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Imagination is more important than knowledge.
Knowledge is limited; imagination embraces the entire world.

—Albert Einstein, 1879–1955

Every day you may make progress. Every step may be fruitful. Yet there
will stretch out before you an ever-lengthening, ever-ascending, ever-

improving path. You know you will never get to the end of the journey. But
this, so far from discouraging, only adds to the joy and glory of the climb.

—Sir Winston Churchill, 1874–1965

À mes parents. . .
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1

Introduction

Qui règne et qui gouverne dans la cité? Où se cache la tête ou l’esprit,
d’où émanent les ordres qui ne sont jamais discuté?

— Maurice Maeterlinck (1862–1949)
in La Vie des Fourmis (1930)

The idea that simple and resource-constrained individuals may cooperate so
closely as to solve problems that are beyond the grasp of any single indi-
vidual stemmed from the work of W.M. Wheeler about the social behavior
of ants, only one century ago [1]. Considering that social insects such as
ants, bees, and termites have co-existed with us since our apparition about
200 000 years ago1, the recency of this idea may come as a surprise; in any
case, it certainly pinpoints the counter-intuitive—and fascinating—nature of
collective phenomena.

Take a system as simple as a simple pendulum—a weight suspended from
a pivot by a rigid rod so that the whole can swing freely (Figure 1.1). The
behavior of this system is rather intuitive to the human observer, in partic-
ular owing to its periodic nature. For instance, one could easily predict the
weight’s trajectory and grab it while it is swinging. Now, let us consider
a double pendulum, that is, two simple pendulums attached to each other.
This single, incremental change causes a dramatic difference in the system’s
behavior, leading in particular to the emergence of chaotic patterns, which
preclude any long-term prediction of the weight’s position—even by using
extremely sophisticated simulations.

The essential property of the double pendulum that makes it so difficult to
apprehend for the human observer arises from the presence of two interact-
ing lower-level components whose trajectories in state space are coupled by
positive and negative feedbacks, which may lead in turn to the amplification
or the damping, respectively, of external perturbations. In the context of
the double pendulum, the weights may exert a force on each other that is
alternately in the opposite or the same direction as the gravitational force,
1 In the most recent version of the timeline of evolution, earliest bees appear about

100 million years ago and the first ants about 80 million years ago. The first fossil
records of the genus Homo date back to 2 million years before our era [2], and
anatomically modern humans appeared in Africa about 200 000 years ago.

G. Mermoud, Stochastic Reactive Distributed Robotic Systems, 1
Springer Tracts in Advanced Robotics 93,
DOI: 10.1007/978-3-319-02609-1_1, © Springer International Publishing Switzerland 2014
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Double pendulumSimple pendulum

pivot

rod

weight

equilibrium position

trajectory

Fig. 1.1 Schematic illustration of a simple and double pendulum as well as a sketch
of their typical trajectories. Note how the coupling of two simple systems can lead
to complicated patterns.

thereby leading to the amplification or the damping of their respective os-
cillations. In chaotic regimes, these feedbacks will lead to an exponential
increase in time of any initial error in the estimation of the pendulum’s state.

As a matter of fact, feedbacks are not the only source of complexity in
collective systems. A gas for instance can be described as a large number
of rapidly moving particles that are constantly colliding with each other and
with the container’s walls. Because the system is isolated and collision times
are assumed to be much shorter than the time between two successive col-
lisions, no significant feedback mechanism is present in the system. Even
in these circumstances, an accurate description—and a fortiorti an accurate
prediction—of its dynamics is impossible since it would require to metic-
ulously track the positions and velocities of the multitude of particles, and
updating their momenta appropriately whenever they collide with each other.

In the 19th century, James Clerk Maxwell and Ludwig Boltzmann indepen-
dently tackled this problem by formulating the first statistical description of
a physical system—the famous Maxwell-Boltzmann distribution of molecular
velocities in a gas. Rather than attempting to track each particle individu-
ally, they adopted a macroscopic approach in which the system is described
in terms of a probability distribution over the statistical ensemble of mi-
crostates2, which are too numerous to be explicitly enumerated. Of course,
such an approach is suitable insofar as one is not interested in the position
and velocity of any individual particle. As we shall see, this revolutionary
2 Each microstate describes one possible arrangement of the system in terms of the

positions and momenta of its constituent particles—even the slightest difference
in position or momentum of a single particle would correspond to a different
microstate.
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approach based on statistical modeling is at the heart of the methodology
developed in this thesis.

When one describes a collective system in such macroscopic terms, a fun-
damental question arises naturally: How many microstates correspond to a
given macroscopic description? In other words, what is the order of the sys-
tem in this configuration? Statistical entropy S is a direct measure of this
quantity since S = kB lnΩ where kB is the Boltzmann constant and Ω is the
number of microstates corresponding to the same set of macroscopic variables
(or macrostate). From a purely statistical standpoint, if all microstates are
equiprobable—and there is no reason why it should not be the case—the sys-
tem shall spontaneously tend towards the macrostate that involves the most
microstates, that is, the macrostate of maximal statistical entropy, which we
refer to as the equilibrium state. In the case of a gas, the Maxwell-Boltzmann
distribution is precisely the one that maximizes the entropy of the system.
As a matter of fact, this finding is a mere statistical interpretation of the
second law of thermodynamics, which states that any isolated system shall
become more disordered3.

At this point, one may wonder how the notion of entropy may help in
answering Maeterlinck’s questions about insect societies. On the contrary,
when ants form trails to optimize foraging or termites build complex tunnels
in their nest for the purpose of thermoregulation, they form structures and
patterns that tend to increase the system’s order. There is no contradiction
with the second law of thermodynamics, though, since insect colonies are not
isolated systems: they exchange energy and matter with their environment,
notably by foraging for food, dissipating heat, and expelling waste. However,
this argument indicates that, during its life, the colony operates far from
equilibrium by dissipating energy. In 1977, Prigogine won the Nobel Prize of
Chemistry for proposing a theory of dissipative structures, that is, systems
that trade energy and matter with their environment for an increase of their
internal order—a phenomenon now referred to as self-organization.

Does it mean that the spontaneous formation of equilibrium structures
or patterns, which we refer to as Self-Assembly (SA), is impossible? In
supramolecular chemistry, highly ordered structures such as macrocycles form
spontaneously at equilibrium without contradicting the second law of thermo-
dynamics. Indeed, supramolecular complexes are energetically favorable, and
their formation therefore dissipates some heat, which in turn increases the
overall system’s entropy by some larger amount than the decrease in entropy
due to the structure formation. Similar arguments apply to self-assembling
systems at larger scales. For instance, the spontaneous ordering of perma-
nents magnets into chains or lattices is always accompanied by a dissipation
of energy (e.g., due to mechanical friction and stress). In both cases, the
ordering is local, and results from energetically favorable interactions that
lead to more disorderly dispersal of the total energy of the system at a global
3 The exact thermodynamical interpretation is that the system becomes more en-

ergetically disordered [3].
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level. As a result, one can control, to some extent, the formed structures by
properly tailoring the components’ interactions, and adjusting the system’s
total energy.

This historical snapshot intends to illustrate the system- and scale-
independent nature of self-organization. It might be then less surprising
to observe the burgeoning of self-organized paradigms in disciplines as var-
ied as computer science, biology, social sciences, arts, material science, and
robotics.

1.1 Objectives of This Thesis

Self-organized and self-assembled systems may have intrigued scientists, but
they have caused awe and envy among engineers. Indeed, these systems
are robust to individual node failures (e.g., the death of an ant does not
endanger the colony), they adapt to environmental changes, they are often
nearly defect-free, and they may exhibit self-healing capabilities. All these
properties are highly desirable for engineered systems, especially in robotics.

One objective of the present work is to leverage model-based methodolo-
gies for engineering self-organized and self-assembled systems. Ultimately,
these methodologies shall lead to more robust, dependable, and inexpensive
distributed systems. In the context of this dissertation, “distributed sys-
tem” is an umbrella term for all engineered systems composed of multiple
interacting lower-level components capable of collectively performing a task.
Occasionally, we may use the term “collective systems” for denoting natural
systems of the same type. This work focuses on a class of distributed systems
that involve a specific type of constitutive components, which we refer to as
Smart Minimal Particles (SMPs) [4]:

1. Smart: they are endowed with an internal state, which is often of phys-
ical nature (e.g., molecular conformation, energy level, biochemical com-
position, interaction configuration), even though it may also be logical in
the case of robotic entities. State transitions result from interactions with
other components and their environment, possibly in a time-delayed fash-
ion. These interactions are characterized by an exchange of information,
an applied force, or a physical contact.

2. Minimal: they are endowed with minimal resources in terms of sensing,
actuation, computation, and communication. In particular, they are not
capable of reasoning or anticipation, and they do not maintain an internal
representation of their environment. Their dynamics are often noisy,
partially unknown, or plainly non-deterministic.

3. Particle: the constitutive components are physically embodied, that is,
they have a physical extent, and their physico-chemical and geometrical
properties are an integral part of the characterization of the collective
dynamics.
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If not stated otherwise, the plural acronym SMPs designates an ensemble of
such components. Examples of SMPs include but are not limited to supra-
molecular self-assembling systems [5], gene regulatory networks [6], bacteria
and insects societies [7, 8], microscale self-assembling systems [9], and multi-
robot systems [10]. Even though some of these systems cannot be strictly
considered as engineered, they can all be tailored and controlled to some ex-
tent [11–13]. In this dissertation, we restrict our discussion to the two last
categories, but our methodologies are in principle applicable to the whole
spectrum of SMPs, as suggested by previous and on-going work of other re-
searchers. Conversely, systems that exploit planning, mapping, deliberative
strategies, and reasoning are not reactive, and cannot be considered as SMPs.
Similarly, robotic systems endowed with complex and advanced sensing, ac-
tuation, computation, and communication capabilities, in particular if they
exhibit a very strong robustness to noise and external perturbations, do not
lie within the spectrum defined by SMPs.

Importantly, we hypothesize that SMPs form the convergence locus of two
other classes of collective systems: (i) molecules and very small interact-
ing particles, generally studied using the tools of statistical mechanics, and
(ii) large robots with powerful computing, sensing, actuation, and commu-
nication capabilities, generally approached using control theory. This thesis
attempts to bridge the gap between these two disciplines by tackling sev-
eral key challenges. First, SMPs exhibit generally too much complexity and
richness at the individual node level for being directly studied using the
tools of statistical mechanics; at the same time, their stochasticity as well as
their limited resources in terms of sensing, actuation and computation render
tools of modern control theory inapplicable—or applicable at the expense of
profound adaptations. Second, the systems studied in this thesis generally
involve too few individual components for neglecting fluctuations, yet too
many for dispensing with statistical modeling. Last, SMPs are characterized
by the presence of discrete, intermittent, stochastic interactions—as opposed
to the continuous, deterministic interaction that the two weights of a dou-
ble pendulum exert on each other—that make the formalism of dynamical
systems difficult to apply in this context.

1.2 Outline

The manuscript is composed of three distinct parts and a concluding chapter,
which are described in details hereafter.

Part I aims at providing the reader with the pieces of information that
are essential to the understanding of this manuscript such as references to
prior work, theoretical concepts, or terminology definition. Chapter 2 com-
bines an in-depth review of the state-of-the-art of the different topics of
interest in the context of this thesis and an introduction to the core
concepts used throughout the manuscript. Chapter 3 introduces the three
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main experimental platforms as well as the computational tools used in this
work. Chapter 4 describes the suite of five case studies that support the
theoretical and methodological findings reported in this thesis.

Part II focuses entirely on the modeling of SMPs. Chapter 5 aims to discuss
the theoretical fundamentals of modeling, and the specific role of stochastic
processes for simplifying the description of SMPs, in particular in the context
of multi-level modeling. Chapter 6 and Chapter 7 discuss respectively the
construction and the calibration of models at multiple abstraction levels.
Chapter 8 explores the validity of these models on a per assumption basis.
Finally, Chapter 9 introduces a more systematic and generic methodology
for constructing computationally efficient models of SMPs in an automated
fashion.

Part III is dedicated to the model-based design and optimization of SMPs.
Chapter 10 discusses the trade-offs that exist between various design choices
with a specific emphasis on resource-constrained, miniature robots. Chap-
ter 11 shows how one can use computationally efficient models to optimize
design and control parameters of the system. Finally, Chapter 12 describes
how generic, automatically generated models can be used for the real-time
control of SMPs.

Finally, Chapter 13 summarizes the most important contributions and
findings of this thesis and discusses the most promising lines of research for
the future.



Part I

Preliminaries



2

Background

If I have seen a little further it is by standing on the shoulders of Giants.
— Sir Isaac Newton (1642–1727)

This chapter has two important objectives. First, it provides a thorough re-
view of the literature relevant to this thesis. Second, it provides the reader
with a brief reminder of the most important concepts used throughout the
manuscript. As outlined in Chapter 1, we restrict our discussion to engineered
distributed systems that lie between the micrometer and the centimeter scale,
which we denote as SMPs. We suggest in particular that SMPs represent the
natural convergence locus of two opposing tendencies observed in Micro-Elec-
tro-Mechanical System (MEMS) technology and distributed robotics. On one
side of the continuum, an important body of precision manufacturing’s re-
search aims at producing small systems of increasing complexity and capabil-
ity [9, 14–16]. On the other side of the continuum, many robotic researchers
attempt to create increasingly robust, dependable, and inexpensive systems
by transferring complexity from individual robots to collective dynamics,
generally leveraging self-organization mechanisms and environmental surro-
gates (e.g., fluid flows for locomotion [17], stigmergy [18], templating [19]).
However, as we shall see in this chapter, this convergence holds both great
promises in terms of applications and considerable challenges in terms of
modeling and design.

2.1 Fundamentals of Distributed Robotics

The key idea behind collective systems at large is to share labor among
multiple agents. Social insects such as ants, termites, and bees, vertebrates
such as migratory birds, lions and wolves, and, even more clearly, humans
have been carrying out a number of tasks (e.g., preying, foraging, building,
migrating) in a distributed manner ever since they existed. The motivation
for doing so often comes from the need for efficiency, robustness, scalability
and adaptivity, which are key concept in distributed robotics.

G. Mermoud, Stochastic Reactive Distributed Robotic Systems, 9
Springer Tracts in Advanced Robotics 93,
DOI: 10.1007/978-3-319-02609-1_2, © Springer International Publishing Switzerland 2014
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Efficiency is the property of a system to minimize the use of some resource
such as energy or task duration while preserving its performance.

Robustness is the property of a system to be resilient to failures at the
individual level or to unexpectedly adverse conditions of operation.

Scalability is the property of a distributed system to preserve or improve
its performance as the number of its lower-level components increases.

Adaptivity is the property of a system to dynamically adjust its behavior
to changes in environmental conditions in order to preserve its performance.

Before discussing how these concepts apply in the narrower context of
robotics, we shall define more precisely the notion of robot, as it is used in
this work.

A robot is a physical object whose properties and dynamics depend on an
internal, logical state, which in turn depends on current or past external
stimuli.

This definition is extremely general, and it encompasses a broad variety of
agents, ranging from living cells to humanoid robots. Even agents without
silicon-based logic can be considered as robots1. Because it does not impose
any restriction on the sensing, actuation, computation, and communication
capabilities of the agents, this definition is broader than that of SMP.

The need for multi-robot systems generally arises in scenarios that involve
robots that are several orders of magnitude smaller than the environment in
which they operate. For instance, in the case of environmental monitoring,
sensor nodes of a few centimeters in size must observe an environment (e.g., a
forest, mountain, or city) that might be up to several kilometers in size [21].
In order to accomplish monitoring and inspection tasks in such scenarios,
large-scale2 systems composed of hundreds or more individual nodes must be
deployed [22]. This is typically the case of tasks that require highly minia-
turized individual robots, like distributed inspection and sensing of industrial
machinery [23], commercial pollination [24], or the human body [25].

Another important motivation for the use of multi-robot systems is their
flexibility, which is especially important in scenarios such as the deployment
of communication networks in disaster areas [26], the monitoring of urban
environments [27], or the odor-based localization of victims in natural dis-
asters [28]. Because of its inherent robustness, distributed robotics is in-
creasingly envisioned as the solution to the operational challenges posed by
1 The very notion of computation does not make any assumption in terms of

substrate [20].
2 The notion of scale pertains to the number of robots in the system here, and not

to their size.
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the harsh and adverse conditions encountered in scenarios such as nuclear
disasters, space exploration, or battlefield support.

2.1.1 Core Concepts and Principles

Distributed robotics is a multidisciplinary field that encompasses mechatronic
design, control theory, machine learning, applied physics, and statistical mo-
deling. The reason for this richness lies in the intrinsic features of distributed
robotic systems: hybridity, embodiment, mobility, complexity, and stochas-
ticity. Hereafter, we discuss all these features in detail, as well as a few other
common properties of distributed robotic systems.

Hybridity

Hybridity is the property of a robot to have a state with both a continuous
and a discrete part, generally associated to physical properties (e.g., position
in space, geometrical conformation, etc.) and logical properties (e.g., con-
troller’s state), respectively. While hybridity mostly pertains to the control
of robotic systems, it has also implications in modeling, as we shall see later.

Embodiment

Embodiment is the property of a robot to have the physical body with its own
geometric and physical properties3. Embodiment must be carefully accounted
for so that robots can successfully operate in the physical world. As a result,
all robotic systems heavily depend on a proper mechanical design; yet, the
notion of embodiment pertains to all stages of the development of a robotic
system, including control, design and modeling of the said system [29]. Some
authors even suggest that the lack of embodiment precludes the development
of intelligence altogether [30].

Mobility

Mobility designates the ability of a robot to move in space. The space of
operation of a robot may be different from the regular, three-dimensional
physical space: for instance, a modular robot may remain fixed in space,
but reconfigure itself into some other structure, thereby moving in the space
of its conformations. In this work, we distinguish between controlled mo-
bility, which results from the robot’s actuators, and parasitic mobility [31],
which arises from the more or less controlled harnessing of environmental
forces (e.g., wind, fluid flows, thermal agitation) or other agents’ mobility
(e.g., pollution sensors mounted on buses or taxis).
3 As opposed to the assumption that individual robots are simple points in space,

which is often found in the literature of distributed robotics.
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Stochasticity

Stochasticity is the property of a system or a process to be intrinsically non-
deterministic, that is, its subsequent state is determined by its current state
(and, possibly, by some or all of its previous states) and by a random element.
Stochasticity plays a key role in robotics since the behavior of a robot is
never fully deterministic; both sensing and actuation are subject to noise,
communication channels are intrinsically stochastic4, and even computation,
which is in principle the only fully deterministic component of the robot’s
behavior, may purposefully exhibit a stochastic component (i.e., probabilistic
controllers).

Stochasticity is even more important in the context of distributed systems,
whose behavior is largely determined by the interactions of the individual
robots, which are essentially stochastic since they are mediated by mutual
sensing, actuation, and communication—all subject to noise. As a result,
these systems almost systematically need to be described using statistical
models (also called probabilistic models), which can be then simulated using
both deterministic and stochastic algorithms (see Chapter 5.4 for further
details about modeling methods).

Complexity

The notion of complexity is often misunderstood; indeed, even though the
words complicated and complex sound quite similar, their meaning is differ-
ent. On the one hand, a complicated system is one that is difficult to under-
stand and analyze because of its intricacy, the number and the variety of its
constitutive components (the obscurity of its documentation); large pieces
of software are an almost paradigmatic example of complicated entities. On
the other hand, a complex system is one that exhibits unpredictable, yet not
necessarily stochastic, dynamics5. Interestingly, simple systems can be com-
plex, as exemplified by the double pendulum (Figure 1.1) or the three-body
problem [32], which lead to the formulation of chaos theory. More generally,
any system that involves multiple interacting lower-level components may, in
principle, become complex under certain regimes. Such systems are almost
systematically characterized by the presence of positive and negative feed-
backs as well as non-linear response to (external and internal) perturbations.
4 Owing to the remarkable developments of network coding, some communica-

tion channels offer such reliability that one might tempted to consider them as
nearly deterministic. While this assumption might be acceptable in some settings
(e.g., high-level information technology), most communication channels used in
robotics still exhibit a strong stochasticity (e.g., packet loss, packet corruption,
and communication delays).

5 However, complex systems are often probabilistically predictable—this claim is
one of the most important of this thesis.
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However, they may not necessarily exhibit specific properties such as chaos6

or emergence7.

Adaptivity

Most robotic systems are designed to carry out a specific task, that is, a se-
quence of actions to be performed in some well-defined conditions. However,
a desirable property of such systems is that they can deal with unknown con-
ditions, and dynamically adjust their behavior accordingly. One may achieve
adaptivity using learning, where each individual robot explicitly and dynam-
ically adjust its behavior, generally by reinforcement of the most rewarding
one. Alternatively, one may leverage self-organization and SA mechanisms
such that the system exhibits adaptivity at the collective level. This latter
approach is generally preferred over the former in distributed robotic systems
since it favors simplicity at the individual level.

Coordination

When designing distributed robotic systems, one must account for the pres-
ence of other robots trying to carry out the same task. Indeed, as far as
scalability is concerned, even for simple tasks such as foraging, adding robots
to a task will generally not improve the performance of the system. In such
cases, one needs to coordinate the different robots such that they do not in-
terfere with each other, or, even better, such that they collaborate with each
other in a way that improves the performance of the group.

2.1.2 Control

The notion of control is very general, and may designate any approach in-
tended to constrain the behavior of a dynamical system. In particular, control
theory is an interdisciplinary branch of engineering and mathematics, whose
usual objective is to calculate solutions for the proper corrective action from
a controller that result in system stability, that is, the system will hold a
given set point, and not oscillate around it [35]. Control theory generally op-
erates within the strict mathematical framework of dynamical systems [36],
and therefore it makes critical assumptions such as the determinism of the
underlying models (that are often based on differential equations).
6 Chaos designates the behavior of dynamic systems that are highly sensitive to

initial conditions, an effect which is popularly referred to as the butterfly ef-
fect. Small differences in initial conditions (such as those due to rounding or
measurement errors) yield widely diverging outcomes, thereby making long-term
predictions impossible [33].

7 Emergence is the arising of higher-level structures, patterns and properties that
are not explicitly encoded in the lower-level components, in particular in the
context of self-organization [34].
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In robotics, many successful approaches such as probabilistic robotics [37],
behavior-based robotics [38], bio-inspired robotics [39], swarm intelligence [40],
and hybrid systems [41] have emerged as potential alternatives to modern
control theory for designing robotic controllers. Not only these methods gen-
erally yield similar or higher performance on selected benchmarks, but they
are able to cope with the intrinsic uncertainty and stochasticity of robotic
systems, especially when deployed in real settings. However, most, if not all,
of them do not match the degree of analytical tractability offered by classic
control theory, nor do they allow for a formal verification of their correctness
(with the remarkable exception of hybrid systems, whose formal verification
was pioneered by Henzinger [42]).

Successful control schemes for distributed robotic systems may range from
fully centralized (i.e., control algorithms are essentially carried out by a cen-
tral computer, which then dispatches precise instructions to each of the in-
dividual robots, e.g., as broadcast probabilistic templates) [43, 44] to fully
distributed (i.e., control algorithms run entirely on-board, local to each in-
dividual robot) [45, 46]. Centralized control is usually easier to carry out in
theory and often allows for achieving optimal performance, but it has usually
high requirements in terms of communication bandwidth and computational
resources of the central control unit. Centralized control schemes also suffer
from limited scalability in terms of number of nodes, and are intrinsically
characterized by a single point of failure (i.e., the central control unit). In
contrast, distributed control is attractive in terms of scalability and robust-
ness, typically exhibiting a graceful degradation of system performance in the
presence of one or more unit failures. However, distributed robotic systems,
especially those consisting of large number of autonomous mobile units, are
generally difficult to design and analyze. The complementary challenges of
synthesis and analysis in such cases have been the focus of several recent
research efforts within the domain of distributed robotic systems.

Centralized control algorithms are essentially carried out by a central
unit, which then dispatches instructions of varying precision and form
(e.g., probabilistic templates, high-level orders, motor commands) to each
individual robot.

Distributed control algorithms run entirely on-board, and have generally
access to only limited, local information about the environment and the state
of the other robots.

Another important distinction that we shall make concerns the synthesis
of distributed controllers, which is commonly approached in either a bottom-
up or top-down fashion [47]. In short, bottom-up approaches start with an
implementation of the real system (or faithful simulations of this system),
and then build up a series of increasingly abstract models, carefully vali-
dating each against those at lower abstraction levels [48, 49]. In contrast,
top-down approaches [19, 27, 50] start with an abstract representation of the
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system (e.g., based on graphs [27], potentials [19], hybrid automata [51]),
which enables the use of powerful design, optimization, and analysis schemes
(e.g., convex optimization [27], Padé approximants [52], optimal control [44],
etc.), and then shape up the robots and their controllers such that the re-
quirements of this idealized representation are fulfilled.

2.2 Small and Ultra-small Robots

Scientific and technological breakthroughs in the field of nano- and microengi-
neering have steered the robotics community towards the realm of extreme
miniaturization. As outlined earlier, small robots of a few centimeters in
size can access environments that are beyond the reach of larger robots, with
recent case studies including scenarios such as the inspection of the digestive
tract [53, 54] or complicated industrial machinery [23]. Further miniaturiza-
tion down to the micro or nanoscale holds even more exciting potential in a
large variety of fields such as biomedical engineering, environmental sensing,
micromachinery inspection, and micromanipulation [55, 56]. However, minia-
turization comes at a price: such robots are likely to be deprived in terms
of sensing, actuation, and computation. These severe restrictions create the
need for a collaborative approach towards the solving of tasks by leveraging
perception and action at a collective level.

2.2.1 Existing Platforms

Attempts towards miniaturization are numerous in the field of robotics,
and exciting new platforms have stemmed from this research. The follow-
ing non-exhaustive list provides a few references of these platforms clas-
sified according to the size of an individual node (this list excludes the
platforms specifically dedicated to aggregation and SA, which are discusses
in Section 2.3.1): (i) centimeter-sized robots, such as Lipson’s reconfigurable
cellular robots (6 cm) [57], Wood’s at-scale robotic insects (3-4 cm wing
span) [58], Jasmine robot (3 cm, open-source platform) [59], the ultra low-
cost Kilobot (2.5 cm) [60], the Alice robot (2 cm) [61], and the ARES
project’s swallowable modular robots (about 1 cm) [62]; (ii) millimeter-sized
robots like the autonomous jumping robot proposed by Bergbreiter and Pis-
ter (< 5 mm) [63], the I-Swarm robot (3 mm) [64], the Smart Dust motes
(1-2 mm) [65]; (iii) micrometer-sized untethered robots, such as resonant
soft-magnetic MEMS-based devices navigating a fluid-filled maze, as demon-
strated by Nelson and colleagues (300 μm) [66], and steerable, untethered
MEMS micro-robots (280 μm) [67]. However, intelligent and autonomous
robots have yet to be demonstrated at the submillimeter scale. Indeed,
endowing such small robots with capabilities sufficient to achieve closed
perception-to-action loop control is a great challenge for two main reasons:
(i) the fabrication processes of logic devices and other MEMS devices are
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often incompatible (see Section 2.2.2), and (ii) power supply at these scales
is still an on-going research topic [55].

2.2.2 Manufacturing Techniques

The manufacturing of small mechatronic devices is generally approached in
two distinct ways: (i) conventional mechatronics based on a combination
of mechanical and electrical engineering, in particular using printed circuit
boards (PCBs) and mounted electrical components, and (ii) MEMS tech-
niques based on the “depose, pattern, and etch” processes used in semiconduc-
tor device fabrication. While conventional mechatronics is much less suitable
to extreme miniaturization than the latter, it offers one key capability that is
still difficult to implement using photolithography, that is, the integration of
hybrid devices. Namely, in conventional mechatronic design, almost any fea-
ture can be obtained by the integration of an appropriate component, which
generally requires only to update the PCB layout and to solder the said com-
ponent at the appropriate location. Whether the component is a CMOS chip,
a sensor, an actuator, or a passive object is generally not relevant owing to
the use of soldering. However, when it comes to endowing MEMS devices
with multiple functionalities (e.g., sensing, actuation, computation, photon-
ics, etc.), the problem of packaging and integration becomes important and
truly critical. Indeed, the typical approach to MEMS manufacturing is pho-
tolithography, which consists of selectively removing parts of a thin film or
the bulk of a substrate by transfering a geometric pattern from a photo mask
to a light-sensitive polymer. A sequence of physico-chemical treatments then
either engraves the exposure pattern into, or enables the deposition of other
materials in the desired pattern upon, the material underneath the photore-
sist. The main limitation of this technique is that all materials used in the
process need to be chemically and thermally compatible with each other.
For instance, if one wants to etch a silicon wafer using potassium hydroxide
(KOH) solutions at some point of the process, all exposed structures that
need to be conserved after this step must be either made of a material re-
sisting to KOH etching, or be covered by a protective resist. As a result,
lithographic processes become increasingly complex as the variety of materi-
als, functionalities, and length scales involved in the structure increases; in
many cases, co-fabrication of heterogeneous devices is impossible.

To work around this problem, micro-engineers have developed a full
breadth of assembly techniques for hybrid MEMS, including robotic pick-
and-place methods and wafer-scale transfer, bonding and flip-chip methods
to construct mechanical and electrical connections between different, indi-
vidually fabricated sub-systems, or between MEMS devices and an interface
board. Very recently, innovative approaches have started to consider the
possibility of using SA to position and fix the parts on the target surface,
or to assemble free-standing parts with each other [9]. This approach is
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appropriate for situations in which the individual pieces are either too small
or too numerous to be assembled using pick-and-place methods as it allows
one to achieve high throughput and precise alignment of the parts.

In spite of these promising results, hybrid MEMS manufacturing is still
subject to intense on-going research, and is not mature enough to allow for
the manufacturing of truly autonomous robotic devices at the micrometer-
scale.

2.2.3 Key Challenges

Small and ultra-small robots do not only pose manufacturing challenges,
but their small size has important consequences in terms of design, control,
and modeling. Hereafter, we describe the most prominent implications of
miniaturization on these three tasks.

Force Scaling

An important property of our physical world is that all forces do not scale with
size in the same way. Forces that depend on the volume (and, incidentally,
the mass) of the object such as gravity and inertia scale with the cube of
the size; forces that depend on the area of the object such as friction or
drag scale with the square of the size; some forces even scale linearly with
size, such as capillarity. Incidentally, the relative importance of these forces
is completely modified upon scaling down a physical system. Typically, at
scales below a few tens of micrometers, gravity and inertia become negligible
whereas surface tension and capillarity dominate the force landscape.

As a result, some of the intuitive recipes for designing and controlling tra-
ditional robots are not applicable at small scales. For instance, the over-
whelming prominence of adhesive and viscous forces make self-propelled
submillimeter-sized robots difficult to realize. Typically, such systems rely
on external forces (e.g., vibration, fluid flow, gravity, magnetic forces) to
enable mobility of individual robots.

Stochasticity

Stochasticity is also directly connected to the notion of length scale. Indeed,
physical phenomena that are essentially stochastic such as Brownian motion
and turbulent flows appear only at certain length scales, and are completely
negligible at others. For instance, the region in which Brownian motion is
dominant—length scales of a few micrometers and below—is precisely the
one where turbulences are completely negligible because of the absence of
inertial forces and the prominence of viscous and drag forces. As a result,
while fluidic phase mixing is a major challenge in microfluidics because of
the absence of turbulence, small particles (less than 10 μm) are naturally
agitated in fluidic environments.
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Since inertia represents the resistance to change in motion of a physical
object, the unfavorable scaling of inertial forces at small length scales makes
small and ultra-small robotic systems very sensitive to stochasticity. Small
grains of dust, surface roughness, and even small manufacturing defects are
no longer negligible as the size of the robots decrease, and they should, in
principle, be accounted for in models and control strategies of miniaturized
robotic systems. In reality, these details are prohibitively difficult to model
explicitly, and statistical approaches are therefore needed (e.g., stochastic
differential equations such as Langevin equations).

The role of quantum uncertainties, while negligible in terms of physical
interactions at the microscale, is critical in nanoelectronics, which will be
instrumental in designing future ultra-small robotic systems. As a result,
regardless of whether the world is deterministic or not, the practical im-
plications of miniaturization are often an increased stochasticity, which one
absolutely needs to account for when modeling, designing, and controlling
small and ultra-small robotic systems.

Computational Resources

Another key challenge of miniaturized robots is their limited computational
resources, which favor the use of simple, often reactive controllers. Indeed,
as outlined earlier, in spite of our ability to manufacture small integrated
circuits, their integration into submillimeter-sized robots is still hindered by
a number of technical challenges. Even in a distant future it is unclear that
microrobots will be endowed with logic circuitry similar to current centimeter-
sized robots. This observation motivates the development of strategies that
can circumvent these severe limitations.

Bacteria and, more generally, cells are, by far, the most advanced machin-
ery of this size; yet, they exhibit behaviors that are not nearly as sophis-
ticated as regular robots8. Still, large swarms of bacteria can in principle
achieve regular computation [70], programmable pattern formation [71], and
cooperation [72], thereby pinpointing the relevance of collective mechanisms
for overcoming limitations at the individual level.

Energy Resources

Supplying energy to highly miniaturized devices is an important challenge
from both a design and a manufacturing perspective. Several appealing solu-
tions have been proposed in recent years, ranging from on-board power gen-
erators (e.g., thin-film batteries fabricated using semiconductor technology
8 In his provocative book Wetware [68], cell biologist Bray goes as far as to suggest

that biochemical systems that underlie the behavior of cells resemble neural net-
works, and are capable of “computation” and “learning”. However, he uses these
terms to designate quite different capabilities than those of regular robots [69].
Incidentally, his revolutionary vision of living cells strikingly resembles that of
SMPs.
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[73] or other cutting-edge micro-batteries [74]) to transducers scavenging en-
ergy from an often ad hoc engineered environment (e.g., MEMS-based power
generators such as methanol fuel cells [75]). Yet, we believe that energy will
remain a scarce resource at small scales, and one needs to consider very care-
fully this parameter when devising design and control strategies for highly
miniaturized robots.

2.3 Self-organization, Aggregation, and Self-assembly

One of the coordination mechanisms that has proven successful in address-
ing the problem of controlling large distributed systems is self-organization,
particularly if the system is resource-constrained [29, 76, 77]. There is an
on-going debate regarding the exact definition of self-organization. In par-
ticular, Halley and Winkler [78] asserted that “self-organization implies a
nonequilibrium process and SA is reserved for spontaneous processes tend-
ing toward equilibrium”. The thermodynamic basis of this distinction makes
its relevance to robotic systems questionable, though. Furthermore, while
this distinction restricts the scope of self-organized systems, it broadens the
definition of “self-assembly” to the extent that it nearly becomes a synonym
of “aggregation” (because any aggregate, as disordered as it can be, is al-
ways more ordered than a perfectly mixed and randomized system). In this
work, we shall therefore use more balanced definitions of self-organization,
aggregation, and self-assembly, which pertains to a broader class of systems:

Self-organization is the spontaneous, decentralized and dynamic ordering
of an initially disordered distributed system as a result of interactions of its
constituent components.

Consistently with Halley and Winkler [78], we associate self-organization
to a dynamic process that requires a constant source of energy for both
increasing and maintaining the order of the system. The rules specifying
the interactions are executed without explicit reference to the global pattern,
thus allowing self-organized strategies to be very scalable.

Self-organization requires four fundamental ingredients to occur, which
we illustrate here in the context of the stock market, which is a paradigmatic
example of self-organized system (and voluntarily very different from those
we investigate in this thesis):

1. Positive feedback is the reinforcement of an initial perturbation by
its own effect, thus leading to an increase (generally exponential) of the
magnitude of the perturbation. The price of a share on the stock market
is strongly determined by the following positive feedback: as its price
increases, the share becomes more attractive since people expect it to
increase further, and therefore its price increases even further.

2. Negative feedback is the opposing force to exponential growths pro-
voked by positive feedback; it is often characterized by the exhaustion
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of resources, be they energetic, financial, or material, or by non-linear
damping effects. The exponentially increasing price of a share rapidly
reaches a value that investors consider (more or less objectively) as the
real value of the underlying company, at which point they attempt to
sell it.

3. Stochasticity allows the system to explore the solution space and to
escape from local minima. The main source of randomness on the stock
market is the investors’ behavior, which depends on a large number of
parameters (socio-economical of course, but also psychological, and even
neurological [79]).

4. Multiple interactions among the lower-level components of the system
is probably the most essential ingredient of self-organized systems. On
the stock market, not only investors are continuously selling shares to
each other, but they influence each other by their action.

Self-organized systems differentiate based on the substrate and mecha-
nisms used to share information among the units. For instance, stigmergy [18]
is a powerful indirect anonymous communication mechanism exploited by in-
sect societies and some self-organized artificial systems reported in the litera-
ture [80–84]. Stigmergy relies on the specific signs left in the environment by
the agents’ actions, which in turn stimulates subsequent actions. It mediates
the formation of complicated structures and spatial patterns, without need
for any planning, control, or even direct communication between the agents.
This type of control mechanism is simultaneously flexible and scalable, and
therefore quite suitable to the control of large-scale systems. Self-organization
has also attracted a lot of interest in the robotics community because of the
confluent concept of emergence, which many researchers hope to exploit as a
mechanism for improving both the adaptivity and the robustness of robotic
systems. However, the wavering progress of artificial life outlines the diffi-
culty of exploiting such a subtle and abstract principle in engineered systems,
especially in concrete and applied case studies.

Whenever multiple components are allowed to move freely in a finite space,
they may collide with each other and, in some cases, bond to each other. This
phenomenon, widely referred to as aggregation, is certainly one of the most
pervasive in our universe since it concerns objects as varied as atoms and
molecules [85], microscale objects [86], animals [87], and galaxies [88]. Aggre-
gation is an efficient mechanism exploited by nature for favoring interactions
and information exchange between biological individuals, and thus enabling
the emergence of complex collective behaviors [89] ranging from predator pro-
tection [90] to collective decision-making [11]. In robotics, aggregation has
been demonstrated both with passive objects [82] and robots [89] as individ-
ual components.

Aggregation is the spontaneous and decentralized clustering of components
into loosely ordered structures.
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A group of robots may exploit random encounters for sharing informa-
tion collectively while communicating locally; in such cases, aggregation can
mediate self-organized processes such as collective decision-making [11] and
consensus [91]. In some settings, the aggregating agents are passive objects
moved by the robots, either one by one [50, 81], or in groups [80]. Also, ag-
gregates can either remain still (as it is often the case with passive objects or
non-holonomic robots), or move throughout the environment, and therefore
aggregate with each other just like individual agents do. All these features
have profound implications on the models, especially at higher abstraction
levels.

In many scenarios of aggregation, the bond stability depends on the local
perceptions of the agents (e.g., the number of detected neighbors [92], the
relative alignment of the robots [91, 93], light intensity [94]). In such cases,
the overall stability of the aggregate also depends on its structure and geom-
etry. The introduction of such local rules of interactions can allow for the
formation of spatially and geometrically well-defined clusters. Although the
concept of SA originated in chemistry, components of any size (from molec-
ules to galaxies) can self-assemble[95], including engineered components such
as passive building blocks [96], externally controlled parts [97], programmable
parts [46], or full-fledged mobile robots [98]. Figure 2.1 illustrates a number
of engineered self-assembling systems at all scales.

Self-assembly is the spontaneous and decentralized organization of com-
ponents into spatially and geometrically well-defined structures, which are
encoded in the specific, directional interactions among components.

Contrary to self-organization, aggregation and self-assembly systems do
not require energy for maintaining their structure, consistently with Halley
and Winkler [78]; they may however require energy for providing mobility to
the constituent components and exploring the conformational space.

2.3.1 Existing Platforms

Among the recent implementations of self-assembling robotic systems at the
macroscale, Gross and colleagues demonstrated SA in a group of Swarm-
bots, a 15 cm-sized mobile robot equipped with a gripper [98]. Klavins and
colleagues investigated in detail the use of graph grammars to control the
SA of triangular robotic modules (12.5 cm in size) that slide passively on
an air table [46]. The building blocks uses rotating permanent magnets as
latching mechanism, and they execute a common graph grammar in order to
determine their actions. At even smaller scale, Miyashita et al. [97] proposed
simpler triangular robots called Tribolons (4.8 cm in size) that assemble at
the surface of water and rely on a pantograph for both energy supply and
control. Garnier et al. [89] successfully implemented bio-inspired probabilis-
tic aggregation in a group of Alice robots (2 cm in size). Self-replication of
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Fig. 2.1 Examples of engineered self-assembling systems reported in the MEMS
literature (A to G) and in the robotics literature (H to N), thereby illustrating the
clear convergence of these two disciplines. (A) Scaffolded DNA origami of 100 nm
in diameter [99]. (B) Dense packing in small cluster of microspheres (844 nm
in diameter) [100]. (C) Capillary SA of 10-μm-sized hexagonal plates into large
crystal structures [101]. (D) Fabrication of 200-μm-sized patterned polyhedra by
self-folding [102]. (E) Parallel assembly of stress-engineered MEMS microrobots
into planar structures spanning several times the size of one robot (240-280 μm in
length) [103]. (F) SA of millimeter-sized hexagonal plates using lateral capillary
bond [104]. (G) Three-dimensional SA of millimeter-scale electrical networks [105].
(H) Dynamically programmable fluidic assembly of microtiles (500 μm in size)
into arbitrary structures [106]. (I) Swallowable modular robots with in vivo self-
assembling capabilities [53]. (J) Fluidic SA of centimeter-scale modules into ar-
bitrary three-dimensional structures [107]. (K) SA of Alice robots (2 centimeters
in size) into chains of controllable size using minimalist local communication [93].
(L) SA of water-floating tethered units, called Tribolon, which are endowed with a
vibrator for controllability purposes [97]. (M) Self-assembling programmable parts
that execute graph grammars as control strategy [46, 108]. (N) Morphology control
in a group of swarm-bot robots (10 centimeters in diameter) [45].

robotic units, whose SA is a key ingredient, was also demonstrated by Griffith
et al. [109] using two-dimensional coding strings as templates, and by Zykov
et al. [110] with self-swiveling autonomous gripping blocks. Finally, Rus and
colleagues have developed the Smart Pebble modules (1.2 cm in size), which
self-assemble into a close-packed lattice of modules, which is subsequently
shaped by allowing modules to communicate with each other and determine
whether they must detach from the structure [111, 112]. While this system
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exhibits impressive capabilities given its size, it still faces the problem of en-
ergetic autonomy—power is provided to a fixed, root module, and distributed
through the system [111]. More generally, a full breadth of novel platforms
are developed in the context of modular robotics, some of which are capable
of autonomous locomotion and docking [113–116] (see [117] for a thorough
review of the field), yet with a specific emphasis on reconfigurability rather
than assembly from pre-existing scattered units.

