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Preface

Many physical phenomena are described by equations involving nondifferentiable
functions, e.g., generic trajectories of quantum mechanics (Feynman and Hibbs
1965). Several different approaches to deal with nondifferentiable functions are
proposed in the literature of variational calculus. We can mention the time scale
approach, which typically deal with delta or nabla differentiable functions
(Ferreira and Torres 2008; Malinowska and Torres 2009; Martins and Torres
2009); the fractional approach, allowing to consider functions that have no first
order derivative but have fractional derivatives of all orders less than one (Almeida
et al. 2010; Frederico and Torres 2008; Malinowska and Torres 2012); and the
quantum approach, which is the subject of this book and is particularly useful to
model physical and economical systems (Bangerezako 2004; Cresson et al. 2009;
Malinowska and Torres 2010).

Quantum difference operators are receiving an increase of interest, mainly due
to their applications—see, e.g., (Almeida and Torres 2009a; Annaby et al. 2012;
Bangerezako 2004; Bangerezako 2005; Cresson et al. 2009; Ernst 2008; Kac and
Cheung 2002). In 1992, Nottale introduced the theory of scale-relativity without
the hypothesis of space–time differentiability (Nottale 1992; Nottale 1999). A
rigorous mathematical foundation to Nottale’s scale-relativity theory is nowadays
given by means of a quantum calculus (Almeida and Torres 2009a; Almeida and
Torres 2010; Cresson et al. 2009; Kac and Cheung 2002). Roughly speaking, we
substitute the classical derivative by a difference operator, which allows us to deal
with sets of nondifferentiable curves. For a deeper discussion of the motivation to
study a nondifferentiable quantum calculus and its leading role in the under-
standing of complex physical systems, we refer the reader to (Almeida and Torres
2009a; Cresson et al. 2009; Kac and Cheung 2002; Nottale 1992).

Quantum calculus has several different dialects (Brito da Cruz et al. 2012; Brito
da Cruz et al. 2013b, c; Ernst 2008; Kac and Cheung 2002). The most common one
is based on Jackson’s q-operators, where q stands for quantum (Annaby and
Mansour 2012; Jackson 1908; Jackson 1910; Kac and Cheung 2002). The Jackson
q-difference operator is defined by

Dqf tð Þ ¼ f qtð Þ � f tð Þ
t q� 1ð Þ ; t 6¼ 0;
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where q is a fixed number, normally taken from (0, 1). Here f is supposed to be
defined on a q-geometric set A, i.e., A is a subset of R (or C) for which qt [
A whenever t [ A. The derivative at zero is defined to be f0(0), provided that f0(0)
exists (Abu Risha et al. 2007; Andrews et al. 1999; Carmichael 1911; Carmichael
1913; Ismail 2005; Jackson 1908). Jackson also introduced the q-integral

Z a

0
f ðtÞdqt ¼ a 1� qð Þ

X1
k¼0

qk f ðaqkÞ;

provided that the series converges, and in this case he defined

Z b

a
f ðtÞdqt ¼

Z b

0
f ðtÞdqt �

Z a

0
f ðtÞdqt

(Al-Salam 1966; Jackson 1908; Jackson 1910; Kac and Cheung 2002). In 1949,
Hahn introduced the quantum difference operator

Dq;x f½ � tð Þ ¼ f qt þ xð Þ � f tð Þ
q� 1ð Þt þ x

; t 6¼ x0;

where x0 :¼ x
1�q, f is a real function defined on an interval I containing x0, and q [

(0, 1) and x C 0 are real fixed numbers (Hahn 1949). The Hahn operator unifies (in
the limit) the two most well known and used quantum difference operators: the
Jackson q-difference derivative Dq, where q [ (0, 1) (Gasper and Rahman 2004;
Jackson 1951; Kac and Cheung 2002); and the forward difference Dx, where x[0
(Bird 1936; Jagerman 2000; Jordan 1965). The Hahn difference operator is a
successful tool for constructing families of orthogonal polynomials and investi-
gating some approximation problems—see, e.g., (Alvarez-Nodarse 2006; Costas-
Santos and Marcellán 2007; Dobrogowska and Odzijewicz 2006; Kwon et al.
1998; Petronilho 2007). However, during 60 years, the construction of the proper
inverse of Hahn’s difference operator Dq,x remained an open question. Eventually,
the problem was solved in 2009 by Aldwoah, who developed the associated
integral calculus (Aldwoah 2009)—see also (Aldwoah and Hamza 2011; Annaby
et al. 2012). A different approach would be to reduce the Hahn analysis to the
Jackson q-analysis (Odzijewicz et al. 2001, Appendix A).

In this book, we develop the variational Hahn calculus. More precisely, we
investigate problems of the calculus of variations using Hahn’s difference operator
and the Jackson–Nörlund integral. The calculus of variations is a classical area of
mathematics with many applications in geometry, physics, economics, biology,
engineering, dynamical systems, and control theory (Leizarowitz 1985; Leizarowitz
1989; Weinstock 1974). Although being an old theory, it is very much alive and still
evolving—see, e.g., (Almeida et al. 2010; Almeida and Torres 2009b; Leizarowitz
and Zaslavski 2003; Malinowska and Torres 2012; Martins and Torres 2009). The
basic problem of calculus of variations can be formulated as follows: among all
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differentiable functions y : [a, b] ? R such that y(a) = a and y(b) = b, where a, b are
fixed real numbers, find the one that minimize (or maximize) the functional

L½y� ¼
Z b

a
L t; yðtÞ; y0ðtÞð Þdt:

It can be proved that the candidates to be minimizers (resp. maximizers) to this
problem must satisfy the ordinary differential equation

d

dt
@3L t; yðtÞ; y0ðtÞð Þ ¼ @2L t; yðtÞ; y0ðtÞð Þ;

called the Euler–Lagrange equation (by @iL we denote the partial derivative of L
with respect to its ith argument). If the boundary condition y(a) = a is not present
in the problem, then to find the candidates for extremizers one has to add another
necessary condition: @3L(a, y(a), y0(a)) = 0; if y(b) = b is not present, then @3L(b,
y(b), y0(b)) = 0. These two conditions are known as natural boundary conditions or
transversality conditions. Since many important physical phenomena are described
by nondifferentiable functions, to develop a calculus of variations based on the
Hahn quantum operator is an important issue. This is precisely what we do in this
book. We discuss the fundamental concepts of a variational calculus, such as the
Euler–Lagrange equations for the basic and isoperimetric problems, as well as
Lagrange and optimal control problems. As particular cases, we obtain the clas-
sical discrete-time calculus of variations (Kelley and Peterson 2001, Chap. 8), the
variational q-calculus (Bangerezako 2004; Bangerezako 2005), and the calculus of
variations applied to Nörlund’s sum (Fort 1937; Fort 1948). Variational func-
tionals that depend on higher-order quantum derivatives are considered as well.
Such problems arise in a natural way in applications of engineering, physics, and
economics. As an example, we can consider the equilibrium of an elastic bending
beam. Let us denote by y(x) the deflection of the point x of the beam, E(x) the
elastic stiffness of the material, that can vary with x, and n(x) the load that bends
the beam. One may assume that, due to some constraints of physical nature, the
dynamics does not depend on the usual derivative y0(x) but on some quantum
derivative Dq,x [y] (x). In this condition, the equilibrium of the beam correspond to
the solution of the following higher-order Hahn’s quantum variational problem:

Z L

0

1
2

E xð ÞD2
q;x y½ � xð Þ

� �2
� nðxÞy q2xþ qxþ x

� �� �
dx! min:

Note that we recover the classical problem of the equilibrium of the elastic
bending beam when (x, q) ? (0, 1). This problem is a particular case of problem
(P) investigated in Sect. 2.7. Our higher-order Hahn’s quantum Euler–Lagrange
equation (Theorem 2.45) gives the main tool to solve such problems. As particular
cases, we obtain the q-calculus Euler–Lagrange equation (Bangerezako 2004) and
the h-calculus Euler–Lagrange equation (Bastos et al. 2011; Kelley and Peterson
2001).
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Another generalization of the q-calculus considered in this book includes the
quantum calculus that results from the n-power difference operator

Dnf ðtÞ ¼
f ðtnÞ�f ðtÞ

tn�t if t 2 Rn �1; 0; 1f g;
f 0ðtÞ if t 2 f�1; 0; 1g;

�

where n is a fixed odd positive integer (Aldwoah 2009). For that we develop a
calculus based on the new and more general proposed operator Dn,q (see Definition
3.2). The class of quantum systems thus obtained has two parameters and is wider
than the standard class of quantum dynamical systems studied in the literature. We
claim that the n,q-calculus offers a better mathematical modeling technique to deal
with quantum physical systems of time-varying graininess. We trust that our n,q-
quantum calculus will become a useful tool to investigate nonconservative
dynamical systems in physics (Bartosiewicz and Torres 2008; El-Nabulsi and
Torres 2007; El-Nabulsi and Torres 2008; Frederico and Torres 2007).

The subject of this short book is recent and is still evolving. The Hahn quantum
variational calculus was started only in 2010 with the work (Malinowska and
Torres 2010). Quantum variational problems involving Hahn’s derivatives of
higher-order were first investigated in (Brito da Cruz et al. 2012). Several quantum
variational problems have been recently posed and studied (Aldwoah et al. 2012;
Almeida and Torres 2009; Almeida and Torres 2011; Bangerezako 2004;
Bangerezako 2005; Brito da Cruz et al. 2013a; Cresson 2005; Cresson et al. 2009;
Frederico and Torres 2013; Martins and Torres 2012). The main purpose of this
book is to present optimality conditions for generalized quantum variational
problems in an unified and a coherent way, and call attention to a promising
research area with possible applications in optimal control, physics, and economics
(Cruz et al. 2010; Malinowska and Martins 2013; Sengupta 1997). The results
presented in the book allow to deal with economical problems with a dynamic
nature that does not depend on the usual derivative or the forward difference
operator, but on the Hahn quantum difference operator Dq,x. This is connected
with a moot question: what kind of ‘‘time’’ (continuous or discrete) should be used
in the construction of dynamic models in economics? Although individual eco-
nomic decisions are generally made at discrete time intervals, it is difficult to
believe that they are perfectly synchronized as postulated by discrete models. The
usual assumption that the economic activity takes place continuously is a conve-
nient abstraction in many applications. In others, such as the ones studied in
financial market equilibrium, the assumption of continuous trading corresponds
closely to reality. We believe that our Hahn’s approach helps to bridge the gap
between two families of models: continuous and discrete.

This short book gives a gentle but solid introduction to the Quantum Varia-
tional Calculus. The audience is primarily advanced undergraduate and graduate
students of mathematics, physics, engineering, and economics. However, the book
provides also an opportunity for an introduction to the quantum variational cal-
culus even for experienced researchers. Our aim is to introduce the theory of the
quantum calculus of variations in a way suitable for self-study, and at the same
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time to give the reader the state of the art of a very active and promising research
area. We will be extremely happy if the present book will motivate and encourage
some readers to follow a research activity in the area, and to take part in the
exploration of this exciting subject.

Keywords: Hahn’s difference operator; Jackson–Norlünd’s integral; Quantum
calculus; q-differences; Calculus of variations and optimal control; Quantum
variational problems; Necessary optimality conditions; Euler–Lagrange equations;
Generalized natural boundary conditions; Isoperimetric problems; Leitmann’s
principle; Ramsey model; n,q-power difference operator; Generalized Nörlund
sum; Generalized Jackson integral; n,q-difference equations.

Bialystok and Aveiro, July 2013 Agnieszka B. Malinowska
Delfim F. M. Torres
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Chapter 1
The Classical Calculus of Variations

For convenience of the reader, we begin with some well known definitions and facts
from the classical calculus of variations. Results are given without proofs. For proofs
and detailed discussions, we refer the reader to one of the many books on the subject,
e.g., van Brunt (2004). For our purposes, the present chapter gives all the necessary
background.

The calculus of variations deals with finding extrema and, in this sense, it can be
considered a branch of optimization. The problems and techniques in this branch,
however, differ markedly from those involving the extrema of functions of several
variables owing to the nature of the domain on the quantity to be optimized. The
calculus of variations is concerned with finding extrema for functionals, i.e., for
mappings from a set of functions to the real numbers. The candidates in the com-
petition for an extremum are thus functions as opposed to vectors in R

n , and this
furnishes the subject a distinct character. The functionals are generally defined by
definite integrals; the set of functions are often defined by boundary conditions and
smoothness requirements, which arise in the formulation of the problem/model. Let
us take a look at the classical (basic) problem of the calculus of variations: find a
function y ∈ C1([a, b]) such that

L[y(·)] =
∫ b

a
L(t, y(t), y′(t))dt −→ min, y(a) = ya, y(b) = yb, (1.1)

with a, b, ya, yb ∈ R and L(t, u, v) satisfying some smoothness properties.
The enduring interest in the calculus of variations is in part due to its applications.

We now present an historical example of this.

Example 1.1 (Brachystochrones).Thehistoryof the calculus of variations essentially
begins with a problem posed by Johann Bernoulli (1696) as a challenge to the math-
ematical comunity and in particular to his brother Jacob. The problem is important in
the history of the calculus of variations because the method developed by Johann’s
pupil, Euler, to solve this problem provided a sufficiently general framework to solve
other variational problems (van Brunt 2004).

A. B. Malinowska and D. F. M. Torres, Quantum Variational Calculus, 1
SpringerBriefs in Control, Automation and Robotics,
DOI: 10.1007/978-3-319-02747-0_1, © The Author(s) 2014



2 1 The Classical Calculus of Variations

The problem that Johann posed was to find the shape of a wire along which a bead
initially at rest slides under gravity from one end to the other in minimal time. The
endpoints of the wire are specified and themotion of the bead is assumed frictionless.
The curve corresponding to the shape of the wire is called a brachystochrone or a
curve of fastest descent.

The problem attracted the attention of various mathematicians throughout the
time including Huygens, L’Hôpital, Leibniz, Newton, Euler and Lagrange (see van
Brunt (2004) and references cited therein for more historical details).

To model Bernoulli’s problem we use Cartesian coordinates with the positive
y-axis oriented in the direction of the gravitational force. Let (a, ya) and (b, yb)

denote the coordinates of the initial and final positions of the bead, respectively. Here,
we require that a < b and ya < yb. The problem consists of determining, among the
curves that have (a, ya) and (b, yb) as endpoints, the curve on which the bead slides
down from (a, ya) to (b, yb) in minimum time. The problem makes sense only for
continuous curves.Wemake the additional simplifying (but reasonable) assumptions
that the curve can be represented by a function y : [a, b] → R and that y is at least
piecewise differentiable in the interval [a, b]. The total time it takes the bead to slide
down a curve is given by

T [y(·)] =
∫ l

0

ds

v(s)
, (1.2)

where l denotes the arclength of the curve, s is the arclength parameter, and v is the
velocity of the bead s units down the curve from (a, b).

We now derive an expression for the velocity in terms of the function y. We use
the law of conservation of energy to achieve this. At any position (x, y(x)) on the
curve, the sum of the potential and kinetic energies of the bead is a constant. Hence

1

2
mv2(x) + mgy(x) = c, (1.3)

where m is the mass of the bead, v is the velocity of the bead at (x, y(x)), and c is a
constant. Solving equation (1.3) for v gives

v(x) =
√
2c

m
− 2gy(x).

Equality (1.2) becomes

T [y(·)] =
∫ b

a

√
1 + y′2(x)√
2c
m − 2gy(x)

dx .

We thus seek a function y such that T is minimum and y(a) = ya , y(b) = yb.
It can be shown that the extrema for T is a portion of the curve called cycloid (cf.

Example 2.3.4 in van Brunt (2004)).
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1.1 Problem Statement

The calculus of variations is concerned with the problem of finding minima (or
maxima) of a functional J : D → R, whereD is a subset of a (normed) linear space
D of real-valued (or real-vector-valued) functions. The formulation of a problem
requires two steps: the specification of a performance criterion, and the statement
of physical constraints that should be satisfied. The performance criterion J, also
called cost functional (or objective), must be specified for evaluating quantitatively
the performance of the system under study. The typical form of the cost is:

J (y) =
∫ b

a
L(t, y(t), y′(t)) dt,

where t ∈ [a, b] is the independent variable, usually called time; y(t) ∈ R
N , N ≥ 1,

is a real vector variable, the functions y(t),a ≤ t ≤ b, are generally called trajectories
or curves; y′(t) ∈ R

N stands for the derivative of y(t) with respect to time t ; and
L : [a, b] × R

2N → R is a real-valued function, called the Lagrangian.
Enforcing constraints in the optimization problem reduces the set of candidate

functions and leads to the following definition.

Definition 1.2 A trajectory y ∈ D is said to be an admissible trajectory (or
admissible function), provided it satisfies all the constraints of the problem along
the interval [a, b]. The set of admissible trajectories is denoted by D.

A great variety of constraints is considered. The simplest one are boundary
conditions, e.g., y(a) = ya and y(b) = yb, ya, yb ∈ R

N or we may require that
the trajectory y ∈ D join a fixed point (a, ya) to a specified curve f (t), a ≤ t ≤ T .
Besides boundary constraints, another type of constraints can be considered,

G j (y) =
∫ b

a
G j (t, y(t), y′(t))dt = l j, j = 1, . . . , r, r ≥ 1,

where G j : [a, b] × R
2N → R, j = 1, . . . , r . These constraints are often referred

to as isoperimetric constraints. More generally, constraints of the form

G j (t, y(t), y′(t)) = 0, j = 1, . . . , r, r ≥ 1,

are called constraints of Lagrange form.
Having defined an objective functional J and constraints, one must then decide

about the class of functions with respect to which the optimization shall be per-
formed. The traditional choice in the calculus of variations is to consider the class
of continuously differentiable functions, e.g., C1([a, b]). We endow C1([a, b])
with a norm. The most natural choice for a norm on C1([a, b]) is ∪y∪1,∞: =
maxa≤t≤b ∪y(t)∪ + maxa≤t≤b ∪y′(t)∪,where ∪ · ∪ stands for the Euclidean norm

in RN . The class of functions C1([a, b]) endowed with ∪ · ∪1,∞ is a Banach space.
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Let us now define what is meant by a minimum of J on D.

Definition 1.3 A trajectory ȳ ∈ D is said to be a local minimizer (resp. local maxi-
mizer) forJ onD, if there exists δ > 0 such thatJ (ȳ) ≤ J (y) (resp.J (ȳ) ≥ J (y))
for all y ∈ D with ∪y − ȳ∪1,∞ < δ.

The concept of variation of a functional is central to the solution of problems of
the calculus of variations.

Definition 1.4 The first variation of J at y ∈ D in the direction y ∈ D is defined as

δJ (y; h) := lim
ε→0

J (y + εh) − J (y)

ε
= ∂

∂ε
J (y + εh)

∣∣∣∣
ε=0

,

provided the limit exists.

Definition 1.5 A direction h ∈ D, h ⊆= 0, is said to be an admissible variation for
J at y ∈ D if

(i) δJ (y; h) exists; and
(ii) y + εh ∈ D for all sufficiently small ε.

The following well known result provides a necessary optimality condition for
the problems of the calculus of variations, based on the concept of variation.

Theorem 1.6 LetJ be a functional defined onD. Suppose that y is a local minimizer
(or local maximizer) for J on D. Then, δJ (y; h) = 0 for each admissible variation
h at y.

1.2 The Euler–Lagrange Equations

In this section, we present a first-order necessary optimality condition for a problem
which is know as the elementary (or basic or fundamental) problem of the calculus
of variations.

The next lemma is an essential result upon which the calculus of variations
depends. It is called the fundamental lemma of the calculus of variations, some-
times also called the DuBois–Reymond lemma.

Lemma 1.7 (The fundamental lemma of the calculus of variations). If g(t) is a
continuous function of t for a ≤ t ≤ b, and if

∫ b

a
g(t)h(t) dt = 0

for all functions h(t) that are continuous for a ≤ t ≤ b and are zero at t = a and
t = b, then g(t) = 0 for all a ≤ t ≤ b.



1.2 The Euler–Lagrange Equations 5

We denote by ∂i K , i = 1, . . . , M (M ∈ N), the partial derivative of a function K :
R

M → R with respect to its i th argument. The following theorem gives a necessary
optimality condition for the fundamental problem of the calculus of variations.

Theorem 1.8 (The Euler–Lagrange equations). Consider the problem of minimiz-
ing (or maximizing) the functional

J (y) =
∫ b

a
L(t, y(t), y′(t)) dt

on D = {y ∈ D : y(a) = ya, y(b) = yb}, where L : [a, b] × R
2N → R is

a continuously differentiable function. Suppose that y gives a (local) minimum (or
maximum) to J on D. Then,

∂i L(t, y(t), y′(t)) = d

dt
∂N+i L(t, y(t), y′(t)), i = 2, . . . N + 1, (1.4)

for all t ∈ [a, b].
Definition 1.9 A function y that satisfies the system of Euler–Lagrange equations
(1.4) on [a, b] is called an extremal for the functional J .

