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PREFACE

This book is based on a graduate course that I have had the pleasure of teaching
to six different entering classes of physics graduate students. The two-semester

_sequence on electrodynamics, encompassing approximately . 50 lectures was de-
signed to lead them from the basic physical principles of this sub Ject—e g., the
concept of a field and the physical meaning of a divergence and a curl—through
to a relativistic Lagrangian formalism with action principles that overlap with
the field theoretic techniques used in other branches of advanced physics. The
course material is self-contained, requiring little (or no) reference to other texts,
though several key sources cited in the book ought to be consulted for a deeper
understanding of some of the topics. The main theme throughout has been to
produce a concise, compact, and yet complete development of this important
branch of physics, making the fundamental ideas and principles easily accessible
and always strongly motivated.

Electrodynamics is a long-established discipline in physics, and several good
texts are available, among them those by Jackson and by Landau and Lifshitz.
However, my students have often complained that it is difficult to find a coher-
ent and continuous treatment of the various subtopics. Often, a text will either
begin at a basic level and end before getting to the advanced treatment of the
subject (which is essential, e.g., for a coupling of the ideas in electrodynamics to
the more advanced aspects of particle physics), or will begin by assuming that
the reader is familiar with the basic concepts and develop the formalism from
an advanced standpoint. Each of these approaches has its merit. The former
permits an in-depth study of electrodynamics in the context of nonrelativistic
particle dynamics, with many applications and nuances, though often losing
sight of the beautiful and elegant field theoretic treatment that lies beyond.
The latter exposes students to the material they will need in order to advance
to a quantization of the classical field, but in starting beyond the basics, there
is an inherent danger of losing the physics and experimental foundation for
the theory. For example, no graduate student should have completed a course
in electrodynamics without fully appreciating the physical basis for gauge in-

ix



X ELECTRODYNAMICS

variance, or the fact that the constancy of the electron mass is an indication
that a charge radiates when its distorted self-field attempts to readjust to its
preaccelerated state. For the young graduate student, a self-consistent, com-
plete transition from the empirical basis of Maxwell’s equations to topics such
as these is a must.

Wherever possible, I have attempted to emphasize the physics of the principles
under discussion with a view toward always bridging previous and new ideas,
and the mathematical formalism, in a clearly motivated manner. I have found
that a sustained, motivational approach using well-defined physical concepts is
the key ingredient in a successful development of the subject from its simplest
steps to the full Lagrangian formalism. In my course, for example, I treat
radiating systems twice—once with classical tools, and a second time with
the complete, relativistic description. This serves several purposes, the most
important of which is that the students gain a physical understanding of the
principles of radiation using fundamental ideas and can then fully appreciate
and correctly interpret what the complete, field theoretic equations are telling
us.

I wish to thank Eugene N. Parker for graciously accepting the task of reading
through the text. His many notes and suggestions have led to many improve-
ments, and to him I am most grateful. I am also greatly indebted to the second
(anonymous) reader, who himself made numerous suggestions for improvements
and corrections that have greatly enhanced the quality of this book. Over the
years, more than 150 graduate students have contributed to the refinements
in my lecture notes that formed the early stages of this book. Their insightful
questions, their love of physics, and their perseverance have been an inspiration
to me. My appreciation for the beauty and elegance of this subject has grown
with theirs over this time. I hope this monograph will do the same for others
yet to come. Finally, I owe a debt of gratitude to the pillars of my life: Patricia,
Marcus. Eliana. and Adrian.



1

INTRODUCTION

1.1 THE PHYSICAL BASIS OF
MAXWELL’S EQUATIONS

It is often said that the theory of electrodynamics is beautiful because of its
completeness and precision. It should be noted more frequently that its appeal
is indeed a measure of the elegance with which such an elaborate theoretical
superstructure rests firmly on a selection of physical laws that are directly
derivable from a few simple observational facts. It seems appropriate, therefore,
to begin our discussion by examining the physical basis of these anchoring
relations—the Maxwell equations.

The subject of our study is something known as the electromagnetic field. Just
one of many important fields in physics, it is a continuously defined function
(or a set of functions) of the coordinates of a point in space, and sometimes,
in spacetime. We shall quickly come to understand why the electromagnetic
field is now well established as a dynamical entity that can interact with charges
and currents, but one that can nonetheless exist on its own and carry attributes
such as energy, momentum, and angular momentum. To begin with, however,
let us briefly trace the first steps in our recognition of its presence, which is
manifested via its coupling to particles. The first of its components, the electric
field E, is observed experimentally to be produced either by a charge Q, or by
a changing magnetic field, which we define below. In a region of space where
the charges are static, the electric field due to a charge @ is defined in terms of
the force Fgiatic experienced by a second (test) charge g, such that

E(z,y,2,t) = lim Ftatic , (1.1)
q—0 q
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where the limit simply removes any possible effect on the field due to the test
charge itself. The empirically derived form of Fi;atic, i.e., Coulomb’s law,

qQ

1.2

3

Fstatic = ’ (1-2)
where the unit vector 7 points from @ toward ¢, was considered at the time of
its discovery to be an example of action at a distance, in which two charges act
on each other in a way that has nothing to do with the intervening medium.
Work with dielectric polarization, pioneered by Faraday (1791-1867), showed
that this is clearly not tenable, for the effect on a capacitor due to the presence
of a dielectric between the two plates calls for a dependence of the electric force
on the charge of the intervening medium. In other words, electric forces must
be transmitted by the medium.

Maxwell (1831-1879) built on Faraday’s ideas and succeeded in showing that
the forces (and their energies) exerted on charges by other charges could be
expressed not only in terms of the magnitudes of the charges themselves and
their locations, but also in terms of a stress-energy tensor defined throughout
the medium in terms of certain functions of the field strengths. This tensor—a
matrix of elements that include the vector components of the momentum flux
density propagating in each of the spatial dimensions—can change with location
and may be used to infer the net momentum transfer across any given surface
throughout the volume encompassing the particles. For example, the force
between two charges could either be calculated via the empirical Coulomb’s law
or by integrating the stress-energy tensor over an imaginary surface surrounding
the charge. With the development of Maxwell’s equations the field concept was
firmly in place, particularly with the subsequent discovery of electromagnetic
waves and their identity with light waves.! We now know, of course, that
the field is a dynamical entity; it possesses energy, momentum, and angular
momentum—it is not merely a mathematical function. Indeed, the reader’s
ability to see this page is based entirely on the reality of photons in this field.

The basic idea of classic electrodynamics as a field theory is that charges and
currents produce at each point of spacetime a field that has a reality of its own,
and which can affect other charges. There are two sets of equations that account
for these effects: Maxwell’s equations describe the field produced by the charges,
and in turn, the Lorentz force equation shows how a field acts on a charge. Such
a simple division is not always possible. In quantum chromodynamics, for

IThe reader is encouraged to learn more about the history of the field concept from the
nonmathematical, but very detailed account in Williams (1966).
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example, the fields themselves carry “charge” so the equations are necessarily
strongly coupled and nonlinear.?

Let us remind ourselves of what the Lorentz force equation looks like, because it
represents one method of defining the second component of the electromagnetic
field (i.e., the vacuum magnetic field B) from empirical data:

F=q(E+}C’-xB). (1.3)

In this case, the force experienced by the charge ¢ has two components, one
due to E and the second due to B, and it is to be distinguished from its value
Fgtatic in the static limit, which we used in Equations (1.1) and (1.2) above.
Assuming we can measure F and that we know E, the field B is defined in
terms of the force experienced by a moving test charge q as

F
vxB=lim — —cE. (1.4)
9—0 ¢
In cases where charges move and produce static (i.e., time-independent) cur-
rents, the magnetic field may also be identified in terms of the “source” prop-
erties by using another empirically derived equation—the Biot-Savart rule:
< 7
B(x) = 2YXT (15)

rZe

where v is now the (uniform) velocity of the particle producing the field. The
motivation for this definition is the experimentally inferred force exerted on
one current-carrying loop by a second. As is the case in electrostatics, it is
convenient to imagine that one of the currents produces a field which then
exerts a force on the other current. As we noted above, this definition is not
imperative until we consider time-varying phenomena, but it becomes necessary
then in order to preserve the conservation of energy and momentum, since the
magnetic field, together with the electric field, then constitute a dynamical
entity. A charge () moving with velocity v is “seen” to produce a magnetic
field B according to Equation (1.5), such that the force exerted on a second
charge q is then correctly given by (the Lorentz force) Equation (1.3).

The first of Maxwell’s equations, Gauss’s law for the electric field, is deduced
from Coulomb’s law. It simply says that the total electric flux threading a
closed surface is proportional to the net charge enclosed by that surface. As
long as the fields of different charges act independently of each other, this is an
intuitively obvious concept, since twice as many charges should produce twice

2See Yndurain (1983) for an introductory treatise on this subject.
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as much field. The constant of proportionality is fixed by the requirement that
this law correctly reproduces the empirically derived Equation (1.2):

}[E-da=47rZQ. (1.6)
S

However, because of the complexity of most charge distributions, this integral
form is not very useful. Instead, we would like to have a law that deals with
the flux threading the surface enclosing an infinitesimal volume element. We
are therefore motivated to introduce the divergence of the electric field, defined
to be the outflux per unit volume V:

divE = lim —l—f E-da, . (1.7)
vaso |V S(V)

In this (and subsequent) applications of the volume limit, it is understood by
the limiting symbol that V is shrunk to the point x¢ at which the divergence
is to be calculated, in such a way as to at each stage always contain x¢ in its
interior, and that S(V') always denotes the boundary of V', so that both S and
V change in the limit process. But what does div E look like mathematically?
Consider the case of a divergence from the cubical volume element dz dy dz in
a Cartesian coordinate system (Figure 1.1).

Figure 1.1 The divergence of the electric field from a cubical volume element
in Cartesian coordinates. The change in E; as the field traverses across the
cube is E/, dx, where E, = 0E. /dx.
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The net flux of the E-vector from the inside to the outside of this box is

fE-da=ZE-da
S

__(OE; 0E, OFE,
= < P d:c) dydz + ( 3y dy) drdz + ( P dz) drdy , (1.8)

where the sum is taken over the six faces of the cube. Thus, using V = dx dy dz,
we get

OE, 4 0E, + OE,
ox 0y 0z

Z Q= /V pdiz, (1.10)

where p is the charge density enclosed by the box. But

. 1 3.0
‘lfl_r_n)0 {V/‘/pd x}—p, (1.11)

which together with Equations (1.6) and (1.7) brings us to the first of Maxwell’s
equations written in differential form:

divE = =V-E. (1.9)

Moreover, we can write

dvE=V-E=4mp| . (1.12)

Strictly speaking, our derivation of this equation is based in part on the require-
ment that the constant of proportionality in Equation (1.6) correctly matches
that in Coulomb’s law (Equation [1.2]), which describes a static field. As long
as the electric fields of different charges continue to act independently of each
other even in time-dependent situations, it is reasonable to assume that Equa-
tion (1.12) applies generally to any charge distribution p, whether or not the
configuration is static.

The corresponding form of Gauss’s law for the magnetic field depends on
whether or not magnetic monopoles exist. Like their electric charge coun-
terparts, monopoles are point sources for B, producing radial fields, different
from other types of magnetic fields that can be represented as lines of force
that do not begin or end on sources, e.g., they may be closed loops or curves
that extend from minus to plus infinity. Monopoles are extremely interesting
objects, whose relic abundance in the universe is unknown, and whose flux is
severely constrained by several astrophysical/cosmological arguments. Because
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of their enormous mass, grand unified theory monopoles cannot be produced in
the lab, and their detection must necessarily involve searching for cosmological
particles.> One such search, using the induction of a current in a loop due to
the passage of a magnetic monopole, was pioneered by Alvarez and co-workers
(Alvarez et al. 1971) and later advanced by Cabrera (1982), whose first detec-
tor recorded a current jump consistent with a monopole on 14 February 1982,
corresponding at that time to a flux of 6 x 1071% cm~2 sr—! sec™!. Since then,
he and other investigators have improved the sensitivity of their searches by
several factors of 10 without making another detection, so the initial event is
considered to have been spurious. The existence of the galactic magnetic field,
which would be dissipated by the presence of monopoles, places an indepen-
dent upper limit on the monopole flux of about 1071% cm~2 sr~! sec™! (Parker
1979). In fact, there is no reason to think that the monopole flux is even as
high as this—there may be none at all.

The range of potential applications of magnetic monopoles, should they exist,
is quite extensive. A simple, though highly practical, example is the following.
Imagine placing an electric charge on one end of a rigid nonconducting rod
and a magnetic charge on the other end. Since the magnetic monopole’s field is
everywhere radial, any motion of the electron other than in a direction along the
rod would subject it to v x B forces that are always perpendicular to its velocity
and perpendicular to the rod (see Equation [1.3]). At best, the electron would
execute circular motion in a plane perpendicular to the local B (and hence
perpendicular to the rod). If kept in a low temperature region, where the
equipartition energy of the electron is small compared to its electromagnetic
potential energy so that its gyration radius is much smaller than the length
of the rod, such a system would be prevented from rotating with an angular
momentum vector perpendicular to its length, and would thus make a very
effective gyroscope with no moving parts.

We will “grudgingly” assume that the experimental evidence does not yet sup-
port the existence of magnetic monopoles, and that a finite volume cannot
therefore contain a source or sink of magnetic flux. In any case, even if there
are a few monopoles, it is clear that they are so rare that they can be ignored for
ordinary purposes. We adopt the view that every magnetic field line that enters
a closed surface must exit somewhere else on that surface. Mathematically, this
fact is expressed as

3For a review of experimental techniques and flux limits from induction and ionization
monopole searches, see Groom (1985) and the resource letter of Goldhaber and Trower (1990).
An earlier discussion of the relevance of monopoles to particle physics was produced by
Schwinger (1969).
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fB.da=o. (1.13)
S

As was the case for the electric field, we would like to have a law that deals
with the flux threading the surface enclosing an infinitesimal volume element,
so that with our definition of divergence, we will modify Equation (1.13) to
arrive at the second of Maxwell’s equations:

divB=V-B=0 | . (1.14)

Figure 1.2 Contour integration of E around a closed path enclosing an area
S(l) and threaded by a changing magnetic flux.

Now a property of the electrostatic field is that it is conservative, meaning that
the work performed by electrostatic forces is zero when a charge moves around
a closed path, i.e., § E-dl = 0 (see Figure 1.2). Therefore, we can say that
the electric field is derivable from a scalar function & (the potential), which
depends only on the spatial coordinates of the point where the field is to be
calculated. The reason that E is a vector whereas ® is a scalar is that the
potential ® can change in three independent ways corresponding to the three
independent spatial directions. The field components are a measure of the rate
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at which @ changes in each direction, so we need three different components to
describe E. Thus,

E=-gradd=-V&. (1.15)

Faraday’s contribution was to show experimentally that § E - dl # 0 when the
closed path is linked by a changing magnetic flux . In that case,

fE dl = -1";"—’3:—-‘1— lB.da. (1.16)

As with the integral form of Gauss’s law, this equation is not very useful for
most situations. We are again motivated to define a new operation, viz., the
curl of a vector E, which is to be the limiting circulation of E as the enclosed
area S vanishes. Thus, the curl of E in a direction S is given as

(curl E)g = hm { fE dl} (1.17)

where $ is a unit vector oriented normal to the surface S. As was the case earlier
in the definition of divergence, the limit in this expression must be taken with
care. It is understood that S is shrunk to the point x¢ at which the curl is to
be calculated in such a way as to at each stage always contain x¢ within its
boundary, and that the contour of the integral always denotes this boundary of
S, so that both the contour and S change in the limit process. Curl measures
the circulation § E - dl per unit area so, for example, curl E = 0 in the case of
a static, and hence conservative, field.

In a Cartesian coordinate system, the calculation of curl E would proceed as
follows. Let us set up the surface so that it lies in the  — y plane, with S
pointing in the 2 direction (see Figure 1.3). The circulation I' around the
surface element dz dy is

0E,y BE
I'= ( 52 3y > drdy . (1.18)
Thus, putting S = dr dy, we get
_0E, 0E
(curl E); = 5z By (1.19)

The other components follow from z — y — z permutations. Therefore,

curlE=V xE. (1.20)
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Realizing that for a continuous field B

1 A
i — . =B-§$=8B,, 21
;1_% {S /SB da} B-S=B (1.21)

we arrive at the third Maxwell equation,

curlE=V xE=-8B/dct | . (1.22)

Figure 1.3 The curl of the electric field E in the zy-plane of a Cartesian
coordinate system. In this figure, E; = 0E; /8y and E! = 0E, /dz.

Note that the derivative appearing in Equation (1.16) is the total time derivative
which accounts for the changes in flux through the loop due to both the local
variation in B at a fixed point and the differences in B encountered by the loop
as it moves through a region of nonuniform magnetic field. This derivative,
often referred to as the convective derivative, is given by the chain rule of
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differentiation, d/dt = 8/0t + (dz/dt)(d/0z) + (dy/dt)(0/0y) + (dz/dt)(0/0z),
or in more compact form, d/dt = 8/8t+ v - V. Since we are here considering a
stationary loop in the frame where B is measured, we have v = 0 and only the
partial time derivative appears in Equation (1.22). The behavior of the fields
in the context of moving loops (or frames) will be featured in Chapter 5.

Just as Gauss’s law for time-independent conditions was deduced from Cou-
lomb’s law for the electric field due to a charge @, the time-independent form
of Ampere’s law (the fourth Maxwell equation) is deduced from (and ulti-
mately finds its justification in) the Biot-Savart rule for the magnetic field
due to a mowving charge Q; located at x;, which gives rise to a current den-
sity Ji(x) = Q;v;(x) 83(x — x;). From Equation (1.5), it is evident that for a

time-independent current
1 [Lidlx7
B=- : .
- / =, (1.23)

where I; = | sJi - da. For a constant electric field (see below), Ampere’s law
simply states that
47
}{B‘dl=s-c— ZL (1.24)
?

i.e., the circulation of B (the left-hand side) is proportional to the total current
enclosed by the loop. The constant of proportionality is again chosen to comply
with the empirically derived Equation (1.23) for the magnetic field. If we now
let J represent the total current density, so that

/J.da=ZIi, (1.25)
S i

and if we follow the same procedure as that used to derive the third Maxwell
equation (1.22), we can take the infinitesimal limit of Equation (1.24) to obtain

curlBsﬁxB:éch. (1.26)

However, this equation is not complete as it stands, since it does not appear to
apply to time-dependent situations—it violates another very important experi-
mental fact: charge appears to be absolutely conserved. To see how this comes
about, let us digress for a moment to understand what in fact is required for
the conservation of charge. Suppose a volume V encloses a total charge @ with
charge density p(x,t):

Q= /V p(x,t) d®z . (1.27)
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Suppose now that the charge distribution has a velocity v(x,t). Then, as the
volume changes, or the surface area S moves, the density can change too and

‘_fi% = lim - {/V p(x,t+6t)d3x—/vp(x,t)d3x} : (1.28)

6t—0 -(g

where V' is the volume at time ¢ + §¢t. Thus, Q may change not only as a result
of a variation in p, but also in response to a change in V:

aQ _, 1 3 3 / 3
’r —Jltlglo 5 {/v p(x,t+6t)d :1:+/;Vp(x,t+(5t)d:c Vp(x,t)d:c

= lim {i / [p(x,t + 6t) — p(x,t)] d3z + 1 / p(x,t + 6t) d3w} , (1.29)

where AV = V'—V. But for a small volume change AV, we can put [, d*z =
Js Vv - daét (see Figure 1.4), and

Q@ _ op 3 . 1/
dt vatd‘”+5lt‘_f?o 5 Sp(x,t+<5t)(v da dt)

/ —a-ﬁd3w+/p(x,t)v-da. (1.30)
v Ot S

Figure 1.4 The shift in volume V containing the charge used to infer the

continuity equation. During a time §t, the enclosing surface S moves a distance
vét.
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If charge is to be conserved, we must have

. 1dQ
{329} -0

from which we immediately get the so-called conservation of charge equation:

dp/0t+V-I=0|, (1.32)

where J(x) = p(x,t) v(x,t).

Returning now to Equation (1.26), we can see why this form of Ampeére’s law
is incomplete, for taking the divergence of both sides, we get

6-(§XB)=0=4%§-J. (1.33)

This is clearly valid only when 0p/dt = 0, otherwise V - J cannot be zero.
Maxwell’s contribution was to add a term which correctly takes into account
the missing dp/dt. Direct inspection of Equation (1.12) shows that we need a
second term OE/d ct on the right-hand side of (1.26), and so the correct form
of the fourth Maxwell equation is

curlB=V xB=47rJ/c+0E/dct| . (1.34)

It is useful to note that the presence of the second term on the right-hand
side of this equation guarantees that in a time-dependent setting the current
J is always brought into compliance with Ampére’s law. Because the current
depends on the mechanics of the particle motion, it might appear that B can
change so fast that J may not always be adequate to account for the curl of
B. However, the ensuing rapid change in E in the direction of V x B always
forces J to attain the appropriate value as long as there is a significant number
of movable charges present that can be accelerated by E.

Maxwell’s equations constitute eight scalar field equations in six unknowns, so
they cannot all be independent. In a typical situation, p and J are specified
in a well-defined region of spacetime and E and B are to be determined. In
many cases, the equations may be simplified further by writing them in terms of
potentials. We have already encountered the scalar potential ® for the electric



Introduction 13

field. Since div B = 0, B may itself be written as a potential by using the
fact that the divergence of a curl is zero. (Although it’s easy to show this
mathematically, this point also makes intuitive sense because obviously a curl
does not generate a net flux through a closed surface.) It is therefore expected
that a vector field A exists such that

B=cul A=V xA. (1.35)

With these definitions, it is straightforward to see that the second Maxwell
equation simply defines the vector potential according to Equation (1.35), and
the third equation (also known as Faraday’s law) can be converted into an
expression for E in the presence of time-varying potentials:

curl E = —-1- -Q-curlA

c Ot

1 0A
1{E4+~-—)=0. 1.36
or  cur ( + - T ) (1.36)
Since the quantity in parentheses must be the gradient of a scalar function, it
is evident that 1 9A

Thus, the first Maxwell equation (1.12) is transformed into
62(§+1—6'(6‘A)=—4ﬂ'p, (1.38)
c Ot

which reduces to Poisson’s equation for the scalar potential when the fields are
time-independent. Finally, Ampere’s law (Equation [1.34]) becomes

=0 1 62A 19

V(V A)-V A+ 6t2 - 3: —Vd = J (1.39)
These reductions leave us with four equations in four unknowns: the scalar
potential ® and the three components of the vector potential A. We must
note, however, that although we have simplified the set of equations (from
eight to four), we have not reduced the amount of information required to solve
for E and B. Each of the equations in (1.38) and (1.39) is second order and
therefore the set as a whole is eighth order, requiring two integral conditions
for a complete solution (one for each set of integrations). Once these potentials
are determined, the fields E and B can be calculated from Equations (1.35)
and (1.37).
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1.2 MAXWELL’S EQUATIONS IN
MATTER

The equations we have derived describe the electric, E, and magnetic, B, fields
everywhere in spacetime, provided all the sources p and J are completely spec-
ified. However, for macroscopic aggregates of matter, solving the equations is
almost impossible because of the complezity of the currents and charge densities.
Instead, it is often convenient in such circumstances to employ an averaging
process that allows us to identify the macroscopic fields. In matter, the sources
may be decomposed according to

P = Pfree + Pbound » (140)

and
J= Jfree + Jbound ’ (1-41)

where pgree and Jiree are the sources that give rise to E and B in vacuum, and
Pbound and Jpound Tepresent the response of the medium to the presence of the
fields. The macroscopic Maxwell equations are complicated by the fact that
Pbound and Jpound are themselves sources of E and B.

In matter, the four Maxwell equations can be written

€7'E=47rpfree+47"pbounda (1-42)
V-B=0, (1.43)
- 10B
-2 = 4

VXE+ - 0, (1.44)

and 10E 4 4
6 xB—--—= _7r’Jfree + —Tr'Jbound . (1'45)

c Ot c c

The applied electric field E induces a separation of charges in matter so that the
main effect of ppound is to produce a “polarization” field (i.e., a field that locally
points from the accumulation of positive charges to the segregated negative
charges). To emphasize the fact that ppound is giving rise to an electric field,
we write an expression for it analogous to Equation (1.12), though replacing E
with the polarization vector, P, which represents the electric field produced by
this charge separation: .

Pbound = —V - P. (1'46)

Thus. the first of Maxwell’s laws can be reformulated as
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VD =47 piree | , (1.47)

where D is the dielectric displacement vector (i.e., the electric field measured
inside the medium). In terms of the dipole moment of the material, P, per unit
volume, we have

D=E+47P. (1.48)

A similar procedure may be followed for the fourth Maxwell equation,* which
results in the expression

VxH-0D/dct=47Jgee/c | . (1.49)

The magnetic field H is given explicitly in terms of the magnetic induction B
and the macroscopically averaged magnetic dipole moment of the medium, M,
per unit volume:

H=B-47M. (1.50)

Notice that because the homogeneous Equations (1.14) and (1.22) do not di-
rectly involve the sources p and J, they do not change in the presence of matter.
Henceforth, we shall drop the subscript “free,” and p and J will always be un-
derstood to mean the free sources that give rise to the fields in vacuum. E
and B are the fields everywhere, whereas H is the portion of the magnetic field
produced by the external sources (i.e., J and vV x E), and D is the electric
field plus the polarization. The latter two are most usefully employed in the
presence of matter.

Let us now try to understand the nature of the fields D and H. Unlike their
counterparts in vacuum, the Maxwell equations in matter represent eight rela-
tions in 12 unknowns. Thus, the equations cannot be solved exactly until we
know the constitutive relations between D, H, and E and B:

D = D(E,B), (1.51)

and
H=H(E,B). (1.52)

Under most conditions (the presence of a strong E or B represents an excep-
tion), the electric and magnetic polarization is proportional to the magnitude

4For example, see Chapter 6 in Jackson (2000).
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of the applied field. When this is true, the medium is said to be linear, and in
that case
Di=) e;E;, (1.53)
J

and
H;y=) ui;Bj, (1.54)
J

where ¢;; and puj; are the electric permittivity (or dielectric) tensor and the
inverse magnetic permeability tensor, respectively. In the simplest cases, the
linear response is isotropic and the ¢;; and p;; tensors are diagonal, with all
three elements equal. Thus, for linear, isotropic media,

D=¢E, (1.55)

and
H=u'B. (1.56)

However, ferromagnetic substances, e.g., iron, are only very poorly described
by these linear relations because of hysteresis effects. Paramagnetic and dia-
magnetic substances are better represented in relatively weak fields.

We end this subsection by remarking once again that the description of clas-
sical electrodynamics is in terms of fields that are continuous functions of the
coordinates of spacetime points. The formulation of this theory is therefore of
necessity in terms of partial differential equations with many variables. This
is in contrast with particle dynamics, for example, where the coordinates of
the particles satisfy ordinary differential equations (ODEs). To solve an ODE
for the trajectory of a particle, we simply need initial values of the position
x(0) and momentum p(0). But for partial differential equations, the role of
the boundary is much more fundamental, and we must therefore specify the
boundary conditions as well as the initial state.

It is also appropriate to wonder how the quantum of charge enters into a clas-
sical description such as we have here. Our treatment involves the macroscopic
fields, for which the equations are independent of the nature of p, except that
p must satisfy the continuity (or charge conservation) Equation (1.32). On a
microscopic level, we would write

p(x) = Z Qi 0% (x —x;), (1.57)

and

J(x) = Z Qivi &3 (x —x;) . (1.58)
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In principle, a microscopic formulation for the electromagnetic field could thus
also be handled adequately, except that divergences resulting from self-energies
require the special renormalization techniques of quantum electrodynamics.5

1.3 THE MATHEMATICAL STRUCTURE
OF ELECTRODYNAMICS

The Maxwell equations, together with the necessary dynamical equations for
the charges in the system (e.g., the Lorentz force equation), can in many in-
stances be simplified considerably. Several classes of problems permit us to
employ approximation schemes that often reduce the complete set of equations
to as few as two, sometimes even just one (see § 1.3.1 below). It is useful,
therefore, to discuss the mathematical structure of electrodynamics within the
principal categories for which these approximations are valid. We will thus be-
gin by laying out four of these subdivisions, and then discuss the mathematical
apparatus needed to solve the four Maxwell equations within this framework.

1.3.1 Electrostatic Phenomena

When the magnetic field H and magnetic induction B are zero, Maxwell’s
equations reduce to .
divD=V -D=4mp, (1.59)

and .
curl E=V xE=0. (1.60)

The only constitutive relation we need is (1.51), which for linear, isotropic
media is simply given by (1.55). Thus, Gauss’s law (1.59) may be written as
V- (EE)=4rp, (1.61)
or . .
eV-E+(Ve) - E=47p. (1.62)

As we have already seen (Equation [1.15]), Faraday’s law is simply a state-
ment of the conservative nature of an electrostatic field. When combined with
Equation (1.62), it results in the expression

—eV2® - (Ve)- (V®) =4mp, (1.63)

5A very readable account of the physics of quantization of a classical field may be found
in Sakurai (1973).
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which is an elliptic partial differential equation (see below). Thus, we are left
with one equation in one unknown. If in addition € = constant (e.g., in vacuum,
where € = 1), then Equation (1.63) reduces to Poisson’s equation for the scalar
potential ®:

V2$ = —4mp/e| . (1.64)

In a sourceless region of spacetime, this reduces to the even simpler Laplace
equation, viz., .
Vi =0. (1.65)

1.3.2 Magnetostatic Phenomena

When the electric field E and electric displacement vector D are zero, Maxwell’s
equations reduce to the set

divB=V-B=0, (1.66)
and
- 47
curlH=VxH=—E-J. (1.67)

Here, the constitutive relation is just (1.52), which for a linear, isotropic medium
may be written as

1
H=-B, (1.68)
p
with 4 = 1/u' defined to be the magnetic permeability. Thus,
VX<§>=<V-)xB+—(VxB)=—“J. (1.69)
" " " c
If in addition u = constant, then
GxB=2Thy (1.70)

c

As we have already seen, the fact that div B = 0 implies that B is the curl of
another vector field A (x) (see Equation [1.35]). This brings us to what at first
appears to be an innocuous property of the vector potential, but which was
in fact the origin of subsequent Gauge theories (e.g., the Yang-Mills theory)®

6See the seminal paper by Yang and Mills (1954).
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and all theories of supersymmetry built upon them. Since V x (V) = 0 for
any scalar field 1, the vector potential can be freely transformed by adding the
gradient of ¢ without affecting the magnetic induction:

A—>A+Vy. (1.71)

Such a gauge transformation permits V - A to have any convenient functional
form we wish. For example, the expression that results from a direct substitu-
tion of (1.35) into (1.70), i.e.,

4T

Vx(VxA)=V(V-A)-V2A = 7, (1.72)
can be greatly simplified with the choice of gauge
V-A=0 (1.78)

(the so-called Coulomb gauge—see § 6.4), for which the components of A must
then satisfy the Poisson equation:

V2A; =—4npld;/c (:1=1,2,3)]. (1.74)

It is interesting to note that the condition V - A = 0 reduces to the equation
V214 = 0 (as we shall see later), so that if there are no sources at infinity, ¥
must be a constant.

1.3.3 Wave Phenomena

In a region where there are no free sources (p = 0 and J = 0), Maxwell’s
equations reduce to

V-D=0, (1.75)
V-B=0, (1.76)
- 10B
VXE-——ZF{, (177)
= 10D

In order to proceed from here, we must also know the constitutive relations
(1.51) and (1.52). Let us assume for the sake of simplicity that D and H are
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given by Equations (1.55) and (1.56), respectively, and that € and ' = 1/p are
constants, so that all derivatives of € and u are zero. Then,

V-E=0, (1.79)

V-B=0, (1.80)
- 10B

VXE——z'a—t, (181)
and 9E
5 _pecn

VxB="—"—. (1.82)

These are simultaneous, first-order, differential equations. The idea is to elim-
inate as much as possible and to simplify. To this end, let us take the curl of
(1.82) and add it to the time derivative of (1.81), which gives

pe 6°B

6x(6x3)=—c—25—tz—. (1.83)

Butsinceﬁx(§XB)=Y7(6-B)—§2Band§~B=0,weget

V2B - pue 82B/d(ct)2=0] . (1.84)

This is a hyperbolic partial differential equation (see below), commonly known
as the wave equation. One of its solutions may be written

B =B exp{i(k-x —wt)}, (1.85)

where By is a constant vector, and the angular frequency w is related to the
magnitude of the wave vector k by the relation
w
vl

k| = (1.86)
Here, |v| = ¢/ /€ is a constant of the medium, and it has the dimensions of
a velocity. In vacuum, g = ¢ = 1 and |v| = c. In matter, the solutions are still
waves, but their velocity is smaller than c.