Tolley et al. [17, 107] achieved three-dimensional fluidic SA of 1.5 cm-
sized cubic modules using an active assembly substrate consisting of an ar-
ray of fluidic ports with alignment patterns that match those of the cubes.
Using a centralized control based on pressure feedback, their apparatus al-
lows for the hierarchical assembly of relatively complex structures. Several
research groups envision designing and fabricating modular surgical robots
small enough (about 1 cm) for entering the human body through natural
orifices (e.g., by ingestion [53]), and capable of configuring themselves into
more complex devices within the stomach.

SA of sub-centimeter-sized robots is also being addressed in the literature.
Tolley et al. [106] demonstrated the fluidic assembly of 500×500×30 μm3 sil-
icon tiles into arbitrary two-dimensional structures by controlling the flow in
a microfluidic assembly chamber. Donald et al. [103] have proposed MEMS-
based robots (100 μm in size) that can be centrally controlled by a global
and programmable electric field to dock compliantly with each other, thereby
forming planar structures spanning several times the size of a single robot.

As researchers try to push the envelope of miniaturization, robots become
more and more limited in terms of sensing, actuation, and computation, to
the extent that one might be tempted to consider them as mere particles.
However, self-assembling parts at the microscale are the result of intensive
research and careful design; both their geometry and their surface properties
are tailored for reacting in a specific and controlled manner with other parts.
As a result, in spite of their relative simplicity as compared to conventional
centimeter-sized robots, these devices ought to be considered as smart and
reactive components.

Typical examples of such systems are the numerous self-assembling com-
ponents reported in the MEMS literature [9, 118, 119]. These systems target
a wide range of applications, including, e.g., three-dimensional electric cir-
cuits [105], flexible LED-based displays [120], integration of semiconductor
devices onto plastic substrates [121], polyhedric containers [122], monocrys-
talline solar cells [123]. They exploit a broad spectrum of physical interac-
tions, including (but not limited to) gravitational [124], hydrophobic [125],
steric [126], dielectrophoretic [127], magnetic [128], capillary [104], DNA
hybridization-mediated [129], or fluidic [130]. Interestingly, in the range of
micrometric to nanometric scales, most of these interactions can be tuned to
a reasonable degree [131, 132].
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2.3.2 Design, Control, and Optimization

Controllers exploiting self-organization as coordination strategy are almost
always synthesized in a bottom-up fashion. Indeed, top-down approaches
are often inapplicable to such systems as they require a prior knowledge of
the collective dynamics, which are generally either unknown (in particular
when the system exhibits emergent properties) or difficult to translate into
specifications at the individual node level. In the context of SA, this inverse
problem—that is, finding the set of interactions that most robustly and spon-
taneously lead to a targeted many-particle configuration of the system for a
wide range of conditions [133]—cannot be solved in polynomial time, in the
general case9. In some simple cases, one can use linear programming [135],
simulated annealing [136], or other stochastic optimization techniques [137]
to solve this problem.

While the inverse problem is difficult in general, many of its variations
can be solved efficiently if some critical assumptions are relaxed (e.g., by
allowing building blocks to broadcast their state to their neighbors). The
research groups of Mataric [138], Nagpal [139], and Requicha [140] have all
demonstrated the SA of arbitrary structures by using active building blocks
that can communicate with each other and execute a set of predefined rules
in simulation. In both cases, the approach is completely decentralized, and
the rules can be automatically generated by a compiler. While these works
seem to contrast with—or even contradict—the claim that the inverse prob-
lem in SA is NP-complete, they actually make a critical assumption, that
is, the ability of the building blocks to locate themselves in the structure
(not necessarily explicitly, but also by propagating this information using di-
rectional and local communication channels). This requirement makes this
type of algorithm difficult to implement in real, miniature robotic systems as
directional, local communication is unreliable at small scales.

As a result, one generally focuses on the forward problem, which consists
of tuning the design and control parameters of an existing system in order
to favor the formation of a given target structure. Of course, this approach
is much less powerful because prior knowledge of the space of feasible struc-
tures is needed. Only then can one optimize the system such that one target
structure is favored over the others. From this perspective, the role of multi-
level modeling (see Chapter 5.4) is critical for tackling the forward problem.
Indeed, microscopic models are necessary to bridge the gap between the be-
havior of individual agents and the collective dynamics of the system as a
whole, thereby allowing for the exploration of the search space. Then, the
actual optimization of the system’s control and design parameters requires
computationally inexpensive macroscopic models [141, 142].
9 A formal version of this general problem where the goal is to find the smallest tile

system that uniquely produces a given shape has been proven to be NP-complete
in general [134], therefore indicating that no efficient algorithm exists to solve
this problem.
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Graph grammars are another promising tool for coordinating self-
assembling robotic systems [46, 108], in particular owing to their sound the-
oretical grounding and the possibility of translating a given grammar into
a set of hardware specifications. However, this approach requires the ro-
bots to share their internal states upon aggregation as well as to interpret
graph grammars, which might hinder their implementation on very small
robots. Other approaches to the control of robotic self-assembling systems
at the centimeter-scale do not consider the intrinsic stochastic properties
of these systems at smaller scales, and typically assume advanced sensing
and computation capabilities such as fine-grained range and bearing and/or
vision [45, 98], or centralized control feedback coupled with very subtle actu-
ation techniques to achieve arbitrary structures [106, 107].

2.3.3 Modeling

As outlined earlier, self-assembling systems—and, more generally, all systems
relying on self-organization as coordination mechanism—require efficient and
accurate models to achieve tunable and optimal performance. However, be-
cause SA entails several physical phenomena occurring at various levels of de-
tail and length scales, several different modeling techniques are often needed.
In this respect, the literature of SA modeling can be split into two main
categories, which we describe hereafter.

The first category focuses on the accurate modeling of the physico-chemical
and geometrical properties that characterize the dynamics of a single par-
ticle in close proximity to its target position in the assembling structure.
Analytical models (generally based on a combination of first-order approx-
imations and first-principles equations [143–145]) and finite-element numer-
ical simulations [146], often multi-physics, are well suited to this type of
very detailed physical models. At the microscale, a substantial amount
of rather case-specific works addressed the dynamics of capillary-mediated
SA [145, 147, 148], but also other interactions [149]. At the macroscale, many
experimental works also provide simple analytical or finite-element models of
the underlying interactions they rely on, be they fluidic [146] or magnetic [53].

The second category adopts instead a more abstract and general multi-
particle perspective which, while reducing the accuracy by sparing a sub-
stantial amount of details about the physical and geometrical details of the
system, still captures meaningful information about the process dynamics,
and possibly allows for a better generality and computational efficiency. In
1994, Hosokawa et al. [150] first proposed an explicit analogy between artifi-
cial, macroscopic self-assembling systems and chemical kinetics. The result-
ing model is essentially a Chemical Reaction Network (CRN), a modeling
framework that has been studied extensively in the context of biochemical
systems [151]. Similarly, Zheng and Jacobs [152] proposed a first-order pop-
ulation model for the SA of hybrid microsystems, which does not, however,
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account for the reversibility of the process. Recently, Mastrangeli et al. [153]
reported an Agent-Based Model (ABM) of the same process, thereby ac-
counting for both the low copy numbers of the system and some important
features such as spatiality and suboptimal mixing. Rigid body simulations
endowed with simplified physics (e.g., approximated drag and friction forces,
buoyancy, magnetic dipole interactions, etc.) also proved useful in studying
self-assembling systems, especially for investigating large-scale systems that
are difficult to study experimentally [17].

Even though an exact algorithm for solving CRNs is known since the late
70s owing to Gillespie [154], researchers in distributed robotics seem to have
ignored it until recently. For instance, Hosokawa et al. [150] solved their
population model deterministically (i.e., by numerical integration) in spite
of the low copy numbers of the system. Early attempts to use stochastic
modeling in robotics and systems biology have been carried out by Kumar
and colleagues [12, 155]. More recently, Klavins and colleagues have used
a similar framework for building a stochastic interpretation of their graph
grammars [46]. Deterministic models of aggregation and flocking (which is
conceptually similar to aggregation, but involves a coordinated motion of
the aggregate) such as [156, 157] as well as graphical models of multi-robot
systems such as [158] are interesting complements, from a system and control
perspective, to stochastic modeling, but do not take explicitly into account
the intrinsic randomness of SA processes.

More generally, few attempts have been made to construct a more compre-
hensive and systematic methodological framework for modeling self-assembling
robotic systems at small scales. A notable exception are the works of Schweitzer
[159] and Milutinovic [51]. Schweitzer introduced the concept of Brownian
agent, which allows for an appealing harmonization of multi-agent modeling
and statistical mechanics. In particular, it provides a set of relatively system-
atic and formal strategies to generate analytical models out of a description
of the system in terms of Brownian agents. Milutinovic proposed a modeling
framework that unifies the description of biological and robotic systems under
the critical assumptions of large populations of cells or robots. In this con-
text, he proposed an optimal control approach for maximizing the population
density in a given region of the space.

Even though these contributions are essential steps towards more formal
and systematic modeling methodologies for distributed systems, they still
lack precise, algorithmic description for being carried out in a strictly au-
tomated fashion. Matarić and colleagues [160, 161] generated Augmented
Markov Models (AMMs) in real time based on the sequence of behaviors ex-
ecuted by a robot. However, this approach requires a prior knowledge of the
states of interest, and is limited to single-robot systems. Alternative meth-
ods for automated modeling adopt completely different strategies based on
evolutionary computation [162, 163]. In spite of their attractive flexibility
and versatility, these methods are computationally expensive, and they yield
gray-box models whose structure and parameters are difficult to anchor back



2.3 Self-organization, Aggregation, and Self-assembly 27

to the original system. In particular, they rely on a single level of abstraction,
even in the context of collective systems (e.g., biological and chemical reaction
networks [164, 165]), thereby precluding any mapping between microscopic
and macroscopic states.

Multi-level modeling was proposed by Martinoli and colleagues [48] in the
context of swarm robotics as a method for fulfilling the competing require-
ments of the detailed, physical modeling of low-level interactions and the
abstract, statistical modeling of robotic populations. Chapter 5 will discuss
this approach in detail.

Summary and Conclusion

This chapter provides a thorough review of the literature relevant to this
thesis as well as a brief reminder of the key concepts in distributed robotics.
In essence, the essential motivation for using multi-robot systems comes from
the need for efficiency, robustness, scalability, and adaptivity. Such require-
ments arise in particular in scenarios that require very high reliability, or
that involve robots much smaller than the environment in which they op-
erate. However, these appealing features come at the price of an increased
complexity in terms of design, control, and modeling. We illustrate this trade-
off with the specific case of SMPs, i.e., systems composed of mobile, reactive,
physically embodied agents that compensate for their limited computational
resources using specifically engineered interactions with each other and their
environment. On the one hand, owing to their excellent scalability, both in
terms of length scale and group size, SMPs hold exciting promises in many
disciplines, especially in the field of small and ultra-small robots. On the
other hand, important difficulties arise at all stages of their development: de-
sign, modeling, control, and manufacturing. Self-organization, aggregation,
and self-assembly are scalable mechanisms that have proven useful in address-
ing these challenges, in particular when coupled with bottom-up model-based
design methodologies.
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Materials and Methods

See first, think later, then test. But always see first.
Otherwise you will only see what you were expecting.

—Douglas Adams (1952–2001)
in So Long, and Thanks for All the Fish

This chapter provides a thorough description of the experimental platforms
that we used for illustrating and validating our methodological framework.
We also discuss the features and limitations of the main computational tools
that served as basis for the analysis of experiments and the implementation
of models.

3.1 Experimental Platforms

Each piece of the methodological framework presented in this thesis is vali-
dated on three distinct experimental platforms. First, we use the Alice robot
(Section 3.1.1), which is a conventional mobile robot based on regular mecha-
tronic technology; yet, its small size, limited computational capabilities, and
high sensitivity to noise (e.g., wheel slip, sensor noise, manufacturing and
wearing heterogeneities) make it a suitable platform for studying SMPs. Sec-
ond, we introduce a novel water-floating platform specifically targeted to the
study of fluidic SA, called Lily (Section 3.1.2). It consists of passive modules
of about 3 cm in size, whose design is tailored for allowing mutual latching
and alignment. Third, we investigate the applicability of our methodological
framework to microscale building blocks (Section 3.1.3). The latter platform
is studied using realistic simulations as ground truth; the centimeter-sized
platforms are studied using both real hardware and simulations.

3.1.1 The Alice Robot

The Alice 2002 mobile robot has a size of 21 mm×21 mm×21 mm, and is
operated by a PIC 16LF877 microcontroller (4 Mhz, 384 bytes of RAM, 8kB
of ROM). The Alice robot is endowed with four Infrared (IR) sensors that
allow for a crude detection of passive obstacles up to 3 cm simultaneously

G. Mermoud, Stochastic Reactive Distributed Robotic Systems, 29
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DOI: 10.1007/978-3-319-02609-1_3, © Springer International Publishing Switzerland 2014
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Fig. 3.1 (a) The Alice 2002 mobile robot has a size of 21 mm×21 mm×20 mm
and is equipped with four infrared sensors (rear sensor not visible on the picture)
for crude proximity sensing and communication. (b) Simulated counterpart of the
Alice robot implemented in Webots (see Section 3.2.1).

with 4 bps bidirectional communication up to 6 cm. It is also equipped with
an IR receiver that allows the user to broadcast short messages to the group
of robots; no other wireless communication mechanism is implemented in the
basic configuration of the robot. The Alice is driven by a differential wheel
drive based on stepper motors allowing for a maximal speed of 4 cm/s. The
robot has been initially developed by Caprari et al. [61] at the Autonomous
System Laboratory at EPFL, and several extension boards have been devel-
oped by other researchers [23].

In the context of this thesis, we developed a series of extension boards
endowed with epoxy-encapsulated photo-sensitive sensors1 (A9950 11 photo-
cell, Perkin Elmer, maximal spectral sensitivity at 530 nm), as well as two
LEDs of different color (red and green) for tracking purposes.

The testing environment is a square arena (50 cm × 50 cm) equipped with
an overhead camera for the purpose of data collection and control feedback,
and, in some case studies, an overhead projector (more details are provided in
Section 4.5). The group sizes vary between 4 and 20 Alice robots, depending
on the case study.

3.1.2 The Lily Platform

Lily is a 3-cm-sized water-floating block endowed with four SmCo permanent
magnets (one on each side’s center) for mutual attraction and latching, as
1 The number and the location of these sensors can be on at the center of the board,

or two on each side, depending on the case study. More details are provided in
Chapter 4.
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Fig. 3.2 (a) Details of a Lily module, including the latching mechanism com-
posed of four permanent magnets with different pole orientation, north-south (NS)
and south-north (SN), respectively. Each module is endowed with a 2-color visual
marker for tracking purposes. (b) CAD model of the Lily module used as blueprint
for 3D printing. The four permanent magnets attached to each side wall as well as
the aluminum block at the bottom of the module are also shown.

well as with a 2-color visual marker for tracking purposes (see Figure 3.2a).
Each module has a cuboidal, centro-symmetric shape specifically engineered
for improving the relative alignment of the assembled blocks (Figure 3.2b);
the main body and the cap of each module is manufactured using 3D printing.
An extra aluminum block is added at the bottom of each module in order to
reach an overall weight of about 17.3 g (the buoyancy limit is 21.9 g), and to
improve flotation stability.

Importantly, Lily is not self-locomoted; instead, it is stirred by the fluid
flow produced by pumps located along the tank perimeter (Figure 3.3a). The
experimental setup consists of a circular water tank of approximately 30 cm
in diameter, with six inlets connected to four diaphragm pumps. Four inlets
are perpendicular to the wall, and the other two are as tangential as possible,
allowing to create both radial and circular flows. Additionally, four outlets are
placed at the bottom of the tank, to minimize the perturbations of the surface
flow as much as possible. Each pump’s flow rate can be controlled individually
up to a maximal value of 600 ml/min. This flexible configuration allows
us to investigate a variety of different flow patterns and associated robot
trajectories (Figure 3.3b). Indeed, perpendicular inlets generate irregular
trajectories, and allow for collisions in the middle of the tank, but they exhibit
dead spots near the walls. Conversely, tangential inlets generate circular flows
that prevent dead spots, but lead to regular, closed trajectories that do not
favor collisions. As a result, the blocks describe trajectories with well-defined
geometric features, yet with a strong stochastic component.
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Fig. 3.3 The experimental setup of the Lily platform: (a) Water-filled tank with
6 inlets (4 orthogonal and 2 tangential to the wall, represented by black arrows);
(b) Real-time visual tracking of four blocks during an experiment (the blue lines
show a short history of the trajectory of each block).

3.1.3 MEMS Building Blocks

In order to investigate the applicability of our methodology to microscale
fluidic SA, we fabricated building blocks whose size varies between 30 μm and
200 μm using photolithography. These devices are made of SU8, an epoxy-
based, slightly hydrophobic, biocompatible, negative photoresist [166]. A
large variety of such building blocks have been designed in the context of the
SELFSYS project2. In each case, their surface properties and their geometry
were designed such that they form more or less controlled assemblies once
released in water. In this thesis, we focus on one particular class of building
blocks that have a cylindrical shape and a rounded bottom, which lead to
the formation of pairs (Figure 3.4a).

Microscale fluidic SA is mediated either (i) by surface tension (at the liq-
uid/fluid interface) or (ii) by hydrophobic forces (in liquid phase). Hereafter,
we illustrate these mechanisms based on prior theoretical and experimental
works as well as qualitative insights gained from independent, orthogonal
experiments carried out at the Laboratory of Microsystems at EPFL3.

At the liquid/fluid interface, all objects causing a deformation of the in-
terface (i.e., a meniscus forms close to the surface of the object) interact
2 The SELFSYS project is funded by the Swiss funding initiative Nano-Tera. In a

nutshell, the project aims at leveraging fluidic SA as an enabling technology for
producing next-generation hybrid MEMS devices.

3 These experiments were conducted by Loïc Jacot-Descombes, Maurizio Gullo,
Cristina Martin-Olmos, and Juergen Brugger in the context of the SELFSYS
project.
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Fig. 3.4 (a) Optical mi-
croscopy images of two cylin-
drical building blocks (100 μm
in diameter) assembled into
a pair. The rounded bottom
of the cylinders aims at pre-
venting incorrect assembly
configurations. (b) Simu-
lated counterpart of these
building blocks implemented
in Webots (see Section 4.3
for more details about these
simulations). 100 μm

(a) (b)

with each other through capillary forces, which are attractive if their menisci
have the same convexity, and repelling otherwise [104]. Sharp features of
the building blocks tend to attract each other because the local curvature of
the liquid-air interface is larger around these regions, and so is the resulting
interaction [167]. As a result, we expect cylinders floating at the water-air
interface to experience stronger attractive forces along their rims, thereby
leading to a preferential binding along their radial symmetry axis. Indeed,
we observe experimentally the formation of long chains that can contain up
to 18 building blocks with nearly perfect alignment (Figure 3.5a). Because
the side walls of the building blocks are also hydrophobic, lateral forces are
still present, thereby leading to undesired aggregates; a careful adjustment of
the surface chemistry of the building blocks could remove these non-specific
interactions [104].

In liquid phase, the absence of interface, and therefore surface tension, makes
hydrophobic forces responsible for the interactions. One can tune these forces
by adjusting the surface energy or the contact area of the building blocks. For
instance, oxygen-plasma treatment increases the surface energy of SU8 [168],
and therefore its hydrophilicity, thereby reducing the influence of hydrophobic
interactions. Figure 3.5b shows the effect of oxygen-plasma treatment on the
SA process; the non-treated, hydrophobic (binding) surface is on the colored
end of the microcylinders. Other methods for adjusting the surface energy of
the building blocks consist of depositing thin layers of other materials such as
gold, and then either rely on their intrinsic surface properties (e.g., gold is natu-
rally hydrophilic), or further tune these properties by applying a self-assembled
monolayer (SAM) with hydrophilic or hydrophobic end groups. Contact area
can be tuned by controlling the shape of the building blocks. Surface roughness
and curvature decrease the contact area, and therefore the binding force, be-
tween building blocks. Similarly, complementary shapes may allow for specific
interactions, which are difficult to obtain otherwise.

These results shown in Figure 3.5 were obtained in poorly controlled ex-
perimental conditions, and their use in the context of this thesis is hindered
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Fig. 3.5 Optical microscopy images of the cylindrical building blocks whose self-
assembling behavior is investigated in this thesis: (a) At the water-air interface,
strong capillary forces lead to the formation of self-assembled chains (900 μm or
18 blocks long, white arrow) of uniform microcylinders (30 μm in diameter and
50 μm in length). (b) When immersed in water, surface-treated microcylinders
(50 μm in diameter and length) tend to assemble with each other end to end, with
a preferential attachment of their hydrophobic surfaces (colored end, white arrow).
Images are courtesy of Loïc Jacot-Descombes.

by two important factors. First, reproducibility and controllability of the
process are critical to the validation of modeling and control methodologies.
To tackle this problem, a sophisticated experimental setup based on a subtle
combination of microfluidic and microacoustic mixing is currently under de-
velopment at CSEM Center Central Switzerland4 (Figure 3.6a). Second, pro-
cess analysis and data collection require a high-speed camera and computer
vision algorithms that can deal with the multiple difficulties encountered in
imaging this type of systems: object cluttering, varying lighting conditions,
occlusions, three-dimensional poses and trajectories (Figure 3.6b).

Because these developments are still on-going, this thesis does not include
any experimental validation of models or control strategies of self-assembling
systems at the microscale. Instead, the applicability of our methodological
framework to such systems is studied based on realistic physical simulations
of the building blocks shown in Figure 3.4.

3.2 Computational Tools

A large part of this work relies on computationally expensive models and
simulations, which require both reliable and efficient software tools and high-
performance computing infrastructures. On top of the usual software tools
4 This experimental apparatus is developed by Jonas Wienen and Helmut Knapp

in the context of the SELFSYS project.



3.2 Computational Tools 35

1.5 cm

(a) Close-up of the agitation chamber

500 μm500 μm

(b) Snapshot of an on-going experiment

Fig. 3.6 (a) Picture of an early prototype of the agitation chamber, which is the
core unit of the experimental setup. The chamber is made of two glass slides sealed
by a PDMS gasket, which includes microfluidic channels, cavities, filters, and valves.
The whole is clamped onto a piezoelectric transducer, which is responsible for the
agitation of the system through microacoustic mixing. (b) This snapshot of an on-
going experiment illustrates the difficulty of imaging SA processes at the microscale,
in particular due to object cluttering. Images are courtesy of Jonas Wienen.

used in research and engineering, we used a series of more domain-specific
tools, which we describe in further details hereafter.

3.2.1 Webots

Webots is a development environment used to model, program, and simulate
mobile robots [169]. It is commercially available and developed by the com-
pany Cyberbotics. Webots relies on an open-source library for simulating
rigid body dynamics, and provides an OpenGL visualizer for both debugging
and analysis purposes. Several features make Webots an attractive platform
for the implementation of submicroscopic models (see Section 5):
1. Webots is a fast prototyping environment that allows for an easy visual-

ization of the system’s dynamics and the interactive editing of the robots
and their environment. Also, the geometry of the robots can be directly
imported from the CAD models used for their manufacturing.

2. Webots offers a vast library of pre-defined components such as sensors,
actuators, or full-fledged robots; it also supports user-defined sensor and
actuator characteristics, including non-linear and noisy response of the
sensors and a tunable wheel slip (which is particularly important in the
case of the Alice robot).

3. Even though it is mostly targeted to the development of realistic and
detailed physical models of mobile robotic systems at the centimeter scale,
Webots offers the possibility to develop custom physics plugins, thereby
allowing to model a wide range of systems.
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4. Webots allows one to implement hybrid simulations in which any object
can be endowed with a software controller, which can be implemented
in many different programming languages (e.g., C, C++, Java, Python,
MATLABTM, etc.). A programmable supervisor enables a fine-grained
control of the experimental conditions and a simple and efficient data
collection, thereby making Webots simulations fully scriptable.

5. Webots can operate in two distinct modes: (i) in physics mode, the
trajectory of the robots is the result of its physical interaction with
the environment (e.g., the friction between the wheels and the floor);
(ii) in kinematics mode, the robot’s motion is calculated according to
two-dimensional kinematic laws. The latter offers the advantage of being
computationally cheaper, but it is available only for a limited range of
robots (in the case of Webots, robots with two wheels and a differen-
tial steering), and its handling of collisions is very inaccurate due to the
absence of friction.

Note that many competitors of Webots such as the Player/Stage/Gazebo
suite [170], USARSim [171] or V-REP [172] are equally suitable to the devel-
opment of submicroscopic models. The results presented in this thesis are in
no way specific to the features offered by Webots.

3.2.2 StochKit

StochKit is an open-source extensible stochastic simulation framework
developed in C++ [173]. It provides efficient implementations of several
exact of Gillespie’s Stochastic Simulation Algorithm (SSA), including the di-
rect method [154], the optimized direct method [174], and the composition-
rejection method [175], which enables the solving of the very large models
generated by our automated modeling framework (Section 9). StochKit also
provides an implementation of approximate methods such as the adaptive,
explicit tau-leaping method [176, 177]. Furthermore, it supports user-defined
propensity functions as well as triggers used to recreate changes in experi-
mental conditions.

3.2.3 SwisTrack

All experiments presented in this study employ a system of overhead cam-
era in conjunction with SwisTrack, an open-source object tracking tool tar-
geted for multi-agent systems developed in our laboratory [178]. SwisTrack
enables the tracking of both marked and markerless agents, with support for
several different camera standards (e.g., USB, FireWire IEEE 1394, Giga-
bit Ethernet), including multi-camera systems. Its modular and extensible
architecture makes SwisTrack suitable for agents of different type and size
(e.g., robots, insects, small vertebrates such as chicken or fishes, and passive
objects, including in principle MEMS devices). Furthermore, SwisTrack can
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be easily interfaced with other software packages through a TCP/IP server
that broadcasts the measured trajectories using the NMEA 0183 protocol.

3.2.4 Computational Cluster

In order to achieve fast and systematic simulations of the systems studied in
this thesis, we rely on a computational cluster composed of 28 Intel Xeon-
based nodes representing a total of 240 cores and 384 Gb of RAM. This
cluster is primarily dedicated to the execution of numerous serial jobs, as its
interconnect is relatively slow (regular Gigabit Ethernet).

In the context of this work, the cluster was primarily used to carry out a
massive number of Webots simulations, and some computationally expensive
data analysis. Numerous scripts and wrappers had to be developed in order
to allow the reliable deployment of Webots on such a high performance com-
puting platform, since this software package was not designed for this type
of use.

Summary and Conclusion

This chapter introduces the three experimental platforms used in this work:
(i) the Alice robot, a 2-cm-sized mobile robot based on regular mechatronic
technology, (ii) the Lily module, a passive, water-floating block of about
3 cm in size specifically designed for the study of fluidic SA, and (iii) micro-
scale building blocks (100 μm in diameter) made by photolithography, whose
cylindrical shape and rounded bottom lead to the formation of pairs. The
Alice robot lies at the “smart” end of the continuum spanned by SMPs: it
is endowed with a PIC microcontroller, four IR sensors, and it is capable of
self-locomotion. On the other side of this continuum, the microcylinders are
passive devices with no sensing or actuation capability; yet, their shape and
their surface properties are tailored such that they form more or less con-
trolled assemblies once released in water. The Lily module lies between these
two platforms: even though it is completely passive, its large size makes it
significantly simpler to control than microscale building blocks. This chapter
also describes a series of computational tools used to develop and solve the
models presented in this thesis.
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Case Studies

A pessimist sees the difficulty in every opportunity;
an optimist sees the opportunity in every difficulty.

—Sir Winston Churchill (1874–1965)

This chapter describes the suite of five case studies that support our theo-
retical and methodological work. Each case study relies on one experimental
platform described in Section 3.1, and aims at answering a precise research
question that illustrates one or more features of our methodological frame-
work. Each case study is associated to a mnemonic icon.

Case Study ICase Study I

Case Study I is a paradigmatic example of aggregation
using a group of Alice robots. Its simplicity and generality,
along with the fact it has already been subject to rigorous
investigation [92], make it an excellent baseline for illustrat-
ing and validating our modeling methodology.

Case Study II

Case Study II introduces the notion of order and ge-
ometry in aggregation processes by making Alice robots
assemble into chains, thereby prefiguring the challenges rel-
ative to the modeling and the control of more advanced self-
assembling systems.

Case Study III

Case Study III aims at illustrating the difficulties posed
by three-dimensional and large-scale1 systems. By investi-
gating in simulation the pairwise SA of microcylinders, we
provide some important insights into these two orthogonal
challenges.

Case Study IV

Case Study IV investigates the stochastic SA of Lily
modules into a variety of different structures. Its aim is not
only the rigorous validation of our methodological frame-
work, but also the study of real-time control approaches that
1 The notion of scale pertains to the number of building blocks in the system here,

and not to their size.

G. Mermoud, Stochastic Reactive Distributed Robotic Systems, 39
Springer Tracts in Advanced Robotics 93,
DOI: 10.1007/978-3-319-02609-1_4, © Springer International Publishing Switzerland 2014
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Table 4.1 Transition probability pleave
n from the resting state to the moving state

as a function of the number n of neighbors within communication range. These
values are taken from behavioral studies of cockroaches [179] (see [92] for more
details).

n 0 1 2 3 4+
pleave
n N/A 1/49 1/424 1/700 1/1,306

can deal with the intrinsic stochasticity of these systems, as well as the lack
of controllability at the individual level.

Case Study V

Case Study V aims to show how self-organization, col-
lective decision-making, and appropriate modeling method-
ologies can be exploited to overcome the intrinsic limitations
of SMPs. In particular, we investigate the use of aggregation
as a way of achieving consensus, thereby improving the performance of these
systems. The case study also offers the opportunity to discuss the experi-
mental challenges posed by top-down approaches to model-based design of
distributed controllers, and the benefits of bottom-up approaches advocated
by this thesis.

Table 4.4 on p. 55 provides a synoptic overview that summarizes how each
case study is used to illustrate the different topics of this dissertation.

4.1 Case Study I: Aggregation of Alice Robots

Case Study ICase Study I

We consider a system composed of N0 robots that move
randomly throughout an arena of area Atotal, and, upon
collision, aggregate into clusters of different sizes and shapes.
Clusters are generally not persistent because robots might
leave them with a probability pleave. This quantity is a control parameter of
the robots’ behavior that can be tuned as a function of the local perception
of the agent (e.g., the presence of neighbors, light intensity, etc.).

Similarly to Correll and Martinoli [92], we use a simple behavioral model in
which every robot is either moving or resting (i.e., aggregated). In our case,
however, the robots do not transition to the resting mode as soon as they
establish a communication channel with another mate; rather, the robots ag-
gregate upon collision (i.e., strong activation of their proximity sensors), and
they use local communication only for estimating the number of neighbors.
The transition probability pleave from the resting state to the moving state is
given by a non-linear function of the number of robots within communication
range (Table 4.1).

This variation enriches the variety of cluster geometries, as the connec-
tivity has no influence on the aggregation process. Only the stability of
the cluster is influenced by the connectivity of its constitutive robots. As a
result, accurate macroscopic models need to account for these very diverse
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connectivity patterns, which is not the case in [92]. We will discuss such
aspects in Chapter 9.

If not indicated otherwise, we consider a system of 12 Alice robots with a
fixed communication radius of 4 cm. The experimental arena is circular and
has a diameter of 1 meter (Atotal = 0.78 m2). In this particular case study,
the ground truth is provided by realistic simulations implemented in Webots.

4.2 Case Study II: Self-assembly of Alice Robots

Case Study II

This case study is similar to the previous one, with the ex-
ception of the geometry of the aggregates. Indeed, rather
than allowing for an uncontrolled aggregation, the robots
may now decide not to aggregate with each other if the re-
sulting bond does not satisfy some geometric constraints that are evaluated
from sensory data. In particular, they require a strong activation of their
front proximity sensor as well as a relatively low activation of their two side
sensors (Figure 3.1a), thereby leading to the formation of chains of variable
length.

One of the research questions tackled by this case study is whether one can
control the size of these chains, and what is the best approach to do so. First,
we consider a baseline controller in which the robots, once aggregated, never
disaggregate (Figure 4.1). As discussed later (Section 10.2), this behavior
invariably leads to an exponential-like distribution of chain sizes, which we
call the trivial distribution. In order to tune the system in a non-trivial
fashion, we propose two orthogonal approaches: (1) a deterministic controller
where robots communicate with each other in order to determine the size
of each chain, and adapt their behavior accordingly, and (2) a probabilistic
controller where chain size is controlled by the probability that a robot will
leave an aggregate.

In the deterministic case, the robots will choose not to aggregate with
chains already equal to the target length. Each robot communicates on one
sensor an incremented observation of the opposite side (see Figure 4.2). Thus,
outer nodes will send a value of zero towards the center of a chain. This
number is incremented as it passes through each robot in the chain, eventually
communicating its total size to the outer nodes. Other Alice robots that
attempt to bond at the ends of a completed chain will receive this value,
causing them to fail to aggregate.

The probabilistic controller does not require any explicit communication
between the robots. Instead of limiting the maximum size of a chain directly,
the robots leave their current aggregate with probability pleave

1 or pleave
2 each

second, depending on whether they have one or two neighbors, respectively.
In other words, Alice robots in a pair or at the end of a chain will leave
with probability pleave

1 , while robots in the middle of a chain will leave with
probability pleave

2 .
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Fig. 4.1 Baseline controller used in
Case Study II. The robot begins by
moving in a straight path (forward
state). After some period of time, or
if an unaligned object or a wall is en-
countered, it begins a random tumble,
before returning to the forward state.
In this way, we achieve a better mixing
by making robots “bounce" away from
walls and misaligned robots. Should
a well-aligned object be encountered,
the robot stops in place and attempts
to communicate. If communication is
not returned, or the object “leaves”,
the robot performs a brief procedure
of obstacle avoidance before returning
to the forward state.

Timer expires
OR

Unaligned object detected

Timer expires

Timer expires

No recent communication
OR

No detected object

Aligned object 
detected

Tumble

Forward

Bond Avoid

(i) (ii) (iii) (iv) (v)

msg = 0
msg = msg + 1

msg = 1
...

msg = 3

Fig. 4.2 A typical example of local communication in a system using the deter-
ministic controller and a target chain size of four: (i) one robot joins a chain while
the robot at the other end sends a value of zero into a chain. (ii) The adjacent
robot reads an integer on one sensor, increments it, and (iii) communicates it on the
opposite side. As time progresses, each robot learns its position within the chain
and transmits to its next neighbor. (iv) Finally, the robot that has just aggregated
receives a message equal to the chain size and (v) does not aggregate because this
value is too large.
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4.3 Case Study III: Self-assembly of Microscale
Components

Case Study III

This case study investigates the SA of cylindrical building
blocks with one hemispherical end (Section 3.1.3). Their ge-
ometry prevents the formation of unstructured aggregates
or chains; rather, they tend to bind to each other in a pair-
wise fashion (see also Figure 4.4). Because of the experimental difficulties
discussed in Section 3.1.3, we rely solely on simulations to investigate this
type of system; yet, these numerical tools allow us to gain useful insights into
the applicability of our methodological framework. We shall stress that these
simulations serve as baseline for higher level models, this is why we describe
them as an integral part of the case study.

For studying relatively small systems (N0 ≤ 100), we rely on dynamic
rigid body simulations implemented in Webots (Figure 4.3). The underlying
assumptions of these simulations are that both gravity and inertia are neg-
ligible (which is a safe assumption at these length scales, see Section 2.2.3),
and that agitation is obtained by applying a zero-mean Gaussian stochastic
force on each block at each time step. The latter assumption is a clear sim-
plification of the underlying physical phenomenon, as we expect agitation to
be provided by fluid flow, which would be more accurately captured using
an approach similar to Case Study IV (Section 4.4). These simulations allow
one to compute at each time step the force Fext exerted on the joint by ex-
ternal perturbations such as the shear forces caused by the agitation and the
collisions with other building blocks and the walls.

Large-scale systems (N0 > 100) are studied using a two-dimensional
ABM implemented in Netlogo, a powerful multi-agent simulation environ-
ment [180]. In this case, we assume that building blocks are radially sym-
metric bodies with a mass m, a position x ∈ R

2 of their center of mass, a
velocity v ∈ R

2, an orientation θ ∈ [0, 2 π], and a radius r, which undergo
stochastic perturbations their trajectory2 of, which can be described by a
Langevin equation:

m v̇ = − γ v +N (0, η ν2s ) (4.1)

where v is the velocity of the particle, γ is a drag constant for small Reynolds
number, and N (0, η ν2s ) is a Gaussian random variable of variance η ν2s , which
is proportional to the agitation of the system represented by the unitless
value ν2s (η = 1 N is a constant term in Newton). Two building blocks B1

and B2 of radius r1 and r2, respectively, located at a distance d from each
other, collide if and only if d < r1 + r2. Furthermore, we simplify one of
2 For the sake of simplicity, we assume that an aggregate undergoes the same

stochastic perturbations as its building blocks. This assumption is not verified
in the case of large aggregates, but is acceptable here as we limit our study
to the formation of pairs. Equation 4.1 is relevant to building blocks that un-
dergo Brownian motion; yet, one could use another equation of motion without
restricting the validity of the approach.
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the most computationally expensive aspect of the realistic simulations, that
is, the calculation of the external force Fext. Instead, we use a stochastic
treatment similar to a Monte-Carlo Method (MCM), that is, each bond has a
probability pleave of breaking up in the next time interval [t, t+Δt). The ABM
model captures the conformation of each aggregate by keeping track of the
relative positioning of each building block. Each building block is connected,
if part of an aggregate, to other building blocks, called its neighbors, through
a set of bonds.

(a) Global view (b) Close-up

Fig. 4.3 Screenshots of the rigid body simulation implemented in Webots;
(a) Global view of an on-going simulation of 10 building blocks. (b) Close-up
of the encircled aggregate under a slightly different angle.

In the context of this case study, the role of the bond model is crucial,
as it determines almost completely the dynamics of the SA process. More
particularly, the stability of the bond, which generally depends on alignment
of the building blocks and the type of interaction, is crucial. Here, we consider
three variants of the case study that involve bonds with zero, one, and two
degrees of freedom (DOF), respectively.

Case Study III

0-DOFIn the first variant, the binding surfaces are modeled as
idealized connectors that attract, align, and bond to each
other in an irreversible manner whenever they are in close
proximity. Strong, long-range interactions (e.g., capillary or
magnetic forces) typically give rise to this type of bonds. This simplified 0-
Degree of Freedom (DOF) bond model is studied using realistic simulations.

Case Study III

1-DOFIn the second variant, we simulate more carefully the
dynamics of binding by using a 1-DOF bond model that
enables misalignments among assembled building blocks.
Upon collision of two building blocks, if one contact point
belongs to the binding surface of both building blocks and their relative bear-
ing is smaller than a given threshold, then both building blocks align along
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the average direction common to both their axes, and a fixed joint is attached
to them. The resulting bond force is computed as follows:

Fbond = Farea ·A(b, R) (4.2)

where Farea is the surface force per unit area, and A(b, R) is the overlap area3

between two disks of radius R and inter-center distance b (see Proposition 1
of [144] and Figure 4.4B). The condition Fext > Fbond is checked at each time
step, and if it is not verified, then the bond is destroyed. This 1-DOF bond
model is studied using realistic simulations.

non-binding surface
(curved, hydrophilic)

binding surface
(flat, hydrophobic)

A B

C

perfect alignment (100%) average alignment (50%) bad alignment (20%)

axis

b R

Fig. 4.4 Schematic illustrations of the 1-DOF bond model of Case Study III.
(A) Binding and non-binding surfaces of a building block. (B) Cross-sectional
view of two building blocks of radius R assembled with an offset b. (C) Three
instances of self-assembled structures with different alignment. The 0-DOF variant
of the case study leads only to self-assembled structures with perfect alignment,
but it is less computationally expensive.