If one of the boundary conditions y(a) = ya or y(b) = yb is not present in the
problem (it is possible that all are not present), then in order to find extremizers we
must add other necessary conditions, usually called the natural boundary conditions
(or transversality conditions).

Theorem 1.10 (Natural boundary conditions). If y is a local minimizer (or max-
imizer) to the functional

J (y) =
∫ b

a
L(t, y(t), y′(t)) dt,

then y satisfies the Euler–Lagrange equations (1.4). Moreover,

• if y(a) = ya is free, then the natural boundary conditions

∂N+i L(a, y(a), y′(a)) = 0, i = 2, . . . N + 1, (1.5)

hold;
• if y(b) is free, then the natural boundary conditions

∂N+i L(b, y(b), y′(b)) = 0, i = 2, . . . N + 1, (1.6)

hold.
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1.3 Problems with Isoperimetric Constraints

An isoperimetric problem of the calculus of variations is a problem wherein one
or more constraints involve the integral of a given function over part or all of the
integration horizon [a, b]. One of the earliest problem involving such a constraint
is that of finding the geometric figure with the largest area that can be enclosed by
a curve of some specified length—the famous Queen Dido isoperimetric problem.
The following theorems provide a characterization of the extremals for isoperimetric
problems, based on the method of Lagrange multipliers.

Theorem 1.11 Consider the problem of minimizing (or maximizing) the functional

J (y) =
∫ b

a
L(t, y(t), y′(t)) dt

on D given by those y ∈ D such that y(a) = ya, y(b) = yb, and

G(y) =
∫ b

a
G(t, y(t), y′(t))dt = l, (1.7)

where L ,G : [a, b] ×R
2N → R are continuously differentiable functions. Suppose

that y gives a (local) minimum (or maximum) to this problem. Assume that δG(y; h)
does not vanish for all h ∈ D. Then there exists a constant λ ∈ R such that y is a
solution of the Euler–Lagrange equations

∂i F(t, y(t), y′(t)) = d

dt
∂N+i F(t, y(t), y′(t)), i = 2, . . . N + 1,

where F(t, y, y′,λ) = L(t, y, y′) − λG(t, y, y′).

Remark 1.12 The equality (1.7) is called an isoperimetric constraint. Observe that
δG(y; h) does not vanish for all h ∈ D if and only if y is not an extremal for G.

1.4 Sufficient Optimality Conditions via Joint Convexity

In this section we present a sufficient condition for an extremal to be a global
extremizer (minimizer or maximizer).

Definition 1.13 Given a function f ∈ C1([a, b] ×R
2N ;R), we say that f (x, y, v)

is jointly convex (resp. jointly concave) in (y, v), if
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f (x, y + y0, v + v0)− f (x, y, v)

≥ (≤)

N+1∑
i=2

∂i f (x, y, v)y0i−1 +
N+1∑
i=2

∂N+i f (x, y, v)v0i−1

for all (x, y, v),(x, y + y0, v + v0) ∈ [a, b] × R
2N .

Theorem 1.14 Let L(x, y, v) be jointly convex (resp. jointly concave) in (y, v).
If y satisfies the system of N Euler–Lagrange equations (1.4), then y is a global
minimizer (resp. global maximizer) to

J (y) =
∫ b

a
L(t, y(t), y′(t)) dt

on D = {y ∈ D : y(a) = ya, y(b) = yb}.

Reference

van Brunt B (2004) The calculus of variations. Springer, New York



Chapter 2
The Hahn Quantum Variational Calculus

We introduce the Hahn quantum variational calculus. Necessary and sufficient
optimality conditions for the basic, isoperimetric, andHahn quantumLagrange prob-
lems, are studied. We also show the validity of Leitmann’s direct method (Almeida
and Torres 2010b; Carlson and Leitmann 2005a,b, 2008; Leitmann 2002, 2003) for
the Hahn quantum variational calculus, and give explicit solutions to some con-
crete problems. Next, we prove a necessary optimality condition of Euler–Lagrange
type for quantum variational problems involving Hahn’s derivatives of higher-order.
Finally, we extend the previous results and obtain optimality conditions for gener-
alized quantum variational problems with a Lagrangian depending on the free end-
points. To illustrate the results, we provide several examples and discuss quantum
versions of the Ramsey model and an adjustment model in economics.

2.1 Preliminaries

Let q ∈]0, 1[ and δ ≥ 0. Define δ0 := δ

1 − q
and let I be a real interval containing

δ0. For a function f defined on I , the Hahn difference operator of f is given by

Dq,δ[ f ](t) :=

⎧⎪⎪⎨
⎪⎪⎩

f (qt + δ) − f (t)

(q − 1)t + δ
if t →= δ0

f ≥(δ0) if t = δ0

provided that f is differentiable at δ0 (where f ≥ denotes the Fréchet derivative of f ).
Dq,δ [ f ] is called the q,δ-derivative of f , and f is said to be q,δ-differentiable
on I if Dq,δ [ f ] (δ0) exists.

A. B. Malinowska and D. F. M. Torres, Quantum Variational Calculus, 9
SpringerBriefs in Control, Automation and Robotics,
DOI: 10.1007/978-3-319-02747-0_2, © The Author(s) 2014
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Remark 2.1 Note that when q ≤ 1 we obtain the forward h-difference operator

Δh [ f ] (t) := f (t + h) − f (t)

h
,

and when δ = 0 we obtain the Jackson q-difference operator

Dq,0[ f ](t) :=

⎧⎪⎪⎨
⎪⎪⎩

f (qt) − f (t)

(q − 1)t
if t →= 0

f ≥(0) if t = 0

provided f ≥ (0) exists. Hence, we can state that the Dq,δ operator generalizes the
forward h-difference and the Jackson q-difference operators (Ernst 2008; Kac and
Cheung 2002; Koornwinder 1994). Notice also that, under appropriate conditions,

lim
q≤1

Dq,0 [ f ] (t) = f ≥ (t).

Example 2.2 Let q = δ = 1/2. In this case δ0 = 1. It is easy to see that
f :[−1, 1] ≤ R given by

f (t) =

⎧⎪⎨
⎪⎩

−t if t ∈] − 1, 0[∪]0, 1]
0 if t = −1

1 if t = 0

is not a continuous function but is q,δ-differentiable in [−1, 1] with

Dq,δ[ f ](t) =

⎧⎪⎨
⎪⎩

−1 if t ∈] − 1, 0[∪]0, 1]
1 if t = −1

−3 if t = 0.

Example 2.3 Let q ∈]0, 1[,δ = 0, and

f (t) =
{

t2 if t ∈ Q

−t2 if t ∈ R \ Q.

Note that f is only Fréchet differentiable in zero, but since δ0 = 0, f is q,

δ-differentiable on the entire real line.

The Hahn difference operator has the following properties:

Theorem 2.4 (Aldwoah 2009; Aldwoah and Hamza 2011) If f, g : I ≤ R are
q,δ-differentiable and t ∈ I , then:
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1. Dq,δ[ f ](t) ∞ 0 on I if and only if f is constant;
2. Dq,δ [ f + g] (t) = Dq,δ [ f ] (t) + Dq,δ [g] (t);
3. Dq,δ [ f g] (t) = Dq,δ [ f ] (t) g (t) + f (qt + δ) Dq,δ [g] (t);

4. Dq,δ

[
f

g

]
(t) = Dq,δ [ f ] (t) g (t) − f (t) Dq,δ [g] (t)

g (t) g (qt + δ)
if g (t) g (qt + δ) →= 0;

5. f (qt + δ) = f (t) + (t (q − 1) + δ) Dq,δ [ f ] (t).

Proposition 2.5 (Aldwoah 2009) Let a, b ∈ R. We have

Dq,δ(at + b)n = a
n−1∑
k=0

(a(qt + δ) + b)k(at + b)n−k−1,

for n ∈ N and t →= δ0.

Let ε (t) = qt +δ, for all t ∈ I . Note that ε is a contraction, ε(I ) ⊆ I,ε (t) < t
for t > δ0,ε (t) > t for t < δ0, and ε (δ0) = δ0.

We use the following standard notation of q-calculus: for k ∈ N0 := N ∪
{0} , [k]q := 1 − qk

1 − q
.

Lemma 2.6 (Aldwoah 2009) Let k ∈ N and t ∈ I . Then,

1. εk (t) = ε ◦ ε ◦ · · · ◦ ε︸ ︷︷ ︸
k-times

(t) = qkt + δ [k]q;

2.
(
εk (t)

)−1 = ε−k (t) = t − δ [k]q
qk

.

Following (Aldwoah 2009; Aldwoah and Hamza 2011) we define the notion of
q,δ-integral (also known as the Jackson–Nörlund integral) as follows:

Definition 2.7 Let a, b ∈ I and a < b. For f : I ≤ R the q,δ-integral of f from
a to b is given by

∫ b

a
f (t) dq,δt :=

∫ b

δ0

f (t) dq,δt −
∫ a

δ0

f (t) dq,δt,

where

∫ x

δ0

f (t) dq,δt := (x (1 − q) − δ)

+∞∑
k=0

qk f
(

xqk + δ [k]q
)

, x ∈ I,

provided that the series converges at x = a and x = b. In that case, f is called q,δ-
integrable on [a, b]. We say that f is q,δ-integrable over I if it is q,δ-integrable
over [a, b] for all a, b ∈ I .

Remark 2.8 The q,δ-integral generalizes the Jackson q-integral and the Nörlund
sum (Kac and Cheung 2002). When δ = 0, we obtain the Jackson q-integral
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∫ b

a
f (t) dq t :=

∫ b

0
f (t) dqt −

∫ a

0
f (t) dqt ,

where ∫ x

0
f (t) dqt := x (1 − q)

+∞∑
k=0

qk f
(

xqk
)

.

When q ≤ 1, we obtain the Nörlund sum

∫ b

a
f (t)Δδt :=

∫ b

+∞
f (t)Δδt −

∫ a

+∞
f (t)Δδt,

where ∫ x

+∞
f (t)Δδt := −δ

+∞∑
k=0

f (x + kδ).

It can be shown that if f : I ≤ R is continuous at δ0, then f is q,δ-integrable over
I (see Aldwoah (2009); Aldwoah and Hamza (2011) for the proof).

Theorem 2.9 (Aldwoah 2009) (Fundamental Theorem of Hahn’s Calculus)
Assume that f : I ≤ R is continuous at δ0 and, for each x ∈ I , define

F (x) :=
∫ x

δ0

f (t) dq,δt.

Then F is continuous at δ0. Furthermore, Dq,δ [F] (x) exists for every x ∈ I and

Dq,δ [F] (x) = f (x). Conversely,
∫ b

a Dq,δ [ f ] (t) dq,δt = f (b) − f (a) for all
a, b ∈ I .

Aldwoah proved that the q,δ-integral has the following properties:

Theorem 2.10 (Aldwoah 2009; Aldwoah and Hamza 2011) Let f, g : I ≤ R be
q,δ-integrable on I, a, b, c ∈ I and k ∈ R. Then,

1.
∫ a

a
f (t) dq,δt = 0;

2.
∫ b

a
k f (t) dq,δt = k

∫ b

a
f (t) dq,δt;

3.
∫ b

a
f (t) dq,δt = −

∫ a

b
f (t) dq,δt;

4.
∫ b

a
f (t) dq,δt =

∫ c

a
f (t) dq,δt +

∫ b

c
f (t) dq,δt;

5.
∫ b

a
( f (t) + g (t)) dq,δt =

∫ b

a
f (t) dq,δt +

∫ b

a
g (t) dq,δt;

6. Every Riemann integrable function f on I is q,δ-integrable on I ;
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7. If f, g : I ≤ R are q,δ-differentiable and a, b ∈ I , then

∫ b

a
f (t) Dq,δ [g] (t) dq,δt =

[
f (t) g (t)

⎛b

a
−
∫ b

a
Dq,δ [ f ] (t) g (qt + δ) dq,δt.

Property 7 of Theorem 2.10 is known as q,δ-integration by parts formula.

Lemma 2.11 (Annaby et al. 2012) Let s ∈ I and f and g be q,δ-integrable over
I . Suppose that

| f (t)| ≤ g(t), ∀t ∈ ⎝qns + δ [n]q : n ∈ N0
⎞
.

If δ0 ≤ s, then for b ∈ ⎝qns + δ [n]q : n ∈ N0
⎞

⎠⎠⎠⎠
∫ b

δ0

f (t)dq,δt

⎠⎠⎠⎠ ≤
∫ b

δ0

g(t)dq,δt.

Remark 2.12 Note that there is an inconsistency in Aldwoah (2009). Indeed,
Lemma 6.2.7 of Aldwoah (2009) is only valid if b ≥ δ0 and a ≤ b.

Remark 2.13 In general, the Jackson–Nörlund integral does not satisfies the follow-
ing inequality (for a counterexample see Aldwoah (2009)):

⎠⎠⎠⎠
∫ b

a
f (t) dq,δt

⎠⎠⎠⎠ ≤
∫ b

a
| f (t) |dq,δt, a, b ∈ I.

For s ∈ I we define

[s]q,δ := ⎝
qns + δ [n]q : n ∈ N0

⎞ ∪ {δ0} .

The following definition and lemma are important for our purposes.

Definition 2.14 Let s ∈ I and g : I×] − ∂̄, ∂̄[≤ R. We say that g (t, ·) is dif-
ferentiable at ∂0 uniformly in [s]q,δ if for every λ > 0 there exists δ > 0 such
that

0 < |∂ − ∂0| < δ ⇒
⎠⎠⎠⎠g (t, ∂) − g (t, ∂0)

∂ − ∂0
− ∂2g (t, ∂0)

⎠⎠⎠⎠ < λ

for all t ∈ [s]q,δ , where ∂2g = ∂g

∂∂
.

Lemma 2.15 Let s ∈ I and assume that g : I×] − ∂̄, ∂̄[≤ R is differen-

tiable at ∂0 uniformly in [s]q,δ , G (∂) :=
∫ s

δ0

g (t, ∂) dq,δt for ∂ near ∂0, and
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∫ s

δ0

∂2g (t, ∂0) dq,δt exist. Then, G (∂) is differentiable at ∂0 with G ≥ (∂0)

=
∫ s

δ0

∂2g (t, ∂0) dq,δt .

Proof For s = δ0 the result is clear. Let s →= δ0 and λ > 0 be arbitrary. Since g(t, ·)
is differentiable at ∂0, uniformly in t , there exists δ > 0, such that, for all t ∈ [s]q,δ ,
and for 0 < |∂ − ∂0| < δ, the following inequality holds:

⎠⎠⎠⎠g(t, ∂) − g(t, ∂0)

∂ − ∂0
− ∂2g(t, ∂0)

⎠⎠⎠⎠ <
λ

s − δ0
.

Applying Theorem 2.10 and Lemma 2.11, for 0 < |∂ − ∂0| < δ, we have

⎠⎠⎠⎠G(∂) − G(∂0)

∂ − ∂0
− G ≥(∂0)

⎠⎠⎠⎠
=
⎠⎠⎠⎠⎠
∫ s
δ0

g(t, ∂)dq,δt − ∫ s
δ0

g(t, ∂0)dq,δt

∂ − ∂0
−
∫ s

δ0

∂2g(t, ∂0)dq,δt

⎠⎠⎠⎠⎠
=
⎠⎠⎠⎠
∫ s

δ0

[
g(t, ∂) − g(t, ∂0)

∂ − ∂0
− ∂2g(t, ∂0)

]
dq,δt

⎠⎠⎠⎠
<

∫ s

δ0

λ

s − δ0
dq,δt = λ

s − δ0

∫ s

δ0

1dq,δt = λ.

Hence, G(·) is differentiable at ∂0 and G ≥(∂0) = ∫ s
δ0

∂2g(t, ∂0)dq,δt .

Let a, b ∈ I with a < b. Recall that I is an interval containing δ0. We define the
q,δ-interval by

[a, b]q,δ := {qna + δ[n]q : n ∈ N0} ∪ {qnb + δ[n]q : n ∈ N0} ∪ {δ0},

that is, [a, b]q,δ = [a]q,δ ∪ [b]q,δ . For r ∈ N we introduce the linear space Yr =
Yr ([a, b] ,R) by

Yr :=
{
y : [a, b] ≤ R | Di

q,δ[y], i = 0, . . . , r,

are bounded on [a, b] and continuous at δ0}

endowed with the norm

‖y‖r,∞ :=
r∑

i=0

∥∥∥Di
q,δ [y]

∥∥∥∞ ,

where ‖y‖∞ := supt∈[a,b] |y (t)|.
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2.2 The Hahn Quantum Euler–Lagrange Equation

In this section we obtain the Euler–Lagrange equation for the basic problem of the
Hahn quantum variational calculus. As in the classical case, we need the following
lemma.

Lemma 2.16 (Fundamental Lemma of the Hahn quantum variational calculus)
Let f ∈ Y0. One has

∫ b
a f (t)h(qt + δ)dq,δt = 0 for all functions h ∈ Y0 with

h(a) = h(b) = 0 if and only if f (t) = 0 for all t ∈ [a, b]q,δ .

Proof The implication “⇐” is obvious. Let us prove the implication “⇒”. Suppose,
by contradiction, that f (p) →= 0 for some p ∈ [a, b]q,δ .
Case I If p →= δ0, then p = qka + δ[k]q or p = qkb + δ[k]q for some k ∈ N0.
Observe that a(1−q)−δ and b(1−q)−δ cannot vanish simultaneously. Therefore,
without loss of generality, we can assume a(1− q) − δ →= 0 and p = qka + δ[k]q .
Define

h(t) =
{

f (qka + δ[k]q), if t = qk+1a + δ[k + 1]q

0, otherwise.

Then,

∫ b

a
f (t)h(qt + δ)dq,δt

= −(a(1 − q) − δ)qk f (qka + δ[k]q)h(qk+1a + δ[k + 1]q) →= 0,

which is a contradiction.
Case II If p = δ0, then without loss of generality we can assume f (δ0) > 0. We
know that (see Aldwoah (2009); Annaby et al. (2012) for more details)

lim
n≤∞ qna + [n]q,δ = lim

n≤∞ qnb + δ[n]q = δ0.

As f is continuous at δ0, we have

lim
n≤∞ f (qna + δ[n]q) = lim

n≤∞ f (qnb + δ[n]q) = f (δ0).

Therefore, there exists N ∈ N, such that for all n > N the inequalities

f (qna + δ[n]q) > 0 and f (qnb + δ[n]q) > 0

hold. If δ0 →= a, b, then we define
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h(t) =

⎧⎪⎨
⎪⎩

f (qnb + δ[n]q), if t = qn+1a + δ[n + 1]q , for all n > N

f (qna + δ[n]q), if t = qn+1b + δ[n + 1]q , for all n > N

0, otherwise.

Hence,

∫ b

a
f (t)h(qt+δ)dq,δt = (b−a)(1−q)

∞∑
n=N

qn f (qna+δ[n]q) f (qnb+δ[n]q) →= 0,

which is a contradiction. If δ0 = b, then we define

h(t) =
{

f (δ0), if t = qn+1a + δ[n + 1]q , for all n > N

0, otherwise.

Hence,

∫ b

a
f (t)h(qt + δ)dq,δt = −

∫ a

δ0

f (t)h(qt + δ)dq,δt

= −(a(1 − q) − δ)

∞∑
n=N

qn f (qna + δ[n]q) f (δ0) →= 0,

which is a contradiction. Similarly, we show the case when δ0 = a.

Consider the following q,δ-variational problem

L [y] =
∫ b

a
L
⎡
t, y (qt + δ) , Dq,δ [y] (t)

⎣
dq,δt −≤ extr (2.1)

where “extr” denotes “extremize”, in the class of functions y ∈ Y1 satisfying the
boundary conditions

y(a) = α and y(b) = β (2.2)

for some fixed α,β ∈ R.

Definition 2.17 A function y ∈ Y1 is said to be admissible for (2.1)–(2.2) if it
satisfies the endpoint conditions (2.2). We say that h ∈ Y1 is an admissible variation
for (2.1)–(2.2) if h(a) = h(b) = 0.

In the sequel we assume that the Lagrangian L satisfies the following hypotheses:

(H1) (u0, u1) ≤ L(t, u0, u1) is a C1(R2,R) function for any t ∈ [a, b];
(H2) t ≤ L(t, y(qt + δ), Dq,δ [y] (t)) is continuous at δ0 for any y ∈ Y1;
(H3) functions t ≤ ∂i L(t, y(qt + δ), Dq,δ [y] (t)), i = 2, 3, belong to Y1 for all

y ∈ Y1.
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Definition 2.18 We say that y∗ is a local minimizer (resp. local maximizer) for
problem (2.1)–(2.2) if y∗ is an admissible function and there exists δ > 0 such that

L [y∗] ≤ L [y] (resp. L [y∗] ≥ L [y] )

for all admissible y with ‖y∗ − y‖1,∞ < δ.