A similar reduction may be made for the electric field E, which produces a
second wave equation,

V2E - pe 82E/0(ct)2 =0, (1.87)
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whose solution is
E =E exp{i (k- x—wt)}. (1.88)

The case of radial waves will be considered in § 8.2.

The presence of sources in the system (i.e., p # 0 and J # 0) modifies the
character of these waves considerably. In that case, a complete solution to the
corresponding wave equations with sources on the right-hand side will include
waves of the fields associated with the charges themselves, and these are not
planar. But we are not fully equipped yet to discuss this situation. We will
begin to explore the fields produced by distributions of charge in Chapter 2, and
then we will derive the full framework for the solutions in Chapter 7, completing
the process in § 8.2.

1.3.4 The General Case

In general, p # 0, J # 0, and the fields are time dependent, as might occur, for
example, when accelerated charges are radiating. For this situation, Maxwell’s
equations must be supplemented by a description of the particle dynamics, i.e.,

xi = xi(t) (1.89)
p(x,t) = Z Qid*(x — x;), (1.90)
I(x,t) = Qivid(x—x;), (1.91)
and & x; vi x Bxi(t)]
mi —t = Fi=Q; {E[x,-(t)] + - } , (1.92)

where it is understood here that E [x;(t)] does not include the self-field due
to the charge Q; at x;(t). We thus end up with a coupled electromagnetic-
mechanical system.

1.3.5 The Mathematical Apparatus

It is evident from the above discussion of the four subdivisions of electrody-
namics that we must deal with second-order, coupled, differential equations,
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whose coefficients are not always constant (e.g., when € and p vary within the
medium).” The fields are functions of the generalized coordinates:

U=U(z1,Z2, .-, Zn) , (1.93)

where U represents either a scalar variable (e.g., ®), or one of the components
of a vector variable (e.g., A; with ¢ = 1,2,3). In many of the problems we will
examine here, the differential equation for U looks like

LUu=f, (1.94)

where the “source” f is known (e.g., an electron whose charge density is given
by Equation [1.90]), and the operator L has the form

82
L=) ) a(x) oo
ij :

We shall encounter three possible types of partial differential equations: elliptic,
hyperbolic, and parabolic.

+ c(x) . (1.95)

Elliptic

Here, the symmetric matrix of coefficients [a;;] is positive definite for each x in
the given domain. By definition, this means that all the eigenvalues of [a;;] are
nonzero and have the same sign. The terminology arises by analogy with conic
sections. For example, for an equation involving two independent varlables x
and z2, a very important role is played by the sign of the discriminant a?, —
ai1a22. The operator L corresponding to this case is said to be of elliptic type
when a2, < ajjaze. As an illustration, we might have the following equation
written in Cartesian coordinates:

= 02U 08U 06°U
277 _
ViU = 0 x? + 0 y? + 022

=f. (1.96)

We shall see that for f = 0, the solution is unique when either U or VU is
specified on a closed bounding surface, but not both. Using U and VU as
boundary conditions overconstrains the system.

TThere are several excellent descriptions of the types of differential equations and their as-
sociated boundary conditions. Among these are Sommerfeld (1949) and Courant and Hilbert
(1962).
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Hyperbolic

In this case, all the eigenvalues of the matrix [a;;] are nonzero and one of
them has a different sign from the rest. For the general equation with two
independent variables introduced above, the discriminant a2, — ajjas2 is here
positive. An example is

o*U 02U _

dz2 0y f
A second example is the wave equation we encountered in § 1.3.3 above. The
latter has a propagation character in the sense that a profile in U is maintained
at a spatial location that varies with time. The rate of change of this location is,
of course, the wave velocity. In order to specify a unique solution here, we need
to know not only U(x,0) but dU(x,0)/0t as well. In essence, this form of the
equation adds the extra dimension of time into the problem. More generally,
a hyperbolic equation can be solved uniquely only for a Cauchy problem, in
which the field and its first derivative in one of the variables (e.g., time) are
specified at some initial value of that variable everywhere on an open surface
within the subspace defined by the remaining variables. The equation then
describes how the field evolves forward in that chosen variable.

(1.97)

Parabolz'c

Finally, there is the situation where one of the eigenvalues of the matrix [a;;]
is zero, and the others all have the same sign, i.e., where the matrix [a;;] is
singular. For the two-dimensional equation described above, the discriminant
a%z — aj1a2 is here exactly zero. An example is the equation

oU 89U

E;-l‘a—yz:f. (1.98)

As we shall see in § 8.4, the magnetic field inside a weakly conducting medium
“diffuses” outward according to the equation

0B _ ¢
Ot  Armo

V?B, (1.99)

which is also of a parabolic form. Physical processes that can be described
as such still have the “attribute” of propagation, but the transport now takes
place at infinite speed. Diffusion is not a wave phenomenon, but rather, the
rate of change of a field quantity at a given spacetime point is limited by a dif-
fusion constant that depends on properties of the medium. Thus, for example,
the diffusion of the magnetic field is controlled by the constant D = ¢%?/4 o,
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which depends on the conductivity o. The boundary conditions for parabolic
equations are intermediate in nature between those of the elliptic and hyper-
bolic equations. For these equations, a unique solution requires specification
of the field U on a Cauchy surface, i.e., the field must be known at the space
boundaries of the given region. However, since the rate of diffusion is governed
by the medium, no other conditions are necessary.

It is useful to classify the equations in this manner because the physical inter-
pretation and boundary conditions are very different for the elliptic, hyperbolic,
and parabolic forms. Remember that in electrodynamics the fields are defined
throughout a designated region of spacetime, and therefore the boundary con-
ditions affect the solutions everywhere within that region, unlike point particles
for whom the trajectory in phase space depends only on the initial conditions.



2

TIME-INDEPENDENT
FIELDS

2.1 ELECTROSTATICS

Henceforth, we shall consider the Maxwell equations as they pertain to elec-
trodynamic fields associated with free charges and currents only, without the
effects incurred by the presence of macroscopic aggregates of matter (see §
1.2 above). Thus, the electric permittivity tensor is the identity matrix (i.e.,
€ = 1). The benefit of this is that the essential physics is not lost in the reduced
equations, but the manipulations are simpler. As we saw in § 1.3 above, all of
the physics of electrostatics is contained within the deceptively simple equation

V2 = —4np, (2.1)

or its equivalent form .
V-E=4rp. (2.2)

This equation simply states that the divergence of the electric field, i.e., the
outflux of the electric field per unit volume, is due to the presence of the source
p. If we know p throughout a given region of space, these equations tell us
exactly where the field originates and where it ends. Our task in this section
is to learn the mathematical techniques for solving Equation (2.1), known as
Poisson’s equation. These techniques may be grouped under several headings,
depending on which particular facet of the electric field they address first. Here,
we will discuss three of the most commonly used categories, chosen for breadth
(compare Methods 1 and 3) and connectivity (compare Methods 1 and 2).

25
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2.1.1 Method 1: Guesses and Symmetries

The so-called method of images is probably the most commonly used technique
by experienced practitioners. This method is particularly useful when there are
one or more point charges in the presence of boundary surfaces. Under some
circumstances, a small number of suitably placed imaginary charges outside
the region of interest can simulate the boundary condition.

For example, suppose we need to calculate the potential ¢ in a region where a
charge q is near an infinite plane conductor maintained at zero potential. By
symmetry, we expect that the boundary condition can be simulated by placing
another charge —q on the other side of the plane, so that the situation now
looks like Figure 2.1.

(LS LY LSS
Y
°

Figure 2.1 A charge g near a grounded, infinite conducting plane. An imag-
inary charge —q positioned opposite ¢ can mimic the effects of the boundary.
The valid domain of solution is to the right of the boundary, where only “real”
charges are permitted to exist.

The solution to Poisson’s equation is then provided by the sum of the potentials
of all the charges, but it is to be valid only in the domain of solution containing
the real ones. In this example,

qa q
®(r) = — . 2.3
) Ir —d;| |r—dg] (2.3)
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It is not difficult to use this expression for ® (a highly recommended exercise)
to determine the surface charge distribution ¢ on the conductor. Remembering
that at the interface Gauss’s law gives E - i = 47 o, where 7 is the unit normal
to the surface and E is taken to be zero inside the conductor, it is a trivial
step to write V® - A4 = —4m o or 3®/8n = —4n o, where 3®/0n is the normal
derivative of ® at the surface.

As a second application of this method using guesses and symmetries, let us
consider what happens when we insert a grounded, spherical conductor of radius
a in a given homogeneous electrostatic field Eg (Figure 2.2).

Figure 2.2 A grounded, conducting sphere embedded within a homogeneous
electrostatic field Eg.

What do we know? At z — 0o, E — Eo, the undisturbed electric field. There
are no charges in this problem, so V2% = 0. The sphere is grounded, so ® =0
at r = a. Also, since V® = —-E and E — Eo k at large z, we must have
® = —-FEpz as z = 0o. We are led to the hypothesis that & should have
the form & = &; — E, z, with &; — 0 at large z. Since we have azimuthal
symmetry, ® should be independent of the azimuthal angle ¢. Let us guess that
®, = A cosfr®, the cosf coming from our suspicion that ®; should depend
on z (= rcosf). Then on the sphere,

A cosfa® — Eg cosfa =0, (2.4)
which allows us to solve for the constant A:

A=FEya'™™. (2.5)
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The other condition is V2® = 0, which in spherical coordinates reduces to

ri2 50; (r? [@A cos8r"! — Eg cosb]) +
1 49 . o« :
S nd 90 (sin@[—A sinfr* + Ep sinfr]) =0. (2.6)

There are two solutions to this equation, though only one matches the boundary
condition. These correspond to the condition a(a + 1) = 2, for which a = —2
and a = 1. However, the latter does not give ®; — 0 as r — 00, so we retain
the former. The complete solution is evidently

a3
® =—Eyr cosb (1 - —) . (2.7)

r3

The appearance of the cos# term will become clearer when we examine Method
3 for solving Poisson’s equation, in which the potential is expanded using a series
of orthonormal functions. A natural set of functions to use with this geometry
is the Legendre polynomials, where the first-order term is indeed cos 6.

2.1.2 Method 2: The Green Function

The method of images described above is clearly most useful when the problem
has a high degree of symmetry and a small number of charges, but it becomes
intractable when the charge distribution and/or the boundary conditions are
fairly complicated. The Green function technique that we consider here is a
mathematical development of this basic method that in many ways “automat-
ically” takes into account the effects of the boundary on the internal solution.
But before we can develop the equations we need, we must first digress to derive
the necessary tools.

Let us for the moment consider the field due to a point charge q. We know
from Coulomb’s law that

q .
E= ;2— r, (28)

and that therefore q
P = - (2.9)

It will prove useful to generalize this somewhat, by positioning the charge at
x' instead of at the origin. (Our convention will be such that prime always
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denotes the source coordinates, whereas the unprimed variables pertain to the
observation point and time.) Then,

B(x) = _ﬁ (2.10)
and ,
E(x) = -V® = ‘II)((—X_—-;:,-%) . (2.11)

For a general source distribution p(x’), the potential is expected to be the sum
over all increments of charge d3z’ p(x'), i.e., it ought to look like the following;:

p(x') da’

®(x) = =%

(2.12)

We base this on our discussion in Chapter 1 regarding the fact that electric and
magnetic fields do not themselves carry charge, so that the fields from different
sources are not expected to interfere with each other. It is intuitively obvious,
therefore, that this potential should satisfy Poisson’s equation, right? But does
it? Let’s check:

p(xl) d3 .TI

R (2.13)

V2 (x) = V2 /
We must be careful here, because we have two variable position parameters: x
and x’. Remember that Poisson’s equation tells us something about the field
divergence at the point _gf observation, x, so V2 must operate on x, not x'. In
that case, we can take V2 inside the integral and get

$28(x) = / o(x') &2’ 62( 1 ) (2.14)

lx — x|
Now,

-2__1___)__3‘(_@_:_::_:;_)__ 3 3
v Qx—fl“ 2 %\ x=xp| = “wowp TRowp @)

=1

where following the usual convention, §; = 0/9x;. Of course, this makes sense
as long as x # x'. In that case, V2(|x — x'|~1) = 0, as expected, since the
divergence of electric flux should be zero from a region of space where there are
no charges. However, at x = x’ the expression is not yet defined. This suggests
that Equation (2.14) should be written

=2 _ : =2 1 3
P800 = oy limy [ 9 (i) 70 (210
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where r = |x — x'| and we have taken p outside of the integral because the
integrand is zero everywhere except possibly at x = x'. But V2([r2+a?]"1/2) =
—3a?(r? + a2)~%/2, and so

lim [ V2 (—1——) d3z' = lim {-3a2 /oo 4m —--T—zﬁf'—} —_—
a—0 \/7'2 + a2 a—0 0 (1-2 + a2)5/2 .
(2.17)
We have thus recovered Poisson’s equation, since we see that

V2®(x) = =41 p(x') |1 _ - (2.18)

The singular nature of V2(|x — x/|~1) can best be expressed in terms of the
Dirac delta function §3(x — x'):®

V2(jx —x'|"1) = —4r B3 (x - x') | - (2.19)

By definition, [ §%(x —x') d®z = 1 if the integration volume contains the point
x = x’ and is zero otherwise.

Thus, we have not only shown that the potential from Coulomb’s law satisfies
Poisson’s equation, but we have established (through the solution to Poisson’s
equation) the important result that the potential from a distributed source is
the superposition of the individual potentials from the constituent parcels of
charge. In the infinitesimal limit, this is manifested as the integral appearing
in Equation (2.12). In our discussion of the Green function technique, it will
often be useful to visualize this property of the potential in terms of individual
charges, not unlike the situation with the method of images we described above.
More specifically, we will consider situations in which p is comprised of N
discrete charges g; positioned at x'; for ¢ = 1,..., NV, so that

N
p(x') = Z g: 3 (x' — x';) . (2.20)

In this case, the solution for the potential is simply a combination of terms
proportional to |x—x';|~1. The use of Green functions (constituting our Method
2) is merely an extension of this to problems that involve boundary conditions.
We shall see that the potential from a given incremental source has the general

8 A very useful summary of some of the properties of the Dirac delta function can be found
in Appendix A of Davydov (1973).
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form & « |x — x';]™! + F(x,x’;), where the function F(x,x’;) is included to
satisfy the boundary constraint on the prespecified surface.

The way this works conceptually is that we mimic the effects of the boundary by
pairing each parcel of charge (or each individual charge if we’re dealing with a
discrete system) inside the domain of solution with imaginary external charges.
The function F(x,x’;) represents the contribution to the potential from these
fictitious sources, but in a way that correctly accounts for the modification to
® due to the presence of a boundary surface. But how do we do this? Let
us take inventory and see what we have at our disposal. We know that no
matter what the boundary condition is, the potential at x due to a charge
dq at x' is d¢q/|x — x'|. If we knew what imaginary charges were needed to
represent the boundary, we could simply solve the problem by using Equation
(2.12) with an integration over all space, not just over the domain of solution,
with p now representing the sum of the real and fictitious charge distributions.
Unfortunately, we don’t always know what the external charges are, but we do
know what effect they must have on ® or its derivative at the surface. What we
need, therefore, is an expression that directly links these sources to the general
form of the potential (or its derivative) evaluated at the boundary.

The need to link the volume integral in Equation (2.12) with a surface condition

immediately suggests that we use the divergence theorem, which for a vector
field A says that

/ V' AX) &z = f A(X')-ndad , (2.21)
1% S

where V is the volume of integration, S is its enclosing surface, and #(x’) is a
unit vector (externally) normal to the surface element da’. At this point, we can
try several things, but our main goal is somehow to use this equation to relate
the actual potential & on S to the incremental potential p(x’) d®z’ (x,x’).
Here, we have defined the unit charge (template) potential v = |x — x'|~!,
which will be useful in streamlining our derivations. It is to be thought of as
a template in the sense that it represents the geometrical dependence of ®, so
that the total potential is a convolution of ¥ with the given physical charge
distribution p. Let’s try putting A(x') = ®(x')V'9(x, x'). We could also have
tried A(x') = 9(x,x')V'®(x'), which we will in fact need to do below. For the
first definition of A, we have

V' (8V'Y) = V2 + V'® - V' | (2.22)

and

SO
VY i=d o (2.23)
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Substituting these into Equation (2.21) produces the so-called Green first iden-

tity:

/ (qﬁ% +V'®. %p) iz’ = z_¢ da' . (2.24)

1% S

We’re almost there, but we still can’t quite use this since we don’t know how
to evaluate V'y and V'®. We do, however, know what V'2y) is (see Equation
[2.19]). The second term in the integrand on the left-hand side can conve-
niently be removed by subtracting Equation (2.24) from an analogous equation
derived with ® and 7 interchanged in the definition of A. The result is Green’s
theorem:

[, [®V"2¢ — pV2®] d®z’ = §.[®y/On — 0P /On]da’ | . (2.25)
|4 S

(An alternative, though perhaps less physically motivated, derivation of this
equation follows from integration of the left-hand side by parts.)

Now we can fully appreciate the relevance of Poisson’s equation for a discrete
charge (Equation [2.19]), for it allows us to extract the necessary relationship
between ® and the conditions on the boundary surface. Substituting for V2
in Equation (2.25), we get

/V[ —4m 63 (x — x') ®(x ,)+4117rp(x'” dz' =

o [ 1 1 8% .,
fs[‘l’a_n(u—x'l) P an]"“ (2.26)

The condition we’ve imposed all along is that the observation point x should
lie within the volume V. Thus, integrating the Dirac delta function over all
values of x’ within V yields a nonzero result, and we get

. _ p(x') 5,
o(x) = L =] d’z

1 1 8% _ 08 1 ,
7]{5 [!x-x’l n %on (|x—x'|)] da’.  (227)

Notice that this is just what we had before in Equation (2.12), but now with
a correction term that has something to do with the boundary condition on S.
As we would expect, this correction term goes to zero as the surface S goes to
infinity, which recovers the basic solution for a source in empty, infinite space.
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As it stands, this expression for ® is quite general in the sense that nothing has
yet been said about the type of boundary condition appearing in the surface
term. Let us now examine two particular cases: (1) the potential ® itself
is specified on the boundary. This type of situation is known as a Dirichlet
problem. (2) Instead of the potential, the electric field, or the normal derivative
of ®, is known on S. This constitutes a Neumann boundary condition. As it
turns out, either one of these situations results in a unique solution.

To see how this comes about, assume for the time being that there exist two
solutions ®; and ®, satisfying the same boundary condition. Then, inside the
volume of solution, we must have

V2®, = V2®, = —4mp, (2.28)

so that .
V3(®, —®;)=0. (2.29)

On the boundary S, either ®; — ®; = 0 or 9(®; — ®3)/9n = 0, depending on
which type of problem—Dirichlet or Neumann—we are faced with. Relating the
solution for ® to its prescribed value on the surface is most easily accomplished
with the use of Green’s first identity, which was derived specifically for this
purpose. Although the form of Equation (2.24) was cast with the intention of
connecting ® to v, it is in fact quite general and is valid for any two scalar
functions x; and x2. And so putting x; = x2 = ®; — ®, in this equation, we
get

/;/ [(‘I)l - @2)612(‘1’1 - &) + |§(@1 — @2)|2] B =

fs(‘l’l - ‘Dz)i%(qﬁ — ®,) da’ . (2.30)

Evidently, either type of boundary condition results in the following constraint:
/ |6’(@1 - ‘I’z)lz dal" =0. (231)
v

Since |V'(®, —®3)|2 > 0, this equation necessarily implies that V' (®,—%2) =0,
which in turn has the solution ®; —®, = constant everywhere within the domain
of validity. For Dirichlet problems, ®, — ®; = 0 on S, so that the constant
must be zero and ®; = ®, everywhere. For Neumann conditions, ®; and &,
are identical apart from an arbitrary additive constant that does not affect E.

With Equation (2.25), the proof of a unique solution, and our understanding
of Equation (2.27), we now have the necessary tools to begin considering for-
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mal solutions of electrostatic boundary-value problems using Green functions.’

Although providing us with much needed insight, Equation (2.27) by itself is
quite impractical for this purpose, since it yields a solution only when both
® and 9®/9n are known on S. But specifying these quantities a priori over-
constrains the problem, since we have seen that either a Dirichlet or a Neumann
condition leads to a unique solution. This doesn’t mean, of course, that both ¢
and 8®/0n cannot be known simultaneously; on the contrary, a unique, well-
defined solution has both. It is just that we cannot set the conditions on ® and
0®/0n independently of each other without knowing the solution beforehand.
This is why we must modify our approach somewhat, so that the final equation
we derive from (2.25) has a surface term that involves either ® or 0®/0n, but
not both.

In deriving Equation (2.27), we made use of the fact that V'2(|x — x/|™1) =
—4mé3(x — x') in order to extract ® from the general integral. This is the way
to solve Poisson’s equation when the boundary conditions lie at infinity so that
the “remainder” terms in Green’s theorem are irrelevant. With meaningful
boundary conditions, we expect the potential to be modified, and one way to
describe this mathematically is to put
1

P x l?——x_'l- + F(X,X’) , (232)
as we alluded to previously. F(x,x’) is a function that must satisfy Poisson’s
equation and the boundary condition. Since i was originally introduced to
represent the potential per unit charge, it makes sense here to now choose

Y(x,x') = + F(x,x') . (2.33)

|x — x|

Written in this way, 1 becomes the general Green function G(x,x’), and forcing
it to satisfy the condition

V%G (x,x') = —4m 63 (x — x') (2.34)

(i.e., requiring it to represent the potential for a unit point charge), preserves
many of the benefits of our earlier use of Equation (2.25) to derive (2.27). We
note here that F(x,x’) must therefore satisfy Laplace’s equation

V2F(x,x') =0 (2.35)

inside the volume of interest, which is fully consistent with the fact that all the
imaginary charges, which give rise to F(x,x’), must lie outside the boundary

9A good general discussion of the Green function technique may be found in Morse and
Feshbach (1953), and Butkov (1968).
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surface S. The presence of this function provides us with the flexibility to
eliminate one or the other of the surface integrals in Green’s theorem and to
thereby obtain an expression for ® that involves only Dirichlet or Neumann
boundary conditions.

When we substitute G(x,x’) for ¢ in Equation (2.25), the resulting expression
for & is

d(x) = /Vp(x’)G(x,x') d3z'

1 L 0P  0G(x,x') ,
+47r a [G(x,x)an o (x') 5n da' .
For Dirichlet boundary conditions, we know ® on S, and so we require that
G(x,x') = Gp(x,x'), where

(2.36)

Gp(x,x')=0 (2.37)

for x’ on S. In that case,

d(x) = /Vp(x')GD(x,x’) 3z’ — Z%}{SQ(X’) %C;—Dda' . (2.38)

For Neumann boundary conditions, we can use a similar procedure, but with
one minor difference. We cannot use 0G/0n = 0 on S because this is incon-

sistent with V2G(x,x') = —4ré3(x — x'). In other words, the outflux of G
cannot be zero when there is a source enclosed by S. To see this rigorously, we
return momentarily to the Divergence theorem, which we use as follows:

/6’2G(x,x’)d3:c' = —4r = / V' [V'G(x,x")] d*z'
v v
= % V'G(x,x') - i da'
S

_ 0G(x,x') ,,
= fg o da’ . (2.39)

Therefore,
/
0G,X) 1! = —an £0. (2.40)
S 3n

and the simplest boundary condition we can use is thus

O0Gn(x,x)  4m
o =-7 (2.41)
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for x’ on S. S is the total surface area, so the right-hand side represents a
“weighting” over the entire boundary. Then,

— ! n 43,1 __1_ (9_@_ !
®(x) —/Vp(x)GN(x,x)d z + P on Gn dd' + (®)g, (2.42)
where 1
(®)s = = f (x') da’ (2.43)
SJs

is the average value of the potential over the whole surface S. In most cases,
S is extremely large (or even infinite), in which case (®)s — 0.

In summarizing the results of this section, we reiterate the role of the key term
we have added to describe the Coulomb potential from a charge inside a closed
surface S. F(x,x’) is a solution of the Laplace equation within the volume
bounded by S. It therefore represents the potential of a system of charges ez-
ternal to V. For every parcel of charge p(x') dz' at x’, there exists an external
distribution of charge that, combined with p(x') d3z’, satisfies the homogeneous
boundary condition (i.e., ® = 0) on S for Dirichlet problems, or yields a simple
average value of the normal derivative of the surface potential for Neumann
conditions. The determination of F'(x,x’) is thus equivalent to the method of
images discussed in the previous section, but it is obviously much more pow-
erful for complicated charge distributions p(x’). It is extremely important to
understand that no matter how the source is distributed, finding the Green
function is completely independent of p(x'). G(x,x’) depends exclusively on
the geometry of the problem, because its function is that of a “template” po-
tential, not the actual potential for a given physical setup. In other words,
G(x,x') is the potential due to a unit charge, positioned arbitrarily within the
volume of solution, consistent with either Gp = 0 or 09GN /On = —47/S on the
surface. The potential is then the convolution of this template with the given
p(x'). When either & # 0 or 8®/9n # 0 on the boundary, the correction to ®
is applied by the surface term, whose form depends on whether we are dealing
with Dirichlet or Neumann conditions. Unfortunately, this aspect of the Green
function is often overlooked, or forgotten, but it is the most important ingre-
dient of this method of solution. There are very few symmetries for which the
Green function is easily derivable—we will look at two of them in the examples
that follow—yet there exists an abundance of problems for which this technique
works, mainly because we are free to choose a wide variety of charge densities
and boundary conditions. A summary of Dirichlet and Neumann problems
follows. :



Time-Independent Fields 37

Dirichlet Problems

1 0Gp
— ! n 3.0 _ ’ !
o (x) —Lp(x)GD(x,x)d x 47"%9@(){) o da
with ® specified on S (Equation [2.38]), and

1

Opbex) = o5

+ F(x,x'), (2.44)

where (from Equation [2.35])
V2F(x,x') =0,
and (from Equation [2.37))

Gp(x,x')=0 for x’ on S.
Neumann Problems

—_ ! n g3,/ if _3_2 ! !
Q(x)—/;p(x)GD(x,x)d x +4ﬂ_  on Gn(x,x')da’ + (®)s

with 9®/0n given on S (Equation [2.42]), and

1
N !
Gn(x,Xx') = x| + F(x,x'), (2.45)
where (again from Equation [2.35])
V2F(x,x') =0,

and (from Equation [2.41])

-c‘-)—-C-'Y—]X-(}lx—)=—4—7E for x on S.

on S

Example 2.1. Consider the volume in the half space z > 0, with & = &,
on the surface S defined by z = 0. Suppose there is a charge ¢ at (a,0,0). Find
the potential at any point ¥ = /x2 +y2 + 22 7 in the domain of solution
(Figure 2.3).
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Here, we need Gp = 0 on S. Thus,

1 A
{Ix—X'I +F(x’x)}s . (240
or 1
R (r vy v v SR
On S, z' =0, so
: -1
FooX)ls = oy G =S (2.48)
Z
a
E:
X

Figure 2.3 A charge ¢ near a boundary surface maintained at a fixed po-
tential ®¢ on the yz-plane. The surface is assumed to be an infinite plane a
distance a from q.

Can we now find an F(x,x’) that reduces to the form in Equation (2.48) at
the surface? The planar symmetry and the analogy with the method of images
would suggest that we try something like

N 1
F(x,x') = { [(z£2)2 + (y—y) + (z — 2/)2]/2 }S ) (2.49)
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but which of £z’ do we choose? Physically, the two signs mean different things:
a — would indicate that we are placing the imaginary charge at 2’ = z, whereas
a + would imply that the imaginary charge is positioned at ' = —z. But re-
member that we absolutely cannot put any fictitious charges within the volume
of solution, so that only the second choice is a valid possibility. Thus,

-1
[(+2)2+ (y—y)?+(z—2)%/2°
We are still not done with this, because we must confirm that our choice of
F satisfies Laplace’s equation within the domain of solution. In this case,
showing that V’2F(x x') = 0 is trivial, and so the Dirichlet-Green function

for this geometry (we emphasize that it is for this geometry, not for this given
charge distribution) is

F(x,x') = (2.50)

Gp(x,x') = [—-2'V+@-y)+(z-2)]""
e+ +@-v)+ (-2 (251)
Since p(x') = ¢qé3(x' — [a,0,0]) (the units are consistent since the three-

dimensional delta function has units of [length]~3), this problem is solved with
the following expression for the potential:

B(x) = / g8 (x — [,0,0)) G (x,x') &z’ — — }[ 3, 20D
| 47 S 0

From here the steps are routine, and we do not need to show them in detail. The
single remaining possible pitfall is the evaluation of 8Gp/dn, which requires
a careful consideration of what the outward normal unit vector # is. In this
problem, 7 points in the —z' direction (not +z’ !), so that

da' . (2.52)

0Gp _3GD _ -2z (2.53)
on o' |y [+ @—y)2+(z—2)2P/2 )
The final solution is therefore
3x) = q{l@-a)?+¢?+272 ~ [(z +a)? +y? + 2772}
<I>0 T dy' d2' .
= B e oypr @9

As a final useful exercise, one should use this expression to determine the charge
density o on the surface, as discussed in the section on the method of images.

Example 2.2. To close this section, we will solve a Dirichlet problem for
the interior region of a sphere. Imagine that the surface of the sphere (radius a)
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is maintained at a potential ®(a, 0, ¢), but that there are no charges inside or
outside. The fact that the given charge distribution is zero here can sometimes
confuse the issue of how the Green function is derived and how it is used. After
all, if p(x') = 0, doesn’t this mean that the potential due to the source is zero?
Yes, but that is not the point! We must remember that the Green function
is entirely geometric, and acts as a template whose properties are independent
of p. If p(x') = 0, this simply means that the contribution to ®(x) from the
source is zero, but the effects of the boundary, as given by the surface term
in the general expression for ®, cannot be neglected. The Green function is
pivotal to the determination of both contributions.

r»

©(2,0,6)

Figure 2.4 Definition of the coordinate system used to solve the interior
Dirichlet problem for a sphere of radius a. Although there are no charges, the
spherical surface is maintained at a potential ®(a, 6, ¢).

Suppose we put a unit charge at x’ within the sphere (Figure 2.4). By sym-
metry, we expect that the image charge invoked to cancel the effect of this
unit charge on the surface (i.e., to give us the required boundary condition)
should lie on a ray from the origin passing through x’. For the interior prob-
lem, the image charge go must lie outside the sphere. Let this image charge be
positioned at xj. Then, the Green function is

Gpx,x) = — + %0 (2.55)

S x =X x—xg]

We must now choose x;, and go so that Gp = 0 on the surface. Let 71 be a unit
vector in the direction x (the point of observation) and 7' in the direction x'.
It follows that

1 do
G ,X') = — — — — 2.56
D(x,x') |rfe — 7| + |riv — rg!| ( )
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where x = rii, x' = '/, and x = rji'. Let’s factor out the r and rg, so that

1 + qo
rla — (' [r)d'|  rold! — (r/ro)n|

Gp(x,x') =

which on the surface reduces to

1 do
G ’ ! = N L N Al
D(X X )'S aln _ (T'/a)n’l raln’ - (a/rz))nl

It’s clear that if we choose xj and g such that

dQo _ 1
- = ——
To a
and ,
a r
= T
To a

(2.57)

(2.58)

(2.59)

(2.60)

then Gp = 0 on S for all values of 71 - 4’. Thus, the magnitude and position of

the image charge should be

and

!
T0=7,

(2.61)

(2.62)

respectively. Expressing the positibns using spherical coordinates, we therefore

get

Gp(x,x") = [r? =1 = 2rr' cos7] /2 = [r2+'2 /% + a® — 2r1' cosy]~V/? | (2.63)

where cosy = cos§ cos €’ +sin 0 sin 0’ cos(¢ — ¢'). Noting that 7’ is the outward
unit normal, which here points in the +#' direction, it is straightforward to

show that
0Gp

on'

_ 0Gp
s_ or'

(* - a?)