Case Study III

2-DOFIn the third variant, we consider a 2-DOF bond model
that is characterized by an energy ΔE given by a Gaussian-
like function of the relative alignment ξ = (θ1 θ2)

T of the
colliding building blocks:
3 Since b is the only variable parameter of A(b, r), the bond has indeed a single

DOF, even though building blocks may move with respect to each along two
distinct dimensions.
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ΔE(ξ) = −Ebond · exp
(

− θ21
2 σ2

θ1

− θ22
2 σ2

θ2

)
(4.3)

where Ebond is the maximal bond energy, σθ1 and σθ2 are parameters de-
noting the misalignment tolerance of each building block, and θ1 and θ2 are
the angles depicted in Figure 4.5. Note that Ebond, σθ1 , and σθ2 are design
parameters that depend generally on the physico-chemical and geometrical
properties of the building blocks. This energy function implies that aggre-
gates with properly aligned building blocks have maximal bond energy (in
absolute value). For the sake of simplicity, we study this bond model in two
dimensions using an ABM implemented in Netlogo. However, we expect this
model to be flexible and meaningful enough to be applied to a large variety
of target systems.

In this case study, we assume that all building blocks have the same tol-
erance of misalignment, and the bond energy can therefore be written

ΔE(ξ) = −Ebond · exp
(

− θ21 + θ22
2 σ2

θ

)
. (4.4)

To determine the policy of bond destruction, we use a model similar to the
well-known law of mass action in chemistry. We know that the equilibrium
constant K of a reaction

A+ B
k+�
k−

AB with K =
k+
k−

(4.5)

can be written as a function of the energy ΔE of the formed bond:

K =
k+
k−

= exp

(−ΔE

EB

)
(4.6)

Fig. 4.5 Sketch of the 2-DOF bond
studied using a two-dimensional ABM
in the third variant of Case Study III

1

2

Building blocks Aggregate



4.4 Case Study IV: Self-assembly of Lily Modules 47

where k+ and k− are the forward and backward rate constants, respectively,
and EB is the mean energy of the particles in the system, if they are thermally
randomized to the Maxwell-Boltzmann distribution.

One can interpret the rate constants k+ and k− as probabilities of bond
formation and destruction. We assume that all collisions lead to an aggrega-
tion regardless of the energy of the formed bond, which is similar to setting
k+ = 1. Therefore, the probability that one bond of energy ΔE will break
up in the next time interval [t, t+ T ] can be written:

pleave ≡ k− · T = exp

(
ΔE

EB

)
· T. (4.7)

In the systems we are investigating, one cannot assume that the kinetic
energies of the building blocks are randomized to any specific distribution.
Furthermore, at the microscale, agitation is not necessarily strictly thermal.
Hence, the term EB can be replaced by a parameter αν2s , that is, an energy
term (α = 1 J is a constant term in Joule) proportional to the agitation of
the system, in its most general sense (see also Equation 4.1). Finally, the
breakup probability pleave of a bond of energy ΔE(ξ) can be written:

pleave(ξ) = exp

(
ΔE(ξ)

α ν2s

)
· T. (4.8)

The performance metric is the same in all variants, and is given by the
yield

Y (t) =
Xa(t)

Xs(t) +Xa(t)
, (4.9)

where Xa(t) and Xs(t) denote the number of assembled aggregates and single
building blocks at time t, respectively. In the third variant, we also study
the average misalignment

M(t) =
1

Xa(t)

Xa(t)∑
i=1

||ξi(t)||2 , (4.10)

where ξi(t) is the relative alignment of aggregate i at time t.

4.4 Case Study IV: Self-assembly of Lily Modules

Case Study IV

This case study investigates the SA of N0 Lily modules into
discrete aggregates with different geometries. The combined
effects of mutual magnetic forces and block shape geometry
lead to the precise, pairwise assembly and alignment of Lily
modules in close proximity (about 0.5 cm), when not hampered by fluidic
drag forces. We consider the special case where N0 = 4 because it enables a
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simple exhaustive enumeration of the assemblies that can be formed by the
system, as well as the associated reactions (see Figure 4.6).

The inter-modules bonds are designed to be reversible, accounting for the
interplay between the magnetic force (about 16 mN per bond according to
finite element analysis) and the torque induced by hydrodynamic forces acting
on the aggregated modules, the latter being modulated by the fluid flow
regimes. As a result, the stability of all assembled structures corresponding
to local minima of the system energy can be controlled by tuning the agitation
of the system, whereas the global minimum, which corresponds to the 2-by-2
square structure—assembly D in Figure 4.6—is irreversible and acts as an
absorbing state in the system dynamics.

In a perfectly mixed system, each structure has an intrinsic probability of
being formed, which depends not only on its own geometry, but also on the
tank geometry and the agitation parameters. For instance, the assembly A
(Figure 4.6) is unlikely to be observed in a small tank because of the high
probability of encountering between the blocks. Similarly, one may expect F3

to be favored over F2 in a small tank because of its smaller footprint. On top
of these design considerations, one can favor the formation of a given species
by controlling appropriately the agitation of the system.

In the present case study, we consider only two modes of agitation, de-
noted m0 and m1, corresponding to two different pump configurations that
lead to different agitation schemes. In mode m0, the fluid flow induces smooth
and regular block trajectories and only marginal difference in their relative
velocities, thereby favoring a high stability of the formed aggregates, but rel-
atively few interactions. In mode m1, the blocks exhibit a much more erratic
movement, dominated by the stochastic perturbations of the water surface
(Faraday waves) caused by pumps-induced tank vibrations. The resulting
higher kinetic energy of the blocks increases the encountering rate, but also
the instability of the aggregates.

4.5 Case Study V: Collaborative Spot-Destruction
Using Alice Robots

Case Study V

This case study is a generalization of the stick-pulling exper-
iment [48], in which pairs of robots must collaborate to pull
sticks out of the ground. Here, sticks are replaced by N cir-
cular patches of light (referred to as spots) of diameter dspot
randomly scattered throughout a bounded arena of area Atotal. A group of
R robots wander about the arena looking for these spots, and attempt to
destroy them. Each time a spot is destroyed, it is immediately recreated at
another location within the environment. We consider two variants of this
case study:
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A B C1 C2 D

E F1 F2 F3

+R2

+R3

+R5

+R6

+R7

+R1 +R8

+R9

+R10

+R4 +R11

+R12

+R13

+R14

Assemblies

Reactions

Fig. 4.6 Graphical representation of all the assemblies that can be formed out of
four Lily modules and the 14 corresponding reversible reactions. Chiral copies of
assemblies F1 and F3 are not included. The shaded rectangles denote the categories
of isomeric assemblies in a 4-neighbor topology (i.e., two assemblies are isomeric if
their corresponding graphs are isomorphic), and the resulting grouping of reactions.
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� Variant A: a typical destruction scenario that involve two types of spot:
good spots (in green), which must be preserved by the group of robots,
and bad spots (in red), which need to be destroyed (Figure 4.7).

� Variant B: a more complex scenario that involves only bad spots4 with
random characteristic thresholds κ ∈ [1, . . . , Nκ] denoting the number of
robots required to destroy the spot.

Obviously, the robots cannot directly interact with the spots; as a
result, we employ an overhead camera, in conjunction with SwisTrack
(Section 3.2.3), to emulate this interaction. In order to obtain an accurate
measure of both the position and the orientation of the robots, we use two-
color active marker composed of two LEDs. A combined camera-projector
system integrates the trajectory of each robot, and updates the environment
accordingly (i.e., it detects the destruction of spots and modifies the display
by relocating the destroyed spots).

In real applications, the robots would need an actual cell-destruction mech-
anism, which can come in many forms. In many scenarios, more than one
robot may be required to successfully destroy a cell, either because the ef-
fect of a single individual’s action is too small or because the destruction
mechanism is too complex (e.g., chemical reaction involving more than one
reactant). Collaborative strategies may also improve the robustness of the
system in presence of noise. For instance, variant A introduces a simple
and reliable mechanism based on aggregation to share information among
the robots, and therefore to overcome the sensing limitations of individual
robots.

4.5.1 Variant A: Two-Type Spots

Case Study V

AIn this variant, the Alice robots are equipped with a unique
light sensor (Section 3.1.1) that can be used to assess a spot’s
type. However, the measure provided by the light sensor is
noisy (see Figure 4.9a); therefore, the robots may mistakenly
trigger the destruction of a good spot. We denote pw,good the probability
that a robot believes a good spot to be a bad one (false positive, from a
destruction perspective) and pw,bad the probability that a robot believes a
bad spot to be a good one (false negative). Depending on the distribution
of light sensor measurements, these probabilities can be different. Since we
assume the robots to be purely reactive, they make deterministic decisions
based on a single measurement, based on a decision threshold whose value is
td = (μgood + μbad)/2 where μgood and μbad are the average sensor response
in good and bad spots, respectively. We assume that the robots can always
determine whether they are exploring a spot or not in a perfect manner.
4 Even though bad spots are supposed to be red, they are all green in this variant,

with different intensities. The reason for this discrepancy is strictly technical:
the A9950 11 photocell is more sensitive in the green region of the light spectrum.
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1 cm

red LED green LED

photocell

(a) Close-up of an Alice robot

50 cm

(b) On-going real experiment

Fig. 4.7 (a) Close-up of an Alice robot and its extension board endowed with one
photocell and two LEDs of different color (red and green) for tracking purpose.
(b) Picture of an on-going real experiment with 5 robots and 4 spots in a 50 cm
square arena.

The robots are endowed with a reactive controller shown in Figure 4.8,
and minimal sensory and communication capabilities. Namely, nearby robots
can detect each other (and distinguish other robots from obstacles), but they
cannot actually communicate, nor can they carry out complex computation.
Also, the robots do not have any reference to a global coordinate system.
The robots explore the environment by performing a simple random walk
with collision avoidance. After entering a spot, a robot will remain inside
of it, “bouncing” off of its edges by performing a U-turn. At each bounce, a
robot will decide to leave the spot with probability pleave

good or pleave
bad , depending

on whether it believes to be in a good or bad spot, respectively. As a result, a
robot can change its belief about the type of spot it is in at regular intervals,
i.e., upon bouncing off the edges of the spot. When a robot encounters an
obstacle while exploring a spot, it assumes that it is another robot, and its
next action will depend on the destruction threshold k, which denotes the
number of aggregated robots required to trigger the destruction of a spot.

For k = 1, there is no collaboration: a single robot can destroy the spot it
is exploring. For k = 2, the spot is destroyed as soon as a robot aggregates
with another robot (Figure 4.9b depicts a typical experiment with k = 2).
For k = 3, an aggregate can remain in a spot for a while without triggering
its destruction, which therefore introduces a further parameter pleave

aggr , that is,
the probability that a robot leaves the aggregate, if it does no longer detect
a nearby obstacle.

In order to have a quantitative method of reporting system performance,
we define a performance metric in terms of the rate of destruction of good
and bad spots:
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Fig. 4.8 The FSM representing the robots’ controller in the variant A of Case
Study V. The initial state is indicated in bold, and each state has an associated
action (in italic). Some transitions are probabilistic (i.e., implemented using an
on-board random number generator); in this case, the value of pleave is either pleave

good
or pleave

bad depending on the robot’s estimate.
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Fig. 4.9 (a) Histogram of light sensor measurements (1000 values) in good spots
(in green), and in bad spots (in red). Fitted gaussian distributions are also shown
(continuous lines). These data yield pw,good = 0.252 and pw,bad = 0.259. (b) Sketch
of a typical experiment with 4 spots and 5 robots for k = 2. Trajectories of the
robots are denoted by black lines. Robot A explored a good spot, made one wrong
decision, but eventually left the spot. Robot B is exploring a bad spot, waiting
for a teammate. Robot C avoided an obstacle while exploring the environment.
Robots D and E encountered each other in a bad spot, and decided to aggregate;
this spot is therefore about to be destroyed, and re-located at some other location
in the arena.
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Table 4.2 Control and design parameters used in variant A of Case Study V

Variable Default value Description
Nspots 4 Number of spots
N0 5 Number of robots

pleave
good 1.0 Probability that a robot leaves a spot that it believes to

be good
pleave
bad 0.0 Probability that a robot leaves a spot that it believes to

be bad
pleave
agg 0.001 Probability that a robot leaves an aggregate

pw,good 0.252 Probability that a robot believes a good spot to be a bad
one

pw,bad 0.259 Probability that a robot believes a bad spot to be a good
one

Perf. =
Λbad

(Λgood + 1)α
(4.11)

where Λbad and Λgood is the rate of destruction of bad and good spots de-
stroyed, respectively. The coefficient α may be balanced according to the
penalty one wishes to associate with the destruction of a good spot; the
higher the coefficient, the higher the penalty. Hereafter, we always set α = 2
since we want to emphasize the ability of the group to discriminate between
good and bad spots.

4.5.2 Variant B: k-Type Spots

Case Study V

BIn this variant, the intensity of a spot is a Gaussian random
variable with mean Iκ and variance σ2

κ, which both depend
on the characteristic threshold κ. As a result, there is a
probability χ(κ, κ̂) that a spot with threshold κ is measured
with threshold κ̂. Furthermore, spots are not destroyed instantaneously if
xi ≥ κi (where xi is the number of robots at spot i; see Table 4.3 for all
notations used in this variant), but they rather undergo a destruction process
at a constant rate ρ, i.e., they have a “health level” that starts at 1, and
decreases at constant rate ρ as long as κ robots (or more) are present in
the spot. Upon destruction (i.e., when its health reaches zero), the spot is
relocated at a random location in the arena, and the experiment continues.
The performance of the system is given by the weighted rate of destruction
of the spots

Perf. =
Nκ∑
κ=1

κ · Λκ (4.12)

where Λκ = ρ
∑Nspots

i=1 1{xi≥κi and κi=κ} is the destruction rate of spots with
threshold κ.
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1 cm

red LED

green LEDphotocells

(a) Close-up of an Alice robot

50 cm

(b) On-going top-down experiment

Fig. 4.10 (a) Close-up picture of an Alice robot with its extension board (2 LEDs
for tracking purposes, and 2 light sensors for gradient detection and climbing).
(b) Picture of an on-going top-down experiment with six Alice robots and four
spots.

Table 4.3 Notation used in variant B of Case Study V. Note that the notation of
variable x without mentioning the time (by opposition to the notation x(t)) is a
simplified way to write x(∞), i.e., the value of the variable after convergence has
been attained.

Variable Default value Description
Nspots 4 Number of spots
N0 6 Number of robots
Nκ 3 Number of different thresholds a spot can have

xd = (xd
i ) – Desired distribution of robots

xi(t) – Number of robots at spot i
1{i,j}(t) – 1 if robot j is at spot i at time t
χ(κ, κ̂) – Probability that a spot with threshold κ is measured as

a spot with threshold κ̂
Λκ – Destruction rate of spots with threshold κ

This variant is used as a testbed for comparing top-down and bottom-up
model-based methodologies (see Section 10.1). In this context, we need a
method for broadcasting navigation information to the robots. We propose
an original solution based on augmented reality to solve this problem using
a simple, nearly reactive, algorithm. Light gradients depicted on the arena
by a video projector allow a central planner to “steer” the robots in the
environment (see Section 10.1.2 for more details).
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Summary and Conclusion

This chapter provides a detailed description of the different case studies in-
vestigated in this thesis. More importantly, we discuss how each case study
contributes to answering key research questions. Case Study I investigates
the aggregation of Alice robots, and serves as baseline for illustrating and val-
idating our modeling methodology. Case Study II introduces the notion of
order and geometry in aggregation processes by making Alice robots assemble
into chains. Case Study III investigates in simulation the pairwise SA of mi-
crocylinders, thereby illustrating the challenges arising in three-dimensional
and large-scale systems. Case Study IV investigates the stochastic SA of
Lily modules into a variety of structures; it also serves as testbed for real-
time, model-based control strategies of highly stochastic distributed systems.
Case Study V illustrates how self-organization, collective decision-making,
and multi-level modeling enable SMPs to achieve complex tasks; in partic-
ular, we investigate collaborative detection and destruction of undesirable
objects using Alice robots.



Part II

Modeling



5

Fundamentals of Modeling

All knowledge degenerates into probability.
— David Hume (1711-1776)

in A Treatise on Human Nature (1740)

Engineering always starts with a model. It may be an inaccurate diagram
roughed out on a notepad, yet it serves the same purpose as any of the
models discussed in this thesis: helping the designer understand and predict
the dynamics of the system he is building. In the most general sense, a model
is anything used in any way to represent anything else [182]. Some models
are physical objects used to represent another physical object at a more
convenient scale. However, most models used in science and engineering are
abstract constructions that rely on mathematical concepts and language to
describe an underlying system.

A model is an abstract representation of an underlying system using math-
ematical concepts and language. The level of abstraction of the model is
generally tunable as a function of both the properties of the system and the
intended use of the model.

Note that this definition pertains to a wide range of models ranging from
detailed and realistic simulations to abstract and compact set of equations.
Indeed, for any given system, one can formulate many different models with
different levels of abstraction. Section 5.1 illustrates this claim by describing,
in very general terms, a suite of models for a group of Brownian ferromag-
netic particles. This example presents the advantage of involving strictly
passive particles and rather simple interactions (i.e., magnetic dipole inter-
actions, and elastic collisions)—leaving aside some of the difficulties posed
by the modeling of more complicated features of SMPs, such as hybridity,
complex geometry, and suboptimal mixing. Section 5.2 proposes a formal
classification of the different models that can be used for describing SMPs
in general. Then, Section 5.3 provides some key concepts of the theory of
stochastic processes, and it outlines their fundamental role in multi-level mo-
deling. Finally, Section 5.4 describes the Multi-Level Modeling Methodology
(MLMM), which provides a set of recipes for building up models at increasing
levels of abstraction in an efficient, albeit not automated manner.

G. Mermoud, Stochastic Reactive Distributed Robotic Systems, 59
Springer Tracts in Advanced Robotics 93,
DOI: 10.1007/978-3-319-02609-1_5, © Springer International Publishing Switzerland 2014
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5.1 Modeling Simple Collective Systems

Consider the case of small ferromagnetic particles (a few micrometers in
size) floating in a glass of water (Figure 5.1). They exhibit complicated
and irregular trajectories as a result of random collisions with the lighter
molecules of the fluid, which cause the velocity of the particles to vary by a
large number of small and presumably uncorrelated jumps—a phenomenon
called Brownian motion. Upon getting close to one another, the influence
of magnetic interactions become dominant, and the particles will eventually
align and aggregate.

In principle, one could attempt to model the system by simulating the
deterministic, physical movements of atoms constituting the ferromagnetic
particles and molecules of the surrounding fluid (Figure 5.1A). At this level
of detail, the dynamics of the particles are the implicit result of a multi-
tude of interactions: the collisions between water molecules and atoms of the
ferromagnetic particles, the hydrogen bonds forming between water molec-
ules, and the magnetic arrangement of atoms of each particle. Such models
are generally intractable due to the immense difference in length scale be-
tween the system of interest and the constituent atoms of the magnetic par-
ticles. We therefore need to simplify the model, thereby increasing the level of
abstraction.

The first simplification that one can make consists in averaging the in-
fluence of the multitude of magnetic dipoles that constitute each particle
into a single magnetic dipole (Figure 5.1B). This mean-field approximation
is appropriate as long as the fluctuations are negligible—or irrelevant to the
dynamics of the system of interest. Because each particle contains several
trillion atoms, this approximation is indeed appropriate. As we will see, we
rely on similar simplifications in our methodology: whenever too many indi-
vidual elements contribute to a phenomenon, it is often useful to encapsulate
them into a single, average contribution.

A similar reasoning can be made about the molecules of the surrounding
fluid. In particular, one might be tempted to follow the same mean-field
approach as described above: since the system is presumably symmetric and
well-mixed (i.e., there is no particular reason why molecules of the fluid would
hit more strongly or more often one specific spot of the particle), the net
force exerted on a particle is on average zero. However, experiments show
that the particles move erratically, i.e., they undergo Brownian motion. This
contradiction can be explained by the fact that the necessary condition for
using a mean-field approach is not fulfilled as fluctuations are not negligible.
That is, the process does not consist of a large number of small random
perturbations; Brownian motion occurs precisely in regimes where the ratio
between the number of collisions and their effect on the particle’s trajectory
is not large enough.

Does this mean that one needs to simulate each of these collisions
independently? Fortunately not. These innumerable fluctuations can be
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Fig. 5.1 Sketch of the different simplifications that can be made in a suite of
models at multiple abstraction levels of a group of Brownian ferromagnetic particles.
(A) Deterministic simulation of the atoms constituting the ferromagnetic particles
and the molecules of the surrounding fluid. (B) Mean-field approximation of the
magnetic dipoles of each particle as a single magnetic dipole. (C) Trajectories
of individual particles are modeled as stochastic processes. (D) Macrostates are
defined based on population vectors, and they form (E) a partition of the phase
space of the system. (F) Based on this partition, the system’s trajectory can be
modeled as a jump process in macroscopic state space.
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modeled using a stochastic process. More precisely, one can use a Wiener
process WX(t), which is characterized by three properties: (i) WX(0) = 0,
(ii) WX(t) is almost surely continuous, and (iii) WX(t) has independent in-
crements with WX(t) −WX(s) ∼ N (0, t − s) and 0 ≤ s < t where N (μ, σ2)
denotes the normal distribution with expected value μ and variance σ2. These
two parameters correspond to drift and diffusion, respectively1. Note that
this description is purely phenomenological, as it relies on the central limit
theorem to justify its use of the normal distribution, but makes no specific as-
sumption about the actual distribution of the discrete fluctuations caused by
each collision event. As a result, one important challenge related to the use
of stochastic processes as abstraction mechanism is the calibration of their
parameters; in physics, this is typically achieved by using a combination of
first principles, mathematical approximations, and empirical fitting. At this
point, our model no longer captures any detail internal to individual parti-
cles, and their trajectories are no longer the implicit result of other entities’
dynamics. Instead, they are modeled explicitly as a stochastic process with
well-defined mathematical properties (Figure 5.1C).

Nevertheless, if the system involves a large number of particles, this model
might still not be appropriate—or even tractable—in spite of all the simpli-
fications we described earlier. Fortunately, the modeler might not be neces-
sarily interested in spatial distribution of all particles at any arbitrary time t;
instead, one might want to track properties such as the number of unclus-
tered particles at time t or the number of clusters of size three at time t.
Answering this type of questions does not require to track the position of
each individual particles. Instead, one may describe the system by counting
the number of unclustered particles or the number of clusters of a given size.
In other words, the state of the system is no longer a vector of positions and
momenta of its constituent particles, but a vector of natural numbers (called
populations) (Figure 5.1D). From a modeling perspective, this strategy can
be compared to a lossy compression method. In the previous, microscopic
model, the system was described as a collection of N0 stochastic processes
defined on a n-dimensional continuous state space (the physical space, in our
case), giving rise to a N0 × n-dimensional phase space. In this novel, macro-
scopic model, the system is described as a single stochastic process whose
state space is a partition of this N0 × n-dimensional phase space. Each ele-
ment of the partition contains all the possible arrangements (i.e., microstates)
that satisfy a given macroscopic description, that is, a given population vec-
tor (Figure 5.1E). This macroscopic stochastic process then takes the form
of a jump process (Figure 5.1F), whose derivation is discussed in Section 5.3;
at this point, we can only say that its dynamics result from the aggregation
of all individual stochastic processes.
1 In accordance with the symmetry of the system, there is no drift in this case;

diffusion is proportional to the temperature, and inversely proportional to the
viscosity of the liquid.
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Interestingly, the mean-field approach that failed to capture the dynamics
of individual particles may now allow to simplify even further the macroscopic
description of the system. While it is clear that the outcome of an experiment
will vary from trial to trial, an average trend may exist. For instance, a system
composed of 100 particles may not always end up with a single cluster of
100 particles, but exhibit relatively moderate fluctuations around this average
behavior. For instance, a few particles may still remain unclustered at the end
of the experiment, but this behavior is still different from the situation where
50 clusters of two particles are formed. When fluctuations are moderate and
one wishes to distinguish only between such extreme cases, one may convert
the stochastic process that describes the macroscopic dynamics of the system
into a deterministic rate equation that describes the average behavior of the
system. Because this description is based on ordinary differential equations,
a series of analytical tools can be in principle leveraged, such as steady state
analysis.

This example intends to illustrate that appropriate simplifications allow
for an improvement of the computational and analytical tractability of mod-
els. However, it also outlines the challenges of constructing abstract models
while maintaining their accuracy, especially in the context of SMPs, which
may exhibit significantly higher complexity and richness than the system con-
sidered in this section. In particular, one need to find a proper partition of the
phase space, such that the resulting macroscopic model is compact enough
to be accurately calibrated, yet captures enough details for answering the
modeler’s questions. These challenges motivate a combination of multiple
levels of abstraction, ranging from detailed, realistic models up to abstract
population models, into a consistent multi-level modeling framework.

5.2 A Taxonomy of Models

A precise taxonomy of the models investigated in this thesis consists mainly
of three axes (Figure 5.2): (1) the level of abstraction, (2) the representation
of the state space, and (3) the representation of time. Because a model is
essentially an abstract representation of the underlying system, the most im-
portant axis of our taxonomy is the level of abstraction. While the distinction
between microscopic and macroscopic models is widely used in science and
engineering, the notions of sub-microscopic models (borrowed from the field
of transportation engineering), and the essential difference between macro-
stochastic and macro-deterministic models, are often overlooked in the litera-
ture. As we shall see, we adopt a strict definition of microscopic model, which
is an essential piece of the methodological framework presented in this thesis,
and which will be rigorously formalized in Chapter 9. The representation of
the state space plays an important role in the process of abstraction, as illus-
trated in Section 5.1. Indeed, both accuracy and computational complexity
of macroscopic models critically depend on a proper partitioning of the phase
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Fig. 5.2 Schematic view of the ecology of models defined in this thesis, clas-
sified according to (1) their level of abstraction, (2) their representation of the
state space, and (3) their representation of time. The missing portion of the plan
corresponding to continuous-state macro-stochastic models indicates that no such
model exists. Acronyms: Point Simulations (PS), Molecular Dynamics (MD), Dis-
crete Event Simulations (DES), Cellular Automata (CA), Continuous-Time Markov
Processes (CTMP), Markov Chains (MC), Partial Differential Equation (PDE),
Continuous-time Rate Equation (CRE), Discrete-time Rate Equation (DRE).

space. The distinction between time-discrete and time-continuous models is
not as important as the others, and has mainly implications in terms of the
implementation and the calibration of these models.

Submicroscopic models2 constitute the most detailed models in the tax-
onomy. In particular, they attempt to capture as accurately as possible the
physico-chemical and geometrical properties of the individual agents. The
models A and B illustrated in Figure 5.1 are examples of submicroscopic mod-
els. At this level, the system’s dynamics are generally implicit, that is, they
result from the interplay of the different constituent modules and components
of the agent (e.g., at the submicroscopic level, the trajectory of a robot is not
2 We apologize in advance to the reader with a background in natural sciences or

etymology, who might get annoyed by this abuse of terminology.
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described by a kinematic equation, but it results from motor commands and
the friction friction of the wheels with the ground). In principle, submicro-
scopic models make as few approximations as possible; in reality, the hetero-
geneity of the robots (due to manufacturing and wearing differences) are not
taken into account and some sources of noise need to be modeled using idealized
distributions (e.g., wheel slip, sensor noise, etc. are often modeled using Gaus-
sian or uniform noise distributions). Submicroscopic models generally use a
hybrid representation of the state space in order to capture both the physical
and the logical state of the robots.

Microscopic models explicitly track the state of each individual agent
as an atomic entity, that is, all internal details are hidden. More precisely,
all internal details of the agents are lumped into a single state vector3, and
a (often stochastic) motion model governs the agents’ trajectories in state
space. Ideally, microscopic models would track the time evolution of the
Probability Density Function (PDF) over the N0×n-dimensional phase space
of the system. However, because this endeavor is both mathematically and
computationally intractable in the general case (in particular because of the
large number of dimensions and the difficulty of writing governing equations),
microscopic models almost systematically take the form of ABMs. In this
thesis, we adopt a broad definition of ABMs, which encompasses all compu-
tational models that generate realizations of individual agents’ trajectories in
state space. Microscopic models are computationally cheaper than their sub-
microscopic counterpart, and they may be state-continuous, state-discrete,
or hybrid.

Macroscopic models no longer track the state of each individual agent,
but instead attempt to capture the time evolution of the PDF over a partition
of the phase space of the system. The partition may be arbitrary, but it gen-
erally arises from a macroscopic description of the system. In physics, each
combination of macroscopic variables such as temperature, volume and pres-
sure correspond to one cell of the partition. In robotics, macroscopic models
generally rely on countable partitions whose cells can be associated to pop-
ulation vectors. This approach presupposes an underlying characterization
of the system into discrete “species”. Furthermore, the partition of the phase
space needs to fulfill two essential requirements: (i) it must be fine enough
to allow the modeler to gain insights into its properties of interest, and (ii) it
must be such that the system is well-behaved within each macrostate, that
is, transitions from one state to the other can be somehow described as a
jump process—one often tries to find a partition that yields a Markov pro-
cess. Often, the system needs to be well-mixed (see Section 5.3.5), isotropic,
and homogeneous within each cell of the said partition.
3 As a result, the distinction between microscopic and submicroscopic is somewhat

dependent on the object of interest. For instance, Molecular Dynamics may
alternately be considered as a microscopic model if the molecules themselves
are the object of interest or as a submicroscopic model if used for studying
interactions of larger objects (e.g., nanoparticles, nanodroplets, etc.).
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Ideally, macroscopic models should track the time evolution of the com-
plete PDF over the partitioned phase space of the system. However, it turns
out that analytical derivations are impossible in the general case, except for
some special cases (e.g., branching processes [183]), and numerical solutions
are generally intractable. When the model is Markovian, one may try to solve
its associated master equation, which is often an equally difficult problem,
both analytically and numerically (see Section 5.3.2 and [183] for general con-
siderations about master equations). Some numerical approximations were
recently proposed for systems whose PDF remains mainly contained within
a small region of the space [184–187].

In this work, we rely mainly on more conventional methods for solving mas-
ter equations. First, macro-stochastic models rely on MCMs, in particular the
Gillespie’s algorithm [154] and its optimized or approximate variants [188],
to generate exact realizations of the system’s trajectory in partitioned phase
space (Figure 5.1F). A large number of runs allows one to obtain significant
statistics about the time evolution of the PDF. Second, macro-deterministic
models adopt a mean-field approach based on rate equations, to yield an
approximation of the average system’s trajectory in phase space. The fun-
damental assumption of macro-deterministic models is that fluctuations are
negligible or irrelevant to the metric of interest.

Macro-stochastic models strictly require a discrete representation of the
state space as they count the exact number of individuals in each state.
Therefore, a continuous representation of the state space at the macro-
stochastic level is impossible possible as it would boil down to a microscopic
treatment. Macro-deterministic models can in principle track “densities” of
agents in one or more continuous dimensions of the state space by relying
on Partial Differential Equations (PDEs) such as the Fokker-Planck equa-
tion [189], the advection-diffusion equation [24], or reaction-diffusion sys-
tems [159]. As it turns out, computational methods for solving PDEs rely
either on an internal discretization (e.g., finite element methods [190]) or on
MCMs (e.g., smoothed particle hydrodynamics [24]) in any case.

5.3 Stochastic Processes in Multi-Level Modeling

As illustrated in Section 5.1, the essence of probabilistic modeling is to de-
scribe an underlying system as a collection of coupled stochastic processes.
In many prior works, the link between probabilistic modeling and stochastic
processes is unclear because macro-deterministic models are derived directly
from individual behaviors [48, 92, 191]. Hereafter, we outline the funda-
mental role of stochastic processes in multi-level modeling, and the formal
relationship that exists between microscopic and macroscopic models.

First, we introduce some key concepts of the theory of stochastic processes.
This part of the manuscript is largely inspired from the celebrated textbook
Stochastic Processes in Physics and Chemistry by van Kampen [183] and
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the milestone paper Stochastic Simulation of Chemical Kinetics by Gille-
spie [188]. In particular, the mathematical formalism, most definitions, and
some accompanying explanations are directly taken from these two essential
works.

A stochastic process YX(t) is a function of two variables, that is, the
time t, and a random (or stochastic) variable X :

YX(t) = f(X, t). (5.1)

One can obtain a realization of the process YX(t) upon replacing X by one
of its possible value x:

Yx(t) = f(x, t), (5.2)

which is an ordinary function of the time t.
Often, one is interested in knowing the PDF for the stochastic pro-

cess YX(t) to take the value y at time t, which we write

P1(y, t) =

∫
δ{y − Yx(t)}PX(x)dx (5.3)

where δ{·} represents the Dirac delta function and PX(·) is the PDF of the
stochastic variable X . One can also construct the joint PDF that YX(t) takes
the values y1, y2, . . . , yn at times t1, t2, . . . , tn, respectively:

Pn(y1, t1; y2, t2; . . . ; yn, tn)

=

∫
δ{y1 − Yx(t1)} δ{y2 − Yx(t2)} · · · δ{yn − Yx(tn)}PX(x) dx. (5.4)

Importantly, the infinite hierarchy of joint PDFs Pn(n = 1, 2, . . .) defines com-
pletely the stochastic process YX(t), and it is often more physically relevant
than Equation 5.1. In general, however, one would like to rely on stochastic
processes that are more practical to construct; this is the case of Markov
processes.

5.3.1 Markov Processes

The Markov property indicates that a given stochastic process is memoryless,
i.e., its future dynamics depend only on its present state, and not on its past.

A stochastic process has the Markov property if the conditional PDF of
future states of the process depends only upon the present state, not on the
sequence of events that preceded it. A stochastic process with this property
is called a Markov process [192].

More formally, the conditional probability P1|1(y2, t2|y1, t2) is the proba-
bility density for Y to take the value y2 at t2 given that its value at t1 is y2.
One can write for the generalized conditional probability
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Pl|k(yk+1, tk+1; . . . ; yk+l, tk+l|y1, t1; . . . ; yk, tk), (5.5)

which describes the joint probability density for Y to take the values yk+1, . . . ,
yk+l at l times tk+1, . . . , tk+l given that its values at k previous times t1, . . . , tk
are y1, . . . , yk.

Then, a Markov process is formally defined as a stochastic process for
which the following property holds:

P1|n−1(yn, tn|y1, t1; . . . ; yn−1, tn−1) = P1|1(yn, tn|yn−1, tn−1) (5.6)

for any n successive times t1 < t2 < · · · < tn. In other words, the conditional
PDF at time tn is entirely determined by the value yn−1 at tn−1, and is not
affected by any knowledge of the values at earlier times [183]. P1|1 is called
the transition probability. As a result, a Markov process is fully determined
by two functions: (i) the PDF P1(y1, t1) of the initial state y1 at time t1,
and (ii) the transition probability P1|1(yn+1, tn+1|yn, tn), thereby making its
definition and its use substantially easier.

The Markov property is undoubtedly the most widespread assumption
made in the field of statistical modeling. First, many natural phenomena
can be characterized by Markov processes (e.g., Brownian motion). Sec-
ond, mathematical developments are greatly simplified by assuming that the
Markov property holds. In particular, one can compute the conditional PDF
at time t3 given the value y1 at t1 using the Chapman-Kolmogorov equation:

P1|1(y3, t3|y1, t1) =
∫

P1|1(y3, t3|y2, t2)P1|1(y2, t2|y1, t1) dy2. (5.7)

Using this equation, one can derive the joint PDF of the stochastic process
at any arbitrary time sequence t1 < t2 < . . . < tn.

5.3.2 The Master Equation

An equivalent form of the Chapman-Kolmogorov equation for Markov pro-
cesses is the master equation. The underlying assumption is that one can
discretize the range of values taken by the underlying stochastic process Y
into a set of discrete states s. Then, the master equation is a gain-loss equa-
tion for the probabilities ps(t) of the discrete states s [183], which has the
form:

dps(t)

dt
=
∑
s′

{
Ws′s ps′(t)−Wss′ ps(t)

}
(5.8)

where Wss′ is the transition rate constant from state s to s′.
The master equation has a direct physical interpretation owing to the no-

tions of discrete state and transition rate. In particular, the quantity Wss′ ΔT
is the probability of transition from s to s′ during a short time ΔT , which
can be computed, for a given system, from first principles or experimentally
measured in some cases.
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Master equations can be derived for both microscopic and macroscopic
models. Indeed, let us consider a large system consisting of a collection of
N0 individual agents that may be in Ns different states q1, . . . , qNs . At the
microscopic level, the state s of the system is given by the vector

Xmicro(t) =
[
Q1(t), Q2(t), . . . , QN0(t)

]
, (5.9)

where Qi(t) = q1, . . . , qNs is the state of agent i at time t. At the macroscopic
level, one is merely interested in the number of agent of each state; therefore,
the state s of the system becomes

Xmacro(t) =
[
N1(t), N2(t), . . . , NNs(t)

]
, (5.10)

where Ni ∈ N≥0 is the number of agents in state qi at time t.
Both equations 5.9 and 5.10 are the basis for constructing a complete enu-

meration of the possible microstates and macrostates of the system, and from
there the associatedmaster equations describing the probability balance among
these states. However, solving these master equations is generally difficult be-
cause of the large size of the associated state space. Indeed, the total number
of possible states grows exponentially with the number of individual agents
in the case of the micro-states (more precisely, in O

(
NN0

s

)
) and in the or-

der of
(
Ns+N0−1

Ns−1

)
in the case of the macrostates. This observation advocates

strongly for the use of macroscopic modeling when dealing with large dis-
tributed systems. A well-established example of macroscopic master equation
is the Chemical Master Equation (CME), which describes the evolution of a
population of reacting molecules as a Markov process. However, even macro-
scopic master equations such as the CME are difficult to construct and to solve
in general. These difficulties can be partially overcome by the use of numeri-
cal approximations [184–187]. These approaches are based on the idea of re-
stricting the analysis of the model to a subset of states that have “significant”
probability, and cannot be applied to systems that have a large variance.

5.3.3 Chemical Reaction Networks

Master equations are powerful representations of Markov processes, but they
are difficult to derive because they require an exhaustive enumeration of
the states of the system and the transitions among them. Hereafter, we in-
troduce the CRN formalism, which is essentially a compact description of
the CME, which is widely used for modeling large biological networks [193].
The essential feature of the CRN formalism is that it allows one to describe
the CME from the perspective of the agents, by listing the states they
can be in, and by describing how state transitions depend on their mutual
interactions.

Similarly to previous works [184, 188, 194], we define a CRN (R,S) as a set
of reactions R = {R1, . . . , RNR} acting on a set of species S = {S1, . . . , SNS}.
Each reaction R is defined as two vectors of nonnegative integers specifying
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the stoichiometry of the reactants, rR = [rR,1, . . . , rR,NS ], and the products,
pR = [pR,1, . . . , pR,NS ], respectively. The stoichiometry denotes how many
copies of a given reactant or product is required or produced, respectively,
when a reaction takes place. For example, assume a CRN with S = {A,B,C},
the reaction A+ 3B ⇀ A+ 2C is represented by the following vectors:

r = [1 3 0]

p = [1 0 2]

The CRN being a population model, it keeps track of the number individuals
of each species are present in the system at a given time. The state of the
CRN is therefore given by the vector X ∈ N

Ns

≥0, whose elements specify the
number of individuals of each species. A reaction R may occur iff the number
of reactants is sufficient, that is, X ≥ rR element-wise. When reaction R
occurs, the new state X′ is given by:

X′ = X− rR + pR = X+ νR (5.11)

where νR = pR−rR is the net change in population caused by R. Therefore,
a CRN can be summarized into a NS ×NR matrix S, called a stoichiometry
matrix, whose columns are the population change ν of each reaction of the
system. For instance, the following CRN

R1 : 3B ⇀ A+ 2C

R2 : A+ 2C ⇀ B

R3 : C ⇀ A (5.12)

can be represented by a stoichiometry matrix

S =

⎡
⎣

R1 R2 R3

A 1 −1 1
B −3 1 0
C 2 −2 −1

⎤
⎦ (5.13)

where Sij is the stoichiometric coefficient of the i-th species in the j-th reac-
tion. Positive and negative coefficients denote products and reactants of the
reaction, respectively.

Another important characterizing quantity for a reaction R is its propen-
sity function aR, which is defined such that aR(x, ·) dt is the probability that
one reaction R will occur in the next time interval [t, t+ dt), given that the
current state of the system is X(t) = x [188]. In principle, one may consider
a generalization of the CRN framework wherein propensity functions may
depend on a variety of quantities (in addition to the state of the network x).
For instance, in the semi-Markovian case, the propensity functions have the
form aR(x, tw) where tw is the time since the last occurrence of reaction R,
that allows for capturing arbitrary distributions of waiting time. In this work
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Fig. 5.3 Graphical represen-
tation of the CRN given by
Equation 5.12. Species are
encircled and reactions are de-
noted by splitting and merging
arrows. Gray-shaded labels
indicate the stoichiometric
factors.
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however, aR depends only on the current state of the system, and the waiting
times are therefore exponentially distributed.

Based on the above definitions, one can readily derive the CME:

δP (x, t|x0, t0)

δt
=

NR∑
j=1

(
aRj (x− νRj )P (x− νRj , t|x0, t0)

− aRj (x)P (x, t|x0, t0)
)

(5.14)

where P (x, t|x0, t0) denotes the probability that the process X(t) = x given
that X(t0) = x0.

