (2.4.7)

ak+2 =
[
∓ (ckξ0 + ck−1) − (k + 1)(N + k − 1)ak+1

]/
(k + 1)(k + 2)ξ0, (k ≥ 1), (2.4.8)

with the ck’s given by Eq. (2.4.4). To determine the coefficients ak completely, we need a0 and a1, which
are obtained from Eq. (2.4.2) with the initial conditions θ0 and θ′0 :

a0 = θ0; a1 = θ′0; c0 = an
0 = θn

0 . (2.4.9)
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To get the series expansion near the origin ξ0 = 0, it is advisable to start ex novo in this important
particular case. The series

θ =
∞∑

k=0

akξk, (ξ0 = 0), (2.4.10)

is inserted into Eq. (2.1.14):

∞∑
k=0

[
(k + 2)(k + 1)ak+2ξ

k+1 + (N − 1)(k + 1)ak+1ξ
k ± ckξk+1] = 0. (2.4.11)

Equating equal powers, we find

ck = ∓(k + 2)(k + N)ak+2, (k ≥ 0). (2.4.12)

This equation is introduced into Eq. (2.4.4) to obtain the recurrence formula

ak+2 =
[
1
/
k(k + 2)(k + N)a0

] k∑
i=1

(−k + i + in)(k − i + 2)(k − i + N)aiak−i+2, (k ≥ 1).

(2.4.13)

For the first two coefficients of the series (2.4.10) we get with the usual initial conditions (2.1.41)

a0 = θ0 = θ(0) = 1; a1 = θ′0 = (dθ/dξ)ξ=0 = 0, (2.4.14)

and from Eqs. (2.4.4), (2.4.12), if k = 0 :

a2 = ∓c0/2N = ∓an
0/2N = ∓1/2N. (2.4.15)

Eqs. (2.4.13)-(2.4.15) completely determine the coefficients of the expansion of Lane-Emden functions
near ξ = 0. Since a1 = 0, we observe from Eq. (2.4.13) that all coefficients with odd indices are zero: Let
k = 2p − 1, (p – natural number), then either ai or a2p−i+1 will be odd indexed and consequently zero.
Hence, we can write instead of Eq. (2.4.10) the equivalent series

θ =
∞∑

k=0

b2kξ2k, (2.4.16)

which yields the coefficients (Seidov and Kuzakhmedov 1977, Seidov et al. 1979)

b0 = 1; b2 = ∓1/2N ; b2k+2 = [1
/
k(k + 1)(2k + N)b0]

×
k∑

i=1

(−k + i + in)(k − i + 1)(2k − 2i + N)b2ib2k−2i+2, (k ≥ 1). (2.4.17)

These coefficients can be obtained simply from Eq. (2.4.13) with the transformation k → 2k, i → 2i.
In the particular case n = 2, Seidov (1979) obtains a much simpler recurrence formula than Eq.

(2.4.13), by observing that from the equation

θ2 =
( ∞∑

i=0

b2iξ
2i

)2

=
∞∑

k=0

c2kξ2k, (2.4.18)

we obtain

c2k =
k∑

i=0

b2ib2k−2i, (n = 2), (2.4.19)

and after substituting into Eq. (2.1.14), and equating equal powers of ξ :

b2k+2 = ∓
[
1
/
(2k + 2)(2k + N)b0

] k∑
i=0

b2ib2k−2i, (n = 2; k ≥ 0). (2.4.20)



48 2.4 Approximate Analytical Solutions

Below, we write down the first six terms of the series (2.4.16), providing a good approximation to the
Lane-Emden functions as long as ξ � 1 (cf. Seidov et al. 1979):

θ ≈ 1 ∓ (1/2N)ξ2 + [n/23N(N + 2)]ξ4 ∓ {[2n2(N + 1) − n(N + 2)]/24 × 3N2(N + 2)(N + 4)}ξ6

+{[n3(6N2 + 20N + 8) + n2(−7N2 − 32N − 24) + n(2N2 + 12N + 16)]

/27 × 3N3(N + 2)(N + 4)(N + 6)}ξ8 ∓ {[n4(24N4 + 220N3 + 612N2 + 536N + 96)

+n3(−46N4 − 488N3 − 1632N2 − 1920N − 576) + n2(29N4 + 354N3 + 1428N2 + 2200N + 1056)

+n(−6N4 − 84N3 − 408N2 − 816N − 576)]/28 × 3 × 5N4(N + 2)2(N + 4)(N + 6)(N + 8)}ξ10

+..., (n �= −1,±∞; N = 1, 2, 3, ...). (2.4.21)

For the plane-symmetrical, cylindrical, and spherical polytropes we get if ξ � 1 :

N = 1 : θ ≈ 1 ∓ (1/2!)ξ2 + (n/4!)ξ4 ∓ [n(4n − 3)/6!]ξ6 + [n(34n2 − 63n + 30)/8!]ξ8

∓[n(496n3 − 1554n2 + 1689n − 630)/10!]ξ10 + ... (2.4.22)

N = 2 : θ ≈ 1 ∓ [1/(21 × 1!)2]ξ2 + [n/(22 × 2!)2]ξ4 ∓ [n(3n − 2)/(23 × 3!)2]ξ6

+[n(18n2 − 29n + 12)/(24 × 4!)2]ξ8 ∓ [n(180n3 − 487n2 + 452n − 144)/(25 × 5!)2]ξ10 + ... (2.4.23)

N = 3 : θ ≈ 1 ∓ (1/3!)ξ2 + (n/5!)ξ4 ∓ [n(8n − 5)/3 × 7!]ξ6 + [n(122n2 − 183n + 70)/9 × 9!]ξ8

∓[n(5032n3 − 12642n2 + 10805n − 3150)/45 × 11!]ξ10 + ... (2.4.24)

We have noted the erroneous expansions of Abramowicz [1983, Eq. (7)], of Ibáñez and Sigalotti
(1984, Eq. (14), N = 1), and the error occurring in the equation written by Ostriker (1964a), and
Viala and Horedt (1974b) for the last coefficient in Eq. (2.4.23), where the numerator should read
n(180n3 − 487n2 + 452n − 144) instead of n(180n3 − 505n2 + 470n − 144).

The spherical Lane-Emden functions of most practical interest can also be calculated with a series
expansion of the form

θ ≈
I∑

i=0

ai[ξ/(ξ + 25−n)]i, (I = 14; ai = const; N = 3; 0 < n < 5), (2.4.25)

to a precision better than 10−6, where 25−n is an empirically found number, and the coefficients ai have
been tabulated by Service (1977) for the polytropic indices n = 1.5, 2, 2.5, 3, 3.25, 3.5, 4, 4.5.

Other approximations to polytropic spheres near the origin have been proposed by Fowler and Hoyle
[1964, Eq. (C.79)]

θ ≈ [1 + (n/120 − 1/72)ξ4] exp(−ξ2/6) ≈ exp(−ξ2/6), (ξ ≈ 0; N = 3; −∞ < n < ∞),
(2.4.26)

and by Beech (1987)

θ ≈ [1 + (15/108 − n/20)ξ4]/ cosh(ξ/31/2), (ξ ≈ 0; N = 3; −∞ < n < ∞). (2.4.27)

(ii) n = ±∞.n = ±∞.n = ±∞. The series (2.4.2) still holds. To obtain a useful expression of exp(−θ) occurring on
the right-hand side of Eq. (2.1.21), we employ the auxiliary function

χ(ξ) = 1 − θ(ξ)/n = 1 −
∞∑

i=0

ai(ξ − ξ0)i/n. (2.4.28)

In virtue of Eq. (2.4.4) we have

χn = (1 − θ/n)n =
∞∑

k=0

ck(ξ − ξ0)k =
[
1 −

∞∑
i=0

ai(ξ − ξ0)i/n

]n

, (2.4.29)
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with

c0 = (1 − a0/n)n; ck =
[
1/k(1 − a0/n)

] k∑
i=1

(−k + i + in)(−ai/n)ck−i, (k ≥ 1). (2.4.30)

Turning in Eq. (2.4.30) to the limit n → ±∞, we get

c0 = exp(−a0); ck = −(1/k)
k∑

i=1

iaick−i, (2.4.31)

and Eq. (2.4.29) becomes

lim
n→±∞χn = exp(−θ) =

∞∑
k=0

ck(ξ − ξ0)k = exp(−a0) −
∞∑

k=1

{[
(ξ − ξ0)k/k

] k∑
i=1

iaick−i

}
. (2.4.32)

The coefficients ak are obtained in the same way as in Eqs. (2.4.7)-(2.4.9):

a0 = θ0; a1 = θ′0; c0 = exp(−θ0); a2 = [c0ξ0 − (N − 1)a1]/2ξ0;

ak+2 = [ckξ0 + ck−1 − (k + 1)(N + k − 1)ak+1]
/
(k + 1)(k + 2)ξ0, (k ≥ 1; ξ0 �= 0). (2.4.33)

If ξ0 = 0, we find in the same manner as in Eqs. (2.4.12)-(2.4.15):

ck = (k + 2)(k + N)ak+2, (n = ±∞; k ≥ 0), (2.4.34)

and

a0 = θ(0) = θ0 = 0; a1 = θ′(0) = θ′0 = 0; c0 = exp(−a0) = 1; a2 = c0/2N = 1/2N ;

ak+2 = −[1/k(k + 2)(k + N)]
k∑

i=1

i(k − i + 2)(k − i + N)aiak−i+2, (k ≥ 1). (2.4.35)

According to Eq. (2.4.35) the first five terms of the expansion near ξ = 0 are

θ ≈ (1/2N)ξ2 − [1/23N(N + 2)]ξ4 + [(N + 1)/23 × 3N2(N + 2)(N + 4)]ξ6

−[(3N2 + 10N + 4)/26 × 3N3(N + 2)(N + 4)(N + 6)]ξ8 + [(6N4 + 55N3 + 153N2 + 134N + 24)

/26 × 3 × 5N4(N + 2)2(N + 4)(N + 6)(N + 8)]ξ10 − ..., (n = ±∞). (2.4.36)

For the plane-symmetrical, cylindrical, and spherical case we obtain

N = 1 : θ ≈ ξ2/2! − ξ4/4! + 4ξ6/6! − 34ξ8/8! + 496ξ10/10! − ... (2.4.37)

N = 2 : θ ≈ ξ2/(21 × 1!)2 − ξ4/(22 × 2!)2 + 3ξ6/(23 × 3!)2 − 18ξ8/(24 × 4!)2

+180ξ10/(25 × 5!)2 − ... (2.4.38)

N = 3 : θ ≈ ξ2/3! − ξ4/5! + 8ξ6/3 × 7! − 122ξ8/9 × 9! + 5032ξ10/45 × 11! − ... (2.4.39)

Formally, these expansions can be obtained from Eqs. (2.4.21)-(2.4.24) by preserving in the coefficients
of ξ2, ξ4, ...ξ10 only the factor near the highest power of n.

In the spherical case the series expansions (2.4.16) of the analytical solutions 1 − ξ2/6, (n = 0) and
ξ−1 sin ξ, (n = 1) converge for any value of ξ (radius of convergence = ∞), while the series expansion of
the Schuster-Emden integral (1+ξ2/3)−1/2, (n = 5) converges only if ξ2/3 ≤ 1 or ξ ≤ 31/2. Therefore, we
may expect that the radius of convergence of the series (2.4.16) decreases from ∞ to 31/2 as n grows from
1 to 5, (N = 3). This conjecture has been confirmed by the numerical work of Seidov and Kuzakhmedov
(1977), and Seidov (1979) with the aid of the quotient criterion of D’Alembert: limk→∞ |b2kξ2/b2k−2| < 1
(Smirnow 1967). Over twenty years later Roxburgh and Stockman (1999, Table 1) reached the same
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conclusion. The radius of convergence extends up to the boundary of a polytropic sphere with index
0 ≤ n ≤ 5, if the expansion variable ξ is replaced by a power (−ξ2θ′)2/3 of the dimensionless mass.

Hunter (2001) has clarified the analytical reasons for this strange behaviour of the convergency radius:
It is due to a singularity of the form [cf. Eq. (2.4.42)]

θ(ξ) ∝ (ξ2 − ξ2
s )2/(1−n) → ∞, (ξ2 → ξ2

s < 0; ξ2 > ξ2
s ; n > 1), (2.4.40)

at the pure imaginary values ξ = ±i(−ξ2
s )1/2, (ξ2 = ξ2

s < 0) of the radial coordinate. The series (2.4.16)
ceases to converge before the surface of the polytropic sphere is reached if n > 1.9121, and it converges
up to the surface (convergency radius = ξ1) if 1 < n < 1.9121. With the change of variable ζ = ξ2 the
Lane-Emden equation (2.3.87) becomes

4ζ d2θ/dζ2 + 6 dθ/dζ = −θn(ζ), (n �= −1,±∞). (2.4.41)

Close to a singularity of the form (2.4.40) there is d2θ/dζ2 	 dθ/dζ, and integration of Eq. (2.4.41)
yields with this approximation:

(dθ/dζ)2 ≈ θn+1/2(n + 1)(−ζs) + const ≈ θn+1/2(n + 1)(−ζs) and

θ ≈ [(n − 1)2/8(n + 1)(−ζs)]1/(1−n)(ζ − ζs)2/(1−n)

= [(n − 1)2(−ζs)/8(n + 1)]1/(1−n)(1 − ζ/ζs)2/(1−n), (ζ ≈ ζs < 0; ζ > ζs; n > 1). (2.4.42)

The isothermal equation (2.3.94) turns into

4ζ d2θ/dζ2 + 6 dθ/dζ = exp[−θ(ζ)], (n = ±∞), (2.4.43)

which approximates to 4ζs d2θ/dζ2 ≈ exp(−θ) near the singularity. This integrates to

2ζs (dθ/dζ)2 ≈ − exp(−θ) + const ≈ − exp(−θ) and θ ≈ ln[(ζ − ζs)2/8(−ζs)],
(ζ ≈ ζs < 0; n = ±∞). (2.4.44)

The precise value of the movable singularity ζs depends on the initial conditions, and can be
found by numerical integration of Eqs. (2.4.41) and (2.4.43) up to a point where the asymptotic
relationships (2.4.42) and (2.4.44) are well established. For instance, Hunter (2001) obtains ζs =
−∞,−40.92,−15.72,−6.63,−3.00,−2.35,−10.72 if n =1, 1.5, 2, 3, 5, 6, ±∞, respectively.

Fig. 2.4.1 The n = 3 polytrope for real and imaginary values of the radial coordinate ξ = ±ζ1/2, with the
singularity θ(ζs) = ∞ at ζs = ξ2

s = −6.63 (Hunter 2001).
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In the new variable Eq. (2.4.16) turns into

θ(ζ) =
∞∑

k=0

βkζk, (βk = const). (2.4.45)

If θ(ζ) takes the form (2.4.42) at the singularity ζs which is closest to the origin ζ = 0, then by
Darboux’s theorem the expansion coefficients βk take for large k the form (Hunter 2001)

βk ≈ [(n − 1)2(−ζs)/8(n + 1)]1/(1−n)k(n−3)/(1−n)
/
Γ[2/(n − 1)] ζk

s , (k → ∞), (2.4.46)

with Γ denoting the gamma function (C.11). Application of d’Alembert’s ratio criterion to the series
(2.4.45) with the coefficients (2.4.46) requires for convergence that

lim
k→∞

|βk+1ζ/βk| = |ζ/ζs| lim
k→∞

[(k + 1)/k](n−3)/(1−n) ≈ |ζ/ζs| < 1 or |ζs| > |ζ|. (2.4.47)

And this rough evaluation shows that the series (2.4.16) and (2.4.45) converge up to the boundary
θ(ζ1) = θ(ξ2

1) = 0 only if |ζs| > ζ1. If n > 1.9121, we have |ζs| < ζ1 = ξ2
1 , and the two series become

divergent beyond ξ = |ξs| = |ζ1/2
s |, as results from the radii of convergence determined by Seidov and

Kuzakhmedov (1977), Seidov (1979), Roxburgh and Stockman (1999), and Hunter (2001): |ξs| = |ζ1/2
s | =

4.19, 3.96, 3.06, 2.57, 2.26, 2.03, 31/2, 1.53 if n = 1.9, 2, 2.5, 3, 3.5, 4, 5, 6, respectively. If 1 < n < 1.9121,
the radius of convergence is equal to the surface coordinate ξ1. This is due to the fact that the surface
coordinate ζ1 is now the Darboux singularity ζs closest to the origin; the surface singularity of θ(ζ) at
ζ1 results similarly to Eq. (2.4.61) from terms containing (ζ1 − ζ)n, which generally become complex if
ζ > ζ1, (ζ1 > 0).

With an Euler transformation (Hunter 2001)

w = ζ/(ζ + λ) or ζ = λw/(1 − w), (λ > 0), (2.4.48)

the series (2.4.45) turns into

θ(w) =
∞∑

k=1

γkwk, (γk = const), (2.4.49)

converging even if 5 < n < ∞; the surface at infinity ζ1 = ∞, (n ≥ 5) is mapped to w1 = 1, and the
singular point to ws = ζs/(ζs + λ) < −1 if |ζs| < λ < |2ζs|, (ζs < 0), implying w1 < |ws| for convergence.

For the isothermal sphere (n = ±∞) the series (2.4.45) and (2.4.49) cannot converge at ζ1 = ∞, w1 =
1, because θ becomes infinite. Analytic approximations to the isothermal sphere are quoted in Eqs.
(2.4.106), (2.4.127), (2.4.128).

2.4.2 Expansion of Lane-Emden Functions near the Finite Boundary

As will be obvious from the discussion of the topology of the Lane-Emden equation in Sec. 2.7, a finite
boundary exists for Lane-Emden functions only in the cases −1 < n < ∞ if N = 1, 2, and −1 < n < 5 if
N = 3. The discussion of this section is meaningful only if n > 0. We can take in a first approximation
θn = 0 on the right-hand side of the Lane-Emden equation (2.1.14), and obtain near the boundary ξ1 :

θ′′ + (N − 1)θ′/ξ = 0, (n > 0; ξ ≈ ξ1). (2.4.50)

Integration of Eq. (2.4.50) yields

θ′ = Cξ1−N . (2.4.51)

A second integration gives

θ = Cξ2−N/(2 − N) + D, (N �= 2), (2.4.52)
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where C and D are integration constants. If N = 2, we obtain instead of Eq. (2.4.52)

θ = C ln ξ + D, (N = 2). (2.4.53)

With the conditions θ1 = θ(ξ1) = 0 and θ′1 = (dθ/dξ)ξ=ξ1 at the boundary ξ = ξ1, Eqs. (2.4.52) and
(2.4.53) yield for the first order approximation of the Lane-Emden function near the finite boundary

θ = [θ′1/(2 − N)ξ1−N
1 ](ξ2−N − ξ2−N

1 ), (N �= 2), (2.4.54)

and

θ = ξ1θ
′
1 ln(ξ/ξ1), (N = 2). (2.4.55)

Expanding in series these two equations, we get for the geometric indices of principal interest (Chan-
drasekhar 1939, Linnell 1975a, b, Horedt 1983)

N = 1 : θ = ξ1(−θ′1)[(ξ1 − ξ)/ξ1], (2.4.56)

N = 2 : θ = ξ1(−θ′1) ln(ξ1/ξ) = ξ1(−θ′1)
∞∑

i=1

(1/i)[(ξ1 − ξ)/ξ1]i, (2.4.57)

N = 3 : θ = ξ1(−θ′1)(ξ1 − ξ)/ξ = ξ1(−θ′1)
∞∑

i=1

[(ξ1 − ξ)/ξ1]i, (2.4.58)

where we have taken into account that the derivative θ′1 is negative for the considered values of n (cf.
Sec. 2.7).

To obtain the second order approximation, we may insert Eqs. (2.4.56)-(2.4.58) into the right-hand
side of Eq. (2.1.14):

θ′′ + (N − 1)θ′/ξ = −θn ≈ −ξn
1 (−θ′1)

nηn, (0 < n < ∞), (2.4.59)

where

η =




(ξ1 − ξ)/ξ1 N = 1, slab
ln(ξ1/ξ) if N = 2, cylinder
(ξ1 − ξ)/ξ N = 3, sphere

(2.4.60)

Eq. (2.4.59) suggests to seek the general solution near the boundary under the form of the doubly
infinite series

θ = ξ1(−θ′1)η +
∞∑

i,j=1

cijη
in+j = ξ1(−θ′1)η +

∞∑
j=1

Cjη
n+j +

∞∑
j=1

Djη
2n+j +

∞∑
j=1

Ejη
3n+j + ...

= ξ1(−θ′1)η + δ, (0 < n < ∞; cij , Cj , Dj , Ej = const). (2.4.61)

The leading term ξ1(−θ′1)η is provided by the first approximation (2.4.56)-(2.4.58). It should be
stressed that the series (2.4.61) generally holds only inside the boundary where η > 0 and ξ < ξ1, but for
n equal to a rational fraction p/q, with q being an odd integer, it can also be used outside the boundary,
where η < 0 and ξ > ξ1 (e.g. Bellman 1953). Higher order terms become increasingly complicated, and
therefore the expansion (2.4.61) is generally useful only when |η| � 1.

We expand the right-hand side of Eq. (2.4.59) into a Taylor series:

θn =
[
ξ1(−θ′1)η + δ

]n = ξn
1 (−θ′1)

nηn +
∞∑

j=1

[
n(n − 1)...(n − j + 1)ξn−j

1 (−θ′1)
n−jηn−jδj/j!

]

= ξn
1 (−θ′1)

nηn + nξn−1
1 (−θ′1)

n−1
∞∑

j=1

(Cjη
2n+j−1 + Djη

3n+j−1 + Ejη
4n+j−1 + ...)

+
[
n(n − 1)/2!

]
ξn−2
1 (−θ′1)

n−2
∞∑

j,k=1

[
CjCkη3n+j+k−2 + 2CjDkη4n+j+k−2

+(DjDk + 2CjEk)η5n+j+k−2 + ...
]
+ ... (2.4.62)
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We insert Eqs. (2.4.61) and (2.4.62) into Eq. (2.4.59); due to our choice for the variable η, the
coefficient of the first order derivative dθ/dη cancels, and we obtain

(n + 1)nC1η
n−1 + (n + 2)(n + 1)C2η

n + ... + (n + i)(n + i − 1)Ciη
n+i−2 + ...

+(2n + 1)2nD1η
2n−1 + (2n + 2)(2n + 1)D2η

2n + ... + (2n + i)(2n + i − 1)Diη
2n+i−2 + ...

+(3n + 1)3nE1η
3n−1 + (3n + 2)(3n + 1)E2η

3n + ... + (3n + i)(3n + i − 1)Eiη
3n+i−2 + ...

= −Ξ(η)
{

ξn
1 (−θ′1)

nηn + nξn−1
1 (−θ′1)

n−1
∞∑

j=1

(Cjη
2n+j−1 + Djη

3n+j−1 + Ejη
4n+j−1 + ...)

+
[
n(n − 1)/2!

]
ξn−2
1 (−θ′1)

n−2
∞∑

j,k=1

[
CjCkη3n+j+k−2 + 2CjDkη4n+j+k−2

+(DjDk + 2CjEk)η5n+j+k−2 + ...
]
+ ...

}
. (2.4.63)

The function Ξ(η) = 1
/
(dη/dξ)2 appears due to the change of variable from ξ to η. In virtue of Eq.

(2.4.60) we have

N = 1 : Ξ(η) = ξ2
1 , (2.4.64)

N = 2 : Ξ(η) = ξ2 = ξ2
1 exp(−2η) = ξ2

1

∞∑

=0

(−2)
η
/�!, (2.4.65)

N = 3 : Ξ(η) = ξ4/ξ2
1 = ξ2

1(1 + η)−4 = ξ2
1

[
1 +

∞∑

=1

4 × 5 × 6...(� + 2)(� + 3)(−1)
η
/�!
]

= ξ2
1

∞∑

=0

(� + 1)(� + 2)(� + 3)(−1)
η
/3!. (2.4.66)

In principle, all coefficients Cj , Dj , Ej can be determined by equating in Eq. (2.4.63) equal powers of
η (Horedt 1987a; if N = 3 see also Sadler and Miller 1932, Linnell 1975a, c).

2.4.3 Asymptotic Expansions of Lane-Emden Functions

If θn+1 �= 0 or exp(−θ) �= 0 for any finite ξ, the polytropes have no finite boundary, and the pressure
P ∝ θn+1 or P ∝ exp(−θ) tends asymptotically to zero when ξ → ∞. As will be obvious from Sec. 2.6.8,
this is the case for Lane-Emden functions with index −∞ < n < −1 and n = ±∞ if N = 1, 2, 3, and also
for spherical polytropes (N = 3) with index 5 ≤ n < ∞.

The plane-symmetric case can be discussed at once. From Eq. (2.3.52) we get near the finite or
infinite boundary, where θn+1 ≈ 0 :

θ′ = ∓{2/[±(n + 1)]}1/2, (N = 1; n �= −1,±∞). (2.4.67)

By integration we find the behaviour of the Lane-Emden functions near the boundary [cf. Eq.
(2.4.56)]:

θ = ∓{2/[±(n + 1)]1/2}ξ + C, (C = const; N = 1; n �= −1,±∞). (2.4.68)

On the boundary, where P ∝ θn+1 → 0, we have θ → ∞ if −∞ < n < −1. From Eq. (2.4.68) it
appears that in this case ξ → ∞, and the asymptotic behaviour is given by

θ = [−2/(n + 1)]1/2ξ + C ≈ [−2/(n + 1)]1/2ξ, (ξ → ∞; N = 1; −∞ < n < −1). (2.4.69)
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To obtain the form of θ if ξ → ∞ and N ≥ 2, we study the asymptotic behaviour of Lane-Emden
functions near the singular solution (2.3.70), that exists if −∞ < n < −1, (N = 2), and −∞ < n <
−1, 3 < n < ∞, (N = 3). Taking the arbitrary constant B = 1, Eq. (2.3.66) becomes

y dy/dz + [2 + N + n(2 − N)]y/(n − 1) + 2[N + n(2 − N)]z/(n − 1)2 ± zn = 0, (n �= ±1,±∞),
(2.4.70)

with the singular solution from Eq. (2.3.69)

ys = 0; zs = {∓2[N + n(2 − N)]/(n − 1)2}1/(n−1), (2.4.71)

if ∓[N + n(2 − N)] > 0. We write

z = zs + z1, (zs 	 z1), (2.4.72)

and insert into Eq. (2.4.70):

y dy/dz1 + [2 + N + n(2 − N)]y/(n − 1) ± (n − 1)z1z
n−1
s

= y dy/dz1 + [2 + N + n(2 − N)]y/(n − 1) − 2[N + n(2 − N)]z1/(n − 1) = 0, (2.4.73)

where (zs + z1)n ≈ zn
s + nz1z

n−1
s and dz = dz1. Since y = dz/dt = dz1/dt and y dy/dz1 =

(dz1/dt) dy/dz1 = dy/dt = dz2
1/dt2 via Eq. (2.2.28), the equation (2.4.73) transforms into the ho-

mogeneous second order equation with constant coefficients

d2z1/dt2 + [2 + N + n(2 − N)](dz1/dt)/(n − 1) − 2[N + n(2 − N)]z1/(n − 1) = 0, (2.4.74)

that is integrable by standard methods. Its characteristic equation is

q2 + [2 + N + n(2 − N)]q/(n − 1) − 2[N + n(2 − N)]/(n − 1) = 0, (2.4.75)

with the roots

q1,2 = {−2 − N + n(N − 2) ± [n2(N2 − 12N + 20) − 2n(N2 − 8N + 4) + (N − 2)2]1/2}/2(n − 1).
(2.4.76)

The solution of Eq. (2.4.74) should be discussed as a function of the sign of the second order expression
under the square root from Eq. (2.4.76), outside and inside its two roots

n1,2 = [N2 − 8N + 4 ± 8(N − 1)1/2]/(N − 2)(N − 10), (N ≥ 3). (2.4.77)

The discussion for general N is possible, but we restrict ourselves only to the two cases of practical
interest N = 2, 3. For cylindrical polytropes Eq. (2.4.76) becomes

q1,2 = (−2 ± 2n1/2)/(n − 1), (N = 2; −∞ < n < −1), (2.4.78)

and the solution of Eq. (2.4.74) is

z1 = C1 exp[−2t/(n − 1)] cos[2(−n)1/2t/(n − 1) + C2],
(C1, C2 = const; N = 2; −∞ < n < −1). (2.4.79)

The general form of the solution of Eq. (2.4.70) in the vicinity of the singular solution is

z = zs + z1 = [2/(n − 1)]2/(n−1) + C1 exp[−2t/(n − 1)] cos[2(−n)1/2t/(n − 1) + C2],
(N = 2; −∞ < n < −1). (2.4.80)

We write also down the derivative of Eq. (2.4.80)

y = dz/dt = C1 exp[−2t/(n − 1)]{[−2/(n − 1)] cos[2(−n)1/2t/(n − 1) + C2]

−[2(−n)1/2/(n − 1)] sin[2(−n)1/2t/(n − 1) + C2]}, (2.4.81)
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and observe that if t → −∞, the solutions (2.4.80) and (2.4.81) tend toward the singular solutions zs and
ys. With the familiar transformations from Eqs. (2.2.22) and (2.2.25)

ξ = exp(−t); θ = ξ2/(1−n)z, (B = 1), (2.4.82)

Eq. (2.4.80) becomes (Viala and Horedt 1974b)

θ ≈ [(1 − n)2/4]1/(1−n)ξ2/(1−n){1 + c1ξ
−2/(1−n) cos[2(−n)1/2 ln ξ/(1 − n) + c2]},

(c1, c2 = const; N = 2; ξ → ∞ if −∞ < n < −1), (2.4.83)

where t → −∞ corresponds to ξ → ∞. We observe that θ oscillates round the singular solution [(1 −
n)2/4]1/(1−n)ξ2/(1−n) with decreasing amplitude as ξ → ∞. Also θ → ∞, P ∝ θn+1 → 0, and � ∝ θn → 0
if ξ → ∞.

The discussion for the spherical case is somewhat more complicated. The singular solution exists if
−∞ < n < −1 and 3 < n < ∞. The roots of the characteristic equation (2.4.75) are

q1,2 = [−5 + n ± (−7n2 + 22n + 1)1/2]/2(n − 1), (N = 3; −∞ < n < −1; 3 < n < ∞). (2.4.84)

These roots are real if (11 − 8 × 21/2)/7 ≤ n ≤ (11 + 8 × 21/2)/7, or equivalently if −0.04482... ≤
n ≤ 3.18767..., and complex outside this interval. We discuss at first the case of principal interest, when
−∞ < n < −1 and 3.18767... < n < ∞ :

z1 = C1 exp[(n − 5)t/2(n − 1)] cos[(7n2 − 22n − 1)1/2t/2(n − 1) + C2],
(C1, C2 = const; N = 3; −∞ < n < −1; 3.18767... < n < ∞), (2.4.85)

z = [±2(n − 3)/(n − 1)2]1/(n−1) + z1, (2.4.86)

y = dz/dt = C1 exp[(n − 5)t/2(n − 1)]{[(n − 5)/2(n − 1)]

× cos[(7n2 − 22n − 1)1/2t/2(n − 1) + C2] − [(7n2 − 22n − 1)1/2/2(n − 1)]

× sin[(7n2 − 22n − 1)1/2t/2(n − 1) + C2]}. (2.4.87)

If −∞ < n < −1 and 5 < n < ∞, we observe that y and z tend towards the singular solution ys and
zs if t → −∞, i.e. ξ → ∞. If 3.18767... < n < 5, the singular solution ys, zs is approached as t → ∞,
i.e. ξ → 0. Turning to the ξ, θ-variables, Eq. (2.4.86) becomes (Chandrasekhar 1939, Viala and Horedt
1974b):

θ ≈ [±(1 − n)2/2(n − 3)]1/(1−n)ξ2/(1−n){1 + c1ξ
(n−5)/2(1−n)

× cos[(7n2 − 22n − 1)1/2 ln ξ/2(1 − n) + c2]}, (c1, c2 = const; N = 3;
ξ → ∞ if −∞ < n < −1 and 5 < n < ∞; ξ → 0 if 3.18767... < n < 5). (2.4.88)

If −∞ < n < −1, we observe that θ → ∞ if ξ → ∞. When 5 < n < ∞, we have θ → 0 if
ξ → ∞. Pressure (P ∝ θn+1) and density (� ∝ θn) tend to zero in both cases. On the other side, when
3.18767... < n < 5, we have θ → ∞ if ξ → 0; in this case Eq. (2.4.88) does not obey the usual initial
condition θ(0) = 1. The singular solution [±(1− n)2/2(n− 3)]1/(1−n)ξ2/(1−n) is always approached in an
oscillatory manner with decreasing amplitude.

In the particular case n = 5, Eq. (2.4.88) leads to

θ ≈ (2ξ)−1/2[1 + c1 cos(ln ξ − c2)], (c1 ≈ 0; c1, c2 = const; N = 3; n = 5; any ξ). (2.4.89)

It is seen that θ oscillates for any ξ with constant amplitude c1 round the singular solution (2ξ)−1/2,
where c1 obeys the important constraint c1 ≈ 0.

We now turn to the discussion of the second case when 3 < n < 3.18767... In this case the roots q1,2

are real, and we write down at once the analogue of Eq. (2.4.86):

z = [2(n − 3)/(n − 1)2]1/(n−1) + C1 exp
{
[−5 + n + (−7n2 + 22n + 1)1/2]t/2(n − 1)

}
+C2 exp

{
[−5 + n − (−7n2 + 22n + 1)1/2]t/2(n − 1)

}
,

(C1, C2 = const; N = 3; 3 < n < 3.18767...). (2.4.90)
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We observe that the singular solution ys, zs is approached if t → ∞, (ξ → 0). We rewrite Eq. (2.4.90)
in the (ξ, θ)-variables:

θ ≈ [(1 − n)2/2(n − 3)]1/(1−n)ξ2/(1−n)
{
1 + c1ξ

[n−5+(−7n2+22n+1)1/2]/2(1−n)

+c2ξ
[n−5−(−7n2+22n+1)1/2]/2(1−n)

}
, (c1, c2 = const; ξ → 0; N = 3; 3 < n < 3.18767...). (2.4.91)

In the particular case n = (11 + 8× 21/2)/7 = 3.18767... the characteristic equation has a real double
root, and we write down directly the result

θ ≈ [(1 − n)2/2(n − 3)]1/(1−n)ξ2/(1−n)[1 + ξ(n−5)/2(1−n)(c1 ln ξ + c2)],
(c1, c2 = const; ξ → 0; N = 3; n = 3.18767...). (2.4.92)

From Eqs. (2.4.91), (2.4.92) it appears that θ → ∞ if ξ → 0.
Summarizing the discussion of the spherical case, we observe that for all values 3 < n ≤ 5 we have

θ → ∞ if ξ → 0, so equations (2.4.88)-(2.4.92) represent in this case merely an expansion near the origin,
that is of interest for the general topology of solutions (Sec. 2.7). On the other hand, Eq. (2.4.88) yields
the asymptotic expansion in the limit ξ → ∞, if −∞ < n < −1 and 5 < n < ∞. Because of the presence
of the trigonometric term in Eq. (2.4.88), θ approaches the singular solution in an oscillatory manner.

If n = ±∞, we present a general discussion in N -dimensional space. The solution for the plane-
symmetrical polytrope is given by Eq. (2.3.65):

θ = ln[cosh2(ξ/2)1/2] ≈ 21/2ξ, (ξ → ∞; N = 1; n = ±∞). (2.4.93)

In the cylindrical case Eq. (2.3.48) yields

θ = 2 ln(1 + ξ2/8) ≈ ln(ξ4/64), (ξ → ∞; N = 2; n = ±∞). (2.4.94)

If N ≥ 3, we write Eq. (2.3.72) under the form

y dy/dz + (2 − N)y + exp z + 2(2 − N) = 0, (N ≥ 3; n = ±∞), (2.4.95)

having the singular solution (2.3.73):

ys = 0; zs = ln[2(N − 2)], (N ≥ 3; n = ±∞). (2.4.96)

We substitute analogously to Eq. (2.4.72):

z = zs + z1 and exp z ≈ exp zs + z1 exp zs, (zs 	 z1). (2.4.97)

After a short algebra Eq. (2.4.95) becomes similar to Eq. (2.4.74):

d2z1/dt2 + (2 − N) dz1/dt + 2(N − 2)z1 = 0, (N ≥ 3; n = ±∞). (2.4.98)

The characteristic equation of Eq. (2.4.98) is

q2 + (2 − N)q + 2(N − 2) = 0, (2.4.99)

with the roots

q1,2 = [N − 2 ± (N2 − 12N + 20)1/2]/2. (2.4.100)

The roots are imaginary if 2 < N < 10, and real outside this interval, where N has to be a positive
integer. The solution for imaginary q1, q2 is

z1 = C1 exp[(N − 2)t/2] cos
[
(−N2 + 12N − 20)1/2t/2 + C2

]
,

(C1, C2 = const; n = ±∞; 3 ≤ N ≤ 9), (2.4.101)

and

z = ln[2(N − 2)] + z1. (2.4.102)
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Performing the derivative y = dz/dt, we observe that the singular points ys, zs are approached as
t → −∞. With the transformations (2.2.25), (2.2.30), we find from Eqs. (2.4.101), (2.4.102):

θ ≈ ln[ξ2/2(N − 2)] − C1ξ
(2−N)/2 cos

{
[(−N2 + 12N − 20)1/2/2] ln ξ − C2

}
,

(ξ → ∞; n = ±∞; 3 ≤ N ≤ 9). (2.4.103)

In the case of practical interest N = 3, Eq. (2.4.103) becomes (Chandrasekhar 1939)

θ ≈ ln(ξ2/2) − C1ξ
−1/2 cos[(71/2/2) ln ξ − C2], (ξ → ∞; n = ±∞; N = 3), (2.4.104)

and

exp(−θ) = �/�0 ≈ (2/ξ2) exp
{
C1ξ

−1/2 cos[(71/2/2) ln ξ − C2]
}

≈ (2/ξ2)
{
1 + C1ξ

−1/2 cos[(71/2/2) ln ξ − C2]
}
, (ξ → ∞; n = ±∞; N = 3). (2.4.105)

Obviously, if ξ → ∞ and 3 ≤ N ≤ 9, the solution of the Lane-Emden equation (2.1.21) approaches
the singular solution ln[ξ2/2(N − 2)] in an oscillatory manner, due to the presence of the trigonometric
term in Eq. (2.4.103). An elementary density approximation for the isothermal sphere is furnished by
Eq. (2.4.105), [Horedt 1976, see also Eqs. (2.4.127), (2.4.128)]:

exp(−θ) = �/�0 =




1 0 ≤ ξ ≤ 21/2

if (n = ±∞; N = 3).
2/ξ2 ξ ≥ 21/2

(2.4.106)

Eq. (2.4.99) has the real double root q1,2 = 4 if N = 10, and the solutions are obtained in the same
way as for 3 ≤ N ≤ 9; the singular solution is approached if t → −∞ or ξ → ∞ :

z1 = (C1t + C2) exp(4t), (2.4.107)

θ = ln(ξ2/16) + ξ−4(C1 ln ξ − C2), (ξ → ∞; n = ±∞; N = 10). (2.4.108)

Eq. (2.4.99) has distinct real roots if N ≥ 11, and the singular solution is approached if t → −∞ or
ξ → ∞. The solutions are (N − 2 > (N2 − 12N + 20)1/2 if N ≥ 11) :

z1 = C1 exp
{
[N − 2 + (N2 − 12N + 20)1/2]t/2

}
+ C2 exp

{
[N − 2 − (N2 − 12N + 20)1/2]t/2

}
,

(2.4.109)

θ = ln[ξ2/2(N − 2)] − C1ξ
{[−N+2−(N2−12N+20)1/2]/2} − C2ξ

{[−N+2+(N2−12N+20)1/2]/2},
(ξ → ∞; n = ±∞; N ≥ 11). (2.4.110)

Thus, when n = ±∞, Eqs. (2.4.103), (2.4.108), (2.4.110) represent the asymptotic behaviour of
Lane-Emden functions θ → ∞ and exp(−θ) → 0 if ξ → ∞. Only if 3 ≤ N ≤ 9, the singular solution is
approached in an oscillatory manner, due to the absence of trigonometric terms if N = 1, 2, and N ≥ 10.
This completes the discussion of the behaviour of Lane-Emden functions if ξ → ∞.

2.4.4 Padé Approximants for Lane-Emden Functions

When the Lane-Emden functions are approximated with polynomials of the form

θ ≈ θP =
I∑

i=0

bi(ξ − ξ0)2i

/ J∑
j=0

cj(ξ − ξ0)2j , (bi, cj = const), (2.4.111)
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i.e. by so-called Padé approximants (Pascual 1977), we can obtain sometimes significantly better approx-
imations than with simple power series of the form (2.4.2). Near the origin ξ = 0 the Padé approximant
(2.4.111) can be expanded into the Maclaurin series

θ ≈ θP =
∞∑

k=0

[
dkθP

/
d(ξ2)k

]
ξ=0

ξ2k/k!, (2.4.112)

and equated to the power series (2.4.16)

θ =
∞∑

k=0

a2kξ2k, (a2k = const), (2.4.113)

where the coefficients a2k are given by Eq. (2.4.21), and we have taken into account that all odd indexed
coefficients are zero. Equating the coefficients of equal powers in Eqs. (2.4.112) and (2.4.113), we get

a2k =
[
dkθP

/
d(ξ2)k

]
ξ=0

/
k!. (2.4.114)

We now apply this technique to the most simple Padé approximants of the form

θ ≈ θP = (1 + Aξ2)/(1 + Bξ2), (2.4.115)

and

θ ≈ θP = (1 + Cξ2 + Dξ4)/(1 + Eξ2 + Fξ4), (2.4.116)

satisfying already the usual initial conditions θ(0) = 1, θ′(0) = 0. Equating according to Eq. (2.4.114) the
coefficients of the series (2.4.113) with the coefficients of the series (2.4.115) and (2.4.116), respectively,
we obtain after some algebra (cf. Pascual 1977, Seidov et al. 1979)

a2 = A − B; a4 = B(B − A), (2.4.117)

and

a2 = C − E; a4 = E2 + D − CE − F ; a6 = 2EF − CF − DE + CE2 − E3;

a8 = −3E2F + 2CEF + F 2 − DF + DE2 − CE3 + E4. (2.4.118)

Inserting the value of ak from Eq. (2.4.21), we find if n �= −1,±∞ :

A = (a2
2 − a4)/a2 = ±[(nN − 2N − 4)/4N(N + 2)]; B = ±n/4(N + 2), (2.4.119)

and

C = a2 + E = ±
[
n2(2N3 + 4N2 + 24N + 16) − n(7N3 + 42N2 + 80N + 114)

+6N3 + 56N2 + 152N + 128
]/

22N(N + 6)[n(N2 + 8) − 2(N + 2)2];

D = a4 + a2E + F =
[
n3(2N5 + 8N4 + 64N3 + 112N2) − n2(11N5 + 82N4 + 400N3

+1040N2 + 768N + 768) + n(20N5 + 216N4 + 1008N3 + 2656N2 + 3840N + 2304)

−(12N5 + 168N4 + 912N3 + 2400N2 + 3072N + 1536)
]

/
24 × 3N2(N + 2)(N + 4)(N + 6)[n(N2 + 8) − 2(N + 2)2];

E = (a2a8 − a4a6)/(a2
4 − a2a6) = ±

[
n2(2N3 + 4N2 + 24N + 16) − n(5N3+ 30N2 + 64N + 48)

+(2N3 + 16N2 + 40N + 32)
]/

22N(N + 6)[n(N2 + 8) − 2(N + 2)2];

F = (a2
6 − a4a8)/(a2

4 − a2a6) =
[
n3(2N3 + 4N2 + 56N) − n2(5N3 + 36N2 + 136N + 96)

+n(2N3 + 20N2 + 80N + 96)
]/

24 × 3N(N + 4)(N + 6)[n(N2 + 8) − 2(N + 2)2]. (2.4.120)

If N = 3, we recover from Eqs. (2.4.119) and (2.4.120) Pascual’s (1977) result

θP = [60 ± (3n − 10)ξ2]/(60 ± 3nξ2), (2.4.121)
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Table 2.4.1 Comparison between the first zeros of Lane-Emden functions obtained by exact numerical
integration, by the Padé approximants from Eqs. (2.4.116), (2.4.126), and by the empirical relationships from
Eq. (2.4.130), (Horedt 1987a). If N = 1, n � 10 and N = 2, n � 5 and N = 3, n � 3.5, no real zeros of Eq.
(2.4.116) occur. a + b means a × 10b.

N = 1 N = 2

n Numerical Eq. (2.4.116) n Numerical Eq. (2.4.116)

−0.9 1.2691 1.2823 −0.9 1.7178 1.7412
0 1.4142 1.4142 0 2.0000 2.0000
1 1.5708 1.5708 1 2.4048 2.4055
3 1.8541 1.8484 3 3.5739 3.5582
5 2.1033 2.1475 5 5.4276 9.6207
10 2.6284 3.8470

N = 3

n Numerical Eq. (2.4.116) Eq. (2.4.126) Eq. (2.4.130)

−0.9 2.0504 2.0825 − 2.0365 2.0484
0 2.4495 2.4495 2.4495 2.4533 2.4600

0.5 2.7527 2.7454 2.7086 2.7620 2.7658
1 3.1416 3.1457 3.0603 3.1534 3.1546

1.5 3.6538 3.6868 3.5997 3.6645 3.6639
2 4.3529 4.4092 4.3067 4.3584 4.3577

2.5 5.3553 5.4437 5.4752 5.3507 5.3530
3 6.8968 6.9212 7.3305 6.8775 6.8880

3.5 9.5358 1.3672+1 1.0319+1 9.5058 9.5293
4 1.4972+1 − 1.5838+1 1.5000+1 1.5006+1

4.5 3.1836+1 − 3.1455+1 3.2715+1 3.2094+1
4.9 1.7143+2 − 1.5381+2 2.0003+2 1.7304+2
5 ∞ − ∞ ∞ ∞

θP =
[
45360(17n − 50) ± 420(178n2 − 951n + 1250)ξ2 + (1290n3 − 10849n2 + 29100n

−24500)ξ4
]/[

45360(17n − 50) ± 420(178n2 − 645n + 350)ξ2 + 15n(86n2 − 321n + 190)ξ4
]
.
(2.4.122)

To obtain an even better approximation for some values of n, (N = 3; −1 < n ≤ 5), Pascual (1977)
introduces the auxiliary independent variable

ζ = 6[(1 + ξ2/3)1/2 − 1] or ξ2 = ζ2/12 + ζ, (2.4.123)

resembling the structure of the Schuster-Emden integral (2.3.90). Inserting Eq. (2.4.123) into the series
(2.4.24), the first five terms become

θ = 1 − (1/3!)ζ + [(3n − 5)/3 × 5!]ζ2 − [n(8n − 26)/3 × 7!]ζ3

+[n(122n2 − 615n + 529)/9 × 9!]ζ4 − ..., (N = 3; −1 < n ≤ 5). (2.4.124)

Then, using the same procedure as before, Pascual (1977) obtains instead of Eqs. (2.4.121), (2.4.122):

θP = [60 + 3(n − 5)ζ]
/
[60 + (3n − 5)ζ], (N = 3; −1 < n ≤ 5), (2.4.125)

θP =
[
45360(17n + 35) + 420(178n2 − 376n − 630)ζ + 3(n − 5)(430n2 − 1393n + 1470)ζ2]/

[45360(17n + 35) + 420n(178n − 61)ζ + 5n(258n2 − 919n + 3703)ζ2
]
, (N = 3; −1 < n ≤ 5).

(2.4.126)

A Padé approximant

exp(−θP ) ≈ 50/(10 + ξ2) − 48/(12 + ξ2) = (1 + ξ2/60)
/
(1 + 11ξ2/60 + ξ4/120),

(N = 3; n = ±∞), (2.4.127)
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for the isothermal sphere has been proposed by Natarajan and Lynden-Bell (1997). This approximation
can be improved with the Padé approximant (Hunter 2001, Table 2)

exp(−θP ) ≈
4∑

i=1

Ai/(Bi + ξ2);
4∑

i=1

Ai = 2, (N = 3; n = ±∞; Ai, Bi = const). (2.4.128)

And a modified Padé approximant

θP ≈ (1 + Aξ2)/(1 + Bξ2)S , (N = 3; 1 ≤ n ≤ 5; A, B, S = const), (2.4.129)

has been employed by Roxburgh and Stockman (1999). More cumbersome approximations have been
worked out by Liu (1996).

The first zero ξ1 of the Lane-Emden equation results simply by equating the numerator of the cor-
responding Padé approximant to zero. Empirical relationships for the determination of the first zero of
Lane-Emden functions have been quoted for the spherical case by Pascual (1977) and Buchdahl (1978),
respectively:

ξ1 = 15(5 − n)−9/8 and ξ1 = 12.3(1 − 0.128n)/(5 − n)(1 − 0.150n), (N = 3; −1 < n ≤ 5).
(2.4.130)

The relative error of these two relationships is generally less than 1%. Table 2.4.1 shows a comparison
between the exact numerical values ξ1 from Tables 2.4.3, 2.5.2 and those from Eqs. (2.4.116), (2.4.126),
(2.4.130). It should be stressed that Padé approximants yield for some values of n and N erroneous, or
even imaginary zeros, as compared to exact numerical integrations (cf. Table 2.4.1).

2.4.5 Analytical Solutions Close to an Exact Solution

Let us suppose that an exact analytical solution θ0 of the Lane-Emden equation of index n0 is known.
A method due to Seidov and Kuzakhmedov (1978) enables us to find out solutions θ of the Lane-Emden
equations for polytropic indices n differing slightly from n0. Let us write

n = n0 + ε; θ(ξ) = θ0(ξ) + εθ∗(ξ) = θ0(ξ) + (n − n0)θ∗(ξ), (ε = n − n0 � 1), (2.4.131)

where θ0, n0, ε are known, and θ∗ has to be determined. We have

θn = θn0
0 + ε(dθn/dn)n=n0 = θn0

0 + εθn0
0 (ln θ0 + n0θ∗/θ0), (2.4.132)

because dθn/dn = d[exp(n ln θ)]/dn = θn[ln θ + (n/θ) dθ/dn]. Inserting Eqs. (2.4.131), (2.4.132) into the
Lane-Emden equation (2.1.14)

θ′′ + (N − 1)θ′/ξ = ∓θn, (n �= −1,±∞), (2.4.133)

and equating equal powers of ε, we find

θ′′0 + (N − 1)θ′0/ξ = ∓θn0
0 , (2.4.134)

and

θ′′∗ + (N − 1)θ′∗/ξ = ∓θn0
0 ln θ0 ∓ n0θ

n0−1
0 θ∗, (2.4.135)

with the initial conditions θ0(0) = 1 and θ′0(0), θ∗(0), θ′∗(0) = 0. By assumption Eq. (2.4.134) is satisfied
identically.

Eq. (2.4.135) has explicitly been solved by Seidov and Kuzakhmedov (1978) for the cases n0 = 0
and n0 = 5, (N = 3). If n0 = 1, N = 3, the relevant integrals cannot be solved in terms of elementary
functions. If n0 = 0, N = 3, we have via Eq. (2.3.88) θ0 = 1 − ξ2/6, and Eq. (2.4.135) becomes

θ′′∗ + 2θ′∗/ξ = − ln θ0, (n0 = 0; N = 3). (2.4.136)
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This linear, inhomogeneous second order equation can be solved by standard methods (e.g. Bronstein
and Semendjajew 1985). If a particular integral y1 = y1(x) of the homogeneous equation

d2y/dx2 + ϕ(x) dy/dx + ψ(x) y = 0, (2.4.137)

is known, we can find another linearly independent particular integral with the substitution z = z(x) =
d(y/y1)

/
dx. In this case Eq. (2.4.137) becomes

dz/dx + [ϕ + 2(dy1/dx)
/
y1] z = 0, (2.4.138)

which can be solved for z by separation of variables. Then, the second particular integral is given by

y2(x) = y1(x)
∫

z(x) dx, (2.4.139)

and the general solution of Eq. (2.4.137) is

y(x) = C1y1(x) + C2y2(x), (C1, C2 = const). (2.4.140)

The general integral of the inhomogeneous equation

d2y/dx2 + ϕ(x) dy/dx + ψ(x) y = ω(x), (2.4.141)

is then found by the method of variation of constants, writing instead of Eq. (2.4.140)

y(x) = z1(x) y1(x) + z2(x) y2(x), (2.4.142)

with the additional constraint

y1(x) dz1(x)/dx + y2(x) dz2(x)/dx = 0. (2.4.143)

Substitution of Eq. (2.4.143) into Eq. (2.4.141) yields

(dy1/dx) dz1/dx + (dy2/dx) dz2/dx = ω. (2.4.144)

The system of equations (2.4.143) and (2.4.144) can now be solved for dz1/dx and dz2/dx, yielding
for the general solution of Eq. (2.4.141)

y = −y1

∫
(ωy2/W ) dx + y2

∫
(ωy1/W ) dx + C1y1 + C2y2, (C1, C2 = const), (2.4.145)

where W denotes the Wronski determinant

W = y1 dy2/dx − y2 dy1/dx. (2.4.146)

We now apply to Eq. (2.4.136) the method briefly outlined in Eqs. (2.4.137)-(2.4.146). The general
solution of the homogeneous equation θ′′∗ + 2θ′∗/ξ = 0 is found by direct integration to be

θ∗ = C1/ξ + C2, (2.4.147)

and after performing the other outlined integrations, θ∗ becomes eventually:

θ∗ = (3 − ξ2/6) ln(1 − ξ2/6) + (2 × 61/2/ξ) ln[(61/2 + ξ)/(61/2 − ξ)] + 5ξ2/18 − 4,

(n0 = 0; N = 3; θ∗(0) = θ′∗(0) = 0; ξ ≤ 61/2). (2.4.148)

The Lane-Emden functions for polytropic indices differing slightly from zero obey therefore the form

θ = (1 − ξ2/6) + nθ∗, (n ≈ 0; N = 3; ξ ≤ 61/2), (2.4.149)

where θ∗ is provided by Eq. (2.4.148). We already know from Eq. (2.1.13) that ξ is proportional to
the radius of the polytrope; from Secs 2.6.3, 2.6.4 it will be obvious that −ξ2θ′ is proportional to the
mass of the polytrope, whereas the ratio between central density �0 and mean density �m is given by
�0/�m = −ξ/3θ′, (N = 3). We now determine the boundary values of these quantities analytically for
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Table 2.4.2 Comparison between exact numerical boundary values from Tables 2.4.3 and 2.5.2 (first
columns), and the corresponding analytical boundary figures (second columns), as they result from Eqs. (2.4.152)-
(2.4.156) and (2.4.166)-(2.4.169). a + b means a × 10b.

n ξ1 −ξ2
1θ′

1 −ξ1/3θ′
1

n0 = 0

−0.5 2.2086 2.1805 7.4215 6.4213 0.4839 0.3598
0.5 2.7527 2.7185 3.7887 3.3766 1.8351 1.6402

n0 = 1

0.5 2.7527 2.6990 3.7887 3.6562 1.8351 1.3604
1.5 3.6538 3.5842 2.7141 2.6270 5.9907 5.2194

n0 = 5

4.5 3.1836+1 3.5285+1 1.7378 1.6599 6.1895+3 8.4546+3
4.75 6.6387+1 7.0570+1 1.7243 1.6960 5.6562+4 6.7636+4
4.8 8.3813+1 8.8213+1 1.7234 1.7032 1.1387+5 1.3210+5
4.85 1.1296+2 1.1762+2 1.7235 1.7104 2.7873+5 3.1313+5
4.9 1.7143+2 1.7643+2 1.7246 1.7176 9.7381+5 1.0568+6
4.95 3.4740+2 3.5285+2 1.7272 1.7248 8.0916+6 8.4546+6
4.99 1.7582+3 1.7643+3 1.7308 1.7306 1.0467+9 1.0568+9
5 ∞ ∞ 1.7321 1.7321 ∞ ∞

polytropes having n ≈ 0. Strictly speaking, we can determine the boundary values ξ1, θ
′(ξ1) only for

polytropes with indices n ≤ 0, because the boundary of polytropes having n > 0 is attained for ξ1-values
larger than 61/2 (see Table 2.5.2), and the previous equations are valid only if ξ ≤ 61/2. However, it
will be obvious from the subsequent equations that the diverging logarithmic terms ln(1− ξ/61/2) in Eq.
(2.4.148) cancel out to the first order in n if ξ ≈ 61/2, and the following results are applicable in this first
approximation even if n > 0, (n ≈ 0). To obtain the boundary value ξ1 for polytropes having n ≈ 0, we
put

ξ1 = 61/2(1 + δ), (δ ≈ 0), (2.4.150)

and insert into Eqs. (2.4.148), (2.4.149). Expansion up to the first order in δ yields

δ ≈ n(2 ln 2 − 7/6), (n ≈ 0), (2.4.151)

and

ξ1 ≈ 61/2[1 + n(2 ln 2 − 7/6)] = 61/2(1 + 0.21963n), (n ≈ 0; N = 3). (2.4.152)

To obtain ξ2
1θ′1, we derive Eq. (2.4.148) and insert for ξ1 :

(θ′∗)ξ=ξ1 ≈ 6−1/2(16/3 − 4 ln 2) = 1.04542. (2.4.153)

With θ′ = θ′0 + nθ′∗ we find eventually

(−ξ2θ′)ξ=ξ1 ≈ 2 × 61/2[1 + n(8 ln 2 − 37/6)] = 2 × 61/2(1 − 0.62149n), (n ≈ 0; N = 3). (2.4.154)

With Eqs. (2.4.152), (2.4.153) we get for the density ratio (2.6.27):

�0/�m = (−ξ/3θ′)ξ=ξ1 ≈ 1 + n(8/3 − 2 ln 2) = 1 + 1.28037n, (n ≈ 0; N = 3). (2.4.155)

If n0 = 1, N = 3, Seidov and Kuzakhmedov (1978) find

ξ1 ≈ π[1 + 0.28179(n − 1)]; (−ξ2θ′)ξ=ξ1 ≈ π[1 − 0.32762(n − 1)];

�0/�m ≈ (π2/3)[1 + 1.17299(n − 1)], (n ≈ 1). (2.4.156)

If n0 = 5, N = 3, we have θ0 = (1 + ξ2/3)−1/2 via Eq. (2.3.90), and Eq. (2.4.135) reads

θ′′∗ + 2θ′∗/ξ + 5θ∗
/
(1 + ξ2/3)2 =

[
1
/
2(1 + ξ2/3)5/2

]
ln(1 + ξ2/3), (n ≈ 5). (2.4.157)
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Table 2.4.3 The Seidov-Kuzakhmedov minimum for the dimensionless mass −ξ2
1θ′

1 of polytropic spheres at
n ≈ 4.823 (Horedt 1986b). a + b means a × 10b.

n ξ1 θ′
1 −ξ2

1θ′
1 −ξ1/3θ′

1

4.75 66.38709554 −3.912321−4 1.724256470 5.656241+4
4.80 83.81283880 −2.453446−4 1.723445575 1.138709+5
4.81 88.40745274 −2.204976−4 1.723381986 1.336484+5
4.82 93.51603675 −1.970617−4 1.723354059 1.581840+5
4.821 94.05848618 −1.947952−4 1.723353281 1.609527+5
4.822 94.60706735 −1.925427−4 1.723352876 1.637854+5
4.823 95.16188436 −1.903041−4 1.723352843 1.666839+5
4.824 95.72304369 −1.880794−4 1.723353186 1.696500+5
4.825 96.29065425 −1.858687−4 1.723353906 1.726858+5
4.826 96.86482744 −1.836718−4 1.723355004 1.757933+5
4.827 97.44567726 −1.814889−4 1.723356482 1.789746+5
4.828 98.03332036 −1.793198−4 1.723358340 1.822319+5
4.829 98.62787611 −1.771645−4 1.723360582 1.855674+5
4.83 99.22946669 −1.750232−4 1.723363209 1.889835+5
4.84 105.6613548 −1.543677−4 1.723410981 2.281594+5
4.85 112.9556313 −1.350813−4 1.723499081 2.787349+5
4.90 171.4334501 −5.868160−5 1.724618596 9.738058+5
4.95 347.4003713 −1.431107−5 1.727160845 8.091645+6
4.99 1758.189155 −5.598955−7 1.730765298 1.046736+9
5.00 ∞ 0 1.732050808 ∞

With the transformation

ξ = 31/2 tanα, (2.4.158)

Eq. (2.4.157) becomes

d2θ∗/dα2 + (2/ tanα) dθ∗/dα + 15θ∗ = −3 cos α ln(cosα), (2.4.159)

where dθ∗/dξ = [1
/
31/2(1 + ξ2/3)] dθ∗/dα.

With some skill we get a particular integral of the homogeneous equation

d2θ∗/dα2 + (2/ tanα) dθ∗/dα + 15θ∗ = 0, (2.4.160)

under the form cos 3α + cos α ∝ sin 4α/ sinα. Using the trigonometric relationships for multiple angles,
the general solution of Eq. (2.4.160) is found by the method outlined in Eqs. (2.4.137)-(2.4.146):

θ∗ = C1 sin 4α/ sinα + C2 cos 4α/ sinα. (2.4.161)

The general solution of the inhomogeneous equation (2.4.159) is obtained via Eq. (2.4.145), (W =
−4/ sin2 α) :

θ∗ = (3/8 sinα)
[
− sin 4α

∫
cos 4α sin 2α ln(cosα) dα + cos 4α

∫
sin 4α sin 2α ln(cosα) dα

]

+C1 sin 4α/ sinα + C2 cos 4α/ sinα, (C1, C2 = const). (2.4.162)

This integral can be solved in terms of elementary functions, and after a lengthy calculation we finally
get

θ∗(α) = (1/48 sinα)[sin 2α − (5/4) sin 4α + 3α cos 4α − 3(2 sin 2α + sin 4α) ln(cosα)];

α = arctan(ξ/31/2), (2.4.163)

where the initial condition θ∗(0) = 0 determines the integration constants as C1 = −1/24, C2 = 0.
Medvedev and Rybicki [2001, Eq. (12)] quote Eq. (2.4.163) in terms of ξ.

Thus, the Lane-Emden functions with indices differing slightly from n = 5, write as

θ(α) = cos α + (n − 5) θ∗(α); θ0 = (1 + ξ2/3)−1/2 = cos α, (α = arctan(ξ/31/2); n ≈ 5; N = 3).
(2.4.164)
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And these functions exhibit a multiple-core structure (plateaus with θ ≈ const) if n > 5 (Medvedev
and Rybicki 2001).

The case n0 = 5 does not present the problems encountered for n0 = 0 if ξ > 61/2, because all
polytropes having n ≥ 5, (N = 3) extend to infinity (ξ1 = ∞ if α = π/2), (cf. Sec. 2.7). To obtain the
boundary value ξ1 of polytropes with n ≈ 5, (n ≤ 5), we insert

α = π/2 − δ, (δ > 0; δ ≈ 0), (2.4.165)

into Eq. (2.4.164), getting α ≈ π/2 + π(n − 5)/32 if θ(α) ≈ 0. Eventually, we find with the aid of Eq.
(2.4.158)

ξ1 ≈ 32 × 31/2/π(5 − n) = 17.64252/(5 − n), (n ≈ 5; n ≤ 5; N = 3). (2.4.166)

If n > 5, Eq. (2.4.166) would provide negative radii, whereas in fact all polytropes having n ≥ 5, (N =
3) extend to infinity.

The derivative [dθ∗(α)/dα]α≈π/2 ≈ −1/12 of Eq. (2.4.163) enables us to obtain

[dθ∗(ξ)/dξ]ξ=ξ1 ≈ [dθ∗(α)/dα]α≈π/2 (dα/dξ)ξ=ξ1 ≈ −31/2/12ξ2
1 , (ξ1 	 1), (2.4.167)

and finally

(−ξ2θ′)ξ=ξ1 ≈ 31/2[1 + (n − 5)/12], (n ≈ 5; n ≤ 5; N = 3). (2.4.168)

Eq. (2.4.168) shows that (−ξ2θ′)ξ=ξ1 would decrease when the polytropic index becomes somewhat
less than 5, a fact fully confirmed by the numerical integrations of Seidov and Kuzakhmedov (1978).
While (−ξ2θ′)ξ=ξ1 decreases from 17.79380 to 31/2 = 1.732051 if n increases from -0.9 to 5, (N = 3,
see Table 2.5.2), it appears that its minimum is not attained for n = 5, but for n ≈ 4.823 at a value of
about 1.72335284 (cf. Table 2.4.3). The density ratio is obtained with the values already derived in Eqs.
(2.4.166), (2.4.168):

�0/�m = (−ξ/3θ′)ξ=ξ1 ≈ [32/π(5 − n)]3 = 1056.82/(5 − n)3, (n ≈ 5; n ≤ 5; N = 3). (2.4.169)

2.4.6 Approximate Solutions by the Method of Multiple Scales

The method of multiple scales involves an extension of the variables into a space of higher dimension.
This calls for the introduction of new variables, and as a result of this process, ordinary differential
equations are converted into a set of partial differential equations. These are solved approximately, and
the solutions are required to coincide along certain lines – the “trajectories” – with the solutions of the
original differential equation (Ramnath 1971). The following discussion is pertinent only for the spherical
case N = 3, when n �= −1,±∞.

At first we transform the original Lane-Emden equation (2.1.14) in a way similar to Kelvin’s trans-
formation from Sec. 2.2.4. Putting

θ = χ/ξ, (2.4.170)

Eq. (2.1.14) becomes

d2χ/dξ2 ± ξ1−nχn = 0, (χ = χ(ξ); N = 3; n �= −1,±∞). (2.4.171)

Replacing the power ξ1−n by ξσ we can write this equation in the more general form

d2χ/dξ2 ± ξσχn = 0. (2.4.172)

To apply the multiple scale technique, it is useful to parameterize Eq. (2.4.172) further, by taking

ξ = ε1/(σ+2)t, (0 < ε � 1; σ �= −2). (2.4.173)
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Eq. (2.4.172) becomes

d2χ/dt2 ± εtσχn = 0, [χ = χ(t)]. (2.4.174)

In the particular case σ = −2, we transform the function χ(ξ) by taking

χ(ξ) = ε1/(n−1)z(ξ), (0 < ε � 1; σ = −2; n �= 1), (2.4.175)

and Eq. (2.4.172) assumes the same form as Eq. (2.4.174):

d2z/dξ2 ± εξ−2z2 = 0, (σ = −2; n �= 1). (2.4.176)

Thus, the Lane-Emden equation (2.1.14) can be transformed into an equation of the form (2.4.174) or
(2.4.176), provided that n �= ±1,±∞, (N = 3). The extension of the variable t into bidimensional space
is now effected with the transformation

x = t; y = εK(t) = εK(x); F (x, y) = χ(t), (2.4.177)

where K(t) is a scale function that has to be determined. The original function χ(t) turns in (x, y)-space
into the function F (x, y). With the extension of variable from Eq. (2.4.177) we can write instead of Eq.
(2.4.174)

d2χ(t)/dt2 ± εtσχn(t) = ∂2F/∂x2 + ε
[
2 (∂2F/∂x∂y) dK/dx + (∂F/∂y) d2K/dx2 ± xσFn

]
+ε2(dK/dx)2 ∂2F/∂y2 = 0. (2.4.178)

Equating equal powers of ε, we arrive at the system of partial differential equations

∂2F/∂x2 = 0, (2.4.179)

(d2K/dx2) ∂F/∂y + 2 (dK/dx) ∂2F/∂x∂y = ∓xσFn, (2.4.180)

(dK/dx)2 ∂2F/∂y2 = 0. (2.4.181)

From the integration of Eq. (2.4.179) we find at once

F = F (x, y) = A(y) x + B(y). (2.4.182)

The two terms of this sum are linearly independent with respect to x, and we endeavour to obtain a
solution of the system (2.4.179)-(2.4.181) by substituting separately A(y) x and B(y) into Eq. (2.4.180).

(i) F (x, y) = A(y) x.F (x, y) = A(y) x.F (x, y) = A(y) x. Separation of variables in Eq. (2.4.180) yields

A−n dA(y)/dy = ∓xσ+n
/[

x d2K(x)/dx2 + 2 dK(x)/dx
]

= C ′
1, (C ′

1 = const). (2.4.183)

The left-hand side of Eq. (2.4.183) is a function of y, and the right-hand side a function of x alone.
The two sides can only be equated, if they are equal to the same constant C ′

1. Thus, we have to solve
separately the simple equations

dA/dy = C ′
1A

n, (2.4.184)

and

d2K/dx2 + (2/x) dK/dx = ∓xσ+n−1/C ′
1. (2.4.185)

The integration of Eq. (2.4.184) is elementary

A = [C ′
1(1 − n)y + C ′

2]
1/(1−n), (C ′

1, C
′
2 = const), (2.4.186)

while Eq. (2.4.185) can be integrated with the standard method for linear, nonhomogeneous second order
differential equations, as outlined in Eqs. (2.4.137)-(2.4.146):

K = ∓xσ+n+1
/
C ′

1(σ + n + 1)(σ + n + 2) + C ′
3/x + C ′

4, (σ + n �= −1,−2; C ′
1, C

′
3, C

′
4 = const).

(2.4.187)
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(ii) F (x, y) = B(y).F (x, y) = B(y).F (x, y) = B(y). Instead of Eq. (2.4.183) we now have

B−n dB/dy = ∓xσ
/
(d2K/dx2) = D′

1, (D′
1 = const), (2.4.188)

with the integrals

B = [D′
1(1 − n)y + D′

2]
1/(1−n), (D′

1, D
′
2 = const), (2.4.189)

and

K = ∓xσ+2
/
D′

1(σ + 1)(σ + 2) + D′
3x + D′

4, (σ �= −1,−2; D′
1, D

′
3, D

′
4 = const). (2.4.190)

We turn back to the original variables by applying the restrictions (2.4.177) to Eq. (2.4.182):

χ(t) = F (x, y) = F [t, εK(t)] = A[εK(t)]t + B[εK(t)]

=
[
∓ ε(1 − n)tσ+n+1

/
(σ + n + 1)(σ + n + 2) + C1/t + C2

]1/(1−n)
t

+
[
∓ ε(1 − n)tσ+2

/
(σ + 1)(σ + 2) + D1t + D2

]1/(1−n)
,

(n �= ±1,±∞; σ + n, σ �= −1,−2; C1, C2, D1, D2 = const). (2.4.191)

We have considered Eqs. (2.4.186), (2.4.187), (2.4.189), (2.4.190), and have matched the primed
integration constants with the new ones. The previous equation is converted into the original variables
via Eqs. (2.4.170), (2.4.173):

θ(ξ) = χ(ξ)/ξ =
[
∓ (1 − n)ξσ+n+1

/
(σ + n + 1)(σ + n + 2) + c1/ξ + c2

]1/(1−n)

+ξ−1
[
∓ (1 − n)ξσ+2

/
(σ + 1)(σ + 2) + d1ξ + d2

]1/(1−n)
,

(n �= ±1,±∞; σ + n, σ �= −1,−2; c1, c2, d1, d2 = const). (2.4.192)

The parameter ε cancels out from the first term within the brackets, and is matched with the new
integration constants for the other terms. Comparing Eq. (2.4.171) with Eq. (2.4.172) we see at once
that the case of practical interest occurs if σ = 1 − n. Eq. (2.4.192) becomes

θ(ξ) =
[
∓ (1 − n)ξ2/6 + c1/ξ + c2

]1/(1−n)

+ξ−1
[
∓ (1 − n)ξ3−n/(n − 2)(n − 3) + d1ξ + d2

]1/(1−n)
, (n �= ±1, 2, 3,±∞). (2.4.193)

To get the expansion near the origin ξ = 0, we ignore the last bracket in Eq. (2.4.193) and take
c1 = 0, c2 = 1, in order to satisfy the initial condition θ(0) = 1. Eq. (2.4.193) becomes

θ(ξ) = [1 ∓ (1 − n)ξ2/6]1/(1−n) ≈ 1 ∓ ξ2/3! + (5/3)nξ4/5! ∓ (7/3)(10n2 − 5n)ξ6/3 × 7! + ...,

(ξ ≈ 0). (2.4.194)

Only the first two terms coincide with the exact expansion (2.4.24). Excepting for the constant factor,
the behaviour of the singular solutions (2.3.92) and (2.3.93) can be simulated, if we choose d1 = d2 = 0,
and ignore the first bracket in Eq. (2.4.193):

θ(ξ) = [±(n − 2)(n − 3)/(n − 1)ξ2]1/(n−1), (−∞ < n < −1; 1 < n < 2; 3 < n < ∞). (2.4.195)

Although the method of multiple scales, as devised by Ramnath (1971), appears to be the most
sophisticated approximation to the Lane-Emden functions, it provides the poorest results.



2.5 Exact Numerical Solutions 67

2.5 Exact Numerical Solutions

In Table 2.5.1 we present seven digit numerical solutions of the Lane-Emden equations (2.1.14) and
(2.1.21) for the plane-parallel, cylindrical, and spherical case (N = 1, 2, 3) for polytropic indices n =
−10,−5,−2,−1.01,−0.9,−0.5, 0, 0.5, 1, 2, 5, 20, ±∞, supplemented by n =1.5, 2.5, 3, 3.5, 4, 4.5, 4.99,
and 6 for the spherical case.

Tabulations of Lane=Emden functions have been effected by Emden (1907) if 0 ≤ n ≤ 6, (N = 3),
Sadler and Miller (1932) if 1 ≤ n ≤ 5, (N = 3), Chandrasekhar and Wares (1949) if n = ±∞, (N = 3),
Ostriker (1965) if 1 ≤ n ≤ 20, (N = 2), Tascione (1972) if 0.5 ≤ n ≤ 25, (N = 1), Viala and Horedt
(1974b) if −10 ≤ n < 0, (N = 1, 2, 3), and Horedt (1986b) if −∞ ≤ n ≤ ∞, (N = 1, 2, 3).

Table 2.5.1 Numerical values of Lane-Emden functions. Finite boundary values are also shown in Table
2.4.3 if N = 3, 4.75 ≤ n ≤ 5, and in Table 2.5.2. aE + b means a × 10b.

ξ θ θ′ θn+1

Polytropic Slabs (N = 1)
n = −10

0.000E+00 1.000000E+00 0.000000E+00 1.000000E+00
1.000E−01 1.004959E+00 9.836838E−02 9.564565E−01
5.000E−01 1.105577E+00 3.635537E−01 4.052290E−01
1.000E+00 1.315256E+00 4.509497E−01 8.489983E−02
5.000E+00 3.193682E+00 4.713977E−01 2.893180E−05
1.000E+01 5.550699E+00 4.714045E−01 1.999269E−07
1.000E+02 4.797711E+01 4.714045E−01 7.424952E−16
5.000E+02 2.365389E+02 4.714045E−01 4.313965E−22
1.000E+03 4.722412E+02 4.714045E−01 8.561017E−25

∞ ∞ 4.714045E−01 0.000000E+00
n = −5

0.000E+00 1.000000E+00 0.000000E+00 1.000000E+00
1.000E−01 1.004979E+00 9.917613E−02 9.803282E−01
5.000E−01 1.114013E+00 4.187533E−01 6.492914E−01
1.000E+00 1.376785E+00 6.007019E−01 2.783144E−01
5.000E+00 4.136961E+00 7.058987E−01 3.414086E−03
5.000E+01 3.595441E+01 7.071066E−01 5.983995E−07
1.000E+02 7.130975E+01 7.071068E−01 3.867269E−08
5.000E+02 3.541525E+02 7.071068E−01 6.356806E−11
1.000E+03 7.077059E+02 7.071068E−01 3.986473E−12

∞ ∞ 7.071068E−01 0.000000E+00
n = −2

0.000E+00 1.000000E+00 0.000000E+00 1.000000E+00
1.000E−01 1.004992E+00 9.966849E−02 9.950331E−01
5.000E−01 1.120219E+00 4.632873E−01 8.926824E−01
1.000E+00 1.437714E+00 7.803223E−01 6.955485E−01
5.000E+00 6.045074E+00 1.291957E+00 1.654240E−01
1.000E+01 1.270838E+01 1.357433E+00 7.868823E−02
5.000E+01 6.841028E+01 1.403839E+00 1.461769E−02
1.000E+02 1.387645E+02 1.409109E+00 7.206453E−03
5.000E+02 7.036360E+02 1.413208E+00 1.421189E−03
1.000E+03 1.410395E+03 1.413712E+00 7.090213E−04

∞ ∞ 1.414214E+00 0.000000E+00
n = −1.01

0.000E+00 1.000000E+00 0.000000E+00 1.000000E+00
1.000E−01 1.004996E+00 9.983226E−02 9.999502E−01
5.000E−01 1.122513E+00 4.806305E−01 9.988450E−01
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ξ θ θ′ θn+1

1.000E+00 1.465450E+00 8.734220E−01 9.961857E−01
5.000E+00 7.907860E+00 2.023178E+00 9.795338E−01
1.000E+01 1.913896E+01 2.411882E+00 9.709141E−01
5.000E+01 1.334280E+02 3.090552E+00 9.522424E−01
1.000E+02 2.945844E+02 3.324743E+00 9.447304E−01
5.000E+02 1.744939E+03 3.792806E+00 9.280731E−01
1.000E+03 3.691542E+03 3.971276E+00 9.211448E−01

∞ ∞ 1.414214E+01 0.000000E+00
n = −0.9

0.000E+00 1.000000E+00 0.000000E+00 1.000000E+00
1.000E−01 9.949962E−01 −1.001505E−01 9.994985E−01
5.000E−01 8.725164E−01 −5.204771E−01 9.864552E−01
1.000E+00 4.500706E−01 −1.238801E+00 9.232686E−01
1.200E+00 1.501963E−01 −1.858464E+00 8.273055E−01
1.260E+00 2.457023E−02 −2.488755E+00 6.903048E−01
1.26907230E+00 0.000000E+00 −4.472136E+00 0.000000E+00

n = −0.5
0.000E+00 1.000000E+00 0.000000E+00 1.000000E+00
1.000E−01 9.949979E−01 −1.000835E−01 9.974958E−01
5.000E−01 8.736400E−01 −5.111277E−01 9.346871E−01
1.000E+00 4.744121E−01 −1.115749E+00 6.887758E−01
1.200E+00 2.191387E−01 −1.458599E+00 4.681226E−01
1.300E+00 6.083209E−02 −1.735924E+00 2.466416E−01
1.330E+00 6.484284E−03 −1.917785E+00 8.052505E−02
1.33333333E+00 0.000000E+00 −2.000000E+00 0.000000E+00

n = 0
0.000E+00 1.000000E+00 0.000000E+00 1.000000E+00
1.000E−01 9.950000E−01 −1.000000E−01 9.950000E−01
5.000E−01 8.750000E−01 −5.000000E−01 8.750000E−01
1.000E+00 5.000000E−01 −1.000000E+00 5.000000E−01
1.300E+00 1.550000E−01 −1.300000E+00 1.550000E−01
1.400E+00 2.000000E−02 −1.400000E+00 2.000000E−02
1.410E+00 5.950000E−03 −1.410000E+00 5.950000E−03
1.41421356E+00 0.000000E+00 −1.414214E+00 0.000000E+00

n = 0.5
0.000E+00 1.000000E+00 0.000000E+00 1.000000E+00
1.000E−01 9.950021E−01 −9.991662E−02 9.925125E−01
5.000E−01 8.763133E−01 −4.894474E−01 8.203309E−01
1.000E+00 5.216345E−01 −9.115944E−01 3.767467E−01
1.400E+00 1.073903E−01 −1.134200E+00 3.519232E−02
1.450E+00 5.030978E−02 −1.148167E+00 1.128440E−02
1.490E+00 4.235670E−03 −1.154541E+00 2.756660E−04
1.49366840E+00 0.000000E+00 −1.154701E+00 0.000000E+00

n = 1
0.000E+00 1.000000E+00 0.000000E+00 1.000000E+00
1.000E−01 9.950042E−01 −9.983342E−02 9.900333E−01
5.000E−01 8.775826E−01 −4.794255E−01 7.701512E−01
1.000E+00 5.403023E−01 −8.414710E−01 2.919266E−01
1.500E+00 7.073720E−02 −9.974950E−01 5.003752E−03
1.560E+00 1.079612E−02 −9.999417E−01 1.165561E−04
1.570E+00 7.963267E−04 −9.999997E−01 6.341362E−07
1.57079633E+00 0.000000E+00 −1.000000E+00 0.000000E+00

n = 2
0.000E+00 1.000000E+00 0.000000E+00 1.000000E+00
1.000E−01 9.950083E−01 −9.966750E−02 9.850996E−01
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ξ θ θ′ θn+1

5.000E−01 8.799988E−01 −4.608187E−01 6.814692E−01
1.000E+00 5.711855E−01 −7.365003E−01 1.863509E−01
1.500E+00 1.773134E−01 −8.142175E−01 5.574739E−03
1.700E+00 1.413791E−02 −8.164954E−01 2.825894E−06
1.710E+00 5.972952E−03 −8.164965E−01 2.130919E−07
1.71731534E+00 0.000000E+00 −8.164966E−01 0.000000E+00

n = 5
0.000E+00 1.000000E+00 0.000000E+00 1.000000E+00
1.000E−01 9.950207E−01 −9.917369E−02 9.704937E−01
5.000E−01 8.864138E−01 −4.142920E−01 4.850864E−01
1.000E+00 6.339554E−01 −5.582962E−01 6.491610E−02
1.500E+00 3.482555E−01 −5.768351E−01 1.783972E−03
2.000E+00 5.962479E−02 −5.773503E−01 4.493254E−08
2.100E+00 1.889759E−03 −5.773503E−01 4.554472E−17
2.10327316E+00 0.000000E+00 −5.773503E−01 0.000000E+00

n = 20
0.000E+00 1.000000E+00 0.000000E+00 1.000000E+00
1.000E−01 9.950813E−01 −9.679027E−02 9.016323E−01
5.000E−01 9.073945E−01 −2.878603E−01 1.299329E−01
1.000E+00 7.558668E−01 −3.081742E−01 2.801240E−03
2.000E+00 4.473082E−01 −3.086067E−01 4.599863E−08
3.000E+00 1.387015E−01 −3.086067E−01 9.631791E−19
3.400E+00 1.525886E−02 −3.086067E−01 7.144386E−39
3.440E+00 2.914594E−03 −3.086067E−01 5.703465E−54
3.44944436E+00 0.000000E+00 −3.086067E−01 0.000000E+00

ξ θ θ′ exp(−θ)

n = ±∞
0.000E+00 0.000000E+00 0.000000E+00 1.000000E+00
1.000E−01 4.995839E−03 9.983367E−02 9.950166E−01
5.000E−01 1.224795E−01 4.801582E−01 8.847241E−01
1.000E+00 4.631626E−01 8.610572E−01 6.292903E−01
5.000E+00 5.686471E+00 1.411813E+00 3.391539E−03
1.000E+01 1.275584E+01 1.414212E+00 2.885412E−06
5.000E+01 6.932438E+01 1.414214E+00 7.812727E−31
1.000E+02 1.400351E+02 1.414214E+00 1.525968E−61
5.000E+02 7.057205E+02 1.414214E+00 0.000000E+00
1.000E+03 1.412827E+03 1.414214E+00 0.000000E+00

∞ ∞ 1.414214E+00 0.000000E+00

ξ θ θ′ θn+1 ξθ′

Polytropic Cylinders (N = 2)
n = −10

0.000E+00 1.000000E+00 0.000000E+00 1.000000E+00 0.000000E+00
1.000E−01 1.002485E+00 4.938322E−02 9.779147E−01 4.938322E−03
5.000E−01 1.054468E+00 1.912979E−01 6.204418E−01 9.564896E−02
1.000E+00 1.163980E+00 2.289803E−01 2.549712E−01 2.289803E−01
5.000E+00 1.767163E+00 9.586834E−02 5.949908E−03 4.793417E−01
1.000E+01 2.116863E+00 5.263780E−02 1.171563E−03 5.263780E−01
5.000E+01 3.023880E+00 1.193259E−02 4.730634E−05 5.966293E−01
1.000E+02 3.446982E+00 6.245449E−03 1.455624E−05 6.245449E−01
5.000E+02 4.515506E+00 1.421744E−03 1.281274E−06 7.108722E−01
1.000E+03 5.027160E+00 7.684533E−04 4.876358E−07 7.684533E−01

∞ ∞ 0.000000E+00 0.000000E+00 ∞
n = −5

0.000E+00 1.000000E+00 0.000000E+00 1.000000E+00 0.000000E+00
1.000E−01 1.002492E+00 4.968970E−02 9.900929E−01 4.968970E−03
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ξ θ θ′ θn+1 ξθ′

5.000E−01 1.058124E+00 2.167741E−01 7.977266E−01 1.083871E−01
1.000E+00 1.195872E+00 3.151563E−01 4.889470E−01 3.151563E−01
5.000E+00 2.301819E+00 2.085767E−01 3.562175E−02 1.042884E+00
1.000E+01 3.112968E+00 1.292417E−01 1.064882E−02 1.292417E+00
5.000E+01 5.647209E+00 3.763304E−02 9.832512E−04 1.881652E+00
1.000E+02 7.065343E+00 2.225516E−02 4.012980E−04 2.225516E+00
5.000E+02 1.159867E+01 7.148806E−03 5.525436E−05 3.574403E+00
1.000E+03 1.439466E+01 4.542467E−03 2.329133E−05 4.542467E+00

∞ ∞ 0.000000E+00 0.000000E+00 ∞
n = −2

0.000E+00 1.000000E+00 0.000000E+00 1.000000E+00 0.000000E+00
1.000E−01 1.002497E+00 4.987542E−02 9.975093E−01 4.987542E−03
5.000E−01 1.060648E+00 2.355674E−01 9.428195E−01 1.177837E−01
1.000E+00 1.224220E+00 4.055534E−01 8.168465E−01 4.055534E−01
5.000E+00 3.413257E+00 5.428001E−01 2.929753E−01 2.714001E+00
1.000E+01 5.863892E+00 4.444409E−01 1.705352E−01 4.444409E+00
5.000E+01 1.818926E+01 2.417748E−01 5.497750E−02 1.208874E+01
1.000E+02 2.870520E+01 1.878095E−01 3.483690E−02 1.878095E+01
5.000E+02 8.253684E+01 1.091720E−01 1.211580E−02 5.458598E+01
1.000E+03 1.307404E+02 8.701058E−02 7.648744E−03 8.701058E+01

∞ ∞ 0.000000E+00 0.000000E+00 ∞
n = −1.01

0.000E+00 1.000000E+00 0.000000E+00 1.000000E+00 0.000000E+00
1.000E−01 1.002498E+00 4.993701E−02 9.999750E−01 4.993701E−03
5.000E−01 1.061547E+00 2.424989E−01 9.994029E−01 1.212494E−01
1.000E+00 1.236086E+00 4.475223E−01 9.978827E−01 4.475223E−01
5.000E+00 4.448128E+00 9.589581E−01 9.851860E−01 4.794791E+00
1.000E+01 9.429328E+00 1.013153E+00 9.778116E−01 1.013153E+01
5.000E+01 4.955395E+01 9.906663E−01 9.617213E−01 4.953331E+01
1.000E+02 9.875060E+01 9.794248E−01 9.551127E−01 9.794248E+01
5.000E+02 4.873803E+02 9.684580E−01 9.399859E−01 4.842290E+02
1.000E+03 9.708283E+02 9.656582E−01 9.335306E−01 9.656582E+02

∞ ∞ 0.000000E+00 0.000000E+00 ∞
n = −0.9

0.000E+00 1.000000E+00 0.000000E+00 1.000000E+00 0.000000E+00
1.000E−01 9.974986E−01 −5.005636E−02 9.997496E−01 −5.005636E−03
5.000E−01 9.365911E−01 −2.573970E−01 9.934706E−01 −1.286985E−01
1.000E+00 7.336948E−01 −5.707421E−01 9.695083E−01 −5.707421E−01
1.500E+00 3.289180E−01 −1.137038E+00 8.947645E−01 −1.705557E+00
1.700E+00 4.082342E−02 −2.033763E+00 7.262580E−01 −3.457397E+00
1.716E+00 5.080142E−03 −2.602816E+00 5.896409E−01 −4.466432E+00
1.71782384E+00 0.000000E+00 −4.307079E+00 0.000000E+00 −7.398803E+00

n = −0.5
0.000E+00 1.000000E+00 0.000000E+00 1.000000E+00 0.000000E+00
1.000E−01 9.974992E−01 −5.003130E−02 9.987488E−01 −5.003130E−03
5.000E−01 9.369994E−01 −2.540556E−01 9.679873E−01 −1.270278E−01
1.000E+00 7.413013E−01 −5.368733E−01 8.609886E−01 −5.368733E−01
1.500E+00 3.848069E−01 −9.184839E−01 6.203280E−01 −1.377726E+00
1.800E+00 5.083987E−02 −1.403693E+00 2.254770E−01 −2.526648E+00
1.830E+00 6.632797E−03 −1.573105E+00 8.144199E−02 −2.878783E+00
1.83413266E+00 0.000000E+00 −1.669972E+00 0.000000E+00 −3.062950E+00

n = 0
0.000E+00 1.000000E+00 0.000000E+00 1.000000E+00 0.000000E+00
1.000E−01 9.975000E−01 −5.000000E−02 9.975000E−01 −5.000000E−03
5.000E−01 9.375000E−01 −2.500000E−01 9.375000E−01 −1.250000E−01
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ξ θ θ′ θn+1 ξθ′

1.000E+00 7.500000E−01 −5.000000E−01 7.500000E−01 −5.000000E−01
1.500E+00 4.375000E−01 −7.500000E−01 4.375000E−01 −1.125000E+00
1.900E+00 9.750000E−02 −9.500000E−01 9.750000E−02 −1.805000E+00
2.00000000E+00 0.000000E+00 −1.000000E+00 0.000000E+00 −2.000000E+00

n = 0.5
0.000E+00 1.000000E+00 0.000000E+00 1.000000E+00 0.000000E+00
1.000E−01 9.975008E−01 −4.996874E−02 9.962535E−01 −4.996874E−03
5.000E−01 9.379900E−01 −2.460730E−01 9.084422E−01 −1.230365E−01
1.000E+00 7.579284E−01 −4.680380E−01 6.598456E−01 −4.680380E−01
1.500E+00 4.785050E−01 −6.383440E−01 3.310014E−01 −9.575159E−01
2.000E+00 1.347795E−01 −7.156315E−01 4.948068E−02 −1.431263E+00
2.150E+00 2.784930E−02 −7.059669E−01 4.647521E−03 −1.517829E+00
2.180E+00 6.752620E−03 −7.001004E−01 5.548920E−04 −1.526219E+00
2.18966219E+00 0.000000E+00 −6.975389E−01 0.000000E+00 −1.527374E+00

n = 1
0.000E+00 1.000000E+00 0.000000E+00 1.000000E+00 0.000000E+00
1.000E−01 9.975016E−01 −4.993753E−02 9.950094E−01 −4.993753E−03
5.000E−01 9.384698E−01 −2.422685E−01 8.807256E−01 −1.211342E−01
1.000E+00 7.651977E−01 −4.400506E−01 5.855275E−01 −4.400506E−01
1.500E+00 5.118277E−01 −5.579365E−01 2.619676E−01 −8.369048E−01
2.000E+00 2.238908E−01 −5.767248E−01 5.012708E−02 −1.153450E+00
2.400E+00 2.507683E−03 −5.201853E−01 6.288476E−06 −1.248445E+00
2.40482556E+00 0.000000E+00 −5.191475E−01 0.000000E+00 −1.248459E+00

n = 2
0.000E+00 1.000000E+00 0.000000E+00 1.000000E+00 0.000000E+00
1.000E−01 9.975031E−01 −4.987521E−02 9.925281E−01 −4.987521E−03
5.000E−01 9.394002E−01 −2.350047E−01 8.289951E−01 −1.175023E−01
1.000E+00 7.780992E−01 −3.933192E−01 4.710911E−01 −3.933192E−01
2.000E+00 3.426523E−01 −4.255694E−01 4.023100E−02 −8.511388E−01
2.900E+00 6.778285E−03 −3.190870E−01 3.114293E−07 −9.253523E−01
2.920E+00 4.184451E−04 −3.169018E−01 7.326820E−11 −9.253533E−01
2.92132072E+00 0.000000E+00 −3.167585E−01 0.000000E+00 −9.253533E−01

n = 5
0.000E+00 1.000000E+00 0.000000E+00 1.000000E+00 0.000000E+00
1.000E−01 9.975078E−01 −4.968918E−02 9.851396E−01 −4.968918E−03
5.000E−01 9.419802E−01 −2.156290E−01 6.986357E−01 −1.078145E−01
1.000E+00 8.076454E−01 −2.992337E−01 2.775391E−01 −2.992337E−01
4.000E+00 1.624658E−01 −1.330609E−01 1.838954E−05 −5.322436E−01
5.000E+00 4.368123E−02 −1.064689E−01 6.946548E−09 −5.323444E−01
5.400E+00 2.711449E−03 −9.858230E−02 3.973825E−16 −5.323444E−01
5.420E+00 7.434453E−04 −9.821853E−02 1.688473E−19 −5.323444E−01
5.42757459E+00 0.000000E+00 −9.808145E−02 0.000000E+00 −5.323444E−01

n = 20
0.000E+00 1.000000E+00 0.000000E+00 1.000000E+00 0.000000E+00
1.000E−01 9.975308E−01 −4.877951E−02 9.494065E−01 −4.877951E−03
5.000E−01 9.515602E−01 −1.528401E−01 3.525019E−01 −7.642005E−02
1.000E+00 8.762500E−01 −1.382735E−01 6.240053E−02 −1.382735E−01
5.000E+00 6.091291E−01 −3.505830E−02 3.012286E−05 −1.752915E−01
1.000E+01 4.874841E−01 −1.755776E−02 2.800078E−07 −1.755776E−01
5.000E+01 2.048883E−01 −3.511754E−03 3.482259E−15 −1.755877E−01
1.000E+02 8.318021E−02 −1.755877E−03 2.091320E−23 −1.755877E−01
1.500E+02 1.198554E−02 −1.170585E−03 4.485451E−41 −1.755877E−01
1.600E+02 6.533662E−04 −1.097423E−03 1.313075E−67 −1.755877E−01
1.60596473E+02 0.000000E+00 −1.093347E−03 0.000000E+00 −1.755877E−01
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ξ θ θ′ exp(−θ) ξθ′

n = ±∞
0.000E+00 0.000000E+00 0.000000E+00 1.000000E+00 0.000000E+00
1.000E−01 2.498439E−03 4.993758E−02 9.975047E−01 4.993758E−03
5.000E−01 6.154332E−02 2.424242E−01 9.403122E−01 1.212121E−01
1.000E+00 2.355661E−01 4.444444E−01 7.901235E−01 4.444444E−01
5.000E+00 2.834132E+00 6.060606E−01 5.876951E−02 3.030303E+00
1.000E+01 5.205379E+00 3.703704E−01 5.486968E−03 3.703704E+00
5.000E+01 1.149560E+01 7.974482E−02 1.017478E−05 3.987241E+00
1.000E+02 1.426340E+01 3.996803E−02 6.389772E−07 3.996803E+00
5.000E+02 2.069961E+01 7.999744E−03 1.023934E−09 3.999872E+00
1.000E+03 2.347215E+01 3.999968E−03 6.399898E−11 3.999968E+00

∞ ∞ 0.000000E+00 0.000000E+00 4.000000E+00

ξ θ θ′ θn+1 ξ2θ′

Polytropic Spheres (N = 3)
n = −10

0.000E+00 1.000000E+00 0.000000E+00 1.000000E+00 0.000000E+00
1.000E−01 1.001658E+00 3.300334E−02 9.851975E−01 3.300334E−04
5.000E−01 1.037197E+00 1.333955E−01 7.198627E−01 3.334887E−02
1.000E+00 1.115647E+00 1.670811E−01 3.734730E−01 1.670811E−01
5.000E+00 1.540827E+00 6.274943E−02 2.042750E−02 1.568736E+00
1.000E+01 1.761992E+00 3.249452E−02 6.108914E−03 3.249452E+00
5.000E+01 2.342434E+00 8.300094E−03 4.709708E−04 2.075023E+01
1.000E+02 2.652366E+00 4.806458E−03 1.539213E−04 4.806458E+01
5.000E+02 3.559869E+00 1.301230E−03 1.089165E−05 3.253074E+02
1.000E+03 4.039407E+00 7.348356E−04 3.492538E−06 7.348356E+02

∞ ∞ 0.000000E+00 0.000000E+00 ∞
n = −5

0.000E+00 1.000000E+00 0.000000E+00 1.000000E+00 0.000000E+00
1.000E−01 1.001663E+00 3.316755E−02 9.933775E−01 3.316755E−04
5.000E−01 1.039273E+00 1.482851E−01 8.571975E−01 3.707128E−02
1.000E+00 1.135601E+00 2.243041E−01 6.013083E−01 2.243041E−01
5.000E+00 1.928973E+00 1.447372E−01 7.222633E−02 3.618429E+00
1.000E+01 2.478760E+00 8.620524E−02 2.648878E−02 8.620524E+00
5.000E+01 4.225452E+00 2.765166E−02 3.136947E−03 6.912914E+01
1.000E+02 5.308688E+00 1.759050E−02 1.259074E−03 1.759050E+02
5.000E+02 9.083411E+00 6.071909E−03 1.468940E−04 1.517977E+03
1.000E+03 1.144890E+01 3.819149E−03 5.820287E−05 3.819149E+03

∞ ∞ 0.000000E+00 0.000000E+00 ∞
n = −2

0.000E+00 1.000000E+00 0.000000E+00 1.000000E+00 0.000000E+00
1.000E−01 1.001665E+00 3.326683E−02 9.983378E−01 3.326683E−04
5.000E−01 1.040666E+00 1.588211E−01 9.609228E−01 3.970529E−02
1.000E+00 1.152316E+00 2.798032E−01 8.678178E−01 2.798032E−01
5.000E+00 2.712219E+00 3.859601E−01 3.687019E−01 9.649001E+00
1.000E+01 4.435735E+00 3.101642E−01 2.254418E−01 3.101642E+01
5.000E+01 1.313928E+01 1.742879E−01 7.610765E−02 4.357198E+02
1.000E+02 2.081351E+01 1.383030E−01 4.804571E−02 1.383030E+03
5.000E+02 6.081090E+01 8.111227E−02 1.644442E−02 2.027807E+04
1.000E+03 9.654558E+01 6.437779E−02 1.035780E−02 6.437779E+04

∞ ∞ 0.000000E+00 0.000000E+00 ∞
n = −1.01

0.000E+00 1.000000E+00 0.000000E+00 1.000000E+00 0.000000E+00
1.000E−01 1.001666E+00 3.329972E−02 9.999834E−01 3.329972E−04
5.000E−01 1.041154E+00 1.626152E−01 9.995968E−01 4.065379E−02
1.000E+00 1.159022E+00 3.041212E−01 9.985253E−01 3.041212E−01
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ξ θ θ′ θn+1 ξ2θ′

5.000E+00 3.409439E+00 6.751255E−01 9.878094E−01 1.687814E+01
1.000E+01 6.898565E+00 7.067390E−01 9.808722E−01 7.067390E+01
5.000E+01 3.489717E+01 6.947161E−01 9.650995E−01 1.736790E+03
1.000E+02 6.952768E+01 6.912177E−01 9.584698E−01 6.912177E+03
5.000E+02 3.446515E+02 6.858592E−01 9.432487E−01 1.714648E+05
1.000E+03 6.869356E+02 6.835353E−01 9.367654E−01 6.835353E+05

∞ ∞ 0.000000E+00 0.000000E+00 ∞
n = −0.9

0.000E+00 1.000000E+00 0.000000E+00 1.000000E+00 0.000000E+00
1.000E−01 9.983326E−01 −3.336338E−02 9.998331E−01 −3.336338E−04
5.000E−01 9.578529E−01 −1.705588E−01 9.957031E−01 −4.263971E−02
1.000E+00 8.249992E−01 −3.685921E−01 9.809466E−01 −3.685921E−01
2.000E+00 9.450454E−02 −1.572580E+00 7.898512E−01 −6.290319E+00
2.040E+00 2.396453E−02 −2.061745E+00 6.885839E−01 −8.580159E+00
2.050E+00 1.175205E−03 −2.780906E+00 5.093442E−01 −1.168676E+01
2.05040073E+00 0.000000E+00 −4.232444E+00 0.000000E+00 −1.779380E+01

n = −0.5
0.000E+00 1.000000E+00 0.000000E+00 1.000000E+00 0.000000E+00
1.000E−01 9.983329E−01 −3.335002E−02 9.991661E−01 −3.335002E−04
5.000E−01 9.580681E−01 −1.688077E−01 9.788096E−01 −4.220193E−02
1.000E+00 8.288357E−01 −3.520616E−01 9.104041E−01 −3.520616E−01
2.000E+00 2.320758E−01 −9.394628E−01 4.817425E−01 −3.757851E+00
2.208E+00 8.800112E−04 −1.482764E+00 2.966498E−02 −7.228864E+00
2.20858842E+00 0.000000E+00 −1.521468E+00 0.000000E+00 −7.421510E+00

n = 0
0.000E+00 1.000000E+00 0.000000E+00 1.000000E+00 0.000000E+00
1.000E−01 9.983333E−01 −3.333333E−02 9.983333E−01 −3.333333E−04
5.000E−01 9.583333E−01 −1.666667E−01 9.583333E−01 −4.166667E−02
1.000E+00 8.333333E−01 −3.333333E−01 8.333333E−01 −3.333333E−01
2.000E+00 3.333333E−01 −6.666667E−01 3.333333E−01 −2.666667E+00
2.400E+00 4.000000E−02 −8.000000E−01 4.000000E−02 −4.608000E+00
2.44948974E+00 0.000000E+00 −8.164966E−01 0.000000E+00 −4.898979E+00

n = 0.5
0.000E+00 1.000000E+00 0.000000E+00 1.000000E+00 0.000000E+00
1.000E−01 9.983338E−01 −3.331666E−02 9.975017E−01 −3.331666E−04
5.000E−01 9.585943E−01 −1.645770E−01 9.385388E−01 −4.114426E−02
1.000E+00 8.375345E−01 −3.164564E−01 7.664857E−01 −3.164564E−01
2.000E+00 4.025795E−01 −5.249758E−01 2.554333E−01 −2.099903E+00
2.700E+00 2.674118E−02 −5.138861E−01 4.372913E−03 −3.746230E+00
2.750E+00 1.350271E−03 −5.009125E−01 4.961712E−05 −3.788151E+00
2.75269805E+00 0.000000E+00 −4.999971E−01 0.000000E+00 −3.788651E+00

n = 1
0.000E+00 1.000000E+00 0.000000E+00 1.000000E+00 0.000000E+00
1.000E−01 9.983342E−01 −3.330001E−02 9.966711E−01 −3.330001E−04
5.000E−01 9.588511E−01 −1.625370E−01 9.193954E−01 −4.063426E−02
1.000E+00 8.414710E−01 −3.011687E−01 7.080734E−01 −3.011687E−01
2.000E+00 4.546487E−01 −4.353978E−01 2.067055E−01 −1.741591E+00
3.000E+00 4.704000E−02 −3.456775E−01 2.212762E−03 −3.111097E+00
3.140E+00 5.072143E−04 −3.186325E−01 2.572663E−07 −3.141589E+00
3.14159265E+00 0.000000E+00 −3.183099E−01 0.000000E+00 −3.141593E+00

n = 1.5
0.000E+00 1.000000E+00 0.000000E+00 1.000000E+00 0.000000E+00
1.000E−01 9.983346E−01 −3.328337E−02 9.958417E−01 −3.328337E−04
5.000E−01 9.591039E−01 −1.605449E−01 9.008741E−01 −4.013622E−02
1.000E+00 8.451698E−01 −2.872555E−01 6.566892E−01 −2.872555E−01
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ξ θ θ′ θn+1 ξ2θ′

3.000E+00 1.588576E−01 −2.842527E−01 1.005820E−02 −2.558275E+00
3.600E+00 1.109099E−02 −2.093927E−01 1.295467E−05 −2.713729E+00
3.650E+00 7.639242E−04 −2.037196E−01 1.612968E−08 −2.714055E+00
3.65375374E+00 0.000000E+00 −2.033013E−01 0.000000E+00 −2.714055E+00

n = 2
0.000E+00 1.000000E+00 0.000000E+00 1.000000E+00 0.000000E+00
1.000E−01 9.983350E−01 −3.326675E−02 9.950133E−01 −3.326675E−04
5.000E−01 9.593527E−01 −1.585990E−01 8.829476E−01 −3.964974E−02
1.000E+00 8.486541E−01 −2.745394E−01 6.112124E−01 −2.745394E−01
3.000E+00 2.418241E−01 −2.406215E−01 1.414160E−02 −2.165593E+00
4.000E+00 4.884015E−02 −1.504097E−01 1.165014E−04 −2.406555E+00
4.300E+00 6.810943E−03 −1.303965E−01 3.159525E−07 −2.411031E+00
4.350E+00 3.660302E−04 −1.274169E−01 4.904003E−11 −2.411046E+00
4.35287460E+00 0.000000E+00 −1.272487E−01 0.000000E+00 −2.411046E+00

n = 2.5
0.000E+00 1.000000E+00 0.000000E+00 1.000000E+00 0.000000E+00
1.000E−01 9.983354E−01 −3.325015E−02 9.941861E−01 −3.325015E−04
5.000E−01 9.595978E−01 −1.566977E−01 8.655901E−01 −3.917443E−02
1.000E+00 8.519442E−01 −2.628722E−01 5.707409E−01 −2.628722E−01
4.000E+00 1.376807E−01 −1.340534E−01 9.684029E−04 −2.144855E+00
5.000E+00 2.901919E−02 −8.747353E−02 4.162922E−06 −2.186838E+00
5.300E+00 4.259544E−03 −7.786397E−02 5.043949E−09 −2.187199E+00
5.355E+00 2.100894E−05 −7.627276E−02 4.250249E−17 −2.187200E+00
5.35527546E+00 0.000000E+00 −7.626491E−02 0.000000E+00 −2.187200E+00

n = 3
0.000E+00 1.000000E+00 0.000000E+00 1.000000E+00 0.000000E+00
1.000E−01 9.983358E−01 −3.323356E−02 9.933599E−01 −3.323356E−04
5.000E−01 9.598391E−01 −1.548396E−01 8.487772E−01 −3.870989E−02
1.000E+00 8.550576E−01 −2.521293E−01 5.345415E−01 −2.521293E−01
5.000E+00 1.108198E−01 −8.012604E−02 1.508238E−04 −2.003151E+00
6.000E+00 4.373798E−02 −5.604388E−02 3.659612E−06 −2.017580E+00
6.800E+00 4.167789E−03 −4.364697E−02 3.017332E−10 −2.018236E+00
6.896E+00 3.601115E−05 −4.244020E−02 1.681697E−18 −2.018236E+00
6.89684862E+00 0.000000E+00 −4.242976E−02 0.000000E+00 −2.018236E+00

n = 3.5
0.000E+00 1.000000E+00 0.000000E+00 1.000000E+00 0.000000E+00
1.000E−01 9.983362E−01 −3.321699E−02 9.925349E−01 −3.321699E−04
5.000E−01 9.600768E−01 −1.530231E−01 8.324857E−01 −3.825579E−02
1.000E+00 8.580096E−01 −2.422051E−01 5.020126E−01 −2.422051E−01
5.000E+00 1.786843E−01 −7.362030E−02 4.309118E−04 −1.840508E+00
9.000E+00 1.180312E−02 −2.334019E−02 2.108560E−09 −1.890555E+00
9.500E+00 7.472341E−04 −2.094800E−02 8.522264E−15 −1.890557E+00
9.530E+00 1.207723E−04 −2.081632E−02 2.338050E−18 −1.890557E+00
9.53580534E+00 0.000000E+00 −2.079098E−02 0.000000E+00 −1.890557E+00

n = 4
0.000E+00 1.000000E+00 0.000000E+00 1.000000E+00 0.000000E+00
1.000E−01 9.983367E−01 −3.320043E−02 9.917109E−01 −3.320043E−04
2.000E−01 9.933862E−01 −6.561355E−02 9.673656E−01 −2.624542E−03
5.000E−01 9.603109E−01 −1.512470E−01 8.166939E−01 −3.781176E−02
1.000E+00 8.608138E−01 −2.330096E−01 4.726570E−01 −2.330096E−01
5.000E+00 2.359227E−01 −6.788810E−02 7.308848E−04 −1.697203E+00
1.000E+01 5.967274E−02 −1.796142E−02 7.566237E−07 −1.796142E+00
1.400E+01 8.330527E−03 −9.169539E−03 4.012013E−11 −1.797230E+00
1.490E+01 5.764189E−04 −8.095266E−03 6.363425E−17 −1.797230E+00
1.49715463E+01 0.000000E+00 −8.018079E−03 0.000000E+00 −1.797230E+00
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ξ θ θ′ θn+1 ξ2θ′

n = 4.5
0.000E+00 1.000000E+00 0.000000E+00 1.000000E+00 0.000000E+00
1.000E−01 9.983371E−01 −3.318389E−02 9.908881E−01 −3.318389E−04
5.000E−01 9.605416E−01 −1.495100E−01 8.013809E−01 −3.737749E−02
1.000E+00 8.634822E−01 −2.244656E−01 4.460604E−01 −2.244656E−01
5.000E+00 2.848977E−01 −6.286131E−02 1.001818E−03 −1.571533E+00
1.000E+01 1.189407E−01 −1.722137E−02 8.209531E−06 −1.722137E+00
2.000E+01 3.230429E−02 −4.344152E−03 6.323115E−09 −1.737661E+00
3.000E+01 3.341455E−03 −1.930888E−03 2.407943E−14 −1.737799E+00
3.140E+01 7.587396E−04 −1.762545E−03 6.926438E−18 −1.737799E+00
3.180E+01 6.258970E−05 −1.718483E−03 7.599165E−24 −1.737799E+00
3.18364632E+01 0.000000E+00 −1.714549E−03 0.000000E+00 −1.737799E+00

n = 4.99
0.000E+00 1.000000E+00 0.000000E+00 1.000000E+00 0.000000E+00
1.000E−01 9.983375E−01 −3.316769E−02 9.900827E−01 −3.316769E−04
5.000E−01 9.607644E−01 −1.478442E−01 7.868198E−01 −3.696106E−02
1.000E+00 8.659757E−01 −2.166602E−01 4.223371E−01 −2.166602E−01
5.000E+00 3.265336E−01 −5.853396E−02 1.225823E−03 −1.463349E+00
1.000E+01 1.696936E−01 −1.658187E−02 2.430499E−05 −1.658187E+00
5.000E+01 3.361606E−02 −6.913154E−04 1.492848E−09 −1.728288E+00
1.000E+02 1.632192E−02 −1.730279E−04 1.970150E−11 −1.730279E+00
5.000E+02 2.477128E−03 −6.923051E−06 2.453300E−16 −1.730763E+00
1.000E+03 7.463631E−04 −1.730765E−06 1.857682E−19 −1.730765E+00
1.700E+03 3.369502E−05 −5.988807E−07 1.622253E−27 −1.730765E+00
1.75818915E+03 0.000000E+00 −5.598955E−07 0.000000E+00 −1.730765E+00

n = 5
0.000E+00 1.000000E+00 0.000000E+00 1.000000E+00 0.000000E+00
1.000E−01 9.983375E−01 −3.316736E−02 9.900663E−01 −3.316736E−04
5.000E−01 9.607689E−01 −1.478106E−01 7.865271E−01 −3.695265E−02
1.000E+00 8.660254E−01 −2.165064E−01 4.218750E−01 −2.165064E−01
5.000E+00 3.273268E−01 −5.845122E−02 1.229956E−03 −1.461281E+00
1.000E+01 1.706640E−01 −1.656932E−02 2.470882E−05 −1.656932E+00
5.000E+01 3.462025E−02 −6.915751E−04 1.721794E−09 −1.728938E+00
1.000E+02 1.731791E−02 −1.731272E−04 2.697571E−11 −1.731272E+00
5.000E+02 3.464081E−03 −6.928079E−06 1.727938E−15 −1.732020E+00
1.000E+03 1.732048E−03 −1.732043E−06 2.699976E−17 −1.732043E+00

∞ 0.000000E+00 0.000000E+00 0.000000E+00 −1.732051E+00
n = 6

0.000E+00 1.000000E+00 0.000000E+00 1.000000E+00 0.000000E+00
1.000E−01 9.983383E−01 −3.313435E−02 9.884260E−01 −3.313435E−04
5.000E−01 9.612138E−01 −1.445204E−01 7.581235E−01 −3.613010E−02
1.000E+00 8.707732E−01 −2.021179E−01 3.796082E−01 −2.021179E−01
5.000E+00 3.973243E−01 −5.113662E−02 1.563206E−03 −1.278416E+00
1.000E+01 2.568119E−01 −1.537875E−02 7.367255E−05 −1.537875E+00
5.000E+01 1.215139E−01 −7.912354E−04 3.911844E−07 −1.978088E+00
1.000E+02 1.000997E−01 −2.421930E−04 1.007003E−07 −2.421930E+00
5.000E+02 6.833864E−02 −4.109422E−05 6.960885E−09 −1.027355E+01
1.000E+03 5.313600E−02 −2.270810E−05 1.195974E−09 −2.270810E+01

∞ 0.000000E+00 0.000000E+00 0.000000E+00 ∞
n = 20

0.000E+00 1.000000E+00 0.000000E+00 1.000000E+00 0.000000E+00
1.000E−01 9.983498E−01 −3.267875E−02 9.659117E−01 −3.267875E−04
5.000E−01 9.663460E−01 −1.098095E−01 4.872885E−01 −2.745239E−02
1.000E+00 9.108381E−01 −1.029657E−01 1.406905E−01 −1.029657E−01
5.000E+00 7.376408E−01 −1.785363E−02 1.677812E−03 −4.463409E−01
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ξ θ θ′ θn+1 ξ2θ′

1.000E+01 6.828324E−01 −7.015413E−03 3.315862E−04 −7.015413E−01
5.000E+01 5.858471E−01 −1.128450E−03 1.328830E−05 −2.821125E+00
1.000E+02 5.465871E−01 −5.680053E−04 3.096327E−06 −5.680053E+00
5.000E+02 4.589993E−01 −1.001212E−04 7.907753E−08 −2.503031E+01
1.000E+03 4.259806E−01 −4.526416E−05 1.648873E−08 −4.526416E+01

∞ 0.000000E+00 0.000000E+00 0.000000E+00 ∞
ξ θ θ′ exp(−θ) ξ2θ′

n = ±∞
0.000E+00 0.000000E+00 0.000000E+00 1.000000E+00 0.000000E+00
1.000E−01 1.665834E−03 3.330003E−02 9.983356E−01 3.330003E−04
5.000E−01 4.115396E−02 1.625969E−01 9.596814E−01 4.064923E−02
1.000E+00 1.588277E−01 3.029014E−01 8.531434E−01 3.029014E−01
5.000E+00 2.044092E+00 4.479695E−01 1.294977E−01 1.119924E+01
1.000E+01 3.736560E+00 2.510611E−01 2.383596E−02 2.510611E+01
5.000E+01 7.302273E+00 3.836249E−02 6.740049E−04 9.590622E+01
1.000E+02 8.596060E+00 1.842785E−02 1.848326E−04 1.842785E+02
5.000E+02 1.168443E+01 4.030609E−03 8.423977E−06 1.007652E+03
1.000E+03 1.309606E+01 2.047800E−03 2.053310E−06 2.047800E+03

∞ ∞ 0.000000E+00 0.000000E+00 ∞

Table 2.5.2 Boundary values of Lane-Emden functions (see also Table 2.4.3 if N = 3, 4.75 ≤ n ≤ 5). aE + b
means a × 10b.

Polytropic Slabs (N = 1)

n ξ1 θ′
1 −ξ1/θ′

1

−0.9 1.26907230 −4.472136 2.837732E−1
−0.8 1.28498902 −3.162278 4.063492E−1
−0.5 1.33333333 −2.000000 6.666667E−1
−0.2 1.38194567 −1.581139 8.740192E−1
0 1.41421356 −1.414214 1.000000
0.5 1.49366840 −1.154701 1.293555
1 1.57079633 −1.000000 1.570796
1.5 1.64534085 −8.944272E−1 1.839547
2 1.71731534 −8.164966E−1 2.103273
3 1.85407468 −7.071068E−1 2.622058
4 1.98232217 −6.324555E−1 3.134327
5 2.10327316 −5.773503E−1 3.642976
6 2.21794979 −5.345225E−1 4.149404
10 2.62843161 −4.264014E−1 6.164219
20 3.44944436 −3.086067E−1 1.117748E+1

Polytropic Cylinders (N = 2)

n ξ1 θ′
1 −ξ1θ

′
1 −ξ1/2θ′

1

−0.9 1.71782384 −4.307079 7.398803 1.994187E−1
−0.8 1.74556088 −2.935681 5.124411 2.973008E−1
−0.5 1.83413266 −1.669972 3.062950 5.491508E−1
−0.2 1.93087184 −1.193383 2.304271 8.089905E−1
0 2.00000000 −1.000000 2.000000 1.000000
0.5 2.18966219 −6.975389E−1 1.527374 1.569563
1 2.40482556 −5.191475E−1 1.248459 2.316129
1.5 2.64777677 −4.007569E−1 1.061115 3.303470
2 2.92132072 −3.167585E−1 9.253533E−1 4.611274
3 3.57390098 −2.070908E−1 7.401221E−1 8.628825
4 4.39526586 −1.407522E−1 6.186436E−1 1.561348E+1
5 5.42757459 −9.808145E−2 5.323444E−1 2.766871E+1
6 6.72452797 −6.954616E−2 4.676651E−1 4.834579E+1
10 1.62227407E+1 −1.947837E−2 3.159925E−1 4.164296E+2
20 1.60596473E+2 −1.093347E−3 1.755877E−1 7.344259E+4
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Polytropic Spheres (N = 3)

n ξ1 θ′
1 −ξ2

1θ′
1 −ξ1/3θ′

1

−0.9 2.05040073 −4.232444 1.779380E+1 1.614828E−1
−0.8 2.08744257 −2.833273 1.234575E+1 2.455867E−1
−0.5 2.20858842 −1.521468 7.421510 4.838724E−1
−0.2 2.34663985 −1.020325 5.618645 7.666312E−1
0 2.44948974 −8.164966E−1 4.898979 1.000000
0.5 2.75269805 −4.999971E−1 3.788651 1.835143
1 3.14159265 −3.183099E−1 3.141593 3.289868
1.5 3.65375374 −2.033013E−1 2.714054 5.990705
2 4.35287460 −1.272487E−1 2.411046 1.140254E+1
2.5 5.35527546 −7.626491E−2 2.187200 2.340646E+1
3 6.89684862 −4.242976E−2 2.018236 5.418248E+1
3.5 9.53580534 −2.079098E−2 1.890557 1.528837E+2
4 1.49715463E+1 −8.018079E−3 1.797230 6.224079E+2
4.5 3.18364632E+1 −1.714549E−3 1.737799 6.189473E+3
4.99 1.75818915E+3 −5.598955E−7 1.730765 1.046736E+3
5 ∞ 0.000000 1.732051 ∞

Fig. 2.5.1 Logarithmic plot of Lane-Emden variables for the negative and positive sequence of polytropic
slabs, cylinders, and spheres obeying the initial conditions θ(0) = 1, θ′(0) = 0 (Horedt 1986a).
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In Table 2.5.2 finite boundary values of polytropic slabs, cylinders, and spheres are summarized if
−1 < n < ∞, (N = 1, 2), and −1 < n < 5, (N = 3). Comparing Eqs. (2.3.52) and (2.4.67) if
θ = 10−80 and n = −0.99, we get θ′ = −12.9731313 and −14.1421356, respectively; this shows the
inability of purely numerical iterations to reproduce even the second digit of θ′ at the finite boundary ξ1

if n ≈ −1, (n > −1; N = 1). If the polytropic index departs from n = −1 to n = −0.9, the values of θ′

from Eqs. (2.3.52) and (2.4.67) for θ = 10−80 become -4.47213593 and -4.47213595, showing coincidence
within the first eight digits. So, we have excluded from the seven digit tabulations the polytropic indices
−1 < n < −0.9, since in this case the boundary value of the derivative θ′ may be incorrect, as shown
before for the case N = 1, −1 < n < −0.9.

Fig. 2.5.2 The Lane-Emden functions of polytropic index n = 1.5 are shown from left to right in a space
with dimension N = 1, 2, 3, 5, 7, 10, respectively (Abramowicz 1983).

If −∞ < n < −1, n = ±∞, (N = 1, 2, 3) and 5 ≤ n < ∞, (N = 3), the values for ξ = ∞ in Table
2.5.1 result from analytical solutions (n = ±∞, N = 1, 2; n = 5, N = 3), asymptotic expansions, and
from the topology of Lane-Emden functions (Secs. 2.3, 2.4, 2.7, Chandrasekhar 1939, Ostriker 1964a,
Harrison and Lake 1972, Viala and Horedt 1974a, b, Kimura 1981a, Horedt 1986a, 1987a, b).

It has already been pointed out in Sec. 2.1, that from a formal mathematical viewpoint the Lane-
Emden equation (2.1.14) can also be solved for n = −1 (Fig. 2.5.1), and for the imaginary sequence with
imaginary radius (r2 < 0), when the plus sign in the equation for the radius (2.1.13) is associated with
values of the polytropic index −∞ < n < −1, and the minus sign with −1 < n < ∞. If the right-hand side
of Eq. (2.1.14) is equal to −θn, the solutions form the negative sequence, while for +θn they belong to the
positive sequence (Figs. 2.4.1, 2.5.1). Physically meaningful solutions occur for the negative sequence if
−1 < n < ∞, and for the positive sequence when −∞ < n < −1. The solutions belong to the unphysical
imaginary sequence if −∞ < n ≤ −1 in the negative sequence, and −1 ≤ n < ∞ in the positive sequence.
The unphysical imaginary sequence holds for the isothermal equation (2.1.21), if we take − exp(−θ) on
its right-hand side (r2 < 0).
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2.6 Physical Characteristics of Undistorted Polytropes

2.6.1 Radius

The radial distance can be written down at once according to Eqs. (2.1.13) and (2.1.20):

r = αξ = [±(n + 1)K/4πG�
1−1/n
0 ]1/2ξ = [±(n + 1)P0/4πG�2

0]
1/2ξ, (n �= −1,±∞), (2.6.1)

r = αξ = (K/4πG�0)1/2ξ = (P0/4πG�2
0)

1/2ξ, (n = ±∞). (2.6.2)

r is the radial distance from the symmetry plane of a polytropic slab (N = 1), from the symmetry
axis of a polytropic cylinder (N = 2), and from the centre of a N -dimensional sphere (N ≥ 3). For a
finite boundary, the radius of the polytrope is given by r = r1 = αξ1, (θ(ξ1) = 0).

2.6.2 Density, Pressure, and Temperature

Density and pressure at coordinate distance ξ are given by Eqs. (2.1.10) and (2.1.18):

� = �0θ
n; P = K�1+1/n = P0θ

n+1, (n �= ±∞), (2.6.3)

� = �0 exp(−θ); P = K� = P0 exp(−θ), (n = ±∞). (2.6.4)

If the polytrope obeys the initial conditions (2.1.41) for the Lane-Emden variables ξ, θ, then P0 and
�0 are just equal to the central pressure and density at radial distance r = 0.

For a perfect gas we get, by equating Eq. (1.2.5) to Eqs. (2.6.3) and (2.6.4), respectively:

P = R�T/µ = R�0θ
nT/µ = P0θ

n+1 = R�0T0θ
n+1/µ = K�

1+1/n
0 θn+1,

(n �= ±∞; K = RT0�
−1/n
0 /µ = P0/�0), (2.6.5)

P = R�T/µ = R�0 exp(−θ)T/µ = P0 exp(−θ) = R�0T0 exp(−θ)/µ = K�0 exp(−θ),
(n = ±∞; K = RT0/µ = P0/�0). (2.6.6)

We divide Eq. (2.6.5) by R�0θ
n/µ, and Eq. (2.6.6) by R�0 exp(−θ)/µ, to obtain the temperature of

a perfect gas as a function of the Lane-Emden variables:

T = T0θ = (Kµ�
1/n
0 /R)θ = (µP0/R�0)θ, (n �= ±∞), (2.6.7)

T = T0 = Kµ/R = (µP0/R�0) = const, (n = ±∞). (2.6.8)

Fig. 2.6.1 visualizes Eqs. (2.6.7) and (2.6.18) for a spherical polytrope of index n = 3.

When the initial conditions (2.1.41) are fulfilled, T0 = Kµ�
1/n
0 /R = µP0/R�0 is just the central

temperature. If n = ±∞, the polytrope obeying the perfect gas law is isothermal: T = T0 = const. In the
particular case n = 0, (� = �0 = const) the factor K�

1/n
0 should be replaced by P0/�0; quite generally,

K�1/n can always be replaced by P/�.
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Fig. 2.6.1 Polytropic sphere of perfect gas with index n = 3 divided into shells corresponding to ten equal
steps of temperature ∝ θ (on the left), and of mass ∝ −ξ2θ′ (on the right), (Eddington 1959).

2.6.3 Volume, Surface, and Mass

The volume of a polytrope inside radial distance r can be found from Eqs. (C.5), (C.10):

V = V (r) =
∫

V

dV = (2rN/N)
{
[Γ(1/2)]N

/
Γ(N/2)

}
, (N = 1, 2, 3, ...), (2.6.9)

where Γ denotes the gamma function defined through Eqs. (C.9), (C.11). In the cases of practical interest
N = 1, 2, 3 the volume (2.6.20) follows by direct integration of the volume elements

dV =




2 dr N = 1, slab
2πr dr if N = 2, cylinder
4πr2 dr N = 3, sphere

(2.6.10)

taking into account that the plane-parallel polytrope extends symmetrically above and below the sym-
metry plane.

The surface of a N -dimensional polytrope is simply

S = dV/dr = NV/r = 2rN−1
{
[Γ(1/2)]N

/
Γ(N/2)}. (2.6.11)

The mass inside radial coordinate r is by virtue of Eq. (C.10) equal to

M = M(r) =
{
2[Γ(1/2)]N

/
Γ(N/2)

}∫ r

0

�r′N−1
dr′ =

{
2�0[αΓ(1/2)]N

/
Γ(N/2)

}

×
∫ ξ

0

ξ′N−1
θn dξ′ =

{
2�0[αΓ(1/2)]N

/
Γ(N/2)

}
ξN−1(∓dθ/dξ), (n �= −1,±∞; N = 1, 2, 3, ...),

(2.6.12)

where we have used Eq. (2.1.14), and α is given by Eq. (2.6.1). If n = ±∞, we find with Eqs. (2.1.21),
(2.6.2):

M =
{
2�0[αΓ(1/2)]N

/
Γ(N/2)

}∫ ξ

0

ξ′N−1 exp(−θ) dξ′ =
{
2�0[αΓ(1/2)]N

/
Γ(N/2)

}
ξN−1 dθ/dξ,

(n = ±∞; N = 1, 2, 3, ...). (2.6.13)

In the cases of practical interest (N = 1, 2, 3) we can calculate the mass also by direct integration
over the mass element � dV.

N = 1 :

M = 2
∫ r

0

� dr′ = 2�0α

∫ ξ

0

θn dξ′ = 2�0α(∓dθ/dξ), (n �= −1,±∞), (2.6.14)
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M = 2
∫ r

0

� dr′ = 2�0α

∫ ξ

0

exp(−θ) dξ′ = 2�0α dθ/dξ, (n = ±∞). (2.6.15)

N = 2 :

M = 2π

∫ r

0

�r′ dr′ = 2π�0α
2

∫ ξ

0

ξ′θn dξ′ = 2π�0α
2ξ(∓dθ/dξ), (n �= −1,±∞), (2.6.16)

M = 2π

∫ r

0

�r′ dr′ = 2π�0α
2

∫ ξ

0

ξ′ exp(−θ) dξ′ = 2π�0α
2ξ dθ/dξ, (n = ±∞). (2.6.17)

N = 3 :

M = 4π

∫ r

0

�r′2 dr′ = 4π�0α
3

∫ ξ

0

ξ′2θn dξ′ = 4π�0α
3ξ2(∓dθ/dξ), (n �= −1,±∞), (2.6.18)

M = 4π

∫ r

0

�r′2 dr′ = 4π�0α
3

∫ ξ

0

ξ′2 exp(−θ) dξ′ = 4π�0α
3ξ2 dθ/dξ, (n = ±∞). (2.6.19)

With the volume elements (2.6.10) we obtain

V =




2r = 2αξ N = 1, slab
πr2 = πα2ξ2 if N = 2, cylinder
4πr3/3 = 4πα3ξ3/3 N = 3, sphere

(2.6.20)

For a finite boundary of the polytrope, total mass and total volume are obtained by putting ξ = ξ1 and
θ′ = θ′1. For polytropic slabs (N = 1) mass and volume are considered per unit surface of the symmetry
plane, extending up to radial distance r above and below the symmetry plane. For infinitely long cylinders
(N = 2) mass and volume are taken per unit length of the cylinder’s symmetry axis. Clearly, the above
equations can be written down without difficulty in the case when the radial coordinate changes between
r1 and r2, rather than between 0 and r.

We can eliminate the central density �0 between Eqs. (2.6.1) and (2.6.12), obtaining the mass-radius
relationship (Chandrasekhar 1939 if N = 3)

Mr[N(1−n)+2n]/(n−1) =
{
2[Γ(1/2)]N

/
Γ(N/2)

}[
± (n + 1)K/4πG

]n/(n−1)
ξ(n+1)/(n−1)(∓dθ/dξ),

(n �= −1,±∞; N = 1, 2, 3, ...). (2.6.21)

If n = ±∞, we get by elimination of �0 between Eqs. (2.6.2) and (2.6.13):

Mr2−N = {2[Γ(1/2)]N
/
Γ(N/2)}(K/4πG)ξ(dθ/dξ), (n = ±∞; N = 1, 2, 3, ...). (2.6.22)

Eq. (2.6.21) becomes in the spherical case N = 3 equal to M1r
(3−n)/(n−1)
1 = const, provided that

total mass M1 and total radius r1 are finite (−1 < n < 5; see Sec. 2.6.8). If the polytrope remains in
hydrostatic equilibrium after a mass change ∆M1 � M1, the corresponding radius variation is ∆r1 =
(r1/M1)[(n−1)/(n−3)] ∆M1. If −1 < n < 1 and 3 < n < 5, the polytrope expands with increasing mass.
If 1 < n < 3, the polytrope shrinks with mass increase. If n = 1, the radius remains invariant for any
mass change ∆M1, and if n = 3 the mass remains constant when the radius changes by ∆r1 (Paczyński
1965, Heisler and Alcock 1986).

When the initial conditions (2.1.41) are fulfilled, there subsist the equations

P0 = K�
1+1/n
0 , (n �= −1,±∞), (2.6.23)

P0 = K�0, (n = ±∞). (2.6.24)

Substituting for �0 and K from Eqs. (2.6.1), (2.6.21), we find

P0 =
{
4πG/[±(n + 1)]

}{
Γ(N/2)

/
2[Γ(1/2)]N

}2
M2r2[N(1−n)+n−1]/(n−1)

/
(dθ/dξ)2,

(n �= −1,±∞; N = 1, 2, 3, ...), (2.6.25)

and from Eqs. (2.6.2), (2.6.22)

P0 = 4πG{Γ(N/2)
/
2[Γ(1/2)]N}2M2r2(1−N)

/
(dθ/dξ)2, (n = ±∞; N = 1, 2, 3, ...). (2.6.26)
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2.6.4 Mean Density

The mean density inside radial coordinate r is found if we divide Eqs. (2.6.12) and (2.6.13) by Eq.
(2.6.9):

�m = M/V = N�0(∓dθ/dξ)
/
ξ, (n �= −1,±∞; N = 1, 2, 3, ...), (2.6.27)

�m = N�0(dθ/dξ)
/
ξ, (n = ±∞; N = 1, 2, 3, ...). (2.6.28)

2.6.5 Gravitational Acceleration and Gravitational Potential

Integrating the radially symmetric form of Poisson’s equation (2.1.33) between the origin r = 0 and
an arbitrary point r inside the boundary r = r1 of the polytrope, we get for the derivative of the internal
potential

F (r) = dΦ/dr − (dΦ/dr)r=0 = dΦ/dr = −4πGr1−N

∫ r

0

�r′N−1
dr′ = −2πG{Γ(N/2)

/
[Γ(1/2)]N}

×Mr1−N , (r ≤ r1; (dΦ/dr)r=0 = 0; M = M(r); N = 1, 2, 3, ...), (2.6.29)

where we have used Eq. (C.10). The derivative of the gravitational potential function Φ = Φ(r) is just
the gravitational acceleration F (r), or equivalently the gravitational force �F (r) acting on the unit of mass
located inside the polytrope at distance r, (r ≤ r1) from the origin of coordinates. For the integration
constant we can take without loss of generality (dΦ/dr)r=0 = 0. Eq. (2.6.29) becomes for the cases of
practical interest equal to

F (r) =




−2πGM N = 1, slab
−2GM/r if N = 2, cylinder
−GM/r2 N = 3, sphere

(2.6.30)

For polytropic slabs F is the gravitational acceleration per unit surface in the symmetry plane, and
for polytropic cylinders F is the gravitational acceleration per unit length of the cylinder. We integrate
Eq. (2.6.29) again and find

Φ − Φ0 = −2πG{Γ(N/2)
/
[Γ(1/2)]N}

∫ r

0

M(r′) r′1−N
dr′, (r ≤ r1), (2.6.31)

where Φ0 is the value of Φ at the origin r = 0.
Another equation for the internal gravitational potential in terms of Lane-Emden variables is given

by Eqs. (2.1.8) and (2.1.16), respectively [cf. Eq. (6.1.200)]:

Φ − Φ0 = (n + 1)K(�1/n − �
1/n
0 ) = (n + 1)Kn/(n+1)[P 1/(n+1) − P

1/(n+1)
0 ]

= (n + 1)K�
1/n
0 (θ − 1) = [(n + 1)P0/�0](θ − 1), (n �= −1,±∞), (2.6.32)

Φ − Φ0 = K ln(P/P0) = −Kθ, (n = ±∞). (2.6.33)

Poisson’s equation (2.1.33) writes for the external gravitational potential Φe as

∇2Φe = r1−N d(rN−1 dΦe/dr)
/
dr = 0, (r ≥ r1; � = 0). (2.6.34)

It is clear that only polytropes with a finite boundary possess an external gravitational potential. As
will be shown in Sec. 2.6.8, this is the case for polytropes having indices −1 < n < ∞ if N = 1, 2, and
−1 < n < 5 if N = 3.
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Integrating the Laplace equation (2.6.34) twice, we get

Φe = C1r
2−N/(2 − N) + C2 = c1ξ

2−N/(2 − N) + c2,

(r = αξ ≥ r1; N �= 2; C1, C2, c1, c2 = const), (2.6.35)

Φe = C1 ln r + C2 = c1 ln ξ + c2, (r = αξ ≥ r1; N = 2; C1, C2, c1, c2 = const). (2.6.36)

The integration constant C2 can be expressed by setting the value of the external potential at the
finite boundary equal to Φe1 :

C2 = Φe1 − C1r
2−N
1 /(2 − N), (N �= 2), (2.6.37)

C2 = Φe1 − C1 ln r1, (N = 2). (2.6.38)

The value of C1 can be determined by equating the boundary value dΦ/dr from Eq. (2.6.29) to the
derivative dΦe/dr of Eqs. (2.6.35) and (2.6.36), respectively:

C1 = −2πG
{
Γ(N/2)

/
[Γ(1/2)]N

}
M1, [M1 = M(r1)]. (2.6.39)

Inserting Eqs. (2.6.37)-(2.6.39) into Eqs. (2.6.35) and (2.6.36) we obtain eventually

Φe − Φe1 = −2πG
{
Γ(N/2)

/
[Γ(1/2)]N

}
M1(r2−N − r2−N

1 )/(2 − N), (N �= 2; r ≥ r1), (2.6.40)

Φe − Φe1 = −2πG
{
Γ(N/2)

/
[Γ(1/2)]N

}
M1(ln r − ln r1), (N = 2; r ≥ r1). (2.6.41)

The external potential per unit surface of the slab (N = 1) becomes infinite as r → ∞, and the same
is true for the external potential per unit length of a cylinder (N = 2). If N ≥ 3, Eq. (2.6.35) shows
that Φe → C2 if r → ∞; in this case the external potential is generally normalized by setting C2 = 0.
Inserting C1 from Eq. (2.6.39), and C2 = 0 into Eq. (2.6.35), we get with this particular normalization:

Φe = 2πG
{
Γ(N/2)

/
[Γ(1/2)]N

}
M1r

2−N/(N − 2), (r ≥ r1; N ≥ 3). (2.6.42)

In the spherical case N = 3, Eq. (2.6.42) becomes simply

Φe = GM1/r, (r ≥ r1; N = 3). (2.6.43)

Another equation for the external gravitational potential in terms of Lane-Emden variables can be
obtained by matching the value (2.6.32) of the internal potential at the finite boundary Φ(ξ1) to the
boundary value Φe(ξ1) of the external potential from Eqs. (2.6.35), (2.6.36), together with the corre-
sponding derivatives (dΦ/dξ)ξ=ξ1 and (dΦe/dξ)ξ=ξ1 . After some algebra, we find

c1 = (n + 1)K�
1/n
0 ξN−1

1 θ′1, (2.6.44)

c2 = Φ0 − (n + 1)K�
1/n
0 [ξ1θ

′
1/(2 − N) + 1], (N �= 2), (2.6.45)

c2 = Φ0 − (n + 1)K�
1/n
0 (ξ1θ

′
1 ln ξ1 + 1), (N = 2). (2.6.46)

Inserting Eqs. (2.6.44)-(2.6.46) into Eqs. (2.6.35), (2.6.36), we get, provided that ξ1 is finite:

Φe = Φ0 + (n + 1)K�
1/n
0

[
ξN−1
1 θ′1ξ

2−N
/
(2 − N) − ξ1θ

′
1/(2 − N) − 1

]
,

(ξ ≥ ξ1; n �= −1,±∞; N �= 2), (2.6.47)

Φe = Φ0 + (n + 1)K�
1/n
0 [ξ1θ

′
1 ln(ξ/ξ1) − 1], (ξ ≥ ξ1; n �= −1,±∞; N = 2). (2.6.48)

If n = 0, the factor K�
1/n
0 should be replaced by P0/�0. From Eqs. (2.6.40) and (2.6.41) we derive the

gravitational acceleration acting outside the finite boundary of the polytrope (cf. Eq. (2.6.29) if r ≤ r1) :

F (r) = dΦe/dr = −2πG
{
Γ(N/2)

/
[Γ(1/2)]N

}
M1r

1−N , (r ≥ r1; M1 = M(r1); N = 1, 2, 3, ...).
(2.6.49)



84 2.6 Physical Characteristics of Undistorted Polytropes

2.6.6 The Virial Theorem

Let us first derive the virial theorem in three-dimensional Euclidian space by taking the product
between Eq. (2.1.1) and xj dV in the viscosity-free case τ = 0 (Chandrasekhar 1981, Chap. XIII). Inte-
grating over the volume V contained inside mass M, we find (�r = �r(x1, x2, x3); dV = dx1dx2dx3; dM =
� dV ; �F = ∇Φ)

∫
M

xj(Dvk/Dt) dM = −
∫

V

xj(∂P/∂xk) dV +
∫

M

xj(∂Φ/∂xk) dM

+(p/4π)
∫

V

xj [∂(HkH
)/∂x
 − (1/2) ∂H2/∂xk] dV, (2.6.50)

where in the sequel, summation from 1 to 3 over repeated indices is to be understood. The magnetic
force field term from Eq. (2.1.1) has been transformed in virtue of the vectorial identity

∇(�a ·�b) = (�a · ∇)�b + (�b · ∇)�a + �a × (∇×�b) +�b × (∇× �a), (2.6.51)

yielding

(1/4π)(∇× �H) × �B = (p/4π)(∇× �H) × �H = (p/4π)[( �H · ∇) �H − (1/2) ∇H2]. (2.6.52)

Excepting for ferromagnetic substances, the field vector of magnetic induction �B is related to the
intensity of the magnetic field �H by the relationship (see Sec. 3.10.1, Sommerfeld 1961, Gerthsen et al.
1977)

�B = p �H, (p = const), (2.6.53)

where p denotes the magnetic permeability, assumed constant in the following. To obtain the last term
from Eq. (2.6.50), we have transformed Eq. (2.6.52) further

( �H · ∇)Hk = H
 ∂Hk/∂x
 = ∂(H
Hk)/∂x
, (2.6.54)

taking into account the Maxwell equation (3.10.1):

∇ · �B = p ∇ · �H = p ∂H
/∂x
 = 0. (2.6.55)

The left-hand side of Eq. (2.6.50) can be written as follows (vj = dxj/dt) :
∫

V

�xj(Dvk/Dt) dV =
∫

V

�[D(xjvk)/Dt − vjvk] dV = d
[ ∫

V

�xjvk dV
]/

dt − 2Ejk, (2.6.56)

where

Ejk =
∫

V

�vjvk dV/2, (2.6.57)

is the kinetic energy tensor. Its trace

Ekin = Tr Ejk = E11 + E22 + E33 =
∫

V

�(v2
1 + v2

2 + v2
3) dV/2 =

∫
V

�|�v|2 dV/2, (2.6.58)

is just the kinetic energy of internal macroscopic mass motions. The material derivative D /Dt =
∂ /∂t + vk ∂ /∂xk in Eq. (2.6.56) can be taken in front of the integral due to the fact that for any
derivable function f(xj , t) there subsists the equation (e.g. Chandrasekhar 1969, Tassoul 1978)

∫
V

�(xj , t)
[
Df(xj , t)/Dt

]
dV =

∫
M

[Df(xj , t)/Dt] dM = d

[ ∫
M

f(xj , t) dM

]/
dt

= d

[ ∫
V

�(xj , t) f(xj , t) dV

]/
dt, (2.6.59)
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where we made use of mass conservation dM/dt = 0, the comoving volume being generally a time-
dependent quantity V = V (t). Introducing the Kronecker symbol δjk = 1 if j = k and δjk = 0 if j �= k,
the pressure term from Eq. (2.6.50) can be written as∫

V

xj(∂P/∂xk) dV =
∫

V

[
∂(xjP )/∂xk − δjkP

]
dV =

∫
S

Pxj dSk − δjk

∫
V

P dV, (2.6.60)

by using the one-component form of the Gauss theorem (e.g. Bronstein and Semendjajew 1985):∫
V

(∂f/∂xk) dV =
∫

S

f dSk, (f = f(x1, x2, x3); k = 1, 2, 3). (2.6.61)

dSk is the projection perpendicular to the xk-axis of the surface element dS. The internal gravitational
potential Φ = Φ(�r) in a point �r due to the presence of matter in volume V is given by

Φ = Φ(�r) = G

∫
M

dM ′/|�r − �r′| = G

∫
V

�(�r′) dV ′/|�r − �r′|. (2.6.62)

A tensor generalization of the gravitational potential (2.6.62) is provided by the gravitational potential
tensor

Φjk = Φjk(�r) = G

∫
V

�(�r′) (xj − x′
j)(xk − x′

k) dV ′/|�r − �r′|3, (r2 = x2
1 + x2

2 + x2
3), (2.6.63)

and its trace is just the gravitational potential (2.6.62):

Φ = Tr Φjk = Φ11 + Φ22 + Φ33 = G

∫
V

�(�r′) dV ′/|�r − �r′|. (2.6.64)

The trace of the second integral on the right-hand side of Eq. (2.6.50) – the virial – can be transformed
as follows (e.g. Chandrasekhar 1969, 1981):

∫
M

xk(∂Φ/∂xk) dM = G

∫
M

xk

[
∂

(∫
M

dM ′/|�r − �r′|
)/

∂xk

]
dM

= −G

∫
M

∫
M

[xk(xk − x′
k)
/
|�r − �r′|3] dM dM ′

= −(G/2)
∫

M

∫
M

[(xk − x′
k)(xk − x′

k)
/
|�r − �r′|3] dM dM ′

= −(G/2)
∫

M

∫
M

dM dM ′/|�r − �r′| = −(1/2)
∫

M

Φ dM = W, (r2 = xkxk = x2
k; r′2 = x′

k
2).

(2.6.65)

W is just the gravitational potential energy of the mass inside volume V, as will be obvious from the
following. Let us adopt for the moment the discrete particle representation, and evaluate the gravitational
potential energy W ′

jk of the mass element dMj due to the presence of all other particles dMk, (dMj �=
dMk) of the system. By virtue of Eq. (2.6.62) we have

W ′
jk = −Φ(�rj) dMj = −G dMj

∑
k

dMk

/
|�rj − �rk|, (W ′

jj = 0). (2.6.66)

�rk is the position vector of the mass element dMk. We have introduced in Eq. (2.6.66) the minus sign,
because gravitation is an attractive force.

The gravitational potential energy of the whole mass M is obtained by summing up W ′
jk over all

distinct pairs of particles inside volume V :

W =
∑
j<k

W ′
jk = (1/2)

∑
j,k

W ′
jk = −(G/2)

∑
j,k

dMj dMk

/
|�rj − �rk|. (2.6.67)

If we write Eq. (2.6.67) in integral form, we have

W = (−G/2)
∫

M

∫
M

dM dM ′/|�r − �r′| = −(1/2)
∫

M

Φ dM, (2.6.68)
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which is identical to Eq. (2.6.65).
In the spherically symmetric case we may evaluate W directly, by calculating the work done by the

mass M(r) contained inside radius r to bring the additional amount of matter dM from infinity up to this
radius. Since the attractive force between the mass M(r) and dM(r′) is �F = −GM(r) dM(r′) (�r′/r′3),
the elementary work done is (e.g. Chandrasekhar 1939, Cox and Giuli 1968)

dW =
∫ ∞

r

�F · d�r′ = −GM(r) dM

∫ ∞

r

�r′ · d�r′/r′3 = −GM(r) dM

∫ ∞

r

dr′/r′2 = −GM(r) dM/r.

(2.6.69)

The whole gravitational potential energy of the sphere is obtained by summing up dW over the mass
of the sphere:

W =
∫

M

dW = −G

∫
M

M(r) dM/r, (N = 3). (2.6.70)

The tensor generalization of Eq. (2.6.65) can be effected at once by replacing Φ with Φjk (e.g.
Chandrasekhar 1969)

Wjk = −(1/2)
∫

V

�Φjk dV =
∫

V

�xj(∂Φ/∂xk) dV, (2.6.71)

where Tr Wjk = W.
The magnetic term from Eq. (2.6.50) can be transformed analogously to the pressure term:∫

V

xj [∂(HkH
)/∂x
 − (1/2) ∂H2/∂xk] dV =
∫

V

[∂(xjHkH
)/∂x
 − HjHk] dV

−(1/2)
∫

V

[∂(xjH
2)/∂xk − δjkH2] dV =

∫
S

xjHkH
 dS
 −
∫

V

HjHk dV − (1/2)
∫

S

xjH
2 dSk

+(δjk/2)
∫

V

H2 dV. (2.6.72)

Inserting Eqs. (2.6.56), (2.6.60), (2.6.71), (2.6.72) into Eq. (2.6.50), we obtain the virial theorem
under the form (e.g. Chandrasekhar 1981, Chap. XIII)

d

(∫
V

�xjvk dV

)/
dt = 2Ejk + δjk

∫
V

P dV + Wjk + δjk

∫
V

(pH2/8π) dV

−(p/4π)
∫

V

HjHk dV −
∫

S

xj(P + pH2/8π) dSk + (p/4π)
∫

S

xjHkH
 dS
. (2.6.73)

We now introduce the second order moments of density distribution – the moment of inertia tensor

Ijk =
∫

V

�xjxk dV ; Ijk = Ikj . (2.6.74)

The contraction of this symmetric tensor is just the scalar moment of inertia [cf. Eq. (6.1.179)]:

I = Tr Ijk = I11 + I22 + I33 =
∫

V

�r2 dV =
∫

M

r2 dM. (2.6.75)

While the pressure P generally vanishes on the boundary of the configuration, the magnetic field
generally extends far beyond the boundary of the object. The surface integrals over the magnetic field in
Eq. (2.6.73) will vanish when the surface and the corresponding volume of integration are extended over
the whole space, since the magnetic field of any isolated configuration must decrease at least as rapidly
as the dipole field from Eq. (3.10.25): H ∝ r−3. But in this case of vanishing surface integrals, the
right-hand side of Eq. (2.6.73) contains only symmetric tensors, so the left-hand side must be symmetric
too, and can be expressed in terms of the moment of inertia tensor (2.6.74):

d

(∫
V

�xkvj dV

)/
dt = d

(∫
V

�xjvk dV

)/
dt = d

[ ∫
V

�xj(dxk/dt) dV

]/
dt

−
∫

V

�
[
d
(
xj dxk/dt

)/
dt
]

dV = (1/2)
∫

V

�
[
d(xj dxk/dt + xk dxj/dt)

/
dt
]

dV

= (1/2)
∫

V

�[d2(xjxk)/dt2] dV = (1/2) d2

(∫
V

�xjxk dV

)/
dt2 = (1/2) d2Ijk/dt2, (2.6.76)
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by taking into account Eq. (2.6.59). We also introduce the magnetic energy tensor

Hjk = (p/8π)
∫

V

HjHk dV. (2.6.77)

Its trace is just the magnetic energy of the configuration (e.g. Roberts 1967):

Um = Tr Hjk = Hkk = H11 + H22 + H33 = (p/8π)
∫

V

H2 dV. (2.6.78)

Thus, Eq. (2.6.73) takes the equivalent form

(1/2) d2Ijk/dt2 = 2Ejk + δjk

∫
V

P dV + Wjk + δjkUm − 2Hjk

−
∫

S

xj(P + pH2/8π) dSk + (p/4π)
∫

S

xjHkH
 dS
. (2.6.79)

Contracting the indices in Eq. (2.6.79) we obtain the well known scalar form of the virial theorem

(1/2) d2I/dt2 = 2Ekin + 3
∫

V

P dV + W + Um −
∫

S

xj [δjkP + (p/4π)(δjkH2/2 − HjHk)] dSk,

(2.6.80)

by making j = k, and changing the summation index � into k in the last term of Eq. (2.6.79).
The pressure tensor, including the contribution of magnetic fields, can be defined as

Pjk = δjkP + (p/4π)(δjkH2/2 − HjHk), (2.6.81)

and the total mean pressure Ptot is just equal to (Cox and Giuli 1968)

Ptot = (1/3) Tr Pjk = (P11 + P22 + P33)/3 = (3P + 3pH2/8π − pH2/4π)/3

= P + pH2/24π = P + Pm. (2.6.82)

The term Pm = pH2/24π may be regarded as a mean magnetic pressure. The mean magnetic pressure
Pm is composed of a hydrostatic magnetic pressure pH2/8π, acting uniformly in all directions, and of
a magnetic tension pH2/4π, acting along the lines of the magnetic field intensity �H (e.g. Alfvén and
Fälthammar 1963, Tassoul 1978, Chandrasekhar 1981). Eq. (2.6.80) can also be written in terms of the
energy of the system, by observing that according to Eqs. (1.7.53), (1.7.54) the pressure assumes in the
extreme relativistic limit for noninteracting particles the value

P = ε(kin)/3, (w = 1), (2.6.83)

where ε(kin) is the energy density of kinetic translational motions. Eq. (2.6.83) also applies to radiation
and magnetic fields, so we can write [cf. Eqs. (1.4.1) and (2.6.82)]:

Pr = ε(rad)/3 = aT 4/3; ε(rad) = aT 4, (2.6.84)

Pm = ε(m)/3 = pH2/24π; ε(m) = pH2/8π. (2.6.85)

a is Stefan’s constant, and ε(rad), ε(m) the energy density of radiation and of the magnetic field,
respectively.

In the case of noninteracting particles obeying Newtonian mechanics – in absence of radiation and
magnetic fields – the mean total pressure is obtained from Eqs. (1.7.53)-(1.7.54):

Ptot = 2ε(kin)/3, (w = 2). (2.6.86)

In a system of interacting particles without radiation and magnetic fields, the pressure arises from
kinetic transfer of momentum between particles and from particle interactions, such as intermolecular
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forces, that are dominant in liquids and solids. Denoting by P ′ the contribution from particle interactions,
Eq. (2.6.86) extends to

Ptot = P ′ + 2ε(kin)/3. (2.6.87)

Generally, the total mean pressure can be split into four terms

Ptot = 2ε(kin)/3 + P ′ + Pr + Pm, (2.6.88)

with contributions arising respectively from Newtonian kinetic transfer of momentum, particle interac-
tions, radiation, and magnetic fields. Thus, Eq. (2.6.80) can be written in the alternative form

(1/2) d2I/dt2 = 2Ekin + W + 3
∫

V

(2ε(kin)/3 + P ′ + Pr + Pm) dV −
∫

S

xkPjk dSj

= 2Ekin + W +
∫

V

[2ε(kin) + 3P ′ + ε(rad) + ε(m)] dV −
∫

S

xkPjk dSj

= 2Ekin + 2Eth + W + 3
∫

V

P ′ dV + Urad + Um −
∫

S

xkPjk dSj , (2.6.89)

where

Eth =
∫

V

ε(kin) dV ; Urad =
∫

V

ε(rad) dV ; Um =
∫

V

ε(m) dV, (2.6.90)

denotes the thermal, radiative, and magnetic energy of the system, respectively. The sum of macroscopic
Ekin and microscopic Eth translational particle motions of the system is the total kinetic energy of the
system.

As shown by Eq. (1.7.58), the pressure is related to the internal energy density of a perfect, relativistic
or nonrelativistic gas by

P = (γ − 1)ε(int). (2.6.91)

We generalize this equation also to other systems, with the understanding that Γ is equal to the ratio
of specific heats γ = cP /cV only for a perfect gas. Thus, including also radiation pressure and particle
interactions, we may write

P = (Γ − 1)ε(int), (Γ > 1; Ptot = P + Pm; P = 2ε(kin)/3 + P ′ + Pr). (2.6.92)

Actually, in a perfect gas-radiation mixture without e±-pairs the value of Γ differs at most by several
percent from the first adiabatic index Γ1 shown in Eq. (1.4.20), (see Fowler 1966, Table A1, if γg = 5/3).
For comparison, we obtain by inserting for the pressure from Eq. (1.4.11), and for the internal energy
density ε(int) = R�T/µ(γg − 1) + aT 4 from Eq. (1.4.13):

Γ = 1 + P/ε(int) = [4(γg − 1) − β(3γg − 4)]
/
[3(γg − 1) − β(3γg − 4)]. (2.6.93)

Returning now to Eq. (2.6.89), we get with the aid of Eq. (2.6.92)

(1/2) d2I/dt2 = 2Ekin + W + 3(Γ − 1)U + Um −
∫

S

xkPjk dSj , (2.6.94)

where

U =
∫

V

ε(int) dV = [1
/
(Γ − 1)]

∫
V

P dV, (2.6.95)

is the internal energy of the system including radiation energy Urad, but excepting the magnetic energy
Um. If the pressure Pjk on the boundary is isotropic and constant (Pjk = PS = const), we can transform
the last term from Eq. (2.6.94) as follows:

∫
S

xkPjk dSj = PS

∫
S

xk dSk = PS

∫
S

�r · d�S = PS

∫
V

(∇ · �r) dV = 3PSV, (∇ · �r = 3). (2.6.96)
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If the system is in hydrostatic or quasihydrostatic equilibrium, we have I = const, d2I/dt2 = 0, Ekin =
0. If the surface pressure PS is zero too, Eq. (2.6.94) takes the simple form (Cox and Giuli 1968)

W + 3(Γ − 1)U + Um = 0 or U = −(W + Um)/3(Γ − 1), (2.6.97)

and the total energy of the system becomes equal to

E = W + U + Um = (−3Γ + 4)U = (3Γ − 4)(W + Um)/3(Γ − 1). (2.6.98)

The condition of dynamical stability is E < 0, or (Chandrasekhar and Fermi 1953)

(3Γ − 4)(W + Um) < 0, (W < 0), (2.6.99)

since Γ > 1 via Eq. (2.6.92). Thus, even if Γ > 4/3, a sufficiently strong magnetic field can induce
dynamical instability, making W + Um > 0. Provided that Γ > 4/3, the condition of dynamical stability
is Um < −W.

We may particularize the system further, by taking the magnetic field equal to zero: Um = 0. The
condition of dynamical stability (2.6.99) yields 3Γ− 4 > 0, (W < 0), i.e. the system is stable if Γ > 4/3.
Eqs. (2.6.97) and (2.6.98) become

U = −W/3(Γ − 1) and E = (3Γ − 4)W/3(Γ − 1). (2.6.100)

Inserting for the gravitational energy of a sphere from Eq. (2.6.137), we obtain E = −(3Γ −
4)GM2

1 /(5 − n)(Γ − 1)r2
1, (−1 < n < 5), showing that E = 0 when matter is dispersed to infinity,

and E < 0 if the stable sphere (Γ > 4/3) has contracted to radius r1 (see also Sec. 5.12).
Differentiating Eq. (2.6.100), we get (Chandrasekhar 1939)

∆U = −∆W/3(Γ − 1) and ∆E = (3Γ − 4) ∆W/3(Γ − 1), (Γ > 1). (2.6.101)

Below, we briefly discuss the consequences of a slow quasihydrostatic contraction of the system. The
only sources of energy of the system are assumed to be internal and gravitational energy. If the system
contracts, we have ∆W < 0 (cf. Eq. (2.6.69) for the spherically symmetric case). If Γ > 4/3, the total
energy of the system decreases by the amount ∆E from Eq. (2.6.101). In other words, only the fraction
1/3(Γ− 1) of the gravitational energy change is used to increase the internal energy of the system, while
the fraction 1 − 1/3(Γ − 1) = (3Γ − 4)/3(Γ − 1) leaves the system, being radiated away. If Γ = 4/3, the
energies E and ∆E are zero, and the total energy of the system is conserved; the system passes from
one equilibrium state to the other without energy change. All the gravitational energy released goes into
internal energy: ∆U = −∆W. If 1 < Γ < 4/3, we observe from Eq. (2.6.101) that ∆E > 0 if ∆W < 0,
i.e. a contraction of the system due to the change ∆W < 0 would cause the total energy of the star to
increase, which is clearly impossible for a system without nuclear energy sources. If 1 < Γ < 4/3, we
have ∆U > −∆W, and the increase in internal energy would be larger than the energy ∆W, (∆W < 0)
supplied by gravitational contraction. If 1 < Γ < 4/3, the system cannot be in a state of quasihydrostatic
equilibrium (cf. Sec. 5.3.1). The above discussion applies to systems in quasihydrostatic equilibrium,
when d2I/dt2 = 0.

For a three-dimensional space with the distribution of matter having cylindrical and planar symmetry,
we present below some particular forms of the virial theorem, including magnetic fields.

For cylindrical symmetry we introduce (�, ϕ, z)-coordinates, � and ϕ being polar coordinates, and z
directed along the axis of the cylinder. The pressure is a function of the radial coordinate P = P (�),
while the velocity is directed along the radial direction �v = �v(v
). The magnetic field is assumed to extend
along the z-axis: �H = �H(Hz), where Hz = Hz(�) = H. The sole nonzero component of Eq. (2.6.50) is
along the �-coordinate, and reads per unit length∫

M

� (Dv
/Dt) dM = −
∫

M

2GM ′ dM ′ −
∫

V

� [d(P + pH2/8π)/d�] dV, (2.6.102)

where we have taken into account that F = ∂Φ/∂� = −2GM/� by virtue of Eq. (2.6.30). We transform
Eq. (2.6.102) analogously to the three-dimensional case:

(1/2) d2

(∫
M

�2 dM

)/
dt2 −

∫
M

v2

 dM

= −GM2 + 2
∫

V

(P + pH2/8π) dV −
∫

S

(P + pH2/8π)� dS, (2.6.103)
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where dM = � dV = 2π�� d�, dS = 2π d�. The integral over V in Eq. (2.6.102) has been transformed
via the divergence formula (B.46), [�r = �r(�, 0, 0)] :

∇ · [(P + pH2/8π) �r] = (1/�) d[�2(P + pH2/8π)]
/
d� = � d(P + pH2/8π)

/
d� + 2(P + pH2/8π).

(2.6.104)

Eq. (2.6.103) can be written in a form analogous to Eqs. (2.6.89), (2.6.94) in virtue of Eqs. (2.6.82)-
(2.6.88):

(1/2) d2I/dt2 = 2Ekin + 4Eth/3 + 2
∫

V

P ′ dV + 2Urad/3 + 2Um − GM2 − 2PSV. (2.6.105)

PS denotes the constant isotropic value of P + pH2/8π on the cylinder’s surface. Inserting further
Eq. (2.6.92) into Eq. (2.6.103), we obtain another form of the virial theorem for our particular choice of
cylindrical symmetry (Chandrasekhar and Fermi 1953):

d2I/dt2 = 2Ekin + 2(Γ − 1)U + 2Um − GM2 − 2PSV. (2.6.106)

In the plane-parallel case we assume P = P (z), �v = �v(vz), �H = �H(H
), H
 = H
(z) = H, and obtain
for the surface unit, analogously to Eq. (2.6.102):∫

M

z (Dvz/Dt) dM = −
∫

M

2πzGM ′ dM ′ −
∫

V

z [d(P + pH2/8π)
/
dz] dV. (2.6.107)

The equations for a slab are analogous to Eqs. (2.6.103)-(2.6.106), and are written down consecutively:

(1/2) d2

(∫
M

z2 dM

)/
dt2 −

∫
M

v2
z dM = −

∫
M

2πzGM ′ dM ′

+
∫

V

(P + pH2/8π) dV −
∫

S

(P + pH2/8π)z dS, (2.6.108)

where dM = � dV = � dz, dS = 1, �r = �r(0, 0, z), and

∇ · [(P + pH2/8π)�r] = d[z(P + pH2/8π)]
/
dz = d(P + pH2/8π)

/
dz + P + pH2/8π, (2.6.109)

(1/2) d2I/dt2 = 2Ekin + 2Eth/3 +
∫

V

P ′ dV + Urad/3 + Um −
∫

M

2πzGM ′ dM ′ − PSV, (2.6.110)

(1/2) d2I/dt2 = 2Ekin + (Γ − 1)U + Um −
∫

M

2πzGM ′ dM ′ − PSV. (2.6.111)

So far, we have discussed the virial theorem under the assumption that the microscopic and macro-
scopic velocities are nonrelativistic. If these velocities are relativistic, with Newtonian gravitation still
valid, the problem becomes slightly more complicated (Cox and Giuli 1968). In Eq. (2.1.1) we have to
replace the force per unit mass d�v/dt = d2�r/dt2 by the relativistically correct term d�p/dt, where �p is the
relativistic momentum per unit rest mass given by Eq. (1.2.11). Thus, we can write

�r · d�p/dt = �r · d[�v
/
(1 − v2/c2)1/2]/dt = d[�r · �v

/
(1 − v2/c2)1/2]/dt − v2

/
(1 − v2/c2)1/2

= d
{
[1
/
2(1 − v2/c2)1/2] dr2/dt

}/
dt − v2

/
(1 − v2/c2)1/2

= d2[r2
/
2(1 − v2/c2)1/2]

/
dt2 − d[(r2/2) d(1 − v2/c2)−1/2/dt]

/
dt − v2

/
(1 − v2/c2)1/2. (2.6.112)

We define the relativistic moment of inertia for macroscopic motion as

I =
∫

M

[r2
/
(1 − v2/c2)1/2] dM. (2.6.113)

The last term in Eq. (2.6.112) can be expressed through the kinetic energy density ε(kin) from Eq.
(1.2.15). We have

ε(kin) = ε(kin)
r − ε = �c2[1

/
(1 − v2/c2)1/2 − 1] = �c2[1 − (1 − v2/c2)1/2]

/
(1 − v2/c2)1/2

= �v2
/{

(1 − v2/c2)1/2[1 + (1 − v2/c2)1/2]
}
, (2.6.114)
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and

v2
/
(1 − v2/c2)1/2 = ε(kin)[1 + (1 − v2/c2)1/2]/�. (2.6.115)

We integrate Eq. (2.6.112) over the rest mass M, and use Eqs. (2.6.113), (2.6.115):∫
M

(�r · d�p/dt) dM = (1/2) d2I/dt2 − d

{∫
M

[
(r2/2) d(1 − v2/c2)−1/2

/
dt] dM

}/
dt

−[1 + (1 − v2/c2)1/2]
∫

V

ε(kin) dV. (2.6.116)

The integral of ε(kin) dV is just the kinetic energy Ekin of relativistic macroscopic mass motions, and
Eq. (2.6.89) writes in the relativistic case

(1/2) d2I/dt2 − d

{∫
M

[(r2/2) d(1 − v2/c2)−1/2/dt] dM

}/
dt

= [1 + (1 − v2/c2)1/2]Ekin + W + 3
∫

V

[
wε(kin)/3 + P ′ + Pr + Pm

]
dV −

∫
S

xkPjk dSj , (2.6.117)

where we have replaced via Eq. (1.7.53) the pressure arising from kinetic transfer of momentum. The
factor w, (1 ≤ w ≤ 2) from Eq. (1.7.53) has the same form as the factor 1+(1−v2/c2)1/2 near Ekin, but
the relevant velocity is the microscopic velocity of translational particle motion, instead of the velocity
of macroscopic mass motions.

To obtain the virial theorem in N -dimensional space, we write

(1/2) d2I/dt2 − d

{∫
M

[(r2/2) d(1 − v2/c2)−1/2/dt] dM

}/
dt

= [1 + (1 − v2/c2)1/2]Ekin −
∫

V

�r · ∇P dV +
∫

M

�r · ∇Φ dM, (2.6.118)

combining Eqs. (2.6.50) and (2.6.117) in the nonmagnetic case.
In a N -dimensional space with radial symmetry we have in the nonmagnetic case P = P (r) =

wε(kin)/3 + P ′ + Pr, Φ = Φ(r) via Eq. (2.6.88), the pressure being isotropic. r denotes the radial
distance from the origin if N ≥ 3, from the symmetry axis if N = 2, and from the symmetry plane if
N = 1. The pressure integral can be transformed according to∫

V

�r · ∇P dV =
∫

V

r (dP/dr) dV =
∫

V

∇ · (P�r) dV − N

∫
V

P dV

=
∫

S

P �r · d�S − N

∫
V

P dV =
∫

S

Pr dS − N

∫
V

P dV, (2.6.119)

where we have used Eq. (C.13): ∇ · (P�r) = (1/rN−1) d(rNP )/dr = NP + r dP/dr.
Thus, the radially symmetric form of the nonmagnetic virial theorem in N -dimensional space becomes

(1/2) d2I/dt2 − d

{∫
M

[(r2/2) d(1 − v2/c2)−1/2
/
dt] dM

}/
dt

= [1 + (1 − v2/c2)1/2]Ekin + N

∫
V

P dV +
∫

M

r (dΦ/dr) dM −
∫

S

Pr dS. (2.6.120)

If the pressure on the surface PS is constant, and �H = 0, v � c, Eq. (2.6.120) is analogous to Eq.
(2.6.80) if N = 3, to Eq. (2.6.105) if N = 2, and to Eq. (2.6.110) if N = 1.

For radial symmetry the volume V is bounded by an inner and outer surface S0 and S1, corresponding
to the radial coordinates r = r0 and r1, (r1 ≥ r0), respectively. The pressures PS0 and PS1 acting on
the boundary surfaces are constant because of radial symmetry. The volume V occupied by the system
is just the difference of the volumes V1 and V0, bounded by the radial surfaces S1 and S0 : V = V1 − V0.
By virtue of Eqs. (2.6.119), (C.13) we can write∫

S

Pr dS =
∫

V

∇ · (P�r) dV =
∫

V1

∇ · (P�r) dV −
∫

V0

∇ · (P�r) dV =
∫

S1

P �r · d�S −
∫

S0

P �r · d�S

= PS1

∫
S1

�r · d�S − PS0

∫
S0

�r · d�S = PS1

∫
V1

∇ · �r dV − PS0

∫
V0

∇ · �r dV = N(PS1V1 − PS0V0).

(2.6.121)
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Inserting Eq. (2.6.121) into Eq. (2.6.120), and using Eq. (2.6.95), we write down the virial theorem
in a form suitable for polytropic applications:

(1/2) d2I/dt2 − d

{∫
M

[(r2/2) d(1 − v2/c2)−1/2
/
dt] dM

}/
dt

= [1 + (1 − v2/c2)1/2]Ekin + N(Γ − 1)U +
∫

M

r (dΦ/dr) dM − N(PS1V1 − PS0V0). (2.6.122)

2.6.7 Gravitational Potential Energy and Internal Energy

The gravitational energy per unit surface is infinite in the plane-symmetrical case (N = 1), as well as
the gravitational energy per unit length of a cylinder (N = 2). This can be shown at once, if we evaluate
the change of gravitational energy according to Eqs. (2.6.30) and (2.6.69):

dW =
∫ ∞

r

�F · d�r′ = −2πGM(r) dM

∫ ∞

r

dr′ = −2πGM(r) dM r′
∣∣∣∞
r

= ∞, (N = 1), (2.6.123)

dW =
∫ ∞

r

�F · d�r′ = −2GM(r) dM

∫ ∞

r

dr′/r′ = −2GM(r) dM ln r′
∣∣∣∞
r

= ∞, (N = 2). (2.6.124)

Only if N ≥ 3, we have

dW =
∫ ∞

r

�F · d�r′ = −2πG
{
Γ(N/2)

/
[Γ(1/2)]N

}
M(r) r2−N dM/(N − 2), (2.6.125)

where we have inserted Eq. (2.6.49). The gravitational energy of the whole mass M becomes

W = −[2πG/(N − 2)]
{
Γ(N/2)

/
[Γ(1/2)]N

}∫
M

r2−NM(r) dM, (N ≥ 3). (2.6.126)

If N = 3, Eq. (2.6.126) turns into the well known result (e.g. Cox and Giuli 1968)

W = −G

∫
M

M(r) dM/r, (N = 3). (2.6.127)

The gravitational potential energy from Eqs. (2.6.123), (2.6.124) is infinite if N = 1, 2, but in formal
analogy to the spherical case N = 3, we may call the integral from Eq. (2.6.65)

W = −(1/2)
∫

M

Φ dM =
∫

M

xk (∂Φ/∂xk) dM =
∫

M

�r · ∇Φ dM, (2.6.128)

the gravitational energy of a N -dimensional radially symmetric polytrope. We insert r, dM, and ∇Φ
from Eqs. (2.6.1), (2.6.12), (2.6.32):

W = 2
{
[Γ(1/2)]N

/
Γ(N/2)

}
(n + 1)K�

1+1/n
0 αN

∫ ξ1

ξ0

ξNθnθ′ dξ, (n �= −1,±∞), (2.6.129)

where we consider – quite generally – the mass contained between the arbitrary radial coordinates ξ0 and
ξ1 of a polytrope. Integrating by parts, we get in virtue of Eq. (2.1.14):

∫ ξ1

ξ0

ξNθnθ′ dξ = ξNθn+1/(n + 1)
∣∣∣ξ1

ξ0

− [N/(n + 1)]
∫ ξ1

ξ0

ξN−1θn+1 dξ

= ξNθn+1/(n + 1)
∣∣∣ξ1

ξ0

± [N/(n + 1)]
∫ ξ1

ξ0

θ d(ξN−1θ′) = ξNθn+1/(n + 1)
∣∣∣ξ1

ξ0

±[N/(n + 1)]ξN−1θθ′
∣∣∣ξ1

ξ0

∓ [N/(n + 1)]
∫ ξ1

ξ0

ξN−1θ′2 dξ. (2.6.130)



2.6.7 Gravitational Potential Energy and Internal Energy 93

The integral (2.6.129) can also be transformed in another way:

∫ ξ1

ξ0

ξNθnθ′ dξ = ∓
∫ ξ1

ξ0

ξθ′ d(ξN−1θ′) = ∓
∫ ξ1

ξ0

ξN−1θ′ d(ξN−1θ′)/ξN−2

= ∓ξNθ′2/2
∣∣∣ξ1

ξ0

∓ [(N − 2)/2]
∫ ξ1

ξ0

ξN−1θ′2 dξ. (2.6.131)

Eliminating
∫ ξ1

ξ0
ξN−1θ′2 dξ between Eqs. (2.6.130) and (2.6.131), we find

∫ ξ1

ξ0

ξNθnθ′ dξ =
{
(N − 2)/[(N − 2)(n + 1) − 2N ]

}[
ξNθn+1 ± NξN−1θθ′ ± NξNθ′2/(N − 2)

]∣∣∣ξ1

ξ0

.

(2.6.132)

Thus, Eq. (2.6.129) can finally be written as (Viala and Horedt 1974a if N=3, Kimura and Liu 1978)

W = 8πGαN+2�2
0

{
[Γ(1/2)]N

/
Γ(N/2)

}{
(N − 2)

/
[(N − 2)(n + 1) − 2N ]

}
×
[
± ξNθn+1 + NξN−1θθ′ + NξNθ′2/(N − 2)

]∣∣∣ξ1

ξ0

, (n �= −1,±∞; N = 1, 2, 3, ...), (2.6.133)

where we have inserted for K via Eq. (2.6.1). At the finite boundary we have θ, θn+1 = 0, and the
gravitational energy of a complete polytrope with finite boundary ξ1 becomes

W1 = 8πGαN+2�2
0

{
[Γ(1/2)]N

/
Γ(N/2)

}{
N/[(N − 2)(n + 1) − 2N ]

}
ξN
1 θ′1

2

= 2πG
{
[Γ(N/2)

/
[Γ(1/2)]N

}{
N
/
[(N − 2)(n + 1) − 2N ]

}
M2

1 /rN−2
1 , (ξ0 = 0), (2.6.134)

by using Eqs. (2.6.1), (2.6.12), and indexing with 1 the boundary values of a complete polytrope.
For the cases of practical interest we have, by anticipating the results from the next subsection on the

finiteness and infiniteness of mass and radius:

N = 1 : W1 = −2πGM2
1 r1/(3 + n), (−1 < n < ∞), (2.6.135)

N = 2 : W1 = −GM2
1 , (−1 < n < ∞), (2.6.136)

N = 3 : W1 = −3GM2
1 /(5 − n)r1, (−1 < n < 5). (2.6.137)

Eqs. (2.6.135) and (2.6.136) seem to imply that the gravitational energy per unit surface of a slab,
and the gravitational energy per unit length of a cylinder is finite – opposite to our earlier findings from
Eqs. (2.6.123), (2.6.124). However, it should be kept in mind that Eqs. (2.6.135), (2.6.136) have been
derived from a formal analogy with the finite sphere. Therefore, our earlier statements remain entirely
valid. The same holds also in the isothermal case (n = ±∞) shown by Eqs. (2.6.153), (2.6.157).

If (N − 2)(n + 1) − 2N = 0 or n = (N + 2)/(N − 2), the gravitational energy from Eq. (2.6.134)
would seem at first sight to become infinite (Chandrasekhar 1939, Cox and Giuli 1968). However, since
n = (N + 2)/(N − 2) is just the value of the polytropic index corresponding to the Schuster-Emden
integral (2.3.36) if N ≥ 3, the value of r1 is infinite, and the denominator from Eq. (2.6.134) takes the
undefined form 0 · ∞. A more careful evaluation of Eq. (2.6.134) shows that the gravitational energy is
finite if n = (N + 2)/(N − 2), as first pointed out by Buchdahl (1978) in the spherical case N = 3. It will
be obvious from Eq. (2.6.193) that the mass M1 of a polytrope with index n = (N + 2)/(N − 2) tends
to a finite limit if N ≥ 3, so we have to evaluate in Eq. (2.6.134) only the limit of

1
/[

(N − 2)(n + 1) − 2N
]
rN−2
1 =

{
[Γ(1/2)]N

/
Γ(N/2)

}2[(n + 1)K�
1+1/n
0 αN/πGNM2

1 ]

×
∫ ∞

0

ξNθnθ′ dξ = [α2−N/N(ξN−1
1 θ′1)

2]
∫ ∞

0

ξNθnθ′ dξ, [N ≥ 3; n = (N + 2)/(N − 2)],

(2.6.138)

where we have equated Eqs. (2.6.129) and (2.6.134), and inserted for M1 according to Eq. (2.6.12).
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We evaluate the integral from Eq. (2.6.138) explicitly in the spherical case N = 3, and prove its
finiteness in the general case N ≥ 3 (Horedt 1987c). If N = 3, the Schuster-Emden integral (2.3.36)
becomes θ = (1 + ξ2/3)−1/2, and (Buchdahl 1978)

∫ ∞

0

ξ3θnθ′ dξ = −(1/3)
∫ ∞

0

ξ4 dξ
/
(1 + ξ2/3)4 =

[
ξ4
/
6(1 + ξ2/3)4 + 3ξ

/
8(1 + ξ2/3)2

−9ξ/16(3 + ξ2) − (33/2/16) arctan(ξ/31/2)
]∣∣∣∞

0
= −33/2π/32, (N = 3; n = 5). (2.6.139)

We insert Eq. (2.6.139) into Eq. (2.6.138), taking into account that by virtue of Eq. (2.6.145)
limξ→∞(ξ2θ′) = −31/2 :

1
/[

(N − 2)(n + 1) − 2N
]
rN−2
1 = 1/(n − 5)r1 = −π/32 × 31/2α, (N = 3; n = 5). (2.6.140)

Substituting Eq. (2.6.140) into Eq. (2.6.137), we find

W = −31/2πGM2
1 /32α = −32/3π4/3G�

1/3
0 M

5/3
1 /213/3, (N = 3; n = 5), (2.6.141)

since via Eq. (2.6.18): α = (M1/22 × 31/2π�0)1/3.
In the general case N ≥ 3, we have according to Eq. (2.3.36) θ = [1 + ξ2/N(N − 2)](2−N)/2 and

ξNθnθ′ = −ξN+1
/
N [1 + ξ2/N(N − 2)]N+1, (2.6.142)

lim
ξ→∞

(ξNθnθ′) = −NN (N − 2)N+1/ξN+1 = 0, [N ≥ 3; n = (N + 2)/(N − 2)]. (2.6.143)

Thus, ξNθnθ′ is finite in the interval [0,∞), and because ξNθnθ′ changes as ξ−N−1 if ξ → ∞, we infer
that its integral from 0 to ∞ is finite. Because

ξN−1θ′ = −ξN
/
N [1 + ξ2/N(N − 2)]N/2, (2.6.144)

lim
ξ→∞

(ξN−1θ′) = −[N(N − 2)]N/2
/
N, [N ≥ 3; n = (N + 2)/(N − 2)], (2.6.145)

we conclude that Eq. (2.6.138) is finite: The gravitational potential energy W1 from Eq. (2.6.134) is
finite if N ≥ 3 and n = (N + 2)/(N − 2).

If n > (N + 2)/(N − 2), the gravitational energy from Eq. (2.6.134) is positive, and consequently
these polytropes extend to infinity if N ≥ 3.

If n = ±∞, the gravitational potential energy (2.6.128) becomes

W = −2
{
[Γ(1/2)]N

/
Γ(N/2)

}
K�0α

N

∫ ξ1

ξ0

ξN exp(−θ)θ′ dξ, (2.6.146)

where we have inserted for r, dM,∇Φ according to Eqs. (2.6.2), (2.6.13), (2.6.33), respectively. The
evaluation of the integral (2.6.146) is straightforward by using Eq. (2.1.21):

∫ ξ1

ξ0

ξN exp(−θ)θ′ dξ = −ξN exp(−θ)
∣∣∣ξ1

ξ0

+ N

∫ ξ1

ξ0

exp(−θ)ξN−1 dξ

=
[
− ξN exp(−θ) + NξN−1θ′

]∣∣∣ξ1

ξ0

. (2.6.147)

Eq. (2.6.146) becomes eventually (K = 4πG�0α
2) :

W = 8πG
{
[Γ(1/2)]N

/
Γ(N/2)

}
�2
0α

N+2
[
ξN exp(−θ) − NξN−1θ′

]∣∣∣ξ1

ξ0

, (n = ±∞; N = 1, 2, 3, ...).

(2.6.148)

If N ≥ 3, the asymptotic solution for the Lane-Emden function is given by Eqs. (2.4.103), (2.4.108),
(2.4.110). In a first approximation:

θ ≈ ln[ξ2/2(N − 2)], (ξ → ∞; n = ±∞; N ≥ 3). (2.6.149)
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Thus, exp(−θ) ≈ 2(N − 2)/ξ2 and θ′ ≈ 2/ξ if ξ → ∞, and we observe by inserting ξ → ∞ into Eq.
(2.6.148) that the gravitational energy of a complete N -dimensional polytrope is infinite if n = ±∞ and
N ≥ 3. However, in the plane and cylindrical case N = 1, 2, what we have called gravitational energy,
tends to a finite limit if r, ξ → ∞, as will be shown subsequently.

If N = 1, we have exp(−θ) = 1
/

cosh2(ξ/21/2) in virtue of Eq. (2.3.65), and

θ′ = 21/2 tanh(ξ/21/2); lim
ξ→∞

θ′ = 21/2, (N = 1; n = ±∞). (2.6.150)

Thus, Eq. (2.6.148) reads

W1 = −23/2K�0α = −21/2K3/2�
1/2
0 /π1/2G1/2, (N = 1; n = ±∞), (2.6.151)

if we insert α2 = K/4πG�0 from Eq. (2.6.2). The mass of the complete slab (2.6.15) turns out to be

M1 = 2�0αθ′1 = 23/2�0α = (2K�0/πG)1/2, (N = 1; n = ±∞). (2.6.152)

We eliminate the polytropic constant K between Eqs. (2.6.151), (2.6.152), and find

W1 = −KM1 = −πGM3
1 /2�0, (N = 1; n = ±∞). (2.6.153)

In the cylindrical case Eq. (2.3.48) yields exp(−θ) = 1
/
(1 + ξ2/8)2, and

θ′ = ξ
/
2(1 + ξ2/8); lim

ξ→∞
θ′ = 4/ξ, (N = 2; n = ±∞). (2.6.154)

Eq. (2.6.148) becomes

W1 = −16πK�0α
2 = −4K2/G, (N = 2; n = ±∞). (2.6.155)

From Eq. (2.6.17) we have

M1 = 2π�0α
2ξ1θ

′
1 = 8π�0α

2 = 2K/G, (N = 2; n = ±∞), (2.6.156)

and

W1 = −2KM1 = −GM2
1 , (N = 2; n = ±∞). (2.6.157)

The internal energy of a polytrope U is given by Eq. (2.6.95), and can be evaluated in a similar
manner as the gravitational energy (2.6.129):

U = [1/(Γ − 1)]
∫

V

P dV = [K/(Γ − 1)]
∫

V

�1+1/n dV

= [2K�
1+1/n
0 αN/(Γ − 1)]

{
[Γ(1/2)]N

/
Γ(N/2)

}∫ ξ1

ξ0

ξN−1θn+1 dξ, (n �= −1,±∞), (2.6.158)

where we have inserted for P and dV via Eqs. (2.6.3), (2.6.9). We have

∫ ξ1

ξ0

ξN−1θn+1 dξ = ξNθn+1/N
∣∣∣ξ1

ξ0

− [(n + 1)/N ]
∫ ξ1

ξ0

ξNθnθ′ dξ

=
{
1
/[

(N − 2)(n + 1) − 2N
]}[

− 2ξNθn+1 ∓ (N − 2)(n + 1)ξN−1θθ′ ∓ (n + 1)ξNθ′2
]∣∣∣ξ1

ξ0

,

(2.6.159)

via Eq. (2.6.132). Thus

U =
{
2K�

1+1/n
0 αN

/
(Γ − 1)[(N − 2)(n + 1) − 2N ]

}{
[Γ(1/2)]N

/
Γ(N/2)

}
×
[
− 2ξNθn+1 ∓ (N − 2)(n + 1)ξN−1θθ′ ∓ (n + 1)ξNθ′2

]∣∣∣ξ1

ξ0

, (n �= −1,±∞; N = 1, 2, 3, ...).

(2.6.160)
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If n = ±∞, we get in a similar manner

U = [1/(Γ − 1)]
∫

V

P dV = [2K�0α
N/(Γ − 1)]{[Γ(1/2)]N

/
Γ(N/2)}

∫ ξ1

ξ0

ξN−1 exp(−θ) dξ

= [2K�0α
N/(Γ − 1)]{[Γ(1/2)]N

/
Γ(N/2)} ξN−1θ′

∣∣∣ξ1

ξ0

, (n = ±∞; N = 1, 2, 3, ...), (2.6.161)

where we have used Eq. (2.1.21).
Eqs. (2.6.160) and (2.6.161) can be brought into the form of the virial theorem from Eq. (2.6.122):

U = [2K�
1+1/n
0 αN/(Γ − 1)]{[Γ(1/2)]N

/
Γ(N/2)}

{
ξNθn+1/N

∣∣∣∣
ξ1

ξ0

− [(n + 1)/N ]
∫ ξ1

ξ0

ξNθnθ′ dξ

}

= [K�
1+1/n
0 V θn+1/(Γ − 1)]

∣∣∣ξ1

ξ0

− W/N(Γ − 1) = [1/(Γ − 1)](V1P1 − V0P0) − W/N(Γ − 1),

(n �= −1,±∞; N = 1, 2, 3, ...), (2.6.162)

U = [2K�0α
N/(Γ − 1)]{[Γ(1/2)]N

/
Γ(N/2)}

[
ξN exp(−θ)/N

∣∣∣∣
ξ1

ξ0

+ (1/N)
∫ ξ1

ξ0

ξN exp(−θ)θ′ dξ

]

= [K�0V exp(−θ)/(Γ − 1)]
∣∣∣ξ1

ξ0

− W/N(Γ − 1) = [1/(Γ − 1)](V1P1 − V0P0) − W/N(Γ − 1),

(n = ±∞; N = 1, 2, 3, ...), (2.6.163)

by virtue of Eqs. (2.6.129) and (2.6.146), respectively.
Thus, for a radially symmetric polytrope in hydrostatic equilibrium, the virial theorem (2.6.122) can

be written as (I = const; �v = d�r/dt = 0; �H = 0)

N(Γ − 1)U + W − N(V1P1 − V0P0) = 0, (n �= −1; N = 1, 2, 3, ...). (2.6.164)

The last term vanishes for a complete polytrope with finite boundary, since in this case V0, P1 = 0
and P0, V1 = finite :

N(Γ − 1)U1 + W1 = 0, (n �= −1). (2.6.165)

In the cases of practical interest we obtain for complete polytropes with finite boundary

N = 1 : U1 = 2πGM2
1 r1/(3 + n)(Γ − 1), (−1 < n < ∞), (2.6.166)

N = 2 : U1 = GM2
1 /2(Γ − 1), (−1 < n < ∞), (2.6.167)

N = 3 : U1 = GM2
1 /(5 − n)(Γ − 1)r1, (−1 < n < 5), (2.6.168)

by writing U1 = −W1/N(Γ − 1), and inserting from Eqs. (2.6.135)-(2.6.137).
Even for polytropes with infinite extension the product V1P1 vanishes sometimes when r, ξ → ∞. As

an example we quote the polytropes obeying the Schuster-Emden integral n = (N +2)/(N −2), (N ≥ 3),
and the polytropes having n = ±∞, (N = 1, 2).

If n = (N + 2)/(N − 2), we have

V P ∝ ξNθn+1 = ξN [1 + ξ2/N(N − 2)]−N ; lim
ξ→∞

(V P ) ∝ ξ−N = 0. (2.6.169)

Since W has been shown to be finite in the case n = (N + 2)/(N − 2), (N ≥ 3), it turns out that U
is finite too. In particular, we obtain at once from Eq. (2.6.141) in the spherical case:

U1 = −W1/3(Γ − 1) = πGM2
1 /32 × 31/2(Γ − 1)α = π4/3G�

1/3
0 M

5/3
1 /213/3 × 31/3(Γ − 1),

(n = 5; N = 3). (2.6.170)
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If N = 1 and n = ±∞, we get

V P ∝ ξ exp(−θ) = ξ/ cosh2(ξ/21/2); lim
ξ→∞

(V P ) ∝ ξ/ exp(21/2ξ) = 0. (2.6.171)

If N = 2 and n = ±∞, we have

V P ∝ ξ2 exp(−θ) = ξ2/(1 + ξ2/8)2; lim
ξ→∞

(V P ) ∝ ξ−2 = 0. (2.6.172)

Thus, by using Eqs. (2.6.153) and (2.6.157):

U1 = −W1/(Γ − 1) = πGM3
1 /2(Γ − 1)�0, (N = 1; n = ±∞), (2.6.173)

U1 = −W1/2(Γ − 1) = GM2
1 /2(Γ − 1), (N = 2; n = ±∞). (2.6.174)

For a perfect gas the factor Γ − 1 can be replaced according to Eqs. (1.2.22), (1.7.56) by

γ − 1 = R/µcV . (2.6.175)

Inserting the perfect gas law (1.2.5), the internal energy (2.6.158) can be written in this important
particular case as

U = [1/(γ − 1)]
∫

V

P dV = (µcV /R)
∫

V

P dV = cV

∫
V

�T dV = cV

∫
M

T dM. (2.6.176)

2.6.8 Behaviour of Physical Characteristics as the Radius Increases

We summarize the principal physical characteristics of complete polytropes as they result from the
behaviour of the fundamental Lane-Emden function θ(ξ) via Eqs. (2.1.14), (2.1.21), (2.1.41), (cf. Emden
1907, Chandrasekhar 1939, Ostriker 1964a, Viala and Horedt 1974a, b, Horedt 1986b). As required
by hydrostatic equilibrium, the pressure P (∝ θn+1 if n �= −1,±∞, and ∝ exp(−θ) if n = ±∞) must
decrease from its central value up to zero at the finite or infinite boundary of the complete polytrope. The
following behaviour of the Lane-Emden function results from this constraint: θ decreases from its central
value up to zero at the finite or infinite boundary if −1 < n < ∞, and increases from the central value up
to ∞ if −∞ < n < −1 and n = ±∞. The Lane-Emden function θ is proportional to the temperature T in
the case of a perfect gas if n �= −1,±∞ [Eq. (2.6.7)]. The density � (∝ θn if n �= −1,±∞, and ∝ exp(−θ)
if n = ±∞) decreases from the central value up to zero at the boundary if −∞ < n < −1, 0 < n < ∞,
and n = ±∞. The density increases from the central value up to ∞ if −1 < n < 0. If n = 0, the density
remains constant. With the exception of the origin, the mass inside radial coordinate ξ has to be a
strictly positive quantity, in order to be physically meaningful. θ′ has to be nonpositive if −1 < n < ∞,
and nonnegative if −∞ < n < −1, since according to Eq. (2.6.12) M ∝ ∓ξN−1θ′. Eq. (2.6.13) shows
that M ∝ ξN−1θ′ and θ′ are always nonnegative if n = ±∞.

The main problem to be discussed in this subsection remains the finiteness or infiniteness of mass and
radius. In the plane-symmetric case N = 1 the result can be found at once by rewriting Eq. (2.4.68):

θ = ∓{2/[±(n + 1)]}1/2ξ + C = ∓{2/[±(n + 1)]}1/2(ξ − ξ2) + θ2, (N = 1; n �= −1,±∞).
(2.6.177)

θ2 = θ(ξ2) is a value of the Lane-Emden function sufficiently close to the finite or infinite boundary
of the polytropic slab: θn+1(ξ2) ≈ 0. If −1 < n < ∞, we have θ2 ≈ 0. Eq. (2.6.177) becomes near the
boundary

ξ − ξ2 ≈ 0, (N = 1; −1 < n < ∞), (2.6.178)

since θ → θ1 = 0 as the boundary is approached. This shows that ξ → ξ1 ≈ ξ2 is finite as the boundary
ξ1 is approached. On the other hand, if −∞ < n < −1, the Lane-Emden function θ is increasing, and
θ → θ1 = ∞ as the boundary is approached: θ1 	 θ2 	 1. Eq. (2.6.177) becomes near the boundary

θ ≈ [−2/(n + 1)1/2](ξ − ξ2), (N = 1; −∞ < n < −1), (2.6.179)
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or

ξ − ξ2 → ∞, (N = 1; −∞ < n < −1). (2.6.180)

Since ξ2 is finite, we have ξ → ξ1 → ∞ if the boundary ξ1 is approached.
If n = ±∞, (N = 1), the exact analytical solution (2.3.65) shows that no finite zero of the Lane-Emden

function exists: θ → ∞ if ξ → ∞.
Thus, polytropic slabs have finite extension if −1 < n < ∞. Their radius is infinite if −∞ < n < −1

and n = ±∞.
By virtue of Eqs. (2.4.67), (2.6.150) the boundary value of the derivative θ′ is always finite for the

polytropic slab:

θ′1 → ∓{2/[±(n + 1)]}1/2, (N = 1; n �= −1,±∞), (2.6.181)

θ′1 → 21/2, (N = 1; n = ±∞). (2.6.182)

Inserting the boundary values from Eqs. (2.6.181) and (2.6.182) into Eqs. (2.6.14) and (2.6.15),
respectively, we get

M1 = {8/[±(n + 1)]}1/2�0α = [2K�
1+1/n
0 /πG]1/2 = (2P0/πG)1/2, (N = 1; n �= −1,±∞),

(2.6.183)

M1 = 81/2�0α = (2K�0/πG)1/2 = (2P0/πG)1/2, (N = 1; n = ±∞). (2.6.184)

Thus, the total mass per unit surface of a polytropic slab is finite and depends only on the pressure
P0 in the symmetry plane. For a polytrope composed of a perfect gas we may insert P0 = R�0T0/µ.

In the cylindrical case N = 2 there exists the asymptotic solution (2.4.83)

θ ≈ [(1 − n)ξ/2]2/(1−n), (ξ → ∞; N = 2; −∞ < n < −1), (2.6.185)

showing that if the radius r or ξ becomes infinite, θ becomes infinite too. Pressure ∝ θn+1 and density
∝ θn tend to zero if ξ → ∞ and −∞ < n < −1. The total mass is infinite if ξ → ∞, since

M1 ∝ lim
ξ→∞

(ξθ′) ≈ [(1 − n)/2](1+n)/(1−n) lim
ξ→∞

ξ2/(1−n) = ∞, (N = 2; −∞ < n < −1).

(2.6.186)

If n = ±∞, we have [cf. Eq. (2.4.94)]

θ ≈ ln(ξ4/64), (ξ → ∞; N = 2; n = ±∞), (2.6.187)

showing that θ → ∞ and exp(−θ) → 0 if ξ → ∞. The mass per unit length remains finite, since [cf. Eq.
(2.6.156)]

M1 = 2π�0α
2 lim

ξ→∞
(ξθ′) = 8π�0α

2 = 2K/G = 2P0/G�0, (ξ → ∞; N = 2; n = ±∞). (2.6.188)

For a perfect gas the total mass per unit length of an isothermal cylinder is

M1 = 2RT0/Gµ, (K = RT0/µ). (2.6.189)

In the spherical case N = 3 there exists the asymptotic solution (2.4.88)

θ ≈ [±(1 − n)2ξ2/2(n − 3)]1/(1−n), (ξ → ∞; N = 3; −∞ < n < −1 and 5 < n < ∞),
(2.6.190)

showing that when the radius r or ξ becomes infinite, θ becomes infinite if −∞ < n < −1, and zero if
5 < n < ∞. Pressure and density tend to zero. The total mass becomes infinite if ξ → ∞, since

M1 ∝ lim
ξ→∞

(∓ξ2θ′) ≈ [∓2/(1 − n)][±(1 − n)2/2(n − 3)]1/(1−n) lim
ξ→∞

ξ(3−n)/(1−n) = ∞,

(N = 3; −∞ < n < −1 and 5 < n < ∞). (2.6.191)
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If n = (N + 2)/(N − 2), N ≥ 3, the Schuster-Emden integral (2.3.36) subsists

θ = [1 + ξ2/N(N − 2)](2−N)/2, (2.6.192)

showing that θ, θn, θn+1 → 0 if ξ → ∞, (N ≥ 3). The total mass of the Schuster-Emden polytropes is
finite, because ξN−1θ′ is finite via Eqs. (2.6.144), (2.6.145). The mass equation (2.6.12) reads

M1 = {2�0[αΓ(1/2)]N
/
Γ(N/2)}N (N−2)/2(N − 2)N/2, (ξ → ∞; n = (N + 2)/(N − 2); N ≥ 3).

(2.6.193)

In the spherical case Eq. (2.6.193) turns into

M1 = 4 × 31/2π�0α
3, (ξ → ∞; n = 5; N = 3). (2.6.194)

If n = ±∞ and N ≥ 3, the asymptotic solution (2.6.149) exists: θ → ∞ and exp(−θ) → 0 if ξ → ∞.
The total mass of these polytropes is always infinite, since

M1 ∝ lim
ξ→∞

(ξN−1θ′) = lim
ξ→∞

(2ξN−2) = ∞, (n = ±∞; N ≥ 3). (2.6.195)

Total mass M1 (∝ ∓ξN−1θ′) and radius r1 (∝ ξ) behave as follows:
(i) Slabs, N = 1. Complete polytropic slabs have infinite radius if −∞ < n < −1 and n = ±∞. They

have finite extension if −1 < n < ∞. Their mass per unit surface remains always finite.
(ii) Cylinders, N = 2. Complete polytropic cylinders have infinite radius if −∞ < n < −1 and n =

±∞. If −1 < n < ∞, their extension is finite. They have infinite mass per unit length if −∞ < n < −1.
Their mass per unit length is finite if −1 < n < ∞ and n = ±∞.

(iii) Spheres, N = 3. Complete polytropic spheres have infinite radius if −∞ < n < −1, 5 ≤ n < ∞,
and n = ±∞. They have finite extension if −1 < n < 5. Their mass is infinite if −∞ < n < −1, 5 < n <
∞, and n = ±∞. Their mass is finite if −1 < n ≤ 5.

2.6.9 Uniform Contraction or Expansion of N-dimensional Polytropes

A contraction or expansion of a material system is said to be uniform if the distance from the origin
to any point is altered in the same way as the distance from the origin to the boundary of the system. Let
R1 be the finite boundary radius of a radially symmetric configuration, and R2 its radius after contraction
or expansion. Let also r1 be the radial distance of an arbitrary point inside the configuration, and r2 the
distance of the same point after contraction or expansion. Then, according to the definition of uniform
contraction or expansion, we have

R2/R1 = r2/r1 = y = const. (2.6.196)

The hydrostatic equation (2.1.35) becomes with Eq. (2.6.12):

dP/dr = −2πG{Γ(N/2)
/
[Γ(1/2)]N}M(r) �r1−N . (2.6.197)

In the cases of practical interest the hydrostatic equation (2.6.197) writes [cf. Eq. (2.6.30)]:

N = 1 : dP/dr = −2πGM(r) �, (2.6.198)

N = 2 : dP/dr = −2GM(r) �/r, (2.6.199)

N = 3 : dP/dr = −GM(r) �/r2. (2.6.200)

Conservation of mass inside the radial distance ri, (i = 1, 2) yields

M(r1) = M(r2) and dM(r1) = dM(r2). (2.6.201)
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We insert

dM(r) = 2{[Γ(1/2)]N
/
Γ(N/2)}�rN−1 dr, (2.6.202)

into Eq. (2.6.201), to find

�2/�1 = rN−1
1 dr1/rN−1

2 dr2 = y−N = (R1/R2)N , [dr2 = y dr1; �i = �(ri)]. (2.6.203)

The hydrostatic equation (2.6.197) becomes at the point r = r2

dP2 = −2πG{Γ(N/2)
/
[Γ(1/2)]N}M(r2) �2r

1−N
2 dr2

= −2πG{Γ(N/2)
/
[Γ(1/2)]N}y2−2NM(r1) �1r

1−N
1 dr1 = y2−2N dP1, [Pi = P (ri)], (2.6.204)

and by integration

P2/P1 = y2−2N = (R1/R2)2N−2. (2.6.205)

If the pressure obeys the perfect gas law (1.2.5), we have additionally

P2 = R�2T2/µ = Ry−N�1T2/µ = y2−2NP1 = y2−2NR�1T1/µ, [Ti = T (ri)], (2.6.206)

and

T2/T1 = y2−N = (R1/R2)N−2. (2.6.207)

Thus, we have proved the following
Theorem. Pressure and density in the same arbitrary point of a uniformly contracting or expanding

configuration change as the (2− 2N)-th and as the (−N)-th power of the ratio between the final and the
initial radius of the configuration.

Eliminating y between Eqs. (2.6.203) and (2.6.205), we get

P2/P1 = (�2/�1)(2N−2)/N or P = const �(2N−2)/N . (2.6.208)

If the configuration is a polytrope, we can equate the polytropic pressure P = const �1+1/n to the
pressure from Eq. (2.6.208), and the equality of the exponents of � yields the values of the polytropic
index of a uniformly contracting or expanding polytrope:

n = N/(N − 2) = const. (2.6.209)

In the cases of practical interest N = 1, 2, 3 we obtain from Eq. (2.6.209) n = −1,±∞, and 3,
respectively. Thus, no uniform contraction or expansion of a polytropic slab (N = 1) is possible, since
the polytropic index n = −1 leads to unphysical solutions (Sec. 2.1). Uniformly contracting or expanding
polytropic cylinders are of index n = ±∞ (isothermality for a perfect gas), while uniformly contracting
or expanding polytropic spheres are of polytropic index n = 3.

From the constancy of the polytropic index in Eq. (2.6.209) we can derive another important property:
A uniformly contracting or expanding N -dimensional polytrope has the polytropic index n = N/(N −
2), (N ≥ 2), and the configuration resulting after uniform contraction or expansion is another polytrope
having the same polytropic index.

When the uniformly contracting or expanding polytrope is composed of perfect gas, we have from Eq.
(1.2.31)

γ′ = 1 + 1/n = 1 + (N − 2)/N, (2.6.210)

where γ′ = (cP − c)/(cV − c) is the polytropic exponent that is generally different from the adiabatic
exponent γ = cP /cV .

The change of entropy connected with the uniform contraction or expansion of a thermodynamic
system is by virtue of Eqs. (1.2.40) and (2.6.210) equal to

dS = cV (γ′ − γ) d�/� = cV (2N − 2 − Nγ) d�/N� = −cV (2N − 2 − Nγ) dr/r, (N ≥ 2).
(2.6.211)
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The results of this subsection have been worked out for the spherical case (N = 3) mostly by Lane,
Ritter, and Rudzki (cf. Chandrasekhar 1939).

Using a so-called pseudopolytropic density distribution law

� = �0(1 − r/r1)c, (c = const), (2.6.212)

Guseinov and Kasumov (1972) obtain explicit analytic expressions for the mean density, mass, moment of
inertia, and gravitational energy of undistorted spheres, although the authors claim that their results are
appropriate to distorted rotating stars. If c = 1.4 and 4.9 for instance, the density distribution (2.6.212)
is fairly close to a polytrope of index n = 1.5 and 3, respectively.
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2.7 Topology of the Lane-Emden Equation

The second order Lane-Emden equations (2.1.14) and (2.1.21) seem to be not suitable for a direct
topological study. Therefore, the topological behaviour of the Lane-Emden equations is generally dis-
cussed with the aid of the transformed first order differential equations (2.2.15), (2.2.21) or (2.2.29),
(2.2.34) in terms of Milne’s homology invariant variables u, v, or in terms of the Emden variables y, z.

In terms of the Emden variables y and z the topology of the Lane-Emden equation has been presented
by Chandrasekhar (1939), with main contributions due to Emden (1907), Hopf (1931), Fowler (1930,
1931). Chandrasekhar’s (1939) study was limited to the spherical case N = 3 and to polytropic indices
1 < n < ∞ and n = ±∞; the treatment for other polytropic indices has not yet been undertaken,
because of their reduced practical importance and due to mathematical difficulties occurring with Emden’s
variables.

A topological study of the asymptotic behaviour of second order equations, similar to the transformed
Lane-Emden equations (2.2.43) and (2.2.45), has been presented by Bellman (1953, Chap. 7, n > 1),
based mainly on Fowler’s (1930, 1931) work.

The discussion of the topology in terms of Milne’s homology variables seems to be more straight-
forward. Without using Kimura’s (1981a) supplementary transformation of ξ and θ from Eqs. (2.1.27),
(2.1.28), we present below the topology of the Lane-Emden equations (2.1.14), (2.1.21) in terms of Milne’s
homology variables u, v (Horedt 1987b).

Depending on the values of the polytropic index we distinguish two different forms of the homology
invariant variables and of the related first order differential equations [cf. Eqs. (2.2.6), (2.2.7), (2.2.13)-
(2.2.15) and (2.2.19)-(2.2.21)]:

(i) n �= −1,±∞ :

u = ∓ξθn/θ′; v = ∓ξθ′/θ, (2.7.1)

du/d ln ξ = u(−u ∓ nv + N); dv/d ln ξ = v(u ± v − N + 2), (2.7.2)

dv/du = v(u ± v − N + 2)/u(−u ∓ nv + N). (2.7.3)

(ii) n = ±∞ :

u = ξ exp(−θ)/θ′; v = ξθ′, (2.7.4)

du/d ln ξ = u(−u − v + N); dv/d ln ξ = v(u − N + 2), (2.7.5)

dv/du = v(u − N + 2)/u(−u − v + N). (2.7.6)

It is easily seen that in terms of the physical variables P, M, and r, the homology invariant variables
can be written as

u = d lnM/d ln r = ∓ξθn/θ′; v = [∓1/(n + 1)] d lnP/d ln r = ∓ξθ′/θ, (n �= −1,±∞), (2.7.7)

and

u = d lnM/d ln r = ξ exp(−θ)/θ′; v = −d lnP/d ln r = ξθ′, (n = ±∞), (2.7.8)

where we have inserted Eqs. (2.6.1)-(2.6.4), (2.6.12), (2.6.13).
As shown in Sec. 2.6.8, the Milne variables u and v both are nonnegative for physically meaningful

solutions, and the discussion of the topology of the Lane-Emden equation can be reduced to the first
positive (u, v)-quadrant. As follows from Cauchy’s theorem concerning the existence and uniqueness of
solutions (e.g. Smirnow 1967, Bronstein and Semendjajew 1985), there passes one and only one integral
curve (solution curve) through a finite and nonsingular point in the (u, v)-plane. Thus, the integral curves
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Fig. 2.7.1 Integral curves in the (u, v)-plane for polytropic slabs with index n = −4,−3,−2,−0.5. Arrows
mark the sense of increasing ξ. E-solutions are designated by thick curves (Horedt 1987b).

Fig. 2.7.2 Same as Fig. 2.7.1 for polytropic slabs of index n = 0, 3,±∞, and for cylinders of index n = −3.
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Fig. 2.7.3 Same as Fig. 2.7.1 for polytropic cylinders of index n = −0.5, 0, 3,±∞.

Fig. 2.7.4 Same as Fig. 2.7.1 for polytropic spheres of index n = −3,−0.5, 0, 1.5.
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Fig. 2.7.5 Same as Fig. 2.7.1 for polytropic spheres of index n = 3 and n = (11 + 8 × 21/2)/7 = 3.18767...

Fig. 2.7.6 Same as Fig. 2.7.1 for polytropic spheres of index n = 4, 5, 6,±∞.



106 2.7 Topology of the Lane-Emden Equation

of the Lane-Emden equation are not cutting or touching among themselves, excepting possibly at the
singular or infinity points.

The integral curves of Eqs. (2.7.3) or (2.7.6) are either bounded by two limiting points, or closed
curves, or merely singular points. Since the limiting points of the integral curves can be either finite
singular points or points at infinity, we are lead to the investigation of the integral curves in the vicinity
of the finite singular points and in the vicinity of the asymptotic points.

We will be principally concerned with the cases of practical interest N = 1, 2, 3, although many of the
subsequent equations are also valid for general N.

2.7.1 Polytropic Indices n �= −1,±∞n �= −1,±∞n �= −1,±∞

The singular points of the first order differential equation (2.7.3) are obtained if its numerator and
denominator vanish simultaneously, and Eq. (2.7.3) takes the undetermined form dv/du = 0/0. Thus,
the singular points of Eq. (2.7.3) are just the solutions of the system

v(u ± v − N + 2) = 0; u(−u ∓ nv + N) = 0. (2.7.9)

We denote the four solutions by Os(0, 0), Us(N, 0), Vs[0,±(N−2)], Gs{[n(N−2)−N ]/(n−1),±2/(n−
1)}. The singular point Os is located in the origin, Us is on the u-axis, and Vs on the v-axis. The singular
point Gs is just the intersection of the loci where the integral curves of Eq. (2.7.3) have horizontal
tangents (dv/du = 0 or u± v −N + 2 = 0) with the loci where the integral curves have vertical tangents
(du/dv = 0 or −u ∓ nv + N = 0), (Chandrasekhar 1939).

The infinity points of Eq. (2.7.3) can be of the form U∞(∞, v∞), V∞(u∞,∞), and G∞(∞,∞), where
u∞, v∞ = const �= ∞.

We discuss the form of the integral curves near these seven special points separately. Generally, the
precise form of the integral curves at intermediate points can be found only numerically (Figs. 2.7.1-2.7.6).

(i) Os(0, 0).Os(0, 0).Os(0, 0). Eq. (2.7.2) becomes in the vicinity of the origin

ξ du/dξ = Nu; ξ dv/dξ = (−N + 2)v, (N �= 2; u, v ≈ 0). (2.7.10)

The integrals of Eq. (2.7.10) are

u = AξN ; v = Bξ2−N , (N �= 2; ξ ≈ 0; A, B = const; 0 < A, B < ∞), (2.7.11)

showing that for polytropic slabs (N = 1) the singular point Os is a node and an initial point (ξ → 0),
(Figs. 2.7.1, 2.7.2). If N ≥ 3, the singular point Os cannot be approached by the integral curves (cf.
Figs. 2.7.4-2.7.6). If N = 2, Eq. (2.7.2) turns into

u = Aξ2; ξ dv/dξ = uv ± v2 = Aξ2v ± v2, (N = 2; ξ ≈ 0). (2.7.12)

The equation for v is a Bernoulli equation that can be integrated by standard methods (e.g. Smirnow
1967, Bronstein and Semendjajew 1985). With the substitution v = 1/w, Eq. (2.7.12) reads

dw/dξ = −Aξw ∓ 1/ξ. (2.7.13)

We apply the method of variation of constants to the solution

w = C exp(−Aξ2/2), (C = const), (2.7.14)

of the homogeneous equation

dw/dξ = −Aξw, (2.7.15)

to obtain

C = C(ξ) = ∓
∫

exp(Aξ2/2) dξ/ξ ≈ ∓ ln(Bξ), (ξ ≈ 0; B = const; 0 < B < ∞). (2.7.16)
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Thus, 1/v = ∓ ln(Bξ), (ξ ≈ 0), and we observe at once that the condition v ≥ 0 is satisfied only with
the minus sign:

v = −1
/

ln(Bξ) = 1
/

ln(1/Bξ), (N = 2; n > −1; ξ ≈ 0). (2.7.17)

To obtain the behaviour of θ′, θ, and ∓ξN−1θ′ ∝ M, we write the Lane-Emden equation (2.1.14) under
the form (Kimura 1981a)

θ′′ = (1 − N)θ′/ξ ∓ θn = θ′(1 − N + u)/ξ ≈ θ′(1 − N + AξN )/ξ. (2.7.18)

Integration yields

|θ′| = Cξ1−N exp(AξN/N), (ξ ≈ 0; 0 < A, C < ∞). (2.7.19)

If N = 1, we get θ′ → ∓C = const, and if N = 2, n > −1, we obtain θ′ → −C/ξ → −∞ as ξ → 0.
The function θ can be determined from

θ = ∓ξθ′/v ≈ C exp(AξN/N)/B ≈ C/B = const, (N = 1; ξ ≈ 0; 0 < A, B, C < ∞), (2.7.20)

θ = −ξθ′/v ≈ C exp(AξN/N) ln(1/Bξ) → ∞, (N = 2; n > −1; ξ ≈ 0; 0 < A, B, C < ∞).
(2.7.21)

Using Eq. (2.7.19) we get for the dimensionless mass

∓ξN−1θ′ ≈ C exp(AξN/N) → C = const, (N = 1; n > −1 if N = 2; ξ ≈ 0). (2.7.22)

Eliminating ξ in Eq. (2.7.11), we find

u/v = A/B = const, (N = 1; ξ ≈ 0). (2.7.23)

Elimination of ξ between Eqs. (2.7.12) and (2.7.17) yields

u exp(2/v) = A/B2 = const, (N = 2; n > −1; ξ ≈ 0). (2.7.24)

(ii) Us(N, 0).Us(N, 0).Us(N, 0). The shape of the integral curves in the vicinity of this singular point can be found
along the lines developed by Chandrasekhar (1939) for the case N = 3. We find from Eq. (2.7.2)

ξ dv/dξ = 2v, (u ≈ N ; v ≈ 0), (2.7.25)

and by integration

v = Bξ2, (ξ ≈ 0; 0 < B < ∞). (2.7.26)

The first equation (2.7.2) becomes

ξ du/dξ = −u2 + u(∓nBξ2 + N), (2.7.27)

which can be integrated with the substitution u = 1/w in the same way as Eq. (2.7.12):

1/u ≈ (1 ± nBξ2/2)
[
1/N ∓ nBξ2/2(N + 2) + Aξ−N

]
,

(ξ ≈ 0; A, B = const; −∞ < A < ∞; 0 < B < ∞), (2.7.28)

or

u ≈ N(N + 2)
/[

N + 2 ± nBξ2 + AN(N + 2)/ξN
]
. (2.7.29)

And with the help of Eq. (2.7.26):

vN/2[(N + 2)(u − N) ± nNv] = −ABN/2N2(N + 2) = const, (N = 1, 2, 3, ...; u ≈ N ; v ≈ 0).
(2.7.30)
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We observe from Eq. (2.7.28) that u approaches the singular point Us(N, 0) only if A = 0. Only a
single integral curve passes through Us. We obtain its parametric representation by putting A = 0 in Eq.
(2.7.29):

u = N ∓ nNBξ2/(N + 2); v = Bξ2, (ξ ≈ 0; A = 0; 0 < B < ∞). (2.7.31)

If A �= 0, Eq. (2.7.30) shows that the integral curves in the vicinity of Us are generalized hyperbolas,
tangent to the asymptotes v = 0 and (N +2)(u−N)±nNv = 0. As seen from Eq. (2.7.30), the generalized
hyperbolas are located on the left-hand side (A > 0), and on the right-hand side (A < 0) of the single
curve passing through Us if A = 0. If A �= 0, the integral curves avoid Us; this singular point is a saddle
point (Smirnow 1967). Us is an initial point (ξ → 0) for the single integral curve passing through this
point. If A = 0, we obtain for the Lane-Emden variable

θ′′/θ′ = (1 − N + u)/ξ = 1/ξ; ln |θ′| = ln(Cξ); θ′ = ∓Cξ, (ξ ≈ 0; u ≈ N ; 0 < C < ∞),
(2.7.32)

θ = ∓ξθ′/v ≈ C/B = const, (ξ ≈ 0). (2.7.33)

Thus, θ = const, θ′ → 0, and ∓ξN−1θ′ = CξN → 0 if ξ → 0 and A = 0. The fact that θ = const
and θ′ = 0 at the origin ξ = 0, reminds us that these initial conditions are just meet by the set {θE(ξ)}
of E-solutions of which the Lane-Emden function is a particular member: All members of this set are
finite at the origin with the derivative equal to zero. Since the set {θE(ξ)} forms a homology family, and
since u, v are homology invariant variables, all members of this set are represented by the single integral
curve – the E-curve – shown by the thick line starting at Us(N, 0) in Figs. 2.7.1-2.7.6 (cf. Sec. 2.2.1). It
will be therefore sufficient to consider only the behaviour of the Lane-Emden function obeying the initial
conditions (2.1.41). For this particular member of the set {θE(ξ)} we have via Eqs. (2.1.41), (2.7.1)

θ = C/B = 1 and θn+1 = θ′2u/v = NC2/B = 1, (ξ ≈ 0; A = 0). (2.7.34)

This shows that B = C = 1/N. Therefore θ′ = ∓ξ/N, θ′′ = ∓1/N, and the Lane-Emden function is
approximately equal to

θ(ξ) = 1 + θ′(0) ξ + θ′′(0) ξ2/2 = 1 ∓ ξ2/2N, (ξ ≈ 0), (2.7.35)

which are just the first two terms of the expansion (2.4.21). The homology invariant Milne variables u, v
corresponding to the homology family {θE(ξ)} – to the E-solutions – are obtained from Eq. (2.7.31):

u = N ∓ nξ2/(N + 2); v = ξ2/N, (ξ ≈ 0; N = 1, 2, 3, ...). (2.7.36)

It follows from Eq. (2.7.30) that if A = 0, the E-curve near the singular point is represented by the
asymptote (N +2)(u−N)±nNv = 0. Differentiating this equation, we get the slope of the E-curve near
Us :

dv/du = ∓(N + 2)/nN, (u ≈ N ; v ≈ 0). (2.7.37)

(iii) Vs[0,±(N − 2)].Vs[0,±(N − 2)].Vs[0,±(N − 2)]. This singular point exists in the positive quadrant if N = 1, (n < −1), N = 2,
and N ≥ 3, (n > −1). The case N = 2 has already been discussed, because it amounts to Vs ≡ Os. If
N = 1, 3, the singular point has the same coordinates Vs = Vs(0, 1). Eq. (2.7.2) reads

ξ du/dξ = u(−u ∓ nv + N) ≈ u[−n(N − 2) + N ], [n �= N/(N − 2)], (2.7.38)

and after integration

u ≈ Aξn(2−N)+N , (A = const; 0 < A < ∞). (2.7.39)

We have excluded the polytropic index n = N/(N − 2), because in this case u from Eq. (2.7.38)
cannot be neglected with respect to ∓nv + N. For polytropic slabs Eq. (2.7.39) turns into

u = Aξn+1, (N = 1; n < −1; ξ → ∞), (2.7.40)
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showing that Vs is a final point (ξ → ∞). The restriction n �= N/(N − 2) is not pertinent for polytropic
slabs, since it amounts to n �= −1. For polytropic spheres Eq. (2.7.39) reads

u = Aξ3−n, (N = 3; ξ → 0 if − 1 < n < 3; ξ → ∞ if n > 3), (2.7.41)

showing that Vs is an initial point ξ → 0 if −1 < n < 3, and a final point ξ → ∞ if n > 3. For polytropic
spheres the omitted polytropic index n = N/(N − 2) leads to n = 3, needing special discussion [Eqs.
(2.7.60)-(2.7.68)]. From Eqs. (2.7.2) and (2.7.39) we obtain

ξ dv/dξ = v(u ± v − N + 2) ≈ ±v2 + v(Aξn(2−N)+N − N + 2), (2.7.42)

where the upper sign holds in the case N = 3, (n > −1), and the lower one if N = 1, (n < −1). The
Bernoulli equation (2.7.42) can be integrated with the substitution w = 1/v in the same way as Eq.
(2.7.12):

w = 1/v = C(ξ)ξN−2 exp
{
− Aξn(2−N)+N

/
[n(2 − N) + N ]

}
, (2.7.43)

dC(ξ)/dξ = ∓ξ1−N exp
{
Aξn(2−N)+N

/
[n(2 − N) + N ]

}
≈ ∓ξ1−N

{
1 + Aξn(2−N)+N

/
[n(2 − N) + N ]

}
. (2.7.44)

The integrals of this equation are

C ≈ ∓ξ2−N/(2 − N) ∓ Aξn(2−N)+2
/
[n(2 − N) + N ][n(2 − N) + 2] + B,

(n �= N/(N − 2); n �= 2/(N − 2); N = 1, 3; −∞ < B < ∞), (2.7.45)

C ≈ ∓ξ2−N/(2 − N) ∓ A ln ξ/[n(2 − N) + N ] + B,

(n �= N/(N − 2); n = 2/(N − 2); N = 1, 3; −∞ < B < ∞). (2.7.46)

Inserting into Eq. (2.7.43), and restricting to first order terms, we get

v = ±(N − 2)
/{

1 − Aξn(2−N)+N/[n(2 − N) + 2] + BξN−2
}
,

(ξ → ∞ if N = 1, n < −1 and N = 3, n > 3; ξ → 0 if N = 3, −1 < n < 3;
n �= N/(N − 2); n �= 2/(N − 2); 0 < A < ∞; −∞ < B < ∞), (2.7.47)

v = ±(N − 2)
/{

1 + A(2 − N)ξN−2 ln ξ
/
[n(2 − N) + N ] + BξN−2

}
,

(ξ → ∞ if N = 1, n = −2; ξ → 0 if N = 3, n = 2). (2.7.48)

Inserting for ξ from Eq. (2.7.39), we find

u(2−N)/[n(2−N)+N ]{u/[n(2 − N) + 2] − v ± (N − 2)} ≈ A(2−N)/[n(2−N)+N ]B = const,
[N = 1, 3; n �= N/(N − 2); n �= 2/(N − 2)], (2.7.49)

u−1(±u lnu − v + 1) ≈ B/A = const, (n = −2 if N = 1; n = 2 if N = 3). (2.7.50)

For polytropic slabs Eqs. (2.7.47)-(2.7.49) become

v = 1
/[

1 − Aξn+1/(n + 2) + B/ξ
]
, (N = 1; n < −1; n �= −2; ξ → ∞), (2.7.51)

v = 1
/[

1 − (A/ξ) ln ξ + B/ξ
]
, (N = 1; n = −2; ξ → ∞), (2.7.52)

u1/(n+1)[u/(n + 2) − v + 1] ≈ A1/(n+1)B, (N = 1; n < −1; n �= −2; ξ → ∞). (2.7.53)
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For polytropic spheres Eqs. (2.7.47)-(2.7.49) take the form

v = 1
/[

1 − Aξ3−n/(2 − n) + Bξ
]
, (N = 3; n �= 2; ξ → 0 if − 1 < n < 3; ξ → ∞ if n > 3),

(2.7.54)

v = 1
/(

1 − Aξ ln ξ + Bξ
)
, (N = 3; n = 2; ξ → 0), (2.7.55)

u1/(n−3)[u/(2 − n) − v + 1] ≈ A1/(n−3)B,

(N = 3; n �= 2; ξ → 0 if − 1 < n < 3; ξ → ∞ if n > 3). (2.7.56)

From Eqs. (2.7.50)-(2.7.56) it is seen that the singular point Vs is a node if N = 1, n < −1, (ξ → ∞),
and if N = 3, −1 < n < 3, (ξ → 0). The point Vs is a saddle point, similar to Us, if N = 3, n > 3,
as it is obvious from Eq. (2.7.56). In this case the integral curves in the vicinity of Vs are generalized
hyperbolas, tangent to the asymptotes u = 0 and u/(2 − n) − v + 1 = 0. If B = 0 and N = 3, n > 3,
a single integral curve passes through Vs, having the initial slope dv/du = 1/(2 − n), called D-curve
(Chandrasekhar 1939). Eq. (2.7.56) shows that if B < 0 and B > 0, the generalized hyperbolas are
located above and below the D-curve, respectively. As seen from Figs. 2.7.5, 2.7.6, the D-curve connects
Vs with the singular point Gs if 3 < n < 5, N = 3, and tends to U∞ if n > 5, N = 3. If n = 5, N = 3,
the D-curve coincides with the E-curve, connecting Vs with Us [see Eq. (2.7.74)].

The behaviour of θ′, θ,∓ξN−1θ′ is found in a similar manner as for Us. We have

θ′′/θ′ = (1 − N + u)/ξ ≈ [1 − N + Aξn(2−N)+N ]/ξ, (2.7.57)

θ′ ≈ ∓Cξ1−N exp
{
Aξn(2−N)+N

/
[n(2 − N) + N ]

}
≈ ∓Cξ1−N ,

(n �= N/(N − 2); C = const; 0 < C < ∞). (2.7.58)

If N = 1, (n < −1), we have θ′ ≈ C = const, (ξ → ∞). For polytropic spheres (N = 3) we obtain from
Eq. (2.7.58) θ′ ≈ −C/ξ2, observing that θ′ → −∞ if −1 < n < 3, (ξ → 0), and θ′ → 0 if n > 3, (ξ → ∞).
The Lane-Emden variable θ becomes in virtue of Eq. (2.7.58)

θ = ∓ξθ′/v ≈ ±Cξ2−N/(N − 2) = Cξ2−N , (v ≈ 1; ±(N − 2) = 1). (2.7.59)

If N = 1, (n < −1), we get θ = Cξ → ∞ as ξ → ∞. If N = 3, there is θ ≈ C/ξ. We have θ → ∞ if
−1 < n < 3, (ξ → 0), and θ → 0 if n > 3, (ξ → ∞). The dimensionless mass is ∓ξN−1θ′ ≈ C = const in
the considered cases.

We now turn to the particular case N = 3, n = 3, left over from the preceding discussion. In this
case the singular points Vs and Gs coincide. Eq. (2.7.2) reads

ξ du/dξ = u(−u − 3v + 3); ξ dv/dξ = v(u + v − 1). (2.7.60)

Inserting v = 1 + v1, (v1 ≈ 0), we obtain

ξ du/dξ = u(−u − 3v1); ξ dv1/dξ = (1 + v1)(u + v1) ≈ u + v1, (N = 3; n = 3; u, v1 ≈ 0).
(2.7.61)

As the singular point Vs or Gs is approached, three possibilities exist concerning the behaviour of
u/v1 :

lim
u,v1→0

(u/v1) = 0,∞, or c, (c = const; c �= 0,∞). (2.7.62)

It is seen at once, by inserting u � v1 and u 	 v1 into Eq. (2.7.61), that these assumptions lead
to solutions contradicting the requirements u, v1 ≈ 0. Thus limu,v1→0(u/v1) = const, and u ≈ cv1 if
u, v1 ≈ 0. Eq. (2.7.61) becomes

ξ dv1/dξ ≈ −(3 + c)v2
1 ; ξ dv1/dξ ≈ (1 + c)v1 + O(v2

1), (u ≈ cv1 if u, v1 ≈ 0). (2.7.63)
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Since ξ dv1/dξ cannot be at the same time of first and second order, the first order term (1 + c)v1

must vanish identically, leading to c = −1 and ξ dv1/dξ ≈ −2v2
1 . Integration yields

v1 = v − 1 = −u = 1
/

ln(1/Aξ2) = −1/ ln(Aξ2), (ξ ≈ 0; 0 < A < ∞). (2.7.64)

Thus, if N = 3 and n = 3, the singular point Vs or Gs is an initial point (ξ → 0) and a node. The
functions θ′, θ, and −ξ2θ′ are obtained from

θ′′/θ′ = (1 − N + u)/ξ = −2/ξ − 1
/
[ξ ln(1/Aξ2)], (ξ ≈ 0). (2.7.65)

Taking into account that θ′ is always negative, we find by integration

θ′ ≈ −1
/{

ξ2[ln(1/Aξ2)]1/2
}
, (ξ ≈ 0; N = 3; n = 3). (2.7.66)

Combining Eqs. (2.7.64) and (2.7.66), we get (Chandrasekhar 1939)

θ = −ξθ′/v = 1
/{

ξ [ln(1/Aξ2)]1/2
}
, (ξ ≈ 0; N = 3; n = 3), (2.7.67)

and

−ξ2θ′ = [ln(1/Aξ2)]−1/2. (2.7.68)

Thus, θ′ → −∞, θ → ∞, −ξ2θ′ → 0 as the initial point ξ = 0 is approached.
We now turn to the connection between the singular points Us(N, 0) and Vs(0, 1). For polytropic slabs

the E-curve near the final point ξ → ∞ is given by the Lane-Emden functions (2.4.67), (2.4.68), and we
have

θ′ = 2
/
[−(n + 1)]1/2; θ = {2

/
[−(n + 1)]1/2}ξ; u = {2

/
[−(n + 1)]1/2}n−1ξn+1; v = 1,

(ξ → ∞; N = 1; n < −1). (2.7.69)

Eq. (2.7.69) meets just the conditions near the singular point Vs(0, 1). So, we conclude that the
E-curves of polytropic slabs start at the singular point Us, (ξ → 0) and end at Vs, (ξ → ∞), provided
that n < −1 (see Fig. 2.7.1).

The tangent to the E-curve (N + 2)(u − N) ± nNv = 0 from Eq. (2.7.30) intersects the v-axis at
v = ±(N + 2)/n. This intersection point coincides with the singular point Vs if ±(N + 2)/n = ±(N − 2)
or n = (N +2)/(N − 2), and in this case the E-curve is a straight line connecting the two singular points
Us and Vs. If N = 1, the straight-line solution is obtained when n = (N + 2)/(N − 2) = −3. In this case
Eq. (2.3.53) can be integrated to give the Lane-Emden function

θ = (1 + ξ2)1/2, (N = 1; n = −3). (2.7.70)

Insertion of Eq. (2.7.70) into Eq. (2.7.1) yields

u = 1/(1 + ξ2); v = ξ2/(1 + ξ2), (2.7.71)

with the straight-line solution

u + v = 1, (N = 1; n = −3). (2.7.72)

If N = 2, the straight-line solution is obtained for n = ±∞, and will be discussed in Sec. 2.7.2. If
N ≥ 3, the polytropic index corresponding to the generalized Schuster-Emden integral (2.3.36) is just
equal to n = (N + 2)/(N − 2). Indeed, inserting Eq. (2.3.36) and its derivative into Eq. (2.7.1), we find

u = N
/
[1 + ξ2/N(N − 2)]; v = ξ2

/
N [1 + ξ2/N(N − 2)], (2.7.73)

which can be combined into the straight-line solution

u + Nv/(N − 2) = N, (n = (N + 2)/(N − 2); N ≥ 3). (2.7.74)

We conclude that the generalized Schuster-Emden integral (2.3.36) is represented in the (u, v)-plane
by a straight line connecting the singular points Us(N, 0) and Vs(0, N − 2). In the spherical case N = 3
the above results are obtained if n = 5.
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Moreover, if n = (N +2)/(N −2), (N = 1, 2, 3, ...), all integral curves in the (u, v)-plane can be found
analytically. Substitution of Eq. (2.3.31) into Eq. (2.3.30) yields

4ξ(n+3)/(n−1)θθ′/(n − 1) + ξ2(n+1)/(n−1)θ′2 ± 2ξ2(n+1)/(n−1)θn+1/(n + 1) = C,

(n = (N + 2)/(N − 2); N = 1, 3, 4, 5, ...). (2.7.75)

Inserting further Eq. (2.7.1) into Eq. (2.7.75), and combining the terms, we eventually obtain the
analytical representation of the integral curves (cf. Chandrasekhar 1939 if N = 3, n = 5) :

±u + (n + 1)v/2 = ±2(n + 1)/(n − 1) + C
(
uv(n+1)/2

)2/(1−n)
,

(C = const; n = (N + 2)/(N − 2); N = 1, 3, 4, 5, ...), (2.7.76)

or

±u + Nv/(N − 2) = ±N + C
(
uvN/(N−2)

)(2−N)/2
, (N = 2(n + 1)/(n − 1); N = 1, 3, 4, 5, ...).

(2.7.77)

The upper sign holds if N ≥ 3, (n > 1), and the lower sign if N = 1, (n = −3). If C = 0, we recover
the straight-line E-solutions from Eqs. (2.7.72) and (2.7.74), respectively.

(iv) Gs{[n(N − 2) − N ]/(n − 1),±2/(n − 1)}.Gs{[n(N − 2) − N ]/(n − 1),±2/(n − 1)}.Gs{[n(N − 2) − N ]/(n − 1),±2/(n − 1)}. This singular point exists in the positive quadrant if
n < −1, (N = 2), and −1 > n ≥ 3, (N = 3). The singular point Gs is closely connected to the existence
of the singular solution (2.3.70), (Chandrasekhar 1939 if N = 3). From Eq. (2.7.1) we get

uv = ξ2θn−1, (2.7.78)

and inserting for u and v the coordinates uG and vG of Gs, we find

∓[2/(n − 1)2][N + n(2 − N)] = ξ2θn−1, (∓[N + n(2 − N)] > 0), (2.7.79)

identical to the singular solution (2.3.70). The coordinates of Gs can be written under the form

uG = N − 2 − 2/(n − 1); vG = ±2/(n − 1). (2.7.80)

Eliminating n between the coordinates we obtain the geometric locus of Gs :

uG ± vG = N − 2, (n(N − 2) ≷ N). (2.7.81)

Because the singular point Gs corresponds to the singular solution (2.3.70), and since we have already
found in Sec. 2.4.3 the expansion of θ near the singular solution, it is most straightforward to use these
expansions and calculate directly the homology invariant variables through Eq. (2.7.1).

From Eqs. (2.4.83), (2.4.88), (2.4.89), (2.4.91), (2.4.92) and from their derivatives the following
behaviour results as the singular point Gs is approached: θ ∝ ξ2/(1−n), θ′ ∝ [2/(1−n)]ξ(1+n)/(1−n), ξθ′ ∝
[2/(1 − n)]ξ2/(1−n), ∓ξ2θ′ ∝ ∓[2/(1 − n)]ξ(3−n)/(1−n). There is θ → ∞ if ξ → ∞, (n < −1, N = 2, 3)
and ξ → 0, (3 < n ≤ 5, N = 3). We have θ → 0 if ξ → ∞, (n ≥ 5, N = 3). For the derivative we get
θ′ → 0 if ξ → ∞, (n < −1, N = 2, 3 and n ≥ 5, N = 3). And θ′ → −∞ if ξ → 0, (3 < n ≤ 5, N = 3).
The behaviour of the dimensionless mass is given by ∓ξN−1θ′ → ∞ if ξ → ∞, (n < −1, N = 2, 3 and
n ≥ 5, N = 3). And −ξ2θ′ → 0 if ξ → 0, (3 < n ≤ 5, N = 3). The singular point Gs is an initial
point ξ → 0 if 3 < n ≤ 5, N = 3, and a final point ξ → ∞ if n < −1, N = 2, 3 and n ≥ 5, N = 3. If
n = 5, N = 3, the singular point Gs is at the same time an initial and a final point, as will be discussed
subsequently to Eq. (2.7.84).

Inserting Eq. (2.4.83) and its derivative into Eq. (2.7.1), we get for cylindrical polytropes

u = [2/(1 − n)]
[
1 + c1ξ

−2/(1−n)
{
n cos

[
2(−n)1/2 ln ξ/(1 − n) + c2

]

+(−n)1/2 sin
[
2(−n)1/2 ln ξ/(n − 1) + c2

]}]
;

v = [2/(1 − n)]
[
1 − c1ξ

−2/(1−n)
{

cos
[
2(−n)1/2 ln ξ/(n − 1) + c2

]

+(−n)1/2 sin
[
2(−n)1/2 ln ξ/(n − 1) + c2

]}]
, (N = 2; n < −1; ξ → ∞; c1, c2 = const).

(2.7.82)
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For cylindrical polytropes with indices n < −1, Gs is a focus or spiral point (Smirnow 1967). u and
v oscillate with decreasing amplitude round Gs if ξ → ∞.

For spherical polytropes we find with Eq. (2.4.88)

u = [(n − 3)/(n − 1)]
[
1 + c1ξ

(n−5)/2(1−n)
{
[(1 + 3n)/4] cos

[
(7n2 − 22n − 1)1/2 ln ξ/2(1 − n) + c2

]

+[(7n2 − 22n − 1)1/2/4] sin
[
(7n2 − 22n − 1)1/2 ln ξ/2(1 − n) + c2

]}]
;

v = ±[2/(n − 1)]
[
1 + c1ξ

(n−5)/2(1−n)
{
[(n − 5)/4] cos

[
(7n2 − 22n − 1)1/2 ln ξ/2(1 − n) + c2

]

−[(7n2 − 22n − 1)1/2/4] sin
[
(7n2 − 22n − 1)1/2 ln ξ/2(1 − n) + c2

]}]
,

(N = 3; ξ → ∞ if − 1 > n ≥ 5; ξ → 0 if 3.18767... < n ≤ 5). (2.7.83)

If n �= 5, the behaviour of u and v is the same as for cylindrical polytropes. The Milne variables
oscillate with decreasing amplitude round the singular point: Gs is a focus. Gs is a final point ξ → ∞ if
−1 > n > 5, and an initial point ξ → 0 if 3.18767... < n < 5.

Eq. (2.7.83) simplifies in the particular case n = 5 to

u = (1/2)
{
1 + 2c1

[
2 cos(ln ξ − c2) − sin(ln ξ − c2)

]}
; v = (1/2)[1 + 2c1 sin(ln ξ − c2)],

(c1 ≈ 0; N = 3; n = 5; any ξ). (2.7.84)

In this particular case the singular point is surrounded by closed integral curves, degenerating into
Gs if c1 = 0 (see Fig. 2.7.6). The singular point is a vortex (a centre), (e.g. Smirnow 1967).

If 3 < n < (11 + 8 × 21/2)/7 = 3.18767..., Eq. (2.4.91) yields

u = [(n − 3)/(n − 1)]
[
1 + c1

{[
3n + 1 − (−7n2 + 22n + 1)1/2

]
/4
}
ξ[n−5+(−7n2+22n+1)1/2]/2(1−n)

+c2

{[
3n + 1 + (−7n2 + 22n + 1)1/2

]
/4
}
ξ[n−5−(−7n2+22n+1)1/2]/2(1−n)

]
;

v = [2/(n − 1)]
[
1 + c1

{[
n − 5 + (−7n2 + 22n + 1)1/2

]
/4
}
ξ[n−5+(−7n2+22n+1)1/2]/2(1−n)

+c2

{[
n − 5 − (−7n2 + 22n + 1)1/2

]
/4
}
ξ[n−5−(−7n2+22n+1)1/2]/2(1−n)

]
,

(N = 3; ξ → 0 if 3 < n < 3.18767...). (2.7.85)

Eq. (2.4.92) gives in the particular case n = (11 + 8 × 21/2)/7 = 3.18767... :

u = [(n − 3)/(n − 1)]
[
1 + ξ(n−5)/2(1−n)

{[
(3n + 1)/4](c1 ln ξ + c2) + c1(n − 1)/2

}]
;

v = [2/(n − 1)]
[
1 + ξ(n−5)/2(1−n)

{
[(n − 5)/4](c1 ln ξ + c2) + c1(1 − n)/2

}]
,

(N = 3; ξ → 0 if n = 3.18767...). (2.7.86)

Thus, if N = 3, 3 < n ≤ 3.18767..., the singular point Gs is a node and an initial point. The same
conclusion has already been reached for the particular case N = 3, n = 3, discussed in connection with
the singular point Vs [cf. Eqs. (2.7.60)-(2.7.68)].

(v) U∞(∞, v∞), v∞ = const �= ∞.U∞(∞, v∞), v∞ = const �= ∞.U∞(∞, v∞), v∞ = const �= ∞. Eq. (2.7.2) becomes

ξ du/dξ = −u2; ξ dv/dξ = uv, (u → ∞). (2.7.87)

We integrate the first equation, insert the result into the second one, and integrate again:

u = 1/ ln(Aξ); v = B ln(Aξ),
(N = 1, 2, 3, ...; A, B = const; 0 < A, B < ∞; ξ → 1/A; ξ ≥ 1/A). (2.7.88)

It is seen that v → 0 if ξ → 1/A, and since ξ ≥ 1/A, we infer that the infinity point U∞ is an initial
point located on the u-axis. To obtain θ′, θ, and ∓ξN−1θ′, we employ Eq. (2.7.18) and integrate (Kimura
1981a):

θ′′ = θ′(1 − N + u)/ξ ≈ θ′u/ξ = ∓θn; θ′2 = ∓2θn+1/(n + 1) + const, (u → ∞). (2.7.89)
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We insert θn+1 = θ′2u/v and Eq. (2.7.88) into Eq. (2.7.89):

θ′2 = const
/{

1 ± [2/(n + 1)](u/v)
}
; θ′ = ∓C[±B(n + 1)/2]1/2 ln(Aξ),

(ξ → 1/A; ξ ≥ 1/A; C = const; 0 < A, B, C < ∞). (2.7.90)

θ and ∓ξN−1θ′ are obtained from

θ = ∓ξθ′/v = C[±(n + 1)/2B]1/2ξ, (2.7.91)

∓ξN−1θ′ = C[±B(n + 1)/2]1/2ξN−1 ln(Aξ). (2.7.92)

Thus, near U∞ we have θ′ → 0, θ → const, ∓ ξN−1θ′ → 0, uv → B = const if ξ → 1/A, (ξ ≥ 1/A).
(vi) V∞(u∞,∞); u∞ = const �= ∞.V∞(u∞,∞); u∞ = const �= ∞.V∞(u∞,∞); u∞ = const �= ∞. Eq. (2.7.2) yields

ξ dv/dξ = ±v2; v = ∓1/ ln(Bξ), (B = const; 0 < B < ∞; v → ∞ if ξ → 1/B). (2.7.93)

If n �= 0, we obtain from Eq. (2.7.2)

ξ du/dξ = ∓nuv, (v → ∞), (2.7.94)

which can be integrated by inserting for v from Eq. (2.7.93):

u = A
[
| ln(Bξ)|

]n
, (A = const; 0 < A < ∞; ξ → 1/B). (2.7.95)

If n < 0, we get u → ∞, contradicting the assumption u �= ∞. Thus, we must have n > 0. Eqs.
(2.7.93) and (2.7.95) write

u = A[− ln(Bξ)]n = A[ln(1/Bξ)]n; v = −1
/

ln(Bξ) = 1
/

ln(1/Bξ),
(n > 0; N = 1, 2, 3, ...; 0 < A, B < ∞; ξ → 1/B; ξ ≤ 1/B). (2.7.96)

If n > 0, the infinity point is a final point located on the v-axis: u∞ = 0. Eq. (2.7.18) reads

θ′′/θ′ = (1 − N + u)/ξ ≈ (1 − N)/ξ + A[ln(1/Bξ)]n
/
ξ, (2.7.97)

and

θ′ ≈ −Cξ1−N , (ξ → 1/B; ξ ≤ 1/B; C = const; 0 < B, C < ∞). (2.7.98)

We also have

θ = −ξθ′/v = Cξ2−N ln(1/Bξ); −ξN−1θ′ = C, (n > 0; N = 1, 2, 3, ...; ξ → 1/B; ξ ≤ 1/B).
(2.7.99)

Thus, in the vicinity of V∞ there is θ′ → −CBN−1 = const, θ → 0, −ξN−1θ′ → C = const, and
uvn → A = const.

In the particular case n = 0 all integral curves can be found analytically from the integrals of the
Lane-Emden equation (2.3.3), (2.3.4):

u = −ξ/θ′ = 1
/
(1/N − C/ξN );

N �= 2 : v = −ξθ′/θ = (1/N − C/ξN )
/[

− 1/2N + Cξ−N/(2 − N) + D/ξ2
]
;

N = 2 : v = (1/N − C/ξN )
/[

− 1/2N + (C/ξ2) ln ξ + D/ξ2
]
,

(n = 0; C, D = const; −∞ < C, D < ∞). (2.7.100)

C, D, and ξ have to be chosen in such a way that u, v ≥ 0. The infinity point V∞ is approached if
ξ tends to a finite positive zero ξ1 of θ. If n = 0, the integral curves have asymptotes parallel to the
v-axis, with the u∞-coordinate equal to u∞ = 1/(1/N − C/ξN

1 ) �= 0. Since θ is a decreasing function
of ξ, the infinity point is a final point. The E-solution is obtained if C = 0 [cf. Eq. (2.3.5)], and is
equal to the straight line u = N (see Figs. 2.7.2-2.7.4). Eq. (2.7.100) shows that the integral curves are
located on the left of the E-curve if C < 0, and on its right if C > 0. Eqs. (2.3.2)-(2.3.4) give θ′, θ, and
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−ξN−1θ′ = ξN/N −C. If ξ → ξ1, (ξ ≤ ξ1; 0 < ξ1 < ∞), we observe at once that θ → 0, θ′ → const, and
−ξN−1θ′ → const.

(vii) G∞(∞,∞).G∞(∞,∞).G∞(∞,∞). Instead of studying the behaviour of the Milne variables near u, v → ∞, it is easier
to study the behaviour of the integral curves of Eq. (2.7.3) near x, y → 0, by making the substitutions
u = 1/x and v = 1/y. Eq. (2.7.2) becomes up to the first order

ξ dx/dξ = ±nx/y + 1; ξ dy/dξ = −y/x ∓ 1, (x, y ≈ 0). (2.7.101)

As G∞ is approached, we have du, dv ≥ 0, and dx = −x2 du ≤ 0, dy = −y2 dv ≤ 0, (x, y ≥ 0).
Therefore dy/dx ≥ 0, and Eq. (2.7.3) writes as

dy/dx = (y/x)(±x + y)/(∓nx − y) ≥ 0. (2.7.102)

This condition cannot be fulfilled if 0 ≤ n < ∞. We are left with the polytropic indices −1 < n < 0
and −∞ < n < −1. Inserting Eq. (2.7.2) into ξ d(u/v)

/
dξ = (ξ/v) du/dξ − (ξu/v2) dv/dξ, we find the

exact equation

ξ d(u/v)
/
dξ = (u/v)[−2u ∓ (1 + n)v + 2N − 2]. (2.7.103)

We show that u/v → 0 if u, v → ∞ and −1 < n < 0, by introducing the new variable z = y/x = u/v
into Eqs. (2.7.101), (2.7.103). These equations become up to the first order

ξ dx/dξ = (±n + z)/z; ξ dy/dξ = −z ∓ 1; ξ dz/dξ = [−2z −∓(n + 1)]/x,

(−1 < n < 0 and −∞ < n < −1; x, y ≈ 0), (2.7.104)

and by division

dz/dx = −z[2z ± (n + 1)]/x(z ± n). (2.7.105)

Integration yields

1/x = czn/(n+1)[2z ± (n + 1)](1−n)/2(n+1), (c = const > 0). (2.7.106)

Turning back to the original (x, y)-variables, we get

2(xy)(1+n)/(1−n) ± (n + 1)(xyn)2/(1−n) = c2(n+1)/(n−1),

(−1 < n < 0 and −∞ < n < −1; x, y ≈ 0). (2.7.107)

If x, y → 0, the first term of the above equation becomes infinite if −∞ < n < −1, and cannot be
equal to the finite constant c2(n+1)/(n−1); the interval −∞ < n < −1 has to be discarded. If −1 < n <
0, (x, y → 0), the first term tends to zero, and Eq. (2.7.107) reduces to xyn → const, or uvn → const.
Thus (Kimura 1981a)

u/v = uvn/vn+1 → 0, (u, v → ∞; −1 < n < 0). (2.7.108)

Eq. (2.7.2) transforms with this important delimitation into

ξ du/dξ = uv(−u/v − n + N/v) ≈ −nuv; (ξ/v2) dv/dξ = u/v + 1 − (N − 2)/v ≈ 1,

(−1 < n < 0; u, v → ∞). (2.7.109)

The integration of Eq. (2.7.109) is effected in the same way as in Eqs. (2.7.93), (2.7.94):

u = A[ln(1/Bξ)]n; v = 1
/

ln(1/Bξ),
(−1 < n < 0; N = 1, 2, 3, ...; A, B = const; 0 < A, B < ∞; ξ → 1/B; ξ ≤ 1/B). (2.7.110)

The infinity point G∞(∞,∞) exists only if −1 < n < 0, and is a final point. Via Eqs. (2.7.90),
(2.7.108) we find

θ′ = −C
/
{1 + [2/(n + 1)](u/v)}1/2 ≈ −C,

(N = 1, 2, 3, ...; −1 < n < 0; C = const; 0 < C < ∞; u, v → ∞). (2.7.111)
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We have also

θ = −ξθ′/v = Cξ ln(1/Bξ), (ξ → 1/B), (2.7.112)

and

−ξN−1θ′ = CξN−1, (ξ → 1/B). (2.7.113)

Thus, if −1 < n < 0 and ξ → 1/B, we observe that θ′ → −C, θ → 0, −ξN−1θ′ → B1−NC, and
uvn = A = const.

The three infinity points U∞, V∞, G∞ are closely connected to the finite zeros and the finite extremes
of the Lane-Emden variable θ. Recall that to a whole homology family {θ(ξ)} only a single integral curve
corresponds in the (u, v)-plane (cf. Sec. 2.2). If the Lane-Emden variable has a finite zero ξ1, we can
easily show that along the corresponding integral curve we must have u → u∞, v → ∞ if n ≥ 0, and
u, v → ∞ if −1 < n < 0, i.e. the infinity points V∞ and G∞ are approached if θ → 0. Zeros of the
Lane-Emden variable can only occur if n > −1, because when n < −1 we have θ′ > 0, and θ is an
increasing function of ξ; the infinity points V∞, G∞ are not approached in this case by the integral curves
(see Figs. 2.7.1-2.7.6). We find, by inserting into Eq. (2.7.2) the Taylor expansion of θ near the finite
zero ξ1 :

u = −ξθn/θ′ ≈ ξ1(−θ′1)
n−1(ξ1 − ξ)n; v = −ξθ′/θ ≈ ξ1/(ξ1 − ξ), (n > −1; ξ ≈ ξ1; θ(ξ1) = 0).

(2.7.114)

If ξ → ξ1, we observe that u → ∞ if −1 < n < 0, and u → u∞ = −ξ1/θ′1 = const if n = 0, and u → 0
if n > 0. From Eq. (2.7.114) follows that near the finite zero of θ we have (cf. Chandrasekhar 1939 if
N = 3, n > 1)

uvn ≈ ξn+1
1 (−θ′1)

n−1 = const, (ξ ≈ ξ1). (2.7.115)

From Figs. 2.7.1-2.7.6 it appears that in the cases of practical interest N = 1, 2, 3 all integral curves
can be classified into five groups (D, E, F, M, and O-curves), according to the scheme outlined by
Chandrasekhar (1939). If N = 1, (n �= −1), and N = 2, (n > −1), and N = 3, (−1 < n ≤ 5), all
integral curves located on the left of the E-curve are called M -curves [excepting for the D-curve that
occurs if N = 3, (3 < n < 5)]. The curves located on the right of the E-curve are called F -curves. As
we have outlined in the discussion of the singular point Vs, a special curve exists – the D-curve – joining
the singular point Vs with Us, Gs, or U∞. If N = 1, n < −1 and N = 3, n = 5, the D-curve joins Vs

with Us, and is identical to the E-curve. If N = 3, 3 < n < 5, the D-curve joins Vs with Gs, and if
N = 3, n > 5, the D-curve joins Vs with U∞. If N = 2, 3, (n < −1) and N = 3, (n > 5), a fifth class of
curves exists, called O-curves joining the infinity point U∞ with Gs. If N = 3, n > 5, all integral curves
below the D-curve are O-curves (excepting for the E-curve), and the integral curves above the D-curve
are F -curves. If N = 2, 3, (n < −1), there exist only O-curves and the E-curve; no delimitation curve
occurs, and the E-curve is the sole curve cutting the u-axis at the finite singular point Us. The E-curve
is the principal delimitation curve between M and F -curves if N = 1, (n �= −1), N = 2, (n > −1), and
N = 3, (−1 < n ≤ 5). If N = 3, (n > 5), the D-curve takes over the role of a principal delimitation
curve between O and F -curves. As θ tends to its finite zero, the corresponding E, F, and M -curves tend
to V∞ or G∞.

Another classification of the integral curves in the (u, v)-plane can be given according to the various
initial and boundary conditions that may occur (Kimura 1981a). The arrows in Figs. 2.7.1-2.7.6 represent
the sense of increasing ξ. Depending on the values of ξ, θn+1, and ∓ξN−1θ′ at the initial point, we
distinguish five different classes of integral curves in the (u, v)-plane, where 0 < const < ∞ and N =
1, 2, 3 :

(i) ξ = 0, θn+1 = const, ∓ ξN−1θ′ = 0. These integral curves are represented by the E-curves
starting at Us, called normal solutions by Kimura (1981a). They occur if n �= −1, (N = 1, 2, 3, ...), and
have finite pressure (P ∝ θn+1) and zero mass (M ∝ ∓ξN−1θ′) at the origin ξ = 0.

(ii) ξ = 0, θn+1 = const, ∓ ξN−1θ′ = const. These integral curves are represented by the M -curves
starting at Os, (N = 1), called loaded type solutions, having finite pressure and mass at the origin ξ = 0.
They occur if N = 1, (n �= −1).

(iii) ξ = 0, θn+1 = ∞, −ξN−1θ′ = const. These integral curves are represented by the M -curves
starting at Os if N = 2, (n > −1), and at Vs if N = 3, (−1 < n < 3). These polytropes are termed
loaded singular type solutions, with infinite pressure and finite mass at the origin ξ = 0.
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(iv) ξ = 0, θn+1 = ∞, −ξ2θ′ = 0. These integral curves are represented by the D-solution and M -
solutions starting at Gs if N = 3, (3 ≤ n < 5), and by the M -solutions surrounding Gs if N = 3, (n = 5).
These polytropes are called singular type solutions with infinite pressure and zero mass at the origin ξ = 0.

(v) ξ = const, θn+1 = const, ∓ξN−1θ′ = 0. All these integral curves start at U∞, and are represented
by the F -solutions occurring if N = 1, (n �= −1), N = 2, (n > −1), and N = 3, (−1 < n ≤ 5), as well
as by the O-solutions occurring if N = 2, 3, (n < −1) and N = 3, (n > 5). The D-solution occurring if
N = 3, (n > 5) is also represented by this kind of initial conditions. The pressure is finite and the mass
zero at nonzero radial distance; this class of polytropes may be called vacant core type solutions.

The pressure P ∝ θn+1 at the boundary has always to vanish, as results from the form of θ near the
final points Gs, G∞, Vs, V∞, as well as from the requirement of hydrostatic equilibrium. Depending on
the boundary values of ξ, θn,∓ξN−1θ′ we may distinguish five classes of final points (Kimura 1981a):

(i) ξ = const, θn = 0, −ξN−1θ′ = const. These integral curves approach the infinity point V∞(0,∞),
and are represented by the E and M -curves if N = 1, 2, (n > 0) and N = 3, (0 < n < 5), as well as by
the F -curves occurring if N = 1, 2, 3, (n > 0). The density (� ∝ θn) becomes zero as the final finite value
of ξ is attained.

(ii) ξ = const, θn = 1, −ξN−1θ′ = const. To this class there belongs only the polytrope n = 0 with
the E, F, and M -curves (N = 1, 2, 3, ...). The density (� ∝ θn = 1) is constant, and the integral curves
approach the infinity point V∞(u∞,∞) as the boundary of the polytrope is attained: θ = 0 for finite ξ.

(iii) ξ = const, θn = ∞, −ξN−1θ′ = const. These integral curves approach the infinity point G∞
and are represented by the E, F, and M -curves if −1 < n < 0, (N = 1, 2, 3, ...). These polytropes have a
finite zero of θ as the boundary of the polytrope is attained. The density (� ∝ θn) becomes infinite and
the mass (M ∝ −ξN−1θ′) remains finite at the boundary.

(iv) ξ = ∞, θn = 0, ∓ξN−1θ′ = const. The integral curves approach Vs as the final infinite value of
ξ is attained. The density of these polytropes becomes zero and the mass remains finite as the boundary
is approached. They are represented by the E, F, and M -curves of polytropic slabs N = 1, (n < −1),
as well as by the D-curve if N = 3, (n > 3); the D-curve coincides with the E-curve if N = 3, n = 5.

(v) ξ = ∞, θn = 0, ∓ξN−1θ′ = ∞. The integral curves approach Gs as the final infinite value of ξ
is attained. The density tends to zero and the mass of these polytropes becomes infinite as the infinite
boundary is attained. These boundary conditions are represented by the O-solutions of polytropes having
N = 2, 3, (n < −1) and N = 3, (5 < n < ∞), as well as by the closed M -curves surrounding Gs if
N = 3, n = 5.

This completes our topological study of polytropes having n �= −1,±∞, and we now turn to the
special case n = ±∞, left over from the preceding discussion.

2.7.2 Polytropic Index n = ±∞n = ±∞n = ±∞

The singular points of Eq. (2.7.6) are given by the solutions of the system

v(u − N + 2) = 0; u(−u − v + N) = 0, (2.7.116)

yielding the four singular points Os(0, 0), Us(N, 0), Vs(0, vs), Gs(N − 2, 2). The points Os and Us are
possible for any N, while Vs appears if N = 2, and Gs if N ≥ 2.

The infinity points of Eq. (2.7.6) can be of the form U∞(∞, v∞), V∞(u∞,∞), and G∞(∞,∞), where
u∞, v∞ = const �= ∞.

(i) Os(0, 0).Os(0, 0).Os(0, 0). Eq. (2.7.5) becomes

ξ du/dξ = Nu; ξ dv/dξ = v(2 − N), (N �= 2; u, v ≈ 0), (2.7.117)

with the solutions

u = AξN ; v = Bξ2−N , (N �= 2; ξ ≈ 0; A, B = const; 0 < A, B < ∞), (2.7.118)

showing that this finite singular point exists only if N = 1. If N = 2, the solution of Eq. (2.7.5) is

u = Aξ2; v = B exp(Aξ2/2) ≈ B, (N = 2; ξ ≈ 0; A, B = const; 0 < A, B < ∞), (2.7.119)
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and if B ≈ 0 there exist integral curves arbitrary close to the vicinity of Os (cf. Eq. (2.7.136) and Fig.
2.7.3). According to Eq. (2.7.4) we have

θ′ = v/ξ ≈ B; θ = ln(ξ/uθ′) ≈ ln(1/AB); ξN−1θ′ = θ′ ≈ B, (N = 1; ξ ≈ 0). (2.7.120)

θ′, θ, ξN−1θ′ are nonzero and finite as the singular point Os is approached. If N = 1, the point Os is
a node and an initial point.

(ii) Us(N, 0).Us(N, 0).Us(N, 0). Eq. (2.7.5) becomes

ξ du/dξ = u(−u − v + N); ξ dv/dξ = 2v, (u ≈ N ; v ≈ 0). (2.7.121)

Integration of the second equation yields

v = Bξ2, (ξ ≈ 0; B = const; 0 < B < ∞). (2.7.122)

The first equation (2.7.121) reads

ξ du/dξ = −u2 + u(N − Bξ2), (2.7.123)

and can be solved in the same manner as Eq. (2.7.27):

u ≈ N(N + 2)
/
[N + 2 + Bξ2 + AN(N + 2)/ξN ],

(ξ ≈ 0; A, B = const; −∞ < A < ∞; 0 < B < ∞). (2.7.124)

Inserting Eq. (2.7.122) into Eq. (2.7.124), we obtain [cf. Eq. (2.7.30)]

vN/2[(N + 2)(u − N) + Nv] = −ABN/2N2(N + 2) = const, (u ≈ N ; v ≈ 0). (2.7.125)

The E-curve results if A = 0. When A �= 0, the integral curves are generalized hyperbolas, tangent to
the u-axis and to the straight line (N + 2)(u−N) + Nv = 0. The singular point Us is a saddle point. Us

is an initial point for the single integral curve passing through Us. If A = 0, we get for θ′, θ, and ξN−1θ′ :

θ′ = v/ξ ≈ Bξ; θ = ln(ξ/uθ′) ≈ ln(1/NB); ξN−1θ′ ≈ BξN , (A = 0; ξ ≈ 0). (2.7.126)

Thus, θ′, ξN−1θ′ → 0, θ → const if ξ → 0 and A = 0. From the initial conditions (2.1.41) we have
θ(0) = 0, and therefore B = 1/N. If A = 0, the Milne variables become by Eqs. (2.7.122) and (2.7.124)

u = N − ξ2/(N + 2); v = ξ2/N, (ξ ≈ 0), (2.7.127)

and [see Eq. (2.4.36)]

θ = θ′(0) ξ + θ′′(0) ξ2/2 = ξ2/2N, (ξ ≈ 0; θ′ = ξ/N). (2.7.128)

(iii) Vs(0, vs).Vs(0, vs).Vs(0, vs). This singular point exists only if N = 2, and amounts to the whole positive v-axis
(vs = const; 0 < vs < ∞). It has been pointed out in connection with Eq. (2.7.76) that all integral curves
can be represented analytically if n = (N + 2)/(N − 2), i.e. n = ±∞ if N = 2. We rewrite therefore Eq.
(2.3.45)

ξ exp(−θ)/θ′ + ξθ′/2 + 2/ξθ′ = 2 + C/ξθ′, (2.7.129)

and insert from Eq. (2.7.4):

u + v/2 + 2/v = 2 + C/v or u + (v − 2)2/2v = C/v, (N = 2; C = const; 0 ≤ C < ∞).
(2.7.130)

The straight-line E-solution 2u + v = 4 is obtained if C = 2, and cuts the v-axis at vs = 4. The
integral curves (2.7.130) intersect the v-axis at

v = vs = 2 ± (2C)1/2, (N = 2; u = 0; 0 ≤ C < ∞), (2.7.131)

and we observe that the integral curves intersect symmetrically with respect to the singular point Gs(0, 2)
as long as 0 ≤ C ≤ 2. If C > 2, we have only a single intersection with the positive v-axis (Fig. 2.7.3).
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The integral curves located on the left of the E-curve have 0 ≤ C < 2, and those located on the right
have C > 2. Eqs. (2.7.130) and (2.7.131) show that the singular point Gs(0, 2) is approached if C → 0.
In the vicinity of the singular point Gs(0, 2) Eq. (2.7.130) takes the form

u = −(v − 2)2/4 + C/2, (u ≈ 0; v ≈ 2; C ≈ 0), (2.7.132)

and it is seen that the integral curves are parabolas with the symmetry axes on the line v = 2, and the
vertices located at u = C/2, (Fig. 2.7.3).

Exact expressions can be found for the Milne variables in the whole (u, v)-plane by inserting Eq.
(2.7.130) into Eq. (2.7.5):

dv/d ln ξ = uv = [2C − (v − 2)2]/2, (N = 2). (2.7.133)

An elementary integration yields

v = 2 + (2C)1/2[(Bξ)(2C)1/2 − 1]
/
[(Bξ)(2C)1/2

+ 1], (B, C = const; 0 < B < ∞; 0 ≤ C < ∞).
(2.7.134)

u is obtained by inserting into Eq. (2.7.130):

u = 4C(Bξ)(2C)1/2
/[

[(Bξ)(2C)1/2
+ 1]

{
2[(Bξ)(2C)1/2

+ 1] + (2C)1/2[(Bξ)(2C)1/2 − 1]
}]

. (2.7.135)

The v-axis is approached if ξ → 0, (0 ≤ C < 2), and if ξ → ∞, (0 ≤ C < ∞). The v-axis is cutted at
vs = 2 − (2C)1/2 if ξ → 0, and at vs = 2 + (2C)1/2 if ξ → ∞. Eq. (2.7.135) becomes near the v-axis

u = 4C
/{

[2 ± (2C)1/2] (Bξ)±(2C)1/2}
, (u ≈ 0), (2.7.136)

where the upper sign holds if ξ → ∞, (0 ≤ C < ∞), and the lower one if ξ → 0, (0 ≤ C < 2). The
behaviour of θ′, θ, and ξθ′ near the v-axis is as follows:

θ′ = v/ξ ≈ [2 ± (2C)1/2]/ξ; θ = ln(ξ/uθ′) ≈ ln[B±(2C)1/2
ξ2±(2C)1/2

/4C];

ξθ′ ≈ 2 ± (2C)1/2, (u ≈ 0). (2.7.137)

θ′ → 0, θ → ∞ if ξ → ∞, (0 ≤ C < ∞), and θ′ → ∞, θ → −∞ if ξ → 0, (0 ≤ C < 2). The product
ξθ′ is always constant. Vs is an initial point if 0 < vs ≤ 2, and a final point if vs ≥ 2.

(iv) Gs(N − 2, 2).Gs(N − 2, 2).Gs(N − 2, 2). This singular point exists in the positive quadrant if N ≥ 2. For polytropic
cylinders (N = 2) the shape of the integral curves in the vicinity of Gs is given by Eqs. (2.7.132),
(2.7.134), (2.7.135) if C ≈ 0, and has already been discussed in connection with the singular point Vs :
The integral curves in the vicinity of Gs are parabolas, and Gs appears like a semivortex, the parabolas
degenerating into Gs if C = 0.

For polytropic spheres (N = 3) the Milne variables in the vicinity of Gs can be most easily found
with the aid of the asymptotic expansions (2.4.104), (2.4.105):

u = 1 + (C1ξ
−1/2/4)

{
3 cos[(71/2/2) ln ξ − C2] − 71/2 sin[(71/2/2) ln ξ − C2]

}
;

v = 2 + (C1ξ
−1/2/2)

{
cos[(71/2/2) ln ξ − C2] + 71/2 sin[(71/2/2) ln ξ − C2]

}
,

(N = 3; ξ → ∞; C1, C2 = const). (2.7.138)

u and v oscillate with decreasing amplitude round the singular point if ξ → ∞. The point Gs(1, 2) is
a focus and a final point (ξ → ∞). From Eq. (2.4.104) follows that θ′ ≈ 2/ξ, θ ≈ ln(ξ2/2), ξ2θ′ ≈ 2ξ if
ξ → ∞.

(v) U∞(∞, v∞), v∞ = const �= ∞.U∞(∞, v∞), v∞ = const �= ∞.U∞(∞, v∞), v∞ = const �= ∞. Eq. (2.7.5) becomes [cf. Eq. (2.7.87)]

ξ du/dξ = −u2; ξ dv/dξ = uv, (u → ∞), (2.7.139)

and by integration

u = 1/ ln(Aξ); v = B ln(Aξ), (N = 1, 2, 3, ...; 0 < A, B < ∞; ξ → 1/A; ξ ≥ 1/A). (2.7.140)
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Thus, U∞ is an initial point (ξ ≥ 1/A), and of the form U∞(∞, 0), i.e. v∞ = 0. We have

θ′ = v/ξ ≈ B ln(Aξ)/ξ ≈ AB ln(Aξ) → 0; θ = ln(ξ/uθ′) ≈ ln(ξ2/B) → − ln(A2B) = const;

ξN−1θ′ ≈ BξN−2 ln(Aξ) ≈ A2−NB ln(Aξ) → 0; uv = B = const, (N = 1, 2, 3, ...; ξ → 1/A).
(2.7.141)

(vi) V∞(u∞,∞), u∞ = const �= ∞.V∞(u∞,∞), u∞ = const �= ∞.V∞(u∞,∞), u∞ = const �= ∞. Eq. (2.7.6) reads

dv/du = −1 + (N − 2)/u, (v → ∞), (2.7.142)

which can be integrated, to give

v = lnuN−2 − u + C, (C = const; −∞ < C < ∞). (2.7.143)

We observe that V∞ exists if N = 1. We have v → ∞ if u → 0, and Eq. (2.7.5) turns into

ξ du/dξ = −uv; ξ dv/dξ = v, (u → 0; v → ∞), (2.7.144)

with the solutions

u = exp(−Bξ + A); v = Bξ, (N = 1; ξ → ∞; A, B = const; −∞ < A < ∞; 0 < B < ∞).
(2.7.145)

For polytropic slabs V∞(0,∞) is a final point:

θ′ = v/ξ ≈ B = const; θ = ln(ξ/uθ′) ≈ ln(ξ/B) + Bξ − A ≈ Bξ → ∞;

ξN−1θ′ = θ′ ≈ B = const, (N = 1; ξ → ∞). (2.7.146)

(vii) G∞(∞,∞).G∞(∞,∞).G∞(∞,∞). Eq. (2.7.6) takes the form

du/dv = −u/v − 1, (u, v → ∞). (2.7.147)

This equation can be integrated by the method of variation of constants

u = −v/2 − C/v, (u, v → ∞; C = const), (2.7.148)

showing that no positive infinity points exist in the first quadrant. The singular point G∞ does not exist
for the polytropic index n = ±∞, (N = 1, 2, 3, ...).

Excepting for the D-curves, all other classes of integral curves also occur if n = ±∞. If N = 1, 2, the
solution curves are M, E, and F -curves (Figs. 2.7.2, 2.7.3), cutting the v-axis if N = 2. M -curves are
located on the left of the E-curve, and F -curves on its right. If N = 3, there occur only O-curves and
the familiar E-curve (Fig. 2.7.6 and Chandrasekhar 1939).

According to Kimura’s (1981a) classification scheme we can distinguish four classes of initial points
(N = 1, 2, 3; 0 < const < ∞) :

(i) ξ = 0, exp(−θ) = const, ξN−1θ′ = 0. These integral curves are represented by E-curves starting
at Us(N, 0). They have finite pressure and density [P, � ∝ exp(−θ)], and zero mass (M ∝ ξN−1θ′) at the
origin ξ = 0.

(ii) ξ = 0, exp(−θ) = const, ξN−1θ′ = const. These integral curves are represented by the M -curves
starting at Os if N = 1, having finite pressure and mass at the origin ξ = 0.

(iii) ξ = 0, exp(−θ) = ∞, ξN−1θ′ = const. These polytropes have infinite pressure and density, but
finite mass at the origin ξ = 0. They are represented by the curves starting on the v-axis with 0 < vs < 2
if N = 2.

(iv) ξ = const, exp(−θ) = const, ξN−1θ′ = 0. These integral curves are represented by the F -
solutions occurring if N = 1, 2, and by the O-solutions occurring for polytropic spheres (N = 3), having
finite pressure and zero mass at a nonzero initial radial distance.

The final points can be classified into two groups:
(i) ξ = ∞, ξN−1θ′ = const. These integral curves are represented by the M, E, and F -curves if

N = 1, 2.
(ii) ξ = ∞, ξN−1θ′ = ∞. These are the E and O-curves if N = 3.
The pressure P ∝ exp(−θ) tends always to zero.
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The polytropes described in this section and differing from the familiar E-solution may have impor-
tance in constructing models of massive interstellar clouds with a hot ionized core of negligible mass
(pertinent initial conditions are from (v) if n �= −1,±∞ and from (iv) if n = ±∞), or models of clouds
or stellar and globular systems having a compact mass concentration at its centre [pertinent initial con-
ditions are from (ii)]. The very importance of non-E-solutions is their role for constructing composite
polytropes, providing more realistic models of stars, clusters, and clouds than simple polytropes do.
Composite polytropes will be described subsequently.
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2.8 Composite and Other Spherical Polytropes

2.8.1 Composite Polytropes

Since stars often have a core surrounded by an envelope, it was tempting to generalize polytropes with
a single index to polytropic models having two or even more polytropic indices. We confine ourselves
to two-zone polytropes, and denote by nc, ne the polytropic index of the core and of the envelope,
respectively. The total mass Me1 and the total radius re1 of the polytrope are specified, as well as the
ratio q = rci/re1 = rei/re1 between core radius rci = rei and total radius. Generally, the core solution is
chosen to be the Lane-Emden function of index nc, satisfying the Lane-Emden equation (2.1.14)

θ′′c + (N − 1)θ′c/ξc = ∓θnc
c , (nc �= −1,±∞; θ′c = dθc(ξc)/dξc), (2.8.1)

with the initial conditions θc(0) = 1, θ′c(0) = 0. To be concise, we omit for the moment the special case
nc = ±∞ (see however Eqs. (2.8.15)-(2.8.32), and Sec. 2.8.2 for the so-called isothermal spheres). The
Lane-Emden equation writes in the envelope

θ′′e + (N − 1)θ′e/ξe = ∓θne
e , (ne �= −1,±∞; θ′e = dθe(ξe)/dξe), (2.8.2)

where we have introduced the dimensionless polytropic envelope variables ξe and θe, in order to distinguish
them from the core variables ξc and θc. The initial conditions of Eq. (2.8.2) need no longer to be the
usual conditions of the Lane-Emden function θc from Eq. (2.8.1); generally, the initial envelope conditions
θei = θe(ξei), θ′ei = θ′e(ξei) of Eq. (2.8.2) are given at the core-envelope interface for a certain value of
ξe = ξei �= 0.

The physical variables radius, density, pressure, and mass of the core are given by (cf. Secs. 2.6.1-2.6.3)

rc = [±(nc + 1)Kc/4πG�
1−1/nc

c0 ]1/2ξc; �c = �c0θ
nc
c ; Pc = Kc�

1+1/nc

c0 θnc+1
c ;

Mc =
{
2�c0[±(nc + 1)Kc/4πG�

1−1/nc

c0 ]N/2ΓN (1/2)
/
Γ(N/2)

}
ξN−1
c (∓θ′c), (2.8.3)

and for the envelope

re = [±(ne + 1)Ke/4πG�
1−1/ne

e0 ]1/2ξe; �e = �e0θ
ne
e ; Pe = Ke�

1+1/ne

e0 θne+1
e ;

Me =
{
2�e0[±(ne + 1)Ke/4πG�

1−1/ne

e0 ]N/2ΓN (1/2)
/
Γ(N/2)

}
ξN−1
e (∓θ′e), [(ξN−1

e θ′e)ξe=0 = 0].
(2.8.4)

Me is the whole mass inside radius re, including also the core mass. Strictly speaking the physical
parameters for the core are defined only between the origin rc = 0, (ξc = 0) and the core-envelope
interface at radius rci, (ξc = ξci). Similarly, the envelope variables are defined between the interface at
re = rei = rci > 0, (ξe = ξei) and the boundary of the polytrope at re = re1, (ξe = ξe1). In order to
get simple equations for the mass Me, we can formally extend the integration up to the centre where
re, ξe = 0. We have assumed (ξN−1

e θ′e)ξe=0 = 0, so that the simple equation (2.8.4) for Me results,
although θe may even have a singularity at the origin. �c0 is just the central density of the composite
polytrope, while �e0 is generally adjusted in order to select a particular composite model (Chandrasekhar
1939). The prescribed total mass and total radius of the composite polytrope is

Me1 =
{
2�e0[±(ne + 1)Ke/4πG�

1−1/ne

e0 ]N/2ΓN (1/2)
/
Γ(N/2)

}
ξN−1
e1 (∓θ′e1), (2.8.5)

re1 = [±(ne + 1)Ke/4πG�
1−1/ne

e0 ]1/2ξe1. (2.8.6)

The physical quantities at the core-envelope interface must be equal in order to satisfy continuity.
The Lane-Emden variables at the interface are indexed with i, and the equations of fit at the interface
are obtained at once by equating Eqs. (2.8.3) and (2.8.4), respectively:

[±(nc + 1)Kc/�
1−1/nc

c0 ]1/2ξci = [±(ne + 1)Ke/�
1−1/ne

e0 ]1/2ξei, (2.8.7)
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�c0θ
nc
ci = �e0θ

ne
ei , (2.8.8)

Kc�
1+1/nc

c0 θnc+1
ci = Ke�

1+1/ne

e0 θne+1
ei , (2.8.9)

�c0[±(nc + 1)Kc/�
1−1/nc

c0 ]N/2ξN−1
ci (∓θ′ci) = �e0[±(ne + 1)Ke/�

1−1/ne

e0 ]N/2ξN−1
ei (∓θ′ei). (2.8.10)

We raise Eq. (2.8.7) to the N -th power, multiply the result with Eq. (2.8.8), and finally divide by
Eq. (2.8.10). We just get equality of the homology variable u as a fitting condition at the interface:

ξciθ
nc
ci

/
(∓θ′ci) = ξeiθ

ne
ei

/
(∓θ′ei) or u(nc, ξci) = u(ne, ξei). (2.8.11)

Now, we divide Eq. (2.8.9) by Eq. (2.8.8), to obtain

Kc�
1/nc

c0 θci = Ke�
1/ne

e0 θei. (2.8.12)

As already noted several times, factors of the form K�1/n may be replaced by P/�, thus avoiding the
apparent singularity of K�1/n if n = 0. We raise Eq. (2.8.7) to the (N − 2)-th power, and multiply by
Eq. (2.8.12). Then we divide Eq. (2.8.10) by the obtained product, and get a relationship for the other
homology variable v at the interface:

(nc + 1)ξci(∓θ′ci)
/
θci = (ne + 1)ξei(∓θ′ei)/θei or (nc + 1) v(nc, ξci) = (ne + 1) v(ne, ξei).

(2.8.13)

A distinct chemical composition of core and envelope has been considered by Beech and Mitalas
(1990) in composite polytropes composed of perfect gas P = RT �/µ. From the continuity of pressure and
temperature at the core-envelope interface results �c/µc = �e/µe, or instead of Eq. (2.8.8) �c0θ

nc
ci /µc =

�e0θ
ne
ei /µe, where µc, µe denotes the mean molecular weight in the core and envelope, respectively. In

this case the left- and right-hand sides of Eqs. (2.8.11) and (2.8.13) have to be divided by µc and µe,
respectively.

The solution for the core of the composite polytrope in the [u, (n + 1)v]-plane is just given by the E-
curve, corresponding to the Lane-Emden function for the core, and extending up to the radial coordinate
ξc = ξci. The solution curves for the envelope in the [u, (n + 1)v]-plane depend on a single integration
constant, forming a one-parametric grid. Some or all curves of the grid cut the E-curve of the core at
certain points, corresponding to particular interface solutions of the composite polytropic model. The
intersection point of the [ue, (ne + 1)ve]-curves with the E-curve is selected in such a way that the
corresponding value of ξe = ξei at the interface obeys just the prescribed ratio rci/re1 = rei/re1 =
ξei/ξe1 = q. Note, that the value of q along a solution curve in the [u, (n + 1)v]-plane is the same for
all members of a homology family, since the homology constant A, (ξ → Aξ) cancels out from the ratio
q. Once ξei is determined, the corresponding values θei and θ′ei at the interface ξ = ξei are also known,
as well as θe1 = 0 and θ′e1 at the surface ξe = ξe1 of the envelope, i.e. at the surface of the composite
polytrope. Actually, ξei is known merely aside the homology constant �e0. To obtain �e0, we determine
at first the polytropic constant Ke from the prescribed mass-radius relationship [cf. Eqs. (2.6.21), (2.8.5)
and (2.8.6)]:

Ke = {4πG/[±(ne + 1)]}{2[Γ(1/2)]N
/
Γ(N/2)}(1−ne)/ne

×M
(ne−1)/ne

e1 r
[N(1−ne)+2ne]/ne

e1 ξ
−(ne+1)/ne

e1 (∓θ′e1)
(1−ne)/ne . (2.8.14)

�e0 can now be readily determined from Eq. (2.8.6) with the aid of the prescribed radius. Then, the
core parameters result at once, since the intersection point between the integral curves of the envelope and
the E-curve of the core already yields the value of ξci for the Lane-Emden function θc of the core. Hence
θci and θ′ci are known too, as well as the values of the physical quantities rci = rei, �ci = �ei, Pci = Pei,
and Mci = Mei at the core-envelope interface. So, �c0 and Kc can be found at once from Eq. (2.8.3),
by using for instance the values of radius and density at the interface (Chandrasekhar 1939). The whole
structure of the composite polytrope is now completely determined. The outlined method (cf. Milne
1930b, 1932, Cowling 1931, Russell 1931) is mainly of historical interest, due to the computerization of
science.
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In the present context we shall confine ourselves to the presentation of two composite models, namely
the isothermal core surrounded by a polytropic envelope (Henrich and Chandrasekhar 1941, Yabushita
1975), and the composite models devised by Murphy (1982, 1983a) from the superposition of the analytic
solutions for polytropes of index nc = 0, ne = 1, and nc = 1, ne = 5.

Yabushita (1975) constructs a Newtonian analogue to the model of a neutron star. For the neutrons
in the core an equation of state of the form (1.7.41) may be appropriate, connecting core pressure Pc

with relativistic density �cr :

Pc = βv2�cr. (2.8.15)

In the Newtonian approximation the relativistic mass density �cr is equal to the rest mass density �c,
and the pressure-density relationship in the core becomes

Pc = βv2�c = Kc�c, (Kc = βv2 = const), (2.8.16)

which is just the equation of state of a polytrope with index nc = ±∞ (isothermal in the case of a
perfect gas). The neutrons in the core of a neutron star may be surrounded by an envelope consisting of
a nonrelativistic, completely degenerate electron gas, obeying the equation of state (1.6.6) of a polytrope
with index ne = 1.5 :

Pe = Ke�
5/3
e . (2.8.17)

The Lane-Emden equations for the core and the envelope of this composite polytrope are therefore

θ′′c + 2θ′c/ξc = exp(−θc), (nc = ±∞), (2.8.18)

and

θ′′e + 2θ′e/ξe = −θ3/2
e , (ne = 3/2). (2.8.19)

Yabushita (1975) fixes one of the homology constants by adopting the same central density �c0 in
both, the core and the envelope: �c0 = �e0. Therefore, radius, density, pressure, and mass are written in
Lane-Emden variables as

rc = (Kc/4πG�c0)1/2ξc; �c = �c0 exp(−θc); Pc = Kc�c0 exp(−θc);

Mc = 4π(Kc/4πG)3/2�
−1/2
c0 ξ2

cθ′c, (2.8.20)

re = (5Ke/8πG)1/2�
−1/6
c0 ξe; �e = �c0θ

3/2
e ; Pe = Ke�

5/3
c0 θ5/2

e ;

Me = −4π(5Ke/8πG)3/2�
1/2
c0 ξ2

eθ′e. (2.8.21)

Continuity of physical quantities at the interface yields

(Kc/�c0)1/2ξci = (5Ke/2)1/2�
−1/6
c0 ξei, (2.8.22)

exp(−θci) = θ
3/2
ei , (2.8.23)

Kc exp(−θci) = Ke�
2/3
c0 θ

5/2
ei , (2.8.24)

K3/2
c ξ2

ciθ
′
ci = −(5Ke/2)3/2�c0ξ

2
eiθ

′
ei. (2.8.25)

Elimination of θei between Eqs. (2.8.23) and (2.8.24) gives

�c0 = (Kc/Ke)3/2 exp θci. (2.8.26)

When this is inserted into Eq. (2.8.22), one finds that

ξei = (2/5)1/2ξci exp(−θci/3), (2.8.27)
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while Eq. (2.8.25) furnishes the corresponding derivative

θ′ei = −(2/5)1/2θ′ci exp(−θci/3). (2.8.28)

The tabulated Lane-Emden functions θc, θ
′
c are known for any ξc, and we have to choose merely an

arbitrary ξc = ξci as the value of the radial coordinate at the core-envelope interface, in order to fix the
values of θci and θ′ci. Since Kc and Ke are assumed to take prescribed values, we can easily find out
from the four equations (2.8.23), (2.8.26)-(2.8.28) the values of ξei, θei, θ

′
ei, �c0 with the aid of the known

quantities Kc, Ke, ξci, θci, θ
′
ci. Now we can integrate the Lane-Emden equation (2.8.19) for a spherical

polytrope of index ne = 1.5 with the initial conditions θei = θ(ξei) and θ′ei = θ′e(ξei) up to its first zero
θe1 = θe(ξe1) = 0. Total mass and total radius of this composite polytrope are obtained at once from Eq.
(2.8.21), by inserting for �c0 via Eq. (2.8.26):

Me1 = −4π(5/8πG)3/2(KcKe)3/4ξ2
e1θ

′
e1 exp(θci/2); re1 = (5/8πG)1/2(K3

e /Kc)1/4ξe1 exp(−θci/6).
(2.8.29)

Core mass Mci, core radius rci, and core density at the interface �ci result from Eq. (2.8.20):

Mci = 4π(1/4πG)3/2(KcKe)3/4ξ2
ciθ

′
ci exp(−θci/2);

rci = (1/4πG)1/2(K3
e/Kc)1/4ξci exp(−θci/2); �ci = (Kc/Ke)3/2. (2.8.30)

The core mass approaches a finite limiting value even if the radial coordinate at the interface ξci grows
indefinitely. This can be shown by using the asymptotic expansion of θc from Eqs. (2.4.104), (2.4.105):

θc ≈ ln(ξ2
c/2); θ′c ≈ 2/ξc; exp(−θc/2) ≈ 21/2/ξc if ξc → ∞. (2.8.31)

Eq. (2.8.30) already shows that the interface density �ci = �ei is independent of ξci, and if we insert
Eq. (2.8.31), we get at once

lim
ξci→∞

Mci = (2/π)1/2G−3/2(KcKe)3/4; lim
ξci→∞

rci = (1/2πG)1/2(K3
e /Kc)1/4. (2.8.32)

As outlined by Eqs. (2.7.99), (2.7.114), and shown graphically in Fig. 2.7.4, all integral curves in the
(u, v)-plane approach the infinity point V∞(0,∞) if ne = 1.5, that means there exists a finite zero ξe1.
Moreover, Eq. (2.7.99) shows that ξ2

e1θ
′
e1 is finite, so we conclude that the total mass of the composite

polytrope given by Eq. (2.8.29) is finite too. From the tables of the isothermal function (Table 2.5.1
and Horedt 1986b) it is easily seen that the factor ξ2

ciθ
′
ci exp(−θci/2) from the core mass in Eq. (2.8.30)

obeys a maximum value of ≈ 4.19 if ξci ≈ 6.5; if ξci → ∞, this value drops to 23/2 ≈ 2.83. Thus, the
isothermal core of the considered composite model exhibits a similar behaviour as the general relativistic
hydrostatic equilibrium model of a large cold mass, possessing a maximum mass of about 0.6-2.7 M�
(Oppenheimer-Volkoff limit from Fig. 5.12.1). The scale of Yabushita’s (1975) Fig. 1 seems inappropriate:
His abscissa exp(θci) takes values < 1, and his plotted ordinate is generally several times smaller than
ξ2
ciθ

′
ci exp(−θci/2).
Henrich and Chandrasekhar (1941) have determined the maximum mass that can be contained in an

isothermal core surrounded by a ne = 3 envelope. Further studies on this subject have been effected
by Schönberg and Chandrasekhar (1942) for the case of a changing molecular weight, by Gabriel and
Ledoux (1967) for the secular stability of models with isothermal cores, and by Beech (1988b). The
physical parameters of the E-solution for the isothermal core (nc = ±∞) are given by Eq. (2.8.20), while
radius, density, pressure, and mass in the envelope are given by [cf. Eq. (2.8.4)]

re = (Ke/πG)1/2�
−1/3
e0 ξe; �e = �e0θ

3
e ; Pe = Ke�

4/3
e0 θ4

e ;

Me = −4π(Ke/πG)3/2ξ2
eθ′e, (ne = 3). (2.8.33)

At the interface the two sets of formulas should be identical:

K1/2
c �

−1/2
c0 ξci/2 = K1/2

e �
−1/3
e0 ξei; �c0 exp(−θci) = �e0θ

3
ei; Kc�c0 exp(−θci) = Ke�

4/3
e0 θ4

ei;

K3/2
c �

−1/2
c0 ξ2

ciθ
′
ci/8 = −K3/2

e ξ2
eiθ

′
ei. (2.8.34)
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Fig. 2.8.1 Plot of fractional core mass qi and of total radius re1 ∝ X(xi) versus fractional core radius
xi = rei/re1. The four dots on each curve represent the four solutions of Henrich and Chandrasekhar (1941), and
the dot circle is the approximate location of the spiraling point.

These four equations of fit can be reduced in a similar way as Eqs. (2.8.7)-(2.8.13) to two equations
involving only the homology invariant variables (2.2.6) and (2.2.7):

uci = ξci exp(−θci)/θ′ci = uei = −ξeiθ
3
ei/θ′ei; vci = ξciθ

′
ci = 4vei = −4ξeiθ

′
ei/θei. (2.8.35)

The fraction of the radius occupied by the core is

xi = rci/re1 = rei/re1 = ξei/ξe1, (2.8.36)

and the core fraction qi of the total mass Me1 is also readily obtained:

qi = Mci/Me1 = Mei/Me1 = M(ξei)/M(ξe1) = ξ2
eiθ

′
ei/ξ2

e1θ
′
e1. (2.8.37)

Henrich and Chandrasekhar (1941) have obtained four solutions of the equations of fit (2.8.35), using
M -solutions with −ξ2

e1θ
′
e1 = 1.5 and 1.9 (Fig. 2.8.1). To determine the re1(xi) relation, we eliminate �e0

from the relationships

�
−1/3
e0 = Keθei/Kc; re1 = (Ke/πG)1/2�

−1/3
e0 ξe1, (2.8.38)

to obtain

re1 = K3/2
e ξe1θei/Kc(πG)1/2 = −(GMe1/4Kc)(ueivei)1/2/ξ2

e1θ
′
e1xi = GMe1X(xi)/Kc, (2.8.39)

where

X(xi) = −(ueivei)1/2/4ξ2
e1θ

′
e1xi. (2.8.40)

From Fig. 2.8.1 results that the fractional core mass qi increases if the fractional core radius xi grows
up to its maximum value xi,max ≈ 0.17. The fractional core mass continues to increase up to qi ≈ 0.39,
when xi ≈ 0.1. Thus, an upper limit exists to the mass fraction that could be contained in an isothermal
core – the Chandrasekhar-Schönberg limit qi � 0.39 if nc = ±∞ [Cox and Giuli 1968, Eq. (26.25)]. Both
curves in Fig. 2.8.1 exhibit a spiraling round the dot circle, similarly to the asymptotic form (2.4.104)
of the isothermal solution. The total radius of the composite polytrope re1 ∝ X(xi) first decreases when
the core radius increases. If xi ≈ 0.13, the total radius passes through a minimum. As xi decreases again,
the total radius re1 increases rapidly, reaches a maximum, and begins spiraling round the dot circle.
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Table 2.8.1 Numerical values for the first four roots ξim of Eq. (2.8.43) for Murphy’s (1982, 1983a) composite
polytropic models with nc = 0, ne = 1. There are tabulated the transformation constants Ac, Ae, the central
value θc(0) of the Lane-Emden function, and the interface values ξim, θci = θei = 0.5. The surface value (2.8.48)
of ξ is ξ1m = (m + 1)π if θe = 0. And a + b means a × 10b.

Symbol m = 1 m = 2 m = 3 m = 4

Ac 4.07−1 2.65−1 1.97−1 1.57−1
Ae 5.80 1.40+1 2.56+1 4.04+1
θc(0) 6.04 1.43+1 2.58+1 4.06+1
θci = θei 5.00−1 5.00−1 5.00−1 5.00−1
ξim 5.76 9.10 1.23+1 1.55+1
ξ1m 6.28 9.42 1.26+1 1.57+1

Similar results have been reached by Eggleton et al. (1998) if nc ≥ 5 and ne ≤ 5, specifically if
nc = 5, ne = 1, with a mean molecular weight jump of µc/µe ≥ 3 at the interface.

Another composite model that can be solved exclusively by analytical means has been devised by
Murphy (1982, 1983a), consisting of the Lane-Emden type functions for a constant density core (nc = 0),
surrounded by an envelope of polytropic index ne = 1.

In virtue of Eqs. (2.2.4), (2.3.88) the core solution is

θc = A2/(nc−1)
c θ(Acξ) = (1 − A2

cξ
2/6)

/
A2

c = A−2
c − ξ2/6, (nc = 0; Ac = const), (2.8.41)

and the envelope solution is [cf. Eq. (2.3.89)]

θe = Aeθ(ξ) = Ae sin ξ/ξ, (ne = 1; Ae = const). (2.8.42)

Murphy (1982, 1983a) postulates the same radial coordinate ξ for core and envelope: ξ ≡ ξc ≡ ξe.
The factor Ac is the homology constant from Eq. (2.2.4), and Ae is a linear scaling constant applicable
to the linear and homogeneous Lane-Emden equation (2.3.6) if ne = 1. The structure of the composite
polytrope is completely determined if the two constants Ac and Ae are fixed by the continuity of the
physical variables at the core-envelope interface. Eqs. (2.8.11) and (2.8.13) must be satisfied at the
interface ξ = ξi :

uci = 3 = uei = ξ2
i /(1 − ξi cot ξi), (ξi > π), (2.8.43)

vci = 2Acξ
2
i /(6 − A2

cξ
2
i ) = 2vei = 2(1 − ξi cot ξi), (ξi > π). (2.8.44)

The transcendental equation (2.8.43) yields the successive roots ξim, (m = 1, 2, 3, ...), the first four
being shown in Table 2.8.1. Eq. (2.8.44) yields for successive roots ξim the value of the homology constant
equal to

Ac =
[
6(tan ξim − ξim)

/
(2 tan ξim − ξim)

]1/2/
ξim, (m = 1, 2, 3, ...). (2.8.45)

The scaling factor Ae applied to the envelope solution θe can be established with the aid of Eq.
(2.8.43), by equating θc and θe at the interface ξim :

Ae = ξ3
im

/
6(1 − ξim cot ξim) sin ξim = ξim

/
2 sin ξim. (2.8.46)

From Eqs. (2.8.42), (2.8.46) follows that the interface occurs at θci = θei = 0.5 for all values of ξim.
Fig. 2.8.2 represents in the [u, (n+1)v]-plane the core solution E0 (Lane-Emden function), together with
the first four envelope solutions, which are of F -type (see Sec. 2.7.1). Thus, the analytical solution for
this particular composite polytrope is given by

θ = θc = ξ2
im(2 tan ξim − ξim)

/
6(tan ξim − ξim) − ξ2/6 if 0 ≤ ξ ≤ ξim, m = 1, 2, 3, ..., (2.8.47)

θ = θe = ξim sin ξ/2ξ sin ξim if ξim ≤ ξ ≤ (m + 1)π, m = 1, 2, 3, ..., (2.8.48)

where Eq. (2.8.47) holds for the core, and Eq. (2.8.48) for the envelope.
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Fig. 2.8.2 Representation of Murphy’s (1982) analytical composite nc = 0, ne = 1 polytrope in the
[u, (n + 1)v]-plane. There are shown the E-curves for the core [E0 corresponding to Eq. (2.8.47)] and for the
envelope (E1 corresponding to Eq. (2.8.48) if m = 0), together with the four F1-curves for the envelope from Eq.
(2.8.48) if m = 1, 2, 3, 4.

Fig. 2.8.3 Lane-Emden variables for Murphy’s (1982) analytical composite nc = 0, ne = 1 polytrope.
Above θ = 0.5 the solution is given by the curves from Eq. (2.8.47) labeled m = 1, 2, 3, 4, respectively; these
correspond to the E0-curve in Fig. 2.8.2. Below the value θ = θci = θei = 0.5, the solution is given by the small
portions from Eq. (2.8.48) of the sinusoidal F1-curves on the right of the intersection points ξim, which are not
well represented at the scale of the figure, and correspond to the curves labeled F1,1, F1,2, F1,3, F1,4 in Fig. 2.8.2.

Murphy (1983b), and Murphy and Fiedler (1985a) have devised another composite model, consisting
of a core constructed on a nc = 1 polytrope [cf. Eq. (2.8.42)]

θc = A sin ξ/ξ, (nc = 1; θc(0) = A = const), (2.8.49)

and of an envelope obeying Srivastava’s (1962) singular solution from Eq. (2.3.42), written under the
equivalent form

θe = sin[ln(Bξ)1/2]
/
ξ1/2{2 + cos[ln(Bξ)]}1/2, (ne = 5; B = const). (2.8.50)

A discontinuity is allowed for the derivatives of the Lane-Emden functions at the interface ξ = ξi, and
only the values of θ are required to coincide:

θc(ξi) = θe(ξi), (2.8.51)
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Table 2.8.2 Characteristic values for some selected composite nc = 1, ne = 5 polytropes (Murphy and
Fiedler 1985a). 1 − qi means the fractional mass in the envelope, and a + b is a × 10b.

Model ξi ξe1 θc(0) = A θc(ξi) = θe(ξi) 1 − qi

1 2.50 7.90 9.32−1 2.22−1 3.0−3
2 2.63 5.60 7.37−1 1.38−1 1.8−4
3 2.70 4.85 6.64−1 1.04−1 5.0−5
4 2.88 3.87 5.60−1 5.04−2 7.0−7
5 3.07 3.29 5.01−1 1.15−2 1.3−10

Fig. 2.8.4 Normalized Lane-Emden functions θc(ξ)/A, (0 ≤ ξ ≤ ξi) and θe(ξ)/A, (ξi ≤ ξ ≤ ξe1) as a
function of dimensionless radius x = ξ/ξe1 = r/re1 for the composite nc = 1, ne = 5 polytropes from Table 2.8.2
(Murphy and Fiedler 1985a).

or

A = ξ
1/2
i sin[ln(Bξi)1/2]

/
{2 + cos[ln(Bξi)]}1/2 sin ξi. (2.8.52)

The radial oscillations of this model are touched in Sec. 5.3.7 (Murphy and Fiedler 1985b).
A three-zone composite polytropic model of the Sun has been proposed by Hendry (1993), consisting

of a convective envelope (ne = 1.5), and a two-zone radiative core with polytropic indices nc = 3.79 and
20, respectively. A composite model of main sequence stars with masses 0.4−0.8 M� has been considered
by Beech (1988a). It consists of a nc = 3 core with the approximate solution θc ≈ 1/ cosh(ξc/31/3) from
Eq. (2.4.27), and a ne = 1 envelope with the general exact solution θe = A sin(ξe +B)/ξe, (A, B = const)
from Eq. (2.8.83).

And Rappaport et al. (1983) assume composite nc = 3, ne = 1.5 polytropes to study the evolution
of compact binary stars. Gyration factors of such stars have been calculated by Ruciński (1988), [cf. Eq.
(6.1.179)].

Composite models of prestellar cores in interstellar clouds (nc = ±∞, ne < −1) have been studied
by Curry and McKee (2000), adopting a density discontinuity at the interface: �ci �= �ei.

2.8.2 Two-component Polytropes

The equation of state for the s species of a perfect gas is (cf. Eq. (1.2.5), Taff et al. 1975)

nd =
s∑

j=1

ndj ; � =
s∑

j=1

�j = H
s∑

j=1

µjndj ; �j = Hµjndj ;

P =
s∑

j=1

Pj =
s∑

j=1

Kj�j = H
s∑

j=1

Kjµjndj , (n = ±∞). (2.8.53)
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The number density, the density, the molecular weight, and the polytropic constant of species j is
denoted by ndj , �j , µj , and Kj , respectively. For a perfect gas Kj = RT0/µj = kT0/Hµj , where T0 is
the isothermal temperature and k the Boltzmann constant. Instead of the mean molecular weight µj , we
may use the mass mj = Hµj of individual particles. The hydrostatic equation (2.1.3) becomes

∇P =
s∑

j=1

Kj ∇�j = � ∇Φ = ∇Φ
s∑

j=1

�j . (2.8.54)

It is seen that this equation can be split into s equations in the variables �j , as results from Dalton’s
law, with the pressures Pj changing independently, but with the gravitational potential Φ arising from
all species. Hence, the solution of Eq. (2.8.54) is the sum

� =
s∑

j=1

�j =
s∑

j=1

�j0 exp(Φ/Kj), (2.8.55)

of the individual solutions

�j = �j0 exp(Φ/Kj), (j = 1, 2, 3, ...s), (2.8.56)

of the s equations Kj ∇�j = �j ∇Φ. The central value of �j is denoted by �j0, and we have taken without
loss of generality Φ = Φ0 = 0 at the centre. The spherically symmetric form of Poisson’s equation (2.1.4)
is

∇2Φ = r−2d(r2 dΦ/dr)
/
dr = −4πG� = −4πG

s∑
j=1

�j = −4πG

s∑
j=1

�j0 exp(Φ/Kj). (2.8.57)

Φ may be defined for the multi-component gas by either one of Eqs. (2.8.56). For instance, if j = 1

Φ = K1 ln(�1/�10). (2.8.58)

The analogue of the Lane-Emden variables is introduced by [cf. Eqs. (2.6.2), (2.6.33)]

ξ = (4πG�10/K1)1/2r = r/α; θ = −Φ/K1 = ln(�10/�1), (2.8.59)

where θ may be regarded as a dimensionless gravitational potential. Poisson’s equation (2.8.57) turns
with this substitution into the analogue of the Lane-Emden equation for a multi-component spherical
polytrope having index n = ±∞ :

ξ−2 d(ξ2 dθ/dξ)
/
dξ =

s∑
j=1

(�j0/�10) exp(−K1θ/Kj). (2.8.60)

For a two-component gas Eq. (2.8.60) simplifies with the notations κ = K1/K2, κλ = �20/�10 :

ξ−2 d(ξ2 dθ/dξ)
/
dξ = exp(−θ) + κλ exp(−κθ), (n = ±∞). (2.8.61)

The initial conditions θ(0) = 0, θ′(0) = 0 are the same as in the one-component case. For a perfect
gas κ = K1/K2 = µ2/µ1 = m2/m1 is equal to the ratio of particle masses. There is also κλ = �20/�10 =
µ2nd20/µ1nd10, while λ = nd20/nd10 is equal to the ratio of the number densities at the centre r = 0.
Pressure P, total density �, and the densities �1, �2 of the individual components are given by

P = K1�1 + K2�2 = K1�10[exp(−θ) + λ exp(−κθ)];
� = �1 + �2 = �10 exp(−θ) + �20 exp(−κθ) = �10[exp(−θ) + κλ exp(−κθ)]. (2.8.62)

The mass of the two-component polytrope within the radii r1 and r2 is

M = 4π

∫ r2

r1

�r2 dr = M1 + M2 = 4π

∫ r2

r1

(�1 + �2)r2 dr

= 4π�10α
3

∫ ξ2

ξ1

ξ2[exp(−θ) + κλ exp(−κθ)] dξ = 4π�10α
3ξ2θ′

∣∣∣ξ2

ξ1

, (2.8.63)
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Fig. 2.8.5 Logarithmic run of the dimensionless density exp(−θ) for mass 1, and κλ exp(−κθ) for mass 2
as a function of dimensionless radius ξ. The one-component model corresponds to λ = 0 (Taff et al. 1975).

where M1 and M2 denote the contributions to the total mass from the two individual components. The
gravitational energy is by virtue of Eq. (2.6.127) equal to

W = −G

∫
M

M(r) dM/r = −16π�2
10α

5

∫ ξ2

ξ1

ξ3θ′[exp(−θ) + κλ exp(−κθ)] dξ, (2.8.64)

and seems not suitable for further analytical evaluations. Taff et al. (1975) find near the origin

θ ≈ (1 + κλ)ξ2/3! − (1 + κλ)(1 + κ2λ)ξ4/5! + (1 + κλ)[(1 + κ2λ)2

+5(1 + κλ)(1 + κ3λ)/3]ξ6/7! − ..., (ξ ≈ 0; n = ±∞), (2.8.65)

where the one-component result (2.4.39) is recovered if λ = 0. To obtain the asymptotic form of the
solution of Eq. (2.8.61), we observe that if κ > 1, the second exponential decreases more rapidly than
the first one, so the solution should approach for ξ 	 1 the form of the one-component solution for
the lighter particles. Physically, this is caused by the fact that in hydrostatic equilibrium the heavier
particles are concentrated towards the centre. We apply therefore the procedure for the one-component
gas, inserting Emden’s transformation (2.2.25), (2.2.30) into Eq. (2.8.61), and taking into account Eqs.
(2.2.27), (2.2.31):

d2z/dt2 − dz/dt − 2 + exp z + κλ exp[2(κ − 1)t + κz] = 0. (2.8.66)

Eq. (2.8.66) becomes near the singular solution zs = ln 2 equal to [see Eqs. (2.4.95)-(2.4.105)]

dz2
1/dt2 − dz1/dt + 2z1 = −2κκλ exp[2(κ − 1)t], (2.8.67)

where z = ln 2 + z1, (z1 � z), and we have restricted to first order terms. The solution of this inhomo-
geneous equation with constant coefficients is (cf. Eq. (2.4.101) for the one-component case)

z1 = C1 exp(t/2) cos(71/2t/2 + C2) − [2κ−1κλ/(2κ2 − 5κ + 4)] exp[2(κ − 1)t], (t → −∞).
(2.8.68)

Turning back to the Lane-Emden type variable, we find

θ = ln ξ2 − z = ln(ξ2/2) − z1 = ln(ξ2/2) − C1ξ
−1/2 cos[(71/2/2) ln ξ − C2]

+[2κ−1κλ/(2κ2 − 5κ + 4)]ξ2(1−κ), (ξ → ∞; n = ±∞). (2.8.69)
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An interesting property of this two-component model occurs if the ratio of particle masses is sufficiently
large (κ > 1.5). In this case the heavier particles are concentrated so much towards the centre that their
mass M2 is finite, though the total mass M of the two-component isothermal sphere is infinite by virtue
of Eqs. (2.8.63), (2.8.69), as in the case of the one-component sphere. We have

M2 = 4π

∫ r2

0

�2r
2 dr = 4πα3�10κλ

∫ ξ2

0

exp(−κθ)ξ2 dξ. (2.8.70)

The part of M2 contained between ξ1 and ξ2, (ξ1, ξ2 	 1) is equal to

∆M2 = 4πα3�10κλ

∫ ξ2

ξ1

exp(−κθ)ξ2 dξ ≈ 4πα3�10κλ

∫ ξ2

ξ1

exp{κ[z1 − ln(ξ2/2)]}ξ2 dξ

= 2κ+2πα3�10κλ

∫ ξ2

ξ1

exp(κz1)ξ2−2κ dξ. (2.8.71)

If ξ2 → ∞, this integral converges if 2 − 2κ < −1 or κ > 3/2. Thus, ∆M2 and consequently M2

approach a finite limit if κ > 3/2.
We use Eqs. (2.8.59), (2.8.62), (2.8.63) to get the Milne variables from Eq. (2.7.8):

u = (r/M) dM/dr = ξ[exp(−θ) + κλ exp(−κθ)]
/
θ′;

v = −(r/P ) dP/dr = ξθ′[exp(−θ) + κλ exp(−κθ)]
/
[exp(−θ) + λ exp(−κθ)]. (2.8.72)

These equations for the two-component sphere lack the homology invariance found for the one-
component sphere. The related differential equations for u and v are obtained via Eq. (2.8.61):

d lnu/d ln ξ = −u − vw + 3; d ln v/d ln ξ = u + v(1 − w) − 1, (2.8.73)

where

w = [exp(−θ) + κ2λ exp(−κθ)][exp(−θ) + λ exp(−κθ)]
/
[exp(−θ) + κλ exp(−κθ)]2. (2.8.74)

Using the expansion (2.8.65) of the E-solution near the origin ξ ≈ 0, we get

u ≈ 3 − ξ2(1 + κ2λ)/5; v ≈ ξ2(1 + κλ)2/3(1 + λ), (2.8.75)

similarly to Eq. (2.7.127) in the one-component case. The E-solution of the two-component isothermal
sphere joins the two singular points Us(3, 0), (ξ → 0) and Gs(1, 2), (ξ → ∞; w → 1; κ > 1) of the
differential equation obtained from Eq. (2.8.73):

dv/du = v[u + v(1 − w) − 1]
/
u(−u − vw + 3). (2.8.76)

Opposite to the one-dimensional case, the E-solution exhibits self-intersections (see Taff et al. 1975,
Fig. 4).