~ a(r? + a2 — 2arcos7)3/2

r'=a
And so the solution to the Laplace equation inside the sphere is

a(r? — a?)

!
(r? + a? — 2ar cosv)3/2 ar,

2x) =~ 1 § $(a8'4)

where da’ = a? dQ¥' and dQ' is the element of solid angle at (a,6’, ¢').

(2.64)

(2.65)
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2.1.3 Expansions with Orthonormal
Functions

In this method, the potential and other variables are written as series of or-
thonormal functions, chosen to match the inherent symmetry. The properties
of these functions allow us to calculate the expansion coefficients trivially and
we can get a solution to arbitrary accuracy, provided the set of orthonormal
functions is complete (see below). The functions, Uy, must be orthonormal on
a prescribed interval (a,b), meaning that

b
[ U OUn(© dt = 6um (2.66)

a
for any two members, Uy, Un, of the set. The set must also be complete, in
the sense that any arbitrary function f(£) can be expanded as a series of the

Un: N .
O =Y anlal®), where an= [ Ur©S©ds, (267
n=1 a

there being a finite number Nyq; such that for N > Npez, the mean square

error
b
MN E/
Ja

can be made smaller than any arbitrarily small positive quantity.

2

N
£&) = anUa(§)| dt (2.68)

This technique is tiseful when the problem has an obvious symmetry so that an
appropriate coordinate system and a set of functions can be matched to it. The
most direct approach in solving Laplace’s equation is to separate the variables,
which has been accomplished in 11 different coordinate systems for the three-
dimensional Laplacian operator. We list in Table 2.1 for reference some of
the most commonly used ones. The procedure for separating the variables is
straightforward and has been described in many other contexts; it does not
need to be repeated in detail here. Instead, we will focus on the physics and
general form of the solutions.

Cartesian Coordinates

In Cartesian coordinates, the potential is given by the expansion

®(z,y,2) = Z Anm exp(ia, ) exp(£iBmy) exp(xva2 + 82, z) . (2.69)
n.m
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Symmetry Coordinate System Orthonormal Set

Cartesian Cartesian (z,y, z) Fourier series
exp(xik - x)
Spherical Polar (r, 0, ¢) Spherical harmonics, Y., (6, ¢),

which include the Legendre
polynomials, P, (cos #)

Cylindrical ~ Cylindrical (n, ¢, z) Bessel functions, J,

Elliptical Confocal elliptical Mathieu functions and
Hermite functions

Table 2.1 The most commonly used coordinate systems for the three-
dimensional Laplacian operator.

The choice of plus or minus in these arguments is dictated by the boundr
ary conditions. For specific applications, one or both of the exp(*ia,z) and
exp(+ifBmy) may be replaced by sin a,z or cos B,y.

Example 2.3. Asa specific example, let us consider the interior Dirich-
let problem for a rectangular boundary (Figure 2.5). Since there is no z-
dependence here, the solution will contain only terms like

exp(tiaxr) and exp(xiBy) , (2.70)

and in addition, we must have \/a? + 32 = 0, which means that a = +i8.
Thus, either a or 8 may be imaginary, but not both. If « is real, the possible
combinations for the exponential terms are

1
cosar = 5[8}(])(26!.’13) + exp(-—iax)] y
1
sinaz = —2-[exp(iaa3) — exp(—iax)],
1
cosh|aly = §[exp(|a|y) + exp(—|aly)] ,

sinh aly = exp(laly) - exp(~laly)] . (2.71)
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The functions for z and y are reversed if instead o is imaginary and 3 is real.
In principle, the solution to this problem can therefore be written as a series
composed of terms like the following:

(i) (Asin Az + B cos A\z)(C sinh py + D cosh py) ,
(ii) (A sin Az + B cos A\z)(C sin puy + D cos puy) ,
(iii) (Asinh Az + B cosh Az)(C sin py + D cos py) ,
(iv) (Asinh Az + B cosh Az)(C sinh py + D cosh py) .

!

Figure 2.5 The rectangular region defining the domain of solution. The
boundary conditions are independent of z and are specified as functions of
z and y. The potential & is everywhere zero except on the zz-plane, where

® = f(x).

But now let’s look at the boundary conditions to see how many of these we can
eliminate before we even begin to write down the expansion for . In terms
(iii) and (iv), the condition ®(0,y) = 0 requires B = 0. But then ®(a,y) =0
also forces A to be zero, and so we can rule these out immediately. In terms
(i) and (ii), the boundary value ®(0,y) = 0 requires B = 0. Since, moreover,
®(a,y) = 0, the sin function must have a node at = a, meaning that

= An. (2.72)

Further, we can eliminate term (ii) using the requirement that a = i3, which
forces the y-functions to be hyperbolic if the z-functions are trigonometric,
and in addition, forces u = A. This is consistent with the fact that the bound-
ary conditions in the y-direction are not periodic. So now the only possible
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expansion terms are

(v) Asin (n_vr x) {C’sinh (1%71- y) + D cosh (? y)} .

a

At y = b, we must have C sinh(n7b/a) + D cosh(nmb/a) = 0, which eliminates
D in terms of C:

sin (ZZ—T- x) {sinh (Z—ﬂ y) - %2%%%00811 (%E y)}

~ sin (n_7r a:) sinh{% (b—y)} .

a

This satisfies all the boundary conditions, except at y = 0, which we must use to
evaluate the coefficients in the series expansion. As a result of this preliminary
matching of possible terms with the given constraints, we have reduced the
general expression for ® (see Equation [2.69]) to the following:

&(z,y) = i F, sin (-12—” x) sinh {1%71' (b- y)} . (2.73)

n=1

Finally, at y = 0, we have ®(z,0) = f(z), so that
flz) = f: F, sin (n_7r a:) sinh (E b) (2.74)
— a a ’

and by orthogonality of the set of functions sin(nwz/a), the problem is solved
with the evaluation of the coefficients F;, according to the expression

F,, sinh (ﬁa’i b) - % /0 * f(z)sin (";l—" :c) de . (2.75)

Cylindrical Coordinates

In cylindrical coordinates, the Laplace equation is

a<1>) 1% 89

Vi =-— (17'517 +5§W+B?_0. (276)

Assuming that the dependences of ® on the coordinates are separable, so that

®(n, ¢, 2) = R()F($)Z(2) , (2.77)
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we obtain from this three separated ordinary differential equations:

%1; +12F =0, (2.78)
% -kZ =0, (2.79)
d?R 1dR ( V2)
— 4+ —— + k2 - — R=0, 2.80
dn?  ndn n? (2.80)

where v and k are the separation constants. The solutions to these are straight-
forward, but several key points merit our additional attention. To begin with,
the solution to Equation (2.78) is

F(¢) = exp(£ive) . (2.81)

If we insist that F should be a single-valued function on the full range of ¢,
then v is restricted to being an integer. That is, we want F(¢ + 27w) = F(¢),
which implies that exp(+iv27) = 1 and therefore v = 0,%+1,+£2,.... This is
but one example of the eigenvalues that result from the solution to Laplace’s
equation subject to certain boundary conditions. Many of us are familiar with
a similar situation in quantum mechanical systems, where the boundary con-
ditions impose specific eigenvalue constraints on the wavefunction, related to
the angular momentum.

One solution to the radial equation (2.80) is a Bessel function of order v:

I (km) = (%)Vi j!P(;:-ll)/j+ 1) (%)% ’ (282)

=0

where I'(u) is the gamma function of u. Of course, Equation (2.80) is a second-
order ODE, so it has a second linearly independent solution, which is often
taken to be the Neumann function

Jy(kn) cos(vm) — J_, (kn) .

sin v

Ny (kn) = (2.83)
Here, J_,(kn) = (-1)"J,(kn), a definition that is valid only when v is an inte-
ger. In this case, however, N,(kn) becomes indeterminate. Using 1’'Hospital’s
rule for indeterminate forms and a power series expansion for J,(k7), one can
show that N, (kn) exhibits a logarithmic functionality that clearly makes it in-
dependent of J,(kn). The point to emphasize here is that whereas J, is regular
at the origin, N, is singular. This is crucial in deciding which set of functions
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to use in the expansion for ® subject to a given set of boundary conditions.
For example, the interior region of a cylinder could not be described using
Neumann functions since these would diverge as n — 0.

With these caveats in mind, the general solution to Laplace’s equation in a
cylindrical geometry is

®(n,0,2) = Z Z{aanu(kvnn) + byn Ny (kunn)}

v n=1
X {cyn sinh(kynz) + dypn cosh(kyn2)} exp(ive) , (2.84)

where k,,7 is the nth root of J, at the radial boundary of the problem. For
example, if we are treating the interior solution for a cylinder of radius a, then
kyn is the nth root of J, divided by a. We shall elaborate on this during
our discussion of the following problem. The constants k,, can sometimes be
imaginary. In this case, the J, and N, are the modified (or hyperbolic) Bessel
functions, and the z-dependence is given in terms of sin and cosine.

Example 2.4. The application we will consider here is the interior
Dirichlet problem for a cylinder, in which the surface potential is specified
to be zero on the bottom face and the side of the cylinder and to have the
functional form f(7n) on the top face (Figure 2.6). The cylinder is assumed to
have a radius a and length L, and to be oriented such that the z-axis is parallel
to its axis of symmetry. The boundary condition is cylindrically symmetric, so
we expect ® to be independent of the azimuthal angle ¢. That immediately
restricts v to be zero. In addition, we know that

No(kn) — % {ln (%) +0.5772.. } for k<1,  (2.85)

so that ® can remain finite at 7 = 0 only if b,,, = 0 for all values of n. Since
® = 0at z =0, d,, must be zero as well, and the solution is therefore effectively
reduced to

®(n,p,2) = Z anJo(knn) sinh(k,2) . (2.86)
n=1

Like the Legendre polynomials, the Bessel functions form a complete set over
a finite interval. The Fourier-Bessel theorem!? states that a function g(n) can

10Churchill (1963) gives an extensive discussion of the mathematical theory of Fourier series
and integrals, and expansions with orthonormal functions.
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be represented as an infinite series of Bessel functions over the interval (0, a)
according to

g(n) = i avn Jy (wvn ‘Z‘) ) (2.87)

n=1

where z,,, is the nth root of J,(z), that is,

Jo(zun) =0. (2.88)

Figure 2.6 Interior Dirichlet problem for a cylinder of finite length L and
radius a aligned with the 2-axis. The sides and bottom face are maintained at
zero potential, whereas the top face has an arbitrary, prescribed potential f(n).

This is analogous to a trigonometric series, where we would use the expansion
= nm
z) = Ay si (— a;) 2.89
o) = 3 Ansin (7 (2.89)

for a function g(z) on the interval (0, a). Here, the nth root of sin(x) is nx.
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The final step is to evaluate the expansion coefficients in Equation (2.86), which
we determine by using the Bessel function orthogonality condition

/Oa 19, (2om ) Iy (2om 1) dn= (%) [os1(@n))’ Smn - (2.90)

At z = L, the potential is just f(n), so that

(n,¢,L) = f(n) = ZanJo (w0n 7 ) sinh (””";‘L) . (9

Thus, multiplying both sides by 1 Jo(zon7/a) and integrating over n from 0 to
a, we get

1
an = smh(:cOnL/a) a2J2(a: n) / 77f(77) Jo (:BOn ) d77 ’ (292)

and this in principle solves the problem.

Spherical Coordinates

The procedure for this geometry is strictly analogous to that of the previous
case. The separation of variables produces a general expansion for ¢ that
involves power-law terms for the radial dependence, spherical harmonics for
the angular functionality and a sinusoidal variation in the azimuthal direction:

8(r,0,8)= 1 3 (@™t Hbinr™) Yin(0,6),  (299)
lm
where :
2 —m)!
nm(o,¢)=\/ L+ Hi! P (cost) exp(ime) . (2.94)

As was the case for the cylindrical Laplace equation, the requirement that the
potential be single-valued forces m to be an integer. The 6 equation yields a con-
verging solution at cos @ = £1 only if P/™ are the associated Legendre functions,
which have a finite number of terms (see, e.g., Magnus, Oberhettinger, and Soni
1966). In addition, this requirement of convergence at cos § = +1 forces m to be
bounded by [, such that its permitted rangeis —{,—({—1),...,0,...,({-1),!.
When m # 0, the associated Legendre function can be evaluated from the
general expression

PP@) = (-)™ (1-2)™* 2 Pa), (2.95)
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where P,(z) is the solution to the equation

d% {(1_x2)%}+l(l+l)P=0. (2.96)

The first few such polynomidls are

Po(.’l?) =1 5
P1 (.’1:) =,
Py(z) = (32 - 1)/2. (2.97)

An illustration of how these expressions are used in problems with spherical
symmetry is provided in Example 2.5 of § 2.2.2 below. With this we end our
attention to the subject of electrostatics. However, before we move on to con-
sider time-dependent electromagnetic phenomena, and then go on to develop
the field theoretic structure of electrodynamics, we will study the equally im-
portant and intricate topic of magnetostatics. As it turns out, once we have
identified the essential physics and have derived the necessary equations, we
will learn that the “mechanics” of finding magnetostatic solutions is surpris-
ingly similar to the procedures we have outlined above. Thus, the applicability
of these methods extends well beyond the confines of the problems we have
examined here.

2.2 MAGNETOSTATICS

The word “magnetostatics” sometimes confuses people, because it appears that
the term “statics” implies an absence of motion and therefore currents. In
reality, we deal with steady-state situations, which require only that the cur-
rents and other physical components are time-independent. Since free magnetic
charges either do not exist or are extremely difficult to find, every-day mag-
netic behavior is closely connected to the nature of charge currents (i.e., moving
charges). As we showed in deriving Equation (1.32), charge conservation re-
quires that the time rate of change of charge density p be equal to the net
outflux of current density per unit volume. With steady-state magnetic phe-
nomena, the charge density must be constant, for which V -J = 0. This says
that the streamlines of current flow do not have an origin or an end. In two-
dimensional space, they must therefore extend to infinity in both directions, or
they must close on themselves (see Figure 2.7). In three-dimensional space, the
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streamlines need not form closed loops to satisfy this condition, unless some
special symmetry is imposed.

The general equations governing magnetostatics all follow from the Biot-Savart
rule that relates the magnetic induction B to these currents. In differential
form (cf. Equation [1.23]), the magnetic induction at the observation point x
produced by an increment of current I d1’ at x’ is

Idl' x (x —x'
aB = It T ). (2.98)
Since , ( N
= X —X
7 (o) - (299
we get ,
B(x) = v / IJ(X) &3z’ (2,100)

(remembering that V operates only on x, not x' ), It follows immediately that

V-B=0]. (2.101)

We have seen this equation before (see Equation [1.14]), but we have derived
it here in a different way. It should be stressed, however, that the underlying
physics is identical. If we ignore the possible contribution to B from magnetic
monopoles, the magnetic induction must be due to current loops and is therefore
excluded from having points of origin and termination anywhere. Equation
(2 101) is the first equation of magnetostatics and corresponds to the condition
V x E = 0 in electrostatics. The second equatlon of magnetostatics follows
from Maxwell’s fourth equation with 6E/8t =

VxB=4rJ/c| . (2.102)

This also follows from Equation (2.100) with V - J = 0.

In matter, this equation is modified because the source function J has contri-
butions from both free and bound charges. Following our discussion in § 1.2,
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Figure 2.7 Closed loops of current threading a bounded region in two-
dimensional space.

it is straightforward to see that Equation (2.102) should then be replaced by

6xH=fch, (2.103)

where the magnetic field H is defined in Equation (1.50) and reduces to the form
given in (1.68) for linear, isotropic substances. We now have all the ingredients
we will need in order to begin developing the techniques for solving magneto-
statics problems. In the following subsections, we describe three different types
of circumstances that commonly arise in steady-state situations.!?

2.2.1 Method 1: The Magnetic Scalar
Potential

In a region of space where J =0,

VxH=0. (2.104)

11A more extensive compilation of magnetostatics problems may be found in Smythe
(1969).
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Therefore, H must be the gradient of a scalar function ®,,, which we shall call
the magnetic scalar potential:

o d

H=-V3,, . (2.105)

If in addition the medium is linear and p is constant, then with Equation
(2.101), this becomes

V2&,, =0]| . (2.106)

The fact that this type of problem reduces once again to Laplace’s equation
means that, depending on the boundary conditions, we can use either or all of
the techniques developed in § 2.1 for electrostatics. It should be remembered,
however, that the physical meaning of ®,, is different than that of &. Although
it may not be immediately obvious, the integrand in Equation (1.23) looks very
much like the expression for the solid angle subtended by the current loop at
the observation point x (see Figure 2.8).

Figure 2.8 The solid angle 2 subtended at the observation point P by a
closed current loop C, which is moved incrementally by —dx to generate a
change in perspective.

The observer at x sees a solid angle

Q= / dQ , (2.107)
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where
(dan) - (x' —x)

x —x'?

dQ = , (2.108)

and da is an element of enclosed surface area with unit normal 7. That is,

f-(x—x)
Q= /da X—xP (2.109)
Now imagine that the point x is moved by an increment dx. How does (2 (and
hence B) change? This move is equivalent to moving the loop by an amount
—dx, as shown in Figure 2.8. The area seen at the observation point will thus
change by a sum over the increments —dx x dl’ around the loop. That is, the
resulting change in solid angle is

—dx x dl') - (x —x'
_}{C ( . _)x,|(3 ) (2.110)
which can be rewritten in the form
] !
5Q = dx-fc dll:_(xx,'sx) . (2.111)

To get from Equation (2.110) to Equation (2.111), we have used the following
manipulation involving the permutation tensor €;jx, which has a value +1 if
(ijk) is a cyclic permutation of the sequence (123), is equal to —1 if not, and is
0 if 2 or more indices are the same. According to the usual convention, repeated
indices are summed:

dx x dl’ - (x - X') = (eijk d:l)j dl;c)(.’l:i - :L"z)
= =&k dl;c(:cz - :L‘;) da:j

= E&jki dl;c(a:,- - z:) da;j

= [dI'x (x—x)]-dx. (2.112)
Thus, since 6§2 = V- dx, we see that
VO = f dl'l: ("x x) (2.113)
and so I
B=_Va, (2.114)

establishing the fact that &, is proportional to the solid angle subtended at
the field point by the source loop. This concept is fully consistent with the
requirement of closed current loops in magnetostatics (see § 2.2 above).
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Example 2.5. To apply the magnetic scalar potential to a given problem,
we must know the solution to Laplace’s equation on either side of the prescribed
boundary. Let us consider a surface current density

Ks = K(0)¢ = Kosinf ¢ (2.115)

distributed on the surface of a sphere. Note that this is not the usual current
density J which has units of current per unit area. Instead, Kg is the current
per unit length. A current such as this might arise in several different situations,
like the ones depicted below in Figure 2.9. Three specific examples are (i) a
rotating, charged sphere, with surface charge density o, for which Ky = owa,
(ii) a wire-wound sphere, and (iii) a uniformly magnetized sphere, whose net

magnetization is equivalent to the surface current density given in Equation
(2.115).

d>o

(a) (b) (©)

Figure 2.9 Three equivalent situations for which the technique described in
this example will provide a solution. The first (a) is a rotating, uniformly
charged sphere; the second (b) is a spherical shell wrapped with appropriately
positioned, current-carrying wires; and the third (c) is a uniformly magnetized,
stationary sphere.

The general axisymmetric solution of Laplace’s equation for ®,, in spherical
coordinates is

1 (o ]
®,, = - Z [air**! + br~!] Py(cosb) . (2.116)
=0

In the interior of the sphere, ®,, is not permitted to be singular at r = 0, so

that for this region (labeled 1), b = 0 for all I. In the exterior (labeled 2), ®,,
must converge as r — 00, so in this region, a; = 0. Thus,

o0
®m1 = air P(cosh), (2.117)
=0
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and o
Bz =D br~ 1) P(cosh) . (2.118)

=2
The surface boundary conditions may be obtained by using the usual Gaussian
pillbox with Equation (2.101), and the circuital law with Equation (2.102).
Let us first integrate (2.101) over a cylindrical volume straddling the spherical
boundary, in such a way that the two faces of the cylinder are parallel to the
surface as its height is taken to be vanishingly small. Then, with 7 denoting
the outward unit normal vector, we get

/ 6-B=}{ B-iida=0, (2.119)
Cyl Cyl

which immediately yields
(B2—B;) - 7n=0. (2.120)

Next, let us integrate Equation (2.102) (though with 4 = 1) around a rectan-
gular loop C with side lengths h and L in the # and 6 directions, respectively.
We will be taking h — 0 so that only the contribution to the loop integral from
the segments parallel to the spherical surface will survive. Then, defining S to
be the surface bounded by this rectangle,

f6xB-(ﬁxé)da=4—”?{J.(ﬁxé)da. (2.121)
S ¢ Js ‘
That is,
47 " A
fB.m:—fJ-(nxo)da, (2.122)
c ¢ Js
which becomes 4
L(B,-B,)-0= %(KSL) b, (2.123)

where KL is the total surface current enclosed by C. Thus, our second bound-
ary condition, complementary to Equation (2.120), is

4z

(B —B;)-0= —Ks- . (2.124)

With this, we're almost done, since the expansion coefficients in Equations
(2.117) and (2.118) are solved by substituting

0%,, A _ 10%,
~5 and B-0=DBy= r 90 (2.125)

B-f=B,=
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into Equations (2.120) and (2.124). The algebra is straightforward, though
somewhat tedious, and results in the solution
_ 8n K 0

®,.1 = 30 r cosf , (2.126)

and

4ma® Ky cosf
3c r2

And what does the magnetic induction look like for this configuration of cur-
rents? According to the definition of ®,,,

» 0fm . 10%m; 1 0%m

By = (2.127)

B=-Vén = “or T r 86 rsind ¢ ¢ (2.128)
and so 87K, o
B; = 3c (cos&r - sm09) , (2.129)
and 4ra®Ky (2cosf .  sinf 4
By = — ( S+ a) . (2.130)

Inside the sphere, the field is uniform and has a magnitude B, = 8w Kj/3c. Not
surprisingly, the field outside is that due to a dipole with a moment 47a3Ky/3c.

2.2.2 Method 2: The Magnetic Vector
Potential

Although clearly powerful, the scalar potential method described above is ex-
cluded from a large class of problems in which the current density J is not zero.
With a source present, one might immediately think of the Poisson equation,
but the situation in magnetostatics is somewhat more involved because J has
three components, unlike the single function source p in electrostatics. The
idea is to solve for each of these components separately, if we can. According
to Equation (1.35), there exists a vector function A (x) such that B=V x A,
and following the discussion in § 1.3.2, this leads in the Coulomb gauge to the
set of three separate equations in (1.74). These are Poisson equations, and so
the techniques developed earlier in § 2.1 should yield a complete solution for
each of the three independent vector components A;, and hence the magnetic
field through Equation (1.35).
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2.2.3 Method 3: Hard Ferromagnets

Interesting new physics is introduced to the problem when the medium has a
magnetization M(x). In general, M can vary with the applied fields, but this
type of situation requires a technical analysis outside the scope of this book. Let
us instead consider the case where M is essentially independent of the external
conditions, and in which J = 0. One possible approach is to reintroduce the
magnetic scalar potential into Equation (2.101) using (1.50):

V-B=V-(H+4rM) =0, C (2.131)

so that .
V2@, = —4m pp, . (2.132)

Here, we have introduced the effective magnetic charge density (not to be con-
fused with a “real” magnetic charge)

pm=-V -M. (2.133)

The result is the Poisson equation with a fictitious source p,,, but which is
nonetheless amenable to the methods of solution discussed earlier.

On the surface of a substance with M # 0, p,, results in an effective mag-
netic surface charge density 0,,. To see how this comes about, consider again
the application of the divergence theorem to a Gaussian pillbox with cross-
sectional area a straddling the boundary S between the magnetization region
and vacuum. Following the same procedure as we did in § 2.2.1, we set up
the integration over the volume V of the pillbox and through the divergence
theorem determine the surface condition:

/pmd3a: = —/§-Md3a:
1% 1%

= —fM-ﬁda
s

= -M-fia. (2.134)

As the volume of the pillbox is made vanishingly small, [ pm d3z approaches
the limit o, a, resulting in the identity

om =1 -M. (2.135)

Problems such as this can also be handled using the vector potential, since

VxH=Vx(B-4rM) =0, (2.136)
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Differential Integral

-

V-B=0 $B-fida=0
VxB=4rJ/c §,B-dl=4rnl/c

V2@, =0 & =—-I0/c

VZA = —anJ/c A= [d' J(x')/c|x — x'|

Table 2.2 Key relations in magnetostatics: the differential and integral prop-
erties of B, ®,,, and the vector potential A.

which leads immediately to
VA = ~—Jn. (2.137)

Instead of a fictitious magnetic charge density p,,, this approach introduces an
effective magnetic current density

Jn=cVxM, (2.138)

but the idea is the same. This definition reduces the pertinent equations to
a set of three Poisson equations for the components of A, and the method of
solution then follows the various steps outlined above.

We close this section, and this chapter, by summarizing (in Table 2.2) the
key relations we have encountered in magnetostatics. These constitute the
differential and integral properties of B, ®,,, and the vector potential A. Note
that the integral form of the first equation in this table is valid only for a
closed surface. Only then do we have the requirement that every field line

entering this surface must also exit somewhere else (see the discussion preceding
Equation [1.14]).






3

GENERAL PROPERTIES
OF MAXWELL’S
EQUATIONS

3.1 TIME-VARYING FIELDS

The independence of the electric and magnetic fields disappears when the charge
density p and current density J are no longer in steady state. Indeed, temporal
variations lead to the surprising property that fields can be sources for each
other. In this chapter, we will be taking the first steps toward unifying electric
and magnetic phenomena, a process that will culminate with our development
of a relativistic, field theoretic formulation. Rest assured, however, that the
equations we derive here for the fields (indeed, starting with Maxwell’s equa-
tions) are correct and complete, since they incorporate all the necessary physics
pertaining to the frame in which the fields are calculated and measured. What
we shall find in Chapter 5 is that the introduction of special relativity affects
the dynamics of particles interacting with the fields, and the manner in which
E and B transform from frame to frame. Very importantly, casting the field
equations into the language of special relativity will give us a better insight
into their underlying (unified) nature.

Since Faraday’s law (Equation [1.16]) deals empirically with the electric field
induced by a changing magnetic flux, it is a natural place for us to begin. Right
away we need to be careful about distinguishing between physical quantities
measured in different reference frames, because the time derivative includes
both an intrinsic time piece and a convective term due to the relative motion
of the observer: p 5

a—‘:a'i'\"v. ‘\3‘1)

61
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In the laboratory frame, the right-hand side of (1.16) is simply

1d®p 1 0 oB
———F == <3t+v V)/B nda——— iyl -fida (3.2)

since B is the field measured by an observer at rest (v = 0) in this frame.
However, in the primed (i.e., rest) frame of reference attached to the rigid loop
C, which is itself moving with velocity v relative to the laboratory, Faraday’s
law should correctly be written

}{E’ dl' = -—/(gt+v V)B-ﬁda, (3.3)

since the derivative is now taken in a frame moving with velocity v relative to
the observer who determines that the magnetic field intensity is B. Note that
although we are taking this relative motion into account, this is nonetheless
an entirely nonrelativistic effect. We have not yet introduced special relativity
(see Chapter 5), so no “transformation” of the time or B is to be made at this
point of our discussion. Now,

(v-V)B=VxBxv)+v(V-B)—B(V-v)+(B-V)v, (3.4)
so that with V - B = 0 (and spatial derivatives of v being zero),
(v-V)B=Vx (BxvV). (3.5)
Thus,
}{E’ dl' = 9B “da+1?{va~dl. (3.6)
C s Ot cJe

The combination of Equations (3.2) and (3.6) leads to the identification

E'=E+(vxB)/c|, (3.7)

that is, we interpret the velocity-dependent term as the transformed change
in E.

Maxwell’s equations have built into them the empirical fact that time deriva-
tives of the fields are sources for each other’s counterpart. The result exhibited
here is perhaps a little stronger, in the sense that one field is seen to “trans-
form” into the other by virtue of a relative motion. That which we see as the
effect of a magnetic field in the laboratory would be interpreted as the result of
an interaction between a charge and an “electric” field v x B/c by an observer
in the moving frame. This is the first hint of an underlying union of electric and
magnetic phenomena that we will address more fully in Chapter 5 and beyond.
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3.2 THE TIME-DEPENDENT GREEN
FUNCTION

We can learn more about the time-dependent nature of our theory by also
considering the behavior of the scalar and vector potentials. The dynamic
evolution of ® and A is determined by the inhomogeneous Maxwell equations
that contain the sources. With the dependence of E on ® and A as shown in
Equation (1.37), Gauss’s law (1.12) transforms to

V28 + g (v A) = —4np. (3.8)

This is a scalar equation containing four unknowns, ®, and the three compo-
nents of A. The other essential equations follow from Ampere’s law (1.34),
which yields the following expression for the potentials once we substitute for

B and B: 1 82A 108 4
S24 _ -9 A o — __7_{
VA- 552 (v A+ 6t) J. (3.9)

Equations (3.8) and (3.9) constitute a complete set of four equations in four
unknowns, which in principle can be solved to get the full spatial and tempo-
ral dependence of the potentials, and eventually the fields through (1.35) and
(1.37). As they stand, these expressions couple all the potentials strongly, a
consequence of the interdependence of E and B when we allow for nonsteady
situations. However, there is a way to restructure these relations with the ap-
propriate choice of a gauge. We have already introduced this concept in § 1.3.2,
where it was shown that the natural gauge to choose in _a time-independent set-
ting is the Coulomb gauge defined by the condition V - A = 0. This clearly
would not work here since A/t # 0. Adding a term like V) to A (see Equa-
tion [1.71]) would still leave B unaffected, but not E, since it is unclear whether
or not &/8t(V) should always be zero.

Any gauge transformation must therefore include both space and time. For
example, we can decouple Equations (3.8) and (3.9) by making the potential
transformations

A A+Vy, (3.10)
and 1 00
o -, (3.11)
as long as
6-A+1§2=0, (3.12)
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which allows us to replace (3.8) and (3.9) with the set

> 1 6%®
28 _ - _ ,
\VAL T 4mp , (3.13)
and 1024 4
o2 - 222 T
VA 2 52 2 J. (3.14)

It is straightforward to see that a function 1 can always be found to satisfy
this condition. Suppose that in fact a given choice of potentials A and & do
not satisfy Equation (3.12). A gauge-transformed set A’ and &' then clearly
will satisfy this condition as long as A’ = A + Vi and &' = & — 0y /0ct, with
V24 — 82/(ct)? = —(V - A + 8®/0ct). In addition, this also shows that
if A and & initially satisfy Equation (3.12), any gauge transformation with
V24 — 824 /8(ct)? = 0 will preserve this condition.

Does this mean we have found a way to make ® and A (and hence possibly E
and B) independent of each other again? Of course not. Although Equations
(3.13) and (3.14) can be solved separately for the four potential components,
they are nonetheless always linked through the gauge relation (3.12). The choice
of ¢ that results in Equation (3.12) is known as the Lorenz gauge transforma-
tion, and Equations (3.13) and (3.14) are the wave equations for ® and A in the
Lorenz gauge. (Note that this was the Danish physicist Ludvig V. Lorenz, not
the Dutch physicist Hendrik A. Lorentz whose name is attached to many other
physical laws and ideas described in this book; see Van Bladel 1991.) We shall
learn a great deal more about the physical meaning of this gauge invariance
of the electromagnetic field in § 6.4, but we can immediately get a feeling for
its origin by noting that when we add the partial time derivative of Equation
(3.13) to the divergence of Equation (3.14), Equation (3.12) reduces the result
to the charge continuity equation (1.32). That is, a gauge condition, such as
the Lorenz relation (3.12), applied to the potential wave equations yields the
conservation of charge.