For fixed y, h ∈ Y1, we define the real function φ by

φ(λ) := L[y + λh].

The first variation for problem (2.1) is defined by

δL[y, h] := φ≥(0).

Observe that,

L[y + λh] =
∫ b

a
L(t, y(qt + δ) + λh(qt + δ), Dq,δ[y](t) + λDq,δ[h](t))dq,δt

=
∫ b

δ0

L(t, y(qt + δ) + λh(qt + δ), Dq,δ[y](t) + λDq,δ[h](t))dq,δt

−
∫ a

δ0

L(t, y(qt + δ) + λh(qt + δ), Dq,δ[y](t) + λDq,δ[h](t))dq,δt.

Writing

Lb[y + λh] =
∫ b

δ0

L(t, y(qt + δ) + λh(qt + δ), Dq,δ[y](t) + λDq,δ[h](t))dq,δt

and

La[y + λh] =
∫ a

δ0

L(t, y(qt + δ) + λh(qt + δ), Dq,δ[y](t) + λDq,δ[h](t))dq,δt,

we have
L[y + λh] = Lb[y + λh] − La[y + λh].

Therefore,
δL[y, h] = δLb[y, h] − δLa[y, h]. (2.3)

In order to simplify expressions, we introduce the operator {·} defined in the
following way:

{y}(t) := (t, y(qt + δ), Dq,δ[y](t)),
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where y ∈ Y1.
Knowing (2.3), the following lemma is a direct consequence of Lemma 2.15.

Lemma 2.19 For fixed y, h ∈ Y1 let

g(t, λ) = L(t, y(qt + δ) + λh(qt + δ), Dq,δ[y](t) + λDq,δ[h](t))

for λ ∈] − λ̄, λ̄[, for some λ̄ > 0, i.e.,

g(t, λ) = L{y + λh}(t).

Assume that:

(i) g(t, ·) is differentiable at 0 uniformly in t ∈ [a, b]q,δ;

(ii) La[y + λh] =
∫ a

δ0

g (t, ε) dq,δt and Lb[y + λh] =
∫ b

δ0

g (t, ε) dq,δt exist for

λ ≈ 0;

(iii)
∫ a

δ0

∂2g(t, 0)dq,δt and
∫ b

δ0

∂2g(t, 0)dq,δt exist.

Then,

δL[y, h] =
∫ b

a

(
∂2L{y}(t) · h(qt + δ) + ∂3L{y}(t) · Dq,δ[h](t)

)
dq,δt.

The following result offers a necessary condition for local extremizer.

Theorem 2.20 (A necessary optimality condition for problem (2.1)–(2.2)) Sup-
pose that the optimal path to problem (2.1)–(2.2) exists and is given by ỹ. Then,
δL[ỹ, h] = 0.

Proof Without loss of generality, we can assume ỹ to be a local minimizer. Let h be
any admissible variation and define a function φ : ]− λ̄, λ̄[≤ R by φ(λ) = L[ỹ+λh].
Since ỹ is a local minimizer, there exists δ > 0, such that L[ỹ] ≤ L[y] for all
admissible y with ‖y − ỹ‖1,∞ < δ. Therefore, φ(λ) = L[ỹ + λh] ≥ L[ỹ] = φ(0)
for all λ < δ

‖h‖1,∞ . Hence, φ has a local minimum at λ = 0, and thus our assertion
follows.

Theorem 2.21 (The Hahn quantum Euler–Lagrange equation for problem
(2.1)–(2.2)) Under hypotheses (H1)–(H3) and conditions (i)–(iii) of Lemma 2.19
on the Lagrangian L, if ỹ is a local minimizer or local maximizer to problem (2.1)–
(2.2), then ỹ satisfies the Euler–Lagrange equation

∂2L{y}(t) − Dq,δ[∂3L]{y}(t) = 0 (2.4)

for all t ∈ [a, b]q,δ .
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Proof Suppose that L has a local extremum at ỹ. Let h be any admissible variation
and define a function φ : ] − λ̄, λ̄[≤ R by φ(λ) = L[ỹ + λh]. A necessary condition
for ỹ to be an extremizer is given by φ≥(0) = 0. Note that

φ≥(0) =
∫ b

a

(
∂2L{ỹ}(t) · h(qt + δ) + ∂3L{ỹ}(t) · Dq,δ[h](t)

)
dq,δt.

Since h(a) = h(b) = 0, then

φ≥(0) =
∫ b

a

(
∂2L{ỹ}(t) · h(qt + δ) + ∂3L{ỹ}(t) · Dq,δ[h](t)

)
dq,δt.

Integration by parts gives

∫ b

a
∂3L{ỹ}(t) · Dq,δ[h](t)dq,δt =

[
∂3L{ỹ}(t) · h(t)

⎛b

a

−
∫ b

a
Dq,δ[∂3L]{ỹ}(t) · h(qt + δ)dq,δt

and since h(a) = h(b) = 0, then

φ≥(0) = 0 ⇔
∫ b

a

(
∂2L{ỹ}(t) − Dq,δ[∂3L]{ỹ}(t)

)
· h(qt + δ)dq,δt = 0.

Thus, by Lemma 2.16, we have

∂2L{ỹ}(t) − Dq,δ[∂3L]{ỹ}(t) = 0

for all t ∈ [a, b]q,δ .

Remark 2.22 Under appropriate conditions, when (δ, q) ≤ (0, 1), we obtain a
corresponding result in the classical context of the calculus of variations (1.4):

d

dt
∂3L(t, y(t), y≥(t)) = ∂2L(t, y(t), y≥(t)).

Remark 2.23 In practical terms the hypotheses of Theorem 2.21 are not easy to
verify a priori. However, we can assume that all hypotheses are satisfied and apply
the q,δ-Euler–Lagrange equation (2.4) heuristically to obtain a candidate. If such a
candidate is, or not, a solution to the variational problem is a different question that
require further analysis (see Sects. 2.4 and 2.8.5).

http://dx.doi.org/10.1007/978-3-319-02747-0_1
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2.3 The Hahn Quantum Isoperimetric Problem

We now study the isoperimetric problem with an integral constraint. Both normal
and abnormal extremizers are considered. Isoperimetric problems have found a broad
class of important applications throughout the centuries. Areas of application include
also economy (see, e.g., Almeida and Torres (2009b); Caputo (2005) and the refer-
ences given there).

The isoperimetric problem consists of minimizing or maximizing the functional
(2.1) in the class of functions y ∈ Y1 satisfying the boundary conditions (2.2), and
the integral constraint

J [y] =
∫ b

a
F
⎡
t, y (qt + δ) , Dq,δ [y] (t)

⎣
dq,δt = γ (2.5)

for some γ ∈ R.

Definition 2.24 We say that ỹ ∈ Y1 is a local minimizer (resp. local maximizer)
for the isoperimetric problem (2.1), (2.2) and (2.5) if there exists δ > 0 such that
L[ỹ] ≤ L[y] (resp. L[ỹ] ≥ L[y]) for all y ∈ Y1 satisfying the boundary conditions
(2.2) and the isoperimetric constraint (2.5) and ‖ỹ − y‖1,∞ < δ.

Definition 2.25 We say that y ∈ Y1 is an extremal to J if y satisfies the Euler–
Lagrange equation (2.4) relatively to J. An extremizer (i.e., a local minimizer or a
local maximizer) to problem (2.1), (2.2) and (2.5) that is not an extremal to J is said
to be a normal extremizer; otherwise, the extremizer is said to be abnormal.

Theorem 2.26 (Necessary optimality condition for normal extremizers to (2.1),
(2.2) and (2.5)) Suppose that L and F satisfy hypotheses (H1)–(H3) and conditions
(i)–(iii) of Lemma 2.19, and suppose that ỹ ∈ Y1 gives a local minimum or a local
maximum to the functional L subject to the integral constraint (2.5). If ỹ is not an
extremal to J, then there exists a real number λ such that ỹ satisfies the equation

∂2H{y}(t) − Dq,δ[∂3H ]{y}(t) = 0 (2.6)

for all t ∈ [a, b]q,δ , where H = L − λF.

Proof Suppose that ỹ ∈ Y1 is a normal extremizer to problem (2.1), (2.2) and (2.5).
Define the real functions φ,ψ : R2 ≤ R by

φ(ε1, ε2) = L[̃y + ε1h1 + ε2h2],
ψ(ε1, ε2) = J [̃y + ε1h1 + ε2h2] − γ,

where h2 ∈ Y1 is fixed (that we will choose later) and h1 ∈ Y1 is an arbitrary
function. Note that
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∂ψ

∂ε2
(0, 0) =

∫ b

a

(
∂2F{ỹ}(t) · h2(qt + δ) + ∂3F{ỹ}(t) · Dq,δ[h2](t)

)
dq,δt.

Using integration by parts formula we get

∂ψ

∂ε2
(0, 0) =

∫ b

a

(
∂2F{ỹ}(t) − Dq,δ[∂3F]{ỹ}(t)

)
· h2(qt + δ)dq,δt

+
[
∂3F{ỹ}(t) · h2(t)

⎛b

a
.

Restricting h2 to those such that h2(a) = h2(b) = 0 we obtain

∂ψ

∂ε2
(0, 0) =

∫ b

a

(
∂2F{ỹ}(t) − Dq,δ[∂3F]{ỹ}(t)

)
· h2(qt + δ)dq,δt.

Since ỹ is not an extremal to J, then we can choose h2 such that
∂ψ

∂ε2
(0, 0) →= 0.

We keep h2 fixed. Since ψ(0, 0) = 0, by the Implicit Function Theorem there
exists a function g defined in a neighborhood V of zero, such that g(0) = 0 and
ψ(ε1, g(ε1)) = 0, for any ε1 ∈ V , that is, there exists a subset of variation curves
y = ỹ + ε1h1 + g(ε1)h2 satisfying the isoperimetric constraint. Note that (0, 0) is
an extremizer of φ subject to the constraint ψ = 0 and

∇ψ(0, 0) →= (0, 0).

By the Lagrange multiplier rule, there exists some constant λ ∈ R such that

∇φ(0, 0) = λ∇ψ(0, 0). (2.7)

Restricting h1 to those such that h1(a) = h1(b) = 0 we get

∂φ

∂ε1
(0, 0) =

∫ b

a

(
∂2L{ỹ}(t) − Dq,δ[∂3L]{ỹ}(t)

)
· h1(qt + δ)dq,δt

and

∂ψ

∂ε1
(0, 0) =

∫ b

a

(
∂2F{ỹ}(t) − Dq,δ[∂3F]{ỹ}(t)

)
· h1(qt + δ)dq,δt.

Using (2.7) it follows that

∫ b

a

(
∂2L{ỹ}(t) − Dq,δ[∂3L]{ỹ}(t)

− λ
(
∂2F{ỹ}(t) − Dq,δ[∂3F]{ỹ}(t)

))
· h1(qt + δ)dq,δt = 0.
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Using the fundamental lemma of the Hahn quantum variational calculus (Lemma
2.16), and recalling that h1 is arbitrary, we conclude that

∂2L{ỹ}(t) − Dq,δ[∂3L]{ỹ}(t) − λ
(
∂2F{ỹ}(t) − Dq,δ[∂3F]{ỹ}(t)

)
= 0

for all t ∈ [a, b]q,δ , proving that H = L−λF satisfies the Euler–Lagrange condition
(2.6).

Introducing an extra multiplier λ0 we can also deal with abnormal extremizers to
the isoperimetric problem (2.1), (2.2) and (2.5).

Theorem 2.27 (Necessary optimality condition for normal and abnormal
extremizers to (2.1), (2.2) and (2.5)) Suppose that L and F satisfy hypotheses
(H1)–(H3) and conditions (i)–(iii) of Lemma 2.19, and suppose that ỹ ∈ Y1 gives
a local minimum or a local maximum to the functional L subject to the integral
constraint (2.5). Then there exist two constants λ0 and λ, not both zero, such that ỹ
satisfies the equation

∂2H{y}(t) − Dq,δ[∂3H ]{y}(t) = 0 (2.8)

for all t ∈ [a, b]q,δ , where H = λ0L − λF.

Proof The proof is similar to the proof of Theorem2.26. Since (0, 0) is an extremizer
of φ subject to the constraint ψ = 0, the abnormal Lagrange multiplier rule (cf., e.g.,
van Brunt (2004)) guarantees the existence of two reals λ0 and λ, not both zero, such
that

λ0∇φ = λ∇ψ.

Remark 2.28 Note that if ỹ is a normal extremizer then, by Theorem 2.26, one can
choose λ0 = 1 in Theorem 2.27. The condition (λ0,λ) →= (0, 0) guarantees that
Theorem 2.27 is a useful necessary condition. In general we cannot guarantee, a
priori, that λ0 be different from zero. The interested reader about abnormality is
referred to the book (Arutyunov 2000).

Suppose now that it is required to find functions y1 and y2 for which the functional

L[y1, y2] =
∫ b

a
f (t, y1(qt +δ), y2(qt +δ), Dq,δ[y1](t), Dq,δ[y2](t))dq,δt (2.9)

has an extremum, where the admissible functions satisfy the boundary conditions

(y1(a), y2(a)) = (ya
1 , y

a
2 ) and (y1(b), y2(b)) = (yb

1 , y
b
2), (2.10)

and the subsidiary nonholonomic condition

g(t, y1(qt + δ), y2(qt + δ), Dq,δ[y1](t), Dq,δ[y2](t)) = 0. (2.11)
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The problem (2.9)–(2.11) can be reduced to the isoperimetric one by transforming
(2.11) into a constraint of the type (2.5). For that, we multiply both sides of (2.11)
by an arbitrary function λ(t), and then take the q,δ-integral from a to b. We obtain
the new constraint

K[y1, y2] =
∫ b

a
λ(t)g(t, y1(qt + δ), y2(qt + δ), Dq,δ[y1](t), Dq,δ[y2](t))dq,δt = 0.

(2.12)

Under the conditions of Theorem 2.26, the solutions (y1, y2) of the isoperimetric
problem (2.9) and (2.12) satisfy the Euler–Lagrange equation for the functional

∫ b

a
( f − λ̃(t)g)dq,δt, (2.13)

λ̃(t) = λ̄λ(t) for some constant λ̄. Since (2.12) follows from (2.11), the solutions
of problem (2.9)–(2.11) satisfy the Euler–Lagrange equation for functional (2.13) as
well.

2.4 Sufficient Condition for Optimality

In this subsection we prove sufficient optimality conditions for problem (2.1)–(2.2).
Similar to the classical calculus of variations we assume the Lagrangian function to
be convex (or concave).

Theorem 2.29 Let L(t, u0, u1) be jointly convex (resp. concave) in (u0, u1). If ỹ
satisfies condition (2.4), then ỹ is a global minimizer (resp. maximizer) to problem
(2.1)–(2.2).

Proof We give the proof for the convex case. Since L is jointly convex in (u0, u1),
then for any h ∈ Y1,

L[ỹ + h] − L[ỹ] =
∫ b

a
(L{ỹ + h}(t) − L{ỹ}(t)) dq,δ t

≥
∫ b

a

(
∂2L{ỹ}(t) · h(qt + δ) + ∂3L{ỹ}(t) · Dq,δ[h](t)

)
dq,δ t.

Proceeding analogously as in the proof of Theorem 2.21 and since ỹ satisfies condi-
tion (2.4) we obtain L(ỹ + h) − L(ỹ) ≥ 0, proving the desired result.
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2.5 Leitmann’s Direct Method

Leitmann’s direct method permits to compute global solutions to some problems
that are variationally invariant under a family of transformations (Leitmann 1967,
2001a,b; Silva and Torres 2006; Torres and Leitmann 2008;Wagener 2009). It should
be mentioned that such invariance transformations are useful not only in connection
with Leitmann’s method but also to apply Noether’s Theorem (Torres 2002, 2004a).
Moreover, the invariance transformations are related with the notion of Carathéodory
equivalence (Carlson 2002; Torres 2004b).

Recently, it has been noticed inMalinowska and Torres (2010a) that the invariance
transformations, that keep the Lagrangian invariant, do not depend on the time scale.
This is also true for the generalized Hahn quantum setting that we are considering in
this work: given a Lagrangian L : R×R×R ≤ R, the invariance transformations,
that keep it invariant up to a gauge term, are exactly the same if the Lagrangian L
is used to define a Hahn quantum functional (2.1) or a classical functional L[y] =∫ b

a L(t, y(t), y≥(t))dt of the calculus of variations. Thus, if the quantum problem we
want to solve admits an enough rich family of invariance transformations, that keep it
invariant up to a gauge term, then one does not need to solve a Hahn quantum Euler–
Lagrange equation to find its minimizer: instead, we can try to use Leitmann’s direct
method. The question of how to find the invariance transformations is addressed in
Gouveia and Torres (2005); Gouveia et al. (2006).

Let L̄ : [a, b] × R × R ≤ R. We assume that L̄ satisfies hypotheses (H1)–(H3).
Consider the integral

L̄[ȳ] =
∫ b

a
L̄{ȳ}(t)dq,δt.

Lemma 2.30 (Leitmann’s fundamental lemma via Hahn’s quantum operator)
Let y = z(t, ȳ) be a transformation having an unique inverse ȳ = z̄(t, y) for all
t ∈ [a, b], such that there is a one-to-one correspondence

y(t) ⇔ ȳ(t)

for all functions y ∈ Y1 satisfying (2.2) and all functions ȳ ∈ Y1 satisfying

ȳ(a) = z̄(a,α), ȳ(b) = z̄(b,β). (2.14)

If the transformation y = z(t, ȳ) is such that there exists a function G : [a, b]×R ≤
R satisfying the functional identity

L{y}(t) − L̄{ȳ}(t) = Dq,δG(t, ȳ(t)), (2.15)

then if ȳ∗ yields the extremum of L̄ with ȳ∗ satisfying (2.14), y∗ = z(t, ȳ∗) yields the
extremum of L for y∗ satisfying (2.2).
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Remark 2.31 The functional identity (2.15) is exactly the definition of variationally
invariance when we do not consider transformations of the time variable t (cf. (4) and
(5) of Torres and Leitmann (2008)). Function G that appears in (2.15) is sometimes
called a gauge term (Torres 2004a).

Proof The proof is similar in spirit to Leitmann’s proof (Leitmann 1967, 2001a,b,
2004). Let y ∈ Y1 satisfy (2.2), and define functions ȳ ∈ Y1 through the formula
ȳ = z̄(t, y), t ∈ [a, b]. Then ȳ ∈ Y1 and satisfies (2.14). Moreover, as a result of
(2.15), it follows that

L[y] − L̄[ȳ] =
∫ b

a
L{y}(t)dq,δt −

∫ b

a
L̄{ȳ}(t)dq,δt =

∫ b

a
Dq,δG(t, ȳ(t))dq,δt

= G(b, ȳ(b)) − G(a, ȳ(a)) = G(b, z̄(b,β)) − G(a, z̄(a,α)),

from which the desired conclusion follows immediately since the right-hand side of
the above equality is a constant, depending only on the fixed-endpoint conditions
(2.2).

Examples 2.33, 2.34 and 2.35 in the next section illustrate the applicability of
Lemma 2.30. The procedure is as follows: (i) we use the computer algebra package
described in Gouveia and Torres (2005) and available from the Maple Application
Center at http://www.maplesoft.com/applications/view.aspx?SID=4805 to find the
transformations that keep the problem of the calculus of variations or optimal control
invariant; (ii) we use such invariance transformations to solve the Hahn quantum
variational problem by applying Leitmann’s fundamental lemma (Lemma 2.30).

2.6 Illustrative Examples

We provide some examples in order to illustrate our main results.

Example 2.32 Let q,δ be fixed real numbers, and I be a closed interval of R such
that δ0, 0, 1 ∈ I . Consider the problem

L[y] =
∫ 1

0

(
y(qt + δ) + 1

2
(Dq,δ[y](t))2

⎜
dq,δt −≤ min (2.16)

subject to the boundary conditions

y(0) = 0, y(1) = 1. (2.17)

If y is a local minimizer to problem (2.16)–(2.17), then by Theorem 2.21 it satisfies
the Euler–Lagrange equation

Dq,δ Dq,δ[y](t) = 1 (2.18)

http://www.maplesoft.com/applications/view.aspx?SID=4805
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for all t ∈ {δ[n]q : n ∈ N0} ∪ {qn + δ[n]q : n ∈ N0} ∪ {δ0}. By direct substitution
it can be verified that y(t) = 1

q+1 t2 + q
q+1 t is a candidate solution to problem

(2.16)–(2.17).