As outlined in Section 5.3.2, both numerical and analytical solutions of
Equation 5.14 are prohibitively difficult to compute, except for very simple
cases. As a result, one often need to simulate the process X(t) using the SSA
proposed by Gillespie [154], which constructs exact numerical realizations
of the process. This algorithm belongs to the category of macro-stochastic
models, as defined in Section 5.2.

5.3.4 The Macro-deterministic Approximation

Macro-stochastic models yield realizations of the system dynamics; as a re-
sult, over a large number of runs, one can obtain a good approximation of the
distribution of trajectories. Alternatively, one can in principle convert any
CRN (Section 5.3.3) into a macro-deterministic model, that is, a non-linear4
system of ODEs:

dX∞(t)

dt
= S · a(X∞(t)

)
with X∞(t) ≈ 〈X(t)〉, (5.15)

where S is the stoichiometry matrix (Equation 5.13), and a
(
X∞(t)

)
is a non-

linear function mapping population to propensity vectors. The deterministic
4 If the CRN involves only unimolecular reactions, then the resulting system of

Ordinary Differential Equations (ODEs) is linear.
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trajectory X∞(t) approximates the average trajectory 〈X(t)〉 ∈ R
Ns

≥0. There
exists two sufficient conditions for this approximation to be accurate: (i) the
absence of fluctuations, that is, the underlying process is completely deter-
ministic5, or (ii) the system operates in the thermodynamic limit, i.e., the
number of particles and the volume approach infinity together such that the
particle density remains constant. It turns out however that many previous
works rely on the macro-deterministic approximation for modeling systems
that do not fulfill these conditions [92, 152, 195], thereby raising the question
of what are the necessary conditions for these models to be accurate.

Before proceeding further, we shall distinguish between two distinct no-
tions of accuracy. First and foremost, we are interested in the ability of the
macro-deterministic model to predict the average behavior of the system,
which is given by the distance between X∞(t) and 〈X(t)〉. We refer to this
distance as the first-order error E1. Second, assuming that the first-order er-
ror is small, we may look at the role of fluctuations around this well-predicted,
average trajectory, which we refer to as the second-order error E2.

The first-order error becomes small as one scales the system such that the
reaction rates become large, and their effect small, i.e., the system implies
a large number of small changes [196, 197]. As a result, the validity of this
approximation is not necessarily correlated with the number of agents in
the system, but rather with the number and the nature of their interactions.
More precisely, the macro-deterministic approximation could remain valid for
systems that involve few agents that interact often, as long as the individual
interactions do not affect too much the state of the ensemble.

As regards the second-order error, we provide a formal characterization of
its expectation as a function of the finiteness of the population. This error
typically grows as the number of agents decreases. More formally, one can
write

X∞(t) =
(
x∞
i (t)

)
XN0(t) =

(
xN0

i (t)
)

i ∈ S

the distributions yielded by macro-deterministic models (with an infinite
number of agents) and macro-stochastic models (with N0 agents), respec-
tively. Therefore, the distance between these distributions is the error caused
by the assumption that the system involves an infinite number of agents. Us-
ing the l2-norm as a measure of the distance between the distance between
distributions, the second-order error E2 of macro-deterministic models is:

E2(t) =
∥∥X∞(t)−XN0(t)

∥∥2 =

NS∑
i=1

(
x∞
i (t)− xN0

i (t)
)2

(5.16)

5 This condition is never verified in practice, but it is necessary in the mathematical
developments that lead to Equation 5.15 [188].
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and as t → ∞, we obtain6:

E2 =
1−∑NS

i=1(x
∞
i )2

N0
. (5.17)

Therefore, the actual distribution of agents is always different, on average,
from the distribution predicted by the macro-deterministic model. The dis-
tance between these two distributions can be predicted for any given number
of agents using Equation 5.17. Figure 5.4 illustrates this result by compar-
ing the expected and actual distance between predictions of macro-stochastic
and macro-deterministic models of Case Study V.

Fig. 5.4 Second-order er-
ror E2 (on a logarithmic scale)
of a macro-deterministic
model with respect to its cor-
responding macro-stochastic
model for different number
of robots (Case Study V,
30 runs, marker denotes the
mean, and error bars the 95%
confidence interval). The
dashed horizontal lines denote
the expected distance accord-
ing to Equation 5.17. We note
a strong agreement between
our numerical simulations and
the analytical prediction. Time [s]
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Fixed Points: Existence, Uniqueness, Multiplicity, and Stability

Macro-deterministic models allow in principle for the study of formal prop-
erties such as the presence of fixed points and their stability. A fixed point
correspond to a state X∞ such that

dX∞

dt
= S · a(X∞) = 0. (5.18)

However, because a(·) is non-linear and of high dimensionality, Equation 5.18
is difficult to solve analytically. The Chemical Reaction Network Theory
(CRNT), which has been developed over the last 30 years, establishes several
theorems about systems of non-linear ODEs derived from CRNs, assuming
that they use mass-action kinetics [198, 199]. The theory introduces the con-
cept of deficiency of a CRN, and builds upon this notion to derive conditions
for the existence, uniqueness, multiplicity, and stability of fixed points.
6 See Appendix C for the proof of Equation 5.17.
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CRNT relies solely on the structure of the CRN to infer the existence and
uniqueness of fixed points [200]. As a corollary, the method is unable to deal
with bifurcating systems—whose qualitative steady state behavior depends
on their parameters. Recent results based on algebraic geometry supplement
the predictions of CRNT by locating the steady states of CRNs [201]. More
generally, CRNT is still an on-going research area, and many recent works
have proposed theorems applicable to larger classes of networks [202–204].
In future, these efforts may lead to simple and general methods for infer-
ring in detail the steady state behavior of systems described using the CRN
formalism.

5.3.5 The Well-Mixed Property

The epithet “Markovian” is often used abusively to describe physical phe-
nomena; in fact, the Markov property is defined as a mathematical property
that pertains to stochastic processes, and not to real physical systems (Sec-
tion 5.3.1). However, one might be interested in defining the physical prop-
erties that allow a system to be accurately modeled by a collection of Markov
processes. Hereafter, we consider the notion of “mixing”, which can be infor-
mally thought of as a spatial memoryless property. In particular, a system
is well-mixed if the position and velocity of a given agent at time t+Δt are
random quantities that do not depend on their values at time t. In prac-
tice, this property holds as long as the agents move fast enough relatively
to the size of the environment and the various time scales of the system.
For instance, if the average waiting time between two interactions is Δt, the
average distance traveled by an agent in Δt must be in the order of the size
of the environment.

The well-mixed property is an important justification of the use of macro-
scopic modeling in statistical physics. Indeed, since the system’s state is
completely defined by a population vector, the positions and velocities of
individual particles must not influence the reaction rates, which translates
into assuming that any pair of particles of species s1 and s2, respectively, has
an identical probability of reacting in the next time interval [t + Δt) (Fig-
ure 5.5). This in turn translates into stating that any particle of species s1
has the same probability of encountering any other particle of species s2 in
the time interval [t+Δt).

However, SMPs are often not well-mixed in the sense of the above defi-
nition. For instance, when the density of the system is large, reaction rates
become too large for allowing individual agents to achieve mixing between
two firing events (Section 8.2). Also, when dealing with more deterministic
agents such as robots, and in absence of explicit randomization mechanisms
(e.g., periodic tumbling), trajectories need to be randomized through non-
reactive interactions. For instance, a system constituted of robots bouncing
back and forth between obstacles in a deterministic fashion will not achieve
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Fig. 5.5 Graphical illustration of the well-mixed property in an idealized scenario
with 6 agents of the same species. For the sake of clarity, we assume that only
agent A1 is moving. At t = t0, agent A1 has just interacted with agent A2. In a
non well-mixed scenario, the probability for an agent Ai (i ∈ [2, . . . , 6]) to be the
next interaction partner of A1 in the next time interval [t +Δt) depends on their
relative position at time t. In a well-mixed scenario, this probability is the same
for all possible interaction partners.

good mixing because they will remain in a subpart of the arena. From this
point of view, sensor and actuator noise, as well as randomization of the ro-
bots’ initial positions, are important ingredients of good mixing multi-robot
systems. Finally, long-range forces tend to hinder the mixing of SMPs by
increasing the likelihood that recent interaction partners interact again (Sec-
tion 9.4.2).

5.4 The Multi-Level Modeling Methodology (MLMM)

This section builds up on the two previous sections, and proposes a more
robotics-focused approach to the construction of models at multiple abstrac-
tion levels. To this end, we rely on the seminal work of Martinoli and
colleagues [48], who introduced the MLMM, a bottom-up approach to the
construction of probabilistic models of distributed robotic systems, which re-
lies on two fundamental governing principles. First, the robots’ controller—
more precisely, the associated FSM—serves as blueprint for building a hierar-
chical suite of models at increasing level of abstraction. Second, a consistent
set of parameters—those used in the calculation of the system performance
metric—are conserved throughout the whole process, and shared at all ab-
straction levels, thereby guiding the process of abstraction. While these prin-
ciples were intuitively postulated by Martinoli and colleagues, it turns out
that they address one important challenge outlined in previous sections, that
is, the partitioning of the phase space. Indeed, the states of the FSM that
governs the robots’ behavior form essentially a specific partition of their state
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space. Also, the conservation of parameters ensures that this partition is fine
enough to allow for the evaluation of a performance metric at all abstraction
levels. However, these principles provide no guarantee that the system is
well-behaved within each macrostate (that is, transition times from and to
this state follow an exponential distribution), which makes refinement of the
partition often necessary.

One essential requirement of the MLMM is that a preliminary, non-
optimized specification of the system is available at the beginning of the
modeling process. Based on this prior “draft” of the system one can then
build an initial model, generally at the submicroscopic level. For the most
part, this first step consists in reproducing as accurately as possible the rel-
evant features of the system in simulation. Of course, one needs in principle
to decide which features are relevant to the system’s dynamics; however, the
capabilities of the simulation tool and the available computational resources
have often more influence on this decision than any other consideration. This
initial submicroscopic model is then used both for constructing and for cal-
ibrating more abstract and efficient models (Figure 5.6). As the level of
abstraction increases, a series of approximations are made, thereby reducing
the computational cost and, often, enhancing the analyzability of the model.

Interestingly, these approximations can be classified in a relatively system-
atic way. The transition from submicroscopic to microscopic models
involves generally physical approximations: robots’ trajectories are governed
by simple kinematic laws rather than being the result of physical interactions,
collisions are handled in an idealized fashion, and the robots are represented
using elementary shapes or mere points. In non-spatial models, collisions are
no longer explicitly simulated, but probabilistically emulated based on a se-
ries of geometric approximation (Section 7.2). Therefore, this transition from
spatial to non-spatial microscopic models yields a collection of probabilistic
FSMs. Often, an ad hoc coupling is required to account for the synchronic-
ity of state transitions when they result from inter-robot interactions. The
transition from microscopic to macroscopic models consists in aggre-
gating all individual probabilistic FSMs into a single CRN, using a relatively
systematic procedure described in Chapter 6. Finally, the resulting CRN can
be readily used to derive either a macro-stochastic or a macro-deterministic
model. Table 5.1 lists a typical hierarchy of models, in order of increasing
level of abstraction, and the associated approximations that are typically
used in the context of distributed robotic systems.

One important limitation of the MLMM as described in [48] is that the
process of converting a given FSM into a hierarchy of models is mainly guided
by the controller of the individual robots. However, in our case, the robots do
not necessarily have a controller in the usual sense (e.g., ultra-small robots,
cells, molecules, inert parts), or the relevant pieces of information about
the robots’ state are hidden at the controller level (e.g., the robots do not
know the size of the aggregate they belong to in Case Study I). In such
cases, the original MLMM supposes that the modeler will manually include
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Fig. 5.6 Sketch of a typical procedure of model construction using the MLMM.
Note in particular how the structure of the robots’ controller is re-used at each
abstraction level, up to the macroscopic level.
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Table 5.1 A typical hierarchy of models and their respective approximations in
the context of distributed robotics

Model Approximations
Submicroscopic Homogeneous group of robots, neglected physical

phenomena, idealized noise models
Microscopic (spatial) Simple kinematics, elastic collisions, abstraction

of the robots’ embodiment
Microscopic (non-spatial) Well-mixed system, geometric approximation of

probabilities
Macro-stochastic Aggregation of individual states, semi-Markovian

or pure Markovian process
Macro-deterministic Negligible fluctuations, continuous populations

additional, relevant states based his understanding of the underlying systems.
This methodological limitation is addressed in Chapter 9.

Summary and Conclusion

This chapter describes in detail the notion of model, and the many variants
that can be used in the context of SMPs. In particular, we show how the rich-
ness of their dynamics motivate a combination of models at multiple levels
of abstraction, as advocated by the MLMM, which was introduced in prior
works. First, submicroscopic models capture the detailed, physico-chemical
properties of the individual agents (e.g., shape, material, surface chemistry,
charge, etc.), which determine the nature and the magnitude of their inter-
actions. Second, microscopic models track the individual state of each agent,
but they encapsulate all the details into a more compact state vector of lower
dimensionality. Finally, macroscopic models aggregate all individual state
vectors into a single stochastic process that describes the time evolution of
the PDF over the phase space of the system. One may further distinguish
macro-stochastic models—which account for all the moments of the PDF—
and macro-deterministic models—which adopt a mean-field approach, and
keep track only of the average trajectory of the system. Macroscopic models
allow one to investigate, sometimes analytically, the collective properties of
the system and their dependence on its design and control parameters.

As the level of abstraction increases, the role of stochastic processes as
abstraction and simplification mechanism becomes more prominent. In mi-
croscopic models, stochastic processes are used to model the complicated and
irregular trajectory of the individual agents in state space whereas interac-
tions are handled deterministically. At the macroscopic level, however, every
bit of the system is modeled probabilistically, thereby leading to a drastic
reduction of the system’s state space. However, this incremental, bottom-up
approach to the construction of compact, computationally efficient models



5.4 The Multi-Level Modeling Methodology (MLMM) 79

poses two fundamental challenges. First, one needs to come up with a dis-
cretization of the state space that (i) does not prevent the performance metric
of interest from being estimated, and that (ii) fulfills the underlying assump-
tions of the model (good mixing in particular). Second, one needs to calibrate
the free parameters of the model, in which many lower-level, physico-chemical
details are lumped.

The MLMM attempts to tackle both challenges at once by advocating
an incremental, bottom-up construction of the models. In particular, the
robots’ controller serves as blueprint for partitioning the phase space of the
system (Chapter 6) whereas the model’s calibration is based on a series of
geometrical approximations coupled with orthogonal experiments carried out
at lower abstraction levels (Chapter 7).



6

Model Construction

The first principle is that you must not fool yourself,
and you are the easiest person to fool.

—Richard Feynman (1918–1988)
Caltech commencement address (1974)

This chapter describes in detail the construction of models at multiple ab-
straction levels. Each section describes one given level of abstraction in
general terms, using selected examples from the case studies described in
Chapter 4. In particular, the variant A of Case Study V is featured at each
abstraction level to illustrate concretely the incremental, bottom-up aspect
of the MLMM.

6.1 Submicroscopic Models

As outlined in Section 5.4, the MLMM starts with a preliminary, non-
optimized specification of the system. The first step consists therefore in
translating this specification into a submicroscopic model, which is then used
as baseline for devising and calibrating more abstract models. This process
is greatly facilitated by the use of development environments such as Webots
(Section 3.2.1), which enables the user to create custom robots and envi-
ronments, and program them in a variety of languages (e.g., C, C++, Java,
Matlab, Python). Hereafter, we discuss the construction of submicroscopic
models using Webots in two scenarios:

1. Case Study I, which illustrates a standard development process.
2. Case Study IV, which features several difficulties related to the modeling

of fluid dynamics.

G. Mermoud, Stochastic Reactive Distributed Robotic Systems, 81
Springer Tracts in Advanced Robotics 93,
DOI: 10.1007/978-3-319-02609-1_6, © Springer International Publishing Switzerland 2014
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Case Study I
wheels (disks)

body (cube) IR sensors
 (cuboids)

(a) Alice robots

Case Study IV

(b) Lily modules

Fig. 6.1 Screenshots of submicroscopic models of (a) Case Study I (unstructured
aggregation of Alice robots) and (b) Case Study IV (stochastic SA of Lily mod-
ules). Both models are implemented using Webots in spite of their very different
underlying physics.

6.1.1 Example from Case Study I

Case Study ICase Study I

Webots allows the user to add robots and solid objects to the
simulation by importing them either from a pre-defined li-
brary or from custom CAD models. Then, the user needs to
define their physical and visual properties (e.g., pose, shape,
color,texture, mass, inertia matrix, friction coefficient, etc.). In Case Study I
for instance (Figure 6.1a), the experimental arena is modeled as a solid disk
(i.e., the floor) encircled by a series of narrow rectangles (i.e., the outer wall).
Each Alice robot is modeled as as a set of solid objects forming the body:
the main part is represented as a yellow cube; small cuboids represent the
IR proximity sensors, the connector, and the IR receiver; two disks represent
the wheels. Furthermore, each Alice robot is endowed with sensing and ac-
tuation modules (i.e., four proximity sensors and a differential steering) and
a controller written in C.

Even though submicroscopic models are intended as very detailed and
faithful representations of the system, many aspects of reality are left out in
the submicroscopic models of Case Study I. We list hereafter a few examples
of such approximations:

� The Alice robot is quite fragile and subject to rapid wear, such that
each robot has a distinct and unique behavior. This heterogeneity is not
reproduced at all in submicroscopic models, where all robots are exact
copies of each other.
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� Because Alice robots are so small and lightweight, even small objects such
as grains of dust, hairs, or surface asperities that are not modeled at the
submicroscopic level can affect their mobility.

� The two side IR sensors of the real Alice robot are mounted on a flexible
circuit board while they are captured as fixed, solid cuboids in simulation.

� All IR proximity sensors are sensitive to lighting conditions, especially
for communication purposes; this aspect is not accounted for at the sub-
microscopic level.

In general, these approximations have little influence on the accuracy of
the simulations. However, in some scenarios (e.g., Case Study II), they can
lead to important discrepancies (see Section 8.1 for more details).

6.1.2 Example from Case Study IV

Case Study IV

In Case Study IV, the CAD model used for manufactur-
ing the Lily modules is directly imported into Webots (Fig-
ure 6.1b), and their inertia matrix is computed using Au-
todesk InventorTM. However, an accurate simulation of the
system requires to capture both the flow generated by the pumps and the
interactions between the robots and the flow. Since Webots does not na-
tively support fluidic dynamics modeling, a possible approach would consist
in coupling Webots with a Computational Fluid Dynamics (CFD) tool such
as the Lattice Boltzmann method [205]. However, this approach is not only
computationally expensive, but also difficult to implement in order to en-
sure numerical stability of both simulations. Also, our system being essen-
tially stochastic and subject to important asymmetries and manufacturing
imperfections that may significantly affect the flow, an approach based on
conventional CFD techniques is not a suitable choice.

As a result, we decided to adopt a completely different approach. Instead
of trying to predict the flow resulting from a certain pump configuration,
we use a method inspired by Particle Image Velocimetry (PIV) to extract
the flow velocity field, and then use it in our submicroscopic simulations.
This approach dramatically decreases the computational cost as compared
to CFD methods. However, it requires a prior knowledge of the flow velocity
field generated by each pump configuration of interest. Also, when extending
the simulation to multiple modules, it does not account for the mitigation of
the fluid flow due to the presence of other modules.

More concretely, we record the trajectory of a single Lily module during
30 minutes, and then construct a discrete regular velocity field by discretizing
the trajectory plane into a regular grid, and averaging the observed velocity
vectors at each cell of the grid. Choosing the number of divisions of the grid
is a compromise similar to choosing the number of bins in a histogram: a
too coarse grid may hide important features of the data, while a too fine grid
could result in very few samples per division, and therefore less statistical
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significance. We used a discretization of about 50 cells in each dimension for
our arena (30 cm in diameter).

Once the velocity field is extracted, a correction is applied to compensate
for the inertia of the block. This correction is based on a simple dynamical
analysis considering the drag force, which is the only force acting in the hor-
izontal plane. First, we compute the Reynolds number Re, which determines
the flow regime of our system:

Re =
ρ V L

μ
∼ 2000 (6.1)

where ρ = 103 kg/m3 is the density of water, V ∼ 6.4 cm/s is the mean
velocity of the object relative to the fluid (experimentally measured), L =
3 cm is the characteristic length of the Lily module, and μ = 8.90 · 10−4 Pa·s
is the dynamic viscosity of water. This value of Re is quite higher than the
typical values (Re < 10) present at smaller scales [55], therefore prescribing
the use of a quadratic drag force:

|Fdrag| = 1

2
ρACx |vblock − vflow|2 (6.2)

where vblock is the block’s velocity, vflow is the flow’s velocity, A the block’s
cross sectional area to the flow, and Cx a dimensionless drag coefficient.

The direction of the drag force is opposed to the velocity of the block
relative to the flow, as stated by:

Fdrag

|Fdrag| = − vblock − vflow

|vblock − vflow| (6.3)

Assuming A = 9 cm2 (i.e., the area of one block’s side, since the block is
almost completely immersed) and the drag coefficient of a cube Cx = 1.05,
and taking into account that the mass m of the block can be measured, and
its velocity vblock and acceleration ablock can be obtained from the tracked
trajectories, the only unknowns are the x and y components of the flow
velocity vblock, which are given by the following equations:

vflow,i = vblock,i +
m · ablock,i√

1
2 · ρ ·A · Cx ·m · ||ablock||

i = x, y. (6.4)

It must be noted in Figure 6.2a that the computed flow velocity has a cen-
tripetal component that generates the observed circular trajectory. If the
correction of Equation 6.4 is not applied, the block constantly crashes onto
the walls, which is not consistent with experimental observations. Note that,
importantly, our simulation is completely independent from the method used
for measuring the flow velocity; in this particular case, we used the same
object for measuring the flow velocity and in our simulation, but this needs
not to be the case in principle. For example, a regular PIV method could
also be used to determine the flow velocity field.
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Fig. 6.2 (a) Velocity field of the tracked block and calculated flow. (b) Torque τ
and force Fres on a block in a non-uniform fluid flow.

Rigid body dynamics is not sufficient to simulate the motion of the blocks
given the flow velocity. To solve this problem, we developed a physics plugin
for Webots; this plugin applies the Archimedes’ force, which is the weight of
the fluid displaced by the block, and the drag force based on the flow velocity
at the location of the block. The drag force is integrated over each face of
the block to account for rotational effects. To this end, each face is divided
into N planes, and the drag force is computed for each plane according to
Equation 6.2 using appropriate values of A and Cx. On the one hand, the
area A becomes the plane’s cross sectional area to the flow (which depends
on the plane’s orientation relative to the flow). On the other hand, Cx is now
the drag coefficient for each of the N planes. This coefficient is unknown and
becomes a free parameter to be calibrated, which we denote Cd for the sake
of clarity. The calculated force is not added to the block’s center of mass
but to the center of each plane, which allows for capturing the vorticity of
the flow, e.g., the block will rotate when faced with a flow whose strength is
increasing across one face, as shown in Figure 6.2b.

Importantly, the physics plugin also adds a stochastic force Fstoch to the
center of mass of each block in order to account for non-modeled effects
(e.g., physical irregularities, turbulences). The stochastic force Fstoch is a
gaussian random variable with zero mean and standard deviation σF . As
a result, the simulation has two parameters: the dimensionless drag coeffi-
cient Cd and the standard deviation σF of the stochastic force. Section 7.1.1
describes a trajectory-based method for calibrating these parameters.

6.2 Microscopic Models

Even though microscopic models capture the state of each individual
robot in the system, their state vector is significantly smaller than their
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correspondingly submicroscopic counterpart. This state reduction is typi-
cally obtained through appropriate aggregation of the state variables that
denote the internal properties of the individual robots. Hereafter, we illus-
trate the construction of two microscopic models: (1) a spatial ABM and
(2) a non-spatial Discrete Event Simulation (DES), which were both devel-
oped1 in the context of Case Study V (variant A). At the end of this section,
we introduce a hybrid model of Case Study III that lies at the intersection
of the microscopic and the macroscopic levels.

6.2.1 Example from Case Study V

Case Study V

AThe MLMM prescribes that all control parameters that are
relevant to the performance metric under investigation are
conserved throughout the abstraction process. In our par-
ticular case, the leaving probabilities pleave

good, pleave
bad , and pleave

agg
appear explicitly in both models presented hereafter. Also, the FSM associ-
ated to the robots’ controller (Figure 4.8 on p. 52) is directly used to define
the behavior of the agents in the ABM, and the state space in which the DES
operates.

Agent-Based Model

While simplified as compared to its submicroscopic counterpart, the two-
dimensional ABM represents the experimental setup and the robot cooper-
ation rules with good accuracy. Particularly, the model accounts explicitly
for the spatial extent of the robots, the spots, and the arena (see Figure 6.3).
However, the exact shape of the robots is abstracted away; instead, they are
represented as disks. In contrast to the submicroscopic model in which the
physical units (e.g., space, time, force, velocity, etc.) are explicitly charac-
terized, all quantities in this ABM are dimensionless, but scaled consistently
with respect to the dimension of the agents. While the model captures the
noise of the light sensors, some other sources of noise are neglected at this
level, such as the noise on proximity sensors and wheel slip. Similarly, indi-
vidual sensors and actuators are not captured. Instead, the neighborhood of
each robot is screened for proximity detection, with sensing radii and cov-
erage angles that accurately reproduce the overall sensing zone of an Alice
robot. As a consequence, collision detection and aggregation are completely
deterministic and are not characterized by a probability of encountering as
it is the case at higher level of abstraction.

The model does not account for the specific kinematic constraints of the
robots (i.e., they are assumed to be holonomic). Therefore, the obstacle
avoidance procedure is implemented as a purely elastic collision in this model;
1 These models were developed by Massimo Mastrangeli and William Chris Evans,

respectively.
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(a) Submicroscopic model (b) Spatial microscopic model

Fig. 6.3 (a) Screenshot of a submicroscopic model of Case Study V (variant A) im-
plemented in Webots. (b) Screenshot of the spatial ABM described in Section 6.2.1.
The robots are represented by magenta-filled dots. The large colored circles are the
good (green) and bad (red) spots. Lighter circles are previously destroyed spots.
The yellow band represents the limits of the arena.

this approach allows for a significant decrease of the overall computational
cost. Except for the details discussed above, the agents behave according to
the FSM depicted in Figure 4.8 (p. 52). The model was implemented using
the open-source software package NetLogo [180].

Discrete Event Simulation

At a higher level of abstraction, we developed a DES that generates trajecto-
ries of individual robots in discrete state space by calculating the time until
the next state transition occur according to the current state of the robots
and their environment. In contrast to SSA [154], which is a macroscopic
model, the DES presented here captures the state of each individual robot.
The events are kept in a temporally sorted priority queue and then processed
in order. We track dependencies between state changes in order to appropri-
ately remove outdated events, e.g., when a robot leaves a spot, robots that
remain in the spot should no longer collide with it. This approach allows us
to, for the most part, ignore spatiality, yielding a significantly faster model
(see Section 8.4).

More concretely, when a robot is placed in the arena, we calculate the time
until its encounter with each spot as an exponentially distributed random
variable with rate equal to the compounded spot encountering rate rei (all
rates discussed here are calibrated in Section 7.2). While we do not simulate
spatiality explicitly, spots are tracked individually and robots only exist inside
of one spot at a time. We use a rough geometric approximation to simulate
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the time that a robot takes to cross a spot. While in more abstract models all
events must follow a Poisson distribution, here we are able to use arbitrary,
possibly parametric, distributions more appropriately suited to the specific
phenomenon of interest. For instance, we compute the time tb for a robot to
cross a spot of diameter dspot as follows:

tb ∼ U

(
dspot/2

v
,
dspot
v

)
, (6.5)

where v is the robot velocity, and U(·, ·) is the uniform distribution. Robots
may leave a spot as usual at each bounce according to pleave

good and pleave
bad .

Robots inside a spot will collide with each other much like they collide
with spots, but at rate rai or rti for pairs and triplets, respectively. When
the requisite number of robots has aggregated inside a spot it is destroyed,
i.e., all robots are removed from the spot and placed back into the arena.

6.2.2 A Hybrid Monte-Carlo Model

Case Study III

2-DOFIn this section, we describe a MCM of Case Study III that
keeps track, on one hand, of the population Xs of single
building blocks in the system (macroscopic component) and,
on the other hand, of the alignment of each individual ag-
gregate (microscopic component). More concretely, since our model is non-
spatial, collisions are not handled deterministically, but are randomly sam-
pled from a Poisson distribution of mean λ = pjoin Xs where pjoin is the
probability that a given robot collides with another robot per unit time (see
Section 7.2 for more details about the calibration of pjoin). Each aggregate
resulting from these collisions is individually captured using a Monte Carlo
procedure: a random relative alignment ξi = (θ1,i, θ2,i) is generated and
stored in a list Ξa (see Algorithm 1 below).

Algorithm 1. Pseudo-code of the hybrid Monte Carlo model described in
Section 6.2.2.

Initialize Xs = N0, Ξa = ∅, and t = 0
while t ≤ tmax do

– Sample nc the number of collision events from a Poisson distribution of mean
λ = pjoin Xs (Xs − 1)
– Generate and append to the list Ξa a set of nc random relative alignments{
ξ1, . . . , ξnc

}
with ξi = (θ1,i, θ2,i) and θd,i ∼ U(0, π)

– Generate Na uniform random variates rsi ∼ U(0, 1) with i = 1, . . . , Na and
Na = size(Ξa)
– Compute nb the number of aggregates in Ξa with ξi such that rsi < pleave(ξi)
and remove them from Ξa

– Let Xs ← Xs + 2nb − 2nc and t← t+ 1
end while
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This hybrid treatment allows for a great deal of flexibility. On one hand,
the microscopic treatment captures only the relevant pieces of information
about the individual aggregates, which can range from the number of building
blocks to a full-fledged graph-based representation of the aggregate’s topol-
ogy. On the other hand, since the individual state of the single building
blocks is not necessary (assuming that the system is well-mixed), a macro-
scopic treatment is sufficient for this species.

6.3 Macroscopic Models

The microscopic models described in the previous section are already the
result of significant simplifications and state reductions with respect to their
submicroscopic counterpart. However, they still suffer from some important
shortcomings. First, they do not scale well with the number of robots. Sec-
ond, their analytical tractability is poor. Macroscopic models address these
intrinsic limitations of microscopic modeling.

As outlined in Section 5.4, the applicability of the original MLMM is lim-
ited when dealing with systems in which the relevant pieces of information
about the robots’ state are completely hidden at the controller level. In such
cases, one usually tries to infer the structure of the macroscopic model directly
from the collective dynamics, without referring to an underlying controller
structure [23, 92]. Aggregation and SA are nearly paradigmatic examples of
systems in which the robots have a limited knowledge of the quantities of
interest to the modeler, such as the size or the geometry of the aggregates.
Hereafter, we demonstrate the construction of several macroscopic models
that capture these quantities by using two specific techniques: (i) state space
augmentation and (ii) state space discretization.

6.3.1 State Space Augmentation

Case Study ICase Study I

The behavior exhibited by the robots in Case Study I is
simple: they are either moving or resting. The resting state
can be further characterized by the number of robots within
communication range, which in turn determines the proba-
bility pleave of transition to the moving state. Yet, this piece of information
is insufficient to track the size or the geometry of the clusters, which are gen-
erally of interest to the modeler in this type of scenario. Therefore, rather
than constructing our macroscopic model based on the regular state space of
the robots

Srobots = {moving, resting, }

we use an augmented state space
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Sclusters = {moving, resting in cluster of size 2, . . . , resting in cluster of size N0}

that captures the size of the clusters.
We can then construct a macro-deterministic model that is capable of

tracking the average number of robots in each state s ∈ Sclusters, represented
by a set of continuous variables X1, . . . , XN0. The model is based on a system
of difference equations, where k denotes the current iteration (time step)
and kT the actual time with T the sampling time2. Inflow and outflow
of each state represent the proportion of robots switching to and from this
state. They are given by the probability for a state transition to occur and
the number of robots in other states. It is more natural—and mathematically
equivalent—to track the average number of clusters of size j rather than the
average number of robots in such clusters.

Following a mean-field approach, the average number Xj(k+1) of clusters
of size j (with 1 < j < N0) at time k + 1 is therefore given by the following
difference equation:

Xj(k + 1)−Xj(k) = fin,j
(
Pjoin(k),Pleave(k), Xi(k)

)
− fout,j

(
Pjoin(k),Pleave(k), Xi(k)

)
with i = 1, . . . , N0 and i �= j (6.6)

where functions fin,j and fout,j denote the inflow and the outflow of the
state Xj(k), i.e., the number of clusters of size j being formed or destroyed
at time k. The matrices Pjoin =

(
pjoin
i,j

)
, and Pleave =

(
pleave
i,j

)
denote both the

connectivity and the transition probabilities between states Xi, Xj , and Xi+j .
Namely, two clusters of size i and j, respectively, can aggregate into a cluster
of size i+j with probability pjoin

i,j . Inversely, a cluster of size i+j can split into
two clusters of size i and j with probability pleave

i,j . If there is no interaction
between clusters of size i and j, then pjoin

i,j = pleave
i,j = 0.

As a result, the functions fin,j and fout,j may have a different number of
terms depending on the properties of the aggregation process, but their form
remains identical:

fin,j(. . .) =

j−1∑
i=1

pjoin
i,j−i(k)Xj−i(k)Xi(k) +

N0∑
i=j+1

pleave
i−j,j(k)Xi(k), (6.7)

fout,j(. . .) =

N0−j∑
i=1

pjoin
i,j (k)Xi(k)Xj(k) +

j−1∑
i=1

pleave
i,j−i(k)Xj(k). (6.8)

Terms of the form pjoin
i,j (k)Xi(k)Xj(k) correspond to the number Xi(k) of

clusters of size i that join one cluster of size j at time k with a prob-
ability pjoin

i,j (k)Xj(k), and form a cluster of size i + j. Terms of the
2 Hereafter, we leave T out of the equations for the sake of simplicity. Note that

it should be chosen small enough in comparison to the time constants of the
system.
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form pleave
i,j (k)Xi+j(k) denotes the number of clusters of size i+ j that split

into clusters of size i and j at time k with probability pleave
i,j (k).

In the general case, one should take into account all possible N0−1 pairwise
combinations of clusters that lead to the formation of a cluster of size j.
Fortunately, in Case Study I, the robots remain still once aggregated, and
there are therefore only two ways3 of forming a cluster of size j:

Xj−1 +X1 → Xj Xj+1 → Xj +X1. (6.9)

In such cases, we have that pjoin
i,j �= 0 if and only if i = 1 or j = 1. Of course,

this assumption dramatically simplifies the complexity of the model, both
in terms of computation and memory usage. Figure 6.4 depicts the state
transition diagram of this specific model.
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Fig. 6.4 State transition diagram of the aggregation model with stationary clusters.
Only single robots (state variable X1) can interact with each other, and with clusters
(state variables Xi with i = 2, . . . , N0).

Macroscopic models can also track properties of the clusters other than
their size (i.e., the number of building blocks), such as their geometry. In
the above model, we assume that clusters have no embodiment (see Sec-
tion 2.1.1). For instance, robots cannot be stuck in the middle of a cluster,
surrounded by other robots. Also, nearby clusters never connect with each
other because of one robot joining them; similarly, clusters never split into
two sub-clusters because one robot left. These scenarios, depending on the
structure of the clusters, may happen in reality, but the particular model
depicted in Figure 6.4 does not account for them.
3 We neglect the case of clusters that merge when growing, which is a safe assump-

tion in the case of non-crowded scenarios. Also, we assume that only one robot
joins and leaves the cluster in a given time step, if the model is time-discrete.
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6.3.2 State Space Discretization

Case Study III

2-DOFIn some scenarios, the only available description of a part
(or the whole) of the system is an abstract, continuous law.
For instance, in distributed coverage scenarios, an overar-
ching continuous law may describe the steady-state spatial
distribution f(x, y) of the robots. In such cases, one needs to find an ap-
propriate set of discrete states and corresponding dynamic equations such
that this continuous law is reproduced (e.g., following a discretization of the
environment, one needs to find the transition rates between cells that will
eventually lead to f(x, y)). In other words, the level of abstraction with re-
spect to the initial description of the system is lowered, thereby allowing for
the incorporation of more details, if available. For instance, transition rates
can be parameterized by the velocity and the mobility pattern of the robots.
This procedure is relevant in the context of microscale systems, whose low-
level properties are often either unknown or lumped into abstract, empirical
distributions. By moving down the hierarchy of models, one actually aims
to infer lower-level properties of the underlying system, which can then be
calibrated and, to some extent, validated using these models. This thesis just
scratches the surface of this different approach to multi-level modeling.

In Case Study III, the stability of an aggregate is described by a continuous
function of the alignment of its building blocks—more specifically, the bond
energy ΔE ∈ R≤0 (Equation 4.4). As a result, the notion of directionality
plays a key role in the system’s dynamics, and cannot be abstracted away at
the macroscopic level. Therefore, we need to discretize the state space of the
aggregates in order to account for the different levels of bond energy they
can be in. The fraction of formed aggregates that have a particular energy
level, and the transition rates between energy levels (through self-alignment,
see [206]), typically depend on details such as the geometry and the surface
properties of the building blocks, which may be gradually incorporated into
the models as their level of abstraction decreases.

The state of an aggregate is fully determined by the relative positioning ξ
of its building blocks, which is a two-dimensional vector in the 2-DOF vari-
ant. Fortunately, the symmetry of Equation 4.4 allows one to simplify this
definition to a scalar, that is, the norm of the relative positioning, denoted

θ2 = ||ξ||2 = θ21 + θ22 ∈ [0, 2π2], (6.10)

which can be easily discretized into a set of K averaged values θ̂2i given by

θ̂2i =

(
i− 1

2

)
· 2π

2

K
with i = 1, 2, . . . ,K. (6.11)

Therefore, one can define Sd = {s0, si, . . . , sK} as the discretized space of
aggregate’s types, with s0 representing single building blocks and si aggre-
gates with an average relative alignment θ̂2i and the following bond energy:
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ΔE(si) = Ebond · exp
(

θ̂2i
2 σ2

θ

)
. (6.12)

The average proportion of single building blocks xs is then given by the
following difference equation:

xs(k + 1)− xs(k) = 2 〈pleave xp(k)〉 − pjoin · xs(k)
2 (6.13)

with

pleave =
[
pleave(s1), . . . , p

leave(sK)
]T

xp(k) =
[
x1(k), . . . , xK(k)

]T
where 〈· ·〉 denotes the scalar product, and pleave(si) is the probability that
an aggregate of type si is destroyed:

pleave(si) = exp

(
ΔE(si)

α ν2s

)
. (6.14)

The scalar term 〈pleave xp(k)〉 is the average proportion of aggregates that
were destroyed at iteration k. The term pjoin ·xs(k)

2 is the average proportion
of building blocks that collided and formed a pair at iteration k. Similarly,
the proportion of pairs of type si with i = 1, . . . ,K is given by the following
difference equation:

xi(k + 1)− xi(k) = f(i) · p
join · xs(k)

2

2
− pleave(si) · xi(k) (6.15)

where f(i) : Z+ → [0, 1] is a function that denotes the fraction of formed
aggregates that are actually of type si; pleave(si) · xi(k) is the average pro-
portion of pairs of type si that broke up at iteration k; pjoin · xs(k)

2 is the
average proportion of building blocks that collided and formed an aggregate
at iteration k. Since two building blocks are needed to form an aggregate,
this term is divided by two.

The function f(i) shall be a discretized version of the PDF of the random
variable Z, which denotes the probability that a formed aggregate has a
relative positioning norm θ2 ∈ [0, 2π2]. Now, since θ2 = θ21+θ22 , one can write
Z = X2 + X2, where X is a random variable that denotes the probability
that θ1 or θ2 take a specific value in [0, π]. We assume that X is uniformly
distributed, i.e. X ∼ U (0, π). Therefore, according to [207], we have X2 ∼
Beta(0, π, 1

2 , 1) and its PDF is given by

fX2(x) =
(x/π)−1/2∫ π

0 (u/π)−1/2 du
=

1

2

(
x

π

)−1/2

with x ∈ [0, π2].

The PDF of Z = X2 +X2 is given by the convolution of the PDF of X2

with itself [207]:
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fZ(z) = fX2(z) � fX2(z) =
1

4

∫ ∞

−∞

(
z − τ

π

)−1/2(
τ

π

)−1/2

dτ. (6.16)

Since z ∈ [0, 2π2], we need to normalize fZ(z) such that

fZ(2π
2) = 0 and

∫ ∞

−∞
fZ(z) dz = 1,

which leads to

fZ(z) =

⎧⎪⎨
⎪⎩

1
4π if z ∈ [0, π2]
1
π2 arctan

(
π√

z−π2

)
− 1

4π if z ∈ [π2, 2π2]

0 otherwise.

Therefore, the function f(i) is given by

f(i) =

∫ u(i)

l(i)

fZ(z) dz with

{
l(i) = 2π2

K (i− 1)

u(i) = 2π2

K i
(6.17)

with l(i) and u(i) the lower and upper bound, respectively, of the i-th subin-
terval of [0, 2π2].