Two-component spheres with n = ±∞ provide idealized systems of two-component spherical star
clusters for instance, whereby the macroscopic physics can be studied in principle with arbitrary high
precision, complementing thus numerical stellar dynamics calculations (see also Eqs. (6.1.201)-(6.1.249)
and Sec. 6.2.4 for further applications with n �= ±∞).

2.8.3 Loaded Polytropes

Such polytropes have been envisaged by Huntley and Saslaw (1975) to study the distribution of stars
in galactic nuclei, the massive “load” in the centre being an object with a certain constant mass M0 (e.g.
a black hole or supermassive star). Eq. (2.1.2) reads

dP/dr = ��F , (2.8.77)
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where �F is the radial gravitational force that acts on the unit of mass. The force �F is composed of the
gravitational force −GM0/r2 of the central load plus the force −GM(r)/r2 arising from the mass

M(r) =
∫ r

r0

4π�r′2 dr′, (2.8.78)

contained between r0 and r. The radius r0 is the inner border of a polytropic distribution of matter. If
M0, r0 = 0, the loaded polytrope becomes an ordinary polytrope. We insert for �F into Eq. (2.8.77):

dP/dr = −(G�/r2)[M0 + M(r)]. (2.8.79)

Expressing r, �, P, and M in the dimensionless polytropic variables from Eqs. (2.6.1), (2.6.3), (2.6.18),
we can write Eq. (2.8.79) under the form

ξ2 dθ/dξ = ∓β ∓
∫ ξ

ξ0

θnξ′2 dξ′, (ξ ≥ ξ0; n �= −1,±∞), (2.8.80)

where β = M0/4π�0α
3, ξ0 = r0/α, and α is given by Eq. (2.6.1). Huntley and Saslaw (1975) set

θ(ξ0) = 1, while Eq. (2.8.80) yields θ′(ξ0) = ∓β/ξ2
0 as the second boundary condition.

If n = ±∞ (isothermal sphere in the case of a perfect gas), we get similarly to Eq. (2.8.80)

ξ2 dθ/dξ = β +
∫ ξ

ξ0

exp(−θ)ξ′2 dξ′, (ξ ≥ ξ0; n = ±∞), (2.8.81)

where α is now given by Eq. (2.6.2), and r, �, P, M from Eq. (2.8.79) are substituted via Eqs. (2.6.2),
(2.6.4), (2.6.19). The boundary conditions at ξ = ξ0 are equal to θ(ξ0) = 0, θ′(ξ0) = β/ξ2

0 .

Loaded polytropes satisfy the familiar Lane-Emden equations (2.1.14) and (2.1.21), as can be seen at
once by derivation of Eqs. (2.8.80) and (2.8.81), respectively. Note however, that the initial conditions
are different from Eq. (2.1.41). Simple analytic solutions can be found for the polytropic indices n = 0, 1,
while the general Schuster-Emden integral n = 5 generally involves elliptic integrals if C �= 0 in Eq.
(2.3.30). Ritter’s first integral is given for arbitrary boundary conditions by Eq. (2.3.3):

θ = −ξ2/6 + C1/ξ + C2, (n = 0; N = 3; C1, C2 = const). (2.8.82)

And in the case n = 1 we get from Eqs. (2.3.10), (2.3.15), (2.3.18) the general solution (Chandrasekhar
1939, Smirnow 1967)

θ = C1ξ
−1/2J1/2(ξ) + C2ξ

−1/2J−1/2(ξ) = C ′
1 sin ξ/ξ + C ′

2 cos ξ/ξ = A sin(ξ + B)/ξ,

(n = 1; N = 3; A, B, C1, C2, C
′
1, C

′
2 = const). (2.8.83)

With the initial conditions θ(ξ0) = 1, θ′(ξ0) = −β/ξ2
0 these equations become the analytic solutions

for loaded polytropes in the particular cases n = 0, 1 :

θ = 1 − (ξ2 − ξ2
0)/6 + (β − ξ3

0/3)(1/ξ − 1/ξ0), (n = 0; ξ ≥ ξ0), (2.8.84)

θ = (ξ0 sin ξ0 − β cos ξ0/ξ0 + cos ξ0) sin ξ/ξ + (ξ0 cos ξ0 + β sin ξ0/ξ0 − sin ξ0) cos ξ/ξ,

(n = 1; ξ ≥ ξ0). (2.8.85)

Since the virial theorem quoted by Huntley and Saslaw [1975, Eq. (29)] cannot be recovered from the
equations shown in Secs. 2.6.6, 2.6.7, their conclusion that stable loaded polytropes exist only if n > 2
appears inadequate.

Loaded polytropes appear as a more elementary kind of composite polytropes, the core of undefined
structure being determined merely by its mass M0 and radius r0, while the envelope is equivalent to that
of a composite polytrope.
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2.8.4 Boltzmann Factor Polytropes

Callebaut et al. (1982) argue that the simple polytropic law should be improved by addition of a
so-called Boltzmann factor. The density distribution of a perfect isothermal gas due to the potential Φ
of an arbitrary force field is given by the Boltzmann law (e.g. Eq. (2.8.56), Feynman et al. 1965)

� = �0 exp[µ(Φ − Φ0)/RT ], (T = const; n = ±∞), (2.8.86)

where Φ0 is the force potential when the density � takes some fixed initial value �0. If we insert from Eq.
(1.4.11) the perfect gas law with radiation pressure included

P = Pg + Pr = R�T/µ + aT 4/3, (2.8.87)

into the hydrostatic equation (2.1.3) for an isothermal sphere

∇P/� = ∇Φ, (T = const), (2.8.88)

we recover by integration just Eq. (2.8.86), where Φ now means the gravitational potential of a sphere.
This is one of the reasons that Callebaut et al. (1982) argue for a density law being a combination of the
exact isothermal solution (2.8.86) and the familiar polytropic law from Eq. (1.2.29):

� = �0(T/T0)n exp[µ(Φ − Φ0)/RT ]. (2.8.89)

We substitute this proposed equation of state into the equation of state (2.8.87), and calculate the
expression

∇P/� = [(n + 1)R/µ − (Φ − Φ0)/T + 4aT 3/3�] ∇T + ∇Φ. (2.8.90)

This equation is compared with the general equation of hydrostatic equilibrium (2.1.3) ∇P/� = ∇Φ.
The first term on the right-hand side of Eq. (2.8.90) must be zero, or equivalently, either one of the two
subsequent equations must be fulfilled:

∇T = 0, (2.8.91)

(n + 1)R/µ − (Φ − Φ0)/T + 4aT 3/3� = 0. (2.8.92)

Eq. (2.8.91) is automatically fulfilled for the isothermal sphere (T = const; n = ±∞), while Eq.
(2.8.92) has to be zero for all nonisothermal perfect gas spheres. The density in the latter case is
obtained by inserting Eq. (2.8.92) into Eq. (2.8.89):

� = �0(T/T0)n exp(n + 1 + 4aµT 3/3R�), (n �= ±∞). (2.8.93)

Callebaut et al. (1982) introduce two additional parameters

σ = Pg/4Pr = 3R�/4aµT 3; τn−3 = 4aµTn
0 /3R�0 exp(n + 1), (2.8.94)

and Eq. (2.8.93) becomes

σ exp(−1/σ) = (T/τ)n−3. (2.8.95)

For a general equation of state the polytropic index n′ has been defined through Eq. (1.3.26):

1 + n′ = d lnP/d lnT. (2.8.96)

Analogously, Callebaut et al. (1982) get the polytropic index for a polytropic equation of state with
a Boltzmann factor

1 + n′
B = d lnP/d lnT = (d lnP/dσ)

/
(d lnT/dσ) = 1 + 3(1 + 5σ + 5nσ2/3)

/
(1 + 5σ + 4σ2),

(2.8.97)
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where the physical variables can be expressed with the aid of Eqs. (2.8.87), (2.8.94), (2.8.95) as

T = τσ1/(n−3) exp[−1/(n − 3)σ], (2.8.98)

� = (4aµτ3/3R)σn/(n−3) exp[−3/(n − 3)σ], (2.8.99)

P = [aτ4(1 + 4σ)σ4/(n−3)/3] exp[−4/(n − 3)σ]. (2.8.100)

From Eq. (2.8.97) it appears that the polytropic index n′
B of Boltzmann factor polytropes is contained

approximately between 3, (σ = 0) and the polytropic index n. If σ 	 1, we have n′
B = 5n/4 ≈ n. For a

standard solar-type numerical model of a zero-age main sequence star Callebaut et al. (1982) find that
n′

B changes between 2.4 and 3.5, whereas n′ would change between 1.6 and 4.5 in the temperature range
2× 106 − 2× 107 K, yielding thus a better fit for Boltzmann factor models approximated by n′

B = const.
Note, that the Boltzmann factor from Eq. (2.8.89) proposed by Callebaut et al. (1982) applies to

spherical polytropes (N = 3, 0 ≤ n < 5), being introduced in a somewhat heuristic manner, whereas the
polytropic equation of state (Chap. 1) arises from self-consistent physical principles.

2.8.5 The Emden-Fowler Equation

The Emden-Fowler equation (2.8.105) is of a more general type than the spherical Lane-Emden
equation (2.3.87). It results from the spherical stationary distribution function over phase space (phase
density function), (Eddington 1916, Hénon 1973):

f(�r,�v) =




C ′(H1 − H)n−3/2J2m H < H1

if
0 H ≥ H1

(n > 1/2; m > −1; H1, C
′ = const). (2.8.101)

The energy constant H from the energy integral is [cf. Eq. (6.1.188)]

H = v2/2 − Φ(�r) = (v2
r + v2

t )/2 − Φ(�r) = const, (2.8.102)

where Φ(�r) is the gravitational potential at radius vector �r, and vr, vt are the radial and transver-
sal components of the velocity �v. The squared angular momentum per unit mass is denoted by
J2 = r2v2 sin2 λ = r2v2

t , where λ is the angle between �r and �v. The choice (2.8.101) for the distri-
bution function results from the fact that in systems with spherical symmetry f is merely a function of
two integrals of motion – the energy and the angular momentum: f = f(H, J2), (Ogorodnikov 1965).

The spatial density distribution of particles is obtained by integration of the distribution function over
velocity space with “radial” coordinate v, polar angle λ, and azimuth coordinate ϕ (Batt and Pfaffelmoser
1988):

�(�r) =
∫ ∞

0

dv

∫ π

0

dλ

∫ 2π

0

f v2 sinλ dϕ = 4πC ′r2m

∫ v1

0

dv

∫ π/2

0

(H1 + Φ − v2/2)n−3/2v2m+2

× sin2m+1 λ dλ = 23/2−nπC ′r2mv2n+2m
1

∫ 1

0

xm+1/2(1 − x)n−3/2 dx

∫ 1

0

ym(1 − y)−1/2 dy

= 2m+3/2πC ′ B(m + 3/2, n − 1/2) B(m + 1, 1/2) r2m(H1 + Φ)n+m = Cr2m(H1 + Φ)n+m,

(n > 1/2; m > −1; Φ > −H1; v1 = (2H1 + 2Φ)1/2; x = v2/v2
1 ; y = sin2 λ). (2.8.103)

For the limiting exponents of the beta function (2.3.56), viz. n = 1/2 and m = −1, the distribution
function (2.8.101) is expressed with the aid of the Dirac function (5.10.99): f = C ′J2m δD(H1 − H) if
n = 1/2, and f = C ′(H1 − H)n−3/2 δD(J2) if m = −1 (Eqs. (6.1.189)-(6.1.198), Hénon 1973, Barnes et
al. 1986).
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The equivalents of the Lane-Emden variables are introduced by

r = [(H1 + Φ0)1−n−m/4πGC]1/(2m+2)ξ = βξ; θ(ξ) = [H1 + Φ(r)]/(H1 + Φ0). (2.8.104)

The potential at the centre r = 0 is Φ(0) = Φ0, while Φ(r1) = Φ1 = −H1 denotes the surface
potential at r = r1 where θ(ξ1) = 0. Poisson’s equation (2.1.4) turns in radial spherical coordinates via
Eqs. (2.8.103), (C.15) into the Emden-Fowler equation

d(ξ2 dθ/dξ)/dξ = −ξ2m+2θn+m, (0.5 < n < ∞; m > −1; � ∝ ξ2mθn+m). (2.8.105)

This is equal to the Lane-Emden equation (2.3.87) if m = 0. The initial conditions at the centre are
θ(0) = 1 and θ′(0) = 0, as results from the series expansion near the origin, which may be found in a
similar way as in Sec. 2.4.1:

θ ≈ 1 − ξ2m+2/(2m + 2)(2m + 3), (ξ ≈ 0). (2.8.106)

The mass inside radius r follows from a first integration of Poisson’s equation [cf. Eq. (2.1.34)], where
(dΦ/dr)r=0 = [(H1 + Φ0)/β](dθ/dξ)ξ=0 = 0 via Eq. (2.8.104):

r2 dΦ/dr = −4πG

∫ r

0

�r′2 dr′ = −GM or M = −[β(H1 + Φ0)/G]ξ2 dθ/dξ. (2.8.107)

The total gravitational (potential) energy (2.6.128) becomes via Eqs. (2.8.103)-(2.8.105) after inte-
grations by parts equal to

W1 =
∫

M1

�r · ∇Φ dM = G−1β(H1 + Φ0)2
∫ ξ1

0

ξ2m+3θn+mθ′ dξ

= −[G−1β(H1 + Φ0)2(2m + 3)/(n + m + 1)]
∫ ξ1

0

ξ2m+2θn+m+1 dξ = [G−1β(H1 + Φ0)2(2m + 3)

/(n + m + 1)]
∫ ξ1

0

θ d(ξ2θ′) = −[G−1β(H1 + Φ0)2(2m + 3)/(n + m + 1)]
∫ ξ1

0

ξ2θ′2 dξ. (2.8.108)

The integral from this equation can also be evaluated similarly to Eq. (2.6.131):

∫ ξ1

0

ξ2m+3θn+mθ′ dξ = −
∫ ξ1

0

ξθ′ d(ξ2θ′) = −
∫ ξ1

0

ξ2θ′ d(ξ2θ′)/ξ = −ξ3
1θ′1

2
/2 − (1/2)

∫ ξ1

0

ξ2θ′2 dξ.

(2.8.109)

Comparing Eqs. (2.8.108) and (2.8.109) we get
∫ ξ1

0
ξ2θ′2 dξ = (n + m + 1)ξ3

1θ′1
2
/(3m − n + 5), and

the total gravitational energy (2.8.108) writes as

W1 = −G−1β(H1 + Φ0)2(2m + 3)ξ3
1θ′1

2
/(3m − n + 5) = −(2m + 3)GM2

1 /(3m − n + 5)r1.
(2.8.110)

This reduces to Eq. (2.6.137) if m = 0. The homology invariant transformation (Broek and Verhulst
1982)

u = −ξ2m+1θn+m/θ′; v = −ξθ′/θ, (2.8.111)

reduces Eq. (2.8.105) to the first order system (cf. Eqs. (2.7.1)-(2.7.3) if m = 0, N = 3; 0.5 < n < ∞) :

du/d ln ξ = u[−u − (n + m)v + 2m + 3]; dv/d ln ξ = v(u + v − 1). (2.8.112)

The Emden-Fowler equation has applications to the study of collisionless, stationary, spherical stellar
and galactic systems (Sec. 6.1.9, Hénon 1973, Barnes et al. 1986, Kandrup et al. 1994). Such systems
appear to be essentially stable, as shown among others by Wolansky (1999), Guo (1999), Guo and Rein
(2001).



3 DISTORTED POLYTROPES

3.1 Introduction

While it seems possible to present a fairly complete unified theory of undistorted polytropes, as
attempted in the previous chapter, the theory of distorted polytropes is much more extended and so-
phisticated, so that I present merely a brief overview of the theories that seem to me most interesting
and important. Basically, the methods proposed to study the hydrostatic equilibrium of a distorted
self-gravitating mass can be divided into two major groups (Blinnikov 1975): (i) Analytic or semiana-
lytic methods using a small parameter connected with the distortion of the polytrope. (ii) More or less
accurate numerical methods.

Lyapunov and later Carleman (see Jardetzky 1958, p. 13) have demonstrated that a sphere is a
unique solution to the problem of hydrostatic equilibrium for a fluid mass at rest in tridimensional space.
The problem complicates enormously if the sphere is rotating rigidly or differentially in space round an
axis, and/or if it is distorted magnetically or tidally. Even for the simplest case of a uniformly rotating
fluid body with constant density not all possible solutions have been found (Zharkov and Trubitsyn 1978,
p. 222). The sphere becomes an oblate figure, and we have no a priori knowledge of its stratification,
boundary shape, planes of symmetry, transfer of angular momentum in differentially rotating bodies,
etc. For a general equation of state the isobaric (constant pressure) surfaces and the isopycnic (constant
density) surfaces of a distorted configuration are generally inclined, and cut themselves at a certain angle;
in this case the material system is called a barocline (lit. “inclined over the pressure”). If the equation
of state is of the special form

P = P (�), (3.1.1)

the system is called a barotrope (lit. “behaving as the pressure”). Obviously, in a barotrope the surfaces
of equal pressure and density coincide, since � = const implies P = const in Eq. (3.1.1), and vice versa.
Of course, the polytropic equation of state (2.1.5) is a special case of a barotrope.

We neglect at first the influence of tides, viscosity, internal motions, magnetic fields, and confine
ourselves to configurations rotating with angular velocity �Ω round a fixed axis directed along the z-
direction. In cylindrical coordinates �, ϕ, z – as seen in an inertial frame of reference with the origin in
the centre of mass of the configuration – the equation of motion (2.1.1) of the rotating fluid writes (cf.
Eqs. (B.43)-(B.51); v
, vz = 0; vϕ = Ω�) :




∂P/∂� − � ∂Φ/∂� = �Ω2�
(1/�) ∂P/∂ϕ − (�/�) ∂Φ/∂ϕ = −� ∂(Ω�)/∂t − �Ω ∂(Ω�)/∂ϕ.
∂P/∂z − � ∂Φ/∂z = 0

(3.1.2)

If the motion is also stationary (independent of time), and the density of each mass element remains
constant along its path, the rotation is said to be permanent (cf. Tassoul 1978). In the case of permanent
rotation Eq. (3.1.2) simplifies further. The equation of continuity

∂�/∂t + ∇ · (��v) = ∂�/∂t + �v · ∇� + �(∇ · �v) = D�/Dt + �(∇ · �v) = 0, (3.1.3)

reduces to

�(∇ · �v) = 0, (3.1.4)

because D�/Dt = 0 in virtue of the assumption of permanent rotation. Since v
, vz = 0, Eq. (3.1.4)
amounts to

(�/�) ∂(Ω�)/∂ϕ = 0 or Ω = Ω(�, z). (3.1.5)

137
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Since the configuration is in a state of permanent rotation, i.e. stationary, we have ∂�/∂t = 0, and
according to Eqs. (3.1.3) and (3.1.4)

�v · ∇� = 0. (3.1.6)

Because the gradient ∇� is directed along the exterior normal to the equidensity (isopycnic) surface,
the velocity �v is perpendicular to ∇�, i.e. �v is in the tangent plane to the equidensity surface. The sole
nonzero component of �v is vϕ = Ω�, so Eq. (3.1.6) becomes

Ω ∂�/∂ϕ = 0, (3.1.7)

and since Ω �= 0, we get � = �(�, z). Because the density � of a mass element is invariant, and the
velocities are independent of ϕ (as seen from the inertial frame), the gravitational potential Φ is also
independent of ϕ : Φ = Φ(�, z). The second equation (3.1.2) becomes for the state of permanent rotation
equal to ∂P/∂ϕ = � ∂Φ/∂ϕ = 0, and therefore P = P (�, z). Thus, in permanent rotation the physical
parameters of the rotating configuration possess axial symmetry. As will be shown in Sec. 3.8.1, it
is possible to build steady distorted three-axial polytropes for which axial symmetry ceases when the
polytropic index is 0 ≤ n < 0.808 (Jeans 1919, James 1964). However, these equilibrium configurations
are time independent only in a frame rotating together with the polytrope, rather than in an inertial
frame, so the basic assumption of permanent rotation does not apply to these triaxial polytropes. Thus,
for the case of permanent rotation Eq. (3.1.2) simplifies to

∂P/∂� = � ∂Φ/∂� + �Ω2(�, z) �; ∂P/∂z = � ∂Φ/∂z. (3.1.8)

For permanent rotation the condition on Ω can be further strengthened, provided that isobaric and
isopycnic surfaces coincide. If we eliminate the gravitational potential between the equations (3.1.8), we
obtain

∂(Ω2�)/∂z = [∂(1/�)
/
∂z] ∂P/∂� − [∂(1/�)

/
∂�] ∂P/∂z, (3.1.9)

or, since �v = �v(0, Ω�, 0) :

∂(Ω2�)/∂z = 2Ω� ∂Ω/∂z = ∇(1/�) ×∇P = −(1/�2) ∇� ×∇P. (3.1.10)

The isobaric and isopycnic surfaces determined by ∇P and ∇� coincide (their vector product will be
zero), if and only if

∂Ω/∂z = 0 or Ω = Ω(�). (3.1.11)

This condition, namely that the angular velocity is constant over cylinders centered about the rotation
axis, is automatically satisfied for barotropes in permanent rotation (including of course polytropes).

For solid-body rotation of a polytrope it will be often useful to write down the equilibrium equation in
a system with the origin in the centre of mass of the configuration, rotating rigidly with the polytrope at
angular velocity �Ω = �Ω(t). In a coordinate system moving with respect to an inertial frame, the equation
of motion (2.1.1) turns into (e.g. Landau and Lifshitz 1960)

� D�v/Dt = −� d�vtr/dt − ��Ω × (�Ω × �r) − � (d�Ω/dt) × �r − 2� �Ω × �v −∇P + ��F

+(1/4π)(∇× �H) × �B + ∇ · τ. (3.1.12)

A mass element of density � has the radius vector �r and the velocity �v with respect to the moving
frame, while �vtr denotes the translational velocity, and �Ω = �Ω(t) the instantaneous angular velocity vector
of the moving frame with respect to the inertial one. The nabla operator now acts with respect to the
moving frame. Eq. (3.1.12) can easily be deduced from Eq. (2.1.1) with the aid of the transformation
formula for the acceleration in two frames:

D�v0/Dt = D�v/Dt + d�vtr/dt + �Ω × (�Ω × �r) + (d�Ω/dt) × �r + 2�Ω × �v. (3.1.13)

D�v0/Dt is the acceleration of the mass element with respect to the inertial frame. If we insert D�v0/Dt
from Eq. (3.1.13) into Eq. (2.1.1), we recover just Eq. (3.1.12). In a Cartesian (x1, x2, x3)-frame, rotating
uniformly with the polytrope round the x3-axis, the equation of hydrostatic equilibrium of a polytropic
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fluid – without energy dissipation and magnetic fields – can be written down at once from Eq. (3.1.12),
(�v,�vtr, �B, �H, τ = 0; �Ω = �Ω(0, 0, Ω) = const; �F = ∇Φ) :

∇P = � ∇Φ − ��Ω × (�Ω × �r), (3.1.14)

or explicitly



∂P/∂x1 = � ∂Φ/∂x1 + �Ω2x1

∂P/∂x2 = � ∂Φ/∂x2 + �Ω2x2, (Ω = const).
∂P/∂x3 = � ∂Φ/∂x3

(3.1.15)

Eq. (3.1.14) can also be written in right-handed spherical (r, λ, ϕ)-coordinates, where r is the radial
distance from the origin located in the centre of mass of the polytrope, λ the angle between rotation
axis and radius vector (= polar angle or colatitude), and ϕ the azimuth angle. The Cartesian compo-
nents (Ω2x1, Ω2x2, 0) of the vectorial product −�Ω × (�Ω × �r) from Eq. (3.1.15) turn with the orthogonal
transformation matrix (3.8.135) into the spherical components (rΩ2 sin2 λ, rΩ2 sinλ cos λ, 0). Eq. (3.1.14)
becomes, by taking into account the expression (B.36) of the gradient in spherical coordinates:




∂P/∂r = � ∂Φ/∂r + �rΩ2 sin2 λ
∂P/∂λ = � ∂Φ/∂λ + �r2Ω2 sinλ cos λ
∂P/∂ϕ = � ∂Φ/∂ϕ

(3.1.16)

For axisymmetric bodies the ϕ-component vanishes, and with the notation µ = cos λ we find

∂P/∂r = � ∂Φ/∂r + �rΩ2(1 − µ2); ∂P/∂µ = � ∂Φ/∂µ − �r2Ω2µ. (3.1.17)

For axial symmetry Poisson’s equation (2.1.4) writes [cf. Eq. (B39)]

∂(r2 ∂Φ/∂r)/∂r + ∂[(1 − µ2) ∂Φ/∂µ]/∂µ = −4πG�r2. (3.1.18)

Inserting for Φ from Eq. (3.1.17), we deduce the fundamental equation of the rotational problem with
axisymmetric rotation:

∂[(r2/�) ∂P/∂r]
/
∂r + ∂{[(1 − µ2)/�] ∂P/∂µ}

/
∂µ = −4πG�r2 + 2Ω2r2. (3.1.19)

We now briefly touch the question of an equatorial plane of symmetry in rotating configurations – a
completely nontrivial problem, originally discussed by Lichtenstein, Wavre, and Dive. When the angular
velocity in cylindrical coordinates does not depend on z, (∂Ω/∂z = 0), there exists always a plane of
symmetry perpendicular to the Oz-axis of rotation. This condition is automatically fulfilled by barotropes
in a state of permanent rotation (in particular by polytropes). For differentially rotating baroclines, when
�Ω = �Ω(�, z), the problem is more involved. Such configurations possess an equatorial plane of symmetry
if the angular velocity Ω is a single valued function of � and � (e.g. Tassoul 1978).

A further interesting question concerning rotating barotropic configurations, raised first by Hamy,
concerns the representation of isobaric surfaces by a set of concentric (homothetic) ellipsoids. It can
be shown that the sole solutions are uniformly rotating ellipsoids of constant density throughout the
configuration, with the pressure being a constant over concentric ellipsoids. Thus, a centrally condensed
body cannot be rigorously represented by a set a concentric ellipsoids. However, the stratification in
rotating barotropes can always be approximated by ellipsoidal surfaces (Secs. 3.7, 3.8.5, 5.7.4). The above
result does not apply to genuine baroclines, where many models can be constructed having concentric
ellipsoidal stratification, although realistic stellar models cannot be described by these simple means
(Tassoul 1978).

In passing we also note an interesting inequality due to Poincaré. If we introduce in Eq. (3.1.8) the
effective gravity

�g = �g(g
, gϕ, gz) = �g(∂Φ/∂� + Ω2�, 0, ∂Φ/∂z), (3.1.20)

we can write Eq. (3.1.8) under the form

(1/�) ∇P = �g. (3.1.21)
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By virtue of Eq. (3.1.8), the effective gravity can be derived from a total potential Φtot, (∂2Φtot/∂�∂z
= ∂2Φtot/∂z∂�) if and only if Ω does not depend on z. In this case we have

�g = ∇Φtot = ∇
[
Φ +

∫
Ω2(�) � d�

]
. (3.1.22)

Such an equation is automatically fulfilled for barotropes rotating differentially or uniformly [see Eqs.
(3.1.10), (3.1.11)]. Eq. (3.1.22) writes

Φtot = Φ + Ω2�2/2, (Ω = const), (3.1.23)

for uniform rotation. Summation of the components of Eq. (3.1.21) yields

(1/�) [(∂P/∂�) d� + (∂P/∂z) dz] = (1/�) dP = g
 d� + gz dz

= (∂Φtot/∂�) d� + (∂Φtot/∂z) dz = dΦtot. (3.1.24)

By definition, on a level surface we have Φtot = const, so dΦtot = 0, and Eq. (3.1.24) shows that
at the same time dP = 0, or P = const. Thus, the level surfaces coincide with the isobaric surfaces,
when a potential Φtot of the effective gravity exists. Since dΦtot/dP = 1/�, the density is constant too
over the level surface Φtot = const; isobaric, isopycnic, and level surfaces all coincide, and the vectors
∇P, ∇�, �g = ∇Φtot are all normal to the level surface Φtot = const.

We apply the Laplacian operator to Eq. (3.1.23), and obtain by virtue of Poisson’s equation (2.1.4)

∇2Φtot = −4πG� + 2Ω2, (∇2(�2) = (1/�) d(� d�2/d�)
/
d� = 4). (3.1.25)

We integrate this equation over the entire volume V, to find
∫

V

∇2Φtot dV =
∫

S

∇Φtot · d�S =
∫

S

(∇Φtot · �n) dS =
∫

S

(∂Φtot/∂n) dS = −4πGM + 2Ω2V,

(3.1.26)

where M is the mass inside volume V. The surface of the configuration is a level surface Φtot = const, with
the effective gravity vector �g = ∇Φtot pointing throughout towards the direction of the inner normal.
Since �n is by definition the outer normal to the surface S, and �g = ∇Φtot is directed along the inner
normal, we conclude that the surface integral in Eq. (3.1.26) is strictly negative, i.e.

∫
S

(∇Φtot · �n) dS =
∫

S

(�g · �n) dS = −
∫

S

|�g| dS < 0 or Ω2 < 2πG�m, (3.1.27)

where �m = M/V is the average density of the configuration. Quilghini improved Poincaré’s inequality
(3.1.27) to (Tassoul 1978)

Ω2 < πG�m. (3.1.28)

This limit is still well above the limiting angular velocity of uniformly rotating, homogeneous biaxial
ellipsoids (Maclaurin ellipsoids of polytropic index n = 0, Sec. 3.2): Ω2 ≈ 0.45πG�m. Biaxial revolution
ellipsoids are sometimes also called spheroids, although a spheroid means a distorted sphere, so revolution
ellipsoids are merely a particular case of spheroids (Zharkov and Trubitsyn 1978).

For a differentially rotating barotrope we get from Eq. (3.1.22)

Φtot = Φ +
∫

Ω2(�) � d� + const, (3.1.29)

or

∇2Φtot = −4πG� + 2Ω2 + � dΩ2/d�, (3.1.30)

and, as derived by Wilczynski (Tassoul 1978)
∫

V

∇2Φtot dV =
∫

S

(∇Φtot · �n) dS = −4πGM +
∫

V

(2Ω2 + � dΩ2/d�) dV < 0, (3.1.31)
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or

(1/V )
∫

V

[Ω2 + (�/2) dΩ2/d�)] dV < 2πG�m. (3.1.32)

For a configuration in equilibrium with zero surface pressure, the virial theorem (2.6.80) simplifies to
(d2I/dt2, �H, Pjk = 0)

2Ekin + W + 3
∫

V

P dV = 0, (3.1.33)

where in the case of permanent rotation Ekin reduces to

Ekin = (1/2)
∫

M

v2
ϕ dM = (1/2)

∫
V

�Ω2�2 dV. (3.1.34)

A useful parameter to characterize rotating configurations is [cf. Eq. (2.6.68)]

τ = Ekin/|W | = Ekin/(−W ),
(
W = −(1/2)

∫
M

Φ dM
)
. (3.1.35)

From Eq. (3.1.33) follows

0 ≤ τ ≤ 0.5, (3.1.36)

because the pressure integral is always a nonnegative quantity, and therefore 2Ekin ≤ −W, (Ekin ≥
0, W < 0).

We now turn to the important problem of representing the gravitational potential of a distorted
configuration. Any function f(λ, ϕ) satisfying certain general conditions of continuity (e.g. Smirnow
1967, Vol. 3) can be expanded into a convergent series of spherical harmonics (spherical functions)
Yj(λ, ϕ) :

f(λ, ϕ) =
∞∑

j=0

Yj(λ, ϕ). (3.1.37)

A surface harmonic Yj of order j can be taken as a combination of Legendre polynomials Pj(cos λ)
and associated Legendre polynomials P k

j (cos λ) with exp(ikϕ) = cos kϕ + i sin kϕ :

Yj(λ, ϕ) =
j∑

k=0

(ajk cos kϕ + bjk sin kϕ) P k
j (cos λ), (ajk, bjk = const). (3.1.38)

We also recall the definitions of Pj and P k
j (e.g. Hobson 1931, p. 99, Abramowitz and Stegun 1965)

Pj(µ) = P 0
j (µ) = (1/2jj!) dj(µ2 − 1)j/dµj ; P k

j (µ) = [(1 − µ2)k/2/2jj!] dj+k(µ2 − 1)j/dµj+k;

P−k
j (µ) = (j − k)! P k

j (µ)/(j + k)!; P k
j (µ) ≡ 0 if |k| > j,

(
µ = cos λ; j = 0, 1, 2, 3, ...;

k = −j,−j + 1, ...j − 1, j
)
, (3.1.39)

together with the differential equations satisfied by the Legendre polynomials Pj and by the associated
Legendre polynomials P k

j of order j (e.g. Spiegel 1968):

d[(1 − µ2) dPj/dµ]/dµ + j(j + 1)Pj = 0, (3.1.40)

d[(1 − µ2) dP k
j /dµ]/dµ + [j(j + 1) − k2/(1 − µ2)]P k

j = 0. (3.1.41)

The generating function of Legendre polynomials is

(1 − 2r cos γ + r2)−1/2 =
∞∑

j=0

rjPj(cos γ). (3.1.42)
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This infinite series converges if |r| < 1. An important property of Legendre and associated Legendre
polynomials is the so-called summation theorem of Legendre polynomials. If γ is the angle between two
radius vectors �r and �r′ on a sphere of unit radius, having the spherical coordinates (λ, ϕ) and (λ′, ϕ′),
respectively, then the cosine theorem yields at once

cos γ = cos λ cos λ′ + sinλ sinλ′ cos(ϕ − ϕ′), (3.1.43)

and the summation theorem of Legendre polynomials writes (e.g. Smirnow 1967)

Pj(cos γ) =
j∑

k=0

[2(j − k)!/δk(j + k)!] P k
j (cos λ) P k

j (cos λ′) cos[k(ϕ − ϕ′)],

(δk = 2 if k = 0 and δk = 1 if k > 0). (3.1.44)

Quite generally, a level surface Φtot = const of a distorted sphere can be represented in spherical
coordinates as a sum of Legendre polynomials [cf. Eqs. (3.1.37), (3.1.38)]:

r = r(λ, ϕ) =
∞∑

j=0

j∑
k=0

(ajk cos kϕ + bjk sin kϕ) P k
j (cos λ). (3.1.45)

If the level surfaces are surfaces of revolution (as for a configuration in permanent rotation), r is
independent of the azimuth angle ϕ, (k = 0), and must be an even function of the colatitude λ; all odd
indexed Legendre polynomials P2j+1(cos λ) are odd functions of cosλ, and must vanish in order to assure
symmetry with respect to the equatorial plane. Thus, in this important particular case the equation of
a level surface (3.1.45) simplifies to

r = r(λ) =
∞∑

j=0

a2jP2j(cosλ), (a2j = const). (3.1.46)

As already written down by Eq. (2.6.62), the internal or external potential produced by a gravitating
mass M at an arbitrary space point of radius vector �r(r, λ, ϕ) is

Φ = Φ(�r) = G

∫
V

�(�r′) dV ′/|�r − �r′|. (3.1.47)

V is the volume of the mass M in question, �(�r′) = �(r′, λ′, ϕ′) the density at radius vector �r′ =
�r′(r′, λ′, ϕ′), dV ′ = r′2 sinλ′ dr′ dλ′ dϕ′ the volume element, and |�r− �r′| the distance between the vectors
�r and �r′ :

|�r − �r′| = (r2 + r′2 − 2rr′ cos γ)1/2. (3.1.48)

Using the generating function of Legendre polynomials (3.1.42) we have

1
/
|�r − �r′| = (1/r)[1 − 2(r′/r) cos γ + (r′/r)2]−1/2 = (1/r)

∞∑
j=0

(r′/r)jPj(cos γ) if r > r′, (3.1.49)

and

1
/
|�r − �r′| = (1/r′)[1 − 2(r/r′) cos γ + (r/r′)2]−1/2 = (1/r′)

∞∑
j=0

(r/r′)jPj(cos γ)

= (1/r)
∞∑

j=0

(r′/r)−j−1Pj(cos γ) if r < r′. (3.1.50)

Inserting Eqs. (3.1.49), (3.1.50) into Eq. (3.1.47), we get

Φ(�r) = (G/r)
∫

V

∞∑
j=0

�(�r′) (r′/r)hPj(cos γ) dV ′, (3.1.51)
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where

h =
{

j
−j − 1 if

r > r′

r < r′ (3.1.52)

We substitute Pj(cos γ) via the summation theorem (3.1.44), and finally obtain the expansion into
Legendre polynomials of the internal or external gravitational potential (Zharkov and Trubitsyn 1978):

Φ = (G/r)
∫

V

{ ∞∑
j=0

j∑
k=0

�(�r′) (r′/r)h[2(j − k)!/δk(j + k)!]P k
j (cosλ) P k

j (cosλ′) cos[k(ϕ − ϕ′)]
}

dV ′

= (G/r)
∞∑

j=0

[
Pj(cos λ)

∫
V

�(�r′) (r′/r)hPj(cos λ′) dV ′
]

+(G/r)
∞∑

j=1

j∑
k=1

{
P k

j (cos λ) cos kϕ

∫
V

[2(j − k)!/(j + k)!] �(�r′) (r′/r)hP k
j (cos λ′) cos kϕ′ dV ′

+P k
j (cosλ) sin kϕ

∫
V

[2(j − k)!/(j + k)!] �(�r′) (r′/r)hP k
j (cosλ′) sin kϕ′ dV ′

}
. (3.1.53)

We may also represent the equation of a level surface (3.1.45) under the form (cf. Zharkov and
Trubitsyn 1978)

r = s(1 + ζ), (3.1.54)

where ζ = ζ(s, λ, ϕ) is a (generally small) unknown function, and s the average radius of the level
surface, i.e. the radius of a sphere with volume 4πs3/3, equal to the volume inside the level surface. If
we also represent the level surfaces corresponding to the radius vector r′ by an equation r′ = s′(1 + ζ ′)
similar to Eq.(3.1.54), and denote by z the absolute value of the extreme of ζ and ζ ′ over a level surface
(|ζ|, |ζ ′| ≤ z < 1), we observe that the limits of convergence of the two series from Eqs. (3.1.49), (3.1.50)
are given respectively by (e.g. Jardetzky 1958, p. 18)

s′ < s(1 − z)/(1 + z) and s′ > s(1 + z)/(1 − z), (3.1.55)

since r > r′ means that even the minimum s(1 − z) of r must be larger than the maximum s′(1 + z) of
r′, and r < r′ means that even the maximum s(1 + z) of r must be smaller than the minimum s′(1 − z)
of r′. Thus, there is a layer of width

s(1 − z)/(1 + z) < s′ < s(1 + z)/(1 − z), (3.1.56)

where the Legendre expansions (3.1.49), (3.1.50) diverge. If z � 1, the diverging layer has a maximum
width between s(1 − 2z) and s(1 + 2z). As shown by Zharkov and Trubitsyn (1978), the subsequent
expansions of the gravitational potential can also be derived without the partially diverging series (3.1.49),
(3.1.50), by using the average radius s of a level surface as a separation between two expansions of the
form (3.1.49) and (3.1.50), rather than the sphere r = r′. Laplace’s use of the partially divergent Legendre
series (3.1.51) is quite valid due to the precise cancellation of divergent terms.

We can proceed further to simplify Eq. (3.1.53) for the case of an axially symmetric body. In this
case the potential Φ is independent of the azimuth ϕ, (k = 0). As outlined subsequently to Eq. (3.1.19),
an equatorial symmetry plane exists under fairly general conditions, and in this case Φ must be an even
function of the colatitude λ. The same reasoning holds for the density �(�r′) = �(r′, λ′). Because all odd
indexed Legendre polynomials P2j+1(cos λ′) are odd functions of cosλ′, they cancel out by integration over
the volume V of the configuration, so that only even indices will enter in the potential of a rotationally
distorted polytrope in this important particular case:

Φ = (G/r)
[ ∞∑

j=0

P2j(cos λ)
∫

V

�(r′, λ′) (r′/r)hP2j(cos λ′) dV ′
]

= (G/r)
∞∑

j=0

(
D2jr

−2j + D′
2jr

2j+1
)
P2j(cosλ); D2j =

∫
r>r′

�(r′, λ′) r′2j
P2j(cosλ′) dV ′;

D′
2j =

∫
r<r′

�(r′, λ′) r′−2j−1
P2j(cos λ′) dV ′. (3.1.57)
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The external potential of a mass simplifies with respect to Eq. (3.1.53), because in this case r > r′

throughout, and h = j :

Φe = (G/r)
∫

V

{ ∞∑
j=0

j∑
k=0

�(�r′) (r′/r)j [2(j − k)!/δk(j + k)!]P k
j (cos λ) P k

j (cos λ′) cos[k(ϕ − ϕ′)]
}

dV ′

= (G/r)
∞∑

j=0

[
Pj(cos λ)

∫
V

�(�r′) (r′/r)jPj(cos λ′) dV ′
]

+(G/r)
∞∑

j=1

j∑
k=1

{
P k

j (cos λ) cos kϕ

∫
V

2[(j − k)!/(j + k)!] �(�r′) (r′/r)jP k
j (cosλ′) cos kϕ′ dV ′

+P k
j (cosλ) sin kϕ

∫
V

2[(j − k)!/(j + k)!] �(�r′) (r′/r)jP k
j (cos λ′) sin kϕ′ dV ′

}

= (GM/r)
[
1 −

∞∑
j=1

(a1/r)jJjPj(cos λ) +
∞∑

j=1

j∑
k=1

(a1/r)jP k
j (cos λ) (Cjk cos kϕ + Sjk sin kϕ)

]
;

Jj = −(1/M)
∫

V

�(�r′) (r′/a1)jPj(cosλ′) dV ′ = −Dj/Maj
1;

Cjk = (1/M)[2(j − k)!/(j + k)!]
∫

V

�(�r′) (r′/a1)jP k
j (cosλ′) cos kϕ′ dV ′;

Sjk = (1/M)[2(j − k)!/(j + k)!]
∫

V

�(�r′) (r′/a1)jP k
j (cos λ′) sin kϕ′ dV ′, (Jj , Cjk, Sjk = const).

(3.1.58)

By convention, a1 is generally equal to the maximum radius of the mass M. The mass of the config-
uration is obtained if j = 0 :

M = P0(cosλ)
∫

V

�(�r′) P0(cos λ′) dV ′ =
∫

V

�(�r′) dV ′ = D0, (P0(cos λ) = 1). (3.1.59)

For axial symmetry Cjk, Sjk = 0. If the figure possesses an equatorial symmetry plane, we have further
J2j+1 = 0. Choosing the origin of coordinates in the centre of mass of the configuration, we are able to
eliminate the coefficients J1, C11, S11 in the expansion of the external potential. According to Eq. (3.1.58)
we have

J1 = −D1/Ma1 = −(1/Ma1)
∫

V

�r′ cos λ′ dV ′ = −(1/Ma1)
∫

M

x′
3 dM ′ = −x3c/a1;

C11 = (1/Ma1)
∫

V

�r′ sinλ′ cos ϕ′ dV ′ = (1/Ma1)
∫

M

x′
1 dM ′ = x1c/a1;

S11 = (1/Ma1)
∫

V

�r′ sinλ′ sinϕ′ dV ′ = (1/Ma1)
∫

M

x′
2 dM ′ = x2c/a1, (3.1.60)

where the mass element is dM ′ = � dV ′, and x1c, x2c, x3c are the coordinates of the centre of mass. The
second order coefficients J2, C21, C22, S21, S22 can be expressed with the aid of the moments of inertia

A =
∫

V

(x′
2
2 + x′

3
2)� dV ′; B =

∫
V

(x′
3
2 + x′

1
2)� dV ′; C =

∫
V

(x′
1
2 + x′

2
2)� dV ′;

D =
∫

V

x′
2x

′
3� dV ′; E =

∫
V

x′
3x

′
1� dV ′; F =

∫
V

x′
1x

′
2� dV ′. (3.1.61)

The products r2P k
2 , (k = 0, 1, 2) occurring in the coefficients J2, C21, ..., can be transformed as follows:

r2P 0
2 = r2(3 cos2 λ − 1)/2 = x2

3 − (x2
1 + x2

2)/2 = (x2
2 + x2

3)/2 + (x2
3 + x2

1)/2 − (x2
1 + x2

2);

P 1
2 = 3 sinλ cos λ; r2P 2

2 cos 2ϕ = 3r2 sin2 λ(1 − 2 sin2 ϕ) = 3r2 − 3x2
3 − 6x2

2

= 3(x2
1 + x2

3) − 3(x2
2 + x2

3). (3.1.62)
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The coefficients from Eq. (3.1.58) are expressed in virtue of Eqs. (3.1.61), (3.1.62) under the form
(e.g. Zharkov and Trubitsyn 1978)

J2 = −D2/Ma2
1 = −(1/Ma2

1)[(A + B)/2 − C]; C21 = E/Ma2
1;

C22 = (B − A)/4Ma2
1; S21 = D/Ma2

1; S22 = F/2Ma2
1. (3.1.63)

If the coordinate axes are chosen along the principal axes of inertia of the body, the centrifugal
moments D, E, F vanish. If an equatorial symmetry plane exists, all uneven multipole moments D2j+1 =
−a2j+1

1 MJ2j+1 vanish too. The zeroth multipole moment D0 of the configuration is simply equal to its
mass M [cf. Eq. (3.1.59)], the dipole moment D1 is zero if the origin is taken in the mass centre [cf. Eq.
(3.1.60)], and the quadrupole moment D2 = −a2

1MJ2 is expressible through the principal moments of
inertia.

Another important second order expansion of the external potential is MacCullagh’s formula. We
start with Eq. (3.1.47), and use the expansion (3.1.49), confining to second order terms:

Φe(�r) = G

∫
V

�(�r′) dV ′/|�r − �r′| = (G/r)
∫

M

[ ∞∑
j=0

(r′/r)jPj(cos γ)
]

dM ′

≈ (G/r)
∫

M

dM ′ + (G/r2)
∫

M

r′ cos γ dM ′ + (G/r3)
∫

M

r′2 dM ′ − (3G/2r3)
∫

M

r′2 sin2 γ dM ′,

(P2(cos γ) = 1 − 3 sin2 γ/2). (3.1.64)

The first integral on the right-hand side is the potential of a point mass having mass M, the second
integral vanishes if the centre of mass is chosen as the origin of coordinates, the third integral can be
written via Eq. (3.1.61) as G(A + B + C)/2r3, and the fourth integral is the moment of inertia I�r about
the radius vector �r, so that MacCullagh’s formula becomes (e.g. Stacey 1969)

Φe(�r) ≈ GM/r + G(A + B + C − 3I�r)/2r3. (3.1.65)

The last integral in Eq. (3.1.64) can be transformed by observing that r′ sin γ is equal to the absolute
value of the vectorial product �r′ × (�r/|�r|), where the components of �r/|�r| are the direction cosines �, m, n
of the vector �r :

I�r =
∫

M

r′2 sin2 γ dM ′ =
∫

M

[
�r′ × (�r/|�r|)]2 dM ′ =

∫
M

[x′
1
2(m2 + n2) + x′

2
2(�2 + n2) + x′

3
2(�2 + m2)

−2x′
1x

′
2�m − 2x′

1x
′
3�n − 2x′

2x
′
3mn

]
dM ′ = A�2 + Bm2 + Cn2 − 2F�m − 2E�n − 2Dmn. (3.1.66)

If the coordinate axes are chosen as the principal axes which diagonalize the moment of inertia tensor,
then D, E, F vanish. If the principal axis Oz is the rotation axis, then

n2 = cos2 λ = 1 − �2 − m2. (3.1.67)

For axial symmetry we have A = B, and combining this with Eqs. (3.1.66), (3.1.67), we get from Eq.
(3.1.65)

Φe(r, λ) ≈ GM/r + G(A − C)(3 cos2 λ − 1)/2r3 = (GM/r)[1 − (a1/r)2J2P2(cos λ)], (C22 = 0).
(3.1.68)

In hydrostatic equilibrium the surface of the configuration is a level surface, so the total potential
Φtot from Eq. (3.1.23) must be a constant (on the surface r1 = r1(λ) the internal potential Φ must be
equal to the external potential Φe) :

Φtot(r1, λ) = Φe(r1, λ) + Ω2r2
1 sin2 λ/2 = const. (3.1.69)

We rewrite Eq. (3.1.69) for the equatorial and polar radius a1 and a3, respectively, (λ = 0, π/2, and
a1 = a2) :

GM/a1 + GMJ2/2a1 + Ω2a2
1/2 = GM/a3 − GMa2

1J2/a3
3. (3.1.70)



146 3 Distorted Polytropes

Then, to the first order (J2 � 1), the oblateness f becomes for an axisymmetric configuration rotating
at constant angular velocity Ω, (a1 ≈ a3) equal to

f = (a1 − a3)/a1 = 3J2/2 + Ω2a3
1/2GM. (3.1.71)

The first order equation of the rotationally distorted surface is obtained by equating in Eq. (3.1.69)
the total potential Φtot in an arbitrary surface point to its value at the equator a1, for instance:

r1 = a1(1 − f cos2 λ), (f � 1). (3.1.72)

Eq. (3.1.14) possesses an important prime integral (e.g. Jeans 1919, Chandrasekhar 1961), that will
be used for the exact calculation of the gravitational energy of a rotating configuration. If P is polytropic,
Eq. (3.1.15) can be written as

(1 + 1/n)K�1/n−1∇� = ∇[Φ + Ω2(x2
1 + x2

2)/2], (3.1.73)

or integrating

(n + 1)P/� = Φ + Ω2(x2
1 + x2

2)/2 + const = Φ + Φf + const = Φ + Φf − Φp, (Ω = const),
(3.1.74)

where Φf = Ω2(x2
1 + x2

2)/2 is called the centrifugal potential, and the integration constant is given by
the gravitational potential at the pole of the configuration Φp, where P = 0 and x1, x2 = 0. In spherical
coordinates Eq. (3.1.74) becomes equal to

(n + 1)P/� = Φ + Ω2r2 sin2 λ/2 − Φp = Φ + |�Ω × �r|2/2 − Φp. (3.1.75)

Integrating this prime integral over the volume of the configuration, we find

(n + 1)
∫

V

P dV =
∫

V

�Φ dV + Ω2IΩ/2 − ΦpM. (3.1.76)

The moment of inertia about the rotation axis is [cf. Eq. (3.1.66)]:

IΩ =
∫

V

�(x2
1 + x2

2) dV =
∫

V

�r2 sin2 λ dV. (3.1.77)

We introduce the gravitational energy W from Eq. (2.6.68) into Eq. (3.1.76) to obtain:

(n + 1)
∫

V

P dV = −2W + Ω2IΩ/2 − Φp M. (3.1.78)

We can write the equation of motion of an inviscid, nonmagnetic, uniformly rotating fluid in a rotating
Cartesian (x1, x2, x3)-frame under the form [cf. Sec. 2.6.6 and Eq. (3.1.12)]

� Dvk/Dt = −∂P/∂xk + � ∂(Φ + |�Ω × �r|2/2)/∂xk + 2�εk
mv
Ωm,

(k = 1, 2, 3; r2 = x2
1 + x2

2 + x2
3), (3.1.79)

where summation occurs over the repeated indices �, m, and |�Ω×�r|2/2 is the centrifugal potential [∇|�Ω×
�r|2/2 = −�Ω× (�Ω×�r)]. The last term represents just the components of the Coriolis force 2��v × �Ω acting
on the unit of volume. To shorten the notations, we have introduced the alternating symbol

εk
m = (−1)I(k,
,m), (3.1.80)

where εk
m = ±1, depending on the number of inversions I(k, �, m) occurring in the permutation of the
three distinct elements[

1 2 3
k � m

]
(3.1.81)
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In the same way as effected subsequently to Eq. (2.6.50), we transform the vectorial equation (3.1.79)
into a tensorial form, by multiplying with xj dV and integrating over the volume of the configuration.
Instead of the vectorial product from Eq. (3.1.79) we can write

(1/2)
∫

V

�xj (∂|�Ω × �r|2/∂xk) dV = Ω2

∫
V

�xjxk dV − ΩkΩ


∫
V

�xjx
 dV = Ω2Ijk − ΩkΩ
Ij
,

[�Ω = �Ω(Ω1, Ω2, Ω3)], (3.1.82)

where Ijk are the second order moments of density distribution from Eq. (2.6.74).
Thus, Eq. (3.1.79) takes eventually the equivalent form [cf. Eqs. (2.6.56)-(2.6.79)]

d

(∫
V

�xjvk dV

)/
dt = 2Ejk + Wjk + Ω2Ijk − ΩkΩ
Ij
 + δjk

∫
V

P dV + 2εk
m

∫
V

�xjv
Ωm dV.

(3.1.83)

If the x3-axis is chosen along the rotation axis �Ω = �Ω(0, 0, Ω), and if rotation is stationary without
internal motions (vk = 0), Eq. (3.1.83) simplifies to (Chandrasekhar 1969)

Wjk + Ω2(Ijk − δ3kIj3) = −δjk

∫
V

P dV. (3.1.84)

Contracting this tensorial equation we get (Chandrasekhar 1961)

W + Ω2IΩ = −3
∫

V

P dV,
(
IΩ =

∫
V

(x2
1 + x2

2)� dV = I11 + I22

)
. (3.1.85)

The pressure integral can be eliminated between Eqs. (3.1.78) and (3.1.85), to give

W = [−3ΦpM + (n + 5/2)Ω2IΩ]/(5 − n), (3.1.86)

which represents a generalization of Eq. (2.6.137), (Ω = 0; M → M1; Φp → GM1/r1) to the case
of uniformly rotating, distorted spheres. Anand and Kushwaha (1962a) have slightly generalized Eq.
(3.1.86) for a particular toroidal axisymmetric magnetic field (H
, Hz = 0, Hϕ ∝ ��, cf. Sec. 3.10.3).

We write out explicitly Eq. (3.1.84) and get, by using Eq. (3.1.78):

W11 + Ω2I11 = W22 + Ω2I22 = W33 = −
∫

V

P dV = [2(W11 + W22 + W33)

−Ω2(I11 + I22)/2 + ΦpM ]/(n + 1); W12 + Ω2I12 = W21 + Ω2I21 = 0; W13 + Ω2I13 = 0;

W31 = 0; W23 + Ω2I23 = 0; W32 = 0. (3.1.87)

Since Wjk = Wkj and Ijk = Ikj , there results from the last four equations that W13, W23 = 0 and
I13, I23 = 0. For rotation about the x3-axis the components W12 = W21 and I12 = I21 can be arranged to
vanish, so the tensors Wjk and Ijk assume a diagonal form. However, it is not required that W11 = W22

and I11 = I22, as for axisymmetric bodies (Chandrasekhar 1969). The first set of equations from Eq.
(3.1.87) can be solved to give (Chandrasekhar 1961)

W11 = [−ΦpM + (n − 5/2)Ω2I11 + 5Ω2I22/2]/(5 − n);

W22 = [−ΦpM + 5Ω2I11/2 + (n − 5/2)Ω2I22]/(5 − n);

W33 = [−ΦpM + 5Ω2(I11 + I22)/2]/(5 − n), (3.1.88)

and their sum is just equal to Eq. (3.1.86).
We now turn to the brief discussion of the combined effects of rotational and tidal distortions, termed

by Chandrasekhar (1933c) “the double star problem”. To this end we introduce a rotating Cartesian
(x1, x2, x3)-frame with the origin in the primary mass M (the body on which we are interested), rotating
about another body of mass M ′ (the secondary, which is the origin of tidal effects on the primary).
The distance between the primaries D remains constant (circular orbit). The relative dispositions of
the bodies remain unchanged, so that their spin angular velocity is the same as the constant orbital
angular velocity �Ω(0, 0, Ω) round their centre of mass C (Fig. 3.1.1). The secondary M ′ is located on the
Mx1-axis, and the centre of mass C has the constant coordinates (M ′D/(M + M ′), 0, 0).
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Fig. 3.1.1 Geometry of the double star problem.

Let us write down at first the equations of motion in a rotating system with the origin in the centre
of mass C. They can be deduced at once from Eq. (3.1.79), where we have to add to the internal
potential Φ(�r) of M the external potential Φ′

e(�r′) of M ′ (the tidal potential), and take into account that
�Ω = �Ω(0, 0, Ω) :

� Dvk/Dt = −∂P/∂xk + � ∂
[
Φ + Φ′

e + Ω2(x2
1 + x2

2)/2
]/

∂xk + 2�Ωεk
3v
, (k = 1, 2, 3).
(3.1.89)

We turn to the system rotating round M by making simply a translation from C to M along Mx1,
i.e. x1 → x1 − M ′D/(M + M ′), so that Eq. (3.1.89) becomes eventually (e.g. Chandrasekhar 1969):

� Dvk/Dt = −∂P/∂xk + � ∂
{
Φ + Φ′

e + (Ω2/2)
[(

x1 − M ′D/(M + M ′)
)2 + x2

2

]}/
∂xk

+2�Ωεk
3v
. (3.1.90)

In a first approximation MacCullagh’s formula (3.1.65) is simply Φ′
e(�r′) ≈ GM ′/r′, where �r′ is the

distance between a point P (x1, x2, x3) inside the primary and M ′(D, 0, 0) : r′ = [(x1 −D)2 +x2
2 +x2

3]
1/2.

Since |x1|, |x2|, |x3| < D, we obtain up to the second order:

Φ′
e(�r′) ≈ GM ′/r′ = GM ′/D[1 − 2x1/D + (x2

1 + x2
2 + x2

3)/D2]1/2

≈ (GM ′/D)[1 + x1/D + (2x2
1 − x2

2 − x2
3)/2D2]. (3.1.91)

The equations of motion (3.1.90) read, by dropping constant terms:

� Dvk/Dt = −∂P/∂xk + � ∂
[
Φ + GM ′x1/D2 − Ω2M ′Dx1/(M + M ′)

+(GM ′/2D3)(2x2
1 − x2

2 − x2
3) + Ω2(x2

1 + x2
2)/2

]/
∂xk + 2�Ωεk
3v
. (3.1.92)

The angular velocity of revolution Ω of two tidally interacting bodies differs from its Keplerian value
G(M + M ′)/D3, (point mass approximation) by a factor ε :

Ω2 = G(M + M ′)(1 + ε)/D3. (3.1.93)

ε is of order (rm/D)5, where rm is a mean radius of the components (Martin 1970, App. I. E).
According to Jeans (1919, p. 258; see also Eqs. (3.7.93)-(3.7.97), and Lai et al. 1993, Figs. 10, 17) ε
takes a maximum value of about 0.22 for two ellipsoids of equal mass and constant density (congruent
Darwin ellipsoids) in contact, and will be neglected for simplicity. Inserting from Eq. (3.1.93) with ε = 0
into Eq. (3.1.92), we obtain the equation of motion for the so-called Roche problem:

� Dvk/Dt = −∂P/∂xk + � ∂
[
Φ + (GM ′/2D3)(2x2

1 − x2
2 − x2

3) + Ω2(x2
1 + x2

2)/2
]/

∂xk

+2�Ωεk
3v
, (Ω2 = G(M + M ′)/D3). (3.1.94)
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P = const on a level surface, and the total potential must be constant too. In hydrostatic equilibrium
we have vk = 0, and

Φ(�r) + (GM ′/2D3)(2x2
1 − x2

2 − x2
3) + Ω2(x2

1 + x2
2)/2 = const. (3.1.95)

On the surface, the internal potential Φ must be continuous with the external potential of M [cf. Eqs.
(3.1.58)-(3.1.63)]. Because of symmetry reasons the principal axes coincide just with the coordinate axes:

Φ(�r1) = Φe(�r1) ≈ (GM/r1)[1 − J2(a1/r1)2(3 cos2 λ − 1)/2 + 3C22(a1/r1)2 cos 2ϕ sin2 λ]

= (GM/r1)
{
1 − J2(a2

1/r4
1)[x

2
3 − (x2

1 + x2
2)/2] + 3C22(a2

1/r4
1)(x

2
1 − x2

2)
}
. (3.1.96)

We insert this into Eq. (3.1.95), and obtain along the principal axes of inertia �r1(a1, 0, 0), �r1(0, a2, 0),
�r1(0, 0, a3) :

(GM/a1)[1 + J2/2 + 3C22] + GM ′a2
1/D3 + Ω2a2

1/2 = (GM/a2)[1 + (a2
1/a2

2)J2/2 − 3C22(a2
1/a2

2)]

−GM ′a2
2/2D3 + Ω2a2

2/2 = (GM/a3)[1 − (a2
1/a2

3)J2] − GM ′a2
3/2D3 = const. (3.1.97)

Taking a1 ≈ a2 ≈ a3, we obtain for the first order distortions along the principal moments of inertia
(J2, C22, Ω, a1/D � 1) :

(a1 − a2)/a1 ≈ 6C22 + 3M ′a3
1/2MD3;

(a1 − a3)/a1 ≈ 3J2/2 + 3C22 + 3M ′a3
1/2MD3 + Ω2a3

1/2GM ;

(a2 − a3)/a1 ≈ 3J2/2 − 3C22 + Ω2a3
1/2GM. (3.1.98)

Eq. (3.1.95) becomes on the surface of the configuration equal to

(GM/r1)
[
1 − J2(a1/r1)2(3 cos2 λ − 1)/2 + 3C22(a1/r1)2 cos 2ϕ sin2 λ

]
+(GM ′/2D3)r2

1(3 cos2 ϕ sin2 λ − 1) + (Ω2r2
1/2) sin2 λ = const. (3.1.99)

Equating this, for instance, to the first value from Eq. (3.1.97), we obtain a first order representation
of the surface of M :

r1 = a1

[
1 − (3J2/2 + Ω2a3

1/2GM) cos2 λ + (6C22 + 3a3
1M

′/2MD3) cos2 ϕ sin2 λ

−3C22(sin2 λ + 1) − 3a3
1M

′/2MD3
]

= a1 + (a3 − a2) cos2 λ + (a1 − a2)(cos2 ϕ sin2 λ − 1)

= a1 + (a3 − a2)x2
3/a2

1 + (x2
1 − a2

1)(a1 − a2)/a2
1. (3.1.100)

In the case of axial symmetry (a1 = a2) this equation is identical to Eq. (3.1.72).
A particular, and somewhat artificial case of Roche’s problem is the pure tidal problem considered by

Jeans (1919), when rotation is absent (Ω = 0). Eq. (3.1.92) becomes

� Dvk/Dt = −∂P/∂xk + � ∂
[
Φ + GM ′x1/D2 + (GM ′/2D3)(2x2

1 − x2
2 − x2

3)
]/

∂xk. (3.1.101)

The term ∂(GM ′x1/D2)/∂x1 = GM ′/D2 is just the gravitational acceleration due to M ′, acting on
the mass M as a whole. This term can be dropped if we consider the equation of motion in a frame that
moves with acceleration GM ′/D2 with respect to the original position of M. In this way the centre of
mass of M would always remain at the origin of the new frame, and the equations of motion of the tidally
distorted mass become in the uniformly accelerated frame (Sec. 3.3, Jeans 1919, Chandrasekhar 1969):

� Dvk/Dt = −∂P/∂xk + � ∂
[
Φ + (GM ′/2D3)(2x2

1 − x2
2 − x2

3)
]/

∂xk. (3.1.102)
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3.2 Chandrasekhar’s First Order Theory of Rotationally
Distorted Spheres

The pioneering work on the analytical theory of uniformly rotating polytropes is due to Chandrasekhar
(1933a, d), based on previous investigations by Milne and von Zeipel (Kopal 1983). It is clear that the
rotational problem can be posed only for a finite mass of the undistorted spherical polytrope, i.e. we
must have throughout −1 < n ≤ 5, (N = 3). Moreover, Chandrasekhar’s theory can be applied only if
0 ≤ n ≤ 5, because the density from Eq. (3.2.1) has a singularity at the boundary if −1 < n < 0, together
with the derivatives of the associated Emden-Chandrasekhar functions ψj [cf. Eqs. (3.2.93), (3.2.95)].
The limiting cases n = 0 and n = 5 will be discussed after presenting the solution for 0 < n < 5.

The dimensionless ξ,Θ-variables are introduced in the same manner as for the undistorted problem
in Eqs. (2.1.10), (2.1.13):

r = [(n + 1)K/4πG�
1−1/n
0 ]1/2ξ = [(n + 1)P0/4πG�2

0]
1/2ξ = αξ; � = �0Θn;

P = K�
1+1/n
0 Θn+1 = P0Θn+1. (3.2.1)

We assume the distorted sphere to be axisymmetric, so the pertinent equilibrium equation in the
corotating frame is Eq. (3.1.17). After some algebra, Eq. (3.1.19) writes [Θ = Θ(ξ, µ)] :

∂(ξ2 ∂Θ/∂ξ)
/
∂ξ + ∂[(1 − µ2) ∂Θ/∂µ]

/
∂µ = (−Θn + β)ξ2, (µ = cos λ; 0 ≤ n ≤ 5), (3.2.2)

where

β = Ω2/2πG�0, (Ω = const; β � 1). (3.2.3)

Obviously, in the nonrotating case we have β = 0, Θ = Θ(ξ) = θ(ξ), and Eq. (3.2.2) turns into the
well known Lane-Emden equation (2.1.14) if N = 3. For sufficiently slow rotation there is β � 1, and we
can seek a solution of the rotationally distorted problem (3.2.2) in terms of a small deviation of order β
from the solution θ of the undistorted problem, i.e. we can assume that

Θ(ξ, µ) = θ(ξ) + βΨ(ξ, µ). (3.2.4)

Since θ is required to be the Lane-Emden function, we have θ(0) = 1. As the origin is approached,
the radial component of the hydrostatic equation (3.1.16) becomes identical to the radially symmetric
hydrostatic equation (2.1.35):

∂P/∂r = � ∂Φ/∂r, (r → 0). (3.2.5)

Thus, in the limit r = 0 the initial conditions for the rotating and nonrotating case must coincide:

Θ(0, µ) = θ(0) = 1; Ψ(0, µ) = 0; [∂Θ(ξ, µ)/∂ξ]ξ=0 = θ′(0) = 0; [∂Ψ(ξ, µ)/∂ξ]ξ=0 = 0. (3.2.6)

With the aid of Eq. (3.2.4) the basic equation (3.2.2) reduces to

∂(ξ2 ∂Ψ/∂ξ)
/
∂ξ + ∂[(1 − µ2) ∂Ψ/∂µ]

/
∂µ = (−nθn−1Ψ + 1)ξ2, (3.2.7)

if we take into account that θ satisfies the Lane-Emden equation (2.1.14). Θn has been expanded in a
Taylor series with respect to the small quantity βΨ : Θn = (θ+βΨ)n ≈ θn+βnθn−1Ψ. Near the boundary
we have θ → 0, Θ ≈ βΨ, and βΨ becomes the leading term; therefore Smith (1975, 1976) claims that
near the boundary Chandrasekhar’s approach from Eq. (3.2.4) leads to a singular perturbation problem.
However, since near the boundary Θ ≈ βΨ is a small first order quantity, all involved errors remain
small, and no break-down of the theory occurs. In this respect an interesting point has been made by
Hubbard et al. (1975): Near the boundary, the spherically symmetric hydrostatic equation becomes for
a polytropic equation of state equal to [cf. Eqs. (2.1.35), (2.6.29), (2.6.30)]

dP/dr = −GM1�/r2
1 or d�/dr = −GM1�

1−1/n/K(1 + 1/n)r2
1, (r1, M1 = const), (3.2.8)
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and if n �= 1, various derivatives of � become unbounded as � goes smoothly to zero when the boundary r1

of the polytrope of mass M1 is approached. Therefore, the density at the boundary cannot be calculated
by a Taylor expansion. However, since � is generally analytic within a small boundary shell, the involved
errors are negligible if an infinitesimal boundary shell is omitted, and all involved integrals will converge
to their correct values (cf. Zharkov and Trubitsyn 1978, §38).

In view of Eqs. (3.1.37), (3.1.46) Chandrasekhar (1933a) writes for Ψ the equation

Ψ(ξ, µ) = ψ0(ξ) +
∞∑

j=1

Ajψj(ξ) Pj(µ), (Aj = const; µ = cos λ), (3.2.9)

where odd indexed Legendre polynomials vanish. If this equation is substituted into Eq. (3.2.7), we
obtain the fundamental equations of the associated Emden-Chandrasekhar functions ψj , by equating the
coefficients of Pj(µ) :

d(ξ2 dψ0/dξ)
/
dξ = ξ2(−nθn−1ψ0 + 1), (j = 0; ψ0(0), ψ′

0(0) = 0), (3.2.10)

d(ξ2 dψj/dξ)
/
dξ = [j(j + 1) − nξ2θn−1]ψj , (j = 1, 2, 3, ...; ψj(0), ψ′

j(0) = 0), (3.2.11)

where we have also used Eq. (3.1.40). To determine the unknown constants Aj from Eq. (3.2.9), we must
evaluate the internal potential from Poisson’s equation (3.1.18), since the fundamental equation (3.1.19)
contains no explicit reference to the potential. Eq. (3.1.18) writes (Θn ≈ θn + βnθn−1Ψ) :

∂(ξ2 ∂Φ/∂ξ)
/
∂ξ + ∂[(1 − µ2) ∂Φ/∂µ]

/
∂µ = −(n + 1)K�

1/n
0 ξ2

[
θn + βnθn−1

(
ψ0 +

∞∑
j=1

AjψjPj

)]
.

(3.2.12)

If n = 0, the factor K�
1/n
0 has to be replaced in virtue of Eq. (3.2.1) by P0/�0.

Chandrasekhar (1933a) employs for the internal potential Φ an expression equivalent to Eq. (3.1.57),
emphasizing the internal potential of the nonrotating spherical polytrope U0, and the small distortion
parameter β. We also preserve the vanishing odd indices:

Φ = U0(ξ) + β
∞∑

j=0

Vj(ξ) Pj(µ). (3.2.13)

If Eq. (3.2.13) is substituted into Eq. (3.2.12), we find by equating the coefficients of Pj(µ) :

d(ξ2 dU0/dξ)
/
dξ = −(n + 1)K�

1/n
0 ξ2θn, (3.2.14)

d(ξ2 dV0/dξ)
/
dξ = −n(n + 1)K�

1/n
0 ξ2θn−1ψ0, (3.2.15)

d(ξ2 dVj/dξ)
/
dξ − j(j + 1)Vj = −n(n + 1)K�

1/n
0 Ajξ

2θn−1ψj , (j ≥ 1), (3.2.16)

where we have substituted for the derivatives of Pj via Eq. (3.1.40). The above equations are Euler
type equations, and we solve at first the homogeneous equations, adding then a particular solution of
the inhomogeneous equation, in order to get the general solution (e.g. Linnell 1981a). The homogeneous
part of Eq. (3.2.14) is

d(ξ2 dU0/dξ)
/
dξ = ξ2 d2U0/dξ2 + 2ξ dU0/dξ = 0, (3.2.17)

with the general solution

U0 = a′
1 + a′

2/ξ, (a′
1, a

′
2 = const). (3.2.18)

A particular solution of the inhomogeneous equation is just equal to the gravitational potential of the
undistorted polytropic sphere from Eq. (2.6.32):

U0 = (n + 1)K�
1/n
0 θ + a′

3, (a′
3 = const). (3.2.19)
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The general solution of Eq. (3.2.14) is the sum of Eqs. (3.2.18) and (3.2.19):

U0 = (n + 1)K�
1/n
0 (θ + c0 + c1/ξ), (c0, c1 = const), (3.2.20)

where c1 = 0, in order to avoid a singularity at the origin. The general solution of the homogeneous part
of Eq. (3.2.15) is analogous:

V0 = b′1/ξ + b′2, (b′1, b
′
2 = const). (3.2.21)

A particular solution of the inhomogeneous equation (3.2.15) can be found by inserting into Eq.
(3.2.15) for ψ0 from Eq. (3.2.10):

d(ξ2 dV0/dξ)
/
dξ =(n +1)K�

1/n
0 [d(ξ2 dψ0/dξ)

/
dξ − ξ2] =(n +1)K�

1/n
0 d[ξ2 d(ψ0 − ξ2/6)/dξ]

/
dξ.

(3.2.22)

A particular solution is therefore

V0 = (n + 1)K�
1/n
0 (ψ0 − ξ2/6) + b′3, (b′3 = const). (3.2.23)

The general solution of Eq. (3.2.15) is

V0 = (n + 1)K�
1/n
0 (ψ0 − ξ2/6 + c10 + c11/ξ), (c10, c11 = const), (3.2.24)

where again c11 = 0.
The homogeneous part of Eq. (3.2.16) has the general solution (e.g. Smirnow 1967, Linnell 1981a)

Vj = B′
jξ

j + C ′
jξ

−j−1, (j ≥ 1; B′
j , C

′
j = const). (3.2.25)

A particular solution of the inhomogeneous equation (3.2.16) can be found by inserting into Eq.
(3.2.16) for ψj from Eq. (3.2.11):

d(ξ2 dVj/dξ)/dξ − j(j + 1)Vj = −(n + 1)K�
1/n
0 Aj [d(ξ2 dψj/dξ)

/
dξ − j(j + 1)ψj ], (j ≥ 1).

(3.2.26)

It is easily observed that this equation has a particular integral of the form

Vj = (n + 1)K�
1/n
0 Ajψj , (3.2.27)

and the general solution of Eq. (3.2.16) is

Vj = (n + 1)K�
1/n
0 (Ajψj + Bjξ

j + Cjξ
−j−1), (j ≥ 1; Aj , Bj , Cj = const), (3.2.28)

where again Cj = 0. Thus, by inserting Eqs. (3.2.20), (3.2.24), (3.2.28) into Eq. (3.2.13), the internal
potential becomes

Φ = (n + 1)K�
1/n
0

{
θ(ξ) + c0 + β

[
c10 + ψ0(ξ) − ξ2/6 +

∞∑
j=1

(
Ajψj(ξ) + Bjξ

j
)

Pj(µ)
]}

. (3.2.29)

The first equation (3.1.17) can be written in the dimensionless variables from Eq. (3.2.1) as

(n + 1)K�
1/n
0 ∂Θ/∂ξ = ∂Φ/∂ξ + β(n + 1)K�

1/n
0 ξ[1 − P2(µ)]/3,

(
P2(µ) = 3µ2/2 − 1/2

)
.
(3.2.30)

The constants Bj are determined by inserting the derivative ∂Φ/∂ξ of Eq. (3.2.29) into Eq. (3.2.30).
∂Θ/∂ξ and β(n+1)K�

1/n
0 ξ/3 cancel out, and we get by equating the corresponding coefficients of Pj(µ) :

Bj = 0 if j �= 2 and 2B2ξ − ξ/3 = 0 or B2 = 1/6. (3.2.31)
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Thus, the internal potential of the rotating polytrope is up to the first order in β equal to

Φ = (n + 1)K�
1/n
0

{
θ(ξ) + c0 + β

[
c10 + ψ0(ξ) − ξ2/6 + ξ2P2(µ)/6 +

∞∑
j=1

Ajψj(ξ) Pj(µ)
]}

.

(3.2.32)

The external potential Φe of axially symmetric configurations in hydrostatic equilibrium is independent
of ϕ, and Eq. (3.1.58) reads, by emphasizing the expansion parameter β :

Φe = k0/ξ + β

∞∑
j=0

k1jξ
−j−1Pj(µ), (k0, k1j = const). (3.2.33)

The odd indexed, vanishing coefficients k1,2j+1 have been included for simplicity in the sum.
If the parameter β of Chandrasekhar’s theory becomes zero, all solutions turn into those for the

spherical polytrope, and if the same natural requirement is imposed for the boundary Ξ1 of the rotationally
distorted polytrope, then Eq. (3.1.46) can be written as (Chandrasekhar and Lebovitz 1962d)

Ξ1 = Ξ1(λ) = ξ1 + β
∞∑

j=0

qjPj(cos λ) = ξ1 + β
∞∑

j=0

qjPj(µ), (qj = const; q2j+1 = 0). (3.2.34)

ξ1 is the radial coordinate on the surface of the undistorted spherical polytrope, i.e. the first zero of
the Lane-Emden function θ(ξ). Note, that Ξ1 is a radial coordinate depending on λ, or equivalently on
µ. On the surface, we have

Θ = Θ(Ξ1, µ) = θ(Ξ1) + β

[
ψ0(Ξ1) +

∞∑
j=1

Ajψ(Ξ1) Pj(µ)
]

= 0. (3.2.35)

Since β is small, we have Ξ1 ≈ ξ1, and we can expand all functions of Ξ1 in the vicinity of ξ1 :

Ξ1 − ξ1 = β
∞∑

j=0

qjPj(µ); θ(Ξ1) ≈ θ(ξ1) + (Ξ1 − ξ1) θ′(ξ1) = θ(ξ1) + βθ′(ξ1)
∞∑

j=0

qjPj(µ);

ψk(Ξ1) ≈ ψk(ξ1) + (Ξ1 − ξ1) ψ′
k(ξ1) = ψk(ξ1) + βψ′

k(ξ1)
∞∑

j=0

qjPj(µ);

θ′(Ξ1) ≈ θ′(ξ1) + βθ′′(ξ1)
∞∑

j=0

qjPj(µ), (k = 0, 1, 2, 3, ...). (3.2.36)

Eq. (3.2.36) is inserted into Eq. (3.2.35), and Θ becomes up to the first order in β equal to

Θ(Ξ1, µ) = θ(ξ1) + β

[
θ′(ξ1)

∞∑
j=0

qjPj(µ) + ψ0(ξ1) +
∞∑

j=1

Ajψj(ξ1) Pj(µ)
]

= 0. (3.2.37)

The coefficients of Pj(µ) must be zero, and therefore

q0 = −ψ0(ξ1)/θ′(ξ1); qj = −Ajψj(ξ1)/θ′(ξ1), (j ≥ 1). (3.2.38)

The coefficients Aj from the expansion of Θ are still undetermined, and can be found if continuity
of the internal and external gravitational potential is implemented at the boundary of the polytrope,
avoiding a slight inconsistency of Chandrasekhar’s (1933a) original presentation (cf. Chandrasekhar and
Lebovitz 1962d, Linnell 1977a, 1981a). Eqs. (3.2.32), (3.2.33), and their derivatives with respect to ξ
become on the boundary [Θ(Ξ1, µ) = 0; θ′′(ξ1) = −2θ′(ξ1)/ξ1 − θn(ξ1)] :

Φ(Ξ1, µ) = (n + 1)K�
1/n
0

{
c0 + β

[
c10 − ξ2

1/6 + ξ2
1P2(µ)/6

]}
, (3.2.39)

Φe(Ξ1, µ) = k0/ξ1 + β
∞∑

j=0

(−k0qj/ξ2
1 + k1jξ

−j−1
1 ) Pj(µ), (3.2.40)
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(∂Φ/∂ξ)ξ=Ξ1 = (n + 1)K�
1/n
0

{
θ′(ξ1) + β

[
[−2θ′(ξ1)/ξ1 − θn(ξ1)]

∞∑
j=0

qjPj(µ) + ψ′
0(ξ1)

−ξ1[1 − P2(µ)]/3 +
∞∑

j=1

Ajψ
′
j(ξ1) Pj(µ)

]}
, (3.2.41)

(∂Φe/∂ξ)ξ=Ξ1 = −k0/ξ2
1 + β

∞∑
j=0

[
2k0qj/ξ3

1 − (j + 1)k1jξ
−j−2
1

]
Pj(µ). (3.2.42)

If 0 < n < 5, we put θn(ξ1) = 0 in Eq. (3.2.41), and require equality of Eqs. (3.2.39), (3.2.41) with
Eqs. (3.2.40), (3.2.42), respectively:

c0 = −ξ1θ
′(ξ1); c10 = ξ2

1/2 − ψ0(ξ1) − ξ1ψ
′
0(ξ1); k0 = −(n + 1)K�

1/n
0 ξ2

1θ′(ξ1);

k10 = (n + 1)K�
1/n
0 ξ2

1 [ξ1/3 − ψ′
0(ξ1)]; k12 = (n + 1)K�

1/n
0 ξ5

1 [ξ1ψ
′
2(ξ1) − 2ψ2(ξ1)]/

6[3ψ2(ξ1) + ξ1ψ
′
2(ξ1)]; k1j = 0 if j �= 0, 2; A2 = −5ξ2

1

/
6[3ψ2(ξ1) + ξ1ψ

′
2(ξ1)];

Aj = 0 if j �= 2; qj = 0 if j �= 0, 2, (0 < n < 5). (3.2.43)

The constants Aj , k1j , (j > 2) are zero because they turn out to be solutions of the homogeneous
system (n + 1)K�

1/n
0 Ajψj(ξ1) − k1jξ

−j−1
1 = 0 and (n + 1)K�

1/n
0 Ajψ

′
j(ξ1) + (j + 1)k1jξ

−j−2
1 = 0. They

could be nonzero if the determinant of this system vanishes: Dj(ξ1) = ξ−j−2
1 [(j+1)ψj(ξ1)+ξ1ψ

′
j(ξ1)] = 0.

If we insert for the constants ψj(ξ1), ψ′
j(ξ1) a simple Taylor expansion near the boundary [e.g. ψj(ξ1) ≈

ψj(ξ) − (ξ − ξ1)ψ′
j(ξ1)], the condition Dj(ξ1) = 0 writes approximately (j + 1)ψj(ξ) + ξ1ψ

′
j(ξ) ≈ (ξ −

ξ1)[(j + 1)ψ′
j(ξ1) + ξ1ψ

′′
j (ξ1)], which is contradicted by the boundary expansions from Eqs. (3.2.95),

(3.2.96). Thus Aj , k1j vanish if j > 2 (cf. Kovetz 1968, Eqs. (28)-(30) for another proof).
With Eqs. (3.2.4), (3.2.9), (3.2.32)-(3.2.35), (3.2.38), (3.2.43) we obtain if 0 < n < 5 :

Θ = Θ(ξ, µ) = θ(ξ) + β[ψ0(ξ) + A2ψ2(ξ) P2(µ)], (3.2.44)

Ξ1 = Ξ1(µ) = ξ1 − β[ψ0(ξ1) + A2ψ2(ξ1) P2(µ)]/θ′(ξ1), (3.2.45)

Φ = (n + 1)K�
1/n
0

{
θ(ξ) + c0 + β

[
c10 + ψ0(ξ) − ξ2/6 + ξ2P2(µ)/6 + A2ψ2(ξ) P2(µ)

]}
, (3.2.46)

Φe = k0/ξ + β[k10/ξ + k12P2(µ)/ξ3]. (3.2.47)

In the particular case n = 1 the rotational problem can be solved more exactly, since we have Θn = Θ
in Eq. (3.2.2), and Eqs. (3.2.10), (3.2.11) admit analytical solutions (cf. Eqs. (3.2.74), (3.2.78); Kopal
1937, 1939, Papoyan et al. 1967, Blinnikov 1972, Hubbard 1974, Kozenko 1975, Cunningham 1977,
Caimmi 1980b, Williams 1988). We insert the attempt (Kopal 1939)

Θ(ξ, µ) = χ(ξ) Π(µ) + β, (3.2.48)

into the fundamental equation (3.2.2), to obtain

∇2Θ = Π(µ) ∇2χ(ξ) + χ(ξ) ∇2Π(µ) = −Θ + β = −χ(ξ) Π(µ), (n = 1). (3.2.49)

We divide by χ(ξ) Π(µ) and use Eq. (B.39):

ξ2[∇χ2(ξ)/χ(ξ) + 1] = −ξ2 ∇2Π(µ)/Π(µ) = const. (3.2.50)

We take the arbitrary constant equal to j(j + 1), (j – nonnegative integer). Then, Eq. (3.2.50) can
be split into the system of equations

d(ξ2 dχj/dξ)
/
dξ + [ξ2 − j(j + 1)]χj = 0; d[(1 − µ2) dΠj/dµ]/dµ + j(j + 1)Πj = 0,

(n = 1; j = 0, 1, 2, 3, ...). (3.2.51)
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The first set of equations is identical to the Lane-Emden equation (2.1.14) if j = 0, and to Eq.
(3.2.11) for the associated Emden-Chandrasekhar functions if j = 1, 2, 3, ... The solutions are given by
Eqs. (2.3.89), (3.2.74), and (3.2.78):

χ0 = θ = 1 − ψ0 = sin ξ/ξ; χj = ψj = (−1)j(2j + 1)!! ξj dj(sin ξ/ξ)
/
(ξ dξ)j ,

(n = 1; j = 2, 3, 4, ...), (3.2.52)

where the notation (2.3.23) is assumed, and (2j + 1)!! = 1× 3× 5× ...(2j − 1)(2j + 1). The second set of
equations (3.2.51) is identical to the Legendre equation (3.1.40). Thus, the solution of Eq. (3.2.2) in the
case n = 1 is equal to

Θ(ξ, µ) =
∞∑

j=0

Bjχj(ξ) Pj(µ) + β, (Bj = const). (3.2.53)

The initial conditions Θ(0, µ) = θ(0) = χ0(0) = 1 yield, no matter what β : B0 = 1 − β, so that Eq.
(3.2.53) becomes more familiarly

Θ(ξ, µ) = θ(ξ) + βψ0(ξ) +
∞∑

j=1

B2jψ2j(ξ) P2j(µ), (n = 1), (3.2.54)

where ψ0 = 1 − θ, and the constants B2j have to be determined from the boundary conditions (cf.
Papoyan et al. 1967).

An incomplete form of Eq. (3.2.2) without µ-dependence has been employed by Sharma and Yadav
(1992, 1993) for the study of n = 1 polytropes with the aid of Padé approximants (see Sec. 2.4.4).

The physical characteristics of rotationally distorted spherical polytropes can be obtained with Eqs.
(3.2.44), (3.2.45). The surface of the polytrope is represented by Eq. (3.2.45), showing an expansion
of the polytrope as a whole by an amount −βψ0(ξ1)/θ′(ξ1), (θ′ < 0), as compared to the nonrotating
spherically symmetric polytrope. Superimposed on this there is a distortion, and the corresponding
oblateness (flattening, ellipticity) is up to the first order in β equal to [cf. (Eq. (3.1.98)]

f = (a1 − a3)/a1 = −5βξ1ψ2(ξ1)
/
4θ′(ξ1) [3ψ2(ξ1) + ξ1ψ

′
2(ξ1)], (0 < n < 5), (3.2.55)

where

a1 = α
{
ξ1 − βψ0(ξ1)/θ′(ξ1) − 5βξ2

1ψ2(ξ1)
/
12θ′(ξ1) [3ψ2(ξ1) + ξ1ψ

′
2(ξ1)]

}
, (P2(0) = −1/2),

(3.2.56)

is the equatorial radius, and

a3 = α
{
ξ1 − βψ0(ξ1)/θ′(ξ1) + 5βξ2

1ψ2(ξ1)
/
6θ′(ξ1) [3ψ2(ξ1) + ξ1ψ

′
2(ξ1)]

}
, (P2(±1) = 1),

(3.2.57)

the polar radius. For ellipsoidal figures of equilibrium the eccentricity e = (a2
1 − a2

3)
1/2/a1 is generally

used to characterize the rotational distortion. The relevant deformations will be discussed more closely
in Sec. 3.4, in connection with the more general double star problem. The total mass of the configuration
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is

M = 2π

∫ π

0

dλ

∫ r1(λ)

0

�(r, λ) r2 sinλ dr = 2π

∫ 1

−1

dµ

∫ r1(µ)

0

�(r, µ) r2 dr

= 2π�0α
3

∫ 1

−1

dµ

∫ Ξ1(µ)

0

Θnξ2 dξ ≈ 2π�0α
3

∫ 1

−1

dµ

∫ Ξ1(µ)

0

[θn + βnθn−1(ψ0 + A2ψ2P2)]ξ2 dξ

≈ 2π�0α
3

{∫ 1

−1

dµ

∫ Ξ1(µ)

ξ1

[θn + βnθn−1(ψ0 + A2ψ2P2)]ξ2 dξ

+
∫ ξ1

0

dξ

∫ 1

−1

[θn + βnθn−1(ψ0 + A2ψ2P2)]ξ2 dµ

}

≈ 2π�0α
3

∫ 1

−1

ξ2
1 [Ξ1(µ) − ξ1]

{
θn(ξ1) + βnθn−1(ξ1)[ψ0(ξ1) + A2ψ2(ξ1) P2(µ)]

}
dµ

+4π�0α
3

∫ ξ1

0

[θn(ξ) + βnθn−1(ξ) ψ0(ξ)]ξ2 dξ ≈ 4π�0α
3

∫ ξ1

0

{−d(ξ2θ′)/dξ

+β[−d(ξ2ψ′
0)/dξ + ξ2]} dξ = 4π�0α

3{−ξ2
1θ′(ξ1) + β[−ξ2

1ψ′
0(ξ1) + ξ3

1/3]}
= −4π[(n + 1)K/4πG�

(n−3)/3n
0 ]3/2ξ2

1θ′(ξ1){1 + β[ψ′
0(ξ1) − ξ1/3]

/
θ′(ξ1)}, (0 < n < 5), (3.2.58)

where we have taken into account that Ξ1(µ) − ξ1 = O(β), θn(ξ1) = 0, and that the integral over
P2(µ) = (3µ2 − 1)/2 is zero. The mass of the nonrotating configuration from Eq. (2.6.18) is recovered if
β = 0. As compared to the nonrotating mass m, the total equilibrium mass M of the rotating configuration
is larger for the same central density �0 (cf. Table 3.2.1), because centrifugal force lowers gravity:

M = m{1 + β[ψ′
0(ξ1) − ξ1/3]/θ′(ξ1)}. (3.2.59)

The calculation of the total volume of the rotating polytrope proceeds in the same way as for the
mass:

V = 2π

∫ π

0

dλ

∫ r1(λ)

0

r2 sinλ dr = 2πα3

∫ 1

−1

dµ

∫ Ξ1(µ)

0

ξ2 dξ = 2πα3

[ ∫ 1

−1

dµ

∫ ξ1

0

ξ2 dξ

+
∫ 1

−1

dµ

∫ Ξ1(µ)

ξ1

ξ2 dξ

]
= 4πα3ξ3

1/3 + 2πα3ξ2
1

∫ 1

−1

dµ

∫ Ξ1(µ)

ξ1

dξ = 4πα3ξ3
1/3

+2πα3ξ2
1

∫ 1

−1

[Ξ1(µ) − ξ1] dµ = (4πξ3
1/3)

[
(n + 1)K/4πG�

(n−1)/n
0

]3/2[1 − 3βψ0(ξ1)/ξ1θ
′(ξ1)

]
,

(3.2.60)

where we have used Eq. (3.2.45).
The mean density of the rotationally distorted polytrope is simply

�m = M/V = −[3�0θ
′(ξ1)/ξ1]{1 + β[ψ′

0(ξ1) − ξ1/3]
/
θ′(ξ1)}

/
[1 − 3βψ0(ξ1)/ξ1θ

′(ξ1)]

≈ −[3�0θ
′(ξ1)/ξ1]{1 + β[3ψ0(ξ1) + ξ1ψ

′
0(ξ1) − ξ2

1/3]
/
ξ1θ

′(ξ1)}, (0 < n < 5), (3.2.61)

and turns into Eq. (2.6.27) for the undistorted sphere if β = 0. We now discuss the limiting cases n = 0
and 5.

(i) n = 0.n = 0.n = 0. At first we briefly recall some well known results concerning the equilibrium of uniformly
rotating, homogeneous configurations, equivalent to the polytrope of index n = 0 (e.g. Lyttleton 1953,
Jardetzky 1958, Chandrasekhar 1969, Tassoul 1978). These studies have been initiated primarily by
Maclaurin, Jacobi, Dedekind, Riemann, Poincaré, etc. In general, there exist even in this simplest case
several possible equilibrium figures, and it appears that not all possible equilibrium solutions of Eq.
(3.1.14) have been found. Likewise, polytropes with n �= 0 can also have in general several possible
solutions for each �Ω (Zharkov and Trubitsyn 1978).

If the equilibrium figure is constrained to be a uniformly rotating ellipsoid of constant density, with-
out internal mass motions, the relevant equilibrium figures are the biaxial Maclaurin ellipsoids and the
triaxial Jacobi ellipsoids with the three principal axes a1, a2, a3. The rotation parameter β = Ω2/2πG�
of Maclaurin spheroids (a1 = a2) is zero if e = (1 − a2

3/a2
1)

1/2 = 0, (a1 = a2 = a3; τ = Ekin/|W | = 0),
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and also if e = 1, [a1 = a2 = ∞; a3 = 0; τ = 0.5; cf. Eqs. (5.10.217)-(5.10.223)]. The maximum
value of the rotation parameter β ≈ 0.2247 occurs at about e = 0.9299. At e = 0.81267, (τ = 0.1375)
the triaxial Jacobi ellipsoids branch off from the Maclaurin sequence. At this bifurcation point there
occurs their maximum of β = 0.18711, (a1 = a2), which decreases to zero if a1 = ∞, a2 = a3 = 0, and
τ = 0.5. Congruent to the Jacobi ellipsoids are the triaxial Dedekind ellipsoids, which unlike the Jacobi
ellipsoids are stationary as seen in an inertial frame of reference, due to internal motions which prevail
in the Dedekind ellipsoids, maintaining their ellipsoidal form. These motions can be characterized by the
vorticity ∇×�v, where �v is the velocity vector of internal motions, as seen in a frame rotating with angular
velocity �Ω with respect to an inertial frame. Riemann generalized the results of Maclaurin, Jacobi, and
Dedekind, showing that ellipsoidal figures of equilibrium are possible only if: (i) Internal motions are
absent (�v = 0), leading to the Maclaurin-Jacobi ellipsoids. (ii) �Ω and ∇ × �v are both directed along
one of the three axes of the ellipsoid (in particular, if ∇ × �v = 0, there results again the sequence of
Maclaurin-Jacobi ellipsoids, and if �Ω = 0, triaxial Dedekind ellipsoids arise). (iii) �Ω and ∇× �v are both
located in one of the three principal planes of the ellipsoid.

A spherical n = 0 model with internal motions vanishing on the surface (hidden angular momentum)
has been envisaged by Pekeris (1980).

Lyapunov developed a method of successive approximations to find near-ellipsoidal figures of equilib-
rium. And finally, in 1895 Poincaré discovered the existence of his famous ”pear-shaped” (more exactly
ovoidal, egg-like) figures, that branch off from the Jacobi ellipsoids in a similar way as the Jacobi el-
lipsoids branch off from the Maclaurin sequence (see also Secs. 3.8.4, 5.8.2, 6.1.8). Unfortunately, the
pear-shaped configurations are secularly unstable (e.g. Jeans 1919, Lyttleton 1953), i.e. if a slight dis-
turbance is applied to these configurations, the presence of internal frictional forces will destroy them.
More recently, Hachisu and Eriguchi (1984a, cf. also Secs. 3.8.4, 3.8.7) have computed an impressing
number of new equilibrium sequences if n = 0. Their stability has been investigated in a series of papers
by Christodoulou et al. (1995a, b, see also Secs. 5.8.2, 6.1.8, 6.4.3).

The above mentioned investigations have been concerned mainly with homogeneous, ellipsoidal or
nearly ellipsoidal configurations, so they were mentioned in this place. Other methods for investigating the
equilibrium structure of rotating fluid masses (e.g. the methods of Clairaut-Laplace, Wavre, Lichtenstein
etc.) can easily be particularized to the case n = 0 (e.g. Jardetzky 1958, Tassoul 1978). Compressible
Maclaurin, Jacobi, and Riemann-S ellipsoids with n �= 0 have been constructed by Lai et al. (1993, cf.
Sec. 5.7.4).

If n = 0, the coefficients from Eq. (3.2.43) can be determined by replacing K�
1/n
0 with P0/�0 via Eq.

(3.2.1); also, we have to replace in Eq. (3.2.41) the otherwise vanishing value θn(ξ1) = 0 by θ0(ξ1) = 1,
taking into account that θ0(ξ) = (1 − ξ2/6)0 is discontinuous only if ξ = ξ1 = 61/2 :

c0 = −ξ1θ
′(ξ1); c10 = ξ2

1/2 − ψ0(ξ1) − ξ1ψ
′
0(ξ1) − ξ1ψ0(ξ1)/θ′(ξ1);

k0 = −(P0/�0)ξ2
1θ′(ξ1); k10 = (P0/�0)ξ2

1 [ξ1/3 − ψ′
0(ξ1) − ψ0(ξ1)/θ′(ξ1)];

k12 = (P0/�0)ξ5
1 [ξ1ψ

′
2(ξ1) − 2ψ2(ξ1) + ξ1ψ2(ξ1)/θ′(ξ1)]

/
6[ξ1ψ

′
2(ξ1) + 3ψ2(ξ1) + ξ1ψ2(ξ1)/θ′(ξ1)];

A2 = −5ξ2
1/6[3ψ2(ξ1) + ξ1ψ

′
2(ξ1) + ξ1ψ2(ξ1)/θ′(ξ1)], (n = 0). (3.2.62)

Using Eqs. (2.3.88) and (3.2.73), we obtain c0 = 2, c10 = 3, k0 = 2 × 61/2P0/�0, k10 = 3 ×
61/2P0/�0, k12 = −9 × 61/2P0/�0, A2 = −5/12 (Chandrasekhar 1933d). Hence, we can write out
explicitly Eqs. (3.2.44)-(3.2.47), by inserting for ψ0, ψ2 from Eq. (3.2.73):

Θ(ξ, µ) = 1 − ξ2/6 + (βξ2/6)[1 − 5P2(µ)/2]; Ξ1(µ) = 61/2{1 + β[1/2 − 5P2(µ)/4]};
Φ= (P0/�0){3 − ξ2/6 + β[3 − ξ2P2(µ)/4]}; Φe = (P0/�0){2 × 61/2/ξ + 61/2β[3/ξ − 9P2(µ)/ξ3]},
(n = 0). (3.2.63)

The constants Aj , k1j , (j > 2) are zero, as can be seen by inserting the analytical values from Eq.
(3.2.73) into the determinant Dj(ξ1) = ξ−j−2

1 {(j + 1)ψj(ξ1) + ξ1[ψj(ξ1)/θ′(ξ1) + ψ′
j(ξ1)]} �= 0 of the

homogeneous system defining Aj , k1j .
The equatorial and polar axis, and the oblateness are given by [cf. Eqs. (3.2.55)-(3.2.57)]:

a1 = 61/2α(1 + 9β/8); a3 = 61/2α(1 − 3β/4);

f = (a1 − a3)/a1 = 15β
/
8(1 + 9β/8) ≈ 15β/8, (n = 0). (3.2.64)
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This first order value for the oblateness may be compared to the exact value of the eccentricity
obtained for the homogeneous Maclaurin ellipsoids. For Maclaurin spheroids the exact value is (e.g.
Lyttleton 1953, Chandrasekhar 1969)

β = Ω2/2πG�0 = [(3 − 2e2)/e3](1 − e2)1/2 arcsin e − 3(1/e2 − 1), (3.2.65)

which for small eccentricities becomes β = 4e2/15 + O(e4), or e2 = 15β/4. And in the small eccentricity
case we also have in agreement with Eq. (3.2.64): e2 = (a2

1 − a2
3)/a2

1 ≈ 2(a1 − a3)/a1 = 2f = 15β/4
(Chandrasekhar 1933d).

Mass, volume, and mean density are [cf. Eqs. (3.2.58)-(3.2.61)]:

M = 2π�0α
3

∫ 1

−1

dµ

∫ Ξ1(µ)

0

Θnξ2 dξ = (2π�0α
3/3)

∫ 1

−1

Ξ3
1(µ) dµ

= 63/2(4π�0α
3/3)(1 + β/2)3 ≈ m(1 + 3β/2); V = (4πα3ξ3

1/3)(1 + β/2)3

≈ 8 × 61/2πα3(1 + 3β/2); �m = �0 = const, (n = 0). (3.2.66)

(ii) n = 5.n = 5.n = 5. The undistorted Schuster-Emden integral θ = (1 + ξ2/3)−1/2 has infinite extension and
finite mass [Eqs. (2.3.90), (2.6.194)], so if rotation is included, one has to be careful in performing the
limiting process. As the polytropic index approaches n = 5, the value of the Lane-Emden function θ is
very nearly zero long before ξ becomes equal to its boundary value ξ1 = ∞. The asymptotic solution of
Eqs. (3.2.10), (3.2.11) if n = 5 and ξ 	 1 is given by Eq. (3.2.89): ψ0 ≈ ξ2/6, ψj ≈ Bjξ

j . We now insert
Eq. (3.2.89) into Eq. (3.2.45), to obtain the equivalent of the boundary of a distorted polytrope if n = 5
and ξ1 	 1, (A2 = −1/6B2; θ ≈ 0; θ′ ≈ −31/2/ξ2) :

Ξ1(µ) = ξ1 + (βξ4
1/6 × 31/2)[1 − P2(µ)] = ξ1 + βξ4

1 sin2 λ/4 × 31/2, (n = 5; ξ1 	 1; β � 1).
(3.2.67)

Inserting ψj , (j > 2) from Eq. (3.2.89) into the determinant Dj(ξ1), (ξ1 	 1) of the homogeneous
system defining Aj and k1j , we observe at once that Dj(ξ1) �= 0, so Aj , k1j are zero if j > 2.

For sufficiently large ξ1 the equatorial radius becomes a1 = αΞ1(0) = αξ1(1 + βξ3
1/4 × 31/2), and

the polar radius is a3 = αΞ1(1) = αξ1, equal to the radius of the spherically symmetric polytrope. The
oblateness is f = (a1 − a3)/a1 ≈ βξ3

1/4 × 31/2, [cf. Eq. (3.8.160)]. The distorted Lane-Emden function
is by virtue of Eq. (3.2.44) equal to

Θ(ξ, µ) ≈ 31/2/ξ + (βξ2/6)[1 − P2(µ)] = 31/2/ξ + βξ2 sin2 λ/4, (n = 5; ξ 	 1). (3.2.68)

Caimmi (1980b, 1987) has presented a more complete discussion of this particular case, and has also
investigated rotationally distorted polytropes with polytropic indices differing slightly from n = 0, 1, 5
(Caimmi 1988).

It is instructive to compare the polytrope n = 5 with the so-called Roche model, if the whole mass M
of the rotating polytrope is assumed to be concentrated at the centre. Eq. (3.1.23) for the total potential
of the n = 5 polytrope becomes

Φtot = GM/R1(λ) + Ω2�2/2 = GM/αΞ1(λ) + Ω2α2Ξ2
1(λ) sin2 λ/2

≈ GM/αξ1 − (GM/α)(βξ2
1 sin2 λ/4 × 31/2) + βπG�0α

2ξ2
1 sin2 λ

= GM/r1 − (GM/r1)(βξ3
1 sin2 λ/4 × 31/2) + βπG�mα2ξ5

1 sin2 λ/3 × 31/2

= GM/r1 = const, (ξ1 	 1; n = 5), (3.2.69)

where r1 = αξ1 and R1(λ) = αΞ1(λ) are the distances from the centre of the undistorted and of the
distorted configuration, respectively. We have also used Eq. (2.6.27): �0 = �mξ3

1/33/2 = Mξ3
1/4×31/2πr3

1.
Thus, the surface determined by Eq. (3.2.69) is an equipotential, and the matter inside the undistorted
radius r1 = αξ1, (ξ1 	 1) is just equal to the whole mass M of the configuration. This shows the first
order equivalence between the point mass rotating Roche model (negligible mass of the “atmosphere”)
and the rotating polytrope n = 5.

This section is concluded with the study of the associated Emden-Chandrasekhar functions from
Eqs. (3.2.10), (3.2.11), (cf. Horedt 1990). So far, analytical and numerical solutions of associated
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Emden-Chandrasekhar functions are spread out over a dozen of papers, and are summarized below. The
function ψ1 has no practical significance and will be largely ignored.

Since exact analytical solutions of the Lane-Emden equation (2.3.87) are known so far only for the
polytropic indices n = 0, 1, 5, [Eqs. (2.3.88)-(2.3.90)], exact analytical expressions of ψj , (j = 0, 1, 2, 3, ...)
can be provided only for these indices.

(i) n = 0.n = 0.n = 0. Eqs. (3.2.10) and (3.2.11) read

ψ′′
0 + 2ψ′

0/ξ − 1 = 0; ψ′′
j + 2ψ′

j/ξ − j(j + 1)ψj/ξ2 = 0, (n = 0; j = 1, 2, 3, ...), (3.2.70)

with the solutions (Chandrasekhar 1933d, Caimmi 1980b)

ψ0 = ξ2/6 + B0/ξ + C0, (B0, C0 = const), (3.2.71)

ψj = Bjξ
j + Cjξ

−j−1, (Bj , Cj = const; j = 1, 2, 3, ...). (3.2.72)

The initial conditions from Eq. (3.2.6) ψj(0), ψ′
j(0) = 0 yield B0, B1, Cj = 0, leaving Bj , (j =

2, 3, 4, ...) undetermined. The constants Bj can be normalized to 1 [cf. Eqs. (3.2.85)-(3.2.88)], and in
this case the Emden-Chandrasekhar functions of the homogeneous polytrope read

ψ0 = ξ2/6; ψj = ξj , (n = 0; j = 2, 3, 4, ...). (3.2.73)

(ii) n = 1.n = 1.n = 1. This case is somewhat more complicated, and solutions have been published by Chan-
drasekhar (1933a) for ψ0, by Steensholt (1935), and Chandrasekhar and Lebovitz (1962d) for ψ2, and by
Kopal (1939), Papoyan et al. (1967), and Caimmi (1980b) for j = 0, 1, 2, 3, ... Chandrasekhar (1933a)
makes the transformation ψ0 = 1−u, so that Eq. (3.2.10) becomes identical to the Lane-Emden equation
(2.3.6) if N = 3, with the well known solution (2.3.89): u = sin ξ/ξ. Thus

ψ0 = 1 − sin ξ/ξ = 1 − (π/2ξ)1/2J1/2(ξ), (n = 1), (3.2.74)

satisfies the initial conditions ψ0(0), ψ′
0(0) = 0. To obtain the solution for ψj , (j = 1, 2, 3, ...), we imple-

ment the theory outlined in Eqs. (2.3.7)-(2.3.16), and transform Eq. (3.2.11) into the Bessel equation

ξ2u′′
j + ξu′

j + [ξ2 − (j + 1/2)2]uj = 0, (n = 1), (3.2.75)

where uj = ξ1/2ψj . The general solution is

uj = BjJj+1/2(ξ) + CjJ−j−1/2(ξ) or ψj = ξ−1/2[BjJj+1/2(ξ) + CjJ−j−1/2(ξ)],
(j + 1/2 �= 0, 1, 2, 3, ...; Bj , Cj = const). (3.2.76)

The expansion of the Bessel function of order ν near ξ ≈ 0 is given by Eq. (2.3.12), and since
ψj(0) = 0, we get Cj = 0. Eq. (3.2.76) writes near the origin as

ψj = Bjξ
−1/2Jj+1/2(ξ) ≈ Bjξ

j/2j+1/2Γ(j + 3/2) = Bj(2/π)1/2ξj/(2j + 1)!!, (ξ ≈ 0). (3.2.77)

Near the origin we have ψj ≈ ξj , and the initial conditions ψj(0), ψ′
j(0) = 0 yield B1 = 0 and

Bj = (π/2)1/2(2j + 1)!!, (j = 2, 3, 4, ...). Eq. (3.2.76) takes the form (cf. Eqs. (2.3.22), (2.3.23), Kopal
1939, Papoyan et al. 1967)

ψj = (π/2)1/2(2j + 1)!! ξ−1/2Jj+1/2(ξ) = (−1)j(2j + 1)!! ξj dj(sin ξ/ξ)
/
(ξ dξ)j ,

(n = 1; j = 2, 3, 4, ...). (3.2.78)

Thus, if n = 1, the Emden-Chandrasekhar functions can be expressed under the form of trigonometric
polynomials.

(iii) n = 5.n = 5.n = 5. The total mass of the spherical polytrope is finite, although it extends with vanishing
density up to infinity. Solutions of Eqs. (3.2.10), (3.2.11) can be provided by using the transformation
of Seidov and Kuzakhmedov (1978) for the Schuster-Emden integral:

θ(ξ) = (1 + ξ2/3)−1/2 = cos α; ξ = 31/2 tanα. (3.2.79)
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Eqs. (3.2.10), (3.2.11) become

d2ψ0/dα2 + (2/ tanα) dψ0/dα + 15ψ0 − 3/ cos4 α = 0, (3.2.80)

d2ψj/dα2 + (2/ tanα) dψj/dα + [15 − j(j + 1) sin2 α cos2 α]ψj = 0. (3.2.81)

These equations can only be solved if a particular integral is known. With some skill we find for the
homogeneous part of Eq. (3.2.80) the particular integrals sin 4α/ sinα ∝ cos 3α + cos α and cos 4α/ sinα
(cf. Eqs. (2.4.157)-(2.4.163), Seidov and Kuzakhmedov 1978). The solution of the nonhomogeneous
equation (3.2.80) can now be found by standard methods:

ψ0 = (3 sin 4α/4 sin α)
∫

(sinα cos 4α/ cos4 α) dα − (3 cos 4α/4 sinα)
∫

(sinα sin 4α/ cos4 α) dα

+E0 sin 4α/ sinα + F0 cos 4α/ sinα = −60 cos2 α + 20 + 1/2 cos2 α

−(15 cos 4α/2 sinα) ln[tan(π/4 + α/2)] + E0 sin 4α/ sinα + F0 cos 4α/ sinα

= −60 cos2 α + 20 + 1/2 cos2 α − (15 cos 4α/2 sin α) ln[(1 + sinα)/ cos α] + (47/4) sin 4α/ sinα,

(n = 5; α = arctan(ξ/31/2); E0 = 47/4; F0 = 0). (3.2.82)

If ξ ≈ 0, we have ξ ≈ 31/2α, and Eq. (3.2.82) shows that ψ0 ≈ α2/2 ≈ ξ2/6. If ξ → ∞, there is
31/2/ξ ≈ π/2 − α, (α ≈ π/2), and ψ0 ≈ 1/2 cos2 α ≈ 1

/
2 sin2(31/2/ξ) ≈ ξ2/6, [cf. Eq. (3.2.89)].

To seek a particular integral of Eq. (3.2.81), we adopt the attempt ψj ∝ sina α cosb α, and find that
solutions of this form exist merely if j = 1, (a = 1; b = 2) and j = 2, (a = −3; b = −2). Since ψ1 lacks
practical importance, we focus on ψ2, and get with the standard method for the solution of a second
order homogeneous equation:

ψ2 = [E2(3α/8 − sin 4α/8 + sin 8α/64) + F2]
/

sin3 α cos2 α = E2(3α/8 sin3 α cos2 α

−3/8 sin2 α cos α + 3/4 cos α − cos α + 2 sin2 α cos α) + F2/ sin3 α cos2 α = (15/32)

×(3α − sin 4α + sin 8α/8)
/

sinα sin2 2α, (n = 5; α = arctan(ξ/31/2); E2 = 15/16; F2 = 0).
(3.2.83)

This equation is equivalent to Eq. (11d) of Caimmi (1987). The constant F2 must be zero, and E2

has been determined by equating the approximation near the origin ψ2 ≈ 16E2α
2/5 of Eq. (3.2.83) to

the approximation ψ2 ≈ ξ2 ≈ 3 tan2 α ≈ 3α2, (α, ξ ≈ 0) from Eq. (3.2.86).
Series expansions of ψ0 and ψ2 near the first finite zero ξ1 of θ have been derived by Linnell (1975a,

c), and for ψ2 at an arbitrary point by Caimmi (1983). The same author (Caimmi 1988) has calculated
approximate forms of ψ2 if n differs slightly from 0, 1, and 5. Simple approximate forms of ψj have been
published by Chandrasekhar for general n if ξ ≈ 0 (Chandrasekhar 1933a, Eqs. (52), (53) for ψ0, ψ2;
Chandrasekhar 1933b, Eqs. (42), (43) for ψ3, ψ4). While the first coefficient of the expansion of ψ0 can
be determined exactly ψ0 ≈ ξ2/6, (ξ ≈ 0), the homogeneous equations (3.2.11) together with the initial
conditions ψj(0), ψ′

j(0) = 0, (j = 2, 3, 4, ...) provide only an expansion including an arbitrary constant;
it is a simple exercise to show that [see Eqs. (2.4.10)-(2.4.24)]:

ψj ≈ Bjξ
j , (ξ ≈ 0; Bj = const; j = 2, 3, 4, ...). (3.2.84)

Following Chandrasekhar (1933a, b) we set the arbitrary constants Bj equal to 1, so that ψj ≈ ξj ,
which has been used to fix the integration constants in previous equations. If ξ ≈ 0, we get:

ψ0 ≈ ξ2/6 − nξ4/120 + n(13n − 10)ξ6/42 × 360 − n(90n2 − 157n + 70)ξ8/42 × 72 × 360, (3.2.85)

ψ2 ≈ ξ2 − nξ4/14 + n(10n − 7)ξ6/36 × 42 − n(308n2 − 503n + 210)ξ8/36 × 42 × 330, (3.2.86)

ψ3 ≈ ξ3 − nξ5/18 + n(4n − 3)ξ7/18 × 44 − n(434n2 − 749n + 330)ξ9/18 × 44 × 1170, (3.2.87)

ψ4 ≈ ξ4 − nξ6/22 + n(14n − 11)ξ8/52 × 66 − n(1744n2 − 3129n + 1430)ξ10/52 × 66 × 1350.
(3.2.88)
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Table 3.2.1 Values of associated Emden-Chandrasekhar functions ψ0, ψ2, ψ3, ψ4, and of their derivatives at
the boundary ξ1 of undistorted spherical polytropes for polytropic indices n between 0 and 5. The surface value
of the derivative of the Lane-Emden function θ′

1 is also shown in the third column (Horedt 1990). aE + b means
a × 10b.

n ξ1 θ′
1 ψ0 ψ′

0 ψ2

0.0 2.449490E+0 −8.164966E−1 1.000000E+0 8.164966E−1 6.000000E+0
0.5 2.752698E+0 −4.999971E−1 9.096316E−1 −1.085581E−2 4.891598E+0
1.0 3.141593E+0 −3.183099E−1 1.000000E+0 3.183099E−1 4.559453E+0
1.5 3.653754E+0 −2.033013E−1 1.294395E+0 6.407239E−1 4.787407E+0
2.0 4.352875E+0 −1.272487E−1 1.915282E+0 9.969734E−1 5.643151E+0
2.5 5.355275E+0 −7.626491E−2 3.166462E+0 1.435192E+0 7.479146E+0
3.0 6.896849E+0 −4.242976E−2 5.837811E+0 2.039084E+0 1.127721E+1
3.5 9.535805E+0 −2.079098E−2 1.239378E+1 2.997633E+0 2.006616E+1
4.0 1.497155E+1 −8.018079E−3 3.351425E+1 4.878946E+0 4.660961E+1
4.5 3.183646E+1 −1.714549E−3 1.628123E+2 1.056119E+1 1.992369E+2
5.0 ∞ 0 ∞ ∞ ∞

n ψ′
2 ψ3 ψ′

3 ψ4 ψ′
4

0.0 4.898979E+0 1.469694E+1 1.800000E+1 3.600000E+1 5.878775E+1
0.5 −6.505232E−1 1.475847E+1 5.232472E+0 4.306763E+1 3.440906E+1
1.0 4.206911E−1 1.737363E+1 9.795382E+0 6.115690E+1 5.902842E+1
1.5 1.161345E+0 2.336790E+1 1.490714E+1 1.001094E+2 9.678811E+1
2.0 1.757774E+0 3.557219E+1 2.185527E+1 1.877232E+2 1.637728E+2
2.5 2.338160E+0 6.161833E+1 3.290931E+1 4.094269E+2 2.998889E+2
3.0 3.040719E+0 1.248076E+2 5.335848E+1 1.085133E+3 6.253689E+2
3.5 4.106089E+0 3.160249E+2 9.891934E+1 3.843113E+3 1.609422E+3
4.0 6.189315E+0 1.176785E+3 2.355588E+2 2.268051E+4 6.057844E+3
4.5 1.250775E+1 1.088652E+4 1.025754E+3 4.501658E+5 5.655844E+4
5.0 ∞ ∞ ∞ ∞ ∞

A simple asymptotic expansion of ψj if n = 5 has been provided by Chandrasekhar (1933d), by
ignoring in Eqs. (3.2.10), (3.2.11) the term 5θ4 ≈ 45/ξ4 if ξ → ∞. The asymptotic form of Eqs. (3.2.10),
(3.2.11) becomes in this case equal to Eq. (3.2.70), with the solutions [cf. Eqs. (3.2.71), (3.2.72)]:

ψ0 ≈ ξ2/6; ψ2 ≈ B2ξ
2 = 15πξ2/256; ψj ≈ Bjξ

j , (n = 5; ξ → ∞; Bj = const; j = 1, 2, 3, ...).
(3.2.89)

Since the value of ψj is already fixed by the choice ψj ≈ ξj near the origin, the Bj ’s are not arbitrary,
and depend on the whole march of ψj . Using the exact solution of ψ2 from Eq. (3.2.83), we find at once
that B2 = 15π/256 = 0.18408, (α ≈ π/2; cos α ≈ 31/3/ξ if ξ → ∞). If j = 3, 4, we have found from
numerical integrations, extended up to ξ = 1000, that B3 ≈ 0.32214 and B4 ≈ 0.42280, (n = 5).

Values of the Emden-Chandrasekhar functions have been published by Chandrasekhar (1933a, b),
and Chandrasekhar and Lebovitz (1962d) for polytropic indices n = 0, 1, 1.5, 2, 3, 3.5, 4, by Aikawa (1968,
1971, excepting for ψ3, ψ

′
3) if n = 1.5, 2, 2.5, 3, 3.5, by Jabbar (1984) for ψ0, (0 ≤ n ≤ 5 with a step size of

0.1), by Caimmi (1985) for ψ2, ψ
′
2, (0 ≤ n ≤ 5 with a step size of 0.25), and by Horedt (1990, see Table

3.2.1).
Below, we provide a simple first order expansion of ψj near the boundary, showing that if n ≈ 0, (n >

0), no exact values of ψ′
j(ξ1) can be obtained by numerical integration. The Lane-Emden function can

be expanded near the finite boundary as

θ(ξ) ≈ θ(ξ1) + (ξ − ξ1) θ′(ξ1) = (ξ1 − ξ)[−θ′(ξ1)], (θ′1 = θ′(ξ1) < 0; ξ ≈ ξ1; −1 < n < 5).
(3.2.90)

Eqs. (3.2.10), (3.2.11) become readily integrable if we approximate ψj(ξ), (j = 0, 1, 2, 3, ...) by its
boundary value ψj1 = ψj(ξ1) :

ψ′′
0 + 2ψ′

0/ξ + [n(−θ′1)
n−1ψ01(ξ1 − ξ)n−1 − 1] = 0, (ξ ≈ ξ1; −1 < n < 5), (3.2.91)
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ψ′′
j + 2ψ′

j/ξ + [n(−θ′1)
n−1(ξ1 − ξ)n−1 − j(j + 1)/ξ2]ψj1 = 0,

(ξ ≈ ξ1; −1 < n < 5; j = 1, 2, 3, ...). (3.2.92)

The solutions of these equations are elementary:

ψ′
0 = (−θ′1)

n−1ψ01(ξ1 − ξ)n[1 + 2(ξ1 − ξ)/(n + 1)ξ + 2(ξ1 − ξ)2/(n + 1)(n + 2)ξ2] + ξ/3 + B0/ξ2,
(3.2.93)

ψ0 = −[(−θ′1)
n−1ψ01(ξ1 − ξ)n+1/(n + 1)][1 + 2(ξ1 − ξ)/(n + 2)ξ] + ξ2/6 − B0/ξ + C0,

(B0, C0 = const), (3.2.94)

ψ′
j = (−θ′1)

n−1ψj1(ξ1 − ξ)n[1 + 2(ξ1 − ξ)/(n + 1)ξ + 2(ξ1 − ξ)2/(n + 1)(n + 2)ξ2]

+j(j + 1)ψj1/ξ + Bj/ξ2, (3.2.95)

ψj = −[(−θ′1)
n−1ψj1(ξ1 − ξ)n+1/(n + 1)][1 + 2(ξ1 − ξ)/(n + 2)ξ]

+j(j + 1)ψj1 ln ξ − Bj/ξ + Cj , (Bj , Cj = const). (3.2.96)

It is obvious at once that the derivatives have a singularity at the boundary if −1 < n < 0, but since
Chandrasekhar’s (1933a-d) theory is only applicable if 0 ≤ n ≤ 5, this result is merely of philosophical
interest.

If 0 < n < 5, the integration constants are B0 = ξ2
1(ψ′

01 − ξ1/3), Bj = ξ2
1ψ′

j1 − j(j + 1)ξ1ψj1, and if
further n ≈ 0, (n > 0), Eqs. (3.2.93) and (3.2.95) write approximately

ψ′
j ≈ ψ′

j1 + (−θ′1)
n−1ψj1(ξ1 − ξ)n, (n ≈ 0; n > 0; j = 0, 1, 2, 3, ...). (3.2.97)

These equations show that it has not much sense to calculate numerically the boundary value ψ′
j1

for polytropic indices 0 < n � 0.1 – as done by Caimmi (1985) – since even for n = 0.1 we obtain if
ξ1 − ξ = 10−12 : ψ′

0 − ψ′
01 ≈ 0.080, ψ′

2 − ψ′
21 ≈ 0.47, ψ′

3 − ψ′
31 ≈ 1.2, ψ′

4 − ψ′
41 ≈ 3.1 (Horedt 1990).

Caimmi (1980b, 1983, 1985, 1987) has developed a variant of Chandrasekhar’s (1933a, d) perturbation
theory, by introducing instead of Eqs. (3.2.4), (3.2.9) the expansion

Θ(ξ, µ, β) = θβ(ξ, β) +
∞∑

j=1

A2j(β) ψ2j(ξ) P2j(µ), [θβ(ξ, 0) = θ(ξ)], (3.2.98)

where θβ(ξ, β) differs from the usual Lane-Emden function θ(ξ) by terms of order β.
Bhatnagar (1940) has applied Chandrasekhar’s (1933a) theory to differentially rotating polytropes.
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3.3 Chandrasekhar’s First Order Theory of Tidally Distorted
Polytropes

This theory is based on Eqs. (3.1.101) and (3.1.102). Because the problem is symmetrical with respect
to the line joining the two masses M and M ′, it is advisable to place in this special case the mass M ′ on
the Mx3-axis, rather than on the Mx1-axis as in Fig. 3.1.1. The tide-generating external potential of
the mass M ′ is approximated by its point mass value Φ′

e(�r′) ≈ GM ′/r′. A second order approximation
would be for instance MacCullagh’s formula (3.1.65): Φ′

e(�r′) ≈ GM ′/r′ + G(A′ + B′ + C ′ − 3I ′�r′)/2r′3.
To the order of magnitude, we have

|C ′ − I ′�r′ | ≈ |B′ − I ′�r′ | ≈ |A′ − I ′�r′ | ≈
∫

M ′
|x′′

2
2 + x′′

3
2 − (x′′

1
2 + x′′

2
2 + x′′

3
2) sin2 γ′′| dM ′′

=
∫

M ′
|r′′2 cos2 γ′′ − x′′

1
2| dM ′′ ≈ O[|r′1

2 − a′
1
2|M ′] ≈ O[|r′1 − a′

1|r′1M ′], (3.3.1)

where a′
1 is a principal axis, and r′1 an average radius of M ′. We have denoted by γ′′ the angle between

the radius vector �r′ of an exterior point to M ′ and the radius vector �r′′ = �r′′(x′′
1 , x′′

2 , x′′
3) of an interior

point (x′′
1 , x′′

2 , x′′
3) of M ′, both measured from the mass centre of M ′. Eq. (3.1.63) shows that J2 and C22

for M ′ are of order O[|A′− I ′�r′ |/M ′r′1
2] ≈ O[|r′1 − a′

1|/r′1], (r′1 ≈ a′
1 ≈ a′

2 ≈ a′
3). Therefore, if we disregard

rotation in Eq. (3.1.98), we obtain the magnitude of tidal distortion of M ′ due to M, by interchanging
M with M ′ :

|a′
1 − a′

2|, |a′
1 − a′

3| ≈ O(r′1
4
/D3), (O(M/M ′) ≈ 1). (3.3.2)

Thus, the second order term in MacCullagh’s formula (3.1.65) is of order (Chandrasekhar 1933b)

G|A′ + B′ + C ′ − 3I ′�r′ |/2r′3 ≈ G|A′ + B′ + C ′ − 3I ′�r′ |/2D3 ≈ O
[
G|a′

1 − r′1|r′1M ′/D3
]

≈ O
[
G|a′

1 − a′
2|r′1M ′/D3

]
≈ O[GM ′r′1

5
/D6], (3.3.3)

since r′ ≈ D if r′ 	 r′1. Hence, if we neglect quantities of order O[(GM ′/r′1)(r
′
1/D)6], the tide-generating

potential of M ′ can be approximated by its point mass value Φ′
e(�r′) = GM ′/r′. The external potential

Φ′
e of M ′ takes in the neighborhood of the primary M the form [cf. Eq. (3.1.42)]

Φ′
e(�r′) = GM ′/r′ = (GM ′/D)[1 − 2(r/D) cos λ + (r/D)2]−1/2 = (GM ′/D)

∞∑
j=0

(r/D)jPj(cos λ)

= (GM ′/D)
∞∑

j=1

(r/D)jPj(cos λ) + const ≈ GM ′r cos λ/D2 + (GM ′/D)
4∑

j=2

(r/D)jPj(µ) + const,

(µ = cos λ = x3/D), (3.3.4)

where λ is the zenith angle between �r and the axis Mx3, the mass M ′ being located in this section on the
axis Mx3 of Fig. 3.1.1. Consistently with our scheme of approximation we have neglected quantities of
order (GM ′/r1)(r1/D)6 and higher, where r1 denotes an average radius of M. As outlined subsequently
to Eq. (3.1.101), the term GM ′r cos λ/D2 = GM ′x3/D2 in the last equation (3.3.4) yields a uniform
gravitational force ∂(GM ′x3/D2)

/
∂x3 = GM ′/D2, acting on the primary M as a whole. This term is

eliminated by considering the motion in a new frame, moving with acceleration GM ′/D2 (Jeans 1919),
the mass M remaining always at the origin of the new frame; the adoption of this accelerated frame
might not be quite rigorous, because D changes. In this new frame we are left with an external tidal
potential of M ′ of the form

Φ′
e(�r′) ≈ (GM ′/D)

4∑
j=2

(r/D)jPj(µ) + const. (3.3.5)
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The constant can be taken equal to zero. The equations of the problem are given by the hydrostatic
equation (2.1.3) and by Poisson’s equation (2.1.4):

∇P = � ∇(Φ + Φ′
e); ∇2Φ = −4πG�; ∇2Φ′

e = 0. (3.3.6)

These equations can be combined into the fundamental equation of the tidal problem:

∇[(1/�) ∇P ] = ∇2(Φ + Φ′
e) = −4πG�. (3.3.7)

We turn with Eq. (3.2.1) to dimensionless variables, and obtain in spherical coordinates an equation
similar to Eq. (3.2.2) if β = 0 :

∂(ξ2 ∂Θ/∂ξ)
/
∂ξ + ∂[(1 − µ2) ∂Θ/∂µ]

/
∂µ = −ξ2Θn. (3.3.8)

The special cases n = 0 and 5 are considered after presenting the subsequent solution for 0 < n < 5.
Similarly to Eq. (3.2.4) the solution is assumed under the form

Θ(ξ, µ) = θ(ξ) + Ψ(ξ, µ), (|Ψ| � θ). (3.3.9)

Substituting Eq. (3.3.9) into Eq. (3.3.8), and neglecting quantities in Ψ2 and higher orders, we get
the differential equation defining Ψ :

∂(ξ2 ∂Ψ/∂ξ)
/
∂ξ + ∂[(1 − µ2) ∂Ψ/∂µ]

/
∂µ = −nξ2θn−1Ψ. (3.3.10)

Analogously to Eq. (3.2.9) we assume for Ψ the following form:

Ψ =
∞∑

j=0

Ajψj(ξ) Pj(µ), (Aj = const). (3.3.11)

Substitution of Eq. (3.3.11) into Eq. (3.3.10) yields for ψj the differential equation

d(ξ2 dψj/dξ)
/
dξ = [j(j + 1) − nξ2θn−1]ψj , (j = 0, 1, 2, 3, ...; ψj(0), ψ′

j(0) = 0). (3.3.12)

The internal potential of M is written analogously to Eq. (3.2.13):

Φ = U0(ξ) +
∞∑

j=0

Vj(ξ) Pj(µ). (3.3.13)

Poisson’s equation (3.1.18) reads in the (ξ, µ)-variables as

∂(ξ2 ∂Φ/∂ξ)
/
∂ξ + ∂[(1 − µ2) ∂Φ/∂µ]

/
∂µ = −(n + 1)K�

1/n
0 ξ2

(
θn + nθn−1

∞∑
j=0

AjψjPj

)
. (3.3.14)

Due to the slight inconsistency in Chandrasekhar’s (1933a) original presentation, mentioned subse-
quently to Eq. (3.2.38), we present the calculations in some detail. We substitute Eq. (3.3.13) into Eq.
(3.3.14), and obtain analogously to Eqs. (3.2.14)-(3.2.16)

d(ξ2 dU0/dξ)
/
dξ = −(n + 1)K�

1/n
0 ξ2θn, (3.3.15)

d(ξ2 dVj/dξ)
/
dξ − j(j + 1)Vj = −n(n + 1)K�

1/n
0 Ajξ

2θn−1ψj , (j = 0, 1, 2, 3, ...), (3.3.16)

with the solutions [cf. Eqs. (3.2.17)-(3.2.28)]:

U0 = (n + 1)K�
1/n
0 (θ + c0); Vj = (n + 1)K�

1/n
0 (Ajψj + Bjξ

j). (3.3.17)

The internal potential of M becomes

Φ = (n + 1)K�
1/n
0

{
θ(ξ) + c0 +

∞∑
j=0

[Ajψj(ξ) + Bjξ
j ] Pj(µ)

}
. (3.3.18)
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The radial component of the hydrostatic equilibrium equation (3.3.6) writes

∂P/∂ξ = �(∂Φ/∂ξ + ∂Φ′
e/∂ξ) or (n + 1)K�

1/n
0 ∂Θ/∂ξ = ∂Φ/∂ξ + ∂Φ′

e/∂ξ. (3.3.19)

The external potential (3.3.5) of M ′ reads in terms of ξ as

Φ′
e = (GM ′/D)

4∑
j=2

(α/D)jξjPj(µ). (3.3.20)

We derive Eqs. (3.3.18), (3.3.20) with respect to ξ, and insert into Eq. (3.3.19). Equating the
coefficients of various Legendre polynomials, we find

B0 = c10 = const; Bj = −[GM ′/D(n + 1)K�
1/n
0 ](α/D)j if j = 2, 3, 4; Bj = 0 if j �= 0, 2, 3, 4.

(3.3.21)

Hence, our expression for the internal potential of M is

Φ = (n + 1)K�
1/n
0

{
θ(ξ) + c0 +

∞∑
j=0

Ajψj(ξ) Pj(µ) + c10P0(µ)

−[GM ′/D(n + 1)K�
1/n
0 ]

4∑
j=2

(α/D)jξjPj(µ)
}

. (3.3.22)

The equation of the surface is [cf. Eq. (3.2.34)]

Ξ1 = Ξ1(µ) = ξ1 +
∞∑

j=0

qjPj(µ), (Ξ1 ≈ ξ1). (3.3.23)

On the surface we have [cf. Eq. (3.2.36)]

θ(Ξ1) ≈ θ(ξ1) + θ′(ξ1)
∞∑

j=0

qjPj(µ); ψk(Ξ1) ≈ ψk(ξ1) + ψ′
k(ξ1)

∞∑
j=0

qjPj(µ);

θ′(Ξ1) ≈ θ′(ξ1) + θ′′(ξ1)
∞∑

j=0

qjPj(µ), (3.3.24)

and

Θ(Ξ1, µ) = θ(Ξ1) +
∞∑

j=0

Ajψj(Ξ1) Pj(µ) ≈ θ(ξ1) + θ′(ξ1)
∞∑

j=0

qjPj(µ) +
∞∑

j=0

Ajψj(ξ1) Pj(µ) = 0,

(3.3.25)

to the order of precision we are working. The coefficients of Pj(µ) must be zero, and therefore

qj = −Ajψj(ξ1)/θ′(ξ1). (3.3.26)

Φ from Eq. (3.3.22) and its derivative ∂Φ/∂ξ must be continuous with the external potential of M

Φe = k0/ξ +
∞∑

j=0

k1jξ
−j−1Pj(µ), (3.3.27)

on the surface Ξ1(µ), [cf. Eq. (3.2.33)]. On the boundary we have Θ = 0, and we get by emphasizing the
first order contribution c10 to the distorted potential:

Φ(Ξ1, µ) = (n + 1)K�
1/n
0

{
c0 + c10P0(µ) − [GM ′/D(n + 1)K�

1/n
0 ]

4∑
j=2

(α/D)jξj
1Pj(µ)

}
, (3.3.28)
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Φe(Ξ1, µ) = k0/ξ1 +
∞∑

j=0

(−k0qj/ξ2
1 + k1jξ

−j−1
1 ) Pj(µ), (3.3.29)

(∂Φ/∂ξ)ξ=Ξ1 = (n + 1)K�
1/n
0

{
θ′(ξ1) + [−2θ′(ξ1)/ξ1 − θn(ξ1)]

∞∑
j=0

qjPj(µ) +
∞∑

j=0

Ajψ
′
j(ξ1) Pj(µ)

−[GM ′/D(n + 1)K�
1/n
0 ]

4∑
j=2

j(α/D)jξj−1
1 Pj(µ)

}
, (3.3.30)

(∂Φe/∂ξ)ξ=Ξ1 = −k0/ξ2
1 +

∞∑
j=0

[2k0qj/ξ3
1 − (j + 1)k1jξ

−j−2
1 ] Pj(µ). (3.3.31)

If 0 < n < 5, we put θn(ξ1) = 0 in Eq. (3.3.30), and equate the corresponding coefficients from Eqs.
(3.3.28), (3.3.30) on the one side, to those from Eqs. (3.3.29), (3.3.31) on the other side:

c0 = −ξ1θ
′(ξ1); c10 = −A0[ψ0(ξ1) + ξ1ψ

′
0(ξ1)]; k0 = −(n + 1)K�

1/n
0 ξ2

1θ′(ξ1);

k10 = −(n + 1)K�
1/n
0 A0ξ

2
1ψ′

0(ξ1); k1j = (GM ′/D)(α/D)jξ2j+1
1 [jψj(ξ1) − ξ1ψ

′
j(ξ1)]/

[(j + 1)ψj(ξ1) + ξ1ψ
′
j(ξ1)] if j = 2, 3, 4; Aj = [GM ′/D(n + 1)K�

1/n
0 ](α/D)j(2j + 1)ξj

1/
[(j + 1)ψj(ξ1) + ξ1ψ

′
j(ξ1)] if j = 2, 3, 4; k1j , Aj , qj = 0 if j �= 0, 2, 3, 4, (0 < n < 5). (3.3.32)

The vanishing constants Aj , k1j , (j > 4) are related by exactly the same equations as in the rotational
problem, and the proof given subsequently to Eq. (3.2.43) subsists too.

The constant A0 is left so far undetermined by the conditions of the problem, and Θ would be of the
form Θ = θ + A0ψ0 + A2ψ2 + A3ψ3 + A4ψ4. If the distance D between the mass M and M ′ increases
indefinitely, Eq. (3.3.32) shows that A2, A3, A4 → 0 if D → ∞; also Θ → θ, since the tidal effect of M ′

vanishes if D → ∞. Thus, we are left with A0 = 0, (c10, k10 = 0). In the tidal problem there is no purely
radial function ψ0(ξ) as in the rotational problem; ψ0(ξ) refers to an expansion of the configuration as a
whole, which is not possible in the tidal problem (Chandrasekhar 1933b).

If 0 < n < 5, we obtain analogously to Eqs. (3.2.44)-(3.2.47), by inserting Eq. (3.3.32) into Eqs.
(3.3.9), (3.3.22), (3.3.23), (3.3.27):

Θ(ξ, µ)= θ(ξ)+ [GM ′/D(n + 1)K�
1/n
0 ]

4∑
j=2

(α/D)j(2j + 1)ξj
1ψj(ξ)Pj(µ)

/
[(j + 1)ψj(ξ1)+ ξ1ψ

′
j(ξ1)],

(3.3.33)

Ξ1(µ) = ξ1 −
4∑

j=2

Ajψj(ξ1) Pj(µ)/θ′(ξ1), (3.3.34)

Φ = (n + 1)K�
1/n
0 [θ(ξ) − ξ1θ

′(ξ1)] + (GM ′/D)
4∑

j=2

(α/D)jPj(µ)
{
(2j + 1)ξj

1ψj(ξ)

/
[(j + 1)ψj(ξ1) + ξ1ψ

′
j(ξ1)] − ξj

}
, (3.3.35)

Φe = k0/ξ +
4∑

j=2

k1jξ
−j−1Pj(µ). (3.3.36)
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The total mass of the configuration is analogous to Eq. (3.2.58):

M = 2π

∫ π

0

dλ

∫ r1(λ)

0

�(r, λ) r2 sinλ dr = 2π

∫ 1

−1

dµ

∫ r1(µ)

0

�(r, µ) r2 dr

= 2π�0α
3

∫ 1

−1

dµ

∫ Ξ1(µ)

0

Θnξ2 dξ ≈ 2π�0α
3

∫ 1

−1

dµ

∫ Ξ1(µ)

0

[
θn(ξ)

+nθn−1(ξ)
4∑

j=2

Ajψj(ξ) Pj(µ)
]
ξ2 dξ ≈ 2π�0α

3

{∫ 1

−1

dµ

∫ Ξ1(µ)

ξ1

[
θn + nθn−1

4∑
j=2

AjψjPj

]
ξ2 dξ

+
∫ ξ1

0

dξ

∫ 1

−1

[
θn + nθn−1

4∑
j=2

AjψjPj

]
ξ2 dµ

}

≈ 2π�0α
3

∫ 1

−1

ξ2
1 [Ξ1(µ) − ξ1]

[
θn(ξ1) + nθn−1(ξ1)

4∑
j=2

Ajψj(ξ1) Pj(µ)
]

dµ

+4π�0α
3

∫ ξ1

0

θnξ2 dξ = 4π�0α
3ξ2

1 [−θ′(ξ1)] = m,
(
0 < n < 5; θn(ξ1) = 0;

∫ 1

−1

Pj(µ) dµ = 0
)
.

(3.3.37)

Similarly, volume and mean density obey the same relations as for the undistorted polytrope:

V = 4πα3ξ3
1/3; �m = M/V = 3�0[−θ′(ξ1)]/ξ1, (3.3.38)

the “ellipticity-terms” vanishing again up to the order of accuracy we are concerned.
Hence, we find the following theorem (Chandrasekhar 1933b): If a configuration of given mass M is

tidally distorted by a mass M ′, it becomes distorted in such a way that its volume and mean density
remain constant in the considered approximation. By virtue of Eq. (3.3.37) we can write instead of Eq.
(3.3.33):

Θ(ξ, µ) = θ(ξ) + ξ1[−θ′(ξ1)](M ′/M)
4∑

j=2

(2j + 1)(αξ1/D)j+1ψj(ξ) Pj(µ)
/
[(j + 1)ψj(ξ1) + ξ1ψ

′
j(ξ1)]

= θ(ξ) + ξ1[−θ′(ξ1)](M ′/M)
4∑

j=2

∆jδ
j+1[ψj(ξ)/ψj(ξ1)] Pj(µ), (0 < n < 5), (3.3.39)

where we have used the notations

δ = αξ1/D; ∆j = (2j + 1)ψj(ξ1)
/
[(j + 1)ψj(ξ1) + ξ1ψ

′
j(ξ1)]; α2 = (n + 1)K/4πG�

1−1/n
0 .

(3.3.40)

Aj from Eq. (3.3.32) reads

Aj = ξ1[−θ′(ξ1)](M ′/M)
4∑

j=2

∆jδ
j+1/ψj(ξ1). (3.3.41)

The boundary equation (3.3.23) writes via Eq. (3.3.26) as

Ξ1(µ) = ξ1

[
1 + (M ′/M)

4∑
j=2

∆jδ
j+1Pj(µ)

]
. (3.3.42)

In a first approximation the equation of the tidally distorted surface is Ξ1(µ) ≈ ξ1[1 +
(M ′/M)∆2δ

3P2(µ)], with the oblateness of the biaxial ellipsoid given by

f = [Ξ1(1) − Ξ1(0)]/Ξ1(1) = (a3 − a1)/a3 ≈ 3(M ′/M)∆2δ
3/2 + O(δ4),(

Ξ1(−1) = Ξ1(1); a1 < a3; a1 = a2

)
. (3.3.43)
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If terms in δ4 are not neglected, the tidal deformations are no longer symmetrical with respect to
λ = π/2, µ = 0 (Chandrasekhar 1933b). For instance, at the nearest point of M with respect to M ′, (M ′

located on the Mx3-axis), the distortion is

[Ξ1(1) − ξ1]/ξ1 = (M ′δ3/M)(∆2 + ∆3δ + ∆4δ
2),(

µ = 1; P2(µ) = (3µ2 − 1)/2; P3(µ) = (5µ3 − 3µ)/2; P4(µ) = (35µ4 − 30µ2 + 3)/8
)
, (3.3.44)

and on the farthest point with respect to M ′, (µ = −1)

[Ξ1(−1) − ξ1]/ξ1 = (M ′δ3/M)(∆2 − ∆3δ + ∆4δ
2). (3.3.45)

The relevant distortions will be discussed more closely in the next section (Table 3.4.1), in connection
with the so-called double star problem.

Again, we conclude this section with the discussion of the special cases n = 0 and 5.
(i) n = 0.n = 0.n = 0. Eqs. (2.3.5), (3.2.73) yield θ = 1 − ξ2/6, ψj = ξj , (j ≥ 2). We put θn(ξ1) = 1 in Eq.

(3.3.30), and replace (n + 1)K�
1/n
0 by P0/�0. Eqs. (3.3.28)-(3.3.31) yield

c0 = −ξ1θ
′(ξ1); c10 = −A0[ξ1ψ0(ξ1)/θ′(ξ1) + ψ0(ξ1) + ξ1ψ

′
0(ξ1)];

k0 = −(P0/�0)ξ2
1θ′(ξ1); k10 = −A0(P0/�0)[ξ2

1ψ0(ξ1)/θ′1(ξ1) + ξ2
1ψ′

0(ξ1)];

k1j = 3ξ2j+1
1 (GM ′/D)(α/D)j/2(j − 1) if j = 2, 3, 4;

Aj = (2j + 1)(GM ′�0/P0D)(α/D)j/2(j − 1) if j = 2, 3, 4; k1j , Aj = 0 if j �= 0, 2, 3, 4. (3.3.46)

In the same way as for 0 < n < 5, we infer that A0 = 0. The proof given subsequently to Eq.
(3.2.63) concerning the vanishing constants Aj , k1j , (j > 4) remains valid. We rewrite at once Eqs.
(3.3.33)-(3.3.36) for the special case n = 0 :

Θ(ξ, µ) = θ(ξ) + (GM ′�0/P0D)
4∑

j=2

(2j + 1)(α/D)jψj(ξ) Pj(µ)/2(j − 1)

= 1 − ξ2/6 − (M ′/M)ξ2
1 [−θ′(ξ1)]

4∑
j=2

(2j + 1)(α/D)j+1ψj(ξ) Pj(µ)/2(j − 1)

= 1 − ξ2/6 + 2(M ′/M)
4∑

j=2

∆jδ
j+1(ξj/6j/2) Pj(µ), [δ = 61/2α/D; ∆j = (2j + 1)/2(j − 1)],

(3.3.47)

Ξ1(µ) = ξ1 −
4∑

j=2

Ajψj(ξ1) Pj(µ)/θ′(ξ1) = ξ1

[
1 + (M ′/M)

4∑
j=2

∆jδ
j+1Pj(µ)

]

= ξ1

{
1 + (M ′/M)δ3[2.5P2(µ) + 1.75δP3(µ) + 1.5δ2P4(µ)]

}
, (3.3.48)

Φ = (P0/�0)
[
3 − ξ2/6 + (GM ′�0/P0D)

4∑
j=2

3ξj(α/D)jPj(µ)/2(j − 1)
]
, (3.3.49)

Φe = (P0/�0)
[
2 × 61/2/ξ + (M ′/M)

4∑
j=2

6j+2(α/D)j+1ξ−j−1Pj(µ)/2(j − 1)
]
. (3.3.50)

As outlined by Eqs. (3.3.43)-(3.3.45), if only terms up to δ3 are preserved, the oblateness becomes in
virtue of Eq. (3.3.48) equal to

f = [Ξ1(1) − Ξ1(0)]/Ξ1(1) = (a3 − a1)/a3 = 3.75(M ′/M)δ3 + O(δ4). (3.3.51)

Jeans (1919) has found the ellipsoidal surface

M ′/π�0D
3 = [(1 − e2)/e3] ln[(1 + e)/(1 − e)] − 6(1 − e2)/e2(3 − e2) ≈ 8e2/45 + O(e4), (3.3.52)
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for the tidal problem of the uniform polytrope (n = 0), if only the first term GM ′α2ξ2P2(µ)/D3 is
preserved in Eq. (3.3.20). e2 = (a2

3 − a2
1)/a2

3 ≈ 2f denotes the square of the eccentricity of the ellipsoidal
polytrope. Eq. (3.3.52) reads, if �0 is expressed by the mass M from Eq. (2.6.18):

f ≈ e2/2 = 3.75(M ′/M)δ3 + O(δ6). (3.3.53)

This agrees up to terms of order δ3 with Chandrasekhar’s (1933d) value (3.3.51), whereby Chan-
drasekhar’s solution (3.3.48) is preferable in comparison to Jeans’ (1919) solution (3.3.52), because it
contains terms of order δ4, δ5, which are a priori neglected in Jeans’ solution.

(ii) n = 5.n = 5.n = 5. This case is particularly simple in the tidal problem, because all ∆j ’s in Eq. (3.3.40)
become unity at large distances in virtue of Eq. (3.2.89): ψj ≈ Bjξ

j if ξ 	 1. The equation of the surface
(3.3.42) is

Ξ1(µ) = ξ1

[
1 + (M ′/M)

4∑
j=2

δj+1Pj(µ)
]
, (ξ1 	 1; n = 5). (3.3.54)

The proof given subsequently to Eq. (3.2.67) that Aj , k1j = 0 if j > 4 subsists too.
The first order equivalence between the polytrope n = 5 and the point mass Roche model can be

shown in a similar way as outlined in Eq. (3.2.69). To this end, we take in Eq. (3.1.102) vk = 0 as for
equilibrium, Φ = GM/R1(λ) as for a point mass, and interchange the x1-axis with the x3-axis:

(1/�) ∇P = ∇[GM/R1(λ) + (GM ′/2D3)(2x2
3 − x2

1 − x2
2)] = ∇Φtot. (3.3.55)

Turning to spherical coordinates, the total gravitational potential (3.3.55) becomes

Φtot = GM/R1(λ) + (GM ′/2D3)[2R2
1(λ) cos2 λ − R2

1(λ) sin2 λ]

≈ GM/R1(λ) + (GM ′r2
1/D3) P2(cos λ) ≈ GM/αΞ1(µ) + (GM ′α2ξ2

1/D3) P2(µ)

≈ GM/αξ1 − (GM/αξ1)(M ′/M)δ3P2(µ) + GM ′δ3P2(µ)/αξ1 = GM/r1 = const. (3.3.56)

We have used Ξ1(µ) ≈ ξ1[1 + (M ′/M)δ3P2(µ)] from Eq. (3.3.54), and R1(µ) = αΞ1(µ), r1 = αξ1.
Thus, at large distances from the centre of M the surfaces (3.3.54) determined by the polytrope n = 5
are just the level surfaces Φtot = const, generated by a point mass M.

If n = 1, we get with the attempt Θ(ξ, µ) = χ(ξ) Π(µ) exactly in the same way as outlined by Eqs.
(3.2.48)-(3.2.54), (Kopal 1939):

Θ(ξ, µ) =
∞∑

j=0

Bjχj(ξ) Pj(µ) = θ(ξ) +
∞∑

j=2

Bjψj(ξ) Pj(µ), (n = 1; Bj = const). (3.3.57)
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3.4 Chandrasekhar’s Double Star Problem

While the theory of rotating polytropes from Sec. 3.2 is readily applicable, the tidal theory from
the previous section is artificial, since it ignores orbital motion of the tidally interacting components.
The model adopted by Chandrasekhar (1933c) is the usual one for studying two-component systems
(e.g. Kopal 1978): The orbital (x1, x2)-plane is perpendicular to the rotation axis directed along Mx3

(Fig. 3.1.1), a circular orbit and complete synchronization between spin and orbital angular velocity Ω
being assumed. This last assumption is suitable especially for close binary stars, where tidal forces are
important. The x1-axis is directed towards the secondary. Since the tide-generating potential (3.3.4) of
M ′ is expanded up to order (rm/D)5, and since ε from Eq. (3.1.93) is of order (rm/D)5, (Martin 1970),
the Keplerian angular velocity

Ω2 = G(M + M ′)/D3, (3.4.1)

is consistent with the adopted scheme of approximation. Further, it is clear from Eq. (3.4.1) that
neglecting quantities of order (rm/D)6 is equivalent to neglect quantities of order Ω4 – again consistent
with the adopted order of approximation. rm denotes an average radius of the components.

The polytrope n = 3 has already been treated by von Zeipel in 1924, but we will follow Chan-
drasekhar’s (1933c) general presentation. The equations of equilibrium are found from Eq. (3.1.90) with
vk = 0, the constant term [M ′D/(M + M ′)]2 being dropped:

∇P = � ∇
{
Φ + Φ′

e + (Ω2/2)[x2
1 + x2

2 − 2M ′Dx1/(M + M ′)]
}
. (3.4.2)

The internal potential Φ of M and the external potential Φ′
e of M ′ satisfy Poisson’s and Laplace’s

equation, respectively:

∇2Φ = −4πG�; ∇2Φ′
e = 0. (3.4.3)

Taking the divergence of Eq. (3.4.2) and inserting Eq. (3.4.3), we deduce as in previous sections the
fundamental equation of the problem:

∇[(1/�) ∇P ] = −4πG� + 2Ω2. (3.4.4)

Changing over to spherical (ξ, λ, ϕ)-coordinates, and introducing the variables ξ and Θ as defined by
Eq. (3.2.1), we find that Eq. (3.4.4) reduces to [cf. Eq. (B.39)]

∇2Θ =
{
∂(ξ2 ∂Θ/∂ξ)

/
∂ξ + ∂[(1 − µ2) ∂Θ/∂µ]

/
∂µ + (1 − µ2)−1 ∂2Θ/∂ϕ2

}/
ξ2 = −Θn + β,

(3.4.5)

where β is defined by Eq. (3.2.3). We seek a solution of Eq. (3.4.5) under the form

Θ = Θ(ξ, µ, ϕ) = θ(ξ) + βΨ(ξ, µ, ϕ), (3.4.6)

and insert this approach into Eq. (3.4.5):

∇2Ψ = −nθn−1Ψ + 1, (∇2θ = −θn). (3.4.7)

Ψ is assumed under the form

Ψ = ψ0 +
∞∑

j=1

Ajψj(ξ) Yj(µ, ϕ), (Aj = const), (3.4.8)

where Yj(µ, ϕ) is a spherical surface harmonic of order j, satisfying the differential equation (cf. Eqs.
(3.1.38)-(3.1.41), Smirnow 1967)

∇2Yj = ∂[(1 − µ2) ∂Yj/∂µ]
/
∂µ + (1 − µ2)−1 ∂2Yj/∂ϕ2 = −j(j + 1)Yj , (3.4.9)
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with the eigenvalue j(j + 1). Eq. (3.4.8) is substituted into Eq. (3.4.7), and we obtain via Eq. (3.4.9),
by equating successive orders of surface harmonics:

d(ξ2 dψ0/dξ)
/
dξ = ξ2(−nθn−1ψ0 + 1), (3.4.10)

d(ξ2 dψj/dξ)
/
dξ = [j(j + 1) − nξ2θn−1] ψj , (j = 1, 2, 3, ...). (3.4.11)

To determine the unknown constants Aj , we have to evaluate the internal potential from Eq. (3.4.3),
turning to dimensionless variables [cf. Eq. (3.2.12)]:

∂(ξ2 ∂Φ/∂ξ)
/
∂ξ + ∂[(1 − µ2) ∂Φ/∂µ]

/
∂µ + (1 − µ2)−1 ∂2Φ/∂ϕ2

= −(n + 1)K�
1/n
0 ξ2

[
θn + βnθn−1

(
ψ0 +

∞∑
j=1

AjψjYj

)]
. (3.4.12)

We expand the internal potential of M into spherical harmonics:

Φ(ξ, µ, ϕ) = U0(ξ) + β
∞∑

j=0

Vj(ξ) Yj(µ, ϕ). (3.4.13)

The spherical functions Yj are identical to those in Eq. (3.4.8), as can be shown if we insert Eq.
(3.4.13) into Eq. (3.4.12), equating harmonics of the same order, and taking into account Eq. (3.4.9).
The equations defining U0 and Vj turn out to be the same as those written down in Eqs. (3.2.14)-(3.2.16),
and consequently Φ is similar to Eq. (3.2.29):

Φ = (n + 1)K�
1/n
0

{
θ(ξ) + c0 + β

[
c10 + ψ0(ξ) − ξ2/6 +

∞∑
j=1

[Ajψj(ξ) + Bjξ
j ] Yj(µ, ϕ)

]}

= (n + 1)K�
1/n
0

{
Θ(ξ, µ, ϕ) + c0 + β

[
c10 − ξ2/6 +

∞∑
j=1

Bjξ
jYj(µ, ϕ)

]}
. (3.4.14)

The radial component of the equation of hydrostatic equilibrium (3.4.2) is

∂P/∂r = � ∂
{
Φ + Φ′

e + (Ω2/2)[r2 sin2 λ − 2M ′Dr sinλ cos ϕ/(M + M ′)]
}/

∂r. (3.4.15)

The external potential Φ′
e of M ′ writes by virtue of Eqs. (3.1.42), (3.3.4) as

Φ′
e(�r′) = GM ′/r′ = GM ′/(D2 − 2rD cos γ + r2)1/2 = GM ′/(D2 − 2x1D + r2)1/2

= (GM ′/D)
/
[1 − 2r sinλ cos ϕ/D + (r/D)2]1/2 = (GM ′/D)

∞∑
j=0

(r/D)jPj(sinλ cos ϕ)

≈ (GM ′/D)
4∑

j=1

(r/D)jPj(sinλ cos ϕ) + const, (3.4.16)

where cos γ = x1/r = sinλ cos ϕ, and γ is the angle between �r = �r(x1, x2, x3) and the direction of D. Eq.
(3.4.15) reads in dimensionless coordinates as [cf. Eqs. (3.2.30), (3.3.19)]

(n + 1)K�
1/n
0 ∂Θ/∂ξ = ∂(Φ + Φ′

e)/∂ξ + β(n + 1)K�
1/n
0 ξ[1 − P2(µ)]/3 − GM ′α sinλ cos ϕ/D2,

(3.4.17)

by replacing Ω2 via Eq. (3.4.1). To determine the integration constants Bj , we insert the derivatives of
Eqs. (3.4.14), (3.4.16) into Eq. (3.4.17), and equate the coefficients of harmonics of the same order. It
turns out that

(
β = Ω2/2πG�0 = 2Gα2(M + M ′)/(n + 1)K�

1/n
0 D3

)
:

B2 Y2(λ, ϕ) = P2(cos λ)/6 − [M ′/2(M + M ′)] P2(sinλ cos ϕ);

Bj Yj(λ, ϕ) = −[M ′(α/D)j−2/2(M + M ′)] Pj(sinλ cos ϕ) if j = 3, 4, (3.4.18)
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and

Φ(ξ, λ, ϕ) = (n + 1)K�
1/n
0

{
Θ(ξ, λ, ϕ) + c0 + β

[
c10 − ξ2/6 + ξ2P2(cos λ)/6

−
4∑

j=2

M ′(α/D)j−2ξjPj(sinλ cos ϕ)/2(M + M ′)
]}

. (3.4.19)

The equation of the surface is given by

Ξ1 = Ξ(λ, ϕ) = ξ1 + β

∞∑
j=0

qjYj(λ, ϕ), (qj = const; Ξ1 ≈ ξ1), (3.4.20)

and on the surface we have [cf. Eqs. (3.2.36), (3.3.24)]:

θ(Ξ1) ≈ θ(ξ1) + βθ′(ξ1)
∞∑

j=0

qjYj(λ, ϕ); ψk(Ξ1) ≈ ψk(ξ1) + βψ′
k(ξ1)

∞∑
j=0

qjYj(λ, ϕ);

θ′(Ξ1) ≈ θ′(ξ1) + βθ′′(ξ1)
∞∑

j=0

qjYj(λ, ϕ), (3.4.21)

Θ(Ξ1, λ, ϕ) = θ(Ξ1) + β

[
ψ0(Ξ1) +

∞∑
j=1

Ajψj(Ξ1) Yj(λ, ϕ)
]

= θ(ξ1) + β

[
θ′(ξ1)

∞∑
j=0

qjYj(λ, ϕ) + ψ0(ξ1) +
∞∑

j=1

Ajψj(ξ1) Yj(λ, ϕ)
]

= 0. (3.4.22)

The coefficients of Yj(λ, ϕ) must be zero, and therefore

q0 = −ψ0(ξ1)/θ′(ξ1); qj = −Ajψj(ξ1)/θ′(ξ1). (3.4.23)

The external potential of M can be written as [cf. Eqs. (3.1.38), (3.1.58)]

Φe = k0/ξ + β
∞∑

j=0

k1jξ
−j−1Yj(λ, ϕ), (k0, k1j = const). (3.4.24)

We now calculate, as in previous sections, the values of the internal and external potential, together
with their derivatives on the boundary Θ(Ξ1, λ, ϕ) = 0 :

Φ(Ξ1, λ, ϕ) = (n + 1)K�
1/n
0

{
c0 + β

[
c10 − ξ2

1/6 + ξ2
1P2(cosλ)/6

−
4∑

j=2

M ′(α/D)j−2ξj
1Pj(sinλ cos ϕ)/2(M + M ′)

]}
, (3.4.25)

Φe(Ξ1, λ, ϕ) = k0/ξ1 + β

∞∑
j=0

(−k0qj/ξ2
1 + k1jξ

−j−1
1 ) Yj(λ, ϕ), (3.4.26)

(∂Φ/∂ξ)ξ=Ξ1 = (n + 1)K�
1/n
0

{
θ′(ξ1) + β

[
[−2θ′(ξ1)/ξ1 − θn(ξ1)]

∞∑
j=0

qjYj(λ, ϕ) + ψ′
0(ξ1) − ξ1

×[1 − P2(cos λ)]/3 +
∞∑

j=1

Ajψ
′
j(ξ1) Yj(λ, ϕ) −

4∑
j=2

jM ′(α/D)j−2ξj−1
1 Pj(sinλ cos ϕ)/2(M + M ′)

]}
,

(3.4.27)
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(∂Φe/∂ξ)ξ=Ξ1 = −k0/ξ2
1 + β

∞∑
j=0

[2k0qj/ξ3
1 − (j + 1)k1jξ

−j−2
1 ] Yj(λ, ϕ). (3.4.28)

Continuity of Φ and Φe, and of their derivatives on the boundary of M yields (θn(ξ1) = 0 if 0 < n < 5)

c0 = −ξ1θ
′(ξ1); c10 = ξ2

1/2 − ψ0(ξ1) − ξ1ψ
′
0(ξ1); k0 = −(n + 1)K�

1/n
0 ξ2

1θ′(ξ1);

k10 = (n + 1)K�
1/n
0 ξ2

1 [ξ1/3 − ψ′
0(ξ1)]; k12Y2(λ, ϕ) = (n + 1)K�

1/n
0 ξ5

1 [2ψ2(ξ1) − ξ1ψ
′
2(ξ1)]

×[−P2(cosλ)/6 + M ′P2(sinλ cos ϕ)/2(M + M ′)]
/
[3ψ2(ξ1) + ξ1ψ

′
2(ξ1)];

k1jYj(λ, ϕ) = (n + 1)K�
1/n
0

{
[M ′/2(M + M ′)](α/D)j−2ξ2j+1

1 [jψj(ξ1) − ξ1ψ
′
j(ξ1)] Pj(sinλ cos ϕ)/

[(j + 1)ψj(ξ1) + ξ1ψ
′
j(ξ1)]

}
if j = 3, 4;

A2Y2(λ, ϕ) = 5ξ2
1 [−P2(cos λ)/6 + M ′P2(sinλ cos ϕ)/2(M + M ′)]

/
[3ψ2(ξ1) + ξ1ψ

′
2(ξ1)];

AjYj(λ, ϕ) = [M ′/2(M + M ′)](α/D)j−2(2j + 1)ξj
1Pj(sinλ cos ϕ)

/
[(j + 1)ψj(ξ1) + ξ1ψ

′
j(ξ1)]

if j = 3, 4; k1j , qj = 0 if j �= 0, 2, 3, 4; Aj = 0 if j �= 2, 3, 4. (3.4.29)

Again, the proof given subsequently to Eq. (3.2.43) concerning the vanishing constants Aj , k1j , (j > 4)
remains valid. The solution of the problem from Eqs. (3.4.6), (3.4.8) is

Θ(ξ, λ, ϕ) = θ(ξ) + β
{

ψ0(ξ) − 5ξ2
1ψ2(ξ) P2(cos λ)

/
6[3ψ2(ξ1) + ξ1ψ

′
2(ξ1)]

+[M ′/2(M + M ′)]
4∑

j=2

(2j + 1)(α/D)j−2ξj
1ψj(ξ) Pj(sinλ cos ϕ)

/[(j + 1)ψj(ξ1) + ξ1ψ
′
j(ξ1)]

}
, (0 < n < 5). (3.4.30)

This equation can be written with the notations from Eq. (3.3.40) as

Θ(ξ, λ, ϕ) = θ(ξ) + β
{
ψ0(ξ) − 5ξ2

1ψ2(ξ) P2(cos λ)
/
6[3ψ2(ξ1) + ξ1ψ

′
2(ξ1)]

}

+ξ1[−θ′(ξ1)](M ′/M)
4∑

j=2

∆jδ
j+1[ψj(ξ)/ψj(ξ1)] Pj(sinλ cos ϕ), (3.4.31)

since by virtue of Eqs. (2.6.18), (3.4.1) we have

β(α/D)j−2ξj
1/2(M + M ′) = (Ω2/4πG�0)(α/D)j−2ξj

1/(M + M ′) = αj−2ξj
1

/
4π�0D

j+1

= (αξ1/D)j+1ξ1[−θ′(ξ1)]/M = δj+1ξ1[−θ′(ξ1)]/M. (3.4.32)

On comparing the solution (3.4.31) with the corresponding solutions of the rotational and tidal prob-
lems (Eqs. (3.2.44) and (3.3.39), respectively), we notice that the difference Θ−θ is exactly the sum of the
corresponding terms in those two problems. In other words, the distortion of the double-star component
M is just the sum of its separate distortions arising from simple rotation round its spin axis and from tidal
influence due to the mass M ′ at distance D. This superposition theorem is true to the fifth order in the
ratio δ = r1/D, and it is not likely to be valid for higher orders, since for sixth and higher order terms the
density distribution in the secondary M ′ has to be taken explicitly into account (Chandrasekhar 1933c).
Note, that Pj(cos λ) from Eq. (3.3.39) is replaced by Pj(sinλ cos ϕ) in Eq. (3.4.31), because M ′ is now
located on the Mx1-axis (x1 = r sinλ cos ϕ), rather than on the Mx3-axis (x3 = r cos λ) as in Sec. 3.3.

Because mass, volume, and mean density are not affected by pure tidal distortions, the equations
for these physical quantities in the double star problem agree with those of the rotational problem [Eqs.
(3.2.58), (3.2.60), (3.2.61)]. The expressions for the inner and outer potential of M are omitted for
brevity, but can be written down at once with the aid of Eqs. (3.4.19), (3.4.24), (3.4.29) in a similar way
as Eqs. (3.2.46), (3.2.47), (3.3.35), (3.3.36). The equation of the boundary is deduced from Eqs. (3.4.20),
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Fig. 3.4.1 Qualitative form of the deviations σ(λ, ϕ) from spherical shape according to Eq. (3.4.34). On
the left the meridional cross-section ϕ = 0, π, and on the right the equatorial cross-section λ = π/2. Shown are
also the small angles χm and χe from Eqs. (3.4.73), (3.4.78), (Chandrasekhar 1933c).

(3.4.23), (3.4.29):

Ξ1 = Ξ1(λ, ϕ) ≈ ξ1 + β
{
ψ0(ξ1) − 5ξ2

1ψ2(ξ1)P2(cosλ)
/
6[3ψ2(ξ1) + ξ1ψ

′
2(ξ1)]

}/
[−θ′(ξ1)]

+ξ1(M ′/M)
4∑

j=2

∆jδ
j+1Pj(sinλ cos ϕ) = ξ1 + 2(1 + M ′/M)δ3ψ0(ξ1)/ξ1

−(1 + M ′/M)∆2δ
3ξ1P2(cos λ)/3 + ξ1(M ′/M)

4∑
j=2

∆jδ
j+1Pj(sinλ cos ϕ), (3.4.33)

where we made use of the assumption of synchronism between spin and orbital motion, expressed by Eqs.
(3.4.1) and (3.4.32).

On comparing Eq. (3.4.33) with the corresponding equations of the surface (3.2.45) and (3.3.42)
for the rotational and tidal problems, we again meet an example of the superposition theorem stated
subsequently to Eq. (3.4.32). We see that there is an expansion of the configuration as a whole of amount
2(1+M ′/M)δ3ψ0(ξ1)/ξ1, as in the purely rotational case, and superposed on this general expansion there
are the harmonic terms P2(cos λ) and Pj(sinλ cos ϕ). The deviation from spherical shape (not from the
undistorted sphere) is therefore given by the function

σ(λ, ϕ) = (Ξ1 − ξ1)/ξ1 − 2(1 + M ′/M)δ3ψ0(ξ1)/ξ2
1

= −(1 + M ′/M)∆2δ
3P2(cos λ)/3 + (M ′/M)

4∑
j=2

∆jδ
j+1Pj(sinλ cos ϕ). (3.4.34)

The deformations are symmetrical with respect to the equatorial plane, and with respect to the
meridional plane ϕ = 0, π. Numerically, the deviations shown in Fig. 3.4.1 are (Chandrasekhar 1933c):

σ(π/2, 0) = (1 + 7M ′/M)∆2δ
3/6 + M ′∆3δ

4/M + M ′∆4δ
5/M ;

σ(π/2, π) = (1 + 7M ′/M)∆2δ
3/6 − M ′∆3δ

4/M + M ′∆4δ
5/M ;

σ(π/2, π/2) = σ(π/2, 3π/2) = (1 − 2M ′/M)∆2δ
3/6 + 3M ′∆4δ

5/8M ;

σ(0, 0) = σ(π, 0) = −(1 + 5M ′/2M)∆2δ
3/3 + 3M ′∆4δ

5/8M. (3.4.35)

If we restrict to third order terms, the equilibrium configurations are triaxial ellipsoids with the
oblateness given by

f1 = (a1 − a3)/a1 = σ(π/2, 0) − σ(0, 0) = (1 + 4M ′/M)∆2δ
3/2;

f2 = (a1 − a2)/a1 = σ(π/2, 0) − σ(π/2, π/2) = 3M ′∆2δ
3/2M ;

f3 = (a2 − a3)/a2 = σ(π/2, π/2) − σ(0, 0) = (1 + M ′/M)∆2δ
3/2, (3.4.36)
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and

f1 > f3 > f2 if M ′/M < 0.5; f1 > f2 ≥ f3 if M ′/M ≥ 0.5. (3.4.37)

It should be noted that for obtaining the actual distortions (Ξ1−ξ1)/ξ1 with respect to the undistorted
sphere, we have to add to σ the general expansion term 2(1 + M ′/M)δ3ψ0(ξ1)/ξ2

1 .
A curious fact appears in the double star problem concerning the equatorial axis a2. A genuine

contraction of this axis with respect to the undistorted sphere can arise, as seen by calculating from Eq.
(3.4.34) the difference

a2 − r1 ∝ Ξ1(π/2, π/2) − ξ1 = ξ1σ(π/2, π/2) + 2(1 + M ′/M)δ3ψ0(ξ1)/ξ1

= δ3
[
2(1 + M ′/M)ψ0(ξ1)/ξ1 + (1 − 2M ′/M)∆2ξ1/6 + O(δ)

]
. (3.4.38)

The above expression becomes negative a2 < r1 for a mass ratio

M ′/M > [∆2 + 12ψ0(ξ1)/ξ2
1 ]
/
2[∆2 − 6ψ0(ξ1)/ξ2

1 ]. (3.4.39)

Since we have ∆2 = 5ψ2(ξ1)
/
[3ψ2(ξ1) + ξ1ψ

′
2(ξ1)] via Eq. (3.3.40), we observe that the condition

(3.4.39) can be written as M ′/M > (a1 − r1)/(r1 − a3) > 0, where r1 = αξ1 is the radius of the
undistorted Lane-Emden sphere, and a1, a3 the equatorial and polar radius of the rotationally distorted
polytrope from Eqs. (3.2.56), (3.2.57).

The particular cases n = 0 and 5 are evaluated below.
(i) n = 0.n = 0.n = 0. There is no need to go into details, since from the superposition theorem we can write

down at once the equations, by adding together Eqs. (3.2.63) and (3.3.47), (Chandrasekhar 1933d):

Θ(ξ, λ, ϕ) = θ(ξ) + β

{
ψ0(ξ) − 5ψ2(ξ) P2(cos λ)/12 + [M ′/2(M + M ′)]

×
4∑

j=2

(2j + 1)(α/D)j−2ψj(ξ) Pj(sinλ cos ϕ)/2(j − 1)
}

= 1 − ξ2/6

+βξ2[1 − 5P2(cosλ)/2]/6 + 2(M ′/M)
4∑

j=2

(2j + 1)δj+1ψj(ξ) Pj(sinλ cos ϕ)/2(j − 1)ξj
1 = 1 − ξ2/6

+δ3ξ2(1 + M ′/M)[1 − 5P2(cos λ)/2]
/
9 + 2(M ′/M)

4∑
j=2

δj+1∆j(ξj/6j/2) Pj(sinλ cos ϕ),

[n = 0; ∆j = (2j + 1)/2(j − 1)], (3.4.40)

since β = Ω2/2πG�0 = 2(M + M ′)δ3/3M, (2π�0 = M/4 × 61/2α3 = 3M/2α3ξ3
1). For the tidal problem

we have Aj → βAj , and we get via Eqs. (3.2.62), (3.3.46) (α2 = P0/4πG�2
0) :

A2 Y2(λ, ϕ) = −5P2(cos λ)/12 + 5[M ′/4(M + M ′)] P2(sinλ cos ϕ);

Aj Yj(λ, ϕ) = [M ′/2(M + M ′)](2j + 1)(α/D)j−2Pj(sinλ cos ϕ)/2(j − 1) if j = 3, 4;
Aj = 0 if j �= 2, 3, 4. (3.4.41)

The proof enunciated subsequently to Eq. (3.2.63) that Aj , k1j = 0 if j > 4, subsists again. The
equation of the boundary writes

Ξ1 = Ξ1(λ, ϕ) = ξ1 − βψ0(ξ1)/θ′(ξ1) − β
4∑

j=2

Ajψj(ξ1) Yj(λ, ϕ)/θ′(ξ1)

= 61/2 + (3β/61/2)
{

1 − 5P2(cosλ)/2 + [M ′/2(M + M ′)]
4∑

j=2

ξ2
1δj−2∆jPj(sinλ cos ϕ)

}

= 61/2 + 2(M + M ′)δ3/61/2M − 5(M + M ′)δ3P2(cos λ)/61/2M

+(61/2M ′/M)
4∑

j=2

δj+1∆jPj(sinλ cos ϕ), (n = 0; θ′(ξ1) = −61/2/3). (3.4.42)
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Thus, if n = 0, an expansion of amount 2(M + M ′)δ3/61/2M occurs, and superposed on this are the
harmonic terms. To the order of accuracy O(δ3), when the equilibrium configurations are ellipsoids, the
oblateness in the three principal planes is [cf. Eq. (3.4.36)]:

f1 = (1 + 4M ′/M)∆2δ
3/2 = 5(1 + 4M ′/M)δ3/4; f2 = 3M ′∆2δ

3/2M = 15M ′δ3/4M ;

f3 = (1 + M ′/M)∆2δ
3/2 = 5(1 + M ′/M)δ3/4, (n = 0). (3.4.43)

(ii) n = 5.n = 5.n = 5. The equation of the boundary can easily be deduced by putting together Eqs. (3.2.67)
and (3.3.54), or from Eq. (3.4.33) with ψ0 = ξ2/6, ψ2 = B2ξ

2, θ′ = −31/2/ξ2, ∆j = 1 if ξ1 → ∞ :

Ξ1 = ξ1 + (βξ4
1

/
6 × 31/2)[1 − P2(cos λ)] + ξ1(M ′/M)

4∑
j=2

δj+1Pj(sinλ cos ϕ), (n = 5; ξ1 	 1).

(3.4.44)

The comment subsequent to Eq. (3.2.67) remains valid, i.e. Aj , k1j = 0 if j �= 2, 3, 4.
To the order of accuracy O(δ3) the equilibrium configurations are ellipsoids, and the oblateness in the

three principal planes is

f1 = (1 + 4M ′/M)δ3/2; f2 = 3M ′δ3/2M ; f3 = (1 + M ′/M)δ3/2, (n = 5). (3.4.45)

We conclude the presentation of Chandrasekhar’s pioneering work with a more quantitative discussion
of his results (Chandrasekhar 1933d).

(i) Rotational Problem. So far, our treatment has been based on the comparison of distorted
and undistorted polytropes having the same central density �0 and the same polytropic constant K,
(cf. Chandrasekhar and Lebovitz 1962d, §IX). On the other side, if we wish to compare rotating and
nonrotating polytropes having the same mass and volume, we have to compare configurations with the
same mean density �m, and Chandrasekhar (1933d) introduces therefore the new parameter

βm = Ω2/2πG�m = (Ω2/2πG�0)[−ξ1/3θ′(ξ1)] = βξ1/3[−θ′(ξ1)],
(
�m = −3�0θ

′(ξ1)/ξ1

)
.
(3.4.46)

Note, that in our first order approximation the mean density (3.2.61) of the rotating polytrope can
be replaced in the small parameter βm by the mean density of the undistorted polytrope (2.6.27). We
rewrite some of the relevant equations in terms of βm. Eq. (3.2.59) becomes

M = m{1 + βm[1 − 3ψ′
0(ξ1)/ξ1]}, (0 < n ≤ 5), (3.4.47)

and Eq. (3.2.66) turns into

M = m(1 + 3βm/2), (n = 0; β = βm). (3.4.48)

The values of (M −m)/mβm are tabulated in Table 3.4.1, representing the fractional increase in total
mass between a rotating and a nonrotating equilibrium configuration having the same central density �0.
The equation of the boundary (3.2.45) writes in terms of βm as

Ξ1 = Ξ1(cos λ) = ξ1{1 + βm[3ψ0(ξ1)/ξ2
1 − ∆2P2(cos λ)/2]}, (0 ≤ n ≤ 5), (3.4.49)

where ∆2 is given by Eq. (3.3.40) if 0 < n ≤ 5, and by Eq. (3.3.47) if n = 0. The oblateness from Eq.
(3.2.55) writes

f = (a1 − a3)/a1 = [Ξ1(0) − Ξ1(1)]/Ξ1(0) = 3βm∆2/4, (0 ≤ n ≤ 5). (3.4.50)

The fractional elongation at the equator and the fractional contraction at the poles is

[Ξ1(0) − ξ1]/ξ1 = βm[3ψ0(ξ1)/ξ2
1 + ∆2/4]; [Ξ1(1) − ξ1]/ξ1 = βm[3ψ0(ξ1)/ξ2

1 − ∆2/2],
(0 ≤ n ≤ 5). (3.4.51)

To determine the distortion of the boundary when the same mass m is set rotating, we have to
determine at first the corresponding change in central density �0, i.e. we have to find δ�0 such that the
masses of rotating and nonrotating configurations coincide:

m(�0, 0) = M(�0 + δ�0, Ω). (3.4.52)
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We insert from Eqs. (2.6.18) and (3.2.58) to find

4π[(n + 1)K�
(3−n)/3n
0 /4πG]3/2ξ2

1(−θ′1) = 4π[(n + 1)K(�0 + δ�0)(3−n)/3n/4πG]3/2ξ2
1(−θ′1)

×
{
1 + [Ω2

/
2πG(�0 + δ�0)][ψ′

0(ξ1) − ξ1/3]
/
θ′1
}
, (0 < n ≤ 5), (3.4.53)

or to the first order

δ�0/�0 = [2nβm/(3 − n)][3ψ′
0(ξ1)/ξ1 − 1], (0 < n ≤ 5). (3.4.54)

Since P = K�1+1/n and δP/P = (1 + 1/n) δ�/�, the fractional change in central pressure when a
polytropic sphere of constant mass is set rotating, becomes

δP0/P0 = [2(n + 1)βm/(3 − n)][3ψ′
0(ξ1)/ξ1 − 1], (0 < n ≤ 5). (3.4.55)

Eqs. (3.4.54) and (3.4.55) break down if n ≈ 3, since in this case the assumption δ�0 � �0, δP0 � P0

is violated. This is due to the fact that m ∝ �
(3−n)/2n
0 , and the mass does not depend on �0 if n = 3, so

the question of fractional change of central density has no meaning for this particular polytropic index.
If n = 0, we have � = const, and δ�0/�0 = 0. To find δP0/P0 we implement the condition

m(P0, 0) = M(P0 + δP0, Ω), (3.4.56)

or with Eq. (3.2.66):

8 × 61/2π(P0/4πG�
4/3
0 )3/2 = 8 × 61/2π[(P0 + δP0)/4πG�

4/3
0 ]3/2(1 + 3βm/2)

= 8 × 61/2π(P0/4πG�
4/3
0 )3/2(1 + 3βm/2 + 3δP0/2P0), (3.4.57)

and

δP0/P0 = −βm = −β, (n = 0). (3.4.58)

We are now able to calculate the boundary r1m when a sphere of constant mass m is set rotating:

r1m(µ) = [(n + 1)K(�0 + δ�0)1/n−1/4πG]1/2Ξ1(µ)

≈ [(n + 1)K/4πG]1/2�
(1−n)/2n
0 ξ1{1 + [(1 − n)/2n] δ�0/�0}{1 + βm[3ψ0(ξ1)/ξ2

1 − ∆2P2(µ)/2]}
≈ αξ1{1 + βm[(n − 1)/(n − 3)][3ψ′

0(ξ1)/ξ1 − 1] + 3ψ0(ξ1)/ξ2
1 − ∆2P2(µ)/2}, (0 < n ≤ 5),

(3.4.59)

where we have used Eqs. (3.4.49) and (3.4.54). If n = 0, we find with Eqs. (3.4.49) and (3.4.58),
[∆j = (2j + 1)/2(j − 1)] :

r1m(µ) = [(P0 + δP0)/4πG�2
0]

1/2Ξ1(µ) ≈ (P0/4πG�2
0)

1/2(1 + δP0/2P0)ξ1

×{1 + βm[1/2 − 5P2(µ)/4]} ≈ αξ1[1 − 5βmP2(µ)/4], (n = 0). (3.4.60)

The oblateness fm = [r1m(0)− r1m(1)]/r1m(0) = 3βm∆2/4 = f has the same expression, whether we
are comparing polytropes with equal central density or with equal mass.

The volume relation (3.2.60) between a nonrotating (V0) and a rotating configuration with equal
central density can be rewritten in terms of βm as

V = (4πα3ξ3
1/3)[1 + 9βmψ0(ξ1)/ξ2

1 ] = V0[1 + 9βmψ0(ξ1)/ξ2
1 ], (0 ≤ n ≤ 5; V0 = 4πα3ξ3

1/3).
(3.4.61)

On the other hand, the volumes of two configurations of equal mass m behave like

Vm = (4πα3ξ3
1/3){1 + βm[(n − 1)/(n − 3)][9ψ′

0(ξ1)/ξ1 − 3] + 9βmψ0(ξ1)/ξ2
1}, (0 < n ≤ 5),

(3.4.62)

where we have simply expanded r1m from Eq. (3.4.59) according to (1 + ε)3 ≈ 1 + 3ε, and taken into
account that the integral over the Legendre polynomial P2(µ) is zero. If n = 0, Eq. (3.4.60) yields simply

Vm = 4πα3ξ3
1/3 = V0, (n = 0). (3.4.63)
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Table 3.4.1 Numerical values of some physical parameters of distorted polytropes. The distortion
coefficients ∆j from Eqs. (3.3.40), (3.3.47), and the oblateness of rotating polytropes f/βm = fm/βm = (a1 −
a3)/βma1 from Eq. (3.4.50) are shown in the upper part. The fractional elongation at the equator and the
contraction at the poles of rotationally distorted polytropes (with the same central density, and the same mass,
respectively) are in the middle part [Eqs. (3.4.51), (3.4.59), (3.4.60)]. The lower part shows the fractional change
of mass, volume (at constant central density, and at constant mass, respectively), of central density, and central
pressure for rotationally distorted polytropes [Eqs. (3.4.47), (3.4.48), (3.4.61)-(3.4.63), (3.4.54), (3.4.55), (3.4.58)].
aE + b means a × 10b.

n ∆2 ∆3 ∆4 f/βm = fm/βm

0.0 2.500000 1.750000 1.500000 1.875E+0
0.5 1.898308 1.406769 1.250125 1.424E+0
1.0 1.519818 1.212908 1.120482 1.140E+0
1.5 1.286558 1.105697 1.054786 9.649E−1
2.0 1.147877 1.048788 1.023016 8.609E−1
2.5 1.069705 1.020384 1.008683 8.023E−1
3.0 1.028886 1.007400 1.002819 7.717E−1
3.5 1.009838 1.002174 1.000732 7.574E−1
4.0 1.002390 1.000446 1.000131 7.518E−1
4.5 1.000272 1.000042 1.000011 7.502E−1
5.0 1.000000 1.000000 1.000000 7.500E−1

n [Ξ1(0) − ξ1]/βmξ1 [Ξ1(1) − ξ1]/βmξ1 [r1m(0) − r1]/βmr1 [r1m(1) − r1]/βmr1

0.0 1.125E+0 −7.500E−1 6.250E−1 −1.250E+0
0.5 8.347E−1 −5.890E−1 6.323E−1 −7.914E−1
1.0 6.839E−1 −4.559E−1 6.839E−1 −4.559E−1
1.5 6.125E−1 −3.524E−1 7.705E−1 −1.944E−1
2.0 5.902E−1 −2.707E−1 9.031E−1 4.220E−2
2.5 5.987E−1 −2.036E−1 1.187E+0 3.844E−1
3.0 6.254E−1 −1.463E−1 − −
3.5 6.614E−1 −9.603E−2 3.767E−1 −3.807E−1
4.0 6.992E−1 −5.264E−2 6.321E−1 −1.197E−1
4.5 7.320E−1 −1.823E−2 7.208E−1 −2.944E−2
5.0 7.500E−1 0.000E+0 7.500E−1 0.000E+0

n (M − m)/βmm (V − V0)/βmV0 (Vm − V0)/βmV0 δ�0/βm�0 δP0/βmP0

0.0 1.500E+0 1.500E+0 0.000E+0 0.000E+0 −1.000E+0
0.5 1.012E+0 1.080E+0 4.733E−1 −4.047E−1 −1.214E+0
1.0 6.960E−1 9.119E−1 9.119E−1 −6.960E−1 −1.392E+0
1.5 4.739E−1 8.726E−1 1.347E+0 −9.478E−1 −1.580E+0
2.0 3.129E−1 9.098E−1 1.848E+0 −1.252E+0 −1.877E+0
2.5 1.960E−1 9.937E−1 2.758E+0 −1.960E+0 −2.744E+0
3.0 1.130E−1 1.105E+0 − − −
3.5 5.693E−2 1.227E+0 3.727E−1 7.971E−1 1.025E+0
4.0 2.236E−2 1.346E+0 1.144E+0 1.789E−1 2.236E−1
4.5 4.802E−3 1.446E+0 1.412E+0 2.881E−2 3.522E−2
5.0 0.000E+0 1.500E+0 1.500E+0 0.000E+0 0.000E+0

We now turn to the determination of the radial component of the effective gravity gr1 at the boundary.
Eq. (3.1.16) can be written as

(1/�) ∇P = ∇[Φ + Ω2r2(1 − µ2)/2] = ∇{Φ + Ω2r2[1 − P2(µ)]/3}
= ∇{Φ + (n + 1)K�

1/n
0 ξ2β[1 − P2(µ)]/6} = ∇(Φ + Φf ) = �g, (3.4.64)

where Φf = Ω2r2(1 − µ2)/2 is the centrifugal potential. The effective radial surface gravity (3.1.22) is

gr1 = [∂(Φ + Φf )/∂r]r=r1 = (1/�)(∂P/∂r)r=r1 = [(n + 1)K�
1/n
0 /α](∂Θ/∂ξ)ξ=Ξ1

= [(n + 1)K�
1/n
0 /α]

{
θ′(ξ1) + β

[(
− 2θ′(ξ1)/ξ1 − θn(ξ1)

)(
q0 + q2P2(µ)

)
+ ψ′

0(ξ1)

+A2ψ
′
2(ξ1) P2(µ)

]}
= [(n + 1)K�

1/n
0 /α]

{
θ′(ξ1) + β

[
2ψ0(ξ1)/ξ1 + ψ′

0(ξ1)

+A2P2(µ)
(
2ψ2(ξ1)/ξ1 + ψ′

2(ξ1)
)]}

= [(n + 1)K�
1/n
0 θ′(ξ1)/α]

{
1 − βm

[
6ψ0(ξ1)/ξ2

1 + 3ψ′
0(ξ1)/ξ1
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−5
(
2ψ2(ξ1) + ξ1ψ

′
2(ξ1)

)
P2(µ)

/
2
(
3ψ2(ξ1) + ξ1ψ

′
2(ξ1)

)]}
= [(n + 1)K�

1/n
0 θ′(ξ1)/α]

{
1 − βm[6ψ0(ξ1)/ξ2

1 + 3ψ′
0(ξ1)/ξ1 + (∆2 − 5)P2(µ)/2

]}
, (0 < n ≤ 5),

(3.4.65)

where we have used Eqs. (3.2.38), (3.2.41), (3.3.40), (3.4.46), and θn(ξ1) = 0.
If n = 0, we have to put ξ1 = 61/2, θn(ξ1) = 1, −2θ′(ξ1)/ξ1 − θn(ξ1) = −1/3, ψ0 = ξ2/6, ψ2 =

ξ2, A2 = −5/12, and β = βm in the previous equation:

gr1 = (P0/α�0)
{
θ′(ξ1) + βm

[
(−2θ′(ξ1)/ξ1 − 1)

(
q0 + q2P2(µ)

)
+ ψ′

0(ξ1) + A2ψ
′
2(ξ1) P2(µ)

]}
= (P0/α�0)

{
θ′(ξ1) + βm

[
− ψ0(ξ1)/ξ1 + ψ′

0(ξ1) + 5
(
ψ2(ξ1)/ξ1 − ψ′

2(ξ1)
)

P2(µ)/12
]}

= −(61/2P0/3α�0){1 + βm[−1/2 + 5P2(µ)/4]}, (n = 0). (3.4.66)

The surface gravity of the nonrotating configuration (βm = 0) turns out to be gr1 = (n +
1)K�

1/n
0 θ′(ξ1)/α = (n + 1)P0θ

′(ξ1)/α�0, in accordance with the derivative dΦ/dr = gr1 of Eq. (2.6.32).
Gravity values are provided by Chandrasekhar (1933d).

(ii) Tidal Problem. The boundary in the tidal problem is given by Eqs. (3.3.42) and (3.3.48). The
surface gravitational acceleration is calculated analogously to Eqs. (3.4.65)-(3.4.66). In virtue of Eqs.
(3.3.20), (3.3.30), (3.3.40), (3.3.41) we find

gr1 = [∂(Φ + Φ′
e)/∂r]r=r1 = [(n + 1)K�

1/n
0 /α]

{
θ′(ξ1) + [−2θ′(ξ1)/ξ1 − θn(ξ1)]

4∑
j=2

qjPj(µ)

+
4∑

j=2

Ajψ
′
j(ξ1) Pj(µ)

}
= [(n + 1)K�

1/n
0 /α]

{
θ′(ξ1) +

4∑
j=2

[2ψj(ξ1)/ξ1 + ψ′
j(ξ1)]AjPj(µ)

}

= [(n + 1)K�
1/n
0 θ′(ξ1)/α]

{
1 − (M ′/M)

4∑
j=2

[2ψj(ξ1) + ξ1ψ
′
j(ξ1)]∆jδ

j+1Pj(µ)/ψj(ξ1)
}

= [(n + 1)K�
1/n
0 θ′(ξ1)/α]

{
1 − (M ′/M)

4∑
j=2

[2j + 1 − (j − 1)∆j ]δj+1Pj(µ)
}

, (0 < n ≤ 5).

(3.4.67)

If n = 0, we have θn(ξ1) = 1 in the previous equation, and after some algebra we get

gr1 = [P0θ
′(ξ1)/α�0]

[
1 − (M ′/2M)

4∑
j=2

(2j + 1)δj+1Pj(µ)
]
, (n = 0), (3.4.68)

which can formally be obtained from Eq. (3.4.67) if ∆j = (2j + 1)/2(j − 1) via Eq. (3.3.47).
The meridional cross-section of the tidally distorted polytrope presents a furrow, that develops at a

certain small angle χm (Fig. 3.4.1), to be discussed subsequently within the more general context of the
double star problem.

(iii) The Double Star Problem. The deviations σ(λ, ϕ) from spherical shape [Eq. (3.4.34)]
are qualitatively shown in Fig. 3.4.1, and quantitatively in Fig. 3.4.2 for a double star system having
M ′ = 2M and δ = r1/D = αξ1/D = 0.1. The deviations from spherical shape in the meridional plane
ϕ = 0 can be found at once from Eq. (3.4.34):

σ(λ, 0) = −(1 + M ′/M)∆2δ
3P2(cos λ)/3 + (M ′/M)

4∑
j=2

∆jδ
j+1Pj(sinλ). (3.4.69)

The extremes are found with P2(µ) = (3µ2−1)/2, P3(µ) = (5µ3−3µ)/2, P4(µ) = (35µ4−30µ2+3)/8 :

dσ(λ, 0)/dλ = (1 + M ′/M)∆2δ
3 sinλ cos λ + (M ′/M)[3∆2δ

3 sinλ cos λ

+(∆3δ
4/2)(15 sin2 λ cos λ − 3 cos λ) + (∆4δ

5/2)(35 sin3 λ cos λ − 15 sinλ cos λ)] = 0. (3.4.70)
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Fig. 3.4.2 Deviations from spherical shape for the component M of a double star system having M/M ′ = 0.5
and δ = 0.1 (Chandrasekhar 1933d).

One extreme is given by cos λ = 0, (λ = π/2), and another extreme is found by ignoring in Eq.
(3.4.70) the highest order term. We get the second order equation

15(M ′/M)∆3δ sin2 λ/2 + (1 + 4M ′/M)∆2 sinλ − 3(M ′/M)∆3δ/2 = 0, (3.4.71)

with one meaningful approximate solution

sinλ = 3M ′∆3δ/2∆2(M + 4M ′) + O(δ3). (3.4.72)

Since sinλ � 1, we have

sinλ ≈ λ = χm = 3M ′∆3δ
/
2∆2(M + 4M ′) + O(δ3) and λ = π − χm, (0 < n ≤ 5). (3.4.73)

At the symmetric angles χm, (χm � 1) shown in Fig. 3.4.1, a furrow occurs in the meridional plane
ϕ = 0, where the maximum contraction with respect to spherical shape takes place. The maximum
elongation subsists at λ = π/2, (ϕ = 0). A similar furrow develops also in the equatorial plane of M,
where

σ(π/2, ϕ) = (1 + M ′/M)∆2δ
3/6 + (M ′/M)

4∑
j=2

∆jδ
j+1Pj(cos ϕ). (3.4.74)

The extremes are found from

dσ(π/2, ϕ)/dϕ = −(M ′/M)
[
3∆2δ

3 sinϕ cos ϕ + (∆3δ
4/2)(15 sinϕ cos2 ϕ − 3 sinϕ)

+(∆4δ
5/2)(35 sinϕ cos3 ϕ − 15 sinϕ cos ϕ)

]
= 0. (3.4.75)

One extreme is given by sin ϕ = 0, (ϕ = 0, π), and another extreme is found by ignoring in Eq.
(3.4.75) the highest order term. We get the second order equation

15∆3δ cos2 ϕ/2 + 3∆2 cos ϕ − 3∆3δ/2 = 0, (3.4.76)

with one meaningful approximate solution

cos ϕ = ∆3δ/2∆2 + O(δ3). (3.4.77)

Since cos ϕ � 1, we have

ϕ = π/2 − χe and ϕ = 3π/2 + χe; χe = ∆3δ/2∆2, (0 < n ≤ 5). (3.4.78)
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At the symmetric angles χe, (χe � 1) shown in Fig. 3.4.1, a furrow develops in the equatorial plane,
where the maximum contraction with respect to the undistorted sphere takes place. The two maximum
elongations occur at ϕ = 0 and ϕ = π, (λ = π/2).

If n = 0, we insert ∆j = (2j + 1)/2(j − 1) from Eq. (3.3.47) into Eqs. (3.4.73), (3.4.78):

χm = 21M ′δ/20(M + 4M ′) + O(δ3); χe = 7δ/20 + O(δ3), (n = 0). (3.4.79)

The variation of the radial component of apparent gravity is another example of the superposition
theorem enunciated subsequently to Eq. (3.4.32), since we have to add simply Eqs. (3.4.65) and (3.4.67):

gr1 = [(n + 1)K�
1/n
0 θ′(ξ1)/α]

{
1 − βm

[
6ψ0(ξ1)/ξ2

1 + 3ψ′
0(ξ1)/ξ1 + (∆2 − 5)P2(cos λ)/2

]

−(M ′/M)
4∑

j=2

[2j + 1 − (j − 1)∆j ]δj+1Pj(sinλ cos ϕ)
}

= [(n + 1)K�
1/n
0 θ′(ξ1)/α]

{
1 − [(M + M ′)δ3/M ]

[
4ψ0(ξ1)/ξ2

1 + 2ψ′
0(ξ1)/ξ1 + (∆2 − 5)P2(cos λ)/3

]

−(M ′/M)
4∑

j=2

[2j + 1 − (j − 1)∆j ]δj+1Pj(sinλ cos ϕ)
}

, (0 < n ≤ 5). (3.4.80)

We have substituted for βm via Eqs. (2.6.18), (3.4.1), (3.4.46):

βm = Ω2ξ1

/
6πG�0[−θ′(ξ1)] = (M + M ′)ξ1

/
6π�0D

3[−θ′(ξ1)] = 2(M + M ′)δ3/3M, (0 ≤ n ≤ 5).
(3.4.81)

If n = 0, we have to add Eqs. (3.4.66) and (3.4.68):

gr1 = [P0θ
′(ξ1)/α�0]

{
1 + βm[−1/2 + 5P2(cos λ)/4] − (M ′/2M)

4∑
j=2

(2j + 1)δj+1Pj(sinλ cos ϕ)
}

= −(61/2P0/3α�0)
{

1 + [(M + M ′)δ3/M ][−1/3 + 5P2(cos λ)/6]

−(M ′/2M)
4∑

j=2

(2j + 1)δj+1Pj(sinλ cos ϕ)
}

, (n = 0). (3.4.82)

The coefficients of the Legendre polynomials in Eq. (3.4.80) are the same as those of the function
σ(λ, ϕ) in Eq. (3.4.34) if we replace ∆j by −[2j + 1 − (j − 1)∆j ]. With this substitution, the angles at
which the furrow occurs in the radial component of the gravitational acceleration are of the same form
as for the external shape:

χgm = 3M ′(7 − 2∆3)δ
/
2(M + 4M ′)(5 − ∆2) + O(δ3);

χge = (7 − 2∆3)δ/2(5 − ∆2) + O(δ3), (0 < n ≤ 5). (3.4.83)

If n = 0, we insert ∆j = (2j + 1)/2(j − 1) from Eq. (3.3.47) into Eq. (3.4.83):

χgm = 21M ′δ/10(M + 4M ′) + O(δ3); χge = 7δ/10 + O(δ3), (n = 0). (3.4.84)

Finally, we notice the relationship between the furrow angles in the meridional plane (ϕ = 0) and in
the equatorial plane (λ = π/2) :

χm/χe = χgm/χge = 3M ′/(M + 4M ′). (3.4.85)
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3.5 Second Order Extension of Chandrasekhar’s Theory to
Differentially Rotating Polytropes

Occhionero (1967a) has extended Chandrasekhar’s (1933a) theory to second order, succeeded by
Aikawa (1968, 1971), and Anand (1968). Geroyannis et al. (1979) have extended the theory to differ-
ential rotation, and Geroyannis and Antonakopoulos (1981a) to third order (see also Geroyannis 1984,
Geroyannis and Valvi 1985, 1986a, b, c, 1987, 1988).

By virtue of Eq. (3.1.11) the angular velocity depends in a permanently rotating polytrope (special
case of a barotrope) only on the radial cylindrical coordinate � : Ω = Ω(�). The stability condition
against axisymmetric perturbations on surfaces of constant entropy S is provided by the Solberg-Høiland
criterion (5.7.90) if �A · ∇P ≥ 0 (e.g. Stoeckly 1965, Tassoul 1978, Sec. 7.3):

d[�2Ω(�)]/d� > 0. (3.5.1)

The angular momentum per unit mass Ω�2 must necessarily increase outward. Eq. (3.5.1) is known
as the Rayleigh criterion, originally derived for an inviscid incompressible fluid. To obtain a somewhat
realistic law of differential rotation, let us consider an initially homogeneous sphere of mass M1, density
�1, and angular momentum J1 = 2Ω1M1r

2
1/5, where Ω1 and r1 denote the initial angular velocity and

the initial radius, respectively. Suppose the sphere contracts in such a way that cylindrical surfaces
remain cylindrical, conserving their mass and angular momentum. Let us denote by M(�1) the mass
inside distance �1 from the rotation axis. The mass of the sphere outside this distance is then given by
(Stoeckly 1965)

M1 − M(�1) = 4π
∫ r1


1

�1r
2 dr

∫ π/2

arcsin(
1/r)

sinλ dλ = 4π�1

∫ r1


1

r2(1 − �21/r2)1/2 dr

= 4π�1(r2
1 − �21)

3/2
/
3, (sinλ = �/r). (3.5.2)

λ is the zenith angle, � the distance from the rotation axis, and r the radial distance from the centre of
the sphere, the rotational distortion being neglected for the moment. Conservation of angular momentum
of a cylindrical surface contracting from �1 to � yields

Ω1�
2
1 = Ω�2. (3.5.3)

Inserting for �1 into Eq. (3.5.2), and replacing by virtue of mass conservation M(�1) with M(�), we
obtain for the angular velocity Ω of the cylindrical surface at distance � from the rotation axis

Ω = Ω(�) = (Ω1r
2
1/�2)

{
1 − [1 − M(�)/M1]2/3

}
= (5J1/2M1�

2)
{
1 − [1 − M(�)/M1]2/3

}
. (3.5.4)

We turn to the dimensionless coordinates from Eq. (2.1.13):

r = αξ; � = r sinλ = αξ sinλ = αs = [(n + 1)K/4πG�
1−1/n
0 ]1/2s = [(n + 1)P0/4πG�2

0]
1/2s;

s = ξ sinλ, (3.5.5)

and generalize Eq. (3.5.2) for a polytrope (�1 → � = �0θ
n) :

M1 − M(s1) = 4π�0α
3

∫ ξ1

s1

ξ2θn(1 − s2
1/ξ2)1/2 dξ. (3.5.6)

Eq. (3.5.4) becomes [M(s1) = M(s)] :

Ω = Ω(s) = (5J1/2M1α
2s2)

{
1 − (4π�0α

3/M1)2/3

[ ∫ ξ1

s

ξ2θn(1 − s2/ξ2)1/2 dξ

]2/3}
. (3.5.7)

For polytropic indices 2 ≤ n ≤ 3.25 Clement (1967) has found that Eq. (3.5.7) can be fitted to within
1% by the analytical form

ω = ω(s) = Ω(s)/Ω(0) =
[ 3∑

i=1

ai exp(−bis
2)
]1/2

, (ai, bi = const), (3.5.8)
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where ω(s) is the dimensionless angular velocity, and Ω(0) the angular velocity on the rotation axis.
Eq. (3.5.8) has to satisfy the stability condition (3.5.1). Some numerical values for the constants aj , bj

have been provided for instance by Clement (1967): a1 = 0.55, a2 = 0.54, a3 = −0.09, b1 = 0.12, b2 =
0.39, b3 = 0.71 for the polytropic index n = 2, and a1 = 0.10, a2 = 0.56, a3 = 0.35, b1 = 0.05, b2 =
0.20, b3 = 0.59 if n = 3. For this adopted set of constants the ratio between polar and equatorial angular
velocity 1/ω(Ξ1) = Ω(0)/Ω(Ξ1) is 4.09 (n = 2), and 10.8 (n = 3).

In an inertial cylindrical frame with the origin in the centre of mass of the configuration, the
equations of motion of the differentially rotating, axisymmetric fluid are given by Eq. (3.1.8), where
�Ω = �Ω[0, 0, Ω(�)] :

∂P/∂� = � ∂Φ/∂� + �Ω2(�) �; ∂P/∂z = � ∂Φ/∂z. (3.5.9)

With the polytropic relationship P = K�1+1/n we obtain at once the prime integral [cf. Eq. (3.1.22)]

Φ = (n + 1)P/� −
∫ 


0

Ω2(�′) �′ d�′ + const. (3.5.10)

We turn to the dimensionless coordinates defined by Eqs. (3.2.1), (3.5.5), (3.5.8), and insert z =
r cos λ = αξ cos λ = αζ. Eq. (3.5.10) becomes

Φ = (n + 1)K�
1/n
0

[
Θ(s, ζ) − (β/2)

∫ s

0

ω2(s′) s′ ds′
]

+ const,
(
β = Ω2(0)/2πG�0; ζ = ξ cos λ

)
.

(3.5.11)

If we insert for Φ into Poisson’s equation (2.1.4), we obtain in cylindrical (s, ϕ, ζ)-coordinates the
fundamental equation

∇2Θ(s, ζ) = −Θn(s, ζ) + β[ω2(s) + (s/2) dω2(s)/ds], (3.5.12)

where we have used Eq. (B.48). Since the undistorted polytrope has radial symmetry, spherical coordi-
nates are more appropriate:

Θ(ξ, µ) = θ(ξ) + β

A∑
j=0

ψj(ξ) Pj(µ) + β2
B∑

j=0

fj(ξ) Pj(µ) + O(β3),

[µ = cos λ; s = ξ sinλ = ξ(1 − µ2)1/2]. (3.5.13)

A and B are integers to be determined from the boundary conditions. For the terms connected with
the angular velocity Clement (1967) adopts, as for Θ, an expansion in terms of Legendre polynomials,
similarly to Blinnikov [1972, Eq. (12)]:

ω2 =
3∑

i=1

ai exp(−bis
2) =

4∑
j=1

πj(ξ) Pj(µ); (s/2) dω2/ds = −s2
3∑

i=1

aibi exp(−bis
2)

=
4∑

j=0

χj(ξ) Pj(µ);
∫ s

0

ω2(s′) s′ ds′/2 =
3∑

i=1

(ai/4bi)[1 − exp(−bis
2)] =

4∑
j=0

ϕj(ξ) Pj(µ). (3.5.14)

Clement (1967) and Geroyannis et al. (1979) truncate the expansions at P4(µ). The unknown radial
expansion functions πj , χj , and ϕj can be determined if we multiply the equations (3.5.14) consecutively
by Pk(µ), making use of the orthogonality property (3.5.16) of Legendre polynomials, and taking into
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account that odd indexed functions are zero because of equatorial symmetry:

πj(ξ) = (2j + 1)
3∑

i=1

ai exp(−biξ
2)
∫ 1

0

exp(biξ
2µ2) Pj(µ) dµ

= (2j + 1)
3∑

i=1

ai exp(−biξ
2)

j∑
k=0

pjk

∫ 1

0

µk exp(biξ
2µ2) dµ

= (2j + 1)
3∑

i=1

ai(b
1/2
i ξ)−k−1 exp(−biξ

2)
j∑

k=0

pjk

∫ b
1/2
i ξ

0

yk exp(y2) dy

= (2j + 1)
3∑

i=1

ai

j∑
k=0

pjk ψik(ξ); π2j+1(ξ) = 0. (3.5.15)

With δjk equal to the Kronecker delta, we have

∫ 1

−1

Pj(µ) Pk(µ) dµ = 2δjk

/
(2j + 1); Pj(µ) =

j∑
k=0

pjkµk, (pjk = const);

ψik(ξ) = (b1/2
i ξ)−k−1 exp(−biξ

2)
∫ b

1/2
i ξ

0

yk exp(y2) dy, (y = b
1/2
i ξµ). (3.5.16)

In the same way we get

χj(ξ) = (2j + 1)
3∑

i=1

aibiξ
2 exp(−biξ

2)
∫ 1

0

(µ2 − 1) exp(biξ
2µ2) Pj(µ) dµ

= (2j + 1)ξ2
3∑

i=1

aibi

j∑
k=0

pjk[ψi,k+2(ξ) − ψik(ξ)]; χ2j+1(ξ) = 0;

ϕj(ξ) = (2j + 1)
3∑

i=1

(ai/4bi)
[
δj0 − exp(−biξ

2)
∫ 1

0

exp(biξ
2µ2) Pj(µ) dµ

]

= (2j + 1)
3∑

i=1

(ai/4bi)
[
δj0 −

j∑
k=0

pjkψik(ξ)
]
; ϕ2j+1(ξ) = 0. (3.5.17)

In spherical coordinates the fundamental equation (3.5.12) assumes the form

∇2Θ(ξ, µ) = −Θn(ξ, µ) + β

4∑
j=0

[πj(ξ) + χj(ξ)] Pj(µ). (3.5.18)

The Laplacian of Eq. (3.5.13) is

∇2Θ = ∇2θ + β
A∑

j=0

(Pj ∇2ψj + ψj ∇2Pj) + β2
B∑

j=0

(Pj ∇2fj + fj ∇2Pj)

= D0θ + β

A∑
j=0

Pj Djψj + β2
B∑

j=0

Pj Djfj , (3.5.19)

since according to Eqs. (B.39), (3.1.40): ∇2ψj = d2ψj/dξ2 + (2/ξ) dψj/dξ; ∇2fj = d2fj/dξ2 +
(2/ξ) dfj/dξ; ∇2Pj = (1/ξ2) d[(1 − µ2) dPj/dµ]

/
dµ = −j(j + 1)Pj/ξ2. We have also introduced the

operator (Chandrasekhar and Lebovitz 1962d)

Djg = d2g/dξ2 + (2/ξ) dg/dξ − j(j + 1)g/ξ2. (3.5.20)



3.5 Second Order Extension of Chandrasekhar’s Theory to Differentially Rotating Polytropes 185

The expansion of Θn up to the second power in β yields

Θn = θn + βnθn−1
A∑

j=0

ψjPj + β2

{
[n(n − 1)/2]θn−2

( A∑
j=0

ψjPj

)2

+ nθn−1
B∑

j=0

fjPj

}

= θn + βnθn−1
A∑

j=0

ψjPj + β2
C∑

j=0

{
[n(n − 1)/2]θn−2Sj + nθn−1fj

}
Pj , (3.5.21)

where we have substituted C = max{2A, B} and

[ A∑
j=0

ψj(ξ) Pj(µ)
]2

=
2A∑
j=0

Sj(ξ) Pj(µ). (3.5.22)

The comments subsequent to Eq. (3.2.7) subsist too for the expansion (3.5.21). We insert Eqs.
(3.5.19), (3.5.21) into Eq. (3.5.18), and equate the coefficients of Legendre polynomials Pj(µ) having the
same power of β. We obtain the set of differential equations

d(ξ2 dθ/dξ)/dξ = −ξ2θn; d(ξ2 dψj/dξ)/dξ = [j(j + 1) − nξ2θn−1]ψj + ξ2πj + ξ2χj ;

d(ξ2 dfj/dξ)/dξ = [j(j + 1) − nξ2θn−1]fj − [n(n − 1)/2]ξ2θn−2Sj , (πj , χj = 0 if j > 4). (3.5.23)

The initial conditions at the origin ξ = 0 are analogous to Eq. (3.2.6):

Θ(0, µ) = 1; [∂Θ(ξ, µ)/∂ξ]ξ=0 = 0; θ(0) = 1; θ′(0) = 0; ψj(0), ψ′
j(0), fj(0), f ′

j(0) = 0. (3.5.24)

Geroyannis et al. (1979) assume the differentially rotating boundary under the form [cf. Eq. (3.2.34)]

Ξ1(µ) = ξ1 + β
A∑

j=0

qjPj(µ) + β2
B∑

j=0

tjPj(µ), (qj , tj = const). (3.5.25)

We have similarly to Eq. (3.2.36)

θ(Ξ1) ≈ θ(ξ1) + (Ξ1 − ξ1) θ′(ξ1) + (Ξ1 − ξ1)2 θ′′(ξ1)/2

= θ(ξ1) + βθ′(ξ1)
A∑

j=0

qjPj(µ) + β2θ′(ξ1)
B∑

j=0

tjPj(µ) + [β2θ′′(ξ1)/2]
[ A∑

j=0

qjPj(µ)
]2

= θ(ξ1) + βθ′(ξ1)
A∑

j=0

qjPj(µ) + β2θ′(ξ1)
C∑

j=0

(tj − Qj/ξ1) Pj(µ), (0 < n < 5), (3.5.26)

where θ′′(ξ1) = −2θ′(ξ1)/ξ1 via Eq. (2.1.14), and

[ A∑
j=0

qjPj(µ)
]2

=
2A∑
j=0

QjPj(µ), (Qj = const; 0 < n < 5). (3.5.27)

The products from Eq. (3.5.13) are expanded on the boundary as

β
A∑

j=0

ψj(Ξ1) Pj(µ) ≈ β
A∑

j=0

ψj(ξ1) Pj(µ) + β(Ξ1 − ξ1)
A∑

j=0

ψ′
j(ξ1) Pj(µ) = β

A∑
j=0

ψj(ξ1) Pj(µ)

+β2
A∑

k=0

qkPk(µ)
[ A∑

j=0

ψ′
j(ξ1) Pj(µ)

]
= β

A∑
j=0

ψj(ξ1) Pj(µ) + β2
A∑

j=0

2A∑
k=0

Qjkψ′
j(ξ1) Pk(µ), (3.5.28)

where

Pj(µ)
A∑

k=0

qkPk(µ) =
2A∑
k=0

QjkPk(µ), (0 ≤ j ≤ A; Qjk = const; Qjk = 0 if k > j + A), (3.5.29)
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since according to Eq. (3.1.39) Pj(µ) is a polynomial of degree j. We approximate also

β2
B∑

j=0

fj(Ξ1) Pj(µ) ≈ β2
B∑

j=0

fj(ξ1) Pj(µ). (3.5.30)

Eqs. (3.5.26)-(3.5.30) are inserted into Eq. (3.5.13):

Θ(Ξ1, µ) = θ(ξ1) + β

A∑
j=0

[qjθ
′(ξ1) + ψj(ξ1)] Pj(µ) + β2

C∑
j=0

[
(tj − Qj/ξ1) θ′(ξ1)

+
A∑

k=0

Qkjψ
′
k(ξ1) + fj(ξ1)

]
Pj(µ) = 0, (0 < n < 5). (3.5.31)

The coefficients with the same β and Pj(µ) must vanish separately, and therefore

qj = −ψj(ξ1)/θ′(ξ1); qj = 0 if j > A; tj = Qj/ξ1 −
A∑

k=0

Qkjψ
′
k(ξ1)/θ′(ξ1) − fj(ξ1)/θ′(ξ1);

tj = 0 if j > B. (3.5.32)

To simplify the notations, we express the internal potential (3.5.11) in the unit (n + 1)K�
1/n
0 , and

expand ϕj(Ξ1) from Eq. (3.5.14) analogously to Eqs. (3.5.28), (3.5.29). In the constant term from Eq.
(3.5.11) we emphasize the contribution of β and β2 : const = c0 + c10β + c20β

2. Thus

Φ(Ξ1, µ) = c0 + β

[
c10 −

4∑
j=0

ϕj(ξ1) Pj(µ)
]

+ β2

[
c20 −

4+A∑
j=0

4∑
k=0

Qkjϕ
′
k(ξ1) Pj(µ)

]
,

(
Θ(Ξ1, µ) = 0

)
.

(3.5.33)

To calculate the partial derivative of the internal potential (3.5.11), we must first obtain ∂Θ/∂ξ on
the boundary, by differentiating Eq. (3.5.13) and using Eqs. (3.5.26)-(3.5.30):

(∂Θ/∂ξ)ξ=Ξ1 = θ′(ξ1) + β
A∑

j=0

[−2qjθ
′(ξ1)/ξ1 + ψ′

j(ξ1)] Pj(µ)

+β2
C∑

j=0

[
− 2tjθ

′(ξ1)/ξ1 +
A∑

k=0

Qkjψ
′′
k (ξ1) + 3Qjθ

′(ξ1)/ξ2
1 + f ′

j(ξ1)
]

Pj(µ), (1 < n < 5),

(3.5.34)

where the derivatives on the boundary

θ′′(ξ1) = −2θ′(ξ1)/ξ1 if 0 < n < 5; θ′′′(ξ1) = 6θ′(ξ1)/ξ2
1 if 1 < n < 5, (3.5.35)

of the Lane-Emden equation (2.1.14) have been used. The constraint 1 < n < 5 for θ′′′(ξ1) further limits
the domain of applicability of the present theory, since θ′′′(ξ1) is infinite if 0 < n < 1.

The derivative of Eq. (3.5.11) becomes on the boundary via Eqs. (3.5.14), (3.5.34):

[∂Φ(ξ, µ)/∂ξ]ξ=Ξ1 = θ′(ξ1) + β
A∑

j=0

[−2qjθ
′(ξ1)/ξ1 + ψ′

j(ξ1) − ϕ′
j(ξ1)] Pj(µ)

+β2
C∑

j=0

{
− 2tjθ

′(ξ1)/ξ1 +
A∑

k=0

Qkj [ψ′′
k (ξ1) − ϕ′′

k(ξ1)] + 3Qjθ
′(ξ1)/ξ2

1 + f ′
j(ξ1)

}
Pj(µ), (3.5.36)

where it has been supposed, as will be verified later, that A ≥ 4. We now turn to the outer potential
[cf. Eq. (3.1.58)], truncating the expansions in accordance with the scheme of approximation adopted by
Geroyannis et al. (1979):

Φe(ξ, µ) = k0/ξ + β
A∑

j=0

k1jPj(µ)/ξj+1 + β2
B∑

j=0

k2jPj(µ)/ξj+1, (k0, k1j , k2j = const). (3.5.37)
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We expand on the boundary via Eq. (3.5.26):

k0/Ξ1 = k0/ξ1 − β
A∑

j=0

k0qjPj(µ)/ξ2
1 + β2

C∑
j=0

(−k0tj/ξ2
1 + k0Qj/ξ3

1) Pj(µ) + O(β3);

β
A∑

j=0

k1jPj(µ)/Ξj+1
1 = β

A∑
j=0

k1jPj(µ)/ξj+1
1 − β2

A∑
j=0

2A∑
k=0

(j + 1)k1jQjkPk(µ)/ξj+2
1 + O(β3);

β2
B∑

j=0

k2jPj(µ)/Ξj+1
1 = β2

B∑
j=0

k2jPj(µ)/ξj+1
1 + O(β3). (3.5.38)

Insertion of Eq. (3.5.38) into Eq. (3.5.37) yields

Φe(Ξ1, µ) = k0/ξ1 + β
A∑

j=0

(−k0qj/ξ2
1 + k1j/ξj+1

1 ) Pj(µ)

+β2
C∑

j=0

[
− k0tj/ξ2

1 + k0Qj/ξ3
1 −

A∑

=0

(� + 1)k1
Q
j/ξ
+2
1 + k2j/ξj+1

1

]
Pj(µ). (3.5.39)

Similarly, the derivative of Eq. (3.5.37) becomes on the boundary

[∂Φe(ξ, µ)/∂ξ]ξ=Ξ1 = −k0/Ξ2
1 − β

A∑
j=0

(j + 1)k1jPj(µ)/Ξj+2
1 − β2

B∑
j=0

(j + 1)k2jPj(µ)/Ξj+2
1

= −k0/ξ2
1 + β

A∑
j=0

[2k0qj/ξ3
1 − (j + 1)k1j/ξj+2

1 ] Pj(µ)

+β2
C∑

j=0

[
2k0tj/ξ3

1 − 3k0Qj/ξ4
1 +

A∑

=0

(� + 1)(� + 2)k1
Q
j/ξ
+3
1 − (j + 1)k2j/ξj+2

1

]
Pj(µ). (3.5.40)

Like in Sec. 3.2, we now equate Eqs. (3.5.33), (3.5.36) with Eqs. (3.5.39), (3.5.40), respectively. First,
we remark that the zero order terms give [cf. Eq. (3.2.43)]

k0 = −ξ2
1θ′(ξ1); c0 = k0/ξ1 = −ξ1θ

′(ξ1), (1 < n < 5). (3.5.41)

Equating the coefficients of βP0(µ), we get

k10 = ξ2
1 [ϕ′

0(ξ1) − ψ′
0(ξ1)]; c10 = ϕ0(ξ1) − ψ0(ξ1) + ξ1[ϕ′

0(ξ1) − ψ′
0(ξ1)], (1 < n < 5). (3.5.42)

The coefficients of βPj(µ) provide two relationships for k1j :

k1j = ξj+1
1 [ψj(ξ1) − ϕj(ξ1)]; k1j = ξj+2

1 [ϕ′
j(ξ1) − ψ′

j(ξ1)]/(j + 1), (j = 1, 2, 3, ...; 1 < n < 5).
(3.5.43)

These have to be identical, yielding a basic boundary condition. All πj(ξ), χj(ξ), ϕj(ξ) have been
assumed equal to zero if j > 4; equatorial symmetry implies that πj(ξ), χj(ξ), ϕj(ξ) ≡ 0 if j = 1, 3. In
this case Eq. (3.5.43) writes

AjψAj(ξ1) − k1jξ
−j−1
1 = 0; Ajψ

′
Aj(ξ1) + (j + 1)k1jξ

−j−2
1 = 0, (j �= 0, 2, 4; 1 < n < 5).

(3.5.44)

We have emphasized the constants Aj , as in Chandrasekhar’s theory from Sec. 3.2, by writing
ψj(ξ) ≡ AjψAj(ξ). The homogeneous system (3.5.44) has nonzero solutions if its determinant vanishes:
Dj(ξ1) = ξ−j−2

1 [(j + 1)ψAj(ξ1) + ξ1ψ
′
Aj(ξ1)] = 0, as already outlined subsequently to Eq. (3.2.43). Since

the condition Dj(ξ1) = 0 is in conflict with the expansions (3.2.95), (3.2.96), we conclude that Aj and
k1j vanish identically, and therefore ψj(ξ) ≡ 0 if j �= 0, 2, 4. And A = 4 results from Eq. (3.5.13).
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The preceding result permits to evaluate the functions Sj , Qj , and Qjk. Products of two zonal har-
monics Pj(µ) Pk(µ) can be decomposed into a sum of individual Legendre polynomials by the Adams-
Neumann formula (e.g. Kopal 1983):

Pj(µ) Pk(µ) =
j∑


=0

[Aj−
A
Ak−
/Aj+k−
][(2j + 2k − 4� + 1)/(2j + 2k − 2� + 1)] Pj+k−2
(µ),

(j ≤ k; A0 = 1; A
 = 1 × 3 × 5 × ... × (2� − 1)/�! if � ≥ 1). (3.5.45)

Thus, we can write instead of the products from Eqs. (3.5.22), (3.5.27), (3.5.29):

(P2)2 = A10P0 + A12P2 + A14P4 = (1/5)P0 + (2/7)P2 + (18/35)P4; (P4)2 = A20P0 + A22P2

+A24P4 + A26P6 + A28P8 = (1/9)P0 + (100/693)P2 + (162/1001)P4 + (20/99)P6 + (490/1287)P8;
P2P4 = A30P0 + A32P2 + A34P4 + A36P6 = (2/7)P2 + (20/77)P4 + (5/11)P6, (A30 = 0; P0 = 1).

(3.5.46)

Via Eqs. (3.5.22) and (3.5.46) we find after some algebra:

S0(ξ) = ψ2
0 + A10ψ

2
2 + A20ψ

2
4 + 2A30ψ2ψ4; S2(ξ) = A12ψ

2
2 + A22ψ

2
4 + 2ψ0ψ2 + 2A32ψ2ψ4;

S4(ξ) = A14ψ
2
2 + A24ψ

2
4 + 2ψ0ψ4 + 2A34ψ2ψ4; S6(ξ) = A26ψ

2
4 + 2A36ψ2ψ4; S8(ξ) = A28ψ

2
4 .

(3.5.47)

Analogously, Eqs. (3.5.27) and (3.5.46) yield

Q0 = q2
0 + A10q

2
2 + A20q

2
4 + 2A30q2q4; Q2 = A12q

2
2 + A22q

2
4 + 2q0q2 + 2A32q2q4;

Q4 = A14q
2
2 + A24q

2
4 + 2q0q4 + 2A34q2q4; Q6 = A26q

2
4 + 2A36q2q4; Q8 = A28q

2
4 . (3.5.48)

Finally, Eqs. (3.5.29) and (3.5.46) give

Q00 = q0; Q02 = q2; Q04 = q4; Q20 = A10q2 + A30q4; Q22 = q0 + A12q2 + A32q4;
Q24 = A14q2 + A34q4; Q26 = A36q4; Q40 = A30q2 + A20q4; Q42 = A32q2 + A22q4;
Q44 = q0 + A34q2 + A24q4; Q46 = A36q2 + A26q4; Q48 = A28q4, (3.5.49)

where all other Sj , Qj , Qjk are zero. Equating the second order terms β2Pj(µ) from Eqs. (3.5.36) and
(3.5.40), we find

k2j = [ξj+2
1 /(j + 1)]

{ A∑

=0

Q
j [ϕ′′

 (ξ1) − ψ′′


 (ξ1) + (� + 1)(� + 2)k1
/ξ
+3
1 ] − f ′

j(ξ1)
}

,

(1 < n < 5; j = 0, 1, 2, 3, ...), (3.5.50)

where terms with Qj and tj cancel out if k0 is inserted via Eq. (3.5.41). The two terms containing
β2P0(µ) in Eqs. (3.5.33), (3.5.39) yield

c20 =
A∑


=0

Q
0[ϕ′

(ξ1) − (� + 1)k1
/ξ
+2

1 ] + (k0/ξ2
1)(Q0/ξ1 − t0) + k20/ξ1, (A = 4; 1 < n < 5),

(3.5.51)

and the terms connected with β2Pj(µ), (j = 1, 2, 3, ...) :

k2j = ξj+1
1

{ A∑

=0

Q
j [−ϕ′

(ξ1) + (� + 1)k1
/ξ
+2

1 ] − (k0/ξ2
1)(Qj/ξ1 − tj)

}
, (A = 4; 1 < n < 5).

(3.5.52)

The two relationships (3.5.50) and (3.5.52) for k2j , (j = 1, 2, 3, ...) must be identical, yielding a basic
boundary condition. If j �= 0, 2, 4, 6, 8, we observe that Eqs. (3.5.50), (3.5.52) simplify to

k2j = −ξj+2
1 f ′

j(ξ1)/(j + 1); k2j = k0tjξ
j−1
1 = ξj+1

1 fj(ξ1), (1 < n < 5; j �= 0, 2, 4, 6, 8),
(3.5.53)
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Table 3.5.1 Boundary values of relevant functions for Chandrasekhar’s second order theory of uniformly
rotating polytropes (Geroyannis and Valvi 1986c). Note, that the functions ψj from Eq. (3.5.13) are different
from those in Secs. 3.2-3.4, as they include the factors Aj from Eq. (3.2.9). For constant angular velocity we
have π0 = 1, ϕ0 = −ϕ2 = ξ2/6. And aE + b means a × 10b.

n 2 3 4 n 2 3 4

π0 1.000E+0 1.000E+0 1.000E+0 ψ2 −3.625E+0 −8.157E+0 −3.745E+1
ϕ0 3.158E+0 7.928E+0 3.736E+1 ψ′

2 −1.129E+0 −2.199E+0 −4.973E+0
ϕ′

0 1.451E+0 2.300E+0 4.991E+0 ψ′′
2 −6.291E−1 −3.911E−1 3.381E−1

ϕ′′
0 3.333E−1 3.333E−1 3.333E−1 f0 −3.625E+0 −1.728E+1 −1.485E+2

ϕ2 −3.158E+0 −7.928E+0 −3.736E+1 f ′
0 −4.153E+0 −6.108E+0 −1.437E+1

ϕ′
2 −1.451E+0 −2.300E+0 −4.991E+0 f2 −5.748E+0 −9.260E+0 −3.027E+1

ϕ′′
2 −3.333E−1 −3.333E−1 −3.333E−1 f ′

2 3.961E+0 4.028E+0 6.065E+0
ψ0 1.915E+0 5.838E+0 3.351E+0 f4 1.623E+0 1.650E+0 3.226E+0
ψ′

0 9.970E−1 2.039E+0 4.879E+0 f ′
4 −1.865E+0 −1.196E+0 −1.077E+0

ψ′′
0 5.419E−1 4.087E−1 3.482E−1

where we have used Eqs. (3.5.32), (3.5.41), (3.5.47)-(3.5.49). The equation (3.5.53) is similar to Eq.
(3.5.43) with ϕj(ξ1) ≡ 0, and therefore we conclude that k2j and fj(ξ) vanish if j �= 0, 2, 4, 6, 8. Also,
from Eq. (3.5.13) results that C = B = 2A = 8. In the case of constant angular velocity we have
ω ≡ 1 = const, and from Eq. (3.5.14) follows π0 = 1, ϕ0 = ξ2/6, ϕ2 = −ξ2/6,

(
s2/4 = ξ2[1−P2(µ)]/6

)
,

the other functions πj , χj , ϕj being equal to zero.
In this way, all relevant functions of the second order perturbation theory are completely determined.
Within the domain of real numbers the functions θn, θn−1, θn−2, ... become in most cases indefinite for

negative values of θ, i.e. beyond the first zero ξ1 of the Lane-Emden function θ. To avoid this detriment,
Geroyannis (1988) adopts a complex-plane strategy, extending the functions from the expansion (3.5.13)
into the complex plane if ξ > ξ1. The representation of Θ if ξ ≤ ξ1 is

Θ(ξ, µ) = Re(θ) + β
A∑

j=0

Re[ψj(ξ)] Pj(µ) + β2
B∑

j=0

Re[fj(ξ)] Pj(µ) + O(β3), (3.5.54)

where Re denotes the real part of the complex functions θ, ψj , fj . Recall that the principal value of the
n-th power of the complex function θ = a + ib is (e.g. Bronstein and Semendjajew 1985)

θn = (a + ib)n = (r exp iϕ)n = [r(cosϕ + i sinϕ)]n = rn(cos nϕ + i sin nϕ);

r = (a2 + b2)1/2; cos ϕ = a/r; sinϕ = b/r. (3.5.55)

Geroyannis (1988, 1990a, 1992) claims that his complex-plane strategy and multiple partition tech-
nique improve perturbation theories for uniformly and differentially rotating polytropes (cf. Sec. 3.8.7,
Table 3.8.1).

Geroyannis (1990b, 1991, 1993a) has also studied viscopolytropic models with the aid of Eq. (2.1.1)
when τ �= 0. A general expression for the viscous stress tensor in Cartesian coordinates is (e.g. Landau
and Lifshitz 1959, Tassoul 1978)

τjk = (µ + µR)[∂vj/∂xk + ∂vk/∂xj − (2δjk/3) ∂vi/∂xi] + (µB + 5µR/3) δjk ∂vi/∂xi,

(i, j, k,= 1, 2, 3), (3.5.56)

where v1, v2, v3 are the velocity components, and µ, µB , µR denote the coefficients of dynamic (shear),
bulk, and radiative viscosity, respectively. For axial symmetry and v
, vz = 0, vϕ = vϕ(�, t), µ =
µ1(�) µ2(z), µB , µR = 0, the ϕ-component of Eq. (2.1.1) becomes in cylindrical (�, ϕ, z)-coordinates
equal to (e.g. Batchelor 1967, Tassoul 1978, App. B)

� Dvϕ/Dt = (1/�) ∂(�τ
ϕ)/∂� + τ
ϕ/�, (∂P/∂ϕ, ∂Φ/∂ϕ = 0), (3.5.57)

where τ
ϕ = �µ1(�) µ2(z) ∂(vϕ/�)
/
∂�. We do not pursue this subject further, as Geroyannis (1990b, 1991,

1993a) obtains numerical results under very special assumptions:

vϕ(�, t) = � Ω(t) ω(�); [1/Ω(t)] dΩ(t)/dt = const; µ1(�) = c + Θd(�, 0) + F (�),
[c, d = const; Θ = Θ(�, z)], (3.5.58)
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where Ω(t) is the angular velocity on the rotation axis, F (�) some particular function, and ω(�) = ω(αs)
has the form (3.5.8).

Although Smith (1975) has criticized expansions of the form (3.5.21), as leading to singular pertur-
bation problems [cf. remarks subsequent to Eq. (3.2.7)], his method of matched asymptotic expansions
bears some resemblance to the higher order perturbation theories discussed in this section. Smith (1975)
takes the view that the expansions (3.5.13) and (3.5.21) become inadequate if θ(ξ) = O(β); from the
Taylor expansion θ(ξ) ≈ θ′(ξ1)(ξ− ξ1), (θ(ξ1) = 0) results that in this case we have ξ1 − ξ = O(β). In the
region where ξ1 − ξ = O(β), we have of course also Θ(ξ, µ) ≈ θ(ξ) ≈ O(β), and Smith (1975) introduces
the new ”stretched” variables η and τ :

Θ(ξ, µ) = β τ(η, µ); ξ = ξ1 − βη. (3.5.59)

These new variables are of order unity in the region ξ1−ξ = O(β), because Θ = O(β) and ξ1−ξ = O(β).
As ξ approaches ξ1 even closer, the function τ decreases, and approaches the region where τ = O(β), [Θ =
O(β2)] and η1 − η = O(β). In this new region Smith (1975) adopts the stretched variables ζ and ε :

τ(η, µ) = β ε(ζ, µ); η = η1 − βζ. (3.5.60)

Smith (1975) stops at this point the introduction of new, higher order, stretched variables.
The most important detriment of higher order perturbation theories is the hopeless increase of expan-

sion terms, the relatively modest increase of theoretical insight, and even of precision (cf. Table 3.8.1).
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3.6 Double Approximation Method for Rotationally and
Tidally Distorted Polytropic Spheres

A variant of the perturbation method outlined in the previous four sections is the so-called double
approximation technique. In fact, this method is merely an extension of earlier work due to Jeans (1919)
and Takeda (1934) on rotating nonhomogeneous stars. In the inner region, where the centrifugal force
is small, Chandrasekhar’s perturbation theory from the previous sections is used. In the outer zone the
contribution of the mass from the outer layers is neglected, taking the gravitational force as arising solely
from the matter in the slightly distorted inner zone (Tassoul 1978). The basic idea of the method arises
from the fact that most of the material of a polytrope of index 1.5 � n ≤ 5 will be in the innermost
region of the configuration. For example, 90% of the mass of a nonrotating polytrope of index n = 2 is
contained within 40% of its volume. The inner region of an axisymmetric, uniformly rotating polytrope
– up to the fitting radius ξf – is assumed to be described by Chandrasekhar’s theory from Sec. 3.2:

Θ(ξ, µ) = θ(ξ) + βψ0(ξ) + β

∞∑
j=1

Ajψj(ξ) Pj(µ), (ξ ≤ ξf ). (3.6.1)

The prime integral of the equation of hydrostatic equilibrium, valid over the whole polytrope is [cf.
Eqs. (3.1.74), (3.5.10)]:

Φ = (n + 1)P/� − Ω2�2/2 + const. (3.6.2)

With Eqs. (3.2.1), (3.2.3) we turn to dimensionless coordinates:

Φ = [(n + 1)K�
1/n
0 ]

{
Θ(ξ, µ) + c0 + β[c10 − ξ2/6 + ξ2P2(µ)/6]

}
, (const = c0 + βc10). (3.6.3)

In the inner region we insert for Θ from Eq. (3.6.1):

Φ = [(n + 1)K�
1/n
0 ]

{
θ(ξ) + c0 + β

[
c10 + ψ0(ξ) − ξ2/6 + ξ2P2(µ)/6 +

∞∑
j=1

Ajψj(ξ) Pj(µ)
]}

,

(ξ ≤ ξf ), (3.6.4)

where �2 = α2ξ2 sin2 λ = α2ξ2(1−µ2) = 2α2ξ2[1−P2(µ)]/3. For the outer region beyond ξf the density is
assumed so small that Poisson’s equation ∇2Φ = −4πG� turns into Laplace’s equation ∇2Φ = 0, that is
rigorously valid only outside the boundary. Thus, we approximate Φ in the outer region with the external
potential (3.2.33):

Φ ≈ Φe = [(n + 1)K�
1/n
0 ]

[
k0/ξ + β

∞∑
j=0

k1jξ
−j−1Pj(µ)

]
, (ξ ≥ ξf ). (3.6.5)

The solution of the problem is now completed by matching the inner and outer solution (Eqs. (3.6.4)
and (3.6.5), respectively) on some suitably chosen spherical interface ξ = ξf . The fitting coordinate is
determined to give maximum accuracy, by imposing that the relative error of the inner and outer solution
is of the same order at ξf . In a rough approximation, the relative error (Θ− θ)/θ ≈ (βψ0/θ)2 of the inner
solution (3.6.1) is equal to the square of the first order term βψ0/θ, by ignoring angular dependences.
The error [M1 − M(ξf )]/M1 of the outer solution results from the fact that the mass of the polytrope
outside ξf is neglected, where M(ξf ) denotes the mass inside radius ξf , and M1 the total mass. Thus,
Monaghan and Roxburgh (1965) determine ξf roughly from

[βcψ0(ξf )/θ(ξf )]2 = [M1 − M(ξf )]/M1, (3.6.6)

where the value βc = Ω2
c/2πG�0 = (Ω2

c/2πG�m)(�m/�0) = βcm(�m/�0) ≈ 0.36(�m/�0) corresponds to
equatorial mass loss, and is called the critical rotation parameter βc (see Eqs. (3.4.46), (3.6.36), Table
3.8.1). On the fitting interface ξ = ξf we impose the condition of continuity Φ(ξf , µ) = Φe(ξf , µ) of the
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inner and outer potential, by equating the coefficients of the same Legendre polynomials in Eqs. (3.6.4)
and (3.6.5):

k0/ξf = θ(ξf ) + c0; k10/ξf = ψ0(ξf ) − ξ2
f/6 + c10; k12/ξ3

f = A2ψ2(ξf ) + ξ2
f/6;

k1j/ξj+1
f = Ajψj(ξf ) if j �= 0, 2. (3.6.7)

Continuity of the derivatives (∂Φ/∂ξ)ξ=ξf
= (∂Φe/∂ξ)ξ=ξf

of Eqs. (3.6.4) and (3.6.5) at ξ = ξf yields

−k0/ξ2
f = θ′(ξf ); −k10/ξ2

f = ψ′
0(ξf ) − ξf/3; −3k12/ξ4

f = A2ψ
′
2(ξf ) + ξf/3;

−(j + 1)k1j/ξj+2
f = Ajψ

′
j(ξf ) if j �= 0, 2. (3.6.8)

We have k1j , Aj = 0 if j �= 0, 2, as in Sec. 3.2, and

k0 = −ξ2
fθ′(ξf ); c0 = −ξfθ′(ξf ) − θ(ξf ); k10 = −ξ2

fψ′
0(ξf ) + ξ3

f/3;

c10 = −ψ0(ξf ) − ξfψ′
0(ξf ) + ξ2

f/2; k12 = ξ5
f [ξfψ′

2(ξf ) − 2ψ2(ξf )]
/
6[3ψ2(ξf ) + ξfψ′

2(ξf )];

A2 = −5ξ2
f

/
6[3ψ2(ξf ) + ξfψ′

2(ξf )]. (3.6.9)

The solution (3.6.1) for the inner region becomes

Θ(ξ, µ) = θ(ξ) + β[ψ0(ξ) + A2ψ2(ξ) P2(µ)], (ξ ≤ ξf ; 0 ≤ n ≤ 5). (3.6.10)

For the outer layers Eq. (3.6.3) writes, by inserting for Φ the outer potential Φe from Eq. (3.6.5):

Θ(ξ, µ) = k0/ξ − c0 + β[k10/ξ + ξ2/6 − c10 + (k12/ξ3 − ξ2/6) P2(µ)], (ξf ≤ ξ ≤ Ξ1; 0 ≤ n ≤ 5).
(3.6.11)

The critical configuration of a rotating polytrope occurs if the polytrope is on the verge of equatorial
break-up, i.e. when the centrifugal force at the equator just balances gravity. In other words, if Φtot

denotes the total potential, the effective gravity �g(r, µ) = ∇Φtot has to vanish at the critical equatorial
radius r = rce = rce(0), [r = r(µ)]. The vanishing radial component of the effective gravity at the equator
writes

grce
= (∂Φtot/∂r)r=rce

= [∂(Φ + Φf )/∂r]r=rce
= [(n + 1)K�

1/n
0 /α][∂Θ(ξ, µ)/∂ξ]ξ=Ξce

= [(n + 1)K�
1/n
0 /α][−k0/Ξ2

ce − βc(k10/Ξ2
ce + 3k12/Ξ4

ce − Ξce/2)] = 0,
[Ξ1 = Ξ1(µ); Ξce = Ξ1(0)], (3.6.12)

where we have inserted for Φ from Eq. (3.6.3), for Θ from Eq. (3.6.11), and for the centrifugal potential
Φf = Ω2

c�
2/2 = (n + 1)K�

1/n
0 βcξ

2[1−P2(µ)]/6 from Eqs. (3.1.23), (3.4.64). On the equatorial boundary
we have further

Θ(Ξce, 0) = k0/Ξce − c0 + βc(k10/Ξce + k12/Ξ3
ce + Ξ2

ce/4 − c10) = 0. (3.6.13)

The two previous equations ∂Θ/∂ξ = 0 and Θ = 0 determine the critical rotation parameter βc =
Ω2

c/2πG�0, and the critical equatorial coordinate Ξce = Ξce(0) = Ξ1(0), [cf. Eqs. (3.8.158)-(3.8.164)].
The double approximation method is applicable for polytropic indices 0 ≤ n ≤ 5, but with increasing

mass concentration in the outer layers (n → 0), its accuracy decreases sharply. The method has been
extended to second order by Singh and Singh (1984), showing no drastic improvement of results.

Concerning the double star problem, Orlov (1960) has considered a binary model consisting of stars
with polytropic core and mass-less (Roche type) envelope. Double approximation techniques have been
applied to the double star problem nearly concomitantly by Martin (1970, second order theory), Naylor
and Anand (1970), and Durney and Roxburgh (1970). In the inner region of the primary component M
the fundamental function is assumed under the form (3.4.6), (3.4.8):

Θ(ξ, λ, ϕ) = θ(ξ) + βψ0(ξ) + β
∞∑

j=1

Ajψj(ξ) Yj(λ, ϕ), (ξ ≤ ξf ). (3.6.14)
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The integral of the equation of hydrostatic equilibrium (3.4.2), valid over the whole polytrope is

Φ = (n + 1)P/� − Φ′
e − (Ω2/2)[x2

1 + x2
2 − 2M ′Dx1/(M + M ′)] + const = (n + 1)K�1/n

−(GM ′/D)
4∑

j=0

(r/D)jPj(sinλ cos ϕ) − (Ω2/2)[�2 − 2M ′Dr sinλ cos ϕ/(M + M ′)] + const

= (n + 1)K�
1/n
0 Θ(ξ, λ, ϕ) − (GM ′α2/D3)

4∑
j=1

(α/D)j−2ξjPj(sinλ cos ϕ) − πβG�0α
2ξ2(1 − cos2 λ)

+GM ′r sinλ cos ϕ/D2 + const = (n + 1)K�
1/n
0

{
Θ(ξ, λ, ϕ) + c0

+β

[
c10 −

4∑
j=2

M ′(α/D)j−2ξjPj(sinλ cos ϕ)/2(M + M ′) − ξ2/6 + ξ2P2(cosλ)/6
]}

, (3.6.15)

where Gα2/D3 = (n + 1)βK�
1/n
0 /2(M + M ′), πG�0α

2 = (n + 1)K�
1/n
0 /4, const = c0 + βc10, and we

have used Eq. (3.4.16) for the external potential Φ′
e of the secondary M ′.

The gravitational potential in the inner region is obtained by inserting for Θ from Eq. (3.6.14):

Φ = (n + 1)K�
1/n
0

{
θ(ξ) + c0 + β

[
c10 + ψ0(ξ) +

∞∑
j=1

Ajψj(ξ) Yj(λ, ϕ)

−
4∑

j=2

M ′(α/D)j−2ξjPj(sinλ cos ϕ)/2(M + M ′) − ξ2/6 + ξ2P2(cosλ)/6
]}

, (ξ ≤ ξf ). (3.6.16)

In the outer region the internal potential is approximated by Eq. (3.4.24):

Φ ≈ Φe = [(n + 1)K�
1/n
0 ]

[
k0/ξ + β

∞∑
j=0

k1jξ
−j−1Yj(λ, ϕ)

]
, (ξ ≥ ξf ). (3.6.17)

We now equate, as in the rotational problem, the coefficients of harmonics of the same order between
Eqs. (3.6.16) and (3.6.17) at the fitting radius ξf :

k0/ξf = θ(ξf ) + c0; k10/ξf = ψ0(ξf ) − ξ2
f/6 + c10;

k12ξ
−3
f Y2(λ, ϕ) = A2ψ2(ξf ) Y2(λ, ϕ) − M ′ξ2

fP2(sinλ cos ϕ)/2(M + M ′) + ξ2
fP2(cosλ)/6;

k1jξ
−j−1
f Yj(λ, ϕ) = Ajψj(ξf ) Yj(λ, ϕ) − M ′(α/D)j−2ξj

fPj(sinλ cos ϕ)/2(M + M ′) if j = 3, 4.

(3.6.18)

The equations for j �= 0, 2, 3, 4 lead ultimately to k1j , Aj = 0, as in Sec. 3.4, and are omitted for
brevity. The continuity of the radial derivatives of Eqs. (3.6.16) and (3.6.17) at ξ = ξf yields

−k0/ξ2
f = θ′(ξf ); −k10/ξ2

f = ψ′
0(ξf ) − ξf/3; −3k12ξ

−4
f Y2(λ, ϕ) = A2ψ

′
2(ξf ) Y2(λ, ϕ)

−M ′ξfP2(sinλ cos ϕ)/(M + M ′) + ξfP2(cos λ)/3; −(j + 1)k1jξ
−j−2
f Yj(λ, ϕ)

= Ajψ
′
j(ξf ) Yj(λ, ϕ) − jM ′(α/D)j−2ξj−1

f Pj(sinλ cos ϕ)/2(M + M ′) if j = 3, 4. (3.6.19)

From the two previous equations we find

k0 = −ξ2
fθ′(ξf ); c0 = −ξfθ′(ξf ) − θ(ξf ); k10 = −ξ2

fψ′
0(ξf ) + ξ3

f/3; c10 = −ψ0(ξf )

−ξfψ′
0(ξf ) + ξ2

f/2; k12Y2(λ, ϕ) = ξ5
f [2ψ2(ξf ) − ξfψ′

2(ξf )]
[
− P2(cos λ)/6 + M ′P2(sinλ cos ϕ)

/2(M + M ′)
]/

[3ψ2(ξf ) + ξfψ′
2(ξf )]; k1jYj(λ, ϕ) = [M ′/2(M + M ′)](α/D)j−2ξ2j+1

f

×[jψj(ξf ) − ξfψ′
j(ξf )]Pj(sinλ cos ϕ)

/
[(j + 1)ψj(ξf ) + ξfψ′

j(ξf )] if j = 3, 4; A2Y2(λ, ϕ)

= 5ξ2
f [−P2(cosλ)/6 + M ′P2(sinλ cos ϕ)/2(M + M ′)]

/
[3ψ2(ξf ) + ξfψ′

2(ξf )]; AjYj(λ, ϕ)

= [M ′/2(M + M ′)](α/D)j−2(2j + 1)ξj
fPj(sinλ cos ϕ)/[(j + 1)ψj(ξf ) + ξfψ′

j(ξf )] if j = 3, 4.

(3.6.20)
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Table 3.6.1 Function values at the fitting radius ξf according to Naylor and Anand (1970). aE + b means
a × 10b.

n 1.5 2 3 4 4.9

ξf 3.2E+0 3.6E+0 5.0E+0 8.0E+0 9.74E+1
θ 1.0455E−1 1.1525E−1 1.1082E−1 1.0450E−1 7.6465E−3
θ′ −2.5875E−1 −1.8269E−1 −8.0126E−2 −2.7957E−2 −1.8179E−4
ψ0 1.0423E+0 1.2961E+0 2.7202E+0 8.1810E+0 1.5688E+3
ψ′

0 4.9660E−1 6.7495E−1 1.2512E+0 2.3563E+0 3.2434E+1
ψ2 4.3134E+0 4.5360E+0 6.5108E+0 1.3843E+1 1.7738E+3
ψ′

2 1.0255E+0 1.2617E+0 1.9891E+0 3.1887E+0 3.6417E+1
ψ3 1.7411E+1 2.2090E+1 4.9772E+1 1.8284E+2 3.0095E+5
ψ′

3 1.1811E+1 1.4617E+1 2.7318E+1 6.6699E+1 9.2691E+3
ψ4 6.3560E+1 9.3676E+1 3.0845E+2 1.8700E+3 3.8377E+7
ψ′

4 6.7034E+1 9.2461E+1 2.3611E+2 9.2231E+2 1.5760E+6

Thus, the solution (3.6.14) for the inner region becomes [cf. Eq. (3.4.30)]:

Θ(ξ, λ, ϕ) = θ(ξ) + β

{
ψ0(ξ) − 5ξ2

fψ2(ξ) P2(cos λ)
/
6[3ψ2(ξf ) + ξfψ′

2(ξf )] + [M ′/2(M + M ′)]

×
4∑

j=2

(2j + 1)(α/D)j−2ξj
fψj(ξ) Pj(sinλ cos ϕ)

/
[(j + 1)ψj(ξf ) + ξfψ′

j(ξf )]
}

, (ξ ≤ ξf ; 0 ≤ n ≤ 5).

(3.6.21)

In the outer layers Eq. (3.6.15) writes, by inserting for Φ the outer potential Φe from Eq. (3.6.17):

Θ(ξ, λ, ϕ) = −ξ2
fθ′(ξf )/ξ + ξfθ′(ξf ) + θ(ξf ) + β

{
[−ξ2

fψ′
0(ξf ) + ξ3

f/3]/ξ − ξ5
f [2ψ2(ξf ) − ξfψ′

2(ξf )]

×ξ−3P2(cosλ)
/
6[3ψ2(ξf ) + ξfψ′

2(ξf )] + [M ′/2(M + M ′)]
4∑

j=2

(α/D)j−2ξ2j+1
f [jψj(ξf ) − ξfψ′

2(ξf )]

×ξ−j−1Pj(sinλ cos ϕ)
/
[(j + 1)ψj(ξf ) + ξfψ′

j(ξf )] + ψ0(ξf ) + ξfψ′
0(ξf ) − ξ2

f/2 + ξ2/6

−ξ2P2(cos λ)/6 +
4∑

j=2

M ′(α/D)j−2ξjPj(sinλ cos ϕ)/2(M + M ′)
}

, (ξf ≤ ξ ≤ Ξ1; 0 ≤ n ≤ 5).

(3.6.22)

Function values for some selected polytropic indices n at the fitting radius ξf are quoted in Table 3.6.1
according to Naylor and Anand (1970); some fitting constants in the tables of Monaghan and Roxburgh
(1965), and Durney and Roxburgh (1970) seem unreliable. Naylor and Anand (1970) found that the
effect of changing the fitting radius ξf from Table 3.6.1 by 10% is minor, and as expected on general
grounds, it is better to overestimate the fitting radius. With the function values given in Table 3.6.1 we
can calculate all fitting constants from Eqs. (3.6.9) and (3.6.20), excepting for the ratios q = M ′/M and
α/D. While the mass ratio q is a free constant (0 ≤ q ≤ ∞), the ratio α/D occurring in the double star
problem is not independent (Chandrasekhar 1933c):

β = Ω2/2πG�0 = [(M + M ′)/MD3](M/2π�0) = 2(1 + q)(α/D)3ξ2
1(−θ′1) or

(α/D)3 = η−3 = β
/
2(1 + q)ξ2

1(−θ′1) � 1, (D = αη). (3.6.23)

Since β from Eq. (3.6.23) is already a small first order quantity, we have replaced – within our first
order approximation – the mass M by its spherical value (2.6.18). Thus, for any given value of n, q, and
β, the double star problem is completely determined.

If β is sufficiently small, D from Eq. (3.6.23) must be necessarily large, but if β increases, the
separation distance between the binaries D becomes smaller and smaller, attaining a critical minimum
limit Dc at which mass begins to escape at the point closest to the secondary. This configuration is called
the critical configuration, and corresponds to equatorial break-up in the purely rotational case q = 0. In
the sequence of equipotentials drawn about any two components of the double star system, there is one
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Table 3.6.2 Values of the critical rotation parameter βc = Ω2
c/2πG�0 for synchronous rotation in a double

star system (q = M ′/M) according to the tables of Singh and Singh (1983, 1984a).

n q = 0 q = 0.1 q = 0.5 q = 1 q = 2 q = 10

1.5 0.0362 0.0236 0.0139 0.0114 0.00995 0.00909
2 0.0194 0.0126 0.00746 0.00613 0.00537 0.00491
3 0.00395 0.00262 0.00158 0.00130 0.00115 0.00105

Table 3.6.3 Dimensions of the critical primary M in units of the dimensionless critical separation distance
ηc = Dc/α along the x1, x2, x3, (−x1)-axes, respectively (Naylor and Anand 1970, Singh and Singh 1983 if
q = M ′/M = 10). Values for the Roche model are from Kopal (1978).

q = 0.1
n 1.5 2 3 4 4.9 Roche
Ξc(π/2, 0)/ηc 0.830 0.826 0.822 0.819 0.818 0.717
Ξc(π/2, π/2)/ηc 0.655 0.653 0.651 0.649 0.648 0.596
Ξc(0, ϕ)/ηc 0.560 0.562 0.565 0.565 0.564 0.534
Ξc(π/2, π)/ηc 0.692 0.688 0.685 0.683 0.682 −

q = 1
Ξc(π/2, 0)/ηc 0.533 0.532 0.530 0.530 0.529 0.500
Ξc(π/2, π/2)/ηc 0.383 0.394 0.385 0.385 0.385 0.374
Ξc(0, ϕ)/ηc 0.360 0.362 0.365 0.365 0.365 0.356
Ξc(π/2, π)/ηc 0.426 0.425 0.424 0.423 0.423 −

q = 10
Ξc(π/2, 0)/ηc 0.284 0.285 0.286 − − 0.282
Ξc(π/2, π/2)/ηc 0.195 0.197 0.198 − − 0.197
Ξc(0, ϕ)/ηc 0.186 0.188 0.190 − − 0.190
Ξc(π/2, π)/ηc 0.229 0.230 0.231 − − −

equipotential (the critical equipotential – the thick curve in Fig. 3.6.1) for which the potential lobes are
just touching. Its shape depends on n, β, q, and at the point of contact the sum of all forces must vanish,
so that �g(rc, π/2, 0) = ∇Φtot = 0, [r = r(λ, ϕ); rc = r(π/2, 0)]. For the present purpose the vanishing
radial component of the effective gravity is of interest:

grc
= (∂Φtot/∂r)r=rc

=
{
∂
[
Φ + Φ′

e + Φf − Ω2M ′Dr sinλ cos ϕ/(M + M ′)
]/

∂r
}

r=rc

= [(n + 1)K�
1/n
0 /α][∂Θ(ξ, λ, ϕ)/∂ξ]ξ=Ξc

= [(n + 1)K�
1/n
0 /α]ξ2

fθ′(ξf )/Ξ2
c + β[(n + 1)K�

1/n
0 /α]

×
{

[ξ2
fψ′

0(ξf ) − ξ3
f/3]/Ξ2

c + ξ5
f [2ψ2(ξf ) − ξfψ′

2(ξf )]Ξ−4
c P2(0)

/
2[3ψ2(ξf ) + ξfψ′

2(ξf )]

−(j + 1)[M ′/2(M + M ′)]
4∑

j=2

(α/D)j−2ξ2j+1
f [jψj(ξf ) − ξfψ′

2(ξf )]Ξ−j−2
c Pj(1)

/
[(j + 1)ψj(ξf ) + ξfψ′

j(ξf )] + Ξc/3 − ΞcP2(0)/3 + j

4∑
j=2

M ′(α/D)j−2Ξj−1
c Pj(1)

/
2(M + M ′)

}
= 0, [Ξ1 = Ξ1(λ, ϕ); Ξc = Ξ1(π/2, 0)], (3.6.24)

where we have used Eqs. (3.4.2), (3.6.15) to replace Φtot by (n + 1)K�
1/n
0 Θ, inserting for Θ from

Eq. (3.6.22). The previous equation together with Θ(Ξc, π/2, 0) = 0 from Eq. (3.6.22) can be solved
numerically, to obtain the critical values βc and Ξc = Ξ1(π/2, 0) of β and Ξ1 = Ξ1(λ, ϕ). The sole reliable
values of βc so far published seem to be those of Singh and Singh (1983, 1984a) shown in Table 3.6.2.

Configurations with β > βc lose mass from the equator – they are nonequilibrium figures and cannot
be considered within our hydrostatic approach, opposite to Table III of Durney and Roxburgh (1970).
The critical rotation parameters βc of these authors agree to those of Singh and Singh (1983, 1984a)
merely for q = 1, and are not reliable if q < 1, n ≤ 3, as they do not approach the limiting value for the
purely rotational case q = 0.

Once βc is known, the axes of the critical configuration can be found by inserting βc and ηc = Dc/α
into Θ(Ξc, λ, ϕ) = 0 from Eq. (3.6.22). Since the equations yield only the dimensionless distance ηc
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between the binaries, it is useful to express the axes of the critical configuration in terms of the ratio
Ξc(λ, ϕ)/ηc. Table 3.6.3 shows this ratio for the (λ, ϕ)-sets (π/2, 0), (π/2, π/2), (0, ϕ), (π/2, π), directed
along the x1, x2, x3, (−x1)-axes in rectangular coordinates. Even in the second order approximation, the
principal axes of the distorted mass M are located along the rectangular coordinate axes, because any
angular contribution to the total gravity is at most of order (αξ1/D)8, (Martin 1970). Table 3.6.3 shows
errors in the equal mass case q = 1, when Ξc(π/2, 0)/ηc should be exactly 0.5, rather than about 0.53,
which may serve as an indication of the overall errors of the method. These errors are almost completely
removed in the much more complicated second order theory of Martin (1970): Ξc(π/2, 0)/ηc = 0.503 if
n = 2, and 0.50005 if n = 4.9, (q = 1), as compared to the exact value 0.5. Miketinac and Parter (1981)
have entirely confirmed Martin’s (1970) results, by using a so-called semidiscrete pseudospectral method
(cf. Sec. 3.8.6).

Fig. 3.6.1 Roche equipotentials in the (x1, x2)-plane if q = M ′/M = 0.4. The thick curve depicts the critical
equipotential through the inner Lagrangian point (Kopal 1978).

As already noted [cf. Eq. (3.2.69)], the polytrope n = 5 approximates the point mass Roche model,
so the results for a polytrope with index n ≈ 5, (n < 5) should be nearly equal to those of the Roche
model quoted for comparison in Table 3.6.3. For this reason we briefly present some features of the Roche
model, starting with the hydrostatic approach vk = 0 of Eq. (3.1.90), and inserting into the potential
function the point mass approximations Φ = GM/r and Φ′

e = GM ′/r′ :

∂P/∂xk = � ∂
{
GM/r + GM ′/r′ + (Ω2/2)[

(
x1 − M ′D/(M + M ′)

)2 + x2
2]
}/

∂xk = � ∂Φtot/∂xk;

r2 = x2
1 + x2

2 + x2
3; r′2 = (D − x1)2 + x2

2 + x2
3; Ω2 = G(M + M ′)/D3, (k = 1, 2, 3). (3.6.25)

Subtracting from Φtot the constant term Ω2M ′2D2/2(M + M ′)2 = GM ′2/2D(M + M ′), we define
the dimensionless potential function Λ by (Kopal 1978)

Λ = ΦtotD/GM − M ′2/2M(M + M ′) = 1
/
(r/D) + q/(r′/D)

+[(1 + q)/2](x2
1 + x2

2)/D2 − qx1/D, (q = M ′/M). (3.6.26)

Taking the unit of length equal to the separation distance D between the binaries, Eq. (3.6.26)
becomes

Λ = 1/r + q(1/r′ − x1) + (1 + q)(x2
1 + x2

2)/2; r2 = x2
1 + x2

2 + x2
3;

r′2 = (1 − x1)2 + x2
2 + x2

3, (D = 1). (3.6.27)

Eq. (3.6.27) writes in spherical coordinates

Λ = 1/r + q[1/(1 − 2r sinλ cos ϕ + r2)1/2 − r sinλ cos ϕ] + (1 + q)r2 sin2 λ/2, (3.6.28)

or, by expanding the radical via Eq. (3.1.42):

(Λ − q)r = 1 + q
∞∑

j=2

rj+1Pj(sinλ cos ϕ) + (1 + q)r2[1 − P2(cos λ)]/3. (3.6.29)
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The derivatives of Eq. (3.6.27) are

∂Λ/∂x1 = −x1/r3 + q[(1 − x1)/r′3 − 1] + (1 + q)x1; ∂Λ/∂x2 = x2[−1/r3 − q/r′3 + (1 + q)x2];

∂Λ/∂x3 = x3(−1/r3 − q/r′3), (D = 1). (3.6.30)

In the contact point on the critical Roche equipotential all forces have to vanish, i.e. ∇Λ = 0. On
the x1-axis ∂Λ/∂x2 and ∂Λ/∂x3 vanish identically, and ∂Λ/∂x1 = 0 yields a fifth order equation for the
calculation of the critical contact point xc1, (r = x1; r′ = 1 − x1) :

(1 + q)x5
1 − (2 + 3q)x4

1 + (1 + 3q)x3
1 − x2

1 + 2x1 − 1 = 0. (3.6.31)

With xc1 known, the value of Λ on the critical Roche equipotential surface results from Eq. (3.6.27):

Λc = Λ(xc1, 0, 0) = 1/xc1 + q[1/(1 − xc1) − xc1] + (1 + q)x2
c1/2. (3.6.32)

With xc1 and Λc known, we put ∂Λ/∂x2, ∂Λ/∂x3 = 0, in order to calculate the maximum extension
of the critical Roche lobe along the x2 and x3-axis, respectively, as shown in Table 3.6.3.

Simple analytical expressions for the critical mean rotation parameter βcm can be found if q ≈ 0 or
q 	 1. Eq. (3.6.31) can be rewritten under the equivalent form

(x1 − 1)3(x2
1 + x1 + 1) + qx3

1(x
2
1 − 3x1 + 3) = 0, (3.6.33)

showing that xc1 = 1 is a triple root for the critical Roche equipotential if q = 0, the other two roots
being irrelevant complex numbers. In this case (single, critically rotating mass) we find from Eq. (3.6.27):
Λ = Λc = 1.5, (r = x1; x2, x3, q = 0). With this value of the critical equipotential, the critical polar axis
results from Eq. (3.6.27): xc3 = 2/3, (x1, x2, q = 0). Thus, the oblateness of the centrally concentrated,
critically rotating single mass M is fc = (xc1 − xc3)/xc1 = 1/3. With Λ = Λc = 1.5, Eq. (3.6.27) reads
in cylindrical coordinates as

1.5 = 1
/
(�2 + z2)1/2 + �2/2 or z = z(�) = (1 − �2)(4 − �2)1/2/(3 − �2)

= 2 cos b (1 − 4 sin2 b)/(3 − 4 sin2 b), (� = 2 sin b; q = 0; r2 = �2 + z2; �2 = x2
1 + x2

2). (3.6.34)

If q = 0, the volume inside the critical Roche surface becomes (Jeans 1919)

Vc = 4π

∫ 1

0

� d�

∫ z(
)

0

dz = 4π

∫ 1

0

z(�) � d� = −32π

∫ π/6

0

(4 cos2 b − 3) cos2 b d(cos b)
/
(4 cos2 b − 1)

= 32π
{
γ3/3 − γ/2 − (1/8) ln[(2γ − 1)/(2γ + 1)]

}∣∣∣1
31/2/2

= (4π/3)
{
33/2 − 4 + 3 ln[3(31/2 − 1)/(31/2 + 1)]

}
= 2.26662..., (q = 0; γ = cos b). (3.6.35)

The mean critical rotation parameter of the mass M is

βcm = Ω2
c/2πG�m = 2(1 + q)r3

m/3,(
Ω2

c = GM(1 + q); rm = (3Vc/4π)1/3 = (3M/4π�m)1/3; D = 1
)
. (3.6.36)

With Eq. (3.6.35) we obtain βcm = 0.36074..., (q = 0; rm = 0.81489...), corresponding to equatorial
break-up.

To determine βcm if q 	 1, (M ′ 	 M), we observe from Eq. (3.6.33) that – as mass and radius of M
approach zero – the value of x1 at the critical contact point xc1 approaches zero too. Eq. (3.6.33) reduces
in this case in a first approximation to x1 = xc1 = 1/(3q)1/3. The corresponding value of the critical
Roche equipotential follows from Eq. (3.6.27) if x1 = xc1 and x2, x3 = 0. Expanding 1/r′ = 1/(1−x1) as
1 + x1 + x2

1, (x1 = (3q)−1/3), we get Λ = Λc = q + 3(3q)1/3/2. With this value of the potential function
we are in position to determine the form of the critical Roche lobe round M if M ′ 	 M. Eq. (3.6.28)
can be written as

r′[r3 sin2 λ − 2qr2 cos ϕ sinλ/(q + 1) − 2Λr/(q + 1) + 2/(q + 1)] = −2qr/(q + 1). (3.6.37)
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Since r ≈ 0 and O(Λ) = q if q 	 1, we can neglect the first two terms in the bracket with respect to
−2Λr/(q + 1), and obtain

r ≈ 1/(Λ − q), (q 	 1). (3.6.38)

With the previously found critical value Λc, this equation becomes in a first approximation simply

r = rm ≈ 2
/
3(3q)1/3, (q 	 1). (3.6.39)

The critical mean rotation parameter (3.6.36) is equal to

βcm ≈ 24(1 + q)/35q ≈ 24/35 = 0.065844..., (q 	 1). (3.6.40)

Thus, according to Kopal’s (1978) Table VI. 2, the mean critical rotation parameter βcm of the mass
M diminishes from its value 0.36074 (q = M ′/M = 0) to 0.065844 if q = ∞, taking an approximate
minimum value 0.061967 if q = 6.666. If q = 1, we have βcm = 0.072267.

Naylor and Anand (1970, and Table 3.6.3) have demonstrated that if 1.5 ≤ n ≤ 4.9, the relative
dimensions of synchronously rotating polytropic binaries do not differ substantially from those of the
Roche model, which closely resembles a polytrope of index n = 4.9. Naylor (1972) has proved this result
also for nonsynchronously rotating binaries of polytropic index n = 3 and 3.5. He related the spin angular
velocity Ω of the two polytropic stars to their orbital angular velocity Ωorb by the simple relationship

Ω = (1 + k)Ωorb, (−1 < k < 3), (3.6.41)

where the constant k is restricted to the range −1 to 3, in order to maintain approximate hydrostatic
equilibrium. While the relative dimensions of nonsynchronous polytropes (n = 3, 3.5) differ from the
Roche model (n = 4.9) by at most 1%, they are relatively closer together in comparison to their Roche
counterparts by as much as 3% (n = 3), and 2% (n = 3.5), corresponding to orbital period differences of
4.5% and 3%, respectively.

Several composite models of critically rotating and tidally distorted polytropes have been computed
with the double approximation technique by Singh and Singh (1984a): They take the polytropic index
of the core equal to n = 0.5, 1.5, and the envelope index equal to n = 3, 4. And Roxburgh (1974) has
applied the same method to differentially rotating n = 1.5, 3 polytropes with meridional circulation.

The stability against mass loss of a polytrope (Heisler and Alcock 1987) filling its Roche lobe in a
close binary system has been investigated by Paczyński (1965), and Hjellming and Webbink (1987).
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3.7 Second Order Level Surface Theory of Rotationally
Distorted Polytropes

We present the level surface theory under the form given to it by Zharkov and Trubitsyn (1978, Chap.
3), based on previous work of Clairaut, Laplace, Legendre, Darwin, Radau, Lyapunov, de Sitter, and
others. The second order Zharkov-Trubitsyn theory can be extended to higher order (e.g. Zharkov and
Trubitsyn 1969, 1975, 1978). The equipotential surfaces or the level surfaces of a uniformly rotating
polytrope in hydrostatic equilibrium are given by [cf. Eq. (3.1.23)]

Φtot = Φ + Φf = const, (3.7.1)

where [cf. Eq. (3.4.64)]

Φf = Ω2r2 sin2 λ/2 = Ω2r2[1 − P2(µ)]/3, (Ω = const; µ = cos λ), (3.7.2)

denotes the centrifugal potential, and the internal gravitational potential Φ is given by Eq. (3.1.57). r is
the radius vector, λ the zenith angle (colatitude), Ω the angular velocity, and P2 the Legendre polynomial
of second order.

We wish to find the shape of the uniformly rotating polytrope together with its external potential Φe,
when the density distribution �(�r) along the radius vector �r is given. In a first approximation we may
write the equation of a level surface under the form of an ellipsoid of revolution

r2 cos2 λ/a2(1 − f)2 + r2 sin2 λ/a2 = 1, (3.7.3)

where a is the equatorial radius of a level surface, a(1 − f) its polar radius, and f = f(a) the oblateness
of the configuration from Eq. (3.2.55). The equation (3.7.3) writes up to terms of second order

r(λ) = a[1 − f cos2 λ − (3f2/8) sin2 2λ]. (3.7.4)

Darwin sought the equilibrium figure under the form of a spheroid that differs from an ellipsoid of
revolution by the small, second order correction g = g(a), [Zharkov and Trubitsyn 1969, Eq. (17)]:

r(λ) = a
[
1 − f cos2 λ − (3f2/8 + g) sin2 2λ

]
= a

[
1 − f/3 − f2/5 − 8g/15

+(−2f/3 − f2/7 − 8g/21)P2(µ) + (12f2/35 + 32g/35)P4(µ)
]
. (3.7.5)

The average radius s of a level surface (3.1.54) can be defined by the equivalence of the two volumes:

4πs3/3 =
∫ π

0

sinλ dλ

∫ r(λ)

0

r2(λ) dr

∫ 2π

0

dϕ = (2π/3)
∫ 1

−1

r3(µ) dµ. (3.7.6)

Inserting for r from Eq. (3.7.5), and using the expression (3.1.39) for the Legendre polynomials, we
find

(s/a)3 = 1 − f − 8g/5 or a = s(1 + f/3 + 2f2/9 + 8g/15) + O(f3). (3.7.7)

With the aid of Eqs. (3.7.5), (3.7.7) we can express the radius vector r in terms of the average radius
s :

r = r(µ) = s[1 − 4f2/45 + (−2f/3 − 23f2/63 − 8g/21)P2(µ) + (12f2/35 + 32g/35)P4(µ)]. (3.7.8)

The essence of the axially symmetric level surface theory consists in representing the radius vector
under the form (3.7.8):

r = r(µ) = s

[
1 +

∞∑
j=0

s2j(s) P2j(µ)
]
. (3.7.9)



200 3 Distorted Polytropes

This relationship is substituted into the equation for the total potential (3.7.1), so that

Φtot = Φtot(s, µ) = Φ(s, µ) + Φf (s, µ) =
∞∑

j=0

A′
2j(s) P2j(µ), (3.7.10)

where the internal potential Φ is given by Eq. (3.1.57). On the level surface (3.7.1) we have by definition
Φtot(s, µ) = const. Therefore, in terms of the new variables s and µ the total potential must be inde-
pendent of µ on a level surface with the average radius s = const. Consequently, all coefficients A′

2j(s)
associated with angular functions have to vanish: A′

2j(s) = 0 if j > 0, and Φtot(s) = A′
0(s) = const

on the level surface s = const. The conditions A′
2j(s) = 0, (j > 0) provide a set of integro-differential

equations for the figure functions s2j(s), (j > 0). The remaining figure function s0(s) can be determined
by observing that the figure functions are coupled for instance by Eqs. (3.7.6), (3.7.9):

2 =
∫ 1

−1

[
1 +

∞∑
j=0

s2j(s) P2j(µ)
]3

dµ. (3.7.11)

On a level surface we also have P, � = const, as shown by Eq. (3.1.24). Since Φtot(s, µ) = const on a
level surface characterized by s = const, we infer that on a level surface Φtot, P, � must be independent
of µ. In terms of the (s, µ)-coordinates, the physical quantities Φtot, P, � depend only on s : Φtot =
Φtot(s), P = P (s), � = �(s). Thus, the equation of hydrostatic equilibrium (3.1.21) takes the form

(1/�) ∇P = ∇Φtot or (1/�) dP/ds = dΦtot/ds = dA′
0(s)/ds. (3.7.12)

We now insert the internal gravitational potential Φ from Eq. (3.1.57) and the centrifugal potential
from Eq. (3.7.2) into Eq. (3.7.10):

Φtot = (G/r)
∞∑

j=0

(D2jr
−2j + D′

2jr
2j+1) P2j(µ) + Ω2r2[1 − P2(µ)]/3 =

∞∑
j=0

A′
2j(s) P2j(µ). (3.7.13)

We convert the radius vector r into the mean radius s of the corresponding level surface. Because
� = �(s), we can integrate the relationships (3.1.57) for D2j , D

′
2j as follows:

D2j(s) = [2π/(2j + 3)]
∫ s

0

�(s′) ds′
∫ 1

−1

P2j(µ) (dr2j+3/ds′) dµ;

D′
2j(s) = [2π/(2 − 2j)]

∫ s1

s

�(s′) ds′
∫ 1

−1

P2j(µ) (dr2−2j/ds′) dµ if j �= 1;

D′
2(s) = 2π

∫ s1

s

�(s′) ds′
∫ 1

−1

P2(µ) (d ln r/ds′) dµ,
(
dr = (dr/ds′) ds′

)
, (3.7.14)

where s1 denotes the outermost level surface of the planet. The powers of r can be expanded according
to Eq. (3.7.9):

rk = sk + sk
∞∑

i=1

{
[k(k − 1)...(k − i + 1)/i!]

[ ∞∑
j=0

s2j(s) P2j(µ)
]i}

, (s2j � 1). (3.7.15)

Comparing Eqs. (3.7.8) and (3.7.9), we find

s0 = −4f2/45; s2 = −2f/3 − 23f2/63 − 8g/21; s4 = 12f2/35 + 32g/35, (3.7.16)

s0 = −s2
2/5 + O(f3). (3.7.17)

We insert Eq. (3.7.15) into Eq. (3.7.14). After reducing the powers of Legendre polynomials to
algebraic integrals via Eq. (3.1.39), and after integrating with respect to µ, we obtain

D2j(s) = (4π/3)
∫ s

0

�(s′) d[s′2j+3
f2j(s′)]; D′

2j(s) = (4π/3)
∫ s1

s

�(s′) d[s′2−2j
f ′
2j(s

′)],

(j = 0, 1, 2, ...), (3.7.18)
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where

f0 = 1; f2 = 3s2/5 + 12s2
2/35; f4 = 18s2

2/35 + s4/3;

f ′
0 = 3/2 − 3s2

2/10; f ′
2 = 3s2/5 − 3s2

2/35; f ′
4 = −9s2

2/35 + s4/3. (3.7.19)

The logarithmic term in D′
2 is expanded up to powers of order 2 according to Eq. (3.7.15). Zharkov

and Trubitsyn (1978) introduce instead of D2j , D
′
2j the dimensionless functions S2j and S′

2j :

S2j(b) = 3D2j/4π�ms2j+3 = b−2j−3

∫ b

0

δ(b′) d(b′2j+3
f2j);

S′
2j(b) = 3D′

2j/4π�ms2−2j = b2j−2

∫ 1

b

δ(b′) d(b′2−2j
f ′
2j), (3.7.20)

where �m is the mean density of the configuration, and

b = s/s1; δ(b) = �(b)/�m. (3.7.21)

The total potential (3.7.13) writes

Φtot = G
[
D0(s)/r + D2(s) P2(µ)/r3 + D4(s) P4(µ)/r5 + D′

0(s) + D′
2(s) P2(µ)r2

+D′
4(s) P4(µ)r4

]
+ Ω2r2[1 − P2(µ)]/3. (3.7.22)

Inserting for r from Eq. (3.7.15), and using Eqs. (3.7.17), (3.7.20), we eventually establish after some
algebra up to the second order in f :

Φtot = (4πG�ms2/3)
{
(1 + s2

2/5 − s2P2 − s4P4 + s2
2P

2
2 )S0 + (1 − 3s2P2)S2P2 + S4P4 + S′

0

+(1 + 2s2P2)S′
2P2 + S′

4P4 + (m/3)[1 + (−1 + 2s2)P2 − 2s2P
2
2 ]
}

= (4πG�ms2/3)(A0 + A2P2 + A4P4). (3.7.23)

We have introduced the important notation [cf. Eq. (3.4.46)]

m = 3Ω2/4πG�m = Ω2r3
1/GM1 = 3βm/2, (3.7.24)

where M1 denotes the total mass of the configuration, and via Eq. (3.7.13):

A2j = 3A′
2j/4πG�ms2. (3.7.25)

To evaluate the total potential (3.7.23) up to the second order, we have taken into account that by
virtue of Eqs. (3.7.16)-(3.7.20) S0, S

′
0 are of zeroth order, S2, S

′
2 of first order, and S4, S

′
4 of second order

in f, while m = 3βm/2 is a small first order quantity; at the same time s2 is a first order quantity, and
s0, s4 are of second order in f. Using the orthogonality property (3.5.16) of Legendre polynomials, we
obtain from Eq. (3.7.23) for the coefficients A0, A2, A4 the following set of integral equations, where we
have already shown subsequently to Eq. (3.7.10) that Φtot = A′

0 = 4πG�ms2A0/3, and A2, A4 = 0 [cf.
Zharkov and Trubitsyn 1978, Eqs. (28.7), (28.8), (29.4)]:

A0(b) = 3Φtot(b)/4πG�ms2 = (1 + 2s2
2/5)S0 − 3s2S2/5 + S′

0 + 2s2S
′
2/5 + m(1 − 2s2/5)

/
3;

A2(b) = (−s2 + 2s2
2/7)S0 + (1 − 6s2/7)S2 + (1 + 4s2/7)S′

2 + m(−1 + 10s2/7)
/
3 = 0;

A4(b) = (−s4 + 18s2
2/35)S0 − 54s2S2/35 + S4 + 36s2S

′
2/35 + S′

4 − 12ms2/35 = 0. (3.7.26)

Using Eq. (3.7.16) for the relationship between the figure functions and the distortion parameters
f, g, we can easily transform Eqs. (3.7.19) and (3.7.26):

f0 = 1; f2 = −2f/5 − f2/15 − 8g/35; f4 = 12f2/35 + 32g/105;

f ′
0 = 3/2 − 2f2/15; f ′

2 = −2f/5 − 9f2/35 − 8g/35; f ′
4 = 32g/105, (3.7.27)

and

A0 = (1 + 8f2/45)S0 + 2fS2/5 + S′
0 − 4fS′

2/15 + m(1 + 4f/15)
/
3;

A2 = (2f/3 + 31f2/63 + 8g/21)S0 + (1 + 4f/7)S2 + (1 − 8f/21)S′
2 + m(−1 − 20f/21)

/
3 = 0;

A4 = (−4f2/35 − 32g/35)S0 + 36fS2/35 + S4 − 24fS′
2/35 + S′

4 + 8mf/35

= (12f2/35 − 32g/35)S0 + 12fS2/7 + S4 + S′
4 = 0. (3.7.28)
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We have eliminated the rotation parameter m in the equation for A4 by inserting its first order value
from A2 = 0 : m ≈ 2fS0 + 3S2 + 3S′

2. The equation of hydrostatic equilibrium (3.7.12) writes in
dimensionless variables as follows:

dΠ/db = δ(b) d(b2A0)/db,
(
δ(b) = �(b)/�m; b = s/s1; Φtot = A′

0 = 4πG�mA0s
2/3;

Π = 3P/4πG�2
ms2

1 = s1P/GM1�m

)
. (3.7.29)

The second order figure equations (3.7.28) together with the hydrostatic equilibrium equation (3.7.29)
and a given equation of state Π = Π(δ) can be used to determine the density distribution δ(b) and the
figure functions s2(b), s4(b) to accuracy of order f2. Numerical results obtained with the third order level
surface theory, applied to axially symmetric rotating polytropes, are listed in Table 3.8.1 (Horedt 1983).

To first order accuracy, the equation of hydrostatic equilibrium (3.7.29) can be written via Eqs.
(3.7.20), (3.7.27), (3.7.28) as

dΠ/db = δ(b) d[b2(S0 + S′
0 + m/3)]/db

= δ(b) d

[
(3/b)

∫ b

0

δ(b′) b′2 db′ + 3
∫ 1

b

δ(b′) b′ db′ + mb2/3
]/

db = b δ(b) (−S0 + 2m/3). (3.7.30)

If we transform back to physical variables, we obtain the well-known first order equation of hydrostatic
equilibrium for a uniformly rotating body:

(1/�) dP/ds = −GM(s)/s2 + 2Ω2s/3; M(s) = 4π

∫ s

0

�s2 ds. (3.7.31)

From Eqs. (3.1.58), (3.7.20) results that for an axially symmetric configuration the external potential
can be written as

Φe = (GM1/r)
[
1 −

∞∑
j=1

(a1/r)2jJ2jP2j(µ)
]

= G
∞∑

j=0

D2jr
−2j−1P2j(µ)

= (GM1/r)
∞∑

j=0

S2j(1) (s1/r)2jP2j(µ). (3.7.32)

The gravitational moments from Eq. (3.1.58) are via Eq. (3.7.9) equal to

J2j = −(s1/a1)2jS2j(1) = −
[
1 +

∞∑
k=0

s2k(s1) P2k(0)
]−2j

S2j(1). (3.7.33)

The elegance and generality of the Zharkov-Trubitsyn theory for axially symmetric rotating figures is
illustrated by the fact that we can obtain at once, by simple particularization, the well known equations
of Clairaut, Darwin, and de Sitter. The equation A2 = 0 from Eq. (3.7.28) yields Clairaut’s integral
equation, when second order terms are discarded:

2fS0/3 + S2 + S′
2 − m/3 = 0. (3.7.34)

The expressions of the coefficients S0, S2, S
′
2 are especially simple, since Clairaut’s equation is of first

order in f and m; so S2, S
′
2 need to be evaluated only to first order, and S0 to zeroth order, since it is

multiplied by f :

S0 = −b−3

∫ b

0

δ(b′) db′3; S2 = −(2b−5/5)
∫ b

0

δ(b′) d(b′5f); S′
2 = −(2/5)

∫ 1

b

δ(b′) df. (3.7.35)

The dimensionless density can be calculated from the zero order approximation of the hydrostatic
equation (3.7.30):

dΠ/db = −bS0 δ(b). (3.7.36)

In Clairaut’s first order approximation, the relationships between radius vector, equatorial radius,
and average radius of a level surface are via Eqs. (3.7.7), (3.7.8) simply

a/s = 1 + f/3; r = s[1 − 2fP2(µ)/3] = a(1 − f cos2 λ). (3.7.37)
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Thus, the equation of a level surface r = r(λ) is in a first approximation identical to an ellipsoid of
revolution [cf. Eq. (3.7.4)]. The first order value of the total potential Φtot on the surface of the Clairaut
spheroid is by virtue of Eqs. (3.7.20), (3.7.26), (3.7.28) equal to

Φtot(s1) = GM1A0/s1 = (GM1/s1)(S0 + m/3) = (GM1/s1)
[
3
∫ 1

0

δ(b′) b′2 db′ + m/3
]

= (GM1/s1)(1 + m/3) = (GM1/a1)[1 + (m + f1)/3], (a1/s1 = 1 + f1/3). (3.7.38)

Darwin’s integral equation for g(b) is given by A4 = 0 from Eq. (3.7.28):

(3f2 − 8g)S0 + 15fS2 + 35S4/4 + 35S′
4/4 = 0. (3.7.39)

All terms in this equation are of second order, so the relevant expressions (3.7.20) of Sj , S
′
j are

S0 = b−3

∫ b

0

δ(b′) db′3; S2 = −(2b−5/5)
∫ b

0

δ(b′) d(b′5f);

S4 = (12b−7/35)
∫ b

0

δ(b′) d[b′7(f2 + 8g/9)]; S′
4 = (32b2/105)

∫ 1

b

δ(b′) d(b′−2
g). (3.7.40)

To get the shape of the rotationally distorted figure up to second order, we need besides Darwin’s
equation (3.7.39) also the Darwin-de Sitter equation, given by A2 = 0 from Eq. (3.7.28):

(f + 31f2/42 + 4g/7)S0 + (3/2 + 6f/7)S2 + (3/2 − 4f/7)S′
2 + m(−1/2 − 10f/21) = 0. (3.7.41)

The coefficients of the Darwin-de Sitter equation show that S0 must be evaluated up to the first order,
and S2, S

′
2 up to the second order:

S0 = b−3

∫ b

0

δ(b′) db′3; S2 = −(2b−5/5)
∫ b

0

δ(b′) d[b′5(f + f2/6 + 4g/7)];

S′
2 = −(2/5)

∫ 1

b

δ(b′) d(f + 9f2/14 + 4g/7). (3.7.42)

The system of equations (3.7.39) and (3.7.42) can be solved by successive approximations to get f
and g, provided the first order density distribution δ(b) is known from the solution of the hydrostatic
equation (3.7.30). The Darwin-de Sitter spheroid is obtained by keeping first and second order terms in
the surface equations (3.7.5), (3.7.7), (3.7.9), (3.7.16).

If we insert the polytropic equation of state (3.2.1) into the hydrostatic equation (3.7.12), the level
surface theory can be easily applied to polytropes (cf. Kopal 1983, p. 167). We particularize the level
surface theory to polytropes of index n = 0, 1, and to the generalized Roche model with massless envelope,
bearing some resemblance to the polytrope of index n = 5.

(i) n = 0, (δ(b) ≡ 1).n = 0, (δ(b) ≡ 1).n = 0, (δ(b) ≡ 1). The figure equations (3.7.28) are solved by successive approximations. In
a first approximation we solve the equation A2 = 0 up to the first order to obtain f1 = 5m/4 and
f = m/2 + 3f1/5 = 5m/4 = f1, where f1 is the surface value of f. This value is identical to the
first order value obtained with Chandrasekhar’s theory, since according to Eq. (3.2.64): f = 15β/8 =
15Ω2/16πG�m = 5m/4. The second order approximations (3.7.20) for the coefficients S2j , S

′
2j are

S0 = 1; S2 = −2(f + f2/6 + 4g/7)
/
5; S′

2 = −2[(f1 − f) + 9(f2
1 − f2)/14 + 4(g1 − g)/7]

/
5;

S4 = 12(f2 + 8g/9)
/
35; S′

4 = 32(b2g1 − g)/105. (3.7.43)

f1, g1 denote the values of f, g on the surface. With the result f = f1 = 5m/4 we enter A4 = 0,
and solve up to second order. The simple result is g1 = 0 and g = 0. With this finding we can solve
A2 = 0 up to second order, by putting f = (5m/4)(1 + ε), where ε is of order f. At first we calculate by
particularization the new second order surface value f1 of f, by putting f(1) = f1 = (5m/4)(1 + ε1), and
obtain f1 = (5m/4)(1 + 15m/56). With this boundary value we can calculate the oblateness for general
b = s/s1, and find after some algebra

f(b) = f(1) = f1 = (5m/4)(1 + 15m/56). (3.7.44)
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(ii) n = 1.n = 1.n = 1. This case has already been discussed in connection with Chandrasekhar’s first order
perturbation method [Eqs. (3.2.48)-(3.2.54)]. The polytropic equation of state (3.2.1) becomes

P = K�2 or Π(b) = cδ2(b), (3.7.45)

where P = GM1�mΠ/s1, �(b) = �mδ(b), c = K�ms1/GM1. Inserting into the equation of hydrostatic
equilibrium (3.7.30), we get up to the first order

2cb2 dδ(b)/db = −3
∫ b

0

δ(b′) b′2 db′ + 2mb3/3 and M(b)/M1 = b3S0 = 3
∫ b

0

δ(b′) b′2 db′.

(3.7.46)

We derive the first equation (3.7.46) to obtain

d2δ(b)/db2 + (2/b) dδ(b)/db + 3δ(b)/2c − m/c = 0. (3.7.47)

At first we solve the homogeneous equation, without the constant term −m/c. By particularizing Eqs.
(2.3.7)-(2.3.18), we get

δ(b) = Cb−1/2J1/2[(3/2c)1/2b] = C1 sin[(3/2c)1/2b]
/
b = C1 sin(C2b)

/
b,

(C, C1, C2 = const; C2 = (3/2c)1/2). (3.7.48)

The solution of the nonhomogeneous equation (3.7.47) is found at once:

δ(b) = C1 sin(C2b)
/
b + 2m/3. (3.7.49)

With this result, the mass ratio from Eq. (3.7.46) becomes

M(b)/M1 = (3C1/C2
2 )[sin(C2b) − C2b cos(C2b)] + 2mb3/3. (3.7.50)

The conditions δ(1) = 0 and M(1)/M1 = 1 determine the integration constants up to the first order,
as follows:

C1 = π/3 + m(4/3π − 2π/9); C2 = (3/2c)1/2 = π + 2m/π. (3.7.51)

(iii) Generalized Roche Model with Massless Envelope. The density distribution within the
configuration is given by

δ =
{

δc = const
0 if

0 ≤ b ≤ bc

bc < b ≤ 1 (3.7.52)

From the conservation of mass 4π�cr
3
c/3 = 4π�mr3

1/3 we get

(rc/r1)3(�c/�m) = 1 or b3
cδc = 1, (3.7.53)

where rc and �c denote the radius and density of the core. We find at first the solution for the inner core
region, the result being almost identical to the case n = 0 from Eq. (3.7.44):

f(b) = fc = (5mb3
c/4)(1 + 15mb3

c/56) = (5m/4δc)(1 + 15m/56δc);
g(b) = gc = 0 if 0 ≤ b ≤ bc. (3.7.54)

In the exterior massless region we obtain after some algebra by successive approximations in the same
way as outlined for the case n = 0 (Zharkov and Trubitsyn 1969, 1978):

f(b) = (mb3/2)[1 + (3/2)(bc/b)5] + (m2b6/8)[(bc/b)5 + (20/7)(bc/b)8 − (33/28)(bc/b)10];

g(b) = (3m2b6/32)[1 − 2(bc/b)5 + (bc/b)10], (3.7.55)

where

S0 = b−3; S2 = (−2b2
c/5b5)(fc + f2

c /6 + 4gc/7); S4 = (12b4
c/35b7)(f2

c + 8gc/9);
S′

2 = S′
4 = 0 if bc < b ≤ 1. (3.7.56)

fc, gc are the values of f, g at the core boundary b = bc. Because of continuity reasons, the two
equations (3.7.54) and (3.7.55) are identical at the core boundary b = bc. The configuration is similar to
the polytrope of index n = 5 if bc → 0.

A method that uses an expansion of the density in Legendre polynomials, and that can be developed
analytically in a manner analogous to the level surface theory, has been devised by Hubbard et al. (1975).

The strained co-ordinate method adopted by Smith (1976) is similar to the level surface theory. Smith
(1976) does not present numerical results concerning critically rotating polytropes.
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3.8 Numerical and Seminumerical Methods Concerning
Distorted Polytropic Spheres

3.8.1 James’ Calculations on Rotating Polytropes

Poisson’s equation ∇2Φ = −4π� writes explicitly as [cf. Eq. (B.39)]

∂(r2 ∂Φ/∂r)/∂r + ∂[(1 − µ2) ∂Φ/∂µ]/∂µ + (1 − µ2)−1 ∂2Φ/∂ϕ2 = −4πG�r2. (3.8.1)

This equation determines the structure of the configuration, together with the hydrostatic equation
(3.1.16) in the uniformly rotating frame:




∂P/∂r = � ∂Φ/∂r + �Ω2r(1 − µ2)
∂P/∂µ = � ∂Φ/∂µ − �Ω2r2µ
∂P/∂ϕ = � ∂Φ/∂ϕ

(3.8.2)

The equation of hydrostatic equilibrium (3.8.2) can be written in condensed form as

(1/�) ∇P = ∇[Φ + Ω2r2(1 − µ2)/2], (Ω = const). (3.8.3)

With the substitutions from Eq. (3.2.1) this integrates at once:

(n + 1)K�
1/n
0 Θ = Φ + Ω2r2(1 − µ2)/2 + const. (3.8.4)

We take the integration constant for convenience equal to zero, and introduce the dimensionless radial
coordinate ξ, as well as the dimensionless internal gravitational potential χ by

r = [(n + 1)K/4πG�
1−1/n
0 ]1/2ξ = αξ and χ = Φ/(n + 1)K�

1/n
0 . (3.8.5)

Eq. (3.8.4) takes the dimensionless form

Θ = χ + Ω2ξ2(1 − µ2)/8πG�0. (3.8.6)

The substitutions (3.2.1), (3.8.5) reduce Poisson’s equation (3.8.1) to

∂(ξ2 ∂χ/∂ξ)/∂ξ + ∂[(1 − µ2) ∂χ/∂µ]/∂µ + (1 − µ2)−1∂2χ/∂ϕ2 = −ξ2Θn. (3.8.7)

James (1964) considers at first the axially symmetric case, when Eq. (3.8.7) amounts to

∂(ξ2 ∂χ/∂ξ)/∂ξ + ∂[(1 − µ2) ∂χ/∂µ]/∂µ = −ξ2Θn. (3.8.8)

The rotating polytrope is divided into three regions: Region I near the centre of mass, where ξ ≈ 0;
region II between the point ξ0 – where the series (3.8.9) becomes inappropriate – and the polar radius
ξp; and finally, region III between the polar radius ξp and the equatorial radius ξe. James (1964) takes in
region I the expansions of χ and Θn under the form [cf. Eqs. (2.4.10), (3.1.53)]:

χ = Θ − Ω2ξ2(1 − µ2)/8πG�0 =
∞∑

j,k=0

AjkξjPk(µ);

Θn =
∞∑

j,k=0

BjkξjPk(µ), (Ajk, Bjk = const; ξ ≈ 0). (3.8.9)

The initial conditions at ξ = 0 are in virtue of Eq. (3.2.6) equal to Θ(0, µ) = 1 and [∂Θ(ξ, µ)/∂ξ]ξ=0 =
0. The potential χ is related to Θ by the simple equation (3.8.6), so we also have χ(0, µ) = 1 and
[∂χ(ξ, µ)/∂ξ]ξ=0 = 0, which yields A0k = δ0k and A1k = 0. Uniformly rotating polytropes have always
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an equatorial plane of symmetry, as mentioned subsequently to Eq. (3.1.19). Therefore Ajk, Bjk = 0
if k is odd, because odd indexed Legendre polynomials Pk(µ) are not symmetrical with respect to the
equatorial plane µ = 0 [cf. Eq. (3.1.39)]. Inserting into Eq. (3.8.9) the expansion of Θ near the origin [cf.
Eqs. (2.4.16), (3.2.4), (3.2.9), (3.2.84)-(3.2.88)], we observe at once that Ajk = 0 if j < k. Because Θ is
connected to Θn by an equation similar to Eq. (2.4.3), we also infer that Bjk = 0 if j < k. Moreover, from
the mentioned expansions of Θ near the origin results that odd powers of ξ vanish, i.e. Ajk, Bjk = 0 if j
is odd. Summarizing, Ajk, Bjk = 0 if j or k are odd, and if j < k (James 1964, Ostriker and Mark 1968).
If we insert Eq. (3.8.9) into Eq. (3.8.8), and use Eq. (3.1.40), we obtain similarly as in Chandrasekhar’s
method (Secs. 3.2-3.4) a relationship among the coefficients of the two series (3.8.9):

[j(j + 1) − k(k + 1)]Ajk = −Bj−2,k. (3.8.10)

This equation determines all coefficients Ajk for which j �= k. The determination of the coefficients
Bjk is outlined by Eqs. (3.8.15), (3.8.16). Obviously, if j = k, Eq. (3.8.10) is satisfied for any value
of Akk, and these coefficients have to be determined in the axially symmetric case from the boundary
conditions (3.8.27), (3.8.28). James (1964) fixes the termination of region I at the point ξ = ξ0, where
the magnitude of the term A20,kξ20

0 in the expansion (3.8.9) is less than 10−10.
In region II the solution of χ and Θn is extended by analytic continuation from ξ0 up to the polar

radius ξ = ξp. Let us assume that χ(ξ1, µ) and [∂χ(ξ, µ)/∂ξ]ξ=ξ1 are known at some point ξ1 in region II.
In the vicinity of ξ1 we have

ξ = ξ1 + η, (η � 1), (3.8.11)

and Eq. (3.8.8) becomes

η2 ∂2χ/∂η2 + 2η ∂χ/∂η + ∂[(1 − µ2) ∂χ/∂µ]
/
∂µ + η2Θn + 2ξ1(η ∂2χ/∂η2 + ∂χ/∂η + ηΘn)

+ξ2
1(∂2χ/∂η2 + Θn) = 0. (3.8.12)

Similarly to region I we substitute

χ =
∞∑

j,k=0

ajkηjPk(µ); Θn =
∞∑

j,k=0

bjkηjPk(µ), (ajk, bjk = const), (3.8.13)

and by inserting into Eq. (3.8.12), we get the relationship

j(j − 1)ξ2
1ajk = −[(j − 1)(j − 2) − k(k + 1)]aj−2,k − bj−4,k

−2ξ1[(j − 1)2aj−1,k + bj−3,k] − ξ2
1bj−2,k. (3.8.14)

Thus, we may find all coefficients ajk, where a0k and a1k are already determined by the initial
conditions χ(ξ1, µ) and [∂χ(ξ, µ)/∂ξ]ξ=ξ1 . The precision of the series expansion (3.8.13) is provided by
the condition a10,kη10 < 10−10.

Consider the situation when Ajk, ajk are known. James (1964) determines the coefficients Bjk and
bjk as functions of β = Ω2/2πG�0, Ajk, and ajk, respectively. Let us denote by Dj and dj the coefficients
of ξj and ηj in the expansions (3.8.9) and (3.8.13), respectively:

Dj(µ) =
∞∑

k=0

BjkPk(µ) and dj(µ) =
∞∑

k=0

bjkPk(µ). (3.8.15)

From these equations the coefficients Bjk and bjk can be found at once, by using the orthogonality
condition (3.5.16) of Legendre polynomials:

Bjk = (k + 1/2)
∫ 1

−1

Dj(µ) Pk(µ) dµ and bjk(µ) = (k + 1/2)
∫ 1

−1

dj(µ) Pk(µ) dµ. (3.8.16)

In the outer region III between ξp and ξe the basic functions χ and Θn are not analytic. ∂rΘn/∂ξr

becomes discontinuous across the surface of the configuration, if the order of the derivative r is larger
than the polytropic index n, because Θ = 0 on the surface. At the same time ∂sχ/∂ξs becomes infinite
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across the surface if s > n + 2 in virtue of Eq. (3.8.8). In the outer region James (1964) approximates χ
and Θn by the series

χ =
∞∑

j=0

χj(ξ) Pj(µ) and Θn =
∞∑

j=0

θn
j (ξ) Pj(µ), (3.8.17)

which are substituted into Eq. (3.8.8) to give via Eq. (3.1.40):

ξ2 d2χj/dξ2 + 2ξ dχj/dξ − j(j + 1)χj = −ξ2θn
j . (3.8.18)

The two substitutions

χj(ξ) = ξ−j−1gj(ξ) and dgj/dξ = ξ2jhj(ξ), (3.8.19)

transform Eq. (3.8.18) into

dhj/dξ = −ξ−j+1θn
j (ξ). (3.8.20)

James (1964) integrates the set of equations (3.8.19), (3.8.20), starting from the known initial values
at the polar radius αξp, and ending at the equatorial radius αξe. The coefficients θn

j (ξ) are determined
by inverting the expansion (3.8.17), analogously to Eq. (3.8.16):

θn
j (ξ) = (j + 1/2)

∫ 1

−1

Θn(ξ, µ) Pj(µ) dµ. (3.8.21)

As already mentioned subsequently to Eq. (3.8.10), the determination of the coefficients Akk is
effected with the aid of the boundary conditions. Quite generally, the external gravitational potential
can be written via Eq. (3.1.58) under the form

χe =
∞∑

j=0

j∑
k=0

χejk(ξ) P k
j (µ) (Cjk cos kϕ + Sjk sin kϕ) =

∞∑
j=0

j∑
k=0

χejk(ξ) P k
j (µ) cos(kϕ + αjk),

(Cjk, Sjk, αjk = const). (3.8.22)

Outside the configuration, the density � = �0Θn vanishes, and Poisson’s equation (3.8.7) turns into
the Laplace equation ∇2χe = 0. The Laplace equation eventually reduces to

d(ξ2 dχejk/dξ)/dξ − j(j + 1)χejk = 0, (3.8.23)

where we have inserted Eq. (3.8.22), taking into account Eq. (3.1.41) for the associated Legendre
polynomials P k

j (µ). The solution of the homogeneous Euler equation (3.8.23) is found at once:

χejk = C1ξ
j + C2ξ

−j−1, (C1, C2 = const). (3.8.24)

To avoid a singularity of χe as ξ → ∞, we have to put C1 = 0 and χejk(ξ) = C2ξ
−j−1, which obviously

satisfies outside the configuration the simple differential equation

dχejk/dξ + (j + 1)χejk/ξ = 0, (ξ ≥ ξe), (3.8.25)

in the nonaxisymmetric case. For the axisymmetric case Eqs. (3.8.22)-(3.8.25) can be particularized at
once. The radial functions χej(ξ) from the expansion of the axisymmetric external potential satisfy the
same equation (3.8.25):

dχej/dξ + (j + 1)χej/ξ = 0, (ξ ≥ ξe). (3.8.26)

The external and internal potential must coincide at the equatorial boundary ξ = ξe of the polytrope.
Thus, the coefficients χj(ξe) of the internal axisymmetric potential (3.8.17) have to satisfy the same
equation (3.8.26) as the coefficients χej(ξe) of the external axisymmetric potential:

Rj = [dχj/dξ + (j + 1)χj/ξ]ξ=ξe
= 0. (3.8.27)
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James (1964) determines the coefficients Akk from Eq. (3.8.9) in such a way as to satisfy the boundary
conditions (3.8.27). The multidimensional Newton-Raphson procedure is applied to the set of equations
Rj = 0 :

N∑
k=0

(∂Rj/∂Akk) δAkk + Rj = 0. (3.8.28)

This equation can easily be deduced as a generalization of the Newton-Raphson iteration process for
the determination of the zeros of a function f(x). The correction to the m-th iteration is

δxm = −f(xm)
/
[df(x)/dx]x=xm

. (3.8.29)

James (1964) takes N = 10, and because of equatorial symmetry we have R2j+1 ≡ 0. Each pair of
values n and Ω defines a unique axially symmetric equilibrium configuration. The determination of the
equilibrium configuration effectively amounts to the finding of the constants Akk from Eq. (3.8.9).