In next examples we solve quantum variational problems using Leitmann’s direct
method (see Sect. 2.5).

Example 2.33 Let q,δ, and a, b (a < b) be fixed real numbers, and I be a closed
interval of R such that δ0 ∈ I and a, b ∈ {qns + δ[n]q : n ∈ N0} ∪ {δ0} for some
s ∈ I . Let α and β be two given real numbers, α →= β. We consider the following
problem:

L[y] = ∫ b
a

⎡
(Dq,δ[y](t))2 + y(qt + δ) + t Dq,δ[y](t)⎣ dq,δt −≤ min

y(a) = α, y(b) = β.
(2.19)

We transform problem (2.19) into the trivial problem

L̄[ȳ] =
∫ b

a
(Dq,δ[ȳ](t))2dq,δt −≤ min

ȳ(a) = 0, ȳ(b) = 0,

which has solution ȳ ∞ 0. For that we consider the transformation

y(t) = ȳ(t) + ct + d, c, d ∈ R,

where constants c and d will be chosen later. According to the above, we have

Dq,δ[y](t) = Dq,δ[ȳ](t) + c, y(qt + δ) = ȳ(qt + δ) + c(qt + δ) + d,

and

(Dq,δ[y](t))2 + y(qt + δ) + t Dq,δ[y](t)
= (Dq,δ[ȳ](t))2 + 2cDq,δ[ȳ](t) + c2 + ȳ(qt + δ) + c(qt + δ) + d

+ t Dq,δ[ȳ](t) + ct

= (Dq,δ[ȳ](t))2 + Dq,δ[2cȳ(t) + t ȳ(t) + ct2 + (c2 + d)t].

In order to obtain the solution to the original problem, it suffices to chose c and d so
that

ca + d = α, cb + d = β. (2.20)

Solving the system of equations (2.20) we obtain c = α−β
a−b and d = βa−bα

a−b . Hence,
the global minimizer for problem (2.19) is
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y(t) = α − β

a − b
t + βa − bα

a − b
.

Example 2.34 Let q,δ, and a, b (a < b) be fixed real numbers, and I be a closed
interval of R such that δ0 ∈ I and a, b ∈ {qns + δ[n]q : n ∈ N0} ∪ {δ0} for some
s ∈ I . Let α and β be two given real numbers, α →= β. We consider the following
problem:

L[y] = ∫ b
a

⎡
Dq,δ[yg](t)⎣2 dq,δt −≤ min

y(a) = α, y(b) = β,
(2.21)

where g does not vanish on the interval [a, b]q,δ . Observe that ȳ(t) = g−1(t) min-
imizes L with end conditions ȳ(a) = g−1(a) and ȳ(b) = g−1(b). Let y(t) =
ȳ(t) + p(t). Then

⎡
Dq,δ[yg](t)⎣2 = ⎡

Dq,δ[ȳg](t)⎣2 + Dq,δ[pg](t)Dq,δ[2ȳg + pg](t). (2.22)

Consequently, if p(t) = (At + B)g−1(t), where A and B are constants, then (2.22)
is of the form (2.15), since Dq,δ[pg](t) is constant. Thus, the function

y(t) = (At + C)g−1(t)

with

A = [αg(a) − βg(b)] (a − b)−1, C = [aβg(b) − bαg(a)] (a − b)−1,

minimizes (2.21).

Using the idea of Leitmann, we can also solve quantum optimal control problems
defined in terms of Hahn’s operators.

Example 2.35 Let q,δ be real numbers on a closed interval I ofR such that δ0 ∈ I
and 0, 1 ∈ {qns + δ[n]q : n ∈ N0} ∪ {δ0} for some s ∈ I . Consider the global
minimum problem

L[u1, u2] =
∫ 1

0

(
(u1(t))

2 + u2(t))
2
)

dq,δt −≤ min (2.23)

subject to the control system

Dq,δ[y1](t) = exp(u1(t)) + u1(t) + u2(t), Dq,δ[y2](t) = u2(t), (2.24)

and conditions

y1(0) = 0, y1(1) = 2, y2(0) = 0, y2(1) = 1,
u1(t), u2(t) ∈ � = [−1, 1]. (2.25)
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This example is inspired from Torres and Leitmann (2008). It is worth mentioning
that due to the constraints on the values of the controls, (u1(t), u2(t)) ∈ � = [−1, 1],
a theory based on necessary optimality conditions to solve problem (2.23)–(2.25)
does not exist at the moment.

We begin noticing that problem (2.23)–(2.25) is variationally invariant according
to Gouveia and Torres (2005) under the one-parameter family of transformations

ys
1 = y1 + st, ys

2 = y2 + st, us
2 = u2 + s (t s = t and us

1 = u1). (2.26)

To prove this, we need to show that both the functional integral L and the control
system stay invariant under the s-parameter transformations (2.26). This is easily
seen by direct calculations:

Ls[us
1, us

2] =
∫ 1

0

⎡
us
1(t)

⎣2 + ⎡
us
2(t)

⎣2
dq,δt

=
∫ 1

0
u2
1(t) + (u2(t) + s)2 dq,δt (2.27)

=
∫ 1

0

(
u2
1(t) + u2

2(t) + Dq,δ[s2t + 2sy2(t)]
)

dq,δt

= L[u1, u2] + s2 + 2s.

We remark that Ls and L have the same minimizers: adding a constant s2 + 2s to
the functional L does not change the minimizer of L. It remains to prove that the
control system also remains invariant under transformations (2.26):

Dq,δ[ys
1](t) = Dq,δ[y1](t) + s = exp(u1(t)) + u1(t) + u2(t) + s

= exp(us
1(t)) + us

1(t) + us
2(t), (2.28)

Dq,δ[ys
2](t) = Dq,δ[y2](t) + s = u2(t) + s = us

2(t).

Conditions (2.27) and (2.28) prove that problem (2.23)–(2.25) is invariant under the
s-parameter transformations (2.26) up to Dq,δ

⎡
s2t + 2sy2(t)

⎣
. Using the invariance

transformations (2.26), we generalize problem (2.23)–(2.25) to a s-parameter family
of problems, s ∈ R, which include the original problem for s = 0:

Ls[u1, u2] =
∫ 1

0
(us

1(t))
2 + (us

2(t))
2dq,δt −≤ min

subject to the control system

Dq,δ[ys
1](t) = exp(us

1(t)) + us
1(t) + us

2(t), Dq,δ[ys
2(t)] = us

2(t),

and conditions
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ys
1(0) = 0, ys

1(1) = 2 + s, ys
2(0) = 0, ys

2(1) = 1 + s,

us
1(t) ∈ [−1, 1], us

2(t) ∈ [−1 + s, 1 + s].

It is clear that Ls ≥ 0 and that Ls = 0 if us
1(t) = us

2(t) ∞ 0. The control equations,
the boundary conditions and the constraints on the values of the controls imply that
us
1(t) = us

2(t) ∞ 0 is admissible only if s = −1: ys=−1
1 (t) = t, ys=−1

2 (t) ∞ 0.
Hence, for s = −1 the global minimum to Ls is 0 and the minimizing trajectory is
given by

ũs
1(t) ∞ 0, ũs

2(t) ∞ 0, ỹs
1(t) = t, ỹs

2(t) ∞ 0.

Since for any s one has by (2.27) thatL[u1, u2] = Ls[us
1, us

2]−s2−2s, we conclude
that the global minimum for problemL[u1, u2] is 1. Thus, using the inverse functions
of the variational symmetries (2.26),

u1(t) = us
1(t), u2(t) = us

2(t) − s, y1(t) = ys
1(t) − st, y2(t) = ys

2(t) − st,

and the absolute minimizer for problem (2.23)–(2.25) is

ũ1(t) = 0, ũ2(t) = 1, ỹ1(t) = 2t, ỹ2(t) = t.

2.7 Higher-order Hahn’s Quantum Variational Calculus

We define the q,δ-derivatives of higher-order in the usual way: the r th q,δ-
derivative (r ∈ N) of f : I ≤ R is the function Dr

q,δ[ f ] : I ≤ R given by
Dr

q,δ[ f ] := Dq,δ[Dr−1
q,δ [ f ]], provided Dr−1

q,δ [ f ] is q,δ-differentiable on I and
where D0

q,δ[ f ] := f . The following notations are in order: ε(t) = qt + δ, yε(t) =
yε1

(t) = (y ◦ ε)(t) = y (qt + δ), and yεk = y ◦ yεk−1
, k = 2, 3, . . .

Our main goal is to establish necessary optimality conditions for the higher-order
q,δ-variational problem

L [y] =
∫ b

a
L
(

t, yεr
(t), Dq,δ

[
yεr−1

⎛
(t) , . . . , Dr

q,δ [y] (t)
)

dq,δt −≤ extr

y ∈ Yr ([a, b],R) (P)

y (a) = α0, y (b) = β0,

...

Dr−1
q,δ [y] (a) = αr−1, Dr−1

q,δ [y] (b) = βr−1,

where r ∈ N and αi,βi ∈ R, i = 0, . . . , r − 1, are given.
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Definition 2.36 Wesay thaty is an admissible function for (2.7) ify ∈ Yr ([a, b] ,R)

and y satisfies the boundary conditions Di
q,δ [y] (a) = αi and Di

q,δ [y] (b) = βi of
problem (2.7), i = 0, . . . , r − 1.

The Lagrangian L is assumed to satisfy the following hypotheses:

(H1) (u0, . . . , ur ) ≤ L(t, u0, . . . , ur ) is aC1(Rr+1,R) function for any t ∈ [a, b];
(H2) t ≤ L(t, y(t), Dq,δ [y] (t), . . . , Dr

q,δ [y] (t)) is continuous at δ0 for any
admissible y;

(H3) functions t ≤ ∂i+2L(t, y(t), Dq,δ [y] (t), · · · , Dr
q,δ [y] (t)), i = 0, 1, · · · , r ,

belong to Y1 ([a, b] ,R) for all admissible y.

Definition 2.37 We say that y∗ is a local minimizer (resp. local maximizer) for
problem (2.7) if y∗ is an admissible function and there exists δ > 0 such that

L [y∗] ≤ L [y] (resp. L [y∗] ≥ L [y] )

for all admissible y with ‖y∗ − y‖r,∞ < δ.

Definition 2.38 We say that η ∈ Yr ([a, b],R) is a variation if η (a) = η (b) = 0,
…, Dr−1

q,δ [η] (a) = Dr−1
q,δ [η] (b) = 0.

2.7.1 Higher-order Fundamental Lemma

The chain rule, as known from classical calculus, does not hold in Hahn’s quantum
context (see a counterexample in Aldwoah (2009); Annaby et al. (2012)). However,
we can prove the following.

Lemma 2.39 If f is q,δ-differentiable on I , then the following equality holds:

Dq,δ

⎟
f ε
]
(t) = q

⎡
Dq,δ [ f ]

⎣ε
(t) , t ∈ I.

Proof For t →= δ0 we have

⎡
Dq,δ [ f ]

⎣ε
(t) = f (q (qt + δ) + δ) − f (qt + δ)

(q − 1) (qt + δ) + δ

= f (q (qt + δ) + δ) − f (qt + δ)

q ((q − 1) t + δ)

and

Dq,δ

⎟
f ε
]
(t) = f ε (qt + δ) − f ε (t)

(q − 1) t + δ
= f (q (qt + δ) + δ) − f (qt + δ)

(q − 1) t + δ
.

Therefore, Dq,δ [ f ε] (t) = q
⎡
Dq,δ [ f ]

⎣ε
(t). If t = δ0, then ε (δ0) = δ0. Thus,
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⎡
Dq,δ [ f ]

⎣ε
(δ0) = ⎡

Dq,δ [ f ]
⎣
(ε (δ0)) = ⎡

Dq,δ [ f ]
⎣
(δ0) = f ≥ (δ0)

and Dq,δ [ f ε] (δ0) = [ f ε]≥ (δ0) = f ≥ (ε (δ0)) ε≥ (δ0) = q f ≥ (δ0).

Lemma 2.40 If η ∈ Yr ([a, b] ,R) is such that Di
q,δ [η] (a) = 0 (resp. Di

q,δ [η]

(b) = 0) for all i ∈ {0, 1, . . . , r} , then Di−1
q,δ [ηε] (a) = 0 (resp. Di−1

q,δ [ηε] (b) = 0)
for all i ∈ {1, . . . , r}.
Proof If a = δ0 the result is trivial (because ε (δ0) = δ0). Suppose now that
a →= δ0 and fix i ∈ {1, . . . , r}. Note that

Di
q,δ [η] (a) =

(
Di−1

q,δ [η]
)ε

(a) − Di−1
q,δ [η] (a)

(q − 1) a + δ
.

Because, by hypothesis, Di
q,δ [η] (a) = 0 and Di−1

q,δ [η] (a) = 0, then

(
Di−1

q,δ [η]
)ε

(a) = 0.

Lemma 2.39 shows that

(
Di−1

q,δ [η]
)ε

(a) =
(
1

q

⎜i−1

Di−1
q,δ

⎟
ηε
]
(a).

We conclude that Di−1
q,δ [ηε] (a) = 0. The case t = b is proved in the same way.

Lemma 2.41 Suppose that f ∈ Y1 ([a, b] ,R). One has

∫ b

a
f (t) Dq,δ [η] (t) dq,δt = 0

for all functions η ∈ Y1 ([a, b],R) such that η (a) = η (b) = 0 if and only if
f (t) = c, c ∈ R, for all t ∈ [a, b]q,δ .

Proof The implication “⇐” is obvious. We prove “⇒”. We begin noting that

∫ b

a
f (t) Dq,δ [η] (t) dq,δt

︸ ︷︷ ︸
=0

= f (t) η (t)

⎠⎠⎠⎠
b

a︸ ︷︷ ︸
=0

−
∫ b

a
Dq,δ [ f ] (t) ηε (t) dq,δt.

Hence, ∫ b

a
Dq,δ [ f ] (t) η (qt + δ) dq,δt = 0
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for any η ∈ Y1 ([a, b] ,R) such that η (a) = η (b) = 0. We need to prove that,
for some c ∈ R, f (t) = c for all t ∈ [a, b]q,δ , that is, Dq,δ [ f ] (t) = 0 for all
t ∈ [a, b]q,δ . Suppose, by contradiction, that there exists p ∈ [a, b]q,δ such that
Dq,δ [ f ] (p) →= 0.
(1) If p →= δ0, then p = qka +δ [k]q or p = qkb+δ [k]q for some k ∈ N0. Observe
that a (1 − q) − δ and b (1 − q) − δ cannot vanish simultaneously.

(a) Suppose that a (1 − q) − δ →= 0 and b (1 − q) − δ →= 0. In this case we can
assume, without loss of generality, that p = qka + δ [k]q and we can define

η (t) =
{

Dq,δ [ f ]
⎡
qka + δ [k]q

⎣
if t = qk+1a + δ [k + 1]q

0 otherwise.

Then,

∫ b

a
Dq,δ [ f ] (t) · η (qt + δ) dq,δt

= − (a (1 − q) − δ) qk Dq,δ [ f ]
(

qka + δ [k]q
)

· Dq,δ [ f ]
(

qka + δ [k]q
)

→= 0,

which is a contradiction.
(b) If a (1 − q) − δ →= 0 and b (1 − q) − δ = 0, then b = δ0. Since qkδ0 +

δ [k]q = δ0 for all k ∈ N0, then p →= qkb + δ [k]q ∀k ∈ N0 and, therefore,

p = qka + δ [k]q,δ for some k ∈ N0.

Repeating the proof of (a) we obtain again a contradiction.
(c) If a (1 − q) − δ = 0 and b (1 − q) − δ →= 0, then the proof is similar to (b).

(2) If p = δ0 then, without loss of generality, we can assume Dq,δ [ f ] (δ0) > 0.
Since

lim
n≤+∞

⎡
qna + δ [k]q

⎣ = lim
n≤+∞

⎡
qnb + δ [k]q

⎣ = δ0

(see Aldwoah (2009)) and Dq,δ [ f ] is continuous at δ0, then

lim
n≤+∞ Dq,δ [ f ]

⎡
qna + δ [k]q

⎣ = lim
n≤+∞ Dq,δ [ f ]

⎡
qnb + δ [k]q

⎣

= Dq,δ [ f ] (δ0) > 0.

Thus, there exists N ∈ N such that for all n ≥ N one has

Dq,δ [ f ]
⎡
qna + δ [k]q

⎣
> 0 and Dq,δ [ f ]

⎡
qnb + δ [k]q

⎣
> 0.

(a) If δ0 →= a and δ0 →= b, then we can define
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η (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Dq,δ [ f ]
⎡
q N b + δ [N ]q

⎣
i f t = q N+1a + δ [N + 1]q

Dq,δ [ f ]
⎡
q N a + δ [N ]q

⎣
i f t = q N+1b + δ [N + 1]q

0 otherwise.

Hence,

∫ b

a
Dq,δ [ f ] (t) η (qt + δ) dq,δt

= (b − a) (1 − q) q N Dq,δ [ f ]
(

q N b + δ [N ]q
)

· Dqδ [ f ]
(

q N a + δ [N ]q
)

→= 0,

which is a contradiction.
(b) If δ0 = b, then we define

η (t) =
⎧⎨
⎩

Dq,δ [ f ] (δ0) i f t = q N+1a + δ [N + 1]q

0 otherwise.

Therefore,

∫ b

a
Dq,δ [ f ] (t) η (qt + δ) dq,δt

= −
∫ a

δ0

Dq,δ [ f ] (t) η (qt + δ) dq,δt

= − (a (1 − q) − δ) q N Dq,δ [ f ]
(

q N a + δ [k]q
)

· Dq,δ [ f ] (δ0) →= 0,

which is a contradiction.
(c) When δ0 = a, the proof is similar to (b).

Lemma 2.42 (Fundamental lemma of Hahn’s variational calculus) Let f, g ∈
Y1 ([a, b] ,R) .

If ∫ b

a

⎡
f (t) ηε (t) + g (t) Dq,δ [η] (t)

⎣
dq,δt = 0

for all η ∈ Y1 ([a, b] ,R) such that η (a) = η (b) = 0, then

Dq,δ [g] (t) = f (t) ∀t ∈ [a, b]q,δ .

Proof Define the function A by
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A (t) :=
∫ t

δ0

f (τ ) dq,δτ .

Then Dq,δ [A] (t) = f (t) for all t ∈ [a, b] and

∫ b

a
A (t) Dq,δ [η] (t) dq,δt = A (t) η (t)

⎠⎠⎠⎠
b

a
−
∫ b

a
Dq,δ [A] (t) ηε (t) dq,δt

= −
∫ b

a
Dq,δ [A] (t) ηε (t) dq,δt

= −
∫ b

a
f (t) ηε (t) dq,δt .

Hence,

∫ b

a

⎡
f (t) ηε (t) + g (t) Dq,δ [η] (t)

⎣
dq,δt = 0

⇔
∫ b

a
(−A (t) + g (t)) Dq,δ [η] (t) dq,δt = 0.

By Lemma 2.41 there is a c ∈ R such that −A (t) + g (t) = c for all t ∈ [a, b]q,δ .
Hence Dq,δ [A] (t) = Dq,δ [g] (t) for t ∈ [a, b]q,δ , which provides the desired
result: Dq,δ [g] (t) = f (t) ∀t ∈ [a, b]q,δ .

We are now in conditions to deduce the higher-order fundamental Lemma of
Hahn’s quantum variational calculus.

Lemma 2.43 (Higher-order fundamental lemma of Hahn’s variational
calculus) Let f0, f1, . . . , fr ∈ Y1 ([a, b] ,R). If

∫ b

a

(
r∑

i=0

fi (t) Di
q,δ

[
ηεr−i

⎛
(t)

)
dq,δt = 0

for any variation η, then

r∑
i=0

(−1)i
(
1

q

⎜ (i−1)i
2

Di
q,δ [ fi ] (t) = 0

for all t ∈ [a, b]q,δ .

Proof We proceed by mathematical induction. If r = 1 the result is true by Lemma
2.42. Assume that
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∫ b

a

(
r+1∑
i=0

fi (t) Di
q,δ

[
ηεr+1−i

⎛
(t)

)
dq,δt = 0

for all functions η such that η (a) = η (b) = 0, …, Dr
q,δ [η] (a) = Dr

q,δ [η] (b) = 0.
Note that

∫ b

a
fr+1 (t) Dr+1

q,δ [η] (t) dq,δt

= fr+1 (t) Dr
q,δ [η] (t)

⎠⎠⎠⎠
b

a
−
∫ b

a
Dq,δ

⎟
fr+1

]
(t)
(

Dr
q,δ [η]

)ε
(t) dq,δt

= −
∫ b

a
Dq,δ

⎟
fr+1

]
(t)
(

Dr
q,δ [η]

)ε
(t) dq,δt

and, by Lemma 2.39,

∫ b

a
fr+1 (t) Dr+1

q,δ [η] (t) dq,δt = −
∫ b

a
Dq,δ

⎟
fr+1

]
(t)

(
1

q

⎜r

Dr
q,δ

⎟
ηε
]
(t) dq,δt .