6.3.3 From Finite State Machines to Chemical
Reaction Networks

Case Study V

AIn Case Study V, the robots are endowed with a full-fledged
controller, thereby allowing us to transform the correspond-
ing FSM into an equivalent CRN by converting states and
state transitions into species and reactions, respectively
(Figure 6.5). The states of the FSM that are irrelevant to the system’s
dynamics (because the robot spends a negligible amount of time in them, or
because they are not relevant to the performance metric under investigation)
are merged into a unique species of the CRN. For instance, even though ob-
stacle avoidance is a state of the robots’ controller, it is not explicitly modeled
as such at the macroscopic level; rather, we assume that a robot seamlessly
switch from wandering to obstacle avoidance state.

Since we are interested in the ability of aggregation to deal with the noise in
decision-making, we explicitly incorporate belief representation in our model.
More specifically, the state of a robot is not only defined by its internal state,
i.e., whether it is wandering, exploring a spot, or part of an aggregate, but
also whether its internal state is a correct representation of reality. To this
end, we refine the CRN following an approach similar to those described
in Section 6.3.1. For instance, since the model needs to track the number
of robots in each spot, and whether their estimate is correct or not, the
species in spot is split into 2Nspots sub-species.
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Fig. 6.5 Sketch of the translation of a FSM into a CRN, which consists in grouping
the states that are not relevant to the system’s dynamics (step A) and constructing
the equivalent CRN (step B). For instance, the states u-turn, explore spot, and
aggregate are merged into a single species Xe. Then, one can iteratively refine the
CRN by splitting the species that need to account for states that are hidden at the
controller level into multiple sub-species. In this case, the model needs to track
the number of robots in each spot, and whether their estimate is correct or not.
Therefore, the species Xe is split into 2 ·Nspots sub-species Xw

e,i and Xc
e,i (steps C

and D).
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Based on the FSM depicted in Figure 4.8 (p. 52), and using the approach
described earlier, we build up models of the collective perception experiment,
each corresponding to a different value of k. Since these models are built in
an incremental fashion, we shall start by describing in details the model
for k = 1, which is the basis for other models where k > 1.

In the case of k = 1, a robot can trigger the destruction of a spot on its
own. Therefore, we shall distinguish between the following species:

� Robots searching for spots: Xs

� Robots in spot i with a correct estimate of its type: Xc,i ∀i ∈ S
� Robots in spot i with a wrong estimate of its type: Xw,i ∀i ∈ S

where S denotes the set of spots in the system. Equation 6.18 provides a
complete view of the 4 · |S| reactions of the CRN:

Xs

rec,i−→ Xc,i Xc,i

rlc,i+rdc,i−→ Xs

Xs

rew,i−→ Xw,i Xw,i

rlw,i+rdw,i−→ Xs ∀i ∈ S (6.18)

where rec,i and rew,i are the rates at which a robot encounters spot i and
correctly or wrongly identifies its type, respectively. Similarly, rlc,i and rlw,i is
the rate at which a robot leaves the spot it is exploring and believes to be of
a given type, either correctly or wrongly, respectively, without destroying it.
rdc,i and rdw,i are the same as rlc,i and rlw,i, except that the robot destroys the
spot in this case.

When collaboration is introduced (k = 2), one needs to account for the
fact that two robots are needed to trigger the destruction of a spot. It has
two main implications: (i) robots can change their belief about the type of
the spot they are exploring at a rate rmw,i (from a correct to wrong belief),
and rmc,i (from a wrong to a correct belief), and (ii) aggregation introduces
non-linear reactions, i.e., reactions that involve more than one robot, whose
rate is rai . Equation 6.19 provides a complete view of the CRN:

Xs

rec,i−→ Xc,i Xc,i

rlc,i+rdc,i−→ Xs Xs

rew,i−→ Xw,i

Xw,i

rlw,i+rdw,i−→ Xs Xc,i

rmw,i−→ Xw,i Xw,i

rmc,i−→ Xc,i

2Xc,i
rai−→ 2Xs 2Xw,i

rai−→ 2Xs Xc,i +Xw,i
2 rai−→ 2Xs (6.19)

for all i ∈ S.
Finally, if more than two robots are needed to trigger the destruction of a

spot, it means that those robots that are part of a pair Xa,i may remain idle
in spot i, waiting for a third robot to join up, which is an event that happens
at a rate rti . The robots can also decide to disaggregate at a rate rdi , thus
leading to the following CRN:
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Xs

rec,i−→ Xc,i Xc,i

rlc,i+rdc,i−→ Xs Xs

rew,i−→ Xw,i

Xw,i

rlw,i+rdw,i−→ Xs Xc,i

rmw,i−→ Xw,i Xw,i

rmc,i−→ Xc,i

2Xc,i
rai−→ Xa,i 2Xw,i

rai−→ Xa,i Xc,i +Xw,i
2 rai−→ Xa,i

Xa,i
rdi−→ 2 Xs Xc,i +Xa,i

2 rti−→ 3 Xs Xw,i +Xa,i
2 rti−→ 3 Xs

(6.20)

for all i ∈ S. Note that, while we do not study models for k > 3, these are
relatively easy to derive from the model for k = 3.

Summary and Conclusion

This chapter outlines both the benefits and the limitations of the MLMM
for constructing models at multiple abstraction levels: (i) the crucial role of
the modeler’s expertise at each step of the modeling process, and (ii) the
tight correlation between abstraction and probabilistic modeling, which in
turn stresses the importance of stochastic processes as simplification and
abstraction mechanisms.

Submicroscopic models generally proceed from a direct translation of
the target system’s specifications. While some details are abstracted away
throughout this process, there is generally no methodological motivation for
doing so; rather, the absence of support in the modeling tool, or the pro-
hibitive difficulty in implementing these details are the primary motivation.
Often, these simplifications have little or no impact on the model’s accu-
racy; for instance, the absence of CFD support in Webots does not pose any
problem when modeling a group of Alice robots (case studies I, II and V).
However, when dealing with fluidic SA (case studies III and IV), one needs
to account for the most important hydrostatic and hydrodynamic effects ob-
served in such systems. Stochastic processes may become necessary when
these effects are too difficult to capture explicitly (e.g., physical irregularities
and flow turbulences are captured by a stochastic force in Section 6.1.2).

At the microscopic level, the abstraction process is no longer governed
by implementation-related considerations. The construction of a microscopic
model essentially boils down to determining a state vector of the individual
robots significantly more compact than its submicroscopic counterpart. As
a matter of fact, the MLMM does not provide any algorithmic method for
determining this state vector (this limitation is addressed in Chapter 9). As
a rule of thumb, we shall retain only those pieces of information that are
required by the robot controller. However, many features that are hidden at
the controller level still need to be conserved at the microscopic level because
the system’s dynamics depend on them implicitly. For instance, robots may
ignore their position in space, but microscopic models still need to account
for spatiality in order to deal with robots’ interactions deterministically. As a
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corollary, one may design non-spatial microscopic models by using a stochas-
tic treatment of robots’ interactions when appropriate (i.e., when the system
is well-mixed).

Macroscopic modeling pushes the envelope of abstraction by assuming
that the whole system can be described accurately using stochastic processes.
The MLMM prescribes a nearly direct translation of the FSM of the robots’
controller into an equivalent CRN. The species and reactions of the CRN
represent the different states and state transitions of the FSM, respectively.
The CRN is then iteratively refined either by lumping the species that are
not relevant to the system’s dynamics, or by splitting the species that need
to account for states that are hidden at the controller level into multiple
sub-species.
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Model Calibration

We know what [...] to do experimentally to measure this number very ac-
curately, but we don’t know what [...] to do on the computer to make this

number come out, without putting it in secretly!
—Richard Feynman (1918–1988)

on the numerical value of α, the fine-structure constant
in QED : The Strange Theory of Light and Matter (1985)

Any model, regardless of its nature, is characterized by parameters, i.e., un-
known quantities that need to be determined in order to solve the model.
Often, parameters are directly measurable on the target system (e.g., the
weight, the size, or the speed of a robot), they can be obtained from data
sheets or computed from physical laws (e.g., friction and restitution coeffi-
cients, inertia matrices, etc.). However, more abstract models might involve
so-called free parameters that result from the lumping of several phenom-
ena, some of which might be difficult to model explicitly, thereby rendering
direct approaches inapplicable. In such cases, more sophisticated numerical
methods and machine learning techniques are necessary.

The MLMM prescribes that model parameters shall be conserved through-
out the whole process of abstraction, thereby yielding macroscopic models
with zero free parameter [48]. Even upon moving from spatial to non-spatial
models, one can use closed-form geometrical approximations based on known
properties of the system (Section 7.1.2). However, in scenarios such as Case
Study IV, where the underlying physics cannot be fully accounted for even
at the submicroscopic level, one needs to introduce free parameters, which
then require special care in terms of calibration.

7.1 Calibration of Submicroscopic Models

Because of their high level of detail, submicroscopic models have generally a
large number of parameters, which are however relatively simple to calibrate
owing to their direct anchoring to reality. Hereafter, we illustrate briefly
the calibration of physical parameters of Case Study I using direct measure-
ments and orthogonal experiments (Section 7.1.1). Then, we describe a novel

G. Mermoud, Stochastic Reactive Distributed Robotic Systems, 99
Springer Tracts in Advanced Robotics 93,
DOI: 10.1007/978-3-319-02609-1_7, © Springer International Publishing Switzerland 2014
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calibration method based on the principle of minimizing the distance between
simulated and real trajectories. This method is used for determining the drag
coefficient Cd and the standard deviation σF of the stochastic force in Case
Study IV (Section 7.1.2).

7.1.1 Example from Case Study I

Case Study ICase Study I

Because we use Webots in physics mode, one need to care-
fully adjust the physical properties of all objects forming the
Alice robots and the environment. For instance, the weight
of the Alice robot as well as the friction coefficients between
the wheels and the ground are particularly important for a faithful repro-
duction of phenomena such as wheel slip and obstructions. The IR sensor
characteristics (aperture, range, and non-linear transfer functions) of the Al-
ice robot are also critical in the context of aggregation and SA experiments.
These parameters have been carefully calibrated in previous works using a
combination of direct measurements and systematic experiments with real
robots [208].

7.1.2 Example from Case Study IV

Case Study IV

When it comes to characterizing the trajectory of a robot, it
is often practical to use one of these alternative assumptions:
(i) the robot follows a deterministic trajectory defined by a
given control law (e.g., [19]), or (ii) the robot performs a
random walk with some known average speed that can be mapped to some
diffusion coefficient (e.g., [209]). However, there are many situations, such as
in Case Study IV, where the reality lies between these two extremes.

In two dimensions, sampled trajectories can be viewed as sequences of
points in a two-dimensional space: there is no need to consider the temporal
dimension as we are using a constant sampling rate. Furthermore, trajectories
do not have a common frame because there are no reference points or pre-
established paths, just the blocks reacting to the environment. Therefore, it
is not appropriate to compare trajectories in the Euclidean space because,
even though they are generated by the same agitation mechanism and should
therefore exhibit common traits, the sequence of points will vary greatly
depending on initial conditions and random collisions with walls. A solution
proposed by Roduit [210] is based on the Correlated Random Walk (CRW)
model, which represents trajectories as a succession of steps whose directions
are correlated with each other (Figure 7.1). A step is defined as the segment
that connects two points of the trajectory, sampled at time t and t + Δt,
respectively. Then, any trajectory can be represented as an ensemble of
step lengths Si and step angles Ai, which in turn can be modeled as a two-
dimensional histogram (Figure 7.2).
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Fig. 7.2 (a) A sample trajectory. (b) Its corresponding two-dimensional distribu-
tion of step lengths and step angles.

In order to compare real and simulated trajectories represented as his-
tograms of step lengths and step angles, we use the Kolmogorov-Smirnov
(KS) statistic (or distance), which corresponds to the maximum distance be-
tween the corresponding cumulative distribution functions. The justification
for the use of the KS distance is that the KS statistical test is non-parametric
(i.e, no assumption is made about the underlying distributions), and it is
sensitive to both the location and the shape of the empirical distribution
functions. Therefore, our calibration method does not only try to match
the mean linear and angular velocity of the original trajectory, but also the
higher moments of the two-dimensional distribution.

When extending the KS test to two dimensions, the calculation of the
cumulative distribution function is not as straightforward as in the one-
dimensional case, as there are four distinct ways of cumulating data along the
directions of the coordinate axes. In our implementation1, we followed the
Fasano and Franceschini variation presented in [211], which has been shown
1 The calibration procedure was implemented by Ezequiel di Mario.
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Fig. 7.3 Plot of 1 −
KSdistance between real and
simulated trajectories as a
function of the drag coeffi-
cient Cd and the standard
deviation σF of the added
stochastic force. Missing
data in the plot are due
to numerical instabilities for
too large values of Cd and
Fstoch.
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Fig. 7.4 Step length and angle distributions for different drag coefficients. (a) Real
trajectory. (b) Cd = 0.1. (c) Cd = 0.45. (d) Cd = 0.8.

to reduce the computational complexity from O(n3) in Peacock’s original
version to O(n2) without sacrificing the test’s power to distinguish dataset
differences.

Finally, we systematically explore the parameter space to find the optimal
modeling parameters, i.e., those that minimize the KS distance between the
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Fig. 7.5 Step length and angle distributions for different standard deviations of
the stochastic force. (a) Real trajectory. (b) σF = 0 mN. (c) σF = 0.55 mN. (d)
σF = 1 mN.

simulated and real trajectories. Due to the small number of parameters in
our case study, there is no need for more complex optimization techniques.
However, more complex optimization methods can be used in principle, as
long as they are noise-resistant [212].

More specifically, we vary the drag coefficient Cd between 0 and 2 with
increments of 0.05, and the standard deviation of the stochastic force Fstoch

from 0 mN to 2 mN with increments of 0.05 mN. For each set of parameters,
we simulate a trajectory of 30 minutes, and compute the KS distance be-
tween the resulting simulated trajectories and a real, pre-recorded trajectory
using all pumps at full power, with two pumps directly connected to oppo-
site perpendicular inlets and two other connected to both one perpendicular
and one tangential inlet each. All trajectories are sampled at the same rate
(10 Hz). Figure 7.3 shows a plot of 1− KSdistance for improved visualization
of the optimum.

The KS distance is minimized for a drag coefficient Cd = 0.45, and a
standard deviation of the stochastic force σF = 0.55 mN. One can observe a
ridge along the drag coefficient axis, which indicates that the faithfulness of
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the simulation rapidly decreases when leaving the [0.3 0.5] range for the drag
coefficient. Values for the stochastic force and the drag coefficient that are
too large lead to numerical instabilities.

The qualitative effects of different values for the drag coefficient are shown
in Figure 7.4. If the drag coefficient is too low, the block does not follow the
flow: the mean step length becomes shorter, and the mean angle is around
zero, as opposed to the negative step angles of the real trajectory that show
the prevailing turning direction of the circular flow. Conversely, high val-
ues of the drag coefficient cause the block to be dragged to the center of the
tank, and eventually to rotate almost in place, thereby resulting in short step
lengths and negative step angles due to the rotation. Regarding the stochas-
tic force (Figure 7.5), low values of the standard deviation lead to regular
trajectories, and the resulting distribution shows little variance. However, if
the stochastic force is too high, the trajectories become very irregular and
similar to those observed in Brownian motion, while the step length and angle
distribution becomes wider.

7.2 Calibration of Probabilistic Models

As outlined in Section 5.3, the essence of probabilistic modeling is to encap-
sulate a multitude of non-modeled fluctuations into a set of coupled stochas-
tic processes. These stochastic processes are in principle characterized by
a hierarchy of PDFs Pn(n = 1, 2, . . .), thereby resulting in a large—possibly
infinite—number of parameters. However, in most cases, one can assume that
these processes are Markovian, and therefore reduce the number of parame-
ters (Section 5.3.1). These parameters take the form of transition probabili-
ties in discrete-time models or transition rates, written k, in continuous-time
models. If the Markov property holds, one can relate the probability that a
reaction R occur in the next finite time interval [t, t +Δt) and the rate kR
of this reaction in a precise fashion:

P (X(t+Δt) = x+ νR|X(t) = x) � kR ·Δt+ o(Δt) (7.1)

where νr is the population change caused by the reaction, and o(Δt) is an
error term that goes to zero faster than Δt itself. We shall note that proba-
bilities need to be in the interval [0, 1] whereas rates may take any positive
value in the interval [0,∞). As Δt → 0, the probability that an event occurs
during the short time interval [t, t+Δt) becomes small, and the events can
be assumed to be Poisson distributed with rate kR. This formal relation-
ship allows us to infer reaction rates from collision probabilities calculated
on non-infinitesimal time intervals.

In the particular case of aggregation and SA, one is often interested in
determining the probability pcoll for a given robot or building block to col-
lide with another robot during a (non-infinitesimal) time interval [t, t+Δt).
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Assuming that the system is well-mixed and two-dimensional, one can use the
following geometric approximation of the probability of collision (Figure 7.6):

pcoll ∼ Aswept

Atotal
=

v Δtwd

Atotal
(7.2)

where v is the average velocity of the robot, wd the lateral collision distance,
and Atotal the total area of the arena. Interestingly, this expression, known
as the swept volume or area approximation, has been independently derived
for estimating the probability of collision among molecules [193] (in three
dimensions) and mobile robots [48] (in two dimensions).

v t

wd

realizations of 
collision events

Aswept

realization of non-
collision event

Fig. 7.6 A robot moving at
an average speed v sweeps an
area Aswept = v ΔT wd during the
time interval [t, t +ΔT ). Assum-
ing that the other robots are uni-
formly distributed throughout the
arena, one can then approximate
the probability of collision pcoll us-
ing Equation 7.2. A similar rea-
soning can be applied in three
dimensions.

The assumption underlying Equation 7.2 is two-fold. First, the robots are
randomly and uniformly re-distributed throughout the arena at each sam-
pling time (well-mixed property). Second, the robots are identical in size
and geometry, such that wd is a good approximation of the lateral distance
of collision. In more complicated scenarios, multiple encountering probabil-
ities that depend on the size and the geometry of the different objects are
used [48, 82].

Fig. 7.7 Two colliding ro-
bots can assemble only if
their relative heading θh is
smaller than αa/2. The
blue circular sector repre-
sents both the detection and
the communication area of
the robots.

B

h

A

a

h

A

B

a

Aggregation No aggregation



106 7 Model Calibration

7.2.1 Example from Case Study II

Case Study II

A collision does not necessarily lead to the formation of a
bond due to the directionality characterizing the building
blocks, be they robots or molecules. In Case Study II for
instance, robots must be aligned to some extent in order to
aggregate successfully. We approximate this constraint by stating that the
absolute value of the heading θh must be smaller than αa/2, where αa is
the central angle of the detection and communication sector (see Figure 7.7).
Because of the non-holonomic nature of the Alice robots, we assume that
there is always at least one robot, which we denote B, that is aligned upon
collision (B is the robot that runs into the other). Furthermore, we assume
that the absolute value of the heading of B with respect to another robot A
is uniformly distributed in [0, π]. As a result, the probability pa that, upon
collision, two robots are properly aligned is pa ∼ αa/(2 ·π). Since each robot
and each chain has two valid binding sites, the overall probability pb that a
bond is formed can be written

pb = pc · 2 pa ∼= v̂ T wd

Atotal
· αa

π
. (7.3)

In first approximation, the probability that a robot leaves a chain does not
depend on the geometry of the robots, but on the leaving probabilities encoded
in the controller. We consider two cases: (1) a robot has a single neighbor and
his leaving probability is pleave,1, or (2) a robot has two neighbors and his leav-
ing probability is pleave,2. As we observed in real experiments, some robots may
be unable to leave because they are physically trapped by their neighbors. This
effect can be captured by dividing the leaving probability by a factor 1 − ps,
where ps corresponds to the probability that a robot remains stuck. Since there
is no simple geometrical approximation for the probability ps, we need to mea-
sure it using either realistic physical simulations or real experiments. In our
case, we assume that ps is negligibly small.

7.2.2 Example from Case Study V

Case Study V

AIn this section, we show how to determine the reaction rates
of the CRNs given in Section 6.3.3. (Note that we restrict
our discussion to variant A of Case Study V, but this ap-
proach is valid for variant B as well.) Some of these rates
are determined using geometrical approximations; other are measured di-
rectly using orthogonal experiments, generally carried out in simulation. In
the latter case, one needs to carefully design these experiments such as to
minimize the influence of parameters that are not measured explicitly. Also,
the obtained estimate should be invariant across the design space under con-
sideration (e.g., number of robots, size and shape of the arena, mobility
pattern).
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In Case Study V, the swept area approximation needs to be modified to
account for the fact that the cumulated area of the spots is non-negligible
with respect to the total area of the arena. Therefore, one can write the
rate rei of encountering of a robot and spot i as:

rei =
1

Δt
· pc,spot = 1

Δt
· v ·Δt · dspot
Atotal −Aspots

=
v · dspot

Atotal −Aspots
(7.4)

where v is the average velocity of a robot, dspot is the diameter of a spot,
Atotal is the area of the arena, and Aspots is the cumulated area of all other
spots. Based on Equation 7.4, one can then derive the following reaction
rates2:

rec,i = pc,spot · (1 − pw,good)/Δt
rew,i = pc,spot · pw,good/Δt

}
if i is a good spot, (7.5)

rec,i = pc,spot · (1 − pw,bad)/Δt
rew,i = pc,spot · pw,bad/Δt

}
if i is a bad spot. (7.6)

The rates rai and rti of aggregation of two robots within a spot, and of one
robot and a pair of aggregated robots, respectively, can be written:

rai = σa
v · drobot

Aspot,i
rti = σt

v · 2 drobot

Aspot,i
(7.7)

where v is the average velocity of a robot, drobot is the lateral collision distance
between two robots, Aspot,i is the area of the spot i, and σa and σt are two
parameters that account for the partial IR coverage of the Alice robot, which
may sometimes prevent aggregation. We set hereafter σa = 0.6 and σt = 0.5;
these values were measured using orthogonal “experiments” implemented at
the submicroscopic level using Webots (Figure 7.8).

The identification of the rates rmw,i, rmc,i, rlw,i, rlc,i, rdw,i, and rdc,i is more
difficult because they depend on the probability pleave that a robot encounters
the border of the spot during the next time interval [t, t+Δt). Using again
a geometric approximation, we can write

pleave =
v̂ ·Δt

dspot/2
=

Δt

Tt
(7.8)

where Tt is the average time taken by a robot to traverse a spot of diame-
ter dspot. Thus, if i denotes a good spot, we can write

rmw,i = pleave · (1− pleave
good) · pw,good/Δt rmc,i = pleave · (1− pleave

bad ) · (1− pw,good)/Δt

rlw,i = pleave · pleave
bad /Δt rlc,i = pleave · pleave

good/Δt

rdw,i = pleave · (1− pleave
bad )/Δt rdc,i = pleave · (1− pleave

good)/Δt. (7.9)

If i denotes a bad spot, pleave
good, pleave

bad , and pw,good must be changed to pleave
bad ,

pleave
good, and pw,bad, respectively.
2 Note that, according to these definitions, the equality rei = rec,i + rew,i holds, as

expected.
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(a) Orthogonal experiment
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Fig. 7.8 An example of orthogonal experiment implemented in Webots used to
determine the parameter σi that accounts for the partial IR coverage of the Alice
robot (Equation 7.7). (a) Initially, the two robots have random positions within an
arena whose size allow for minimizing the overall experimental time while repro-
ducing the robot-spot encountering dynamics found in real experiments. As soon
as both robots are exploring the spot, the supervisor starts recording the time until
they aggregate. (b) The empirical rate is obtained by fitting an exponential dis-
tribution to the aggregation times obtained from 1000 runs. The parameter σa of
the geometrical approximation given by Equation 7.7 is then adjusted accordingly.
Error bars indicate the 95% confidence interval.

Summary and Conclusion

This chapter discusses the main challenges posed by the calibration of mod-
els of SMPs. On the one hand, submicroscopic models are generally char-
acterized by a large number of parameters directly anchored to a particular
physical phenomenon. On the other hand, probabilistic models often involve
parameters that result from the lumping of many different phenomena,
thereby making their calibration particularly difficult. To overcome this prob-
lem, the MLMM proposes a series of useful tools.

First, in some cases, it is possible to estimate the transition probabilities
of a given model by using geometrical approximations. The underlying as-
sumption is often that the system is well-mixed. Second, one may use both
the real physical system and models at lower abstraction level to construct
orthogonal “experiments” designed specifically for estimating one or more pa-
rameters of the model. Third, appropriate numerical methods may allow for
extracting the model’s parameters directly from real or simulated trajecto-
ries of the system. The latter approach was illustrated in this chapter with
a specific focus on trajectories in two-dimensional, physical space. Chap-
ter 9 introduces a more general and systematic method that can deal with
n-dimensional trajectories in state space.
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Model Validation and Analysis

Remember that all models are wrong; the practical question is
how wrong do they have to be to not be useful.

— George Edward Pelham Box (1919)
in Empirical Model-Building (1987)

Even with a great deal of care in constructing and calibrating a model, a
validation of its underlying assumptions is necessary. One cannot prove the
correctness of a model in the mathematical acceptation of the term; one can
merely test it until it fails, and then modify it accordingly. An immediate
corollary of this statement is that a model can only be proved wrong; however,
a contradiction often provides deep insights into the system and its model.
This observation is one of the strongest justification of multi-level approaches
to the modeling of distributed robotic systems. Indeed, the different models
of the same hierarchy generally disagree with each other to some extent,
thereby pinpointing the assumptions that are not fulfilled and allowing the
modeler to explore the various trade-offs between accuracy, scalability, and
computational cost. Hereafter, we illustrate this claim by discussing in detail
the validity of the models presented in the previous chapters; in particular, we
analyze the impact of various assumptions on the models’ predictive accuracy.

8.1 Embodiment

The main reason why ABMs are two orders of magnitude faster than their
submicroscopic counterpart (see Section 8.4) is because they neglect most
physical effects (e.g., they assume that the motion of robots can be described
using simple kinematics), and they use simple collision detection routines
(e.g., the robots can be represented as spherical objects with perfect om-
nidirectional sensing coverage). In other words, they do not account for
the specific physical and geometrical features of the robots or the environ-
ment, which we call embodiment hereafter. While detailed physics-based
simulations can be useful (and even necessary) in some cases, more abstract
models are often sufficient to yield accurate predictions depending on the
performance metric of interest and the properties of the target system. For

G. Mermoud, Stochastic Reactive Distributed Robotic Systems, 109
Springer Tracts in Advanced Robotics 93,
DOI: 10.1007/978-3-319-02609-1_8, © Springer International Publishing Switzerland 2014
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Fig. 8.1 Box plots of the system performance predicted by the different models
of Case Study V for the default parameter set (see Table 4.2). On each box, the
central mark is the median, the edges of the box are the 25th and 75th percentiles,
the whiskers extend to the most extreme data points not considered outliers, and
outliers are plotted individually. Note the excellent agreement of all models, in
spite of their very different levels of abstraction.

instance, in Case Study V, the ABMs has the same prediction accuracy as
submicroscopic models (Figure 8.1). Importantly, not only the median or the
mean performance is correctly predicted, but also the general shape of the
distribution.

In Case Study II, however, some important divergences can be observed.
Figure 8.2b compares the prediction of macro-stochastic and submicroscopic
models in the case of the probabilistic controller with pleave,1 = 10−4 and
pleave,2 = 10−9. While one can observe an excellent fit for chains of size four,
smaller chains tend to grow faster in macro-stochastic simulations than in
submicroscopic simulations because of spatiality and embodiment. Indeed,
both of these characteristics are abstracted at the macroscopic level. For
instance, embodiment generates geometric obstructions that make bonds less
likely to form; often this is due to large chains obstructing the paths of other
robots, or aggregates forming near walls where further aggregation is not
possible.

In some cases, even submicroscopic simulations are not sufficient to ac-
count properly for embodiment. We implemented the two controllers of Case
Study II using a group of 19 Alice robots, and we performed five real ex-
periments of 20 minutes. A four minute excerpt from one such experiment
is provided in Figure 8.3. Again, we observed some discrepancies due to
embodiment between our submicroscopic model and real experiments (Fig-
ure 8.4). First, due to the Alice’s weak motor system, occasionally a robot
may become physically trapped by others in the same aggregate, making
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(b) Inter-level validation

Fig. 8.2 Validation of Webots and CRN models of Case Study II for the prob-
abilistic controller with N0 = 19. (a) Experimental validation (black square are
experimental data averaged over 5 runs) of submicroscopic and macro-stochastic
predictions of the time evolution of the average number of chains of size three
with pleave,1 = pleave,2 = 10−3. (b) Comparison of the time evolution of the av-
erage number of chains of size two (green), three (red) and four (cyan) predicted
by macro-stochastic models (dashed lines) and submicroscopic models (continuous
lines) with pleave,1 = 10−4 and pleave,2 = 10−9.

disaggregation impossible. These effects are difficult to capture accurately
at the submicroscopic level as they result from subtle physical interactions
(e.g., protruding details of the robot’s body that interlock or rub against each
other). Second, we observe that some robots may aggregate with the side
of a chain due to IR reflections that are not modeled in Webots, leading in
some cases to unstructured aggregates, a phenomenon also observed in pre-
vious experiments of object aggregation [81]. The probability of occurrence
of this type of aggregation is a function of the chain size (the more robots in
a chain, the more in-chain binding sites) as well as the shape and sensor ar-
rangement of the robots (which exhibit a strong heterogeneity, both in sensor
and actuator response and in sensor arrangement). Furthermore, irregular
shapes tend to trigger additional incorrect attachments, which may lead to
non-linear, positive feedbacks. This effect is difficult to capture accurately
at the submicroscopic level. An accurate modeling of IR reflections would be
computationally expensive, and group heterogeneity would require the man-
ual collection of statistically significant data for each sensor of each robot.
As such, this second discrepancy is ignored by our models.

In Case Study V, embodiment explains the divergence observed between
submicroscopic and macro-stochastic models for Nspots = 10 when the robots
have an exact estimate of the spots’ type and the spots outnumber the robots
(Figure 8.5). In this case, since there is no “intrinsic” randomness due to the
noise, a robot with pleave

bad = 0 may explore indefinitely a spot, waiting for a
mate. If there are more spots than robots, deadlocks may arise—each robot
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(a) Initial distribution (b) After 30 sec (c) After 1 min

(d) After 2 min (e) After 3 min (f) After 4 min

Fig. 8.3 Snapshots of a four minute excerpt from a real experiment (Case Study II)
with N0 = 15 Alice robots and pleave,1 = pleave,2 = 10−3. (a) At t = 0, the system
is in an arbitrary, homogeneous state. (b) After 30 seconds, some aggregates have
already begun to form. (c), (d), and (e) The system continues to evolve from 1
to 3 minutes; images are captured at uniform intervals of one minute. (f) Finally,
after 4 minutes, most Alices have bonded with others to form an aggregate (only a
single robot remains disaggregated).

waiting for another one in a different spot. As a result, the optimum shifts
towards non-zero leaving probabilities as the ratio of spots to robots increases.
This result is similar to that obtained in the stick-pulling experiment [48],
which involved however a deterministic timeout for controlling the waiting
time rather than a leaving probability.

In reality, the combined effects of embodiment, wheel slip, and actua-
tion inaccuracies sometimes cause the robots to involuntarily leave the spot
they are exploring. This phenomenon artificially maintains the leaving prob-
abilities above an artificial threshold, regardless of the real value of pleave

good
and pleave

bad . The drop in performance predicted by macro-stochastic simu-
lations for small leaving probabilities is therefore not observed in submi-
croscopic simulations that accurately capture these effects. The impact of
embodiment on the predictions of macro-deterministic models is discussed in
Section 8.3.
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(a) Physically trapped robot (b) Malformed chain due to IR reflections

Fig. 8.4 Two types of discrepancies observed in Case Study II between submi-
croscopic models and real experiments. (a) In simulation, robots can leave from
the middle of a chain; in reality, a robot (encircled in red) may remain physically
trapped by its neighbors. (b) A robot may aggregate on the side of a chain due to
IR reflections that are not modeled in Webots.
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Fig. 8.5 Predicted performance of the group with k = 2 for (a) Nspots = 4 and
(b) Nspots = 10, and a constant number of robots N0 = 5 that have an exact esti-
mate of the spots’ type in Case Study V. Macro-stochastic and macro-deterministic
models are consistent with the submicroscopic simulations as long as there are less
spots than robots, but their predictions diverge for Ns = 10.
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8.2 Spatiality

Spatiality is another feature of multi-robot systems that is difficult to capture
at high abstraction levels [190]. When the position of the individual robots
is not captured explicitly, most models assume that the system is well-mixed
(Section 5.3.5), even though some sophisticated approaches based on the cou-
pling of PDEs and rate equations are capable of handling non-well-mixed sys-
tems as long as they remain relatively well-behaved (i.e., advection-diffusion
systems) [24, 189, 190, 213].

In Case Study V, the average inter-collision time between robots and spots
is 13 s; given an average speed of about 2.2 cm/s, a robot travels about
29 cm between two collisions, which is in the order of the arena size. This
observation indicates in principle that our system is well-mixed and that
the geometric approximations discussed in Section 7.2.2 are applicable. This
claim is corroborated by Figure 8.1, which exhibits an excellent agreement
between spatial and non-spatial models.

In contrast, non-spatial models of Case Study III exhibits a faster con-
vergence than spatial models (Figure 8.6), even for large number of building
blocks (N0 = 1000). This discrepancy is caused by stable, non-reactive aggre-
gates, which surround the remaining free building blocks, thereby hindering
their mobility. This suboptimal mixing tends to slow down the aggregation
process; this phenomenon is not captured by non-spatial models.

Fig. 8.6 Inter-level valida-
tion of a suite of models of
Case Study III (2-DOF) for
a large number of building
blocks (N0 = 1000). We com-
pare the system’s dynamics
as predicted by the macro-
deterministic model with a
discretization factor K =
3000 (Section 6.3.2), the non-
spatial hybrid MCM (Sec-
tion 6.2.2), and the spatial
ABM described in [206].
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8.3 The Macro-deterministic Approximation

As discussed in Section 5.3.4, one sufficient condition for macro-deterministic
models to be accurate (in first order) is that the system involves a large (ide-
ally infinite) number of robots. However, for some systems, this condition
is not necessary. For instance, macro-deterministic models of Case Study II
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exhibit a small first-order error for N0 = 19, well within the standard devi-
ation of the stochastic simulations (Figure 8.7). Of course, the second-order
error is still large given the high stochasticity of the system.

Fig. 8.7 Comparison of the
prediction of macro-stochastic
(continuous lines) and macro-
deterministic (dashed lines)
models for the time evolution
of the system with N0 = 19,
pleave,1 = 10−4 and pleave,2 =
10−9. These results show
that, for Case Study II, the
macro-deterministic approxi-
mation remains valid, in the
first order, even for small N0.
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For other systems, small copy numbers lead to quantization errors that may
be amplified by non-linearities due to positive feedbacks, large differences in
time scales (stiffness), and more generally rare reactions with large effect.
The impact of these factors on the first-order error depends strongly on the
model structure and its parameters. As a rule of thumb, simple, linear models
such as the CRN for k = 1 (Equation 6.18) are typically less sensitive to such
structural effects than more complex—and often non-linear—models such as
the CRNs for k > 3 (equations 6.19 and 6.20).

Case Study III (2-DOF) offers an insightful illustration of this dependence
on the model’s structure. As one may expect, the first-order accuracy of
the macro-deterministic model exhibits a graceful decrease as N0 decreases
(Figure 8.8a). For N0 = 50, the macro-deterministic model actually pre-
dicts a faster growth of the pair ratio than its lower abstraction counterpart,
whereas an almost perfect match is observed for N0 = 500. However, the
validity of the macro-deterministic approximation does not only depend on
the copy number N0; the structure of the network and the number of interac-
tions also plays a key role. Figure 8.8b shows the relative error of the macro-
deterministic model for different levels of discretization K of the bond energy
(see sections 4.3 and 6.3.1) with respect to a baseline prediction for K = 3000.
The relative error depends on K in a strongly non-linear fashion; multiple
local minima can be observed where the macro-deterministic model performs
well in spite of a small value of K. We hypothesize that these non-linearities
arise from the opposite effects of state discretization. On the one hand, it
improves the description of the system’s dynamics. On the other hand, it
weakens the macro-deterministic approximation by lowering individual reac-
tion rates while keeping the effect of firing events on the performance metric
identical. The computational cost of the model being proportional to K, one
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Fig. 8.8 Illustration of the effect of varying copy numbers and discretization on the
macro-deterministic model’s accuracy in Case Study III (2-DOF). (a) Comparison
of the long run prediction (50 000 s) of the hybrid Monte Carlo model (N0 = 50,
triangles; N0 = 100, squares; N0 = 500, circles) and the macro-deterministic model
(N0 = 50, dotted line; N0 = 100, dashed line; N0 = 500, continuous line) for
different total number of building blocks N0. (b) Relative error of the macro-
deterministic model as a function of the level of discretization of the bond en-
ergy K ∈ [100, 3000]. The error is computed with respect to a baseline prediction
with K = 3000. Interestingly, in the close neighborhood of K = 276, the error is
small (approximately 0.6%) and it attains 4% for K = 657.

could use a non-uniform discretization of the state space such that the error
is minimized. Nevertheless, even small K (e.g., around 276, see Figure 8.8b)
are appropriate for qualitatively probing the dynamics of the system. Note
however that these “good” values of K may vary as a function of the control
and design parameters of the system. For K ≥ 2000, we consistently observe
excellent quantitative agreement with models at lower abstraction level.

Case Study V offers another illustration of how the model’s structure in-
fluences the validity of the macro-deterministic approximation. The com-
partmentation caused by spots acts like vesicles in cell biology, that is, they
form weakly coupled subsystems characterized by even smaller copy num-
bers, and reactions whose rate usually is small (e.g., two robots aggregating
in a spot), and effect large (e.g., destruction of a spot). This phenomenon is
also found in biology as a strong limitation of the use of macro-deterministic
models [214]. In particular, the strong irregularity in the landscape of spot
destructions around pleave

good = pleave
bad = 0 for k = 3 is not captured at all by the

macro-deterministic model (Figure 8.9), because it does not account for the
situation where all robots are either aggregated or exploring different spots,
thus leading to deadlocks similar to those discussed in Section 8.1.

Figure 8.5 offers a better illustration of this effect by assuming that the
robots have an exact estimate of the spots’ type. Macro-deterministic models
do not account for any drop in performance when the spots outnumber the
robots (Figure 8.5b); even worse, they predict an increase of the performance
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as the number of spots increase. This finding emphasizes once more the
importance of using models at multiple abstraction levels; abstractions that
seem correct a priori may actually be error-prone in some specific scenarios.
In our particular case, neglecting the effect of robots that “lose” track of
the spot they are exploring leads to inaccuracies at the macro-deterministic
level when leaving probabilities become small. More importantly, the small
number of robots and spots in the system as well as the compartmentation
effect caused by spots render the macro-deterministic approximation invalid,
and predictions of such models inaccurate, in particular when the ratio of
spots to robots increases.

8.3.1 Fixed Points and Stability

When the macro-deterministic approximation is valid, one may perform an
analytic study of the system’s behavior. For instance, we may look for the
fixed points of the model of Case Study III described in Section 6.3.2. In
particular, by setting xi(k + 1) = xi(k) in Equation 6.15, we obtain:

xi(k) =
f(i) · pjoin

2 · pleave(si)
· xs(k)

2 = αi · xs(k)
2 (8.1)

with αi a simplification variable. By conservation of the number of building
blocks, one can also write:

xs(k) + 2 ·
K∑
i=1

xi(k) = 1, (8.2)

and replacing xi(k) according to Equation 8.1, we obtain the following ex-
pression:

xs(k) + 2

K∑
i=1

αi · xi(k)
2 − 1 = 0. (8.3)

Solving for xs(k) yields the first coordinate of the fixed point:

x̄s =
−1 +

√
1 + 4

∑K
i=1 αi

2
∑K

i=1 αi

. (8.4)

The other coordinates can be easily derived from the relation given by Equa-
tion 8.1.