The structure of the nonaxisymmetric configuration is assumed near the origin by the expansion [cf.
Eqs. (3.1.53), (3.8.9)]:

χ =
∞∑


,j,k=0

ξ
(A
jk cos kϕ + C
jk sin kϕ) P k
j (µ); Θn =

∞∑

,j,k=0

ξ
(B
jk cos kϕ + D
jk sin kϕ) P k
j (µ),

(ξ ≈ 0; A
jk, B
jk, C
jk, D
jk = const). (3.8.30)

Similarly to the coefficients Ajk, Bjk from Eq. (3.8.9), we observe that A
jk, C
jk = 0 if � < j, j < k,
and if j − k is an odd number: If � < j, the coefficients are zero due to the expansions (2.4.16), (3.2.84)-
(3.2.88), if j < k the associated Legendre polynomials P k

j vanish identically, and if j − k is odd, P k
j is

not symmetrical with respect to the equatorial plane.
If we insert Eq. (3.8.30) into Eq. (3.8.7), and use Eq. (3.1.41), we obtain analogously to Eq. (3.8.10)

the relationships

[�(� + 1) − j(j + 1)]A
jk = −B
−2,jk; [�(� + 1) − j(j + 1)]C
jk = −D
−2,jk. (3.8.31)

If � = j, the coefficients A

k and C

k have to be determined from the boundary conditions, as in the
axisymmetric case [cf. Eqs. (3.8.27), (3.8.35)]. For the study of nonaxisymmetric rotating polytropes
James (1964) restricts to the case when the nonaxisymmetric term δχ in the potential (3.8.32) is small:

χ = χa + δχ, (δχ � 1). (3.8.32)

χa denotes the internal potential of the axially symmetric configuration. We write the small nonax-
isymmetric part of the internal gravitational potential under the form (3.1.53):

δχ =
∞∑

j=0

j∑
k=0

[χ(1)
jk (ξ) P k

j (µ) cos kϕ + χ
(2)
jk (ξ) P k

j (µ) sin kϕ]. (3.8.33)

If we insert Eqs. (3.8.32), (3.8.33) into Poisson’s equation (3.8.7), we get – after using Eq. (3.1.41) –
the mutually independent equations

d(ξ2 dχ
(m)
jk /dξ)

/
dξ − j(j + 1)χ(m)

jk = −ξ2θ∗χ(m)
jk , (m = 1, 2), (3.8.34)

where Θn = Θn
a + θ∗ δχ, and Θn

a denotes the axisymmetric contribution to the dimensionless density
Θn. At the equatorial boundary the coefficients χ

(m)
jk of the nonaxisymmetric correction δχ satisfy the

boundary conditions (3.8.27) for the external potential:

Rjk = [dχ
(m)
jk /dξ + (j + 1)χ(m)

jk /ξ]ξ=ξe
= 0. (3.8.35)

The necessary and sufficient condition for the existence of a nonaxisymmetric equilibrium form –
adjacent to the symmetric form – is that there exists a set of coefficients A

k and C

k from Eq. (3.8.30),
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not all zero, such that Rjk = 0. As in the axisymmetric case, the coefficients A

k and C

k are determined
by the Newton-Raphson procedure [cf. Eq. (3.8.28)]:

N∑
k=0

(∂Rjk/∂A

k) δA

k + Rjk = 0. (3.8.36)

A lot of further computational details are mentioned in James’ (1964) original paper, but we restrict
ourselves merely to the presentation of his numerical results (see Table 3.8.1), found by direct numerical
integration of Poisson’s equation (3.8.7), subject to the boundary conditions (3.8.27) and (3.8.35).

For values of n ≤ 3 the Newton-Raphson procedure from Eq. (3.8.27) proved satisfactory, but if
n > 3, James’ procedure failed to produce solutions because of numerical instabilities with Eq. (3.8.18)
near the boundary. Surely, this fact is a major detriment of James’ method. Fortunately, we know that
the point mass Roche model (e.g. Kopal (1978) and end of Sec. 3.6), resembling the polytrope of index
n = 5, has no bifurcation points as the angular velocity increases. The series of Roche models terminates
without branching off, when the surface gravity at the equator of the Roche model becomes zero. As
polytropes with index n ≈ 5, (n ≤ 5) are very similar to the Roche model, we expect for these polytropes
a similar behaviour as for the Roche model, when their angular velocity is increasing monotonically.

James (1964) has found numerically from Eqs. (3.8.30)-(3.8.36) that all polytropic sequences with
n > 0.808 have no bifurcation points, just as the Roche model, whereas polytropes with 0 ≤ n ≤
0.808 have a bifurcation point, showing besides the axially symmetric equilibrium configurations also
nonaxisymmetric equilibrium forms, just as the homogeneous polytrope n = 0 (cf. Secs. 3.2, 3.8.4).
The limiting bifurcation form is a polytrope with index n = 0.808, and a critical rotation parameter
βc = Ω2

c/2πG�0 = 0.106 corresponding to equatorial mass loss (James 1964, Table 4, Bonazzola et al.
1996). This result is in very good agreement with the marvelous more theoretical evaluations of Jeans
(1919, §182), who found γ ≈ 2.2, n = 1/(γ − 1) ≈ 0.83, the term associated with P 2

2 (µ) cos 2ϕ being
dominant in the expansion of the gravitational potential. Some related work has also been effected by
Vandervoort (1980b).

Vandervoort and Welty (1981) found that the limiting critical bifurcating polytrope occurs at n =
0.794 and βc = 0.116, so Ipser and Managan (1981) conclude that somewhere in the range 0.78 < n < 0.82
the nonaxisymmetric polytropes cease to exist. In the following we adopt James’ (1964) value of n = 0.808
as the limiting value for the polytropic index of bifurcation.

The analysis of Jeans (1919, 1961) and James (1964) deals only with first order linear effects of nonax-
isymmetry [cf. Eq. (3.8.32)], while Ipser and Managan (1981) regard their method as a generalization of
Stoeckly’s (1965) method (Sec. 3.8.2), and integrate the fundamental equations (3.1.75), (3.8.1) by suc-
cessive approximations, demonstrating effectively the existence of polytropic nonaxisymmetric Jacobi-like
sequences for polytropic indices n = 0.5 and 0.6. These sequences first appear at the point of bifurca-
tion, where β = Ω2/2πG�0 ≈ 0.135 and 0.125, terminating by equatorial mass loss at the critical values
βc = Ω2

c/2πG�0 ≈ 0.129 and 0.123, respectively. Recall that the Jacobi sequence (n = 0, Sec. 3.2) starts
with β = 0.18711, and terminates without mass loss at β = 0.

Applying an improved variant of Eriguchi’s (1978) complex-plane strategy (Sec. 3.8.7), Hachisu and
Eriguchi (1982, Fig. 3) have shown that both, the axisymmetric and the nonaxisymmetric rotating
polytropes terminate with mass loss from the surface, at least for values of the polytropic index n ≥ 0.1
(see Fig. 3.8.7 and Table 3.8.1). The homogeneous rotating polytropes (n = 0), i.e. the Maclaurin and
Jacobi ellipsoids, do not exhibit this property [cf. discussion subsequent to Eq. (3.2.61)]. At least if
n � 0.1, no equilibrium configurations exist when the angular momentum is larger than a certain critical
value. Equatorial mass loss can be avoided if appropriate differential rotation is introduced (cf. Figs.
3.8.1, 3.8.2).

3.8.2 Stoeckly’s Method of Linearized Differences

Stoeckly (1965) implements a Henyey-type iteration scheme (as adopted for the calculation of stellar
models) to obtain the solution of the linearized Poisson equation. The basic equations are given by
Eqs. (3.8.1), (3.8.2) without the ϕ-terms. The nonuniform rotation of a polytrope of index n = 1.5 is
approximated similarly to Eqs. (3.5.1)-(3.5.8) by

Ω(�) = Ω(0) exp(−c�2/r2
e), (c = const), (3.8.37)
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where � = r sinλ = r(1 − µ2)1/2 is the distance from the rotation axis, and re the equatorial radius. In
an inertial frame the integral of the hydrostatic equation is given by [cf. Eq. (3.5.10)]:

(n + 1)P/� = (n + 1)K�1/n = Φ − Φp +
∫ 


0

Ω2(�′) �′ d�′. (3.8.38)

Φp is the surface value of the gravitational potential at the poles, where � = 0. Stoeckly (1965) retains
for convenience a continuation of this equation outside the surface, so we will omit in this subsection a
definite distinction between internal and external gravitational potential, and denote it simply by Φ. The
axially symmetric potential is expanded in terms of Legendre polynomials Pj(µ) :

Φ(r, µ) =
∞∑

j=0

Φj(r) Pj(µ). (3.8.39)

Outside the equatorial radius re of the polytrope, where � = 0, the functions Φj(r) are of the form
[cf. Eqs. (3.1.58), (3.2.33)]

Φj(r) ∝ 1/rj+1, (r ≥ re). (3.8.40)

At some radius r = rH , completely outside the polytrope, the previous equation is equivalent to

(dΦj/dr)r=rH
+ (j + 1) Φj(rH)/rH = 0, (rH ≥ re; j = 0, 1, 2, 3, ...). (3.8.41)

Stoeckly (1965) argues that it would be much more convenient to choose, besides the two normalization
constants 4πG, (n + 1)K, the value of Φp, rather than the central density �0, as the third normalization
constant. Also, he employs the boundary conditions (3.8.41) instead of the common condition Φp = 0.
So, his new dimensionless variables ϕ(x, µ), x,Θ∗(x, µ), and ω are given by [cf. Eq. (3.2.1)]

Φ = Φpϕ; r = {[(n + 1)K]n/4πGΦn−1
p }1/2x = [(n + 1)K/4πG�

1−1/n
0 ]1/2ξ;

� = [Φp/(n + 1)K]nΘ∗n(x, µ) = �0Θn(ξ, µ); Ω = {4πG [Φp/(n + 1)K]n}1/2ω. (3.8.42)

Poisson’s equation (3.8.1) writes with these dimensionless variables

∂2ϕ/∂x2 + (2/x) ∂ϕ/∂x + x−2 ∂[(1 − µ2) ∂ϕ/∂µ]
/
∂µ + Θ∗n = 0, (3.8.43)

and the hydrostatic integral (3.8.38) becomes

Θ∗(x, µ) = ϕ(x, µ) − 1 +
∫ x(1−µ2)1/2

0

ω2(y) y dy, (3.8.44)

where the centrifugal potential can be integrated for the law of differential rotation (3.8.37):

∫ x(1−µ2)1/2

0

ω2(y) y dy = ω2(0)
∫ x(1−µ2)1/2

0

exp(−2by2) y dy

= [ω2(0)/4b]{1 − exp[−2bx2(1 − µ2)]}, (b = c/x2
e). (3.8.45)

xe denotes the value of x corresponding to r = re. Eqs. (3.8.43)-(3.8.45), together with the exterior
boundary condition (3.8.41), written under the form

(dϕj/dx)x=xH
+ (j + 1) ϕj(xH)/xH = 0, (3.8.46)

constitute the basic set for the determination of the equilibrium structure of the differentially rotating
polytrope, where ϕj = Φj/Φp, and xH is the value of x corresponding to r = rH . Retaining only terms
up to the tenth order, Eq. (3.8.39) writes in dimensionless coordinates as

ϕ(x, µ) =
10∑

j=0

ϕj(x) Pj(µ). (3.8.47)
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Fig. 3.8.1 Equidensity contours of selected models with low (models B, D) and high (models G, J) interior
distortion for a polytropic index n = 1.5. The nonuniformity parameter c from Eq. (3.8.37) is zero (uniform
rotation), 0.54, 0.94, and 1.05 for models B, D, G, and J, respectively (Stoeckly 1965).

The functions ϕj(x) are obtained at once by using the relationship (3.5.16) for the integral of Legendre
polynomials

ϕj(x)= [(2j + 1)/2]
∫ 1

−1

Pj(µ) ϕ(x, µ) dµ ≈ [(2j + 1)/2]
6∑

k=1

HkPj(µk) ϕ(x, µk), (j =0, 2, ...10),

(3.8.48)

where odd j’s vanish because of equatorial symmetry. The eleven point Gauss-Legendre quadrature
formula from Eq. (3.8.48) contains only six weight coefficients Hk, instead of eleven, because of sym-
metry with respect to the equatorial plane. The weighting coefficients along the six angular directions
λ = 90◦, 74◦, 59◦, 43◦, 27◦, 12◦, (µ = cos λ) are equal to Hk = 0.273, 0.526, 0.466, 0.373, 0.251, 0.111, re-
spectively. The µ-derivative along the direction µ = µk, (k = 1, 2, ...6) from Poisson’s equation (3.8.43)
reads

∂[(1 − µ2
k) ∂ϕ/∂µk]/∂µk = ∂

{
(1 − µ2

k) ∂

[ 10∑
j=0

ϕj(x) Pj(µk)
]/

∂µk

}/
∂µk

= −
10∑

j=0

j(j + 1) ϕj(x) Pj(µk) =
6∑


=1

Bk
 ϕ(x, µ
);

Bk
 = −
10∑

j=0

[(2j + 1)/2]j(j + 1)H
 Pj(µk) Pj(µ
), (k = 1, 2, ...6), (3.8.49)

where we have used Eqs. (3.1.40) and (3.8.48). Similarly, the external boundary condition (3.8.46),
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expressed in terms of ϕ(x, µ
), is via Eq. (3.8.48) equal to

[dϕ(x, µk)/dx]x=xH
+ (1/xH)

6∑

=1

Ck
 ϕ(xH , µ
) = 0;

Ck
 =
10∑

j=0

[(2j + 1)/2](j + 1)H
 Pj(µk) Pj(µ
), (k = 1, 2, ...6). (3.8.50)

The differential operators from Eqs. (3.8.43), (3.8.50) are approximated by their simplest central
differences on an equidistant grid with the nodes xh = h∆x, (h = 0, 1, 2, ...H), (Miketinac and Barton
1972, Miketinac 1984):

[df(x)/dx]x=xh
= [f(xh+1) − f(xh−1)]/2∆x; [d2f(x)/dx2]x=xh

= [(df/dx)x=xh+1/2 − (df/dx)x=xh−1/2 ]/∆x = [f(xh+1) − 2f(xh) + f(xh−1)]/(∆x)2. (3.8.51)

With these relationships Stoeckly (1965) casts the left-hand sides of Eqs. (3.8.43), (3.8.50) into the
following difference representation:

B = (∆x)−2[(1 − 1/h) ϕ(xh−1, µk) − 2ϕ(xh, µk) + (1 + 1/h) ϕ(xh+1, µk)]

+(h∆x)−2
6∑


=1

Bk
 ϕ(xh, µ
) + Θ∗n(xh, µk), (3.8.52)

C = [ϕ(xH+1, µk) − ϕ(xH−1, µk)]/2∆x + (1/H∆x)
6∑


=1

Ck
 ϕ(xH , µ
). (3.8.53)

The next step is the linearization of Eqs. (3.8.43), (3.8.50) in terms of the correction δϕ(xh, µk) added
to the independent variable ϕ(xh, µk), (k = 1, 2, ...6) during successive iterations. The correction δΘ∗n

to the dimensionless density Θ∗n in terms of δϕ reads

δΘ∗n = nΘ∗n−1 δΘ∗ = nΘ∗n−1(∂Θ∗/∂ϕ) δϕ, (3.8.54)

where according to Eq. (3.8.44) ∂Θ∗/∂ϕ equals 1 inside, and 0 outside the polytrope. Since Θ∗ is zero
on the surface, Stoeckly’s (1965) method is not applicable if n < 1. The equations for the corrections
δϕ(xh, µk) are by virtue of Eqs. (3.8.52)-(3.8.54) equal to

(∆x)−2[(1 − 1/h) δϕ(xh−1, µk) − 2 δϕ(xh, µk) + (1 + 1/h) δϕ(xh+1, µk)]

+(h∆x)−2
6∑


=1

Bk
 δϕ(xh, µ
) + nΘ∗n−1(xh, µk) δϕ(xh, µk) = −B,

(n ≥ 1; h = 1, 2, ...H; k = 1, 2, ...6), (3.8.55)

[δϕ(xH+1, µk) − δϕ(xH−1, µk)]/2∆x + (1/H∆x)
6∑


=1

Ck
 δϕ(xH , µ
) = −C. (3.8.56)

The corrections δϕ would vanish only for the exact solution, if B, C = 0 according to Eqs. (3.8.43),
(3.8.50). The function ϕ(xH+1, µk) can be eliminated between Eqs. (3.8.52) and (3.8.53) by putting
h = H in Eq. (3.8.52). An explicit condition at the centre is unnecessary, since the coefficient of
ϕ(x0, µk) vanishes in Eq. (3.8.52) for h = 1, and the remaining relation between ϕ(x1, µk) and ϕ(x2, µk)
serves as the central boundary condition.

Stoeckly (1965) has calculated about 400 models for a fixed step length of 0.0464 with the nonunifor-
mity parameter c between 0 and 1.15, and with the unique polytropic index n = 1.5. So, his conclusions
remain isolated. Stoeckly (1965) suggests that there are two sequences of differentially rotating polytropes
if n = 1.5. One sequence terminates by mass loss at the equator (models B and D from Fig. 3.8.1) with
modest interior distortion, and with a maximum value of the nonuniformity parameter c = 0.67 ± 0.12.
The other sequence contains models with more nonuniform rotation (up to c = 1.05; model J from Fig.
3.8.1). These models may contain unstable configurations with pressure and density increasing outward
(model J with �/�0 = 1.03), or pass through models with a detached outer ring, which terminate or are
discontinuous soon after.
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3.8.3 Williams’ Optimal Matching Method

Williams (1975) applies the optimal matching method to rotating polytropes, based on the work of
Faulkner et al. (1968) for uniformly rotating stellar models. To some extent this method is similar to the
double approximation technique presented in Sec. 3.6. In the inner region Williams (1975) represents
the fundamental function Θ under the form (3.2.98):

Θ(ξ, µ, β) ≈ θ0(ξ, β) + A2(β) ψ2(ξ) P2(µ). (3.8.57)

We insert Eq. (3.8.57) into the fundamental equation of hydrostatic equilibrium (3.2.2). This equation
has to be satisfied separately for the purely radial part of Θ, and for its angular part associated with
P2(µ). Thus, Eq. (3.2.2) splits after insertion into the two equations

d(ξ2 dθ0/dξ)
/
dξ = (−θn

0 + β)ξ2, (3.8.58)

d(ξ2 dψ2/dξ)
/
dξ = (6 − nξ2θn−1

0 )ψ2, (3.8.59)

with the obvious initial conditions [cf. Eq. (3.2.6)]: θ0(0) = 1; θ′0(0), ψ2(0), ψ′
2(0) = 0.

In the outer regions of the configuration, the internal gravitational potential is represented by its
external empty-space value, similarly to Eq. (3.6.5):

Φ ≈ Φe ≈ [(n + 1)K�
1/n
0 ][k0/ξ + k2ξ

−3P2(µ)], [k0 = k0(β); k2 = k2(β)]. (3.8.60)

Inserting for Φ into Eq. (3.6.3), we get the function Θ in the outer part of the configuration [cf. Eq.
(3.6.11)]:

Θ(ξ, µ) ≈ c + k0/ξ + k2ξ
−3P2(µ) + βξ2[1 − P2(µ)]/6, [c = c(β)]. (3.8.61)

Demanding continuity of Θ and ∂Θ/∂ξ at a certain fitting radius ξf , we get by equating the corre-
sponding terms in Eqs. (3.8.57) and (3.8.61):

θ0(ξf ) = c + k0/ξf + βξ2
f/6; A2ψ2(ξf ) = k2/ξ3

f − βξ2
f/6;

θ′0(ξf ) = −k0/ξ2
f + βξf/3; A2ψ

′
2(ξf ) = −3k2/ξ4

f − βξf/3. (3.8.62)

Williams (1975) integrates Eq. (3.8.58) along the radius ξ(0), corresponding to P2(µ) = 0 or µ = 3−1/2,
so that Eq. (3.8.59) for the function ψ2 can be neglected.

The critical case of equatorial break-up will occur when the radial component of the effective gravity
∂(Φ + Φf )/∂r ∝ ∂Θ/∂ξ is zero at the critical equatorial radius rce = αΞce [cf. Eq. (3.6.12)]. Since in
the outer region Θ is given by Eq. (3.8.61), the conditions Θ = 0 and ∂Θ/∂ξ = 0 yield at the critical
equatorial coordinate ξ = Ξce, µ = 0 :

c + k0/Ξce − k2/2Ξ3
ce + βcΞ2

ce/4 = 0; −k0/Ξ2
ce + 3k2/2Ξ4

ce + βcΞce/2 = 0, (β = βc). (3.8.63)

Because the numerical integration proceeds along the radius ξ(0), (P2(µ) = 0), we have via Eqs.
(3.8.57), (3.8.61):

Θ(ξ(0), 3−1/2) ≈ θ0(ξ(0)), (inner region);

Θ(ξ(0), 3−1/2) = c + k0/ξ(0) + βcξ
(0)2/6, (outer region). (3.8.64)

If the fitting radius ξf is just at the critical surface coordinate ξf = Ξ(0)
c along P2(µ) = 0, the fitting

conditions (3.8.62) become with the simplified function Θ from Eq. (3.8.64) equal to

Θ(Ξ(0)
c , 3−1/2) ≈ θ0(Ξ(0)

c ) = c + k0

/
Ξ(0)

c + βcΞ(0)
c

2/
6 = 0, (3.8.65)

(∂Θ/∂ξ)
ξ=Ξ

(0)
c

≈ θ′0(Ξ
(0)
c ) = −k0

/
Ξ(0)

c

2
+ βcΞ(0)

c

/
3. (3.8.66)
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The boundary conditions (3.8.63) yield with the simplification k2 = 0, corresponding to P2(µ) = 0 :

c + k0/Ξce + βcΞ2
ce/4 = 0; βc = 2k0/Ξ3

ce. (3.8.67)

If Eqs. (3.8.65) and (3.8.67) are put together, we get the cubic equation

2(Ξ(0)
c /Ξce)3 − 9Ξ(0)

c /Ξce + 6 = 0, (3.8.68)

which admits according to the formula for the casus irreducibilis of a cubic equation the meaningful
solution

Ξ(0)
c /Ξce = −61/2 cos{[2π − arccos(2/3)1/2]/3} = 0.7669. (3.8.69)

Eq. (3.8.58) can now be integrated, subject to the bursting condition (3.8.69), yielding numerical
results in satisfactory agreement to those of James (1964), and Monaghan and Roxburgh (1965), (see
Table 3.8.1).

3.8.4 The Self-Consistent Field Method of Ostriker and Mark

The self-consistent field method, applied first by Ostriker and Mark (1968) to polytropes, is especially
designed to calculate numerically the structure of severely distorted (differentially rotating) configura-
tions. In fact, a self-consistent field scheme has been originally devised by Hartree and Fock in connection
with molecular structure calculations (cf. Tassoul 1978). The self-consistent field method adopts an in-
tegral representation, rather than the use of differential equations, because the boundary conditions are
easier to handle in integral form.

Eq. (3.1.8) can be written in condensed form for differentially rotating barotropes as

(1/�) ∇P = ∇
[
Φ +

∫ 


0

j2(�′) d�′/�′3
]
, (3.8.70)

where

j = j(�′) = Ω(�′) �′2, (3.8.71)

is the angular momentum per unit mass. Hydrostatic equilibrium generally requires the angular mo-
mentum to be an increasing function of �. Note however, that some differentially rotating rings (tori)
which are axisymmetrically stable, satisfying the Rayleigh criterion (3.5.1), (5.10.1), or (6.4.160), are
subject to violent nonaxisymmetric instabilities (Sec. 6.4.3, Tohline and Hachisu 1990). Differentially
rotating models can be calculated without additional labour if the angular momentum distribution over
the configuration is introduced as a prescribed quantity. We designate by M1 the total mass, by J the
total angular momentum of the polytropic (barotropic) configuration, and by r1 its maximum radius,
which may be larger than the equatorial radius. The fractional mass interior to a cylinder of radius � is

m(�) = (2π/M1)
∫ 


0

�′ d�′
∫ ∞

−∞
�(�′, z) dz, (3.8.72)

where �(�′, z) denotes the density of the mass element dm = 2π��′ d�′ dz. Further, for a polytropic
equation of state P = P0(�/�0)1+1/n we can integrate Eq. (3.8.70) between the centre and an arbitrary
point of the configuration:

�1/n =
[
�
1+1/n
0 /(n + 1)P0

][
Φ − Φ0 +

∫ 


0

(j2/�′3) d�′
]
. (3.8.73)

Φ0 denotes the central value of the interior gravitational potential (3.1.47):

Φ = Φ(�r) = G

∫
V

�(�r′) dV ′/|�r − �r′|. (3.8.74)
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Fig. 3.8.2 Equidensity contours in the (�, z)-plane of differentially rotating polytropes of index n, referenced
to uniformly rotating polytropes of index n′. The ratio (3.1.35) between kinetic and gravitational energy is denoted
by τ (Bodenheimer and Ostriker 1973).

In cylindrical coordinates the density can be expanded under the polynomial form

�(�, z) =
∞∑

i,k=0

a′
ik�izk, (a′

ik = const), (3.8.75)

and the gravitational potential under the form

Φ =
∞∑


,m=0

A
m�
zm, (A
m = const). (3.8.76)

Inserting Eqs. (3.8.75), (3.8.76) into Eq. (3.8.74), we get a tensor Tik
m such that

A
m =
∞∑

i,k=0

Tik
ma′
ik. (3.8.77)

In fact, Ostriker and Mark (1968) expand the density in spherical coordinates as

�(x, µ) ≈ (3M1/4πr3
1)

N∑
i,k=0

aikx2kP2i(µ) = (3M1/4πr3
1)

N∑
i=0

N∑
k=i

aikx2kP2i(µ), (aik = const),

(3.8.78)

where x = r/r1 is the dimensionless radial coordinate, and the constants are aik = 0 if i, k are odd numbers
or if i > k, as already outlined subsequently to Eq. (3.8.9). The even-order Legendre polynomials are
expanded as [cf. Eq. (3.5.16)]

P2i(µ) =
i∑

m=0

pimµ2m, (3.8.79)

and the calculation of the “Green function” Tik
m proceeds accordingly. Inserting Eq. (3.8.78) into Eq.
(3.1.57), and using Eq. (3.5.16), we obtain after some algebra:

Φ(x, µ) = 2πGr2
1

∞∑

=0

P2
(µ)
∫ 1

−1

P2
(µ′) dµ′
[ ∫ x

0

�(x′, µ′) (x′2
+2
/x2
+1) dx′

+
∫ 1

x

�(x′, µ′) (x2
/x′2
−1) dx′
]

= (3GM1/2r1)
N∑

i=0

N∑
k=i

[aikP2i(µ)
/
(k − i + 1)(4i + 1)]

×[x2i − (4i + 1)x2k+2/(2k + 2i + 3)], (i = �). (3.8.80)
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Fig. 3.8.3 Diagram of dimensionless angular momentum versus dimensionless angular velocity for hydro-
static configurations of constant density � = �m. The small circles at the end of curves denote the termination
of equilibrium sequences due to mass loss from the surface, or – in the binary case of unequal masses – due
to mass flow from the secondary to the primary. The termination of the binary sequences is located on the
dashed line (Hachisu and Eriguchi 1984a). Slight quantitative corrections to parts of the diagram can be found
in Christodoulou et al. (1995a, b). Note, that binary mass ratio means the ratio of the more massive primary to
the less massive secondary.
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Fig. 3.8.4 Meridional density profile (density changes 10 times between successive contours) for the axially
symmetric spheroid (on the left) and for the ring (on the right) with polytropic index n = 3 at critical rotation
Ωc (Hachisu 1986a).

Inserting Eq. (3.8.79) into Eq. (3.8.80), we observe after some algebra that the potential Φ and the
density � are indeed related by the four-indexed tensor Tik
m, as already noted in Eq. (3.8.77). The
centrifugal potential from Eq. (3.8.73) is expanded under a similar form (Ostriker and Mark 1968):

∫ 


0

j2(�′) d�′/�′3 = (J/M1r1)2
∫ a

0

h2(a′) da′/a′3 ≈ (J/M1r1)2
N∑

i=1

Qia
2i,

(a′ = �′/r1; h = jM1/J). (3.8.81)

Thus, for any trial density distribution (3.8.78) we can find from Eqs. (3.8.80) and (3.8.81) the
gravitational and centrifugal potential in analytic form. The next step in the iterative process is the
determination of a new density profile via Eq. (3.8.73). Iteration is continued until self-consistency among
the physical quantities of the rotating configuration is obtained. Clement (1974) employs instead of the
series expansions (3.8.78)-(3.8.80) an interesting finite-difference scheme for solving Poisson’s equation
(3.8.1), claiming that the series expansions involve uncertain truncation errors and do not always represent
radial variations with sufficient accuracy.

A simplified version of the self-consistent field method has been applied by Vandervoort and Welty
(1981) to the construction of axisymmetric and nonaxisymmetric models of uniformly rotating polytropes.
Blinnikov (1975) has presented another variant of the self-consistent field method with some applications
to polytropes.

Fig. 3.8.2 shows equipotential (equidensity) surfaces of differentially rotating polytropes with index
n = 0, 1.5 calculated with the self-consistent field method (Bodenheimer and Ostriker 1973). The initial
angular momentum distribution is assumed to be the same as that of a uniformly rotating polytrope of
index n′, having such a large radius, that this reference polytrope can be considered nearly spherical.
Bodenheimer and Ostriker (1973) increase the central density of the polytrope with index n, by preserving
the initial angular momentum distribution. In this way, they obtain a whole sequence of contracting,
axially symmetric, differentially rotating equilibrium configurations of polytropic index n. Numerical
difficulties prevent Ostriker and Bodenheimer (1973) to calculate the models beyond τ = Ekin/|W | ≈
0.26, but up to this limit their differentially rotating polytropic sequences mimic closely the behaviour of
the Maclaurin-Jacobi sequence (n, n′ = 0; Sec. 3.2), reaching points of bifurcation instead of terminating
with the critical angular velocity Ωc and mass shedding from the equator.

If one specifies a few points (usually two) of the shape of the polytrope, the rest of the configuration
cannot deviate from the true solution, and converges into it, provided it exists at all (Hachisu et al. 1987,
1988). In this way there can be avoided the numerical difficulties of previous calculations by Ostriker
and Bodenheimer (1973), who specified mass and angular momentum instead of fixed surface points and
maximum density. With this choice of the initial conditions Hachisu (1986a, b) has extended previous
numerical investigations to a lot of new equilibrium sequences, which have enlarged considerably our view
about rotating and tidally distorted polytropes. In fact, most of the equilibrium figures obtained with
the self-consistent field method by Hachisu (1986a, b), have already been found with similar precision by
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Fig. 3.8.5 Diagram of dimensionless angular momentum versus dimensionless angular velocity for axially
symmetric polytropes with indices n = 0.1, 0.5, 1.5, 3, 4. Spheroids are on the left, polytropic rings on the right.
Broken lines show the Maclaurin, Jacobi, and one-ring sequence from Fig. 3.8.3 if n = 0. All spheroidal sequences
terminate by mass loss at critical rotation along the dotted line (Hachisu 1986a).

Eriguchi’s (1978) complex-plane strategy (see Sec. 3.8.7, Fukushima et al. 1980, Hachisu and Eriguchi
1982, 1984a, b, c, Hachisu et al. 1982). We present all these results together, within the context of the
more straightforward self-consistent field method.

With the polytropic pressure-density relationship P = K�1+1/n Eq. (3.8.70) can be integrated at
once:

H = (n + 1)P/� = Φ +
∫ 


0

Ω2(�′) �′ d�′ + const, (dH = dP/�; S = const), (3.8.82)

where H is the enthalpy or heat function per unit mass. Hachisu (1986a, b) adopts three types of rotation
laws: (i) Rigid rotation Ω = Ω0 = const. (ii) Rotation with constant velocity v = Ω�, [Ω = v0/(g+�2)1/2].
(iii) Rotation with constant angular momentum j = Ω�2, [Ω = j0/(g + �2)], where v0, j0, g = const. The
rotation laws (ii) and (iii) approach the true rotation, as denoted by name, if g → 0. For these three
rotation laws the integral in Eq. (3.8.82) can be solved:

∫ 


0

Ω2(�′) �′ d�′ = h2
0Ψ + const, (3.8.83)

where

h0 = const =


 Ω0

v0

j0


 and Ψ =




�2/2 law (i)
(1/2) ln(g + �2) law (ii)
−1/2(g + �2) law (iii)

(3.8.84)

Eq. (3.8.82) reads

H = Φ + h2
0Ψ + C, (C = const). (3.8.85)

At the surface, both pressure and density have to vanish, and this condition amounts to H = (n +
1)P/� = 0. If two boundary points A and B are fixed, Eq. (3.8.85) writes on the boundary as

H(A) = Φ(A) + h2
0Ψ(A) + C = 0, (3.8.86)

H(B) = Φ(B) + h2
0Ψ(B) + C = 0, (3.8.87)
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Fig. 3.8.6 Equatorial density profiles (tenfold density increase between successive contours) for binary,
triple, and quadruple equilibrium configurations with polytropic index n = 3 and equal mass components. The
left-hand side show the systems just prior to mass loss from the common outer envelope. As the distance among
the components increases, the systems turn into the detached masses shown on the right (Hachisu 1986b).

or

h2
0 = −[Φ(A) − Φ(B)]

/
[Ψ(A) − Ψ(B)], (3.8.88)

C = −Φ(A) − h2
0Ψ(A) = −Φ(B) − h2

0Ψ(B). (3.8.89)

According to the self-consistent field method, the gravitational potential Φ and the centrifugal po-
tential Ψ are calculated with a guessed density approximation from Eqs. (3.8.80), (3.8.81). Then h2

0 is
obtained from Eq. (3.8.88), and after calculating C from Eq. (3.8.89), the enthalpy H can be determined.
A new improved density approximation can be established via Eq. (3.8.82): � = [H/K(n + 1)]n. The
iteration continues until the absolute values of the three relative differences ∆H/H, ∆C/C, ∆h2

0/h2
0 fall

below a certain small number (Hachisu 1986a, b).
Fig. 3.8.3 completes the discussion from Sec. 3.2 on the equilibrium sequences of homogeneous

polytropes (n = 0), viz. on the Maclaurin and Jacobi ellipsoids, as well as on the pear-shaped ovoids. The
dimensionless units adopted by Hachisu and Eriguchi (1984a) are Ω2/4πG�m [instead of β = Ω2/2πG�0

from Eq. (3.2.3)] and J
/
(4πG)1/2M

5/3
1 �

−1/6
m . The dimensionless unit of the angular momentum follows

from the fact that the angular momentum of a homogeneous sphere is equal to J = 2Ωr2
1M1/5 ∝

(G�m)1/2(M1/�m)2/3M1 ∝ (4πG)1/2M
5/3
1 �

−1/6
m , where the radius is r1 = (3M1/4π�m)1/3, and Ω is

expressed in units of (4πG�m)1/2.

It has already been shown by Chandrasekhar (1969) that a point of bifurcation must also be a
neutral stability point along a certain equilibrium sequence of rotating configurations. A neutral point
along an equilibrium sequence is defined as a point where a characteristic frequency, belonging to some
proper normal mode of oscillation, vanishes. In other words, a nontrivial Lagrangian displacement of the
configuration exists, such that its equilibrium is unaffected by the deformation due to this displacement
(cf. Sec. 5.8.1). Eriguchi and Hachisu (1982) start from the neutral points along the Maclaurin and Jacobi
sequence (generally with an artificial deformation of a trial solution), and obtain the new equilibrium
sequences shown in Fig. 3.8.3 for the incompressible case n = 0. For instance, from the neutral points
occurring at Ω2/4πG�m = 0.110 (e = 0.899), 0.112 (e = 0.933), 0.104 (e = 0.969), 0.0873 (e = 0.985),
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Fig. 3.8.7 Diagram of dimensionless angular momentum versus dimensionless angular velocity for polytropes
with index n = 0.1, 0.5, 1.5, 3. The lines on the upper left are identical to the axially symmetric spheroids already
shown in Fig. 3.8.5. The triaxial equilibrium models bifurcate from these polytropes if 0 < n < 0.808 (cf.
Sec. 3.8.1), terminating by equatorial mass loss too, as shown by the circles at the end of the bifurcating curves
for n = 0.1 and 0.5. In the lower part of the diagram, polytropic binaries with equal mass components are
plotted, terminating by mass loss from the outer common envelope (outer critical Roche lobe). Dashed lines show
the Maclaurin sequence from which the one-ring sequence bifurcates, and the Jacobi sequence from which the
dumbbell binary sequence bifurcates, as already plotted in Fig. 3.8.3 if n = 0 (Hachisu 1986b).

and 0.0658 (e = 0.994) on the Maclaurin sequence, there bifurcates the triangle, square, ammonite, one-
ring (toroidal or concave hamburger), and the two-ring sequence, respectively. Recall that the Jacobi
sequence branches off from the Maclaurin sequence at Ω2/4πG�m = 0.0936, (e = 0.813), (Secs. 3.2,
3.8.1).

The one-ring (toroidal) sequence evolves from the Maclaurin sequence through concave hamburger-like
configurations (Fig. 3.8.3). The dumbbell sequence, bifurcating from the Jacobi-like ellipsoids, turns into
the binary sequence with two equal masses. Hachisu and Eriguchi (1984c) have also computed constant
density binaries with unequal mass ratios, that turn into the Maclaurin sequence when the secondary
vanishes (purely rotational case). These binary sequences terminate when the smaller secondary fills its
Roche lobe, and mass begins to flow from the secondary to the primary through the inner Lagrange point
(e.g. Kopal 1978). Hachisu and Eriguchi (1984a) have also computed multi-body sequences with equal
components shown in the lower right part of the diagram from Fig. 3.8.3, and in Figs. 3.8.6, 3.8.8.

As seen from Fig. 3.8.3, there are on the Jacobi sequence two neutral points from which new
equilibrium sequences start: The famous pear-shaped sequence at Ω2/4πG�m = 0.0710 for the neu-
tral mode of oscillation of the Jacobi ellipsoid belonging to the third zonal harmonic P3(µ), (Jeans 1919),
and the dumbbell sequence (which passes into the binary sequence with mass ratio q = 1) starting at
Ω2/4πG�m = 0.0532 for the P 2

4 (µ) cos 2ϕ type perturbation (Chandrasekhar 1969, Eriguchi and Hachisu
1982, Eriguchi et al. 1982). Pear-shaped, triangle, square, and ammonite sequences terminate soon by
mass loss from the surface.

For polytropes of index 0 < n < 5 Hachisu (1986a, b) has found exciting new equilibrium figures that
will be briefly presented in the following. The computation of equilibrium sequences is started with the
two fixed boundary points A and B from Eqs. (3.8.86)-(3.8.89). Point A is fixed at r = 1, λ = π/2,
while point B is located on the rotation axis, being moved for some models to the equatorial axis. For
a given value of Ω there exist generally two (n �= 0, Figs. 3.8.5, 3.8.7) or even four (n = 0, Fig. 3.8.3)
axisymmetric equilibrium solutions.

As seen from Fig. 3.8.5, if n > 0, no connection appears between axisymmetric spheroids and
polytropic rings, opposite to the constant-density case (n = 0), when the Maclaurin ellipsoids bifurcate
into the one-ring sequence, as shown in Fig. 3.8.3. Earlier studies on homogeneous rings (n = 0) have
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Fig. 3.8.8 Diagram of dimensionless angular momentum versus dimensionless angular velocity for three- and
four-body equilibrium configurations of equal mass and polytropic index n = 0, 1.5, 3. The triangle and three-body
sequence (upper figure), and the square and four-body sequence (lower figure) for homogeneous masses (n = 0)
have already been depicted in Fig. 3.8.3. Dashed lines have the same meaning as in Fig. 3.8.7 (Hachisu 1986b).

been undertaken by Laplace, Maxwell, Poincaré, Kowalewsky, Dyson, and Randers, as noted by Ostriker
(1964b) and Wong (1974), (see Sec. 3.9.2). If n �= 0, both spheroidal and ring structures terminate at a
certain critical rotation, when mass begins to be shed from the equator of these axisymmetric polytropic
configurations (Fig. 3.8.5). The same situation also occurs for nonaxisymmetric polytropes with index
0 < n < 0.808 : No connection exist between Jacobi-like triaxial polytropes and polytropic binaries
with equal mass components. These polytropic sequences both terminate by mass loss (Fig. 3.8.7). No
dumbbell polytropes exist if n �= 0. In the constant density case n = 0, dumbbell configurations connect
smoothly Jacobi ellipsoids and homogeneous binaries, as shown in Fig. 3.8.3. No triangle and square
sequences exist in the polytropic n �= 0 case (Fig. 3.8.8).

3.8.5 The Ellipsoidal Method of Roberts

This method is based on a variational principle, in order to pick up the “best” solution from a set of
ellipsoidal shells into which the polytrope is decomposed. Some similarities occur with the treatment of
Vandervoort (1980b), Vandervoort and Welty (1981), as well as with the ellipsoidal energy variational
method of Lai et al. (1993).

The total energy of the rotating polytrope is the sum of three parts

E = U + Ekin + W, (3.8.90)

where

U = Kn

∫
V1

�1+1/n dV, [n = 1/(Γ − 1) = 1/(γ − 1)], (3.8.91)



222 3.8 Numerical and Seminumerical Calculations Concerning Distorted Polytropic Spheres

is the internal energy of an isentropic polytrope from Eq. (2.6.158). Further

Ekin = (Ω2/2)
∫

V1

��2 dV, (3.8.92)

denotes the kinetic energy of rotation [cf. Eq. (3.1.34)], and

W = −(1/2)
∫

V1

Φ� dV, (3.8.93)

the gravitational energy from Eq. (2.6.68).
We express the integrals (3.8.91)-(3.8.93) in terms of the elements of ellipsoidal shells. To this end we

remember at first the volume of an ellipsoid with semiaxes ai, (i = 1, 2, 3) :

V1 =
∫ a3

−a3

dx3

∫ x′
2

−x′
2

dx2

∫ x′
1

−x′
1

dx1 = 4πa1a2a3/3,

[
x′

2 = a2(1 − x2
3/a2

3)
1/2; x′

1 = a1(1 − x2
2/a2

2 − x2
3/a2

3)
1/2
]
, (3.8.94)

where the ellipsoidal surface is given by

3∑
i=1

(xi/ai)2 = 1. (3.8.95)

For an ellipsoid of revolution we have a1 = a2, a3 = a1(1−e2
1)

1/2, and the volume of the axisymmetric
ellipsoid becomes V1 = 4πa3

1(1 − e2
1)

1/2/3. We designate by a the semimajor axis of an ellipsoidal shell
inside V1, and assume the density � and the eccentricity e of the ellipsoidal strata to be functions solely
of a : � = �(a), e = e(a). The volume inside a biaxial ellipsoid of semimajor axis a is accordingly
V = 4πa3(1 − e2)1/2/3, and the volume of an ellipsoidal shell of semimajor axis a and infinitesimal
thickness da is dV = (4π/3) d[a3(1− e2)1/2]. The mass of this ellipsoidal shell is simply dM = � dV. The
total mass of an axisymmetric configuration composed of ellipsoidal shells is therefore (Roberts 1963b)

M1 = (4π/3)
∫

M1

� d[a3(1 − e2)1/2] = (4π/3)
∫ a1

0

� {d[a3(1 − e2)1/2]/da} da. (3.8.96)

The internal energy (3.8.91) can be written as

U = (4πKn/3)
∫ a1

0

�1+1/n{d[a3(1 − e2)1/2]
/
da} da. (3.8.97)

Eq. (3.8.92) is transformed in a similar way, by calculating at first

∫
V1

�2 dV =
∫ a3

−a3

dx3

∫ x′
2

−x′
2

dx2

∫ x′
1

−x′
1

(x2
1 + x2

2) dx1 = 4πa1a2a3(a2
1 + a2

2)/15. (3.8.98)

Putting a1 = a2 = a and a3 = a(1 − e2)1/2, we get

�2 dV = (8π/15) d[a5(1 − e2)1/2], (3.8.99)

and finally

Ekin = (4πΩ2/15)
∫ a1

0

� {d[a5(1 − e2)1/2]
/
da} da. (3.8.100)

Likewise, the angular momentum of the ellipsoidal configuration is

J = Ω
∫

M1

��2 dV = (8πΩ/15)
∫ a1

0

� {d[a5(1 − e2)1/2]
/
da} da. (3.8.101)
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On making a small change δ� and δe in the density and eccentricity, the corresponding changes in
mass and angular momentum are

δM1 = (4π/3)
∫ a1

0

δ� d[a3(1 − e2)1/2] − (4π/3)
∫ a1

0

� δe d[a3e/(1 − e2)1/2]

= (4π/3)
∫ a1

0

δ� d[a3(1 − e2)1/2] + (4π/3)
∫ a1

0

[a3e/(1 − e2)1/2] δe d�, (3.8.102)

δJ = (8π δΩ/15)
∫ a1

0

� d[a5(1 − e2)1/2] + (8πΩ/15)
∫ a1

0

δ� d[a5(1 − e2)1/2]

+(8πΩ/15)
∫ a1

0

[a5e/(1 − e2)1/2] δe d�, (3.8.103)

where we have integrated by parts and taken into account that �(a1) = 0.
The variational principle enunciated by Roberts (1963b) requires the first order change in the total

energy

δE = δU + δEkin + δW, (3.8.104)

to be zero for all first order changes of δ� and δe, preserving mass and angular momentum of the body,
i.e. δM1, δJ = 0.

The dimensionless polytropic coordinates are introduced by [cf. Eqs. (3.2.1), (3.2.3)]

� = �0Θn(x); a = αx; β = Ω2/2πG�0, (0 ≤ a ≤ a1), (3.8.105)

where the radial x-coordinate is measured in the equatorial plane of the polytrope. In these new coor-
dinates the mass (3.8.96) inside a is measured by Hurley and Roberts (1965) in units of 4π�0α

3, and
becomes

M = M(x) = (1/3)
∫ x

0

Θn{d[x′3(1 − e2)1/2]/dx′} dx′. (3.8.106)

This equation writes in differential from as

dM/dx = (Θn/3) d[x3(1 − e2)1/2]/dx = x2Θn(1 − e2)1/2[1 − xe (de/dx)
/
3(1 − e2)]

= x2Θn(1 − e2)1/2[1 − e2η/6(1 − e2)], (3.8.107)

where η = (2x/e) de/dx. The equations needed to solve the rotational problem are casted by Hurley and
Roberts (1965) into the form

dΘ/dx = [3/x2(1 − e2)1/2(3 − 2e2)][βx3(1 − e2)3/2/3 − (1 − e2)M(x)

+e2D(x) g(e) (η + 2)(5 − 2e2)/20 − e2η D(x)/4];

de/dx = [3e(3 − 2e2) D(x) g(e)/x]
/
[−2βx3(1 − e2)1/2 + 9D(x) + 6M(x) − 3(3 − 2e2) D(x) g(e)];

dD/dx = [−(η + 2)/x][D(x) − M(x) + x3Θn(1 − e2)1/2/3];

g(e) = [15(1 − e2)1/2/4e5][(3 − 2e2) arcsin e − 3e(1 − e2)1/2];

D(x) = M(x) − 5N(x)/e2x2; N(x) = (1/15)
∫ x

0

Θn{d[x′5e2(1 − e2)1/2]/dx′} dx′. (3.8.108)

These equations have to obey the obvious boundary values Θ(0) = 1; Θ′(0) = 0; M(0) = D(0) =
0; Θ(x1) = 0. They are also subject to the surface condition ∆(x1) = 0, where x1 = a1/α and ∆(x) =
x3(1−e2)1/2[β−4e2g(e)/15]

/
3−2e2g(e) [3D(x)+2M(x)]/15. Numerical values are plotted in Table 3.8.1

(x1 = Ξe), and obviously suffer from the constraint that equidensity surfaces are forced into ellipsoidal
shape.
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3.8.6 Miketinac’s Method

This method (Miketinac 1984) is a modification of the semidiscrete pseudospectral method of
Miketinac and Parter (1981) already mentioned in Sec. 3.6. The problem is formulated as a free boundary
problem, and the method is obtained by combining Newton-Raphson’s procedure and two different types
of discretization. We insert Eq. (3.8.5) into Eq. (3.8.4) to obtain

Θ = χ + Ω2ξ2(1 − µ2)/8πG�0 + const. (3.8.109)

Miketinac (1984) determines the integration constant by the potential χp at the pole of the config-
uration [cf. Eq. (3.1.74)], where µ = 1 and Θ = 0. We get: const = −χp. Eq. (3.8.7) can be written
in condensed form as ∇2χ = −Θn. Miketinac (1984) considers a sphere of some finite radius ξH , that
contains all equilibrium figures of a given sequence. Outside this sphere the external potential χe satisfies
Laplace’s equation ∇2χe = 0. The differential equations for the internal and external potential can be
written under the simplified form ∇2ψ = −ηn, by defining the new potential function (cf. Clement 1974):
ψ = χ−χp, (η = Θ if Θ ≥ 0), and ψ = χe −χp, (η = 0 if Θ ≤ 0). The potential is sought under the well
known form

ψ(ξ, µ) =
∞∑

j=0

ψj(ξ) Pj(µ). (3.8.110)

Outside the sphere ξ = ξH the functions ψj(ξ) satisfy the Laplace equation ∇2ψ = −ηn = 0, or [cf.
Eqs. (3.8.23)-(3.8.26)]

d2ψj/dξ2 + (2/ξ) dψj/dξ − j(j + 1)ψj/ξ2 = 0, (ξ ≥ ξH), (3.8.111)

with the solution ψj = C1ξ
j + C2ξ

−j−1, (C1 = 0; C2 = const), obeying the equation

dψj/dξ + (j + 1)ψj/ξ = 0, (ξ ≥ ξH). (3.8.112)

Eq. (3.8.112) is taken as the boundary condition. Conservation of mass inside ξH writes as

M1 = �0α
3

∫
Vξ

Θn dVξ = −�0α
3

∫
Vξ

∇2ψ dVξ = −�0α
3

∫
Sξ

∇ψ · d�Sξ

= −2π�0α
3

∫ 1

−1

(∂ψ/∂ξ)ξ=ξH
ξ2
H dµ = −4π�0α

3ξ2
H (dψ0/dξ)ξ=ξH

, (3.8.113)

since
∫ 1

−1

Pj(µ) dµ = 0 if j = 1, 2, 3, ...;
∫ 1

−1

P0(µ) dµ = 2. (3.8.114)

The notations Vξ and Sξ mean that volume and surface are measured over the dimensionless coordinate
ξ, rather than over radial distance r. Combining Eqs. (3.8.112) and (3.8.113), we find the boundary
condition if j = 0 :

ψ0(ξH) = M1/4π�0α
3ξH . (3.8.115)

If Θ > 0, the combination of Eqs. (3.8.109) and (3.8.110) yields simply

η = ψ + Ω2ξ2(1 − µ2)/8πG�0 ≈
N∑

j=0

ψj(ξ) Pj(µ) + Ω2ξ2[1 − P2(µ)]/12πG�0, (3.8.116)

where Miketinac (1984) truncates the expansion (3.8.110) at a suitable cut-off N. We insert the truncated
expansion (3.8.116) into ∇2ψ = −ηn, or equivalently into

∂(ξ2 ∂ψ/∂ξ)
/
∂ξ + ∂[(1 − µ2) ∂ψ/∂µ]

/
∂µ = −ξ2ηn. (3.8.117)
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Fig. 3.8.9 Equidensity contours of the critically rotating (continuous lines) and the nonrotating (broken
lines) polytrope of index n = 1.5 are numbered from 0 to 5 (Miketinac 1984).

Via Eq. (3.1.40) we get eventually

N∑
j=0

[d2ψj/dξ2 + (2/ξ) dψj/dξ − j(j + 1)ψj/ξ2] Pj(µ) = −ηn(ξ, µ). (3.8.118)

Using again the orthogonality of Legendre polynomials from Eq. (3.5.16), we transform Eq. (3.8.118)
into

d2ψj/dξ2 + (2/ξ) dψj/dξ − j(j + 1)ψj/ξ2 = −[(2j + 1)/2]
∫ 1

−1

ηn(ξ, µ) Pj(µ) dµ

≈ −
N∑

k=0

Hkηn(ξ, µk) Pj(µk), (j = 0, 1, 2, ...N), (3.8.119)

where a Gauss (2N +1)-point quadrature formula has been used to discretize the integral, and µk, Hk are
the nodes and weights, respectively. The system (3.8.119) is discretized by choosing through numerical
experimentation a value ∆ξ such that ξH = H ∆ξ, (H – integer). The differential operators appearing
in Eq. (3.8.119) are approximated by their simplest central difference equivalents on an equidistant grid
with the nodes ξh = h ∆ξ, (h = 0, 1, 2, ...H), as already outlined in Eq. (3.8.51). The equation (3.8.119)
reads

(1 − 1/h) ψj(ξh−1) − [2 + j(j + 1)/h2] ψj(ξh) + (1 + 1/h) ψj(ξh+1)

= −(∆ξ)2
N∑

k=0

Hkηn(ξh, µk) Pj(µk), (h = 1, 2, 3, ...H − 1; j = 0, 1, 2, ...N). (3.8.120)

If h = 1, the coefficient of ψj(ξ0) vanishes, so the value of ψj(ξ) at the singular point ξ0 = 0 decouples
from the system (3.8.120). If h = H and j �= 0, the value ψj(ξH+1) is eliminated by using the central
difference equivalent of the boundary condition (3.8.112):

ψj(ξH+1) = ψj(ξH−1) − 2(j + 1) ψj(ξH)/H, (j �= 0). (3.8.121)

If j = 0, the boundary condition (3.8.115) explicitly gives the potential function ψ0(ξH), once the
mass M1 is selected. Miketinac (1984) solves the system (3.8.115), (3.8.120), (3.8.121) of H(N + 1)
simultaneous equations iteratively with the Newton-Raphson algorithm, the initial guess for the solution
being supplied by the nonrotating model.
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3.8.7 Eriguchi’s Complex-Plane Strategy

Many of Hachisu’s (1986a, b) results, obtained with the self-consistent field method from Sec. 3.8.4,
have been previously found by the method of analytic extension of solutions into the complex plane
(Courant and Hilbert 1962, p. 499; Garabedian 1986, Chap. 16). This method has been originally
applied by Eriguchi (1978) to rotating polytropes. It has been improved and extended mainly by Hachisu
et al. (1982), and Hachisu and Eriguchi (1982, 1984b). Another continuation into the complex plane has
been proposed by Geroyannis (1988), [cf. Eq. (3.5.54)]. The basic idea of the complex-plane strategy
comes from the fact that Poisson’s equation [cf. Eq. (B.39)]

(1/r2) ∂(r2 ∂Φ/∂r)
/
∂r + (1/r2 sinλ) ∂(sinλ ∂Φ/∂λ)

/
∂λ + (1/r2 sin2 λ) ∂2Φ/∂ϕ2 = −4πG�,

(3.8.122)

is an elliptic differential equation, and initial value problems (Cauchy problems) are apt to lead to
numerical instabilities in the case of elliptic equations, while for the hyperbolic type this problem seems
to be absent (cf. Eriguchi 1978). Introducing the complex variables

λ + iκ and ϕ + iψ, (3.8.123)

instead of the real spherical coordinates λ and ϕ, the elliptic differential equation (3.8.122) is transformed
into the hyperbolic type, as already outlined in 1929 by H. Lewy (Courant and Hilbert 1962, pp. 499-507).
The derivative of a complex function f(z) = f(x + iy) is defined as (Spiegel 1974)

df(z)/dz = lim
∆z→0

[f(z + ∆z) − f(z)]/∆z

= lim
(∆x+i∆y)→0

[f(x + iy + ∆x + i∆y) − f(x + iy)]
/
(∆x + i∆y), (3.8.124)

provided that the limit exists independent of the way in which ∆z approaches zero. If df(z)/dz exists in
a certain domain, f(z) is said to be analytic in this region. If we let ∆z = ∆x+ i∆y approach zero along
the path ∆y = 0, and then along the path ∆x = 0, Eq. (3.8.124) becomes

df(z)/dz = ∂f(z)/∂x = ∂f(z)/i∂y = −i ∂f(z)/∂y, (3.8.125)

provided that f(z) is analytic in the neighborhood of z. The derivative of Eq. (3.8.125) is analogous

d2f(z)/dz2 = ∂2f(z)/∂x2 = −i ∂2f(z)/i∂y2 = −∂2f(z)/∂y2, (3.8.126)

where we have again particularized the derivation paths along ∆y = 0, and ∆x = 0, respectively. Re-
placing x and y by λ and κ, or by ϕ and ψ, respectively, we get the equalities

∂Φ/∂λ = −i ∂Φ/∂κ; ∂Φ/∂ϕ = −i ∂Φ/∂ψ; ∂2Φ/∂λ2 = −∂2Φ/∂κ2; ∂2Φ/∂ϕ2 = −∂2Φ/∂ψ2.
(3.8.127)

Thus, the elliptic Poisson equation (3.8.122) can be replaced in the complex domain by a hyperbolic
equation, since the second order derivatives ∂2Φ/∂λ2, ∂2Φ/∂ϕ2 change their sign in the complex domain,
being equal to −∂2Φ/∂κ2, −∂2Φ/∂ψ2. After this analytic continuation into the complex plane, r, κ, ψ
are treated as new independent variables, and λ, ϕ as parameters. Before turning to the complex domain,
Eriguchi (1978) transforms the second order elliptic equation (3.8.122) into a system of first order partial
differential equations, by introducing the dimensionless variables

�F = �F (Fr, Fλ, Fϕ) = (R0/Φ0) ∇Φ; Fr = (R0/Φ0) ∂Φ/∂r; Fλ = (R0/Φ0r) ∂Φ/∂λ;
Fϕ = (R0/Φ0r sinλ) ∂Φ/∂ϕ, (3.8.128)

FP = (P/P0)1/(n+1) = (�/�0)1/n, (3.8.129)

t = ln(r/R0); dt = dr/r, (3.8.130)
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R0 = (P0/4πG�2
0)

1/2; Φ0 = P0/�0. (3.8.131)

P0, �0 denote central values of pressure and density, respectively. As seen from Eq. (3.8.131), the
constants R0 and Φ0 have the dimensions of length and potential, respectively.

The spherical (r, λ, ϕ)-coordinates adopted by Hachisu and Eriguchi (1982, Fig. 1) are introduced
with respect to a Cartesian (x, y, z)-system, with its x-axis being rotated by the azimuth angle ϕ∗ and
by the polar angle λ∗ with respect to a rotating Cartesian (x0, y0, z0)-frame, with the z0-axis directed
along the angular velocity vector �Ω. Clearly, the axes Oz0 and Oz form the angle π/2 − λ∗, and the
coordinates of the two Cartesian systems are connected by the transformation matrix (e.g. Bronstein
and Semendjajew 1985)


 x0

y0

z0


 =


 sinλ∗ cos ϕ∗ − sinϕ∗ − cos λ∗ cos ϕ∗

sinλ∗ sinϕ∗ cos ϕ∗ − cos λ∗ sinϕ∗

cos λ∗ 0 sin λ∗




 x

y
z


 . (3.8.132)

The equation of hydrostatic equilibrium in a uniformly rotating frame is [cf. Eq. (3.1.14)]

∇P/� = ∇Φ − �Ω × (�Ω × �r). (3.8.133)

In the (x0, y0, z0)-system the angular velocity �Ω has the components (0, 0, Ω). As the transforma-
tion of the components from the (x0, y0, z0)-frame to the (x, y, z)-frame proceeds with the inverse of
the transformation matrix (3.8.132), the components of the angular velocity in the (x, y, z)-system are
(Ω cos λ∗, 0, Ω sin λ∗). The components of the vectorial product from Eq. (3.8.133) in the (x, y, z)-frame
are accordingly [�r = �r(r sinλ cos ϕ, r sinλ sinϕ, r cos λ)]

�Z = �Z(Zx, Zy, Zz) = �Ω × (�Ω × �r); Zx = Ω2r sinλ∗(cos λ∗ cos λ − sinλ∗ sinλ cos ϕ);

Zy = −Ω2r sinλ sinϕ; Zz = Ω2r cos λ∗(− cos λ∗ cos λ + sinλ∗ sinλ cos ϕ). (3.8.134)

The transformation from the Cartesian (x, y, z)-system to the right-handed spherical (r, λ, ϕ)-frame
proceeds with the transformation matrix (e.g. Bronstein and Semendjajew 1985, p. 565)


 Zr

Zλ

Zϕ


 =


 sinλ cos ϕ sinλ sinϕ cos λ

cos λ cos ϕ cos λ sinϕ − sinλ
− sinϕ cos ϕ 0




 Zx

Zy

Zz


 . (3.8.135)

Hachisu and Eriguchi [1982, Eq. (14)] consider only the radial component of the hydrostatic equation
(3.8.133), i.e.

∂P/∂r = � ∂Φ/∂r − �Zr = � ∂Φ/∂r + �Ω2r
[
(sinλ∗ sinλ cos ϕ − cos λ∗ cos λ)2 + sin2 λ sin2 ϕ

]
.

(3.8.136)

The partial derivatives of Φ can be transformed by taking into account the continuity of the second
order derivatives of the gravitational potential:

∂2Φ/∂r∂λ = ∂2Φ/∂λ∂r; ∂2Φ/∂r∂ϕ = ∂2Φ/∂ϕ∂r. (3.8.137)

Inserting Eqs. (3.8.128)-(3.8.131) consecutively into Eqs. (3.8.122), (3.8.137), (3.8.136), we eventually
obtain the first order system

∂Fr/∂t = −2Fr − Fλ cot λ − ∂Fλ/∂λ − (1/ sinλ) ∂Fϕ/∂ϕ − Fn
P exp t, (3.8.138)

∂Fλ/∂t = −Fλ + ∂Fr/∂λ, (3.8.139)

∂Fϕ/∂t = −Fϕ + (1/ sinλ) ∂Fr/∂ϕ, (3.8.140)

∂FP /∂t = [exp t/(n + 1)]
{
Fr + (β/2) exp t[(sinλ∗ sinλ cos ϕ − cos λ∗ cos λ)2 + sin2 λ sin2 ϕ]

}
.

(3.8.141)
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If the radial coordinate r = R0 exp t is interpreted as the “time”, the elliptic differential equation
(3.8.122) becomes in the complex domain a two-dimensional hyperbolic wave-type equation in the (κ, ψ)-
plane. The system (3.8.138)-(3.8.140) represents a transformed wave-type equation, and can be written in
the complex domain in condensed matricial form (λ → λ+ iκ; ϕ → ϕ+ iψ; ∂ /∂λ → −i ∂ /∂κ; ∂ /∂ϕ =
−i ∂ /∂ψ) :

∂F/∂t = A ∂F/∂κ + B ∂F/∂ψ + C, (3.8.142)

where

F =


 Fr

Fλ

Fϕ


 ; A =


 0 i 0

−i 0 0
0 0 0


 ; B =


 0 0 i

/
sin(λ + iκ)

0 0 0
−i
/

sin(λ + iκ) 0 0


 ;

C =


 −2Fr − Fλ cot(λ + iκ) − Fn

P exp t
−Fλ

−Fϕ


 . (3.8.143)

The characteristics along the κ-direction (ψ = const) and along the ψ-direction (κ = const) are
obtained as the roots of the determinants (e.g. Chester 1971, Garabedian 1986)

Det |A − Iακ| =

∣∣∣∣∣∣
−ακ i 0
−i −ακ 0
0 0 −ακ

∣∣∣∣∣∣ = −α3
κ − i2ακ = 0, (3.8.144)

Det |B − Iαψ| =

∣∣∣∣∣∣
−αψ 0 i

/
sin(λ + iκ)

0 −αψ 0
−i
/

sin(λ + iκ) 0 −αψ

∣∣∣∣∣∣ = −α3
ψ − i2αψ/ sin2(λ + iκ) = 0,

(3.8.145)

where I denotes the identity matrix. The characteristic roots of Eqs. (3.8.144) and (3.8.145) are therefore

ακ1 = 0; ακ2 = 1; ακ3 = −1 and αψ1 = 0; αψ2 = 1/ sin(λ + iκ); αψ3 = −1/ sin(λ + iκ).
(3.8.146)

The system (3.8.142) is totally hyperbolic if the respective eigenvalues ακj and αψj , (j = 1, 2, 3) are
real and distinct, so the roots αψ2 and αψ3 have to be real. This can be achieved for instance by putting
λ = π/2, because in this case

αψ2,ψ3 = ±1
/

sin(π/2 + iκ) = ∓1/ cos(iκ) = ∓1/ cosh κ, (3.8.147)

and the elliptic Poisson equation (3.8.122) is indeed transformed into the totally hyperbolic system
(3.8.142). If for certain values of λ∗ and ϕ∗ the potential (3.8.148) is known in the central region r ≈ 0,
the system (3.8.142) can be solved along the x-axis, where λ = π/2 and ϕ = 0. Thus, for the analytic
continuation of Eqs. (3.8.138)-(3.8.141) into the complex domain, λ and ϕ are replaced throughout by
π/2 + iκ and 0 + iψ, respectively.

Let us denote by (r, λ0, ϕ0) the spherical system associated with the (x0, y0, z0)-coordinates. In this
frame Hachisu and Eriguchi (1982, 1984b) expand the potential near the centre of the configuration in a
form similar to Eq. (3.8.30):

Φ/Φ0 =
∞∑

j,k,
=0

(r/R0)

(
A
jk cos kϕ0 + B
jk sin kϕ0

)
P k

j (cos λ0), (r ≈ 0; A
jk, B
jk = const).

(3.8.148)

The constants A
jk, B
jk determine the initial values (Cauchy data) of the problem at hand, and
constitute its eigenvalues. Let us denote by

�F0 = �F0(Fr, Fλ0, Fϕ0) = (R0/Φ0) ∇Φ; Fr = (R0/Φ0) ∂Φ/∂r; Fλ0 = (R0/Φ0r) ∂Φ/∂λ0;
Fϕ0 = (R0/Φ0r sinλ0) ∂Φ/∂ϕ0, (3.8.149)
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the equivalent of the dimensionless gravitational force �F from Eq. (3.8.128) in the (r, λ0, ϕ0)-frame. The
respective components are connected by the transformation matrix


 Fr

Fλ0

Fϕ0


 =


 1 0 0

0 ∂λ/∂λ0 sinλ ∂ϕ/∂λ0

0 (1/ sinλ0) ∂λ/∂ϕ0 (sinλ/ sinλ0) ∂ϕ/∂ϕ0




 Fr

Fλ

Fϕ


 . (3.8.150)

The elements of this transformation matrix are just the direction cosines among the axes of the two
spherical coordinate systems (r, λ0, ϕ0) and (r, λ, ϕ).

The metrics of two orthogonal, right-handed curvilinear coordinate systems (q10, q20, q30) and
(q1, q2, q3) are given by [cf. Eq. (B.4)]

ds2
0 =

3∑
j=1

h2
j0 dq2

j0; ds2 =
3∑

j=1

h2
j dq2

j . (3.8.151)

The direction cosines (hk/hj0)(∂qk/∂qj0), (j, k = 1, 2, 3) are just equal to the ratios between the line
elements hk dqk and hj0 dqj0 along the axes. Thus, the components of a vector �Vk(V1, V2, V3) in the
qk-system transform to the vector �Vj0(V10, V20, V30) in the qj0-system via the matricial form [cf. Eq.
(3.8.150)]

[
Vj0

]
=
[
(hk/hj0) (∂qk/∂qj0)

][
Vk

]
. (3.8.152)

In the present case we have: h10 = 1; h20 = r; h30 = r sinλ0; h1 = 1; h2 = r; h3 = r sinλ.
The condition that no mass distributions exist outside the surface is imposed by the integral repre-

sentation (3.1.53) of the gravitational potential:

Φ(r, λ0, ϕ0) = G

∫ 2π

0

dϕ′
∫ π

0

sinλ′ dλ′
∫ ∞

0

�(r′, λ′, ϕ′) r′2 dr′/|�r − �r′|

= G
∞∑

j=0

j∑
k=0

[f1(t) cos kϕ0 + f2(t) sin kϕ0] P k
j (cos λ0),

[
�r = �r(r, λ0, ϕ0); �r′ = �r′(r′, λ′, ϕ′)

]
.

(3.8.153)

The dimensionless gravitational force can be obtained from this equation via Eq. (3.8.149): �F0 =
(R0/Φ0) ∇Φ. The dimensionless pressure (3.8.129) has a similar form as the potential, as can be seen
from the prime integral of the hydrostatic equation (3.8.133) in the (r, λ0, ϕ0) system [cf. Eq. (3.8.4)]:

(n + 1)K�1/n = Φ + (1/2)Ω2r2 sin2 λ0 + const. (3.8.154)

With the notations (3.8.129), (3.8.131) this equation can be written in dimensionless form as

(n + 1)FP = Φ/Φ0 + (β/6)(r/R0)2[1 − P2(cos λ0)] + const. (3.8.155)

Indeed, the dimensionless pressure has a similar series representation as the potential Φ from Eq.
(3.8.153):

FP (t, λ0, ϕ0) =
∞∑

j=0

j∑
k=0

[p1(t) cos kϕ0 + p2(t) sin kϕ0] P k
j (cos λ0). (3.8.156)

As already mentioned, λ and ϕ are replaced by λ+iκ = π/2+iκ and ϕ+iψ = 0+iψ, respectively. Eqs.
(3.8.141) and (3.8.142) are integrated for a given value of λ∗, ϕ∗ with a presumed set of the eigenvalues
A
jk, B
jk from Eq. (3.8.148), where the transition from the (r, λ, ϕ)-frame to the (r, λ0, ϕ0)-frame is
effected through Eqs. (3.8.132), (3.8.150). An approximate value of the density distribution within
the polytrope can be guessed with an approximate data set A
jk, B
jk from Eq. (3.8.148). With this
assumed density distribution the potential (3.8.153) can be found throughout the configuration, where
it is sufficient to solve the equations (3.8.153) and (3.8.156) in the (r, λ0, ϕ0) coordinates for a single
set of values λ∗, ϕ∗, because of the analyticity of all functions. The potential Φ and the corresponding
gravitational force �F0 are in general not consistent with the force �F found previously from the integration
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of Eq. (3.8.142), so corrected eigenvalues A
jk, B
jk have to be sought. The criterion of consistency
is conveniently expressed by the constancy of the total potential from Eq. (3.8.155) over the surface
rs = rs(λ0, ϕ0) where P, �, and FP vanish:

Φ(rs, λ0, ϕ0)/Φ0 + (β/4)(rs sinλ0/R0)2 + const = 0. (3.8.157)

Hachisu and Eriguchi (1982) claim that the convergence of the series (3.8.148) is also guaranted in
the region far from the real axis, i.e. even if the imaginary variables κ and ψ are large.

3.8.8 Tabulation of Numerical Results for Critically Rotating Spheroids

The parameters characterizing best the critically rotating polytropes seem to be the critical rotation
parameter βc = Ω2

c/2πG�0 [cf. Eqs. (3.2.3), (3.6.6)], the mean critical rotation parameter βcm =
Ω2

c/2πG�m [cf. Eqs. (3.4.46), (3.6.36)], and the critical oblateness (flattening, ellipticity) fc = (a1 −
a3)/a1 = (Ξce − Ξcp)/Ξce, where a1 = αΞce and a3 = αΞcp means the equatorial and polar radius of the
critical surface. Ξce and Ξcp are the values of the critical dimensionless radial coordinate at the equator
and pole, respectively.

The general condition of critical rotation is simply given by the vanishing radial component of the
effective gravity grce

at the critical equatorial radius rce [cf. Eqs. (3.1.22), (3.4.65), (3.6.12)]:

grce
= (∂Φtot/∂r)r=rce

= [∂(Φ + Φf )/∂r]r=rce
= [(n + 1)K�

1/n
0 /α][∂Θ(ξ, µ, ϕ)/∂ξ]ξ=Ξce

= 0,
(3.8.158)

where Φf = Ω2
c�

2/2 = (n+1)K�
1/n
0 ξ2βc[1−P2(µ)]/6 denotes the centrifugal potential from Eqs. (3.1.23),

(3.4.64), or (3.6.12). We have also used the hydrostatic equation from Eq. (3.4.64) or (3.8.3).
The critical values result either in the course of less transparent numerical manipulations, or they

require the knowledge of certain constants, as for Chandrasekhar’s perturbation method [Eq. (3.4.65)],
for the double approximation technique [Eqs. (3.6.12), (3.6.13)], or for Williams’ optimal matching
method [Eq. (3.8.67)]. The finding of critical values can be best illustrated with Chandrasekhar’s first
order theory. Equating Eq. (3.4.65) to zero, we get at once the critical rotation parameter:

grce
= [(n + 1)K�

1/n
0 /α]

{
θ′(ξ1) + βc

[
2ψ0(ξ1)/ξ1 + ψ′

0(ξ1) + A2P2(0)
(
2ψ2(ξ1)/ξ1 + ψ′

2(ξ1)
)]}

= 0,(
θn(ξ1) = 0; 0 < n ≤ 5

)
. (3.8.159)

Substituting for A2 from Eq. (3.2.43), we obtain

βc = −θ′(ξ1)
/{

2ψ0(ξ1)/ξ1 + ψ′
0(ξ1) + 5ξ2

1

[
2ψ2(ξ1)/ξ1 + ψ′

2(ξ1)
]/

12
[
3ψ2(ξ1) + ξ1ψ

′
2(ξ1)

]}
;

βcm = βc�0/�m = −[βcξ1/3θ′(ξ1)][1 − 3βcψ0(ξ1)/ξ1θ
′(ξ1)]

/
{1 + βc[ψ′

0(ξ1) − ξ1/3]/θ′(ξ1)}
≈ −βcξ1/3θ′(ξ1), (0 < n ≤ 5), (3.8.160)

with P2(0) = −1/2, and �0/�m taken from Eq. (3.2.61). The corresponding dimensionless equatorial and
polar radii result via Eqs. (3.2.56), (3.2.57):

Ξce = ξ1 − βc

{
ψ0(ξ1)/θ′(ξ1) + 5ξ2

1ψ2(ξ1)
/
12θ′(ξ1)[3ψ2(ξ1) + ξ1ψ

′
2(ξ1)]

}
, (3.8.161)

Ξcp = ξ1 − βc

{
ψ0(ξ1)/θ′(ξ1) − 5ξ2

1ψ2(ξ1)
/
6θ′(ξ1)[3ψ2(ξ1) + ξ1ψ

′
2(ξ1)]

}
. (3.8.162)

If n = 0, we get in the same manner from Eq. (3.4.66), (θ = 1 − ξ2/6; θn(ξ1) = 1; −2θ′(ξ1)/ξ1 −
θn(ξ1) = −1/3 = θ′(ξ1)/ξ1; ψ0 = ξ2/6; ψ2 = ξ2; A2 = −5/12)

βc = βcm = −θ′(ξ1)
/{

− ψ0(ξ1)/ξ1 + ψ′
0(ξ1) + A2P2(0) [−ψ2(ξ1)/ξ1 + ψ′

2(ξ1)]
}

= 8/9, (n = 0),
(3.8.163)

and from Eqs. (3.2.45), (3.2.64)

Ξce = ξ1 − βc[ψ0(ξ1) + A2P2(0) ψ2(ξ1)]/θ′(ξ1) = 61/2(1 + 9βc/8) = 2 × 61/2;

Ξcp = ξ1 − βc[ψ0(ξ1) + A2P2(1) ψ2(ξ1)]/θ′(ξ1) = 61/2(1 − 3βc/4) = 61/2/3, (n = 0). (3.8.164)
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Table 3.8.1 Critical values of rotationally distorted spheres: βc = Ω2
c/2πG�0 – critical rotation parame-

ter, βcm = Ω2
c/2πG�m – mean critical rotation parameter, Ξce – critical dimensionless equatorial radius (maximum

equatorial radius for nonaxisymmetric models), Ξcp – critical dimensionless polar radius, fc = (Ξce − Ξcp)/Ξce –
critical oblateness. ξ1 denotes the dimensionless radius of the polytropic sphere from Table 2.5.2. The critical val-
ues for the limiting bifurcation sequence by Vandervoort and Welty (1981) are for n = 0.794 instead of n = 0.808.
Values of Chandrasekhar (1933a, d) and βcm of James (1964) are taken from Hurley and Roberts (1964, Table
4). Values of Stoeckly (1965) are from Martin (1970, Table I). Values of Ξce, Ξcp by Ipser and Managan (1981)
are taken from Vandervoort and Welty (1981, Table 3). a + b means a × 10b.

Author βc βcm Ξce Ξcp fc

n = 0; ξ1 = 2.45
Caimmi (1985) 6.67−1 6.67−1 ∞ 2.45 1.000
Chandrasekhar (1933a, d) 8.89−1 8.89−1 4.90 0.82 0.833

n = 0.1
Hachisu et al. (1982) 1.82−1 2.09−1 − − 0.773
Hachisu (1986a) − 2.26−1 − − 0.729

Nonaxisymmetric polytrope : n = 0.1
Hachisu and Eriguchi (1982) 1.25−1 1.41−1 − − 0.677

n = 0.5; ξ1 = 2.75
Caimmi (1985) 2.18−1 − 4.33 2.50 0.424
Hachisu et al. (1982) 1.53−1 3.00−1 − − 0.565
Hachisu (1986a) − 3.10−1 − − 0.558
Horedt (1983) 1.44−1 2.76−1 − − 0.440

Nonaxisymmetric polytrope : n = 0.5
Hachisu and Eriguchi (1982) 1.32−1 2.46−1 − − 0.524
Ipser and Managan (1981) 1.29−1 − 4.97 2.24 0.549
Vandervoort and Welty (1981) 1.31−1 − 5.15 2.25 0.564

Bifurcating polytrope : n = 0.808
Caimmi (1985) 1.33−1 − 4.34 2.56 0.410
Horedt (1983) 1.22−1 3.85−1 − − 0.503
James (1964) 1.06−1 3.30−1 4.77 2.49 0.478
Vandervoort and Welty (1981) 1.16−1 − 4.76 2.40 0.495

n = 1; ξ1 = 3.14
Anand (1968) 8.31−2 − 4.24 3.21 0.242
Caimmi (1985) 1.20−1 − 4.94 2.55 0.483
Chandrasekhar (1933a, d) 1.71−1 5.75−1 4.35 2.34 0.462
Geroyannis (1988) 7.51−2 − 4.81 2.69 0.440
Horedt (1983) 9.46−2 3.93−1 − − 0.457
James (1964) 8.37−2 3.39−1 4.83 2.69 0.442
Monaghan and Roxburgh (1965) 7.59−2 − 4.54 2.92 0.357
Vandervoort and Welty (1981) 8.89−2 − 4.78 2.65 0.447

n = 1.5; ξ1 = 3.65
Anand (1968) 4.63−2 − 4.85 3.73 0.230
Caimmi (1985) 5.19−2 − 5.08 3.16 0.378
Chandrasekhar (1933a, d) 8.19−2 5.56−1 4.75 3.02 0.365
Eriguchi (1978) 4.32−2 − − − −
Hachisu (1986a) − 3.60−1 − − 0.383
Horedt (1983) 4.80−2 4.07−1 − − 0.384
Hurley and Roberts (1964) 4.45−2 3.55−1 4.95 3.16 0.361
James (1964) 4.36−2 3.52−1 5.36 3.30 0.385
Martin (1970) 4.16−2 − 5.30 − −
Miketinac and Barton (1972) 4.36−2 − 5.36 − −
Monaghan and Roxburgh (1965) 4.10−2 − 5.24 3.49 0.334
Naylor and Anand (1970) 3.75−2 − 5.37 − −
Singh and Singh (1984) 3.71−2 − 5.32 3.48 0.347
Smith (1975) 4.37−2 − 5.33 − −
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Author βc βcm Ξce Ξcp fc

Stoeckly (1965) 4.36−2 − 5.30 − −
Williams (1975) 4.34−2 − 5.23 3.48 0.335

n = 2; ξ1 = 4.35
Anand (1968) 2.30−2 − 5.62 4.38 0.221
Caimmi (1985) 2.50−2 − 5.95 3.97 0.333
Chandrasekhar (1933a, d) 3.88−2 5.34−1 5.46 3.81 0.302
Geroyannis (1984) 2.75−2 − 5.90 3.95 0.331
Geroyannis (1988) 2.11−2 − 6.25 4.06 0.351
Horedt (1983) 2.34−2 4.10−1 − − 0.350
James (1964) 2.16−2 3.58−1 6.31 4.06 0.357
Martin (1970) 2.14−2 − 6.29 − −
Monaghan and Roxburgh (1965) 1.99−2 − 6.33 4.15 0.344
Naylor and Anand (1970) 1.94−2 − 6.37 − −
Occhionero (1967a) 3.51−2 − − − −
Singh and Singh (1984) 1.97−2 − 6.32 4.16 0.342
Stoeckly (1965) 2.15−2 − 6.13 − −
Williams (1975) 2.15−2 − 6.25 − −

n = 2.5; ξ1 = 5.36
Caimmi (1985) 1.15−2 − 7.41 5.04 0.320
Geroyannis (1984) 1.24−2 − 7.14 5.03 0.296
Geroyannis (1988) 9.94−3 − 7.76 5.10 0.343
Horedt (1983) 1.07−2 4.12−1 − − 0.334
Hurley and Roberts (1964) 1.01−2 3.59−1 7.10 4.90 0.310
James (1964) 9.93−3 3.60−1 7.76 5.10 0.343
Martin (1970) 9.90−3 − 7.76 − −
Monaghan and Roxburgh (1965) 9.31−3 − 7.72 5.18 0.329
Occhionero (1967a) 1.50−2 − − − −
Williams (1975) 9.90−3 − 7.73 − −

n = 3; ξ1 = 6.90
Anand (1968) 4.43−3 − 8.81 6.84 0.224
Caimmi (1985) 4.69−3 − 9.62 6.63 0.311
Chandrasekhar (1933a, d) 7.05−3 5.31−1 8.55 6.51 0.238
Geroyannis (1984) 5.08−3 − 9.20 6.62 0.281
Geroyannis (1988) 4.13−3 − 10.2 6.67 0.345
Hachisu (1986a) − 3.67−1 − − 0.338
Horedt (1983) 4.36−3 4.13−1 − − 0.327
Hurley and Roberts (1964) 4.13−3 3.59−1 9.19 6.41 0.302
James (1964) 3.93−3 − − 6.58 −
Linnell (1977a) 4.12−3 − 10.3 6.68 0.353
Martin (1970) 4.08−3 − 10.1 − −
Miketinac and Barton (1972) 4.07−3 − 10.1 − −
Monaghan and Roxburgh (1965) 3.95−3 − 10.1 6.72 0.336
Naylor and Anand (1970) 3.93−3 − 10.1 − −
Occhionero (1967a) 5.96−3 − − − −
Singh and Singh (1984) 3.97−3 − 10.1 6.71 0.335
Stoeckly (1965) 4.03−3 − 9.81 − −
Vandervoort and Welty (1981) 4.09−3 − 10.1 6.68 0.336
Williams (1975) 4.07−3 − 10.1 6.70 0.334

n = 3.5; ξ1 = 9.54
Anand (1968) 1.51−3 − 12.2 9.39 0.232
Caimmi (1985) 1.58−3 − 13.4 9.31 0.307
Chandrasekhar (1933a, d) 2.37−3 5.27−1 11.8 9.20 0.221
Geroyannis (1984) 1.72−3 − 12.8 9.29 0.272
Geroyannis (1988) 1.39−3 − 14.0 9.35 0.334
Horedt (1983) 1.48−3 4.13−1 − − 0.324
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Author βc βcm Ξce Ξcp fc

Hurley and Roberts (1964) 1.40−3 3.59−1 12.8 8.97 0.299
Monaghan and Roxburgh (1965) 1.25−3 − 14.1 9.56 0.322
Occhionero (1967a) 2.00−3 − − − −
Williams (1975) 1.38−3 − 14.0 − −

n = 4; ξ1 = 14.97
Caimmi (1985) 3.74−4 − 21.3 14.8 0.306
Chandrasekhar (1933a, d) 5.59−4 5.23−1 18.6 14.7 0.210
Eriguchi (1978) 3.22−4 − − − −
Geroyannis (1984) 4.08−4 − 20.2 14.8 0.268
Geroyannis (1988) 3.29−4 − 22.2 14.8 0.333
Hachisu (1986a) − 3.69−1 − − 0.333
Horedt (1983) 3.50−4 4.13−1 − − 0.323
Hurley and Roberts (1964) 3.33−4 3.59−1 20.3 14.2 0.298
Martin (1970) 3.29−4 − 22.2 − −
Monaghan and Roxburgh (1965) 3.27−4 − 22.3 14.8 0.334
Naylor and Anand (1970) 3.22−4 − 22.3 − −
Williams (1975) 3.29−4 − 22.2 − −

n = 4.5; ξ1 = 31.84
Caimmi (1985) 3.66−5 − 45.6 31.7 0.305

n = 4.9; ξ1 = 171.43
Eriguchi (1978) 2.00−7 − − − −
Horedt (1983) 2.88−7 4.13−1 − − 0.323
Martin (1970) 2.03−7 − 257 − −
Naylor and Anand (1970) 2.03−7 − 257 − −

n = 5; ξ1 = ∞
Caimmi (1985) 0 − ∞ ∞ 0.333
Chandrasekhar (1933a, d) 0 5.00−1 ∞ ∞ 0.200
Roche model − 3.61−1 − − 0.333

The perturbation theories of Chandrasekhar (1933a, d) and Caimmi (1985) are inadequate to represent
the behaviour of the critically rotating constant density polytrope n = 0; this results by comparing their
values to those obtained numerically for the similar polytrope n = 0.1 from Table 3.8.1. Their values
should also be contrasted with the maximum rotation parameter β = 0.2247 of Maclaurin ellipsoids. The
maximum value of β for Jacobi ellipsoids is 0.18711 (Lyttleton 1953, Tassoul 1978).

For the axisymmetric models with 0.3 � n < 5 the critical parameters βc and βcm are just the
maximum values of β and βm, respectively. No calculations have been effected so far for polytropic indices
in the interval 0 < n < 0.1, so we exclude this range from our subsequent discussion. If 0.1 < n � 0.3, the
rotation parameters of axisymmetric models attain a certain maximum value (e.g. β = 0.21, βm = 0.24 if
n = 0.1), falling with increasing oblateness and increasing angular momentum towards the critical values
(e.g. βc = 0.182, βcm = 0.226 if n = 0.1, Hachisu et al. 1982, Hachisu and Eriguchi 1982, Hachisu 1986a,
b; see also Figs. 3.8.5, 3.8.7).

The nonaxisymmetric models with 0.1 < n < 0.808 bifurcate at their maximum values of β, βm, the
critical values being the smallest ones (Sec. 3.8.1 and Fig. 3.8.7, Hachisu and Eriguchi 1982, Hachisu
1986b). The bifurcation of the nonaxisymmetric sequences occurs for all polytropic indices 0.1 ≤ n ≤
0.808 at nearly the same oblateness f = 0.4, and at nearly the same dimensionless angular momentum
J/(4πGM

10/3
1 �

−1/3
0 )1/2 ≈ 0.07 (Hachisu and Eriguchi 1982).

The values of the polytrope n = 5, (βc = 31/2/ξ3; βcm = 1/2; fc = 1/5 if ξ → ∞) for Chandrasekhar’s
theory (1933a, d) are obtained from Eqs. (3.8.160)-(3.8.162) with the asymptotic values quoted in Eqs.
(3.2.68) and (3.2.89): θ′ ≈ −31/2/ξ2; ψ0 ≈ ξ2/6; ψ2 ≈ 15πξ2/256. As shown by Eq. (3.2.69), the
polytrope n = 5 resembles the Roche model. For the critically rotating Roche model we have shown in
Eqs. (3.6.33)-(3.6.36) that fc = 1/3, and βcm = 0.36074; these values are quoted for comparison in the
last line of Table 3.8.1.

The ratio τc = Ekin/|W | between kinetic and gravitational energy of critically rotating polytropes
diminishes continuously as the polytropic index increases from 0.1 to 5. No critical configuration exists
for the nonrelativistic homogeneous ellipsoids n = 0 : The ratio τ attains its maximum value 0.5 from
Eqs. (3.1.36), (5.10.217)-(5.10.223) for Maclaurin ellipsoids degenerating into an infinitely thin disk
(e = 1; a1 = a2 = ∞; a3 = 0; β = Ω2/2πG� = 0), as well as for Jacobi ellipsoids degenerating into an
infinitely thin needle (a1 = ∞; a2, a3 = 0; β = 0; τ = 0.5). In the range 0.1 < n < 0.808 there exist
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Fig. 3.8.10 Critical ratio τc between rotational and gravitational energy of axisymmetric polytropes as a
function of polytropic index n (cf. Table 5.8.2). Boss (1986) interpolates the values of Tassoul (1978, Chap. 10,
filled circles) and Hachisu et al. (1982, open circles).

critically rotating, axisymmetric and nonaxisymmetric configurations with equatorial mass shedding. τc

is always larger for axisymmetric polytropes as compared to nonaxisymmetric ones: τc = 0.32 versus
τc = 0.16 if n = 0.1, and τc = 0.19 versus τc = 0.14 if n = 0.5 (Hachisu et al. 1982, Hachisu and Eriguchi
1982). Hurley and Roberts (1964) find τc = 6.10×10−2, 9.14×10−3, 1.20×10−3 if n = 1.5, 3, 4, whereas
Hachisu (1986a) quotes in close agreement τc = 5.95×10−2, 9.00×10−3, 1.19×10−3, respectively (Table
5.8.2).

Below, we list the various methods adopted by the authors from Table 3.8.1. Anand (1968) adopts
the second order perturbation method of Chandrasekhar (1933a, d; Sec. 3.5). Caimmi [1985; see Eq.
(3.2.98)] also uses a variant of Chandrasekhar’s (1933a, d) method. The perturbation method of Chan-
drasekhar (1933a, d) is exposed in Secs. 3.2-3.5. Eriguchi (1978), Hachisu et al. (1982), and Hachisu and
Eriguchi (1982) implement the complex-plane strategy from Sec. 3.8.7. Hachisu (1986a, b) adopts the
self-consistent field method from Sec. 3.8.4. Geroyannis (1984; cf. Sec. 3.5) uses the third order Chan-
drasekhar (1933a, d) method. Geroyannis (1988) introduces his complex-plane strategy touched at the
end of Sec. 3.5. Horedt (1983, Sec. 3.7) uses the third-order level surface theory of Zharkov and Trubitsyn
(1978). Hurley and Roberts (1964) calculate with the ellipsoidal method from Sec. 3.8.5. Ipser and Man-
agan (1981) generalize Stoeckly’s (1965) method from Sec. 3.8.2. James (1964) implements his numerical
method from Sec. 3.8.1. Linnell (1977a) expands on Chandrasekhar’s (1933a, d) method. Martin (1970)
mixes a higher order Chandrasekhar (1933a, d) method with the double approximation technique from
Sec. 3.6. Miketinac and Barton (1972) use Stoeckly’s (1965) method from Sec. 3.8.2. Monaghan and
Roxburgh (1965, see Sec. 3.6) implement the double approximation technique. Naylor and Anand (1970)
extend the double approximation technique of Monaghan and Roxburgh (1965). Occhionero (1967a, cf.
Sec. 3.5) implements the second order perturbation theory of Chandrasekhar (1933a, d). Singh and
Singh (1984) expand the double approximation technique of Monaghan and Roxburgh (1965). Smith
[1975, cf. Eqs. (3.5.59), (3.5.60)] introduces stretched variables for his asymptotic matching procedure.
Stoeckly (1965, see Sec. 3.8.2) adopts for his calculations a Henyey-type algorithm. Vandervoort and
Welty (1981) calculate with a simplified version of the self-consistent field method from Sec. 3.8.4. And
finally, Williams (1975, cf. Sec. 3.8.3) uses the optimal matching technique after Faulkner et al. (1968).

Table 3.8.1 shows that the differences among various methods are often large and exhibit systematic
trends; these differences are caused by the different approximation procedures for critically rotating
polytropes. Of course, since the critical polytropes are rotating rapidly, the most reliable results seem
to be produced by the more numerical methods, as those of James (1964), Martin (1970), Hachisu and
Eriguchi (1982), Geroyannis (1988). For a statistical evaluation of the results see Geroyannis (1988).
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3.9 Rotating Polytropic Cylinders and Polytropic Rings

3.9.1 Rotating Polytropic Cylinders

We consider only polytropic indices 0 ≤ n < ∞, because in this case the physical parameters of
undistorted cylinders remain finite. The limiting case of the “isothermal” cylinder (n = ±∞) is marginally
touched. The study of rotating polytropic cylinders seems to have been initiated by Robe (1968b). In an
inertial cylindrical frame the equation of hydrostatic equilibrium (3.1.2) becomes for a cylinder rotating
differentially with angular velocity �Ω = �Ω[0, 0, Ω(�)] :




∂P/∂� = � ∂Φ/∂� + �Ω2�
∂P/∂ϕ = � ∂Φ/∂ϕ [Ω = Ω(�)].
∂P/∂z = � ∂Φ/∂z

(3.9.1)

Cartesian vector components �Z = �Z(Zx, Zy, Zz) transform into cylindrical components �Z =
�Z(Z
, Zϕ, Zz) according to the matrix (e.g. Bronstein and Semendjajew 1985, p. 564)


 Z


Zϕ

Zz


 =


 cos ϕ sinϕ 0

− sinϕ cos ϕ 0
0 0 1




 Zx

Zy

Zz


 , (3.9.2)

where x = � cos ϕ, y = � sinϕ. With the notations from Eq. (3.2.1)

� = �0Θn; P = K�1+1/n = K�
1+1/n
0 Θn+1 = P0Θn+1, (0 ≤ n < ∞), (3.9.3)

we obtain from the hydrostatic equation (3.9.1) the prime integral

(n + 1)K�1/n = (n + 1)K�
1/n
0 Θ = Φ +

∫
Ω2(�) � d� + const. (3.9.4)

Poisson’s equation in cylindrical coordinates is via Eq. (B.48) equal to:

∇2Φ = (1/�) ∂(� ∂Φ/∂�)/∂� + (1/�2) ∂2Φ/∂ϕ2 + ∂2Φ/∂z2 = −4πG�. (3.9.5)

With the dimensionless quantities from Eqs. (3.2.1), (3.2.3)

� = [(n + 1)K/4πG�
1−1/n
0 ]1/2ξ = [(n + 1)P0/4πG�2

0]
1/2ξ = αξ;

z = [(n + 1)K/4πG�
1−1/n
0 ]1/2ζ = [(n + 1)P0/4πG�2

0]
1/2ζ = αζ;

β = Ω2/2πG�0, (0 ≤ n < ∞), (3.9.6)

Poisson’s equation becomes, after inserting for the derivatives of Φ via Eq. (3.9.4), (Robe 1979, Simon
et al. 1981, Veugelen 1985a):

(1/ξ) ∂(ξ ∂Θ/∂ξ)
/
∂ξ + (1/ξ2) ∂2Θ/∂ϕ2 + ∂2Θ/∂ζ2 = −Θn + (1/2ξ) ∂[ξ2β(ξ)]

/
∂ξ. (3.9.7)

If density and pressure depend only on �, and if the angular velocity Ω is constant, Eq. (3.9.7) writes
(Robe 1968b)

(1/ξ) d(ξ dΘ/dξ)
/
dξ = d2Θ/dξ2 + (1/ξ) dΘ/dξ = −Θn + β, (β = const; 0 ≤ n < ∞), (3.9.8)

subject to the boundary conditions Θ(0) = 1 and (dΘ/dξ)ξ=0 = 0.
In a similar way as for Eq. (2.4.23), Robe (1968b) finds for the expansion near the origin:

Θ ≈ 1 − (1 − β)ξ2/(21 × 1!)2 + n(1 − β)ξ4/(22 × 2!)2

−n(1 − β)[n + 2(n − 1)(1 − β)]ξ6/(23 × 3!)2 + ..., (ξ ≈ 0). (3.9.9)
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Table 3.9.1 Critical values of polytropic cylinders and rings: βc = Ω2
c/2πG�0 – critical rotation parameter,

βcm = Ω2
c/2πG�m – mean critical rotation parameter, ξ1 – dimensionless surface coordinate of nonrotating

cylinder from Table 2.5.2, Ξc1 – dimensionless critical surface coordinate of rotating cylinder. rc1/R1 – ratio
between mean critical minor radius rc1 of the ring (measured in the equatorial plane) and its major radius R1

(Fig. 3.9.2). For polytropic cylinders βcm should be throughout exactly 1 [see Eq. (3.9.12)]. a + b means a× 10b.

A. Cylinders (Robe 1968b)

n βc βcm ξ1 Ξc1

0 1.00 1.00 2.00 ∞
1 2.87−1 1.00 2.40 3.82
3 5.47−2 1.00 3.57 5.49
6 8.21−3 9.47−1 6.72 1.08+1

B. Rings (Hachisu 1986a)

n βcm rc1/R1

0.1 0.170 − (concave hamburger)
0.5 0.211 0.431
1.5 0.211 0.337
3.0 0.183 0.279
4.0 0.166 0.254

When the centrifugal force at the cylindrical surface is just equal to gravitation, we obtain the critically
rotating cylinder by equating to zero the total gravitational acceleration at the critical surface �c1 = αΞc1 :

g
c1 =
{

∂

[
Φ +

∫
Ω2(�′) �′ d�′

]/
∂�

}

=
c1

= [(n + 1)K�
1/n
0 /α][∂Θ(ξ, ϕ, ζ)/∂ξ]ξ=Ξc1 = 0. (3.9.10)

The mass per unit length of the rotating cylinder is

M1 = 2π

∫ 
1

0

�� d� = 2π�0α
2

∫ Ξ1

0

Θnξ dξ = 2π�0α
2[−ξ(dΘ/dξ)ξ=Ξ1 + βΞ2

1/2]

= π�m�21 = π�mα2Ξ2
1, (0 ≤ n < ∞; β = const). (3.9.11)

�m denotes the mean density, and we have used the fundamental equation (3.9.8). For critically
rotating cylinders Eq. (3.9.11) yields with the condition of critical rotation (dΘ/dξ)ξ=Ξc1 = 0, as outlined
in Eq. (3.9.10):

�0βc/�m = Ω2
c/2πG�m = βcm = 1. (3.9.12)

As results from the numerical tables of Robe (1968b), the mass of the rotating cylinder is always
larger than the mass of the nonrotating one, provided the central densities are the same (cf. Eq. (3.2.58)
for the spheroidal case). If we consider two cylinders of equal mass, the central density of the nonrotating
cylinder is larger.

Like in the nonrotating case we can find exact analytical solutions in the particular cases n = 0 and
n = 1. If n = 0, we get from a simple integration of Eq. (3.9.8), (Θ(0) = 1; Θ′(0) = 0; � = �0) :

Θ = 1 − (1 − β)ξ2/4 or P = P0Θ = P0[1 − πG�2
0�

2(1 − β)/P0] = πG�2
0(1 − β)(�21 − �2).

(3.9.13)

We have inserted for P and � from Eqs. (3.9.3) and (3.9.6), respectively. The central pressure P0

has been eliminated by putting in Eq. (3.9.13) P (�1) = 0, where �1 is the surface value of � : P0 =
πG�2

0�
2
1(1 − β).

For the critically rotating homogeneous cylinder (n = 0) we have by virtue of Eq. (3.9.12): β = βc =
βcm = 1. Opposite to Robe’s (1968b) findings the pressure within this particular cylinder stays constant,
since from Θ = 1 − (1 − β)ξ2/4 we get Θ = P/P0 = 1 if β → βc = 1, at any finite distance � = αξ.
Likewise, the boundary �1 ∝ Ξ1 = 2/(1 − β)1/2, (Θ = 0) is attained at larger and larger distances if
β → βc = 1. In the limit an infinite radius is attained: �c1 ∝ Ξc1 = ∞.

Eq. (3.9.8) is linear and nonhomogeneous in the second particular case n = 1, admitting the solution
(cf. Eqs. (2.3.21), (2.3.83); Robe 1968b)

Θ = (1 − β) J0(ξ) + β, (n = 1). (3.9.14)
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The factor 1−β near the Bessel function J0 appears in order to satisfy the expansion (3.9.9) near the
origin, since J0 ≈ 1 − ξ2/4 [cf. Eq. (2.3.12)]. The critical value of βc in the case n = 1 is given by the
two equations Θ(Ξc1) = 0 and (dΘ/dξ)ξ=Ξc1 = 0 [cf. Eq. (3.9.10)], corresponding to the first minimum
of J0(ξ) at ξ = Ξc1 = 3.82, when dJ0/dξ = 0 (Spiegel 1968).

Differentially rotating polytropic cylinders have been considered by Robe (1979), Simon et al. (1981),
Veugelen (1985a), Schneider and Schmitz (1995). Assuming rotation laws of the form

β = a0/(1 + a1ξ
2) and β =

∞∑
k=0

b2kξ2k, (a0, b0 > 0; a1 ≥ 0), (3.9.15)

there result equilibrium structures of cylinders with an angular velocity on the axis, that is larger than
the critical break-up velocity of uniformly rotating cylinders from Table 3.9.1. The critical values quoted
by Simon et al. (1981) in the ninth line of their Table for n = 1.5 and βc = 0.16 are not listed in Table
3.9.1, because one obtains βcm ≈ 0.7 instead of 1 from Eq. (3.9.12).

Fig. 3.9.1 The density parameter Θ of a rotating “isothermal” cylinder (n = ±∞) as a function of the
dimensionless distance from the rotation axis ξ, and for rotation parameters β = 0 (upper curve), β = 0.05
(middle curve), and β = 0.4 (lower curve). The upper curve (β = 0) is identical to the analytic solution for the
nonrotating cylinder from Eq. (2.3.48), (Hansen et al. 1976).

The rotating isothermal cylinders have been discussed by Hansen et al. (1976). We introduce the
notations from Eqs. (2.1.15), (2.1.18), and (2.1.20):

P = K� = K�0 exp(−Θ) = P0 exp(−Θ); � = (K/4πG�0)1/2ξ = αξ;

z = (K/4πG�0)1/2ζ = αζ, (n = ±∞). (3.9.16)

The prime integral of the hydrostatic equation (3.9.1) writes as

K ln � = K ln �0 − Θ = Φ +
∫

Ω2(�) � d� + const, (n = ±∞), (3.9.17)

and the isothermal equivalent of Eq. (3.9.7) becomes

(1/ξ) ∂(ξ ∂Θ/∂ξ)
/
∂ξ + (1/ξ2) ∂2Θ/∂ϕ2 + ∂2Θ/∂ζ2 = exp(−Θ) − (1/2ξ) ∂[ξ2β(ξ)]/∂ξ. (3.9.18)

If β = const and Θ = Θ(ξ), we get analogously to Eq. (3.9.8):

(1/ξ) d(ξ dΘ/dξ)
/
dξ = exp(−Θ) − β, (β = const; n = ±∞). (3.9.19)

The equivalent of Eq. (3.9.11) for the case n = ±∞ writes

M1 = 2π

∫ 
1

0

�� d� = 2π�0α
2

∫ Ξ1

0

exp(−Θ) ξ dξ = 2π�0α
2[ξ (dΘ/dξ)ξ=Ξ1 + βΞ2

1/2]

= (K/2G)[ξ (dΘ/dξ)ξ=Ξ1 + βΞ2
1/2]. (3.9.20)
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The numerical integration of Eq. (3.9.19) for the cases β = 0.05 and 0.4 exhibits oscillations of Θ,
and consequently of the density; for instance, if β = 0.05, the first density inversion occurs at ξ = 14
(Fig. 3.9.1). As it is to be expected on general grounds, these density inversions give rise to dynamically
unstable density perturbations, to be touched in Sec. 5.9.2 (Hansen et al. 1976). The density inversions
seem to appear because undistorted isothermal cylinders have finite mass, but infinite extension (Sec.
2.6.8). The structure of the rotating isothermal cylinders is one of concentric rings of varying density,
and Hansen et al. (1976) invoke an artificial external pressure in order to prevent the configuration from
expanding beyond a certain radius.

3.9.2 Polytropic Rings

Rings with infinitely large major radius R1 resemble cylinders, and are therefore treated within this
context (see also Secs. 3.8.4, 6.4.3). To be analytically tractable the rings should be slender, i.e. the minor
radius r1 of the ring (half-thickness of the ring) has to be much lower than its major radius R1 : r1 � R1

(Fig. 3.9.2). Also, the rotation of ring material round the central axis Oz is assumed to be uniform:
Ω = const.

Ostriker’s (1964b) perturbation method for the study of polytropic rings is similar to Chandrasekhar’s
(1933a, d) first order theory of polytropic spheroids from Sec. 3.2. Let us consider a Cartesian frame
Oxyz in the central point of the ring, and let us denote by R1 the distance between O and the point
O′ of maximum central pressure P0 inside the ring (Fig. 3.9.2). A right-handed polar system (r, λ, ϕ)
is defined, which should not be confused with a spherical coordinate system. The radial coordinate r is
measured from O′, and the polar angle ϕ with its pole in O′ is in the vertical cross-section of the ring.
The angle λ with its pole located in O is taken in the equatorial (x, y)-plane of the ring. The minor
radius of the ring is denoted by r1, and is equal to the radius of the circular cross-section of the ring. As
will be obvious from Eqs. (3.9.84)-(3.9.89), this circular cross-section is displaced outwards by the first
order amount from Eq. (3.9.87) with respect to the point of maximum pressure O′.

Fig. 3.9.2 Geometry of polytropic rings along a cross-section in the (y, z)-plane, (λ = π/2). The origin O′

of the radial r-coordinate is located in the point of maximum pressure P0 inside the ring, and is displaced inward
with respect to the circular cross-section of the ring by the amount bf1(ξ1)/|θ′(ξ1)|, [Eq. (3.9.87)]. Equidensity
surfaces are shown on the upper right (�/�0 = 1, 0.8, 0.6, 0.4, 0.2, 0) for a ring with polytropic index n = 1.5 and
b = r1/ξ1R1 = 0.1 (Ostriker 1964b).

From Fig. 3.9.2 we realize that the relationship between the inertial (x, y, z) coordinate system and
the (r, λ, ϕ)-frame is

x = (R1 + r cos ϕ) cos λ; y = (R1 + r cos ϕ) sin λ; z = r sinϕ. (3.9.21)
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The line elements along the (r, λ, ϕ)-axes are simply dr, (R1+r cos ϕ) dλ, r dϕ, and the corresponding
metric is given by [cf. Eq. (B.4)]

ds2 = dr2 + (R1 + r cos ϕ)2 dλ2 + r2 dϕ2. (3.9.22)

In virtue of Eq. (B.21) the Laplace equation writes for this line element as

∇2Φe = ∂2Φe/∂r2 + [(R1 + 2r cos ϕ)/r(R1 + r cos ϕ)] ∂Φe/∂r + [1/(R1 + r cos ϕ)2] ∂2Φe/∂λ2

+(1/r2) ∂2Φe/∂ϕ2 − [sinϕ/r(R1 + r cos ϕ)] ∂Φe/∂ϕ = 0. (3.9.23)

We introduce the dimensionless radial coordinate ξ from Eq. (3.2.1)

r = αξ; α = [(n + 1)K/4πG�
1−1/n
0 ]1/2 = [(n + 1)P0/4πG�2

0]
1/2 if 0 ≤ n < ∞, and

α = (K/4πG�0)1/2 = (P0/4πG�2
0)

1/2 if n = ±∞, (3.9.24)

and the parameter

b = α/R1 = r1/ξ1R1, (b � 1), (3.9.25)

where b � 1, according to the initial assumption of a slender ring. Note, that in Eq. (3.9.25) we have
used the fact that the minor radius of the ring r1 is just equal to the radius of the undistorted polytropic
cylinder αξ1, as will be obvious from Eqs. (3.9.84)-(3.9.89).

Before proceeding to the evaluation of the fundamental function Θ inside the ring, we calculate the
external potential of a thin hoop, and the external potential Φe of a slender ring. With the notations
from Eqs. (3.9.24), (3.9.25), the Laplace equation (3.9.23) becomes up to the first order in b :

∇2Φe = ∂2Φe/∂ξ2 + (1/ξ) ∂Φe/∂ξ + (1/ξ2) ∂2Φe/∂ϕ2 + b[cosϕ ∂Φe/∂ξ − (sinϕ/ξ) ∂Φe/∂ϕ]

+O(b2) = 0, (b = α/R1 � 1). (3.9.26)

The expansion of the potential Φe in terms of b is simply Φe = Φe0+bΦe1+... We insert this expansion
into Eq. (3.9.26), equating to zero equal powers of b, so that Eq. (3.9.26) splits into the following two
parts:

∂2Φe0/∂ξ2 + (1/ξ) ∂Φe0/∂ξ + (1/ξ2) ∂2Φe0/∂ϕ2 = 0, (3.9.27)

cos ϕ ∂Φe0/∂ξ − (sinϕ/ξ) ∂Φe0/∂ϕ + ∂2Φe1/∂ξ2 + (1/ξ) ∂Φe1/∂ξ + (1/ξ2) ∂2Φe1/∂ϕ2 = 0.
(3.9.28)

We apply Fourier’s method of separation of variables to Eq. (3.9.27), seeking solutions under the form
Φe0(ξ, ϕ) = u(ξ) v(ϕ). Eq. (3.9.27) becomes

[ξ2u′′(ξ) + ξu′(ξ)]/u(ξ) = −v′′(ϕ)/v(ϕ) = j2 = const. (3.9.29)

The two sides of this equation must be equal to the constant j2, as they are merely functions of
a single independent variable ξ or ϕ, respectively. The first equation in (3.9.29) is an Euler equation
with the general solution u = Ajξ

−j + Bjξ
j if j �= 0, and u = A0 ln ξ + B0 if j = 0. The second

equation is an equation with constant coefficients, having the solution v = Cj sin jϕ + Dj cos jϕ if j �= 0,
and C0ϕ + D0 if j = 0. Obviously, j2 cannot be negative, because the resulting solution would be
v = Cj exp[(−j2)1/2ϕ] + Dj exp[−(−j2)1/2ϕ], which has no period of 2π, as required by the angular
coordinate ϕ. The general solution of Eq. (3.9.27) is therefore

Φe0 = (A0 ln ξ + B0)(C0ϕ + D0) +
∞∑

j=1

(Ajξ
−j + Bjξ

j)(Cj sin jϕ + Dj cos jϕ),

(A0, B0, C0, D0, Aj , Bj , Cj , Dj = const). (3.9.30)

The external potential of the ring must be symmetrical with respect to the (x, y)-plane, i.e. C0, Cj = 0.
Also, the potential has to be a periodic function with a period of 2π : cos jϕ = cos j(ϕ+2π). This implies
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that j is an integer, where we can restrict ourselves to positive integers, because the constants Dj are
arbitrary, and cos(−jϕ) = cos jϕ. Thus, the pertinent form of Eq. (3.9.30) is

Φe0 = a0 ln ξ + b0 +
∞∑

j=1

(ajξ
−j + bjξ

j) cos jϕ, (a0, b0, aj , bj = const). (3.9.31)

We now insert Eq. (3.9.31) into Eq. (3.9.28), and get

a0ξ cos ϕ +
∞∑

j=1

j
{
− ajξ

−j+1 cos[(j + 1)ϕ] + bjξ
j+1 cos[(j − 1)ϕ]

}

+ξ ∂(ξ ∂Φe1/∂ξ)
/
∂ξ + ∂2Φe1/∂ϕ2 = 0. (3.9.32)

The general solution Φe1 of this nonhomogeneous equation is the sum of the general solution of the
homogeneous equation ∇2Φe1 = 0 – which is of the form (3.9.31) – and a particular integral of the
nonhomogeneous equation. The form of the nonhomogeneous terms suggests to seek a particular solution
under the form (Ostriker 1964b):

y = A0ξ ln ξ cos ϕ +
∞∑

j=1

{Ajξ
−j+1 cos[(j + 1)ϕ] + Bjξ

j+1 cos[(j − 1)ϕ]}, (A0, Aj , Bj = const).

(3.9.33)

If we insert this attempt into Eq. (3.9.32), we find A0 = −a0/2, Aj = −aj/4, Bj = −bj/4, and the
general solution of Eq. (3.9.32) is

Φe1 = −(a0/2)ξ ln ξ cos ϕ − (1/4)
∞∑

j=1

{ajξ
−j+1 cos[(j + 1)ϕ] + bjξ

j+1 cos[(j − 1)ϕ]}

+c0 ln ξ + d0 +
∞∑

j=1

(cjξ
−j + djξ

j) cos jϕ, (c0, d0, cj , dj = const). (3.9.34)

In order to apply the previous results to rings, it will be useful to calculate, as a preparation, the
external potential ΦeH of a thin hoop, located along the ring’s major circle of radius R1 in the (x, y)-
plane of Fig. 3.9.2. The radius vector �r′ along the hoop has therefore the coordinates �r′(0, λ′, 0) in the
(r, λ, ϕ)-system. The radius vector �r in the observation point of the potential can be taken – because of
symmetry reasons – in the plane λ = 0, and therefore �r = �r(r, 0, ϕ). The external potential of the point
(r, 0, ϕ) is [cf. Eq. (3.1.47)]

ΦeH(�r) = G

∫
VH

�(�r′) dV ′/|�r − �r′|, [�r = �r(r, 0, ϕ); �r′ = �r′(0, λ′, 0)]. (3.9.35)

In virtue of Eq. (3.9.21) the distance |�r − �r′| becomes

(r − r′)2 = (R1 + r cos ϕ − R1 cos λ′)2 + R2
1 sin2 λ′ + r2 sin2 ϕ = 4R1(R1 + r cos ϕ) sin2(λ′/2) + r2.

(3.9.36)

The “volume” element of the hoop is equal to R1 dλ′, and its density �(�r′) is just the constant surface
density Σ of the hoop. Thus

ΦeH(�r) = GΣR1

∫ 2π

0

dλ′/[4R1(R1 + r cos ϕ) sin2(λ′/2) + r2]1/2

= (4GΣR1/r)
∫ π/2

0

dγ
/
[1 + 4R1(R1 + r cos ϕ) sin2 γ/r2]1/2, (γ = λ′/2). (3.9.37)

With the notation s2 = 4R1(R1 + r cos ϕ)/r2, the integral from Eq. (3.9.37) becomes
∫ π/2

0

dγ
/
(1 + s2 sin2 γ)1/2 =

∫ π/2

0

dγ
/
[1 + s2 cos2(π/2 − γ)]1/2 =

∫ π/2

0

dγ/(1 + s2 cos2 γ)1/2

= (1 + s2)−1/2

∫ π/2

0

dγ
/
{1 − [s2/(1 + s2)] sin2 γ}1/2 = (1 + s2)−1/2K[s/(1 + s2)1/2] = k′K(k),

(3.9.38)
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which constitutes an elliptic integral K(k) of the first kind with the modulus k = s/(1 + s2)1/2, and
with the complementary modulus k′ = (1− k2)1/2 = 1/(1 + s2)1/2 (Abramowitz and Stegun 1965). If we
assume that |�r| = r � R1, then s 	 1, and therefore k ≈ 1, k′ ≈ 0. Tedious calculations involving the
theory of theta functions lead to the following approximation for the elliptic integral if k ≈ 1 or k′ ≈ 0
(e.g. Tölke 1966):

K(k) =
∫ π/2

0

dγ
/
(1 − k2 sin2 γ)1/2 =

∫ 1

0

dν
/
(1 − ν2)1/2(1 − k2ν2)1/2

=
∫ 1

0

dν
/
(1 − ν2)1/2(1 − ν2 + k′2ν2)1/2 ≈ ln(4/k′) + O[(k′2/4) ln(4/k′)], (k′ ≈ 0; ν = sin γ).

(3.9.39)

Substituting into this approximation the quantities

k′ = 1/(1 + s2)1/2 ≈ 1/s = (r/2R1)/[1 + (r/R1) cos ϕ]1/2 ≈ (r/2R1)[1 − (r/2R1) cos ϕ];
ln(4/k′) ≈ ln(8R1/r) − ln[1 − (r/2R1) cos ϕ] ≈ ln(8R1/r) + (r/2R1) cos ϕ, (3.9.40)

the potential (3.9.37) of the hoop becomes eventually:

ΦeH(r, ϕ) ≈ (4GΣR1/r)k′ ln(4/k′) ≈ 2GΣ
{

ln(8R1/r) + [1 − ln(8R1/r)](r/2R1) cos ϕ

+O[(r/R1)2 ln(8R1/r)]
}
. (3.9.41)

Noting that the mass of the hoop is MH = 2πR1Σ, and transforming to the dimensionless variables
from Eqs. (3.9.24), (3.9.25), we find

ΦeH(ξ, ϕ) = (GMH/πR1){ln(8/b) − ln ξ + (bξ/2)[1 − ln(8/b) + ln ξ] cos ϕ + O(b2)},
(r � R1; b � 1). (3.9.42)

To obtain the external potential of a slender ring, we match this equation with the previously obtained
external potentials Φe0 and Φe1 from Eqs. (3.9.31) and (3.9.34), respectively. The matching is effected
in a region far enough from the ring at r 	 r1, where the external potential of the ring approaches that
of an equivalent hoop, but still near enough, so that r � R1, where the previous expansions are valid:
r1 � r � R1 or ξ1 � ξ � 1/b. Eq. (3.9.42) requires the angular dependence of Φe0 to vanish, i.e.
aj , bj = 0, (j ≥ 1) in Eq. (3.9.31). Also, c0 and d0 from Eq. (3.9.34) have to vanish, as the coefficient of
b in Eq. (3.9.42) depends on ϕ. The nonvanishing term d1ξ cos ϕ, (ξ 	 ξ1) from Eq. (3.9.34) is seen to
be equal to (ξ/2)[1 − ln(8/b)] cosϕ, whereas the terms djξ

j cos jϕ, (j ≥ 2; ξ 	 ξ1) must be absent, by
comparing with Eq. (3.9.42). Only the terms cjξ

−j cos jϕ, that vanish if ξ 	 ξ1, may appear in the final
matched expansion of the external potential of a slender ring of mass MR, (MH → MR) :

Φe(ξ, ϕ) = (GMR/πR1)
{

ln(8/b) − ln ξ + (bξ/2)[1 − ln(8/b) + ln ξ] cos ϕ

+b

∞∑
j=1

cjξ
−j cos jϕ + O(b2)

}
, (b = α/R1 = r1/ξ1R1 � 1). (3.9.43)

With the expansion coefficients thus fixed, the previous equation is applicable everywhere outside the
ring. For the perturbation analysis a relationship between the angular velocity Ω of ring material and the
dimensions of the ring (characterized by the parameter b) is absolutely necessary (Ostriker 1964b). Such
a relationship can be obtained from the virial theorem. If magnetic energy Um and external pressure
forces Pjk are zero, the virial equation (2.6.94) takes the simple form

2Ekin + W + 3(Γ − 1)U = 0, (3.9.44)

where the moment of inertia I is constant for our hydrostatic rings. In a zero order approximation the
mass of the ring MR, the kinetic energy of rotation Ekin, the gravitational energy W, and the internal
energy U are simply 2πR1 times their values per unit length of an infinitely long cylinder. As the velocity
of rotation of ring material round O is in a first approximation vrot = ΩR1, the kinetic energy of rotation
is

Ekin = Ω2MRR2
1/2. (3.9.45)
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The evaluation of the gravitational energy of the ring needs some effort, as we have to start with the
original equation (2.6.68), bearing in mind our comments subsequent to Eq. (2.6.137). We get

W = −πR1

∫
M1

Φ dM = −2π2R1(n + 1)K�
1+1/n
0 α2

{
[Φ0/(n + 1)K�

1/n
0 − 1]

∫ ξ1

0

θnξ dξ

+
∫ ξ1

0

θn+1ξ dξ
}
, (dM = 2π�r dr = 2π�0α

2ξθn dξ), (3.9.46)

where we have inserted for the internal potential Φ from Eq. (2.6.32), and M1 is the mass per unit length
of the undistorted cylinder. The two integrals in Eq. (3.9.46) have already been solved in Eqs. (2.6.16)
and (2.6.159), respectively. Thus

W = −2π2R1(n + 1)K�
1+1/n
0 α2ξ2

1θ′1
2{[Φ0/(n + 1)K�

1/n
0 − 1]

/
(−ξ1θ

′
1) + (n + 1)/4}. (3.9.47)

The value Φ0 of the internal potential along the central circle ξ = 0 of the ring can be fixed in our
zero order approximation by using the results obtained for the external potential of undistorted cylinders
in Eq. (2.6.48):

Φe = Φ0 + (n + 1)K�
1/n
0 [ξ1θ

′
1 ln(ξ/ξ1) − 1]. (3.9.48)

This value of the external potential per unit length of a cylinder is required to be equal to the zero
order approximation of the external potential far from the ring, as given by Eq. (3.9.43):

(n + 1)K�
1/n
0 [Φ0/(n + 1)K�

1/n
0 − 1 + ξ1θ

′
1 ln(ξ/ξ1)] = (GMR/πR1) ln(8/bξ). (3.9.49)

Inserting for the mass MR of the ring 2πR1 times its value from Eq. (2.6.16), i.e. MR = 2πR1M1 =
−4π2R1�0α

2ξ1θ
′
1, we find after obvious simplifications: [Φ0/(n + 1)K�

1/n
0 − 1]/(−ξ1θ

′
1) = ln(8R1/r1).

The gravitational energy (3.9.47) becomes eventually, after inserting for (n + 1)K�
1/n
0 = 4πG�0α

2 :

W = −(GM2
R/2πR1)[ln(8R1/r1) + (n + 1)/4]. (3.9.50)

If also a central point mass Mc exists, about which the ring rotates, its contribution Wc to the
gravitational energy of the ring will be via Eqs. (2.6.69), (2.6.70) equal to

dWc = −GMc dMR

∫ ∞

R1

dr′/r′2 = −GMc dMR/R1; Wc = −(GMc/R1)
∫

MR

dMR

= −GMcMR/R1. (3.9.51)

dMR denotes the fraction of ring material that is brought by the attraction of the central mass Mc

from infinity up to the major radius R1 of the ring. Adding the contribution of the central mass Mc

to the gravitational energy of the ring, we obtain the gravitational energy of a ring rotating round the
central point mass Mc :

W = −(GM2
R/2πR1)[ln(8R1/r1) + 2πMc/MR + (n + 1)/4]

= −2π2R1α
2(n + 1)K�

1+1/n
0 ξ2

1θ′2(ξ1)[ln(8/bξ1) + 2πMc/MR + (n + 1)/4],

[MR = −4π2R1α
2�0ξ1θ

′(ξ1)]. (3.9.52)

The internal energy of ring material (the internal energy of the point mass Mc is zero) is in the zeroth
approximation 2πR1 times its value from Eq. (2.6.167):

U = πGR1M
2
1 /(Γ − 1) = GM2

R/4πR1(Γ − 1) = π2R1α
2(n + 1)K�

1+1/n
0 ξ2

1θ′2(ξ1)/(Γ − 1),
(M1 = MR/2πR1). (3.9.53)

Inserting Eqs. (3.9.45), (3.9.52), (3.9.53) into Eq. (3.9.44), we find

β = Ω2/2πG�0 = (r1/R1)2(�m/2�0)[ln(8R1/r1) + 2πMc/MR + (n − 5)/4], (3.9.54)
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which shows that the dimensionless rotation parameter β is of order (Ostriker 1964b)

β = O(b2 ln b, b2Mc/MR) � 1, (3.9.55)

because O(r1/R1) = O(bξ1) ≈ O(b).
From Eq. (3.1.89) we can deduce at once the equation of hydrostatic equilibrium of the ring

∇P = � ∇[Φ + Φc + Ω2�2/2], (�2 = x2 + y2), (3.9.56)

where we have equated to zero the velocity components vk of internal mass motions in the rotating ring
system, and have denoted by Φc = GMc/(x2 + y2 + z2)1/2 the potential of the central point mass Mc.
With the polytropic equation of state P = K�1+1/n this equation becomes

∇[−(n + 1)K�1/n + Φ + Φc + Ω2�2/2] = 0. (3.9.57)

Taking the divergence of Eq. (3.9.57), we get with the Poisson and Laplace equation of the gravita-
tional potential (∇2Φ = −4πG�; ∇2Φc = 0; ∇2�2 = 4)

(n + 1)K ∇2�1/n = −4πG� + 2Ω2. (3.9.58)

Turning to the dimensionless variables from Eqs. (3.9.3), (3.9.6), (3.9.24), we obtain the hydrostatic
equilibrium equation of a ring rotating about a central mass under the same form as for a rotationally
distorted sphere [Eqs. (3.2.2), (3.4.5)]:

∇2Θ = −Θn + β, (0 ≤ n < ∞). (3.9.59)

Alternately, Eq. (3.9.57) may be integrated from the central circle � = R1 up to the observation point
(r, ϕ, λ) :

Φ = Φ0 − Φc + Φc0 + (n + 1)K(�1/n − �
1/n
0 ) + Ω2(R2

1 − �2)/2. (3.9.60)

The zero subscript designates values along the central circle. The external potential of the central
point mass is simply

Φc = GMc/(x2 + y2 + z2)1/2 = GMc/(R2
1 + r2 + 2rR1 cos ϕ)1/2

= (GMc/R1)[1 − r cos ϕ/R1 + (r/2R1)2(3 cos2 ϕ − 1) + ...], (3.9.61)

and Eq. (3.9.60) becomes

Φ = Φ0 + K(n + 1)(�1/n − �
1/n
0 ) + (r/R1)(Φc0 − Ω2R2

1) cos ϕ − (r2/4R2
1)[Φc0(1 + 3 cos 2ϕ)

−Ω2R2
1(1 + cos 2ϕ)] + ..., [Φc0 = GMc/R1; �2 = x2 + y2 = (R1 + r cos ϕ)2]. (3.9.62)

Turning to dimensionless coordinates, we recast:

Φ = Φ0 + (n + 1)K�
1/n
0 {Θ − 1 + bξ[Φc0/(n + 1)K�

1/n
0 − (β/2b2)] cosϕ

−(b2ξ2/4)[Φc0(1 + 3 cos 2ϕ)
/
(n + 1)K�

1/n
0 + (β/2b2)(1 + cos 2ϕ)]} + ... (3.9.63)

From the first order term we get the condition β/b2 � O(1), and by virtue of Eq. (3.9.55) this amounts
to Mc/MR � O(1). Hence Mc � MR, opposite to the case pertinent to Saturn’s ring, for instance; the
mass of our rings has to be larger or at least of the same order as the central mass Mc. Thus, the results of
Laplace, Randers, and many others for rings with Mc 	 MR cannot be compared to the present findings
(Ostriker 1964b).

Because the ring degenerates into an infinitely long cylinder if b → 0, the zero order approximation
of the polytropic variable Θ(ξ, ϕ) must be the cylindrical Lane-Emden function θ(ξ) :

Θ(ξ, ϕ) = θ(ξ) + b

[
A0f0(ξ) + f1(ξ) cos ϕ +

∞∑
j=2

Ajfj(ξ) cos jϕ

]
+ O(b2), (0 ≤ n < ∞). (3.9.64)
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As symmetry with respect to the equatorial plane is required, sine terms are missing. We substitute
the Laplace operator from Eq. (3.9.26) into the fundamental equation (3.9.59) to obtain

∂2Θ/∂ξ2 + (1/ξ) ∂Θ/∂ξ + (1/ξ2) ∂2Θ/∂ϕ2 + b[cosϕ ∂Θ/∂ξ − (sinϕ/ξ) ∂Θ/∂ϕ] = −Θn + β,

[β ≈ O(b2)]. (3.9.65)

Inserting Eq. (3.9.64) into Eq. (3.9.65), and equating equal powers of b sin jϕ and b cos jϕ, our
problem splits into the following set of ordinary differential equations:

θ′′ + θ′/ξ + θn = 0; f ′′
1 + f ′

1/ξ + (nθn−1 − 1/ξ2)f1 = −θ′;

f ′′
j + f ′

j/ξ + (nθn−1 − j2/ξ2)fj = 0, (j = 0, 2, 3, 4, ...; 0 ≤ n < ∞). (3.9.66)

The initial conditions are the same as in the spherical case, namely Θ(0, ϕ) = 1, (∂Θ/∂ξ)ξ=0 = 0.
These conditions turn via Eq. (3.9.64) into the following initial conditions for θ and fj :

θ(0) = 1 and θ′(0), fj(0), f ′
j(0) = 0, (0 ≤ n < ∞; j = 0, 1, 2, 3, ...). (3.9.67)

These initial conditions place the origin O′ of the ξ or r-coordinate in the point of maximum pressure
of the ring. The boundary condition f1(ξ1) = 0, [f1(ξ) = ξ3/16 − ξ/4] adopted instead of f ′

1(0) = 0 by
Ostriker (1964b) for the particular case n = 0 is not consistent with the initial condition (∂Θ/∂ξ)ξ=0 = 0,
and amounts to a simple translation by the amount b/2 of the origin O′ from the point of maximum
pressure to the geometrical centre of the constant-density ring; we will expand more closely on this point
subsequently to Eq. (3.9.95).

Closed solutions of f1(ξ) have been found by Ostriker (1964b) for the cases n = 0 and n = 1. If n = 0,
Eq. (3.9.66) becomes

ξ2f ′′
1 + ξf ′

1 − f1 = ξ3/2, (n = 0; θ = 1 − ξ2/4), (3.9.68)

with the elementary solution for this nonhomogeneous Euler equation f1 = Aξ +B/ξ + ξ3/16. The initial
conditions f1(0) = f ′

1(0) = 0 yield

f1 = ξ3/16, (n = 0). (3.9.69)

Instead, Ostriker (1964b) obtains f1 = ξ3/16 − ξ/4 with his boundary conditions f1(0) = f1(ξ1) = 0.
If n = 1, Eq. (3.9.66) becomes

ξ2f ′′
1 + ξf ′

1 + (ξ2 − 1)f1 = −ξ2 dJ0(ξ)/dξ = ξ2J1(ξ), [n = 1; θ = J0(ξ)], (3.9.70)

where we have used the relationship d[ξ−νJν(ξ)]/dξ = −ξ−νJν+1(ξ) for the Bessel functions if ν = 0 (e.g.
Spiegel 1968). The general solution of the homogeneous part of Eq. (3.9.70) is f1(ξ) = C1J1(ξ)+C2Y1(ξ)
via Eq. (2.3.11). Due to the boundary conditions f1(0) = f ′

1(0) = 0, both constants C1, C2 have to vanish,
because J1 ≈ ξ/2−ξ3/16 if ξ ≈ 0, and because the Neumann function Y1 is unbounded if ξ = 0. We have to
look for a particular solution of the nonhomogeneous equation (3.9.70). With the attempt f1 = AξJ2(ξ),
and with the recurrence relationships d[ξνJν(ξ)]/dξ = ξνJν−1(ξ) and Jν+1(ξ) = (2ν/ξ) Jν(ξ) − Jν−1(ξ),
we get A = 1/2, and

f1(ξ) = (ξ/2) J2(ξ), (n = 1). (3.9.71)

Analogously to Eq. (3.2.34) we expand the surface of the ring in powers of b and cos jϕ :

Ξ1 = Ξ1(ϕ) = ξ1 + b
∞∑

j=0

qj cos jϕ, (qj = const). (3.9.72)

On the surface we have

Θ = Θ(Ξ1, ϕ) = θ(Ξ1) + b

[
A0f0(Ξ1) + f1(Ξ1) cos ϕ +

∞∑
j=2

Ajfj(Ξ1) cos jϕ

]
= 0. (3.9.73)
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Table 3.9.2 Values of ξ1, θ
′(ξ1), f1(ξ1), f

′
1(ξ1), ε(ξ1) according to Ostriker’s (1964b, 1965) tables. ξ1 and

θ′(ξ1) agree with corresponding values listed in Table 2.5.2. a + b means a × 10b.

n ξ1 θ′
1(ξ1) f1(ξ1) f ′

1(ξ1) ε(ξ1)

0 2.0000+0 −1.0000+0 5.0000−1 7.5000−1 2.5000−1
1 2.4048+0 −5.1915−1 5.1915−1 4.0835−1 4.1583−1
1.5 2.6478+0 −4.0076−1 5.7636−1 4.4552−1 5.4316−1
2 2.9213+0 −3.1676−1 6.5466−1 4.6991−1 7.0748−1
3 3.5739+0 −2.0709−1 8.6837−1 4.9715−1 1.1733+0
4 4.3953+0 −1.4075−1 1.1604+0 5.0929−1 1.8757+0
5 5.4276+0 −9.8081−2 1.5427+0 5.1427−1 2.8980+0
6 6.7245+0 −6.9546−2 2.0351+0 5.1578−1 4.3515+0
7 8.3542+0 −4.9949−2 2.6645+0 5.1563−1 6.3854+0
8 1.0403+1 −3.6228−2 3.4667+0 5.1472−1 9.1987+0
10 1.6223+1 −1.9478−2 5.7865+0 5.1229−1 1.8312+1
12 2.5453+1 −1.0695−2 9.5382+0 5.1001−1 3.5037+1
16 6.3514+1 −3.3598−3 2.5416+1 5.0676−1 1.1910+2
20 1.6060+2 −1.0934−3 6.6973+1 5.0481−1 3.8142+2

Expanding all functions of Ξ1 in the vicinity of ξ1, we find

Ξ1 − ξ1 = b
∞∑

j=0

qj cos jϕ; θ(Ξ1) = θ(ξ1) + (Ξ1 − ξ1) θ′(ξ1) = bθ′(ξ1)
∞∑

j=0

qj cos jϕ + O(b2);

fj(Ξ1) = fj(ξ1) + O(b),
(
θ(ξ1) = 0

)
. (3.9.74)

Inserting into Eq. (3.9.73), we get

Θ(Ξ1, ϕ) = b

[
θ′(ξ1)

∞∑
j=0

qj cos jϕ + A0f0(ξ1) + f1(ξ1) cos ϕ +
∞∑

j=2

Ajfj(ξ1) cos jϕ

]
+ O(b2) = 0.

(3.9.75)

This expression is zero if all coefficients of equal cos jϕ vanish simultaneously:

q1 = −f1(ξ1)/θ′(ξ1); qj = −Ajfj(ξ1)/θ′(ξ1), (j = 0, 2, 3, 4, ...). (3.9.76)

The internal potential from Eq. (3.9.63) takes on the ring’s surface the value

Φ(Ξ1, ϕ) = Φ00 − (n + 1)K�
1/n
0 + bΦ01 + b(n + 1)K�

1/n
0

[
θ′(ξ1)

∞∑
j=0

qj cos jϕ + A0f0(ξ1)

+f1(ξ1) cos ϕ +
∞∑

j=2

Ajfj(ξ1) cos jϕ − (β/2b2)ξ1 cos ϕ

]
+ O(b2), (3.9.77)

where we have split Φ0 into its zeroth and first order components: Φ0 = Φ00 + bΦ01. We have also
neglected, for the moment, the influence of the central mass (Φc = 0), and have expanded Θ(Ξ1, ϕ) via
Eq. (3.9.75). The derivative of Eq. (3.9.63) on the boundary is equal to

[∂Φ(ξ, ϕ)/∂ξ]ξ=Ξ1 = (n + 1)K�
1/n
0 θ′(ξ1) + b(n + 1)K�

1/n
0

{
[−θ′(ξ1)/ξ1 − θn(ξ1)]

∞∑
j=0

qj cos jϕ

+A0f
′
0(ξ1) + f ′

1(ξ1) cos ϕ +
∞∑

j=2

Ajf
′
j(ξ1) cos jϕ − (β/2b2) cos ϕ

}
+ O(b2). (3.9.78)

We have used the cylindrical Lane-Emden equation θ′′ = −θ′/ξ − θn, (θn(ξ1) = 0 if n > 0), and the
derivative of Eq. (3.9.64):

[∂Θ(ξ, ϕ)/∂ξ]ξ=Ξ1 = θ′(ξ1) + b

{
[−θ′(ξ1)/ξ1 − θn(ξ1)]

∞∑
j=0

qj cos jϕ

+A0f
′
0(ξ1) + f ′

1(ξ1) cos ϕ +
∞∑

j=2

Ajf
′
j(ξ1) cos jϕ

}
. (3.9.79)
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The external potential (3.9.43) on the ring’s surface becomes equal to

Φe(Ξ1, ϕ) = (GMR/πR1)
{

ln(8/bξ1) + b

[
− (1/ξ1)

∞∑
j=0

qj cos jϕ + (ξ1/2)[1 − ln(8/bξ1)] cosϕ

+
∞∑

j=1

cjξ
−j
1 cos jϕ

]}
+ O(b2), (3.9.80)

[∂Φe(ξ, ϕ)/∂ξ]ξ=Ξ1 = (GMR/πR1)
{
− 1/ξ1 + b

[
(1/ξ2

1)
∞∑

j=0

qj cos jϕ + (1/2)[2 − ln(8/bξ1)] cosϕ

−
∞∑

j=1

jcjξ
−j−1
1 cos jϕ

]}
+ O(b2). (3.9.81)

The internal and external potential has to be continuous across the boundary of the ring, so we can
equate equal terms on the right-hand sides of Eqs. (3.9.77), (3.9.80), and of Eqs. (3.9.78), (3.9.81),
respectively:

Φ00/(n + 1)K�
1/n
0 = 1 + [GMR/πR1(n + 1)K�

1/n
0 ] ln(8/bξ1) = 1 − ξ1θ

′(ξ1) ln(8R1/r1);

Φ01 = 0; f1(ξ1) − (β/2b2)ξ1 = −c1θ
′(ξ1) − [ξ2

1θ′(ξ1)/2][1 − ln(8R1/r1)];

f ′
1(ξ1) − β/2b2 = c1θ

′(ξ1)/ξ1 − [ξ1θ
′(ξ1)/2][2 − ln(8R1/r1)]; Ajfj(ξ1) = −cjξ

−j+1
1 θ′(ξ1);

Ajf
′
j(ξ1) = jcjξ

−j
1 θ′(ξ1), (0 < n < ∞; j = 0, 2, 3, 4, ...). (3.9.82)

The unknowns β/2b2, Aj , c1, cj can be found at once from these equations:

β = b2{ξ1θ
′(ξ1)[3/2 − ln(8R1/r1)] + f1(ξ1)/ξ1 + f ′

1(ξ1)}; c1 = ξ2
1/4 + [1/2θ′(ξ1)]

×[−f1(ξ1) + ξ1f
′
1(ξ1)]; Aj [jfj(ξ1) + ξ1f

′
j(ξ1)] = 0, (0 < n < ∞; j = 0, 2, 3, 4, ...). (3.9.83)

Since jfj(ξ1) + ξ1f
′
j(ξ1) �= 0 – analogously to the comment after Eq. (3.2.43) – we are left with the

alternative Aj = 0. From Eqs. (3.9.76), (3.9.82) follows at once that cj , qj = 0 if j = 0, 2, 3, 4, ...
Thus, the fundamental function (3.9.64) and the surface coordinate (3.9.72) take the elementary form

Θ(ξ, ϕ) = θ(ξ) + bf1(ξ) cos ϕ; Ξ1(ϕ) = ξ1 − b[f1(ξ1)/θ′(ξ1)] cosϕ. (3.9.84)

We define an isobaric surface (P = const) by an equation similar to the surface equation (3.9.72):

Ξ = Ξ(ξ, ϕ) = ξ + b
∞∑

j=0

qj(ξ) cos jϕ. (3.9.85)

On an isobaric surface the fundamental function (3.9.84) is constant:

Θ(Ξ, ϕ) = θ(Ξ) + bf1(Ξ) cosϕ ≈ θ(ξ) + (Ξ − ξ) θ′(ξ) + bf1(ξ) cos ϕ

= θ(ξ) + b

[
θ′(ξ)

∞∑
j=0

qj(ξ) cos jϕ + f1(ξ) cos ϕ

]
= const. (3.9.86)

Equating equal powers of b and equal cos jϕ-terms, we get const = θ(ξ), qj = 0, (j = 0, 2, 3, 4, ...),
and q1(ξ) = −f1(ξ)/θ′(ξ). Isobaric surfaces obey therefore the equation

Ξ = Ξ(ξ, ϕ) = ξ − b[f1(ξ)/θ′(ξ)] cosϕ + O(b2). (3.9.87)

But this is just the first order equation of a circle of radius ξ, whose centre is displaced outward from
the origin of coordinates by the small amount bf1(ξ)/|θ′(ξ)|. Indeed, the equation of a circle of radius ξ
in polar (Ξ, ϕ)-coordinates, with its centre displaced outwards from the origin O′ by the amount bf1/|θ′|,
can be approximated as

ξ = [Ξ2 + (bf1/θ′)2 − (2Ξbf1/|θ′|) cos ϕ]1/2 ≈ Ξ − (bf1/|θ′|) cos ϕ = Ξ + (bf1/θ′) cos ϕ, (θ′ ≤ 0),
(3.9.88)
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which is just identical to Eq. (3.9.87). The quantity

ε(ξ1) = −f1(ξ1)/ξ1θ
′(ξ1), (3.9.89)

is a measure of the first order outward displacement of the ring’s boundary circle with respect to the origin
of coordinates O′ in terms of its own radius ξ1 (Table 3.9.2). As it is expected on general grounds, the
pressure distortion increases with increasing polytropic index, because of the increasing compressibility
of the models.

Thus, in our first order approximation, the ring preserves its circular cross-section, and its circular
isobaric (equipotential) surfaces are displaced outward with respect to the origin of coordinates O′ (with
respect to the point of maximum pressure) by the amount −bf1(ξ)/θ′(ξ). Within the limits of Ostriker’s
(1964b) first order theory the obvious condition ξ1 ≥ −bf1(ξ1)/θ′(ξ1) or bε ≤ 1 must be fulfilled, because
otherwise the point of maximum pressure would be outside the inner boundary of the ring.

(i) n = 0.n = 0.n = 0. In Eq. (3.9.78) θn(ξ1) becomes 1 instead of zero. The expansion parameter b equals in
this particular case

b = α/R1 = r1/ξ1R1 = r1/2R1, (n = 0; θ = 1 − ξ2/4; ξ1 = 2). (3.9.90)

The equivalent of Eq. (3.9.82) is now (K�
1/n
0 = P0/�0)

Φ00�0/(n + 1)P0 = 1 + [GMR�0/πR1P0] ln(8/bξ1) = 1 − ξ1θ
′(ξ1) ln(8R1/r1);

Φ01 = 0; f1(ξ1) − (β/2b2)ξ1 = −c1θ
′(ξ1) − [ξ2

1θ′(ξ1)/2][1 − ln(8R1/r1)];

−q1 + f ′
1(ξ1) − β/2b2 = c1θ

′(ξ1)/ξ1 − [ξ1θ
′(ξ1)/2][2 − ln(8R1/r1)];

Ajfj(ξ1) = −cjξ
−j+1
1 θ′(ξ1); −qj + Ajf

′
j(ξ1) = jcjξ

−j
1 θ′(ξ1), (n = 0; j = 0, 2, 3, 4, ...).

(3.9.91)

From these equations, and by inserting for qj from Eq. (3.9.76), we obtain the equivalent of Eq.
(3.9.83):

β = b2{ξ1θ
′(ξ1)[3/2 − ln(8R1/r1)] + f1(ξ1)/θ′(ξ1) + f1(ξ1)/ξ1 + f ′

1(ξ1)}
= (r2

1/2R2
1)[ln(8R1/r1) − 5/4]; c1 = ξ2

1/4 + [1/2θ′(ξ1)][ξ1f1(ξ1)/θ′(ξ1) − f1(ξ1) + ξ1f
′
1(ξ1)] = 1;

q1 = 1/2; Aj = qj = 0, (n = 0; j = 0, 2, 3, 4, ...). (3.9.92)

Eqs. (3.9.84), (3.9.87), (3.9.89) are in the constant density case equal to

Θ(ξ, ϕ) = 1 − ξ2/4 + (r1/32R1)ξ3 cos ϕ; Ξ(ξ, ϕ) = ξ + (r1/16R1)ξ2 cos ϕ;
Ξ1(ϕ) = 2 + (b/2) cosϕ; ε = 1/4, (n = 0). (3.9.93)

The first order expansion of the internal and external potential from Eqs. (3.9.63), (3.9.43) becomes
[−(n + 1)K�

1/n
0 ξ1θ

′(ξ1) = −(n + 1)P0ξ1θ
′(ξ1)/�0 = GMR/πR1] :

Φ = (GMR/πR1){ln(8/bξ1) + (1 − ξ2/4)/2 + (b/2)[ξ3/16 + ξ
(
5/4 − ln(8/bξ1)

)
] cos ϕ}

= (GMR/πR1){ln(8R1/r1) + (1 − r2/r2
1)/2 + (r1/2R1)[r3/4r3

1 + (r/r1)
(
5/4 − ln(8R1/r1)

)
] cos ϕ},

(n = 0), (3.9.94)

Φe = (GMR/πR1){ln(8/bξ) + b[(ξ/2)
(
1 − ln(8/bξ)

)
+ 1/ξ] cosϕ}

= (GMR/πR1){ln(8R1/r) + (r1/2R1)[(r/r1)
(
1 − ln(8R1/r)

)
+ r1/2r] cosϕ}, (n = 0). (3.9.95)

Coincidence to first order with the results of Poincaré, Dyson [1892, p. 91; 1893, Eq. (9)], and Ostriker
[1964b, Eq. (80)] can be obtained at once by a translation of the origin of the polar coordinates by the
amount bf1(ξ1)/|θ′(ξ1)| = b/2 = r1/4R1 from the point O′ of maximum pressure to the geometrical
centre of the circular cross-section of the homogeneous ring. With this translation the (ξ, ϕ)-coordinates
transform into the new translated polar (ξ′, ϕ′)-coordinates as [cf. Eq. (3.9.88)]: ξ = ξ′+(b/2) cosϕ, ϕ =
ϕ′ + O(b).

We now briefly discuss the influence of a central point mass Mc from Eqs. (3.9.51)-(3.9.63). The
general form (3.9.43) of the external potential of a ring is not altered by the inclusion of the external
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potential Φc of a central point mass Mc. The internal potential, including the central mass Mc, has
already been evaluated in Eq. (3.9.63). We proceed exactly as for Eqs. (3.9.77)-(3.9.83), matching Eqs.
(3.9.43), (3.9.63), and their derivatives on the ring’s surface. The results are the same, excepting for the
rotation parameter β from Eqs. (3.9.83), (3.9.92), where the additional term 2πMc/MR appears:

β = b2{ξ1θ
′(ξ1)[3/2 − 2πMc/MR − ln(8R1/r1)] + f1(ξ1)/ξ1 + f ′

1(ξ1)} if 0 < n < ∞;

β = b2[2 ln(8R1/r1) − 5/2 + 4πMc/MR] if n = 0, (Mc � MR). (3.9.96)

The appearance of a central mass merely increases the equilibrium angular velocity of the ring, and
does not alter otherwise its equilibrium structure in our first order approximation. Below, we show that
the first order contributions to mass, kinetic energy of rotation, gravitational and internal energy are
zero, so these first order integral properties of the ring are equal to their zero order values from Eqs.
(3.9.45), (3.9.52), (3.9.53). This can be shown by observing that integrals of the required quantities are
of the general first order form

I =
∫ 2π

0

dϕ

∫ Ξ1(ϕ)

0

[A(ξ) + bB(ξ) cosϕ] dξ + O(b2), (3.9.97)

since the volume element is by virtue of Eq. (3.9.22) equal to dV = (R1 + r cos ϕ)r dr dλ dϕ =
α2R1(1+ bξ cos ϕ)ξ dξ dλ dϕ. By A(ξ) we denote zero order terms, and by B(ξ) all first order terms. Eq.
(3.9.97) can be transformed into

I =
∫ 2π

0

dϕ

∫ ξ1+bq1 cos ϕ

0

[A(ξ) + bB(ξ) cos ϕ] dξ =
∫ 2π

0

dϕ

∫ ξ1

0

[A(ξ) + bB(ξ) cos ϕ] dξ

+
∫ 2π

0

dϕ

∫ ξ1+bq1 cos ϕ

ξ1

[A(ξ) + bB(ξ) cos ϕ] dξ ≈ 2π

∫ ξ1

0

A(ξ) dξ

+
∫ 2π

0

dϕ

∫ ξ1+bq1 cos ϕ

ξ1

{A(ξ1) + bB(ξ1) cos ϕ + [A′(ξ1) + bB′(ξ1) cos ϕ](ξ − ξ1)} dξ

= 2π

∫ ξ1

0

A(ξ) dξ +
∫ 2π

0

bq1A(ξ1) cos ϕ dϕ + O(b2) = 2π
∫ ξ1

0

A(ξ) dξ + O(b2), (3.9.98)

where we have simply expanded A(ξ) and B(ξ) into a Taylor series. Since all contributions of order b to
Ekin, W, U are zero, the expression (3.9.54) for the angular velocity, derived in the zeroth approximation,
is also correct to the first order in b, and should be identical to Eq. (3.9.96). This can be shown by
multiplying in Eq. (3.9.66) the differential equation for f1 by ξθ′ :

ξθ′f ′′
1 + θ′f ′

1 + (nθn−1 − 1/ξ2)ξθ′f1 = −ξθ′2. (3.9.99)

If we differentiate the cylindrical Lane-Emden equation, we get

θ′′′ + θ′′/ξ − θ′/ξ2 = −nθn−1θ′. (3.9.100)

Substitution of nθn−1θ′ into Eq. (3.9.99) yields

ξθ′f ′′
1 + θ′f ′

1 − ξθ′′′f1 − θ′′f1 = d(ξθ′f ′
1 + θ′f1 + ξθnf1)/dξ = −ξθ′2. (3.9.101)

Integration of this equation gives

f ′
1(ξ1) + f1(ξ1)/ξ1 = −[1/ξ1θ

′(ξ1)]
∫ ξ1

0

ξθ′2 dξ,
(
0 < n < ∞; θn(ξ1) = 0

)
. (3.9.102)

On the other hand, the integral in the previous equation can also be evaluated via Eq. (2.6.159):

(n + 1)ξ2
1θ′1

2
/4 =

∫ ξ1

0

ξθn+1 dξ =
∫ ξ1

0

θ (ξθn) dξ = −
∫ ξ1

0

θ [d(ξθ′)/dξ] dξ =
∫ ξ1

0

ξθ′2 dξ,

(3.9.103)
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where we have used the Lane-Emden equation, and have integrated by parts. Comparing Eqs. (3.9.102)
and (3.9.103), we find

f ′
1(ξ1) + f1(ξ1)/ξ1 = −(n + 1)ξ1θ

′(ξ1)/4, (0 < n < ∞). (3.9.104)

We insert into Eq. (3.9.96), and obtain just Eq. (3.9.54), as claimed previously:

β = −b2ξ1θ
′(ξ1)[ln(8R1/r1) + 2πMc/MR + (n − 5)/4]

= −(r1/R1)2[θ′(ξ1)/ξ1][ln(8R1/r1) + 2πMc/MR + (n − 5)/4], (0 < n < ∞), (3.9.105)

where we have to substitute for −θ′(ξ1)/ξ1 = �m/2�0 via Eq. (2.6.27).
If n = 0, Eq. (3.9.96) transforms at once into Eq. (3.9.54), where �m = �0 and b = r1/2R1 in virtue

of Eq. (3.9.90).
The first order expression of the total energy E of the ring is equal to its zero order evaluation [cf.

Eq. (2.6.98)]:

E = Ekin + W + U = −(GM2
R/4πR1)[ln(8R1/r1) + 2πMc/MR + (n + 7)/4 − 1/(Γ − 1)]

= −J2/2MRR2
1 − [(3Γ − 4)/(Γ − 1)](GM2

R/4πR1), (0 ≤ n < ∞), (3.9.106)

where we have used Eqs. (3.9.45), (3.9.52), (3.9.53) for Ekin, W, U, respectively. The first order equation
for the angular momentum is just equal to its zero order value J = ΩMRR2

1. The angular velocity from
Eq. (3.9.54) can be written as

Ω2 = 2πG�0β = (GMR/2πR3
1)[ln(8R1/r1) + 2πMc/MR + (n − 5)/4],

(Mc � MR = 2π2�mr2
1R1; 0 ≤ n < ∞), (3.9.107)

which is inserted into the equation of the angular momentum J = ΩMRR2
1, in order to derive Eq.

(3.9.106). From Eq. (3.9.106) we observe that the value Γ = 4/3 occupies a well known special place [cf.
Eqs. (2.6.98)-(2.6.101)]. If Γ ≥ 4/3, the total energy E is always negative, and cooling (∆E < 0) causes
a decrease ∆R1 < 0 of the ring’s major radius R1. In absence of other external forces the total angular
momentum of the ring remains constant, so for sufficiently large R1 the energy E of the ring is positive if
Γ < 4/3, and cooling (∆E < 0) will produce a general expansion ∆R1 > 0 of the ring (Ostriker 1964b).

(ii) n = ±∞.n = ±∞.n = ±∞. If the ring is composed of a perfect gas, this special case amounts to an isothermal
ring T = const, as outlined in Sec 1.2. With P = K� = K�0 exp(−Θ) from Eq. (3.9.16), the equation
(3.9.56) of hydrostatic equilibrium of the isothermal ring writes as

∇(−K ln � + Φ + Φc + Ω2�2/2) = 0, (n = ±∞). (3.9.108)

Taking the divergence of Eq. (3.9.108), we obtain in the same way as for Eq. (3.9.58):

K ∇2 ln � = −4πG� + 2Ω2 or ∇2Θ = exp(−Θ) − β, (n = ±∞). (3.9.109)

Alternately, we may integrate Eq. (3.9.108) from the central circle at � = R1 to the observation point
of coordinates (r, ϕ, λ) :

Φ = Φ0 − Φc + Φc0 + K ln(�/�0) + Ω2(R2
1 − �2)/2, (n = ±∞). (3.9.110)

The previous equation can be expanded in the same way as Eqs. (3.9.61)-(3.9.63):

Φ = Φ0 + K[−Θ + bξ(Φc0/K − β/2b2) cos ϕ] + O(b2). (3.9.111)

We expand the fundamental function Θ in powers of b up to the first order:

Θ(ξ, ϕ) = θ(ξ) + b

[
A0f0(ξ) + f1(ξ) cos ϕ +

∞∑
j=2

Ajfj(ξ) cos jϕ

]
+ O(b2). (3.9.112)

We substitute the Laplace operator from Eq. (3.9.26) into the fundamental equation (3.9.109), and
obtain

∂2Θ/∂ξ2 + (1/ξ) ∂Θ/∂ξ + (1/ξ2) ∂2Θ/∂ϕ2 + b[cosϕ ∂Θ/∂ξ − (sinϕ/ξ) ∂Θ/∂ϕ] = exp(−Θ) − β,

(n = ±∞). (3.9.113)
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Inserting Eq. (3.9.112) into Eq. (3.9.113), and equating equal powers of b, sin jϕ, cos jϕ, our problem
splits into the set of ordinary differential equations

θ′′ + θ′/ξ − exp(−θ) = 0; f ′′
1 + f ′

1/ξ + [exp(−θ) − 1/ξ2]f1 = −θ′;

f ′′
j + f ′

j/ξ + [exp(−θ) − j2/ξ2]fj = 0, (j = 0, 2, 3, 4, ...; n = ±∞), (3.9.114)

with the initial conditions

θ(0), θ′(0), fj(0), f ′
j(0) = 0, (j = 0, 1, 2, 3, ...; n = ±∞), (3.9.115)

resulting from the initial conditions Θ(0, ϕ), (∂Θ/∂ξ)ξ=0 = 0. The fundamental function (3.9.112) is
inserted into Eq. (3.9.111) to obtain

Φ = Φ00 − Kθ(ξ) + bΦ01 + bK

[
− A0f0(ξ) − f1(ξ) cos ϕ + ξ(GMc/KR1 − β/2b2) cos ϕ

−
∞∑

j=2

Ajfj(ξ) cos jϕ

]
. (3.9.116)

As it is known from Eqs. (2.3.86), (2.6.17), the total mass per unit length of the isothermal cylinder
is finite and equal to

M1 = lim
ξ→∞

M(ξ) = lim
ξ→∞

2π�0α
2ξθ′ = lim

ξ→∞
8π�0α

2
/
(1 + 8/ξ2) = 8π�0α

2,

[n = ±∞; θ = ln(1 + ξ2/8)2]. (3.9.117)

Strictly speaking, isothermal rings cannot come to existence, because isothermal cylinders extend up
to infinity, so some external pressure has to act on a certain cut-off boundary of a hypothetical isothermal
ring in order to prevent its extension up to infinity. Isothermal rings are merely a useful approximation for
polytropic rings of high polytropic index n 	 1, which possess a finite boundary, because the undistorted
cylinders do so. With this reservation in mind, we place the hypothetical boundary r1 = αξ1 of the
isothermal ring at a sufficiently large coordinate distance ξ1 	 1, where Eq. (3.9.117) is approximately
valid. At the same time the constraint r1 � R1 or ξ1 � 1/b has to be fulfilled, so all our subsequent
approximate evaluations are valid only in the interval

1 � ξ1 � 1/b, (3.9.118)

where ξ1 is the dimensionless coordinate of a certain cut-off boundary of the ring. With this constraint
the total mass of the isothermal ring is approximately

MR ≈ 2πR1M1 = 16π2�0α
2R1 = 4πKR1/G, (n = ±∞). (3.9.119)

At the cut-off boundary ξ1 the “internal” potential from Eq. (3.9.116) has to be equal to the “external”
potential from Eq. (3.9.43). The defining equation (3.9.114) of f0

f ′′
0 + f ′

0/ξ + f0/(1 + ξ2/8)2 = 0, (3.9.120)

has no solution satisfying the boundary conditions f0(0) = f ′
0(0) = 0, excepting the trivial one f0 ≡ 0. If

ξ 	 1, the defining equation (3.9.114) of fj can be approximated as

f ′′
j + f ′

j/ξ + [1/(1 + ξ2/8)2 − j2/ξ2]fj ≈ f ′′
j + f ′

j/ξ − j2fj/ξ2 = 0, (ξ 	 1; j = 2, 3, 4, ...).
(3.9.121)

This homogeneous Euler equation has the obvious solution fj = C1ξ
j + C2ξ

−j , (ξ 	 1; C1, C2 =
const), and the resulting form of the internal potential (3.9.116) can be matched with the external
potential (3.9.43) at ξ1 only if Aj = 0, (j = 2, 3, 4, ...). Thus, we are left with the determination of f1

from

f ′′
1 + f ′

1/ξ + [1/(1 + ξ2/8)2 − 1/ξ2]f1 = −θ′. (3.9.122)



3.9.2 Polytropic Rings 251

It can be verified that the elegant integral given by Ostriker (1964b)

f1(ξ) = −θ′(ξ)
∫ ξ

0

dy
/
y θ′2(y)

∫ y

0

x θ′2(x) dx, (3.9.123)

satisfies Eq. (3.9.122), where the derivative of the Lane-Emden equation from Eq. (3.9.114) has to be
used. With the substitutions z = 1+ξ2/8 = exp(θ/2), θ′ = ξ/2z this integral can be transformed through
integration by parts into

f1(z) = −[8(z − 1)/z2]1/2

∫ z

1

(z′2 ln z′ − z′2 + z′) dz′/(z′ − 1)2

= −[8(z − 1)/z2]1/2

{
3 − 2z + [(z2 − 2z)/(z − 1)] ln z + 2

∫ z

1

ln z′ dz′/(z′ − 1)
}

. (3.9.124)

If ξ, z 	 1, as in our case, the dilogarithmic function from this equation can be evaluated by observing
that its integral is known for the interval [0, 1], (Fichtenholz 1964). Transforming with z′ = 1/t′ to this
interval, the dilogarithmic function becomes

∫ z

1

ln z′ dz′/(z′ − 1) =
∫ t

1

ln t′ dt′/t′(1 − t′) =
∫ t

1

ln t′ dt′/t′ +
∫ t

1

ln t′ dt′/(1 − t′)

= (1/2) ln2 t −
∫ 1

0

ln t′ dt′/(1 − t′) +
∫ t

0

ln t′ dt′/(1 − t′)

= (1/2) ln2 t + π2/6 +
∞∑

j=0

[tj+1 ln t/(j + 1) − tj+1/(j + 1)2], (t ≈ 0). (3.9.125)

Transforming back to the original variable 1/t = z = 1 + ξ2/8 ≈ ξ2/8, Eq. (3.9.124) reads eventually

f1(ξ) = −ξ ln(ξ2/8) + 2ξ − (8/ξ)(π2/3 + 3) + (16/ξ) ln(ξ2/8) − (8/ξ) ln2(ξ2/8) + O[ξ−3 ln2(ξ2/8)],
(ξ 	 1). (3.9.126)

The nonvanishing terms of f1 if ξ → ∞ are now inserted into Eq. (3.9.116):

Φ = Φ00 + 2K ln(8/ξ2) + bΦ01 + bKξ[GMc/KR1 − β/2b2 + ln(ξ2/8) − 2] cos ϕ + O(b2),
(n = ±∞; ξ 	 1; Φ0 = Φ00 + bΦ01). (3.9.127)

At the cut-off boundary ξ1 of the ring this equation must be equal to the external potential (3.9.43).
Comparing the equivalent coefficients, we get:

GMR/πR1 = 4K; Φ00 = 2K ln(8/b2); Φ01 = 0; β = 2b2[ln(8/b2) − 4 + 4πMc/MR],
(n = ±∞; Mc � MR). (3.9.128)

To the first order in b, the density distribution in the ring is

� = �0 exp(−Θ) = [�0/(1 + ξ2/8)2][1 − bf1(ξ) cos ϕ], (n = ±∞). (3.9.129)

From Eqs. (3.9.24), (3.9.25), (3.9.119), (3.9.128) we find for the expansion parameter

b = α/R1 = (K/4πG�0R
2
1)

1/2 = (MR/16π2�0R
3
1)

1/2, (n = ±∞), (3.9.130)

and for the angular velocity

Ω2 = 2πG�0β = (GMR/4πR3
1)[ln(128π2�0R

3
1/MR) − 4 + 4πMc/MR], (n = ±∞). (3.9.131)

By the same type of argument as given for the polytropic indices 0 ≤ n < ∞ one can show that the first
order terms in b vanish for all integral quantities such as mass, kinetic energy of rotation, gravitational
and internal energy (Ostriker 1964b). It seems not worthwhile to pursue this point further, due to the
problematic existence of isothermal rings, associated with their infinite extension.
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Finally, we turn to the critical rotation velocity of rings, i.e. to the maximum angular speed of a ring
before equatorial mass loss or break up. To this end we calculate the radial component of the effective
gravity on the surface r = r1. Via Eqs. (3.4.65), (3.9.56) this amounts to

gr1 = (∂Φtot/∂r)r=r1 = [∂(Φ + Φc + Ω2�2/2)
/
∂r]r=r1 = (1/�) (∂P/∂r)r=r1

= [(n + 1)K�
1/n
0 /α][∂Θ(ξ, ϕ)/∂ξ]ξ=Ξ1 = [(n + 1)K�

1/n
0 /α]{∂[θ(ξ) + bf1(ξ) cosϕ]

/
∂ξ}ξ=Ξ1

= [(n + 1)K�
1/n
0 /α][θ′(ξ1) + (Ξ1 − ξ1) θ′′(ξ1) + bf ′

1(ξ1) cos ϕ]

= [(n + 1)K�
1/n
0 /α]{θ′(ξ1) + b[f1(ξ1)/ξ1 + θn(ξ1) f1(ξ1)/θ′(ξ1) + f ′

1(ξ1)] cosϕ}, (0 ≤ n < ∞).
(3.9.132)

For critical rotation the effective gravity at the outer equatorial boundary rc1, (ξ = ξ1, ϕ = 0) must
be zero:

[∂Θ(ξ, ϕ)/∂ξ](ξ=ξ1,ϕ=0) = 0 or bc = −θ′(ξ1)/[f1(ξ1)/ξ1 + f ′
1(ξ1)] if θn(ξ1) = 0, 0 < n < ∞,

and bc = −θ′(ξ1)/[f1(ξ1)/ξ1 + f1(ξ1)/θ′(ξ1) + f ′
1(ξ1)] if θn(ξ1) = 1, n = 0. (3.9.133)

From this equation it is obvious that Ostriker’s (1964b) first order theory is not adequate for the
calculation of critically (i.e. rapidly) rotating rings, because if n = 0, we get bc = 2, opposite to the basic
requirement bc � 1 from Eq. (3.9.25). Only if n � 4, the condition bc � 1 is fulfilled (bc = 0.18 if n = 4).
This inadequacy seems to arise mostly from the fact that in Ostriker’s (1964b) theory all quantities are
expanded only up to order β1/2, [b ∝ β1/2; Eq. (3.9.83)], instead to order β, as in Chandrasekhar’s
(1933a-d) theory, for instance.

The brief discussion of stability problems and oscillations of ringlike structures and accretion tori will
be deferred to Secs. 5.10 and 6.4.3.
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3.10 Magnetopolytropes

3.10.1 Introduction

Magnetic fields in polytropes have already been touched in Sec. 2.6.6 in connection with the virial
theorem. Basically, we study the behaviour of electrically conducting polytropic matter in the presence
of magnetic fields, applying the magnetohydrodynamic equation (2.1.1) under simplifying assumptions.
Even in Eq. (2.1.1) there are already contained certain simplifications, which can be illustrated by writing
down the complete set of Maxwell’s equations in the Gaussian unrationalized CGS-system of units (e.g.
Sommerfeld 1961, Hughes and Gaylord 1964, Chandrasekhar 1981):

∇ · �D = 4π�e; ∇ · �B = 0; ∇× �E = −(1/c) ∂ �B/∂t; ∇× �H = (4π/c) �J + (1/c) ∂ �D/∂t.
(3.10.1)

�D denotes the electric displacement vector, �B the vector of magnetic induction, �E and �H are the
intensities of the electric and magnetic field, �e is the electric charge density, �J the electric current
density (generally the density of electric currents), and c the velocity of light. Relativistic effects are
neglected throughout this section, i.e. the velocity v of fluid elements with respect to a fixed laboratory
frame is always much smaller than the velocity of light: v � c.

The term ∂ �D/∂t (Maxwell’s displacement current) in Eq. (3.10.1) is negligible in magnetohydrody-
namics, referred to as the quasi-steady approximation. Neglect of the displacement current ∂ �D/∂t is only
justified when the time-scale τ of field variations is long as compared to the light-travel time L/c, where
L is the characteristic length-scale of the system considered: L/cτ � 1. To see this, we follow Roberts
(1967) and determine the order of magnitude of pertinent quantities: |∇ × �E| ≈ E/L, |∂ �B/∂t| ≈ B/τ.
From the third equation (3.10.1) we find

| �E|/| �B| = E/B ≈ L/cτ, (3.10.2)

and from the last equation (3.10.1) we observe that

(1/c)|∂ �D/∂t|
/
|∇ × �H| = (εp/c)|∂ �E/∂t|

/
|∇ × �B|

≈ (εp/c)(L/τ)(E/B) ≈ (εp)(L/cτ)2 ≈ (L/cτ)2 � 1, (3.10.3)

where we have used the phenomenological constitutive equations (3.10.5), and the fact that the dielectric
constant ε and the magnetic permeability p of the highly conducting medium are related by

εp ≈ ε0p0 = 1, (ε ≈ ε0; p ≈ p0), (3.10.4)

where ε0 = 1 and p0 = 1 denote free-space values.
Thus, neglect of displacement currents ∂ �D/∂t is justified if we are not concerned with the effects of

propagation of electromagnetic waves, i.e. if the state of the system alters only slightly during the interval
L/c taken by light to cross the system: τ 	 L/c.

As suggested by experiment, the relationship between �J and �E, �D and �E, �B and �H in a comoving
frame is linear in many cases (e.g. Sommerfeld 1961, Gerthsen et al. 1977):

�J = σ �E; �D = ε �E; �B = p �H, (3.10.5)

where σ denotes the electric conductivity. Note, that particularly Ohm’s law �J = σ �E is valid only in
a reference frame that is moving together with the fluid at the point concerned [cf. Eq. (3.10.10)].
The material parameters σ, ε, p will be considered throughout as constant, which holds true for most
substances under very general conditions.

The body force �f acting on the unit of volume, i.e. on the mass �, is due to electrostatic and
electromagnetic interactions between field and fluid material (Alfvén and Fälthammar 1963):

�f = �e
�E + �J × �B/c. (3.10.6)
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Again, we can show that the electrostatic force term �e
�E is negligible as compared to the electromag-

netic contribution �J × �B/c. We have

|�e
�E|
/
| �J × �B/c| = |∇ · �D|| �E|

/
|∇ × �H|| �B| ≈ εp(E2/L)

/
(B2/L) ≈ (L/cτ)2 � 1, (3.10.7)

by considering Eqs. (3.10.1), (3.10.2), (3.10.4), (3.10.5). The magnetic force term �J × �B/c, also called
Lorentz force, can be transformed at once to the form (2.1.1) by inserting for �J from Eq. (3.10.1):

�f = �J × �B/c = (1/4π)(∇× �H) × �B = (p/4π)(∇× �H) × �H, (∂ �D/∂t = 0; p = const). (3.10.8)

Because for most substances the magnetic permeability p is close to its Gaussian free-space value
p0 = 1 (e.g. Gerthsen et al. 1977), we often take p = 1. Eq. (2.1.1) obeys for a dissipationless fluid in an
inertial laboratory frame the form (e.g. Chandrasekhar 1981)

� D�v/Dt = ∂�v/∂t + (�v · ∇)�v = −∇P + � ∇Φ + (p/4π)(∇× �H) × �H. (3.10.9)

Because the charge density �e does not enter into the equation of motion (3.10.9), the use of the first
Maxwell equation ∇ · �D = 4π�e can generally be avoided.

A further simplification results from the assumption of stationarity: ∂ �H/∂t = 0. In order to see the
conditions of stationarity, we write down Ohm’s law �J = σ �E – holding in a comoving frame – in a
laboratory frame of reference when the nonrelativistic fluid has velocity �v, (v � c) with respect to this
system:

�J = σ[ �E + (1/c) �v × �B] + �e�v. (3.10.10)

Again, we show that the electric convection current �e�v can be neglected with respect to the conduction
current σ[ �E + (1/c)�v × �B] :

|�e�v/ �J | = |∇ · �D||�v|
/
c|∇ × �H| ≈ (εp/c)(E/L)(L/τ)

/
(B/L) ≈ (L/cτ)2 � 1. (3.10.11)

Thus

�E = �J/σ − (p/c) �v × �H = (c/4πσ) ∇× �H − (p/c) �v × �H, (3.10.12)

or

−(c/p) ∇× �E = ∂ �H/∂t = −(c2/4πσp) ∇× (∇× �H) + ∇× (�v × �H). (3.10.13)

For systems with large dimensions (cosmic objects), and/or for high conductivity σ, the temporal
variation of the magnetic field is by virtue of Eq. (3.10.13) equal to

∂ �H/∂t = ∇× (�v × �H). (3.10.14)

A steady state of the magnetic field (∂ �H/∂t = 0) will establish if circulation of matter proceeds along
the field lines (�v × �H = 0), or if fluid motions cease at all (v = 0).

Even with all the above assumptions, the general problem with arbitrary magnetic fields seems too
formidable. The most reasonable additional simplification, which still preserves much of the physics of the
problem, is a magnetic field that is symmetric to some axis. The problem of thermodynamic equilibrium
is entirely eliminated by the assumption of a polytropic (barotropic) equation of state. However, it should
be noted that the polytropic equation of state implies that the curl of the magnetic body force per unit
mass ∇× [(∇× �H) × �H/4π�] is zero [see Eq. (3.10.16)], a constraint that is generally not valid in real
stars.

With respect to an inertial frame the equation of magnetostatic equilibrium inside a magnetopolytrope
writes via Eq. (3.10.9) as

(1/�) ∇P = (n + 1)K ∇�1/n = ∇Φ + (1/4π�)(∇× �H) × �H, (p = 1; �v = 0). (3.10.15)

Applying the curl operator to this equation, and observing that the curl of a gradient is zero, we find

∇×
[
(∇× �H) × �H/�

]
= 0. (3.10.16)
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3.10.2 Roxburgh’s Theory of Spherical Magnetopolytropes

Roxburgh (1966a) assumes axial symmetry (∂ /∂ϕ = 0) round the axis λ = 0 of a spherical (r, λ, ϕ)-
frame: P = P (r, λ), Φ = Φ(r, λ), �H = �H[Hr(r, λ), Hλ(r, λ), Hϕ(r, λ)]. The components of the magnetic
force along the unit vectors �er, �eλ, �eϕ are

(1/4π)[(∇× �H) × �H] = (1/4π)
{
[−(Hϕ/r) ∂(rHϕ)/∂r − (Hλ/r) ∂(rHλ)/∂r

+(Hλ/r) ∂Hr/∂λ] �er + [−(Hϕ/r sinλ) ∂(Hϕ sinλ)/∂λ + (Hr/r) ∂(rHλ)/∂r

−(Hr/r) ∂Hr/∂λ] �eλ + [(Hλ/r sinλ) ∂(Hϕ sinλ)/∂λ + (Hr/r) ∂(rHϕ)/∂r] �eϕ

}
, (3.10.17)

where the curl operator is calculated via Eq. (B.38). Because of the assumed axial symmetry we have
∂P/∂ϕ, ∂Φ/∂ϕ = 0, so the ϕ-component of Eq. (3.10.15) has to vanish:

[(∇× �H) × �H]ϕ = (Hλ/r sinλ) ∂(Hϕ sinλ)/∂λ + (Hr/r) ∂(rHϕ)/∂r = 0. (3.10.18)

This equation can be written under an equivalent form by splitting the magnetic field into a poloidal
�HP = �HP (Hr, Hλ, 0) and a toroidal component �HT = �HT (0, 0, Hϕ) :

[(∇× �H) × �H]ϕ = [(∇× �HT ) × �HP ] = 0;

∇× �HT = (�er/r sinλ) ∂(Hϕ sinλ)/∂λ − (�eλ/r) ∂(rHϕ)/∂r. (3.10.19)

Another, slightly different form of Eq. (3.10.18) is

Hr ∂(rHϕ sinλ)/∂r + (Hλ/r) ∂(rHϕ sinλ)/∂λ = �HP · ∇(rHϕ sinλ) = 0. (3.10.20)

Since the vectors �HP and ∇(rHϕ sinλ) cannot be perpendicular throughout, the sole other possibility
is that

∇(rHϕ sinλ) = 0 or rHϕ sinλ = b = const( �HP ), (3.10.21)

where const( �HP ) means that b is constant along the field lines of �HP . From Maxwell’s equations (3.10.1)
we have ∇ · �B = p ∇ · �H = 0, or [cf. Eq. (B.37)]

∇ · �H = ∇ · �HP = (1/r2) ∂(r2Hr)/∂r + (1/r sinλ) ∂(Hλ sinλ)/∂λ = 0, (∂Hϕ/∂ϕ = 0).
(3.10.22)

Analogously to fluid dynamics we can introduce the stream function S by the relationships (e.g.
Batchelor 1967)

Hr = (1/r2 sinλ) ∂S/∂λ; Hλ = −(1/r sinλ) ∂S/∂r, (3.10.23)

which obviously satisfies the divergence-free condition (3.10.22) of the poloidal field: ∇ · �HP =
(1/r2 sinλ) ∂2S/∂λ∂r − (1/r2 sinλ) ∂2S/∂r∂λ = 0. We introduce Eqs. (3.10.21) and (3.10.23) into
Eq. (3.10.16) to obtain

(
Hϕ = b/r sinλ; [(∇× �H) × �H]ϕ = 0

)

∇× [(∇× �H) × �H/�] = (�eϕ/r)
{
∂
[
− (Hϕ/� sinλ) ∂(Hϕ sinλ)/∂λ + (Hr/�) ∂(rHλ)/∂r

−(Hr/�) ∂Hr/∂λ
]/

∂r − ∂
[
− (Hϕ/�r) ∂(rHϕ)/∂r − (Hλ/�r) ∂(rHλ)/∂r

+(Hλ/�r) ∂Hr/∂λ
]/

∂λ
}

= (�eϕ/r)
{
− ∂

[
(b/�r2 sin2 λ) ∂b/∂λ + (1/�r2 sin2 λ)(∂S/∂λ)(∂2S/∂r2)

+(1/�r4 sinλ)(∂S/∂λ) ∂(sin−1 λ ∂S/∂λ)/∂λ
]/

∂r + ∂
[
(b/�r2 sin2 λ) ∂b/∂r

+(1/�r2 sin2 λ)(∂S/∂r)(∂2S/∂r2) + (1/�r4 sinλ)(∂S/∂r) ∂(sin−1 λ ∂S/∂λ)/∂λ
]/

∂λ
}

= 0.
(3.10.24)

In order to facilitate the solution of Eq. (3.10.15) it is usually assumed that the magnetic force is
throughout small as compared to gravity, so that the equation of hydrostatic equilibrium (3.10.15) can be
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solved for the spherically symmetric case ( �H = 0), while the magnetic problem can be solved separately
by Eq. (3.10.24). The general solution of this equation is too complicated, so Roxburgh (1966a) looks
for dipole-like solutions. It is well known (e.g. Sommerfeld 1961, Alfvén and Fälthammar 1963) that a
magnetic dipole field centered in the origin of coordinates has the magnetic potential Φm = �am · �r/r3 =
am cos λ/r2, where �am, (am = |�am|) is the magnetic moment of the dipole, directed along the axis λ = 0.
The intensity of the magnetic field is then given by

�H = −∇Φm; Hr = −∂Φm/∂r = 2am cos λ/r3; Hλ = −(1/r) ∂Φm/∂λ = am sinλ/r3. (3.10.25)

The magnetic stream function which yields for f(r) ∝ 1/r just the dipole field (3.10.25), is simply

S(r, λ) = f(r) sin2 λ. (3.10.26)

Roxburgh (1966a) assumes further that b = CS, (C = const), so that the components of the magnetic
field intensity are via Eqs. (3.10.21), (3.10.23) equal to

Hr = 2f(r) cos λ/r2; Hλ = −f ′(r) sin λ/r; Hϕ = Cf(r) sin λ/r. (3.10.27)

Eq. (3.10.24) then reduces to

−∂
(
2C2f2 sinλ cos λ/�r2 + 2ff ′′ sinλ cos λ/�r2 − 4f2 sinλ cos λ/�r4

)/
∂r

+∂
(
C2ff ′ sin2 λ/�r2 + f ′f ′′ sin2 λ/�r2 − 2ff ′ sin2 λ/�r4

)/
∂λ = 0. (3.10.28)

As the density � depends in our approximation only on r, the derivation with respect to λ can be
effected at once; the derivation with respect to r is performed by splitting the factor f from the products.
After simplifications we obtain eventually

f sin 2λ d[(1/�r2)(f ′′ − 2f/r2) + C2f/�r2]/dr = 0, (3.10.29)

which can be integrated at once, by taking into account that f sin 2λ �= 0 :

f ′′ − 2f/r2 + C2f + D�r2 = 0, (C, D = const). (3.10.30)

To facilitate the evaluation of the magnetic field, we introduce the following transformations [cf. Eqs.
(3.2.1), (3.8.5)]:

r = αξ = [(n + 1)K/4πG�
1−1/n
0 ]1/2ξ = [(n + 1)P0/4πG�2

0]
1/2ξ; P = P0θ

n+1
0 ; � = �0θ

n
0 ;

f(r) = f(αξ) = D�0α
4γ(ξ); Φ = (n + 1)K�

1/n
0 χ, (0 ≤ n < 5), (3.10.31)

where θ0 denotes in this and in the next subsection the familiar Lane-Emden function. Eq. (3.10.30)
reduces to

d2γ/dξ2 − 2γ/ξ2 + C2α2γ + ξ2θn
0 = 0, (0 ≤ n < 5). (3.10.32)

We consider only polytropic indices 0 ≤ n < 5, when all physical parameters of the undistorted spheres
remain finite (Sec. 2.6.8). As will be shown subsequently, the boundary conditions on Eq. (3.10.32) are

γ(0) = 0; γ′(0) = 0, (3.10.33)

γ(ξ1) = 0; γ′(ξ1) = 0, (C �= 0), (3.10.34)

where ξ1 is the first zero of the Lane-Emden function: θ0(ξ1) = 0. The boundary conditions at the origin
follow from the fact that the magnetic field (3.10.27) must remain finite at the origin, i.e. f/r2 ∝ γ/ξ2

and f ′/r ∝ γ′/ξ must be finite at ξ = 0, so γ must be at least of order ξ2 near the origin. According to
the assumptions made by Roxburgh (1966a), the magnetic field at the surface ξ1 (where �J, �D,∇× �H = 0)
must be continuous with an external, curl-free, axially symmetric field. Such a field has no azimuthal
component: Hϕ = Cf(r) sinλ/r = 0, or f(r) ∝ γ(ξ) = 0 outside the star. This implies that Hr =
2f(r) cos λ/r2 = 0, and therefore also f ′ ∝ γ′ = 0 outside the star, which proves the correctness of the
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boundary conditions (3.10.34) on the surface ξ = ξ1. If C �= 0, the four boundary conditions (3.10.33)
and (3.10.34) define an eigenvalue problem for the function γ from Eq. (3.10.32) with the eigenvalue Cα.

The one exception from the boundary conditions (3.10.34) occurs if C = 0; in this case Hϕ = 0
throughout the star, and the resulting purely poloidal field inside the sphere must be continuous with an
external dipole field. Comparing Eqs. (3.10.25) and (3.10.27) we infer that f = am/r, in order to satisfy
the magnetic field of a dipole from Eq. (3.10.25). Outside the sphere, the magnetic stream function
(3.10.26) becomes S(r, λ) = (am/r) sin2 λ, (am = const; C = 0). Continuity of S(r, λ) and ∂S/∂r on the
surface r1 of the sphere imposes the conditions

S(r1, λ) = f(r1) sin2 λ = (am/r1) sin2 λ and (∂S/∂r)r=r1 = f ′(r1) sin2 λ = −(am/r2
1) sin2 λ,

(C = 0). (3.10.35)

Elimination of am sin2 λ between these equations yields instead of Eq. (3.10.34) the boundary condi-
tion

f(r1) + r1f
′(r1) = 0 or γ(ξ1) + ξ1γ

′(ξ1) = 0, (C = 0). (3.10.36)

Roxburgh (1966a) discusses at first two particular cases.
(i) Purely toroidal field. In this case C 	 1, so that Hϕ from Eq. (3.10.27) becomes the leading

component of the magnetic field intensity: Hϕ 	 Hr, Hλ. To examine the behaviour of the solution for
large C, we write Γ = α2C2γ. Eq. (3.10.32) becomes

(d2Γ/dξ2 − 2Γ/ξ2)/C2α2 + Γ = −ξ2θn
0 , (3.10.37)

which for C 	 1 has the solution

Γ ≈ −ξ2θn
0 , (C 	 1; 1 < n < 5), (3.10.38)

provided that Γ′′ remains finite. Thus, f(αξ) ≈ −D�0α
2ξ2θn

0 /C2 and

Hϕ = −D�0αξθn
0 sinλ/C = −D�r sinλ/C, (Hϕ 	 Hr, Hλ; C 	 1). (3.10.39)

This solution satisfies the boundary conditions (3.10.33) and (3.10.34) if

Γ(ξ1) = 0; Γ′(ξ1) = 0 or θn
0 (ξ1) = 0; (dθn

0 /dξ)ξ=ξ1 = nθn−1
0 (ξ1) θ′0(ξ1) = 0. (3.10.40)

If n > 1, these boundary conditions are satisfied since θ0(ξ1) = 0. If n ≤ 1 however, the boundary
condition (3.10.40) cannot be fulfilled by the simple solution (3.10.38): Γ′′ must become very large, so
that the term Γ′′/α2C2 in Eq. (3.10.37) can be of the same order as Γ. Thus, Eq. (3.10.38) is valid only
if 1 < n < 5.

The solution (3.10.39) is just one particular form of a class of solutions for the purely toroidal field in
a sphere. The condition (3.10.16) writes for a purely toroidal field [Hr, Hλ = 0; Hϕ = Hϕ(r, λ)] :

∇× [(∇× �H) × �H/�] = (�eϕ/r)
{
− ∂[(Hϕ/� sinλ) ∂(Hϕ sinλ)/∂λ]

/
∂r

+∂[(Hϕ/�r) ∂(rHϕ)/∂r]
/
∂λ
}

= (�eϕ/r)
{
− ∂[(1/2�r2 sin2 λ) ∂(r2H2

ϕ sin2 λ)
/
∂λ]/∂r

+∂[(1/2�r2 sin2 λ) ∂(r2H2
ϕ sin2 λ)/∂r]

/
∂λ
}

= (�eϕ/2�2r5 sin4 λ)
{
[∂(�r2 sin2 λ)/∂r]

×[∂(r2H2
ϕ sin2 λ)/∂λ] − [∂(�r2 sin2 λ)/∂λ][∂(r2H2

ϕ sin2 λ)/∂r]
}

= (1/2�2r4 sin4 λ)[∇(�r2 sin2 λ) ×∇(r2H2
ϕ sin2 λ)] = 0. (3.10.41)

This condition implies that the two surfaces �r2 sin2 λ = const and r2H2
ϕ sin2 λ = const coincide, since

the vectorial product of ∇(�r2 sin2 λ) and ∇(r2H2
ϕ sin2 λ) is zero, so the normals to these two surfaces

must have the same direction. Hence, the general solution of Eq. (3.10.41) is r2H2
ϕ sin2 λ = F (�r2 sin2 λ),

(e.g. Smirnow 1967), as can be seen by direct insertion, for instance. Therefore (cf. Anand and Kushwaha
1962a)

H2
ϕ = F (�r2 sin2 λ)/r2 sin2 λ, (3.10.42)

where F is an arbitrary function of its argument �r2 sin2 λ. If F = (D�r2 sin2 λ/C)2, we recover the
particular solution (3.10.39).
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(ii) Purely poloidal field. In this case C = 0, so that Hϕ = 0. Eq. (3.10.32) reduces to [cf. Sinha
1968b, Eq. (11)]

γ′′ − 2γ/ξ2 + ξ2θn
0 = 0, (0 ≤ n < 5), (3.10.43)

which can be integrated for the particular cases n = 0 and n = 1 :

γ = ξ2(1 − ξ2/10), (n = 0; θ0 = 1 − ξ2/6), (3.10.44)

γ = ξ2/3 + ξ sin ξ − 2 sin ξ/ξ + 2 cos ξ, (n = 1; θ0 = sin ξ/ξ). (3.10.45)

The solutions (3.10.44), (3.10.45) of the nonhomogeneous equation (3.10.43) for the particular cases
n = 0, 1 can also be recovered from Eq. (3.10.87). For other values of n, Eq. (3.10.43) must be integrated
numerically (cf. Fig. 3.10.1).

(iii) General case. For solutions with both a toroidal and a poloidal magnetic field we must solve
Eq. (3.10.32), subject to the boundary conditions (3.10.33), (3.10.34). In the neighborhood of the origin
ξ = 0 we obtain a particular integral of Eq. (3.10.32) by a series expansion similar to Eq. (2.4.17):

γ ≈ ξ2 − ξ4(1 + C2α2)/10 + ..., (θ0 ≈ 1 − ξ2/6; ξ ≈ 0). (3.10.46)

The general solution near ξ = 0 of the homogeneous part γ′′ − 2γ/ξ2 + C2α2γ = 0 of Eq. (3.10.32)
is A(ξ2 − C2α2ξ4/10 + ...), (A = const). Thus, the general solution of the nonhomogeneous equation
(3.10.32) can be written near the origin under the series form

γ(ξ) = A(ξ2 − C2α2ξ4/10) + ξ2 − ξ4(1 + C2α2)/10 + ..., (ξ ≈ 0). (3.10.47)

In order to obtain an approximate solution of Eq. (3.10.32) in the outer layers, Roxburgh (1966a)
introduces the variable

η = 1/ξ − 1/ξ1. (3.10.48)

The Lane-Emden equation θ′′0 (ξ) + 2θ′0(ξ)/ξ + θn
0 (ξ) = 0 becomes near the surface

d2θ0/dη2 = −(1/ξ1 + η)−4θn
0 (η) ≈ 0, (η ≈ 0), (3.10.49)

having the approximate solution [cf. Eq. (2.4.61)]:

θ0(η) ≈ θ′0(0) η + O(ηn+2), (ξ ≈ ξ1; η ≈ 0). (3.10.50)

Near the surface Eq. (3.10.32) reads in terms of the new variable η as

d2γ/dη2 + 2(dγ/dη)
/
(1/ξ1 + η) − 2γ

/
(1/ξ1 + η)2 + C2α2γ

/
(1/ξ1 + η)4 = −θn

0 (η)
/
(1/ξ1 + η)6,

(η ≈ 0), (3.10.51)

where the surface boundary conditions are γ, dγ/dη = 0 at η = 0. Near the surface we seek a series
solution of this equation under the form (2.4.61): γ(η) =

∑∞
i=1 aiη

n+i, (ai = const). Inserting this
attempt into Eq. (3.10.51), we get

γ(η) = −[θ′0
n(0) ξ6

1/(n + 1)(n + 2)][ηn+2 − 2ξ1η
n+3/(n + 3) + ...],(

ξ ≈ ξ1; η ≈ 0; θn
0 (η) ≈ θ′0

n(0) ηn
)
. (3.10.52)

This surface solution was evaluated by Roxburgh (1966a) at the point ξ1η = 0.1. In the inner region
Eq. (3.10.47) was evaluated at ξ = 0.1 for a test value of Cα, and then extended by numerical integration
up to the matching point ξ1η = 0.1. Similarly as in Sec. 3.6, the continuity of γ and dγ/dη at ξ1η = 0.1
determines the constant A from Eq. (3.10.47) and the eigenvalue Cα from Eq. (3.10.32). The eigenvalue
Cα = (2Hϕ/Hrξ) cot λ results from Eq. (3.10.27) as a measure of the ratio between the toroidal and the
radial component of the magnetic field. As seen from the upper part of Fig. 3.10.1, the main feature of
the solution if n ≤ 1 is the existence of nodes between ξ = 0 and ξ = ξ1, whereas if n > 1, no nodes
occur.

Finally, we show that the magnetic body force tends to be zero as the surface is approached. From
Eqs. (3.10.31) and (3.10.52) we get f ∝ γ ∝ ηn+2. From Eq. (3.10.27) follows �H ∝ f, f ′, and from Eq.
(3.10.50) � ∝ θn

0 ∝ ηn. Thus, (∇× �H)× �H ∝ ff ′, f ′2, ff ′′, f ′f ′′, so that the terms of lowest power in η give
for the magnetic body force per unit mass (∇× �H) × �H/4π� ∝ f ′f ′′/� ∝ γ′γ′′/θn

0 ∝ η2n+1/ηn = ηn+1,
which tends to zero for all n > −1.
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Fig. 3.10.1 Upper figures: Variation of the radial component Hr(r, λ) of the magnetic field intensity along
the symmetry axis (λ = 0) of the polytrope n = 1 (top left) and n = 3 (top right) for the first three eigenvalues
Cα from Eq. (3.10.32) in Roxburgh’s (1966a) theory: Cα = 2.36, 3.39, 4.40 if n = 1, and Cα = 6.68, 7.12, 7.62 if
n = 3, respectively. The ordinate axis shows the ratio Hr(r, 0)/Hr(0, 0), and the abscissa axis the relative radius
r/r1. If n = 3, the three eigensolutions coincide at the scale of the figure. Lower figures: Field lines of the poloidal
magnetic field in Monaghan’s (1965) theory for the polytrope n = 1 (bottom left), and n = 3 (bottom right). The
surface of the polytrope is depicted too.

3.10.3 Monaghan’s Magnetopolytropes with Poloidal Fields

Monaghan (1965) has investigated purely poloidal fields by using Chebyshev polynomials – a most
useful approximation. Analogously to Eq. (3.10.26) the magnetic stream function is sought under the
form

S(r, λ) = (1 − µ2)
∞∑

j=0

B2j(r) T2j(µ), (µ = cos λ). (3.10.53)

B2j(r) are unknown functions of r, and Tj(µ) are Chebyshev polynomials of the first kind of order j,
defined by (e.g. Abramowitz and Stegun 1965, Spiegel 1968)

Tj(µ) = T (cos λ) = cos(j arccos µ) = cos jλ = (1/2)[(2µ)j − (j/1)C0
j−2 (2µ)j−2

+(j/2)C1
j−3 (2µ)j−4 − (j/3)C2

j−4 (2µ)j−6 + ...], (j = 0, 1, 2, 3, ...), (3.10.54)

where Ck
j = j!/k!(j − k)!, (j! = 1 × 2 × 3 × ... × (j − 1)j; 0! = 1).

The components (3.10.23) of the magnetic field are written in terms of µ up to the third order:

Hr = −(1/r2) ∂S/∂µ = (2/r2)[B0(r) T1(µ) + B2(r) T3(µ)];

Hµ = −[1/r(1 − µ2)1/2] ∂S/∂r = −[(1 − µ2)1/2/r][B′
0(r) + B′

2(r) T2(µ)]. (3.10.55)
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Only the ϕ-component of ∇× �H is pertinent for calculating the magnetic body force of the poloidal
field (3.10.55):

(∇× �H)ϕ = [∂(rHµ)/∂r + (1 − µ2)1/2 ∂Hr/∂µ] �eϕ/r

= −{B′′
0 (r) − 2B0(r)/r2− 6B2(r)/r2+ T2(µ) [B′′

2 (r) − 12B2(r)/r2]}(1 − µ2)1/2 �eϕ/r

= −[F + GT2(µ)](1 − µ2)1/2 �eϕ/r,
(
F = F (r) = B′′

0 (r) − 2B0(r)/r2 − 6B2(r)/r2;

G = G(r) = B′′
2 (r) − 12B2(r)/r2; dT3(µ)/dµ = 6T2(µ) + 3

)
. (3.10.56)

The radial and meridional component of the magnetic force term (∇× �H)× �H from Eq. (3.10.15) is
then obtained as

fr = −Hµ(∇× �H)ϕ = −(1/2r2){F (B′
0 − B′

2/2) + G(B′
2 − B′

0)/2
+T2[F (B′

2 − B′
0) + G(B′

0 − 3B′
2/4)] + T4[−FB′

2/2 + G(B′
2 − B′

0)/2] − T6GB′
2/4};

fµ = Hr(∇× �H)ϕ = −2[(1 − µ2)1/2/r3][T1(FB0 + GB0/2 + GB2/2) + T3(FB2 + GB0/2)
+T5GB2/2]. (3.10.57)

Products of Chebyshev polynomials have been transformed into higher-order Chebyshev polynomials
via Eq. (3.10.54). With the dimensionless notations from Eq. (3.10.31) and with � = �0Θn, the equation
of hydrostatic equilibrium (3.10.15) becomes

Θn ∂Θ/∂ξ = Θn ∂χ/∂ξ + αfξ(ξ, µ)/4π(n + 1)K�
1+1/n
0 = Θn ∂χ/∂ξ + εfξ(ξ, µ);

(Θn/ξ) ∂Θ/∂µ = (Θn/ξ) ∂χ/∂µ − (1 − µ2)−1/2αfµ(ξ, µ)/4π(n + 1)K�1+1/n

= (Θn/ξ) ∂χ/∂µ − ε(1 − µ2)−1/2fµ(ξ, µ). (3.10.58)

With the transformation r = αξ the functions Bj(r), fr(r, µ), fµ(r, µ) turn into Bj(ξ), fξ(ξ, µ), fµ(ξ, µ),
respectively. The parameter

ε = α/4π(n + 1)K�
1+1/n
0 = 1/16π2Gα�2

0 � 1, (3.10.59)

is a measure for the ratio between dimensionless magnetic and gravitational force. As this ratio is assumed
small by Monaghan (1965), ε can be used as an expansion parameter:

Θ(ξ, µ) =
∞∑

s=0

θs(ξ, µ) εs; χ(ξ, µ) =
∞∑

s=0

χs(ξ, µ) εs. (3.10.60)

θs and χs are unknown functions associated with various powers of ε. We have to add Poisson’s
equation (3.1.18), which writes in our dimensionless notations as

∂(ξ2 ∂χ/∂ξ)
/
∂ξ + ∂[(1 − µ2) ∂χ/∂µ]

/
∂µ = −ξ2Θn. (3.10.61)

The zero order approximations (ε = 0) of Eqs. (3.10.58) and (3.10.61) are simply the radially sym-
metric equations of a sphere

dθ0/dξ = dχ0/dξ; d(ξ2 dχ0/dξ)
/
dξ = −ξ2θn

0 , [θ0 = θ0(ξ); χ0 = χ0(ξ)], (3.10.62)

and need no further discussion. In the first approximation, terms of order ε have to be equated after
insertion of Eq. (3.10.60) into Eqs. (3.10.58), (3.10.61):

θn
0 ∂(θ1 − χ1)/∂ξ = fξ; (θn

0 /ξ) ∂(θ1 − χ1)/∂µ = −fµ/(1 − µ2)1/2;

∂(ξ2 ∂χ1/∂ξ)
/
∂ξ + ∂[(1 − µ2) ∂χ1/∂µ]

/
∂µ = −nξ2θn−1

0 θ1. (3.10.63)

We now expand the coefficients θs(ξ, µ) and χs(ξ, µ) in terms of Chebyshev polynomials up to the
sixth order, as required by Eq. (3.10.57) according to our third order approximation (3.10.55) of the
magnetic field:

θs =
3∑

t=0

θs,2t(ξ) T2t(µ); χs =
3∑

t=0

χs,2t(ξ) T2t(µ), (s = 1, 2, 3, ...). (3.10.64)
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A simple equation for the determination of B2 is provided by the terms associated with T6(µ) and
T5(µ), respectively. We insert Eqs. (3.10.57), (3.10.64) into Eq. (3.10.63):

θn
0 d(θ1,6 − χ1,6)/dξ = (B′

2/8ξ2)(B′′
2 − 12B2/ξ2); 12θn

0 (θ1,6 − χ1,6) = (B2/ξ2)(B′′
2 − 12B2/ξ2);

d(ξ2 dχ1,6/dξ)
/
dξ − 42χ1,6 = −nξ2θn−1

0 θ1,6. (3.10.65)

We have taken into account that dT6/dµ = 12(T5+T3+T1) and d[(1−µ2) dT6/dµ]/dµ = −42T6+O(T5).
From the first two equations (3.10.65) we get at once

(θ1,6 − χ1,6)2 = C2
1B3

2 ; B′′
2 − 12B2/ξ2 = 12C1θ

n
0 B

1/2
2 ξ2, (C1 = const). (3.10.66)

Once Eq. (3.10.66) has been solved, the remaining equations – arising from the coefficients of T0, T2, T4

– can be solved in order to determine the remaining functions θ1,2t(ξ) and χ1,2t(ξ). Monaghan (1965)
simplifies the problem further, by retaining only the B0(ξ)-term – a valid approximation when the external
field is a simple dipole field from Eq. (3.10.25). With this approximation the dimensionless form of Eq.
(3.10.57) is

fξ(ξ, µ) = −(1/2ξ2)B′
0(ξ) [B′′

0 (ξ) − 2B0(ξ)/ξ2][1 − T2(µ)];

fµ(ξ, µ) = −2(1 − µ2)1/2T1(µ) B0(ξ) [B′′
0 (ξ) − 2B0(ξ)/ξ2]

/
ξ3. (3.10.67)

It is now only necessary to expand θ1(ξ, µ) and χ1(ξ, µ) up to the second order Chebyshev polynomial
T2(µ) :

θ1(ξ, µ) = θ1,0(ξ) + θ1,2(ξ) T2(µ); χ1(ξ, µ) = χ1,0(ξ) + χ1,2(ξ) T2(µ). (3.10.68)

Eq. (3.10.63) becomes

θn
0 d(θ1,0 − χ1,0)/dξ = −B′

0(B
′′
0 − 2B0/ξ2)

/
2ξ2; θn

0 d(θ1,2 − χ1,2)/dξ = B′
0(B

′′
0 − 2B0/ξ2)

/
2ξ2;

2θn
0 (θ1,2 − χ1,2) = B0(B′′

0 − 2B0/ξ2)
/
ξ2; d(ξ2 dχ1,0/dξ)

/
dξ − 2χ1,2 = −nξ2θn−1

0 θ1,0;

d(ξ2 dχ1,2/dξ)
/
dξ − 6χ1,2 = −nξ2θn−1

0 θ1,2,
(
d[(1 − µ2) dT2(µ)/dµ]

/
dµ = −6T2(µ) − 2

)
.

(3.10.69)

Concerning the surface boundary conditions of these equations, Monaghan (1965) refers to the un-
perturbed spherical surface ξ = ξ1. On this spherical surface the internal gravitational potential matches
in a rough approximation the Laplace solution (3.1.58) of the axially symmetric external gravitational
potential, and the magnetic field matches onto the dipole field (3.10.25). For the external potential we
write according to Eq. (3.1.58)

χe = b′0/ξ + b′2P2(µ)/ξ3 = b′0/ξ + (b′2/ξ3)[1/4 + 3T2(µ)/4]

= b00/ξ + ε[b01/ξ + b2/4ξ3 + 3b2T2(µ)/4ξ3], (b′0, b
′
2, b00, b01, b2 = const), (3.10.70)

where we have stressed the small parameter ε from Eq. (3.10.59) in the constants b′0, b
′
2 of the gravitational

potential: b′0 = b00 + εb01, b′2 = εb2. The internal potential is by virtue of Eqs. (3.10.60) and (3.10.68)
equal to

χ(ξ, µ) = χ0(ξ) + ε[χ1,0(ξ) + χ1,2(ξ) T2(µ)]. (3.10.71)

The internal and external potential, together with the corresponding derivatives with respect to ξ,
must be equal on the boundary ξ1 :

b01/ξ1 + b2/4ξ3
1 = χ1,0; 3b2/4ξ3

1 = χ1,2; −b01/ξ2
1 − 3b2/4ξ4

1 = χ′
1,0; −9b2/4ξ4

1 = χ′
1,2.

(3.10.72)

Elimination of the two constants b01 and b2 from these four equations yields two boundary conditions
on the coefficients of the internal potential:

χ1,0(ξ1) + ξ1χ
′
1,0(ξ1) = −2χ1,2(ξ1)/3; 3χ1,2(ξ1) + ξ1χ

′
1,2(ξ1) = 0. (3.10.73)
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The boundary condition for the magnetic field results from the matching on the boundary of the
magnetic stream function (3.10.53) with the stream function (3.10.26) of a dipole field (f(r) ∝ 1/r),
together with their derivatives:

(1 − µ2)B0 = b sin2 λ
/
ξ1 = b(1 − µ2)/ξ1; B′

0 = −b/ξ2
1 , (b = const). (3.10.74)

Elimination of b from these two matching conditions yields the boundary condition consistent with
Monaghan’s (1965) approximation:

B0(ξ1) + ξ1B
′
1(ξ1) = 0. (3.10.75)

From the second and third equation (3.10.69) follows

(θ′1,2 − χ′
1,2)/(θ1,2 − χ1,2) = B′

0/B0, (3.10.76)

and we infer by integration that

θ1,2(ξ) − χ1,2(ξ) = EB0(ξ), (E = const). (3.10.77)

The third equation (3.10.69) becomes

B′′
0 − 2B0/ξ2 = 2Eξ2θn

0 . (3.10.78)

With

B0 = B0(ξ) = ξ2Q(ξ), (3.10.79)

Eq. (3.10.78) takes the form

d[ξ4Q′(ξ)]/dξ = 2Eξ4θn
0 . (3.10.80)

Therefore

Q′(ξ)/E = c1/ξ4 + (2/ξ4)
∫ ξ

0

ξ′4θn
0 dξ′ = c1/ξ4 − 2θ′0(ξ) + (4/ξ4)

∫ ξ

0

ξ′3(dθ0/dξ′) dξ′

= c1/ξ4 − 2θ′0(ξ) + 4θ0(ξ)/ξ − (12/ξ4)
∫ ξ

0

ξ′2θ0 dξ′, (c1 = const), (3.10.81)

where we have integrated by parts, and have used the Lane-Emden equation d(ξ2 dθ0/dξ)/dξ = −ξ2θn
0 .

Eq. (3.10.81) can be integrated further:

Q(ξ)/E = c2 − c1/3ξ3 − 2θ0(ξ) + 4
∫ ξ

0

θ0 dξ′/ξ′ − 12
∫ ξ

0

(dξ′′/ξ′′4)
∫ ξ′′

0

ξ′2θ0 dξ′

= c2 − c1/3ξ3 − 2θ0(ξ) + (4/ξ3)
∫ ξ

0

ξ′2θ0 dξ′, (c2 = const). (3.10.82)

We have taken into account that integration by parts yields

∫ ξ

0

(dξ′′/ξ′′4)
∫ ξ′′

0

ξ′2θ0 dξ′ = −(1/3ξ3)
∫ ξ

0

ξ′2θ0 dξ′ + (1/3)
∫ ξ

0

θ0 dξ′/ξ′. (3.10.83)

To avoid a singularity of B0 at the origin ξ = 0 we must have c1 = 0. The boundary condition (3.10.75)
written in terms of Q becomes

3Q(ξ1) + ξ1Q
′(ξ1) = 0. (3.10.84)

Substitution of Q, Q′ from Eqs. (3.10.81), (3.10.82), evaluated at the surface ξ = ξ1, shows that

c2 = 2ξ1θ
′
0(ξ1)/3. (3.10.85)
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Thus

B0(ξ)/E = ξ2Q(ξ)/E = 2ξ1θ
′
0(ξ1) ξ2/3 − 2ξ2θ0(ξ) + (4/ξ)

∫ ξ

0

ξ′2θ0(ξ′) dξ′;

S(ξ, µ)/E = (1 − µ2) B0(ξ)/E. (3.10.86)

As it is to be expected, the differential equation (3.10.78) – determining the field intensity in Mon-
aghan’s (1965) evaluation – becomes identical to the corresponding equation (3.10.43) in Roxburgh’s
(1966a) treatment if we put B0(ξ) = −2Eγ(ξ). The solution of Eq. (3.10.78) for the particular cases
n = 0 and n = 1 can be found at once by using Eq. (3.10.86), [cf. Eqs. (3.10.44), (3.10.45)]:

B0(ξ)/E = −ξ2(2 − ξ2/5) if n = 0;

B0(ξ)/E = −2ξ2/3 − 2ξ sin ξ + 4 sin ξ/ξ − 4 cos ξ if n = 1. (3.10.87)

Near the origin the expansion of the Lane-Emden function is given by Eq. (2.4.24), (θ0 ≈ 1 − ξ2/6),
and the stream function takes the form

S(ξ, µ)/E = (1 − µ2) B0(ξ)/E = 2ξ2(1 − µ2)[ξ1θ
′
0(ξ1) − 1]/3, (ξ ≈ 0), (3.10.88)

which determines via Eq. (3.10.55) straight lines parallel to the polar axis µ = 1, (see Fig. 3.10.1
bottom). This is just what one would expect, since the dipole field has this behaviour inside the current
loop generating the field. Further, the radial magnetic component fξ from Eq. (3.10.67) is determined
by θn

0 B′
0 ∝ �B′

0, while the angular component fµ is ∝ �B0/ξ, as can be seen by inserting for B′′
0 −2B0/ξ2

from Eq. (3.10.78). These magnetic force components have their maximum well inside the star.
To determine in a more refined approximation the distortion of the configuration, we have to solve

Eq. (3.10.69) also for θ1,0, θ1,2, χ1,0, and χ1,2. We insert Eq. (3.10.77) into the last equation (3.10.69):

d(ξ2 dχ1,2/dξ)
/
dξ − 6χ1,2 = −nξ2θn−1

0 (EB0 + χ1,2). (3.10.89)

Substituting now Eq. (3.10.78) into the first equation (3.10.69), we get

d(θ1,0 − χ1,0)/dξ = −E dB0/dξ, (3.10.90)

or

θ1,0 − χ1,0 = −EB0 + F, (F = const). (3.10.91)

This equation is used to eliminate θ1,0 from the fourth equation (3.10.69):

d(ξ2 dχ1,0/dξ)
/
dξ − 2χ1,2 = −nξ2θn−1

0 (−EB0 + F + χ1,0). (3.10.92)

The problem reduces to the solution of Eqs. (3.10.89), (3.10.92), subject to the boundary conditions
(3.10.73) and to the initial conditions

χ1,0(0) = −F ; (dχ1,0/dξ)ξ=0 = 0; χ1,2(0) = 0; (dχ1,2/dξ)ξ=0 = 0. (3.10.93)

These initial conditions on the internal potential follow at once from Eqs. (3.10.69), (3.10.86),
(3.10.90), (3.10.91), because

Θ(0, µ), θ0(0) = 1; θ1,0(0), θ1,2(0), B0(0) = 0;
(∂Θ/∂ξ)ξ=0, (dθ0/dξ)ξ=0, (dθ1,0/dξ)ξ=0, (dθ1,2/dξ)ξ=0, (dB0/dξ)ξ=0 = 0, (3.10.94)

where

Θ(ξ, µ) = θ0(ξ) + ε[θ1,0(ξ) + (2µ2 − 1) θ1,2(ξ)];

χ(ξ, µ) = χ0(ξ) + ε[χ1,0(ξ) + (2µ2 − 1) χ1,2(ξ)]. (3.10.95)

On the boundary Ξ1 = Ξ1(µ) we have Θ(Ξ1, µ) = 0 and θ0(ξ1) = 0, or to the first order:

Θ(Ξ1, µ) = θ0(Ξ1) + ε[θ1,0(Ξ1) + (2µ2 − 1) θ1,2(Ξ1)] ≈ (Ξ1 − ξ1) θ′0(ξ1)

+ε[θ1,0(ξ1) + (2µ2 − 1) θ1,2(ξ1)] = 0, (Ξ1 ≈ ξ1; ε � 1). (3.10.96)
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In a similar way as in Secs. 2.4.1, 3.2, we obtain from Eqs. (3.10.89), (3.10.92) the expansions near
the origin

(
χ1,k = a0k + a2kξ2 + a4kξ4; k = 0, 2

)
:

χ1,0 = −F + a22ξ
2/3; χ1,2 = a22ξ

2 − (nξ4/14){2E2[ξ1θ
′
0(ξ1) − 1]/3 + a22}, (ξ ≈ 0).

(3.10.97)

χ1,0 and χ1,2 can be obtained with these starting sequences by numerical integration of Eqs. (3.10.89),
(3.10.92). The two eigenvalues a22 and F are determined to satisfy the boundary conditions (3.10.73) for
the potential. The problem of a distorted magnetopolytrope is solved completely by the evaluation of θ1,0

and θ1,2 from Eqs. (3.10.77) and (3.10.91). Monaghan’s (1966) magnetopolytropes are oblate spheroids
lying wholly (n = 1.5, 3), or partially (n = 1) inside the undistorted sphere.

3.10.4 Perturbation Methods for Magnetopolytropes

The magnetic field is weak, and its effects on the polytropic structure are calculated as a first order
perturbation on a known nonmagnetic sphere, as done for instance by Van der Borght (1967) for the
magnetic field (3.10.27).

(i) Toroidal field. The field assumed by Sinha (1968a) is of the form (3.10.39):

Hϕ = C�(r, λ) r sinλ; �H = �H[0, 0, Hϕ(r, λ)], (C = const). (3.10.98)

The magnetostatic equation (3.10.15) writes as

∂P/∂r − � ∂Φ/∂r = −(Hϕ/4πr) ∂(rHϕ)/∂r = −(C2� sin2 λ/4π) ∂(�r2)/∂r;

∂P/∂λ − � ∂Φ/∂λ = −(Hϕ/4π sinλ) ∂(Hϕ sinλ)/∂λ = −(C2�r2/4π) ∂(� sin2 λ)/∂λ. (3.10.99)

The prime integral of this system becomes with the polytropic equation of state equal to

(n + 1)K�1/n − Φ + (C2/4π)�r2 sin2 λ = const. (3.10.100)

We apply the Laplace operator ∇2 to this equation by using the dimensionless notations

P = P0Θn+1 = K�
1+1/n
0 Θn+1; � = �0Θn; µ = cos λ; h = C2/16π2G;

r = αξ = [(n + 1)K/4πG�
1−1/n
0 ]1/2ξ = [(n + 1)P0/4πG�2

0]
1/2ξ. (3.10.101)

Then, we obtain with ∇2Φ = −4πG�0Θn and Eq. (B.39):

∂{ξ2 ∂[Θ + hξ2(1 − µ2)Θn]/∂ξ}
/
∂ξ + ∂{(1 − µ2) ∂[Θ + hξ2(1 − µ2)Θn]/∂µ}

/
∂µ + ξ2Θn = 0,

(0 ≤ n < 5). (3.10.102)

The constant h is a measure for the strength of the toroidal field, and is assumed to be small:

Θ(ξ, µ) = θ(ξ) + hΨ(ξ, µ), (h � 1), (3.10.103)

where θ is the Lane-Emden function. Substituting Eq. (3.10.103) into Eq. (3.10.102), and using the
Lane-Emden equation (2.3.87), we get

∂(ξ2 ∂Ψ/∂ξ)
/
∂ξ + ∂[(1 − µ2) ∂Ψ/∂µ]

/
∂µ + nξ2θn−1Ψ + (1 − µ2) d[ξ2 d(ξ2θn)/dξ]

/
dξ

+(6µ2 − 2)ξ2θn = 0, (Θn ≈ θn + hnθn−1Ψ), (3.10.104)

with the obvious initial conditions Ψ, ∂Ψ/∂ξ = 0 at ξ = 0. We expand Ψ in terms of the Sinha associated
functions ψj(ξ) and of Legendre polynomials Pj(ξ) :

Ψ(ξ, µ) =
∞∑

j=0

ψj(ξ) Pj(µ). (3.10.105)
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We substitute into Eq. (3.10.104), equating coefficients of equal Pj(ξ), and use Eq. (3.1.40) to obtain
the set of Sinha’s associated functions ψj(ξ) for magnetopolytropes with purely toroidal fields:

d(ξ2 dψ0/dξ)
/
dξ + nξ2θn−1ψ0 + (2/3) d[ξ2 d(ξ2θn)/dξ]

/
dξ = 0;

d(ξ2 dψ2/dξ)
/
dξ + (nξ2θn−1 − 6)ψ2 − (2/3) d[ξ2 d(ξ2θn)/dξ]

/
dξ + 4ξ2θn = 0;

d(ξ2 dψj/dξ)
/
dξ + [nξ2θn−1 − j(j + 1)]ψj = 0, (j �= 0, 2). (3.10.106)

If ψj is a solution of the last equation (3.10.106), so is Ajψj , (Aj = const) too. Hence, a more
appropriate expansion of Ψ from Eq. (3.10.105) is

Ψ(ξ, µ) = ψ0(ξ) + A1ψ1(ξ) P1(µ) + ψ2(ξ) P2(µ) +
∞∑

j=3

Ajψj(ξ) Pj(µ). (3.10.107)

Poisson’s equation writes analogously to Eq. (3.2.12):

∂(ξ2 ∂Φ/∂ξ)
/
∂ξ + ∂[(1 − µ2) ∂Φ/∂µ]

/
∂µ

= −(n + 1)K�
1/n
0 ξ2

[
θn + hnθn−1

(
ψ0 + A1ψ1P1 + ψ2P2 +

∞∑
j=3

AjψjPj

)]
. (3.10.108)

Analogously to Eq. (3.2.13) we write

Φ = U0(ξ) + h
∞∑

j=0

Vj(ξ) Pj(µ). (3.10.109)

Equating the coefficients of Pj after substitution of Eq. (3.10.109) into Eq. (3.10.108), we recover
Eqs. (3.2.14) and (3.2.16):

d(ξ2 dU0/dξ)
/
dξ = −(n + 1)K�

1/n
0 ξ2θn, (3.10.110)

d(ξ2 dVj/dξ)
/
dξ − j(j + 1)Vj = −n(n + 1)K�

1/n
0 ξ2θn−1Ajψj , (j = 0, 1, 2, 3, ...; A0, A2 = 1).

(3.10.111)

The solution of Eq. (3.10.110) is analogous to Eq. (3.2.20):

U0 = (n + 1)K�
1/n
0 (θ + c0), (c0 = const). (3.10.112)

Eq. (3.10.111) has the same solution as Eq. (3.2.28) if j �= 0, 2 :

Vj = (n + 1)K�
1/n
0 (Ajψj + Bjξ

j), (j �= 0, 2; Aj , Bj = const). (3.10.113)

Substituting for ψ0 from the first equation (3.10.106) into Eq. (3.10.111), we get

d(ξ2 dV0/dξ)
/
dξ = (n + 1)K�

1/n
0 d[ξ2 d(ψ0 + 2ξ2θn/3)

/
dξ]
/
dξ, (j = 0; A0 = 1), (3.10.114)

with the solution [cf. Eq. (3.2.24)]

V0 = (n + 1)K�
1/n
0 (ψ0 + 2ξ2θn/3) + c10, (c10 = const). (3.10.115)

If j = 2, (A2 = 1), we obtain analogously

d(ξ2 dV2/dξ)
/
dξ − 6V2 = (n + 1)K�

1/n
0 {d[ξ2 d(ψ2 − 2ξ2θn/3)

/
dξ]
/
dξ − 6(ψ2 − 2ξ2θn/3)},

(3.10.116)

with the solution [cf. Eq. (3.10.113)]

V2 = (n + 1)K�
1/n
0 (ψ2 − 2ξ2θn/3 + B2ξ

2), (B2 = const). (3.10.117)
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Substituting the values from Eqs. (3.10.112), (3.10.113), (3.10.115), (3.10.117) into Eq. (3.10.109),
we get

Φ = (n + 1)K�
1/n
0

{
Θ + c0 + h

[
c10 +

∞∑
j=1

Bjξ
jPj + 2ξ2θn(1 − P2)/3

]}
. (3.10.118)

The prime integral (3.10.100) writes in the dimensionless variables (3.10.101) as

(n + 1)K�
1/n
0 Θ − Φ + 2h(n + 1)K�

1/n
0 ξ2θn[1 − P2(µ)]/3 = const. (3.10.119)

Inserting Eq. (3.10.118) into Eq. (3.10.119), we obtain at once Bj = 0. Hence

Φ = (n + 1)K�
1/n
0

{
θ + c0 + h

[
c10 + ψ0 + A1ψ1P1 + ψ2P2 +

∞∑
j=3

AjψjPj + 2ξ2θn(1 − P2)/3
]}

.

(3.10.120)

On the surface Ξ1 = Ξ1(µ) we have up to the first order [cf. Eqs. (3.2.35), (3.2.37)]

Θ = Θ(Ξ1, µ) = θ(Ξ1) + h

[
ψ0(Ξ1) + A1ψ1(Ξ1) P1(µ) + ψ2(Ξ1) P2(µ) +

∞∑
j=3

Ajψj(Ξ1) Pj(µ)
]
≈

θ(ξ1) + h

[
θ′(ξ1)

∞∑
j=0

qjPj(µ) + ψ0(ξ1) + ψ2(ξ1) P2(µ) + A1ψ1(ξ1) P1(µ) +
∞∑

j=3

Ajψj(ξ1) Pj(µ)
]

= 0,

(3.10.121)

where the figure constants qj occur from the equation of the boundary [cf. Eq. (3.2.34)]

Ξ1 = Ξ1(µ) = ξ1 + h
∞∑

j=0

qjPj(µ), (3.10.122)

and we have analogously to Eq. (3.2.36):

θ(Ξ1) ≈ θ(ξ1) + (Ξ1 − ξ1) θ′(ξ1) ≈ θ(ξ1) + hθ′(ξ1)
∞∑

j=0

qjPj(µ);

θ′(Ξ1) ≈ θ′(ξ1) + hθ′′(ξ1)
∞∑

j=0

qjPj(µ); ψj(Ξ1) ≈ ψj(ξ1). (3.10.123)

Because the coefficients of Pj(µ) from Eq. (3.10.121) must be zero, the figure coefficients are equal to

q0 = −ψ0(ξ1)/θ′(ξ1); q2 = −ψ2(ξ1)/θ′(ξ1); qj = −Ajψj(ξ1)/θ′(ξ1), (j �= 0, 2). (3.10.124)

The internal potential (3.10.120) and its radial derivative become on the boundary of the magne-
topolytrope equal to [cf. Eqs. (3.2.39), (3.2.41)]:

Φ(Ξ1, µ) = (n + 1)K�
1/n
0 (c0 + hc10), (3.10.125)

(∂Φ/∂ξ)ξ=Ξ1 = (n + 1)K�
1/n
0

{
θ′(ξ1) + h

[
[−2θ′(ξ1)/ξ1 − θn(ξ1)]

∞∑
j=0

qjPj(µ)

+ψ′
0 + A1ψ

′
1(ξ1) P1(µ) + ψ′

2(ξ1) P2(µ) +
∞∑

j=3

Ajψ
′
j(ξ1) Pj(µ)

+2ξ1θ
n−1(ξ1) [2θ(ξ1) + nξ1θ

′(ξ1)][1 − P2(µ)]/3
]}

. (3.10.126)
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These equations must be equal to the corresponding equations of the external potential, which can
be copied from Eqs. (3.2.40) and (3.2.42), respectively:

Φe(Ξ1, µ) = k0/ξ1 + h
∞∑

j=0

(−k0qj/ξ2
1 + k1jξ

−j−1
1 ) Pj(µ), (3.10.127)

(∂Φe/∂ξ)ξ=Ξ1 = −k0/ξ2
1 + h

∞∑
j=0

[2k0qj/ξ3
1 − (j + 1)k1jξ

−j−2
1 ] Pj(µ). (3.10.128)

From Eq. (3.10.126) it is obvious that n ≥ 1, in order to avoid a singularity of the derivative at the
boundary. We will always take n > 1, circumventing the discussion of the insignificant particular case
n = 1. Comparing corresponding coefficients from the last four equations, we find analogously to Eq.
(3.2.43):

c0 = −ξ1θ
′(ξ1); c10 = −ψ0(ξ1) − ξ1ψ

′
0(ξ1); k0 = −(n + 1)K�

1/n
0 ξ2

1θ′(ξ1);

k10 = −(n + 1)K�
1/n
0 ξ2

1ψ′
0(ξ1); k1j , Aj = 0 if j �= 0, 2, (n > 1). (3.10.129)

As noted subsequently to Eq. (3.2.43), the relationship (j +1)ψj(ξ1)+ξ1ψ
′
j(ξ1) �= 0 is always fulfilled,

so the constants k1j , Aj , (j �= 0, 2) are zero. Two relationships for the constant k12 follow from Eqs.
(3.10.125)-(3.10.128)

k12 = −(n + 1)K�
1/n
0 ξ4

1ψ′
2(ξ1)/3 = (n + 1)K�

1/n
0 ξ3

1ψ2(ξ1), (n > 1), (3.10.130)

yielding the boundary condition

3ψ2(ξ1) + ξ1ψ
′
2(ξ1) = 0, (n > 1). (3.10.131)

This additional constraint seems to appear because Sinha (1968a) has deliberately taken A2 = 1. The
fundamental function (3.10.103) for a magnetopolytrope with the toroidal field (3.10.98) is therefore

Θ(ξ, µ) = θ(ξ) + h[ψ0(ξ) + ψ2(ξ) P2(µ)], (n > 1), (3.10.132)

where ψ0 and ψ2 are solutions of the differential equations (3.10.106), subject to the boundary condition
(3.10.131), and to the initial conditions ψj(0), ψ′

j(0) = 0, (j = 0, 2).
Near the centre, the following expansions of ψ0 and ψ2 are obtained in a similar way as for the

associated Lane-Emden functions from Sec. 3.2:

ψ0 ≈ −2ξ2/3; ψ2 ≈ Xξ2, (ξ ≈ 0; θ ≈ 1 − ξ2/6). (3.10.133)

The unknown constant X, (X ≈ 1) has to be determined numerically, in order to satisfy the boundary
condition (3.10.131), (see Table 3.10.1).

The equation of the surface is via Eqs. (3.10.122), (3.10.124), (3.10.132) equal to

Ξ1 = Ξ1(µ) = ξ1 − [h/θ′(ξ1)][ψ0(ξ1) + ψ2(ξ1) P2(µ)], (n > 1). (3.10.134)

The oblateness of the configuration is by virtue of Eq. (3.2.55) equal to

f = (a1 − a3)/a1 = 3hψ2(ξ1)/2ξ1θ
′(ξ1), (n > 1), (3.10.135)

where

a1 = ξ1 − [h/θ′(ξ1)][ψ0(ξ1) − ψ2(ξ1)/2]; a3 = ξ1 − [h/θ′(ξ1)][ψ0(ξ1) + ψ2(ξ1)], (n > 1),
(3.10.136)

is the equatorial and polar radius, respectively. From the numerical values listed in Table 3.10.1 results
that polytropes distorted by the toroidal field (3.10.98) are prolate (a1 < a3; f < 0), a result also
confirmed by Anand (1969) and Miketinac (1973).
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Table 3.10.1 Boundary values of the Sinha associated functions ψ0, ψ2, ψ
′
0 from Eq. (3.10.106), of the

fitting constant X from Eq. (3.10.133), and of the oblateness f from Eq. (3.10.135), (Sinha 1968a). aE + b means
a × 10b.

n ξ1 ψ0(ξ1) ψ2(ξ1) ψ′
0(ξ1) X f/h

1.5 3.654 8.823E−1 2.824E−1 3.680E−2 1.149 −0.570
2 4.353 7.746E−1 1.376E−1 −1.807E−2 1.153 −0.373
2.5 5.355 6.455E−1 6.345E−2 −3.310E−2 1.157 −0.233
3 6.897 5.111E−1 2.677E−2 −2.889E−2 1.160 −0.137
3.5 9.536 3.777E−1 1.094E−2 −1.869E−2 1.162 −0.083

The mass of the considered magnetopolytrope is similar to Eq. (3.2.58):

M1 =
∫ 1

−1

dµ

∫ r1(µ)

0

�(r, µ) r2 dr = 2π�0α
3

∫ 1

−1

dµ

∫ Ξ1(µ)

0

Θnξ2 dξ

≈ 2π�0α
3

∫ 1

−1

dµ

∫ Ξ1(µ)

0

[θn + hnθn−1(ψ0 + ψ2P2)]ξ2 dξ

≈ 4π�0α
3

∫ ξ1

0

{−d(ξ2θ′)/dξ − h d(ξ2ψ′
0)/dξ − (2h/3) d[ξ2 d(ξ2θn)/dξ]

/
dξ} dξ

= −4π�0α
3ξ2

1θ′(ξ1) [1 + hψ′
0(ξ1)/θ′(ξ1)] = m1[1 + hψ′

0(ξ1)/θ′(ξ1)], (n > 1). (3.10.137)

m1 is the mass of the undistorted polytrope, and we have inserted from Eqs. (2.3.87) and (3.10.106).
Sinha (1968a) finds that ψ0 is negative from the centre up to a fraction δ of the radius, when it becomes
positive, showing that the inner layers of the magnetopolytrope are less dense, and the outer layers
more dense than the undistorted polytrope having the same central density �0 [see Eq. (3.10.132)].
The fraction δ decreases with increasing value of n. The relative average expansion from Eq. (3.10.122)
(Ξ1 − ξ1)/ξ1 = hq0/ξ1 = −hψ0(ξ1)/ξ1θ

′(ξ1) increases, and the oblateness |f | decreases with increasing
polytropic index n. The boundary value ψ′

0(ξ1) is positive up to about n ≈ 1.8 (cf. Table 3.10.1). Thus,
in virtue of Eq. (3.10.137) the mass of the considered magnetopolytrope is smaller (n < 1.8; θ′(ξ1) < 0)
or larger (n > 1.8) than the undistorted one having the same central density �0. Das and Tandon (1977b)
find that the contribution of higher order nonspherical terms becomes significant for strong toroidal fields.

Miketinac (1973) uses Stoeckly’s (1965) method (Sec. 3.8.2) – as improved by Miketinac and Barton
(1972) – to solve numerically the partial differential equation for the structure of a polytrope in the
presence of a strong toroidal field of the form (3.10.39) or (3.10.98):

Hϕ(�, z) = C�(�, z) �, (C = const), (3.10.138)

where (�, ϕ, z) are cylindrical coordinates. Eq. (3.10.15) becomes

(1/�) ∂P/∂� = ∂Φ/∂� − (C2/4π) ∂(��2)/∂�;

(1/�) ∂P/∂z = ∂Φ/∂z − (C2/4π) ∂(��2)/∂z. (3.10.139)

With the polytropic equation of state P = K�1+1/n this equation can be integrated at once between
the surface and an arbitrary inner point of the star:

K(n + 1)�1/n = Φ − Φp − (C2/4π)��2, (3.10.140)

where Φp is the value of Φ at the pole of the configuration. With the notations

r = �/ sinλ = �/(1 − µ2)1/2 = [(n + 1)nKn/4πGΦn−1
p ]1/2x;

�(r, µ) = [Φp/(n + 1)K]nΘ∗n(x, µ); χ = Φ/Φp, (3.10.141)

from Eq. (3.8.42), we write the magnetostatic equation (3.10.140) as

Θ∗ = χ − hx2(1 − µ2)Θ∗n − 1, (0 ≤ n < 5; h = C2/16π2G). (3.10.142)

Miketinac (1973) integrates this equation numerically, together with Poisson’s equation

∇2Φ = −4πG� or ∇2χ = −Θ∗n. (3.10.143)



3.10.4 Perturbation Methods for Magnetopolytropes 269

Table 3.10.2 Uniformly and critically rotating polytropes with toroidal magnetic field according to Geroyan-
nis and Sidiras (1992 and priv. comm.). βc = Ω2

c/2πG�0 denotes the critical rotation parameter, h = C2/16π2G
measures the strength of the toroidal field, Ξce and Ξcp are the critical equatorial and polar coordinates, respec-
tively.

n h βc Ξce Ξcp

0 0.0416 5.30 3.36
1.5 0.0025 0.0407 5.24 3.38

0.025 0.0339 4.98 3.54

0 0.00980 7.77 5.12
2.5 0.0025 0.00969 7.80 5.14

0.025 0.00870 8.03 5.36

0 0.00412 10.33 6.68
3 0.0025 0.00406 10.36 6.71

0.025 0.00357 10.61 7.02

0 0.00246 11.90 7.82
3.25 0.0025 0.00242 11.91 7.86

0.025 0.00215 12.35 8.21

Miketinac (1973, Tables I, II) finds Xe/x1 = 3.08, Xp/Xe = 1.18, M1/m1 = 1.72 if n = 1.5 and h =
1.96. If n = 3 and h = 1.32, we have Xe/x1 = 3.00, Xp/Xe = 1.04, M1/m1 = 1.79. The symbols Xe, Xp,
and M1 denote the dimensionless equatorial and polar radius, and the mass of the magnetopolytrope; x1

and m1 are the dimensionless radius and mass of the undistorted spherical polytrope, obtained if h = 0.
In conclusion, Miketinac (1973) finds that mass, radius, and central density of an equilibrium polytrope
– distorted by the toroidal field (3.10.138) – increase with increasing field strength. The shape of the
polytropes n = 1.5 and n = 3 is prolate (Xp/Xe > 1) – a finding also confirmed by Sinha (1968a) and
Anand (1969, p. 265), (see Table 3.10.1).

Geroyannis and Sidiras (1992) combine Eq. (3.10.139) with Eq. (3.5.9) to study the effect of the
toroidal field (3.10.138) on differentially rotating polytropes [cf. Geroyannis and Hadjopoulos 1990, Eq.
(2.8)]:

(1/�) ∂P/∂� = ∂Φ/∂� + Ω2(�) � − (C2/4π) ∂(��2)/∂�;

(1/�) ∂P/∂z = ∂Φ/∂z − (C2/4π) ∂(��2)/∂z. (3.10.144)

Using the complex-plane strategy [cf. Eqs. (3.5.54), (3.5.55)] with the multiple partition technique,
Geroyannis and Sidiras (1992, 1993) integrate Eq. (3.10.144) together with Poisson’s and Laplace’s
equation for polytropic indices n = 1, 1.5, 2, 2.5, 3, 3.25. The critical rotation parameter βc decreases with
increasing strength of the toroidal field (Table 3.10.2). We have noted the particular decrease of the
critical equatorial coordinate Ξce if n = 1.5, while otherwise Ξce and the polar critical coordinate Ξcp

increase with increasing strength of the toroidal field. All critically rotating models are oblate (Ξce > Ξcp,
Table 3.10.2). Differentially rotating visco-magnetopolytropes have been considered by Geroyannis and
Sidiras (1995).

(ii) Poloidal field. An axisymmetric poloidal field can always be written in cylindrical (�, ϕ, z)-
coordinates under the form (cf. Eq. (3.10.227); Roberts 1967, Sec. 4.6; Chandrasekhar 1981, App.
III):

�H = ∇× [�Q(�, z) �eϕ] = −[∂(�Q)/∂z] �e
 + [(1/�) ∂(�2Q)/∂�] �ez. (3.10.145)

As can be verified for instance by direct insertion, Eq. (3.10.16) is satisfied in the axisymmetric case
by all solutions of the equation (e.g. Woltjer 1960)

∇× �H = b0
�H + b1�� �eϕ, [b0, b1 = const; �H = �H(�, z); � = �(�, z)]. (3.10.146)

Trehan and Billings (1971) take b0 = 0, and insert

∇× �H = b1�� �eϕ, (3.10.147)

together with Eq. (3.10.145) into the equation of axisymmetric magnetostatic equilibrium (3.10.15):

�−1 ∇P = ∇Φ + (b1/4π) ∇(�2Q). (3.10.148)
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Taking the divergence of this equation, and turning to the (ξ, µ)-coordinates from Eq. (3.2.1), we find

∇2Θ = −Θn + (b2
1α

2/16π2G) ∇2[ξ2(1 − µ2) Q(ξ, µ)] = −Θn + ε ∇2[ξ2(1 − µ2) Q(ξ, µ)],
(3.10.149)

where �2 = α2ξ2(1 − µ2), and we have taken Q(�, z) = Q(r, µ) = b1α
2�0Q(ξ, µ), i.e. Q(ξ, µ) is measured

in units of b1α
2�0. The constant

ε = b2
1α

2/16π2G, (3.10.150)

should not be confused with ε from Eq. (3.10.59). Except for a numerical factor, ε is just equal to
the ratio between magnetic energy (2.6.78) Um = pH2V/8π and gravitational energy (2.6.137) |W | =
3Gm2/(5−n)r, where m, V, r, and H2 ∝ b2

1α
4�2

0 denote mass, volume, radius, and mean square magnetic
field intensity.

The magnetic field is supposed to be weak, so that ε may be treated as a small perturbation parameter.
Thus

Θ(ξ, µ) = θ(ξ) + εΨ(ξ, µ). (3.10.151)

Inserting Eq. (3.10.145) into Eq. (3.10.147), we obtain after some algebra

∂2Q/∂r2 + (4/r) ∂Q/∂r + [(1 − µ2)/r2] ∂2Q/∂µ2 − (4µ/r2) ∂Q/∂µ = −b1�. (3.10.152)

Turning to the dimensionless coordinates from Eq. (3.2.1), and substituting into Eq. (3.10.152) for the
density �0Θn its zero order value �0θ

n, we observe that the determination of the magnetic field reduces
to the solution of the equation

∂2Q/∂ξ2 + (4/ξ) ∂Q/∂ξ + [(1 − µ2)/ξ2] ∂2Q/∂µ2 − (4µ/ξ2) ∂Q/∂µ = −θn(ξ). (3.10.153)

A solution of this equation can be sought in terms of Gegenbauer polynomials G
3/2
j of index 3/2

(Woltjer 1960):

Q(ξ, µ) = f(ξ) +
∞∑

j=1

Ajξ
jG

3/2
j (µ), (Aj = const). (3.10.154)

Gegenbauer polynomials of order j and index k can be defined by (e.g. Sauer and Szabó 1967, p. 171)

Gk
j (µ) = [(−1)j/2jj!]

[
Γ(j + 2k) Γ(k + 1/2)

/
Γ(2k) Γ(j + k + 1/2)

]
(1 − µ2)1/2−k

×dj(1 − µ2)j+k−1/2
/
dµj , (j = 0, 1, 2, ...; k > −1/2; Gk

0(µ) = 1), (3.10.155)

where the gamma function is defined via Eqs. (C.9), (C.11). The differential equation satisfied by the
Gegenbauer polynomials is

(1 − µ2) d2Gk
j /dµ2 − (2k + 1)µ dGk

j /dµ + j(j + 2k)Gk
j = 0. (3.10.156)

Obviously, the Legendre polynomials from Eqs. (3.1.39)-(3.1.40) are a particular case of the Gegen-
bauer polynomials Pj(µ) = (−1)jG

1/2
j (µ), (k = 1/2), while the Chebyshev polynomials from Eq.

(3.10.54) are obtained if k → 0 :

Tj = (j/2) lim
k→0

[Γ(k) Gk
j (µ)] = [(−1)j2jj!(1 − µ2)1/2

/
(2j)!] dj(1 − µ2)j−1/2/dµj = cos(j arccos µ),

(3.10.157)

by inserting limk→0[Γ(k)/Γ(2k)] = 2 via Eq. (C.11).
We substitute Eq. (3.10.154) into Eq. (3.10.153), and equate coefficients containing Gegenbauer

polynomials of the same order:

d2f/dξ2 + (4/ξ) df/dξ = −θn(ξ), (j = 0), (3.10.158)

(1 − µ2) d2G
3/2
j /dµ2 − 4µ dG

3/2
j /dµ + j(j + 3)G3/2

j = 0, (j = 1, 2, 3, ...). (3.10.159)
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The right-hand part of Eq. (3.10.158) suggests to seek its solution under the form f(ξ) = θ(ξ) + g(ξ).
On using the Lane-Emden equation (2.3.87), the equation (3.10.158) turns after integration into

2θ + ξg′ + 3g = const, (3.10.160)

which can be solved at once by standard methods:

f = θ + g = θ(ξ) − (2/ξ3)
∫ ξ

0

ξ′2θ(ξ′) dξ′ + C1 + C2/ξ3, (C1, C2 = const). (3.10.161)

Finiteness of the magnetic field and of its derivatives at the origin ξ = 0 requires C2 = 0. Eq. (3.10.159)
is satisfied identically via Eq. (3.10.156), so Eq. (3.10.153) has the solution

Q(ξ, µ) = θ(ξ) − (2/ξ3)
∫ ξ

0

ξ′2θ(ξ′) dξ′ +
∞∑

j=0

Ajξ
jG

3/2
j (µ). (3.10.162)

Outside the polytrope we have � = �0θ
n = 0, so Eq. (3.10.147) turns into ∇× �H = 0, and the function

Q, characterizing the magnetic field, satisfies Eq. (3.10.153) with θn = 0 :

∂2Q/∂ξ2 + (4/ξ) ∂Q/∂ξ + [(1 − µ2)/ξ2] ∂2Q/∂µ2 − (4µ/ξ2) ∂Q/∂µ = 0, (ξ ≥ ξ1). (3.10.163)

Q(ξ, µ) must be finite at infinity, so solutions of Eq. (3.10.163) have the form

Q(ξ, µ) =
∞∑

j=0

BjG
3/2
j (µ)/ξγj , (γj , Bj = const; ξ ≥ ξ1). (3.10.164)

Inserting this equation into Eq. (3.10.163), we observe that the differential equation (3.10.156) for
the Gegenbauer polynomials with k = 3/2 is satisfied if j(j + 3) = γj(γj + 1) − 4γj or if γj = j + 3. The
solution for the external magnetic field (3.10.164) becomes

Q(ξ, µ) =
∞∑

j=0

BjG
3/2
j (µ)/ξj+3, (ξ ≥ ξ1). (3.10.165)

Since the magnetic field is regarded as a small first order perturbation, the boundary condition on
the continuity of Q and ∂Q/∂ξ can be applied on the spherical surface ξ = ξ1 :

f(ξ1) +
∞∑

j=1

Ajξ
j
1G

3/2
j (µ) =

∞∑
j=0

BjG
3/2
j (µ)/ξj+3

1 ;

f ′(ξ1) +
∞∑

j=1

jAjξ
j
1G

3/2
j (µ) = −

∞∑
j=0

(j + 3)BjG
3/2
j (µ)/ξj+4

1 . (3.10.166)

Equating coefficients of Gegenbauer polynomials of the same order, we find the system

f(ξ1) = B0/ξ3
1 ; f ′(ξ1) = −3B0/ξ4

1 ; Ajξ
j
1 = Bj/ξj+3

1 ; jAjξ
j
1 = −(j + 3)Bj/ξj+4

1 ,

(j = 1, 2, 3, ...), (3.10.167)

with the solutions

ξ1f
′(ξ1) + 3f(ξ1) = 0; B0 = ξ3

1f(ξ1); Ajξ
j
1(jξ1 + j + 3) = 0. (3.10.168)

Since according to Table 2.5.2 jξ1 + j +3 �= 0, we infer that Aj , Bj = 0, (j = 1, 2, 3, ...). The constant
C1 from Eq. (3.10.161) is determined at once from the first equation (3.10.168): C1 = −ξ1θ

′(ξ1)/3. The
scalar function defining the magnetic field is therefore

Q(ξ, µ) = Q(ξ) = f(ξ) = −ξ1θ
′(ξ1)/3 + θ(ξ) − (2/ξ3)

∫ ξ

0

ξ′2θ(ξ′) dξ′. (3.10.169)
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Outside the magnetopolytrope we get via Eqs. (3.10.165), (3.10.168)

Q(ξ) = B0/ξ3 = ξ3
1f(ξ1)/ξ3, (ξ ≥ ξ1), (3.10.170)

and the resulting external magnetic field is in virtue of Eq. (3.10.145) equal to

�He = ∇× (B0 sinλ �eϕ/ξ2), (ξ ≥ ξ1), (3.10.171)

which is just a dipole field from Eq. (3.10.25): Heξ = 2B0 cos λ/ξ3, Heλ = B0 sinλ/ξ3.
The basic equation (3.10.149) for the determination of the fundamental function Θ becomes with Eqs.

(3.10.169) and (B.39) equal to

∇2Θ = −Θn + ε[χ0(ξ) + χ2(ξ) P2(µ)], (3.10.172)

where we have denoted

χ0(ξ) = −4ξ1θ
′(ξ1)/3 + (4/3) d(ξθ)/dξ + (2/3)ξ d2(ξθ)/dξ2;

χ2(ξ) = 4θ − (8/ξ3)
∫ ξ

0

ξ′2θ(ξ′) dξ′ − (4/3) d(ξθ)/dξ − (2/3)ξ d2(ξθ)/dξ2. (3.10.173)

The perturbation function Ψ from Eq. (3.10.151) is expanded in terms of the Trehan-Billings associ-
ated functions ψj(ξ) and of Legendre polynomials Pj(µ), [cf. Eq. (3.10.107)]:

Θ(ξ, µ) = θ(ξ) + ε

[
ψ0(ξ) + A1ψ1(ξ) P1(µ) + ψ2(ξ) P2(µ) +

∞∑
j=3

Ajψj(ξ) Pj(µ)
]
. (3.10.174)

Like in Sec. 3.2 we insert Eq. (3.10.174) into Eq. (3.10.172), and equate coefficients of Legendre
polynomials of the same order, obtaining the differential equations of the associated functions:

d2ψj/dξ2 + (2/ξ) dψj/dξ − j(j + 1)ψj/ξ2 = −nθn−1ψj + χj , (j = 0, 2), (3.10.175)

d2ψj/dξ2 + (2/ξ) dψj/dξ − j(j + 1)ψj/ξ2 = −nθn−1ψj , (j �= 0, 2). (3.10.176)

The initial conditions are clearly θ(0) = 1, θ′(0) = ψj(0) = ψ′
j(0) = 0. Eq. (3.10.148) can be

integrated with the polytropic equation of state:

Φ = K(n + 1)�1/n − (b1/4π)�2Q(r) + C = (n + 1)K�
1/n
0 Θ − (2/3)[1 − P2(µ)](b2

1α
4�0/4π)ξ2Q(ξ)

+C = (n + 1)K�
1/n
0

{
θ(ξ) + c0 + ε

[
c10 + ψ0(ξ) + A1ψ1(ξ) P1(µ) + ψ2(ξ) P2(µ)

+
∞∑

j=3

Ajψj(ξ) Pj(µ) − (2/3)[1 − P2(µ)]ξ2Q(ξ)
]}

, (C = c0 + εc10; C, c0, c10 = const).

(3.10.177)

The external gravitational potential is written similarly to Eq. (3.2.33):

Φe = k0/ξ + ε
∞∑

j=0

k1jξ
−j−1Pj(µ), (k0, k1j = const). (3.10.178)

The boundary of the polytrope assumes the form

Ξ1(µ) = ξ1 + ε
∞∑

j=0

qjPj(µ), (qj = const). (3.10.179)

Eq. (3.10.174) becomes on the surface equal to [cf. Eqs. (3.2.35)-(3.2.38)]

Θ(Ξ1, µ) = θ(ξ1) + ε

[
θ′(ξ1)

∞∑
j=0

qjPj(µ) + ψ0(ξ1) + A1ψ1(ξ1) P1(µ) + ψ2(ξ1) P2(µ)

+
∞∑

j=3

Ajψj(ξ1) Pj(µ)
]

= 0, (3.10.180)
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and since the coefficients of Pj(µ) must be zero, we get

q0 = −ψ0(ξ1)/θ′(ξ1); q2 = −ψ2(ξ1)/θ′(ξ1); qj = −Ajψj(ξ1)/θ′(ξ1), (j �= 0, 2). (3.10.181)

On the boundary, the internal and external potentials (3.10.177), (3.10.178) – together with the
corresponding radial derivatives – become [cf. Eqs. (3.2.39)-(3.2.42)]:

Φ(Ξ1, µ) = (n + 1)K�
1/n
0 {c0 + ε[c10 − (2/3)(1 − P2)ξ2

1Q(ξ1)]}, (3.10.182)

(∂Φ/∂ξ)ξ=Ξ1 = (n + 1)K�
1/n
0

{
θ′(ξ1) + ε

[
[−2θ′(ξ1)/ξ1 − θn(ξ1)]

∞∑
j=0

qjPj(µ) + ψ′
0(ξ1)

+A1ψ
′
1(ξ1) P1(µ) + ψ′

2(ξ1) P2(µ) +
∞∑

j=3

Ajψ
′
j(ξ1) Pj(µ) − (2/3)[1 − P2(µ)][2ξ1Q(ξ1) + ξ2

1Q′(ξ1)]
]}

,

(3.10.183)

Φe(Ξ1, µ) = k0/ξ1 + ε
∞∑

j=0

[−k0qj/ξ2
1 + k1jξ

−j−1
1 Pj(µ)], (3.10.184)

(∂Φe/∂ξ)ξ=Ξ1 = −k0/ξ2
1 + ε

∞∑
j=0

[2k0qj/ξ3
1 − (j + 1)k1jξ

−j−2
1 ] Pj(µ). (3.10.185)

The particular case n = 0 is ignored by Trehan and Billings (1971), so we consider only polytropic
indices 0 < n < 5, when θn(ξ1) = 0 in Eq. (3.10.183). Equating coefficients associated with Legen-
dre polynomials of the same order in Eqs. (3.10.182), (3.10.184) and in Eqs. (3.10.183), (3.10.185),
respectively, we determine the unknown constants:

c0 = −ξ1θ
′(ξ1); c10 = 2ξ2

1Q(ξ1) + 2ξ3
1Q′(ξ1)/3 − ψ0(ξ1) − ξ1ψ

′
0(ξ1);

k0 = −(n + 1)K�
1/n
0 ξ2

1θ′(ξ1); k10 = (n + 1)K�
1/n
0 ξ2

1{(2ξ1/3)[2Q(ξ1) + ξ1Q
′(ξ1)] − ψ′

0(ξ1)};
k12 = (n + 1)K�

1/n
0 ξ3

1 [2ξ2
1Q(ξ1)/3 + ψ2(ξ1)]; Aj [(j + 1)ψj(ξ1) + ξ1ψ

′
j(ξ1)] = 0;

k1j = (n + 1)K�
1/n
0 Ajξ

j+1
1 ψj(ξ1), (0 < n < 5; j �= 0, 2). (3.10.186)

As noted subsequently to Eq. (3.2.43), the relationship (j +1)ψj(ξ1)+ξ1ψ
′
j(ξ1) �= 0 is always fulfilled,

so the constants k1j , Aj , (j �= 0, 2) are zero. The Trehan-Billings associated function ψ2 has to satisfy
the boundary condition

3ψ2(ξ1) + ξ1ψ
′
2(ξ1) = −(2ξ2

1/3)[5Q(ξ1) + ξ1Q
′(ξ1)], (3.10.187)

and this completes the formal solution of magnetostatic equilibrium of a polytrope with the poloidal field
(3.10.145).

As an example, Trehan and Billings (1971) write down the solutions in the particular case n = 1. The
solutions for θ, Q, χ1, χ2 can be found at once from Eqs. (2.3.89), (3.10.169), (3.10.173):

θ = sin ξ/ξ; Q(ξ) = 1/3 + sin ξ/ξ + 2 cos ξ/ξ2 − 2 sin ξ/ξ3; χ1 = 4/3 + 4 cos ξ/3 − 2ξ sin ξ/3;

χ2 = −4 cos ξ/3 + 2ξ sin ξ/3 + 4 sin ξ/ξ + 8 cos ξ/ξ2 − 8 sin ξ/ξ3, (n = 1). (3.10.188)

The homogeneous parts of Eqs. (3.10.175), (3.10.176) have the solutions [cf. Eqs. (2.3.22), (3.2.74)-
(3.2.78)]:

ψj(ξ) = Bjξ
−1/2Jj+1/2(ξ) = Cjξ

j dj(sin ξ/ξ)
/
(ξ dξ)j ,

[Bj , Cj = const; ψ0 = C0 sin ξ/ξ; ψ2 = C2(sin ξ/ξ + 3 cos ξ/ξ2 − 3 sin ξ/ξ3)]. (3.10.189)
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Table 3.10.3 Boundary values of the Trehan-Billings associated functions ψ0, ψ
′
0, ψ2, ψ

′
2 from Eq. (3.10.175),

of the functions Q(ξ1), Q
′(ξ1) from Eq. (3.10.169) characterizing the poloidal field, and of the oblateness f/ε from

Eq. (3.10.195), (Trehan and Billings 1971). a + b means a × 10b.

Symbol n = 1 n = 1.5 n = 2 n = 3 n = 3.5 n = 4

ξ1 3.14+0 3.65+0 4.35+0 6.90+0 9.54+0 1.50+1
ψ0(ξ1) 7.00−2 −1.80−1 −3.31−1 −5.03−1 −5.61−1 −6.15−1
ψ′

0(ξ1) −7.44−1 −4.37−1 −2.59−1 −8.42−2 −4.26−2 −1.79−2
ψ2(ξ1) −1.57+0 −1.07+0 −7.64−1 −4.08−1 −2.98−1 −2.10−1
ψ′

2(ξ1) 9.47−1 5.09−1 2.78−1 7.60−2 3.65−2 1.51−2
Q(ξ1) 1.31−1 7.60−2 4.29−2 1.10−2 4.52−3 1.35−3
Q′(ξ1) −1.25−1 −6.24−2 −2.96−2 −4.80−3 −1.42−3 −2.71−4
f/ε 2.35+0 2.16+0 2.07+0 2.09+0 2.26+0 2.63+0

The finding of a particular solution of the nonhomogeneous equation (3.10.175) is a cumbersome task,
and we quote subsequently merely the solution found by Trehan and Billings (1971), that can be verified
by direct insertion:

ψ0 = −3 sin ξ/2ξ + 4/3 + cos ξ/6 + ξ sin ξ/6 + ξ2 cos ξ/9; ψ2 = (4π2/3)(sin ξ/ξ + 3 cos ξ/ξ2

−3 sin ξ/ξ3) − 4 cos ξ/3 − ξ sin ξ/3 − ξ2 cos ξ/9 + 4 sin ξ/3ξ, (n = 1). (3.10.190)

The integration constants C0, C2 from Eq. (3.10.189) have been determined via the initial conditions
ψj(0), ψ′

j(0) = 0, (j = 0, 2) : C0 = −3/2, C2 = 4π2/3.
The mass of the magnetopolytrope with the poloidal field (3.10.145) is similar to Eq. (3.2.58):

M1 = 4π�0α
3

∫ 1

−1

dµ

∫ Ξ1(µ)

0

ξ2Θn dξ ≈ 2π�0α
3

∫ 1

−1

dµ

∫ Ξ1(µ)

0

[θn + εnθn−1(ψ0 + ψ2P2)]ξ2 dξ

≈ 4π�0α
3

∫ ξ1

0

{−d(ξ2θ′)/dξ + ε[−d(ξ2ψ′
0)/dξ + ξ2χ0]} dξ

= 4π�0α
3

{
− ξ2

1θ′(ξ1) + ε

[
− ξ2

1ψ′
0(ξ1) + 2ξ4

1θ′(ξ1)/9 + (4/3)
∫ ξ1

0

ξ2θ(ξ) dξ

]}

= −4π�0α
3ξ2

1θ′(ξ1)
{

1 + ε

[
ψ′

0(ξ1)/θ′(ξ1) − 2ξ2
1/9 − [4/3ξ2

1θ′(ξ1)]
∫ ξ1

0

ξ2θ(ξ) dξ

]}

= m1[1 + O(ε)],
(
0 < n < 5; θ′(ξ1) < 0

)
, (3.10.191)

where m1 denotes the mass of the undistorted sphere from Eq. (2.6.18), and we have used Eqs. (2.3.87),
(3.10.173), (3.10.175), integrating by parts. The volume is similar to Eq. (3.2.60):

V1 = 2πα3

∫ 1

−1

dµ

∫ Ξ1(µ)

0

ξ2 dξ ≈ 4πα3ξ3
1/3 + 2πα3ξ2

1

∫ 1

−1

[Ξ1(µ) − ξ1] dµ

= (4πα3ξ3
1/3)[1 − 3εψ0(ξ1)/ξ1θ

′(ξ1)], (0 < n < 5). (3.10.192)

The mean density is according to Eqs. (3.10.191), (3.10.192):

�m = M1/V1 = −[3�0θ
′(ξ1)/ξ1]

{
1 + ε

[
ψ′

0(ξ1)/θ′(ξ1) − 2ξ2
1/9

−[4/3ξ2
1θ′(ξ1)]

∫ ξ1

0

ξ2θ(ξ) dξ + 3ψ0(ξ1)/ξ1θ
′(ξ1)

]}
. (3.10.193)

The boundary of the magnetopolytrope is via Eqs. (3.10.179), (3.10.181):

Ξ1(µ) = ξ1 − [ε/θ′(ξ1)][ψ0(ξ1) + ψ2(ξ1) P2(µ)]. (3.10.194)

There occurs a general expansion (contraction) of the magnetopolytrope of amount −εψ0(ξ1)/θ′(ξ1),
(θ′(ξ1) < 0), similarly to the rotating polytrope. The data of Trehan and Billings (1971), (see Table
3.10.3) suggest an expansion of the magnetopolytrope if 0 < n � 1, (ψ0(ξ1) > 0), and a contraction if
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1 � n < 5, (ψ0(ξ1) < 0), as compared to the undistorted sphere possessing the same central density �0.
The oblateness of the configuration is similar to Eqs. (3.2.55) or (3.10.135):

f = (a1 − a3)/a1 ≈ 3εψ2(ξ1)/2ξ1θ
′(ξ1). (3.10.195)

From the data of Table 3.10.3 we observe that always ψ2(ξ1) < 0, and since θ′(ξ1) < 0, we infer that
f > 0, i.e. oblate configurations with a1 > a3.

A related approach has been elaborated by Chiam and Monaghan (1971) for n = 1.5, 3 polytropes.
To obtain the virial equations for the magnetopolytrope of Trehan and Billings (1971), we start

with Eq. (2.6.79), by taking the velocities of internal motion vk = 0, (Ijk, Ejk = 0), together with
the hydrostatic pressure P = 0 on the surface S, as required by hydrostatic equilibrium of a complete
magnetopolytrope:

δjk

∫
V

P dV + Wjk + δjkUm − 2Hjk + (1/4π)
∫

S

xj [(−H2/2) dSk + HkH
 dS
] = 0, (p = 1).

(3.10.196)

The contraction of this equation (j = k) yields the scalar virial equation of magnetostatic equilibrium
[cf. Eq. (2.6.80)]:

3
∫

V

P dV + W + Um + (1/4π)
∫

S

xj(−δjkH2/2 + HjHk) dSk = 0. (3.10.197)

Eq. (3.10.177) can be written under the slightly different form

(n + 1)P = �[Φ + (b1/4π) Q(r) r2 sin2 λ − C]. (3.10.198)

On integrating over the volume of the configuration, and bearing in mind Eq. (2.6.68), we get

(n + 1)
∫

V

P dV = −2W + (b1/4π)
∫

V

�Q(r) r2 sin2 λ dV − CM. (3.10.199)

The magnetic energy term can be transformed by observing that the integration can be carried out
over the undistorted volume of the Lane-Emden sphere, since the magnetic energy is a small first order
quantity:

(b1/4π)
∫

V

�Q(r) r2 sin2 λ dV ≈ (b1/4π)
∫ 2π

0

dϕ

∫ π

0

sin3 λ dλ

∫ r1

0

�Q(r) r4 dr

= (2b1/3)
∫ r1

0

�Q(r) r4 dr. (3.10.200)

r1 is the radius of the undistorted sphere, and we have used the integral
∫ π/2

0

sin2j+1 λ dλ =
∫ π/2

0

cos2j+1 λ dλ

= 2 × 4 × 6 × ... × 2j
/
1 × 3 × 5 × ... × (2j + 1) = (2j)!!/(2j + 1)!!, (j = 1, 2, 3, ...). (3.10.201)

The integral (3.10.200) can be expressed further in terms of the magnetic energy Um from Eq. (2.6.78).
The components of the magnetic field intensity are via Eqs. (3.10.145), (B.38) equal to

�H = ∇× [rQ(r) sinλ �eϕ] = 2Q cos λ �er − (sinλ/r)[d(r2Q)/dr] �eλ, (3.10.202)

where in virtue of Eq. (3.10.169):

Q(r, µ) = Q(r) = b1α
2�0Q(ξ) = b1α

2�0

[
θ(ξ) − (2/ξ3)

∫ ξ

0

ξ′2θ(ξ′) dξ′ − ξ1θ
′(ξ1)/3

]
. (3.10.203)

With Eq. (3.10.202) the magnetic energy can be expressed as

Um =
∫

V

H2 dV/8π =
∫

V

(4Q2 + 4rQQ′ sin2 λ + r2Q′2 sin2 λ) dV/8π

=
∫ r1

0

(2Q2 + 4rQQ′/3 + r2Q′2/3)r2 dr, (Q′ = dQ/dr). (3.10.204)
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Taking into account that Q(r) satisfies Eq. (3.10.152) under the form

d2Q/dr2 + (4/r) dQ/dr = −b1�, (3.10.205)

we can transform the integral (3.10.204) as follows:

Um =
∫ r1

0

[(2/3) d(r3Q2)/dr + (r4/3) d(QQ′)/dr + 4r3QQ′/3 + b1�r4Q/3] dr

= 2r3
1Q

2(r1)/3 +
∫ r1

0

[(1/3) d(r4QQ′)/dr + b1�r4Q/3] dr = −r3
1Q

2(r1)/3 + (b1/3)
∫ r1

0

�r4Q(r) dr.

(3.10.206)

We have also employed the boundary condition (3.10.168), written under the equivalent form

r1Q
′(r1) + 3Q(r1) = 0. (3.10.207)

Thus, Eq. (3.10.199) becomes

(n + 1)
∫

V

P dV = −2W + 2Um + 2r3
1Q

2(r1)/3 − CM, (3.10.208)

by using the results (3.10.200), (3.10.206). Eliminating the pressure integral between Eqs. (3.10.197) and
(3.10.208), we get for the gravitational energy

W = [1/(5 − n)]
{

(n + 7)Um + 2r3
1Q

2(r1) + [(n + 1)/4π]
∫

S

xj(−δjkH2/2 + HjHk) dSk − 3CM

}
.

(3.10.209)

The surface integral over the magnetic field can be expressed in a more concise form by introducing
the tensor

Sjk = (1/4π)
∫

S

xj [(−H2/2) dSk + HkH
 dS
]. (3.10.210)

The projection of the surface element dS perpendicular to the xk-axis is equal to (e.g. Smirnow 1967)

dSk = nk dS; �n = �n(n1, n2, n3); n1 = sinλ cos ϕ; n2 = sinλ sinϕ; n3 = cos λ, (3.10.211)

where �n is the normal to the surface element dS. Since the magnetic field is a small perturbation, it
is sufficient to integrate Eq. (3.10.210) in the first order theory of Trehan and Billings (1971) over the
spherical surface of the undistorted polytrope: dS = r2 sinλ dλ dϕ, xj = rnj .

The components H1, H2, H3 of the magnetic field �H in Cartesian (x1, x2, x3)-coordinates are found
from the spherical components Hr, Hλ, Hϕ with the transformation matrix [cf. Eq. (3.8.135)]:


 H1

H2

H3


 =


 sinλ cos ϕ cos λ cos ϕ − sinϕ

sinλ sinϕ cos λ sinϕ cos ϕ
cos λ − sinλ 0




 Hr

Hλ

Hϕ


 . (3.10.212)

Thus, the Cartesian coordinates of the magnetic field from Eq. (3.10.202) are

H1 = sinλ cos λ cos ϕ [2Q − (1/r) d(r2Q)/dr] = − sinλ cos λ cos ϕ r dQ/dr;

H2 = − sinλ cos λ sinϕ r dQ/dr; H3 = 2Q + sin2 λ r dQ/dr. (3.10.213)

Using Eqs. (3.10.201), (3.10.207), and inserting Eqs. (3.10.211), (3.10.213) into Eq. (3.10.210), we
obtain after some algebra

S11 = 2r3
1Q

2(r1)/15; S22 = S11; S33 = r3
1Q

2(r1)/15; Sjk = 0 if j �= k, (3.10.214)

taking into account the integral
∫ π/2

0

sin2j λ dλ =
∫ π/2

0

cos2j λ dλ = (π/2) × 1 × 3 × 5 × ... × (2j − 1)
/
2 × 4 × 6 × ... × 2j

= (π/2)(2j − 1)!!/(2j)!!, (j = 1, 2, 3, ...). (3.10.215)
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Thus, the surface integral in Eq. (3.10.197) is just

(1/4π)
∫

S

xj(−δjkH2/2 + HjHk) dSk = S11 + S22 + S33 = 2S11 + S33 = r3
1Q

2(r1)/3, (3.10.216)

and Eq. (3.10.209) can be written under the equivalent form

W = [1/(5 − n)][(n + 7)Um + (n + 7)r3
1Q

2(r1)/3 − 3CM ]. (3.10.217)

The nonvanishing components of the gravitational energy tensor Wjk, (Wjk = 0 if j �= k) can be
obtained at once by eliminating the pressure integral between the nonvanishing diagonal components of
Eq. (3.10.196)

∫
V

P dV + W11 + H33 + S11 = 0;
∫

V

P dV + W33 + 2H11 − H33 + S33 = 0,

(Um = H11 + H22 + H33 = 2H11 + H33; W11 = W22), (3.10.218)

and Eq. (3.10.208), written under the form

(n + 1)
∫

V

P dV = −2(2W11 + W33) + 2(2H11 + H33) + 2(2S11 + S33) − CM. (3.10.219)

We get

W11 = W22 = [8H11 + (n − 1)H33 + (n + 3)S11 + 4S33 − CM ]/(5 − n);
W33 = [2(n − 1)H11 + (9 − n)H33 + 8S11 + (n − 1)S33 − CM ]/(5 − n). (3.10.220)

The magnetic energy tensor (2.6.77) is obtained with Eqs. (3.10.201), (3.10.213):

H11 = (1/8π)
∫

V

H2
1 dV ≈ (1/8π)

∫ 2π

0

cos2 ϕ dϕ

∫ π

0

sin3 λ cos2 λ dλ

∫ r1

0

r4(dQ/dr)2 dr

= (1/30)
∫ r1

0

r4(dQ/dr)2 dr; H22 = H11; H33 = (1/8π)
∫

V

H2
3 dV

≈ (1/8π)
∫ 2π

0

dϕ

∫ π

0

sinλ dλ

∫ r1

0

(2Q + sin2 λ r dQ/dr)2r2 dr

= 2
∫ r1

0

[Q2 + 2rQ (dQ/dr)
/
3 + 2r2(dQ/dr)2

/
15]r2 dr; Hjk = 0 if j �= k. (3.10.221)

The calculation of the moment of inertia tensor (2.6.74) is straightforward:

I11 =
∫

V

�x2
1 dV ≈ �0α

5

∫ 2π

0

cos2 ϕ dϕ

∫ π

0

sin3 λ dλ

∫ Ξ1(λ)

0

Θn(ξ, λ) ξ4 dξ

= 2π�0α
5

∫ 1

0

(1 − µ2) dµ

∫ Ξ1(µ)

0

Θn(ξ, µ) ξ4 dξ

≈ 2π�0α
5

∫ 1

0

(1 − µ2) dµ

∫ ξ1

0

{
θn(ξ) + εnθn−1(ξ) [ψ0(ξ) + ψ2(ξ) P2(µ)]

}
ξ4 dξ + (Ξ1 − ξ1)ξ4

1θn(ξ1)

≈ (4π�0α
5/3)

∫ ξ1

0

{
θn(ξ) + εnθn−1(ξ) [ψ0(ξ) − ψ2(ξ)/5]

}
ξ4 dξ;

I22 = I11; I33 =
∫

V

�x2
3 dV ≈ 2π�0α

5

∫ π

0

cos2 λ sinλ dλ

∫ Ξ1(λ)

0

Θn(ξ, λ) ξ4 dξ

≈ (4π�0α
5/3)

∫ ξ1

0

{
θn(ξ) + εnθn−1(ξ) [ψ0(ξ) + 2ψ2(ξ)/5]

}
ξ4 dξ; Ijk = 0 if j �= k. (3.10.222)

Boundary values for the diagonal tensors from Eqs. (3.10.214) and (3.10.220)-(3.10.222) have been
published by Trehan and Billings (1971) for the polytropic indices from Table 3.10.3.

Moments of inertia for rotating relativistic magnetopolytropes pervaded by a dipole field of the form
(3.10.26) have been calculated by Konno (2001), as related to pulsars of polytropic index n = 0, 0.5, 1, 1.5.
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(iii) Poloidal and toroidal field. In this more general case Trehan and Uberoi (1972) constrain
the magnetopolytrope to be axisymmetric, and the magnetic field can always be written under the form
(Roberts 1967, Sec. 4.6; Chandrasekhar 1981, App. III)

�H = ∇× [�Q(�, z) �eϕ] + �T (�, z) �eϕ = −(1/�)[∂(�2Q)/∂z] �e
 + �T �eϕ + (1/�)[∂(�2Q)/∂�] �ez,
(3.10.223)

with Q and T equal to the poloidal and toroidal magnetic field stream functions. The ϕ-component of
the magnetostatic equation (3.10.15) has to vanish due to axisymmetry, so it is required that

[(∇× �H) × �H]ϕ = 0 or (�eϕ/�2)
{
[∂(�2T )/∂z] ∂(�2Q)/∂� − [∂(�2Q)/∂z] ∂(�2T )/∂�

}
= 0,

(3.10.224)

which is fulfilled if �2T = f(�2Q). For this functional form Trehan and Uberoi (1972) take the simple
linear relationship

T = b0Q, (b0 = const). (3.10.225)

Eqs. (3.10.146), (3.10.148)-(3.10.151) for the poloidal field remain entirely valid also in the present,
more general case. Inserting Eq. (3.10.223) into the ϕ-component of Eq. (3.10.146), we obtain instead
of Eq. (3.10.152):

∂2Q/∂r2 + (4/r) ∂Q/∂r + [(1 − µ2)/r2] ∂2Q/∂µ2 − (4µ/r2) ∂Q/∂µ + b2
0Q = −b1�. (3.10.226)

The components of the magnetic field (3.10.223) are in spherical coordinates equal to

�H = �H(Hr, Hλ, Hϕ) = ∇× [r sinλ Q(r, λ) �eϕ] + r sinλ T (r, λ) �eϕ

= (�er/ sinλ) ∂(sin2 λ Q)/∂λ − (�eλ sinλ/r) ∂(r2Q)/∂r + r sinλ T �eϕ. (3.10.227)

The toroidal field intensity Hϕ = r sinλ T ∝ � from Eqs. (3.10.39), (3.10.98), (3.10.227) vanishes
on the surface r1 = r1(λ) and in the vacuum region outside the axisymmetric polytrope, together with
Q = T/b0 from Eq. (3.10.225): Q[r1(λ), λ] = 0. A second boundary condition (∂Q/∂r)r=r1(λ) = 0 results
via Eq. (3.10.227) by supposing Hλ = 0 on the boundary (Trehan and Uberoi 1972).

Monaghan (1976) circumvents the draw-back of a vanishing external field Q(r, λ), T (r, λ) = 0, by
introducing for Q mildly singular functions, allowing for a nonzero, external, poloidal magnetic field.

To find a particular solution of the nonhomogeneous equation (3.10.226), Woltjer (1960) expands
Q into a series of Gegenbauer polynomials G

3/2
j (cos λ) = G

3/2
j (µ), as in Eq. (3.10.154). Because of

the orthogonality of Gk
j (µ), all angular terms (j �= 0) vanish, and Eq. (3.10.226) turns into [cf. Eqs.

(3.10.158), (3.10.159)]

d2Q/dr2 + (4/r) dQ/dr + b2
0Q = −b1�. (3.10.228)

A particular solution of this equation can be found with the aid of the nonhomogeneous Bessel equation
(e.g. Kamke 1956, p. 443):

Qp(r) = −(b0b1/r)
[
y1(b0r)

∫ r

0

r′3j1(b0r
′) �(r′) dr′ + j1(b0r)

∫ r1

r

r′3y1(b0r
′) �(r′) dr′

]
. (3.10.229)

jk and yk are spherical Bessel and Neumann functions of order k, (k = 0,±1,±2, ...), connected to the
ordinary Bessel and Neumann functions from Eqs. (2.3.12) and (2.3.13) by jk(r) = (π/2r)1/2Jk+1/2(r)
and yk(r) = (π/2r)1/2Yk+1/2(r), respectively (e.g. Morse and Feshbach 1953, Abramowitz and Stegun
1965). Since the magnetic field is a small first order quantity, we have replaced �(r, µ) by its spherical
approximation �(r), so r1 = αξ1 is just the radius of the Lane-Emden sphere. To verify the particular
solution (3.10.229) by direct insertion into Eq. (3.10.228), we have to make use of the Wronskian [see
Eq. (2.4.146)]

W [jk(r), yk(r)] = jk dyk/dr − yk djk/dr = jk+1 yk − jk yk+1 = 1/r2, (3.10.230)
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together with the recurrence formula djk/dr = kjk/r − jk+1 = −(k + 1)jk/r + jk−1, and an analogous
formula for yk. The general solution of the homogeneous part of Eq. (3.10.226) can be expressed under
the form (cf. Eqs. (3.10.154), (3.10.156); Kamke 1956, p. 440; Woltjer 1960):

Qh(r, µ) =
∞∑

k=0

Ak jk+1(b0r) G
3/2
k (µ)/r, (Ak = const). (3.10.231)

So, the complete solution of Eq. (3.10.226) is Q(r, µ) = Qh(r, µ) + Qp(r). From the boundary condi-
tions Q[r1(µ), µ] = 0 and (∂Q/∂r)r=r1(µ) = 0 results at once Ak = 0 if k �= 0, and we are left with

Q(r1) ∝ A0 j1(b0r1) − b0b1 y1(b0r1)
∫ r1

0

r3j1(b0r) �(r) dr = 0; (dQ/dr)r=r1 ∝ A0 j2(b0r1)

−b0b1 y2(b0r1)
∫ r1

0

r3j1(b0r) �(r) dr = 0, (G3/2
0 (µ) = 1). (3.10.232)

Eq. (3.10.232) can be fulfilled only if

A0 = 0 and
∫ r1

0

r3j1(b0r) �(r) dr = 0, (3.10.233)

which determines the constant b0. Thus, the solution of Eq. (3.10.226) is given by Eq. (3.10.229), with
b0 being a root of Eq. (3.10.233).

Eqs. (3.10.226), (3.10.229), (3.10.233) become in terms of the Lane-Emden variables equal to

d2Q/dξ2 + (4/ξ) dQ/dξ + b′0
2
Q = −θn(ξ), (Q(r, µ) = Qp(r) = b1�0α

2Q(ξ); b′0 = αb0),
(3.10.234)

Q(ξ) = −(b′0/ξ)
[
y1(b′0ξ)

∫ ξ

0

ξ′3j1(b′0ξ
′) θn(ξ′) dξ′ + j1(b′0ξ)

∫ ξ1

ξ

ξ′3y1(b′0ξ
′) θn(ξ′) dξ′

]
, (3.10.235)

∫ ξ1

0

ξ3j1(b′0ξ) θn(ξ) dξ = 0. (3.10.236)

The further procedure for the determination of the fundamental function Θ is quite similar to that
already outlined for the purely poloidal field. The basic equation is still Eq. (3.10.149), where the
magnetic term (3.10.173) now takes the form [Eqs. (B.39), (3.10.234)]

∇2Θ = −Θn + ε ∇2[ξ2(1 − µ2) Q(ξ)] = −Θn + ε{4Q + 4ξQ′/3

−2ξ2(b′0
2
Q + θn)/3 + [−4ξQ′/3 + 2ξ2(b′0

2
Q + θn)/3] P2(µ)}. (3.10.237)

The magnetic energy of the configuration is in the spherical approximation via Eqs. (2.6.78),
(3.10.204), (3.10.206), (3.10.225), (3.10.227), (3.10.228) equal to

Um =
∫

V

H2 dV/8π =
∫ r1

0

(2Q2 + 4rQQ′/3 + r2Q′2/3 + b2
0r

2Q2/3)r2 dr

= (1/3)
∫ r1

0

[2 d(r3Q2)/dr + d(r4QQ′)/dr + b1�r4Q + 2b2
0r

4Q2] dr

= (1/3)
∫ r1

0

(b1� + 2b2
0Q)r4Q dr. (3.10.238)

The purely toroidal and poloidal component of the magnetic energy is in virtue of Eqs. (3.10.225),
(3.10.227) equal to

UmT =
∫

V

H2
ϕ dV/8π = (b2

0/3)
∫ r1

0

r4Q2 dr; UmP = Um − UmT . (3.10.239)
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Structural parameters of these hydrostatic magnetopolytropes have been quoted by Trehan and Uberoi
(1972), and Trehan (1984) for the polytropic indices n = 1, 1.5, 2, 3, 3.5. These magnetopolytropes are
found to be prolate spheroids (a3 > a1 = a2), the prolateness decreasing as the polytropic index n
increases. Das and Tandon (1976) have added differential rotation to the treatment of Trehan and
Uberoi (1972).

Galli (1993), and Papasotiriou and Geroyannis (2001) have calculated particular, nearly spherical
equilibrium polytropes (1 ≤ n ≤ 3.5), resulting from counterbalancing the effects of (differential) rotation
and of a poloidal field – producing oblate spheroids – with the effect of a toroidal field, generating prolate
spheroids. For the same polytropes Papasotiriou and Geroyannis (2001) have calculated critically rotating
configurations.

Equilibrium structures of magnetopolytropes with strong poloidal fields have been calculated by Mon-
aghan (1968) and Miketinac (1975), indicating that the magnetic field structure is not a sensitive function
of polytropic index if 1 � n � 3. The sequences start with a sphere (no magnetic field), and terminate
with a strongly distorted doughnut-shaped object, when the ratio of magnetic to gravitational energy is
0.35 (Monaghan 1968) and 0.23 (Miketinac 1975) for the polytropic index n = 3.

Singh et al. (1987) virtually neglect magnetic effects, their treatment being equivalent to the double
approximation technique from Sec. 3.6.

A differential rotation law of the form Ω = c1 + c2Hϕ/r sinλ, (c1, c2 = const) has been obtained by
Maezawa (1979), by assuming the velocity field �v = vr�er + vλ�eλ + Ωr sinλ �eϕ, (vλ � Ωr) in a spherical
magnetopolytrope of infinite conductivity.

3.10.5 Magnetic Fields in Cylindrical Polytropes

At first we consider only polytropic indices 0 ≤ n < ∞; in this case all physical parameters of
undistorted cylinders remain finite (Sec. 2.6.8). In a frame rotating together with the fluid at constant
angular velocity �Ω, the equation of hydrostatic support of a magnetic fluid becomes [cf. Eqs. (3.1.14),
(3.10.15)]

∇P = � ∇Φ − ��Ω × (�Ω × �r) + (1/4π)(∇× �H) × �H. (3.10.240)

In a cylindrical (�, ϕ, z)-frame the rotational term −��Ω× (�Ω× �r) has the components (�Ω2�, 0, 0). To
get the problem tractable, Talwar and Gupta (1973) consider the prevailing current system �J to be such,
that the associated Lorentz force per unit volume (∇ × �H) × �H/4π, (p = 1) from Eq. (3.10.8) has a
nonvanishing component only in the radial �-direction. This requirement is fulfilled by a magnetic field
of the form

�H = �H[0, Hϕ(�), Hz(�)]. (3.10.241)

Talwar and Gupta (1973) further assume that the hydrostatic magnetic pressure H2/8π, (p = 1) from
Eq. (2.6.82) bears a constant ratio to the fluid pressure, so that we can write

H2/8π = (H2
ϕ + H2

z )/8π = aP, (a = const). (3.10.242)

This implies that fluid and magnetic pressure vanish simultaneously on the boundary of the magnetic
cylinder. Calculating the magnetic force

(∇× �H) × �H = −[Hz dHz/d� + (Hϕ/�) d(�Hϕ)/d�] �e
 = −(∇H2/2 + H2
ϕ/�) �e
, (3.10.243)

and taking the divergence of Eq. (3.10.240), we find [∇2Φ = −4πG�; ∇ · (Ω2� �e
) = 2Ω2; P = P (�)] :

(1 + a) ∇ · [(1/�) ∇P ] + ∇ · (H2
ϕ �e
/4π��) + 4πG� − 2Ω2 = 0. (3.10.244)

For a purely toroidal field (Hz = 0) this equation writes with the polytropic equation of state P =
K�1+1/n as

(1/�) d(� d�1/n/d�)
/
d� + [2a/�(n + 1)(1 + a)] d�1/n/d�

+(4πG� − 2Ω2)/K(n + 1)(1 + a) = 0, [H = Hϕ(�)], (3.10.245)
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and for a purely axial field (Hϕ = 0) we obtain

(1/�) d(� d�1/n/d�)
/
d� + (4πG� − 2Ω2)/K(n + 1)(1 + a) = 0, [H = Hz(�)]. (3.10.246)

We now define dimensionless variables by

� = [(n + 1)(1 + a)K/4πG�
1−1/n
0 ]1/2η = [(n + 1)(1 + a)P0/4πG�2

0]
1/2η = αη;

� = �0Θn; P = P0Θn+1; β = Ω2/2πG�0, (0 ≤ n < ∞). (3.10.247)

With these dimensionless variables Eqs. (3.10.245) and (3.10.246) become, respectively

d2Θ/dη2 + (1/η)[1 + 2a/(n + 1)(1 + a)] dΘ/dη + Θn − β = 0, (H = Hϕ; 0 ≤ n < ∞),
(3.10.248)

d2Θ/dη2 + (1/η) dΘ/dη + Θn − β = 0, (H = Hz; 0 ≤ n < ∞). (3.10.249)

It may be noted that Eq. (3.10.249) for the purely axial field is formally the same as Eq. (3.9.8) in the
field-free case H = 0 : The structure of a rotating polytropic cylinder (0 ≤ n < ∞) with a purely axial
field H = Hz(�) is modified with respect to the rotating cylinder merely in the sense that its boundary
is expanded by the factor (1 + a)1/2 from Eq. (3.10.247). Because Eq. (3.10.249) is formally a particular
case (a = 0) of Eq. (3.10.248), we shall henceforth consider only Eq. (3.10.248). Near the origin Talwar
and Gupta (1973) find the expansion [cf. Eqs. (2.4.23), (3.9.9)]

Θ(η) ≈ 1 − (1 − β)η2/(21 × 1!)2[1 + a/(n + 1)(1 + a)]

+n(1 − β)η4/(22 × 2!)2[1 + a/(n + 1)(1 + a)][2 + a/(n + 1)(1 + a)], (η ≈ 0), (3.10.250)

where the initial conditions Θ(0) = 1 and Θ′(0) = 0 have been used. Mass and radius of the considered
magnetically distorted cylinders increase with increasing field strength. Uniform rotation of polytropic
cylinders has the same effect, as shown in Table 3.9.1 and Eq. (3.9.11).

The discussion of the magnetic isothermal case n = ±∞ suffers from the detriments already pointed
out in Sec. 3.9.1 in connection with the rotating isothermal cylinder: The radius of the undistorted
cylinder with polytropic index n = ±∞ is infinite. Analogously to Eq. (3.9.16) we introduce (Talwar
and Gupta 1973):

P = K� = K�0 exp(−Θ) = P0 exp(−Θ); � = [K(1 + a)/4πG�0]1/2η = αη, (n = ±∞).
(3.10.251)

With P = K� we rewrite the fundamental equation (3.10.244) as

K(1 + a) ∇2 ln � + ∇ · (H2
ϕ �e
/4π��) + 4πG� − 2Ω2 = 0. (3.10.252)

Turning to dimensionless variables, we observe that this equation takes the same simple form

d2Θ/dη2 + (1/ξ) dΘ/dη − exp(−Θ) + β = 0, (H = Hϕ or H = Hz; Θ(0), Θ′(0) = 0),
(3.10.253)

for both, the purely toroidal and the purely axial field. This equation is formally the same as Eq. (3.9.19)
for the rotating isothermal cylinder, and involves the influence of the magnetic field merely through the
factor (1 + a)1/2 from the definition (3.10.251) of �, as in the case (3.10.249) of the purely axial field. For
nonrotating isothermal cylinders (β = 0) the analytic solution Θ = 2 ln(1 + η2/8) of Eq. (3.10.253) is
formally equal to the solution (2.3.48) of the nonmagnetic nonrotating cylinder (Stodólkiewicz 1963).

Because the topology of the magnetic field within a cylinder may be fairly complicated, it is of interest
to see how the results are modified by making another assumption regarding the variation of the ambient
field. Instead of Eq. (3.10.242) Karnik and Talwar (1978) assume that the Alfvén velocity is constant
throughout the cylinder:

vB = B/(4πp�)1/2 = const. (3.10.254)
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Table 3.10.4 Values of the boundary coordinate Ξ1 from Fig. 3.10.2, and of the corresponding dimensionless
mass per unit length −Ξ1Θ

′(Ξ1) − [nb
/
2(n + 1)K�

1/n
0 ][Ξ1Θ

′(Ξ1)
/
Θ(Ξ1)] + βΞ2

1/2 according to Eq. (3.10.259),
(Karnik and Talwar 1978).

n nb
/
2(n + 1)K�

1/n
0 Ξ1 Dimensionless Mass

β = 0 β = 0.02 β = 0 β = 0.02

1 0.00 2.40 2.44 1.25 1.28
0.05 3.87 4.02 1.40 1.44
0.10 5.70 6.26 1.56 1.61

1.5 0.00 2.65 2.71 1.06 1.09
0.05 3.82 4.00 1.17 1.21
0.10 5.20 5.71 1.28 1.32

3 0.00 3.53 3.78 0.740 0.769
0.05 4.47 5.03 0.800 0.832
0.10 5.48 6.86 0.860 0.896

Recall that vB is just the velocity of magnetohydrodynamic waves propagating along the field lines in
an ideal, incompressible fluid of infinite conductivity (e.g. Alfvén and Fälthammar 1963, Roberts 1967,
Chap. 5). Since we are taking p = 1, Eq. (3.10.254) reduces to ( �B = �H)

H2/4π = b�, (b = const; H
 = 0). (3.10.255)

Applying the divergence to the equation of hydrostatic equilibrium (3.10.240), we find with Eqs.
(3.10.241), (3.10.243), (3.10.255):

(1/�) d{(�/�) [dP/d� + (b/2) d�/d�] + H2
ϕ/4π�}

/
d� + 4πG� − 2Ω2 = 0. (3.10.256)

It is to be noted that under the condition of a purely axial field (Hϕ(�) = 0) or of a purely toroidal
field (Hz(�) = 0) this equation reduces to

(1/�) d{(�/�) [dP/d� + (b/2) d�/d�]}
/
d� + 4πG� − 2Ω2 = 0. (3.10.257)

The analogue of Eqs. (3.10.248) and (3.10.249) is

(1/ξ) d(ξ dΘ/dξ)
/
dξ + [nb/2(n + 1)K�

1/n
0 ξ] d[(ξ/Θ) dΘ/dξ]

/
dξ + Θn − β = 0,

(Hϕ = 0 or Hz = 0; 0 ≤ n < ∞), (3.10.258)

where we now have introduced into Eq. (3.10.257) the dimensionless variables from Eqs. (3.9.3), (3.9.6).
Mass per unit length and mean density of the complete magnetopolytropic cylinders are obtained at once:

M1(Ξ1) = 2π�0α
2

∫ Ξ1

0

Θnξ dξ = 2π�0α
2
{
− Ξ1Θ′(Ξ1) − [nb/2(n + 1)K�

1/n
0 ][Ξ1Θ′(Ξ1)/Θ(Ξ1)]

+βΞ2
1/2

}
; �m(Ξ1) = M1(Ξ1)/πα2Ξ2

1, (0 ≤ n < ∞), (3.10.259)

implying Θ′(Ξ1) = 0 if b �= 0, in order to assure a finite total mass when Θ(Ξ1) = 0 at the boundary.
Karnik and Talwar (1978) integrate Eq. (3.10.258) numerically (Fig. 3.10.2 and Table 3.10.4) for a

nonrotating and a rotating cylinder (β = 0.02), Their results show that mass and radius of the cylinders
increase, and the ratio �m/�0 decreases, when the strength of the considered field increases, and/or the
cylinders rotate faster. If β � 0.02, it is not possible to get hydrostatic equilibrium configurations; this
fact may be connected with the occurrence of the limiting critical rotation βc discussed in Sec. 3.9.1
(Table 3.9.1).

Sood (1980) has considered a generalization of Eq. (3.10.255) by taking

H2
ϕ = b1�; dH2/d� = d(H2

ϕ + H2
z )/d� = 2b2��, (b1, b2 = const). (3.10.260)

The second equation can be integrated at once:

H2
z = 2b2

∫ 


0

�(�′) �′ d�′ − b1� + b3, (b3 = const). (3.10.261)
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Fig. 3.10.2 Run of the dimensionless density Θn(ξ) for a nonrotating cylinder (on the left), and for a
rotating one (on the right) with β = 0.02 according to Eq. (3.10.258). If n = 1, the curves labeled a, b, c

correspond to nb/2(n + 1)K�
1/n
0 =0, 0.05, 0.1, respectively. Single- and double-primed curves are for n = 1.5, 3,

respectively (Karnik and Talwar 1978).

Using Eqs. (3.10.243) and (3.10.260) for the evaluation of (∇× �H)× �H = −[(1/2) dH2/d�+H2
ϕ/�] �e
 =

−(b1�/� + b2��) �e
, and taking the divergence of Eq. (3.10.240), we find

[(n + 1)K/�] d(� d�1/n/d�)
/
d� + 4πG� − 2Ω2 + b2/2π = 0. (3.10.262)

Obviously, the Alfvén velocity (3.10.254) is not constant for this magnetic field pattern. Sood (1980)
points out some other feasible cases belonging to the category when in Eq. (3.10.240) ∇ · [(∇ × �H) ×
�H/4π�] = const. He chooses

d(�2H2
ϕ)/d� = 2b1��3; dH2

z /d� = 2b2��, (3.10.263)

representing a toroidal field Hϕ that vanishes along the axis � = 0, and assumes a constant value on the
boundary of the cylinder at � = 0. It can be verified in the same manner as for Eq. (3.10.262), that the
divergence of Eq. (3.10.240) becomes

[(n + 1)K/�] d(� d�1/n/d�)
/
d� + 4πG� − 2Ω2 + (b1 + b2)/2π = 0,

[(∇× �H) × �H = −(b1 + b2)�� �e
]. (3.10.264)

An alternative magnetic field pattern under this category can be obtained if we let

H2
ϕ = b1��2; dH2/d� = d(H2

ϕ + H2
z )/d� = 2b2��. (3.10.265)

The physical significance of this model can easily be seen by noting that H2
ϕ vanishes along the axis

� = 0 and also on the boundary � = 0, but has a finite maximum in between, while the axial field

H2
z = 2b2

∫ 


0

�(�′) �′ d�′ − b1��2 + H2
z (0), (3.10.266)

shows a more complex behaviour. With the choice (3.10.265) for the magnetic field (∇ × �H) × �H =
−(b1 + b2)�� �e
, we recover Eq. (3.10.264).
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Outside the boundary we have a current-free region, and if �J = 0, the Maxwell equation (3.10.1)
yields

∇× �He = −(dHez/d�) �eϕ + (1/�) [d(�Heϕ)/d�] �ez = 0, (3.10.267)

with the elementary external solution

Heϕ = c1/�; Hez = c2, ( �J = 0; c1, c2 = const). (3.10.268)

Returning to Eq. (3.10.264), we can integrate twice (4πG� = −∇2Φ = −(1/�) d(� dΦ/d�)
/
d�) :

(n + 1)K�1/n − Φ − Ω2�2/2 + �2(b1 + b2)/8π = const. (3.10.269)

With the familiar dimensionless variables from Eqs. (3.9.3), (3.9.6), the equation of hydrostatic
equilibrium (3.10.264) becomes for the particular magnetic fields (3.10.260), (3.10.263) or (3.10.265)
equal to

(1/ξ) d[ξΘ′(ξ)]/dξ + Θn − ε = 0, (0 ≤ n < ∞; Θ(0) = 1; Θ′(0) = 0), (3.10.270)

where

ε = β − (b1 + b2)/8π2G�0, (β = Ω2/2πG�0). (3.10.271)

In the particular case Ω2 = (b1 + b2)/4π, (ε = 0), Eq. (3.10.270) turns into the familiar Lane-Emden
equation (2.3.81) for the undistorted cylinder: Magnetic forces exactly balance rotational distortion.
Explicit expressions for the components of the magnetic field can be obtained if ε = 0 and n = 1, for
instance. Via Eq. (3.10.263) we find with Θ(ξ) = θ(ξ) = J0 from Eq. (2.3.83):

H2
ϕ = (2α2b1�0/ξ2)

∫ ξ

0

Θ(ξ′) ξ′3 dξ′ = (2α2b1�0/ξ2)
∫ ξ

0

J0(ξ′) ξ′3 dξ′

= (2α2b1�0/ξ2)
[
ξ3J1(ξ) − 2

∫ ξ

0

J1(ξ′) ξ′2 dξ′
]

= 2α2b1�0[ξJ1(ξ) − 2J2(ξ)];

H2
z = 2α2b2�0

∫ ξ

0

Θ(ξ′) ξ′ dξ′ + H2
z (0) = 2α2b2�0ξJ1(ξ) + H2

z (0), (ε = 0; n = 1; Hϕ(0) = 0),

(3.10.272)

where we have used the recurrence formula ξkJk−1(ξ) = d[ξkJk(ξ)]/dξ of Bessel functions (e.g. Smirnow
1967, Spiegel 1968). b1 must be nonnegative (H2

ϕ ≥ 0), but b2 may be negative, because from H2
z ≥ 0 we

get

H2
z (0) ≥ −2b2

∫ 


0

�(�′) �′ d�′. (3.10.273)

If b2 is negative, H2
z decreases from its value H2

z (0) along the axis up to its minimum at the boundary
ξ1 = 2.4048, (J0(ξ1) = 0). If b2 is positive, H2

z increases from its minimum value H2
z (0) along the axis

up to its maximum at the boundary ξ1.
The corresponding external magnetic field from Eq. (3.10.268) can be determined at once by ensuring

the continuity of the magnetic fields (3.10.268), (3.10.272) across the boundary:

Heϕ = (1/αξ){2α4b1�0[ξ3
1J1(ξ1) − 2ξ2

1J2(ξ1)]}1/2;

Hez = [2α2b2�0ξ1J1(ξ1) + H2
z (0)]1/2, (ε = 0; n = 1). (3.10.274)

From Eqs. (3.10.265), (3.10.266) we find in the same manner:

H2
ϕ = α2b1�0ξ

2J0(ξ); H2
z = α2�0[2b2ξJ1(ξ) − b1ξ

2J0(ξ)] + H2
z (0),

(ε = 0; n = 1; Hϕ(0) = 0). (3.10.275)

It is interesting to note that 2b2ξJ1 − b1ξ
2J0 is not monotonic, but has a maximum and/or minimum

between 0 and ξ1 = 2.4048, the “wavy” character of Hz depending on the choice of b1 and b2 (Sood 1980,
Table III).
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Table 3.10.5 Values of the boundary coordinate Ξ1 and of the corresponding dimensionless mass per unit
length from Eq. (3.10.279) for the parameter ε from Eq. (3.10.271). Note, that the values for n = 5 correspond
to ε = 0.01, rather than to ε = 0.05, because no closed hydrostatic configurations exist if n = 5 and ε � 0.01
(Sood 1980). If ε = 0, the numbers correspond to those quoted in Table 2.5.2.

Ξ1 −Ξ1Θ
′(Ξ1) + εΞ2

1/2

n ε = −0.5 ε = 0 ε = 0.05 ε = −0.5 ε = 0 ε = 0.05

1 1.81 2.40 2.51 0.760 1.25 1.34
1.5 1.89 2.65 2.81 0.626 1.06 1.15
2 1.95 2.92 3.19 0.532 0.925 1.01
3 2.06 3.57 4.70 0.409 0.740 0.819
5 2.20 5.43 6.37 0.277 0.532 0.545

Analytical solutions of Eq. (3.10.270) if ε �= 0 can be found in the special cases n = 0 and n = 1
with the attempt Θ(ξ) = C1θ(ξ) + C2, (C1, C2 = const), and with the usual initial conditions Θ(0) =
1, Θ′(0) = 0 :

Θ(ξ) = (1 − ε)(1 − ξ2/4) + ε = 1 − (1 − ε)ξ2/4, (n = 0; θ(ξ) = 1 − ξ2/4), (3.10.276)

Θ(ξ) = (1 − ε)J0(ξ) + ε, [n = 1; θ(ξ) = J0(ξ)]. (3.10.277)

At the boundary Θ(Ξ1) = 0 we have

Ξ2
1 = 4/(1 − ε), (n = 0); J0(Ξ1) = ε/(ε − 1), (n = 1), (3.10.278)

showing that ε < 1 in both cases, since Ξ2
1 ≥ 0 if n = 0, and J0(Ξ1) ≤ 1 if n = 1. In fact, computations

by Sood (1980) show that ε ≤ 0.287 if n = 1.
Other relevant quantities of the magnetopolytropes obeying Eq. (3.10.270) are total mass per unit

length and mean density:

M1 = 2π

∫ 
1

0

�(�) � d� = 2πα2�0

∫ Ξ1

0

Θnξ dξ = 2πα2�0[−Ξ1Θ′(Ξ1) + εΞ2
1/2];

�m = M1/πr2
1 = �0[−2Θ′(Ξ1)/Ξ1 + ε], (0 ≤ n < ∞; r1 = αΞ1). (3.10.279)

The numerical integration of Eq. (3.10.270) for the values of n and ε listed in Table 3.10.5 shows
that both, the boundary radius αΞ1 and the total mass increase as the parameter ε increases. Similarly
as for the magnetic fields considered previously by Talwar and Gupta (1973), and by Karnik and Talwar
(1978), it is found that ε has an upper limit for each polytropic index n, which may be interpreted as an
upper limit on the angular velocity for a given magnetic field. The constant ε can take arbitrarily large
negative values, but in this case the radius of the cylinder diminishes (Sood 1980, p. 223).

Eq. (3.10.271) shows that ε can be increased either by an increase in the angular velocity or by a
decrease of the magnetic field strength as characterized by Eq. (3.10.263), provided that b2 is positive
(b1 ≥ 0). If b2 is negative, ε may be increased by an increase of the axial field strength Hz if the
toroidal field remains unchanged. Thus, mass and radius of magnetopolytropic cylinders can increase
for a decreasing magnetic field strength, opposite to the previously quoted results of Talwar and Gupta
(1973), and Karnik and Talwar (1978). These diverging results can be attributed to the different geometry
of the considered magnetic field patterns.

Twisted (helical) magnetic fields �H(0, c1�, c2), (c1, c2 = const) in rotating polytropic cylinders have
been considered by Karnik and Talwar (1982).

Particular analytic solutions of magnetostatic polytropic cylinders containing a free harmonic function
have been found by Lerche and Low (1980) for a particular choice of the magnetic field strength �H =
�H(−∂F/∂y, ∂F/∂x, G), with the component along the axis Hz = G = const.

Stability and oscillations of magnetopolytropic cylinders are touched in Sec. 5.11.4.
In conclusion, I feel that results so far published on magnetopolytropes seem inconclusive to some

extent, perhaps mainly due to the complexity of possible magnetic field patterns.
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4 RELATIVISTIC POLYTROPES

4.1 Undistorted Relativistic Polytropes

4.1.1 Spherical Polytropes with Einstein’s General Relativity

The study of relativistic polytropes seems to have been initiated by Tooper (1964a). Generalizing Eq.
(1.7.43), the pressure P and the relativistic density �r are assumed to be related by

P = K�1+1/n
r , (K, n = const; n �= −1). (4.1.1)

As we have already noted in Eq. (1.2.16), the relativistic mass density �r (the relativistic mass mr

per unit of proper volume) and the rest mass density � (the rest mass m per unit of proper volume) are
connected by the simple relationship

�r = � + ε(int)/c2 or εr = ε + ε(int). (4.1.2)

c denotes in relativity always the light velocity, and the internal energy density ε(int) is the difference
between relativistic energy density εr = �rc

2 and rest energy density ε = �c2. The internal energy density
arises from the energy of kinetic motion, particle interactions (other than gravitational), external forces,
radiation, etc. For purely kinetic translational motion with relative velocity v the relationship between
�r and � is simply given by Eq. (1.2.15): �r = �

/
(1− v2/c2)1/2. We write the metric of spacetime under

the form

ds2 = gjk dxjdxk, (gjk = gkj ; j, k = 0, 1, 2, 3), (4.1.3)

where x0 denotes the time coordinate, and gjk the metric tensor. The concordance of Eq. (4.1.3) with
the metric ds2 = (dx0)2 − (dx1)2 − (dx2)2 − (dx3)2 of Galilean spacetime from special relativity results if
the components of the metric tensor are g00 = 1, g11 = g22 = g33 = −1, gjk = 0 if j �= k. The spacetime
coordinates are considered as a contravariant four-vector, and we have adopted the common summation
rule for equal covariant and contravariant indices from tensor calculus, where latin indices run from 0 to
3, and greek indices for the three spatial coordinates x1, x2, x3 run from 1 to 3.

In order to facilitate the solution of the nonlinear differential equations (4.1.4) of the gravitational
field, we consider only stationary (time independent) fields, when the components gjk of the metric tensor
do not depend on the temporal coordinate x0. In this case x0 is called universal time. The components
gα0, (α = 1, 2, 3) of the metric tensor are generally nonzero in stationary gravitational fields, as for
instance in the case of a uniformly rotating, axially symmetric body, when opposite directions of time
(x0 → −x0) are not equivalent, since the sign of the angular velocity changes together with time reversal
(Sec. 4.2.1).

A particular case of a stationary field is the static gravitational field, when the body is at rest in a
reference system where the tensor gjk is independent of x0. In this case the metric (4.1.3) is invariant
everywhere with respect to time reversal. Therefore, all components gα0 must vanish, and synchronization
of clocks is possible in the whole space. In this section we deal with the static, spherically symmetric
gravitational field of an undistorted spherical polytrope.