Therefore,

∫ b

a

(
r+1∑
i=0

fi (t) Di
q,δ

[
ηεr+1−i

⎛
(t)

)
dq,δt

=
∫ b

a

(
r∑

i=0

fi (t) Di
q,δ

[
ηεr+1−i

⎛
(t)

)
dq,δt

−
∫ b

a
Dq,δ

⎟
fr+1

]
(t)

(
1

q

⎜r

Dr
q,δ

⎟
ηε
]
(t) dq,δt

=
∫ b

a

[r−1∑
i=0

fi (t) Di
q,δ

[⎡
ηε
⎣εr−i ⎛

(t) dq,δt

+
(

fr −
(
1

q

⎜r

Dq,δ

⎟
fr+1

]⎜
(t) Dr

q,δ

⎟
ηε
]
(t)

]
dq,δt.

By Lemma 2.40, ηε is a variation. Hence, using the induction hypothesis,

r−1∑
i=0

(−1)i
(
1

q

⎜ (i−1)i
2

Di
q,δ [ fi ] (t)

+ (−1)r
(
1

q

⎜ (r−1)r
2

Dr
q,δ

[(
fr − 1

qr
Dq,δ

⎟
fr+1

]⎜]
(t)
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=
r−1∑
i=0

(−1)i
(
1

q

⎜ (i−1)i
2

Di
q,δ [ fi ] (t) + (−1)r

(
1

q

⎜ (r−1)r
2

Dr
q,δ [ fr ] (t)

+ (−1)r+1
(
1

q

⎜ (r−1)r
2 1

qr
Dr

q,δ

⎟
Dq,δ

⎟
fr+1

]]
(t)

= 0

for all t ∈ [a, b]q,δ , which leads to

r+1∑
i=0

(−1)i
(
1

q

⎜ (i−1)i
2

Di
q,δ [ fi ] (t) = 0, t ∈ [a, b]q,δ.

2.7.2 Higher-order Hahn’s Quantum Euler–Lagrange Equation

For avariationη and an admissible functiony,wedefine the functionφ : (−ε̄, ε̄) ≤ R

by φ (ε) = φ (ε, y, η) := L [y + εη]. The first variation of the variational problem
(2.7) is defined by δL [y, η] := φ≥ (0). Observe that

L [y + εη] =
∫ b

a
L

(
t, yεr

(t) + εηεr
(t), Dq,δ

[
yεr−1

⎛
(t) + εDq,δ

[
ηεr−1

⎛
(t),

. . . , Dr
q,δ [y] (t) + εDr

q,δ [η] (t)

⎜
dq,δt

= Lb [y + εη] − La [y + εη]

with

Lξ [y + εη] =
∫ ξ

δ0

L

(
t, yεr

(t) + εηεr
(t) , Dq,δ

[
yεr−1

⎛
(t) + εDq,δ

[
ηεr−1

⎛
(t),

. . . , Dr
q,δ [y] (t) + εDr

q,δ [η] (t)

⎜
dq,δt,

ξ ∈ {a, b}. Therefore,

δL [y, η] = δLb [y, η] − δLa [y, η]. (2.29)

Considering (2.29), the following is a direct consequence of Lemma 2.15:
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Lemma 2.44 For a variation η and an admissible function y, let

g (t, ε) := L

(
t, yεr

(t) + εηεr
(t), Dq,δ

[
yεr−1

⎛
(t) + εDq,δ

[
ηεr−1

⎛
(t),

. . . , Dr
q,δ [y] (t) + εDr

q,δ [η] (t)

⎜
,

ε ∈ (−ε̄, ε̄). Assume that:
(1) g (t, ·) is differentiable at 0 uniformly in t ∈ [a, b]q,δ;

(2) La [y + εη] =
∫ a

δ0

g (t, ε) dq,δt and Lb [y + εη] =
∫ b

δ0

g (t, ε) dq,δt exist for

ε ≈ 0;

(3)
∫ a

δ0

∂2g (t, 0) dq,δt and
∫ b

δ0

∂2g (t, 0) dq,δt exist.

Then

φ≥ (0) = δL [y, η]

=
∫ b

a

( r∑
i=0

∂i+2L
(

t, yεr
(t), Dq,δ

[
yεr−1

⎛
(t) , . . . , Dr

q,δ [y] (t)
)

· Di
q,δ

[
ηεr−i

⎛
(t)

⎜
dq,δt,

where ∂i L denotes the partial derivative of L with respect to its i th argument.

The following result gives a necessary condition of Euler–Lagrange type for an
admissible function to be a local extremizer for (2.7).

Theorem 2.45 (The higher-order Hahn quantum Euler–Lagrange equation)
Under hypotheses (H1)–(H3) and conditions (1)–(3) of Lemma 2.44 on the
Lagrangian L, if y∗ ∈ Yr is a local extremizer for problem (2.7), then y∗ satis-
fies the q,δ-Euler–Lagrange equation

r∑
i=0

(−1)i
(
1

q

⎜ (i−1)i
2

Di
q,δ

⎟
∂i+2L

] (
t, yεr

(t), Dq,δ

[
yεr−1

⎛
(t),

. . . , Dr
q,δ [y] (t)

)
= 0 (2.30)

for all t ∈ [a, b]q,δ .

Proof Let y∗ be a local extremizer for problem (2.7) and η a variation. Define
φ : (−ε̄, ε̄) ≤ R by φ (ε) := L [y∗ + εη]. A necessary condition for y∗ to be an
extremizer is given by φ≥ (0) = 0. By Lemma 2.44 we conclude that
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∫ b

a

( r∑
i=0

∂i+2L
(

t, yεr
(t), Dq,δ

[
yεr−1

⎛
(t) , . . . , Dr

q,δ [y] (t)
)

· Di
q,δ

[
ηεr−i

⎛
(t)

⎜
dq,δt = 0

and (2.30) follows from Lemma 2.43.

Remark 2.46 In practical terms the hypotheses of Theorem 2.45 are not so easy to
verify a priori. One can, however, assume that all hypotheses are satisfied and apply
the q,δ-Euler–Lagrange equation (2.30) heuristically to obtain a candidate. If such
a candidate is, or not, a solution to problem (2.7) is a different question that always
requires further analysis (see an example in Sect. 2.7.3).

When δ = 0 one obtains from (2.30) the higher-order q-Euler–Lagrange
equation:

r∑
i=0

(−1)i
(
1

q

⎜ (i−1)i
2

Di
q

⎟
∂i+2L

] (
t, yεr

(t), Dq

[
yεr−1

⎛
(t), . . . , Dr

q [y] (t)
)

= 0

for all t ∈ {aqn : n ∈ N0}∪{bqn : n ∈ N0}∪{0}. The higher-order h-Euler–Lagrange
equation is obtained from (2.30) taking the limit q ≤ 1:

r∑
i=0

(−1)i Δi
h

⎟
∂i+2L

] (
t, yεr

(t),Δh

[
yεr−1

⎛
(t), . . . , Δr

h [y] (t)
)

= 0

for all t ∈ {a + nh : n ∈ N0} ∪ {b + nh : n ∈ N0}. The classical Euler–Lagrange
equation (van Brunt 2004) is recovered when (δ, q) ≤ (0, 1):

r∑
i=0

(−1)i di

dt i
∂i+2L

(
t, y (t) , y≥ (t), . . . , y(r)(t)

)
= 0

for all t ∈ [a, b].
We now illustrate the usefulness of our Theorem 2.45 by means of an example

that is not covered by previous available results in the literature.

2.7.3 An Example

Let q = 1
2 and δ = 1

2 . Consider the following problem:

L [y] =
∫ 1

−1

(
yε(t) + 1

2

⎜2 (⎡
Dq,δ [y] (t)

⎣2 − 1
)2

dq,δt −≤ min (2.31)
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over all y ∈ Y1 satisfying the boundary conditions

y(−1) = 0 and y(1) = −1. (2.32)

This is an example of problem (2.7) with r = 1. Our q,δ-Euler–Lagrange equation
(2.30) takes the form

Dq,δ [∂3L]
⎡
t, yε (t), Dq,δ [y] (t)

⎣ = ∂2L
⎡
t, yε (t), Dq,δ [y] (t)

⎣
.

Therefore, we look for an admissible function y∗ of (2.31)–(2.32) satisfying

Dq,δ

[
4

(
yε + 1

2

⎜2 (⎡
Dq,δ [y]

⎣2 − 1
)

Dq,δ [y]

]
(t)

= 2

(
yε(t) + 1

2

⎜(⎡
Dq,δ [y] (t)

⎣2 − 1
)

(2.33)

for all t ∈ [−1, 1]q,δ . It is easy to see that

y∗(t) =

⎧⎪⎨
⎪⎩

−t if t ∈ (−1, 0) ∪ (0, 1]
0 if t = −1

1 if t = 0

is an admissible function for (2.31)–(2.32) with

Dq,δ [y∗] (t) =

⎧⎪⎨
⎪⎩

−1 if t ∈ (−1, 0) ∪ (0, 1]
1 if t = −1

−3 if t = 0,

satisfying the q,δ-Euler–Lagrange equation (2.33).We nowprove that the candidate
y∗ is indeed a minimizer for (2.31)–(2.32). Note that here δ0 = 1 and, by Lemma
2.11 and item (3) of Theorem 2.10,

L [y] =
∫ 1

−1

(
yε(t) + 1

2

⎜2 (⎡
Dq,δ [y] (t)

⎣2 − 1
)2

dq,δt ≥ 0 (2.34)

for all admissible functions y ∈ Y1 ([−1, 1],R). Since L [y∗] = 0, we conclude that
y∗ is a minimizer for problem (2.31)–(2.32).

It is worth mentioning that the minimizer y∗ of (2.31)–(2.32) is not continuous
while the classical calculus of variations (van Brunt 2004), the calculus of variations
on time scales (Ferreira and Torres 2008; Malinowska and Torres 2009; Martins
and Torres 2009), or the nondifferentiable scale variational calculus (Almeida and
Torres 2009a, 2010a; Cresson et al. 2009), deal with functions which are necessarily
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continuous. As an open question, we pose the problem of determining conditions on
the data of problem (2.7) assuring, a priori, the minimizer to be regular.

2.8 Generalized Transversality Conditions

The main purpose of this section is to generalize the Hahn calculus of varia-
tions (Malinowska and Torres 2010c) by considering the following q,δ-variational
problem:

L [y] =
∫ b

a
L
⎡
t, y (qt + δ) , Dq,δ [y] (t) , y(a), y(b)

⎣
dq,δt −≤ extr. (2.35)

In Sect. 2.8.1 we obtain the Euler–Lagrange equation for problem (2.35) in the class
of functions y ∈ Y1 satisfying the boundary conditions

y(a) = α and y(b) = β (2.36)

for some fixed α,β ∈ R. The transversality conditions for problem (2.35) are
obtained in Sect. 2.8.2. In Sect. 2.8.3 we prove necessary optimality conditions
for isoperimetric problems. A sufficient optimality condition under an appropriate
convexity assumption is given in Sect. 2.8.4.

In the sequel we assume that the Lagrangian L satisfies the following hypotheses:

(H1) (u0, . . . , u3) ≤ L(t, u0, . . . , u3) is a C1(R4,R) function for any t ∈ [a, b];
(H2) t ≤ L(t, y(qt + δ), Dq,δ [y] (t), y(a), y(b)) is continuous at δ0 for any

y ∈ Y1;
(H3) functions t ≤ ∂i+2L(t, y(qt + δ), Dq,δ [y] (t), y(a), y(b)), i = 0, . . . , 3

belong to Y1 for all y ∈ Y1.

In order to simplify expressions, we introduce the operator {·} defined in the
following way:

{y}(t, a, b) := (t, y(qt + δ), Dq,δ[y](t), y(a), y(b))

where y ∈ Y1.
The following lemma can be obtained similar to Lemma 2.15.

Lemma 2.47 For fixed y, h ∈ Y1 let

g(t, λ) = L(t, y(qt + δ) + λh(qt + δ), Dq,δ[y](t)
+ λDq,δ[h](t), y(a) + λh(a), y(b) + λh(b))

for λ ∈] − λ, λ[, for some λ > 0, i.e., g(t, λ) = L{y + λh}(t, a, b). Assume that:

(i) g(t, ·) is differentiable at 0 uniformly in t ∈ [a, b]q,δ;
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(ii) La[y + λh] =
∫ a

δ0

g (t, ε) dq,δt and Lb[y + λh] =
∫ b

δ0

g (t, ε) dq,δt exist for

λ ≈ 0;

(iii)
∫ a

δ0

∂2g(t, 0)dq,δt and
∫ b

δ0

∂2g(t, 0)dq,δt exist.

Then,

δL[y, h] =
∫ b

a

(
∂2L{y}(t, a, b) · h(qt + δ) + ∂3L{y}(t, a, b) · Dq,δ[h](t)

+ ∂4L{y}(t, a, b) · h(a) + ∂5L{y}(t, a, b) · h(b)
)

dq,δt.

2.8.1 The Hahn Quantum Euler–Lagrange Equation

In the following theorem, we give the Euler–Lagrange equation for problem
(2.35)–(2.36).

Theorem 2.48 (Necessary optimality condition to (2.35)–(2.36)) Under hypothe-
ses (H1)–(H3) and conditions (i)–(iii) of Lemma 2.47 on the Lagrangian L, if ỹ is
a local minimizer or local maximizer to problem (2.35)–(2.36), then ỹ satisfies the
Euler–Lagrange equation

∂2L{y}(t, a, b) − Dq,δ[∂3L]{y}(t, a, b) = 0 (2.37)

for all t ∈ [a, b]q,δ .

Proof Suppose that L has a local extremum at ỹ. Let h be any admissible variation
and define a function φ :] − λ̄, λ̄[≤ R by φ(λ) = L[ỹ + λh]. A necessary condition
for ỹ to be an extremizer is given by φ≥(0) = 0. Note that

φ≥(0) =
∫ b

a

(
∂2L{ỹ}(t, a, b) · h(qt + δ) + ∂3L{ỹ}(t, a, b) · Dq,δ[h](t)

+ ∂4L{ỹ}(t, a, b) · h(a) + ∂5L{ỹ}(t, a, b) · h(b)
)

dq,δt.

Since h(a) = h(b) = 0, then

φ≥(0) =
∫ b

a

(
∂2L{ỹ}(t, a, b) · h(qt + δ) + ∂3L{ỹ}(t, a, b) · Dq,δ[h](t)

)
dq,δt.

Integration by parts gives
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∫ b

a
∂3L{ỹ}(t, a, b) · Dq,δ[h](t)dq,δt =

[
∂3L{ỹ}(t, a, b) · h(t)

⎛b

a

−
∫ b

a
Dq,δ[∂3L]{ỹ}(t, a, b) · h(qt + δ)dq,δt

and since h(a) = h(b) = 0, then

φ≥(0) = 0 ⇔
∫ b

a

(
∂2L{ỹ}(t, a, b) − Dq,δ[∂3L]{ỹ}(t, a, b)

)
· h(qt + δ)dq,δt = 0.

Thus, by Lemma 2.16, we have

∂2L{ỹ}(t, a, b) − Dq,δ[∂3L]{ỹ}(t, a, b) = 0

for all t ∈ [a, b]q,δ .

Remark 2.49 Under appropriate conditions, when (δ, q) ≤ (0, 1), we obtain a
corresponding result in the classical context of the calculus of variations (Cruz et al.
2010) (see also Malinowska and Torres (2010b)):

d

dt
∂3L(t, y(t), y≥(t), y(a), y(b)) = ∂2L(t, y(t), y≥(t), y(a), y(b)).

Remark 2.50 In the basic problem of the calculus of variations, L does not depend
on y(a) and y(b), and equation (2.37) reduces to the Hahn quantum Euler–Lagrange
equation (2.4).

2.8.2 Natural Boundary Conditions

The following theorem provides necessary optimality conditions for problem (2.35).

Theorem 2.51 (Natural boundary conditions to (2.35)) Under hypotheses (H1)–
(H3) and conditions (i)–(iii) of Lemma 2.47 on the Lagrangian L, if ỹ is a local
minimizer or local maximizer to problem (2.35), then ỹ satisfies the Euler–Lagrange
equation (2.37) and

1. if y(a) is free, then the natural boundary condition

∂3L{ỹ}(a, a, b) =
∫ b

a
∂4L{ỹ}(t, a, b)dq,δt (2.38)

holds;
2. if y(b) is free, then the natural boundary condition
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∂3L{ỹ}(b, a, b) = −
∫ b

a
∂5L{ỹ}(t, a, b)dq,δt (2.39)

holds.

Proof Suppose that ỹ is a local minimizer (resp. maximizer) to problem (2.35). Let
h be any Y1 function. Define a function φ : ] − λ̄, λ̄[≤ R by φ(λ) = L[ỹ + λh]. It is
clear that a necessary condition for ỹ to be an extremizer is given by φ≥ (0) = 0. From
the arbitrariness of h and using similar arguments as the ones used in the proof of
Theorem 2.48, it can be proved that ỹ satisfies the Euler–Lagrange equation (2.37).

1. Suppose now that y(a) is free. If y(b) = β is given, then h(b) = 0; if y(b) is
free, then we restrict ourselves to those h for which h(b) = 0. Therefore,

0 = φ≥(0)

=
∫ b

a

(
∂2L{ỹ}(t, a, b) − Dq,δ[∂3L]{ỹ}(t, a, b)

)
· h(qt + δ)dq,δt (2.40)

+
( ∫ b

a
∂4L{ỹ}(t, a, b)dq,δt − ∂3L{ỹ}(a, a, b)

)
· h(a) = 0.

Using the Euler–Lagrange equation (2.37) into (2.40) we obtain

( ∫ b

a
∂4L{ỹ}(t, a, b)dq,δt − ∂3L{ỹ}(a, a, b)

)
· h(a) = 0.

From the arbitrariness of h it follows that

∂3L{ỹ}(a, a, b) =
∫ b

a
∂4L{ỹ}(t, a, b)dq,δt.

2. Suppose now that y(b) is free. If y(a) = α, then h(a) = 0; if y(a) is free, then
we restrict ourselves to those h for which h(a) = 0. Thus,

0 = φ≥(0)

=
∫ b

a

(
∂2L{ỹ}(t, a, b) − Dq,δ[∂3L]{ỹ}(t, a, b)

)
· h(qt + δ)dq,δt (2.41)

+
( ∫ b

a
∂5L{ỹ}(t, a, b)dq,δt + ∂3L{ỹ}(b, a, b)

)
· h(b) = 0.

Using the Euler–Lagrange equation (2.37) into (2.41), and from the arbitrariness
of h, it follows that

∂3L{ỹ}(b, a, b) = −
∫ b

a
∂5L{ỹ}(t, a, b)dq,δt.
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In the case where L does not depend on y(a) and y(b), under appropriate assump-
tions on the Lagrangian L , we obtain the following result.

Corollary 2.52 If ỹ is a local minimizer or local maximizer to problem

L [y] =
∫ b

a
L{ỹ}(t)dq,δt −≤ extr

then ỹ satisfies the Euler–Lagrange equation

∂2L{ỹ}(t) − Dq,δ[∂3L]{ỹ}(t) = 0

for all t ∈ [a, b]q,δ , and

1. if y(a) is free, then the natural boundary condition

∂3L{ỹ}(a) = 0 (2.42)

holds;
2. if y(b) is free, then the natural boundary condition

∂3L{ỹ}(b) = 0 (2.43)

holds.

Remark 2.53 Under appropriate conditions, when (δ, q) ≤ (0, 1) equations (2.42)
and (2.43) reduce to the well-known natural boundary conditions for the basic prob-
lem of the calculus of variations

∂3L(a, ỹ(a), ỹ≥(a)) = 0 and ∂3L(b, ỹ(b), ỹ≥(b)) = 0,

respectively.

2.8.3 Isoperimetric Problem

We now study the general Hahn quantum isoperimetric problem with an integral
constraint. Both normal and abnormal extremizers are considered. The isoperimetric
problem consists of minimizing or maximizing the functional

L [y] =
∫ b

a
L
⎡
t, y (qt + δ), Dq,δ [y] (t) , y(a), y(b)

⎣
dq,δt (2.44)

in the class of functions y ∈ Y1 satisfying the integral constraint
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J [y] =
∫ b

a
F
⎡
t, y (qt + δ), Dq,δ [y] (t), y(a), y(b)

⎣
dq,δt = γ (2.45)

for some γ ∈ R.