It is worthwhile pausing for a moment to think about yet another indication
emerging from the gauge invariance of the electromagnetic field—that there
must exist an underlying union of electric and magnetic phenomena. It is not
a coincidence that the “natural” gauge for the potentials is one in which four
potential components are coupled using coordinates in four dimensions. We had
no a priori indication that it had to be this way, but as we shall see later, this
assemblage points to the existence of a more elaborate infrastructure known as
four-dimensional spacetime.
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We solve these equations using a generalized time-dependent Green function.
One way of facilitating this procedure is to first separate out the spatial and
time dependences by writing ® and A as superpositions of functions at differ-
ent frequencies, i.e., by expanding ® and A as Fourier series or integrals. As
long as a function g(t) satisfies the conditions (1) that both g(t) and dg(t)/dt
are piecewise continuous in every finite interval of ¢, and (2) that f lg(t)| dt
converges, i.e., that g(t) is absolutely integrable in (—00, 00), the Fourier theo-
rem assures us that any such function can be expanded in this fashion. It also
happens that often a handful of frequencies (sometimes just one) dominate the
behavior of the solutions. We thus write

o= [ " F(xw) exp(—ivt) d | (3.15)

where f(x,t) is one of either ®, p, or the components of A and J, and f(x,w)
is its Fourier transform. Equations (3.13) and (3.14) thereby reduce to

[v? (c) ]<I>(x W) = —47 j(x,w) (3.16)

and
[62 + (c) ] A(x,w) = —J(x W), (3.17)

since the integral expressions must be valid for all ¢. These are elliptic partial
differential equations similar to the Poisson equation. Thus, one way of solving
them is to use a Green function together with Green’s identities, which we
derived from the divergence theorem. Following the ideas developed in § 2.1.2
above, we seek a function G, (x — x') such that

[62 + (%)2] Gu(x —x') = —4r 8 (x — x') . (3.18)

Since, moreover, G, is a function only of |x — x’|, not the absolute orientation
of the vector x — x’,

1 d? ~ w\?2
where r = |x — x/|.
The solution to this equation is
+
GE(r) = exp(ikr) , (3.20)

r
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as may be readily verified by substitution into (3.19). Here, k = w/c, and we
note that the -function arises from the normalization at r = 0, as it did in
§ 2.1.2 for the electrostatic field. Thus, the time-dependent Green function is

1 [ exp(xikr )

GE(r,t) = —/ exp(ikr) exp(—iwt) dw , (3.21)
27 J_ T

where t is measured relative to a prescribed source time. That is, if the source

activity is known at some time t', then the resulting Green function at time ¢

is

1 exp(tik|x — x'|) )
T il ¢!
G=(x,t;x',t') = 21r/_ P— exp(—iwft —t']) dw .  (3.22)

We recognize the right-hand side of this equation as the Dirac delta function,
and so we arrive at the compact form for G written as

GE(r,t—t') = 6(t—t'Fr/c)/r| . (3.23)

This is a wonderful result. G* is the retarded Green function because it exhibits
the causal behavior associated with a wave disturbance traveling with speed c.
An effect observed at (x,t) was caused by the action of a source at (x',t—7/c).
Similarly, G~ is the advanced Green function, relating a potential field observed
at (x,t) to the activity of a source at (x',¢ +r/c). How this comes about will
be the subject of the following discussion.

In § 2.1.2, we learned that when the surface of the domain of solution is pushed
to infinity, only the internal source term contributes to the potential. The main
difference between that time-independent derivation and the situation we have
here is that one now needs to include all contributions to the potential from
sources acting at possibly many different times. The only restriction is that the
difference between the source time and the observation (or field) time should
equal the light travel time between the two points. Thus, a source that is very
far away from the observation point could have acted much longer in the past
and still contribute to the measured potential, than a source that is closer,
which acted more recently. Mathematically, this means that our potentials are
now double integrals, over both source space and time:

8% (x,t) = / / G (x, %, ) p(x, ) &2 dt! (3.24)

Af(x,t) = %//Gi(x,t;x',t’) J(x',t'") d*z' dt’ . (3.25)
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When we know the incoming waves ®;,(x,t) and Aijn(x,t) and we wish to
determine the overall potentials taking into account the augmentation due to
the action of p and J, then the appropriate solutions to use are the retarded
ones. In other words, the action of the sources adds to the initial conditions to
produce the current potentials, so

B(x,) = Bin (%, £) + / / G (x, X, ) p(x', ) B2 dt' . (3.26)
t'<t

A(x,t)tAin(x,t)+—i- / / G tx, ¢) I, ¢) da'dt . (3.27)
t'<t

It must be stressed here that ®;, and A;, satisfy the homogeneous (i.e., source-
less) equations, which accounts for the fact that as x and ¢ change, so too do
these “initial” potentials evolve. That is, the argument of these functions should
correctly be x and ¢, rather than x;, and ¢;,.

When instead the outgoing solutions ®,u4(x,t) and Agys(x,t) are given, the
potentials measured now are the backward-evolved outgoing functions, minus
any augmentation due to the sources between now and t' — oco. That is, the
appropriate solutions to use in this circumstance are the advanced ones:

B(x, ) = Bous (%, ) + / G (x, X, ) p(x', ¢') P’ dt',  (3.28)

t'>t
and

A(x,t) = Agus(x,t) + %/ G~ (x,t;x',t)J(x',t') d3z' dt' . (3.29)
t'>t

As long as we know the source functions p(x’,t') and J(x',t'), these expressions
account for the potentials correctly even in the relativistic domain. However,
when the particles are moving rapidly, relativistic effects must be included in
order to adequately handle the radiative motion of the sources. This is why we
shall revisit this topic in Chapter 7, when the necessary relativistic tools will
have been developed. We shall find there that p(x’,t') and J(x',t') themselves
can depend on ®(x,t) and A(x,t), since the energy and momentum carried
away by the field induce a change in the particle’s trajectory. These effects
become important when the velocity of the c¢harge carriers approaches ¢, so
relativistic mechanics will broaden the useful range of these expressions; even
without these considerations, however, there exists a large class of problems for
which the present formulation is entirely valid. In going through this exercise of
analyzing the nonrelativistic aspects of time-dependent fields, we are learning
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that electromagnetic theory as it stands is somewhat incomplete, not because
the fields and their potentials are not known precisely, but rather because the
description of the sources that give rise to them is to this point still couched in
the language of nonrelativistic mechanics.

3.3 CONSERVATION LAWS

It was pointed out in the Introduction that the field concept became firmly
entrenched after the development of Maxwell’s equations, when it was realized
that the field is more than a mathematical device. Carrying energy, and linear
and angular momentum, the electric and magnetic fields are dynamical entities,
on par with the sources that produce and interact with them. We have said
nothing yet about the fact that the constituents of these fields are now known
to be photons, which of course are particles, and for the ideas developed in this
section we don’t need to. We will see that the fields are imbued with these
dynamical characteristics irrespective of their internal structure.

3.3.1 Field Energy Density and Poynting’s
Theorem

To begin with, we know at the most basic level using Coulomb’s empirical
equation that to assemble a cluster of charges we must do work on the system.
It is not surprising, therefore, that a charge distribution is associated with an
energy. But this energy is described in terms of the charges and is therefore
interpreted as being coupled directly to them. To show that the energy is in fact
stored in the fields, we should be able to account for it by using the properties
of the fields themselves.

Suppose we bring an element of charge density dp(x) in from infinity to the
coordinate point x, where the potential is known to be ®(x). (In this section,
we will use a prime to denote the instantaneous value of quantities that are
changing as the system is built up with charge.) The energy density of the
system will then change by an amount

dw(x) = dp(x) B(x) . (3.30)

Thus, over the whole volume V of interest,

oW = /v dw(x) d3zr = /v dp(x) ®(x) dz . (3.31)
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This is the description of the system’s binding energy in terms of the charges.
But we know from Gauss’s law that

1 =
=—V- .32
dp(x) = -~V - (OE), (3.32)
where 4E is the corresponding change in E due to the local change in source

density dp(x). Thus, using the divergence theorem with the enclosing surface
S, we see that

sW = 4i  PE(x)] 8(x) &z

| %
- / 41{\7 [PE(x) ®(x)] — 0E(x) - V‘P(X)}
1
ar Js
1

- - 3
= 47r/6EEd

_ 1 L / LE-E)d (3.33)

The last step follows from the definition of ® in terms of E and the fact that
S can be taken arbitrarily large whereas dp must remain localized. The total
electrostatic energy of the system is therefore

—_ 1 3
W_SW/VE Eds . (3.34)

Notice that this expression for the system’s binding energy makes no mention at
all of the assembled charges but is instead written entirely in terms of the elec-
tric field intensity. From it, we infer that the energy density of an electrostatic
configuration must be

5= |E[?/8n]| . (3.35)

For a magnetostatic configuration, the corresponding change in energy of the

system due to a change in the position dr of a loop element d1 carrying a current
I(x) is

SW (x) = —é [d1 x B(x)] - or , (3.36)
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where B(x) is the instantaneous magnetic field intensity at the location of the
loop. This is simply the work done against the force I d1x B(x)/c. Thus, using
the same vector manipulation that led to Equation (2.111) earlier, we have

oW (x) = % (dl x ér) - B(x) , (3.37)
and noting that d1 x r = —7 da (the inward-pointing elemental area),
W (x) = —g 58 5(x) , (3.38)

where §®p(x) = 71 da - B(x) is an element of magnetic flux threading the loop.
Thus, replacing I with the field it produces results in the following identification
of the magnetic field energy density:

Let us now examine what happens to this energy density when E and B are
time dependent. Suppose both an electric and a magnetic field are present in a
volume of space V. Using the above relations, the total electromagnetic energy
in the system changes in time according to the expression

3 - i Q_E 3
at/(uE+u3)d:c /(E +2B.2) Pz, (340)

That is, replacing 0E/9t and 0B /0t with their counterparts from Faraday’s
and Ampere’s laws, respectively,
/(uE+uB)d3a:———-/ chB 47rJ]+B [ c§xE]}d3:v
(3.41)
But -B-(V xE)+E-(V x B) = -V - (E x B), so that

g 3, 3 __/_-‘. 3
at/‘/(uE-i-uB)da:— /J Edc+ o [ -V (ExB)d'z, (342)

and since the volume is arbitrary, we must therefore have

ou/dt+cV - (ExB)/4r = -J-E|, (3.43)

where u = ug + up. This is the conservation of energy equation for the elec-
tromagnetic field. The quantity
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S=c(ExB)/4r (3.44)

has units of energy per unit area per unit time and is known as the Poynting vec-
tor. It represents the energy flux out of the volume associated with the enclosed
electromagnetic field. The other term, —J - E, is the work done (mechanically)
on the system of charges and is therefore a dissipation of electromagnetic energy.
Thus, we see that not only does u satisfy an energy conservation equation, but
in addition, the electromagnetic energy is seen to be exchangeable with that of
the particles with which the field is interacting,.

3.3.2 Conservation of Linear Momentum

In a similar fashion, we can consider the linear momentum content of the elec-
tromagnetic field. We do this by using the transfer of momentum during an
interaction between the field and charges as a probe of its dependence on the
characteristics of the field. We know from the application of Newton’s second
law to the total mechanical momentum Pecn that

dp mech
dt

where Fi is the total force on the particles due to the field. Thus, generalizing
Equation (1.3) for a distributed charge,

deech_/ 1 3
T Vp(E+cva) d’z . (3.46)

The idea here is to replace all references to the sources p and J = pv by their
equivalent forms in terms of the fields. We therefore put p = v - E/4m and
substitute for J from Equation (1.34). The result is

deech 1 1 OE
Pt _ 47T/ [E(V E) + 2B x 79—-B><(V><B)] (3.47)

== Ftot y (345)

It is difficult to make headway from here unless we first clearly identify our
goals. Ideally, we should be able to extract a term from the right-hand side
of (3.47) that looks like the dPmech/dt term on the other side. After all, since
this equation is set up to give us the rate of change of particle momentum, we
can reasonably expect that this momentum should be extracted conservatively
from the field. We therefore need to identify from the right-hand side the total
time derivative of a quantity that has units of momentum. The middle term
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looks like it belongs in this category, but it involves the time derivative of only
one field, so let’s work with it. We will write

OE 0B

Bx 2= (E B)+Ex -, (3.48)
so that now
deech _ 1 BB
It = / [E(V E) + E 5
= 1 a 3

At first it doesn’t look like we’ve gained much, except that the E x B/8t term
is really complementary to B x (V x B) when we replace 0B/t using Faraday’s
law:

dP mech — 1
dt ar

[E(v E)—E x (V x E)

—Bx(ﬁxB)—%%(ExB) dz . (3.50)

More important, we have extracted a term that looks like it has the character-
istics we need and the first three terms on the right-hand side are unrelated to
the momentum since they do not involve any time derivatives like the other two
terms in this equation. For purely aesthetic reasons, we might also want to add
a term B(§ -B) = 0 to the right-hand side to make the expression completely
symmetric in E and B. Thus, since the integral over d®z reduces to a function
only of t, we can put /0t — d/dt and we get finally

deech d 3 _ 1/ - -
Tt et = 4 V[E(V E)-E x (V x E)

+B(V-B)-B x (V x B)] Bz, (3.51)

where

= (E x B) /4rc (3.52)

can now be identified as the electromagnetic momentum density. The right-
hand side of this equation is itself very meaningful and will be the subject of
the following subsection.
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We have thus derived the remarkable result that
1

Knowing that electromagnetic phenomena in vacuum travel with a speed c, it
is easy to see that the energy density carried by traveling fields should be |S|/c
since S is the energy flux. Equation (3.53) is now making an unprecedented
advance beyond this by implying that the momentum density in the fields is
simply this energy density divided by c. We stress that the derivation of this
result has been completely nonrelativistic, but it is nonetheless consistent with
the physical insights we shall gain during our study of special relativity. There
we will learn that a photon’s energy E, and its momentum p, are related by the
expression E, = cp,, and so Equation (3.53) is merely a restatement (or more
accurately, a prestatement) of this result, though here applied to an ensemble
of photons constituting the electric and magnetic fields.

3.3.3 The Maxwell Stress Tensor

The right-hand side of Equation (3.51) merits further attention. Based on the
nature of the equation and the form of the left-hand side, it clearly represents
the integrated momentum flux. In classical particle dynamics, this portion of
the equation would therefore be expressible as the gradient of a scalar potential
function, i.e., a gradient representation for the force. Given the complicated
dependence of this integral on E and B, it would clearly be difficult to do this
here, since for example, terms like E(VE) mix the field components. If we
wish to retain this potential gradient aspect of the problem, we need to move
to a higher order function—a tensor—and we must then try to guess its form.
Equation (3.51) mixes field components, but never more than two at a time.
We thus expect that the tensor should be of rank 2, and we will denote it by
Top, where a and 8 run over all possible indices 1,2,3. We can get some clues
as to its appearance by looking at terms like the following:

= - 1[0 0
BT -B)-Ex(@xBl = 7 [ (8) + 2 (B
5 10,
+ % (E1E3)] - 5527_1]3 , (354)

and similarly for B. After some trial and error, it appears that the tensor we
are looking for is

1 1
Toap = . [EaEg + BoBg — §(E -E+B-B) (Sag] , (3.55)



74 CHAPTER 3

for then p

This equation assumes the dyadic notation, wherein
= = 0
(V-T)o = zﬁ: 52; Tog - (3.57)

Thus, using the divergence theorem,
d 3 =N
— [Pmech+ [ gd°z) = ¢ T -nda. (3.58)
dt v S

We interpret T - A as the momentum flur normal to the boundary surface.
That is, T - # is the force per unit area transmitted across the surface S.
Together with our success at establishing the dynamical properties of E and B
in the previous sections, the nature of this Maxwell stress tensor'? addresses
the questions raised in the Introduction concerning the reality of the fields.
We have now seen that they not only carry energy and momentum, but they
also allow us to determine the electromagnetic force on a system through a
consideration of T, g written in terms of the local field components. In closing
this section, we note that the volume in (3.58) is arbitrary, so an alternative
representation of this equation is the equally useful differential form

0 - -
a (pmech + g) =V-T, (359)

where p .., i the mechanical momentum density of the system and a partial
derivative is now taken with respect to time since both p.,, and g may be
functions of several variables.

3.3.4 Conservation of Angular Momentum

The derivation of the electromagnetic field angular momentum shares the same
tactical approach as that of the linear momentum. Let us define the mechanical
angular momentum density of our system as

lnech =T X Prech > (3.60)

12An extended discussion of the Maxwell stress tensor, taking into account the forces in
fluids and solids, is given in Landau and Lifshitz (1975a).
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where pqq, is the mechanical momentum density. Then,

a lmech
ot

=rx(pE+%JxB) , (3.61)

so that substitution for p and J from Maxwell’s equations leads to

0 1
a lmech + 4—7rcr X (E X B)] =

%ﬂrx[E(VE)-Ex(6'><E)+B(V7.B)-Bx(ﬁx13)]. (3.62)

Using our definition of the Maxwell stress tensor, we can simplify this equation

considerably:

gt-(lmech +lem)=rxV- T, (3.63)

where

lkm =rxg (3.64)

now has the simple interpretation of being the electromagnetic field angular mo-
mentum density. In integral form (with 9/9t — d/dt now, since the integrated
angular momenta are functions only of t),

i (Lmech +/ lem d3.’17> = /(l‘ X 'f) -nda y (365)
dt v s
which follows from the fact that
rxV-T=V-@xT)), (3.66)

since V xr = 0. Not surprisingly, the right-hand side of this equation represents
the integrated torque density due to the fields over the boundary surface S.






4

ELECTROMAGNETIC
WAVES AND RADIATION

What we have done for the electric and magnetic fields in Chapter 3 is equiv-
alent to showing that particles have certain dynamical properties that are ex-
pressible in terms of the characteristics of the motion. For example, a particle’s
momentum p = mv depends on its inertia and its velocity; so too do its kinetic
energy and angular momentum. As such, a particle’s dynamical attributes can
change as v changes along its path. For particles, a complete description of the
dynamics requires a solution for their trajectory, which provides v(t) and r(t)
subject to the initial conditions. In contrast, when fluctuations of the fields
(e.g., waves) are moving in vacuum, their speed is invariant (since all observers
measure the same speed of light ¢). The field amplitudes, however, are not.
Thus, for the fields, the momentum and angular momentum densities, and the
energy flux change because the field intensities E and B vary in time and space.
To complete the description of the field dynamics, we therefore need to know
the temporal and spatial behavior of the field amplitudes (which also includes
information on the wave vector, or propagation direction). This is the subject
of the present chapter. We shall see that the fields may be either “attached”
to the sources, or become completely detached in the radiation zone, and that
their dynamical properties differ depending on which of these situations applies.

4.1 ELECTROMAGNETIC WAVES

In a region of space where there are no free sources, Maxwell’s equations re-
duce to the simple form given in (1.75)—(1.78). We shall assume here that the
medium is nonconducting, because otherwise Ohm’s law J = ¢ E results in a
current density due to the presence of an electric field, which in turn acts as a

7
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source for additional fields. As we saw in § 1.3.3, this set of relations leads to
a pair of wave equations for E and B. One of their solutions is a set of fields
that display planar fluctuations:

E = Ep exp{i(k - x —wt)}, | (4.1)
and
B = By exp{i(k - x —wt)}, (4.2)
where Ey and By are constant vectors, and
WA 2
with c
V= —. 44
T (4.4)

We will consider the case of radial waves separately in § 8.2.

Let us now examine these solutions further and see what other properties are
suggested by Maxwell’s equations. The electric field must satisfy Gauss’s law
(1.75), which (with € = constant) leads to the condition

V -E = (ikiEo; + ikoEoz + iksEos) exp{i(k - x —wt)} =0.  (4.5)

That is,

k-Ey=0, (4.6)
and it is trivial to show that B must satisfy the same constraint,

k-Bp=0. (4.7)

This important result shows that electromagnetic waves in nonconducting me-
dia must be transverse to the propagation vector k.

Using the permutation tensor notation introduced in § 2.2.1, we see from the
curl equations that

eijk 0:(0;By — BB;) = %(-iw)E , (4.8)
where 4; is the unit coordinate vector in the direction . That is,
i€ijn 44(k;Bx — kiBj) = £ (-iw)E, (4.9)
and so
kxB=-2uE, (4.10)

Cc
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which may also be expressed as
i\(XBo =-—\/[1,€E0 . (411)

Another way of writing this is to take the cross product of both sides with k,
which yields A

Bo = uc k x Eg (412)
when we use Equation (4.7). Thus, the combination of Equations (4.6), (4.7),
and (4.11) requires that the vectors k, Eg, and By form an orthogonal set.

In general, Eg and By are complex, which alters slightly the manner in which we
describe the dynamical characteristics of the field. For example, the Poynting
vector (3.44), which gives the electromagnetic energy flux, would be “double
counting” if we retained it in its present form. Instead, the Poynting vector
must then be written as

lec *

S—§EEXH , (4.13)
where E and H are the measured fields at the point where S is evaluated. Note
that we have made one additional modification in this expression to make it
more general, writing S in terms of E and H, rather than B. This is because
even though B is the applied induction, the actual field that carries the energy
and momentum in media is H. We discussed in § 1.2 how H represents the
portion of the magnetic field produced by the external sources only, and that
it excludes the magnetization M, whose magnitude is dictated by the proper-
ties of the medium. Since the magnetization is “attached” to the medium, it
constitutes a component of its internal mechanical structure, and so it cannot
contribute to the energy flow due to the externally imposed fields. Particular
attention should be paid to the factor of 1/2 in this expression, which arises
from the definition that the energy flux is given by the real part of S:

1
S = 54_07; [(Er x Hg) + (Er xHy) + (B x Hr —Er xHy)] . (4.14)

When the field is harmonic, so that its time dependence is e*¢, the time average
of the square of a physical variable A pertaining to the field is obtained by first
finding the real part of A, squaring it, and then averaging the result over one
period. Since Ap = (A + A%)/2, it is straightforward to see that the time
average must be (Agr®) = A - A*/2. For plane waves, of course, the field

amplitudes are Eq and By = /fie k x Ey (see Equations [4.1] and [4.12]).
Thus, with H = B/pu, we get

C 3 ~
(SR) = 87\/5 |Eo|> k. (4.15)
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And since this energy flows with velocity v = ¢/,/z€, the corresponding time-
averaged energy density is

_ISr) _ € &y
= = [l (4.16)

Note that this is the total time-averaged energy density in the wave, not just
the energy density associated with its electric field component, which would be
just half of this value.

4.2 POLARIZATION AND STOKES
PARAMETERS

Since E, B, and k form an orthogonal set, the most general way to write the
electric field vector is

E(x,t) = (Eo1 + Eoz2) exp{i(k-x —iwt)} = (Ep1é1 + Eo2é2) exp{i(k-x —iwt)},

(4.17)
where €;, €2, and k constitute an alternative set of orthogonal vectors. But
what is the benefit of this? After all, it would seem that we can just rotate the
vectors €; and é; arbitrarily and we haven'’t learned anything. But this is only
true when Eo; and Eg, are real or have the same phase. In general,

Eo1 = |Eo1| exp(i¢1) , (4.18)
Eo2 = |Eo2| exp(i¢s) , (4.19)

so that
E(x,t) = [é1|Eo1| + é&2|Eoz2| exp{i(¢2 — ¢1)}] exp{ik - x —iwt +i¢1} . (4.20)

The overall phase of the field, ¢;, represents just a constant rotation in the
complex plane and does not affect the physics. We can therefore drop it and
effectively write the field as

E(x,t) = [é1|Eo1| + é2|Eo2| exp{i(d2 — ¢1)}] exp{ik - x — iwt} . (4.21)

To understand the behavior of the actual electric field, we need to consider the
real part Re(E) of Equation (4.21). We see that when ¢ — ¢; = 0, the wave
is linearly polarized, which is to say that Re(E;) = |Eo;| cos(k - x — wt) and
Re(Ez) = |Eo2| cos(k-x—wt), so that arctan [Re(Ez2)/Re(E;)] remains constant
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as the field evolves in space and time. That is, the field vector oscillates along
a constant direction making an angle arctan [Re(E;)/Re(E;)] with respect to
the é; direction. However, when ¢2 — ¢1 # 0, the wave is instead elliptically
polarized and the electric vector rotates around k. The easiest way to see
this is to note that because of the phase difference between Eg; and Eg2, the
field component in the €; direction passes through its nodes at different spatial
locations and/or times compared with the other one. They do not change
proportionately, and the net effect of this is a rotation in the é — €; plane.
According to Equation (4.21), E sweeps around once every 27 /w seconds, and
so the angular frequency of this rotation must be w. It’s easy to see this in the
special case where |Eq;| = |Eo2| with ¢2 — ¢ = £ 7/2, for then the amplitude
of the electric field |E| is constant, and Re(E;) = |Eq1| cos(k - x — wt) and
Re(E2) = F|Eo1| sin(k - x — wt). Clearly, E here rotates around k with a
constant magnitude and an angular frequency w. This special case constitutes
circular polarization (Figure 4.1).

Figure 4.1 The polarization vector E is shown relative to the propagation
direction k. When ¢2 — ¢1 # 0, E rotates about its axis with an angular fre-
quency w, corresponding to the frequency of the wave. However, the magnitude
of E is constant only when ¢2 — ¢1 = £7/2 and |Eo1| = |E¢2|, in which case
the wave is circularly polarized.

An alternative general expression for E is in terms of the vectors

. 1 .
€+ = E(el + iég) . (4.22)
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In this instance,
E(x,t) = (Eo+é4+ + Eo—é_) exp{i(k - x —iwt)} . (4.23)

Following our discussion in the previous paragraph, it is apparent that é, rep-
resents a positive helicity, i.e., the rotation of this field component is in the
right-hand sense because the é; piece leads the other one (by a phase exactly
equal to m/2). For analogous reasons, é_ represents the negative helicity. We
can see how this sense of rotation comes about more fundamentally by consid-
ering the two components E; and E; in E = Eo(é; +ié;) exp{i(k - x — wt)},
which corresponds to an electric field with Eg_ = 0. Taking the real part of E,
we infer that

Re(E;) & cos(kz — wt) , (4.24)

whereas
Re(E2) ox —sin(kz — wt) . (4.25)

Thus, for a fixed z, increasing ¢ for an electric field vector in the fourth quadrant
results in an increasing Re(E;) while Re(E;) approaches zero from negative
values. That is, the electric field vector is rotating clockwise when seen from
behind the # — y plane in the direction of k.

Having said this, the obvious next question is: how do we determine the po-
larization of a field vector? Clearly, we can describe the “internal” structure
of the electric field with these two elegant basis vector systems, but unless we
have a way of measuring the various components, this would not have much
practical interest. Stokes parameters are quantities defined in terms of the pro-
jected amplitudes along each of the basis directions, such that together they
allow us to isolate the various dependences of E on the phase and component
amplitudes. In terms of the (é;,é;) basis, the four Stokes parameters (based
on the notation of Born and Wolf 1970) are

So =|é&1 -E> + |& - E|? = |[Eo1 | + |Eo2)?, (4.26)
S1=|é1-E?> — |& - E|? = |[En1|? - |Eo2)?, (4.27)
S2 = 2Re[(é: - E)* (&2 - E)] = 2|Eo1||Eo2| cos(¢2 — ¢1) , (4.28)
S3 = 2Im[(& - E)*(& - E)] = 2|Eo1||Eo2| sin(¢2 — ¢1) . (4.29)

It is sometimes convenient to use an alternative definition of these four pa-
rameters in terms of the (é;,é_) basis. Here, Sy and S; contain information
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regarding the amplitudes of linear polarization, whereas S; and S3 say some-
thing about the phases. Knowing these parameters (e.g., by passing a wave
through perpendicular polarization filters) is sufficient for us to determine the
amplitudes and relative phase of the field components.

4.3 REFLECTION AND REFRACTION

We learned in Chapter 2 how important surfaces and boundary conditions
are in determining the electrostatic potential within a well-defined region of
space. Time-dependent fields can also be bounded, but because of their dy-
namic nature, analyzing the field conditions near a surface can be much more
complicated due to the various possible outcomes when a field is incident on
the boundary. These include the partial reflection and partial refraction of
the wave, which depend on a host of physical conditions, such as the type of
material at the interface and the angle of incidence.

We do not wish here to divert greatly our attention away from the main theme
of our development, so we shall consider only a straightforward situation with a
high degree of symmetry and a simple geometry in order to learn the essential
elements of handling these boundary conditions.!® We will consider a plane
electromagnetic wave, such as that described in §§ 4.1 and 4.2 above, incident
on an interface between two media characterized by dielectric constants €; and
€2, and magnetic permeability u; and pg, respectively. As we shall see, the
solution for the field is found by adding the incident wave to the two other
fields in the problem, viz. the reflected and transmitted (or refracted) waves,

To make the problem a little more specific, let us examine what happens when
the incident wave is circularly polarized. Then, the electric field is

E(x,t) = Eo(é& + ié;) exp{i(k - x — wt)}, (4.30)
where Eg is here taken to be real. In that case,
Re(E,) = Eg cos(k - x — wt) , (4.31)
and
Re(Ez) = —Ep sin(k - x — wt) , (4.32)

so this represents a wave with positive helicity. For convenience, let us also
take the vectors €; and é; to be such that &, lies in the plane of incidence (with

130ne of the best treatments of electromagnetic waves in media is that of Landau and
Lifshitz (1975b),



84 CHAPTER 4

respect to the interface between the two media). The fact that é;, €2, and k
form an orthogonal set then automatically fixes the direction of €2. Throughout
our discussion, it will be understood that B = ,/liek x E, so if we know what
happens to E, we can immediately determine the fate of the magnetic field as
well. Our approach will be to consider what happens to the two incident field
components E;; = Eg é; and E;; = Eg ié, separately (Figure 4.2).

Figure 4.2 The boundary value problem for a wave incident on the interface
from a medium with £; and p; into an adjoining medium with €2 and p2. The
basis vectors €; and é are oriented such that €; is in the plane of the paper
and €2 points into the page.

For each component of polarization, we designate the field incident from medium
1 onto the interface to be E;, that reflected back into medium 1 to be E,, and
that transmitted across the interface into medium 2 to be E;. Their corre-
sponding wave vectors are, respectively, k;, k,, and k;. Thus, we have

E; = A exp{i(k; - x —wt)}, (4.33)
E, = R exp{i(k, - x —wt)}, (4.34)

E; = T exp{i(k: - x —wt)} . (4.35)
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We cannot assume any particular direction for k, and k; a priori. However, we

do know that w

ki = k.| = /&1 = (4.36)
and w
[k¢| = /2es < (4.37)

Now, we also realize from Equation (2.120) at the boundary that the perpen-
dicular component of B must be continuous at z = 0. But in order for this to
be the case for all x, we need

(ki - x)|2=0 = (kr - X)|s=0 = (ks - X)|z=0 . (4.38)
Thus, for the way we’ve chosen our axes,
kic® =krg T+ kpyy . (4.39)
But this must be true for all y as well, and so k,, = 0, which implies
kiz = krz - (4.40)
Similarly, from the second equality in (4.38), we get
kiy =0. (4.41)
The net result is that all three vectors k.., k;, and k; are coplanar-
We see immediately that because |k;| = |k,|, Equation (4.40) gives
sinf; = sin#, , (4.42)
that is, the angle of incidence equals the angle of reflection. Second, Equation

(4.36) implies that
|k;|sin8; = |k;|sin6; , (4.43)

sinfy _ [uze2
sin92 - Hi1€1 ’ (444)

which is Snell’s law of refraction.

so that

In the absence of a surface charge, the tangential component of E along the
interface must be continuous. o

A+Ry =Ty, (445)
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where subscript 2 refers to the fields parallel to the basis vector é;. All three
of these vectors point in the same direction, so Equation (4.45) is more conve-
niently written simply as an algebraic equation:

Ay+Ry =T, . (4.46)

We get additional constraints using the known form of the magnetic field B =
V€ k x E, which gives

Biiz = —+v/mé1 Az cosb;,
Briz = meéiRs cosé,,
Btl:c = —\/U282 T2 COS Gt . (447)

Requiring continuity of these tangential components of B at z = 0 gives a
second equation for the é; components of E:

Biiz + Briz = Bus

or
Ve (A2 — Rp) cosf; = \/uzes T cosby . (4.48)

It is straightforward to solve the pair of simultaneous equations (4.46) and
(4.48) with the aid of Snell’s law (4.44), and the result is

To  2cosé;sinb;

A T S+ 0) 449
and R,  sin(6i —0y)
A, sin(6; +6;) (4.50)
For the other component of E (in the €, direction), we have
cosf@;(A; —Ry) =cosb; Ty, (4.51)

and continuity of B results in a second equation

VH1EL (A1 + R1) = \/U2€E2 T, . (4.52)

Again eliminating the unknowns and using Snell’s law results in

R, _ tan(6; — ;)

A, tan(8; +6;) (4.53)
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d
an T, 2 cos 6; sin 6;

A; ~ sin(6; + 6;) cos(6; — 6;) ’
and this, in principle, solves the problem.