Einstein’s equations in mixed components (e.g. Landau and Lifschitz 1987)

Rk
j − δk

j R/2 = 8πGT k
j /c4, (4.1.4)

turn with the Schwarzschild metric

ds2 = exp ν(r) dt2 − expκ(r) dr2 − r2(dλ2 + sin2 λ dϕ2), (4.1.5)
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for the spherically symmetric static case into the set of equations

exp(−κ) [(1/r) dν/dr + 1/r2] − 1/r2 = 8πGP/c4, (4.1.6)

exp(−κ) [(1/r) dκ/dr − 1/r2] + 1/r2 = 8πG�r/c2, (4.1.7)

(1/2) exp(−κ) [d2ν/dr2 + (dν/dr)2/2 + (1/r) (dν/dr − dκ/dr) − (dν/dr)(dκ/dr)/2] = 8πGP/c4.
(4.1.8)

In Eq. (4.1.4) Rk
j are the mixed components of the curvature tensor of spacetime, δk

j is the Kronecker
delta (δk

j = 0 if j �= k, δk
j = 1 if j = k), T k

j the energy-momentum tensor, G the gravitational constant,
and R the scalar curvature:

R = Tr Rk
j = Rj

j = R0
0 + R1

1 + R2
2 + R3

3 = gjkRjk. (4.1.9)

Rjk is the covariant curvature tensor (the so-called Ricci tensor), and the contravariant metric tensor
gjk is connected to the covariant metric tensor gjk by

gjkgk
 = δ

j , (gjk = gkj). (4.1.10)

Comparing the metrics (4.1.3) and (4.1.5), we observe that x0, x1, x2, x3 are equal to t, r, λ, ϕ, where
t is the timelike coordinate of the Schwarzschild metric (4.1.5): g00 = exp ν, g11 = − expκ, g22 =
−r2, g33 = −r2 sin2 λ, gjk = 0 if j �= k. The spatial r, λ, ϕ-coordinates are similar to the spherical
coordinates in flat space, but in curved space the radial coordinate r does not obey the property of the
radius vector in Euclidian space that 2πr is the circumference of a circle, and r its radius. r has been
determined in Eq. (4.1.5) by the condition that the perimeter of a circle with the centre in the origin of
coordinates is just 2πr.

The energy-momentum tensor of macroscopic bodies has the components

T k
j = (P + εr)uju

k − Pδk
j , (4.1.11)

the contravariant components of the four-velocity uk = dxk/ds being connected to its covariant compo-
nents uj = gjkuk by the simple relationship

uju
j = gjkukuj = gjk(dxk/ds)(dxj/ds) = gjk dxjdxk

/
ds2 = 1. (4.1.12)

The spatial components uα = dxα/ds, (α = 1, 2, 3) of the four-velocity vanish for the static sphere.
Eq. (4.1.12) reduces to u0u

0 = 1, so the required components of the energy-momentum tensor are

T 0
0 = εr = �rc

2; T 1
1 = T 2

2 = T 3
3 = −P ; T k

j = 0 if j �= k. (4.1.13)

From the Bianchi identities results that the covariant divergence of the energy-momentum tensor
vanishes

∇kT k
j = ∂T k

j /∂xk − Γ

jkT k


 + Γk

kT 


j = 0, (4.1.14)

with the Christoffel symbols expressed through the metric tensor by

Γ

jk = (g
m/2)(∂gmj/∂xk + ∂gmk/∂xj − ∂gjk/∂xm); Γ


jk = Γ

kj . (4.1.15)

The contravariant metric tensor can be obtained at once from Eq. (4.1.10):

g00 = exp(−ν); g11 = − exp(−κ); g22 = −1/r2; g33 = −1/r2 sin2 λ; gjk = 0 if j �= k.
(4.1.16)

The nonvanishing Christoffel symbols result from Eq. (4.1.15):

Γ1
00 = (1/2) exp(ν − κ) dν/dr; Γ0

10 = (1/2) dν/dr; Γ1
11 = (1/2) dκ/dr; Γ2

12 = Γ3
13 = 1/r;

Γ1
22 = −r exp(−κ); Γ3

23 = cot λ; Γ1
33 = −r sin2 λ exp(−κ); Γ2

33 = − sinλ cos λ. (4.1.17)
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The sole nonvanishing component of Eq. (4.1.14) is the radial one (j = k = 1), which reduces to the
equation of hydrostatic equilibrium

∇1T
1
1 = ∇rT

r
r = dP/dr + (P/2 + εr/2) dν/dr = 0. (4.1.18)

In fact, this equation follows directly from the field equations (4.1.6)-(4.1.8), by equating Eqs. (4.1.6)
and (4.1.8), and using Eq. (4.1.7). So, we can drop in the sequel the complicated equation (4.1.8), and
take Eqs. (4.1.1), (4.1.6), (4.1.7), (4.1.18) as a set for the determination of κ, ν, P, �r as functions of the
radial coordinate r.

Outside the polytrope we have �, P = 0. Adding in this case Eqs. (4.1.6) and (4.1.7), we find
dκ/dr = −dν/dr, or

κ(r) = −ν(r), (r ≥ r1), (4.1.19)

where the integration constant can be set equal zero after a suitable coordinate transformation. The
external Schwarzschild metric (4.1.5) is given by the well known line element (e.g. Zeldovich and Novikov
1971, Landau and Lifschitz 1987)

ds2 = (1 − 2GMr1/c2r) dt2 − dr2
/
(1 − 2GMr1/c2r) − r2(dλ2 + sin2 λ dϕ2), (r ≥ r1). (4.1.20)

r1 is the value of the radial coordinate at the surface of the polytropic sphere. The quantity Mr1 is the
relativistic (gravitational, inertial) mass of the configuration, as determined by the motion of an external
test particle. In Mr1 the mass equivalent of all forms of energy is included [kinetic energy, interaction
energy, energy of radiation, energy of gravitation and of other fields, etc.; cf. comment subsequent to Eq.
(4.1.73)]. Outside the polytrope, the line elements (4.1.5) and (4.1.20) must be identical, so we get by
comparison

κ = −ν = − ln(1 − 2GMr1/c2r), (r ≥ r1). (4.1.21)

On the other hand, we observe from the term (1/r) dκ/dr in Eq. (4.1.7) that κ must tend to zero at
least as r2 if r → 0, in order to avoid a singularity; so, the initial condition is κ(0) = 0. Integrating Eq.
(4.1.7) formally with this initial value, we get

κ = − ln
[
1 − (8πG/c2r)

∫ r

0

�rr
2 dr

]
. (4.1.22)

Comparing Eqs. (4.1.21) and (4.1.22) outside the polytrope (r ≥ r1), we obtain the important
relationship

Mr1 = 4π

∫ r1

0

�rr
2 dr. (4.1.23)

Note, that 4πr2 dr appears in this integral, rather than the proper volume element dV, which is in
the orthogonal curvilinear coordinates from Eq. (4.1.5) equal to [cf. Eq. (B.5)]

dV = (−g11g22g33)1/2 dx1dx2dx3 = exp(κ/2) r2 sinλ dr dλ dϕ > r2 sinλ dr dλ dϕ, (κ > 0).
(4.1.24)

The appearance of r2 dr in Eq. (4.1.23) instead of exp(κ/2) r2 dr is related to the effect of the
relativistic gravitational field upon the mass of the polytrope, i.e. to the distortion of the underlying
spacetime by gravitation (Tooper 1964a, Zeldovich and Novikov 1971).

Let us define the auxiliary function

u = c2r[1 − exp(−κ)]
/
2GMr1, (u(0) = 0; u(r1) = 1). (4.1.25)

Eq. (4.1.7) becomes in terms of u equal to

Mr1 du/dr = d(Mr1u)/dr = 4π�rr
2 = dMr/dr or u(r) = Mr(r)/Mr1. (4.1.26)

Mr = Mr(r) = Mr1u(r) can be interpreted in virtue of Eq. (4.1.23) as the relativistic (gravitational,
inertial) mass inside coordinate radius r.
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To obtain the Tolman-Oppenheimer-Volkoff equation of hydrostatic equilibrium for the spherically
symmetric static space, we insert dν/dr from Eq. (4.1.18), and exp(−κ) from Eq. (4.1.25) into Eq.
(4.1.6), (e.g. Chandrasekhar 1964b):

dP/dr = −G(�r + P/c2)[Mr(r) + 4πPr3/c2]
/
r2[1 − 2GMr(r)/c2r]. (4.1.27)

Indeed, in the nonrelativistic limit (c → ∞) we obtain just the Newtonian equation of hydrostatic
equilibrium dP/dr = −G�M(r)/r2, (�r, Mr → �, M). The initial conditions of Eqs. (4.1.26) and (4.1.27)
are obviously P (0) = P0, Mr(0) = 0, (dP/dr)r=0 = 0, while the boundary conditions are P (r1) =
0, Mr(r1) = Mr1.

From the external metric (4.1.20) follows that gtt becomes zero, and grr is infinite if the radial
coordinate equals the gravitational radius (Schwarzschild radius)

r = rg = 2GMr1/c2. (4.1.28)

So, the configuration cannot be hydrostatic if its radial surface coordinate r1 is smaller than the
gravitational radius rg, (rg = 2.96 km for a solar mass).

We now turn to dimensionless coordinates by introducing the relativistic Lane-Emden function θr and
the dimensionless radial coordinate ξ by the common relationships [cf. Eqs. (2.1.10), (2.1.13)]:

�r = εr/c2 = �r0θ
n
r ; εr = εr0θ

n
r ; P = P0θ

n+1
r = K�

1+1/n
r0 θn+1

r = K�1+1/n
r ;

r = [±(n + 1)K/4πG�
1−1/n
r0 ]1/2ξ = [±(n + 1)P0/4πG�2

r0]
1/2ξ = αξ, (n �= −1,±∞). (4.1.29)

The plus sign in the expression of α holds if −1 < n < ∞, and the minus sign if −∞ < n < −1. The
central values of relativistic density and pressure are denoted by �r0 and P0, respectively. Eq. (4.1.18)
becomes in the new variables

2(n + 1)P0 dθr/�r0c
2 + (1 + P0θr/�r0c

2) dν = 2(n + 1)q0 dθr + (1 + q0θr) dν = 0, (4.1.30)

where the relativity parameter

q0 = P0/εr0 = P0/�r0c
2 = K�

1/n
r0 /c2, (4.1.31)

is the ratio of central pressure to central relativistic energy density. Eq. (4.1.30) can be integrated at
once by separation of variables with the initial conditions θr(0) = 1 and ν(0) = ν0 :

ν = ν0 + ln[(1 + q0)/(1 + q0θr)]2(n+1). (4.1.32)

The central value ν0 can be specified further from the boundary condition (4.1.21). On the boundary
of the relativistic polytrope we must have P (r1) = 0, i.e. θr(ξ1) = 0 if −1 < n < 5 (Table 4.1.1), where
ξ1 is the boundary value of ξ. Thus, if we equate Eqs. (4.1.21) and (4.1.32) on the boundary, we find at
once

ν0 = ln[(1 − 2GMr1/c2r1)
/
(1 + q0)2(n+1)]. (4.1.33)

Eq. (4.1.32) finally becomes

ν = ln[(1 − 2GMr1/c2r1)
/
(1 + q0θr)2(n+1)], (−1 < n < 5). (4.1.34)

To determine the metric component grr = − expκ, or equivalently the function u from Eq. (4.1.25),
we substitute into Eq. (4.1.6) for dν/dr from Eq. (4.1.30), for exp(−κ) from Eq. (4.1.25), and for
P0 = q0�r0c

2 from Eq. (4.1.31):

[q0(n + 1)/(1 + q0θr)](1 − 2GMr1u/c2r)r dθr/dr + GMr1u/c2r + (q0GMr1/c2)θr du/dr = 0.
(4.1.35)

To derive this equation we have also used Eq. (4.1.26), written under the form

Mr1 du/dr = 4π�r0r
2θn

r . (4.1.36)
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The two previous equations can be transformed into the basic form of the relativistic Lane-Emden
equation [see the equivalent equations (4.1.27) and (4.1.26)]

{
[±1 − 2q0(n + 1)η/ξ]

/
(1 + q0θr)

}
ξ2 dθr/dξ + η + q0ξθr dη/dξ = 0, (n �= −1,±∞), (4.1.37)

dη/dξ = ξ2θn
r , (4.1.38)

by using 4πG�r0α
2/c2 = ±(n + 1)q0, and the dimensionless function

η = η(ξ) = Mr1u(r)/4π�r0α
3 = Mr(r)/4π�r0α

3. (4.1.39)

Henceforth, we generally assume −1 < n < 5, since the dimensionless boundary radius ξr1 is finite in
this case (Table 4.1.1, Nilsson and Uggla 2000).

In the Newtonian limit we have c → ∞, and according to Eq. (4.1.31) q0 ≈ 0. Eq. (4.1.37) reduces to
ξ2 dθr/dξ = ∓η, or

d(ξ2 dθr/dξ)
/
dξ = ∓dη/dξ = ∓ξ2θn

r , (q0 ≈ 0), (4.1.40)

which is identical to the familiar spherical Lane-Emden equation (2.3.87). Chen and Shao (2001), and
Chen et al. (2001) introduce linear corrections to the Galilean metric in higher-order gravity, obtaining
a modified Lane-Emden equation.

We have already noted in Eq. (4.1.7) that κ = O(r2) if r → 0, so via Eq. (4.1.25) u = O(r3), and via
Eq. (4.1.39) η = O(ξ3) if ξ → 0. From Eq. (4.1.37) follows at once that also (dθr/dξ)ξ=0 = 0. Thus, the
initial conditions for the system (4.1.37) and (4.1.38) are

θr(0) = 1; (dθr/dξ)ξ=0 = 0; η(0) = 0. (4.1.41)

Bludman (1973a) has pointed out that generally the relativistic Lane-Emden equations (4.1.37) and
(4.1.38) do not admit a homology transformation of the form (2.2.4), i.e. if ξ → Aξ the functions θr and η
do not transform according to the scale transformations θr → Bθr(Aξ), η → Cη(Aξ), (A, B, C = const).

Near the origin we obtain from Eqs. (4.1.37), (4.1.38) for any q0 (Sec. 2.4.1, Chu et al. 1980):

θr ≈ 1 + a2ξ
2 + a4ξ

4 + ...; η ≈ ξ3/3 + na2ξ
5/5 + [na4 + n(n − 1)a2

2/2]ξ7/7;

a2 = ∓(1/3 + 4q0/3 + q2
0)/2; a4 =

[
n/15 + 2nq0/9 + (16n/45 + 2/3)q2

0

+(6n/5 + 8/3)q3
0 + (n + 2)q4

0

]/
8, (ξ ≈ 0; n �= −1,±∞). (4.1.42)

If q0 ≈ 0, we recover θr ≈ 1∓ξ2/6+nξ4/120 from Eq. (2.4.24). In the post Newtonian approximation
(q0 � 1) Sharma (1981) expands θr up to ξ8, calculating the relativistic second order Padé approximant
θP,r (see Sec. 2.4.4 for the nonrelativistic case).

A solution in closed form of Eqs. (4.1.37), (4.1.38) can be obtained in the constant density case n = 0
of K. Schwarzschild [Tooper 1964a; see also Eqs. (4.1.88)-(4.1.91)]. In this special case the variables are
separable, and integration with the initial conditions (4.1.41) yields

θr =
[
(1 + 3q0)(1 − 2q0ξ

2/3)1/2 − (1 + q0)
]/

q0

[
3(1 + q0) − (1 + 3q0)(1 − 2q0ξ

2/3)1/2
]
;

η = ξ3/3, (n = 0). (4.1.43)

In dimensional units Eq. (4.1.43) turns with Eqs. (4.1.29), (4.1.31), (4.1.39) into

P = �r0c
2
[
(3P0 + �r0c

2)(1 − 8πG�r0r
2/3c2)1/2 − (P0 + �r0c

2)
]/[

3(P0 + �r0c
2) − (3P0 + �r0c

2)

×(1 − 8πG�r0r
2/3c2)1/2

]
; Mr = 4π�r0r

3/3, (n = 0; P = P0θr; q0ξ
2 = 4πG�r0r

2/c2).
(4.1.44)

The first zero of Eqs. (4.1.43) and (4.1.44) is clearly

ξ1 = [6(1 + 2q0)]1/2/(1 + 3q0); r1 = [3c2P0(2P0 + �r0c
2)]1/2

/
(2πG�r0)1/2(3P0 + �r0c

2), (n = 0).
(4.1.45)
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If q0 ≈ 0, (c → ∞), the three previous equations turn into their nonrelativistic counterparts: θr =
1 − ξ2/6, [Eq. (2.3.88)], P = P0 − 2πG�2

r0r
2/3, ξ1 = 61/2, r1 = (3P0/2πG�2

r0)
1/2.

The value r1 of the radial coordinate at the boundary is different from the radius rr1 of the config-
uration, as measured by an external observer. This is due to the distortion of Euclidian space by the
presence of gravitating matter. The true radius rr1 along the direction λ, ϕ = const can be found at once
by integration of the spatial line element (Eq. (5.12.95), Landau and Lifschitz 1987, §88)

d�2 = γαβ dxαdxβ = (−gαβ + g0αg0β/g00) dxαdxβ , (α, β = 1, 2, 3), (4.1.46)

along the radial coordinate dx1 = dr, when dx2 = dλ = 0, dx3 = dϕ = 0. For the Schwarzschild metric
(4.1.5) we have γαβ = −gαβ , (g0α = 0), and γ11 = γrr = −grr = expκ. The true radius of the polytropic
sphere is therefore

rr1 =
∫ r1

0

(γrr)1/2 dr =
∫ r1

0

exp[κ(r)/2] dr =
∫ r1

0

dr
/
(1 − 2GMr1u/c2r)1/2

= α

∫ ξ1

0

dξ
/
[1 − 2q0(n + 1)η(ξ)/ξ]1/2 = αξr1 > r1 = αξ1, (−1 < n < 5). (4.1.47)

If n = 0, we get in virtue of Eq. (4.1.43)

ξr1 = (3/2q0)1/2 arcsin(2q0ξ
2
1/3)1/2, (n = 0). (4.1.48)

The mass-radius relationship can be found from Eqs. (4.1.23), (4.1.29), (4.1.38):

Mr1 = 4π

∫ r1

0

�rr
2 dr = 4π�r0α

3

∫ ξ1

0

θn
r ξ2 dξ = 4π�r0α

3η(ξ1) = (n + 1)c2q0η(ξ1) r1/Gξ1

= (n + 1)c2q0η(ξ1) rr1/Gξr1, (−1 < n < 5; u(0), η(0) = 0; α = r1/ξ1 = rr1/ξr1). (4.1.49)

In the particular case n = 0 we obtain by virtue of Eqs. (4.1.43), (4.1.45), (4.1.48):

Mr1 = 2c2r1(q0 + 2q2
0)/G(1 + 3q0)2 = 4c2rr1(q0 + 2q2

0)3/2/G(1 + 3q0)3

× arcsin[2(q0 + 2q2
0)1/2/(1 + 3q0)], (n = 0). (4.1.50)

From Eqs. (4.1.25), (4.1.26), (4.1.39) we get at once for the mass inside the radial coordinate r :

Mr = Mr(r) = 4π
∫ r

0

�rr
2 dr = Mr1u(r) = Mr1η(ξ)/η(ξ1). (4.1.51)

A formal definition of the mean density would be

�m = 4π

∫ r1

0

�rr
2 dr

/
4π

∫ r1

0

r2 dr = Mr1

/
4π

∫ r1

0

r2 dr = (3�r0/ξ3
1)
∫ ξ1

0

θn
r ξ2 dξ

= 3�r0η(ξ1)/ξ3
1 , (−1 < n < 5), (4.1.52)

where we have used Eq. (4.1.38). If q0 ≈ 0, we have pointed out that η = −ξ2 dθr/dξ in Eq. (4.1.40), so
Eqs. (4.1.52) and (4.1.53) reduce to the nonrelativistic equation (2.6.27). A more appropriate definition
of the mean density would be (Buchdahl 1959, p. 1028):

�m =
∫

V1

�r dV

/∫
V1

dV =
∫ r1

0

�rr
2 exp(κ/2) dr

/∫ r1

0

r2 exp(κ/2) dr

= �r0

∫ ξ1

0

θn
r ξ2 dξ

/
[1 − 2q0(n + 1)η(ξ)/ξ]1/2

/∫ ξ1

0

ξ2 dξ
/
[1 − 2q0(n + 1)η(ξ)/ξ]1/2. (4.1.53)

V1 denotes the proper volume of the complete relativistic sphere, and we have used Eqs. (4.1.24) and
(4.1.47).

In nonrelativistic physics the first law of thermodynamics (1.1.3) subsists for the unit of rest mass
m = �V = 1 : For adiabatic reversible processes, preserving the entropy S of the system, we have
dU = P d�/�2 = −P dV, (dS, dQ = 0). To obtain the equivalent of this law in relativistic physics, we



4.1.1 Spherical Polytropes with Einstein’s General Relativity 293

consider a thought experiment, which is performed in an impenetrable vessel of proper volume V = 1/�,
where � denotes the rest mass density. The rest mass m = �V = 1 in the vessel is invariant, whereas the
relativistic mass �rV changes according to the work performed. The relativistic energy density εr = c2�r

is referred to the unit of rest volume (proper volume), and if we wish to obtain the relativistic energy per
unit rest mass Er (the specific relativistic energy), we have to multiply εr by V = 1/� (e.g. Zeldovich
and Novikov 1971, p. 186):

Er = εrV = εr/� = c2�r/�, (m = 1). (4.1.54)

This important equation relates specific relativistic energy Er to relativistic mass density �r and to
rest mass density �, where the constant c2 is just the specific rest energy E (rest energy per rest mass
unit): c2 = ε/� = E if m = 1. Eq. (4.1.54) is a generalization of Eq. (1.2.18), where Er was exclusively
due to relativistic kinetic energy Er = E

(kin)
r . We turn in the relationship (4.1.2) to specific quantities

by division with the rest mass density � :

Er = εr/� = c2 + ε(int)/� = c2 + U, (m = 1). (4.1.55)

The specific internal energy U = ε(int)/� is just the difference between specific relativistic energy Er

and specific rest energy c2, including kinetic particle motions, particle interactions, force and radiation
fields, but exclusive of gravitational interactions. For adiabatic reversible processes (Q, S = const) the
first law of thermodynamics (1.1.3) writes for the unit of rest mass

P = �2(∂U/∂�)S = �2(∂Er/∂�)S = c2�2[∂(�r/�)
/
∂�]S , (m = 1), (4.1.56)

replacing by virtue of Eq. (4.1.55) the derivative of the specific internal energy U with the derivative of
specific relativistic energy Er. Performing the derivation in Eq. (4.1.56), we get the relativistic first law
of thermodynamics under the form (Tooper 1964a)

P = c2�(∂�r/∂�)S − �rc
2 = �(∂εr/∂�)S − εr or (∂εr/∂�)S = (P + εr)/�. (4.1.57)

Since m = �V = 1, we can replace d� by −� dV/V :

(∂εr/∂V )S + (P + εr)/V = 0, (S = const; m = 1). (4.1.58)

Eq. (4.1.57) becomes with εr = c2�r0θ
n
r and P = K�

1+1/n
r0 θn+1

r = q0c
2�r0θ

n+1
r equal to

d�/� = n dθr/θr(1 + q0θr). (4.1.59)

Integration yields

� = �0[(1 + q0)θr/(1 + q0θr)]n, (θr(0) = 1). (4.1.60)

�0 denotes the rest mass density at the centre, corresponding to the central density of a nonrelativistic
polytropic sphere. �0 may be evaluated further, by observing that Eq. (4.1.60) becomes near the boundary

� ≈ �0(1 + q0)nθn
r , (θr ≈ 0). (4.1.61)

Relativistic effects are generally small near the boundary, so we may write

� ≈ �r = �r0θ
n
r , (θr ≈ 0). (4.1.62)

Comparing Eqs. (4.1.61) and (4.1.62) we realize that

�0 = �r0/(1 + q0)n, (4.1.63)

and Eq. (4.1.60) reads (Tooper 1964a):

� = �r0θ
n
r /(1 + q0θr)n = �r/(1 + q0θr)n. (4.1.64)
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Fig. 4.1.1 Run of the relativistic Lane-Emden function θr if n = −1.2 (on the left), and n = −0.2 (on the
right) for values of the relativity parameter q0 listed in the figures (Chu et al. 1980).

Since in relativistic physics we distinguish two different densities (�r – relativistic density, and � –
rest mass density), we may define two different adiabatic exponents, depending on whether the pressure
is considered as a function of �r or � (cf. Eq. (1.3.23), Zeldovich and Novikov 1971, p. 186):

Γr1 = (d lnP/d ln �r)S=const = (d lnP/d ln εr)S=const;
Γ1 = (d lnP/d ln �)S=const = (d lnP/d ln ε)S=const. (4.1.65)

The adiabatic velocity of sound inside a relativistic polytrope of index n is given by (cf. Eq. (2.1.49)
for the Newtonian equivalent)

a2 = (∂P/∂�r)S=const = Γr1P/�r. (4.1.66)

Tooper (1964a) has created much confusion (e.g. Bludman 1973a, Sarkisyan and Chubaryan 1977,
Glass and Harpaz 1983, Dallas and Geroyannis 1993) with his delimitation q0 ≤ n/(n + 1), (−∞ ≤ n <
−1; 0 ≤ n ≤ ∞) of the relativity parameter, which is valid only for isentropic polytropes (S = const)
when P = K�

1+1/n
r = K�Γr1

r and 1 + 1/n = Γr1. Generally, there is no connection between Γr1 and n,
hence Γr1 �= 1+1/n, as outlined at the end of Sec. 2.1 (Horedt 2000a, b). Inserting in the isentropic case
Γr1 = 1 + 1/n and P = K�

1+1/n
r0 θn+1

r = P0θ
n+1
r , �r = �r0θ

n
r from Eq. (4.1.29) into Eq. (4.1.66), we find

a2 = Γr1P/�r = (1 + 1/n)P
/
�r = (1 + 1/n)P0θr/�r0 = (n + 1)c2q0θr/n,

(S = const; Γr1 = 1 + 1/n; −∞ ≤ n < −1; 0 ≤ n ≤ ∞). (4.1.67)

At the centre we have θr = 1, so we obtain for the central velocity of sound a2
0 = (n + 1)c2q0/n, and

because a0 ≤ c, we get Tooper’s (1964a) above mentioned delimitation: q0 ≤ n/(n + 1), (S = const). As
we have already remarked subsequently to Eq. (2.1.50), the generally valid delimitation of the relativity
parameter results from Eq. (4.1.66):

a2 = Γr1P/�r ≤ c2 or q0 = P0/�r0c
2 ≤ 1/Γr1. (4.1.68)

In fact, from Eq. (1.7.43) we get the important general relativistic delimitation: q0 = P0/�r0c
2 ≤ 1.

We now turn to the calculation of the gravitational energy and of the so-called “binding energy”
(Tooper 1964a, Fowler 1964). In accordance with the equivalence of mass and energy in relativity, the
total relativistic energy Er1 of the complete spherical polytrope, including gravitational potential energy,
is via Eq. (4.1.23) simply

Er1 = c2Mr1 = 4πc2

∫ r1

0

�rr
2 dr = 4π

∫ r1

0

εrr
2 dr = 4π

∫ r1

0

T 0
0 r2 dr. (4.1.69)
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Fig. 4.1.2 Internal structure of a general relativistic polytrope with n = 1.5, q0 = 0.2. Normalized density,
pressure, mass, and the metric components exp ν = gtt, exp κ = −grr are plotted as functions of the relative
radius (Tooper 1964a).

This is the energy of the relativistic polytrope as determined from the motion of an external test
particle. Because of the noneuclidian nature of space induced by the gravitational field, the proper
energy Epr of the complete polytrope is different from Er1, because Epr is the integral of the relativistic
energy density over all elements of proper volume dV, i.e. over the volume of rest from Eq. (4.1.24):

Epr =
∫

V1

εr dV = 4πc2

∫ r1

0

�r exp(κ/2) r2 dr. (4.1.70)

In the post Newtonian approximation this equation becomes, by expanding κ from Eq. (4.1.25) in
terms of 2GMr(r)/c2r � 1 :

exp(κ/2) = [1 − 2GMr1u(r)/c2r]−1/2 = [1 − 2GMr(r)/c2r]−1/2 ≈ 1 + GMr(r)/c2r. (4.1.71)

Substitution into Eq. (4.1.70) yields

Epr ≈ 4πc2

∫ r1

0

�r[1 + GMr(r)/c2r]r2 dr = Er1 +
∫ r1

0

GMr(r) dMr/r = Er1 − Wr,

(q0 ≈ 0; dMr = 4π�rr
2 dr). (4.1.72)

We may call Wr the relativistic gravitational energy, and generalize Eq. (2.6.127) by writing

Wr = −
∫

Mr1

GMr(r) dMr/r = Er1 − Epr = 4πc2

∫ r1

0

�r[1 − exp(κ/2)]r2 dr. (4.1.73)

Since exp(κ/2) ≥ 1 via Eq. (4.1.71), we have Epr ≥ Er1, and Wr ≤ 0. The origin of −Wr is obvious:
When combining the mass elements �r dV into a relativistic sphere, we must take into account also their
gravitational interaction. This gravitational interaction energy is included in Er1, rather than in Epr.
The relativistic mass Mr1 = Er1/c2 of a polytrope is not equal to the sum Epr/c2 of its individual mass
elements �r dV, which already possess the assigned energy density εr = �rc

2 (Zeldovich and Novikov 1971,
p. 286). The proper energy (4.1.70) writes in terms of our dimensionless variables from Eqs. (4.1.29),
(4.1.31), (4.1.39), (4.1.47) as

Epr = 4πc2�r0α
3

∫ ξ1

0

θn
r ξ2 dξ

/
[1 − 2q0(n + 1) η(ξ)/ξ]1/2. (4.1.74)
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Fig. 4.1.3 Logarithmic half-ratio between the gravitational radius 2GMr1/c2 from Eq. (4.1.28) and the
geometrical radius rr1 according to Eq. (4.1.49): GMr1/c2rr1 = q0(n + 1)η(ξ1)/ξr1 (Tooper 1964a).

We observe from Eq. (4.1.39) that 4πc2�r0α
3 = c2Mr1/η(ξ1), (u(ξ1) = 1), and since Er1 = c2Mr1,

we can write the relativistic gravitational energy (4.1.73) as

Wr = c2Mr1

{
1 − [1/η(ξ1)]

∫ ξ1

0

θn
r ξ2 dξ

/[
1 − 2q0(n + 1) η(ξ)/ξ

]1/2
}

. (4.1.75)

The rest energy of the polytrope is analogous to Eq. (4.1.70):

c2M1 =
∫

V1

ε dV = 4πc2

∫ r1

0

� exp(κ/2) r2 dr

= [c2Mr1/η(ξ1)]
∫ ξ1

0

θn
r ξ2 dξ

/
(1 + q0θr)n[1 − 2q0(n + 1) η(ξ)/ξ]1/2. (4.1.76)

M1 is the rest mass of the polytrope inside proper volume V1, and we have used Eqs. (4.1.39), (4.1.64).
The binding energy Eb of the relativistic polytrope is defined as the difference between rest energy and
relativistic energy:

Eb = c2(M1 − Mr1) = 4πc2

∫ r1

0

[� exp(κ/2) − �r]r2 dr. (4.1.77)

The difference M1 −Mr1 between rest mass and relativistic (gravitational, inertial) mass is called the
mass defect. The binding energy is the energy that is restored during the formation of a dense polytrope
from initially rarefied matter (Zeldovich and Novikov 1971, p. 287). It is apparent from the physics of
this process that for a completely stable hydrostatic star we must have Eb > 0. Generally, we cannot
make a definite a priori assertion with respect to the sign of Eb, since � ≤ �r and exp(κ/2) ≥ 1.

In the post Newtonian approximation we can expand Eq. (4.1.77) in terms of q0 :

Eb ≈ [c2Mr1/η(ξ1)]
∫ ξ1

0

[1 − nq0θr + q0(n + 1) η(ξ)/ξ]θn
r ξ2 dξ − 4πc2

∫ r1

0

�rr
2 dr

= −4πn

∫ r1

0

Pr2 dr + 4πG

∫ r1

0

Mr(r) �rr dr = −n

∫
V1

P dV − Wr = −n(Γ − 1)U − Wr

= nWr/3 − Wr = (n − 3)Wr/3, (q0 ≈ 0; dV ≈ 4πr2 dr), (4.1.78)

where we have used c2Mr1/η(ξ1) = 4πc2�r0α
3 and q0(n + 1)η(ξ)/ξ = GMr(r)/c2r from Eqs. (4.1.29),

(4.1.31), (4.1.39), as well as Eqs. (2.6.95), (2.6.100), (4.1.72).
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Table 4.1.1 Boundary values of ξ1, ξr1, η(ξ1) for selected values of n and q0 according to Tooper (1964a),
Bludman (1973a), Chu et al. (1980), Dallas and Geroyannis (1993). If n = 0, the boundary values of ξ1, ξr1, η(ξ1)
are from Eqs. (4.1.45), (4.1.48), (4.1.43), respectively. If q0 = 0, we have ξr1 = ξ1, and η(ξ1) = −ξ2

1θ′
1 (cf. Table

2.5.2). a + b means a × 10b.

n q0 ξ1 ξr1 η(ξ1) n q0 ξ1 ξr1 η(ξ1)

0.0 2.087+0 2.087+0 1.235+1 0.0 4.353+0 4.353+0 2.411+0
0.2 1.619+0 1.650+0 6.199+0 0.2 3.398+0 4.094+0 8.403−1

−0.8 0.4 1.350+0 1.390+0 3.832+0 2 0.4 3.248+0 4.229+0 4.680−1
0.6 1.171+0 1.212+0 2.642+0 0.6 3.399+0 4.578+0 3.201−1
0.8 1.041+0 1.081+0 1.951+0 0.8 3.733+0 5.084+0 2.457−1
1.0 9.411−1 9.746−1 1.462+0 0.9 3.953+0 5.387+0 2.216−1

0.0 2.209+0 2.209+0 7.422+0 0.0 5.355+0 5.355+0 2.187+0
0.2 1.679+0 1.756+0 3.333+0 0.2 4.721+0 5.658+0 7.606−1

−0.5 0.4 1.392+0 1.492+0 1.949+0 2.5 0.4 5.545+0 6.976+0 4.386−1
0.6 1.206+0 1.311+0 1.302+0 0.6 7.727+0 9.633+0 3.202−1
0.8 1.074+0 1.177+0 9.419−1 0.8 1.190+1 1.436+1 2.721−1
1.0 9.730−1 1.073+0 7.189−1 0.9 1.485+1 1.763+1 2.619−1

0.0 2.347+0 2.347+0 5.619+0 0.0 6.897+0 6.897+0 2.018+0
0.2 1.753+0 1.884+0 2.353+0 0.2 7.951+0 9.262+0 7.130−1

−0.2 0.4 1.447+0 1.613+0 1.337+0 3 0.4 1.782+1 2.026+1 4.516−1
0.6 1.255+0 1.430+0 8.804−1 0.6 9.107+1 9.583+1 4.493−1
0.8 1.121+0 1.293+0 6.326−1 0.8 1.872+2 1.950+2 5.969−1
1.0 1.020+0 1.190+0 4.813−1 0.9 1.870+2 1.959+2 6.375−1

0.0 2.449+0 2.449+0 4.899+0 0.0 9.536+0 9.536+0 1.891+0
0.2 1.811+0 1.979+0 1.981+0 0.2 2.371+1 2.582+1 7.055−1

0 0.4 1.494+0 1.706+0 1.111+0 3.5 0.4 1.382+4 1.384+4 2.735+0
0.6 1.298+0 1.522+0 7.282−1 0.6 1.640+3 1.662+3 1.837+0
0.8 1.162+0 1.387+0 5.226−1 0.8 1.305+3 1.331+3 1.678+0
1.0 1.061+0 1.283+0 3.977−1 0.9 1.382+3 1.410+3 1.639+0

0.0 2.753+0 2.753+0 3.789+0 0.0 1.497+1 1.497+1 1.797+0
0.2 2.001+0 2.267+0 1.437+0 0.2 2.624+4 2.628+4 1.189+1

0.5 0.4 1.654+0 1.996+0 7.912−1 4 0.4 1.342+7 1.342+7 1.289+2
0.6 1.450+0 1.818+0 5.167−1 0.6 4.945+6 4.946+6 5.974+1
0.8 1.314+0 1.690+0 3.717−1 0.8 2.020+7 2.021+7 4.991+1
0.9 1.260+0 1.639+0 3.232−1 0.9 2.527+10 2.527+10 1.761+3

0.0 3.142+0 3.142+0 3.142+0 0.0 3.184+1 3.184+1 1.738+0
0.2 2.277+0 2.659+0 1.143+0 0.2 8.426+10 8.426+10 1.395+4

1 0.4 1.913+0 2.412+0 6.249−1 4.5 0.4 6.315+18 6.315+18 4.429+7
0.6 1.714+0 2.265+0 4.101−1 0.6 6.045+18 6.045+18 2.305+7
0.8 1.590+0 2.168+0 2.979−1 0.8 2.139+24 2.139+24 6.038+9
0.9 1.545+0 2.132+0 2.605−1 0.9 9.012+25 9.012+25 6.741+10

0.0 3.654+0 3.654+0 2.714+0 0.0 1.714+2 1.714+2 1.725+0
0.2 2.699+0 3.219+0 9.603−1 0.2 1.028+29 1.028+29 5.268+13

1.5 0.4 2.361+0 3.062+0 5.270−1 4.9 0.4 1.575+29 1.575+29 5.910+13
0.6 2.219+0 3.018+0 3.505−1 0.6 9.808+28 9.808+28 5.027+13
0.8 2.166+0 3.033+0 2.594−1 0.8 9.770+28 9.770+28 4.951+13
0.9 2.158+0 3.055+0 2.291−1 0.9 9.736+28 9.736+28 4.890+13

For an adiabatic perfect gas we have n = 1/(γ − 1) and Γ = γg = γ = cP /cV by virtue of Eqs.
(1.7.60), (2.6.93). In this case Eq. (4.1.78) becomes

Eb = (4 − 3γ)Wr/3(γ − 1) = −E, (q0 ≈ 0), (4.1.79)

where E turns into the total energy (2.6.100) of a nonrelativistic sphere if q0 = 0. As it was already
observed in Sec. 2.6.6, the condition of stability against compression or expansion of the spherical
polytrope is E < 0 or Eb > 0, which means γ > 4/3 in Eq. (4.1.79), and n < 3, (Wr < 0) in Eq. (4.1.78).
However, n > 3, (γ < 4/3), i.e. a negative binding energy of the spherical relativistic polytrope is not a
sufficient condition for instability against contraction or expansion (Tooper 1964a, Zeldovich and Novikov
1971, p. 293).

Eqs. (4.1.37) and (4.1.38) have been integrated with the initial conditions (4.1.41) by Tooper (1964a)
for n = 1, 1.5, 2, 2.5, 3, the parameter q0 increasing from 0 up to the value n/(n + 1) from Eq. (4.1.67).
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Similar integrations have been effected by Bludman (1973a) for 0 ≤ n ≤ 3 and 0 ≤ q0 ≤ 0.9. Chu et
al. (1980) integrate for values of n = −10,−4,−3,−2,−1.5,−1.2,−0.8,−0.5,−0.2, and 0.2 ≤ q0 ≤ 1.
Dallas and Geroyannis (1993) provide tabulations if 0 ≤ n ≤ 4.9 and 0 ≤ q0 ≤ 0.9. Tabulations for small
values of q0 (in the so-called post Newtonian approximation q0 � 1) have been effected by Chandrasekhar
(1964b) if n = 1, 2, 3.

From Table 4.1.1 follows that both, the dimensionless radial coordinate ξ1 and the dimensionless
radius ξr1 are always decreasing functions of q0 if −0.8 ≤ n ≤ 1.5. If 1.5 < n ≤ 3, the values of ξ1 and
ξr1 first decrease and then increase as q0 increases, but the minima of ξ1, ξr1 do not occur at the same
q0. If 3 < n ≤ 4.9, we notice fluctuations of ξ1, ξr1 (Dallas and Geroyannis 1993).

For relativistic values of q0 the structural features indicate a greater concentration of matter towards
the centre than in the nonrelativistic case q0 = 0. The normalized density θn

r = �r/�r0 and pressure
θn+1

r = P/P0 fall off more rapidly as a function of radius in the relativistic case, and the mass function
Mr/Mr1 rises sooner (Fig. 4.1.2).

If n = 0, q0 → ∞, we obtain from Eq. (4.1.50) the limiting value of the mass-radius relationship
GMr1/c2rr1 ≤ 22/7/27 arcsin(23/2/3) = 0.340, or rr1 ≥ 1.47rg and r1 ≥ 9GMr1/4c2 = 9rg/8 = 1.125rg.
This inequality for the radial surface coordinate holds for any hydrostatic configuration, independent
of any constitutive relationship between P and �r, provided that d�r/dr ≤ 0 (Buchdahl 1959). This
inequality is further strengthened for the polytropic models discussed below. The mass-radius relationship
from Eq. (4.1.49) can be written under the form

GMr1/c2rr1 = (n + 1)q0η(ξ1)/ξr1 or rr1 = ξr1rg/2(n + 1)q0η(ξ1). (4.1.80)

As seen from Fig. 4.1.3, the maximum of GMr1/c2rr1 = q0(n + 1)η(ξ1)/ξr1 for the considered values
of q0 is 0.214 if n = 1, and 0.0631 if n = 3. This means that hydrostatic configurations are possible
only when rr1 ≥ 1.47rg, r1 ≥ 9rg/8 = 1.125rg if n = 0, rr1 ≥ 2.34rg, r1 ≥ 1.81rg if n = 1, and
rr1 ≥ 7.92rg, r1 ≥ 6.86rg if n = 3.

Fig. 4.1.3 also points out an important characteristic of the relativistic solutions: If n = 2 and 2.5,
there correspond to the same pair of values Mr1 and rr1 from Eq. (4.1.80) two distinct values of q0. And
if n = 3, when lg[(n + 1)q0η(ξ1)/ξr1] = −2.05, three distinct values of q0 occur, viz. 7.62 × 10−3, 0.665,
0.740, correlated to widely different distributions of density, pressure, and metric tensor (Tooper 1964a).

The behaviour of total mass and radius of relativistic polytropic spheres if 0 ≤ n ≤ ∞ has been
clarified by Nilsson and Uggla (2000), introducing the bounded relativistic Milne-like variables (4.1.82).
The Newtonian Milne variables (2.2.6) can be written as (Kimura 1981a)

u1 = u = d lnM(r)/d ln r = 4π�r3/M(r) = −ξθn/θ′;
v1/(n + 1) = v = −[1/(n + 1)] d lnP/d ln r = G�M(r)/(n + 1)Pr = −ξθ′/(n + 1)θ. (4.1.81)

Nilsson and Uggla (2000) take

U = u1/(u1 + 1) = 4πr2�r/[4πr2�r + Mr(r)/r];

V = v1/(v1 + 1) = [Mr(r)/r]
/
[Mr(r)/r + P/�r], (0 < U, V < 1), (4.1.82)

in geometrized units c, G = 1.
With the third variable y = P/(P + �r), the field equations (4.1.6), (4.1.7), (4.1.18) turn into a

system of three regular ordinary differential equations {U, V, y} in terms of the new independent variable
F = (1−V )(1−y)−2yV. The qualitative and numerical discussion of the topology in (U, V, y)-space shows
that relativistic spheres have finite mass and radius if 0 ≤ n � 3.339. If 3.339 � n < 5, a one-parameter
set of regular models exist, having finite radius and mass (Table 4.1.1); a finite number of regular models
possess infinite radius, and finite or infinite mass. If n ≥ 5 all spheres have infinite radius and mass.

Other studies due to Tooper (1965, 1966b) have been effected for the case of an isentropic, relativistic
perfect gas, when pressure is assumed to be connected to rest mass density according to Eqs. (1.2.31)
and (1.2.32):

P = K�1+1/n = K�γ , (S = const; γ = 1 + 1/n). (4.1.83)

The relativistic energy density of the isentropic perfect gas is via Eqs. (1.7.56), (1.7.58), (4.1.2) equal
to

εr = ε + ε(int) = �c2 + wε(kin)/3(γ − 1) = �c2 + P/(γ − 1) = �c2 + nP. (4.1.84)
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ε(int) is the internal energy density, and ε(kin) the energy density of kinetic translational motion. A
similar relationship can also be obtained from Eq. (2.6.92): εr = ε+ ε(int) = �c2 +P/(Γ−1). In fact, Eq.
(4.1.84) is only a special case of a class of isentropic equations of state for which pressure is related to
rest mass density by the power law P = K�1+1/n. In the relativistic first law of thermodynamics (4.1.57)
we replace d�/� by [n/(n + 1)] dP/P via the isentropic law (4.1.83):

P dεr/dP − nεr/(n + 1) = nP/(n + 1), [P = K�1+1/n; S = const; n = 1/(γ − 1)]. (4.1.85)

This simple inhomogeneous equation can be integrated at once by the method of variation of constants
(Tooper 1965, Durgapal and Pande 1983):

εr = CPn/(n+1) + nP, (C, S = const). (4.1.86)

We recover Eq. (4.1.84) by setting C = c2/Kn/(n+1) and n = 1/(γ − 1), (cf. Rosquist 1995).
Tooper (1966a) has generalized Eq. (4.1.84) further, by taking into account radiation pressure (as for

massive hot stars):

εr = �c2 + Pg/(γ − 1) + 3Pr. (4.1.87)

The total pressure P = Pg + Pr is composed of perfect gas pressure Pg and radiation pressure
Pr = aT 4/3 (cf. Sec. 1.4).

With the two line elements

ds2 = exp[ν(r)] dt2 − exp[κ(r)] [dr2 + r2(dλ2 + sin2 λ dϕ2)],(
exp ν = [1 − f(r)]2/[1 + f(r)]2; expκ = [1 + f(r)]4

)
, (4.1.88)

ds2 = exp[ν(r)] dt2 − exp[κ(r)] dr2 − exp[µ(r)] r2(dλ2 + sin2 λ dϕ2),
(ν = f(µ); κ = g(µ); df/dµ + dg/dµ = 0), (4.1.89)

Buchdahl (1964, 1967) finds two static, spherically symmetric analytic solutions of the field equations
(4.1.4), possessing respectively, the two equations of state

P = �6/5
r

/
[1 + 6q0(1 − �1/5

r )], (0 ≤ q0 = P0/c2�r0 ≤ 1), (4.1.90)

(1 + k)P 1/2 − kP = �r, (0 ≤ k = const ≤ 5/7). (4.1.91)

In the nonrelativistic limit (q0, P ≈ 0) these two equations of state become a n = 5 (Plummer) and
n = 1 polytrope, respectively. Generalizations of Buchdahl’s treatment have been provided by Rosquist
(1999), and Beig and Karadi (2001).

Sá (1999) has considered polytropic spheres (0 < n < ∞) in three-dimensional spacetime with the
λ-coordinate in Eq. (4.1.5) equal to λ ≡ π/2, and with negative cosmological constant.

4.1.2 Composite Polytropes in General Relativity

Fang and Xiang (1982) have considered relativistic polytropes with a compact core, similar to the
nonrelativistic loaded polytropes of Huntley and Saslaw (1975) from Sec. 2.8.3. Pandey et al. (1983)
have investigated composite models composed of an isothermal core with equation of state

Pc = Kc�rc, (4.1.92)

surrounded by a polytropic envelope with equation of state (cf. Chandrasekhar (1972) if n = 0, and Sec.
2.8.1 for the Newtonian case)

Pe = Ke�
1+1/n
re . (4.1.93)
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Table 4.1.2 Parameters for isothermal core and polytropic envelope using the interface condition H = 0
from Eq. (4.1.97), (Pandey et al. 1983).

n Kc Ke Mrc/Mr1 ri/r1 z1 zci zc0

0.5 1/3 20.2 0.438 0.548 0.54 1.37 2.96
1 1/3 2.59 0.390 0.426 0.42 1.52 3.22
1.5 1/3 1.31 0.345 0.309 0.31 1.68 3.48
1 0.4 3.03 0.377 0.421 0.46 1.87 4.12
1.5 0.4 1.54 0.328 0.290 0.30 2.05 4.44
1.5 0.6 2.27 0.233 0.277 0.31 2.24 7.96
2 0.6 1.63 0.222 0.118 0.17 3.78 9.09

Choosing the units in such a way that c, G = 1, the Tolman-Oppenheimer-Volkoff equation (4.1.27)
reads

dP/dr = −(�r + P )(Mr + 4πPr3)/(r2 − 2rMr). (4.1.94)

Defining the Bondi variables by

g(r) = Mr/r = (4π/r)
∫ r

0

�rr
2 dr; h(r) = 4πr2P, (4.1.95)

the equation of relativistic hydrostatic equilibrium (4.1.94) becomes

(1/r) dr/dg = [(1 − 2g) dh/dg + (g + h)]
/
(2h − g2 − 6gh − h2),

(c, G = 1; �r = (1/4πr) dg/dr + g/4πr2; dP/dr = (1/4πr2) dh/dr − h/2πr3). (4.1.96)

The denominator

H = 2h − g2 − 6gh − h2 = 0, (4.1.97)

defines the equation of a hyperbola, dividing the configuration into an inner core region (H > 0) and
an outer envelope region (H < 0). Although the hyperbola H = 0 does not correspond to a physical
condition, it can be taken to define the core-envelope interface r = ri, where Pci = Pei, �rci = �rei. The
polytropic constants Kc, Ke from Eqs. (4.1.92), (4.1.93) are connected through the continuity of pressure
at the interface by

Kc = Ke�
1/n
rei = Ke�

1/n
rci . (4.1.98)

The velocity of sound from Eq. (4.1.66) is

a2
c = (∂Pc/∂�rc)S = Kc, (4.1.99)

in the core, and

a2
e = (∂Pe/∂�re)S = (n + 1)Ke�

1/n
re /n, (4.1.100)

in the envelope. It jumps from the constant value K
1/2
c in the core to [(n + 1)Ke�

1/n
rei /n]1/2 = [(n +

1)Kc/n]1/2 at the inner boundary of the envelope. The redshift z = (f − f∞)/f∞ of photons emitted at
frequency f inside the composite polytrope, and observed at large distance from the mass at frequency
f∞, is via the metrics (4.1.3), (4.1.5) equal to (e.g. Landau and Lifschitz 1987)

1 + z = f/f∞ = (g00)−1/2 = exp(−ν/2). (4.1.101)

At the surface of the composite polytrope we have g00 = 1 − 2GMr1/c2r1 from the external
Schwarzschild metric (4.1.20), and

1 + z1 = (1 − 2Mr1/r1)−1/2, (c, G = 1). (4.1.102)
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In order to calculate the gravitational redshift ze in the envelope, we integrate the conservation law
(4.1.18) with the equation of state (4.1.93):

1 + ze = exp(−ν/2) = C(Ke�
1/n
re + 1)n+1 = C(Pe/�re + 1)n+1 = (1 + z1)(Pe/�re + 1)n+1;

1 + zei = 1 + zci = (1 + z1)(1 + Kc)n+1, (C = const). (4.1.103)

Finally, the redshift in the core is calculated in the same way with the equation of state (4.1.92):

1 + zc = exp(−ν/2) = (C�rc)Kc/(Kc+1) = (1 + zci)(�rc/�rci)Kc/(Kc+1). (4.1.104)

Table 4.1.2 shows the ratio Mrc/Mr1 between core mass Mrc and total mass Mr1, the ratio ri/r1

between the radial coordinates ri, r1 at interface and surface, as well as the redshifts at the surface, the
interface, and at the centre for different values of Kc, (Kc ≤ 1) and n, subject to the condition ac, ae ≤ c.
It is seen that for a given value of Kc fractional core mass and core size both decrease as n increases.
Keeping n fixed, these two quantities also decrease if Kc is increased.

4.1.3 Spherical Polytropes with Variable Gravitational Constant

These investigations are due to an Armenian group of astrophysicists, and are based on Dirac’s
hypothesis of a slowly changing gravitational constant G, so that the field equations depend besides the
ten distinct components of the metric tensor gjk also on the gravitational scalar G = G(t, x1, x2, x3),
(Jordan 1955). From a variational principle Saakyan and Mnatsakanyan (1967) find with Newtonian
gravitation for a variable G the equations

� D�v/Dt + ∇P − � ∇Φ = 0; ∇ · (∇Φ/g) = −c2�/2; ∇ · (∇g/g3/2)

−(1/c2) ∂(g−3/2 ∂g/∂t)
/
∂t = (1/2c4ζ) (∇Φ)2/g1/2, (g = g(t, x1, x2, x3) = 8πG/c2). (4.1.105)

ζ is a dimensionless parameter of variable G-theory (Saakyan and Mnatsakanyan 1968). As results
from the last equation (4.1.105), the Newtonian theory with g = const is recovered if ζ → ±∞. The
first equation (4.1.105) is the hydrodynamic equation of motion (2.1.1), and the second is identical to
Poisson’s equation (2.1.4) if g = 8πG/c2 = const. In the static, spherically symmetric case Eq. (4.1.105)
turns into

dP/dr = � dΦ/dr; d[(r2/g) dΦ/dr]
/
dr = −�r2/2; g1/2 d[(r2/g3/2) dg/dr]

/
dr

= r2(dΦ/dr)2
/
2ζ, [c = 1; g = g(r) = 8πG(r)]. (4.1.106)

Outside the polytrope we get by integration of the second equation (4.1.106):

dΦe/dr = −g(r) M1/8πr2, (r ≥ r1; (dΦe/dr)r→∞ = −G(∞) M1/r2 = −M1/r2;
g(∞) = 8πG(∞) = 8π; G(∞) = 1), (4.1.107)

where M1 is the total Newtonian mass of the polytrope. Substituting Eq. (4.1.107) into the last equation
(4.1.106), we have (Φ → Φe) :

d[(r2/g3/2) dg/dr]
/
dr = M2

1 g3/2/128π2ζr2 = Γg3/2/r2, (r ≥ r1; Γ = M2
1 /27π2ζ). (4.1.108)

This equation can be integrated with the substitution

g3/2/r2 = dy/dr, (4.1.109)

which yields

g = Γy2/2 + A1y + A2, (A1, A2 = const). (4.1.110)

From Eq. (4.1.110) we get

dy/dr = ±(dg/dr)
/
(A2

1 − 2ΓA2 + 2Γg)1/2, (4.1.111)
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Fig. 4.1.4 Newtonian variant of variable G-theory. On the left: Variation of the dimensionless gravitational
scalar within a constant density polytrope (n = 0; ζ = −30) for values of M1/r1 indicated on each curve (Saakyan

and Mnatsakanyan 1967). On the right: Dependence of M1 on q0 = P0/�0 = K�
1/n
0 for c, K = 1, and for the

polytropic indices n indicated on each curve (Mnatsakanyan and Avakyan 1968).

and by insertion into Eq. (4.1.109)

dr/r2 = ± dg
/
g3/2(A2

1 − 2ΓA2 + 2Γg)1/2, (4.1.112)

or

g = 8πr2
/
(r2 + B1r + B2), (r ≥ r1; B1, B2 = const), (4.1.113)

the two constants being connected by B1 = ±(4B2 + M2
1 /ζ)1/2. Eliminating the potential Φ among the

equations (4.1.106), and introducing the mass inside a sphere of radius r

M(r) = −(8πr2/g�) dP/dr, (4.1.114)

we obtain the following basic set of equations:

dM(r)/dr = 4π�r2, (4.1.115)

dP/dr = −g�M(r)/8πr2, (4.1.116)

d2g/dr2 + (2/r) dg/dr − (3/2g)(dg/dr)2 = Γg3M2(r)/M2
1 r4. (4.1.117)

Solutions of the internal problem defined by Eqs. (4.1.115)-(4.1.117) must be matched to the external
solution (4.1.113), which yields on the boundary r = r1 :

g(r1) = 8πr2
1

/
(r2

1 + B1r1 + B2); (dg/dr)r=r1 = 16πr1(B1r1 + B2)
/
(r2

1 + B1r1 + B2)2. (4.1.118)

Since the value of the gravitational scalar g at the centre is unknown, it is advisable to start the
numerical integration at the surface r = r1 for a guessed mass M1 = M(r1) of the polytrope with the
boundary condition P (r1) = 0, and g(r1), g′(r1) given by Eq. (4.1.118). By fixing r1, and integrating
from the surface r = r1 to the centre r = 0, we will eventually find the true value M1 for which M(0) = 0.

To fix the parameter ζ of the theory, Jordan (1955) demands that the change in the observed general
relativistic precession effect of Mercury should not exceed the relative observational error of 2%, leading
him to the value ζ = ±30.
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Fig. 4.1.5 Relativistic variable G-theory. On the left: Behaviour of the gravitational scalar G(r) inside a
polytropic sphere (0 ≤ n ≤ 3) for an intermediate value of Mr1/r1 (dashed line), and if Mr1/r1 → ∞ (solid line).
Curves for different polytropic indices coincide at the scale of the figure. On the right: Total relativistic mass
Mr1 as a function of central pressure P0 for the polytropic indices indicated on each curve (Mnatsakanyan 1969).

Mnatsakanyan and Avakyan (1968) write Eqs. (4.1.115)-(4.1.117) under the dimensionless form

dµ/dy = 4πM2
1 K−nqny2; dq/dy = −Gµ/(n + 1)y2;

d2G/dy2 + (2/y) dG/dy − (3/2G)(dG/dy)2 = G3µ2/2ζy4, (4.1.119)

by using the nonrelativistic polytropic equation of state (2.1.6) and the notations

q = P/� = K�1/n; y = r/M1; µ = M(r)/M1; G(y) = g(y)/8π = g(r/M1)
/
8π,

(G(∞) = g(∞)/8π = 1; c = 1). (4.1.120)

For the incompressible model with polytropic index n = 0 the gravitational scalar G(y) = g(y)/8π is
zero at the centre y = 0, and tends to its Newtonian value G = G(∞) = 1 if y = r/M1 → ∞ (Fig. 4.1.4 on
the left). The curve representing the total mass M1 as a function of the central value q0 = P0/�0 = K�

1/n
0

is two-valued (Fig. 4.1.4 on the right). The lower branch is not very different from the corresponding
M1(q0) = M1(�0)-curves obtained with G = const. The upper branch represents baryon and electron
configurations. The radii of these supermassive spheres can be less than their gravitational radius rg

from Eq. (4.1.28), since in variable G-theories no Schwarzschild-type singularity exists (black holes are
absent), i.e. static configurations can have radii less than rg (cf. Jordan 1955, Saakyan and Mnatsakanyan
1968).

In the relativistic variable G-theory Saakyan and Mnatsakanyan (1968, 1969) find for the spheri-
cally symmetric static case the following set of equations for the determination of the four unknowns
P (r), g(r), κ(r), ν(r), supplemented by Eqs. (4.1.1), (4.1.5), (4.1.18):

[(2G − r dG/dr)/2rG] dν/dr + (ζ/2G2)(dG/dr)2 − (2/rG) dG/dr − (expκ − 1)/r2

= (8πGP/c4) exp κ; (1/G) d2G/dr2 + [(ζ − 4)/2G2](dG/dr)2 + (2/rG) dG/dr

+[(2G − r dG/dr)
/
2rG] dκ/dr + (expκ − 1)/r2 = (8πG�r/c2) exp κ;

(1/2r) dκ/dr − (1/2r) dν/dr + (1/rG) dG/dr + (expκ − 1)/r2

= 8πG expκ [ζP + (1 − ζ)c2�r]
/
c4(3 − 2ζ), [G = G(r)]. (4.1.121)

The equations of general relativity are obtained if G = const and ζ = ±∞. In the limit, the equations
(4.1.121) become consecutively equal to Eqs. (4.1.6), (4.1.7), and to the difference between Eqs. (4.1.7)
and (4.1.6). Mnatsakanyan (1969) has integrated Eq. (4.1.121) for the polytropic indices n = 0, 1.5, 3.



304 4.1 Undistorted Relativistic Polytropes

The asymptotic, maximum admissible central values P0 of the pressure (Fig. 4.1.5 on the right)
result from a superposition of the effects associated with the curvature of space and the weakening of
gravitational interaction associated with large mass concentration in variable G-theory. The maximum
values of q0 = P0/�r0, (c = 1) are 2.070 (n = 0), 1.135 (n = 1.5), and 0.925 (n = 3), as compared to the
Newtonian approximation from Fig. 4.1.4, where q0 = 1.51 (n = 0), 1.18 (n = 1.5), and 1.02 (n = 3).

4.1.4 Polytropic Spheres in Bimetric Gravitation Theory

Sarkisyan (1980) has investigated the structure of polytropic spheres according to Rosen’s (1974)
bimetric gravitation theory. As suggested by name, two metrics are defined in bimetric gravitation
theories: The usual Riemannian metric ds2 = gjk dxjdxk from Eq. (4.1.3), which describes the true
gravitational field arising from matter and other forms of energy, and a flat-space (zero curvature) metric
df2 = fjk dxjdxk, which describes inertial forces associated with the acceleration of the reference frame.
For the static, spherically symmetric case Rosen (1974) defines the two metrics

ds2 = exp[2ν(r)] dt2 − exp[2κ(r)] dr2 − r2 exp[2χ(r)] (dλ2 + sin2 λ dϕ2);

df2 = dt2 − dr2 − r2(dλ2 + sin2 λ dϕ2), (4.1.122)

obtaining the field equations under the form (c, G = 1) :

∇2ν = (1/r2) d(r2 dν/dr)
/
dr = 4π(3P + �r) exp(ν + κ + 2χ), (4.1.123)

(1/r2) d(r2 dκ/dr)
/
dr + (2/r2) sinh[2(χ − κ)] = 4π(P − �r) exp(ν + κ + 2χ), (4.1.124)

(1/r2) d(r2 dχ/dr)
/
dr − (1/r2) sinh[2(χ − κ)] = 4π(P − �r) exp(ν + κ + 2χ). (4.1.125)

Subtracting Eq. (4.1.124) from Eq. (4.1.125) one finds

∇2(χ − κ) − (3/r2) sinh[2(χ − κ)] = 0. (4.1.126)

At large distances from the mass Mr1, the metric ds2 from Eq. (4.1.122) must converge to the flat
space Galilean metric of special relativity, i.e. ν(r), κ(r), χ(r) → 0 as r → ∞. Since near the origin
χ − κ ≈ Cr2, (r ≈ 0; C = const), and since χ − κ is a monotonically increasing (decreasing) function,
the two conditions χ− κ = 0 if r = 0 and χ− κ = 0 if r → ∞ can be satisfied only if χ− κ ≡ 0 or χ ≡ κ
(Rosen 1974). Thus, Eqs. (4.1.123)-(4.1.125) reduce to

(1/r2) d(r2 dν/dr)
/
dr = 4π(3P + �r) exp(ν + 3κ), (4.1.127)

(1/r2) d(r2 dκ/dr)
/
dr = 4π(P − �r) exp(ν + 3κ). (4.1.128)

Outside the boundary value r1 of the radial coordinate r we have P, �r = 0, and the solutions of Eqs.
(4.1.127), (4.1.128) become, by integrating at first between 0 and r, (r ≥ r1), and then between r and
∞ :

ν = −(4π/r)
∫ r1

0

(3P + �r) exp(ν + 3κ) r′2 dr′;

κ = −(4π/r)
∫ r1

0

(P − �r) exp(ν + 3κ) r′2 dr′, (r ≥ r1). (4.1.129)

We have used the conditions at infinity ν(∞) = 0, κ(∞) = 0, and the initial conditions ν(0) =
ν0, κ(0) = κ0, (dν/dr)r=0 = 0, (dκ/dr)r=0 = 0, as they result from the series expansions near the origin.
On the surface, ν and κ are of the form const/r1, satisfying the simple boundary conditions

ν(r1) + r1(dν/dr)r=r1 = 0; κ(r1) + r1(dκ/dr)r=r1 = 0. (4.1.130)
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Fig. 4.1.6 Comparison of θn
r (ξ) and η(ξ) = Mr(r)/4π�r0α

3 in bimetric theory (Eq. (4.1.150), solid curves)
and in general relativity (Eq. (4.1.39), broken curves) if n = 1.5, q0 = 0.3 (on the left), and n = 3, q0 = 0.3 (on
the right), (Sarkisyan 1980).

The sum of Eqs. (4.1.127) and (4.1.128) yields

(1/r2) d[r2 d(ν + 3κ)/dr]
/
dr = 4π(6P − 2�r) exp(ν + 3κ). (4.1.131)

Making now the substitutions

r = Hx; r2 dν/dr = Hy; r2 d(ν + 3κ)/dr = 2Hz, (4.1.132)

and introducing the notations

H = exp[−ν(r1)/2] = exp[−ν(x1)/2]; t(x) = ν(x1) − ν(x);
γ(x) = −t(x) + 3κ(x) = ν(x) + 3κ(x) − ν(x1), (x1 = r1/H), (4.1.133)

the second order system (4.1.127) and (4.1.131) can be reduced to the following set of first order equations:

dy/dx = 4πH2x2(3P + �r) exp(ν + 3κ) = 4πx2(3P + �r) exp γ(x), (4.1.134)

dz/dx = 4πH2x2(3P − �r) exp(ν + 3κ) = 4πx2(3P − �r) exp γ(x), (4.1.135)

dγ/dx = d(ν + 3κ)/dx = 2z/x2, (4.1.136)

dt/dx = −dν/dx = −y/x2. (4.1.137)

The equation of hydrostatic equilibrium (4.1.18) writes via Eqs. (4.1.132), (4.1.133) as

dP/dr = −(P + �r) dν/dr or dP/dx = (P + �r) dt/dx, (c, G = 1, ν → 2ν). (4.1.138)

Since t(x1) = 0, the first boundary condition (4.1.130) is equivalent to the boundary value of Eq.
(4.1.137), while the second condition (4.1.130) becomes

x1γ(x1) + 2z(x1) − y(x1) = 0, [γ(x1) = 3κ(x1)]. (4.1.139)
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Fig. 4.1.7 Total dimensionless mass η(ξ1) = Mr1/4π�r0α
3, [Mr1 = Mr(rr1)] as a function of q0 (on the

left) and ξ1 (on the right) according to bimetric gravitation (Eq. (4.1.150), solid lines) and general relativity (Eq.
(4.1.49), dashed lines) for the polytropic indices indicated on the curves (Sarkisyan 1980).

Sarkisyan (1980) introduces dimensionless variables, similarly to Eq. (4.1.29):

�r = �r0θ
n
r ; P = K�1+1/n

r = K�
1+1/n
r0 θn+1

r = q0�r0θ
n+1
r ; q0 = P0/�r0 = K�

1/n
r0 ; x = αζ;

y(x) = 4π�r0α
3a(ζ); z(x) = 4π�r0α

3b(ζ); α2 = ±(n + 1)K/4π�
1−1/n
r0 = ±(n + 1)P0/4π�2

r0,

(n �= −1,±∞; c, G = 1). (4.1.140)

The system (4.1.134)-(4.1.137) becomes in the new variables:

da/dζ = ζ2θn
r (3q0θr + 1) exp γ(ζ), (4.1.141)

db/dζ = ζ2θn
r (3q0θr − 1) exp γ(ζ), (4.1.142)

dγ/dζ = ±2q0(n + 1) b(ζ)/ζ2, (4.1.143)

dt/dζ = ∓q0(n + 1) a(ζ)/ζ2. (4.1.144)

The equation of hydrostatic support (4.1.138) transforms into

dθr/dζ = ∓(q0θr + 1) a(ζ)/ζ2, (dν/dr = Hy/r2). (4.1.145)

Eq. (4.1.138) may be integrated between x and x1 with the polytropic equation of state (4.1.1), to
obtain

t(x) = (n + 1) ln(1 + q0θr) or t(0) = (n + 1) ln(1 + q0), (t(x1), θr(x1) = 0; θr(0) = 1),
(4.1.146)

fixing in this way the initial value of t(0) = ν(x1) − ν(0). The initial conditions on a(ζ) and b(ζ) are via
Eqs. (4.1.132), (4.1.140) clearly a(0), b(0) = 0. The initial value of γ(0) should be selected in such a way
that the boundary condition (4.1.139)

ζ1γ(ζ1) ± 2q0(n + 1) b(ζ1) ∓ q0(n + 1) a(ζ1) = 0, (ζ1 = x1/α), (4.1.147)
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Table 4.1.3 Boundary values of ξ1, ξr1 [Eq. (4.1.151)], and of η(ξ1) = Mr1/4π�r0α
3 [Eq. (4.1.150)] for

selected values of n and q0 in bimetric gravitation theory (Sarkisyan 1980).

n q0 ξ1 ξr1 η(ξ1)

1 0.2 2.018 2.820 1.446
0.4 1.842 2.853 1.148

0.2 2.463 3.400 1.249
1.5 0.4 2.311 3.507 1.022

0.6 2.430 3.794 1.029

0.2 3.116 4.213 1.110
2 0.4 2.991 4.438 0.933

0.6 3.182 4.852 0.968

0.2 4.246 5.369 1.006
2.5 0.4 4.164 5.876 0.868

0.6 4.408 6.406 0.930

0.1 6.314 7.417 1.193
3 0.2 6.365 7.973 0.940

0.4 6.509 8.634 0.826
0.6 6.640 9.083 0.903

should be verified. The dimensionless Lane-Emden coordinate ξ from Eq. (4.1.29) is connected to ζ by
r = Hx = αHζ = αξ, or

ξ = Hζ. (4.1.148)

If ν, κ ≈ 0, the metric ds2 from Eq. (4.1.122) becomes Galilean, and if further P � �r ≈ �, we observe
from Eqs. (4.1.127), (4.1.128) that d(r2 dν/dr) = −d(r2 dκ/dr) ≈ 4π�r2 dr, i.e. r2 dν/dr becomes just
equal to the Newtonian mass M(r) of a sphere with radius r. Thus, in Rosen’s (1974) bimetric gravitation
theory we can identify

Mr(r) = r2 dν/dr = 4π

∫ r

0

(3P + �r) exp(ν + 3κ) r′2 dr′, (4.1.149)

with the relativistic mass inside coordinate radius r. In the dimensionless coordinates from Eqs. (4.1.132),
(4.1.133), (4.1.140), (4.1.148) the previous equation becomes

Mr(r) = r2 dν/dr = H y(x) = 4π�r0α
3H a(ζ) = 4πH

∫ x

0

(3P + �r) exp γ(x′) x′2 dx′

= 4π�r0α
3H

∫ ζ

0

(3q0θr + 1) exp γ(ζ ′) θn
r ζ ′2 dζ ′ = (4π�r0α

3/H2)
∫ ξ

0

(3q0θr + 1) exp γ(ξ′) θn
r ξ′2 dξ′

= 4π�r0α
3η(ξ); η(ξ) = H−2

∫ ξ

0

(3q0θr + 1) exp γ(ξ′) θn
r ξ′2 dξ′, (4.1.150)

where we have used Eqs. (4.1.134), (4.1.141), and x = αξ/H = αζ. The equivalent of Eq. (4.1.150) in
general relativity is given by Eq. (4.1.39).

The radius of the configuration is similar to Eq. (4.1.47):

rr1 = αξr1 =
∫ r1

0

(γrr)1/2 dr =
∫ r1

0

expκ(r) dr = α

∫ ξ1

0

expκ(ξ) dξ. (4.1.151)

From Eq. (4.1.129) results ν, κ = const/r, (r ≥ r1), and the line element (4.1.122) is well behaved for
arbitrary small values of r1, so we do not have in bimetric gravitation the possibility of black holes, as
one finds in general relativity from the Schwarzschild metric (4.1.20) if r1 ≤ rg.

The results of Sarkisyan (1980) indicate that θr drops in bimetric gravitation more rapidly than
in general relativity: Bimetric configurations are more compact (Fig. 4.1.6). The dimensionless mass
η(ξ1) = Mr1/4π�r0α

3 of bimetric polytropes exceeds the corresponding values from general relativity
(Fig. 4.1.7, Tables 4.1.1, 4.1.3). The concordance between the general relativistic values from Table 4.1.1
and those quoted by Sarkisyan (1980) for Einstein’s general relativity, often occurs merely in the first digit.
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The bimetric solid curves in Fig. 4.1.7 for n = 2, 2.5 show that a single value of η(ξ1) = Mr1/4π�r0α
3

corresponds to different ξ1-values, indicating that a large-volume configuration may be transformed into
a more compact one.

4.1.5 Relativistic Polytropic Slabs and Cylinders

Burcev (1980) has considered a hydrostatic slab of polytropic index n = 1 with the metric

ds2 = exp ν(z) dt2 − expκ(z) (dx2 + dy2) − dz2, (4.1.152)

where the variable z is perpendicular to the (x, y)-symmetry plane and P = K�2
r. The external Taub

metric found by Burcev (1980) possesses a singularity if z = ±3D/2, (D – thickness of the slab). The
considered slab is unphysical without the existence of external masses.

Ruban (1986) has considered a metric similar to Eq. (4.1.152) for the hydrostatic homogeneous slab
εr = c2�r = const, (n = 0), as well as for a relativistic ”isothermal” equation of state P = βc2�r, (0 ≤
β ≤ 1), [cf. Eq. (1.7.43)]. Again – unlike to the Newtonian case – the solutions are unphysical, including
a ”negative bare gravitational mass” in the singular plane z = 0 : In general relativity there is no analog
to the uniform Newtonian gravitational force (2.6.30) of a slab (N = 1).

Inside a relativistic hydrostatic cylinder Scheel et al. (1993) write the metric as

ds2 = exp ν(�) dt2 − exp[κ(�) − µ(�)] d�2 − �2 exp[−µ(�)] dϕ2 − expµ(�) dz2,

(c, G = 1; ν(0), µ(0), κ(0) = 0). (4.1.153)

With the relativistic equations of state (4.1.83), (4.1.84), the field equations (4.1.4) for the static
relativistic cylinder reduce to

dν/d� = 4(S + 4π�2P exp ν)/�(1 − 8S); dµ/d� = [1 − (1 − 8S)−1/2]/�; dS/d�

= 2π�(εr − P ) exp ν; dP/d� = −[(P + εr)/2] dν/d�, (S = [1 − exp(ν + µ − κ)]/8), (4.1.154)

with the boundary conditions S(0), ν(0), µ(0), κ(0), (dS/�)
=0, (dν/d�)
=0, (dµ/d�)
=0, (dκ/d�)
=0 = 0,
and P (�1), εr(�1) = 0 at the surface coordinate � = �1. Outside the cylindrical surface we have P, εr = 0,
and the field equations (4.1.154) simplify after integration to

ν = ν1 + [4S1/(1 − 8S1)] ln(�/�1); µ = µ1 + [1 − (1 − 8S1)−1/2] ln(�/�1);
S = S1 = const; P, εr = 0, (� ≥ �1; ν1, µ1 = const). (4.1.155)

The remaining metric function reads as

κ = ν + µ − ln(1 − 8S1), (� ≥ �1), (4.1.156)

and the external metric (4.1.153) becomes:

ds2 = exp ν1 (�/�1)4S1/(1−8S1)[dt2 − d�2/(1 − 8S1)] − �2 exp(−µ1) (�/�1)−1+(1−8S1)
−1/2

dϕ2

− expµ1 (�/�1)1−(1−8S1)
−1/2

dz2, (� ≥ �1). (4.1.157)

In the nonrelativistic limit S1 reduces to the Newtonian rest mass per unit length of the cylinder. The
external metric (4.1.157) diverges at infinity � → ∞ – an unrealistic feature, opposite to the spherical
case. Scheel et al. (1993) exhibit the run of the metric coefficients for polytropic indices 1.1 ≤ n ≤ 50.
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4.2 Rotationally Distorted Relativistic Polytropes

4.2.1 Introduction

Strongly relativistic and rapidly rotating objects in hydrostatic equilibrium have been suggested to
exist among others in pulsars, active galactic nuclei, and in remnants of supernova explosions (Komatsu
et al. 1989a). The observed behaviour of pulsars indicates that the neutron stars, located in the centre
of pulsars, are essentially uniformly rotating, relativistic objects of solar mass order, and with central
densities �r0 ≈ 5 × 1015 g cm−3 (Butterworth and Ipser 1976). Relativistic and differentially rotating
hydrostatic structures are expected to appear through the accretion-induced collapse of a massive white
dwarf (Komatsu et al. 1989b). Self-gravitating relativistic accretion disks round compact objects (star-
toroid systems) are relevant in the modelling of quasars and active galactic nuclei, or during evolution
of close binary stars, when one of the components is destroyed by tidal forces (e.g. Nishida et al. 1992).
Also, the collapse of rotating supermassive stars may finish prior to the onset of nuclear reactions, and
there is evidence that rotation can stabilize neutron stars against collapse, even if their mass is larger than
the critical one. Thus, it is not merely of theoretical interest to investigate rotating relativistic objects,
and to determine how rapidly a relativistic star can rotate for a given strength of gravity (Eriguchi 1980).

Relativistic effects on rotating configurations can be considered basically in four different ways (cf.
Papoyan et al. 1969): (i) Rotational and relativistic effects are taken into account as a perturbation
to a nonrotating Newtonian configuration (Sec. 4.2.2, Krefetz 1967, Fahlman and Anand 1971a). (ii)
Relativistic effects are taken into account as a first-order correction to Newtonian gravitation, but without
limitation on angular velocity (Sec. 4.2.3, Chau 1969, Miketinac and Barton 1972). (iii) Small angular
velocities, when rotation is regarded as a perturbation of a nonrotating, fully relativistic configuration
(Secs. 4.2.4 and 4.2.5, Papoyan et al. 1969, Sarkisyan and Chubaryan 1977, Chubaryan et al. 1981). (iv)
Numerical approaches, when practically no limitations exist on the magnitude of angular velocity and
relativistic effects (Sec. 4.2.6, Butterworth and Ipser 1976, Butterworth 1976, Eriguchi 1980, Komatsu
et al. 1989a, b, Nishida et al. 1992).

We limit ourselves to axially symmetric equilibrium configurations, which can be in equilibrium only
if they are not radiating gravitational waves. A necessary and sufficient condition for the absence of
gravitational radiation is the absence of time-dependent moments in the mass distribution (e.g. Landau
and Lifschitz 1987), and this condition is guaranteed by the assumption of axially symmetric gravitational
fields (Hartle and Sharp 1967, p. 318). Note, that in stationary fields (unlike to static fields), the mixed
components g0α of the metric tensor are definitely distinct from zero. We ignore the unrealistic special
case of an axially symmetric field produced by a nonrotating body, which would require a very special
stress field inside the mass distribution (Sedrakyan and Chubaryan 1968a).

Let us denote by Ω the angular velocity of a mass element, as measured by an observer at large
distances from the configuration, i.e. as measured in asymptotically flat spacetime. First of all, we need
a metric suitable for the study of stationary, axially symmetric, rotating relativistic configurations. To
get some idea about the kind of metric involved, let us turn from a Galilean inertial system with metric

ds2 = dt2 − dr′2 − r′2(dλ′2 + sin2 λ′ dϕ′2), (4.2.1)

to a system rotating uniformly with angular velocity Ω. The spherical spatial coordinates are denoted
by r′, λ′, ϕ′, and t is the universal time coordinate in the considered stationary frame. Obviously, the
spherical coordinates r, λ, ϕ in the rotating system are connected to r′, λ′, ϕ′ by r′ = r, λ′ = λ, ϕ′ = ϕ+Ωt.
Inserting this into Eq. (4.2.1), we find:

ds2 = (1 − Ω2r2 sin2 λ) dt2 − 2Ωr2 sin2 λ dϕ dt − dr2 − r2(dλ2 + sin2 λ dϕ2). (4.2.2)

Since g00 = 1 − Ω2r2 sin2 λ > 0, the rotating system can be used only up to a distance r ≤
1/Ω, (sin2 λ ≤ 1). In Cartesian coordinates the equivalent transformation from the inertial to the rotating
frame is

x′1 = x1 cosΩt − x2 sin Ωt; x′2 = x1 sin Ωt + x2 cosΩt; x′3 = x3, (4.2.3)
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and the two metrics (4.2.1) and (4.2.2) become, respectively

ds2 = dt2 − (dx′1)2 − (dx′2)2 − (dx′3)2, (4.2.4)

ds2 = {1 − Ω2[(x1)2 + (x2)2]} dt2 − (dx1)2 − (dx2)2 − (dx3)2 + 2Ωx2 dx1 dt − 2Ωx1 dx2 dt.
(4.2.5)

Quite generally, a stationary metric and axial symmetry require that the metric coefficients are inde-
pendent of x0 = t and x3 = ϕ : gjk = gjk(x1, x2). The assumption of axial symmetry also entails that the
four-velocity uj has only a temporal and ϕ-component: uj = (ut, 0, 0, uϕ), (u0 = ut, u3 = uϕ). With the
definition uj = dxj/ds, the angular velocity Ω = dϕ/dt of a fluid element, as measured by an observer at
infinity in an asymptotically flat spacetime, is

Ω = dϕ/dt = (dϕ/ds)
/
(dt/ds) = uϕ/ut = u3/u0. (4.2.6)

Let us apply to the metric (4.1.3) the coordinate transformation x0 → −x0 = −t, x3 → −x3 = −ϕ
(Sedrakyan and Chubaryan 1968a). Obviously, this will not affect the sign of the angular velocity (4.2.6),
and the tensor gjk = gjk(x1, x2) will not undergo any change under this particular transformation. This
requires that the gravitational field and its metric are invariant with respect to the simultaneous inversion
of time (t → −t) and azimuth angle (ϕ → −ϕ), since each inversion alone just reverses the direction of
rotation of the polytrope, i.e. it turns Ω into −Ω. Therefore, all components gjk connected with dx0 = dt
or dx3 = dϕ alone, must vanish: g01, g02, g13, g23 = 0. The other nonvanishing components of the metric
tensor have to remain unchanged under the coordinate transformation

x1 = f1(x′1, x′2); x2 = f2(x′1, x′2), (4.2.7)

i.e. a transformation of the coordinates x′1, x′2, x1, x2 among themselves. Eq. (4.2.7) yields two arbitrary
conditions on the coordinates, and we choose for instance the new coordinates x1, x2 in such a way that
g12 = 0 and g11 = g22. So, the three components g11, g12, g22 can be expressed in terms of one independent
function, say g11. Combining all the above arguments, we see that the line element of a stationary, axially
symmetric, rotating fluid depends on four distinct metric functions, and has the form (cf. Eqs. (4.2.2),
(4.2.5), Hartle and Sharp 1967, Bardeen 1970)

ds2 = g00(x1, x2) dt2 + g11(x1, x2)[(dx1)2 + (dx2)2] + g33(x1, x2) dϕ2 + 2g03(x1, x2) dt dϕ,

(g11 = g22). (4.2.8)

This Kerr type metric can also be written under the equivalent form

ds2 = (g00 − g2
03/g33) dt2 + g11[(dx1)2 + (dx2)2] + g33(dϕ + g03 dt/g33)2, (4.2.9)

which is more suitable for the calculation of the Riemann and Ricci tensors from Eqs. (4.2.19)-(4.2.24).
Clearly, at spatial infinity the metrics (4.2.8), (4.2.9) have to become asymptotically Galilean: g00 →
1; g11, g22, g33 → −1; g03 → 0. In the next section we briefly present method (i) for the study of rotating
relativistic polytropes.

4.2.2 Perturbation Theory in the Post Newtonian Approximation

This subject seems to be illustrated best by particularization to the first order of Fahlman’s and
Anand’s (1971a) second order theory. Let us write down at first the basic equations of the problem
according to Chandrasekhar (1965a). The relativistic energy density from Eq. (4.1.2) can be expressed
under the form

εr = ε + ε(int) = �c2 + ε(int) = �c2(1 + ε(int)/�c2) = �c2(1 + U/c2), (4.2.10)

where U = Er −E = ε(int)/� now denotes the internal energy per unit rest mass (m = 1), i.e. the specific
internal energy, which is just the difference between specific relativistic energy Er and specific rest energy
E (excluding gravitational contributions). Eq. (4.1.84) is a particular case of Eq. (4.2.10).
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In a first approximation to order 1/c2, the components of the metric tensor are (e.g. Landau and
Lifschitz 1987, §106):

g00 = 1 − 2Φ/c2 + O(c−4); gαβ = −(1 + 2Φ/c2) δαβ + O(c−4); g0α = O(c−3). (4.2.11)

Φ is the Newtonian gravitational potential, satisfying Poisson’s equation

∇2Φ = −4πG�. (4.2.12)

With the three-dimensional velocity vα = dxα/dτ measured by the interval of proper time dτ =
g
1/2
00 (dx0 + g0α dxα/g00)

/
c, we find for the contravariant four-velocity uj in stationary fields (cf. Eqs.

(5.12.94)-(5.12.98), Landau and Lifschitz 1987, §88):

u0 = [g00(1 − v2/c2)]−1/2 − g0αvα
/
cg00(1 − v2/c2)1/2 ≈ 1 + v2/2c2 + Φ/c2;

uα = vα
/
c(1 − v2/c2)1/2 ≈ vα/c, (v2 = vαvα). (4.2.13)

The covariant components write as

u0 = g0
u

 ≈ 1 + v2/2c2 − Φ/c2; uα = gα
u


 ≈ −vα/c. (4.2.14)

The covariant components of the stress-energy tensor (4.1.11) are

Tjk = gj
T


k = (P + εr)ujuk − Pgjk; T00 = �c2[1 + (v2 − 2Φ + U)/c2] + O(c−2);

T0α = −�cvα + O(c−1); Tαβ = �vαvβ + δαβP + O(c−2); T = T j
j = �c2 + �U − 3P + O(c−2).

(4.2.15)

If we contract the basic field equations (4.1.4), we get R = −8πGT/c4. Inserting this into Eq. (4.1.4),
we obtain

Rk
j = (8πG/c4)(T k

j − δk
j T/2), (4.2.16)

or in covariant form

Rjk = (8πG/c4)(Tjk − gjkT/2). (4.2.17)

The (0, 0) and (0, α)-components of the right-hand side of the field equation (4.2.17) become with
Eqs. (4.2.11) and (4.2.15):

T00 − g00T/2 = �(c2/2 + v2 − Φ + U/2 + 3P/2�) + O(c−2); T0α − g0αT/2 = −�cvα + O(c−1).
(4.2.18)

The mixed Riemann curvature tensor is given by (e.g. Landau and Lifschitz 1987)

Ri
k
m = ∂Γi

km/∂x
 − ∂Γi
k
/∂xm + Γi


nΓn
km − Γi

mnΓn
k
, (4.2.19)

and the covariant curvature is

Rjk
m = gijR
i
k
m = ∂(gijΓi

km)/∂x
 − ∂(gijΓi
k
)/∂xm − Γi

km ∂gij/∂x
 + Γi
k
 ∂gij/∂xm

+gij(Γi

nΓn

km − Γi
mnΓn

k
) = ∂(gijΓi
km)/∂x
 − ∂(gijΓi

k
)/∂xm + gnp(Γn
k
Γ

p
jm − Γn

kmΓp
j
), (4.2.20)

where we have used the identity

∂gjk/∂x
 = gknΓn
j
 + gjnΓn

k
, (4.2.21)

resulting from Eq. (4.1.15) for the Christoffel symbols. Eq. (4.2.20) can be transformed further into

Rjk
m = (1/2) (∂2gjm/∂xk∂x
 + ∂2gk
/∂xj∂xm − ∂2gj
/∂xk∂xm − ∂2gkm/∂xj∂x
)
+gnp(Γn

k
Γ
p
jm − Γn

kmΓp
j
), (4.2.22)
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by using the identity (e.g. Schmutzer 1968)

∂(gijΓi
km)/∂x
 − ∂(gijΓi

k
)/∂xm = (1/2)(∂2gjm/∂xk∂x
 + ∂2gk
/∂xj∂xm

−∂2gj
/∂xk∂xm − ∂2gkm/∂xj∂x
). (4.2.23)

Contracting Eqs. (4.2.19) and (4.2.22), the Ricci tensor from Eq. (4.2.17) becomes

Rkm = R

k
m = gj
Rjk
m = ∂Γ


km/∂x
 − ∂Γ

k
/∂xm + Γ



nΓn
km − Γ


mnΓn
k


= (gj
/2)(∂2gjm/∂xk∂x
 + ∂2gk
/∂xj∂xm − ∂2gj
/∂xk∂xm − ∂gkm/∂xj∂x
)

+gj
gnp(Γn
k
Γ

p
jm − Γn

kmΓp
j
). (4.2.24)

We denote by hjk the small correction tensors of the post Newtonian approximation to the Galilean
metric g

(0)
00 = 1, g

(0)
0α = 0, g

(0)
αβ = −δαβ . Eq. (4.2.11) can be written as

g00 = 1 + h00; g0α = h0α; gαβ = −δαβ + hαβ . (4.2.25)

Chandrasekhar (1965a) calculates the Ricci tensor in extenso, and the components of Eq. (4.2.17) are

∇2(h00/2 − Φ2/c4) − 16πG�Φ/c4 = (8πG�/c4)(c2/2 + v2 − Φ + U/2 + 3P/2�), (4.2.26)

∇2h0α/2 − (1/2c2) ∂2Φ/∂x0∂xα = −8πG�vα/c3, (4.2.27)

where ∇ is the spatial nabla operator from Eq. (B.16). Using Poisson’s equation (4.2.12), we can rewrite
Eq. (4.2.26) under the slightly different form

∇2(h00/2 + Φ/c2 − Φ2/c4) = (8πG�/c4)(v2 + Φ + U/2 + 3P/2�). (4.2.28)

If we define a new potential Π by means of

∇2Π = −4πG�(v2 + Φ + U/2 + 3P/2�), (4.2.29)

and insert into Eq. (4.2.28), this equation can be integrated at once:

h00 = −2Φ/c2 + 2Φ2/c4 − 4Π/c4 + O(c−6). (4.2.30)

Defining the further potentials

∇2χ = −2Φ, (4.2.31)

∇2Φ(α) = −4πG�vα, (4.2.32)

and inserting into Eq. (4.2.27), its solution is obviously

h0α = −(1/2c2) ∂2χ/∂x0∂xα + 4Φ(α)/c3, (4.2.33)

where Chandrasekhar’s (1965a) gauge condition

(1/2) ∂hα
α/∂x0 − ∂hα

0 /∂xα = 0, (4.2.34)

has to be verified. The spatial components of hjk are via Eq. (4.2.11) equal to

hαβ = −2Φ δαβ/c2 + O(c−4). (4.2.35)

The identity (4.1.14) can be written under the contravariant form

∇kT jk = gj
∇kT k

 = 0. (4.2.36)

The time component ∇kT 0k = 0 of this equation replaces the Newtonian equation of continuity
∂�/∂t +∇ · (��v) = 0, and the space components ∇kTαk = 0 replace the Eulerian equation of Newtonian
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hydrodynamics ∂�v/∂t + (�v · ∇)�v + (1/�) ∇P −∇Φ = 0. The explicit calculation of Eq. (4.2.36) with the
aid of Eqs. (4.1.14), (4.1.15), (4.2.25), (4.2.30), (4.2.33), (4.2.35) is beyond the scope of this book, so we
quote merely the post Newtonian hydrodynamic equation of stationary motion [Chandrasekhar 1965a,
Eq. (68); Krefetz 1966, Eq. (4)]:

�[1 + (v2 + 2Φ + U + P/�)/c2]vβ ∂vα/∂xβ + ∂[(1 + 2Φ/c2)P ]
/
∂xα − � ∂Φ/∂xα

+(4�vβ/c2) ∂Φ(β)/∂xα + (4�vβ/c2) ∂[vαΦ − Φ(α)]
/
∂xβ

−(2�/c2)
[
(v2 + Φ + U/2 + 3P/2�) ∂Φ/∂xα + ∂Π/∂xα

]
= 0, (vα ≈ vα; α, β = 1, 2, 3). (4.2.37)

The contravariant velocity components in the inertial frame are for uniform rotation and axial sym-
metry about the x3-axis equal to

�v = �v(v1, v2, v3) = �v(−Ωx2, Ωx1, 0), (Ω = const). (4.2.38)

The covariant velocity components are obtained with the tensor γαβ of the spatial metric (Eqs.
(5.12.94)-(5.12.96), Landau and Lifschitz 1987, §§84, 88):

vα = γαβvβ = (−gαβ + g0αg0β/g00)vβ ≈ vα, (4.2.39)

because to our order of approximation Eq. (4.2.11) yields gαβ = −δαβ , g0α = 0. In virtue of Eq. (4.2.38)
the velocity is obtained to this order of approximation by

v = (vαvα)1/2 = Ω[(x1)2 + (x2)2]1/2 = Ω�, [�2 = (x1)2 + (x2)2]. (4.2.40)

We introduce a new potential F by the substitution

Φ(α) = vαF. (4.2.41)

Now, Φ(α) satisfies Eq. (4.2.32), so F will satisfy for the particular form of vα from Eq. (4.2.38)
the equations ∇2F + (2/x1) ∂F/∂x1 = ∇2F + (2/x2) ∂F/∂x2 = −4πG�, which assume in cylindrical
(�, ϕ, z)-coordinates the form

∇2F + (2/�) ∂F/∂� = −4πG�, (∂F/∂x1 = ∂F [�(x1, x2), x3]/∂x1 = (∂F/∂�) ∂�/∂x1

= (x1/�) ∂F/∂�; ∂F/∂x2 = (∂F/∂�) ∂�/∂x2 = (x2/�) ∂F/∂�). (4.2.42)

Taking into account Eqs. (4.2.38) and (4.2.40), we can transform the penultimate term of Eq. (4.2.37)
as

vβ ∂[vαΦ − Φ(α)]/∂xβ = −(1/2)(Φ − F ) ∂v2/∂xα + vαvβ(∂Φ/∂xβ − ∂F/∂xβ)

= −(Φ/2) ∂v2/∂xα + Φ(β) ∂vβ/∂xα, (4.2.43)

because (F/2) ∂v2/∂xα = FΩ2xα = Φ(β) ∂vβ/∂xα, vβ ∂Φ/∂xβ = �v · ∇Φ = 0, and vβ ∂F/∂xβ =
�v · ∇F = 0, as can be easily verified by turning to cylindrical coordinates, and observing that v
, vz =
0, Φ = Φ(�, z), F = F (�, z). Since vβ ∂vα/∂xβ = −∂(Ω2�2/2)

/
∂xα and Φ(β) ∂vβ/∂xα +vβ ∂Φ(β)/∂xα =

∂(vβΦ(β))/∂xα = ∂(Ω2�2F )/∂xα, Eq. (4.2.37) becomes

−�[1 + (Ω2�2 + 2Φ + U + P/�)/c2] ∂(Ω2�2/2)/∂xα + ∂[(1 + 2Φ/c2)P ]/∂xα

−� ∂Φ/∂xα + (4�Ω2/c2) ∂(�2F )/∂xα − (2�Ω2Φ/c2) ∂�2/∂xα

−(2�/c2)
[
(Ω2�2 + Φ + U/2 + 3P/2�) ∂Φ/∂xα + ∂Π/∂xα

]
= 0. (4.2.44)

This equation can be transcribed in the slightly different form (Krefetz 1966)

−� ∂(Ω2�2/2)
/
∂xα + ∂P/∂xα − � ∂Φ/∂xα + (1/c2)

{
− � ∂(Ω2�2/2)2

/
∂xα

−�(2Φ + U + P/�)
[
∂(Ω2�2/2)

/
∂xα + ∂Φ/∂xα

]
− 2�Ω2Φ ∂�2/∂xα − 2�Ω2�2 ∂Φ/∂xα

−2P ∂Φ/∂xα + 2 ∂(ΦP )/∂xα + 4�Ω2 ∂(�2F )/∂xα − 2� ∂Π/∂xα
}

= 0, (4.2.45)

or

[1 − (1/c2)(U + P/�)] ∇P = � ∇Φtot, (4.2.46)
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where the total effective potential is equal to

Φtot = Φ + Ω2�2/2 + (1/c2)
[
(Ω2�2/2)2 + 2Ω2�2Φ − 4Ω2�2F + 2Π

]
, (4.2.47)

and we have inserted the Newtonian equation of hydrodynamics (3.1.23) for the post Newtonian term in
the bracket of Eq. (4.2.45):

∂(Ω2�2/2)/∂xα + ∂Φ/∂xα = (1/�) ∂P/∂xα. (4.2.48)

We have already shown in Eqs. (4.1.58), (4.1.84) that under simple isentropic conditions the specific
internal energy U from Eq. (4.2.10) is

U = ε(int)/� = P/(γ − 1)� = nP/�, [n = 1/(γ − 1)]. (4.2.49)

We substitute this equation into Eq. (4.2.46), and take its divergence in spherical coordinates:

(1/r2) ∂[(r2/�) ∂P/∂r]
/
∂r + (1/r2) ∂

{
[(1 − µ2)/�] ∂P/∂µ

}/
∂µ

−[(n + 1)/c2r2]
{
∂[(r2P/�2) ∂P/∂r]

/
∂r + ∂[

(
P (1 − µ2)/�2

)
∂P/∂µ]

/
∂µ
}

= −4πG� + 2Ω2 + (1/c2)
{
4Ω4r2(1 − µ2) + 8Ω2(1 − µ2)

[
r ∂(Φ − F )/∂r − µ ∂(Φ − F )/∂µ

]
+8Ω2(Φ − 2F ) − 8πG�[Φ + (n + 3)P/2�]

}
, (4.2.50)

where we have used Eqs. (4.2.12), (4.2.29). For the evaluation of the Laplacian we consider Eq. (B.39)
under the form

∇2F (r, µ) = ∂2F/∂r2 + (2/r) ∂F/∂r + [(1 − µ2)/r2] ∂2F/∂µ2 − (2µ/r2) ∂F/∂µ. (4.2.51)

Eq. (4.2.42) is transcribed in spherical coordinates as

∂2F/∂r2 + (4/r) ∂F/∂r + [(1 − µ2)/r2] ∂2F/∂µ2 − (4µ/r2) ∂F/∂µ = −4πG�, (4.2.52)

where ∇2F is calculated according to Eq. (4.2.51), and

∂F [r(�, z), µ(�, z)]/∂� = (∂F/∂r) ∂r/∂� + (∂F/∂µ) ∂µ/∂� = (�/r) ∂F/∂r − (µ�/r2) ∂F/∂µ.
(4.2.53)

The basic equations of the problem are given by Eqs. (4.2.12), (4.2.29), (4.2.46), (4.2.47), (4.2.50),
(4.2.52). Unlike to Eq. (4.1.1), we now assume that the rest mass density � obeys the isentropic polytropic
relationship (4.1.83), (Fahlman and Anand 1971a):

P = K�1+1/n, (γ = 1 + 1/n). (4.2.54)

The dimensionless polytropic variables ξ, Θ(ξ, µ), β = Ω2/2πG�0 are introduced via Eqs. (3.2.1),
(3.2.3). With these variables the equation (4.2.46) can be integrated at once in the Newtonian limit [cf.
Eqs. (3.1.74), (3.5.10), (3.8.38)]:

Φ − Φp = (n + 1)K�
1/n
0 Θ − Ω2α2ξ2(1 − µ2)/2, (c → ∞). (4.2.55)

Φp is the Newtonian potential at the poles of the surface, where µ = ±1, Θ = 0. The relativity
parameter from Eq. (4.1.31) is now defined by

q0 = P0/�0c
2 = K�

1/n
0 /c2. (4.2.56)

We rewrite Eq. (4.2.50) in dimensionless form, and eliminate Φ in the post Newtonian terms with the
aid of Eq. (4.2.55):

(1/ξ2) ∂(ξ2 ∂Θ/∂ξ)
/
∂ξ + (1/ξ2) ∂[(1 − µ2) ∂Θ/∂µ]

/
∂µ

= −Θn + β + q0

{
[(n + 1)/2]

[
(1/ξ2) ∂(ξ2 ∂Θ2/∂ξ)

/
∂ξ + (1/ξ2) ∂

(
(1 − µ2) ∂Θ2/∂µ

)/
∂µ
]

−(3n + 5)Θn+1 − 2(n + 1)ϕpΘn
}

+ q0β(n + 1)
[
4(1 − µ2)(ξ ∂Θ/∂ξ − µ ∂Θ/∂µ

−ξ ∂f/∂ξ + µ ∂f/∂µ) + 4Θ − 8f + 4ϕp + ξ2(1 − µ2)Θn/2
]
− 2q0β

2(n + 1)(1 − µ2)ξ2. (4.2.57)
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The dimensionless potentials ϕ and f are connected to Φ and F by

Φ = (n + 1)K�
1/n
0 ϕ = (n + 1)P0ϕ/�0; F = (n + 1)K�

1/n
0 f = (n + 1)P0f/�0. (4.2.58)

In polytropic units Eqs. (4.2.52) and (4.2.29) become, respectively

∂2f/∂ξ2 + (4/ξ) ∂f/∂ξ + [(1 − µ2)/ξ2] ∂2f/∂µ2 − (4µ/ξ2) ∂f/∂µ = −Θn, (4.2.59)

∂2π/∂ξ2 + (2/ξ) ∂π/∂ξ + [(1 − µ2)/ξ2] ∂2π/∂µ2 − (2µ/ξ2) ∂π/∂µ

= −Θn[βξ2(1 − µ2)/4 + ϕp + (3n + 5)Θ/2(n + 1)], (4.2.60)

where

Π = [(n + 1)K�
1/n
0 ]2π(ξ, µ) = [(n + 1)P0/�0]2π(ξ, µ). (4.2.61)

We now seek a solution of Eq. (4.2.57) under the form

Θ(ξ, µ) = θ(ξ) + βΨ(ξ, µ) + q0Σ(ξ, µ), (β, q0 � 1). (4.2.62)

θ(ξ) is the Lane-Emden function of a spherical polytrope. Up to the first order we have

Θn(ξ, µ) ≈ θn(ξ) + βnθn−1(ξ) Ψ(ξ, µ) + q0nθn−1(ξ) Σ(ξ, µ). (4.2.63)

Our comments subsequent to Eq. (3.2.7) remain entirely valid, i.e. near the boundary, where θ ≈ 0
and Θ ≈ βΨ + q0Σ ≈ 0, no break-down of the perturbation method occurs, since all involved quantities
remain small. Θ is expanded further in terms of Legendre polynomials:

Θ(ξ, µ) = θ(ξ) + βψ0(ξ) + q0σ0(ξ) +
∞∑

j=1

[
βAjψj(ξ) + q0Bjσj(ξ)

]
Pj(µ). (4.2.64)

The unknown constants Aj , Bj are introduced into these expansions, because it will be obvious from
Eqs. (4.2.68), (4.2.70) that ψj and σj , (j = 1, 2, 3, ...) are solutions of homogeneous equations, so
Ajψj , Bjσj will also be solutions of these equations. The unknown constants Aj , Bj are determined as in
Sec. 3.2 from the continuity of the gravitational potential and of its radial derivative across the boundary
of the polytrope.

We insert Eq. (4.2.64) into the basic equation (4.2.57), neglecting all terms of order higher than the
first in β and q0 :

(1/ξ2) d(ξ2 dθ/dξ)
/
dξ + (β/ξ2) d(ξ2 dψ0/dξ)

/
dξ + (q0/ξ2) d(ξ2 dσ0/dξ)

/
dξ

+
∞∑

j=1

[
(βAj/ξ2) d(ξ2 dψj/dξ)

/
dξ + (q0Bj/ξ2) d(ξ2 dσj/dξ)

/
dξ
]

Pj(µ)

−
∞∑

j=1

[j(j + 1)/ξ2](βAjψj + q0Bjσj) Pj(µ) = −θn − nθn−1(βψ0 + q0σ0)

−nθn−1
∞∑

j=1

(βAjψj + q0Bjσj) Pj(µ) + β + q0

{
[(n + 1)/2ξ2] d(ξ2 dθ2/dξ)

/
dξ

−(3n + 5)θn+1 − 2(n + 1)ϕpθ
n
}
, (4.2.65)

where we have used Eq. (3.1.40). Equating coefficients with the same β, q0, Pj(µ), we obtain the basic
set of equations:

(1/ξ2) d(ξ2 dθ/dξ)
/
dξ = −θn, (4.2.66)

(1/ξ2) d(ξ2 dψ0/dξ)
/
dξ = −nθn−1ψ0 + 1, (4.2.67)

(1/ξ2) d(ξ2 dψj/dξ)
/
dξ − j(j + 1)ψj/ξ2 = −nθn−1ψj , (j = 1, 2, 3, ...), (4.2.68)
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(1/ξ2) d(ξ2 dσ0/dξ)
/
dξ = −nθn−1σ0 + [(n + 1)/2ξ2] d(ξ2 dθ2/dξ)

/
dξ

−(3n + 5)θn+1 − 2(n + 1)ϕpθ
n, (4.2.69)

(1/ξ2) d(ξ2 dσj/dξ)
/
dξ − j(j + 1)σj/ξ2 = −nθn−1σj , (j = 1, 2, 3, ...). (4.2.70)

The initial conditions for these five equations are obviously the same as in the nonrelativistic rotating
case [cf. Eq. (3.2.6)]:

Θ(0, µ), θ(0) = 1; (∂Θ/∂ξ)ξ=0, (dθ/dξ)ξ=0 = 0; ψj(0), σj(0) = 0;
(dψj/dξ)ξ=0, (dσj/dξ)ξ=0 = 0. (4.2.71)

With Eqs. (3.2.1), (4.2.49) the equation of hydrostatic equilibrium (4.2.46) turns into

[1 − (n + 1)K�
1/n
0 Θ/c2]K(n + 1)�1/n

0 ∇Θ = ∇Φtot, (4.2.72)

which integrates at once (cf. Eq. (4.2.55) if c → ∞):

ϕ = ϕp + Θ − βξ2(1 − µ2)/4 − q0(n + 1)(Θ2/2 + 2π − 2πp)

+q0β(n + 1)ξ2(1 − µ2)(−ϕ + 2f) − q0β
2(n + 1)ξ4(1 − µ2)2/16. (4.2.73)

πp is the value of π(ξ, µ) at the surface poles of the polytrope. We observe that the dimensionless
potential π(ξ, µ) appears only in connection with the first order relativity parameter q0, so we need only
the zero order term π0 of its expansion

π(ξ, µ) = π0(ξ) +
∞∑

j=0

[
βaj(ξ) + q0bj(ξ)

]
Pj(µ). (4.2.74)

Inserting into Eq. (4.2.60), and equating coefficients of equal β, q0, Pj(µ), we get for the zero order
function π0 :

dπ0/dξ2 + (2/ξ) dπ0/dξ = −θn(ξ) [ϕp0 + (3n + 5) θ(ξ)/2(n + 1)], (4.2.75)

where we have split the surface value of the gravitational potential at the poles into its zeroth and first
order parts:

ϕp = ϕp0 + βϕpβ + q0ϕpq. (4.2.76)

Henceforth we distinguish between internal and external gravitational potential, and expand the
internal potential ϕ = ϕi as [cf. Eq. (3.2.13)]

ϕi = U0(ξ) +
∞∑

j=0

[
βVj(ξ) + q0Wj(ξ)

]
Pj(µ). (4.2.77)

We insert into Eq. (4.2.73), confining to first order perturbation terms (µ2 = [2P2(µ) + 1]/3) :

ϕ = ϕi = ϕp0 + βϕpβ + q0ϕpq + θ(ξ) + βψ0(ξ) + q0σ0(ξ) +
∞∑

j=1

[
βAjψj(ξ) + q0Bjσj(ξ)

]
Pj(µ)

−βξ2[1 − P2(µ)]/6 − q0(n + 1)
[
θ2(ξ)/2 + 2π0(ξ) − 2π0(ξ1)

]
. (4.2.78)

To zeroth order we have πp = π0(ξ1), where ξ1 is the radius of the Lane-Emden sphere. We equate
terms with equal β, q0, Pj(µ) between Eqs. (4.2.77) and (4.2.78):

U0(ξ) = ϕp0 + θ(ξ); V0(ξ) = ϕpβ + ψ0(ξ) − ξ2/6; V2(ξ) = A2ψ2(ξ) + ξ2/6;

Vj(ξ) = Ajψj(ξ), (j �= 0, 2); W0(ξ) = ϕpq + σ0(ξ) − (n + 1)[θ2(ξ)/2 + 2π0(ξ) − 2π0(ξ1)];
Wj(ξ) = Bjσj(ξ), (j = 1, 2, 3, ...). (4.2.79)
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Regrouping the terms, the internal potential (4.2.78) becomes

ϕi = ϕp0 + θ(ξ) + β

{
ϕpβ + ψ0(ξ) − ξ2[1 − P2(µ)]/6 +

∞∑
j=1

Ajψj(ξ) Pj(µ)
}

+q0

{
ϕpq + σ0(ξ) − (n + 1)[θ2(ξ)/2 + 2π0(ξ) − 2π0(ξ1)] +

∞∑
j=1

Bjσj(ξ) Pj(µ)
}

. (4.2.80)

The external potential ϕe(ξ, µ) satisfies the Laplace equation ∇2ϕe = 0, and its first order expansion
is [cf. Eqs. (3.1.58), (3.2.33)]:

ϕe = k0/ξ +
∞∑

j=0

[ξ−j−1(βk1j + q0�1j)] Pj(µ), (k0, k1j , �1j = const). (4.2.81)

The continuity conditions for the gravitational potential on the boundary

Ξ1(µ) = ξ1 +
∞∑

j=0

(βsj + q0tj) Pj(µ), (sj , tj = const), (4.2.82)

are

ϕi(Ξ1) = ϕe(Ξ1); (∂ϕi/∂ξ)ξ=Ξ1 = (∂ϕe/∂ξ)ξ=Ξ1 . (4.2.83)

On the boundary, the functions from Eq. (4.2.64) are approximated by

θ(Ξ1) ≈ θ(ξ1) + (Ξ1 − ξ1) θ′(ξ1) = θ(ξ1) + θ′(ξ1)
∞∑

j=0

(βsj + q0tj) Pj(µ);

θ′(Ξ1) ≈ θ′(ξ1) + θ′′(ξ1)
∞∑

j=0

(βsj + q0tj) Pj(µ); ψk(Ξ1) ≈ ψk(ξ1) + ψ′
k(ξ1)

∞∑
j=0

(βsj + q0tj) Pj(µ);

σk(Ξ1) ≈ σk(ξ1) + σ′
k(ξ1)

∞∑
j=0

(βsj + q0tj) Pj(µ), (k = 0, 1, 2, ...). (4.2.84)

Up to the first order, the surface value of Θ(ξ, µ) becomes in virtue of Eq. (4.2.84) equal to

Θ(Ξ1, µ) = θ(Ξ1) + βψ0(Ξ1) + q0σ0(Ξ1) +
∞∑

j=1

[
βAjψj(Ξ1) + q0Bjσj(Ξ1)

]
Pj(µ) ≈ θ(ξ1)

+θ′(ξ1)
∞∑

j=0

(βsj + q0tj) Pj(µ) + βψ0(ξ1) + q0σ0(ξ1) +
∞∑

j=1

[βAjψj(ξ1) + q0Bjσj(ξ1)] Pj(µ) = 0.

(4.2.85)

The coefficients of βPj and q0Pj must be zero, so the figure constants are equal to [cf. Eq. (3.2.38)]

s0 = −ψ0(ξ1)/θ′(ξ1); sj = −Ajψj(ξ1)/θ′(ξ1);
t0 = −σ0(ξ1)/θ′(ξ1); tj = −Bjσj(ξ1)/θ′(ξ1), (j = 1, 2, 3, ...). (4.2.86)

The boundary conditions (4.2.83) read via Eqs. (4.2.80), (4.2.81), (4.2.84) as

ϕi(Ξ1, µ) = ϕp0 + β[ϕpβ − ξ2
1/6 + ξ2

1P2(µ)/6] + q0ϕpq, (4.2.87)

ϕe(Ξ1, µ) = k0/ξ1 +
∞∑

j=0

[(−k0/ξ2
1)(βsj + q0tj) + ξ−j−1

1 (βk1j + q0�1j)] Pj(µ), (4.2.88)
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(∂ϕi/∂ξ)ξ=Ξ1 = θ′(ξ) − [2θ′(ξ1)/ξ1]
∞∑

j=0

(βsj + q0tj) Pj(µ) + β

{
ψ′

0(ξ1) − ξ1[1 − P2(µ)]/3

+
∞∑

j=1

Ajψ
′
j(ξ1) Pj(µ)

}
+ q0

[
σ′

0(ξ1) − 2(n + 1)π′
0(ξ1) +

∞∑
j=1

Bjσ
′
j(ξ1) Pj(µ)

]
, (4.2.89)

(∂ϕe/∂ξ)ξ=Ξ1 = −k0/ξ2
1 +

∞∑
j=0

[
(2k0/ξ3

1)(βsj + q0tj) − (j + 1)ξ−j−2
1 (βk1j + q0�1j)

]
Pj(µ), (4.2.90)

by inserting the Lane-Emden equation (2.3.87): θ′′(ξ1) = −2θ′(ξ1)/ξ1, (θn(ξ1) = 0, 0 < n < 5). Equating
coefficients with the same β, q0, Pj , we find by virtue of Eq. (4.2.83):

ϕp0 = −ξ1θ
′(ξ1); ϕpβ = ξ2

1/2 − ψ0(ξ1) − ξ1ψ
′
0(ξ1); ϕpq = −σ0(ξ1) − ξ1σ

′
0(ξ1)

+2(n + 1)ξ1π
′
0(ξ1); k0 = −ξ2

1θ′(ξ1); k10 = ξ2
1 [ξ1/3 − ψ′

0(ξ1)]; �10 = ξ2
1 [2(n + 1)π′

0(ξ1) − σ′
0];

k12 = ξ5
1 [ξ1ψ

′
2(ξ1) − 2ψ2(ξ1)]

/
6[3ψ2(ξ1) + ξ1ψ

′
2(ξ1)]; A2 = −5ξ2

1

/
6[3ψ2(ξ1) + ξ1ψ

′
2(ξ1)]. (4.2.91)

The remaining constants Aj , Bj , k1j , �1j are solutions of the homogeneous systems

Ajψj(ξ1) − k1j/ξj+1
1 = 0; Ajψ

′
j(ξ1) + (j + 1)k1j/ξj+2

1 = 0, (j = 1, 3, 4, ...), (4.2.92)

Bjσj(ξ1) − �1j/ξj+1
1 = 0; Bjσ

′
j(ξ1) + (j + 1)�1j/ξj+2

1 = 0, (j = 1, 2, 3, ...). (4.2.93)

Since the determinants ξ−j−2
1 [(j + 1)ψj(ξ1) + ξ1ψ

′
j(ξ1)] and ξ−j−2

1 [(j + 1)σj(ξ1) + ξ1σ
′
j(ξ1)] of these

systems are nonzero [cf. Eq. (3.2.43)], they possess only the trivial solutions

Aj , k1j = 0 if j = 1, 3, 4, ..., and Bj , �1j = 0 if j = 1, 2, 3, ... (4.2.94)

Thus, the first order solution (4.2.64) for the post Newtonian rotating polytrope is

Θ(ξ, µ) = θ(ξ) + βψ0(ξ) − 5βξ2
1ψ2(ξ) P2(µ)

/
6[3ψ2(ξ1) + ξ1ψ

′
2(ξ1)] + q0σ0(ξ). (4.2.95)

And the surface coordinate (4.2.82) is

Ξ1(µ) = ξ1 − βψ0(ξ1)/θ′(ξ1) + 5βξ2
1ψ2(ξ1) P2(µ)

/
6θ′(ξ1)[3ψ2(ξ1) + ξ1ψ

′
2(ξ1)] − q0σ0(ξ1)/θ′(ξ1).

(4.2.96)

In the nonrelativistic case (q0 = 0) all relevant equations become equal to those quoted in Sec. 3.2.
The conditions for critical rotation (i.e. for mass loss from the equatorial bulge of the post Newtonian
polytrope) are given as in the nonrelativistic case by [cf. Eqs. (3.6.24), (3.8.158)]

Θ(Ξce, 0) = 0; [∂Θ(ξ, 0)]ξ=Ξce
= 0. (4.2.97)

Ξce is the value at the equator of the surface coordinate Ξ1 for critical rotation. The values of β = βc

and Ξce for critical rotation if q0 = 0.008 are shown in the two last lines of Table 4.2.1. The agreement of
Fahlman’s and Anand’s (1971a) values (βc = 3.76 × 10−3, Ξce = 9.90 if n = 3) with those of Miketinac
and Barton (1972) (βc = 4.11 × 10−3, Ξce = 9.61 if n = 3) occurs only in the first digit. Tooper (1965,
1966b) has quoted a value of q0 ≈ 0.01, above which the post Newtonian approximation is no longer
adequate.

The largest post Newtonian correction σ0 is a purely radial effect, but for comparable values of β and
q0, the post Newtonian terms are at least as important as the rotation terms, particularly for the lower
polytropic indices. An immediate application to the theory are rotating supermassive stars (Fahlman
and Anand 1971b), and there is still a wide range of physical problems, including orbital perturbations
of satellites, that can be investigated with the present theory. However, as stressed by Eqs. (4.2.49),
(4.2.54), most equations are valid only under special isentropic conditions.
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Table 4.2.1 Surface values of the post Newtonian functions σ0, σ
′
0, π0, π

′
0 according to Fahlman and Anand

(1971a). The surface values of ψ0, ψ
′
0, ψ2, ψ

′
2 have already been quoted in Table 3.2.1. The last two lines show

values of the critical rotation parameter βc and of the critical equatorial coordinate Ξce if q0 = 0.008. The value
of π0(ξ1) is equal to Φ00(ξ1) + B00, (B00 = const) from Table II of Fahlman and Anand (1971a). a + b means
a × 10b.

n 1 2 2.5 3 3.5

σ0(ξ1) 5.71 2.54 1.42 4.94−1 −2.65−1
σ′

0(ξ1) 3.56 1.49 9.01−1 5.03−1 2.45−1
π0(ξ1) 2.61 9.20−1 6.00−1 3.85−1 2.36−1
π′

0(ξ1) −7.16−1 −2.11−1 −1.12−1 −5.59−2 −2.47−2
βc 8.25−2 2.15−2 9.56−3 3.76−3 1.18−3
Ξce 4.43 5.96 7.53 9.90 1.42+1

4.2.3 Stoeckly’s Method for Post Newtonian Rotating Polytropes

Miketinac and Barton (1972) have applied Stoeckly’s (1965) method from Sec. 3.8.2 to post Newtonian
polytropes with arbitrary high rotation. This theory belongs to approach (ii) from the Sec. 4.2.1. As
already noted in Eq. (3.8.54), Stoeckly’s (1965) method is only applicable if 1 ≤ n ≤ 5. The relevant
equations of the problem are given as before by Eqs. (4.2.12), (4.2.29), (4.2.46), (4.2.52). As in the
preceding section we expand the potentials Φ and Π in series of Legendre polynomials Pj(µ), while the
potential F is expanded in a series of Gegenbauer polynomials G

3/2
j (µ) of index 3/2, as suggested by the

form of Eq. (4.2.52), [cf. Eqs. (3.10.152)-(3.10.156)]:

Φ(r, µ) =
∞∑

j=0

Φj(r) Pj(µ); F (r, µ) =
∞∑

j=0

Fj(r) G
3/2
j (µ); Π(r, µ) =

∞∑
j=0

Πj(r) Pj(µ). (4.2.98)

Outside the polytrope we have � = 0, and Eqs. (4.2.12), (4.2.52), (4.2.29) become

∇2Φ = 0; ∇2F + (2/r) ∂F/∂r − (2µ/r2) ∂F/∂µ = 0; ∇2Π = 0. (4.2.99)

We insert the expansions (4.2.98) into Eq. (4.2.99), and equate coefficients of equal Pj(µ) and G
3/2
j (µ) :

d(r2 dΦj/dr)
/
dr − j(j + 1)Φj = 0, (4.2.100)

d(r2 dFj/dr)
/
dr + 2r dFj/dr − j(j + 3)Fj = 0, (4.2.101)

d(r2 dΠj/dr)
/
dr − j(j + 1)Πj = 0. (4.2.102)

We have used Eqs. (3.1.40), (3.10.156), and because of equatorial symmetry there is j = 0, 2, 4, ...
Since the potentials Φ, F, Π, together with their derivatives, must remain finite as r → ∞, Eqs. (4.2.100)-
(4.2.102) have the solutions

Φj , Πj ∝ r−j−1; Fj ∝ r−j−3, (r → ∞). (4.2.103)

If j = 0, the solution of Eqs. (4.2.100)-(4.2.102) is Φ0, Π0 ∝ r−1 + const, F0 ∝ r−3 + const, and we
normalize the potentials in such a way that const = 0. So, Eq. (4.2.103) subsists also in this case. In
place of Eq. (4.2.103) we express the boundary conditions more conveniently under the equivalent form

(dΦj/dr)r=rH
+ (j + 1) Φj(rH)/rH = 0; (dFj/dr)r=rH

+ (j + 3) Fj(rH)/rH = 0;
(dΠj/dr)r=rH

+ (j + 1) Πj(rH)/rH = 0, (4.2.104)

where rH is some radius completely outside the polytrope. Eq. (4.2.46) integrates at once by using Eqs.
(4.2.47) and (4.2.49), [U + P/� = (n + 1)P/�; ∇P/� = (n + 1)K ∇�1/n = (n + 1) ∇(P/�)] :

(n + 1)P/� = Φ + Ω2r2(1 − µ2)/2 + (1/c2)
{
(n + 1)2P 2/2�2 + [Ω2r2(1 − µ2)/2]2

+2Ω2Φr2(1 − µ2) − 4Ω2Fr2(1 − µ2) + 2Π
}
− Φp − 2Πp/c2. (4.2.105)
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p-indexed quantities denote, as before, values at the surface poles. Similarly to Eq. (3.8.42), Miketinac
and Barton (1972) introduce the dimensionless quantities

Θ∗(x, µ) = [(n + 1)K/Λ]�1/n; x = [4πGΛn−1/(n + 1)nKn]1/2r;

ω = {[(n + 1)K/Λ]n/4πG}1/2Ω; ϕ = Φ/Λ; f = F/Λ; π∗ = Π/Λ2. (4.2.106)

Obviously, � = �0Θn(ξ, µ) = [Λ/(n+1)K]nΘ∗n(x, µ), and therefore Λ = (n+1)K�
1/n
0 /Θ∗(0, µ), since

Θ(0, µ) = 1. Eqs. (4.2.12), (4.2.52), (4.2.29), (4.2.105) become in the new variables, (Λ = Φp + 2Πp/c2) :

∇ϕ = −Θ∗n; ∇2f + (2/x) ∂f/∂x − (2µ/x2) ∂f/∂µ = −Θ∗n;

∇π∗ = −Θ∗n[Ω2x2(1 − µ2) + ϕ + (n + 3)Θ∗/2(n + 1)]; Θ∗ = ϕ + ω2x2(1 − µ2)/2

+p0

{
Θ∗2/2 + [ω2x2(1 − µ2)/2]2 + 2ω2ϕx2(1 − µ2) − 4ω2fx2(1 − µ2) + 2π∗}− 1. (4.2.107)

To the order of approximation we are working, the quantity p0 = Λ/c2 is equal to

p0 = Λ/c2 = Φp/c2 + 2Πp/c4 ≈ Φp/c2, (4.2.108)

being connected to the relativity parameter from Eq. (4.2.56) by

q0 = P0/�0c
2 = K�

1/n
0 /c2 = ΛΘ∗(0, µ)

/
c2(n + 1) = p0Θ∗(0, µ)

/
(n + 1). (4.2.109)

In dimensionless form the boundary conditions (4.2.104) read

(dϕj/dx)x=xH
+ (j + 1) ϕj(xH)/xH = 0; (dfj/dx)x=xH

+ (j + 3) fj(xH)/xH = 0;
(dπ∗

j /dx)x=xH
+ (j + 1) π∗

j (xH)/xH = 0, (4.2.110)

where ϕj = Φj/Λ, fj = Fj/Λ, π∗
j = Πj/Λ2, and xH is the value of x corresponding to r = rH .

In order to solve the system (4.2.107) with the boundary conditions (4.2.110), Miketinac and Barton
(1972) cast the equations, as in Sec 3.8.2, under the form of finite differences, and solve by a variant of
the Gauss elimination method. The conditions for critical rotation are given by Eq. (4.2.97). The results
for q0 = 0.008 are βc = Ω2

c/2πG�0 = 4.48 × 10−2, 4.11 × 10−3 and ξ = Ξce = 5.05, 9.61 if n = 1.5 and 3,
respectively, as already noted for n = 3 within the context of Table 4.2.1.

4.2.4 Slowly Rotating, Fully Relativistic Polytropes

The investigations from this and the next subsection belong to approach (iii) mentioned in Sec. 4.2.1,
involving the first and second approximation with respect to angular velocity Ω, the tetrad formulation
of general relativity, and bimetric gravitation. Sedrakyan and Chubaryan (1968a) introduce “spherical”
coordinates x1 = r, x2 = λ, x3 = ϕ, giving up the equality of g11 and g22 from Eq. (4.2.9). They take
instead of the metric tensor gjk four new unknown functions κ, µ, ν, ω, which depend on r and λ, and are
more suitable for the calculation of the Ricci curvature tensor Rk

j :

g00 = exp ν − ω2 expµ sin2 λ; g11 = − expκ; g22 = − exp ν;

g33 = g22 sin2 λ = − expµ sin2 λ; g03 = −ω expµ sin2 λ. (4.2.111)

In the new notations, the four-dimensional interval is written under the form

ds2 = g00 dt2 + g11 dr2 + g22 dλ2 + g33 dϕ2 + 2g03 dt dϕ = (exp ν − ω2 expµ sin2 λ) dt2

− expκ dr2 − expµ (dλ2 + sin2 λ dϕ2) − 2ω expµ sin2 λ dt dϕ. (4.2.112)

Since the metric (4.2.112) must be invariant under the transformation t → −t, and because the angular
velocity Ω changes sign under this transformation, it is clear that all components of the metric tensor
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other than ω, are even functions of Ω, and ω is an odd function of Ω. The nonzero Christoffel symbols
from Eq. (4.1.15) calculated by Sedrakyan and Chubaryan (1968a) are

Γ1
00 = (1/2)(∂ν/∂r) exp(ν − κ) − (ω/2)(2 ∂ω/∂r − ω ∂µ/∂r) exp(µ − κ) sin2 λ;

Γ2
00 = (1/2)(∂ν/∂λ) exp(ν − µ) − ω

[
ω cot λ + ∂ω/∂λ + (ω/2) ∂µ/∂λ

]
sin2 λ;

Γ0
10 = (1/2)

[
∂ν/∂r − ω(∂ω/∂r) exp(µ − ν) sin2 λ

]
; Γ0

20 = (1/2)
[
∂ν/∂λ

−ω(∂ω/∂λ) exp(µ − ν) sin2 λ
]
; Γ3

10 = (1/2) (∂ω/∂r + ω ∂µ/∂r − ω ∂ν/∂r)

+(ω2/2)(∂ω/∂r) exp(µ − ν) sin2 λ; Γ1
30 = −(1/2) exp(µ − κ) (∂ω/∂r + ω ∂µ/∂r) sin2 λ;

Γ2
30 = −(1/2)(∂ω/∂λ + ω ∂µ/∂λ + 2ω cot λ) sin2 λ; Γ0

13 = −(1/2)(∂ω/∂r) exp(µ − ν) sin2 λ;

Γ0
23 = −(1/2)(∂ω/∂λ) exp(µ − ν) sin2 λ; Γ1

11 = (1/2) ∂κ/∂r; Γ2
11 = −(1/2)(∂κ/∂λ) exp(κ − µ);

Γ1
12 = (1/2) ∂κ/∂λ; Γ2

12 = (1/2) ∂µ/∂r; Γ3
13 = (1/2)

[
∂µ/∂r + ω(∂ω/∂r) exp(µ − ν) sin2 λ

]
;

Γ1
22 = −(1/2)(∂µ/∂r) exp(µ − κ); Γ2

22 = (1/2) ∂µ/∂λ; Γ1
33 = −(1/2)(∂µ/∂r) exp(µ − κ) sin2 λ;

Γ2
33 = −(1/2)(∂µ/∂λ + 2 cot λ) sin2 λ. (4.2.113)

As already outlined in Eq. (4.2.6), the angular velocity of an axially rotating fluid element, as seen
from infinity, is Ω = dϕ/dt = u3/u0, and u1, u2 = 0. For the case of uniform rotation Eq. (4.1.12) writes

u0u
0 + u3u

3 = g00(u0)2 + 2g03u
0u3 + g33(u3)2 = (u0)2(g00 + 2g03Ω + g33Ω2) = 1. (4.2.114)

The angular velocity Ω and the metric tensor gjk completely specify the four-velocity (Hartle and
Sharp 1967):

u0 = 1
/
(g00 + 2g03Ω + g33Ω2)1/2 = 1/F ; u3 = Ω

/
(g00 + 2g03Ω + g33Ω2)1/2 = Ω/F ;

u1, u2 = 0, [F = (g00 + 2g03Ω + g33Ω2)1/2]. (4.2.115)

For the metric (4.2.112) the components of the four-velocity are

u0 = ut = [exp ν − (ω + Ω)2 expµ sin2 λ]−1/2; u3 = uϕ = Ωut; u1 = ur = 0; u2 = uλ = 0.
(4.2.116)

The nonzero components of the energy-momentum tensor (4.1.11) are

T 0
0 = (P + �r)(u0)2[exp ν − ω(ω + Ω) expµ sin2 λ] − P ; T 1

1 = T 2
2 = −P ;

T 3
3 = −(P + �r)(u0)2Ω(ω + Ω) expµ sin2 λ − P ; T 3

0 = (P + �r)(u0)2Ω

×[exp ν − ω(ω + Ω) expµ sin2 λ]; T 0
3 = −(P + �r)(u0)2(ω + Ω) expµ sin2 λ, (4.2.117)

where εr = �r, since we have assumed c, G = 1. To illustrate the complexity of the problem, we write
down the (0, 0), (1, 1), (2, 2), (3, 3), (0, 3), (2, 1)-components of the Einstein equations (4.1.4), as derived
by Sedrakyan and Chubaryan (1968a) with the Ricci tensor (4.2.24), the Christoffel symbols (4.2.113),
and the energy-momentum tensor (4.2.117):

2R0
0 − R = − exp(−κ) [2 ∂2µ/∂r2 + 3(∂µ/∂r)2/2 − (∂µ/∂r) ∂κ/∂r]

− exp(−µ) [∂2κ/∂λ2 + ∂2µ/∂λ2 + (∂κ/∂λ)2/2 + (∂µ/∂λ + ∂κ/∂λ) cot λ − 2]

− exp(−ν)
{
ω(∂ω/∂λ) [∂µ/∂λ + (1/2)(∂κ/∂λ − ∂ν/∂λ)] + (∂ω/∂λ)2/2 + ω ∂2ω/∂λ2

+3ω(∂ω/∂λ) cot λ
}

sin2 λ − exp(µ − ν − κ)
{
ω(∂ω/∂r)[2 ∂µ/∂r

−(1/2)(∂ν/∂r + ∂κ/∂r)] + (∂ω/∂r)2/2 + ω ∂2ω/∂r2
}

sin2 λ

= 16π
{
(P + �r)[exp ν − ω(ω + Ω) expµ sin2 λ]

/
[exp ν − (ω + Ω)2 expµ sin2 λ] − P

}
;

2R1
1 − R = − exp(−κ) [(∂µ/∂r)2/2 + (∂µ/∂r) ∂ν/∂r]

− exp(−µ) [∂2ν/∂λ2 + ∂2µ/∂λ2 + (1/2)(∂ν/∂λ)2 − 2 + (∂µ/∂λ + ∂ν/∂λ) cot λ]

+(1/2) exp(−ν) (∂ω/∂λ)2 sin2 λ − (1/2) exp(µ − ν − κ) (∂ω/∂r)2 sin2 λ = −16πP ;
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2R2
2 − R = − exp(−κ)

{
∂2µ/∂r2 + ∂2ν/∂r2 + (1/2)[(∂ν/∂r)2 + (∂µ/∂r)2]

−(1/2)(∂κ/∂r)(∂ν/∂r + ∂µ/∂r) + (1/2)(∂µ/∂r) ∂ν/∂r
}

− exp(−µ) [(1/2)(∂µ/∂λ)(∂κ/∂λ + ∂ν/∂λ) + (1/2)(∂ν/∂λ) ∂κ/∂λ + (∂ν/∂λ + ∂κ/∂λ) cot λ]

−(1/2) exp(−ν) (∂ω/∂λ)2 sin2 λ + (1/2) exp(µ − ν − κ) (∂ω/∂r)2 sin2 λ = −16πP ;

2R3
3 − R = − exp(−κ)

{
∂2µ/∂r2 + ∂2ν/∂r2 + (1/2)[(∂ν/∂r)2 + (∂µ/∂r)2]

−(1/2)(∂κ/∂r)(∂ν/∂r + ∂µ/∂r) + (1/2)(∂µ/∂r) ∂ν/∂r
}

− exp(−µ)
{
∂2κ/∂λ2 + ∂2ν/∂λ2 + (1/2)[(∂κ/∂λ)2 + (∂ν/∂λ)2

+(∂κ/∂λ) ∂ν/∂λ − (∂κ/∂λ) ∂µ/∂λ − (∂µ/∂λ) ∂ν/∂λ]
}

+ exp(−ν)
{
(3/2)(∂ω/∂λ)2 + ω(∂ω/∂λ)[∂µ/∂λ + (1/2)(∂κ/∂λ − ∂ν/∂λ)]

+ω ∂2ω/∂λ2 + 3ω(∂ω/∂λ) cot λ
}

sin2 λ + exp(µ − ν − κ)
{
(3/2)(∂ω/∂r)2

+ω(∂ω/∂r)[2 ∂µ/∂r − (1/2)(∂κ/∂r + ∂ν/∂r)] + ω ∂2ω/∂r2
}

sin2 λ

= −16π
{
(P + �r)Ω(ω + Ω) expµ sin2 λ

/
[exp ν − (ω + Ω)2 expµ sinλ2] − P

}
;

2R3
0 = − exp(−κ)

{
ω[∂2ν/∂r2 − ∂2µ/∂r2 − (∂µ/∂r)2 + (∂ν/∂r)2/2 − (∂κ/∂r)(∂ν/∂r)/2

+(∂κ/∂r)(∂µ/∂r)/2 + (∂µ/∂r)(∂ν/∂r)/2] + (∂ω/∂r)[(1/2)(∂κ/∂r + ∂ν/∂r) − 2 ∂µ/∂r]

−∂2ω/∂r2
}
− exp(−µ) [−∂2ω/∂λ2 + 2ω − 3(∂ω/∂λ) cot λ + ω(∂2ν/∂λ2 − ∂2µ/∂λ2)

+(ω/2)(∂ν/∂λ)2 − (ω/2)(∂µ/∂λ)(∂κ/∂λ + ∂ν/∂λ) + (1/2)(∂ω/∂λ)(∂ν/∂λ − ∂κ/∂λ − 2 ∂µ/∂λ)

+(ω/2)(∂κ/∂λ) ∂ν/∂λ − ω(∂κ/∂λ + ∂µ/∂λ) cot λ] + exp(−ν)
{
ω2 ∂2ω/∂λ2 + 2ω(∂ω/∂λ)2

+3ω2(∂ω/∂λ) cot λ + ω2(∂ω/∂λ)[∂µ/∂λ + (1/2)(∂κ/∂λ − ∂ν/∂λ)]
}

sin2 λ − exp(µ − ν − κ)

×
[
− ω2 ∂2ω/∂r2 − 2ω(∂ω/∂r)2 − 2ω2(∂ω/∂r) ∂µ/∂r + (ω2/2)(∂ω/∂r)(∂κ/∂r + ∂ν/∂r)

]
sin2 λ

= 16π(P + �r)Ω[exp ν − ω(ω + Ω) expµ sin2 λ]
/
[exp ν − (ω + Ω)2 expµ sin2 λ];

R1
2 = −(1/2) exp(−κ) [(1/2)(∂κ/∂λ)(∂µ/∂r + ∂ν/∂r) + (1/2)(∂ν/∂λ)(∂µ/∂r − ∂ν/∂r)

−∂2µ/∂r∂λ − ∂2ν/∂r∂λ] − (1/2) exp(µ − ν − κ) (∂ω/∂r)(∂ω/∂λ) sin2 λ = 0, (c, G = 1).
(4.2.118)

Subsequently to Eq. (4.2.112) we have outlined that κ, ν, µ are even functions of Ω, so they remain
equal to their Schwarzschild values κ = κ(r), ν = ν(r), expµ = r2 if we restrict ourselves to first order
terms in Ω. Only ω will depend on the first power of Ω, and in this approximation the (0, 0), (3, 3), (0, 3)-
components of Eq. (4.2.118) become, respectively

exp(−κ) [(1/r) dκ/dr − 1/r2] + 1/r2 = 8π�r; exp(−κ) [(1/r) dν/dr + 1/r2] − 1/r2 = 8πP,
(4.2.119)

exp(−κ)
{
ω[d2ν/dr2 + (1/2)(dν/dr)2 − (1/2)(dκ/dr) dν/dr + (1/r)(dκ/dr + dν/dr) − 2/r2]

+(∂ω/∂r)[(1/2)(dκ/dr + dν/dr) − 4/r] − ∂2ω/∂r2
}

+ (1/r2)[−∂2ω/∂λ2 − 3(∂ω/∂λ) cot λ + 2ω]
= −16πΩ(P + �r). (4.2.120)

Sedrakyan and Chubaryan (1968b) ignore the angular dependence of ω(r, λ), since the distortions
remain small if Ω � 1. Instead of the (0,3)-component from Eq. (4.2.120), Papoyan et al. (1969)
use for computational reasons the (3, 0)-component of the Einstein equations (4.1.4) in the first order
approximation

R0
3 = −(1/2) exp(−ν − κ) r2

{
d2ω/dr2 − (dω/dr)[(1/2)(dκ/dr + dν/dr) − 4/r]

}
sin2 λ = 8πT 0

3 ,

(ω = ω(r); c, G = 1), (4.2.121)

where the first order approximation of the energy-momentum tensor (4.2.117) is

T 0
3 ≈ −(P + �r)r2(ω + Ω) exp(−ν) sin2 λ, (expµ ≈ r2). (4.2.122)



4.2.4 Slowly Rotating, Fully Relativistic Polytropes 323

Inserting this into Eq. (4.2.121), we obtain

exp(−κ)
{
d2ω/dr2 − (dω/dr)[(1/2)(dκ/dr + dν/dr) − 4/r]

}
= 16π(P + �r)(ω + Ω), [ω = ω(r)], (4.2.123)

and the system to be solved now consists of Eqs. (4.2.119) and (4.2.123). We observe that the equations
(4.2.119) are just equal to the Schwarzschild equations (4.1.6) and (4.1.7) for the nonrotating sphere, so
we can replace the equations (4.2.119) by Eq. (4.1.26)

dMr/dr = 4π�rr
2, (4.2.124)

and by the Tolman-Oppenheimer-Volkoff equation (4.1.27)

dP/dr = −4πr2(P + �r)(P + Mr/4πr3)
/
(r − 2Mr), (c, G = 1). (4.2.125)

Let us now introduce the relativistic rotation parameter

βr = Ω2/2πG�r0, (G = 1), (4.2.126)

and the new variable

Q = Q(r) = [ω(r) + Ω]/β1/2
r . (4.2.127)

Eq. (4.2.123) becomes

d2Q/dr2 + [4/r − 4πr2(P + �r)
/
(r − 2Mr)] dQ/dr − 16πrQ(P + �r)

/
(r − 2Mr) = 0, (4.2.128)

where we have also used Eq. (4.1.22), written under the form

exp(−κ) = 1 − 2Mr/r, (c, G = 1), (4.2.129)

together with Eq. (4.1.18):

dν/dr = −2(dP/dr)
/
(P + �r). (4.2.130)

Outside the configuration Eq. (4.2.128) assumes the form

d2Q/dr2 + (4/r) dQ/dr = 0, (P, �r = 0), (4.2.131)

with the elementary solution Q = A1 + A2/r3, (A1, A2 = const). From Eq. (4.2.127) results ω =
−Ω+β

1/2
r (A1 +A2/r3). Since at infinite distance the metric becomes Galilean, we get from Eq. (4.2.111):

g03 = −ω expµ sin2 λ = −ωr2 sin2 λ = 0, or ω → 0 if r → ∞. Thus A1 = Ω/β
1/2
r , and the external solution

of ω is (Papoyan et al. 1969)

ω = β1/2
r A2/r3, (r ≥ r1). (4.2.132)

The polytropic variables are introduced by [cf. Eqs. (4.1.29), (4.1.31), (4.1.39)]

r = [(n + 1)K/4π�
1−1/n
r0 ]1/2ξ = [(n + 1)P0/4π�2

r0]
1/2ξ = αξ; �r = �r0θ

n
r ;

η = η(ξ) = Mr(r)/4π�r0α
3; q0 = P0/�r0 = K�

1/n
r0 , (c, G = 1). (4.2.133)

Eqs. (4.2.124), (4.2.125), (4.2.128) are brought into dimensionless form [cf. Eqs. (4.1.37), (4.1.38)]:

dη/dξ = ξ2θn
r , (4.2.134)

ξ2 dθr/dξ = −(1 + q0θr)[η(ξ) + q0ξ
3θn+1

r ]
/
[1 − 2q0(n + 1)η(ξ)/ξ], (4.2.135)

d2Q/dξ2 +
{
4/ξ − q0(n + 1)(1 + q0θr)ξθn

r

/
[1 − 2q0(n + 1)η/ξ]

}
dQ/dξ

−4q0(n + 1)(1 + q0θr)θn
r Q

/
[1 − 2q0(n + 1)η/ξ] = 0. (4.2.136)
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Table 4.2.2 Surface coordinate ξ1 and true dimensionless surface radius ξr1 of a spherical relativistic
polytrope according to Sarkisyan and Chubaryan (1977), (cf. Table 4.1.1). For critical rotation Ξrce, Ξrcp denote
the true relativistic dimensionless surface radii in the equatorial and polar direction, respectively [Eq. (4.2.143)].
The relativity parameter q0 = P0/�r0, (c = 1) is from Eq. (4.2.133), and the critical oblateness is given by
fc = (Ξrce − Ξrcp)/Ξrce. aE + b means a × 10b.

n q0 ξ1 ξr1 Ξrce Ξrcp fc

0.2 2.277 2.718 2.953 2.362 2.00 E−1
1 0.4 1.915 2.461 2.778 2.172 2.18 E−1

0.5 1.800 2.328 2.598 2.158 1.69 E−1

0.2 2.699 3.198 3.423 2.925 1.45 E−1
l.5 0.4 2.361 3.071 3.326 2.795 1.60 E−1

0.6 2.219 2.978 3.226 2.782 1.38 E−1

0.2 3.398 4.140 4.318 3.836 1.12 E−1
2 0.4 3.248 4.188 4.415 3.938 1.08 E−1

0.6 3.400 4.550 4.748 4.291 9.63 E−2

0.2 4.724 5.688 5.854 5.381 8.08 E−2
2.5 0.4 5.520 6.950 7.220 6.732 6.76 E−2

0.6 7.730 9.750 9.980 9.250 7.31 E−2
0.7 9.530 11.92 12.15 11.92 1.89 E−2

0.1 6.834 7.608 8.051 7.424 7.79 E−2
0.2 7.951 8.980 9.381 8.620 8.11 E−2

3 0.4 18.10 20.88 21.56 20.36 5.57 E−2
0.6 90.99 94.26 105.7 93.28 1.18 E−1
0.7 176.9 182.1 211.0 184.3 1.27 E−1

Analysis of the behaviour of Eq. (4.2.136) near the origin shows that Q(ξ) ≈ C +O(ξ2), (C = const),
(Sedrakyan and Chubaryan 1968b), so the initial conditions for the system (4.2.134)-(4.2.136) are [cf.
Eq. (4.1.41)]:

θr(0) = 1; (dθr/dξ)ξ=0 = 0; η(0) = 0; Q(0) = C; (dQ/dξ)ξ=0 = 0. (4.2.137)

The unknown constants A2 and C from Eqs. (4.2.132), (4.2.137) can be determined in a first approx-
imation from the continuity of Q and of its radial derivative across the sphere ξ = ξ1. Taking Q(ξ) =
Cf(ξ), (f(0) = 1), and inserting for Q from Eqs. (4.2.127), (4.2.132), we get (Q(ξ) = A2/α3ξ3 + Ω/β

1/2
r

if ξ ≥ ξ1) :

Cf(ξ1) = A2/α3ξ3
1 + Ω/β1/2

r ; Cf ′(ξ1) = −3A2/α3ξ4
1 , (4.2.138)

and

C = 3(2π�r0)1/2
/
[3f(ξ1) + ξ1f

′(ξ1)]; A2 = −Cα3ξ4
1f ′(ξ1)/3. (4.2.139)

Sarkisyan and Chubaryan (1977) use the tetrad formulation of general relativity for the study of rotat-
ing relativistic polytropes (cf. Eqs. (4.2.151)-(4.2.171); Israel 1970, Chap. 2; Landau and Lifschitz 1987,
§98), and finally arrive to the Einstein equations (4.1.4). Pressure, relativistic density, and relativistic
mass are expanded up to terms of order Ω2 :

P (r, λ) = P (0)(r) + βrP
(1)(r, λ); �r(r, λ) = �(0)

r (r) + βr�
(1)
r (r, λ);

Mr(r, λ) = M (0)
r (r) + βrM

(1)
r (r, λ), (βr = Ω2/2π�r0 � 1). (4.2.140)

P (0), �
(0)
r , M

(0)
r are the quantities corresponding to the nonrotating sphere from Sec. 4.1.1. The

dimensionless surface coordinate from Eq. (4.2.82) is

Ξ1(µ) = ξ1 + βr

∞∑
j=0

cjPj(µ), (cj = const). (4.2.141)

Similarly as in the post Newtonian approximation, Sarkisyan and Chubaryan (1977) obtain

Ξ1 = Ξ1(µ) = ξ1 + βr[c0 + c2P2(µ)]; Ξe = ξ1 + βr(c0 − c2/2); Ξp = ξ1 + βr(c0 + c2). (4.2.142)
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Ξe and Ξp are the values of the surface coordinates at the equator and at the poles, respectively. The
true radius of the rotating polytrope in a certain direction µ = const is given analogously to Eq. (4.1.47)
by

rr1(µ) = αΞr1(µ) =
∫ r1(µ)

0

(γrr)1/2 dr =
∫ r1(µ)

0

(−grr)1/2 dr = α

∫ Ξ1(µ)

0

exp[κ(ξ)/2] dξ,

(γ11 = γrr = −grr; g01 = g0r = 0). (4.2.143)

Although the values of ξr1 in the Tables 4.1.1 and 4.2.2 coincide within the first digit, the irregularities
of the critical oblateness fc (especially if n = 2.5 and 3) raise some doubts concerning the exactness of
Ξrce and Ξrcp.

4.2.5 Slowly Rotating and Fully Relativistic Polytropes in Bimetric
Gravitation

The treatment up to the first order in the angular velocity Ω by Chubaryan et al. (1981) is similar as
in Sec. 4.1.4. The reference frame is essentially fixed by the particular form of the flat space metric df2

from Eq. (4.1.122), if we take the origin of the reference frame in the centre of mass of the stationary
polytrope. We have to add a mixed component to the Riemann metric ds2 from Eq. (4.1.122), similar
to g03 from Eq. (4.2.111):

ds2 = exp[2ν(r)] dt2 − exp[2κ(r)] dr2 − r2 exp[2χ(r)] (dλ2 + sin2 λ dϕ2)

−2r2ω(r, λ) exp[2χ(r)] sin2 λ dϕ dt, (c, G = 1). (4.2.144)

We have already outlined subsequently to Eq. (4.2.112) that ω is of order Ω, and therefore the
components of the four-velocity from Eq. (4.2.115) are up to the first order in Ω equal to

u0 ≈ 1/(g00)1/2 = exp(−ν); u3 = Ωu0 ≈ Ω exp(−ν); u1, u2 = 0, [g03 = O(Ω)]. (4.2.145)

Up to the first order in Ω the components of the energy-momentum tensor (4.1.11) write as [cf. Eq.
(4.2.117)]

T 0
0 = (P + �r)(u0)2 exp(2ν) − P = �r; T 1

1 = T 2
2 = T 3

3 = −P ;

T 0
3 = −(P + �r)(u0)2(ω + Ω)r2 exp(2χ) sin2 λ = −(P + �r)r2(ω + Ω) exp(2χ − 2ν) sin2 λ. (4.2.146)

The equations determining the metric functions ν and κ, (χ ≡ κ) in the first approximation with
respect to Ω are identical to Eqs. (4.1.127), (4.1.128). For the third function ω Chubaryan et al. (1981)
obtain in a way similar to Eq. (4.2.120):

∂ω2/∂r2 +
[
4/r + 2(∂κ/∂r − ∂ν/∂r)

]
∂ω/∂r +

[
(2/r)(∂κ/∂r − ∂ν/∂r)

−16π(�r + P ) exp(ν + 3κ)
]

ω + (1/r2)
[
∂2ω/∂λ2 + 3(∂ω/∂λ) cot λ

]
= 16πΩ(P + �r) exp(ν + 3κ).

(4.2.147)

Rotation periods of critically rotating polytropes are found to be considerably shorter in bimetric
gravitation as compared to general relativity if 1 ≤ n ≤ 3, 0.1 ≤ q0 � 0.7. A second order approximation
with respect to Ω has been devised by Grigoryan et al. (1993).

4.2.6 Rapidly Rotating and Fully Relativistic Polytropes

This case is of course the most complicated and sophisticated one. The basic stationary metric is in
“cylindrical” (�, ϕ, z)-coordinates of the general form (4.2.9), (e.g. Bardeen and Wagoner 1971)

ds2 = exp[2ν(�, z)] dt2 − exp[2κ(�, z)] (d�2 + dz2) − �2 exp[2γ(�, z) − 2ν(�, z)] [dϕ − ω(�, z) dt]2,
(4.2.148)
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and in “spherical” (r, λ, ϕ)-coordinates equal to (e.g. Nishida et al. 1992)

ds2 = exp[2ν(r, λ)] dt2 − exp[2κ(r, λ)] (dr2 + r2 dλ2)

−r2 sin2 λ exp[2γ(r, λ) − 2ν(r, λ)] [dϕ − ω(r, λ) dt]2. (4.2.149)

t denotes the universal time coordinate. The transition from Eq. (4.2.148) to Eq. (4.2.149) is effected
by the simple Cartesian transformations � = r sinλ, z = r cos λ, (d�2 + dz2 = dr2 + r2 dλ2).

The problem of fast rotation in arbitrary strong gravitational fields involves the solution of the Ein-
stein equations (4.1.4) in a spacetime that becomes Galilean at spatial infinity (the asymptotically
flat spacetime): This implies that ν, κ, γ, ω vanish at spatial infinity. From the metric (4.2.149) it
is obvious that the squared proper time interval from Eq. (5.12.94) – as measured by a static ob-
server dxα = 0 – is equal to dτ2 = g00(dx0 + g0α dxα/g00)2/c2 = g00 (dx0)2/c2 = g00 dt2/c2 =
[exp(2ν) − r2ω2 sinλ2 exp(2γ − 2ν)] dt2/c2, (x0 = t). This shows that g00 can become negative un-
der certain circumstances – the proper time becomes imaginary, and no timelike static observers exist
(cf. Landau and Lifschitz 1987, §84). It is therefore much more comfortable to use a local inertial frame
of reference, tied to the so-called locally nonrotating observer (zero angular momentum observer).

In contrast to Newtonian gravitation, the inertial frames inside a relativistic rotating fluid are not at
rest with respect to infinitely distant observers. Rather, the local inertial frames are dragged along by the
relativistic rotating fluid (Lense-Thirring effect). This dragging of inertial frames by rotating relativistic
fluids is the reason for a distinction between static observers and locally nonrotating observers (Hartle
1967, Bardeen and Wagoner 1971). The dragging of inertial frames appears in the metrics (4.2.148) and
(4.2.149) as the nonvanishing of the component g03 = gtϕ = ω�2 exp(2γ − 2ν) = ωr2 sin2 λ exp(2γ − 2ν).
The quantity ω = ω(�, z) = ω(r, λ) from the metrics (4.2.148), (4.2.149) appears as the angular velocity
of the locally nonrotating observer as seen from infinity, and will be called the rate of rotation (the
dragging rate) of the local inertial frame. The angular velocity Ω = dϕ/dt = (dϕ/ds)

/
(dt/ds) = u3/u0 of

the rotating mass elements is constant throughout the fluid, as seen from spatial infinity. The difference
Ω−ω is just the angular velocity of fluid elements relative to the locally nonrotating observer, as measured
from infinity. The locally nonrotating observer possesses just the angular velocity dϕ/dt = ω. Therefore,
the metric (4.2.149) becomes in this locus equal to ds2 = exp(2ν) dt2 − exp(2κ) (dr2 + r2 dλ2), (dϕ −
ω dt = 0). And with this metric the interval of proper time [see Eq. (5.12.94)] of the locally nonrotating
observer amounts to dτ = g

1/2
00 (dx0 + g0α dxα/g00)/c = (g00)1/2 dx0/c = exp ν dt/c, (x0 = t; g00 =

exp(2ν); dr, dλ = 0), being smaller by the factor exp ν with respect to the proper time interval dt/c, (g00 =
1) measured at infinity. Since the angular velocities Ω and ω are inversely proportional to the proper
time dτ, the relative angular velocity of a fluid element, as measured by the locally nonrotating observer,
is (Ω − ω) exp(−ν), in comparison to its value Ω − ω measured from infinity.

From the metric (4.2.149) we get at once the circumference of a circle, measured at the locus of the
locally nonrotating observer: 2πr sinλ exp(γ − ν) = 2πRp, (dt, dr, dλ = 0, dϕ = 2π). In terms of the
proper circumferential radius Rp = r sinλ exp(γ − ν) the local circumferential velocity of fluid elements
relative to the locally nonrotating observer is (Bardeen 1970, Eq. (38); Bardeen and Wagoner 1971, p.
383):

v = Rp(Ω − ω) exp(−ν) = r(Ω − ω) sin λ exp(γ − 2ν) = �(Ω − ω) exp(γ − 2ν). (4.2.150)

Note, that the proper circumferential radius Rp is for strong gravitational fields quite different from
the proper linear radius obtained by integration of expκ dr [cf. Eqs. (4.1.46), (4.1.47)].

The numerical treatment of rapidly rotating and fully relativistic polytropes is based on the projec-
tion of the field equations (4.1.4) onto the tetrad of Bardeen’s (1970) zero angular momentum observer.
A tetrad is formed by four linearly independent four-vectors e(0), e(1), e(2), e(3), their covariant and con-
travariant components being connected by (e.g. Synge 1976, Landau and Lifschitz 1987)

e(a)je
j
(b) = ηab, (ηab = ηba; a, b, j = 0, 1, 2, 3). (4.2.151)

The letters a, b, c, ... distinguish the four four-vectors among themselves, and are put into parentheses,
if they appear together with the common tensor indices j, k, �, ... For instance, (e0

(a), e
1
(a), e

2
(a), e

3
(a)) denote

the four contravariant components of the four-vector e(a). Similarly to the metric tensor from Eq. (4.1.10),
the inverse ηab of the covariant symmetric matrix ηab is given by

ηacηbc = δa
b . (4.2.152)
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The reciprocal e
(a)
j of the vector ej

(b) of a tetrad is introduced by the orthogonality condition

e
(a)
j ej

(b) = δa
b , (4.2.153)

showing that each vector ej
(b) is orthogonal to its reciprocal e

(a)
j if a �= b. If we multiply Eq. (4.2.153)

by ek
(a), we get ek

(a)e
(a)
j ej

(b) = [ek
(a)e

(a)
j ]ej

(b) = ek
(a)δ

a
b = ek

(b), where summation extends separately over the
repeated indices a and j, although the labels a, b, c, ... of the tetrad vectors have generally no tensorial
meaning. If the summation index j takes the particular value j = k, we observe that the factor in the
bracket must be equal to 1, while the other sums, when j �= k, must be zero, in order to assure equality
of both sides. Thus

ek
(a)e

(a)
j = δk

j . (4.2.154)

We multiply Eq. (4.2.151) by ηac, taking into account Eq. (4.2.152):

ηace(a)je
j
(b) = ηabη

ac = δc
b . (4.2.155)

Comparing with Eq. (4.2.153), written under the form e
(c)
j ej

(b) = δc
b , we observe that

e
(c)
j = ηace(a)j . (4.2.156)

Multiplying Eq. (4.2.156) by ηbc, and taking into account Eq. (4.2.152), we also find

e(b)j = ηbce
(c)
j . (4.2.157)

The relationship between the metric tensor gjk and the matrix ηab is found by remembering the
equation e

(a)
j = gj
e

(a)
 between the covariant and contravariant components of the four-vector e(a); if

this relationship is multiplied by e(a)k, we get e
(a)
j e(a)k = gj
e

(a)
e(a)k = gj
δ


k = gjk via Eq. (4.2.154).

Thus, taking into account Eqs. (4.2.156), (4.2.157), we have

gjk = e
(a)
j e(a)k = ηabe

(a)
j e

(b)
k = ηbae(b)je(a)k = ηabe(a)je(b)k, (gjk = gkj ; ηab = ηba). (4.2.158)

With this equation, the metric (4.1.3) of Riemannian space writes

ds2 = gjk dxjdxk = ηabe
(a)
j e

(b)
k dxjdxk = ηabe(a)je(b)k dxjdxk. (4.2.159)

The arbitrary matrix ηab can be chosen in Galilean form: η00 = 1; ηαα = −1, (α = 1, 2, 3); ηab = 0
if a �= b. With this choice the vectors of a tetrad from Eq. (4.2.151) become orthogonal

ei
(0)e(0)i = 1; ei

(α)e(α)i = −1; ei
(a)e(b)i = 0 if a �= b, (4.2.160)

the vector e(0) being timelike, and the vectors e(α) spacelike. With the previous choice of ηab the compo-
nents of the inverse matrix ηab from Eq. (4.2.152) are η00 = 1, ηαα = −1, ηab = 0 if a �= b. Eq. (4.2.159)
turns into

ds2 = [e(0)je(0)k − e(1)je(1)k − e(2)je(2)k − e(3)je(3)k] dxjdxk. (4.2.161)

Bardeen (1970, App. A) chooses the nonzero components of the tetrad vectors as follows (x0 =
t, x1 = �, x2 = z, x3 = ϕ) :

e(0)0 = − exp ν; e(3)0 = −ω� exp(γ − ν); e(1)1 = e(2)2 = expκ; e(3)3 = � exp(γ − ν). (4.2.162)

In this way he obtains just the metric (4.2.148) with

g00 = exp(2ν) − ω2�2 exp[2(γ − ν)]; g03 = ω�2 exp[2(γ − ν)]; g11 = g22 = − exp(2κ);

g33 = −�2 exp[2(γ − ν)]; g = g11g22(g00g33 − g2
03) = −�2 exp(4κ + 2γ). (4.2.163)



328 4.2 Rotationally Distorted Relativistic Polytropes

The nonvanishing contravariant components of the tetrad follow at once via Eq. (4.2.160):

e0
(0) = − exp(−ν); e3

(0) = −ω exp(−ν); e1
(1) = e2

(2) = − exp(−κ); e3
(3) = −(1/�) exp(ν − γ).

(4.2.164)

The four-velocity (4.2.115) takes a simple form by inserting for the metric tensor from Eq. (4.2.148),
and for the linear velocity with respect to the zero angular momentum observer from Eq. (4.2.150):

u0 = ut = 1
/
(g00 + 2g03Ω + g33Ω2)1/2 = 1

/[
exp(2ν) − ω2�2 exp(2γ − 2ν) + 2Ωω�2 exp(2γ − 2ν)

−Ω2�2 exp(2γ − 2ν)
]1/2 = 1

/
(1 − v2)1/2 exp ν; u1 = u
 = 0; u2 = uz = 0; u3 = uϕ = Ωu0.

(4.2.165)

The tetrad components of the energy-momentum tensor are calculated from the ordinary components
(4.1.11) by

T(a)(b) = ej
(a)e

k
(b)Tjk = ej

(a)e
k
(b)[(P + εr)ujuk − gjkP ], (4.2.166)

where the covariant components of the four-velocity are via Eq. (4.2.165) equal to

u0 = g0ju
j = (g00 + Ωg03)u0 = [1 + ωv2/(Ω − ω)] exp ν

/
(1 − v2)1/2; u1 = u2 = 0;

u3 = g3ju
j = (g03 + Ωg33)u0 = −v2 exp ν

/
(Ω − ω)(1 − v2)1/2. (4.2.167)

Finally, from Eqs. (4.2.164)-(4.2.167) we obtain for the nonvanishing tetrad components of the energy-
momentum tensor (Bardeen and Wagoner 1971):

T(0)(0) = T
(0)
(0) = T (0)(0) = (Pv2 + εr)/(1 − v2); T(1)(1) = −T

(1)
(1) = T (1)(1) = P ;

T(2)(2) = −T
(2)
(2) = T (2)(2) = P ; T(3)(3) = −T

(3)
(3) = T (3)(3) = (P + εrv

2)/(1 − v2);

T(0)(3) = −T
(3)
(0) = −T (0)(3) = −(P + εr)v/(1 − v2); T = T

(a)
(a) = εr − 3P. (4.2.168)

Lowering and raising of tetrad indices proceeds with the Galilean matrices ηab and ηab, respectively.
The Einstein equations (4.1.4) can be written under covariant form as

Rjk = 8π(Tjk − gjkT/2), (c, G = 1), (4.2.169)

where R = −8πT, (R = Rj
j ; T = T j

j ). Since

Rjk = R(a)(b)e
(a)
j e

(b)
k ; Tjk = T(a)(b)e

(a)
j e

(b)
k ; gjk = ηabe

(a)
j e

(b)
k , (4.2.170)

the tetrad form of Einstein’s equations is simply

R(a)(b) = 8π[T(a)(b) − ηabT/2], (c, G = 1). (4.2.171)

Bardeen (1970), and Bardeen and Wagoner (1971) calculate several components of the Ricci tensor
R(a)(b), and obtain by insertion into Eq. (4.2.171) differential equations for the four unknown metric
functions ν, ω, γ, κ from Eq. (4.2.148):

R(0)(0) = exp(−2κ)
[
exp(−γ) ∇ · (exp γ ∇ν) − (1/2)�2 exp(2γ − 4ν) ∇ω · ∇ω

]
= 4π

[
(P + εr)(1 + v2)/(1 − v2) + 2P

]
, (4.2.172)

R(0)(3) = (1/2�) exp[2(−γ + ν − κ)] ∇ · [�2 exp(3γ − 4ν) ∇ω] = −8π(P + εr)v/(1 − v2), (4.2.173)

R
(0)
(0) + R

(3)
(3) = (1/�) exp(−γ − 2κ) ∇ · [� ∇(exp γ)] = 16πP. (4.2.174)
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Since no derivatives of the metric function κ appear in these three equations, Bardeen and Wagoner
(1971) consider the sum κ + ν, and determine κ from the two equations

[R(1)(1) − R(2)(2)] exp(2κ) = (1/�) ∂(κ + ν)/∂� + (∂γ/∂�) ∂(κ + ν)/∂� − (∂γ/∂z) ∂(κ + ν)/∂z

−(1/2�2) exp(−γ) ∂[�2 ∂(exp γ)/∂�]
/
∂� + (1/2 exp γ) ∂2(exp γ)/∂z2 − (∂ν/∂�)2

+(∂ν/∂z)2 + (1/4)�2 exp(2γ − 4ν) [(∂ω/∂�)2 − (∂ω/∂z)2] = 0;

R(1)(2) exp(2κ) = (1/�) ∂(κ + ν)/∂z + (∂γ/∂�) ∂(κ + ν)/∂z + (∂γ/∂z) ∂(κ + ν)/∂�

−(1/2�2 exp γ) ∂[�2 ∂(exp γ)/∂z]
/
∂� − (1/2 exp γ) ∂2(exp γ)/∂�∂z − 2(∂ν/∂�) ∂ν/∂z

+(1/2)�2 exp(2γ − 4ν) (∂ω/∂�) ∂ω/∂z = 0. (4.2.175)

If ν, ω, γ are determined from Eqs. (4.2.172)-(4.2.174) as functions of � and z, the two equations
(4.2.175), in any combination, allow κ to be found by quadratures. All nabla operators act in three-
dimensional Euclidian space. The transition to spherical (r, µ, ϕ)-coordinates in Eqs. (4.2.172)-(4.2.174)
is effected at once (µ = cos λ; � = r(1 − µ2)1/2; z = rµ) :

∇ · (exp γ ∇ν) = (1/2)r2(1 − µ2) exp(3γ − 4ν) ∇ω · ∇ω

+4π exp(γ + 2κ) [(P + εr)(1 + v2)/(1 − v2) + 2P ], (4.2.176)

∇ · [r2(1 − µ2) exp(3γ − 4ν) ∇ω] = −16πr(1 − µ2)1/2 exp[2(γ − ν + κ)] (P + εr)v
/
(1 − v2),

(4.2.177)

∇ · [r(1 − µ2)1/2 ∇(exp γ)] = 16πr(1 − µ2)1/2 exp(γ + 2κ) P. (4.2.178)

From the two equations (4.2.175) we can determine ∂κ/∂r and ∂κ/∂µ. Since the equation for ∂κ/∂r
contains no new information, Butterworth and Ipser (1976) quote merely the equation for ∂κ/∂µ :

∂κ/∂µ = −∂ν/∂µ −
{[

r2 ∂2(exp γ)/∂r2 − ∂
(
(1 − µ2) ∂(exp γ)/∂µ

)/
∂µ − 2µ ∂(exp γ)/∂µ

]
×[−µ + (1 − µ2) ∂γ/∂µ]

/
2 exp γ + r(∂γ/∂r)

[
µ/2 + rµ ∂γ/∂r + (1 − µ2)(∂γ/∂µ)/2

]
+3(∂γ/∂µ)[−µ2 + µ(1 − µ2) ∂γ/∂µ]/2 − r(1 − µ2)[∂2(exp γ)/∂r∂µ](1 + r ∂γ/∂r)/ exp γ

−r2µ(∂ν/∂r)2 − 2r(1 − µ2)(∂ν/∂r) ∂ν/∂µ + µ(1 − µ2)(∂ν/∂µ)2

−2r2(1 − µ2)(∂γ/∂r)(∂ν/∂r) ∂ν/∂µ + (1 − µ2)(∂γ/∂µ)[r2(∂ν/∂r)2 − (1 − µ2)(∂ν/∂µ)2]

+(1 − µ2) exp(2γ − 4ν)
[
(r4µ/4)(∂ω/∂r)2 + (r3/2)(1 − µ2)(∂ω/∂r) ∂ω/∂µ

−(r2µ/4)(1 − µ2)(∂ω/∂µ)2 + (r4/2)(1 − µ2)(∂γ/∂r)(∂ω/∂r) ∂ω/∂µ

−(r2/4)(1 − µ2)(∂γ/∂µ)
(
r2(∂ω/∂r)2 − (1 − µ2)(∂ω/∂µ)2

)]}
/{

(1 − µ2)(1 + r ∂γ/∂r)2 +
[
µ − (1 − µ2) ∂γ/∂µ

]2}
. (4.2.179)

Komatsu et al. (1989a) and Nishida et al. (1992) transform Eqs. (4.2.176)-(4.2.178) further:

∇2[(2ν − γ) exp(γ/2)] = exp(γ/2)
{
8π(P + εr)(1 + v2) exp(2κ)/(1 − v2) + 8πP (2ν − γ) exp(2κ)

+r2(1 − µ2) exp(2γ − 4ν) ∇ω · ∇ω + (1 − ν + γ/2)
[
(1/r) ∂γ/∂r − (µ/r2) ∂γ/∂µ

]
+(−ν/2 + γ/4) ∇γ · ∇γ

}
= Sν , (4.2.180)

∇2ω + (2/r) ∂ω/∂r − (2µ/r2) ∂ω/∂µ = ∇(4ν − 3γ) · ∇ω

−16π(P + εr)(Ω − ω) exp(2κ)
/
(1 − v2) = Sω, (4.2.181)

∇2[γ exp(γ/2)] + (1/r) ∂[γ exp(γ/2)]
/
∂r − (µ/r2) ∂[γ exp(γ/2)]

/
∂µ

= exp(γ/2)
[
16πP (1 + γ/2) exp(2κ) − (γ/4) ∇γ · ∇γ

]
= Sγ . (4.2.182)
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These three equations can be deduced by observing that Eqs. (4.2.176) and (4.2.178) are equivalent
to

∇2ν + ∇ν · ∇γ = (1/2)r2(1 − µ2) exp(2γ − 4ν) ∇ω · ∇ω

+4π exp(2κ) [(P + εr)(1 + v2)/(1 − v2) + 2P ], (4.2.183)

and

∇2γ + (1/r) ∂γ/∂r − (µ/r2) ∂γ/∂µ + ∇γ · ∇γ = 16πP exp(2κ). (4.2.184)

On the other hand, the Laplace operators from Eqs. (4.2.180), (4.2.182) can be evaluated according
to Eqs. (B.36)-(B.39) as follows:

∇2[ν exp(γ/2)] = exp(γ/2)
[
(ν/2) ∇2γ + ∇2ν + (ν/4) ∇γ · ∇γ + ∇ν · ∇γ

]
, (4.2.185)

∇2[γ exp(γ/2)] = exp(γ/2)
[
(1 + γ/2) ∇2γ + (1 + γ/4) ∇γ · ∇γ

]
. (4.2.186)

Inserting for ∇2γ and ∇2ν from Eqs. (4.2.183) and (4.2.184), we indeed obtain Eqs. (4.2.180) and
(4.2.182). The equation (4.2.181) for ω results by evaluating the divergence in Eq. (4.2.177), and inserting
for v from Eq. (4.2.150).

The condition of asymptotic flatness (ν, ω, γ, κ → 0 if r → ∞) implies that the metric potentials
ν, ω, γ have particular expansions in terms of 1/rj , of Legendre polynomials P2k(µ), dP2k+1(µ)/dµ, and
of Gegenbauer polynomials G1

2k(µ) of order 2k and index 1 [cf. Eqs. (3.10.155), (3.10.156)]. These
expansions are suggested by the angular parts of the differential operators in Eqs. (4.2.176)-(4.2.178).
The asymptotic forms are (Butterworth and Ipser 1976, Eriguchi 1980):

ν = O(1/r); ω = O(1/r3); γ = O(1/r2), (r → ∞). (4.2.187)

These boundary expansions result from the leading terms of Eqs. (4.2.198)-(4.2.200), by converting
Eqs. (4.2.180)-(4.2.182) to the integral form with the two- and three-dimensional Green functions (e.g.
Smirnow 1967):

F (x, y) = −(1/2π)
∫

S

f(x′, y′) ln
(
1
/
|�r − �r′|

)
dx′ dy′;

F (x, y, z) = −(1/4π)
∫

V

f(x′, y′, z′) dx′ dy′ dz′
/
|�r − �r′|. (4.2.188)

F and f are connected to Poisson’s equation by ∇2F = f, where |�r − �r′| = [(x − x′)2 + (y − y′)2 +
(z − z′)2]1/2. From Eq. (4.2.180) we obtain via Eq. (4.2.188):

(2ν − γ) exp(γ/2) = −(1/4π)
∫ ∞

0

dr′
∫ 1

−1

dµ′
∫ 2π

0

r′2Sν(r′, µ′) dϕ′/|�r − �r′|. (4.2.189)

Eq. (4.2.182) is transformed by Komatsu et al. (1989a) to the two-dimensional form with the
cylindrical coordinates � = r sinλ, z = r cos λ, the Laplace operator being calculated according to Eq.
(B.48). After some algebra, Eq. (4.2.182) becomes

∇2[�γ exp(γ/2)] = ∂2[�γ exp(γ/2)]
/
∂�2 + ∂2[�γ exp(γ/2)]

/
∂z2 = �Sγ , (ϕ = const). (4.2.190)

We apply the two-dimensional Green function (4.2.188) to this equation:

�γ exp(γ/2) = rγ exp(γ/2) sinλ = −(1/2π)
∫ ∞

0

d�′
∫ ∞

0

�′Sγ(�′, z′) ln
(
1
/
|�r − �r′|

)
dz′

= −(1/2π)
∫ ∞

0

dr′
∫ 2π

0

r′2 sinλ′ Sγ(r′, λ′) ln
(
1
/
|�r − �r′|

)
dλ′, (4.2.191)

where Komatsu et al. (1989a) analytically continue Sγ(r′, λ′) into the range π < λ′ ≤ 2π, by defining
Sγ(r′, λ′ − π) = Sγ(r′, λ′). After multiplication by r sinλ cos ϕ, Eq. (4.2.181) can be written as [cf. Eq.
(B.39)]

∇2(rω sinλ cos ϕ) = r sinλ cos ϕ Sω, (4.2.192)
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or in integral form via Eq. (4.2.188):

rω sinλ cos ϕ = −(1/4π)
∫ ∞

0

dr′
∫ π

0

dλ′
∫ 2π

0

r′3 sin2 λ′ cos ϕ′ Sω(r′, λ′) dϕ′/|�r − �r′|. (4.2.193)

The distance |�r − �r′| from Eq. (4.2.188) can be expanded as (cf. Eqs. (3.1.44), (3.1.48)-(3.1.52),
Komatsu et al. 1989a)

ln |�r − �r′| = ln[r2 + r′2 − 2rr′ cos(λ′ − λ)]1/2

= g(r, r′) −
∞∑

j=1

(1/j) hj(r, r′) [cos(jλ) cos(jλ′) + sin(jλ) sin(jλ′)], (4.2.194)

where

g(r, r′) =
{

ln r
ln r′ ; hj(r, r′) =

{
(r′/r)j

(r/r′)j if
r ≥ r′

r ≤ r′ (4.2.195)

and [cf. (Eq. (3.1.53)]

1
/
|�r − �r′| = (1/r)

∞∑
j=0

j∑
k=0

fj(r, r′)
[
2(j − k)!

/
δk(j + k)!

]
P k

j (cosλ) P k
j (cosλ′) cos[k(ϕ − ϕ′)],

(4.2.196)

with

fj(r, r′) =
{

(1/r)(r′/r)j

(1/r′)(r/r′)j if
r ≥ r′

r ≤ r′ ; δk =
{

2
1 if

k = 0
k > 0 (4.2.197)

We insert Eqs. (4.2.194)-(4.2.197) into Eqs. (4.2.189), (4.2.191), (4.2.193), taking into account the
symmetry properties of trigonometric and Legendre functions. Eq. (4.2.189) reads

2ν − γ = − exp(−γ/2)
∫ ∞

0

dr′
∫ π/2

0

r′2Sν(r′, λ′)
[ ∞∑

j=0

f2j(r, r′) P2j(cos λ) P2j(cos λ′)
]

sinλ′ dλ′,

(4.2.198)

since P2j+1(cosλ′) contains only odd powers of cosλ′, that cancel out when integrated over the interval
[0, π]. The sole nonvanishing terms in Eq. (4.2.191) are of the form

rγ sinλ = −(2/π) exp(−γ/2)
∫ ∞

0

dr′
∫ π/2

0

r′2Sγ(r′, λ′)

×
{ ∞∑

j=1

[1/(2j − 1)] h2j−1(r, r′) sin[(2j − 1)λ] sin[(2j − 1)λ′]
}

sinλ′ dλ′, (4.2.199)

because products like cos(2jλ′) sin λ′ and sin(2jλ′) sin λ′ cancel out when integrated between 0 and 2π.
Likewise, Eq. (4.2.193) becomes

rω sinλ = −
∫ ∞

0

dr′
∫ π/2

0

r′3Sω(r′, λ′)

×
∞∑

j=1

f2j−1(r, r′) P 1
2j−1(cosλ) P 1

2j−1(cosλ′) sin2 λ′ dλ′/2j(2j − 1), (4.2.200)

where the factor (j−k)!/(j+k)! from Eq. (4.2.196) is equal to 1/2j(2j−1) if k = 1 and j → 2j−1. In Eq.
(4.2.193) the sole surviving Legendre polynomials, connected with the integration of cosϕ′ cos[k(ϕ−ϕ′)],
are the associated polynomials P k

j (cos λ′) of index k = 1, when

∫ 2π

0

cos ϕ′ cos(ϕ − ϕ′) dϕ′ = π cos ϕ. (4.2.201)
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The integrals of P 1
2j(cosλ′) = P 1

2j(µ
′) vanish, because in virtue of Eq. (3.1.39) P 1

2j(µ
′) = (1 −

µ′2)1/2 dP2j(µ′)/dµ′, and dP2j(µ′)/dµ′ contains only odd powers of µ′ = cos λ′, which cancel out over
the interval [0, π].

Subsequently we derive the equation of hydrostatic equilibrium for relativistic, axially symmetric,
rotating hydrostatic configurations [cf. Bardeen 1970, Eq. (23); Bardeen and Wagoner 1971, Eq. (II.19);
Butterworth and Ipser 1976, Eq. (7c); Nishida et al. 1992, Eq. (3.9)]. We start with the vanishing
divergence (4.1.14) of the energy-momentum tensor

∇kT k
j = ∇k[(P + εr)uju

k − Pδk
j ] = ∇k[(P + εr)uk]uj + (P + εr)uk ∇kuj −∇jP = 0. (4.2.202)

The covariant divergence of uk (e.g. Landau and Lifschitz 1987)

∇kuk = (−g)−1/2 ∂[(−g)1/2uk]
/
∂xk, (4.2.203)

vanishes for our particular metric (4.2.149), where all quantities depend only on x1 = r and x2 = λ. Also
g = g11g22(g00g33 − g2

03) = −r4 sin2 λ exp(4κ + 2γ), and u1, u2 = 0. The second term in Eq. (4.2.202) can
be transformed as follows:

uk ∇kuj = (∂uj/∂xk − Γ

jku
)uk = uk ∂uj/∂xk − (1/2)(∂gjm/∂xk + ∂gkm/∂xj − ∂gjk/∂xm)ukum

= uk ∂uj/∂xk − (1/2)ukum ∂gkm/∂xj . (4.2.204)

Since for the considered particular coordinate dependences we have ∇k[(P + εr)uk] = 0 and
uk ∂uj/∂xk = 0, we can write instead of Eq. (4.2.202), (cf. Komatsu et al. 1989a, Nishida et al.
1992):

(1/2)(P + εr)ukum ∂gkm/∂xj + ∂P/∂xj = (1/2)(P + εr)(u0)2(∂g00/∂xj + 2Ω ∂g03/∂xj

+Ω2 ∂g33/∂xj) + ∂P/∂xj = (1/2)(P + εr)(u0)2
[
∂(g00 + 2Ωg03 + Ω2g33)/∂xj

−2(g03 + Ωg33) ∂Ω/∂xj
]
+ ∂P/∂xj = (1/2)(P + εr)(u0)2

[
∂(u0)−2/∂xj

+2(Ω − ω)r2 sin2 λ exp(2γ − 2ν) ∂Ω/∂xj
]
+ ∂P/∂xj

= (P + εr)
{
∂ν/∂xj − [v

/
(1 − v2)] ∂v/∂xj + [v2

/
(1 − v2)(Ω − ω)] ∂Ω/∂xj

}
+ ∂P/∂xj

= (P + εr)[∇ν − v ∇v
/
(1 − v2) + v2 ∇Ω

/
(1 − v2)(Ω − ω)] + ∇P = 0, (4.2.205)

where we have used Eqs. (4.2.149), (4.2.150), (4.2.165). The integrability condition of Eq. (4.2.205) is
that the factor near ∇Ω is a function of Ω only (Butterworth and Ipser 1976):

f(Ω) = v2
/
(1 − v2)(Ω − ω) = r2(Ω − ω) sin2 λ exp(2γ − 4ν)

/
[1 − r2(Ω − ω)2 sin2 λ exp(2γ − 4ν)]

= −u0u3 = −utuϕ. (4.2.206)

Komatsu et al. (1989a) take

f(Ω) = A2(Ω0 − Ω), (A, Ω0 = const). (4.2.207)

Ω0 is the angular velocity along the rotation axis λ = 0, π. We insert into Eq. (4.2.206) for f(Ω)
from Eq. (4.2.207), and observe that as A → ∞, the finiteness of f(Ω) requires that Ω0 − Ω → 0, i.e.
Ω = Ω0 = const (rigid rotation). In the other limiting case A → 0, it would seem from Eq. (4.2.206)
that ω → Ω, which is clearly impossible, since this would lead to the absurd condition that the dragging
potential ω is equal to the angular velocity Ω, even if gravity is weak (ω small), whereas Ω could be large.
Thus, f(Ω) = A2(Ω0 − Ω) cannot vanish, so Ω0 − Ω ∝ 1/A2 if A → 0.

In the Newtonian limit we have v � c = 1 and ν, ω, γ, κ ≈ 0. In this case Eqs. (4.2.206) and (4.2.207)
yield

f(Ω) = A2(Ω0 − Ω) ≈ v2/Ω = Ωr2 sin2 λ or Ω/Ω0 ≈ A2/(A2 + r2 sin2 λ), (v � 1). (4.2.208)

In the Newtonian limit from Eq. (4.2.208) we get again rigid rotation (Ω = Ω0) if A → ∞, whereas
in the case A → 0 we have Ωr2 sin2 λ = Ω�2 ≈ A2Ω0 = const. This implies rotation with constant specific
angular momentum (cf. Eq. (3.8.84) and Fig. 4.2.7).
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Taking the light velocity as unit, we write εr = c2�r = �r, and the polytropic equation (4.1.1) can be
written as

P = Kε1+1/n
r , (c = 1). (4.2.209)

If Eq. (4.2.206) subsists, the hydrostatic equation (4.2.205) can be integrated at once in virtue of Eq.
(4.2.165), (Butterworth and Ipser 1976, Komatsu et al. 1989a):

− ln[u0/(u0)p] +
∫ P

0

dP ′/(P ′ + εr) +
∫ Ω

Ω0

f(Ω′) dΩ′

= − lnu0 − νp + (n + 1) ln(1 + P/εr) +
∫ Ω

Ω0

f(Ω′) dΩ′ = 0. (4.2.210)

(u0)p = exp(−νp) and Ω0 denote the values of u0 = 1/(1 − v2)1/2 exp ν and Ω at the surface pole of
the rotating polytrope, where P, λ, v = 0. For constant angular velocity Ω = Ω0 the hydrostatic equation
(4.2.205) can be transformed further, by inserting for u0 from Eq. (4.2.165), (Butterworth 1976)

P = εr

[
exp(νp − ν)

/
(1 − v2)1/2

]1/(n+1) − 1, (Ω = const), (4.2.211)

and finally, by eliminating εr with the aid of Eq. (4.2.209):

P = K−n
{[

exp(νp − ν)
/
(1 − v2)1/2

]1/(n+1) − 1
}n+1

. (4.2.212)

In general relativity some arbitrariness occurs concerning the definition of energy, angular momentum,
and volume of a configuration, since in the general case no energy conservation equations exist for field
and matter, both (Landau and Lifschitz 1987). The proper volume (volume of rest) of a rotating,
axisymmetric relativistic polytrope may be defined as (Stephani 1977, Komatsu et al. 1989a)

V1 =
∫

V1

u0(−g)1/2 dx1dx2dx3 =
∫ 2π

0

dϕ

∫ π

0

dλ

∫ r1(λ)

0

u0 exp(2κ + γ) r2 sinλ dr

= 2π

∫ π

0

dλ

∫ r1(λ)

0

(1 − v2)−1/2 exp(2κ + γ − ν) r2 sinλ dr. (4.2.213)

Integration proceeds over the spacelike hypersurface x0 = const, and we have inserted for u0 from Eq.
(4.2.165), [g = −r4 sin2 λ exp(4κ + 2γ)]. In the static nonrotating case we have g = g00g11g22g33, uα = 0,
and Eq. (4.1.12) becomes u0u0 = g00(u0)2 = 1, or u0 = (g00)−1/2. The proper volume (4.2.213) turns
into the proper volume of the Schwarzschild sphere [cf. Eq. (4.1.53)]:

V1 =
∫

V1

(−g11g22g33)1/2 dx1dx2dx3 = 4π

∫ r1

0

exp(2κ + γ − ν) r2 dr, (Ω = 0). (4.2.214)

In the same way as in Eq. (4.2.213) we write the rest energy E and the proper energy Epr of the
rotating relativistic polytrope under the form (c = 1)

E = M1 =
∫

V1

εu0(−g)1/2 dx1dx2dx3 = 2π

∫ π

0

dλ

∫ r1(λ)

0

ε(1 − v2)−1/2 exp(2κ + γ − ν) r2 sinλ dr

= 2π

∫ π

0

dλ

∫ r1(λ)

0

[εr

/
(1 + P/εr)n](1 − v2)−1/2 exp(2κ + γ − ν) r2 sinλ dr, (4.2.215)

Epr = Mpr =
∫

V1

εru
0(−g)1/2 dx1dx2dx3 = E +

∫
V1

ε(int)u0(−g)1/2 dx1dx2dx3

= 2π

∫ π

0

dλ

∫ r1(λ)

0

εr(1 − v2)−1/2 exp(2κ + γ − ν) r2 sinλ dr. (4.2.216)

M1 and Mpr denote the rest mass and proper mass of the rotating polytrope, respectively. In Eq.
(4.2.215) we have also used the relationship ε = εr

/
(1 + P/εr)n, which follows from the combination of

Eq. (4.2.209) with the isentropic first law of thermodynamics (4.1.57):

d�/� = dε/ε = dεr/(P + εr) = dεr

/
εr(1 + Kε1/n

r ). (4.2.217)
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This equation integrates at once:

ε = Cεr/(1 + Kε1/n
r )n = Cεr

/
(1 + P/εr)n, (C = const). (4.2.218)

The integration constant is determined by observing that near the surface, where relativistic effects
are small, we must have εr ≈ ε and P = 0 : C = 1, and [cf. Eqs. (4.1.59)-(4.1.64)]

ε = εr

/
(1 + P/εr)n. (4.2.219)

With the light velocity taken as unit (c = 1), the total angular momentum J round the rotation axis
of the polytrope may be represented as (cf. Hartle and Sharp 1967, Bardeen and Wagoner 1971)

J = −
∫

V1

T 0
3 (−g)1/2 dx1dx2dx3 = −

∫
V1

(P + εr)u3u
0(−g)1/2 dx1dx2dx3 =

∫
M1

j dM

= −
∫

M1

[(P + εr)u3/ε] dM = 2π

∫ π

0

dλ

∫ r1(λ)

0

(P + εr)[v/(1 − v2)] exp(2κ + 2γ − 2ν) r3 sin2 λ dr.

(4.2.220)

j = −(P + εr)u3/ε may be regarded as the angular momentum per unit rest mass; dM =
εu0(−g)1/2 dx1dx2dx3 = ε(1 − v2)−1/2 exp(2κ + γ − ν) r2 sinλ dr dλ dϕ is the rest mass element,
and u0, u3 are inserted from Eqs. (4.2.165), (4.2.167), respectively. In the nonrelativistic limit
the quantity P + εr turns into the rest energy density ε, whereas u3 from Eq. (4.2.167) becomes
u3 = −v2 exp ν

/
(Ω − ω)(1 − v2)1/2 = −vr sinλ exp(γ − ν)/(1 − v2)1/2 ≈ −vr sinλ, (ν, γ, v → 0). So,

j ≈ −u3 is just equal to the axial Newtonian angular momentum vr sinλ per unit rest mass.
The total relativistic energy of the stationary rotating polytrope – including the energy of the sta-

tionary gravitational field – can be determined from Tolman’s formula through the energy-momentum
tensor T k

j alone (cf. Eq. (4.1.69); Landau and Lifschitz 1987, §105; Nishida et al. 1992):

Er1 = Mr1 =
∫

V1

(T 0
0 − T 1

1 − T 2
2 − T 3

3 )(−g)1/2 dx1dx2dx3

= 2π

∫ π

0

dλ

∫ r1(λ)

0

{
[(P + εr)/(1 − v2)][1 + v2(Ω + ω)/(Ω − ω)] + 2P

}
exp(2κ + γ) r2 sinλ dr

= 2π

∫ π

0

dλ

∫ r1(λ)

0

{
[(P + εr)/(1 − v2)][1 + v2 + 2ωvr sinλ exp(γ − 2ν)] + 2P

}
× exp(2κ + γ) r2 sinλ dr, [c = 1; r sinλ exp(γ − 2ν) = v/(Ω − ω)]. (4.2.221)

We have substituted Eqs. (4.1.11), (4.2.165), (4.2.167):

T 0
0 = (P + εr)[1 + ωv2/(Ω − ω)]

/
(1 − v2) − P ; T 1

1 = T 2
2 = −P ;

T 3
3 = −(P + εr)Ωv2

/
(Ω − ω)(1 − v2) − P. (4.2.222)

The relativistic energy (4.2.221) becomes (Bardeen 1970, Nishida et al. 1992)

Er1 = Mr1 = (1/2)
∫ π

0

dλ

∫ r1(λ)

0

{
∇ · (exp γ ∇ν) − (1/2)r2 sin2 λ exp(3γ − 4ν) ∇ω · ∇ω

−(1/2)ω ∇ ·
[
r2 sin2 λ exp(3γ − 4ν) ∇ω

]}
r2 sinλ dr

= (1/2)
∫ π

0

dλ

∫ r1(λ)

0

∇ ·
[
exp γ ∇ν − (1/2)r2 sin2 λ exp(3γ − 4ν) ω ∇ω

]
r2 sinλ dr, (4.2.223)

if we insert from the basic equations (4.2.176), (4.2.177).
An equivalent equation has been given by Bardeen and Wagoner [1971, Eq. (II.28)], as an integral
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Fig. 4.2.1 Contour plots of isobaric surfaces (P = const) for critical rotation with K = P/ε
1+1/n
r = 0.1.

Equally shaded areas represent a 20% range of pressure. If n < 2.5, the relativistic polytropes are more spherical,
and if n > 2.5, they are more flattened in comparison to their Newtonian counterparts having the same angular
velocity and central rest mass density (Butterworth 1976).

over the rest mass M1 of the stationary rotating polytrope

Er1 = Mr1 =
∫

M1

[(3P + εr)/εu0 + 2Ωj] dM

=
∫

V1

[(P + εr) − 2Ω(P + εr)u3u
0 + 2P ](−g)1/2 dx1dx2dx3

= 2π

∫ π

0

dλ

∫ r1(λ)

0

{
(P + εr)[1 + 2Ωv2

/
(Ω − ω)(1 − v2)] + 2P

}
exp(2κ + γ) r2 sinλ dr

= 2π

∫ π

0

dλ

∫ r1(λ)

0

{
[(P + εr)/(1 − v2)][1 + v2(Ω + ω)/(Ω − ω)] + 2P

}
exp(2κ + γ) r2 sinλ dr,

(4.2.224)

which is the same as Eq. (4.2.221). Komatsu et al. (1989a) define, in analogy to the nonrelativistic case,
the relativistic kinetic energy of rotation of the polytrope as [cf. Eq. (4.2.220)]

Er,kin = (1/2)
∫

M1

Ω dJ = π

∫ π

0

dλ

∫ r1(λ)

0

Ω(P + εr)[v/(1 − v2)] exp(2κ + 2γ − 2ν) r3 sin2 λ dr.

(4.2.225)

The total relativistic energy of a stationary polytrope (including the stationary gravitational field
energy) is equal to the sum of proper energy, gravitational energy, and rotational energy [cf. Eqs.
(2.6.98), (4.1.73), Butterworth 1976, Eq. (38)]:

Er1 = Epr + Wr + Er,kin. (4.2.226)

The mean relativistic energy density is given by

εr,m = Mpr/V1, (4.2.227)

where proper mass and proper volume may be inserted via Eqs. (4.2.216) and (4.2.213), respectively.
Butterworth (1976) seems to have been the first who computed fully relativistic polytropes of arbitrary

high uniform rotation with polytropic indices n = 0.5, 0.8, 1, 1.5, 2, 2.5, 3 (Fig. 4.2.1). He integrates the
basic equations (4.2.176)-(4.2.179) for the metric functions ν, ω, γ, κ with a relativistic generalization of
Stoeckly’s (1965) method (cf. Sec. 3.8.2).

Butterworth and Ipser (1976) have performed a comprehensive study of the homogeneous polytrope
n = 0. The eccentricity e is calculated according to

e = (r2
re − r2

rp)
1/2/rre, (4.2.228)
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Fig. 4.2.2 Plot of angular velocity Ω versus eccentricity e for homogeneous polytropes n = 0. The bottom
solid curve is the Newtonian Maclaurin sequence. The other solid curves are connected with particular values of XS

from Eq. (4.2.230). Dashed curves are obtained for a constant value of the rotation parameter Y = J2ε
1/3
r /M

10/3
1

from Eq. (4.2.231). At the points marked with “shed”, mass shedding from the equatorial bulge occurs. Above
the points marked “ergo”, ergoregions appear on each sequence, where any observer must rotate with positive
angular velocity with respect to infinity (Butterworth and Ipser 1976).

Fig. 4.2.3 Contours of constant relativistic energy density εr in the meridional plane of a uniformly and
critically rotating polytropic n = 1.5 spheroid if q0 = 0.001 (Newtonian limit), and q0 = 1. The relativistic energy
density εr changes by a factor 10 between successive contours (Komatsu et al. 1989a).

where γrr = −grr = −g11 = exp(2κ), and

rre =
∫ r1(µ=0)

0

exp κ dr; rrp =
∫ r1(µ=1)

0

expκ dr, (4.2.229)

are the true relativistic equatorial and polar radii, respectively [cf. Eqs. (4.1.47), (4.2.149)].
From the metric (4.2.149) we observe that g00 = exp(2ν) − ω2 exp(2γ − 2ν) r2 sin2 λ can have either

sign. But in regions where g00 < 0, the time axis x0 – the line r, λ, ϕ = const – is not a timelike direction
(ds2 = g00 dt2 < 0). Regions where g00 < 0 are called ergoregions. The principal property of an ergoregion
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Fig. 4.2.4 Angular velocity versus ratio between polar and equatorial radial coordinate rp/re for n = 1.5
spheroids. All sequences for various values of the relativity parameter q0 terminate at critical rotation Ωc (open
circles), (Komatsu et al. 1989a).

Fig. 4.2.5 Dragging of inertial frames ω/Ω in the equatorial plane plotted against the relative equatorial
coordinate radius r/re for uniformly and critically rotating spheroids with polytropic index n = 0.5 and 1.5,
(q0 = 1), (Komatsu et al. 1989a).

is that motion with ϕ = const, dϕ/dt = 0 – as seen from infinity – is impossible: All particles must rotate.
No static observer with Ω = dϕ/dt = u3/u0 = 0 and u1, u2 = 0 can exist. It is for this reason that the
concept of the “locally nonrotating observer” has been introduced, who rotates with angular velocity
dϕ/dt = ω with respect to infinity (Eq. (4.2.150), Bardeen 1970, Bardeen and Wagoner 1971). Note,
that inside the Schwarzschild gravitational radius (4.1.28) motion with r = const is impossible in the
spherically symmetric field, whereas for the gravitational field of rotating bodies ϕ = const is not allowed
inside an ergoregion, while r = const is permitted (Landau and Lifschitz 1987, §104).

The behaviour of general relativistic Maclaurin spheroids shown in Fig. 4.2.2, is quite different from
Newtonian Maclaurin spheroids, where Ω2/πε – equal to Ω2/πG� if c, G = 1 – reaches a maximum of
0.4494 at an eccentricity of about e = 0.9299 (Sec. 3.2). The delicate balance between gravitational and
centrifugal forces, which permits Newtonian Maclaurin spheroids to exist for all values of e, is destroyed
by relativistic effects. Butterworth and Ipser (1976) build up sequences of rotating relativistic Maclaurin
spheroids by starting with the Schwarzschild sphere, specified by the value

XS = 1 − (1 − 2Mr1/r1)1/2, (c, G = 1). (4.2.230)

While XS is a measure of the strength of relativity, the parameter Y = J2ε
1/3
r /M

10/3
1 characterizes
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Fig. 4.2.6 Angular velocity Ω measured from infinity versus ratio τr = Er,kin/|Wr| from Eqs. (4.1.73),
(4.2.225) for the normal and supramassive equilibrium sequence of uniformly rotating, relativistic n = 2.9 poly-
tropes with constant rest mass along each curve. The dashed line on the right is the mass loss limit, the dashed
line on the left the stability limit against quasiradial oscillations of the supramassive sequence. Dotted curves
are unstable. Three curves are labeled by the value of their constant dimensionless rest mass; the curve *3.23 –
highlighted with an asterisk – is the delimitation between the two sequences (Cook et al. 1994).

the amount of rotation, since in the Newtonian limit

Y = J2ε1/3
r /M

10/3
1 = J2ε1/3/M

10/3
1 ∝ (Ω2M

10/3
1 /�4/3)(�1/3/M

10/3
1 ) = Ω2/�,

(n = 0; c, G = 1; εr = ε = �). (4.2.231)

Using the self-consistent field method [Eqs. (3.8.82)-(3.8.89)], the characteristics of uniformly rotating,
relativistic polytropic spheroids have been calculated by Komatsu et al. (1989a) for polytropic indices
n = 0.5, 1.5, 3, the relativity parameter from Eq. (4.1.31) being q0 = P0/εr0 = 0.001, 0.25, 0.5, 0.8, 1 (Figs.
4.2.3-4.2.5). No figures have been published for the case n = 3, when numerical instabilities prevented
calculations with q0 > 0.6. The calculations have been done for an almost constant angular velocity
Ω = Ωc, determined by Aε

1/2
r0 = 100 [Eq. (4.2.207)] for almost all models.

In the strong gravity case (q0 = 1) the mass is more concentrated towards the centre, as compared to
the Newtonian limit (q0 = 0.001). Critical rotation occurs at nearly the same ratio between critical polar
and equatorial coordinate (rcp/rce ≈ 0.6) for all spheroidal models depicted in Table 4.2.3, excepting the
case n = 3, q0 = 0.6 : rcp/rce ≈ 0.7.

The critical angular velocity Ωc can be evaluated in the spherical Schwarzschild approximation, since
the mass in the equatorial bulge is too small to affect gravity. The effects of general relativity are
incorporated by including the factor fr in the simple Newtonian relationship Ω2

c = M1/r3
ce for a critically

rotating sphere (Komatsu et al. 1989a):

Ωc = (frMr1/r3
ce)

1/2, (G = 1). (4.2.232)
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Fig. 4.2.7 Meridional cross-section of relativistic energy density εr for four ringlike structures if n = 1.5.
Model (a): Strong gravity (q0 = 0.1) with nearly rigid rotation (A = 0.6). Model (b): Strong gravity (q0 = 0.4)
with differential rotation (A = 0.4). Model (c): Newtonian limit (q0 = 0.001) with nearly rigid rotation (A =
0.065). Model (d): Newtonian limit (q0 = 0.001) with differential rotation (A = 0.0125). Contours are linearly
spaced by 0.1εr0, and the gravitational radius rg = 2Mr1 is indicated for the strong gravity models (a) and (b).
Strong gravity gathers matter towards the rotation axis in models (a) and (b), (Komatsu et al. 1989b).

Table 4.2.3 Parameters for critically and uniformly rotating, relativistic polytropic spheroids accord-
ing to Komatsu et al. (1989a): rcp/rce – ratio between critical polar and equatorial coordinate, βrc =
Ω2

c/2πG�r0, (G, c = 1) – critical rotation parameter from Eq. (4.2.126), τrc = Er,kin/|Wr| – critical ratio
between relativistic rotational and gravitational energy from Eqs. (4.1.73), (4.2.225), vce – critical proper velocity
at the equator with respect to the zero angular momentum observer [Eq. (4.2.150)]. aE + b means a × 10b.

n q0 rcp/rce βrc τrc vce

0.5 1 0.58 1.78 E−1 1.57 E−1 0.658
1.5 0.25 0.60 3.85 E−2 5.11 E−1 0.446
1.5 0.5 0.60 2.96 E−2 4.30 E−2 0.487
1.5 0.8 0.61 2.06 E−2 3.50 E−2 0.495
1.5 1 0.60 1.56 E−2 3.08 E−2 0.481
3 0.6 0.70 3.39 E−7 5.75 E−5 −

If n = 3, the mass of rotationally distorted, relativistic spheres is extremely concentrated towards
the centre. Mass loss occurs at an early stage, when the critical relativistic rotation parameter is βrc =
Ω2

c/2πεr0 = Ω2
c/2π�r0 = 3.39×10−7, (q0 = 0.6; c, G = 1; τr = Er,kin/|Wr| = 5.75×10−5), whereas in the

Newtonian limit q0 → 0 Komatsu et al. (1989a) obtain βc = 4.02×10−3 and τ = Ekin/|W | = 8.94×10−3

(cf. Tables 3.8.1, 4.2.3, 5.8.2). No ergoregions appear in the calculations of Butterworth (1976) and
Komatsu et al. (1989a) for polytropic relativistic spheroids with 0 < n ≤ 3, unlike to the case n = 0 from
Fig. 4.2.2.

The relationship between the angular velocity Ω measured from infinity and the angular momentum
J from Eq. (4.2.220) has been studied by Cook et al. (1992, 1994) for hydrostatic equilibrium sequences
of uniformly and rapidly rotating, relativistic polytropic spheroids (0.5 ≤ n ≤ 2.9) with the isentropic
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Fig. 4.2.8 Relativistic energy density contours for a uniformly rotating star (on the left) with polytropic
index n = 0.5, and for the surrounding ring with polytropic index n = 1 (on the right). The relativity parameter
of the ring is q0 = 0.01, and the ratio between maximum relativistic energy density of star and ring is 500. The
rotation parameter of the ring from Eq. (4.2.207) is A = 0.2 (Nishida et al. 1992).

equation of state (4.1.83), and constant baryon rest mass M1. Even rapidly rotating Newtonian stars
can spin up (Ω increases) as they lose energy and angular momentum via secular processes like stellar
winds, electromagnetic or gravitational radiation: The sign of the rate of change of Ω depends on the
variation of J and IΩ both, since Ω = J/IΩ, [IΩ – moment of inertia with respect to rotation axis from
Eq. (3.1.85)]. Indeed, Shapiro et al. (1990) found that a constant Newtonian mass with n ≈ 3, (n < 3)
can increase its angular velocity when angular momentum is lost.

Relativistic polytropic spheroids exhibit the same behaviour as Newtonian ones along the so-called
“normal sequence”. But there occurs also a uniquely relativistic effect along the “supramassive sequence”,
when the rest mass of the rotating polytrope exceeds the maximum stable rest mass of the nonrotating
polytrope. Both sequences terminate on the maximum angular momentum end (the maximum of τr =
Er,kin/|Wr| in Fig. 4.2.6) by mass loss. The most massive polytropes of the supramassive sequence exhibit
mass shedding also on their lower angular momentum end, rather than terminating as quasiradially
unstable objects, like the less massive members.

Komatsu et al. (1989b) calculate differentially rotating, relativistic configurations for polytropic
indices n = 0.5 and 1.5, when there appear besides spheroids also ringlike structures and ergoregions
(Fig. 4.2.7). The models of Komatsu et al. (1989b) are specified by four parameters: The polytropic
index n, the polar versus equatorial coordinate ratio rp/re, the rotation parameter A from Eq. (4.2.207),
and the relativity parameter q0 = P0/εr0, where P0 and εr0 now denote the maximum pressure and the
maximum relativistic energy density appearing in the configuration.

Nishida et al. (1992) have numerically evaluated the structure of a star-toroid system, extending the
pioneering work of Bardeen and Wagoner (1971) on relativistic thin disks. Relativistic toroidal structures
round compact objects are relevant in the modelling of accretion disks, quasars, and active galactic nuclei.
Such structures may also form during contraction of a close neutron binary, if one component is destroyed
by tidal forces. Nishida et al. (1992) take into account for the first time the finite thickness of the
relativistic disks, while the central object is different from a black hole.

As the gravity of the polytropic toroid deforms the central, rapidly rotating polytropic star, less
angular velocity is needed for the central star to shed mass from its equator. Due to dragging of inertial
frames by the rotating massive toroid, the angular velocity and the angular momentum can have opposite
signs.



5 STABILITY AND OSCILLATIONS

5.1 Definitions and General Considerations

A somewhat comprehensive presentation of polytropic stability and oscillations would require a sep-
arate book, as this vast topic leads to sophisticated and cumbersome calculations, with manifold con-
clusions. The best example in this respect is perhaps Chandrasekhar’s (1969) textbook, dealing merely
with a subclass of constant density (n = 0) configurations – the incompressible homogeneous ellipsoids
(n = 0; Γ1 = ∞).

It seems difficult to formulate an entirely general and consistent definition of stability, but the problem
becomes somewhat simpler, when defining the stability of equilibrium states, as will be relevant for our
purposes. It is well known that for conservative (dissipationless) mechanical systems, having a finite
number of degrees of freedom, the necessary and sufficient condition for stable equilibrium demands for
the potential energy Φ to be an absolute minimum (theorem of Lejeune-Dirichlet). This means that if
the initial displacements of the system are sufficiently small, all distances with respect to equilibrium will
remain always small (Ledoux 1958). The generalization of this stability definition to continuous media
with an infinite number of degrees of freedom, can be effected by defining the integral

∫
m

V dm, (5.1.1)

as a measure of virtual displacements of all mass elements dm, where V is the volume swept up by the
mass element dm during the course of time. The distance |S − S0| between two configurations S and
S0 of the system (S0 – equilibrium configuration) is taken as the minimum of the integral (5.1.1) for all
virtual displacements leading from state S0 to S. The equilibrium state S0 is said to be stable in the
sense of Wavre, if for an arbitrary small number ε1 we can always define another small number ε2 in such
a way, that any displacement of the system with |S − S0| < ε2 and with kinetic energy smaller than ε2,
will lead to motions obeying the condition |S − S0| < ε1.

Depending on the time scale of stable (unstable) motions, and on the overall physical conditions in
a configuration, we may distinguish various kinds of stability (instability). A system is dynamically (or-
dinarily) unstable if infinitesimal perturbations increase exponentially. Dynamical instability represents
increasing departures from hydrostatic equilibrium (Cox 1980, p. 47), and the rate of departure from
equilibrium is in general rapid. Under some circumstances unstable oscillations will continue to grow,
until dissipation (friction) or other nonlinear factors become important enough to limit the oscillations to
some finite amplitude: In this case the configuration is said to be pulsationally (vibrationally) unstable,
or overstable in Eddington’s terminology.

Another kind of aperiodic instability is the so-called secular instability, representing in stars increasing
departures from thermal equilibrium. Unlike dynamical (ordinary) instability, which sets in independently
of dissipative processes, the secular instability only manifests if some dissipative mechanism is operative;
the e-folding time of secular instability is directly proportional to the efficiency of dissipative processes,
and it may be regarded as a special case of pulsational instability, when dynamical acceleration terms
can be neglected (cf. Ledoux 1958, Chandrasekhar 1969, p. 95; Cox 1980, p. 321). Secular instability
is a milder form of instability, that could arise if dissipation is taken into account. The lunar orbit, for
instance, is dynamically stable, but secularly unstable, due to the action of tidal friction (Lyttleton 1953,
p. 113). The relationship between secular and dynamical instability may be casted into the following
four propositions: (i) If an equilibrium configuration is secularly stable, it is also dynamically stable. (ii)
If it is secularly unstable, it may be dynamically stable or unstable. (iii) If it is dynamically stable, it
may be secularly stable or unstable. (iv) If it is dynamically unstable. it is necessarily secularly unstable.

Another type of instability – gravitational instability – is intimately connected with the following
question: When can a fluid mass start contracting under its own gravitation? This is also the fundamental
question of the origin of stars, if one thinks that they are formed by contraction of dilute interstellar matter
subject to an external pressure (cf. Sec. 5.4).

341
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Two types of description – called Eulerian and Lagrangian – can be used to analyze the oscillations of a
fluid about an equilibrium state. The Eulerian approach regards the spatial coordinates �r = �r(x1, x2, x3)
and the time t as independent variables, the position vector �r referring to the arbitrary location of the
observation point, not to a particular fluid element followed in its motion. The state of motion is described
ab initio by the velocity field (Tassoul 1978)

�v = �v(�r, t), (5.1.2)

at location �r in the instant t. The state of the system is completely determined by the additional knowledge
of density, pressure, potential, etc., as functions of �r and t.

The Lagrangian description labels each fluid element by its initial position �ri = �ri(xi1, xi2, xi3) at the
initial moment, say t = 0. The position vector �r at some subsequent instant t is no longer an independent
variable, but a function of the independent variables �ri and t :

�r = �r(�ri, t). (5.1.3)

In view of Eq. (5.1.3), any quantity F which is a function of the Eulerian independent variables �r
and t, is also a function of the Lagrangian independent variables �ri and t, or vice versa.

By definition, the velocity of a particular fluid element in Lagrangian description is

�v = �v[�r(�ri, t), t] = �v(�ri, t) = [∂�r(�ri, t)
/
∂t]�ri=const, (5.1.4)

where the partial derivative indicates that differentiation must be carried out by holding �ri constant.
The time derivative of the Eulerian coordinates �r = �r(x1, x2, x3) has in general no meaning, as �r labels
merely the space, where the motion of the fluid, defined by �v(�r, t), takes place. In the definition (5.1.4)
the position vector �r must be considered always in Lagrangian description �r = �r(�ri, t). Once the Eulerian
velocity �v(�r, t) = �v[�r(�ri, t), t] is known, integration of Eq. (5.1.4) yields the Lagrangian solution (5.1.3).
The connection between Eulerian and Lagrangian description is provided by Eq. (5.1.4).

In Eulerian coordinates the partial time derivative of a function F has the meaning ∂F (�r, t)/∂t =
[∂F (�r, t)/∂t]�r=const, i.e. it is the rate of change of F apparent to a fixed observer at position vector
�r = const. On the other hand, the partial temporal derivative for a certain mass element amounts in
Lagrangian coordinates to ∂F (�ri, t)/∂t = [∂F (�ri, t)/∂t]�ri=const. Just the same rate of change is measured
by the material derivative DF (�r, t)/Dt from Eq. (5.1.6), as we follow a particular mass element along its
path, by noting that �r and t are formally regarded as independent variables (Tassoul 1978, Cox 1980):

DF (�r, t)/Dt = [∂F (�ri, t)/∂t]�ri=const or (DF/Dt)Eulerian = (∂F/∂t)Lagrangian. (5.1.5)

Physically, this is quite different from [∂F (�r, t)/∂t]�r=const. Eq. (5.1.5) shows that the material deriva-
tive in Eulerian description DF (�r, t)/Dt becomes equal to ∂F (�ri, t)/∂t in Lagrangian description. In
Eulerian variables the material (Stokes) derivative is equal to [cf. Eqs. (B.23)-(B.25)]

DF [�r(x1, x2, x3), t]
/
Dt = ∂F/∂t + (∂F/∂x1) ∂x1/∂t + (∂F/∂x2) ∂x2/∂t + (∂F/∂x3) ∂x3/∂t

= ∂F/∂t + �v · ∇F ; D �F/Dt = ∂ �F/∂t + (�v · ∇)�F ,

(�F = F1�e1 + F2�e2 + F3�e3; vk = ∂xk(�ri, t)/∂t; k = 1, 2, 3). (5.1.6)

In the case of a vector function �F the nabla operator in the term (�v · ∇)�F acts on both, the vector
components Fk and the unit vectors �ek along the coordinate axes [cf. Eqs. (B.23)-(B.25)].

The difference between Eulerian and Lagrangian description becomes even more apparent for the
acceleration, which in Eulerian variables is

D�v(�r, t)/Dt = ∂�v/∂t + (�v · ∇)�v, (5.1.7)

and in Lagrangian ones

∂�v(�ri, t)/∂t = ∂2�r(�ri, t)/∂t2. (5.1.8)

Let us consider in the Lagrangian description a particular fluid element in an unperturbed flow (e.g.
equilibrium state) defined by the radius vector �ru, which will be a function of its initial position �ri from
Eq. (5.1.3):

�ru = �ru(�ri, t). (5.1.9)
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Let us also consider a perturbed flow with radius vector �r given by Eq. (5.1.3). At time t, the
Lagrangian displacement of the same fluid element with respect to its unperturbed position is defined by
(e.g. Cox 1980)

∆�r = ∆�r(�ri, t) = �r(�ri, t) − �ru(�ri, t) = �r − �ru. (5.1.10)

Since �ri is connected with �ru through Eq. (5.1.9), we could equally well regard ∆�r as a function of
�ru and t :

∆�r = ∆�r(�ru, t) = �r(�ru, t) − �ru = �r − �ru. (5.1.11)

If the Lagrangian displacement is considered in the Eulerian description of the fluid, we have

∆�r = ∆�r(�r, t) = �r − �ru(�r, t) = �r − �ru, (5.1.12)

by replacing �ri in Eq. (5.1.10) with the (arbitrary) point of observation �r from Eq. (5.1.3). Let F (�r, t)
and Fu(�r, t) be the values of a physical quantity (e.g. pressure, density, potential) in the perturbed flow
and in the unperturbed one. The Eulerian variation of F is defined by

δF = δF (�r, t) = F (�r, t) − Fu(�r, t), (5.1.13)

representing the difference of the quantity F between the perturbed and unperturbed flow, observed
simultaneously at the same radius vector �r. Alternatively, the perturbed flow can also be described by
specifying at each moment the Lagrangian displacement ∆�r(�ri, t) which a certain mass element experi-
ences in the perturbed flow relative to the same mass element in the unperturbed flow. In this way we
define the Lagrangian displacement of F by

∆F = ∆F (�ri, t) = F [�ri + ∆�r(�ri, t), t] − Fu(�ri, t), (5.1.14)

representing the change of F observed simultaneously for the same mass element in the perturbed and
unperturbed flow. Since �r and �ru both are connected to the initial radius vector �ri of the same mass
element through Eqs. (5.1.3), (5.1.9), we can replace Fu(�ri, t) by Fu(�ru, t), and F [�ri + ∆�r(�ri, t), t] =
F [�ru + ∆�r(�ru, t), t] by F (�r, t) via Eqs. (5.1.10), (5.1.11). So, we are sure that we are indeed comparing
the properties of the same mass element in the two flows, and the Lagrangian variation of F becomes

∆F = F (�r, t) − Fu(�ru, t). (5.1.15)

To first order the Eulerian and Lagrangian variations (5.1.13) and (5.1.15) can be related together,
by adding and subtracting in Eq. (5.1.15) the same quantity F (�ru, t) :

∆F = F (�r, t) − Fu(�ru, t) = F [�ru + ∆�r(�ru, t), t] − F (�ru, t) + F (�ru, t) − Fu(�ru, t)
= ∆�r(�ru, t) · ∇F (�ru, t) + δF (�ru, t) or ∆F = δF + ∆�r · ∇F, (5.1.16)

where F [�ru + ∆�r(�ru, t), t] = F (�ru, t) + ∆�r(�ru, t) · ∇F (�ru, t). If F is a vector �F , Eq. (5.1.16) reads

∆�F = δ �F + (∆�r · ∇)�F . (5.1.17)

It is evident from the definition (5.1.13), that to first order in the disturbances, the Eulerian variation
commutes with partial derivation, since it is a variation of a function F at the same location and moment:

δ(∂F/∂t) = ∂δF/∂t; δ(∂F/∂xk) = ∂δF/∂xk, (k = 1, 2, 3). (5.1.18)

In contrast, the Lagrangian change ∆ does not commute with partial derivation (e.g. Chandrasekhar
1969):

∆(∂F/∂xk) = δ(∂F/∂xk) + ∆�r · ∇(∂F/∂xk) = ∂δF/∂xk + ∆�r · ∇(∂F/∂xk)
= ∂(∆F − ∆�r · ∇F )/∂xk + ∆�r · ∇(∂F/∂xk) = ∂∆F/∂xk − (∂∆�r/∂xk) · ∇F, (5.1.19)

∆(∂F/∂t) = δ(∂F/∂t) + ∆�r · ∇(∂F/∂t) = ∂(∆F − ∆�r · ∇F )/∂t + ∆�r · ∇(∂F/∂t)
= ∂∆F/∂t − (∂∆�r/∂t) · ∇F. (5.1.20)
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An important consequence of Eqs. (5.1.19), (5.1.20) is that the Lagrangian variation ∆F commutes
with the material derivative (5.1.6) up to first order:

∆(DF/Dt) = ∆(∂F/∂t) + ∆(�v · ∇F ) = ∂∆F/∂t − (∂∆�r/∂t) · ∇F + ∆�v · ∇F + �v · ∆(∇F )
= ∂∆F/∂t − (∂∆�r/∂t) · ∇F + (∂∆�r/∂t) · ∇F + [(�v · ∇)∆�r] · ∇F + �v · ∇∆F

−[(�v · ∇)∆�r] · ∇F = ∂∆F/∂t + �v · ∇∆F = D(∆F )/Dt. (5.1.21)

Here, we have replaced ∆(∇F ), ∆(∂F/∂t), ∆�v according to Eqs. (5.1.19), (5.1.20), (5.1.22), re-
spectively. In virtue of Eqs. (5.1.4), (5.1.5), (5.1.10), (5.1.15) we deduce for the Lagrangian velocity
variation

∆�v = �v(�r, t) − �vu(�ru, t) = [∂�r(�ri, t)/∂t]�ri=const − [∂�ru(�ri, t)/∂t]�ri=const

= [∂∆�r(�ri, t)/∂t]�ri=const = D[∆�r(�r, t)]/Dt = ∂[∆�r(�r, t)]/∂t + [�v(�r, t) · ∇] ∆�r(�r, t). (5.1.22)

On the other side, the Eulerian velocity change δ�v is via Eq. (5.1.17) equal to

δ�v = ∆�v − (∆�r · ∇)�v = D(∆�r)/Dt − (∆�r · ∇)�v = ∂∆�r/∂t + (�v · ∇)∆�r − (∆�r · ∇)�v. (5.1.23)

In the important particular case when the unperturbed flow is an equilibrium configuration (�vu = 0),
we have from Eqs. (5.1.22) and (5.1.23) up to the first order in ∆�r,�v :

δ�v ≈ ∆�v = �v = D(∆�r)/Dt ≈ ∂∆�r/∂t, (|∆�r|, |�v| ≈ 0; �vu = 0). (5.1.24)

The operators δF and DF/Dt do not commute, and from Eq. (5.1.16) we get with Eq. (5.1.21),
(F → DF/Dt) :

δ(DF/Dt) = ∆(DF/Dt) − ∆�r · ∇(DF/Dt) = D(∆F )/Dt − ∆�r · ∇(DF/Dt). (5.1.25)

In problems with only one degree of freedom the Lagrangian description of oscillations is preferable,
while in problems with more degrees of freedom the Eulerian form is more convenient.

The study of oscillations may be divided conceptually into two categories: (i) The linear theory, when
the amplitude of oscillations is assumed infinitely small, so that a first order approximation of the basic
equations is permissible. (ii) The nonlinear theory, when the oscillation amplitude may be of any size.

It is usually assumed that the solutions of the linear theory approximate closely enough the actual
solution, to reveal the trend of motion in the vicinity of an equilibrium state. If a configuration is found
to be unstable in the linear theory, then oscillations will grow in amplitude until nonlinear processes limit
the amplitude, or until the configuration disrupts (Cox and Giuli 1968).

In linear theory the Lagrangian displacement ∆�r, (|∆�r| � 1) is generally expressed in spherical
coordinates as [Eq. (B.34)]

∆�r(�r, t) = ∆�r(r, λ, ϕ, t) = ∆r(r, λ, ϕ, t) �er + r ∆λ(r, λ, ϕ, t) �eλ + r sinλ ∆ϕ(r, λ, ϕ, t) �eϕ,

[�r = �r(r, λ, ϕ)]. (5.1.26)

∆r, r ∆λ, and r sinλ ∆ϕ are the components of ∆�r along the coordinate axes.
In addition to the spheroidal (polar, even-parity) modes there exists also a second class – the toroidal

(axial, odd-parity) modes – characterized by ∆r(r, λ, ϕ, t) = 0 [see Eq. (5.8.166)]. It is usually assumed
that spheroidal and toroidal modes form a complete set – each perturbation of a physical fluid character-
istic (position, velocity, pressure, density, potential) can be represented as an infinite sum of such modes.
Each mode is treated as if only that one mode existed. To facilitate the mathematical treatment, the
radial component ∆r of the Lagrangian displacement vector ∆�r is assumed under the form of a spheroidal
mode with separated variables:

∆r(r, λ, ϕ, t) = ∆r(r) Y k
j (λ, ϕ) exp(iσt) = ∆r(r) P k

j (cos λ) exp(ikϕ) exp(iσt),
(
j = 0, 1, 2, 3, ...;

k = −j,−j + 1, ...j − 1, j; P 0
j = Pj ; P−k

j (cos λ) = (j − k)! P k
j (cos λ)/(j + k)!

)
. (5.1.27)

P k
j (cosλ) ∝ P−k

j (cos λ) are associated Legendre polynomials from Eqs. (3.1.38)-(3.1.41), (Hobson
1931, p. 99, Abramowitz and Stegun 1965). The angular oscillation frequency is denoted by σ, and
exp(iσt) = cos(σt)+i sin(σt), exp(ikϕ) = cos(kϕ)+i sin(kϕ). The natural number j defines the latitudinal
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order of the disturbance (j – latitudinal number), and the integer k defines its azimuthal order (k –
azimuthal number). The spherical harmonic Y k

j (λ, ϕ) = P k
j (cos λ) exp(ikϕ) is an eigenfunction of the

equation [cf. Eqs. (3.1.41), (3.4.9)]

(1/ sinλ) ∂(sinλ ∂Y k
j /∂λ)/∂λ + (1/ sin2 λ) ∂2Y k

j /∂ϕ2 = −j(j + 1)Y k
j . (5.1.28)

Equations for the tangential Lagrangian displacements r ∆λ and r sinλ ∆ϕ are provided by Eqs.
(5.2.75), (5.2.76). Assuming also for ∆λ and ∆ϕ the same time dependence as for ∆r, we get by virtue
of Eqs. (5.1.26), (5.1.27):

∆�r(�r, t) = ∆�r(�r) exp(iσt). (5.1.29)

If �vu = 0, the Eulerian and Lagrangian velocity variation is via Eqs. (5.1.24), (5.1.29) equal to

δ�v ≈ ∆�v = �v ≈ ∂∆�r/∂t = iσ ∆�r(�r) exp(iσt) = iσ ∆�r(�r, t). (5.1.30)

The Eulerian and Lagrangian variations of pressure P, density �, and gravitational potential Φ are
assumed under the same form as in Eq. (5.1.27):

δF, ∆F = F (r) Y k
j (λ, ϕ) exp(iσt) = F (r) P k

j (cosλ) exp(ikϕ) exp(iσt), (F = P, �,Φ). (5.1.31)

Generally, the angular oscillation frequency σ can be a complex number, and the real part of σ leads
in the time-dependent factor exp(iσt) to sinusoidal oscillations of ∆�r with finite amplitudes. Likewise,
if the imaginary part of σ is positive, damping of oscillations takes place with respect to the time. If
σ = 0, the modes from Eqs. (5.1.29) and (5.1.31) are time-independent: Neutral (marginal) stability
occurs, leading in the course of perturbations to another equilibrium configuration (Tassoul 1978). Once
the imaginary part of a particular eigenfrequency σ is negative, the configuration becomes unstable, due
to the growing exponential factor exp(iσt).

The boundary conditions at the centre and surface imply that solutions exist only for certain values
of σ2 – the eigenvalues of the problem. The displacements ∆�r corresponding to the eigenvalues σ are the
eigenfunctions of the problem at hand.

So-called standing waves occur if the phase α(r) of ∆r(r), or if ∆r(r) itself is purely real, where the
radial perturbation ∆r(r, t) is represented as

∆r(r, t) = ∆r(r) exp(iσt) = |∆r(r)| exp[iα(r)] exp(iσt), (5.1.32)

and perfect reflection of the standing wave takes place on the surface.
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5.2 Basic Equations

The relevant equations of an inviscid polytropic fluid are the mass conservation equation (equation
of continuity), the equation of momentum conservation (equation of motion), and the equation of energy
conservation. The equation of continuity obeys in Eulerian description the well known forms (e.g. Ledoux
and Walraven 1958, Cox 1980):

∂�/∂t + ∇ · (��v) = 0, (5.2.1)

D�/Dt + � ∇ · �v = 0, (5.2.2)

D(dm)/Dt = D(� dV )/Dt = 0. (5.2.3)

To obtain the Lagrangian description of Eqs. (5.2.1)-(5.2.3), we regard the expression (5.1.3) for
the Lagrangian radius vector �r as a continuous transformation of variables from the initial coordinates
(xi1, xi2, xi3) to (x1, x2, x3). The volume integral of F (�r, t) changes by the coordinate transformation
(5.1.3) as (e.g. Smirnow 1967)

∫
V

F (�r, t) dV =
∫

Vi

JF (�ri, t) dVi. (5.2.4)

dVi = dxi1dxi2dxi3 is the volume element occupied by the considered fluid particle at the initial
moment t = 0. The motion of a fluid particle takes place according to the coordinate transformation
(5.1.3)

xk = xk(xi1, xi2, xi3), (k = 1, 2, 3), (5.2.5)

and Eq. (5.2.4) can be deduced at once by inserting the differential of Eq. (5.2.5) dxk = (∂xk/∂xi
) dxi


into the volume element dV = dx1dx2dx3, where summation over the repeated index � is to be understood.
The Jacobian of the transformation (5.2.5) is given by the determinant

J = J(�ri, t) = |∂(x1, x2, x3)/∂(xi1, xi2, xi3)|. (5.2.6)

The time derivative of J involves factors of the form ∂2xk/∂xi
∂t = ∂vk/∂xi
 = (∂vk/∂xj) ∂xj/∂xi
.
If these factors are multiplied with the remaining factors of the determinant (5.2.6), we observe that (cf.
Ledoux and Walraven 1958, Tassoul 1978):

∂J(�ri, t)/∂t = J(�ri, t) ∇ · �v, (�v = (∂�r/∂t)�ri=const; ∇ · �v = ∂vk/∂xk). (5.2.7)

We get the Lagrangian description of the continuity equation, if we multiply its Eulerian form (5.2.2)
by J(�ri, t), using also Eqs. (5.1.5) and (5.2.7), (�(�r, t) → �(�ri, t); D�(�ri, t)/Dt = ∂�(�ri, t)/∂t) :

J(�ri, t) D�(�ri, t)/Dt + J(�ri, t) �(�ri, t) ∇ · �v = J(�ri, t) ∂�(�ri, t)/∂t + �(�ri, t) ∂J(�ri, t)/∂t

= ∂[�(�ri, t) J(�ri, t)]/∂t = 0 or �J = �i. (5.2.8)

�i = �(�ri, 0) denotes the fluid density at the initial moment t = 0 when J = |∂(xi1, xi2, xi3)
/∂(xi1, xi2, xi3)| = 1. In view of Eq. (5.2.7), the first part of Eq. (5.2.8) can also be written as (Cox 1980)

J(�ri, t) ∂�(�ri, t)/∂t + �(�ri, t) ∂J(�ri, t)/∂t = J(�ri, t) ∂�(�ri, t)/∂t + J(�ri, t) �(�ri, t) ∇ · �v = 0
or ∂�/∂t + � ∇ · �v = 0, (5.2.9)

which is the Lagrangian form of the Eulerian continuity equation (5.2.2).
The Eulerian form of the equation of motion (equation of momentum conservation) for the ideal fluid

without magnetic fields can be found by particularization of Eq. (2.1.1), (�v0 → �v; �H, τ = 0; �F = ∇Φ) :

� D�v(�r, t)/Dt = � D�v/Dt = � ∂�v/∂t + �(�v · ∇)�v = −∇P + � ∇Φ. (5.2.10)
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To obtain the Lagrangian equation of motion, we have simply to replace (D�v/Dt)Eulerian by
(∂�v/∂t)Lagrangian, as already outlined in Eqs. (5.1.5), (5.1.7), (5.1.8):

� ∂�v(�ri, t)/∂t = � ∂2�r(�ri, t)/∂t2 = −∇P + � ∇Φ. (5.2.11)

We turn the nabla operators to Lagrangian coordinates by writing ∇P = (∂P/∂xk)�ek =
(∂P/∂xi
)(∂xi
/∂xk)�ek, and an analogous expression for ∇Φ. Thus, Eq. (5.2.11) finally becomes

� ∂2�r/∂t2 = −(∂P/∂xi
) ∇xi
 + �(∂Φ/∂xi
) ∇xi
, (5.2.12)

where again, summation over � is to be understood.
The foregoing equations of mass and momentum conservation should also be augmented by the energy

conservation equation, which is a fairly simple matter for the reversible (quasistatic) polytropic processes
considered in this book (see Sec. 1.1). For reversible processes Eq. (1.1.4) writes dQ = T dS, and the
first law of thermodynamics (the conservation of thermal energy alone) from Eq. (1.1.3) becomes for the
mass unit

T dS = dQ = dU + P d(1/�), (m = 1; � = 1/V ). (5.2.13)

T, S, Q, and U are the temperature, entropy, quantity of heat energy, and internal energy of the fluid.
If we consider the conservation of thermal energy in the course of time, as we follow the fluid motion, we
have to replace the differentials in Eq. (5.2.13) by the material derivative, dividing Eq. (5.2.13) by Dt :

T DS/Dt = DQ/Dt = DU/Dt + P D(1/�)/Dt = ∂U/∂t + �v · ∇U + (P/�) ∇ · �v or
�T (∂S/∂t + �v · ∇S) = ∂(�U)/∂t + ∇ · (�U�v) + P ∇ · �v. (5.2.14)

Another useful form of the first law of thermodynamics (5.2.13) may be derived by regarding the
internal energy as a function of pressure and density U = U(P, �), when the temperature T has been
eliminated through the equation of state T = T (P, �). Eq. (5.2.13) becomes

T dS = dQ = (∂U/∂P )� dP + [(∂U/∂�)P − P/�2] d�. (5.2.15)

In the adiabatic case Eq. (5.2.15) is equal to zero (dS, dQ = 0), and we obtain for the generalized
adiabatic exponent from Eq. (1.3.23):

Γ1 = (d lnP/d ln �)S = �[P/�2 − (∂U/∂�)P ]
/
P (∂U/∂P )�. (5.2.16)

Inserting this into Eq. (5.2.15), we get

dQ = P (∂U/∂P )� (d lnP − Γ1 d ln �). (5.2.17)

Using the definition of the specific heat at constant volume cV = (dQ/dT )V = (dQ/dT )� =
(∂U/∂T )�, (� = 1/V ), and the notation (1.3.3), we have

(∂U/∂P )� = (∂U/∂T )� (∂T/∂P )� = cV T/PχT = 1/�(Γ3 − 1), (5.2.18)

where we have inserted from Eq. (1.3.14) for the generalized adiabatic exponent Γ3−1 = PχT /cV �T, (c =
dQ/dT = 0). Thus, another form of Eq. (5.2.17) is

[�(Γ3 − 1)/P ] dQ = d lnP − Γ1 d ln �, (� = 1/V ). (5.2.19)

If we apply the first law of thermodynamics (5.2.19) to a certain mass element along its path, we have
to replace in Eulerian description the differentials by material derivatives (Tassoul 1978, Cox 1980):

[�(Γ3 − 1)/P ] DQ/Dt = D lnP/Dt − Γ1 D ln �/Dt. (5.2.20)

For adiabatic reversible oscillations (S, Q = const), Eq. (5.2.20) becomes

DP/Dt = (Γ1P/�) D�/Dt. (5.2.21)



348 5 Stability and Oscillations

The material derivative in Eulerian description DF/Dt is by virtue of Eq. (5.1.5) equal to the partial
time derivative ∂F/∂t in Lagrangian description, so the energy equation (5.2.20) writes in Lagrangian
variables (cf. Ledoux and Walraven 1958, §84):

[�(Γ3 − 1)/P ] ∂Q/∂t = ∂ lnP/∂t − Γ1 ∂ ln �/∂t. (5.2.22)

The quoted general equations form a system of nonlinear partial differential equations that can be
solved only in very particular cases. In linear perturbation theory we can neglect all powers higher
than the first, and the relevant perturbed equations take a somewhat simpler form. The linear Eulerian
variations of velocity, pressure, density, and potential are [cf. Eq. (5.1.13)]:

�v(�r, t) = �vu(�r, t) + δ�v(�r, t); �(�r, t) = �u(�r, t) + δ�(�r, t);
P (�r, t) = Pu(�r, t) + δP (�r, t); Φ(�r, t) = Φu(�r, t) + δΦ(�r, t). (5.2.23)

u-indexed values characterize the unperturbed flow (equilibrium state). Eq. (5.2.23) is inserted into
the Eulerian equation of continuity (5.2.1), taking into account that the unperturbed values satisfy Eq.
(5.2.1), (∂�u/∂t + ∇ · (�u�vu) = 0) :

∂δ�/∂t + ∇ · (�u δ�v + �vu δ�) = ∂δ�/∂t + ∇ · (� δ�v + �v δ�) = 0. (5.2.24)

We have dropped the index u, since in the linear approximation perturbed and unperturbed quantities
differ only by small first order quantities. If the unperturbed fluid is in hydrostatic equilibrium, we find
in this important special case

∂δ�/∂t + ∇ · (�u�v) = 0, (�vu = 0; |�v| ≈ 0; �v ≈ δ�v). (5.2.25)

This equation can be transformed further, by writing via Eq. (5.1.24) �u�v ≈ �u ∂∆�r/∂t =
∂(�u ∆�r)/∂t, (∂�u/∂t = 0) :

∂δ�/∂t + ∇ · [∂(�u ∆�r)/∂t] = ∂δ�/∂t + ∂[∇ · (�u ∆�r)]/∂t = 0. (5.2.26)

We integrate with respect to the time, the integration constant becoming zero due to the obvious
initial condition δ� = 0 if ∆�r = 0 :

δ� + ∇ · (� ∆�r) = 0, (|�v| ≈ 0; � ≈ �u). (5.2.27)

Turning with Eq. (5.1.16) to the Lagrangian description, we get

δ� + ∇ · (� ∆�r) = δ� + ∇� · ∆�r + � ∇ · ∆�r = ∆� + � ∇ · ∆�r = 0, (|�v| ≈ 0). (5.2.28)

The Eulerian perturbation of the equation of motion (5.2.10) writes analogously to Eq. (5.2.24):

∂δ�v/∂t + (δ�v · ∇)�vu + (�vu · ∇)δ�v = (δ�/�2
u) ∇Pu − (1/�u) ∇δP + ∇δΦ or

∂δ�v/∂t + (δ�v · ∇)�v + (�v · ∇)δ�v = (δ�/�2) ∇P − (1/�) ∇δP + ∇δΦ = δ[−(1/�) ∇P + ∇Φ].
(5.2.29)

If �vu = 0, Eq. (5.2.29) becomes [�v = δ�v ≈ ∂∆�r/∂t; Eqs. (5.1.23), (5.1.24)]:

∂δ�v/∂t = ∂�v/∂t = ∂2∆�r/∂t2 = δ[(−1/�) ∇P + ∇Φ], (|�v| ≈ 0). (5.2.30)

The Lagrangian variation of various fluid characteristics is by virtue of Eqs. (5.1.11) and (5.1.15)
equal to

�r = �ru + ∆�r; �v(�r, t) = �vu(�ru, t) + ∆�v; P (�r, t) = Pu(�ru, t) + ∆P ; �(�r, t) = �u(�ru, t) + ∆�;
Φ(�r, t) = Φu(�ru, t) + ∆Φ; Q(�r, t) = Qu(�ru, t) + ∆Q; Γk(�r, t) = Γku(�ru, t) + ∆Γk, (k = 1, 2, 3).

(5.2.31)

As the Lagrangian equation of motion (5.2.12) is generally fairly complicated [cf. Eq. (5.2.48)],
we consider simply the Lagrangian variation of the Eulerian equation (5.2.10) by using Eqs. (5.1.16),
(5.1.21), (5.1.22):

∆(D�v/Dt) = D(∆�v)/Dt = D2(∆�r)/Dt2 = ∆[−(1/�) ∇P + ∇Φ]
= δ[−(1/�) ∇P + ∇Φ] + (∆�r · ∇)[−(1/�) ∇P + ∇Φ]. (5.2.32)
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The equivalence of Eq. (5.2.29) with Eq. (5.2.32) can be shown at once, by using Eqs. (5.1.16) and
(5.2.10) to transform the last term of Eq. (5.2.32), (Cox 1980):

(∆�r · ∇)[−(1/�) ∇P + ∇Φ] = (∆�r · ∇) D�v/Dt. (5.2.33)

Introducing Eq. (5.2.33) into Eq. (5.2.32), we have

∆(D�v/Dt) − (∆�r · ∇)(D�v/Dt) = δ(D�v/Dt) = δ(∂�v/∂t) + δ[(�v · ∇)�v] = ∂δ�v/∂t + (δ�v · ∇)�v
+(�v · δ∇)�v = ∂δ�v/∂t + (δ�v · ∇)�v + (�v · ∇)δ�v = δ[−(1/�) ∇P + ∇Φ], (5.2.34)

which is just the same as Eq. (5.2.29).
Following a certain mass element along its motion, we apply the Lagrangian variation (5.1.21) to the

equation of thermal energy conservation (5.2.20):

[∆Γ3/(Γ3u − 1) + ∆�/�u − ∆P/Pu][(Γ3u − 1)�u/Pu](DQ/Dt)u + [(Γ3u − 1)�u/Pu] D(∆Q)/Dt

= D(∆P/Pu)
/
Dt − Γ1u D(∆�/�u)

/
Dt − ∆Γ1 (D ln �/Dt)u. (5.2.35)

If the system in its unperturbed state is in hydrostatic and thermal equilibrium (�vu = 0), we have
(DQ/Dt)u, (D�/Dt)u = 0. In the first order linear approximation Eq. (5.2.35) takes the form

[(Γ3u − 1)�u/Pu] D(∆Q)/Dt = [(Γ3u − 1)�u/Pu] D(T ∆S)/Dt

= D(∆P/Pu)
/
Dt − Γ1u D(∆�/�u)

/
Dt, (�vu = 0; T ∆S = ∆Q). (5.2.36)

If the motions are adiabatic (isentropic) we have ∆S, ∆Q = 0. The equation of thermal energy
conservation (5.2.36) becomes simply

D(∆P/Pu)
/
Dt = Γ1u D(∆�/�u)

/
Dt, (�vu, ∆S, ∆Q = 0). (5.2.37)

We may trivially integrate this equation with respect to the time, replacing up to the first order
Pu, �u, Γ1u with P, �,Γ1, respectively:

∆P = (Γ1P/�) ∆� = −Γ1P ∇ · ∆�r, (Q, S = const). (5.2.38)

We have also inserted from the continuity equation (5.2.28), and the integration constant is zero, due
to the condition ∆P = 0 if ∆� = 0.

The Eulerian adiabatic pressure change is via Eq. (5.1.16) equal to (Tassoul 1978)

δP = ∆P − ∆�r · ∇P = −Γ1P ∇ · ∆�r − ∆�r · ∇P, (�vu = 0). (5.2.39)

Because the Eulerian variation δ commutes by virtue of Eq. (5.1.18) with ∇, we apply this variation
to Poisson’s equation (2.1.4):

∇2(δΦ) = −4πG δ�. (5.2.40)

A further important simplification – which appears adequate for the theoretical treatment of most
pulsating stars – concerns radial, spherically symmetric oscillations with displacements as given by Eq.
(5.1.32): ∆r(r, t) = ∆r(r) exp(iσt). Since the mass m inside radial coordinate is conserved, we can write
in Lagrangian description

m =
∫ ri

0

4π�i(r′, 0) r′2 dr′ =
∫ r

0

4π�(r′, t) r′2 dr′, (5.2.41)

or in differential form

dm = 4π�i(ri, 0)ri
2 dri = 4π�(r, t)r2 dr; ∂r/∂ri = r2

i �i/r2�; ∂r/∂m = 1/4π�r2. (5.2.42)

To obtain the linearized mass conservation equation for radial oscillations in Lagrangian description,
we insert the Lagrangian variations (5.2.31) and

η = ∆r/ru; r = ru(1 + η), (η � 1), (5.2.43)
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into the mass conservation equation (5.2.42):

∂r/∂m = (∂r/∂ru) ∂ru/∂m = (1/4π�ur2
u) ∂[ru(1 + η)]/∂ru = 1/4π�r2

= 1/4πr2
u(�u + ∆�)(1 + η)2. (5.2.44)

Performing the elementary derivation and expanding up to the first order, we get

∆�/�u = −3η − ru ∂η/∂ru or ∆�/� = −3η − r ∂η/∂r. (5.2.45)

The Lagrangian equation of motion (5.2.12) becomes for spherically symmetric radial motion, by
using Eq. (5.2.42), (∂Φ/∂r = −Gm(r)/r2) :

∂2r/∂t2 = [−(1/�) ∂P/∂ri + ∂Φ/∂ri] ∂ri/∂r = −4πr2 ∂P/∂m − Gm(r)/r2. (5.2.46)

The linearized Lagrangian equation of perturbed radial motion is obtained in the same way as the
linearized mass conservation equation (5.2.45), by inserting Eqs. (5.2.43), (5.2.44) into Eq. (5.2.46),
where we assume

∂ru/∂t, ∂2ru/∂t2 = 0, (�vu = 0). (5.2.47)

Eq. (5.2.46) becomes

∂2(ru + ∆r)/∂t2 = ∂2∆r/∂t2 = ru ∂2η/∂t2 = −[(ru + ∆r)2/�ur2
u] ∂(Pu + ∆P )/∂ru

−Gm/(ru + ∆r)2 = −(2∆r/�uru) dPu/dru − (1/�u) ∂∆P/∂ru + 2Gm ∆r/r3
u

= 4Gmη/r2
u − (1/�u) ∂∆P/∂ru = −(4η/�u) dPu/dru − (1/�u) ∂∆P/∂ru

= −(4η/�u) dPu/dru − (1/�u)(∆P/Pu) dPu/dru − (Pu/�u) ∂(∆P/Pu)
/
∂ru. (5.2.48)

We have used Eq. (5.2.47) and the equation of hydrostatic equilibrium (1/�u) dPu/dru = −Gm/r2
u.

The derivation of ∂∆P/∂ru has been performed according to ∂∆P/∂ru = ∂[Pu(∆P/Pu)]
/
∂ru.

The perturbed linearized energy conservation equation in Lagrangian description can be obtained
from Eq. (5.2.36) via Eq. (5.1.5), (D /Dt → ∂ /∂t) :

[(Γ3u− 1)�u/Pu] ∂∆Q/∂t = [(Γ3u − 1)�u/Pu] ∂(T ∆S)/∂t = ∂(∆P/Pu)
/
∂t − Γ1u ∂(∆�/�u)

/
∂t.

(5.2.49)

The perturbed linearized Lagrangian equations of mass, momentum, and energy conservation [Eqs.
(5.2.45), (5.2.48), (5.2.49)] may be combined into a single equation (5.2.56) governing linear, radial
nonadiabatic oscillations. We rewrite Eq. (5.2.48) under the form

ru ∂2η/∂t2 = −4πr2
u[4η dPu/dm + (∆P/Pu) dPu/dm + Pu ∂(∆P/Pu)

/
∂m]. (5.2.50)

Taking the material derivative of Eq. (5.2.50) in the Lagrangian description from Eq. (5.1.5), we get

ru ∂3η/∂t3 = −4πr2
u

{
4(∂η/∂t) dPu/dm + [∂(∆P/Pu)

/
∂t] dPu/dm + Pu ∂2(∆P/Pu)

/
∂m∂t

}
.

(5.2.51)

∂(∆P/Pu)/∂t can now be eliminated with the energy equation (5.2.49):

ru ∂3η/∂t3 = −4πr2
u

{
4(∂η/∂t) dPu/dm + Γ1u[∂(∆�/�u)

/
∂t] dPu/dm

+Pu ∂[Γ1u ∂(∆�/�u)
/
∂t]
/
∂m + ∂[(Γ3u − 1)�u ∂∆Q/∂t]

/
∂m

}
, (5.2.52)

where the last term is [(Γ3u − 1)�u/Pu](∂∆Q/∂t) dPu/dm + Pu ∂{[(Γ3u − 1)�u/Pu] ∂∆Q/∂t}
/
∂m.

Up to the first order we get from Eq. (5.2.45)

∂(∆�/�u)/∂t = −3 ∂η/∂t − 4π�ur3
u ∂2η/∂m∂t. (5.2.53)

We insert into Eq. (5.2.52), and find after some obvious algebra:

ru ∂3η/∂t3 = 4πr2
u

{
(∂η/∂t) d[(3Γ1u − 4)Pu]/dm + 3Γ1uPu ∂2η/∂m∂t

+∂(4πΓ1ur3
uPu�u ∂2η/∂m∂t)

/
∂m − ∂[(Γ3u − 1)�u ∂∆Q/∂t]

/
∂m

}
. (5.2.54)
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We note the identity

∂(4πΓ1ur6
uPu�u ∂2η/∂m∂t)

/
∂m = 4πr3

u ∂(Γ1ur3
uPu�u ∂2η/∂m∂t)

/
∂m + 3Γ1ur3

uPu ∂2η/∂m∂t,

(∂r3
u/∂m = 3/4π�u), (5.2.55)

so the second and third term in Eq. (5.2.54) can be put together, and we obtain the final expression
obeyed by η = ∆r/ru ≈ ∆r/r for linear, radial and nonadiabatic oscillations:

∂3η/∂t3 = 4πru(∂η/∂t) d[(3Γ1u − 4)Pu]
/
dm + (1/r2

u) ∂(16π2Γ1ur6
uPu�u ∂2η/∂m∂t)

/
∂m

−4πru ∂[(Γ3u − 1)�u ∂∆Q/∂t]
/
∂m. (5.2.56)

For small adiabatic oscillations (Q = const) the last term disappears. We integrate in this case Eq.
(5.2.56) with respect to the time, the integration constant being equal zero, i.e. η = 0 corresponds to the
unperturbed hydrostatic state of the system:

∂2η/∂t2 = 4πruη d[(3Γ1u − 4)Pu]
/
dm + (1/r2

u) ∂(16π2Γ1ur6
uPu�u ∂η/∂m)

/
∂m. (5.2.57)

We now assume a standing wave solution of Eq. (5.2.57) under the form (5.1.32):

η(r, t) = ∆r(r, t)/ru = [∆r(r)/ru] exp(iσt) = η(r) exp(iσt); η(r) = ∆r(r)/ru. (5.2.58)

Eq. (5.2.57) becomes equal to the linear adiabatic wave equation, by suppressing the common factor
exp(iσt) and the index u, (∂ /∂m = (1/4π�ur2

u) ∂ /∂ru) :

d(Γ1Pr4 dη/dr)
/
dr + η{r3 d[(3Γ1 − 4)P ]/dr + σ2�r4} = 0. (5.2.59)

We may eliminate the pressure gradient by the equation of hydrostatic equilibrium dP/dr =
−G�m(r)/r2 :

dη2/dr2 +
[
4/r + (1/Γ1) dΓ1/dr − G� m(r)/Pr2

]
dη/dr

+
[
(4/Γ1 − 3)G� m(r)/Pr3 + (3/Γ1r) dΓ1/dr + σ2�/Γ1P

]
η = 0. (5.2.60)

The boundary conditions usually imposed on Eqs. (5.2.59) or (5.2.60) at the centre r = 0 and at the
surface r = r1 are (Ledoux and Walraven 1958, Cox 1980)

∆r = rη = 0, (r = 0), (5.2.61)

as demanded by spherical symmetry, and

∆P = 0, (r = r1). (5.2.62)

Eq. (5.2.62) means that the total surface pressure remains always zero as we follow the motion of the
surface during oscillations.

Because of the factors 4/r and (3/Γ1r) dΓ1/dr in Eq. (5.2.60), the point r = 0 is a first-order pole
of the coefficients of dη/dr and η, respectively. Close to the surface �/P = �0/P0θ, (P = K�1+1/n =
P0θ

n+1; � = �0θ
n) tends toward infinity if 0 ≤ n < 5, and the coefficients of dη/dr and η become singular

again. We have to seek solutions η that are regular (continuous solutions with continuous derivatives) at
the points r = 0 and r = r1.

In virtue of Eq. (5.1.16) the outer boundary condition (5.2.62) can also be written under the form

∆P = δP + (dP/dr) ∆r = 0, (r = r1). (5.2.63)

If the density vanishes on the surface, then (dP/dr)r=r1 = −G�1m(r1)/r2
1 = 0 and ∆P = δP = 0 at

r = r1. Eq. (5.2.62) can be transformed further, by replacing ∆P with the adiabatic form (5.2.38) of the
energy equation, and by inserting for ∆�/� from Eq. (5.2.45):

∆P = Γ1P ∆�/� = −Γ1P (3η + r dη/dr) = 0, (r = r1). (5.2.64)
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For the polytropic indices of practical interest (0 ≤ n < 5) we can obtain another explicit expression
of the surface boundary condition, suitable for practical applications. To this end we solve the perturbed
Lagrangian equation of motion (5.2.48) for ∂(∆P/P )

/
∂r, by dropping the index u :

∂(∆P/P )
/
∂r = −(d lnP/dr)

[
�r(∂2η/∂t2)

/
(dP/dr) + 4η + ∆P/P

]
= −(d lnP/dr)

[
− r3(∂2η/∂t2)

/
Gm + 4η + ∆P/P

]
. (5.2.65)

Near the surface we have d(lnP )/dr = −Gm�/r2P ∝ �/P = �0/P0θ → ∞, (0 ≤ n < 5), and since
∂(∆P/P )

/
∂r has to remain finite, we conclude that the last factor from Eq. (5.2.65) must be very small

near the boundary, i.e.

−r3(∂2η/∂t2)
/
Gm + 4η + ∆P/P ≈ 0, (0 ≤ n < 5; r ≈ r1). (5.2.66)

Assuming further the temporal dependences under the form η(r, t) = η(r) exp(iσt), ∆P (r, t) =
∆P (r) exp(iσt), and dropping the common factor exp(iσt), Eq. (5.2.66) becomes (Sterne 1937, Cox
1980):

∆P/P = −η(r3σ2/Gm + 4), (0 ≤ n < 5; r = r1). (5.2.67)

Inserting the adiabatic change (5.2.38) and the mass conservation equation (5.2.45), we get the bound-
ary condition (5.2.62) under the final form

r dη/dr = η[(4/Γ1 − 3) + r3σ2/Γ1Gm], (0 ≤ n < 5; r = r1). (5.2.68)

In fact, we may obtain this equation at once from Eq. (5.2.60), by preserving near the surface r = r1

only the dominant terms containing �/P → ∞ [cf. Ledoux and Walraven 1958, Eq. (58.17)].
Eq. (5.2.59) or (5.2.60) is a second order linear homogeneous equation, so its solution must involve two

constants of integration, with one constant of integration remaining arbitrary [if η is a solution, then so
is Cη, (C = const)]. The remaining integration constant can clearly be used to satisfy only one boundary
condition, and the sole disposable additional parameter is the angular oscillation frequency σ, which
has to be varied until the second boundary condition is satisfied. Hence, only certain eigenfrequencies
(eigenvalues, characteristic values) σ0, σ1, σ2, ..., and the corresponding eigensolutions (proper solutions)
η0, η1, η2, ... can satisfy Eq. (5.2.59). Since this equation is of the Sturm-Liouville type, its infinite discrete
set of real eigenvalues can be ordered by increasing values of σ2

k, (σ2
0 < σ2

1 < σ2
2 < ...), (e.g. Ledoux and

Walraven 1958). For the k-th mode Eq. (5.2.59) may be written under the concise form

L(ηk) = σ2
kηk, (5.2.69)

where the linear operator is via Eq. (5.2.59) equal to

L(η) = −(1/�r4) d(Γ1Pr4 dη/dr)
/
dr − (η/�r) d[(3Γ1 − 4)P ]/dr, (η(r) = ∆r(r)/r � 1).

(5.2.70)

The eigenfunction η0 corresponding to the smallest eigenvalue σ0 will be called the fundamental mode.
The eigenfunctions η1, η2, ... are called, following Eddington, the first, second, etc. overtone (harmonic).

We now turn to the principal linear equations for the study of nonradial oscillations of an undistorted
sphere. At first we write out the equation of continuity (5.2.28) in spherical coordinates:

δ�/� + (∆r/�) ∂�/∂r + (1/r2) ∂(r2 ∆r)/∂r + (1/r sinλ) ∂(r sinλ ∆λ)/∂λ

+(1/r sinλ) ∂(r sinλ ∆ϕ)/∂ϕ = 0. (5.2.71)

The linearized momentum equation suitable for the study of small nonradial oscillations would be
given for instance by Eq. (5.2.30):

∂2∆�r/∂t2 = (δ�/�2) ∇P − (1/�) ∇δP + ∇δΦ, (|�v| ≈ 0). (5.2.72)

We insert for the Lagrangian displacement via Eq. (5.1.29), and for the relevant Eulerian perturbations
from Eq. (5.1.31), suppressing the common factor exp(iσt) :

σ2 ∆�r = −(δ�/�2) ∇P + (1/�) ∇δP −∇δΦ = δ[(1/�) ∇P −∇Φ]. (5.2.73)
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We write out the components up to the first order (δ� ∇P = δ� dPu/dr) :

σ2 ∆r = −(δ�/�2
u) dPu/dr + (1/�u) ∂δP/∂r − ∂δΦ/∂r, (5.2.74)

σ2r ∆λ = (1/r) ∂(δP/�u + δΦ)/∂λ, (5.2.75)

σ2r sinλ ∆ϕ = (1/r sinλ) ∂(δP/�u + δΦ)/∂ϕ. (5.2.76)

Integration with respect to t of the equation of thermal energy conservation (5.2.36) yields

[(Γ3 − 1)�/P ] ∆Q = ∆(lnP ) − Γ1 ∆(ln �), (5.2.77)

after interchanging in our linear approximation perturbed and unperturbed quantities, when multiplied
by small first order terms. Using Eq. (5.1.16), we find from Eq. (5.2.77)

(Γ3 − 1)�(δQ + ∆�r · ∇Q) = δP + ∆�r · ∇P − (Γ1P/�)(δ� + ∆�r · ∇�), (5.2.78)

and finally, up to the first order:

(Γ3 − 1)�(δQ + ∆r ∂Q/∂r) = δP + ∆r ∂P/∂r − (Γ1P/�)(δ� + ∆r ∂�/∂r). (5.2.79)

The equation of motion (5.2.73) can also be brought into another form, by inserting for δ�/� from
Eq. (5.2.78):

σ2 ∆�r = ∇(δP/� − δΦ) + (δP/�2) ∇� − (δ�/�2) ∇P = ∇(δP/� − δΦ)
+[(1/�) ∇� − (1/Γ1P ) ∇P ][δP/� + (1/�) ∆�r · ∇P ] + [(Γ3 − 1)/Γ1P ](δQ + ∆�r · ∇Q) ∇P. (5.2.80)

From the continuity equation (5.2.28) we have

∆� = δ� + ∆�r · ∇� = −� ∇ · ∆�r, (5.2.81)

which is substituted into Eq. (5.2.80) via Eq. (5.2.78)

δP/� + (1/�) ∆�r · ∇P = −(Γ1P/�) ∇ · ∆�r + (Γ3 − 1)(δQ + ∆�r · ∇Q), (5.2.82)

to obtain eventually

σ2 ∆�r = ∇(δP/� − δΦ) − [(1/�) ∇� − (1/Γ1P ) ∇P ](Γ1P/�) ∇ · ∆�r

+[(Γ3 − 1)/�](δQ + ∆�r · ∇Q) ∇�. (5.2.83)

The important quantity

�A = (1/�) ∇� − (1/Γ1P ) ∇P = [1 − (1 + 1/n)/Γ1] ∇(ln �), (P = K�1+1/n), (5.2.84)

occurring in the preceding equations turns for radial symmetry just into the well known K. Schwarzschild
criterion of convective stability [e.g. Schwarzschild 1958, Eq. (7.1)]:

A = (1/�) d�/dr − (1/Γ1P ) dP/dr = [1 − (1 + 1/n)/Γ1] d ln �/dr, (P = K�1+1/n). (5.2.85)

A < 0 demands stability against convection, whereas A ≥ 0 requires instability against convective
motions. Since generally d�/dr < 0, convective stability demands Γ1 > 1+1/n or n > 1/(Γ1−1) if n > 0
(see Sec. 5.5).

In the case of adiabatic nonradial oscillations Eqs. (5.2.80) and (5.2.83) simplify to

σ2 ∆�r = ∇(δP/� − δΦ) + �A[δP/� + (1/�) ∆�r · ∇P ] = ∇(δP/� − δΦ) − (Γ1P �A/�) ∇ · ∆�r

= ∇χ − (Γ1P �A/�) ∇ · ∆�r, (χ = δP/� − δΦ; S, Q = const). (5.2.86)
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We assume for ∆r, δP, δ�, δΦ, χ series expansions into spherical surface harmonics, analogously to
Eqs. (5.1.27), (5.1.31). For instance

∆r(r, λ, ϕ) = ∆r(r) Y k
j (λ, ϕ) = ∆r(r) P k

j (cos λ) exp(ikϕ); χ(r, λ, ϕ) = χ(r) Y k
j (λ, ϕ)

= χ(r) P k
j (cosλ) exp(ikϕ), (j = 0, 1, 2, ...; k = −j,−j + 1, ...j − 1, j). (5.2.87)

The vector �A can be equated in our linear approximation to its unperturbed value, which possesses
only the radial component A from Eq. (5.2.85), due to the assumption of an unperturbed sphere. So,
the scalar components of Eq. (5.2.86) are

σ2 ∆r(r, λ, ϕ) = ∂χ(r, λ, ϕ)/∂r − (AΓ1P/�) ∇ · ∆�r(r, λ, ϕ), (5.2.88)

σ2r ∆λ(r, λ, ϕ) = (1/r) ∂χ(r, λ, ϕ)/∂λ = [χ(r)/r] ∂Y k
j (λ, ϕ)/∂λ, (5.2.89)

σ2r sinλ ∆ϕ(r, λ, ϕ) = (1/r sinλ) ∂χ(r, λ, ϕ)/∂ϕ

= [χ(r)/r sinλ] ∂Y k
j (λ, ϕ)/∂ϕ = ik χ(r, λ, ϕ)/r sinλ. (5.2.90)

From Eqs. (5.1.16), (5.2.81), (5.2.88)-(5.2.90) we get up to the first order via Eqs. (5.1.26), (5.1.28):

−∆�/� = −δ�/� − (1/�) ∆�r · ∇� ≈ −δ�/� − (∆r/�) d�/dr = ∇ · ∆�r

= (1/r2) ∂(r2 ∆r)/∂r + [χ(r)/σ2r2 sinλ] ∂(sinλ ∂Y k
j /∂λ)

/
∂λ + [χ(r)/σ2r2 sin2 λ] ∂2Y k

j /∂ϕ2

= (1/r2) ∂(r2 ∆r)/∂r − [j(j + 1)/σ2r2] χ(r, λ, ϕ) = (1/r2) ∂(r2 ∆r)/∂r

−[j(j + 1)/σ2r2](δP/� − δΦ). (5.2.91)

The energy equation (5.2.79) becomes with Eq. (5.2.81) equal to

δP + ∆r ∂P/∂r = (Γ1P/�)(δ� + ∆r ∂�/∂r) = −Γ1P ∇ · ∆�r, (S, Q = const), (5.2.92)

or via Eq. (5.2.85)

δP = Γ1P (δ�/� + A ∆r). (5.2.93)

For perturbations like those in Eq. (5.2.87), the Poisson equation (5.2.40) writes as

∇2δΦ = (1/r2) ∂(r2 ∂δΦ/∂r)
/
∂r + (1/r2 sinλ) ∂(sinλ ∂δΦ/∂λ)

/
∂λ + (1/r2 sin2 λ) ∂2δΦ/∂ϕ2

= (1/r2) ∂(r2 ∂δΦ/∂r)
/
∂r − [j(j + 1)/r2] δΦ = −4πG δ� = 4πG[� ∇ · ∆�r + ∆�r · ∇�]

= 4πG[� ∇ · ∆�r + ∆r ∂�/∂r] = 4πG�(A ∆r − δP/Γ1P ). (5.2.94)

We have replaced at first δ� by the equation of continuity (5.2.81), and then by the adiabatic energy
conservation equation (5.2.79):

δ� = �
{
δP/Γ1P + ∆r

[
(1/Γ1P ) ∂P/∂r − (1/�) ∂�/∂r

]}
= �(δP/Γ1P − A ∆r), (S, Q = const).

(5.2.95)

Pekeris [1938, Eq. (18)] was the first who carried out completely the elimination of variables between
Eqs. (5.2.88)-(5.2.94), obtaining a fourth order homogeneous equation in ∇ ·�v (cf. Sec. 5.5.1 and Hurley
et al. 1966).

It should be noted that the azimuthal index k of the spherical harmonic Y k
j does not appear in the

equation for small nonradial oscillations of a static sphere, so these oscillations are degenerate with respect
to k. For each value of j there exist according to Eq. (3.1.41) 2j + 1 spherical harmonics Y k

j (λ, ϕ) =
P k

j (cos λ) exp(ikϕ), (k = −j,−j + 1, ...j − 1, j), but all of the 2j + 1 eigenvalues σ2
k are exactly the same

in absence of other perturbations, such as rotation, magnetic fields, etc.
Eqs. (5.2.71), (5.2.88)-(5.2.90), (5.2.92), (5.2.94) are the basic equations to be solved for linear,

nonradial adiabatic oscillations. They can be brought into a form more suitable for discussion, by
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inserting into Eq. (5.2.92) for ∇ · ∆�r from Eq. (5.2.91), and by replacing χ with δP/� − δΦ via Eq.
(5.2.86):

(δP + ∆r ∂P/∂r)
/
Γ1P = −(1/r2) ∂(r2 ∆r)/∂r + [j(j + 1)/σ2r2](δP/� − δΦ). (5.2.96)

Introducing into Eq. (5.2.96) expansions of the form (5.2.87), the common factor Y k
j (λ, ϕ) cancels

out, and all quantities become functions only of r :

d(r2 ∆r)/dr − [G� m(r)/r2Γ1P ]r2 ∆r =
[
j(j + 1)/σ2 − (�r2/Γ1P )

]
δP/� − j(j + 1) δΦ/σ2.

(5.2.97)

Replacing in Eq. (5.2.88) ∇ · ∆�r via Eq. (5.2.92), and dropping the common factor Y k
j (λ, ϕ), we get

d(δP/�)/dr + A δP/� = [σ2 + AGm(r)/r2] ∆r + dδΦ/dr, (∂P/∂r ≈ −Gm(r) �/r2). (5.2.98)

Defining the new variables

y = y(r) = δP (r)/�(r) and u = u(r) = r2 ∆r(r), (5.2.99)

we cast Eqs. (5.2.97), (5.2.98), (5.2.94) into the form of a fourth order differential system (e.g. Ledoux
and Walraven 1958):

du/dr − G� m(r) u/r2Γ1P = [j(j + 1)σ2 − �r2/Γ1P ] y − j(j + 1) δΦ/σ2, (5.2.100)

dy/dr + Ay = [σ2 + AG m(r)/r2]u/r2 + dδΦ/dr, (5.2.101)

(1/r2) d(r2 dδΦ/dr)
/
dr − [j(j + 1)/r2] δΦ = 4πG�(Au/r2 − �y/Γ1P ). (5.2.102)

Since Eqs. (5.2.100)-(5.2.102) apply to any value of j, they must describe as a special case linear,
adiabatic radial oscillations, characterized by j = 0, which have already been discussed in Eqs. (5.2.41)-
(5.2.70). Therefore, we shall restrict ourselves in the following mainly to the case j > 0.

Eqs. (5.2.100)-(5.2.102) have to satisfy certain boundary conditions at r = 0 and r = r1. Pres-
sure P, density �, and adiabatic index Γ1, all approach finite values at the centre r = 0. The quan-
tities m(r)/r2 = 4π�r/3, dP/dr = −G� m(r)/r2 = 4πG�2r/3, d�/dr = (d�/dP ) dP/dr, and
A = (1/�) d�/dr − (1/Γ1P ) dP/dr are proportional to r in a spherical polytrope with 0 < n < 5.
We now assume series expansions near the centre of the form

u = ra
∞∑


=0

u
r

; y = rb

∞∑

=0

y
r

; δΦ = rc

∞∑

=0

ϕ
r

, (r ≈ 0). (5.2.103)

Finiteness of u = r2 ∆r, y, and δΦ at the centre demands that a ≥ 2 and b, c ≥ 0. To get a relationship
among the exponents a, b, c, we insert Eq. (5.2.103) into the basic equations (5.2.100)-(5.2.102), and obtain
for the lowest exponent

au0r
a−1 = [j(j + 1)/σ2](y0r

b − ϕ0r
c); by0r

b−1 = σ2u0r
a−2 + cϕ0r

c−1;

[c(c + 1) − j(j + 1)]ϕ0r
c−2 = fu0r

a−1 − (4πG�2y0/Γ1P )rb. (5.2.104)

We have neglected �r2/Γ1P with respect to j(j + 1)/σ2, and AGm(r)/r2 with respect to σ2. There
is also limr→0(4πG�A) = fr, (f = const). From Eq. (5.2.104) we get two relationships among the
exponents: a − 1 = b = c and a − 1 = b = c − 2. These two conditions can be reconciled if (Cox 1980, p.
227)

a − 1 = b = c, (j > 0), (5.2.105)

and if the factor near rc−2 from the last equation (5.2.104) vanishes:

c(c + 1) = j(j + 1). (5.2.106)
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The roots are c1 = j and c2 = −j − 1. The second root has to be discarded, in order to avoid
singularities at the centre, and Eq. (5.2.103) takes the form

∆r = u/r2 = rj−1
∞∑


=0

u
r

; y = δP/� = rj

∞∑

=0

y
r

; δΦ = rj

∞∑

=0

ϕ
r

, (r ≈ 0; j > 0).

(5.2.107)

From these equations we observe that for nonradial oscillations (j > 0) the variations δP and ∆P =
δP + (dP/dr)∆r must vanish at the centre, opposite to the radial case j = 0 from Eq. (5.2.61). We
have ∆r = 0 at the origin r = 0 only if j > 1. The dipole mode j = 1 – when Eq. (5.2.107) yields
∆r(0) �= 0 – corresponds to a displacement of the geometrical centre of the configuration. In the case of
an incompressible fluid (Γ1 = ∞) this amounts to a bodily translation of the entire configuration, but for
compressible fluids (Γ1 �= ∞) the case j = 1 may also correspond to a geometrical displacement, which
leaves the centre of mass of the configuration unaltered (cf. Cox 1980, p. 229). We also note from the
two first equations (5.2.104) that

σ2u0 = j(y0 − ϕ0), (a − 1 = b = c = j). (5.2.108)

For given σ and j the values of the two undetermined constants, say y0 and ϕ0, must be so, that
the two subsequent surface boundary conditions (5.2.109) and (5.2.114) are satisfied. However, since the
fourth order system (5.2.100)-(5.2.102) is homogeneous, one constant is left arbitrary, and we are lead
again to an eigenvalue problem with the eigenvalue σ.

On the surface, the pressure is generally assumed to vanish during oscillations, and this requires – as
in the radial case – that

∆P = δP + ∆�r · ∇P = 0, (r = r1). (5.2.109)

Remembering that all unperturbed values depend on r only, we obtain in our linear approximation if
0 < n < 5, (�(r1) = 0; ∆r(r1) = ∆r1 = finite) :

δP = ∆P − ∆�r · ∇P = −(dP/dr) ∆r = G�(r1) m(r1) ∆r1/r2
1 = 0, (r = r1). (5.2.110)

The second surface boundary condition concerns the continuity of the Eulerian surface perturbation
δΦ of the gravitational potential. Let us denote by Φ, Φu and Φe, Φue the perturbed and unperturbed
values of the internal and external potential, and by δΦ, δΦe the corresponding Eulerian variations.
Continuity of the gravitational potential and of its radial derivative across the surface point r1 + ∆r1

requires that

Φ(r1 + ∆r1, λ, ϕ) = Φe(r1 + ∆r1, λ, ϕ); (∂Φ/∂r)r=r1+∆r1 = (∂Φe/∂r)r=r1+∆r1 ,

(Φ = Φu + δΦ; Φe = Φue + δΦe). (5.2.111)

We now approximate the surface values of the internal and external potential by their values on the
unperturbed spherical surface r = r1 (cf. Chandrasekhar 1933d). Eq. (5.2.111) becomes

Φu(r1, λ, ϕ) + ∆r1 (dΦu/dr)r=r1 + δΦ = Φue(r1, λ, ϕ) + ∆r1 (dΦue/dr)r=r1 + δΦe;

(dΦu/dr)r=r1 + ∆r1 (d2Φu/dr2)r=r1 + (∂δΦ/∂r)r=r1

= (dΦue/dr)r=r1 + ∆r1 (d2Φue/dr2)r=r1 + (∂δΦe/∂r)r=r1 . (5.2.112)

Equating terms of the same order, we get

δΦ(r1, λ, ϕ) = δΦe(r1, λ, ϕ); ∆r1 (d2Φu/dr2)r=r1 + (∂δΦ/∂r)r=r1

= ∆r1 (d2Φue/dr2)r=r1 + (∂δΦe/∂r)r=r1 . (5.2.113)

As shown by Eq. (3.1.58), the perturbed external potential δΦe corresponding to the surface
harmonic Y k

j (λ, ϕ) = P k
j (cos λ) exp(ikϕ) has the form δΦe = F (λ, ϕ)/rj+1, and ∂δΦe/∂r = −(j +

1) F (λ, ϕ)/rj+2 = −[(j+1)/r] δΦe = −[(j+1)/r] δΦ. Besides, the equations for the unperturbed potential
∇2Φu = (1/r2) d(r2dΦu/dr)

/
dr = −4πG�u and ∇2Φue = 0 yield (d2Φu/dr2)r=r1 − (d2Φue/dr2)r=r1 =
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−4πG�u(r1), because (dΦu/dr)r=r1 = (dΦue/dr)r=r1 . Thus, the boundary conditions (5.2.113) take the
final form (�(r1) ≈ �u(r1) = 0 if 0 < n < 5; Ledoux and Walraven 1958, §75):

δΦ(r1, λ, ϕ) = δΦe(r1, λ, ϕ) = F (λ, ϕ)/rj+1
1 ;

(∂δΦ/∂r)r=r1 + (j + 1) δΦ(r1, λ, ϕ)/r1 = 4πG�(r1) ∆r1. (5.2.114)

In the case of a spherical polytrope the surface pressure condition (5.2.109) can be brought into a
more explicit form by transforming Eq. (5.2.32) analogously to Eqs. (5.2.48) and (5.2.65):

D2∆�r/Dt2 = ∂2∆�r/∂t2 = (δ�/�2)(dP/dr) �er − (1/�) ∇δP + (∆r/�2)(d�/dr)(dP/dr) �er

−(∆r/�)(d2P/dr2) �er + ∇δΦ + ∆r (d2Φ/dr2) �er = −(∇ · ∆�r)(1/�)(dP/dr) �er − (1/�) ∇∆P

+(1/�) ∇(∆�r · ∇P ) − (∆r/�)(d2P/dr2) �er + ∇δΦ − 2(∆r/r)(dΦ/dr) �er − 4πG� ∆r �er

= [−(1/r2) ∂(r2 ∆r)/∂r + j(j + 1)χ/σ2r2](1/�)(dP/dr) �er − (P/�) ∇(∆P/P ) − (∆P/P )(∇P/�)
+[∂(∆r)/∂r](1/�)(dP/dr) �er + ∇δΦ − 2η(dΦ/dr) �er − 4πG� ∆r �er. (5.2.115)

Assuming, as usual, the time dependence of Lagrangian variations under the form ∆F (�r, t) =
∆F (�r) exp(iσt), and considering only the radial component of Eq. (5.2.115), we get

∇(∆P/P ) = (�/P )
{[

− 4η + j(j + 1)χ/σ2r2 − ∆P/P
]

dΦ/dr + σ2rη + ∂δΦ/∂r − 4πG�rη
}
.

(5.2.116)

Since ∇(∆P/P ) must remain finite, and since �/P = �0/P0θ → ∞ if r → r1 and 0 ≤ n < 5, the
second factor in Eq. (5.2.116) must be very small or zero at the boundary (Cox 1980):

∆P/P = [−4 + (σ2r − 4πG�r)/(dΦ/dr)]η + j(j + 1)χ/σ2r2 + (∂δΦ/∂r)
/
(dΦ/dr)

= (−4 − σ2r3/Gm + 4π�r3/m)η + j(j + 1)(δP/� − δΦ)/σ2r2 − (r2/Gm) ∂δΦ/∂r, (r = r1).
(5.2.117)

With the boundary condition on the potential (5.2.114) we can eliminate ∂(δΦ)/∂r, and substitute
δP/� by −(∆r/�) dP/dr = Gmη/r via the boundary condition (5.2.109):

∆P/P = [−4 − σ2r3/Gm + j(j + 1)Gm/σ2r3]η

−[j(j + 1)Gm/σ2r3 − j − 1]r δΦ/Gm, (r = r1). (5.2.118)

The basic equations (5.2.100)-(5.2.102) simplify considerably in the Cowling (1941) approximation by
neglecting δΦ if j > 0 :

du/dr − G� m(r) u/r2Γ1P = P−1/Γ1 d(uP 1/Γ1)/dr = [j(j + 1)/σ2 − �r2/Γ1P ]y, (Γ1 = const),
(5.2.119)

dy/dr + Ay = dy/dr + [(1/�) d�/dr − (1/Γ1P ) dP/dr]y

= (P 1/Γ1/�) d(y�P−1/Γ1)/dr = [σ2 + AGm(r)/r2]u/r2, (Γ1 = const). (5.2.120)

According to Eqs. (5.2.107) and (5.2.109) the boundary conditions satisfied by Eqs. (5.2.119) and
(5.2.120) are

r = 0 : u = r2 ∆r = 0; y = δP/� = 0. r = r1 : u1 = r2
1 ∆r1 = finite;

y1 = (δP )r=r1/�1 = −(∆r1/�1)(dP/dr)r=r1 = Gm(r1) ∆r1/r2
1 = finite. (5.2.121)

The neglect of δΦ can be justified by regarding δΦ as some kind of average over the whole polytrope,
smoothing out local perturbations. Calculations by Cowling (1941) and Kopal (1949) for the standard
model n = 3 (cf. Ledoux and Walraven 1958, p. 523), and by Robe (1968a) indicate that the Cowling
approximation for polytropes is generally in error by at most 20% for the eigenvalues σ2, being often
much more accurate (Cox 1980, p. 251).

The final form of Eqs. (5.2.119) and (5.2.120) is obtained with the new variables

v = uP 1/Γ1 = r2P 1/Γ1∆r; w = y�P−1/Γ1 = P−1/Γ1 δP, (5.2.122)
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obeying the boundary conditions

r = 0 : v, w = 0 and r = r1 : v1 = 0; w1 = y1�1P
−1/Γ1
1 = y1K

−1/Γ1�1−(1+1/n)/Γ1 . (5.2.123)

Since � → 0 at the finite boundary if 0 < n < 5, we observe that w1 → 0 if Γ1 > 1 + 1/n or if
A = (1/�) d�/dr − (1/Γ1P ) dP/dr = (1/�)(d�/dr)[1 − (1 + 1/n)

/
Γ1] < 0, (d�/dr < 0).

With the notations (5.2.122), the equations (5.2.119) and (5.2.120) of nonradial adiabatic oscillations
take in the Cowling approximation the final form

dv/dr = [j(j + 1)/σ2 − �r2/Γ1P ]P 2/Γ1w
/
�, (Γ1 = const), (5.2.124)

dw/dr = [σ2 + AGm(r)/r2]�v
/
P 2/Γ1r2, (Γ1 = const). (5.2.125)

Nodes of w or v (points where w or v vanish) correspond to extrema (dv/dr = 0 or dw/dr = 0) of
v or w, respectively. If w or v is eliminated between Eqs. (5.2.124) and (5.2.125), we obtain equivalent
second order equations:

d
{
�(dv/dr)

/
P 2/Γ1 [j(j + 1)/σ2 − �r2/Γ1P ]

}/
dr = [σ2 + AGm(r)/r2]�v

/
P 2/Γ1r2, (Γ1 = const),

(5.2.126)

d
{
P 2/Γ1r2(dw/dr)

/
�[σ2 + AGm(r)/r2]

}/
dr = [j(j + 1)/σ2 − �r2/Γ1P ]P 2/Γ1w

/
�, (Γ1 = const).

(5.2.127)

Dividing Eqs. (5.2.124) and (5.2.125), we observe that the singular points dv/dw = 0/0 are given by

j(j + 1)/σ2 − �r2/Γ1P = 0, (5.2.128)

σ2 + AG m(r)/r2 = 0. (5.2.129)

The singular points are regular – series solutions of the form (5.3.24) exist in these points. If σ 	 1,
Eq. (5.2.126) tends towards the Sturm-Liouville type (5.2.69), [cf. Ledoux 1974, Eqs. (10), (11)] with
a spectrum of infinitely increasing eigenvalues σ2. The corresponding eigenfunctions where termed by
Cowling (1941) p-modes (pressure modes, pulsation modes, acoustic modes), and are characterized by
relatively large Eulerian pressure and density variations during oscillations.

If σ � 1, Eq. (5.2.127) tends towards the Sturm-Liouville type (5.2.69) with the parameter 1/σ2,
the corresponding spectrum tending to zero as the order of the modes increases. The corresponding
eigenfunctions are called g-modes (gravity modes, convective modes), and are chiefly horizontal, with
small pressure variations.

Cowling (1941) also distinguishes a unique fundamental f -mode (Kelvin mode), which exists only if
j ≥ 2. This mode is sometimes called pseudo-Kelvin mode, as it is similar to the well known Kelvin
mode σ2

f = (8πG�/3)j(j − 1)/(2j + 1) from Eq. (5.5.26) for the compressible or incompressible (Γ1 =
∞; ∆�, δ�,∇ ·∆�r = 0) homogeneous sphere (n = 0). For sufficiently simple models (e.g. polytropes) the
eigenvalue σ2

f of the fundamental mode is intermediate between the eigenvalues of the g+
1 and p1-mode

(see Fig. 5.2.1 and Cox 1980, p. 240). Generally, no simple and unique method of ordering is available
for the eigenvalues σ2 of nonradial oscillations.

Since the homogeneous compressible model (n = 0) admits an analytic solution (Sec. 5.5.1, Pekeris
1938), we confine ourselves in Eqs. (5.2.130)-(5.2.133) below, to polytropic indices 0 < n < 5. Integral
expressions for the eigenvalues of p and g-modes can be obtained if we multiply Eq. (5.2.126) by v, and
integrate the left-hand side by parts with the boundary conditions (5.2.123):

∫ r1

0

�(dv/dr)2 dr
/
P 2/Γ1

[
j(j + 1)/σ2 − �r2/Γ1P

]
+ σ2

∫ r1

0

�v2 dr
/
r2P 2/Γ1

+
∫ r1

0

AG� m(r) v2 dr
/
r4P 2/Γ1 = 0. (5.2.130)
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If σ2 	 1, the term j(j + 1)/σ2 in the first integral is negligible, and the second integral, containing
σ2v2, becomes generally much larger than the last integral containing only the factor v2. Thus (Ledoux
and Walraven 1958)

σ2 = σ2
p ≈

[ ∫ r1

0

Γ1P
1−2/Γ1(dv/dr)2 dr

/
r2

]/∫ r1

0

�v2 dr
/
r2P 2/Γ1 , (σ2 	 1), (5.2.131)

showing that σ2
p is certainly positive, increasing indefinitely with the order of the modes.

In the same manner we obtain from Eqs. (5.2.123) and (5.2.127), (P 2/Γ1w(dw/dr)
/
�A ∝ � → 0 if

r → r1 and 0 < n < 5) :
∫ r1

0

P 2/Γ1r2(dw/dr)2 dr
/
�[σ2 + AGm(r)/r2] + [j(j + 1)/σ2]

∫ r1

0

P 2/Γ1w2 dr/�

−
∫ r1

0

P 2/Γ1−1r2w2 dr/Γ1 = 0. (5.2.132)

If |σ2| � 1, the term σ2 in the first integral is negligible, and the second integral, containing w2/σ2,
becomes generally much larger than the last integral containing only the factor w2. Thus:

σ2 = σ2
g ≈ −

[
j(j + 1)

∫ r1

0

P 2/Γ1w2 dr/�

]/∫ r1

0

P 2/Γ1r4(dw/dr)2 dr
/
AG� m(r), (|σ2| � 1).

(5.2.133)

This approximate integral expression shows that two branches of gravity modes occur: g+-modes if
σ2

g > 0, (A < 0), and g−-modes if σ2
g < 0, (A > 0). It has been demonstrated by Lebovitz (1965) that

if the polytrope is convectively stable throughout (A < 0), then g−-modes do not exist at all, and only
stable g+-modes are present. Conversely, if the polytrope is convectively unstable throughout (A > 0),
then only unstable g−-modes exist. If A changes sign in the polytrope, then both g+ and g−-modes exist
(cf. Fig. 5.2.1). If A = 0 in any finite subinterval of the radius, there exist neutral modes (σg = 0). If
A = 0 everywhere, then σg = 0 for all g-modes, i.e. such modes do not exist at all (e.g. Cox 1980, p.
247).

Fig. 5.2.1 shows schematically the eigenvalues of linear adiabatic oscillations. It should be noted that
no radial analogues of the f and g-modes exist. The p-modes (j > 0) are the nonradial counterparts of
the radial modes (j = 0). The unique fundamental or Kelvin f -mode exists only if j ≥ 2.

The order of radial modes (j = 0) starts with 0, (σ0, σ1, σ2, ...), while the lowest mode of nonradial
oscillations (j ≥ 1) corresponds to 1, (σ1, σ2, σ3, ...), (see Fig. 5.2.1 if j = 0 and j ≥ 1).

For completeness we write down the basic equations (5.2.126) and (5.2.127) in polytropic variables
(cf. Secs. 2.6.1-2.6.3):

r = [(n + 1)K/4πG�
1−1/n
0 ]1/2ξ = [(n + 1)P0/4πG�2

0]
1/2ξ = αξ; P = K�

1+1/n
0 θn+1 = P0θ

n+1;

� = �0θ
n; m = 4π�0α

3ξ2(−θ′); A = (1/�) d�/dr − (1/Γ1P ) dP/dr

= [(dθ/dξ)
/
αθ][n − (n + 1)/Γ1]; v = ξ2(∆r/α) θ(n+1)/Γ1 ; w = (δP/P0) θ−(n+1)/Γ1 , (5.2.134)

where we have properly scaled ∆r and δP. If we further define

κ = (n + 1)σ2/4πG�0; Q = 2(n + 1)/Γ1 − n; f = θ−Q[κ + (Q − n)(n + 1)(dθ/dξ)2
/
2θ];

g = θQ[j(j + 1)/κ − ξ2/Γ1θ], (5.2.135)

Eqs. (5.2.126) and (5.2.127) become eventually equal to

d[(1/g) dv/dξ]
/
dξ = fv/ξ2, (5.2.136)

d[(ξ2/f) dw/dξ]
/
dξ = gw. (5.2.137)

Actual pulsations in real stars certainly involve nonlinear effects. The relevant equations for the
study of nonlinear oscillations are the full equations of conservation of mass, momentum, and thermal
energy: Eqs. (5.2.1)-(5.2.3), (5.2.10), (5.2.20) in Eulerian description, and Eqs. (5.2.8), (5.2.12), (5.2.22)
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Fig. 5.2.1 Schematic view of the eigenvalue spectrum for radial (j = 0) and nonradial (j ≥ 1) linear
adiabatic oscillations. Shown are the four types of nonradial spheroidal modes (p, f, g+, g−) – as classified by
Cowling (1941) for various orders of the modes � versus the spherical harmonic index j (Cox 1980).

in Lagrangian form. Generally, the study of oscillations in polytropes is confined to the linear, first order
theory. The only exactly integrable cases in the nonlinear theory occur for radial oscillations, when the
radial and temporal variables are separable:

r(ru, t) = X(ru) W (t). (5.2.138)

The two analytically integrable cases are a general model with Γ1 = 4/3 (homologous contraction with
neutral stability) and the homogeneous polytrope n = 0 (cf. Sec. 5.3.2 for linear oscillations), (Ledoux
and Walraven 1958, Rosseland 1964, Chap. VII, Cox 1980).
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5.3 Radial Oscillations of Polytropic Spheres

5.3.1 Approximate Values of the Fundamental Oscillation Frequency

The theory of linear adiabatic oscillations provides information concerning the dynamical (ordinary)
stability of a configuration, as can already be seen from a quite simple, somewhat unrealistic example,
namely if the perturbed motion is homologous, i.e. if η = η(t) = (∆r/r) exp(iσt) = const exp(iσt), and
the motion is independent of r or m. Then, the sole subsisting term in Eq. (5.2.59) is the last one, and
if moreover the adiabatic index Γ1 is constant, we get with the equation of hydrostatic equilibrium:

σ2 = −[(3Γ1 − 4)/�r] dP/dr = (3Γ1 − 4)Gm(r)/r3, (∆r/r = const; Γ1 = const). (5.3.1)

Oscillatory motions η = const exp(iσt) exist only if σ2 > 0, i.e. if Γ1 > 4/3. Dynamical instability
occurs if σ2 < 0, (Γ1 < 4/3). Since σ2 has to be a constant, adiabatic and homologous motions with
Γ1 �= 4/3 occur only if m(r)/r3 = const, i.e. for the constant density polytrope n = 0. In the special case
Γ1 = 4/3, we have σ2 = 0 and η = const : Any configuration can expand or contract homologously into
a new equilibrium state. The system is neutrally stable (see Sec. 5.1).

A more refined first order determination of the fundamental angular oscillation frequency σ2 for a
rotating configuration can be obtained from the virial theorem for the case of quasiradial oscillations
(mainly radial displacements), defined by the conditions ∂δf/∂ϕ = 0 and ∂δf/∂λ ∝ Ω2, where �Ω =
�Ω(t) = �Ω(0, 0, Ω), (Ω � 1) is the angular rotation velocity, and δf an Eulerian perturbation (Ledoux
and Walraven 1958, Cox 1980). Combining Eqs. (2.6.80) and (3.1.85), the scalar virial theorem becomes
with respect to (x1, x2, x3)-axes, rotating together with the polytropic fluid round the x3-axis:

(1/2) d2I/dt2 = 2Ekin + W + 3
∫

V

P dV +
∫

M

Ω2�2 dm, (�2 = x2
1 + x2

2). (5.3.2)

Let us consider the first variation (5.8.4) of Eq. (5.3.2) for the quasiradial displacement (Ledoux 1945,
Ledoux and Walraven 1958)

η(r, t) = (∆r/r) exp(iσt) = η(r) exp(iσt). (5.3.3)

By virtue of Eqs. (5.8.1)-(5.8.10) we get

δ∗(d2I/dt2) = d2(δ∗I)/dt2 = 2 d2

(∫
M

r ∆r dm

)/
dt2 = 2 d2

(∫
M

r2η(r, t) dm

)/
dt2

= −2σ2

∫
M

r2η(r, t) dm, (5.3.4)

δ∗Ekin =
∫

M

v ∆v dm = O(η2), (vu = 0; v = ∆v ≈ ∂∆r/∂t = iσ ∆r = iσrη), (5.3.5)

δ∗W = −δ∗
∫

M

(Gm/r) dm = −
∫

M

Gm ∆(1/r) dm =
∫

M

[Gm η(r, t)/r] dm. (5.3.6)

In order to transform the pressure integral, we use the adiabatic energy equation (5.2.38), the equation
of continuity (5.2.45), the radial component of the hydrostatic equation (3.1.16) ∂P/∂r = ∂Φ/∂r +
Ω2�r sin2 λ ≈ −Gm�/r2 + Ω2�r sin2 λ, and the fact that P = 0 on the surface:

δ∗
∫

V

P dV =
∫

M

∆(P/�) dm =
∫

M

(∆P/� − P ∆�/�2) dm =
∫

M

(Γ1 − 1)(P/�2) ∆� dm

= −
∫

V

(Γ1 − 1)P (3η + r ∂η/∂r) dV = −3
∫

V

(Γ1 − 1)Pη dV − (Γ1 − 1)Prη
∣∣∣V
0

+
∫

V

(dΓ1/dr)Prη dV +
∫

V

(Γ1 − 1)(dP/dr)rη dV + 3
∫

V

(Γ1 − 1)Pη dV

=
∫

M

η(dΓ1/dr)(Pr/�) dm − G

∫
M

η[(Γ1 − 1)m/r] dm +
∫

M

η(Γ1 − 1)Ω2�2 dm. (5.3.7)



362 5.3 Radial Oscillations of Polytropic Spheres

To get the variation of the last integral in Eq. (5.3.2), we observe that for a quasiradial perturbation
all terms in the equation of motion (3.1.12) lie in the meridian plane, excepting the vectors

(d�Ω/dt) × �r + 2(�Ω × �v) = 0, (5.3.8)

which are perpendicular to this plane, and must accordingly vanish identically. In spherical coordinates
we have �r = �r(r, 0, 0), �v = �v(dr/dt, r dλ/dt, 0), �Ω = �Ω(Ω cos λ,−Ω sin λ, 0), and Eq. (5.3.8) turns into

r sinλ dΩ/dt + 2Ω(r cos λ dλ/dt + sin λ dr/dt) = 0, (5.3.9)

or

(1/Ω) dΩ = −(2/r) dr − 2 cotλ dλ, (5.3.10)

which integrates to

Ωr2 sin2 λ = const. (5.3.11)

This means nothing else than conservation of angular momentum during quasiradial oscillations. In
a first approximation these oscillations are mainly radial, with sin2 λ = const. Eq. (5.3.11) becomes
Ωr2 = const, and its Lagrangian variation is

∆Ω/Ω = −2∆r/r = −2η. (5.3.12)

We are now in position to determine the first variation (5.8.7) of

δ∗
∫

M

Ω2�2 dm =
∫

M

∆(Ω2�2) dm =
∫

M

Ω�2 ∆Ω dm = −2
∫

M

ηΩ2�2 dm, (5.3.13)

taking into account that we have Ωr2 sin2 λ = Ω�2 = const via Eq. (5.3.11). The equations (5.3.4),
(5.3.5), (5.3.6), (5.3.7), (5.3.13) are now combined to get the first order variation of Eq. (5.3.2):

−σ2

∫
M

ηr2 dm = −
∫

M

η(3Γ1 − 4)(Gm/r) dm + 3
∫

M

η(dΓ1/dr)(P/�)r dm

+
∫

M

(3Γ1 − 5)ηΩ2�2 dm, (5.3.14)

or

σ2 =
[ ∫

M

η(3Γ1 − 4)(Gm/r) dm − 3
∫

M

η(dΓ1/dr)(P/�)r dm +
∫

M

η(5 − 3Γ1)Ω2r2 sin2 λ dm

]
/∫

M

ηr2 dm. (5.3.15)

If we take as a first guess η(r) = ∆r/r = const, Eq. (5.3.15) assumes for the fundamental radial
oscillation frequency the simple form (cf. Eqs. (5.7.40), (5.8.134), Tassoul 1978, §14.2)

σ2 =
{∫

M

[(3Γ1 − 4)Gm(r)/r + (5 − 3Γ1)Ω2r2 sin2 λ] dm

}/∫
M

r2 dm

= [(3Γ1 − 4)|W | + 2(5 − 3Γ1)Ekin]/I, (η,Γ1 = const), (5.3.16)

where Ekin denotes the kinetic energy of rotation. This approximate expression already offers a fairly
good approximation, as long as the mass concentration in the polytrope is not too high, i.e. for polytropes
with indices n ≤ 3. Indeed, Table 1 of Ledoux and Pekeris (1941), Table 2 of Rosseland (1964), and Table
8.2 of Cox (1980) show that in the nonrotating case (Ekin, Ω = 0) the ratio between the approximate and
exact fundamental oscillation periods is 0.996 if n = 1.5, (Γ1 = 5/3), 0.964 if n = 2, (Γ1 = 1.428), 0.957
if n = 3, (Γ1 = 5/3), and 0.682 if n = 4, (Γ1 = 1.428).

If we take Γ1, Ω, � = const, we obtain from Eq. (5.3.16) for the constant density polytrope:

σ2 = (3Γ1 − 4)(4πG�/3) + (5 − 3Γ1)(2Ω2/3), (n = 0). (5.3.17)
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In absence of rotation we recover the elementary relationship (5.3.1).
Care should be exercised, when adopting Ledoux’s (1945) formula (5.3.16): W and I refer to the

rotating configuration, containing terms of order β = Ω2/2πG�0, as emphasized by Tassoul (1978). If
we wish to put into evidence rotational effects with respect to the nonrotating sphere with the same
central density �0, the density should be calculated with Eq. (3.2.44), for instance: � = �0Θn(ξ, µ) ≈
�0[θn(ξ) + βnθn−1(ξ) ψ0(ξ)], neglecting angular dependences. If this is properly effected, it turns out
that ω2 = σ2/4πG�0 = 0.15 − 0.13β, (n = 1.5; Γ1 = 5/3) and 0.082 − 0.73β, (n = 3; Γ1 = 5/3), i.e.
slow rotation reduces (destabilizes) the squared angular oscillation frequency with respect to that of the
nonrotating polytrope (Cowling and Newing 1949, Table 1). An indiscriminate use of Eq. (5.3.16) would
suggest that the eigenvalues σ2 are unaffected by rotation if Γ1 = 5/3. In fact, if � = �0Θn ≈ �0 = const,
as for nearly homogeneous polytropes with n ≈ 0, this holds true, since the above mentioned correction
effects are minor (cf. Eqs. (5.7.40), (5.8.134), Chandrasekhar and Lebovitz 1962c).

5.3.2 Linear Radial Oscillations of the Constant Density Polytrope n = 0n = 0n = 0

Perhaps the most simple model suitable for analytic treatment is the homogeneous compressible sphere
(n = 0; Γ1 �= ∞), (e.g. Sterne 1937, Ledoux 1946, Vaughan 1972). If the adiabatic index Γ1 is constant,
the equation of small, radial adiabatic oscillations (5.2.60) particularizes to

d2η/dr2 + (4/r − G�m/Pr2) dη/dr + [(4/Γ1 − 3)G�m/Pr3 + σ2�/Γ1P ]η = 0, (η = ∆r/r).
(5.3.18)

We introduce the dimensionless distance x = r/r1, (0 ≤ x ≤ 1), and Eq. (5.3.18) turns into

d2η/dx2 + (1/x)(4 − G�m/Pr) dη/dx + (�r1/P )[(4/Γ1 − 3)Gm/r2x + σ2r1/Γ1]η = 0. (5.3.19)

The outer boundary condition (5.2.68) writes

dη/dx = η[(4/Γ1 − 3) + r3σ2/Γ1Gm], (r = r1; x = 1). (5.3.20)

For the constant density polytrope n = 0 we have � = �m = const, m = 4π�r3/3, P = (2πG�2/3)(r2
1−

r2), and Eqs. (5.3.19), (5.3.20) read

dη2/dx2 + [(4 − 6x2)/x(1 − x2)] dη/dx + Jη/(1 − x2) = 0, (5.3.21)

dη/dx = Jη/2, (x = 1), (5.3.22)

where

J = 3σ2/2πΓ1G� + 2(4/Γ1 − 3). (5.3.23)

Because Eq. (5.3.21) is homogeneous, we can arbitrarily set η(0) = 1. Eq. (5.3.21) has regular
singularities at x = 0 and x = 1. We apply the Frobenius method, seeking series solutions of the form
(Ledoux and Walraven 1958, p. 460, Vaughan 1972)

η = xq
∞∑


=0

a
x

, (a0 �= 0). (5.3.24)

The requirement that Eq. (5.3.24) is a solution of Eq. (5.3.21) demands that the coefficients of
successive powers of x have to vanish. Near the singular point x = 0, Eq. (5.3.21) takes the form
d2η/dx2 + (4/x) dη/dx + Jη = 0, and the vanishing of the coefficient of xq−2 (the lowest power of x)
demands that

a0[q(q − 1) + 4q] = 0 or q2 + 3q = 0, (a0 �= 0). (5.3.25)
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Among the two roots (q1 = 0; q2 = −3) of the indicial equation (5.3.25) only q1 = 0 fulfils the
condition that η(0) = 1 if a0 = 1. It is found by substitution that odd terms a2
+1 vanish, and the even
coefficients satisfy the recurrence formula

a2
+2 = a2
[(2�)2 + 10� − J ]
/
(2� + 2)(2� + 5), (� = 0, 1, 2, ...; a0 = 1). (5.3.26)

The boundary condition (5.3.22) will be satisfied if we choose J as to make the series solution (5.3.24)
terminate with a2
 (cf. Sterne 1937, Ledoux 1946, Vaughan 1972):

J = 2�(2� + 5). (5.3.27)

This value of J yields by virtue of Eqs. (5.3.24), (5.3.26), (5.3.27) all radial modes of the homogeneous
sphere n = 0 :

� = 0 : J = 0 and η0 = 1; � = 1 : J = 14 and η1 = 1 − 7x2/5;

� = 2 : J = 36 and η2 = 1 − 18x2/5 + 99x4/35, etc. (5.3.28)

The relative displacement η
 vanishes between 0 and 1 at � different values of x. The period of the
�-th mode is Π = 2π/σ, where

σ2 = σ2

 = (2πΓ1G�/3)[J + 2(3 − 4/Γ1)], (5.3.29)

via Eq. (5.3.23). The �-th mode is stable if σ2 > 0, which is equivalent to

J + 2(3 − 4/Γ1) > 0 or Γ1 > 4/[�(2� + 5) + 3], (� = 0, 1, 2, ...). (5.3.30)

J is given by Eq. (5.3.27). If Γ1 = 4/3 and � = 0, (J = 0), the oscillation frequency σ2 from
Eq. (5.3.29) is zero, and the period of oscillations is infinite, showing that the model is in neutral
equilibrium with respect to the fundamental mode. If Γ1 < 4/3, the model is unstable with respect to the
fundamental mode. Eq. (5.3.29) also shows that instability must first arise from the fundamental mode
as Γ1 is decreasing below 4/3, since the first mode becomes unstable only if Γ1 < 2/5, and the second
mode if Γ1 < 4/21. The effect of an increase of Γ1 is always to diminish the oscillation period Π = 2π/σ.

5.3.3 Linear Radial Oscillations of the Roche Model

As we have already mentioned [see Eqs. (3.2.69), (3.6.25)], the Roche model resembles to some
extent the limiting Schuster-Emden polytrope of index n = 5, although the oscillatory behaviour is
generally quite different (see Sec. 5.3.4). To obtain the relevant equations (5.3.19), (5.3.20) for the
Roche model, Sterne (1937) assumes that the density outside the central point mass is distributed as
� = a/r2, (a = const). The small constant a will be subsequently allowed to approach zero, so the whole
mass m = 4π�mr3

1/3 of the sphere will be concentrated at the centre, as in a genuine Roche model. If
for the moment a �= 0, the central mass is equal to (4π�mr3

1/3)(1 − 3a/�mr2
1), because the mass inside

radius r is just

m = (4π�mr3
1/3)(1 − 3a/�mr2

1) + 4π
∫ r

0

�r2 dr = (4π�mr3
1/3)(1 − 3a/�mr2

1) + 4πar. (5.3.31)

From the equation of hydrostatic equilibrium dP/dr = −Gm�/r2 we get for the unperturbed pressure
at radius r

P = (4πG�mar3
1/9)(1 − 3a/�mr2

1)(r
−3 − r−3

1 ) + 2πGa2(r−2 − r−2
1 ), (P = 0 if r = r1).

(5.3.32)

Now, if a → 0, we get

�/P = 9/4πG�mr3
1r

2(r−3 − r−3
1 ) = 9x/4πG�mr2

1(1 − x3), (5.3.33)
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and Eq. (5.3.19) reads eventually

d2η/dx2 + [(1 − 4x3)
/
x(1 − x3)] dη/dx + [Jx + 3(4/Γ1 − 3)/x2] η

/
(1 − x3), (5.3.34)

J = 9σ2/4πGΓ1�m. (5.3.35)

The boundary condition (5.3.20) turns into

dη/dx = [J + 3(4/Γ1 − 3)] η/3, (x = 1). (5.3.36)

Eq. (5.3.34) has regular singularities at x = 0 and x = 1. At x = 0, the indicial equation for the series
solution (5.3.24) is obtained in the same way as Eq. (5.3.25):

q(q − 1) + q + 3(4/Γ1 − 3) = 0. (5.3.37)

The solutions of Eq. (5.3.37) are q1,2 = ±[3(3 − 4/Γ1)]1/2, and the eigenfunction (5.3.24) becomes
with the relevant root q1 equal to

η = xq1

∞∑

=0

a
x

, (q1 = [3(3 − 4/Γ1)]1/2; a0 = 1). (5.3.38)

By substitution into Eq. (5.3.34) we find that the only nonvanishing coefficients are

a3
+3 = a3
[(3� + q1)(3� + q1 + 3) − J ]
/
[(3� + q1 + 3)2 + 3(4/Γ1 − 3)], (� = 0, 1, 2, ...). (5.3.39)

A convergent solution at the surface is only obtained if the series is cutted at a3
, which is equivalent
to (Sterne 1937)

J = (3� + q1)(3� + q1 + 3), (� = 0, 1, 2, ...). (5.3.40)

The eigenvalues of the angular oscillation frequency are accordingly

σ2 = 4πGΓ1�m(3� + q1)(3� + q1 + 3)/9. (5.3.41)

Obviously, if Γ1 < 4/3 the root q1 becomes imaginary, and σ from Eq. (5.3.41) is a complex number,
allowing for unstable modes. If Γ1 = 4/3, (q1 = 0), all modes are stable, excepting for the fundamental
mode � = 0, possessing neutral stability. If Γ1 > 4/3, all modes are stable.

5.3.4 The Schuster-Emden Polytrope n = 5n = 5n = 5

Below, we expand on Owen’s (1957) result that this polytrope – unlike the Roche model – is incapable
of performing either radial (j = 0) or nonradial (j > 0) oscillations of finite period, provided that
w(r1) = 0, which implies A < 0 or Γ1 > 1 + 1/n = 6/5 near the boundary [see Eq. (5.2.123)].