Theorem 2.54 (Necessary optimality condition for normal extremizers to
(2.44)–(2.45)) Suppose that L and F satisfy hypotheses (H1)–(H3) and conditions
(i)–(iii) of Lemma 2.47, and suppose that ỹ ∈ Y1 gives a local minimum or a local
maximum to the functional L subject to the integral constraint (2.45). If ỹ is not an
extremal to J, then there exists a real λ such that ỹ satisfies the equation

∂2H{y}(t, a, b) − Dq,δ[∂3H ]{y}(t, a, b) = 0 (2.46)

for all t ∈ [a, b]q,δ , where H = L − λF and

1. if y(a) is free, then the natural boundary condition

∂3H{ỹ}(a, a, b) =
∫ b

a
∂4H{ỹ}(t, a, b)dq,δt (2.47)

holds;
2. if y(b) is free, then the natural boundary condition

∂3H{ỹ}(b, a, b) = −
∫ b

a
∂5H{ỹ}(t, a, b)dq,δt (2.48)

holds.

Proof The proof is left to the reader. Hint: recall proofs of Theorem 2.26 and The-
orem 2.51.

Introducing an extra multiplier λ0 we can also deal with abnormal extremizers to
the isoperimetric problem (2.44)–(2.45).

Theorem 2.55 (Necessary optimality condition for normal and abnormal
extremizers to (2.44)–(2.45)) Suppose that L and F satisfy hypotheses (H1)–(H3)
and conditions (i)–(iii) of Lemma 2.47, and suppose that ỹ ∈ Y1 gives a local
minimum or a local maximum to the functional L subject to the integral constraint
(2.45). Then there exist two constants λ0 and λ, not both zero, such that ỹ satisfies
the equation

∂2H{y}(t, a, b) − Dq,δ[∂3H ]{y}(t, a, b) = 0 (2.49)

for all t ∈ [a, b]q,δ , where H = λ0L − λF and

1. if y(a) is free, then the natural boundary condition

∂3H{ỹ}(a, a, b) =
∫ b

a
∂4H{ỹ}(t, a, b)dq,δt (2.50)
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holds;
2. if y(b) is free, then the natural boundary condition

∂3H{ỹ}(b, a, b) = −
∫ b

a
∂5H{ỹ}(t, a, b)dq,δt (2.51)

holds.

In the case where L and F do not depend on y(a) and y(b), under appropriate
assumptions on Lagrangians L and F , we obtain the following result.

Corollary 2.56 If ỹ is a local minimizer or local maximizer to the problem

L [y] =
∫ b

a
L{y}(t)dq,δt −≤ extr

subject to the integral constraint

J [y] =
∫ b

a
F{y}(t)dq,δt = γ

for some γ ∈ R, then there exist two constants λ0 and λ, not both zero, such that ỹ
satisfies the following equation

∂2H{y}(t) − Dq,δ[∂3H ]{y}(t) = 0

for all t ∈ [a, b]q,δ , where H = λ0L − λF and

1. if y(a) is free, then the natural boundary condition

∂3H{ỹ}(a) = 0

holds;
2. if y(b) is free, then the natural boundary condition

∂3H{ỹ}(b) = 0

holds.

2.8.4 Sufficient Condition for Optimality

The following theorem gives sufficient optimality conditions for problem (2.35).
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Theorem 2.57 Let L(t, u1, . . . , u4) be jointly convex (respectively concave) in
(u1, . . . , u4). If ỹ satisfies conditions (2.37), (2.38) and (2.39), then ỹ is a global
minimizer (respectively maximizer) to problem (2.35).

Proof The proof can be adapted from the proof of Theorem 2.29.

2.8.5 Illustrative Examples

We provide some examples in order to illustrate our results.

Example 2.58 Let q ∈]0, 1[ and δ ≥ 0 be fixed real numbers, and I be an interval
of R such that δ0, 0, 1 ∈ I . Consider the problem

L[y] =
∫ 1

0

(
y(qt + δ) + 1

2
(Dq,δ[y](t))2

⎜
dq,δt −≤ min (2.52)

over all y ∈ Y1 satisfying the boundary condition y(1) = 1. If ỹ is a local minimizer
to problem (2.52), then by Corollary 2.52 it satisfies the following conditions:

Dq,δ Dq,δ [̃y](t) = 1, (2.53)

for all t ∈ {δ[n]q : n ∈ N0} ∪ {qn + δ[n]q : n ∈ N0} ∪ {δ0} and

Dq,δ [̃y](0) = 0. (2.54)

It is easy to verify that ỹ(t) = 1
q+1 t2 − ( δ

q+1 − c)t + d, where c, d ∈ R, is a solution
to equation (2.53). Using the natural boundary condition (2.54) we obtain that c = 0.
In order to determine d we use the fixed boundary condition y(1) = 1, and obtain
that d = q+δ

q+1 . Hence

ỹ(t) = 1

q + 1
t2 − δ

q + 1
t + q + δ

q + 1

is a candidate to be a minimizer to problem (2.52). Moreover, since L is jointly
convex, by Theorem 2.57, ỹ is a global minimizer to problem (2.52).

Example 2.59 Let q ∈]0, 1[ and δ ≥ 0 be fixed real numbers, and I be an interval
of R such that δ0, 0, 1 ∈ I . Consider the problem of minimizing

L[y] =
∫ 1

0

(
y(qt + δ) + 1

2
(Dq,δ[y](t))2 + γ

1

2
(y(1) − 1)2 + λ

1

2
y2(0)

⎜
dq,δt,

(2.55)
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where γ,λ ∈ R
+. If ỹ is a local minimizer to (2.55), then by Theorem 2.51 it satisfies

the following conditions:
Dq,δ Dq,δ [̃y](t) = 1, (2.56)

for all t ∈ {δ[n]q : n ∈ N0} ∪ {qn + δ[n]q : n ∈ N0} ∪ {δ0}, and

Dq,δ [̃y](0) =
∫ 1

0
λỹ(0)dq,δt, (2.57)

Dq,δ [̃y](1) = −
∫ 1

0
γ(ỹ(1) − 1)dq,δt. (2.58)

As in Example 2.58, ỹ(t) = 1
q+1 t2 − ( δ

q+1 −c)t +d, where c, d ∈ R, is a solution to
equation (2.56). In order to determine c and d we use the natural boundary conditions
(2.57) and (2.58). This gives

ỹ(t) = 1

q + 1
t2 − δ(λ + γ) − λ(γ − 1)(q + 1) + γλ

(q + 1)(γ + λγ + λ)
t

+ (γ − 1)(q + 1) − γ(1 − δ)

(q + 1)(γ + λγ + λ)
(2.59)

as a candidate to be a minimizer to (2.55). Moreover, since L is jointly convex, by
Theorem 2.57 it is a global minimizer. Theminimizer (2.59) is represented in Fig. 2.1
for fixed γ = λ = 2, q = 0.99 and different values of δ.

Fig. 2.1 The minimizer
(2.59) of Example 2.59 for
fixed γ = λ = 2, q = 0.99
and different values of δ
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We note that in the limit, when γ,λ ≤ +∞, ỹ(t) = 1
q+1 t2 + q

q+1 t and coincides
with the solution of the following problem with fixed initial and terminal points (see
Example 2.32):

L[y] =
∫ 1

0

(
y(qt + δ) + 1

2
(Dq,δ[y](t))2

⎜
dq,δt −≤ min

subject to the boundary conditions

y(0) = 0, y(1) = 1.

Expression γ 1
2 (y(1) − 1)2 + λ 1

2y
2(0) added to the Lagrangian y(qt + δ) +

1
2 (Dq,δ[y](t))2 works like a penalty functionwhen γ andλ go to infinity. The penalty
function itself grows, and forces the merit function (2.55) to increase in value when
the constraints y(0) = 0 and y(1) = 1 are violated, and causes no growth when
constraints are fulfilled. The minimizer (2.59) is represented in Fig. 2.2 for fixed
q = 0.5,δ = 1 and different values of γ and λ.

Remark 2.60 Let

L[y] =
∫ 1

0

(
y(qt + δ) + 1

2
(Dq,δ[y](t))2

⎜
dq,δt

and

Fig. 2.2 The minimizer
(2.59) of Example 2.59 for
fixed q = 0.5,δ = 1 and
different values of γ and λ
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ỹ1(t) = 1

q + 1
t2 − δ

q + 1
t + q + δ

q + 1
and ỹ2(t) = 1

q + 1
t2 + q

q + 1
t.

Comparing Example 2.58 and Example 2.59, we can conclude that

L[̃y1] < L[̃y2].

2.9 An Application Towards Economics

As the variables, that are usually considered and observed by the economist, are the
outcome of a great number of decisions, taken by different operators at different
points of time, it seems natural to look for new kinds of models which are more
flexible and realistic. Hahn’s approach allows for more complex applications than
the discrete or the continuous models. A consumer might have income from work at
unequal time intervals and/ormake expenditures at unequal time intervals. Therefore,
it is possible to obtain more rigorous and more accurate solutions with the approach
here proposed.

In the first example we discuss the application of the Hahn quantum variational
calculus to theRamseymodel, which determines the behavior of saving/consumption
as the result of optimal inter-temporal choices by individual households (Atici and
McMahan 2009). For a complete treatment of the classical Ramsey model we refer
the reader to Barro and Sala-i-Martin (1999).

Example 2.61 Before writing the quantummodel in terms of the Hahn operators we
will present its discrete and continuous versions. The discrete-time Ramsey model
is

max[Wt ]

T −1∑
t=0

(1 + p)−tU

[
Wt − Wt+1

1 + r

]
, Ct = Wt − Wt+1

1 + r
,

while the continuous Ramsey model is

max
W (·)

∫ T

0
e−ptU

⎟
r W (t) − W ≥(t)

]
dt, C(t) = r W (t) − W ≥(t), (2.60)

where the quantities are defined as

• W – production function,
• C – consumption,
• p – discount rate,
• r – rate of yield,
• U – instantaneous utility function.

Onemay assume, due to some constraints of economical nature, that the dynamics
do not depend on the usual derivative or the forward difference operator, but on the
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Hahn quantum difference operator Dq,δ . In this condition, one is entitled to assume
again that the constraint C(t) has the form

C(t) = −
[

E

(
−r,

t − δ

q

⎜]−1

Dq,δ

[
E

(
−r,

t − δ

q

⎜
W (t)

]
,

where E (z, ·) is the q,δ-exponential function defined by

E (z, t) :=
∞∏

k=0

(1 + zqk(t (1 − q) − δ))

for z ∈ C. Several nice properties of the q,δ-exponential function can be found
in Aldwoah (2009); Annaby et al. (2012). By taking the q,δ-derivative of[

E
(
−r, t−δ

q

)
W (t)

⎛
the following is obtained:

C(t) = −
[

E

(
−r,

t − δ

q

⎜]−1 [
E

(
−r,

t − δ

q

⎜
Dq,δW (t)

+E

(
−r,

t − δ

q

⎜
W (qt + δ)

r
(
1 − 1

q

)
− r

(
1 + r

(
t − t−δ

q

))
(
1 + r

(
t − t−δ

q

))
(1 − r (t (1 − q) − δ))

⎤
⎦ .

The quantumRamseymodel with the Hahn difference operator consists tomaximize

∫ T

0
E(−p, t)U

[
W (qt + δ)

r
(
1 + r

(
t − t−δ

q

))
− r

(
1 − 1

q

)
(
1 + r

(
t − t−δ

q

))
(1 − r (t (1 − q) − δ))

− Dq,δW (t)

]
dq,δ (2.61)

subject to the constraint

C(t) = W (qt+δ)
r
(
1 + r

(
t − t−δ

q

))
− r

(
1 − 1

q

)
(
1 + r

(
t − t−δ

q

))
(1 − r (t (1 − q) − δ))

−Dq,δW (t). (2.62)

The quantum Euler–Lagrange equation is, by Theorem 2.21, given by

E(−p, t)U ≥ [C(t)]
r
(
1 + r

(
t − t−δ

q

))
− r

(
1 − 1

q

)
(
1 + r

(
t − t−δ

q

))
(1 − r (t (1 − q) − δ))

+ Dq,δ

⎟
E(−p, t)U ≥ [C(t)]

] = 0. (2.63)
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Note that for q ↑ 1 and δ ↓ 0 problem (2.61)–(2.62) reduces to (2.60), and (2.63)
to the classical Ramsey’s Euler–Lagrange differential equation.

In the next example we analyze an adjustment model in economics. For a deeper
discussion of this model we refer the reader to Sengupta (1997).

Example 2.62 Consider the dynamic model of adjustment

J [y] =
T∑

t=1

r t
[
α(y(t) − ȳ(t))2 + (y(t) − y(t − 1))2)

⎛
−≤ min,

where y(t) is the output (state) variable, r > 1 is the exogenous rate of discount and
ȳ(t) is the desired target level, and T is the horizon. The first component of the loss
function above is the disequilibrium cost due to deviations from desired target and
the second component characterizes the agent’s aversion to output fluctuations. In
the continuous case the objective function has the form

J [y] =
∫ T

1
e(r−1)t

[
α(y(t) − ȳ(t))2 + (y≥(t))2

⎛
−≤ min.

Let q ∈]0, 1[ and δ ≥ 0 be fixed real numbers, and I be an interval of R such that
δ0, 0, T ∈ I . The quantum model in terms of the Hahn operators which we wish to
minimize is

J [y] =
∫ T

0
E(1 − r, t)

[
α(y(qt + δ) − ȳ(qt + δ))2 + (Dq,δ[y](t))2

⎛
dq,δt,

(2.64)
where E (z, ·) is the q,δ-exponential function. By Theorem 2.51, a minimizer to
(2.64) should satisfy the conditions

E(1 − r, t) [α(y(qt + δ) − ȳ(qt + δ))] = Dq,δ

⎟
E(1 − r, t)Dq,δ[y](t)], (2.65)

for all t ∈ {δ[n]q : n ∈ N0} ∪ {T qn + δ[n]q : n ∈ N0} ∪ {δ0}; and

E(1 − r, t)Dq,δ[y](t)⎠⎠t=0 = 0, E(1 − r, t)Dq,δ[y](t)⎠⎠t=T = 0. (2.66)

Taking the q,δ-derivative of the right side of (2.65) and applying properties of the
q,δ-exponential function, for t such that |t −δ0| < 1

(r−1)(1−q)
, we can rewrite (2.65)

and (2.66) as

[1 − (r − 1)(t (1 − q) − δ)]α(y(qt + δ) − ȳ(qt + δ))

= (r − 1)Dq,δ[y](t) + Dq,δ Dq,δ[y](t),
(2.67)

Dq,δ[y](t)⎠⎠t=0 = 0, Dq,δ[y](t)⎠⎠t=T = 0. (2.68)
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Note that for (q,δ) ≤ (1, 0) equations (2.67) and (2.68) reduce to

α(y(t) − ȳ(t)) = (r − 1)y≥(t) + y≥≥(t),

y≥(t)
⎠⎠
t=0 = 0, y≥(t)

⎠⎠
t=T = 0,

which are necessary optimality conditions for the continuous model.
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Chapter 3
The Power Quantum Calculus

In this chapter we introduce the power difference calculus based on the operator
Dn,q [ f ](t) = f (qtn)− f (t)

qtn−t , where n is an odd positive integer and 0 < q < 1

(Aldwoah et al. 2012). Properties of the new operator and its inverse—the dn,q

integral—are proved. As an application, we consider power quantum Lagrangian
systems and corresponding n, q-Euler–Lagrange equations.

3.1 The Power Quantum Calculus

For a fixed 0 < q < 1, k ∈ N0 := N ∪ {0}, and a fixed odd positive integer n, let us
denote

δ :=
⎧

→ if n = 1,

q
1

1−n if n ∈ 2N + 1,
S :=

⎪ {0} if n = 1,

{−δ, 0, δ} if n ∈ 2N + 1,

and [k]n :=
⎪⎨k−1

i=0 ni if k ∈ N,

0 if k = 0.

Lemma 3.1 Let h : R−≥R be the function defined by h(t) := qtn. Then, h is

one-to-one, onto, and h−1(t) = n

⎩
t

q
. Moreover,

hk(t) := h ≤ h ≤ · · · ≤ h︸ ︷︷ ︸
k−times

(t) = q[k]n tnk

and
h−k(t) := h−1 ≤ h−1 ≤ · · · ≤ h−1︸ ︷︷ ︸

k−times

(t) = q−n−k[k]n tn−k

A. B. Malinowska and D. F. M. Torres, Quantum Variational Calculus, 55
SpringerBriefs in Control, Automation and Robotics,
DOI: 10.1007/978-3-319-02747-0_3, © The Author(s) 2014



56 3 The Power Quantum Calculus
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Fig. 3.1 The iteration of h(t) = qtn , t ∈ R, n ∈ 2N + 1, 0 < q < 1

with

lim
k−≥→ hk(t) =




→ if t > δ

0 if −δ < t < δ

−→ if t < −δ

t if t ∈ S

and

lim
k−≥→ h−k(t) =




δ if 0 < t
−δ if t < 0
t if t ∈ S .

In Fig. 3.1 we illustrate the behaviour of hk(t) of Lemma 3.1 in the case −δ <

t < δ.

3.1.1 Power Quantum Differentiation

We introduce the n,q-power difference operator as follows:

Definition 3.2 Assume that f is a real function defined on R. The n,q-power oper-
ator is given by

Dn,q [ f ](t) :=



f (qtn) − f (t)

qtn − t
if t ∈ R \ S,

f ∪(t) if t ∈ S,
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provided f is differentiable at t ∈ S. If Dn,q [ f ](t) exists, we say that f is
n,q-differentiable at t .

The following lemma is a direct consequence of Definition 3.2.

Lemma 3.3 Let f be a real function and t ∈ R.

(i) If f is n,q-differentiable at t , t ∈ S, then f is continuous at t .
(ii) If f is n,q-differentiable on an interval I ∞ [−δ, δ], 0 ∈ I, and

Dn,q [ f ](t) = 0 for t ∈ I,

then f is a constant function on I .
(iii) If f is n,q-differentiable at t , then f (qtn) = f (t) + (qtn − t)Dn,q [ f ](t).

The next theorem gives useful formulas for the computation of n,q-derivatives of
sums, products, and quotients of n,q-differentiable functions.

Theorem 3.4 Assume f, g : R −≥ R are n,q-differentiable at t ∈ R. Then:

(i) The sum f + g : R −≥ R is n,q-differentiable at t and

Dn,q [ f + g](t) = Dn,q [ f ](t) + Dn,q [g](t).

(ii) For any constant c, c f : R −≥ R is n,q-differentiable at t and

Dn,q [c f ](t) = cDn,q [ f ](t).

(iii) The product f g : R −≥ R is n,q-differentiable at t and

Dn,q [ f g](t) = Dn,q [ f ](t)g(t) + f (qtn)Dn,q [g](t)
= f (t)Dn,q [g](t) + Dn,q [ f ](t)g(qtn).

(iv) If g(t)g(qtn) ⊆= 0, then f/g is n,q-differentiable at t and

Dn,q

[
f

g

]
(t) = Dn,q [ f ](t)g(t) − f (t)Dn,q [g](t)

g(t)g(qtn)
.

Proof The proof is done by direct calculations.

Next example gives explicit formulas for the n,q-derivative of some simple
functions.

Example 3.5 Let f : R−≥R.

(i) If f (t) = c for all t ∈ R, where c ∈ R is a constant, then Dn,q [ f ](t) = 0.
(ii) If f (t) = t for all t ∈ R, then Dn,q [ f ](t) = 1.
(iii) If f (t) = at−b for all t ∈ R, where a, b are real constants, then byTheorem3.4

we have Dn,q [ f ](t) = a.
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(iv) If f (t) = t2 for all t ∈ R, then Dn,q [ f ](t) = t + qtn .
(v) If f (t) = 1

t for all t ∈ R \ {0}, then Dn,q [ f ](t) = − 1
qtn+1 .

(vi) If f (t) = (t + b)m for all t ∈ R, where b ∈ R is a constant and m ∈ N, then,
by induction on m, we obtain that

Dn,q [ f ](t) =
m−1∑
k=0

(qtn + b)k(t + b)m−1−k

for t ⊆= S.

We note that by definition of the n,q-difference operator, one has

Dn,q [ f ](t) = f ∪(t), t ∈ S,

for all functions f in (i)–(vi).

Definition 3.6 Let f : R−≥R. We define the second n,q-derivative by D2
n,q [ f ] :=

Dn,q [Dn,q [ f ]]. More generally, we define Dm
n,q [ f ] as follows:

D0
n,q [ f ] = f,

Dm
n,q [ f ] = Dn,q [Dm−1

n,q [ f ]], m ∈ N.