(4.54)

Example 4.1. Let us consider what we need in order to design an inter-
face that transforms circularly polarized electromagnetic waves into elliptically
polarized waves whose ratio of major to semimajor axes is & = 1.3. In this
problem, we need

E — o= sin(0,- + Ot)
T, - sin(0,- + 0t) cos(0,- - Ot) '

(4.55)

Suppose the wave is incident from air (u1€; & 1) into a glass for which /ize3 =~
1.5. Then, from Snell’s law,

sin; = 0.667 sin¥; , (4.56)

and so a@ =~ 1.3 when the circularly polarized wave is incident at an angle
i =T75°.

Figure 4.3 The conversion of an initially circularly polarized wave into an el-
liptically polarized wave. The ratio of the semimajor to semiminor transmitted
amplitudes for this example is 1.3.

Is it obvious why T; should be larger than T,? Let’s see what happens to E;.
Since it points roughly in the direction of k,, this component is attenuated
more in reflection than E, which is perpendicular to k,. That is, the reflected
wave is expected to be polarized more in the é, direction than the incident
wave. Thus, T; gains at R;’s expense (Figure 4.3).



88 CHAPTER 4

4.4 TIME HARMONIC FIELDS IN
MATTER

All matter contains charged particles. Thus, an electromagnetic wave incident
on a sample of matter sets these charges in motion and in effect produces
a spatial distribution of currents. The different nature of the currents from
material to material results in a variation of macroscopic properties, such as
conduction and insulation. For most of our study thus far, we have assumed a
dielectric constant € independent of frequency w. But because of these induced
currents, this assumption is at best only an approximation, as we shall see from
the following simple model for e(w).

We have written the effects of polarizability of the medium in terms of a po-
larization vector P (i.e., the dipole moment per unit volume):

D=E+4rP=¢E. (4.57)

In a low-density medium, one in which the local field is not very different from
the applied field, the equation of motion for an electron bound to a harmonic
restoring force

F=-mewo’x, (4.58)
and acted on by an electric field E(x, ) is
d?x dx 2

M (W + tn + wo x) =eE(x,t) . (4.59)

Here, wy is the restoring frequency, m. is the electronic mass, e is its charge,
and v measures the (phenomenological) damping force. We ignore magnetic
forces under the assumption that v/c < 1. Thus, if E is harmonic, say E =
E, exp(—iwt), then

eE/m,

= ) (4.60)

But the single charge dipole moment is,

e2 E/me
p=ex= o~ — i)’ (4.61)

so that if there are N scatterers per unit volume,

e2EN/m,

P=Np-= )
P = (0o — w? — iw7)

(4.62)
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According to the definition of € in Equation (4.57), this leads to the result

47 Ne? 1

=1 ;
£(w) + me (wo? — w? —iw?y)

(4.63)

In reality, of course, a medium has a mixture of restoring frequencies so that
€(w) looks rather more complicated than this, but the basic physical principle
is the same.

This does not yet tells us much about how the fields behave once they enter
the medium. To learn more about this aspect, we need to go back to Maxwell’s
equations and actually solve them for the propagation vector k. But let us first
be clear on the assumptions we are making here. Although we are obviously
allowing the charges to move around so that they can create currents, we'’re
going to insist that the medium remains neutral and so p = 0. Second, the
various parameters characterizing the medium, such as € and now k, are allowed
to vary with w, but we will still retain the simplifying condition that they do
not depend on space and time. We can therefore take Equations (1.14), (1.22),
(1.47), and (1.49) and write them in the form

V-E=0, (4.64)
1 0B
V x E+EE—O’ (4.65)
Gxp_ KB _dmu
VxB-——=—C7J, (4.66)
and .
V-B=0. (4.67)

The usual approach in solving equations such as these is to separate out the
dependence on E and B, which we can do here by taking the curl of Equations
(4.65) and (4.66), and substltutmg for V x E and V x B. The result is two
independent wave equations for the fields:

= pe E  4mp 83 N
—-V°E + 2 2 T2 Bt =0, (4.68)
and 9B
52 He _Amp o _
VB+02 e o VxJ=0. (4.69)

Continuing with our assumption of harmonic fields and currents, we write

E = E, exp(—iwt), (4.70)
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B = B, exp(—iwt) , (4.71)
J =J, exp(—iwt), (4.72)
for which the field wave equations simplify to
- 14
[v2 +k2(w)] E, =" "k( )\/_ " (4.73)
and 4
V2 + ¥(w)] B, = ’”‘ VxJ., (4.74)
where
k(w) = "(“’)“’ , (4.75)

and the so-called index of refraction is
n(w) = e . (4.76)
Now we make the basic assumption—a generalized Ohm’s law if you will—that
J,=TE,, (4.77)

where I is an arbitrary (complex) parameter, which is often also a function of
w. This eliminates J,, from the equations, which now reduce to

i k(w)n(w) r
€

v2 + k() + ] E, =0, (4.78)

and
(4.79)

V2 + kK (w) + ztﬂ k(w):(w)l"] B, =0.

The last step follows from using Faraday’s law to eliminate V x E,, once we

substitute for J, in Equation (4.74) using Ohm’s law. Evidently, the fields

propagate through this medium with a wave vector of magnitude k', where
idrk(w)n(w)l

k" (w) = k¥ (w) + = - (4.80)

since by analogy with the solution to Equations (1.84) and (1.87), we here infer
that

E. = Epexp{ik'(w) - x} = E¢ exp(ik; - x) exp(—k; - x) , (4.81)
and

B, = By exp{ik’(w) - x} = By exp(ik;. - x) exp(—k; - x) . (4.82)
1
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The subscripts r and i here have their obvious meaning, denoting the real
and imaginary parts of k', respectively. The corresponding complex index of
refraction 71 is defined to be

k' (w)]? _ tdmn(w)l
=i e

n

(4.83)

Let us now use what we have learned so far to see qualitatively how the behavior
of the fields depends on the characteristics of the medium. In our simple model
of the dielectric constant, we said that a typical charge’s position is given by
Equation (4.60). Thus, since v, = —iwx, and J, = Nev,, we infer from
(4.77) that within the framework of our schematic approach

—iNwe?
I'= . 4.84
(0o = —7) (484)

We see that when I' has a real part (it may or may not also have an imaginary
part), k' has both real (k.) and imaginary (k!) components and therefore ac-
cording to Equations (4.81) and (4.82), k. represents a propagation of the field
whereas k; accounts for its attenuation with distance. Media with this prop-
erty are conductors, and we shall discuss them further below. However, when
T is purely imaginary, k' is real, and these media therefore have a real index
of refraction. The fields propagate through these so-called dielectrics without
any attenuation.

Example 4.2. 1t is very instructive to consider special situations, such
as the one in which wg = 0 and v = 0. The first condition suggests immediately
that the charges are not bound, and this type of matter is often referred to as

a plasma. Looking at Equation (4.80) with the known form of ", we therefore
learn that in this case

9 D) ""12)
where \
_ 4mwNe

is known as the plasma frequency. A plasma distinctively dichotomizes the in-
coming waves according to whether or not their frequency exceeds wp,. The
wavenumber k' is real for high-frequency fields, which therefore propagate
through the medium, but is imaginary when w < w,. The low-frequency waves
are therefore damped within the plasma. But what does this mean, given that
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we explicitly chose to put v = 0, which presumably implies that there is no
dissipation? Clearly, the energy is taken out of the fields as they penetrate into
the plasma, but instead of being dissipated as heat, the energy is apparently
transformed into bulk oscillations of the gas. Although we cannot describe this
process in detail here, our intuition tells us that when w is very high, there is
insufficient time for the gas to adjust to the field and to thereby permit the
excitation of the oscillations. Lower frequency waves, on the other hand, con-
tinuously “pump” these modes, which therefore grow in energy and eventually
attenuate the field.

Example 4.3. Suppose that the charges are unbound (i.e., wo = 0) but
~v # 0. Then,
iwNe?
r= - , 4.87

Me(w? + twy) (4.87)
which according to our discussion above tells us that we are dealing with a
conductor. Experimentally, it is found for these materials that v ~ 107 s~1,
and so for waves with w < v (i.e., for electromagnetic waves longward of the
optical/UV portion of the spectrum), I' & Ne? /m.7 and its real component is
much larger in magnitude than that of its imaginary piece. We note that in
this situation, I' is then normally called the conductivity o:

Ne?

e

J,=0E, =

E, . (4.88)

In terms of o,

: (4.89)

K2 [wn(w)] 2 + idrn?(w)wo
- 2
c c2e

and when the second term is dominant (which is true for all wavelengths down

to the infrared range),
drn?(wwo 1414
k' ~ \/ cz(e Jwo _ 5 (4.90)
where for obvious reasons,
€
¢y / Y- (4.91)

is known as the skin depth of the medium. Its importance is underscored
by the application of this result to Equations (4.81) and (4.82), which show
that the attenuation factor is here ~ exp(—x/d) so that the waves drop to
1/e of their external value within a depth 4 of the surface. Apparently, when
an electromagnetic field is incident on a conductor, most of its effect and the

current it induces are confined to a thin skin near the conductor’s surface.

)
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4.5 WAVE GUIDES

So far in this chapter we have looked at the general properties of electromagnetic
waves implied by Maxwell’s equations, and we have investigated how these
waves behave at a simple boundary where both reflection and refraction may
occur, and we have studied the effects of the medium on the propagation of the
fields. Before moving on to explore the properties of these waves as they become
detached from their sources and turn into true radiation fields, we will complete
this overview by considering the complementary situation in which the medium
is a vacuum, but is, however, enclosed by a well-defined boundary such that the
surface conditions explicitly determine the allowed field structure in this space.
This situation is not unlike that of the long and thorough investigation we
carried out in § 2.1, except that now the fields are time dependent and so they
represent a transfer of energy and influence within the enclosed region—the
wave guide.

Again, we consider sourceless fields because the medium is a vacuum. We shall
see later on that a very useful boundary condition is provided when the enclo-
sure is a perfect conductor. Thus, we are led once again to consider harmonic
fields, which in this type of situation can greatly simplify the equations and lead
to familiar forms with well-studied solutions. Assuming that the fields look like
those specified in Equations (4.70) and (4.71), the sourceless Maxwell’s equa-
tions within a nondissipative medium (characterized by a constant dielectric
and permeability) are simply

V-E, =0, (4.92)
V xE, = % B, , (4.93)
V-B,=0, (4.94)
and .
VxB,=-*“E, . (4.95)

As we have seen before, these expressions reduce to the wave equation for both
E, and B,:

2
(v2 + & > E, =0, (4.96)

2
(v2 + ”6—‘") B, =0. (4.97)
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For siniplicity, we will assume that the medium is symmetric in the z-direction
and define axes accordingly (Figure 4.4). We assume that the spatial depen-
dence of the fields along this axis can be separated out from the transverse, so

that
E, (x) = Ey(z,y) exp(iky2) , (4.98)

B, (x) = Bu¢(z,y) exp(ikg2) . (4.99)

The Maxwell equations then turn into equations just for the transverse fields
E.t(z,y) and B(z,y):

32 62 w2
(awz + ay2 + /J,i2 - k:) Ewt(it,y) =0 ) (4100)

2 2 2
( 0 9 + L kg) B.:(z,y) =0. (4.101)

O0x? + Oy? c?

Figure 4.4 Segment of a wave guide whose symmetry axis is aligned with 2.

We will return to these in a moment. Now let’s see what Maxwell’s equations
say about the relationships between the individual field components. The vector
equation V x E, = iwB, /c yields three separate algebraic constraints, one for
each of the three independent coordinate directions:

OF ) w
a‘;"" — ik Euty = — Btz , (4.102)
OE,:, . iw

- azt + zkngtz = ? wty » (4103)

OE, OF, w
axty - a;ta: = —c— wtz - (4104)
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In similar fashion, the other curl equation V x B, = —iwueE, /c gives three
more relationships:

0B ) TWUE .
S — ikgBuy = — E Bote (4.105)
Y
0B, . twuE .
- o e + zkngtz = — - Ewty , (4.106)
_ _ . 4.107

The equations available at our disposal for solving this coupled system suggest
that we determine the  and y components of E and B in terms of E_;, and B,
and then use Equations (4.96) and (4.97) to obtain the latter. For example,
eliminating E,, from (4.102) and (4.106) gives

_ i wOFE, ¢, 0Bt
Bux =~ ror =T |5 on oo (4.108)
Similarly, . o OE OB 1
— ? 2 wtz _itﬁ
Bow = (w/c)? — k2 |c Oz + kg gy |’ (4.109)
1 (W antz aE'wtz ]
Eoiz = - +kg————| , 4.110
Wiz T (Ww/e)? — k2 [c 8y 9 0z | ( )
_ i w OByt OFE 4,
B = (w/e)? — k2 [c Oz kg Ay (4.111)

In general, the solution will be a superposition of two configurations:

transverse electric (TE) mode: E,.,=0
transverse magnetic (TM) mode: B, =0 .

The motivation for this becomes clear in the case where the boundary of the
medium is a conductor. Faraday’s law (4.93) applied to the rectangular loop
shown in Figure 4.5 gives

/V?wa-ﬁdaszw.dl:’ﬂ/B-ﬁda, (4.112)
S ¢ Js

which leads to ) w
k- (Ewt,l - Ewt,g) Al =~ IBth Al Ah Z . (4113)
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We have assumed here that the contribution to the loop integral on the left-
hand side from the Ah elements is negligible as Ah — 0. Thus, if B, is not
singular, we get the straightforward boundary condition

k-Eu1=k -Euz, (4.114)

as Ah — 0. In particular, if side 1 is a conductor, then the fact that E,;; =0
forces the condition & - E,t2 = 0 on the boundary. One possible solution there-
fore has E,;, = 0 everywhere inside the medium, and this would correspond
to a TE mode. A similar derivation using the other curl equation gives us the

condition R A
k . Bwt,l - k . Bwt,2 ) (4115)

and so if the currents are zero, a complementary situation to the one we have
just described is that in which B, is instead zero. This solution is the TM
mode. The specification of the fields is completed when E,;, and B,:. are
determined from the vacuum equations

02 8 W
( e kg) Eote =0, (4.116)

0? 92 Ww?
( St aat G- kg) By =0. (4.117)

=>

medium 2 E

1
conductor

Figure 4.5 Evaluation of the boundary conditions at the interface between
the internal wave guide medium and the conducting surface. The unit normal
is 7, whereas the unit vector parallel to the surface is 2.

Below, we shall solve a straightforward, though very informative, Wave guide
problem that demonstrates all the techniques we have outlined above.l*

14This subject has quite an extensive literature, especially in engineering physics. Three
of the worthwhile references are Panofsky and Phillips (1962), Ramo, Whinnery, and Van
Duzer (1965), and Borgnis and Papas (1968).
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Example 4.4. Let us consider a conducting rectangular wave guide
with side lengths a and b, enclosing a vacuum carrying an electromagnetic
wave (Figure 4.6). For specificity, assume that the wave is composed solely of
TM modes, for which B,;, = 0. The solution to (4.116) contains terms like
sin(kz ), cos(k;z), sin(kyy), and cos(k,y). However, since E,;, must be zero
at the (conducting) boundaries, the only viable functional form is

Eut: = Egsin(kzx) sin(kyy) , (4.118)
where

ky = ﬁa’l m=1,2, ..., (4.119)
and

@:"T” n=12,.... (4.120)

Figure 4.6 Rectangular wave guide with dimensions ¢ and b pointing in the
% direction. It is assumed for simplicity that the surface is a conductor and
that the interior is a vacuum.

dubstituting the Ansatz for E,., into Equation (4.116) then shows that the
wavenumber components must satisfy the constraint

k2 = (%)2 K-k = (%)2 — 72 (%;- + %2) . (4.121)

Thus, with B, = 0 for all z and y, the components of the fields defined in
Equations (4.98) and (4.99) are easily seen to be

Ewa: k2 _ kg

cos(kzx) sin(kyy) exp(ik,yz) , (4.122)
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i Eokyk
E,y = ”c_z‘l;_!'k;i sin(k;z) cos(k,y) exp(ikgz) , (4.123)
9
E,. = Eysin(k,z) sin(kyy) exp(ikyz) , (4.124)
w
sz = —% Ewy y (4125)
w
By = T Eye, (4.126)
and
B,,=0 (4.127)

(since this is a TM mode).

Why is this interesting? Let’s look again at Equation (4.121). According to
this expression for kg, the (TM)m, mode propagates down the guide or is
attenuated, according to whether or not k: is greater than zero. That is, the
exclusionary condition is whether or not the wave frequency w exceeds the mode
frequency wymn, where

2 2
W2 = c*n? (% + %2-) . (4.128)

This is also known as the cut-off frequency for the given mode. Thus, for a
given frequency w, the dimensions a and b of the guide can be chosen such that
certain modes are excluded. For example, the (TM);; mode will be the only
permitted one when (a=2 + b72) & (w/cm)?.

4.6 RADIATION

Thus far in this chapter, we have concentrated on the physics of wave propa-
gation in both bounded (wave guides) and unbounded media. It is now time
for us to redirect our attention to the topic of how these electromagnetic waves
are generated.

4.6.1 Point Currents and Liénard-Wiechert
Potentials

‘We begin by looking at the potentials and fields produced by point charges,
since for them it is possible, at least initially, to define a trajectory ro(t') a
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priori. It must be obvious, however, that when a charge ¢ is radiating, it
is giving away momentum and energy, and possibly angular momentum, and
that its path cannot therefore be predetermined in the simple fashion we assume
here. To adequately address this shortcoming, we must reconsider the physics of
radiating systems in Chapter 7, after we have introduced the necessary special
relativistic corrections. But for now, we shall proceed with the assumption
that when the particle is moving with a velocity much smaller than ¢, the
modifications to its motion resulting from the process of field emission remain
inconsequential to the overall behavior of the particle-field system. We shall
test the validity of this approach in Chapter 7.

The density of the moving charge is given by

p(r',t') = q83(x' —ro[t']) . (4.129)
Since in general the current density J is pv, we also have
J(r',t') = qvé3(x' — ro[t']) , (4.130)
e v(t') = dro (4.131)
i 1

We recall that in the Lorenz gauge (which is defined by the condition V-A+
[1/c][0®/8t] = 0) the potentials satisfy the wave equations (3.13) and (3.14),
whose solution is the retarded functions

/ — I
®(r,t) = / ”(‘"tlr '_rr,l”/ ) @ | (4.132)

and

Alr,t) = = / I’ trlrr—lr’l/ ) g3 (4.133)

(see Equations [3.24] and [3.25] with [3.23]). It is not difficult to see that
these retarded potentials take into account the finite propagation speed of the

electromagnetic disturbance since an effect measured at r and ¢ was produced
at the position of the source at time

v —ro (D)
— .

(Quantities labeled with a tilde denote the retarded values.) Thus, using our
expressions for p and J (Equations [4.129] and [4.130]) and putting § = v/e,

®(r,t) = q / (e ‘r"’rt_"r‘fi —l/eD gy (4.135)

t=t- (4.134)
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and

At =a et 10 ot S 1) NN

e —r'|

Note that for a given spacetime field point (r,t), there exists only one point
on the whole particle trajectory (Figure 4.7), the retarded coordinate ¥ cor-
responding to the retarded time { defined in Equation (4.134) above, which
produces a contribution:

c

f=ro (t - li“—r') . (4.137)

In principle, this equation determines ¥, though in practice it is quite in-
tractable.

Figure 4.7 The assumed particle trajectory ro(f) for the charge g, where &
is the so-called retarded time, which differs from the observation time ¢ due
to the finite light travel time from the emission to the detection points. The
observation point is P at r.

To begin evaluating the integrals in Equations (4.135) and (4.136), let us now

define the vector
R(t') =r —ro(t') (4.138)

in the direction 7 = R/R. Then,

— 8 (' —rolt — RGN /) 5 ,
®(r,t) = qf R(t) az' (4.139)
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and

_ " 3(p! — palt — .
AED) — g /ﬂ(t R(t)/c)3 g(t’) lt =B/ 410

Because the integration variable x' appears in R(t'), we need to transform it,
and we do this by introducing the new parameter r*, where

. [t _ @] , (4.141)

The volume elements d3z* and d3z' are related by the Jacobian transformation
dz* = Jd32' (4.142)

where .
=[1-a@)-B({)] (4.143)

is the Jacobian. Heuristically, one can see how the right-hand side of this
deﬁmtlon results from “differentiating” r* in (4.141) with respect to r’, since the

r’ term then — 1 whereas by the chain rule of differentiation, the ro [t — R(t')/c]
term — —A(t') - B(t'). With the new integration variable, the integrals for the
potential therefore transform to

~ 5 (r*) dz*
SURL e ey 3 D

and o

B()° (r*) d’*
r—r* —ro@®)|(1~7-5)
which can be evaluated trivially, since the argument of the delta function re-
stricts r* to a single value:

A(r,t)=¢q

(4.145)

i T .

B(r,t) = 4 | =|—L |, (4.146)
A-7-B)r—7||; |QA-7% B)R];

A(r,t) = a8 _|— | (4.147)

|(1-n-B)r-F]; [A-a-HR];

These are known as the Liénard-Wiechert potentials. Before we go on and use
these expressions to evaluate E and B, let us take a moment to think about
the physical meaning of the term (1 — 7 - ,5), which clearly arises from the fact
that the velocity of electromagnetic waves is finite, so that retardation effects
must be taken into account in determining the fields.
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Special INote. We can understand the meaning of the “shrinkage” factor
(1—#-B) by considering a thin cylinder of charge moving along the z-axis with
velocity v (Figure 4.8). To calculate the field at  when the ends of the cylinder
are at (z1,x2), we need to know the location of the retarded points #; and Z»:

v

Ty — 5:1 = z(.’l,' - .’i‘l) y (4148)
o v o
Ty — T2 = Z(:L‘ - .’172) . (4.149)
Thus, with L = & — #,, we can subtract Equation (4.149) from (4.148) to get
E—-L:%E, (4.150)
or L
L= Ty (4.151)
-g—L
N N P
NN
X X X X X
1 2 1 2

Figure 4.8 A one-dimensional (heuristic) problem to demonstrate the role
of the “shrinkage” factor when the emitter is traveling relative to the observer.

That is, the effective length L differs by the factor (1 —&-8)~1 = (1 —v/c)™!
compared to the natural length L because the source is moving relative to
the observer and its velocity must be taken into account when calculating the
retardation effects.

4.6.2 The Radiation Fields

Now that we have the potentials (Equations [4.146] and [4.147]), calculating the
fields should be straightforward with the use of the defining Equations (1.35)
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and (1.37). In fact, however, it turns out to be easier to first take a step back
and instead write the Liénard-Wiechert potentials in the equivalent form

o' —t+ R(t") /] ,,
®(r,t) / R dt', (4.152)
and .
_ [ B&)[' —t+ R(t)/c] .., -
A(r,t) =g / o dt' (4.153)
where R(t') = |r — ro(t')]. This can be verified easily using the following
property of the Dirac delta function (e.g., Davydov 1976):
9(z)
g(x)é[f(x)] dx = [————-] , 4.154
[s@rene=5F00 (4154)

which holds for regular functions g(z) and f(z) of the integration variable z,
where z; are the zeros of f(z). The advantage in pursuing this path is that
the derivatives in Equations (1.35) and (1.37) can be carried out before the
integration over the delta function, which simplifies the evaluation of the fields
considerably since, for one thing, we do not need to keep track of the retarded
time until the last step. We get for the electric field

E(r,t) = _q/ﬁ[é(t'—tRJEt,I;?(t')/C)] Q'

g8 [B(t)(t' —t+ R(t)/c)
c Ot R(t')

Thus, differentiating the integrand in the first term, we get

B = of [ o(r-0rBO) - By (v s BO)]

g0 [t —t+R(t)/c)

dt' . (4.155)

! =
=5t R dt' . (4.156)
But R(t') 9 R(t')
! ! _ ___’__ _ / _ t,
) (t t+ : )-— 6t6(t t+ : ) , (4.157)
and so
R(t')
E(r,t) = o2 6( : ) dt’'

+q 55 ("R(t,ﬁ;) 5(t'—t+ E%Q) dt' . (4.158)
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It’s clear that the next step is to evaluate the integrals using the property of
the Dirac delta function expressed in Equation (4.154), but to do that, we need
to know the derivative of the delta function’s argument with respect to ¢'. By
the chain rule of differentiation,

d ! R(tl) — A N\
%(t—t+—?—)—(l—n°ﬂ)t, (4.159)

with which we then easily get the result

_ A ¢ [ _n-B
E(r, t) _q{(l_ﬁ.ﬁ)m}; ! {(1-&-5)3}5 . (4.160)

In the last step of this rather long derivation, we evaluate the derivative on
the right-hand side of this expression using the known relationship between ¢
and ¢ (Equation [4.134]). Since R/0t = (OR/0t')(0t' /Ot) = —n - v(Ot' [Ot) =
c(1 — dt' /0t), it is not difficult to see that

ot 1
ot (1-n-B) ( )
Thus,
9 _ﬁi 1 _a_~ ﬂ_ (4.162)
ot |1-n-BRJ;, (1-4-f 0 |1-4-HRJ;’
and using the additional pieces
Rl;=—c(®- B);, (4.163)
2 Cr./n 2 o
nl; = B [a(7 - B) — Bz, (4.164)
and p .
=1 -a-Blg=-A-F+8-n), (4.165)

we get finally,

(n—B)(1 -5 RS (e B x 4] } (4.166)

E(l‘,t)=Q{ (1—1‘1-5)3R2 c(l-—ﬁ-ﬁ)3R

t
A similar procedure for B shows that

B(r,t)=V xA =) xE. (4.167)
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In analyzing this elegant equation, we immediately gain several physical in-
sights. First, we confirm that when the particle is at rest and unaccelerated
with respect to us, the field reduces simply to the Coulomb’s law ¢gii/R2? that
we have come to expect. Whatever corrections are introduced to the field from
the motion and/or acceleration of the source, they do not alter the limiting
empirical law that we know is correct. As § — 1 with 8 = 0, however, the field
displays a “bunching” effect, not unlike what happens to sound waves when
the flow velocity in a gas approaches the sonic value and creates a shock front.
Looking at the first term in Equation (4.166), it is clear that in this case E — 0
for all directions except 7 = B In this limit, of course, the source is moving
with a velocity approaching that of the field it is producing, and it should not
surprise us that the field lines at the observation point should then have a
higher density than is the case for a static radial field. It is important to em-
phasize that in deriving this expression for E, we did not have any knowledge of
special relativity (which is discussed in the next chapter). Yet, as we shall see
in Chapter 7, Equation (4.166) turns out to be correct even for 3 — 1, but we
will then better understand why 3 cannot exceed 1. As such, this “bunching”
is understood as being a retardation effect, resulting from the finite velocity of
electromagnetic waves. For now, we will work under the premise that Equation
(4.166) is valid at least when 3 < 1 (i.e., the low velocity limit).

We also see a clean separation into the near field (which falls off as R=2) and the
far or radiation field (which falls off as R=!). Unless the particle is accelerated,
so that 3 # 0, the field falls off rapidly at large distances. But when a radiation
field is present, it dominates over the near field far from the source. We shall
quantify these concepts of relative distance and the character of the field in
the next subsection, and we shall return to this topic in Chapter 7 where we
demonstrate that only the radiation field carries energy and momentum away
from the charge, constituting a dynamical transport that points to a separation
of the field from its source.

Example 4.5. When the motion of the source is uniform, so that ﬁ =0,
the electric field contains only the near field term:

(7 = B)(1 - )
(1-n-BR? [,

Enear(r, t) =4q { (4.168)

Let this motion be along the z-axis. We wish to calculate the field at P (in
Figure 4.9) when the charge is at Q. In this geometry,
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.~ =_R(@E-BR(E) _R()
"O-P=""mn  “ RO

(4.169)

BR(T) Q

Figure 4.9 The geometry of uniform particle motion with velocity v = Bc in
the direction £, relative to an observer at P. The y-axis points straight up and
it is to be noted that § measures the angle of R(t) relative to & at the time the
measurement is made, not the time (= t) when the particle produced the field.

In addition,

(1-7-B);=(1-PBcosa), (4.170)
and since SP = R(f)(1 — Bcosa), we see that
R()(1 - Beosa) = {R2(t) — B2R(¢t) sin? 0}'/* . (4.171)
Thus, all told,
R(t)(1 - 8% }
Epear(r,t) = . 4.172
neac(r, 1) = ¢ { R3(t)(1 — B2 sin? 0)?/2 (4.172)
We confirm again that when 3 = 0 we recover Coulomb’s law, since
_ qR(?)
Enea.r(r, t) — EC(I‘, t) = -Rs—(t-)- . (4173)

But notice that |Epear| < |Ec| below some critical angle ¢ depending on the
value of 8. For example, ¢ ~ 65° when 3 = 0.9. The reason for this is that the
particle was actually further than it appears to be from a Galilean perspective
when it produced the field observed at the current time. On the other hand,
|Enear| > |Ec| for 8 > 8¢ due to the “bunching” of field lines discussed above.
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Example 4.6. Since the velocity term drops off with distance as R~2,
whereas the radiation term goes as R, the former is of little practical interest
far from the source, i.e., in the “radiation zone.” It is common, therefore, to
talk of a radiation field, which is simply the second term in Equation (4.166):

Erad(ra t) = % {ﬂ 2 [(ﬁ — E) : Ig] } ’ (4174)

(1-7-B)3R

t

Let us now see what happens when the acceleration of the charge is linear, in

which case x 8 = 0, and let us assume for simplicity that 3 is constant (= a /c)
during a small segment of the particle’s motion, and zero otherwise. During
this segment, lasting a time At, the particle emits a pulse of radiation that will
be felt at some distant point over a corresponding, limited time interval.

We have stressed that our derivation of Equation (4.166) assumes nonrelativis-
tic motion, and so (4.174) is valid only in the low velocity limit. If in fact
B < 1, then (1 —7-B) — 1, and letting 0 be the angle between A and 3, we
easily reduce (4.174) to the simpler form

gasin@
c2r

Eraq(r, t) = 9. (4.175)

The Poynting vector (Equation [3.44]) for this field has a magnitude

q?a?sin® 9

c
=—|Boyl2=2="""
471'| rad| 4rc3r?

(4.176)
which therefore represents the characteristic radiation pattern (oc sin® 9) in the
dipole approximation (Figure 4.10).

4.6.3 Simple Radiating Systems

When we move away from individual radiating charges, which have so far com-
manded our attention for most of this chapter, calculating the field structure
can become a challenging task, particularly for complicated density (p) and
current (J) distributions. In cases such as this, it is essential that we intro-
duce a simplifying procedure, the most common of which is the expansion of
the relevant quantities as Fourier series. That is, for a given scalar or vector
component function X (x,t), we write

X(x,t) = Y Xu(x) exp(—iwt) . (4.177)
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Figure 4.10 The characteristic radiation pattern in the dipole approxima-
tion. The lobes indicate the loci of the tips of the vector S as a function of
angle 6 relative to the particle’s direction of motion. This is a cross-sectional
cut, so the complete surface is toroidal around v.