Instead of v from Eq. (5.2.134) we introduce the variable z by

z = v/ξ2 = (∆r/α) θ(n+1)/Γ1 . (5.3.42)

In the Cowling approximation the basic equations (5.2.124), (5.2.125) become via Eqs. (5.2.134),
(5.2.135), (5.3.42) equal to

d(ξ2z)/dξ = gw, (5.3.43)

dw/dξ = fz. (5.3.44)

We reduce the range of ξ from 0 ≤ ξ ≤ ∞ to 0 ≤ ζ ≤ π/2 by the change of variable

ξ = 31/2 tan ζ. (5.3.45)
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The Schuster-Emden integral (2.3.90) assumes the form

θ = cos ζ, (n = 5). (5.3.46)

Taking into account the notations (5.2.135), the equations (5.3.43) and (5.3.44) turn into, (dz/dξ =
(cos2 ζ/31/2) dz/dζ) :

dz/dζ + 2z
/

sin ζ cos ζ = Bw, (5.3.47)

dw/dζ = Cz, (5.3.48)

where

B = 3−1/2(cos ζ)Q[j(j + 1)/κ sin2 ζ − 3/Γ1 cos3 ζ];

C = 31/2(cos ζ)−Q−2[κ + (Q − n)(n + 1) sin2 ζ cos3 ζ/6]. (5.3.49)

We insert into Eq. (5.3.47) for z and dz/dζ from Eq. (5.3.48):

d2w/dζ2 +
{
d
[
ln(tan2 ζ/C)

]/
dζ
}

dw/dζ − BCw = 0. (5.3.50)

Near the origin ζ = 0 we have B = 3−1/2j(j + 1)/κζ2, C = 31/2κ. The coefficients of dw/dζ and
w in Eq. (5.3.50) become 2/ζ and −j(j + 1)/ζ2, respectively. Near the boundary, where ζ1 = π/2, the
leading parts of the same coefficients are −Q/(π/2 − ζ) and 3κ/Γ1(π/2 − ζ)5. Thus, Eq. (5.3.50) has a
regular singularity at the origin ζ = 0, and an irregular singularity at the boundary ζ1 = π/2, because
BC ∝ (π/2 − ζ)−5.

This means that there exist no solutions of the polytrope n = 5 which satisfy the boundary condition
w(ζ1) = 0, [A < 0 or Γ1 > 1 + 1/n = 6/5; cf. Eq. (5.2.123)]. Only if Γ1 = ∞ (incompressible fluid), we
have BC ∝ j(j + 1)

/
(π/2 − ζ)2, and regular solutions occur, but without much practical interest. Note,

that the previous considerations apply only if w(ζ1) = 0.

5.3.5 Linear Radial Oscillations of Polytropes with 0 ≤ n < 50 ≤ n < 50 ≤ n < 5

Analytical solutions are not available for general polytropic index 0 < n < 5, and we must resort to
numerical integration of Eqs. (5.2.60) or (5.3.18) with the boundary conditions (5.2.61), and (5.2.62) or
(5.2.68). Two practical methods have so far been devised for the numerical integration of Eq. (5.2.60):
Fitting techniques and matrix methods (Cox 1980). Fitting techniques have been used almost exclusively
until the past years, and are based on integrations starting concomitantly outwards and inwards from the
centre and from the surface, respectively, for a trial value of the eigenfrequency σ. Due to the singularities
of the coefficients of dη/dr and η at the centre r = 0 and at the surface r = r1, the solutions have to be
expressed round these points by series of the form (5.3.24). At an intermediary point, where the outward
and inward integrations meet, η and dη/dr should be continuous. If this condition is not satisfied, the
whole process has to be renewed for another value of σ, until the continuity condition is satisfied within
the desired precision (Ledoux and Walraven 1958).

Calculations concerning radial oscillations of polytropes have been effected mainly by Eddington
(1918, 1959), Edgar (1933), Kluyver (1935, 1936, 1938), and Schwarzschild (1941) for the standard model
with polytropic index n = 3, Miller (1929) if n = 2, 4, Cowling (1934) and Lucas (1956) if n = 1.5,
Sterne (1937) and Vaughan (1972) if n = 0, Ledoux (1946) if n = 0, 3, Hurley et al. (1966) if n =
0, 0.5, 1, 1.5, 2, 2.5, 3, 3.25, 3.5, 4, Simon (1971), Simon and Sastri (1972) if n = 1.5, 2, 3, 4.5. Dynamically
unstable modes if Γ1 < 4/3 have been calculated by Van der Borght (1968) for the polytropes n =
1.5, 2, 2.5, 3, 4.

Perhaps the simplest way to obtain the famous period-mean density relation is to start with Eq.
(5.3.1), where the period of oscillation is Π = 2π/σ, and the mean density is simply �m = 3m(r1)/4πr3

1 :

Π2�m = 3π/G(3Γ1 − 4) = const. (5.3.51)
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Table 5.3.1 Solutions of the radial adiabatic wave equation (5.3.18) for various polytropic indices if Γ1 = 5/3.
The squared dimensionless oscillation frequency ω2 is from Eq. (5.3.52), (ω0 – fundamental eigenfrequency; ω1, ω2

– eigenfrequencies of first and second overtone). Π0 = 2π/σ0 and Π1 = 2π/σ1 denotes the fundamental period
and the period of the first overtone, respectively. The value of Qd0 = Π0(�m/�m�)1/2 = 0.1159(−θ′

1/ξ1)
1/2/ω0 is

taken from Eq. (5.3.54), and Π1/Π0 = ω0/ω1. The ratio between surface and central value of the fundamental
mode is denoted by η0s/η0c, (η0 = ∆r/r). And a + b means a × 10b.

n ω2
0 ω2

1 ω2
2 Qd0 Π1/Π0 η0s/η0c

0 3.333−1 4.222+0 1.033+1 0.1159 0.281 1
0.5 2.471−1 2.190+0 5.141+0 0.0993 0.336 −
1 1.917−1 1.225+0 2.744+0 0.0843 0.396 1.24
1.5 1.506−1 6.975−1 1.479+0 0.0705 0.465 1.42
2 1.170−1 3.901−1 7.771−1 0.0579 0.548 2.37
2.5 8.683−2 2.086−1 3.859−1 0.0469 0.645 −
3 5.693−2 1.045−1 1.752−1 0.0381 0.738 2.24+1
3.5 2.756−2 4.625−2 6.994−2 0.0326 0.772 2.55+2
4 8.112−3 1.336−2 1.985−2 0.0298 0.779 5.95+3
4.5 9.262−4 1.467−3 2.134−3 0.0279 0.795 −

Fig. 5.3.1 Relative amplitudes ηj/ηjs, (j = 0, 1, 2, 3) of the first four modes (fundamental and first three
overtones) as a function of the dimensionless radius x = r/r1 for the standard model n = 3, (Γ1 = 5/3), (Ledoux
and Walraven 1958, Fig. 38).

We now introduce the dimensionless, squared angular oscillation frequency ω by

ω2 = σ2/4πG�0 = 3σ2(−θ′1)/4πG�mξ1 = σ2r3
1(−θ′1)/Gm1ξ1 = 3π(−θ′1)/GΠ2�mξ1 = π/GΠ2�0.

(5.3.52)

m1 is the total mass and r1 the radius of the polytrope. The central density �0 is converted to mean
density �m by Eq. (2.6.27): �0 = ξ1�m/3(−θ′1). Many authors (e.g. Ledoux and Walraven 1958, Cox
1980) use instead of the eigenfrequency (5.3.52) the value σ2r3

1/Gm1 = 3σ2/4πG�m. As seen from Eq.
(5.3.52), the transformation to our eigenfrequency ω2 = σ2/4πG�0 is effected simply by multiplication
with the factor −θ′1/ξ1 = �m/3�0.

Let us denote by

Q = Π(�m/�m�)1/2, (5.3.53)

the so-called pulsation constant, where �m� = 1.41 g/cm3 is the mean density of the Sun. Combining
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Fig. 5.3.2 Fundamental mode of radial oscillations for polytropic spheres of index n = 0, 1, 2, 3 if Γ1 = 5/3.
The displacements ∆r/r1 = rη/r1 are normalized to unity at x = r/r1 = 1, and the curves are labeled by the
values of the polytropic index n (Tassoul 1978).

Eqs. (5.3.52) and (5.3.53), we obtain for Q, as expressed in days

Qd = Π(�m/�m�)1/2
/
86400 = [3π(−θ′1/G�m�ξ1)]1/2

/
86400ω

= 0.1159(−θ′1/ξ1)1/2
/
ω = 0.0669(�m/�0)1/2

/
ω. (5.3.54)

It turns out from the numerical calculations (see Table 5.3.1) that Q does not change drastically with
polytropic index (by a factor of 4). Q also changes due to nonadiabatic and nonlinear effects, but only
by a few percent (e.g. Cox 1980).

In Table 5.3.1 all eigenvalues ω2, together with the fundamental pulsation constant Qd0 =
Π0(�m/�m�)1/2 = 0.1159(−θ′1/ξ1)1/2/ω0 and Π1/Π0 = ω0/ω1, are transformed from Table 1 of Hur-
ley et al. (1966), excepting for n = 4.5 quoted from Table 2 of Simon and Sastri (1972). As the entries
from Hurley et al. (1966) are in units of 4πG�0/(n + 1), they have to be divided by n + 1, in order to
get ω2 from Eq. (5.3.52) and Table 5.3.1. The surface to centre ratio of the fundamental mode η0s/η0c is
taken from Cox (1980, Table 8.1). The surface to centre ratio of the first overtone η1s/η1c has been listed
by Ledoux and Walraven (1958 Table 12): η1s/η1c = −0.4,−3.39,−59.12 if n = 0, 1.5, 3, respectively (cf.
Fig. 5.3.1 if n = 3). Small differences in the third digit occur in some places among the values quoted by
different authors.

The value of Qd0 = 0.0381 for the standard model n = 3 agrees well with the observed mean value
for classical Cepheids Qobs = 0.0365, as quoted by Ledoux and Walraven (1958, §98). For the bump
Cepheids Whitney (1983) constructs polytropic models with index 2.5 < n < 3, that have a period ratio
between fundamental and second overtone of Π0/Π2 = ω2/ω0 = 2, in close agreement with observation
and more sophisticated models.

5.3.6 Nonlinear, Second Order Radial Oscillations of Polytropes

Because the observed light and velocity curves of Cepheid variables are not of a simple trigonometric
form, it is tempting to seek more elaborate solutions. One way would be to consider a nonlinear theory,
although only the inclusion of nonadiabatic effects (H- and He-envelope ionization zones) offers a satis-
factory explanation of most observed pulsational characteristics (e.g. Cox 1980). With the integrated
adiabatic energy equation (5.2.22) P = Pi(�/�i)Γ1 , (Q,Γ1 = const), and with the mass conservation
equation (5.2.42), the Lagrangian equation of radial motion (5.2.46) can be written as (e.g. Rosseland
1964, Chap. VII)

∂2r/∂t2 = −(r2/�ir
2
i ) ∂

{
Pi[r2

i

/
r2 (∂r/∂ri)]Γ1

}/
∂ri − Gm(ri)/r2. (5.3.55)
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r = r(ri, t) is the sole dependent variable, and the equilibrium pressure at initial state Pi satisfies the
equation of hydrostatic equilibrium

dPi/dri = −G�i m(ri)/r2
i . (5.3.56)

The radius vector of an oscillating mass element is written under the form

r = ri(1 + ∆r/ri) = ri(1 + η), (η = ∆r/ri), (5.3.57)

which yields

∂2r/∂t2 = ri ∂2η/∂t2; ∂r/∂ri = 1 + η + ri ∂η/∂ri. (5.3.58)

Then, the equation of motion (5.3.55) reads

[�iri/(1 + η)2] ∂2η/∂t2 = −∂
[
Pi(1 + η)−2Γ1(1 + η + ri ∂η/∂ri)−Γ1

]/
∂ri − G�i m(ri)

/
r2
i (1 + η)4.

(5.3.59)

We now particularize this quite general radial equation by considering η as a second order quantity

�iri(1 − 2η) ∂2η/∂t2 = L(η) + Q(η2), (O(η3) = 0), (5.3.60)

where L contains linear terms in η, ∂η/∂ri, ∂2η/∂r2
i , and Q their quadratic combinations. Let us suppose

that the solution of the first order part of Eq. (5.3.60)

�iri ∂2η/∂t2 = L(η), (5.3.61)

is given by the real part of the solution (5.2.58):

η(ri, t) = X(ri) cos(σt). (5.3.62)

In seeking the solution of the second order equation (5.3.60), we choose its form equal to (Eddington
1919)

η(ri, t) = X(ri) cos(σt) + Y (ri) cos(2σt) + Z(ri). (5.3.63)

Inserting this into Eq. (5.3.60), and taking into account that Y and Z are of second order, we obtain

σ2�iri

{
− X cos(σt) − 4Y cos(2σt) + X2[1 + cos(2σt)]

}
= L(X) cos(σt) + L(Y ) cos(2σt) + L(Z)

+Q(X) [1 + cos(2σt)]/2, (cos2(σt) = [1 + cos(2σt)]/2). (5.3.64)

Equating to zero the cosines of different angles, we arrive at

L(Z) = σ2�iriX
2 − Q(X)/2, (5.3.65)

L(X) = −σ2�iriX, (5.3.66)

L(Y ) + 4σ2�iriY = σ2�iriX
2 − Q(X)/2, (5.3.67)

where Eq. (5.3.66) is equivalent to (5.3.61).
Eddington (1919) and Kluyver (1935) carried out the integration of Eqs. (5.3.66), (5.3.67) for the

standard model n = 3, while Simon (1971), and Simon and Sastri (1972) have integrated Eqs. (5.3.65)-
(5.3.67) if n = 1.5, 2, 3, 4.5.

The function Y (ri) determines the amplitude of the second order pulsation, while Z(ri) shows how
much the centre of pulsation is displaced by second order terms. Quantitatively, the results of numerical
integrations are not satisfactory for Cepheids, since the second order amplitude of the radial velocity
|(∂η/∂t)2| ∝ | − 2Y | = 0.033 is no longer a small correction to the first order amplitude |(∂η/∂t)1| ∝
| − X| = 0.06, (n = 3), (Rosseland 1964, Table 6).
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Resonances occur for the displacement (5.3.63) whenever 4σ2
0 = σ2

k, (k = 1, 2, 3, ...), as can be seen by
expanding Y and Z as a linear combination of the complete set of eigenfunctions ηk (Simon and Sastri
1972):

Y (ri) =
∞∑

k=0

bkηk(ri); Z(ri) =
∞∑

k=0

ckηk(ri), (bc, ck = const). (5.3.68)

We write down Eqs. (5.3.67), (5.3.65) with σ = σ0, and insert for L(Y ) = −σ2�iriY and L(Z) =
−σ2�iriZ according to the first order approximation (5.3.66), (X → Y, Z). Eqs. (5.3.67) and (5.3.65)
become, respectively:

�iriY (4σ2
0 − σ2) = �iri(4σ2

0 − σ2)
∞∑

k=0

bkηk = σ2
0�iriX

2 − Q(X)/2, (5.3.69)

σ2�iriZ = σ2�iri

∞∑
k=0

ckηk = −σ2
0�iriX

2 + Q(X)/2. (5.3.70)

The eigenfunctions ηk are orthogonal, i.e. (Ledoux and Walraven 1958, Cox 1980):
∫

m1

ηkη∗

 r2 dm = δk


∫
m1

|ηk|2r2 dm. (5.3.71)

δk
 means the Kronecker delta, η∗

 is the complex conjugate of η
, and integration is carried out over

the whole mass m1. Our eigenfunctions ηk from Eq. (5.3.63) are all real (ηk = η∗
k), and because Eqs.

(5.3.65)-(5.3.67) are homogeneous, we may normalize the integral on the right-hand side of Eq. (5.3.71)
to 1, fixing in this way the undetermined constant C of the solution Cηk(ri).

If we multiply Eqs. (5.3.69), (5.3.70) by 4πr3
i ηk dri, bearing in mind the orthogonality condition

(5.3.71) and the normalization condition, the following equations for the coefficients bk and ck are obtained
at once (σ → σk) :

bk = [4π/(4σ2
0 − σ2

k)]
∫

m1

r3
i ηk[σ2

0�iriX − Q(X)/2] dri, (5.3.72)

ck = −(4π/σ2
k)
∫

m1

r3
i ηk[σ2

0�iriX − Q(X)/2] dri. (5.3.73)

Indeed, if 4σ2
0 ≈ σ2

k the coefficient bk and Y (ri) become very large, and near-resonant oscillations
occur in the model.

The statistical response to stochastic, nonlinear radial oscillations in polytropes (n = 1.5, 2.5, 3) has
been studied by Chaudhary et al. (1995), and Das et al. (1996).

5.3.7 Linear Radial Oscillations of Composite Polytropes

In this place we briefly present the radial pulsations of a composite polytrope consisting of a polytropic
core with index nc = 1, surrounded by an envelope of index ne = 5, obeying Srivastava’s (1962) solution
(2.3.42), (see Eqs. (2.8.49)-(2.8.52), Murphy and Fiedler 1985a, b). The linear adiabatic wave equation
(5.2.60) becomes with the polytropic variables (2.6.18), (5.2.134) equal to

d2η/dξ2 + [4/ξ + (n + 1)θ′/θ] dη/dξ + [(3 − 4/Γ1)(n + 1)θ′/ξθ + (n + 1)ω2/Γ1θ] η = 0,

(η = ∆r/r = ∆ξ/ξ; Γ1 = const; ω2 = σ2/4πG�0). (5.3.74)
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Table 5.3.2 Fractional radius ξi/ξe1 at the core-envelope interface, ratio �0/�m of central to mean density,
squared dimensionless eigenfrequencies ω2

0 = σ2
0/4πG�0, ω2

1 = σ2
1/4πG�0, (Γ1 = 5/3) of the radial fundamental

mode and the first overtone, ratio Π1/Π0 = ω0/ω1 between pulsation period of first overtone and fundamental
period for the five composite nc = 1, ne = 5 polytropes from Table 2.8.2. The eigenfrequencies σ2r3

1/Gm1 =
3σ2/4πG�m of Murphy and Fiedler (1985a, b) are connected to ω2 = σ2/4πG�0 by multiplication with �m/3�0.
a + b means a × 10b.

Model ξi/ξe1 �0/�m ω2
0 ω2

1 Π1/Π0

1 0.317 63.02 9.968−2 1.397−1 0.845
2 0.469 21.04 1.734−1 3.296−1 0.725
3 0.557 13.24 1.829−1 5.357−1 0.584
4 0.745 6.332 1.904−1 1.083+0 0.419
5 0.933 3.797 1.916−1 1.223+0 0.396

Fig. 5.3.3 Relative amplitudes η/ηe1 = η(ξ)/η(ξe1) of fundamental modes as a function of the fractional
radius x = r/re1 = ξ/ξe1 for the five models from Table 5.3.2 if Γ1 = 5/3 (Murphy and Fiedler 1985b).

Fig. 5.3.4 Same as Fig. 5.3.3 for the first four modes of Model 5 from Table 5.3.2. Mode 1 is equal to the
curve labeled Model 5 in Fig. 5.3.3 (Murphy and Fiedler 1985b).

Near the origin the coefficient of dη/dξ in Eq. (5.3.74) assumes the singular form 4/ξ. From the
requirement that η is regular everywhere (η must be finite, together with its derivatives), we observe that
(4/ξ) dη/dξ must be finite at the origin, i.e. dη/dξ ∝ ξs, (s ≥ 1) or

dη/dr ∝ dη/dξ = 0, (r, ξ = 0). (5.3.75)

This is taken to be the central boundary condition on η. The surface condition (5.2.68) assumes in
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polytropic variables the form

ξ dη/dξ = η[(4/Γ1 − 3) + ω2ξe1/Γ1(−θ′e1)], (ξ = ξe1). (5.3.76)

Eq. (5.3.74) has been integrated numerically by inserting for θ the analytic solutions (2.8.49) and
(2.8.50), subject to the boundary conditions (5.3.75) and (5.3.76), (Murphy and Fiedler 1985b). For the
five models from Table 2.8.2 and Fig. 2.8.4, where most of the mass is contained in the core (q ≈ 1), the
relative displacement is shown in Fig. 5.3.3 as a function of fractional radius x = r/re1 = ξ/ξe1.

5.3.8 Radial Oscillations of Isothermal Spheres n = ±∞n = ±∞n = ±∞

Due to their infinite mass and extension these spheres have to be cutted at some finite radius r = r1 =
αξ1. Eigenvalues of the fundamental mode and of the first overtone, together with the eigenfunctions,
have been calculated by Taff and Van Horn (1974) if 2 ≤ ξ1 ≤ 90. Introducing from Eqs. (2.6.2), (2.6.4),
(2.6.6), (2.6.19) into the fundamental wave equation (5.2.60), we obtain the isothermal counterpart of
Eq. (5.3.74):

d2η/dξ2 + (4/ξ − θ′) dη/dξ + [(4/Γ1 − 3)θ′/ξ + ω2/Γ1] η = 0,

(η = ∆r/r = ∆ξ/ξ; Γ1 = const; n = ±∞). (5.3.77)

The boundary conditions completing the definition of this eigenvalue problem are given by Eq.
(5.3.75), and by ∆P = K∆� = 0 at ξ = ξ1 [cf. Eq. (5.2.62)]. This amounts in virtue of Eq. (5.2.45) to
d ln η/d ln ξ = (ξ/η) dη/dξ = −3, [(∆�/�)ξ=ξ1 = 0; �(ξ1) �= 0]. We ignore Yabushita’s (1968) results due
to the comments of Taff and Van Horn (1974).
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5.4 Instability of Truncated Polytropes

5.4.1 The Jeans Criterion for the Infinite Homogeneous Medium

Let us suppose that the medium is at rest, except for a small velocity �v(�r, t) due to wave motions.
Neglecting squares and products of small quantities and of their derivatives, the hydrodynamic equation
(5.2.29) becomes (e.g. Bonnor 1957, Chandrasekhar 1981)

∂δ�v/∂t ≈ ∂�v/∂t = (δ�/�2) ∇P − (1/�) ∇δP + ∇δΦ = −(1/�) ∇δP + ∇δΦ,

(δ�v ≈ ∆�v = �v − �vu = �v; ∇P ≈ 0). (5.4.1)

The other relevant equations are the continuity equation (5.2.25)

∂δ�/∂t = −∇ · (��v) = −� ∇ · �v, (∇� ≈ 0), (5.4.2)

Poisson’s equation (5.2.40)

∇2δΦ = −4πG δ�, (5.4.3)

and the adiabatic energy equation (5.2.38)

∆P = (Γ1P/�) ∆�. (5.4.4)

To the first order the Lagrangian changes in Eq. (5.4.4) can be replaced in virtue of Eq. (5.1.16) with
Eulerian changes, since ∇P,∇� ≈ 0 :

δP = (Γ1P/�) δ� = a2 δ�. (5.4.5)

By Eq. (2.1.49)

a2 = (∂P/∂�)S=const = Γ1P/� ≈ const, (5.4.6)

is the velocity of propagation (adiabatic sound velocity) of a small fluctuation in the density �. This
velocity is independent of the wave vector �j, where

j = |�j| = 2π/L, (5.4.7)

denotes the wave number, and L the wavelength. We insert Eq. (5.4.5) into Eq. (5.4.1), taking its
divergence:

� ∂(∇ · �v)/∂t = −a2 ∇2δ� + � ∇2δΦ, (∇a ≈ 0). (5.4.8)

Making use of Eqs. (5.4.2) and (5.4.3), we find

∂2δ�/∂t2 = a2 ∇2δ� + 4πG� δ�. (5.4.9)

For a density perturbation of the form

δ� ∝ exp[i(�j · �r + σt)], [�j = �j(jx, jy, jz); �r = �r(x, y, z)], (5.4.10)

we obtain for the eigenvalue σ, after suppressing the common factor δ� :

σ2 = a2j2 − 4πG�. (5.4.11)

The propagation velocity aJ of these waves (Jeans velocity) is

aJ = r/t = −σ/j = a(1 − 4πG�/a2j2)1/2. (5.4.12)
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Instability requires σ2 < 0, or

j < (2/a)(πG�)1/2 = jJ . (5.4.13)

This is precisely the delimitation at which the Jeans velocity aJ starts up to become imaginary. If we
turn with j = 2π/L to the dimension of unstable fragments, Eq. (5.4.13) becomes [see Eq. (5.4.61)]

L > a(π/G�)1/2 = LJ . (5.4.14)

A mass of gas with dimensions larger than LJ will allow for time-growing disturbances of the type
(5.4.10), and will therefore be unstable.

The Jeans criterion (5.4.14) for the gravitational instability of an infinite homogeneous medium is
unaffected by the presence of uniform rotation Ω and/or of a uniform magnetic field (e.g. Chandrasekhar
1981, §120). Only in the special case, when the direction of wave propagation is exactly perpendicular
to the rotation axis, the instability condition (5.4.14) becomes π2a2/L2 − πG� + Ω2 < 0, and instability
along this particular direction cannot occur if Ω2 > πG�. Some other extensions have been provided for
an inhomogeneous, nonuniformly rotating medium (Anand and Kushwaha 1962b, Simon 1962, Safronov
1969), for the case when viscosity and thermal conduction are included (Kato and Kumar 1960), or when
the energy balance equation replaces the assumption of adiabatic (isothermal) compression (Kegel and
Traving 1976).

5.4.2 Radial Gravitational Instability of Polytropes Under External
Pressure

The essence of this instability can be outlined from the virial theorem for a sphere (2.6.94), neglecting
magnetic energy Um and the kinetic energy of internal mass motions Ekin (McCrea 1957, Penston 1969):

(1/2) d2I/dt2 = W + 3V (P − PS),
(
I =

∫
M

r2 dM
)
. (5.4.15)

The external pressure PS has been replaced according to Eq. (2.6.96), and the internal energy U is
approximated via Eq. (2.6.95) by the average pressure Pm inside the sphere:

(Γ − 1)U =
∫

V

P dV = PmV. (5.4.16)

Equilibrium configurations have d2I/dt2 = 0, or

PS = W/3V + Pm. (5.4.17)

The gravitational energy (2.6.133) of a truncated polytropic sphere writes with Eqs. (2.6.1), (2.6.18)
as

W = 16π2Gα5�2
0(±ξ3θn+1 + 3ξ2θθ′ + 3ξ3θ′2)

/
(n − 5) = (±θn+1/θ′2 + 3θ/ξθ′ + 3)GM2

/
(n − 5)r

= −AGM2/r, (N = 3; n �= −1,±∞), (5.4.18)

where [Γ(1/2)]3/Γ(3/2) = 2π via Eq. (C.11), and ξ0 → 0, ξ1 → ξ.
Likewise, the gravitational energy (2.6.148) of a truncated isothermal sphere is

W = 16π2Gα5�2
0[ξ

3 exp(−θ) − 3ξ2θ′] = [(1/θ′2) exp(−θ) − 3/ξθ′]GM2/r = −AGM2/r,

(N = 3; n = ±∞), (5.4.19)

where we have inserted for r and M from Eqs. (2.6.1), (2.6.19). In a first approximation the virial
coefficient A may be regarded as constant (Horedt 1970, Table I).

The average adiabatic pressure change in a sphere occurs according to Eq. (1.3.28):

Pm = BV −Γ1 = B(3/4πr3)Γ1 , (Γ′
1 = Γ1; B = const). (5.4.20)
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We insert Eqs. (5.4.18)-(5.4.20) into Eq. (5.4.17):

PS = −AGM2/4πr4 + B(3/4πr3)Γ1 = −C/r4 + D/r3Γ1 , (A, C, D = const > 0). (5.4.21)

A stable truncated sphere of constant mass M should expand by ∆r if the external pressure diminishes
by the amount ∆PS : Stability demands ∆PS/∆r < 0. Conversely, the truncated sphere becomes unstable
and starts collapse if its radius shrinks by ∆r < 0 after an external pressure release ∆PS < 0 : ∆PS/∆r >
0. Neutral stability – at the verge of instability – occurs if

∆PS/∆r = 4C/r5 − 3Γ1D/r3Γ1+1 = 0 or r = rcr = (3Γ1D/4C)1/(3Γ1−4)

= (3/4π)Γ1/(3Γ1−4)(3πΓ1B/AGM2)1/(3Γ1−4); PS = PS,cr = (4C/3Γ1D)4/(3Γ1−4)(D − C).
(5.4.22)

If Γ1 > 4/3 and r → 0, the leading term in Eq. (5.4.21) is D/r3Γ1 , showing that strongly compressed
spheres are stable: ∆PS/∆r ≈ −3Γ1Dr−3Γ1−1 < 0. However, for extended and weakly compressed
spheres with Γ1 > 4/3 our simplified approach from Eq. (5.4.21) is not suitable, since it would lead to a
vanishing, unphysical negative boundary pressure: PS ≈ −C/r4 if r → ∞ and Γ1 > 4/3.

Instability only occurs if Γ1 < 4/3, like for a vanishing external pressure [Eq. (2.6.101)]. The extended,
weakly compressed sphere is stable: ∆PS/∆r ≈ −3Γ1Dr−3Γ1−1 < 0, (r → ∞). As the equilibrium
external pressure PS increases, and the sphere becomes increasingly compressed, the critical radius rcr

and the maximum equilibrium boundary pressure PS,cr are attained. If the sphere is further compressed
(r < rcr), no stable equilibrium configurations subsist, because in this case the external equilibrium
pressure (5.4.21) is PS < PS,cr, and ∆PS/∆r > 0, (Γ1 < 4/3). The strongly compressed sphere is
unstable: ∆PS/∆r ≈ 4C/r5 > 0, (r → 0). Likewise, no stable sphere can exist if PS > PS,cr, (Γ1 < 4/3),
because the equilibrium equation (5.4.21) cannot be satisfied for any value of r (McCrea 1957).

These qualitative findings will be further substantiated for truncated polytropic slabs, cylinders, and
spheres. Polytropic stellar cores and polytropic interstellar clouds are subject to the external pressure
from the stellar envelope and from the intercloud medium, respectively. In some of these incomplete
polytropes there occurs radial gravitational instability if the external pressure exceeds a certain critical
limit. In a stable, radially symmetric configuration the pressure P increases as the radial distance r
decreases. Thus, if we apply a small quasistatic disturbance ∆r to the constant mass M at radial distance
r, the corresponding Lagrangian pressure change ∆P should have opposite sign in a stable hydrostatic
configuration, i.e. ∆P/∆r < 0. Conversely, if (Ebert 1955, Bonnor 1956, 1958, Spitzer 1968)

(∆P/∆r)M=const > 0, (5.4.23)

a radially symmetric, hydrostatic configuration with constant mass and constant polytropic index be-
comes unstable against radial disturbances. Radius, pressure, and mass of an incomplete N -dimensional
polytrope are given by [cf. Eqs. (2.6.1), (2.6.3), (2.6.12)]

r = αξ = [±(n + 1)K
/
4πG�

1−1/n
0 ]1/2ξ; P = K�

1+1/n
0 θn+1;

M = {2�0[αΓ(1/2)]N
/
Γ(N/2)}ξN−1(∓θ′) = const, (N = 1, 2, 3, ...; n �= −1,±∞), (5.4.24)

and [cf. Eqs. (2.6.2), (2.6.4), (2.6.13)]

r = αξ = (K/4πG�0)1/2ξ; P = K� = K�0 exp(−θ);

M = {2�0[αΓ(1/2)]N
/
Γ(N/2)}ξN−1θ′ = const, (N = 1, 2, 3, ...; n = ±∞). (5.4.25)

Because the mass M of the incomplete polytrope remains constant under a disturbance ∆r, we
can eliminate the variable central density �0 between the relationships in Eqs. (5.4.24) and (5.4.25),
respectively. Radius r and external pressure P of the incomplete polytrope will remain functions of a
single variable ξ, aside of an insignificant constant factor:

α ∝ �
(1−n)/2n
0 ; M ∝ �

[N(1−n)+2n]/2n
0 ξN−1(∓θ′) = const; �0 ∝

ξ2n(1−N)/[N(1−n)+2n](∓θ′)−2n/[N(1−n)+2n]; r ∝ r∗ = ξ(n+1)/[N(1−n)+2n](∓θ′)(n−1)/[N(1−n)+2n];

P ∝ P ∗ = ξ2(1−N)(n+1)/[N(1−n)+2n](∓θ′)−2(n+1)/[N(1−n)+2n]θn+1, (N = 1, 2, 3, ...; n �= −1,±∞),
(5.4.26)
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α ∝ �
−1/2
0 ; M ∝ �

1−N/2
0 ξN−1θ′ = const; �0 ∝ ξ2(1−N)/(2−N)θ′−2/(2−N); r ∝ r∗

= ξ1/(2−N)θ′1/(2−N); P ∝ P ∗ = ξ2(1−N)/(2−N)θ′−2/(2−N) exp(−θ), (N = 1, 3, 4, ...; n = ±∞).
(5.4.27)

For the cases of practical interest the dimensionless external pressure P ∗ acting on the surface at
dimensionless distance r∗ is (Viala and Horedt 1974a):

N = 1 (slabs) : r∗ = ξ(∓θ′)(n−1)/(n+1); P ∗ = (∓θ′)−2θn+1 if n �= −1,±∞.

r∗ = ξθ′; P ∗ = θ′−2 exp(−θ) if n = ±∞, (5.4.28)

N = 2 (cylinders) : r∗ = ξ(n+1)/2(∓θ′)(n−1)/2; P ∗ = ξ−n−1(∓θ′)−n−1θn+1 if n �= −1,±∞,
(5.4.29)

N = 3 (spheres) : r∗ = ξ(n+1)/(3−n)(∓θ′)(n−1)/(3−n);

P ∗ = ξ−4(n+1)/(3−n)(∓θ′)−2(n+1)/(3−n)θn+1 if n �= −1,±∞.

r∗ = ξ−1θ′−1; P ∗ = ξ4θ′2 exp(−θ) if n = ±∞. (5.4.30)

We have excluded from Eqs. (5.4.27) and (5.4.29) the case N = 2, n = ±∞ (the isothermal cylinder),
because its mass per unit length [cf. Eqs. (2.3.48), (2.6.17)]

M = 2π�0α
2ξθ′ = (K/2G)ξθ′ = 2Kξ2/G(8 + ξ2), (N = 2; n = ±∞), (5.4.31)

is independent of the variable central density �0, and our elimination procedure of �0 breaks down.
However, by assuming for the moment N �= 2, and turning in Eq. (5.4.33) to the limit N → 2, we
observe at once that (∆P/∆r)M=const ∝ −2/ξ < 0 throughout [cf. Eq. (5.4.37)], i.e. the infinitely long
isothermal cylinder is gravitationally stable against radial perturbations (cf. McCrea 1957, Sec. 10).

We now investigate the sign of (∆P/∆r)M=const, which is equivalent to the sign of ∆P ∗/∆r∗ :

(∆P/∆r)M=const ∝ ∆P ∗/∆r∗ = (∆P ∗/∆ξ)
/
(∆r∗/∆ξ) ∝ (n + 1)

{
2θn+1 ± [N(1 − n) + 2n]θ′2

}
/{

(1 − n)ξθn ± [N(1 − n) + 2n]θ′
}
, (N = 1, 2, 3, ...; n �= −1,±∞), (5.4.32)

(∆P/∆r)M=const ∝ ∆P ∗/∆r∗ = (∆P ∗/∆ξ)
/
(∆r∗/∆ξ) ∝ [−2 exp(−θ) + (N − 2)θ′2]/

[ξ exp(−θ) − (N − 2)θ′], (N = 1, 2, 3, ...; n = ±∞), (5.4.33)

where we have inserted for θ′′ from Eqs. (2.1.14) and (2.1.21), respectively. For small values of the surface
radial coordinate ξ, we get from the foregoing equations [θ ≈ 1 ∓ ξ2/2N, Eq. (2.4.21)]

(∆P/∆r)M=const ∝ −(n + 1)N/nξ, (ξ ≈ 0; N = 1, 2, 3, ...; n �= −1,±∞), (5.4.34)

and [θ ≈ ξ2/2N, Eq. (2.4.36)]

(∆P/∆r)M=const ∝ −N/ξ, (ξ ≈ 0; N = 1, 2, 3, ...; n = ±∞). (5.4.35)

Eqs. (5.4.32) and (5.4.33) become for the cases of practical interest equal to

N = 1 (slab) : (∆P/∆r)M=const ∝ (n + 1)[2θn+1 ± (n + 1)θ′2]
/
[(1 − n)ξθn ± (n + 1)θ′] if

n �= −1,±∞; (∆P/∆r)M=const ∝ [−2 exp(−θ) − θ′2]
/
[ξ exp(−θ) + θ′] if n = ±∞, (5.4.36)

N = 2 (cylinder) : (∆P/∆r)M=const ∝ (n + 1)(2θn+1 ± 2θ′2)
/
[(1 − n)ξθn ± 2θ′] if

n �= −1,±∞; (∆P/∆r)M=const ∝ −2/ξ if n = ±∞, (5.4.37)

N = 3 (sphere) : (∆P/∆r)M=const ∝ (n + 1)[2θn+1 ± (3 − n)θ′2]
/
[(1 − n)ξθn ± (3 − n)θ′] if

n �= −1,±∞; (∆P/∆r)M=const ∝ [−2 exp(−θ) + θ′2]
/
[ξ exp(−θ) − θ′] if n = ±∞. (5.4.38)
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We now discuss separately the unstable states of incomplete polytropes under external pressure for
the cases N = 1, 2, 3. We have to exclude from our considerations the constant density polytrope (n = 0),
because in this case θ = 1 − ξ2/2N [(Eq. (2.3.5)], and we observe from Eq. (5.4.26) that ∆r/∆ξ ∝
∆r∗/∆ξ ≡ 0. The sign of the derivative (∆P/∆r)M=const = ±∞ remains undefined. In fact, as will be
shown below, the polytropic index n = 0 separates just the gravitationally stable polytropes with n > 0
from the unstable ones with n < 0.

(i) − 1 < n < 0; N = 1, 2, 3.(i) − 1 < n < 0; N = 1, 2, 3.(i) − 1 < n < 0; N = 1, 2, 3. The upper sign holds in Eq. (5.4.32), so the numerator is always positive
in this case. To show the same also for the denominator, we apply Bonnor’s (1958) reasoning, supposing
the contrary:

(1 − n)ξθn + [N(1 − n) + 2n]θ′ ≤ 0, (−1 < n < 0). (5.4.39)

Inserting for θn and θ′ from Eqs. (2.6.3) and (2.6.27), we get

(1 − n)ξ�/�0 − [N(1 − n) + 2n]ξ�m/N�0 ≤ 0, (5.4.40)

or

� ≤ [N(1 − n) + 2n]�m/N(1 − n) = [1 + 2n/N(1 − n)]�m < �m, (5.4.41)

since the factor in the brackets is < 1 if n < 0. But for polytropic indices −1 < n < 0 the density
increases outwards and � > �m, contradicting the finding from Eq. (5.4.41). Thus, the denominator in
Eq. (5.4.32) has to be positive throughout, and (∆P/∆r)M=const > 0. We conclude that polytropes with
indices −1 < n < 0 are always gravitationally unstable under external pressure.

(ii) Polytropic slabs (N = 1; −∞ ≤ n < −1 and 0 < n ≤ ∞).(N = 1; −∞ ≤ n < −1 and 0 < n ≤ ∞).(N = 1; −∞ ≤ n < −1 and 0 < n ≤ ∞). If n = ±∞, Eq. (5.4.36) shows at
once that (∆P/∆r)M=const < 0, (θ′ > 0), i.e. the isothermal slab is gravitationally stable against radial
disturbances. The same result follows from an inspection of (∆P/∆r)M=const if −∞ < n < −1 and
1 ≤ n < ∞. If 0 < n < 1, we proceed with the denominator of Eq. (5.4.36) in the same manner as in
Eqs. (5.4.39)-(5.4.41), by supposing that

(1 − n)ξθn + (1 + n)θ′ ≥ 0, (N = 1; 0 < n < 1). (5.4.42)

After insertion of θn = �/�0 and θ′ = −ξ�m/�0 we obtain

� ≥ [(1 + n)/(1 − n)]�m > �m, (N = 1; 0 < n < 1), (5.4.43)

which is clearly impossible. Thus, polytropic slabs are throughout gravitationally stable under external
pressure, excepting if −1 < n < 0.

(iii) Polytropic cylinders (N = 2; −∞ ≤ n < −1 and 0 < n ≤ ∞).(N = 2; −∞ ≤ n < −1 and 0 < n ≤ ∞).(N = 2; −∞ ≤ n < −1 and 0 < n ≤ ∞). If n = ±∞, we have already
seen in Eq. (5.4.37) that (∆P/∆r)M=const ∝ −2/ξ < 0, i.e. the isothermal cylinder is stable. Likewise,
if 1 ≤ n < ∞ the derivative (5.4.37) is negative. In the case 0 < n < 1 we assume again that the
denominator from Eq. (5.4.37) would be positive

(1 − n)ξθn + 2θ′ ≥ 0, (N = 2; 0 < n < 1), (5.4.44)

from which we would obtain (θn = �/�0; θ′ = −ξ�m/2�0)

� ≥ �m/(1 − n) > �m, (N = 2; 0 < n < 1), (5.4.45)

and this is clearly impossible. Thus, polytropic cylinders of index 0 < n ≤ ∞ are gravitationally stable
under external pressure: (∆P/∆r)M=const < 0.

If −∞ < n < −1, the derivative (∆P/∆r)M=const from Eq. (5.4.34) is negative for small values of
ξ, hence these cylinders are stable, as long as ξ ≈ 0. If −∞ < n < −1, polytropic cylinders extend to
infinity, and the Lane-Emden function obeys the asymptotic expansion from Eq. (2.4.83). We insert
θ from Eq. (2.4.83) and its derivative into Eq. (5.4.37), the principal terms associated with ξ2/(1−n)

canceling exactly:

(∆P/∆r)M=const ∝ (n + 1)ξ(1+n)/(1−n)[c1 sinF (ξ) + c2 cos F (ξ)]
/
[c3 sinF (ξ) + c4 cos F (ξ)],

(ξ → ∞; N = 2; −∞ < n < −1; F (ξ) = 2(−n)1/2 ln ξ/(1 − n) + c5; c1, c2, c3, c4, c5 = const).
(5.4.46)
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Fig. 5.4.1 Dimensionless external pressure P ∗ and corresponding radius r∗ from Eq. (5.4.29) for unstable
cylinders (N = 2) with polytropic index −∞ < n < −1. The parts of the curves on the left of the maximum of
P ∗ represent unstable states, and cannot occur in practice. Only the first half of the spiral round the singular
point (5.4.54) is represented at the scale of the figure (Viala and Horedt 1974a).

Because of the trigonometric terms, the derivative (5.4.46) takes positive and negative values if ξ → ∞,
so gravitational instability of cylinders with index −∞ < n < −1 must occur for some values of ξ.

(iv) Polytropic spheres (N = 3; −∞ ≤ n < −1 and 0 < n ≤ ∞).(N = 3; −∞ ≤ n < −1 and 0 < n ≤ ∞).(N = 3; −∞ ≤ n < −1 and 0 < n ≤ ∞). If 1 ≤ n ≤ 3, Eq. (5.4.38) yields
(∆P/∆r)M=const < 0. To prove stability also in the case 0 < n < 1, we apply the reasoning from Eqs.
(5.4.39)-(5.4.45), by assuming

(1 − n)ξθn + (3 − n)θ′ ≥ 0, (N = 3; 0 < n < 1). (5.4.47)

With θn = �/�0 and θ′ = −ξ�m/3�0 we obtain

� ≥ (3 − n)�m/3(1 − n) > �m, (N = 3; 0 < n < 1), (5.4.48)

which is clearly impossible. So, polytropic spheres are gravitationally stable if 0 < n ≤ 3. If 3 < n < 5,
we observe from Eq. (5.4.30) that P ∝ P ∗ → 0 if ξ → 0 and ξ → ξ1, where ξ1 is the first zero of the Lane-
Emden function θ. Since for small values of ξ the derivative (∆P/∆r)M=const is negative via Eq. (5.4.34),
and since P ≥ 0, at least one maximum of P ∗ must occur between 0 and ξ1 where (∆P/∆r)M=const = 0.
So, portions of the curve P (r) exist having (∆P/∆r)M=const > 0. Spherical polytropes under external
pressure are unstable if 3 < n < 5 (Fig. 5.4.3).

In the particular case n = 5 we find, by inserting the Schuster-Emden integral (2.3.90) into Eq.
(5.4.38)

(∆P/∆r)M=const ∝ 2(9 − ξ2)
/
ξ(1 + ξ2/3)1/2(ξ2/3 − 5), (N = 3; n = 5), (5.4.49)

showing that the curve P (r) has a maximum at ξ = 3, and if ξ > 3, unstable states occur having
(∆P/∆r)M=const > 0.

If −∞ < n < −1 and 5 < n < ∞, the polytropic spheres extend to infinity (Sec. 2.6.8), and θ is of
the form (2.4.88). We insert θ and its derivative into Eq. (5.4.38), the principal terms associated with
ξ2/(1−n) canceling exactly:

(∆P/∆r)M=const ∝ (n + 1)ξ(1+n)/(1−n)[c1 sinG(ξ) + c2 cos G(ξ)]
/
[c3 sinG(ξ) + c4 cos G(ξ)],

(ξ → ∞; N = 3; −∞ < n < −1 and 5 < n < ∞; G(ξ) = (7n2 − 22n − 1)1/2 ln ξ/2(1 − n) + c5;
c1, c2, c3, c4, c5 = const). (5.4.50)

Because of the trigonometric terms, the derivative (5.4.50) takes positive and negative values if ξ → ∞,
so gravitational instability of spheres with polytropic index −∞ < n < −1 and 5 < n < ∞ must occur
for some values of ξ.
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Fig. 5.4.2 Same as Fig. 5.4.1, but for unstable spheres (N = 3) with polytropic index −∞ < n < −1. The
upper ends of the curves spiral round the singular points (5.4.55), (Viala and Horedt 1974a).

Fig. 5.4.3 Same as Figs. 5.4.1 and 5.4.2, but for unstable spheres (N = 3) with polytropic index 3 < n < ∞
and n = ±∞. If n = ±∞, the curve spirals round the singular point (5.4.56), (Horedt 1970). See also the
schematic Fig. 17 by Stahler (1983).

In the particular case n = ±∞, (N = 3) the asymptotic solution is of the form (2.4.104). We proceed
exactly as for Eqs. (5.4.46) and (5.4.50):

(∆P/∆r)M=const ∝ (1/ξ)[c1 sinH(ξ) + c2 cos H(ξ)]
/
[c3 sinH(ξ) + c4 cos H(ξ)],

(ξ → ∞; N = 3; n = ±∞; H(ξ) = (71/2/2) ln ξ + c5; c1, c2, c3, c4, c5 = const). (5.4.51)

Like in the cases −∞ < n < 1 and 5 < n < ∞, the derivative (5.4.51) takes positive and negative
values as ξ → ∞, so the isothermal sphere is gravitationally unstable for some values of ξ.

Summarizing the above findings, we see that radial gravitational instability under external pressure of
polytropic slabs, cylinders, and spheres occurs for any value of P if −1 < n < 0. Above certain values of
the external pressure, truncated polytropic cylinders become unstable if −∞ < n < −1, while truncated
polytropic spheres become unstable if −∞ ≤ n < −1 and 3 < n ≤ ∞. Otherwise, these configurations are
stable under external pressure against radial perturbations (for slabs if −∞ ≤ n < −1 and 0 < n ≤ ∞,
for cylinders if 0 < n < ∞ and n = ±∞, and for spheres if 0 < n ≤ 3).
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Table 5.4.1 Critical values (corresponding to the maximum of P ∗ from Figs. 5.4.1-5.4.3) at which gravi-
tational instability under external pressure sets in, according to Bonnor (1956, 1958), Horedt (1970), Shu et al.
(1972), and Viala and Horedt (1974a). Values of the Lane-Emden function are found by interpolation from the
tables of Viala and Horedt (1974b) and Horedt (1986b). In the last column we have quoted the numerical factor
cJ = [−(n + 1)Nξcθ

′
c/4π]1/2 from the Jeans criterion (5.4.59) if n �= ±∞, and cJ = (Nξcθ

′
c/4π)1/2 from Eq.

(5.4.60) if n = ±∞. a + b means a × 10b.

n ξc θc θ′
c r∗c P ∗

c cJ

N = 2
−10 3.10 1.55 1.41−1 2.94+2 1.13−5 7.91−1
−5 3.70 2.01 2.49−1 4.73 4.41−2 7.66−1
−4 3.90 2.21 3.02−1 2.59 1.51−1 7.50−1
−3 4.30 2.60 3.84−1 1.58 4.03−1 7.25−1
−2 4.95 3.38 5.44−1 1.12 7.97−1 6.55−1
−1.5 5.50 4.19 6.99−1 1.02 9.58−1 5.53−1
−1.2 6.10 5.41 8.50−1 9.98−1 1.00 4.06−1

N = 3
−10 2.05 1.27 1.31−1 3.40 5.09−2 7.60−1
−5 2.90 1.57 2.03−1 1.94 2.81−1 7.50−1
−4 3.30 1.74 2.34−1 1.69 4.23−1 7.44−1
−3 3.85 2.02 2.86−1 1.47 6.41−1 7.25−1
−2 4.80 2.63 3.90−1 1.29 9.15−1 6.69−1
−1.5 5.70 3.35 4.92−1 1.22 1.01 5.79−1
−1.2 6.60 4.19 5.98−1 1.20 1.02 4.34−1

4 3.50 3.73−1 −1.21−1 1.07 3.70−1 7.11−1
4.5 3.20 4.46−1 −1.25−1 1.80 7.20−2 7.25−1
5 3.00 5.00−1 −1.25−1 2.37 3.17−2 7.33−1
6 2.70 5.81−1 −1.22−1 3.28 1.29−2 7.42−1

±∞ 6.50 2.66 3.75−1 4.10−1 1.76+1 7.63−1

Maloney (1988), and McLaughlin and Pudritz (1996) find that polytropic spheres of index −∞ < n <
−1 are throughout stable under external pressure, if isothermal perturbations (T0 = const) are assumed
instead of adiabatic ones. But at least for the considered interstellar molecular clouds such an assumption
is physically untenable (Curry and McKee 2000).

Horedt (1973) finds for weakly distorted polytropic models (rotationally and tidally distorted spheres,
slowly rotating cylinders, polytropic rings) and for weakly relativistic spheres, that gravitational insta-
bility under external pressure occurs in a first approximation for the same polytropic indices as for the
undistorted Newtonian models. Horedt’s (1973) results are not applicable if N = 3, n ≈ 3, since he
neglects the dependence of the small parameters β = Ω2/2πG�0 and q0 = K�

1/n
r0 /c2 on the central den-

sity [cf. Eq. (5.12.63)]. As should be expected on general grounds, the values of ξ for which instability
of weakly distorted polytropes under external pressure occurs, differ only by first order quantities from
those quoted in Table 5.4.1.

For small values of ξ the radius and external pressure from Eq. (5.4.26) become (θ ≈ 1 ∓ ξ2/2N)

r ∝ r∗ ≈ (N1−nξ2n)1/[N(1−n)+2n]; P ∝ P ∗ ≈ (Nξ−N )2(n+1)/[N(1−n)+2n], (ξ ≈ 0; n �= −1,±∞),
(5.4.52)

and from Eq. (5.4.27), (θ ≈ ξ2/2N)

r ∝ r∗ ≈ (N−1ξ2)1/(2−N); P ∝ P ∗ ≈ (Nξ−N )2/(2−N), (ξ ≈ 0; N �= 2; n = ±∞). (5.4.53)

If ξ → ∞, we find from Eqs. (2.4.83), (5.4.29) for the unstable cylinders with indices −∞ < n < −1
that r∗ and P ∗ spiral round the singular points (see Fig. 5.4.1)

r∗s = [2/(1 − n)](n+1)/2; P ∗
s = [2/(1 − n)]−n−1, (N = 2; ξ → ∞; −∞ < n < −1), (5.4.54)

where ∆P ∗/∆r∗ = 0/0. Similarly, in the spherical case one observes from Eqs. (2.4.88), (5.4.30) that r∗

and P ∗ spiral round the singular points [see Fig. 5.4.2, and Fig. 17 by Stahler (1983)]

r∗s =
{
± 2n(n − 3)[∓(1 − n)]−n−1

}1/(3−n); P ∗
s =

{
± 2−3(n − 3)−1[∓(1 − n)]4

}(n+1)/(3−n)
,

(N = 3; ξ → ∞; −∞ < n < −1 and 5 < n < ∞). (5.4.55)
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In the particular case n = ±∞ we get from Eqs. (2.4.104), (5.4.30), (see Fig. 5.4.3)

r∗s = 1/2; P ∗
s = 8, (N = 3; ξ → ∞; n = ±∞). (5.4.56)

Eqs. (5.4.34), (5.4.35) show that the derivative (∆P/∆r)M=const is negative outside the interval
n ∈ (−1, 0), so these polytropes are stable as long as ξ ≈ 0. From Eqs. (5.4.52), (5.4.53) we also observe
that for unstable polytropes r ∝ r∗ → ∞ and P ∝ P ∗ → 0 if ξ ≈ 0. As ξ increases (r∗ decreases),
the external pressure increases for unstable polytropes up to the critical maximum value Pc ∝ P ∗

c ,
corresponding to the dimensionless coordinate ξ = ξc. If ξ increases further, the external pressure P ∗

decreases, and the configuration becomes unstable for some values of ξ if ξ > ξc (Figs. 5.4.1-5.4.3). The
critical coordinate ξc is just given by the first zero of ∆P/∆r from Eqs. (5.4.32), (5.4.33), i.e. by the
first root of 2θn+1(ξc)± [N(1−n)+2n]θ′2(ξc) = 0 if n �= −1,±∞, and −2 exp[θ(ξc)]+ (N − 2)θ′2(ξc) = 0
if n = ±∞.

For polytropic indices −∞ < n < −1, (N = 2), and −∞ ≤ n < −1, 3 < n ≤ ∞, (N = 3) there
exists a relationship similar to the Jeans criterion (5.4.14). Since the equations (5.4.26), (5.4.27) obtained
for the boundary radius r are much more complicated than the equivalent original equations (5.4.24),
(5.4.25), we use the latter ones, the critical boundary radius rc being simply obtained by inserting ξ = ξc :

rc = [±(n + 1)K/4πG�
1−1/n
0 ]1/2ξc,

(−∞ < n < −1 if N = 2, 3, and 3 < n < ∞ if N = 3), (5.4.57)

rc = (K/4πG�0)1/2ξc, (n = ±∞; N = 3). (5.4.58)

The polytropes become unstable when r > rc. If polytropic matter also obeys the perfect gas equation
P0 = R�0T0/µ = K�

1+1/n
0 , i.e. K = RT0/µ�

1/n
0 , the foregoing equations can be brought into the form

(T0 = central temperature)

rc = [±(n + 1)RT0/4πGµ�0]1/2ξc = [−(n + 1)Nξcθ
′(ξc)/4π]1/2(RT0/Gµ�m)1/2,

(−∞ < n < −1 if N = 2, 3, and 3 < n < ∞ if N = 3), (5.4.59)

and

rc = (RT0/4πGµ�0)1/2ξc = [Nξcθ
′(ξc)/4π]1/2(RT0/Gµ�m)1/2, (n = ±∞, N = 3), (5.4.60)

via Eqs. (2.6.27), (2.6.28). The last two equations are very similar to the Jeans criterion (5.4.14) for the
uniform isothermal medium composed of a perfect gas, when the adiabatic exponent (2.1.51) takes its
isothermal value Γ1 = 1 + 1/n = 1, (n = ±∞) :

rc = LJ/2 = (πΓ1P0/4G�2
0)

1/2 = (π1/2/2)(RT0/Gµ�0)1/2 = (π1/2/2)(RT0/Gµ�m)1/2

= 0.89(RT0/Gµ�m)1/2, (Γ1 = 1; �0 = �m = const). (5.4.61)

The factors cJ near (RT0/Gµ�m)1/2 in Eqs. (5.4.59), (5.4.60) are shown in the last column of Table
5.4.1. Indeed, the quoted values of cJ are of the same order of magnitude as the factor 0.89 in Eq.
(5.4.61).

In the spherical case N = 3 we may derive from Eqs. (5.4.59)-(5.4.61) a critical mass-radius relation-
ship by substituting for RT0/µ = P0/�0 = ∓3Pcθ

−n−1
c θ′c/ξc�m if n �= −1,±∞, and RT0/µ = P0/�0 =

3Pcθ
′
c exp θc/ξc�m if n = ±∞ (Chièze 1987, Yabushita 1992):

Mc = [±4π(n + 1)θ′2c/Gθn+1
c ]1/2P 1/2

c r2
c , (N = 3; −∞ < n < −1; 3 < n < ∞), (5.4.62)

Mc = (4πθ′2c exp θc/G)1/2P 1/2
c r2

c , (N = 3; n = ±∞), (5.4.63)

Mc = (2/3)(π3/G)1/2P 1/2
c r2

c , (Γ1 = 1; �0 = �m = const). (5.4.64)

Masses larger than Mc are gravitationally unstable under external pressure. Curry and McKee (2000)
find for their composite polytropic models (Sec. 2.8.1) that the pressure drop P0/Pc of critical composite



382 5.4 Instability of Truncated Polytropes

isothermal models is limited by the square (≈ 200) of the Bonnor-Ebert value ≈ 14 for single isothermal
spheres: With ξc = 6.5 from Table 5.4.1 we get P0/Pc = exp θc = 14.3 for the Bonnor-Ebert value.
Arbitrarily large pressure drops are possible if nonisentropic composite polytropes are considered (Γ1 �=
1 + 1/n). Similar results are also obtained for the so-called multipressure polytropes of McKee and
Holliman (1999), when the total pressure is given by the sum of partial pressures

P =
∑

j

Pj =
∑

j

Kj�
1+1/nj , (Kj , nj = const), (5.4.65)

where � denotes the total mass density in the polytrope.
Kimura (1981b) – using uncommon notations – has considered besides the familiar Lane-Emden

functions discussed above, also the stability under external pressure of other types of solutions found in
Sec. 2.7.
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5.5 Nonradial Oscillations of Polytropic Spheres

5.5.1 Nonradial Oscillations of the Homogeneous Polytrope n = 0n = 0n = 0

Pekeris (1938) seems to have been the first who treated the problem of nonradial oscillations of
a compressible sphere for the simplest case n = 0, as earlier work by Emden (1907) was vitiated by
inconsistent approximations concerning the equation of continuity (see Kopal 1949). Later on, Cowling
(1941) correctly formulated Emden’s idea of ignoring the influence of the perturbed gravitational potential
δΦ (Cowling approximation). Further studies on the nonradial oscillations of polytropic spheres are due
to Kopal (1949), Sauvenier-Goffin (1951), Owen (1957), Hurley et al. (1966), and Robe (1968a, 1974).
The results of Robe (1968a) have shown that all p, g, and f -modes continue to exist also if n > 3.25,
contrary to Owen’s (1957) suggestion.

One of the simplest models that can be solved analytically is the constant density polytrope n = 0
(Pekeris 1938, Ledoux and Walraven 1958, Hurley et al. 1966). Inserting the Eulerian change (5.2.23)
into the adiabatic energy conservation equation (5.2.21), we get

[1/(Pu + δP )] D(Pu + δP )/Dt = [Γ1/(�u + δ�)] D(�u + δ�)/Dt, (5.5.1)

or with Eqs. (5.1.6), (5.1.24), (5.2.25) up to the first order [�v = �v(vr, vλ, vϕ) ≈ δ�v; �vu = 0; Pu =
Pu(r); �u = �u(r)] :

∂δP/∂t + vr dPu/dr = (Γ1Pu/�u)(∂δ�/∂t + vr d�u/dr) = −Γ1Pu ∇ · �v. (5.5.2)

Since the unperturbed pressure satisfies the hydrostatic equation

dPu/dr = −G�u m(ru)/r2
u = −g�u, (�g = −∇Φu; g = G m(ru)/r2

u), (5.5.3)

we obtain from Eq. (5.5.2):

∂δP/∂t = �ugvr − Γ1Pu ∇ · �v, (Γ1 = const). (5.5.4)

The spherical components of the Eulerian equation of motion (5.2.29) are

�u ∂vr/∂t = −∂δP/∂r − g δ� + �u ∂δΦ/∂r, (5.5.5)

�u ∂vλ/∂t = (1/r) ∂(−δP + �u δΦ)/∂λ, (5.5.6)

�u ∂vϕ/∂t = (1/r sinλ) ∂(−δP + �u δΦ)/∂ϕ. (5.5.7)

Following Pekeris (1938), we derive Eq. (5.5.4) with respect to r

∂2δP/∂r∂t = gvr d�u/dr + �uvr dg/dr + �ug ∂vr/∂r + Γ1�ug ∇ · �v − Γ1Pu ∂(∇ · �v)/∂r, (5.5.8)

and insert for ∂2δP/∂r∂t from the derivative with respect to t of Eq. (5.5.5), where we assume for vr and
δΦ a time dependence of the form (5.1.31), (∂�u/∂t, ∂g/∂t = 0; ∂2vr/∂t2 = −σ2vr; ∂δΦ/∂t = iσ δΦ) :

iσ ∂δΦ/∂r = −(Γ1Pu/�u) ∂(∇ · �v)/∂r + (Γ1 − 1)g ∇ · �v + g ∂vr/∂r + (dg/dr − σ2)vr. (5.5.9)

To eliminate δΦ from Eq. (5.5.9), we derive at first Eq. (5.2.91) with respect to the time, inserting for
∂δP/∂t via Eq. (5.5.4), and for j(j + 1) δΦ via Eqs. (5.1.28), (5.1.31), (B.39), (∂∆�r/∂t = �v; ∂∆r/∂t =
vr) :

∂(∇ · ∆�r)/∂t = ∇ · �v = (1/r2) ∂(r2vr)/∂r − [j(j + 1)/σ2r2][∂(δP/�u)/∂t − ∂δΦ/∂t]

= (1/r2) ∂(r2vr)/∂r − [j(j + 1)/σ2r2][gvr − (Γ1Pu/�u) ∇ · �v] + ij(j + 1) δΦ/σr2

= (1/r2) ∂(r2vr)/∂r − [j(j + 1)/σ2r2][gvr − (Γ1Pu/�u) ∇ · �v]

−(i/σ) ∇2δΦ + (i/σr2) ∂(r2 ∂δΦ/∂r)
/
∂r. (5.5.10)
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Then, we eliminate ∂(r2 ∂δΦ/∂r)/∂r between Eqs. (5.5.9) and (5.5.10) by multiplying Eq. (5.5.9)
with r2, and deriving with respect to r. The Laplacian ∇2δΦ in Eq. (5.5.10) is replaced with the time
derivative of Poisson’s equation (5.2.40), where ∂δ�/∂t is replaced via Eq. (5.2.25):

∂(∇2δΦ)/∂t = iσ ∇2δΦ = −4πG ∂δ�/∂t = 4πG(vr d�u/dr + �u ∇ · �v). (5.5.11)

We will also replace 4πG�u via the unperturbed Poisson equation −∇2Φu = ∇·�g = (1/r2) d(r2g)/dr =
dg/dr + 2g/r = 4πG�u, and d2g/dr2 by 4πG d�u/dr − (2/r) dg/dr + 2g/r2. On account of the described
eliminations we obtain an equation in ∇ · �v and vr :

(Γ1Pu/�u) ∂2(∇ · �v)/∂r2 + [Γ1 d(Pu/�u)/dr − (Γ1 − 1)g + 2Γ1Pu/�ur] ∂(∇ · �v)/∂r

+[σ2 + (2 − Γ1)(dg/dr + 2g/r) − j(j + 1)Γ1Pu/�ur2] ∇ · �v
= g ∂2vr/∂r2 + (2 dg/dr + 2g/r) ∂vr/∂r + [2 − j(j + 1)] vrg/r2. (5.5.12)

A second equation in the same variables can be found by differentiating Eq. (5.5.10) with respect to
r, and eliminating ∂δΦ/∂r between Eqs. (5.5.9) and (5.5.10):

r2 ∂(∇ · �v)/∂r +
{
2r − j(j + 1)[(Γ1 − 1)g + Γ1Pu/�u]

/
σ2
}
∇ · �v

= r2 ∂2vr/∂r2 + 4r ∂vr/∂r + [2 − j(j + 1)] vr. (5.5.13)

The cumbersome elimination of vr between Eqs. (5.5.12) and (5.5.13), as effected by Pekeris (1938),
will not be reproduced, and we turn directly to the particular case n = 0. In this circumstance we have:
ω2 = σ2/4πG�; g = 4πG�r/3; Pu = (2π/3)G�2(r2

1 − r2). The right-hand sides of Eqs. (5.5.12) and
(5.5.13) become, respectively

(4πG�r/3)
{
∂2vr/∂r2 + (4/r) ∂vr/∂r + [2 − j(j + 1)] vr/r2

}
and

r2
{
∂2vr/∂r2 + (4/r) ∂vr/∂r + [2 − j(j + 1)] vr/r2

}
. (5.5.14)

Thus, on eliminating the brackets between Eqs. (5.5.12) and (5.5.13), we find a homogeneous equation
in ∇ · �v :

(r2
1 − r2) ∂2(∇ · �v)/∂r2 + [(2r2

1 − 6r2)/r] ∂(∇ · �v)/∂r

+
[
6ω2/Γ1 + 8/Γ1 − 6 − 2j(j + 1)/3Γ1ω

2 − j(j + 1)(r2
1 − r2)/r2

]
∇ · �v = 0. (5.5.15)

We introduce the dimensionless radial coordinate x = r/r1, by observing from the relationship (B.37)
of the divergence in spherical coordinates that ∇ · �v(r, λ, ϕ) = (1/r1) ∇ · �v(x, λ, ϕ). We also separate
the angular part of ∇ · �v according to Eq. (5.1.31): ∇ · �v(x, λ, ϕ) = [∇ · �v(x)] Y k

j (λ, ϕ). So, all partial
derivatives in Eq. (5.5.15) can be replaced by ordinary derivatives:

(1 − x2) d2(∇ · �v)/dx2 + [(2 − 6x2)/x] d(∇ · �v)/dx

+
[
6ω2/Γ1 + 8/Γ1 − 6 − 2j(j + 1)/3Γ1ω

2 − j(j + 1)(1 − x2)/x2] ∇ · �v = 0. (5.5.16)

Assuming for ∇ · �v(x) a solution of the form (5.3.24), we get for the indicial equation of the lowest
power xq−2 :

q2 + q − j(j + 1) = 0. (5.5.17)

Since ∇ ·�v(x) has to be finite at the origin, only q1 = j subsists among the two roots j and −j − 1 of
Eq. (5.5.17), and ∇ · �v(x) is of the form

∇ · �v(x) = xj
∞∑


=0

a
x

 = xjF (x). (5.5.18)

We substitute Eq. (5.5.18) into Eq. (5.5.16), obtaining

(1 − x2) d2F/dx2 + (2/x)[j + 1 − (j + 3)x2] dF/dx + BF = 0;

B = 6ω2/Γ1 + 8/Γ1 − 6 − 2j(j + 1)/3Γ1ω
2 − 4j. (5.5.19)
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Fig. 5.5.1 Distribution of squared normalized eigenfrequencies 3ω2 = 3ω2(j, �) = 3σ2/4πG� = σ2r3
1/Gm1

for the p-modes [dots, Eq. (5.5.23)], f -modes [crosses, Eq. (5.5.26)], and g-modes [circles, Eq. (5.5.24)] of the
homogeneous compressible model n = 0, (Γ1 = 5/3). The purely radial modes are shown for j = 0 via Eq.
(5.3.29). Note the different scales on the left and right of the ordinate axis (Ledoux 1974).

Inserting for F from Eq. (5.5.18), we find the recurrence relation

a
+2 = a
[�(� + 5 + 2j) − B]
/
(� + 2)(� + 3 + 2j); a0 �= 0; a1 = 0. (5.5.20)

Hence, odd indexed coefficients a2
+1 are zero, and the series for F possesses only even powers of x. At
the outer boundary x = 1 the quotient criterion yields lim
→∞(a2
+2/a2
) = 1, and F will not converge
(cf. Vaughan 1972). In order to make ∇ · �v from Eq. (5.5.18) finite at x = 1, we have to cut the series
at a
, i.e.

B = �(� + 5 + 2j), (� = 0, 2, 4, ...). (5.5.21)

Inserting for B from (5.5.19), we write Eq. (5.5.21) under the form

D
 = 3ω2/2 − j(j + 1)/6ω2 = −2 + (Γ1/4)[�(� + 5 + 2j) + 6 + 4j], (� = 0, 2, 4, ...; D2
+1 = 0).
(5.5.22)

Eq. (5.5.22) can be solved for the eigenvalues ω2, and yields two sets of dimensionless angular
oscillation frequencies ω2, defining the p-modes

ω2
p = σ2

p/4πG� =
{
D
 + [D2


 + j(j + 1)]1/2
}/

3, (� = 0, 2, 4, ...), (5.5.23)

and the g-modes

ω2
g = σ2

g/4πG� =
{
D
 − [D2


 + j(j + 1)]1/2
}/

3, (� = 0, 2, 4, ...). (5.5.24)

For given � and j the eigenvalues ω2
p of p-modes are always positive: The p-modes are always stable.

The eigenvalues ω2
g of g-modes are always negative, which corresponds to instability, connected to the

fact that A = −(1/Γ1P ) dP/dr > 0 for the polytrope n = 0 [cf. Eq. (5.2.133)]. Obviously, if j = 0 (radial
oscillations), then ω2 = ω2

p = 2D
/3, and with � → 2�, we recover just the eigenvalues σ2 = 4πG�ω2 from
Eq. (5.3.29). If � 	 1, the two sets of eigenvalues from Eqs. (5.5.23) and (5.5.24) take for fixed j the
simple forms

ω2
p = Γ1�

2/6 + 2j(j + 1)/3Γ1�
2 and ω2

g = −2j(j + 1)/3Γ1�
2, (� 	 1; D
 ≈ Γ1�

2/4).
(5.5.25)

The first spectrum of eigenvalues ω2
p tends to infinity if � → ∞, while the second spectrum ω2

g decreases
towards zero if � → ∞ (cf. Eq. (5.2.126) if σ, ω 	 1, and Eq. (5.2.127) if σ, ω � 1).
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The existence of the stable fundamental (Kelvin) mode for the compressible homogeneous polytrope
with eigenvalue

ω2
f = σ2

f/4πG� = 2j(j − 1)/3(2j + 1), (n = 0; j = 2, 3, 4, ...), (5.5.26)

has been established by Chandrasekhar [1964a, Eq. (53)]. This mode has the same form as the Kelvin
mode for the incompressible homogeneous sphere Γ1 = ∞, n = 0 (Tassoul 1978). An approximate
analytical expression for the j = 2 Kelvin mode has been devised by Lai et al. [1993, Eq. (5.21)] with
their ellipsoidal energy variational method (cf. Eq. (5.5.26) if n = 0, j = 2) : ω2

f = [12ξ3
1θ′1

2
/5(5 −

n)]
/∫ ξ1

0
θnξ4 dξ, (0 ≤ n � 2).

As expected on general grounds (Chandrasekhar and Lebovitz 1963b, 1964, Dixit et al. 1980), the g-
modes from Tables 5.5.1, 5.5.2 become unstable (σ2 < 0) for values of the generalized adiabatic exponent
Γ1 which are lower than the convective instability limit from Eqs. (5.2.85) and (5.2.134): A > 0 if
Γ1 < 1 + 1/n, i.e. n < 1.5 if Γ1 = 5/3.

5.5.2 Nonradial Oscillations of Polytropes if 0 < n < 50 < n < 50 < n < 5

Robe (1968a, see Table 5.5.2) seems to have effected the most comprehensive numerical integration
of the system (5.2.100)-(5.2.102) for the oscillations of a polytropic sphere if j = 2 and Γ1 = 5/3.
The components of the displacement vector ∆�r(r, λ, ϕ) are via Eqs. (5.1.26), (5.1.27), (5.2.87)-(5.2.90),
(5.2.99) equal to

∆r = [u(r)/r2] Y k
j (λ, ϕ); r ∆λ = [χ(r)/σ2r] ∂Y k

j (λ, ϕ)/∂λ;

r sinλ ∆ϕ = [χ(r)/σ2r sinλ] ∂Y k
j (λ, ϕ)/∂ϕ. (5.5.27)

The Eulerian density variation is in virtue of Eqs. (5.2.95), (5.2.99) equal to

δ�(r)/�(r) = �(r) y(r)/Γ1P (r) − A(r) ∆r(r),

[δ�(r, λ, ϕ) = δ�(r) Y k
j (λ, ϕ); δP (r, λ, ϕ) = δP (r) Y k

j (λ, ϕ)], (5.5.28)

where the convective discriminant A from Eq. (5.2.85) has already been quoted in Eq. (5.2.134). The
mass of the oscillating polytrope is constant, so the central boundary condition (5.2.107) for the radial
displacement reads

∆r = u(r)/r2 = 0, (j ≥ 2; r = 0). (5.5.29)

The surface boundary condition (5.2.109) can be written under the equivalent form

∆P = �y + (dP/dr) ∆r = 0, (r = r1), (5.5.30)

while the surface boundary condition on the potential (5.2.114) becomes

(dδΦ/dr)r=r1 + (j + 1) δΦ(r1)/r1 = 4πG�(r1) ∆r1, [δΦ(r, λ, ϕ) = δΦ(r) Y k
j (λ, ϕ)]. (5.5.31)

Robe (1968a) found that the Cowling approximation (neglect of δΦ) yields very satisfactory results
for higher order modes and for the more condensed polytropes (n � 3), as should be expected on general
grounds.

Robe (1974) has also studied nonradial oscillations of incompressible polytropic spheres (Γ1 = ∞; j =
2; A = (1/�) d�/dr < 0; n = 1, 2, 3, 4), when according to Eqs. (5.2.21), (5.2.77) ∆� = 0 if Q = const,
and all p-modes are suppressed by incompressibility. All f and g-modes of the considered incompressible
polytropes are stable (ω2 > 0). The eigenvalues of all p-modes tend to infinity and their oscillation periods
become zero if Γ1 → ∞, as shown in Table 5.5.4 if n = 3.

Sobouti (1977a, 1980) develops a Rayleigh-Ritz variational scheme [cf. Eqs. (5.7.41)-(5.7.46)] for
isolating normal modes of a polytropic structure. Although the numerical exploration of Sobouti (1977b)
seems to be the most complete one, we omit his tables, as they generally lack convergence for the p3, p4-
modes.
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Table 5.5.1 Normalized squared eigenfrequencies ω2 = σ2/4πG�0 of the first three p and g-modes for
polytropic spheres if j = 1 and Γ1 = 5/3 (Hurley et al. 1966, Robe and Brandt 1966, Cox 1980, Christensen-
Dalsgaard and Mullan 1994). The entries quoted by the authors have been divided by n + 1. Values for n = 4
are ignored, as discrepancies appear among the entries of Hurley et al. (1966), and Robe and Brandt (1966).
Unstable g−-modes occur if A > 0 or n < 1/(Γ1 − 1) = 1.5. And a + b means a × 10b.

n p3 p2 p1 g1 g2 g3

0 1.37+1 6.48+0 1.58+0 −1.40−1 −3.43−2 −1.62−2
1 − 1.81+0 5.77−1 −1.70−2 −6.35−3 −
1.5 1.90+0 1.01+0 3.68−1 0 0 0
2 9.87−1 5.49−1 2.30−1 8.57−3 3.96−3 2.28−3
2.5 4.84−1 2.84−1 1.35−1 1.31−2 6.41−3 3.79−3
3 2.15−1 1.33−1 7.02−2 1.55−2 7.91−3 4.77−3
3.5 7.98−2 5.17−2 2.96−2 1.68−2 8.78−3 5.38−3

Table 5.5.2 Dimensionless squared eigenfrequencies ω2 = σ2/4πG�0 of p, f, g-modes for polytropic spheres
if j = 2 and Γ1 = 5/3 (Robe 1968a, Tassoul 1978, Table 6.1; Cox 1980, Tables 17.1, 17.2; Christensen-Dalsgaard
and Mullan 1994). Unstable g−-modes occur if A > 0 or n < 1/(Γ1 − 1) = 1.5. And a + b means a × 10b.

Mode n = 0 n = 1 n = 1.5 n = 2 n = 3 n = 4

p6 5.53+1 1.32+1 6.71 + 0 3.32+0 6.45−1 5.64−2
p5 4.03+1 9.74+0 5.00 + 0 2.50+0 4.96−1 4.68−2
p4 2.76+1 6.80+0 3.53 + 0 1.79+0 3.66−1 4.11−2
p3 1.70+1 4.34+0 2.30+0 1.19+0 2.55−1 3.37−2
p2 8.74+0 2.38+0 1.31+0 7.04−1 1.64−1 2.72−2
p1 2.79+0 9.43−1 5.72−1 3.38−1 9.39−2 2.26−2
f 2.67−1 1.52−1 1.18−1 9.10−2 5.03−2 1.84−2
g1 −2.39−1 −3.07−2 0 1.65−2 3.02−2 1.48−2
g2 −7.62−2 −1.40−2 0 8.68−3 1.74−2 1.23−2
g3 −3.91−2 −8.13−3 0 5.38−3 1.12−2 9.64−3
g4 −2.42−2 −5.34−3 0 3.67−3 7.82−3 8.23−3
g5 −1.65−2 −3.79−3 0 2.66−3 5.76−3 6.84−3
g6 −1.20−2 −2.84−3 0 2.03−3 4.42−3 5.40−3

Table 5.5.3 Normalized squared eigenfrequencies ω2 = σ2/4πG�0 of the fundamental (Kelvin) f -mode for
polytropic spheres if j = 2, 3, 4 and Γ1 = 5/3 according to Hurley et al. (1966) and Managan (1986, Table 5 if
n = 1). The values for j = 2 compare favourably with the corresponding f -modes from Table 5.5.2. Values for
n = 0 are from Eq. (5.5.26). a + b means a × 10b.

j n = 0 n = 1 n = 1.5 n = 2 n = 3 n = 3.5

j = 2 2.67−1 1.52−1 1.18−1 9.13−2 5.03−2 3.53−2
j = 3 5.71−1 2.89−1 2.08−1 1.45−1 5.79−2 4.43−2
j = 4 8.89−1 4.14−1 2.84−1 1.86−1 6.18−2 4.92−2

Introducing into Eqs. (5.2.124), (5.2.125) the critical acoustic frequency S
 (Scuflaire 1974, Cox 1980)

S2

 = j(j + 1)Γ1P/�r2, (5.5.32)

and the so-called Brunt-Väisälä frequency N

N2 = (1/�)(dP/dr)[(1/�) d�/dr − (1/Γ1P ) dP/dr] = −AG m(r)/r2, (5.5.33)

we get

dv/dr = (S2

 /σ2 − 1)P 2/Γ1−1r2w/Γ1, (5.5.34)

dw/dr = −(σ2/N2 − 1)AG� m(r) v/P 2/Γ1r4. (5.5.35)

The curves S2

 and N2 versus fractional radius are shown in Fig. 5.5.4 for the polytrope n = 4

if Γ1 = 5/3 and j = 2. Scuflaire (1974) distinguishes two regions in a polytrope: The outer pressure
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Fig. 5.5.2 Relative radial displacement ∆r/r1, (∆r1/r1 = 1) of g6, p6-modes for the second harmonic j = 2
in polytropes with indices n = 2, 3, 4, and Γ1 = 5/3. Numbers near arrows indicate the ordinate of an extremum
(Robe 1968a, Ledoux 1974).

Fig. 5.5.3 Same as Fig. 5.5.2 for the f -modes (n = 2, 3, 3.5, 4; j = 2; Γ1 = 5/3). If n � 3.25, the f -mode
acquires extra nodes. The enlarged displacement for the polytrope n = 4 is shown on the bottom (Robe 1968a).

(acoustic) P -region, where all modes look like p-pressure modes, and an inner gravity G-region, where
oscillations behave like g-gravity modes. The curve N2(r) possesses two well defined extrema for the
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Fig. 5.5.4 Squared, dimensionless angular oscillation frequency 3σ2/4πG�m = σ2r3
1/Gm1 = 3�0ω

2/�m

versus fractional radial distance x = r/r1 for a polytrope of index n = 4. Shown are the squares of the two
frequencies S�, N from Eqs. (5.5.32), (5.5.33) if j = 2 and Γ1 = 5/3. Horizontal lines represent 3σ2/4πG�m, and
open circles depict the nodes ∆r(x) = 0 of a certain mode. Gravity and pressure (acoustic) regions are denoted
by G and P, respectively (Scuflaire 1974).

Fig. 5.5.5 Phase diagrams for the f, p3, g3-modes (Figs. 5.5.5 a, b, c, respectively) if n = 4, j = 2, Γ1 = 5/3.
Each division of the axes represents one logarithmic unit of X and Y from Eq. (5.5.36). r = 0 corresponds to
X, Y = 0, and r increases as one follows the curve away from the origin (Scuflaire 1974).

centrally condensed polytrope n = 4 in Fig. 5.5.4.
In the same important paper Scuflaire (1974) introduces so-called phase diagrams, representing on a

logarithmic scale the quantities

X = ± lg(1 + |∆r|/r1); Y = ± lg[1 + r1|δP |
/
G� m(r1)]. (5.5.36)

The signs of the logarithms are the same as those of ∆r and δP, respectively. The phase diagrams
are in fact plots of v versus w [see Eq. (5.2.134)], with the radial distance r as a parameter. While
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Fig. 5.5.6 Radial ∆r/r and tangential ∆τ/r relative displacements of the g2-mode belonging to a composite
nc = 0, ne = 3 polytrope with Γ1 = 5/3, j = 2, (∆r1/r1 = 1). Ordinates on the left refer to the unstable g−

2 -mode
(dashed curves), and ordinates on the right to the stable g+

2 -mode (solid curves). The core-envelope interface is
located at xi = 0.2 (Ledoux and Smeyers 1966).

v is proportional to the radial component ∆r of the Lagrangian displacement ∆�r, the function w is in
the Cowling approximation (δΦ = 0) proportional to the tangential component ∆τ of the Lagrangian
displacement ∆�r, as will be outlined below. If we consider a vector

�τ = [1/Y k
j (λ, ϕ)][(∂Y k

j /∂λ) �eλ + (1/ sinλ)(∂Y k
j /∂ϕ) �eϕ], (5.5.37)

entirely located in the tangential plane (perpendicular to the radius vector �r), we may write Eqs. (5.1.26)
and (5.2.88)-(5.2.90) under the form

∆�r = ∆r �er + r ∆λ �eλ + r sinλ ∆ϕ �eϕ = ∆r �er + [χ(r, λ, ϕ)/σ2r] �τ ,

[χ(r, λ, ϕ) = χ(r) Y k
j (λ, ϕ)]. (5.5.38)

Thus, the tangential displacement ∆τ of ∆�r is equal to

∆τ = χ(r, λ, ϕ)/σ2r ∝ δP/� − δΦ, (χ = δP/� − δΦ), (5.5.39)

which in the Cowling approximation is just ∆τ ∝ δP/� ∝ w : The phase diagrams from Fig. 5.5.5 may be
regarded as scaled plots of the radial versus the tangential component of the Lagrangian displacement ∆�r.
The representative point in Fig. 5.5.5 starts in the first quadrant, and crosses the Y -axis (w or ∆τ -axis)
as r increases from 0 to r1. The order of the mode is equal to the number of clockwise (counterclockwise)
crossings of the Y -axis, minus the number of counterclockwise (clockwise) crossings. In this scheme there
is assigned to the f -mode (Fig. 5.5.5 a) the number 0, to the p
-mode (Fig. 5.5.5 b) the number �, and
to the g
-mode (Fig. 5.5.5 c) the number −� of crossings, the plus sign belonging to counterclockwise
crossings, and the minus sign to clockwise crossings.

The behaviour of g-modes is particularly intriguing if A > 0 in the core, and A < 0 in the envelope,
as it is the case for a composite polytropic model consisting of a homogeneous compressible core (nc = 0)
and a ne = 3 envelope (Fig. 5.5.6, Ledoux and Smeyers 1966, Tassoul 1978). As was first shown by
Ledoux and Smeyers (1966), for each value of j two infinite discrete spectra of g-modes exist: The stable
g+-modes correspond to gravity oscillations in the radiative zone (ne = 3), and the unstable g−-modes
describe convective currents in the nc = 0 core. To illustrate these findings, Goossens and Smeyers (1974)
have studied numerically several spectra (j = 1, 2, 3, 5) of g-modes for a composite polytropic model that
consists of a convectively stable n = 3 core and n = 3 envelope, separated by an intermediate, convectively
unstable zone with polytropic index n = 1, (A > 0, Γ1 = 5/3). The p, f, g-modes in composite spherical
polytropes (nc = 0.5, 1.5; ne = 3, 4) have been determined by Mohan and Singh (1981).

It should be stressed that the azimuthal spherical harmonic index k from the spherical harmonic
Y k

j (λ, ϕ) = P k
j (cosλ) exp(ikϕ) never appears in any of the equations of linear nonradial oscillations of
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Table 5.5.4 Variation of normalized squared eigenfrequencies ω2 = σ2/4πG�0 with changing adiabatic
exponent Γ1 for the polytrope n = 3, and the spherical harmonic index j = 2 (Robe 1974). If Γ1 = 5/3, the
entries coincide with the corresponding ones from Table 5.5.2. a + b means a × 10b.

Mode Γ1 = 5/3 Γ1 = 5 Γ1 = 100 Γ1 = ∞
p4 3.66−1 1.25+0 2.65+1 ∞
p3 2.55−1 8.96−1 1.93+1 ∞
p2 1.64−1 6.00−1 1.32+1 ∞
p1 9.39−2 3.61−1 8.22+0 ∞
f 5.03−2 1.03−1 1.18−1 1.19−1
g1 3.02−2 6.65−2 7.80−2 7.86−2
g2 1.74−2 4.52−2 5.42−2 5.47−2
g3 1.12−2 3.21−2 3.93−2 3.97−2
g4 7.82−3 2.38−2 2.96−2 2.99−2

spherical polytropes. The eigenfrequencies ω are therefore (2j + 1)-fold degenerate for each mode, when
k assumes the 2j + 1 distinct values k = −j,−j + 1, ...j − 1, j depicted in Eq. (5.1.27) for the associated
Legendre polynomial P k

j .
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5.6 Stability and Oscillations of Polytropic Cylinders

5.6.1 The Incompressible Homogeneous Cylinder (n = 0; Γ1 = ∞)(n = 0; Γ1 = ∞)(n = 0; Γ1 = ∞)

The normal modes of oscillations and the stability of incompressible homogeneous cylinders (Γ1 =
∞; ∆�, δ� = 0) in the presence of magnetic fields have been investigated by Chandrasekhar and Fermi
(1953). Because of the reduced practical importance of incompressible objects we confine ourselves merely
to a brief summary of their results for the nonmagnetic incompressible case. The Lagrangian displacement
of the perturbed boundary �(�1, ϕ, z, t) is considered under the form

∆�1(�1, ϕ, z, t) = �(�1, ϕ, z, t) − �1 = ∆�1(t) exp[i(kϕ + jz)] = ∆�1 exp[i(σt + kϕ + jz)],
(∆�1(t) = ∆�1 exp(iσt); ∆�1 = const), (5.6.1)

where �, ϕ, z are cylindrical coordinates, �1 is the radius of the nonoscillating cylinder, σ the angular
oscillation frequency, j (real number) the wave number of the disturbance along the longitudinal z-axis
of the cylinder, and k – the azimuthal wavenumber – is an integer, in order to have an oscillating solution
in the ϕ-direction with a period of 2π. The circular frequencies obtained for k and −k differ only by sign,
so we will generally consider only nonnegative values k = 0, 1, 2, 3, ...

The perturbed Laplace and Poisson equations have the form of a Laplace equation, since by assumption
δ� = 0 : ∇2δΦe = 0, ∇2δΦ = 0. The solution of the cylindrical Laplace equation (B.48)

∇2f(�, ϕ, z) = (1/�) ∂(� ∂f/∂�)
/
∂� + (1/�2) ∂2f/∂ϕ2 + ∂2f/∂z2 = 0, (5.6.2)

is given in terms of separated variables f(�, ϕ, z) = f1(�) f2(ϕ) f3(z) by (e.g. Smirnow 1967, Vol. 3,
§153)

f(�, ϕ, z) = [B1Ik(j�) + B2Kk(j�)] exp[i(kϕ + jz)], (j �= 0; B1, B2 = const). (5.6.3)

This solution particularizes to f(�, z) = [B1I0(j�) + B2K0(j�)] exp(ijz) if f(�, z) = f1(�) f3(z), (j �=
0; k = 0). In the particular case f(�, ϕ) = f1(�) f2(ϕ) the solution is

f(�, ϕ) = (B1�
k + B2�

−k) exp(ikϕ), (j = 0; k �= 0), (5.6.4)

and finally, if f(�) = f1(�) we recover the simple form (2.6.36):

f(�) = B1 ln � + B2, (j, k = 0). (5.6.5)

In Eq. (5.6.3) Ik and Kk denote the modified Bessel (cylindrical) functions of order k of the first
and second kind, respectively. The asymptotic expansions of the modified Bessel functions are (e.g.
Abramowitz and Stegun 1965)

Ik(j�) = (1/2πj�)1/2 exp(j�); Kk(j�) = (π/2j�)1/2 exp(−j�), (� → ∞). (5.6.6)

To assure the finiteness of the Eulerian perturbation δΦe(�, ϕ, z, t) = ∆�1(t) f(�, ϕ, z) of the external
potential at infinity, we have to put B1 = 0 in Eq. (5.6.3). The Eulerian perturbation is therefore of
the form δΦe(�, ϕ, z, t) = δΦe(�, ϕ, z) exp(iσt) = B2 ∆�1 Kk(j�) exp[i(σt + kϕ + jz)], and the perturbed
external potential writes (Chandrasekhar 1981):

Φe(�, ϕ, z, t) = Φue(�) + δΦe(�, ϕ, z, t) = C1 ln � + C2 + B2 ∆�1(t) Kk(j�) exp[i(kϕ + jz)],
(C1, C2 = const), (5.6.7)

where we have inserted for the unperturbed external potential Φue = f(�) the solution (5.6.5).
For the unperturbed homogeneous cylinder the internal gravitational potential Φu can be deduced at

once from the elementary integration of Poisson’s equation

∇2Φu = (1/�) d(� dΦu/d�)
/
d� = −4πG�. (5.6.8)
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With the conditions Φu(0) = 0 and (dΦu/d�)
=0 = 0, the integral of Eq. (5.6.8) is

Φu = −πG��2, (� = const). (5.6.9)

To assure the finiteness of the Eulerian perturbation δΦ(�, ϕ, z, t) = ∆�1(t) f(�, ϕ, z) of the internal
potential at the origin, we have to put B2 = 0 in Eq. (5.6.3), since Kk(j�) → ∞ if � → 0 (Spiegel 1968).
Similarly to the external potential we write δΦ(�, ϕ, z, t) = δΦ(�, ϕ, z) exp(iσt) = B1 ∆�1 Ik(j�) exp[i(σt+
kϕ + jz)], and obtain for the perturbed internal potential

Φ(�, ϕ, z, t) = Φu(�) + δΦ(�, ϕ, z, t) = −πG��2 + B1 ∆�1(t) Ik(j�) exp[i(kϕ + jz)]. (5.6.10)

With Eqs. (5.6.7) and (5.6.10) we get from the continuity of internal and external potentials, and
of their radial derivatives across the perturbed boundary �(�1, ϕ, z, t) = �1 + ∆�1(�1, ϕ, z, t) [cf. Eqs.
(5.2.111)-(5.2.113)]:

C1 ln �1 + C2 + ∆�1(t) [C1/�1 + B2Kk(j�1)] exp[i(kϕ + jz)] = −πG��21

+∆�1(t) [−2πG��1 + B1Ik(j�1)] exp[i(kϕ + jz)]; C1/�1 + ∆�1(t) [−C1/�21 + jB2K
′
k(j�1)]

× exp[i(kϕ + jz)] = −2πG�1 + ∆�1(t) [−2πG� + jB1I
′
k(j�1)] exp[i(kϕ + jz)],

[I ′k(j�) = dIk(j�)/d(j�); K ′
k(j�) = dKk(j�)/d(j�)]. (5.6.11)

As we do not need to be further concerned with the additive constant C2, we observe merely that
C1 = −2πG��21. The first order terms connected with ∆�1(t) in Eq. (5.6.11) yield

B1Ik(j�1) = B2Kk(j�1); B1I
′
k(j�1) = B2K

′
k(j�1) + 4πG�/j. (5.6.12)

The modified Bessel functions of the first and second kind are both solutions of the equation (Smirnow
1967)

(1/�) d[� df(j�)/d�]
/
d� = (j2 + k2/�2) f(j�). (5.6.13)

We multiply this equation successively by Kk(j�) and Ik(j�), inserting for f(j�) = Ik(j�) and f(j�) =
Kk(j�), respectively. The difference is

Kk(j�) d[j� I ′k(j�)]
/
d� − Ik(j�) d[j� K ′

k(j�)]/d� = 0. (5.6.14)

Eq. (5.6.14) is equivalent to

Kk(j�) I ′k(j�) − Ik(j�) K ′
k(j�) = C/j�, (C = 1), (5.6.15)

where the integration constant C = 1 can be obtained by inserting the asymptotic expansions (5.6.6) into
Eq. (5.6.15). With Eq. (5.6.15) we obtain at once from Eq. (5.6.12) the relevant integration constant
B1 :

B1 = 4πG� Kk(j�1)
/
j
[
Kk(j�1) I ′k(j�1) − Ik(j�1) K ′

k(j�1)
]

= 4πG��1Kk(j�1), (� = const).
(5.6.16)

Thus, the Eulerian variation of the internal gravitational potential (5.6.10) is

δΦ = Φ − Φu = Φ + πG��2 = 4πG��1 ∆�1(t) Kk(j�1) Ik(j�) exp[i(kϕ + jz)]. (5.6.17)

The basic equations governing the oscillatory motion of the incompressible cylinder are given by Eqs.
(5.2.24), (5.2.30), (5.2.40):

∇ · δ�v = 0; ∂δ�v/∂t = ∇(−δP/� + δΦ) = −∇χ; ∇2δΦ = 0,

(n = 0; Γ1 = ∞; ∆�, δ� = 0; χ = δP/� − δΦ). (5.6.18)

Observing that ∇ · δ�v = 0, and taking the divergence of ∇χ, we find

∇2χ = 0, (5.6.19)
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having a solution analogous to Eq. (5.6.10):

χ = χ(�, ϕ, z, t) = χ0 ∆�1(t) Ik(j�) exp[i(kϕ + jz)], (χ0 = const). (5.6.20)

The temporal dependence of all functions enters through the factor exp(iσt). Integrating ∇χ with
respect to the time, we get from the equation of motion (5.6.18)

δ�v = −(χ0 ∆�1/iσ) exp(iσt) ∇{Ik(j�) exp[i(kϕ + jz)]}, [∆�1(t) = ∆�1 exp(iσt)]. (5.6.21)

In particular, the �-component of Eq. (5.6.21) is

δv
 = −[χ0j ∆�1 I ′k(j�)/iσ] exp[i(σt + kϕ + jz)]. (5.6.22)

The radial velocity component must be compatible with the form (5.6.1) of the boundary surface:

δv
 ≈ ∂(� − �1)/∂t = ∂[∆�1(�1, ϕ, z, t)]/∂t = iσ ∆�1 exp[i(σt + kϕ + jz)]
= −[χ0j ∆�1 I ′k(j�1)/iσ] exp[i(σt + kϕ + jz)], (5.6.23)

or

σ2 = χ0jI
′
k(j�1). (5.6.24)

From the hydrostatic equation � ∇Φu = ∇Pu and from Poisson’s equation (5.6.8) we obtain

� ∇2Φu = ∇2Pu = (1/�) d(� dPu/d�)
/
d� = −4πG�2, (� = const), (5.6.25)

and the unperturbed pressure becomes

Pu = πG�2(�21 − �2), (n = 0; (dPu/d�)
=0 = 0; Pu(�1) = 0). (5.6.26)

The vanishing of the pressure P (�) on the perturbed boundary (5.6.1) of the incompressible cylinder
demands

P (�, ϕ, z, t) = Pu(�) + δP (�, ϕ, z, t) = πG�2(�21 − �2) + δP (�, ϕ, z, t) ≈ −2πG�2�1 ∆�1(�1, ϕ, z, t)

+δP (�1, ϕ, z, t) = −2πG�2�1 ∆�1(t) exp[i(kϕ + jz)] + δP (�1, ϕ, z, t) = 0, (� ≈ �1). (5.6.27)

On the other hand, we observe from Eqs. (5.6.17), (5.6.20) that

χ(�1, ϕ, z, t) = χ0 ∆�1(t) Ik(j�1) exp[i(kϕ + jz)] = δP (�1, ϕ, z, t)/� − δΦ(�1, ϕ, z, t)
= δP (�1, ϕ, z, t)/� − 4πG��1 ∆�1(t) Kk(j�1) Ik(j�1) exp[i(kϕ + jz)]. (5.6.28)

Eliminating δP (�1, ϕ, z, t) between Eqs. (5.6.27) and (5.6.28), we get

4πG��1[Ik(j�1) Kk(j�1) − 1/2] = −χ0 Ik(j�1), (5.6.29)

and inserting for χ0 from Eq. (5.6.24):

ω2 = σ2/4πG� = −[j�1 I ′k(j�1)/Ik(j�1)][Ik(j�1) Kk(j�1) − 1/2],
(n = 0; � = �m = �0; Γ1 = ∞; ∆�, δ� = 0). (5.6.30)

In analogy to Eq. (5.3.52) for the spherical case, and in accordance with Eq. (5.6.30), we introduce
the dimensionless, squared angular oscillation frequency for polytropic cylinders of index n by

ω2 = σ2/4πG�0, [�0 = �(0, ϕ, z)], (5.6.31)

where �0 denotes the unperturbed density along the cylindrical axis (the central density of the cylinder).
From the theory of the zeros of modified Bessel functions follows that the sole positive zero j�1 = 1.0668

of Ik(j�1) Kk(j�1) − 1/2 occurs if k = 0 in Eq. (5.6.30), (Abramowitz and Stegun 1965). Moreover,
Ik(j�1) Kk(j�1) < 1/2 if k > 0, as it is obvious for instance from the expansions of Ik, Kk near 0
or ∞ : The homogeneous incompressible cylinder is stable (σ2 > 0) for all nonaxisymmetric modes
k �= 0. If k = 0, the homogeneous incompressible cylinder exhibits an axisymmetric ”varicose, (sausage)”
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gravitational instability (σ2 < 0) for all values of j�1 obeying the inequality (Chandrasekhar and Fermi
1953)

0 < j�1 < jc�1 = 1.0668, (k = 0; n = 0). (5.6.32)

The corresponding unstable wavelengths of the varicose deformations are

z = 2π/j > 2π/jc = 2π�1/1.0668, (k = 0; n = 0). (5.6.33)

In the range 0 < j�1 < jc�1 = 1.0668 the dimensionless angular oscillation frequency ω2 attains a
minimum ω2

m = −0.0603 at jm�1 = 0.580, while neutral stability (σ2 = 0) takes place for the endpoints
of the instability interval (5.6.32), (see Fig. 5.6.1). Since ∆�1(t) = ∆�1 exp(iσt), the mode of most rapid
amplitude growth occurs just at the minimum value ω2

m = σ2
m/4πG� = −0.0603. For this mode of max-

imum instability the infinitely long, homogeneous incompressible cylinder will break up gravitationally
into pieces of axial length zm = 2π/jm = 2π�1/0.580.

5.6.2 The Compressible Homogeneous Cylinder (n = 0; Γ1 �= ∞)(n = 0; Γ1 �= ∞)(n = 0; Γ1 �= ∞)

The radial oscillations of compressible homogeneous cylinders have been studied by Chandrasekhar
and Fermi (1953), while Simon (1963) has investigated the occurrence of neutral modes (σ = 0) for
perturbations ∝ exp[i(σt + kϕ + jz)], [cf. Eqs. (5.6.74)-(5.6.79)]. The relevant general equations are
given by the equation of continuity (5.2.28), the equation of motion (5.2.73) or (5.2.86), the adiabatic
(Q = const) energy conservation equation (5.2.78), and Poisson’s equation (5.2.40). The components of
the Lagrangian displacement ∆�r(�r, t) are in cylindrical coordinates equal to ∆�(�r, t), � ∆ϕ(�r, t), ∆z(�r, t).
As in the spherical case, the temporal dependence of all quantities occurs through the factor exp(iσt),
and assuming the spatial decomposition of ∆�, δP, δ�, and δΦ through the factor cos(kϕ) cos(jz) – which
is contained in the more general perturbation exp[i(kϕ + jz)] – we get for ∆�, and for the Eulerian
perturbations of P, �,Φ (Simon 1963, Ostriker 1964c, Robe 1967):

∆�(�r, t) = ∆�(�r) exp(iσt) = ∆�(�) cos(kϕ) cos(jz) exp(iσt); δP (�r, t) = δP (�) cos(kϕ) cos(jz)
× exp(iσt); δ�(�r, t) = δ�(�) cos(kϕ) cos(jz) exp(iσt); δΦ(�r, t) = δΦ(�) cos(kϕ) cos(jz) exp(iσt);
δP/� − δΦ = χ(�, ϕ, z, t) = χ(�) cos(kϕ) cos(jz) exp(iσt). (5.6.34)

If we project the equations of motion (5.2.80), (5.2.86) onto cylindrical axes, taking into account that
�A = �A(A, 0, 0), A = [1 − (1 + 1/n)/Γ1] d ln �/d�, we get up to the first order:

σ2 ∆�(�, ϕ, z) = ∂χ(�, ϕ, z)/∂� + (δP/�2) ∂�/∂� − (δ�/�2) ∂P/∂� = cos(kϕ) cos(jz) dχ(�)/d�

+A[δP/� + (∆�/�) ∂P/∂�];

σ2� ∆ϕ(�, ϕ, z) = (1/�) ∂χ(�, ϕ, z)/∂ϕ = −(k/�)χ(�) sin(kϕ) cos(jz);

σ2 ∆z(�, ϕ, z) = ∂χ(�, ϕ, z)/∂z = −jχ(�) cos(kϕ) sin(jz). (5.6.35)

Ostriker (1964c) and Robe (1967) introduce new variables, analogously to Eq. (5.2.99) for the spherical
case:

u = u(�) = � ∆�(�) and y = y(�) = δP (�)/�(�). (5.6.36)

In the particular case � = const, (n = 0) Ostriker (1964c) takes the divergence and the curl of the
equation of motion (5.2.73):

σ2 ∇ · ∆�r = −(1/�2) ∇δ� · ∇P − (δ�/�2) ∇2P + (1/�) ∇2δP −∇2δΦ, (5.6.37)

σ2 ∇× ∆�r = −(1/�2) ∇δ� ×∇P, (5.6.38)

where ∇×∇f = 0 [cf. Eqs. (B.45), (B.47)].
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Eq. (5.6.37) can be simplified with the aid of Eqs. (5.2.28), (5.2.40), (5.6.25), (5.6.26):

σ2 δ�(�r)/� = −2πG� ∂[δ�(�r)]/∂� − (1/�) ∇2[δP (�r)] − 8πG δ�(�r). (5.6.39)

This equation can be transformed further via Eqs. (B.48), (5.6.34), by simplifying with the common
factor cos(jϕ) cos(kz) :

σ2 δ�(�)/� = −2πG� d[δ�(�)]/d� − (1/��) d{� d[δP (�)]/d�]}
/
d�

+(k2/�2 + j2) δP (�)/� − 8πG δ�(�). (5.6.40)

The �-component of Eq. (5.6.38) vanishes, while the ϕ- and z-components both are equal to

σ2 ∆�(�) − dχ(�)/d� = σ2u(�)/� − dχ(�)/d� = 2πG� δ�(�), (5.6.41)

as can be seen by inserting for ∆�,∆� from Eq. (5.6.34), for ∆ϕ, ∆z from Eq. (5.6.35), and for ∇P ≈
dPu/d� = −2πG�2� from Eq. (5.6.26).

Via Eqs. (5.6.34)-(5.6.36) we may rewrite the continuity equation (5.2.28), and the adiabatic thermal
energy conservation equation (5.2.78) under the form

δ�(�r)/�(�r) + ∇ · ∆�r =
[
δ�(�)/� + (1/�) du/d� − (k2/�2 + j2) χ(�)/σ2

]
cos(kϕ) cos(jz) = 0,

(5.6.42)

δP + ∆�r · ∇P − Γ1P δ�/� =
[
δP (�) − 2πG�2u − πΓ1G�(�21 − �2) δ�(�)

]
cos(kϕ) cos(jz) = 0.

(5.6.43)

Four relations between the unknown functions δP, δ�, u, χ are provided by Eqs. (5.6.40)-(5.6.43). If
we now define the dimensionless quantities

ω2 = σ2/4πG�; x = �/�1; ε(�) = δ�(�)/�; δp(�) = δP (�)/2πG�2�21, (�0 = �m = �),
(5.6.44)

Eqs. (5.6.40)-(5.6.43) become

2(ω2 + 2)ε + x dε/dx + d2δp/dx2 + (1/x) dδp/dx − (k2/x2 + j2�21) δp = 0, (5.6.45)

2ω2[u/x − (1/σ2) dχ/dx] − �21xε = 0, (5.6.46)

�21ε + (1/x) du/dx − (k2/x2 + j2�21)χ/σ2 = 0, (5.6.47)

2 δp − Γ1(1 − x2)ε − 2u/�2
1 = 0. (5.6.48)

Ostriker (1964c) has provided several exact analytical solutions for the compressible homogeneous
cylinder (n = 0; Γ1 �= ∞).

(i) Nonaxisymmetric Modes in the (�, ϕ)(�, ϕ)(�, ϕ)-Plane (k = 0, 1, 2, ...; j = 0; ε, ω2 �= 0).(k = 0, 1, 2, ...; j = 0; ε, ω2 �= 0).(k = 0, 1, 2, ...; j = 0; ε, ω2 �= 0). In this case
we can reduce Eqs. (5.6.45)-(5.6.48) to a single second order equation, as in the case of the compressible
homogeneous sphere from Sec. 5.5.1. We eliminate χ by inserting the derivative of Eq. (5.6.47) into Eq.
(5.6.46):

d2u/dx2 + (1/x) du/dx − k2u/x2 + (2 + k2/2ω2)�21ε + �21x dε/dx = 0, (j = 0). (5.6.49)

To get a second order equation in ε, we substitute δp from Eq. (5.6.48) into Eq. (5.6.45):

2(ω2 + 2)ε + x dε/dx + d2[Γ1(1 − x2)ε/2]
/
dx2 + (1/x) d[Γ1(1 − x2)ε/2]

/
dx

−k2Γ1(1 − x2)ε/2x2 = −(1/�21)[d
2u/dx2 + (1/x) du/dx − k2u/x2]. (5.6.50)

We insert for the right-hand side of Eq. (5.6.50) from Eq. (5.6.49), (Ostriker 1964c):

(1 − x2) d2ε/dx2 + (1/x − 5x) dε/dx + (B − k2/x2)ε = 0, (j = 0), (5.6.51)
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where

B = (4/Γ1)[ω2 + 1 − Γ1 + k2(Γ1 − 1/ω2)/4]. (5.6.52)

Inserting for ε an expansion of the form (5.3.24), we get for the indicial equation of the lowest power
xq−2 :

q(q − 1) + q − k2 = 0. (5.6.53)

We get q = ±k, where we have to take q = k in order to have ε = δ�/� finite along the axis x = 0.
The series solution for ε becomes

ε = ε(x) = xk
∞∑

m=0

amxm, (0 ≤ x ≤ 1; k = 0, 1, 2, 3, ...; j = 0). (5.6.54)

The coefficients satisfy the recurrence relation

a2m+2 = a2m[(2m + k)(2m + k + 4) − B]
/
4(m + 1)(m + k + 1); a0 �= 0; a2m+1 = 0,

(m = 0, 1, 2, ...). (5.6.55)

Like in the spherical case from Eq. (5.5.21) we have to cut the series at a2m :

B = (2m + k)(2m + k + 4), (m = 0, 1, 2, ...). (5.6.56)

Inserting for B from Eq. (5.6.52), we get

Dm = ω2 − k2/4ω2 = Γ1(m + 1)(m + k + 1) − 1. (5.6.57)

Eq. (5.6.57) can be solved for the dimensionless angular oscillation frequency ω2, yielding two sets of
eigenvalues, defining the stable p-modes (Robe 1967)

ω2
p = σ2/4πG� = [Dm + (D2

m + k2)1/2]
/
2 > 0, (m = 0, 1, 2, ...; k �= 0; j = 0), (5.6.58)

and the unstable g-modes

ω2
g = σ2/4πG� = [Dm − (D2

m + k2)1/2]
/
2 < 0, (m = 0, 1, 2, ...; k �= 0; j = 0). (5.6.59)

In the particular case k = 0 the g-modes disappear, and the p-modes become stable, purely radial
modes, since we have Γ1 ≥ 1 from Sec. 1.7 (Simon 1963):

ω2
p = Dm = Γ1(m + 1)2 − 1 ≥ 0, (m = 0, 1, 2, ...; j, k = 0). (5.6.60)

Like in the spherical case, the eigenvalues (5.6.58)-(5.6.60) increase with increasing m, the eigenval-
ues (5.6.59) being negative. The mode of maximum instability occurs for the g-mode with the lowest
eigenvalue σ2, (σ2 < 0), i.e. if m = 0 :

ω2
g =

{
Γ1(k + 1) − 1 − [(Γ1(k + 1) − 1)2 + k2]1/2

}/
2, (k = 1, 2, 3, ...; j, m = 0). (5.6.61)

(ii) Nonaxisymmetric Modes in the (�, ϕ)(�, ϕ)(�, ϕ)-Plane (k = 0, 1, 2, ...; j, ε = 0; ω2 �= 0).(k = 0, 1, 2, ...; j, ε = 0; ω2 �= 0).(k = 0, 1, 2, ...; j, ε = 0; ω2 �= 0). Note, that
our a priori assumption ε(�) ∝ δ�(�) = 0 does not imply Γ1 = ∞, as in the incompressible case (Simon
1963).

The equation of continuity (5.2.28), the equation of motion (5.2.73), the adiabatic energy equation
(5.2.78), and Poisson’s equation (5.2.40) become, respectively

ε(�) ∝ δ�(�) cos(kϕ) = δ�(�r) = −� ∇ · ∆�r = 0; σ2 ∆�r = ∇(δP/� − δΦ) = ∇χ;

δP + (dP/d�) ∆� = 0; ∇2δΦ = 0. (5.6.62)

By virtue of Eq. (5.6.34) we have χ(�r) = χ(�) cos(kϕ) cos(jz), so we can write for ∆�r from Eq.
(5.6.62)

∆�r(�, ϕ, z) = ∇[χ(�) cos(kϕ)]/σ2 = ∇[L(�) cos(kϕ)], (j = 0; L(�) = χ(�)/σ2). (5.6.63)
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Fig. 5.6.1 Dimensionless squared angular oscillation frequency ω2 = σ2/4πG� of the axisymmetric unstable
g−
1 -mode, and of the stable �-mode for the homogeneous compressible cylinder (n, k = 0) in the case of large

values of the generalized adiabatic exponent (Γ1 = 2, 10). The broken curve shows the eigenfrequencies of the
single, unstable axisymmetric mode for the incompressible homogeneous cylinder (n, k = 0; Γ1 = ∞) from Eq.
(5.6.30). See end of Sec. 5.6.3 for further explanations (Ostriker 1964c).

We insert the expansions (5.6.34), (5.6.63) into Eq. (5.6.62), the individual harmonics satisfying the
equations

∇ · ∆�r = ∇2[L(�) cos(kϕ)] = [(1/�) d(� dL/d�)
/
d� − k2L/�2] cos(kϕ) = 0;

σ2L(�) = χ(�) = δP (�)/� − δΦ(�); δP (�) + (dP/d�) ∆� = δP (�) − 2πG�2� dL/d� = 0;

∇2δΦ = (1/�) d(� dδΦ/d�)
/
d� − k2 δΦ/�2 = 0. (5.6.64)

The solutions of the two Laplace equations for L(�) cos(kϕ) and δΦ(�) cos(kϕ) are given by Eq. (5.6.4),
where nonsingularity at the origin demands B2 = 0 :

L(�) = L(�1) (�/�1)k; δΦ(�) = B1�
k. (5.6.65)

To determine the constant B1, we require continuity of the internal potential

Φ(�) = Φu(�) + δΦ(�) = −πG��2 + B1�
k, (5.6.66)

and of its radial derivative with the external potential

Φe(�) = Φue(�) + δΦe(�) = C1 ln � + C2 + B2�
−k, (5.6.67)

on the boundary � = �1 + ∆�1 of the perturbed cylinder [cf. Eq. (5.6.11)]. Since in our first order theory
Φ ≈ Φu and Φe ≈ Φue, we infer that the constants B1, B2 are of first order, and

Φ(�) = Φ(�1) + ∆�1 (dΦ/d�)
=
1 = −πG��21 + B1�
k
1 − 2πG��1 ∆�1

= Φe(�) = Φe(�1) + ∆�1 (dΦe/d�)
=
1 = C1 ln �1 + C2 + B2�
−k
1 + C1 ∆�1/�1, (5.6.68)

(dΦ/d�)
=
1+∆
1 = −2πG��1 + kB1�
k−1
1 − 2πG� ∆�1

= (dΦe/d�)
=
1+∆
1 = C1/�1 − kB2�
−k−1
1 − C1 ∆�1/�21. (5.6.69)

Equating zeroth and first order terms in Eqs. (5.6.68), (5.6.69), we get

C1 = −2πG��21; B1�
k
1 = B2�

−k
1 ; kB1�

k−1
1 = −kB2�

−k−1
1 + 4πG� ∆�1. (5.6.70)
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Hence, B1 = 2πG� ∆�1/k�k−1
1 . The Eulerian correction to the internal potential is analogous to Eq.

(5.6.17):

δΦ(�) = Φ(�) − Φu(�) = B1�
k = 2πG��k ∆�1/k�k−1

1 = 2πG�L(�1) (�/�1)k. (5.6.71)

We have replaced ∆�1 via Eqs. (5.6.63), (5.6.65) with

∆�(�) = (dL/d�) = kL(�1) �k−1/�k
1 ; ∆�(�1) = ∆�1 = kL(�1)/�1, (k ≥ 1). (5.6.72)

The characteristic frequencies σ are determined by substituting Eqs. (5.6.65), (5.6.71), and the third
equation (5.6.64) into the second equation (5.6.64):

σ2 = 2πG�(k − 1), (ε, δ�, j = 0; k = 1, 2, 3, ...). (5.6.73)

If k = 0, we have in virtue of Eq. (5.6.65) L(�) = const, and ∆�r(�, ϕ, z) = 0 via Eq. (5.6.63). Neutral
stability (σ = 0) occurs if k = 1, and if k > 1, all our divergence-free modes (∇ · ∆�r = 0) are stable
(σ2 > 0).

(iii) Neutral Modes (σ, ω = 0; k = 0, 1, 2, ...; j �= 0).(σ, ω = 0; k = 0, 1, 2, ...; j �= 0).(σ, ω = 0; k = 0, 1, 2, ...; j �= 0). From Eq. (5.6.38) we observe that ∇δ� ×
∇P = 0, or in our first order approximation ∇δ�×∇Pu = 0. Thus, ∇δ� is parallel to ∇Pu, and since ∇Pu

is directed along the �-axis, the sole nonzero component of ∇δ� is ∂δ�/∂� �= 0. Therefore: δ� = δ�(�, t).
But the Eulerian perturbation (5.6.34) implies that δ�(�r, t) = δ�(�, ϕ, z, t) is also a function of ϕ and
z, (j, k �= 0), which contradicts our earlier finding that δ� = δ�(�, t). The sole remaining possibility is
that δ�(�, t) = 0, (ε = 0), and therefore also δ�(�r, t) ∝ δ�(�, t) = 0. From the continuity equation (5.2.28)
we observe that in this case the oscillatory motion must be divergence-free: ∇ · ∆�r = 0. The energy
equation is the same as Eq. (5.6.62), namely

δP + (dP/d�) ∆� = δP − 2πG�2� ∆� = 0, (5.6.74)

where δP, ∆� are given by Eq. (5.6.34). Because δ�(�r, t) = 0, the Eulerian variation of the potential is
given by Eq. (5.6.17), and since the equation of motion (5.2.73) is simply δP = � δΦ, we find by inserting
from Eqs. (5.6.17), (5.6.74):

∆�(�) = δP/2πG�2� = 2�1 ∆�1 Kk(j�1) Ik(j�)/�, (σ = 0; Γ1 �= ∞). (5.6.75)

Consistency at the unperturbed surface � = �1 requires

Ik(j�1) Kk(j�1) = 1/2 (∆�(�1) = ∆�1). (5.6.76)

Like in the incompressible case [Γ1 = ∞; Eq. (5.6.30)], this equation has a positive solution only if
k = 0 :

I0(j�1) K0(j�1) = 1/2 if j�1 = 1.0668, (σ, k = 0). (5.6.77)

The corresponding eigenfunction (5.6.75) is

∆�(�) = 1.0668 ∆�1 I0(j�)
/
j� I0(1.0668), (σ, k = 0). (5.6.78)

There is still another way of satisfying Eq. (5.6.75), namely we may have

∆�(�) = ∆�1 = 0, (σ = 0). (5.6.79)

This is not necessarily a trivial solution, since � ∆ϕ(�, ϕ, z) and ∆z(�, ϕ, z) do not need to be zero;
they must satisfy only the divergence-free condition (5.6.62): ∇ ·∆�r = (1/�) ∂(� ∆ϕ)/∂ϕ + ∂∆z/∂z = 0.

These are the analytical solutions so far found by Ostriker (1964c) for the compressible homogeneous
cylinder. The discussion of his numerical results will be deferred to the subsequent general case.
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Table 5.6.1 Dimensionless squared oscillation frequency ω2 = σ2/4πG�0 of the fundamental mode ω2
0 ,

and of the first three overtones ω2
1 , ω2

2 , ω2
3 for radial oscillations (j, k = 0; Γ1 = 5/3). The eigenvalues of the

homogeneous cylinder (n = 0) are from Eq. (5.6.60), (Simon 1963, Robe 1967). a + b means a × 10b.

n ω2
0 ω2

1 ω2
2 ω2

3

0 6.67−1 5.67+0 1.40+1 2.57+1
1 4.63−1 2.27+0 4.99+0 8.62+0
3 2.94−1 7.02−1 1.26+0 1.95+0
6 1.38−1 1.97−1 2.71−1 3.63−1

Table 5.6.2 Normalized squared eigenfrequencies ω2 = σ2/4πG�0 of nonaxisymmetric p, f, g-modes (k =
2; j = 0; Γ1 = 5/3) for polytropic cylinders of index n = 1, 3, 6 (Robe 1967). a + b means a × 10b.

n g3 g2 g1 f p1 p2 p3

1 −9.10 − 3 −1.58 − 2 −3.50 − 2 3.46−1 1.88+0 4.52+0 8.11+0
3 1.44−2 2.31−2 4.39−2 2.22−1 6.39−1 1.18+0 1.87+0
6 2.31−2 3.61−2 6.46−2 1.30−1 1.78−1 2.54−1 3.49−1

5.6.3 General Case 0 < n < ∞0 < n < ∞0 < n < ∞

The most comprehensive numerical study of compressible cylinders with general polytropic index
0 < n < ∞ seems to have been effected by Robe (1967). The equation of continuity (5.2.28) assumes in
cylindrical coordinates the form

−δ�/� − (∆�/�) ∂�/∂� = ∇ · ∆�r = (1/�) ∂(� ∆�)/∂� + (1/�) ∂(� ∆ϕ)/∂ϕ + ∂∆z/∂z

= (1/�) ∂(� ∆�)/∂� − (k2/�2 + j2) χ(�, ϕ, z)/σ2, (5.6.80)

where we have used the equations of motion (5.6.35). The adiabatic (Q = const) energy equation (5.2.78)
can be written in cylindrical coordinates via Eq. (5.6.80) as

(δP + ∆� ∂P/∂�)/Γ1P = δ�/� + (∆�/�) ∂�/∂�

= −(1/�) ∂(� ∆�)/∂� + (k2/�2 + j2)(δP/� − δΦ)/σ2, (χ = δP/� − δΦ). (5.6.81)

If expansions of the form (5.6.34) are employed in Eq. (5.6.81), the common factor cos(kϕ) cos(jz)
cancels out:

d(� ∆�)/d� + � ∆� (dP/d�)
/
Γ1P = [(k2 + j2�2)/σ2� − ��/Γ1P ] δP/� − (k2 + j2�2) δΦ/σ2�.

(5.6.82)

The first equation (5.6.35) reads

d(δP/�)/d� + A δP/� = [σ2 − (A/�) dP/d�] ∆� + dδΦ/d�, (5.6.83)

by suppressing cos(kϕ) cos(jz), and rearranging the terms.
Poisson’s equation (5.2.40) becomes in cylindrical coordinates via Eqs. (5.2.28), (5.2.95), (5.6.34)

equal to

∇2δΦ = (1/�) ∂(� ∂δΦ/∂�)
/
∂� + (1/�2) ∂2δΦ/∂ϕ2 + ∂2δΦ/∂z2

= (1/�) ∂(� ∂δΦ/∂�)
/
∂� − (k2/�2 + j2) δΦ = −4πG δ� = 4πG(� ∇ · ∆�r + ∆�r · ∇�)

= 4πG(� ∇ · ∆�r + ∆� ∂�/∂�) = 4πG�(A ∆� − δP/Γ1P ). (5.6.84)

With the notations (5.6.36) the basic equations (5.6.82)-(5.6.84) write as (Robe 1967)

du/d� + u(dP/d�)/Γ1P = [(k2 + j2�2)/σ2� − ��/Γ1P ]y − (k2 + j2�2) δΦ/σ2�, (5.6.85)

dy/d� + Ay = [σ2 − (A/�) dP/d�] u/� + dδΦ/d�, (5.6.86)
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Table 5.6.3 Normalized squared eigenfrequencies ω2 = σ2/4πG�0 for axisymmetric p, �, g-modes (k =
0; Γ1 = 5/3) of polytropic cylinders (Ostriker 1964c, Robe 1967). If n = 6, k∗ =4, we may read in Robe’s Table
V for consistency reasons the values gr1 = 0.99212 and pr2 = 1.400 as 0.09212 and 1.100, respectively. If j�1 = 0,
the eigenvalues of p1, p2-modes coincide with the radial eigenvalues ω2

0 , ω2
1 from Table 5.6.1. a + b means a× 10b.

j�1 g2 g1 � p1 p2

n = 0
0 − − − 6.67−1 5.67
0.2 −2.57−3 −3.28−2 − 6.81−1 5.68
0.6 −1.62−2 −1.18−1 − 7.72−1 5.74
1.2 −2.25−2 −1.66−1 9.40−3 1.05+0 5.97
2 −4.36−2 −2.33−1 2.52−1 1.63+0 6.52
3 −7.80−2 −3.54−1 7.42−1 2.78+0 7.61

n = 1
0 − − − 4.63−1 2.27
0.2 −2.54−4 −1.61−2 − − −
1 −5.52−3 −8.66−2 − 5.41−1 2.33
2 −8.77−3 −2.93−2 2.54−2 7.31−1 2.51
4 −2.70−2 −6.03−2 5.91−1 1.53+0 3.27
10 −9.31−2 −1.61−1 2.21+0 5.45+1 8.97

n = 3
0 − − − 2.94−1 7.02−1
0.5 3.90−4 8.62−4 −2.12−2 − −
1 1.58−3 3.54−3 −4.75−2 3.07−1 7.11−1
3 1.49−2 3.76−2 −2.81−2 3.71−1 7.82−1
6 7.16−2 3.57−1 − 6.30−1 1.04+0
12 1.36−1 7.55−1 − 1.51+0 2.25+0

n = 6
0 − − − 1.38−1 1.97−1
1 7.22−4 1.31−3 −1.58−2 1.38−1 1.98−1
4 1.18−2 2.30−2 −5.82−2 1.42−1 2.08−1
6 2.63−2 5.43−2 −4.43−2 1.48−1 2.18−1
15 1.12−1 1.91−1 − 3.10−1 4.22−1

(1/�) d(� dδΦ/d�)
/
d� − (k2/�2 + j2) δΦ = 4πG�(Au/� − �y/Γ1P ). (5.6.87)

We have discarded the common factor cos(kϕ) cos(jz) in Eq. (5.6.84). The solutions of Eqs. (5.6.85)-
(5.6.87) must be continuous in the interval 0 ≤ � ≤ �1, and have to satisfy on the outer boundary the
conditions (5.2.109) and (5.2.113), respectively, where we have to replace r, λ by �, z :

∆P = δP + ∆�r · ∇P = 0 or [�y + (u/�) dP/d�]
=
1 = 0, (5.6.88)

δΦ(�1, ϕ, z) = δΦe(�1, ϕ, z); ∆�1 (d2Φu/d�2)
=
1 + (∂δΦ/∂�)
=
1

= ∆�1 (d2Φue/d�2)
=
1 + (∂δΦe/∂�)
=
1 . (5.6.89)

By the same arguments as subsequent to Eq. (5.2.113) we have [d2(Φu−Φue)/d�2]
=
1 = −4πG�u(�1),
and the second equation (5.6.89) writes

(∂δΦ/∂�)
=
1 = (∂δΦe/∂�)
=
1 + 4πG�(�1) ∆�1. (5.6.90)

Since the Eulerian perturbation of the external potential has to satisfy the Laplace equation ∇2δΦe =
0, its solution is given by Eqs. (5.6.3), (5.6.4), where B1 = 0, in order to avoid an infinite value of δΦe

as � → ∞. Thus

δΦe(�) = B2Kk(j�) if j, k �= 0, and δΦe(�) = B2�
−k if j = 0, k �= 0. (5.6.91)

The outer boundary condition (5.6.90) turns into

(∂δΦ/∂�)
=
1 = δΦ(�1) (dKk/d�)
=
1

/
Kk(j�1) + 4πG�(�1) ∆�1 if j, k �= 0, and

(∂δΦ/∂�)
=
1 = −k δΦ(�1)/�1 + 4πG�(�1) ∆�1 if j = 0, k �= 0, (5.6.92)
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Fig. 5.6.2 Left-hand side: Squared normalized angular oscillation frequency σ2/πG�0 of axisymmetric stable
gravity modes (A < 0), and of the unstable �-mode, leading to gravitational (varicose) instability of a polytropic
cylinder with n = 3, Γ1 = 5/3, k = 0. The figure for the polytropic index n = 6 is analogous. Right-hand
side: Squared dimensionless angular oscillation frequency σ2/πG�0 for axisymmetric unstable gravity modes of
the polytropic cylinder n = 1, (A > 0; Γ1 = 5/3; k = 0), (Robe 1967).

by inserting from Eq. (5.6.91) δΦ(�1) = δΦe(�1), and B2 = δΦ(�1)/Kk(j�1) or B2 = δΦ(�1)/�k
1 .

The outer boundary conditions in the particular case j, k = 0, corresponding to purely radial oscilla-
tions along the �-direction, are given by Eq. (5.6.97).

From Eqs. (5.6.34) and (5.6.35) we may distinguish three principal types of oscillations for cylinders:
(i) Radial oscillations if j, k = 0. (ii) Nonaxisymmetric oscillations if j = 0 and k �= 0. (iii) Axisymmetric
oscillations if j �= 0, k = 0. Evaluation of the general case j, k �= 0 is even more involved.

(i) Radial Modes (j, k = 0).(j, k = 0).(j, k = 0). The eigenvalues of radial modes for the homogeneous compressible
cylinder (n = 0; Γ1 �= ∞) are given by Eq. (5.6.60). For other polytropic indices we must resort to
numerical integrations of the relevant equations (5.6.85)-(5.6.87), which can be reduced to a second order
system if j, k = 0, by inserting into Poisson’s equation (5.2.40) the equation of continuity (5.2.28):

∇2Φ = (1/�) d(� dΦ/d�)
/
d� = −4πG δ� = (4πG/�) d(�� ∆�)/d�. (5.6.93)

We integrate with the initial conditions (dδΦ/d�)
=0 = 0, ∆�(0) = 0, [cf. Eq. (5.2.61)]:

dδΦ/d� = 4πG� ∆�(�). (5.6.94)

With this equation we can eliminate δΦ from Eqs. (5.6.85)-(5.6.87), to obtain the second order system
(j, k = 0) :

du/d� + u (dP/d�)/Γ1P = −��y/Γ1P, (5.6.95)

dy/d� + Ay = [σ2 − (A/�) dP/d� + 4πG�] u/�. (5.6.96)

The boundary conditions are [cf. Eq. (5.2.121) and Robe (1967)]:

u(0) = 0, y(0) = 0 and u(�1), y(�1) = finite. (5.6.97)

The eigenvalues of the fundamental mode and of the first three overtones are shown in Table 5.6.1.
(ii) Nonaxisymmetric Modes (j = 0; k �= 0).(j = 0; k �= 0).(j = 0; k �= 0). These oscillations possess – like in the spherical

case – the infinite discrete spectrum of pressure p-modes, with eigenvalues approaching infinity, the single
fundamental f -mode, and the infinite discrete spectrum of gravity g-modes, with eigenvalues approaching
zero. Like in the spherical case (Eq. (5.2.133), Sec. 5.5.1), the gravity modes are stable (σ2 > 0) if A < 0,
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and unstable (σ2 < 0) if A > 0. For the usual value Γ1 = 5/3, unstable g-modes occur if we have A > 0
or n < 1/(Γ1 − 1) = 1.5 in Eq. (5.10.2). Like for a sphere, the p-pressure modes turn into the radial
modes if k = 0 (cf. Eqs. (5.6.58), (5.6.60) for the compressible homogeneous cylinder).

(iii) Axisymmetric Modes (j �= 0; k = 0).(j �= 0; k = 0).(j �= 0; k = 0). These modes show the same two types of p and g-modes
as exhibited by the nonradial modes of spheres and the nonaxisymmetric modes of cylinders: If A < 0 or
n > 1/(Γ1 − 1), all axisymmetric p or g-modes are stable, but instead of the f -mode the single curious
�-mode (longitudinal mode) appears, leading to gravitational (varicose) instability if A < 0, (n > 1.5 if
Γ1 = 5/3), (Table 5.6.3, Fig. 5.6.2 on the left). If A > 0, (n < 1.5 if Γ1 = 5/3), the axisymmetric g-modes
become unstable (Table 5.6.3, Fig. 5.6.2 on the right), but the single �-mode is now stable, at least for
the values of j�1 covered by the numerical exploration of Robe (1967, Table VIII): j�1 > 1.81 if n = 1.
As found by Ostriker (1964c), the stable �-mode of the compressible homogeneous cylinder commences
at j�1 = 1.0668 (Eq. (5.6.77), Table 5.6.3, Fig. 5.6.1). In fact, as Γ1 → ∞, the stable �-mode of the
compressible homogeneous cylinder approaches the stable part of the single �-mode of the incompressible
homogeneous cylinder (j�1 > 1.0668), while the unstable gravity g−-modes from Eq. (5.6.59) approach
the unstable part of this single �-mode, occurring if 0 < j�1 < jc�1 = 1.0668 (Eq. (5.6.32), Fig. 5.6.1).
For the homogeneous compressible cylinder Ostriker (1964c) has depicted also neutral n-modes (σ = 0),
touched in Eqs. (5.6.74)-(5.6.79). The pressure p-modes and the gravity g-modes have been called by
Ostriker (1964c) r-(radial-like) modes and c-(convective) modes, respectively.

5.6.4 The Nonrotating Isothermal Cylinder n = ±∞n = ±∞n = ±∞

Isothermal cylinders extend to infinity (Secs. 2.6.8, 3.9.1), and in order to prevent these objects from
expanding beyond a given radius �1 = αξ1, Hansen et al. (1976) invoke an artificial external pressure.

The cylindrical counterpart of the fundamental isothermal wave equation (5.3.77) was written down
by Hansen et al. (1976) for radial oscillations:

d2η/dξ2 + (3/ξ − θ′) dη/dξ + [2(1/Γ1 − 1)θ′/ξ + ω2/Γ1] η = 0,

(j, k = 0; η = ∆�/� = ∆ξ/ξ; Γ1 = const; n = ±∞). (5.6.98)

The boundary conditions are analogous to those from Eqs. (5.3.75), (5.3.77): dη/dξ = 0 if ξ = 0, and
d ln η/d ln ξ = (ξ/η) dη/dξ = −2 if ξ = ξ1, as results from the continuity equation (5.2.45) for a cylinder:

∆�/� = −2η − � ∂η/∂�, [(∆�/�)ξ=ξ1 = 0; �(ξ1) �= 0; ∂ ln �u/∂m = 1/2π�u�u]. (5.6.99)

The results of numerical integrations of Eqs. (5.6.85)-(5.6.87) for the nonrotating isothermal cylinder
in the case of radial (j, k = 0) and nonaxisymmetric (j = 0, k = 2) oscillations are depicted in Fig. 5.6.3.
The Schwarzschild discriminant (5.10.2) becomes in the isothermal case

A = (1 − 1/Γ1) d ln �/d�, (n = ±∞; 1 < Γ1 ≤ ∞). (5.6.100)

If A < 0, and no density inversions d�/d� > 0 occur – unlike to the rotating isothermal cylinder from
Sec. 3.9.1 and Fig. 3.9.1 – no convectively unstable g−-modes are present in the truncated, nonrotating
isothermal cylinder, and all p, f, g-modes are stable (σ2, ω2 > 0, Fig. 5.6.3). The simple ordering
σ2(g+

1 ) < σ2(f) < σ2(p1), depicted for the spherical case, is preserved for all values of the surface radius
�1 = αξ1.

Stodólkiewicz (1963) has found for axisymmetric perturbations (j �= 0, k = 0) of the form (5.11.126)
that the isothermal cylinder becomes unstable along its axis if the vertical wavelength exceeds

Lc = 3.94(2K/πG�0)1/2 = 3.94(M1/π�0)1/2, (5.6.101)

as can be inferred from Eqs. (5.11.142), (5.11.157) for a vanishing magnetic field vB = 0.
The finite mass per unit length of the complete isothermal cylinder extending to infinity is M1 =

2K/G = 2RT/Gµ (cf. Eq. (2.6.188); P0 = RT�0/µ). If the mass per unit length M exceeds the
hydrostatic equilibrium mass M1, the cylinder contracts radially, and if M < M1 the cylinder expands
(cf. Safronov 1969, Tomisaka 1995). This is most easily seen from the Lagrangian equation of motion
(5.11.82):

∂2�/∂t2 = −2π� ∂P/∂m − 2G m(�)/�, (H = 0). (5.6.102)
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Fig. 5.6.3 Dimensionless angular oscillation frequency ω2 = σ2/4πG�0 for radial modes (fundamental and
first two overtones; j, k = 0; Γ1 = 5/3; dashed curves), and for nonaxisymmetric modes (j = 0, k = 2; Γ1 =
5/3; g+

1 , f, p1-modes; solid curves) as a function of radial surface coordinate ξ1 = �1/α in the truncated isothermal
cylinder n = ±∞ (Hansen et al. 1976).

If the mass m(�) inside distance � is larger than the hydrostatic equilibrium mass obtained for
∂2�/∂t2 = 0, we have ∂2�/∂t2 < 0 – contraction starts with inward directed negative acceleration.
Conversely, if m(�) is smaller than the equilibrium mass, there results ∂2�/∂t2 > 0, and the isothermal
cylinder expands.
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5.7 Oscillations and Stability of Rotationally and Tidally
Distorted Polytropic Spheres

5.7.1 The Rotating Homogeneous Sphere n = 0n = 0n = 0

Small oscillations of the uniformly rotating, incompressible and homogeneous sphere have already been
investigated over hundred years ago by Bryan (1889). The theorem of von Zeipel (e.g. Tassoul 1978)
shows the incompatibility of uniform rotation with radiative equilibrium (nuclear energy generation) in
real stars, but the velocity of meridional currents is generally low, so that uniform rotation remains an
adequate working hypothesis. A rigorous discussion of stability requires the proof of completeness for
the normal modes, but since the problems encountered in this way – especially when rotation is present
– are so formidable, one is led to more indirect methods of solution. Some of them are (e.g. Lebovitz
1967, Tassoul 1978): Investigation of exchange of stability (bifurcation points) due to Poincaré (Secs.
3.2, 3.8.4, 5.8.1, 6.4.3), the energy principle, the variational method (Secs. 5.7.2, 5.7.3, 5.11.2, 5.12.4),
the virial theorem (Sec. 5.8), static and quasistatic methods (Sec. 5.12.1), etc.

The equations of motion with respect to axes rotating uniformly with the equilibrium configuration
are given by Eq. (3.1.12), where the angular velocity �Ω is stationary, and magnetic as well as viscous
forces are absent:

� D�v/Dt = −��Ω × (�Ω × �r) − 2� �Ω × �v −∇P + � ∇Φ. (5.7.1)

We project this equation onto spherical (r, λ, ϕ)-axes [�v = �v(vr, vλ, vϕ); vr = dr/dt; vλ =
r dλ/dt; vϕ = r sinλ dϕ/dt; �Ω = �Ω(Ω cos λ,−Ω sinλ, 0)] :

Dvr/Dt − 2Ωvϕ sinλ = −(1/�) ∂P/∂r + ∂Φ/∂r + (1/2) ∂(Ω2r2 sin2 λ)/∂r;

Dvλ/Dt − 2Ωvϕ cos λ = −(1/�r) ∂P/∂λ + (1/r) ∂Φ/∂λ + (1/2r) ∂(Ω2r2 sin2 λ)/∂λ;
Dvϕ/Dt + 2Ω(vr sinλ + vλ cos λ) = −(1/�r sinλ) ∂P/∂ϕ + (1/r sinλ) ∂Φ/∂ϕ. (5.7.2)

If the initial state is an equilibrium configuration (�vu = 0), we can write in the first order linear
approximation by virtue of Eqs. (5.1.24), (5.1.29), (5.1.30): D(δ�v)/Dt ≈ D(∆�v)/Dt = D2(∆�r)/Dt2 ≈
∂2∆�r/∂t2 = −σ2 ∆�r. We can also insert for the velocity components δ�v ≈ �v via Eq. (5.1.30): vr =
iσ ∆r, vλ = iσr ∆λ, vϕ = iσr sinλ ∆ϕ. We now apply the Eulerian changes (5.2.23) to v, �, P,Φ,
obtaining the first order Eulerian variation of Eq. (5.7.2) under the form (e.g. Ledoux and Walraven
1958)

σ2 ∆r + 2iσΩr sin2 λ ∆ϕ = (1/�) ∂δP/∂r − (δ�/�2) ∂P/∂r − ∂δΦ/∂r, (5.7.3)

σ2r ∆λ + 2iσΩr sinλ cos λ ∆ϕ = (1/�r) ∂δP/∂λ − (δ�/r�2) ∂P/∂λ − (1/r) ∂δΦ/∂λ, (5.7.4)

σ2r sinλ ∆ϕ − 2iσΩ(sin λ ∆r + r cos λ ∆λ) = (1/�r sinλ) ∂δP/∂ϕ − (δ�/r�2 sinλ) ∂P/∂ϕ

−(1/r sinλ) ∂δΦ/∂ϕ. (5.7.5)

The unperturbed equilibrium values Pu, �u, Φu satisfy the equation of hydrostatic equilibrium
[vr, vλ, vϕ = 0 in Eq. (5.7.2)]:

(1/�u) ∇Pu = ∇[Φu + (1/2)Ω2r2 sin2 λ] = ∇Φtot. (5.7.6)

Note, that the Eulerian change δ(Ω2r2 sin2 λ/2) of the centrifugal potential is zero, as it is an ex-
trinsic quantity depending solely on position (cf. Clement 1964, Chandrasekhar 1969, p. 29). For
the homogeneous compressible model (� = const; n = 0) we can solve Eqs. (5.7.3)-(5.7.5) for the
three separate components ∆r, r ∆λ, r sinλ ∆ϕ of ∆�r. For instance, the radial component ∆r is ob-
tained by eliminating ∆ϕ between Eqs. (5.7.3), (5.7.5), and confining to third order terms of the form
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Ω2 ∆�r ≈ (Ω/σ)2[∇χ − (δ�/�2) ∇P ], (|∆�r|, Ω � 1; χ = δP/� − δΦ). Proceeding in a similar manner for
the other two components of ∆�r, the result can be written in vectorial form as (cf. Ledoux and Walraven
1958)

(σ2 − 4Ω2) ∆�r = ∇χ − (δ�/�2) ∇P − (4�Ω/σ2){�Ω · [∇χ − (δ�/�2) ∇P ]}
+(2i/σ){�Ω × [∇χ − (δ�/�2) ∇P ]}, (Ω � 1; n = 0). (5.7.7)

We take the divergence of Eq. (5.7.7) by using ∇·∆�r = −δ�/� from the continuity equation (5.2.28),
and ∇ · (�a ×�b) = �b · (∇ × �a) − �a · (∇ ×�b), ∇ · (∇ × �a) = 0, ∇ · (f�a) = f ∇ · �a + ∇f · �a, ∇ × (f�a) =
f ∇× �a + ∇f × �a, ∇×∇f = 0 :

(σ2 − 4Ω2) δ�/� = −∇2χ + (δ�/�2) ∇2P + (1/�2) ∇δ� · ∇P

+(4/σ2)[L(χ) − (δ�/�2)L(P ) − (1/�2)(�Ω · ∇P )(�Ω · ∇δ�)] − (2i/σ�2) �Ω · (∇δ� ×∇P ), (5.7.8)

where

L(f) = �Ω · ∇
[
Ω cos λ ∂f/∂r − (Ω/r) sin λ ∂f/∂λ

]
= Ω2

[
cos2 λ ∂2f/∂r2 + (1/r) sin2 λ ∂f/∂r

+(1/r2) sin 2λ ∂f/∂λ − (1/r) sin 2λ ∂2f/∂r∂λ + (1/r2) sin2 λ ∂f2/∂λ2
]
. (5.7.9)

Eq. (5.7.8) leads to the distinction of two main cases:
(i) Axisymmetric Oscillations (∂δf/∂ϕ = 0).(∂δf/∂ϕ = 0).(∂δf/∂ϕ = 0). In this case ∂δ�/∂ϕ = 0, and the vector ∇δ� is

located in the meridional plane. The mixed vector product �Ω · (∇δ�×∇P ) from Eq. (5.7.8) vanishes, as
its vectors are coplanar in the meridian plane: For axisymmetric oscillations the effects of rotation are
proportional to Ω2.

Inertial forces will always induce some motions along the λ and ϕ-axis, but Eq. (5.7.10) shows that
the assumptions of quasiradial motion, as defined subsequently to Eq. (5.3.1), will be verified. Indeed,
we may neglect the right-hand sides of Eqs. (5.7.4) and (5.7.5), as they are by assumption at least of
order Ω2; then, these equations can be written as

r ∆λ = 4Ω2 sinλ cos λ ∆r/(σ2 − 4Ω2 cos2 λ); r sinλ ∆ϕ = 2iΩ ∆r sinλ/σ, (σ 	 Ω),
(5.7.10)

by inserting ∆ϕ from Eq. (5.7.5) into Eq. (5.7.4), and neglecting ∆λ, [∆λ = O(Ω2 ∆r)] with respect to
∆r in Eq. (5.7.5). If we further assume η = ∆r/r = const – as for the fundamental radial mode � = 0
from Eq. (5.3.28) – we obtain from the continuity equation (5.2.28) if � = const :

δ� = −� ∇ · ∆�r = −(�/r2) d(ηr3)/dr = −3�η = const. (5.7.11)

With the foregoing simplifications η, �, δ� = const, all terms associated with ∇δ� vanish in Eq.
(5.7.8), and we are left with (δP/� = Γ1P δ�/�2 − (∆r/�) dP/dr, δ�/� = −3∆r/r, σ2 ∆r ≈ d(χ −
P δ�/�2)/dr, P = 2πG�2(r2

1 − r2)/3, ∇2(r2 sin2 λ) = 4) :

(σ2 − 4Ω2) δ�/� = ∇2δΦ −∇2(δP/�) + (δ�/�2) ∇2P + (4/σ2)[L(χ) − (δ�/�2)L(P )] ≈ −4πG δ�

+(1 − Γ1)(δ�/�2) ∇2P + (1/�) ∇2(∆r dP/dr) + (4Ω2/σ2)[cos2 λ d2(χ − P δ�/�2)/dr2

+(1/r) sin2 λ d(χ − P δ�/�2)/dr] = −4πG δ� + (1 − Γ1)(δ�/�) ∇2[Φ + (Ω2/2)r2 sin2 λ]

−(δ�/3�2) ∇2(r dP/dr) + 4Ω2[cos2 λ d∆r/dr + sin2 λ ∆r/r] = 4πG(Γ1 − 2) δ�

+2Ω2(1 − Γ1) δ�/� + (δ�/3�) ∇2(4πG�r2/3) − 4Ω2 δ�/3� − (4Ω2/3σ2)(σ2 δ�/�)

= 4πG(Γ1 − 4/3) δ� + 2Ω2(1/3 − Γ1) δ�/� − 16Ω2πG(Γ1 − 4/3) δ�/3σ2. (5.7.12)

In the last term we have inserted the zero order approximation of σ2 = 4πG�(Γ1 − 4/3) from Eq.
(5.3.1), and Eq. (5.7.12) becomes eventually (Ledoux and Walraven 1958):

σ2 = 4πG�(Γ1 − 4/3) + 2Ω2(7/3 − Γ1) − 16Ω2πG�(Γ1 − 4/3)/3σ2, (n = 0). (5.7.13)

One solution of this biquadratic equation is σ2 ∝ Ω2, which must be discarded, as it does not satisfy
the assumption (5.7.10) that σ2 	 Ω2. The other solution is, up to terms of order Ω2, equal to Eq.
(5.3.17).
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(ii) First Order Nonaxisymmetric Oscillations. Keeping only terms in Ω, Eq. (5.7.8) turns into

σ2 δ�/� = −4πG δ� − (Γ1/�2) ∇2(δ�/P ) + (1/�) ∇2(∆r dP/dr) + (δ�/�2) ∇2P

+(1/�2)(∂δ�/∂r) dP/dr + (2iΩ sin λ/σ�2)[(1/r sinλ) ∂δ�/∂ϕ] dP/dr. (5.7.14)

Since [cf. Eq. (5.2.87)]

δ�(r, λ, ϕ) = δ�(r) Y k
j (λ, ϕ) = δ�(r) P k

j (cosλ) exp(ikϕ), (5.7.15)

we have ∂δ�(r, λ, ϕ)/∂ϕ = ik δ�(r, λ, ϕ). Eq. (5.7.14) reads after some rearrangements for the homoge-
neous sphere n = 0 :

∇2(r ∆r) = −3σ2 δ�/4πG�2 − 6 δ�/� − (Γ1/2�) ∇2[(r2
1 − r2) δ�] − (r/�) ∂δ�/∂r + 2kΩ δ�/σ�,

(dP/dr = −4πG�2r/3; ∇2P = −4πG�2). (5.7.16)

On the other hand, we can write Eq. (5.7.8) – up to the first order in Ω – under the form (∇χ2 =
(1/r2) ∂(r2 ∂χ/∂r)

/
∂r − j(j + 1)χ/r2, (δ�/�2) dP/dr ≈ −σ2 ∆r + ∂χ/∂r) :

σ2 δ�/� = −∇2χ + (δ�/�2) ∇2P + (1/�2)(∂δ�/∂r) dP/dr − (2kΩ δ�/σ�2r) dP/dr

= −(1/r2) ∂
[
(r2 δ�/�2) dP/dr + σ2r2 ∆r + 2iσΩr3 sin2 λ ∆ϕ

]/
∂r + j(j + 1)χ/r2 − 4πG δ�

+(1/�2)(∂δ�/∂r) dP/dr + 2kΩσ ∆r/r − (2kΩ/σr) ∂χ/∂r = (δ�/�2r2) d(4πG�2r3/3)/dr

−(σ2/r2) ∂(r2 ∆r)/∂r + (2kΩ/σr2) ∂(rχ)/∂r + j(j + 1)χ/r2 − 4πG δ� + 2kΩσ ∆r/r

−(2kΩ/σr) ∂χ/∂r = −(σ2/r2) ∂(r2 ∆r)/∂r + j(j + 1)χ/r2 + (2kΩ/σr)(σ2 ∆r + χ/r). (5.7.17)

We have inserted the spherical approximation (5.2.90) for ∆ϕ. To the same order of approximation
the radial component of Eq. (5.7.7) is

σ2 ∆r = ∂χ/∂r − (δ�/�2) dP/dr + 2kΩχ/σr. (5.7.18)

Solving Eq. (5.7.17) for χ, and introducing into Eq. (5.7.18), we obtain

[j(j + 1) + 2kΩ/σ]σ2 ∆r − σ2 ∂2(r2 ∆r)/∂r2 − (σ2/�) ∂(r2 δ�)/∂r + 2kΩσ ∂(r ∆r)/∂r

−4πG[j(j + 1) + 2kΩ/σ]r δ�/3 − (2kΩσ/r) ∂(r2 ∆r)/∂r − 2kΩσr δ�/� = σ2[j(j + 1) ∆r

−∂2(r2 ∆r)/∂r2] − 2σ2r δ�/� − (σ2r2/�) ∂δ�/∂r − 4πGj(j + 1)r δ�/3

−2kΩσ(4πGr δ�/3σ2 + r δ�/�) = 0. (5.7.19)

With Eqs. (5.1.27), (5.1.28) we get

∇2(r ∆r) = (1/r2) ∂[r2 ∂(r ∆r)/∂r]
/
∂r − j(j + 1) ∆r/r = 2∆r/r + 4 ∂∆r/∂r + r ∂2∆r/∂r2

−j(j + 1) ∆r/r = (1/r) ∂2(r2 ∆r)/∂r2 − j(j + 1) ∆r/r, (5.7.20)

casting Eq. (5.7.19) into the final form

∇2(r ∆r) + 2 δ�/� + (r/�) ∂δ�/∂r + 4πGj(j + 1) δ�/3σ2 + (2kΩ/σ)(4πG δ�/3σ2 + δ�/�) = 0.
(5.7.21)

We may now insert ∇2(r ∆r) from Eq. (5.7.16) into Eq. (5.7.21):

∇2[(r2
1 − r2) δ�] + (δ�/Γ1)

[
3σ2/2πG� + 8 − 8πG�j(j + 1)/3σ2 − (4kΩ/σ)(2 + 4πG�/3σ2)

]
= 0.
(5.7.22)

The Laplacian ∇2[(r2
1 − r2) δ�] can be written via Eqs. (B.39), (5.1.28) as (1/r2) ∂{r2 ∂[(r2

1 −
r2) δ�]/∂r}

/
∂r − j(j + 1)(r2

1 − r2) δ�/r2, by decomposing δ� like in Eq. (5.7.15). We suppress in Eq.
(5.7.22) the common factor Y k

j (λ, ϕ), replacing in this way – as in Eq. (5.5.16) – all partial derivatives
of δ� by ordinary derivatives:

(1 − x2) d2δ�/dx2 + [(2 − 6x2)/x] dδ�/dx +
[
3σ2/2πG�Γ1 + 8/Γ1 − 6 − 8πG�j(j + 1)/3σ2Γ1

−j(j + 1)(1 − x2)/x2 − (8kΩ/Γ1σ)(1 + 2πG�/3σ2)
]

δ� = 0, (n = 0; x = r/r1). (5.7.23)
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The eigensolutions are again polynomials of the form (5.3.24), their coefficients obeying the recurrence
formula (5.5.20); however, B is different:

B = 3σ2/2πG�Γ1 + 8/Γ1 − 6 − 8πG�j(j + 1)/3σ2Γ1 − 4j − (8kΩ/Γ1σ)(1 + 2πG�/3σ2)
= �(� + 5 + 2j), (� = 0, 2, 4, ...). (5.7.24)

A first order approximation to the solution of this fifth order equation can be obtained at once by
writing σ = σ0 + ε, where ε = O(Ω) � 1 and σ2

0 = 4πG�ω2
0 is the solution of the eigenvalue equation

(5.5.22) for the nonrotating sphere. We insert

[
8/Γ1 − 6 − �(� + 5 + 2j) − 4j

]
σ2

0 = 8πG�j(j + 1)/3Γ1 − 3σ4
0/2πG�Γ1, (5.7.25)

from Eq. (5.5.22) into Eq. (5.7.24), and finally obtain for the eigenvalues of p and g-modes in a com-
pressible homogeneous rotating sphere (Ledoux and Walraven 1958):

σ = σ0 + ε = σ0 + kΩ(3σ2
0/2πG� + 1)

/[
9σ4

0

/
16π2G2�2 + j(j + 1)

]
= σ0 + kΩ(6ω2

0 + 1)
/
[9ω4

0 + j(j + 1)], (n = 0; j = 0, 1, 2, ...; k = −j,−j + 1, ...j − 1, j).
(5.7.26)

Up to the first order in Ω the equation for the fundamental (Kelvin) mode is simply (Smeyers and
Denis 1971)

σ = σ0 + kΩ/j, (n = 0; j = 2, 3, 4, ...; k = −j,−j + 1, ...j − 1, j). (5.7.27)

The eigenvalue σ2
0 = 4πG�ω2

f is given by Eq. (5.5.26).
Thus, in the presence of rotation, the (2j + 1)-fold degeneracy of the nonrotating case from Eqs.

(5.5.23), (5.5.24), (5.5.26) disappears completely. The splitting of eigenfrequencies exhibited by Eqs.
(5.7.26), (5.7.27) is for slow rotation symmetrical about the eigenfrequency σ0, that corresponds either to
k = 0, or to no rotation (Ω = 0). The frequency difference between successive sublevels increases linearly
with increasing rotation speed.

For quasiradial oscillations Sidorov [1982, Eq. (30), m → 2(�+1)] obtains the following simple second
order formula for the eigenfrequencies in a compressible homogeneous sphere

σ2 = (2πΓ1G�/3)[2�(� + 5) + 2(3 − 4/Γ1)] + (2Ω2/3)[5 − (� + 1)(2� + 3)Γ1],
(n = 0; � = 0, 1, 2, 3, ...), (5.7.28)

which coincides with Sterne’s (1937) formula (5.3.29) in the case of no rotation (Ω = 0), and with Ledoux’
(1945) formula (5.3.17) for the fundamental quasiradial mode � = 0. Another paper by Sidorov (1981)
seems to be less conclusive, as he applies Eq. (5.3.17) to polytropic indices n �= 0, introducing a posteriori
into the rough estimates (5.3.15)-(5.3.17) correction terms of order Ω2.

5.7.2 The Cowling-Newing Variational Approach

Eq. (5.7.2) writes with Eq. (5.1.30) for general three-dimensional oscillations as

�[σ2 ∆r + r sin2 λ(Ω2 + 2iσΩ ∆ϕ)] = ∂P/∂r − � ∂Φ/∂r;

�r2[σ2 ∆λ + sinλ cos λ(Ω2 + 2iσΩ ∆ϕ)] = ∂P/∂λ − � ∂Φ/∂λ;

�r sinλ[σ2r sinλ ∆ϕ − 2iσΩ(sinλ ∆r + r cos λ ∆λ)] = ∂P/∂ϕ − � ∂Φ/∂ϕ. (5.7.29)

On multiplying the equations (5.7.29) with the complex conjugate displacements ∆r∗, ∆λ∗, ∆ϕ∗,
adding together, and integrating over the volume V of the rotating polytrope, Cowling and Newing
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(1949) obtain the Rayleigh principle for the determination of eigenvalues under the form

σ2

∫
V

�(∆r ∆r∗ + r2 ∆λ ∆λ∗ + r2 sin2 λ ∆ϕ ∆ϕ∗) dV + 2iσΩ
∫

V

�
[
r sin2 λ(∆r∗ ∆ϕ − ∆r ∆ϕ∗)

+r2 sinλ cos λ(∆λ∗ ∆ϕ − ∆λ ∆ϕ∗)
]

dV =
∫

V

[
∆r∗(∂P/∂r − � ∂Φ/∂r − Ω2�r sin2 λ)

+∆λ∗(∂P/∂λ − � ∂Φ/∂λ − Ω2�r2 sinλ cos λ) + ∆ϕ∗(∂P/∂ϕ − � ∂Φ/∂ϕ)
]

dV

≈
∫

V

[∆r∗ ∆(∂P/∂r − � ∂Φ/∂r) + ∆λ∗ ∆(∂P/∂λ − � ∂Φ/∂λ) + ∆ϕ∗ ∆(∂P/∂ϕ − � ∂Φ/∂ϕ)] dV

= σ2
0

∫
V

�(∆r ∆r∗ + r2 ∆λ ∆λ∗ + r2 sin2 λ ∆ϕ ∆ϕ∗) dV. (5.7.30)

By virtue of the hydrostatic equation (5.7.6), the expression ∇P − � ∇[Φ + (1/2)Ω2r2 sin2 λ] has
been replaced in Eq. (5.7.30) by its Lagrangian variation, since its unperturbed value vanishes [cf. Eqs.
(5.1.15), (5.2.32)]. We have further neglected in a first approximation the centrifugal term involving Ω2,
by observing that the last integral in Eq. (5.7.30) represents just Rayleigh’s principle for the nonrotating
polytropic sphere. Eq. (5.7.30) can be written equivalently as

σ2 + 2ΩAσ = σ2
0 ; A =

(
i

∫
V

�
[
r sin2 λ(∆r∗ ∆ϕ − ∆r ∆ϕ∗) + r2 sinλ cos λ(∆λ∗ ∆ϕ

−∆λ ∆ϕ∗)
]

dV

)/∫
V

�(∆r ∆r∗ + r2 ∆λ ∆λ∗ + r2 sin2 λ ∆ϕ ∆ϕ∗) dV. (5.7.31)

The solution of the second order equation (5.7.31) is σ1,2 = −ΩA ± (σ2
0 + Ω2A2)1/2, and since Ω is a

small first order quantity, there has to be σ ≈ σ0. Thus, the relevant solution of Eq. (5.7.30) is

σ ≈ σ0 − ΩA, (Ω � 1). (5.7.32)

Since Ω is small, we can use in Eq. (5.7.31) the displacement values for the nonrotating polytrope
from Eqs. (5.2.87)-(5.2.90):

∆r(r, λ, ϕ) = ∆r(r) P k
j (cos λ) exp(ikϕ); ∆λ(r, λ, ϕ) = [χ(r)/σ2r2][dP k

j (cos λ)/dλ] exp(ikϕ);

∆ϕ(r, λ, ϕ) = ik[χ(r)/σ2r2][P k
j (cos λ)/ sin2 λ] exp(ikϕ). (5.7.33)

If we insert these displacements into Eq. (5.7.31), we observe that in the numerator the common
factor k appears in the terms associated with ∆ϕ, ∆ϕ∗. Consequently, the eigenvalues (5.7.32) for the
rotating polytrope can be written under the form (Cowling and Newing 1949)

σ = σ0 + kΩB, (j = 0, 1, 2, ...; k = −j,−j + 1, ...j − 1, j). (5.7.34)

B denotes the remaining part of A from Eq. (5.7.31). Thus, the splitting of eigenvalues due to rotation
subsists also for heterogeneous polytropes, and the (2j + 1)-fold degeneracy from the nonrotating case
is lifted completely. This splitting of the eigenfrequencies may offer an explanation for the so-called
beat phenomenon between two oscillations of very close periods, observed in many β Cephei stars (e.g.
Ledoux and Walraven 1958, p. 580). However, this explanation does not work for Cepheids of the β
Canis Majoris type, for which lifting of degeneracy due to rotation may be invoked (see Sec. 5.7.3).

For quasiradial oscillations Cowling and Newing (1949) postulate ∆λ, ∆ϕ ≡ 0, and Eq. (5.7.30)
becomes

σ2

∫
V

�(∆r)2 dV =
∫

V

� ∆r ∆
[
(1/�) ∂P/∂r − ∂Φ/∂r − Ω2r sin2 λ

]
dV. (5.7.35)

We have ∆(� ∆V ) = 0 due to mass conservation [cf. Eq. (5.2.42)], and ∆r∗ = ∆r, since ∆r from Eq.
(5.1.27) is assumed to be independent of ϕ. The actual polytrope, distorted by rotation, is approximated
with a polytrope expanded spherically by the radial centrifugal force Ω2�r sin2 λ. The Lagrangian variation
of Ω2r sin2 λ is transformed by taking into account conservation of angular momentum from Eq. (5.3.12):

∆(Ω2r sin2 λ) = 2Ω ∆Ω r sin2 λ + Ω2 ∆r sin2 λ = −3Ω2 ∆r sin2 λ, (λ = const). (5.7.36)
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In our quasiradial approximation we can take ∂Φ/∂r = −Gm/r2, and ∆(∂Φ/∂r) = 2Gm ∆r/r3, (m =
const). Eq. (5.7.35) reads via Eqs. (5.1.16), (5.2.28), (5.7.36) as

σ2

∫
V

� (∆r)2 dV =
∫

V

� ∆r
{
δ[(1/�) ∂P/∂r] + ∆r ∂[(1/�) ∂P/∂r]

/
∂r − ∆(∂Φ/∂r)

−∆(Ω2r sin2 λ)
}

dV =
∫

V

� ∆r
[
− (1/�2)(∂P/∂r)(δ� + ∆r ∂�/∂r) + (1/�) ∂δP/∂r

+(∆r/�) ∂2P/∂r2 − 2Gm ∆r/r3 + 3Ω2 ∆r sin2 λ
]

dV =
∫

V

� ∆r
[
− (∆�/�2) ∂P/∂r

+(1/�) ∂∆P/∂r − (1/�)(∂P/∂r) ∂∆r/∂r − 2Gm ∆r/r3 + 3Ω2 ∆r sin2 λ
]

dV

=
∫

V

∆r [(2∆r/r) ∂P/∂r + ∂∆P/∂r − 2Gm� ∆r/r3 + 3Ω2� ∆r sin2 λ] dV. (5.7.37)

This equation can be transformed further via Eq. (3.1.16), by inserting for −Gm/r2 = ∂Φ/∂r :

σ2

∫
V

� (∆r)2 dV =
∫

V

∆r[(4 ∆r/r) ∂P/∂r + ∂∆P/∂r + Ω2� ∆r sin2 λ] dV. (5.7.38)

The terms involving P are now integrated by parts, taking into account Eqs. (5.2.28), (5.2.38),
(5.2.63):∫

V

� (∆r)2(σ2 − Ω2 sin2 λ) dV = 4π(σ2 − 2Ω2/3)
∫

V

� (∆r)2r2 dr

= −4π

∫
V

{4P ∂[r(∆r)2]/∂r + ∆P ∂(r2 ∆r)/∂r} dr

= 4π

∫
V

[−4P (∆r)2 − 8Pr ∆r ∂∆r/∂r + r2 ∆P ∆�/�] dr

=
∫

V

P [12(∆r/r)2 + 8(∆r/r)(∆�/�) + Γ1(∆�/�)2] dV. (5.7.39)

If η = ∆r/r = const, Eqs. (5.2.28) and (5.2.38) yield: ∆P/P = Γ1 ∆�/� = −3Γ1 ∆r/r. Eq. (5.7.37)
becomes

σ2

∫
V

�r2 dV =
∫

V

[(3Γ1 − 4)Gm�/r + (5 − 3Γ1)Ω2�r2 sin2 λ] dV. (5.7.40)

We have again inserted from Eq. (3.1.16) for ∂P/∂r, the equation (5.7.40) being identical to Eq.
(5.3.16). The angular velocity Ω appears explicitly and implicitly in Eqs. (5.7.39) and (5.7.40) through
the values of P and � for the rotating polytrope. Cowling and Newing (1949) have taken the values of ∆r
and ∆� for the nonrotating polytrope, while P and � were always calculated for the rotating polytrope
according to Chandrasekhar’s (1933a) first order theory from Eq. (3.2.44) with A2 = 0. Eq. (5.7.39)
yields for the eigenvalue of the fundamental quasiradial mode: σ2/4πG�0 = 0.15 − 0.15β, (n = 1.5),
and 0.057 − 1.92β, (n = 3; Γ1 = 5/3; β = Ω2/2πG�0), (cf. Secs. 5.3.1, 5.7.3). The rough equations
(5.3.16), (5.7.40) yield considerably different results if n = 3 : σ2/4πG�0 = 0.15 − 0.13β, (n = 1.5), and
0.082−0.73β, (n = 3). These few results indicate that for quasiradial oscillations and Γ1 = 5/3, n = 1.5, 3,
the eigenvalues σ2 of the fundamental quasiradial mode are reduced by slow rotation, keeping in mind
the comments subsequent to Eq. (5.3.17).

5.7.3 Variational Approach of Clement

Following the theory of Chandrasekhar (1964a), the variational principle has been extended by
Clement (1964, 1965, 1967, 1984, 1986) to rotating polytropes. Via Eq. (5.1.24) we have vi ≈
∂∆xi/∂t, [∆�r = ∆�r(∆x1, ∆x2, ∆x3); �v = �v(v1, v2, v3)], and the linearized Eulerian change of the equa-
tion of motion (3.1.79) becomes

∂2∆xi/∂t2 = −(1/�) ∂δP/∂xi + (δ�/�2) ∂P/∂xi + ∂δΦ/∂xi + 2εijkΩk ∂∆xj/∂t,

(i, j, k = 1, 2, 3), (5.7.41)
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where the Eulerian change of the centrifugal potential |�Ω × �r|2/2 is zero [cf. Eqs. (5.7.2)-(5.7.5)].
In absence of rotation it would be sufficient to consider the temporal dependence of the Lagrangian
displacement ∆�r under the form ∆�r(�r, t) = ∆�r(�r) exp(iσt). But as shown by Eq. (5.7.43), rotation
couples the two components cos(σt) and i sin(σt) of exp(iσt), and therefore Clement (1964) decomposes
the Eulerian variations of r, P, �,Φ as

∆xi(�r, t) = ∆xi+(�r) cos(σt) + ∆xi−(�r) sin(σt); δP (�r, t) = δP+(�r) cos(σt) + δP−(�r) sin(σt);
δ�(�r, t) = δ�+(�r) cos(σt) + δ�−(�r) sin(σt); δΦ(�r, t) = δΦ+(�r) cos(σt) + δΦ−(�r) sin(σt). (5.7.42)

Inserting this first order variations into Eq. (5.7.41), collecting together terms in cos(σt) and sin(σt),
and suppressing the common factors, we obtain two linearized equations of motion:

σ2 ∆xi± = (1/�) ∂δP±/∂xi − (δ�±/�2) ∂P/∂xi − ∂δΦ±/∂xi ∓ 2σεijkΩk ∆xj∓. (5.7.43)

Thus, rotation induces through the Coriolis term −2�Ω×�v a coupling between the two amplitudes ∆xi+

and ∆xi−, that vanishes in absence of rotation, when Ω = 0. The outer boundary conditions assumed by
Clement (1964) are �, P = 0 at r = r1. From Eq. (5.2.110) follows ∂P/∂xi = 0 and δP± = 0 at r = r1.

Let us now consider Eq. (5.7.43) as belonging to an eigenvalue σ(α) with the eigensolution ∆�r
(α)
± , and let

us multiply Eq. (5.7.43) successively with the components of another eigenfunction ∆�r
(β)
± , belonging to

another mode with the eigenvalue σ(β). Summing the products together, and integrating over the volume
of the configuration, we get

[σ(α)]2
∫

V

� ∆�r
(α)
± · ∆�r

(β)
± dV =

∫
V

[
∆�r

(β)
± · ∇δP

(α)
± − (δ�(α)

± /�) ∆�r
(β)
± · ∇P − � ∆�r

(β)
± · ∇δΦ(α)

±

∓2σ(α)� εijkΩk ∆x
(β)
i± ∆x

(α)
j∓
]

dV. (5.7.44)

We integrate the first and third term by parts, taking into account the boundary conditions δP±, � = 0;
we also substitute for δ�± from the continuity equation (5.2.28), and for δP± from the adiabatic energy
equation (5.2.39):

[σ(α)]2
∫

V

� ∆�r
(α)
± · ∆�r

(β)
± dV =

∫
V

{[
∆�r

(α)
± · ∇P + Γ1P (∇ · ∆�r

(α)
± )

]
(∇ · ∆�r

(β)
± ) +

[
(1/�)

×(∆�r
(α)
± · ∇�) + ∇ · ∆�r

(α)
±
]
(∆�r

(β)
± · ∇P ) + δΦ(α)

± ∇ · (� ∆�r
(β)
± ) ± 2σ(α)� εijkΩj ∆x

(β)
i± ∆x

(α)
k∓
}

dV

=
∫

V

[
(∆�r

(α)
± · ∇P )(∇ · ∆�r

(β)
± ) + (∆�r

(β)
± · ∇P )(∇ · ∆�r

(α)
± ) + Γ1P (∇ · ∆�r

(α)
± )(∇ · ∆�r

(β)
± )

+(1/�)(∆�r
(α)
± · ∇�)(∆�r

(β)
± · ∇P ) − δ�

(β)
± δΦ(α)

± ∓ 2σ(α)� εijkΩk ∆x
(β)
i± ∆x

(α)
j∓
]

dV. (5.7.45)

Recall that according to Eqs. (3.1.23), (3.1.24), (5.7.6) equipotential surfaces (Φtot = const) coincide
with isopycnic (� = const) and isobaric (P = const) surfaces, and therefore pressure and density can
be considered as functions only of the total potential P = P (Φtot), � = �(Φtot). If Ωk = 0, the right-
hand side of Eq. (5.7.45) is manifestly symmetric in α, β, since instead of ∇P and ∇� we can write
(dP/dΦtot) ∇Φtot and (d�/dΦtot) ∇Φtot, respectively. If Ωk = 0, the difference between Eq. (5.7.45) and
the analogous equation written down for [σ(β)]2 is just

{[σ(α)]2 − [σ(β)]2}
∫

V

� ∆�r
(α)
± · ∆�r

(β)
± dV = 0 or

∫
V

� ∆�r
(α)
± · ∆�r

(β)
± dV = 0, (α �= β; Ωk = 0).

(5.7.46)

Setting α = β in Eq. (5.7.45), suppressing the distinguishing superscripts, and adding together the
distinct equations for ∆�r+ and ∆�r−, we obtain a variational base for determining the characteristic
eigenvalues. σ2 is stationary with respect to arbitrary, independent variations of ∆�r+ and ∆�r− (Clement
1964):

σ2

∫
V

�[(∆�r+)2 + (∆�r−)2] dV =
∫

V

{
2[(∆�r+ · ∇P )(∇ · ∆�r+) + (∆�r− · ∇P )(∇ · ∆�r−)]

+Γ1P [(∇ · ∆�r+)2 + (∇ · ∆�r−)2] + (1/�)[(∆�r+ · ∇�)(∆�r+ · ∇P ) + (∆�r− · ∇�)(∆�r− · ∇P )]

−δ�+ δΦ+ − δ�− δΦ− − 4σ� εijkΩk ∆xi+ ∆xj−
}

dV. (5.7.47)
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Introducing the differential operator

L(∆�r) = −∇δP (∆�r) + [δ�(∆�r)/�] ∇P + � ∇δΦ(∆�r), (5.7.48)

the two equations (5.7.44) become, when added together:

σ2

∫
V

�[(∆�r+)2 + (∆�r−)2] dV = −
∫

V

[∆�r+ · L(∆�r+) + ∆�r− · L(∆�r−) + 4σΩ� (∆�r+ × ∆�r−)3] dV,

[α = β; �Ω = �Ω(0, 0, Ω)]. (5.7.49)

The subscript 3 denotes the component along �Ω, i.e. along the x3-axis. The expression of the
eigenvalue σ is assumed up to the second order in Ω under the form

σ2 = σ2
0 + 2Ωσ2

1 + 2Ω2σ2
2 . (5.7.50)

σ0 denotes, as previously, the eigenvalue of the nonrotating polytrope.
Clement (1965) considers nonaxisymmetric perturbations up to the first order in Ω, (σ2 = 0), and

in this case pressure and density distributions are unaffected by rotation, as seen for instance from the
expansion (3.2.44) of the fundamental polytropic function Θ : P = P (r), � = �(r). The Lagrangian
displacements ∆�r+ and ∆�r− are expanded as

∆�r+ = A ∆�r
(1)
0 + B ∆�r

(2)
0 + Ω ∆�r1+; ∆�r− = C ∆�r

(1)
0 + D ∆�r

(2)
0 + Ω ∆�r1−. (5.7.51)

A, B, C, D are variational parameters, and the real Lagrangian displacement ∆�r± has been split into its
zero order ∆�r

(1)
0 , ∆�r

(2)
0 and first order ∆�r1± parts, the azimuthal dependence of ∆�r

(1)
0 and ∆�r

(2)
0 entering

through the factors cos(kϕ) and sin(kϕ), respectively: ∆�r
(1)
0 = ∆�r0 cos(kϕ), ∆�r

(2)
0 = ∆�r0 sin(kϕ). Due to

this representation the following relationships subsist, where integration can be taken over the spherical
volume:∫

V

�(r) [∆�r
(1)
0 (r, λ, ϕ)]2 dV =

∫
V

�(r) [∆�r0(r, λ)]2 cos2(kϕ) dV

=
∫

V

�(r) [∆�r0(r, λ)]2 sin2(kϕ) dV =
∫

V

�(r) [∆�r
(2)
0 (r, λ, ϕ)] dV and

∫
V

�(r) ∆�r
(1)
0 (r, λ, ϕ) ∆�r

(2)
0 (r, λ, ϕ) dV =

∫
V

�(r) [∆�r0(r, λ)]2 sin(kϕ) cos(kϕ) dV = 0. (5.7.52)

We insert Eqs. (5.7.50), (5.7.51) into the variational criterion (5.7.47), taking into account Eq.
(5.7.52). The first order terms yield

2
∫

V

�
{
σ2

1(A2 + B2 + C2 + D2)(∆�r
(1)
0 )2 + σ2

0

[
∆�r1+ · (A ∆�r

(1)
0 + B ∆�r

(2)
0 )

+∆�r1− · (C ∆�r
(1)
0 + D ∆�r

(2)
0 )

]}
dV = −

∫
V

{
[A ∆�r

(1)
0 + B ∆�r

(2)
0 ] · L(∆�r1+)

+[C ∆�r
(1)
0 + D ∆�r

(2)
0 ] · L(∆�r1−) + ∆�r1+ · L[A ∆�r

(1)
0 + B ∆�r

(2)
0 ] + ∆�r1− · L[C ∆�r

(1)
0 + D ∆�r

(2)
0 ]

+4σ0�(AD − BC)[∆�r
(1)
0 × ∆�r

(2)
0 ]3

}
dV. (5.7.53)

From Eqs. (5.7.43) and (5.7.48) we observe that

σ2
0� ∆�r = −L(∆�r), (5.7.54)

and therefore∫
V

{
[A ∆�r

(1)
0 + B ∆�r

(2)
0 ] · L(∆�r1+) + L[A ∆�r

(1)
0 + B ∆�r

(2)
0 ] · ∆�r1+

}
dV

= −2σ2
0

∫
V

�[A ∆�r
(1)
0 + B ∆�r

(2)
0 ] · ∆�r1+ dV, (5.7.55)
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with a similar equation for C, D, and ∆�r1−. Thus, all terms containing ∆�r1+, ∆�r1− vanish, and the sole
surviving terms in Eq. (5.7.53) are

σ2
1(A2 + B2 + C2 + D2)

∫
V

�(∆�r
(1)
0 )2 dV = 2σ0(BC − AD)

∫
V

�[∆�r
(1)
0 × ∆�r

(2)
0 ]3 dV. (5.7.56)

We require σ1 to be stationary with respect to variations of the parameters A, B, C, D. Differentiating
with respect to these coefficients, we obtain two equations in A and D

Aσ2
1

∫
V

�[∆�r
(1)
0 ]2 dV + Dσ0

∫
V

�[∆�r
(1)
0 × ∆�r

(2)
0 ]3 dV = 0;

Dσ2
1

∫
V

�[∆�r
(1)
0 ]2 dV + Aσ0

∫
V

�[∆�r
(1)
0 × ∆�r

(2)
0 ]3 dV = 0, (5.7.57)

and two similar equations in B and C. The homogeneous system (5.7.57) has nontrivial solutions σ0, σ1

if its determinant A2 − D2 is zero, or if A = ±D and B = ±C; hence, the first order change of the
eigenvalue due to rotation is

σ2
1 = ±σ0

∫
V

�[∆�r
(1)
0 × ∆�r

(2)
0 ]3 dV

/∫
V

�[∆�r
(1)
0 ]2 dV. (5.7.58)

The Cartesian x3-component of the vector product from Eq. (5.7.58) is converted into spherical
displacements with the transformation matrix [cf. Eq. (3.8.135); �Z = �Z(Z1, Z2, Z3) = �Z(Zr, Zλ, Zϕ)]


 Z1

Z2

Z3


 =


 sinλ cos ϕ cos λ cos ϕ − sinϕ

sinλ sinϕ cos λ sinϕ cos ϕ
cos λ − sinλ 0




 Zr

Zλ

Zϕ


 . (5.7.59)

The Cartesian and spherical components of the Lagrangian displacement are denoted by
∆�r

(i)
0 (x1, x2, x3) = ∆�r

(i)
0

[
∆x

(i)
01 (x1, x2, x3), ∆x

(i)
02 (x1, x2, x3), ∆x

(i)
03 (x1, x2, x3)

]
and ∆�r

(i)
0 (r, λ, ϕ) =

∆�r
(i)
0

[
∆r

(i)
0r (r, λ, ϕ), ∆r

(i)
0λ(r, λ, ϕ), ∆r

(i)
0ϕ(r, λ, ϕ)

]
, (i = 1, 2), respectively. We have

Z3 = [∆�r
(1)
0 × ∆�r

(2)
0 ]3 = ∆x

(1)
01 ∆x

(2)
02 − ∆x

(1)
02 ∆x

(2)
01 = Zr cos λ − Zλ sinλ

= [∆r
(1)
0λ ∆r

(2)
0ϕ − ∆r

(1)
0ϕ ∆r

(2)
0λ ] cos λ + [∆r

(1)
0r ∆r

(2)
0ϕ − ∆r

(1)
0ϕ ∆r

(2)
0r ] sin λ. (5.7.60)

The azimuthal displacement ∆r
(i)
0ϕ = r sinλ ∆ϕ(i) is given by Eq. (5.7.33), and contains k as a

factor. Consequently, the vectorial product from Eqs. (5.7.58), (5.7.60) contains k as a factor, and for
axisymmetric oscillations, if k = 0, the first order correction σ2

1 in Eq. (5.7.50) vanishes. We arrive
at the important result that in this special case the perturbation of the eigenvalues is proportional to
Ω2, (σ1 = 0). For axisymmetric perturbations (k = 0) Clement (1984) takes the Lagrangian displacement
under the form

∆�r(r, λ, t) = ∆�r(r, λ) exp(iσt). (5.7.61)

For nonrotating polytropes the azimuthal component r sinλ ∆ϕ of ∆�r is zero if k = 0 [see Eqs.
(5.2.90), (5.7.33)]. But for rotating polytropes the azimuthal displacement is generally nonzero, even if
k = 0; this can be seen at once from Eq. (5.7.5), when P, δP, δΦ are independent of the azimuth angle
ϕ :

σr sinλ ∆ϕ = 2iΩ(sinλ ∆r + r cos λ ∆λ) = 2iΩ ∆r
. (5.7.62)

∆r
 is just the Lagrangian displacement along the distance � = r sinλ from the rotation axis, consistent
with conservation of angular momentum.

For axisymmetric perturbations k = 0 all quantities are expanded up to order Ω2 :

� = �(0) + Ω2�(2); δ� = δ�(0) + Ω2 δ�(2); P = P(0) + Ω2P(2); δP = δP(0) + Ω2 δP(2);

Φ = Φ(0) + Ω2Φ(2); δΦ = δΦ(0) + Ω2δΦ(2); σ2 = σ2
0 + 2Ω2σ2

2 ;

∆�r+ = A ∆�r0 + Ω ∆�r1+ + Ω2 ∆�r2+; ∆�r− = B ∆�r0 + Ω ∆�r1− + Ω2 ∆�r2−. (5.7.63)
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The zero order approximation �(0), P(0) should not be confused with the somewhat similar notation
�0, P0, used for central values of density and pressure.

It will be obvious from Eqs. (5.7.65), (5.7.66) that the variational parameters A and B are not
coupled together, as they are in the first order theory by the Coriolis term from Eq. (5.7.56). Therefore,
we may omit without loss of generality the ± index in the zero order displacement ∆�r0 from Eq. (5.7.63).
Also ∆�r2± will be ignored at the outset, since all terms containing ∆�r2± drop out, just as ∆�r1± has
dropped out from the first order equation (5.7.53). Continuing with the separation procedure, we split
the operator (5.7.48) into its zeroth and second order parts:

L(∆�r) = L0(∆�r) + Ω2L2(∆�r) = −∇δP(0) + [δ�(0)/�(0)] ∇P(0) + �(0) ∇δΦ(0) + Ω2
{
−∇δP(2)

+[1/�2
(0)][�(0) δ�(2) − �(2) δ�(0)] ∇P(0) + [δ�(0)/�(0)] ∇P(2) + �(2) ∇δΦ(0) + �(0) ∇δΦ(2)

}
. (5.7.64)

Inserting now Eqs. (5.7.63), (5.7.64) into the variational equation (5.7.49), dropping terms containing
∆�r2±, and collecting together terms with Ω2, we obtain similarly to Eq. (5.7.56):

2σ2
2(A2 + B2)

∫
V

�(0)(∆�r0)2 dV = −
∫

V

{
4σ0�(0)[A(∆�r0 × ∆�r1−)3 − B(∆�r0 × ∆�r1+)3]

+(A2 + B2)[σ2
0�(2)(∆�r0)2 + ∆�r0 · L2(∆�r0)] + σ2

0�(0)[(∆�r1+)2 + (∆�r1−)2]

+∆�r1+ · L0(∆�r1+) + ∆�r1− · L0(∆�r1−)
}

dV. (5.7.65)

We again require σ2 to be stationary with respect to the variational parameters A, B, and differentiate
with respect to A and B :

2Aσ2
2

∫
V

�(0)(∆�r0)2 dV = −
∫

V

{
2σ0�(0)(∆�r0 × ∆�r1−)3 + A[σ2

0�(2)(∆�r0)2 + ∆�r0 · L2(∆�r0)]
}

dV ;

2Bσ2
2

∫
V

�(0)(∆�r0)2 dV = −
∫

V

{
2σ0�(0)(∆�r0 × ∆�r1+)3 + B[σ2

0�(2)(∆�r0)2 + ∆�r0 · L2(∆�r0)]
}

dV.

(5.7.66)

Since the variational parameters A and B are not coupled, we can simplify considerably the equations,
by taking without loss of generality A = 1, B = 0, ∆�r1+ = 0; the displacements from Eq. (5.7.63) become

∆�r+ = ∆�r0; ∆�r− = Ω ∆�r1− = Ω ∆�r1, (5.7.67)

where we have suppressed the minus subscript from ∆�r1−. The variational equation (5.7.65) for σ2

simplifies to (Clement 1965)

2σ2
2

∫
V

�(0)(∆�r0)2 dV = −
∫

V

[
4σ0�(0)(∆�r0 × ∆�r1)3 + σ2

0�(2)(∆�r0)2 + ∆�r0 · L2(∆�r0)

+σ2
0�(0)(∆�r1)2 + ∆�r1 · L0(∆�r1)

]
dV. (5.7.68)

In our special case (k = 0) the first order Lagrangian displacement ∆�r1 can be expressed in terms of
the zero order displacement for the nonrotating polytrope. Indeed, if k = 0, the azimuthal component
∆r0ϕ of ∆�r0 is zero by virtue of Eq. (5.7.33), and the vector product from Eq. (5.7.68) becomes via Eq.
(5.7.60) equal to (∆�r

(1)
0 → ∆�r0; ∆r

(1)
0ϕ → ∆r0ϕ = 0; ∆�r

(2)
0 → ∆�r1)

Z3 = (∆�r0 × ∆�r1)3 = ∆r1ϕ(∆r0λ cos λ + ∆r0r sinλ) = ∆r1ϕ ∆r0
. (5.7.69)

Let us assume for the moment that Eq. (5.7.68) does not contain the linear term in ∆�r1 from the
vector product, but only the square terms connected with (∆�r1)2 and ∆�r1 ·L0(∆�r1). The variation of this
equation with respect to the components ∆r1r, ∆r1λ, ∆r1ϕ of the Lagrangian displacement ∆�r1 would
lead to three homogeneous equations in terms of these components. The requirement that they yield
nontrivial solutions leads to the vanishing of the determinant of this system, i.e. to a characteristic
equation for σ2

0 . But since σ2
0 has already been determined from the zero order equations, we would have

to require that ∆�r1 = 0. However, the presence of the term (∆�r0×∆�r1)3 changes this conclusion, because
a system of nonhomogeneous equations would result. This term consists by virtue of Eq. (5.7.69) only
of ∆r1ϕ ∆r0
, so we must conclude that ∆�r1 consists only of ∆r1ϕ, i.e.

|∆�r1| = ∆r1ϕ(r, λ). (5.7.70)
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There also subsists ∆�r1 · L0(∆�r1) = 0, because all relevant quantities are functions only of r and λ.
The vector ∆�r1 possesses only the azimuthal component ∆r1ϕ. In this way Eq. (5.7.68) simplifies to

∫
V

[2σ2
2�(0)(∆�r0)2 + σ2

0�(2)(∆�r0)2 + ∆�r0 · L2(∆�r0)] dV = −
∫

V

σ0�(0)(4∆r0
 ∆r1ϕ + σ0 ∆r2
1ϕ) dV.

(5.7.71)

The right-hand side should be stationary with respect to ∆r1ϕ. If ci denote the coefficients of some
series expansion of ∆r1ϕ, the derivative of this integral with respect to ci should be zero:

−
∫

V

2σ0�(0)(∂∆r1ϕ/∂ci)(2 ∆r0
 + σ0 ∆r1ϕ) = 0. (5.7.72)

Therefore

∆r1ϕ = −2 ∆r0
/σ0, (5.7.73)

and the equation for the second order correction σ2 finally becomes

2σ2
2

∫
V

�(0)(∆�r0)2 dV =
∫

V

[
− σ2

0�(2)(∆�r0)2 − ∆�r0 · L2(∆�r0) + 4�(0)(∆r0
)2
]

dV. (5.7.74)

The determination of σ2 by this equation requires a unique specification of ∆�r0, which is not possible
if in the nonrotating case two eigenvalues σ0α and σ0β , (α �= β) are the same. In this case an accidental
degeneracy occurs in the eigenvalues of two different eigenfunctions ∆�r0α and ∆�r0β . The Lagrangian
displacement ∆�r0 will be some unknown linear combination of these two eigenfunctions

∆�r0 = E ∆�r0α + F ∆�r0β ; σ0 = σ0α = σ0β , (E, F = const). (5.7.75)

The coefficients E, F, and the actual lifting of degeneracy by rotation will now be determined with
the aid of the variational equation (5.7.74). It will be shown that rotation leads to two distinct modes
∆�rα and ∆�rβ with slightly different oscillation frequencies σα and σβ , [σα = σβ + O(Ω2)]. We substitute
Eq. (5.7.75) into Eq. (5.7.74):

E2

∫
V

[
2σ2

2�(0)(∆�r0α)2 + σ2
0�(2)(∆r0α)2 + ∆�r0α · L2(∆�r0α) − 4�(0)(∆r0
α)2

]
dV + 2EF

×
∫

V

{
σ2

0�(2) ∆�r0α · ∆�r0β + (1/2)[∆�r0α · L2(∆�r0β) + ∆�r0β · L2(∆�r0α)] − 4�(0) ∆r0
α ∆r0
β

}
dV

+F 2

∫
V

[
2σ2

2�(0)(∆�r0β)2 + σ2
0�(2)(∆�r0β)2 + ∆�r0β · L2(∆�r0β) − 4�(0)(∆r0
β)2

]
dV = 0. (5.7.76)

The integral of �(0) ∆�r0α · ∆�r0β is zero via Eq. (5.7.46), and has accordingly been omitted in Eq.
(5.7.76). Let us denote the coefficient of 2EF by Cαβ and

Cα = 2
∫

V

�(0)(∆�r0α)2 dV ; Cβ = 2
∫

V

�(0)(∆�r0β)2 dV. (5.7.77)

The last three terms from the coefficients of E2 and F 2 are just equal to the left-hand side of Eq.
(5.7.74), if degeneracy of σ2

0 would not occur. Let us denote this value of σ2 by σ2α and σ2β , respectively.
With these notations Eq. (5.7.76) becomes

(σ2
2 − σ2

2α)CαE2 + 2CαβEF + (σ2
2 − σ2

2β)CβF 2 = 0. (5.7.78)

We differentiate this equation with respect to the variational parameters E and F, requiring again
stationarity of σ2 with respect to variations of E and F :

(σ2
2 − σ2

2α)CαE + CαβF = 0; CαβE + (σ2
2 − σ2

2β)CβF = 0. (5.7.79)

The vanishing of the determinant of this homogeneous system leads to the characteristic equation for
σ2

2 :

σ4
2 − (σ2

2α + σ2
2β)σ2

2 + (σ2
2ασ2

2β − C2
αβ/CαCβ) = 0. (5.7.80)



416 5.7 Oscillations and Stability of Rotationally and Tidally Distorted Polytropic Spheres

The two roots σ2
2,1, σ

2
2,2 will lift the degeneracy of the two characteristic values σ0α = σ0β that occurs

in absence of rotation. If Cαβ = 0, we have simply σ2
2,1 = σ2

2α and σ2
2,2 = σ2

2β .
Chandrasekhar’s (1933a) first order theory for rotating polytropes can now be applied to Eq. (5.7.74)

for the evaluation of the eigenvalues of the fundamental radial r-mode (j, k = 0), and of the Kelvin f -mode
(j = 2, k = 0). Recall that our rotating and nonrotating polytropes possess the same central density �0,
and the same polytropic constant K, but not the same mass and volume (cf. Sec. 3.2); it is by no means
obvious that the characteristic frequencies of oscillations in a rotating and nonrotating polytrope with
the same �0, K, and n are strictly comparable (Chandrasekhar and Lebovitz 1962d, §IX, Chandrasekhar
and Lebovitz 1968). In the present approximation, when all terms of order Ω4 are neglected, it will suffice
to extend the range of integration only over the volume V0 of the undistorted polytrope, provided the
integrand vanishes over the outer boundary. To see this, we write a certain physical quantity F (r, λ, ϕ)
under the form (5.7.63): F (r, λ, ϕ) = F0(r, λ, ϕ) + Ω2F2(r, λ, ϕ). By virtue of Eq. (3.2.45) the outer
boundary is equal to R1(λ) = r1 +Ω2f(λ), where r1 is the radius of the undistorted Lane-Emden sphere.
We have

∫
V

F (r, λ, ϕ) dV =
∫

V0

F (r, λ, ϕ) dV +
∫ 2π

0

dϕ

∫ π

0

sinλ dλ

∫ R1(λ)

r1

F (r, λ, ϕ) r2 dr

=
∫

V0

F (r, λ, ϕ) dV + Ω2r2
1

∫ 2π

0

dϕ

∫ π

0

f(λ) F0(r1, λ, ϕ) sinλ dλ + O(Ω4)

=
∫

V0

F (r, λ, ϕ) dV + Ω2

∫
S

f(λ) F0(r1, λ, ϕ) dS + O(Ω4). (5.7.81)

Therefore, if F0(r1, λ, ϕ) vanishes over the surface S (as �(0) and P(0) do if 0 < n < 5), the difference
between the integrals over V and V0 is of order Ω4 or smaller, and all integrations can be effected over
the spherical volume V0 of the undistorted polytrope.

From an inspection of Eqs. (5.5.27) or (5.7.33) results that the spherical components of the Lagrangian
displacement ∆�r(r, λ, ϕ) can be written as [Chandrasekhar 1964a, Eq. (31)]

∆r = [u(r)/r2] Y k
j (λ, ϕ); r ∆λ = [1/j(j + 1)r](dw/dr) ∂Y k

j (λ, ϕ)/∂λ;

r sinλ ∆ϕ = [1/j(j + 1)r sinλ](dw/dr) ∂Y k
j (λ, ϕ)/∂ϕ. (5.7.82)

The two unknown radial functions u and w are often assumed under the trial form (e.g. Clement
1965, 1967, Robe and Brandt 1966, Sood and Trehan 1972a, b, Miketinac 1974)

u(r) = ar3 + br5; w(r) = ar3 + cr5, (a, b, c = const). (5.7.83)

The constants a, b, c are variational parameters, to be determined from the variational principle.
With the aid of Eqs. (3.1.41), (5.1.27), (5.7.82) the divergence of the Lagrangian displacement becomes
∇·∆�r = (Y k

j /r2) d(u−w)/dr. Since this divergence has to vanish at the origin, the variational parameter a
must be the same in both functions u and w (Chandrasekhar and Lebovitz 1964). As pointed out by Simon
(1969), the rotational corrections σ2

2 to the eigenvalue of the fundamental radial r-mode (j = 0, Γ1 = 5/3)
for the n = 3 polytrope differ grossly among various authors, while the eigenvalues σ2

0 for the nonrotating
polytropic sphere are in satisfactory agreement, excepting for the virial results of Chandrasekhar and
Lebovitz (1962d). The calculated eigenvalues are ω2 = σ2/4πG�0 = (σ2

0 + 2Ω2σ2
2)/4πG�0 = ω2

0 +
βσ2

2 = 0.057 − 1.92β (Cowling and Newing 1949), 0.082 − 0.737β (Chandrasekhar and Lebovitz 1962d),
0.060 − 1.43β (Clement 1965, and Table 5.7.1), 0.057 − 3.55β (Occhionero 1967b, 1968), 0.057 − 1.93β
(Chandrasekhar and Lebovitz 1968), 0.057 − 1.93β (Simon 1969), 0.057 − 1.89β (Saio 1981).

For the polytrope n = 3 Saio [1981, Eq. (56)] obtains for the f -mode with j = 2 the value ω2 =
0.0503 − 0.185β, whereas the value of Clement (1965) from Table 5.7.1 is 0.0493 − 0.127β.

The value Γ1d of Γ1 for which accidental degeneracy appears between the radial r-mode and the Kelvin
f -mode is in a first approximation equal to Γ1d = 8/5 = 1.6 (cf. Sec. 5.8.1, Chandrasekhar and Lebovitz
1962b, c, d), and has been found by Chandrasekhar and Lebovitz (1964) in a second approximation to
be close to 1.6 if n = 3.25 : Γ1d = 1.57. In fact, from the more exact calculations by Hurley et al. (1966)
it emerges that Γ1d = 1.96 if n = 3.25. Table 5.7.2 shows the splitting of eigenfrequencies occurring at
accidental degeneracy of σ2

0 for uniformly and differentially rotating polytropes. The rotation parameter
β1 = Ω2(Ξ1)/2πG�0 refers to the equatorial angular velocity at the surface ξ = Ξ1(λ), the angular velocity
of differential rotation being given by Eq. (3.5.8).
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Table 5.7.1 Dimensionless squared eigenfrequencies ω2 = σ2/4πG�0 = (σ2
0 + 2Ω2σ2

2)/4πG�0 = ω2
0 +

βσ2
2 , (ω2

0 = σ2
0/4πG�0; β = Ω2/2πG�0) for the fundamental quasiradial r(j = 0)-mode and the fundamental

(Kelvin) f(j = 2)-mode in the presence of slow uniform rotation if Γ1 = 5/3 (Clement 1965). Note however, that
for faster rotation rates β the quasiradial eigenvalue r(j = 0) increases with increasing angular speed if n = 1
(Clement 1984, Table 7A), and remains nearly constant if n = 2 (Clement 1986, Fig. 1).

n r(j = 0) f(j = 2)

1 0.192 − 0.0681β 0.152 + 0.564β
1.5 0.151 − 0.162β 0.118 + 0.495β
2 0.117 − 0.336β 0.0911 + 0.388β
3 0.0602 − 1.43β 0.0493 − 0.127β
3.5 0.0346 − 2.89β 0.0312 − 0.931β

Table 5.7.2 Adiabatic index Γ1d at which accidental degeneracy occurs between the fundamental quasiradial
r(j = 0)-mode and the fundamental (Kelvin) f(j = 2)-mode (cf. Table 5.11.4, Hurley et al. 1966). The last two
columns show the two degenerate split eigenfrequencies ω2 = σ2

0/4πG�0 + β1σ
2
2,1 and σ2

0/4πG�0 + β1σ
2
2,2, (β1 =

Ω2(Ξ1)/2πG�0) from Eq. (5.7.80) for uniformly and differentially rotating polytropes (Clement 1965, 1967).

n Γ1d ω2
unif ω2

diff

1 1.596 0.152 + 0.653β1 −
0.152 − 0.0725β1 −

1.5 1.592 0.117 + 0.593β1 −
0.117 − 0.148β1 −

2 1.586 0.0901 + 0.506β1 0.0901 + 4.41β1

0.0901 − 0.305β1 0.0901 − 0.470β1

2.5 1.579 0.0664 + 0.383β1 0.0664 + 7.89β1

0.0664 − 0.641β1 0.0664 − 1.42β1

3 1.581 0.0460 + 0.185β1 0.0460 + 17.2β1

0.0460 − 1.66β1 0.0460 − 5.51β1

3.25 1.961 0.0596 + 0.201β1 0.0596 + 60.3β1

0.0596 − 6.30β1 0.0596 − 20.1β1

Note, that the eigenvalues from Table 5.7.1 are obtained in absence of degeneracy. At degeneracy
(Γ1 = Γ1d) rotation mixes the two basic eigenfunctions ∆�r0α, ∆�r0β together with the corresponding
second order corrections of the eigenvalues σ2

2α, σ2
2β into the two new combinations from Eqs. (5.7.75)

and (5.7.80), respectively.
It is also observed from Table 5.7.2 that the relative splitting of the eigenvalues is about 10 times

larger in the case of differential rotation in comparison to uniform rotation. The two slightly different
eigenfrequencies ω2

diff could provide an explanation for the so-called beat phenomenon in β Canis Majoris
stars (Chandrasekhar and Lebovitz 1962e, Clement 1965, 1967). This hypothesis has the advantage that
the nonradial, second harmonic f(j = 2)-mode does not require a separate mechanism for its excitation,
but is naturally coupled by rotation to the purely radial r(j = 0)-mode; this coupling produces two
distinct modes of oscillation, both of which are nonradial. β CMa has a beat period of 49 days which
can be interpreted as resulting from the interference of two slightly different sinusoidal oscillations with
periods of 6h and 6h 2m (Ledoux and Walraven 1958, p. 398).

Clement (1984, 1986) calculates axisymmetric normal modes of rigidly and rapidly rotating polytropes
up to the break-up rotational velocity if n = 1, 2, 3. The Lagrangian axisymmetric displacement is given
by ∆�r(r, λ, t) = ∆�r(r, λ) exp(iσt), and the equation of motion (5.7.41) can be written under the form

σ2 ∆�r − (1/�) ∇δP + (δ�/�2) ∇P + ∇δΦ + 2iσΩ(∆x2 �e1 − ∆x1 �e2) = 0,

[∆�r = ∆�r(∆x1, ∆x2, ∆x3); �Ω = �Ω(0, 0, Ω)], (5.7.84)

where �ei are the unit vectors along the coordinate axes xi, (i = 1, 2, 3). We take the scalar product of Eq.
(5.7.84) with ∆�r, and integrate over the volume of the polytrope, by observing that the Coriolis term
vanishes:∫

V

[
σ2� (∆�r)2 − ∆�r · ∇δP + (δ�/�) ∆�r · ∇P + � ∆�r · ∇δΦ

]
dV = 0. (5.7.85)

We transform the last three terms exactly as in Eqs. (5.7.45)-(5.7.47), turn to spherical coordinates,
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and eliminate σ∆rϕ = 2iΩ ∆r
 via Eq. (5.7.62):
∫

V

{
σ2�[(∆r)2 + (r ∆λ)2] − 4Ω2�(∆r
)2 − 2(∆�r · ∇P ) ∇ · ∆�r − Γ1P (∇ · ∆�r)2

−(1/�)(∆�r · ∇�) ∆�r · ∇P + δ� δΦ
}

dV =
∫

V

{
σ2�[(∆r)2 + (r ∆λ)2] − 4Ω2�(∆r
)2

−2�(∆�r · ∇Φtot) ∇ · ∆�r − Γ1P (∇ · ∆�r)2 − (∆�r · ∇Φtot)2 d�/dΦtot − δΦ[� ∇ · ∆�r

+(∆�r · ∇Φtot) d�/dΦtot]
}

dV = 0. (5.7.86)

To obtain the second integral, we have substituted for δ� from Eq. (5.2.28), for ∇P = � ∇Φtot from
Eq. (5.7.6), and for ∇� = (d�/dΦtot) ∇Φtot from � = �(Φtot). Clement (1986) incorporates into the
variational principle (5.7.86) a trial Lagrangian displacement, written as a sum of p and g-type basis
vectors in the following way (cf. Sobouti 1977a, 1980):

∆�r(r, λ) =
I∑

i=0

( i+1∑
j=0

aij ∆�rp,ij +
i+1∑
j=1

bij ∆�rg,ij

)
, (aij , bij = const). (5.7.87)

The basis vectors are forced to lie in the meridian plane (ϕ = const), the ∆rϕ-component being
eliminated from the beginning by virtue of Eq. (5.7.62):

∆�rp,ij = ∆�rp,ij

{
[(2i + 2)P2j , dP2j/dλ, 0]r2i+1

}
;

∆�rg,ij = ∆�rg,ij

{
[c1P2j + c2 dP2j/dλ, c3P2j + c4 dP2j/dλ, 0]r2i

}
. (5.7.88)

The coefficients ck, (k = 1, 2, 3, 4) depend on the unperturbed pressure, density, and local gravity.
Since rotation mixes the angular dependence described by various Legendre polynomials Pj(cos λ), the
latitudinal dependence of a particular eigenfunction ∆�r is no longer described by a single Pj(cos λ),
although the eigenfunctions – being represented in Eqs. (5.7.87) and (5.7.88) as a linear combination of
ri and Pj(cos λ) – still belong to a definite order j.

As shown by Eqs. (5.7.3)-(5.7.5), (5.7.62), no purely radial modes exist in the presence of rotation,
so our terminology “quasiradial modes” refers in fact to oscillations that would be radial in absence of
rotation. Quite generally – including also nonaxisymmetric modes – Clement (1984) assigns to each mode
three indices: The first is the radial order (”quantum number”) of the mode, the second and the third,
added in parentheses, define the latitudinal order j and the azimuthal order k from P k

j (cos λ) exp(ikϕ).
The order of the radial (quasiradial) modes starts with 0, i.e. r0(0, 0), r1(0, 0), r2(0, 0), ... (cf. Fig. 5.2.1,
Table 5.3.1); the latitudinal and azimuthal indices – which are always zero – are omitted: r0, r1, r2, ...
correspond to the eigenvalues σ0, σ1, σ2, ..., and to the dimensionless eigenfrequencies ω0, ω1, ω2, ... The f -
modes have only one radial order for any combination of the angular indices j and k, and will therefore be
denoted by f(j, k). The radial order of the p and g-modes starts with 1, i.e. p1(j, k), p2(j, k), p3(j, k), ...,
and g1(j, k), g2(j, k), g3(j, k), ..., respectively. For axisymmetric modes we have always k = 0, and this
index will generally be omitted, in order to shorten the notations.

As a general trend, the axisymmetric r, p, and f -modes are “destabilized” by rapid rotation in the
sense that their eigenvalues σ2 are decreased if 1 ≤ n ≤ 3 and Γ1 = 5/3, excepting for some low order
r and f -modes, which are rather insensitive to rotation, especially if n = 2 (Clement 1986; cf. also
comments to Fig. 5.8.2). On the other hand, the axisymmetric g-modes are generally stabilized due to
rotation (cf. Tassoul 1978, §14.5) in the sense that their eigenvalues σ2 are increased if 1 ≤ n ≤ 3 and
Γ1 = 5/3, excepting for some low order g1(j)-modes, which decrease for fast rotation if n = 3, behaving
like p-modes (Fig. 5.7.1). In particular, the g1(2)-mode (that is unstable (σ2 < 0) in absence of rotation
if n = 1, Γ1 = 5/3), acquires stability (σ2 > 0) by a small rotation (Clement 1984). The influence of fast
rotation on the eigenvalues is quite pronounced, attaining over 30% for some modes.

Another salient feature of the computations of Clement (1984, 1986) is the absence of degeneracies.
Even though many curves in Fig. 5.7.1 cross, there are only the mode characteristics which intersect, and
not the eigenfrequencies ω. This avoided degeneracies for two modes having nearly the same eigenvalues
is clearly illustrated on the larger scale of Fig. 5.7.2 for the near degeneracy of the p1(2) and f(8)-mode.
The eigenvalues never cross, and only a mode mixing takes place, with exchange of mode characteristics
belonging to another sequence of eigenvalues. This behaviour is just the same as the lifting of degeneracy
due to slow rotation, discussed previously in this section (Table 5.7.2).
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Fig. 5.7.1 Normalized eigenfrequencies ω = σ/(4πG�0)
1/2 of a rotating n = 3 polytrope as a function of

the rotation parameter β = Ω2/2πG�0, (Γ1 = 5/3), (cf. Tables 5.3.1, 5.5.2, 5.5.3 if β, Ω = 0), (Clement 1986).

Fig. 5.7.2 Same as Fig. 5.7.1 in a large-scale view, showing the avoided degeneracy between the f(8)
and p1(2) eigenfrequencies. The two sequences of eigenfrequencies do not intersect, only the mode characteristics
propagate along the other sequence (Clement 1986).

Note, that for axisymmetric oscillations one of the Solberg-Høiland conditions for dynamical stability
of a differentially rotating configuration becomes equal to (e.g. Tassoul 1978, Sec. 7.3; Robe 1979)

(1/�3) ∂[�4Ω2(�, z)]/∂� + ( �A · ∇P )/� > 0, (δP, δΦ ≡ 0). (5.7.89)

�A is the Schwarzschild discriminant from Eq. (5.2.84). Since for barotropes (including polytropes)
we have Ω = Ω(�) by virtue of Eq. (3.1.11), this equation turns into

2[Ω(�)/�] d[�2Ω(�)]/d� + ( �A · ∇P )/� = 4Ω2(�) + 2� Ω(�) dΩ(�)/d� + ( �A · ∇P )/� > 0. (5.7.90)

�A = 0 subsists on isentropic surfaces S = const, (Γ1 = 1 + 1/n). And in convectively stable regions
we have �A · ∇P > 0. In both cases the stability condition (5.7.90) turns into Eq. (3.5.1).
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Fig. 5.7.3 Normalized eigenfrequencies ω = σ/(4πG�0)
1/2 of nonaxisymmetric modes for the rotating

isentropic polytrope (β = Ω2/2πG�0, n = 1.5, Γ1 = 5/3). (a) Solid lines show with increasing ordinate the
eigenvalues of the quasiradial r0, r1, r2-modes (j = 0), respectively. Dashed lines show with increasing ordinate
the p1(1, 1), p1(1,−1)-modes, lines with one short dash are for the p2(1, 1), p2(1,−1)-modes, and lines with three
short dashes are for the p3(1, 1), p3(1,−1)-modes. (b) Solid curves are for the fundamental f(2, k)-modes, dashed
curves are for p1(2, k), and curves with a short dash are for p2(2, k), the inexact lines for p3(2, k) being omitted.
Lowest curve in each group is for k = 2, middle curve for k = 0, and upper curve for k = −2. (c) Gravity g-modes:
g1(2, k) – solid curves, g2(2, k) – short-dashed curves, g3(2, k) – long-dashed curves if k = 2, 0,−2, respectively.
(d) Same as in (c) but for j = 3, the values of k being now 3, 1,−1,−3 for the lowest group to the highest group,
respectively (Managan 1986).

In Eqs. (5.7.14)-(5.7.27) we have briefly discussed the nonaxisymmetric oscillations (k �= 0) of the
homogeneous polytrope n = 0. So far, nonaxisymmetric modes in rotating polytropes with indices n �= 0
seem to have been examined to some extent only by Managan (1986) for isentropic polytropes (Γ1 =
1+1/n) of index n = 1 and 1.5 within the relativistic context of gravitational radiation reaction. Fig. 5.7.3
shows the splitting due to rotation of the nonaxisymmetric modes, calculated in a nonrotating inertial
frame with the Lagrangian displacement ∆�r(�r, t) = f(�, z) exp[i(σt + kϕ)], where �, ϕ, z are cylindrical
coordinates. Since the basis functions adopted by Managan (1986) are equatorially symmetric, it is
obvious from the representation (3.1.39) of associated Legendre polynomials that only modes with even
values of j + k, (|k| ≤ j) will result, i.e. if j = 0 the sole choice is k = 0; if j = 1 we have k = ±1;
if j = 2 there is k = 0,±2; if j = 3 we have k = ±1,±3, etc. As noted in Sec. 5.5.2 (Table 5.5.2),
all eigenfrequencies of g-modes are zero in the isentropic case Γ1 = 5/3, n = 1.5 for the nonrotating
polytropic sphere. For moderate rotation rates the changes of nonaxisymmetric modes are proportional
to kΩ [Eq. (5.7.34)], and the influence of second order terms becomes noticeable only near the critical
angular velocity of break-up Ωc; treating rotation with linear perturbation theory would be a good
approximation, except near the end of the rotation sequence. Modes which are radial in absence of
rotation (r-modes) are nearly insensitive to rotation. For the same values of k Managan (1986) found
also several avoided degeneracies, as in the axisymmetric case studied by Clement (1984, 1986).

Further results on the eigenfrequencies of rotating polytropes will be presented in Sec. 5.8.2, within
the context of the virial method.
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5.7.4 Rotational and Tidal Effects

An important problem was formulated by Roche during the years 1847-1850 (Chandrasekhar 1969),
concerning the critical minimum distance Dc between two masses before disruption of the primary mass
M due to tidal action from the secondary mass M ′. Initially, this “double star problem” was formulated
for incompressible, constant density configurations n = 0. Lai et al. (1993) have extended this approach
to isentropic, compressible ellipsoidal polytropes n = 1/(Γ1 − 1) �= 0 (cf. Sec. 3.8.5). Their energy
variational method is suited best for polytropic indices 0 ≤ n � 2, such as neutron stars, white or
brown dwarfs. The evolution of close binaries under the combined influence of viscosity and gravitational
radiation reaction can also be followed up (e.g. Secs. 5.8.3, 5.8.4, Lai et al. 1994b, Lai and Shapiro 1995).

The equidensity, or equivalently the isobaric surfaces are assumed in the method of Lai et al. (1993) to
be self-similar ellipsoids – as in the incompressible approach. The total mass of the ellipsoidal polytrope
is equal to the mass inside a polytropic sphere of radius rs = (a1a2a3)1/3, where a1, a2, a3 are the three
principal axes of the ellipsoidal polytrope. Note, that if n �= 0, the surface radius rs is not equal to the
radius r1 of a polytropic sphere with the same polytropic index n and polytropic constant K (Lai et al.
1994a, b). We may distinguish several types of binary models, supplemented by various mixed forms (Lai
et al. 1993):

(i) The classical Roche problem, when an ellipsoidal polytrope M is considered instead of the incom-
pressible primary, the secondary M ′ being simply a point mass. If not stated explicitly otherwise, the
masses M, M ′ are assumed to rotate synchronously in a circular orbit of semimajor axis D. The spin and
orbital angular velocities are equal to Ω, obeying Kepler’s modified law (3.1.93): The additional factor ε
amounts up to 0.2 if n = 0, correcting Chandrasekhar’s (1969) result (Lai et al. 1993, Figs. 10, 17; Lai
et al. 1994a, b). If n = 1.5, the maximum correction shrinks to ε = 0.06 (Rasio and Shapiro 1995, Fig.
3).

(ii) As a special case of the Roche problem Chandrasekhar (1969) considers the somewhat artificial
Jeans problem – a nonrotating tidal configuration – when the incompressible primary M is subject to
the tidal action of a point mass secondary M ′ [see Sec. 3.3, Eq. (5.7.96)].

(iii) The classical Darwin problem of two synchronously rotating, homogeneous congruent ellipsoids
(q = M ′/M = 1) has been extended by Lai et al. (1993) to ellipsoidal polytropes.

(iv) The same has been done by Lai et al. (1993) also with the Riemann problem (Darwin-Riemann
problem if M = M ′, Roche-Riemann problem if M ′ is a point mass), allowing for nonsynchronous
rotation of the ellipsoidal polytropes: In addition to rigid background rotation with orbital angular
velocity �Ω there exist also internal fluid motions of velocity �v with constant vorticity ∇ × �v parallel to
�Ω, (�Ω = Ω�ez ∝ |∇ × �v|�ez; vz = 0). The shape of the binary components is stationary as seen from a
frame rotating with angular velocity Ω. The fluid velocity as seen from an inertial frame is

�vi = �v + �Ω × �r, (Ω = const). (5.7.91)

The velocity circulation along the equator Cequ of the ellipsoid is by the Stokes theorem [Eq. (B.47)]:

C =
∮

Cequ

�vi · d�Cequ =
∫

Sequ

(∇× �vi) · d�Sequ = πa1a2(|∇ × �v| + 2Ω),

(�Ω = Ω�ez ∝ |∇ × �v|�ez; �Sequ = πa1a2�ez). (5.7.92)

In the case of a single homogeneous body the condition ∇ × �v = 0 leads to the Maclaurin-Jacobi
sequence, and �Ω = 0 to the Dedekind sequence (see Sec. 3.2). In the special case ∇ × �vi = 0 or
|∇ × �v| = −2Ω, (C = 0) we get irrotational sequences, which could be of interest for the late stages of
neutron binaries, when the viscosity of neutron matter is too low to synchronize spin and orbital angular
velocity: The binary orbit shrinks mainly due to the emission of gravitational waves (Sec. 5.8.4). Since
for inviscid fluids irrotational motion is conserved under the action of potential forces like gravitational
radiation reaction (Landau and Lifshitz 1959), the assumption ∇× �vi = 0, (�vi = ∇f) is a realistic one
for a close neutron star binary (Uryū and Eriguchi 1996, 1998; Taniguchi and Nakamura 2000a, b; Uryū
et al. 2000; Taniguchi et al. 2001). Note, that we are speaking about the last 15 minutes (about 16000
orbital periods) of inspiral of a neutron star binary (Duez et al. 2001).

In the ellipsoidal energy variational method of Lai et al. (1993) the sufficient condition for the onset
of secular and dynamical instability along a binary sequence is determined by an analogue of the static
(turning point) method, to be sketched in Sec. 5.12.1. For secular instability to arise there must be
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present a dissipative mechanism such as ordinary fluid viscosity [conserving the angular momentum J
of the system in absence of external torques, but not the velocity circulation (5.7.92)], or gravitational
radiation [conserving C but not J (cf. Miller 1974, and Sec. 5.8.4)]. The instability points are presumed
to be dynamical, whenever a turning point occurs on a hydrostatic equilibrium sequence with J and C
both held fixed. The binary then evolves on a dynamical time scale due to orbital instability. A third
instability point is the Roche limit below which no hydrostatic equilibrium sequence can exist, because
tidal disruption or Roche lobe overflow with mass transfer at the inner Lagrangian point sets in. All
these instability points occur at certain separation distances between M and M ′.

Lai et al. (1994b, §3.3) distinguish five cases concerning the existence of instability points prior to
contact, when the close binary system diminishes its separation distance due to viscous friction and/or
gravitational radiation: (i) No stability limits or Roche limit occur prior to contact. (ii) Only a secular
stability limit is encountered. (iii) Secular stability limit and Roche limit are present. (iv) Secular and
dynamical stability limits occur. (v) All three stability limits are present prior to contact, the Roche
limit being reached before or after the dynamical stability limit. As a general rule, secular instability
always occurs at a distance larger than the dynamical instability distance and the Roche limit.

In the special case of a single rotating mass M, (q = M ′/M = 0) no essentially new outcomes result
from the ellipsoidal energy variational method. The sufficient condition for the onset of secular and
dynamical instability of polytropic Maclaurin ellipsoids (n �= 0) is independent of the polytropic index
n, occurring at the same eccentricity e as for the incompressible homogeneous ellipsoid n = 0 (cf. Secs.
3.2, 5.8.2, 6.4.3): e = 0.81267, τ = Ekin/|W | = 0.1375, and e = 0.95289, τ = Ekin/|W | = 0.2738,
respectively.

A salient new finding of Lai et al. (1993) corrects an earlier result of Chandrasekhar (1969) concerning
the secular stability limit, which occurs in Roche binaries before the Roche limit is reached, and in Darwin
ellipsoids (q = M ′/M = 1) prior to contact if n < 2. If n > 2, the secular stability distance is located
inside the Darwin ellipsoids.

The Roche binaries remain dynamically stable all the way up to the Roche limit if n � 1.7. If
0 < n � 1.7, the dynamical stability limit is reached before the Roche limit, unless the mass ratio q is
below a certain limit: qmax = 250 if n = 0, and qmax = 2.5 if n = 1.5. Congruent Darwin ellipsoids become
dynamically unstable prior to contact if n < 0.7. No Roche limit is reached by the Darwin ellipsoids,
because if q = 1 no mass transfer can take place through the inner Lagrangian point, and there occurs
merely mass shedding through the outer Lagrangian points. If q �= 1, a Roche limit may exist prior to
contact, the hydrostatic equilibrium sequences terminating at the onset of Roche lobe overflow with mass
transfer at the inner Lagrangian point (Lai et al. 1994b, Rasio and Shapiro 1995).

Synchronization of spin and orbital angular velocities is assumed to be caused by viscous dissipation,
preserving the total angular momentum of the binary (no external forces). As synchronization is ap-
proached, viscous dissipation falls to zero, and the orbit (separation distance) will cease to evolve unless
the system is not losing angular momentum by some additional mechanism like emission of gravitational
radiation (e.g. Landau and Lifschitz 1987, §110; Kuznetsov et al. 1998 if n = 1.5, q = 1). Due to
gravitational radiation the orbit shrinks, viscous dissipation being negligible during this phase, until the
secular instability distance is approached.

During the quasiequilibrium evolution two extreme regimes of interest occur (cf. Taniguchi et al.
2001). If viscosity is too low to maintain synchronization – like in close neutron star binaries – the
orbit shrinks due to emission of gravitational waves, and evolution takes place towards the irrotational
sequence, as already outlined subsequently to Eq. (5.7.92). The orbit decays until a dynamical instability
(n � 0.6) or Roche lobe overflow (n � 0.6) occurs. For compact binary stars the general relativistic orbital
instability, appearing first at orbital separation of D ≈ (6− 10)G(Mr1 + M ′

r1)/c2, must be added to this
scenario (Sec. 5.12.6, Lai et al. 1994a, Sec. 5, Wilson and Mathews 1995, Lombardi et al. 1997).

If, on the other side, viscosity dominates – as in binaries containing at least one nondegenerate
component – the secularly unstable, polytropic binary will at first be driven away from synchronization
by viscous forces until the two masses coalesce or reach a new stable synchronized state. If in the latter
case the system is losing angular momentum by some additional process (e.g. gravitational radiation), the
orbit decays, approaching again the secular stability limit. The orbital decay is so fast that viscosity can
no longer maintain synchronization, driving the system away from synchronization. The final coalescence
is driven almost entirely by internal viscous dissipation, with almost no loss of total angular momentum
(Hachisu and Eriguchi 1984c if n = 0, Lai et al. 1994b, c).

When a dynamical stability limit is approached during secular orbital decay, the evolution becomes
much faster and numerical calculations are needed to follow up the subsequent evolution (Rasio and
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Fig. 5.7.4 Evolution during several orbital periods of a n = 1.5 binary with mass ratio q = M ′/M = 1
(top) and q = 0.5 (bottom), (Rasio and Shapiro 1995).

Shapiro 1994, 1995). A dynamically unstable binary coalesces in a few orbital periods, forming a rapidly
rotating spheroid surrounded by a thick disk of shock-heated material. This is illustrated in the upper
part of Fig. 5.7.4 for two congruent, dynamically unstable Darwin polytropes, when all stability limits are
reached in deep contact, well below the distance of first contact (see also Ruffert et al. (1997), and Faber
and Rasio (2000, Fig. 2) for the relativistic case). The lower part of Fig. 5.7.4 exhibits the evolution
during several orbital periods of a q = 0.5 binary, which is secularly and dynamically stable up to the
Roche limit, when catastrophic mass transfer sets in.

The Roche limit Dc in a binary system can be calculated with the dimensionless critical rotation
parameter

βc = Ω2
c/2πG�0 = (1 + ε)(M + M ′)/2π�0D

3
c or Dc = [(1 + ε)(M + M ′)/2πβc�0]1/3. (5.7.93)

Ωc means the synchronous critical angular velocity (3.1.93), and �0 is the central density of the mass
M. Eq. (5.7.93) turns for two homogeneous masses with the same density into

Dc = [2(1 + ε)(r3 + r′3)/3βc]1/3, (n = 0; � = �′ = �0 = const). (5.7.94)

(r3 + r′3)1/3 = [3(M + M ′)/4π�]1/3 is the radius of the coalesced homogeneous mass M + M ′.
If M = 4π�r3/3 � M ′ = 4π�′r′3/3, (q 	 1), e.g. small satellite M rotating round a homogeneous

planet M ′, the Roche limit (5.7.93) becomes (Jeans 1919, Chandrasekhar 1969)

Dc = (2�′/3βc�)1/3r′ = (2�′/3 × 0.045046�)1/3r′ = 2.4552(�′/�)1/3r′ = 2.4552(M ′/M)1/3r,

(ε, n = 0; βc = 0.045046; q = M ′/M 	 1; r � r′). (5.7.95)

In the opposite limit, if M 	 M ′, (q ≈ 0) the ellipsoidal binary turns into a single mass M –
the combined Maclaurin-Jacobi sequence. The Maclaurin sequence is pertinent prior to the onset of
bifurcation, and the Jacobi sequence subsequently to that point. At the bifurcation point, where the
Jacobi sequence branches off, the Maclaurin sequence becomes secularly unstable, while the new Jacobi
sequence remains secularly stable (Secs. 3.2, 5.8.2, 6.4.3, Christodoulou et al. 1995a).

In the purely tidal Jeans problem there exist always two biaxial ellipsoidal equilibrium forms of the
homogeneous mass M, as long as GM ′/D3 ≤ 0.125536πG�. The one equilibrium form of the Jeans
ellipsoid with eccentricity 0 ≤ e ≤ 0.8830265 is stable, the other one with eccentricity 0.8830265 < e ≤ 1
is unstable. If GM ′/D3 > 0.125536πG�, no equilibrium ellipsoid of M is possible, and the limiting Roche
distance for the incompressible Jeans problem is (Chandrasekhar 1969)

Dc = (M ′/0.125536π�)1/3 = (4�′/3 × 0.125536�)1/3r′ = 2.1981(�′/�)1/3r′, (n = 0). (5.7.96)
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This value is comparable to the Roche limit (5.7.95). In the Roche problem (M ′ – point mass) the
maximum value Ωmax of the synchronous angular velocity of the binary is attained at a distance D
slightly larger than the Roche limit. This corrects Chandrasekhar’s (1969, Table XVIII) result that his
maximum value of the rotation parameter βmax = Ω2

max/2πG�0 = 0.070661, (q = 1) is just equal to
the critical value βc at the Roche limit (5.7.94). Instead, Lai et al. (1993, p. 228) take ε = ε(D), and
find βmax = 0.07635, (q = 1), whereas the critical value (5.7.93) amounts only to βc = 0.07550, with the
corrected Roche limit (5.7.94) equal to

Dc = 2.1533(r3 + r′3)1/3, (ε �= 0; n = 0; � = �′ = �0; r = r′; q = 1). (5.7.97)

If we replace all ellipsoidal masses with point masses (Roche model), we have found [Eqs. (3.6.36)-
(3.6.41)] that βcm = 0.065844 if q = ∞, βcm = 0.072267 if q = 1, and βcm = 0.36074 if q = 0,
which are of the same order of magnitude as the previously noted values of βc, (n = 0). Note, that
βcm = Ω2

c/2πG�m = Ω2
c/2πG�0 = βc for homogeneous masses (n = 0; � = �0 = �m). The maximum

value βmax for Maclaurin ellipsoids (q, n = 0) is 0.2247 (Sec. 3.2).
Gingold and Monaghan (1979b) have numerically confirmed for n = 0.5, 1.5 polytropes the approx-

imate validity of the classical formulas (5.7.93)-(5.7.97) for the minimum distance of a binary system
(Roche limit) in the Roche and Darwin problems.

The rotational and tidal splitting of oscillation frequencies can give important clues to the identi-
fication of modes in Cepheids and binary stars. The hydrostatic models of Chandrasekhar’s (1933a-d)
first order perturbation theory have been used by Saio (1981) to study the oscillations of a synchronously
rotating polytropic binary, by expressing the distorted equipotential surface according to the level surface
theory from Sec. 3.7 under the form

r = s[1 + ε(s, λ, ϕ)], (ε � 1). (5.7.98)

s denotes the average radius of a level surface. The equidistant separation of oscillation frequencies
from Eq. (5.7.34) is broken by second order effects in the angular velocity Ω. Unfortunately, it seems not
possible to get a clear insight upon tidal effects from Saio’s (1981) tables.

For their hydrostatic polytropic models Mohan and Saxena (1983) use the simple averaging technique
of Kippenhahn and Thomas (1970), in conjunction with the approximation of level surfaces by Roche
equipotentials (e.g. Kopal 1978). An equipotential surface is defined by Φtot = const, and its expression
in the Roche approximation is given by Eq. (3.6.25) in a system rotating with angular velocity Ω round
the primary M. The mean value fm of a function f(�r) over an equipotential surface SΦ is obviously

fm = f(Φtot) = (1/SΦ)
∫

Φtot=const

f(�r) dS; SΦ =
∫

Φtot=const

dS. (5.7.99)

If we denote by dn the distance along the normal �n between two neighboring equipotential surfaces
Φtot and Φtot +dΦtot, we may define – corresponding to the usual definition of the acceleration of gravity
– the function [cf. Eqs. (3.1.22), (3.1.27)]

g = dΦtot/dn. (5.7.100)

The volume element between two equipotential surfaces is

dVΦ =
∫

Φtot=const

dn dS = dΦtot

∫
Φtot=const

dS/g = (1/g)mSΦ dΦtot. (5.7.101)

The total volume of the configuration may be defined as a function of the radius rΦ by VΦ = 4πr3
Φ/3

– in analogy to the volume of a sphere. The surface SΦ is generally not equal to 4πr2
Φ, so we define the

function

u = u(Φtot) = SΦ/4πr2
Φ, (5.7.102)

together with the function

w = −(1/g)mGMΦ/r2
Φ, (5.7.103)
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where the mass between two neighboring equipotentials is

dMΦ = �Φ dVΦ = 4π�Φr2
Φ drΦ. (5.7.104)

Obviously, for a sphere we have u = 1 and w = 1, since Φtot = GMΦ/rΦ and g = −GMΦ/r2
Φ. From

Eqs. (5.7.101)-(5.7.104) we get

dΦtot = (dΦtot/dVΦ) dVΦ = dMΦ

/
[(1/g)m�ΦSΦ] = −GMΦ dMΦ

/
4π�Φr4

Φuw = −GMΦ drΦ/r2
Φuw.

(5.7.105)

Since the pressure PΦ on an equipotential surface is a function only of Φtot, the equation of hydrostatic
equilibrium ∇PΦ = �Φ ∇Φtot can be written under the form

dPΦ/dΦtot = �Φ or dPΦ/drΦ = −GMΦ�Φ/r2
Φuw. (5.7.106)

Taking the derivative of (r2
Φuw/�Φ) dPΦ/drΦ, we obtain at once the equivalent on a level surface of

Poisson’s equation (2.1.4):

d[(r2
Φuw/�Φ) dPΦ/drΦ]

/
drΦ = d(r2

Φuw dΦtot/drΦ)
/
drΦ = −G dMΦ/drΦ = −4πG�Φr2

Φ. (5.7.107)

If we define in the usual manner [cf. Eqs. (2.1.10), (2.1.13)]

rΦ = αξΦ; P = P0θ
n+1
Φ ; � = �0θ

n
Φ,

(
α2 = (n + 1)P0/4πG�2

0

)
, (5.7.108)

the dimensionless polytropic variables ξΦ and θΦ on a level surface, Eq. (5.7.107) reads

d[ξ2
Φuw dθΦ/dξΦ]

/
dξΦ = −ξ2

Φθn
Φ, (5.7.109)

which in the spherically symmetric case u, w = 1 turns into the familiar Lane-Emden equation (2.1.14).
Mohan and Saxena (1983, 1985) approximate the level surfaces of a polytrope of index n by Roche

equipotentials – a satisfactory approximation for centrally condensed polytropes (3 � n ≤ 5), since the
point mass Roche model closely approximates the polytrope n = 5.

Kopal (1978, p. 323) shows that on the surface of a Roche equipotential the spherical coordinates
r, λ, ϕ are connected through the relationship

r = Dr0{1 + r3
0[qP2(cos λ) + (q + 1) sin2 λ

/
2] + ...}, (q = M ′/M). (5.7.110)

The dimensionless parameter r0 is given by

r0 = 1
/
(ΦtotD/GM − q), (5.7.111)

which for the undistorted sphere (Ω, q = 0; Φtot = GM/r) is just equal to r0 = r/D. Mohan and Saxena
(1985) express the radius rΦ of a sphere that is topologically equivalent to the distorted equipotential
surface under the form

rΦ = Dr0[1 + (q + 1)r3
0/3 + ...], (5.7.112)

and solve numerically the eigenvalue problem, determining eigenfrequencies of quasiradial and nonradial
axisymmetric modes (j = 0, 2; k = 0) of rotationally and tidally distorted polytropes. Because of the
smallness of the mass ratio (q ≤ 0.2), and due to the relatively large separation distance D, tidal effects
are minor as compared to rotational ones. The gravity g-eigenfrequencies of Mohan and Saxena (1985,
1990) are generally decreased due to rotation, contrary to the findings presented in Figs. 5.7.1, 5.7.3.

Denis (1972) has investigated nonaxisymmetric tidal modes of the compressible homogeneous poly-
trope n = 0, Γ1 = 5/3. The stable eigenfrequencies (σ2 > 0) of p and f -modes are generally destabilized
due to tidal action, excepting for the case j = |k|. Tidal perturbations of eigenvalues for the fundamental
Kelvin f -mode are of the same order of magnitude as rotational perturbations, and tidal action is just
as effective as rotation in lifting the degeneracy between the fundamental radial r(j = 0, k = 0)-mode,
and the fundamental Kelvin f(j = 2, k = 0)-mode occurring at Γ1 = 1.6. The tidal influence on the
eigenvalues of the unstable g-modes (σ2 < 0, Table 5.5.2) is noticeably less than the rotational effects on
a spheroid with the same oblateness. The splitting of degenerate modes is amplified by tidal action.
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5.8 The Virial Method for Rotating Polytropes

5.8.1 Stability and Oscillations with the Second Order Virial Equations

As shown by Clement (1964) the variational equations discussed in Secs. 5.7.2 and 5.7.3 contain
implicitly the virial equations of all orders. For displacements expressed in Cartesian form the virial and
variational methods are equivalent, but the variational formulation has the advantage that it admits a
spherical harmonic analysis of all normal modes, whereas from the virial equations of a given order one
can extract only a limited number of overtones. While the scalar virial theorem (5.3.2) allows a simple
description of the fundamental radial mode [see Eqs. (5.3.2)-(5.3.17)], the second order virial equations
yield in the limit of zero rotation the eigenvalues of the radial r(j = 0) and of the fundamental Kelvin
f(j = 2)-mode [Eqs. (5.8.74)-(5.8.84)]. Similarly, the third order virial theorem describes oscillations
belonging to the first Y k

1 (λ, ϕ), (k = ±1) and third order Y k
3 (λ, ϕ), (k = ±1,±2,±3) spherical harmonics

in the nonrotating case. Higher order virial equations provide higher order modes, but this road becomes
rapidly unpracticable [there is only one zeroth order (scalar) virial equation, but there are three first order,
nine second order, eighteen third order, and thirty fourth order virial equations (e.g. Chandrasekhar 1969,
Tassoul 1978)]. Nevertheless, the virial method provides a powerful, sophisticated tool to investigate
small oscillations of rotating bodies and their secular stability due to some dissipative mechanism, such
as viscosity, gravitational radiation reaction, etc.

The first variation δ∗H of the integral

H =
∫

Vu

Fu(�ru, t) dVu, (5.8.1)

is defined by

δ∗H = δ∗
∫

Vu

Fu(�ru, t) dVu =
∫

V

F (�r, t) dV −
∫

Vu

Fu(�ru, t) dVu, (5.8.2)

and should not be confused with the Eulerian perturbation denoted by δ. The functions F (�r, t) and
Fu(�ru, t) denote any attribute (such as velocity, density, pressure, gravitational potential) of a fluid
element in the perturbed and unperturbed flow, respectively. The perturbed volume V = Vu + ∆V
is derived from the unperturbed volume Vu by subjecting its boundary to the Lagrangian displace-
ment (5.1.11) ∆�r(�ru, t) = �r(�ru, t) − �ru, which projects onto Cartesian axes as ∆xk(xu1, xu2, xu3, t) =
xk(xu1, xu2, xu3, t)−xuk, (k = 1, 2, 3). By virtue of Eqs. (5.2.4)-(5.2.6) the integral over V in Eq. (5.8.2)
can be transformed into an integral over Vu

δ∗H =
∫

Vu

[JF (�r, t) − Fu(�ru, t)] dVu =
∫

Vu

[(1 + ∇ · ∆�r) F (�r, t) − Fu(�ru, t)] dVu

=
∫

Vu

[∆F (�r, t) + F (�r, t) ∇ · ∆�r] dVu, (dV = J dVu), (5.8.3)

or up to the first order of smallness

δ∗H = δ∗
∫

V

F (�r, t) dV =
∫

V

[∆F (�r, t) + F (�r, t) ∇ · ∆�r] dV =
∫

V

(∆F + F ∇ · ∆�r) dV. (5.8.4)

The Jacobian of the considered transformation xk = xuk + ∆xk is up to the first order equal to

J = |∂(x1, x2, x3)
/
∂(xu1, xu2, xu3)| ≈ 1 + ∂∆x1/∂xu1 + ∂∆x2/∂xu2 + ∂∆x3/∂xu3 = 1 + ∇ · ∆�r.

(5.8.5)

If F = �, we obtain with the continuity equation (5.2.28):

δ∗
∫

V

�(�r, t) dV = δ∗
∫

V

� dV =
∫

V

(∆� + � ∇ · ∆�r) dV = 0. (5.8.6)
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And if F → �F, we have for any attribute F

δ∗
∫

V

�F dV =
∫

V

[∆(�F ) + �F ∇ · ∆�r] dV =
∫

V

[� ∆F + F (∆� + � ∇ · ∆�r)] dV =
∫

V

� ∆F dV.

(5.8.7)

In particular, if F is an extrinsic attribute, i.e. a quantity specified simply by virtue of its location
(like the centrifugal potential), then its Eulerian variation δF is zero (cf. Clement 1964, Chandrasekhar
1969, p. 29), and

δ∗
∫

V

�F dV =
∫

V

� ∆F dV =
∫

V

�(δF + ∆�r · ∇F ) dV =
∫

V

�(∆�r · ∇F ) dV. (5.8.8)

We have already used in Eq. (2.6.59) the obvious formula

d

[ ∫
V

�(�r, t) F (�r, t) dV

]/
dt = d

[ ∫
M

F (�r, t) dM

]/
dt =

∫
M

[DF (�r, t)/Dt] dM

=
∫

V

�(�r, t) [DF (�r, t)/Dt] dV =
∫

V

�(�r, t) [∂F (�r, t)/∂t + vi ∂F (�r, t)/∂xi] dV, (vi = dxi/dt),

(5.8.9)

since, due to mass conservation, there is

d

[ ∫
V

�(�r, t) dV

]/
dt = d

(∫
M

dM

)/
dt = dM/dt = 0. (5.8.10)

The virial equations are in fact no more than the moments of the relevant hydrodynamical equations.
The scalar (zero order) virial equation (2.6.80), (3.1.85), or (5.3.2) can be obtained at once by contracting
the second order virial equations (2.6.79), (3.1.83), or (3.1.84). The first order virial equations are
simply obtained by integrating the equations of motion (3.1.79) over the volume V of the configuration
(Chandrasekhar and Lebovitz 1963a, Chandrasekhar 1969):

∫
V

� (Dvi/Dt) dV = d

(∫
V

�vi dV

)/
dt = −

∫
V

(∂P/∂xi) dV +
∫

V

�(∂Φ/∂xi) dV +

(1/2)
∫

V

{
∂
[
(Ω2x3 − Ω3x2)2 + (Ω3x1 − Ω1x3)2 + (Ω1x2 − Ω2x1)2

]/
∂xi

}
dV + 2εijkΩk

∫
V

�vj dV

= Ω2Ii − ΩiΩkIk + 2εijkΩk

∫
V

�vj dV, (i, j, k = 1, 2, 3; �Ω = �Ω(Ω1, Ω2, Ω3) = const). (5.8.11)

The integrals of ∇P and ∇Φ vanish because we have in virtue of Eq. (2.6.61)
∫

V

(∂P/∂xi) dV =
∫

S

P dSi = 0, (P (S) = 0), (5.8.12)

and via Eq. (2.6.62)
∫

V

�(�r) [∂Φ(�r)/∂xi] dV =
∫

V

�(�r) dV ∂

[ ∫
V

�(�r′) dV ′/|�r − �r′|
]/

∂xi

=
∫

V

∫
V

�(�r) �(�r′) (xi − x′
i) dV dV ′/|�r − �r′|3 = 0, [�r = �r(x1, x2, x3); �r′ = �r′(x′

1, x
′
2, x

′
3)].

(5.8.13)

In Eq. (5.8.11) we have introduced the first order moments of the density distribution

Ii =
∫

V

�xi dV. (5.8.14)

Quite generally, we may consider moments of density distribution of various orders by writing

Iijk... =
∫

V

�xixjxk... dV. (5.8.15)
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The second order moment Iij (the moment of inertia tensor) has already been considered in Eq.
(2.6.74). The first variation of the moments of density distribution is via Eq. (5.8.7) equal to

δ∗Iijk... =
∫

V

� ∆(xixjxk...) dV =
∫

V

�(∆xi xjxk... + ∆xj xixk... + ∆xk xixj ... + ...) dV

= Ui;jk... + Uj;ik... + Uk;ij... + ... =
∫

V

� ∆x
 [∂(xixjxk...)
/
∂x
] dV = Uijk... (5.8.16)

To shorten the notations we have introduced the symmetrized quantity

Uijk... =
∫

V

� ∆x
 [∂(xixjxk...)
/
∂x
] dV

=
∫

V

� (∆xi xjxk... + ∆xj xixk... + ∆xk xixj ... + ...) dV, (5.8.17)

and the unsymmetrized notation

Ui;jk... =
∫

V

� ∆xi xjxk... dV. (5.8.18)

The Lagrangian variation ∆xk of the Cartesian coordinate xk is given by [cf. Eqs. (5.1.10)-(5.1.12)]

∆xk(xu1, xu2, xu3, t) = xk(xu1, xu2, xu3, t) − xuk;
∆�r = ∆�r[∆x1(xu1, xu2, xu3, t), ∆x2(xu1, xu2, xu3, t), ∆x3(xu1, xu2, xu3, t)]. (5.8.19)

xuk denotes the Cartesian coordinate of a mass element in the unperturbed flow. If the direction of
the angular velocity �Ω is chosen along the x3-axis, Eq. (5.8.11) takes the form [�Ω = �Ω(0, 0, Ω)]

d

(∫
V

�vk dV

)/
dt = Ω2(Ik − δk3I3) + 2Ωεkj3

∫
V

�vj dV. (5.8.20)

δk3 denotes the Kronecker delta. If no relative motions are present in the uniformly rotating frame of
reference (vk = vuk = 0), we infer from Eq. (5.8.20) that

I1 = I2 = 0, (vk = 0). (5.8.21)

Now let an initial state in which hydrostatic equilibrium prevails (vuk = 0) be slightly perturbed by
the Lagrangian displacement ∆xk = xk − xuk. The velocity vk of the perturbed mass element is via Eq.
(5.1.22) equal to vk = vuk + ∆vk = ∆vk = D(∆xk)/Dt. Inserting for xk and vk into Eq. (5.8.20), and
taking into account the hydrostatic form

Ik − δk3I3 =
∫

V

�(xuk − δk3xu3) dV = 0, (vuk = 0), (5.8.22)

of this equation, we get

d

{∫
V

�[D(∆xi)/Dt] dV

}/
dt = d2

(∫
V

� ∆xi dV

)/
dt2 = Ω2

∫
V

�(∆xi − δi3 ∆x3) dV

+2Ωεij3

∫
V

�[D(∆xj)/Dt] dV = Ω2

∫
V

�(∆xi − δi3 ∆x3) dV + 2Ωεij3 d

(∫
V

� ∆xj dV

)/
dt.

(5.8.23)

With the symmetrized quantity from Eq. (5.8.17)

Ui =
∫

V

� ∆xi dV, (5.8.24)

this amounts to

d2Ui/dt2 = Ω2(Ui − δi3U3) + 2Ωεij3 dUj/dt. (5.8.25)
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The general solution of the first order virial equations (5.8.25) can readily be written down, but they
are not relevant for a discussion of the oscillations and the stability of the system, as they are in no
way dependent on the particular constitution of the system. We can therefore assume without loss of
generality that

Ui =
∫

V

� ∆xi dV ≡ 0. (5.8.26)

It may however be noted that Eq. (5.8.25) allows solutions for U1 and U2, which are periodic with a
frequency of Ω. The meaning of assumption (5.8.26) is that we are considering the polytrope in a frame
of reference whose origin is permanently located in the centre of mass of the system, which implies that
Ii = 0 [Eq. (5.8.14)]. Since the only motion which the centre of mass of a self-gravitating system effects,
is a uniform motion, no generality is lost by assumption (5.8.26), (Chandrasekhar and Lebovitz 1963a).

Let us now consider the first variation of the second order virial equations (3.1.83). We get a set of
nine equations

δ∗
[
d

(∫
V

�xivj dV

)/
dt

]
= 2δ∗Eij + δ∗Wij + δij δ∗

∫
V

P dV + Ω2Uij − ΩjΩkUik

+2εjk
Ω
 δ∗
∫

V

�xivk dV, (i, j, k, � = 1, 2, 3), (5.8.27)

where we have used Eqs. (5.8.16), (5.8.17) to denote the variation δ∗Iij = Uij . The variation of the
gravitational potential energy tensor can be found by applying an obvious generalization of Eq. (5.8.8)
to the definition (2.6.71) of Wij (Chandrasekhar 1969, p. 34):

δ∗Wij = −(1/2) δ∗
∫

V

�(�r) Φij(�r) dV = −(G/2) δ∗
∫

V

∫
V

�(�r) �(�r′) (xi − x′
i)(xj − x′

j) dV dV ′

/
|�r − �r′|3 = −(G/2)

∫
V

�(�r) ∆xk(�r) dV ∂

[ ∫
V

�(�r′) (xi − x′
i)(xj − x′

j) dV ′/|�r − �r′|3
]/

∂xk

−(G/2)
∫

V

�(�r′) ∆xk(�r′) dV ′ ∂

[ ∫
V

�(�r) (xi − x′
i)(xj − x′

j) dV
/
|�r − �r′|3

]/
∂x′

k

= −
∫

V

�(�r) ∆xk(�r) [∂Φij(�r)/∂xk] dV, (∂�(�r′)/∂xk, ∂�(�r)/∂x′
k = 0). (5.8.28)

The first variation of the kinetic energy tensor follows readily from its definition (2.6.57):

δ∗Eij = (1/2) δ∗
∫

V

�vivj dV = (1/2)
∫

V

�(vi ∆vj + vj ∆vi) dV

= (1/2)
∫

V

�
[
vi D(∆xj)/Dt + vj D(∆xi)/Dt

]
dV. (5.8.29)

The left-hand side of Eq. (5.8.27) is evaluated by observing that the operations of δ∗ and d /dt outside
an integral are permutable:

δ∗
[
d

(∫
V

�xivj dV

)/
dt

]
= d

(
δ∗
∫

V

�xivj dV

)/
dt = d

(∫
V

�xi ∆vj dV

)/
dt

+d

(∫
V

�vj ∆xi dV

)/
dt = d

{∫
V

�
[
D(xi ∆xj)/Dt − vi ∆xj

]
dV

}/
dt

+d

(∫
V

�vj ∆xi dV

)/
dt = d2

(∫
V

�xi ∆xj dV

)/
dt2 + d

[ ∫
V

�(vj ∆xi − vi ∆xj) dV

]/
dt

= d2Uj;i/dt2 + d

[ ∫
V

�(vj ∆xi − vi ∆xj) dV

]/
dt. (5.8.30)

It remains to consider the variation of the pressure integral via Eqs. (5.2.38) and (5.8.4):

δ∗
∫

V

P dV =
∫

V

(∆P + P ∇ · ∆�r) dV = −(Γ1 − 1)
∫

V

P ∇ · ∆�r dV. (5.8.31)
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If the polytrope is initially in hydrostatic equilibrium (vuk = 0), the small oscillation velocity vk is by
virtue of Eq. (5.1.22) equal to its Lagrangian change ∆vk, and the first variation (5.8.29) of the kinetic
energy is of second order, and can accordingly be neglected, as well as the last integral on the right-hand
side of Eq. (5.8.30). Inserting Eqs. (5.8.28)-(5.8.31) into Eq. (5.8.27), we obtain up to the first order
(Chandrasekhar and Lebovitz 1962b)

d2

(∫
V

�xi ∆xj dV

)/
dt2 = −

∫
V

� ∆xk (∂Φij/∂xk) dV − (Γ1 − 1) δij

∫
V

P ∇ · ∆�r dV

+Ω2

∫
V

(xi ∆xj + xj ∆xi) dV − ΩjΩk

∫
V

�(xk ∆xi + xi ∆xk) dV

+2εjk
Ω
 d

(∫
V

�xi ∆xk dV

)/
dt, (5.8.32)

the last integral being transformed analogously to Eq. (5.8.30).
The simplest trial eigenfunction that suggests itself in the present context is

∆xj = ∆xj(x1, x2, x3, t) = Ljkxk exp(iσt), (j = 1, 2, 3). (5.8.33)

The nine coefficients Ljk of this linear transformation play the role of variational parameters, which
have to be determined by the nine equations (5.8.32). A partial justification of the substitution (5.8.33)
comes from the fact that the results so obtained become exact in the limit of the constant density
polytrope n = 0 – the compressible Maclaurin spheroid (Chandrasekhar and Lebovitz 1962c, Sec. III).
They should therefore be a good approximation if the central condensation is not too high (n � 2.5)
as shown by comparing the eigenvalues ω2

zr and ω2
zf from Table 5.8.1 if β = 0, Γ1 = 5/3, with the

eigenvalues ω2
0 from Table 5.3.1, and with the eigenvalues of the fundamental Kelvin f(j = 2)-mode from

Table 5.5.3, respectively.
A trial Lagrangian displacement for the third order virial equations would be

∆xi = Lijkxjxk + Li, (Lijk = Likj ; i, j, k = 1, 2, 3), (5.8.34)

amounting to a total of 21 parameters, the three Li’s being eliminated by the first order virial theorem
(5.8.25), (Chandrasekhar and Lebovitz 1963b, p. 192; Chandrasekhar 1969).

Inserting into Eq. (5.8.32) the trial variation (5.8.33), we obtain after some algebra

σ2LjkIik + 2iσΩεjk3Lk
Ii
 + Ω2(LjkIik + LikIjk) − Ω2δj3(L3kIik + LikI3k)
−Lk
W
k;ij + δijLkkΠ = 0, (Lkk = Tr Lij = L11 + L22 + L33), (5.8.35)

where

Π = −(Γ1 − 1)
∫

V

P dV, (5.8.36)

and

Wk
;ij =
∫

V

�xk(∂Φij/∂x
) dV. (5.8.37)

The direction of the rotation axis has been chosen along the x3-axis [�Ω = �Ω(0, 0, Ω)]. If use is made
of the equilibrium condition (3.1.87), we can write instead of Eq. (5.8.36):

Π = (Γ1 − 1)W33. (5.8.38)

Chandrasekhar and Lebovitz (1962a) also introduce the so-called superpotential

χ(�r) = −G

∫
V

�(�r′) |�r − �r′| dV ′. (5.8.39)

Its derivatives are

∂χ/∂xi = −G

∫
V

�(�r′) (xi − x′
i) dV ′/|�r − �r′|; ∂2χ/∂xi∂xj = −Gδij

∫
V

�(�r′) dV ′/|�r − �r′|

+G

∫
V

�(�r′) (xi − x′
i)(xj − x′

j) dV ′/|�r − �r′|3. (5.8.40)
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We replace the integrals by the definitions (2.6.62) and (2.6.63) of Φ and Φij , respectively:

Φij = δijΦ + ∂2χ/∂xi∂xj . (5.8.41)

Contracting this equation, we find

∇2χ = −2Φ and ∇4χ = −2 ∇2Φ = 8πG�. (5.8.42)

As defined by Eq. (5.8.37), the tensor Wk
;ij is clearly symmetric in its pair of indices i, j, and its
contraction with respect to this pair

Wk
;ii =
∫

V

�xk(∂Φ/∂x
) dV = −(1/2)
∫

V

�Φk
 dV = Wk
 = W
k = W
k;ii, (5.8.43)

is symmetric in k and �, by virtue of Eq. (2.6.71). However, the uncontracted tensor, in general, is
not symmetric in its first pair of indices. Indeed, substituting for Φij its explicit expression (2.6.63), we
obtain

Wk
;ij = G

∫
V

�(�r) xk dV ∂

[ ∫
V

�(�r′) (xi − x′
i)(xj − x′

j) dV ′/|�r − �r′|3
]/

∂x


= G δ
i

∫
V

∫
V

�(�r) �(�r′) xk(xj − x′
j) dV dV ′/|�r − �r′|3

+G δ
j

∫
V

∫
V

�(�r) �(�r′) xk(xi − x′
i) dV dV ′/|�r − �r′|3

−3G

∫
V

∫
V

�(�r) �(�r′) xk(x
 − x′

)(xi − x′

i)(xj − x′
j) dV dV ′/|�r − �r′|5. (5.8.44)

Interchanging primed and unprimed variables in this equation, and adding together, we find with the
notation (2.6.71):

2Wk
;ij = −2δ
iWkj − 2δ
jWki

−3G

∫
V

∫
V

�(�r) �(�r′) (xk − x′
k)(x
 − x′


)(xi − x′
i)(xj − x′

j) dV dV ′/|�r − �r′|5, (5.8.45)

the last integral being completely symmetric in all four indices. Several identities can be deduced from
this equation, by suspending for the moment the summation convention over repeated indices:

Wkk;ii = Wii;kk; Wij;ij − Wji;ij = Wij;ij − Wji;ji = Wjj − Wii, (no summation over i, j, k).
(5.8.46)

If i �= j and k = i, � = j, another identity follows by inserting the representation (5.8.41) into Eq.
(5.8.37), and suspending again the summation convention:

Wij;ij =
∫

V

�xi(∂Φij/∂xj) dV =
∫

V

�xi[∂(∂2χ/∂xi∂xj)/∂xj ] dV =
∫

V

�xi[∂(∂2χ/∂x2
j )/∂xi] dV

=
∫

V

�xi[∂(Φjj − Φ)/∂xi] dV = Wii;jj − Wii, (i �= j; no summation over i, j). (5.8.47)

Next, by taking into account the expression (2.6.71)

Wij =
∫

V

�(�r) xi[∂Φ(�r)/∂xj ] dV = −(1/2)
∫

V

�(�r) Φij(�r) dV

= −(G/2)
∫

V

∫
V

�(�r) �(�r′) (xi − x′
i)(xj − x′

j) dV dV ′/|�r − �r′|3, (5.8.48)

of the potential energy tensor, we obtain from various contractions of Eq. (5.8.45):

Wk
;ii = Wk
; Wkk;ij = Wij ; Wkj;ij = −Wki; Wi
;ij = 2W
j − δ
jW. (5.8.49)
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Many components of the tensor Wk
;ij vanish if the system has triplanar symmetry, i.e. if

�(x1, x2, x3) = �(−x1, x2, x3) = �(x1,−x2, x3) = �(x1, x2,−x3). (5.8.50)

If the density distribution has this property, the moment of inertia tensor (2.6.74) is clearly diagonal:
Iij = 0 if i �= j. From Eqs. (2.6.62) and (5.8.39), defining Φ and χ, it follows that if � is an even function
of the coordinates – as assumed by Eq. (5.8.50) – then so are Φ and χ. From Eq. (5.8.41) we now infer
that Φij is an odd function of the coordinates xi, xj if i �= j : Φij(xi) = −Φij(−xi), Φij(xj) = −Φij(−xj).
And Φii is an even function in all three coordinates if i = j. Considering now the gravitational energy
tensor from Eq. (5.8.48), we conclude from the symmetry properties of Φij that Wij = 0 if i �= j. Thus,
the potential energy tensor Wij and the moment of inertia tensor Iij can be brought simultaneously to
the diagonal form if the polytrope has triplanar symmetry.

Turning now our attention to the supermatrix (5.8.37), we observe that when i = j, the integral is
odd in the two coordinates xk and x
 if k �= �, and Wk
;ij will consequently vanish. Also, if k �= �, and
one of these indices is not equal to either i or j, the integral (5.8.37) will again be odd in two of the three
coordinates, and Wk
;ij vanishes. The only circumstance when Wk
;ij will not vanish identically in the
case of triplanar symmetry, is when the integrand is even in all three Cartesian coordinates. When i = j,
this happens if k = �; and when i �= j, this can happen only if the pair of indices (k, �) coincides with the
pair (i, j) or (j, i). Thus

Wk
;ij �= 0 if i = j and k = �; if i �= j and k = i, � = j; if i �= j and k = j, � = i. (5.8.51)

If the polytrope possesses besides triplanar symmetry also axial symmetry about the x3-axis, the
density distribution is of the form

�(�, z) = �(�,−z), (5.8.52)

where � = (x2
1 + x2

2)
1/2, ϕ, z = x3 denote cylindrical coordinates. From Eqs. (2.6.62), (5.8.39) results

that Φ and χ are independent of ϕ. Considering the diagonal components of the gravitational potential
energy tensor, we get

W11 =
∫

V

�x1(∂Φ/∂x1) dV =
∫

V

�x2
1(∂Φ/∂�) d� dϕ dz =

∫
V

��2 cos2 ϕ (∂Φ/∂�) d� dϕ dz

= π

∫ ∞

0

�2 d�

∫ ∞

−∞
�(∂Φ/∂�) dz, (∂�/∂x1 = x1/� = cos ϕ). (5.8.53)

Obviously, for W22 we obtain just the same equation: W11 = W22. However

W33 =
∫

V

�x3(∂Φ/∂x3) dV = 2π

∫ ∞

0

� d�

∫ ∞

−∞
�z(∂Φ/∂z) dz, (x3 ≡ z), (5.8.54)

will be, in general, different from W11 = W22. From the equality of W11 and W22 follows that
W12;12 = W21;12 = W21;21 in virtue of Eq. (5.8.46). Considering now the nonvanishing elements of
Wk
;ij systematically, we observe that after integration over ϕ, the integrals

W11;11 =
∫

V

�x1(∂Φ11/∂x1) dV =
∫

V

�x1[∂(Φ + ∂2χ/∂x2
1)
/
∂x1] dV,

W22;22 =
∫

V

�x2(∂Φ22/∂x2) dV =
∫

V

�x2[∂(Φ + ∂2χ/∂x2
2)
/
∂x2] dV, (5.8.55)

lead to identical expressions: W11;11 = W22;22. Similar relationships will be summarized below in Eq.
(5.8.60). In the case of axial symmetry another less obvious identity subsists:

W12;12 = (W11;11 − W11;22)/2. (5.8.56)

This can be established by observing that

Wk
;ij =
∫

V

�xk(∂Φij/∂x
) dV =
∫

V

[
∂(�xkΦij)/∂x
 − (∂�/∂x
)xkΦij − � δk
Φij

]
dV

=
∫

S

�xkΦij dS
 −
∫

V

[(∂�/∂x
)xkΦij + � δk
Φij ] dV = −
∫

V

[(∂�/∂x
)xkΦij + � δk
Φij ] dV,

(5.8.57)
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provided the density � vanishes on the boundary of V. Thus, using Eqs. (5.8.41), (5.8.57), we get

W12;12 =
∫
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Similarly
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the integral of �(∂2χ/∂x2
1−∂2χ/∂x2

2) being exactly zero. Comparing the end results of Eqs. (5.8.58) and
(5.8.59), we obtain just Eq. (5.8.56).

Summarizing the findings from Eqs. (5.8.46)-(5.8.49), (5.8.51), (5.8.55)-(5.8.59) for the case of axial
symmetry, we express the nonvanishing elements of the supermatrix Wk
;ij in terms of four of them,
denoted subsequently by A, B, C, D (Chandrasekhar and Lebovitz 1962a):

W11;11 = W22;22 = A; W11;22 = W22,11 = B; W11;33 = W22;33 = W33;11 = W33;22 = C;
W33;33 = D; W12;12 = W21;12 = W21;21 = (W11;11 − W22;11)/2 = (A − B)/2; W13;13 = W23;23

= W11;33 − W11 = C − W11; W31;13 = W32;23 = W11;33 − W33 = C − W33. (5.8.60)

Moreover, three independent relationships exist among the four basic components A, B, C, D. This
can be shown by expressing the elements of three relationships resulting from Eq. (5.8.49)

W11;ii = W11;11 + W11;22 + W11;33 = W11; Wkk;33 = W11;33 + W22;33 + W33;33 = W33;
W1j;1j = W11;11 + W12;12 + W13;13 = −W11, (5.8.61)

by the components A, B, C, D from Eq. (5.8.60):

A + B + C = W11; 2C + D = W33; 3A − B + 2C = 0. (5.8.62)

In the case of spherical symmetry, the number of independent elements is further reduced, because in
this case

A = D; B = C, (W11 = W22 = W33 = W/3), (5.8.63)

as may be seen, for instance, by inserting Eq. (5.8.41) into the definition (5.8.37), and integrating over
the angular spherical coordinates λ and ϕ, [Φ = Φ(r), χ = χ(r)].

From Eqs. (5.8.62) and (5.8.63) we obtain for a sphere

A = D = −W/15; B = C = W/5. (5.8.64)

With the previously established symmetries of Iij , Wij , Wk
;ij for axisymmetric configurations, the
virial equations (5.8.35) take the explicit form

σ2L11I11 + 2iσΩL21I11 + 2Ω2L11I11 − (L11W11;11 + L22W22;11 + L33W33;11)
+Π(L11 + L22 + L33) = 0, (5.8.65)
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σ2L22I11 − 2iσΩL12I11 + 2Ω2L22I11 − (L11W22;11 + L22W11;11 + L33W33;11)
+Π(L11 + L22 + L33) = 0, (5.8.66)

σ2L33I33 − (L11 + L22)W33;11 − L33W33;33 + Π(L11 + L22 + L33) = 0, (5.8.67)

σ2L21I11 − 2iσΩL11I11 + (Ω2I11 − W12;12)(L12 + L21) = 0, (5.8.68)

σ2L12I11 + 2iσΩL22I11 + (Ω2I11 − W12;12)(L12 + L21) = 0, (5.8.69)

σ2L31I11 − L13W31;13 − L31W13;13 = 0, (5.8.70)

σ2L32I11 − L23W31;13 − L32W13;13 = 0, (5.8.71)

σ2L13I33 + 2iσΩL23I33 + (Ω2I33 − W31;13)L13 + (Ω2I11 − W13;13)L31 = 0, (5.8.72)

σ2L23I33 − 2iσΩL13I33 + (Ω2I33 − W31;13)L23 + (Ω2I11 − W13;13)L32 = 0. (5.8.73)

Before proceeding to the general evaluation of Eqs. (5.8.65)-(5.8.73), we consider the special case
Ω = 0, when the unperturbed polytrope is spherical, and

I11 = I22 = I33 = I/3; W11 = W22 = W33 = W/3. (5.8.74)

Only three distinct components of the supermatrix Wk
;ij exist in this case by virtue of Eqs. (5.8.60),
(5.8.64):

W11;11 = A = −W/15; W11;22 = B = W/5; W12;12 = (W11;11 − W11;22)/2 = −2W/15. (5.8.75)

The equations (5.8.68)-(5.8.73) governing the nondiagonal elements of Lij become

σ2IL21/3 + 2W (L12 + L21)/15 = 0; σ2IL12/3 + 2W (L12 + L21)/15 = 0;

σ2IL32/3 + 2W (L23 + L32)/15 = 0; σ2IL23/3 + 2W (L23 + L32)/15 = 0;

σ2IL13/3 + 2W (L31 + L13)/15 = 0; σ2IL31/3 + 2W (L31 + L13)/15 = 0. (5.8.76)

These three pairs of homogeneous equations have nontrivial solutions if their equal determinants
(σ2I/3)(σ2I/3 + 4W/15) are zero, i.e. if

σ2 = 0 and σ2 = −4W/5I, (5.8.77)

each eigenvalue being repeated three times. The first eigenvalue implies L12 = −L21, L23 = −L32, L13 =
−L31, the second one L12 = L21, L23 = L32, L13 = L31. Turning next to Eqs. (5.8.65)-(5.8.67), we have

σ2IL11/3 + WL11/15 − W (L22 + L33)/5 + Π(L11 + L22 + L33) = 0, (5.8.78)

σ2IL22/3 + WL22/15 − W (L33 + L11)/5 + Π(L11 + L22 + L33) = 0, (5.8.79)

σ2IL33/3 + WL33/15 − W (L11 + L22)/5 + Π(L11 + L22 + L33) = 0. (5.8.80)

Recall that now Π = (Γ1 − 1)W/3 via Eq. (5.8.38). Subtracting Eqs. (5.8.78)-(5.8.80) among
themselves, we get the three equations

σ2I(L11 − L22)/3 + 4W (L11 − L22)/15 = 0; σ2I(L22 − L33)/3 + 4W (L22 − L33)/15 = 0;

σ2I(L33 − L11)/3 + 4W (L33 − L11)/15 = 0. (5.8.81)
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If L11 �= L22 �= L33, the root of these equations is

σ2 = −4W/5I, (5.8.82)

which is only of multiplicity two, because only two of the three equations are linearly independent. Finally,
adding together the three equations (5.8.78)-(5.8.80), we obtain

σ2I(L11 + L22 + L33)/3 + (L11 + L22 + L33)(−W/3 + 3Π) = (Γ1 − 4/3)W (L11 + L22 + L33),
(5.8.83)

with the eigenvalue

σ2 = (4 − 3Γ1)W/I, (L11 + L22 + L33 �= 0). (5.8.84)

The foregoing discussion exhibits the eigenvalues of two fundamental modes of oscillation of a sphere:
Eq. (5.8.84) is just the eigenvalue of the fundamental mode of radial (or quasiradial) oscillation from Eq.
(5.3.16). And the root σ2 = −4W/5I from Eqs. (5.8.77) and (5.8.82) (of multiplicity 5) is just equal to the
eigenvalue of the fundamental (Kelvin) f -mode, belonging to the five second order spherical harmonics
Y 0

2 , Y ±1
2 , Y ±2

2 . If n = 0, we have I = 4π�r5/5, W = −16π2G�2r5/15, σ2 = −4W/5I = 16πG�/15, and
we recover with ω2 = σ2/4πG� = 4/15 just the f(j = 2)-mode from Eq. (5.5.26). In addition, we have
three neutral modes σ2 = 0, belonging to the triple root (5.8.77), and corresponding to rotations about
three principal axes. And finally, if Γ1 = 1.6 the two nonvanishing eigenvalues −4W/5I and (4−3Γ1)W/I
coincide, and we have a case of accidental degeneracy (cf. Sec. 5.7.3).

Actually, the virial equations lead to oscillations with angular dependences corresponding in the
nonrotating limit (Ω = 0) to tesseral [k = ±1,±2, ... ± (j − 1)], sectorial (k = ±j), and zonal (k = 0)
spherical harmonics of the form Y k

j (λ, ϕ) = P k
j (cos λ) exp(ikϕ). Subsequently, these three kinds of modes

will be discussed separately for the rotational case within the context of the second order virial theorem
(Chandrasekhar and Lebovitz 1962b).

(i) The Tesseral (Transverse-Shear) Modes. We observe that Eqs. (5.8.70)-(5.8.73) – involving
L13, L23, L31, L32 – are independent of Eqs. (5.8.65)-(5.8.69), so the remaining variational parameters
can be set equal to zero in the corresponding Lagrangian displacements (5.8.33), which resume to

∆x1(x1, x2, x3) = L13x3; ∆x2(x1, x2, x3) = L23x3; ∆x3(x1, x2, x3) = L31x1 + L32x2. (5.8.85)

We have suppressed the time-dependent factor exp(iσt). The oscillations (5.8.85) are characterized
by a relative shearing of the northern and southern hemisphere, the motions being antisymmetric (in x3)
with respect to the equatorial plane. The four equations (5.8.70)-(5.8.73) are written in matricial form
as 


−σ2I11 + W13;13 0 W31;13 0

0 −σ2I11 + W13;13 0 W31;13

−Ω2I11 + W13;13 0 (−σ2 − Ω2)I33 + W31;13 −2iσΩI33

0 −Ω2I11 + W13;13 2iσΩI33 (−σ2 − Ω2)I33 + W31;13




·




L31

L32

L13

L23


 = 0. (5.8.86)

This homogeneous system has nontrivial solutions if its determinant is zero; solving the determinant,
we get the characteristic equation for the determination of the four eigenvalues σ2 :

{
(σ2I11 − W13;13)[(σ2 + Ω2)I33 − W31;13] + (Ω2I11 − W13;13)W31;13

}2

= 4σ2Ω2I2
33(σ

2I11 − W13;13)2, (5.8.87)

or

(σ2 − W13;13/I11)(σ2 + Ω2 − W31;13/I33) + (W31;13/I33)(Ω2 − W13;13/I11)

= ±2σΩ(σ2 − W13;13/I11). (5.8.88)
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The occurrence of the double sign on the right-hand side means that the tesseral modes have a doublet
character, with Ω and −Ω playing equivalent roles, as in the normal Zeeman effect. Eq. (5.8.88) can be
factorized further:

(σ ∓ Ω)2(σ2 − W13;13/I11) − (W31;13/I33)(σ2 − Ω2)

= (σ ∓ Ω)[(σ ∓ Ω)(σ2 − W13;13/I11) − (W31;13/I33)(σ ± Ω)] = 0. (5.8.89)

Therefore

σ = ±Ω, (5.8.90)

is an eigenvalue. The remaining six eigenvalues result from the expression in the bracket of Eq. (5.8.89):

σ3 ∓ Ωσ2 − (W13;13/I11 + W31;13/I33)σ ± Ω(W13;13/I11 − W31;13/I33) = 0. (5.8.91)

With the substitution

ζ = σ ∓ Ω/3, (5.8.92)

Eq. (5.8.91) is brought to the reduced form

ζ3 − (Ω2/3 + W13;13/I11 + W31;13/I33)ζ ∓ 2Ω[Ω2 + 9(2W31;13/I33 − W13;13/I11)]/27. (5.8.93)

The necessary and sufficient condition for real roots is the nonpositiveness of the cubic discriminant,
which is equivalent to

27(Ω2/3 + W13;13/I11 + W31;13/I33)3 ≥ Ω2[Ω2 + 9(2W31;13/I33 − W13;13/I11)]2,

(Ω2/3 + W13;13/I11 + W31;13/I33 ≥ 0). (5.8.94)

For small rotation rates the roots of Eq. (5.8.91) can be evaluated algebraically:

σ1 = (W13;13/I11 + W31;13/I33)1/2 ± (Ω/2)[1 − (W13;13/I11 − W31;13/I33)/
(W13;13/I11 + W31;13/I33)]; σ2 = −(W13;13/I11 + W31;13/I33)1/2

±(Ω/2)[1 − (W13;13/I11 − W31;13/I33)
/
(W13;13/I11 + W31;13/I33)];

σ3 = ±Ω(W13;13/I11 − W31;13/I33)
/
(W13;13/I11 + W31;13/I33), (Ω ≈ 0). (5.8.95)

These formulas exhibit the doublet character of the tesseral modes. For small rotation rates (Ω ≈
0) we observe from Eqs. (5.8.60), (5.8.63), (5.8.64) that W13;13 = W31;31 = −2W/15, (W < 0), so
the tesseral modes certainly start being stable (σ real). In the nonrotating spherical limit we have
σ1,2 = ±(−4W/5I)1/2; the corresponding tesseral modes reduce to the f -mode belonging to the tesseral
harmonics Y ±1

2 (λ, ϕ), (Tassoul 1978).
(ii) The Sectorial (Toroidal or Barlike) Modes. Returning to the remaining equations (5.8.65)-

(5.8.69), we obtain, on subtracting Eq. (5.8.66) from Eq. (5.8.65):

σ2I11(L11 − L22) + 2iσΩI11(L12 + L21) + 2Ω2I11(L11 − L22) − (W11;11 − W22;11)(L11 − L22) = 0.
(5.8.96)

This can be rewritten via Eq. (5.8.56) as

[σ2I11 + 2(Ω2I11 − W12;12)](L11 − L22) + 2iσΩI11(L12 + L21) = 0. (5.8.97)

Next, by addition of Eqs. (5.8.68) and (5.8.69), we get

σ2I11(L12 + L21) − 2iσΩI11(L11 − L22) + 2(Ω2I11 − W12;12)(L12 + L21) = 0, (5.8.98)

or

−2iσΩI11(L11 − L22) + [σ2I11 + 2(Ω2I11 − W12;12)](L12 + L21) = 0. (5.8.99)
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Eqs. (5.8.97), (5.8.99) are homogeneous in the two parameters (L11 − L22) and (L21 + L12), so their
characteristic determinant has to vanish in the case of nontrivial solutions:

[σ2I11 + 2(Ω2I11 − W12;12)]2 − 4σ2Ω2I2
11 = 0, (5.8.100)

or
[
σ2I11 − 2σΩI11 + 2(Ω2I11 − W12;12)

][
σ2I11 + 2σΩI11 + 2(Ω2I11 − W12;12)] = 0. (5.8.101)

The four solutions of this equation are

σ1 = Ω + (2W12;12/I11 − Ω2)1/2; σ2 = Ω − (2W12;12/I11 − Ω2)1/2;

σ3 = −Ω + (2W12;12/I11 − Ω2)1/2; σ4 = −Ω − (2W12;12/I11 − Ω2)1/2, (5.8.102)

and neutral stability (σ = 0) of σ2,3 occurs if Ω2 = W12;12/I11. But this equality [see Eq. (5.8.108)] holds
just at the point of bifurcation between axially symmetric configurations (e.g. Maclaurin spheroids) and
configurations with triplanar symmetry (e.g. Jacobi ellipsoids). This can be shown by inserting into the
virial equilibrium equation (3.1.87)

W11 + Ω2I11 = W22 + Ω2I22 = W33, (5.8.103)

the relationships (5.8.47):

W11 = W11;22 − W12;12; W22 = W11;22 − W21;12. (5.8.104)

Eq. (5.8.103) reduces to

−W12;12 + Ω2I11 = −W21;12 + Ω2I22 = W33 − W11;22. (5.8.105)

These equations can be satisfied in two ways (Chandrasekhar and Lebovitz 1962a). We may require
that the polytrope has axial symmetry, the angular velocity Ω being determined from the last equality
in Eq. (5.9.105):

W12;12 = W21;12 and I11 = I22. (5.8.106)

The other possibility results by requiring

Ω2I11 = W12;12; Ω2I22 = W21;12 and W33 = W11;22. (5.8.107)

This second requirement can be satisfied only when Ω2 exceeds a certain critical value, because if
Ω2 → 0 we have W12;12 = −2W/15 via Eq. (5.8.75), and it is not possible to satisfy the first two
equalities in Eq. (5.8.107). Therefore, if Ω ≈ 0, the configuration must be axisymmetric, but as we
proceed along the sequence with increasing Ω, a point may be reached where

Ω2I11 = Ω2I22 = W12;12 = W21;12. (5.8.108)

At this point it will become possible to satisfy Eq. (5.8.108) for the first time. For larger values of
Ω both conditions (5.8.106) and (5.8.107) could possibly be fulfilled; and this is just what happens at
a bifurcation point. The occurrence of the eigenvalues σ2,3 = 0 at Ω2 = W12;12/I11 simply means that
at the bifurcation point (should one occur) the associated neutral mode carries the axially symmetric
configuration into one with genuine triplanar symmetry. The foregoing discussion rests on the assumption
that W12;12 is positive, as Ω2 and Iij are certainly positive. W12;12 is positive for a sphere, and it is
numerically verified that W12;12 is positive for rotating polytropes (Chandrasekhar and Lebovitz 1962d,
Tassoul and Ostriker 1970).

Note, that a bifurcation point is always a point of neutral stability (σ = 0), but not any neutral point
needs to be a bifurcation point (Chandrasekhar 1969, p. 90).

In the nonrotating spherical limit we have W12;12 = −2W/15, and from Eq. (5.8.102) we recover
Eqs. (5.8.77) and (5.8.82): σ2 = −4W/5I > 0. The corresponding sectorial modes reduce to the f -mode
belonging to the sectorial harmonics Y ±2

2 (λ, ϕ). The sectorial modes (5.8.102) are definitely stable if
Ω → 0. If W12;12 remains positive, then at Ω2 > 2W12;12/I11 the eigenvalues (5.8.102) become complex
numbers, and the polytrope is dynamically unstable.
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To determine the eigenvalues of the sectorial modes, we have used only the four equations (5.8.65),
(5.8.66), (5.8.68), (5.8.69). In order to satisfy the whole set of nine equations (5.8.65)-(5.8.73), we
have to put L13, L31, L23, L32, L33 = 0. Moreover, if L33 = 0, Eq. (5.8.67) can be satisfied only if
L11 + L22 = 0 or L11 = −L22. And with this finding the difference of Eqs. (5.8.68) and (5.8.69) becomes
σ2I11(L12 − L21) = 0, requiring L12 = L21 if σ �= 0. Thus, the Lagrangian displacements (5.8.33)
appropriate to sectorial modes are

∆x1(x1, x2, x3) = L11x1 + L12x2; ∆x2(x1, x2, x3) = L12x1 − L11x2; ∆x3(x1, x2, x3) = 0.
(5.8.109)

The predominant feature of these oscillations is to transform an axially symmetric polytrope into a
genuine triplanar body, while preserving its plane of symmetry. All motions are parallel and symmetrical
with respect to the equatorial symmetry plane.

(iii) The Zonal (Pulsation) Modes. Eqs. (5.8.87) and (5.8.100) for the tesseral and sectorial
modes determine six of the nine eigenvalues σ2 belonging to the virial equations (5.8.65)-(5.8.73). Of
the five equations (5.8.65)-(5.8.69) we have considered only two linear combinations of them. It remains
to consider three other linear combinations for the determination of the remaining three eigenvalues σ2.
Subtracting Eq. (5.8.69) from Eq. (5.8.68), we obtain

σ[σI11(L21 − L12) − 2iΩI11(L11 + L22)] = 0. (5.8.110)

Next, subtracting Eq. (5.8.67) twice from the sum of Eqs. (5.8.65) and (5.8.66), we find

σ2[I11(L11 + L22) − 2I33L33] + 2iσΩI11(L21 − L12) + 2Ω2I11(L11 + L22)
−2(W33;11 − W33;33)L33 − (W11;11 + W22;11 − 2W33;11)(L11 + L22) = 0. (5.8.111)

Eq. (5.8.67) will be retained as the third equation. The zonal modes are symmetric with respect to
the axis of rotation: L11 = L22 (Chandrasekhar and Lebovitz 1962b, c, Chandrasekhar 1969, Tassoul
1978). With L11 = L22 we get from Eq. (5.8.96) L12 = −L21 if σ �= 0. To satisfy the remaining virial
equations (5.8.70)-(5.8.73), we have to assume L13, L31, L23, L32 = 0. The Lagrangian displacements
(5.8.33) appropriate to zonal pulsations are therefore

∆x1(x1, x2, x3) = L11x1 + L12x2; ∆x2(x1, x2, x3) = −L12x1 + L11x2; ∆x3(x1, x2, x3) = L33x3.
(5.8.112)

These displacements represent pulsations that preserve both, the planar and axial symmetry of the
polytrope. If we ignore the neutral mode σ = 0 in Eq. (5.8.110), we can eliminate L21 − L12 �= 0 in Eq.
(5.8.111), by making use of Eq. (5.8.110):

(−σ2I11 + 2Ω2I11 + W11;11 + W22;11 − 2W33;11)(L11 + L22) + 2(σ2I33 + W33;11 − W33;33)L33 = 0.
(5.8.113)

With the relationships from Eqs. (5.8.60), (5.8.62), and with the equilibrium condition W11 +Ω2I11 =
W33 from Eq. (5.8.103), we can transform a part of the coefficient of L11 + L22 as

2Ω2I11 + W11;11 + W22;11 − 2W33;11 = 2Ω2I11 + A + B − 2C

= 2Ω2I11 + W11 − 3C = Ω2I11 + W33 − 3C = Ω2I11 − C + D. (5.8.114)

Inserting also W33;11 = C and W33;33 = D into the remaining coefficients of Eqs. (5.8.113) and
(5.8.67), we find, respectively:

(−σ2I11 + Ω2I11 − C + D)(L11 + L22) + 2(σ2I33 + C − D)L33 = 0, (5.8.115)

(Π − C)(L11 + L22) + (σ2I33 + Π − D)L33 = 0. (5.8.116)

For nontrivial solutions the determinant of this system has to vanish, leading to the characteristic
equation

I11I33σ
4 + [(Π − D)I11 + (2Π − C − D)I33 − Ω2I11I33]σ2

−Ω2I11(Π − D) + (3Π − 2C − D)(C − D) = 0. (5.8.117)
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Eq. (5.8.117) predicts a coupling between radial and nonradial modes of oscillation, similar to Eq.
(5.7.43) for the variational method. In the nonrotating spherical case Eq. (5.8.117) becomes

I2σ4/9 + (3Π − C − 2D)Iσ2/3 + (3Π − 2C − D)(C − D) = 0, (I11 = I33 = I/3; Ω = 0).
(5.8.118)

The roots of this equation are via Eqs. (5.8.38), (5.8.64) equal to

σ2
r = 3(−3Π + 2C + D)/I = (4 − 3Γ1)W/I; σ2

f = 3(D − C)/I = −4W/5I, (Ω = 0).
(5.8.119)

The two squared eigenvalues (5.8.119) just agree with the eigenvalue (5.8.84) of the fundamental radial
mode, and with the eigenvalue (5.8.82) of the nonradial fundamental (Kelvin) f -mode, belonging to the
zonal harmonic Y 0

2 (λ, ϕ) = P2(cos λ). We now see from Eq. (5.8.117) that rotation couples these modes.
And if Γ1 = 1.6 the degeneracy which exists in absence of rotation is lifted by the presence of rotation,
as already discussed in Sec. 5.7.3 within the context of the variational approach.

5.8.2 Application to Polytropes

In the case of rotationally distorted polytropes (0 ≤ n < 5) the previous equations can be used to
derive concrete results. For elucidation, the first order perturbation method of Chandrasekhar (1933a)
from Sec. 3.2 is employed by Chandrasekhar and Lebovitz (1962d). As we have outlined subsequently
to Eq. (5.8.50), the moment of inertia tensor Iij and the potential energy tensor Wij can be brought
simultaneously to the diagonal form in the case of triplanar symmetry; if the polytrope also possesses
axial symmetry, we have additionally I11 = I22, W11 = W22. With the dimensionless variables from Eq.
(3.2.1) the two distinct components of Iij are

I11 = I22 =
∫

V

�x2
1 dV =

∫
V

�r4 cos2 ϕ sin3 λ dr dλ dϕ = 2π�0α
5

∫ 1

0

(1 − µ2) dµ

∫ Ξ1(µ)

0

Θnξ4 dξ;

I33 =
∫

V

�x2
3 dV =

∫
V

�r4 cos2 λ sinλ dr dλ dϕ = 4π�0α
5

∫ 1

0

µ2 dµ

∫ Ξ1(µ)

0

Θnξ4 dξ, (µ = cos λ).

(5.8.120)

Using the first order solution of the fundamental function (3.2.44), we can replace the integration
limit Ξ1(µ) by ξ1, as in Eqs. (3.2.58), (3.2.66):

I11 = I22 = 2π�0α
5

∫ ξ1

0

ξ4 dξ

∫ 1

0

{
θn + βnθn−1[ψ0 + A2ψ2P2(µ)]

}
(1 − µ2) dµ

= (4π�0α
5/3)

∫ ξ1

0

(θn + βnθn−1ψ0 − βnA2θ
n−1ψ2/5)ξ4 dξ;

I33 = 4π�0α
5

∫ ξ1

0

ξ4 dξ

∫ 1

0

{
θn + βnθn−1[ψ0 + A2ψ2P2(µ)]

}
µ2 dµ

= (4π�0α
5/3)

∫ ξ1

0

(θn + βnθn−1ψ0 + 2βnA2θ
n−1ψ2/5)ξ4 dξ, [P2(µ) = (3µ2 − 1)/2]. (5.8.121)

The trace of the tensor Iij (the moment of inertia) is then given by

I = 2I11 + I33 = 4π�0α
5

∫ ξ1

0

(θn + βnθn−1ψ0)ξ4 dξ. (5.8.122)

The nonvanishing components of the gravitational energy tensor can readily be inferred from Eq.
(3.1.88):

W11 = W22 = (−ΦpM + nΩ2I11)/(5 − n) = (−ΦpM + 2βπnG�0I11)/(5 − n);

W33 = (−ΦpM + 5Ω2I11)/(5 − n) = (−ΦpM + 10βπG�0I11)/(5 − n), (I11 = I22). (5.8.123)
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The gravitational potential at the poles of the polytrope Φp is obtained via Eqs. (3.2.39), (3.2.43):

Φp(Ξ1,±1) = (n + 1)K�
1/n
0 (c0 + βc10) = (n + 1)K�

1/n
0 {−ξ1θ

′(ξ1) + β[ξ2
1/2 − ψ0(ξ1) − ξ1ψ

′
0(ξ1)]}.
(5.8.124)

Inserting Eqs. (3.2.58), (5.8.124), (5.8.126) into Eq. (5.8.123), we find eventually

W11 = [4π(n + 1)K�
1+1/n
0 α3/(5 − n)]

{
− ξ3

1θ′2(ξ1) + βξ2
1θ′(ξ1) [5ξ2

1/6 − ψ0(ξ1) − 2ξ1ψ
′
0(ξ1)]

+(βn/6)
∫ ξ1

0

θnξ4 dξ

}
; W33 = [4π(n + 1)K�

1+1/n
0 α3/(5 − n)]

{
− ξ3

1θ′2(ξ1)

+βξ2
1θ′(ξ1) [5ξ2

1/6 − ψ0(ξ1) − 2ξ1ψ
′
0(ξ1)] + (5β/6)

∫ ξ1

0

θnξ4 dξ

}
. (5.8.125)

Consistently with our order of approximation we have used for the moments of inertia the spherical
value

I/3 = I11 = I22 = I33 = (4π�0α
5/3)

∫ ξ1

0

θnξ4 dξ. (5.8.126)

For axisymmetric configurations all distinct elements of the supermatrix Wk
;ij can be expressed in
terms of one of them. We chose W12;12 as this element, expressing the others in terms of it via Eqs.
(5.8.60), (5.8.62). We integrate the last integral from Eq. (5.8.58) by parts, and transform to spherical
coordinates r, µ :

W12;12 = (π/4)
∫ z1

−z1

dz

∫ 
1(z)

0

�
{
∂
[
�3 ∂

(
(1/�) ∂χ/∂�

)/
∂�
]/

∂�
}

d�

= (π�0α
3/4)

∫ 1

−1

dµ

∫ Ξ1(µ)

0

(Θn/�)
{
∂
[
�3 ∂

(
(1/�) ∂χ/∂�

)/
∂�
]/

∂�
}
ξ2 dξ,

(� d� dz → α3ξ2 dξ dµ; 0 < n < 5). (5.8.127)

With r = αξ, � = αs = αξ sinλ, z = αζ = αξ cos λ from Eqs. (3.5.5), (3.5.11), and defining the new
operators

Dξχ = (1/s) ∂χ/∂s = (1/s)[(∂χ/∂ξ) ∂ξ/∂s + (∂χ/∂µ) ∂µ/∂s] = (1/ξ) ∂χ/∂ξ − (µ/ξ2) ∂χ/∂µ;

Dµχ = (1/ξ) ∂χ/∂µ,
(
ξ2 = s2 + ζ2; λ = arctan(s/ζ); ∂ξ/∂s = s/ξ;

∂µ/∂s = − sinλ ∂λ/∂s = −ζ sinλ/ξ2 = −µs/ξ2
)
, (5.8.128)

the partial derivatives with respect to � are transformed into derivatives with respect to ξ and µ. To this
end we observe that the Laplacian (5.8.42) can be written under the form

∇2χ = (ξ2 Dξξχ + 2ξµ Dξµχ + Dµµχ + 3Dξχ)
/
α2 = −2Φ, (5.8.129)

where

Dξξχ = (1/ξ) ∂Dξχ/∂ξ − (µ/ξ2) ∂Dξχ/∂µ = −(1/ξ3) ∂χ/∂ξ + (1/ξ2) ∂2χ/∂ξ2

+(3µ/ξ4) ∂χ/∂µ − (2µ/ξ3) ∂2χ/∂ξ∂µ + (µ2/ξ4) ∂2χ/∂µ2; Dξµχ = (1/ξ) ∂Dξχ/∂µ

= (1/ξ2) ∂2χ/∂ξ∂µ − (µ/ξ3) ∂2χ/∂µ2 − (1/ξ3) ∂χ/∂µ; Dµµ = (1/ξ2) ∂2χ/∂µ2. (5.8.130)

Since by virtue of Eq. (5.8.128) there subsists (1/�) ∂χ/∂� = (1/α2) Dξχ, we can write instead of Eq.
(5.8.127):

W12;12 = (π�0α/4)
∫ 1

−1

dµ

∫ Ξ1(µ)

0

Θn Dξ

[
ξ4(1 − µ2)2 Dξξχ

]
ξ2 dξ

= −(π�0α/4)
∫ 1

−1

dµ

∫ Ξ1(µ)

0

Θn Dξ

[
ξ2(1 − µ2)2(2α2Φ + 2ξµ Dξµχ + Dµµχ + 3Dξχ)

]
ξ2 dξ.

(5.8.131)
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Table 5.8.1 Dimensionless squared eigenfrequencies ω2 = σ2/4πG�0 of tesseral (ωt1, ωt2, ωt3), sectorial (ωs),
and zonal modes (ωzr, ωzf ), obtained with the second order virial equations for rotating polytropes from Eqs.
(5.8.89), (5.8.102), (5.8.117). ωzr denotes the eigenfrequency belonging to the mode which is radial in absence
of rotation (cf. ω0 in Table 5.3.1 if β = 0), and ωzf is the eigenfrequency of the fundamental (Kelvin) f -mode
belonging to the zonal harmonic P2(µ), (cf. Table 5.5.3 if j = 2, β = 0), (Chandrasekhar and Lebovitz 1962d).
Note, that tesseral eigenfrequencies are unsquared

n ωt1,t2 ωt3 ω2
s ω2

zr ω2
zf

1 ±0.39 ± 0.35β1/2 ±0.033β1/2 0.16 ± 0.56β1/2 (3Γ1 − 4)(0.19 − 0.39β) + β/3 0.16 + 0.58β

1.5 ±0.35 ± 0.35β1/2 ±0.12β1/2 0.12 ± 0.50β1/2 (3Γ1 − 4)(0.16 − 0.47β) + β/3 0.12 + 0.53β

2 ±0.32 ± 0.35β1/2 ±0.34β1/2 0.10 ± 0.45β1/2 (3Γ1 − 4)(0.13 − 0.58β) + β/3 0.10 + 0.45β

3 ±0.26 ± 0.35β1/2 ±1.9β1/2 0.065 ± 0.36β1/2 (3Γ1 − 4)(0.082 − 1.1β) + β/3 0.065 + 0.15β

3.5 ±0.23 ± 0.35β1/2 ±4.7β1/2 0.051 ± 0.32β1/2 (3Γ1 − 4)(0.064 − 1.7β) + β/3 0.051 − 0.22β

After some lengthy transformations Chandrasekhar and Lebovitz (1962d) obtain W12;12 in terms of
ordinary integrals

W12;12 = 4π(n + 1)K�
1+1/n
0 α3

{
2ξ3

1θ′2(ξ1)/5(5 − n) + β

[
(8/105)

∫ ξ1

0

θnξ4 dξ

+(2/5)
∫ ξ1

0

θnψ0ξ
2 dξ − (A2/35)

∫ ξ1

0

nθn−1ψ2ξ
2(2θ + 2c0 + 3h′

0/ξ) dξ

]}
. (5.8.132)

ψ0, ψ2, c0, A2 are from Eqs. (3.2.43), (3.2.44), and h′
0 = dh0(ξ)/dξ is the derivative of the dimensionless

zero order (spherically symmetric) term from the expansion of the superpotential (5.8.39):

χ(ξ, µ) = (n + 1)K�
1/n
0 α2

{
h0(ξ) + β[h10(ξ) + h12(ξ) P2(µ)]

}
. (5.8.133)

The eigenvalues of tesseral, sectorial, and zonal modes are given by Eqs. (5.8.89), (5.8.102), and
(5.8.117), respectively. In accordance with the previous general discussion it is obvious from Table 5.8.1
that for slowly rotating polytropes all tesseral and sectorial modes are stable (σ2 > 0), while the zonal
mode ωzr, which is radial in absence of rotation, becomes unstable if Γ1 < 4/3, (β � 1). As expected
from the comment subsequent to Eq. (5.8.33), the eigenfrequencies ω2

zr and ω2
zf compare favourably

to the corresponding eigenfrequencies ω2(j = 0) and ω2(j = 2) from Table 5.7.1 for the centrally less
condensed polytropes n = 1, 1.5, 2.

We have noted subsequently to Eq. (5.8.33) that the virial results become exact for the constant
density polytrope n = 0. As an illustration, Fig. 5.8.1 shows the eigenfrequencies σ/(πG�0)1/2 of the
incompressible (Γ1 = ∞) Maclaurin ellipsoid. Only the sectorial modes ωs become dynamically unstable
(σ2 complex) for fast rotation (β = Ω2/2πG�0 = 0.22011) and large eccentricity (e = 0.95289) at the
point O2, where Ω2 = 2W12;12/I11 [(cf. Eq. (5.8.102)].

The findings of Darwin, Poincaré, Jeans, Cartan, Chandrasekhar (1969), Christodoulou et al. (1995a),
and others, concerning the dynamical and secular stability of incompressible Maclaurin and Jacobi el-
lipsoids, may be briefly summarized as follows: As the eccentricity e = (1 − a2

3/a2
1)

1/2, (a1 = a2) of
the incompressible Maclaurin ellipsoid increases, a first neutral point occurs for the sectorial modes at
e = 0.81267, β = 0.18711, τb = Ekin/|W | = 0.1375, where the Jacobi ellipsoids branch off (cf. Secs.
3.2, 3.8.4, 5.7.4, 6.1.8, 6.4.3). At this point the Maclaurin ellipsoids become secularly unstable, and at
e = 0.95289, β = 0.22011, τd = 0.2738 they become dynamically unstable (Fig. 5.8.1, Lyttleton 1953,
Chandrasekhar 1969, Tassoul 1978). At a2/a1 = 0.4322, a3/a1 = 0.3451, β = 0.14201 a first neutral
point occurs along the Jacobi sequence, where the secularly unstable pear-shaped configurations branch
off. In an important paper Christodoulou et al. (1995a) have shown that the Jacobi sequence remains
secularly and dynamically stable – even at the bifurcation of the dumbbell-binary sequence (Fig. 3.8.3)
– contrary to earlier beliefs.

Further neutral points along the incompressible Maclaurin sequence, belonging to the third-harmonic
modes occur at e = 0.89926, β = 0.22007, and e = 0.96937, β = 0.20707; other neutral points along the
Maclaurin and Jacobi sequences, belonging to the fourth harmonics, can be located with the aid of the
fourth order virial equations (Sec. 3.8.4; Chandrasekhar 1969, p. 128).

Concerning the influence of rotation on the dynamical instability of the fundamental quasiradial r-
mode, the values of Clement (1965) from Table 5.7.1 indicate that the squared eigenfrequency of the
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Fig. 5.8.1 Dimensionless eigenfrequencies σ/(πG�0)
1/2 of tesseral (ωt1, ωt2) and zonal (ωz) modes (left-

hand side), and of sectorial modes (ωs1, ωs2; right-hand side) belonging to second order harmonic oscillations
(Y k

2 (λ, ϕ) if Ω = 0) of the incompressible Maclaurin ellipsoid (Γ1 = ∞). The bifurcation point (ωs1 = 0) occurs
at e = 0.81267, and ωs1 increases again up to 0.66349 at the point of onset of dynamical instability O2. The
other eigenfrequency ωs2 (long-dashed curve) increases from 1.0328 up to 1.30 at e ≈ 0.6, and afterwards falls to
0.66349 at O2. The dotted line shows the real part of ωs1, ωs2, which decreases from 0.66349 at e = 0.95289 to 0
at e = 1. And the short-dashed line is the imaginary part of ωs1, ωs2, which changes from 0 at O2 to 0.23529 at
e = 0.999 (Chandrasekhar 1969).

Fig. 5.8.2 For adiabatic indices Γ1 located below the curves, there occurs dynamical instability of the
mode, which in absence of rotation becomes the fundamental radial mode with eigenvalue σ2 = (3Γ1 − 4)|W |/I.
The differentially rotating polytropic sequences with n = 0, n′ = 0 (solid line), n = 1.5, n′ = 0 (dashed-dotted
curve), and n = 3, n′ = 0 (broken curve) are plotted as a function of the parameter τ = Ekin/|W | from Eqs.
(3.1.35), (3.1.36). The meaning of the polytropic indices n, n′ has already been explained in Sec. 3.8.4, Fig. 3.8.2
(Ostriker and Bodenheimer 1973).

r-mode is decreased (destabilized) due to slow rotation even if n = 1, 1.5, 2, (Γ1 = 5/3). The more recent
calculations of Clement (1984, Table 7A; 1986, Figs. 1, 2, p10-mode) show that for fast rotation the
eigenfrequency ω2 of the r-mode is increased if n = 1; it remains approximately constant if n = 2, and
decreases if n = 3, increasing however moderately as limiting rotation is approached (Fig. 5.7.1). For
the compressible Maclaurin spheroid (n = 0) Chandrasekhar and Lebovitz (1962c, Table 2A and Fig. 2)
have shown that for slow rotation (moderate eccentricity) ω2 increases if 4/3 ≤ Γ1 � 1.5, and is nearly
constant if Γ1 = 1.6, 5/3, in agreement with the theoretical estimate from Eq. (5.3.16) if n ≈ 0, as
emphasized subsequently to Eq. (5.3.17). Instability against quasiradial disturbances demands σ2 < 0
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in Eq. (5.3.16), or

Γ1 < 4/3 − 2Ekin/3|W | = 4/3 − 2τ/3, (τ = Ekin/|W | ≈ 0). (5.8.134)

This equation is in concordance with Fig. 5.8.2, apparently because the differentially rotating poly-
tropes of Ostriker and Bodenheimer (1973) are initially homogeneous n′ = 0, and closely mimic the
instability properties of Maclaurin ellipsoids (n = 0).

In the case of disturbances with finite amplitudes no clear-cut distinction exists between stable and
unstable quasiradial modes, as in the case of infinitesimal oscillations: Finite disturbances with adiabatic
indices ranging between Γ1 from Eq. (5.8.134) and Γ1 = 4/3 can grow (the polytrope becomes metastable)
whenever the energy input sustaining the oscillations exceeds a certain limit (Tassoul 1978, Chap. 14).

5.8.3 Secular Instability by Viscous Dissipation

Problems associated with secular stability are often considered within the context of virial equations
or variational methods. We elucidate the meaning of secular instability, whose growth rate depends on the
magnitude of dissipative forces (e.g. viscosity, dissipation of gravitational radiation energy), by writing
down the Narvier-Stokes equations (3.1.12) of the viscous fluid in a frame rotating with constant angular
velocity �Ω :

� D�v/Dt = −��Ω × (�Ω × �r) − 2� �Ω × �v −∇P + ��F + ∇ · τ. (5.8.135)

By preserving in Eq. (3.5.56) only the coefficient of shear (dynamic) viscosity µ, the stress tensor τ
assumes the components

τij = µ[∂vi/∂xj + ∂vj/∂xi − (2δij/3) ∂vk/∂xk], (5.8.136)

so we can write for the components of −∇P + ∇ · τ :

−δij ∂P/∂xj + ∂τij/∂xj = −∂Pij/∂xj

= ∂
{
− δijP + µ[∂vi/∂xj + ∂vj/∂xi − (2δij/3) ∂vk/∂xk]

}/
∂xj , (Pij = δijP − τij). (5.8.137)

The body force �F is assumed to contain the internal gravitational potential ∇Φ, and the tide-
generating external potential ∇Φt of a secondary. We express −�Ω × (�Ω × �r) in terms of the centrifugal
potential ∇Φf , [Φf = Ω2(x2

1 + x2
2)/2 if �Ω = �Ω(0, 0, Ω)]. Eq. (5.8.135) becomes (Robe 1969)

� Dvi/Dt = � ∂Φtot/∂xi − ∂Pij/∂xj − 2�(�Ω × �v)i, (Φtot = Φ + Φt + Φf ), (5.8.138)

where summation over the repeated index j is to be understood. We multiply Eq. (5.8.138) with vi and
add together, by using Eq. (5.8.9):

d

[ ∫
V

(�v2/2) dV

]/
dt =

∫
V

(�vi ∂Φtot/∂xi − vi ∂Pij/∂xj) dV. (5.8.139)

The stress tensor acting on the free surface S of the polytrope must vanish, hence (Landau and Lifshitz
1959, Tassoul 1978)

(niPij)S = 0, (5.8.140)

�n(n1, n2, n3) denoting the outer normal to the surface. With

vi ∂Pij/∂xj = ∂(viPij)/∂xj − Pij ∂vi/∂xj , (5.8.141)

and via Eq. (2.6.61), the stress integral in Eq. (5.8.139) can be transformed as

−
∫

V

vi(∂Pij/∂xj) dV =
∫

V

Pij(∂vi/∂xj) dV −
∫

S

viPijnj dS =
∫

V

Pij(∂vi/∂xj) dV

=
∫

V

{
P ∇ · �v − µ

[
2(∂v1/∂x1)2 + 2(∂v2/∂x2)2 + 2(∂v3/∂x3)2 + (1/2)

3∑
i,j=1

(∂vi/∂xj + ∂vj/∂xi)2

−(2/3)(∇ · �v)2
]}

dV =
∫

V

P ∇ · �v dV − DR, (5.8.142)



444 5.8 The Virial Method for Rotating Polytropes

where DR denotes the Rayleigh dissipation function. The total potential energy Wtot of the polytrope is
the sum of the potential energies associated with the gravitational, tidal, and centrifugal potentials:

Wtot = W + Wt + Wf = −(1/2)
∫

V

�Φ dV −
∫

V

�(Φt + Φf ) dV. (5.8.143)

Taking into account that the total potential Φtot does not depend explicitly on time (∂Φtot/∂t = 0),
we can write for the change (5.8.9) of the gravitational energy (2.6.65):

dW/dt = −(1/2) d

(∫
V

�Φ dV

)/
dt = −(G/2) d

[ ∫
V

∫
V

�(�r) �(�r′) dV dV ′/|�r − �r′|
]/

dt

= −(G/2)
∫

V

∫
V

�(�r) �(�r′)
{
[∂(1/|�r − �r′|)

/
∂xi] dxi/dt + [∂(1/|�r − �r′|)

/
∂x′

i] dx′
i/dt

}
dV dV ′

= −G

∫
V

∫
V

�(�r) �(�r′) [∂(1/|�r − �r′|)
/
∂xi]vi dV dV ′ = −

∫
V

�vi(∂Φ/∂xi) dV. (5.8.144)

The derivative of the potential energy of the tidal and centrifugal potential is similar:

dWt/dt = −d

(∫
V

�Φt dV

)/
dt = −

∫
V

�vi(∂Φt/∂xi) dV ;

dWf/dt = −d

(∫
V

�Φf dV

)/
dt = −

∫
V

�vi(∂Φf/∂xi) dV, (5.8.145)

and therefore

dWtot/dt = d(W + Wt + Wf )/dt = −
∫

V

�vi(∂Φtot/∂xi) dV. (5.8.146)

Since the left-hand side of Eq. (5.8.139) is just the time derivative of the kinetic energy Ekin, we can
write via Eqs. (5.8.142), (5.8.146):

d(Ekin + Wtot)/dt =
∫

V

P ∇ · �v dV − DR. (5.8.147)

For an incompressible fluid (� = const; Γ1 = ∞), Eq. (5.2.1) yields ∇ · �v = 0, and Eq. (5.8.147)
becomes

d(Ekin + Wtot)/dt = −DR ≤ 0, (� = const; Γ1 = ∞), (5.8.148)

since the dissipation function (5.8.142) is now a sum of squares.
Consider now a configuration which is initially at rest (in stable or unstable equilibrium) with respect

to the rotating coordinate system, i.e. Ekin = 0, Wtot = const, and let us apply a small change
∆Ekin + ∆Wtot to the system. ∆Ekin is always positive, since initially Ekin = 0, the kinetic energy
being always nonnegative. We have

d(∆Ekin + ∆Wtot)/dt = −DR ≤ 0, (� = const; ∆Ekin > 0). (5.8.149)

If Wtot possesses an absolute minimum, then any variation ∆Wtot can be only positive, and ∆Ekin +
∆Wtot must be positive. But because the time derivative of this quantity is by virtue of Eq. (5.8.149)
negative, the whole variation ∆Ekin+∆Wtot > 0 will continuously decrease with time, and the system will
eventually return to its initial position. The system is said to be secularly stable, as well as dynamically
stable. On the other hand, if Wtot is no longer an absolute minimum, then we may always chose a change
in such a way that ∆Wtot < 0, and at the same time also ∆Ekin +∆Wtot < 0. But because the derivative
(5.8.149) of this negative quantity is negative, ∆Ekin+∆Wtot decreases still further (increases in absolute
value), and the configuration will depart more and more from its initial position: The system is secularly
unstable, and it may be dynamically stable or unstable (cf. Secs. 3.2, 5.1; Lyttleton 1953, Ledoux 1958,
Robe 1969, Tassoul 1978).