We now obtain, under certain conditions, the formula for the mth n,q-derivative
of f g, m ∈ N.

Let h be the function defined in Lemma3.1 and let us write h≤ f to denote f ≤ h.
Wewill denote bySm

k the set consisting of all possible strings of lengthm, containing
exactly k times h≤ and m − k times Dn,q .

Example 3.7 Let k = 2 and m = 4. Then,

S4
2 =

{
Dn,q Dn,q h≤h≤, Dn,q h≤ Dn,q h≤, Dn,q h≤h≤ Dn,q , h≤h≤ Dn,q Dn,q ,

h≤ Dn,q h≤ Dn,q , h≤ Dn,q Dn,q h≤}.
Example 3.8 If m = 2, then for k = 0, 1, 2 we have

S2
0 =

{
Dn,q Dn,q

}
, S2

1 =
{

Dn,q h≤, h≤ Dn,q

}
, S2

2 =
{

h≤h≤}.
Let f : R−≥R. Then,

(Dn,q h≤ f )(t) = Dn,q [ f ≤ h](t),
(h≤Dn,q f )(t) = Dn,q [ f ](h(t)),
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provided all these quantities exist. Observe that Dn,q [ f ≤ h](t) ⊆= Dn,q [ f ](h(t)).
Indeed,

Dn,q [ f ](h(t)) = f (h(h(t))) − f (h(t))

h(h(t)) − h(t)

= f (h(h(t))) − f (h(t))

(h(t) − t)Dn,q [h](t) = Dn,q [ f ≤ h](t)
Dn,q [h](t) .

Theorem 3.9 (Leibniz formula) Let Sm
k be the set consisting of all possible strings

of length m, containing exactly k times h≤ and m − k times Dn,q . If f is a function
for which L f exist for all L ∈ Sm

k , and function g is m times n,q-differentiable, then
for all m ∈ N we have:

Dm
n,q [ f g](t) =

m∑
k=0

⎛
⎝ ∑

L∈Sm
k

L f

⎞
⎠ (t) Dk

n,q [g](t) for t ∈ R \ S, (3.1)

and

Dm
n,q [ f g](t) =

m∑
k=0

(
m
k

)
Dm−k

n,q [ f ](t) Dk
n,q [g](t) for t ∈ S. (3.2)

Proof For t ∈ S equality (3.2) yields

( f g)(m)(t) =
m∑

k=0

(
m
k

)
f (m−k)(t) g(k)(t),

which is true (the standard Leibniz formula of classical calculus). Assume t /∈ S.
The proof is done by induction on m. If m = 1, then by Theorem3.4 we have
Dn,q [ f g](t) = Dn,q [ f ](t)g(t)+ h≤ f (t)Dn,q [g](t), i.e., (3.1) is true for m = 1. We
now assume that (3.1) is true for m = s and prove that it is also true for m = s + 1.
First, we note that for k ∈ N and t /∈ S

Dm+1
n,q [ f g](t) = Dn,q

⎡
⎣ m∑

k=0

⎛
⎝ ∑

L∈Sm
k

L f

⎞
⎠ (t) Dk

n,q [g](t)



=
m∑

k=0

⎡
⎣Dn,q

⎛
⎝ ∑

L∈Sm
k

L f

⎞
⎠ (t) Dk

n,q [g](t) + h≤
⎛
⎝ ∑

L∈Sm
k

L f

⎞
⎠ (t) Dk+1

n,q [g](t)



=
m∑

k=0

⎛
⎝ ∑

L∈Sm
k

Dn,q L f

⎞
⎠ (t) Dk

n,q [g](t) +
m+1∑
k=1

⎛
⎝ ∑

L∈Sm
k−1

h≤L f

⎞
⎠ (t) Dk

n,q [g](t)
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=
⎛
⎝ ∑

L∈Sm
m

h≤L f

⎞
⎠ (t) Dm+1

n,q [g](t) +
⎛
⎝ ∑

L∈Sm
0

Dn,q L f

⎞
⎠ (t) g(t)

+
m∑

k=1

⎛
⎝ ∑

L∈Sm
k−1

h≤L f (t) +
∑

L∈Sm
k

Dn,q L f

⎞
⎠ (t) Dk

n,q [g](t)

=
⎛
⎜⎝ ∑

L∈Sm+1
m+1

L f

⎞
⎟⎠ (t) Dm+1

n,q [g](t) +
⎛
⎜⎝ ∑

L∈Sm+1
0

L f

⎞
⎟⎠ (t) g(t)

+
m∑

k=1

⎛
⎜⎝ ∑

L∈Sm+1
k

L f

⎞
⎟⎠ (t) Dk

n,q [g](t)

=
m+1∑
k=0

⎛
⎜⎝ ∑

L∈Sm+1
k

L f

⎞
⎟⎠ (t)Dk

n,q [g](t).

We conclude that (3.1) is true for m = s + 1. Hence, by mathematical induction,
(3.1) holds for all m ∈ N and t ∈ R \ S.

The standard chain rule of classical calculus does not necessarily hold true for the
n,q-quantum calculus. For example, if we assume that f, g : R−≥R are defined by
f (t) = t2 and g(t) = qt , then we have

Dn,q [ f ≤ g](t) = Dn,q(qt)2 = Dn,q(q
2t2) = q2(t + qtn)

⊆= q2(t + qntn) = Dn,q [ f ](g(t)) · Dn,q [g](t).

However,we canderive an analogous formula of the chain rule for our power quantum
calculus.

Theorem 3.10 (Power chain rule) Assume g : I−≥R is continuous and n,q-
differentiable, and f : R−≥R is continuously differentiable. Then there exists a
constant c between qtn and t with

Dn,q [ f ≤ g](t) = f ∪(g(c))Dn,q [g](t). (3.3)

Proof For t /∈ S we have

Dn,q [ f ≤ g](t) = f (g(qtn)) − f (g(t))

qtn − t
.

Wemay assume that g(qtn) ⊆= g(t) (because if g(qtn) = g(t), then Dn,q [ f ≤g](t) =
Dn,q [g](t) = 0 and (3.3) holds for any c between qtn and t). Then,
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Dn,q [ f ≤ g](t) = f (g(qtn)) − f (g(t))

g(qtn) − g(t)
· g(qtn) − g(t)

qtn − t
. (3.4)

By the mean value theorem, there exists a real number ε between g(t) and g(qtn)

with
f (g(qtn)) − f (g(t))

g(qtn) − g(t)
= f ∪(ε ). (3.5)

In view of the continuity of g, there exists c in the interval with end points qtn and t
such that g(c) = ε . Thus from (3.4) and (3.5) we obtain (3.3). Relation (3.3) is true
at t, t ∈ S, by the classical chain rule.

3.1.2 Power Quantum Integration

In this section we are interested to study the inverse operation of Dn,q [ f ]. We call
this inverse the n,q-integral of f (or the power quantum integral). We define the
interval I to be [−δ, δ].
Definition 3.11 Let f : I−≥R and a, b ∈ I . We say that F is a n,q-antiderivative
of f on I if Dn,q [F](t) = f (t) for all t ∈ I .

From now on we assume that all series considered along the text are convergent.

Theorem 3.12 Let f : I−≥R and a, b ∈ I . The function

F(t) = −
→∑

k=0

q[k]n tnk
(

qnk
tnk(n−1) − 1

)
f
(

q[k]n tnk
)

is a n,q-antiderivative of f on I , provided f is continuous at 0.

Proof For t ⊆= 0, we have

Dn,q [F](t) = F(qtn) − F(t)

qtn − t

=
→∑

k=0

[
−q[k+1]n tnk+1

qtn − t

(
qnk+1

tnk+1(n−1) − 1
)

f
(

q[k+1]n tnk+1
)

+
q[k]n tnk

(
qnk

tnk(n−1) − 1
)

qtn − t
f
(

q[k]n tnk
)

= f (t).

If t = 0, then the continuity of f at 0 implies that
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Dn,q [F](0) = lim
s−≥0

F(s) − F(0)

s

= lim
s−≥0

−⎨→
k=0 q[k]n snk

(
qnk

snk (n−1) − 1
)

f
(

q[k]n snk
)

s

= lim
s−≥0

−
→∑

k=0

q[k]n snk−1
(

qnk
snk(n−1) − 1

)
f
(

q[k]n snk
)

= lim
s−≥0

−
→∑

k=0

(
q[k+1]n snk+nk (n−1)−1 − q[k]n snk−1

)
f
(

q[k]n snk
)

= lim
s−≥0

−
→∑

k=0

(
q[k+1]n snk+1−1 − q[k]n snk−1

)
f
(

q[k]n snk
)

= lim
s−≥0

f (s)

= f (0).

This completes the proof.

We then define the indefinite n,q-integral of f by

∫

I

f (t) dn,q t := F(t) + C,

where C is an arbitrary constant. The definite n,q-integral of f is defined as follows.

Definition 3.13 Let f : I−≥R and a, b ∈ I . We define the n,q-integral of f from
a to b by

b∫

a

f (t) dn,q t :=
b∫

0

f (t) dn,q t −
a∫

0

f (t) dn,q t, (3.6)

where

x∫

0

f (t) dn,q t := −
→∑

k=0

q[k]n xnk
(

qnk
xnk (n−1) − 1

)
f
(

q[k]n xnk
)
, x ∈ I, (3.7)

provided the series at the right-hand side of (3.7) converge at x = a and x = b.
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Definition 3.14 A function f is said to be n,q-integrable on a subinterval J of I if

∣∣∣∣∣∣
b∫

a

f (t) dn,q t

∣∣∣∣∣∣ < → for all a, b ∈ J.

Remark 3.15 The integral formulas (3.6) and (3.7) yield

b∫

a

f (t)dqt =
b∫

0

f (t)dqt −
a∫

0

f (t)dqt

and
a∫

0

f (t)dqt = a(1 − q)
→∑

k=0

qk f (aqk)

when n = 1; and yield the corresponding integral of the operator Dn defined by

Dn f (t) =
⎧

f (tn)− f (t)
tn−t if t ∈ R \ {−1, 0, 1},

f ∪(t) if t ∈ {−1, 0, 1},

when q ≥ 1.

The following properties of the n,q-integral are direct consequences of the
definition and provide extensions of analogous properties of the Jackson q-integral
(Jackson 1908, 1910; Kac and Cheung 2002).

Lemma 3.16 Let f, g : I−≥R be n,q-integrable, k ∈ R, and a, b, c ∈ I . Then,

(i)

a∫

a

f (t) dn,q t = 0.

(ii)

b∫

a

k f (t) dn,q t = k

b∫

a

f (t) dn,q t .

(iii)

b∫

a

f (t) dn,q t = −
a∫

b

f (t) dn,q t .

(iv)

b∫

a

f (t) dn,q t =
c∫

a

f (t) dn,q t +
b∫

c

f (t) dn,q t for a ◦ c ◦ b.

(v)

b∫

a

( f (t) + g(t)) dn,q t =
b∫

a

f (t) dn,q t +
b∫

a

g(t) dn,q t .
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Theorem 3.17 Assume that f : I−≥R is continuous at 0. Then,

b∫

a

Dn,q f (t)dn,q t = f (b) − f (a) for all a, b ∈ I.

Proof First, we note that limr−≥→ q[r ]n anr = limr−≥→ q[r ]n bnr = 0. By the
continuity of f at 0,

lim
r−≥0

f (r) = lim
k−≥→ f (q[k]n ank

) = lim
k−≥→ f (q[k]n bnk

) = f (0).

Thus,

b∫

a

Dn,q [ f ](t) dn,q t = −
→∑

k=0

q[k]n bnk
(

qnk
bnk (n−1) − 1

)
Dn,q [ f ]

(
q[k]n bnk

)

+
→∑

k=0

q[k]n ank
(

qnk
ank (n−1) − 1

)
Dn,q [ f ]

(
q[k]n ank

)

=
→∑

k=0

⎡
⎣−q[k]n bnk

(
qnk

bnk (n−1) − 1
) f

(
q[k+1]n bnk+1

)
− f

(
q[k]n bnk

)

q[k+1]n bnk+1 − q[k]n bnk




+
→∑

k=0

⎡
⎣q[k]n ank

(
qnk

ank (n−1) − 1
) f

(
q[k+1]n ank+1

)
− f

(
q[k]n ank

)

q[k+1]n ank+1 − q[k]n ank




= f (b) − f (a) .

This completes the proof.

Lemma 3.18 Let s ∈ J ⊆ [0, δ] and g be n,q-integrable on J . If 0 ◦ | f (t)| ◦ g(t)

for all t ∈
{

q[k]n snk : k ∈ N0

}
, then

∣∣∣∣∣∣
b∫

0

f (t)dn,q t

∣∣∣∣∣∣ ◦
b∫

0

g(t)dn,q t and

∣∣∣∣∣∣
b∫

a

f (t)dn,q t

∣∣∣∣∣∣ ◦
b∫

a

g(t)dn,q t (3.8)

for a, b ∈
{

q[k]n snk : k ∈ N0

}
with a < b. Consequently, if g(t) ≥ 0 for all t ∈{

q[k]n snk : k ∈ N0

}
, then
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b∫

0

g(t)dn,q t ≥ 0 and

b∫

a

g(t)dn,q t ≥ 0 (3.9)

for all a, b ∈
{

q[k]n snk : k ∈ N0

}
such that a < b.

Proof If b ∈
{

q[k]n snk : k ∈ N0

}
, then we can write b = q[k2]n snk2 for some k2 ∈

N0. Observe that, for all k ∈ N0,

q[k]n bnk = q[k+k2]n snk+k2 ∈
{

q[k]n snk : k ∈ N0

}
.

Therefore, by assumption, we have 0 ◦ | f (q[k]n bnk
)| ◦ g(q[k]n bnk

) and −q[k]n bnk(
qnk

bnk (n−1) − 1
)
> 0 for all k ∈ N0. Since g is n,q-integrable on J , it follows that

the series →∑
k=0

−q[k]n bnk
(

qnk
bnk (n−1) − 1

)
f
(

q[k]n bnk
)

is absolutely convergent. Therefore,

∣∣∣∣∣∣
b∫

0

f (t)dn,q t

∣∣∣∣∣∣ =
∣∣∣∣∣

→∑
k=0

−q[k]n bnk
(

qnk
bnk (n−1) − 1

)
f
(

q[k]n bnk
)∣∣∣∣∣

◦
→∑

k=0

−q[k]n bnk
(

qnk
bnk (n−1) − 1

) ∣∣∣ f
(

q[k]n bnk
)∣∣∣

◦
→∑

k=0

−q[k]n bnk
(

qnk
bnk (n−1) − 1

)
g
(

q[k]n bnk
)

=
b∫

0

g(t)dn,q t.

Now, if a, b ∈
{

q[k]n snk : k ∈ N0

}
and a < b, then we can write a = q[k1]n snk1 and

b = q[k2]n snk2 for some k1, k2 ∈ N, k1 > k2. Hence,

∣∣∣∣
b∫

a

f (t)dn,q t

∣∣∣∣

=
∣∣∣∣∣−

→∑
k=0

q[k+k2]n snk+k2
(

qnk+k2 snk+k2 (n−1) − 1
)

f
(

q[k+k2]n snk+k2
)
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+
→∑

k=0

q[k+k1]n snk+k1
(

qnk+k1 snk+k1 (n−1) − 1
)

f
(

q[k+k1]n snk+k1
)∣∣∣∣∣

=
∣∣∣∣∣∣

→∑
k=k2

q[k]n snk
(
1 − qnk

snk(n−1)
)

f
(

q[k]n snk
)

−
→∑

k=k1

q[k]n snk
(
1 − qnk

snk(n−1)
)

f
(

q[k]n snk
)∣∣∣∣∣∣

◦
k1−1∑
k=k2

q[k]n snk
(
1 − qnk

snk (n−1)
) ∣∣∣ f

(
q[k]n snk

)∣∣∣

◦
k1−1∑
k=k2

q[k]n snk
(
1 − qnk

snk (n−1)
)

g
(

q[k]n snk
)

∀
→∑

k=k1

q[k]n snk
(
1 − qnk

snk(n−1)
)

g
(

q[k]n snk
)

=
→∑

k=k2

q[k]n snk
(
1 − qnk

snk (n−1)
)

g
(

q[k]n snk
)

−
→∑

k=k1

q[k]n snk
(
1 − qnk

snk (n−1)
)

g
(

q[k]n snk
)

= −
→∑

k=0

q[k+k2]n snk+k2
(

qnk+k2 snk+k2 (n−1) − 1
)

g
(

q[k+k2]n snk+k2
)

+
→∑

k=0

q[k+k1]n snk+k1
(

qnk+k1 snk+k1 (n−1) − 1
)

g
(

q[k+k1]n snk+k1
)

=
b∫

a

g(t)dn,q t.

To show that (3.9) is true, we just put f = 0 in (3.8).

Lemma 3.19 Let s ∈ J ⊆ [−δ, 0] and g be n,q-integrable on J . If 0 ◦ | f (t)| ◦
g(t) for all t ∈

{
q[k]n snk : k ∈ N0

}
, then

∣∣∣∣∣∣
0∫

b

f (t)dn,q t

∣∣∣∣∣∣ ◦
0∫

b

g(t)dn,q t and

∣∣∣∣∣∣
b∫

a

f (t)dn,q t

∣∣∣∣∣∣ ◦
b∫

a

g(t)dn,q t
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for a, b ∈
{

q[k]n snk : k ∈ N0

}
such that a < b. Consequently, if g(t) ≥ 0 for all

t ∈
{

q[k]n snk : k ∈ N0

}
, then

0∫

b

g(t)dn,q t ≥ 0 and

b∫

a

g(t)dn,q t ≥ 0

for all a, b ∈
{

q[k]n snk : k ∈ N0

}
such that a < b.

Proof Arguing as in the proof of Lemma3.18, we can show that the series

→∑
k=0

−q[k]n bnk
(

qnk
bnk (n−1) − 1

)
f
(

q[k]n bnk
)

is absolutely convergent. Therefore, we have

∣∣∣∣∣∣
0∫

b

f (t)dn,q t

∣∣∣∣∣∣ =
∣∣∣∣∣∣

b∫

0

f (t)dn,q t

∣∣∣∣∣∣

=
∣∣∣∣∣−

→∑
k=0

q[k]n bnk
(

qnk
bnk (n−1) − 1

)
f
(

q[k]n bnk
)∣∣∣∣∣

◦
→∑

k=0

∣∣∣−q[k]n bnk
(

qnk
bnk (n−1) − 1

)∣∣∣
∣∣∣ f

(
q[k]n bnk

)∣∣∣

◦
→∑

k=0

q[k]n bnk
(

qnk
bnk (n−1) − 1

)
g
(

q[k]n bnk
)

= −
b∫

0

g(t)dn,q t =
0∫

b

g(t)dn,q t.

The rest of the proof can be done similarly to the proof of Lemma3.18.

It should be noted that the inequality

∣∣∣∣∣∣
b∫

a

f (t)dn,q t

∣∣∣∣∣∣ ◦
b∫

a

| f (t)|dn,q t for all a, b ∈ I

is not always true. For example, fix n = 1, 0 < q < 1, and define the function
f : [0, 1]−≥R by
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f (x) =




1
1−q

(
4q−n x − (1 + 3q)

⎤
, qn+1 ◦ x ◦ qn(1+q)

2 , n ∈ N,

4
1−q

(−xq−n + 1
⎤ − 1, qn(1+q)

2 � x � qn, n ∈ N,

0, x = 0,

(see AbuRisha et al. 2007). It follows that f is n,q-integrable on [0, 1], f (qn) = −1,

and f

(
1 + q

2
qn
)

= 1 for all n ∈ N. By a direct calculation one can see that

1∫

1+q
2

f (t) dn,q t = −3 + q

2
and

1∫

1+q
2

| f (t)| dn,q t = 1 − q

2
.

Thus, ∣∣∣∣∣∣∣∣

1∫

1+q
2

f (t) dn,q t

∣∣∣∣∣∣∣∣
>

1∫

1+q
2

| f (t)| dn,q t.

Lemma 3.20 Let f, g : I−≥R.

(i) If functions f and g are n,q-differentiable, then the following integration by
parts formula holds:

b∫

a

f (t)Dn,q [g](t) dn,q t = f (t)g(t)|ba −
b∫

a

Dn,q [ f ](t)g(qtn) dn,q t, a, b ∈ I.

(3.10)
(ii) If f is continuous at 0, then for t ∈ I

qtn∫

t

f (r) dn,qr = (qtn − t) f (t).

Proof (i) By Theorem3.17 we have

b∫

a

Dn,q [ f g](t)dn,q t = ( f g)(b) − ( f g)(a).