Now, if we are interested in the stability of this fixed point, we shall com-
pute the eigenvalues of its associated Jacobian matrix J of the vector-valued
function F(x̄) : RK+1 → R

K+1, defined as follows:
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Fig. 8.9 Comparison of the predictions of submicroscopic, macro-stochastic, and
macro-deterministic models of Case Study V for (a) k = 2 and (b) k = 3
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x(k + 1) = F
(
x(k)

)
with x(k) =

⎛
⎜⎜⎜⎝

xs(k)
x1(k)

...
xK(k)

⎞
⎟⎟⎟⎠ . (8.5)

For the sake of simplicity, let’s consider the case where K = 1. Then,
the relation x1(k) = (1− xs(k))/2 (obtained from Equation 8.2) reduces the
system to a single difference equation:

xs(k + 1) = f(xs(k)) = −pjoinxs(k)
2 + (1− pleave)xs(k) + pleave. (8.6)

The derivative of f(x) evaluated at the fixed point x̄s indicates the stability
of the fixed point. Namely, the fixed point is stable if and only if

f ′(x̄s) =
∣∣1−√pleave

√
4 pjoin + pleave

∣∣ ≤ 1. (8.7)

The stability of the fixed point x̄s as a function of the parameters pleave

and pjoin is illustrated in Figure 8.10a. In the region of stability, all trajecto-
ries converge to x̄s in finite time. As one approaches the region of instability,
trajectories oscillate around the fixed point before convergence. In the re-
gion of instability, an attracting period-2 orbit appears, which is given by the
following equation:

f(f(x̄s,2)) = x̄s,2. (8.8)

This behavior is called a period doubling bifurcation. Figure 8.10b depicts the
bifurcation diagram in case where pleave = pjoin = μ. The fixed point x̄s =
1
2

( − 1 +
√
5
)

becomes unstable at μ = 2/
√
5, and gives rise to a period-2

orbit whose amplitude A is proportional to μ:

A(μ) = −
√
−4 + 5μ2

μ
. (8.9)

Figure 8.10c illustrates the qualitative behavior the system as one approaches
and enters the region of instability. In reality, oscillations are never observed
in Case Study III because pleave and pjoin need to be small for the model to
be valid (see Section 7.2 for a more complete discussion). The oscillations
observed in simulation are merely an artifact of invalid modeling assump-
tions (in particular, the time-discrete nature of the model coupled with large
transition probabilities). Therefore, one can safely conclude that the system
will indeed converge to a unique fixed point, which is given by Equation 8.1.
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Fig. 8.10 (a) Stability of the fixed point x̄s in parameter space, and (b) the bi-
furcation diagram for pleave = pjoin = μ. Bold lines denote stable fixed points
or attracting periodic orbits whereas dashed lines denote unstable fixed points.
(c) Sample trajectories for μ = {0.2, 0.8, 0.9} illustrate the period doubling bifur-
cation at μ = 2/

√
5 = 0.8944.

8.4 Scalability

The main motivation for building up models at higher abstraction level is
computational efficiency. Table 8.1 provides the typical speed-up factor (with
respect to real time) of the different models of Case Study V. Note the signif-
icant impact of spatiality on computational complexity: non-spatial models
are up to four orders of magnitude faster than spatial models. Of course, to
be completely fair, one shall also account for the differences in implementa-
tion; however, such a thorough analysis is beyond the scope of this work, and
we provide these benchmarking data as an illustration of the large diversity
of computational costs observed in such hierarchies of models.

Also, these speed-up factors are estimated from simulations for a given set
of parameter, and they may vary as a function of those parameters. For in-
stance, all microscopic models have a speed-up factors inversely proportional
to the number of robots, since they keep track of the state of each of them
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Table 8.1 Typical speed-up (with respect to real time) of the different models of
Case Study V for k = 2, 6 robots, and 4 spots. The last column denotes whether the
model’s outcome varies at each run or not. Note that, while macro-deterministic
models exhibit a lower speed-up than macro-stochastic models, the latter typically
require a large number of runs to yield statistically significant predictions.

Model Spatiality Implementation × real time Stochastic
Submicroscopic yes Webots 101 yes
ABM yes Netlogo 103 yes
DES no Custom (C++) 107 yes
Macro-stochastic no StochKit 107 yes
Macro-deterministic no MATLABTM 105 no

individually. Another important cause for decreased computational perfor-
mance in time-discrete models such as ABMs is the presence of different time
scales (e.g., rare events such as spot destructions, and frequent events such
as robot collisions) that prevent the time step from being too large. While
increasing the time step speeds up the simulation, it also diminishes the ac-
curacy of the simulation, ultimately leading to missed events. Similarly, very
frequent events can significantly slow down discrete-event and stochastic sim-
ulations, as they explicitly capture each individual event. Very sophisticated
optimized variants of the Gillespie’s SSA have been developed to overcome
this problem [176, 177, 187, 215].

Even though macroscopic models are in principle not directly affected by
the number of robots involved in the system, the complexity of the underly-
ing CRN usually depends on the complexity of the environment. In our case,
for instance, experiments showed that simulation times scale in O

(
N3

spots
)

for macro-deterministic models, and in O
(
eNspots

)
for macro-stochastic mod-

els, with Nspots the number of spots in the system. In terms of memory
usage, macro-deterministic models also scale up much better than stochastic
simulations. Stochastic simulations used 8 GB of RAM for Nspots = 2000
and N0 = 4000 whereas macro-deterministic models only required 1 GB for
the same set of parameters. These findings, along with the fact that macro-
deterministic models become more accurate as Nspots and N0 increase (see
Section 8.3), motivate the use of macro-deterministic models for the study of
large distributed systems, or the use of hybrid approaches that preserve the
stochastic treatment of rare reactions with large effect, yet enable scalability
by solving deterministically the rest of the CRN [216]. We shall however
outline the fact that the implementation plays a key role in the scalability of
these models.
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8.5 Parameter Sensitivity

Fallacious assumptions are not the only cause for divergent predictions; in-
accurate parameterization is another common source of error. Sensitivity
analysis answers the question:“If the model’s parameters are inaccurate, what
will the effect be on the model’s predictions?” More formally, it consists in
estimating the relationship between parameters’ variation and predictions’
variations. Let M(p, t,x

)
denote the prediction a model M parameterized

by a vector p at time t for an initial state x. Then, one is interested in
estimating the function:

SM

(
Δp
)
= dist

(
M(p,x, t),M(p+Δp,x, t)

)
(8.10)

where dist(·, ·) denotes some distance function and Δp is a vector of param-
eter variations. If SM

(
Δp
)

remains small even for large deviations Δp, then
even rough approximations of the model’s parameters are sufficient to obtain
a reasonable prediction. Instead, if SM

(
Δp
)

grows quickly with Δp, then
the model requires an accurate estimate its underlying parameters.

Hereafter, we perform a sensitivity analysis of the submicroscopic model
of Case Study IV described in Section 6.1.2. In particular, we compare in
simulation the effect of perturbing the calibrated parameters (i.e., the drag
coefficient Cd and the standard deviation σF of the stochastic force) on the
predicted distributions of self-assembled structures. Our approach consists
in calculating the distance between a reference distribution (obtained from
simulated SA experiments with the calibrated parameters) and the distribu-
tions corresponding to perturbed parameters. For each set of parameters,
we perform 1000 simulation runs (5 minutes of simulated time each), and
classify the resulting self-assembled structures into geometrical classes. As
mentioned in Section 4.4, we use only four blocks in this study, which leads
to the ten possible outcomes depicted at the bottom of Figure 8.11. The ref-
erence distribution (Figure 8.12) is obtained by aggregating 10 realizations
of 1000 runs using the calibrated parameters found in Section 7.1.2.

We then compare the resulting distributions of self-assembled geometries
using the l1-norm:

l1-norm =

10∑
i=1

|xa
i − xb

i | (8.11)

where xa
i , and xb

i represent the proportion of geometries of class i for the set of
parameters a and b, respectively. Figure 8.11 depicts the distance (as defined
by Equation 8.11) between the reference distribution (see Figure 8.12) and
distributions yielded by parameters ranging between 0 and 1.5 for Cd and
0 mN and 1.5 mN for σF .

Our results show a significant sensitivity of the submicroscopic model to
variations of both the drag coefficient and the random force. First, one
can observe important qualitative variations of the obtained distributions
throughout the parameter space. The magnitude of these variations is much
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Fig. 8.11 Top: Plot of the distance (as defined in Equation 8.11) between the ref-
erence distribution (i.e., the distribution yielded by Cd = 0.45 and σF = 0.55 mN)
and distributions obtained with parameters ranging between 0 and 1.5 for the drag
coefficient Cd, and 0 mN and 1.5 mN for the standard deviation σF of the stochas-
tic force. Bottom: Sketch of the 10 classes of self-assembled geometries discovered
during the simulation.

Fig. 8.12 Average distribu-
tion of self-assembled geome-
tries for Cd = 0.45 and σF =
0.55 mN (i.e., the optimal
parameters reported in Sec-
tion 7.1.2) averaged over 10 re-
alizations of 1000 runs. The
error bars denote the stan-
dard deviation, and the av-
erage distance (as defined in
Equation 8.11) between real-
izations is 0.065.
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larger than the fluctuations observed in different realizations of the reference
distribution (see Figure 8.12). Second, a more quantitative analysis shows
that the most important divergences occur for small values of either param-
eters. This result is important, as it shows that even small variations of
the physical parameters can lead to dramatic changes in the outcome of the
simulation. It also further outlines the importance of a proper parameter
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calibration. Interestingly, the distance landscape contains local minima; in
particular, a ridge crosses the entire parameter set around Cd = 0.7, thereby
giving rise to a large region (corresponding to large stochastic forces) that
achieve small, yet suboptimal, distances. This finding reflects the difficulty
of “reverse-engineering” SA processes, that is, inferring a model of their dy-
namics based on samples of the formed structures.

The variations in the dataset shown in Figure 8.11 can be better visualized
using a Principal Component Analysis (PCA). Figure 8.13 depicts both the
dataset and the original variables (i.e., the 10 geometrical classes) projected
on the two-dimensional plane spanned by the two principal components. In-
terestingly, one can directly observe that principal component 1 is aligned
with the physically disconnected geometries (classes 1, 2, 8, 9, and 10), which
are favored by small values of Cd and σF . Indeed, while disconnected geome-
tries are never observed in most scenarios (in particular when the mobility of
the blocks with respect to each other is sufficiently high), they can become
prominent in others (e.g., see the distribution for Cd = 0.43 and σF = 0.54 in
Figure 8.11). On the other hand, the large elongated cluster aligned with the
second component corresponds to scenarios that yield a unique aggregate;
interestingly, there is no region of the space that contains most of the points.
This observation further confirms that SA is sensitive to variations of the
physical parameters of the model.

Fig. 8.13 Biplot of the
dataset (small dots) shown
in Figure 8.11 projected on
the two-dimensional plane
spanned by the its principal
components. Projections
of the original geometrical
classes are depicted by solid
lines.
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Summary and Conclusion

This chapter describes the conditions of validity of the models described in
earlier chapters, in particular in relation with some specific properties of
the underlying system. Embodiment proves to be particularly difficult to
capture, and it may lead to important inaccuracies in certain cases, even at
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the submicroscopic level. More abstract models generally lump these effects
into one or more parameters that are generally quite difficult to calibrate
because they require experimental data obtained with real robots. Spatiality
turns out to be considerably more tractable, especially when the system is
well-mixed. When this is not the case, one may either model the system at
the microscopic level or, if possible, use a macroscopic formulation capable
of handling non-well-mixed systems.

One fundamental property of most robotic systems is that they operate
far from the thermodynamic limit where the number of robots approaches
infinity. As a result, the validity of the macro-deterministic approximation
needs to be systematically re-examined. Our results show that the effect of
this approximation varies greatly as a function of the structure of the model,
and does not only depend on the copy numbers. As a rule of thumb, the
presence of rare reactions with large effect is the essential indication that
the macro-deterministic approximation is invalid. In spite of these pitfalls,
macro-deterministic models are important tools of the MLMM as they al-
low one to investigate analytically the system’s behavior (e.g., existence and
stability of fixed points, chaotic behavior, etc.).

This chapter also provides some insights into the computational cost and
the scalability of the different models described in earlier chapters. Our ob-
servations are two-fold. First, non-spatial models are up to four orders of
magnitude faster than spatial models, thereby outlining the drastic compu-
tational cost of spatiality. Second, macro-stochastic models are generally less
scalable and more expensive than their macro-deterministic counterpart. The
latter assertion must be qualified by the fact that the implementation plays
a key role in the scalability of the models.

Finally, we discuss the important notion of parameter sensitivity, albeit
superficially. Indeed, we focus our analysis on the submicroscopic model of
Case Study IV described in Section 6.1.2. Our results not only stress the
importance of proper calibration of the model’s parameters, but they also
preclude the possibility of inferring a model of a given SA process based only
on a set of final outcomes. While this issue is not crucial at the centimeter-
scale, where real-time and accurate tracking of each building block is feasible,
it poses important challenges for studying SA at the microscale, where such
detailed analysis of the system’s dynamics is difficult.
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Automated Multi-level Modeling

No more than (these) machines need the mathematician know what he does.
— Henri Poincaré (1854-1912)

Quoted in The World of Mathematics (New York 1956), by JR Newman.

Nearly all steps of a typical engineering process can be reliably automated.
Software tools such as MathematicaTM, Coq, and BLAST can solve almost
arbitrarily intricate equations, demonstrate complex theorems, and prove the
correctness of algorithms. Machine tools and 3D printers can construct sim-
ple or complex objects based on a CAD model, with virtually no human
intervention. Whenever a process can be broken into a set of relatively sys-
tematic and formal recipes, there is room for automation. Following this
line of reasoning, and assuming that the MLMM provides such recipes, this
chapter explores the opportunity of automating the generation of models at
multiple abstraction levels. In particular, we refine and extend the MLMM
by introducing a methodological and computational framework, called the
M3 framework1, which provides a consistent set of theoretical and compu-
tational tools targeted to the automated construction of models of SMPs at
multiple abstraction levels.

Our approach builds upon the considerations of the previous chapters,
and particularly on the central and essential idea that distributed reactive
systems can be described as sets of interacting agents with two essential
features: hybridity (i.e., they have both a continuous, physical state, and a
discrete, logical state) and stochasticity (i.e., their dynamics can be described
essentially as a stochastic process). Crucially, we assume that the discrete
component of the particles will serve as a blueprint for constructing models
at increasing level of abstraction, similarly to the MLMM. More formally, we
define our system as a set of coupled hybrid automata [217], which we refer
to as particles hereafter, whose states have two components: (i) a continuous
component that typically denotes the physical state of the particle (e.g., its
position and velocity in physical space, its temperature, its battery level,
1 The name of the M3 framework originates from both the association of its cre-

ators’ names (Mermoud, Mastrangeli, and Martinoli) and the contraction of the
acronym MLMM.

G. Mermoud, Stochastic Reactive Distributed Robotic Systems, 127
Springer Tracts in Advanced Robotics 93,
DOI: 10.1007/978-3-319-02609-1_9, © Springer International Publishing Switzerland 2014
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etc.), and (ii) a discrete component that denotes the logical state, called con-
trol mode, of the particle. The discrete dynamics depend on the continuous
dynamics, and vice versa (Figure 9.1).

Fig. 9.1 The M3 framework
assumes any SMP can be de-
scribed as a hybrid entity. The
continuous, physical state of
each particle, in conjunction
with a user-defined list of in-
teractions, gives rise to the dis-
crete, logical components of
the state space, which serves
as discretization blueprint of
the continuous state space.

discrete state discrete state
(logical state)

continuous state
(physical state)

discretizes

gives rise to

interactions
(user-defined)

Our methodology makes the fundamental assumption that the particles
are strictly reactive, that is, any change in control mode can be in-
terpreted as the result of an interaction with other particles or
with the environment. A corollary of this definition is that one can asso-
ciate each control mode of the particle to a given interaction configuration.
In robotics, when designing a robot’s controller, one naturally arranges the
different interaction configurations that the robot can be in into groups or
classes indexed by a set of behaviors. For instance, the designer will group
all situations in which the robot is close to an obstacle (e.g., another robot
or an arena wall), devise an appropriate control law for such situations, and
associate the resulting class to a behavior obstacle avoidance.

Following this methodology, the controller of each robot naturally reflects
the most important states of the robot. As a result, one can use the robot’s
controller as a blueprint to construct a meaningful partition of the continuous
phase space, and thereby deriving models at higher abstraction level. In the
MLMM, the control modes are defined a priori, upon designing the system;
as a result, they merely offer a robot-centric (or particle-centric, in our case)
representation of the world. As a result, it is often necessary to refine the
resulting models a posteriori, in order to account for hidden degrees of free-
dom (see Chapter 6). In a pure bottom-up approach, this problem is solved
by starting with a detailed model that accounts for all interactions in the
system, including those occurring between particles and the environment.

Therefore, the M3 framework relies on a detailed microscopic represen-
tation of the system, which we call Canonical Microscopic Model (CMM),
which is a formal description of a distributed system that can be algorith-
mically constructed. Importantly, the CMM is a mathematical construct,
rather than a computational model; it provides in particular a baseline for-
malism for our methodology based on the abstraction of detailed models into
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coarser models. More generally, it is not intended for simulation purposes,
as it is often difficult to specify completely (see Example 9.15 on p. 132).
The CMM exhibits a few key properties: (i) it describes a given distributed
system as a set of coupled hybrid automata, thereby allowing for a natural
coupling between the continuous and discrete components of the state space;
(ii) the underlying assumptions of the CMM allow the algorithmic construc-
tion of the control space V of its constitutive particles solely based on their
trajectories in the continuous state space X; (iii) because the control modes
in V are mapped to a unique interaction configuration, they form a partition
of the continuous phase space S, that is, the continuous space of the en-
tire system; (iv) ultimately, by a proper aggregation of those control modes,
one can obtain a more tractable and meaningful set of metastates, which we
denote q1, . . . , qr. Importantly, this process of aggregation is precisely the
mental process carried out by the designer of a robotic system. The latter
metastates are the basis for an algorithmic conversion of any CMM into an
equivalent macroscopic representation based on the CRN formalism.

As we shall see, the underlying assumptions of the M3 framework make
the intermediate models considerably large and complicated; however, they
allow for the automated generation, and subsequent reduction, of models at
different abstraction level. The framework constructs the models in a bottom-
up fashion: based on observed trajectories of the system and a description of
the possible interactions among its constituent components, the framework
generates models at increasing levels of abstraction. Figure 9.2 illustrates
the governing principle of our approach: for each newly observed interaction
configuration, a new control mode is created, and added to the control graph
of the corresponding particle in the CMM (Section 9.1). This control graph
is then used as blueprint for generating a macroscopic model of the system
(Section 9.3). By recording relevant information about the state of the system
at each transition, one can also obtain a precise estimate of the parameters
of this model (Section 9.3.1). Owing to this systematic approach, the only
piece of information that the user needs to provide is the list of interactions
that are relevant to the system’s dynamics according to a given criterion or
performance metric.

9.1 Canonical Microscopic Model (CMM)

Consider a system of m interacting particles P = {P1, . . . , Pm} embedded
in a n-dimensional continuous state space X ⊆ R

n. These particles may
interact with each other through a set of interactions I = {I1, . . . , It} (see
Definition 9.6 on p. 131). At the microscopic level, each particle P is an
individual entity that is described as a hybrid automaton composed of the
following components:
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Fig. 9.2 Illustration of the model construction for a 1-dimensional system of 3
particles {P1, P2, P3} belonging to the same class and one interaction A, which is
active whenever two particles are closer than a given distance r. At t = t0, no
interaction has occurred yet, and both the control graph of the particles contains
only one mode S0, which denotes the absence of interaction. Incidentally, the
CRN has only one species, and no reaction. Upon the encountering of P1 and P2

at t = t1, a new control mode A1 is appended to the control graph, and the
reaction 2 · 1S0 ⇀ 2A1 is added to the CRN. The control mode Ai denotes that
the particle has i partners through interaction A. Finally, at t = t2, P3 joins
the aggregate formed by P1 and P2, thereby making P2 switch to a new control
mode A2, and creating a new reaction 1S0 + 2A1 ⇀ 2A11A2.

Definition 9.1 (Variables). The real-valued state vector x = [x1, . . . , xn]
T ∈

X denotes the position of the particle P in the continuous state space X. We
denote Xi = {x1,i, . . . , xn,i} the set of state variables of the particle Pi.

Definition 9.2 (Control graph). The finite directed multigraph G = (V , E)
is called the control graph of P . The vertices ξj in V are called control modes,
and they form the control space V = {ξ1, . . . , ξk}. The edges ei in E are called
control switches. Each control mode ξj is labeled with a unique indicator
function φj : I → {0, 1}, called an interaction configuration, defined as
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φj(I) =

{
1 if I is active in mode ξj ,

0 otherwise.
(9.1)

Therefore, each control mode is associated to a unique interaction configu-
ration, and vice versa, such that there exists a one-to-one map Φ : V →
{φ1, . . . , φk}.
Definition 9.3 (Flow condition). We define the vertex-labeling function
flow that assigns to each control mode ξ ∈ V a collection of stochastic pro-
cesses Y ξ

i (t) (i = 1, . . . , n) whose variables are from
⋃

Pi∈P Xi.
In other words, the trajectory xi(t) along the i-th dimension of state space

is a realization of some stochastic process Y ξ
i (t). More formally, we have:

x(t)
�
=
[
Y ξi
1 (t) . . . Y ξi

n (t)
]
. (9.2)

Definition 9.4 (Jump conditions). The edge-labeling function jump(e)
assigns to each interaction switch e ∈ E a predicate that is defined by the
interaction associated to the switch e (see Definition 9.6).

Definition 9.5 (Events). A finite set Σ = {σ1, . . . , σ2 t} of events and an
edge-labeling function event : E → Σ that assigns to each control switch an
event. An event σi denotes either the creation or the destruction of one
interaction I.

Particles interact via joint events. Let us consider two particles P1 and P2:
If event σ is both in Σ1 and Σ2, then P1 and P2 must synchronize on σ-
transitions. In other words, P1 and P2 must synchronize on transitions la-
beled by the same interaction.

Definition 9.6 (Interaction). An interaction I is defined as a quintu-
plet (Pi, Pj , cond,D1,D2) where Pi and Pj are the particles that may interact
through I; the predicate cond describes the conditions in which I is active,
and its free variables are in Xi ∪ Xj; the sets D1,D2 ⊆ I contain the inter-
actions in which Pi and Pj must be involved, respectively, for I to be active.

Remark 9.7 (Monotonicity). Interactions may depend on each other, yet in
a restricted manner: an interaction may only depend on the presence of
another interaction, and not on its absence. This property is important, as
it ensures the monotonicity of dependency chains, that is, the creation of
an interaction may only lead to other interactions being created, but never
to a destruction (and vice versa). As a result, if there is a finite number
of interactions, dependency chains are finite as well. In the worst case, all
interactions are either created (upon creation of an interaction) or destroyed
(upon destruction of an interaction).



132 9 Automated Multi-level Modeling

Remark 9.8. Importantly, the CMM makes no assumption regarding the ho-
mogeneity of the system; in other words, all particles are considered to be
completely different entities. As a result, a different interaction needs to be
defined for each pair of control modes of each particle in the system.

Remark 9.9. Because interactions may depend on each other, one can cast
previous works based on grammatical approaches such as [46] into the CMM.
Indeed, any graph grammar consists of a set of rules that may be applied
or not as a function of the label of the reactants. In our case, the labels
correspond to the control modes of each particle, and the rules correspond
to feasible interactions, which both modify and depend on these labels.

Definition 9.10 (Phase space). The phase space S of the system is the
product of all individual state spaces, that is, S = X

m ⊆ R
n·m, and we refer

to its elements x = [xT
1 , . . . ,x

T
m]T ∈ S as extended states of the system.

Definition 9.11 (Extended control space). The extended control space
Vext of the system is the product of all individual control space, that is, Vext =
V1 × . . . × Vm and we refer to its elements ξ = [ξ1 . . . ξm]T ∈ Vext as the
extended modes of the system.

Theorem 9.12 (Continuous-discrete phase mapping). Given a finite
set of interactions I, there exists a function Ω : S → Vext, which maps each
extended state x ∈ S to a corresponding extended mode ξ ∈ Vext, such that ξ
is the active control mode whenever the system is in state x.

A proof of Theorem 9.12 is provided in Appendix B.

Lemma 9.13 (Phase space partitioning). There exists a partition Q ={
Q1, . . . , Qq

}
of the phase space S such that Qi =

{
x ∈ S | Ω(x) = ξi

}
denotes the set of continuous extended states that correspond to the same
extended mode of the system.

Definition 9.14 (Performance Metric). A performance metric Γ is a
real-valued function of trajectories in phase space Γ : S × T → R. Alter-
natively, a performance metric can be defined on trajectories (or traces) in
extended control space Γ : Vext × T → R.

Example 9.15 (Brownian Magnetic Particles). Consider the example of m fer-
romagnetic particles floating in a glass of water (Section 5.1). We restrict the
interactions of interest to physical contacts among the particles. As a re-
sult, there exists one interaction for each pair of particles (i.e., n · (n− 1)/2
interactions overall). In these settings, particles have a continuous state
x = (x, y) ∈ X = R

2, which corresponds to their position in two-dimensional
space. Their control space2 is ξ ∈ V =

{
0, 1, . . . , 2m−1

}
. A possible (but

2 In this particular case, all particles have an identical control space, but it is by
no means a requirement of the model.
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Table 9.1 Summary of the common notation used in this chapter

Symbol Description
n Dimensionality of the continuous state space
m Number of particles in the system

P = {P1, . . . , Pm} Set of particles in the system
xi ∈ X ⊆ R

n State vector of particle Pi

Gi = (Vi, Ei) Control graph of particle Pi

Vi = {ξi1, . . . , ξik} Control space of particle Pi

S = X
m Phase space of the system

Vext = V1 × . . .× Vm Extended control space
I = {I1, . . . , It} Set of interactions

| · | Cardinality of a given set

non-unique and non-minimal) encoding of the interaction mode ξ = k is that
the non-zero bits of k denote the indices of the interacting particles (assum-
ing a bit numbering starting at 1). For instance, ξ = 9 is the interaction
mode that corresponds to being in contact with particles P4 and P1, since
9 = 10012. A single, non-interacting particle is therefore characterized by an
interaction mode ξ = 0.

Given the above encoding of states, the condition for jumping along
edge e = (k, l) is:

jump(e) :

{
1 if ∃Pj ∈ P s.t. ||x− xj || ≤ 2 ·R and l = k + 2j−1

0 otherwise (9.3)

where R is the radius of the particles, thereby describing the radius of parti-
cles P and Pj .

The particles perform a random walk throughout the environment, that is,
their continuous dynamics are governed by a collection of Wiener processes,
which are independent for ξ = 0. When ξ > 0, the particles share a process
with their interacting mates, i.e., a single realization governs the dynamics
of an aggregate of particles, such that their relative pose is conserved.

9.2 Constructing the CMM

The CMM constitutes the most detailed microscopic description of a dis-
tributed system. However, it is clear from the above example that the deriva-
tion (and the implementation) of such a model is difficult for most practical
purposes. This observation raises the question of how ABMs tackle this in-
trinsic limitations of microscopic modeling [218]. Hereafter, we list a series
of simplifications that exploit the natural symmetries of distributed systems
while preserving the expressiveness of the model. Even though these simpli-
fications are described in abstract terms, they are typically those carried out
naturally by the designer of an ABM.
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First, it is generally impossible to define a priori the control space V of a
particle. The main reason for this is that the number of interactions to be
defined grows in principle in O(a · m2), and the size of the control space of
each particle grows in O(2a·(m−1)), where a is a constant that depends on the
richness3 of the underlying process. These unfavorable scaling laws quantify
the real cost of modeling completely heterogeneous and asymmetric systems
at the microscopic level. Fortunately, most (if not all) distributed systems
exhibit some invariants that we can exploit to simplify the description of the
CMM (and, consequently, of the models derived from it).

First, when the particles cannot or need not be distinguished from each
other, they can be arranged into classes. For instance, when dealing with
multi-robot systems, it is common to assume that robots with identical spec-
ifications are actually copies of each other4. Formally, the set P may be par-
titioned into an arbitrary set of classes of particle Ci (such that

⋃
i Ci = P).

Particle of the same class have similar control graphs. As a direct conse-
quence, interactions no longer need to be defined for each pair of particles, but
only for each pair of classes, thereby simplifying dramatically the description
of the CMM. One can write an interaction I = (Ci, Cj , cond,D1,D2), where Ci
and Cj now denote two classes of particles, cond remains unchanged, and the
sets D1,D2 ⊂ I × N

�
+ contain pairs of the form (I ′, k). For I to be active,

particles P1 and P2, respectively, need to be involved in at least k interactions
of type I ′.

To further simplify the description of the CMM, ABMs generally rely on
another important symmetry of distributed systems: most particles do not
necessarily behave differently in different control modes; rather, they exhibit
behavioral patterns that may span multiple control modes. Therefore, instead
of providing an explicit and a priori description of each control mode5, one
can define a set of predicates Q =

{
q1, . . . , qk′

}
that are assigned truth values

by the modes of V . Given a predicate q of Q, we write �q� for the region
of V that satisfy q. Then, it is sufficient to provide a description of the
regions defined by Q, and the proper behavior is assigned to each particle in
a dynamic manner as the exploration of the control space progresses.

As mentioned earlier, it is prohibitively expensive to define the control
space of each individual particle a priori. Fortunately, the control space can
be built iteratively as the simulation progresses (see Algorithm 2 on p. 135):
starting from an initial control space V = {0}, which contains only a single,
3 The richness of a process is roughly proportional to a, that is, the average number

of different interactions that may occur between each pair of particles in the
system. A very rich process might involve several types of interactions, such as
elastic and non-elastic collisions, long-range attraction, communication, etc.

4 Note that this particular assumption can become a notable source of error in
some specific multi-robot scenarios.

5 The description of a control mode ξ is provided by the different vertex-labeling
functions init, inv, and flow as well as the map Φ.
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Algorithm 2. Iterative construction of the control space V .
Require: Vi = {0}, ∀i ∈ {1, . . . , m}

while t < tend do
for each Pi ∈ P do

Update xi(t+Δt) according to flow(ξi(t)) and/or observations of the system

if an interaction has occurred/ended then
Compute new interaction configuration φ′

if ¬∃ξ′ ∈ Vi s.t. Φi(ξ
′) = φ′ then

Create ξ′ and updates Φi s.t. Φi(ξ
′) = φ′

Append ξ′ to Vi and e = (ξi, ξ
′) to Ei

end if
ξi(t+Δt)← ξ′

end if
end for
t← t+Δt

end while

non-interacting mode, each newly observed control mode ξ > 0 is appended
to V .

In many cases, particles may interact with entities that are not particles per
se, such as obstacles or specific environmental features, because the designer
is not interested in the state of these objects. Therefore, we treat such entities
as virtual particles, that is, particles whose control space is ignored, but that
can interact with regular particles, thereby affecting their control space .
Importantly, this mechanism allows the M3 framework to capture spatial
heterogeneity of the environment (e.g., non-uniform agitation or mobility
of the agents, presence of obstacles, environmental templates). By defining
virtual particles that represent specific regions of the space, one naturally
includes spatial information in the control modes of the particles. While this
feature is readily available in the current version of the M3 framework, we
have yet to demonstrate its applicability on relevant case studies.

9.3 From the CMM to Macroscopic Models

In this section, we describe an algorithmic approach to construct models of
distributed systems, based on a minimal a priori description of the system.
This method relies on the theoretical foundations laid by the earlier sections;
in particular, it uses the control graph of the particles of the system as a
blueprint of the model structure. For the sake of scalability, it makes the
same general assumptions as those described in Section 9.2; in particular,
the algorithm does not require the user to define interactions between pairs
of particle, but rather between pair of classes.
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A direct consequence of this simplification is that the set of the control
modes of each particle in the system no longer provides a complete speci-
fication of how these particles interact with each other at the global level.
Therefore, one needs to keep track of these global arrangements of interaction
by introducing the notion of interaction graph and aggregate.

Definition 9.16 (Interaction Graph). The interaction graph Gint is a
graph whose vertex set V int is indexed by P, the set of individual particles in
the system, and whose edge set E int is indexed by the set of interactions (more
particularly, there exists an edge indexed by interaction I between two vertices
indexed by particle P1 and P2 iff these particles may interact through I).

Definition 9.17 (Aggregate). We note A = {A1, . . . , Aa} the set of all
possible aggregates, that is, connected subgraphs of the interaction graph Gint.
We also define the composition of two aggregates A1 ‖I A2, which denotes
the aggregate resulting from the connection of aggregates A1 and A2 through
interaction I. The set A is closed under the operation of composition.

In order to build a model of the system, one needs to sort the different
observed aggregates into categories that will later serve as “species” in the
population model. Therefore, we need to define an equivalence relation on
the set of aggregates.

Definition 9.18 (Equivalence relation). An equivalence relation ∼S on a
given space S divides S into a set of disjoint subsets called equivalence classes.
The set of equivalence classes is called the quotient space and denoted S/ ∼S.
Any quotient space S/ ∼S is a partition of S. The map π : S → S/ ∼S that
maps each element of S to its equivalence class is called the quotient map.

The equivalence relation ∼A also defines the level of detail of the model.
One may use the graph isomorphism as equivalence relation (recall that,
formally, aggregates are merely subgraphs of Gint), which would account for
each and every difference in interaction topology. Alternatively, one may rely
on coarser criteria (e.g., cardinality, maximum or average vertex degree, etc.)
to discriminate between aggregates, thereby leading to simpler models.

The formalism of hybrid automata is useful from a theoretical point of view
(e.g., reachability, liveness, etc.), but it is not practical numerically. First,
the fact that it does not specify any particular structure for the stochastic
processes that govern the continuous dynamics of the particles makes both
the specification and the implementation of the CMM difficult6. Second, the
continuous component of the CMM is typically the most difficult to handle
at the macroscopic level.

Hereafter, we overcome these two limitations by exploiting the CRN for-
malism (see Section 5.3.3); in particular, we show how one can abstract
6 Nevertheless, this particular feature of the CMM is precisely what makes it rel-

evant theoretically, i.e., it formalizes in general terms the very notion of micro-
scopic model.
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the CMM to a corresponding CRN. Indeed, one can write the CMM as a
CRN N = (R,S) whose species are the control modes in S =

⋃
Pi∈P Vi and

the reactions are represented by the interactions in I. Therefore, the reaction

ξik + ξjl
I−→ ξik′ + ξjl′ (9.4)

exists iff I = (Pi, Pj , cond,D1,D2) ∈ I and every interaction in D1 and D2

are active in mode ξik and ξjl , respectively.
The only remaining component of the CRN to be defined are the propensity

functions. At the level of the CMM, propensity functions can be seen as
depending on the continuous dynamics of the particles:

aR(s, [x
T
1 . . .xT

m]) dt =

{
1 if I is active,
0 otherwise.

(9.5)

where s is a population vector that denotes the state of the CRN (Sec-
tion 5.3.3); [xT

1 . . .xT
m] ∈ S is the phase space of the CMM; and I is the

interaction associated to R. In other words, the continuous dynamics of the
CMM determine which reactions fire in the next time interval [t, t+ dt).

When moving up along the abstraction axis (Figure 5.2), one wishes to
model the system as a continuous-time Markov process. As a result, propen-
sity functions must no longer depend on the continuous dynamics of the
CMM, but solely on the state s of the CRN (which will be denoted x from
here on, consistently with Section 5.3.3).

9.3.1 Rate Estimation

This section describes the exact form of these propensity functions, and more
particularly the estimation of the underlying reaction rates. In the MLMM,
one generally performs orthogonal experiments to empirically calibrate the
model (Chapter 7). In the M3 framework, the analysis of the process dynam-
ics provides a precise estimate of the reaction rates, and, to some extent, a
measure of the validity of this estimate.

Assuming the Markov property, the time t until the next firing of reac-
tion R is an exponential random variable with mean 1/aR(x), that is, its
PDF is given by

f(t) = aR(x) · e−aR(x)·t (9.6)

where x is the state of the CRN (i.e., a population vector), and aR(x) is the
propensity function which we wish to estimate. The function aR(x) has a
unique free variable kR, called the rate constant of reaction R. The form
of aR(x) depends on the type of the reaction R, as prescribed by the law of
mass-action. Therefore, if R is the unimolecular reaction S1 → product(s),
it has the form

aR(x) = kR · x1 (9.7)
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where x1 is the population of species S1, and assuming that at least one
copy of S1 is required for the reaction R to occur. If R is a bimolecular
reaction S1 + S2 → product(s), the propensity function aR(x) becomes

aR(x) = kR · x1 · x2. (9.8)

If two copies of the same reactant are involved, that is, R : S1 + S1 →
product(s), then we have

aR(x) = kR · 1
2
· x1 · (x1 − 1). (9.9)

For the sake of simplicity, we shall summarize these three forms using the
following notation:

aR(x) = kR · ãR(x) (9.10)

where ãR(x) takes the appropriate form according to the stoichiometry of R,
and does not depend on kR.

Therefore, the problem we intend to solve hereafter is the following: Given
a sequence of events (e1, . . . , en), with ei = (Ri, ti,xi), what are the most
likely rate vector k̂ =

[
k̂1, . . . , k̂N

]
of the underlying CRN? More formally,

we want to solve the following problem:

k̂ = argmax
k

L(k|e1, . . . , en) = argmax
k

f(e1, . . . , en|k) (9.11)

where L(k|e1, . . . , en) is the likelihood of the rate vector k given the sequence
of observed events (e1, . . . , en). The solution to this problem has a closed-
form expression (see Appendix A for the complete derivation):

k̂Rj = kRj =

∑n
i=1 1{Ri=Rj}∑n

i=1

(
ti · ãRj (xi)

) . (9.12)

9.4 Model Reduction and Refinement

Now that we know how to construct and calibrate a CRN from an underlying
description based on the CMM, we shall discuss how the structure of this CRN
can be adjusted to obtain the desired level of detail. Both reduction (i.e., a
decrease of the level of detail) and refinement (i.e., an increase of the level
of detail) of CRNs rely on the notion of partitioning, which is induced by an
equivalence relation (see Definition 9.18).

Definition 9.19 (Reduction and Refinement of a CRN). A CRN Ñ =

(R̃, S̃) is said to be a reduction of N = (R,S) (and, conversely, N is said
to be a refinement of Ñ ) iff (1) there exists an equivalence relation ∼S on S
such that S̃ = S/ ∼S and (2) there exists a surjective map such that each
reaction R ∈ R has a corresponding abstracted reaction R̃ ∈ R̃ with
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rR̃,j =

M∑
i=1

1Si∈S̃j
· rR,i (9.13)

pR̃,j =

M∑
i=1

1Si∈S̃j
· pR,i j = 1, . . . , M̃ (9.14)

where 1Si∈S̃j
is an indicator function, that is, it equals 1 iff Si ∈ S̃j and 0

otherwise. The propensity function of each reaction R̃ ∈ R̃ is the sum of the
propensity functions of all reactions in the preimage of R̃.

9.4.1 Model Reduction

Model reduction is completely specified by Definition 9.19, and there is no
particular caveat concerning its algorithmic implementation: reactions and
species are lumped according to an underlying equivalence relation. However,
one may consider many different levels of detail, which correspond to different
equivalence relations, of course, but also different rationales. There exists in
particular a trivial partition that allows one to form an exact model of any
system: a unique region that spans the entire phase space, in which the
system is in with probability one at all times. Without further guidance,
any partitioning algorithm would lead to this trivial partition; therefore, one
needs an objective criterion to guide the algorithm.

In our approach, this criterion is given by the performance metric Γ , such
that it does not vary “too much” under the process of partitioning. Given
a CRN N , one can compute an estimator Γ̂ of the performance metric of
the underlying system. The error e =

∣∣Γ̂ − Γ
∣∣ generally increases as the

abstraction of the CRN increases. The reason for this is two-fold: (i) the
predictions of the model become more inexact, (ii) the variability of Γ for a
given state x of the CRN increases. The challenge is therefore to simplify
the model as much as possible while maintaining this value e under a certain
threshold. Section 9.5.1 illustrates this trade-off by comparing models of Case
Study I at different levels of detail.

9.4.2 Model Refinement

In the general case, model refinement is an inference problem in its own
right, and Definition 9.19 provides no algorithmic specification of how a given
refinement N of an existing CRN Ñ is constructed and calibrated. Napp
and Klavins [219] solved a particular instance of this problem in an attempt
to deal with the suboptimal mixing of their system. In particular, they
considered a refined CRN whose species are “augmented” with the types
of previous interaction partners. This approach is motivated by the fact
that two particles are more likely to interact next if they interacted recently
(see Figure 5.5 on p. 75). As a result, one should account for this fact by
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augmenting any state with the previous interaction partner: for instance, the
augmented state AX denotes the particles that are in state A, but recently
were in state X . As a result, the reaction AX ⇀ XA is more likely to fire in
the next [t, dt) than, say, the reaction AX ⇀ YA, even though both A ⇀ X
and A ⇀ Y have the same rate in the original CRN.

In the M3 framework, we adopt a similar approach, but in more sys-
tematic terms. Indeed, it is relatively easy to reproduce the approach of
Napp and Klavins by accounting for history in the state construction: rather
than mapping control modes to interaction configurations in the CMM, we
map them to interaction traces, that is, a sequence of triplets (I1, d1, t1),
where di ∈ {+,−} indicates whether the interaction Ii ∈ I has been created
or destroyed at time ti, respectively. Incidentally, any interaction configura-
tion can be re-constructed based on an interaction trace. For instance, the
trace (

(A,+, 0.25), (B,+, 5), (A,−, 6.5), (B,+, 8)
)

(9.15)

yields the interaction configuration B2. Of course, tracking the complete
interaction history of each particle in the CMM leads to an explosion of the
number of state. One can therefore adopt a mixed approach where only a
limited number of previous interaction events are explicitly recorded, and the
others are summarized as an interaction configuration.

However, for most practical purposes, this approach based on interaction
history is not efficient, because there are only a few states that actually need
to be augmented, whereas the others can be safely left unchanged. Therefore,
we propose a systematic method for augmenting, or refining, a macroscopic
model a posteriori, that is, after its generation. More specifically, given
a CRN N = (R,S) and an associated sequence of events (e1, . . . , en), we
aim at constructing a refinement Ñ = (R̃, S̃) of N that is such that the
likelihood L(k̃|e1, . . . , en) > L(k|e1, . . . , en), i.e., the sequence of events is
better explained by the refined model than the original one.