The small viscous stress term (5.8.136) has been considered by Tassoul and Ostriker (1970) in their
study on the secular stability of viscous polytropes. The second order virial equations (5.8.35) now read
via Eqs. (5.8.151), (5.8.152) as

σ2LjkIik + 2iσΩεjk3Lk
Ii
 + Ω2(LjkIik + LikIjk) − Ω2δj3(L3kIik + LikI3k)
−L
kWk
;ij + δijLkkΠ − iσηM1[Lij + Lji − (2δij/3)Lkk] = 0. (5.8.150)
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The kinematic viscosity η is connected to shear (dynamic) viscosity µ by µ = �η, and M1 denotes
the total mass of the polytrope. The viscous term in Eq. (5.8.150) arises if we repeat the derivation of
Eq. (3.1.83), by starting with the Narvier-Stokes equations (5.8.135) instead of the Eulerian equations
(3.1.79). The virial of the viscous pressure force is

∫
V

xi(∂τjk/∂xk) dV =
∫

V

[∂(xiτjk)/∂xk − τij ] dV =
∫

S

xiτjknk dS −
∫

V

τij dV = −
∫

V

τij dV,

(5.8.151)

where we have used the Gauss theorem (2.6.61) and the boundary condition (5.8.140). The required first
variation (5.8.7) of Eq. (5.8.151) results by inserting for the stress tensor from Eq. (5.8.136):

δ∗
∫

V

τij dV = δ∗
∫

V

�η[∂vi/∂xj + ∂vj/∂xi − (2δij/3) ∂vk/∂xk] dV

=
∫

V

�η ∆[∂vi/∂xj + ∂vj/∂xi − (2δij/3) ∂vk/∂xk] dV +
∫

V

� ∆η [∂vi/∂xj + ∂vj/∂xi

−(2δij/3) ∂vk/∂xk] dV ≈ η

∫
V

�
[
∂∆vi/∂xj + ∂∆vj/∂xi − (2δij/3) ∂∆vk/∂xk] dV

≈ η

∫
V

�
{
∂[D(∆xi)/Dt]

/
∂xj + ∂[D(∆xj)/Dt]

/
∂xi − (2δij/3) ∂[D(∆xk)/Dt]

/
∂xk

}
dV

≈ η

∫
V

�
{
∂[∂∆xi/∂xj + ∂∆xj/∂xi − (2δij/3) ∂∆xk/∂xk]

/
∂t
}

dV = iση

∫
V

�[∂∆xi/∂xj

+∂∆xj/∂xi − (2δij/3) ∂∆xk/∂xk] dV = iσηM1[Lij + Lji − (2δij/3)Lkk], (∆η � η).
(5.8.152)

To derive this final form we have considered Eqs. (5.1.19), (5.1.24), (5.8.33), neglecting second order
products of ∆η, ∂∆xi/∂xj , ∂vi/∂xj .

In the presence of viscosity the trial displacements (5.8.33) do not satisfy all the conditions (5.8.140)
imposed on the stress tensor Pij at the distorted boundary. But these displacements may still be used in
the present connection, provided we restrict our attention to small deviations from the inviscid solution,
i.e. to a small kinematic viscosity η (Rosenkilde 1967). Since second order harmonic deformations of
the tesseral and zonal type are damped by viscosity (Tassoul and Ostriker 1970), we concentrate on the
sectorial modes, proceeding with Eq. (5.8.150) in the same way as for the inviscid sectorial modes (5.8.97)
and (5.8.99). We obtain the homogeneous system

[σ2I11 + 2(Ω2I11 − W12;12) − 2iσηM1](L11 − L22) + 2iσΩI11(L12 + L21) = 0, (5.8.153)

−2iσΩI11(L11 − L22) + [σ2I11 + 2(Ω2I11 − W12;12) − 2iσηM1](L12 + L21) = 0. (5.8.154)

The determinant of this homogeneous system has to vanish for nontrivial solutions:

[σ2I11 + 2σ(−ΩI11 − iηM1) + 2(Ω2I11 − W12;12)]

×[σ2I11 + 2σ(ΩI11 − iηM1) + 2(Ω2I11 − W12;12)] = 0. (5.8.155)

Restricting ourselves to the first bracket (the last one is simply obtained by reversing the sense of
rotation from Ω to −Ω), we seek the solution under the perturbed form ση = σ2 + ∆ση, where σ2 is the
eigenvalue of the sectorial mode (5.8.102) that vanishes at the bifurcation point Ω2 = W12;12/I11, and
∆ση is the small correction due to viscosity. The first bracket yields up to the first order (Rosenkilde
1967, Chandrasekhar 1969, §37, Tassoul and Ostriker 1970):

∆ση = iσ2ηM1/I11(σ2 − Ω) = iηM1[(2W12;12/I11 − Ω2)1/2 − Ω]
/
I11(2W12;12/I11 − Ω2)1/2,

(η � 1). (5.8.156)

This equation, representing the contribution of the secular viscous stress term to the relevant sectorial
eigenvalue σ2, shows that the oscillations exp(i ∆ση t) are damped prior to the bifurcation point Ω2 =
W12;12/I11, but they grow between the bifurcation point and the point of onset of dynamical instability,
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Fig. 5.8.3 Principal axes of a perturbed viscid Maclaurin ellipsoid (n = 0) as it evolves monotonically
during the course of time into the corresponding Jacobi ellipsoid (Press and Teukolsky 1973).

when W12;12/I11 < Ω2 < 2W12;12/I11. In this range of Ω the viscous part i ∆ση is positive and exp(i ∆ση t)
increases; the polytrope is secularly unstable, with an e-folding time scale of

tη = 1/i ∆ση = I11(2W12;12/I11 − Ω2)1/2
/
ηM1[Ω − (2W12;12/I11 − Ω2)1/2]. (5.8.157)

Obviously, the characteristic time scale of viscous secular instability decreases from ∞ at the bifurca-
tion point Ω2 = W12;12/I11 to 0 at the point of dynamical instability Ω2 = 2W12;12/I11, should this point
ever been reached by the uniformly rotating polytrope.

In the case of a homogeneous Maclaurin ellipsoid (n = 0) we have Iij = δijM1a
2
i /5, (M1 =

4π�a1a2a3/3), and Eq. (5.8.156) turns into Eq. (135), §37 from Chandrasekhar (1969; W12;12/I11 →
2B11). As already mentioned at the end of Sec. 3.8.8, the ratio τ = Ekin/|W | ranges for the incom-
pressible Maclaurin spheroid from τ = 0 (spherical body) to τ = 0.5 [an infinitely thin disk having
a1 = a2 = ∞; a3 = 0; β = 0; Eqs. (5.10.217)-(5.10.223)], and for the incompressible Jacobi ellipsoids from
τb = 0.1375 at the bifurcation point to τ = 0.5 (infinitely thin needle having a1 = ∞; a2 = a3 = 0; β = 0).
If 0 ≤ τ ≤ τb, the Maclaurin spheroids are the only possible equilibrium figures, whereas in the range
τb < τ ≤ 0.5 to each value of τ there correspond two ellipsoidal figures of equilibrium: Maclaurin and
Jacobi ellipsoids. Since the total mechanical energy Ekin +W is smaller in a triplanar Jacobi ellipsoid as
compared to an axisymmetric Maclaurin ellipsoid having the same mass, density, and angular momen-
tum, we may expect that under the influence of viscous dissipation a Maclaurin spheroid with τ > τb

will gradually evolve by relative internal motions into a rigidly rotating Jacobi ellipsoid, where viscosity
ceases to play any role (Tassoul 1978). This has indeed been shown by direct numerical integration of the
Narvier-Stokes equations (5.8.138), (Press and Teukolsky 1973, and Fig. 5.8.3). If the combined influence
of viscosity and gravitational radiation reaction is taken into account, the triaxial Jacobi ellipsoid loses
angular momentum by gravitational radiation, and evolves towards a stable member of the Maclaurin
sequence having τ < τb (Detweiler and Lindblom 1977).

Eq. (5.8.156) shows that if a bifurcation point occurs in an axisymmetric, uniformly rotating poly-
tropic sequence, the polytrope will always become secularly unstable when τ > τb or Ω2 > W12;12/I11.
As noted at the end of Sec. 3.8.1, bifurcation points always occur in polytropes with index 0 ≤ n ≤ 0.808
if τ = τb ≈ 0.14 : We have τb = 0.1375 and 0.1374 if n = 0 and 0.6, respectively (Tassoul and Ostriker
1970). Axisymmetric polytropes are therefore always secularly unstable beyond the bifurcation point.
More centrally condensed polytropes with index n > 0.808 never reach a value of τ = 0.14, because equa-
torial mass loss already occurs at τc = 1.2×10−1, 5.95×10−2, 9.00×10−3, 1.19×10−3 if n = 1, 1.5, 3, 4,
respectively (Secs. 3.8.8, 6.1.8, Fig. 3.8.10, Table 5.8.2, Tassoul and Ostriker 1970, Hachisu 1986a). In
other words, the amount of rotational energy Ekin that a uniformly rotating, centrally condensed poly-
trope can store, is not very large as compared to its gravitational energy |W |; only in the small range
0 ≤ τ � 0.5 we can construct centrally condensed polytropic equilibrium figures, and no polytrope with
n > 0.808 is able to sustain enough rotational kinetic energy to reach the bifurcation value τb ≈ 0.14.
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As remarked by Tassoul (1978, p. 267), the close resemblance between the Maclaurin sequence and the
differentially rotating polytropic models of Bodenheimer and Ostriker (1973; cf. Fig. 3.8.2), and Ostriker
and Bodenheimer (1973; cf. Fig. 5.8.2) may be due to the fact that their inner level surfaces never
deviate greatly from Maclaurin spheroids. For these somewhat artificial models, bifurcation due to the
barlike (sectorial, toroidal) σ2-mode from Eq. (5.8.102) occurs always at τb ≈ 0.14 (if bifurcation occurs
at all). At the bifurcation point (σ = 0) these polytropes become secularly unstable to nonaxisymmetric
barlike disturbances. The onset of dynamical instability to barlike oscillations – when the eigenvalues
(5.8.102) become complex – takes place at τd = 0.26 ± 0.02. Higher order modes have been included in
the more elaborate investigations of the nonaxisymmetric secular (Imamura et al. 1995) and dynamical
(Toman et al. 1998, Imamura et al. 2000) instability of differentially rotating polytropic models.

5.8.4 Secular Instability Due to Gravitational Radiation Reaction

Chandrasekhar (1970) discovered that gravitational radiation reaction, i.e. reaction of the fluid
elements to the emission of gravitational waves, can cause a nonaxisymmetric normal mode with an
exp(ikϕ), (k ≥ 2) azimuthal dependence to become secularly unstable (Chandrasekhar-Friedman-Schutz
instability). This weak secular effect sets in at certain nonaxisymmetric points of bifurcation (τ = τb)
along a sequence of axisymmetric configurations. After exhausting its nuclear fuel a star may collapse
to a white dwarf (1.5 ≤ n ≤ 3, Sec. 1.6) or to a neutron star (0.5 � n � 1, Imamura et al. 1985), and
the resulting compact object may be rapidly rotating, having τ = Ekin/|W | > τb. Secular instabilities
caused by viscosity or gravitational radiation reaction could drive the object away from the axisymmetric
state to a nonaxisymmetric configuration, whereby kinetic rotational energy would be dissipated, until a
secularly stable state is reached (Lindblom and Detweiler 1977).

A necessary condition for the onset of secular instability to gravitational radiation reaction is the
occurrence of a neutral mode (σ = 0) in the inertial frame, where the object is considered (Managan
1986). Instability due to viscosity sets in when a mode has zero frequency σ = 0 in a frame corotating
with the polytrope. Because the gravitational radiation emitted by a secularly unstable, nonaxisymmetric
mode will carry off angular momentum (e.g. Landau and Lifschitz 1987), the final rotation rate of a
compact object [white dwarf, neutron star (pulsar)] is in principle limited by this instability, provided the
magnetic field is as ineffective in spinning down the object, as seems to be the case for millisecond pulsars
(Friedman 1983). The neutral modes of nonaxisymmetric perturbations determine the critical angular
velocities at which secular instabilities caused by dissipative processes first occur, and constitute upper
limits to the rotation rates of compact objects, attracting much interest since the discovery of rapidly
rotating pulsars.

The Burke-Thorne formalism includes the general relativistic effect of gravitational radiation reaction
on an otherwise Newtonian system, by adding to the Newtonian gravitational potential Φ, the gravita-
tional radiation-reaction potential (e.g. Miller 1973)

Φg = −(G/15c5) d5[xixj(3Iij − δijI

)]/dt5, (I

 = I11 + I22 + I33). (5.8.158)

The equations of motion of the polytrope in an inertial frame are then

� Dvi/Dt = −∂P/∂xi + � ∂(Φ + Φg)/∂xi = −∂P/∂xi + � ∂Φ/∂xi

−(2�G/15c5)(3xj d5Iij/dt5 − xi d5I

/dt5). (5.8.159)

The contribution made by gravitational radiation reaction to the second order virial equations (3.1.83)
is given by

∫
V

xk(∂Φg/∂xi) dV = −(2G/15c5)
∫

V

(3xjxk d5Iij/dt5 − xixk d5I

/dt5)� dV

= −(2G/15c5)(3Ijk d5Iij/dt5 − Iik d5I

/dt5). (5.8.160)

where the fifth time derivative of the moments of inertia can be taken outside the volume integral. The
small radiation-reaction term (5.8.160) is simply added to the virial equations (3.1.83). Again, tesseral and
zonal modes are unaffected or damped by gravitational radiation reaction, and we concentrate ourselves
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on the characteristic equation for the sectorial (bar) modes, i.e. the first bracket of Eq. (5.8.101) in the
nonrelativistic limit D = 0 (Miller 1973):

σ2 − 2σΩ + 2(Ω2 − W12;12/I11) + 4iD(2Ω − σ)5/5 = 0; D = (G/c5)
∫

V

x2
1� dV = GI11/c5.

(5.8.161)

Letting σ = σ1 + ∆σg, (|∆σg| � σ1), where σ1 is the sectorial eigenvalue from Eq. (5.8.102), we get

∆σg = 2iD(2Ω − σ1)5/5(Ω − σ1) = 2iD[(2W12;12/I11 − Ω2)1/2 − Ω]5
/
5(2W12;12/I11 − Ω2)1/2,

(5.8.162)

with a characteristic e-folding time of the gravitational radiation-reaction instability equal to

tg = 1/i ∆σg = 5(2W12;12/I11 − Ω2)1/2
/
2D[Ω − (2W12;12/I11 − Ω2)1/2]5. (5.8.163)

It is seen at once that i ∆σg ≤ 0 if 0 ≤ Ω2 ≤ W12;12/I11, and i ∆σg > 0 if W12;12/I11 < Ω2 <
2W12;12/I11. In the latter case exp(i ∆σg t) grows continuously, and the polytrope becomes secularly
unstable to gravitational radiation reaction via the sectorial σ1-mode, whereas secular instability due to
viscosity occurs via the other sectorial σ2-mode from Eq. (5.8.102). The variation of tg with Ω is perfectly
analogous to that of tη from Eq. (5.8.157).

Thus, all uniformly rotating polytropes with index n < 0.808, exhibiting a second harmonic neutral
sectorial mode (P±2

2 (cosλ) exp(±2iϕ) if Ω = 0), that deforms them into a triaxial configuration (Sec.
3.8.1, James 1964), are secularly unstable to gravitational radiation reaction beyond the bifurcation point.

For the rotating, incompressible, constant density ellipsoids (n = 0) there emerges from the second
order virial equations the following evolutionary picture: Only the unperturbed Maclaurin and Dedekind
ellipsoids (Sec. 3.2, Chandrasekhar 1969) do not emit gravitational radiation, because Iij is constant
for these ellipsoids as seen in an inertial frame, and therefore Φg = 0. All other classical ellipsoids must
emit gravitational radiation, lose energy and angular momentum, and thereby evolve. Since evolution
must ultimately proceed towards a nonradiating state, and since the triaxial Dedekind ellipsoid has a
lower mechanical energy than the Maclaurin spheroid, the gravitational radiation driven evolution of the
secularly unstable Maclaurin ellipsoid is towards the Dedekind ellipsoid. The combined secular effects
of viscosity and gravitational radiation tend to cancel each other, and the sequence of secularly stable
Maclaurin spheroids reaches in this case past the classical bifurcation point, up to a new bifurcation
point, which is determined by the relative strength of both viscosity and gravitational radiation reaction
(Detweiler and Lindblom 1977, Lindblom and Detweiler 1977, Shapiro and Teukolsky 1983, §7.3).

These findings have been confirmed for rotating 0 < n < 1.25 polytropes (resembling neutron stars)
with an independent method by Ipser and Lindblom (1990, 1991). They investigate 2 ≤ j = k ≤ 6 modes,
which reduce in the nonrotating limit to the Kelvin f -modes [Eq. (5.7.27)]; these modes – together with
the rotational modes to be mentioned below – are responsible for the gravitational radiation induced
instability.

The general relativistic calculations of Yoshida and Eriguchi (1997) with the Cowling approximation
[Eqs. (5.2.119)-(5.2.121)] agree in the nonrelativistic limit with the entries from Table 5.8.2 only for
the n = 1.5 polytrope [see also Yoshida and Eriguchi (1995, Table 2)]. More recently, Stergioulas and
Friedman (1998) have shown that the fundamental f(j = k = 2) bar mode becomes unstable in relativistic
polytropes with a softer equation of state (n ≤ 1.3) than the stiffer Newtonian limit n < 0.808 of James
(1964, and Sec. 3.8.1). For instance, in the isentropic n = 1/(Γ1 − 1) = 1 polytrope the f -modes become
unstable at τ = 0.065, 0.045, 0.035, 0.025 if j = k = 2, 3, 4, 5, respectively. The Newtonian quotes
from Table 5.8.2 are considerably larger if j = k = 3, 4, 5. Cutler and Lindblom (1992) did not find the
j = k = 2 bar mode to be unstable in the rotating post Newtonian n = 1 polytrope – opposite to the
previously mentioned fully relativistic calculations of Stergioulas and Friedman (1998).

In general relativity the onset of gravitational radiation driven instability by the j = k = 2 bar mode
at n ≤ 1.3, no longer coincides with the onset of viscosity induced instability. The latter seems to have
a critical relativistic polytropic index only slightly larger than the Newtonian value n = 0.808 of James
(1964), (Bonazzola et al. 1996).

Mainly for two reasons the secular instability under the influence of gravitational radiation reaction is
physically interesting only for low values of k in nonaxisymmetric modes with an azimuthal dependence
exp(ikϕ) : (i) If k increases, the growth time scale of the instability rapidly becomes too large to be of any
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Table 5.8.2 Bifurcation values τb of τ = Ekin/|W | when σ = 0, and secular instability due to gravitational
radiation reaction becomes effective in uniformly rotating, axisymmetric Newtonian polytropes under the influence
of nonaxisymmetric perturbations with an azimuthal dependence exp(ikϕ), (j = k). The entries are a compilation
of the values listed by Imamura et al. (1985), Managan (1985), Stergioulas and Friedman (1998). The value 0.14
for n = 0.5, k = 2 is extrapolated from Tassoul and Ostriker (1970). Shown is also the critical value τc = Ekin/|W |
against equatorial mass loss, as mentioned in Secs. 3.8.8, 5.8.3, 6.1.8, and depicted in Fig. 3.8.10. a + b means
a × 10b.

n τc k = 2 k = 3 k = 4 k = 5

0 − 1.38−1 9.91−2 7.71−2 6.29−2
0.5 1.9−1 1.4−1 9.6−2 6.8−2 −
1 1.2−1 − 7.92−2 5.79−2 4.62−2
1.5 5.95−2 − 5.61−2 4.33−2 3.36−2
2 − − 3.35−2 2.81−2 2.28−2
3 9.00−3 − 9.0−3 8.3−3 7.5−3

physical interest in neutron stars or other compact objects. (ii) If dissipation by viscosity is comparable
to energy loss by gravitational radiation, the viscosity damps modes with k � 5. Therefore, Imamura et
al. (1985) and Managan (1985, 1986) have calculated for nonaxisymmetric modes with k = 2, 3, 4, 5 the
critical values τ = τb at the bifurcation points σ = 0, when axisymmetric polytropes become secularly
unstable to gravitational radiation reaction. The bifurcation values τb decrease as k increases, so secular
instabilities occur for k > 2, even if n > 0.808 (Table 5.8.2). As outlined previously, secular instabilities
due to gravitational radiation reaction occur in Newtonian polytropes for the j = k = 2 barlike mode
only if n < 0.808.

We have already noted that the trial eigenfunctions (5.8.33) provide only approximate results for uni-
formly rotating polytropes if n �= 0. Besides, for differentially rotating configurations these eigenfunctions
do not satisfy the requirement that the Lagrangian perturbation of the velocity circulation

∆
∮

C

vi dxi = 0, (5.8.164)

vanishes for any curve C on an isentropic fluid surface (Bardeen et al. 1977). However, Durisen and
Imamura (1981) have shown that the induced errors are only about 1-7% for the differentially rotating
polytropes considered by Bodenheimer and Ostriker (1973), and Ostriker and Bodenheimer (1973).

The so-called rotational modes are also susceptible to the Chandrasekhar-Friedman-Schutz instability
(e.g. Lockitch and Friedman 1999, Yoshida and Lee 2000a, b). Practically all discussions of nonaxisym-
metric oscillations are based on the polar (even-parity, spheroidal) modes

∆r = Rjk(r) Y k
j (λ, ϕ) exp(iσt); ∆λ = [Sjk(r)/r2][∂Y k

j (λ, ϕ)/∂λ] exp(iσt);

∆ϕ = [Sjk(r)/r2 sin2 λ][∂Y k
j (λ, ϕ)/∂ϕ] exp(iσt), (5.8.165)

from Eqs. (5.2.87)-(5.2.90), (5.5.27), (5.7.82).
A second class of axial (odd-parity, toroidal) modes can be found with the separation (e.g. Cox 1980,

p. 222)

∆r = 0; ∆λ = [Tjk(r)/r2 sinλ][∂Y k
j (λ, ϕ)/∂ϕ] exp(iσt);

∆ϕ = −[Tjk(r)/r2 sinλ][∂Y k
j (λ, ϕ)/∂λ] exp(iσt). (5.8.166)

For a spherical mass the polar modes can be divided into the well-known subclasses of p and f -modes
(pressure as the dominant restoring force), and g-modes (gravity dominated modes), (see Sec. 5.2).

In a nonrotating Newtonian equilibrium sphere the axial modes (5.8.166) are time independent
(σ = 0), having vanishing Lagrangian and Eulerian perturbations of pressure (density) and gravita-
tional potential (e.g. Lockitch and Friedman 1999). Only the axial velocity perturbations are nonzero
in a nonrotating sphere, giving rise to a slow twisting of the system. Rotation mixes the polar and axial
contributions to the velocity perturbation. In spherical coordinates the Eulerian velocity perturbation is
given by Eq. (5.1.23), and assumes for uniform rotation and ∆�r(�, ϕ, z, t) ∝ exp[i(σt + kϕ)] the form (cf.
Eq. (5.9.43) if Ω �= const) :

δ�v = i(σ + kΩ) ∆�r. (5.8.167)
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The rotational modes are induced by the Coriolis force [the last term in Eq. (3.1.79)], and generally
possess comparable axial and polar velocity components. These hybrid rotational modes are termed
inertial modes or generalized r-modes. A subclass of the rotational modes are the so-called pure r-modes,
when the velocity perturbations (5.8.167) are dominated by axial Lagrangian displacements of the form
(5.8.166).

The secular instability due to gravitational radiation reaction of rotational modes – when σ(σ+kΩ) < 0
– has been examined by Lockitch and Friedman [1999, Eq. (55)], and Yoshida and Lee (2000a, Eqs. (43),
(44); 2000b) for homogeneous n = 0, and neutron star-like n = 1 Newtonian polytropes. Among the most
unstable rotational modes in the presence of viscous damping are the r-modes with 2 ≤ j = |k| � 10, the
strongest appearing to be j = |k| = 2 mode. Eigenvalues of r-modes in differentially rotating polytropes
(n = 0.5, 1, 1.5) have been calculated by Karino et al. (2001).

The secular and dynamical evolution of polytropic, ellipsoidal close binaries (neutron star binary,
black hole - neutron star binary, brown and white dwarf binary), including the influence of viscosity and
gravitational radiation reaction, has been followed up by Lai et al. (1994b), and Lai and Shapiro (1995),
(see also Sec. 5.7.4).
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5.9 Stability and Oscillations of Rotating Polytropic Cylinders

5.9.1 The Homogeneous, Uniformly Rotating Cylinder n = 0n = 0n = 0

Small linearized oscillations are obtained if we project the equations of motion (5.7.1) onto uniformly
rotating cylindrical (�, ϕ, z)-axes [�v = �v(v
, vϕ, vz); �Ω = �Ω(0, 0, Ω)] :

Dv
/Dt − 2Ωvϕ = −(1/�) ∂P/∂� + ∂Φ/∂� + Ω2�;
Dvϕ/Dt + 2Ωv
 = −(1/��) ∂P/∂ϕ + (1/�) ∂Φ/∂ϕ;
Dvz/Dt = −(1/�) ∂P/∂z + ∂Φ/∂z. (5.9.1)

We apply the Eulerian variations (5.2.23) to this system in the same way as for Eqs. (5.7.3)-(5.7.5),
(δ(Ω2�) = 0), (Robe 1968b, Hansen et al. 1976):

σ2 ∆� + 2iσΩ� ∆ϕ = (1/�) ∂δP/∂� − (δ�/�2) ∂P/∂� − ∂δΦ/∂�, (5.9.2)

σ2� ∆ϕ − 2iσΩ ∆� = (1/��) ∂δP/∂ϕ − (δ�/�2�) ∂P/∂ϕ − (1/�) ∂δΦ/∂ϕ, (5.9.3)

σ2 ∆z = (1/�) ∂δP/∂z − (δ�/�2) ∂P/∂z − ∂δΦ/∂z. (5.9.4)

We have taken into account that for small oscillations – when the unperturbed configuration is in
hydrostatic equilibrium (�vu = 0; δ�v ≈ ∆�v = �v) – we have via Eqs. (5.1.24), (5.1.29), (5.1.30):

D(δ�v)/Dt ≈ D(∆�v)/Dt = D2(∆�r)/Dt2 ≈ ∂2∆�r/∂t2 = −σ2 ∆�r. (5.9.5)

The basic equations of linear oscillations (5.9.2)-(5.9.4) have been derived by using the small cylindrical
displacements

∆�r(�, ϕ, z, t) = ∆�r[∆�(�, ϕ, z, t), � ∆ϕ(�, ϕ, z, t), ∆z(�, ϕ, z, t)] = ∆�r(�, ϕ, z) exp(iσt);
∆�(�, ϕ, z, t) = ∆�(�) exp[i(σt + kϕ + jz)], (5.9.6)

and the small velocity components (5.1.30)

δv
 ≈ v
 = d�/dt = ∆v
 ≈ ∂∆�/∂t = iσ∆�; δvϕ ≈ vϕ = � dϕ/dt = ∆vϕ ≈ ∂(� ∆ϕ)/∂t = iσ� ∆ϕ;
δvz ≈ vz = dz/dt = ∆vz ≈ ∂∆z/∂t = iσ∆z. (5.9.7)

The separation of variables for the Eulerian variation of pressure, density, and internal gravitational
potential is assumed under the form (cf. Eq. (5.6.34), Cretin and Tassoul 1965, Robe 1968b)

δP (�, ϕ, z, t) = δP (�) exp[i(σt + kϕ + jz)]; δ�(�, ϕ, z, t) = δ�(�) exp[i(σt + kϕ + jz)];
δΦ(�, ϕ, z, t) = δΦ(�) exp[i(σt + kϕ + jz)]. (5.9.8)

σ, j, k have the same meaning as in Sec. 5.6, and it suffices to consider only nonnegative values of the
integer azimuthal number k.

In their study on the nonaxisymmetric oscillations of a homogeneous, uniformly rotating cylinder,
Cretin and Tassoul (1965) consider only oscillations having j = 0. We are left with the equations of
motion (5.9.2) and (5.9.3), where the term (δ�/�2�) ∂P/∂ϕ is negligible, since the unperturbed hydrostatic
pressure is independent of ϕ : Pu = Pu(�). We eliminate ∆ϕ between Eqs. (5.9.2) and (5.9.3), taking
into account the representation (5.9.8), and simplifying with the common factor exp[i(σt + kϕ)] :

(σ2 − 4Ω2) ∆� = d(δP/� − δΦ)/d� + (2kΩ/σ�)(δP/� − δΦ) − (δ�/�2) dP/d�. (5.9.9)
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With the stated assumptions, the equation of continuity (5.6.80), the adiabatic energy equation
(5.6.81), and Poisson’s equation (5.6.84) take the simplified form

δ�/� + (1/�) ∂(� ∆�)/∂� + (1/�) ∂(� ∆ϕ)/∂ϕ = 0, (5.9.10)

δP + ∆� dP/d� = Γ1P δ�/�, (5.9.11)

(1/�) d(� dδΦ/d�)
/
d� − k2 δΦ/�2 = −4πG δ�, (5.9.12)

suppressing in Eqs. (5.9.11), (5.9.12) the common factor exp[i(σt + kϕ)]. Let us now eliminate � ∆ϕ
between Eqs. (5.9.3) and (5.9.10):

δ�/� + (1/�) ∂(� ∆�)/∂� + (1/σ2�) ∂[2iσΩ ∆� + (1/�) ∂(δP/� − δΦ)/∂ϕ]
/
∂ϕ = 0, (5.9.13)

or

σ2[d∆�/d� + (∆�/�)(1 − 2kΩ/σ) + δ�/�] − (k2/�2)(δP/� − δΦ) = 0, (5.9.14)

omitting again in Eq. (5.9.14) the common factor exp[i(σt + kϕ)].
Now, δP/� − δΦ and its derivative can be eliminated between Eqs. (5.9.9) and (5.9.14):

(1/�) d[� d(� ∆�)/d�]
/
d� − k2 ∆�/� + � d(δ�/�)

/
d� + (δ�/�)[2k2πG�(1 − β)/σ2 + 2 + 2kΩ/σ] = 0,

(5.9.15)

where dP/d� = −2πG�2�(1 − β) in virtue of Eq. (3.9.13). We insert from Eq. (5.9.11) for δP into
Eqs. (5.9.9), (5.9.14), obtaining in this way δΦ and dδΦ/d� as a function of δ�, ∆�, and their derivatives.
Inserting for δΦ into Poisson’s equation (5.9.12), and eliminating d[� d(� ∆�)/d�]

/
d� − k2 ∆� via Eq.

(5.9.15), Cretin and Tassoul (1965) get after some lengthy algebra an equation which is formally identical
to Eq. (5.6.51), as obtained by Ostriker (1964c):

(1 − x2) d2ε/dx2 + (1/x − 5x) dε/dx + (B − k2/x2) ε = 0,

(n = 0; j = 0; k = 0, 1, 2, ...; x = �/�1; ε = δ�/�; � = �0 = const). (5.9.16)

The constant

B = (4/Γ1)
{
[ω2 + (1 − Γ1) + β(Γ1 − 2)]/(1 − β) + (k2/4)[Γ1 − (1 − β)/ω2 − 25/2β1/2/kω]

}
,

(ω2 = σ2/4πG�; β = Ω2/2πG�), (5.9.17)

is equal to the constant from Eq. (5.6.52) if the cylinder is nonrotating (β = 0). The solution of Eq.
(5.9.16) is given as in the nonrotating case by Eqs. (5.6.53)-(5.6.56), where B should be taken from
Eq. (5.9.17). However, the fourth order equation (5.6.57) for the determination of the dimensionless
oscillation frequency ω = σ/(4πG�)1/2 is now obtained by equating Eq. (5.6.56) with Eq. (5.9.17):

ω4 − [Γ1(1 − β)(m + 1)(m + k + 1) + 2β − 1] ω2 − 21/2kβ1/2(1 − β) ω − k2(1 − β)2/4 = 0,

(n = 0; j = 0; k = 0, 1, 2, ...; m = 0, 1, 2, ...). (5.9.18)

The oscillation frequencies of the quasiradial modes (k = 0) are obtained at once from the previous
equation

ω2 = σ2/4πG� = Γ1(1 − β)(m + 1)2 + 2β − 1, (n = 0; j, k = 0; m = 0, 1, 2, ...), (5.9.19)

becoming equal to Eq. (5.6.60) in the nonrotating case β = 0. Obviously, these radial modes are always
stable, since 0 ≤ β ≤ 1 [cf. Eq. (3.9.12)], and Γ1 ≥ 1 (cf. Sec. 1.7). The condition σ2 ≥ 0 implies

Γ1 ≥ 1 ≥ (1 − 2β)
/
(1 − β)(m + 1)2, (n, j, k = 0; 0 ≤ β ≤ 1). (5.9.20)

Cretin and Tassoul (1965) solve numerically Eq. (5.9.18) for nonaxisymmetric oscillations j = 0, k �=
0. The case k = ±1 presents little interest, as it amounts to a simple displacement of the cylindrical
axis. Two of the four oscillation frequencies σ1/(2πG�)1/2, σ2/(2πG�)1/2 are real numbers of different
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Fig. 5.9.1 Normalized eigenfrequencies for nonaxisymmetric oscillations of the homogeneous, uniformly
rotating cylinder if Γ1 = 5/3, n = 0, � = �0 = const, β = Ω2/2πG�. Left-hand side: The stable p-modes
σ1/(2πG�)1/2 and σ2/(2πG�)1/2 from Eq. (5.9.18) if k = 2, 3 and m = 0 (solid curves), m = 1 (broken
curves). Right-hand side: The real (bottom) and imaginary (top) parts of the dimensionless eigenfrequencies
σ3,4/(2πG�)1/2 = ωr + iωi for the g-modes if k = 2, 3 and m = 0, 1 with β ≤ βs. Solid curves are for m = 0,
broken ones for m = 1. The two dotted curves, originating at βs = 0.795, represent the stable real eigenfrequencies
ωr if k = 2, m = 0, and 0.795 ≤ β ≤ 1 (Cretin and Tassoul 1965).

sign, corresponding to the stable p-modes from Eq. (5.6.58) if β = 0. Their limiting value ±21/2 if
β → 1 results at once from Eq. (5.9.18) with σ1,2/(2πG�)1/2 = 21/2ω. The two remaining frequencies
σ3,4/(2πG�)1/2 – reducing in the nonrotating case to the purely imaginary unstable g-modes (5.6.59)
– are now complex numbers, as long as the rotation parameter β = Ω2/2πG� is below some limiting
value βs, depending on Γ1, k, and m. If Γ1 = 5/3, Cretin and Tassoul (1965) obtain: βs = 0.795 if
k = 2, m = 0; βs = 0.845 if k = 3, m = 0; βs = 0.925 if k = 2, m = 1; βs = 0.940 if k = 3, m = 1. The
g-modes are stable if βs ≤ β ≤ 1 : The oscillation frequencies are real numbers, their common limiting
value 0 being approached as β → 1 (Fig. 5.9.1).

5.9.2 Uniformly Rotating Cylinders with Polytropic Index 0 < n ≤ ∞0 < n ≤ ∞0 < n ≤ ∞

Introducing the Eulerian perturbations (5.2.23) into the equation of motion (5.7.1), we obtain via
Eqs. (5.1.24), (5.9.5) the basic equation of small adiabatic oscillations of a rotating cylinder in a frame
rotating at uniform angular speed Ω (e.g. Robe 1968b):

∂2∆�r/∂t2 = −(1/�) ∇δP + (δ�/�2) ∇P + ∇δΦ − 2�Ω × (∂∆�r/∂t), (δ[�Ω × (�Ω × �r)] = 0). (5.9.21)

Inserting for ∂∆�r/∂t = iσ ∆�r, and for the pressure and potential terms from Eq. (5.2.86), we get

σ2 ∆�r = ∇(δP/� − δΦ) + �A[δP/� + (1/�)(∆�r · ∇P )] + 2iσ �Ω × ∆�r. (5.9.22)

The projection of this equation onto the coordinate axes yields, with A given by Eq. (5.10.2), [ �A =
�A(A, 0, 0); P = P (�)] :

σ2 ∆� = ∂(δP/�)
/
∂� − ∂δΦ/∂� + A δP/� + (A ∆�/�) dP/d� − 2iσΩ� ∆ϕ, (5.9.23)

σ2� ∆ϕ = (1/�) ∂(δP/�)
/
∂ϕ − (1/�) ∂δΦ/∂ϕ + 2iσΩ ∆� = (ik/�)(δP/� − δΦ) + 2iσΩ ∆�,

(5.9.24)
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Fig. 5.9.2 Left-hand side: Stable quasiradial modes (j, k = 0; β = Ω2/2πG�0) of the uniformly rotating
cylinder with polytropic index n = 1. The three lower curves represent the squared normalized eigenfrequencies
σ2

0/πG�0 of the fundamental quasiradial mode for different adiabatic exponents, the three upper curves are for the
first overtone σ2

1/πG�0. Right-hand side: Normalized eigenfrequencies |σ|/(πG�0)
1/2 of nonaxisymmetric stable

p± and f±-modes of the uniformly rotating cylinder if n = 1, j = 0, k = 2, Γ1 = 5/3, β = Ω2/2πG�0 (Robe
1968b).

σ2 ∆z = ∂(δP/�)
/
∂z − ∂δΦ/∂z = ij(δP/� − δΦ). (5.9.25)

Like in Eq. (5.9.9) we eliminate ∆ϕ between Eqs. (5.9.23) and (5.9.24):

∂(δP/�)
/
∂� = [σ2 − 4Ω2 − (A/�) dP/d�] ∆� − A δP/� + ∂δΦ/∂� − (2kΩ/σ�)(δP/� − δΦ).

(5.9.26)

To get a further basic equation, we may eliminate δ� between the continuity equation (5.2.28) and
the adiabatic energy equation (5.2.78) if Q = const :

δP/Γ1P + (∆�r · ∇P )/Γ1P + ∇ · ∆�r = δP/Γ1P + (∆�/Γ1P ) dP/d�

+(1/�) ∂(� ∆�)/∂� + (1/�) ∂(� ∆ϕ)/∂ϕ + ∂∆z/∂z = 0. (5.9.27)

We substitute for � ∆ϕ and ∆z from Eqs. (5.9.24) and (5.9.25), (∂∆�/∂ϕ = ik ∆�; ∂∆z/∂z = ij ∆z) :

∂(� ∆�)/∂� = [2kΩ/σ� − (1/Γ1P ) dP/d�] � ∆� − � δP/Γ1P + (k2 + j2�)(δP/� − δΦ)/σ2�. (5.9.28)

If we insert the decompositions from Eqs. (5.9.6), (5.9.8) into Eqs. (5.9.28), (5.9.26), (5.6.84),
suppressing the common factor exp[i(kϕ + jz)], we obtain with the variables u(�) = � ∆�(�), y(�) =
δP (�)/�(�) from Eq. (5.6.36) the three basic equations for the determination of the unknowns u, y, δΦ :

du/d� = [2kΩ/σ� − (1/Γ1P ) dP/d�] u − ��y/Γ1P + (k2 + j2�)(y − δΦ)/σ2�, (5.9.29)

dy/d� = [σ2 − 4Ω2 − (A/�) dP/d�] u/� − Ay + dδΦ/d� − (2kΩ/σ�)(y − δΦ), (5.9.30)

(1/�) d(� dδΦ/d�)
/
d� − (k2/�2 + j2) δΦ = 4πG�(Au/� − �y/Γ1P ). (5.9.31)
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Fig. 5.9.3 Left-hand side: Complex normalized eigenfrequencies ω = (σr + iσi)/(πG�0)
1/2 = ωr + iωi of

unstable g1 and g2-modes for the uniformly rotating cylinder if n = 1, j = 0, k = 2, Γ1 = 5/3, β = Ω2/2πG�0.
Right-hand side: Normalized eigenfrequencies |σ|/(πG�0)

1/2 of stable p±, f±, g±-modes for the uniformly rotating
cylinder if n = 3, j = 0, k = 2, Γ1 = 5/3, β = Ω2/2πG�0 (Robe 1968b).

Like in the nonrotating case, the boundary conditions are given by Eqs. (5.6.88), (5.6.92).
Robe (1968b) has solved numerically the system (5.9.29)-(5.9.31) for the polytropic indices n = 1, 3, 6,

calculating eigenvalues of quasiradial (j, k = 0) and nonaxisymmetric (j = 0; k = 2) oscillations (Figs.
5.9.2, 5.9.3). The quasiradial oscillations become strictly radial in absence of rotation, and they always
conserve the axial symmetry of the rotating cylinder. The elimination of the potential δΦ from Eqs.
(5.9.29)-(5.9.31) proceeds for quasiradial oscillations (j, k = 0) exactly as in the nonrotating case [Eqs.
(5.6.93)-(5.6.96)], and we are left with the system

du/d� + u (dP/d�)
/
Γ1P = −��y/Γ1P, (5.9.32)

dy/d� + Ay = [σ2 − 4Ω2 − (A/�) dP/d� + 4πG�] u/�. (5.9.33)

If n = 1, (Γ1 = 1, 4/3, 5/3; Fig. 5.9.2), the stability of the fundamental quasiradial mode is always
enhanced with increasing rotation speed, just as for the homogeneous cylinder. Eq. (5.9.19) becomes
ω2 = Γ1 − 1 + (2 − Γ1)β if n = 0 and m = 0. On the other hand, if n = 3 and 6, (Γ1 = 5/3), rotation
decreases (destabilizes) the eigenvalues of quasiradial modes (Robe 1968b).

Like in the spherical case, rotation lifts the degeneracy of the nonrotating eigenvalues (σ2
+ = σ2

−)
with respect to the azimuthal coordinate ϕ, yielding two distinct eigenvalues σ2

+ �= σ2
− for the p, f, and

g-modes of the rotating cylinder if k = 2, j = 0. Like in the nonrotating case from Sec. 5.6, the g-modes
become unstable if A > 0, which amounts to n < 1.5 if Γ1 = 5/3. The left-hand side of Fig. 5.9.3 shows
the complex eigenvalues if n = 1 as a function of 2β = Ω2/πG�0. Although the imaginary part diminishes
continuously with increasing rotation, there is no value of β, (β ≤ βc = 0.287 if n = 1, Table 3.9.1)
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compatible with hydrostatic equilibrium, for which the g-mode becomes stable (σ – real), quite opposite
to the homogeneous cylinder (Fig. 5.9.1), which constitutes probably a singular case (Robe 1968b). The
p and f -modes are always stable (σ2 > 0), as well as the g-modes if A < 0.

The nonaxisymmetric oscillations of uniformly rotating, truncated isothermal cylinders (n = ±∞)
have been considered by Hansen et al. (1976) if β = 0.05, Γ1 = 5/3, j = 0, k = 2. Besides stable p, f,
and g+-modes – as for the nonrotating isothermal cylinder from Fig. 5.6.3 – they find also an unstable
g−-mode with complex eigenvalues, changing in a curious manner as the radius of the cutted cylinder
increases form ξ1 = 14 (when the first density inversion occurs in Fig. 3.9.1 if β = 0.05) to ξ1 = 58.8.

5.9.3 Differentially Rotating Cylinders

As far as I know, oscillations of differentially rotating polytropic cylinders have been investigated by
Robe (1979), Veugelen (1985b, c), Ishibashi and Ando (1985, 1986). The rotation law adopted by Robe
(1979) is [cf. Eq. (3.9.15)]: Ω(�) = a0/(1 + a1�

2), (n = 1; a0 > 0; a1 ≥ 0; a0, a1 = const). Veugelen’s
(1985b) rotation law is

Ω(�) = Ω0[1 − (1 − Ωs/Ω0)�2/�21], (n = 3). (5.9.34)

Ω0 and Ωs are the angular velocities on the axis and at the surface, respectively.
Since we are considering a medium in nonuniform rotation, the relevant equations are written in an

inertial frame, with the velocity of the initial unperturbed equilibrium state equal to �vu = �vu[0, �Ω(�), 0].
Taking into account the material derivative (B.51), and inserting into the equation of motion (5.2.10) the
Eulerian perturbations (5.2.23), we get up to the first order (�v = �v(δv
, �Ω + δvϕ, δvz), Robe 1979):

∂δv
/∂t + Ω ∂δv
/∂ϕ − 2Ω δvϕ = (δ�/�2) ∂P/∂� − (1/�) ∂δP/∂� + ∂δΦ/∂�

= −∂(δP/� − δΦ)/∂� − A δP/� − (A ∆�/�) dP/d�, (5.9.35)

∂δvϕ/∂t + Ω ∂δvϕ/∂ϕ + [Ω + d(�Ω)/d�] δv
 = (δ�/�2�) ∂P/∂ϕ − (1/��) ∂δP/∂ϕ + (1/�) ∂δΦ/∂ϕ,
(5.9.36)

∂δvz/∂t + Ω ∂δvz/∂ϕ = (δ�/�2) ∂P/∂z − (1/�) ∂δP/∂z + ∂δΦ/∂z. (5.9.37)

The continuity equation (5.2.1) becomes in the same way via Eq. (B.46)

∂δ�/∂t + Ω ∂δ�/∂ϕ + (1/�) ∂(�� δv
)/∂� + (1/�) ∂(� δvϕ)/∂ϕ + ∂(� δvz)/∂z = 0, (5.9.38)

while the adiabatic energy equation (5.2.78)

δP + ∆�r · ∇P = (Γ1P/�)(δ� + ∆�r · ∇�), (Q = const), (5.9.39)

and Poisson’s equation (5.2.40) preserve their usual form. Up to now, we have not assumed, as did
Robe (1967, 1968b, 1979), Hansen et al. (1976), that ∆ϕ and ∆z change in the same way as ∆� with
the common factor exp[i(σt + kϕ + jz)]. To make further progress, we will now assume besides the
decompositions (5.9.6), (5.9.8) that

∆�r(�, ϕ, z, t) = ∆�r(�) exp[i(σt + kϕ + jz)]; ∆�(�, ϕ, z, t) = ∆�(�) exp[i(σt + kϕ + jz)];
∆ϕ(�, ϕ, z, t) = ∆ϕ(�) exp[i(σt + kϕ + jz)]; ∆z(�, ϕ, z, t) = ∆z(�) exp[i(σt + kϕ + jz)], (5.9.40)

and

δ�v(�, ϕ, z, t) = δ�v(�) exp[i(σt + kϕ + jz)]. (5.9.41)

Since |�vu| = �Ω(�) is no longer small, the Eulerian velocity perturbation δ�v is related to the Lagrangian
displacement vector ∆�r by Eq. (5.1.23) – where all derivatives act in the inertial, cylindrical curvilinear
coordinate system from Eq. (B.44) – and we get in virtue of Eq. (5.1.23):

δ�v = ∂∆�r/∂t + Ω ∂(∆� �e
 + � ∆ϕ �eϕ + ∆z �ez)/∂ϕ − [d(�Ω)/d�] ∆� �eϕ − Ω� ∆ϕ ∂�eϕ/∂ϕ

= (∂∆�/∂t + Ω ∂∆�/∂ϕ) �e
 +
[
∂(� ∆ϕ)/∂t + Ω ∂(� ∆ϕ)/∂ϕ − �(dΩ/d�) ∆�

]
�eϕ

+(∂∆z/∂t + Ω ∂∆z/∂ϕ) �ez. (5.9.42)
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Using the decomposition (5.9.40), the components of the Eulerian velocity perturbation are

δv
 = i(σ + kΩ) ∆�; δvϕ = i(σ + kΩ)� ∆ϕ − �(dΩ/d�) ∆�; δvz = i(σ + kΩ) ∆z. (5.9.43)

With the obvious assumption that the pressure in the unperturbed state depends only on the radial
cylindrical coordinate �, the equation of hydrostatic equilibrium (3.1.2) reduces to

g = (1/�) dP/d� = dΦ/d� + Ω2�. (5.9.44)

g denotes, as in Eq. (3.1.20), the effective gravity along the cylindrical radius. Eqs. (5.9.35)-(5.9.39)
write in terms of the decompositions from Eqs. (5.9.8), (5.9.40), (5.9.43), by dropping the common factor
exp[i(σt + kϕ + jz)] :

[(σ + kΩ)2 − 2�Ω dΩ/d� − (A/�) dP/d�] ∆� + 2iΩ(σ + kΩ)� ∆ϕ

= d(δP/�)/d� + A δP/� − dδΦ/d�, (5.9.45)

(σ + kΩ)2� ∆ϕ − 2iΩ(σ + kΩ) ∆� = (ik/�)(δP/� − δΦ), (5.9.46)

(σ + kΩ)2 ∆z = ik(δP/� − δΦ), (5.9.47)

δ� + (1/�) d(�� ∆�)/d� − k� ∆� (dΩ/d�)
/
(σ + kΩ) + i�(k ∆ϕ + j ∆z) = 0, (5.9.48)

δP + ∆� dP/d� = (Γ1P/�)(δ� + ∆� d�/d�). (5.9.49)

Proceeding now exactly in the same manner as with Eqs. (5.9.26), (5.9.28), we obtain [cf. Sung 1974,
Eqs. (22), (23)]

(σ + kΩ)2 d(� ∆�)/d� = (σ + kΩ)[2kΩ + k� dΩ/d� − (σ + kΩ)�(dP/d�)
/
Γ1P ] ∆�

+[k2/� + j2� − (σ + kΩ)2��/Γ1P ] δP/� − (k2/� + j2�) δΦ, (5.9.50)

(σ + kΩ) d(δP/�)/d� = (σ + kΩ)[(σ + kΩ)2 − (1/�3) d(�4Ω2)/d� − (A/�) dP/d�] ∆�

−[2kΩ/� + (σ + kΩ)A] δP/� + 2kΩ δΦ/� + (σ + kΩ) dδΦ/d�, (5.9.51)

which should be supplemented by the perturbed Poisson equation (5.6.84)

(1/�) d(� dδΦ/d�)
/
d� − (k2/�2 + j2) δΦ = 4πG�(A ∆� − δP/Γ1P ), (5.9.52)

in order to obtain a fourth order system for the determination of all relevant quantities. The boundary
conditions that have to be satisfied by the system (5.9.50)-(5.9.52) are the finiteness of all physical
quantities at the origin, while at the free surface the Lagrangian pressure variation must vanish, and the
perturbation of the gravitational potential and of its derivatives must be continuous.

Veugelen (1985b) has studied nonaxisymmetric oscillations (j = 0, k = 2) of differentially rotating
cylinders with polytropic index n = 3, taking in Eq. (5.9.34) the values: (i) 0 ≤ β = Ω2

0/2πG�0 ≤
0.05, (Ωs/Ω0 = 1), and β = 0.05, (0.1 ≤ Ωs/Ω0 ≤ 1); (ii) β = 0.25, (Ωs/Ω0 = 0.2). Only differentially
rotating equilibrium models exist for case (ii), (for uniform rotation β ≤ 0.0547, Table 3.9.1). For case
(i) the sufficient stability criterion of Sung (1974)

(A/�) dP/d� + [(j2/�3) d(�4Ω2)/d� − (k2/4)(dΩ/d�)2]
/
(j2 + k2/�2) ≥ 0, (5.9.53)

is everywhere satisfied, and consequently there appear only stable p, f, and g-modes (Fig. 5.9.4), while for
case (ii) Veugelen (1985b) finds an unstable mode with complex conjugate eigenfrequency σ/(πG�0)1/2 =
−0.8521± i0.0060. Veugelen (1985a) has remarked that Sung (1974) derived Eq. (5.9.53) in the Cowling
approximation δΦ ≡ 0, so gravitational instabilities may exist, even if Eq. (5.9.53) is satisfied (cf. the
�-mode in Fig. 5.6.2).

In a nonrotating cylinder the propagation sense of a perturbation ∆�(�) exp[i(σt+kϕ)] is symmetrically
with respect to the neutral oscillation frequency σ = 0. The angular velocity of wave propagation in the
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Fig. 5.9.4 Propagation diagram for polytropic cylinders with n = 3, Γ1 = 5/3, j = 0, k = 2. Left-hand
side: Nonrotating cylinder. Right-hand side: Differentially rotating cylinder with Ω2

0/2πG�0 = 0.05, Ωs/Ω0 = 0.4.
Shown are the P and G-regions together with the hatched C-region of the continuous eigenvalue spectrum between
σ = −kΩ0 and σ = −kΩs. The line σ = −kΩ depicts the corotation surface. The dimensionless eigenfrequencies
σ/(πG�0)

1/2 of stable p, f, g-modes are represented by straight lines (g2, g3-modes not indicated). Relevant
quantities are indexed by (f) or (b), as to whether they belong to the region of forward or backward propagating
waves (prograde or retrograde modes). Dots indicate zeros of the eigenfunction ∆�(�/�1), (Veugelen 1985b).

azimuthal ϕ-direction is just equal to ϕ/t = −σ/k (e.g. Gerthsen et al. 1977), and propagation of the
oscillation occurs in the retrograde (ϕ < 0) direction if σ > 0, and in the prograde trigonometric sense
(ϕ > 0) if σ < 0. In the case of a differentially rotating cylinder, the relative angular velocity ϕ′/t of
azimuthal wave propagation with respect to fluid particles rotating with the equilibrium angular velocity
Ω is now ϕ′/t = −σ/k −Ω = ϕ/t−Ω. The wave is running ahead (ϕ′ > 0) of the equilibrium rotation Ω
if σ/k + Ω < 0, and backward (ϕ′ < 0) if σ/k + Ω > 0.

Veugelen (1985b, c) distinguishes a P -region with high frequency pressure (acoustic) waves (stable p
modes), and a G-region with low frequency gravity waves (stable g-modes), in the same manner as for
the nonradial oscillations of a sphere (cf. Sec. 5.5.2, Fig. 5.5.4). The f -modes are surface modes located
between the frequencies of p and g-modes (see Fig. 5.9.4). For case (ii), when the differential rotation
speed increases, some modes acquire a mixed character, the mode classification becoming sometimes only
indicative.

For the rotating, isentropic polytropic cylinder n = 3, (Γ1 = 1 + 1/n = 4/3) Veugelen (1985c) has
identified a region of propagation of so-called rotational modes [r-modes, Rossby modes, inertial modes;
see Eq. (5.8.166)]. But these modes may be regarded simply as forward propagating (prograde) g-modes
(g(f)-modes), since the eigenfrequencies of rotational modes merge into g(f)-modes as the cylinders depart
from isentropy (adiabaticity). When a rotating polytropic cylinder becomes isentropic (adiabatic), we
have A → 0, and the eigenfrequencies of backward propagating (retrograde) g(b)-modes tend to zero,
while the eigenfrequencies of prograde g(f)-modes tend to the eigenfrequencies of rotational r-modes.
This degeneracy is a special feature of the two-dimensional oscillations considered in this section and in
Sec. 5.10.6. It should not subsist for three-dimensional oscillations (Iye 1984).

In addition to the discrete spectrum of eigenvalues there exists for differentially rotating cylinders also
a continuous spectrum of eigenvalues, because the system (5.9.50)-(5.9.52) possesses a regular singularity
at � = �c, where σ +kΩ(�c) = 0. This relationship defines the surface of corotation, i.e. the surface where
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Fig. 5.9.5 Normalized eigenfrequencies σ/(πG�0)
1/2 of p and f -modes (on the left), and of g-modes

(on the right), as a function of the degree of differential rotation 1 − Ωs/Ω0 [Eq. (5.9.34)] if n = 3, Γ1 =
5/3, Ω2

0/2πG�0 = 0.05, j = 0, k = 2. The hatched area depicts the C-region of the continuous eigenvalue
spectrum between σ = −kΩ0 and σ = −kΩs (Veugelen 1985b).

the angular azimuthal velocity ϕ/t of wave propagation in the inertial frame just equals the local angular
speed Ω(�c) of rotating fluid particles ϕ/t = −σ/k = Ω(�c). With the matrix

T =
[[[
(σ + kΩ)� ∆�, δP/�, δΦ, � dδΦ/d�

]]]
, (5.9.54)

the fourth order system (5.9.50)-(5.9.52) can be written in matricial form as

(σ + kΩ) dT/d� = BT, (5.9.55)

where the elements of matrix B are obviously

B11 = 2kΩ/� + k dΩ/d� − (σ + kΩ)(dP/d�)
/
Γ1P ; B12 = k2/� + j2� − (σ + kΩ)2��/Γ1P ;

B13 = −k2/� − j2�; B21 = (σ + kΩ)2/� − (1/�4) d(�4Ω2)/d� − (A/��) dP/d�;
B22 = −2kΩ/� − (σ + kΩ)A; B23 = 2kΩ/�; B24 = (σ + kΩ)/�; B34 = (σ + kΩ)/�;

B41 = 4πG�A; B42 = −4πG�2�(σ + kΩ)/Γ1P ; B43 = (σ + kΩ)(k2/� + j2�);
B14, B31, B32, B33, B44 = 0. (5.9.56)

Note, that (σ+kΩ)� ∆� = −i� δv
 via Eq. (5.9.43), so all components of T are Eulerian perturbations.
Expanding σ + kΩ(�) round the singular point �c, we obtain σ + kΩ(�) ≈ k(� − �c)(dΩ/d�)
=
c

, and the
matricial system (5.9.55) becomes up to the first order

dT/d� = B0T
/
k(� − �c) (dΩ/d�)
=
c

. (5.9.57)

B0 is the zero order approximation of B, obtained simply by putting � = �c and σ + kΩ(�c) = 0.
Assuming for the elements of T solutions of the form (5.3.24), the vanishing of the lowest power (�−�c)q−1

in the homogeneous system (5.9.57) demands the vanishing of the determinant |B0/k(dΩ/d�)
=
c
−qI|, in
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order to obtain nontrivial solutions. I denotes the unit matrix. The roots of the determinant can easily
be found with the elements of matrix B0 :

q1,2 = 1/2 ±
{
1/4 − [(j2 + k2/�2)(A/�) dP/d� + (j2/�3) d(�4Ω2)/d�]

/
k2(dΩ/d�)2

}1/2


=
c
; q3,4 = 0.

(5.9.58)

After sophisticated evaluations Veugelen (1985b) has found that differentially rotating cylinders are
stable against perturbations of the type (5.9.8), (5.9.40) if Re(q1), Re(q2) > 0. And these conditions, when
inserted into Eq. (5.9.58), demand that

(j2 + k2/�2)(A/�) dP/d� + (j2/�3) d(�4Ω2)/d� > 0. (5.9.59)

Thus, the cylinders are stable for eigenvalues σ associated with the continuous spectrum, if both,
the Schwarzschild criterion A < 0 of convective stability (5.2.84), and the Rayleigh criterion (3.5.1),
(d(�2Ω)/d� > 0) are verified concomitantly.

For the n = 1 differentially rotating cylinder considered by Robe (1979), the convectively unstable
g1-mode of the uniformly rotating cylinder (left-hand side of Fig. 5.9.3) may become totally dominant.

For a differential rotation law of the form Ω = a�b, (a, b > 0; a, b = const) Balbinski (1984) has
obtained an analytic solution for the oscillations of an incompressible homogeneous cylinder (n = 0; Γ1 =
∞), investigating the continuous spectrum of its eigenfrequencies. Oscillations in polytropic cylinders
without self-gravity, and with special differential rotation laws of the form (6.4.153) have been studied
among others by Glatzel (1987), Sozou (1988), Sozou and Wilkinson (1989).
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5.10 Stability and Oscillations of Rotating Slabs and Disks

5.10.1 Introduction

Much of current research on the stability and oscillations of polytropic disks has been motivated by
the astronomical phenomena associated with barred spiral and normal spiral galaxies, accretion disks,
and planetary (protoplanetary) rings. The type of galaxy corresponding to normal spirals (e.g. our own
galaxy) has a stellar component and a gaseous component. Fortunately, the gas has such a small mass
that its contribution to an approximate treatment of global galactic dynamics can be neglected. The mass
of a spiral galaxy is distributed into a spheroidal component (the nuclear bulge and the galactic halo,
which may be approximated by a rigid sphere) and the disk component. In some cases the spheroidal
component may contain as little as 25% of the total mass of a galaxy, and this helps justify the disk
approximation for spiral galaxies. The circularly rotating, zero thickness disk may be regarded as the
lowest order approximation of a whole spiral galaxy containing stars and gas.

The basic equations governing the behaviour of the stellar component are the Boltzmann equation
in a collisionless stellar system, and the Poisson equation for the gravitational potential. This kind of
approach is investigated by direct many-body numerical simulations, while a much simpler way is the
description of stars and gas by a fluid dynamical model. Of course, a fluid with pressure is at the best only
a crude approximation of a collisionless stellar system. The pressure is merely introduced to model and
simulate all the effects of random velocities of the stars. Unfortunately, there has not been much linkage
between studies of galactic disks with the aid of stellar dynamics (adopting a discrete particle description
of the disk) and those adopting a hydrodynamic model, describing the disk as a fluid continuum (Hunter
1972, Lin and Lau 1979, Aoki et al. 1979). We will exclusively concentrate on the fluid dynamical model
of disks. In fact, the oscillations of stellar disks composed of discrete particles show striking differences as
compared to those of fluid disks. For instance, in the short wavelength regime none of the p or g-modes
exist in collisionless stellar disks. As substitutes for these fluid disk modes there emerges in collisionless
stellar disks a number of modes inherent to the large degree of freedom in the velocity distribution of
stars in phase space (Iye 1984).

The situation becomes even more frustrating due to a missing concordance between studies on rotating
gaseous disks and those on rotating gaseous stars: A common classification of modes is generally not
attempted. For instance, Aoki et al. (1979) introduce classes of B and S-modes in their investigation
on the global stability of polytropic disks. For all the above reasons this section appears to be one of
the most fragmentary in this book, especially as a multitude of incoherent results exist, rather than
a straightforward theory concerning the local and global stability of polytropic (barotropic) disks. As
reviewed for instance by Hunter (1972) and Toomre (1977), a further drawback of most approaches is the
fact that they just select and discuss modes that have certain desirable properties (e.g. spirals), without
showing why just these particular solutions should be significant and dominant.

The study of rotating polytropic disks is further complicated by the fact that three distinct forces
are of comparable magnitude, and need to be considered simultaneously: Gravitation, pressure (velocity
dispersion), and rotation. In sharp contrast to a sphere, the gravitational field of a disk cannot be
computed as if the whole mass outside a given distance from its centre did not exist; the mass distribution
over the whole disk must be taken into account. Magnetic forces are almost certainly small as compared
with the overall gravitational force, and will be neglected, although they may be very well comparable to
the self-gravitation of a local mass concentration, such as a spiral arm (Mestel 1963, Hunter 1972, Spitzer
1978).

The inner parts of disk-shaped galaxies are observed to rotate with higher angular velocity Ω(�)
than the outer parts, i.e. in many cases the linear circular velocity v(�) = � Ω(�) is observed to be
nearly constant over large distances �, the cylindrical coordinate � being measured from the rotation
axis. Therefore, differential rotation with outward decreasing angular velocity must be considered for a
more realistic picture of galactic disks (Aoki et al. 1979, Lin and Lau 1979). Provided that �A · ∇P =
A dP/d� ≥ 0, Rayleigh’s stability condition against axisymmetric disturbances in the circularly rotating
disk is given by the Solberg-Høiland criterion on surfaces of constant entropy S (cf. Eqs. (3.5.1), (5.7.90),
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(6.4.160); Tassoul 1978, Sec. 7.3):

κ2 = (1/�3) d[�4Ω2(�)]/d� = 2[Ω(�)/�] d[�2Ω(�)]/d� = 4Ω2(�) + 2� Ω(�) dΩ(�)/d� > 0. (5.10.1)

The �-component of the Schwarzschild discriminant (5.2.84), belonging to the constraint A dP/d� ≥ 0,
is

A = (1/�) d�/d� − (1/Γ1P ) dP/d� = [1 − (n + 1)/nΓ1] d ln �/d�, (P = K�1+1/n). (5.10.2)

The epicyclic frequency κ decreases from κ = 2Ω(�) for uniform rotation (Ω(�) = const) to κ = Ω(�)
for Keplerian rotation Ω(�) = (GM1/�3)1/2, and becomes zero if Ω(�) = 0, or if the angular momentum
per unit mass �2Ω(�) = const (Spitzer 1978). Condition (5.10.1) simply states that the specific angular
momentum �2Ω(�) must necessarily increase outwards, or equivalently, that the angular velocity should
not decrease too fast, as the distance � from the rotation axis increases. If κ2 ≤ 0, a mass element
displaced from its circular rotation will not experience a restoring force (Hunter 1972). If κ2 > 0, the
real quantity κ is equal (when pressure forces are neglected) to the circular oscillation frequency in
the inertial frame of a particle in a nearly circular orbit, moving exclusively under the influence of an
axially symmetric gravitational field, and being displaced from its circular equilibrium position �0 to
� = �0 + ∆�0 sin(κt), (�0, ∆�0 = const, |∆�0| � �0), (Chandrasekhar 1960, p 156). The orbit described
by the particle in the plane of the disk under the exclusive influence of an axisymmetric potential is an
elliptic epicycle. It should be noted that, although the epicyclic parameter κ appears in the theory, the
epicyclic motion itself is not properly simulated in the fluid dynamical approach of polytropic disks (Lin
and Lau 1979).

The stability against nonaxisymmetric perturbations and the fragmentation of polytropic tori (rings,
annuli) will be touched in Sec. 6.4.3.

Two lines of approach can be used to study the stability of gaseous disks: The local analysis and the
global one. The local analysis (asymptotic theory) is confined to perturbations with wavelengths that
are short compared to the distance � from the rotation axis of the considered local region. Let us assume
the spatial and temporal dependence of a perturbation under the usual form exp[i(σt + �j · �r)], where
|�j| = 2π/L denotes the wave number, and L the wavelength. The local short wavelength approximation
demands that [Lin and Lau 1979, Eq. (32)]

L = 2π
/
|�j| � � or |�j|� 	 1. (5.10.3)

Local theories, like the density wave theory, cannot be applied to very long wavelengths strictly; for
instance, even if a disk is locally stable, it is not assured that the disk is also stable on a global scale,
and this urges the need for analyzing barotropic (polytropic) disks also on a global scale, either by direct
numerical particle simulation (which will be ignored), or by global linear mode analysis, as summarized
in Secs. 5.10.5 and 5.10.6.

5.10.2 Stability of the Nonrotating Isothermal Slab

The surface density Σ contained within height −z and z is

Σ = Σ(�, ϕ, z) =
∫ z

−z

�(�, ϕ, z′) dz′ = 2
∫ z

0

�(�, ϕ, z′) dz′, (5.10.4)

and the total surface density of a slab is

Σ1 = Σ1(�, ϕ) =
∫ ∞

−∞
�(�, ϕ, z′) dz′ = 2

∫ ∞

0

�(�, ϕ, z′) dz′, (5.10.5)

where in virtue of Eqs. (2.3.65), (2.6.177)-(2.6.180) we have � = 0 outside the finite boundary ±z1 of a
polytropic slab with polytropic index −1 < n < ∞. If −∞ < n < −1 and n = ±∞, the slab has infinite
extension in the z-direction (Sec. 2.6.8).
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For a polytropic slab with uniform density in the �, ϕ-directions, the equation of hydrostatic equilib-
rium (2.1.3) writes as

(1/�) dP/dz = K(1 + 1/n)�1/n−1 d�/dz = dΦ/dz, (n �= −1). (5.10.6)

If we insert into Poisson’s equation (2.1.4), we get

∇2Φ = d2Φ/dz2 = d[K(1 + 1/n)�(1−n)/n d�/dz]/dz = −4πG�. (5.10.7)

In the case of homogeneous slabs these two equations integrate at once:

∇Φ = dΦ/dz = −4πG�z; P = P0 − 2πG�2z2 = P0 − πGΣ2/2,

(n = 0; � = const; |z| ≤ z1; (dΦ/dz)z=0 = 0; P (0) = P0). (5.10.8)

For other values of the polytropic index Goldreich and Lynden-Bell (1965a) introduce the auxiliary
variable

µ = (2πG/K)1/2�
(1−n)/2n
0

∫ z

0

�(n−1)/n dz′, (5.10.9)

and Eq. (5.10.7) becomes

d2�/dµ2 = −2�
(n−1)/n
0 �1/n

/
(1 + 1/n). (5.10.10)

�0 denotes the density in the central plane (plane of symmetry, midplane) z = 0 of the slab. With the
initial condition (d�/dµ)µ=0 = 0 this equation can be easily integrated after multiplication with d�/dµ
[cf. Eq. (2.3.51)]:

(d�/dµ)2 + [4�(n−1)/n
0

/
(1 + 1/n)2](�1+1/n − �

1+1/n
0 ) = 0. (5.10.11)

With the substitution

cos2 X = (�/�0)1+1/n, (5.10.12)

Eq. (5.10.11) may be written under the form

µ =
∫ X

0

cos(n−1)/(n+1) X ′ dX ′. (5.10.13)

In the particular case n = 1, Eqs. (5.10.9) and (5.10.13) become

µ = (2πG/K)1/2z = X = arccos(�/�0), (5.10.14)

or [cf. Eqs. (2.3.26), (2.3.59)]:

� = �0 cos µ = �0 cos[(2πG/K)1/2z], (n = 1). (5.10.15)

In the isothermal case considered by Ledoux (1951), we find similarly

µ = sinX = (1 − �/�0)1/2; � = �0(1 − µ2), (n = ±∞), (5.10.16)

and by differentiation of Eq. (5.10.9)

dµ/dz = (2πG�0/K)1/2(1 − µ2), (n = ±∞). (5.10.17)

This equation integrates with the obvious condition µ = 0 if z = 0 :

µ = tanh[(2πG�0/K)1/2z]; � = �0(1 − µ2) = �0{1 − tanh2[(2πG�0/K)1/2z]}
= �0

/
cosh2[(2πG�0/K)1/2z], (n = ±∞). (5.10.18)

If we insert from Eqs. (2.1.18) and (2.1.20) � = �0 exp(−θ) and z = (K/4πG�0)1/2ξ, respectively, we
recover Eq. (2.3.65).
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For the nonrotating isothermal slab n = ±∞ studied by Ledoux (1951), the adiabatic equation of
thermal energy conservation (5.2.78) writes in our one-dimensional case (Q = const; P = K�) :

δP = Γ1P δ�/� + ∆�r · (Γ1P ∇�/� −∇P ) = KΓ1 δ� + K(Γ1 − 1) ∆z d�/dz. (5.10.19)

For adiabatic oscillations the linearly perturbed Eulerian equation of motion (5.2.80) reads

σ2 ∆�r = ∇(δP/� − δΦ) + (δP/�)[(1/�) ∇� − (1/Γ1P ) ∇P ] + (1/�)(∆�r · ∇P )[(1/�) ∇�

−(1/Γ1P ) ∇P ] = ∇(δP/� − δΦ) + (1 − 1/Γ1)(∇�/�2)(δP + ∆�r · ∇P ), (∇P = K ∇�).
(5.10.20)

To simplify the problem, Ledoux (1951) assumes an isentropic isothermal slab Γ1 = 1+1/n = 1, (n =
±∞), [cf. Eq. (2.1.51)]. The two relevant equations (5.10.19) and (5.10.20) become in this case

δP = K δ�, (5.10.21)

σ2 ∆�r = ∇(δP/� − δΦ). (5.10.22)

Goldreich and Lynden-Bell (1965a) have shown the eigenvalues σ2 of rotating polytropic slabs to be
always real; we may therefore determine the stability limits by examining the behaviour of modes having
σ close to the neutral stability limit σ = 0. In this particular case, Eq. (5.10.22) integrates to δP/� = δΦ
with the boundary condition δP = 0 if δΦ = 0. Poisson’s equation (5.2.40) is equal to

∇2δΦ = ∇2(δP/�) = −4πG δP/K, (σ = 0). (5.10.23)

Let us consider a perturbation along the x-direction of a Cartesian frame:

δP/� = h(z) exp(ijx). (5.10.24)

Inserting this into Eq. (5.10.23), we get by suppressing the common factor exp(ijx) :

d2h/dz2 + (4πG�/K − j2)h = 0. (5.10.25)

We turn with Eq. (5.10.17) to the variable µ and introduce for � from Eq. (5.10.16):

d2h/dµ2 − [2µ/(1 − µ2)] dh/dµ + [2/(1 − µ2) − η2/(1 − µ2)2] h = 0, (η2 = j2K/2πG�0).
(5.10.26)

If we put in Eq. (3.1.41) j = 1 and k = η, we recover just Eq. (5.10.26), where k is now a real
number, instead of being an integer or zero. If in Eq. (3.1.41) µ, j, k assume any real or complex values,
the associated Legendre polynomials P k

j (µ) are called spherical harmonics of the general type. If µ is
real and −1 ≤ µ ≤ 1, the general solution of Eq. (3.1.41) is given by the generalized spherical harmonic
(e.g. Hobson 1931, §§144, 145)

P k
j (µ) = C1[(1 + µ)/(1 − µ)]k/2 F [−j; j + 1; 1 − k; (1 − µ)/2]

+C2[(1 − µ)/(1 + µ)]k/2 F [−j; j + 1; 1 − k; (1 + µ)/2], (C1, C2 = const), (5.10.27)

where (e.g. Smirnow 1967)

F (α, β, γ, ζ) = 1 + αβζ
/
1!γ + α(α + 1)β(β + 1)ζ2

/
2!γ(γ + 1)

+... + [α(α + 1)...(α + m − 1)β(β + 1)...(β + m − 1)ζm
/
m!γ(γ + 1)...(γ + m − 1)] + ..., (5.10.28)

is the hypergeometric function. In our special case from Eq. (5.10.27) we have α = −j = −1, β = j+1 =
2, γ = 1 − k = 1 − η, ζ = (1 ± µ)/2, and

h = C ′
1[(1 + µ)/(1 − µ)]η/2(η − µ) + C ′

2[(1 − µ)/(1 + µ)]η/2(η + µ),
[C ′

1 = C1/(η − 1); C ′
2 = C2/(η − 1)]. (5.10.29)
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Since h must remain finite at the boundary of the slab, we must have η −µ = 0 if µ = Σ/Σ1 → 1 [see
Eq. (5.10.32)]. The critical values are

µ = ηc = jc(K/2πG�0)1/2 = 1 or Lc = 2π/jc = (2πK/G�0)1/2, (σ = 0; n = ±∞).
(5.10.30)

This is equal to the critical Jeans wavelength (5.4.14), if the density of the uniform medium � is
replaced by the halved density �0/2 in the symmetry plane of the slab, and a2 = Γ1P/� = P0/�0 =
K, (Γ1 = 1). If n = ±∞, we observe from Eqs. (5.10.4), (5.10.9) that

µ = (2πG/K�0)1/2

∫ z

0

�(z′) dz′ = (πG/2K�0)1/2Σ, (z ≥ 0; n = ±∞). (5.10.31)

Eq. (5.10.18) shows that � = 0 and z = ∞ if µ = 1. In this case Σ in Eq. (5.10.31) becomes just
equal to the total surface density Σ1, i.e. equal to the total mass per unit surface:

Σ1 = (2K�0/πG)1/2; µ = Σ/Σ1. (5.10.32)

The critical wavelength (5.10.30) assumes the form

Lc = πΣ1/�0, (n = ±∞). (5.10.33)

If σ �= 0, we take the divergence of Eq. (5.10.22)

∇ · {�[∇(δP/� − δΦ)]} = σ2 ∇ · (� ∆�r) = −σ2 δ� = −σ2 δP/K, (5.10.34)

by using the continuity equation (5.2.28). Since � = �(z), we get explicitly

(d�/dz) ∂δΦ/∂z − (d�/dz) ∂(δP/�)/∂z + �[∇2δΦ −∇2(δP/�)] = σ2 δP/K, (5.10.35)

and by applying the Laplace operator to eliminate δΦ via Eq. (5.10.23):

∇2
{
�[∇2(δP/�) + (4πG/K + σ2/K�) δP ]

/
(d�/dz)

}
+ ∂

[
∇2(δP/�) + 4πG δP/K

]/
∂z = 0.

(5.10.36)

If σ → 0, we observe that the general solution of this equation is arbitrarily close to that of the
equation

∇2(δP/�) + (4πG�/K + σ2/K)(δP/�) = 0, (σ ≈ 0). (5.10.37)

With a perturbation of the form (5.10.24) this equation is similar to Eq. (5.10.26):

d2h/dµ2 − [2µ/(1 − µ2)] dh/dµ + [2/(1 − µ2) − η′2/(1 − µ2)2] h = 0,

(η′2 = (j2K − σ2)/2πG�0). (5.10.38)

The solution of this equation is given by Eq. (5.10.29) if η is replaced by η′. For finite solutions we
must have [cf. Eq. (5.10.30)]

µ2 = η′2 = (j2K − σ2)/2πG�0 = 1, (5.10.39)

or

σ2 = 2πG�0(j2K/2πG�0 − 1) = 2πG�0(2πK/G�0L
2 − 1), (σ ≈ 0), (5.10.40)

which shows that the isothermal slab is stable (σ2 > 0) if L < (2πK/G�0)1/2, and unstable (σ2 < 0) if
L > (2πK/G�0)1/2 with respect to isentropic perturbations (Γ1 = 1) parallel to the equatorial plane of
the slab.

It should be remarked that the limiting case j = 0, (L = ∞) cannot be obtained by extrapolation
of the previous results, because it amounts to purely vertical oscillations [δP/� = h(z)], so we have to
proceed ex novo. Eq. (5.10.22) writes for purely vertical oscillations as

σ2 ∆z = (1/�) dδP/dz − (δ�/�2) dP/dz − dδΦ/dz. (5.10.41)
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The three terms on the right-hand side can be written out explicitly. At first we observe from the
continuity equation (5.2.28) that

δ� = −∇ · (� ∆�r) = −d(� ∆z)/dz = −� d∆z/dz − ∆z d�/dz. (5.10.42)

And from Eq. (5.10.21) we obtain, by introducing for δ� :

δP = −K� d∆z/dz − K ∆z d�/dz. (5.10.43)

Poisson’s equation (5.2.40) reads

(1/4πG) d2δΦ/dz2 = −δ� = d(� ∆z)/dz, (5.10.44)

and can be integrated with dδΦ/dz = 0 if � = 0 :

dδΦ/dz = 4πG� ∆z. (5.10.45)

We introduce Eqs. (5.10.6), (5.10.7), (5.10.42), (5.10.43), (5.10.45) into Eq. (5.10.41), and get after
some algebra the equation governing oscillations in the z-direction of stratification:

d2∆z/dz2 + (1/�)(d�/dz) d∆z/dz + σ2 ∆z/K = 0. (5.10.46)

We multiply this equation with � ∆z, by observing that the first two terms can then be written as
∆z d(� d∆z/dz)

/
dz. Integrating this expression by parts between z = ±∞, we obtain eventually

−� ∆z d∆z/dz
∣∣∣∞
−∞

+
∫ ∞

−∞
� (d∆z/dz)2 dz = (σ2/K)

∫ ∞

−∞
� (∆z)2 dz. (5.10.47)

If z → ±∞, we must have δ�/� � 1, ∆z = finite, and (1/�) d�/dz ∝ (1/�) d�/dξ = −dθ/dξ = −21/2

[cf. Eq. (2.3.62)]. From Eq. (5.10.42) we observe that d∆z/dz must remain finite too, and because
� → 0 if z → ±∞, the first term in Eq. (5.10.47) cancels. The eigenvalue σ2 is strictly positive, and
no instability occurs for strictly vertical oscillations (Ledoux 1951). This result helps justify the zero
thickness approximation, when the whole mass of a slab is assumed to be concentrated with surface
density Σ in the central plane of the disk z = 0 : No instability is ignored if the details of the structure
in the vertical z-direction are neglected (Hunter 1972).

5.10.3 Stability and Oscillations of Uniformly Rotating Polytropic Slabs

Fricke (1954) attempted to generalize Ledoux’ (1951) treatment to a rotating isothermal slab, but
due to false approximations his results are now recognized to be untenable (Goldreich and Lynden-Bell
1965a).

The equation of motion (5.7.1) in a system rotating with angular velocity �Ω = �Ω(0, 0, Ω), (Ω = const)
can be written under the form

D�v/Dt = Ω2�� − 2�Ω × �v − (1/�) ∇P + ∇Φ, (5.10.48)

where �� = ��(x, y, 0), �2 = x2 + y2, P = P (z), � = �(z), Φ = Φ(z). Goldreich and Lynden-Bell (1965a)
consider, analogously to Ledoux (1951), isentropic polytropic slabs, when �A from Eqs. (5.2.84), (5.10.2)
is zero, and Γ1 = 1 + 1/n. In this case the adiabatic energy conservation equation (5.2.95) becomes

δP = [(1 + 1/n)P
/
�] δ�, (5.10.49)

and the linearized Eulerian variation of Eq. (5.10.48) reads (cf. Eq. (5.2.86) if �A = 0; δ(Ω2��) = 0) :

δ(D�v/Dt) ≈ δ(∂�v/∂t) = ∂δ�v/∂t ≈ ∂�v/∂t = −2�Ω × δ�v −∇(δP/� − δΦ) ≈ −2�Ω × �v −∇χ,

(δ�v ≈ �v ≈ 0; χ = δP/� − δΦ). (5.10.50)
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Since axial symmetry is assumed, Goldreich and Lynden-Bell (1965a) take the perturbations of phys-
ical quantities along the Cartesian x-axis under the particular form [cf. Eq. (5.10.24)]

∆�r(x, z, t) = ∆�r(z) exp[i(σt + jx)]; δ�v(x, z, t) ≈ �v(x, z, t) = �v(z) exp[i(σt + jx)]; χ(x, z, t)
= δP (x, z, t)/�(z) − δΦ(x, z, t) = χ(z) exp[i(σt + jx)]; δ�(x, z, t) = δ�(z) exp[i(σt + jx)].

(5.10.51)

We insert this form of the perturbations into the equation of motion (5.10.50), suppressing the common
factor exp[i(σt + jx)] :

iσvx(z) − 2Ωvy(z) = −ijχ(z), (5.10.52)

iσvy(z) + 2Ωvx(z) = 0, (5.10.53)

iσvz(z) = −dχ(z)/dz. (5.10.54)

The perturbed continuity equation (5.2.25) becomes

iσ δ�(z) + ij�(z) vx(z) + d[�(z) vz(z)]/dz = 0, (5.10.55)

and Poisson’s equation (5.2.40) writes

d2δΦ/dz2 − j2 δΦ(z) = −4πG δ�(z). (5.10.56)

Eliminating vy between Eqs. (5.10.52) and (5.10.53), we obtain

(4Ω2 − σ2) vx(z) = σjχ(z), (5.10.57)

and the continuity equation (5.10.55) writes via Eq. (5.10.57) as

iσ δ�(z) + iσj2�(z) χ(z)/(4Ω2 − σ2) + d(�vz)/dz = 0. (5.10.58)

The fourth order equation for δΦ found by elimination of δ� and vz between Eqs. (5.10.54), (5.10.56),
(5.10.58) is not very enlightening, and will consequently be omitted.

The boundary condition for the pressure on the finite, oscillating boundary

Z1(x, z, t) = z1 + ∆z1(x, z, t) = z1 + ∆z1(z) exp[i(σt + jx)], (5.10.59)

is P (Z1) = 0. To obtain a condition – similar to Eq. (5.2.63) – for the Eulerian pressure perturbation
δP we observe from the equation of hydrostatic equilibrium that dP/dz = � dΦ/dz. From ∆P = δP +
(dP/dz) ∆z = 0 we get at z = z1 :

δP = −(dP/dz) ∆z = −� ∆z dΦ/dz, (z = z1). (5.10.60)

The inner and outer gravitational potential, and the corresponding derivatives with respect to z must
be equal on the oscillating boundary Z1 = z1 + ∆z1 [cf. Eqs. (5.2.111)-(5.2.114)]:

Φ(x, z1 + ∆z1) = Φu(x, z1 + ∆z1) + δΦ = Φu(x, z1) + ∆z1 (dΦu/dz)z=z1 + δΦ
= Φe(x, z1 + ∆z1) = Φue(x, z1 + ∆z1) + δΦe = Φue(x, z1) + ∆z1 (dΦue/dz)z=z1 + δΦe, (5.10.61)

(∂Φ/∂z)z=z1+∆z1 = (dΦu/dz)z=z1 + ∆z1 (d2Φu/dz2)z=z1 + (∂δΦ/∂z)z=z1

= (∂Φe/∂z)z=z1+∆z1 = (dΦue/dz)z=z1 + ∆z1 (d2Φue/dz2)z=z1 + (∂δΦe/∂z)z=z1 . (5.10.62)

The indices u and e denote unperturbed and external values, respectively. Subtracting Laplace’s equa-
tion ∇2Φue = 0 from Poisson’s equation ∇2Φu = −4πG�u, we get (d2Φu/dz2)z=z1 − (d2Φue/dz2)z=z1 =
−4πG�u(z1), and since (dΦu/dz)z=z1 = (dΦue/dz)z=z1 , we obtain from Eqs. (5.10.61), (5.10.62):

δΦ(x, z1) = δΦe(x, z1); (∂δΦ/∂z)z=z1 − (∂δΦe/∂z)z=z1 = 4πG�(z1) ∆z1. (5.10.63)
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With δΦe(x, z, t) = δΦe(z) exp[i(σt+jx)] obeying the same dependence as in Eq. (5.10.51), a solution
of Laplace’s equation ∇2δΦe(x, z, t) = ∂2δΦe/∂x2 + ∂2δΦe/∂z2 = 0 is of the form

δΦe = C exp[−|jz| + i(σt + jx)], (C = const; |z| ≥ z1), (5.10.64)

dying away if z → ±∞. The boundary condition (5.10.63) takes with this equation its final form

(∂δΦ/∂z)z=z1 + |j| δΦe(z1) = (∂δΦ/∂z)z=z1 + |j| δΦ(z1) = 4πG�(z1) ∆z1. (5.10.65)

Generally, the density vanishes on the surface: �(z1) = 0. The nonexistence of an edge invalidates our
previous arguments in the case of an isothermal slab n = ±∞, so we have to derive in this case a new
boundary condition by integrating the continuity equation (5.10.58):

iσ

∫ ∞

−∞
δ� dz + [iσj2/(4Ω2 − σ2)]

∫ ∞

−∞
�χ dz + �vz

∣∣∣∞
−∞

= 0. (5.10.66)

The last term represents the mass flow in the z-direction through the infinity points, and has to vanish
accordingly. The boundary condition for the infinite isothermal slab writes therefore

iσ δΣ1 = iσ

∫ ∞

−∞
δ� dz = −[iσj2/(4Ω2 − σ2)]

∫ ∞

−∞
�χ dz, (n = ±∞). (5.10.67)

Goldreich and Lynden-Bell (1965a) discuss at first the particular case j = 0 in Eq. (5.10.51). In this
case Eqs. (5.10.52), (5.10.53) become

iσvx(z) − 2Ωvy(z) = 0; 2Ωvx(z) + iσvy(z) = 0. (5.10.68)

For nontrivial solutions the determinant σ2 − 4Ω2 of this system has to be zero. But as σ2 is always
real, the value σ2 = 4Ω2 �= 0 is not associated with neutral (marginal) stability, and the modes j = 0
are stable. Only if Ω = 0 these modes are unstable for the nonrotating isothermal slab, since in this
case L = 2π/|j| = ∞ is larger than the critical Jeans wavelength (5.10.30). If σ2 �= 4Ω2, we must have
vx, vy = 0, and the oscillations reduce to purely vertical motions in the z-direction. After some lengthy
evaluations Goldreich and Lynden-Bell (1965a) are able to show that rotating isentropic polytropic slabs
are stable if vx, vy = 0, j = 0, and σ2 �= 4Ω2, excepting for the trivial case of a disturbance that imparts
a small velocity vz to the slab as a whole.

The overall run of the results if j �= 0 can be easiest exemplified by the isentropic, incompressible
homogeneous slab (n = 0, Γ1 = ∞). The outcomes are remarkably insensitive to the value of the
polytropic index (e.g. n = 1,±∞), because the pressure perturbation δP is related linearly to the density
disturbance δ� [see Eq. (5.10.49)], unlike the unperturbed pressure and density, which satisfy the power
relationship Pu = K�

1+1/n
u . Larson (1985, Table 1) has extended this analysis to negative polytropic

indices n = −4/3,−2,−3.
If n = 0, � = const, δ� = 0, the perturbed continuity equation (5.10.55) is equal to

∇ · �v = ijvx + dvz/dz = 0. (5.10.69)

We eliminate the velocities among Eqs. (5.10.54), (5.10.57), (5.10.69):

d2χ/dz2 − j2χ
/
(1 − 4Ω2/σ2) = 0. (5.10.70)

The solution of this second order equation with constant coefficients can be written under the form

χ = C1 exp[jz
/
(1 − 4Ω2/σ2)1/2] + C2 exp[−jz

/
(1 − 4Ω2/σ2)1/2] = A cosh(αjz)

/
cosh(αjz1)

+B sinh(αjz)
/

sinh(αjz1),
(
α = (1 − 4Ω2/σ2)−1/2; C1, C2, A, B = const

)
. (5.10.71)

Since δ� = 0 by assumption, the right-hand side of Eq. (5.10.56) becomes zero, and Poisson’s equation
integrates analogously to Eq. (5.10.70):

δΦ = C cosh(jz)
/

cosh(jz1) + D sinh(jz)
/

sinh(jz1), (C, D = const). (5.10.72)

The solution of the problem consists of a superposition of antisymmetrical modes if A, C = 0, and of
symmetrical modes if B, D = 0.
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(i) A, C = 0.A, C = 0.A, C = 0. The boundary condition (5.10.65) on the potential becomes (� = �0 = �(z1) = const) :

Dj coth(jz1) + D|j| = 4πG� ∆z1. (5.10.73)

And from Eqs. (5.10.71), (5.10.72) we get

δP/� = χ(z) + δΦ = B sinh(αjz)
/

sinh(αjz1) + D sinh(jz)
/

sinh(jz1). (5.10.74)

The boundary condition on the pressure (5.10.60) therefore reads as

(δP/�)z=z1 = B + D = −∆z1 (dΦ/dz)z=z1 = 4πG�z1 ∆z1. (5.10.75)

Finally, Eqs. (5.10.54), (5.10.71) yield

iσvz = iσ D(∆z)/Dt ≈ iσ ∂∆z/∂t = −σ2 ∆z = −dχ/dz = −Bαj cosh(αjz)
/

sinh(αjz1),
(5.10.76)

which amounts on the boundary to

σ2 ∆z1 = Bαj coth(αjz1). (5.10.77)

To proceed further, let us eliminate the constant D between Eqs. (5.10.73) and (5.10.75):

B = 4πG�0z1 ∆z1

{
1 − 1

/
[jz1 coth(jz1) + |j|z1]

}
. (5.10.78)

Substituting this value into Eq. (5.10.77), and performing separately the calculations for the two
cases |j| = j if j ≥ 0, and |j| = −j if j < 0, we obtain the final dispersion relation:

σ2 = 4πG�αjz1 coth(αjz1)
{
1 − [1 − exp(−2|j|z1)]

/
2|j|z1

}
. (5.10.79)

We observe that coth(iU) = −i cot U, and 1 − [1 − exp(−Y )]
/
Y > 0 if Y = 2|j|z1 > 0. Hence,

σ2 could only be negative if α is imaginary, but in this case σ2 should be positive by virtue of Eq.
(5.10.71): α2 = 1/(1− 4Ω2/σ2). Thus, we arrive at a contradiction, showing that σ2 is nonnegative, and
the homogeneous isentropic slab is stable against antisymmetrical modes with A, C = 0. Expanding Eq.
(5.10.79) if jz1 ≈ 0 we get σ2 ≈ 4πG�|j|z1, showing that neutral stability σ = 0 only occurs if j = 0, and
we have previously mentioned that this merely amounts to a displacement of the slab as a whole.

(ii) B, D = 0.B, D = 0.B, D = 0. The calculations for these symmetrical modes are analogous to Eqs. (5.10.73)-(5.10.79).
The dispersion relation becomes

σ2 = 4πG�αjz1 tanh(αjz1)
{
1 − [1 + exp(−2|j|z1)]

/
2|j|z1

}
. (5.10.80)

Near the point of neutral stability we have α ∝ σ ≈ 0, and

αjz1 tanh(αjz1) ≈ α2j2z2
1 = j2z2

1

/
(1 − 4Ω2/σ2), (α ≈ 0). (5.10.81)

The dispersion relation (5.10.80) takes the simplified form

σ4 − 4Ω2σ2 = 4πG�σ2j2z2
1

{
1 − [1 + exp(−2|j|z1)]

/
2|j|z1

}
, (5.10.82)

showing that either σ2 = 0 for all wave numbers j, or

σ2/πG� = 4Ω2/πG� + 2|j|z1

[
2|j|z1 − 1 − exp(−2|j|z1)

]
, (σ ≈ 0). (5.10.83)

The eigenvalue σ2 takes its lowest value (the slab is most unstable), if the last term becomes minimum,
and this occurs when its derivative is zero

4|j|z1 − 1 + (2|j|z1 − 1) exp(−2|j|z1) = 0, (5.10.84)

i.e. if

2|j|z1 = 2|jc|z1 = 0.607, (n = 0). (5.10.85)



470 5.10 Stability and Oscillations of Rotating Slabs and Disks

For this most unstable slab the critical value Ωc of Ω is obtained by putting σ ≈ 0 in Eq. (5.10.83):

4Ω2
c/πG� = 0.569, (n = 0). (5.10.86)

The slab is stable (σ2 > 0) if 4Ω2/πG� > 0.569, and unstable (σ2 < 0) if 4Ω2/πG� < 0.569.
Wavelengths larger than the critical wavelength

Lc = 2π/|jc| = 4πz1/0.607, (n = 0), (5.10.87)

are unstable, and it is seen that unstable wavelengths are larger than a few times the thickness of the
slab.

If the dispersion relation (5.10.83) is solved for general |j|z1 – provided that σ = 0 – we get two critical
wavenumbers jc, (0 < 2|jc|z1 � 1.2), including the most unstable value (5.10.85). Oscillations with wave
vectors of magnitude between the two critical values |jc| are unstable, and are bounded in both directions
of |jc| by stable wave numbers. This behaviour is a direct consequence of the gravitational stratification
of the rotating isentropic slabs, and is contrasted to some extent to that of the rotating, homogeneous
infinite medium, when only a single critical wavelength occurs, and all wavenumbers having

j2
c = 4π2/L2 < 4(πG� − Ω2)/a2, (5.10.88)

are unstable in the direction perpendicular to the rotation axis (e.g. Sec. 5.4.1, Chandrasekhar 1981,
§120).

A shortcoming of the analysis of Goldreich and Lynden-Bell (1965a) – which is shared with many
others – is that the possibility of multiple roots of σ in the dispersion relations, leading to solutions of
the form (polynomial in t) exp(iσt), is considered only for the neutral case σ = 0.

Nonlinear waves in polytropic slabs have been studied by Qian and Spiegel (1994), including the
influence of an external halo potential Φe ∝ z2.

5.10.4 Zero Thickness Disks

As we have already stressed, there seem to appear no significant mechanical effects depending on
the detailed structure of slabs and disks along the vertical z-direction. We therefore neglect in most of
the subsequent discussion the vertical extension of the slabs. All motions are supposed to occur only
in the central plane z = 0 of the system. Gravitational forces are overestimated by the assumption of
an infinitesimal thickness of the slab, and the zero thickness approximation is not valid for wavelengths
comparable to the real thickness of the configuration (cf. Hunter 1972).

In order to connect the two-dimensional pressure PΣ acting in the (x, y)-plane of the zero thickness
disk to its surface density Σ from Eq. (5.10.4), we consider a highly flattened slab. The high degree of
flattening means that the structure changes most rapidly in the z-direction normal to the central plane
of the slab: ∂Φ/∂z 	 ∂Φ/∂x, ∂Φ/∂y. Thus, we can approximate Poisson’s equation (2.1.4) by

∂2Φ(x, y, z)/∂z2 = −4πG�(x, y, z), (5.10.89)

and if vz = 0 the vertical equilibrium component of the equation of motion (5.10.48) becomes with the
polytropic equation of state

(1/�) ∂P/∂z = K(1 + 1/n)�−1+1/n ∂�/∂z = (n + 1)K ∂�1/n/∂z = ∂Φ/∂z. (5.10.90)

Inserting the derivative of Eq. (5.10.90) into Eq. (5.10.89), we obtain after multiplication with
∂�1/n/∂z

(n + 1)K(∂�1/n/∂z) ∂2�1/n/∂z2 = [(n + 1)K/2] ∂[(∂�1/n/∂z)2]
/
∂z = −4πG� ∂�1/n

/
∂z

= −(4πG/n)�1/n ∂�/∂z = −[4πG/(n + 1)] ∂�1+1/n
/
∂z. (5.10.91)

Integration of Eq. (5.10.91) with the central boundary condition (∂�/∂z)z=0 = 0 yields

(1 + 1/n)2K�2/n−2(∂�/∂z)2 = 8πG
(
�
1+1/n
0 − �1+1/n

)
, (5.10.92)
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and

dz = −(1 + 1/n)(K/8πG)1/2�1/n−1 d�
/(

�
1+1/n
0 − �1+1/n

)1/2
, (∂�/∂z ≤ 0). (5.10.93)

The total surface density (5.10.5) is equal to (we will omit throughout the index 1 in the zero thickness
approximation)

Σ = Σ(λ, ϕ) = (1 + 1/n)(K/2πG)1/2

∫ �0

0

�1/n d�
/(

�
1+1/n
0 − �1+1/n

)1/2

= (2K/πG)1/2�
(n+1)/2n
0 = (2P0/πG)1/2. (5.10.94)

Analogously to the two-dimensional surface density (5.10.5) we define via Eqs. (2.1.6), (5.10.93) the
cumulative two-dimensional pressure PΣ acting per unit length in the plane of a polytropic zero thickness
disk [cf. Hunter 1972, Eq. (2.11)]:

PΣ = PΣ(λ, ϕ) = 2
∫ z1

0

P dz = (1 + 1/n)(K3/2πG)1/2

∫ �0

0

�2/n d�
/(

�
1+1/n
0 − �1+1/n

)1/2

= (K3/2πG)1/2�
(n+3)/2n
0

∫ 1

0

t1/(n+1)(1 − t)−1/2 dt = (K3/2πG)1/2�
(n+3)/2n
0

×B[(n + 2)/(n + 1), 1/2] = (K3/2G)1/2�
(n+3)/2n
0 Γ[(n + 2)/(n + 1)]

/
Γ[(3n + 5)/2(n + 1)],

(−∞ ≤ n < −2; −1 < n ≤ ∞; K3/2�
(n+3)/2n
0 = P

3/2
0 /�0; t = (�/�0)1+1/n; Γ(1/2) = π1/2).

(5.10.95)

Euler’s beta function has been denoted by (cf. Eqs. (2.3.56), (2.3.57); Smirnow 1967)

B(p, q) =
∫ 1

0

tp−1(1 − t)q−1 dt = Γ(p) Γ(q)/Γ(p + q), (p, q > 0), (5.10.96)

and Γ(x) means the gamma function from Eq. (C.9). Substituting into Eq. (5.10.95) for �0 from Eq.
(5.10.94), we finally obtain the desired relationship between surface density and two-dimensional pressure
in the (λ, ϕ) or (x, y)-plane of a zero thickness disk [cf. Eqs. (5.10.224)-(5.10.225)]:

PΣ = 2−(n+2)/(n+1)π(n+3)/2(n+1)G1/(n+1)Kn/(n+1) Γ[(n + 2)/(n + 1)] Σ(n+3)/(n+1)

/
Γ[(3n + 5)/2(n + 1)] = KΣΣ1+1/nΣ , (KΣ, nΣ = const; nΣ = (n + 1)/2; n = 2nΣ − 1;
−∞ ≤ nΣ < −0.5; 0 < nΣ ≤ ∞; −∞ ≤ n < −2; −1 < n ≤ ∞). (5.10.97)

If n = 1,±∞, the exponent (n + 3)/(n + 1) = 1 + 1/nΣ of Σ is the same as in the three-dimensional
polytropic law P = K�1+1/n; we have PΣ = KΣΣ if nΣ, n = ±∞, and PΣ = KΣΣ2 if nΣ, n = 1. There is
n > nΣ if nΣ > 1, and n < nΣ if nΣ < 1. Note, that the two-dimensional pressure PΣ acts isotropically
per unit length in the (x, y), (�, ϕ)-plane of the zero thickness disk, whereas ordinary three-dimensional
pressure P acts in space per unit surface.

The basic equations of zero thickness disks are simply obtained by replacing the three-dimensional
volume density �(x, y, z) = �(�, ϕ, z) with the two-dimensional surface density Σ(x, y) = Σ(�, ϕ), where
some care has to be exercised with Poisson’s equation (2.1.4), taking in the plane z = 0 of the zero
thickness disk the form

∇2Φ(�, ϕ) = (1/�) ∂(� ∂Φ/∂�)
/
∂� + (1/�2) ∂2Φ/∂ϕ2 = −4πGΣ(�, ϕ) δD(z). (5.10.98)

The one-dimensional Dirac function δD(z) is defined as

δD(z) = 0 if z �= 0;
∫ z=0+

z=0−
δD(z) dz = 1, (5.10.99)

where 0+ and 0− denote the z-coordinates at the upper and lower border of the central symmetry plane
z = 0. Outside the central plane the gravitational potential satisfies Laplace’s equation

∇2Φe(x, y, z) = ∇2Φe(λ, ϕ, z) = 0 if z �= 0. (5.10.100)
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The boundary condition on the potential of a zero thickness disk can be derived by integrating
Poisson’s equation (5.10.89) between the boundaries z1 and −z1 of a disk with small thickness 2z1 ≈ 0,
where ∂Φ/∂x, ∂Φ/∂y � ∂Φ/∂z and (∂Φ/∂z)z=0 = 0 :

∫ z1

0

[∂(∂Φ/∂z)
/
∂z] dz = (∂Φ/∂z)z=z1 = −4πG

∫ z1

0

� dz = −2πGΣ;
∫ 0

−z1

[∂(∂Φ/∂z)
/
∂z] dz = −(∂Φ/∂z)z=−z1 = −4πG

∫ 0

−z1

� dz = −2πGΣ. (5.10.101)

Letting now z1 → 0+, −z1 → 0−, we get

(∂Φ/∂z)z=0+ = −2πGΣ; (∂Φ/∂z)z=0− = 2πGΣ, (5.10.102)

and it is seen that, while the potential is required to be continuous across the infinitely thin disk, its
derivative is discontinuous, changing sign. The continuity equation (5.2.1) becomes simply

∂Σ/∂t + (1/�) ∂(�Σv
)/∂� + (1/�) ∂(Σvϕ)/∂ϕ = 0, [�(�, ϕ, z) → Σ(�, ϕ); �v = �v(v
, vϕ, 0)].
(5.10.103)

The equation of motion (5.2.10) writes in an inertial frame as [cf. Eq. (B.51)]

Dv
/Dt = ∂v
/∂t + v
 ∂v
/∂� + (vϕ/�) ∂v
/∂ϕ − v2
ϕ/� = −(1/Σ) ∂PΣ/∂� + ∂Φ/∂�, (5.10.104)

Dvϕ/Dt = ∂vϕ/∂t + v
 ∂vϕ/∂� + (vϕ/�) ∂vϕ/∂ϕ + v
vϕ/� = −(1/�Σ) ∂PΣ/∂ϕ + (1/�) ∂Φ/∂ϕ.
(5.10.105)

Sometimes, the enthalpy from Eq. (3.8.82) is introduced for a two-dimensional fluid PΣ = PΣ(Σ) :

dH = dPΣ/Σ or H = H(PΣ) =
∫ PΣ

0

dPΣ

/
Σ(PΣ), (∇H = (dH/dPΣ) ∇PΣ = (1/Σ) ∇PΣ).

(5.10.106)

Usually, the hydrostatic equilibrium state of zero thickness disks is assumed under the form of ax-
isymmetric, steady circular motion: v
, vz = 0, vϕ = �Ω(�). In this case Eq. (5.10.104) is equal to

−[1/Σ(�)] dPΣ/d� + dΦ/d� + �Ω2(�) = 0. (5.10.107)

The first order Eulerian perturbations of Eqs. (5.10.98), (5.10.100), (5.10.102) become (cf. Hunter
1972, Aoki et al. 1979, Lin and Lau 1979, Iye 1984):

∇2δΦ = −4πG δD(z) δΣ, (5.10.108)

∇2δΦe = 0 if z �= 0; (∂δΦ/∂z)z=0+ − (∂δΦ/∂z)z=0− = −4πG δΣ. (5.10.109)

Because the perturbed velocity components in an inertial cylindrical frame are

�v = �v(δv
, �Ω(�) + δvϕ, 0), (5.10.110)

the linearized Eulerian perturbation of the continuity equation (5.10.103) reads

∂δΣ/∂t + Ω(�) ∂δΣ/∂ϕ + (1/�) ∂(�Σ δv
)/∂� + (Σ/�) ∂δvϕ/∂ϕ = 0, [Σ = Σ(�)]. (5.10.111)

Likewise, we derive the linear perturbed equations of motion from Eqs. (5.10.104) and (5.10.105) in
a cylindrical inertial frame [Σ = Σ(�); PΣ = PΣ(�); Φ = Φ(�)] :

∂δv
/∂t + Ω(�) ∂δv
/∂ϕ − 2Ω(�) δvϕ = (δΣ/Σ2) dPΣ/d� − (1/Σ) ∂δPΣ/∂� + ∂δΦ/∂�

= (a2
Σ δΣ/Σ2) dΣ/d� − (a2

Σ/Σ) ∂δΣ/∂� − (δΣ/Σ) da2
Σ/d� + ∂δΦ/∂�, (5.10.112)
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∂δvϕ/∂t + Ω(�) ∂δvϕ/∂ϕ + [2Ω(�) + � dΩ(�)/d�] δv
 = −(1/�Σ) ∂δPΣ/∂ϕ + (1/�) ∂δΦ/∂ϕ

= −(a2
Σ/�Σ) ∂δΣ/∂ϕ + (1/�) ∂δΦ/∂ϕ, (5.10.113)

where δPΣ(�, ϕ) = a2
Σ(�) δΣ(�, ϕ), (see below). We have introduced the two-dimensional adiabatic sound

velocity in the infinitely thin plane of the disk for adiabatic oscillations with two-dimensional adiabatic
exponent Γ1Σ = (Σ/PΣ)(∂PΣ/∂Σ)S , [cf. Eqs. (1.3.1), (2.1.49)]:

a2
Σ = (∂PΣ/∂Σ)S=const = Γ1ΣPΣ/Σ. (5.10.114)

It should be stressed that the parts of Eqs. (5.10.112), (5.10.113) containing aΣ are valid only
for an isentropic polytrope (PΣ = KΣΣ1+1/nΣ ; Γ1Σ = 1 + 1/nΣ), as tacitly assumed by Hunter
(1972). In this case the adiabatic energy equation (5.10.226) simplifies to δPΣ = a2

Σ δΣ, because
by virtue of Eqs. (5.1.16), (5.10.114), (5.10.224)-(5.10.227) we have ∆PΣ = ∆� dPΣ/d� + δPΣ =
(1 + 1/nΣ)(PΣ/Σ) ∆� dΣ/d� + δPΣ = (Γ1ΣPΣ/Σ) ∆� dΣ/d� + δPΣ = a2

Σ ∆� dΣ/d� + δPΣ on the
one side, and ∆PΣ = a2

Σ ∆Σ = a2
Σ ∆� dΣ/d� + a2

Σ δΣ on the other side. Comparing these two relation-
ships for ∆PΣ, we just get δPΣ = a2

Σ δΣ. The sound velocity aΣ replaces in this context the adiabatic
index Γ1Σ, familiar from previous sections.

Investigations on the local stability of zero thickness disks (including spiral density wave theory)
are concerned with the short wavelength regime, when the Wentzel-Kramers-Brillouin-Jeffreys (WKBJ)
approximation can be applied, i.e. when the proportional change of wavelength within a local wavelength
is small.

In order to determine the general nature of solutions of a zero thickness disk in the short wavelength
regime, we derive subsequently with the stroke of a pen an important local dispersion relationship.
Whereas Goldreich and Lynden-Bell (1965b) consider a local comoving frame with sheared axes, and
Hunter (1972) introduces a local inertial Cartesian frame, we consider simply the perturbed motion
in the neighborhood of a certain fixed point with polar coordinates �0, ϕ0 in the inertial frame. Let
� = �0 + s and ϕ be the polar coordinates of a neighboring point, where s = � − �0 � �0, ϕ − ϕ0 � ϕ0.
The angular velocity of the unperturbed fluid at point (�, ϕ) is Ω(�) = Ω(�0 + s) = Ω(s), (�0 = const).
All other unperturbed physical quantities are approximated with constants in the vicinity of �0, ϕ0 :
PuΣ, Σu, Φu, auΣ = const. The perturbations in the (�, ϕ)-plane can therefore be assumed under the form

δPΣ(s, ϕ, t) = CP exp[i(σt + js + kϕ)]; δΣ(s, ϕ, t) = CΣ exp[i(σt + js + kϕ)];
δΦ(s, ϕ, t) = CΦ exp[i(σt + js + kϕ)]; δv
(s, ϕ, t) = C
 exp[i(σt + js + kϕ)];
δvϕ(s, ϕ, t) = Cϕ exp[i(σt + js + kϕ)], (CP , CΣ, CΦ, C
, Cϕ = const). (5.10.115)

j is the radial wave number, and k denotes the azimuthal wave number [cf. Eq. (5.6.1)]. In our local
approximation we consider j = const. In fact, the perturbations (5.10.115) are similar to those used with
the WKBJ method in density wave theory for Φ [e.g. Lin and Lau 1979, Eq. (29)]:

δΦ(s, ϕ, t) = δΦ(s) exp
[
i

(
σt +

∫ s

0

j(s′) ds′ + kϕ

)]
. (5.10.116)

By assumption j(s′), δΦ(s) ≈ const if s � �0, and Eq. (5.10.116) assumes the form (5.10.115). Since
�0 = const, we turn in Eqs. (5.10.111)-(5.10.113) to the new variables s, ϕ, and get up to the first order
(ds = d�; � ≈ �0) :

∂δΣ/∂t + Ω(s) ∂δΣ/∂ϕ + Σ[∂δv
/∂s + (1/�0) ∂δvϕ/∂ϕ] = 0, (5.10.117)

∂δv
/∂t + Ω(s) ∂δv
/∂ϕ − 2Ω(s) δvϕ = −(a2
Σ/Σ) ∂δΣ/∂s + ∂δΦ/∂s, (5.10.118)

∂δvϕ/∂t + Ω(s) ∂δvϕ/∂ϕ + [2Ω(s) + �0 dΩ(s)/ds] δv
 = −(a2
Σ/�0Σ) ∂δΣ/∂ϕ + (1/�0) ∂δΦ/∂ϕ.

(5.10.119)

The two equations (5.10.109) take in the vicinity of �0, ϕ0 the form

∇2δΦe = (1/�) ∂(� ∂δΦe/∂�)
/
∂� + (1/�2) ∂2δΦe/∂ϕ2 + ∂2δΦe/∂z2

≈ ∂2δΦe/∂s2 + (1/�20) ∂2δΦe/∂ϕ2 + ∂2δΦe/∂z2 = 0 if z �= 0;
(∂δΦ/∂z)z=0+ − (∂δΦ/∂z)z=0− = −4πG δΣ, (5.10.120)
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and we observe that a solution of both equations (5.10.120) is given with the local perturbations (5.10.115)
by [cf. Eq. (5.10.64)]

δΦ = δΦe = [2πGCΣ

/
(j2 + k2/�20)

1/2] exp[i(σt + js + kϕ) − (j2 + k2/�20)
1/2|z|]. (5.10.121)

This yields in the plane of the disk the local relationship [Bardeen 1975, Lin and Lau 1979, Eq. (D14)]

δΦ = [2πGCΣ

/
(j2 + k2/�20)

1/2] exp[i(σt + js + kϕ)] = [2πG
/
(j2 + k2/�20)

1/2] δΣ,

[z = 0; Φu, Σu = const; CΦ = 2πGCΣ

/
(j2 + k2/�20)

1/2]. (5.10.122)

Now, we insert the perturbations (5.10.115), (5.10.122) into Eqs. (5.10.117)-(5.10.119), to obtain the
homogeneous system

jΣ δv
 + kΣ δvϕ/�0 + [σ + kΩ(s)] δΣ = 0;

i[σ + kΩ(s)] δv
 − 2Ω(s) δvϕ + i
[
a2
Σj/Σ − 2πGj

/
(j2 + k2/�20)

1/2
]

δΣ = 0;

[2Ω(s) + �0 dΩ(s)/ds] δv
 + i[σ + kΩ(s)] δvϕ + i
[
a2
Σk/�0Σ − 2πGk

/
�0(j2 + k2/�20)

1/2
]

δΣ = 0.
(5.10.123)

Nonzero solutions only occur if the determinant of this system vanishes, yielding a cubic dispersion
relation for σ [Hunter 1972, Eq. (5.8); Lin and Lau 1979, Eq. (D15)]:

(σ + kΩ)[(σ + kΩ)2 − 4Ω2 − 2�0Ω dΩ/ds] + [2πG(j2 + k2/�20)
1/2Σ − a2

Σ(j2 + k2/�20)]

×[σ + kΩ + ijk(dΩ/ds)
/
(j2 + k2/�20)] = 0. (5.10.124)

An instructive and important particular case occurs for axisymmetric oscillations with k = 0 (cf. Eq.
(5.10.88) for the infinite, uniformly rotating, isothermal medium):

σ2 = κ2 − 2πGjΣ + a2
Σj2, (k = 0), (5.10.125)

where κ2 = 4Ω2 + 2�0Ω dΩ/ds is approximately equal to Eq. (5.10.1). The minimum of σ2 occurs if
dσ2/dj = 0 or j = πGΣ/a2

Σ. Introducing this into Eq. (5.10.125), we observe that the zero thickness disk
is stable for all axisymmetric wavelengths if σ2 ≥ 0, or

aΣ = [(dP/dΣ)S ]1/2 ≥ πGΣ/κ, (k = 0). (5.10.126)

If the velocity of sound is equated to the root-mean-square radial velocity vr of stars with a
Schwarzschild distribution of velocities, the local stability condition in a thin, pure stellar disk is nearly
equal to Eq. (5.10.126), (Toomre 1977: vr ≥ 3.36GΣ/κ). This kind of agreement should not blind us
to the fact that fundamental differences exist between stellar and gaseous rotating disk systems (Hunter
1972).

Care must be taken in interpreting Eq. (5.10.124), especially in the full nonaxisymmetric case, because
a root σ with negative imaginary part found for some real values of j and k, can equally well be interpreted
as σ being real with j and k complex. By virtue of Eq. (5.10.115) this latter case would merely correspond
to a steady stable wave with spatially varying amplitude. Such ambiguities can be avoided only by a full
local analysis of the WKBJ type (Hunter 1972).

According to Eqs. (5.10.116) and (5.10.122) the Eulerian surface density perturbation can be written
as

δΣ(s, ϕ, t) = δΣ(s) exp
[
i

(
σt +

∫ s

0

j(s′) ds′ + kϕ

)]
, (5.10.127)

which reduces to the surface density perturbation (5.10.115) if δΣ(s) = CΣ = const, j(s′) = j = const.
We separate the real and imaginary parts of the eigenvalue by writing σ = σr + iσi. Eq. (5.10.127)
assumes the form

δΣ(s, ϕ, t) = δΣ(s) exp(−σit) exp
[
i

(
σrt +

∫ s

0

j(s′) ds′ + kϕ

)]
. (5.10.128)
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The angular velocity of propagation of the wave pattern is just equal to Ωp = ϕ/t = −σr/k (Gerthsen
et al. 1977). The maxima of the surface density perturbation (5.10.128) occur if

σrt +
∫ s

0

j(s′) ds′ + kϕ = k(ϕ + σrt/k) +
∫ s

0

j(s′) ds′ = 2mπ, (m = 0, 1, 2, 3, ...). (5.10.129)

At a fixed moment t0 this equation represents a k-armed spiral density wave

k(ϕ + σrt0/k − 2mπ/k) = k(ϕ − ϕ0) = −
∫ s

0

j(s′) ds′,

(ϕ0 = 2mπ/k − σrt0/k; m = 0, 1, 2, ...k − 1; k = 1, 2, 3, ...), (5.10.130)

and it is seen that the m-th arm of the spiral originates at polar angle ϕ0 = 2mπ/k − σrt0/k, where
ϕ = ϕ0 if s = 0. The density waves are trailing dϕ = −j(s) ds/k < 0 if j > 0, and leading dϕ > 0 if j < 0.
The validity of the local approximation depends on the constraint (5.10.3): |j|�0 	 1. For moderate
values of k this condition is equivalent to the requirement of a small pitch angle p of the spiral arms, i.e.
a tightly wound spiral [Lin and Lau 1979, Eq. (31a)]:

| tan p| = (1/�0) |ds/dϕ| = |k/j�0| � 1, (dϕ/ds = −j/k). (5.10.131)

Thus, for small pitch angles of the spiral density wave (5.10.128) we can neglect k2/�20 with respect
to j2 in the local dispersion relationship (5.10.124). With this constraint in mind, we write the last term
of Eq. (5.10.124) under the form

ijk(dΩ/ds)
/
(j2 + k2/�20) = (ijk/�0)(κ2/2Ω − 2Ω)

/
(j2 + k2/�20) ≈ (ik/j�0) O(Ω), (5.10.132)

since κ2 ≈ O(Ω2) for a wide range of rotation laws [cf. Eq. (5.10.1)]. Thus, in the last bracket of Eq.
(5.10.124) the term (5.10.132) is negligible with respect to kΩ, and the local dispersion relation (5.10.124)
assumes a form suitable to spiral density wave theory (Hunter 1972, Bardeen 1975, Lin and Lau 1979):

(σ + kΩ)2 = κ2 − 2πGjΣ + a2
Σj2, (j2 	 k2/�20), (5.10.133)

with two solutions for the radial wave number

j1,2 =
{
πGΣ ±

[
π2G2Σ2 + a2

Σ(σ + kΩ)2 − a2
Σκ2

]1/2}/
a2
Σ. (5.10.134)

If the constraint (5.10.131) is fulfilled, the system (5.10.123) writes as (Bardeen 1975)

δΣ = −(jΣ δv
 + kΣ δvϕ/�0)
/
(σ + kΩ);

δv
 = δΣ
[
(2πG − a2

Σj/Σ)(σ + kΩ) + 2iΩa2
Σk/�0Σ

]/[
(σ + kΩ)2 − κ2

]
;

δvϕ = δΣ
[
− a2

Σk(σ + kΩ)/�0Σ + iκ2(2πG − a2
Σj/Σ)/2Ω

]/[
(σ + kΩ)2 − κ2

]
. (5.10.135)

Thus, in our rudimentary theory, the surface density and velocity perturbations, both become singular
in three cases, namely when σ + kΩ = 0, and σ + kΩ = ±κ. Restricting to the real part σr = −kΩp

of the eigenvalue σ, we observe that (σr + kΩ)/κ = k(Ω − Ωp)/κ can be regarded as the dimensionless
frequency of encounter of disk material – traveling at angular speed Ω – with the spiral pattern of a
k-armed spiral, rotating with angular velocity (pattern frequency) Ωp = −σr/k. The singularity of the
eigenfunctions occurring at radius � = �0 + s, where σr + kΩ = k(Ω − Ωp) = 0, is called the corotation
resonance (Sec. 5.9.3), and the other two singularities occurring at σr + kΩ = k(Ω−Ωp) = ±κ are called
the outer and inner Lindblad resonance, respectively. These resonances act as extra boundary conditions
on the eigenfunctions. It is seen from Eq. (5.10.134) that at the Lindblad resonances one radial wave
number falls to zero. If

−[κ2 − (πGΣ/aΣ)2]1/2 < σ + kΩ < [κ2 − (πGΣ/aΣ)2]1/2, (5.10.136)

the two radial wave numbers j1,2 become complex.
With respect to the existence of stable spiral modes in rotating fluids Lynden-Bell and Ostriker

(1967) have enounced their “antispiral theorem”: Stable normal modes (σ – real) with spiral structure
are possible only in the case of degenerate eigenvalues (linearly independent modes having the same
eigenvalue σ), and in this case the spiral eigenfunctions always occur in pairs, one leading (j < 0) and
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the other trailing (j > 0). It is always possible to chose the stable normal modes of oscillations in such a
way that none of them has spiral structure.

According to Hunter (1972) the proof of the antispiral theorem relies simply on the fact that when the
surface density perturbation δΣ(�, ϕ, t) = δΣ(�) exp[i(σt+kϕ)] is a solution of the hydrodynamic equations
(5.10.103)-(5.10.105), there also exists a solution δΣ′(�, ϕ, t) = δΣ(�) exp[i(σ̄t + kϕ)] of the complex
conjugate type, where σ = σ̄, since we consider only stable modes with σ being real. Because the complex
conjugate modes δΣ(�) and δΣ(�) possess the same eigenvalue σ = σ̄, they are degenerate and linearly
independent. The complex function δΣ(�) can be written under the form δΣ(�) = |δΣ(�)| exp[i arg δΣ(�)],
where the modulus |δΣ(�)| and the argument arg δΣ(�) are real functions. Thus, we may write δΣ(�, ϕ, t) =
|δΣ(�)| exp{i[σt + kϕ + arg δΣ(�)]} and δΣ′(�, ϕ, t) = |δΣ(�)| exp{i[σt + kϕ − arg δΣ(�)]}, where σ =
σ̄, |δΣ(�)| = |δΣ(�)|, arg δΣ(�) = − arg δΣ(�). If arg δΣ(�) �= const, these are spirals [cf. Eq. (5.10.127)].
If δΣ is of the leading type, its pair δΣ′ is of the trailing type, and vice versa, their arguments having
opposite signs.

We can always chose the linearly independent set of eigenfunctions δΣ(�)+δΣ(�) and [δΣ(�)−δΣ(�)]/i,
which are real and stable by construction; they are of the nonspiral type, as their arguments are 0 or π,
i.e. independent of �. This completes the brief proof of the antispiral theorem. The existence of spiral
modes is not disproved by the antispiral theorem, and it is not a severe restriction in practice (Hunter
1972, Bardeen 1975).

Fig. 5.10.1 Fundamental unstable spiral mode of the perturbed surface density δΣ in a zero thickness
disk. Numbers denote fractions of the maximum surface density perturbation δΣmax. The dashed circle is the
corotation circle σr + kΩ(�) = 0 (Lin and Lau 1979).

More sophisticated approximations to the density wave theory in infinitely thin disks have been
adopted for instance by Lau and Bertin (1978) in order to elucidate the ”winding dilemma” in spiral
galaxies, i.e. the seemingly long-lived nature of spiral arms in the presence of differential galactic rotation.
Introducing a “radiation condition” (as widely used in plasma physics) at [σr + kΩ(�)]/κ(�) = 0.5, which
implicitly favours trailing spiral waves, Lau and Bertin (1978) obtain a number of discrete unstable spiral
modes. Fig. 5.10.1 shows the perturbed surface density δΣ of the fundamental mode. While Goldreich
and Lynden-Bell (1965b) consider the amplification of local, unstable, transient shearing wavelets as an
explanation of spiral structure in galaxies, the discrete, unstable, trailing spiral modes are maintained
in the theory of Lau and Bertin (1978) by an outward transport of angular momentum. Unfortunately,
these exciting problems are beyond the scope of this book (see Binney and Tremaine 1987, Chap. 6).

While this subsection has been mainly concerned with the local stability of zero thickness disks, the
next subsections briefly present also some results of global stability analysis.
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5.10.5 Hunter’s Pressure-free, Zero Thickness Disk

Disks with pressure and pressure-free disks are often designated as “hot” and “cold” disks, respectively.
This misleading nomenclature stems from an undue extrapolation of the perfect gas law (1.2.5), ignoring
pressure-density relationships in cold matter at zero temperature. The simplest pressure-less model is
the uniformly rotating, zero thickness disk with surface density given by Eq. (5.10.156). This is the only
one for which a global, fully analytical solution for all modes is available also for disks with pressure (Iye
1978, 1984).

The most straightforward (though generally not the most convenient) expression for the potential of
an infinitely thin disk is in polar coordinates equal to (cf. Eqs. (3.1.47), (3.1.48); Mestel 1963)

Φ(�r) = G

∫
V

Σ(�r′) dV ′/|�r − �r′| = G

∫ 2π

0

dϕ′
∫ ∞

0

Σ(�′, ϕ′) �′ d�′/(�2 + �′2 − 2��′ cos γ)1/2

= Φ(�, ϕ), (�r = �r(�, ϕ); dV ′ = �′ d�′ dϕ′), (5.10.137)

where γ is the angle between �r and �r′. While Yabushita (1969) and others seek a solution of Poisson’s
equation (5.10.98) in terms of Bessel and associated Bessel functions, Hunter (1963) expresses the gravi-
tational potential in terms of Legendre polynomials, introducing oblate spheroidal coordinates (u, v, ϕ),
which are related to Cartesian coordinates by (e.g. Spiegel 1968)

x = �1 cosh u cos v cos ϕ; y = �1 cosh u cos v sinϕ; z = �1 sinhu sin v. (5.10.138)

�1 is identified with the finite radius �1 = (x2
1 + y2

1)1/2 of the unperturbed disk. The new coordinates
are restricted to vary in the range 0 ≤ u ≤ ∞, −π/2 ≤ v ≤ π/2, the azimuth angle ϕ changing as usually
between 0 and 2π. Eq. (5.10.138) becomes with the new notations ζ = sinhu, µ = sin v equal to

x = �1(1 + ζ2)1/2(1 − µ2)1/2 cos ϕ; y = �1(1 + ζ2)1/2(1 − µ2)1/2 sinϕ; z = �1ζµ, (5.10.139)

where 0 ≤ ζ ≤ ∞ and −1 ≤ µ ≤ 1. The surfaces ζ = const and µ = const are respectively confocal
ellipsoids and hyperboloids of revolution about the z-axis. The plane z = 0 of the zero thickness disk is
represented by ζ = 0 if � = (x2 + y2)1/2 = �1(1 + ζ2)1/2(1 − µ2)1/2 ∈ [0, �1]. The value of the coordinate
µ differs in sign on the upper and lower side of the disk, but not in magnitude. The (x, y)-plane outside
the disk where � > �1 has µ = 0, (z = 0). On the z-axis we have µ = 1 if z > 0, and µ = −1 if z < 0.

The orthogonal line element in oblate spheroidal coordinates is given by

ds2 = dx2 + dy2 + dz2 = �21
[
(ζ2 + µ2) dζ2/(1 + ζ2) + (ζ2 + µ2) dµ2/(1 − µ2)

+(1 + ζ2)(1 − µ2) dϕ2
]
. (5.10.140)

The Laplace equation [cf. Eq. (B.21)]

∇2Φe = [1
/
�21(ζ

2 + µ2)]
{
∂[(1 + ζ2) ∂Φe/∂ζ]

/
∂ζ + ∂[(1 − µ2) ∂Φe/∂µ]

/
∂µ

+[(ζ2 + µ2)
/
(1 + ζ2)(1 − µ2)] ∂2Φe/∂ϕ2

}
= 0, (5.10.141)

has single-valued separable solutions of the form (e.g. Lamb 1945, §§107, 109)

pm
j (ζ) Pm

j (µ) exp(imϕ); qm
j (ζ) Pm

j (µ) exp(imϕ). (5.10.142)

Pm
j (µ) are associated Legendre polynomials, and pm

j , qm
j are two independent solutions of the equation

d[(1 + ζ2) dχ/dζ]
/
dζ + [m2/(1 + ζ2) − j(j + 1)] χ = 0, (χ = pm

j , qm
j ). (5.10.143)

This equation becomes identical to the associated Legendre equation (3.1.41) if ζ is replaced by iζ,
and one real solution of Eq. (5.10.143) is therefore

pm
j (ζ) = im−jPm

j (iζ) = [(2j − 1)!! (1 + ζ2)m/2
/
(j − m)!][ζj−m + (j − m)(j − m − 1)ζj−m−2

/
2(2j − 1) + ...], [(2j − 1)!! = 1 × 3 × ... × (2j − 3)(2j − 1)]. (5.10.144)
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At large distances from the origin r = (x2+y2+z2)1/2 = �1(1−µ2+ζ2)1/2 ≈ �1ζ we have pm
j ∝ ζj ∝ rj ,

which diverges if r → ∞, so the other solution is pertinent for the external potential:

qm
j (ζ) = [(−1)m(j + m)! pm

j (ζ)
/
(j − m)!]

∫ ∞

ζ

dζ ′
/
(1 + ζ ′2)[pm

j (ζ ′)]2. (5.10.145)

This solution satisfies Laplace’s equation (5.10.141) at all points outside the disk, and decays as r−j−1

at large distances from the disk. Therefore, Hunter (1963) considers the external potential under the form

Φe(ζ, µ, ϕ) =
∞∑

j,m=0

Ajm[qm
j (ζ)

/
qm
j (0)] Pm

j (µ) exp(imϕ), (Ajm = const). (5.10.146)

The external potential has to be continuous across the disk, when µ → −µ, so Pm
j has to be an even

function of µ, i.e. j − m has to be an even number (e.g. Spiegel 1968). Near the disk we have ζ ≈ 0,
and Eq. (5.10.139) yields x2 + y2 = �2 ≈ �21(1 − µ2). The boundary condition (5.10.102) obtained if
�, µ, ϕ = const, reads as

[(1/�1µ) ∂Φe/∂ζ]ζ=0+ − [(1/�1µ) ∂Φe/∂ζ]ζ=0− = −4πGΣ(µ, ϕ),
[(∂Φe/∂z)z=0± = (∂Φ/∂z)z=0± ], (∂ζ/∂z = 1/�1µ). (5.10.147)

Eq. (5.10.139) yields for the zero thickness disk ζ = 0 :

µ = (1 − �2/�21)
1/2; �2 = x2 + y2 = �21(1 − µ2). (5.10.148)

We consider only the positive sign of µ, adopting µ as a dimensionless measure of the distance
� = �1(1 − µ2)1/2 of a disk point from the origin. Since Pm

j (µ) is an even function of µ if j − m is an
even number, the restriction 0 ≤ µ ≤ 1 instead of −1 ≤ µ ≤ 1 has no practical significance. Taking into
account that µ → −µ on the lower side ζ = 0− of the disk, insertion of Eq. (5.10.146) into Eq. (5.10.147)
yields

Σ(µ, ϕ) =
∞∑

j,m=0

Ajm[−π(dqm
j /dζ)ζ=0

/
qm
j (0)] Pm

j (µ) exp(imϕ)/2π2G�1µ,

(j − m even; 0 ≤ µ ≤ 1). (5.10.149)

The result

γm
j = −qm

j (0)
/
π(dqm

j /dζ)ζ=0 = (j + m)!(j − m)!
/
22j+1{[(j + m)/2]!}2{[(j − m)/2]!}2,

(j − m even), (5.10.150)

has been obtained by Hunter (1963) after lengthy evaluations. Assuming a representation of Σ under the
form

Σ(µ, ϕ) = (1/µ)
∞∑

j,m=0

cjmPm
j (µ) exp(imϕ), (j − m even; cjm = const), (5.10.151)

and combining with Eqs. (5.10.149), (5.10.150), we get Ajm = 2π2G�1cjmγm
j . The external potential

(5.10.146) becomes on the disk surface at ζ = 0± equal to

Φe = 2π2G�1

∞∑
j,m=0

cjmγm
j Pm

j (µ) exp(imϕ). (5.10.152)

For an axisymmetric density distribution Eq. (5.10.151) simplifies to

Σ(µ) = (1/µ)
∞∑

j=0

c2jP2j(µ), (m = 0; c2j = const), (5.10.153)
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and the surface density of the disk becomes infinite at its outer edge µ = 0, unless the coefficients c2j

satisfy the identity

∞∑
j=0

c2jP2j(0) = 0. (5.10.154)

The total mass of the finite disk is

M1 = 2π

∫ 
1

0

Σ(�) � d� = 2π�21

∫ 1

0

Σ(µ) µ dµ = 2π�21

∫ 1

0

∞∑
j=0

c2jP2j(µ) dµ = 2π�21c0. (5.10.155)

The simplest surface density model of the form (5.10.153) is that with only c0 and c2 nonzero. Eq.
(5.10.154) yields c2 = 2c0, (P0(µ) = 1, P2(0) = −1/2), which is inserted together with Eq. (5.10.155)
into Eq. (5.10.153):

Σ(�) = 3M1µ/2π�21 = (3M1/2π�21)(1 − �2/�21)
1/2. (5.10.156)

The perturbed surface density is considered under the form

Σ(�, ϕ, t) = (3M1/2π�21)[1 − �2
/
L2

1(ϕ, t)]1/2 + Σ∗(�, ϕ, t) = 3M1η/2π�21 + Σ∗(η, ϕ, t)

= 3M1η/2π�21 + Σ∗(η) exp[i(σt + kϕ)], (Σ∗ � Σ), (5.10.157)

where we have introduced the perturbed outer boundary of the disk

L1(ϕ, t) = �1 + ε(ϕ, t) = �1 + ε exp[i(σt + kϕ)], (|ε| � �1), (5.10.158)

avoiding the occurrence of imaginary surface densities in Eq. (5.10.157) by using L1 instead of �1. It
should be stressed that Σ∗ is not equal to the Eulerian perturbation δΣ, since the leading term in Eq.
(5.10.157) depends on the perturbed quantity L1(ϕ, t), the unperturbed surface density being given by
Eq. (5.10.156). We have also introduced the new variable η, connected with µ from Eq. (5.10.148) by

η = (1 − �2/L2
1)

1/2 ≈ µ + ε(1 − µ2)
/
µ�1 = µ + �2ε/µ�31. (5.10.159)

The leading term of the gravitational potential due to the surface density distribution (5.10.156) can
be found by flattening the homogeneous Maclaurin ellipsoid

x2/(c2 + �21) + y2/(c2 + �21) + z2/c2 = �2/(c2 + �21) + z2/c2 = 1, (5.10.160)

to a zero thickness disk, by letting c → 0, � → ∞, and taking into account that mass conservation implies
�a3 = 3M1/4πa1a2 or �c = 3M1/4π(c2 + �21), where the semimajor axes are a1 = a2 = (c2 + �21)

1/2 and
a3 = c = a1(1 − e2)1/2 = (c2 + �21)

1/2(1 − e2)1/2. Indeed, if c, z → 0, the surface density of the ellipsoid
(5.10.160) writes

Σ = 2 lim
z→0

(�z) = 2 lim
c→0

{�c[1 − �2/(c2 + �21)]
1/2} = (3M1/2π�21)(1 − �2/�21)

1/2 = 3M1µ/2π�21,

(5.10.161)

which is just identical to the unperturbed surface density (5.10.156). The unperturbed internal potential
of the ellipsoid (5.10.160) is (Chandrasekhar 1969, §18)

Φu = πG�{A1[2(c2 + �21) − �2] + A3(c2 − z2)}, (5.10.162)

where A1, A3 are given by Eq. (5.10.221). If we flatten the ellipsoid (5.10.160), its unperturbed potential
(5.10.162) becomes

Φu = 3πGM1(2�21 − �2)/8�31 = 3πGM1(1 + µ2)/8�1, (c, z → 0; e → 1; � → ∞;

M1 → 4π��31(1 − e2)1/2/3; �A1 → π�(1 − e2)1/2/2 → 3M1/8�31; A3 → 2). (5.10.163)

If we now flatten the slightly different ellipsoid

�2
/
(c2 + L2

1) + z2/c2 = 1, (5.10.164)
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having the same mass M1 as the ellipsoid (5.10.160), we observe that its surface density

Σ = 2 lim
z→0

(�z) = 2 lim
c→0

{�c[1 − �2
/
(c2 + L2

1)]
1/2} = (3M1/2π�21)(1 − �2/L2

1)
1/2 = 3M1η/2π�21,

(5.10.165)

is just the leading term of the perturbed surface density (5.10.157). Hunter (1963) decomposes the
gravitational potential of the perturbed zero thickness disk into three parts: (i) The unperturbed potential
(5.10.163) of the unperturbed disk. (ii) A small perturbation Φε stemming from the difference between
the surface densities (5.10.165) and (5.10.156). (iii) A small perturbation Φ∗ corresponding to the surface
density perturbation Σ∗ in Eq. (5.10.157).

The potential Φε is just equal to the potential of the flattened thin ellipsoidal shell (c → 0), contained
between the two ellipsoids (5.10.164) and (5.10.160). The normal thickness h of this shell is obtained
from h = ∆� cos αn. The angle of the exterior normal with the �-axis is denoted by αn, where tan αn =
−d�/dz = z(c2 + �21)/c2�. The difference ∆� = ε�1�/(c2 + �21) is obtained by differentiating Eq. (5.10.164):
2� ∆�/(c2 +L2

1)− 2�2L1 ∆L1/(c2 +L2
1)

2 = 0 with c, z = const, and ε = ∆L1 = L1 − �1, (L1 ≈ �1). Thus:

h = ∆� cos αn = ∆�/(1 + tan2 αn)1/2 = cε�1�
2
/
(c2 + �21)[(c

2 + �21)
2 − �21�

2]1/2. (5.10.166)

The external gravitational potential of the ellipsoidal shell with variable thickness h ∝ ε(ϕ, t) can be
represented by a series of the form (5.10.146)

Φεe(ζ, µ, ϕ, t) =
∞∑

j,m=0

Ajm(t) qm
j (ζ) Pm

j (µ) exp(imϕ), (5.10.167)

while for the internal potential Φε the functions qm
j (ζ) have to be replaced by pm

j (ζ), which are continuous
together with their derivatives throughout the interior of the ellipsoid:

Φε =
∞∑

j,m=0

Bjm(t) pm
j (ζ) Pm

j (µ) exp(imϕ). (5.10.168)

We observe that the ellipsoid (5.10.160) becomes in oblate spheroidal coordinates (ζ, µ, ϕ) equal to

(c2 + �21µ
2)(�21ζ

2 − c2) = 0, (5.10.169)

and is determined by the level surface of the oblate spheroidal coordinate �21ζ
2 − c2 = 0 or ζ = c/�1,

since c2 + �21µ
2 > 0. Continuity of the internal and external gravitational potential in the thin shell at

ζ = ζc = c/�1 = const requires that

Φεe(ζc, µ, ϕ, t) = Φε(ζc, µ, ϕ, t) or Ajm(t) qm
j (ζc) = Bjm(t) pm

j (ζc). (5.10.170)

Another condition concerning the derivatives of Φε and Φεe comes from the integration of Poisson’s
equation (2.1.4) in oblate spheroidal coordinates:

∂[(1 + ζ2) ∂Φε/∂ζ]
/
∂ζ + ∂[(1 − µ2) ∂Φε/∂µ]

/
∂µ + [(ζ2 + µ2)

/
(1 + ζ2)(1 − µ2)] ∂2Φε/∂ϕ2

= −4πG��21(ζ
2 + µ2). (5.10.171)

We integrate across the small thickness h of the ellipsoidal shell between ζc = c/�1 and ζc + ∆ζ, if
dµ, dϕ = 0 :

[(1 + ζ2) ∂Φε/∂ζ]ζ=ζc+∆ζ − [(1 + ζ2) ∂Φε/∂ζ]ζ=ζc
= [(1 + ζ2) ∂Φεe/∂ζ]ζ=ζc+∆ζ

−[(1 + ζ2) ∂Φε/∂ζ]ζ=ζc
= −4πG��21(ζ

2
c + µ2) ∆ζ. (5.10.172)

The derivatives of the internal and external potential must be equal at the outer boundary of the
shell: (∂Φε/∂ζ)ζ=ζc+∆ζ = (∂Φεe/∂ζ)ζ=ζc+∆ζ . From the line element (5.10.140) it is seen that in this case

∆s = h = �1[(ζ2
c + µ2)

/
(1 + ζ2

c )]1/2 ∆ζ, (∆µ,∆ϕ = 0), (5.10.173)

while Eq. (5.10.166) becomes [�2 = �21(1 + ζ2
c )(1 − µ2); (c2 + �21)

2 − �21�
2 = �41(1 + ζ2

c )(ζ2
c + µ2)] :

h = cε�1(1 + ζ2
c )1/2(1 − µ2)

/
(c2 + �21)(ζ

2
c + µ2)1/2. (5.10.174)
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Equating Eqs. (5.10.173) and (5.10.174), we find

∆ζ = cε(1 + ζ2
c )(1 − µ2)

/
(c2 + �21)(ζ

2
c + µ2). (5.10.175)

Inserting into Eq. (5.10.172) for ∂Φεe/∂ζ, ∂Φε/∂ζ, ∆ζ from Eqs. (5.10.167), (5.10.168), (5.10.175),
respectively, we get at ζc = c/�1 :

(1 − µ2) ε(ϕ, t) = [(c2 + �21)/4πG�c�21]
∞∑

j,m=0

[
Bjm(t) (dpm

j /dζ)ζ=ζc
− Ajm(t) (dqm

j /dζ)ζ=ζc+∆ζ

]

×Pm
j (µ) exp(imϕ). (5.10.176)

Let us denote by Djm(t) the coefficient of Pm
j (µ) exp(imϕ) :

(1 − µ2) ε(ϕ, t) =
∞∑

j,m=0

Djm(t) Pm
j (µ) exp(imϕ). (5.10.177)

j−m must be even, since 1−µ2 is an even function of µ. Equating the coefficients of the two identical
representations (5.10.176) and (5.10.177), we obtain

Bjm(t) = [4πG�c�21 qm
j (ζc) Djm(t)

/
(c2 + �21)]

/
[(dpm

j /dζ)ζ=ζc
qm
j (ζc) − pm

j (ζc) (dqm
j /dζ)ζ=ζc+∆ζ ],

(5.10.178)

where we have inserted for Ajm from Eq. (5.10.170). Now we flatten the ellipsoidal shell into a zero
thickness disk, by making ∆ζ, ζc, c → 0, �c → 3M1/4π�21, and taking into account that via Eq. (5.10.144)
we have (dpm

j /dζ)ζc=0 = 0 if j − m is even. Eq. (5.10.168) becomes

Φε(µ, ϕ, t) =
∞∑

j,m=0

(3πGM1γ
m
j /�21) Djm(t) Pm

j (µ) exp(imϕ), (ζ = 0; j − m even). (5.10.179)

To our degree of accuracy we can replace µ from Eq. (5.10.148) by η from Eq. (5.10.159), and if we
introduce for ε(ϕ, t) from Eq. (5.10.158) into Eq. (5.10.177), we get

(1 − η2) ε exp[i(σt + kϕ)] =
∞∑

j,m=0

Djm(t) Pm
j (η) exp(imϕ), (µ = η), (5.10.180)

observing that the required form of the expansion is one which contains only terms having m ≡ k, i.e.

(1 − η2) ε exp[i(σt + kϕ)] =
∞∑

j=0

Djk(t) P k
j (η) exp(ikϕ), (j − k even). (5.10.181)

This requires Djk(t) = εdj exp(iσt), (dj = const). Putting m ≡ k in Eq. (5.10.179), we get eventually

Φε(η, ϕ, t) =
∞∑

j=0

(3πGM1ε djγ
k
j /�21) P k

j (η) exp[i(σt + kϕ)]. (5.10.182)

The constant ε is arbitrary, since perturbations of all amplitudes are possible, provided that |ε| � �1.
The first order part Φ∗ of the perturbed potential corresponding to Σ∗(η, ϕ, t) = Σ∗(η) exp[i(σt+kϕ)]

from Eq. (5.10.157) is obtained with a surface density expansion of the form (5.10.151):

Σ∗(η) = (1/η)
∞∑

j=0

αjP
k
j (η), (αj = const; j − k even). (5.10.183)

To avoid a singularity at the edge η = 0, we impose the restriction

∞∑
j=0

αjP
k
j (0) = 0. (5.10.184)
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The potential Φ∗(η, ϕ, t) = Φ∗(η) exp[i(σt + kϕ)] corresponding to the density field (5.10.183) results
analogously to the potential (5.10.152):

Φ∗(η, ϕ, t) = 2π2G�1

∞∑
j=0

αjγ
k
j P k

j (η) exp[i(σt + kϕ)]. (5.10.185)

We are now looking for separable solutions of Eqs. (5.10.103)-(5.10.105) having the form

Φ(η, ϕ, t) = Φu(�) + Φε(η, ϕ, t) + Φ∗(η, ϕ, t) = Φu(�) + [Φε(η) + Φ∗(η)] exp[i(σt + kϕ)]

= 3πGM1(2�21 − �2)/8�31 +
∞∑

j=0

(3πGM1εdj/�21 + 2π2G�1αj)γk
j P k

j (η) exp[i(σt + kϕ)], (5.10.186)

v
(η, ϕ, t) = v∗

 (η, ϕ, t) = v∗


 (η) exp[i(σt + kϕ)]; vϕ(η, ϕ, t) = Ω� + v∗
ϕ(η, ϕ, t)

= Ω� + v∗
ϕ(η) exp[i(σt + kϕ)], (5.10.187)

where the constant angular velocity of unperturbed rotation follows from Eqs. (5.10.107) and (5.10.163)
if PΣ = 0, vϕ = Ω�, Φ = Φu :

v2
ϕ/� = Ω2� = −∂Φu/∂� or Ω = (3πGM1/4�31)

1/2. (5.10.188)

The first order equations governing small oscillations are obtained by inserting Eqs. (5.10.157),
(5.10.159), (5.10.186), (5.10.187) into Eqs. (5.10.103)-(5.10.105), (dη ≈ −(1 − η2)1/2 d�/�1η) :

[3M1(1 − η2)/2π�31η](∂ε/∂t + Ω ∂ε/∂ϕ) + ∂Σ∗/∂t + Ω ∂Σ∗/∂ϕ

+[3M1(1 − η2)1/2/2π�31][(2η
2 − 1)v∗




/
η(1 − η2) − ∂v∗
 /∂η + η(∂v∗

ϕ/∂ϕ)
/
(1 − η2)] = 0, (5.10.189)

∂v∗

 /∂t + Ω ∂v∗


 /∂ϕ − 2Ωv∗
ϕ = −[(1 − η2)1/2/η�1] ∂(Φε + Φ∗)/∂η, (5.10.190)

∂v∗
ϕ/∂t + Ω ∂v∗ϕ/∂ϕ + 2Ωv∗


 = [1
/
�1(1 − η2)1/2] ∂(Φε + Φ∗)/∂ϕ. (5.10.191)

We introduce the exp[i(σt+kϕ)]-dependence of the perturbations into Eqs. (5.10.190) and (5.10.191):

v∗

 (η) = {i/�1[(σ + kΩ)2 − 4Ω2]}{[(σ + kΩ)(1 − η2)1/2

/
η] d(Φε + Φ∗)/dη

−2kΩ(Φε + Φ∗)
/
(1 − η2)1/2}, (5.10.192)

v∗
ϕ(η) = {[1

/
�1[(σ + kΩ)2 − 4Ω2]}{k(σ + kΩ)(Φε + Φ∗)

/
(1 − η2)1/2

−[2Ω(1 − η2)1/2/η] d(Φε + Φ∗)/dη}. (5.10.193)

These two equations are substituted together with the exp[i(σt + kϕ)]-dependence of Σ∗(η, ϕ, t) and
ε(ϕ, t) into the continuity equation (5.10.189), to give

ηΣ∗(η) + 3εM1(1 − η2)/2π�31 +
{
3M1/2π�41[(σ + kΩ)2 − 4Ω2]

}
×
{
d[(η2 − 1) d(Φε + Φ∗)/dη]

/
dη + [k2/(1 − η2) − k2 + 2kΩ/(σ + kΩ)](Φε + Φ∗)

}
= 0. (5.10.194)

To obtain the final form of the dispersion relation, we insert for ηΣ∗(η), 1− η2, 3πGM1/4�31, d[(η2 −
1) d(Φε + Φ∗)/dη]

/
dη, Φε + Φ∗ from Eqs. (5.10.183), (5.10.181), (5.10.188), (3.1.41), (5.10.186), respec-

tively:

∞∑
j=0

[
(αj + 3εM1dj/2π�31)

{
1 + 4Ω2γk

j [j(j + 1) − k2 + 2kΩ/(σ + kΩ)]

/
[(σ + kΩ)2 − 4Ω2]

}
P k

j (η)
]

= 0. (5.10.195)
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Either the first factor αj + 3εM1dj/2π�31 vanishes for all j, but this possibility can be ruled out since
it would imply via Eq. (5.10.184)

∞∑
j=0

αjP
k
j (0) = −(3εM1/2π�31)

∞∑
j=0

djP
k
j (0) = 0, (5.10.196)

while Eq. (5.10.181) requires

∞∑
j=0

djP
k
j (0) = 1. (5.10.197)

Eqs. (5.10.196) and (5.10.197) can be reconciled only in the trivial case ε = 0. We are left with the
possibility that the first factor in Eq. (5.10.195) vanishes for all j, except for some single value j = p :

αj + 3εM1dj/2π�31 = 0 if j �= p. (5.10.198)

If Eq. (5.10.198) holds, the eigenvalue σ is chosen in such a way that for j = p the second factor in
Eq. (5.10.195) vanishes:

1 + 4Ω2γk
p [p(p + 1) − k2 + 2kΩ/(σ + kΩ)]

/
[(σ + kΩ)2 − 4Ω2] = 0, (j = p). (5.10.199)

The restrictions (5.10.184), (5.10.197) are satisfied by taking

αp = (3εM1/2π�31)[1
/
P k

p (0) − dp], (j = p). (5.10.200)

The other αj ’s are given by Eq. (5.10.198). With the values of αj from Eqs. (5.10.198), (5.10.200), all
perturbed quantities contain only the Legendre polynomial P k

p (η), and can now be determined by using
Eqs. (5.10.157), (5.10.181), (5.10.183), (5.10.185)-(5.10.187):

Σ = (3M1/2π�21)
{
η + ε [(η2 − 1)/η�1 + P k

p (η)
/
η�1P

k
p (0)] exp[i(σt + kϕ)]

}
, (5.10.201)

Φ = (3πGM1/�21)
{
(2�21 − �2)/8�1 + εγk

pP k
p (η) exp[i(σt + kϕ)]

/
P k

p (0)
}
, (5.10.202)

v
 = 3πiεGM1γ
k
p exp[i(σt + kϕ)]

{
[(σ + kΩ)(1 − η2)1/2/η] dP k

p /dη − 2kΩ P k
p (η)/(1 − η2)1/2

}
/
�31[(σ + kΩ)2 − 4Ω2] P k

p (0), (5.10.203)

vϕ = Ω� + 3πεGM1γ
k
p exp[i(σt + kϕ)]

{
k(σ + kΩ) P k

p (η)/(1 − η2)1/2

−[2Ω(1 − η2)1/2/η] dP k
p /dη

}/
�31[(σ + kΩ)2 − 4Ω2] P k

p (0). (5.10.204)

p − k is an even number in virtue of Eq. (5.10.181). In the case of axisymmetric oscillations (k = 0)
the cubic equation (5.10.199) for the determination of the eigenvalues degenerates into the quadratic

σ2 = 4Ω2[1 − p(p + 1)γ0
p ] = 4Ω2{1 − p(p + 1)(p!)2

/
22p+1[(p/2)!]4}, (k = 0; p = 2, 4, 6, ...).

(5.10.205)

No solution is possible if p = k = 0, since this would give σ2 = 4Ω2, and in this case the velocity
disturbances v∗


 , v∗ϕ take the undetermined form 0/0. If p = 2, we have σ = ±Ω, corresponding to
stable sinusoidal oscillations. If p = 4, 6, 8, ..., all squared eigenvalues (5.10.205) are negative, decreasing
monotonically with increasing p, and unstable modes occur. The instabilities become progressively more
violent as p increases. Using Wallis-Stirling’s formula (e.g. Smirnow 1967)

π = lim
n→∞(1/n)[(2n)!!/(2n − 1)!!]2 = lim

n→∞ 24n(n!)4/n[(2n)!]2 = lim
p→∞ 22p+1[(p/2)!]4/p(p!)2,

(p = 2n; (2n)!! = 2n × (2n − 2)... × 2; (2n − 1)!! = (2n − 1) × (2n − 3)... × 3 × 1), (5.10.206)
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Eq. (5.10.205) writes for large values of p as

σ2 = −4pΩ2/π, (k = 0; p → ∞; p even). (5.10.207)

A significant feature of these instabilities is that they represent motions which tend to break up the
disk into a number of concentric rings. This can be seen from Eq. (5.10.203) – the η-dependence of the
radial velocity v
 being of the form

v
 ∝ [(1 − η2)1/2/η] dPp(η)/dη, (k = 0; p even). (5.10.208)

This function vanishes at η = ±1, and has p/2 − 1 roots in the range 0 ≤ η < 1, since dPp/dη is
involved instead of Pp (cf. Hobson 1931, Chap. IX). The radial velocity has thus p/2− 1 changes of sign
in space at any instant. Only if p = 2, there are no such changes and the motion is stable.

In the particular case p = k we can find analytic expressions for the nonaxisymmetric disturbances,
because the dispersion relation (5.10.199) reads

(σ + pΩ)[(σ + pΩ)2 − 4Ω2] + 4pΩ2γp
p(σ + pΩ + 2Ω) = 0 or

(σ + pΩ + 2Ω)[(σ + pΩ)2 − 2Ω(σ + pΩ) + 4pΩ2γp
p ] = 0. (5.10.209)

One eigenvalue σ = −(p + 2)Ω is always real, and the other two are

σ = Ω[(1 − p) ± (1 − 4pγp
p)1/2]; γp

p = (2p)!
/
22p+1(p!)2 = (2p − 1)!!

/
2(2p)!!, (p = k).

(5.10.210)

If p = 1, we have pγp
p = 1/4, and neutral stability (σ = 0) occurs, amounting to a lateral displacement

of the disk in its plane z = 0. Since pγp
p increases with p, the roots (5.10.210) are complex conjugate

if p > 1, and one of them gives an oscillation with exponentially growing amplitude, implying unstable
oscillations if p = k > 1. The unstable first order quantities from Eqs. (5.10.201)-(5.10.204) are of the
form

f(η) exp
{
Ωt(4pγp

p − 1)1/2 + i[Ω(1 − p)t + pϕ]
}
, (p = k > 1), (5.10.211)

and these disturbances propagate angularly in the direction of rotation of the disk with angular velocity
ϕ/t = (p − 1)Ω/p, slower than the angular speed of the disk.

In the general case, if p > k, (p− k even), the dispersion relation (5.10.199) can be written under the
form

[(σ + kΩ)/2Ω]3 + [(σ + kΩ)/2Ω][γk
p (p2 + p − k2) − 1] + kγk

p = 0. (5.10.212)

The coefficients of this cubic equation are real, so one root is always real (e.g. Smirnow 1967), and
we show subsequently that the other two roots are complex conjugate, implying instability also in the
general case p > k > 0. The cubic equation x3 + ax + b = 0 has two complex conjugate roots if its
discriminant a3/27 + b2/4 is positive. In the present context this amounts to

−a3/27 < b2/4 or [1 − γk
p (p2 + p − k2)]3/27 < k2(γk

p )2/4. (5.10.213)

Now γk
p (p2 + p− k2) = γk

p [(p + k)(p− k) + p] is always positive, and a simple ratio test shows that it
increases monotonically with p + k, if p − k = S is kept fixed. The minimum value of γk

p (p2 + p − k2) is
therefore obtained if k = 1 and p = S + k = S + 1. We have

γk
p (p2 + p − k2) = [S(S + 2) + S + 1](S + 2)!S!

/
22S+3[(S/2)!]2{[(S + 2)/2]!}2. (5.10.214)

This expression however increases with increasing S, and since S = p − k, (p > k ≥ 1) must be an
even number, the minimum value of S is 2. Eq. (5.10.214) becomes equal to 33/32, and a = 1/32 > 0,
all other values of a being positive too. The inequality (5.10.213) is always satisfied, and one eigenvalue
of the dispersion relation (5.10.212) gives rise to unstable oscillations.

Thus, the sole stable modes of the uniformly rotating, pressure-free, zero thickness disk are the ax-
isymmetric oscillations associated with P 0

2 (η), (Eq. (5.10.205) if k = 0, p = 2), and the nonaxisymmetric
oscillations associated with P 1

1 (η), (Eq. (5.10.210) if k = p = 1). All other modes become unstable
for certain eigenvalues (Hunter 1963, Iye 1984). The surface density perturbations (5.10.201) show no
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spiral structure at all [cf. Eq. (5.10.128)]. Thus, differentially rotating, zero thickness disks have to be
considered if one wants perturbations with leading (trailing) spiral patterns. While Hunter (1969) finds
only leading spirals in his local short wavelength analysis of the WKBJ type, Yabushita (1969) obtains
also trailing spirals in his global analysis of differentially rotating, pressure-free, zero thickness disks.

A sequence of differentially rotating equilibrium models can be constructed with the formula (cf.
Hunter 1972)

v2(�) = �2Ω2(�) = (2N + 1)πGM1(1 − µ2N )/4N�1, (µ2 = 1 − �2/�21; N = 1, 2, 3, ...).
(5.10.215)

If N = 1, we recover Ω2 = 3πGM1/4�31 for the uniformly rotating disk from Eq. (5.10.188). If N → ∞,
we get the so-called Mestel (1963) zero thickness disk with uniform rotation velocity

v2 = πGM1/2�1 = const; Σ(�) = M1 arcsinµ/2π�21(1 − µ2)1/2. (5.10.216)

The eigenfrequencies of higher order modes in zero thickness, pressure-free disks are often very close
together, i.e. they belong to a continuum (Hunter 1972). Another, quite different class of continuous
modes is formed by the corotating continuum that spans the range −kΩ(0) ≤ σ ≤ −kΩ(�1), [Ω(0) ≥
Ω(�1)], as already revealed for differentially rotating cylinders (Sec. 5.9.3), and in the local analysis of
disks from Sec. 5.10.4.

In pressure-free disks the stabilizing effect of pressure (of random stellar motions) is neglected – an
effect becoming increasingly important at short wavelengths – so we are lead to the stability study of
disks with pressure.

5.10.6 Global Stability of Thin Disks with Pressure

Attempts have been made to connect the stability of high-eccentricity Maclaurin ellipsoids with the
stability of thin stellar disks (e.g. Ostriker and Peebles 1973). The ratio τ = Ekin/|W | from Eq. (3.1.35)
can easily be evaluated for Maclaurin ellipsoids (Chandrasekhar 1969, p. 57):

Ekin = (Ω2/2)
∫

V

��2 dV = Ω2I11 = (8π2G�2a5
1/15)[(1/e3)(1 − e2)(3 − 2e2) arcsin e

−3(1 − e2)3/2/e2], (a1 = a2; a3 = a1(1 − e2)1/2; I11 = I22). (5.10.217)

The moment of inertia tensor (2.6.74) and the mass M1 of the Maclaurin spheroid are given by

Ijk = M1a
2
jδjk/5 = 4π�a1a2a3a

2
jδjk/15; M1 = 4π�a1a2a3/3, (5.10.218)

the angular velocity being equal to

Ω2 = 2πG�[(1/e3)(1 − e2)1/2(3 − 2e2) arcsin e − 3(1 − e2)/e2]. (5.10.219)

The gravitational energy tensor (2.6.71) of the Maclaurin spheroid is

Wjk = −2πG�AjIjk, (5.10.220)

where

A1 = A2 = (1/e3)(1 − e2)1/2 arcsin e − (1 − e2)/e2; A3 = 2/e2 − (2/e3)(1 − e2)1/2 arcsin e.
(5.10.221)

The gravitational energy reads

W = W11 + W22 + W33 = −16π2G�2a5
1(1 − e2) arcsin e/15e, (5.10.222)

and

τ = Ekin/|W | = (1/2)[(3 − 2e2)/e2 − 3(1 − e2)1/2
/
e arcsin e]. (5.10.223)



486 5.10 Stability and Oscillations of Rotating Slabs and Disks

As mentioned in Sec. 5.8.2 the incompressible Maclaurins become secularly unstable for the sectorial
(toroidal, barlike) modes at a value of τ = 0.1375. And at nearly the same value of τ the pressure-free
stellar disks of Ostriker and Peebles (1973) become neutrally stable, exhibiting barlike instabilities if
τ ≥ 0.14, although these disks satisfy throughout the local stability criterion (5.10.126), when the sound
velocity aΣ is replaced by the radial velocity dispersion vr. A nonrotating spherical halo with mass over
two times the disk mass can stabilize the disk as a whole, because it merely increases the total potential
energy |W |, diminishing the value of τ below the secular instability limit (e.g. Bardeen 1975).

The pressure in the plane of the zero thickness disk is assumed to obey the polytropic law (5.10.97):

PΣ = KΣΣ1+1/nΣ , (KΣ, nΣ = const). (5.10.224)

Comparing Eq. (5.10.97) with Eq. (5.10.224), we obtain the relationship between the polytropic
indices and the polytropic constants of the two- and three-dimensional fluid medium:

nΣ = (n + 1)/2; n = 2nΣ − 1; KΣ = 2−(n+2)/(n+1)π(n+3)/2(n+1)G1/(n+1)Kn/(n+1)

×Γ[(n + 2)/(n + 1)]
/
Γ[(3n + 5)/2(n + 1)]. (5.10.225)

The adiabatic Lagrangian pressure-density perturbations are obtained from Eq. (5.2.38) by replacing
� and Γ1 with Σ and Γ1Σ, respectively:

∆PΣ = (Γ1ΣPΣ/Σ) ∆Σ = a2
Σ ∆Σ, (Q = const). (5.10.226)

Analogously to the three-dimensional case (2.1.51) the two-dimensional adiabatic index becomes in
the case of an isentropic, zero thickness disk equal to

Γ1Σ = 1 + 1/nΣ; nΣ = 1/(Γ1Σ − 1), (S = const). (5.10.227)

Combining Eqs. (2.1.51), (5.10.225), (5.10.227), we obtain the relationship between the two- and
three-dimensional adiabatic index (Iye 1984, Laughlin et al. 1998):

Γ1Σ = 1 + 2/(n + 1) = 3 − 2/Γ1, [S = const; n = 1/(Γ1 − 1)]. (5.10.228)

A special isentropic disk model due to Toomre (1963) with pressure PΣ = KΣΣ4/3, and infinite radius
has been considered by Aoki et al. (1979) in their global stability study of zero thickness disks:

Φ = (GM1/c)[(1 − x)/2]1/2 = (GM1/c)
/
(1 + �2/c2)1/2, (5.10.229)

Σ = (M1/2πc2)[(1 − x)/2]3/2 = (M1/2πc2)
/
(1 + �2/c2)3/2, (5.10.230)

where

x = (�2/c2 − 1)
/
(�2/c2 + 1) = (�2 − c2)

/
(�2 + c2), (−1 ≤ x ≤ 1), (5.10.231)

and c is a positive scaling factor.
The mass of these Toomre disks is finite and equal to M1, while their radius �1 extends to infinity, sim-

ilarly to the spherical polytropes having polytropic index n = 5. The equation of hydrostatic equilibrium
(5.10.107) becomes for these disks equal to (�2 = c2(1 + x)/(1 − x); dx/d� = (1 + x)1/2(1 − x)3/2/c)

v2
ϕ = (�/Σ) dPΣ/d� − � dΦ/d� = (GM1/23/2c)(1 − x)1/2(1 + x)

×{1 − (M1/2πc2)1/nΣ [3cKΣ(1 + 1/nΣ)/GM1][(1 − x)/2](3−nΣ)/2nΣ}. (5.10.232)

If nΣ = 3, as considered by Aoki et al. (1979), this yields

Ω2 = v2
ϕ/�2 = (GM1/23/2c3)(1 − x)3/2[1 − 4cKΣ(M1/2πc2)1/3/GM1]. (5.10.233)

The global stability of polytropic, uniformly rotating, zero thickness disks with finite pressure has
been studied by Iye (1978) and Takahara (1978) if nΣ = 0.5, n = 0, (”Maclaurin disks”), where Takahara
considers throughout isentropic disks (nΣ = 0.5; Γ1Σ = 1 + 1/nΣ = 3; Γ1 = ∞), [see Eqs. (5.10.262)-
(5.10.275)]. Pressure effects stabilize the disks especially in the short wavelength regime. There is no mode



5.10.6 Global Stability of Thin Disks with Pressure 487

showing spiral patterns in the case of uniform rotation, suggesting that differential rotation is essential to
the existence of growing spiral modes. The results of Iye (1978; nΣ = 0.75; n = 0.5; Γ1Σ = 1 + 1/nΣ =
7/3; Γ1 = 3), Takahara (1978; nΣ = 0.5; Γ1Σ = 3), Aoki et al. (1979; nΣ = 3; n = 5; Γ1Σ = 1 + 1/nΣ =
4/3; Γ1 = 6/5), and Ambastha and Varma (1983; nΣ = 0.75; Γ1Σ = 7/3) concerning differentially
rotating isentropic disks with Γ1Σ = 1 + 1/nΣ may be briefly summarized as follows: Ambastha and
Varma (1983) found some open, tightly wrapped, leading spiral modes in pressure-free disks, which
appear less pronounced in the studies of Iye (1978) and Aoki et al. (1979). As pressure effects become
more important, the leading spiral modes become gradually trailing, and not only two-armed, but also
one- and multi-armed spiral modes, as well as ring modes are expected to grow, even for low-pressure
models.

In the short wavelength regime Iye (1984) has derived a quartic dispersion relation, showing the
properties of p, g(f), and g(b)-modes (cf. Sec. 5.9.3). Assuming for the Eulerian perturbations expansions
of the form

δΣ(�, ϕ, t) = δΣ(�) exp[i(σt + kϕ)]; δPΣ(�, ϕ, t) = δPΣ(�) exp[i(σt + kϕ)]; δΦ ≡ 0;
δv
(�, ϕ, t) = δv
(�) exp[i(σt + kϕ)]; δvϕ(�, ϕ, t) = δvϕ(�) exp[i(σt + kϕ)], (5.10.234)

the perturbed equations (5.10.111)-(5.10.113) become

i(σ + kΩ) δΣ + (1/�) d(�Σ δv
)/d� + ikΣ δvϕ/� = 0, (5.10.235)

i(σ + kΩ) δv
 − 2Ω δvϕ = (δΣ/Σ2) dPΣ/d� − (1/Σ) dδPΣ/d�, (5.10.236)

i(σ + kΩ) δvϕ + (κ2/2Ω) δv
 = −ik δPΣ/�Σ, (5.10.237)

in the Cowling approximation δΦ ≡ 0, which is justified at short wavelengths.
Via Eq. (5.1.16) we get up to the first order

D(∆PΣ)/Dt = D(δPΣ + ∆� dPΣ/d�)
/
Dt ≈ ∂δPΣ/∂t + (vϕ/�) ∂δPΣ/∂ϕ + (D∆�/Dt)(dPΣ/d�)

= i(σ + kΩ) δPΣ + δv
 dPΣ/d�, (5.10.238)

and a similar equation for D(∆Σ)/Dt. Then, the adiabatic energy equation (5.10.226) becomes in the
linear approximation equal to [cf. Eqs. (5.2.35)-(5.2.39)]

D(∆PΣ)/Dt = D(a2
Σ ∆Σ)/Dt ≈ a2

Σ D(∆Σ)/Dt = (Γ1ΣPΣ/Σ) D(∆Σ)/Dt or

i(σ + kΩ) δPΣ + δv
 dPΣ/d� = a2
Σ[i(σ + kΩ) δΣ + δv
 dΣ/d�]. (5.10.239)

For nonaxisymmetric oscillations (k �= 0) and away from corotation (σ + kΩ �= 0, Sec. 5.9.3), the
elimination of δPΣ and δΣ among Eqs. (5.10.235)-(5.10.237), (5.10.239) yields a set of two first order
ordinary differential equations:

dδv
/d� = [κ2�(σ + kΩ)/2kΩa2
Σ − (1/a2

ΣΣ) dPΣ/d� − 1/�] δv


+(i�/k)[(σ + kΩ)2/a2
Σ − k2/�2] δvϕ = H δv
 + J δvϕ, (5.10.240)

dδvϕ/d� = (ik/�)
{
1 + κ4�2/4k2Ω2a2

Σ + [κ2�/2kΩ(σ + kΩ)][2A + d ln(κ2/2Ω)/d� − d ln Σ/d�]

−[A
/
Σ(σ + kΩ)2] dPΣ/d�

}
δv
 − [κ2�(σ + kΩ)/2kΩa2

Σ + A + 1/�] δvϕ = L δv
 + M δvϕ.
(5.10.241)

In this context A denotes the Schwarzschild discriminant for the two-dimensional medium [cf. Eqs.
(5.2.85), (5.10.2)]:

A = (1/Σ) dΣ/d� − (1/Γ1ΣPΣ) dPΣ/d� = [1 − (nΣ + 1)/nΣΓ1Σ] d ln Σ/d�,
(
PΣ = KΣΣ1+1/nΣ

)
.

(5.10.242)
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Iye (1984) introduces new functions p and q

δv
 = p(�) exp
[ ∫ 


0

H(�′) d�′
]
; δvϕ = q(�) exp

[ ∫ 


0

M(�′) d�′
]
, (5.10.243)

from which the new canonical set is obtained:

dp/d� = J q(�) exp
[ ∫ 


0

(−H + M) d�′
]
; dq/d� = L p(�) exp

[ ∫ 


0

(H − M) d�′
]
. (5.10.244)

If we assume that the radial dependence of p and q has in the short wavelength regime the form [cf.
Eq. (5.10.116)]

p(�) = P exp
[
i

∫ 


0

j(�′) d�′
]
; q(�) = Q exp

[
i

∫ 


0

j(�′) d�′
]
, (P, Q = const), (5.10.245)

Eq. (5.10.244) becomes

ij(�) p(�) − J q(�) exp
[ ∫ 


0

(−H + M) d�′
]

= 0; L p(�) exp
[ ∫ 


0

(H − M) d�′
]
− ij(�) q(�) = 0,

(5.10.246)

where j(�), (|j(�)| 	 1) is the radial wave number. Nontrivial solutions of p and q occur if the determinant
j2(�) + JL of this system is zero, i.e. if the quartic dispersion relation

j2(�) = −JL = [(σ + kΩ)2/a2
Σ − k2/�2]

{
1 + κ4�2/4k2Ω2a2

Σ + [κ2�/2kΩ(σ + kΩ)]

×[2A + d ln(κ2/2Ω)/d� − d ln Σ/d�] − [A/Σ(σ + kΩ)2] dPΣ/d�
}
, (k �= 0), (5.10.247)

is satisfied in a local region. To obtain the particular form of the dispersion relation for axisymmetric
oscillations (k = 0), we have to proceed ex novo, and get from Eqs. (5.10.237), (5.10.239):

δvϕ = (iκ2/2σΩ) δv
; δΣ = (1/a2
Σ) δPΣ + i[(1/σ) dΣ/d� − (1/a2

Σσ) dPΣ/d�] δv
. (5.10.248)

Inserting this into Eqs. (5.10.235), (5.10.236), we obtain the axisymmetric counterparts of Eqs.
(5.10.240) and (5.10.241):

dδv
/d� = −[(1/Σa2
Σ) dPΣ/d� + 1/�] δv
 − (iσ/Σa2

Σ) δPΣ = H δv
 + J δPΣ, (5.10.249)

dδP/d� = i[−σΣ + κ2Σ/σ − (1/σΣa2
Σ) (dPΣ/d�)2 + (1/σΣ)(dΣ/d�)(dPΣ/d�)] δv


+(1/Σa2
Σ)(dPΣ/d�) δPΣ = L δv
 + M δPΣ. (5.10.250)

With the new functions

δv
 = p(�) exp
[ ∫ 


0

H(�′) d�′
]
; δP = q(�) exp

[ ∫ 


0

M(�′) d�′
]
, (5.10.251)

we obtain exactly in the same way as in Eqs. (5.10.244)-(5.10.247) the local dispersion relation for
axisymmetric oscillations [cf. Iye 1984, Eq. (4.8)]:

j2(�) = −JL = (1/a2
Σ)
{
σ2 − κ2 − (dPΣ/d�)[(1/Σ2) dΣ/d� − (1/Σ2a2

Σ) dPΣ/d�]
}

= (1/a2
Σ)[σ2 − κ2 − (A/Σ) dPΣ/d�], (k = 0). (5.10.252)

If the unperturbed pressure and surface density are constant, we have A = 0 in Eq. (5.10.252), and
if we neglect self-gravity in the density wave equation (5.10.125), the two equations coincide.

The dispersion relation (5.10.247) allows for an approximate solution in the short wavelength regime
at high angular oscillation frequencies σ + kΩ, as observed in the local corotating frame:

j2 ≈ [(σ + kΩ)2/a2
Σ − k2/�2](1 + κ4�2/4k2Ω2a2

Σ) − (A/Σa2
Σ) dPΣ/d�, (|j|, |σ + kΩ| 	 1).

(5.10.253)
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The eigenvalues are approximately [Iye 1984, Eqs. (4.14a), (4.14b)]:

σ ≈ −kΩ ±
{
a2
Σk2/�2 + [a2

Σj2 + (A/Σ) dPΣ/d�]
/
(1 + κ4�2/4k2Ω2a2

Σ)
}1/2

≈ −kΩ ± 2jkΩa2
Σ/(4k2Ω2a2

Σ + κ4�2)1/2, (j2 	 k2/�2). (5.10.254)

If the epicyclic frequency κ is zero, Eq. (5.10.254) shows that the only characteristic quantity of the
oscillation frequency is the sound speed aΣ. We can then identify these high-frequency modes with the well
known p-modes (pressure modes, acoustic modes, sound waves) restored by pressure. From Eq. (5.10.254)
it is obvious that one of the pressure modes propagates forward (p(f)-mode if σ/k + Ω = −ϕ/t + Ω < 0),
and the other backward (p(b)-mode if σ/k + Ω > 0) with respect to the local corotating frame (see Sec.
5.9.3). The oscillation frequencies of axisymmetric p-modes are given by Eq. (5.10.252).

Another set of short wavelength solutions is found from Eq. (5.10.247) for a nonisentropic fluid
(A �= 0) in the low frequency regime |σ + kΩ| � 1 :

j2 ≈ −(A/Σa2
Σ) dPΣ/d� − (k2/�2)

{
1 + κ4�2/4k2Ω2a2

Σ − [A/Σ(σ + kΩ)2] dPΣ/d�
}
,

(|j| 	 1; |σ + kΩ| � 1), (5.10.255)

or

σ ≈ −kΩ ±
{
[(k2A/�2Σ) dPΣ/d�]

/
[(A/Σa2

Σ) dPΣ/d� + j2 + k2/�2 + κ4/4Ω2a2
Σ]
}1/2

≈ −kΩ ± (k/�){[(A/Σ) dPΣ/d�]
/
(j2 + k2/�2)}1/2 = −kΩ ± (kN/�)

/
(j2 + k2/�2)1/2. (5.10.256)

Here we have inserted the two-dimensional Brunt-Väisälä frequency [cf. Eqs. (5.5.33), (5.10.107),
(5.10.242)]

N2 = (1/Σ)(dPΣ/d�)[d ln Σ/d� − (1/Γ1Σ) d lnPΣ/d�] = (A/Σ) dPΣ/d� = A[dΦ/d� + �Ω2(�)].
(5.10.257)

Eq. (5.10.256) shows that effective gravity (buoyancy) from Eq. (3.1.20) is the restoring force of
these g-modes, and their pattern frequency Ωp = −σ/k (see Sec. 5.10.4) is almost independent of
k, (j2 	 k2/�2). If the polytrope is isentropic (A = 0, Γ1Σ = 1 + 1/nΣ), the frequencies σ/k + Ω of
the g-modes in the local comoving frame merge to zero in the first approximation from Eq. (5.10.256).
The forward and backward propagating g(f), g(b)-modes (prograde or retrograde g-modes, as to whether
σ/k+Ω < 0 or > 0) are essentially nonaxisymmetric oscillations (k �= 0), and for axisymmetric oscillations
(k = 0) no g-modes exist, or else the g-modes become neutral σ = 0.

In a second approximation we preserve in the fundamental dispersion relation (5.10.247) the term in
(σ + kΩ)−1, neglecting however for conciseness (A/Σa2

Σ) dPΣ/d� + κ4/4Ω2a2
Σ with respect to j2 + k2/�2,

as compared to Eq. (5.10.255):

j2 ≈ −(k2/�2) − [kκ2/2Ω�(σ + kΩ)][2A + d ln(κ2/2Ω)/d� − d ln Σ/d�]

+[k2A/�2Σ(σ + kΩ)2] dPΣ/d�, (|j| 	 1; |σ + kΩ| � 1). (5.10.258)

Solving this second order equation with respect to σ + kΩ, we get eventually

σ ≈ −kΩ − (kκ2/2Ω�)[2A + d ln(κ2/2Ω)/d� − d ln Σ/d�]
/
2(j2 + k2/�2) ±

{
(kκ2/2Ω�)2[2A

+d ln(κ2/2Ω)/d� − d ln Σ/d�]2 + 4(j2 + k2/�2)(k2A/�2Σ) dPΣ/d�
}1/2/2(j2 + k2/�2), (5.10.259)

which becomes in the isentropic limit

σ ≈ −kΩ −
{
(kκ2/2Ω�)[d ln(κ2/2Ω)/d� − d ln Σ/d�]

±(kκ2/2Ω�)[d ln(κ2/2Ω)/d� − d ln Σ/d�]
}/

2(j2 + k2/�2), (A = 0; |j| 	 1; |σ + kΩ| � 1).
(5.10.260)

This equation shows that the prograde g(f)-mode (the ”r-mode”) has the oscillation frequency

σ ≈ −kΩ − (kκ2/2Ω�)[d ln(κ2/2Ω)/d� − d ln Σ/d�]/(j2 + k2/�2), (σ/k + Ω < 0), (5.10.261)
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while the retrograde g(b)-mode becomes neutral (σ + kΩ = 0) in the comoving frame. The essential
restoring force of the g(f)-mode in the case of an isentropic disk is the Coriolis force. The changeover of
g(f) and g(b)-modes into a rotational g(f) = r-mode and a trivial neutral g(b)-mode in the limit A → 0 is
a special feature of the two-dimensional oscillations considered here and in Sec. 5.9.3. This degeneracy
should not occur for three-dimensional oscillations of thick disks (Iye 1984).

Long wavelength oscillations are generally more complicated to study as compared to short wavelength
oscillations, because of global couplings between p and g-modes. Only uniformly rotating Maclaurin disks
(Ω = const, n = 0, nΣ = 0.5) have been solved analytically for long wavelength modes. The analysis
of such modes in terms of propagation and phase diagrams has been effected by Schutz and Verdaguer
(1983), and Verdaguer (1983). For uniformly rotating Maclaurin disks the spatial eigenfunctions are
similar in stellar disks and gas disks in the short wavelength limit. But for differentially rotating disks
they may differ strikingly.

Schutz and Bowen (1983), Schutz and Verdaguer (1983), and Verdaguer (1983) have studied thick
isentropic disks having n = 0 and 2, (nΣ = 0.5, 1.5; Γ1Σ = 1 + 1/nΣ = 3, 5/3; Γ1 = 1 + 1/n = ∞, 1.5)
in an approximation due to Bardeen (1975): The vertical structure of the thick disk is included up
to the first order in its thickness. The disk is always assumed to be in hydrostatic equilibrium in the
vertical z-direction, and this reduces the normal mode analysis to two-dimensional oscillations in the
(�, ϕ)-plane, as already considered in most parts of this section. Schutz and Bowen (1983) start with
Hunter’s (1963) infinitely thin, uniformly rotating, pressure-free disk, and compute first order corrections
when hydrodynamic pressure is taken into account. The surface density (5.10.156), the mass (5.10.188),
and the gravitational potential (5.10.163) of the unperturbed zero thickness disk become in terms of the
variable µ from Eq. (5.10.148) and of the angular speed Ω2

u = 3πGM1/4�31 from Eq. (5.10.188) equal to

Σ = 2Ω2
u�1µ/π2G = 2Ω2

u�1(1 − �2/�21)
1/2/π2G; M1 = 4Ω2

u�31/3πG;

Φu = Ω2
u�21(1 + µ2)/2 = Ω2

u(2�21 − �2)/2, (z = 0; µ = (1 − �2/�21)
1/2). (5.10.262)

The derivatives ∂Φu/∂z at the upper and lower border of the equatorial plane are given by Eq.
(5.10.102), and the Taylor expansion of this equation yields for the external potential near the unper-
turbed, pressure-free, zero thickness disk:

Φue(µ, z) = Ω2
u�21(1 + µ2)/2 − 2πGΣ|z| + O(z2), (z ≈ 0). (5.10.263)

A disk with finite half-thickness h = h(µ), (h � �1) and finite pressure has the surface density from
Eq. (5.10.161)

Σ(µ) =
∫ h

−h

� dz = 2� h(µ) or h(µ) = Σ(µ)/2� = 3M1µ/4π�21� = Ω2
u�1µ/π2G�,

(n = 0; � = const), (5.10.264)

hence the same mass M1 and radius �1 as the pressure-free, zero thickness disk. The internal gravitational
potential is obtained by integrating Eq. (5.10.89) twice:

Φ(µ, z) = Φ(µ, 0) − 2πG�z2, [(∂Φ/∂z)z=0 = 0; � = const]. (5.10.265)

Equating at the boundary z = h the external potential (5.10.263) of the pressure-free, zero thickness
disk to the internal potential (5.10.265) of the thick disk with pressure, we find

Φue(µ, h) = Ω2
u�21(1 + µ2)/2 − 2πGΣh = Φ(µ, h) = Φ(µ, 0) − 2πG�h2 = Φ(µ, 0) − πGΣh or

Φ(µ, 0) = Ω2
u�21(1 + µ2)/2 − πGΣh, (5.10.266)

and

(∂Φue/∂z)z=h = (∂Φ/∂z)z=h = −2πGΣ. (5.10.267)

Eq. (5.10.265) turns into

Φ(µ, z) = Ω2
u�21(1 + µ2)/2 − πGΣh − 2πG�z2 = Ω2

u�21(1 + µ2)/2 − πGΣ2/2� − 2πG�z2,

(n = 0; � = const). (5.10.268)
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This derivation seems not quite convincing, as it matches the external potential Φue(µ, h) of a zero
thickness disk with the internal potential Φ(µ, h) of a thick disk at its boundary z = h. The equation of
hydrostatic equilibrium (5.10.90) in the vertical z-direction yields

∂P/∂z = � ∂Φ/∂z = −4πG�2z or P (µ, z) = 2πG�2(h2 − z2), (P (µ, h) = 0; � = const),
(5.10.269)

and

P (µ, 0) = 2πG�2h2 = πGΣ2/2. (5.10.270)

If �v = 0, Eq. (5.10.48) turns into the equation of hydrostatic equilibrium, whose �-component is

Ω2� − (1/�) ∂P/∂� + ∂Φ/∂� = 0. (5.10.271)

We insert Eqs. (5.10.268)-(5.10.270) into this equation, and get a relationship between the angular
velocity Ωu of the pressure-free, zero thickness disk and the constant angular velocity Ω of a disk with
constant volume density, and finite thickness and pressure:

Ω2 = Ω2
u(1 − 8Ω2

u/π3G�) = Ω2
u(1 − 8R/π). (5.10.272)

We have introduced the aspect ratio R between the two semimajor axes of the disk, taking into
account that µ = 1 along the positive z-axis via Eq. (5.10.139):

R = a3/a1 = (1 − e2)1/2 = h(1)/�1 = Ω2
u/π2G� � 1. (5.10.273)

The ratio (3.1.35) for this special disk is calculated as

τ = Ekin/|W | = (π − 8R)/2(π − R) = [π − 8(1 − e2)1/2]
/
2[π − (1 − e2)1/2],

(n = 0; �, Ω = const), (5.10.274)

where

Ekin = (1/2)
∫

M1

Ω2�2 dM = 2π�Ω2

∫ 
1

0

h�3 d� = 4Ω4
u�51(π − 8R)/15π2G;

W = −(1/2)
∫

M1

Φ dM = 8Ω4
u�51(−π + R)/15π2G. (5.10.275)

Since 0 ≤ τ ≤ 0.5, the aspect ratio R changes between R = 0, (τ = 0.5; e = 1; pressure-free,
zero thickness disk) and R = π/8 = 0.39, (τ = 0; e = 0.92). Comparison of Eq. (5.10.274) with
the corresponding ratio (5.10.223) for Maclaurin ellipsoids shows that these particular disks are a good
approximation to the Maclaurins merely if 1 ≤ e � 0.989, (0 ≤ R ≤ 0.15). However, some similarities
occur between the stability behaviour of the constant density disks envisaged by Schutz and Bowen (1983)
and the Maclaurin ellipsoids, already sketched in Secs. 5.8.3, 5.8.4: Secular instability against ordinary
viscosity or gravitational radiation reaction occurs for the sectorial harmonic if τ = 0.15, R = 0.29, e =
0.96, and dynamical instability if τ = 0.29, R = 0.20, e = 0.98.

In the same approximation Schutz and Verdaguer (1983), and Verdaguer (1983) have studied an
isentropic disk with finite height and polytropic index n = 2. The equation of hydrostatic equilibrium
(5.10.107) becomes (n = 2; nΣ = 1.5; Γ1 = 1 + 1/n = 1.5; Γ1Σ = 1 + 1/nΣ = 5/3)

�Ω2 = (πGK2/16)1/3B(1/3, 1/2) dΣ2/3/d� − dΦ/d�. (5.10.276)

We have inserted for PΣ via Eq. (5.10.97), taking into account Eqs. (5.10.96) and (C.11):

PΣ = 2−4/3π1/3G1/3K2/3B(4/3, 1/2) Σ5/3 = 2−1/3π1/3G1/3K2/3B(1/3, 1/2) Σ5/3/5. (5.10.277)

The numerical evaluation of the perturbed hydrodynamical equations by Schutz and Verdaguer (1983)
shows that – as in other isentropic disks and cylinders – two types of modes arise: p-modes with forward
and backward propagating p(f) and p(b)-modes, and the g(f) = r-modes. Apparently, a continuous
spectrum exists, dominated by g(f)-modes, covering the range of Ω in the disk, and having corotation
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Fig. 5.10.2 Equidensity contours for a n = 1.5 polytropic disk of surface density Σ(�) = Σ(0) [1−(�/�1)
2]5/2

with uncorrected diverging edge (on the left), and corrected boundary layer (on the right), (Balmforth et al. 1993).

points, where the eigenfunctions may exhibit singular behaviour. Dynamical instability sets in when a
paired p(f) and p(b)-mode acquires the same real eigenvalue, becoming afterwards complex as τ increases.
By contrast, the g(f)-modes occur singly rather than in pairs, and are always stable in uniformly rotating
disks. The results concerning instability to gravitational radiation reaction of the n = 2 disks are more
conclusive, showing that – similarly to the Maclaurin ellipsoids from Sec. 5.8.4 – secular instability of
the fundamental p(b)-mode sets in at τ = 0.12, and dynamical instability at τ ≈ 0.27. The p(f) and
g(f)-modes are always secularly stable against gravitational radiation reaction.

Balmforth et al. (1993) have constructed equilibrium structures of polytropic disks with finite thick-
ness, and a surface density law Σ(�) = Σ(0) [1 − (�/�1)2]q, (q = const). If n ≥ 1, the disks flare out near
the rim � = �1, the vertical extension becoming infinite. This diverging shape is corrected with the double
approximation technique from Sec. 3.6, by assuming the outer, low-density layers to rotate mainly under
the influence of the centrally condensed regions (Fig. 5.10.2). A three-dimensional linear analysis of the
gravitational instability of such disks has been undertaken by Balmforth et al. (1995).

Hayashi et al. (1982) have studied the stability of a particular, analytic isothermal disk with constant
rotation velocity Ω� = const, having the density distribution

�(�, z) = C2RT
/
2πµG cosh2{C ln[(�2 + z2)1/2/� + z/�]}, (C, T = const). (5.10.278)

The structure of relativistic, uniformly rotating, zero thickness disks has been investigated by Bardeen
and Wagoner (1971), using the formalism outlined at the beginning of Sec. 4.2.6. As this matter has no
direct bearing on the polytropic equation of state, it will not be pursued further.

In conclusion, our present knowledge concerning the stability and oscillations of polytropic disks seems
to be in an incomplete stage.
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5.11 Stability and Oscillations of Magnetopolytropes

5.11.1 The Virial Theorem for Spheroidal Magnetopolytropes

The study of stability and oscillations in infinitely conducting magnetopolytropes is a first stage in
the attempt to solve the problem of magnetic fields in more realistic stellar models. The investigations
on this subject may be divided into two classes (Goossens and Veugelen 1978):

(i) The first class deals with the influence of magnetic fields on the oscillations of a nonmagnetic
star. As these oscillations are governed by pressure and gravitational forces, their stability is generally
not much altered, even by the occurrence of strong magnetic fields (ratio between magnetic and potential
energy Um/|W | ≈ 0.25; Monaghan 1968, Miketinac 1974, Tassoul 1978). Actually, strong observational
evidence exists that magnetic fields in stars are generally weak, and most investigations are based on
this fact. It is not likely that new instabilities can be induced through magnetic fields on this kind of
oscillations.

(ii) The second class deals with instabilities introduced by magnetic fields in zones that are stably
stratified in absence of any magnetic field. These motions are of typically hydromagnetic nature, and
are associated with motions that are mainly governed by magnetic forces. These local hydromagnetic
instabilities depend more on topology than on the strength of the magnetic field (Tayler 1973). As far
as I know, only the paper by Goossens and Veugelen (1978) studies the second class of instabilities in
polytropes, so this section is concerned almost exclusively with instabilities belonging to class (i).

The overall conditions for dynamical instability of a magnetohydrostatic configuration with zero
surface pressure have already been written down in Eq. (2.6.99), and become for a sphere with
d2I/dt2, Ekin, PS = 0 equal to

(3Γ − 4)[−3GM2
1 /(5 − n)r1 + pr3

1H
2
m/6] < 0, (−1 < n < 5; Γ > 1). (5.11.1)

We have inserted for the gravitational and magnetic energy from Eqs. (2.6.137) and (2.6.78), respec-
tively. H2

m denotes the mean square magnetic field intensity in the polytrope.
Provided that Γ > 4/3, as required for dynamical stability of a nonmagnetic configuration, the

condition imposed by the virial theorem for the dynamical stability of a spherical magnetopolytrope is
according to Eq. (5.11.1) equal to (Spitzer 1978, Chandrasekhar 1981)

Hm < (3M1/r2
1)[2G/p(5 − n)]1/2 = 4π�mr1[2G/p(5 − n)]1/2, (Γ > 4/3). (5.11.2)

If a magnetic, infinitely long cylinder is in hydrostatic equilibrium, the virial theorem (2.6.106) be-
comes per unit length:

2(Γ − 1)U + 2Um − GM2
1 = 0, (d2I/dt2, Ekin, PS = 0). (5.11.3)

By virtue of Eq. (2.6.93) we have Γ > 1, and therefore (Γ − 1)U > 0. A necessary requirement to
satisfy the equilibrium condition (5.11.3) is therefore 2Um − GM2

1 < 0 or (Chandrasekhar and Fermi
1953)

Hm < (2M1/�1)(G/p)1/2 = 2π�m�1(G/p)1/2, (5.11.4)

where Eq. (2.6.78) reads for a cylinder of radius �1 per unit length as

Um = pH2
m�21/8. (5.11.5)

The stability condition (5.11.1) can also be obtained from the contraction of the virial equations for
small oscillations, which have already been derived for a nonmagnetic configuration in Sec. 5.8.1. We
start with Eq. (2.6.79), where it is often assumed that the two last surface integrals vanish, and this
assumption may require to place the surface S at infinity. In this case the surface integrals will vanish,
because the magnetic field of any isolated object must decrease at least as rapidly as a dipole field, i.e. as
r−3 (cf. Eq. (3.10.25), Chandrasekhar 1981). However, it is often convenient to let the surface S coincide
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with the natural boundary of the configuration, and then, in general, the surface integrals must be
retained in Eq. (2.6.79). The tensor Hij will refer only to the magnetic field interior to S. As emphasized
by Ledoux and Walraven (1958) the physical meaning of boundary conditions in magnetohydrodynamics
is sometimes elusive, as dictated by the mathematical tractability of the problem.

By virtue of Eq. (2.6.76) the left-hand sides of Eqs. (2.6.73) and (2.6.79) are equal among each other,
as well as their first order variations calculated in Eqs. (5.8.16) and (5.8.30), respectively. Thus, the first
order variation of Eqs. (2.6.73) or (2.6.79) becomes

(1/2) d2δ∗Iij/dt2 = (1/2) d2

[ ∫
V

�(xi ∆xj + xj ∆xi) dV

]/
dt2 = δ∗

[
d

(∫
V

�xivj dV

)/
dt

]

≈ d2

(∫
V

�xi ∆xj dV

)/
dt2 = 2 δ∗Eij + δ∗Wij + δij δ∗

∫
V

P dV + δij δ∗
∫

V

(pHkHk/8π) dV

−2 δ∗Hij − δ∗Sij , (5.11.6)

where Sij denotes the surface integral

Sij =
∫

S

xi(P + pHkHk/8π) dSj − (p/4π)
∫

S

xiHjHk dSk. (5.11.7)

dSi = ni dS is the projection perpendicular to the xi-axis of the surface element dS, and ni denotes
the projection of the exterior normal �n = �n(n1, n2, n3) on the xi-axis.

The first order variations δ∗Wij , δ∗Eij , δ∗Iij have already been written down in Eqs. (5.8.28)-(5.8.30)
if the configuration is initially in hydrostatic equilibrium. The pressure integral in Eq. (5.11.6) can be
transformed with the help of the hydromagnetic equilibrium equation (2.1.1), (�v, τ = 0), by evaluating
(∇× �H) × �B via Eqs. (2.6.52), (2.6.54):

∂P/∂xk = � ∂Φ/∂xk + (p/4π)[∂(HkH
)/∂x
 − (1/2) ∂(H
H
)/∂xk]. (5.11.8)

Integrating Eq. (5.8.31) by parts, we get

δ∗
∫

V

P dV = −(Γ1 − 1)
∫

V

P ∇ · ∆�r dV = (Γ1 − 1)
∫

V

∆xk(∂P/∂xk) dV

−(Γ1 − 1)
∫

S

P ∆xk dSk = (Γ1 − 1)
∫

V

∆xk

{
� ∂Φ/∂xk + (p/4π)[∂(HkH
)/∂x


−(1/2) ∂(H
H
)/∂xk]
}

dV − (Γ1 − 1)
∫

S

P ∆xk dSk = (Γ1 − 1)
∫

V

{
� ∆xk ∂Φ/∂xk

+(p/4π)[−HkH
 ∂∆xk/∂x
 + (1/2)H
H
 ∂∆xk/∂xk]
}

dV

−(Γ1 − 1)
∫

S

(P + pH
H
/8π) ∆xk dSk + p(Γ1 − 1)
∫

S

HkH
 ∆xk dS
/4π. (5.11.9)

To obtain the variation of the magnetic integrals, we have to calculate the Lagrangian change ∆ �H
of the magnetic field intensity, by observing that Eq. (3.10.12) writes in the case of high electrical
conductivity as (Alfvén and Fälthammar 1963)

�E = −(p/c) �v × �H. (5.11.10)

�v is the fluid velocity with respect to a laboratory frame, and if the unperturbed fluid is in equilibrium,
then �vu = 0, and �v = �vu + ∆�v ≈ �vu + δ�v = δ�v is always a small first order quantity, so �v × δ �H ≈ δ�v × δ �H
is of second order and negligible. Therefore, the Eulerian variation of Eq. (5.11.10) is

δ �E = −(p/c) δ(�v × �H) = −(p/c)(δ�v × �H + �v × δ �H) ≈ −(p/c) δ�v × �H. (5.11.11)

Taking the Eulerian variation of Maxwell’s equation (3.10.1), we get

δ(∇× �E) = ∇× δ �E = −(p/c) ∂δ �H/∂t, (5.11.12)

and combining with Eq. (5.11.11):

∂δ �H/∂t = −(c/p) ∇× δ �E ≈ ∇× (δ�v × �H) ≈ ∇× [(∂∆�r/∂t) × �H] ≈ ∂[∇× (∆�r × �H)]
/
∂t.

(5.11.13)
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By virtue of Eq. (3.10.14) the quantity ∆�r × (∂ �H/∂t) = ∆�r × [∇× (�v × �H)] ≈ ∆�r × [∇× (δ�v × �H)]
is a negligible second order quantity. Integrating Eq. (5.11.13) with respect to the time, we obtain the
Eulerian variation of the magnetic field intensity (Chandrasekhar and Fermi 1953, Eqs. (130)-(131);
Chandrasekhar 1981)

δ �H = ∇× (∆�r × �H) = ( �H · ∇)∆�r − (∆�r · ∇) �H − (∇ · ∆�r) �H;

δHj = ∂(Hk ∆xj − Hj ∆xk)/∂xk, (∇ · �H = ∂Hk/∂xk = 0), (5.11.14)

by using the well known vectorial identity

∇× (�a ×�b) = (�b · ∇)�a + (∇ ·�b)�a − (�a · ∇)�b − (∇ · �a)�b. (5.11.15)

The Lagrangian variation writes via Eqs. (5.1.17), (5.11.14) as

∆ �H = ∇× (∆�r × �H) + (∆�r · ∇) �H, (5.11.16)

and its components are

∆Hj = ∆xj ∂Hk/∂xk + Hk ∂∆xj/∂xk − ∆xk ∂Hj/∂xk − Hj ∂∆xk/∂xk + ∆xk ∂Hj/∂xk

= Hk ∂∆xj/∂xk − Hj ∂∆xk/∂xk,

(∆�r = ∆�r(∆x1, ∆x2, ∆x3); �H = �H(H1, H2, H3); j, k = 1, 2, 3). (5.11.17)

Using this relation, the variation (5.8.4) of the magnetic tensor (2.6.77) becomes

δ∗Hij = (p/8π)
∫

V

[∆(HiHj) + HiHj ∇ · ∆�r] dV = (p/8π)
∫

V

(Hi ∆Hj + Hj ∆Hi

+HiHj ∂∆xk/∂xk) dV = (p/8π)
∫

V

[Hk(Hi ∂∆xj/∂xk + Hj ∂∆xi/∂xk) − HiHj ∂∆xk/∂xk] dV,

(5.11.18)

δ∗Hii = (p/8π) δ∗
∫

V

HiHi dV = (p/8π)
∫

V

(2HiHk ∂∆xi/∂xk − HiHi ∂∆xk/∂xk) dV. (5.11.19)

The variation (5.8.4) of the surface integral (5.11.7) is somewhat more involved, and we find by
completing the derivation of Trehan and Billings (1971):

δ∗Sij = δ∗
∫

V

[∂(xiP + pxiHkHk/8π)
/
∂xj − (p/4π) ∂(xiHjHk)/∂xk] dV

=
∫

V

{
∆[∂(xiP + pxiHkHk/8π)

/
∂xj ] dV + [∂(xiP + pxiHkHk/8π)

/
∂xj ] ∂∆x
/∂x


−(p/4π) ∆[∂(xiHjHk)/∂xk] − (p/4π)[∂(xiHjHk)/∂xk] ∂∆x
/∂x


}
dV

=
∫

V

{∂[∆(xiP + pxiHkHk/8π)]
/
∂xj − (p/4π) ∂[∆(xiHjHk)]/∂xk

−[∂(xiP + pxiHkHk/8π)
/
∂x
] ∂∆x
/∂xj + (p/4π)[∂(xiHjHk)/∂x
] ∂∆x
/∂xk

+[∂(xiP + pxiHkHk/8π)
/
∂xj ] ∂∆x
/∂x
 − (p/4π)[∂(xiHjHk)/∂xk] ∂∆x
/∂x


}
dV

=
∫

S

∆(xiP + pxiHkHk/8π) dSj − (p/4π)
∫

S

∆(xiHjHk) dSk

+
∫

V

{
− ∂[(xiP + pxiHkHk/8π) ∂∆x
/∂xj ]

/
∂x
 + ∂[(xiP + pxiHkHk/8π) ∂∆x
/∂x
]

/
∂xj

+(p/4π) ∂(xiHjHk ∂∆x
/∂xk)
/
∂x
 − (p/4π) ∂(xiHjHk ∂∆x
/∂x
)

/
∂xk

}
dV

=
∫

S

[∆(xiP + pxiHkHk/8π) + (xiP + pxiHkHk/8π) ∂∆x
/∂x
] dSj

+
∫

S

[−xi(P + pHkHk/8π) ∂∆x
/∂xj + (p/4π)xiHjHk ∂∆x
/∂xk] dS
 −
∫

S

(p/4π)[∆(xiHjHk)

+xiHjHk ∂∆x
/∂x
] dSk =
∫

S

[
P ∆xi + xiP + (p/8π)(HkHk ∆xi + 2xiHkH
 ∂∆xk/∂x


−xiHkHk ∂∆x
/∂x
)
]

dSj +
∫

S

[
− xi(P + pH
H
/8π) ∂∆xk/∂xj
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+(p/4π)(−HjHk ∆xi − xiHkH
 ∂∆xj/∂x
 + xiHjHk ∂∆x
/∂x
)
]

dSk. (5.11.20)

We have used Eq. (5.1.19) and the surface condition (5.2.63): (∆P )S = 0. Some further simplifications
of Eq. (5.11.20) occur if the fluid pressure on the surface is zero, or if the fluid is incompressible:
Γ1 = ∞, ∆� = 0, ∇ · ∆�r = 0.

Eq. (5.11.6) reads, by taking into account Eqs. (5.8.28)-(5.8.30), (5.11.9), (5.11.18), (5.11.19), (Chan-
drasekhar 1981):

d2

(∫
V

�xi ∆xj dV

)/
dt2 = −σ2

∫
V

�xi ∆xj dV = −
∫

V

� ∆xk (∂Φij/∂xk) dV

+δij

∫
V

{
(Γ1 − 1)� ∆xk ∂Φ/∂xk + [p(Γ1 − 2)/4π][(1/2)H
H
 ∂∆xk/∂xk − HkH
 ∂∆xk/∂x
]

}
dV

+(p/4π)
∫

V

[HiHj ∂∆xk/∂xk − Hk(Hi ∂∆xj/∂xk + Hj ∂∆xi/∂xk)] dV

+δij(Γ1 − 1)
∫

S

[−(P + pH
H
/8π) ∆xk + pHkH
 ∆x
/4π] dSk − δ∗Sij . (5.11.21)

The temporal dependence of ∆xi has been assumed under the familiar form ∆xi(x1, x2, x3, t) =
∆xi(x1, x2, x3) exp(iσt). Eq. (5.11.21) becomes, by ignoring the surface integrals and contracting with
respect to the indices i, j :

−σ2

∫
V

�xk ∆xk dV = (3Γ1 − 4)
∫

V

{
� ∆xk ∂Φ/∂xk + (p/4π)[(1/2)H
H
 ∂∆xk/∂xk

−HkH
 ∂∆x
/∂xk]
}

dV. (5.11.22)

To get an estimate of the eigenvalue σ, the simplest trial displacement is ∆xi = const xi. Eq. (5.11.22)
yields

σ2

∫
V

�r2 dV = −(3Γ1 − 4)
∫

V

[�xk ∂Φ/∂xk + (p/8π)HkHk] dV, (5.11.23)

or by inserting Eqs. (2.6.65), (2.6.75), (2.6.78):

σ2 = −(3Γ1 − 4)(W + Um)/I. (5.11.24)

This is equivalent to the stability conditions (2.6.99) or (5.11.2), since stability requires σ2 > 0 or
Um < |W |, (W < 0) if Γ1 > 4/3.

A more refined trial displacement would be given by Eq. (5.8.33), yielding sufficient accuracy for
spheroidal polytropes with polytropic index 0 ≤ n � 2.5. Eqs. (5.11.6) or (5.11.21) write, by preserving
the expression (5.8.31) for the pressure integral (Trehan and Billings 1971):

d2

(∫
V

�xi ∆xj dV

)/
dt2 = (1/2) d2δ∗Iij/dt2 =

∫
V

{
− � ∆xk ∂Φij/∂xk

+δij [−(Γ1 − 1)P ∂∆xk/∂xk + (p/8π)(2HkH
 ∂∆xk/∂x
 − HkHk ∂∆x
/∂x
)]

+(p/4π)[HiHj ∂∆xk/∂xk − Hk(Hi ∂∆xj/∂xk + Hj ∂∆xi/∂xk)]
}

dV − δ∗Sij . (5.11.25)

With the displacement (5.8.33) we are lead to

σ2LjkIik − Lk
W
k;ij + δij(LkkΠ + 2Lk
Hk
 − L

Hkk) + 2(LkkHij − LjkHik − LikHjk)

−
∫

S

[PLikxk + Pxi + (p/8π)(Li
x
HkHk + 2Lk
xiHkH
 − L

xiHkHk)] dSj

+
∫

S

[Lkjxi(P + pH
H
/8π) + (p/4π)(Li
x
HjHk + Lj
xiHkH
 − L

xiHjHk)] dSk = 0. (5.11.26)

Instead of Eq. (5.8.38) we now get from Eq. (2.6.79) for the equilibrium value of the pressure integral
(5.8.36) the relationship (d2Iij/dt2, Eij = 0)

Π = −(Γ1 − 1)
∫

V

P dV = (Γ1 − 1)(W11 − H11 + H22 + H33 − S11)

= (Γ1 − 1)(W22 + H11 − H22 + H33 − S22) = (Γ1 − 1)(W33 + H11 + H22 − H33 − S33), (5.11.27)
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or

−3
∫

V

P dV = W + Hkk − Skk = W + Um − Skk. (5.11.28)

Similarly to Eqs. (5.8.65)-(5.8.73), the explicit form of the nine virial equations (5.11.26) becomes for
axial symmetry about the x3-axis equal to (Hij = 0 if i �= j; I11 = I22; H11 = H22; Sij = 0) :

σ2L11I11 − (L11W11;11 + L22W22;11 + L33W33;11) + Π(L11 + L22 + L33)
+2H11(L22 − L11) + H33(L33 − L11 − L22) = 0, (5.11.29)

σ2L22I11 − (L11W22;11 + L22W11;11 + L33W33;11) + Π(L11 + L22 + L33)
+2H11(L11 − L22) + H33(L33 − L11 − L22) = 0, (5.11.30)

σ2L33I33 − (L11 + L22)W33;11 − L33W33;33 + Π(L11 + L22 + L33)
+H33(L11 + L22 − L33) − 2H11L33 = 0, (5.11.31)

σ2L21I11 − W12;12(L12 + L21) − 2H11(L12 + L21) = 0, (5.11.32)

σ2L12I11 − W12;12(L12 + L21) − 2H11(L12 + L21) = 0, (5.11.33)

σ2L31I11 − L13W31;13 − L31W13;13 − 2(L31H11 + L13H33) = 0, (5.11.34)

σ2L32I11 − L23W31;13 − L32W13;13 − 2(L23H33 + L32H11) = 0, (5.11.35)

σ2L13I33 − L13W31;13 − L31W13;13 − 2(L13H33 + L31H11) = 0, (5.11.36)

σ2L23I33 − L23W31;13 − L32W13;13 − 2(L23H33 + L32H11) = 0. (5.11.37)

The nine eigenvalues σ2 of the various oscillation modes are obtained analogously to Eqs. (5.8.85)-
(5.8.119), (Chandrasekhar and Lebovitz 1962b, Anand and Kushwaha 1962a, Anand 1969, Trehan and
Billings 1971).

(i) The Tesseral (Transverse-Shear) Modes. Adding together Eqs. (5.11.34), (5.11.35) and
(5.11.36), (5.11.37), respectively, we get a homogeneous system in the variables L13 +L23 and L31 +L32 :

(−σ2I33 + W31;13 + 2H33)(L13 + L23) + (W13;13 + 2H11)(L31 + L32) = 0, (5.11.38)

(W31;13 + 2H33)(L13 + L23) + (−σ2I11 + W13;13 + 2H11)(L31 + L32) = 0. (5.11.39)

Nontrivial solutions are obtained if the determinant of this system vanishes, leading to the dispersion
relation

σ2[σ2 − (W31;13 + 2H33)/I33 − (W13;13 + 2H11)/I11] = 0. (5.11.40)

The eigenvalue σ2 = 0 implies neutral stability, while the other eigenvalue is obviously

σ2 = (W31;13 + 2H33)/I33 + (W13;13 + 2H11)/I11. (5.11.41)

These are two of the four tesseral eigenvalues, and the other two are exactly the same; they can be
obtained for instance by subtraction of Eqs. (5.11.35) and (5.11.37) from Eqs. (5.11.34) and (5.11.36),
respectively.
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(ii) The Sectorial (Toroidal or Barlike) Modes. Returning to the remaining five equations
(5.11.29)-(5.11.33), we obtain, on subtracting Eq. (5.11.30) from Eq. (5.11.29), and taking into account
Eq. (5.8.60):

(σ2I11 − W11;11 − W22;11 − 4H11)(L11 − L22) = (σ2I11 − 2W12;12 − 4H11)(L11 − L22) = 0.
(5.11.42)

If L11 �= L22, the corresponding sectorial eigenvalue is

σ2 = (2W12;12 + 4H11)/I11. (5.11.43)

Another sectorial mode is obtained by adding together Eqs. (5.11.32) and (5.11.33):

(σ2I11 − 2W12;12 − 4H11)(L12 + L21) = 0. (5.11.44)

And if L12 �= −L21 the sectorial eigenvalue resulting from the first factor is just the same as in Eq.
(5.11.43), so this eigenvalue is repeated twice.

(iii) The Zonal (Pulsation) Modes. The remaining three modes of oscillation are obtained by
subtracting Eq. (5.11.32) from Eq. (5.11.33):

σ2I11(L12 − L21) = 0. (5.11.45)

If L12 �= L21, neutral stability σ2 = 0 occurs. The two other eigenvalues may be obtained by adding
together Eqs. (5.11.29) and (5.11.30):

(σ2I11 − W11;11 − W11;22 + 2Π − 2H33)(L11 + L22) + 2(−W33;11 + Π + H33)L33 = 0,

(W22;11 = W11;22). (5.11.46)

Eq. (5.11.46) minus twice Eq. (5.11.31) leads to

(σ2I11 − W11;11 − W11;22 + 2W33;11 − 4H33)(L11 + L22)

+2(−σ2I33 − W33;11 + W33;33 + 2H11 + 2H33)L33 = 0. (5.11.47)

By virtue of Eqs. (5.8.62) and (5.11.27) we replace in Eq. (5.11.47) the sum

W11;11 + W11;22 = W33;11 + W33;33 + W11 − W33 = W33;11 + W33;33 + 2H11 − 2H33, (5.11.48)

to obtain

(σ2I11 + W33;11 − W33;33 − 2H11 − 2H33)(L11 + L22)

+2(−σ2I33 − W33;11 + W33;33 + 2H11 + 2H33)L33 = 0. (5.11.49)

Eq. (5.11.31) reads

(−W33;11 + Π + H33)(L11 + L22) + (σ2I33 − W33;33 + Π − 2H11 − H33)L33 = 0. (5.11.50)

Eqs. (5.11.49) and (5.11.50) yield the dispersion relationship (Trehan and Billings 1971)

σ4I11I33 + σ2[I11(−W33;33 + Π − 2H11 − H33) + I33(−W33;11 − W33;33 + 2Π − 2H11)]
+(W33;11 − W33;33 − 2H11 − 2H33)(−2W33;11 − W33;33 + 3Π − 2H11 + H33) = 0. (5.11.51)

This equation furnishes two coupled zonal eigenvalues. For a spherical configuration with a magnetic
field satisfying H11 = H22 = H33 = Hkk/3 = Um/3, the coupled modes from Eq. (5.11.51) become
uncoupled and equal to (cf. Eqs. (5.8.64), (5.8.119); Anand 1969)

σ2
r = (4 − 3Γ1)(W + Um)/I; σ2

f = −4(W/5 − Um)/I. (5.11.52)

In the spherical case Eqs. (5.11.41) and (5.11.43) also reduce to σ2
f . Hence, we conclude that if

H11 = H22 = H33, there are three neutral modes σ2 = 0, five nonradial modes σ2
f , and one radial

mode σ2
r . Like in the rotating case, the magnetic field lifts the accidental degeneracy occurring in a first
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Table 5.11.1 Dimensionless squared eigenfrequencies ω2 = σ2/4πG�0 of tesseral ωt, sectorial ωs, and zonal
ωzr, ωzf -modes of magnetopolytropes pervaded by the toroidal field (3.10.98): Hϕ = C�r sin λ, h = C2/16π2G
(Anand 1969).

n ω2
t ω2

s ω2
zr ω2

zf

1 0.16 + 93h 0.16 + 0.096h (3Γ1 − 4)(0.19 − 2.1h) 0.16 + 5.4h
1.5 0.12 + 1.2h 0.12 − 0.39h (3Γ1 − 4)(0.16 − 0.34h) 0.12 − 1.9h
2 0.10 − 0.50h 0.10 − 0.30h (3Γ1 − 4)(0.13 − 0.61h) 0.10 − 0.43h
3 0.065 − 0.21h 0.065 − 0.26h (3Γ1 − 4)(0.082 − 0.45h) 0.065 − 0.48h
3.5 0.051 − 0.10h 0.051 − 0.23h (3Γ1 − 4)(0.064 − 0.37h) 0.051 − 0.44h

Table 5.11.2 Dimensionless squared eigenfrequencies ω2 = σ2/4πG�0 of tesseral ωt, sectorial ωs, and
zonal ωzr, ωzf -modes in magnetopolytropes pervaded by the poloidal field (3.10.145)-(3.10.150), (∇ × �H =
b1�(�, z) � �eϕ; ε = b2

1α
2/16π2G), (Trehan and Billings 1971). Note, that ωt, ωs are unsquared.

n ωt ωs ω2
zr ω2

zf

1 0.39 + 0.78ε 0.39 − 0.17ε (3Γ1 − 4)0.19(1 + 0.21ε) 0.16(1 + 5.6ε)
1.5 0.35 + 0.79ε 0.35 − 0.056ε (3Γ1 − 4)0.16(1 + 0.51ε) 0.12(1 + 6.1ε)
2 0.32 + 0.79ε 0.32 + 0.030ε (3Γ1 − 4)0.13(1 + 0.82ε) 0.10(1 + 6.6ε)
3 0.26 + 0.80ε 0.26 + 0.16ε (3Γ1 − 4)0.082(1 + 1.6ε) 0.065(1 + 7.9ε)
3.5 0.23 + 0.81ε 0.23 + 0.23ε (3Γ1 − 4)0.064(1 + 2.3ε) 0.051(1 + 8.9ε)
4 0.19 + 0.84ε 0.19 + 0.31ε (3Γ1 − 4)0.047(1 + 3.5ε) 0.038(1 + 10ε)

approximation at Γ1 = 1.6 between the eigenvalues σr and σf of the nonmagnetic sphere (Anand 1969,
Fahlman 1971).

Anand (1969) has calculated the eigenvalues for a toroidal magnetic field given by Eq. (3.10.98),
(Table 5.11.1). His equilibrium model is practically identical to that of Sinha (1968a), (see Sec. 3.10.4).
Anand (1969) takes h = C2/4π2G instead of h = C2/16π2G from Eq. (3.10.101). The toroidal field has
a destabilizing influence on the oscillation frequencies (σ2 is decreased), excepting for some modes in the
polytropes n = 1 and 1.5.

As in the rotational case, the difference between the less precise virial method and the variational
approach is rather large for appreciable central condensation of the polytrope (n � 2.5). The radial
eigenfrequency ω2

zr = 0.065−0.31h obtained by Roxburgh and Durney (1967) with a variational approach
if n = 3, Γ1 = 5/3 differs from the corresponding entry ω2

zr = 0.082 − 0.45h in Table 5.11.1.
For a poloidal field of the form (3.10.145), (3.10.147) Trehan and Billings (1971) calculate the char-

acteristic eigenfrequencies resulting from the virial theorem (Table 5.11.2). The poloidal field (3.10.145)
has a stabilizing influence on the eigenfrequencies, excepting for the polytropes n = 1 and 1.5, when the
eigenvalues of sectorial modes are decreased. The fundamental radial mode is always stable, if the usual
stability criterion Γ1 > 4/3 is satisfied.

Using the magnetopolytropic equilibrium models from Eqs. (3.10.223)-(3.10.239), Sood and Trehan
(1975) find from the second order virial equations that the combined poloidal and toroidal field (3.10.227)
of Trehan and Uberoi (1972) decreases the eigenvalues ωt and ωzr, while ωs, ωzf are increased. Opposite
to the polytropes from Table 5.11.2 with a purely poloidal field, the magnetic shift always decreases with
increasing n. The magnetic field vanishes on the surface.

Das and Tandon (1977a) include uniform rotation and determine with the second order virial equations
the tesseral, sectorial, and zonal eigenvalues of n = 1, 1.5, 2, 3 magnetopolytropes with a general field
vanishing on the surface. Especially the frequencies of tesseral and zonal modes decrease or increase in a
complicated manner, depending on the interdependence of polytropic index, field strength, and rotation
rate.
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5.11.2 Variational Approach to the Oscillations of Spheroidal
Magnetopolytropes

Repeating the transformations (2.6.51)-(2.6.55), the equation of motion (2.1.1) becomes for an inviscid
fluid

� Dvi/Dt = −∂P/∂xi + � ∂Φ/∂xi + (p/4π)[∂(HiHj)/∂xj − (1/2) ∂H2/∂xi], (i, j = 1, 2, 3).
(5.11.53)

The first order Eulerian perturbation of this equation is (Kovetz 1966, Chandrasekhar 1981)

� ∂2∆xi/∂t2 = −σ2� ∆xi = −∂δP/∂xi + δ� ∂Φ/∂xi + � ∂δΦ/∂xi

+(p/4π)[∂(Hi δHj + Hj δHi)/∂xj − ∂(Hj δHj)/∂xi], (5.11.54)

where Dvi/Dt = D∆vi/Dt = D2∆xi/Dt2 ≈ ∂2∆xi/∂t2, by virtue of Eq. (5.1.24).
Up to now it was not necessary to consider boundary conditions on magnetopolytropes to some extent

(cf. Sec. 3.10), but subsequently we remove this omission. First, the gravitational field and its normal
derivative have to be continuous across the boundary surface S.

Second, the normal component of the magnetic induction vector is continuous across the boundary.
This can be shown at once by integrating the Maxwell equation (3.10.1) ∇ · �B = 0 over the small volume
Vε of a thin shell element, having the small area Sε. We apply the Gauss divergence theorem (e.g. Eq.
(2.6.61), Bronstein and Semendjajew 1985):∫

Vε

(∇ · �B) dV =
∫

Sε

( �B · �n) dS = 0. (5.11.55)

When the thickness of the shell element approaches zero, its volume vanishes, and the surface integral
reduces to an integral over the interior and exterior side of the small surface Sε, becoming ( �B · �n + �Be ·
�ne)Sε = 0, where for the moment, e-indexed quantities denote exterior values. Since the two surface
normals are obviously related by �n = −�ne, we finally have (Stratton 1941, Parks 1991)

( �B − �Be) · �n = 0 or ( �H − �He) · �n = 0, ( �B = p �H). (5.11.56)

Third, the tangential component of the electric field is continuous across the boundary. This can be
seen by integrating the Maxwell equation (3.10.1) ∇× �E = −(1/c) ∂ �B/∂t over a vertical cross-section Sε

through a thin small shell element, and applying the Stokes theorem (e.g. Bronstein and Semendjajew
1985):∫

Sε

[∇× �E + (1/c) ∂ �B/∂t] · �n dS =
∫

Cε

�E · �τ d� + (1/c)
∫

Sε

(∂ �B/∂t) · �n dS = 0. (5.11.57)

When the thickness of the vertical cross-section tends to zero, its surface Sε degenerates into its contour
Cε, the surface integrals becoming zero, while the curvilinear integral equals (�E · �τ + �Ee · �τe)Cε/2 = 0.
Since the two unit tangent vectors along the contour Cε are related by �τ = −�τe, the final result is

( �E − �Ee) · �τ = 0 or ( �E − �Ee) × �n = 0. (5.11.58)

The components Pij of the material and magnetic stress tensor (2.6.81) can be expressed in terms
of the components Pi = Pijnj of three stress vectors acting on the three coordinate planes which are
perpendicular to the components n1, n2, n3 of the outer normal �n (e.g. Roberts 1967, Tassoul 1978). Pij

is the component of the stress tensor acting along the coordinate direction xi upon the coordinate plane
belonging to the component nj of the exterior normal �n.

And fourth, the stress vector Pi, acting on the boundary, has to be continuous across S [cf. Eq.
(6.3.163)]:

Pi = Pijnj = [δij(P + pH2/8π) + (p/4π)HiHj ]nj = (P + pH2/8π)ni + (p/4π)HiHjnj

= (Pe + pH2
e /8π)ni + (p/4π)HeiHejnj , or

(P + pH2/8π) �n + (p/4π)( �H · �n) �H = (Pe + pH2
e /8π) �n + (p/4π)( �He · �n) �He. (5.11.59)
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We decompose this continuity condition into components perpendicular and tangent to the boundary
surface, by scalar multiplication with �n and �τ , taking into account that �n ·�n = 1, �n ·�τ = 0, �H ·�n = �He ·�n
(Parks 1991):

P + pH2/8π = Pe + pH2
e /8π and ( �H · �n)[( �H − �He) · �τ ] = 0. (5.11.60)

Instead of the above tangential boundary condition we may derive an equivalent condition, by ob-
serving that the continuity of P + pH2/8π in Eqs. (5.11.59), (5.11.60) requires ( �H · �n) �H = ( �He · �n) �He,
or via Eq. (5.11.56)

( �H · �n)( �H − �He) = 0. (5.11.61)

Either one of the factors �H ·�n or �H− �He must be zero, the boundary conditions (5.11.60) being always
satisfied. If �H − �He = 0, the boundary conditions (5.11.60) simplify to H = He, P = Pe (Roberts 1967,
Chap. 4). These boundary conditions will be substantiated further in Sec. 6.3.4, in connection with the
magnetohydrodynamic case, when �v �= 0.

While the gas pressure Pe outside the boundary S is generally identical zero, the magnetic field has
to satisfy the vacuum equations [cf. Eq. (3.10.1)]

∇ · �He = 0; ∇× �He = 0. (5.11.62)

Since the boundary conditions (5.11.60) and (5.11.61) have to hold also for perturbed quantities at the
perturbed surface, their Lagrangian variation has to vanish, and Eq. (5.11.54) has to be solved subject
to the boundary conditions (e.g. Kovetz 1966, Chandrasekhar 1981)

∆[P − Pe + (p/8π)(H2 − H2
e )] = 0; ∆[( �H · �n)( �H − �He)] = 0. (5.11.63)

Let us consider two eigenvalues σ(α) and σ(β) with the corresponding eigenfunctions ∆�r(α) =
∆�r(α)(∆x

(α)
1 , ∆x

(α)
2 , ∆x

(α)
3 ) and ∆�r(β) = ∆�r(β)(∆x

(β)
1 , ∆x

(β)
2 , ∆x

(β)
3 ). We multiply Eq. (5.11.54), be-

longing to the eigenvalue σ(α) by ∆x
(β)
i , and integrate over the volume V occupied by the fluid (cf. Sec.

5.7.3):

[σ(α)]2
∫

V

� ∆x
(α)
i ∆x

(β)
i dV =

∫
V

∆x
(β)
i

{
∂δP/∂xi − δ� ∂Φ/∂xi − � ∂δΦ/∂xi + (p/4π)

×[−δHj ∂Hi/∂xj − Hj ∂δHi/∂xj + ∂(Hj δHj)/∂xi]
}

dV, (∂δHj/∂xj = δ(∂Hj/∂xj) = 0).
(5.11.64)

To get the more refined forms (5.11.70) and (5.11.74) of this equation, as used in many variational
calculations (e.g. Singh and Tandon 1969, Trehan and Uberoi 1972, Sood and Trehan 1972a, Grover et
al. 1973, Miketinac 1974), we replace at first δ� from the equation of continuity (5.2.28)

δ� = −∆xi ∂�/∂xi − � ∂∆xi/∂xi, (5.11.65)

and δP from Eq. (5.2.39)

δP = −∆xi ∂P/∂xi − Γ1P ∂∆xi/∂xi, (5.11.66)

and integrate by parts the first and the two last terms on the right-hand side of Eq. (5.11.64), similarly
to Eqs. (5.7.44)-(5.7.47):

[σ(α)]2
∫

V

� ∆x
(α)
i ∆x

(β)
i dV =

∫
S

∆x
(β)
i [(δP + pHj δHj/4π)ni − pHj δHi nj/4π] dS

+
∫

V

{
∆x

(α)
i (∂∆x

(β)
j /∂xj) ∂P/∂xi + (∂∆x

(α)
i /∂xi)(∂∆x

(β)
j /∂xj)Γ1P

+∆x
(α)
i ∆x

(β)
j (∂�/∂xi) ∂Φ/∂xj + (∂∆x

(α)
i /∂xi) ∆x

(β)
j � ∂Φ/∂xj − ∆x

(β)
i � ∂δΦ/∂xi

+(p/4π)[−∆x
(β)
i δHj ∂Hi/∂xj + (∂∆x

(β)
i /∂xj)Hj δHi − (∂∆x

(β)
i /∂xi)Hj δHj ]

}
dV. (5.11.67)
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We replace δHi via Eq. (5.11.14), and the term (∂∆x
(α)
i /∂xi) ∆x

(β)
j � ∂Φ/∂xj via the equilibrium

equation (5.11.53) if Dvi/Dt = 0 :

[σ(α)]2
∫

V

� ∆x
(α)
i ∆x

(β)
i dV =

∫
S

∆x
(β)
i [(δP + pHj δHj/4π)ni − pHj δHi nj/4π] dS

+
∫

V

{
[∆x

(α)
i ∂∆x

(β)
j /∂xj + (∂∆x

(α)
j /∂xj) ∆x

(β)
i ] ∂P/∂xi + (∂∆x

(α)
i /∂xi)(∂∆x

(β)
j /∂xj)Γ1P

+∆x
(α)
i ∆x

(β)
j (∂�/∂xi) ∂Φ/∂xj − ∆x

(β)
i � ∂δΦ/∂xi + (p/4π)

[
(∂∆x

(α)
i /∂xi)(∂∆x

(β)
j /∂xj)H2

+(1/2)(∆x
(β)
i ∂∆x

(α)
j /∂xj + ∆x

(α)
i ∂∆x

(β)
j /∂xj) ∂H2/∂xi

+(∂∆x
(α)
i /∂xj)Hj(∂∆x

(β)
i /∂xk)Hk −

(
(∂∆x

(α)
j /∂xi) ∂∆x

(β)
k /∂xk

+(∂∆x
(α)
k /∂xk) ∂∆x

(β)
j /∂xi

)
HiHj − (∂∆x

(α)
i /∂xj) ∆x

(β)
k Hj ∂Hk/∂xi

−∆x
(α)
i (∂∆x

(β)
k /∂xj)Hj ∂Hk/∂xi + ∆x

(α)
i ∆x

(β)
k (∂Hj/∂xi) ∂Hk/∂xj

]}
dV. (5.11.68)

The three last terms can be brought into their final form by observing that

∫
V

{
− Hj(∂Hk/∂xi)[(∂∆x

(α)
i /∂xj) ∆x

(β)
k + ∆x

(α)
i ∂∆x

(β)
k /∂xj ]

+∆x
(α)
i ∆x

(β)
k (∂Hj/∂xi) ∂Hk/∂xj

}
dV = −

∫
S

∆x
(α)
i ∆x

(β)
k Hj(∂Hk/∂xi)nj dS

+
∫

V

∆x
(α)
i ∆x

(β)
k [Hj ∂2Hk/∂xi∂xj + (∂Hj/∂xi) ∂Hk/∂xj ] dV

= −
∫

S

∆x
(α)
i ∆x

(β)
k Hj(∂Hk/∂xi)nj dS +

∫
V

∆x
(α)
i ∆x

(β)
k [∂(Hj ∂Hk/∂xj)

/
∂xi] dV. (5.11.69)

Replacing δHi in the surface integral (5.11.68) via Eq. (5.11.14), we obtain the final form of the
variational principle (e.g. Singh and Tandon 1969, Sood and Trehan 1972a, Chandrasekhar 1981):

[σ(α)]2
∫

V

� ∆x
(α)
i ∆x

(β)
i dV =

∫
S

∆x
(β)
i [δ(P + pH2/8π)ni + (p �H · �n/4π)(Hi ∂∆x

(α)
k /∂xk

−Hk ∂∆x
(α)
i /∂xk)] dS +

∫
V

{
[∆x

(α)
i ∂∆x

(β)
j /∂xj + (∂∆x

(α)
j /∂xj) ∆x

(β)
i ] ∂P/∂xi

+(∂∆x
(α)
i /∂xi)(∂∆x

(β)
j /∂xj)Γ1P + ∆x

(α)
i ∆x

(β)
j (∂�/∂xi) ∂Φ/∂xj

−∆x
(β)
i � ∂δΦ/∂xi + (p/4π)

[
(∂∆x

(α)
i /∂xi)(∂∆x

(β)
j /∂xj)H2

+(1/2)(∆x
(β)
i ∂∆x

(α)
j /∂xj + ∆x

(α)
i ∂∆x

(β)
j /∂xj) ∂H2/∂xi

+(∂∆x
(α)
i /∂xj)Hj(∂∆x

(β)
i /∂xk)Hk −

(
(∂∆x

(α)
j /∂xi) ∂∆x

(β)
k /∂xk

+(∂∆x
(α)
k /∂xk) ∂∆x

(β)
j /∂xi

)
HiHj + ∆x

(α)
i ∆x

(β)
k ∂(Hj ∂Hk/∂xj)

/
∂xi

]}
dV. (5.11.70)

According to the definition (5.1.13) of the Eulerian perturbation, and via Eqs. (5.2.28), (5.8.1)-(5.8.4),
(5.8.8), we can write (e.g. Cox 1980)

δΦ(�r) = Φ(�r) − Φu(�r) = G

∫
V

�(�r′) dV ′/|�r − �r′| − G

∫
Vu

�u( �r′u) dV ′
u

/
|�r − �r′u|

= δ∗
∫

V

G�(�r′) dV ′/|�r − �r′| = G

∫
V

�(�r′) ∆x′
j
(α)[∂(1

/
|�r − �r′|)

/
∂x′

j ] dV ′

= G

∫
S

�(�r′) ∆x′
j
(α)

n′
j dS′/|�r − �r′| − G

∫
V

{∂[�(�r′) ∆x′
j
(α)]

/
∂x′

j} dV ′/|�r − �r′|

= G

∫
S

�(�r′) ∆x′
j
(α)

n′
j dS′/|�r − �r′| + G

∫
V

δ�(�r′) dV ′/|�r − �r′|. (5.11.71)
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The term in Eq. (5.11.70) containing ∂δΦ/∂xi takes the symmetrical form
∫

V

∆x
(β)
i �(�r) [∂δΦ(�r)/∂xi] dV = G

∫
V

∫
V

∆x
(β)
i ∆x′

j
(α)

�(�r) �(�r′) [∂2(1
/
|�r − �r′|)/∂xi∂x′

j ] dV dV ′

= G

∫
V

∫
V

{
∂[�(�r) ∆x

(β)
i ]/∂xi

}{
∂[�(�r′) ∆x′

j
(α)]/∂x′

j

}
dV dV ′/|�r − �r′|

= G

∫
V

∫
V

δ�(�r) δ�(�r′) dV dV ′/|�r − �r′|, (5.11.72)

via Eqs. (5.2.28), (5.11.71), and after integrating by parts. Note, that the two last equalities are only
valid if the density vanishes on the surface.

We write down Eq. (5.11.70) with vanishing surface integral for the eigenvalue σ(β) and take the
difference of these two equations. The right-hand side of this difference vanishes, as it is symmetrical in
the indices α and β, and therefore [cf. Eq. (5.7.46)]

{[σ(α)]2 − [σ(β)]2}
∫

V

� ∆x
(α)
i ∆x

(β)
i dV = 0 if α �= β, (5.11.73)

establishing the self-adjoint character of the problem (Chandrasekhar 1981). If α = β, we may replace

∆x
(β)
i by the complex conjugate ∆x

(α)
i of ∆x

(α)
i , and observe that the imaginary parts in Eq. (5.11.70)

vanish, so σ2 is always real. A necessary and sufficient condition for stability is that σ2 > 0.
The surface integral in Eq. (5.11.70) vanishes if δ(P + pH2/4π) = 0 and �n · �H = 0 on S, for instance.

In this case Eq. (5.11.70) becomes, by taking ∆x
(β)
i = ∆x

(α)
i and dropping the superscript (α), (Singh

and Tandon 1969, Trehan and Uberoi 1972, Miketinac 1974):

σ2

∫
V

� |∆�r|2 dV =
∫

V

{
2(∇ · ∆�r) ∆�r · ∇P + Γ1P (∇ · ∆�r)2 + (∆�r · ∇�) ∆�r · ∇Φ

−� ∆�r · ∇δΦ + (p/4π)[(∇ · ∆�r)2H2 + (∇ · ∆�r) ∆�r · ∇H2 + (Hj ∂∆xi/∂xj)2

−2(∇ · ∆�r)(∂∆xj/∂xi)HiHj + ∆xi ∆xk ∂(Hj ∂Hk/∂xj)/∂xi]
}

dV. (5.11.74)

Magnetopolytropic calculations obtained with the variational method are more exact in comparison
to the virial method, but otherwise yield similar results. Eq. (5.11.74) has been used to study the
axisymmetric oscillations of polytropes having n = 0, j = 2 (Singh and Tandon 1969), and n = 1, j =
1, 2, 3 (Grover et al. 1973) with a poloidal and toroidal magnetic field of the form (3.10.225), (3.10.227).
Trial Lagrangian displacements are taken under a form similar to Eq. (5.7.83). The stable p and f -
modes are “stabilized” by the considered field, in the sense that their eigenvalues σ2, (σ2 > 0) are
increased. In absence of magnetic fields, and for the considered values of Γ1 and n = 0, 1, all g-modes are
unstable (see Tables 5.5.1, 5.5.2). If n = 1, the negative eigenvalues σ2 of the principal unstable g1-mode
are decreased, destabilizing even more the magnetopolytrope. On the other hand, positive magnetic
corrections are acquired by the g1-mode if n = 0, j = 2, and the g2-mode if n = 1. Grover et al. (1973)
have also found a stable, purely hydromagnetic mode if n = 1, j = 1, which becomes neutral (σ = 0) for
a vanishing magnetic field.

Comprehensive studies based on Eq. (5.11.74) have been effected by Sood and Trehan (1972a, b)
concerning quasiradial and nonradial axisymmetric oscillations with a toroidal field of the form (3.10.98).
Calculations have been done if 1 ≤ n ≤ 3.5 for deformations associated with the Legendre polynomials
P1(µ), P2(µ), P3(µ), i.e. for latitudinal harmonic indices j = 1, 2, 3, and for trial displacements of the
form (5.7.83). The squared eigenfrequencies of p1(j = 1, 2, 3), f(j = 1, 2, 3), and g1(j = 1)-modes are
always decreased by the presence of the toroidal magnetic field – the configuration is “destabilized”.
If n < 1.5, (Γ1 = 5/3), the unstable g1(j = 2, 3)-modes become less unstable with positive magnetic
corrections to σ2 (Table 5.11.3).

The same approach has been implemented by Fahlman (1971) to investigate the influence of the
poloidal field (3.10.202) on the radial r(j = 0) and the fundamental (Kelvin) f(j = 2)-mode. In fact, the
r and f -modes investigated by Fahlman (1971) correspond in his first approximation just to the zonal
eigenfrequencies ωzr and ωzf already quoted in Table 5.11.2. Goossens’ (1977) magnetic corrections of
these modes for a n = 3 polytrope are not in agreement with those from Table 5.11.2 and Fahlman (1971).

Trehan and Uberoi (1972) have examined the fundamental quasiradial r(j = 0)-mode of magne-
topolytropes, pervaded by a combined toroidal and poloidal field of the form (3.10.225), (3.10.227), while
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Table 5.11.3 Dimensionless squared eigenfrequencies ω2 = σ2/4πG�0 for magnetopolytropes with the
toroidal field (3.10.98) Hϕ = C�r sin λ, h = C2/16π2G for axisymmetric r, p1, f, g1-modes (j = 0, 2; Γ1 = 5/3).
Numbers in parentheses denote powers of 10, the magnetic corrections of Sood and Trehan (1972b) being multiplied
with 4/(n + 1), (cf. Tables 5.3.1, 5.5.2 if h = 0).

n r(j = 0) f(j = 2) p1(j = 2) g1(j = 2)

1 1.92(−1) − 5.07(−1)h 1.52(−1) − 2.78(−1)h 9.79(−1) − 2.44h −2.85(−2) + 3.76(−2)h
1.5 1.51(−1) − 4.92(−1)h 1.18(−1) − 3.01(−1)h 6.29(−1) − 1.81h 5.28(−3)h
2 1.17(−1) − 4.53(−1)h 9.11(−2) − 2.89(−1)h 4.09(−1) − 1.27h 1.32(−2) − 3.22(−2)h
3 6.02(−2) − 3.03(−1)h 4.93(−2) − 2.15(−1)h 1.67(−1) − 5.52(−1)h 1.46(−2) − 5.65(−2)h
3.5 3.45(−2) − 1.88(−1)h 3.12(−2) − 1.56(−1)h 1.03(−1) − 3.46(−1)h 1.01(−2) − 4.43(−2)h

Table 5.11.4 Adiabatic index Γ1d at which accidental degeneracy occurs between the radial r(j = 0)
and the fundamental Kelvin f(j = 2)-mode (cf. Table 5.7.2, Chandrasekhar and Lebovitz 1964), as well as the
corresponding split squared eigenfrequencies ω2 = σ2/4πG�0 are shown for the toroidal magnetic field (3.10.98),
[Sood and Trehan 1972b; magnetic corrections are multiplied with 4/(n + 1)].

n Γ1d r(j = 0) f(j = 2)

1 1.596 0.152 + 2.43h 0.152 − 1.75h
1.5 1.592 0.117 + 1.73h 0.117 − 1.05h
2 1.586 0.0900 + 1.27h 0.0900 − 0.640h
3 1.572 0.0462 + 0.581h 0.0462 − 0.147h

Billings et al. (1973) calculate the eigenfrequencies of the fundamental (Kelvin) mode f(j = 2). Their
stable squared eigenfrequencies are decreased for the r(j = 0)-mode, and increased for the f(j = 2)-mode.

The splitting of eigenfrequencies occurring at accidental degeneracy of the nonmagnetic modes has
been calculated by Sood and Trehan (1972b) for the toroidal field (3.10.98), (Table 5.11.4), and by
Fahlman (1971) for the poloidal field (3.10.202), in the same way as in Eqs. (5.7.75)-(5.7.80) for the
rotational case. The values of Γ1d at which degeneracy occurs have been taken from Chandrasekhar and
Lebovitz (1964). These values agree for the considered polytropic indices with the more exact evaluations
of Hurley et al. (1966) from Table 5.7.2. These authors were not able to locate values of astrophysical
interest for Γ1d if n > 3.25; therefore the entries in Table 5.11.4 are limited to 1 ≤ n ≤ 3.

Using trial displacements of the form (5.7.83)

u(r) = r2 ∆r(r) = arj+1 + brj+3; w(r) = arj+1 + crj+3, (j = 1, 2, 3, ...; a, b, c = const),
(5.11.75)

for each latitudinal harmonic index j, the variational principle (5.11.74) assumes the form (Miketinac
1974)

σ2(A11a
2 + 2A12ab + 2A13ac + A22b

2 + 2A13bc + A33c
2)

= B11a
2 + 2B12ab + 2B13ac + B22b

2 + 2B23bc + B33c
2, (5.11.76)

with the known constants Aik, Bik, (Aik = Aki; Bik = Bki; i, k = 1, 2, 3).
The eigenvalues must be constant with respect to variations ∆a,∆b, ∆c of the variational parameters

a, b, c. Changing successively only one of these parameters, we get three homogeneous equations with the
unknowns a, b, c, and for nontrivial solutions the determinant of this homogeneous system has to vanish:

∣∣∣∣∣∣
σ2A11 − B11 σ2A12 − B12 σ2A13 − B13

σ2A12 − B12 σ2A22 − B22 σ2A23 − B23

σ2A13 − B13 σ2A23 − B23 σ2A33 − B33

∣∣∣∣∣∣ = 0. (5.11.77)

This cubic equation in σ2 yields for each harmonic index j the eigenvalues of pressure (acoustic)
p-modes, fundamental (Kelvin) f -modes (j ≥ 2), and gravity (convective) g-modes. Miketinac (1974)
has calculated these modes for n = 1.5, 3, (j = 1, 2, 3; Γ1 = 5/3), and a strong toroidal field (3.10.98).
The run of the eigenfrequencies for a weak field is similar to the results of Sood and Trehan (1972b),
excepting for some g-modes if j = 1, 2. In Miketinac’s (1974) calculations all squared eigenfrequencies
decrease with increasing field strength, excepting for most g-modes, which increase at first and afterwards
decrease, becoming unstable at maximum considered field strength.
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Nonlinear radial oscillations in spherical magnetopolytropes with the toroidal field (3.10.98) have been
considered by Das et al. (1994).

The oscillations of force-free n = 1, 2 magnetopolytropes have been studied by Nasiri and Sobouti
(1989). In this case �B ∝ ∇ × �B, and the magnetic force term in Eq. (3.10.9) vanishes (B = pH).
The magnetopolytrope remains spherical, and besides the familiar p and g-modes there appear toroidal
t-modes, representing mainly standing hydromagnetic waves.

5.11.3 Hydromagnetic Instabilities in Toroidal Fields

As already stressed at the beginning, these local instabilities cannot be detected by the low order
virial and variational techniques (j = 1, 2, 3) presented in previous subsections. The stability of these
local hydromagnetic oscillations is generally investigated by using the energy principle already outlined
subsequently to Eq. (5.8.149), including in the total energy E also the magnetic energy Um (e.g. Roberts
1967, Chap. 8):

E = W + U + Um + Ume. (5.11.78)

W denotes the gravitational energy, and U the internal energy (2.6.95). Um and Ume is the magnetic
energy (2.6.78) of the internal and external magnetic field, respectively. If a Lagrangian displacement ∆�r
exists, for which the corresponding variation δ∗E(∆�r) is negative, we say the system is unstable. To settle
stability, E has to be expanded to second order in ∆�r, because first order terms vanish for equilibrium
configurations. We quote only the final result, composed of two volume integrals over the internal and
external domain V and Ve, which are separated by the surface S, over which the third integral is extended
(Goossens and Veugelen 1978):

δ∗E = (1/2)
∫

V

[
(p/4π)(δ �H)2 − (p/4π)(∇× �H) · (δ �H × ∆�r) + Γ1P (∇ · ∆�r)2

+(∇ · ∆�r) ∆�r · ∇P + ∇ · (� ∆�r)(∆�r · ∇Φ) − � ∆�r · ∇δΦ
]

dV + (p/8π)
∫

Ve

(δHe)2 dV + (1/2)×
∫

S

{
− �n · ∇[P − Pe + (p/8π)(H2 − H2

e )](∆�r · �n)2 + (p/4π)( �H · �n) ∆ri ∆rj ∂(Hi − Hei)/∂xj

}
dS.

(5.11.79)

The nonaxisymmetric Lagrangian displacements of the infinitely conducting medium are taken by
Goossens and Veugelen (1978) in spherical coordinates equal to

∆r = R(r, λ) exp(ikϕ); r ∆λ = S(r, λ) exp(ikϕ); r sinλ ∆ϕ = iT (r, λ) exp(ikϕ), (5.11.80)

assuming some special trial functions for R, S, T. The equilibrium model with the toroidal field (3.10.98),
(h = 2.5×10−4, 1.25×10−4) is quite similar to Sinha’s (1968a) model already presented in Eqs. (3.10.98)-
(3.10.137). The evaluations are lengthy and complicated, and will not be reproduced. For the polytrope
n = 3 the only unstable oscillations are associated with the azimuthal number k = ±1, and are localized
in the immediate vicinity of the centre of the polytrope, revealing the local nature of these hydromagnetic
instabilities. The most violent instabilities are characterized by small vertical wavelengths for perturba-
tions near the z-axis, and by small horizontal wavelengths for other perturbations. For typical Ap stars
the e-folding time of the instabilities is of order 50 to 500 days.

5.11.4 Stability and Oscillations of Cylindrical Magnetopolytropes

The radial oscillations of an axially symmetric, infinitely conducting cylinder, pervaded by an axial
magnetic field �H = �H[0, 0, Hz(�)] have been investigated by Chandrasekhar and Fermi (1953) in a similar
manner as those of the nonmagnetic sphere by Ledoux (1945; see also Sec. 5.3.1). The radial oscillations
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are considered in Lagrangian description, i.e. for the same mass element. The equivalent forms of the
equation of continuity (5.2.42) and of motion (5.2.46) are devised in cylindrical (�, ϕ, z)-coordinates by

∂�/∂�i = �i�i/��; ∂�2/∂m = 1/π�, (5.11.81)

∂2�/∂t2 = [−(1/�) ∂P/∂�i − (p/8π�) ∂H2/∂�i + ∂Φ/∂�i] ∂�i/∂�

= −2π�[∂P/∂m + (p/8π) ∂H2/∂m] − 2Gm(�)/�, (Hz = H), (5.11.82)

where via Eq. (2.6.30) F = ∂Φ/∂� = −2Gm(�)/�. Also, in virtue of Eqs. (2.1.1), (B.47): (∇ × �H) ×
�H = −H(dH/d�) �e
 = −(1/2)(dH2/d�) �e
. The equilibrium equation is obtained from Eq. (5.11.82)
if ∂2�/∂t2 = 0. Eqs. (5.11.81), (5.11.82) become with the Lagrangian variations � = �u + ∆�, P =
Pu + ∆P, � = �u + ∆�, Hz = H = Hu + ∆H equal to

∂(� ∆�)/∂m = −∆�/2π�2, (5.11.83)

∂2∆�/∂t2 = −2π ∆�[∂P/∂m + (p/8π) ∂H2/∂m] − 2π�[∂∆P/∂m + (p/4π) ∂(H ∆H)/∂m]

+2Gm(�) ∆�/�2 = −2π� ∂[∆P + (p/4π)H ∆H]
/
∂m + 4Gm(�) ∆�/�2. (5.11.84)

We insert for ∆P = −(Γ1P/�) ∂(� ∆�)/∂� via the adiabatic relationship (5.2.38), and for ∆H =
−(1/�) ∂(�H ∆�)/∂� + ∆� ∂H/∂� = −(H/�) ∂(� ∆�)/∂� via Eqs. (5.11.16), (B.47):

∂2∆�/∂t2 = 4π2� ∂[�(Γ1P + pH2/4π) ∂(� ∆�)/∂m]
/
∂m + 4Gm ∆�/�2. (5.11.85)

If ∆�(�, t) = ∆�(�) exp(iσt), Eq. (5.11.85) becomes, by suppressing the factor exp(iσt) :

(σ2 + 4Gm/�2) ∆� = −4π2� d[�(Γ1P + pH2/4π) d(� ∆�)/dm]
/
dm. (5.11.86)

The boundary conditions (5.2.61) ∆�(0) = 0, and (5.11.63) ∆[P−Pe+(p/8π)(H2−H2
e )] = 0 at � = �1,

in conjunction with Eq. (5.11.86), will determine a sequence of distinct eigenvalues, the eigenfunctions
∆�(α), ∆�(β) belonging to different eigenvalues σ(α), σ(β) being orthogonal. This can be shown by writing
Eq. (5.11.86) twice for the eigenvalues σ(α) and σ(β), multiplying by ∆�(β) and ∆�(α), respectively, and
integrating the difference of the products over the mass per unit length of the cylinder:

{[σ(α)]2 − [σ(β)]2}
∫ M1

0

∆�(α) ∆�(β) dm = −4π2

∫ M1

0

{
� ∆�(β) d[�(Γ1P + pH2/4π)

×d(� ∆�(α))/dm] − � ∆�(α) d[�(Γ1P + pH2/4π) d(� ∆�(β))/dm]
}

= 0, (α �= β). (5.11.87)

To obtain this result we have integrated by parts, taking into account that ∆�(α)(0), ∆�(β)(0) = 0,
and P (M1), H(M1) = He = 0, since the total hydrostatic pressure P + pH2/8π – including the magnetic
pressure pH2/8π – is assumed to vanish on the cylindrical surface [cf. Eqs. (5.7.43)-(5.7.46)].

In view of the orthogonality property (5.11.87), the eigenvalues can be determined by a variational
approach [cf. Eq. (5.11.74)]. We multiply Eq. (5.11.86) by ∆�, and integrate over the mass per unit
length:

∫ M1

0

(σ2 + 4Gm/�2) (∆�)2 dm = −4π2

∫ M1

0

� ∆� d
[
�(Γ1P + pH2/4π) d(� ∆�)/dm

]

= −2π2�(Γ1P + pH2/4π) d(� ∆�)2/dm
∣∣∣M1

0
+ 4π2

∫ M1

0

�(Γ1P + pH2/4π) [d(� ∆�)/dm]2 dm,

(5.11.88)

or

σ2

∫ M1

0

(∆�)2 dm =
∫ M1

0

{[(Γ1P + pH2/4π)/��2][d(� ∆�)/d�]2 − (4Gm/�2) (∆�)2} dm. (5.11.89)
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As outlined subsequently to Eq. (5.3.16), the trial Lagrangian displacement ∆�/� = const yields a
fairly good approximation for the fundamental radial eigenfrequency:

σ2

∫ M1

0

�2 dm = 8π

∫ 
1

0

(Γ1P + pH2/4π)� d� − 2GM2
1 = −4π

∫ 
1

0

�2 d(Γ1P + pH2/4π) − 2GM2
1

= p(Γ1/2 − 1)
∫ 
1

0

�2 dH2 + 2(Γ1 − 1)GM2
1 = p(2 − Γ1)

∫ 
1

0

H2� d� + 2(Γ1 − 1)GM2
1

= 4(2 − Γ1)Um + 2(Γ1 − 1)GM2
1 = 4[(Γ1 − 1)2U + Um]. (5.11.90)

To derive this equation, we have considered the hydromagnetic equilibrium equation (5.11.82) dP =
−2Gm� d�/�−p dH2/8π, (∂2�/∂t2 = 0), integrating by parts, and inserting from Eqs. (5.11.3), (5.11.5).
Since U, Um > 0, the infinitely long cylinder pervaded by a longitudinal magnetic field of the form
H = Hz(�) is stable against radial perturbations.

Other studies concerning stability and oscillations of cylindrical magnetopolytropes seem to have been
confined to the quite particular cases of homogeneous (n = 0) and isothermal (n = ±∞) cylinders.

Concerning homogeneous cylinders Chandrasekhar and Fermi (1953) have investigated the axisym-
metric oscillations of an incompressible cylinder pervaded by a constant axial field (n = 0; k = 0; Γ1 =
∞; Hz = H = const), while Simon (1958) and Tassoul (1963) have extended the problem to general
oscillations (j, k �= 0), and to uniform rotation, respectively.

Taking into account that δ[�Ω× (�Ω× �r)] = 0, the Eulerian variation of the hydromagnetic equation of
motion (3.1.12) becomes in a frame rotating uniformly with the cylinder (vtr, τ = 0; p = 1) :

∂2∆�r/∂t2 + 2�Ω × (∂∆�r/∂t) = ∇(δΦ − δP/�) + (1/4π�)(∇× δ �H) × �H,

(n = 0; Γ1 = ∞; �Ω = �Ω(0, 0, Ω); �H = �H(0, 0, H); δ� = 0; Ω, �, H, = const). (5.11.91)

For Eulerian perturbations of the form (5.9.8), (5.9.40), (5.11.14) – after suppressing the common
factor exp[i(σt + kϕ + jz)] – this equation becomes

σ2 ∆�r − 2iσ�Ω × ∆�r = ∇χ − (1/4π�) ∇× [∇× (∆�r × �H)] × �H, (χ = δP/� − δΦ). (5.11.92)

The continuity equation (5.2.28) reads ∇ ·∆�r = 0, (Γ1 = ∞; δ� = 0), or explicitly [cf. Eqs. (5.9.40),
(B.46)]:

d∆�/d� + ∆�/� + ik ∆ϕ + ij ∆z = 0. (5.11.93)

The Eulerian perturbation (5.11.14) of the constant axial field writes with the help of Eqs. (5.11.93),
(B.47) as

δ �H(�) = ∇× (∆�r × �H) = ijH ∆�r(�), (5.11.94)

and the perturbed equation of motion (5.11.92) becomes eventually (Tassoul 1963)

σ2 ∆� + 2iσΩ� ∆ϕ = dχ/d� + (H2/4π�)(j2 ∆� + ij d∆z/d�), (5.11.95)

σ2� ∆ϕ − 2iσΩ ∆� = ikχ/� + (H2/4π�)(j2� ∆ϕ − jk ∆z/�), (5.11.96)

σ2 ∆z = ijχ. (5.11.97)

∆z and its derivative can be eliminated at once among Eqs. (5.11.95)-(5.11.97):

σ2[(σ2 − j2v2
B) ∆� + 2iσΩ� ∆ϕ] = (σ2 − j2v2

B) dχ/d�, (5.11.98)

σ2[(σ2 − j2v2
B)� ∆ϕ − 2iσΩ ∆�] = ik(σ2 − j2v2

B)χ/�, (5.11.99)

where we have introduced the Alfvén velocity (3.10.254) if p = 1 : vB = H/(4π�)1/2. We ignore the
trivial eigenvalue σ2 = j2v2

B, which implies ∆�,∆ϕ = 0, and ∆z(�) = iχ(�)/jv2
B.
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If σ2 �= j2v2
B , we get for ∆� and ∆ϕ, by solving the system (5.11.98)-(5.11.99):

σ2(1 − α2) ∆� = dχ/d� + kαχ/�, (5.11.100)

σ2(1 − α2)� ∆ϕ = i(kχ/� + α dχ/d�), (5.11.101)

with the notation

α = 2σΩ/(σ2 − j2v2
B). (5.11.102)

We insert Eqs. (5.11.97), (5.11.100), (5.11.101) into the continuity equation (5.11.93), observing that
χ satisfies just the modified Bessel equation

d2χ/d�2 + (1/�) dχ/d� − (κ2 + k2/�2)χ = 0, (κ �= 0), (5.11.103)

where

κ2 = j2[1 − 4σ2Ω2/(σ2 − j2v2
B)2] = j2(1 − α2). (5.11.104)

The solution of Eq. (5.11.103) is given by the modified Bessel functions Ik(κ�) and Kk(κ�), (κ �= 0),
of the first and second kind, respectively [cf. Eq. (5.6.3)]. Since the azimuthal number k is an integer,
we have Ik = I−k, Kk = K−k (e.g. Spiegel 1968), so the notations I|k|, K|k| are superfluous (Simon 1958,
Tassoul 1963).

The Eulerian perturbation of Poisson’s equation (5.2.40) is

∇2δΦ = d2δΦ/d�2 + (1/�) dδΦ/d� − (j2 + k2/�2) δΦ = 0, (δ� = 0), (5.11.105)

and the solutions of this modified Bessel equation are given by Ik(j�) and Kk(j�).
The functions χ, δΦ must be independent of Kk(κ�), Kk(j�), respectively, in order to assure the

finiteness of the Eulerian perturbations along the axis � = 0 :

χ(�) = C1Ik(κ�); δΦ = C2Ik(j�); δP/� = C1Ik(κ�) + C2Ik(j�), (C1, C2 = const; κ, j �= 0).
(5.11.106)

If j = 0, k �= 0 (nonaxisymmetric oscillations), the function χ becomes [cf. Eq. (5.6.4)]

χ(�) = C1�
|k|; δΦ = C2�

|k|; δP/� = (C1 + C2)�|k|. (5.11.107)

The perturbation of the external potential δΦe is determined by a Laplace equation analogous to Eq.
(5.11.105), but now Ik(j�) has to be discarded, in order to assure a vanishing perturbation at infinity:

δΦe = C3Kk(j�), (C3 = const; j �= 0) and δΦe = C3�
−|k|, (j = 0). (5.11.108)

The perturbed external field is determined by the Eulerian perturbations of Eq. (5.11.62):

∇ · δ �He = 0; ∇× δ �He = 0. (5.11.109)

But ∇×δ �He = 0 implies that δ �He can be derived from a scalar magnetic potential he = he(�, ϕ, z, t) =
h(�) exp[i(σt + kϕ + jz)] :

δ �He = H ∇he; ∇ · δ �He = H ∇ · (∇he) = H ∇2he = 0. (5.11.110)

he satisfies the Laplace equation ∇2he = d2he/d�2+(1/�) dhe/d�−(j2+k2/�)he = 0 with the solution

he = C4Kk(j�), (C4 = const; j �= 0) and he = C4�
−|k|, (j = 0). (5.11.111)

The four constants Ci obey four boundary conditions, two of which are related to the continuity of
the gravitational potential and of its radial derivative [cf. Eqs. (5.6.89), (5.6.90), (5.11.100)]:

δΦ(�1) = C2Ik(j�1) = δΦe(�1) = C3Kk(j�1), (5.11.112)
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(dδΦ/d�)
=
1 = C2[dIk(j�)/d�]
=
1 = (dδΦe/d�)
=
1 + 4πG� ∆�1

= C3[dKk(j�)/d�]
=
1 + [4C1πG�/σ2(1 − α2)]{[dIk(κ�)/d�]
=
1 + kα Ik(κ�1)/�1}. (5.11.113)

The continuity across the boundary of the radial component of the Eulerian perturbations δ �H and
δ �He from Eqs. (5.11.94), (5.11.111) yields

δH
(�1) = ijH ∆�1 = [C1ijH/σ2(1 − α2)]{[dIk(κ�)/d�]
=
1 + kα Ik(κ�1)/�1}
= δHe
(�1) = H(dhe/d�)
=
1 = C4H[dKk(j�)/d�]
=
1 . (5.11.114)

By virtue of Eq. (5.1.17) the first equation (5.11.63) becomes

δP + ∆�r · ∇P + �H · δ �H/4π = �He · δ �He/4π, (p = 1; Pe = 0; H, He = const). (5.11.115)

We insert for the unperturbed pressure gradient from Eq. (3.9.13): dP/d� = −2πG�2(1 − β)�, (β =
Ω2/2πG�). Since �H = �H(0, 0, H), �He = �He(0, 0, H), we get

δP/� − 2πG�(1 − β)� ∆� + ijH2 ∆z/4π� = H δHez/4π� = H2(∂he/∂z)/4π� = ijH2he/4π�.
(5.11.116)

This equation transforms at � = �1 into

C1Ik(κ�1) + C2Ik(j�1) − [2C1πG�(1 − β)�1/σ2(1 − α2)]{[dIk(κ�)/d�]
=
1 + kα Ik(κ�1)/�1}
−C1j

2H2Ik(κ�1)/4π�σ2 = C4ijH
2Kk(j�1)/4π�, (5.11.117)

after inserting Eqs. (5.11.97), (5.11.100), (5.11.106), (5.11.111).
Nontrivial values of the constants Ci in the four boundary conditions (5.11.112)-(5.11.114) and

(5.11.117) require the vanishing of the determinant of the homogeneous system formed by these four
equations. This yields after some algebra the dispersion relationship (Tassoul 1963)

(σ2 − j2v2
B)(1 − α2) = [κ�1I

′
k(κ�1)/Ik(κ�1) + kα][2πG�(1 − β) − 4πG� Ik(j�1) Kk(j�1)

−jv2
BKk(j�1)/�1K

′
k(j�1)], (j �= 0; n = 0; Γ1 = ∞; H = const; β = Ω2/2πG�), (5.11.118)

where we have used Eq. (5.6.15), and a prime denotes derivation with respect to the argument κ�1 or
j�1, respectively [cf. Eq. (5.6.11)].

Due to the argument κ�1 from Eq. (5.11.104), this dispersion relation is equivalent to an algebraic
equation of infinite degree in σ.

By virtue of Eq. (5.6.15) the dispersion relation (5.11.118) particularizes at once for the nonrotating
cylinder (Simon 1958):

σ2 = [j�1I ′k(j�1)/Ik(j�1)][2πG� − 4πG� Ik(j�1) Kk(j�1) − H2/4π��21I
′
k(j�1) K ′

k(j�1)],
(Ω, α = 0; j �= 0). (5.11.119)

It has been outlined subsequently to Eq. (5.6.30) that 1/2 − Ik(j�1) Kk(j�1) > 0 if k > 0, so σ2 is
positive, and the nonrotating, homogeneous, incompressible cylinder with constant axial field is stable
if k �= 0. The magnetic field strengthens the stability, because σ2 increases due to the presence of the
constant axial field. If k = 0, this cylinder exhibits an axisymmetric “varicose” gravitational instability,
as in the nonmagnetic case (5.6.32). Taking into account that I ′0 = I1 and K ′

0 = −K1 (e.g. Spiegel 1968),
Eq. (5.11.119) becomes in this particular case equal to (Chandrasekhar 1981)

ω2 = σ2/4πG� = j�1I1(j�1) [1/2 − I0(j�1) K0(j�1)]
/
I0(j�1) + jH2

/
16π2G�2�1I0(j�1) K1(j�1),

(Ω = 0; j �= 0; k = 0). (5.11.120)

The critical wavenumber j = jc at which instability sets in will be determined by the root of the
equation σ2 = 0, or by

I0(jc�1) K0(jc�1) − 1/2 = H2
/
16π2G�2�21I1(jc�1) K1(jc�1). (5.11.121)

For an assigned value of H/4πG1/2��1 this equation allows a single positive root jc�1, and the nonro-
tating cylinder is unstable (σ2 < 0) for all varicose deformations if 0 < j < jc, and stable if j > jc. In the
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Table 5.11.5 Nonrotating, homogeneous incompressible cylinder with constant axial field (n, Ω, k = 0; Γ1 =
∞; H = const). The wave numbers jc and jm at onset of instability (σ = 0) and at maximum instability (σ = σm)
are tabulated for an assigned value of H/4πG1/2��1. The dimensionless squared eigenfrequency corresponding to
maximum instability is denoted by ω2

m = σ2
m/4πG� (Chandrasekhar 1981). a + b means a × 10b.

H/4πG1/2��1 jc�1 jm�1 ω2
m

0 1.067 0.580 −6.03−2
0.25 0.7899 0.452 −4.16−2
0.5 0.4460 0.266 −1.66−2
0.75 0.2205 0.134 −4.48−3
1 0.0910 0.055 −7.73−4

unstable range 0 < j < jc the negative eigenvalue σ2 attains a minimum σ2
m for a wavenumber jm. The

minimum of σ2
m (maximum of |σ2

m|) corresponds just to the mode of most rapid amplitude growth, i.e.
to the mode of maximum instability, when the cylinder breaks up into pieces of axial length zm = 2π/jm.
Table 5.11.5 exhibits the strong tendency towards stabilization exerted by the constant axial field, in the
sense that the eigenvalue of maximum instability |σ2

m| is rapidly decreased as the field intensity increases.
In the particular case j = 0, (Ω �= 0) we have to proceed ex novo (Simon 1958), the relevant Eulerian

perturbations being given by Eqs. (5.11.107), (5.11.108), (5.11.110). The four boundary conditions
(5.11.112)-(5.11.114), and (5.11.117) become

C2�
|k|
1 = C3�

−|k|
1 ; C2|k|�|k|−1

1 = −C3|k|�−|k|−1
1 + [4C1πG�/σ2(1 − α2)](|k|�|k|−1

1 + kα�
|k|−1
1 );

(C1 + C2)�
|k|
1 − [2C1πG�(1 − β)�1/σ2(1 − α2)](|k|�|k|−1

1 + kα�
|k|−1
1 ) = 0; C4 = 0, (j = 0).

(5.11.122)

If j = 0, the outer magnetic field He remains constant during these oscillations, because we infer
from Eq. (5.11.114) that δHe
(�1) = 0. The vanishing determinant of the homogeneous system (5.11.122)
yields the cubic dispersion relation [cf. Tassoul 1963, Eq. (52)]

σ2 − 4Ω2 − [2πG�(|k| − 1) − |k|Ω2][1 + 2 sign(k) Ω/σ] = 0, (j = 0). (5.11.123)

In the nonrotating case this reduces to Simon’s (1958) dispersion relation for nonaxisymmetric oscil-
lations

σ2 = 2πG�(|k| − 1), (Ω, j = 0). (5.11.124)

These oscillations are independent of the constant axial field, and are stable, because σ2 ≥ 0 if
|k| = 1, 2, 3, ...

The case k, j,Ω = 0 amounts to radial oscillations, which have been shown in Eq. (5.11.90) to be
stable.

Summarizing, the nonrotating, incompressible homogeneous cylinder – pervaded by a constant axial
field (n, Ω = 0; Γ1 = ∞; H = const) – remains always stable if k �= 0 or j, k = 0 (Simon 1958). If k = 0
and 0 < j < jc, this cylinder exhibits the axisymmetric “varicose” instability from Eqs. (5.6.30)-(5.6.33),
and (5.11.120).

The uniformly rotating magnetic cylinder becomes unstable (”kink instability”) for all wavenumbers
0 < j < jc if the rotation β = Ω2/2πG�0 exceeds a certain critical value. The critical wavenumber jc

at which instability sets in is determined with the aid of Eq. (5.6.15) by introducing the condition of
neutral stability σ = 0, (α = 0; κ = j) in Eq. (5.11.118):

(1 − β)/2 − Ik(jc�1) Kk(jc�1) = H2/16π2G�2�21I
′
k(jc�1) K ′

k(jc�1). (5.11.125)

This instability is enhanced by uniform rotation, whereas the uniform axial field acts against this
instability (cf. Eq. (5.11.120) if Ω, k = 0).

Singh and Tandon (1968) have investigated axisymmetric oscillations (k = 0) of the nonrotating,
compressible homogeneous cylinder (n, Ω = 0; Γ1 �= ∞), pervaded by an axial field of the form �H =
�H[0, 0, H0(1 − �2/�21)], (H0 = const). The variational approach considered by Singh and Tandon (1968)
shows that the particular field stabilizes this cylinder for weak fields, and destabilizes the configuration
(σ2 is decreased) for stronger fields. In the terminology of Sec. 5.6.3 the most unstable mode is the
g1-mode if Γ1 = 5/3.
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The nonaxisymmetric stability of uniformly rotating, compressible homogeneous cylinders (j, n =
0; Ω = const; Γ1 �= ∞) with an axial field of the form H2 = H2

0 + (H2
s − H2

0 )�2/�21 has been studied by
Vandakurov and Kolesnikova (1966) if H0, Hs = const, and the surface field Hs remains constant in the
exterior vacuum region. Radial oscillations (j, k = 0) are always stable, whereas some nonaxisymmetric
modes (j = 0; k = 1, 2, 3, ...) increase exponentially with time.

For a nonrotating isothermal cylinder Stodólkiewicz (1963) has investigated the occurrence of neutral
stability (σ = 0) against isentropic axisymmetric oscillations of the form

∆�r = ∆�r(�, z, t) = ∆�r(�) exp[i(σt + jz)], (n = ±∞; k = 0; Γ1 = 1 + 1/n = 1), (5.11.126)

the Eulerian perturbations of relevant physical quantities obeying the same dependence. The Alfvén
velocity (3.10.254) is assumed constant throughout the isothermal cylinder

| �H| = H = (4π�)1/2vB , (vB = const; �B = p �H; p = 1; H ∝ �1/2), (5.11.127)

and the squared sound velocity (2.1.49) is a2 = P/� = K, (Γ1 = 1). Stodólkiewicz (1963) considers (i) a
toroidal field

�H = �H[0, Hϕ(�), 0]; ∇× �H = [0, 0, (1/�) d(�Hϕ)/d�]; (∇× �H) × �H

= −[(Hϕ/�) d(�Hϕ)/d�] �e
 = −[(1/2�2) d(�2H2
ϕ)/d�] �e
 = −[(2πv2

B/�2) d(�2�)/d�] �e
, (5.11.128)

and (ii) an axial field

�H = �H[0, 0, Hz(�)]; ∇× �H = (0,−dHz/d�, 0); (∇× �H) × �H = −(Hz dHz/d�) �e


= −(1/2)(dH2
z /d�) �e
 = −2πv2

B(d�/d�) �e
. (5.11.129)

Substituting into the equilibrium equation (3.10.15) consecutively Eqs. (5.11.128) and (5.11.129), we
get, respectively

dΦ/d� = (1/�) dP/d� + (v2
B/2��2) d(��2)/d� = K d ln �/d� + (v2

B/2) d ln(��2)/d�

= (K + v2
B/2) d ln �/d� + v2

B d ln �/d�, (5.11.130)

dΦ/d� = (1/�) dP/d� + (v2
B/2�) d�/d� = (K + v2

B/2) d ln �/d�. (5.11.131)

Taking the divergence (B.46) of these equations, and substituting into Poisson’s equation (2.1.4), we
obtain the same equation, since ∇2 ln � = 0 :

∇2Φ = (K + v2
B/2) ∇2 ln � = (K + v2

B/2)(1/�) d(� d ln �/d�)
/
d� = −4πG�. (5.11.132)

With the usual transformations (2.1.18), (2.1.20)

� = �0 exp(−Θ); P = P0 exp(−Θ); � = [(K + v2
B/2)/4πG�0]1/2ξ, (5.11.133)

Eq. (5.11.132) takes the form (2.3.85), with the solution (2.3.48): exp(−Θ) = (1 + ξ2/8)−2. Turning
back to physical variables, we get the equilibrium density distribution of the magnetic cylinder with
| �H| = Hϕ(�) or | �H| = Hz(�) :

� = �0

/
[1 + πG�0�

2/(2K + v2
B)]2 ∝ H2, (n = ±∞; vB = const). (5.11.134)

The first order Eulerian perturbation of the equation of motion (2.1.1) becomes

∂2∆�r/∂t2 = −σ2 ∆�r = −K ∇(δ�/�) + ∇δΦ − (δ�/4π�2)(∇× �H) × �H

+(1/4π�)[(∇× �H) × δ �H + (∇× δ �H) × �H], (p = 1; τ = 0). (5.11.135)

(i) �H = �H[0, Hϕ(�), 0].(i) �H = �H[0, Hϕ(�), 0].(i) �H = �H[0, Hϕ(�), 0]. The Eulerian perturbation (5.11.14) has the components δ �H =
δ �H[0, δHϕ(�, z), 0], and Eq. (5.11.135) writes with Eq. (5.11.128) in the case of neutral stability σ = 0 as

∇(−δP/� + δΦ) + (Hϕ δ�/4π�2�)[d(�Hϕ)/d�] �e
 − (1/4π��)[δHϕ d(�Hϕ)/d�

+Hϕ ∂(� δHϕ)/∂�] �e
 − (1/4π�)(Hϕ ∂δHϕ/∂z) �ez = −∇χ + [(δ�/8π�2�2) d(�2H2
ϕ)/d�] �e


−(1/4π��2)
{
[∂(�2Hϕ δHϕ)/∂�] �e
 + [∂(�2Hϕ δHϕ)/∂z] �ez

}
= −∇χ + (v2

B δ�/2�2�2) ∇(�2�)

−(1/4π��2) ∇(�2Hϕ δHϕ) = 0, (χ = δP/� − δΦ). (5.11.136)
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Integration of the z-component of this equation with the boundary condition �H = 0 if � = 0, (H ∝
�1/2) leads to

Hϕ δHϕ = −4π�χ. (5.11.137)

Substitution of Eq. (5.11.137) into the �-component of Eq. (5.11.136) yields

[d(�2�)/d�][χ + (v2
B/2) δ�/�] = 0, (5.11.138)

or

δΦ = (K + v2
B/2) δ�/�. (5.11.139)

Taking into account the perturbed Poisson equation (5.2.40), we find

∇2(δ�/�) = −4πG δ�/(K + v2
B/2), (5.11.140)

with the equilibrium density resulting from Eq. (5.11.134). The previous equation becomes for a pertur-
bation of the form δ�(�, z) = δ�(�) exp(ijz) equal to

(1/�) d[� d(δ�/�)
/
d�]
/
d� + [4πG�

/
(K + v2

B/2) − j2] δ�/� = 0. (5.11.141)

The critical maximum wave number j = jc has been determined numerically by Stodólkiewicz (1963)
from Eq. (5.11.141) with the Rayleigh-Ritz method. The cylinder becomes unstable along its axis for
wavelengths exceeding the critical length

Lc = 2π/jc = 3.94[(2K + v2
B)/πG�0]1/2, (5.11.142)

and this value differs in the nonmagnetic case vB = 0 from the critical length (5.10.30) of the isothermal
slab only in the numerical coefficient preceding (2K/G�0)1/2. The particular assumptions of case (i)
stabilize the cylinder: The critical wavelength increases with increasing field strength.

(ii) �H = �H[0, 0, Hz(�)].(ii) �H = �H[0, 0, Hz(�)].(ii) �H = �H[0, 0, Hz(�)]. This case is slightly more involved, since the Eulerian perturbations (5.11.14)
of the field are now δ �H = δ �H[δH
(�, z), 0, δHz(�, z)]. We insert Eq. (5.11.129) into Eq. (5.11.135) with
σ = 0 :

∇(−δP/� + δΦ) + (v2
B δ�/2�) ∇ ln � + (1/4π�){[−∂(Hz δHz)/∂� + ∂(Hz δH
)/∂z] �e


+δH
 (dHz/d�) �ez} = 0. (5.11.143)

To proceed further, we introduce the auxiliary vectorial function �S = �S[S
(�, z), 0, Sz(�, z)], defined
by

Hz δH
 = ∂S
/∂z; Hz δHz = Sz. (5.11.144)

Eq. (5.11.143) reads in terms of this new function as

−∇χ + (v2
B δ�/2�) ∇ ln � + (1/4π�)

[
(−∂Sz/∂� + ∂2S
/∂z2) �e
 + (d lnHz/d�)(∂S
/∂z) �ez

]
= 0.

(5.11.145)

The z-component of this equation integrates with the boundary conditions dHz/d� ∝ �−1/2 d�/d� = 0
if � = 0 :

S
 d lnHz/d� = 4π�χ. (5.11.146)

Substituting Eq. (5.11.144) into ∇ · δ �H = 0, we get

(1/�) ∂[(�/Hz) ∂S
/∂z]
/
∂� + (1/Hz) ∂Sz/∂z = ∂[(1/�) ∂(�S
/Hz)

/
∂� + Sz/Hz]

/
∂z = 0,

(5.11.147)

and after integration with respect to z :

−S
 d lnHz/d� + (1/�) ∂(�S
)/∂� + Sz = 0. (5.11.148)
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Introducing S
 from Eq. (5.11.146) into Eq. (5.11.148), we obtain

Sz = 4π�χ − (1/�) ∂[4π��χ
/
(d lnHz/d�)]

/
∂�. (5.11.149)

We substitute S
 and Sz from Eqs. (5.11.146) and (5.11.149) into the �-component of Eq. (5.11.145):

∂χ/∂� − (v2
B δ�/2�) d ln �/d� + (1/�) ∂

{
�χ − (1/�) ∂[��χ

/
(d lnHz/d�)]

/
∂�
}/

∂�

+j2χ/(d lnHz/d�) = 0. (5.11.150)

We effect the derivation, using Eq. (B.48):

χ ∂{� − (1/�) ∂[��
/
(d lnHz/d�)]

/
∂�}

/
∂� + 2(∂χ/∂�){� − ∂[�

/
(d lnHz/d�)]

/
∂�}

−� ∇2χ
/
(d lnHz/d�) − (v2

B δ�/2) d ln �/d� = 0. (5.11.151)

From Eqs. (5.11.127), (5.11.134) we find the relationships

�
/
(d lnHz/d�) = 2�2

/
(d�/d�); � − (1/�) d[��

/
(d lnHz/d�)]

/
d� = 0;

� − d[�
/
(d lnHz/d�)]

/
d� = 2�2

/
(� d�/d�). (5.11.152)

Eq. (5.11.151) transforms with these equations into

∇2χ − (2/�) ∂χ/∂� + (v2
B/4�3)(d�/d�)2 δ� = 0. (5.11.153)

Poisson’s equation (5.2.40) now becomes

∇2δΦ = ∇2(δP/�) −∇2χ = K ∇2(δ�/�) + (v2
B/4�3)(d�/d�)2 δ� − (2/�) ∂χ/∂� = −4πG δ�.

(5.11.154)

On the other hand, we can express (1/�) ∂χ/∂� with the aid of Eqs. (5.11.153), (B.48) as

∇2[(1/�) ∂χ/∂�] = (1/�) ∂[∇2χ − (2/�) ∂χ/∂�]
/
∂� = −(1/�) ∂[(v2

B/4�3)(d�/d�)2 δ�]
/
∂�.

(5.11.155)

Taking the Laplacian of Eq. (5.11.154), and combining with Eq. (5.11.155), we get eventually the
fourth order equation for δ�, depending on the parameter v2

B/K :

∇2{K ∇2(δ�/�) + [4πG + (v2
B/4�3)(d�/d�)2] δ�} + (1/�) ∂[(v2

B/2�3)(d�/d�)2 δ�]
/
∂� = 0.

(5.11.156)

The critical maximum value jc of the wave number j appearing in the Laplacian ∇2(δ�/�) =
(1/�) ∂[� ∂(δ�/�)

/
∂�]
/
∂�− j2 δ�/� has been determined by Stodólkiewicz (1963), and the critical wave-

length above which instability occurs, becomes

Lc = 2π/jc = 3.94[(2K + v2
B)/πG�0]1/2 F (v2

B/K), (5.11.157)

with F (v2
B/K) being a decreasing function of v2

B/K : F (0) = 1, F (∞) = 0.
For the particular assumptions of case (ii) Stodólkiewicz (1963) finds that the critical wavelength Lc

remains nearly constant, changing with respect to its nonmagnetic value (vB = 0) by a factor between 1.01
if v2

B/K ≈ 0 and 0.83 if v2
B/K = ∞. This behaviour of the compressible isothermal cylinder with axial

field differs from that of the homogeneous incompressible cylinder considered in Table 5.11.5. As explained
by Stodólkiewicz (1963), this is due to the fact that the axial field affects only the equilibrium structure
(5.11.134) of the compressible cylinder and not that of the incompressible one. More recently, Tomisaka
(1995) has performed gravitational collapse calculations of isothermal cylindrical clouds permeated by an
axial magnetic field.
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5.11.5 Stability and Oscillations of the Magnetic Isothermal Slab

The density distribution along the z-axis of the uniformly rotating, magnetic isothermal slab can be
found from the equation of hydrostatic equilibrium (3.1.12) with �v,�vtr, τ = 0; Ω = const; �F = ∇Φ; �B =
p �H = �H, (p = 1) :

∇P = � ∇Φ + (1/4π)(∇× �H) × �H − ��Ω × (�Ω × �r). (5.11.158)

For a constant axial field �H = �H(0, 0, Hz), Hz = H = const, and constant angular velocity �Ω =
�Ω(0, 0, Ω), the projection of Eq. (5.11.158) along the z-axis becomes simply dP/dz = K d�/dz = � dΦ/dz,
with the solution (2.3.80) or (5.10.18): � = �0

/
cosh2[(2πG�0/K)1/2z], (n = ±∞).

If the magnetic field is parallel to the symmetry plane and directed along the y-axis �H = �H[0, Hy(z), 0],
the z-component of the equation of hydrostatic equilibrium writes

dP/dz = K d�/dz = � dΦ/dz − Hy (dHy/dz)
/
4π, (n = ±∞). (5.11.159)

If we now assume, following Pacholczyk (1963) and Stodólkiewicz (1963), that the Alfvén speed
(3.10.254) is constant throughout the isothermal slab, we get with Eq. (5.11.127):

(K + v2
B/2) d ln �/dz = dΦ/dz. (5.11.160)

With the transformations � = �0 exp(−θ), z = [(K+v2
B/2)/4πG�0]1/2ξ, the derivative of this equation

becomes with Poisson’s equation d2Φ/dz2 = −4πG� just equal to Eq. (2.3.50) with the solution (2.3.65):

� = �0/ cosh2{[2πG�0/(K + v2
B/2)]1/2z}, [n = ±∞; H2

y (z) ∝ �(z)]. (5.11.161)

As mentioned subsequently to Eq. (5.11.158), one of the simplest cases occurs if the uniformly
rotating isothermal slab is permeated by the constant axial field Hz = H = const, and if all isentropic
(Γ1 = 1 + 1/n = 1) Eulerian perturbations are in Cartesian coordinates of the form

δf(x, z, t) = δf(z) exp[i(σt + jx)]. (5.11.162)

Since the slab is symmetrical in the (x, y)-plane, no direction in this plane is preferred, and we may
choose without loss of generality the perturbations under the previous form. The first order Eulerian
perturbation of the equation of motion (3.1.12) in a Cartesian frame rotating with uniform angular speed
�Ω(0, 0, Ω) is

δ(D�v/Dt) ≈ D(δ�v)/Dt ≈ D�v/Dt = ∂�v/∂t + (�v · ∇)�v ≈ ∂�v/∂t = (δ�/�2) ∇P − (1/�) ∇δP

+(1/4π�)(∇× δ �H) × �H + ∇δΦ − 2�Ω × �v, (P = K�; �vtr, τ = 0; p = 1; �Ω = const;

Hz = H = const; �v ≈ δ�v; δ[�Ω × (�Ω × �r)] = 0). (5.11.163)

In virtue of Eqs. (5.11.13), (5.11.162) we get for the Eulerian perturbation of the constant magnetic
field ∂δ �H/∂t = iσ δ �H = ∇× (δ�v × �H) ≈ ∇× (�v × �H). Likewise

iσ(∇× δ �H) = ∇× [∇× (�v × �H)] = −H(∂2vy/∂z2) �ex + H(∂2vx/∂z2 − j2vx) �ey

+ijH(∂vy/∂z) �ez. (5.11.164)

Suppressing the common factor exp[i(σt + kx)], the equation of motion (5.11.163) becomes via Eq.
(5.11.164), (Nakamura 1983):

σ2vx = (H2/4π�)(−d2vx/dz2 + j2vx) − jσχ − 2iσΩvy, (5.11.165)

σ2vy = −(H2/4π�) d2vy/dz2 + 2iσΩvx, (5.11.166)

iσvz = −dχ/dz, (5.11.167)
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where

χ = δP/� − δΦ = K δ�/� − δΦ = χ(z) exp[i(σt + jx)], (5.11.168)

and (δ�/�2) ∇P − (1/�) ∇δP = −K ∇(δ�/�) = −∇(δP/�). The velocity of sound (2.1.49) is in the
isentropic limit (2.1.51) just equal to a2 = K. The continuity equation (5.2.25) becomes in our particular
case

iσ δ� + ij�vx + d(�vz)/dz = 0, (5.11.169)

and Poisson’s equation (5.2.40) reads

d2δΦ/dz2 − j2 δΦ = −4πG δ�. (5.11.170)

The natural boundary conditions on a physical variable g are dg/dz → 0 if z → ±∞, and Nakamura
(1983) has shown that σ2 is real in this case. The stability criterion of the rotating slab can therefore
be found by examining the point of neutral (marginal) stability σ = 0. We now assume that all Eulerian
perturbations δf(z) from Eq. (5.11.162) are analytic near σ = 0, allowing for a power series:

δf(z, σ) =
∞∑


=0

f (
)(z) σ
, (σ ≈ 0). (5.11.171)

The zero order terms in σ from Eq. (5.11.165) give

d2v(0)
x /dz2 − j2v(0)

x = 0, (5.11.172)

with the elementary solution

v(0)
x (z) = C1 exp(jz) + C2 exp(−jz), (C1, C2 = const). (5.11.173)

Only v
(0)
x ≡ 0 does satisfy the boundary conditions dv

(0)
x (z)/dz = 0 if z = ±∞. The zero order terms

in Eq. (5.11.167) yield dχ(0)/dz = 0 or χ(0)(z) = const. Since vx is at least of order σ, the zeroth and first
order terms in σ from Eq. (5.11.166) give d2v

(0)
y /dz2, d2v

(1)
y /dz2 = 0. Due to the boundary conditions

at infinity we have dv
(0)
y /dz, dv

(1)
y /dz = const = 0, and consequently v

(0)
y , v

(1)
y = const. The σ2-terms in

Eq. (5.11.166) yield

v(0)
y = −(H2/4π�) d2v(2)

y /dz2 + 2iΩv(1)
x . (5.11.174)

Multiplying with � and integrating, we get

v(0)
y

∫ ∞

−∞
� dz = v(0)

y Σ1 = v(0)
y (2K�0/πG)1/2 = 2iΩ

∫ ∞

−∞
�v(1)

x dz. (5.11.175)

Σ1 is given by Eq. (5.10.32), and the integral over the magnetic term vanishes because
(dv

(2)
y /dz)z=±∞ = 0. The first order terms in σ from Eq. (5.11.165) yield

d2v(1)
x /dz2 − j2v(1)

x = −(4π�/H2)(jχ(0) + 2iΩv(0)
y )

= −{4π�0

/
H2 cosh2[(2πG�0/K)1/2z]}(jχ(0) + 2iΩv(0)

y ), (5.11.176)

where the unperturbed density � is determined by Eq. (5.11.158), and is for our constant axial field just
equal to the unperturbed solution (2.3.80) or (5.10.18) of the isothermal slab. The integral of the second
order nonhomogeneous equation (5.11.176) is

v(1)
x = [2π�0/jH2](jχ(0) + 2iΩv(0)

y )
{

exp(−jz)
∫ z

−∞
exp(jz′) dz′

/
cosh2[(2πG�0/K)1/2z′]

+ exp(jz)
∫ ∞

z

exp(−jz′) dz′
/

cosh2[(2πG�0/K)1/2z′]
}

. (5.11.177)
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Nakano and Nakamura (1978) insert this solution into Eq. (5.11.175) to obtain

v(0)
y = (2iΩ/Σ1)

∫ ∞

−∞
�v(1)

x dz = 8πiΩ�0(jχ(0) + 2iΩv(0)
y )η D(η)/j2H2, (n = ±∞; σ ≈ 0),

(5.11.178)

where

η2 = j2K/2πG�0; D(η) = 1 − η + (η2/2)
∫ ∞

0

s exp[−(η/2 + 1)s] ds
/
[1 − exp(−s)]. (5.11.179)

A second order equation for δ�(0) results from the zeroth approximation in σ of Poisson’s equation
(5.11.170) by inserting δΦ(0) = δP (0)/� − χ(0) = K δ�(0)/� − χ(0) :

K d2(δ�(0)/�)
/
dz2 + 4πG δ�(0) − j2K δ�(0)/� = −j2χ(0). (5.11.180)

With the new variable µ = tanh[(2πG�0/K)1/2z] from Eq. (5.10.18), this equation transforms into
(cf. Eq. (5.10.26) if χ(0) = 0) :

d2(δ�(0)/�)
/
dµ2 − [2µ/(1 − µ2)] d(δ�(0)/�)

/
dµ + [2/(1 − µ2) − η2/(1 − µ2)2] δ�(0)/�

= −η2χ(0)/K(1 − µ2)2. (5.11.181)

Its solution is

δ�(0)/� = −[ηχ(0)/2K(1 − η2)]
{

(η + µ)[(1 − µ)/(1 + µ)]η/2

∫ µ

−1

[(η − µ′)/(1 − µ′2)][(1 + µ′)

/(1 − µ′)]η/2 dµ′ + (η − µ)[(1 + µ)/(1 − µ)]η/2

∫ 1

µ

[(η + µ′)/(1 − µ′2)][(1 − µ′)/(1 + µ′)]η/2 dµ′
}

,

(n = ±∞; σ ≈ 0). (5.11.182)

Another relationship between χ(0) and v
(0)
y can be derived from the first order terms of the continuity

equation (5.11.169)
∫ ∞

−∞
(δ�(0) + j�v(1)

x ) dz = 0, [(�vz)z=±∞ = 0], (5.11.183)

which has been integrated by Nakano and Nakamura (1978) via Eqs. (5.11.177) and (5.11.182):

χ(0)η E(η) = (32π�0K
3/GH4)1/2(jχ(0) + 2iΩv(0)

y ) D(η), [E(η) = [2η + D(η)]/(1 − η2)].
(5.11.184)

Eqs. (5.11.178) and (5.11.184) form a linear homogeneous system with respect to χ(0) and v
(0)
y , having

nontrivial solutions if its determinant vanishes, and this requirement leads to

H2/8πK�0 = H2/4π2GΣ2
1 = D(η)/E(η) − (Ω2/πG�0) D(η)/η, (n = ±∞; σ ≈ 0). (5.11.185)

This dispersion relation for the critical values of η ∝ j includes the two limiting cases Ω = 0 (Nakano
and Nakamura 1978) and H = 0 (Sec. 5.10.3, Goldreich and Lynden-Bell 1965a). For certain values of
the rotation parameter 2β = Ω2/πG�0 and of the magnetic field H2/4π2GΣ2

1 there exists – as in the
nonmagnetic case from Sec. 5.10.3 – an intermediate range of wavelengths L = 2π/j ∝ 2π/η, where the
isothermal, uniformly rotating, magnetic slab becomes unstable. If D(1/E− 2β/η) < 0, the disk remains
stable, since H2/4π2GΣ2

1 cannot become negative. Rotation has a stabilizing effect on this magnetic slab.
Only a single critical wavelength exists in the nonrotating limit Ω, β = 0, and the magnetic slab

becomes unstable only if H2/4π2GΣ2
1 = D/E < 1, because the calculations of Nakano and Nakamura

(1978) show that D/E < 1 for any η > 0. No unstable modes exist if η > 1. The critical wavelength
Lc = 2π/jc ∝ 2π/ηc decreases as the magnetic field intensity H decreases, but it never becomes less than
its value Lc = (2πK/G�0)1/2 from Eq. (5.10.30) for the nonmagnetic isothermal slab, when ηc = 1 and
jc = (2πG�0/K)1/2.
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For a magnetic field of the form �H = �H[0, Hy(z), 0] the equilibrium density distribution is given by Eq.
(5.11.161). Pacholczyk (1963) assumes perturbations of the form (5.11.162), propagating perpendicularly
to the magnetic field, so the Eulerian perturbation (5.11.14) has by assumption the components δ �H =
δ �H[0, δHy(x, z), 0]. After effecting the vector operations, the (x, z)-components of the equation of motion
(5.11.135) turn into [∆�r = ∆�r(∆x,∆y, ∆z)]

−σ2 ∆x = −K ∂(δ�/�)
/
∂x + ∂δΦ/∂x − (Hy/4π�) ∂δHy/∂x, (5.11.186)

−σ2 ∆z = −K ∂(δ�/�)
/
∂z + ∂δΦ/∂z + (Hy δ�/4π�2) dHy/dz

−(1/4π�)(δHy dHy/dz + Hy ∂δHy/∂z). (5.11.187)

The further treatment of this system proceeds quite analogously to the cylindrical case from Eqs.
(5.11.136)-(5.11.142). We rewrite Eq. (5.11.186) for the case of neutral stability σ = 0 :

ij[χ + (1/4π�)Hy δHy] = 0, (5.11.188)

or

Hy δHy = −4π�χ. (5.11.189)

The magnetic field is taken under the form (5.11.127)

| �H(z)| = Hy(z) = [4π�(z)]1/2vB , (vB = const), (5.11.190)

and Eq. (5.11.187) becomes, by inserting Eqs. (5.11.189), (5.11.190):

−∂χ/∂z + (δ�/8π�2) dH2
y/dz − (1/4π�) ∂(Hy δHy)/∂z = −∂χ/∂z + (v2

B/2�2) δ� d�/dz

+(1/�) ∂(�χ)/∂z = [d(ln �)/dz][(v2
B/2) δ�/� + χ] = 0, (σ = 0). (5.11.191)

This amounts to (v2
B/2) δ�/� + χ = 0 or

δΦ = K δ�/� − χ = (K + v2
B/2) δ�/�, (5.11.192)

and Poisson’s equation (5.2.40) yields

∇2(δ�/�) = −4πG δ�/(K + v2
B/2). (5.11.193)

Putting h(x, z, t) = δ�(x, z, t)/�(z) = [δ�(z)/�(z)] exp[i(σt+ jx)], this equation assumes just the form
(5.10.25) if vB ∝ | �H| = 0 :

dh2/dz2 + [4πG�/(K + v2
B/2) − j2]h = 0. (5.11.194)

The critical wavenumber jc and the critical wavelength Lc are just equal to the solution (5.10.30) of
the nonmagnetic isothermal slab if vB = 0 :

jc = [2πG�0

/
(K + v2

B/2)]1/2; Lc = 2π/jc = [2π(K + v2
B/2)

/
G�0]1/2, (σ = 0; n = ±∞).

(5.11.195)

For all wavelengths larger than Lc the magnetic isothermal slab considered by Pacholczyk (1963)
is unstable, and the particular field Hy(z) stabilizes the slab, increasing the critical wavelength if the
perturbation (5.11.162) propagates perpendicularly to the magnetic field Hy(z).

For perturbations δf(y, z, t) running parallel to the magnetic field Hy(z), Stodólkiewicz [1963, Eq.
(10.101)] obtains the critical wavelength

Lc = (2πK/G�0)1/2[(1 + v2
B/2K)

/
(1 + v2

B/K)]1/2, (σ = 0; n = ±∞), (5.11.196)

showing that Lc remains nearly constant, decreasing in comparison to its nonmagnetic value vB = 0 at
most by the factor 1/21/2 = 0.71 if v2

B/K → ∞.
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5.12 Stability and Oscillations of Relativistic Polytropes

5.12.1 The Static Method

The static (energy, turning point) method – originally devised by Zeldovich – has been extensively
used for discussing the stability of relativistic (very dense and/or supermassive) stars. Its usefulness
stems from the fact that it avoids the detailed calculation of radial modes of oscillation (e.g. Zeldovich
and Novikov 1971, Chap. 10; Tassoul 1978, Sec. 6.8). Mass and/or mean density of relativistic bodies are
considerably larger than for Newtonian objects, so we make a brief survey of the limits which determine the
three final stages of stellar evolution predicted by theory: White (black) dwarfs, neutron stars (pulsars),
and black holes. We also touch the stability of supermassive objects (stars) with masses between the
Oppenheimer-Volkoff (1939) limit for cold objects of about 2 M� (M� – solar mass) and 109M� (e.g.
Fowler 1964, Zeldovich and Novikov 1971, Shapiro and Teukolsky 1983). Such supermassive objects are
thought to occur in the centre of radiogalaxies and quasars.

At first we recapitulate elementary estimates of three time scales occurring in stellar evolution.
(i) Free-fall Time. The radial form of the equation of motion (5.2.10) is

� d2r1/dt2 = −dP/dr1 − G�M1/r2
1, (M1 = const), (5.12.1)

where M1 and r1 is the mass and radius of a sphere. With pressure forces being neglected this equation
is integrated after multiplication by dr1/dt :

dr1/dt = −(2GM1)1/2(1/r1 − 1/r10)1/2, (5.12.2)

where the obvious initial condition dr1/dt = 0 if r1 = r10 is inserted. To obtain the free-fall time tf this
equation is integrated again from r1 = r10 if t = 0, to r1 = 0 if t = tf :

(2GM1/r10)1/2tf =
∫ r10

0

r
1/2
1 dr1/(r10 − r1)1/2 = 2r10

∫ π/2

0

sin2 x dx = πr10/2,

(sin2 x = r1/r10). (5.12.3)

Introducing the initial mean density of the sphere �m0 = 3M1/4πr3
10, we observe that the free fall

time

tf = (3π/32G�m0)1/2, (5.12.4)

depends only on the initial mean density of the sphere. tf amounts to about 2× 106 yr for an interstellar
cloud of mean density �m0 = 10−22 g cm−3, and is ridiculously small tf = 1800 s for the Sun (�m0 =
1.4 g cm−3).

(ii) The so-called Kelvin-Helmholtz time scale tK (gravitational contraction time scale or thermal
time scale) is the e-folding time scale for radius changes in a gravitationally contracting star with pressure
forces being present:

1/tK = |d ln r1/dt|. (5.12.5)

Integrating from er1 to r1 with tK = const, there results just t = tK . For a nonmagnetic polytropic
sphere we have from Eqs. (2.6.98), (2.6.137):

E = (3Γ − 4)W/3(Γ − 1) = −(3Γ − 4)qGM2
1 /3(Γ − 1)r1, (Um = 0; q = 3/(5 − n); Γ > 4/3).

(5.12.6)

Without nuclear energy sources the total luminosity of the contracting star is just

L = −dE/dt = −(3Γ − 4)qGM2
1 (dr1/dt)

/
3(Γ − 1)r2

1. (5.12.7)
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The time required for the star to contract with constant luminosity from infinity to radius r1 is
obtained by integrating Eq. (5.12.7), or by inserting for −dr1/dt from Eq. (5.12.5):

t = tK = (3Γ − 4)qGM2
1 /3(Γ − 1)Lr1, (L,Γ = const). (5.12.8)

We have ε(kin) = 3(γ − 1)ε(int)/2 by Eq. (1.7.58), and the total thermal energy (2.6.90) becomes
via Eq. (2.6.95) equal to Eth = 3(γ − 1)U/2. If the star is composed of noninteracting, nonrelativistic
particles (γ = 5/3), this amounts to Eth = U. If Γ = γ = 5/3, the virial theorem (2.6.97) yields:
2U + W = 2Eth + W = 2Eth − qGM2

1 /r1 = 0, (Um = 0). Thus, with Eth = qGM2
1 /2r1, the Kelvin time

scale (5.12.8) for normal stars is a thermal time scale, equivalent to their “cooling time” (Cox and Giuli
1968):

tK = 2(3Γ − 4)Eth/3(Γ − 1)L ≈ Eth/L. (5.12.9)

Taking γ = Γ = 5/3 (all internal energy U = Eth is assumed under the form of nonrelativistic,
translational kinetic energy of particle motion) we get for the Sun tK = Eth/L ≈ 3× 107 yr, representing
its interval of existence without nuclear energy sources.

(iii) The third relevant time scale is the nuclear time scale – the interval required for the properties
of a star to change significantly as a result of nuclear burning:

tN = EN/L. (5.12.10)

EN denotes the reserve of nuclear energy of the star. For complete burning of a hydrogen core of
mass 0.1M� into 4He the energy release is 0.007c2 per gram, and tN becomes for the Sun equal to about
1010 yr. Thus, at least for solar type stars we have tf � tK � tN (Cox and Giuli 1968, Zeldovich and
Novikov 1971).

Evolution – involving thermal and nuclear processes, accretion or mass loss – produces changes in
the equilibrium configuration. And often these changes involve instabilities leading to a disruption of
hydrostatic equilibrium and to catastrophic phenomena. The essence of the static method relies upon
the fact that the total energy is a minimum for stable equilibria, and fails to be so for unstable equilibria
(e.g. Lyttleton 1953, Tassoul 1978).

Let us write down within Newtonian gravitation the equation (2.6.98) for the total energy of a non-
magnetic star (Um = 0) :

E = W + U = −
∫

V1

GM(r) � dV/r +
∫

V1

ε(int) dV = −3GM2
1 /(5 − n)r1 +

∫
M1

ε(int) dM/�.

(5.12.11)

We have inserted for the gravitational energy W from Eqs. (2.6.70), (2.6.137), and for the internal
energy U from Eq. (2.6.95). At constant entropy the first law of thermodynamics (1.1.3) becomes for
the unit of mass

P = �2(∂U/∂�)S=const = �2[∂(ε(int)/�)
/
∂�]S=const. (5.12.12)

Integration of Eq. (1.3.23) with a constant adiabatic index Γ1 yields

P = K�Γ1 , (K, Γ1, S = const). (5.12.13)

Inserting this into Eq. (5.12.12), and integrating again, we obtain

ε(int)/� = [K/(Γ1 − 1)]�Γ1−1 + const = P/�(Γ1 − 1) + const. (5.12.14)

We introduce an average value ε(int)/� = [K/(Γ1 − 1)]�Γ1−1
m + const of the specific internal energy

over the sphere. The total energy (5.12.11) becomes in terms of mean density �m = 3M1/4πr3
1 equal to

E = −62/3π1/3G�1/3
m M

5/3
1 /(5 − n) + [K/(Γ1 − 1)]�Γ1−1

m M1 + const M1. (5.12.15)

Following Zeldovich and Novikov (1971) we will demonstrate that hydrostatic equilibrium necessarily
prevails at an extremum of total energy. To this end we calculate the first variation (5.8.7) of the total
energy (5.12.11):

δ∗E = −G

∫
V1

M(r) ∆(1/r) � dV +
∫

M1

∆(ε(int)/�) dM, (∆M(r) ≡ 0). (5.12.16)
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For a certain unit mass element we can replace the partial derivative in Eq. (5.12.12) by the Lagrangian
variation

∆(ε(int)/�) = (P/�2) ∆�, (m = 1; S = const), (5.12.17)

and the second integral in Eq. (5.12.16) is via Eq. (5.2.28) equal to
∫

M1

∆(ε(int)/�) dM =
∫

M1

(P/�2) ∆� dM = −
∫

M1

(P/�)(∇ · ∆�r) dM

= −4π

∫ r1

0

P [d(r2 ∆r)/dr] dr = −4πr2P ∆r
∣∣∣r1

0
+ 4π

∫ r1

0

r2(dP/dr) ∆r dr =
∫

V1

(dP/dr) ∆r dV.

(5.12.18)

Eq. (5.12.16) now reads

δ∗E =
∫

V1

[G�M(r)/r2 + dP/dr] ∆r dV, (5.12.19)

and the extremum of E is obtained by putting δ∗E = 0, which is equivalent to the equation of hydrostatic
equilibrium dP/dr = −G�M(r)/r2. The equilibrium state δ∗E = 0 is stable if the extremum of E is a
minimum, i.e. if δ∗2E > 0. If δ∗2E < 0, the extremum is a maximum, and the sphere is unstable. At an
extremum of E we have (∂E/∂�m)M1,S=const = 0 in virtue of Eq. (5.12.15), and this amounts to

(∂E/∂�m)M1,S = C1�
−2/3
m M

5/3
1 + C2�

Γ1−2
m M1 = 0, (C1, C2 = const). (5.12.20)

From this we obtain

M1 = const �(3/2)(Γ1−4/3)
m , (5.12.21)

and the sign of the derivative

(∂M1/∂�m)S=const = const (Γ1 − 4/3)�(3/2)(Γ1−2)
m , (const > 0), (5.12.22)

is the same as the sign of Γ1 − 4/3. As shown by Eq. (2.6.99), the stable equilibrium of a nonmagnetic
configuration (Um = 0) requires Γ = Γ1 > 4/3, and therefore Eq. (5.12.22) implies (∂M1/∂�m)S > 0 for
stability, and (∂M1/∂�m)S < 0 for instability. The calculation of (∂M1/∂�m)S involves the comparison of
two stellar models, both of which have the same entropy and equation of state, but with slightly differing
masses. The criterion is a natural one: In a stable state, any addition of mass from outside would cause a
contraction and an increased mean density �m. Hence, for stability ∂M1 and ∂�m should have the same
sign.