The hope is that one can then solve for each of the frequency components
separately; indeed, the solution may be dominated by only a handful of these
terms. Let us begin with the retarded potential solutions in the Lorenz gauge
(Equations [4.132] and [4.133]), which are conveniently written in terms of
general p and J profiles. The Lorenz gauge forces the scalar potential to satisfy
the condition

-

V.A, —ik®, =0, (4.178)
where k = w/c, and

exp(ik|x — x'|)
|x — x|

A, = % / Jo(x") diz', (4.179)
and so both the electric and magnetic fields are derivable from the vector field
alone (see Equations [1.35] and [1.37]):

E, = -V(V-Ay,) +ikA, , (4.180)

B =i

w=VxA,. (4.181)

Look carefully at Equation (4.179), because this is the key to the whole solution.
There are evidently three length scales involved here: (i) the wavelength A =
2m/k, (ii) the distance r = |x| to the field point, and (iii) the size (let’s call it
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D) of the source. In principle, this suggests that the nature of the solution can
be characterized in at least three different regimes. Here we consider the two
most interesting and relevant ones, which we shall call the “near” and “far”
zones, to be quantified below. The solution separates cleanly into the different
limiting forms because of the expandability of the term

exp(tk|x — x'|)

4.182
For r > r', with v the angle between x and x’, we have
7"2 rl
klx —x'| = kry/1+ — — 2—cosv, (4.183)
T T
so that
1(r2 2 1(r? 2 2
-X'| ~ | = - — — == -
klx — x| kr{1+2<r2 - cos'y) 8( ” cos'y) ,
(4.184)
and therefore
exp(ik|x — x'|) = exp{ikr + (ikr'/2)(r' /r) — ikr' cos v} . (4.185)

In the near (or quasi-stationary) zone, defined by the condition kr < 1, the
answer is quite straightforward since

exp(iklx —x'|) ~ 1, (4.186)
and in this case 5 ( ) doe!
wlX ,
A, ~ / T (4.187)

Formally, this looks just like the expression for A in magnetostatics, where the
current is stationary. Here, however, J is introduced as a time-dependent vari-
able, though we consider the (near) regime where time retardation is negligible.
In this zone, A = 2w /k is much larger than r, which means that E and B are
calculable as in the static case because B varies with the same phase as the
currents and E with the same phase as the charge—all typical radiation effects
are absent because the fields have not yet decoupled from the sources.

In the far (or radiation) zone, defined by » > D and r > A, we have

exp(ik|x — x'|) _ exp(ikr)
T

— y ,
X — %] exp(—ikr' cosv) , (4.188)
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and so "
A, =~ %——Q /Jw exp(—ikr' cosvy) d3z' . (4.189)

Now, in solving for the fields, we will need

A, = [_Eexp(ikr) + ik exp(ikr) r
roor T r
x-i— / J, exp(—ikr' cosvy) d*z' . (4.190)
But since kr > 1, we obviously have
V-A, =ik(f Ay), (4.191)
and making the same approximation with ‘7(6 -A,), we find that
V(V - Ay) = iki(V - Ay) = (ik)* (7 - A) . (4.192)
Thus,
E, = —ik[f(7 - Ay) — Ay] - (4.193)

This expression for the electric field is rather intriguing, since it suggests that
we should subtract from A, its projection along the line of sight. To pursue

this further, let’s write
A,=A}+Al (4.194)

for the components of A, perpendicular to and parallel to the direction of
observation 7. Here,

Al =#(7-A,), (4.195)
so that
Al = —{f(7 - A,) — Au}. (4.196)
As such,
E, = ikA} (4.197)
whence "
E, = ike—x-%—i)- /Jj(x’)exp(—z’kr’ cosvy) d3z' . (4.198)

We conclude that the electric field is generated from the perpendicular com-
ponent of the current density only, a result that will prove to be quite useful
in practice when this equation is solved for the field in real situations. Finally,
since 7 x 7 =0,

B,=VxA,= z’k; x Ay, = (7 x E,) . (4.199)
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The Poynting vector is here calculated from

S = 8% Re{E, x B} , (4.200)

which in the end reduces conveniently to a function of the current density only:
k? Ly 2 3.1 ?

= Zrer? {/Jw (x') exp(—ikr' cosy) d°z } 7. (4.201)

Its use is primarily to convey the angular distribution of the radiation pattern
when the source J is given.

Example 4.7. One of the simplest applications of the equations we have
just derived is the calculation of the radiation produced by a current-carrying
thin conductor aligned with, say, the z-axis (Figure 4.11).

Figure 4.11 Linear antenna, i.e., a thin conductor carrying a current I in
the Z direction.

The electric field produced by this linear antenna is given by Equation (4.198)
with

It =77 I+ T, (4.202)
and .
r-r
cosy = ——-. (4.203)
In this example,
Bz’ IL(x') =1 (x') d2', (4.204)

where I, is the vector current running along the conductor. That is,

d3z' I (x') = [-Fcosf I, (x') + 2I,(x")]dz' = —01, sinfdz' .  (4.205)
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Also, cos~y = cosf, and therefore

E, = - ik exp(tkr)
cr

sin 6 / I,(2") exp(—ikz' cos8) dz' 6 . (4.206)

In addition, since B, = 7 x E,, it is clear that
B, = [Eu|¢. (4.207)

For simplicity, let us suppose that I,(z') = Iy for —L < z' < L, and zero
otherwise. Then,

_ ik exp(ikr)
cr

E, =

sin 6 I ( ) sin(kL cos®) , (4.208)

kcos@

and from Equation (4.201),

2 4sin®(kL cos®) I? tan?@ sin?(kL cosf)
— in2 9 12 - 20
ISl = grez S0l oy = 2mer? - (4.209)
Thus, if L = mA,
2 10029 gin?
S| = I§ tan? @ sin®(27wm cos9) , (4.210)

2mwer?
and the radiation patterns in Figure 4.12 show the strong dependence on m.

(2L =2)) (2L =4))

Figure 4.12 Radiation patterns for different modes m from a linear antenna
of size L = mJ), where ) is the wavelength of the radiation.
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Example 4.8. An interesting problem is the radiation from an electric
dipole, which in the simplest manifestation is simply two opposite charges ¢
and —q separated by a distance [, generating a dipole moment defined to be

p=ql. (4.211)

When the charge configuration is instead p(x), we have

p= /x’ p(x') &3z’ . (4.212)

Suppose we look at the long wavelength limit, where A > D (the source size),
so that kv’ <« 1. Then

A, ~ e_xg_(c:_.{c_r_) / 3, dc' . (4.213)
But
/Jw dz' = —/x’(ﬁ' -J,) &z’ (4.214)
after integrating by parts, and so
/Jw d3z’ = —iw/x’p(x’) diz' (4.215)
because from the continuity of charge equation
V-J+—67-0, (4.216)
which gives .
V- -J=iwp. (4.217)
Thus,
A~ —ex—p(:k—") ikp . (4.218)

The radiation field for A > D is thus expected to be

E, = ~ikfi(F Au) ~ Aol = REEED gy gl (a219)

which shows the typical behavior of a radiation field oscillating as exp(ikr) and

falling off with distance as r—!.
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A NEED FOR THE SPECIAL
THEORY OF RELATIVITY

5.1 BASIC PRINCIPLES AND
TRANSFORMATIONS

In spite of its many strengths, the theory of electrodynamics that we have been
developing thus far does not satisfy the principles of Galilean relativity. There
are several fundamental reasons why this is unacceptable, not the least of which
is its apparent inconsistency with the rest of classical mechanics.

A Galilean transformation connects two frames of reference moving relative to
each other with a constant velocity v, (Figure 5.1). The coordinates and time
in these two frames are related by

x' =x—vot (5.1)

and
t'=t. (5.2)

As is well known, all the physical laws of classical mechanics are invariant under
such Galilean transformations. For example, Newton’s second law of motion in
the moving frame is

F(x')

il
3
P

I
3
®

F(x), (5.3)
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where m and a are the particle’s mass and acceleration, respectively, showing
explicitly that its mathematical form in terms of the relevant physical param-
eters is preserved, regardless of which (unaccelerated) reference frame is being
considered.

Figure 5.1 Two Cartesian coordinate frames moving relative to each other
with a constant velocity vo. By convention, the unprimed system is taken
to be fixed to the laboratory. In this figure, the three-dimensional space is
represented by the horizontal axis, whereas time is measured along the vertical
axis.

It is essential that electrodynamics also be structured with physical laws that
are invariant under transformations between reference frames moving with a
constant velocity relative to each other. This need was first brought into sharp
focus by the results of the Michelson-Morley experiment (Michelson and Morley
1887), which showed that the velocity of light is the same, within 5 km/sec, for
light traveling along the direction of the earth’s orbital motion and transverse
to it, even though the earth has a velocity of about 30 km/sec relative to the
sun, and about 200 km/s relative to the center of our galaxy. The accuracy of
this result has more recently been improved to about 1 km/s by Jaseva, Javan,
Murray, and Townes (1964). In its present form, our theory of electrodynamics
predicts that the speed of light in vacuum is a universal constant, c, but if
this is true in one coordinate system (x,t) then it is not true in the “moving”
coordinate system (x’,t') defined by the Galilean transformation (Equations
[5.1] and [5.2]). Either the theory is wrong—which is unlikely given that the
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four principal equations are merely statements of experimental fact—or the
Galilean relativity principle is incomplete.

The fact that our current theory of electrodynamics is not invariant was already
evident in our discussion of Faraday’s law through its application to a moving
loop C (Figure 5.2):

Figure 5.2 The application of Faraday’s law to a loop C moving with con-
stant velocity vo through a background magnetic field B.

In the loop’s comoving frame, we have

1d®
E'.dl = -=—-E2
_7{0 d c dt

1 dB’
RS A T

1 0B
= —z S—a—t—'-.da’ (54)

where ®'5 is the magnetic flux threading the loop, and S is the area bounded

by C. (Note that d/dt' = 8/8t' + v -V' = 8/t here, since v = 0 in this
frame.) But in the laboratory frame, Faraday’s law becomes

1 OB -
fCE~dl-—2y{S(—a-£-+vo-VB).da, (5.5)

V X (B XVo)+ Ve (V-B)—B(V-vo)+ (B-V)v,
V x (B x v,) . (5.6)

where now

(vo-V)B

I



118 CHAPTER 5

That is,
f (E-—lvoxB)-dlz-l —6—13~da. (5.7
C c C Js ot
Thus, there is a net change in the form of the electric field E, that depends
on the relative velocity v,, due to the transformation from one frame to the
other. This physical law—one of the cornerstones of electrodynamics—is not
invariant under a Galilean transformation! We are forced to concede the fact
that if both classical mechanics and electrodynamics are to be invariant under
transformations between inertial frames of reference, either the Galilean rela-
tivity theory must be modified, or we need an alternative understanding of how
these fields are to be transformed from one frame to the next. As we shall see,
the experimental evidence favors the former, and classical mechanics must itself
be modified so that it is no longer Galilean invariant, while electrodynamics
remains unchanged in so far as the equations in any one frame are concerned.
But our concept of what the electromagnetic field is must be reshaped in order
to cast the equations in such a way that both theories are then invariant under
the transformations of the new (i.e., special) relativity.

The two postulates upon which we must base the new framework are:

(1) Only relative motion is observable, and

(2) The velocity of light in vacuum is a constant, c, regardless of the source
and/or observer speed.!®

Because of postulate (2), it is clear that observers in different reference frames
will no longer agree on the space and time (spacetime) coordinates of an event.
For suppose a pulse of light is emitted at time ¢ = 0 when the point O is the
common origin of the two reference frames (Figure 5.3). The observer at O will
report that the pulse arrival time at A is

t=r/c, (5.8)
where
r=(z?+y*+22)Y2. (5.9)
The observer at O’, on the other hand, will report a corresponding time
t=1r"/c, (5.10)
where .
P = +y? 22 (5.11)

15For early critical reviews of the experimental basis for the second postulate, see Fox
(1965, 1967).
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Because the speed of light, ¢, is the same in both frames, and because the

two origins have separated during the propagation of the pulse, it is clear that
r#r andt#t.

Figure 5.3 The emission of a pulse of light at the origin of the coordinate
system as seen by two observers moving with a velocity v || Z relative to each
other.

To establish a connection between the two coordinate systems, it is often useful
to deal with the “spacetime interval”

(As)? = (cAt)? - |Ax|?, (5.12)

which is always zero along a light path. Thus, in the example we have just
described,

(As)2 = (ct)2 —=r2 =0=(ct')2 =12 = (As")?. (5.13)

Our problem is to find a transformation that preserves the invariance exhibited
in (5.13), a process that involves nothing more than guessing the correct relation
between the primed and unprimed coordinates. It is not difficult to show that
in order for the spacetime interval to be preserved, the coordinates in the two
frames must be related via the so-called Lorentz transformation, viz.,

!

= =z,

y' v,

2 = y(z-vt),
. vz
o= (-)

N = [1- (3’-)2]_1/2 . (5.14)

C
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Other transformations preserving the speed of light—for instance, a rigid rota-
tion—are available, and together these constitute the homogeneous Lorentz
group. However, only the relations in Equation (5.14) account for the transfor-
mation of the coordinates from one frame to another moving relative to it with a
constant, uniform velocity. As we should expect, the reciprocal transformation
is just

z',
=y,
z = v +vt),
!
t = n,(t’+”c—§), (5.15)

since the observer at O' attributes a velocity —v to the frame moving with O.

Suppose now we wanted to measure the distance between two simultaneous
events, as seen in each frame. Let Lo be a length measured in the frame
moving with respect to us. Then,

Lo=zy— 21 =7(22 — 21 —vta +vt1), (5.16)
or, since to = t; for simultaneous events,
Lo = ’)’L = ’)/(22 - 21) . (5.17)

Thus, the observer at O sees a contracted length Lo/~. At first sight, this result
seems to depend on which frame is which, contrary to the first postulate. But
in fact, we could have chosen to measure the length in the laboratory frame
and we could have then asked the observer at O’ to determine the distance in
the moving frame. In this case,

L' =7 [Lo - (t2 - t1) ’U] , (518)

where t, and t; are the different times that correspond to the one moment ¢’
at which the observer at O’ sees the end points z; and 25:

Fmo (1= VL) =y (1, — V22
=y (h-5) =7 (-3F) - (5.19)
Rearranging terms, we get
by—ty = 2=V Lov. (5.20)
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so that

2
L’ = ’YLO (l—g)

Lo
= —. 5.21
v (5.21)

Both observers come to the same conclusion!

A similar phenomenon occurs when events are measured at different times, but
in the same spatial location. Here, 2] = z5 = 2’ and At' = t;, —t]. The observer
at O, however, sees the events occurring at different values of z:

21 = y('+vt))
# z2=7("+vty). (5.22)
Thus,
2y — 24
At=ty—t, = 7[t’2—t'1+v 262 1]
At
R OCE
> At (5.23)

Evidently, an observer finds a dilatation of the time between two events taking
place at a fixed point in a moving frame, compared to the time interval reported
from the rest frame of that point.

Let us now broaden our exploration of the new framework, and consider ad-
ditional consequences of the Lorentz transformation. Although spatial and
time intervals need not be identical in frames moving relative to each other,
dimensionless quantities, such as the number of events, must be preserved.
(Remember, the physical laws must be invariant, so if a 7° decays into two
photons in one frame, it must also be seen to decay into two photons in every
other frame.) For example, the phase of a wave must be invariant:

N=wt—-k-x=uw't' -k’ -x', (5.24)

so that vz
J— g ! J— — -— ! J—
wt—kz=w (’yt 762) k' (yz—vvt), (5.25)
or

]
wt—kz:(w"y-i-'yk'v)t—(7%2+7k')z, (5.26)
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for a wave propagating in the 2-direction. Since this must be true for all values
of t and z, we conclude that

w=7v(W +k'v), (5.27)

and ,
k=1 (k' + ”c—‘;’-) . (5.28)

For light waves, the frequencies and wavenumbers are simply related as k = w/c
and k' = w'/c, so
w=yw' 1+08), (5.29)

or
w' =yw(l-p), (5.30)

where 3 = v/c. In general, the wavenumber k will not be directed along the
z-axis, and this relation, known as the Doppler shift formula,'® is then written
- |

W =yw(l-0cosh), (5.31)

where k - v = cos 8 |k| |v|.

A striking feature of equations (5.27) and (5.28) is that the quantities (w/c, k)
have the same (generalized) transformation properties as (ct,x). However, be-
fore we can proceed to investigate the deeper meaning of this similarity (see
§ 5.2 below), let us first consider another aspect of the basic Lorentz transfor-
mation and how it relates to the Galilean relativity we had been considering
earlier. Let us return for the moment to the two frames moving with O and
O’, and let us suppose that a particle’s motion is such that the observer at O
detects a displacement dx (z,y,z) during the time interval d¢. According to
the observer at O', the corresponding intervals are dx' (¢/,y’,2') and dt'. The
transformation properties we have been discussing suggest that

dx' dz
= - .32
dt'  y(dt-vdz/c?)’ (5:32)
dy’ dy |
dt'  ~y(dt—-vdz/c?)’ (5.33)
and dz  dz-vdt
z 2= (5.34)

dt  (dt—vdz/c)

16This expression predicts a transverse Doppler shift, which was verified by several early
experiments, including one using the Mdssbauer effect (Hay, Schiffer, Cranshaw, and Egelstaff
1960). '
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Expressed in terms of the velocities u = dx/dt = (u!,u?,43®) and u' = dx'/dt'
measured within the respective frames, these expressions reduce to the simpler

form )

n_ u
ut = A=)’ (5.35)
2
2 __ u
u” = A —vw/d)’ (5.36)
and 3
13 — u- —v
u A= vui/cd) " (5.37)
The reciprocal transformations are
. u'l
= y(14+vud/c?)’ (5.38)
9 _ u12
YT YT +vus/a) (5-39)
and 3
W= Y (5.40)

T T +ouB/d)

These relations, describing the relativistic addition of velocities, allow us to
make the following two remarks. First, we note that when v < ¢, ¥y = 1, and

u! = o,
w2 = u?,
v o= uP 4o, | (5.41)

which are just the results expected from Galilean relativity. Thus, the special
theory of relativity that we are now considering reduces to the nonrelativistic
limit when the velocity is small. Second, when the velocity is relativistic, i.e.,
v — ¢, these transformations retain the validity of our second postulate, for in
this limit, u? — (¢ +v)/(1 + v/c) = c. That is, all observers still measure the
same maximum velocity, c.
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5.2 MATHEMATICAL STRUCTURE OF
FOUR-DIMENSIONAL SPACETIME

The strikingly similar behavior of (w/c,k) and (ct,x) under a Lorentz trans-
formation is an inkling of a more elaborate substructure in special relativity.!”
The four-dimensional (4D) quantities

2 = (2,%) (k=0,1,2,3), (5.42)

and
k* = (k°,k) (0 =0,1,2,3), (5.43)

where z° = ct and k° = w/c, are examples of 4-vectors in the 4D spacetime.
Our notation here is such that 4-vectors are labeled with a superscript, to
distinguish them from the covectors to be defined below. More specifically, z*
and k* transform as 4-vectors under a Lorentz transformation. Any quantity
that transforms in the same fashion as z* is a 4-vector in this space.

The spacetime interval As is itself a special quantity because it is tnvariant:

(As)* = (2% - (2')® - (2*)" - (=°)?

2 (.10 '3 2 1\2 212 2 13 va'%)
= 7\ +ﬂ7 — (@) = (@) =y |27+

C

— (1:10)2 _ (xll)Z _ ($’2)2 _ ($13)2

= (As')?. (5.44)

Thus, s is a scalar in 4D spacetime. In the rest frame of an observer for whom
Ix2 - xll = 07
s2=c221%, (5.45)

where 7 is the proper time, i.e., it is the time interval measured in a frame
where the events that define this interval occur at the same spatial location.

In a different frame,
2 _ 0\2 _ |x/?
= e (1- )

— 62 t2 (1 _ ,32)
= c2t?/4?, (5.46)

17Two highly recommended books on this subject are Sard (1970) and the more elaborate
text by Weinberg (1972).
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which results in the expression ¢t = v 7, as expected from our earlier discussion
of time dilatation. When v is not constant, these intervals must be taken in
their infinitesimal limits:

ds? =cdt® — (dz')? — (d2?)? - (dz3)?, (5.47)
and
dt=vdrt, (5.48)

for which the Lorentz invariant is then ds.

The mathematical properties of spacetime are those of the group of all trans-
formations that leave s? (or ds?) invariant. Another way of expressing our
first postulate is that the laws of nature must be invariant in form under the
transformations of the Lorentz group:

1o

o'* = z'% (20, 2, 22, 2°) (=0,1,2,3) . (5.49)

Tensors of rank k associated with the spacetime point x are defined by their
transformation properties under the transformation

z—z. (5.50)

The three quantities ##, k*, and s that we have encountered thus far are
(special) examples of these tensors, which we now define:

(i) A scalar (i.e., a tensor of rank 0) is a single function of z whose value is not
changed by the transformation. The Lorentz interval s? is a scalar.

(ii) A vector (i.e., a tensor of rank 1) is a set of ordered numbers that transform
according to the rule

yra = 93 o 5.51
(a “contravariant” vector), or
ozP
Vie= 527 Vs (5.52)

(a “covariant” vector). Throughout this book, unless otherwise noted, a re-
peated index means that the term in which the index appears is to be summed
over all its values. So, for example, 2%z, = 2%z¢ + z'z; + 2222 + 23z3. Note
that differentiation with respect to a contravariant component of the coordinate
vector transforms as the component of a covariant 4-vector operator:

o _9z° 9
Oz'*  Oz'* 9zB8

(5.53)
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For the Lorentz transformation we considered earlier, the transformation coef-

ficients
oz’

a®g = 5.8 (5.54)
such that
V' =a%3 VP, (5.55)
are given explicitly as
ali =41, a2 =+1,
ol =1, a?y = -vvy/c,
a% =7, a3 = —vv/c, (5.56)
and
arl =+1, a?=+1,
ag® =7, a3’ =vy/c,
ae® =7, apd =vy/c, (5.57)

with all others zero. Notationally, it is important to remember that the indices
in these coefficients may be either subscripts or superscripts and their hori-
zontal ordering is not arbitrary. A superscript means that its corresponding
coordinate is being differentiated (in Equations [5.51] and [5.52]). The first
horizontal position is reserved for the “primed” coordinate. So, for example,
a,’ = 0x¥ [0z'*.

(iii) Tensors of rank k > 1 are defined by means of an obvious generalization
of scalars and vectors. A contravariant tensor of rank 2, T®?, consists of 16
numbers that transform according to

T'* =02, afs T . (5.58)

A covariant tensor of rank 2 transforms according to

T s = " a5’ Tos (5.59)
where Py
T
ay,” = 5% ° (5.60)

The transformation coefficients a® s and a,? have the very useful property that

a®g a,” =657, (5.61)
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where § is the Kronecker delta (with 6. = 0 for a # B and §,* = 1 for
a=0,1,2,3), as may be verified by the direct application of the chain rule of
differentiation:

0z'® 0z 0z

dxP dz'*  Oa2P
Several important relations follow immediately. First, V* W, is a scalar, since

VEW'y = a®sVPay" W,
= 6" VPW,
= VAW (5.63)

=457 . (5.62)

Second, S,3 = V, Wp is a tensor of rank 2, since
as = VoaWp
= a"Vyas’ W
= axag®S,;s. (5.64)

It is equally straightforward to show that T, ® is a scalar, and that W, = T, ° Vs
is a covector. We especially note that in order for ds to be a scalar, it must
be the product of contravariant and covariant vectors (see Equation [5.63]).
 Indeed, we may write

(ds)? = (dz°)? — (dz')? — (dz?)? — (dz®)? (5.65)
as a special case of the differential element
(ds)? = gopdz® dzP , (5.66)

where g,3 = gaq is the metric tensor. In special relativity (as opposed to the
general theory), gos is diagonal when using some special coordinate systems,
such as Cartesian, for which

goo = +1
gii = g2=g;3=-1. (5.67)

The contravariant metric tensor g®? is defined to be the inverse of g3, such that
T* = g*P(ggyx7), with g*Pgg, = §%,. In special relativity their corresponding
coefficients are the same when written in Cartesian coordinates:

9% = gag - (5.68)

It is clear then, that
(ds)?® = dxp dzP | (5.69)
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where
dzg = gga dz* , (5.70)

a direct consequence of the definition of (ds)? (Equation [5.65]) and the values
of gap in special relativity. “Contraction” with gos or g°# is in fact the general
procedure for changing an index on any tensor from contravariant to covariant,
and vice versa.

As a final example, we will use these ideas and definitions to prove that the
quantity d®/0z° + V - A is a scalar and that ® and A must therefore form a
4-vector potential A* = (®,A). In Cartesian coordinates, we can write

0A"” ()

oz’

0 .,
0 AB(x)
oz'?
o 0 AP(z) Ox°
P78z 9z'°
» 0 4 (a)

ox>

B
_ 5,0 020)

0z
0%
= W-FVA (5.71)
Since 8/8 x* transforms as a 4-vector and the left-hand side of Equation (5.71)
is a scalar, then by Equation (5.63), the potential A* must itself be a 4-vector
in this spacetime.

= aaﬂ

= a’goas

5.3 LORENTZ TRANSFORMATION
PROPERTIES OF PHYSICAL
QUANTITIES

Mass represents a particle’s inertia to acceleration. It is not surprising, there-
fore, that in special relativity different observers attribute different “masses”
to the same object since velocities and accelerations do not, in general, add as
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they do in Galilean relativity. How, then, does one calculate the force on a
moving particle? As we shall see, this is but one instance where our cleanest
approach is to carry out our analysis of the interactions in specially selected
frames first. As you can imagine, the special frame is that in which the particle
is at rest. The rest mass, representing the particle’s inertia in its own frame,
is a quantity upon which all observers can agree, and we shall therefore always
mean this particular quantity when we refer to the “mass.” Our expectation
is that the variation in the particle’s inertia from frame to frame can therefore
be represented in other ways.

The rest frame also happens to be that in which we are justified in using (the
classically derived) Newton’s laws since the particle’s velocity v (which is in fact
0) is trivially much smaller than the speed of light, ¢ (see § 5.1 above). The idea
is to calculate the applied force in this frame—which we already know how to do
from classical mechanics—and then to transform the result to any other frame
by using an appropriate Lorentz transformation on the 4-vector representing
that force, constructed from other scalars, 4-vectors, and 4-tensors using the
techniques described in the previous subsection.

To begin with, let us define the 4-vector

d? z®
dr? ’
which we will call the relativistic force, and then examine its properties vis-a-vis

the usual Newtonian force F = ma. In the particle’s rest frame, where dr = dt,
we have

*=m

(5.72)

ff= F (i=1,2,3)
f© = o, (5.73)
with F the Cartesian components of F. This 4-vector f® looks like it might

provide what we need, but what happens to it under a transformation? We
know that

dz'* = a®gd2P , (5.74)
and that dr is invariant. Thus,
f'*=a%s 8, (5.75)

as expected of a 4-vector. Substituting for f* from equation (5.73), we imme-
diately get

o — Y.
fL CVF

F
fi = F+('y—1)vvvz , (5.76)
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where f¢ is the “4-force” in the frame moving with velocity v relative to the
particle (i.e., the lab frame). Evidently, f} is proportional to the power exerted
by the force on the particle.

This relativistic expression for the force suggests that we define an energy-
momentum 4-vector

dz®

a = - .
so that Newton’s second law can be cast in the form

dp* o

P fe. (5.78)
Since dr = dt/~, we see that

P = yme
and p = Ymv, (5.79)

so the vector component, p, of p® has the “correct” limiting form when v — 1.
The modification introduced by special relativity is due entirely to the inertia,
which now varies with particle speed as discussed above. But what do we make
of p°? Since p® is a product of a 4-vector and a scalar, it too is a 4-vector and
the contraction

p*pa = (0°)* = Ipf? (5.80)
must be invariant. That is,
)2 -pf? = ¥*m’c -m’y|v?
= m?c? = constant , (5.81)

which directly couples p° to p in all frames! More specifically, in the limit
v—0,

ymd =
V1- (v/c)?

S mc2 [1+-;—(%)2+-2- (%)4+ ]

~ mc®+ %mv2 . (5.82)

This term is therefore just the sum of the kinetic energy and another form of
energy that does not vanish even when v = 0. Not surprisingly, we refer to it
as the particle’s rest energy, and we refer to the sum

E=vymc? (5.83)
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as its relativistic kinetic energy. It is now clear that
" =E/c. : (5.84)

These definitions of energy and momentum lead to several other useful relations.
For example, the particle’s velocity may be expressed in terms of p and E:

(5.85)
which gives
E,=p,c (5.86)

for a photon. And combining expressions (5.80) and (5.84), we obtain one of
the most celebrated equations of special relativity, viz.,

E?=|pP +m2ct| . (5.87)

To complete this discussion, we must still examine the consequences of the
requirement that the total vector momentum

P= Z p; (5.88)

and the total energy
Biov =Y E; (5.89)

for different particle species i be conserved in an isolated system. By the first
postulate of special relativity—that the laws of physics should be invariant
under a Lorentz transformation—the relationship between P and FE;, must be
preserved from frame to frame. Thus, the set of numbers P* = (P?, P), where

PO — Etot
Cc
and P = > p;, (5.90)
1

must be a 4-vector in 4D spacetime. For example, let us consider a two-particle
interaction, with initial and final 4-momenta (p;#, p2#) and (ps*, p4*), respec-
tively (Figure 5.4). Then,

P* = p# + po* = ps# + pa# (5.91)



132

PP, = (m*)*c
= p1¥ p1y + P2 pau + 291 oy
= p3¥ D3 + pst Pap + 2p3# D4y >

CHAPTER 5

(5.92)

where m* is the composite mass in the center of mass frame, i.e., the frame in

which P = 0. Suppose my is initially at rest. Then,

p2! = (m2c,0),
and
m*)? = mP+mic+2mimacim
e T

(5.93)

(5.94)

Notice that the mass in this frame, i.e., the energy available for particle cre-
ation, goes only as the square root of the beam energy, v; m; c®. This is the
reason, incidentally, why ideal particle accelerators have colliding beams in the
laboratory frame (which then becomes the center of mass frame!) to make more

efficient use of the acceleration.

pH

P
2

Figure 5.4 A two-particle collision, with entering channels 1 and 2 and exit

channels 3 and 4.

In the final state of this two-particle interaction,

(m*)? =m3c® +mic® +2mamsc®v274 — 2P;5 " Py

(5.95)



A Need for the Special Theory of Relativity 133

where as usual, p; = v; m; v;. Thus, if m3 = m; and m4 = mg, we get
2mymacty — 2mamac® 374 = —2P3 Py (5.96)

or
P3Py =mimac® (374 — M), (5.97)

which relates the angle between the final momentum states to the incoming
particle energies.

Of course, much, much more can be gleaned from the conservation of P*, but
this would take us beyond our present scope.'® We will now stop here and turn
our attention to bringing the theory of electrodynamics into the fold of this
new relativistic framework.

5.4 LORENTZ TRANSFORMATION OF
MACROSCOPIC
ELECTRODYNAMICS

In order for the theory of electrodynamics to be consistent with the principles
of special relativity, the equations used to describe its physical laws must be
equally applicable in every equivalent reference frame. Thus, to make electro-
dynamics Lorentz invariant, we need to reformulate our equations in terms of
4-vectors and other 4D covariants.

As we have emphasized all along, the basic physical laws are expressions for the
field increments generated by conserved charges. This conservation of charge is
the basis of the continuity equation in a given inertial frame (Equation [1.32]).
But in order for our theory to be Lorentz invariant, this alone is not sufficient—
we need the charge to be conserved from frame to frame as well, i.e., we need
the charge to be a Lorentz scalar. To see whether or not charge as we have
defined it fulfills this pivotal role, let’s begin by writing the charge conservation
Equation (1.32) in 4D language, i.e.,

oJ* _ o
P =0,J=0, (5.98)
where
J* = (cp,J) . (5.99)

18The reference of choice for most matters dealing with relativistic particle kinematics is
Byckling and Kajantie (1973).
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Since Equation (1.32) is satisfied in every inertial reference frame, so too is
Equation (5.98). Evidently, the quantity 9, J* is a Lorentz scalar, and since
O, transforms as a covariant 4-vector (see Equation [5.53]), we know by the
result of (5.63) that J* must therefore be a contravariant 4-vector.