From a structural point of view, the refinement of a CRN is rather simple:
we select a species of interest, say S0, and we split it into two subspecies Sa

0

and Sb
0. We then duplicate all reactions that involve S0, and update their

reactants and products accordingly. For instance, the reaction

Rj : S0 + 2A1 ⇀ 3A2 (9.16)

is duplicated as follows:

Ra
j : S0,a + 2A1 ⇀ 3A2 (9.17)

Rb
j : S0,b + 2A1 ⇀ 3A2. (9.18)

Contrary to the approach proposed by Napp and Klavins [219], the resulting
subspecies S0,a and S0,b need not be associated to a particular state property,
such as the type of a previous interaction partner; they are mere duplicates
of the original species. We know that both S0,a and S0,b correspond to the



9.4 Model Reduction and Refinement 141

same control mode as S0 in the original CRN, but their specific “meaning”
is implicitly determined by the framework upon inferring the rates of the
reactions they are involved in.

However, the estimation procedure described in Section 9.3.1 cannot be
readily applied because the sequence of events (e1, . . . , en) describes the firing
of the original reactions, but it contains no information regarding the newly
created reactions. More specifically, if an event ei = (Ri, ti,xi) is such that Ri

is duplicated, one needs to re-assign this event to either Ri = Ra
i or Ri = Rb

i ,
and update accordingly the population vectors xj>i of the upcoming events.

To solve this problem, we use an expectation-maximization (EM) algo-
rithm, that is, an iterative method for finding maximum likelihood estimates
of parameters in statistical models that depend on unobserved latent vari-
ables. An EM algorithm consists of an expectation (E) step, which computes
the expectation of the log-likelihood evaluated using the current estimate of
the parameters k, and a maximization (M) step, which computes new values
of these parameters by maximizing the log-likelihood function. More for-
mally, given a CRN parameterized by an unknown rate vector k, the E-step
can be written

Q(k|k(t)) = EZ|X,k(t)

[
lnL(k|X,Z)

]
, (9.19)

that is, the expected value of the log-likelihood function with respect to the
conditional distribution of the set Z of unobserved latent variables (the re-
actions and the population vectors associated the events to be re-assigned),
given a set X of observed data (the timestamp of all events, and the reac-
tions and the population vectors associated to the valid events), under the
current estimate of k(t). Then, the M-step consists in finding the rate vector
maximizing this quantity:

k(t+1) = argmax
k

Q(k|k(t)). (9.20)

The E-step requires to compute the log-likelihood function over all pos-
sible values of Z. More specifically, since Z consists of the reactions and
population vectors associated the events to be re-assigned, and that each
assignment depends on the assignment of earlier events, one need to keep
track of the log-likelihood of all possible trajectories of the system, which
boils down to finding a constrained solution of the CME. In the general case,
solving the CME numerically is computationally expensive or even infeasible
as the number of reachable states can be very large or infinite [185]. However,
in our case, we can dramatically simplify the problem at hand by exploiting
the pieces of information available from the observed data X. In particular,
we know when a reaction is supposed to fire, therefore the only question is
which one does. In other words, we know that the PDF of the state dis-
tribution remains constant between two firing events, thereby making the
problem quasi-discrete, and suitable for being solved by dynamic program-
ming (see Algorithm 3 on p. 142), using an approach similar to the Viterbi
algorithm [220].
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Finally, the M-step consists in selecting the trajectory with the largest
log-likelihood, and applying the procedure described in Section 9.3.1 to find
the rate vector k(t+1) that corresponds to this most likely trajectory.

Algorithm 3. E-step of the EM algorithm used for CRN refinement.

Require: Set X =
{
(x0, L0)

}
with L0 = 0

for each event ei = (Ri, ti,xi) do
for each (x, L) ∈ X do

if Ri is refined into Ra
i and Rb

i then
if Ra

i is feasible given x then
Add

(
x+ νRa

i
, L+ ln

(
aRa

i
(x) · e−a0(x)·ti)) to X

end if
if Rb

i is feasible given x then
Add

(
x+ νRb

i
, L+ ln

(
aRb

i
(x) · e−a0(x)·ti)) to X

end if
else

if Ri is feasible given x then
Add

(
x+ νRi , L+ ln

(
aRi(x) · e−a0(x)·ti)) to X

end if
end if
Remove (x, L) from X

end for
end for

9.5 Results and Discussion

In this section, we present the results of a series of quantitative case studies
that demonstrate the validity of the framework, and also outline some of
its limitations. An important feature of the M3 framework is its platform-
independence; indeed, the very same computational framework is applicable
regardless of the exact nature of the underlying system (see Figure 9.3). To
illustrate this claim, we demonstrate hereafter the use of the M3 framework
on case studies I, II, III, and IV. All graphs of this section use the following
standardization: bold lines indicate the mean trajectory over 1000 runs, and
dashed lines depict the ±1.96 σ interval (corresponding to the 95% confidence
interval if the data are normal). If not indicated otherwise, the ground truth
is always shown in black, and corresponds to original data collected from
real or simulated experiments for constructing the models; the predictions
of these models are shown in green or in red. The score of the models is
a measure of the quality of their prediction (the lower, the better), which
is given by the average KS distance between ground truth trajectories and
predicted trajectories.
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M3 framework

Tracking
software

(real robots)

Webots (sim-
ulated robots)

Canonical
Microscopic

Model (CMM)

CRN Builder
& Refiner

SSA

User

trajectories trajectories

events

N = (R,S)
interactions

configuration design

Fig. 9.3 Overview of the software deployment around the M3 framework in this
study, and the different types of information flowing between its constitutive mod-
ules. Dashed arrows denote flows that are not automated, but need to be performed
only once prior to the experiment.

First, we shall provide a validation of the models generated by the
M3 framework; in particular, we aim at illustrating the excellent accuracy
of the rate estimation described in Section 9.3.1. Figure 9.4 provides a com-
parison of the model’s predictions and the ground truth from Case Study I
(Section 4.1). An important feature of the generated model is that it is
detailed and large (3965 species and 10948 reactions), which makes it diffi-
cult to solve and calibrate. Note however that even such large models are
still tractable using efficient solvers such as StochKit; as a reference, the
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Fig. 9.4 Graphical representation of the most detailed model (3965 species, 10948
reactions) generated by the M3 framework on Case Study I. All species contributing
to the same aggregate are lumped into one trajectory. The model’s predictions agree
almost perfectly with the original data, both in terms of the mean and the variance.

trajectories shown in Figure 9.4 were obtained in about 30 seconds on a quad
core 2.66 GHz desktop workstation, and their post-processing lasted a few
minutes.

9.5.1 Model Reduction

As advocated by several previous works [221, 222], models can often be sim-
plified dramatically without sacrificing much of their accuracy. Most previ-
ous approaches to model reduction use a posteriori strategies that consist in
lumping and/or eliminating insignificant reactions and species on the basis
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Table 9.2 Properties and score of macroscopic models at different level of detail
for Case Study I

Level of Detail Species Reactions Score
Cardinality 12 60 4.16 · 10−2

Min Vertex Degree 62 406 1.81 · 10−2

Mean Vertex Degree 166 1072 1.78 · 10−2

Isomorphism 3965 10948 2.04 · 10−2

of the reaction kinetics. Alternatively, advanced simulation schemes such as
the slow-scale variant of SSA constitute robust and seamless methods for
reducing models on the fly as they are being solved [223].

In the context of the M3 framework, our approach to model reduction
is different; it consists in tuning the level of detail of the CMM (or, more
formally, the equivalence relation on the set A). For example, Figure 9.5
depicts the predictions of the model (Case Study I) produced by the coarsest
non-trivial equivalence relation on A, that is, two aggregates Ai and Aj are
equivalent if and only if they have the same cardinality. Figure 9.6 provides
two graphical representations of this model.

Intermediate levels of detail are also considered: in a second level of detail,
we also include the minimum vertex degree as a criterion for discriminating
between aggregates. The third level of detail uses, on top of the cardinality
and the minimum vertex degree, the mean vertex degree. Finally, the highest
level of detail recourses to full graph isomorphism as equivalence relation,
thereby resulting in the enormous model described earlier (3965 species and
10948 reactions).

Table 9.2 lists the size and the score of each model. As expected, more
detailed models tend to perform better than the coarsest one. However, in-
terestingly, the most detailed model performs worse than both intermediate
models, in spite of their much smaller size. This result outlines two criti-
cal facts. First, large models require large datasets in order to achieve an
accurate calibration; more generally, because they involve numerous species
and reactions, they are difficult to analyze and inspect. Second, owing to
the power of automated modeling, one can explore such trade-offs between
size and accuracy in models of SMPs. In our particular case, for instance,
our results indicate clearly that an accurate model needs to account for the
connectivity of the aggregate, to some extent7. However, it seems that it is
sufficient to track the minimum vertex degree rather than, say, the mean or
the complete vertex degree distribution. Such pieces of information about
the relevance of given system’s features are crucial to model design, and
can be obtained efficiently only through automated modeling, as the man-
ual construction of such detailed models is prohibitively difficult and time-
consuming.
7 Note that the model presented in [92] does not account for any such feature.
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Fig. 9.5 Validation of the reduced model (12 species, 60 reactions) generated by the
M3 framework on Case Study I. One can observe that the model’s predictions still
agree relatively well with the original data, at least from a qualitative standpoint,
in spite of the dramatic reduction in size (from 3965 to 12 species, and from 10948
to 60 reactions).

9.5.2 Model Refinement

One fundamental assumption of the methodology described in this chapter is
that the underlying system can be modeled using a continuous-time Markov
process. As discussed in Section 5.3.5, if the system is not well-mixed, the
models generated by the M3 framework might not provide accurate predic-
tions. However, for most practical purposes, even non-Markovian dynam-
ics can be accurately approximated by a continuous-time Markov process,
and the quality of this approximation dramatically depends on the model’s
structure.
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Fig. 9.6 Graphical representations of the coarsest model generated by the
M3 framework on Case Study I. (a) Complete representation of the associated CRN
(12 species, 60 reactions). (b) Simplified representation in which reactions with a
rate lower than 0.01 have been pruned. The inspection of automatically generated
models is generally hindered by the lack of meaningful organization, even when they
remain compact; however, in this simplified representation, most reactions can be
easily associated to their counterpart in the model presented in [92].
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(a) Well-mixed system
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Fig. 9.7 Predictions of models generated by the M3 framework on two simulated
variations of Case Study IV: (a) a well-mixed system in which long range forces are
negligible (score = 1.8 · 10−2), and (b) the same system rendered non-well-mixed
by an increase of the magnets’ strength (score = 19.8 · 10−2).
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To illustrate this statement, we consider two variations of Case Study IV in
simulation. In the first case, the system is relatively well-mixed and the long
range forces induced by the magnets are almost negligible. In the second case,
we increase the strength of the magnets such that the influence of spatiality
becomes more important. The predictive accuracy of the generate models
in either case is different, as illustrated by Figure 9.7. Indeed, it is clear,
both qualitatively and quantitatively, that the accuracy of the predictions
degrades as the influence of spatiality increases.

A common approach to mitigating the adverse effects of spatiality is to keep
track of the interaction history. As discussed in Section 9.4.2, the M3 frame-
work can rather easily track the interaction history of the particles in the
CMM. Furthermore, one can tune the number of previous interaction events
being accounted for during the state construction. Figure 9.8 compares the
predictions of a regular model without history and a model constructed using
a 1-step history. While this approach allows for a clear improvement of the
predictive accuracy, we shall outline that the use of history leads to a severe
increase of the model size.

Fig. 9.8 Comparison of the
predictions of macroscopic
models with and without a
1-step history in the non-
well-mixed variation of Case
Study IV. The model size
increases from 6 species and
12 reactions without history
(score = 20.5 · 10−2) to 22
species and 220 reactions with
history (score = 11.7 · 10−2).
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Alternatively, one can selectively refine portions of the models using the
procedure described in Section 9.4.2, and thereby accounting for some of the
spatial features of the underlying system. Figure 9.9 depicts the evolution
of both the score and the negative likelihood of the refined models. As ex-
pected from the properties of the EM algorithm, the negative log-likelihood
monotonically decreases as the level of refinement increases, which is not the
case of the score. The consequences of this observation are two-fold: (i) a
model’s likelihood is not exactly correlated with its predictive accuracy, and
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(ii) as observed earlier in Section 9.5.1, a subtle trade-off between compact-
ness and expressivity must be found in order to produce accurate accurate
models. In other words, in spite of the optimality of our calibration proce-
dure (in terms of model’s likelihood given an original dataset), the choice of
the model structure is crucial for achieving both accuracy and compactness.

Fig. 9.9 Evolution of the
score (left) and the negative
log-likelihood (right) of differ-
ent model refinements of Case
Study IV. The 0-th refinement
indicates the original model;
the other models are obtained
by refining iteratively the fol-
lowing species (see Figure 4.6):
(1) A, (2) B, (3) C, (4) F, (5) E,
and (6) D.
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Figure 9.10 illustrates the benefits of refinement in a more qualitative fash-
ion by comparing the predictions of the original model, and its best refine-
ment. The clearest improvement concerns the trajectory of single building
blocks (top left), which is inaccurately predicted by the original model both
in transient and steady state, but becomes a near-perfect fit in the refined
model. Other trajectories are also significantly enhanced, even though some
discrepancies are still present, in particular in the long run.

Fig. 9.10 Comparison of the
predictions of the original
model (score = 20.5·10−2) and
its second refinement (score
= 5.5 · 10−2) in the non-
well-mixed variation of Case
Study IV.
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9.5.3 Scalability

To investigate the scalability of the M3 framework to large-scale distributed
systems, we apply it to Case Study III, which can be easily scaled up to
many building blocks. Figures 9.11 and 9.12 illustrate the performance of
the generated models using only 10 and 100 building blocks, respectively. In
both cases, the model’s prediction agrees almost perfectly with the original
data. The reason for the high accuracy of the generated models is three-
fold: (i) the underlying system is well-mixed, (ii) the irreversibility of the
bonds make spatial effects described earlier less prominent, and (iii) the model
structure is simple, with only two species and two reactions.

Interestingly, in spite of the large number of building blocks, the model
remains compact, and therefore the computational cost of the model gener-
ation is low. As far as scalability is concerned, the only decisive criterion
is the size of the generated model, as well as, to some extent, the amount
of data needed for the rate calibration. As a matter of fact, the size of the
model (and, incidentally, the computational cost of its generation) is generally
weakly correlated with the size of the system. A rather obvious illustration
of this fact is that the largest model presented in this section contains 3965
species and 10948 reactions (Figure 9.4), and is based on a system that in-
volves only 12 robots, whereas the model of Figure 9.12, which is based on a
system that involves 100 agents, contains only two species and two reactions.

Fig. 9.11 Validation of the
macroscopic model generated
by the M3 framework on Case
Study III (10 building blocks).
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Fig. 9.12 Validation of the
macroscopic model generated
by the M3 framework on
Case Study III (100 building
blocks).
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9.5.4 Embodiment

As outlined in previous chapter, the notion of embodiment is crucial to the
proper modeling of distributed robotic systems. We demonstrate the ability
of the M3 framework to capture such features by modeling two systems in
which embodiment plays a key role: (i) the pairwise SA of microscale building
blocks (Case Study III) with misalignment, and (ii) the stochastic SA of Alice
robots into chains (Case Study II).

In the first case, we compare four models with different levels of discretiza-
tion. In the M3 framework, discretization is implemented by adding interac-
tions that are active only when the building blocks have a given alignment.
We implement four distinct models with 1, 2, 5, and 10 different categories
of interaction, with respective score of 3.57 ·10−2, 2.76 ·10−2, 2.26 ·10−2, and
2.24 ·10−2. Figure 9.13 depicts the original trajectories along with the predic-
tions of the two extreme models (with 1 and 10 interactions, respectively). As
expected, the most detailed model is also the most accurate, but the differ-
ence is significant only in the transient regime; at the steady state, all models
yield the same state distribution. Unexpectedly, the model also indicates the
formation of trimers, and even tetramers, of low stability. While these species
are marginal, their presence in the model illustrates one fundamental benefit
of automated modeling: the impact of the designer’s preconceptions about
the underlying system is minimized. Indeed, in Section 6.3.2, the equivalent
model designed by hand does not account for the formation of assemblies
larger than dimers. Of course, one may argue that the reason for this is that
trimers and tetramers are unstable, and can therefore be safely neglected;
yet, the most likely reason is that the modeler forgot to include them in the
model because it seemed a priori than only dimers could form.

Fig. 9.13 Comparison of two
models of Case Study III with
misalignment: (i) a simple
model with a single interac-
tion capturing all bonds, and
(ii) a more detailed model with
10 different interactions ac-
counting for different degrees
of misalignment. The score of
each model is 3.57 · 10−2 and
2.24 · 10−2, respectively. Note
that that the top plots are log-
lin whereas the bottom plots
are lin-log.
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In the second case, we evaluate the ability of the M3 framework to deal
with multiple difficulties at once: embodiment, spatiality, scalability, and
small original dataset. Indeed, based on only 10 runs with 20 real Alice
robots, we construct a macroscopic model of Case Study II that yields quite
accurate predictions (Figure 9.14) in spite of the small number of runs and
the large size of the resulting model (452 species and 1474 reactions). As
it turns out, some strong fluctuations of the average original trajectory are
observed; yet, its variance is in the same order as that exhibited by the model,
thereby indicating a strong intrinsic stochasticity of the underlying system.

In terms of embodiment, the framework allows one to probe some insightful
characteristics of the system, such as the proportion of well-formed chains8
of a given size. Figure 9.15 shows that the proportion of well-formed chains
decreases with their size: while almost 90% of the chains of size 3 are well-
formed, the ratio drops to 60% for chains of size 5, and less than 20% for
chains of size 6. This type of statistics would have been difficult to obtain
without an appropriate analysis framework, and even more difficult to model,
given the large number of non-well-formed conformations.

9.5.5 Limitations

At its current level of development, the M3 framework still exhibits several
important limitations, which will constitute important lines of research in the
future:

� Our calibration method based on Maximum Likelihood Estimation (MLE)
requires that the system is fully observable. In particular, the framework
does not include any inference mechanism to deal with measurement time-
gaps, unobservable variables, or inaccurate observations. However, this
limitation might be overcome using more sophisticated calibration and
inference techniques (used for instance for the inference of Hidden Markov
Models [224]) such as particle filtering [225], Markov Chain Monte Carlo
methods [226], or evolutionary algorithms [165].

� The models generated by the M3 framework are characterized by param-
eters (i.e., reaction rates) that have no direct anchoring to the control and
design parameters of the underlying system. Instead, they result from
the lumping of several low-level parameters and phenomena. As a result,
these models are difficult to leverage for design and control purposes9.
However, owing to its solid methodological foundations, the M3 frame-
work has the potential to overcome this limitation in an elegant way.

8 A chain of size n is well-formed if it involves two robots with a single neighbor
(one at each end), and n− 2 robots have two neighbors. Non well-formed chains
may form due to IR reflections, as shown in Figure 8.4.

9 Not impossible, though, as demonstrated by Chapter 12, which introduces an ex-
tension of the M3 framework for the model-based, real-time control of stochastic
self-assembling systems.
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Fig. 9.14 Validation of the macroscopic model generated by the M3 framework on
Case Study II (1000 runs, 20 robots). Ground truth is provided by real experiments
with 20 Alice robots (10 runs).
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Fig. 9.15 Proportion of well-
formed chains for each size
category as observed in real
experiments (ground truth)
and as predicted by the macro-
scopic model generated by the
M3 framework.
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Indeed, since each reaction is associated to a unique interaction, which
is in turn characterized by a set of low-level parameters of the system,
a careful inspection of the different reaction rates might allow one to in-
fer analytical expressions for the reaction rates. This task require that
the framework, on top of exploiting observations from prior experiments,
collects additional experimental data for selected control and design pa-
rameters (ideally in an automatic and dynamic manner). For instance,
the framework could leverage principles of experimental design [227] and
evolutionary strategies [162, 228] to construct accurate and transparent
models while minimizing the number of experiments required to generate
these models.

� Even though the M3 framework provides formal methods for reducing
and increasing the level of detail of a given model (see Section 9.4), it
lacks automated strategies for exploring the trade-offs between model size
and model accuracy. Again, the framework is intended as a solid formal
and methodological foundation, upon which one can build more advanced
strategies.

� There is no experimental evidence that models constructed on the basis
of observations of 10 units can predict the performance of, say, 1000 units.
We hypothesize that the models generated by the M3 framework will scale
well as long as the individual properties of the units and their density re-
main the same, but we have yet to demonstrate this claim experimentally.
Another related question is, what is the minimal number nmin of units
required to obtain an accurate model (within a certain error margin) for
a specific number n > nmin of units? This question is very important in
the context of SMPs, as one is often interested in extrapolating the per-
formance of a large-scale group based on preliminary experiments based
on a few prototypes. Owing to its solid methodological anchoring, we
believe that the M3 framework might offer an excellent basis for the de-
velopment of mathematical and computational tools capable of answering
this important question.
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Summary and Conclusion

This chapter introduces the M3 framework, which provides a consistent set
of theoretical and computational tools targeted to the automated construc-
tion of models of SMPs at high abstraction level. The essential assumption
underlying our approach is that all behavioral changes can be interpreted as
the result of an interaction with another robot or the environment. Based on
this axiom, we can systematically construct a hybrid, microscopic represen-
tation of the system, which relies on the theoretical concept of CMM, that
is, a mathematical construct upon which all microscopic models are copied
or emulated. By updating the CMM as new observations of the system are
collected, one obtains an accurate, microscopic representation of the said sys-
tem, which can be automatically converted into an equivalent macroscopic
model.

Our approach offers the ability to tune the degree of detail of the generated
models by automatically lumping the species that correspond to “similar”
graph structures. Conversely, the models generated by the M3 framework
can be refined in order to improve their accuracy when the underlying sys-
tem is not well-mixed. We shall stress the subtle balance between size and
accuracy of the generated models. On the one hand, models need to be
sufficiently detailed to accurately capture the dynamics of interest of the sys-
tem. On the other hand, large models are more difficult to analyze and to
calibrate. Beyond their practical benefits, these features allow us to gain
some deep insights into the system under investigation. If a model that cap-
tures a particular property of the system is not more accurate than a less
detailed model, then this property is probably not important to the system’s
dynamics.

Our calibration method based on MLE presents the advantage of being
very robust. Even for systems that involve multiple difficulties such as em-
bodiment, spatiality, and scalability, our method yields accurate predictions
by lumping all relevant system’s properties into the available reaction rates.
However, this approach makes the analysis of these rates particularly labo-
rious since one cannot establish an one-to-one mapping between each rate
and a given system’s property or parameter. This limitation, along with
the strict requirement of perfect observability of the underlying system, is
currently an obstacle to the applicability of the M3 framework in some cir-
cumstances (e.g., microscale SA). However, we believe that future theoretical
developments and the use of more advanced machine learning methods shall
allow for relaxing both of these requirements.
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Model-Based Design

He knew how to take what could be, and make it what is.
– Wynton Marsalis (1961)

describing Louis Armstong’s musical improvisation ability
in Ken Burn’s Jazz documentary on PBS.

Once accurate and computationally efficient models are available, one can
use their predictions for designing and optimizing the underlying system. In
this work, we distinguish the notions of design and optimization, even though
they are generally considered as parts of the same process in other engineering
disciplines. On the one hand, design is concerned with the definition of the
qualitative, structural specification of the underlying system, e.g., deciding
between different control strategies or robots’ geometries. On the other hand,
optimization consists in fine-tuning the quantitative, numerical parameters
of the said specification.

In this chapter, we investigate two important aspects of the model-based
design of distributed robotic systems. First, we discuss in detail the trade-
offs that exist between top-down and bottom-up approaches to model-based
design, with a specific emphasis on resource-constrained, miniature robots.
Second, we illustrate the use of models at multiple abstraction levels for
assessing the costs and benefits of deterministic and probabilistic controllers
(Case Study II). In both cases, the question at hand requires deep insights
into the system’s dynamics, which we believe can only be obtained by a
proper combination of real experiments and models at multiple abstraction
levels.

10.1 Top-Down vs Bottom-Up Model-Based Design

The design and control methodology prescribed by the MLMM is essentially
bottom-up; that is, we start with a feasible specification of the real sys-
tem1, and then build up a series of increasingly abstract models, carefully
1 This specification may range from a complete implementation to realistic simu-

lations, but, in any case, all the necessary components for building the system
must be available.

G. Mermoud, Stochastic Reactive Distributed Robotic Systems, 159
Springer Tracts in Advanced Robotics 93,
DOI: 10.1007/978-3-319-02609-1_10, © Springer International Publishing Switzerland 2014



160 10 Model-Based Design

validating each against those at lower abstraction levels. One important
benefit of this approach is its direct anchoring to reality, allowing one to pre-
dict and optimize the performance of the real system. However, bottom-up
approaches generally yield macroscopic models that are difficult to analyze
mathematically (e.g., non-linear, time-delayed systems of differential or dif-
ference equations, sometimes partial). More critically, while they allow for a
precise design of the microscopic behavior based on simple, robust techniques
(e.g., behavior-based control), they also require a good deal of intuition for
achieving the desired coordinated behavior at the macroscopic level (i.e., they
are non-constructive).

In top-down design methodologies, this limitation is overcome by shaping
up the robots and their controllers such that they fulfill the requirements
of coordination algorithm. However, these approaches generally make quite
strong assumptions (e.g., perfect localization, discrete environment, absence
of noise, etc.), possibly leading to degraded performance when implemented
on the target system. Furthermore, top-down approaches usually neither
predict real system performance nor provide bounds for performance loss due
to these invalid assumptions; complete collapse of the collective dynamics is
possible, especially when dealing with stochastic systems, as it is often the
case with distributed systems of miniature robots.

Case Study V

BThe goal of this section is two-fold. First, it aims to il-
lustrate how top-down approaches can be applied to Case
Study V, which was specifically designed as a benchmark of
control methodologies for resource-constrained distributed
robotic systems [181]. In particular, we propose a top-down solution based
on graph theory to the problem presented in Section 4.5; this approach yields
a semi-centralized control, in which robots are essentially autonomous, but
exploit information broadcasted by a central planner. Second, we compare
the performance of this top-down design to a bottom-up solution that relies
solely on local information, and yields a fully distributed controller, which is
optimized for a wide range of scenarios based on models at multiple abstrac-
tion levels.

As discussed in Section 4.5, the collaborative spot-destruction problem is a
typical dynamical allocation problem that requires the presence of κi robots
at spot i, and the robots must be re-distributed as quickly as possible after
each spot destruction. The solution to this problem is two-fold: (1) one needs
to determine the optimal distribution of robots xd over the set of spots such
that the system performance metric given by Equation 4.12 is maximized,
and (2) one needs a strategy to distribute the robots according to xd in a
scalable and efficient manner.
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10.1.1 Optimal Desired Distribution

First, we provide a concise and formal solution to the first problem, which
depends only on the number of robots N0, the number of spots Nspots, and
their respective characteristic thresholds κ. We then describe and compare
two distinct model-based strategies (top-down and bottom-up, respectively)
to distribute the robots according to the desired distribution xd. The rele-
vance and the performance of these strategies depend not only on the number
of robots, but also on their capabilities (e.g., computational power, commu-
nication and sensing capabilities, localization, etc.) as well as the amount of
information available to the central planner, if any.

Determining the desired distribution xd that maximizes the system per-
formance (Equation 4.12) is non-trivial, especially if N0 <

∑
i∈S κi where

S denotes the set of spots. Fortunately, one can construct the desired dis-
tribution xd such that the performance of the system is optimal2 by solving
the following optimization problem:

x = argmax
x

E[Perf.|κ̂] = argmax
x

Nκ∑
κ=1

E[κ · Λκ|κ̂]

= argmax
x

Nκ∑
κ=1

κ ·E[Λκ|κ̂] (10.1)

E[Λκ] = ρ

Nspots∑
i

Pr{xi ≥ κi ∩ κi = κ|κ̂i}

= ρ

Nspots∑
i

Pr{xi ≥ κi} χ(κ, κ̂i)∑Nκ

λ=1 χ(λ, κ̂i)
(10.2)

where, assuming that xi is a sequence of i.i.d. binomial random variables,

Pr{xi ≥ j} =

N0∑
l=κ

(
N0

l

)
xl
i (1− xi)

N0−l

and κ̂i is the estimate of the threshold of spot i.
Because of the use of binomial random variables, the problem is non-

convex. However, one can solve this problem using non-linear programming
(we used the MATLABTM function fmincon), with initial conditions given
by a simple heuristic that distributes the robots on the spots with large κi

(but smaller than the total number of robots) first.
2 Note that we assume in this subsection that the system is optimal after conver-

gence, and we do not optimize for the speed of convergence.
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10.1.2 Top-Down Strategy

We use a novel technique developed by Berman et al. [27] that allows one,
under certain assumptions, to distribute unlabeled robots over a set of spots
in an arena in a scalable and efficient manner. To achieve that, an omniscient
central planner3 needs to (i) construct a graph G = (S, ξ) whose vertices are
the spots, and whose edges are feasible paths connecting the spots, (ii) com-
pute the optimal transition rate matrix K = (kij) that allows for the fastest
convergence, and (iii) broadcast both G and K to the robots.

Interestingly, the spot-destruction problem can be thought as an allocation
problem, i.e., it requires the presence of κi robots at spot i. Our solution is
therefore to steer the swarm of robots to a given desired distribution xd using
the technique described above; upon the destruction of a spot, the central
planner computes new G and K and broadcasts them to the robots. However,
beyond this intuitive similarity, many details are left to be worked out. In
particular, the many assumptions made in [27] need to be relaxed throughout
the process of implementation. For instance, we shall optimize the transition
rates while retaining their feasibility on a real robotic system; also, we shall
determine the desired distribution xd for finite number of robots, as well as
a method for constructing both G and K such that they can be broadcasted
to resource-constrained robots such as the Alice robot. Hereafter, we discuss
each of these assumptions by proposing either an objective criterion for their
validity, or a metric of their impact on the system performance. Figure 10.1
illustrates each step of the design process visually.

Optimizing Transition Rates

The optimal transition rate matrix K is computed by the central planner,
which solves a Semi-Definite Program (SDP) [229] that finds the transition
rates from one spot to another that ensure the fastest convergence to the
desired distribution. Moreover, under the constraint Kxd = 0, which ensures
that the robots will indeed converge to the desired distribution xd, the tran-
sition rates can be made such that, after attaining convergence, the system
makes as few transitions as possible (so that they are feasible in the context
of a real robotic system). The objective function used to limit the transitions
after convergence can take two distinct forms:

f(K) =
∑

(i,j)∈ξ

kij x
d
i (10.3)

or, f(K) = max
(i,j)∈ξ

kij x
d
i . (10.4)

3 For the sake of scalability, the central planner does not know about the position
of each robot. Also, in [27], the central planner assumes that there is an infinite
number of robots.
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Equation 10.3 represents the total number of transitions per time unit after
attaining equilibrium, while Equation 10.4 represents the maximum num-
ber of transitions per time unit. To solve the SDP problem, we use CVX, a
MATLABTM package for specifying and solving convex programs [230].

Graph Structure

One general assumption made by Berman et al. [27] is that the underly-
ing graph G is strongly connected (i.e., a directed path exists between any
pair of distinct vertices). As discussed below (Section 10.1.2), our method
of broadcasting the graph structure to the robots imposes that edges must
be unidirectional; indeed, light gradients used for navigation must be wide
enough for robots to follow them while being non-overlapping.

In this work, we construct a maximal planar graph using Delaunay trian-
gulation (in O(n log n) time), and then an arbitrary triangle is turned to a
cycle, and is chosen as the starting graph. The other spots are added one by
one, keeping the graph strongly connected. Compared to other graph struc-
tures such as cycles, Delaunay graphs have maximum connectivity under our
constraints and therefore result in the fastest convergence.

Broadcast and Navigation

Another fundamental assumption made by Berman et al. [27] is that the
central entity can broadcast the graph structure G and the matrix K to the
robots. In turn, the robots shall be able to navigate along the edges of
the graph. However, resource-constrained robots such as the Alice are gener-
ally endowed with limited and unreliable sensing, communication, and navi-
gation capabilities, thus making these assumptions unrealistic. Furthermore,
computation, energy, and memory limitations impose severe restrictions on
the use of advanced map-based navigation algorithms.

We propose an original solution based on augmented reality to solve this
problem using a simple, nearly reactive, algorithm. Light gradients depicted
on the arena by a video projector allow the central planner to locally tune
the robots’ behavior such that it accounts for the plan optimized at the
macroscopic level.

More specifically, the central planner draws gradients between spots; in-
tensity at the darker end of the gradient originating from spot i to spot j is
related to the net rate of transition from spot i (exit rate

∑
j kij), and the

width of the edge is proportional to kij/
∑

l kil. The robot wanders about
randomly in the spot until it encounters a gradient at its border. After getting
an estimate of

∑
j kij , the robot draws Texp from an exponential distribution

with rate
∑

j kij (or with mean 1/
∑

j kij).
If the robot has already spent more than Texp units of time in the spot,

it makes the transition. Otherwise, the robot waits until it has spent more
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than Texp units of time in the spot, and then makes the next transition. This
ensures that the rate of exit of robots from the spot is the closest that we
can get to

∑
j kij , as required. Also, the probability of choosing an edge to

spot j is directly proportional to the relative widths of the edges with respect
to one another, which are given by the ratio kij/

∑
l kil. If these choices are

made independent of the activity of the robot in the spot, then by thinning
of Poisson processes [231], we know that the transitions from spot i to spot j
is dictated by a Poisson process with the parameter kij , as required.

The range of intensities that are available to represent the gradients is
limited by the operating range of the light sensor as well as the intensity
of the projector. Hence, instead of using constraint 10.3 or 10.4, a different
objective function needs to be minimized :

f(K) = max
∑
j

kij . (10.5)

After obtaining the transition matrix K, we can scale it such that the maxi-
mum value of

∑
j kij can be represented by the available intensity range. We

denote the scaled transition matrix Kopt.

Robot Controller

Finally, one needs to translate the solution described in the previous sections
into an actual robot controller. There is no automated way of construct-
ing such a controller; however, in a top-down approach, the designer merely
encodes the various requirements prescribed at higher abstraction levels in
the robot controller while accounting for the technological limitations of the
robotic platform. In our case, robots are programmed with a simple behavior-
based controller composed of five states: search, climb, in spot, probe, and
u-turn (Figure 10.1). Other auxiliary states are used, but they are not men-
tioned here for the sake of clarity.

In the state search, the robot performs a simple random walk, i.e., it
alternates between forward motion and tumbling in a random direction. If
the robot detects a gradient, it transitions to the state climb; in this state,
the robot moves up the gradient using a simple reactive scheme similar to
Braitenberg vehicles. When no change in intensity is detected, it means either
that the robot is in a spot if the intensity is high (transition to the state in
spot), or that the robot is lost if the intensity is low (transition to the state
search). In the state in spot, the robot moves forward; upon detecting a drop
in intensity (i.e., the robot reaches the border of the spot), it transitions to
the state probe and stops. In the state probe, it samples its light sensors for
a certain amount of time. Depending on the average of these measurements,
the robot may transition to either of two states: (i) if it encountered an
outgoing gradient and it has already spent more than Texp units of time in
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the spot4, then it transitions to the state climb; (ii) if it encountered an
incoming gradient or it has spent less than Texp units of time in the spot,
then it transitions to the state u-turn in order to remain within the spot.

10.1.3 Bottom-Up Strategy

In the bottom-up strategy, we start with a simple behavior-based controller
(Figure 10.1), which we optimize using the suite of models constructed in
Section 6.3.3. One of the critical feature of the bottom-up approach is that
it deals from the beginning with the intrinsic limitations of the robotic nodes
rather than setting requirements that are not necessarily feasible. For in-
stance, in our particular case study, we do not assume that the robots receive
broadcasted navigational hints from a central planner, thereby leading to a
fully distributed, on-board, more robust control solution. The robots exploit
local information (in our particular case, the intensity of the spots) to tune
their behavior in a way that is optimal for a wide range of scenarios (i.e., for
various combinations of spot thresholds κi for i = 1, . . . , Nspots). More specif-
ically, no gradient is projected on the arena, and the robots move from spot
to spot using a random walk instead of a directed gradient-based movement
as that used in the top-down approach. Upon detecting a change in light
intensity, a robot enters into the spot, and starts exploring it. Each time the
robot reaches the spot’s border, it will leave with probability pleave(κ̂), which
depends on its estimate κ̂ of the threshold of the spot.

One important difficulty with this approach is that we need to define the
leaving probabilities poptleave(κ̂) such that the system performs the best accord-
ing to Equation 4.11. We solve this problem in Section 11.2.

10.1.4 Results and Discussion

One of the main findings of our experimental study is that the top-down ap-
proach does not perform significantly better (or worse) than the bottom-up
approach with the leaving probabilities optimized in Section 11.2 (i.e., pleave

opt =[
pleave(κ̂ = 1), . . . , pleave(κ̂ = Nκ = 3)

]
=
[
0.335, 0.0002, 0.005

]
). However,

one also needs to check that these optimized controllers do not actually per-
form the same as any other non-trivial controller. We rule out this hypoth-
esis by performing a third type of experiments that use a so-called baseline
controller, which is essentially the bottom-up controller with all leaving prob-
abilities set to zero. A non-parametric statistical test shows that both the
top-down and the bottom-up controllers perform significantly better (with
4 If the robot encounters an outgoing gradient for the first time since entering the

spot, it first draws Texp from an exponential distribution whose mean is inversely
proportional to the average intensity of the gradient. Furthermore, because of
the limited computational power available on our robotic platform, we use a
lookup table to generate these random numbers.
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Fig. 10.1 Schematic comparison of bottom-up and top-down approaches to model-
based design. Top-down strategies start with an abstract model (e.g., a graph)
of the system, which is then iteratively refined into a robot controller. Instead,
bottom-up strategies assume the prior existence of the robots’ controller, which is
then abstracted to a high-level, macroscopic CRN.
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Fig. 10.2 (a) Graphical illustration of the experimental results reported in Ta-
ble 10.1, and (b) their comparison with a submicroscopic model implemented in
Webots (50 runs). We hypothesize that the discrepancy observed in the prediction
of the top-down performance is due to the naive noise model used in the submicro-
scopic model.

Table 10.1 Summarized results of three experiments (top-down, bottom-up, and
baseline, 10 runs of 20 minutes each) using 6 real Alice robots and 4 spots (with
κ ∈ [1, 2, 3]). The system performance is computed using Equation 4.12. The
distance between the actual distribution x(t) and the desired distribution xd of
robots is given by Equation C.1, and averaged over all sampled data points.

Metric Moment Case studies
Top-down Bottom-up Baseline

Performance
mean 0.81 0.89 0.58
median 0.85 0.95 0.57
std dev 0.25 0.27 0.22

Distance ‖x(t)− xd‖2
mean 0.36 0.37 0.25
median 0.39 0.36 0.25
std dev 0.11 0.06 0.02

respective p-values of 0.037 and 0.025 using Mann-Whitney test) than the
baseline controller. Table 10.1 summarizes the results of these experiments.
In particular, we shall outline that the large variability of both the system
performance and the average distance between the actual distribution and
the desired distribution of robots does not allow one to conclusively deter-
mine which of the optimized controllers perform best in the context of study.
Our results show that a sophisticated approach such as the one proposed by
Berman et al. [27] does not bring any significant performance increase in the
context of our case study, in spite of the supplementary infrastructure it uses.

There are multiple reasons why the extra information provided to the ro-
bots in the top-down approach does not significantly improve the system’s
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performance. First, when the density of spots is high enough, a simple search
behavior such as the one used in the bottom-up approach does not perform
significantly worse than gradient ascent, because robots can compensate for
their lack of information with higher velocities. Second, the interaction be-
tween robots in a spot dramatically affects the transition rates; for instance,
when two robots collide and avoid each other near the border of a spot, one
may get lost during the maneuver. Also, when a spot is explored by many
robots, the time they spend avoiding each other becomes non-negligible, thus
modifying the effective exit rate. Last, the assumptions underlying our for-
mulation of the expected system performance described earlier are not nec-
essarily met in reality. In particular, dispatching more than κi robots to a
given spot i may actually be beneficial because, again, it makes the system
more robust. This fact also explains the discrepancy between performance
and distance to the desired distribution observed in our experimental results.
Finally, and most importantly, the presence of noise in sensor measurements
and the heterogeneity of the projected picture dramatically affect the effective
transition rates.

As a result, robust approaches are favored over complex strategies. In
our bottom-up approach, leaving probabilities are not specifically optimized
for a given configuration, but rather for a wide range of scenarios; therefore,
the performance loss observed during the process of implementation is less
than in the case of the system developed using a top-down scheme. To verify
this assertion, we implemented a submicroscopic model using Webots, and
performed 50 simulation runs. On the one hand, the top-down approach per-
formed significantly better in simulation (mean = 2.21, median = 2.21, std
dev = 0.35) than in reality (mean = 0.81, median = 0.85, std dev = 0.25, see
Table 10.1). However, the performance of the bottom-up approach in simu-
lation remained stable (mean = 0.91, median = 0.95, std dev = 0.35). The
main difference between these simulations and reality lies in the modeling of
noise; simulations assume that the noise on the light sensors is Gaussian, but
the heterogeneity of the projected picture actually yields time-dependent and
space-dependent multimodal noise distributions. Also, most of the techno-
logical limitations of the platform (e.g., memory, resolution of analog/dig-
ital conversion, limited floating point handling) are not captured in the
simulations.