Another condition of stability results from

(∂M1/∂r)S < 0, (5.12.23)

which implies that with addition of mass from outside (∂M1 > 0) each internal mass element at radius
r must move toward the centre, i.e. ∂r < 0. The stability condition (5.12.23) will not be satisfied unless
(∂M1/∂�m)S > 0, as can be seen by inserting for ∂r the expression

dr1 = (1/36π)1/3
(
M

−2/3
1 dM1/�1/3

m − M
1/3
1 d�m/�4/3

m

)
, (5.12.24)

resulting from differentiation of r1 = (3M1/4π�m)1/3. The stability condition (5.12.23) writes

(∂r1/∂M1)S ∝ M
−2/3
1 /�1/3

m − (M1/3
1 /�4/3

m )(∂�m/∂M1)S < 0, (5.12.25)

which can only be satisfied if (∂M1/∂�m)S > 0. At least for polytropes we have via Eq. (2.6.27) �m =
3�0(∓dθ/dξ)ξ=ξ1/ξ1 = const �0, and the condition of stability (∂M1/∂�m)S > 0 can also be expressed in
terms of the central density �0 :

(∂M1/∂�0)S=const > 0. (5.12.26)



5.12.1 The Static Method 521

Hydrostatic equilibrium models located on the descending branch of the curve M1(�0), where
(∂M1/∂�0)S < 0, are unstable.

In general relativity the condition of equilibrium is obtained in a similar manner, by calculating the
extremum of relativistic mass Mr1 from Eq. (4.1.23) with respect to relativistic central density �r0. Like
in Eq. (5.12.19), the extremum of relativistic mass (relativistic energy) is calculated from

δ∗Mr1 = 4π δ∗
∫ r1

0

�rr
2 dr = 0, (5.12.27)

under the condition that the total number of baryons (number of nucleons (protons, neutrons) and
hyperons)

NB =
∫

V1

nd dV = 4π

∫ r1

0

ndr
2 exp(κ/2) dr, (5.12.28)

remains constant, or δ∗NB = 0, where the proper volume element is given by Eq. (4.1.24), and nd denotes
the baryon number density. Instead of the number of baryons we can also use the rest mass of a sphere
M1 from Eq. (4.1.76), by substituting via Eq. (1.2.5) nd = �/µH = �NA/µ ≈ �NA, where the mean
molecular weight is µ ≈ 1 for baryons consisting mostly of neutrons and protons: M1 ≈ NB/NA.

Zeldovich and Novikov (1971) argue that the stability condition (5.12.26) is also valid in general
relativity:

(∂Mr1/∂�r0)S=const > 0. (5.12.29)

The extrema of Mr1 and NB occur at the same relativistic central density �r0, if (∂Mr1/∂�r0)S=const =
0. In the immediate vicinity, to the left and right of the extremal central density �r0, we may select two
models with slightly different central densities �

(1)
r0 and �

(2)
r0 , but with the same number of baryons NB .

The density distribution of one of these models can be represented as a perturbation of the other model:

�
(2)
r0 = �

(1)
r0 + δ�r0 exp(iσt). (5.12.30)

Since the perturbation ∝ exp(iσt) which transforms one stationary equilibrium model into the other
must be independent of time, we must have σ = 0 at the extremum ∂Mr1/∂�r0 = 0 of the Mr1(�r0)-curve.
On the one side of the extremum – where ∂Mr1/∂�r0 > 0 – we have σ2 > 0, and the equilibrium is stable,
whereas on the other side the equilibrium is unstable, and ∂Mr1/∂�r0 < 0, (σ2 < 0).

In spite of its simplicity, the static method is not free of shortcomings (Tassoul 1978): First, the
method is restricted to real values of σ2, as it pinpoints exchanges of stability from positive to negative
values of σ2, and vice versa. Second, rotation for instance, couples various p, f, and g-modes, so the
correct identification of a neutral (marginal) mode σ2 = 0 may be somewhat ambiguous.

The first law of thermodynamics and the equation of hydrostatic equilibrium complicates considerably
if special relativistic effects are considered [see Eqs. (1.1.3), (4.1.27), (4.1.56), (4.1.57)]. Fortunately, the
rest mass approximation of mass density is valid for most observed objects (even for neutron stars, see Fig.
5.12.1). For cold, degenerate matter this can be seen by equating the pressure (1.7.34) of a completely
degenerate, nonrelativistic neutron gas to the pressure (1.6.7) of the extremely relativistic neutron gas

5.461 × 109(�/µn)5/3 = 1.244 × 1015(�/µn)4/3 or � = 1.2 × 1016 g cm−3. (5.12.31)

Thus, only well above nuclear densities of 2 × 1014 g cm−3 the effects of special relativity on mass
density are no longer negligible.

Quite generally, we have �r �≈ �, whenever the density ε(int)/c2, corresponding to the internal energy
density ε(int) from Eq. (1.2.16) or (4.1.2) is not much smaller than the rest mass density

� = ε/c2 = ndmp, (5.12.32)

where nd is the number density, and mp the particle rest mass. In the nondegenerate perfect gas region
special relativistic effects are important whenever the internal energy per particle e(int) = fkT/w from
Eq. (1.7.59) is comparable to or larger than the particle rest energy mpc

2.
Incidentally, when general relativistic effects become important, the relevant densities (5.12.33) for

solar mass objects are of the same order of magnitude as those from Eq. (5.12.31). As results from the
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Schwarzschild metric (4.1.20), general relativistic effects are dominant if 2GMr1/c2r1 ≈ 1, and hydrostatic
equilibrium configurations cannot exist if the surface radial coordinate of a sphere r1 is smaller than its
Schwarzschild radius rg :

r1 < rg = 2GMr1/c2 or �m ≈ 3Mr1/4πr3
1 > 3Mr1/4πr3

g = 3c6/32πG3M2
r1

= 1.84 × 1016(M�/Mr1)2. (5.12.33)

If M� ≈ Mr1, this is indeed of the same order of magnitude as Eq. (5.12.31).

5.12.2 Stability and Maximum Masses of Cold Spheres

As mentioned in the previous subsection two final stages of stellar evolution can be approximated
by spheres composed of degenerate electrons (white, black dwarfs) and degenerate neutrons (neutron
stars, pulsars). The equations of state (1.6.6) and (1.6.7) of completely degenerate electron (neutron)
matter, as well as general relativistic effects, determine certain limiting (maximum) masses of hydrostatic
equilibrium configurations of white dwarfs (neutron stars).

Let us consider at first the well known limiting mass of white dwarf stars. Typical central rest mass
densities �0/µe of white dwarfs are between about 1.23 × 105 and 2.48 × 1011 g cm−3, the lower limit
corresponding to a nonrelativistically degenerate white dwarf of mass M1 = 0.88M�/µ2

e, and the upper
one to a relativistically degenerate white dwarf of mass M1 = 5.75M�/µ2

e (Zeldovich and Novikov 1971,
Table 10). The mean molecular weight per free ionization electron is given by Eq. (1.7.23): 1 ≤ µe ≤ 2.

The Newtonian equation of hydrostatic equilibrium dP/dr = −G�M(r)/r2 can be combined with the
continuity of mass dM(r) = 4π�r2 dr to yield

d[(r2/�) dP/dr]
/
dr = −4πG�r2. (5.12.34)

The basic structure equation of white dwarfs is obtained by substituting the equations of state (1.6.1)
and (1.6.4):

d[(r2/x3) df(x)/dr]
/
dr = −4πGB2x3r2/A. (5.12.35)

We insert for df(x) from Eq. (1.6.8):

d[r2 d(x2 + 1)1/2/dr]
/
dr = −πGB2x3r2/2A. (5.12.36)

With the new auxiliary variable y2 = x2 + 1 this equation reads

d(r2 dy/dr)
/
dr = −πGB2r2(y2 − 1)3/2/2A. (5.12.37)

We now define a normalized parameter Y and a dimensionless radial distance ζ by

y = y0Y ; r = κζ = (2A/πG)1/2ζ/By0 = (61/2NA/8πmeµey0)(h3/cG)1/2ζ

= 7.776 × 108ζ/µey0 [cm], (5.12.38)

where NA is Avogadro’s number, me the electron rest mass, h Planck’s constant, and x0, y0 = (x2
0 +1)1/2

denote central values of x, y, respectively. Eq. (5.12.37) becomes

d(ζ2 dY/dζ)
/
dζ = −ζ2(Y 2 − 1/y2

0)3/2. (5.12.39)

The conditions at the centre ζ = 0 are clearly Y = 1 and dY/dζ = 0. At the surface boundary ζ = ζ1

the density has to vanish: x ∝ �1/3 = 0, y = 1, and Y (ζ1) = 1/y0. The solutions of Eq. (5.12.39) form a
one parameter family, depending on the value of y0, i.e. on the central density �0 = Bx3

0 = B(y2
0 − 1)3/2.

In the nonrelativistic limit we have x → 0 or y → 1, and

Y = [(1 + x2)/(1 + x2
0)]

1/2 ≈ 1 + x2/2 − x2
0/2; dY/dζ ≈ (1/2) dx2/dζ;

Y 2 − 1/y2
0 = x2/y2

0 ≈ x2, (x ≈ 0; y0 ≈ 1). (5.12.40)
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The structure equation of a completely degenerate, nonrelativistic electron gas becomes

d(ζ2 dx2/dζ)
/
dζ = −2ζ2(x2)3/2, (x ≈ 0). (5.12.41)

With the change of the independent variable ζ = η/21/2 this turns just into the equation (2.3.87) of
a polytropic sphere with index n = 1.5 :

d(η2 dx2/dη)
/
dη = −η2(x2)3/2, (x ≈ 0). (5.12.42)

In the extreme relativistic limit we have x0, y0 → ∞, and the white dwarf equation (5.12.39) turns
into that of a polytrope with index n = 3 :

d(ζ2 dY/dζ)
/
dζ = −ζ2Y 3, (x → ∞; 1/y0 ≈ 0). (5.12.43)

The mass inside radius r is simply

M(r) = 4π
∫ r

0

�(r′) r′2 dr′ = 4πκ3

∫ ζ

0

�(ζ ′) ζ ′2 dζ ′. (5.12.44)

However, in virtue of Eqs. (1.6.4), (5.12.38) we get

�/�0 = x3/x3
0 = [(y2 − 1)/(y2

0 − 1)]3/2 = y3
0(Y 2 − 1/y2

0)3/2
/
(y2

0 − 1)3/2, (5.12.45)

and Eq. (5.12.44) reads as

M(ζ) = [4πκ3�0y
3
0/(y2

0 − 1)3/2]
∫ ζ

0

ζ ′2[Y 2(ζ ′) − 1/y2
0 ]3/2 dζ ′

= −(27/2/π1/2B2)(A/G)3/2

∫ ζ

0

d(ζ ′2 dY/dζ ′) = −(27/2/π1/2B2)(A/G)3/2ζ2 dY/dζ. (5.12.46)

We have inserted for κ from Eq. (5.12.38), for �0 = Bx3
0 = B(y2

0 − 1)3/2 from Eq. (1.6.4), and for
Y 2 − 1/y2

0 from the hydrostatic equation (5.12.39).
The monotonic increase of total mass with increasing central density �0 (or with increasing y0) can

be understood from a simple order-of-magnitude evaluation (cf. Cox and Giuli 1968): From the equation
of hydrostatic equilibrium there results P0 ∝ GM1�0/r1, and inserting for r1 from �0 ∝ �m ∝ M1/r3

1,

we get P0 ∝ GM
2/3
1 �

4/3
0 . Also, the pressure of completely degenerate electrons can be approximated by

P0 ∝ �
1+1/n
0 , where 1.5 ≤ n ≤ 3. Equating this with the hydrostatic pressure, we get M

2/3
1 ∝ �

1/n−1/3
0 ,

showing that mass is an increasing function of central density, provided that 0 < n < 3.
Hence, the Chandrasekhar limiting mass of a white dwarf occurs if its central density �0 tends to

infinity (x0, y0 → ∞), and this takes place just for the extremely relativistic case with the structure
equation (5.12.43) equal to a n = 3 polytrope. The Chandrasekhar limiting mass is obtained from Eq.
(5.12.46) if ζ2 dY/dζ just assumes the surface value ξ2

1θ′1 = −2.018 of the n = 3 polytrope:

M1 = MCh = −(27/2/π1/2B2)(A/G)3/2(−ζ2 dY/dζ)ζ=ζ1 = (61/2/8π)(ch/G)3/2(NA/µe)2

×(−ζ2 dY/dζ)ζ=ζ1 = 5.836/µ2
e, [(−ζ2 dY/dζ)ζ=ζ1 = 2.018; x0, y0 = ∞], (5.12.47)

where MCh is in solar units. For massive white dwarfs the hydrogen content is likely to be small, so
µe ≈ 2 [Eq. (1.7.23)], and the limiting mass of completely degenerate configurations is about MCh = 1.46
solar masses. This limiting mass would be attained for an infinite central density �0 = B(y2

0 − 1)3/2 and
zero radius r1 = (2A/πG)1/2ζ1/By0 = 0, (y0 = ∞).

As real matter, including black holes, is not likely to reach infinite density, the Chandrasekhar mass
(5.12.47) is a limiting mass, which cannot be attained in practice by white dwarfs. Moreover, for densities
above about 109 g cm−3 the energies of degenerate electrons become large enough to initiate inverse β-
decays in iron stars, i.e. electron capture by a nucleus according to the equation (Sec. 1.7, Zeldovich and
Novikov 1971, Chap. 6)

(A, Z) + e− = (A, Z − 1) + ν, (5.12.48)
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where A and Z mean atomic mass and charge number, e− denotes an electron, and ν a freely escaping
neutrino. Disintegration of neutron-rich nuclei produces free, degenerate nonrelativistic neutrons. The
equation of state in the density interval 1011 − 1013 g cm−3 can possibly be approximated with the
equation of state (1.7.34) of a completely degenerate, nonrelativistic neutron gas. At densities of about
1.15 × 109 g cm−3 there starts the transformation (5.12.48) of 56

26Fe into 56
25Mn, 56

24Cr, ending possibly
with such exotic nuclei as 56

12Mg, (A/Z = 4.67), when formation of free neutrons begins by the reaction
56
12Mg + e− =53

11 Na + 3n + ν. Another exotic nucleus that could form during neutronization of matter is
8
2He, (A/Z = 4). During neutronization with constant atomic mass number, the mean molecular weight
per free ionization electron from Eq. (1.7.21) µe = A/Z, (i = 1) increases from about 2 to about 4. And
the rest mass density (1.6.4) of the degenerate electron gas increases during this phase transition at the
same rate, since � ∝ µe = A/Z. For a certain chemical composition neutronization is primarily controlled
by pressure, and will, of course, start at the centre, forming at first a small, growing, neutron-rich core.

Ramsey (1950) and Lighthill (1950) have found that the small core of a sphere becomes unstable if
the density jump between core and envelope is larger than 1.5, i.e. if

k = �c/�e = AcZe/AeZc > 1.5. (5.12.49)

A simple picture of the instability of small cores, that can be handled algebraically, results with the
assumption of incompressible matter, possessing constant core and envelope density:

�c = k�e, (�c, �e = const). (5.12.50)

The pressure on the core boundary is just equal to the critical pressure Pcr at which a phase transition
occurs from envelope density �e to core density �c = k�e. This pressure is obtained by integrating the
equation of hydrostatic equilibrium between core radius rc and envelope radius re, the latter being just
equal to the total radius r1 of the star:

dP/dr = −G�M(r)/r2 = −(4πG�e/3r2)[�cr
3
c + �e(r3 − r3

c )], (rc ≤ r ≤ re). (5.12.51)

We get

Pcr = P (rc) = (2πG�2
e/3)[r2

e − r2
c + 2(k − 1)r3

c (1/rc − 1/re)]. (5.12.52)

It is convenient to introduce a star whose central pressure is just Pcr, i.e. a star without core. Eq.
(5.12.52) reads with rc = 0 :

Pcr = P (0) = 2πG�2
er

2
cr/3, (re = rcr; rc = 0), (5.12.53)

where rcr denotes the radius of a star with central pressure Pcr. If there is a core, the central core pressure
P (0) = Pc0 can be obtained in terms of Pcr = P (rc), by integrating the hydrostatic equilibrium equation
dP/dr = −G�M(r)/r2 = −4πG�2

cr/3 over the core:

Pc0 − Pcr = 2πG�2
cr

2
c/3 or Pc0 = Pcr[1 + (krc/rcr)2]. (5.12.54)

The total mass of this composite model is obviously

Me = (4π�e/3)[r3
e + (k − 1)r3

c ]. (5.12.55)

The condition (5.12.52) that the core boundary is at critical pressure Pcr can be written via Eq.
(5.12.53) as

r2
e − 2(k − 1)r3

c/re + (2k − 3)r2
c − r2

cr = 0. (5.12.56)

Eqs. (5.12.54)-(5.12.56) contain all physical assumptions, and we have to find out the conditions on
the variables Me, re, rc, Pc0 which are compatible with these equations. We investigate the sign of the
derivative dMe/dPc0, i.e. the shape of the curve total mass versus central pressure. We have

dMe/dPc0 = (dMe/drc)(drc/dPc0) = r2
cr(dMe/drc)

/
2k2Pcrrc. (5.12.57)
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Since drc/dPc0 from Eq. (5.12.54) is invariably positive, it will suffice to investigate the sign of
dMe/drc. The latter derivative is by virtue of Eqs. (5.12.55), (5.12.56) equal to

dMe/drc = 4π�e[r2
e dre/drc + (k − 1)r2

c ]

= 4π�e(Mcr/Me)(re/rcr)3rerc[3 − 2k + 4(k − 1)rc/re + (k − 1)2(rc/re)4], (5.12.58)

where rcr is defined by Eq. (5.12.53), and Mcr = 4π�er
3
cr/3 is the mass of a coreless sphere with central

pressure just equal to the critical pressure (5.12.53). The derivative (5.12.58) takes negative values if
rc/re ≈ 0 and k = �c/�e > 1.5, and the configuration becomes accordingly unstable.

If there is no core, the central pressure is given by Eq. (5.12.53) with Pcr → Pc0, rcr → re :

Pc0 = 2πG�2
er

2
e/3 = G(π�4

eM
2
e /6)1/3. (5.12.59)

In this case the central pressure Pc0 increases continuously with increasing mass: dMe/dPc0 > 0.
The portions of the (Me, Pc0)-curve with negative derivative belong to unstable configurations, because
in this circumstance the central pressure decreases as mass and radius of the configuration increase:
dMe/dPc0 < 0. The total mass of spheres possessing a core – after attaining a certain minimum at
dMe/dPc0 = 0, [dMe/drc = 0 in Eq. (5.12.58)] – will again increase with increasing pressure (dMe/dPc0 >
0), since for moderate ratios rc/re the central pressure is given approximately by Eq. (5.12.59); this can
be shown by integration of the hydrostatic equilibrium equation between r = 0 and r = re :

Pc0 = (2πG�2
e/3)[r2

e + (k2 − 1)r2
c + 2(k − 1)r3

c (1/rc − 1/re)]. (5.12.60)

Thus, if portions occur on the (Me, Pc0)-curve with negative derivative dMe/dPc0, (dMe/drc < 0),
there will exist for the same mass Me at least three distinct equilibrium configurations: Two stable
spheres (one without core having Pc0 < Pcr, and the other one with a core having Pc0 > Pcr), and a
third unstable sphere with a small core and intermediate central pressure having k > 1.5, [dMe/drc < 0
in Eq. (5.12.58)].

Lighthill [1950, see also Seidov (1967)] has shown that Ramsey’s (1950) results are also valid for
compressible bodies, in particular for polytropes. For isentropic polytropes with a phase jump of
density there exists a maximum value km of k = �c/�e below which the sphere is always stable:
km = 3/2, 1.46, 1.33, 1.20, 1.09, 1.00 if the polytropic index is n = 1/(Γ1 − 1) = 0, 1, 1.5, 2, 2.5, 3, re-
spectively (Blinnikov 1975, Bisnovatyi-Kogan 2002, Sec. 12.4.3). The isentropic n = 3, (Γ1 = 4/3)
polytrope is neutrally stable [Eq. (5.3.1)], so any phase transition leads to instability.

As we have already outlined subsequently to Eq. (5.12.48), the ratio (5.12.49) becomes during neu-
tronization � 2, so instability of the neutron core will eventually set in as its size grows.

Another kind of instability arises from the effects of general relativity on the adiabatic exponents
(4.1.65). Chandrasekhar (1964b, 1965b; see also Sec. 5.12.4) has shown that the Newtonian value
Γ1 < 4/3 from Eq. (5.3.1) – as required for dynamical instability – is increased by general relativistic
effects, i.e. radial instability is enhanced in the post Newtonian approximation. If Γ1 ≈ 4/3, (Γ1 > 4/3),
dynamical instability against radial oscillations occurs at a radius smaller than

r1 = 2C(n) GMr1/c2(Γ1 − 4/3), (Γ1 ≈ 4/3; Γ1 > 4/3), (5.12.61)

where C(n) is of order unity and depends on the polytropic index n [see Eq. (5.12.144)]. As obvious
from the external Schwarzschild metric (4.1.20), the effects of relativity become important if the mass
is compressed close to its Schwarzschild radius (4.1.28). Otherwise, the metric remains nearly Galilean.
However, if the adiabatic exponent Γ1 is close to its critical value 4/3, as required for transition from
stability to instability, the effects of general relativity – as described by Eq. (5.12.61) – become marked,
even if the radius of the sphere is much larger than its Schwarzschild radius.

For an isentropic relativistic polytrope Bludman (1973a) has numerically calculated the values of the
relativity parameter q0 = P0/εr0 = K�

1/n
r0 /c2 from Eq. (4.1.31) for which the fundamental radial mode

becomes unstable. Eqs. (4.1.37), (4.1.38) are integrated to calculate the total relativistic mass (4.1.49):

Mr1 = 4π�r0α
3η(ξ1) = [(n + 1)3/2Kn/2c3−n/(4π)1/2G3/2]q(3−n)/2

0 η(ξ1) = const q
(3−n)/2
0 η(ξ1).

(5.12.62)

We have used Eqs. (4.1.29), (4.1.31), where η(ξ1) depends implicitly on q0. By virtue of Eq. (5.12.29)
the polytrope starts instability against radial oscillations if (∂Mr1/∂�r0)S=const = 0, and the corre-
sponding critical values of q0 are found to be q0,cr = 0, 0.097, 0.42, 1.24,∞ if n = 3, 2, 1, 0.5, 0, respec-
tively. If 0.926 < n < 3, there subsists in Bludman’s (1973a) isentropic polytropes the delimitation
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(4.1.68): q0,cr ≤ 1/Γr1 = n/(n + 1), (S = const). If q0,cr > n/(n + 1), the isentropic polytrope
would have a superluminal core (sound velocity larger than light velocity), and this would happen if
0 < n < 0.926, (Γr1 > 2.08; q0,cr > 0.48). The critical values Γ1 = 4/3 or n = 1/(Γ1 − 1) = 3 required
in Newtonian gravitation for unstable oscillations are changed by general relativistic effects to [Bludman
1973a, Eq. (3.4)]:

Γr1 = 4/3 + 1.73q0,cr; n = 1/(Γr1 − 1) = 3 − 15.57q0,cr, (q0,cr ≈ 0). (5.12.63)

This relationship is of the same form as Eqs. (5.12.61), (5.12.144), since these can be transformed
with the aid of Eq. (4.1.49) into Eq. (5.12.63):

Γ1 = 4/3 + 2C(n) GMr1/c2r1 = 4/3 + 2C(n) (n + 1)η(ξ1) q0,cr/ξ1 ≈ 4/3 + const q0,cr > 4/3.
(5.12.64)

Eq. (5.12.61) is pertinent for relativistically degenerate white dwarfs with central densities larger than
1.5×1010−3×1010 g cm−3 (depending on chemical composition), when the adiabatic exponent approaches
Γ1 = 4/3 (see Table 1.7.2). However, for atomic weight numbers of order A ≈ 20, as occurring in white
dwarfs, the critical density for neutronization – when instability of the neutron core takes place according
to Eq. (5.12.49) – is about an order of magnitude lower (Zeldovich and Novikov 1971, Table 11). For nuclei
lighter than 16

8 O the story would be different, because in this case the critical density of neutronization
is generally larger than the density required for instability due to general relativity – but light nuclei will
not exist at the prevailing high densities. Thus, the stability limit of white dwarfs apparently occurs due
to neutronization [k > 1.5 in Eq. (5.12.49)], rather than because of general relativistic effects described
by Eq. (5.12.61). The maximum stable mass of a white dwarf is about 1.2M� (see first peak in Fig.
5.12.1), somewhat smaller than the Chandrasekhar limit (5.12.47) of about 1.46M�, (µe = 2). On the
descending branches of the Mr1(�r0)-curve from Fig. 5.12.1 – when (∂Mr1/∂�r0)S < 0 – all equilibrium
configurations are unstable by virtue of Eq. (5.12.29).

Fig. 5.12.1 Mass Mr1 of a cold star (T, S = 0) in hydrostatic equilibrium as a function of relativistic central
density �r0. Below nuclear densities of 2 × 1014 g cm−3 we have Mr1 ≈ M1, �r0 ≈ �0 according to Eq. (5.12.31).
First peak is the Chandrasekhar limiting mass of a white dwarf MCh, second peak is the Oppenheimer-Volkoff
maximum mass of a neutron star MOV . The present curve corresponds to the curve labeled T = 0, S = 0 on the
schematic figure 5.12.3 (Zeldovich and Novikov 1971, Fig. 39; see also Bisnovatyi-Kogan 2002, Fig. 11.1).

At densities larger than about 1.5 × 1012 g cm−3 [cf. Eq. (1.7.33)], the equation of state (1.7.34) of
a nonrelativistic degenerate neutron gas becomes appropriate, up to densities ≈ 2.8 × 1013 g cm−3 (Eq.
(1.7.35), domain 5 in Fig. 1.7.1). Oppenheimer and Volkoff (1939) have integrated the general relativistic
equation of spherical hydrostatic equilibrium (4.1.27) with the equation of state (1.7.34), obtaining a
maximum mass of MOV = 0.71 M� for a star that can be in hydrostatic equilibrium (second peak in Fig.
5.12.1). With purely Newtonian gravitation the Chandrasekhar limit (5.12.47) of a neutron star (a n = 3
polytrope) would be considerably larger M1 = 5.836/µ2

n = 5.836 M�, (µn ≈ 1). Calculations with more
refined equations of state yield masses in the range MOV = 0.6 − 2.7 M� for the Oppenheimer-Volkoff
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limit (Cox and Giuli 1968, Shapiro and Teukolsky 1983, Table 9.1). The polytropic index n decreases
from 3.48 to 0.32 for polytropic models of neutron stars with masses ranging from 0.131 to 2.1M� (Lai
et al. 1994a).

Cold stars with larger masses cannot be in hydrostatic equilibrium. They undergo hydrodynamic rela-
tivistic collapse, described by the concept of a black hole, although no such structures have unequivocally
been discovered. The assumption of black holes would solve the dilemma of cold stars with masses larger
than MOV . For the external distant observer the collapse into a black hole stops at the Schwarzschild
radius (4.1.28) after infinite time, whereas the comoving mass reaches after finite proper time the singu-
larity r = 0, attaining perhaps infinite density. As nature tends to avoid singularities, it is questionable
whether such hypothetical objects like black holes can ever come to existence.

Uniform rotation does not alter significantly the above conclusions concerning cold spherical matter
(Zeldovich and Novikov 1971, Landau and Lifschitz 1987).

5.12.3 Stability of Massive Hot Polytropes

General relativistic effects are not only important for cold masses near and beyond the Oppenheimer-
Volkoff limit, but also for hot supermassive objects. From Fig. 5.12.3 it is apparent that stable or unstable
hydrostatic solutions exist only inside the domain that is bounded by the ordinate Mr1, and the two lines
aa′ and T, S = 0. Below, we determine an elementary lower limit for the mass of a star with pressure and
internal energy mainly due to radiation. As already mentioned in Sec. 1.4, the mass density is given by
the nonrelativistic gas density � – the equivalent mass density �r = aT 4/c2 of radiation being generally
negligible. Via Eq. (C.11) we get from Eq. (2.6.25) the central pressure of a spherical n = 3 polytrope:

P0 = (GM2
1 /r4

1)/4π(n + 1)(dθ/dξ)2ξ=ξ1
= (4π)1/3GM

2/3
1 �4/3

m /34/3(n + 1)(dθ/dξ)2ξ=ξ1

= (4π)1/3GM
2/3
1 �

4/3
0 /(n + 1)ξ4/3

1 (−dθ/dξ)2/3
ξ=ξ1

= 0.36GM
2/3
1 �

4/3
0 ,

(1 − β = Pr/P ≈ 1; N = 3; n = 1/(Γ1 − 1) = 3). (5.12.65)

We have taken n = 3, Γ1 = 1 + 1/n = 4/3, since this is the appropriate value for an isentropic
configuration where radiation pressure prevails [Eq. (1.4.6)]. We equate the central pressure (5.12.65) to
the total pressure (1.4.11) at the centre

R�0T0/µ + aT 4
0 /3 = 0.36GM

2/3
1 �

4/3
0 , (n = 3), (5.12.66)

and get the remarkable result that the total mass of a spherical n = 3 polytrope is uniquely related to
the parameter T0/�

1/3
0 :

(R/µ)(T0/�
1/3
0 ) + (a/3)(T0/�

1/3
0 )4 = 0.36GM

2/3
1 , (n = 3). (5.12.67)

Then, a star for which the central values of gas and radiation pressure are just equal, has the mass

M1 = (2RT0/0.36Gµ�
1/3
0 )3/2 = [2 × 61/2/(0.36G)3/2a1/2](R/µ)2 = 52.6M�/µ2,

(�0 = aµT 3
0 /3R). (5.12.68)

For completely ionized material we have 1/2 ≤ µ ≤ 2 by virtue of Eq. (1.7.17). Pressure and internal
energy of radiation will be dominant over plasma contributions for hydrostatic configurations larger than
about 100 solar masses (above the broken line in Fig. 5.12.3).

If radiation pressure is dominant, the adiabatic index is close to its critical value for instability
Γ1 = 4/3 (Secs. 1.4, 1.7). The gas (plasma) makes a positive contribution to stability, since Γ1g ≥ 4/3
[Eqs. (1.7.59), (1.7.60)], whereas positron-electron pairs and general relativistic effects enhance instability:
In regions where e±-pairs are dominant, the adiabatic exponent Γ1 is generally below its critical value 4/3
[Eq. (1.7.63)]. General relativistic effects increase the critical Newtonian value – below which instability
occurs – from Γ1 = 4/3 to its value (5.12.64). In the zeroth approximation a massive hot star can be
considered as a radiation dominated body with energy density and specific internal energy given by [cf.
Eqs. (1.4.1), (1.4.13)]

εr = �U = ε(int) = aT 4; U = εr/� = aT 4/�. (5.12.69)
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The specific entropy of radiation is calculated from its definition (1.1.4), with the first law of thermo-
dynamics (1.1.2) applied to constant proper volume:

dS = dQ/T = dU/T = 4aT 2/�, (dV = 0). (5.12.70)

This integrates to

S = 4aT 3/3�, (m = 1). (5.12.71)

The energy density of radiation is expressed in terms of entropy as

εr = ε(int) = (3S�/4)4/3/a1/3, (m = 1), (5.12.72)

and the total energy (5.12.11) of the supermassive object becomes at constant entropy just equal to that
of an isentropic n = 3 polytrope:

E =
∫

V1

ε(int) dV −
∫

M1

GM(r) dM/r = [π(3S�0)4/3/(4a)1/3]α3

∫ ξ1

0

ξ2θ4 dξ − 3GM2
1 /2r1

= πα3(3S�0)4/3(2/a)1/3ξ3
1θ′1

2 − 32/3π1/3M
5/3
1 �1/3

m /21/3

= (1/32a)1/3M1�
1/3
0 (3S)4/3ξ1(−θ′1) − 3π1/3M

5/3
1 �

1/3
0 [(−θ′1)/ξ1]1/3

/
21/3, (n = 3; S = const),

(5.12.73)

where we have taken into account Eqs. (2.6.18), (2.6.27), (2.6.137), (2.6.159).
For hydrostatic equilibrium we must have (∂E/∂�0)S,M1=const = 0 via Eq. (5.12.20), which amounts

to

(3/16a)1/3S4/3ξ
4/3
1 (−θ′1)

2/3 − π1/3M
2/3
1 = 0 or E = 0. (5.12.74)

In a more general Newtonian approximation Fowler (1964) starts with Eq. (5.12.11), by inserting for
ε(int) from Eq. (2.6.92):

E =
∫

V1

P dV/(Γ − 1) −
∫

M1

GM(r) dM/r = PV/(Γ − 1)
∣∣∣V1

0
− [1/(Γ − 1)]

∫
V1

V dP + W

= −[1/3(Γ − 1)]
∫

V1

4πG�M(r) r dr + W = (3Γ − 4)W/3(Γ − 1), (P (V1) = 0; Γ = const).

(5.12.75)

For a gas-radiation mixture the quantity Γ can be roughly approximated with the adiabatic index Γ1

[cf. Eqs. (1.4.20), (2.6.93)], and it is apparent that at temperatures above 109 K, electron-positron pair
formation can led to unstable stars with total positive energy (E > 0), since in virtue of Eq. (1.7.63) the
minimum value of Γ1 is 1.22 < 4/3.

For a mixture of perfect gas and radiation we find via Eqs. (1.2.5), (1.4.11), (1.4.13), (1.4.14), (1.7.59),
(2.6.93), (5.12.69):

Γ − 1 = P/ε(int) = Pg

/
β[Pg/(γg − 1) + 3Pr] = 1

/
β[f/w + 3(1 − β)/β],

(β = Pg/P ; f ≥ 3; 1 ≤ w ≤ 2). (5.12.76)

For a completely ionized plasma we have f = 3, and the quantity w = 1 + (1 − v2/c2)1/2 from Eq.
(1.7.53) is equal to 2 in the nonrelativistic limit v ≈ 0, and approaches 1 in the extreme relativistic case
v ≈ c. The total energy of the sphere becomes

E = β(1 − f/3w)W = β(1 − 1/w)W, (f = 3). (5.12.77)

Thus, the total energy of a classical star is bounded by E = W/2, (w = 2, β = 1; small stars with
nonrelativistic ionized gas without radiation pressure) and E = 0 (massive stars with dominant radiation
pressure β = 0).

In the post Newtonian approximation Fowler (1964) calculates the total energy (4.1.79), which is in
this case just equal but opposite in sign to the binding energy (4.1.77), i.e. equal to the difference between
relativistic energy and rest energy:

E = −Eb = c2(Mr1 − M1). (5.12.78)
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In virtue of Eqs. (2.6.92), (4.1.2), (4.1.71), (4.1.72), (5.12.73) this equation can be written in the post
Newtonian approximation as

E = 4πc2

∫ r1

0

{�r − �
/
[1 − 2GMr(r)/c2r]1/2}r2 dr

= 4πc2

∫ r1

0

�r{1 − [1 − 2GMr(r)/c2r]−1/2}r2 dr + 4π

∫ r1

0

ε(int)[1 − 2GMr(r)/c2r]−1/2r2 dr

≈ −4π

∫ r1

0

GMr(r) �rr dr − (6πG2/c2)
∫ r1

0

M2(r) � dr

+4π

∫ r1

0

P [1 + GM(r)/c2r]r2 dr
/
(Γ − 1) = −

∫
Mr1

GMr(r) dMr/r − (6πG2/c2)
∫ r1

0

M2(r) � dr

+4πr3P [1 + GM(r)/c2r]/3(Γ − 1)
∣∣∣r1

0
− [4π/3(Γ − 1)]

{∫ r1

0

r3[1 + GM(r)/c2r] dP

−(G/c2)
∫ r1

0

PM(r) r dr + (4πG/c2)
∫ r1

0

P�r4 dr

}
, (�r ≈ �; Mr ≈ M), (5.12.79)

where in the relativistic terms we can replace Mr and �r by their Newtonian values M and �, respectively.
To evaluate dP we consider a post Newtonian approximation of the relativistic equation of hydrostatic

equilibrium (4.1.27) with the factor [1 − 2GMr(r)/c2r]−3/2 on its right-hand side:

[1 − 2GMr(r)/c2r]−1/2 dP/dr ≈ [1 + GM(r)/c2r] dP/dr ≈ −G[�rMr(r)/r2 + 4πP�r/c2

+PM(r)/c2r2 + 3G�M2(r)/c2r3], (�r ≈ �; Mr ≈ M). (5.12.80)

Insertion into Eq. (5.12.79) yields after some algebra (Fowler 1964)

E = (3Γ − 4)Wr/3(Γ − 1) + [2(5 − 3Γ)πG2/c2(Γ − 1)]
∫ r1

0

�M2(r) dr

+[8πG/3c2(Γ − 1)]
∫ r1

0

PM(r) r dr, (Γ = const), (5.12.81)

where

Wr = −
∫

Mr1

GMr(r) dMr/r, (5.12.82)

is the relativistic counterpart (4.1.73) of the Newtonian gravitational energy. It is clear that the small post
Newtonian corrections given by the two integrals in Eq. (5.12.81), can markedly influence the stability
of a configuration only if the term (3Γ− 4)Wr/3(Γ− 1) is close to zero, i.e. if Γ ≈ 4/3. Inserting Γ = 4/3
into the relativistic corrections, and using for (3Γ− 4)/3(Γ − 1) its value from Eq. (5.12.76), we obtain

E = β(1 − 1/w)Wr + (6πG2/c2)
∫ r1

0

�M2(r) dr + (8πG/c2)
∫ r1

0

PM(r) r dr, (Γ ≈ 4/3; f = 3).

(5.12.83)

For nondegenerate matter and negligible contribution of electron-positron pairs we get with Eqs.
(1.4.11), (1.4.14)

P = Pr/(1 − β) = aT 4/3(1 − β) = Pg/β = R�T/µβ or T = [3R(1 − β)/aµβ]1/3�1/3, (5.12.84)

and

P = R�T/µβ = [3(1 − β)(R/µ)4/aβ4]1/3�4/3 = K�4/3. (5.12.85)

If β = const throughout the configuration, its radial structure is that of a n = 3 polytrope. The mass
(2.6.18) of such a polytrope is given by the Bialobjesky-Eddington equation

M1 = 4π[(n + 1)K/4πG]3/2�
(3−n)/2n
0 ξ2

1(−θ′1) = 4[3(1 − β)(R/µ)4/πaG3β4]1/2ξ2
1(−θ′1),

(n = 3; β = const). (5.12.86)
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For vanishing gas pressure this amounts to (cf. Eq. (5.12.68), Chandrasekhar 1939, Table 6)

β ≈ (2R/µ)(3/πaG3)1/4ξ1(−θ′1)
1/2/M

1/2
1 = (4.28/µ)(M�/M1)1/2,

(β = const ≈ 0; n = 3; M1 � 103 M�). (5.12.87)

As noted subsequently to Eq. (1.7.32), protons become relativistic only at temperatures of order
1013 K, so we can take in Eq. (5.12.83) the nonrelativistic value w = 2. For massive stars we have
in virtue of Eq. (5.12.87) β ≈ 0, and if we take f = 3, as for complete ionization, we get from Eq.
(5.12.76) Γ ≈ 4/3 and n = 1/(Γ − 1) ≈ 3, (S = const). Further, βWr is already of first order of
smallness, and in the considered post Newtonian approximation we can replace βWr by the Newtonian
value βW = −3βGM2

1 /2r1 (see Eq. (2.6.137) if n = 3). Eq. (5.12.83) writes in polytropic variables as

E = −3βGM2
1 /4r1 + (96π3G2�3

0α
7/c2)

[ ∫ ξ1

0

ξ4θ3θ′2 dξ − (1/3)
∫ ξ1

0

ξ3θ4θ′ dξ

]

= −3βGM2
1 /4r1 + (G2M3

1 /c2r2
1)[1

/
2ξ4

1(−θ′1)
3]
(

3
∫ ξ1

0

ξ4θ3θ′2 dξ −
∫ ξ1

0

ξ3θ4θ′ dξ

)

= −3βGM2
1 /4r1 + 5.1 G2M3

1 /c2r2
1 = −0.32 βGM

5/3
1 �

1/3
0 + 0.93 G2M

7/3
1 �

2/3
0 /c2,

(S = const; β ≈ 0; n = 3; Γ = 1 + 1/n = 4/3; r3
1 ≈ 40.6 M1/π�0). (5.12.88)

The two integrals in this equation have been evaluated by Fowler (1964) if n = 3. The relativistic
correction to the hydrostatic equilibrium energy is positive.

By virtue of Eq. (5.12.33) general relativistic effects become important if r1 ≈ rg = 2GMr1/c2 or if
�m = 1.84 × 1016(M�/M1)2, (Mr1 ≈ M1). If M1 ≈ 108M�, we get quite normal nonrelativistic stellar
densities of order �m ≈ 2 g cm−3, �0 ≈ 100 g cm−3, (n = 3).

In any case, the configuration becomes unstable if its total energy E is positive, and this occurs
in virtue of Eq. (5.12.88) when the relativistic correction term 5.1 G2M3

1 /c2r2
1 is comparable to the

Newtonian energy 3βGM2
1 /4r1 :

rg/r1 = 2GM1/c2r1 = 3β/10.2 ≈ 0.29β = (1.26/µ)(M�/M1)1/2, (Mr1 ≈ M1). (5.12.89)

The corresponding average density �m = 3M1/4πr3
1 required for instability would be

�m ≈ (3/16π)(c2/Gµ)3(M3
�/M7

1 )1/2 = (3.69 × 1016/µ3)(M�/M1)7/2 [g cm−3]. (5.12.90)

But according to Zeldovich and Novikov (1971) instability already starts at the last equilibrium state,
beyond the point where the equilibrium energy (5.12.88) possesses its minimum, i.e. when dE/d�0 = 0,
or if via Eq. (5.12.87):

�0 = 5.09 × 10−3(βc2/G)3/M2
1 = (2.46 × 1017/µ3)(M�/M1)7/2 [g cm−3];

�m = (4.54 × 1015/µ3)(M�/M1)7/2 [g cm−3], (n = 3). (5.12.91)

For higher densities the polytrope becomes unstable. The critical central temperature of the last
equilibrium state is via Eqs. (5.12.84), (5.12.87), (5.12.91) equal to

T0 ≈ (3R/aµβ)1/3�
1/3
0 = (1.23 × 1013/µ)M�/M1, (n = 3), (5.12.92)

and it is seen that for massive hot objects the minimum equilibrium energy (5.12.88) of the last stable
state dE/d�0 = 0 does not depend on mass:

E = −9 × 1053/µ2 [erg], (n = 3; β ∝ M
−1/2
1 ). (5.12.93)

Eq. (5.12.92) shows that the central temperature is insufficient to assure hydrogen burning (T0 ≈
8 × 107 K) and other nuclear reactions if M1 > 3 × 105 M�, where µ = 1/2, as for completely ionized
hydrogen. We conclude that massive objects with M1 � 105 M� and central densities exceeding the
equilibrium value (5.12.91) are gravitationally contracting, and the contraction time scale should be not
considerably larger than the free-fall time scale, which is about 7.5 × 10−3 yr if M1 = 106 M�, and 25
yr if M1 = 108 M�. These time scales are completely insufficient to assure a lifetime of 105 − 106 yr,
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Fig. 5.12.2 Delimitation line between stable (domain on the left) and unstable (domain on the right)
hydrostatic equilibrium configurations for an iron star, corresponding to curve bb′ on the schematic figure 5.12.3,
(�r0 → �0; Mr1 → M1). Principal causes of instability in the domain on the right are indicated on the curve
(Zeldovich and Novikov 1971, Fig. 55).

Fig. 5.12.3 Schematic view of possible hydrostatic equilibrium configurations of a sphere having mass Mr1

and central density �r0. The line aa′ is the black hole limit Mr1 = 1.36 × 108M�/�
1/2
r0 , (�r0 ≈ �m) from Eq.

(5.12.33); to the right of this line no hydrostatic equilibrium structures can exist. The line T, S = 0 corresponds
to Fig. 5.12.1; below this line no hydrostatic equilibrium structures can exist. Line bb′ corresponds to Fig. 5.12.2,
and the hatched area consequently exhibits unstable equilibrium configurations. Domain I represents stable
hydrostatic equilibrium configurations, imparted by the broken line into a lower – plasma pressure dominated
domain, and an upper – radiation pressure dominated domain. Domain II represents stable neutron star-like
equilibrium configurations (Zeldovich and Novikov 1971, Fig. 34).

associated with quasars and similar radio sources. Rotation, possibly assisted by internal turbulence and
convection, has been suggested to impede rapid gravitational collapse of massive objects (Sec. 5.12.6,
Fowler 1964).

The central temperature (5.12.92) increases as 1/M1, and becomes with decreasing mass sufficiently
large (T0 ≈ 0.1mec

2/k ≈ 6 × 108 K; M1 ≈ 4 × 104 M�; µ = 1/2) for creation of a significant number of
electron-positron pairs, causing instability since Γ1 < 4/3. The instability effects due to general relativity
and e±-pairs are of the same order of magnitude if M1 ≈ 8000 M� for iron stars, and M1 ≈ 30000 M�
for hydrogen stars – on the average about 104 M� (Zeldovich and Novikov 1971, Chap. 10.14).
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Below, we sketch the basic causes of instability in an iron star, which has exhausted its nuclear energy
supplies (Fig. 5.12.2). Neutronization of iron [transformation of 56

26Fe into 56
12Mg by a chain of reactions

described by Eq. (5.12.48)] induces instability through the instability of small cores in cold stars of solar
mass order [Eq. (5.12.49)], as well as in hotter objects up to masses of about 5M� (Fig. 5.12.2). General
relativistic effects play also a role through Eq. (5.12.61), if the iron star is composed of relativistically
degenerate matter having Γ1 ≈ 4/3 (see Table 1.7.2).

For larger masses, between about 5 and 500 M�, the instability of iron stars is likely to be induced
by the dissociation of iron according to the reaction 56

26Fe = 13 4
2He + 4 1

0n, (10n denotes a neutron). It is
well known that in dissociation zones the average adiabatic exponent Γ1 is generally less than 4/3, which
implies instability. A similar phenomenon also occurs in protostars at temperatures of about 1800 K,
when H2 dissociates into hydrogen atoms (e.g. Cox and Giuli 1968). Effects of general relativity can also
cause instability, since the mass-radius values in this mass range are appropriate to Eq. (5.12.61).

If the mass of the iron star increases from 5 to about 500 M�, the role of general relativistic effects,
described by Eq. (5.12.61), decreases. Between about 103 − 104 M� the stability loss of the iron star
occurs mainly due to creation of electron-positron pairs in this radiation pressure dominated region
[Γ1 < 4/3, Eqs. (1.5.8), (1.7.63)].

If M � 105 M�, the critical state of neutral stability of the supermassive iron star is again controlled
by the effects of general relativity described by Eq. (5.12.61), (Γ1 ≈ 4/3, see Fig. 5.12.2).

A certain mean temperature of the star Tm = Tm(Mr1, �r0) corresponds to each value in the (Mr1, �r0)-
plane of Figs. 5.12.2, 5.12.3. The strong bend of the stable radiation pressure domain in these figures is
due to the fact that in the region Γ1 ≈ 4/3 small general relativistic effects [Eq. (5.12.61)] or electron-
positron pairs [Eq. (1.7.63)] led to unstable equilibrium configurations.

5.12.4 Radial Oscillations of Relativistic Polytropes

With the metric (4.1.3) the contravariant spatial velocity vα is defined as the change of coordinate
xα, (α = 1, 2, 3) during the interval of proper time dτ (e.g. Landau and Lifschitz 1987, §§84, 88):

vα = dxα/dτ = c dxα/g
1/2
00 (dx0 + g0β dxβ/g00), [c dτ = g

1/2
00 (dx0 + g0β dxβ/g00)]. (5.12.94)

The lowering of the index of vα proceeds with the metric tensor γαβ of the spatial line element

d�2 = γαβ dxαdxβ = (−gαβ + g0αg0β/g00) dxαdxβ , (5.12.95)

and the squared spatial velocity is [cf. Eq. (4.2.39)]

v2 = vαvα = γαβvαvβ = γαβ dxα dxβ/dτ2 = (d�/dτ)2. (5.12.96)

Hence, the line element of spacetime can be written as

ds2 = gik dxidxk = g00(dx0 + g0α dxα/g00)2 − d�2 = g00(dx0 + g0α dxα/g00)2(1 − v2/c2).
(5.12.97)

The four-velocity is found by combining Eqs. (5.12.94) and (5.1.2.97):

u0 = dx0/ds = dx0
/
g
1/2
00 (dx0 + g0α dxα/g00)(1 − v2/c2)1/2 = (1/g

1/2
00 − g0αvα/cg00)

/(1 − v2/c2)1/2; uα = dxα/ds = dxα
/
g
1/2
00 (dx0 + g0β dxβ/g00)(1 − v2/c2)1/2 = vα/c(1 − v2/c2)1/2.

(5.12.98)

Since spherical symmetry is preserved during purely radial oscillations, the unperturbed and perturbed
metric is given by equations of the form (4.1.5):

ds2
u = exp[νu(r)] dt2 − exp[κu(r)] dr2 − r2(dλ2 + sinλ dϕ2), (5.12.99)

ds2 = exp[ν(r, t)] dt2 − exp[κ(r, t)] dr2 − r2(dλ2 + sinλ dϕ2). (5.12.100)
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The components uλ = u2, uϕ = u3 of the four-velocity vanish identically, since the oscillations proceed
radially. The other components are via Eqs. (5.12.98)-(5.12.100) up to the first order in v/c equal to

ut = u0 = g
−1/2
00 = g

−1/2
tt = exp(−ν/2); ut = u0 = g00u

0 = gttu
t = exp(ν/2);

ur = u1 = g
−1/2
00 dx1/dx0 = g

−1/2
tt dr/dt = exp(−ν/2) dr/dt ≈ exp(−νu/2) dr/dt;

ur = u1 = g11u
1 = grru

r ≈ − exp(−νu/2 + κu) dr/dt, [dr/dt = dx1/dx0 = O(v/c)]. (5.12.101)

Note, that the sole subsisting components of the spatial velocity (5.12.94) are the radial ones: vr =
v1 = (c/g

1/2
00 ) dx1/dx0 = (c/g

1/2
tt ) dr/dt = c exp(−ν/2) dr/dt, and vr = v1 = γ11v

1 = −g11v
1 =

−(cgrr/g
1/2
tt ) dr/dt = c exp(−ν/2 + κ) dr/dt, (v = (vrv

r)1/2 = c(−grr/gtt)1/2 dr/dt). This should be
contrasted to Chandrasekhar’s (1964b) definition v = c dr/dt of the radial velocity.

The mixed components of the energy-momentum tensor (4.1.11) are up to the first order in v/c equal
to

T t
t = εr; T r

r = Tλ
λ = Tϕ

ϕ = −P ; T r
t = (P + εr)utu

r = (Pu + εru) dr/dt;

T t
r = (P + εr)uru

t = −(Pu + εru) exp(−νu + κu) dr/dt. (5.12.102)

Let us denote the various Eulerian perturbations by (Stergioulas and Friedman 1998)

δP (r, t) = P (r, t) − Pu(r); δεr(r, t) = εr(r, t) − εru(r); δν(r, t) = ν(r, t) − νu(r);
δκ(r, t) = κ(r, t) − κu(r). (5.12.103)

The (r, r) and (t, t)-components of the field equations (4.1.4), appropriate to the metric (5.12.100),
are similar to Eqs. (4.1.6) and (4.1.7):

exp(−κ) [(1/r) ∂ν/∂r + 1/r2] − 1/r2 = 8πGP/c4, (5.12.104)

exp(−κ) [(1/r) ∂κ/∂r − 1/r2] + 1/r2 = −(1/r2) ∂[r exp(−κ)]/∂r + 1/r2 = 8πGεr/c4. (5.12.105)

Adding together, we get the useful relationship

[exp(−κ)/r] ∂(ν + κ)/∂r = 8πG(P + εr)/c4. (5.12.106)

The (t, r)-component Rr
t = 8πGT r

t /c4 of the field equations (4.1.4) assumes the form

[exp(−κ)/r] ∂κ/∂t = −[8πG(Pu + εru)/c4] dr/dt. (5.12.107)

As the fourth field equation Chandrasekhar (1964b) takes the r-component of the identity (4.1.14)

∇iT
i
r = ∂T t

r/∂t + ∂T r
r /∂r + (1/2)(T r

r − T t
t ) ∂ν/∂r + (T t

r/2)(∂ν/∂t + ∂κ/∂t)

+(1/r)(2T r
r − Tλ

λ − Tϕ
ϕ ) = 0, [T t

r = −T r
t exp(−νu + κu)], (5.12.108)

instead of the two equal (λ, λ) and (ϕ, ϕ)-components of the field equations (4.1.4). Some of the nonvan-
ishing Christoffel symbols (4.1.15) are required for the calculation of the covariant derivative (5.12.108),
(Landau and Lifschitz 1987):

Γt
tt = (1/2) ∂ν/∂t; Γr

tt = (1/2) exp(ν − κ) ∂ν/∂r; Γt
rt = (1/2) ∂ν/∂r; Γr

rt = (1/2) ∂κ/∂t;

Γt
rr = (1/2) exp(−ν + κ) ∂κ/∂t; Γr

rr = (1/2) ∂κ/∂r; Γλ
rλ = Γϕ

rϕ = 1/r; Γr
λλ = −r exp(−κ);

Γϕ
λϕ = cot λ; Γr

ϕϕ = −r sin2 λ exp(−κ); Γλ
ϕϕ = − sinλ cos λ. (5.12.109)

The linearization of Eqs. (5.12.104), (5.12.105), (5.12.107), (5.12.108) with the perturbations
(5.12.103) is straightforward:

[exp(−κu)/r](∂δν/∂r − δκ dνu/dr) − [exp(−κu)/r2] δκ = 8πG δP/c4, (5.12.110)

∂[r exp(−κu) δκ]/∂r = 8πGr2 δεr/c4, (5.12.111)
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[exp(−κu)/r] ∂δκ/∂t = −[8πG(Pu + εru)/c4] δ(dr/dt) = −[8πG(Pu + εru)/c4][dr/dt − (dr/dt)u]

= −[8πG(Pr + εr)/c4] dr/dt, [(dr/dt)u = 0], (5.12.112)

exp(−νu + κu)(Pu + εru) d2r/dt2 + ∂δP/∂r + (1/2)(Pu + εru) ∂δν/∂r

+(1/2)(δP + δεr) dνu/dr = 0. (5.12.113)

To obtain Eq. (5.12.113) from Eq. (5.12.108) we have taken into account Eq. (4.1.18)

dPu/dr = −(Pu/2 + εru/2) dνu/dr, (5.12.114)

and the fact that ∂ν/∂t + ∂κ/∂t = ∂δν/∂t + ∂δκ/∂t is of the first order of smallness.
Eq. (5.12.112) can be integrated directly, to give the perturbation of κ :

δκ = −8πGr(Pu + εru)(r − ru) exp κu/c4 = 8πGr(Pu + εru) ∆r(r, t) expκu/c4. (5.12.115)

We have replaced the variation r − ru of the radial coordinate by the Lagrangian displacement
∆r(r, t) = ∆r(r) exp(iσt). The Eulerian variation of the energy density results by insertion of Eq.
(5.12.115) into Eq. (5.12.111):

δεr = −(1/r2) ∂[r2(Pu + εru) ∆r]/∂r = −∆r dεru/dr − ∆r dPu/dr − [(Pu + εru)/r2] ∂(r2 ∆r)/∂r

= −∆r dεru/dr − [(Pu + εru) exp(νu/2)/r2] ∂[r2 exp(−νu/2) ∆r]/∂r. (5.12.116)

The last term has been obtained by inserting for dPu/dr from Eq. (5.12.114). The variation of ν
is found from Eq. (5.12.110), after substitution of δκ from Eq. (5.12.115), and of r expκu from Eq.
(5.12.106):

∂δν/∂r = (8πGr expκu/c4)[δP − (Pu + εru)(dνu/dr + 1/r) ∆r]
= [δP/(Pu + εru) − (dνu/dr + 1/r) ∆r] d(νu + κu)/dr. (5.12.117)

All perturbations in Eq. (5.12.103) are now taken under the form δF (r, t) = δF (r) exp(iσt). After
simplification with exp(iσt), Eq. (5.12.113) is rewritten with d2r/dt2 = d2(r − ru)/dt2 = d2∆r/dt2 =
D2∆r/Dt2 ≈ ∂2∆r/∂t2 = −σ2 ∆r(r) exp(iσt) as

σ2 exp(−νu + κu)(Pu + εru) ∆r(r) = dδP (r)/dr + δP (r) d(νu + κu/2)/dr

−(1/2)(Pu + εru)(dνu/dr + 1/r) ∆r(r) d(νu + κu)/dr + [δεr(r)/2] dνu/dr, (5.12.118)

where we have substituted for ∂δν/∂r via Eq. (5.12.117).
In order to express δP in terms of ∆r and of the unperturbed variables, we derive at first a relationship

between the two adiabatic exponents from Eq. (4.1.65), (Glass and Harpaz 1983)

Γr1/Γ1 = (d ln �/d ln εr)S = (εr/�)(∂�/∂εr)S = εr/(P + εr), (5.12.119)

which is obtained with the isentropic form of the first law of thermodynamics (4.1.57).
Like in the nonrelativistic case [Eqs. (5.2.21), (5.2.37), (5.2.39)] we get from Eq. (4.1.65)

D lnP/Dt − Γ1 D ln �/Dt = 0 and D lnP/Dt − Γr1 D ln εr/Dt = 0, (S = const),
(5.12.120)

where we have replaced in Eulerian description the differentials by material derivatives. We apply the
Lagrangian variation to Eq. (5.12.120), and get after integration with respect to t

∆P/P = Γ1 ∆�/� and ∆P/P = Γr1 ∆εr/εr = Γr1 ∆�r/�r. (5.12.121)

The Eulerian pressure variations are via Eq. (5.1.16) equal to

δP = Γ1P δ�/� + (Γ1P ∇�/� −∇P ) · ∆�r = Γ1P δ�/� + (P/�)(Γ1 − 1 − 1/n) ∇� · ∆�r, (5.12.122)

for an equation of state P = K�1+1/n, and

δP = Γr1P δεr/εr + (Γr1P ∇εr/εr −∇P ) · ∆�r = Γr1P δεr/εr + (P/εr)(Γr1 − 1 − 1/n) ∇εr · ∆�r,
(5.12.123)
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for an equation of state P = Kε
1+1/n
r or P = K�

1+1/n
r , (εr = c2�r).

For isentropic polytropes we have Γ1 = 1 + 1/n or Γr1 = 1 + 1/n, respectively. The Eulerian pressure
variations (5.12.122), (5.12.123) simplify in this particular case to (Yoshida and Eriguchi 1997)

δP = Γ1P δ�/�, (P = K�1+1/n = K�Γ1), (5.12.124)

δP = Γr1P δ�r/�r = Γr1P δεr/εr = Γ1P δεr/(P + εr), (P = Kε1+1/n
r = KεΓr1

r ). (5.12.125)

We eventually get via Eqs. (5.12.116), (5.12.119), (5.12.121), [Chandrasekhar 1964b, Eq. (53)]:

δP = ∆P − ∆r dP/dr ≈ (Γr1P/εr) ∆εr − ∆r dPu/dr ≈ (Γr1Pu/εru)(δεr + ∆r dεru/dr)

−∆r dPu/dr = −[Γ1Pu exp(νu/2)/r2] ∂[r2 exp(−νu/2) ∆r]/∂r − ∆r dPu/dr. (5.12.126)

The pulsation equation (5.12.118) takes in virtue of Eqs. (5.12.116), (5.12.126) the lengthy form

σ2 exp(−νu + κu)(Pu + εru) ∆r = −d(∆r dPu/dr)/dr − ∆r (dPu/dr) d(νu + κu/2)/dr

− exp(−νu − κu/2) d{exp(νu + κu/2)[Γ1Pu exp(νu/2)/r2] d[r2 exp(−νu/2) ∆r]/dr}
/
dr

−(1/2)(Pu + εru)(dνu/dr + 1/r) ∆r d(νu + κu)/dr − (1/2)(dνu/dr){(2/r)(Pu + εru) ∆r

+d[(Pu + εru) ∆r]/dr}. (5.12.127)

The right-hand side of this equation becomes after substitution of dPu/dr from Eq. (5.12.114) equal
to

[(Pu + εru) ∆r/2][d2νu/dr2 − (1/2)(dνu/dr) dκu/dr − (1/r) dκu/dr − (3/r) dνu/dr]

− exp(−νu − κu/2) d{(Γ1Pu/r2) exp(3νu/2 + κu/2) d[r2 exp(−νu/2) ∆r]/dr}
/
dr. (5.12.128)

This expression can be transformed further with the aid of Eqs. (4.1.8), (5.12.114):

(Pu + εru) ∆r[8πGPu expκu/c4 − (1/4)(dνu/dr)2 − (2/r) dνu/dr]

− exp(−νu − κu/2) d{(Γ1Pu/r2) exp(3νu/2 + κu/2) d[r2 exp(−νu/2) ∆r]/dr}
/
dr

= ∆r[8πGPu(Pu + εru) exp κu/c4 − (dPu/dr)2/(Pu + εru) + (4/r) dPu/dr]

− exp(−νu − κu/2) d{(Γ1Pu/r2) exp(3νu/2 + κu/2) d[r2 exp(−νu/2) ∆r]/dr}
/
dr. (5.12.129)

Eq. (5.12.127) takes via Eq. (5.12.129) the final form

σ2 exp(−νu + κu)(Pu + εru) ∆r = ∆r[8πGPu(Pu + εru) exp κu/c4 − (dPu/dr)2/(Pu + εru)

+(4/r) dPu/dr] − exp(−νu − κu/2) d{(Γ1Pu/r2) exp(3νu/2 + κu/2) d[r2 exp(−νu/2) ∆r]/dr}
/
dr.

(5.12.130)

A variational base for determining the eigenvalue σ2 with the boundary conditions (5.2.61), (5.2.63)
is provided by multiplication of Eq. (5.12.130) with ∆r, and with the invariant four-dimensional volume
element (−g)1/2 dx0 dx1 dx2 dx3 = r2 exp(νu/2 + κu/2) sinλ dt dr dλ dϕ. Integration yields after
simplification with sinλ dt dλ dϕ, and by suppressing the index u :

σ2

∫ r1

0

exp(−ν/2 + 3κ/2)(P + εr)(∆r)2r2 dr =
∫ r1

0

[8πGP (P + εr) exp(ν/2 + 3κ/2)/c4

− exp(ν/2 + κ/2)(dP/dr)2/(P + εr) + (4/r) exp(ν/2 + κ/2) dP/dr](∆r)2r2 dr

+
∫ r1

0

exp(3ν/2 + κ/2)(Γ1P/r2){d[r2 exp(−ν/2) ∆r]/dr}2 dr. (5.12.131)

The last term has been obtained by partial integration. Eq. (5.12.131) expresses a minimal (not
merely an extremal) principle. The sufficient condition for dynamical instability is the vanishing of the
right-hand side under neutral stability σ = 0.

Associated with the variational condition (5.12.131) is the orthogonality condition

{[σ(α)]2 − [σ(β)]2}
∫ r1

0

exp(−ν/2 + 3κ/2)(P + εr)r2 ∆r(α) ∆r(β) dr = 0, (α �= β), (5.12.132)
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which is obtained similarly to Eqs. (5.7.43)-(5.7.46).
With the equation of state (4.1.1) we get from the polytropic relationships (4.1.29):

P = P0θ
n+1
r = P0(�r/�r0)1+1/n = P0(εr/εr0)1+1/n = q0ε

−1/n
r0 ε1+1/n

r ;

α2 = (n + 1)P0/4πG�2
r0 = (n + 1)q0c

4/4πGεr0, (−1 < n < ∞). (5.12.133)

Insertion into Eq. (5.12.131) yields the variational relationship for radial oscillations of a relativistic
polytropic sphere:

(σ2α2/q0)
∫ ξ1

0

exp(−ν/2 + 3κ/2)θn
r (1 + q0θr)(∆r)2ξ2 dξ = 2(n + 1)

∫ ξ1

0

{q0 exp(ν/2 + 3κ/2)θ2n+1
r

×(1 + q0θr) + 2 exp(ν/2 + κ/2)(θn
r /ξ)(dθr/dξ)[1 − (n + 1)q0ξ(dθr/dξ)

/
4(1 + q0θr)]}(∆r)2ξ2 dξ

+Γ1

∫ ξ1

0

exp(3ν/2 + κ/2)θn+1
r {d[ξ2 exp(−ν/2) ∆r]/dξ}2 dξ/ξ2. (5.12.134)

The two metric coefficients are via Eqs. (4.1.25), (4.1.34), (4.1.39), (5.12.133) equal to

exp(−κ) = 1 − 2GMr1u/c2r = 1 − 8πG�r0α
2η(ξ)/c2ξ = 1 − 2(n + 1)q0η(ξ)/ξ;

exp ν = (1 − 2GMr1/c2r1)/(1 + q0θr)2(n+1) = [1 − 2(n + 1)q0η(ξ1)/ξ1]/(1 + q0θr)2(n+1).
(5.12.135)

These expressions take in the post Newtonian limit the form

exp(−κ) ≈ 1 + 2(n + 1)q0ξθ
′
r; exp ν ≈ 1 − 2(n + 1)q0(θr − ξ1θ

′
r1),

(q0 ≈ 0; θr = θ + O(q0); η = −ξ2θ′ + O(q0) = −ξ2θ′r + O(q0); θ′r1 = (dθr/dξ)ξ=ξ1). (5.12.136)

As we know from Newtonian theory (e.g. Eq. (5.3.16) if Γ1 = const, Ω = 0), dynamical stability
(σ2 > 0) requires Γ1 > 4/3. In the post Newtonian approximation the relevant adiabatic exponent will
be Γ1 > 4/3 + O(q0). We take as in Sec. 5.3.1 for the Lagrangian displacement a trial function of the
form ∆r ∝ r ∝ ξ. If we insert this together with Eq. (5.12.136) and Γ1 ≈ 4/3 into the basic equation
(5.12.134), we get after some algebra up to the first order

(σ2α2/q0)
∫ ξ1

0

θn
r {1 + q0[θr − 3(n + 1)ξθ′r + (n + 1)(θr − ξ1θ

′
r1)]}ξ4 dξ

= 9(Γ1 − 4/3)
∫ ξ1

0

ξ2θn+1
r dξ + 4(n + 1)q0

∫ ξ1

0

[ξ1θ
′
r1 d(ξ3θn+1

r )/dξ − d(ξ3θn+2
r )/dξ

+(1/2)ξ4θ2n+1
r − (5/4)(n + 1)ξ4θn

r θ′r
2] dξ, (Γ1 ≈ 4/3; q0 ≈ 0). (5.12.137)

Up to the first order in q0 we can replace throughout on the right-hand side the relativistic Lane-
Emden function with its Newtonian counterpart, and the first zero of θr with the first zero of θ. The
criterion of onset of dynamical instability is obtained with the condition of neutral stability σ = 0, and
Eq. (5.12.137) becomes

9(Γ1 − 4/3)
∫ ξ1

0

ξ2θn+1 dξ = 4(n + 1)q0

∫ ξ1

0

[5(n + 1)θnθ′2/4 − θ2n+1/2]ξ4 dξ. (5.12.138)

This is equivalent to Eq. (94) of Chandrasekhar (1964b), and can be reduced to Eq. (77) of
Chandrasekhar (1965b) after integration by parts, making frequent use of the Lane-Emden equation
(ξ2θ′)′ = −ξ2θn. We have

∫ ξ1

0

ξ2θn+1 dξ = ξ3θn+1/3
∣∣∣ξ1

0
− [(n + 1)/3]

∫ ξ1

0

ξ3θnθ′ dξ = [(n + 1)/6]
∫ ξ1

0

d(ξ2θ′)2/ξ

= [(n + 1)/6]ξ3
1θ′1

2 + [(n + 1)/6]
∫ ξ1

0

ξ2θ′ dθ = [(n + 1)/6]ξ3
1θ′1

2 + [(n + 1)/6]ξθθ′
∣∣∣ξ1

0

+[(n + 1)/6]
∫ ξ1

0

ξ2θn+1 dξ. (5.12.139)
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Equating the first and last expression we get [cf. Eq. (2.6.159)]

∫ ξ1

0

ξ2θn+1 dξ = (n + 1)ξ3
1θ′1

2
/(5 − n), (−1 < n ≤ 5). (5.12.140)

The integrals on the right-hand side of Eq. (5.12.138) are transformed as

∫ ξ1

0

ξ4θnθ′2 dξ = −
∫ ξ1

0

(ξ2θ′)2 d(ξ2θ′)/ξ2 = −ξ4
1θ′1

3
/3 − (2/3)

∫ ξ1

0

(ξ2θ′)3 dξ/ξ3 = −ξ4
1θ′1

3
/3

−2ξ3θθ′2/3
∣∣∣ξ1

0
+ (2/3)

∫ ξ1

0

θ d[(ξ2θ′)2/ξ] = −ξ4
1θ′1

3
/3 − (2/3)

∫ ξ1

0

ξ2θθ′2 dξ − (4/3)
∫ ξ1

0

ξ3θn+1θ′ dξ

= −ξ4
1θ′1

3
/3 − (2/3)

∫ ξ1

0

ξ2θθ′2 dξ + [4/(n + 2)]
∫ ξ1

0

ξ2θn+2 dξ = −ξ4
1θ′1

3
/3 − (2/3)

∫ ξ1

0

ξ2θθ′2 dξ

−[4/(n + 2)]
∫ ξ1

0

θ2 d(ξ2θ′) = −ξ4
1θ′1

3
/3 + [2(10 − n)/3(n + 2)]

∫ ξ1

0

ξ2θθ′2 dξ, (5.12.141)

and

∫ ξ1

0

ξ4θ2n+1 dξ = −
∫ ξ1

0

ξ2θn+1 d(ξ2θ′) = −ξ4θn+1θ′
∣∣∣ξ1

0
+ 2

∫ ξ1

0

ξ3θn+1θ′ dξ

+(n + 1)
∫ ξ1

0

ξ4θnθ′2 dξ = −[6/(n + 2)]
∫ ξ1

0

ξ2θn+2 dξ + (n + 1)
∫ ξ1

0

ξ4θnθ′2 dξ

= [6/(n + 2)]
∫ ξ1

0

θ2 d(ξ2θ′) + (n + 1)
∫ ξ1

0

ξ4θnθ′2 dξ = −[12/(n + 2)]
∫ ξ

0

ξ2θθ′2 dξ

−(n + 1)ξ4
1θ′1

3
/3 + [2(10 − n)(n + 1)/3(n + 2)]

∫ ξ1

0

ξ2θθ′2 dξ = −(n + 1)ξ4
1θ′1

3
/3

−[2(n − 8)(n − 1)/3(n + 2)]
∫ ξ1

0

ξ2θθ′2 dξ. (5.12.142)

We insert Eqs. (5.12.140)-(5.12.142) together with q0 = GMr1ξ1

/
(n + 1)c2r1η(ξ1) ≈ GMr1

/
(n +

1)c2r1ξ1(−θ′1) = rg

/
2(n + 1)r1ξ1(−θ′1) from Eq. (4.1.49) into Eq. (5.12.138), and obtain in the post

Newtonian approximation the lower limit of Γ1 required for dynamical stability:

Γ1 = 4/3 + [(5 − n)rg/18r1]
{

1 + [2(11 − n)
/
(n + 1)ξ4

1(−θ′1
3)]
∫ ξ1

0

ξ2θθ′2 dξ
}

= 4/3 + C(n) rg/r1, (−1 < n ≤ 5; q0, rg/r1 � 1). (5.12.143)

Thus, general relativity induces dynamical instability against purely radial oscillations in a spherical
polytrope if

Γ1 < 4/3 + C(n) rg/r1, (−1 < n ≤ 5; Γ1 ≈ 4/3; q0, rg/r1 � 1), (5.12.144)

where the constant C(n) equals 0.452, 0.565, 0.645, 0.751, 0.900, 1.124, 1.285, 1.500 if n = 0, 1, 1.5,
2, 2.5, 3, 3.25, 3.5, respectively (Chandrasekhar 1964b, 1965b). General relativity tends to destabilize
relativistic polytropic spheres: The stronger is gravity, the easier is radial collapse (Fig. 5.12.5).

Pandey et al. (1991) have calculated the onset of radial instability in relativistic, isentropic neutron
star models. Radial instability always occurs for the considered models if n = 1/(Γr1 − 1) � 2.5, (Γr1 �
7/5), in accordance with Eq. (5.12.144). If 1 � n � 2.5, radial instability sets in above certain values of
the relativity parameter q0. If 0.25 ≤ n � 1, the models are radially stable.

The infinitely long, cylindrical relativistic polytropes considered by Scheel et al. (1993; see Sec. 4.1.5)
are stable against purely radial perturbations – in contrast to spherical polytropes. These cylinders
may not be suitable to get insight into the behaviour of spherical finite systems, due to the unrealistic
assumption of an infinitely long configuration, with the metric (4.1.157) diverging at infinity.
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5.12.5 Nonradial Oscillations of Relativistic Spheres

Most investigations on nonradial oscillations of relativistic polytropes assume isentropic configurations
– the barotropic one-parameter equation of state is assumed for both the interior structure and the small-
amplitude oscillations [Eqs. (4.1.65), (4.1.83)]:

(�/P )(∂P/∂�)S = Γ1 = 1 + 1/n; P = K�1+1/n = K�Γ1 , (5.12.145)

or

(�r/P )(∂P/∂�r)S = (εr/P )(∂P/∂εr)S = Γr1 = 1 + 1/n;

P = K�1+1/n
r = K�Γr1

r or P = Kε1+1/n
r = KεΓr1

r . (5.12.146)

In a nonrotating sphere the nonradial oscillation modes are classified into two decoupled sets of polar
(spheroidal, even parity) and axial (toroidal, odd parity) modes [Eqs. (5.8.165), (5.8.166)]. Rotation
mixes these two types, and an oscillation generally contains contributions from both the polar and
axial modes (Lockitch and Friedman 1999, Yoshida and Lee 2000a). Pure polar fluid modes exist for all
conceivable models. The existence of nondegenerate (σ �= 0) purely axial fluid modes relies upon rotation,
magnetic field or nonisotropic pressure (Andersson et al. 1996).

The three families of purely polar fluid modes, discussed so far, are the familiar p, f, and g-modes.
In isentropic Newtonian spheres the polar g-modes are degenerate to zero frequency σ = 0; they become
time-independent, neutrally stable convective currents, being of no great interest (Tables 5.5.1, 5.5.2 if
n = 1/(Γ1−1) = 1.5). The same is true for the purely axial r-modes in a nonrotating sphere (Sec. 5.8.4).
This degeneracy to zero frequency in isentropic spheres is lifted by rotation, the corresponding modes in
rotating isentropic stars becoming hybrids of polar and axial perturbations, although isentropic rotating
Newtonian stars retain a vestigial set of purely axial fluid r-modes (those having j = k in the spherical
harmonic Y k

j ). The existence of purely axial fluid modes in relativistic stars with isotropic pressure is not
conclusive (Lockitch and Friedman 1999).

In general relativity a configuration possesses also modes associated with the gravitational field itself:
Spacetime modes which are gravitational wave modes – the so-called w-modes. These purely relativistic
modes can be of the polar and axial type, which however are qualitatively similar (Andersson et al. 1995).
In nonrotating relativistic spheres the gravitational wave modes always damp the fluid oscillations, being
often the dominant dissipation mechanism. However, with rotation included, the relativistic polytropes
are susceptible to the Chandrasekhar-Friedman-Schutz instability, driven by gravitational radiation re-
action, as mentioned in Sec. 5.8.4.

The purely radial modes (j = 0) discussed in the previous section, as well as the dipole modes (j = 1,
Sec. 5.2.) are special cases in general relativity; henceforth they will not be considered as they cannot
emit gravitational radiation (Thorne and Campolattaro 1967, p. 596).

The unperturbed metric is given again by Eq. (5.12.99), while the perturbed metric amounts to

ds2 = (g
m + δg
m) dx
 dxm, (5.12.147)

where δg
m are the Eulerian perturbations of the metric coefficients. Further, the ten metric perturbations
can be split into polar and axial contributions:

δg
m = δgpolar

m + δgaxial


m . (5.12.148)

The ten field equations (4.1.4) can be written with the contraction R = −8πGT/c4 as

R
m = (8πG/c4)(T
m − g
mT/2), (5.12.149)

having the Eulerian perturbations

δR
m = (8πG/c4)(δT
m − T δg
m/2 − g
m δT/2). (5.12.150)

The ten unknowns δg
m have to be supplemented with the spatial Lagrangian displacement vector
∆�r and the energy density perturbation δε. However, because of the identity (4.1.14), only ten of these
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fourteen variables will be independent, involving different possible sets of perturbation equations and
gauge choices.

(i) Polar Modes. The contravariant Lagrangian displacement can be considered under the familiar
form of spherical harmonics Y k

j (Eqs. (5.2.87), (5.2.89), (5.2.90), (5.5.27), (5.8.165); Andersson et al.
1995):

∆r = rj−1 exp[−κ(r)/2] W (r) Y k
j (λ, ϕ) exp(iσt); ∆λ = −rj−2V (r) (∂Y k

j /∂λ) exp(iσt);

∆ϕ = −(rj−2/ sin2 λ) V (r) (∂Y k
j /∂ϕ) exp(iσt). (5.12.151)

The perturbations δg
m have been expanded by Thorne and Campolattaro (1967) under the form
of scalar, vectorial, or tensorial spherical harmonics, transforming as scalars, vectors, or tensors under
(λ, ϕ)-rotations, respectively. With the Regge-Wheeler gauge some of the polar metric perturbations can
be annulled, removing the arbitrariness in the coordinate system. The perturbed metric (5.12.147) takes
the simplified form

ds2 = exp ν(r) [1 + rjH0(r) Y k
j (λ, ϕ) exp(iσt)] dt2 + 2iσrj+1H1(r) Y k

j (λ, ϕ) exp(iσt) dt dr−
expκ(r)[1 − rjH0(r) Y k

j (λ, ϕ) exp(iσt)] dr2 − r2[1 − rjK(r) Y k
j (λ, ϕ) exp(iσt)](dλ2 + sin2 λ dϕ2),

(5.12.152)

where the three small perturbation functions H0, H1, K have to be determined from the perturbed
field equations (5.12.150). The perturbed curvature tensor δR
m can be calculated with δg
m from the
perturbations of the Christoffel symbols (4.1.15). The perturbed energy-momentum tensor (5.12.155),
(5.12.156), (5.12.161) is computed with the four-velocity (5.12.98), which amounts for the displacements
(5.12.151) to

ut = dt/ds ≈ g
−1/2
tt ≈ exp(−ν/2)[1 − (rjH0/2) Y j

k exp(iσt)];

ur = δur = dr/ds = (dr/dt) dt/ds ≈ g
−1/2
tt dr/dt ≈ g

−1/2
tt ∂∆r/∂t ≈ iσ exp(−ν/2) ∆r;

uλ = δuλ = dλ/ds = (dλ/dt) dt/ds ≈ g
−1/2
tt dλ/dt ≈ g

−1/2
tt ∂∆λ/∂t ≈ iσ exp(−ν/2) ∆λ;

uϕ = δuϕ = dϕ/ds = (dϕ/dt) dt/ds ≈ g
−1/2
tt dϕ/dt ≈ g

−1/2
tt ∂∆ϕ/∂t ≈ iσ exp(−ν/2) ∆ϕ,

(dxα/dt = d(xα − xα
u)/dt = d∆xα/dt = D∆xα/Dt ≈ ∂∆xα/∂t). (5.12.153)

And the covariant four-velocities (4.1.12) are up to the first order:

ut = g
1/2
tt + gtr δur ≈ g

1/2
tt ; ur = grr δur + gtrg

−1/2
tt ; uλ = gλλ δuλ; uϕ = gϕϕ δuϕ. (5.12.154)

The Eulerian perturbations

δT m

 = (δεr + δP )u
u

m + (εr + P )(u
 δum + um δu
) − δm

 δP, (5.12.155)

of the stress-energy tensor (4.1.11) become up to the first order

δT t
t = δεr; δT r

r = δT λ
λ = δT ϕ

ϕ = −δP ; δT b
a = (εr + P )uaub if a �= b and a = t or b = t;

δT β
α = 0 if α �= β, (α, β = r, λ, ϕ). (5.12.156)

For nonrotating spheres it suffices to specialize to the particular choice Y 0
j (λ, ϕ) = Pj(cos λ), (j ≥ 2)

of the spherical harmonics. The modes having k �= 0 can be obtained with a suitable rotation about the
centre. The perturbed field equations (5.12.150) can be written in condensed form as two coupled wave
equations for a barotropic fluid P (εr), (Andersson et al. 1996):

(δP/δεr) ∂2Y/∂t2 − ∂2Y/∂r∗2 = F (Y, Z, ∂Y/∂r∗, ∂Z/∂r∗);

∂2Z/∂t2 − ∂2Z/∂r∗2 = G(Y, Z, ∂Y/∂r∗, ∂Z/∂r∗), [Y = Y (δgtt, δgλλ); Z = Z(δgtt, δgλλ)],
(5.12.157)

the first one for the polar fluid oscillations, and the second one for the polar gravitational waves. The
so-called tortoise coordinate is defined by

∂ /∂r∗ = exp[(ν − κ)/2] ∂ /∂r, (5.12.158)
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which outside the relativistic sphere can easily be integrated via Eq. (4.1.20): r∗ = r +
(2GMr1/c2) ln(c2r/2GMr1 − 1), (r > r1).

(ii) Axial Modes. In the nonrotating relativistic sphere axial modes do not couple to fluid oscilla-
tions. Thorne and Campolattaro (1967) take the covariant Lagrangian displacement under the form

∆r = 0; ∆λ = −[U(r)/ sinλ](∂Y k
j /∂ϕ) exp(iσt); ∆ϕ = U(r) sinλ(∂Y k

j /∂λ) exp(iσt),
(5.12.159)

where the transition from the contravariant axial Lagrangian displacements (5.8.166) to the present
covariant ones proceeds with the spatial metric tensor (5.12.95): ∆xα = γαβ ∆xβ ≈ −gαα ∆xα, (gλλ =
−r2; gϕϕ = −r2 sin2 λ).

With the Regge-Wheeler gauge only δgtλ, δgtϕ, δgrλ, δgrϕ subsist, and the perturbed metric (5.12.147)
assumes the form

ds2 = exp[ν(r)] dt2 − exp[κ(r)] dr2 − r2(dλ2 + sin2 λ dϕ2)

+2 exp(iσt){−[h0(r)/ sinλ](∂Y k
j /∂ϕ) dt dλ + h0(r) sin λ (∂Y k

j /∂λ) dt dϕ

−[h1(r)/ sinλ](∂Y k
j /∂ϕ) dr dλ + h1(r) sin λ (∂Y k

j /∂λ) dr dϕ}, (5.12.160)

with the two small perturbation functions h0, h1.
Pressure and density are unchanged under purely axial perturbations (δP, δεr = 0), and the surviving

components of the perturbed energy-momentum tensor δT
m = (P + εr)(u
 δum + um δu
)−P δg
m are
in the particular case k = 0 equal to

δTtϕ = δTϕt = [iσ(P + εr) U(r) exp(iσt) − Ph0] sinλ dPj(cos λ)/dλ;
δTrϕ = δTϕr = −Ph1 sinλ dPj(cos λ)/dλ, (δut = 0; δuϕ = uϕ), (5.12.161)

with the covariant four-velocities (Thorne and Campolattaro 1967)

ut = gt
u

 = gt
 dx
/ds ≈ gtt dt/ds = gttu

t ≈ g
1/2
tt ; ur, uλ = 0; uϕ = gϕ
u


 = gϕ
 dx
/ds

= dxϕ/ds = (dxϕ/dt) dt/ds ≈ ut ∂∆xϕ/∂t = iσut ∆xϕ ≈ iσg
−1/2
tt ∆ϕ,

(k = 0; dxα/dt = d(xα − xαu)/dt = d∆xα/dt = D∆xα/Dt ≈ ∂∆xα/∂t). (5.12.162)

The nonvanishing perturbations of the curvature tensor are δRtϕ, δRrϕ, δRλϕ. An equation of the
form (Andersson et al. 1996)

∂2X/∂t2 − ∂2X/∂r∗2 + S(r) X = 0, [X = X(δgrϕ)], (5.12.163)

emerges from the perturbed field equations for the propagation of axial gravitational waves. In the present
context no axial fluid modes exist.

The second equation (5.12.157) for the polar gravitational waves turns outside the polytrope into an
equation similar to Eq. (5.12.163). The second order equation (5.12.163) admits two linearly independent
solutions, which can be identified far away from the surface with an outgoing and ingoing gravitational
wave, respectively. The quasinormal modes of purely polar oscillations are those for which there are
no incoming gravitational waves: They represent the natural, free nonradial oscillations of a relativistic
sphere. The complex eigenvalues σ involve damping of the polar fluid modes due to outgoing gravitational
radiation, if their imaginary part – via exp(iσt) – is positive. Conversely, if Im(σ) < 0, the quasinormal
oscillations of the relativistic polytropic sphere are unstable against nonradial oscillations.

The w-modes due to gravitational waves arising from polar and axial perturbations, as well as the
fluid polar f, p1, p2, p3-modes if j = 2, k = 0 have been computed by Andersson and Kokkotas (1998) for
an isentropic n = 1/(Γr1−1) = 1 polytrope with an equation of state P = Kε2

r, (K = 100 km2; c, G = 1).
Axial and polar w-modes are very similar, as shown on the upper left part of Fig. 5.12.4. As outlined
subsequently to Eq. (4.1.80), the n = 1 polytrope becomes radially unstable if r1/Mr1 < 3.62G/c2

or Mr1/rr1 > 0.214c2/G, [dMr1/dεr0 < 0, Eq. (5.12.29)]. Andersson and Kokkotas (1998) quote
r1/Mr1 < 3.77G/c2, and Baumgarte et al. (1997) Mr1/rr1 > 0.217c2/G (cf. the broken curve in Fig.
5.12.5, and Fig. 4.1.3 if n = 1). The fluid f and p-modes are always stable, and less rapidly damped
as compared to the gravitational wave w-modes (Fig. 5.12.4 on the left). They can become extremely
long-lived as the compactness of the star increases (as r1/Mr1 decreases). And the f, p1, p2, p3, (j = 2)
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Fig. 5.12.4 w, f, and p-modes in the n = 1/(Γr1 − 1) = 1 isentropic polytropic sphere. Left-hand
side: Real versus imaginary part of the eigenvalue σ for the damped stable w-modes (upper left), and nonradial
f, p1, p2, p3, (j = 2, k = 0) fluid modes (lower left). Solid curves are for polar type w-modes, dashed ones for the
axial type. Arrows indicate increasing compactness r1/Mr1, (c, G = 1), ranging from 9 to 3.2. Points indicate
onset of radial instability from Sec. 5.12.4. Right-hand side: Continuous curves show again the four nonradial
fluid modes from the figure on the bottom left. Dotted lines depict the corresponding Newtonian modes of the
homogeneous compressible Newtonian n = 0 polytrope via Eqs. (5.5.23), (5.5.26), (Andersson and Kokkotas
1998).

nonradial modes from Eqs. (5.5.23), (5.5.26) for the compressible n = 0 polytrope provide useful estimates
of σ as long as r1/Mr1 � 5 (up to neutron star compactness; see dotted lines on the right of Fig. 5.12.4).
All g-modes have σ = 0 for the considered isentropic n = 1 polytrope. An alternative approach to the
evolution of neutron star oscillations has been developed by Ruoff (2001).
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5.12.6 Stability and Oscillations of Rotating Relativistic Polytropes

Most macroscopic kinetic motions (e.g. turbulence) attenuate rapidly under stellar conditions, while
rotation – in absence of considerable dissipation – is prevented from being transformed into other forms
of energy, since it is connected to a conserved quantity – the angular momentum. As already mentioned
in repeated places (Secs. 3.8.1, 3.8.8, 5.8.3, 5.8.4), nonrelativistic nonaxisymmetric polytropes occur
only for polytropic indices 0 ≤ n ≤ 0.808. Axisymmetric and nonaxisymmetric polytropic sequences
both terminate by equatorial mass loss if n � 0.1 (e.g. Hachisu and Eriguchi 1982), and no equilibrium
configurations exist if the angular momentum is larger than a certain critical value. The Maclaurin
ellipsoids, resembling in a first approximation the n = 0 polytrope, and the Jacobi ellipsoids, obey no
mass loss. A quantity of salient interest is the ratio (3.1.35) between rotational kinetic energy and
gravitational energy: τ = Ekin/|W |. This quantity changes between τ = 0 and 0.5 for the Maclaurin
ellipsoids, and between 0.1375 and 0.5 for the Jacobi ellipsoids [Eqs. (5.10.217)-(5.10.223)]. As the
central mass concentration and the polytropic index of the polytrope increase, the maximum value of τ
– just before onset of equatorial mass loss – decreases sharply (Table 5.8.2, Secs. 3.8.8, 5.8.3, Tassoul
and Ostriker 1970, Hachisu 1986a). Rotating axisymmetric polytropes with index 0 ≤ n ≤ 0.808 become
secularly unstable at the bifurcation point, where the nonaxisymmetric sequence branches off at τ ≈ 0.14.
Polytropes with n > 0.808 never reach a value of τ ≈ 0.14, since equatorial mass shedding already occurs
at lower values of τ.

It is generally assumed that the angular velocity becomes rapidly uniform, due to a high viscosity
of turbulent and magnetic momentum transport. Rapidly and uniformly rotating equilibrium stars are
possible only in a narrow range of τ, and generally the influence of uniform rotation upon the overall
characteristics of a star (mean density, pressure, energy, etc.) is not great.

Most stars can be approximated by polytropes of index 1.5 ≤ n ≤ 3, and since τmax is so small for
such polytropes, we can preserve the Newtonian expression of the rotational energy, adding it to the post
Newtonian expression (5.12.79) of the total energy

E = 4πc2

∫ r1

0

{�r − �
/
[1 − 2GMr(r)/c2r]1/2}r2 dr + (1/2)

∫
M1

Ω2r2 sin2 λ dM

≈ −
∫

Mr1

GMr(r) dMr/r − (6πG2/c2)
∫ r1

0

M2(r) � dr + 4π

∫ r1

0

P [1 + GM(r)/c2r]r2 dr
/
(Γ − 1)

+(4πΩ2/3)
∫ r1

0

�r4 dr. (5.12.164)

The virial theorem for a slowly rotating sphere in the post Newtonian approximation can be derived
from the exact general relativistic equation of motion in the spherically symmetric case (cf. Fowler 1966):

[(�r + P/c2)/�] D[v(�r + P/c2)/�]
/
Dt = −(1/�r)(dP/dr)

{
1 + [(�r + P/c2)/�]2v2/c2

−2GMr(r)/rc2
}/

(1 + P/�rc
2) − GMr(r)/r2 − 4πGPr/c2, [v = v(r)]. (5.12.165)

Since the initial configuration is in hydrostatic equilibrium, we can omit for a linear stability analysis
the second order terms in v2; moreover, since Dv/Dt is already a small first order quantity, the factor
(�r +P/c2)/� in Eq. (5.12.165) can be replaced by its zeroth approximation, i.e. by 1. Likewise, Mr and
�r can be replaced in the small relativistic terms by their Newtonian values M and �, respectively:

Dv/Dt = −(1/�r)(dP/dr)[1 − 2GM(r)/rc2 − P/�c2] − GMr(r)/r2 − 4πGPr/c2 + Ω2r sin2 λ,

(v ≈ 0). (5.12.166)

In Eq. (5.12.166) we have added the radial Newtonian centrifugal acceleration from Eq. (5.7.2) –
neglecting small Coriolis terms – to obtain the post Newtonian equation of quasiradial motion in a frame
rotating at constant angular speed Ω with the considered configuration. In the small relativistic terms
we replace dP/dr by its nonrotating Newtonian hydrostatic equivalent −GM�/r2 :

Dv/Dt = −(1/�r) dP/dr − GMr(r)/r2 − [GM(r)/r2][2GM(r)/rc2 + P/�c2]

−4πGPr/c2 + Ω2r sin2 λ. (5.12.167)
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The virial theorem is obtained after multiplication by r dMr and integration over the whole star,
where dMr = 4π�rr

2 dr can be replaced by dM = 4π�r2 dr in the first order terms:

4π

∫ r1

0

(Dv/Dt) �r3 dr = 4π

∫ P0

0

r3 dP + Wr − 4π

∫ r1

0

[GM(r)/r][2GM(r)/rc2 + P/�c2]�r2 dr

−16π2G

∫ r1

0

P�r4 dr/c2 +
∫

M1

Ω2r2 sin2 λ dM. (5.12.168)

The left-hand side can be brought to the form (1/2) d2I/dt2 from Eq. (2.6.80) or (5.3.2), by using
Eqs. (2.6.56), (2.6.76):

4π

∫ r1

0

(Dv/Dt) �r3 dr = 4π

∫ r1

0

[D(rv)/Dt − v2]�r2 dr ≈
∫

M1

[D(rv)/Dt] dM

= d

(∫
M1

rv dM

)/
dt =

∫
M1

[d(r dr/dt)
/
dt] dM = (1/2)

∫
M1

(d2r2/dt2) dM

= (1/2) d2

(∫
M1

r2 dM

)/
dt2 = (1/2) d2I/dt2, (dM/dt = 0). (5.12.169)

We integrate by parts the first and third integral on the right-hand side of Eq. (5.12.168):

∫ P0

0

r3 dP = −r3P
∣∣∣r1

0
+ 3

∫ r1

0

Pr2 dr = 3
∫ r1

0

Pr2 dr;

4π

∫ r1

0

P�r4 dr =
∫

M1

Pr2 dM = Pr2M(r)
∣∣∣r1

0
−
∫

M1

M(r) d(r2P )

= −
∫ P0

0

r2M(r) dP − 2
∫ r1

0

PM(r) r dr =
∫ r1

0

GM2(r) � dr − 2
∫ r1

0

PM(r) r dr. (5.12.170)

The result is inserted into Eq. (5.12.168):

(1/2) d2I/dt2 = d

(∫
M1

rv dM

)/
dt = Wr + 12π

∫ r1

0

Pr2 dr − (3G2/c2)
∫

M1

M2(r) dM/r2

+(4πG/c2)
∫ r1

0

PM(r) r dr +
∫

M1

Ω2r2 sin2 λ dM. (5.12.171)

Under conditions of hydrostatic equilibrium we have d2I/dt2 = 0, and the right-hand side of Eq.
(5.12.171) is zero, yielding a simple virial relationship. Another form of the post Newtonian equilibrium
energy is obtained by eliminating the integral of the internal energy 4πε(int)r2 dr = 4πPr2 dr/(Γ − 1)
between Eqs. (5.12.164), (5.12.171), and replacing Γ by a suitable average:

E = (3Γ − 4)Wr/3(Γ − 1) + [(5 − 3Γ)/2(Γ − 1)](G/c)2
∫

M1

M2(r) dM/r2

+[8πG/3c2(Γ − 1)]
∫ r1

0

PM(r) r dr − [(5 − 3Γ)/6(Γ − 1)]
∫

M1

Ω2r2 sin2 λ dM. (5.12.172)

Eq. (5.12.76) yields for a mixture of completely ionized, nonrelativistic gas and radiation

Γ = (8 − 3β)/3(2 − β), (f = 3; w = 2; β = 1 − Pr/P ), (5.12.173)

and the relativistic equilibrium energy (5.12.172) becomes in this important particular case equal to

E = βWr/2 + [3(1 − β)/2](G/c)2
∫

M1

M2(r) dM/r2 + [4π(2 − β)G/c2]
∫ r1

0

PM(r) r dr

−[(1 − β)/2]
∫

M1

Ω2r2 sin2 λ dM. (5.12.174)
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The approximate eigenvalue σ of the fundamental quasiradial mode of oscillation of the rotating
relativistic polytrope can be found with the simple form of the Lagrangian displacement already employed
in Eq. (5.3.1):

η = ∆r(r, t)/r = [∆r(r)/r] exp(iσt) = (∆r1/r1) exp(iσt) = const exp(iσt), (∆r(r)/r = const).
(5.12.175)

The first variation (5.8.4) of the left-hand side of Eq. (5.12.171) is in virtue of Eq. (5.8.30) equal to

(1/2) δ∗(d2I/dt2) = δ∗
[
d

(∫
M1

rv dM

)/
dt

]
≈ d2

(∫
M1

r ∆r(r, t) dM

)/
dt2

= −(σ2 ∆r1/r1) exp(iσt)
∫

M1

r2 dM, (v = dr/dt ≈ 0). (5.12.176)

It will be shown in Eqs. (5.12.180)-(5.12.184) that the first variation of Eq. (5.12.171)

σ2 (∆r1/r1)
∫

M1

r2 dM = σ2 I ∆r1/r1 = −δ∗Wr − 12π δ∗
∫ r1

0

Pr2 dr

+3(G/c)2 δ∗
∫

M1

M2(r) dM/r2 − (4πG/c2) δ∗
∫ r1

0

PM(r) r dr − δ∗
∫

M1

Ω2r2 sin2 λ dM,

(5.12.177)

always contains η ∝ exp(iσt) as a factor, so we suppress it.
For adiabatic oscillations we have δ∗E = 0 by definition, and the first variation of Eq. (5.12.164) is

δ∗E = δ∗Wr − (3G2/2c2) δ∗
∫

M1

M2(r) dM/r2 + 4π δ∗
∫ r1

0

P [1 + GM(r)/c2r]r2 dr/(Γ − 1)

+(1/2) δ∗
∫

M1

Ω2r2 sin2 λ dM = 0. (5.12.178)

If we eliminate, as in Eqs. (5.12.164), (5.12.171), the integral of internal energy 4πPr2 dr/(Γ − 1)
between Eqs. (5.12.177), (5.12.178), we get

σ2I ∆r1/r1 = (3Γ − 4) δ∗Wr + [3G2(5 − 3Γ)/2c2] δ∗
∫

M1

M2(r) dM/r2

+(8πG/c2) δ∗
∫ r1

0

PM(r) r dr − [(5 − 3Γ)/2] δ∗
∫

M1

Ω2r2 sin2 λ dM. (5.12.179)

The first order variations

δ∗Wr = (∆r1/r1)
∫

Mr1

GMr(r) dMr/r; δ∗
∫

M1

Ω2r2 sin2 λ dM = −(2∆r1/r1)
∫

M1

Ω2r2 sin2 λ dM,

(5.12.180)

have already been determined in Eqs. (5.3.6) and (5.3.13). Hence

δ∗Wr/Wr = −∆r1/r1; δ∗
(∫

M1

Ω2r2 sin2 λ dM

)/∫
M1

Ω2r2 sin2 λ dM = −2 ∆r1/r1. (5.12.181)

It has already been shown in Eq. (5.12.88) that with the polytropic variables (2.6.1), (2.6.3), (2.6.18)
we can express the integrals

A1 =
∫

M1

M2(r) dM/r2 = 64π3α7�3
0

∫ ξ1

0

ξ4θnθ′2 dξ = [M3
1 /r2

1(−ξ4
1θ′1

3)]
∫ ξ1

0

ξ4θnθ′2 dξ,

(5.12.182)

A2 = 4π

∫ r1

0

PM(r) r dr = −16π2Kα5�
2+1/n
0

∫ ξ1

0

ξ3θn+1θ′ dξ

= −[64π3Gα7�3
0/(n + 1)]

∫ ξ1

0

ξ3θn+1θ′ dξ = −[GM3
1 /r2

1(n + 1)(−ξ4
1θ′1

3)]
∫ ξ1

0

ξ3θn+1θ′ dξ,

(5.12.183)
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by exhibiting M3
1 /r2

1 as a factor. During quasiradial oscillations the sole variable in these integrals is the
radius r1, and the first variation of these integrals is via Eq. (5.8.2) equal to

δ∗A1,2 = const (1/r2
1 − 1/r2

1u) = −2 const ∆r1/r3
1 = −2A1,2 ∆r1/r1, (∆r = r1 − r1u),

(5.12.184)

where r1u denotes the unperturbed radius.
The conserved angular momentum can be written as

J = Ω
∫

M1

r2 sin2 λ dM = (8πΩ/3)
∫ r1

0

�r4 dr = (2Ω/3)
∫

M1

r2 dM = 2ΩI/3

= kΩM1r
2
1 = const, (k = 2I/3M1r

2
1). (5.12.185)

k denotes the dimensionless gyration factor from Eq. (6.1.179) and Table 6.1.2. The Newtonian
rotational energy reads

(Ω2/2)
∫

M1

r2 sin2 λ dM = Ω2I/3 = ΩJ/2 = J2/2kM1r
2
1 ∝ r−2

1 , (J, M1 = const). (5.12.186)

We insert Eqs. (5.12.181), (5.12.184), (5.12.186) into Eq. (5.12.179), suppressing the common factor
∆r1/r1 :

σ2I = −(3Γ − 4)Wr − [G2M3
1 /c2r2

1(−ξ4
1θ′1

3)]
{

3(5 − 3Γ)
∫ ξ1

0

ξ4θnθ′2 dξ

−[4/(n + 1)]
∫ ξ1

0

ξ3θn+1θ′ dξ

}
+ (5 − 3Γ)J2/kM1r

2
1. (5.12.187)

As noted subsequently to Eq. (2.6.92), we have Γ ≈ Γ1 for a nondegenerate gas-radiation mixture
without e±-pairs. Neglecting the relativistic terms, we observe that Eq. (5.12.187) is equal to Eq. (5.3.15)
if η = ∆r/r = const, and Γ1 = Γ = const.

For a massive star consisting of radiation-dominated nonrelativistic plasma, Eq. (5.12.173) yields
Γ = 4/3 + β/6, (β ≈ 0), and Eq. (5.12.187) reads

σ2I = 3βGM2
1 /2(5 − n)r1 − [G2M3

1 /c2r2
1(−ξ4

1θ′1
3)]
{

3
∫ ξ1

0

ξ4θnθ′2 dξ

−[4/(n + 1)]
∫ ξ1

0

ξ3θn+1θ′ dξ

}
+ J2/kM1r

2
1 = r1 dE/dr1,

(
β = 1 − Pr/P ≈ 0; Γ = 4/3 + β/6; Wr ≈ W = −3GM2

1 /(5 − n)r1

)
. (5.12.188)

The last equality has been obtained by inserting into the equilibrium energy (5.12.174) the relation-
ships (2.6.137), (5.12.182), (5.12.183), (5.12.186).

For massive stars with β = const, the n = 3 polytrope yields a fairly accurate representation of their
internal structure (Sec. 6.1.1), and Eq. (5.12.188) becomes with the values of the integrals from Eq.
(5.12.88) equal to

σ2I = 3βGM2
1 /4r1 − 5.1 G2M3

1 /c2r2
1 + J2/kM1r

2
1,

[β ≈ 0; Γ = 4/3 + β/6 ≈ 4/3; n = 3 ≈ 1/(Γ − 1)]. (5.12.189)

From this approximate treatment it appears that if n = 3, Γ ≈ 4/3 = 1 + 1/n, rotation has a
stabilizing influence on the fundamental mode of quasiradial oscillations [Eq. (5.3.16)], while general
relativity enhances instability (decreases σ2). Thus, large enough rotation could prevent the general
relativistic instability; rotation extends the mass and energy limits of stable oscillations triggered by
hydrogen burning from 106 M� and 1058 erg to 108M� and 1060 erg, respectively (Fowler 1966).

A similar study has been undertaken by Durney and Roxburgh (1967), confined to massive polytropic
stars with n = 3 and masses between about 106 and 1010 M�. In a rough approximation the angular term
1−µ2 in Eq. (3.1.17) can be averaged over the surface elements −2π dµ = 2π sinλ dλ of the unit sphere.
Taking also ∂Φ/∂µ = 0 and dΦ/dr = −GM(r)/r2, the equation of hydrostatic equilibrium (3.1.17) reads

dP/dr = −GM(r) �/r2 + 2Ω2�r/3, (5.12.190)
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amounting to an overall expansion of the slowly rotating sphere.
The slow rotation approximation demands that the centrifugal term 2Ω2�r/3 is much smaller than

the gravitational attraction −GM(r) �/r2, or v2/c2 = Ω2r2/c2 � GM(r)/rc2, so that relativistic effects
of rotation of order Ω2r2/c2 are much smaller than those due to the spherically symmetric distribution
of matter, and can be consistently neglected.

With a trial Lagrangian displacement ∆r(r, t) = (a+br+cr2) exp(iσt), (a, b, c = const) the eigenvalue
of the fundamental quasiradial displacement has been obtained by Durney and Roxburgh (1967) under
the form of a linear combination of small quantities

σ2/4πG�0 = 0.041β + 0.333Ω2/2πG�0 − 0.644K�
1/3
0 /c2,

(β ≈ 0; n = 3; Γ = 4/3 + β/6 ≈ 4/3 = 1 + 1/n), (5.12.191)

where β = Pg/P denotes the ratio of gas to total pressure from Eq. (1.4.14), rather than the dimensionless
rotation parameter Ω2/2πG�0 from Eq. (3.2.3). Instability (σ2 < 0) occurs in the nonrotating case if

0.041β < 0.644K�
1/3
0 /c2, (Ω = 0). (5.12.192)

The relativity parameter q0 = K�
1/3
0 /c2 = P0/�0c

2, (�r0 ≈ �0) from Eq. (4.1.31) can be expressed in
terms of mass and radius of the n = 3 polytrope according to Eqs. (5.12.65), (6.1.11), (6.1.12):

�0 = −ξ1�m/3θ′1 = 54.18 × 3M1/4πr3
1; P0 = 11.05GM2

1 /r4
1. (5.12.193)

Hence

q0 = P0/�0c
2 = 0.427 × 2GM1/r1c

2 = 0.427rg/r1. (5.12.194)

Inserting into Eq. (5.12.192), we find that stability of the nonrotating star is lost if [cf. Fowler 1966,
Eq. (44)]

r1 ≤ 6.71rg/β, (Ω = 0; β ≈ 0; n = 3; Γ = 4/3 + β/6 ≈ 4/3 = 1 + 1/n). (5.12.195)

This value agrees quite well with r1 ≤ 6.73rg/β, obtained from Eq. (5.12.189) under the same
assumptions. Since by virtue of Eq. (5.12.87) we have β ≈ 8.56(M�/M1)1/2 for a pure hydrogen star
[µ = 1/2, Eq. (1.7.16)], the ratio between gas pressure and total pressure becomes β ≈ 10−2 − 10−4 if
M1/M� = 106 − 1010. For maximum rotation we infer from Table 3.8.1 that Ω2

c/2πG�0 ≈ 0.004 if n = 3,
and therefore we may neglect β in Eq. (5.12.191) under this assumption, the quasiradial instability
condition amounting to

q0 = K�
1/3
0 /c2 > 0.52Ω2

c/2πG�0 = 2.07 × 10−3, (β = 0; σ2 < 0). (5.12.196)

Inserting for q0 from Eq. (5.12.194), quasiradial instability of the critically rotating star with vanishing
gas pressure occurs if

r1 < 206rg, (Ω2
c/2πG�0 = 0.004; β ≈ 0; n = 3; Γ ≈ 4/3). (5.12.197)

Papoyan et al. (1972) have determined the quasiradial pulsation frequencies of relativistic isentropic
polytropes having Γ1 = 1 + 1/n, incorporating a post Newtonian correction to the slow rotation of an
otherwise spherical polytrope. From the coarse presentation of Papoyan et al. (1972) it seems that their
definition [cf. Eqs. (4.1.85), (5.12.119)]

Γ1 = 1 + 1/n = Γr1(P + εr)/εr = (d lnP/d ln εr)S (P + εr)/εr = [(P/c2 + �r)/P ] dP/d�r,
(5.12.198)

of the adiabatic exponent would imply the equation of state (5.12.145), rather than Eq. (5.12.146). The
rotation parameter of Papoyan et al. (1972) corresponds in the spherical Newtonian limit to η(ξ1)/2ξ3

1 ≈
−θ′1/2ξ1 = M1/8πr3

1�0 = Ω2/8πG�0, [Ω2 = GM1/r3
1, see Eq. (4.2.232)], and seems nearly equal to the

critical values of Chandrasekhar (1933a, d), quoted in Table 3.8.1. In Fig. 5.12.5 rotation has a stabilizing
influence if 2.5 � n < 3, as noted previously (σ2 increases); but it appears that it enhances the general
relativistic instability if 1 < n � 2.5. These rotational effects are approximated by Eq. (5.3.16) in the
Newtonian limit if Γ1 = 1 + 1/n.
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Fig. 5.12.5 Critical relativity parameter q0 = P0/c2�r0 at the onset of instability against quasiradial
oscillations as a function of isentropic polytropic index n = 1/(Γ1−1). Dashed curve corresponds to the nonrotating
case [see also Fig. 3 of Glass and Harpaz (1983)], continuous line to nearly critical rotation. Stability subsists on
the left of the curves, instability on the right. The region of Newtonian stability in the nonrotating case is the
rectangle 0 ≤ n ≤ 3 (Papoyan et al. 1972).

Fig. 5.12.6 Nonrotating (lower curve) and critically rotating (upper curve) polytropic hydrostatic equilib-
rium models calculated with the equation of state (5.12.201). Mr1 and rr1 denotes the relativistic mass and radius
of the neutron star. Stable equilibrium configurations are located to the right of the maximum mass. Numbers
on the curves indicate powers of 10 of the central density �r0 measured in g cm−3 (Hartle and Friedman 1975;
see also Fig. 6.1.2).

Hartle and Munn (1975) have investigated the stability of quasiradial modes in a slowly rotating,
relativistic n = 1.5 polytrope with equation of state (5.12.145). This task is undertaken with the static
method outlined in Sec. 5.12.1 for the nonrotating case. The equation of state P = K�5/3, (n = 1.5) is
satisfied, among others, by a neutron star composed of a completely degenerate, nonrelativistic neutron
gas [Eq. (1.7.34)]. The metric adopted by Hartle and Munn (1975) can be obtained from Eqs. (4.2.9),
(4.2.149), giving up the condition g11 = g22 :

ds2 = (g00 − g2
03/g33) dt2 + g11 dr2 + g22 dλ2 + g33(dϕ + g03 dt/g33)2. (5.12.199)

Adopting the condition that this metric should converge for Ω → 0 into the Schwarzschild metric
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(4.1.5), we infer that g00 = exp ν, g11 = − expκ, g22 = −r2, g33 = −r2 sin2 λ and

ds2 = exp ν dt2 − expκ dr2 − r2(dλ2 + sin2 λ dϕ2) + 2g03 dϕdt + O(Ω2). (5.12.200)

Due to rotation the relativistic central density �r0 of equilibrium models changes, allowing for a
20% more massive stable mass, as compared to the nonrotating case (Fig. 5.12.6). Critically rotating
equilibrium models have been calculated by Hartle and Friedman (1975), and Hartle and Munn (1975)
for the isentropic polytrope n = 1/(Γ1 − 1) = 1.5 with an equation of state of the form (4.1.86):

P = K�5/3 = Kε5/3; εr = CP 3/5 + 3P/2 [km−2], (c, G = 1; C = 0.3032). (5.12.201)

The onset of gravitational radiation driven instability due to the nonaxisymmetric f -mode (2 ≤ j =
k ≤ 5) has been located in rapidly rotating relativistic polytropes by Stergioulas and Friedman (1998)
if n = 1, 1.5, 2 (Table 5.8.2). Even with a suitably chosen gauge the perturbed metric still possesses six
metric perturbation functions a, b, c, d, e, f, depending on r, λ, and exp(ikϕ) :

ds2 = exp(2ν)(1 + 2a) dt2 − exp(2κ)[(1 + 2b) dr2 + r2(1 + 2d) dλ2]

− exp(2µ)(1 + 2d)(dϕ − ω dt − c dr)2 − 2e dt dr − 2f dt dλ. (5.12.202)

The unperturbed metric ds2
u assumes the form (4.2.149) for vanishing metric perturbation functions.

In the case of polar type perturbations (which are mixed by rotation with axial ones) the perturbed
Einstein equations (5.12.150) have to be supplemented by the perturbed relativistic continuity equation
δ(u
 ∇mT 
m) = 0 (conservation of relativistic energy), and by the perturbed relativistic Euler equation
of motion δ[(δm


 − u
u
m) ∇nT 
n] = 0 (conservation of momentum). These two equations can be derived

with the identity (4.1.14), which may be interpreted as a conservation equation for the energy-momentum
of fluid matter alone, when contributions from the gravitational field itself can be neglected (Landau and
Lifschitz 1987, §96). Multiplication of Eq. (4.1.14) by u
 yields with the energy-momentum tensor
(4.1.11) the conservation equation of relativistic energy:

u
 ∇mT 
m = um ∇m(P + εr) + (P + εr) ∇mum + (P + εr)umu
 ∇mu
 − g
mu
 ∇mP

= um ∇mεr + (P + εr) ∇mum = 0. (5.12.203)

To derive this equation, we have used ∇mT 
m = g
n ∇mTm
n = 0, u
u


 = 1, ∇mP = ∂P/∂xm, and
u
 ∇mu
 = u
 ∇mu
 = 0 from Eq. (6.4.88).

The relativistic Euler equation (6.4.90) can also be derived by multiplication of Eq. (4.1.14) with
δm

 − u
u

m :

(δm

 − u
u

m) ∇nT 
n = (P + εr)un ∇num − (gmn − umun) ∇nP = 0. (5.12.204)

Yoshida (2001) has investigated the properties of rotational r-modes in slowly rotating relativistic
polytropes (neutron stars with polytropic index 0 ≤ n � 1.2) for the purely axial perturbations from
Eqs. (5.12.159), (5.12.160) with h1(r) = 0. Bar-mode instabilities (sectorial or toroidal mode instabilities
∝ exp(±ikϕ); k = 2) of differentially rotating n = 1 polytropes in the post Newtonian approximation
show that general relativity enhances the dynamical bar-mode instability, similarly to the quasiradial
mode instability from Fig. 5.12.5 (see also Sec. 6.1.6, (iii); Saijo et al. 2001).

The relativistic evolution of close neutron binaries near the innermost stable circular orbit (prior to
dynamical orbital instability) has been followed up among others by Lombardi et al. (1997) if n = 0.5,
1, Baumgarte et al. (1997) if n = 1, Uryū et al. (2000) if 0.5 ≤ n ≤ 1.25. The quasiequilibrium inspiral
by emission of gravitational radiation is destroyed with the onset of relativistic gravitational instabilities
at separation distances (6− 10)G(Mr1 +M ′

r1)/c2, or when the Newtonian Roche limit of tidal disruption
is reached at typical separation distances (2− 3)(r3 + r′3)1/3, (Sec. 5.7.4, Lai et al. 1993, 1994a, Wilson
and Mathews 1995). The final merging of the two neutron stars takes place during a few orbital periods
(time intervals of order 10 milliseconds, e.g. Fig. 5.7.4 top, Ruffert et al. 1997, Faber and Rasio 2000).

Using a nonpolytropic, more realistic equation of state Wilson and Mathews (1995) find that otherwise
stable neutron stars may individually collapse to black holes when placed in close binary orbits.



6 FURTHER APPLICATIONS TO POLYTROPES

6.1 Applications to Stars and Stellar Systems

6.1.1 Eddington’s Standard Model

The overwhelming parts of this book have direct relevance to stellar and galactic structure. In fact,
prior to about 1930, most stellar models had more or less direct bearing on polytropes, and many analytic
solutions to the internal constitution of stars are connected with polytropic relationships.

Eddington’s standard model of radiative equilibrium results by division of the equation of radiative
transfer

dPr/dr = (4aT 3/3) dT/dr = −κ�L(r)/4πcr2, (Pr = aT 4/3), (6.1.1)

with the equation of hydrostatic equilibrium for a sphere

dP/dr = d(Pg + Pr)/dr = −G�M(r)/r2. (6.1.2)

This yields

dPr/dP = (4aT 3/3) dT/dP = κL(r)/4πcGM(r). (6.1.3)

Pg = βP and Pr = (1 − β)P denotes the gas and radiation pressure in the medium (Sec. 1.4), a is
Stefan’s radiation constant, c the velocity of light, κ = κ(r) the opacity, and L(r) the luminosity of the
star at distance r from the centre (energy flux through a sphere of radius r), where

dL(r) = 4πε(r) �r2 dr. (6.1.4)

It is implicitly assumed in Eqs. (6.1.1) and (6.1.4) that the whole luminosity L(r) is due to radiative
energy transport. Generally, the rate of energy flow L(r) is due to energy transport by radiation, convec-
tion, conduction, and sometimes neutrinos. Eq. (6.1.4) represents simply the energy balance equation,
when dL(r) is the variation of energy flux through a shell of thickness dr, and 4πε(r) �r2 dr is just the
energy produced per unit time within this shell, ε(r) denoting the energy production per unit time and
mass. Defining the quantity

η = η(r) = εm(r)/εm1 = [L(r)/M(r)]
/
(L1/M1), [M1 = M1(r1); L1 = L(r1); εm1 = εm(r1)],

(6.1.5)

we may write Eq. (6.1.3) under the form

dPr/dP = κ(r) η(r) L1/4πcGM1. (6.1.6)

εm(r) = L(r)/M(r) and εm1 = εm(r1) = L(r1)/M(r1) represent the average energy-generation rates
per unit mass inside radius r and r1, respectively, r1 being the stellar radius. We integrate Eq. (6.1.6)
between the surface where P (r1), Pr(r1) ≈ 0, and some interior point P = P (r), Pr = Pr(r) :

Pr = (L1/4πcGM1)
∫ P

0

κ(r) η(r) dP = (L1P/4πcGM1)
[
(1/P )

∫ P

0

κ(r) η(r) dP

]

= L1P [κ(r) η(r)]m
/
4πcGM1. (6.1.7)

The integral

[κ(r) η(r)]m = (1/P )
∫ P

0

κ(r) η(r) dP, (6.1.8)

549
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is an average of κ(r) η(r) with respect to total pressure in the region exterior to the radius r. Inserting
for Pr/P = 1 − β, (β = Pg/P ), Eq. (6.1.7) finally becomes

1 − β = [κ(r) η(r)]mL1

/
4πcGM1. (6.1.9)

Eddington’s fundamental assumption for the standard model is that [κ(r) η(r)]m = const, i.e. 1−β =
Pr/P is constant throughout the star: β = β0 = const. The central value of the ratio gas pressure to total
pressure is denoted by β0 = Pg0/P0. For a perfect gas-radiation mixture there subsist Eqs. (5.12.84),
(5.12.85), showing that the chemically homogeneous standard model is just a polytrope of index n = 3 :

P = R�T/µβ0 = [3(1 − β0)(R/µ)4/aβ4
0 ]1/3�4/3 = K�4/3, (β0, K, µ = const). (6.1.10)

The Bialobjesky-Eddington equation (5.12.86) permits the calculation of the ratio β0 for a standard
n = 3 star of given mean molecular weight and mass.

For the central pressure we get from Eq. (2.6.25)

P0 = GM2
1 /4π(n + 1)θ′1

2
r4
1 = 11.05 GM2

1 /r4
1 = 1.24 × 1017(M1/M�)2

/
(r1/r�)4 [dyne/cm2],

(n, N = 3; Γ(3/2) = Γ(1/2)
/
2 = π1/2/2). (6.1.11)

The ratio between central and mean density in the standard model is obtained at once from Eq.
(2.6.27) and Table 2.5.2 if N = 3 :

�0/�m = −ξ1/3θ′1 = 54.18, (n = 3). (6.1.12)

The central temperature for a star composed of a perfect gas-radiation mixture is given by

T0 = µβ0P0/R�0 = −3θ′1µβ0P0/ξ1R�m = µβ0GM1

/
(n + 1)ξ1(−θ′1)Rr1 = 0.8543 µβ0GM1/Rr1

= 1.96 × 107µβ0(M1/M�)
/
(r1/r�) [K], (n = 3). (6.1.13)

Much more sophisticated numerical models of the Sun, for instance, yield values of �0/�m and T0/µ
of the same order of magnitude (cf. Cox and Giuli 1968).

The gravitational energy of the standard model is obtained from Eq. (2.6.137) if n = 3 :

W = −3GM2
1 /2r1. (6.1.14)

The mean temperature over the mass of the standard model is given by

Tm = (1/M1)
∫

M1

T dM = (µβ0/RM1)
∫

M1

P dV = −µβ0W/3RM1 = µβ0GM1/2Rr1

= 1.15 × 107µβ0(M1/M�)
/
(r1/r�) = 0.5853 T0, (n = 3), (6.1.15)

where we have used Eq. (3.1.85) in the nonrotating case Ω = 0 :

W = −3
∫

V1

P dV. (6.1.16)

With this equation the internal energy of the perfect gas-radiation mixture is given by [cf. Eq. (1.4.13)]

U = Ug + Ur =
∫

M1

cV T dM +
∫

V1

aT 4 dV =
∫

V1

{[R/µ(γ − 1)]�T + 3(1 − β0)P} dV

= [β0/(γ − 1) + 3(1 − β0)]
∫

V1

P dV = −[1 + β0(4 − 3γ)/3(γ − 1)]W. (6.1.17)

This is equivalent to the virial theorem for a hydrostatic equilibrium mass composed of a perfect
gas-radiation mixture (cf. Eq. (2.6.100) if β0 = 1, γ = Γ). The total energy becomes (cf. Eq. (2.6.98) if
β0 = 1, γ = Γ, Um = 0) :

E = U + W = −β0(4 − 3γ)W
/
3(γ − 1), (γ, β0 = const). (6.1.18)
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A mass-radius-luminosity relation for the standard model can be obtained by assuming for the opacity
an interpolation law of the form

κ = κ(r) = κef�eT f , (κef , e, f = const), (6.1.19)

which turns into Kramers’ opacity law if e = 1, f = −3.5. Using the central value aµβ0T
3
0 /3R(1−β0)�0 =

1 of Eq. (5.12.84), we get with Eq. (6.1.13):

κ0 = κ(0) = κef�e
0T

f
0 = κefaµβ0�

e−1
0 T f+3

0 /3R(1 − β0)

= [κefa�e−1
0 /3(1 − β0)][GM1

/
(n + 1)ξ1(−θ′1)r1]f+3(µβ0/R)f+4, (n = 3). (6.1.20)

The central opacity value κ0 = κ(0) can be brought into evidence in Eq. (6.1.9), by writing Edding-
ton’s assumption under the form

[κ(r) η(r)]m = const = [κ(0) η(0)]m = κ0E0, (6.1.21)

where via Eq. (6.1.8), (Chandrasekhar 1939, pp. 243-245):

E0 = [κ(0) η(0)]m
/
κ(0) = (1/κ0P0)

∫ P0

0

κ(r) η(r) dP. (6.1.22)

If P, �, T belong to a polytrope composed of a perfect gas with negligible radiation pressure (β0 ≈ 1),
we have in virtue of Eqs. (2.6.3), (2.6.7): P = P0θ

n+1, � = �0θ
n, T = T0θ. Eq. (6.1.19) yields

κ/κ0 = θne+f , so Eq. (6.1.22) becomes

E0 = (n + 1)
∫ 1

0

η[r(θ)] θn(1+e)+f dθ, [β = β0 ≈ 1; r = r(θ)]. (6.1.23)

If ε = const, as in the uniform energy source model from Sec. 6.1.2, we infer from Eq. (6.1.5):
η(r) = η[r(θ)] = 1. And Eq. (6.1.23) becomes with Kramers’ opacity for the standard model:

E0 = (n + 1)
∫ 1

0

θn(1+e)+f dθ = (n + 1)
/
[n(1 + e) + f + 1] = 8/7 = 1.14,

(n = 3; ε = const; β0 ≈ 1; e = 1; f = −3.5). (6.1.24)

In the case of constant opacity κ = κ0, (e, f = 0) the previous equation yields E0 = 1. Generally, the
values of E0 are between about 1 and 3.3 (Chandrasekhar 1939, Chap. IX).

We combine Eqs. (6.1.9), (6.1.20), and (6.1.21):

L1 = 4πcGM1(1 − β0)/κ0E0 = [12πc(1 − β0)2�1−e
0 /aκefE0](R/µβ0)f+4

×(GM1)−f−2[(n + 1)r1ξ1(−θ′1)]
f+3, (n = 3). (6.1.25)

Eliminating 1−β0 between Eqs. (5.12.86) and (6.1.25), we get the mass-radius-luminosity relationship
of the standard model after insertion of �0 = −ξ1M1/4πθ′1r

3
1 from Eq. (6.1.12):

L1 = 4e+f−1πe+2ac(R/µGβ0)f−4M−e−f+3
1 r3e+f

1 ξ−e+f−4
1 (−θ′1)

e+f−2
/
3κefE0

= const M−e−f+3
1 r3e+f

1 (µβ0)−f+4/κef , (n = 3). (6.1.26)

All n = 3 polytropes of the standard model form a homologous family (see Sec. 2.2.1), and therefore
E0 is a pure number. The luminosity of all stars obeying the assumptions of the standard model changes
according to a homology relationship, the homology constant depending only on the constants e and f.

The standard model in general relativity has been considered by Tooper (1966a), [cf. Eq. (4.1.87)].
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6.1.2 Uniform Energy Source Model

If β = const, this model can be approximated with a polytrope. The uniform source model is not a
good approximation for stars with strongly concentrated energy sources – Cowling’s point source model
from the next section constituting the opposite limiting case. The uniform source model is subject to
analytical treatment and serves as a comparative base for other models with nonuniform distribution of
energy sources. The main characteristic of the model constitutes the relationship

ε = L(r)/M(r) = L1/M1 = const. (6.1.27)

It is always assumed that the uniform source model is convectively stable (in radiative equilibrium).
In view of Eq. (6.1.29) this amounts to the condition that the absolute value |dT/dr| = |dT/dr|rad of
the radiative temperature gradient (6.1.33) is always smaller than the absolute value |dT/dr|ad of the
adiabatic temperature gradient (6.1.34).

From the condition of convective stability (5.2.85)

A < 0 or (d ln �/dr)/(d lnP/dr) = d ln �/d lnP > 1/Γ1 = (∂ ln �/∂ lnP )S = (∂ ln �/∂ lnP )ad,

(dP/dr < 0), (6.1.28)

we can deduce the condition of convective stability of the temperature gradient in a chemically uniform
region of a star (Cox and Giuli 1968, Chap. 13):

dT/dr > (dT/dr)ad or |dT/dr| < |dT/dr|ad, (dT/dr < 0). (6.1.29)

P = P (r), � = �(r), T = T (r) denote pressure, density, and temperature at radius r in the actual
star, d ln �/d lnP = 1/Γ′

1 is the actual density gradient (1.3.1), while (∂ ln �/∂ lnP )ad = 1/Γ1 means
the density change (1.3.23) in a hypothetical, adiabatically changing mass element, starting from the
same initial conditions on P, �, T at the same radius r. The pressure within the adiabatic mass element is
assumed always equal to the actual pressure in the star, so the pressure change dP within radial distance
dr is identical on both sides of Eq. (6.1.28): Only d� and dT assume different values on both sides of the
inequalities (6.1.28), (6.1.29).

From Eq. (1.3.5) we get for the actual change of density and temperature over distance dr

d ln �/d lnP = 1/χ� − (χT /χ�) d lnT/d lnP, (6.1.30)

where we use ln P (r) instead of r as the independent variable.
The density and temperature variation in the adiabatic mass element is – with the same equation of

state – equal to

(d ln �/d lnP )ad = 1/χ� − (χT /χ�)(d lnT/d lnP )ad, (6.1.31)

where in view of the small density and temperature variations d�, dT – starting from the same initial state
– the derivatives χ�, χT assume the same values in the actual star and in the adiabatic mass element.
Inserting Eqs. (6.1.30), (6.1.31) into Eq. (6.1.28), we get the stability condition against convective
motions:

(P/T ) dT/dP < [(P/T ) dT/dP ]ad. (6.1.32)

And the convective stability condition (6.1.29) is obtained at once after multiplication with
(T/P ) dP/dr ≈ (Tad/P ) dP/dr < 0, taking into account that the adiabatic temperature Tad differs
from the actual temperature T at most by infinitesimal quantities of order dT.

If the actual temperature gradient dT/dr from Eq. (6.1.29) is given by the radiative temperature
gradient (6.1.1), the latter can be expressed in terms of the effective polytropic index n′

rad = 1/(Γ′
2 − 1)

from Eq. (1.3.26):

(dT/dr)rad = −3κ�L(r)
/
16πacT 3r2 = [3κL(r)

/
16πacGM(r) T 3] dP/dr

= [κL(r) T
/
16πcGM(r) (1 − β)P ] dP/dr = [T

/
P (n′

rad + 1)] dP/dr or
(d lnT/d lnP )rad = 1/(n′

rad + 1) = (Γ′
2 − 1)/Γ′

2, [n′
rad = −1 + 16πcGM(r) (1 − β)/κL(r)].

(6.1.33)
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And the effective polytropic index n′
ad = 1/(Γ2−1) corresponding to adiabatic (convective) equilibrium

is obtained via Eqs. (1.3.23), (1.3.30):

(dT/dr)ad = [T (Γ2 − 1)/PΓ2] dP/dr = [T/P (n′
ad + 1)] dP/dr or

(d lnT/d lnP )ad = 1/(n′
ad + 1) = (Γ2 − 1)/Γ2. (6.1.34)

The convective stability condition on the effective polytropic index n′
rad results from Eq. (6.1.32),

by substituting [(P/T ) dT/dP ]rad = 1/(n′
rad + 1) from Eq. (6.1.33) for (P/T ) dT/dP, and

[(P/T ) dT/dP ]ad = 1/(n′
ad +1) from Eq. (6.1.34): n′

rad > n′
ad, (n′

rad, n
′
ad > −1). This stability condition

reads in terms of polytropic (adiabatic) exponents as: Γ′
2 < Γ2, (Γ′

2, Γ2 > 1; Γ′
2 = 1 + 1/n′

rad; Γ2 =
1 + 1/n′

ad).
If the inequalities (6.1.28) or (6.1.29) are not fulfilled, convection sets in, and the resulting temperature

gradient is for almost all practical purposes only very slightly larger (in absolute value) than the absolute
value of the adiabatic temperature gradient |dT/dr|ad (Cox and Giuli 1968).

The uniform source model approximates fairly well gravitationally contracting stars for which the
energy production rate εg does not change too drastically over the stellar radius, because εg is directly
proportional to the temperature [εg ∝ T ∝ θ, (0 ≤ θ ≤ 1)], as will be shown in Eq. (6.1.46) below.
Note, that we do not consider for the moment, as in Secs. 2.6.6 or 5.12.1, the gravitational energy release
from a contracting star as a whole, but merely the local energy loss per unit time of a certain small,
gravitationally contracting mass element. The first law of thermodynamics (1.1.3) is written for a unit
mass in the Lagrangian representation (5.1.5) as

∂Q/∂t = ∂U/∂t − (P/�2) ∂�/∂t, (m = �V = 1). (6.1.35)

We now regard the specific internal energy U = ε(int)/� as a function of pressure and density, the
temperature being eliminated through the equation of state T = T (P, �) :

∂Q/∂t = (∂U/∂P )� ∂P/∂t + (∂U/∂�)P ∂�/∂t − (P/�2) ∂�/∂t

= P (∂U/∂P )�

{
∂ lnP/∂t + [�(∂U/∂�)P − P/�] (∂ ln �/∂t)

/
P (∂U/∂P )�

}
. (6.1.36)

∂Q/∂t = 0 has to subsist for an adiabatic change, i.e. ∂ lnP/∂t + [�(∂U/∂�)P − P/�] (∂ ln �/∂t)/
P (∂U/∂P )� = 0. But from the adiabatic relationship (1.3.23) we have ∂ lnP/∂t = Γ1 ∂ ln �/∂t, so the

first adiabatic index Γ1 can be identified with

Γ1 = [P/� − �(∂U/∂�)P ]
/
P (∂U/∂P )�. (6.1.37)

The factor

P (∂U/∂P )� = P (∂U/∂T )�

/
(∂P/∂T )� = T (∂U/∂T )�

/
(∂ lnP/∂ lnT )� = cV T/χT , (6.1.38)

is transformed via Eqs. (1.3.3), (1.3.12). The gravitational energy release per unit mass and time is
therefore

εg = −∂Q/∂t = ∂L(r)/∂M(r) = −(cV T/χT )[∂ lnP/∂t − Γ1 ∂ ln �/∂t]

= −(cV T/χT )[∂ ln(P/�Γ1)
/
∂t + (∂Γ1/∂t) ln �], (6.1.39)

where dL(r) is the gravitational luminosity escaping from a shell of mass dM(r) = 4π�(r) r2 dr.
An alternative form of this energy release is obtained if U is regarded as a function of � and T :

∂Q/∂t = (∂U/∂T )� ∂T/∂t + (∂U/∂�)T ∂�/∂t − (P/�2) ∂�/∂t

= T (∂U/∂T )�

{
∂ lnT/∂t + [�(∂U/∂�)T − P/�] (∂ ln �/∂t)

/
T (∂U/∂T )�

}
. (6.1.40)

From the adiabatic relationship (1.3.23) we get ∂ lnT/∂t = (Γ3 − 1) ∂ ln �/∂t, and analogously to Eq.
(6.1.37):

Γ3 − 1 = [P/� − �(∂U/∂�)T ]
/
T (∂U/∂T )�. (6.1.41)

Eq. (6.1.40) becomes

εg = −∂Q/∂t = −cV T [∂ lnT/∂t + (Γ3 − 1) ∂ ln �/∂t] = −cV T [∂ ln(T/�Γ3−1)
/
∂t + (∂Γ3/∂t) ln �].

(6.1.42)
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Likewise, if the thermodynamic changes occurring in the unit mass are reversible, we have in virtue
of Eqs. (1.1.4), (6.1.39):

εg = −∂Q/∂t = −T ∂S/∂t. (6.1.43)

Thus, if Γ1, Γ3 = const the local energy release per unit mass and time (6.1.39) or (6.1.42) is the
result of departures from adiabaticity, since for an adiabatic change there is via Eq. (1.3.23) P ∝ �Γ1

and T ∝ �Γ3−1. The two equations (6.1.39) and (6.1.42) are merely alternative forms of the first law of
thermodynamics, i.e. of the energy conservation equation (6.1.35). The energy release rate caused by
gravitational contraction of the star as a whole is introduced through the simple, approximate assumption
of uniform (homologous) contraction, already mentioned in Eqs. (2.6.196), (2.6.203), (2.6.205):

P (r) = (r/ri)−4P (ri) = (r1/ri1)−4P (ri); �(r) = (r/ri)−3�(ri) = (r1/ri1)−3�(ri),
[r = r(t); r1 = r1(t)]. (6.1.44)

i-indexed quantities denote initial values of the radial distance r, and of the stellar radius r1. We have

P (r)/[�(r)]Γ1 = {P (ri)/[�(ri)]Γ1}(r1/ri1)3Γ1−4 = const r3Γ1−4
1 . (6.1.45)

In the case of a perfect gas we have Γ1 = γ, χT = 1, and via Eq. (1.4.12): cV = R/µ(γ − 1) if
Γ1 = γ = const. Inserting this together with Eq. (6.1.45) into Eq. (6.1.39), we get the local energy
production rate per unit mass of a gravitationally contracting star composed of perfect gas with constant
specific heats (e.g. Menzel et al. 1963, Cox and Giuli 1968):

εg = −(3γ − 4)cV T (r) d ln r1/dt = −[(3γ − 4)RT (r)/µ(γ − 1)] d ln r1/dt, (Γ1 = γ = const).
(6.1.46)

Within our particular assumptions εg depends on the local temperature T at distance r, and on
the instantaneous total radius of the contracting star. The connection with the gravitational energy
production rate −dE/dt of the whole contracting star is made at once by integration of εg over the whole
star at a fixed moment, taking into account that dr1/dt is independent of r :

L = −dE/dt =
∫

M1

εg dM = −(3γ − 4)(d ln r1/dt)
∫

M1

cV T dM = −(3γ − 4)U d ln r1/dt

= [(3γ − 4)W/3(γ − 1)] d ln r1/dt = −(3γ − 4)GM2
1 (dr1/dt)

/
(5 − n)(γ − 1)r2

1

= −[(3γ − 4)/3(γ − 1)] dW/dt. (6.1.47)

This equation is just identical to the luminosity (5.12.7) of a contracting star without nuclear energy
sources, where cV T, (cV = const) is the specific internal energy of a perfect gas from Eq. (1.2.19), U
the total internal energy of a star from Eq. (2.6.100), and W the total gravitational energy (2.6.137) of
a spherical polytrope.

We will solve the uniform source model for two somewhat particular cases. At first we consider an
arbitrary value of β = Pg/P and Kramers’ opacity law

κ = κef�T−3.5, (κef = const). (6.1.48)

With

P = Pg + Pr = βP + (1 − β)P = R�T/µ + aT 4/3, (6.1.49)

Eq. (6.1.3) can be written under the form (Chandrasekhar 1939)

(3R/aµ) d(�T )/dT 4 = 4πcGM(r)/κL(r) − 1 = (4πcGM1/κefL1)T 3.5/� − 1. (6.1.50)

With the auxiliary variable

y = β/(1 − β) = Pg/Pr = 3R�/aµT 3, (6.1.51)

Eq. (6.1.50) reads

d(yT 4)/dT 4 = (12πcGRM1/aµκefL1)T 1/2
/
y − 1, (6.1.52)
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or

(yT/4) dy/dT = (12πcGRM1/aµκefL1)T 1/2 − y(y + 1). (6.1.53)

With the new variable

x = (12πcGRM1/aµκefL1)T 1/2, (6.1.54)

Eq. (6.1.53) becomes

(xy/8) dy/dx = x − y(y + 1), (6.1.55)

or with s = 1/8 � 1 :

sxy dy/dx = x − y(y + 1). (6.1.56)

Assume a perturbation solution of the form

y(x, s) = y0(x) + sy1(x) + ..., (s � 1), (6.1.57)

and equate the coefficients of equal powers of s :

x = y0(y0 + 1); xy0 dy0/dx = −y1(2y0 + 1), (6.1.58)

or

y0 = [−1 + (1 + 4x)1/2]/2; y1 = −xy0/(1 + 4x), (y0 > 0). (6.1.59)

Hence

y = y0[1 − sx/(1 + 4x) + ...] = y0[1 − x
/
32(x + 1/4) + ...]. (6.1.60)

Since x is very large, excepting perhaps near the surface when T → 0, the bracket can be approximated
by the limiting value 31/32 if x 	 1, and we find eventually

y0 = 32y/31; x = y0(y0 + 1) = (32y/31)(32y/31 + 1). (6.1.61)

Eq. (6.1.54) can now be written as

x = (12πcGRM1/aµκefL1)T 1/2 = 32β(1 + β/31)
/
31(1 − β)2. (6.1.62)

The temperature can be eliminated between Eqs. (6.1.51) and (6.1.62), to obtain a relationship
between � and β

(4πcGM1/κefL1)(3R/aµ)7/6�1/6 = 32β7/6(1 + β/31)
/
31(1 − β)13/6, (6.1.63)

which differentiates to

(1/6) d�/� = [7/6 + β + β(1 − β)/(β + 31)] dβ
/
β(1 − β). (6.1.64)

On the other hand, we get by logarithmic differentiation of Eq. (5.12.85)

dP/P = 4 d�/3� + (3β − 4) dβ
/
3β(1 − β). (6.1.65)

Eliminating dβ/β between the two last equations, we obtain

dP/P =
{
4/3 + (3β − 4)

/
3[7 + 6β + 6β(1 − β)/(31 + β)]

}
d�/�, (6.1.66)

which can also be written under the form of the logarithmic differential of the local polytropic law
P = K�1+1/n :

dP/P = (1 + 1/n) d�/�. (6.1.67)
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Dividing by Eq. (6.1.66), the effective polytropic index is given by [cf. Eq. (1.3.25)]

n = [(7 + 6β)(31 + β) + 6β(1 − β)]
/
[(1 + 3β)(31 + β) + 2β(1 − β)], [β = β(r)]. (6.1.68)

For negligible radiation pressure (β ≈ 1) we have n ≈ 3.25, and for negligible gas pressure n ≈
7, (β ≈ 0). Note, that β, and therefore n is not rigorously constant for this uniform source model;
if β would be exactly constant, Eq. (6.1.65) would turn into the standard model from Sec. 6.1.1:
dP/P = 4 d�/3�, (n = 3).

The uniform source model with Kramers’ opacity and negligible radiation pressure can therefore be
roughly approximated by a polytrope of nearly constant index n = 3.25. Its polytropic constant K can
be obtained by equating P = K�1+1/3.25 = K�1+4/13 with the exact equation (5.12.85), valid for any
perfect gas-radiation mixture:

K = [3(1 − β)(R/µ)4/aβ4]1/3�1/39 ≈ [3(1 − β0)(R/µ)4/aβ4
0 ]1/3�

1/39
0 ,

(n = 3.25; β0 = β(0) ≈ β(r) ≈ 1). (6.1.69)

The mass of this n = 3.25 polytrope is via Eq. (2.6.18) equal to

M1 = 4πα3�0ξ
2
1(−θ′1) = 4π[(n + 1)K/4πG]3/2�

(3−n)/2n
0 ξ2

1(−θ′1)

= 4(4.25/4)3/2[3(1 − β0)(R/µ)4/πaG3β4
0 ]1/2ξ2

1(−θ′1), (β ≈ β0 ≈ 1). (6.1.70)

This equation differs from the mass (5.12.86) of the standard model n = 3 only by the factor (cf.
Chandrasekhar 1939)

(4.25/4)3/2(−ξ2
1θ′1)n=3.25

/
(−ξ2

1θ′1)n=3 = 1.06. (6.1.71)

The central pressure and temperature of the n = 3.25 model is given by Eqs. (6.1.11) and (6.1.13),
respectively, where n = 3 should be replaced by n = 3.25.

The value of E0 from Eq. (6.1.24) becomes E0 = 17/16 = 1.0625 if n = 3.25. Obviously, the considered
special model n = 3.25 is very similar to the standard model n = 3, but is valid only for Kramers’ opacity
law, ε = const, and the restriction β ≈ 1.

Therefore, we also consider another uniform source model with the opacity law (e.g. Cox and Giuli
1968)

κ = κ′
efP eT−e+f , (κ′

ef = const), (6.1.72)

which turns for the perfect gas equation of state into the opacity law (6.1.19) with

κ′
ef = κef (µ/R)e, (β ≈ 1). (6.1.73)

Note, that the exponents e and f are generally different in the two opacity formulas (6.1.19) and
(6.1.72); they only coincide if the perfect gas equation of state P = R�T/µ subsists.

Eq. (6.1.3) is for the uniform source model with the opacity law (6.1.72) equal to

dT/dP = 3κL1/16πacGM1T
3 = 3κ′

efL1P
eT−e+f−3/16πacGM1, (L(r)/M(r) = L1/M1),

(6.1.74)

which can be integrated at once:

P e+1 = 16πacGM1[(e + 1)/(e − f + 4)]T e−f+4/3κ′
efL1 + C,

(e �= −1; e − f + 4 �= 0; C = const), (6.1.75)

P e+1 = 16πacGM1(e + 1) lnT/3κ′
efL1 + C, (e �= −1; e − f + 4 = 0). (6.1.76)

The last two equations become with the boundary condition P = P1 if T = T1 equal to

(P/P1)e+1 = 1 + (16πacGM1T
e−f+4
1

/
3κ′

efL1P
e+1
1 )[(e + 1)/(e − f + 4)][(T/T1)e−f+4 − 1],

(e �= −1; e − f + 4 �= 0), (6.1.77)
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(P/P1)e+1 = 1 + [16πacGM1(e + 1)
/
3κ′

efL1P
e+1
1 ] ln(T/T1), (e �= −1; e − f + 4 = 0). (6.1.78)

If P1, T1 denote surface (photospheric) values of pressure and temperature, we observe that – as we
move inwards – the values of (P/P1)e+1 and (T/T1)e−f+4 rapidly increase, since generally e + 1 > 0 and
e − f + 4 > 0. Under these circumstances, Eqs. (6.1.77) and (6.1.78) rapidly converge to the so-called
radiative zero solutions, obtained from Eqs. (6.1.75), (6.1.76) if C = 0. The surface values P1, T1 of the
radiative zero solution C = 0 obey the relationships

3κ′
efL1P

e+1
1

/
16πacGM1T

e−f+4
1 = (e + 1)/(e − f + 4), (e �= −1; e − f + 4 �= 0), (6.1.79)

3κ′
efL1P

e+1
1

/
16πacGM1 lnT1 = e + 1, (e �= −1; e − f + 4 = 0). (6.1.80)

And the radiative zero solution from Eq. (6.1.75) takes the polytropic form (1.3.26):

P = [16π(e + 1)acGM1

/
3(e − f + 4)κ′

efL1]1/(e+1)T (e−f+4)/(e+1) = K ′Tn′+1,

(C = 0; e �= −1; e − f + 4 �= 0), (6.1.81)

where

n′ = n′
rad = (−f + 3)/(e + 1); K ′ = [16π(e + 1)acGM1

/
3(e − f + 4)κ′

efL1]1/(e+1),

(e �= −1; e − f + 4 �= 0). (6.1.82)

The radiative gradient (6.1.33) is for the radiative zero solution (6.1.81) simply equal to

(d lnT/d lnP )rad = (P/T ) dT/dP = (e + 1)/(e − f + 4) = 1/(n′ + 1) = 3κL1P
/
16πacGM1T

4.
(6.1.83)

In virtue of Eq. (6.1.32) it is here assumed that the uniform source model is throughout in radiative
equilibrium, i.e. the radiative polytropic index (6.1.82) is always larger than the adiabatic polytropic
index: n′

rad > n′
ad = 1/(Γ2 − 1). If Γ2 = 5/3, as for a completely ionized, nonrelativistic perfect gas, the

condition is n′
rad > 1.5.

For a perfect gas with negligible radiation pressure (β ≈ 1) the two polytropic indices n and n′ from
Eqs. (1.3.25) and (1.3.26) are equal among each other. In this particular case the two polytropic constants
from P = K�1+1/n and P = K ′Tn′+1 are connected by

K ′ = (R/µ)n+1
/
Kn, (n = n′), (6.1.84)

as may be seen at once by inserting T = µP/R� = Kµ�1/n/R from Eq. (2.6.7) into P = K ′Tn+1 =
K ′(Kµ/R)n+1�1+1/n = K�1+1/n.

The luminosity of this particular uniform source model can be calculated by inserting

K = (4π)1/n[G/(n + 1)]ξ−1−1/n
1 (−θ′1)

−1+1/nM
(n−1)/n
1 r

(3−n)/n
1 ,

(N = 3; [Γ(1/2)]3
/
Γ(3/2) = 2π), (6.1.85)

from Eq. (2.6.21) into Eq. (6.1.84), with K ′ given by Eq. (6.1.82), and κ′
ef by Eq. (6.1.73):

L1 = (4e+3πe+2ac/3κef )[(n + 1)R/µG]f−4ξ−e+f−4
1 (−θ′1)

e+f−2M−e−f+3
1 r3e+f

1 ,

[β ≈ 1; n = n′ = (−f + 3)/(e + 1)]. (6.1.86)

For Kramers’ opacity law we have e = 1, f = −3.5, and n = n′ = 3.25, as it has already been found
in Eq. (6.1.68) under the same assumptions. The luminosity (6.1.86) becomes in this special case equal
to (Chandrasekhar 1939, Table 4, Cox and Giuli 1968)

L1 = 1.37 × 1025µ7.5(M1/M�)5.5
/
κef (r1/r�)1/2,

(β ≈ 1; n = n′ = 3.25; ξ1 = 8.01894; θ′1 = −3.03219 × 10−2). (6.1.87)

In the constant opacity case we have e, f = 0, κ0 = κef , n = n′ = 3, and the luminosity (6.1.86)
turns into the luminosity (6.1.26) of the standard model:

L1 = 38.9 µ4(M1/M�)3/κ0, (β ≈ 1; n = n′ = 3). (6.1.88)
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It should be stressed that all uniform source models approximated with polytropes of nearly constant
index n′ = n > 3 appear to be not quite realistic, as they are likely to become unstable under the
external pressure of their outer layers (Sec. 5.4.2). Moreover, uniform source models with nearly constant
polytropic index n > 5, [n ≈ 7 if β ≈ 0 in Eq. (6.1.68)] extend to infinity with infinite mass – an additional
decrease of their reliability.

6.1.3 Point Source (Cowling) Model

This model is from the standpoint of energy generation opposite to the previous uniform source model.
The whole energy generation is limited to a core of radius rc :

L1 = L(rc) = 4π
∫ rc

0

ε(r) r2 dr, (rc � r1). (6.1.89)

Point source models are composed of a radiative envelope and a small convective core, where all
the energy generation takes place. The existence of a convective core results from the instability of the
radiative gradient (6.1.33), as we move towards the centre of the star. The radiative zero solution (6.1.81)
holds roughly in the outermost layers of a point source model, where L(r) = L1 and M(r) ≈ M1. As
already mentioned subsequently to Eq. (6.1.78), all solutions with L(r)/M(r) = L1/M1 = const tend
simply to the radiative zero solution as we move inwards into the star, provided that e+1 > 0, e−f+4 > 0.

From the radiative gradient (6.1.83) follows that the relationship

κP/T 4 = 16π(e + 1)acGM1

/
3(e − f + 4)L1 ≈ const, (r ≈ r1), (6.1.90)

holds in the outermost radiative layers. The radiative gradient (6.1.33) subsists in the inner layers of a
radiative envelope, where for the point source model L(r) = L1 :

(d lnT/d lnP )rad = 1/(n′
rad + 1) = 3κPL1/16πacGT 4M(r). (6.1.91)

In virtue of Eq. (6.1.90) we have κP/T 4 ≈ const, and the inward decrease of n′
rad from Eq. (6.1.91)

is mainly due to the decrease of M(r). The radiative polytropic index n′
rad eventually decreases below

the adiabatic value n′
ad, when convection sets in [see Eq. (6.1.32)]. In the case of a completely ionized,

perfect gas we have Γ1 = Γ2 = 5/3, and the convective core of a point source model is identical to an
incomplete polytrope of index n = n′ = 1/(Γ1 − 1) = 1.5.

A simplified model with κ = const, (e, f = 0) has been amply discussed by Chandrasekhar (1939).
This so-called complete point source model fully includes radiation pressure, but ignores the previously
mentioned instability of the radiative gradient. In fact, the radiative gradient becomes unstable below
rc/r1 = 0.28 if κ = const, and β ≈ 1 (Cox and Giuli 1968, Table 23.2). As the complete point source model
has no direct bearing on polytropes, we turn directly to composite point source models with negligible
radiation pressure (P ≈ R�T/µ), consisting of a convective core surrounded by a radiative envelope. The
equations of stellar structure take a somewhat simpler form by introducing the dimensionless variables

r = αξ; � = �0σ; T = T0τ ; M = m0ψ, (α, �0, T0, m0 = const). (6.1.92)

�0 and T0 denote central values of density and temperature, respectively, and α is just equal to the
distance scaling factor (2.1.13) of the Lane-Emden equation (2.1.14), as will be shown by Eqs. (6.1.95),
(6.1.97). The equation of hydrostatic equilibrium

dP/dr = (R/µ) d(�T )/dr = −G�M(r)/r2, (β ≈ 1), (6.1.93)

together with the mass conservation equation dM(r)/dr = 4π�r2 are brought to the dimensionless forms

d(στ)/dξ = −(n + 1)σψ/ξ2; dψ/dξ = σξ2, (6.1.94)

where �0, T0, m0 are related by (Chandrasekhar 1939)

RT0/µ = Gm0/(n + 1)α = 4πG�0α
2/(n + 1); m0 = 4π�0α

3,(
α2 = (n + 1)RT0/4πGµ�0 = (n + 1)P0/4πG�2

0

)
. (6.1.95)



6.1.4 Convective Model with Radiation Pressure 559

The temperature gradient is only slightly superadiabatic in the convective core, and therefore the core
can well be approximated with an incomplete (truncated) polytrope of index

nad = n′
ad = 1/(Γ1 − 1) = 1/(Γ2 − 1) = d lnP/d lnT − 1. (6.1.96)

In the convective core the appropriate solution is therefore

σ = θn; τ = θ; ψ = −ξ2θ′, (n = nad = const), (6.1.97)

where θ is the Lane-Emden function from Eqs. (2.6.3), (2.6.7), (2.6.18). In the radiative envelope the
temperature gradient is governed by Eq. (6.1.1), which takes the form

dτ/dξ = −Qσe+1τf−3/ξ2, (Q = 3κefL1�
e+1
0 T f−4

0 /16πacα = const; κ = κef�e
0T

f
0 σeτf ).

(6.1.98)

Suppose that the convective core extends up to the dimensionless Lane-Emden coordinate ξ = ξc. At
this point we have via Eqs. (6.1.97), (6.1.98):

σc = θn
c ; τc = θc; ψc = −ξ2

cθ′c; Q = ξ2
cθ3−f−n(1+e)

c (−θ′c), (θ′c = (dτ/dξ)ξ=ξc
). (6.1.99)

With this value of Q we can numerically integrate Eqs. (6.1.94), (6.1.98) up to a surface coordinate
ξ = ξ1, where σ or τ becomes zero first. Now, for a physically significant solution σ and τ have to become
zero simultaneously, which will generally not be the case for an arbitrarily assigned value of ξc. Therefore,
ξc has to be adjusted until σ and τ tend to zero simultaneously.

The central temperature, density, and pressure of the point source model are obtained from Eq.
(6.1.95):

T0 = Gµm0/(n + 1)Rα = Gµξ1M1/(n + 1)Rψ1r1; �0 = m0/4πα3 = ξ3
1M1/4πψ1r

3
1 = ξ3

1�m/3ψ1;

P0 = R�0T0/µ = Gµξ4
1M2

1 /4π(n + 1)Rψ2
1r4

1. (6.1.100)

Eqs. (6.1.98), (6.1.100) lead to the following mass-radius-luminosity relationship:

L1 = 16πacQr1T
4−f
0 /3κef�e+1

0 ξ1

= (4e+3πe+2acQ/3κef )[(n + 1)R/µG]f−4ξ−3e−f
1 ψe+f−3

1 M−e−f+3
1 r3e+f

1 . (6.1.101)

Thus, the luminosity of the point source model shows the same µ−f+4M−e−f+3
1 r3e+f

1 dependence as
the luminosities (6.1.26) and (6.1.86) of the standard and uniform source model, respectively.

For nad = 1.5, and constant opacity κ = κef , (e, f = 0) there results: ξc/ξ1 = rc/r1 = 0.283, ψc/ψ1 =
Mc/M1 = 0.312, �0/�m = 19.8, T0 = 1.76 × 107 K (Sun). For nad = 1.5, and Kramers’ opacity law
(e = 1, f = −3.5) Cowling has found: ξc = 1.19, θc = 0.788, θ′c = −0.321, ψc = 0.453, rc/r1 =
0.169, Mc/M1 = 0.145, �0/�m = 37.0, T0 = 2.08× 107 K (Sun), Q = 0.197 (Chandrasekhar 1939, Chap.
IX; Cox and Giuli 1968, Table 23.2).

Although the mass concentration �0/�m = 37.0 of the point source model with Kramers’ opacity is
less than in the standard model [�0/�m = 54.18, Eq. (6.1.12)], its central temperature 2.08 × 107 K is
somewhat larger than in the standard model [1.96 × 107 K, Eq. (6.1.13)] of a solar-type star.

6.1.4 Convective Model with Radiation Pressure

As a considerable restriction of this fully convective model it is assumed that the perfect gas component
is completely ionized: γg = cPg/cV g = 5/3 (Henrich 1941). With this particular value of the adiabatic
gas exponent, the first adiabatic index (1.4.20) becomes

Γ1 = β + 2(4 − 3β)2/3(8 − 7β) = (3β2 + 24β − 32)/3(7β − 8), (γg = 5/3), (6.1.102)

and the adiabatic pressure-density relationship (1.3.23) turns into

dP/P = Γ1 d�/� = (3β2 + 24β − 32) d�/3�(7β − 8), (P = R�T/µ + aT 4/3; γg = 5/3).
(6.1.103)
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From the logarithmic differentiation of the general relationship (5.12.85) we get

dP/P = (3β − 4) dβ
/
3β(1 − β) + 4 d�/3�. (6.1.104)

Elimination of d�/� between Eqs. (6.1.103) and (6.1.104) leads to

dP/P = (3β2 + 24β − 32) dβ
/
3β2(β − 1) = [32/3 + 5/3y + 1/(y + 1)] dy, (6.1.105)

where

β = 1/(y + 1); y = (1 − β)/β = 1/β − 1. (6.1.106)

On integration, Eq. (6.1.105) gives

P = P0(y/y0)5/3[(1 + y)/(1 + y0)] exp[32(y − y0)/3], (6.1.107)

where zero indexed quantities denote central values. Insertion of Eq. (6.1.107) into Eq. (5.12.85) yields

� = �0(y/y0) exp[8(y − y0)], (6.1.108)

and then, using Eq. (5.12.84):

T = T0(y/y0)2/3 exp[8(y − y0)/3]. (6.1.109)

Eqs. (6.1.106)-(6.1.109) are the parametric equations of state of a mixture consisting of monoatomic
gas and radiation in adiabatic equilibrium (Menzel et al. 1963). Obviously, only two of the four constants
y0, P0, �0, T0 are arbitrary.

Eqs. (6.1.107) and (6.1.108) are now inserted into the spherically symmetric form of Poisson’s equation
[Henrich 1941, Eq. (22)]:

(1/r2) d(r2 dΦ/dr)
/
dr = (1/r2) d[(r2/�) dP/dr]

/
dr = [5P0/2�0(y0 + 1)r2] d(r2 dF/dr)

/
dr

= −4πG� = −4πG�0(y/y0) exp[8(y − y0)], (6.1.110)

where

F = (y/y0)2/3(1 + 8y/5) exp[8(y − y0)/3]. (6.1.111)

The ratio P0/�0 can be expressed with the equation of state

P0/�0 = Pg0/β0�0 = RT0/β0µ = RT0(1 + y0)/µ, (6.1.112)

and Eq. (6.1.110) becomes

(1/r2) d(r2 dF/dr)
/
dr = −(8πGµ�0/5RT0)(y/y0) exp[8(y − y0)]. (6.1.113)

This equation writes in dimensionless form as

(1/η2) d(η2 dF/dη)
/
dη = −σ, (6.1.114)

by substituting

r = Aη; A2 = 5RT0/8πGµ�0; � = �0σ = �0(y/y0) exp[8(y − y0)]. (6.1.115)

From Eqs. (6.1.111) and (6.1.115) we can easily check that for small y, y0 we have

F ≈ (y/y0)2/3; σ ≈ y/y0, (y, y0 ≈ 0; β, β0 ≈ 1). (6.1.116)

For large y, y0 the variation of the functions F and σ is determined mainly by the exponentials

F ≈ C1 exp[8(y − y0)/3]; σ ≈ C2 exp[8(y − y0)], (y, y0 → ∞; β, β0 ≈ 0; C1, C2 = const).
(6.1.117)
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Thus, inserting F ≈ (y/y0)2/3 = θ, σ ≈ y/y0 = θ3/2 if y, y0 → 0, and F ≈ C1 exp[8(y − y0)/3] =
C1θ, σ ≈ C2 exp[8(y−y0)] = C2θ

3 if y, y0 → ∞, we observe that in these two limiting cases the structure
equation (6.1.114) reduces approximately to a Lane-Emden equation of polytropic index n = 1.5 and 3,
respectively, the constants C1, C2 being included in a new distance scaling factor A.

The boundary conditions at the origin η = 0 are obviously

F = 1 + 8y0/5; dF/dη = 0; σ = 1. (6.1.118)

The condition (dF/dη)η=0 = 0 obtains if we expand F near the origin:

F = 1 + 8y0/5 + a1η + a2η
2 + ... ≈ 1 + 8y0/5 − η2/6, (η ≈ 0). (6.1.119)

The density � = �0σ becomes zero at the radius r1 = Aη1 of the configuration. The mass of the
convective model is simply

M1 =
∫ r1

0

4π�r2 dr = 4πA3�0

∫ η1

0

ση2 dη = 4πA3�0η
2
1(−dF/dη)η=η1 . (6.1.120)

In virtue of Eqs. (5.12.84) and (6.1.115) we have

A3�0 = (5RT0/8πGµ)3/2�
−1/2
0 = (5/8πG)3/2(R/µ)2[3(1 − β0)/aβ0]1/2

= (5/8πG)3/2(R/µ)2(3y0/a)1/2. (6.1.121)

So, we can write the mass (6.1.120) as (Henrich 1941, Menzel et al. 1963)

M1 = (5/2)3/2(Cy
1/2
0 /µ2)η2

1(−dF/dη)η=η1 = 4.42(y1/2
0 M�/µ2)η2

1(−dF/dη)η=η1 ,

(C = (3/4πaG3)1/2R2). (6.1.122)

To get M1 in the two limiting cases y0 → 0 and y0 → ∞, we write down at first an expression for
the polytropic constant K, by equating the central polytropic pressure P0 = K�

1+1/n
0 to the pressure

(5.12.85) of a perfect gas-radiation mixture:

K = [3(1 − β0)(R/µ)4/aβ4
0 ]1/3�

(n−3)/3n
0 . (6.1.123)

Inserting for α from Eq. (2.1.13), and for K from Eq. (6.1.123), the polytropic mass (2.6.18) becomes
in the two limiting cases n = 1.5, 3 :

M1 = 4πα3�0ξ
2
1(−θ′1) = 4π[(n + 1)K/4πG]3/2�

(3−n)/2n
0 ξ2

1(−θ′1)

= (3/4πaG3)1/2(R/µ)2(n + 1)3/2[(1 − β0)/β4
0 ]1/2ξ2

1(−θ′1)

= C(n + 1)3/2[y1/2
0 (1 + y0)3/2/µ2]ξ2

1(−θ′1), [β0 = 1/(1 + y0)]. (6.1.124)

Numerically this equation reads (Henrich 1941)

M1 = 12y
1/2
0 M�/µ2, (n = 1.5; y0 → 0) and M1 = 18y2

0M�/µ2, (n = 3; y0 → ∞).
(6.1.125)

The ratio of central to mean density for the two particular limiting cases n = 1.5, (y0 → 0) and
n = 3, (y0 → ∞) is given by Eq. (2.6.27) if N = 3. For general y0 one easily gets with Eq. (6.1.120):

�0/�m = −η1

/
3(dF/dη)η=η1 , (y0 �= 0,∞). (6.1.126)

And finally, the central temperature of the fully convective model with radiation pressure is obtained
from Eq. (6.1.115) by inserting for A3�0 from Eq. (6.1.121), for A = r1/η1 from Eq. (6.1.115), and for
y
1/2
0 from Eq. (6.1.122):

T0 = 8πµGA2�0/5R = (15y0/8πGa)1/2Rη1/µr1 = 2µGM1

/
5Rη1(−dF/dη)η=η1r1. (6.1.127)
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Fig. 6.1.1 Dimensionless density run in a fully convective model with radiation pressure and γg = 5/3.
The seven curves from left to right are obtained for values of y0 = 1/β0 − 1 equal to y0 = ∞, 2, 1, 0.5, 0.25, 0.1, 0,
respectively, the values y0 = 0 and y0 = ∞ corresponding to the n = 1.5 and n = 3 polytrope (Henrich 1941).

For the two limiting polytropes n = 1.5 and n = 3 the central temperature results, for instance, from
Eq. (6.1.13):

T0 = µβ0GM1

/
(n + 1)ξ1(−θ′1)Rr1 = µGM1

/
(y0 + 1)(n + 1)ξ1(−θ′1)Rr1,

(n = 1.5, β0 → 1, y0 → 0 and n = 3, β0 → 0, y0 → ∞). (6.1.128)

The numerical results of Henrich (1941) show that the two limiting polytropic models n = 1.5 and
n = 3 include the other models obtained if 0 < y0 < ∞, (0 < β0 < 1), (see Fig. 6.1.1). For instance,
from Eq. (6.1.125) results M1 = 0 if y0 = 0, and M1 = ∞ if y0 = ∞, while the limiting ratios �0/�m

from Eq. (6.1.126) are included between the values −ξ1/3θ′1 = 5.991 and 54.18 of the n = 1.5 and n = 3
polytrope, respectively.

6.1.5 Convective Model with Negligible Radiation Pressure

Completely convective stars are represented by late M -dwarfs, gravitationally contracting pre-main
sequence stars, supermassive objects (Sec. 5.12.3), and perhaps by some relativistically degenerate white
dwarfs. In all these stars the adiabatic gradient is always smaller than the radiative gradient [see Eqs.
(6.1.28)-(6.1.34)]:

(d lnT/d lnP )ad = (Γ2 − 1)/Γ2 < (d lnT/d lnP )rad = (Γ′
2 − 1)/Γ′

2. (6.1.129)

We also assume the perfect gas equation of state (1.2.5) to be valid throughout the star. In this case
Γ1 = Γ2 = Γ3, and if Γ2 = const we can integrate Eq. (6.1.129) at once:

P = K ′TΓ2/(Γ2−1) = K ′Tn′+1 = K ′Tn+1 = (R/µ)n+1Tn+1/Kn,

(β ≈ 1; K ′, K = const; n′ = n′
ad = 1/(Γ2 − 1) = 1/(Γ1 − 1) = nad = n). (6.1.130)

Since the perfect gas is completely ionized, we have Γ1 = Γ2 = 5/3, and the structure of the completely
convective star is approximately equal to that of a n = 1/(Γ1 − 1) = 1.5 polytrope, like the convective
core in the point source model from Sec. 6.1.3. Generally, we have n, n′ ≈ 3 in the radiative regions of
the standard model, and of the uniform and point source model. The value of the constant K ′ from Eq.
(6.1.130) is given by Eqs. (6.1.84), (6.1.85):

K ′ = (R/µ)n+1
/
Kn = [(n + 1)/G]n(R/µ)n+1ξn+1

1 (−θ1)n−1M1−n
1 rn−3

1 /4π, (n = 1.5).
(6.1.131)
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The central pressure of the completely convective star is [cf. Eqs. (2.6.25), (6.1.11)]

P0 = GM2
1 /4π(n + 1)θ′21r

4
1 = 0.77014 GM2

1 /r4
1

= 8.66 × 1015(M1/M�)2
/
(r1/r�)4 [dyne/cm2], (n = 1.5). (6.1.132)

The ratio central to mean density amounts to [cf. Eqs. (2.6.27), (6.1.12)]

�0/�m = −ξ1/3θ′1 = 5.991, (n = 1.5). (6.1.133)

Likewise, the central temperature of the convective model is [cf. Eq. (6.1.13)]

T0 = µGM1/(n + 1)ξ1(−θ′1)Rr1 = 0.538 µGM1/Rr1

= 1.23 × 107µ(M1/M�)
/
(r1/r�) [K], (n = 1.5; β0 ≈ 1). (6.1.134)

A somewhat more explicit form of the adiabatic relationship (6.1.130) can be given in terms of the di-
mensionless Schwarzschild variables. From the equation of hydrostatic equilibrium dP = −G�M(r) dr/r2

it is seen that the dimension of P is [P ] = [GM2
1 /r4

1], and the dimensionless pressure p is accordingly
defined by

p = P
/
(GM2

1 /4πr4
1). (6.1.135)

Likewise, from the perfect gas law P = R�T/µ we deduce that the dimension of T is [T ] = [µP/R�] =
[µPr3

1/RM1] = [µGM1/Rr1], and the dimensionless temperature t is defined by the relationship

t = T
/
(µGM1/Rr1). (6.1.136)

Eq. (6.1.130) reads via Eq. (6.1.131) in terms of the Schwarzschild variables p, t as

p = 4πGn(µ/R)n+1K ′Mn−1
1 r3−n

1 tn+1 = (n + 1)nξn+1
1 (−θ′1)

n−1tn+1 = Etn+1,

(E = (n + 1)nξn+1
1 (−θ′1)

n−1). (6.1.137)

With our value n = 1.5 of the polytropic index this amounts to

E = 4πG3/2(µ/R)5/2K ′M1/2
1 r

3/2
1 = (2.5)3/2ξ

5/2
1 (−θ′1)

1/2 = 45.48, (n = 1.5). (6.1.138)

If radiation pressure is included, as in the previous section, we obtain for a completely ionized gas by
elimination of y/y0 between Eqs. (6.1.107) and (6.1.109):

P = [P0

/
T

5/2
0 (1 + y0) exp(4y0)](1 + y) exp(4y) T 5/2 = (K ′/β) exp[4(1/β − 1)] T 5/2,

[γg = 5/3; y = 1/β − 1; K ′ = P0

/
T

5/2
0 (1 + y0) exp(4y0)]. (6.1.139)

In the case of negligible radiation pressure we have β = 1, and Eq. (6.1.139) turns into Eq. (6.1.130).
If we differentiate Eq. (6.1.130) or (6.1.137), we get

dT/dP = 1
/
(n + 1)K ′Tn; dt/dp = 1

/
(n + 1)Etn, (6.1.140)

showing that – for the same pressure change dP or dp – the temperature will increase faster and faster if
the value of K ′ or E becomes smaller and smaller, as we move from the surface (P, T ≈ 0) to the centre
(P = P0, T = T0). Hence, in a convective envelope a certain temperature will be attained closer to the
surface if K ′ or E take small values, and the temperature gradient |dT/dr| between the bottom of the
convective envelope and the centre will become more modest, the smaller the value of K ′ or E. But if the
temperature gradient |dT/dr| is small, the temperature is determined in virtue of Eq. (6.1.29) by radiative
energy transport, rather than by convection, i.e. the convective envelope possesses a radiative core. Thus,
the fractional depth of the convective envelope decreases as K or E becomes smaller and smaller. In the
limit K ′ → 0 or E → 0, a steep temperature increase with pressure would occur almost instantaneously
with depth, and the thickness of the convective envelope tends to zero, i.e. K ′, E = 0 amounts to a wholly
radiative star, without convective envelope. The maximum value of E is given by Eq. (6.1.138), when the
star is fully convective, without radiative core. Since a star cannot be more than completely convective,
a star having E > 45.48 is located in Hayashi’s “forbidden region” on a Hertzsprung-Russell diagram,
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and cannot be in hydrostatic equilibrium; it would adjust itself to an equilibrium structure roughly on
the free-fall time scale (5.12.4), (Hayashi et al. 1962, Cox and Giuli 1968).

In contrast to convective (adiabatic) envelopes, where the polytropic constant K ′ is determined by
the surface conditions and convection theory, the value of K ′ can simply be evaluated from the internal
stellar structure in the case of completely convective stars with n = const [e.g. from the central condition
K ′ = P0/Tn+1

0 , or from Eq. (6.1.131)]. Note, that K ′ is determined in a straightforward manner in the
case of radiative stars [cf. Eq. (6.1.82)].

On the other side, the stellar surface boundary conditions on pressure and temperature have to
be utilized for the determination of the total luminosity L1 of completely convective stars, obeying the
adiabatic relationship (6.1.130); this is not necessarily the case in stars which are in radiative equilibrium,
when total mass, radius, and opacity are sufficient for evaluating L1 [see Eqs. (6.1.25), (6.1.86), (6.1.101)].
The luminosity of fully convective stars can easily be computed if we go to the one place in the star where
radiative transfer holds – the region above the photosphere. The material above the photosphere must
be predominantly in radiative equilibrium, because the photosphere is by definition the “visible surface”
at r = r1 of a star, wherefrom energy is radiated into external space. The normal optical depth

τ(r1) =
∫ r2

r1

κ(r) �(r) dr, (dτ = −κ� dr; �(r2), τ(r2) = 0; r2 − r1 � r1), (6.1.141)

of the narrow surface layer r2 − r1 must be minor, and Eddington assumes that radiation pressure is
given for all optical depths by Pr = aT 4/3 from Eq. (6.1.1), a relationship which is actually valid only
for large optical depths. For a grey atmosphere, the theory of radiative transfer yields the well known
formula for the temperature change with atmospheric optical depth (Cox and Giuli 1968):

T 4 = T 4
e (1/2 + 3τ/4). (6.1.142)

Te denotes the effective temperature occurring at the bottom of the photosphere at optical depth
τ = τ(r1) = τ1 = 2/3, (T (r1) = Te). The outer boundary temperature at r = r2 is equal to T (r2) =
Te/21/4, (τ(r2) = 0). To determine the photospheric pressure P1, we integrate the equation of hydrostatic
equilibrium:

P1 = P (r1) = P (r2) +
∫ r2

r1

GM(r) �(r) dr/r2 ≈ a[T (r2)]4/3 + (GM1/r2
1)
∫ τ1

0

dτ/κ ≈ 2σT 4
e /3c

+2GM1/3κ1r
2
1 = (2GM1/3κ1r

2
1)(1 + κ1L1/4πcGM1) ≈ 2GM1/3κ1r

2
1, [τ1 = 2/3; κ1 = κ(τ1)].

(6.1.143)

We have replaced in Eq. (6.1.143) the net radiation flux from the photospheric surface unit by the
flux σT 4

e = L1/4πr2
1, [Te = 21/4T (r2)] of a black body, σ = ac/4 being the Stefan-Boltzmann constant.

In terms of the effective temperature Te the luminosity of a completely convective star is simply

L1 = 4πσr2
1T

4
e , (6.1.144)

where the effective temperature can be determined for instance from Tn+1
e = [T (r1)]n+1 = P1/K ′ with

K ′ and P1 given by Eqs. (6.1.131) and (6.1.143), respectively.
Convective envelopes occur if Eq. (6.1.130) holds only in the outer regions of the star. On the

other hand, the same relationship also holds in the radiative envelopes of the uniform source model
[Eq. (6.1.81)]. Thus, convective and radiative envelopes, both obey a polytropic relationship of the form
(6.1.81) and (6.1.130), where n′ = n′

ad = 1/(Γ2−1) and n′ = n′
rad = (−f +3)/(e+1) in the convective and

radiative envelope, respectively. The polytropic constant K ′ has to be determined from the photospheric
surface condition (6.1.143) in the case of convective envelopes: P (r1) = 2GM1/3κ1r

2
1 = K ′[T (r1)]n

′
ad+1 =

K ′Tn′
ad+1

e . For radiative envelopes K ′ is given by Eq. (6.1.82) in the uniform source model.
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6.1.6 Applications to Differentially Rotating Polytropes

(i) Differentially Rotating Sun. Geroyannis and Antonakopoulos (1980) have considered a solar
model of polytropic index n = 3.25, constructed on the basis of the theory of differentially rotating
polytropes with the rotation law (3.5.8), the central rotation period of the core being 1.8 days [cf. Dicke
1970, and next point (ii)]. Differential rotation traps a large amount of angular momentum into the core,
increasing the total storage capacity of angular momentum as compared to uniform rotation by about
two orders of magnitude [see also Mohan et al. (1992, Table V)].

(ii) Solar Polytropes and Perihelion Advance of Mercury. As will be obvious from the
following, this item is closely connected to a nonuniformly (differentially) rotating Sun. The perihelion
movement (perihelion precession) of Mercury’s orbit is caused by three factors (e.g. Gerthsen et al. 1977):
(i) Perturbations of the other planets. (ii) Oblateness of the rotating Sun. (iii) Relativistic effects due to
general relativity, scalar-tensor theories, and other gravitation theories.

The perihelion advance in the orbital plane of the Keplerian ellipse due to general relativity is given
by [e.g. Landau and Lifschitz 1987, Eq. (101.7)]

∆ωr = 6πGM�/c2a(1 − e2) [radians per revolution period]. (6.1.145)

This amounts for Mercury to 43.0 seconds of arc per century. In Eq. (6.1.145) a and e denote the
semimajor axis and eccentricity. The perturbations of the other planets on the perihelion movement of
Mercury can be calculated quite exactly with Newtonian gravitation, leaving a residue which is just equal
to the general relativistic perihelion advance (6.1.145). This implies that the perihelion perturbations
∆ω from Eqs. (6.1.166)-(6.1.168) – caused by solar oblateness – are almost negligible within the limits
of observational error. As it appears from Table 6.1.1, the oblateness resulting from uniformly rotating
polytropic models of the Sun (1 ≤ n ≤ 3.5) is f = (1.08 − 1.59) × 10−5, which is 3-5 times smaller than
the oblateness f = (5±0.7)×10−5 measured by Dicke and Goldenberg (Fahlman et al. 1970). This large
oblateness has been used as an argument in favour of a large influence of the solar quadrupole moment
J2 on the perihelion advance of Mercury, causing an 8% discrepancy (∆ω ≈ 3.4′′ per century) with the
general relativistic prediction (6.1.145), (Anand and Fahlman 1968, Fahlman et al. 1970). And this
discrepancy may be used as an argument in favour of scalar-tensor theories of gravitation, like the Brans-
Dicke theory. As it is not our scope to dispute the reliability of various gravitation theories – although
Einstein’s general relativity seems to be the most reliable one – we concentrate on the determination of
Mercury’s perihelion advance ∆ω caused by oblate polytropic models of the Sun. Winer’s (1966) first
order theory appears to be sufficiently accurate.

As already shown by Eqs. (3.1.61)-(3.1.63), the quadrupole moment J2 of the rotationally symmetric
Sun is given by

M�r2
�J2 = C − (A + B)/2 =

∫
V1

[(x2
1 + x2

2) − (2x2
3 + x2

1 + x2
2)/2]� dV

=
∫

V1

[(x2
1 + x2

2)/2 − x2
3]� dV = 2π

∫ π

0

[(1/2) sin2 λ − cos2 λ] sinλ dλ

∫ r1(λ)

0

r4�(r, λ) dr

= −2π

∫ 1

−1

P2(µ) dµ

∫ r1(µ)

0

r4�(r, µ) dr, (µ = cos λ; P2(µ) = (3µ2 − 1)/2). (6.1.146)

In our first order approximation we have equated the equatorial radius a1 of the Sun from Eq. (3.1.63)
to its mean radius r� = 6.96 × 1010 cm.

Turning with Eqs. (3.2.1), (3.2.44) to the polytropic variables of Chandrasekhar’s (1933a) first order
perturbation theory, we get via Eqs. (3.2.58), (3.5.16):

M�r2
�J2 = −2πα5�0

∫ 1

−1

P2(µ) dµ

∫ Ξ1(µ)

0

ξ4Θn(ξ, µ) dξ

≈ {2πα5�0βξ2
1

/
3[3ψ2(ξ1) + ξ1ψ

′
2(ξ1)]}

∫ ξ1

0

nθn−1(ξ) ψ2(ξ) ξ4 dξ. (6.1.147)
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From Eq. (3.2.11) follows

nξ2θn−1ψ2 = 6ψ2 − d(ξ2ψ′
2)/dξ, (6.1.148)

which is inserted into the integral (6.1.147), and integrated by parts:

M�r2
�J2 = {2πα5�0βξ2

1

/
3[3ψ2(ξ1) + ξ1ψ

′
2(ξ1)]}

∫ ξ1

0

[6ψ2 − d(ξ2ψ′
2)/dξ]ξ2 dξ

= 2πr5
��0β[2ψ2(ξ1) − ξ1ψ

′
2(ξ1)]

/
3[3ψ2(ξ1) + ξ1ψ

′
2(ξ1)], (r� = αξ1). (6.1.149)

To make the connection with the perihelion advance of Mercury, we introduce the first approximation
of the perturbation function due to solar oblateness (Stumpff 1965, p. 244, 603; Winer 1966, Anand and
Fahlman 1968)

S = −G(C − A)P2(λ)/�3 = GM�r2
�J2(1 − 3 cos2 λ)/2�3 = GM�r2

�J2[1 − 3 sin2(ϕ + ω) sin2 i]/2�3,
(6.1.150)

acting on a planet of negligible mass, having semimajor axis a, instantaneous distance � from the Sun,
eccentricity e, inclination i with respect to solar equatorial plane, polar angle λ with respect to solar
rotation axis, perihelion longitude ω with respect to the line of nodes located in the solar equatorial
plane, and true anomaly ϕ. The corresponding perihelion motion of Mercury due to solar oblateness is
given by the perturbation equation

dω/dt = (GM�a)−1/2[tan(i/2) (∂S/∂i)
/
(1 − e2)1/2 + (1 − e2)1/2(∂S/∂e)

/
e]. (6.1.151)

A relationship between true anomaly and time is provided by Kepler’s laws (e.g. Stumpff 1959):

�2 dϕ/dt = const = [GM�a(1 − e2)]1/2; � = a(1 − e2)/(1 + e cos ϕ). (6.1.152)

If we insert for dt into Eq. (6.1.151), we get

dω/dϕ = [�2/GM�a(1 − e2)1/2][tan(i/2) (∂S/∂i)
/
(1 − e2)1/2 + (1 − e2)1/2(∂S/∂e)

/
e]. (6.1.153)

The evaluation of ∂S/∂i proceeds at once, whereas the calculation of ∂S/∂e is somewhat more involved,
since � and ϕ depend on e, but not on i. We write therefore

∂S/∂e = (∂S/∂�) ∂�/∂e + (∂S/∂ϕ) ∂ϕ/∂e, (6.1.154)

neglecting the slow variation of ω with respect to e.
As the calculation of ∂�/∂e and ∂ϕ/∂e is not quite trivial, it will be sketched below. The planetary

radius vector can also be expressed with the aid of the so-called eccentric anomaly E :

� = a(1 − e cos E). (6.1.155)

When calculating derivatives with respect to e, we neglect the slow variation of a with respect to e :

∂�/∂e = −a cos E + ae sinE ∂E/∂e. (6.1.156)

The derivative ∂E/∂e follows from Kepler’s equation (Stumpff 1959)

E − e sinE = (GM�/a3)1/2(t − t0), (6.1.157)

as

∂E/∂e = sinE/(1 − e cos E) = a sinE/�, (6.1.158)

by neglecting the slow variation of a and of the osculating epoch of perihelion passage t0 with respect to
e. Inserting Eq. (6.1.158) into Eq. (6.1.156), we get the desired relationship:

∂�/∂e = a(e − cos E)/(1 − e cos E) = −a cos ϕ. (6.1.159)
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Table 6.1.1 Solar rotation parameter β = Ω2/2πG�0 if Ω = 2.87 × 10−6 rad/s (rotation period T =
2π/Ω = 25.34 days), solar oblateness f, perihelion advance ∆ω of Mercury due to solar oblateness, rotation
parameter βc = Ω2

c/2πG�0 of solar core, and rotation period Tc = 2π/Ωc of solar core if f = 5×10−5. The entries
are calculated for various polytropic indices n with Anand’s (1968) second order theory of rotating polytropes
(Anand and Fahlman 1968). a + b means a × 10b.

n 1 1.5 2 3 3.5

β = Ω2/2πG�0 4.24−6 2.33−6 1.22−6 2.57−7 9.12−8
f 1.59−5 1.35−5 1.20−5 1.08−5 1.09−5
∆ω [arcsec/century] 0.46 0.25 0.13 0.025 0.017
βc = Ω2

c/2πG�0 4.34−5 4.32−5 4.39−5 4.71−5 2.46−5
Tc = 2π/Ωc [days] 5.9 4.4 3.2 1.4 1.2

the mass of the envelope amounts even for a n = 1 polytrope only to about 10% of solar mass. In absence
of shear stresses, the envelope arranges itself so that its outer surface is an equipotential in the field
formed jointly by its own rotation and the gravitational field of the solar core alone. We approximate
the quadrupole moment J2 of the whole Sun with that of its core J2c, neglecting contributions from the
small-mass envelope. Eq. (3.1.71) becomes

3J2c/2 ≈ 3J2/2 = f − Ω2r3
�/2GM�. (6.1.169)

We get J2c ≈ J2 ≈ 2.64×10−5, if we insert the observed values at the solar surface f = 5×10−5, Ω =
2.87 × 10−6 rad/s. This approximate value of the solar quadrupole moment would cause in virtue of
Eq. (6.1.166) a Mercurian perihelion advance of 3.4′′ per century. And with this value we calculate from
Eq. (6.1.167) the rotation parameter βc = Ω2

c/2πG�0 and the rotation period Tc = 2π/Ωc of the solar
polytropic core, as resulting from first order theory (Table 6.1.1). The surface value r� = αξ1 should be
replaced throughout by rc = 0.85r� = 0.85αξ1 = αξc. It should however be emphasized that the stability
of such a solar core-envelope configuration is questionable.

A solar model based on Stoeckly’s (1965) differential rotation law (3.8.37) yields f = 3.54 × 10−5 if
n = 3, and a negligible perihelion advance of at most ∆ω = 0.12 arcsec/century (Fahlman et al. 1970).
But Stoeckly’s differential rotation law would yield a solar rotation rate which is faster on the poles than
at the equator – contrary to observation.

(iii) Differentially Rotating Stellar Cores, White Dwarfs, and Neutron Stars. From Fig.
5.12.1 it is obvious that between central densities of about 109 to 1014 g cm−3 no stable, nonrotating,
zero temperature equilibrium configurations are possible, because the adiabatic index Γ1 drops below
its critical value 4/3. As seen by the rough equation (5.3.16), rotation would tend to stabilize the
configuration, even for values Γ1 < 4/3. This holds even more for differentially rotating polytropes, which
are rotationally stable also for values of β = Ω2/2πG�0 larger than the critical value βc of uniformly
rotating polytropes (Figs. 3.8.2, 5.8.2). The differential rotation laws adopted by Eriguchi and Müller
(1985b), and Müller and Eriguchi (1985) are similar to those from Eqs. (3.8.82)-(3.8.84):

Ω(�) = Ω(0)
/
(1 + �2/A2); Ω(�) = Ω(0)

/
(1 + �/A), (A = const). (6.1.170)

In the limit �/A 	 1 these equations turn into the constant angular momentum law �2Ω(�) = A2Ω(0),
and into the constant velocity law �Ω(�) = AΩ(0), respectively. If �/A � 1, the differential rotation
becomes uniform, with angular velocity equal to Ω(0) – the angular velocity along the rotation axis.

A stellar core of density � ≈ 109 g cm−3, obeying the differential rotation laws (6.1.170), will not
collapse to neutron star densities (� ≈ 1014 g cm−3) if the initial value of τ = Ekin/|W | is larger than
0.01, 0.03, 0.08, if Γ1 = 1.30, 1.25, 1.20, respectively (Eriguchi and Müller 1985b, Fig. 6, dash-dotted
curve). The evolution of these dynamically stable cores to neutron star densities occurs on a secular time
scale, through emission of gravitational radiation, losing in this way angular momentum (Sec. 5.8.4). On
the other hand, nonaxisymmetric dynamical instabilities ∝ exp(±ikϕ), (k = 1, 2, 3, 4) of a differentially
rotating polytrope with n = 1/(Γ1−1) = 3.33, Γ1 = 1.30 at τ = 0.14, 0.18 have been detected numerically
by New and Centrella (2001, Figs. 8-12), and Centrella et al. (2001).

For the study of differentially rotating white dwarfs Müller and Eriguchi (1985) use a so-called piece-
wise polytropic approximation, assuming that in each of H − 1 adjacent density intervals [�i, �i+1], (i =
1, 2, ...H − 1) the pressure is approximated by a polytropic isentropic law

P = Ki�
1+1/ni = Ki�

Γ1i ; � ∈ [�i, �i+1]. (6.1.171)
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The last expression results simply from Eqs. (6.1.152) and (6.1.155):

�e cos ϕ = a(1 − e2) − � = a(1 − e2) − a(1 − e cos E) or � cos ϕ = a(cos E − e). (6.1.160)

To get the derivative ∂ϕ/∂e, we differentiate the last equation (6.1.160)

cos ϕ ∂�/∂e − � sinϕ ∂ϕ/∂e = −a(sinE ∂E/∂e + 1), (6.1.161)

and insert for ∂E/∂e and ∂�/∂e from Eqs. (6.1.158) and (6.1.159), respectively:

a cos2 ϕ + � sinϕ ∂ϕ/∂e = a2 sin2 E/� + a. (6.1.162)

The connection between sin E and sinϕ can be obtained with Eqs. (6.1.155), (6.1.160):

�2 sin2 ϕ = �2 − �2 cos2 ϕ = a2(1 − e cos E)2 − a2(cos E − e)2 = a2(1 − e2) sin2 E. (6.1.163)

After simplification with sinϕ, Eq. (6.1.162) finally becomes (Stumpff 1965, p. 387, Kopal 1978, p.
204)

∂ϕ/∂e = sinϕ [a/� + 1/(1 − e2)] = sinϕ (2 + e cos ϕ)/(1 − e2). (6.1.164)

Returning with Eqs. (6.1.150), (6.1.154), (6.1.159), (6.1.164) to Eq. (6.1.153), we complete Eq. (10)
of Winer (1966):

dω/dϕ = −[3r2
�J2/2a(1 − e2)1/2�]

{
tan(i/2) sin 2i sin2(ϕ + ω)

/
(1 − e2)1/2

+(1 − e2)1/2[1 − 3 sin2(ϕ + ω) sin2 i](∂�/∂e)
/
e� + (1 − e2)1/2 sin[2(ϕ + ω)] sin2 i (∂ϕ/∂e)

/
e
}

= [3r2
�J2(1 + e cos ϕ)/2a2(1 − e2)2]

{
− tan(i/2) sin 2i sin2(ϕ + ω)

+[1 − 3 sin2(ϕ + ω) sin2 i](1 + e cos ϕ) cos ϕ
/
e − sin[2(ϕ + ω)] sin2 i sinϕ (2 + e cos ϕ)

/
e
}
. (6.1.165)

The integration over ϕ from 0 to 2π is tedious for the second order terms involving sin2 i ≈ 0.003
[Anand and Fahlman 1968, Eq. (34)]:

∆ω = [3πr2
�J2/a2(1 − e2)2]{1 − sin2 i [cos i/(1 + cos i) + 3(1 + 2 sin2 ω)/4 + 3 cos 2ω/4]}

= [3πr2
�J2/a2(1 − e2)2]{1 − sin2 i [cos i/(1 + cos i) + 3/2]} ≈ 3πr2

�J2/a2(1 − e2)2. (6.1.166)

If we insert for J2 from Eq. (6.1.149), Mercury’s perihelion advance per revolution period due to solar
oblateness is obtained in a sufficiently accurate first approximation:

∆ω = [2π2r5
��0β/M�a2(1 − e2)2][2ψ2(ξ1) − ξ1ψ

′
2(ξ1)]

/
[3ψ2(ξ1) + ξ1ψ

′
2(ξ1)]. (6.1.167)

We replace 3ψ2(ξ1) + ξ1ψ
′
2(ξ1) from the relationship (3.2.55) of the oblateness f, correcting for the

missing factor 2 in Eq. (15) of Winer (1966), (cf. Anand and Fahlman 1968, Table V):

∆ω = [8π2r5
��0f (−θ′1)

/
5M�a2(1 − e2)2][2/ξ1 − ψ′

2(ξ1)/ψ2(ξ1)]. (6.1.168)

Anand and Fahlman (1968) have calculated for the observed solar rotation rate of Ω = 2.87 × 10−6

radians per second at 16◦ solar latitude, the dimensionless rotation parameter β = Ω2/2πG�0 of rotating
polytropes by using Anand’s (1968) second order theory. The results, together with the solar oblateness
f and Mercury’s perihelion advance ∆ω, are shown in Table 6.1.1. The differences between the second
order theory of Anand (1968) and Winer’s (1966) first order theory from Eqs. (6.1.167), (6.1.168) are
modest, amounting merely to a decrease of about 5% in Winer’s corrected results. As already stated,
Mercury’s perihelion advance due to solar oblateness from Table 6.1.1 is completely negligible as compared
to the relativistic perihelion advance ∆ωr from Eq. (6.1.145). Li (1997a) quotes f = 2.18 × 10−5 and
∆ω = 0.1′′/century for a n = 3 polytrope, instead of f = 1.08 × 10−5 and ∆ω = 0.025′′/century from
Table 6.1.1.

The observed solar oblateness f = (5±0.7)×10−5 is about 3-5 times larger than the polytropic values
quoted in Table 6.1.1, and this led Dicke (1970) to invoke a rapidly rotating solar core (Tc ≈ 1.8 days),
surrounded by a slowly rotating (Ω = 2.87 × 10−6 rad/s; T = 2π/Ω = 25.34 days), virtually massless
envelope, having negligible dynamical interaction with the core. If the core contains 85% of solar radius,
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Fig. 6.1.2 Equidensity contours of differentially rotating, isentropic stellar cores with the first rotation law
from Eq. (6.1.170), and τ increasing successively up to τ = 0.29, (Γ1 = 1+1/n = 1.32; n = 3.125; A = 0.02rc; rc

– radius of nonrotating core), [Eriguchi and Müller 1985b; see also Fig. 7 of New and Centrella (2001)].

From the continuity of pressure on the margins of the density intervals one obtains 2(H−1) conditions
for the 2H parameters Ki and ni :

P (�i) = Pi = Ki�
1+1/ni

i ; P (�i+1) = Pi+1 = Ki�
1+1/ni

i+1 . (6.1.172)

2(H − 1) parameters result immediately:

Ki = Pi/�
1+1/ni

i ; Γ1i = 1 + 1/ni = (lnPi+1 − lnPi)
/
(ln �i+1 − ln �i), (i = 1, 2, ...H − 1).

(6.1.173)

If the value of nH is prescribed in accordance with the equation of state, the corresponding polytropic
constant results from KH = PH/�

1+1/nH

H .
Dynamically stable equilibrium models of white dwarfs exist up to central densities ≈ 1011 g cm−3

(without differential rotation ≈ 109 g cm−3), and with masses up to ≈ 1.7 M� (without differential
rotation ≈ 1.0 M�; see also Fig. 5.12.6).

6.1.7 Polytropic Planets

Öpik (1962) and Bobrov et al. (1978) have estimated the polytropic indices n of planetary mod-
els obeying the polytropic equation of state P = K�1+1/n. Öpik (1962) uses for his estimate the ob-
served planetary ratio between oblateness f = (a1 − a3)/a1 and the dimensionless rotation parameter
m = 3Ω2/4πG�m from Eq. (3.7.24), which is approximately equal to the ratio between centrifugal and
gravitational force at the planetary equator. The parameter m is more suitable than the rotation param-
eter β = Ω2/2πG�0 for the comparison of rotating configurations having the same mass, but different
rotation rates. If we express the mean density of the rotating planet to first order with the central density
of a spherical planet, we get in virtue of Eq. (2.6.27)

m = 3Ω2/4πG�m = −Ω2ξ1/4πG�0θ
′
1 = −βξ1/2θ′1. (6.1.174)

The oblateness f of a rotating planet has already been expressed by Eq. (3.2.55), and the ratio f/m
reads accordingly

f/m = 5ψ2(ξ1)
/
2[3ψ2(ξ1) + ξ1ψ

′
2(ξ1)], (0 ≤ n ≤ 5). (6.1.175)

This value has already been tabulated by Chandrasekhar (1933d) for various polytropic indices, and
Öpik (1962) has estimated by interpolation the mean polytropic index of planetary models build up with
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Table 6.1.2 Gyration factor k from Eq. (6.1.179), (Motz 1952), gyration factor k0 normalized to the gyration
factor k = 0.4 of a constant density sphere n = 0, and oblateness parameter f/m according to Table 3.2.1 and Eq.
(6.1.175). The last two lines are reproduced from Öpik’s (1962) Table XII, showing the observed ratio (f/m)p for
Earth, Mars, Jupiter, and Saturn, as well as the interpolated polytropic index np of the corresponding planetary
polytrope.

n 0 1 1.5 2 3 4 5

k 0.400 0.261 0.205 0.157 0.0758 0.0236 0.000
k0 1.000 0.653 0.513 0.393 0.190 0.0590 0.000
f/m 1.250 0.760 0.643 0.574 0.514 0.501 0.500

Planet Earth Mars Jupiter Saturn

(f/m)p 0.97 1.14 0.77 0.69
np 0.51 0.26 0.98 1.25

the polytropic equation of state, by using the observed planetary ratio f/m (Table 6.1.2). This procedure
is suitable for objects with polytropic index 0 ≤ n � 1.5 (e.g. planets), but not for most stars having
n ≈ 3, since in this case the ratio f/m is already close to its limiting value 0.5, obtained for the point
mass model (Roche model), which is similar to the polytrope n = 5, as outlined subsequently to Eq.
(3.2.69), (see case (ii) n = 5, below).

In the two particular cases n = 0 and n = 5 the ratio f/m can be calculated analytically.
(i) n = 0.n = 0.n = 0. By virtue of Eq. (3.2.64) we have f = 15β/8 = 15Ω2/16πG�m, and f/m = 5/4. In

fact, this value can be derived also directly from the more general first order equations (3.1.68), (3.1.69),
expressing the integration constant by equatorial values at r1 = a1 :

GM1(1/a1 − 1/r1) + (GM1J2a
2
1/2)(1/a3

1 − 1/r3
1 + 3 cos2 λ/r3

1) + (Ω2/2)(a2
1 − r2

1 sin2 λ) = 0.
(6.1.176)

Putting r1 = a1 in the factors near the small first order terms, this equation becomes

(r1 − a1)/a1 + cos2 λ (3J2/2 + Ω2a3
1/2GM1) = 0. (6.1.177)

The gravitational moment J2 is via Eqs. (3.1.72), (6.1.146) equal to

J2 = −(2π/M1a
2
1)
∫ 1

−1

(3µ2/2 − 1/2) dµ

∫ r1(µ)

0

�mr4 dr = 8π�ma3
1f/15M1 ≈ 2f/5,

[n = 0; r1 = a1(1 − fµ2)]. (6.1.178)

With this value of the quadrupole moment we obtain from Eqs. (3.1.72), (6.1.177) just f/m = 5/4.
(ii) n = 5.n = 5.n = 5. From Eq. (6.1.175) we get at once f/m = 1/2 in virtue of the asymptotic solutions

(3.2.89).
With increasing mass concentration towards the centre, the oblateness parameter f/m changes be-

tween the limits 1.25, (n = 0) and 0.5, (n = 5).
The dimensionless gyration factor of a sphere k is quoted in Table 6.1.2 (Motz 1952):

k = 2I/3r2
1M1 =

∫
M1

�2 dM/(r2
1M1) = (2π/r2

1M1)
∫ π

0

sin3 λ dλ

∫ r1

0

�(r) r4 dr

= (8π/3r2
1M1)

∫ r1

0

�(r) r4 dr = [2/3ξ4
1(−θ′1)]

∫ ξ1

0

ξ4θn dξ

= [2/3ξ4
1(−θ′1)]

[
ξ4
1(−θ′1) + 2ξ3

1θ1 − 6
∫ ξ1

0

ξ2θ dξ
]
, [−1 < n ≤ 5; N = 3; ξ2θn = −(ξ2θ′)′].

(6.1.179)

I denotes the moment of inertia (2.6.75), and we have preserved the term 2ξ3
1θ1 in the partial inte-

grations, since it does not vanish in the limiting case k = 0, (n = 5; ξ1 → ∞) from Eq. (2.3.90).
The polytropic equation of state has been used by Bobrov et al. (1978) to calculate wholly polytropic

models of the giant planets with the level surface theory (see Sec. 3.7). The models are required to fit
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the observed mass, radius, rotation period, and observed gravitational moments from Eq. (3.1.58). For
Jupiter the values of the observed gravitational moments J2, J4, J6 correspond best to a polytrope of
index n = 0.95 (cf. Table 6.1.2) with polytropic constant K = 1.99× 1012 [CGS units]. The values of the
observed moments J2, J4 for Saturn, and J2 for Uranus and Neptune are fitted by polytropes of index
n = 1.2 − 1.3, 0.9 − 1.6, and 1.2 for Saturn, Uranus, and Neptune, respectively.

Fig. 6.1.3 Density run in models consisting of a rocky core surrounded by a polytropic envelope for Jupiter
(J), Saturn (S), and Uranus (U), (Horedt and Hubbard 1983).

Two-layer models of Jupiter, Saturn, and Uranus have been calculated by Horedt and Hubbard (1983).
The temperature independent equation of state for the rocky cores of the three giant planets is given by
the “perturbed” polytropic equation of state (1.7.44). This equation results from a generalization

d lnP/d ln � = X0 + X1� + 2X2�
2 + 3X3�

3 + ... (6.1.180)

of the polytropic relationship d lnP/d ln � = 1 + 1/n. Integration of Eq. (6.1.180) yields

lnP = lnK + X0 ln � + X1� + X2�
2 + X3�

3 + ... (6.1.181)

or (Slattery 1977)

P = K�X0 exp(X1� + X2�
2 + X3�

3 + ...), (K, X0, X1, X2, X3, ... = const). (6.1.182)

Hubbard (1974) has constructed an analytical model of Jupiter with polytropic index n = 1, and
equation of state P = 1.96 × 1012�2 [dyne cm−2] = 1.96�2 [Megabar], which fits approximately the
observed gravitational moments [cf. Eqs. (3.2.48)-(3.2.54)].

A hot model of Jupiter, prompted by the large measured Jovian heat flux of about 104 erg/cm2 s,
has been proposed by Kozyrev (1977). The central temperature of Tc = 165000 K has been estimated
from the ideal gas law (1.2.5), with central pressure and density determined from a polytropic sphere of
index n ≈ 1.

Geroyannis (1993b), Geroyannis and Valvi (1993, 1994), Geroyannis and Dallas (1994) estimate with
the “global polytropic model” distances and masses in the planetary and Jovian system, extending the
Lane-Emden equation (2.3.87) into the complex plane beyond its first zero ξ1 [cf. Eq. (3.5.54)].

6.1.8 Fission Hypothesis of Rotating Polytropes

Magnetic braking of the rotation of pre-main sequence stars, approximated as fully convective n = 1.5
polytropes, has been calculated by Okamoto (1969, 1970). Opposite to this behaviour of magnetopoly-
tropes is the assumed fission of a rapidly rotating polytrope into a binary star – an idea that goes
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back to the times of Darwin and Jeans (1919, 1961). The overall picture envisaged by most au-
thors is a fully convective, gravitationally contracting, pre-main sequence star with polytropic index
n = 1/(γ−1) = 1.5, (γ = 5/3), (cf. Sec. 6.1.5). The equation of state of a homogeneous n = 0 polytrope
is also sometimes assumed, as it leads to the Maclaurin, Jacobi, Dedekind, and Riemann sequences of
rotating ellipsoids. If we consider the picture of star formation from a collapsing interstellar cloud, there
is plenty of angular momentum to be spent for the fission process. For a cloud corotating with the galaxy
at velocity v = 250 km/s, and at distance � = 10 kpc from the galactic centre, we get the angular velocity
Ω1 = v/� = 8 × 10−16 ≈ 10−15 s−1. Conservation of angular momentum of a typical cloud with radius
r1 = 1 pc would lead to a final equatorial rotation velocity of the star of

v2 = Ω2r2 = Ω1r
2
1/r2, (6.1.183)

exceeding the velocity of light for a solar radius equal to r2 (Horedt 1978a).
Arguments against and in favour of fission, as outlined by Lyttleton (1953), Roxburgh (1966b), Os-

triker (1970), and Gingold and Monaghan (1978), may be summarized as follows:
(i) The classical view, envisaged by Darwin, of a disrupting pear-shaped configuration is untenable,

because it is secularly unstable, as already outlined subsequently to Eqs. (3.2.61) and (5.8.133). Moreover,
as calculated by Eriguchi et al. (1982), the pear-shaped sequence terminates by mass loss long before
fission could occur. Instead, fission may occur along the so-called dumbbell sequence (Fig. 3.8.3), which
bifurcates smoothly from the secularly and dynamically stable Jacobi sequence at the neutral point against
fourth order harmonic disturbances, occurring if a2/a1 = 0.2972, a3/a1 = 0.2575, β = Ω2/2πG�m =
0.106 (Chandrasekhar 1969, p. 128, Christodoulou et al. 1995a).

(ii) In constructing protostars, ordinary viscosity seems not large enough to secure the apparition of
secular instabilities on a time scale shorter than the contraction time. In this case the axisymmetric
Maclaurin sequence determines the relevant configuration of a homogeneous contracting protostar, be-
cause beyond the first point of bifurcation, occurring at τ = Ekin/|W | = 0.1375, the Maclaurin spheroids
are merely secularly unstable, so they will not enter the Jacobi sequence at all, if viscosity is negligible.
Instead, the homogeneous, gravitationally contracting protostar will continue to evolve with increasing
τ as a Maclaurin ellipsoid, until at τ = 0.2738 it becomes dynamically unstable. The only means of
energy dissipation is by radiation, and further evolution of the contracting star could proceed beyond
the point of dynamical instability of Maclaurin ellipsoids along the lower self-adjoint series of Riemann
ellipsoids, when angular velocity �Ω and vorticity ∇× �v, both remain aligned along the rotation axis a3

(S-type Riemann ellipsoids). The conjecture of the fission hypothesis is that ultimately there forms a
pair of detached masses orbiting each other, since all contracting compressible Riemann ellipsoids of large
enough angular momentum and small enough departure from axial symmetry become unstable to third
order harmonic disturbances (Lebovitz 1972, 1974). Dynamically induced fission is possible here – but
remains unproven.

(iii) Another objection against fission comes from the fact (see Sec. 3.8.1) that uniformly rotating
polytropes with index n > 0.808 never reach a point of bifurcation (τ ≈ 0.14), or even of dynamical
instability (τ ≈ 0.27), because they become rotationally unstable in the equatorial plane, leaving behind
during contraction a disk of material in their equatorial plane. This argument has been refuted by Ostriker
and Bodenheimer (1973), claiming that their inviscid differentially rotating polytropes closely resemble
the instability behaviour of the homogeneous Maclaurin ellipsoids, with secular instability occurring
at τ ≈ 0.14, and dynamical instability at τ ≈ 0.26, although this expectation has not been properly
demonstrated (Figs. 3.8.2, 5.8.2 and Sec. 5.8.3; Tassoul 1978, p. 268).

(iv) Lyttleton (1953, p. 134) argues that the dynamics of the fission process can be examined without
considering the effect of friction, and therefore the fission process must be time reversible. But if the
direction of time is reversed in a binary system, it does not revert to a single star, but simply remains
a binary with the orbital direction of motion reversed. Therefore, a single star cannot evolve into a
binary system without dissipation. An argument against this reasoning is that the fission process is not
dissipationless (energy conservative), and at least some energy is lost by radiation (Roxburgh 1966b,
Ostriker 1970, Lebovitz 1972). But when the system is dissipative, Lyttleton’s (1953) argument breaks
down. A more convincing point has been raised by Gingold and Monaghan (1978), claiming that on a
macroscopic scale the frictionless fission process involves vibrations, transferring energy amongst various
modes, and the chance of returning exactly to the initial state is effectively excluded, the fission dynamics
becoming irreversible.

(v) It should be noted that the concrete dynamics of the fission process has never been modeled, and
even its strongest advocates admit that fission is completely inadequate to account for the formation of
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wide binaries, with semimajor axes exceeding about 1 AU (Jeans 1961, p. 311; Ostriker 1970, p. 149).
As the semimajor axes of binaries range from 10−2 AU to more than 105 AU, with an average value of
about 20 AU (Horedt 1978a), it would be from a more philosophical standpoint very disappointing to
assume that in nature quite different processes are responsible for the formation of close binaries on the
one side, and wide binaries on the other side.

The reader should weigh for his own the strength of the above arguments (i)-(v). A schematic view
concerning the limits placed by equilibrium and stability requirements on the ratio τ = Ekin/|W | has
been provided by Ostriker (1970). The total energy of a pressure-free system of N discrete particles,
orbiting under the influence of their mutual gravitational interaction is composed of their gravitational
energy from Eq. (2.6.67) and the kinetic energy Ekin. As outlined subsequently to Eq. (2.6.98) the
condition of dynamical stability is

E = Ekin + W =
N∑

j=1

(
mjv

2
j /2 +

N∑
k=j+1

Wjk

)
=

N∑
j=1

mjv
2
j /2 −

N∑
j=1

N∑
k=j+1

Gmjmk/|�rj − �rk| < 0.

(6.1.184)

Bound particle systems are therefore only possible if E < 0 or Ekin < −W, i.e. if 0 ≤ τ = Ekin/|W | <
1. For rotating configurations in hydrostatic equilibrium the value of τ is 0 ≤ τ ≤ 1/2, by virtue of
Eqs. (3.1.33)-(3.1.36). As outlined previously, dynamically and secularly stable rotating configurations
without equatorial mass shedding exist in the range 0 ≤ τ � 1/4 and 0 ≤ τ � 1/8, respectively. As
mentioned in Secs. 3.8.8 and 5.8.3, uniformly rotating, axisymmetric polytropes without equatorial mass
loss occur if 0 ≤ τ ≤ 0.32, 0.19, 0.12, 5.95 × 10−2, 9.00 × 10−3, 1.19 × 10−3, where n = 0.1, 0.5, 1, 1.5,
3, 4, respectively.

Fig. 6.1.4 Particle positions of a n = 0.5 polytrope if T = (4πG�0/n)1/2t = 60 (upper left), and T = 285
(upper right). The n = 1.5 polytrope is shown at lower left (T = 291), and lower right (T = 574), (Gingold and
Monaghan 1979a).

We conclude this section with a brief presentation of the numerical results of Gingold and Monaghan
(1978, 1979a). With smoothed particle hydrodynamics, and using a number of up to 800 particles, these
authors have calculated the evolution of an initially uniformly rotating sphere of polytropic index n = 0.5
and 1.5. The initial values of τ are τ = 1.3 (n = 0.5), and 2.1, (n = 1.5). A radial damping term
was introduced to remove radial motions, while conserving angular momentum. The n = 0.5 polytrope
indeed exhibits fission – a result also confirmed by Lucy (1977) – whereas the n = 1.5 polytrope merely
throws out a filamentary stream of matter ending probably as a diffuse disk surrounding a central star.
This finding is somewhat similar to the outcomes of Durisen and Tohline (1980), showing that a rapidly
rotating n = 0.5 and n = 1.5 polytrope with τ = 0.33 ends up as a dynamically stable star with τ ≈ 0.19,
ejecting some of its high angular momentum material via gravitational torques into an outer disk/ring.
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6.1.9 Applications to Stellar Systems

Vandervoort (1980a) has considered an application to galactic bars of the nonaxisymmetric, triaxial
polytropes with index 0.5 ≤ n ≤ 0.808 (cf. Sec. 3.8.1). The isolating Jacobi integral of a star moving
with respect to uniformly rotating x1, x2, x3 coordinate axes, can be obtained from the general equation
(3.1.12), when kinetic pressure forces arise exclusively from the macroscopic velocity �v of the stars –
the fluid pressure P of the “stellar gas” being neglected. Taking ∂ /∂t, P, H, B, τ, vtr = 0, and �Ω =
�Ω(0, 0, Ω), Ω = const, Eq. (3.1.12) becomes

d�v/dt = ∇Φ − �Ω × (�Ω × �r) − 2�Ω × �v. (6.1.185)

We multiply this equation scalarly by �v = d�r/dt to obtain

�v · (d�v/dt) = (1/2) dv2/dt = dΦ/dt + (Ω2/2) d�2/dt, (�2 = x2
1 + x2

2; �v · (�Ω × �v) = 0). (6.1.186)

This can be integrated for the motion of a star:

v2/2 − Φ(�r) − Ω2�2/2 = const = H. (6.1.187)

In order to get the polytropic density distributions (6.1.192) and (6.1.194), Vandervoort (1980a)
assumes the distribution function (phase density function) of the stars over the spatial and velocity
coordinates under the form (cf. Eq. (2.8.101), Hénon 1973):

f(�r,�v) = C(H0 − H)n−3/2 if H ≤ H0 < 0 and f(�r,�v) = 0 if H > H0,

(C, H0 = const; C > 0; H0 < 0). (6.1.188)

n denotes the polytropic index of the spatial density distribution of stars. As will be obvious from Eq.
(6.1.192) below, the requirement of a finite mass density imposes the restriction n > 0.5 on the polytropic
index. In the limiting case n = 0.5, Vandervoort (1980a) takes the distribution function equal to

f(�r,�v) = C δD(H0 − H), (6.1.189)

where δD(H0 − H) = δD(H − H0) is Dirac’s function from Eq. (5.10.99):

δD(H0 − H) = 0 if H0 − H �= 0 and
∫ H0−H=0+

H0−H=0−
δD(H0 − H) dH = 1. (6.1.190)

0+ and 0− denote infinitesimal positive and negative increments with respect to H0 − H = 0. The
local number density of stars nd is obtained by integrating the distribution function f over the velocity
space Vv [e.g. Ogorodnikov 1965, Eq. (2.1)]:

nd = nd(�r) =
∫

Vv

f(�r,�v) dVv. (6.1.191)

And if mm denotes the mean mass of a star, the local spread-out mass density of stars becomes with
the distribution function (6.1.188):

� = �(�r) = ndmm = mm

∫
Vv

f(�r,�v) dVv = 4πmmC

∫ ∞

0

(H0 − H)n−3/2v2 dv

= 4πmmC

∫ ∞

0

(H0 − v2/2 + Φ + Ω2�2/2)n−3/2v2 dv = 4πmmCψn−3/2

∫ ∞

0

(1 − v2/2ψ)n−3/2v2 dv

= 25/2πmmCψn

∫ 1

0

x1/2(1 − x)n−3/2 dx = 25/2πmmC B(3/2, n − 1/2) ψn = �0ψ
n,

(ψ = H0 + Φ + Ω2�2/2 ≥ 0; dVv = 4πv2 dv; 0 ≤ v2/2ψ ≡ x ≤ 1;

�0 = 25/2πmmC B(3/2, n − 1/2); n > 0.5). (6.1.192)
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B(p, q) denotes Euler’s complete beta function from Eq. (5.10.96). Finiteness of the beta function
demands p, q > 0, i.e. n > 0.5. If n = 0.5, we get via the distribution function (6.1.189):

� = ndmm = 4πmmC

∫ ∞

0

δD(H0 − H) v2 dv, (n = 0.5). (6.1.193)

Since δD(H0 − H) = 0 if H0 − H �= 0, the above integral is limited to the immediate vicinity of
H0 − H = 0, i.e. in virtue of Eq. (6.1.187) to v2/2 = H + Φ + Ω2�2/2 ≈ H0 + Φ + Ω2�2/2 = ψ. Thus,
v ≈ 21/2ψ1/2 and v dv = dH, since Φ and Ω2�2/2 are independent of v. Inserting into Eq. (6.1.193), we
find

� = 25/2πmmCψ1/2

∫ H0−H=0+

H0−H=0−
δD(H0 − H) dH = 25/2πmmCψ1/2 = �0ψ

1/2,

(n = 0.5; ψ = H0 + Φ + Ω2�2/2; �0 = 25/2πmmC). (6.1.194)

Hence, the density distribution over coordinate space forms the simple family

� = �(�r) = �0ψ
n(�r), (n ≥ 0.5; ψ(�r) = H0 + Φ(�r) + Ω2�2/2; H0, �0 = const). (6.1.195)

And Poisson’s equation (2.1.4) writes

∇2Φ(�r) = ∇2(ψ − H0 − Ω2�2/2) = ∇2ψ − 2Ω2 = −4πG� = −4πG�0ψ
n. (6.1.196)

The kinetic pressure in the macroscopic “stellar gas” arises via Eqs. (5.10.96), (6.1.192), (C.11) from
kinetic motions of the stars with mean square velocity v2

m :

v2
m =

∫
Vv

v2f(�r,�v) dVv

/∫
Vv

f(�r,�v) dVv = (4πmmC/�)
∫ ∞

0

v4(H0 − H)n−3/2 dv

= (4πmmCψn−3/2/�)
∫ ∞

0

(1 − v2/2ψ)n−3/2v4 dv = (27/2πmmCψn+1/�)
∫ 1

0

x3/2(1 − x)n−3/2 dx

= 2ψ B(5/2, n − 1/2)
/
B(3/2, n − 1/2) = 2ψ Γ(5/2) Γ(n + 1)

/
Γ(3/2) Γ(n + 2) = 3ψ/(n + 1),

(n > 0.5). (6.1.197)

If n = 0.5, we find in the same manner via Eqs. (6.1.190), (6.1.193), (6.1.194):

v2
m = (4πmmC/�)

∫ ∞

0

v4 δD(H0 − H) dv = (27/2πmmCψ3/2/�)
∫ H0−H=0+

H0−H=0−
δD(H0 − H) dH

= 2ψ, (n = 0.5). (6.1.198)

The kinetic pressure is given by Eq. (1.7.37), and obeys the polytropic law

P = �v2
m/3 = �ψ/(n + 1) = [1

/
(n + 1)�1/n

0 ]�1+1/n = K�1+1/n,

(vm � c; n ≥ 0.5; K = 1
/
(n + 1)�1/n

0 ). (6.1.199)

The boundary of the configuration is the surface on which � and ψ vanish, being determined by the
condition ψ = 0 or H0 = −Φ − Ω2�2/2, since ψ = H0 + Φ + Ω2�2/2.

As noted at the end of Sec. 5.8.3, axisymmetric polytropes with polytropic index 0 ≤ n ≤ 0.808
are always secularly unstable beyond the bifurcation point of the nonaxisymmetric sequence, occurring
at τb ≈ 0.14. Vandervoort (1980a) speculates that the nonaxisymmetric configurations branching off at
τb ≈ 0.14, resemble galactic bars. Indeed, if a1, a2, a3, (a1 ≥ a2 ≥ a3) denote the semimajor axes of
triaxial ellipsoids, Table 1 of Vandervoort (1980a) shows that for the limiting nonaxisymmetric polytrope
of index n = 0.5 and 0.7, the axis a1 is about two times larger than a2, and three times larger than a3,
exhibiting to some extent a barlike shape.

On the other hand, although triaxial polytropes with index 0.5 ≤ n ≤ 0.808 also resemble the shapes
of some elliptical galaxies, they cannot account for the observed general absence of more rapidly rotating
elliptical galaxies, because triaxial polytropes are rotating rapidly with βc = Ω2

c/2πG�0 ≈ 0.13 [cf. Table
3.8.1, and Table 1 of Vandervoort (1980a)]. In this respect Caimmi (1980a, Fig. 2) has shown that
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the oblateness (ellipticity) and rotation rate of most ellipticals is consistent with axisymmetric (biaxial),
rigidly rotating polytropes of index 3 < n < 5. Massive halos may serve as an explanation for the
few observation points located outside the limiting curves of these axisymmetric, uniformly rotating
polytropes. Polytropes may also be suitable models for the central bulges of spiral galaxies. And a
spherical polytrope of index n = 4 can closely approximate a centrally condensed globular galaxy (Alladin
1965, Subrahmanyam 1980, Chatterjee 1987, Subrahmanyam and Narasimhan 1989). Its polytropic
gravitational potential, as tabulated by Limber (1961), follows from the integration of Eq. (2.1.7):

Φ = (n + 1)K�1/n + const = (n + 1)K�
1/n
0 θ + const = (n + 1)K�

1/n
0 (−ξ1θ

′
1 + θ)

= [GM1/r1(−ξ1θ
′
1)](−ξ1θ

′
1 + θ) = (GM1/r1)(1 + 3�0θ/ξ2

1�m), (−1 < n ≤ 5; N = 3). (6.1.200)

The integration constant has been determined via Eqs. (2.6.1), (2.6.18), (2.6.43) from the continuity
of the potential across the boundary θ(ξ1) = 0 of the sphere: const = Φ(r1) = Φe(r1) = GM1/r1 =
−(n + 1)K�

1/n
0 ξ1θ

′
1.

Oscillations of spherical galaxies with a polytropic density distribution (0 ≤ n ≤ 4) have been sim-
ulated by Namboodiri (2000), and collisions between spherical n = 0, 4 galaxies by Namboodiri et al.
(2001).

The stability and normal modes of oscillation of collisionless polytropic stellar systems have been
investigated by Samimi and Sobouti (1995) with the aid of the linearized Liouville equation: The oscilla-
tions are stable, with periods of the order of free fall time scales. The post Newtonian approximation of
Liouville’s equation in spherical polytropes yields a new sequence of relativistic modes, which are similar
to toroidal modes [Eq. (5.8.166)], and degenerate to zero frequency in the Newtonian limit (Rezania and
Sobouti 2000, Sobouti and Rezania 2000).

Caimmi and Dallaporta (1978), and Caimmi (1986) have considered galactic models based on two-
component polytropes (cf. Sec. 2.8.2 for two-component isothermal spheres with n = ±∞). The first
order perturbation theory of Chandrasekhar (1933a), as rectified by Chandrasekhar and Lebovitz (1962d),
has been extended by Caimmi and Dallaporta (1978) to two coaxial, homocentric, uniformly rotating
polytropes with nonintersecting boundary surfaces. The polytropic indices of the two components are
denoted by nI and nII , and the two radii of the nonrotating spherical polytropes are aI and aII , (aI <
aII).

In the region of the inner spheroid aI both polytropic components are assumed to be present, while
the outer region is filled only with component II. In spherical coordinates the equations of hydrostatic
equilibrium to be satisfied by both polytropic spheroids are by virtue of Dalton’s law of partial pressures
equal to [cf. Eqs. (2.8.54), (3.8.2)]

∂Pj/∂r = �j ∂Φ/∂r + �jΩ2
jr(1 − µ2); ∂Pj/∂µ = �j ∂Φ/∂µ − �jΩ2

jr
2µ, (j = I, II). (6.1.201)

Φ is the total internal gravitational potential, and Pj , �j , Ωj denote pressure, density, and constant
angular rotation velocity of the j-th component, respectively. Let us first consider the region of the inner
spheroid, Poisson’s equation (3.8.1) becoming

∂(r2 ∂Φ/∂r)
/
∂r + ∂[(1 − µ2) ∂Φ/∂µ]

/
∂µ = −4πGr2(�I + �II), (r ≤ aI). (6.1.202)

We insert for the derivatives of Φ from Eq. (6.1.201), obtaining the two fundamental equations of the
problem in the region I of the inner spheroid:

∂[(r2/�j) ∂Pj/∂r]
/
∂r + ∂{[(1 − µ2)/�j ] ∂Pj/∂µ}

/
∂µ = −4πGr2(�I + �II) + 2Ω2

jr
2, (j = I, II).

(6.1.203)

Dimensionless variables are introduced in a similar manner as in Eqs. (3.2.1) and (3.2.3):

r = αIξI = αIIξII ; αj = [(nj + 1)Kj

/
4πG�

−1/nj

0j (�0I + �0II)]1/2; �j = �0jΘ
nj

j ;

Pj = Kj�
1+1/nj

0j Θnj+1
j ; βj = Ω2

j

/
2πG(�0I + �0II) � 1, (j = I, II). (6.1.204)

Eq. (6.1.203) becomes in the region I of the inner spheroid equal to

∂(ξ2
j ∂Θj/∂ξj)

/
∂ξj + ∂[(1 − µ2) ∂Θj/∂µ]

/
∂µ = −ξ2

j (�0IΘnI

I + �0IIΘnII

II )/(�0I + �0II) + βjξ
2
j ,

(j = I, II; 0 ≤ r ≤ aI). (6.1.205)
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In the nonrotating spherical case we denote Θj(ξj , µ) by θj(ξj), and Eq. (6.1.205) turns into

d(ξ2
j dθj/dξj)

/
dξj = −ξ2

j (�0Iθ
nI

I + �0IIθ
nII

II )/(�0I + �0II), (r ≤ aI ; βj = 0). (6.1.206)

Only the second component is present in region II outside the inner sphere:

d(ξ2
II dθII/dξII)

/
dξII = −ξ2

II�0IIθ
nII

II /(�0I + �0II), (aI ≤ r ≤ aII ; θI , βII = 0). (6.1.207)

The foregoing two equations are the equivalents of the Lane-Emden equation (2.3.87) in the case of
the considered spherical two-component polytrope.

If r = aI , the first zero θI(ξ1I) = 0 of Eq. (6.1.206) occurs at ξ1I , or at

ξiII = αIξ1I/αII , (r = αIξI = αIIξII), (6.1.208)

in the dimensionless units of the outer spheroid II. If r = aII , the first zero θII(ξ1II) = 0 of Eq. (6.1.207)
occurs at ξ1II , constituting the boundary surface of the spherical two-component polytrope.

In the dimensionless units of the rotating outer spheroid II the boundary ΘI [ΞiII(µ), µ] = 0 of the
inner spheroid I is considered by Caimmi and Dallaporta (1978) under the form

ΞiII(µ) = ξiII + (βI − βII)
∞∑

k=0

pkPk(µ) + βII

∞∑
k=0

qkPk(µ), (pk, qk = const), (6.1.209)

while the surface ΘII(Ξ1II(µ), µ) = 0 of the two-component polytrope (of the outer spheroid II) is taken
as

Ξ1II(µ) = ξ1II + (βI − βII)
∞∑

k=0

skPk(µ) + βII

∞∑
k=0

tkPk(µ), (sk, tk = const), (6.1.210)

where Pk(µ) denotes the Legendre polynomial of order k. Analogously to Eq. (3.1.74) we can integrate
the set (6.1.201) to obtain the prime integral

Φ = (nj + 1)Pj/�j − Ω2
jr

2(1 − µ2)/2 + Φpj

= 4πGα2
j (�0I + �0II){Θj(ξj , µ) − βjξ

2
j [1 − P2(µ)]/6} + Φpj , (j = I, II). (6.1.211)

Φpj denotes the value of the internal potential Φ at the poles of the respective spheroid. Writing Eq.
(6.1.211) separately for j = I, II at the pole r = αIIΞiII(±1) of the inner spheroid, and equating the
results, we get

ΦpI = 4πGα2
II(�0I + �0II) ΘII(ΞiII ,±1) + ΦpII , (ΘI(ΞiII ,±1) = 0). (6.1.212)

With the help of Eq. (6.1.212) we get from Eq. (6.1.211) the basic relationship inside spheroid I
between the fundamental functions of the two spheroids in the system of units of the outer spheroid II:

ΘI(ξI , µ) = ΘI(ξII , µ) = (αII/αI)2{ΘII(ξII , µ) + (βI − βII)ξ2
II [1 − P2(µ)]/6 − ΘII(ΞiII ,±1)},

(ξI = αIIξII/αI). (6.1.213)

The initial conditions are, as for the one-component rotating polytrope, equal to

Θj(0, µ) = 1; (∂Θj/∂ξj)ξj=0 = 0, (j = I, II). (6.1.214)

If we take in Eq. (6.1.213) ξII = 0 and µ = ±1, we get with the initial conditions Θj(0,±1) = 1 :

ΘII(ΞiII ,±1) = 1 − (αI/αII)2. (6.1.215)

If j = II, Eq. (6.1.205) reads with the substitutions (6.1.213) and (6.1.215) as

∂(ξ2
II ∂ΘII/∂ξII)

/
∂ξII + ∂[(1 − µ2) ∂ΘII/∂µ]

/
∂µ = −ξ2

II{�0I [(αII/αI)2(ΘII − 1) + 1]nI

+�0IIΘnII

II }/(�0I + �0II) − ξ4
IInI�0I(αII/αI)2(βI − βII)[1 − P2(µ)][(αII/αI)2(ΘII − 1) + 1]nI−1

/
6(�0I + �0II) + βIIξ

2
II . (6.1.216)
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Following Chandrasekhar (1933a) we assume inside the inner spheroid I a solution of the form

ΘII(ξII , µ) = θII(ξII) + (βI − βII)
[
ϕ0(ξII) +

∞∑
k=1

Akϕk(ξII) Pk(µ)
]

+βII

[
ψ0(ξII) +

∞∑
k=1

Bkψk(ξII) Pk(µ)
]
, (Ak, Bk = const). (6.1.217)

In the nonrotating case we have Θj(ξII , µ) = θj(ξII), and Eq. (6.1.213) becomes via Eq. (6.1.215)
equal to

θI(ξI) = θI(ξII) = (αII/αI)2[θII(ξII) − 1] + 1, (βj = 0). (6.1.218)

In the region between the inner spheroid I and the surface of spheroid II we have by assumption
ΘI(ξII , µ) = 0, and Eq. (6.1.205) becomes

∂(ξ2
II ∂ΘII/∂ξII)

/
∂ξII + ∂[(1 − µ2) ∂ΘII/∂µ]

/
∂µ = −ξ2

II�0IIΘnII

II /(�0I + �0II) + βIIξ
2
II ,

(6.1.219)

with an assumed solution

ΘII(ξII , µ) = θII(ξII) + (βI − βII)
[
σ0(ξII) +

∞∑
k=1

Ckσk(ξII) Pk(µ)
]

+βII

[
τ0(ξII) +

∞∑
k=1

Dkτk(ξII) Pk(µ)
]
, (Ck, Dk = const). (6.1.220)

Clearly, the gravitational potential in this region is given by Eq. (6.1.211) if j = II.
In the external region outside the boundary (6.1.210) of the two-component polytrope we have

Θj(ξ, µ) = 0. The external potential is assumed under a form similar to Eq. (3.2.33):

Φe = 4πGα2
II(�0I + �0II)

[
g0/ξII + (βI − βII)

∞∑
k=0

g1kPk(µ)/ξk+1
II + βII

∞∑
k=0

h1kPk(µ)/ξk+1
II

]
,

(g0, g1k, h1k = const). (6.1.221)

We now substitute Eqs. (6.1.217) and (6.1.220) into Eqs. (6.1.216) and (6.1.219), respectively.
Equating separately to zero the coefficients of (βI−βII)Pk(µ) and βIIPk(µ), we obtain a set of differential
equations whose solutions allow us to determine all the unknown functions ϕk, ψk, σk, τk. Inside spheroid
I we get via Eq. (6.1.218)

d(ξ2
II dθII/dξII)

/
dξII = −ξ2

II{�0I [(αII/αI)2(θII − 1) + 1]nI + �0IIθ
nII

II }/(�0I + �0II)

= −ξ2
II(�0Iθ

nI

I + �0IIθ
nII

II )/(�0I + �0II), (6.1.222)

d(ξ2
II dϕ0/dξII)

/
dξII = −ξ2

IIϕ0[nI�0I(αII/αI)2θnI−1
I + nII�0IIθ

nII−1
II ]/(�0I + �0II)

−ξ4
IInI�0I(αII/αI)2θnI−1

I

/
6(�0I + �0II), (6.1.223)

d(ξ2
II dϕ2/dξII)

/
dξII − 6ϕ2 = −ξ2

IIϕ2[nI�0I(αII/αI)2θnI−1
I + nII�0IIθ

nII−1
II ]/(�0I + �0II)

+ξ4
IInI�0I(αII/αI)2θnI−1

I

/
6A2(�0I + �0II), (6.1.224)

d(ξ2
II dϕk/dξII)

/
dξII − k(k + 1)ϕk = −ξ2

IIϕk[nI�0I(αII/αI)2θnI−1
I + nII�0IIθ

nII−1
II ]

/(�0I + �0II), (k = 4, 6, 8, ...), (6.1.225)

d(ξ2
II dψ0/dξII)

/
dξII = −ξ2

IIψ0[nI�0I(αII/αI)2θnI−1
I + nII�0IIθ

nII−1
II ]

/(�0I + �0II) + ξ2
II , (6.1.226)
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d(ξ2
II dψk/dξII)

/
dξII − k(k + 1)ψk = −ξ2

IIψk[nI�0I(αII/αI)2θnI−1
I + nII�0IIθ

nII−1
II ]

/(�0I + �0II), (k = 2, 4, 6, ...). (6.1.227)

The initial conditions imposed on Eqs. (6.1.222)-(6.1.227) are

θI(0), θII(0) = 1; θ′I(0), θ′II(0), ϕk(0), ϕ′
k(0), ψk(0), ψ′

k(0) = 0, (k = 0, 2, 4, ...). (6.1.228)

At the boundary of spheroid I there is θI(ξiII) = 0, and θII(ξiII) = 1−(αI/αII)2 via Eq. (6.1.218). At
the outer surface boundary we have θII(ξ1II) = 0. Eqs. (6.1.222)-(6.1.227) can be integrated numerically,
and the solutions are functions only of αII/αI and �0I , �0II .

In the region between spheroid I and the surface of the two-component polytrope we get analogously,
by inserting Eq. (6.1.220) into Eq. (6.1.219):

d(ξ2
II dθII/dξII)

/
dξII = −�0IIξ

2
IIθ

nII

II /(�0I + �0II), (6.1.229)

d(ξ2
II dσk/dξII)

/
dξII − k(k + 1)σk = −nII�0IIξ

2
IIθ

nII−1
II σk/(�0I + �0II), (k = 0, 2, 4, 6, ...),

(6.1.230)

d(ξ2
II dτ0/dξII)

/
dξII = −nII�0IIξ

2
IIθ

nII−1
II τ0/(�0I + �0II) + ξ2

II , (6.1.231)

d(ξ2
II dτk/dξII)

/
dξII − k(k + 1)τk = −nII�0IIξ

2
IIθ

nII−1
II τk/(�0I + �0II), (k = 2, 4, 6, ...).

(6.1.232)

The initial conditions of these equations are

θII(0) = 1; θ′II(0), σk(0), σ′
k(0), τk(0), τ ′

k(0) = 0, (k = 0, 2, 4, ...). (6.1.233)

We now turn to the calculation of the surface constants pk, qk, sk, tk from Eqs. (6.1.209) and (6.1.210),
in analogy to Eqs. (3.2.34)-(3.2.38). At the boundary ΞiII(µ) of spheroid I, Eq. (6.1.213) becomes via
Eqs. (6.1.209), (6.1.215), (6.1.217), (6.1.218) equal to

ΘI [ΞiII(µ), µ] = (αII/αI)2
{
ΘII [ΞiII(µ), µ] + (βI − βII) Ξ2

iII(µ) [1 − P2(µ)]/6 − 1 + (αI/αII)2
}

= (αII/αI)2
{

θII [ΞiII(µ)] + (βI − βII)
[
ϕ0[ΞiII(µ)] +

∞∑
k=1

Akϕk[ΞiII(µ)] Pk(µ)
]

+βII

[
ψ0[ΞiII(µ)] +

∞∑
k=1

Bkψk[ΞiII(µ)] Pk(µ)
]

+ (βI − βII) Ξ2
iII(µ) [1 − P2(µ)]/6 − 1

+(αI/αII)2
}

≈ (αII/αI)2
{

θII(ξiII) + [ΞiII(µ) − ξiII ] θ′II(ξiII)

+(βI − βII)
[
ϕ0(ξiII) +

∞∑
k=1

Akϕk(ξiII) Pk(µ)
]

+ βII

[
ψ0(ξiII) +

∞∑
k=1

Bkψk(ξiII) Pk(µ)
]

+(βI − βII)ξ2
iII [1 − P2(µ)]/6 − 1 + (αI/αII)2

}
= θI(ξiII) + θ′I(ξiII)

[
(βI − βII)

∞∑
k=0

pkPk(µ)

+βII

∞∑
k=0

qkPk(µ)
]

+ (αII/αI)2
{

(βI − βII)
[
ϕ0(ξiII) +

∞∑
k=1

Akϕk(ξiII) Pk(µ)
]

+ βII

[
ψ0(ξiII)

+
∞∑

k=1

Bkψk(ξiII) Pk(µ)
]

+ (βI − βII)ξ2
iII [1 − P2(µ)]

/
6
}

= 0, [θ′I(ξiII) = (αII/αI)2θ′II(ξiII)].

(6.1.234)
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To satisfy Eq. (6.1.234), the coefficients connected with the same (βI −βII)Pk(µ) and βIIPk(µ) must
vanish:

θI(ξiII) = θI(ξ1I) = 0; p0 = −(αII/αI)2[ϕ0(ξiII) + ξ2
iII/6]/θ′I(ξiII) = −[ϕ0(ξiII) + ξ2

iII/6]

/θ′II(ξiII); p2 = −(αII/αI)2[A2ϕ2(ξiII) − ξ2
iII/6]/θ′I(ξiII) = −[A2ϕ2(ξiII) − ξ2

iII/6]/θ′II(ξiII);

pk = −(αII/αI)2Akϕk(ξiII)/θ′I(ξiII) = −Akϕk(ξiII)/θ′II(ξiII) if k = 4, 6, 8, ...;

q0 = −(αII/αI)2ψ0(ξiII)/θ′I(ξiII) = −ψ0(ξiII)/θ′II(ξiII);

qk = −(αII/αI)2Bkψk(ξiII)/θ′I(ξiII) = −Bkψk(ξiII)/θ′II(ξiII) if k = 2, 4, 6, ... (6.1.235)

On the outer boundary of the two-component polytrope (spheroid II) we have by virtue of Eqs.
(6.1.210) and (6.1.220)

ΘII [Ξ1II(µ), µ] = θII [Ξ1II(µ)] + (βI − βII)
{

σ0[Ξ1II(µ)] +
∞∑

k=1

Ckσk[Ξ1II(µ)] Pk(µ)
}

+βII

{
τ0[ΞiII(µ)] +

∞∑
k=1

Dkτk[Ξ1II(µ)] Pk(µ)
}

≈ θII(ξ1II) + [Ξ1II(µ) − ξ1II ]θ′II(ξ1II)

+(βI − βII)
[
σ0(ξ1II) +

∞∑
k=1

Ckσk(ξ1II) Pk(µ)
]

+ βII

[
τ0(ξ1II) +

∞∑
k=1

Dkτk(ξ1II) Pk(µ)
]

= θII(ξ1II) + θ′II(ξ1II)
[
(βI − βII)

∞∑
k=0

skPk(µ) + βII

∞∑
k=0

tkPk(µ)
]

+(βI − βII)
[
σ0(ξ1II) +

∞∑
k=1

Ckσk(ξ1II) Pk(µ)
]

+ βII

[
τ0(ξ1II) +

∞∑
k=1

Dkτk(ξ1II) Pk(µ)
]

= 0.

(6.1.236)

Proceeding exactly as with Eq. (6.1.234), we get

θII(ξ1II) = 0; s0 = −σ0(ξ1II)/θ′II(ξ1II); sk = −Ckσk(ξ1II)/θ′II(ξ1II);
t0 = −τ0(ξ1II)/θ′II(ξ1II); tk = −Dkτk(ξ1II)/θ′II(ξ1II), (k = 2, 4, 6, ...). (6.1.237)

The continuity of density and of its first radial derivative on the interface ΞiII(µ) requires equality
between Eqs. (6.1.217) and (6.1.220), as well as between the respective derivatives on the boundary
ΞiII(µ) of spheroid I:

ΘII [ΞiII(µ), µ] = θII [ΞiII(µ)] + (βI − βII)
{

ϕ0[ΞiII(µ)] +
∞∑

k=1

Akϕk[ΞiII(µ)] Pk(µ)
}

+βII

{
ψ0[ΞiII(µ)] +

∞∑
k=1

Bkψk[ΞiII(µ)] Pk(µ)
}

= θII [ΞiII(µ)] + (βI − βII)
{

σ0[ΞiII(µ)]

+
∞∑

k=1

Ckσk[ΞiII(µ)] Pk(µ)
}

+ βII

{
τ0[ΞiII(µ)] +

∞∑
k=1

Dkτk[ΞiII(µ)] Pk(µ)
}

. (6.1.238)

Since up to the first order we have ϕk[ΞiII(µ)] = ϕk(ξiII), ψk[ΞiII(µ)] = ψk(ξiII), σk[ΞiII(µ)] =
σk(ξiII), τk[ΞiII(µ)] = τk(ξiII), (k = 0, 2, 4, ...), we get, by equating the corresponding terms of (βI −
βII)Pk(µ) and βIIPk(µ) :

ϕ0(ξiII) = σ0(ξiII); ψ0(ξiII) = τ0(ξiII); Akϕk(ξiII) = Ckσk(ξiII);
Bkψk(ξiII) = Dkτk(ξiII), (k = 2, 4, 6, ...). (6.1.239)

In the same way we obtain from the equality of the derivatives [∂ΘII(ξII , µ)/∂ξII ]ξII=ΞiII
of Eqs.

(6.1.217) and (6.1.220):

ϕ′
0(ξiII) = σ′

0(ξiII); ψ′
0(ξiII) = τ ′

0(ξiII); Akϕ′
k(ξiII) = Ckσ′

k(ξiII); Bkψ′
k(ξiII) = Dkτ ′

k(ξiII).
(6.1.240)
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We equate analogously to Eqs. (3.2.39)-(3.2.47) the potentials (6.1.211), (6.1.221), and their deriva-
tives on the boundaries ΞiII(µ) and Ξ1II(µ) of spheroid I and II, respectively. After some algebra Eqs.
(6.1.217), (6.1.213), (6.1.209), (6.1.211) take inside spheroid I the form

ΘII(ξII , µ) = θII(ξII) + (βI − βII)[ϕ0(ξII) + A2ϕ2(ξII) P2(µ)] + βII [ψ0(ξII) + B2ψ2(ξII) P2(µ)],
(6.1.241)

ΘI(ξII , µ) = (αII/αI)2
{
ΘII(ξII , µ) + (βI − βII)ξ2

II [1 − P2(µ)]/6 − 1
}

+ 1, (6.1.242)

ΞiII(µ) = ξiII − (βI − βII)
{
ϕ0(ξiII) + ξ2

iII/6 + [A2ϕ2(ξiII) − ξ2
iII/6] P2(µ)

}
/θ′II(ξiII)

−βII [ψ0(ξiII) + B2ψ2(ξiII) P2(µ)]/θ′II(ξiII), (6.1.243)

Φ = 4πGα2
II(�0I + �0II)

{
ΘII(ξII , µ) − βIIξ

2
II [1 − P2(µ)]/6

}
+ ΦpII . (6.1.244)

In the region between spheroid I and II we have

ΘI(ξII , µ) ≡ 0; ΘII(ξII , µ) = θII(ξII) + (βI − βII)[σ0(ξII) + C2σ2(ξII) P2(µ)]
+βII [τ0(ξII) + D2τ2(ξII) P2(µ)], (6.1.245)

Ξ1II(µ) = ξ1II − (βI − βII)[σ0(ξ1II) + C2σ2(ξ1II)]/θ′II(ξ1II)
−βII [τ0(ξ1II) + D2τ2(ξ1II)]/θ′II(ξ1II). (6.1.246)

The internal potential in this region is given by Eq. (6.1.244), and the gravitational potential outside
the polytrope writes via Eq. (6.1.221) as

Φe = 4πGα2
II(�0I + �0II)

{
g0/ξII + (βI − βII)[g10/ξII + g12P2(µ)/ξ3

II ]

+βII [h10/ξII + h12P2(µ)/ξ3
II ]
}
. (6.1.247)

The total mass of the two-component polytrope is given by M = MI +MII , where the mass Mj , (j =
I, II) of each component is in the same first order approximation as in Eq. (3.2.58), equal to

MI = 2πα3
I�0I

∫ ξ1I

0

ξ2
I dξI

∫ 1

−1

ΘnI

I (ξI , µ) dµ = 2πα3
II�0I

∫ ξiII

0

ξ2
II dξII

∫ 1

−1

ΘnI

I (ξII , µ) dµ;

MII = 2πα3
II�0II

∫ ξ1II

0

ξ2
II dξII

∫ 1

−1

ΘnII

II (ξII , µ) dµ. (6.1.248)

And finally, the angular momenta of the components are in the same approximation:

JI = ΩIII = 2πΩIα
5
I�0I

∫ ξ1I

0

ξ4
I dξI

∫ 1

−1

ΘnI

I (ξI , µ) (1 − µ2) dµ

= 2πΩIα
5
II�0I

∫ ξiII

0

ξ4
II dξII

∫ 1

−1

ΘnI

I (ξII , µ) (1 − µ2) dµ;

JII = ΩIIIII = 2πΩIIα
5
II�0II

∫ ξ1II

0

ξ4
II dξII

∫ 1

−1

ΘnII

II (ξII , µ) (1 − µ2) dµ, (6.1.249)

where Ij , (j = I, II) is the moment of inertia with respect to the rotation axis of the j-th component.
If the masses Mj and angular momenta Jj are supposed to be assigned, the four parameters

βI , βII , �0I , �0II can be determined for a given value of αII/αI , obtaining in this way the full solu-
tion for a certain physical configuration. Caimmi and Dallaporta (1978) identify spheroid II with the
star-spheroidal component (halo) of a galaxy, and spheroid I with the disk component and the central
bulge. The main properties of a nI = nII = 1 model sequence with varying mass ratio MI/MII , or chang-
ing total angular momentum J = JI + JII are: The equatorial radius of the disk component (spheroid
I) is smallest if MI/MII is largest, or the angular momentum J is smallest; the flattening of the disk



582 6.1 Applications to Stars and Stellar Systems

component is independent of the ratio MI/MII and of J ; the central density �0I and the angular veloc-
ity ΩI is largest for the largest mass ratio MI/MII and for the smallest J. Caimmi (1986) finds that a
vanishing spheroid I disk component may be efficient in flattening the outer halo component of spheroid
II in the case of nI = nII = 0 two-component polytropes with energy dissipation and mass transfer from
one component to the other.

An attempt to apply the theory of polytropic spheres to globular clusters (collisionless spherical
stellar systems, as envisaged in Sec. 2.8.5) has been undertaken in 1913 by von Zeipel (see Ogorodnikov
1965, Table XI). The statistics of the distribution of stars in M2, M3, M13, and M15 would yield an
average polytropic index of n = 5.62, and if the central parts are excluded, there would result n ≈ 5.03.
These values cannot be regarded as reliable, because polytropes having n > 5 have infinite mass and
radius. Camm (1952) has investigated polytropic models of globular clusters, especially a modification
of Plummer’s n = 5 polytropic model [cf. Eq. (2.3.90)], involving angular momentum terms.

In globular clusters or galactic nuclei the tidal interaction during a sufficiently close encounter between
two polytropic stars can divert enough orbital energy into nonradial stellar oscillations to bind the two
stars into a close binary system (Press and Teukolsky 1977, Giersz 1986, Lee and Ostriker 1986, McMillan
et al. 1987, Ray et al. 1987). About 40 captured n = 3 binaries could arise in a globular cluster with
104 stars (Ardakani and Sobouti 1990).

Cleary and Monaghan (1990) examine close three-body encounters between binaries and field stars,
showing substantial differences between the point mass and the n = 1.5 polytropic approximation.

Head-on axisymmetric collisions between two identical n = 1 polytropes have been calculated by
Rasio and Shapiro (1992, §4 and references therein). Sills and Lombardi (1997) argue that the use of
polytropes as parent star models during collisions is likely to result in qualitatively mistaken outcomes
for the structure of the merger.
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6.2 Polytropic Atmospheres, Polytropic Clouds and Cores,
Embedded Polytropes

6.2.1 Instabilities in Polytropic Atmospheres

As already evidenced by Skumanich (1955), convection in the outer solar region is turbulent in char-
acter (mixing length theory of convection), rather than laminar. Thus, the approximation of the outer
convective layers of the Sun (and of other stars with outer convection zones) with a plane-parallel atmo-
sphere of constant polytropic index is at the best a rough one. All physical quantities of the unperturbed
steady state are assumed to depend only on atmospheric depth z, measured downward from the solar
surface. In Cartesian coordinates the Eulerian perturbations of physical quantities are assumed under
the form [cf. Eq. (5.10.51)]

δ �f [�r(x, y, z), t] = δ �f(z) exp[i(σt + jxx + jyy)]. (6.2.1)

The wave numbers of the horizontal wave vector along the x and y directions are jx and jy : �j =
�j(jx, jy, 0); |�j| = j = (j2

x + j2
y)1/2.

As an additional detriment of the polytropic approximation it turns out that the growth rate (the
eigenvalue σ) of convective (gravity) g-modes tends to infinity with increasing wave number j (with
decreasing eddy size L = 2π/j) like j1/2. This holds for the most unstable mode – the fundamental mode
– as well as for the overtones [Eqs. (6.2.63), (6.2.81), (6.2.82)]. The reason for this behaviour is the
vanishing mass density at the top of the atmosphere. Since σ has no finite bound as the wave number
increases, the smallest convective eddies are the most unstable ones. This is unlike to the behaviour in
a homogeneous atmosphere (� = const), where the growth rate approaches a finite limit when the wave
number increases (when the dimension of convective cells decreases), (e.g. Chandrasekhar 1981, Chap.
II). Approximating the outermost convective regions of the Sun with a polytropic atmosphere, the above
mentioned findings would imply that small-sized eddies are the most abundant and unstable ones – in
apparent disagreement with the observed solar granulation pattern.

The basic equations of the problem at hand are the conservation of mass (5.2.1) or (5.2.2), and the
equation of motion (5.2.10) in a constant gravity field of gravitational acceleration g = GM1/r2

1, with
the z-axis directed downward from the free surface:

� D�v/Dt = � ∂�v/∂t + �(�v · ∇)�v = −∇P + � ∇Φ = −∇P + ��g, [∇Φ = �g = �g(0, 0, g)]. (6.2.2)

We have to add the energy conservation equation

� DQ/Dt = � DU/Dt + P ∇ · �v − DR. (6.2.3)

This equation can easily be obtained from Eq. (5.2.14), by subtracting also the dissipation function
DR considered in Eq. (5.8.142), to account for the negative work done per unit volume by viscosity
forces. DQ/Dt denotes the change of heat energy per unit mass and time. In order to put separately
into evidence heat changes DQc/Dt due to radiative (thermal) conductivity, we consider the Fourier heat
conduction law for an optically thick fluid element

� DQc/Dt = ∇ · (κ ∇T ), (6.2.4)

where κ is the coefficient of radiative (thermal) conductivity. Subtracting Eqs. (6.2.3) and (6.2.4), we
get

� D(Q − Qc)/Dt = � DU/Dt −∇ · (κ ∇T ) + P ∇ · �v − DR, (6.2.5)

the term D(Q−Qc)/Dt representing the contribution per unit mass and time of additional heat sources
or sinks.
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The equation of state assumed for the polytropic atmosphere is both, that of a perfect gas and of a
polytrope of index n :

P = R�T/µ = K�1+1/n. (6.2.6)

For a perfect gas with constant specific heats the internal energy per unit mass is via Eq. (1.2.19)
equal to

U = cV T, (cV = const), (6.2.7)

and Eq. (6.2.5) becomes in the inviscid case (DR = 0, Spiegel 1964):

� D(Q − Qc)/Dt = �cV DT/Dt −∇ · (κ ∇T ) + P ∇ · �v. (6.2.8)

If heat energy changes occur exclusively by conduction (Qc = Q), the energy equation (6.2.8) is in
the particular hydrostatic case (�v = 0) equal to the heat conduction equation (6.2.4):

�cV ∂T/∂t = � ∂U/∂t = ∇ · (κ ∇T ). (6.2.9)

Eq. (6.2.2) reads in the hydrostatic case as

dP/dz = (1 + 1/n)K�1/n d�/dz = �g, (g = GM1/r2
1 = const). (6.2.10)

Integration with the surface conditions � = 0 if z = 0 yields

� = [g/(n + 1)K]nzn = Azn, (A1/n = g/(n + 1)K = const). (6.2.11)

The pressure becomes with the polytropic law (6.2.6) equal to

P = K�1+1/n = KA1+1/nzn+1 = [Ag/(n + 1)]zn+1, (6.2.12)

while the temperature obeys the simple linear law

T = µP/R� = [µg/R(n + 1)]z = (dT/dz) z = βz, (dT/dz = β = µg/R(n + 1) = const).
(6.2.13)

Thus, in a plane-parallel polytropic atmosphere, the atmospheric depth z formally assumes the role
of the Lane-Emden function θ from Eqs. (2.6.3), (2.6.7).

Let us consider first, as an introductory exercise, the purely vertical propagation of waves in a poly-
tropic plane-parallel atmosphere, the Lagrangian displacement ∆�r(�r, t) being equal to (Lamb 1945)

∆z(z, t) = ∆z(z) exp(iσt). (6.2.14)

It is advisable to work in this one-dimensional case with the Lagrangian equations, similarly to the
purely radial motion considered in Sec. 5.2. The equation of motion (5.2.12) writes for vertical motion

∂2z/∂t2 = −(1/�)(∂P/∂zi) ∂zi/∂z + g = −∂P/∂m + g, (dm = � dz). (6.2.15)

Let us consider the Lagrangian variations ∆z = z − zu, ∆P = P − Pu, and insert them into Eq.
(6.2.15), [cf. Eq. (5.2.48)]:

∂2(zu + ∆z)/∂t2 = ∂2∆z/∂t2 = −∂(Pu + ∆P )/∂m + g = −(1/�u) ∂(Pu + ∆P )/∂zu + g

= −(1/�u) ∂∆P/∂zu ≈ −(1/�) ∂∆P/∂z, (dPu/dzu = g�u; dm = � dz = �u dzu). (6.2.16)

We have to add the continuity equation (5.2.28) along the vertical z-direction

∆� = −� ∂∆z/∂z, (6.2.17)

and the adiabatic energy equation (5.2.38)

∆P = −Γ1P ∂∆z/∂z. (6.2.18)
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Substituting into Eq. (6.2.16), we find

∂2∆z/∂t2 = (Γ1P/�) ∂2∆z/∂z2 + (Γ1/�)(∂P/∂z) ∂∆z/∂z = a2 ∂2∆z/∂z2 + Γ1g ∂∆z/∂z,
(6.2.19)

where a = (Γ1P/�)1/2 = (Γ1RT/µ)1/2 denotes the velocity of sound (2.1.49).
In the particular isothermal case (T = const; n = ±∞) the equation of hydrostatic equilibrium

dP/� = (RT/µ) d�/� = g dz, (T, g = const), (6.2.20)

integrates to

� = C exp(µgz/RT ), (C, T = const), (6.2.21)

where z is directed downwards. The sound velocity is constant, and Eq. (6.2.19) becomes for a pertur-
bation of the form (6.2.14) equal to

a2 d2∆z/dz2 + Γ1g d∆z/dz + σ2 = 0, (a2 = const). (6.2.22)

The characteristic equation of this homogeneous second order differential equation with constant
coefficients is

a2s2 + Γ1gs + σ2 = 0. (6.2.23)

The two roots s1 and s2 of this equation yield the solution of Eq. (6.2.22) under the standard form

∆z(z, t) = [C1 exp(s1z) + C2 exp(s2z)] exp(iσt) = C1 exp[iσt − Γ1gz/2a2 + (Γ2
1g

2 − 4σ2a2)1/2z/
2a2] + C2 exp[iσt − Γ1gz/2a2 − (Γ2

1g
2 − 4σ2a2)1/2z/2a2], (C1, C2 = const). (6.2.24)

If σ2 < Γ2
1g

2/4a2, the whole spatial part ∆z(z) of the wave system (6.2.24) is real, leading to two
standing waves in consequence of a harmonic plane source with a time factor exp(iσt), [Eq. (5.1.32)]. On
the other side, if σ2 > Γ2

1g
2/4a2 the imaginary parts exp{i[σt± (4σ2a2 −Γ2

1g
2)1/2z/2a2]} of Eq. (6.2.24)

represent two stable wave systems (σ2 > 0) with oscillations of the form exp[i(σt ± jz)], having a wave
length L = 2π/|j|. The connection between the wave number j and the eigenvalue σ, (σ2 > 0) is obtained
by equating the wave number ±j with the wave number ±(4σ2a2 − Γ2

1g
2)1/2/2a2 (Lamb 1945):

σ2 = j2a2 + Γ2
1g

2/4a2 = j2a2 + (agµ/2RT )2, (σ2 > Γ2
1g

2/4a2; T = const). (6.2.25)

If the equilibrium temperature, instead of being uniform, increases downward with the uniform gra-
dient from Eq. (6.2.13), the atmosphere has a polytropic structure. The velocity of sound is no longer
constant and assumes the value

a2 = Γ1P/� = Γ1RT/µ = Γ1Rβz/µ, (T = βz; dT/dz = β). (6.2.26)

Lamb (1945) introduces the new variable

τ =
∫ z

0

dz/a = (µ/Γ1Rβ)1/2

∫ z

0

dz/z1/2 = 2(µz/Γ1Rβ)1/2; z = Γ1Rβτ2/4µ. (6.2.27)

τ is just the time that a point, moving with the local velocity of sound, would take to travel from the
top z = 0 of the atmosphere to position z. With this new variable the equation of motion (6.2.19) writes

∂2∆z/∂t2 = ∂2∆z/∂τ2 + [(2n + 1)/τ ] ∂∆z/∂τ, (g = Rβ(n + 1)/µ). (6.2.28)

If ∆z(τ, t) is substituted via Eq. (6.2.14), we get after simplification with exp(iσt) an equation similar
to Eq. (2.3.7):

d2∆z/dτ2 + [(2n + 1)/τ ] d∆z/dτ + σ2 ∆z = 0. (6.2.29)

With the change of variables outlined in Eq. (2.3.9)

x = στ ; f = τn ∆z, (6.2.30)
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the second order equation (6.2.29) becomes equal to the Bessel equation

x2 d2f/dx2 + x df/dx + (x2 − n2)f = 0, (6.2.31)

with the general solutions (2.3.10) and (2.3.11):

f(x) = C1Jn(x) + C2J−n(x), (n �= 0, 1, 2, 3, ...), (6.2.32)

f(x) = C1Jn(x) + C2Yn(x), (all n). (6.2.33)

Then, the solutions of Eq. (6.2.29) are

∆z(τ) = τ−n[C1Jn(στ) + C2J−n(στ)], (n �= 0, 1, 2, 3, ...), (6.2.34)

∆z(τ) = τ−n[C1Jn(στ) + C2Yn(στ)], (all n). (6.2.35)

The boundary condition (5.2.63) on the finite surface τ = 0 or z = 0 writes via Eqs. (6.2.13), (6.2.18),
(6.2.27) as

∆P = −Γ1P ∂∆z/∂z = −[AgΓ1z
n+1/(n + 1)] ∂∆z/∂z ∝ τ2n+1 ∂∆z/∂τ = 0, (τ = 0).

(6.2.36)

Inserting the solutions (6.2.34), (6.2.35) with the series expansions (2.3.12), (2.3.13) into the boundary
condition (6.2.36), the functions associated with C2 yield a nonzero constant as τ → 0, contradicting
the boundary condition (6.2.36): This implies C2 = 0. Thus, the vertical oscillations in a polytropic
atmosphere obey the law

∆z(z, t) = C1(4µz/Γ1Rβ)−n/2Jn[σ(4µz/Γ1Rβ)1/2] exp(iσt). (6.2.37)

We now turn to the consideration of horizontal disturbances propagating in the polytropic atmosphere
according to the law (6.2.1). The linear Eulerian perturbations of the equation of motion (6.2.2) are by
virtue of Eq. (5.1.24) equal to, (�vu = 0; δ(D�v/Dt) ≈ ∆(D�v/Dt) = D(∆�v/Dt) = D�v/Dt ≈ ∂�v/∂t) :

� ∂vx/∂t = −∂δP/∂x; � ∂vy/∂t = −∂δP/∂y; � ∂vz/∂t = −∂δP/∂z + g δ�. (6.2.38)

The continuity equation (5.2.25) writes

∂δ�/∂t + vz d�/dz = −� ∇ · �v. (6.2.39)

The time derivative of the energy equation (5.2.39) becomes up to the first order in the case of
adiabatic oscillations

∂δP/∂t = −Γ1P ∂(∇ · ∆�r)/∂t − (∂∆�r/∂t) · ∇P = −Γ1P ∇ · �v − �gvz

= −a2� ∇ · �v − �gvz, (dP/dz = �g). (6.2.40)

We eliminate the Eulerian perturbations δP, δ� among Eqs. (6.2.38)-(6.2.40), by deriving Eq. (6.2.38)
with respect to t, and inserting into Eqs. (6.2.39), (6.2.40):

∂2vx/∂t2 = a2 ∂(∇ · �v)/∂x + g ∂vz/∂x; ∂2vy/∂t2 = a2 ∂(∇ · �v)/∂y + g ∂vz/∂y;

∂2vz/∂t2 = ∂(a2 ∇ · �v + gvz)/∂z + [(a2/�) d�/dz − g] ∇ · �v = a2 ∂(∇ · �v)/∂z + g ∂vz/∂z

+(Γ1 − 1)g ∇ · �v, [(a2/�) d�/dz = (Γ1/�) dP/dz − da2/dz]. (6.2.41)

Now, we derive these three equations with respect to x, y, z, respectively, and add together:

∂2(∇ · �v)/∂t2 = a2 ∇2(∇ · �v) + [da2/dz + (Γ1 − 1)g] ∂(∇ · �v)/∂z + g ∇2vz = a2 ∇2(∇ · �v)

+(da2/dz + Γ1g) ∂(∇ · �v)/∂z + g ∂(∂vz/∂y − ∂vy/∂z)
/
∂y − g ∂(∂vx/∂z − ∂vz/∂x)

/
∂x. (6.2.42)

To write down the last expression, we have used the identity

∇2vz − ∂(∇ · �v)/∂z = ∂(∂vz/∂y − ∂vy/∂z)
/
∂y − ∂(∂vx/∂z − ∂vz/∂x)

/
∂x, (6.2.43)
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where the two terms on the right-hand side are just the derivatives of the components of ∇ × �v along
the x- and y-axis. By appropriately deriving Eq. (6.2.41), we get for the second temporal derivatives of
these two components:

∂2(∂vz/∂y − ∂vy/∂z)
/
∂t2 = −[da2/dz − (Γ1 − 1)g] ∂(∇ · �v)/∂y;

∂2(∂vx/∂z − ∂vz/∂x)
/
∂t2 = [da2/dz − (Γ1 − 1)g] ∂(∇ · �v)/∂x. (6.2.44)

Deriving Eq. (6.2.42) twice with respect to the time, we finally obtain

∂4(∇ · �v)/∂t4 = a2 ∇2[∂2(∇ · �v)/∂t2] + (da2/dz + Γ1g) ∂3(∇ · �v)/∂t2∂z

−g[da2/dz − (Γ1 − 1)g][∂2(∇ · �v)/∂x2 + ∂2(∇ · �v)/∂y2]. (6.2.45)

Assuming for ∇ · �v a representation of the form (6.2.1), we find

∂2(∇ · �v)/∂x2 + ∂2(∇ · �v)/∂y2 = −(j2
x + j2

y) ∇ · �v = −j2 ∇ · �v, (j2 = j2
x + j2

y), (6.2.46)

and Eq. (6.2.45) turns after simplification with exp[i(σt + jxx + jyy)] into (Lamb 1945)

a2 d2(∇ · �v)/dz2 + (da2/dz + Γ1g) d(∇ · �v)/dz

+
{
σ2 − j2a2 − (j2g/σ2)[da2/dz − (Γ1 − 1)g]

}
∇ · �v = 0. (6.2.47)

The sound velocity can be expressed with the aid of the temperature gradient (6.2.13) as

a2 = Γ1P/� = Γ1RT/µ = Γ1Rβz/µ = Γ1gz/(n + 1), (6.2.48)

and the coefficients of d(∇ · �v)/dz and ∇ · �v in Eq. (6.2.47) become, respectively

da2/dz + Γ1g = (n + 2)Γ1g/(n + 1);

da2/dz − (Γ1 − 1)g = [Γ1g/(n + 1)][1 − (n + 1)(Γ1 − 1)/Γ1] = [Γ1g/(n + 1)](1 − βad/β). (6.2.49)

The notation βad has been introduced for the adiabatic (isentropic) temperature gradient resulting
from Eq. (6.2.13) if n is substituted with nad = 1/(Γ1 − 1) :

βad = (dT/dz)ad = µg/R(nad + 1) = µg(Γ1 − 1)/RΓ1. (6.2.50)

Eq. (6.2.47) reads with the help of Eqs. (6.2.48)-(6.2.50) as

z d2(∇ · �v)/dz2 + (n + 2) d(∇ · �v)/dz

+j
{
[(n + 1)/Γ1]σ2/jg − jz + (jg/σ2)(nΓ1 − n − 1)/Γ1

}
∇ · �v = 0. (6.2.51)

With the substitution

∇ · �v = ψ(z) exp(−jz), (6.2.52)

we can eliminate the variable z from the coefficient of ∇ · �v in Eq. (6.2.51), which then turns into the
confluent hypergeometric equation (e.g. Abramowitz and Stegun 1965)

z d2ψ/dz2 + (n + 2 − 2jz) dψ/dz + 2αjψ = 0, (6.2.53)

where

2α = [(n + 1)/Γ1]σ2/jg + [(nΓ1 − n − 1)/Γ1]jg/σ2 − n − 2. (6.2.54)

Eq. (6.2.53) becomes, by imparting with 2j (Poyet 1983)

2jz d2[ψ(2jz)]/d(2jz)2 + (n + 2 − 2jz) d[ψ(2jz)]/d(2jz) + α ψ(2jz) = 0, (6.2.55)

taking the form of Kummer’s confluent hypergeometric equation

x d2F/dx2 + (c − x) dF/dx − bF = 0, (b, c = const), (6.2.56)
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with one of the solutions equal to the confluent hypergeometric function [cf. Eq. (5.10.28)]:

F1(b, c, x) = 1 + bx/1!c + b(b + 1)x2/2!c(c + 1) + ... + b(b + 1)...(b + m − 1)xm

/
m!c(c + 1)...(c + m − 1) + ... (6.2.57)

This series is convergent for all values of b, c, and x, provided that c is not a negative integer. The
solution of Kummer’s equation (6.2.55) is therefore

ψ = ψ(2jz) = F1(−α, n + 2, 2jz) = 1 − α(2jz)/1!(n + 2) + α(α − 1)(2jz)2/2!(n + 2)(n + 3)
+... + (−1)mα(α − 1)...(α − m + 1)(2jz)m/m!(n + 2)(n + 3)...(n + m + 1) + ..., (6.2.58)

which is finite, and equal to 1 as the surface of the polytropic atmosphere z = 0 is approached. The other
independent solution of Kummer’s equation (6.2.56) has a singularity at z = 0 if c > 1, i.e. if n > −1
(e.g. Abramowitz and Stegun 1965), and must accordingly be discarded.

∇ · �v results from Eq. (6.2.52), once ψ is known from Eq. (6.2.55). The vertical velocity component
vz can be deduced by deriving the first two equations (6.2.41) with respect to x and y, respectively, and
inserting the separable solution (6.2.1):

∂3vx/∂t2∂x + ∂3vy/∂t2∂y = −σ2(∇ · �v − ∂vz/∂z) = −j2a2 ∇ · �v − j2gvz. (6.2.59)

From the third equation (6.2.41) we get with the aid of Eq. (6.2.1):

σ2vz = −a2 ∂(∇ · �v)/∂z − g ∂vz/∂z − (Γ1 − 1)g ∇ · �v. (6.2.60)

∂vz/∂z is eliminated at once between Eqs. (6.2.59), (6.2.60), yielding with Eqs. (6.2.48), (6.2.52),
(Lamb 1945, Spiegel and Unno 1962):

(σ4 − j2g2)vz = −σ2a2 ∂(∇ · �v)/∂z − g(σ2Γ1 − j2a2) ∇ · �v
= −[Γ1jg

2/(n + 1)]{(σ2/jg)[z dψ/dz + (n + 1)ψ] − (1 + σ2/jg)jzψ} exp(−jz). (6.2.61)

The boundary condition to be satisfied by this equation at the bottom z = z1 of the polytropic
atmosphere is obviously vz(z1) = 0, i.e. there is no mass flow across the lower boundary. This boundary
condition reads via Eq. (6.2.61) as

z1(dψ/dz)z=z1 + (n + 1) ψ(z1) = (1 + jg/σ2)jz1ψ(z1). (6.2.62)

As will be shown subsequently, the value of α from Eq. (6.2.54) can be determined analytically
in the limiting case of wavelengths that are either very short or very long in comparison to the depth
z, (0 ≤ z ≤ z1) in the polytropic atmosphere. This means that either L = 2π/j � z, (jz → ∞) or
L = 2π/j 	 z, (jz → 0). Provided that α is known, the eigenvalues σ2/jg can be determined from
the quadratic equation (6.2.54), [cf. Spiegel 1964, Eq. (101) if α = 0; Christensen-Dalsgaard 1980, Eqs.
(4.8), (4.9)]:

(σ2/jg)1,2 = [Γ1(2α + n + 2)/2(n + 1)]{1 ± [1 − 4(n + 1)(nΓ1 − n − 1)
/
Γ2

1(2α + n + 2)2]1/2}.
(6.2.63)

(i) Long wavelength case: jz ≈ 0.jz ≈ 0.jz ≈ 0. Eq. (6.2.53) becomes after multiplication with z equal to

z2 d2ψ/dz2 + (n + 2)z dψ/dz + 2αjzψ = 0. (6.2.64)

Eq. (6.2.64) is of the form (2.3.7), the relevant transformation (2.3.9) to the Bessel equation (2.3.8)
being

z = η2/8αj; ψ(z) = z−(n+1)/2u(η). (6.2.65)

Eq. (6.2.64) turns into

η2 d2u/dη2 + η du/dη + [η2 − (n + 1)2]u = 0, (n > −1). (6.2.66)
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The solution (2.3.11) which is finite at the origin η = 0 is given by u = C1Jn+1(η), (C1 = const), and
this yields via Eq. (6.2.65):

ψ(z) = Cη−n−1Jn+1(η), (C = (8αj)(n+1)/2C1). (6.2.67)

Inserting this solution of Eq. (6.2.64) into the boundary condition (6.2.62), we get

z1(dψ/dz)z=z1 + (n + 1) ψ(z1) = Cη−n
1 Jn(η1)

/
2 = (1 + jg/σ2)jz1ψ(z1)

= (1 + jg/σ2)Cη−n+1
1 Jn+1(η1)

/
8α, (6.2.68)

or

Jn(η1) = (1 + jg/σ2)η1Jn+1(η1)
/
4α, (6.2.69)

where we have used for the left-hand side of Eq. (6.2.68) the relationship (e.g. Spiegel 1968)

dJn+1/dη = Jn − (n + 1)Jn+1/η. (6.2.70)

In principle, the numerical calculation of α, η1, and of the four eigenvalues σ is possible from the three
equations (6.2.54), (6.2.65), (6.2.69) if n, Γ1, z1, and j are known. To make further analytical progress
we assume, following Lamb (1945, p. 553), that σ2/jg ≈ 0. Eq. (6.2.54) becomes with this constraint

2α = (nΓ1 − n − 1)jg/σ2Γ1 = (βad/β − 1)jg/σ2, (jz, σ2/jg ≈ 0). (6.2.71)

The boundary condition (6.2.69) now reads

Jn(η1) = jgη1Jn+1(η1)
/
4ασ2 = Γ1η1Jn+1(η1)

/
2(nΓ1 − n − 1)

= η1Jn+1(η1)
/
2(βad/β − 1), (jz, σ2/jg ≈ 0). (6.2.72)

For instance, if n = 6 and Γ1 = 1.40 Lamb (1945) finds for the lowest root of this transcendent
equation η1 = 4.96. This permits the calculation of α = η2

1/8jz1 and of the eigenvalue σ2/jg by virtue of
Eqs. (6.2.65) and (6.2.71), respectively.

(ii) Short wavelength case: jz → ∞.jz → ∞.jz → ∞. We introduce the notation

ζ = 2jz → ∞. (6.2.73)

Eq. (6.2.61) reads with the solution (6.2.58):

(σ4 − j2g2)vz = [Γ1jg
2/(n + 1)]

{
− (σ2/jg)

[
ζ dF1(−α, n + 2, ζ)/dζ + (n + 1) F1(−α, n + 2, ζ)

]
+(1 + σ2/jg)ζ F1(−α, n + 2, ζ)

/
2
}

exp(−ζ/2) = [Γ1jg
2/(n + 1)]

{
[σ2αζ/jg(n + 2)]

×F1(−α + 1, n + 3, ζ) + [−(n + 1)σ2/jg + (1 + σ2/jg)ζ/2] F1(−α, n + 2, ζ)
}

exp(−ζ/2), (6.2.74)

where the differentiation rule

dF1(b, c, x)/dx = (b/c) F1(b + 1, c + 1, x), (6.2.75)

can be derived at once from the series (6.2.57). In the limit ζ → ∞, the confluent hypergeometric function
takes the asymptotic form (e.g. Abramowitz and Stegun 1965, Sec. 13.5.1)

F1(b, c, x) = [exp(iπb) x−bΓ(c)
/
Γ(c − b)]

{
1 +

∞∑
m=1

[
b(b + 1)...(b + m − 1)(b − c + 1)(b − c + 2)

×...(b − c + m)(−x)−m/m!
]}

+ [xb−c expx Γ(c)
/
Γ(b)]

{
1 +

∞∑
m=1

[
(c − b)(c − b + 1)

×...(c − b + m − 1)(−b + 1)(−b + 2)...(−b + m)x−m/m!
]}

, (x → ∞). (6.2.76)

Retaining in Eq. (6.2.74) only the leading terms, we find via Eq. (C.11)

(σ4 − j2g2)vz = [Γ1jg
2 Γ(n + 1)/2]

[
(1 + σ2/jg) exp(−iπα) ζα+1

/
Γ(n + α + 2)

+(1 − σ2/jg)ζ−n−α−1 exp ζ
/
Γ(−α)

]
exp(−ζ/2), (ζ → ∞). (6.2.77)
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The boundary condition vz(ζ1) = 0, (z1 = ζ1/2j) implies (Spiegel and Unno 1962)

Γ(−α)
/
Γ(n + α + 2) = [(σ2/jg − 1)

/
(σ2/jg + 1)]ζ−n−2α−2

1 exp ζ1 exp(iπα). (6.2.78)

The two sides of this boundary condition must be large, because exp ζ1 → ∞. By virtue of Euler’s
formula (e.g. Abramowitz and Stegun 1965)

Γ(x) = lim
N→∞

N ! Nx
/
x(x + 1)(x + 2)...(x + N), (N = 0, 1, 2, 3, ...; x �= 0,−1,−2,−3, ...),

(6.2.79)

the gamma function is singular for negative integers, so α in Eq. (6.2.78) must be close to a positive
integer, in order to make Γ(−α) large:

α ≈ 0, 1, 2, 3, ..., (ζ → ∞). (6.2.80)

For the fundamental mode α ≈ 0 we find from Eq. (6.2.54), (Spiegel 1964):

(σ2/jg)1,2 = [Γ1(n + 2)/2(n + 1)]
{
1 ±

[
1 − 4(n + 1)(nΓ1 − n − 1)

/
Γ2

1(n + 2)2
]1/2}

,

(α ≈ 0; ζ → ∞). (6.2.81)

If σ2/jg is assumed small, we may neglect in Eq. (6.2.54) the term associated with σ2/jg (cf.
Skumanich 1955, Spiegel and Unno 1962, Spiegel 1964):

σ2/jg = (nΓ1 − n − 1)/Γ1(2α + n + 2), (α ≈ 0, 1, 2, 3, ...; σ2/jg ≈ 0; ζ → ∞). (6.2.82)

From the Schwarzschild discriminant (5.2.85) follows that the convective stability condition A < 0
demands

nΓ1 − n − 1 > 0 or Γ1 > 1 + 1/n and n > 1/(Γ1 − 1), (d ln �/dr < 0; n > 0; Γ1 > 1).
(6.2.83)

This stability condition can be expressed – as in Eq. (6.1.29) – in terms of the polytropic and adiabatic
temperature gradient β and βad from Eqs. (6.2.13) and (6.2.50), respectively:

(n + 1 − nΓ1)/Γ1 = 1 − (n + 1)(Γ1 − 1)/Γ1 = 1 − βad/β < 0 or
β = dT/dz < βad = (dT/dz)ad, (dT/dz > 0; n > 0; Γ1 > 1). (6.2.84)

If n > 0, α ≈ 0, 1, 2, 3, ..., and if the adiabatic index Γ1 changes in the common interval [1, 5/3], (see
Table 1.7.1), it turns out that the quantity under the square root in Eq. (6.2.63) is positive definite, so
σ2/jg cannot be complex conjugate.

Convective instability takes place if the actual temperature gradient is superadiabatic, i.e. larger
than the adiabatic temperature gradient [Schwarzschild 1958, Eq. (7.2)]. If the atmosphere is assumed
unstable against convection [n < 1/(Γ1−1)], the quantity under the square root in Eq. (6.2.63) is > 1, and
one of the roots σ2/jg becomes negative, giving rise to an unstable g-mode (gravity, convective mode).
On the other hand, if the atmosphere is convectively stable (n > 1/(Γ1 − 1); n > 0; 1 < Γ1 < 5/3),
the positive quantity under the square root in Eq. (6.2.63) is < 1, and the eigenvalues σ2/jg are always
positive, giving rise to stable g (gravity) or p (pressure, acoustic) waves, depending on whether σ2/jg
is small or large [cf. Eqs. (5.2.126), (5.2.127) for the spherical case (Spiegel 1964)]. If the atmosphere
is convectively unstable, the gravity waves are replaced by unstable convective g-modes, the p-modes
(acoustic waves) being then the only form of stable wave motion.

The use of phase-integral methods for the description of short-wavelength p-modes yields not always
satisfactory agreement with the exact dispersion relationship (6.2.54) if α = 0, 1, 2, 3, ... (Price 1992).

Our discussion has left out two types of modes. The one type – the f -mode – results if

σ2 = jg. (6.2.85)

In this case the velocity vz from Eq. (6.2.61) is finite at the surface z = 0 only if ψ vanishes identically.
The velocity vz = A exp(−jz), (A = const), resulting from Eq. (6.2.60) with ψ ∝ ∇ · �v ≡ 0, belongs
essentially to a surface wave at z ≈ 0 (Christensen-Dalsgaard 1980).
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The other type of modes are axial (toroidal) modes, which are degenerate to zero frequency σ = 0, as
in a nonrotating sphere (see Eq. (5.8.166), Poyet 1983).

Antia and Chitre (1978, 1979) have found that the linear Eulerian perturbation theory breaks down
just at the boundary of a complete polytropic atmosphere with vanishing temperature at the surface,
while the relative Lagrangian perturbations remain finite at the boundary: δf/f → ∞ and ∆f/f =
finite. This draw-back of the Eulerian treatment does not seem to be crucial, as all involved quantities
(pressure, density, temperature) remain small, so their influence on the deeper and denser layers would be
insignificant, similar to the objection of Smith (1975, 1976) concerning the break-down of Chandrasekhar’s
(1933a-d) perturbation theory near the boundary of a distorted polytrope (Sec. 3.2).

The thermal instability of a fluid layer with constant density (n = 0) has already been treated
theoretically by Rayleigh, assuming constant viscosity and thermal conductivity (e.g. Chandrasekhar
1981, Chap. II). Unno et al. (1960) have abandoned the restriction of constant density, showing that
the critical Rayleigh number for the occurrence of convective instability together with the associated
horizontal wave number j depend very little on density variations in the atmosphere, provided that
appropriate mean values of density and temperature are considered.

Allowing for thermal diffusion Spiegel (1964) and Jones (1976) have investigated the decay or am-
plification up to a certain limit (overstability, Sec. 5.1) of sound waves. Jones (1976) indicates that
the results of Chitre and Gokhale (1973, 1975) concerning the overstability of horizontally propagating
acoustic waves are incorrect, i.e. that such waves are stable.

The most complete study of overstabilities in a plane polytropic atmosphere under the influence
of viscosity, thermal conduction, and a uniform vertical magnetic field has been undertaken by Lou
(1990, 1991). Nonadiabatic acoustic overstabilities occur under the influence of viscosity and thermal
conductivity in a polytropic atmosphere with subadiabatic (convectively stable) temperature gradient
(Lou 1990). The problem complicates considerably in the presence of a constant vertical magnetic field:
Since the vertical field enhances convective stability, magnetohydrodynamic overstabilities can occur over
a wide range of subadiabatic as well as superadiabatic temperature gradients, while the atmosphere
retains convective stability (Lou 1991, Bogdan and Cally 1997).

Solar p-modes (acoustic waves) and magnetic surface waves in a plane polytropic atmosphere truncated
by a horizontal magnetic region have been investigated by Foullon (1999).

6.2.2 Polytropic Interstellar Clouds

About 107 yr after a dynamic shock, an interstellar cloud which does not collapse gravitationally, will
reach a state of rough hydrostatic equilibrium (e.g. Shu et al. 1972). Such a cloud, heated by an external
flux of energetic particles or photons, will not be isothermal (n = ±∞), since the denser regions near
the centre must be cooler than the more tenuous regions near the surface if the flux is nearly uniform
throughout the cloud. If the external flux is attenuated by absorbing agents, the central parts may be
even cooler. Unno and Simoda (1963) have calculated the hydrostatic structure of an interstellar cloud
heated by suprathermal particles, the cooling being mainly caused by ionized carbon. They found that
a cloud of mass M1 = 1.1 × 103 M�, mean molecular weight µ = 1.5, and mean temperature T = 100
K at an average number density of nd = 10 cm−3 is just at the verge of instability under the external
pressure exerted by the intercloud medium (cf. Sec. 5.4.2, Table 5.4.1). The polytropic index of the
cloud is n ≈ −3.32, corresponding to a two-fold increase of temperature (∝ θ) towards the surface, and
to a decrease ∝ θ−3.32, θ−2.32 of density and pressure, respectively.

Note, that Eddington (1931) was the first who has considered the theoretical possibility of negative
polytropic indices.

Similar results have been reached by Shu et al. (1972) for polytropic indices n = −1.3, (M1 =
3000 M�) and n = −4, (M1 = 120 M�), the cloud being heated by a uniform flux of low-energy cosmic
rays (30 K � T � 200 K).

As shown by Kenyon and Starrfield (1979), Bok globules with central number densities nd = 105 cm−3,
masses 25 M� � M1 � 200 M�, mean temperature 7.7µ [K] � Tm � 22.3µ [K], (mean molecular weight
µ = 2, as for molecular hydrogen), can also be approximated by incomplete polytropes of index n ≈ −2.

The outer layers (r ∝ ξ 	 1) of interstellar clouds with polytropic indices 5 < n < ∞ and −∞ < n <
−1 can be described by the singular solutions (2.3.92) and (2.3.93): � ∝ θn ∝ ξ−2n/(n−1) ∝ r−2n/(n−1),
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(McKee and Holliman 1999, §3.1). However, the more refined structure of interstellar molecular clouds
cannot be described adequately by simple polytropic spheres of negative index. Therefore, Curry and
McKee (2000) adopt composite, nonisentropic polytropes (Γ1 �= 1 + 1/n; Secs. 2.8.1, 5.4.2), which
reproduce much better the bulk properties (mass, radius, density contrast) of dense molecular cores and
Bok globules.

A formal “logatropic” equation of state for the structure of giant molecular clouds can be obtained from
the differential dP = (1 + 1/n)K�1/n d� = K1�

1/n d�, (K1 = (1 + 1/n)K) of the polytropic equation of
state. If n = −1, this gives the isobaric P = const, as outlined in Sec. 2.1. Only if K1 is formally regarded
as a nonzero constant, the integration yields the logatrope P = P0 + K1 ln(�/�0), (n = −1; K1 �= 0),
(McLaughlin and Pudritz 1996).

Discussing the local polytropic index connected to the heating and cooling function of the interstellar
gas in dense, cool interstellar clouds (nd = 102 − 105 cm−3, T = 10 − 100 K), Scalo et al. (1998)
suggest values of n = 1/(Γ′

1 − 1) between −4.5 and −100 if nd � 103 cm−3, and between 2.5 and ∞ if
nd � 103 cm−3. Γ′

1 is the polytropic exponent from Eq. (1.3.25).

Fig. 6.2.1 Hydrostatic equilibrium models of rotating interstellar clouds with polytropic index n = −3 and
angular velocity Ω = 10−15 s−1 are possible only within the hatched area confined between the curves Pe = Pe,min

and Pe = Pe,max. Beyond a cloud mass of M1 ≈ 830 M� no equilibrium states exist (Viala et al. 1978).

The quasistatic evolution of axisymmetric, uniformly rotating, polytropic interstellar clouds under ex-
ternal pressure has been calculated by Viala et al. (1978). The relevant integral of hydrostatic equilibrium
(3.8.4) reads in cylindrical (�, z)-coordinates

(n + 1)K�1/n = Φ + Ω2�2/2 + const. (6.2.86)

The integration constant const = (n+1)K�
1/n
0 may be determined from the central condition Φ(0, 0) =

0. Poisson’s equation (2.1.4) writes as

(1/�) ∂(� ∂Φ/∂�)
/
∂� + ∂2Φ/∂z2 = −4πG� = −4πG

{
[Φ + Ω2�2/2 + (n + 1)K�

1/n
0 ]

/
(n + 1)K

}n
.

(6.2.87)

This equation becomes with the dimensionless polytropic variables [cf. Eqs. (3.2.1), (3.2.3)]

� = αη; z = αζ; � = �0Θn; P = K�
1+1/n
0 Θn+1; χ = Φ/(n + 1)K�

1/n
0 ; β = Ω2/2πG�0,

(α2 = −(n + 1)K/4πG�
1−1/n
0 ; −∞ < n < −1), (6.2.88)

equal to

(1/η) ∂(η ∂χ/∂η)
/
∂η + ∂2χ/∂ζ2 = (χ − βη2/4 + 1)n. (6.2.89)
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The condition that a uniform external pressure Pe acts on the distorted boundary is expressed by
virtue of Eqs. (6.2.86)-(6.2.89) as

Θn+1
1 = Θn+1(η1, ζ1) = Pe(�1, z1)/K�

1+1/n
0

=
{
[Φ1 + Ω2�21/2 + (n + 1)K�

1/n
0 ]

/
(n + 1)K�

1/n
0

}n+1 = (χ1 − βη2
1/4 + 1)n+1, (6.2.90)

where the hydrostatic integral (6.2.86) writes via Eq. (6.2.88) as

Θ(η, ζ) = χ(η, ζ) − βη2/4 + 1. (6.2.91)

The fundamental Lane-Emden function is known at once from Eq. (6.2.91), if Poisson’s equation
(6.2.89) is solved subject to the boundary condition (6.2.90). Because the results are not very sensitive
to the polytropic index, equilibrium states have been calculated only for n = −3, in accordance to the
previously quoted values of n in interstellar cloud models. Take the cloud mass M1 and the angular
velocity Ω = 10−15 s−1 fixed. If the external pressure Pe decreases, the equilibrium radius r1 increases
(the central density �0 decreases), and below a certain minimum external pressure Pe,min no equilibrium
models will be possible, as the cloud will be disrupted due to the increasing centrifugal forces overcoming
gravity in the equatorial plane. Nonrotating clouds do not exhibit this behaviour, as centrifugal forces
are absent, and hydrostatic models exist however small there is Pe (cf. Sec. 5.4.2, Fig. 5.4.2).

On the other hand, keeping M1 and Ω still constant, there exists also a maximum external pressure
Pe,max to which a nearly spherical, polytropic cloud can withstand if −∞ < n < −1. If Pe > Pe,max,
the pressure gradient dPe/dr1 is positive, and the cloud will be unstable to gravitational collapse. Thus,
equilibrium models of rotating, polytropic interstellar clouds are possible only between external pressures
confined to the interval Pe,min ≤ P ≤ Pe,max. If Pe,min > Pe,max, no equilibrium states exist at all, unlike
to the nonrotating case when Pe,min ≡ 0 (Fig. 6.2.1).

Saigo et al. (2000) have performed collapse calculations of axisymmetric cylindrical clouds with
polytropic indices −∞ < n < −5 and 5 < n < ∞. Such values are suggested by the delimitation
0.2 ≤ Γ′

1 ≤ 1.4 of the polytropic exponent (1.3.25) in interstellar clouds, corresponding to polytropic
indices n = 1/(Γ′

1 − 1) in the intervals −∞ < n < −1.25 and 2.5 < n < ∞ (Spaans and Silk 2000).
Closely connected to this topic is the radial gravitational collapse (the contraction) of an interstellar

cloud to a polytropic star, as studied by McVittie (1956b) under the assumption that the radial velocity
v of each mass element at instant t obeys the so-called linear-wave hypothesis, i.e. a class of flows where
the velocity has the form

v = v(r, t) = dr/dt = [r/f(t)] df/dt or r = Cf(t), (C = const). (6.2.92)

f is an arbitrary function of time. Eq. (6.2.92) implies a homology transformation for the contraction
of the sphere, the ratio v/r = [1/f(t)] df/dt being independent of radial position r. To solve the problem,
a multitude of functional transformations are introduced, the starting point being the radially symmetric
equation of continuity in a N -dimensional space [cf. Eqs. (5.2.1), (C.13)]

∂�/∂t + ∇ · (�v) = ∂�/∂t + r1−N ∂(rN−1�v)/∂r = 0, (N = 1, 2, 3, ...), (6.2.93)

and the equation of motion (5.2.10)

� Dv/Dt = � ∂v/∂t + �v ∂v/∂r = −∂P/∂r + 4πG� ∂ϕ/∂r. (6.2.94)

All quantities are assumed to depend merely on the radial coordinate r and on time t. The internal
gravitational potential Φ is written under the form

Φ = Φ(r, t) = 4πGϕ(r, t), (6.2.95)

in order to simplify subsequent equations, like the Poisson equation (2.1.4), (C.15):

� = −∇2ϕ = −r1−N ∂(rN−1 ∂ϕ/∂r)
/
∂r. (6.2.96)

A solution of Eqs. (6.2.93)-(6.2.96) in terms of ϕ can be found by inserting Eq. (6.2.96) into Eq.
(6.2.93), (e.g. McVittie 1956a, Chaps. 6, 7):

∇2ϕt = r1−N ∂(rN−1ϕtr)/∂r = −r1−N ∂(rN−1v ∇2ϕ)/∂r, (6.2.97)
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the subscripts denoting the respective derivatives. Integration with respect to r is immediate, yielding

v(r, t) = dr/dt = rft/f = −ϕtr

/
∇2ϕ, (6.2.98)

where a time-dependent integration function has been set identical zero, in order to simplify the result.
The pressure is obtained by inserting Eqs. (6.2.96), (6.2.98) into Eq. (6.2.94):

∂P/∂r = −4πGϕr ∇2ϕ − ϕttr + ϕtr[∂(∇2ϕ)/∂t]
/
∇2ϕ + ϕtr ∂(ϕtr

/
∇2ϕ)

/
∂r

= −4πG[(N − 1)ϕ2
r/r + ϕrϕrr] − ϕttr + ∂(ϕ2

tr

/
∇2ϕ)

/
∂r + (ϕtr

/
∇2ϕ)[−ϕtrr + ∂(∇2ϕ)/∂t].

(6.2.99)

Observing that the last bracket is via Eq. (6.2.96) just equal to (N − 1)ϕtr/r, the integration with
respect to r yields

P (r, t) = D(t) − 2πGϕ2
r − ϕtt + ϕ2

tr

/
∇2ϕ + (N − 1)

∫ r

0

(ϕ2
tr′
/
∇2ϕ − 4πGϕ2

r′) dr′/r′, (6.2.100)

by including as an integration constant the arbitrary function of time D(t). Since Eq. (6.2.98) is invariant
to a scale change of r and f, we express ϕ with the aid of an arbitrary function h(ζ) of the conformal
variable

ζ = ζ(r, t) = r/f(t). (6.2.101)

It may be verified by direct insertion into Eq. (6.2.98) that ϕ can be taken under the form

ϕ(r, t) = ϕ(ζ, t) = −Bf1−N (t)
∫ r

0

h[r′/f(t)] dr′ = −Bf2−N (t)
∫ ζ

0

h(ζ ′) dζ ′, (B = const),

(6.2.102)

where integration over r is effected as if f(t) were a constant.
The various derivatives occurring in Eqs. (6.2.96), (6.2.100) are via Eq. (6.2.101) equal to

ϕr = −Bf1−Nh; ϕrr = −Bf−Nhζ ; ϕtr = ϕrt = Bf−Nft[(N − 1)h + ζhζ ]; ϕt = Bf1−Nft

×
[
(N − 2)

∫ ζ

0

h dζ ′ + ζh

]
; ϕtt = Bf−Nf2

t

[
(−N2 + 3N − 2)

∫ ζ

0

h dζ ′ + 2(1 − N)ζh − ζ2hζ

]

+Bf1−Nftt

[
(N − 2)

∫ ζ

0

h dζ ′ + ζh

]
, (hζ = dh/dζ; ∂h[ζ(r, t)]/∂t = −ζhζft/f). (6.2.103)

Eqs. (6.2.96) and (6.2.100) become, respectively

� = −∇2ϕ = Bf1−N (t) r1−N ∂{rN−1h[r/f(t)]}
/
∂r = Bf−N (t) [(N − 1)h(ζ)/ζ + dh/dζ],

(6.2.104)

P = D(t) − Bf1−N (t) (d2f/dt2)
[
(N − 2)

∫ ζ

0

h(ζ ′) dζ ′ + ζh(ζ)
]

−2πGB2f2−2N (t)
[
2(N − 1)

∫ ζ

0

h2(ζ ′) dζ ′/ζ ′ + h2(ζ)
]
. (6.2.105)

At moment t the outer boundary of the configuration is by virtue of Eq. (6.2.92) equal to r1 = Cf(t),
and taking C = 1, the function r1 = f(t) represents just the surface of the configuration at instant t.
The variable ζ therefore ranges from 0 to 1. Density and pressure are assumed to vanish on the surface
ζ = ζ(r1, t) = r1/f(t) = 1 :

(N − 1) h(1) + (dh/dζ)ζ=1 = 0, (6.2.106)

D(t) = Bf1−N (t) (d2f/dt2)
[
(N − 2)

∫ 1

0

h(ζ ′) dζ ′ + h(1)
]

+2πGB2f2−2N (t)
[
2(N − 1)

∫ 1

0

h2(ζ ′) dζ ′/ζ ′ + h2(1)
]
. (6.2.107)
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The time can be normalized by introducing the dimensionless temporal variable

τ = t/tf , (6.2.108)

equal to the time taken for the gas to move from the initial boundary radius r1i = r1(0) = f(0) to the
final equilibrium boundary radius r1f = r1(tf ) = f(tf ). The boundary radius r1(t) = f(t) at instant t is
replaced by the dimensionless function

R(τ) = R(t/tf ) = r1(t)/r1i = f(t)/r1i; f(t) = r1iR(τ),
(r1(t) = f(t); R(0) = 1; R(1) = r1f/r1i). (6.2.109)

Thus, the physical characteristics of the collapsing ideal gas configuration from Eqs. (6.2.92), (6.2.104),
(6.2.105) can be thrown into the form

v = v(ζ, τ) = ζ df/dt = r1iζ dR(t/tf )
/
dt = (r1iζ/tf ) dR(τ)/dτ, (6.2.110)

� = �(ζ, τ) = Br−N
1i R−N (τ) [(N − 1) h(ζ)/ζ + dh/dζ], (6.2.111)

P = P (ζ, τ) = (Br2−N
1i /t2f ) R1−N (τ) (d2R/dτ2)

[
(N − 2)

∫ 1

ζ

h(ζ ′) dζ ′ + h(1) − ζh(ζ)
]

+2πGB2r2−2N
1i R2−2N (τ)

[
2(N − 1)

∫ 1

ζ

h2(ζ ′) dζ ′/ζ ′ + h2(1) − h2(ζ)
]
. (6.2.112)

The identification of the unknown function h(ζ) depends on the nature of the final equilibrium con-
figuration, rather than on the form assumed for R(τ). At the final instant t = tf the variable ζ from Eq.
(6.2.101) becomes via Eq. (6.2.109) equal to

ζf = ζf (rf , tf ) = rf/f(tf ) = rf/r1f = rf

/
r1iR(1). (6.2.113)

And since the final state is assumed to be an equilibrium state, velocity v ∝ dR/dτ and acceleration
∝ d2R/dτ2 must be zero if τ = 1 [cf. Eqs. (6.2.110), (6.2.130)]. The final equilibrium density and
pressure are via Eqs. (6.2.111), (6.2.112) equal to [r1f = r1iR(1)]

�f = Br−N
1f

[
(N − 1)h(ζf )/ζf + (dh/dζ)ζ=ζf

]
, (6.2.114)

Pf = 2πGB2r2−2N
1f

[
2(N − 1)

∫ 1

ζf

h2(ζ) dζ/ζ + h2(1) − h2(ζf )
]
. (6.2.115)

As can be verified by direct derivation, these two equations are connected by the differential equation

d[(ζN−1
f /�f ) dPf/dζf ]

/
dζf = −4πGr2

1f�fζN−1
f . (6.2.116)

This equation is just equal to the radially symmetric Poisson equation (2.1.4) ∇2Φf = −4πG�f , if
∇Φf is replaced by (1/�f ) ∇Pf from the equation of hydrostatic equilibrium (2.1.3):

∇ · [(1/�f ) ∇Pf ] = r1−N
f d[(rN−1

f /�f ) dPf/drf ]
/
drf = −4πG�f , (rf = r1fζf ). (6.2.117)

We now assume that the final equilibrium state is a complete polytrope obeying the Lane-Emden
equation (2.1.14), where ζf is connected to the Lane-Emden variable ξf by

ξf = ξ1ζf , (0 ≤ ζf ≤ 1), (6.2.118)

ξ1 being the first zero of the Lane-Emden function θ(ξf ) = θ(ξ1ζf ). At the origin we have rf = 0, ζf = 0,
and ξf = 0. Denoting by ζ1f = 1 the value of ζf = rf/r1f on the surface rf = r1f , we get via Eq.
(6.2.118): ξ1f = ξ1ζ1f = ξ1. Thus, pressure and density from Eqs. (6.2.114), (6.2.115) take the polytropic
form

�f = Br−N
1f θn(ξf ); Pf = K�

1+1/n
f = K(Br−N

1f )1+1/nθn+1(ξf ). (6.2.119)
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With the polytropic constant equal to

K = 4πGB1−1/nr
2+N(1/n−1)
1f

/
(n + 1)ξ2

1 , (6.2.120)

Eq. (6.2.116) turns just into the Lane-Emden equation (2.1.14): d(ξN−1
f dθ/dξf )

/
dξf = −ξN−1

f θn, (−1 <
n < ∞). The densities (6.2.114) and (6.2.119) must be the same, so we get in virtue of Eqs. (2.1.14),
(6.2.118):

ξ1[(N − 1) h(ξf )/ξf + dh/dξf ] = ξ1ξ
1−N
f d(ξN−1

f h)/dξf = θn(ξf ) = −ξ1−N
f d(ξN−1

f dθ/dξf )
/
dξf .

(6.2.121)

This yields

h(ξf ) = −(1/ξ1) dθ/dξf = −θ′(ξf )/ξ1. (6.2.122)

In analogy to ξf from Eq. (6.2.118) we define the variable

ξ = ξ1ζ, (0 ≤ ζ ≤ 1), (6.2.123)

and observe that the form of h is preserved, since the range of its argument ξ, running from 0 to ξ1, is
not changed:

h(ξ) = −(1/ξ1) dθ/dξ = −θ′(ξ)/ξ1. (6.2.124)

Since h is now known, it is possible to evaluate density and pressure from Eqs. (6.2.111), (6.2.112) in
terms of the Lane-Emden function θ(ξ) :

� = �(ξ, τ) = Br−N
1i R−N (τ) ξ1[(N − 1) h(ξ)/ξ + dh/dξ]

= −Br−N
1i R−N (τ) ξ1−N d(ξN−1θ′)/dξ = Br−N

1i R−N (τ) θn(ξ), (6.2.125)

P = P (ξ, τ) = (Br2−N
1i /ξ2

1t2f ) R1−N (τ) (d2R/dτ2)[(N − 2) θ(ξ) + ξθ′(ξ) − ξ1θ
′(ξ1)]

+4πGB2r2−2N
1i R2−2N (τ) θn+1(ξ)/(n + 1)ξ2

1 . (6.2.126)

The two brackets in Eq. (6.2.112) have been transformed according to

(N − 2)
∫ 1

ζ

h(ζ ′) dζ ′ + h(1) − ζh(ζ) = −ξ−2
1

[
(N − 2)

∫ ξ1

ξ

θ′(ξ′) dξ′ + ξ1θ
′(ξ1) − ξθ′(ξ)

]

= ξ−2
1 [(N − 2) θ(ξ) + ξθ′(ξ) − ξ1θ

′(ξ1)], (6.2.127)

2(N − 1)
∫ 1

ζ

h2(ζ ′) dζ ′/ζ ′ + h2(1) − h2(ζ) = 2ξ−2
1

∫ ξ1

ξ

θ′(ξ′)
[
(N − 1) θ′(ξ′)/ξ′ + θ′′(ξ′)] dξ′

= 2ξ−2
1

∫ ξ1

ξ

[ξ′1−N
θ′(ξ′)] d[ξ′N−1

θ′(ξ′)] = −2ξ−2
1

∫ ξ1

ξ

θn(ξ′) θ′(ξ′) dξ′ = 2θn+1(ξ)
/
(n + 1)ξ2

1 .

(6.2.128)

Since at the initial moment we have R(0) = 1, we infer from Eq. (6.2.125) that Br−N
1i rep-

resents just the initial central density �0i, and Br−N
1i R−N (1) = Br−N

1f the final central density
�0f , (�0f/�0i = (r1i/r1f )N = R−N (1); θ(0) = 1). The final central pressure reads via Eq. (6.2.126)
as: P0f = 4πG�2

0fr2
1f/(n + 1)ξ2

1 = K�
1+1/n
0f .

The temperature T is simply determined from the perfect gas law (1.2.5). The whole theory suffers
from the fact that the function R(τ) is unknown, and may be determined from the first law of thermody-
namics, i.e. from the rate (6.1.39) of gravitational energy generation εg per unit mass [McVittie 1956b,
Eq. (3.04)]:

ε′g = �εg = −[P/(γ − 1)][∂ lnP/∂t − γ ∂ ln �/∂t] = −[1/(γ − 1)tf ]
{
(Br2−N

1i /ξ2
1t2f )

×
[
R1−N (τ) d3R/dτ3 + (1 − N + Nγ)R−N (τ) (dR/dτ )(d2R/dτ2)

]
[(N − 2) θ(ξ) + ξθ′(ξ)

−ξ1θ
′(ξ1)] + [4πGB2r2−2N

1i θn+1(ξ)/(n + 1)ξ2
1 ][(2 − 2N + Nγ)R1−2N (τ) dR/dτ ]

}
. (6.2.129)
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We have inserted for � and P from Eqs. (6.2.125) and (6.2.126), respectively. In the present case of
a perfect gas the factor cV T/χT from Eq. (6.1.39) becomes by virtue of Eqs. (1.2.22), (1.3.3) equal to
P/�(γ − 1), (χT = 1; Γ1 = γ = cP /cV = const).