On the other hand, by (iii) of Theorem3.4 and (v) of Theorem3.16,

b∫

a

Dn,q [ f g](t) =
b∫

a

f (t)Dn,q [g](t)dn,q t +
b∫

a

Dn,q [ f ](t)g(qtn)dn,q t.
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Combining these two equalities we get the desired formula.
(ii)

qtn∫

t

f (s) dn,qs =
qtn∫

0

f (s) dn,qs −
t∫

0

f (s) dn,qs

=
→∑

k=0

[
q[k]n tnk

(
qnk

tnk(n−1) − 1
)

f
(

q[k]n tnk
)

− q[k+1]n tnk+1
(

qnk+1
tnk+1(n−1) − 1

)
f
(

q[k+1]n tnk+1
)]

= (qtn − t) f (t).

3.2 The Power Quantum Variational Calculus

In this section we give one application of the power quantum calculus which we
derived in Sect. 3.1, introducing the power quantum variational calculus and proving
a quantum analog of the Euler–Lagrange equation (Sect. 3.2.1). This provides a
necessary optimality condition for local minimizers. Direct methods can also be
developed for our power quantum variational calculus, allowing to obtain global
minimizers for certain classes of problems (Sect. 3.2.2).

As in Sect. 3.1.2, we define the interval I to be [−δ, δ]. Let a, b ∈ I with a < b.
We define the n,q-interval by

[a, b]n,q :=
{

q[k]n ank : k ∈ N0

}
∪
{

q[k]n bnk : k ∈ N0

}
∪ {0}.

Let D([a, b]n,q ,R) be the set of all real valued functions continuous and bounded
on [a, b]n,q .

Lemma 3.21 (Fundamental Lemma of the power quantum variational
calculus) Let f ∈ D([a, b]n,q ,R). One has

⎦ b
a f (t)g(qtn) dn,q t = 0 for all func-

tions g ∈ D([a, b]n,q,R) with g(a) = g(b) = 0 if and only if f (t) = 0 for all
t ∈ [a, b]n,q .

Proof The implication “⇒” is obvious. Let us prove the implication “⇒”. Suppose,
by contradiction, that f (c) ⊆= 0 for some c ∈ [a, b]n,q .

Case I If c ⊆= 0, then without loss of generality we can assume that c = q[k]n ank
for

k ∈ N0. Define

g(t) =
⎧

f
(

q[k]n ank
)

if t = q[k+1]n ank+1

0 otherwise.
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Since a ⊆= 0, we see that

b∫

a

f (t)g(qtn) dn,q t = q[k]n ank
(

qnk
ank (n−1) − 1

) (
f
(

q[k]n ank
))2 ⊆= 0,

which is a contradiction.
Case II If c = 0, then without loss of generality we can assume that f (0) > 0. We
know that (see Lemma 3.1)

lim
k≥→ q[k]n ank = lim

k≥→ q[k]n bnk = 0.

As f is continuous at 0,

lim
k≥→ f

(
q[k]n ank

)
= lim

k≥→ f
(

q[k]n bnk
)

= f (0).

Therefore, there exists N ∈ N such that for all l > N the inequalities

f
(

q[l]n anl
)
> 0, f

(
q[l]n bnl

)
> 0,

hold. Let us fix k > N . If a ⊆= 0, then we define

g(t) =
⎧

f
(

q[k]n ank
)

if t = q[k+1]n ank+1

0 otherwise.

Since a ⊆= 0, we see that

b∫

a

f (t)g(qtn) dn,q t = q[k]n ank
(

qnk
ank (n−1) − 1

) (
f
(

q[k]n ank
))2 ⊆= 0,

which is a contradiction. If a = 0, then we define

g(t) =
⎧

f
(

q[k]n bnk
)

if t = q[k+1]n bnk+1

0 otherwise.

Since b ⊆= 0, we obtain

b∫

a

f (t)g(qtn) dn,q t =
b∫

0

f (t)g(qtn) dn,q t
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= −q[k]n bnk
(

qnk
bnk (n−1) − 1

) (
f
(

q[k]n bnk
))2 ⊆= 0,

which is a contradiction.

Let E([a, b]n,q ,R) be the linear space of functions y ∈ D([a, b]n,q ,R) for which
the n,q-derivative is continuous and bounded on [a, b]n,q . We equip E([a, b]n,q ,R)

with the norm

⇐y⇐1,→ = sup
t∈[a,b]n,q

|y(t)| + sup
t∈[a,b]n,q

|Dn,q [y](t)|.

The following definition and lemma are similar to those of Sect. 2.1.

Definition 3.22 Let g : [s]n,q × [−∂̄, ∂̄] ≥ R, where

[s]n,q :=
{

q[k]n snk : k ∈ N0

}
.

We say that g(t, ·) is continuous in ∂0, uniformly in t , if and only if for every λ > 0
there exists δ > 0 such that |∂ − ∂0| < δ implies |g(t, ∂) − g(t, ∂0)| < λ for all
t ∈ [s]n,q . Furthermore, we say that g(t, ·) is differentiable at ∂0, uniformly in t , if
and only if for every λ > 0 there exists δ > 0 such that 0 < |∂ − ∂0| < δ implies

∣∣∣∣g(t, ∂) − g(t, ∂0)

∂ − ∂0
− ∂2g(t, ∂0)

∣∣∣∣ < λ,

where ∂2g = ∂g
∂∂ for all t ∈ [s]n,q .

Lemma 3.23 Let s ∈ I . Assume g(t, ·) is differentiable at ∂0, uniformly in t in [s]n,q ,
and that G(∂) := ⎦ s

0 g(t, ∂)dq,αt , for ∂ near ∂0, and
⎦ s
0 ∂2g(t, ∂0)dq,α exist. Then,

G(∂) is differentiable at ∂0 with G ∪(∂0) = ⎦ s
0 ∂2g(t, ∂0) dn,q t .

Proof Without loss of generality we can assume that s > 0. Let λ > 0 be arbitrary.
Since g(t, ·) is differentiable at ∂0, uniformly in t , there exists δ > 0 such that, for
all t ∈ [s]n,q and for 0 < |∂ − ∂0| < δ, the following inequality holds:

∣∣∣∣g(t, ∂) − g(t, ∂0)

∂ − ∂0
− ∂2g(t, ∂0)

∣∣∣∣ < λ

s
.

Applying Lemmas3.16 and 3.18, for 0 < |∂ − ∂0| < δ, we have

∣∣∣∣G(∂) − G(∂0)

∂ − ∂0
− G ∪(∂0)

∣∣∣∣

http://dx.doi.org/10.1007/978-3-319-02747-0_2
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=

∣∣∣∣∣∣∣∣∣

s⎦
0

g(t, ∂) dn,q t −
s⎦
0

g(t, ∂0) dn,q t

∂ − ∂0
−

s∫

0

∂2g(t, ∂0) dn,q t

∣∣∣∣∣∣∣∣∣

=
∣∣∣∣∣∣

s∫

0

[
g(t, ∂) − g(t, ∂0)

∂ − ∂0
− ∂2g(t, ∂0)

]
dn,q t

∣∣∣∣∣∣

<

s∫

0

λ

s
dn,q t = λ

s

s∫

0

1 dn,q t = λ.

Hence, G(·) is differentiable at ∂0 and G ∪(∂0) =
s⎦
0

∂2g(t, ∂0) dn,q t .

3.2.1 The Power Quantum Euler–Lagrange Equation

We consider the variational problem of finding minimizers (or maximizers) of a
functional

L[y] =
b∫

a

f (t, y(qtn), Dn,q [y](t)) dn,q t, (3.11)

over all y ∈ E([a, b]n,q ,R) satisfying the boundary conditions

y(a) = β, y(b) = φ, β,φ ∈ R, (3.12)

where f : [a, b]n,q ×R×R ≥ R is a given function. A function y ∈ E([a, b]n,q ,R)

is said to be admissible if it satisfies endpoint conditions (3.12). Let us denote by ∂2 f
and ∂3 f , respectively, the partial derivatives of f (·, ·, ·) with respect to its second
and third argument. In the sequel, we assume that (u, v) ≥ f (t, u, v) is aC1(R2,R)

function for any t ∈ [a, b]n,q and f (·, y(·), Dn,q y(·)), ∂2 f (·, y(·), Dn,q y(·)), and
∂3 f (·, y(·), Dn,q y(·)) are continuous and bounded on [a, b]n,q for all admissible
functions y(·). We say that p ∈ E([a, b]n,q ,R) is an admissible variation for (3.11)
and (3.12) if p(a) = p(b) = 0.

For an admissible variation p, we define function φ : [−λ̄, λ̄] ≥ R by

φ(λ) = φ(λ; y, p) := L[y + λp].

The first variation of problem (3.11) and (3.12) is defined by

δL[y, p] := φ(0; y, p) = φ∪(0).
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Observe that,

L[y + λp] =
b∫

a

f (t, y(qtn) + λp(qtn), Dn,q [y](t) + λDn,q [p](t)) dn,q t

=
b∫

0

f (t, y(qtn) + λp(qtn), Dn,q [y](t) + λDn,q [p](t)) dn,q t

−
a∫

0

f (t, y(qtn) + λp(qtn), Dn,q [y](t) + λDn,q [p](t)) dn,q t.

Writing

Lb[y + λp] =
b∫

0

f (t, y(qtn) + λp(qtn), Dn,q [y](t) + λDn,q [p](t)) dn,q t

and

La[y + λp] =
a∫

0

f (t, y(qtn) + λp(qtn), Dn,q [y](t) + λDn,q [p](t)) dn,q t,

we have
L[y + λp] = Lb[y + λp] − La[y + λp].

Therefore,
δL[y, p] = δLb[y, p] − δLa[y, p]. (3.13)

Knowing (3.13), the following lemma is a direct consequence of Lemma3.23.

Lemma 3.24 Put g(t, λ) = f
(
t, y(qtn) + λp(qtn), Dn,q [y](t) + λDn,q [p](t)⎤ for

λ ∈ [−λ̄, λ̄]. Assume that:

(i) g(t, ·) is differentiable at 0 uniformly in t ∈ [a, b]n,q;
(ii) La[y + λp] and Lb[y + λp], for λ near 0, exist;

(iii)
⎦ a
0 ∂2g(t, 0) dn,q t and

⎦ b
0 ∂2g(t, 0) dn,q t exist.

Then,

δL[y, h] =
b∫

a

[
∂2 f (t, y(qtn), Dn,q [y](t))p(qtn)
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+ ∂3 f (t, y(qtn), Dn,q [y](t))Dn,q [p](t)
]

dn,q t.

In the sequel, we always assume, without mentioning it explicitly, that variational
problems satisfy the assumptions of Lemma3.24.

Definition 3.25 Anadmissible function ỹ is said to be a localminimizer (resp. a local
maximizer) to problem (3.11) and (3.12) if there exists δ > 0 such that L[ỹ] ◦ L[y]
(resp. L[ỹ] ≥ L[y]) for all admissible y with ⇐y − ỹ⇐1,→ < δ.

The following result offers a necessary condition for local extremizer.

Theorem 3.26 (A necessary optimality condition for problem (3.11) and (3.12))
Suppose that the optimal path to problem (3.11) and (3.12) exists and is given by ỹ.
Then, δL[ỹ, p] = 0.

Proof Is left to the reader. Hint: see the proof of Theorem 2.20.

From now on {·} stands for

{y}(t) := (t, y(qtn), Dn,q [y](t)).

Theorem 3.27 (Euler–Lagrange equation for problem (3.11) and (3.12)) Sup-
pose that ỹ is an optimal path to problem (3.11) and (3.12). Then,

Dn,q [∂3 f ]{y}(t) = ∂2 f {y}(t) (3.14)

for all t ∈ [a, b]n,q .

Proof Suppose that L has a local extremizer y. Consider the value of L at a nearby
function ỹ = y+λp, where λ ∈ R is a small parameter, p ∈ E, and p(a) = p(b) = 0.
Let

φ(λ) = L[y + λp] =
b∫

a

f {y + p}(t) dn,q t.

By Theorem3.26, a necessary condition for ỹ to be an extremizer is given by

φ∪(λ)
∣∣
λ=0 = 0 ∗

b∫

a

[
∂2 f {y}(t)p(qtn) + ∂3 f {y}(t)Dn,q [p](t)] dn,q t = 0.

(3.15)
Integration by parts (see (3.10)) gives

b∫

a

∂3 f {y}(t)Dn,q [p](t) dn,q t
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= ∂3 f {y}(t)p(t)|t=b
t=a −

b∫

a

Dn,q [∂3 f ]{y}(t)p(qtn) dn,q t.

Because p(a) = p(b) = 0, the necessary condition (3.15) can be written as

0 =
b∫

a

(
∂2 f {y}(t) − Dn,q [∂3 f ]{y}(t)⎤ p(qtn) dn,q t

for all p such that p(a) = p(b) = 0. Thus, by Lemma3.21, we have

∂2 f {y}(t) − Dn,q [∂3 f ]{y}(t) = 0

for all t ∈ [a, b]n,q .

Remark 3.28 Analogously to the classical calculus of variations (Weinstock 1974),
to the solutions of the Euler–Lagrange equation (3.14) we call (power quantum)
extremals.

Remark 3.29 If the function under the sign of integration f (the Lagrangian) is given
by f = f (t, y1, . . . , ym, Dn,q [y1], . . . , Dn,q [ym]), then the necessary optimality
condition is given by m equations similar to (3.14), one equation for each variable.

Example 3.30 Let us fix n, q, such that 1 ∈ I . Consider the problem

minimize L[y] =
1∫

0

(
y(qtn) + 1

2
(Dn,q [y](t))2

)
dn,q t (3.16)

subject to the boundary conditions

y(0) = 0, y(1) = φ, (3.17)

where φ ∈ R. If y is a local minimizer to problem (3.16) and (3.17), then by
Theorem3.27 it satisfies the Euler–Lagrange equation

Dn,q Dn,q y(t) = 1

for all t ∈ {
q[k]n : k ∈ N0

}∪ {0}. Applying Theorem3.4 (see also Example3.5) and
Theorem 3.12, we obtain

y(t) = −
→∑

k=0

q[k]n tnk
(

qnk
tnk(n−1) − 1

) (
q[k]n tnk + c

)
,

where c satisfies equation
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φ = −
→∑

k=0

(
q[k+1]n − q[k]n

) (
q[k]n + c

)
,

as the power quantum extremal to problem (3.16) and (3.17). For example, choosing
n = 1 and φ = 1

1+q in (3.16) and (3.17), we get the extremal

y(t) = t2

1 + q
.

3.2.2 Leitmann’s Direct Optimization Method

Let f̄ : [a, b]n,q ×R×R ≥ R. We assume that (u, v) ≥ f̄ (t, u, v) is a C1(R2,R)

function for any t ∈ [a, b]n,q and f̄ (·, y(·), Dn,q y(·)), ∂2 f̄ (·, y(·), Dn,q [y](·)), and
∂3 f̄ (·, y(·), Dn,q [y](·)) are continuous and bounded on [a, b]n,q for all admissible
functions y(·). Consider the integral

L̄[ȳ] =
b∫

a

f̄ {ȳ}(t) dn,q t.

Lemma 3.31 (Leitmann’s power quantum fundamental lemma) Let y = z(t, ȳ)
be a transformation having an unique inverse ȳ = z̄(t, y) for all t ∈ [a, b]n,q such
that there is a one-to-one correspondence

y(t) ∗ ȳ(t),

for all functions y ∈ E([a, b]n,q ,R) satisfying (3.12) and all functions ȳ ∈
E([a, b]n,q ,R) satisfying

ȳ(a) = z̄(a,β), ȳ(b) = z̄(b,φ). (3.18)

If the transformation y = z(t, ȳ) is such that there exists a function G : [a, b]n,q ×
R ≥ R satisfying the functional identity

f {y}(t) − f̄ {ȳ}(t) = Dn,q G(t, ȳ(t)), (3.19)

then if ȳ≈ yields the extremum of L̄ with ȳ≈ satisfying (3.18), y≈ = z(t, ȳ≈) yields
the extremum of L for y≈ satisfying (3.12).

Proof Is left to the reader. Hint: see the proof of Theorem 2.30.
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Example 3.32 Let a, b ∈ I with a < b, and β, φ be two given reals, β ⊆= φ. We
consider the following problem:

minimize L[y] =
b∫

a

[
Dn,q(y(t)g(t))

]2
dn,q t, (3.20)

y(a) = β, y(b) = φ,

where g does not vanish on the interval [a, b]n,q . Then, the function

y(t) = (At + C)g−1(t)

with A = [βg(a) − φg(b)] (a−b)−1,C = [aφg(b) − bβg(a)] (a−b)−1, minimizes
(3.20) (Why?).
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Chapter 4
Conclusion

In this small book we consider variational problems in the context of the Hahn
quantum calculus. Such variational problems are defined through the Hahn quantum
difference operator and the

Jackson–Nörlund integral (Hahn 1949; Jackson 1910, 1951; Nörlund 1924). The
origin of the Hahn quantum difference operator dates back to a 1949 paper of
Hahn (1949), where it was introduced to unify, in a limiting sense, the Jackson
q-difference derivative and the forward difference. For both of these latter two quan-
tum difference operators, variational problems have been studied previously. The
forward difference problems were studied at least as early as 1937 by Fort (1937)
and for the q-difference by Bangerezako (2004). In both of these works the authors
discuss necessary conditions for optimality and obtain the analogue of the classical
Euler–Lagrange equation, as well as other classical results. Our main goal was to
present, in a unified way, extensions of these results to the Hahn quantum difference
operator.

Another related and interesting course of study is that of the notion of time
scale. The origins of this idea dates back to the late 1980s when S. Hilger intro-
duced the concept in his Ph.D. thesis (directed by B. Aulbach) and showed how
to unify continuous time and discrete time dynamical systems (Aulbach and Hilger
1990; Hilger 1990). Since Hilger’s seminal work, the literature has exploded with
papers and books on time scales in which many known results for ordinary differen-
tial equations and difference equations have been combined and extended (Bohner
and Peterson 2001; Malinowska and Torres 2009, 2010; Martins and Torres 2011a;
Mozyrska et al. 2010). The classical results of the calculus of variations were first
extended to times scales by Bohner (2004) and then developed by several different
authors: see Atici andMcMahan (2009); Cresson et al. (2012); Malinowska and Tor-
res (2011), Martins and Torres (2011b, 2012) and references therein. However, the
Euler–Lagrange equations here obtained are not comparablewith those of time scales.
Indeed, the Hahn quantum calculus is not covered by the Hilger time scale theory.
This is well explained, for example, in the 2009 Ph.D. thesis of Aldwoah (Aldwoah
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2009); see also (Aldwoah andHamza 2011). Here we just note the following: if in the
time-scale calculus one chooses the time scale to be the q-scale T := {qn : n ∈ Z},
then the expression of the delta-derivative coincides with the expression of the Jack-
son q-difference derivative. However, they are not the same. There is an important
distinction: the Jackson q-difference derivative is defined in the set of real numbers
(Kac and Cheung 2002), while the time-scale derivative is only defined in the subset
T of the real numbers (Bohner and Peterson 2001). One more difference, between
the Hahn calculus we use here and the time scale theory, is the following: the delta
integral satisfies all the usual properties of the Riemann integral while this is not true
for the Jackson–Nörlund integral. Indeed, the inequality of Remark 2.13 does not
always hold for the Jackson–Nörlund integral.

The main advantage of our results is that they are able to deal with nondiffer-
entiable functions, even discontinuous functions, that are important in physical sys-
tems. Quantum derivatives and integrals play a leading role in the understanding of
complex physical systems. For example, in 1992 Nottale introduced the theory of
scale-relativity without the hypothesis of space-time differentiability (Nottale 1992).
A rigorous mathematical foundation to Nottale’s scale-relativity theory is nowadays
given by means of a quantum calculus (Almeida and Torres 2009; Cresson et al.
2009). We remark that results in time scales are not able to deal with such nondiffer-
entiable functions. Variational problems on time scales are formulated for functions
that are delta (or nabla) differentiable and, as it is well known, time-scale differentia-
bility implies continuity. This is not the case in our context: see Example 2.2, where
a discontinuous function is q,ω-differentiable in all the real interval [−1, 1].

We believe that the obtained results are also of interest in Economics. Economists
model time as continuous or discrete. The kind of “time” (continuous or discrete)
to be used in the construction of dynamic models is a moot question. Although
individual economic decisions are generally made at discrete time intervals, it is
difficult to believe that they are perfectly synchronized as postulated by discrete
models. The usual assumption that the economic activity takes place continuously,
is a convenient abstraction in many applications. In others, such as the ones studied
in financial-market equilibrium, the assumption of continuous trading corresponds
closely to reality.Webelieve that ourHahn’s approachhelps to bridge the gapbetween
two families of models: continuous and discrete. We trust that the field here initiated
will prove fruitful for further research.
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