Now, whenever any current J* satisfies the invariant conservation law (5.98),
it is possible to form a total charge

1
Q= - / d3z J(x) , (5.100)
which is time independent because
aQ 3 0J°
7= o
= - / d®zV-J
= 0. (5.101)

The second line in this equation is the result of the conservation law (5.98),
and the last equality follows from the application of Gauss’s theorem under the
assumption that J(x) — 0 as |x| = oo.

So far, we have done nothing more than confirm the derivation of Equation
(1.32). But let us next rewrite Equation (5.100) as

Q= f dbs J%(z) 8,0(ns 3°) , (5.102)

where O is the Heaviside (step) function

1 ifu>0
o=

0 fu<gO, (5.103)
and 7, is defined by
MmME=Emnm=n= O, Mo = +1. (5104)

To see that Equations (5.100) and (5.102) are equivalent, note that 8, ©(ng z°)
= 8(ng zP) 84" my so that Equation (5.100) results from (5.102) with just a
single integration over dz°, which eliminates the Dirac delta function §(ng z°).
Under a Lorentz transformation, we get Q@ — Q’', where

Q = /d4x a®y J* ag* 8, 0(ng aPs z%) , | (5.105)
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which by Equation (5.61) may be written

Q' = / diz J%(z) 8,0(ny 27) , (5.106)

where n;, = a”, 1. Thus, the effect on @ is apparently just to change 7, and
using (5.98), we can write the difference in Q as

0-0Q = / diz 8, {J%(z) [0y 27) — O(ns )]} - (5.107)

This provides us with the desired result because J*(z) — 0 as |x| = oo with ¢
fixed, whereas the function ©(nj zP) — ©(n 2®) vanishes when ¢ — oo with x
fixed, so that the 4D generalization of Gauss’s theorem immediately gives

Q-Q =0. (5.108)

We have thus proved the very important result that @ is not only conserved in
any given inertial frame, but that it is also a Lorentz scalar, ensuring that it
has the same value in all inertial frames.

Thus assured, we can now confidently proceed to reformulate the equations
governing the electric and magnetic fields in terms of Lorentz scalars, 4-vectors,
and 4-tensors. A reasonable starting point is the 4D potential A = (®,A),
which was shown to be a 4-vector in § 5.2. above. According to Equations
(1.35) and (1.37),

10A 4
E= T Ve, (5.109)
and .
B=VxA. (5.110)
Therefore,
B o— 10A o
c 0t O(-—=)
_ 0A* a9 A°
T 820 3 (=)
_ OA* 9 AC
B BfBo 812,
= —(8°4'-9'4") . (5.111)
With a similar derivation, we find that
oA
B, = —eijk 3 (—zr)

= Eijk ok AT | (5.112)
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where €;j; is defined by

+1 if ijk forms an even permutation of 123
e=< —1 if ijk forms an odd permutation of 123

0  otherwise. (5.113)

These equations thus suggest that E and B have components that are elements
of a second-rank, antisymmetric field-strength tensor:

FoB =92 AP 9B Ax| . (5.114)

Written out explicitly, we have
/ 0 —-E* -EY —E"\
E* 0 -B* BY

FoB = o B o e | (5.115)

\g= -Bv B= 0 /

This field-tensor knits the two 3-vector fields E and B into a single entity,
resolvable on the four dimensions of spacetime in ways that convert electric
into magnetic fields, and vice versa, merely by viewing the electromagnetic
field from relatively moving frames. Its primary usefulness will be to permit us
to cast the Maxwell equations into an explicitly covariant form.

First, the inhomogeneous equations are (1.12),

V-E=4mp, (5.116)
which becomes 4
8; F® = 7” Jo, (5.117)
and (1.34) n ,
- 10E 4~
_——=—J. 118
VxB-=->-=—1 (5.118)

These can be written together in covariant form as

O F*# =4nJb/c|, (5.119)
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which may be easily verified with the definitions of F*# and J?. The decom-
position of Equation (5.119) into its different components may be made with
equal validity in any frame, consistent with the relativity principle.

Next, the homogeneous equations are (1.14),

V-B=0, (5.120)
which becomes
O'F?2 +3*FB +03F =0, (5.121)
and (1.22)
V x E+l%?——0 (5.122)

Both of these equations may be combined into the single form

8% FBY + 9B F1a 4 97 Fob = . (5.123)

To complete the set of electromagnetic equations, we also need to consider the
Lorentz force law:

dp _ v
2 =g [E+ExB] . (5.124)
In terms of the proper time interval dr and the 4-velocity
[
u* = ddi'r =(yc, yv), (5.125)
this becomes d
ap _4q. 0
P (u E+uxB). (5.126)
As we have already seen (Equatlon [5.76]), the quantity
d
p = f° (5.127)

is the rate of change of the particle’s energy (i.e., the power exerted on it),
which we can also rewrite in terms of F8:

£ = Iv.F

= =F%u*. (5.128)
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This covariant form generalizes to the other three indices, and since d p® /dTis
a 4-vector, the right-hand sides of Equations (5.126) and (5.128) constitute a
representation of the covariant electromagnetic force on a charge g¢:

fe=dp®/dT=qF*, u"/c| . (5.129)

At this point, it is appropriate to ask how the electromagnetic field behaves
under a Lorentz transformation. Using our prescription for transforming con-
travatiant tensors (see § 5.2 above), we find that

oz'™ 9z'P "

af M
F =577 Bk Fe (5.130)

Thus, for the specific example of a Lotentz boost in the z® direction (whose
coefficients are given by Equations [5.56] and [5.57]), we get

E' = y(E'-8B?%,
E? = y(E*+BB"),
E® = E®, (5.131)

and

B" = y(B'+BE,
B? = y(B*-BE),
B® = B:. (5.132)

Ponder, if you will, the power of these equations, for they are truly monuments
in the theory of electrodynamics. We began with definitions of the electric and
magnetic fields in terms of the force experienced by a moving test charge in the
presence of another charge, and here, after realizing that our initial formulation
was not invariant under the classical relativity theory, and after we were given
an inkling of a synthesis of the two fields through their representation in a single
antisymmetric tensor F' af we finally come to the appreciation of the fact that
the concept of a pure electric or a pure magnetic field is not consistent with
Lorentz invariance. It is precisely for this reason that we refer to it as the
electromagnetic field—one quantity, unified in the special theory of relativity.
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5.5 STRESS-ENERGY MOMENTUM
TENSOR AND CONSERVATION LAWS

It was noted in Chapter 1 that the basic idea of electrodynamics as a field
theory is that charges and currents produce at each point of spacetime a field
that has a reality of its own. Thus, since p and J (or in covariant notation,
the source J*) are known to satisfy the continuity equation (5.98), it is not
unreasonable to expect that the fields themselves should satisfy some type of
conservation and/or transport equation. After all, the electromagnetic field is
a dynamical entity possessing energy, momentum, and angular momentum.

The fields E and B are operationally defined by the force per unit of nonstatic
test charge q. As we have seen, the covariant electromagnetic force on q is

fe= % Fo,ut, (5.133)
where d
_dp
f= e (5.134)
and where
7O = —Z—v qE (5.135)

is the rate of work done by the electromagnetic field on the source distribution.
Thus, the Oth component of f* should give us the energy of the field and its
fluz density via the energy transfer between the matter and the radiation. It
is also expected that f will allow us to identify the field momentum and its
flux through the momentum transfer between the particles and fields (i.e., the
force). To carry out this identification, as we did, for example, to derive the
Poynting vector and the (nonrelativistic) momentum flux, we need to eliminate
the currents and densities from the equations and express them in terms of the
field quantities only.

Let us write
qut

fo=Fe, {—} . (5.136)

c

Remembering that u* = (vyc, yv), we see that

qu* = (vqe, yqv). (5.137)

But
Yg=v6Vp, (5.138)
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where v 8V is the invariant volume. Thus,

go= S —lpa gu (5.139)
T8V ¢ * '

is the 4-vector force density due to the electromagnetic field.

We also know from the covariant form of Maxwell’s equations that

B FP = 361 A (5.140)
and therefore > can be expressed entirely in terms of the field tensor:
05 FBu
o [+
®* =F*, ypunl (5.141)

However, before we can identify the energy and momentum of the field, we still
need to express this equation as a continuity equation or an expression of the
conservation of “something.” Let’s put

47 & = Jg(FP+ F*,) — FP+ 95(F*,) . (5.142)
Now, using the metric tensor g°? defined in Equation (5.67), we have
FPrggF*, = g**FPrOsF,,
= gov FHB OuFup
= g¢*FPry, Fp, (5.143)

(with an interchange of the “dummy” indices p and 3 in the second step and
the use of the antisymmetric property of F*# in the last). But using the second
Maxwell equation (5.123), we can also write this as

FP4 g F®, = —F% {9° F+ 8, F5"} . (5.144)
Adding Equations (5.143) and (5.144) gives
FP4 95 F®, = _% FP4 8, Fu5¢* (5.145)

so that using the antisymmetric property of F2B and substituting A for the
index B, we get

1
Fﬁ“aﬂFau = _Zau(gayFﬁ”Fuﬁ)

1
= +70, (8™ FM Fy,) . (5.146)



A Need for the Special Theory of Relativity 141

Thus, we can write

478 = 95 (PO F®,) — 70, (5 F™ B,)

9 (Fﬂ” F*, - i-af’y g%y F# FM)

= 8 (F"" F*, — ig"ﬂ FA FA,,) : (5.147)
or
®=-95 TSP | | (5.148)
where
A TSR = Fo, FHB 4 g°B FMu |y, /4 (5.149)

defines the electromagnetic energy-momentum tensor T25. As was the case for
its nonrelativistic counterpart (Equation [3.55]), the projection of this tensor
normal to a surface, i.e., T, /4, is the pressure in the direction i (see below).

These equations are elegant, but what do they mean? Other than in regions
where the field couples to matter via an exchange of energy and momentum,
Equation (5.148) reduces to a continuity equation that describes the conser-
vation of field momentum (through the spatial component) and field energy
(through the time component) at every point of spacetime. In other words, the
expression

1
TSP = S P g (5.150)
reduces to a continuity equation for the field
BT =0, (5.151)

analogous to the charge current equation 8, J* = 0, when J* = (.

It is not difficult to show that

1
TX = — (E? + B?), (5.152)
87
and that 1
TY% = E(E x B); . (5.153)
Thus, the Oth term of Equation (5.151) is really nothing more than
1 §T9 0i
= 9 + oT =0, (5.154)

c Ot ozt
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or 5
u —
5i..,_v.s_(), (5.155)
where 1
— 1 2 2
u—81r(E + B°), (5.156)
and c

exactly the conservation of field energy that we derived within the nonrelativis-
tic context. In the same vein, the spatial part of Equation (5.151) results in
the expression

BT +0;T4 =0, (5.158)
or a .
9 o () -
- ( Tem) =0, (5.159)
where 1

is the electromagnetic momentum density and Zl-“zm is the force per unit area
(i.e., the pressure) in the direction i. (These expressions employ the dyadic
notation for T°# that we introduced in § 3.3.3.) So Equation (5.159) is the
statement that there exists a momentum density of the field that satisfies a
Newtonian equation of motion, i.e., the concept of electromagnetic momentum
density is established from the field equations. Integrating T, over a surface
S gives the component of the electromagnetic force acting in the direction i:

fi= / T .da. (5.161)
S

Note that this is fully consistent with our earlier definition of f¢ in Equation
(5.139), since the fields used here are those measured relative to the surface
S, for which ¥ = 1. If there are no enclosed charges, then there must be
as much electric flux entering the volume as there is leaving, which gives a
net value of zero for the integral on the right-hand side of this equation, and
therefore f* = 0, as expected. This idea is central to our understanding of how
T  gives the force. The total force F depends on the net flux represented by
T threading the enclosed area. Changes in T result from the presence of
sources, so the absence of enclosed charges implies the absence of a force.

Example 5.1. As an application of these concepts, we will revisit the
problem we considered in § 2.1.1, where a charge g lies near an infinite plane



A Need for the Special Theory of Relativity 143

conductor maintained at zero potential (Figure 5.5). We learned earlier that
this problem is most easily and directly solved by using guesses and the sym-
metry of the situation to infer that the effects of the plane boundary could be
simulated by invoking an imaginary charge —g on the outside of the volume of
solution.

Figure 5.5 Geometry for calculating the force on a conducting boundary in
the presence of a charge g, using the electromagnetic energy-momentum tensor,
which represents the force per unit area on the surface enclosing the volume of
interest. In this problem, the relevant volume is the space to the right of the
boundary.

In Figure 5.5, this region of validity corresponds to the half-space z < 0. Al-
though we didn’t carry our previous solution beyond the step of calculating
the potential, it should be obvious that determining the force on the boundary
simply requires that we calculate the equivalent force on the charge —gq, which
by Coulomb’s law has a magnitude

o
So why are we still interested in this problem? The point is that here is an
example of a situation where we know and understand how to calculate the force
on a bounded region due to the presence of a charge which produces a field that

(5.162)
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threads the bounding surface. In other words, we know the answer and we want
to apply our new formalism involving the energy-momentum tensor to see if
we can reproduce it using a new physical principle. That is, we want to see if
calculating the total stress on a surface S due to a flux of E and B through
it gives the same force on the enclosed volume as if we simply used Coulomb’s
law on the charges within. We recall that this is one of the key characteristics
that endows the fields with a dynamical reality, independent of the sources.

Because the plane is a conductor, E is perpendicular to the surface at = = 0.
Thus, we know that on this plane,

D

E=2=L;:=F3, (5.163)

r r2
where the factor in the front on the right-hand side includes the two charges
(real and imaginary) and the cosine of the projection angle perpendicular to
the surface. Thus,

(%(E-")2 0 0 0 \
ras _ 1 0 Y ° ° 5.164
°n T dm 0 0 —2(E®)? 0 . (5164
\ 0 0 0 —1(E%)2/

In this situation, the elemental area is da = da &, and so according to Equation
(5.161), the force in direction ¢ is

[t = / T da . (5.165)

S
We see right away that f¥ = f* = 0. In addition,
7= [ T3 da

s

= L / (E*®)? da
8w S
q2D2

da
= = /s ol (5.166)

and since da = 27b db = 7 db?, and 7% = (D? + b?)3, we get finally
f:t _ q2 D2 /*OO du _ q2

2 Jo (D?+wu)® (2D)?°

which is identical to F_, as given in Equation (5.162).

(5.167)
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THE LAGRANGIAN
FORMULATION OF
ELECTRODYNAMICS

6.1 ACTION PRINCIPLES IN CLASSICAL
FIELD THEORIES

Our reformulation of electrodynamics in terms of 4D quantities in four-dimen-
sional spacetime was motivated by a desire to produce a self-consistent de-
scription of this theory with the “new” (special relativistic) mechanics. The
application of Galilean transformations to the Maxwell equations clearly pro-
duces relationships between the field components that are wrong in the case
of relativistic systems with v — c. In contrast, our interest in a Lagrangian
formulation of Maxwell’s equations, which by the way builds upon the special
relativistic treatment, has nothing to do with a need to remove deficiencies in
the theory. As we shall see, the sole motivation for using action principles
is to “improve” our understanding of the underlying physics, with a goal of
extracting additional laws that might not otherwise be apparent.

As an example of how a different perspective has served this purpose before,
consider that the Newtonian formulation of classical mechanics is a description
of the particle dynamics in terms of forces. But now look at the advantage of
also introducing the concept of a potential energy

U=q?, (6.1)
from which the forces are derivable, i.e.,
F=-VU. (6.2)

For one thing, a description in terms of ® allows us to define a conserved energy.

145
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To see how this works in special relativity (see Chapter 5), let us consider the
equation of motion for a charge ¢ subjected to external electric and magnetic
fields, viz.,

d d -
—&-%:CTZ(vmv)zq(E+ﬂxB), (6.3)
where § = v/c. Evidently,
v-%}tz‘zqv-E. (6.4)
But
dp dv g Vv dv o
Vigr T YW tmr g
_ dv v _»
= ymv T (1+—-2—
_ . &Y
-7 dt
- 2.3V dv
= meY e g
d 2
= - (ymc?) , (6.5)
which means that 4
zl—t('ymcz):qv-E. (6.6)
(x,,t,))
(xlat])

Figure 6.1 Particle trajéctory from spacetime point (x1,t1) to (x2,t2).

We can integrate this expression over time along the particle’s trajectory from
t1 to ty (Figure 6.1), and if the electric field is static, we then get

[ymc®ls —[ymc?)y = —q®2+q®; . (6.7)
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That is, the quantity

E=ymc® +qd (6.8)

is constant during the particle’s motion as long as the electromagnetic field is
static.

Yet another perspective on (or reformulation of) mechanics is provided by
Hamilton’s variational principle,

§1=0, (6.9)

where
ta

I= Ldt. (6.10)
t1

The integral I is thought of as some kind of generalized action (or perhaps it
may even be thought of as an ezpenditure of “something”) during the system’s
motion. The expenditure rate, L, which is known as the Lagrangian, character-
izes the system and the circumstances in which the motions are to take place.
The symbol 41 stands for the variation of I from the value it takes during the
actual motions that will occur. The expression 61 = 0 is a condition for the
actual action to be a comparative extremum. The variables used to construct L
may be any quantities that might be observed to vary during the motion: ¢; (t),
@2(t), - .., qs(t), where f is the number of degrees of freedom of the system. For
example, g;(t) could be a component of the position vector x;(t) of particle j,
or it could be an angle 6;(t).

Classical mechanics can predict an explicit, unique motion only if the positions
and velocities are known. Thus, the motion is specified by a set of 2f values:
q(t) = qi(t) ... gs(t) and 4(t) = ¢1(¢) ... ds(t). As such, the Lagrangian (i.e.,
the expenditure rate) at a given time t [or phase g; (t), ¢:(t)] is

L=L(qqt) . (6.11)

The system progresses through a sequence of phases (i.e., a path), and associ-
ated with this path will be a generalized action, as we have defined it (Figure
6.2).



148 CHAPTER 6

(4,9, t5)

Ity t,)
@q,,9;-t))

Figure 6.2 Particle trajectory from the generalized coordinate point
(q1,41,t1) to (g2,4d2,t2). Each such path is associated with a generalized action
I(t2,t1) that measures the “expenditure” of the trajectory.

By forcing I to be an extremum, we are forcing a relationship between the q(t)
and the ¢(t) such that variations

q(t) = q(t) +d4(t), (6.12)
and
q(t) = 4(t) +64(1) , (6.13)

result in a 6 I = 0. We are thereby calculating the actual equation of motion of
the system! To see how this works in practice, consider

t2
sI= | dtsL, (6.14)
t1
where
oL oL d
0L = Z{-a—(;(s(h'*'%&—t(&h)}
d oL 8L d oL
- 4 9% 5a; Y i I 15
dt(i aq’f")*?‘sq (6a-73s) - ©0
Thus,
oL |7 = 8L d L
= i S 6 (22222 . 6.16
o {,. 55 }t +/t, 2.0 (aqz- dtaq) (619

But any motion between definite configurations q(t1) and q(t2) has dq(t1) =
d q(t2) = 0, so that

2 L d 0L
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This can be satisfied at all times ¢; < ¢t < t3 and for any arbitrary variations
dg; in each degree of freedom only if

d (0L oL

= [==) = = , 6.18

dt (3di) 0¢; 0 (6.18)
for each ¢ = 1,2,...,f. These are the well-known Lagrange equations of

motion.1?

Finding a correspondence between this formalism and the Newtonian equations

d? x;

m dt; =F; (6.19)
is particularly simple when the forces are derivable from a potential energy
U(x1,X2, ...,Xs). Then, the choice of expenditure rate (i.e., Lagrangian)

1 dz; 2 dy; 2 dz; 2
L-—T—U—;imi [(dt) +(-&?) +<—Jt—) -U (6.20)
leads to 9L

amz =m; :i,'i ) (621)
so that P -

x; .
g7 = "aa; = F - (6.22)
The quantity
pi=0L/0¢; (6.23)

is known as the generalized momentum, conjugate to the degree of freedom g;.
For example, when g; is an angular degree of freedom, p; becomes an angular
momentuin.

19For a more detailed treatment of this discussion, see Goldstein (1980).
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6.2 RELATIVISTIC LAGRANGIANS OF
POINT-CHARGE MOTIONS

A Lagrangian that makes the Lagrange equations equivalent to the equations
of motion is simple to construct after a potential description of the field has
been introduced. At this point, we should emphasize that although B is not an
energy-changing agent, it is nonetheless a momentum-changing one (because it
can change the direction of v) and must therefore be included in the description.

We begin with the equation of motion (6.3), and write

. 10A
E=-V&--—, (6.24)

as before. For the second term, we can put

v _ g =~
qch = cvx(VxA)
= 19w . A)=(v-V
= 1 {V(v A) = (v V)A} . (6.25)
But by the chain rule,
- dA O0A
—(v-V)A = Ty + FTR (6.26)

and so, combining Equations (6.3), (6.24), and (6.26), we arrive at the very
important expression

d q _ - v-A
a—t(7mv+zA)-——qV (<I>— c) : (6.27)

The Lagrangian L(x,v,t) must be so constructed that each of the rectangular
components of (6.27) takes on the form of Equation (6.18). But how do we do
this? To begin with, the form of (6.27) is such that it is natural to associate
the quantity

p(x,t) = ymv + % A (6.28)

with the “generalized momentum,” since it is the time derivative of this that
changes in response to the gradient of a “potential” ¢ (® — v - A/c), i.e., the
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“generalized force.” It is therefore reasonable to expect that

W—"/mv +CA y (629)
and L 9 A
v.

which will indeed satisfy the Lagrange equations. After some trial and error (as
is the common procedure for finding a Lagrangian), we identify the following
expression for L that is consistent with both (6.29) and (6.30):

2 A
L=-"¢ _4 {@-X—c—} : (6.31)

This is a relativistic Lagrangian in the sense that it makes the Lagrange equa-
tions reduce to the relativistic equations of motion.

We remark that the conjugate momentum of a charge in the presence of an
electromagnetic field includes the term q A /c—it is not just ymv! This ad-
ditional term represents a field momentum available to g, just as q® serves
as a storage of field energy available for exchange with the particulate kinetic
energy. Both the kinetic momentum ym v and the amount of q A /c stored as
field momentum may be exchanged whenever the particle encounters gradients
in the interaction energy U(x) = ¢(® — v- A/c) of the particle and field.

Note that the Lagrangian in Equation (6.31) depends explicitly on the poten-
tials, so it is not invariant under a gauge transformation, such as that given in
Equations (3.10) and (3.11). It is trivial to see from (6.31) that L acquires a
term di)/d(ct) under this transformation. However, total time derivatives in L
do not alter the action integral, nor the Euler-Lagrange equations derived from
it (see, e.g., Goldstein 1980). Thus, although this Lagrangian is not invariant
under a gauge transformation, it nonetheless yields the correct (gauge invari-
ant) equations of motion. In the same vein, the term g A /c appearing in the
conjugate momentum is itself not gauge invariant, so it should not contribute
to the particle’s energy. In fact, using the standard definition of a Hamiltonian,
i.e., H = p-v—L, one sees right away (using Equation [6.28] to evaluate v) that
H represents the correct special relativistic energy of a particle with potential
energy q®.
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It is also of interest to note that a neutral point particle, or a charged par-
ticle in a field-free region of spacetime, is associated with the neutral-particle
Lagrangian

mc?

Lo(v) = -y (6.32)

Thus, Hamilton’s variational principle for this simplified situation reduces to

‘r(tz)
) — =9 dr = 6.33
ts (V) (1) (6.33)

That is, it becomes a principle of least proper time for the motion in free space!

This formalism also has a natural correspondence with the description of me-
chanics in terms of energy. Consider the derivative

d . 0L . 0L d*q\  OL
5 L@dt) = Z(—qﬁ . q)+

04q; 04q; dt? ot
dp; dg; szz oL
z:(dt at P ’dt2)+6t’ (6.34)

where we have used the Lagrange equations of motion to write

oL _ d oL _ dp,f
dq; dt (aq,-) T odt (6.35)
Then, p 5
H L
Frar T (6.36)
where
H=) pigi-L. (6.37)
1

Clearly, H is a conserved quantity whenever L depends only on the coordinates
g and ¢ of the motion, and not explicitly on the time at which these coordinates
are realized.

For the simple example

1
L=T—U=Z§mi(¢%+y§+z§)—v, (6.38)

we get p; = m;dx;/dt = m; v;, so that

1
H=ij~vj—L=Z—2-mjv]2-+U, (6.39)
J J
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the familiar nonrelativistic energy. We identify H with a generalized energy
that is conserved when 8 L/9t =0

In the case of a relativistic particle interacting with the electromagnetic field,
H = p-v-1L
2
mc v-A
= (ymv+ gA)~v+ —;—+ (<I>— —c-)

2
ymc? (l | 72 >+q<I> (6.40)

That is,

H=ymc?+q®| . (6.41)

This quantity is conserved if 9 L/0t = -0 H/0t = —q0®/0t = 0, i.e., in the
presence of a static field. (Note that an electromagnetic field cannot support
0®/0t = (v/c)-0 A/dt for all values of v.) After all, the energy is not expected
to be conserved if ® varies while the particle is moving.

6.3 THE FIELD LAGRANGIAN

Thus far in this chapter, we have considered the Lagrange formulation of the
equations of motion for a charged particle in the presence of an external electro-
magnetic field. Here, we examine the corresponding Lagrangian description of
the electromagnetic field itself interacting with external sources of charge and
electric current. Before doing so, however, it is worth noting that the action I
must be a Lorentz scalar because the equations of motion are derivable from
the extremum condition § I = 0. By postulate (1) of special relativity, I cannot
be a function of velocity. Thus, since

I= Ldt / d3z dt L, (6.42)
where L is the Lagrangian density, we can write

I= / diz L . (6.43)
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(Note that this differs from the earlier definition of I by a constant factor c,
which will not effect the variational analysis.) But the volume element d‘z
is also invariant (i.e., [dx dy dz/7][ydt] = ydx dydzdr), so £ must itself be a
Lorentz scalar.

In applying the Lagrangian approach to continuous fields, the generalized coor-
dinate g; is replaced by a continuous field ¢*(z), where instead of one discrete
index 7, we now have a discrete index k, and a continuous index z* designating
spacetime coordinates. The generalized velocity ¢; is replaced by the 4-vector
gradient 9 ¢*(x). For example, in the case of an electromagnetic field,

¢*(z) = A*(z) (k=0,1,2,3), (6.44)
where A = (®, A). Thus, the Lagrangian density may be written
L = L[A%(x),0, AP(z), 7] , (6.45)

in correspondence with the particle Lagrangian density £ [g;(t), ¢;(t),t]. Varia-
tion of the action now results in variation of the variables

A%(z) > A%(x) + 0A%(x) , (6.46)
and
8(0a AP) = 0,[0 AP (2)] (6.47)
at each spacetime point within the 4-volume [ d*z. Thus,

oL _ ., oL
o = G o

oL .
""‘{awm o4 }

9,(0A4")

0L 0L } . (6.48)

v
+o4 {6A" % 58, a7
As always, a repeated index denotes a summation over its value, so for exam-
ple, 9, A¥ = 3, O, A*. As before, integration of 6L over d*z results in the
evaluation of some § A%(z) on the boundary of [d*z. But §A%(z) = 0 there
to maintain consistency with the boundary conditions, and so the variation ¢ /
will be zero for arbitrary variations within the spacetime volume only if

5 0L _ BL
“9(0,A") _ 9Ar |’

(6.49)
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for v = 0,1,2,3. These now become the Euler-Lagrange equations for the
electromagnetic field.

But we know that in order for A%(x) to be the potential field arising from a
given source distribution J*(z), the Lagrange equations must be equivalent
to the wave equation for A®(z), which we derived earlier using the classical
formalism. In the Lorenz gauge, defined by the condition

0. A =0, (6.50)
this equation says that
o* 9, A%(x) = ilci J*(z) . (6.51)
Thus, the quantities A* and 8, A® must occur in such a way that
36 ) ai iﬁ) = Zl;r-aa Ap(), (6.52)
and o1 .
546 = o Ja - (6.53)

One form of £ that satisfies both of these constraints is
— 1 A v v AA l a
L= 16”(8,\A,,—6,,A,\)(6 A 0" A )+cJ°‘A , (6.54)

or equivalently,

L =FasFoB[16m+ J, A%/c| . (6.55)

It is trivial to show that the wave equation (6.51) is equivalent to the inhomo-
geneous Maxwell equations and that the latter therefore follow naturally from
the Lagrange equations with the Lagrangian density specified in (6.55). In the
Lorenz gauge, we may write

0% (9, A%) = 0,(8% A%) — 9%(8,, A*) . (6.56)
Thus,
949, A%) = 8, (9" A% — 8% AM)
= 9, FHe
= 47 ja (6.57)

C
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The homogeneous equations are satisfied automatically because of the definition
of Fo8,

To close this subsection, we remark that the noninteracting (or “free-field”)
Lagrangian density results from the condition J* = 0 and is

1

- - af
But
F,3 F°P = 2(B®> - E?) (6.59)
whence
B2 - E?

Thus, just as a particle’s motion results from an exchange of its kinetic and
potential energy, redistributions of a field isolated from external sources are
due to exchanges between the electric and magnetic field energy distributions.
The term J, A%/c = p® — J - A/c is therefore appropriately a term that arises
from the interaction between the particles and fields.

6.4 INVARIANCES AND CONSERVATION
LAWS (NOETHER’S THEOREM)

It is in this subsection that we may start to realize the goal we expressed at
the beginning of this chapter, i.e., to build upon the special relativistic for-
mulation of electrodynamics with the Hamiltonian variational principle in an
attempt to extract additional physical laws that might not otherwise be appar-
ent. Not surprisingly (by analogy with classical mechanics), we will discover
that a symmetry, or an invariance, of the action I finds expression in the form
of a conservation law.

A natural expectation of the first postulate of special relativity is that the
phase space trajectory of a system is independent of the starting time and of
the absolute positioning in space, as long as the boundary conditions are kept
fixed. That is, the system is expected to be left undisturbed by a shift of a
constant 4-vector A, in the spacetime coordinates:

* =52’ =%+ A (6.61)

There will be an invariance associated with this shift if the transformed poten-
tial fields A’¥(z') satisfy the Euler-Lagrange equations of motion, just as the



The Lagrangian Formulation of Electrodynamics 157

A?(z) do (Equation [6.49]), and if the same boundary conditions still apply.
Invariance of the action requires that

I=I=[ d'%' L[A"(@),0, A" ,'¥]. (6.62)
v

A translation will not distort volume elements, so
diz' = d'z . (6.63)

Moreover, if ' and = are to describe the same spacetime point, invariance
demands that
A'V(z') = A (=) , (6.64)

and since 0,, = 9, for variables differing only by a constant, this also means
that
9,A"" =98, A". (6.65)

Thus,
r—I = /d‘*m (£ {A"(2),8, A”,2® + A%}

— L{A%(z),8, AY,z}] . (6.66)

For an infinitesimal shift, A%, the integrand is just

I= Z(axa) A%, (6.67)

where differentiation is only with respect to the explicit dependence of £ on z.
However, we still cannot integrate Equation (6.66) because of the restriction
on AY in (6.67). We must therefore rewrite this derivative as follows:

oL _ oL oL 3 oL v
(593_&) o 0ze 548 A " 5, an XA (668)
Since A%(x) is supposed to satisfy the Euler-Lagrange equations of motion, we
can write ar 57
7 =% (a5, o8
so that

L oL L ,
(53),.. = 5 =2 [ ] o7
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Thus,
oL

8(0, A”)

But A% and Vj are arbitrary, and we see finally that translational invariance
implies

I'-I1=A® | d*z9, [c S — 8 A| . (6.71)

Vs

OyH'a =0, (6.72)
where 5r
[T— vV _ Pk
HEL = 28, A%) Oq AY — L6, . (6.73)

As suggested by the naming of this quantity, H has the same attributes as the
Hamiltonian H = p; ¢; — L we encountered earlier in our discussion of particle
dynamics, and it is thus expected that the vanishing divergence exhibited in
Equation (6.72) constitutes a continuity equation describing the conservation of
the field energy and momentum, which we now prove in the case of a free-field.
When J* = 0, the Lagrangian density may be written

1
—_— — aﬂ

Lo + Ton F* Fop
- _u;n (8% AP — 8P A*) (8 Ap — 93 As) , (6.74)

which results in the field Hamiltonian (also known in the literature as the
canonical stress tensor)

1 oH
b= = % B A2 Y¢)
H o ype {F Oa A, 1 F FAB} . (6.75)
But
aa AV =a,,Aa—Fa,, =ayAa+Fya 9 (6.76)
so that
HH =i F* F, —16" F)‘ﬂF,\g +LF‘“’3,,A . (6.77)
(o1 471_ va 4 (s 471_ {8
Evidently, .
Ha = Tema + = F* 0, Aa (6.78)

where Tem”, is the symmetric stress-energy-momentum tensor for the elec-
tromagnetic field (Equation [5.149]), containing the field energy-momentum
densities and their fluxes. At this point we should mention that the canonical
stress tensor depends on the choice of gauge. One can see, for example, that
HO; = (ExB); /47 + V- (A; E)/4m, which is the standard momentum density
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except for the addition of a divergence term. Upon integration over all space,
however, these added terms produce surface integrals at infinity where the fields
and potentials are zero, so they give no contribution. We have, therefore,

1
O, H*, = 8, Tem”, + yps Oy (F* 0y A,) . (6.79)
The last term can be written as

Ou(FH 9 Ay) = 8, 0x (F** A,) — 8,(A, 0x F*Y) (6.80)

in which the second derivative on the right-hand side vanishes because of
Maxwell’s equation for a sourceless field, and the first derivative also vanishes
because F#* is antisymmetric. We have thus arrived at the expected result,

8, H*, =0, Tem”, =0 | , (6.81)

which is the continuity equation for a sourceless field. Translational invariance
implies, and is implied by, the conservation of field energy-momentum.