McVittie (1956b) enumerates eight conditions which have to be fulfilled by the initial and final values
of the dimensionless boundary radius R(τ) = r1(t)/r1i and by its first three derivatives. The initial
and final values of R(τ) are clearly equal to R(0) = 1 and R(1) = r1f/r1i, respectively, where generally
R(1) � 1, (r1f � r1i). Since the initial and final state is one of rest (v = 0), the initial and final values
of dR/dτ are via Eq. (6.2.110) equal to Rτ (0), Rτ (1) = 0. The acceleration of a mass element at an
arbitrary moment is

Dv/Dt = ∂v/∂t + v ∂v/∂r = rftt/f = ζfττ/t2f = r1iζRττ/t2f ∝ Rττ . (6.2.130)

The initial state is not one of equilibrium, and the configuration just starts moving inward, with
a negative acceleration proportional to Rττ (0) = b < 0. The final state has been assumed to be a
hydrostatic polytrope and therefore Rττ (1) = 0. The collapse should be free of shock waves, i.e. without
infinite pressure gradients and accelerations. This implies by virtue of Eq. (6.2.130) that Rττ has no
singularity in the interval 0 ≤ τ ≤ 1.

The gravitational energy generation ε′g is obviously zero at the beginning of contraction, but could
be different from zero if the final state is one of quasistatic contraction. From Eq. (6.2.129) results
Rτττ (0) = 0, Rτττ (1) = c ≤ 0. Obviously, these eight limiting conditions are very far from determining
the function R(τ); a polynomial of the lowest order that verifies the eight limiting conditions has been
selected by McVittie (1956b) as follows:

R(τ) = 1 − [1 − R(1)]τ2(8τ3 − 15τ2 + 10)/3; Rττ (0) = b = −20[1 − R(1)]/3;
Rτττ (1) = c = −40[1 − R(1)], (R(1) = r1f/r1i < 1). (6.2.131)

The acceleration, which is proportional to Rττ = −20[1 − R(1)](8τ3 − 9τ2 + 1)/3, changes its sign
(the collapse starts to be decelerated) at τ = (331/2 + 1)/16 = 0.42, corresponding to the moment when
the velocity ∝ Rτ is greatest.

Ibáñez and Sigalotti (1983) have evaluated Eqs. (6.2.125), (6.2.126) at the initial and final moment
if N = 1, 2, 3, and γ = 5/3. The flow remains always subsonic towards the centre, and becomes strongly
supersonic towards the boundary. Pressure, density, and temperature increase during collapse in the
spherical N = 3 case by factors of about 1022, 1016, and 106, respectively, in accordance to the estimates
of McVittie (1956b). However, if N = 1, 2, the numerical results of Ibáñez and Sigalotti (1983) seem to
be discordant.

6.2.3 Collapsing Polytropic Stellar Cores and Expanding Polytropes

The supernova progenitors, which are massive enough to ignite carbon nonexplosively, are thought to
consist of a hot degenerate iron core of 1-3 M� with overlaying nuclear burning shells of lighter elements.
And these cores resemble to some extent the structure of an isentropic n = 3, (Γ1 = 1 + 1/n = 4/3)
polytrope (Goldreich and Weber 1980). When the collapsing core bounces to form a neutron star, the
equation of state will become stiffer at densities � 1012 g cm−3, resembling a nonrelativistically degenerate
neutron gas, i.e. a n = 1.5 polytrope [cf. Eqs. (1.7.33)-(1.7.34)]. However, the n = 3 equation of state
should be reasonable at lower densities, which means that the proposed model describes only the early
stages of collapse, before a degenerate neutron gas or nuclear densities are reached.

The equation of motion (5.2.10) can be transformed with the vector identity ∇(v2/2) = (�v · ∇)�v +
�v × (∇× �v) into

D�v/Dt = ∂�v/∂t + (�v · ∇)�v = ∂�v/∂t + ∇(v2/2) − �v × (∇× �v) = −∇P/� + ∇Φ = −∇H + ∇Φ,

(dH = dP/� = 4K�−2/3 d�/3; n = 3). (6.2.132)

H = 4K�1/3 denotes the enthalpy from Eq. (3.8.82). The collapse is assumed to be vorticity-free
∇×�v = 0, and in this case the velocity may be obtained via Eq. (B.29) from a stream function u = u(�r, t),
where �v = ∇u, (∇×∇u = 0). Then, Eq. (6.2.132) can be integrated:

∂u(�r, t)/∂t + [∇u(�r, t)]2/2 + H(�r, t) − Φ(�r, t) = 0. (6.2.133)
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The time-dependent scale factor α(t) adopted by Goldreich and Weber (1980) is given by Eq. (2.1.13),
where the central density �0 is now a temporal function:

α = α(t) = (K/πG)1/2�
−1/3
0 (t), (n = 3). (6.2.134)

The radius vector �r is scaled to the dimensionless Lane-Emden variable �ξ :

�ξ = �ξ(�r, t) = �r/α(t); ∂�ξ(�r, t)/∂�r = 1/α(t); ∂�ξ(�r, t)/∂t = −[�r/α2(t)] dα/dt. (6.2.135)

The equation of continuity (5.2.1), the equation of motion (6.2.133), and Poisson’s equation (2.1.4)
are transformed with this time-dependent scaling into

∂�(�r, t)/∂t + ∇ · [�(�r, t) ∇u(�r, t)] = ∂�(�ξ, t)/∂t + ∇�(�ξ, t) · (∂�ξ/∂t) + ∇ · [�(�ξ, t) ∇u(�ξ, t)]
/
α2(t)

= ∂�(�ξ, t)/∂t − �r · ∇�(�ξ, t) (dα/dt)
/
α2(t) + ∇ · [�(�ξ, t) ∇u(�ξ, t)]

/
α2(t) = ∂�(�ξ, t)/∂t

−�ξ · ∇�(�ξ, t) (dα/dt)
/
α(t) + ∇�(�ξ, t) · ∇u(�ξ, t)

/
α2(t) + �(�ξ, t) ∇2u(�ξ, t)

/
α2(t) = 0, (6.2.136)

∂u(�ξ, t)/∂t + ∇u(�ξ, t) · (∂�ξ/∂t) + [∇u(�ξ, t)]2
/
2α2(t) + H(�ξ, t) − Φ(�ξ, t)

= ∂u(�ξ, t)/∂t − �ξ · ∇u(�ξ, t) (dα/dt)
/
α(t) + [∇u(�ξ, t)]2

/
2α2(t) + H(�ξ, t) − Φ(�ξ, t) = 0, (6.2.137)

∇2Φ(�r, t) = ∇2Φ(�ξ, t)
/
α2(t) = −4πG�(�ξ, t), (6.2.138)

where the functional dependence is considered under the form f(�r, t) = f [�ξ(�r, t), t] = f(�ξ, t).
Next, we scale the density in terms of central density

� = �(�ξ, t) = �0(t) θ3(�ξ, t) = (K/πG)3/2α−3(t) θ3(�ξ, t), (6.2.139)

and the potential in terms of the square of central sound speed a2
0 = Γ1P0/�0 = 4K�

1/3
0 /3, (Γ1 = 4/3) :

Φ = Φ(�ξ) = a2
0(t) ψ(�ξ) = 4K�

1/3
0 (t) ψ(�ξ)/3 = 4(K3/πG)1/2ψ(�ξ)

/
3α(t). (6.2.140)

Goldreich and Weber (1980) assume the collapse to occur homologously, i.e. the relative mass distri-
bution in the stellar core remains invariant during collapse, and any point of the collapsing core is located
always at the same fraction of the total radius (Cox and Giuli 1968). Hence, the density profile inside the
collapsing core should not evolve: ∂(�/�0)

/
∂t ∝ ∂θ(�ξ, t)/∂t = 0. Such a homologous collapse is achieved

by taking the velocity under the radial form (6.2.92):

�v = �v(�ξ, t) = �v[�ξ(�r, t), t] = �v(vξ, vλ, vϕ) = [�r/α(t)] dα(t)/dt = �ξ dα/dt,

[vξ = ξ dα/dt; vλ, vϕ = 0; �ξ = �ξ(ξ, 0, 0)]. (6.2.141)

The resulting velocity potential is

u = u(�ξ, t) = (ξ2α/2) dα/dt, [�v(�ξ, t) = ∇u(�ξ, t)
/
α(t)]. (6.2.142)

If this is inserted together with Eq. (6.2.139) into Eq. (6.2.136), we indeed obtain the homology
condition ∂θ(�ξ, t)/∂t = 0. And the Eulerian equation of motion (6.2.137) turns with H = 4K�1/3 into

[θ(ξ) − ψ(ξ)/3]
/
ξ2 = −(πG/64K3)1/2α2(t) d2α/dt2. (6.2.143)

Both sides of this equation, depending separately on ξ and t, have to be equated with a constant, say
C/6. We get

ψ(ξ) = 3θ(ξ) − Cξ2/2, (6.2.144)

and

d2α/dt2 = −4C(K3/πG)1/2
/
3α2(t). (6.2.145)



6.2.3 Collapsing Polytropic Stellar Cores and Expanding Polytropes 599

Eq. (6.2.145) can be integrated after multiplication with dα/dt :

(dα/dt)2 = 8C(K3/πG)1/2
/
3α + D, (D = const). (6.2.146)

As seen from Eq. (6.2.134), we have α → ∞ if �0 → 0 and r1 ∝ �
−1/3
m ∝ �

−1/3
0 → ∞. Therefore,

if α → ∞, the constant D is proportional to the square of the velocity at infinity vξ = ξ dα/dt. If this
velocity at infinity is zero, i.e. if D = 0, we can integrate Eq. (6.2.146) again:

α3/2 = −(6C)1/2(K3/πG)1/4t + E, (dα/dt < 0; E = const; C > 0; D = 0). (6.2.147)

Let us denote by t = 0 the moment at which the radius is zero: r1 ∝ �
−1/3
0 ∝ α = 0. Eq. (6.2.147)

now reads

α = (6C)1/3(K3/πG)1/6(−t)2/3, (6.2.148)

the time decreasing from negative values (t < 0) to t = 0. In a realistic core collapse we should have
D �= 0, because the initial velocity vξ ∝ dα/dt is zero at some finite α. However, the value of D should
have little effect on the solution as α(t) → 0. Poisson’s equation (6.2.138) becomes with Eqs. (6.2.139),
(6.2.140), (6.2.144) equal to

(1/ξ2) d(ξ2 dθ/dξ)
/
dξ = −θ3 + C, (6.2.149)

with the central initial conditions θ(0) = 1, θ′(0) = 0. In the limit C = 0, this reduces to the Lane-Emden
equation (2.1.14) if N, n = 3.

In order to assure real values of dα/dt, the constant C in Eq. (6.2.146) must be nonnegative if D = 0.
There exists a maximum value of C = Cm = 0.006544 for which a physical solution subsists with vanishing
density � ∝ θ3 = 0 on the surface (Goldreich and Weber 1980). Mathematically, this limit occurs when
� ∝ θ3 becomes tangent to the axis θ = 0, i.e. when dθ/dξ vanishes just on the surface ξ = ξ1 of the
polytrope: θ′(ξ1) = 0. Analogously to Eq. (2.6.27), the ratio between mean and central density becomes
via Eq. (6.2.149) equal to

�m = M1/V1 =
∫ ξ1

0

4π�ξ2 dξ
/
(4πξ3

1/3) = (3�0/ξ3
1)
∫ ξ1

0

ξ2θ3 dξ = �0(C − 3θ′(ξ1)
/
ξ1),

(θ′(ξ1) ≤ 0). (6.2.150)

Since θ′(ξ1) = 0 if C = Cm, we find in this limiting case: C = Cm = �m/�0 = 0.006544. Physically,
the limiting value C = Cm is just reached when the core surface r = r1 is in free fall, i.e. when
(Dvr/Dt)r=r1 = −GM1/r2

1. Inserting from Eq. (6.2.141) vξ = ξ dα/dt = (r/α) dα/dt = vr, we get

(Dvr/Dt)r=r1 = (∂vr/∂t)r=r1 + (vr ∂vr/∂r)r=r1 = (r1/α) d2α/dt2 − (r1/α2)(dα/dt)2

+(r1/α2)(dα/dt)2 = (r1/α) d2α/dt2 = −GM1/r2
1, (vλ, vϕ = 0). (6.2.151)

Inserting for α and d2α/dt2 from Eqs. (6.2.134) and (6.2.145), we find

C = (3α3M1/4r3
1)(πG3/K3)1/2 = 3M1/4π�0r

3
1 = �m/�0 = Cm, (6.2.152)

which proves our previous affirmation.
With Eqs. (6.2.134), (6.2.135) the core mass reads

M1 = 4π�mr3
1/3 = 4π�mα3(t) ξ3

1/3 = 4π�mξ3
1(K/πG)3/2

/
3�0. (6.2.153)

If C increases from its minimum value C = 0 to its maximum value Cm, the surface value ξ1 of
the radial Lane-Emden coordinate increases from 6.897 to 9.889, while the ratio �m/�0 decreases from
0.01846 (Table 2.5.2) to Cm = 0.006544. If M1 and C are specified, Eq. (6.2.152) yields the value of
the polytropic constant K, and it is found that K, or equivalently, the pressure P decreases by no more
than 2.9% for the admissible range of C, (0 ≤ C ≤ 0.006544). Thus, if the pressure at a given density is
reduced by more than 2.9% with respect to its value for the neutrally (marginally) stable Lane-Emden
polytrope (n = 3, Γ1 = 1 + 1/n = 4/3, C = 0), no homologous collapse of the entire core is possible.
But a less massive inner core can do so, while the remainder of the core is left behind, and this neglect
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of the pressure of the outer core [which is in free fall if C = Cm by virtue of Eq. (6.2.152)] constitutes
the main limitation of the Goldreich-Weber model (Yahil 1983). Low order radial and nonradial modes
of the homologously collapsing n = 3 solutions have been calculated by Goldreich and Weber (1980), and
are found to be essentially stable. But if n = 1/(Γ1 − 1) > 3 the similarity solutions are unstable against
nonradial (vortex) modes (Hanawa and Matsumoto 2000a). They are unstable too against bar modes
∝ Y k

2 (λ, ϕ) if n > 10.3, (Γ1 = 1 + 1/n < 1.097), (Hanawa and Matsumoto 2000b, Lai 2000).
Yahil (1983) has numerically integrated the Eulerian equation of motion for a self-similar core collapse

with a polytropic equation of state if 3 ≤ n ≤ 5. Collapse (contraction) of an isentropic polytrope requires
via Eq. (2.6.100) Γ = Γ1 = 1 + 1/n < 4/3 or n > 3. The essence of the considered self-similar model is
the existence of only two dimensional parameters, i.e. the polytropic constant K and the gravitational
constant G. Yahil (1983) works with the dimensionless parameter

X = X(r, t) = K−1/2G1/2nr (−t)1/n−1,(
n = 1/(Γ1 − 1); [G] = [g−1cm3s−2]; [K] = [g−1/ncm2+3/ns−2]

)
, (6.2.154)

where, as before, the origin of time is chosen to be the catastrophic moment at which the radius r1

becomes zero (t ≤ 0). All hydrodynamic variables must be functions of X only, except for a dimensional
scale factor (e.g. Sedov 1959):

�(r, t) = G−1(−t)−2D∗(X); v(r, t) = K1/2G−1/2n(−t)−1/nU(X);

M(r, t) = K3/2G−1−3/2n(−t)1−3/nm(X). (6.2.155)

The relationship between the dimensionless functions D∗(X) and m(X) is obtained from the mass
relationship

M(r, t) = 4π
∫ r

0

�r′2 dr′ = 4πK3/2G−1−3/2n(−t)1−3/n

∫ X

0

D∗(X ′) X ′2 dX ′. (6.2.156)

In virtue of Eqs. (6.2.155), (6.2.156) we have

m(X) = 4π
∫ X

0

D∗(X ′) X ′2 dX ′. (6.2.157)

Eqs. (6.2.154), (6.2.155), (B.37) are substituted into the equation of continuity (5.2.1), and into the
equation of motion (5.2.10), to obtain analogously to Eqs. (6.2.136), (6.2.137):

[U + (1 − 1/n)X] dD∗/dX + D∗ dU/dX + 2D∗ + 2 D∗U/X = 0, (6.2.158)

(1 + 1/n)D−1+1/n
∗ dD∗/dX + [U + (1 − 1/n)X] dU/dX + U/n + m/X2 = 0, (6.2.159)

where again f(r, t) = f [X(r, t), t] = f(X, t), and ∇P = (1 + 1/n)K�1/n ∇�, ∇Φ = −GM(r)/r2.
Yahil (1983) turns to a comoving frame which collapses exactly homologously, i.e. it is the noninertial

frame where the fluid element remains stationary if n = 3, (Γ1 = 1 + 1/n = 4/3). To this end, we divide
the dimensionless fluid velocity U(X) into a homologous part (1/n − 1)X plus the velocity U1(X) with
respect to the homologous frame of the ”zooming coordinates”. U1(X) cancels in the case of homologous
collapse when n = 1/(Γ1 − 1) = 3 (cf. Eq. (6.2.164), Hanawa and Matsumoto 2000b):

U(X) = (1/n − 1)X + U1(X) = (Γ1 − 2)X + U1(X). (6.2.160)

Eqs. (6.2.158) and (6.2.159) become, respectively

U1 dD∗/dX + D∗ dU1/dX = (1 − 3/n)D∗ − 2D∗U1/X, (6.2.161)

(1 + 1/n)D−1+1/n
∗ dD∗/dX + U1 dU1/dX = (1 − 1/n)X/n + (1 − 2/n)U1 − m/X2. (6.2.162)

Eq. (6.2.161) can be written under the form

X2 d(D∗U1) + 2D∗U1X dX = (1 − 3/n)D∗X2 dX, (6.2.163)
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which is integrated via Eq. (6.2.157) to give

4πX2D∗U1 = (1 − 3/n)m, (m(0) = 0). (6.2.164)

The Larson-Penston-Yahil solution of a contracting (collapsing) mass is given by the transonic solution
of Eqs. (6.2.157), (6.2.162), (6.2.164), which is supersonic at large distances X (Lai 2000). The core
mass splits into a homologously collapsing inner core, and an outer core that is supersonically infalling at
about half the free-fall velocity (Yahil 1983). Nonradial perturbations are amplified during the subsequent
accretion of the outer core (Lai and Goldreich 2000, Lai 2000). Post-collapse solutions subsist if t > 0
(Yahil 1983).

Similarity solutions for the gravitational collapse of polytropic gaseous spheres have also been con-
sidered by Suto and Silk (1988) under the restrictive condition that the similarity variable α(t) from Eq.
(6.2.134) is proportional to tc, (c = 1 and c = 1 − 1/n). And for the collapse of cylindrical polytropic
clouds similarity solutions have been found by Kawachi and Hanawa (1998) if −∞ < n < −1.

Bonazzola and Marck (1993) estimate the gravitational radiation from n = 1/(Γ1 − 1) = 3 collapsing
cores.

A hydrostatic isentropic n = 3, (Γ = Γ1 = 1 + 1/n = 4/3) polytrope is by virtue of Eq. (2.6.100) in
neutral equilibrium, and may be subject to contraction or expansion under the action of some pertur-
bations (e.g. decrease of Γ1 below the critical value 4/3, or sudden increase of total radiant energy due
to nuclear reactions). The rapid expansion of a n = 3 polytrope is to some extent the opposite of the
core collapse already discussed, and has been considered by Barnes and Boss (1984), by combining the
previously outlined treatment of Goldreich and Weber (1980) and Yahil (1983). The lower mass limit of
a massive, hot, radiation dominated object has been given by Eq. (5.12.68). And such an object can be
approximated by a n = 3 polytrope at the verge of instability. Of course, a massive star with a primarily
hydrogen core will not undergo catastrophic collapse like supernova progenitors, because of the different
microphysics involved. Rather, it will undergo expansion if a small pressure excess subsists, giving the
star a positive total energy, ensuring in this way that evolution progresses along the expansion branch of
instability.

The similarity variable (6.2.154) is written by Barnes and Boss (1984) under the form

X ≡ ξ = ξ(r, t) = Ar/t2/3, (n = 3; A = const), (6.2.165)

which will be shown later in Eq. (6.2.178) to be just equal to the dimensionless Lane-Emden distance
(2.1.13). The hydrodynamic variables are defined analogously to (6.2.155):

�(r, t) = D∗(ξ)/4πGt2; P (r, t) = r2p(ξ)/4πGt4; v(r, t) = rU(ξ)/t; M(r, t) = r3m(ξ)/Gt2.
(6.2.166)

The continuity equation (5.2.3), the equation of motion (5.2.10), and the energy equation (5.2.21)
become for spherically symmetric expansion, respectively

DM/Dt = ∂M/∂t + v ∂M/∂r = 0, (∂M/∂r = 4π�r2), (6.2.167)

Dv/Dt = ∂v/∂t + v ∂v/∂r = −(1/�) ∂P/∂r − GM/r2, (6.2.168)

D(P�−4/3)/Dt = 0. (6.2.169)

The mass (6.2.166) is solely a function of ξ :

M(r, t) = ξ3m(ξ)/GA3 = M(ξ). (6.2.170)

Therefore, the sphere ξ = const comoves with the expanding fluid, and

Dξ/Dt = 0 or ∂(r/t2/3)/∂t + v(r, t) ∂(r/t2/3)/∂r = 0, (6.2.171)

which amounts to

v(r, t) = 2r/3t; U(ξ) = 2/3. (6.2.172)
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The similarity functions p(ξ) and m(ξ) can be expressed with the aid of the density profile D∗(ξ) by
using the polytropic law P = K�4/3, and the mass equation (6.2.156):

p(ξ) = KA2D
4/3
∗ (ξ)

/
(4πG)1/3ξ2; m(ξ) = (1/ξ3)

∫ ξ

0

D∗(ξ′) ξ′2 dξ′. (6.2.173)

Thus, we are left to seek a differential equation for the similarity function D∗(ξ). This can be achieved
if we multiply Eq. (6.2.168) by r2. The left-hand side becomes

r2 Dv/Dt = (2r2/3) D(r/t)
/
Dt = (2r2/3)(−r/t2 + 2r/3t2) = −2ξ3/9A3. (6.2.174)

The pressure term can be transformed as follows:

(r2/�) ∂P/∂r = 4Kr2 ∂�1/3/∂r = [4Kξ2t2/3/A2(4πG)1/3](dD
1/3
∗ /dξ) ∂ξ/∂r

= [4KD
1/3
∗0 ξ2/A(4πG)1/3] dθ/dξ = (D∗0ξ2/A3) dθ/dξ, [n = 3; D∗0 = D∗(0)]. (6.2.175)

The scale factor from Eq. (6.2.165) has been specified according to

A = D
1/3
∗0 (4πG)1/6/2K1/2, (6.2.176)

and the Lane-Emden function (2.1.10) is equal to

θ = [�(r, t)/�(0, t)]1/3 = (�/�0)1/3 = [D∗(ξ)/D∗(0)]1/3 = (D∗/D∗0)1/3. (6.2.177)

With the specification (6.2.176) it is easy to show that the similarity variable (6.2.165) is just equal
to the dimensionless Lane-Emden variable ξ from Eq. (2.1.13):

r = t2/3ξ/A = 2K1/2t2/3ξ
/
D

1/3
∗0 (4πG)1/6 = (K/πG)1/2ξ

/
�
1/3
0 , (n = 3; D∗0 = 4πGt2�0).

(6.2.178)

Combining Eqs. (6.2.174), (6.2.175), the equation of motion (6.2.168) reads

2ξ3/9A3 = (D∗0ξ2/A3) dθ/dξ + GM. (6.2.179)

If we derive this equation with respect to ξ, we get an equation analogous to Eq. (6.2.149):

(1/ξ2) d(ξ2 dθ/dξ)
/
dξ = −θ3 + 2/3D∗0, (C = 2/3D∗0). (6.2.180)

The derivative dM/dξ has been inserted from

∂M/∂r = (dM/dξ) ∂ξ/∂r = (A/t2/3) dM/dξ = 4π�r2 = D∗(ξ) ξ2/GA2t2/3 = D∗0ξ2θ3/GA2t2/3;

dM/dξ = D∗0ξ2θ3/GA3. (6.2.181)

As confirmed also by the numerical evaluations of Barnes and Boss (1984), the quantity 2/3D∗0 is
just equal to the constant C from Eq. (6.2.149). Physically admissible solutions occur if D∗0m = 101.9 ≤
D∗0 ≤ ∞, corresponding to 0 ≤ C ≤ Cm = 0.006544, (D∗0m = 2/3Cm).

The profile of the Mach number

v/a = (2r/3t)
/
(4K�1/3/3)1/2 = (4πG)1/6ξ

/
K1/2AD

1/6
∗ (ξ) = 2ξ

/
(3D∗0θ)1/2, (Γ1 = 4/3),

(6.2.182)

is obtained with the aid of Eqs. (2.1.49), (6.2.165), (6.2.176). All solutions with D∗0m ≤ D∗0 � 104

show a few percent of the total mass expanding at a significant fraction of the local sound speed, or
even supersonically in the outermost layers of the star. The similarity solutions describe the explosive
expansion of an isentropic n = 1/(Γ1 − 1) = 3 polytrope.

It is also instructive to consider the velocity v1 of the expanding surface as compared to the escape
velocity

v1

/
(2GM1/r1)1/2 = (2ξ3

1

/
A3GM1)1/2

/
3 = 1

/
[1 − 9D∗0θ′(ξ1)/2ξ1]1/2, (6.2.183)

where r1, v1, and GM1 have been replaced according to Eqs. (6.2.165), (6.2.172), and (6.2.179), respec-
tively.

If D∗0 = ∞, the surface velocity is zero, and Eq. (6.2.180) turns into the hydrostatic Lane-Emden
equation (2.1.14). The maximum expansion velocity occurs if D∗0 = D∗0m; in this case we have θ′(ξ1) = 0,
and the polytropic surface always expands with the local velocity of escape, just analogously, but opposite
in sign to the free-fall velocity of collapsing cores from Eq. (6.2.151) if C = Cm.
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6.2.4 Embedded Polytropes

This topic has applications to interstellar (intergalactic) gas clouds within uniform background matter,
as for example a uniform neutrino background or background matter composed of uniformly distributed
stars or dusts (dark matter) in interstellar (intergalactic) space. Komatsu and Seljak (2001), for instance,
use a polytropic relationship with 5 < n < 10 for the density-temperature profile of hot gases in dark
matter halos of clusters of galaxies. Let us denote by P and � pressure and density of polytropic matter
embedded within uniform background matter of density �b. The pressure equilibrium of the embedded
polytropic matter is given by the hydrostatic equation (2.1.3)

∇P = dP/dr = K d�1+1/n/dr = K(1 + 1/n)�1/n d�/dr = � dΦ/dr, (6.2.184)

while Poisson’s equation (2.1.4) for the total potential Φ now reads [cf. Eqs. (6.1.202), (C.15)]

∇2Φ = r1−N d(rN−1 dΦ/dr)
/
dr = r1−N d[(rN−1/�) dP/dr]

/
dr = −4πG(� + �b),

(N = 1, 2, 3, ...). (6.2.185)

N denotes the dimension of the considered spatial geometry, and the total density at a given point
is equal to the density � = �(r) of the polytropic configuration plus the constant density �b of uniform
background matter. Umemura and Ikeuchi (1986) tacitly ignore the problems resulting from Seeliger’s
paradox concerning uniform background matter of infinite extension and mass (e.g. Horedt 1971, 1989).

With the Lane-Emden variables (2.1.10) and (2.1.13) the equation (6.2.185) assumes a modified form
of the Lane-Emden equation (2.1.14):

ξ1−N d(ξN−1 dθ/dξ)
/
dξ = ∓θn ∓ δ, (δ = �b/�0 = const; n �= −1,±∞; θ(0) = 1; θ′(0) = 0),

(6.2.186)

where the upper sign holds if −1 < n < ∞, and the lower one if −∞ < n < −1. Incidentally, Eq.
(6.2.186) is of the same form as the equilibrium equation (3.2.2) of an axisymmetric rotating polytrope
if N = 3, Θ(ξ, µ) → θ(ξ), and β → −δ.

By inserting Eqs. (2.1.18) and (2.1.20) into Eq. (6.2.185), we get in the special case n = ±∞ :

ξ1−N d(ξN−1 dθ/dξ)
/
dξ = exp(−θ) + δ, (δ = �b/�0 = const; n = ±∞; θ(0), θ′(0) = 0).

(6.2.187)

The series expansion of the Lane-Emden function near the origin can easily be deduced in the same
way as effected for Eqs. (2.4.21) and (2.4.36), respectively:

θ ≈ 1 ∓ (1 + δ)ξ2/2N + n(1 + δ)ξ4
/
23N(N + 2) ∓ [n2N(1 + δ) + n(n − 1)(N + 2)(1 + δ)2]ξ6

/
24 × 3N2(N + 2)(N + 4) + ..., (ξ ≈ 0; n �= −1,±∞), (6.2.188)

θ ≈ (1 + δ)ξ2/2N − (1 + δ)ξ4
/
23N(N + 2) + [N(1 + δ) + (N + 2)(1 + δ)2]ξ6

/
24 × 3N2(N + 2)(N + 4) − ..., (ξ ≈ 0; n = ±∞). (6.2.189)

Particular solutions of Eq. (6.2.186) if n = 0 and 1 are obtained in the same manner as in Eqs. (2.3.5),
(2.3.21), (2.3.22), (2.3.26):

θ = 1 − (1 + δ)ξ2/2N, (n = 0; N = 1, 2, 3, ...), (6.2.190)

θ = (1 + δ)(N/2 − 1)! (ξ/2)(2−N)/2J(N−2)/2(ξ) − δ, (n = 1; N = 2, 4, 6, ...), (6.2.191)

θ = (1 + δ)(N − 2)(N − 4)...5 × 3 × 1 × (−1)(N−3)/2 d(N−3)/2(sin ξ/ξ)
/
(ξ dξ)(N−3)/2 − δ,

(n = 1; N = 3, 5, 7, ...), (6.2.192)



604 6.2 Polytropic Atmospheres, Polytropic Clouds and Cores, Embedded Polytropes

θ = (1 + δ) cos ξ − δ, (n = 1; N = 1), (6.2.193)

θ = (1 + δ) J0(ξ) − δ, (n = 1; N = 2), (6.2.194)

θ = (1 + δ) sin ξ/ξ − δ, (n = 1; N = 3). (6.2.195)

The mass of the polytrope, embedded in the uniform medium, is given by [cf. Eqs. (2.6.12), (2.6.13)]

M = {2[Γ(1/2)]N
/
Γ(N/2)}

∫ r

0

�r′N−1
dr′ = {2�0[αΓ(1/2)]N

/
Γ(N/2)}

∫ ξ

0

θnξ′N−1
dξ′

= {2[αΓ(1/2)]N
/
Γ(N/2)}ξN−1[�0(∓dθ/dξ) − �bξ/N ], (n �= −1,±∞), (6.2.196)

M = {2�0[αΓ(1/2)]N
/
Γ(N/2)}

∫ ξ

0

exp(−θ) ξ′N−1
dξ′

= {2[αΓ(1/2)]N
/
Γ(N/2)}ξN−1(�0 dθ/dξ − �bξ/N), (n = ±∞). (6.2.197)

The mean density of the embedded polytrope turns out in a quite similar way as effected in Eqs.
(2.6.27), (2.6.28):

�m = N�0(∓dθ/dξ)
/
ξ − �b, (n �= −1,±∞) and �m = N�0(dθ/dξ)

/
ξ − �b, (n = ±∞).

(6.2.198)

Due to the nonzero density ratio δ = �b/�0, the discussion of the finiteness of mass and radius of
embedded polytropes is considerably simpler than without background matter (cf. Sec. 2.6.8). We
formally integrate Eq. (6.2.186) between the limits ξc and ξ :

θ(ξ) = ∓
∫ ξ

ξc

ξ′1−N
dξ′

∫ ξ′

ξc

θn(ξ′′) ξ′′N−1
dξ′′ ∓ δξ2/2N + Cξ2−N/(2 − N) + D,

(n �= −1,±∞; ξc, C, D = const; N �= 2). (6.2.199)

The logarithmic term C ln ξ appears instead of Cξ2−N/(2−N) in the particular case N = 2, the final
result (6.2.203) being otherwise the same.

We have to distinguish three different cases:
(i) −1 < n < ∞−1 < n < ∞−1 < n < ∞. If we assume the radius ξ1 of the embedded polytrope to be infinite, from Eq.

(6.2.199) would result that θ1 = θ(ξ1) = −∞, (N ≥ 1), contradicting the basic requirement θ(ξ) ≥ 0.
Therefore, radius and mass (6.2.196) of the embedded polytrope, having −1 < n < ∞, must be finite.

(ii) −∞ < n < −1−∞ < n < −1−∞ < n < −1. In order to satisfy the requirement that P ∝ θn+1 → 0 at the boundary ξ1 of
the embedded polytrope, we must have θ(ξ1) = ∞, and from Eq. (6.2.199) follows at once that ξ1 = ∞.
Although the radius of embedded polytropes with polytropic indices −∞ < n < −1 is infinite, we will
show that their mass is often finite, analogously to the Schuster-Emden polytropes from Eq. (2.6.193),
having n = (N +2)/(N − 2). Because θn/δ → 0 if ξ → ∞, we can always find a certain value ξc of ξ such
that there subsists θn(ξ)/δ < 1 if ξ > ξc. And in this case we can write down the inequality

∫ ξ

ξc

ξ′N−1
dξ′ = (ξN − ξN

c )/N >

∫ ξ

ξc

θnξ′N−1
dξ′/δ. (6.2.200)

We multiply by ξ1−N dξ and integrate again, assuming ξ → ∞, (ξ 	 ξc) :

δξ2/2N − δξN
c ξ2−N

/
N(2 − N) + E ≈ δξ2/2N >

∫ ξ

ξc

ξ′1−N
dξ′

∫ ξ′

ξc

θn(ξ′′) ξ′′N−1
dξ′′,

(E = const; N ≥ 1; N �= 2). (6.2.201)

If ξ → ∞, Eq. (6.2.199) writes as

θ ≈
∫ ξ

ξc

ξ′1−N
dξ′

∫ ξ′

ξc

θn(ξ′′) ξ′′N−1
dξ′′ + δξ2/2N, (N ≥ 1). (6.2.202)
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And if we now introduce the inequality (6.2.201) into Eq. (6.2.202), we find the delimitation

θ < δξ2/N, (ξ → ∞; ξ 	 ξc; −∞ < n < −1). (6.2.203)

In virtue of Eq. (6.2.196) the difference between the total mass M1 = M(ξ1) = M(∞) and the finite
mass M(ξc) contained within coordinate radius ξc is bounded by

M(∞) − M(ξc) ∝
∫ ∞

ξc

θnξN−1 dξ < (δ/N)n

∫ ∞

ξc

ξ2n+N−1 dξ = [(δ/N)n/(2n + N)]ξ2n+N

∣∣∣∣
∞

ξc

,

(n �= −N/2). (6.2.204)

The last integral is finite if 2n + N < 0, and the total mass M1 of embedded polytropes with indices
−∞ < n < −1 is finite if n < −N/2, i.e. the mass of embedded polytropic slabs (N = 1) and cylinders
(N = 2) is always finite, whereas embedded spheres (N = 3) certainly have finite mass if −∞ < n < −1.5.

With the initial conditions θ(0) = 1, θ′(0) = 0 we can also obtain an inferior delimitation of the
Lane-Emden function

θ > δξ2/2N, (ξc = 0; C = 0; D = 1; N ≥ 1; −∞ < n < −1; n = ±∞), (6.2.205)

valid for any ξ > 0, (ξc = 0), by observing that the integral in Eq. (6.2.199) is always positive. Eq.
(6.2.205) is also valid if n = ±∞ by virtue of Eq. (6.2.206). And with the delimitation (6.2.205) we infer
similarly to Eq. (6.2.204) that embedded spheres have infinite total mass if −1.5 ≤ n < −1.

(iii) n = ±∞n = ±∞n = ±∞. We formally integrate Eq. (6.2.187) between the limits 0 and ξ with the initial
conditions θ(0), θ′(0) = 0 :

θ(ξ) =
∫ ξ

0

ξ′1−N
dξ′

∫ ξ′

0

exp[−θ(ξ′′)] ξ′′N−1
dξ′′ + δξ2/2N. (6.2.206)

Since θ(ξ1) → ∞, we conclude from Eq. (6.2.206) that ξ1 = ∞, i.e. the radius of embedded isothermal
configurations is infinite. The mass however, remains finite. Because the integral in Eq. (6.2.206) is always
positive, we obtain the inferior delimitation (6.2.205). In virtue of Eqs. (6.2.197), (6.2.205) the total mass
of the isothermal embedded polytrope is bounded by

M1 = M(∞) ∝
∫ ∞

0

exp(−θ) ξN−1 dξ <

∫ ∞

0

exp(−δξ2/2N) ξN−1 dξ, (N ≥ 1). (6.2.207)

The last integral can readily be calculated if N is an even number, and can be reduced to the error
integral if N is odd. This integral is always finite, and the same is true for the total mass M1 = M(∞)
of embedded isothermal polytropes.

The stability of complete embedded polytropes can be investigated with the Zeldovich instability
criterion (5.12.26). The explicit dependence of the masses (6.2.196) or (6.2.197) on central density �0

follows, if we observe from Eq. (2.1.13) that α ∝ �
(1/n−1)/2
0 , which becomes α ∝ �

−1/2
0 if n = ±∞ :

M1 ∝ �
1+N(1/n−1)/2
0 ξN−1

1 (∓θ′1 − �bξ1/N�0), (n �= −1, 0). (6.2.208)

Stability occurs if

(∂M1/∂�0)S=const ∝ [1 + N(1/n − 1)/2]ξN−1
1 (∓θ′1 − �bξ1/N�0)

+�0 d[ξN−1
1 (∓θ′1 − �bξ1/N�0)]

/
d�0 > 0, (n �= −1, 0), (6.2.209)

where ξ1 and θ′1 depend on δ = �b/�0 ∝ 1/�0. Umemura and Ikeuchi (1986) have found by numerical
integration that the last term in Eq. (6.2.209) is positive if N = 1, 2, 3 and n = 1, 1.5, 2, 3, 4, 5, 10,
(0 ≤ δ ≤ 10). Thus, complete embedded polytropes are stable for the considered polytropic indices if
1 + N(1/n − 1)/2 > 0, (∓θ′1 − �bξ1/N�0 ∝ M1 > 0). If N = 1, 2, 3, this condition yields (n + 1)/2n >
0, 1/n > 0, (3− n)/2n > 0, respectively. Embedded polytropic slabs (N = 1) and cylinders (N = 2) are
always stable for the considered values of n, (1 ≤ n ≤ 10), and δ, (0 ≤ δ ≤ 10), while the stability of
embedded polytropic spheres (N = 3) is depicted in Fig. 6.2.2 for the considered values of n, δ.
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Fig. 6.2.2 Stabilization of otherwise unstable polytropic spheres having 3 < n ≤ ∞, due to the presence of
uniform background matter, having a density ratio δ = �b/�0 larger than the critical value δcrit. If n → ∞, the
parameter δcrit approaches 0.1 (Umemura and Ikeuchi 1986).

If 3 < n ≤ ∞, (N = 3), Umemura and Ikeuchi (1986) have found numerically that a certain critical
value δcrit = �b,crit/�0 exists above which polytropic spheres – that are unstable in absence of a back-
ground medium – become stable. A certain amount of background matter stabilizes polytropic spheres
having n > 3 and δ > δcrit (Fig. 6.2.2). They are unstable if 0 ≤ δ < δcrit and 3 < n ≤ ∞.

This stabilization effect of background matter may be intuitively understood from the fact that the
background medium smoothes out the huge density differences between centre and surface layers, making
these polytropes “more homogeneous”: The ratio �m/�0 between mean and central density is increased by
the presence of background matter, and the density distribution of embedded polytropic spheres having
n > 3 resembles the structure of stable polytropes (n < 3) without background matter, provided that
the density �b of background matter is sufficiently high.

The effect of a background medium on the radial stability of truncated (incomplete) polytropes under
external pressure is similar. Incomplete embedded polytropes under external pressure must always be
stable if the complete embedded polytrope with zero external pressure is stable. If the complete embedded
polytrope is unstable, there results – in analogy to the stability of polytropes without background medium
(Sec. 5.4.2) – that the incomplete embedded polytrope is radially stable under a fixed external pressure
only up to a certain mass limit [the “Jeans mass”, Eqs. (5.4.57)-(5.4.63)]. For larger masses the incomplete
(truncated) polytrope will be radially unstable, like the corresponding complete embedded polytrope with
the same n, �0, �b (Horedt 2000a).

In fact, from an inspection of Eqs. (5.12.19)-(5.12.26) we observe the equivalence – at least
for polytropes – of the two criteria, viz. (∂M1/∂�0)S=const > 0 [Eqs. (5.12.26), (6.2.209)] and
(∆P/∆r)M=const > 0 [(Eq. (5.4.23)], which have been used to establish the stability of complete poly-
tropes and the instability of incomplete polytropes, respectively.

Gerhard and Silk (1996) suggest that some of the unseen dark matter in the outer halos of galaxies
may be in the form of cold dense gas clouds with mass ≈ 1 M�, temperature � 10 K, and polytropic
index 5 ≤ n ≤ 10. In accordance with the previous findings these polytropic gas clouds can be stabilized
against gravitational collapse if they are embedded in a background medium of small objects or particles.
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6.3 Polytropic Winds

6.3.1 Summers’ General Solution

In the next two sections 6.3 and 6.4 we discuss the radial expansion of a polytropic gas from a point
source [solar, stellar, cometary, planetary, galactic wind (e.g. Holzer and Axford 1970)], as well as the
related problem of accretion of polytropic gas onto a point mass with applications to stellar and black
hole mass accretion from interstellar clouds (e.g. Foglizzo and Ruffert 1997, Font and Ibáñez 1998),
the formation of comets (e.g. Fahr 1980, p. 273), the accretion wake model of galactic and quasar jets
[motion of a galaxy (quasar) through intracluster gas (Yabushita 1979)], X-ray binaries [interaction of a
compact component (neutron star, black hole) with the stellar wind originating from a giant component
in a binary system when the giant star overflows its Roche lobe (e.g. Shapiro and Teukolsky 1983, Fig.
13.11)].

Generally, the polytropic gas is assumed to obey the perfect gas law (1.2.5) in the presence of a gravi-
tating point mass. The polytropic law (2.1.6), to be used for the description of expansion/accretion flows,
serves as an energy equation, which can be remarkably successful in modeling the physical phenomena
occurring in the flow (e.g. heat conduction, viscosity, radiation losses, dissipation of shock waves, mag-
netic energy), whenever the precise energy transfer equations are not known or are intractable (Parker
1963, Summers 1980). If the flow is isentropic, we have by Eq. (1.3.30) Γ1 = 1 + 1/n. If additionally, the
isentropic flow material consists of perfect gas, we have [see Eqs. (1.3.24), (6.3.4)]

γ = cP /cV = Γ1 = Γ2 = Γ3 = 1 + 1/n; n = 1/(γ − 1), (P = R�T/µ). (6.3.1)

γ denotes the adiabatic exponent (1.2.32) of a perfect gas, and Γ1 the adiabatic exponent for a general
equation of state from Eqs. (1.3.23), (1.3.30). As we have already noted in Sec. 1.2, the perfect adiabatic
gas is always isentropic [Eq. (1.2.41)]. The Mach number MA = v/a can be expressed for a perfect
adiabatic (isentropic) gas under the form

M2
A = v2/a2 = �v2/γP = µv2/γRT = v2/K(1 + 1/n)�1/n = �v2/(1 + 1/n)P

= µv2/(1 + 1/n)RT, (a2 = γP/�; γ = 1 + 1/n), (6.3.2)

where v denotes the flow velocity, and a the adiabatic sound velocity from Eq. (2.1.49).
Following Summers (1980) it seems useful to present at first the general topological properties of

the relevant equations in a more mathematical form. Supplementation with specific boundary (initial)
conditions leads then to the various astrophysical applications mentioned at the beginning. The influence
of magnetic fields and shock waves is disregarded for the moment (see Secs. 6.3.3, 6.3.4).

For a polytropic perfect gas the equation of state is given by Eqs. (1.2.5) and (2.1.6):

P = K�1+1/n = R�T/µ, (K, n = const). (6.3.3)

If the perfect gas is adiabatic, i.e. isentropic, we have by Eq. (1.2.32)

P = K�1+1/n = K�γ = R�T/µ, (S = const; γ = 1 + 1/n). (6.3.4)

If the physical processes occurring in the wind are adiabatic and reversible (no shock waves, for
instance), the entropy remains constant. Indeed, Eq. (1.2.38) can be written in this case as dS =
cV [dT/T − (γ − 1) d�/�], or after integration [cf. Holzer and Axford 1970, Eq. (2.5)]:

S = cV ln(T�1−γ) + const = cV ln(µP�−γ/R) + const = cV ln(µK/R) + const = const,
(cV , γ = const; γ = 1 + 1/n = cP /cV = 1 + R/µcV ). (6.3.5)

Note, that it is not required that the polytropic flow is isentropic, i.e. generally γ �= 1+1/n. Isentropic
flows [Eq. (6.3.4)] occur only as a particular case of the much more general polytropic flows.
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Let us first consider the equation of motion (5.2.10) of a polytropic perfect gas along a stationary
(steady) streamline, where s measures the distance along the flux tube:

D�v/Dt = v dv/ds = −(1/�) dP/ds + dΦ/ds = −(1 + 1/n)K�1/n−1 d�/ds + dΦ/ds. (6.3.6)

Integration yields

v2(s)/2 + (n + 1)P (s)/�(s) − Φ(s) = v2(s)/2 + (n + 1)(P0/�0)[�(s)/�0]1/n − Φ(s)

= v2
0/2 + (n + 1)P0/�0 − Φ0 = const, (n �= ±∞), (6.3.7)

where the integration constant takes in general different values on different streamlines (Landau and
Lifshitz 1959, §9; Parker 1963), and the zero subscript denotes values at some reference point. If n = ±∞,
the pressure term (n+1)P/� should be replaced by K ln � = (P/�) ln � = (P0/�0) ln � = (RT/µ) ln �, (T =
T0 = µK/R = const). If we denote by A(s) the cross-section of a stream-tube, the mass flux conservation
equation becomes

�(s) v(s) A(s) = �0v0A0 = const. (6.3.8)

For the sake of simplicity it is generally assumed that wind and accretion flows are basically radial. In
fact, the effect of solar rotation, for instance, on the hydrodynamic expansion of the corona is slight, so
the angular momentum imparted to the solar wind gas by the angular velocity of the Sun can be neglected
in a first approximation (see however Sec. 6.3.3). The distance s along a streamline is approximated by
the radial distance s ≈ r. If the flow tube is strictly radial, the ratio of two cross-sections is equal to
A(s)/A0 = (r/r0)2, which may be generalized to A(s)/A0 = (r/r0)b, where b > 2 and b < 2 corresponds
to flux tubes diverging, respectively, more rapidly and less rapidly than radial ones [cf. Eqs. (6.3.95)-
(6.3.110)].

For a spherically symmetric flow in the presence of a gravitating point mass M, the equation of motion
(momentum conservation) reads (cf. Eq. (6.3.6) if r ≡ s, Φ = GM/r) :

v dv/dr = (1/2) dv2/dr = −(1/�) dP/dr − GM/r2 = −(1 + 1/n)K�1/n−1 d�/dr − GM/r2

= −(R/µ�)(T d�/dr + � dT/dr) − GM/r2. (6.3.9)

The mass conservation equation (6.3.8) writes

F = �vr2 = �0v0r
2
0. (6.3.10)

Eqs. (6.3.3), (6.3.9), (6.3.10) may be combined into a nondimensional form by introducing the new
dimensionless quantities (Parker 1963, Brandt 1970, Summers 1980)

λ = µGM/RT0r; ψ = ψ(λ) = µv2(λ)/RT0; τ = τ(λ) = T (r)/T0. (6.3.11)

The reciprocal distance λ ∝ 1/r should not be confused with the polar angle of a spherical coor-
dinate system, while T0 denotes the flow temperature at reference level r = r0. From Eq. (6.3.10)
we get by logarithmic differentiation (1/�) d�/dr = −(1/2v2) dv2/dr − 2/r, and from Eq. (6.3.11)
dr = −µGM dλ/RT0λ

2. The desired dimensionless form of Eq. (6.3.9) is after insertion:

(1/2 − τ/2ψ) dψ/dλ = 1 − 2τ/λ − dτ/dλ, (n �= 0). (6.3.12)

In the special case n = 0, (� = const) the equation of motion (6.3.9) reads

v dv/dr = (1/2) dv2/dr = −(R/µ) dT/dr − GM/r2, (n = 0). (6.3.13)

Inserting from Eq. (6.3.11), this equation takes the particular form

(1/2) dψ/dλ = 1 − dτ/dλ, (n = 0). (6.3.14)

From Eqs. (6.3.3) and (6.3.10) we obtain another relationship

�1/n = (�0v0r
2
0/vr2)1/n = RT/µK, (n �= 0), (6.3.15)
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taking the dimensionless form

λ−2/nψ1/2nτ = 1 or ψ = λ4τ−2n, (n �= 0, 3/2), (6.3.16)

with the reference temperature suitably chosen as

T0 = (�0v0r
2
0)

2/(2n−3)(µ/R)K2n/(2n−3)(GM)−4/(2n−3), (n �= 0, 3/2). (6.3.17)

In the particular case n = 0 we obtain from the mass conservation equation (6.3.10): vr2 = v0r
2
0, (� =

const). The dimensionless equivalent of Eq. (6.3.16) is

ψ = λ4, (n = 0). (6.3.18)

The reference temperature T0 from Eq. (6.3.17) has been chosen in such a way that ψ/λ4 = 1 :

T0 = (v0r
2
0)

−2/3(µ/R)(GM)4/3, (n = 0; � = const). (6.3.19)

In the other special case n = 3/2 we observe, by raising Eq. (6.3.17) to the (2n − 3)-th power, that
T0 is arbitrary if n = 3/2, and we get analogously to Eq. (6.3.16):

λ−4/3ψ1/3τ = C or ψ = C3λ4τ−3, (n = 3/2), (6.3.20)

where

C = (�0v0r
2
0)

2/3K(GM)−4/3 = const, (n = 3/2). (6.3.21)

The basic differential equations to be used for the topological study of the wind/accretion problem can
be derived by inserting into Eq. (6.3.12) for τ and dτ/dλ from Eqs. (6.3.16) and (6.3.20), respectively:

(1/2)
[
1 − (1 + 1/n)λ2/nψ−1/2n−1

]
dψ/dλ = 1 − 2(1 + 1/n)λ2/n−1ψ−1/2n, (n �= 0, 3/2),

(6.3.22)

(1/2)
[
1 − 5C/3)λ4/3ψ−4/3

]
dψ/dλ = 1 − (10C/3)λ1/3ψ−1/3, (n = 3/2). (6.3.23)

Clearly, Eq. (6.3.22) is also valid in the limiting isothermal case n = ±∞, yielding simply

(1/2)(1 − 1/ψ) dψ/dλ = 1 − 2/λ, (n = ±∞). (6.3.24)

In the hydrostatic case v = 0, (ψ = 0) we get from Eqs. (6.3.3), (6.3.9) the temperature run
(T d� = n� dT ; (1/�) dP/dr = (n + 1)(R/µ) dT/dr = −GM/r2) :

dτ/dλ = 1/(n + 1) or τ − λ/(n + 1) = ε = const, (v, ψ = 0; n �= −1). (6.3.25)

The reference temperature T0 is arbitrary in this particular case.
In the special case n = 0 we get for the temperature run by integration of Eq. (6.3.14) via Eq.

(6.3.18):

τ + ψ/2 − λ = τ + λ4/2 − λ = ε = const, (n = 0; ψ = λ4). (6.3.26)

Integration of Eqs. (6.3.22), (6.3.24) yields the so-called Bernoulli integrals

ψ/2 − λ + (n + 1)(λ2/ψ1/2)1/n = ε = const, (n �= 0, 3/2,±∞), (6.3.27)

ψ/2 − λ + ln(λ2/ψ1/2) = ε = const, (n = ±∞). (6.3.28)

The Bernoulli integral for the special case n = 3/2 is obtained by integration of Eq. (6.3.23):

ψ/2 − λ + (5C/2)(λ2/ψ1/2)2/3 = ε = const, (n = 3/2; C = const). (6.3.29)

The Bernoulli integrals (6.3.27)-(6.3.29) represent conservation of the total gas energy. Multiplying
the Bernoulli integrals by RT0/µ, it becomes obvious that the energy constant ε is composed of the
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kinetic energy per unit mass v2/2 ∝ ψ/2, the gravitational potential energy (2.6.69) of the mass unit
−GM/r ∝ −λ, and the heat function per unit mass H (the enthalpy), where dH = dP/�, (cf. Eq.
(3.8.82), Landau and Lifshitz 1959). If n �= ±∞, we have H = (n + 1)P/� = (n + 1)RT0τ/µ = (n +
1)RT0λ

2/nψ−1/2n/µ. If n = ±∞, there is T = T0, and H = (RT0/µ) ln � + const = −(RT0/µ) ln(r2v) +
const = (RT0/µ) ln(λ2/ψ1/2).

The analytic study of the topology of Eqs. (6.3.27)-(6.3.29) if λ, ψ ≥ 0 involves the singular points
(dψ/dλ = 0), the behaviour near the ψ-axis, where λ ≈ 0, (r → ∞), and the asymptotic forms λ →
∞, (r → 0), similarly to the topological survey of the Lane-Emden equation effected in Sec. 2.7. If we
rewrite Eqs. (6.3.22) and (6.3.23) under the form

dψ/dλ = 2ψ
[
ψ1/2n − 2(1 + 1/n)λ2/n−1

]/[
ψ1/2n+1 − (1 + 1/n)λ2/n

]
, (n �= 0, 3/2), (6.3.30)

dψ/dλ = 2ψ
[
ψ1/3 − (10C/3)λ1/3

]/[
ψ4/3 − (5C/3)λ4/3

]
, (n = 3/2), (6.3.31)

it becomes obvious that the origin Os(0, 0) is a singular point of Eqs. (6.3.30) and (6.3.31) if n �= −1, 0.
Figs. 6.3.1-6.3.6 exhibit that Os is always a node. In the isothermal case n = ±∞, Eqs. (6.3.24), (6.3.30)
become dψ/dλ = (2ψ/λ)(λ − 2)/(ψ − 1) = 0/0 if λ, ψ = 0. Incidentally, if n = −1, Eq. (6.3.27) reads
ψ = 2λ + 2ε, and possesses no singular points [cf. Eq. (6.3.61)]. Note, that this particular polytropic
index leads to unphysical results for the hydrostatic structure of a n = −1 polytrope (cf. Sec. 2.1). And
if n = 0, Eq. (6.3.18) shows that dψ/dλ = 4λ3, i.e. a singular point is missing too in this special case.

Another singular point Ss(λs, ψs) results if we equate the two brackets of Eq. (6.3.30) to zero:

λs = 2(2n+1)/(2n−3)(1 + 1/n)2n/(2n−3); ψs = 24/(2n−3)(1 + 1/n)2n/(2n−3) = λs/2,

(−∞ ≤ n < −1; 0 < n ≤ ∞; n �= 3/2). (6.3.32)

Obviously, if n = ±∞, we have λs = 2, ψs = 1.
In conclusion, the singular point Os(0, 0) exists whenever n �= −1, 0, while the singular point Ss(λs, ψs)

exists only if 1 + 1/n > 0, i.e. if −∞ ≤ n < −1, 0 < n ≤ ∞, n �= 3/2. In the particular case of an
isentropic perfect gas the singular point Ss is a sonic point, because the Mach number (6.3.2) is then just
unity, as follows via Eqs. (6.3.11), (6.3.16), (6.3.32):

M2
A = µv2

s/(1 + 1/n)RTs = ψs/(1 + 1/n)τs = λ−2/n
s ψ1+1/2n

s /(1 + 1/n) = 1,
(γ = 1 + 1/n; −∞ ≤ n < −1; 0 < n ≤ ∞; n �= 3/2). (6.3.33)

The nature of the solutions of Eq. (6.3.22) in the neighborhood of the singular point (6.3.32) – where
the subsonic-supersonic transition may occur – is found by substituting λ = λs + λ1, ψ = ψs + ψ1 into
Eq. (6.3.22), neglecting higher order terms:

dψ1/dλ1 = [2ψ1 + 2(n − 2)λ1]
/
[(2n + 1)ψ1 − 2λ1]. (6.3.34)

Integration of this equation yields the conic

(2n + 1)(ψ − ψs)2 − 4(ψ − ψs)(λ − λs) − 2(n − 2)(λ − λs)2 = const. (6.3.35)

If this second order curve is brought to the normal form (ψ−ψs)2/a2
1+(λ−λs)2/a2

2 = 1 (e.g. Smirnow
1967), the minor axis a2 is proportional to 21/2/{5− [25+8n(2n−3)]1/2}1/2, which is real if 0 ≤ n ≤ 3/2,
and imaginary if −∞ ≤ n < 0 and 3/2 < n ≤ ∞. Taking into account the domain of existence of the
singular point Ss from Eq. (6.3.32), we infer that the integral curves are hyperbolas in the vicinity of the
singular saddle point Ss if −∞ ≤ n < −1 and 3/2 < n ≤ ∞, with two singular solutions passing through
the saddle point (Figs. 6.3.3, 6.3.4, and Fig. 6.3.5 on the left). If 0 < n < 3/2, the integral curves are
ellipses, and Ss is a vortex point (a centre), without integral curves passing through the vortex (Fig.
6.3.1 on the left). The integration constant ε = εs of the singular solution passing through Ss is found
from Eqs. (6.3.27), (6.3.28), (6.3.32):

εs = [(2n − 3)/2] 24/(2n−3)(1 + 1/n)2n/(2n−3) = [(2n − 3)/2] ψs = [(2n − 3)/4] λs

if −∞ < n < −1, 0 < n < ∞, n �= 3/2; εs = ln 4 − 3/2 ≈ −0.114 if n = ±∞. (6.3.36)

Finally, let us discuss the behaviour of the integral curves if λ ≈ 0, (r → ∞) and λ → ∞, (r ≈ 0).
Following Parker (1963), we will neglect in Eqs. (6.3.27)-(6.3.29) either the first or the third term
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Fig. 6.3.1 Family of dimensionless velocity profiles (ψ ∝ v2) as a function of reciprocal distance (λ ∝ 1/r)
if 0 < n < 3/2 (on the left), and n = 3/2, 0 < C < 3/5×24/3 = 0.2381 from Eq. (6.3.48), (on the right). The dot
represents the singular vortex point Ss of coordinates (λs, ψs) with the energy constant ε = εs < 0. The domains
where the energy constant ε takes positive, negative, and zero values are shown on all figures 6.3.1-6.3.6. Dashed
lines represent the geometrical loci of the points on the solution curves where the velocity gradient dψ/dλ is zero
or infinite (Summers 1980).

containing ψ. In this way we get at once a rough first approximation for ψ = ψ(λ, ε), and we merely have
to check the consistency of this approximation by inserting it into the neglected ψ-term.

Case 1, (0 < n < 3/2).(0 < n < 3/2).(0 < n < 3/2). (i) λ ≈ 0, ε > 0. The singular point Ss is a vortex, and the solution curves
take near the ψ-axis two limiting forms, which are obtained by neglecting the third and first term in Eq.
(6.3.27), and inserting the resulting rough approximations ψ ≈ 2ε + 2λ and ψ ≈ [(n + 1)/(ε + λ)]2nλ4

into the third and first term of Eq. (6.3.27), respectively:

ψ = 2ε + 2λ − 2(n + 1)(λ2/ψ1/2)1/n ≈ 2ε + 2λ − 21−1/2n(n + 1)[λ2/(ε + λ)1/2]1/n

≈ 2ε + 2λ ≈ 2ε > 0, (6.3.37)

ψ = [(n + 1)
/
(ε + λ − ψ/2)]2nλ4 ≈ (n + 1)2nλ4

/{
ε + λ − [(n + 1)/(ε + λ)]2nλ4/2

}2n

≈ [(n + 1)/ε]2nλ4 ≈ 0. (6.3.38)

(ii) λ ≈ 0, ε = 0. In this special case the solution curve originates and terminates in the node Os.
The two branches are obtained by inserting the rough approximations ψ ≈ 2λ and ψ ≈ (n + 1)2nλ4−2n

into the third and first term of Eq. (6.3.27), respectively:

ψ = 2λ − 2(n + 1)(λ2/ψ1/2)1/n ≈ 2λ − 21−1/2n(n + 1)λ3/2n ≈ 2λ ≈ 0, (6.3.39)

ψ = [(n + 1)/(λ − ψ/2)]2nλ4 ≈ λ4
{
(n + 1)

/
λ[1 − (n + 1)2nλ3−2n/2]

}2n ≈ (n + 1)2nλ4−2n ≈ 0.
(6.3.40)

(iii) λ ≈ 0, ε < 0. Eqs. (6.3.37) and (6.3.38) show that in this case no solution curves exist in the
first real (λ, ψ)-quadrant if λ → 0, (ε < 0).

(iv) λ → ∞. This subcase involves the behaviour of the wind/accretion flow near the central point
mass M, where r ≈ 0. Let us neglect at first the third term in Eq. (6.3.27), and insert the resulting rough
approximation ψ ≈ 2λ, (ψ 	 1) into the complete equation (6.3.27):

ψ = 2ε + 2λ − 2(n + 1)(λ2/ψ1/2)1/n ≈ 2λ[1 + ε/λ − 2−1/2n(n + 1)λ(3−2n)/2n]. (6.3.41)
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Fig. 6.3.2 Same as Fig. 6.3.1 for the polytropic index n = 3/2 if C = 3/5 × 24/3 = 0.2381 (on the left),
and C > 3/5 × 24/3 (on the right).

Let us now neglect the first term in Eq. (6.3.27), and insert the resulting rough approximation
ψ ≈ (n + 1)2nλ4−2n, (ψ 	 1) into the complete Bernoulli equation (6.3.27):

ψ =
[
(n + 1)

/
(ε + λ − ψ/2)

]2n
λ4 ≈ (n + 1)2nλ4−2n

/[
1 + ε/λ − (n + 1)2nλ3−2n

]2n
. (6.3.42)

Obviously, if 0 < n < 3/2, the terms associated with the minus sign in Eqs. (6.3.41) and (6.3.42)
become the leading ones, and no integral curves exist in the real first (λ, ψ)-quadrant if λ → ∞ (cf. Fig.
6.3.1 on the left).

Case 2, (n = 3/2).(n = 3/2).(n = 3/2). (i) λ ≈ 0, ε > 0. We get similarly to Eqs. (6.3.37), (6.3.38), by neglecting the
third and first term in Eq. (6.3.29), and inserting the resulting rough approximations ψ ≈ 2ε + 2λ and
ψ ≈ [5C/2(ε + λ)]3λ4 into the third and first term of Eq. (6.3.29), respectively:

ψ = 2ε + 2λ − 5C(λ2
/
ψ1/2)2/3 ≈ 2ε + 2λ − 2−1/3 × 5Cλ4/3/(ε + λ)1/3 ≈ 2ε + 2λ ≈ 2ε > 0,

(6.3.43)

ψ = [5C
/
2(ε + λ − ψ/2)]3λ4 ≈ (5C/2)3λ4

/{
ε + λ − [5C/2(ε + λ)]3λ4/2]

}3 ≈ (5C/2ε)3λ4 ≈ 0.
(6.3.44)

(ii) λ ≈ 0, ε = 0. Exact solutions exist in this special case, valid for all λ if C ≤ 3/5× 24/3 = 0.2381.
Dividing Eq. (6.3.29) by λ4/3/ψ1/3, we obtain

(ψ/λ)4/3 − 2(ψ/λ)1/3 + 5C = 0. (6.3.45)

With the substitution y = (ψ/λ)1/3 we get the fourth order algebraic equation

y4 − 2y + 5C = 0. (6.3.46)

The solutions of this equation (e.g. Bronstein and Semendjajew 1985, p. 133) are given by combina-
tions yi = (±z

1/2
1 ± z

1/2
2 ± z

1/2
3 )/2, (i = 1, 2, 3, 4; z

1/2
1 z

1/2
2 z

1/2
3 = −2) of the roots z1, z2, z3 of the cubic

resolvent of Eq. (6.3.46):

z3 − 20Cz − 4 = 0. (6.3.47)

The nature of the solutions in Eq. (6.3.46) depends on the sign of the discriminant of Eq. (6.3.47):

D = −(20C/3)3 + 4. (6.3.48)
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If D = 0, i.e. C = 3/5×24/3 = 0.2381, Eq. (6.3.47) has the real solutions z1 = 24/3, z2 = z3 = −21/3,
and Eq. (6.3.46) has a double positive real root y1,2 = 2−1/3, the two other roots being complex conjugate.
Thus, the exact solution valid for all λ is (Fig. 6.3.2 on the left):

ψ = λ/2, (C = 3/5 × 24/3 = 0.2381; n = 3/2; ε = 0). (6.3.49)

Eq. (6.3.47) has at least one real positive root, since at z = 0 it takes the value -4. If D > 0,
i.e. C < 3/5 × 24/3, Eq. (6.3.47) has a positive and two complex conjugate roots, yielding two real
and two complex conjugate roots of the fourth order equation (6.3.45). And we conclude from the
considerations given below that the two real roots of Eq. (6.3.45) are always positive if C is in the range
0 < C < 3/5× 24/3 = 0.2381. The delimitation C > 0 results from Eq. (6.3.21). If C ≈ 3/5× 24/3, (C <
3/5 × 24/3), the two distinct real roots of Eq. (6.3.45) cannot differ too much from the root ψ/λ = 1/2
obtained for C = 3/5 × 24/3, and are consequently positive. In the other limiting case C ≈ 0, (C > 0),
the two real roots of Eq. (6.3.45) are positive again, taking the limiting forms ψ/λ ≈ 0 and ψ/λ ≈ 2.
We conclude that for the considered small range of C-values, Eq. (6.3.45) has always two positive roots
if n = 3/2 and ε = 0 (Fig. 6.3.1 on the right). If we denote by δ1/3 either one of the two positive roots
of Eq. (6.3.45), the exact solution curve for all λ is

ψ = δλ, (0 < C < 3/5 × 24/3; n = 3/2; ε = 0). (6.3.50)

If D < 0, i.e. C > 3/5 × 24/3, the cubic (6.3.47) has three real roots, one positive and two negative,
since the angle α of the “casus irreducibilis” is contained between 0 and π/2, (0 ≤ cos α = (3/5C)3/2

/
4 <

1). The fourth order equation (6.3.45) or (6.3.46) possesses two pairs of complex conjugate roots (e.g.
Bronstein and Semendjajew 1985), and no solution curves of Eq. (6.3.29) exist if C > 3/5 × 24/3, λ ≈
0, ε = 0 (Fig. 6.3.2 on the right).

(iii) λ ≈ 0, ε < 0. No solution curves exist in the quadrant λ, ψ > 0, as seen from Eqs. (6.3.43) and
(6.3.44).

(iv) λ → ∞. Again, we divide Eq. (6.3.29) by λ4/3/ψ1/3, to obtain

(ψ/λ)4/3 − 2(1 + ε/λ)(ψ/λ)1/3 + 5C = 0. (6.3.51)

If λ → ∞, this equation becomes closely equal to Eq. (6.3.45), and the whole discussion parallels
Case (ii), ε = 0. If for the moment we consider 2(1 + ε/λ) as a constant coefficient of (ψ/λ)1/3, the
discriminant of the resolvent of Eq. (6.3.51) would become D = −(20C/3)3 + 4(1 + ε/λ)4 [cf. Eq.
(6.3.48)]. No asymptotic solutions exist if D < 0, i.e. if C > 3(1 + ε/λ)4/3

/
5 × 24/3 ≈ 3/5 × 24/3, as

already outlined under Case (ii), (see Fig. 6.3.2 on the right). The same is true if C = 3/5×24/3 = 0.2381
and ε < 0, because in this special case we have D < 0 too. Thus, asymptotic solutions are nonexistent if
C = 3/5 × 24/3, (ε < 0), and C > 3/5 × 24/3.

Case 3, (3/2 < n < ∞).(3/2 < n < ∞).(3/2 < n < ∞). Generally, two singular solutions exist, passing through the saddle point Ss,
and the corresponding positive energy constant εs is given by Eq. (6.3.36).

(i) λ ≈ 0, ε > 0. The relevant integral curves are those from Eqs. (6.3.37), (6.3.38), (see Figs. 6.3.3
and 6.3.4 on the left). Although the term associated with the minus sign in Eq. (6.3.37) becomes the
leading one if n > 2, it ultimately approaches zero as λ → 0. Eqs. (6.3.37) and (6.3.38) read

ψ ≈ 2ε + O(λ, λ2/n) ≈ const > 0 and ψ ≈ [(n + 1)/ε]2nλ4 ≈ 0. (6.3.52)

(ii) λ ≈ 0, ε = 0. If n > 3/2, we observe from Eqs. (6.3.39), (6.3.40) that the terms associated with
the minus sign become the leading ones. No integral curves exist in the real first (λ, ψ)-quadrant if λ → 0
and ε = 0.

(iii) λ ≈ 0, ε < 0. Likewise, we observe from Eqs. (6.3.37), (6.3.38), (6.3.52) that no solution curves
exist in the first quadrant if λ → 0 and ε < 0.

(iv) λ → ∞. The relevant equations are Eqs. (6.3.41) and (6.3.42). Since now n > 3/2, the negative
terms become vanishingly small if λ → ∞. Eq. (6.3.41) can be employed as it stands, while Eq. (6.3.42)
reads after a first order expansion as (Parker 1963)

ψ ≈ (n + 1)2nλ4−2n[1 − 2nε/λ + 2n(n + 1)2nλ3−2n]. (6.3.53)

If 3/2 < n < 2, we observe from Eqs. (6.3.41) and (6.3.53) that there are two branches of ψ tending
to infinity (Fig. 6.3.3 on the left), and if 2 < n < ∞ the branch (6.3.53) becomes zero if λ → ∞ (Fig.
6.3.3 on the right).
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Fig. 6.3.3 Same as Fig. 6.3.1 if 3/2 < n < 2 (on the left), and 2 < n < ∞ (on the right). The energy
constant of the two singular solutions passing through the singular saddle point Ss is denoted by εs.

Fig. 6.3.4 Same as Fig. 6.3.1 if n = 2 (on the left), and n = ±∞ (on the right).

In the particular case n = 2 we observe from Eqs. (6.3.27), (6.3.32), (6.3.36), (6.3.53) that one singular
solution is constant for all λ (Fig. 6.3.4 on the left):

ψ = ψs = 2εs = 34 = const, (n = 2). (6.3.54)

Case 4, (n = ±∞).(n = ±∞).(n = ±∞). (i) λ ≈ 0. The logarithmic term in Eq. (6.3.28) can be split into a sum, and
it is seen that λ can safely be neglected with respect to ln λ2 if λ → 0. Therefore, the two approximate
solutions of Eq. (6.3.28) are obtained by neglecting lnψ1/2 and ψ, respectively: ψ ≈ 2ε − lnλ4 and
ψ ≈ λ4 exp(−2ε). We insert these solutions into the neglected terms of Eq. (6.3.28):

ψ = 2[ε + λ − ln(λ2/ψ1/2)] ≈ 2ε + 2λ + lnλ−4 + ln(2ε − lnλ4) ≈ lnλ−4 + O[ln(lnλ−4)] → ∞,
(6.3.55)

ψ = λ4 exp(−2ε − 2λ + ψ) ≈ λ4 exp[−2ε − 2λ + λ4 exp(−2ε)] ≈ λ4 exp(−2ε) ≈ 0. (6.3.56)

(ii) λ → ∞. In this case we can safely neglect ln λ2 with respect to λ, and the two approximate
solutions of Eq. (6.3.28) are ψ ≈ 2ε + 2λ and ψ ≈ exp(−2ε − 2λ). Eq. (6.3.28) becomes with these



6.3.1 Summers’ General Solution 615

Fig. 6.3.5 Same as Fig. 6.3.1 if −∞ < n < −1 (on the left), and n = −1 (on the right).

approximations:

ψ = 2[ε + λ − ln(λ2/ψ1/2)] ≈ 2λ − 3 lnλ ≈ 2λ → ∞, (6.3.57)

ψ = λ4 exp(−2ε − 2λ + ψ) ≈ λ4 exp[−2ε − 2λ + exp(−2ε − 2λ)] ≈ λ4 exp(−2λ) ≈ 0. (6.3.58)

Case 5, (−∞ < n < −1).(−∞ < n < −1).(−∞ < n < −1). The singular saddle point Ss exists in this case with the negative energy
constant εs from Eq. (6.3.36), (Fig. 6.3.5 on the left).

(i) λ ≈ 0, ε > 0. Among the two approximate solutions ψ ≈ 2ε + 2λ and ψ ≈ [(n + 1)/(ε + λ)]2nλ4

obtained from Eq. (6.3.27) by neglecting the third and first term, respectively, only the first one subsists.
But also this first solution ψ ≈ 2ε + 2λ must be discarded, as it would give after insertion into the
right-hand side of Eq. (6.3.37) ψ = 2ε + 2λ − 2(n + 1)(λ2/ψ1/2)1/n ≈ −21−1/2n(n + 1)λ2/n/ε1/2n → ∞
if λ → 0, contradicting the assumption that ψ ≈ 2ε + 2λ �= ∞.

The possibility remains that ψ 	 2ε + 2λ, and with this assumption the exact parts of Eqs. (6.3.37),
(6.3.38) yield the same consistent result:

ψ ≈ [−2(n + 1)]2n/(2n+1)λ4/(2n+1) → ∞, (λ → 0; ψ 	 2ε). (6.3.59)

(ii) λ ≈ 0, ε = 0. Eq. (6.3.59) remains still valid, provided that ψ 	 0.
(iii) λ ≈ 0, ε < 0. The same is true also in this case, provided that ψ 	 2|ε|, but we observe that

also the approximate solution ψ ≈ [(n+1)/(ε+λ)]2nλ4 → 0 subsists, which is obtained by neglecting the
first term in Eq. (6.3.27). This yields after substitution into the first term of Eq. (6.3.27) the consistent
result ψ = [(n + 1)

/
(ε + λ − ψ/2)]2nλ4 ≈ [(n + 1)/(ε + λ)]2nλ4 → 0.

(iv) λ → ∞. Among the two approximations ψ ≈ 2λ and ψ ≈ (n + 1)2nλ4−2n from Eqs. (6.3.41),
(6.3.42), only the first one holds good, and the relevant integral curve is ψ ≈ 2λ → ∞.

(v) λ ≈ −ε > 0, (λ < −ε; ε < 0). As suggested by the left-hand side of Fig. 6.3.5, the shape of
the integral curves near the λ-axis can be obtained by letting λ → −ε, provided that ε < 0. Since by
assumption ψ ≈ 0, we may safely neglect in Eq. (6.3.27) ψ/2 with respect to ψ−1/2n, (−∞ < n < −1),
and we get approximately

ψ ≈ [−(n + 1)]2nε4(−λ − ε)−2n ≈ 0, (λ ≈ −ε > 0; λ < −ε). (6.3.60)

Case 6, (n = −1).(n = −1).(n = −1). No singular point Ss exists in this and in the following cases. The exact solution
of the Bernoulli equation (6.3.27), valid for all λ, is simply (Fig. 6.3.5 on the right)

ψ = 2λ + 2ε, (n = −1; λ, ψ ≥ 0). (6.3.61)

Case 7, (−1 < n < 0).(−1 < n < 0).(−1 < n < 0). (i) λ ≈ 0, ε > 0. Again, the relevant equations are (6.3.37) and (6.3.38),
but the exact part of Eq. (6.3.37) becomes after insertion of ψ ≈ 2ε + 2λ equal to −∞ if λ = 0 and
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Fig. 6.3.6 Same as Fig. 6.3.1 if −1 < n < 0.

−1 < n < 0. However, the second possibility, viz. ψ ≈ [(n + 1)/(ε + λ)]2nλ4 → 0, yields the consistent
result (6.3.38), (cf. Fig. 6.3.6).

(ii) λ ≈ 0, ε = 0. The exact equation (6.3.39) becomes by insertion of ψ ≈ 2λ equal to −∞ if λ = 0
and −1 < n < 0. The sole consistent expansion is given by Eq. (6.3.40).

(iii) λ ≈ 0, ε < 0. In the same way as for Case 1 (iii), we observe that no integral curves exist in the
first real (λ, ψ)-quadrant if λ ≈ 0, (ε < 0).

(iv) λ → ∞. The relevant equations are (6.3.41) and (6.3.42). It is seen at once that merely the
integral curves (6.3.41) subsist if −1 < n < 0 : ψ ≈ 2λ → ∞.

(v) λ ≈ −ε > 0, (λ > −ε; ε < 0). The behaviour of the integral curves near the λ-axis can be found
similarly to Case 5 (v), (see Fig. 6.3.6). If ψ → 0, we may neglect in Eq. (6.3.27) ψ/2 with respect to
ψ−1/2n as long as −1 < n < −1/2. If n = −1/2, the two terms are of the same order of magnitude, and if
−1/2 < n < 0 we may neglect ψ−1/2n with respect to ψ/2 as ψ → 0. Our Eq. (6.3.27) becomes in these
three cases, respectively (see Fig. 6.3.6):

ψ ≈ (n + 1)2nε4(λ + ε)−2n, (−1 < n < −1/2; λ ≈ −ε > 0; λ > −ε), (6.3.62)

ψ ≈ 2(λ + ε)/(1 + ε−4), (n = −1/2; λ ≈ −ε > 0; λ > −ε), (6.3.63)

ψ ≈ 2(λ + ε), (−1/2 < n < 0; λ ≈ −ε > 0; λ > −ε). (6.3.64)

Case 8, (n = 0).(n = 0).(n = 0). There exists the single, normalized exact solution ψ = λ4 from Eq. (6.3.18).
An examination of Figs. 6.3.1-6.3.6 shows an unexpected wide variety of solution types depending on

the polytropic index n – even for the most simple wind/accretion model.
In the special case n = 3/2 three different subcases must be considered, namely if C < 3/5×24/3, C =

3/5 × 24/3, and C > 3/5 × 24/3 (see Fig. 6.3.1 on the right, and Fig. 6.3.2). Solutions with negative
energy constant ε < 0 are available in the first real quadrant only if C < 3/5 × 24/3, and all integral
curves approach asymptotically the two distinct exact solutions (6.3.50) obtained for ε = 0 (Fig. 6.3.1
on the right). If C = 3/5 × 24/3, the velocity solutions consist of two distinct branches, asymptotic to
the exact solution ψ = λ/2 from Eq. (6.3.49), (Fig. 6.3.2 on the left).

For polytropic indices −∞ ≤ n < −1 and 3/2 < n ≤ ∞ all solution curves are of the saddle type,
dominated by the two singular solutions passing through the saddle point Ss. At first sight a distinction
between five different ranges of the polytropic index seems superfluous, but a more detailed inspection
shows that these five subcases are quite distinct with respect to the boundary conditions, i.e. referring to
their behaviour if λ → ∞, (r → 0), and λ → 0, (r → ∞). A singular solution exists only if 2 < n < ∞,
satisfying the boundary condition that v or ψ become zero if r → 0, (λ → ∞), and remain finite at large
distances from M, (λ → 0), (Fig. 6.3.3 on the right). Actually, it is just this solution that is very useful
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in stellar wind theory. An exact, analytical singular solution of constant velocity subsists if n = 2 (Eq.
(6.3.54) and Fig. 6.3.4 on the left). And if 3/2 < n < 2, the velocity approaches infinity near the point
mass M, (λ → ∞; r → 0), (Fig. 6.3.3 on the left). In the case 3/2 < n < ∞, when εs > 0, all integral
curves having ε < 0 are confined within a finite radius r ∝ 1/λ from the point mass M (Fig. 6.3.3 and
Fig. 6.3.4 on the left).

A class of solutions existing exclusively if −∞ < n < 0 and ε < 0 involves a vanishing velocity
(∝ ψ1/2) at a finite nonzero distance r, (1/r ∝ λ ≈ −ε), (see Figs. 6.3.5 and 6.3.6).

Finally, if −1 ≤ n ≤ 0 all solution curves are single-branched, monotonically increasing functions of
λ (cf. right-hand side of Fig. 6.3.5 and Fig. 6.3.6).

To sum up, expansion flows (e.g. stellar winds) with constant n, satisfying the two obvious boundary
conditions that v or ψ = 0 at r = 0, (λ = ∞), and v, ψ = const < ∞ if r → ∞, (λ → 0) exist only for
polytropic indices 2 < n < ∞ (Fig. 6.3.3 on the right). Parker (1963, p. 62) has given arguments why
the flow should “feel compelled” to adjust itself just to the continuous singular solution passing through
the singular point Ss.

In order to assure the existence of an expanding polytropic wind (2 < n < ∞), the reciprocal distance
λ0 at a certain reference level r0 has to be confined within certain limits [Eq. (6.3.67)]. First, we observe
from Eq. (6.3.36) that the energy constant εs of the singular solution is positive for a polytropic wind.
Let us denote by ψ0 = ψ(λ0) = µv2(λ0)/RT0 the squared dimensionless velocity at the dimensionless
reference level λ0 = µGM/RT0r0, and let us express the energy constant (6.3.27) in reference level terms,
taking into account that (λ2

0/ψ
1/2
0 )1/n = τ0 = 1, (τ = T/T0) via Eq. (6.3.16):

εs = ψ0/2 − λ0 + (n + 1)(λ2
0/ψ

1/2
0 )1/n = ψ0/2 − λ0 + n + 1 > 0, (2 < n < ∞). (6.3.65)

Taking the reference level near the stellar surface, the condition that the wind velocity is vanishingly
small near the point mass M implies ψ0 ≈ 0, and Eq. (6.3.65) gives λ0 < n + 1.

A lower limit of λ0 can be obtained from Eq. (6.3.30), written at reference level λ0 under the form

(dψ/dλ)λ=λ0 = 2ψ0

[
(ψ1/2

0 /λ2
0)

1/n − 2(1 + 1/n)/λ0

]/[
ψ0(ψ

1/2
0 /λ2

0)
1/n − 1 − 1/n

]
= (2ψ0/λ0)

[
λ0 − 2(1 + 1/n)

]/
(ψ0 − 1 − 1/n), (2 < n < ∞). (6.3.66)

Because ψ must be a decreasing function of λ, (v increases with r), the derivative (6.3.66) has to be
negative. Since ψ0 ≈ 0, the denominator is already negative, and the numerator has to be positive, i.e.
λ0 > 2(1 + 1/n). Thus, λ0 is included between the limits (Parker 1963, Chap. V)

2(1 + 1/n) < λ0 < n + 1, (2 < n < ∞). (6.3.67)

In terms of the solar coronal temperature T0 at reference level r0 = 106 km this equation becomes by
inserting for λ0 from Eq. (6.3.11):

µGM�/(n + 1)Rr0 = 7.3 × 105 K < T0 < µGM�n/2(n + 1)Rr0 = 3.6 × 106 K,

(n = 10; µ = 1/2), (6.3.68)

where the observationally suggested value of n at r0 is about 10.
Actually, Eq. (6.3.67) already implies n > 2. If λ0 is less than 2(1 + 1/n), gravitation is too weak,

and the gas expands outwards in an explosive, uncontrolled manner. And if λ0 is larger than n + 1,
gravitation is too strong, there is no wind, and M possesses merely a static polytropic atmosphere.

We conclude the discussion of the basic equations (6.3.9), (6.3.10) of the wind/accretion problem
with Yeh’s (1970) analytic solution, which enables one to calculate explicitly distance r = r(�) and flow
velocity v = v(�) in terms of the flow density �, by evaluating the algebraic relationships (6.3.77), (6.3.78),
(6.3.81), (6.3.86), (6.3.87). The analytic solutions (6.3.27)-(6.3.29) provide so far, only implicit functional
relationships among v, �, and r.

Let us integrate at first Eq. (6.3.9) with the polytropic law (6.3.3), to obtain the equivalent of the
energy integrals (6.3.27)-(6.3.29):

v2/2 + (n + 1)K�1/n − GM/r = h = const, (n �= ±∞), (6.3.69)

v2/2 + K ln � − GM/r = h = const, (n = ±∞). (6.3.70)
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The seeming singularity in Eq. (6.3.69) if n = 0, (� = const) can be removed at once by replacing
K�1/n with P/� (cf. Sec. 1.2).

We insert for v from the mass conservation equation (6.3.10), getting a quartic equation in 1/r :

1/r4 − 2(GM�2/F 2)
/
r + 2(�/F )2

[
(n + 1)K�1/n − h

]
= 0, (n �= ±∞), (6.3.71)

1/r4 − 2(GM�2/F 2)
/
r + 2(�/F )2

[
K ln � − h

]
= 0, (n = ±∞). (6.3.72)

The basic idea of Yeh (1970) is the factorization of Eqs. (6.3.71), (6.3.72) by introduction of the
auxiliary variable s, satisfying the cubic equation (6.3.79) in s2. Thus, we rewrite Eq. (6.3.71) as a
difference of two squares, including the remaining terms in braces:

[
1/r2 + 21/3(GM�2/F 2)2/3s2

]2
−
[
22/3(GM�2/F 2)1/3s

/
r + 2−2/3(GM�2/F 2)2/3

/
s
]2

+

(GM�2/F 2)4/3
{
− 22/3s4 + 2−4/3/s2 + 2(G2M2�/F )−2/3

[
(n + 1)K�1/n − h

]}
= 0, (n �= ±∞).

(6.3.73)

A quite similar equation holds if n = ±∞. Eq. (6.3.73) is split into two separate equations, by writing
the first two terms as a product of their difference and sum. This product, as well as the last term, is
equated to zero separately:

[
1/r2 − 22/3(GM�2/F 2)1/3s

/
r + (GM�2/F 2)2/3(21/3s2 − 2−2/3/s)

]

×
[
1/r2 + 22/3(GM�2/F 2)1/3s

/
r + (GM�2/F 2)2/3(21/3s2 + 2−2/3/s)

]
= 0, (6.3.74)

4s6 − 27/3(G2M2�/F )−2/3
[
(n + 1)K�1/n − h

]
s2 − 1 = 0, (n �= ±∞), (6.3.75)

4s6 − 27/3(G2M2�/F )−2/3 (K ln � − h)s2 − 1 = 0, (n = ±∞). (6.3.76)

With the notations

q = (27/3/3)(G2M2�/F )−2/3
[
(n + 1)K�1/n − h

]
, (n �= ±∞), (6.3.77)

q = (27/3/3)(G2M2�/F )−2/3 (K ln � − h), (n = ±∞), (6.3.78)

Eqs. (6.3.75), (6.3.76) now take the simple form

s6 − 3qs2/4 − 1/4 = 0. (6.3.79)

The extrema s2 = ±q1/2/2 of the function f(s2) = s6 − 3qs2/4 − 1/4 have different signs if q > 0,
and are absent in the real domain if q < 0. If q = 0, an inflexion point exists at s2 = 0. If s = 0, the
function f(s2) takes the negative value −1/4, and therefore Eq. (6.3.79) has a single positive root s2

1,
the two other roots being either negative or complex conjugate. The discriminant D = (1− q3)/64 takes
nonnegative values if q ≤ 1, and the sole positive root of Eq. (6.3.79) is in this case given by Cardani’s
formula

s2 =
{
[1 + (1 − q3)1/2]1/3 + [1 − (1 − q3)1/2]1/3

}/
2, (q ≤ 1), (6.3.80)

with the two real roots

s1 = −s2 = 2−1/2
{
[1 + (1 − q3)1/2]1/3 + [1 − (1 − q3)1/2]1/3

}1/2
, (q ≤ 1). (6.3.81)

It will be seen from Eqs. (6.3.83) and (6.3.85) that s2 can be discarded, and that s1 is further
constrained by the delimitation 0 ≤ s1 ≤ 1, implying −∞ ≤ q ≤ 1. So, the relevant solution of Eq.
(6.3.79) is given by s1.
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If on the other hand D < 0, (q > 1), the sole positive root is not pertinent for our considerations, but
is written down for completeness under trigonometric form

s2 = q1/2 cos[(1/3) arccos(q−3/2)], (q > 1). (6.3.82)

With the two roots (6.3.81), the two second order parentheses (6.3.74) can be solved at once, yielding
four values of 1/r :

1/r1,2,3,4 = (GM�2/2F 2)1/3[s1,2 ± (−s2
1,2 + 1

/
s1,2)1/2], (6.3.83)

1/r1,2,3,4 = (GM�2/2F 2)1/3[−s1,2 ± (−s2
1,2 − 1

/
s1,2)1/2]. (6.3.84)

Since s1 = −s2, we can dismiss the solutions (6.3.84), because they yield the same result as Eq.
(6.3.83) if s1 is replaced by −s2, and vice versa. And the square root in Eq. (6.3.83) implies that we can
also discard the nonpositive root s2, and concentrate only on s1 ≥ 0, which is constrained further by the
delimitation 0 ≤ s1 ≤ 1. Moreover, with this constraint, one of the two real solutions (6.3.83) is always
nonnegative (1/r1 ≥ 0), while the other solution 1/r2 is nonnegative only if s1 ≥ (−s2

1 + 1/s1)1/2, i.e. if
1/21/3 ≤ s1 ≤ 1.

From Eq. (6.3.79) follows

q = (4s6 − 1)/3s2; dq/ds = (16s6 + 2)/3s3, (6.3.85)

and it is seen that q increases monotonically (dq/ds > 0) from −∞ to ∞, if s increases from 0 to ∞. As
mentioned above, the delimitation 0 ≤ s1 ≤ 1 implies −∞ ≤ q ≤ 1. To sum up, the analytical solution of
the wind/accretion problem (6.3.10), (6.3.69), (6.3.70) is given by

1/r1,2 = (GM�2/2F 2)1/3[s1 ± (−s2
1 + 1/s1)1/2], (6.3.86)

where the solution r1 exists only if 0 ≤ s1 ≤ 1, (−∞ ≤ q ≤ 1), and the second solution r2 only if
2−1/3 ≤ s1 ≤ 1, (0 ≤ q ≤ 1). The velocity is found at once from the mass conservation equation (6.3.10):

v = F/�r2 = (G2M2�/4F )1/3
[
1/s1 ± 2(s1 − s4

1)
1/2
]
. (6.3.87)

As already noted at the beginning of this subsection, the simple polytropic law (6.3.3) is a substitute
for an energy equation. The heating of the solar corona, where the solar wind starts, is simulated by
the amount by which the polytropic index n is larger than its value n = 1/(γ − 1) = 3/2, (γ = 5/3) for
an adiabatic completely ionized gas [cf. Eq. (1.7.60)]. In the solar corona it is observed that n ≈ 10,
i.e. there prevails near-isothermality. Radiation losses by free-free emission are of some importance only
at the coronal base, and the major heat transport through the expanding corona occurs by thermal
conduction, this being the salient energy source to the expanding corona. If thermal conduction is not
fully adequate, then energy supply by conversion of magnetic energy into plasma energy, dissipation of
hydrodynamic and hydromagnetic waves would be no longer confined to a relatively thin layer at the
coronal base, but would extend to distances of several solar radii, throughout the corona (Parks 1991,
Chap. 8).

In fact, for a perfectly isothermal corona (n = ±∞) thermal conduction ceases, and the high coronal
temperatures required for expansion can be maintained only by various dissipative processes (dissipa-
tion of magnetic energy, hydromagnetic and hydrodynamic wave dissipation), occurring throughout the
corona. Far from the Sun we would expect that coronal heating by conduction and energy dissipation
drops off, and n decreases towards the adiabatic value n = 3/2, mentioned above. Besides, as obvious
from the right-hand side of Fig. 6.3.4, a strictly isothermal wind would yield a slowly, but continuously
increasing wind velocity if r → ∞, (λ → 0), and should therefore be discarded at large distances from
M. Thus, for a more realistic description of stellar winds a changing polytropic index should be employed
(3/2 ≤ n ≤ ∞), where the upper limit applies near the star, and the lower limit at large distances. For
instance, Pudovkin et al. (1997) quote n = 1.1 − 2.5 for the solar wind at the Earth’s orbit and at the
Earth’s bow shock, while Totten et al. (1996) find n ≈ 2.17 between 0.08 and 1.5 AU. On the other
hand, on a smaller and more localized scale, the plasma in the vicinity of solar wind stream interactions
possesses n = 1 − 1.5 (Newbury et al. 1997). And for solar flares (short-lived sudden bursts of light in
the neighborhood of sunspots) the polytropic index is via Eq. (1.2.39) equal to n ≈ 1.5 – close to the
adiabatic exponent γ = 1 + 1/n = 5/3 of a nonrelativistic plasma (Garcia 2001).
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The solar wind can not only be regarded as a hydrodynamic flow, but also equivalently as an evapo-
rative phenomenon with the wind particles traveling upwards in the hot corona at speeds exceeding the
escape velocity, and escaping freely without collisions from the solar exosphere. The principal merit of
such exospheric models is the independent production of the solar wind, which is the result of the hot
solar corona, and does not depend on the method of treatment (e.g. Brandt 1970).

Chiuderi and Ciamponi (1977, 1978) have considered the radio emission from the extended envelopes
surrounding early type stars undergoing mass loss. They treat the dynamics of the expanding envelope
in the polytropic approximation, without prescribing a priori density and temperature profiles. The
polytropic atmosphere is described by a straightforward generalization of Parker’s (1963) radial wind
model with the inclusion of radiation pressure in the optically thick regime. The momentum equation
(6.3.9) generalizes to

v dv/dr = −(1/�) d(Pg + Pr)/dr − GM/r2 = −(1 + 1/n)K�1/n−1 d�/dr + κL/4πcr2 − GM/r2,
(6.3.88)

where the radial change of radiation pressure dPr/dr has been taken from Eq. (6.1.1). Eddington’s
assumption (6.1.9) concerning the constancy of the ratio Pr/P writes

1 − β = Pr/(Pg + Pr) = κL/4πcGM = const, (β = Pg/P ). (6.3.89)

Eq. (6.3.88) becomes

v dv/dr = −(1 + 1/n)K�1/n−1 d�/dr − βGM/r2. (6.3.90)

Thus, with Eddington’s assumption, Eq. (6.3.90) takes the same form as the original equation (6.3.9),
βG playing the role of an effective gravitational constant. Eq. (6.3.90) can be integrated at once [cf. Eq.
(6.3.69)]:

v2/2 + (n + 1)K�1/n − βGM/r = v2/2 + (n + 1)P/� − βGM/r

= v2/2 + (n + 1)(P0/�0)(v0r
2
0/vr2)1/n − βGM/r = const, (n �= ±∞). (6.3.91)

Chiuderi and Ciamponi (1977, 1978) adopt a more mathematical description of this Bernoulli equation,
and introduce, following Parker (1963), the dimensionless radius η and velocity u by

η = (n + 1)2n/(2n−3)(�0v
2
0/2P0)1/(2n−3)(βGM�0/P0r0)−(2n+1)/(2n−3) r/r0;

u = (n + 1)−n/(2n−3)(�0v
2
0/2P0)(n−2)/(2n−3)(βGM�0/P0r0)2/(2n−3) v/v0, (n �= 3/2,±∞).

(6.3.92)

Eq. (6.3.91) takes after some algebra the form

u2 + 1/(uη2)1/n − 1/η = (n + 1)−2n/(2n−3)(�0v
2
0/2P0)−1/(2n−3)(βGM�0/P0r0)4/(2n−3)

×
(
�0v

2
0/2P0 + n + 1 − βGM�0/P0r0

)
= const, (n �= 3/2,±∞). (6.3.93)

Chiuderi and Ciamponi (1977) argue that the relevant values of r fall completely into the region
where u, and consequently v practically has reached its asymptotic value v∞ = const. In virtue of Eq.
(6.3.10) the density changes in this case as � = �0(r0/r)2, while the temperature varies according to the
polytropic and perfect gas laws T = T0(P/P0)

/
(�/�0) = T0(�/�0)1/n = T0(r0/r)2/n. With these density

and temperature profiles the authors calculate the radio emission from the extended polytropic envelope
of a radiostar.

6.3.2 Bipolytropic Winds

Bipolytropic models of the solar wind can be envisaged to consist of an electron-proton mixture with
distinct electron and proton temperatures Te and Tp, respectively. To be somewhat more general, we
consider the steady outflow of matter along a radial flow tube, but with a cross-section proportional to rb,
where the divergence parameter (b ≥ 2) measures the geometrical deviation from spherically symmetric
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expansion b = 2. The total pressure of the completely ionized plasma is given by the sum of electron and
proton pressure P = Pe +Pp, satisfying the ideal gas law (1.2.5), and two separate polytropic laws (6.3.3)
with distinct polytropic indices ne, np, and distinct polytropic constants Ke, Kp :

Pe = ndkTe = k�Te/mp = Ke�
1+1/ne ; Pp = ndkTp = k�Tp/mp = Kp�

1+1/np ,

(� = nd(mp + me) ≈ ndmp). (6.3.94)

k denotes the Boltzmann constant, and nd is the number density of electrons or protons. The total
mass density is � = nd(me +mp) ≈ ndmp, where me, mp are the electron and proton masses, respectively.

The mass conservation equation (6.3.10) becomes

�vrb = �0v0r
b
0, (6.3.95)

and the equation of motion (6.3.9) now reads

(1/2) dv2/dr = −(1/�) d(Pe + Pp)/dr − GM/r2. (6.3.96)

Integration of this equation with the aid of Eq. (6.3.94) yields the Bernoulli integrals

v2/2 + (ne + 1)Ke�
1/ne + (np + 1)Kp�

1/np − GM/r = const, (ne, np �= ±∞), (6.3.97)

v2/2 + Ke ln � + (np + 1)Kp�
1/np − GM/r = const, (ne = ±∞; np �= ±∞), (6.3.98)

v2/2 + (Ke + Kp) ln � − GM/r = const, (ne, np = ±∞). (6.3.99)

The density � is eliminated with Eq. (6.3.95), taking into account that Ke�
1/ne

0 =
kTe0/mp, Kp�

1/np

0 = kTp0/mp via Eq. (6.3.94):

v2/2 + (k/mp)
[
(ne + 1)Te0(v0r

b
0/vrb)1/ne + (np + 1)Tp0(v0r

b
0/vrb)1/np

]
− GM/r = const,

(ne, np �= 0,±∞), (6.3.100)

v2/2 + (k/mp)
[
Te0 ln(v0r

b
0/vrb) + (np + 1)Tp0(v0r

b
0/vrb)1/np

]
− GM/r = const,

(ne = ±∞; np �= 0,±∞), (6.3.101)

v2/2 + (k/mp)(Te0 + Tp0) ln(v0r
b
0/vrb) − GM/r = const, (ne, np = ±∞). (6.3.102)

Similarly to Eq. (6.3.11), Summers (1983a) introduces the dimensionless notations

ζ = r/r0; Ψ = Ψ(ζ) = mpv
2(ζ)/2kTe0; τ0 = Tp0/Te0. (6.3.103)

The three previous equations become with the constants expressed at the reference level ζ = 1, equal
to [Ψ0 = Ψ(1)]

Ψ + (ne + 1)(Ψ0/Ψ)1/2neζ−b/ne + τ0(np + 1)(Ψ0/Ψ)1/2npζ−b/np − ν/ζ

= Ψ0 + (ne + 1) + τ0(np + 1) − ν, (ne, np �= 0,±∞), (6.3.104)

Ψ + ln[(Ψ0/Ψ)1/2ζ−b] + τ0(np + 1)(Ψ0/Ψ)1/2npζ−b/np − ν/ζ

= Ψ0 + τ0(np + 1) − ν, (ne = ±∞; np �= 0,±∞), (6.3.105)

Ψ + (1 + τ0) ln[(Ψ0/Ψ)1/2ζ−b] − ν/ζ = Ψ0 − ν, (ne, np = ±∞), (6.3.106)

where

ν = mpGM/kTe0r0 = const. (6.3.107)
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The singular points of Eqs. (6.3.104)-(6.3.106) can be determined by equating to zero the numerator
and denominator of their derivatives, which take the unified form

dΨ/dζ = (Ψ/ζ2)
{
b(1 + 1/ne)(Ψ0/Ψ)1/2neζ1−b/ne + bτ0(1 + 1/np)(Ψ0/Ψ)1/2npζ1−b/np − ν

}
/{

Ψ − [(1 + 1/ne)/2](Ψ0/Ψ)1/2neζ−b/ne − τ0[(1 + 1/np)/2](Ψ0/Ψ)1/2npζ−b/np
}
, (ne, np �= 0).

(6.3.108)

Additionally to the nodal singular point at the origin ζs, Ψs = 0, the other singular saddle point is
given by equating the braces separately to zero. These two equations can also be expressed under the
alternative form (Summers 1983a):

2bζsΨs = ν, [Ψs = Ψ(ζs)], (6.3.109)

Ψ1+(1−2b)/2ne
s − [(1 + 1/ne)/2]Ψ1/2ne

0 (2b/ν)b/ne

−τ0[(1 + 1/np)
/
2](2b/ν)b/npΨ1/2np

0 Ψ(b−1/2)(1/np−1/ne)
s = 0, (ne, np �= 0). (6.3.110)

In the special case ne, np = ±∞ we find simply: Ψs = (1 + τ0)/2. If ζ = ζs and Ψ = Ψs(ζs) are
inserted into Eqs. (6.3.104)-(6.3.106), the pair (Ψ0, Ψs) can be determined with the aid of Eq. (6.3.110).

The branches of the Bernoulli equations (6.3.104)-(6.3.106) which are pertinent for an expanding wind
are those satisfying the condition v,Ψ ≈ 0 at ζ ≈ 0 (lower branch), and v,Ψ 	 1 if ζ → ∞ (upper branch)
for a previously determined value of Ψ0 = Ψ(1). If ne, np �= 0,±∞, the wind speed (6.3.100) increases
monotonically with r up to its terminal value v = const. If ne = ±∞ and np �= 0,±∞, the gas velocity
(6.3.101) increases without bound according to the asymptotic form v2 = (2bkTe0/mp) ln r, while in the
isothermal case ne, np = ±∞ we have v2 = [2bk(Te0 + Tp0)/mp] ln r via Eq. (6.3.102). The wind speed
at the orbit of the Earth is up to two times larger in a strongly diverging flow tube b ≈ 5, as compared
to spherically symmetric flow (b = 2), (Summers 1983a).

For the quiescent solar wind between about 0.3 and 10 AU Riley et al. (2001) quote 5/3 < np < 2.5
and 5/3 < ne < 10, while a negative polytropic index for electrons (ne < 0) in interplanetary magnetic
clouds (interplanetary coronal mass ejections) is still a matter of debate (Osherovich et al. 1993, Newbury
et al. 1997, Gosling 1999, Gosling et al. 2001, Riley et al. 2001, Garcia 2001).

Another bipolytropic model for strong mass outflow from quasiequilibrium states with excess energy
has been proposed by Bisnovatyi-Kogan and Zeldovich (1966). The isentropic equation of state is assumed
under the form

P =




K1�
1+1/n1 � > �a, Γ1 = 1 + 1/n1

if
K2�

1+1/n2 � < �a, Γ2 = 1 + 1/n2

(6.3.111)

Pressure continuity at � = �a demands K1�
1/n1
a = K2�

1/n2
a . The specific internal (thermal) energy of

isentropic stellar matter is via Eqs. (5.12.12)-(5.12.14) equal to

ε(int)/� = [K/(Γ − 1)]�Γ−1 + const = nK�1/n + const, (Γ = 1 + 1/n). (6.3.112)

In the the region � < �a the integration constant vanishes by virtue of the surface boundary condition
ε(int)/� = 0 if � = 0, and Eq. (6.3.112) becomes

ε(int)/� = n2K2�
1/n2 , (� < �a). (6.3.113)

If � > �a, the integration constant in Eq. (6.3.112) can be fixed via the continuity of internal energy
at � = �a : const =ε(int)/�a − n1K1�

1/n1
a = n2K2�

1/n2
a − n1K1�

1/n1
a = (n2 − n1)K1�

1/n1
a . Thus:

ε(int)/� = n1K1�
1/n1 + (n2 − n1)K1�

1/n1
a , (� > �a). (6.3.114)

Consider a star of core radius r1 and core mass M1 such that its mean density is �m 	 �a. Then, we
may neglect the gravitational and internal energies of the envelope with respect to the same energies of
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the much more massive core. The total energy (5.12.11) of the whole star approximates via Eq. (6.3.114)
to

E = −3GM2
1 /(5 − n1)r1 + n1K1

∫ M1

0

�1/n1 dM + (n2 − n1)K1�
1/n1
a M1

= (n1 − 3)GM2
1 /(5 − n1)r1 + (n2 − n1)K1�

1/n1
a M1, (6.3.115)

where the integral is just equal to the internal energy U1 = n1GM2
1 /(5 − n1)r1 from Eq. (2.6.168) with

n → n1, Γ → 1 + 1/n1.
The Bernoulli integral (6.3.69) subsists for the quasistationary polytropic outflow of the stellar enve-

lope at � < �a, having the energy constant h = v2
∞/2 > 0, as demanded by a steadily expanding wind

with constant velocity at infinity v∞. At the core surface r1 we have v ≈ 0, and Eq. (6.3.69) yields

h = (n2 + 1)K2�
1/n2
a − GM1/r1. (6.3.116)

If n2 	 1, (Γ2 ≈ 1, as in ionization-dissociation zones, see Sec. 1.7), the condition h > 0 is equivalent
to ∂E/∂M1 > 0, because in virtue of Eq. (2.6.21) we have M1r

(3−n1)/(n1−1)
1 = const, dr1/dM1 =

(n1 − 1)r1/(n1 − 3)M1, and the derivative of Eq. (6.3.115) becomes (Bisnovatyi-Kogan 2002, Sec. 8.3.1):

∂E/∂M1 = −GM1/r1 + (n2 − n1)K1�
1/n1
a ≈ −GM1/r1 + (n2 + 1)K2�

1/n2
a = h,

(n2 	 n1; n2 	 1; K1�
1/n1
a = K2�

1/n2
a ). (6.3.117)

If h = 0, we have ∂E/∂M1 ≈ 0, (n2 − n1)K1�
1/n1
a ≈ GM1/r1, and E ≈ 2GM2

1 /(5 − n1)r1 > 0 via
Eq. (6.3.115). Hence, the condition of adiabatic outflow h > 0 is more stringent than E > 0. If E > 0
and h < 0, the expansion of the star as a whole is energetically possible, but a quasistationary wind
originating at density level �a cannot arise.

A three-polytropic model (three-zone polytrope) with n1 = 3, n2 = −10/3, n3 = 1.5 has been
adopted by Colpi et al. (1993) for the description of an exploding neutron star with mass slightly less
than a minimum mass of about 0.2 M� – a mass located near the minimum of the unstable branch with
dMr1/d�r0 < 0 in Fig. 5.12.1.

6.3.3 Magnetopolytropic Winds

Everywhere round the solar photosphere there appears to be a general background field of about 1-2
Gauss, while the fields of active regions may be several orders of magnitude higher. The solar wind gas
can be approximated with a plasma of infinite conductivity, and the magnetic field is carried into space
by the steady expansion (∂ /∂t = 0) of coronal gas, with the field lines everywhere along the streamlines,
but with the roots of the field lines fixed on the rotating Sun. The magnetic field is stretched out –
the field lines being frozen-in. The interplanetary field lines connect all the plasma emitted from the
same location on the rotating Sun and have the form of an Archimedes spiral (e.g. Brandt 1970). The
spiral magnetic field pattern corotates with the rotating Sun, while the solar wind plasma moves nearly
radially. This view of a corotating magnetic field is merely adopted to describe the geometrical features of
the field, and should be carefully distinguished from physical corotation, which involves also significant,
azimuthal nonradial motions of the plasma.

The magnetic field appears to act as a kind of safety valve on the corona, bottling up the corona
with its enclosing lines of force until the temperature rises up to the level where coronal plasma bursts
forth and expends the coronal heating energy in expansion. Parker (1963) has given arguments that the
corona would first begin to push its way through the field along the equatorial plane of the Sun, and this
prompted Weber and Davis (1967) to limit the expansion of coronal gases mainly to the near equatorial
regions of the Sun, with negligible meridional components of velocity �v and magnetic field induction
vector �B. For the solar wind plasma, as for most astrophysical plasmas, we can safely set the magnetic
permeability p equal to unity in the Gaussian unrationalized CGS-system, so the magnetic induction B
is just equal to the magnetic field intensity H [cf. Eq. (3.10.5)].

Weber and Davis (1967) have examined a hydromagnetic, axially symmetric, stationary model of
the solar wind, concentrating mainly on the equatorial plane, where the field is combed out by the solar
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wind. This model is essentially a one-dimensional one, and has been generalized among others by Sakurai
(1985) and Lima et al. (2001) to a two-dimensional axisymmetric wind with frozen-in magnetic field. In
an inertial frame centered on the Sun, the velocity �v and the magnetic induction vector �B of the wind
have in the equatorial plane of the Sun the components

�v = vr�er + vϕ�eϕ, (vr = vr(r); vϕ = vϕ(r); |vr| 	 |vϕ|), (6.3.118)

�B = Br�er + Bϕ�eϕ, [Br = Br(r); Bϕ = Bϕ(r)]. (6.3.119)

Let us apply Ohm’s law (3.10.10) in our inertial frame, where �J/σ must be zero in the perfectly
conducting solar wind plasma having conductivity σ = ∞. This condition writes via Eq. (3.10.12) as

�E = −�v × �B/c. (6.3.120)

The solar wind can be regarded as convecting with velocity �v through the magnetic field �B to produce
the electric field (6.3.120), (Brandt 1970). Maxwell’s equation (3.10.1) yields for steady-state conditions

(1/c) ∂ �B/∂t = −∇× �E = 0, (6.3.121)

and the ϕ-component of this equation becomes equal to

c(∇× �E)ϕ = (c/r) d(rEλ)/dr = (1/r) d[r(vrBϕ − vϕBr)]/dr = 0, (6.3.122)

by substituting for the electric field vector from Eq. (6.3.120) via Eq. (B.38). This integrates at once to

r(vrBϕ − vϕBr) = const. (6.3.123)

To determine the integration constant, we make use of the above mentioned, nearly intuitive property
that in a frame corotating with the angular rotation speed Ω of the Sun, the plasma velocity �vp(vr, vϕ −
Ωr, 0) is always parallel to the magnetic field �B(Br, Bϕ, 0), (Ωr � c). The parallelity condition in the
corotating coordinate system writes �vp × �B = 0, or

vrBϕ − vϕBr = −ΩrBr. (6.3.124)

From Maxwell’s equation ∇ · �B = 0 we get d(r2Br)/dr = 0 via Eq. (B.37), or

r2Br = r2
0Br0 = const, (6.3.125)

where zero indexed values are taken at reference level r = r0 near the solar surface. Combining Eqs.
(6.3.123)-(6.3.125), the constant from Eq. (6.3.123) is found to be

r(vrBϕ − vϕBr) = −Ωr2Br = −Ωr2
0Br0. (6.3.126)

Returning to our inertial frame, the stationary ϕ-component of the equation of motion (2.1.1) takes
via Eqs. (B.38), (B.42) the form

� (D�v/Dt)ϕ = �[(�v · ∇)�v]ϕ = �(vr dvϕ/dr + vrvϕ/r) = (�vr/r) d(rvϕ)/dr

= (1/4π)[(∇× �H) × �B]ϕ = (1/4π)[(∇× �B) × �B]ϕ = (Br/4πr) d(rBϕ)/dr. (6.3.127)

The mass loss rate of the Sun dM/dt = 4π�r2 dr/dt = 4π�vrr
2 is constant under steady-state

conditions, and therefore the ratio

Br/4π�vr = r2Br/4π�vrr
2 = const, (6.3.128)

is constant too. This finding allows us to integrate the azimuthal component (6.3.127) immediately:

L = rvϕ − rBrBϕ/4π�vr = const. (6.3.129)
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The first term is just the mechanical angular momentum per unit mass carried away by advection of
the flow, and the second term represents the torque due to magnetic stresses (Lima et al. 2001). Their
sum L is just the total angular momentum per unit mass carried away from the Sun.

To make further progress, we introduce the radial Alfvénic Mach number MB , defined by

M2
B = v2

r/v2
B = 4πp�v2

r/B2
r = 4π�v2

r/B2
r , (p = 1). (6.3.130)

The Alfvén velocity vB is given by Eq. (3.10.254) or (5.11.127), with the magnetic permeability p = 1
and B = Br. We eliminate Bϕ between Eqs. (6.3.126) and (6.3.129):

r dϕ/dt = vϕ = Ωr(M2
BL/Ωr2 − 1)/(M2

B − 1). (6.3.131)

The critical (singular) point rc of this equation is given by the condition that numerator and denom-
inator both vanish simultaneously at this point, viz. if MB = 1, we require that also M2

BL/Ωr2
c − 1 = 0,

or

L = Ωr2
c . (6.3.132)

rc denotes the location of the so-called Alvén critical point. It is seen from Eqs. (6.3.128) and
(6.3.130) that M2

B/vrr
2 = 4π�vrr

2/B2
rr4 is a constant, which may be evaluated at the critical point

r = rc, vr = vrc, MB = 1 :

M2
B/vrr

2 = 1/vrcr
2
c or M2

B = vrr
2/vrcr

2
c = �c/�. (6.3.133)

With the aid of Eqs. (6.3.132), (6.3.133) the azimuthal velocity (6.3.131) becomes

vϕ = Ωr(vr/vrc − 1)/(M2
B − 1), (6.3.134)

and the azimuthal magnetic field (6.3.124) is

Bϕ = (ΩBrr/vrc)(1 − r2/r2
c )
/
(M2

B − 1). (6.3.135)

From Eq. (6.3.133) we may obtain an estimate of the solar Alvén critical point rc, expressed in terms
of quantities rE , vrE , vBE measured at Earth’s orbit:

MBE = v2
rE/v2

BE = vrE r2
E/vrc r2

c or rc = rE vBE/(vrE vrc)1/2. (6.3.136)

A lower limit to rc can be obtained by setting vrc = vrE :

rc > rE vBE/vrE ≈ 20 r�. (6.3.137)

Hence, in virtue of Eqs. (6.3.132), (6.3.137) the total angular momentum of the solar wind, i.e. the
angular momentum loss of the Sun can be evaluated as if there were solid body rotation up to a distance
of at least 20 solar radii. To calculate the total angular momentum carried away from the mass M by
the magnetized plasma of the wind, we assume that our evaluation (6.3.132) of the angular momentum
per unit mass in the equatorial region applies to the entire stellar surface. The value of L at colatitude
λ obtains if we replace rc in Eq. (6.3.132) by the distance �c = rc sinλ from the solar rotation axis:
L(λ) = Ωr2

c sin2 λ. With this value the total angular momentum loss of the mass M results by integration
over the critical Alfvén surface Sc = 4πr2

c :

dJ/dt = �cvrc

∫
Sc

L(λ) dSc = 2πΩ�cvrcr
4
c

∫ π

0

sin3 λ dλ = 8πΩ�cvrcr
4
c/3 = (2Ωr2

c/3) dM/dt,

(dSc = r2
c sinλ dλ dϕ; dM/dt = 4π�cvrcr

2
c = 4π�0vr0r

2
0). (6.3.138)

To determine the potential influence of solar wind plasma on the braking of solar rotation, we insert
Ω = J/kMr2 for the angular velocity from Eq. (5.12.185), where the dimensionless gyration factor
k = 2I/3Mr2 takes the value k = 0.4 for a constant density polytrope n = 0, and k = 0.0758 for a n = 3
polytrope (Eq. (6.1.179) and Table 6.1.2). Eq. (6.3.138) becomes for the Sun

dJ�/dt = (2J�r2
c/3kM�r2

�) dM�/dt = J�/τ, (6.3.139)
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where τ = (3kM�r2
�/2J�r2

c )
/
(dM�/dt) ≈ (3− 7)× 109 yr (Weber and Davis 1967, Brandt 1970). Thus,

during an interval comparable to the age of the Sun, the magnetic field would be able to slow down
substantially the solar rotation rate by the factor e, while a mass loss at the present rate produces a total
solar mass loss of only ≈ 10−4M�.

The loss of rotational kinetic energy from sufficiently rapidly rotating stars with strong magnetic fields
affects the energetics of the wind, increasing by magnetic acceleration the wind velocity in comparison
to the winds emanating from slowly rotating stars having weak field strength. The relevant magnetic
acceleration is determined from the radial component of the equation of motion (2.1.1) via Eqs. (B.38),
(B.42):

� (D�v/Dt)r = � [�v ×∇)�v]r = �(vr dvr/dr − v2
ϕ/r) = −dP/dr − GM�/r2

+(1/4π)[(∇× �B) × �B]r = −dP/dr − GM�/r2 − (Bϕ/4πr) d(rBϕ)/dr. (6.3.140)

The energy equation (6.3.142) can be most easily obtained by integrating Eq. (6.3.140). The radial
terms integrate at once with the polytropic law (6.3.3), analogously to Eq. (6.3.69). The azimuthal
quantities require some transformations. By virtue of Eqs. (6.3.124), (6.3.127) we have

v2
ϕ dr/r − (Bϕ/4π�r) d(rBϕ) = (vϕ/r)

[
− r dvϕ + (Br/4π�vr) d(rBϕ)

]
+(ΩrBr − vϕBr) d(rBϕ)/4π�rvr = −vϕ dvϕ + (ΩBr/4π�vr) d(rBϕ). (6.3.141)

The integration of the azimuthal terms in Eq. (6.3.141) is now immediate, since Br/4π�vr = const
via Eq. (6.3.128), and the integral of Eq. (6.3.140) finally becomes (Belcher and MacGregor 1976):

(v2
r + v2

ϕ)/2 + (n + 1)K�1/n − GM/r − ΩrBrBϕ/4π�vr = const, (n �= ±∞). (6.3.142)

The first term v2
r/2 is the kinetic energy per unit mass associated with radial motion, the second term

v2
ϕ/2 the rotational kinetic energy, the third term the enthalpy (3.8.82) H = (n+ 1)P/� = (n+ 1)K�1/n,

the fourth the potential gravitational energy, and the last term the magnetic energy term (r2 times the
radial component of the Poynting flux divided by the mass flux).

To determine vr∞ – the stellar wind velocity at infinity due to magnetic acceleration – we have to
evaluate the asymptotic behaviour of �v and �B. We assume – as in the nonmagnetic wind – that the radial
velocity vr approaches a constant value vr∞ [cf. Eq. (6.3.52)]. Then, we observe from Eq. (6.3.130)
that the radial Alfvénic Mach number is asymptotically proportional to r, since M2

B = 4π�v2
rr4/B2

rr4 ∝
r2, (r → ∞) via Eqs. (6.3.10), (6.3.125). From Eqs. (6.3.134), (6.3.135) results with this finding:
vϕ, Bϕ ∝ 1/r, since Br ∝ 1/r2. We are now in position to evaluate the asymptotic behaviour of the last
term in the energy equation (6.3.142):

−ΩrBrBϕ/4π�vr = (ΩrBr/vr)2
/
4π� = (Ω2r2

0B
2
r0

/
4π�0vr0)

/
vr = v3

M/vr = v3
M/vr∞,

(r → ∞; (r2Br)2/4π�vrr
2 = const; vM = [(Ωr0Br0)2/4π�0vr0]1/3 = const). (6.3.143)

At infinity the sole subsisting terms in the energy equation (6.3.142) are the first and the last one:

v2
r∞/2 + v3

M/vr∞ = const, (r → ∞; n �= ±∞). (6.3.144)

The topology of the hydromagnetic stellar wind can best be visualized from the ordinary differential
equation (6.3.148). We derive Eq. (6.3.123), and get a differential equation connecting d(rBϕ)/dr and
d(rvϕ)/dr :

Br d(rvϕ)/dr = vr d(rBϕ)/dr + rBϕ dvr/dr − rvϕ dBr/dr. (6.3.145)

Elimination of d(rvϕ)/dr between Eqs. (6.3.127) and (6.3.145) yields

d(rBϕ)/dr = −(2vrvϕBr + rvrBϕ dvr/dr)
/
(v2

r − B2
r/4π�), (dBr/dr = −2Br/r). (6.3.146)

The pressure term in Eq. (6.3.140) can be transformed as follows:

(1/�) dP/dr = (1 + 1/n)K�1/n−1 d�/dr = [(1 + 1/n)P/�2] d�/dr

= [(1 + 1/n)P/�][−(1/vr) dvr/dr − 2/r], (d ln(�vrr
2)/dr = 0). (6.3.147)
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The radial momentum equation (6.3.140) becomes with the two last equations after some algebraic
manipulations equal to

(r/vr) dvr/dr =
{[

2(1 + 1/n)P/� − GM/r + v2
ϕ

]
(v2

r − B2
r/4π�) + vrvϕBrBϕ/2π�

}
/{[

v2
r − (1 + 1/n)P/�

]
(v2

r − B2
r/4π�) − v2

rB2
ϕ/4π�

}
, (n �= 0,±∞). (6.3.148)

The topological study of this equation shows that it possesses three critical (singular) points. The
first critical point rs (the so-called slow point) is a saddle point and becomes in absence of magnetic fields
and rotation just equal to the sonic point (6.3.32) in Parker’s radial stellar wind theory. At this point
vr equals the radial phase speed of slow magnetoacoustic waves. The second critical point is the Alfvén
critical point rc from Eq. (6.3.132), a higher order singularity, where the radial velocity vr is just equal
to the radial Alvén velocity vB = Br/(4π�)1/2, (MB = 1). And at the third critical saddle point rf (the
so-called fast point) vr is equal to the radial phase speed of the fast magnetosonic waves. The relevant
magnetohydrodynamic wind solution is that which passes through all three critical points (Weber and
Davis 1967, Belcher and MacGregor 1976).

For small rotation rates and/or weak magnetic fields there is vM ≈ 0 in virtue of Eq. (6.3.143),
and vr∞ in Eq. (6.3.144) is nearly equal to the Parker (1963) value for the nonmagnetic radial flow
considered in Sec. 6.3.1. In contrast, the velocity at infinity departs markedly from the Parker value at
sufficiently high rotation rates and/or magnetic field strengths. Below, we determine the value of vM

in this so-called fast rotator case for future reference in connection with the blow-off of circumstellar
(protoplanetary) clouds by a T-Tauri like stellar wind (Sec. 6.3.4). The asymptotic value of Bϕ/(4π�)1/2

occurring in Eq. (6.3.148) turns out to approach a constant value:

Bϕ/(4π�)1/2 = −ΩrBr

/
vr(4π�)1/2 = −

[
Ωr0Br0/(4π�0vr0)1/2

]/
v1/2

r

= −v
3/2
M /v1/2

r = −v
3/2
M /v1/2

r∞ , (r → ∞), (6.3.149)

where we have used Eqs. (6.3.128), (6.3.143), together with the previously noted asymptotic form Bϕ =
−ΩrBr/vr of Eq. (6.3.124). From the asymptotic behaviour of the relevant quantities follows that
|Bϕ/(4π�)1/2|, vr 	 vϕ, GM/r, Br/(4π�)1/2, P/�, and Eq. (6.3.148) takes the asymptotic form

(r/vr) dvr/dr =
[
2(1 + 1/n)P/� − GM/r + v2

ϕ + vϕBrBϕ/2π�vr

]/
(v2

r − B2
ϕ/4π�), (r → ∞).

(6.3.150)

We apply this equation to the fast critical point rf , which for fast magnetic rotators is far outside the
critical Alfvén point rc, where vr = Br/(4π�)1/2, (MB = 1) via Eq. (6.3.130), (Belcher and MacGregor
1976). The vanishing of the denominator in Eq. (6.3.150) at r = rf requires according to Eq. (6.3.149)
that vr = −Bϕ/(4π�)1/2 = v

3/2
M /v

1/2
r∞ . Since rf is far outside the star, the radial wind velocity vr has

essentially reached its terminal value vr∞. Thus, vr ≈ vr∞ ≈ v
3/2
M /v

1/2
r∞ or vr∞ = vM . With this finding

the energy equation (6.3.144) takes for fast magnetic rotators the simple form

v2
r∞/2 + v3

M/vr∞ = 3v2
r∞/2 = 3v2

M/2 = const, (r → ∞; n �= ±∞), (6.3.151)

showing that at infinity two thirds of the energy flux is carried away by the electromagnetic field, and
only one third by the particle flux.

In her study of small-amplitude hydromagnetic waves Abraham-Shrauner (1973) has employed a
generalized bipolytropic law for the pressure components P‖ and P⊥, parallel and perpendicular to the
magnetic field lines:

P‖ = K‖�1+1/n‖Bm‖ ; P⊥ = K⊥�1+1/n⊥Bm⊥ , (K‖, n‖, m‖, K⊥, n⊥, m⊥ = const). (6.3.152)

Theoretical values of γ‖ = 1 + 1/n‖, γ⊥ = 1 + 1/n⊥ for collisionless plasmas have been obtained by
Belmont and Mazelle (1992); these values depend on wave mode and on the plasma population (cf. Lin
et al. (2001) for the Earth’s magnetosheath).
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6.3.4 Interaction of Polytropic Winds with Other Objects

Interactions of this kind involve complex magnetohydrodynamic processes, and the subsequent frag-
mentary presentation constitutes only a rough approach to real phenomena.

(i) Magnetized planets (Mercury, Earth, Jupiter, Saturn, Uranus, Neptune). Solar system bodies
are immersed in the magnetized solar wind. The interaction between solar wind and planetary magnetic
field introduces large scale currents that can almost confine the planetary magnetic field, forming a mag-
netosphere round the planet. The outer boundary of the magnetosphere – the magnetopause – separates
the planetary magnetic field from the solar wind. The size of the magnetosphere is determined by the
balance between solar wind energy and the planet’s magnetic energy. The magnetospheric boundary is
compressed on the side facing the solar wind and very elongated in the opposite direction, forming a
magnetic tail. The outer, unperturbed, planetary magnetic field – as well as that of pulsars and some
radio galaxies – can be approximated by a simple dipole field (3.10.25) of magnitude

H2 = B2 = B2
r + B2

λ = (a2
m/r6

p)(1 + 3 cos2 λm), ( �B = p �H; p = 1). (6.3.153)

rp is now the planetocentric distance, am the absolute value of the magnetic moment, and λm the
magnetic zenith angle (magnetic colatitude).

If a magnetized polytropic plasma wind (the solar wind) encounters other plasmas or magnetic fields,
there can develop at the interface more types of discontinuities than in ordinary fluids: Shocks, as well
as tangential, contact, and rotational discontinuities (e.g. Landau and Lifschitz 1974, Parks 1991). In
addition to the discontinuous fluid parameters of ordinary fluids (flow velocity �v, temperature T, density �,
and pressure tensor Pij), the set of discontinuous variables in plasmas includes also electric current density
�J, magnetic and electric fields �B and �E. The solar wind can be regarded as a collisionless, supersonic
superalfvénic plasma (MA, MB 	 1) producing a bow shock wave as it encounters the planet’s magnetic
field (Fig. 6.3.7). Some boundary conditions concerning the magnetic and electric field have already been
established in Eqs. (5.11.56), (5.11.58), namely the continuity of the normal component Bn = �B · �n of
the magnetic field, and of the tangential component Eτ = �E · �τ = | �E × �n| of the electric field. And these
conditions have to hold also across a stationary shock front, such as a bow wave in the solar wind:

Bn1 = �B1 · �n = �B2 · �n = Bn2 = Bn, (6.3.154)

Eτ1 = | �E1 × �n| = | �E2 × �n| = Eτ2 = Eτ . (6.3.155)

The subscripts 1 and 2 refer to the upstream and downstream side of the shock. It is always sufficient
to consider plane shocks. Eq. (6.3.155) can be transformed into a more transparent form involving the
magnetic field and the flow velocity, starting with Eq. (3.10.12), which takes for an ideal magnetohydro-
dynamic fluid (infinite conductivity σ) the simple form

�E = −(�v × �B)/c = ( �B × �v)/c, (6.3.156)

where �E is the electric field measured in the laboratory frame, and �v the bulk velocity with respect to
this frame. The vectorial product �E × �n takes the form

�E × �n = −�n × �E = (1/c)[�n × (�v × �B)] = (1/c)
[
( �B · �n)�v − (�v · �n) �B

]
, (6.3.157)

by using the vectorial identity �a × (�b × �c) = (�a · �c)�b − (�a · �b)�c. We decompose �E, �B, and �v into their
normal and tangential components with respect to the shock front, and the sole surviving component of
Eq. (6.3.157) is Eτ = (1/c)(Bnvτ − vnBτ ). The continuity condition (6.3.155) on both sides of the shock
turns into

Bn(vτ1 − vτ2) = vn1Bτ1 − vn2Bτ2, (Bn = Bn1 = Bn2). (6.3.158)

Three other boundary conditions result – similarly to the Rankine-Hugoniot relations in ordinary fluids
– from conservation of mass, momentum, and energy, as the magnetized fluid crosses the interface. The
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Fig. 6.3.7 Schematic figure illustrating the different types of boundaries created by the solar wind interacting
with a magnetic planet, a nonmagnetic planet with atmosphere, and an atmosphereless nonmagnetic object,
respectively (Parks 1991).

continuity equation (5.2.1) becomes in our stationary case ∇ · (��v) = 0. Proceeding as in Eq. (5.11.55),
the integration over the small volume Vε of a surface shell element Sε yields

∫
Ve

∇ · (��v) dV =
∫

Sε

�(�v · �n) dS = �2vn2 − �1vn1 = 0. (6.3.159)

In fact, this conservation of vertical mass flow across the boundary could have been written down
quite intuitively. The momentum equation (2.1.1) can be transformed into a more suitable form, by
observing that its left-hand side becomes with summation over repeated indices equal to

� Dvi/Dt = � ∂vi/∂t + �(�v · ∇)vi = ∂(�vi)/∂t − vi ∂�/∂t + �(�v · ∇)vi

= ∂(�vi)/∂t + vi [∇ · (��v)] + �(�v · ∇)vi = ∂(�vi)/∂t + ∂(�vivk)/∂xk,

(�v = �v(v1, v2, v3); i, k = 1, 2, 3). (6.3.160)

We transform the magnetic term according to Eqs. (2.6.52), (2.6.54), so that Eq. (2.1.1) turns into
(e.g. Landau and Lifshitz 1959, 1974)

∂(�vi)/∂t = ∂
[
− �vivk − δikP + (1/4πp)(BiBk − δikB2/2)

]/
∂xk + � ∂Φ/∂xi

= ∂Πik/∂xk + � ∂Φ/∂xi, ( �B = �B(B1, B2, B3); �H = �B/p), (6.3.161)

where δik means the Kronecker delta. Ignoring the influence of gravitation in the thin shock front, we
conclude that under steady-state conditions (∂ /∂t = 0) the divergence ∂Πik/∂xk of the momentum flux
tensor Πik vanishes. This implies – just as outlined in Eq. (6.3.159) – that its normal components Πikni

are continuous across the shock front. This reads in concise vectorial form as (e.g. Parks 1991)

�1(�v1 · �n)�v1 + P1 · �n + (1/4πp)[B2
1�n/2 − ( �B1 · �n) �B1]

= �2(�v2 · �n)�v2 + P2 · �n + (1/4πp)[B2
2�n/2 − ( �B2 · �n) �B2]. (6.3.162)

If velocity and magnetic induction are decomposed into their normal and tangent components, this
equation splits into two scalar equations after scalar multiplication with �n and �τ , respectively:

�1v
2
n1 + P1 + B2

τ1/8πp = �2v
2
n2 + P2 + B2

τ2/8πp, (Bn = Bn1 = Bn2; B2 = B2
n + B2

τ ),
(6.3.163)

�1vn1vτ1 − BnBτ1/4πp = �2vn2vτ2 − BnBτ2/4πp. (6.3.164)



630 6.3 Polytropic Winds

Another boundary requirement is derived from the magnetohydrodynamic energy equation, which can
be most easily obtained by taking the scalar product between �v and the dissipationless Eq. (2.1.1):

��v · (D�v/Dt) = −�v · ∇P + �(�v · ∇Φ) + (1/4πp) �v · [(∇× �B) × �B]. (6.3.165)

The left-hand side can be written with the continuity equation (5.2.1) as follows:

��v · (D�v/Dt) = ��v · (∂�v/∂t) + ��v · [(�v · ∇)�v] = (�/2) ∂v2/∂t + (�/2)(�v · ∇v2)

= ∂(�v2/2)
/
∂t − (v2/2) ∂�/∂t + (�/2)(�v · ∇v2) = ∂(�v2/2)

/
∂t + (v2/2) ∇ · (��v) + (�/2)(�v · ∇v2)

= ∂(�v2/2)
/
∂t + ∇ · (�v2�v/2). (6.3.166)

The pressure term can be most easily transformed with the adiabatic equation (5.2.21) and the
continuity equation (5.2.2):

DP/Dt = ∂P/∂t + �v · ∇P = (Γ1P/�) D�/Dt = −Γ1P ∇ · �v or
�v · ∇P = [Γ1/(Γ1 − 1)] ∇ · (P�v) + [1/(Γ1 − 1)] ∂P/∂t. (6.3.167)

The gravity term becomes with the continuity equation (5.2.1) equal to

�(�v · ∇Φ) = ∇ · (�Φ�v) − Φ ∇ · (��v) = ∇ · (�Φ�v) + Φ ∂�/∂t = ∇ · (�Φ�v) + ∂(�Φ)/∂t,

(∂Φ/∂t = 0). (6.3.168)

To transform the magnetic term in Eq. (6.3.165) we observe that

�v · [(∇× �B) × �B] = −(∇× �B) · (�v × �B) = c(∇× �B) · �E = c(∇× �E) · �B + c ∇ · ( �B × �E)

= −(∂ �B/∂t) · �B −∇ · [ �B × (�v × �B)] = −(1/2) ∂B2/∂t −∇ · [ �B × (�v × �B)], (6.3.169)

where we have used the vectorial relationships �a · (�b×�c) = −�b · (�a×�c), ∇· (�a×�b) = (∇×�a) ·�b− (∇×�b) ·�a,

as well as Eq. (6.3.156), and the Maxwell equation (3.10.1): ∇× �E = −(1/c) ∂ �B/∂t. The final form of
the adiabatic energy equation is obtained by inserting Eqs. (6.3.166)-(6.3.169) into Eq. (6.3.165), (see
Landau and Lifschitz (1974, §51) for a more complete form including thermal conduction, viscosity, and
a finite electric conductivity σ) :

∂
[
�v2/2 + P/(Γ1 − 1) − �Φ + B2/8πp

]/
∂t

+∇ ·
[
�v2�v/2 + Γ1P�v/(Γ1 − 1) − �Φ�v + �B × (�v × �B)/4πp

]
= 0, (σ = ∞). (6.3.170)

Under steady-state conditions the partial time derivative vanishes, and the divergence term must be
zero. Therefore – by a quite analogous reasoning as effected in Eq. (6.3.159) – the normal component of
the stationary energy flux, i.e. the scalar product between the term in the bracket of Eq. (6.3.170) and
the normal vector �n must be conserved across the adiabatic shock front:

�vn

[
v2/2 + Γ1P/(Γ1 − 1)�

]
+
[
B2vn − (�v · �B)Bn

]
/4πp = const. (6.3.171)

The normal component of the magnetic term has been evaluated as in Eq. (6.3.157). The gravity
term has canceled out, because of the continuity of �vn and Φ across the boundary surface.

The set of boundary (discontinuity) conditions that holds between quantities on the two sides of
an adiabatic boundary (discontinuity) is then given by Eqs. (6.3.154), (6.3.155), (6.3.158), (6.3.159),
(6.3.163), (6.3.164), (6.3.171). A major simplification of the solar plasma flow round the magnetosphere
results, if ordinary gas dynamics is used instead of hydromagnetic theory. The magnetic field of the solar
wind is neglected, and the solar wind pressure acting on a point of the magnetopause is given by the
simple Newtonian formula

P = P0 cos2 ψ = k�v2 cos2 ψ = B2/8πp, (k = const). (6.3.172)

� and v denote the undisturbed mass density and velocity of the upstreaming solar wind, and ψ is the
angle between �v and the inner normal to the magnetopause – the boundary surface of the magnetosphere.
The so-called stagnation pressure P0 = k�v2 is the solar wind pressure exerted on the nose of the



6.3.4 Interaction of Polytropic Winds with Other Objects 631

magnetopause, where ψ = 0, and the downstreaming flow velocity vanishes. Like in the Chapman-
Ferraro theory, the incident solar wind plasma is assumed free of magnetic field, and the magnetosphere
free of plasma. Eq. (6.3.172) represents just the force balance between the Newtonian hydrodynamic
pressure P of the solar wind and the hydrostatic magnetic pressure B2/8πp = H2/8π of the planetary
magnetic field at the magnetopause. The constant k equals 2 in the case of elastic (specular) reflection
of solar wind particles on the magnetospheric boundary, and is unity if inelastic reflections are assumed.
For, the total change of momentum of elastically reflected particles is 2m�v = 2�v cos ψ �v, where m =
�v cos ψ is the mass of particles striking the magnetopause per unit area per unit time. The change of
momentum in the normal direction to the magnetic obstacle – the solar wind pressure – is then just equal
to P = 2�v cos ψ (�v · �n) = 2�v2 cos2 ψ, showing that indeed k = 2 for elastic reflections (Parks 1991,
§8.3.1). For completely inelastic collisions with the magnetopause the total momentum change is only
�v cos ψ �v, showing that in this case k = 1. A more sophisticated evaluation of the stagnation pressure
P0 is obtained from the hydrodynamics of a supersonic stream striking the nose of a blunt obstacle (e.g.
Landau and Lifshitz 1959, §114). Let us denote by MA the Mach number (6.3.2) of the upstreaming solar
wind. The jump between the pressure P of the upstreaming solar wind and the downstream pressure P2

behind the normal shock along the stagnation stream line ψ = 0 is given by

P2 = P (2γM2
A + 1 − γ)

/
(γ + 1), (MA = v/a > 1; γ = cP /cV ), (6.3.173)

while the corresponding velocity and density jumps are

v2 = v[2 + (γ − 1)M2
A]
/
(γ + 1)M2

A = a[2 + (γ − 1)M2
A]
/
(γ + 1)MA, (6.3.174)

�2 = �(γ + 1)M2
A

/
[2 + (γ − 1)M2

A]. (6.3.175)

The ratio between the pressure P2 just behind the normal shock and the stagnation pressure P0 is
derived with P2/P0 = (�2/�0)γ from the Bernoulli equation v2

2/2 + γP2/(γ − 1)�2 = γP0/(γ − 1)�0 [cf.
Eq. (6.3.69) if n = 1/(γ − 1)] along the stagnation streamline behind the shock, where the flow velocity
vanishes in the stagnation point at pressure P0:

P0 = �2(P0/P2)1/γ [P2/�2 + (γ − 1)v2
2/2γ] = P2[1 + (γ − 1)v2

2/2a2
2]

γ/(γ−1). (6.3.176)

The adiabatic sound velocity just behind the shock has been denoted by a2 = (γP2/�2)1/2. We now
insert Eqs. (6.3.173), (6.3.174) into Eq. (6.3.176), to obtain after some algebra the well known formula

P0 = PM2
A[(γ + 1)/2](γ+1)/(γ−1)

/[
γ − (γ − 1)/2M2

A

]1/(γ−1)

= �v2[(γ + 1)/2](γ+1)/(γ−1)
/
γ
[
γ − (γ − 1)/2M2

A

]1/(γ−1) = k�v2. (6.3.177)

The ratio of adiabatic sound velocities is evaluated according to a2/a2
2 = P�2/P2�. Observing that in

the present application MA 	 1, we get from Eq. (6.3.177)

k = [(γ + 1)/2](γ+1)/(γ−1)
/
γγ/(γ−1), (MA 	 1), (6.3.178)

showing that k is indeed of order unity: k = 0.844 and 0.881 if γ = 2 and 5/3, respectively (Spreiter et
al. 1966).

For the magnetized anisotropic plasma in the Earth’s bow shock region Pudovkin et al. (1997)
estimate the effective polytropic index to be n = 1.1 − 2.5, (γ = 1 + 1/n = 1.4. − 1.9), while n may be
negative in the magnetopause region.

It should be noted that during an adiabatic shock the entropy S increases, because the processes
occurring in the shock front are irreversible (e.g. Sec. 1.1, Landau and Lifshitz 1959, §82). The ultimate
cause of entropy increase are the dissipative processes occurring in the very thin layers, which actual
shock fronts are. The amount of dissipation is entirely determined by the conservation laws of mass,
momentum, and energy. However, the flow ahead and behind the shock front can be considered isentropic,
with different, but constant entropies S1 and S2 on each side of the shock front.

The planetary magnetosphere thus acts as a real obstacle to the supersonic solar wind. However, the
size and shape of the magnetopause are not known a priori, but must be determined as part of the gas
dynamic solution. The solar wind modifies the outer parts of the planetary field by compression. For
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the Earth, available calculations indicate a compression of the planetary magnetic field B by a factor of
about 2 on the sunward side. If the dipole field (6.3.153) – increased by the factor 22 – is inserted into
Eq. (6.3.172), we obtain an approximate estimate for the distance of the nose of the magnetosphere from
the centre of the magnetic planet (the stagnation distance):

rp0 = [a2
m(1 + 3 cos2 λm0)

/
2πk�v2]1/6, (ψ = 0; p = 1). (6.3.179)

λm0 denotes the magnetic zenith angle of the stagnation point. Typically rp0 is about 10 Earth
radii, while the bow shock is formed at about 14 Earth radii (stand-off distance) if ψ = 0 (e.g. Brandt
1970, Parks 1991). The region between bow shock and magnetopause is called the magnetosheath, and
consists of shocked solar wind plasma and disordered interplanetary magnetic field, which generally do
not penetrate into the planetary magnetosphere. A rough shape of the magnetopause can be obtained
from Eq. (6.3.172):

cos2 ψ = B2/8πk�v2 = a2
m(1 + 3 cos2 λm)

/
2πk�v2r6

p = R, (6.3.180)

allowing for a compression factor of 4 for the magnetic field B2 from Eq. (6.3.153). We denote by α the
latitude of a point on the magnetopause in a frame of polar (rp, α)-coordinates with the origin in the
planet’s centre: α = 0 if ψ = 0. The plane rectangular coordinates of a point on the magnetopause are
x = rp cos α, y = rp sinα. Since cos2 ψ = dy2/(dx2 + dy2) = (sin α drp + rp cos α dα)2/(dr2

p + r2
p dα2),

we obtain from Eq. (6.3.180) an ordinary differential equation for the numerical determination of the
magnetospheric boundary (Spreiter et al. 1970b):

(1/rp) drp/dα = [sin 2α ± 2(R − R2)1/2]
/
2(R − sin2 α). (6.3.181)

The proper choice of the sign in Eq. (6.3.181) is dictated by the consideration that as α increases
from 0 to π, the planetocentric distance of the magnetopause rp increases from rp0 to ∞, and hence R
together with cos2 ψ diminishes from 1 to 0, neglecting the comparatively small variation of cos2 λm in
Eq. (6.3.180). Thus, the denominator of Eq. (6.3.181) has to vanish at least for one critical value αcr,
and drp/dα would become infinite unless the numerator vanishes simultaneously. This yields the two
simple equations

sin 2αcr ± 2(Rcr − R2
cr)

1/2 = 0; sin2 αcr = Rcr, (6.3.182)

or

sin 2αcr ± 2(sin2 αcr − sin4 αcr)1/2 = sin 2αcr ± | sin 2αcr| = 0, (6.3.183)

showing that the minus sign has to be taken in Eq. (6.3.181), as long as 0 ≤ αcr ≤ π/2.
All these simple relationships are essentially confirmed by more recent evaluations (e.g. Petrinec and

Russel 1997).
The dynamical properties of solar wind flow past a magnetosphere are thus represented by the nu-

merical solution of the stationary magnetohydrodynamic equations of a dissipationless perfect plasma
[Eqs. (6.3.156), (6.3.161), (6.3.170)] together with the Maxwell equations ∇ · �B = 0, ∇ × �E = 0, and
the adiabatic equation of state P = K�γ = K�1+1/n. These equations have to be supplemented by the
boundary conditions on both sides of the bow shock wave [Eqs. (6.3.154), (6.3.155), (6.3.158), (6.3.159),
(6.3.163), (6.3.164), (6.3.171)].

(ii) Nonmagnetic (weakly magnetized) planets (Venus, Mars, and comets possessing an at-
mosphere). In this case there is no magnetosphere shielding the planetary (cometary) ionosphere from
direct interaction with the solar wind. Since the solar wind with its frozen-in interplanetary magnetic
field cannot penetrate another plasma, the solar wind is deflected round the ionosphere, preventing its
penetration to lower levels in the atmosphere, where collision effects are dominant, or to the surface,
where it would be absorbed as in the case of the Moon.

The pressure in the planetary ionosphere can be calculated approximately from the isothermal hydro-
static equation dPp/drp = (RTp/µ) d�p/drp = −GMp�p/r2

p, integrated over a massless ionosphere:

Pp = R�pTp/µ = Pp0 exp
[
(GMpµ/RTp)(1/rp − 1/rp0)

]
, (Tp = const). (6.3.184)

Mp is the planetary mass, and Pp0 the stagnation pressure at the nose of the ionopause (the ionosphere
boundary), located at stagnation distance rp0 from the planet’s centre. A rough shape of the ionopause is
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obtained from Eq. (6.3.172), where the magnetostatic pressure is replaced by the gas pressure (6.3.184),
and P0 = Pp0, (cos ψ = 1 if rp = rp0), (Spreiter et al. 1970b):

cos2 ψ = exp
[
(GMpµ/RTp)(1/rp − 1/rp0)

]
= R. (6.3.185)

Eqs. (6.3.180) and (6.3.185) permit the rough calculation of the similar shapes of the magnetopause
and ionopause, although the cavity carved into the solar wind is very different for the two applications,
the stagnation distances rp0 being about 10 Earth radii for the Earth’s magnetosphere, but only a few
percent greater than the planetary radius for Venus or Mars, exceeding on the other side the cometary
radius by many orders of magnitude (e.g. Biermann et al. 1967).

(iii) Nonmagnetic objects without atmosphere (most planetary satellites, asteroids). This topic
has no relevance to polytropes and is mentioned merely for completeness. These objects act much like
a dielectric obstacle (σ = 0) placed in the conducting solar wind. When the solar wind particles impact
the surface of the Moon, they are neutralized and absorbed. A cavity and a wake are formed behind the
Moon, but no bow shock wave or magnetosheath layer of thermalized shocks (Spreiter et al. 1970a). The
interplanetary magnetic field is continuous from the solar wind into the Moon and into the lunar cavity,
within which no particles and electric currents are flowing (Fig. 6.3.7).

(iv) Interstellar medium. Consider a solar wind with a mean supersonic velocity of 300-400 km/s
and a mean number density of ndE = 10−20 atoms/cm3 at the Earth’s orbit. In virtue of the solar wind
model described by the first equation (6.3.52), the velocity v ∝ ψ1/2 assumes a nearly constant value at
large distances from the Sun (λ → 0). The mass conservation equation (6.3.10) yields

� = �E(rE/r)2; nd = ndE(rE/r)2, (6.3.186)

where E-indexed quantities denote values at the orbit of the Earth. The solar (stellar) wind continues
its supersonic flow outward, until its pressure decreases to the level of the pressure Pi of the interstellar
medium. A rough estimate of the stagnation pressure P0 can be obtained from Eq. (6.3.172) for vertical
incidence ψ = 0, if we replace the magnetic pressure by the pressure Pi of the interstellar medium:

P0 = k�v2 = Pi. (6.3.187)

At a certain distance rs (stand-off distance, shock radius) the solar wind is shocked, as it “feels” the
pressure of interstellar gases and magnetic fields. We insert � from Eq. (6.3.186) into Eq. (6.3.187),
getting a rough estimate of the stagnation distance r0 with respect to the Sun, where post-shocked solar
wind comes to rest:

r = r0 ≈ rEv(k�E/Pi)1/2, (k ≈ 1). (6.3.188)

A more refined expression of r0 can be obtained in a similar way as effected in Eqs. (6.3.173)-(6.3.178).
For the large Mach numbers involved, the Rankine-Hugoniot relations (6.3.173)-(6.3.175) reduce for the
normal stationary shock between solar wind and interstellar medium to

P2 = P (2γv2/a2 + 1 − γ)/(γ + 1) ≈ 2�v2/(γ + 1); v2 ≈ v(γ − 1)/(γ + 1);

�2 ≈ �(γ + 1)/(γ − 1), (M2
A = v2/a2 = �v2/γP 	 1). (6.3.189)

Unindexed symbols denote quantities in the quiet solar wind ahead the shock, while post-shock values
are indexed with 2. Although Fahr (1980) takes another view, it will be assumed that the difference
between stand-off distance rs (location of the shock wave) and stagnation distance r0 (where the velocity
of shocked solar wind becomes zero) is small as compared to rs (Parker 1963, Talbot and Newman 1977).
Therefore, the variation of solar gravity along the distance r0 − rs will be negligible, and the Bernoulli
equation between stand-off and stagnation distance assumes the simple form

v2
2/2 + (n + 1)K�

1/n
2 = v2

2/2 + (n + 1)Kn/(n+1)P
1/(n+1)
2 = (n + 1)Kn/(n+1)P

1/(n+1)
0 , (6.3.190)

where the velocity at the stagnation point is zero, and n, (n �= −1,±∞) denotes the polytropic index of
post-shocked solar wind. From Eq. (6.3.189) we get

v2
2 = (γ − 1)2v2/(γ + 1)2 = (γ − 1)2P2/2�(γ + 1) = (γ − 1)P2/2�2

= (γ − 1)Kn/(n+1)P
1/(n+1)
2

/
2, (6.3.191)
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Fig. 6.3.8 Squared Mach number M2
A versus nondimensional distance ζ in units of the distance of the

sonic point A from the central mass M. The flow is assumed adiabatic with n = 3, (γ = 1 + 1/n = 4/3). The
curve connecting the points OABCD is the complete solution of a stellar wind expanding into the interstellar
medium with pressure ratio Pi/P∗ = 0.0561, where Pi is the pressure in the interstellar medium and P∗ the
surface pressure of the star. The contour DAB′C′O is the complete solution of an accretion flow (see Sec. 6.4.2),
having P0/P∗(r0/r∗)4 = 0.1797, where r∗ is the stellar radius, and zero indexed quantities denote pressure and
distance at the reference level. The shocks of the two flows – depicted by the thicker streamlines – occur from B
to C, and from B′ to C′, respectively (Holzer and Axford 1970).

and Eq. (6.3.190) becomes

P2 = P0[1 + (γ − 1)/4(n + 1)]−(n+1), (P0 = Pi; MA 	 1). (6.3.192)

We eliminate P2 between Eqs. (6.3.189) and (6.3.192): P0 = Pi = [2�v2/(γ+1)][1+(γ−1)/4(n+1)]n+1.
The stagnation distance of the solar wind is obtained after insertion of � = �Er2

E/r2
0 via Eq. (6.3.186):

r2
0 =

[
2�Er2

Ev2/Pi(γ + 1)
][

1 + (γ − 1)/4(n + 1)
]n+1 ≈ r2

s , (MA 	 1). (6.3.193)

Comparison of this result with the approximate equation (6.3.188) if γ = 1 + 1/n = 5/3, for instance,
shows indeed that k =

[
2/(γ + 1)

][
1 + (γ − 1)/4(n + 1)

]n+1 = 0.88 ≈ 1. The interstellar pressure Pi is
composed of the hydrostatic pressure of the interstellar gas, the hydrostatic pressure of the cosmic ray
gas, and the pressure of the interstellar magnetic field, having a rough average value of pH2/24π [cf. Eq.
(2.6.82)]. If nd = 1 atom/cm3 and T = 100 K, the gas pressure is only about 1.4×10−14 dyne/cm2

. Both,
the cosmic ray pressure and the interstellar magnetic pressure are of order (1 − 4) × 10−12 dyne/cm2

,
assuming for the interstellar magnetic induction a conventional figure of about B = 10−5 Gauss, with the
magnetic pressure ranging between the hydrostatic pressure pH2/8π and the mean pressure pH2/24π.
Only a fraction of the cosmic ray pressure acts on the solar wind, since a portion of this pressure penetrates
through the inner solar system. Thus, the estimate for Pi is in the range (1− 4)× 10−12 dyne/cm2

. With
the previously mentioned values ndE = 10 cm−3 and v = 300 km/s the equation (6.3.188) or (6.3.193)
yields r0 ≈ rs = 60− 120 astronomical units – somewhere beyond the orbit of Pluto (Parker 1963, Chap.
IX). The curve through the points OABCD in Fig. 6.3.8 is the complete solution of a stellar wind
expanding from the stellar surface O through the sonic point A, (ζ, MA = 1) to the shock front with the
interstellar medium at B, where the Mach number jumps down to point C, decreasing further through
point D at ζ ≈ 3.

The Sun (as many other stars) is expected to have encountered during its lifetime about 150 interstellar
clouds, spending about 3 × 107 yr within these clouds. In most cases the encounter velocities (typically
vi ≈ 20 km/s) will be much larger than the sound speed within the cloud (typically a ≤ 1 km/s for cloud
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Fig. 6.3.9 Schematic impact configuration between the supersonic solar wind and the gas of an interstellar
cloud encountering the Sun at supersonic speed vi. The inner closed contour is the shock front of the solar wind
(inner heliospheric shock), while the broken line represents the bowshock of the interstellar gas (outer heliospheric
shock). The region between inner heliospheric shock and heliopause contains mainly subsonic solar wind flow, the
region between heliopause and outer heliospheric shock mainly subsonic interstellar gases (Fahr 1980).

temperatures lower than 100 K), (Talbot and Newman 1977). Therefore, we are faced with the impact of
two supersonic gas streams, as depicted schematically in Fig. 6.3.9. In the common stagnation point r0

on the stagnation line of the two flows, the stagnation pressure P0 of the solar wind equals the stagnation
pressure P0i of interstellar gas flow. We insert into Eq. (6.3.192) for P2 via Eq. (6.3.189):

P0 =
[
2�v2/(γ + 1)

][
1 + (γ − 1)/4(n + 1)

]n+1 = k�v2, (MA 	 1). (6.3.194)

If n = 1/(γ − 1), the constant k is identical to Eq. (6.3.178). Equating the stagnation pressure of the
post-shocked solar wind and of the post-shocked interstellar gas, we get

P0 = k�v2 = P0i = ki�iv
2
i . (6.3.195)

The adiabatic exponent and polytropic index of solar wind and interstellar gas may be assumed nearly
equal, and in this case Eq. (6.3.195) simplifies to (Parker 1963, Talbot and Newman 1977)

�v2 = �iv
2
i . (6.3.196)

If we insert for the solar wind density � = �Er2
E/r2

0 via Eq. (6.3.186), we obtain the stagnation
distance of the solar wind (smallest extension of heliopause):

r = r0 = (rEv/vi)(�E/�i)1/2. (6.3.197)

Talbot and Newman (1977) maintain that for interstellar densities �i larger than a certain value, the
pressure Pi of the interstellar gas overwhelms the dynamic pressure k�v2 of the solar wind; no pressure
equilibrium would establish between the two flows, and unhalted accretion of interstellar matter by the
Sun would occur. This idea seem untenable for realistic interstellar densities �i � 10−18 g cm−3 (e.g.
Fahr 1980).

(v) Protoplanetary (circumstellar) cloud. Circumstellar clouds (disks) occur around a variety
of stellar objects (e.g. Bjorkman 1997, and Sec. 6.4.3 for accretion disks). Early in the history of the
solar system, the Sun – like other stars – may have gone through a T-Tauri like phase with an intense
solar wind. Such a wind could have blown away the gas of a protoplanetary (circumstellar) cloud within
which the early Sun and other stars were embedded. Magnetic acceleration associated with magnetic
fields [Eqs. (6.3.144), (6.3.151)] could blow off considerably more mass than allowed by thermal processes
alone.
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Let us first derive the relevant equations of steady expansion or accretion flows possessing additional
sources or sinks of mass, distributed in an arbitrary manner. The mass flow per unit time along the
exterior normal of a surface element dS is �(�v · �n) dS, where �v · �n is the fluid velocity along the exterior
normal of dS. By the Gauss divergence theorem (5.11.55) we have∫

S

�(�v · �n) dS =
∫

V

∇ · (��v) dV. (6.3.198)

Next, the variation per unit time of fluid mass inside volume V is given by the integral

∂

[ ∫
V

� dV

]/
∂t =

∫
V

(∂�/∂t) dV. (6.3.199)

If there exist additional mass sources or sinks connected with volume V , the mass variation (6.3.199)
is just the difference between the mass accretion/loss rate dm/dt of volume V and the mass flow (6.3.198)
along the exterior normal:∫

V

(∂�/∂t) dV = dm/dt −
∫

V

∇ · (��v) dV. (6.3.200)

Diminishing the volume V up to the dimension of an arbitrary volume element dV, we obtain

A = (dm/dt)
/
dV = ∂�/∂t + ∇ · (��v), (6.3.201)

where A is the additional mass injection/loss rate per unit volume. For stationary conditions and spherical
symmetry we have via Eq. (B.37):

(1/r2) d(r2�v)/dr = A, [�v = �v(v, 0, 0); v = v(r)]. (6.3.202)

The equation of conservation of momentum takes for a variable mass flow the form [Horedt 1978b,
Eq. (13)]

D(m�v)/Dt = −∇P dV + m ∇Φ + �vA dm/dt = −∇P dV + (� dV ) ∇Φ + A�vA dV. (6.3.203)

dV is the volume occupied by the instantaneous mass element m. The pressure force acting on the
volume element dV is −∇P dV, while the gravitational force acting on the mass inside dV is m ∇Φ. The
last term is the momentum �vA dm/dt = A�vA dV of the newly accreted/lost mass dm/dt = A dV, having
velocity �vA in the considered inertial frame. Note, that in connection with variable mass flows we will
use the notation m = � dV for the relationship between mass, density, and volume, because the symbol
dm is reserved for the mass variation of the mass element m.

The momentum equation becomes after division by dV via Eqs. (6.3.160), (6.3.201) equal to

[D(m�v)/Dt]
/
dV = �v (dm/dt)

/
dV + (m/dV ) D�v/Dt = [∂�/∂t + ∇ · (��v)]�v + � ∂�v/∂t

+�(�v · ∇)�v = ∂(��v)/∂t + [∇ · (��v)]�v + �(�v · ∇)�v = −∇P + � ∇Φ + A�vA, (m = � dV ).
(6.3.204)

For spherical symmetry and stationary motion this reads

(v/r2) d(r2�v)/dr + �v dv/dr = (1/r2) d(r2�v2)/dr = −dP/dr − GM�/r2 + AvA. (6.3.205)

And finally, the energy equation of an adiabatic variable mass flow is obtained analogously to Eq.
(6.3.170) by scalar multiplication of the momentum equation (6.3.204) with �v. The left-hand side is
transformed via Eqs. (6.3.166) and (6.3.201):

�v · [D(m�v)/Dt]
/
dV = v2 (dm/dt)

/
dV + (m/dV ) �v · (D�v/Dt) = Av2 + ��v · (D�v/Dt)

= Av2 + ∂(�v2/2)
/
∂t − (v2/2) ∂�/∂t + (�/2)(�v · ∇v2) = Av2/2 + ∂(�v2/2)

/
∂t + (v2/2) ∇ · (��v)

+(�/2)(�v · ∇v2) = Av2/2 + ∂(�v2/2)
/
∂t + ∇ · (�v2�v/2). (6.3.206)

The right-hand side of Eq. (6.3.204) becomes by virtue of Eqs. (6.3.167), (6.3.168), (6.3.201) after
scalar multiplication with �v equal to

−�v · ∇P + �(�v · ∇Φ) + A�v · �vA = ∂
[
− P/(Γ1 − 1) + �Φ

]/
∂t + ∇ ·

[
− Γ1P�v/(Γ1 − 1) + �Φ�v

]
+A

[
Γ1P/(Γ1 − 1)� − Φ + �v · �vA

]
. (6.3.207)
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The final form of the adiabatic energy equation of a variable mass flow results after equating Eqs.
(6.3.206) and (6.3.207):

∂
[
�v2/2 + P/(Γ1 − 1) − �Φ

]/
∂t + ∇ ·

[
�v2�v/2 + Γ1P�v/(Γ1 − 1) − �Φ�v

]
+A

[
�v · (�v/2 − �vA) − Γ1P/(Γ1 − 1)� + Φ

]
= 0. (6.3.208)

For stationary motion and spherical symmetry this reads [Holzer and Axford 1970, Eq. (4.3)]:

(1/r2) d
{
�vr2

[
v2/2 + Γ1P/(Γ1 − 1)�

]}/
dr + GM�v/r2 + A

[
v2/2 − vvA − Γ1P/(Γ1 − 1)�

]
= 0,

(vA = vA(r); ∇ · (�vΦ) − AΦ = (1/r2) d(r2�vΦ)/dr − (Φ/r2) d(r2�v)/dr = �v dΦ/dr). (6.3.209)

In the case of constant mass flow (A ∝ d(�vr2) = 0) and Γ1 = 1 + 1/n this equation reduces to Eq.
(6.3.69). For stationary variable mass flows with radial and azimuthal velocities, and with magnetic fields
depending solely on radial distance r [as considered in Eqs. (6.3.118)-(6.3.151)], it is advisable to start
the derivation of the radial momentum equation (6.3.205) ex novo. We are interested in the blow-off of
a protoplanetary (circumstellar) cloud, initially at rest (�vA = 0) with respect to M. The right-hand side
of Eq. (6.3.140) remains unchanged, while the left-hand side writes via Eqs. (6.3.201), (B.42) as

[D(m�v)/Dt]r = vr dm/dt + m [(�v · ∇)�v]r = Avr dV + m(vr dvr/dr − v2
ϕ/r). (6.3.210)

Dividing by dV, the analogue of Eq. (6.3.140) in the case of stationary winds with variable mass is

�(vr dvr/dr − v2
ϕ/r) + Avr + dP/dr + GM�/r2 + (Bϕ/4πr) d(rBϕ)/dr = 0. (6.3.211)

Making use of Eq. (6.3.141), this equation can be integrated in the same way as Eq. (6.3.140):

(v2
r + v2

ϕ)/2 + (n + 1)K�1/n − GM/r − ΩrBrBϕ/4π�vr + v2
r lnm = const, (n �= ±∞),

(6.3.212)

where v2
r is a mean value of the squared radial velocity vr. If n = ±∞, the term (n + 1)K�1/n turns into

K ln �, while in the constant density case K�1/n should be replaced by P/�, (n = 0). The variable mass
term in Eq. (6.3.211) has been transformed according to

Avr dr/� = vr dm (dr/dt)
/
(� dV ) = v2

r dm/m, (vr = dr/dt; A = (dm/dt)
/
dV ; m = � dV ).

(6.3.213)

The gross details of the wind near the star are primarily determined by the thermal properties of
the stellar corona; the magnetic term becomes via Eqs. (6.3.129), (6.3.132) equal to −ΩrBrBϕ/4π�vr ≈
ΩL = Ω2r2

c , (vϕ ≈ 0) and plays no role in driving the near wind (Belcher and MacGregor 1976, p. 503).
Likewise, the squared azimuthal velocity of the wind near the stellar surface v2

ϕ ≈ Ω2r2
∗ is negligible. We

also have vr = vr∗ ≈ 0. The total mass m transported by the wind near the stellar surface is just equal
to the stellar mass loss rate dM/dt.

At infinity the azimuthal velocity vϕ goes to zero like 1/r, as already outlined subsequently to Eq.
(6.3.142). And finally, the magnetic term is v3

M/vr∞ = v2
r∞, [vM = vr∞ via Eqs. (6.3.143), (6.3.151)].

With these findings we are now able to write down Eq. (6.3.212) between the stellar radius r = r∗ and
the infinity point:

(n + 1)K�
1/n
∗ − GM/r∗ + v2

r ln
[
(dM/dt)

/
m∞

]
= 3v2

r∞/2, (n �= ±∞). (6.3.214)

The difference m∞ − dM/dt is just the mass that the stellar wind is able to pick up from the proto-
planetary (circumstellar) cloud. An elementary average of v2

r is obtained from

v2
r =

∫ vrc∞

0

v2
r dvr

/∫ vrc∞

0

dvr = v2
rc∞/3, (6.3.215)

where vrc∞ is the maximum velocity which a magnetic polytropic wind, transporting constant mass at
all distances, can attain. If dM/dt = m∞ = const, we get by virtue of Eq. (6.3.214)

(n + 1)K�
1/n
∗ − GM/r∗ = 3v2

rc∞/2, (n �= ±∞). (6.3.216)
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Inserting Eqs. (6.3.215), (6.3.216) into Eq. (6.3.214), we get

v2
r∞ = v2

rc∞
{
1 + (2/9) ln

[
(dM/dt)

/
m∞

]}
. (6.3.217)

Since v2
r∞ > 0, there results ln

[
m∞/(dM/dt)

]
< 9/2 or m∞ < 90 dM/dt, i.e. the magnetopolytropic

wind can accrete and transport to infinity from the protoplanetary (circumstellar) cloud an up to 90 times
larger mass than the original solar (stellar) mass loss rate dM/dt (Nerney 1980). If magnetic acceleration
is not important, i.e. in the case of so-called slow magnetic rotators (e.g. the present solar case), the
relevant equations (6.3.214), (6.3.216), (6.3.217) read for a thermally driven, mainly radial, polytropic
wind as (Horedt 1978b, 1982a)

(n + 1)K�
1/n
∗ − GM/r∗ + v2

r ln
[
(dM/dt)

/
m∞

]
= v2

r∞/2, (n �= ±∞), (6.3.218)

(n + 1)K�
1/n
∗ − GM/r∗ = v2

rc∞/2, (n �= ±∞), (6.3.219)

v2
r∞ = v2

rc∞
{
1 + (2/3) ln

[
(dM/dt)

/
m∞

]}
, (6.3.220)

i.e. such a wind could blow-off from the protoplanetary (circumstellar) cloud up to 4.5 times the original
solar (stellar) mass loss: ln

[
m∞

/
(dM/dt)

]
< 3/2 or m∞ < 4.5 dM/dt.

The solar (stellar) wind may not be able to efficiently peel off layers from the protoplanetary (cir-
cumstellar) nebula if shocks develop at the wind-nebula interface, possibly radiating away much of the
available wind energy. In this case the net result may be even an infall of nebular parts into the star,
when turbulence develops near the outflow at the wind-nebula interface (Nerney 1980, p. 732). The
stability against radial perturbations of spherically symmetric polytropic winds and accretion flows will
be touched at the end of Sec. 6.4.2.
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6.4 Polytropic Accretion Flows, Accretion Disks and Tori

6.4.1 Line Accretion of Polytropic Flows

At first sight this topic is just the reverse side of the previously discussed polytropic expansion winds.
But the origin of accretion flows and the reason for their occurrence are quite different. While expansion
flows mostly arise due to particular conditions in the external layers of astronomical objects, the gas
accretion onto stars, galaxies etc. takes place simply because of the gravitation of the central object onto
the surrounding medium (e.g. interstellar, intergalactic, intracluster medium). The net effect of accretion
flows is simply a mass increase of the central object, leaving aside secondary phenomena resulting from
mass infall, such as shock waves and subsequent dissipation of kinetic energy. Relevant astrophysical
applications of line accretion have already been mentioned at the beginning of Sec. 6.3.1.

The principal results obtained so far on supersonic Bondi-Hoyle-Lyttleton accretion theory have been
pregnantly summarized by Font and Ibáñez (1998). Within our context, the salient feature of numerical
2-D and 3-D simulations is the fact that they often agree qualitatively and sometimes even quantitatively
with the original oversimplified analytical theory (e.g. for the upstreaming flow ahead the bow or tail
shock, the downstreaming flow near the axis, the mass accretion rate, and the stagnation point distance).
Although Cowie (1977) and Soker (1990) have shown the linear accretion column to be unstable to linear
short-wavelength perturbations, some numerical simulations exhibit structures resembling the linear high-
density accretion column on the downstream axis of the axisymmetric flow – at least temporarily during
quiescent stages (e.g. Fig. 6.4.6, Ruffert and Arnett 1994, Ruffert 1996, Font and Ibáñez 1998). The
subsequent analytical approximations may serve therefore for more sophisticated numerical models as a
first approximation to the downstreaming flow near the axis. The theory is mainly pertinent to supersonic
flows, when the upstreaming Mach number at infinity is MA∞ 	 1. Generally, a bow shock develops
in front of the accretor or – for some large accretors – a tail shock with stand-off distance on the
downstreaming side. Moreover, as shown numerically by Koide et al. (1991), the analytic solution by
Bisnovatyi-Kogan et al. (1979) for collisionless ballistic particle orbits is an acceptable approximation to
hydrodynamic flow in front of the shock [cf. Eqs. (6.4.6)-(6.4.11)].

The accretion process is specified by a fairly small number of physical parameters: The central
accreting mass M, the relative velocity at infinity v∞ between M and accreting gases, the pressure and
density of the gas being connected at infinity by a polytropic (adiabatic) law P∞ = K�

1+1/n
∞ , (P∞ =

K�γ
∞).
An approximate specific length is given by the radius of influence rI , characterizing the domain of

influence of the central gravitating mass. It is defined as the distance where the potential energy of
the central mass is of the same order of magnitude as the gas energy at infinity. From the energy
equation (6.3.91) it is obvious that for an isentropic flow the gas energy per unit mass at infinity is in
absence of gravitation equal to the sum of kinetic energy v2

∞/2 and isentropic enthalpy (n + 1)P∞/�∞ =
[γ/(γ − 1)]P∞/�∞, (γ = 1 + 1/n). If n �≈ 0,∞, the enthalpy may be approximately replaced by the
squared sound velocity a2

∞ = γP∞/�∞ = (n + 1)P∞/n�∞ from Eq. (2.1.49), and consequently the gas
energy per unit mass at infinity is of the same order of magnitude as v2

∞ + a2
∞, (n �≈ 0,∞). On the

other side, allowing in Eq. (6.3.91) for the influence of radiation pressure in the optically thick case,
the effective potential energy per unit mass is βGM/r, (β = Pg/P ). Equating the values of these two
energies, we get up to the order of magnitude (Fahr 1980):

rI = r = βGM/(v2
∞ + a2

∞), (0 ≤ β ≤ 1). (6.4.1)

Introduction of the sound velocity a∞ has been prompted by the finding of Bondi (1952) that in the
pressure dominated case – when v∞ ≈ 0 – the sound velocity replaces the relative velocity at infinity
(Sec. 6.4.2).

If the mean free length of path is larger than the radius of influence (6.4.1), the particle trajectories and
the velocity distribution can be described in the single particle kinetic approximation with the Boltzmann
equation. This case however, is of no interest in the present context, since the net mass accretion rate is
small [cf. Eq. (6.4.5)]. We confine ourselves to the case when particle collisions are important near the
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accretion axis, i.e. if the mean free length of path Λm = 1/smnd is smaller than the radius of influence
(6.4.1), where sm ≈ 10−15 cm2 is a mean effective collision cross-section of gas particles, and nd their
number density (e.g. Chapman and Cowling 1970).

We will pursue the chronological progress made on the subject, and determine at first the mass
accretion rate under the crucial assumption that pressure gradients are neglected in the accreting flow.
An accretor (e.g. star, galaxy) travelling through diffuse matter must sweep up particles in and near its
track, and thereby accrete mass. As mentioned above, the accretion rates gained under the assumption
that there accrete only particles whose initial collisionless orbits actually intersect the accretor surface,
are discouragingly small (Eddington 1959, p. 391). The distance between �v∞ and the accretion axis – the
target distance at infinity σ – is connected for grazing collisions to the radius rs of an accretor through
conservation of angular momentum in the hyperbolic two-body problem, taking into account that the
relative velocity at infinity �v∞ between particle and accretor is perpendicular to σ, while at the grazing
point (equal to the accretor radius rs) the particle velocity (e.g. Stumpff 1959)

vs = (2GM/rs + v2
∞)1/2, (6.4.2)

is perpendicular to rs. Thus, conservation of angular momentum in the orbital (�r,�v)-plane between infinity
and the grazing point reads

σv∞ = rsvs. (6.4.3)

Elimination of vs between Eqs. (6.4.2) and (6.4.3) yields for the target distance at infinity

σ = rs(1 + 2GM/rsv
2
∞)1/2 ≈ (2GMrs)1/2

/
v∞, (v2

∞ � 2GM/rs). (6.4.4)

The amount of matter swept up per second (the mass accretion rate) is

dM/dt = πσ2�∞v∞ = πr2
s�∞v∞(1 + 2GM/rsv

2
∞) ≈ 2πGM�∞rs/v∞. (6.4.5)

This mass, colliding directly with the accretor, is generally negligibly small. To increase the mass
accretion rate Hoyle and Lyttleton (1939a, b) assume that some kind of mass condensation is formed in
the downstreaming flow. As before, the elements of gas are assumed to describe collisionless hyperbolic
paths, which all converge to intersect on a line parallel to �v∞ and passing through M – the so-called
accretion axis. Further, the motion is assumed to reach a steady state, all variables becoming independent
of time.

Fig. 6.4.1 Schematic view of line accretion as envisaged by Wolfson (1977). The heavy line centered on the
central mass M is the bow shock front of initially supersonic gases, the broken line representing the accretion axis
passing through M, parallel to the relative velocity at infinity �v∞. Three characteristic stream lines are shown,
the inner one being specific for accreting gases, the middle streamline is centered on the stagnation point ra0 of
the flow, and the outer one represents shocked gas leaving ultimately the mass M.

Particle collisions in the two opposing streams on both sides of the accretion axis in Fig. 6.4.1 will
destroy the angular momentum of particles about M, yielding in this way an effective target distance
much larger than σ from Eq. (6.4.4). If after collisions – occurring predominantly in the accretion
column round the accretion axis – the surviving radial velocity component is insufficient to enable the
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particles to escape, they will eventually be swept into the accreting mass M. Let us suppose that the
whole initial angular momentum σv∞ from Eq. (6.4.3) is lost by collisions in the neighborhood of the
accretion axis, i.e. in the accretion column. For the nearly one-dimensional flow in the thin accretion
column the relevant distance between a gas particle and the accretor mass M is measured along the
accretion axis, and denoted by r = ra. The accretion column is viewed as a thin semi-infinite flux tube
centered on the accretion axis, and having circular cross-section πs2 of radius s = s(ra), (s � ra). With
the very assumption that the effect of collisions on inflowing gases becomes appreciable only near the
accretion axis, we determine subsequently the mass accretion rate A per unit length of accretion column.
The collisionless, upstreaming hyperbolic motion of a gas element round M is given by the hyperbola (cf.
Eq. (6.1.152) and Stumpff 1959)

r = a(e2 − 1)/(1 + e cos ϕ). (6.4.6)

r is the radius vector with respect to M, the eccentricity is denoted by e, (e > 1), and ϕ is the true
anomaly of hyperbolic motion. The hyperbolic equivalent a = GM/v2

∞ of the semimajor axis in elliptic
motion results from the energy equation of two-body motion

v2 = GM(2/r + 1/a) = 2GM/r + v2
∞, (6.4.7)

if we let r → ∞ and v → v∞. At infinity we have via Eq. (6.4.6)

1 + e cos ϕ∞ = 0. (6.4.8)

At the point where the hyperbola intersects the accretion axis, the true anomaly has decreased just
by 180◦ : ϕa = ϕ∞ − π. Inserting this into Eq. (6.4.8), we get cosϕ∞ = cos(π + ϕa) = − cos ϕa = −1/e.
With this finding Eq. (6.4.6) yields the radial distance between M and the intersection point of the orbit
with the accretion axis:

ra = a(e2 − 1)/(1 + e cos ϕa) = a(e2 − 1)/2. (6.4.9)

The target distance σ can be expressed as a function of a and e, if we replace in Eqs. (6.4.2) and
(6.4.3) the accretor radius for grazing collisions rs by a general peridistance rp. From Eq. (6.4.6) we find:
rp = a(e − 1), (ϕ = 0). The velocity at peridistance rp is by virtue of Eq. (6.4.2) equal to

vp = (2GM/rp + v2
∞)1/2 = v∞[(e + 1)/(e − 1)]1/2, [a = rp/(e − 1) = GM/v2

∞]. (6.4.10)

We introduce this into Eq. (6.4.3):

σ = rpvp/v∞ = a(e2 − 1)1/2 = (2ara)1/2 = (2GMra/v2
∞)1/2. (6.4.11)

The mass flux at infinity between target distance σ and σ + dσ is

dmσ/dt = 2π�∞v∞σ dσ, (6.4.12)

where it is always assumed that v∞ is larger than the adiabatic sound velocity at infinity a∞ =
(γP∞/�∞)1/2. Otherwise, the appropriate equations are those derived in Sec. 6.4.2 for the case of
spherically symmetric accretion. Differentiating Eq. (6.4.11), we obtain dσ = (GM/2v2

∞ra)1/2 dra, and
Eq. (6.4.12) reads

dmσ/dt = 2π�∞v∞(GM dra/v2
∞) = 2πGM�∞ dra/v∞, (6.4.13)

showing the mass arriving on the accretion axis between the distances ra and ra + dra. Actually, Eq.
(6.4.13) represents the mass added to the accretion column over the volume πs2 dra. The mass accretion
rate per unit length of accretion column, viz. the mass accreted inside a volume of cross-section πs2 and
unit height is obtained from Eq. (6.4.13), (Bondi and Hoyle 1944):

A = (dmσ/dt)
/
dra = dm/dt = 2πGM�∞/v∞ = const. (6.4.14)

Let us denote by v = v(ra) the velocity of the mass m = m(ra) located in the accretion column within
the unit of length. The symbol m means just the linear density in the accretion column, i.e. the mass
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contained in the volume πs2, which is the volume of a circular cylinder with height equal to the unit of
length in the accretion column. And A = dm/dt is just the increase of linear density m per unit time.

The volume density � in the accretion column is connected to linear density m by

� = m/πs2, (6.4.15)

where πs2 denotes the cross-section of the accretion column, and s � ra.
To obtain the one-dimensional stationary mass conservation equation, we have to replace in Eq.

(6.3.201) the mass per unit volume � by the mass per unit length of accretion column m, and the
infinitesimal volume element dV by the infinitesimal change of length dra. The mass accretion rate per
unit volume (6.3.201) turns into the mass accretion rate per unit length of accretion column (6.4.14):

A = dm/dt = 2πGM�∞/v∞ = ∇ · (m�v) = d(mv)/dra, (∂m/∂t = 0). (6.4.16)

This integrates at once to

mv = Ara + const = A(ra − ra0), [v(ra0) = 0]. (6.4.17)

The integration constant has been determined under the very condition that the flow velocity in the
accretion column vanishes at some finite distance ra = ra0, being just the stagnation distance of the flow
with respect to the accretor M. The gas flows towards M, (v < 0) if ra < ra0. The motion is directed
outwards (v > 0) if ra > ra0.

The azimuthal velocities of newly accreting particles are dissipated by collisions near the accretion
axis, so the sole surviving velocity is the radial one, which turns out from the hyperbolic two-body
problem to be always constant and equal to v∞ (e.g. Stumpff 1959, p. 107):

vr = dra/dt = [GM/a(e2 − 1)]1/2e sinϕa = (GM/a)1/2 = v∞. (6.4.18)

We have inserted into Eq. (6.4.18) from the trigonometric identity sinϕa = (1 − cos2 ϕa)1/2 =
(e2 − 1)1/2

/
e, since cos ϕa = 1/e.

Let us denote by

f = πs2P, (6.4.19)

the cumulative linear pressure acting on the whole cross-section πs2 of the accretion column. For the
pressure P we use the polytropic law (6.3.3), which becomes via Eqs. (6.4.15), (6.4.19) in terms of linear
pressure f and linear density m equal to

P = f/πs2 = K�1+1/n = K(m/πs2)1+1/n or f = [K
/
(πs2)1/n] m1+1/n. (6.4.20)

We will restrict ourselves to polytropic indices inside the interval 0 < n ≤ ∞, which are the relevant
ones in the present context.

We adopt a self-consistent picture of pressure effects in line accretion, and determine the pressure
inside the accretion column from pressure equilibrium with the transverse pressure force exerted by the
particles striking the accretion column from abroad. In virtue of Eqs. (6.4.7), (6.4.18) the transversal
velocity vϕ of particles striking the accretion column from abroad at distance ra is equal to v2

ϕ = v2−v2
r =

v2 − v2
∞ = 2GM/ra. The mass striking the surface unit of the lateral surface of the accretion column per

unit time is A/2πs, where 2πs is just the outer surface per unit length of accretion column. And the
momentum of this newly impacting material [Bondi and Hoyle 1944, Eq. (7)]

Avϕ/2πs = (A/πs)(GM/2ra)1/2 = P = f/πs2, (6.4.21)

should be equal to the pressure force P in the accretion column, in order to assure stationary equilibrium.
From Eq. (6.4.21) we get for the cross-section radius of the accretion column

s = (A/πP )(GM/2ra)1/2 or s = (f/A)(2ra/GM)1/2. (6.4.22)

Inserting for s into Eq. (6.4.20), we get

f = Kn/(n+2)(A2GM/2π)1/(n+2)m(n+1)/(n+2)r−1/(n+2)
a . (6.4.23)



6.4.1 Line Accretion of Polytropic Flows 643

We now write down the one-dimensional form of the stationary equation of motion (6.3.204). Like
in Eq. (6.4.16), we have � → πs2� = m, dV → dra, and P → πs2P = f. Analogously to the pressure
force ∇P dV acting on the volume element dV, the linear pressure force exerted on the element of length
dra is ∇f dra. Thus, the pressure force ∇f acts on the unit of length dra = 1 in the accretion column,
and ∇P in Eq. (6.3.204) has to be replaced by ∇f = df/dra. According to Eq. (6.4.18) the velocity of
accreting matter is now constant �vA = �v∞, and the stationary form of Eq. (6.3.204) reads

[∇ · (m�v)]�v + m(�v · ∇)�v = v d(mv)/dra + mv dv/dra = d(mv2)/dra = Av + mv dv/dra

= −∇f + m ∇Φ + Av∞ = −df/dra − GMm/r2
a + Av∞, (� → m; P → f ; Φ = GM/ra).

(6.4.24)

Eqs. (6.4.16) and (6.4.24) of mass and momentum conservation, together with the equation of state
(6.4.23), are sufficient for the determination of the three unknowns of the flow, viz. velocity, density, and
pressure.

The Bernoulli equation of the variable mass flow is obtained by integration of Eq. (6.4.24):

v2/2 − GM/ra +
∫ ra

ra1

[A(v − v∞)/m + (1/m) df/dra] dra = const. (6.4.25)

This equation seems not suitable for further analytic evaluation, and reduces to the Bernoulli equation
for constant mass flows [cf. Eq. (6.3.7)]

v2/2 − GM/ra + (n + 1)f/m = v2/2 − GM/ra + (n + 1)P/� = const, (n �= ∞), (6.4.26)

only if A = 0, and s = const in Eq. (6.4.20): (1/m) df ∝ (1 + 1/n)m1/n−1 dm. The Bernoulli equation
(6.4.26) adopted by Wolfson (1977) and Yabushita (1978a, b, 1979) is pertinent merely for constant mass
flows A = 0.

Basically, we will confine ourselves to the analytic behaviour of accretion flows near the stagnation
point (ra = ra0, v = 0), and the infinity point ra∞ = ∞. The so-called cut-off distance rac (the linear
extension of the accretion column) is determined analytically from the pressure condition (6.4.21).

The dimensionless distance x, velocity y, density z, and pressure w are introduced by

x = (v2
∞/GM)ra; x0 = (v2

∞/GM)ra0; y = v/v∞; z = (v3
∞/AGM)m; w = (v∞/AGM)f.

(6.4.27)

Eqs. (6.4.17), (6.4.24), (6.4.23) become in dimensionless variables

yz = x − x0, (y = 0 if x = x0), (6.4.28)

yz dy/dx = 1 − y − z/x2 − dw/dx, (6.4.29)

w = C z(n+1)/(n+2)x−1/(n+2), (6.4.30)

C = Kn/(n+2)(A/2πGM)1/(n+2)v(1−2n)/(n+2)
∞ . (6.4.31)

Eliminating z and w from these equations, we get after some algebra the basic ordinary differential
equation

{y2 − [C(n + 1)/(n + 2)][y/x(x − x0)]1/(n+2)} dy/dx = y2(1 − y)/(x − x0) − y/x2

+[Cn/(n + 2)][y/x(x − x0)](n+3)/(n+2)[−(1 + 1/n)x + (x − x0)/n]. (6.4.32)

In the isothermal case, when P/� = f/m = K = RT/µ = const, the basic equation (6.4.32) reads

(y2 − C) dy/dx = y2(1 − y)/(x − x0) − y/x2 − Cy/(x − x0), (n = ∞). (6.4.33)

The second special case C = 0 reduces to the well known pressure-free Bondi-Hoyle equation:

y dy/dx = y(1 − y)/(x − x0) − 1/x2, (C = 0). (6.4.34)
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Fig. 6.4.2 Analytical and numerical values of the stagnation distance x0 as a function of the upstreaming
Mach number MA∞ in the unperturbed flow. The lines labeled 1 and 2 are given by Bondi and Hoyle (1944;
x0 = 1.25), and by Eq. (6.4.37), respectively (Horedt 2000b).

I. Behaviour near the Stagnation Point ra0.ra0.ra0.
(i) 0 < n ≤ ∞; C �= 0.0 < n ≤ ∞; C �= 0.0 < n ≤ ∞; C �= 0. Since by virtue of Eq. (6.4.28) we have y ≈ 0 in the vicinity of the stagnation

point x0, we assume the series expansion

y = b(x − x0) + c(x − x0)2, (x ≈ x0; b, c = const). (6.4.35)

Inserting into Eq. (6.4.32), we observe that the zeroth order terms vanish, the first order terms in
x− x0 serving for the determination of c. Thus, the stagnation distance x0 and the coefficient b, (b > 0)
remain undetermined, i.e. an infinity of solution curves pass through the stagnation point x0. Indeed, it
has been verified numerically that an infinitude of integral curves start from the stagnation point (x > x0)
with quite different slopes, often exhibiting curious loops and converging to the thick curves in Figs. 6.4.3
and 6.4.4.

(ii) C = 0.C = 0.C = 0. The approximate solution of Eq. (6.4.34) becomes with the expansion (6.4.35) equal to
(cf. Bondi and Hoyle 1944, p. 277)

y = [(x − x0)/x2
0][1 + (2/x0)(1/x0 − 1)(x − x0)], (x ≈ x0), (6.4.36)

where the stagnation distance x0 is undetermined. An infinitude of solution curves pass through the
stagnation point in this special case – all with the same slope dy/dx = 1/x2

0 (Lyttleton 1972). Even
the thick upper limiting curve in Fig. 6.4.5 starts with the slope 1/x2

0 = 0.25, (x0 = 2), but only up to
x − x0 ≈ 0.01, when the slope increases suddenly.

In the pressure-free case C = 0 the dimensionless stagnation distance x0 can be estimated by a heuristic
argument devised by Hoyle and Lyttleton (1939a, b). The radial velocity (6.4.18) of gas particles reaching
the accretion axis on collisionless hyperbolic paths is exactly v∞. The transversal velocities vϕ are assumed
to be annihilated by collisions in the accretion column, and if the remaining constant radial velocities v∞
of newly accreting gas particles are smaller than the escape velocity (2GM/ra)1/2 at distance ra from the
accretor, they all will eventually be accreted: v∞ ≤ (2GM/ra)1/2. In this ballistic picture the stagnation
distance ra0 is just equal to

ra0 = 2GM/v2
∞ or x0 = 2, (6.4.37)

this being the distance at which the radial velocity of newly accreting gas v∞ is just equal to the escape
velocity (2GM/ra0)1/2.

The precise knowledge of the stagnation point x0 does not seem crucially, as suggested by the general
aspect of the integral curves in Figs. 6.4.3-6.4.5: It may suffice to take x0 ≈ 2, (Eq. (6.4.37), Fig. 6.4.2).



6.4.1 Line Accretion of Polytropic Flows 645

The Mach number MA in the accretion column is given by

M2
A = v2/a2 = v2�/γP = v2m/γf = y2z/γw = (y2v2

∞�∞/γP∞)(�∞/�)1/n = y2M2
A∞(�∞/�)1/n,

[P = P∞(�/�∞)1+1/n], (6.4.38)

where MA∞ = v∞/a∞ = v∞(�∞/γP∞)1/2 denotes the upstreaming Mach number at infinity.
It will turn out that MA∞ can be expressed by the fundamental constant C of the problem. For the

ratio �/�∞ we get via Eqs. (6.4.14), (6.4.15), (6.4.22), (6.4.27):

� = m/πs2 = Az/2πv∞raw2 = �∞z/xw2 or �/�∞ = z/xw2. (6.4.39)

The Mach number (6.4.38) becomes with Eqs. (6.4.30), (6.4.39) equal to

M2
A = y2(�∞/�)1/nM2

A∞ = y2(xw2/z)1/nM2
A∞ = C2/ny2(xz)1/(n+2)M2

A∞. (6.4.40)

But Eq. (6.4.38) can also be written as

M2
A = y2z/γw = (1/γC)y2(xz)1/(n+2). (6.4.41)

Equating the last two equations we get the desired result

M2
A∞ = 1/γC(n+2)/n. (6.4.42)

If we put the condition that v is everywhere small (not only near the stagnation point x0), we can
neglect the left-hand side of Eq. (6.4.24). If further C = 0, (w, f = 0), the right-hand side yields
m = Av∞r2

a/GM, (v ≈ 0; f = 0), and we get from Eq. (6.4.17) Lyttleton’s [1972, Eq. (14)] slow
solution, valid outside the stagnation point ra0 in the pressure-free case:

v ≈ GM(ra − ra0)/v∞r2
a, (ra ≥ ra0; v ≈ 0; C = 0). (6.4.43)

The whole mass, reaching the accretion axis inside the stagnation point ra0 at constant rate A, will
be ultimately accreted. The mass accretion rate is therefore via Eqs. (6.4.14), (6.4.27) equal to [cf. Eq.
(6.4.86)]

dM/dt = Ara0 = 2πx0�∞G2M2/v3
∞. (6.4.44)

If MA∞ 	 1 and x0 ≈ 2, this equation agrees with some numerical simulations within a factor of
about 2 (e.g. Koide et al. 1991, Ruffert and Arnett 1994, Ruffert 1996), while in the relativistic case
numerically calculated values of dM/dt are sometimes more than an order of magnitude larger (Font
and Ibáñez 1998, Table 3). As the dM/dt-relationships are considerably more involved and much more
numerous (e.g. Hunt 1979, Shima et al. 1985, Koide et al. 1991, Ruffert 1994a, b, 1996, Foglizzo and
Ruffert 1997, Font and Ibáñez 1998), no attempt has been made to collect all of them together.

II. Cut-off Distance rac.rac.rac. The linear accretion column may not extend to infinity, but merely up
to the average interstellar distance. A more physical cut-off distance rac results from the condition that
the pressure Pc in the accretion column is just equal to the pressure P∞ in the unperturbed interstellar
medium (Yabushita 1978a, b):

Pc = K�1+1/n
c = P∞ = K�1+1/n

∞ or �c = �∞. (6.4.45)

The cut-off density �c equals the density �∞ in the unperturbed interstellar cloud: The accretion
column becomes nearly indistinguishable from the unperturbed cloud, excepting perhaps for velocity
differences. The cut-off distance rac is meaningful if it is much larger than the stagnation distance ra0,
because otherwise no appreciable outer branch of the accretion column could develop: xc 	 x0 ≈ 1.
Thus, Eqs. (6.4.17) and (6.4.28) read at the cut-off distance

mcvc ≈ Arac or yczc ≈ xc. (6.4.46)

Likewise, from Eq. (6.4.39) we get at the cut-off distance

�c/�∞ = zc/xcw
2
c = 1. (6.4.47)
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Fig. 6.4.3 Exterior (x > x0) and interior (x < x0) branch of Eq. (6.4.33) for a stagnation distance x0 = 3.53
and n = ∞, γ = 1 + 1/n = 1, MA∞ = 2.25, (C = 0.1975), (Horedt 2000b).

Fig. 6.4.4 Exterior (x > x0) and interior (x < x0) branch of Eq. (6.4.32) for a stagnation distance x0 = 2
and n = 1.5, γ = 1 + 1/n = 5/3, MA∞ = 5, (C = 0.2022), (Horedt 2000b).

We combine the two previous equations into ycw
2
c = 1, and insert from Eqs. (6.4.30) and (6.4.46):

ycw
2
c = C2ycz

2(n+1)/(n+2)
c x−2/(n+2)

c = C2y−n/(n+2)
c x2n/(n+2)

c = 1. (6.4.48)

The cut-off coordinate xc can be expressed according to Eq. (6.4.42) in terms of the upstreaming
Mach number at infinity:

xc = y1/2
c /C(n+2)/n = y1/2

c γM2
A∞ 	 1. (6.4.49)

And finally, the cut-off distance is via Eq. (6.4.27) equal to

rac = GMxc/v2
∞ = GMγM2

A∞y1/2
c /v2

∞ = GM�∞y1/2
c /P∞ = GMµy1/2

c /RT∞. (6.4.50)

A basic assumption of line accretion is that throughout s/ra � 1. With Eqs. (6.4.22), (6.4.27),
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Fig. 6.4.5 Exterior (x > x0) and interior (x < x0) branch of Eq. (6.4.34) for a stagnation distance x0 = 2
and C = 0 (Horedt 2000b; see also Lyttleton 1972).

Fig. 6.4.6 Hydrodynamic 3-D calculations of a MA∞ = 10 flow with γ = cP /cV = 5/3 (on the left, showing
a tail shock), and γ = 1.01 (on the right), both resembling the accretion column near the downstreaming axis.
Velocity patterns are designated by arrows, and “accretion radius” means 2GM/v2

∞, (x0 = 2) from Eq. (6.4.37),
(Ruffert 1994b, 1996).

(6.4.48), (6.4.49) we find

sc/rac = (fc/A)(2/GMrac)1/2 = 21/2wc/x1/2
c = (2/xcyc)1/2 = 21/2/γ1/2y3/4

c MA∞. (6.4.51)

As long as yc �≈ 0 and MA∞ 	 1, the value of sc/rac is sufficiently small, and xc is sufficiently large
to be matched with ∞ : yc = y(xc) ≈ y(∞) = y∞. Thus

xc ≈ y1/2
∞ γM2

A∞ 	 1; sc/rac ≈ 21/2/γ1/2y3/4
∞ MA∞ � 1, (y∞ �≈ 0; MA∞ 	 1). (6.4.52)

The case y∞ �≈ 0 will be termed fast solution, and y∞ = 1 if 0 < n < ∞ or C = 0.
Problems with the width sc of the accretion column occur only for the slow solution, if y∞ ≈ 0 or

even y∞ = 0 : The requirement sc/rac � 1 is only marginally fitted – if at all (Horedt 2000b).
Numerical integration of Eqs. (6.4.32)-(6.4.34) indicates that an infinitude of exterior fast solutions

exist (y∞ �= 0) if n = ∞, (C �= 0, Fig. 6.4.3) or C = 0 (Fig. 6.4.5). The exterior slow solution (y∞ = 0;
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lower thick curve in Figs. 6.4.4 and 6.4.5) appears to be unique, like the fast exterior solution in Fig.
6.4.4 if 0 < n < ∞, (C �= 0). If pressure is present (C �= 0), there exists an infinitude of interior accretion
flows, all halted by pressure forces at a second interior stagnation point (Figs. 6.4.3, 6.4.4). If C = 0, the
interior solution is unique with increasing absolute velocity (Fig. 6.4.5).

Analytical studies concerning the linear stability of the accretion line in the pressure-free Bondi-Hoyle
case (6.4.34) have been undertaken by Cowie (1977) and Soker (1990): The three-dimensional flow along
the accretion line – deviating slightly from the accretion axis – is unstable to radial perturbations along
the accretion line. And the two-dimensional flow is found to be unstable against tangential modes, as
well as against radial ones. These stability studies however, have no direct bearing on polytropes.

6.4.2 Spherically Symmetric Accretion of a Polytropic Gas

Like in Sec. 6.4.1 we confine ourselves to the case when the mean free path for collisions is much
smaller than the characteristic length scale of motion, i.e. when collisions are important in the accretional
flow. Consider then within Newtonian gravitation the steady, spherical accretion of an isentropic gas of
adiabatic index γ obeying the equation of state (6.3.4):

P = P∞(�/�∞)γ = P∞(�/�∞)1+1/n = K�1+1/n, (n = 1/(γ − 1); K = P∞/�1+1/n
∞ ). (6.4.53)

P∞ and �∞ are pressure and density at infinity, where the gas is at rest: v∞ = 0. The Newtonian
equations governing the problem are easily set up. The stationary continuity equation (5.2.1) becomes
for spherical symmetry

∇ · (��v) = (1/r2) d(r2�v)/dr = 0, (6.4.54)

which readily integrates to

A = dM/dt = 4πr2�v = const, (6.4.55)

where v denotes the inward flow velocity (v = |�v|), and dM/dt is the mass accretion rate of the central
mass M. The Eulerian equation of motion (5.2.10) reads

(�v · ∇)�v + (1/�) ∇P −∇Φ = v dv/dr + (1/�) dP/dr + GM/r2 = 0. (6.4.56)

Integration via Eq. (6.4.53) yields with the boundary conditions at infinity v = v∞ = 0 and GM/r → 0
the Bernoulli equation

v2/2 + [γ/(γ − 1)](P∞/�∞)[(�/�∞)γ−1 − 1] − GM/r = v2/2 + (n + 1)(P∞/�∞)[(�/�∞)1/n − 1]

−GM/r = v2/2 + n(a2 − a2
∞) − GM/r = 0, (n = 1/(γ − 1); −∞ < n < −1; 0 < n < ∞).

(6.4.57)

The local sound velocity is denoted by a = (γP/�)1/2 = [(1+1/n)P/�]1/2, and a∞ = (γP∞/�∞)1/2 =
[(1 + 1/n)P∞/�∞]1/2 is the sound velocity at infinity. It is seen at once that the sound velocity is not
defined if −1 ≤ n ≤ 0.

Similarly to Eq. (6.4.27) we introduce the dimensionless variables

x = (a2
∞/GM)r; y = v/a∞; z = �/�∞, (−∞ < n < −1; 0 < n < ∞), (6.4.58)

and write Eqs. (6.4.55), (6.4.57) in the nondimensional form

λ = x2yz = Aa3
∞/4π�∞G2M2 = const, (6.4.59)

y2/2 + n(z1/n − 1) = 1/x. (6.4.60)

The variables can be separated with the aid of the Mach number

MA = v/a = v[�/(1 + 1/n)P ]1/2 = v[�∞/(1 + 1/n)P∞]1/2(�/�∞)−1/2n

= (v/a∞)(�/�∞)−1/2n = yz−1/2n. (6.4.61)
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Fig. 6.4.7 Sketch of some spherically symmetric accretion and wind flows, as indicated by arrows (cf. Figs.
6.3.3, 6.3.4, 6.3.8). The Mach number MA is plotted for three values of the dimensionless accretion parameter λ :
subsonic accretion flow, supersonically expanding wind (both with λ < λs if 3/2 ≤ n ≤ ∞), and the two transonic
wind and accretion flows occurring if λ = λs (Shapiro and Teukolsky 1983).

With the mass conservation equation (6.4.59) we get

y = (λ/x2)1/(2n+1)M
2n/(2n+1)
A ; z = (λ/x2MA)2n/(2n+1). (6.4.62)

The Bernoulli equation (6.4.60) becomes via Eq. (6.4.62)

M
4n/(2n+1)
A (λ/x2)2/(2n+1)

/
2 + n(λ/x2MA)2/(2n+1) = 1/x + n. (6.4.63)

Rearranging the terms we can write this equation as

f(MA) = λ−2/(2n+1)g(x), (−∞ < n < −1; 0 < n < ∞), (6.4.64)

where

f(MA) = M
4n/(2n+1)
A (1/2 + n/M2

A), (6.4.65)

g(x) = x4/(2n+1)(1/x + n). (6.4.66)

If 3/2 ≤ n < ∞, the functions f and g are the sum of a positive and negative power – each of them
has a minimum

f(MAs) = (2n + 1)/2; g(xs) = [(2n + 1)/4][(2n − 3)/4n](3−2n)/(2n+1), (6.4.67)

that is obtained with df/dMA = 0 and dg/dx = 0, i.e. for

MA = MAs = 1; x = xs = (2n − 3)/4n. (6.4.68)

If −∞ < n < −1 and 3/2 ≤ n < ∞, we can write:

λs = [g(xs)/f(MAs)](2n+1)/2 = 2(2n−7)/2[(2n − 3)/n](3−2n)/2. (6.4.69)

If 3/2 ≤ n < ∞, the maximum value λs of the accretion parameter (6.4.59) occurs just for the
transonic solution passing through the sonic point MAs = 1. This can be shown most easily by writing
down Eq. (6.4.64) at distance xs, and observing that f(MA) ≥ f(MAs) :

λ−2/(2n+1)g(xs) = f(MA) ≥ f(MAs) or λ ≤ [g(xs)/f(MAs)](2n+1)/2 = λs, (3/2 ≤ n < ∞).
(6.4.70)
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The limiting value λs = 1/4 if n = 3/2 results from Eq. (6.4.69) by writing limn→3/2[(2n −
3)/n](3−2n)/2 = limn→3/2 exp{[(3 − 2n)/2] ln[(2n − 3)/n]} = 1. The value of λs is positive outside the
interval [0, 3/2).

As seen from Fig. 6.3.1, no accretion flows are possible if 0 < n < 3/2, because no solution curves
exist connecting the infinity point r = ∞, v∞ = 0 with the centre r = 0 of the point mass.

If λ = 0, the gas is at rest (y, v = 0), and the dimensionless density changes according to Eq. (6.4.60)
like in an extended atmosphere:

z1/n = 1 + 1/nx, (λ = 0). (6.4.71)

In the limiting isothermal case the integral of Eq. (6.4.56) becomes

v2/2 + (P∞/�∞) ln(�/�∞) − GM/r = v2/2 + a2
∞ ln(�/�∞) − GM/r = 0,

(n = 1/(γ − 1) = ±∞), (6.4.72)

and we have instead of Eq. (6.4.60):

y2/2 + ln z = 1/x, (n = ±∞). (6.4.73)

There is MA = y if n → ±∞ via Eq. (6.4.61), and z can be eliminated in Eq. (6.4.73) with
z = λ/x2MA from Eq. (6.4.62):

M2
A/2 − lnMA = − lnλ + lnx2 + 1/x. (6.4.74)

We write

lnλ = g(x) − f(MA), (f(MA) = M2
A/2 − lnMA; g(x) = lnx2 + 1/x). (6.4.75)

The minima

f(MAs) = 1/2; g(xs) = 2 − ln 4, (6.4.76)

of f and g occur if

MAs = 1; xs = 1/2, (n = ±∞). (6.4.77)

The maximum sonic value of the accretion parameter in the isothermal case is therefore

λs = exp[gs(xs) − fs(MAs)] = e3/2/4 = 1.120, (n = ±∞). (6.4.78)

Via Eqs. (6.4.69) and (6.4.78) we get some values of λs : 1.376, 2.000, 0.250, 0.707, 0.872, 1.120 if
n = −5,−1.5, 1.5, 3, 5, ±∞, respectively. Writing Eq. (6.4.69) under the form λs = limn→±∞ exp{[(2n−
7)/2] ln 2 + [(3 − 2n)/2] ln(2 − 3/n)} = e3/2/4, we recover Eq. (6.4.78).

The transonic flow profiles are straightforward to deduce. The sonic distance rs and the flow velocity
vs at the sonic point rs are expressed via Eqs. (6.4.57), (6.4.58), (6.4.68):

rs = (GM/a2
∞)xs = (2n − 3)GM/4na2

∞; v2
s = a2

s = (GM/rs + na2
∞)/(1/2 + n)

= 2na2
∞/(2n − 3) = GM/2rs, (r = rs; −∞ ≤ n < −1; 3/2 ≤ n ≤ ∞). (6.4.79)

At large distances r 	 rs the gravitational influence of the central mass is barely felt, and the Bernoulli
equation (6.4.57) yields

� = �∞; a = a∞; T = T∞, (r/rs 	 1; v ≈ 0). (6.4.80)

The transonic flow velocity changes in virtue of Eqs. (6.4.55), (6.4.59) as

v ≈ A/4π�∞r2 = λsG
2M2/a3

∞r2, (r/rs 	 1). (6.4.81)

Well inside the sonic radius rs, the flow is significantly influenced by the gravitation of the central
point mass M, and the term GM/r dominates over na2 in Eq. (6.4.57):

v ≈ (2GM/r)1/2; � = A/4πr2v ≈ (λs�∞/21/2)(GM/a2
∞r)3/2 = �∞(T/T∞)n,

(r/rs � 1; −∞ ≤ n < −1; 3/2 < n ≤ ∞). (6.4.82)
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Eqs. (6.4.79)-(6.4.82) subsist in the limiting case n = ±∞, (T = T∞) too, excepting for the last
equality in Eq. (6.4.82). In the other limiting case n = 1/(γ − 1) = 3/2, the sonic point is just in the
origin, and the evaluation of flow profiles near the point mass M amounts to their study near the sonic
point r ≈ rs = 0. Velocity and density run result via Eqs. (6.4.55), (6.4.57), (6.4.59):

v ≈ a ≈ (GM/2r)1/2; � ≈ A/4πr2v = (21/2�∞/4)(GM/a2
∞r)3/2 = �∞(T/T∞)3/2,

(r ≈ rs = 0; n = 3/2; a2
∞ � GM/r; λs = 1/4). (6.4.83)

In addition to the transonic solution passing through MA = 1, there exists also a class of solutions
which are subsonic throughout, satisfying at the same time the condition at infinity v∞ = 0 with 0 ≤ λ <
λs (cf. Figs. 6.3.3, 6.3.4, 6.4.7). The flow profiles if r/rs 	 1 are the same as in the transonic case from
Eqs. (6.4.80), (6.4.81), but if r ≈ 0, the pressure term na2 = (n + 1)P/� in Eq. (6.4.57) dominates over
the kinetic energy per unit mass v2/2, and the velocity no longer approaches the free-fall value (6.4.82).
Thus, we get from Eqs. (6.4.53), (6.4.55), (6.4.57), (6.4.59):

� = �∞(a/a∞)2n ≈ �∞(GM/na2
∞r)n; v = A/4πr2� ≈ nnλa∞(GM/a2

∞r)2−n,

(r, v ≈ 0; MA < 1; 3/2 ≤ n < ∞). (6.4.84)

In the limiting isothermal case we have via Eqs. (6.4.55), (6.4.59), (6.4.72):

� ≈ �∞ exp(GM/a2
∞r); v = A/4πr2� ≈ (λG2M2/a3

∞r2) exp(−GM/a2
∞r),

(r, v ≈ 0; MA < 1; n = ±∞). (6.4.85)

The mass accretion rate dM/dt = 4πλ�∞G2M2/a3
∞, (v∞ = 0) for spherically symmetric accretion

from Eq. (6.4.59) may be combined with the mass accretion rate dM/dt = 2πx0�∞G2M2/v3
∞, (v∞ 	

a∞) from Eq. (6.4.44):

dM/dt ≈ 4πΛ�∞G2M2/(a2
∞ + v2

∞)3/2. (6.4.86)

Indeed, in the two limits a∞ 	 v∞ and v∞ 	 a∞ this empirical equation converges to the forms
(6.4.59) and (6.4.44) if Λ is replaced by λ and x0/2, respectively (Bondi 1952). An attempt to include a
finite size of the central point mass M has been made by Ruffert (1994a).

In the general relativistic case Michel (1972) has considered spherically symmetric Bondi accretion
with the Schwarzschild metric (4.1.5). The relativistic Euler equation of motion (momentum conservation
equation) can be derived with Eqs. (4.1.11), (4.1.14), taking into account that covariant derivation of
sums and products obeys the same rules as ordinary derivation, and that the covariant derivative ∇mgjk

of the metric tensor vanishes (Landau and Lifschitz 1987, §§85, 86):

∇kT k
j = uj ∇k[(P + εr)uk] + (P + εr)uk ∇kuj − ∂P/∂xj = 0, (∇jP = ∂P/∂xj). (6.4.87)

To make further progress, we recall from Eq. (4.1.12) that uju
j = 1, and therefore, by interchanging

the summation indices j and � :

∇k(uju
j) = gj
 ∇k(u
uj) = gj
u

j ∇ku
 + gj
u

 ∇kuj = 2gj
u

j ∇ku


= 2gj
g

muj ∇kum = 2uj ∇kuj = 0. (6.4.88)

We project Eq. (6.4.87) onto the j-direction of the four-velocity by multiplying with uj , and taking
into account Eq. (6.4.88):

uju
j ∇k[(P + εr)uk] + (P + εr)ukuj ∇kuj − uj ∂P/∂xj = ∇k[(P + εr)uk] − uk ∂P/∂xk = 0.

(6.4.89)

We insert the last equality into Eq. (6.4.87), to obtain the relativistic Euler equation (e.g. Landau
and Lifshitz 1959, §126; Shapiro and Teukolsky 1983, App. G):

(P + εr)uk ∇kuj + uju
k ∂P/∂xk − ∂P/∂xj = 0. (6.4.90)

This equation takes a simple form for radial motion in the Schwarzschild field (4.1.5). The component
along x1 = r becomes

(P + εr)(u0 ∇0ur + ur ∇rur) + uru
r dP/dr − dP/dr = 0, (6.4.91)
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where ur = dr/ds is the radial component of the four-velocity uj , and u0 = dt/ds its temporal component
(dx0 = dt; dx1 = dr). We have g00(u0)2 + grr(ur)2 = 1 via Eq. (4.1.12), or by inserting the external
components (4.1.20) of the metric tensor:

u0 = (1 − 2GMr1/c2r)u0; ur = −ur/(1 − 2GMr1/c2r);

(u0)2 = [1 − 2GMr1/c2r + (ur)2]/(1 − 2GMr1/c2r)2. (6.4.92)

It remains to calculate the covariant derivatives according to ∇kAj = ∂Aj/∂xk − Γ

jkA
, with the

Christoffel symbols taken from Eqs. (4.1.17), (4.1.21):

∇0ur = −Γ0
r0u0 = −(GMr1/c2r2)u0/(1 − 2GMr1/c2r); ∇rur = dur/dr − Γr

rrur

= dur/dr + (GMr1/c2r2)ur/(1 − 2GMr1/c2r), (Γ0
r0 = Γ0

10; Γr
rr = Γ1

11). (6.4.93)

The equation of motion (6.4.91) takes with Eqs. (6.4.92), (6.4.93) the final form in the exterior static
Schwarzschild field:

ur dur/dr + GMr1/c2r2 + [1/(P + εr)][1 − 2GMr1/c2r + (ur)2] dP/dr = 0. (6.4.94)

To the relativistic stationary Euler equation (6.4.94) we have to add also the equation of continuity
(rest energy conservation or baryon number conservation):

∇i(εui) = 0. (6.4.95)

Observing that the rest mass density � can be written as the product of mean baryon mass m and
baryon number density nd, and that ε = c2� = c2mnd, we can write this equation also under the more
familiar form ∇i(ndu

i) = 0. The covariant divergence (6.4.95) can be expressed by ordinary derivatives
(e.g. Landau and Lifschitz 1987, §86):

∇i(εui) = (−g)−1/2 ∂[(−g)1/2εui]/∂xi = (1/r2) d(r2εur)/dr ∝ (1/r2) d(r2�ur)/dr = 0. (6.4.96)

The determinant g of the metric tensor gjk is for the external Schwarzschild metric (4.1.20) equal to
g = −r4 sin2 λ, and the sole surviving derivative is with respect to x1 = r, since the motion is assumed
stationary and radial. The relativistic Bernoulli equation

[(P + εr)/�]2[1 − 2GMr1/c2r + (ur)2] = [(P∞ + εr∞)/�∞]2 = const, (ur(∞) = ur
∞ = 0),

(6.4.97)

constitutes the relativistic counterpart of Eq. (6.4.57), for instance, and is obtained by integration of Eq.
(6.4.94), written under the form

(1/2)[(P + εr)/�] d[1 − 2GMr1/c2r + (ur)2] + [1 − 2GMr1/c2r + (ur)2] dP/� = 0. (6.4.98)

To obtain Eq. (6.4.97), we have also inserted for dP/� from the isentropic, relativistic first law of
thermodynamics (4.1.57):

d[(P + εr)/�] = d(P + εr)/� − (P + εr) d�/�2 = dP/� + (1/�)[dεr − (P + εr) d�/�] = dP/�.
(6.4.99)

In terms of the relativistic adiabatic sound speed (4.1.66) we can write Eq. (6.4.94) as

ur dur/dr + GMr1/c2r2 + [1 − 2GMr1/c2r + (ur)2](a2/c2�) d�/dr = 0, (6.4.100)

because [1/(P + εr)] dP/dr = [1/(P + εr)](dP/d�) d�/dr = (1/�)(dP/dεr) d�/dr = (a2/c2�) d�/dr. We
have used Eq. (4.1.57), and the fact that in adiabatic motion P = P (�), hence dP = (dP/d�) d�.

Eliminating d�/dr between Eqs. (6.4.96) and (6.4.100), we get the ordinary differential equation

dur/dr = (ur/r){(2a2/c2)[1 − 2GMr1/c2r + (ur)2] − GMr1/c2r}/
{(ur)2 − (a2/c2)[1 − 2GMr1/c2r + (ur)2]}, (6.4.101)

for the run of the radial component of the four-velocity. If one or the other of the braced factors vanishes,
one has a turn-around point, and the flow is double-valued in either r or ur. Only solutions that pass – as
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in the Newtonian case – through a singular point (rs, u
r
s), where dur/dr takes the form 0/0, correspond

to material falling into, or flowing out from the central mass Mr1. The singular point is obtained by
equating both braced factors to zero:

(ur
s)

2 = GMr1/2c2rs = (a2
s/c2)

/
(1 + 3a2

s/c2). (6.4.102)

And it has been shown by Begelman (1978) and Chang (1985) that only one physically meaningful
singular point exists in the relativistic regime if 0.5 < n ≤ ∞.

The proper, radial inward velocity v of a fluid element, as measured by the local stationary observer,
is given by

v = d�/dτ = (−grr/g00)1/2c dr/dx0 = cur/u0(1 − 2GMr1/c2r)

= cur
/
[1 − 2GMr1/c2r + (ur)2]1/2, (6.4.103)

because via Eqs. (4.1.12), (4.1.20), (5.12.94)-(5.12.96) we have: u0 = [1 − grr(ur)2]1/2/g
1/2
00 , d� =

(−grr)1/2 dr, dτ = (g00)1/2 dx0/c. Inserting the critical values (6.4.102) into Eq. (6.4.103), we observe
indeed that v = vs = as � c, (MA = 1) at the critical radial coordinate r = rs 	 rg. At the Schwarzschild
gravitational radius r = rg = 2GMr1/c2 we have v = c ≥ a, and at large distances, when ur � 1, there
is v/c ≈ ur by Eq. (5.12.98).

To calculate the explicit value of the rest mass accretion rate, we assume the polytropic equation of
state (4.1.83) for the relativistic pressure P. The first law of thermodynamics (4.1.57) may be written
under the form d(εr/�) + P d(1/�) = 0, which integrates with Eq. (4.1.83) to

εr = �rc
2 = nK�1+1/n + const � = nP + �c2. (6.4.104)

The integration constant is determined by comparison with Eq. (4.1.84). Hence, the adiabatic sound
velocity (4.1.66) is expressed via Eqs. (4.1.57), (4.1.83), (6.4.104) as

a2 = (∂P/∂�r)S = (dP/d�) d�/d�r = [(n + 1)P/n�]
/
[(n + 1)P/c2� + 1]. (6.4.105)

We substitute into Eq. (6.4.97) for (P + εr)/� = (n + 1)P/� + c2 from Eq. (6.4.104), and express
(n + 1)P/� by the sound speed (6.4.105):

(1 − na2/c2)−2[1 − 2GMr1/c2r + (ur)2] = (1 − na2
∞/c2)−2. (6.4.106)

Evaluating this Bernoulli equation via Eq. (6.4.102) at the sonic point rs, we get

(1 − na2
s/c2)2(1 + 3a2

s/c2) = (1 − na2
∞/c2)2. (6.4.107)

At infinity we have a∞ � c, and we find, by expanding to the lowest order:

a2
s ≈ 2na2

∞/(2n − 3) if −∞ ≤ n < −1, 3/2 < n ≤ ∞; a2
s/c2 ≈ 2a∞/3c if n = 3/2.

(6.4.108)

Thus, if a∞ � c, we also have as � c, or (n + 1)P/c2� = na2/(c2 − na2) � 1. Eq. (6.4.105) yields
in virtue of Eq. (4.1.83) simply �s/�∞ ≈ (as/a∞)2n, as in the nonrelativistic case (6.4.84). With this
finding the rest mass conservation equation (6.4.96) becomes via Eqs. (6.4.102), (6.4.103), (6.4.108) up
to the lowest order:

r2
s�su

r
s ≈ G2M2

r1�∞a2n−3
s /4ca2n

∞ = [2n/(2n − 3)](2n−3)/2G2M2
r1�∞/4ca3

∞
= λsG

2M2
r1�∞/ca3

∞ = const, (ur
s ≈ as/c = vs/c; rs ≈ GMr1/2a2

s). (6.4.109)

The factor λs = [2n/(2n − 3)](2n−3)/2/4 is identical to Eq. (6.4.69). From Eq. (6.4.109) follows that
the relativistic Bondi rest mass accretion rate

dM/dt ≈ 4πr2
s�svs ≈ 4πcr2

s�su
r
s = 4πcr2�ur ≈ 4πλs�∞G2M2

r1/a3
∞,

(−∞ ≤ n < −1; 3/2 ≤ n ≤ ∞), (6.4.110)

is in a first approximation just equal to its Newtonian counterpart (6.4.59), because the accretion rate
is determined in the relativistic and nonrelativistic case by conditions at the same sonic point rs, which
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in virtue of Eq. (6.4.102) lies far outside of the event horizon located at the Schwarzschild radius
rg : rs 	 rg = 2GMr1/c2.

The right-hand side of Eq. (6.4.106) is ≈ 1, and since inside the sonic coordinate rs there is ur >
v/c > a/c � 1 via Eq. (5.12.98), we may approximate Eq. (6.4.106) by

1 + 2na2/c2 − 2GMr1/c2r + (ur)2 ≈ 1 − 2GMr1/c2r + (ur)2 ≈ 1 or ur ≈ (2GMr1/c2r)1/2,

(−∞ ≤ n < −1; 3/2 < n ≤ ∞; r � rs). (6.4.111)

At the Schwarzschild radius rg we have ur = ur
g ≈ 1. For the rest mass density run we get with

Eqs. (6.4.110), (6.4.111): �/�∞ = 2−1/2λs(GMr1/a2
∞r)3/2, �g/�∞ ≈ λs(c/a∞)3/4 if n �= 3/2, r � rs.

In the particular case n = 3/2 we get with ur
g ≈ 0.782 and λs = 1/4 via Eq. (6.4.110): �g/�∞ ≈

(c/a∞)3/(16 × 0.782), (Shapiro and Teukolsky 1983).
A combination of polytropic, spherically symmetric accretion onto black holes with an accretion

powered outflowing wind has been considered by Das (2000, 2001). As it is to be expected on general
grounds, the essential features of spherically symmetric accretion of a polytropic gas onto a black hole are
not altered by its slow rotation or small linear velocity (Beskin and Pidoprygora 1995). The properties of
some thin, disk-like polytropic accretion flows round black holes have been studied by Chakrabarti and
Das (2001).

In the Newtonian case Theuns and David (1992) have included the effect of radiation pressure, ob-
taining solutions in closed form, in a similar way as outlined in Eqs. (6.3.69)-(6.3.87), (Yeh 1970).
The equations of spherically symmetric Newtonian in- or outflow are given by the continuity equation
(5.2.1), the energy equation [the polytropic equation of state (2.1.6)], and the nonstationary variant of
the equation of motion (6.3.88):

Dv(r, t)/Dt = ∂v/∂t + v ∂v/∂r = −(1/�) ∂P/∂r − (GM/r2)
(

1 − L/LE +
∫ r

r0

4π�r′2 dr′
)

.

(6.4.112)

The integral in Eq. (6.4.112) represents the mass (self-gravity) of the flow, located between the surface
radius r0 of M and the radius r. The enhancement of Bondi accretion due to self-gravity of the flow can
be important for stars immersed in cold dense clouds, for black holes, galaxies, and galactic clusters under
a wide variety of astrophysical conditions (Chia 1978, 1979). This term will be henceforth ignored. The
maximum luminosity attainable by an object in radiative and hydrostatic equilibrium is given by the
Eddington limit

LE = 4πcGM/κ = 1.2 × 1038M/M� [erg s−1], (6.4.113)

if the opacity κ = 0.40 cm2 g−1 is due to Thomson scattering in completely ionized hydrogen (Shapiro
and Teukolsky 1983). Eq. (6.4.113) can be deduced at once from Eq. (6.1.3) if gas pressure is negligible:
dPr/dP = 1.

For stationary flows Eq. (6.4.112) can be integrated at once, if small changes in the mass and
luminosity of the central object are ignored [cf. Eqs. (6.3.69), (6.3.70), (6.3.91)]:

v2/2 + na2 − f/r = na2
C = const, (n = 1/(γ − 1); −∞ < n < −1; 0 < n < ∞;

f = GM(1 − L/LE); a2 = (1 + 1/n)P/�; a2
C = (1 + 1/n)PC/�C ; PC , �C = const), (6.4.114)

v2/2 + a2 ln � − f/r = a2 ln �C = const, (n = 1/(γ − 1) = ±∞; f = GM(1 − L/LE);

a2 = P/� = K = const; �C = const). (6.4.115)

For computational convenience the integration constants have been written under the forms (6.4.114),
(6.4.115). In the case of accretion flows PC , �C , aC are the values of pressure, density, and sound speed
at infinity, where v = 0. Dimensionless values are introduced by

x = ra2
C/f ; y = v/aC ; z = a/aC = (�/�C)1/2n if −∞ < n < −1, 0 < n < ∞;

x = ra2/f ; y = v/a; z = �/�C if n = ±∞. (6.4.116)
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Eqs. (6.4.114) and (6.4.115) become, respectively:

y2/2 + n(z2 − 1) − 1/x = 0, (−∞ < n < −1; 0 < n < ∞), (6.4.117)

y2/2 + ln z − 1/x = 0, (n = ±∞). (6.4.118)

These two equations are supplemented by the equation of mass conservation (6.4.55), which reads in
dimensionless variables as

x2yz2n = Aa3
C/4π�Cf2 = λ = const if −∞ < n < −1, 0 < n < ∞;

x2yz = Aa3/4π�Cf2 = λ = const if n = ±∞. (6.4.119)

Elimination of the dimensionless velocity among Eqs. (6.4.117)-(6.4.119) yields the two fourth order
algebraic equations

x4 − x3/n(z2 − 1) + λ2/2nz4n(z2 − 1) = 0, (−∞ < n < −1; 0 < n < ∞), (6.4.120)

x4 − x3/ ln z + λ2/2z2 ln z = 0, (n = ±∞), (6.4.121)

with cumbersome solutions in closed form (cf. Eqs. (6.3.46)-(6.3.48), Bronstein and Semendjajew 1985,
p. 185, Theuns and David 1992). Practically, four types of inflow/outflow solutions occur [cf. Fig. 6.4.7
for (i)-(iii)]: (i) The transonic flow passing through a sonic point MA = 1, which is relevant for wind and
accretion, both. (ii) Completely subsonic flow pertinent to accretion flows. (iii) Completely supersonic
winds. (iv) Super-Eddington flow if L > LE in Eq. (6.4.112), with the net force acting on the flow f/r2

directed outwards.
The global stability against radial perturbations of wind and accretion flows has been studied among

others by Aikawa (1979), and Theuns and David (1992). Nonradial perturbations of accretion flows have
been considered by Garlick (1979). There is general agreement that the transonic flow is stable, while
subsonic accretion flows may become unstable, depending on the boundary conditions at the accretor’s
surface. These findings are concerned with the free oscillations in time of the flow, rather than with the
spatial instability of forced oscillations due to some external source; in the latter case Bondi accretion is
nonradially unstable if r → 0 (Kovalenko and Eremin 1998). The instabilities occurring in self-similar
collapse solutions are slightly related to this topic (Sec. 6.2.3, Hanawa and Matsumoto 2000a, b, Lai and
Goldreich 2000, Lai 2000).

We derive at first a second order equation for the Eulerian perturbation δF (r, t) = r2(v δ� + � δv)
of the mass flux F = r2�v from Eq. (6.3.10). The gravitational potential Φ = GM/r, depending in this
particular case solely on distance r, is an extrinsic attribute of the flow, rather than an intrinsic one (e.g.
Chandrasekhar 1969, p. 29). Therefore δΦ = 0, and the Eulerian perturbation (5.2.29) of the Eulerian
equation of motion can be written under the from

δ(D�v/Dt) = ∂δ�v/∂t + (δ�v · ∇)�v + (�v · ∇)δ�v = −δ[(1/�) ∇P ] = −∇(δP/�) = −∇(a2 δ�/�),
(6.4.122)

because for our isentropic flow we have Γ1 = 1 + 1/n, �A = 0, and δ[(1/�) ∇P ] = ∇(δP/�) in virtue of
Eqs. (5.2.73)-(5.2.86). The adiabatic energy equation (5.9.39) simplifies to

δP = (Γ1P/�) δ� = (1 + 1/n)(P/�) δ� = a2 δ�, (S = const; ∇P = (Γ1P/�) ∇�), (6.4.123)

where P = K�1+1/n = K�Γ1 , and a = (Γ1P/�)1/2 denotes the adiabatic sound velocity (2.1.49).
From the equation of continuity (5.2.24) we deduce at once r2 ∂δ�/∂t = −∂δF/∂r, and from δF (r, t) =

r2(v δ�+� δv) we find ∂δF/∂t = r2� ∂δv/∂t+r2v ∂δ�/∂t = r2� ∂δv/∂t−v ∂δF/∂r. Because the mass flux
F is constant in the unperturbed stationary flow, we can write ∇(a2 δ�/�) = (1/r2�v) ∂(a2r2v δ�)/∂r
in Eq. (6.4.122), and derive with respect to the time:

r2� ∂2δv/∂t2 + r2�(dv/dr) ∂δv/∂t + r2�v ∂2δv/∂t∂r + (1/v) ∂(a2r2v ∂δ�/∂t)/∂r = 0. (6.4.124)

Inserting the derivatives of δF we get eventually

∂2δF/∂t2 + 2 ∂(v ∂δF/∂t)/∂r + (1/v) ∂[v(v2 − a2) ∂δF/∂r]/∂r = 0. (6.4.125)
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Theuns and David (1992) write the perturbation under the form δF (r, t) = δF (r) exp(iσt), where
δF (r) is a complex function of the real variable r, and σ is the angular oscillation frequency. Insertion
into Eq. (6.4.125) yields

σ2 δF − 2iσ d(v δF )/dr − (1/v) d[v(v2 − a2) dδF/dr]/dr = 0. (6.4.126)

We multiply with the complex conjugate v δF ∗(r) of v δF (r), and separate the real and imaginary
parts:

σ2v|δF |2 + 2σv2 Im(δF ∗ dδF/dr) + v(v2 − a2)|dδF/dr|2 − (1/2) d[v(v2 − a2) d|δF |2/dr]
/
dr = 0,

(δF δF ∗ = |δF |2; Re(δF ∗ dδF/dr) = (1/2) d|δF |2/dr), (6.4.127)

σ d(v2|δF |2)/dr + d[v(v2 − a2) Im(δF ∗ dδF/dr)]
/
dr = 0 or

σv2|δF |2 + v(v2 − a2) Im(δF ∗ dδF/dr) = C = const. (6.4.128)

We insert Im(δF ∗ dδF/dr) from Eq. (6.4.128) into Eq. (6.4.127), and integrate over a distance
without singular points or discontinuities (shock waves):

σ2

∫ r2

r1

v[(v2 + a2)/(v2 − a2)]|δF |2 dr − 2σC

∫ r2

r1

v dr/(v2 − a2) + D = 0;

D = (1/2)[v(v2 − a2) d|δF |2/dr]
∣∣∣r2

r1

−
∫ r2

r1

v(v2 − a2)|dδF/dr|2 dr. (6.4.129)

For real values of σ, the discriminant of this second order equation has to be nonnegative, and its sign
is independent of the sign and magnitude of v. Only the term

Q = −(1/2)[v(v2 − a2) d|δF |2/dr]
∣∣∣r2

r1

∫ r2

r1

v[(v2 + a2)/(v2 − a2)]|δF |2 dr, (6.4.130)

could make a negative contribution to the discriminant, so that a necessary and sufficient condition for
radial stability of the flow is Q ≥ 0.

(i) Subsonic accretion flow. If the perturbation is due to a standing wave [Eq. (5.1.32)], there are two
radii r1 and r2 for which the perturbation δF (r) vanishes at all times, and Eq. (6.4.130) yields Q = 0 :
The flow is stable. The same conclusion holds in virtue of Eq. (6.4.130) also if d|δF |/dr = 0 at r1, r2. If
the medium is infinite and perturbed by radially travelling waves, the stability criterion (6.4.130) becomes

Q = (1/2)[v(v2 − a2) d|δF |2/dr]r=r1

∫ ∞

r1

v[(v2 + a2)/(v2 − a2)]|δF |2 dr ≥ 0. (6.4.131)

The flow could become unstable (Q < 0) only if (d|δF |/dr)r=r1 < 0, which would mean that the
perturbation is actually enhanced at the boundary layer r = r1.

(ii) Transonic flow. One of the boundaries, say r1, has to be taken in the sonic point rs, (v = a), since
this point is a singular point of the flow. It suffices to show the regularity (continuity of the derivative)
of δF (r) at r = rs, in order to prove the continuity of Q. We substitute the expansion

δF (r) = r2(v δ� + � δv) = (r − rs)α[h0 + h1(r − rs) + ...], (r ≈ rs; h0, h1 = const), (6.4.132)

into Eq. (6.4.126), using the expansions of v and a near the sonic point rs [Theuns and David 1992,
Eq. (2.27)]. Equating the coefficients of equal powers of r − rs, we get α = 0 and α = −iσrs as
admissible values of α. The exponent α = 0 yields δF (r) ≈ h0 = const, while the other value gives
δF (r) ≈ h0(r − rs)−iσrs = h0 exp[−iσrs ln(r − rs)] = h0 exp[−iσrs ln |r − rs|+ πσrs H(rs − r)], by using
the principal value of the natural logarithm of a complex number. The Heaviside function is equal to
H(rs−r) = 1 if rs−r > 0, and H(rs−r) = 0 if rs−r < 0. Thus, δF is always regular in the singular sonic
point, and the contribution to Q from the sonic point v = a vanishes. Since for spherically symmetric
accretion flows we have v∞ = 0, the value of Q vanishes in the subsonic region between infinity and
the sonic point rs, which implies stability against radial modes. Garlick (1979) proved stability against
nonradial modes. The supersonic region of the accretion flow is stable too, because any perturbation in
the supersonic region between rs and the accretor surface is carried away with the supersonic flow and
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reaches the accretor surface in a finite time; moreover, no information from the inner supersonic region
r < rs reaches the outer subsonic region r ≥ rs (Aikawa 1979, Garlick 1979).

In the case of outflowing winds the radial stability of the inner subsonic region between the origin of
the wind (v = 0) and rs, (v = a) is assured by the fact that Q = 0. And in the outer supersonic region
the contribution to Q from the infinity point vanishes too, as can be seen from the asymptotic solution
δF = exp(−iσr/v∞) of Eq. (6.4.126) if v ≈ v∞ = const, and a2 = (1 + 1/n)K�1/n ≈ 0 as r → ∞. We
have |δF | = 1 = const, and d|δF |2/dr = 0 if r → ∞. Thus Q = 0, and polytropic winds are throughout
stable against radially symmetric disturbances.

In the general relativistic regime Moncrief (1980) has performed a nonradial mode analysis on the
transonic accretion flow solution, without finding unstable modes either in the subsonic or supersonic
regions, in accordance to the Newtonian limit.

6.4.3 Polytropic Accretion Disks and Tori

The relevant difference between disks and tori is their extension in the equatorial (�, ϕ)-plane of the
system, i.e. �i � �e in the case of disks, and �i ≈ �e for tori. �i and �e designates respectively, the
distance – measured in the midplane z = 0 of the disk (torus) – between the central mass M and the
interior (inner) and exterior (outer) border of the disk (torus). This subsection has some bearing on Sec.
5.10, focussed mainly on polytropic galactic (stellar system) disks.

Accretion disks are found round protostars (T-Tauri stars), interacting binary stars, galactic nu-
clei (Seyfert galaxies), and more speculatively, round quasars. Outflow disks due to the existence of
stellar winds – occurring round a variety of binary and single (rapidly rotating) stars throughout the
Hertzsprung-Russel diagram – are the counterparts of accretion disks (Bjorkman 1997). The accretion
disks (tori) can be classified into a variety of ways: Thin and thick disks (geometrically or optically),
semitransparent disks, disks with negligible or dominant self-gravity, gas or radiation pressure dominated
disks, and various combinations of these groups (e.g. Hoshi 1981). We will use the notion of thick and
thin disks always geometrically.

The term polytropic accretion disk is somewhat misleading, since the polytropic (isothermal) equation
of state is generally used merely for a better approximation of the vertical structure of the disk. In
cylindrical (�, ϕ, z)-coordinates the gravity components of a central point mass M are

−GM�r/r3 = ∇ΦM = ∇ΦM

[
− GM�/(�2 + z2)3/2, 0, −GMz/(�2 + z2)3/2

]
. (6.4.133)

The vertical gravity component of a self-gravitating thin disk without central point mass can be
approximated with Eqs. (5.10.89), (5.10.101) as

∂Φ/∂z =
∫ z

0

(∂2Φ/∂z′2) dz′ = −4πG

∫ z

0

� dz′ = −2πGΣ,

(z ≥ 0; ∂Φ/∂z 	 ∂Φ/∂x, ∂Φ/∂y; (∂Φ/∂z)z=0 = 0). (6.4.134)

The vertical component of the equation of hydrostatic equilibrium (2.1.3) for a self-gravitating disk
with central point mass may be approximated by adding to the gravitation of the central mass (6.4.133)
the disk’s self-gravitation (6.4.134):

dP/dz = −�(GMz/r3 + 2πGΣ), (z ≥ 0). (6.4.135)

This equation can be solved analytically in the two limiting cases ΦM � Φ and ΦM 	 Φ (Paczyński
1978a, b).

(i) ΦM � Φ.ΦM � Φ.ΦM � Φ. This case of overwhelming disk self-gravity has already been solved for the zero thickness
disk by Eqs. (5.10.89)-(5.10.97). The hydrostatic equation (6.4.135) becomes dP/dz = −2πGΣ�, turning
after division with dΣ/dz = 2� into

dP/dΣ = −πGΣ. (6.4.136)
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Integration yields with the polytropic law P = K�1+1/n the pressure and density run along the vertical
extension of the thin accretion disk:

P = P0 − πGΣ2/2 = P0(1 − Σ2/Σ2
1),(

P (0) = P0; P (z1) = P1 = 0; Σ(0) = 0; Σ(z1) = Σ1; P0 = πGΣ2
1/2

)
, (6.4.137)

� = (�1+1/n
0 − πGΣ2/2K)n/(n+1) = �0(1 − Σ2/Σ2

1)
n/(n+1),(

n �= −1; �(0) = �0; �(z1) = 0; �0 = (πGΣ2
1/2K)n/(n+1)

)
, (6.4.138)

Σ = 2
∫ z

0

� dz′; Σ1 = 2
∫ z1

0

� dz′. (6.4.139)

Zero indexed quantities denote values in the equatorial symmetry plane, and the total surface density
of the thin disk is Σ1. Pressure and density are assumed to vanish on the upper and lower boundary of
the disk at z1 and −z1, respectively. The total surface density Σ1 = (2K/πG)1/2�

(n+1)/2n
0 = (2P0/πG)1/2

from Eq. (6.4.138) is identical to the surface density (5.10.94) of the zero thickness disk, and the vertically
integrated pressure PΣ of the thin accretion disk is the same as the cumulative pressure (5.10.95) acting
in the equatorial plane of the zero thickness disk. The half-thickness of the disk may be calculated with
the beta function (5.10.96), and the gamma function (C.9), (C.11):

z1 =
∫ z1

0

dz =
∫ Σ1

0

dΣ/2� = (Σ1/2�0)
∫ Σ1

0

(1 − Σ2/Σ2
1)

−n/(n+1) dΣ/Σ1

= (Σ1/4�0)
∫ 1

0

t−1/2(1 − t)−n/(n+1) dt = (Σ1/4�0) B[1/2, 1/(n + 1)] = (π1/2Σ1/4�0) Γ[1/(n + 1)]
/
Γ[(n + 3)/2(n + 1)], (−1 < n < ∞; t = (Σ/Σ1)2; Γ(1/2) = π1/2). (6.4.140)

The mean vertical density in the thin disk is obtained from Eq. (6.4.140):

�m = Σ1/2z1 = 2�0 Γ[(n + 3)/2(n + 1)]
/
π1/2Γ[1/(n + 1)], (−1 < n < ∞). (6.4.141)

As it will turn out from Eq. (6.4.143), the isothermal accretion disk extends to infinity, and Eqs.
(6.4.136)-(6.4.139) are valid in the limit z1 → ∞, n = ±∞, when P = K�. Eq. (6.4.135) becomes
K d�/dz = −2πG�Σ, and combining with � = �0(1 − Σ2/Σ2

1), we get

πGΣ2
1 dz/K = dΣ

/
(1 − Σ2/Σ2

1), (6.4.142)

which integrates to

Σ = Σ1[exp(2πGΣ1z/K) − 1]
/
[exp(2πGΣ1z/K) + 1] = Σ1 tanh(πGΣ1z/K), (n = ±∞).

(6.4.143)

The equatorial density is �0 = πGΣ2
1/2K via Eq. (6.4.138), and within the heights z = ±K/πGΣ1 =

±Σ1/2�0 there are included Σ/Σ1 = tanh(1) = 0.76 parts of the disk mass.
(ii) ΦM 	 Φ.ΦM 	 Φ.ΦM 	 Φ. The structure equation (6.4.135) reads

dP/dz = (1 + 1/n)K�1/n d�/dz = −GM�z/r3, (z � � ≈ r ≈ const), (6.4.144)

wherefrom we get (Paczyński 1991)

� = [GMz2
1/2(n + 1)Kr3]n(1 − z2/z2

1)n = �0(1 − z2/z2
1)n, (n �= −1,±∞). (6.4.145)

The half-thickness of the disk is therefore z1 = [2(n + 1)K�
1/n
0 r3/GM ]1/2. Okazaki and Kato (1985)

study one-armed oscillations under the particular assumption z1 = const, implying �(r) ∝ r−3n, (r ≈
�; z ≈ 0). The total surface density due to the density distribution (6.4.145) is

Σ1 = 2
∫ z1

0

� dz = 2�0z1

∫ z1

0

(1 − z2/z2
1)n dz/z1 = �0z1

∫ 1

0

t−1/2(1 − t)n dt

= �0z1 B(1/2, n + 1) = π1/2�0z1 Γ(n + 1)
/
Γ(n + 3/2), (−1 < n < ∞; t = z2/z2

1). (6.4.146)
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From Eq. (6.4.145) we get for the pressure run

P = K�1+1/n = P0(1 − z2/z2
1)n+1,

(
P0 = K−n[GMz2

1/2(n + 1)r3]n+1
)
, (6.4.147)

and the integrated pressure (5.10.95) becomes

PΣ =
∫ z1

−z1

P dz = 2P0z1

∫ z1

0

(1 − z2/z2
1)n+1 dz/z1 = P0z1

∫ 1

0

t−1/2(1 − t)n+1 dt

P0z1 B(1/2, n + 2) = π1/2P0z1 Γ(n + 2)
/
Γ(n + 5/2), (−2 < n < ∞; t = z2/z2

1). (6.4.148)

The mean vertical density in thin accretion disks of negligible mass is via Eq. (6.4.146) equal to

�m = Σ1/2z1 = π1/2�0 Γ(n + 1)
/
2Γ(n + 3/2), (−1 < n < ∞). (6.4.149)

The ratio �0/�m from Eqs. (6.4.141) and (6.4.149) has been calculated by Paczyński (1978a). For
instance: �0/�m = 1.0000, 1.6977, 2.1875, 2.7070 in disks with negligible self-gravitation, and �0/�m =
1.0000, 1.8395, 2.6221, 3.6429 for self-gravitating disks, if the polytropic index is n = 0, 1.5, 3, and 5,
respectively.

In the case of isothermal disks the hydrostatic equation (6.4.144) writes d�/� = −GMz dz/Kr3,
which integrates to

� = �0 exp(−GMz2/2Kr3), (n = ±∞; r ≈ const). (6.4.150)

The surface density within height z can be expressed with the error integral

Σ = 2
∫ z

0

� dz′ = 2�0

∫ z

0

exp(−GMz′2/2Kr3) dz′ = (8Kr3/GM)1/2�0

×
∫ (GM/2Kr3)1/2z

0

exp(−t2) dt = (2πKr3/GM)1/2�0 erf[(GM/2Kr3)1/2z],

(n = ±∞; t = (GM/2Kr3)1/2z; erf(x) = 2π−1/2

∫ x

0

exp(−t2) dt). (6.4.151)

The total surface density becomes with erf(∞) = 1 equal to

Σ1 = 2
∫ ∞

0

� dz = (2πKr3/GM)1/2�0, (n = ±∞), (6.4.152)

and from the tables of the error function it is seen that within the density scale height z = (2Kr3/GM)1/2

there are included about 84% of the disk mass.
The overall problems associated with polytropic accretion disks (e.g. radial structure, energy transport

and emission, stability, evolution) would require a separate book (e.g. Shapiro and Teukolsky 1983,
Camenzind et al. 1986, Korycansky and Pringle 1995, Bjorkman 1997); as these items have no direct
bearing on polytropes, they are omitted.

The remainder of this section deals with accretion tori: �i ≈ �e. It has been long suspected (e.g.
Tassoul 1978, Sec. 7.3; Chandrasekhar 1981, §67) that the Rayleigh criterion (5.10.1) is a necessary and
sufficient stability criterion only for axisymmetric motions, and is a necessary but not sufficient stability
condition for nonaxisymmetric disturbances in differentially rotating systems. Indeed, Papaloizou and
Pringle (1984, 1985, 1987) have shown that some polytropic differentially rotating tori are subject to
a violent nonaxisymmetric mode of instability, even when the Rayleigh condition d[�2Ω(�)]/d� > 0 is
satisfied. Below, we briefly sketch their demonstration.

Let us consider a differentially rotating, axisymmetric, polytropic and isentropic (Γ1 = 1+1/n) torus
of small extent and negligible self-gravity. The torus is under the influence of the external potential
(6.4.133): ΦM = GM/(�2 + z2)1/2. The angular velocity Ω(�) is in virtue of Eq. (3.1.11) a function of �
alone. To make the problem analytically tractable, we consider a power law of rotation

Ω = Ω(�) = Ω0(�0/�)q, (q, Ω0, �0 = const). (6.4.153)

The equation of motion of the differentially rotating torus can be written in the condensed form
(3.1.8): (1/�) ∇P −∇ΦM − Ω2��e
 = 0. This integrates with the polytropic equation of state (2.1.6) to

(n + 1)P/� − ΦM − Φf = C1 = const, (n �= −1,±∞), (6.4.154)
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where the centrifugal potential

Φf = Ω2
0�

2q
0 �2−2q/(2 − 2q), (6.4.155)

results from the integration of dΦf/d� = Ω2� = Ω2
0�

2q
0 �1−2q under the condition of a vanishing integration

constant at infinity (q > 1).
The pressure and density maximum of the torus occurs in the symmetry plane z = 0, and is taken

just at distance �0 from the rotation axis. The structure of the considered slender polytropic tori may be
approximated by expanding the potentials round the density maximum � = �0, z = 0 :

ΦM ≈ (GM/�0){1 − (� − �0)/�0 + [2(� − �0)2 − z2]/2�20};
Φf = Ω2

0�
2
0/(2 − 2q) + Ω2

0�0(� − �0) + (1 − 2q)Ω2
0(� − �0)2/2. (6.4.156)

Because we have assumed the density maximum � = �0 at (�0, 0), there is in this point (1/�0) ∇P0 =
K(1 + 1/n)�1/n−1

0 ∇�0 = ∇(ΦM + Φf )
=
0,z=0 = 0 or Ω2
0 = GM/�30, and Eq. (6.4.154) writes

(n + 1)K�1/n + (GM/2�30)[(2q − 3)(� − �0)2 + z2] = C1 + (2q − 3)GM/�0(2q − 2) = C = const.
(6.4.157)

From this equation we get the maximum density �0 = [C/(n + 1)K]n, and the density run in the
polytropic torus:

� = �0[1 − (� − �0)2/a2 − z2/(2q − 3)a2]n, (� − �0, z � �0). (6.4.158)

The quantity

a = [2(n + 1)K�
1/n
0 �30/(2q − 3)GM ]1/2 � �0, (n �= −1,±∞; K�

1/n
0 = P0/�0), (6.4.159)

is just the maximum half-thickness of the torus in the midplane – the torus extending from �i = �0 − a
to �e = �0 + a.

The Rayleigh (Solberg-Høiland) stability criterion (5.10.1) takes a simple form for the power law
distribution (6.4.153) of angular velocity:

κ2 = (2Ω/�) d(�2Ω)/d� = 2(2 − q)Ω2
0(�0/�)2q > 0. (6.4.160)

Papaloizou and Pringle (1984) include also the particular case of neutral (marginal) stability κ = 0.
In this particular case there is q = 2, and the specific angular momentum j = �2Ω(�) = �20Ω0 is constant
over the whole torus. If q = 2, the equidensity (isopycnic) surfaces (6.4.158) – which coincide for the
barotropic fluid with the isobaric ones – are concentric circles, and the torus is unstable to low order
nonaxisymmetric modes, growing on a dynamical time scale (Blaes 1985, p. 563, Goldreich et al. 1986).

The Rayleigh criterion (6.4.160) is not satisfied if q > 2. If 3/2 ≤ q < 2, the equidensity surfaces
(6.4.158) are concentric ellipses elongated in the �-direction, having eccentricity e = [2(2 − q)]1/2. The
eccentricity tends to unity as q → 3/2, and the rotation rate becomes Keplerian: Ω = Ω0(�0/�)3/2 =
(GM/�3)1/2.

The linearized nonaxisymmetric perturbation equations in the inertial frame are derived by assuming
the Eulerian perturbations of velocity �v = �v[0, �Ω(�), 0], density �, and pressure P under the form

δ�v(�, ϕ, z, t) = δ�v(�, z) exp[i(σt + kϕ)]; δ�(�, ϕ, z, t) = δ�(�, z) exp[i(σt + kϕ)];
δP (�, ϕ, z, t) = δP (�, z) exp[i(σt + kϕ)]. (6.4.161)

The Lagrangian displacement vector ∆�r = ∆�r(∆�, �∆ϕ, ∆z) is decomposed analogously:

∆�(�, ϕ, z, t) = ∆�(�, z) exp[i(σt + kϕ)]; ∆ϕ(�, ϕ, z, t) = ∆ϕ(�, z) exp[i(σt + kϕ)];
∆z(�, ϕ, z, t) = ∆z(�, z) exp[i(σt + kϕ)]. (6.4.162)

We insert Eqs. (6.4.161), (6.4.162) into Eq. (5.9.42), performing the relevant derivatives:

∆�(�, z) = δv
(�, z)/i(σ + kΩ); � ∆ϕ(�, z) = δvϕ(�, z)/i(σ + kΩ) − �(dΩ/d�) δv
(�, z)/(σ + kΩ)2;
∆z(�, z) = δvz(�, z)/i(σ + kΩ). (6.4.163)
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For our isentropic torus the perturbed energy equation (5.9.39) assumes the simple form

δP = (Γ1P/�) δ� = [(1 + 1/n)P
/
�] δ�, (n �= −1), (6.4.164)

because of the vanishing convective Schwarzschild discriminant (5.2.84). This implies that the Eulerian
perturbations of the pressure term (1/�) ∇P can be transformed via Eq. (6.4.164): δ[(1/�) ∇P ] =
−(δ�/�2) ∇P +(1/�) ∇δP = −(δ�/�2) ∇P +(δP/�2) ∇�+∇(δP/�) = (δP/�)[(1/�) ∇�−(1/Γ1P ) ∇P ]+
∇(δP/�) = �A δP/� + ∇(δP/�) = ∇(δP/�). Also, the Eulerian perturbation δΦM of the gravitational
potential – depending solely on location – vanishes, and the relevant equations of motion and continuity
(5.9.35)-(5.9.38) become

∂δv
/∂t + Ω ∂δv
/∂ϕ − 2Ω δvϕ = −∂(δP/�)
/
∂�, (6.4.165)

∂δvϕ/∂t + Ω ∂δvϕ/∂ϕ + (δv
/�) d(�2Ω)/d� = −(1/�) ∂(δP/�)
/
∂ϕ, (6.4.166)

∂δvz/∂t + Ω ∂δvz/∂ϕ = −∂(δP/�)
/
∂z, (6.4.167)

∂δ�/∂t + Ω ∂δ�/∂ϕ + ∇ · (� δ�v) = 0. (6.4.168)

We insert the perturbations (6.4.161), and introduce the new variable W = δP/�(σ + kΩ) :

i(σ + kΩ) δv
 − 2Ω δvϕ = −∂(δP/�)
/
∂� = −∂[(σ + kΩ)W ]/∂�, (6.4.169)

i(σ + kΩ) δvϕ + (δv
/�) d(�2Ω)/d� = −ik δP/�� = −ik(σ + kΩ)W/�, (6.4.170)

i(σ + kΩ) δvz = −∂(δP/�)
/
∂z = −∂[(σ + kΩ)W ]/∂z, (6.4.171)

i(σ + kΩ) δ� + (1/�) ∂(�� δv
)/∂� + ik� δvϕ/� + ∂(� δvz)/∂z = 0. (6.4.172)

After some algebra these equations can be expressed in terms of the Lagrangian displacements with
the aid of the transformation formulas (5.9.43), (6.4.163):

[(σ + kΩ)2 − κ2] ∆� = ∂[(σ + kΩ)W ]/∂� + 2kΩW/�, (6.4.173)

[(σ + kΩ)2 − κ2]� ∆ϕ = 2iΩ ∂W/∂� + ik(σ + kΩ)W/�, (6.4.174)

(σ + kΩ)2 ∆z = ∂[(σ + kΩ)W ]/∂z, (6.4.175)

δ� + ∇ · (� ∆�r) = 0. (6.4.176)

We insert into Eq. (6.4.176) for δ� = (σ + kΩ)�2W/(1 + 1/n)P from Eq. (6.4.164), and for ∆�r from
Eqs. (6.4.173)-(6.4.175), to obtain the basic eigenvalue equation for the nonaxisymmetric stability of a
differentially rotating, isentropic polytropic torus:

(σ + kΩ)2�2W/(1 + 1/n)P + (1/�) ∂{��(σ + kΩ)2(∂W/∂�)/[(σ + kΩ)2 − κ2]}
/
∂�

−k2(σ + kΩ)2�W/�2[(σ + kΩ)2 − κ2] + [k(σ + kΩ)W/2�] ∂{�κ2/Ω[(σ + kΩ)2 − κ2]}
/
∂�

+∂(� ∂W/∂z)
/
∂z = 0, (n �= −1). (6.4.177)

The Rayleigh criterion (6.4.160) for nonaxisymmetric oscillations can be derived at once from this
equation in the high wavenumber limit, by looking for solutions of the form

W (�, z) = W0 exp[i(j
� + jzz)], (W0 = const; j
, jz → ∞). (6.4.178)
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Preserving in Eq. (6.4.177) only the leading terms, we get the dispersion relation

�W0{(σ + kΩ)2j2



/
[(σ + kΩ)2 − κ2] + j2

z} = 0 or (σ + kΩ)2 = κ2j2
z/(j2


 + j2
z ). (6.4.179)

Stability requires (σ + kΩ)2 > 0, i.e. κ2 > 0, with the eigenvalue spectrum in the range −κ − kΩ <
σ < κ − kΩ, (0 < j2

z/(j2

 + j2

z ) < 1).
The nonaxisymmetric instability is put best into evidence for modes which are even functions of

the height z, although it will turn out that these modes are essentially independent of z. To make Eq.
(6.4.177) analytically tractable, it is further assumed that (σ + kΩ)2 � κ2, so this equation transforms
with the substitution Q = (σ + kΩ)W = δP/� into

(σ + kΩ)�2Q
/
(1 + 1/n)P − (1/�) ∂{[��(σ + kΩ)2/κ2] ∂[Q/(σ + kΩ)]/∂�}

/
∂�

+k2(σ + kΩ)�Q/κ2�2 − (kQ/2�) ∂(�/Ω)/∂� + [1/(σ + kΩ)] ∂(� ∂Q/∂z)
/
∂z = 0. (6.4.180)

Performing the derivative of σ + kΩ(�), we get with Eq. (6.4.160):

(σ + kΩ)2
{
�2Q/(1 + 1/n)P − (1/�) ∂[(��/κ2) ∂Q/∂�]

/
∂� + k2�Q/κ2�2

}
−[2k(σ + kΩ)Q/�] ∂(Ω�/κ2)

/
∂� + ∂(� ∂Q/∂z)

/
∂z = 0. (6.4.181)

With the new variable x = � − �0 � �0 this equation becomes approximately

(σ + kΩ)2
[
�2Q

/
(1 + 1/n)P − (1/κ2) ∂(� ∂Q/∂x)

/
∂x + k2�Q/κ2�20

]
−[2kΩ0(σ + kΩ)Q/κ2�0] ∂�/∂x + ∂(� ∂Q/∂z)

/
∂z = 0, (n �= −1), (6.4.182)

where via Eq. (6.4.160) κ2 ≈ 2(2 − q)Ω2
0 = const, � ≈ �0 = const, and Ω ≈ Ω0 = const, excepting in the

term σ + kΩ.

Solutions of this equation are sought under the form

Q(x, z) =
∞∑

α=0

Uα(x) Vα(x, z). (6.4.183)

To get rid of ∂Q/∂z, the functions Vα(x, z) are chosen to obey the differential equation

∂(� ∂Vα/∂z)
/
∂z = −λα�2Vα/P, (λα = const). (6.4.184)

They are also specified to be orthogonal functions of z with weight �2/P :

∫ z1

−z1

(�2/P ) Vα(x, z) Vβ(x, z) dz = δαβNα(x). (6.4.185)

Nα(x) is referred to as a suitable normalization function, and δαβ is the Kronecker delta, while
the integration is considered for constant x, (−a ≤ x ≤ a) between the lower and upper height z1 =
∓[(2q − 3)(a2 − x2)]1/2, (q > 3/2) of the torus, resulting from the condition � = 0 in Eq. (6.4.158).

With the new dimensionless variable ζ = z/z1, Eq. (6.4.158) becomes

� = �0[(a2 − x2)/a2]n(1 − ζ2)n, (n �= −1,±∞), (6.4.186)

and Eq. (6.4.184) reads

∂[(1 − ζ2)n ∂Vα/∂ζ]
/
∂ζ + λαa2�0(2q − 3)(1 − ζ2)n−1Vα/P0 = 0, (P0 = K�

1+1/n
0 ; x = const).

(6.4.187)

After simplification with (1 − ζ2)n−1 this equation turns into Eq. (3.10.156) for the Gegenbauer
polynomials G

n−1/2
α (ζ) ∝ Vα(x, z) of order α and index n − 1/2 with the eigenvalue λα = α(α + 2n −

1)P0/(2q − 3)�0a
2.
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We now multiply Eq. (6.4.182) by Vβ and integrate with respect to z, taking into account Eqs.
(6.4.183)-(6.4.185) with the summation convention over the repeated index α :

[(σ + kΩ)2/(1 + 1/n) − λβ ]NβUβ + [(σ + kΩ)2/κ2]
{
− Uα

∫ z1

−z1

Vβ [∂(� ∂Vα/∂x)
/
∂x] dz

−∂

[
(∂Uα/∂x)

∫ z1

−z1

�VαVβ dz

]/
∂x + (k2/�20)Uα

∫ z1

−z1

�VαVβ dz

}

−[2kΩ0(σ + kΩ)/κ2�0]Uα

∫ z1

−z1

VαVβ(∂�/∂x) dz = 0, (α, β = 0, 1, 2, ...). (6.4.188)

In the zeroth approximation the basic function is independent of z :

Q = Q(x) = U0(x) V0, (V0(x, z) ∝ G
n−1/2
0 (ζ) = 1; λ0 = 0). (6.4.189)

Let us consider Eq. (6.4.188) with α, β = 0 :

[(σ + kΩ)2U0/(1 + 1/n)]
∫ z1

−z1

�2 dz/P + [(σ + kΩ)2/κ2][−d(Σ dU0/dx)
/
dx + k2ΣU0/�20]

−[2kΩ0(σ + kΩ)U0/κ2�0] dΣ/dx = 0. (6.4.190)

The surface density is via Eqs. (5.10.96), (6.4.186) equal to

Σ(x) =
∫ z1

−z1

�(x, z) dz = 2�0a(2q − 3)1/2[(a2 − x2)/a2]n+1/2

∫ 1

0

(1 − ζ2)n dζ

= �0a(2q − 3)1/2[(a2 − x2)/a2]n+1/2

∫ 1

0

t−1/2(1 − t)n dt

= �0a(2q − 3)1/2[(a2 − x2)/a2]n+1/2B(1/2, n + 1), (−1 < n < ∞; q > 3/2). (6.4.191)

Similarly, we find with Eqs. (5.10.96), (6.4.159), (6.4.186), (C.11):
∫ z1

−z1

�2 dz/P = (2a�
1−1/n
0 /K)(2q − 3)1/2[(a2 − x2)/a2]n−1/2

∫ 1

0

(1 − ζ2)n−1 dζ

= [2(n + 1)�30�0/(2q − 3)GMa][(a2 − x2)/a2]n−1/2

∫ 1

0

t−1/2(1 − t)n−1 dt = [2(n + 1)Σ
/
(2q − 3)Ω2

0(a
2 − x2)] B(1/2, n)/B(1/2, n + 1) = (n + 1)(2n + 1)Σ/n(2q − 3)Ω2

0(a
2 − x2),

(0 < n < ∞; q > 3/2; GM/�30 = Ω2
0; B(1/2; n)/B(1/2, n + 1) = (2n + 1)/2n). (6.4.192)

Then, Eq. (6.4.190) writes as

d(Σ dU0/dx)
/
dx + U0

[
− (2n + 1)κ2Σ/(2q − 3)Ω2

0(a
2 − x2) − k2Σ/�20

+2kΩ0(dΣ/dx)
/
(σ + kΩ)�0

]
= 0, (0 < n < ∞; q > 3/2). (6.4.193)

This equation possesses a regular singularity at the corotation surface σ + kΩ = σ + kϕ/t = 0,
when there occurs neutral stability of the perturbations (6.4.161) and (6.4.162), (cf. Sec. 5.9.3). This
singularity can be avoided, if we have concomitantly dΣ/dx = −2(n + 1/2)Σx/(a2 − x2) = 0 in virtue of
Eq. (6.4.191). This condition is nontrivially fulfilled at x = 0.

We expand σ + kΩ = σ + kΩ0[(�0 + x)/�0]−q ≈ σ + kΩ0 − kqΩ0x/�0 near x/�0 ≈ 0, and observe that
κ2 ≈ 2(2 − q)Ω2

0 via Eq. (6.4.160). With these approximations Eq. (6.4.193) can be rewritten under the
form

d(Σ dU0/dx)
/
dx − [(2n + 1)ΣU0/(a2 − x2)]

{
2(2 − q)/(2q − 3) + k2(a2 − x2)/(2n + 1)�20

+2x
/
[(σ + kΩ0)�0/kΩ0 − qx]

}
= 0, (0 < n < ∞; q > 3/2). (6.4.194)

If q ≥ 2, the Rayleigh criterion (6.4.160) is not satisfied, and the polytropic torus is unstable to
axisymmetric perturbations. If q �≈ 2 and k sufficiently small, the second term in the braces k2(a2 −
x2)/(2n+1)�20 can be neglected with respect to the first one. If x ≈ 0, the condition of neutral (marginal)
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stability σ + kΩ = 0 becomes σ + kΩ0 ≈ 0. In this case Eq. (6.4.194) turns for the neutral modes
σ + kΩ0 ≈ 0 – by using the derivative of Eq. (6.4.191) – into the Gegenbauer equation

(a2 − x2) d2U0/dx2 − (2n + 1)x dU0/dx − 2(2n + 1)(3 − q2)U0/q(2q − 3) = 0. (6.4.195)

Comparing with Eq. (3.10.156) we observe that solutions in terms of Gegenbauer polynomials U0(x) ∝
Gn

γ (x/a) exist only if

γ(γ + 2n) = 2(2n + 1)(q2 − 3)/q(2q − 3), (0 < n < ∞; q > 3/2). (6.4.196)

γ = 0 and γ = 1 are the relevant values of γ for which a value of q exists within the interval (3/2, 2]. If
γ = 1, we get q = 2, and the second term in the brace of Eq. (6.4.194) cannot be neglected with respect
to the first one. We are left with γ = 0, implying via Eq. (3.10.155) U0 ∝ Gn

0 = 1, and by Eq. (6.4.196)
q = 31/2. In the neighborhood of the neutral mode there occurs stability if q < 31/2, and instability if
q > 31/2 (Papaloizou and Pringle 1985). Thus – although the Rayleigh criterion (6.4.160) is satisfied –
polytropic tori with 31/2 < q < 2 are subject to nonaxisymmetric instabilities in the fundamental mode,
driven by coupling of edge waves (Goldreich et al. 1986).

Further investigations on the modes of differentially rotating polytropic tori and disks have been
effected for instance by Blaes (1985), Loska (1986), and Jaroszyński (1986). Christodoulou et al. (1997)
study the intrinsic stability of zero-thickness galaxy rings (gravity g-modes, so-called I, J, L-modes),
adopting an artificial external potential Φe ∝ ln �, the polytropic pressure law (5.10.97) with 0.5 ≤ nΣ ≤ 5,
and the power-law rotation profile (6.4.153) with q = 1.

Hachisu et al. (1988) have investigated the stability of rotating equilibrium tori with polytropic
indices n = 0, 0.5, 1, 1.5, 2.5, 3, and initial specific angular momentum distribution similar to that of the
contracting homogeneous sphere from Eq. (3.5.4). A dimensionless quantity

F = (KnG3−2nM10−4nJ2n−6)1/(n+1), (6.4.197)

is introduced, which is composed of the polytropic constant K (specifying the entropy S), the gravitational
constant G, the total mass M, and the total angular momentum J = fJMRv, where v is the average
rotation velocity over the total mass, R the total radius, and fJ a dimensionless numerical factor of order
unity, depending on the polytropic structure.

In fact, an initial angular momentum distribution like that from Eq. (3.5.4) cannot be an equilibrium
structure, because it belongs to a sphere, and a rotating cloud must evolve to a flattened configuration
in order to acquire equilibrium. The internal energy U of a polytropic equilibrium configuration can be
expressed by an integral like Eq. (2.6.95), which turns into U = fUPM/� = fUK�1/nM = f ′

UK�
1/n
m M =

f ′′
UKM1+1/nR−3/n, where P = K�1+1/n and � are average values of pressure and density over the total

mass, �m ∝ M/R3 is the mean density of the configuration, and fU , f ′
U , f ′′

U are coefficients of order unity.
Likewise, the rotational kinetic energy is Ekin = fEMv2, and the gravitational energy is according to
Eq. (2.6.137) equal to |W | = fW GM2/R, where fW is again a factor of order unity.

If the rotating polytrope contracts in a homologous fashion with local and global conservation of mass
and angular momentum, the ratios

α = U/|W | = f ′′
Uf−1

W KG−1M1/n−1R−3/n+1 = f ′′
Uf

3/n−1
J f−1

W KG−1M4/n−2J−3/n+1v3/n−1;

τ = Ekin/|W | = fEf−1
W G−1M−1Rv2 = fEf−1

W f−1
J G−1M−2Jv, (6.4.198)

change in terms of the initial conditions, denoted by zero subscripts, as

α = α0(R/R0)(n−3)/n; τ = τ0(v/v0)2(R/R0) = τ0(R/R0)−1, (6.4.199)

where v/v0 = R0/R by conservation of angular momentum, and the f -coefficients are approximately
constant during contraction. From Eq. (6.4.199) we observe that ατ (n−3)/n = const (Miyama 1992).
This relationship is equivalent to F = const from Eq. (6.4.197), if we insert for α, τ from Eq. (6.4.198).
Since M, J are assumed constant, the quantity F must remain constant during an axisymmetric, adiabatic
collapse.

If a collapsed equilibrium state is found with the same distribution of angular momentum as the initial
state, it can be considered as a final state of cloud collapse, and if this state is unstable to fragmentation,
it may be conjectured that the cloud fragments into pieces.
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Fig. 6.4.8 Qualitative features of a polytropic model sequence if 0 ≤ n ≤ 3. Dynamical instability towards
nonaxisymmetric disturbances sets in at point A. Dynamical, axisymmetric, nonlinear ring mode instability sets
in at point B in the spheroidal sequence – at the same F -value where the toroidal sequence attains its maximum
at point D, (FB = FD). Point C is the bifurcation point from the spheroidal to the toroidal sequence (Hachisu et
al. 1988).

In the well studied particular case of constant density polytropes n = 0, the Maclaurin spheroids
become secularly unstable to nonaxisymmetric barlike perturbations (sectorial modes) at the first
point of bifurcation, where the secularly and dynamically stable Jacobi sequence branches off and
τ = Ekin/|W | = 0.1375 (Secs. 5.7.4, 5.8.2, Christodoulou et al. 1995a). The first dynamical insta-
bility point towards nonaxisymmetric barlike distortions sets in at τ = 0.2738. If strict axisymmetry is
maintained, the Maclaurin spheroids become secularly unstable to axisymmetric ring deformations at
τ = 0.3589, where the Dyson-Wong toroids (Dyson 1892, 1893, Wong 1974) bifurcate from the Maclaurin
sequence. Dynamical instability of Maclaurin spheroids to axisymmetric (ringlike) perturbations seems
to set in τ = 0.4512, rather than at τ = 0.4574, as previously thought (Ostriker and Peebles 1973, p. 468,
Hachisu et al. 1987, Table 4). And at τ = 0.4512 the Maclaurin toroidal sequence branches off from the
Maclaurin spheroidal sequence. The homogeneous Dyson-Wong toroids rotate throughout with constant
angular velocity (rigid rotation), and do not have the same angular momentum distribution with mass as
the Maclaurin toroids, which possess the same angular momentum distribution with mass as the original
Maclaurin spheroids, i.e. the inner edge of Maclaurin toroids is nonrotating, for instance.

Fig. 6.4.8 schematically highlights the primary features of polytropic equilibrium sequences as calcu-
lated by Hachisu et al. (1988). The value of F from Eq. (6.4.197) determines the fate of the collapsing
cloud. If F > FA (point A in Fig. 6.4.8), the cloud evolves to a dynamically (not necessarily secularly)
stable state, and if F < FD (point D of toroidal structure in Fig. 6.4.8) the configuration is toroidal,
rather than spheroidal, because τ for the toroidal sequence is smaller than for the spheroidal sequence
(FB = FD). And finally, at FC the linear bifurcation point appears from which the toroidal sequence
starts. Hachisu et al. (1987, 1988) conjecture that F < FD, (τ > 0.41) is a condition for ring fragmenta-
tion, like κ2/πG�0 < 1, where �0 is the equatorial density. For all considered polytropic indices 0 ≤ n ≤ 3
with the angular momentum distribution (3.5.4) there bifurcates at τ ≈ 0.45 a toroidal sequence from
the spheroidal sequence, like in the uniform density case n = 0. These results refer to axisymmetric
disturbances, while Ostriker and Bodenheimer (1973) found a value of τ ≈ 0.26 if n = 1.5, 3 for the
k = 2, [∆r ∝ P k

j (µ) exp(ikϕ)] nonaxisymmetric dynamical instability of spheroidal configurations (cf.
Sec. 3.8.4, Fig. 3.8.2) – a result confirmed by the numerical work of Hachisu et al. (1988).

If the angular momentum is constant throughout the structure, the calculated sequences are always
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toroidal, and the nonaxisymmetric dynamical instability points FA are estimated to occur at τ � 0.14,
rather than at τ ≈ 0.26 (Hachisu et al. 1988). Indeed, for differential rotation laws of the form
Ω ∝ �−q, (1.5 ≤ q ≤ 2) self-gravitating n = 1.5 tori are dynamically unstable to nonaxisymmetric
(ellipsoidal) disturbances if τ > 0.16, rather than if τ > 0.26, as for the previously mentioned spheroidal
models (Tohline and Hachisu 1990). But all n = 1.5 tori in the range 0.16 ≤ τ ≤ 0.27 do not exhibit
fragmentation: A central ellipsoid is formed, surrounded by a disk of high specific angular momentum.
The dynamical instability driven by the self-gravity of the torus is distinctly different from the previously
considered Papaloizou-Pringle instability in disks with negligible self-gravity [Eqs. (6.4.153)-(6.4.196)].

Transport of mass and angular momentum has been investigated for a special self-gravitating disk
with initial central mass to disk mass ratio of 1.5, and polytropic indices n, nΣ=1.5 (Laughlin et al. 1998).
The primary unstable nonaxisymmetric k = 2 mode saturates and evolves into a quasi-steady two-armed
spiral due to nonlinear mode coupling.

Woodward et al. (1994) have put into evidence four different types of nonaxisymmetric eigenmodes
(one of which is related to the Papaloizou-Pringle instability) in n = 1.5 disks with constant specific
angular momentum, and central masses having 0.2–5 disk masses.

The tidal disruption of a spherical polytropic star due to a surrounding massive ring (disk) takes
always place if 0.292 < n < 3, provided that the star extends up to the point where the total potential
has a local minimum (axisymmetric Roche problem). If n < 0 or n > 3, tidal stripping of the stellar
surface never occurs, and in the intermediate region 0 < n < 0.292 runaway excretion of the star depends
on the mass ratio between star and ring (Woodward et al. 1992).

Doubtlessly, with the continuing computerization of science countless polytropic models will be calcu-
lated, but probably without reaching the generality, elegance, and deep insight of earlier analytical work.
Obviously, polytropes are amply spread out over the whole astrophysical literature. If the author would
have been aware of this fact, this book would not have been written.
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Appendix A

Principal Constants Used in this Book (Cox and Giuli 1968, Gerthsen et al.
1977)

Atomic mass unit H = 1/NA = m(12C)/12 = 1.66055 × 10−24 g

Avogadro number NA = (6.02217 ± 4) × 1023 mole−1

Boltzmann constant k = (1.38062 ± 6) × 10−16 erg K−1

Gas constant R = kNA = (8.3143 ± 3) × 107 erg K−1 mole−1

Gravitational constant G = (6.673 ± 3) × 10−8 erg cm g−2

Planck’s constant h = (6.62620 ± 5) × 10−27 erg s

Radiation pressure constant a = 8π5k4/15c3h3 = (7.5647 ± 10) × 10−15 erg cm−3 K−4

Rest mass of electron me = (9.10956 ± 5) × 10−28 g

Rest mass of hydrogen atom 1H = 1.6733 × 10−24 g

Rest mass of neutron mn = 1.67482 × 10−24 g

Rest mass of proton mp = (1.67261 ± 1) × 10−24 g

Solar effective temperature T� = 5800 K

Solar luminosity L� = 3.90 × 1033 erg s−1

Solar mass M� = 1.989 × 1033 g

Solar radius r� = 6.960 × 1010 cm

Stefan-Boltzmann constant σ = ac/4 = (5.6696 ± 10) × 10−5 erg cm−2 K−4 s−1

Velocity of light in vacuo c = (2.997925 ± 1) × 1010 cm s−1

Appendix B

Some Vector Differentials in Orthogonal Curvilinear Coordinates

The square of the line element ds in N -dimensional curvilinear space is a scalar of the form (e.g.
Landau and Lifschitz 1987)

ds2 =
N∑

i=1

N∑
k=1

gik dqi dqk, (gik = gki). (B.1)

dqi is the increment along the coordinate axis qi, (1 ≤ i ≤ N), and gik are the components of the
so-called metric tensor. In orthogonal coordinates there is gik = 0 if i �= k, and Eq. (B.1) becomes in
three-dimensional space N = 3 equal to

ds2 = g11 dq2
1 + g22 dq2

2 + g33 dq2
3 . (B.2)

667



668 Appendix B

If �e1, �e2, �e3 denote the unit vectors along the curvilinear orthogonal coordinate axes q1, q2, q3, we can
write for the infinitesimal change d�r of the position vector �r = �r [r1(q1, q2, q3), r2(q1, q2, q3), r3(q1, q2, q3)] :

d�r = (∂�r/∂q1) dq1 + (∂�r/∂q2) dq2 + (∂�r/∂q3) dq3 = |∂�r/∂q1| dq1 �e1

+|∂�r/∂q2| dq2 �e2 + |∂�r/∂q3| dq3 �e3 = h1 dq1 �e1 + h2 dq2 �e2 + h3 dq3 �e3,

(∂�r/∂qi = |∂�r/∂qi|�ei = hi�ei; |∂�r/∂qi| = hi; i = 1, 2, 3). (B.3)

r1, r2, r3 are the components of �r along the coordinate axes �e1, �e2, �e3, and ∂�r/∂qi is the tangent vector
to the qi-axis, being directed along the unit vector �ei. The quantities hi are called the scale factors. The
line element (B.2) becomes

ds2 = d�r · d�r =
3∑

i=1

h2
i dq2

i =
3∑

i=1

gii dq2
i , (ds = |d�r|; h2

i = gii), (B.4)

while the volume element is in our right-handed coordinate system equal to

dV = (h1 dq1 �e1) · [(h2 dq2 �e2) × (h3 dq3 �e3)] = h1h2h3 dq1dq2dq3,
(
�e1 · (�e2 × �e3) = 1

)
. (B.5)

Since the curvilinear coordinate system (q1, q2, q3) is orthogonal, the following three scalar products
are zero:

(∂�r/∂q1) · (∂�r/∂q2) = h1h2 �e1 · �e2 = 0; (∂�r/∂q2) · (∂�r/∂q3) = h2h3 �e2 · �e3 = 0;
(∂�r/∂q3) · (∂�r/∂q1) = h3h1 �e3 · �e1 = 0. (B.6)

We derive these three equations with respect to q3, q1, and q2, respectively (e.g. Batchelor 1967):

∂[(∂�r/∂q1) · (∂�r/∂q2)]/∂q3 = (∂�r/∂q1) · (∂2�r/∂q2∂q3) + (∂�r/∂q2) · (∂2�r/∂q3∂q1) = 0, (B.7)

∂[(∂�r/∂q2) · (∂�r/∂q3)]/∂q1 = (∂�r/∂q2) · (∂2�r/∂q3∂q1) + (∂�r/∂q3) · (∂2�r/∂q1∂q2) = 0, (B.8)

∂[(∂�r/∂q3) · (∂�r/∂q1)]/∂q2 = (∂�r/∂q3) · (∂2�r/∂q1∂q2) + (∂�r/∂q1) · (∂2�r/∂q2∂q3) = 0. (B.9)

Inserting into Eq. (B.7) for the derivatives ∂2�r/∂q2∂q3, ∂2�r/∂q3∂q1 their values from Eqs. (B.8) and
(B.9), we get

∂[(∂�r/∂q1) · (∂�r/∂q2)]/∂q3 = −2(∂�r/∂q3) · (∂2�r/∂q1∂q2) = −2h3 �e3 · [∂(h1�e1)/∂q2]
= −2h3 �e3 · [(∂h1/∂q2) �e1 + h1(∂�e1/∂q2)] = −2h1h3 �e3 · (∂�e1/∂q2) = 0, (B.10)

where we have used ∂�r/∂qi = hi�ei, (i = 1, 2, 3) from Eq. (B.3), and �e1 · �e3 = 0. Because

∂2�r/∂q1∂q2 = ∂2�r/∂q2∂q1 or ∂(h1�e1)/∂q2 = ∂(h2�e2)/∂q1, (B.11)

Eq. (B.10) also yields −2h2h3 �e3 · (∂�e2/∂q1) = 0, showing that the vectors ∂�e1/∂q2 and ∂�e2/∂q1 are
perpendicular to �e3. On the other hand, the vector ∂�e1/∂q2 is also perpendicular to �e1, and the vector
∂�e2/∂q1 perpendicular to �e2. This can be shown by observing that �e1 · (∂�e1/∂q2) = (∂�e 2

1 /∂q2)
/
2 = 0

and �e2 · (∂�e2/∂q1) = 0, because �ei · �ei = |�ei|2 = 1 = const, (i = 1, 2, 3). Thus, the vector ∂�e1/∂q2 must be
directed along �e2, and the vector ∂�e2/∂q1 directed along �e1. Therefore, we can split the second vectorial
equality (B.11)

(∂h1/∂q2) �e1 + h1 ∂�e1/∂q2 = (∂h2/∂q1) �e2 + h2 ∂�e2/∂q1, (B.12)

into two parts directed along the unit vectors �e2 and �e1, respectively:

∂�e1/∂q2 = (∂h2/∂q1) �e2/h1; ∂�e2/∂q1 = (∂h1/∂q2) �e1/h2. (B.13)

By circular permutation of the indices we get four other similar equations, linking the unit vectors to
their spatial derivatives:

∂�e1/∂q3 = (∂h3/∂q1) �e3/h1; ∂�e2/∂q3 = (∂h3/∂q2) �e3/h2;
∂�e3/∂q1 = (∂h1/∂q3) �e1/h3; ∂�e3/∂q2 = (∂h2/∂q3) �e2/h3. (B.14)
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The derivatives ∂�ei/∂qi are easily found (e.g. Batchelor 1967):

∂�e1/∂q1 = ∂(�e2 × �e3)/∂q1 = (∂�e2/∂q1) × �e3 + �e2 × (∂�e3/∂q1)
= (∂h1/∂q2)(�e1 × �e3)/h2 + (∂h1/∂q3)(�e2 × �e1)/h3 = −(∂h1/∂q2) �e2/h2 − (∂h1/∂q3) �e3/h3;
∂�e2/∂q2 = −(∂h2/∂q3) �e3/h3 − (∂h2/∂q1) �e1/h1;
∂�e3/∂q3 = −(∂h3/∂q1) �e1/h1 − (∂h3/∂q2) �e2/h2. (B.15)

The so-called “del” or “nabla” operator is a vector defining the infinitesimal change of a scalar or
vector function along the orthogonal components hi dqi, (i = 1, 2, 3) of the line element ds (e.g. Spiegel
1968):

∇ = (�e1/h1) ∂ /∂q1 + (�e2/h2) ∂ /∂q2 + (�e3/h3) ∂ /∂q3. (B.16)

The ∇ operator acting on a scalar function f = f(q1, q2, q3) is a vector, called gradient of f

∇f = grad f = (�e1/h1) ∂f/∂q1 + (�e2/h2) ∂f/∂q2 + (�e3/h3) ∂f/∂q3. (B.17)

When ∇ acts on the vector

�F = F1�e1 + F2�e2 + F3�e3,
(
�F = �F (F1, F2, F3); Fi = Fi(q1, q2, q3); i = 1, 2, 3

)
, (B.18)

we can form the scalar or the vectorial product between ∇ and �F . The scalar product between ∇ and �F
is a scalar, called divergence of �F . After some algebra we get by inserting Eqs. (B.13)-(B.16), (B.18):

∇ · �F = div �F = (�e1/h1) · (∂ �F/∂q1) + (�e2/h2) · (∂ �F/∂q2) + (�e3/h3) · (∂ �F/∂q3)
= (1/h1h2h3) [∂(h2h3F1)/∂q1 + ∂(h3h1F2)/∂q2 + ∂(h1h2F3)/∂q3]. (B.19)

The vector product between ∇ and �F is a vector called curl of �F

∇× �F = curl �F = (�e1/h1) × (∂ �F/∂q1) + (�e2/h2) × (∂ �F/∂q2) + (�e3/h3) × (∂ �F/∂q3)
= (�e1/h2h3)[∂(h3F3)/∂q2 − ∂(h2F2)/∂q3] + (�e2/h3h1)[∂(h1F1)/∂q3 − ∂(h3F3)/∂q1]
+(�e3/h1h2)[∂(h2F2)/∂q1 − ∂(h1F1)/∂q2], (B.20)

where again we have used Eqs. (B.13)-(B.16), (B.18), and �e1 × �e2 = �e3, �e2 × �e3 = �e1, �e3 × �e1 = �e2.

The divergence of the gradient of the scalar function f yields the Laplacian operator

∇ · (∇f) = ∇2f = div (grad f) = (1/h1h2h3)
{
∂[(h2h3/h1) ∂f/∂q1]

/
∂q1

+∂[(h3h1/h2) ∂f/∂q2]
/
∂q2 + ∂[(h1h2/h3) ∂f/∂q3]

/
∂q3

}
. (B.21)

The Laplacian of a vector �F is defined through Eq. (B.21), (Hughes and Gaylord 1964):

∇2 �F = ∇2(F1�e1) + ∇2(F2�e2) + ∇2(F3�e3) = (1/h1h2h3)
{
∂[(h2h3/h1)

×∂(F1�e1 + F2�e2 + F3�e3)/∂q1]
/
∂q1 + ∂[(h3h1/h2) ∂(F1�e1 + F2�e2 + F3�e3)/∂q2]

/
∂q2

+∂[(h1h2/h3) ∂(F1�e1 + F2�e2 + F3�e3)/∂q3]
/
∂q3

}
. (B.22)

The material (substantial or Stokes) derivative of a scalar or vector function Q is defined by

DQ/Dt = ∂Q/∂t + (�v · ∇)Q = ∂Q/∂t + (v1/h1) ∂Q/∂q1 + (v2/h2) ∂Q/∂q2 + (v3/h3) ∂Q/∂q3.
(B.23)

t denotes the time, and �v = d�r/dt the velocity of a mass element. The symbol Q in Eq. (B.23) may
be replaced by a scalar function f = f [t, q1(t), q2(t), q3(t)], (vi = |∂�r/∂qi| dqi/dt = hi dqi/dt; i = 1, 2, 3)

Df/Dt = ∂f/∂t + (v1/h1) ∂f/∂q1 + (v2/h2) ∂f/∂q2 + (v3/h3) ∂f/∂q3, (B.24)
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or by a vector function �F = F1�e1 + F2�e2 + F3�e3, Fi = Fi[t, q1(t), q2(t), q3(t)], where the nabla operator
acts on both, the vector components and the unit vectors �ei. In particular, �F may be replaced by the
velocity vector �v = �v

{
v1[t, q1(t), q2(t), q3(t)], v2[t, q1(t), q2(t), q3(t)], v3[t, q1(t), q2(t), q3(t)]

}
:

D�v/Dt = ∂�v/∂t + (�v · ∇)�v = (∂v1/∂t)�e1 + (∂v2/∂t)�e2 + (∂v3/∂t)�e3

+(v1/h1) ∂(v1�e1 + v2�e2 + v3�e3)/∂q1 + (v2/h2) ∂(v1�e1 + v2�e2 + v3�e3)/∂q2

+(v3/h3) ∂(v1�e1 + v2�e2 + v3�e3)/∂q3 = �e1 [∂v1/∂t + (v1/h1) ∂v1/∂q1 + (v2/h2) ∂v1/∂q2

+(v3/h3) ∂v1/∂q3 + (v2/h1h2)(v1 ∂h1/∂q2 − v2 ∂h2/∂q1) + (v3/h3h1)(v1 ∂h1/∂q3 − v3 ∂h3/∂q1)]
+�e2 [∂v2/∂t + (v1/h1) ∂v2/∂q1 + (v2/h2) ∂v2/∂q2 + (v3/h3) ∂v2/∂q3

+(v3/h2h3)(v2 ∂h2/∂q3 − v3 ∂h3/∂q2) + (v1/h1h2)(v2 ∂h2/∂q1 − v1 ∂h1/∂q2)]
+�e3 [∂v3/∂t + (v1/h1) ∂v3/∂q1 + (v2/h2) ∂v3/∂q2 + (v3/h3) ∂v3/∂q3

+(v1/h3h1)(v3 ∂h3/∂q1 − v1 ∂h1/∂q3) + (v2/h2h3)(v3 ∂h3/∂q2 − v2 ∂h2/∂q3)]. (B.25)

Applications
(i) Cartesian coordinates x1, x2, x3.x1, x2, x3.x1, x2, x3. There is q1 = x1, q2 = x2, q3 = x3, and �F = �F [F1(x1, x2, x3),

F2(x1, x2, x3), F3(x1, x2, x3)], where F1, F2, F3 are the components of �F along the coordinate axes, and

ds2 = dx2
1 + dx2

2 + dx2
3; dV = dx1 dx2 dx3. (B.26)

All derivatives of the unit vectors are zero, since h1 = h2 = h3 = 1 = const :

∇f = �e1 ∂f/∂x1 + �e2 ∂f/∂x2 + �e3 ∂f/∂x3, (B.27)

∇ · �F = ∂F1/∂x1 + ∂F2/∂x2 + ∂F3/∂x3, (B.28)

∇× �F = �e1 (∂F3/∂x2 − ∂F2/∂x3) + �e2 (∂F1/∂x3 − ∂F3/∂x1) + �e3 (∂F2/∂x1 − ∂F1/∂x2), (B.29)

∇2f = ∂2f/∂x2
1 + ∂2f/∂x2

2 + ∂2f/∂x2
3. (B.30)

If the scalar f is replaced by the vector function �F = F1�e1 + F2�e2 + F3�e3, we find from Eq. (B.22):

∇2 �F = ∇2(F1�e1) + ∇2(F2�e2) + ∇2(F3�e3) = �e1 (∂2F1/∂x2
1 + ∂2F1/∂x2

2 + ∂2F1/∂x2
3)

+�e2 (∂2F2/∂x2
1 + ∂2F2/∂x2

2 + ∂2F2/∂x2
3) + �e3 (∂2F3/∂x2

1 + ∂2F3/∂x2
2 + ∂2F3/∂x2

3). (B.31)

The material derivatives are

Df/Dt = ∂f/∂t + v1 ∂f/∂x1 + v2 ∂f/∂x2 + v3 ∂f/∂x3, (B.32)

D�v/Dt = �e1 (∂v1/∂t + v1 ∂v1/∂x1 + v2 ∂v1/∂x2 + v3 ∂v1/∂x3)
+�e2 (∂v2/∂t + v1 ∂v2/∂x1 + v2 ∂v2/∂x2 + v3 ∂v2/∂x3)
+�e3 (∂v3/∂t + v1 ∂v3/∂x1 + v2 ∂v3/∂x2 + v3 ∂v3/∂x3). (B.33)

(ii) Spherical coordinates r, λ, ϕ.r, λ, ϕ.r, λ, ϕ. There is �er = �e1, �eλ = �e2, �eϕ = �e3; q1 = r, q2 = λ, q3 = ϕ;
�F = �F [Fr(r, λ, ϕ), Fλ(r, λ, ϕ), Fϕ(r, λ, ϕ)], where Fr, Fλ, Fϕ are the components of the vector �F along
the spherical coordinate axes: The r-axis is directed along the radius vector �r, the zenith angle is λ,
and ϕ is the azimuth angle. Note, that the coordinate system (r, λ, ϕ) is right-handed, whereas the
(r, ϕ, λ)-system is left-handed:

ds2 = dr2 + r2 dλ2 + r2 sin2 λ dϕ2; dV = r2 sinλ dr dλ dϕ;
hr = h1 = 1; hλ = h2 = r; hϕ = h3 = r sinλ, (B.34)

∂�er/∂r = 0; ∂�er/∂λ = �eλ; ∂�er/∂ϕ = �eϕ sinλ; ∂�eλ/∂r = 0; ∂�eλ/∂λ = −�er;
∂�eλ/∂ϕ = �eϕ cos λ; ∂�eϕ/∂r = 0; ∂�eϕ/∂λ = 0; ∂�eϕ/∂ϕ = −�er sinλ − �eλ cos λ, (B.35)
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∇f = �er ∂f/∂r + (�eλ/r) ∂f/∂λ + (�eϕ/r sinλ) ∂f/∂ϕ, (B.36)

∇ · �F = (1/r2) ∂(r2Fr)/∂r + (1/r sinλ) ∂(Fλ sinλ)/∂λ + (1/r sinλ) ∂Fϕ/∂ϕ, (B.37)

∇× �F = (�er/r sinλ) [∂(Fϕ sinλ)/∂λ − ∂Fλ/∂ϕ] + (�eλ/r) [(1/ sinλ) ∂Fr/∂ϕ − ∂(rFϕ)/∂r]
+(�eϕ/r) [∂(rFλ)/∂r − ∂Fr/∂λ], (B.38)

∇2f = (1/r2) ∂(r2 ∂f/∂r)
/
∂r + (1/r2 sinλ) ∂(sinλ ∂f/∂λ)

/
∂λ + (1/r2 sin2 λ) ∂2f/∂ϕ2. (B.39)

If we replace f by �F , and take into account Eqs. (B.22), (B.35), we get

∇2 �F = �er [∇2Fr − 2Fr/r2 − (2/r2 sinλ) ∂(Fλ sinλ)/∂λ − (2/r2 sinλ) ∂Fϕ/∂ϕ]

+�eλ [(2/r2) ∂Fr/∂λ + ∇2Fλ − Fλ/r2 sin2 λ − (2 cos λ/r2 sin2 λ) ∂Fϕ/∂ϕ]

+�eϕ [(2/r2 sinλ) ∂Fr/∂ϕ + (2 cos λ/r2 sin2 λ) ∂Fλ/∂ϕ + ∇2Fϕ − Fϕ/r2 sin2 λ]. (B.40)

The material derivatives are

Df/Dt = ∂f/∂t + vr ∂f/∂r + (vλ/r) ∂f/∂λ + (vϕ/r sinλ) ∂f/∂ϕ, (B.41)

D�v/Dt = �er [∂vr/∂t + vr ∂vr/∂r + (vλ/r) ∂vr/∂λ + (vϕ/r sinλ) ∂vr/∂ϕ − v2
λ/r − v2

ϕ/r]

+�eλ [∂vλ/∂t + vr ∂vλ/∂r + (vλ/r) ∂vλ/∂λ + (vϕ/r sinλ) ∂vλ/∂ϕ + vr vλ/r − v2
ϕ cot λ/r]

+�eϕ [∂vϕ/∂t + vr ∂vϕ/∂r + (vλ/r) ∂vϕ/∂λ + (vϕ/r sinλ) ∂vϕ/∂ϕ + vr vϕ/r + vλ vϕ cot λ/r].
(B.42)

(iii) Cylindrical coordinates �, ϕ, z.�, ϕ, z.�, ϕ, z. There is �e
 = �e1, �eϕ = �e2, �ez = �e3; q1 = �, q2 = ϕ, q3 =
z; �F = �F [F
(�, ϕ, z), Fϕ(�, ϕ, z), Fz(�, ϕ, z)], where F
, Fϕ, Fz are the components of �F along the
distance � from the z-axis, along the azimuth angle ϕ, and along the z-axis, respectively:

ds2 = d�2 + �2 dϕ2 + dz2; dV = � d� dϕ dz; h
 = h1 = 1; hϕ = h2 = �; hz = h3 = 1,
(B.43)

∂�e
/∂ϕ = �eϕ; ∂�eϕ/∂ϕ = −�e
, (B.44)

the remaining derivatives being zero.

∇f = �e
 ∂f/∂� + (�eϕ/�) ∂f/∂ϕ + �ez ∂f/∂z, (B.45)

∇ · �F = (1/�) ∂(�F
)/∂� + (1/�) ∂Fϕ/∂ϕ + ∂Fz/∂z, (B.46)

∇× �F = �e
 [−∂Fϕ/∂z + (1/�) ∂Fz/∂ϕ] + �eϕ (∂F
/∂z − ∂Fz/∂�)
+�ez [−(1/�) ∂F
/∂ϕ + (1/�) ∂(�Fϕ)/∂�], (B.47)

∇2f = (1/�) ∂(� ∂f/∂�)
/
∂� + (1/�2) ∂2f/∂ϕ2 + ∂2f/∂z2. (B.48)

If we replace f by �F , and use Eqs. (B.22), (B.44), we obtain

∇2 �F = �e
 [∇2F
 − F
/�2 − (2/�2) ∂Fϕ/∂ϕ] + �eϕ [(2/�2) ∂F
/∂ϕ + ∇2Fϕ − Fϕ/�2] + �ez (∇2Fz).
(B.49)

The material derivatives are

Df/Dt = ∂f/∂t + v
 ∂f/∂� + (vϕ/�) ∂f/∂ϕ + vz ∂f/∂z, (B.50)

D�v/Dt = �e
 [∂v
/∂t + v
 ∂v
/∂� + (vϕ/�) ∂v
/∂ϕ + vz ∂v
/∂z − v2
ϕ/�]

+�eϕ [∂vϕ/∂t + v
 ∂vϕ/∂� + (vϕ/�) ∂vϕ/∂ϕ + vz ∂vϕ/∂z + v
vϕ/�]
+�ez [∂vz/∂t + v
 ∂vz/∂� + (vϕ/�) ∂vz/∂ϕ + vz ∂vz/∂z]. (B.51)

(iv) Polar coordinates �, ϕ.�, ϕ.�, ϕ. They are obtained from cylindrical coordinates if z ≡ 0.



Appendix C

Generalized N-dimensional Orthogonal Polar Coordinates

In analogy to polar and spherical coordinates we can define in N -dimensional space (N = 1, 2, 3, ...)
an orthogonal set of generalized polar coordinates r, ϕ1, ϕ2, ...ϕN−1, where r is the radial distance from
the origin of a N -dimensional Cartesian coordinate frame x1, x2, ...xN , and ϕi, (i = 1, 2, 3, ...N − 1) are
the polar angles, where 0 ≤ r ≤ ∞, 0 ≤ ϕk ≤ π, (k = 1, 2, 3, ...N − 2), and 0 ≤ ϕN−1 ≤ 2π. We have
(e.g. Madelung 1953)

x1 = r cos ϕ1; xi = r cos ϕi

i−1∏
k=1

sinϕk; xN = r
N−1∏
k=1

sinϕk; r2 =
N∑

i=1

x2
i , (i = 2, 3, ...N − 1).

(C.1)

By the same reasoning as for spherical coordinates we obtain for the line element

ds2 =
N∑

i=1

dx2
i = dr2 + r2 dϕ2

1 + r2
N∑

i=3

i−2∏
k=1

sin2 ϕk dϕ2
i−1, (C.2)

with the scale factors [cf. Eq. (B.4)]

h1 = 1; h2 = r; hi = r
i−2∏
k=1

sinϕk, (i = 3, 4, 5, ...N). (C.3)

The volume element in N -dimensional polar coordinates is given by [cf. Eq. (B.5)]

dV = h1 dr
N−1∏
i=1

hi+1 dϕi = rN−1 dr
N−1∏
i=1

(sinϕi)N−1−i dϕi. (C.4)

The volume of a sphere of radius r is (e.g. Madelung 1953)

V =
∫

V

dV =
∫ r

0

rN−1 dr

∫ 2π

0

dϕN−1

N−2∏
i=1

∫ π

0

(sinϕi)N−1−i dϕi

= (2πrN/N)
N−2∏
i=1

∫ π

0

(sinϕi)N−1−i dϕi = (2πrN/N)
N−2∏
k=1

∫ π

0

sink ϕ dϕ

=




2N/2πN/2rN/N(N − 2)(N − 4)...6 × 4 × 2

2(N+1)/2π(N−1)/2rN/N(N − 2)(N − 4)...5 × 3 × 1
if

N = 2ν; ν = 2, 3, 4, ...

N = 2ν + 1; ν = 1, 2, 3, ...

(C.5)

Although the integration of Eq. (C.5) can be performed only if N ≥ 3, the final result yields exact
values also if N = 1, 2 [cf. Eq. (C.4)]:

V =




2r (N = 1, volume of slab per unit surface)

πr2 (N = 2, cylindrical volume per unit height)

4πr3/3 (N = 3, sphere)

(C.6)

The surface of the N -dimensional sphere of radius r is simply

S = dV/dr = NV/r, (N = 1, 2, 3, ...). (C.7)

672
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For a radially symmetric distribution of matter the mass inside volume V is given by

M =
∫

V

� dV =
∫ r

0

� S dr, (C.8)

where � = �(r) denotes the density at radial distance r. With the aid of the gamma function

Γ(x) =
∫ ∞

0

tx−1 exp(−t) dt, (C.9)

Eqs. (C.5), (C.7), (C.8) can be written as (cf. Kimura 1981a, Abramowicz 1983)

V = rN [Γ(1/2)]N
/
Γ(N/2 + 1) = (2rN/N) [Γ(1/2)]N

/
Γ(N/2);

S = dV/dr = 2rN−1 [Γ(1/2)]N
/
Γ(N/2);

M =
∫ r

0

� S dr =
{
2[Γ(1/2)]N

/
Γ(N/2)

}∫ r

0

�rN−1 dr, (N = 1, 2, 3, ...). (C.10)

We have used the relationships (e.g. Madelung 1953, Smirnow 1967)

Γ(x + j) = (x + j − 1)(x + j − 2)...(x + 1)x Γ(x); Γ(j + 1) = j(j − 1)...3 × 2 × 1 = j!;

Γ(j + 1/2) = (2j − 1)(2j − 3)...5 × 3 × 1 Γ(1/2)
/
2j ; Γ(1) = 1; Γ(1/2) = π1/2,

(j = 1, 2, 3, ...). (C.11)

If we denote by �e1, �e2, ...�eN the unit vectors along the coordinate axes r, ϕ1, ϕ2, ...ϕN−1, we obtain for
the gradient of a scalar function f = f(r, ϕ1, ϕ2, ...ϕN−1) the equation [cf. Eqs. (B.17), (B.36), (B.45),
(C.3)]:

∇f = grad f = (∂f/∂r) �e1 + (1/r)(∂f/∂ϕ1) �e2 +
N∑

i=3

{[
1
/(

r
i−2∏
k=1

sinϕk

)] (
∂f/∂ϕi−1

)
�ei

}
.

(C.12)

The divergence of the vector �F = �F (F1, F2, ...FN ) with the components Fi along the �ei-axes is via
Eqs. (B.19), (C.3) equal to

∇ · �F = div �F = (1/rN−1) ∂(rN−1F1)/∂r + (1/r) [(N − 2)F2 cot ϕ1 + ∂F2/∂ϕ1]

+
N∑

i=3

{[
1
/(

r
i−2∏
k=1

sinϕk

)] [
(N − i)Fi cot ϕi−1 + ∂Fi/∂ϕi−1

]}
, (C.13)

where

N∏
j=1

hj = rN−1
N−2∏
k=1

(sinϕk)N−1−k. (C.14)

The Laplace operator of the scalar function f becomes in virtue of Eqs. (B.21), (C.3) equal to

∇2f = div (grad f) =
N∑

i=1

∂2f/∂x2
i = (1/rN−1) ∂(rN−1 ∂f/∂r)

/
∂r

+(1/r2)
[
∂2f/∂ϕ2

1 + (N − 2) cotϕ1 ∂f/∂ϕ1

]

+
N∑

i=3

{[
1
/(

r2
i−2∏
k=1

sin2 ϕk

)] [
∂2f/∂ϕ2

i−1 + (N − i) cot ϕi−1 ∂f/∂ϕi−1

]}
. (C.15)



References and Author Index

References not mentioned in the text, but pertinent to polytropes, are preceded by an asterisk. Numbers in
brackets denote the section where the reference has been cited, serving as an author index. Efforts have been
made to make the list as complete as possible for the years 1939-2001. Many not cited papers prior to 1939 may
be found in Chandrasekhar’s (1939) textbook.

Abraham-Shrauner, B. 1973. Small amplitude hydromagnetic waves for a plasma with a generalized polytrope
law. Plasma Phys. 15, 375-385, [6.3.3]

* Abrahams, A. M., Shapiro, S. L. 1990. Potential flows in general relativity: Nonlinear and time-dependent
solutions. Phys. Rev. D 41, 327-341

Abramowicz, M. A. 1983. Polytropes in N -dimensional spaces. Acta Astron. 33, 313-318, [2.1, 2.3.3, 2.4.1, 2.5,
C]

* Abramowicz, M. A. see * Chen, X., Taam, R. E., Abramowicz, M. A., Igumenshchev, I. V. 1997

Abramowitz, M., Stegun, I. A. 1965. Handbook of Mathematical Functions. Dover Publ., New York, [3.1, 3.9.2,
3.10.3, 3.10.4, 5.1, 5.6.1, 6.2.1]

Adams, F. C. see * Galli, D., Lizano, S., Li, Z. Y., Adams, F. C., Shu, F. H. 1999; Laughlin, G., Korchagin, V.,
Adams, F. C. 1998

* Afashagov, M. S. 1969. On the internal waves in the inhomogeneous atmosphere. Izv. Akad. Sci. USSR,
Atmospheric Oceanic Phys. 5, 443-448

Aikawa, T. 1968. On the rotationally distorted polytropes. Science Rep. Tôhoku Univ. (I) 51, 61-66, [3.2, 3.5]
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* Bouquet, S., Feix, M. 1982. Solution des équations d’un polytrope gravitationnel par le groupe de quasi-
invariance. Compt. Rend. Acad. Sci. Paris, Sér. II 295, 993-996

* Bouquet, S., Feix, M. R., Fijalkov, E., Munier, A. 1985. Density bifurcation in a homogeneous isotropic col-
lapsing star. Astrophys. J. 293, 494-503

* Bouquet, S. see * Blottiau, P., Bouquet, S., Chièze, J. P. 1988; * Ringeval, C., Bouquet, S. 2000
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Chubaryan, É. V. see Grigoryan, O. A., Sarkisyan, A. V., Chubaryan, É. V. 1993; Papoyan, V. V., Sedrakyan,
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Hayashi, C., Hōshi, R., Sugimoto, D. 1962. Evolution of the stars. Suppl. Prog. Theor. Phys. 22, 1-183, [6.1.5]

Hayashi, C., Narita, S., Miyama, S. M. 1982. Analytic solutions for equilibrium of rotating isothermal clouds.
Prog. Theor. Phys. 68, 1949-1966, [5.10.6]

Heisler, J., Alcock, C. 1986. Do stars that lose mass expand or contract? A semianalytical approach. Astrophys.
J. 306, 166-169, [2.6.3, 3.6]

Hendry, A. W. 1993. A polytropic model of the Sun. Am. J. Phys. 61, 906-910, [2.8.1]
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Schatzman, E. 1958. Théorie des naines blanches. In Handbuch der Physik. Vol. 51. Edited by S. Flügge.
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