These findings confirm the better robustness of bottom-up approaches to
noise and unpredictability. Nevertheless, top-down approaches offer generally
a much better theoretical tractability at the macroscopic level; in particular,
they allow for the use of efficient optimization methods such as linear and non-
linear convex optimization. Also, top-down approaches have the potential to
perform more like deterministic strategies, especially when uncertainty and
noise are low.
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Fig. 10.3 Purely deterministic control does not yield desirable results when at-
tempting to form long chains. As we increase the target chain size from two to
eight with N0 = 19 robots, both (a) submicroscopic simulations (averaged over
100 runs) and (b) stochastic simulations of the CRN (averaged over 500 runs) show
that a lack of exploration causes the system to quickly converge to the trivial dis-
tribution (Figure 10.4), in which short chains are largely favored.

10.2 Deterministic vs Probabilistic Controllers

Case Study II

This section aims to illustrate concretely how modeling may
enlighten the designer when it comes to choose between dif-
ferent design options that are difficult to evaluate exper-
imentally. In our particular case, we consider the choice
offered by Case Study II between a deterministic controller that relies on
local communication and a probabilistic controller with no such requirement
(see Section 4.2 for further details about both approaches).

We study the deterministic controller using submicroscopic and macro-
stochastic models with varying maximal chain sizes from two to eight with
N0 = 19 robots (Figure 10.3). These results demonstrate that the controller
successfully limits the size of the chain, but, as the target chain size increases,
the distribution of chain size approaches the one yielded by the baseline
aggregation-only controller (see Section 4.2), which is depicted in Figure 10.4
for N0 = 19 robots .

Similarly to the deterministic controller, we model the probabilistic con-
troller at the submicroscopic and macro-stochastic levels. Using these mod-
els, we explore the entire parameter space (pleave,1, pleave,2) ∈ [10−9, 10−1]2

(19 Alice robots and 30 minutes of simulated time). At the submicroscopic
level, the parameter space is discretized into 9 × 9 logarithmic grid, each
point being averaged over 100 runs. The macro-stochastic model allows us
to achieve a finer discretization of 16× 32 averaged over 500 runs.

As discussed previously, one might think a priori that the best strat-
egy to achieve long chains is to choose small leaving probabilities. Perhaps
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Fig. 10.4 Comparison of the trivial
distribution for N0 = 19 robots pre-
dicted by submicroscopic and macro-
deterministic models. The average
number of single robots predicted by
the macro-deterministic model is zero.
It is clear that setting leaving probabil-
ities to zero does not favor the forma-
tion of long chains due to the lack of
exploration.
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not intuitively, this strategy proves to be suboptimal because the system
converges to an undesirable configuration that tends towards the trivial dis-
tribution as the leaving probabilities tend to zero. However, the results of
these searches, depicted in Figure 10.5, confirm the existence of an optimal
region for pleave,1 ∈ [10−4, 10−3] and pleave,2 < 10−4 where the ratio between
the number of pairs and the number of longer chains decreases because ex-
ploration (disaggregation) and exploitation (aggregation) are well balanced,
thus leading to a non-trivial chain size distribution.

The long-term evolution of the distribution of chain size for leaving proba-
bilities that lie within the optimal region (pleave,1 = 10−4 and pleave,2 = 10−9)
demonstrates clearly that one can achieve a basic control over the distribu-
tion of chain size by setting appropriate leaving probabilities only. More
precisely, it is possible to skew the steady state distribution towards longer
chains. Higher, non-optimal leaving probabilities enable faster convergence,
but they do not favor the formation of long chains.

10.2.1 Results and Discussion

Our results make clear that one cannot favor the formation of chains of a spe-
cific size by limiting the size of the formed chains (deterministic controller)
or by setting appropriate leaving probabilities (probabilistic controller). In-
deed, the landscapes depicted in Figure 10.3 and Figure 10.5 do not exhibit
a systematic variation in the ratio of different chain size populations that
would enable a precise selection of the most favored type of chain. The de-
terministic controller, by using communication among the robots, can achieve
a proper non-linear feedback that depends on the size of the chain, thereby
preventing the formation of chains longer than a certain target size, whereas
the probabilistic controller is purely linear, i.e., the robots have the exact
same behavior regardless of the size of the chain. However, the determinis-
tic controller is unable to achieve long chains because of its intrinsic lack of
exploration whereas the probabilistic controller enables, with proper leaving
probabilities, a balance of exploration and exploitation. One could however
envision combining both controllers into a single, hybrid controller. Indeed,
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Fig. 10.6 Long-term prediction (up to 14 hours) of the chain size distribution
yielded by the macro-stochastic model for two different parameter sets. (a) For
small probabilities (pleave,1 = 10−4 and pleave,2 = 10−9), it is clear that the conver-
gence is slow and the time required to reach the steady state is at least one order of
magnitude higher than the duration of our experiments. (a) For larger probabilities
(pleave,1 = 10−3 and pleave,2 = 10−3), the convergence is much faster and on the
same time scale as the duration of our experiments (about 30 minutes).

by optimizing the leaving probabilities for the formation of arbitrarily long
chains while limiting explicitly their size to a given upper bound Nmax, one
would end up favoring the formation of chains of size Nmax. However, this hy-
brid approach would be less scalable than the purely probabilistic controller
presented here. Indeed, implementing a controller based on local communi-
cation is already challenging at this scale, as depending on lighting conditions
and robot density, the robots experience extreme packet corruption and loss.
In our algorithm, this significantly increases the amount of time a chain’s
size takes to propagate to its outer nodes, possibly allowing undesirable ag-
gregations to occur in the interim. We believe this problem will become
overwhelming as target systems become smaller.

Another important insight provided by our results is that the SA process
takes a long amount of time to stabilize, in particular when leaving probabil-
ities are low, as depicted by Figure 10.6. These results demonstrate clearly
that, for small leaving probabilities, the time scale of the SA process is much
larger than that of the experiments presented in this section. As a result,
the influence of the trivial distribution is important in the beginning, as it is
essentially the transient, short-term distribution of any experiment. This ap-
parent flaw of the approach is actually an opportunity: by choosing a proper
duration of the process, one can actually control how close to the trivial
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distribution the system will be. Of course, this approach is possible only if
the leaving probabilities depend on the time (in a basic fashion, since they
will be set to zero after a time tf )5.

Summary and Conclusion

In this chapter, we investigate two orthogonal approaches (top-down vs
bottom-up) to the design of distributed controllers. The main claim of this
chapter is that conventional top-down design of multi-robot systems is gen-
erally not amenable to efficient implementations when dealing with resource-
constrained robots; faithful and computationally efficient models built
incrementally from the bottom up are an essential ingredient to the de-
sign and the control of such systems. Ultimately, we believe that these two
approaches should be combined into a more powerful model-based control
design methodology that has the potential to achieve higher, more tunable
coordination at the macroscopic level while incorporating all a priori known
technological limitations at the microscopic level. Of course, our study does
not expose all the features that make either approach more or less suitable
to a given system; this endeavor is by itself a whole body of future research.

Another key contribution of this chapter is the comparison of (i) a deter-
ministic, non-linear controller where robots communicate with each other in
order to determine the size of the chain and adapt their behavior accordingly,
and (ii) a probabilistic, linear controller where the distribution of chain size
is controlled by the leaving probabilities of the robots. Using a combination
of submicroscopic and macroscopic models, we perform systematic searches
of the parameter space, which shed light on (i) the inability of the deter-
ministic controller to achieve long chains because of its lack of exploration,
and (ii) the existence of optimal regions within the parameter space of the
probabilistic controller where exploration and exploitation are well balanced,
thus favoring the formation of larger chains. However, the linearity of the
probabilistic controller prevents any positive or negative feedback that would
favor specifically a given target chain size. Based on the insights gained from
the models, we suggest a solution based on a hybrid controller using opti-
mized leaving probabilities for the formation of arbitrarily long chains while
explicitly limiting their size to a given target size Nmax.

5 Note that this requirement does not jeopardize the scalability of our approach
since one could imagine to use an external observer to broadcast a predetermined
message or to modify an environmental parameter of the system (e.g., illumina-
tion, temperature, pH) at tf in order to signal the termination of the SA process.
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Model-Based Optimization

To the optimist, the glass is half full.
To the pessimist, the glass is half empty.

To the engineer, the glass is twice as big as it needs to be.
– Unknown

While intuition and educated guesses can be sufficient for determining the
qualitative, structural specification of a distributed robotic system, mode-
ling is often necessary when it comes to finding the optimal parameters of
the said specification. However, most classical optimization schemes are un-
able to deal with the combined effects of non-convexity, discontinuity, and
stochasticity found in models of SMPs at low abstraction level. Even macro-
deterministic models generated in a bottom-up fashion are in principle non-
convex, and may exhibit numerous local minima that are difficult to deal with.
In such cases, one needs to recourse either to optimization meta-heuristics
such as Genetic Algorithm (GA) or Particle Swarm Optimization (PSO) (and,
more specifically, their noise-resistant variants [212]) or to systematic searches
of the parameter space. Both approaches require underlying models that ex-
hibit an excellent balance between computation cost and accuracy, as they
involve numerous evaluations of candidate solutions. Optimization meta-
heuristics can deal with parameter spaces of high dimensionality, but they
are often used as black box methods. Instead, systematic searches become
difficult to use with more than three parameters, but they offer more insights
into the global, qualitative behavior of the system, which is very important
from a design perspective.

11.1 Example from Case Study III

Case Study III

2-DOFIn this section, we optimize three parameters of the 2-DOF
variant of Case Study III. Namely, we consider two de-
sign parameters, i.e., the maximal bond energy Ebond and
the misalignment tolerance σθ, and one control parameter,
i.e., the agitation of the system νs. In reality, the design parameters would be
encoded into the physico-chemical properties of the self-assembling building

G. Mermoud, Stochastic Reactive Distributed Robotic Systems, 175
Springer Tracts in Advanced Robotics 93,
DOI: 10.1007/978-3-319-02609-1_11, © Springer International Publishing Switzerland 2014
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Fig. 11.1 Illustration of different design and control trade-offs in Case Study III.
Left: Influence of the misalignment tolerance σθ (in radians) on both the yield Y and
the average misalignment of the aggregates M (in radians) after 25000 timesteps.
Note the linear relationship between the average misalignment and the misalign-
ment tolerance. Right: The yield Y is a non-linear function of the agitation of
the system νs, and it has an optimum around ν�

s = 0.15. Generally speaking,
high yields (higher than 70%) are achieved by moderate agitations (between 0.05
and 0.3), which exhibit a good balance between exploitation and exploration.

blocks such as their shape, their material, or their surface chemistry, which
would in turn characterize the interaction forces mediating the SA process.
For instance, capillary forces (occurring at liquid-fluid interfaces) tend to be
longer range and much stronger than purely hydrophobic interaction (oc-
curring in the bulk of the liquid), thereby leading to a higher misalignment
tolerance as well as a larger maximal bond energy.

As stated before, the yield is not the unique performance metrics of the
system, and one may want to optimize also the average misalignment M .
In this regard, the misalignment tolerance σθ of the building blocks plays a
key role. Indeed, a large misalignment tolerance both increases the yield and
worsen the average alignment of the aggregates (Figure 11.1, left). Note that
the relationship between σθ and M is linear whereas the one between σθ and
Y is not. Therefore, one can find an optimal trade-off between high yields and
moderate misalignment by choosing a low misalignement tolerance (around
0.5 rad). This type of information is crucial when designing a new system,
and it would be time consuming to achieve such systematic exploration of the
parameter space using realistic simulations and prohibitively difficult using
real hardware.

Our macroscopic models can also be used for optimizing the control of the
system, yet in an offline fashion. In particular, we investigate how the yield
of the system varies as a function of the agitation νs. To this end, we system-
atically vary the parameter νs in the interval [0, 1] with a granularity of 0.01
(Figure 11.1, right). Interestingly, the relation between the yield and the
agitation is strongly non-linear and exhibits an optimum around ν�s = 0.15.
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Fig. 11.2 Yield Y and the average misalignment M (in radians) at k = 25000 for
two systematically varying parameters: the agitation of the system νs ∈ [0, 1], and
the maximal bond energy Ebond ∈ [0, 8] (macro-deterministic model with N0 =
1000, K = 1500). Both high yields and small misalignments are achieved with
moderate agitation and high bond energies.

We expect the same type of complex behavior to appear in real systems since
the role of agitation is always two-fold. On one hand, it favors aggregation
by increasing the average velocity of the particles (and therefore the number
of collisions). On the other hand, it increases the shear experienced by the
aggregates, thereby decreasing their stability. Therefore, one key design ques-
tion arises: In terms of yield and misalignment of the formed aggregates, is
a system with strong agitation and stable bonds preferable to a system with
low agitation and unstable bonds? Figure 11.2 shows how each performance
metric is influenced by these parameters. As expected, highest yields are
achieved within the zone of moderate agitation and high bond energies; this
zone also corresponds to the lowest average misalignments1. These results
emphasize the crucial role of agitation for optimizing, and more generally,
controlling SA processes.

11.2 Example from Case Study V

Case Study V

BThis section discusses the optimization of the parameters of
the bottom-up controller described in Section 10.1.3. We as-
sume that the assumptions made in Section 10.1.1 hold, and
therefore we aim to find the leaving probabilities pleave

opt (κ̂)
for κ̂ = 1, . . . , Nκ that minimize the average distance between the desired
distribution xd and the distribution x(t) predicted by macroscopic models.

More formally, the distance function to be minimized is the square
of the l2-norm (Equation C.1) between the desired distribution xd and the
actual distribution x(t) of robots at time t yielded by the set of leaving
1 Admittedly, these two metrics depend implicitly on each other since the stability

of the aggregates (and therefore the yield) is a function their misalignment.
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Fig. 11.3 Systematic exploration of the three-dimensional parameter space
spanned by the leaving probabilities pleave(κ̂ = 1), . . . , pleave(κ̂ = Nκ = 3) using
(a) a macro-deterministic model and (b) a macro-stochastic model (averaged over
10000 runs). The color indicates the distance (square of the l2-norm) between the
desired distribution xd and the actual distribution x(t) at t = 100 s averaged over
a test set of 100 randomly generated scenarios. Each graph is generated by linearly
interpolating a set of 20 × 20 × 20 data points logarithmically distributed in the
interval [10−5, 1] along each dimension.

probabilities pleave at t = 100 s. Note that we do not optimize the sys-
tem for fastest convergence; rather, we target an optimal, though transient,
performance at t = 100 s, which is compatible with the dynamics observed
in the real system. The optimization is carried out offline on a test set of
100 randomly generated scenarios.

A coarse exploration of the three-dimensional parameter space spanned
by the leaving probabilities (Figure 11.3) reveals that the distance function
is relatively well-behaved, and conventional non-linear programming algo-
rithms are sufficient for solving this problem. Also, we observe that both
models agree relatively well with each other; we can therefore use the macro-
deterministic model for the optimization, thereby reducing the computational
effort by two orders of magnitude2.

Summary and Conclusion

This chapter introduces two examples of model-based optimization of SMPs.
We show in particular how computationally inexpensive models relying on
the macro-deterministic assumption allow for an efficient optimization of de-
sign and control parameters. Not only standard optimization algorithms re-
quire deterministic, continuous objective functions, but even noise-resistant

2 Here we assume that the macro-stochastic model requires in the order of
10000 runs to yield a statistically significant prediction.
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optimization meta-heuristics such as GA or PSO benefit from highly ab-
stracted models, since they involve numerous evaluations of candidate
solutions.

This chapter also outlines the importance of systematic searches in the
context of SMPs. While optimization algorithms are often used as black box
methods, systematic searches allow the designer to get a qualitative picture
of the global behavior of the system, which is a crucial piece of informa-
tion in order to make reasoned design choices. In particular, investigating
the various trade-offs exhibited by the system (e.g., exploration vs exploita-
tion, performance vs robustness) is of utmost importance in real applications,
where the costs and benefits of each design choice need to be very carefully
examined.
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Model-Based Real-Time Control

The first rule [...] is that automation applied to an efficient operation
will magnify the efficiency. The second is that automation applied to

an inefficient operation will magnify the inefficiency.
— Bill Gates (1955)

Automated modeling paves the way for more advanced uses of models built
in a bottom-up fashion. In this chapter, we describe an extension of the
M3 framework (Chapter 9) that leverages the concepts of CRN and Markov
Decision Process (MDP) to achieve the controlled formation of target assem-
blies of Lily modules (Case Study IV). Figure 12.1 depicts the global structure
of the control framework. The system is monitored by an overhead camera
and analyzed using SwisTrack (Section 3.2.3). The resulting trajectories are
then used by the M3 framework to build the CMM, and the equivalent CRN,
in real time. Finally, the optimal mode of agitation is determined using the
optimization scheme described in Section 12.1, and transmitted to the pumps
at regular time intervals. The control loop is closed by incorporating the state
changes resulting from this choice in the model.

12.1 Optimization

As stated in Section 4.4, we can assume that the probability of a given struc-
ture to be formed can be tuned by adjusting relevant parameters of the
system, including those which can be controlled in real time such as the ag-
itation of the system. More formally, the research question that we address
in this chapter is the following: given a stochastic distributed system with
a finite set of agitation modes M = {m0, . . . ,mn}, what is the mode mi to
be selected at time t such that the time to form a given target structure T
is minimal? We show how this problem is equivalent to another well-known
problem, that is, the solving of MDPs. Indeed, forming the structure T is
equivalent to attaining a target population xT = (xT,1, . . . , xT,M ) such that

xT,i =

{
1 if Si = T,

0 otherwise.
(12.1)
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Fig. 12.1 Overview of the
M3 framework as deployed
in this study, and the
different types of infor-
mation flowing between
its constitutive modules.
Gray-shaded nodes are
computational entities
whereas other nodes are
physical entities. Dashed
arrows denote flows that
are not automated, but
need to be performed
only once prior to the
experiment. Note that
the closed-loop control is
completely automated.
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Therefore, our problem consists in determining the mode ms ∈ M to be
selected at time t given a current population x(t) such that the expected
time to reach xT is minimized.

For each mode m, we have an estimate of the propensity function a
(m)
R (x)

for each reaction R ∈ R. Denote k
(m)
ij = a

(m)
R (xi) the rate of the reaction R,

whose associated population change is νR = xj − xi, if mode m is selected,
and define for any m ∈ M:

λ
(m)
i =

∑
j

k
(m)
ij , p

(m)
ij =

k
(m)
ij

λ
(m)
i

. (12.2)



12.2 Methods 183

Note that each state has only one optimal choice for the mode which mini-
mizes the expected time it takes to reach the target population xT and this
choice is independent of the past states or how much time has been spent in
the present state.

Denote by Tij the expected time it takes the system to attain the popu-
lation xj for the first time if it starts with population xi and makes optimal
choice for the mode at each subsequent state. Hence, Tij is the optimal first-
passage time from population xi to xj . We consider the target population
xT to be an absorbing state, which is reasonable if the experiment stops as
soon as the desired state is attained.

Now for Tij to be optimal, it is easy to show that they must satisfy:

Tit = min
m

⎧⎨
⎩
∑
j 	=i,t

p
(m)
ij · Tjt +

1

λ
(m)
i

⎫⎬
⎭ . (12.3)

This equation reiterates the Markov property of the system, that is, the
expected time to reach population xT is the sum of expected time to reach
the state via any of its neighbor (except xT itself) and the expected time to
exit the present state. N − 1 such equations can be written for different Tit

with i �= t .
Equation 12.3 is a Bellman equation corresponding to our MDP [232], and

can be solved to obtain the expected times and the optimal modes for each
population state. We used the Policy Iteration method to solve the equa-
tions in our case. The optimization is performed upon each aggregation or
disaggregation event observed in the system, and every 10 seconds other-
wise. Previous solutions are kept in memory, and used for initializing the
subsequent iterations to speed up the optimization process.

12.2 Methods

To demonstrate the effectiveness of our automatic model building framework
and the relevance of our optimization algorithm, we performed four distinct
experiments using the assembly E depicted in Figure 4.6 as target structure
and with different control algorithms: (I) mode m0 only, (II) mode m1 only,
(III) randomized control, where the two modes alternate randomly with an
average switching period of 15 s, and (IV) optimized control, in which the
optimizer selects the most appropriate mode of agitation as a function of
the current state of the system and of the current state of the model. The
performance of the system is given by the time of the first-passage time of
the assembly E, and bounded by the maximal duration of the run.

Each experiment consists of a series of 40 runs of 30 minutes each. Each
run starts with all blocks being isolated and at random locations. In exper-
iment IV, the optimization relies on an initial model based on the observa-
tions made during two series (one per mode) of 10 runs of 5 minutes each.
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However, as explained earlier, the model is constantly enhanced, both qual-
itatively (e.g., if a new type of aggregate is discovered) and quantitatively
(i.e., the reaction rates are adjusted) as the experiment progresses.

The underlying models are constructed based on a single type interaction,
which is active when two blocks are both close to each other and appropriately
aligned. As a result, several assemblies that are actually distinct from each
other cannot be discriminated by the model, as illustrated by Figure 4.6.

The choice of E as target structure was made because it can be univocally
mapped to a unique species of the CRN, and it can be formed out of both C1

and C2. Indeed, the assembly D can also be univocally mapped to a unique
species of the CRN, but cannot be formed out of C2. As a result, the op-
timizer cannot effectively decide which mode of agitation should be applied
when a trimer (i.e., C1 or C2) is present since these two assemblies are undis-
tinguishable from a topological perspective. Note however that this is by no
means an intrinsic limitation of our methodology, but rather a consequence
of the simplicity of the underlying model.

12.3 Results

First, our results support the intuitive argument that SA, as any self-
organized process, requires a subtle interplay between exploitation and
exploration—as expressed by the low-agitation m0 and the high-agitation m1,
respectively. Indeed, both experiments I and II exhibit poor performance
even as compared to the naive strategy that alternates between the two modes
of agitation randomly. More importantly, our results show that one can sig-
nificantly improve the performance of the system by optimizing the mode of
agitation as a function of the system’s state. Indeed, Figure 12.2 exhibits
a 40% and 66% decrease of the average and median first-passage time, re-
spectively, under optimized control. The mean/median first-passage time of
the optimized experiment (IV) is 524/205 seconds versus 930/612 seconds
for the randomized experiment (III). A Mann-Whitney test rejects the null
hypothesis that these two distributions of first-passage times are from the
same distribution with equal medians with a p-value of 5.8 · 10−3.

Figure 12.3 shows that the strategy adopted by the optimizer is quite in-
tuitive; the mode m0 (low agitation) is active as long as assemblies that may
lead to E (i.e., assemblies A, B, C1, and C2) are present, and switches to the
mode m1 (strong agitation) as soon as some incorrect tetramer is formed.
However, the optimization also exhibits some interesting and less intuitive
behaviors. First, when only single blocks are present in the system, it sets
the mode m1 so as to favor mutual collisions. Upon the formation of a
dimer B, the system may switch to mode m0 in order to preserve it; however,
while most reactions have clearly different rates for m0 and m1 (typically,
one order of magnitude or more), the reaction A + B → Cx exhibits rela-
tively similar rates in either mode, thereby allowing for a dynamic switching
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Fig. 12.2 Box plot of the
first-passage time to the tar-
get structure E obtained over
40 runs of 30 minutes each
for experiments I to IV. On
each box, the central mark is
the median, the edges of the
box are the 25th and 75th
percentiles, the whiskers ex-
tend to the most extreme data
points not considered outliers,
and outliers are plotted indi-
vidually.
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Fig. 12.3 Assembly sequence during a run of experiment IV (optimized control,
see Section 12.3). The snapshots show the state of the system immediately after a
reaction event. The reaction that fired is shown in the bottom left corner and the
current time in the top left corner. The mode of agitation chosen by the controller
is shown in the top right corner.

between two behaviors, as a function of the time spent in each. For instance,
the optimizer may select mode m0 in order to conserve the formed dimer,
but as the process progresses, the rate of the reaction leading to the trimer
formation in mode m0 decreases, until it becomes smaller than the rate asso-
ciated to mode m1, thereby leading to the selection of the latter. This type of
adaptive behavior is a built-in feature of our automated modeling approach,
which is usually obtained using ad hoc learning strategies (e.g., reinforcement
learning) elsewhere.
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Summary and Conclusion

In this chapter, we demonstrate the practical relevance of the M3 framework
by applying it for modeling and controlling, automatically and in real time,
the stochastic SA of four Lily modules. We describe how the resulting mod-
els can be used to optimize a bang-bang controller, and our results show a
significant improvement of the system performance with respect to strategies
based on single modes of agitation or a random switching between the modes.
We thus demonstrate that the M3 framework can be used for controlling a
highly stochastic, distributed system without recourse to ad hoc control al-
gorithms. Indeed, both the M3 framework and the optimization technique
we propose are in principle completely platform-independent.

This chapter does not investigate the use of more complex models (by
adopting a 8-neighbors topology, for instance), and how they may enhance
the overall performance of the system. Preliminary results that are not re-
ported in this manuscript pinpoint an important challenge when dealing with
larger models, that is, finding a proper, dynamic balance between an explo-
rative behavior where the system tries to gather data for constructing and
calibrating the model, and an exploitative behavior where the system uses the
model to optimizing its functioning. Solving this problem is a critical line of
future research; we believe that more advanced machine learning techniques
are necessary, in particular those developed in the field of graph and network
analysis.
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Conclusion

But what is it good for?
— An engineer at the Advanced Computing Systems Division of IBM,

commenting on the microchip in 1968

This dissertation proposed a unified methodological framework for the
model-based, optimal design of SMPs. The notion of SMPs encompass all
systems whose dynamics result from the multiple, stochastic interactions of a
set of constitutive components endowed with a reactive behavior and minimal
sensing, computing, and actuation capabilities, such as sub-centimeter-sized
robots, insects, cells, MEMS devices, or molecules. As a result, the spectrum
of potential applications of this work ranges from biomedical engineering
(where large groups of ultra-small robots are envisioned as both diagnostic
and therapeutic tools) to environmental engineering (e.g., spill detection, pol-
lution monitoring, water purfication). The experimental portion of this work
is not intended as a proof-of-concept of these anticipated applications; rather,
it supports our theoretical and methodological findings, which constitute the
main body of our research. In particular, the claims of this dissertation can
be articulated as follows.

First, based on a series of thorough experimental and theoretical studies,
this work sheds light on the critical benefits and limitations of the MLMM,
which, in spite of intensive research efforts in the last decade [48, 81, 82, 190,
195, 206, 233], was still lacking a more critical and in-depth evaluation:

� We established a systematic classification of the models that can be used
to describe SMPs, and we enlightened the role of stochastic processes as
simplification and abstraction mechanisms in this hierarchy.

� We discussed in detail the requirement of the MLMM that individual ro-
bots must be endowed with a controller that can be represented as a FSM.
Because many SMPs do not fulfill this requirement, the applicability of
the MLMM is limited when dealing with non-robotic components.

� We showed that the MLMM lacks some critical features for allowing a
more algorithmic approach to the modeling of SMPs. The MLMM is
a collection of recipes that require a great deal of expertise and ad hoc
adaptations as a function of the underlying system.
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Second, these limitations were addressed by introducing a more systematic
and generic approach to the modeling of SMPs.

� The cornerstone of this methodological effort is the M3 framework, which
provides a consistent set of theoretical and computational tools targeted
to a complete automation of the modeling process. Building up in parti-
culier on the seminal works of Schweitzer [159] and Milutinovic [51], the
M3 framework constitutes a milestone in the on-going research efforts
towards generic and unified approaches to the modeling of multi-robot
systems.

� The M3 framework was thoroughly validated based on a series of ex-
perimental studies carried out in simulation, with real passive devices,
and with real robots. These studies outlined the robustness, platform-
independence, and scalability of the framework.

Third, this dissertation discussed in detail the role of multi-level mode-
ling, and the M3 framework in particular, when designing, optimizing, and
controlling distributed robotic systems:

� We showed in particular how conventional top-down approaches [27, 50]
may not be suitable as the influence of noise and uncertainty increases.
Our findings question in particular the use of such strategies when dealing
with very resource-constrained robots.

� We discussed the role of systematic searches based on highly efficient
computational models for gaining insights into the global behavior of a
system.

� We demonstrated experimentally the real-time optimized control of a
highly stochastic self-assembling system based on the M3 framework,
without recourse to ad hoc control algorithms [107, 130] or active building
blocks [46].

13.1 Outlook

The M3 framework enables a simpler and broader use of multi-level modeling
for designing distributed systems at large. In the near future, we have two
primary objectives. First, we aim at demonstrating the relevance of the
framework for designing, modeling, and optimizing the SA of real MEMS
devices. Second, even though virtual particles are an important feature of the
framework for capturing spatial heterogeneities, we have yet to demonstrate
its applicability on relevant case studies.

From a more long-term perspective, we hope that the M3 framework could
become a standard item of the distributed systems engineer’s toolbox. This
ambitious objective defines several important axes for future research:

� The assumption of perfect observability of the underlying system must
be relaxed, that is, the framework must be robust enough to deal with
lacunary trajectories, both in state and time.
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� The generated models must be directly anchored to the control and design
parameters of the underlying system, such that the framework enables the
optimization of the continuous values of these parameters—by opposition
to the discrete approach reported in this work.

� The framework must be extended with mechanism for guiding the pro-
cess of model refinement and reduction, as well as the exploration of the
parameter space, such that the amount of experimental data required to
construct and calibrate the models is minimized while preserving their
accuracy.

� The ability of the generated models to predict the performance of systems
larger (in terms of number of agents) than those on which they have been
calibrated must be demonstrated experimentally.

From a more practical standpoint, the M3 framework as it was used in this
thesis presents itself as a pure research tool that offers little accessibility to the
average user. One important task would be therefore to perform a complete
overhaul of the framework in the perspective of an open-source, public release.
A graphical user interface, pre-defined input interfaces for existing tracking
tools or simulators, and post-processing features for visualizing and analyzing
the resulting models are typical features to be implemented down the road.

As a final, and more personal, note, in spite of the theoretical and method-
ological flavor of my work, its ultimate intent is to bring more robust and
cost-efficient engineered systems to life by exploiting the critical benefits of
distributed strategies. Nowadays, I believe that very few industrial ap-
plications impose the use of large, coordinated groups of cheap, resource-
constrained robots rather than a handful of expensive, but sophisticated
robots that ignore each other. Yet, many current technological trends pin-
point a future where distributed systems will be the norm rather than the
exception. I hope that this work is one solid brick of this formidable edifice
under construction.



A

Maximum Likelihood Estimation of
Reaction Rates

Hereafter, we solve the following optimization problem:

k̂ = argmax
k

L(k|e1, . . . , en) = argmax
k

f(e1, . . . , en|k). (A.1)

where L(k|e1, . . . , en) is the likelihood of the rate vector k given the sequence
of observed events (e1, . . . , en).

We can write the probability f(ei|k) of a single event ei as follows:

f(ei|k) = aRi(xi) · e−aRi
(xi)·ti ·

∏
Rj 	=Ri

∫ ∞

ti

aRj (xi) · e−aRj
(xi)·t · dt

= aRi(xi) · e−aRi
(xi)·ti ·

∏
Rj 	=Ri

−e−aRj
(xi)·t

∣∣∣t=∞

t=ti

= aRi(xi) · e−aRi
(xi)·ti ·

∏
Rj 	=Ri

e−aRj
(xi)·ti

= aRi(xi) ·
∏
Rj

e−aRj
(xi)·ti = aRi(xi) · e−a0(xi)·ti (A.2)

where
a0(x) �

∑
Rj∈R

aRj (x). (A.3)

Since we assume independence of events (Markovian property), we can
write:

L(k|e1, . . . , en) = f(e1, . . . , en|k)
= f(e1|k) · . . . · f(en|k)

=

n∏
i=1

aRi(xi) · e−a0(xi)·ti . (A.4)

For the sake of simplicity, we will omit the arguments of L in the sequel.
Now, we can try to solve the optimization problem formulated by Equa-

tion A.1. To make our problem simpler (both from an analytical and a
numerical standpoint), we work with the natural logarithm of the likelihood
function:
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lnL = ln

( n∏
i=1

aRi(xi) · e−a0(xi)·ti
)

=

n∑
i=1

(
ln aRi(xi)− a0(xi) · ti

)
. (A.5)

First, we need to compute the gradient of the log-likelihood function lnL:

∇ lnL =

(
∂ lnL
∂kR1

, . . . ,
∂ lnL
∂kRN

)
(A.6)

with

∂ lnL
∂kRj

=

n∑
i=1

(
∂ ln aRi(xi)

∂kRj

− ∂a0(xi) · ti
∂kRj

)

=

n∑
i=1

(
1

aRi(xi)

∂aRi(xi)

∂kRj

− ∂a0(xi)

∂kRj

· ti
)

(A.7)

where

∂aRi(xi)

∂kRj

=
∂kRi · ãRi(xi)

∂kRj

=

{
ãRi(xi) if Rj = Ri

0 otherwise
(A.8)

and

∂a0(xi)

∂kRj

· ti =
∂aRj(xi)

∂kRj

· ti = ti · ãRj (xi). (A.9)

Replacing these terms into Equation A.7, we obtain

∂ lnL
∂kRj

=
n∑

i=1

(
1Ri=Rj

kRi

− ti · ãRj (xi)

)
(A.10)

where 1Ri=Rj is the indicator function. A local extremum of the function lnL
corresponds to a zero of the gradient

∇ lnL =
(
0, . . . , 0

)
(A.11)

which is equivalent to writing

n∑
i=1

1Ri=Rj

kRi

=

n∑
i=1

(
ti · ãRj (xi)

)

1

kRj

·
n∑

i=1

1Ri=Rj =

n∑
i=1

(
ti · ãRj (xi)

)

k̂Rj = kRj =

∑n
i=1 1{Ri=Rj}∑n

i=1

(
ti · ãRj (xi)

) (A.12)

for j = 1, . . . , N . Importantly, the rate of the reaction R = Rj also depends
on events that do not involve R.
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For this point to be a maximum of lnL, we need the Hessian matrix

H(lnL) =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂2 lnL
∂k2

R1

∂2 lnL
∂kR1∂kR2

. . . ∂2 lnL
∂kR1∂kRN

∂2 lnL
∂kR2∂kR1

∂2 lnL
∂k2

R2

. . . ∂2 lnL
∂kR2∂kRN

...
...

. . .
...

∂2 lnL
∂kRN

∂kR1

∂2 lnL
∂kRN

∂kR2
· · · ∂2 lnL

∂k2
RN

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝
H1 0 . . . 0
0 H2 . . . 0
...

...
. . .

...
0 0 . . . HN

⎞
⎟⎟⎟⎠

(A.13)

to be negative-definite, which is clearly the case for all k ∈ R
N
+ since we have

that

Hj = −
n∑

i=1

1Ri=Rj

k2Rj

. (A.14)

Importantly, the Hessian matrix can be used to compute the variance-
covariance matrix of the estimated parameters, which is defined as the inverse
of the Fisher information matrix I, which is itself the negative of the expected
value of the Hessian matrix:

var(k) =
[I(k)]−1

=
(
− E

[
H(lnL)])−1

. (A.15)

In our case, since H(lnL) is diagonal, we have:

var(k) =

⎛
⎜⎜⎜⎜⎝
−(E[H1]

)−1
0 . . . 0

0 −(E[H2]
)−1

. . . 0
...

...
. . .

...
0 0 . . . −(E[HN ]

)−1

⎞
⎟⎟⎟⎟⎠ , (A.16)

which translates into

var(kRj ) = −
(
E[Hj ]

)−1

=

(
E

[
n∑

i=1

1Ri=Rj

k2Rj

])−1

=
E[k2Rj

]∑n
i=1 1Ri=Rj

. (A.17)

To avoid to compute the expectation of the squared reaction rate, one can
use the following approximation for large sample sizes:

var(kRj ) � −
(
∂2L(kRj |e1, . . . , en)

∂k2Rj

∣∣∣∣
kRj

=k̂Rj

)−1

=
k̂2Rj∑n

i=1 1Ri=Rj

. (A.18)

These terms are of course similar to the diagonal terms of the Hessian matrix.
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Proof of Theorem 9.12

Theorem 9.12 (Continuous-discrete phase mapping). Given a finite set
of interactions I, there exists a function Ω : S → Vext, which maps each
extended state x ∈ S to a corresponding extended mode ξ ∈ Vext, such that ξ
is the active control mode whenever the system is in state x.

Proof. First, we show the existence of an image ξ ∈ Vext for each x ∈ S. By
construction, each extended state x corresponds to a unique arrangement of
the particles in X. Given this arrangement, the control mode of each parti-
cle Pi is completely and uniquely determined by the status of the interactions
in which Pi is involved. Whether an interaction I ∈ I is active depends solely
on the predicate cond, which is completely and uniquely determined by x,
and the functions D1 and D2, which may depend on the status of other in-
teractions. The property of monotonicity (Remark 9.7) and the finiteness
of the set I ensures that any dependency chain is finite (in particular, if
any cyclic dependency exists, all of its constitutive interactions will always
remain inactive). As a result, given the position of each particle in X, one
can determine the status of each interaction, which in turn determines the
interaction configuration of each particle, and the extended mode ξ ∈ Vext.

Second, we show the uniqueness of ξ. Let the extended state x have
two images ξ1 and ξ2. If these two extended modes are different, then the
status of at least one interaction, say I1, must be different in either modes.
Since the predicate cond of I1 is completely determined by x, this difference
must originate from the dependency of I1 (given by either D1 or D2) on
another interaction, say I2, whose status is also different ξ1 and ξ2. A similar
argument can then be applied to I2, which in turn depends on I3, and so on,
until the end of the dependency chain. In presence of cyclic dependencies,
no interaction could have become active in the first place, in which case ξ1
equals ξ2. In absence of cyclic dependencies, the only cause for ξ1 and ξ2
being different is that the predicate cond of some interaction Ii is different in
either modes, which is impossible since it is fully determined by x. Therefore,
we have ξ1 = ξ2.
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Expectation of the Second-Order Error

We derive the expectation of the second-order error E2 between the steady
state predictions of macro-stochastic and macro-deterministic models. In-
deed, the finiteness of the population introduces a steady state error that
grows as the number of agents decreases; an infinite number of agents makes
both approaches equivalent. However, since we have a finite number N of
agents, we expect to see some difference between the desired and actual dis-
tribution of agents, even after convergence. This steady state error has to be
characterized in order to determine whether the given distribution has con-
verged or not. In our case, we define the second-order error E2 as the square
of the l2-norm between the actual distribution and the desired distribution
of agents:

E2 = ‖xN0 − x∞‖2 =

NS∑
i=1

(
xN0

i − x∞
i

)2

. (C.1)

Assume that the system is at equilibrium, and xi =
∑N0

j=1 1j,i/N0 with

1j,i =

{
1 if agent j is in state i at steady state,
0 otherwise. (C.2)

In the thermodynamic limit, each agent is in state i with probability x∞
i .

Also, each agent moves independently of the others. Hence, variables 1j,i are
independent for each agent1. Therefore, we have (assuming t → ∞):

E[E2] = E

[ NS∑
i=1

(xN0

i − x∞
i )2

]
=

NS∑
i=1

E
[
(xN0

i − x∞
i )2

]

=

NS∑
i=1

E
[
(xN0

i )2 − 2 xN0

i x∞
i + (x∞

i )2
]

E[xi] = E

[∑N0

j=1 1j,i

N0

]
= x∞

i (C.3)

1 Actually, they have to follow the additional constraint
∑NS

i=1

∑N0
j=1 1j,i = N0 to

conserve the number of agents. However, they are independent for each agent,
which is the property used.
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E[x2
i ]=E

[∑
l,k 1l,i · 1k,i

N2
0

]
=

1

N0

(∑
j

E

[
12
j,i

N0

]
+
∑
k 	=l

E

[
1l,i · 1k,i

N0

])

=
1

N0

(
x∞
i + (N0 − 1) · (x∞

i )2
)
. (C.4)

Hence, E[E2] = 1

N0

N∑
i=1

(x∞
i − (x∞

i )2) =
1−∑N

i=1(x
∞
i )2

N0
(C.5)

Equation C.5 can be computed for a any given state distribution and
number of agents, but it accounts only for the contribution of small copy
numbers to the overall error exhibited by macro-deterministic models.



Glossary

ABM Agent-Based Model
CAD Computer-Aided Design
CFD Computational Fluid Dynamics
CME Chemical Master Equation
CMM Canonical Microscopic Model
CRN Chemical Reaction Network
CRNT Chemical Reaction Network Theory
CRW Correlated Random Walk
DES Discrete Event Simulation
DOF Degree of Freedom
FSM Finite State Machine
GA Genetic Algorithm
IR Infrared
KS Kolmogorov-Smirnov
MCM Monte-Carlo Method
MDP Markov Decision Process
MEMS Micro-Electro-Mechanical System
MLE Maximum Likelihood Estimation
MLMM Multi-Level Modeling Methodology
ODE Ordinary Differential Equation
PDE Partial Differential Equation
PDF Probability Density Function
PSO Particle Swarm Optimization
SA Self-Assembly
SMP Smart Minimal Particle
SSA Stochastic Simulation Algorithm
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