In the same spirit, a system with an isolated electromagnetic field ought to be
invariant to spatial rotations as long as it is screened from external influences.
The physical implications of this invariance may be derived in a fashion similar
to that for the translational invariance, and we shall omit the details for the sake
of brevity. It is not difficult to show (and to understand!) that the rotational
invariance of the action implies, and is implied by, the conservation of field
angular momentum.

Finally, we shall use these tools to understand the physical basis for the gauge
invariance of the electromagnetic field. We have suggested on at least two
occasions (i.e., for the Coulomb gauge and the Lorenz gauge) that physically
meaningful results should be invariant under gauge transformations of the po-
tentials, expressed as

A, =A,+0,x. (6.82)
For example, as we saw in § 3.2, a set of potentials in the Lorenz gauge (for
which §,A* = 0) will remain in this gauge under a transformation (6.82) as
long as x is a 4-scalar function satisfying the wave equation

49, x=0. (6.83)

In that case,
OH 0y Aq =0"0, Ax = 47“ Jao - (6.84)
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But notice that the Lagrangian for an interacting field need not be invariant
under such a gauge transformation, since

— _1__ af l a
L = 167rF Fag+cJ Aq
SL = —peSF, +1504 +-1—J"6 X (6.85)
167 BT * e xn ’
That is, )
f—£=zJaaax. (6.86)
A more useful form of this equation is
r~ _1 (s X o
E—E—ZBQ(J x)—zan ) (687)

because the action and equations of motion are not affected by the addition of a
4-divergence to the Lagrangian density, as may be verified by direct substitution
of (6.87) into Equation (6.49). The only difference that remains between L and
L is a term proportional to 0, J*! Thus, these physical laws are invariant
under this potential gauge transformation as long as 0o J® =0, i.e., as long as
charge is absolutely conserved. This is in fact true for any gauge, not just the
Lorentz gauge that we have considered here for illustrative purposes. Potential
gauge invariance implies, and is implied by, the charge-conservation principle!



RELATIVISTIC
TREATMENT OF
RADIATION

Our classical ideas regarding fields and their sources culminated with our at-
tempts to understand the process of radiation in § 4.6. We came away with the
feeling that we had understood at least the basics of how E and B behave once
they “leave” the charges, and how they evolve from the so-called near fields
into the far fields out in the radiation zone. But just as mechanics is altered
significantly by special relativity, we might reasonably expect that the elec-
tromagnetic field could also be altered from its low-velocity form (Equations
[4.166], [4.167]) when 3 — 1. Retracing our steps in § 4.6.2 should convince us
that no transformation from the particle to the lab frame (or vice versa) was
ever invoked in our derivations. All quantities, such as p and J, were those
pertaining to the coordinate system in which the fields were being determined.
So our calculation of the field should not be affected by the introduction of
special relativity (since we are in the same frame as the sources), though its
dynamical impact on the charges will of course be subject to the relativistic
effects in the force equation (5.129). Toward the end of this chapter we will
concern ourselves with the back-reaction of the radiation process on the sources,
and we anticipate that relativistic effects will thus be important when the field
and particle dynamics equations are solved self-consistently, since the particle
trajectory is necessarily altered from its classical form due to the particle’s
velocity-dependent inertia. Special relativity also provides an explanation for
why infinite values of E (which can occur in some directions when 3 — 1)
should be excluded. According to Equation (5.83), a particle must gain infinite
energy for 3 to even approach 1, let alone surpass it, so it is not possible for
any source to be accelerated to speeds larger than the speed of light. (However,
this does not in itself argue against the possible existence of tachions, particles
that always travel faster than light.)

161
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In the next few sections, we shall consider several important issues, including
(i) deriving an expression for the total radiation emitted, (ii) finding its angular
distribution, and (iii) calculating its spectrum as a function of frequency. In
our efforts to convert the mathematical description into the more complete
and elegant language of four-dimensional spacetime, it may appear that we are
retracing some of the steps we have already taken. This is definitely true in
part, because the underlying physics is the same. For example, in our previous
derivation, we divided out the time and space dependence of the wave equation
by using a Fourier expansion for the potentials. In effect, we were solving first
for what we would now call the dependence of ® and A on the time component
of z%*. The solution to the space piece of the equations subsequently led to the
Liénard-Wiechert potentials (4.146) and (4.147). Since we now know that @
and A, like ¢t and x, are all components of the same physical entity in four-
dimensional spacetime, this division (between ® and A and between ¢ and x)
should not be necessary. However, we will see that our earlier use of a Fourier
expansion to handle the time dependence of the potentials is equivalent to our
handling of k°, which we treat as a complex variable in order to carry out
the first part of the integration for the Green function. One of the benefits of
rederiving the fields using the framework of special relativity is therefore to see
how this natural union comes about. Having already discussed many of the
principles entering into the treatment of radiation in § 4.6, we should be able
to better understand the motivation for the ideas and techniques that we shall
introduce here.

7.1 THE GREEN FUNCTION IN
FOUR-DIMENSIONAL SPACETIME

Mirroring our classical derivation in § 3.2, we begin with the inhomogeneous
Maxwell’s equations, which describe the time-dependent electromagnetic field
produced by a given configuration of sources. Ultimately, all the properties of
the radiation field must be encompassed by the behavior of these equations,
which we have now seen coalesce into a single covariant expression (5.119) in 4D
spacetime. We remind ourselves that this is but one piece of the mathematical
description of the interaction between the particles and fields—the other being
the Lorentz force equation (5.129), which accounts for the effect on the charge
due to the presence of the field—so that both must be considered simultaneously
to produce a self-consistent description of the charge-field interaction. We shall
return to this in §§ 7.5 and 7.6 below.
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For now, we will consider the impact of the source equation, which in the Lorenz
gauge (0, A® = 0) may be written

Bx0% AP = flcf JB (7.1)

(see Equation [6.57]). Although this expression may look very different from
Equations (3.13) and (3.14), it contains very similar physics. What is different
here is that space and time are now linked by the special relativistic constraint
(5.44), resulting from the postulate that the speed of light is finite and invari-
ant from frame to frame. That is, it’s not so much that we must handle ¢ and
A (or more elegantly, A%*) differently, but rather it’s that the differentiation
variables x and ¢ need to be treated in a covariant manner. The solution to
Equation (7.1) must explicitly show a dependence on x and ¢ that is consis-
tent with the invariance of the spacetime interval As. This suggests that we
again approach the problem using a time-dependent Green function technique,
since we anticipate that the “retarded” nature of the classical solution will be
preserved. By analogy with (3.18), we seek a function

G(z,z'), (z =z%), (7.2)
such that 9 8
= n — 40 )
527 Pz, G(z,z') = 4né*(z — 2') (7.3)
where
M (z—2')=6(z° —2'%) 83 (x — x') (7.4)

is the 4D 4-function. In our classical treatment of this problem, we saw no
evidence that the solution for & and A should depend on the relative angle
between x — x' and our arbitrary choice of coordinate frame, and we argued
that G should therefore depend only on the magnitude of the vector x — x/,
not its direction, i.e., G(x,x') = G(x — x'). Here, the situation is at first
not as obvious, since we now know that length contractions and time dilations
are not the same in the “boost” and perpendicular directions. Thus, it might
appear that the 4D Green function could be angle dependent. But if we think
about this carefully, we realize that the angle dependence would enter into the
picture only during a transformation from frame to frame. Without specifying
this transformation a priori, the field solution wouldn’t “know” about it and so
we make the guess that G(z,z') = G(z —z'), which we shall justify by showing
that it yields a solution to Equation (7.1). So where does the angle dependence
enter the problem? Clearly, it must affect the transformation of x and ¢, and
it therefore determines the 4D orientation of the interval ® — 2’ in one frame
relative to that in the other. Thus, we can write

0 0

92% Oz

G(z) = 476%(2) , (7.5)
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where
2=z -2'°. (7.6)

To solve for G(z), we can expand it in terms of its Fourier components G(k),
where

G(z) = / &'k G (k) exp(—ika2z®) . (7.7)

@V

We must remember that we are now in 4D spacetime, so
koz® =ko2® -k -z. (7.8)

Thus, in the wave equation,

0 0 n
550 = )4 / A k(—ik,)(—ik") G(k) exp(—ikaz®)
= @ /d4kk2G(k)exp(—zkaz )
= 4n6'(2) = (2 7 /d“k exp(—ikqz®) . (7.9)

This last step follows from Equation (7.5) and the 4D Fourier transform of the
Dirac delta function. Thus, we need

kok* G(k) = —4m , (7.10)

which leads to the elegant result

G(k) = —4m /K| . (7.11)

This form of G(k) is known as the propagator (in momentum space) and is the
predecessor of several others in physics pertaining to their respective fields. We
therefore see that the Green function for this problem is

Gz —12') = —

/ d*k e"p{"ik"ga miA0) Sy (7.12)

(27r)4
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Unfortunately, this is still far from being a practical result because the integrand
is singular:
47 exp{—iko (z° — 2'%)}
(2m)* (k9)2 — k2
A straightforward technique for solving this integral employs contour integra-
tion in the complex plane, treating k° as the complex variable (Figure 7.1).

Gx-2') =

/d3kdko exp{ik-(x—x')} . (7.13)

Im {ko}
r
.
0 *+18
- . . > Re {k,}
_isy ~ K +IK
-
a Y

Figure 7.1 The complex kg plane. In order to evaluate the integral in Equa-
tion (7.13), we must incrementally lift the integration path off the real axis by
an amount +i0 and then close the contour with a semicircle at infinity.

Lifting the integration segment along the real axis by an amount 4 in the
direction of Im(kg), we can then close the integration loop with a semicircle at
infinity. However, we must be careful to choose a loop in either the positive
or negative imaginary half-plane subject to the condition that the contribution
to the integral from the semicircle is zero. Therefore, when 2 > 0, we need
exp(—ikoz®) — 0 in the limit |Im(ko)] — oo; i.e., when 2° > 0, we need
Im(ko) < 0 so that the loop must be closed in the negative half-plane. When
2% < 0, however, we must have Im(kg) > 0 so that the loop in this instance
should be closed in the positive half-plane. Clearly, depending on which of
these contours we choose for either segment r or segment a will decide whether
the loop encloses two singularities or none.

Before proceeding, let us take a short aside to review the residue theorem. If

f(z) is analytic inside and on a closed curve C, except for isolated singular
points 21, 22, ..., zn lying inside C, then

N
f f(z)dz = 2mi Y Res,—, f(2), (7.14)
c k=1
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where C is evaluated counterclockwise and Res,=,, f(z) is the residue of f(z)
at zp (Figure 7.2).

Figure 7.2 Contour C in the complex z plane enclosing singularities at
Z1, ..., 2n. The contours labeled v; fori = 1, ..., N surround their respective
singularities.

The residue is just the coefficient c_; in the Laurent expansion

oo
f(z) = Z cn(z — 2)" . (7.15)
n=-—00
An alternative expression (but following the same principle) is
) 1 dm—l
Res;=z, f(z) = lim - [(z —ze)™ f(2)] (7.16)

2 Zk (m —1)! dzm—

where z; is a pole of order m of f(z).

Case 1. For contour r (shown in Figure 7.1), G = 0 when 2° < 0 because
Im(ko) > 0 and C encircles no singularities. When 2% > 0, however,

exp{—iko(z® — 2'°)} _

ik (0 — !0
= —27i Res (exp{ iko(2” —2'7)}

k2 — k?

dk
C. 0 k% — k2

). @

the negative sign coming from the clockwise sense of C' when Im(kp) < O.
Evaluating the residue is simple when we factor the denominator, k% — k* =
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(ko + |k|) (ko — |k]|), for then

— 0 _ 0 . 0 __ .10
dko exp{—iko(x - z'%)} — _9mi! lim exp{—iko(z’ — 2'?)}
C» k§ —k ko— K| (ko + [k|)
. exp{—iko(z® — 2'%)}
+ lim , (7.18
ookl (ko — KD (7:19)
" {=iko(a® 20} __2n
exp{—iko(z” — z 0
fcr dko oy T sin[|k| (z° — 2'?)] . (7.19)
Thus,
0 : 0_ .0
Gr(:c—m')=47r((92(z3) / &IK| exp{ik-(x—x’)}sm[lk'(rkl 2N (7.20)

where ©(2°) is the Heaviside function defined to be +1 when the argument
2% > 0 and zero otherwise. Let us now choose the axes so that

x—-x'=(0,0,z3 —2'3), (7.21)

which we are certainly free to do because we are integrating over all angles of
k. Then, in polar coordinates,

10
Gr(z—12') = 4#—%-(271_)—3)/ k| d|k| sin 8 d dp exp{ilk||x — x| cos 6}
- 0_ 10
. StnllK (ﬁq iy (7.22)

The integrals over § and ¢ are trivial and lead to the result

8O (z° — z

10
Grla—a') = T = ) / dlk| sin(|k| [2°—2'°]) sin(|k| [x—x']) . (7.23)

In addition, putting sin@ = (exp[if] — exp[—i6])/2i and noting that the inte-
grand is an even function, we get

O(z° — z) :
Gr(z — ') =] dlk| [exp{i[k| (2° — '® — |x — x'|)}

—00

— exp{ilk| (z° — 2'% + |x — x'|)}] . (7.24)
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Since (z° —2'®) > 0 and |x —x'| is positive definite, the argument of the second
exponential is never zero, and since the integral is a delta function, it therefore
does not contribute to the Green function. That is,

6(x° —2'% - |x —x']) . (7.25)

This recovers the retarded (or causal) Green function because the source-point
time z'® is always earlier than the observation-point time z° (compare with
Equation [3.23]). The sequence followed to produce the potential A is shown
schematically in Figure 7.3.

in i

Figure 7.3 An incoming electromagnetic wave A! (known at z0 = —o0)
interacts with a localized source J# to produce the general retarded solution
AH(x).

Case 2. A similar calculation for contour a in Figure 7.1 gives G = 0 when
2% > 0 because now Im(kg) < 0 and C encircles no singularities. For z° < 0,
however,

O(=[z° - "))

pc— x|

Go(zr—2') = 6(z —2'% + |x — x']) . (7.26)

This is the advanced Green function because z'° is always later than z°.

With the retarded and advanced Green functions in hand, we may now complete
this section by writing down the solution to the four-dimensional wave equation
(7.1). Consider first the case where we have a known incoming electromagnetic
wave Al:. Based on our previous experience with Equations (3.26) and (3.27),
we expect that at any later time z°, the potential is given by

Ab(z) = AP (z) + % / &2 Gz — ') () . (7.27)
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To see this, we note first that 9,0* AL, (z) = 0 since AL was produced at some
spacetime point z;, # z. That is, any local J# does not contribute to A{;.
Second, we also know that

0,0° %/ d4z'Gr(wfw') JH(z') = -1—[ d*z' 0,0% G (z — ') J* (=)

= 4?” / &z’ 54z — ') JH (') = 4—075 @) . (128
And so, 8,0% A*(z) = 4w J*(x)/c, as required.

If we instead knew the outgoing electromagnetic wave Af (), then we could
write

AB(z) = AR (z) + % / da' Go(z — ') JH(@') (7.29)

where z'° inside the integral must be restricted to values greater than z°.
Clearly, this potential also satisfies the wave equation, since 9,0* AL . (z) = 0.
As before, writing the potential this way, we are subtracting the contribution
to Ab . (z) from sources at z° < z'°.

7.2 LIENARD-WIECHERT POTENTIALS
AND FIELDS FOR A POINT CHARGE

In a given inertial frame K, a point particle’s charge and current densities are,
respectively,
p(x,t) = qu(x - xq[t]) ’ (7.30)

J(x,t) = qv(t) 83 (x — x4[t]) , (7.31)

where x,(t) is its trajectory, and by definition, v(t) = dx,/dt. In the spirit of
our 4D reformulation of radiation theory, we write these in covariant form as
follows:

J4(z) = ge / dr uh(r) 64(& — zg[r]) | (7.32)

where the proper time 7 parameterizes the trajectory and u#(7) = dzh(7)/dr
is the particle’s 4-velocity defined in Equation (5.125). To confirm that J*
reduces to the correct frame-dependent densities, we use the property of the
Dirac delta function expressed in Equation (4.154). Putting

f(r) =2 -2, (7.33)



170 CHAPTER 7

with
x0 — 582(7'0) =0, (7.34)
we see that e
df T
Thus, according to Equation (4.154), we should have
|
JH(z) = gcut(10) 63 (x — x4[70)) E’—_q— (7.36)
To
But . .
dx dz, |dt
—9 =9 |=
dr dt |dr|, "’ (7.37)
To
and dz* dz* | dt
by = () 24 | &
ut (7o) < I )To g |ar|, (7.38)
Therefore,
u 3 dz*
JH(z) = ¢6°(x — x4[70]) — (7.39)

which is the required form.

Returning now to the general solution for A#(z) in Equation (7.27), and as-
suming the absence of an incoming wave (i.e., the entire potential is due to the
action of the charge), we see that

At (z) = %/d“x' 9—%{—% 8(z° —2'% — |x — x'|) JH(z') . (7.40)
One way to proceed from here is to use the identity
§{(z-2")?} = 6{(a°-2'9%-|x—x'|*}
= §{(z° -2 - |x—x)(=° - 2'° + [x — x'|)}

1
= m{5($0—$’0—lx—x’|)

+ (2% -2+ |x—x'|)} . (7.41)

Since the © function selects only one of these two terms by virtue of the fact
that both (2 — 2'%) and |x — x/| are positive for the retarded case, we may
thus write

Gr(z —2') =20(z° — 2'%) 6{(z — 2')*} . (7.42)
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Clearly, the advanced case is similar, except that z'® and z° are reversed:
Ga(z —2') =20(2'® - 2°) 6{(z — 2')?} , (7,43)
And so rearranging the integrand in Equation (7.40), we arrive at
AH(z) = 2q/d4w' O(z° —2'% 6{(x —2")?} /dT ub (1) 6z’ —z4(7)} . (7.44)
Let us rewrite this in the form
At (z) = 2q/d7' /d4:1:'O(wo—z'o)é{(x-—z')2}u“(r) 6*{z' —xz4(1)}, (7.45)

suggesting the order in which we will carry out the integrations, motivated
by the fact that the argument of the second delta function is linear in the
integration variable z’. Thus,

Ak (z) = 2 / dr 0{z® — 20(1)} 6{[z — 2 ()P} uk(r) . (7.46)

The argument of the remaining delta function is not linear in 7, and we must
again use the identity expressed in Equation (4.154), for which we need

f(r) = [z —g(n)?
= {2% - 2(n)} ~ {x = x,(n)}?
= {2 - zg(r) +Ix = xg(N} x {2° = 2(7) — |x = x,(7)} . (7.47)

The zeros of f(7) are given by the light-cone conditions (Figure 7.4)

L :cg(ro') = |x - x4(5)| (7.48)
and
20— 20(rif) = —|x — xq( )] - (7.49)
Now, J
% =2[z* -z (T)]uu(r) , (7.50)
so that p |
'é = 2[z* — zf (0)] upu(m0) - (7,51)

Putting all this together gives us the solution for A*(z):

A4 (z) = { qu(r) }r=r . (7.52)

[z — zg ()] ua(T)
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time

- space

Figure 7.4 The world line x4(7) of a charge ¢ shown in a reference frame
in which an observer is measuring the electromagnetic field at the spacetime
point x. Extending the light cones into the future and the past from x shows
that there are two locations where the particle’s trajectory intersects the light
cones, since the particle’s path cannot ever have a gradient shallower than that
of light, which would require a velocity greater than c. The two intersection
points are the light-cone conditions expressed in Equations (7.48) and (7.49).

Note that although two solutions 75~ and 7 are possible, only one (the retarded
one) is allowed by © in the Green function. As we would expect based on our
earlier experience in Chapter 4, the charge contributes to the potential A#(z)
only at the retarded time 75, defined by the light-cone condition

{z—z,(5)} =0. (7.53)

From here, it is a straightforward task to reduce A#(x) to its noncovariant
form, constituting the Liénard-Wiechert potentials that we derived earlier in
§ 4.6.1. Let us write

Ua(z® = 32[n]) = uo (2° — z)[n0]) — u- (x — x4[70])

= elx = xq(10)| — YV - (X —Xq[n]) ,  (7.54)

where we have made use of the retarded time condition in Equation (7.53).
That is, .
U (z® — 2g[T0]) = velx — Xg(70)|(1 = B - 7) , (7.55)
where
= EXm)) (7.56)
|x — x4(70)|
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Thus, in a frame for which the potential decomposition is A* = (®,A), (7.52)
becomes

q
®(x,t) = _ , (7.57)
_(1 - B : n)lx - qu_J ret
and _ .
A(x,t) = _ ‘{ﬁ , (7.58)
L(l - B-f)x - xq'_ ret

where “ret” means that the quantities inside the bracket are to be evaluated
at the retarded time 7; as given in Equation (7.48). In this frame, the fields
are correctly given by (1.35) and (1.37), and so we recover the solutions (4.166)
and (4.167), except that we here write E in a slightly different form using the
Lorentz factor ~:

A —B
¥2(1- B - 7)3 R?

+g[ﬁx{(ﬁ—ﬁ)xﬁ}

E(x,t)=q[ c (1-8-A)3R

] . (7.59)

ret

where R = |x — x(79)| and 72 = R/R. We remind ourselves that the first term
falls off as R~2 and represents the near (or “velocity”) component of E, whereas
the second term is the far (or “acceleration”) field that falls off as R=!. The
acceleration fields are transverse to the radius vector.

7.3 ANGULAR DISTRIBUTION OF THE
EMITTED RADIATION

When the particle motion is nonrelativistic, the angular distribution of its emit-
ted field is simply the familiar sin? @ behavior of dipole radiation, where @ is
measured relative to the direction of acceleration. However, when 8 — 1, the
acceleration field depends on v as well as a, and so the distribution is not so
simple. We can learn more about the radiation pattern in general by looking at
the Poynting flux, which must here be written in terms of the retarded fields:

C
Sret = E [Erad X Brad]ret ) (760)

where '

_q[ax{(h-5 x B}
Firea = ¢ [ (1 —ﬁﬁ)3R ]ret ’ (7'61)
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and
Braa =7 X Erag - (7.62)
In terms of the particle’s dynamical quantities (Figure 7.5),
: (6= B) x B[
_ 9 1 n x [(n - B) x
[Slrec = dmc | R?| (1-4-7)3 ‘ ’ (7.63)

ret

Figure 7.5 The vectors used to calculate the Poynting flux S for the radiation
field of a particle moving along its trajectory x4(t).

But before we start using S to analyze the angular distribution of the emitted
radiation, let’s make sure we understand exactly what this quantity represents.
Clearly, it must be the energy per unit area per unit time passing by the
observation point. However, an interval of time At for the observer is not the
same as an interval At' for the emitter. Noting that the solid angle subtended
by an element of area AAA a distance R from the source is AQ = AA/R?, we
infer that the power radiated into AQQ is

dt

AP(t') = AQ R?|Sye; - 7 = (7.64)
implying a radiated power per unit solid angle
dP(t') 5 . dt
70 A R |sret ) 8}7 . (7.65)

We found that the retarded time can be expressed in terms of ¢ and the distance
to the source, i.e.,

t=t 4 (7.66)
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whereby
a _ o 2@ - 2] - (@)l — y(t)] - 2tz — ()]}
d clx — x(©)
= (1 - :g ﬁ')lret . (7.67)

Thus, we arrive at the very important result

dP(¥) _ ¢ [ x{(~B) x )P

dQ  4mc (1—n-B)

(7.68)

ret

Example 7.1. Suppose the particle is being accelerated in a direction
parallel to its velocity, i.e., 3 o ﬁ (Figure 7.6).

Figure 7.6 The radiation beaming cone for a particle being accelerated in
the direction of its motion.

Then,
dP(t')  ¢*»®  sin?6
dQ@ — 4mcd (1 - Bcosh)s’

(7.69)

where 8 = v/c and sinf = A x 3 /|8]. The intensity reaches a maximum at

some angle 6,,, where
d dP(t')\ _
d(cos8) ( ag ) =0, (7.70)

yielding the condition

141582 -1
v +3ﬂﬁ . (7.71)

cosf,, =



176 CHAPTER 7

When 8 — 1, we find that

1
(B —1) = 5y <1, (7.72)
and we conclude that most of the power is therefore emitted (perhaps beamed is
a better word) within a relatively narrow cone with opening angle ~ 260,, =1/~

about ﬁ x B

7.4 BREMSSTRAHLUNG RADIATION

As a straightforward application of some of the ideas we have been developing
in Chapters 5 and 7, we will now consider the free-free (or bremsstrahlung)
radiation due to the acceleration of a charge in the Coulomb field of another
charge. A full treatment of this process requires quantum mechanics, since
photons of energy comparable to that of the emitting particle can be produced
(Heitler 1954). Our discussion here is valid only for a frequency w < ymc?/h
of the emitted radiation. In addition, quantum mechanical effects manifest
themselves when the collision distance shrinks to a value smaller than that of
a region specified by the uncertainty principle. For a given incoming particle
momentum p = ymuw, its path may be defined only to within an uncertainty
Ab R h/p. Classically, however, a particle with charge e and velocity v can
approach another particle with charge Ze to within a distance by, =~ Ze?/(y—
1)mc?. Thus, a classical treatment is valid only as long bmin/Ab > 1, which
occurs when 2Ze?/hv > 1, or v/c < (Z/95). The classical treatment we
consider here is accurate only when these conditions are satisfied.

We proceed by using a technique known as the method of virtual quanta
(Williams 1935). Let us consider the collision between a relativistic electron
and a heavy ion of charge Ze, which is moving much more slowly as seen in
the laboratory frame (Figure 7.7). We shall begin by first moving to a ref-
erence frame (the “primed” frame) in which the electron is initially at rest.
For simplicity (and without any loss of generality), assume that the ion moves
along the z'-axis. Based on our analysis in §§ 4.6.2 and 7.2, we expect that
when |v'| = ¢, the electrostatic field of the ion is transformed into an essen-
tially transverse wave with |E'| ~ |B’|, which appears to the electron to be
a pulse of electromagnetic radiation. It is this “bunched” field that Compton
scatters off the electron to produce the emitted radiation. In effect, relativis-
tic bremsstrahlung can be regarded as the Compton scattering of the virtual
quanta of the ion’s electrostatic field as seen in the electron’s frame. We shall
see how this works in practice below.
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Figure 7.7 The collision between an electron (initially at rest in the primed
frame) and an ion moving along the z’-axis with velocity v/. E' and B’ are the
electric and magnetic fields due to the ion at the position of the electron.

In the ion’s rest frame, which we shall refer to as the double-primed frame, the
electric and magnetic fields are simply given as

E' = Zea"/r" B' =0,
E) = Zey"/r B! =0,
E' = Zez"|r"® B! =0, (7.73)

where " = /"% + y"% + 2"%. Thus, according to the field transformation
Equations (5.131) and (5.132) with the appropriate inversions and change of
boosting direction, the electron “sees” the field components

3
E,=E] =Zez" 7",

/

E, =v(v') (E;’ + % '0) =y(v') Zey" [r"?

!

E, =~(v") (E;’ - ?c— -O) = y(v') Ze2" /", (7.74)

and similarly for B’, where y(v') is the Lorentz factor defined in Equation
(5.14), but here in terms of the ion’s velocity v’ as seen by the electron. How-
ever, we must also remember to transform the coordinates appearing in Equa-
tion (7.74):

2" = () (@' =o't

y' =y,
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2=z,
1/2
r' = {72(1)')(0:’ —v't)2 4y’ + z'z} : (7.75)

If we now choose the coordinates such that ¢’ = 0 when the charges have their
closest approach (see Figure 7.7), these transformations reduce to

y” — yl — bl ,
& = =0,
' = =yt (7.76)

and so the electric and magnetic field components acting on the electron in its
own rest frame are given by the expressions

_ —Zevy(v')v't _
E; T (N2 (0 Ny 2412 1213/2 B;’ =0,
[Y2(v")u' " + b7
Zevy(v') b
r_ —
Ey T [a2(ay Y2412 1213/2 B; =0,
[y2(v' )% + b
! ! v, !
E, =0 B, = . E, . (7.77)

Clearly, the fields seen by the electron are strongest when v(v') v't' S b, that
is, for times

bl
Y@W)v'
This means that the fields are concentrated in a plane transverse to the ion’s
velocity, within an angle #', where

¢S (7.78)

14/
tanf' ~ vl o 1
oo ()
Since y(v') > 1, this reduces to the condition ' ~ 1/v(v'), and we see why the
field of a highly relativistic charge appears to be a pulse of radiation traveling
in the same direction as the particle, confined to a narrow transverse region, as
shown schematically in Figure 7.8.

. (7.79)

To find the spectrum of this radiation pulse, we use the magnitude of the
Poynting vector
aw' ¢

T EZ(t), (7.80)

8’| =
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representing the energy flux per unit time per unit area. The total energy per
unit area in the pulse is

dWl C ° ,2 I 1
—_—= t . 81
dA" " 4 /_oo E°(#) d (7.81)

Figure 7.8 The field of a highly relativistic ion as seen in the electron’s rest
(i-e., primed) frame. Using the coordinate system defined in Figure 7.7, we see
that E’ is concentrated in the y’-direction whereas B’ points along the 2’-axis.

But now writing the Fourier transform of E'(t') as

~ 1 S
B = — / E'(t)) exp(iw't') dt’ (7.82)
2r J_o
we know from Parseval’s theorem for Fourier transforms that
o0 [o ] "
/ E?(t') dt' = 2n / |E' (w")|? dw' . (7.83)
— 00 — 00

Since E'(t') is real,

E'(-w') = %/ E'(t') exp(—iw't') dt' = E"™ (") , (7.84)
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so that A A
|E'(W")|? = |E'(-w)?, (7.85)

and therefore,

/ E(¢) dt' = 4n / B ()] do . (7.86)
—00 0

We do this in order to end up with an expression that involves only physically
meaningful frequencies. Thus,

dWI o0 "
o =c / B ()2 ' (7.87)
0
and so I
m = c|E'(w')|2 . (788)

Ignoring the negligible components of E' (see Equation [7.77]), we have in this
application

) 1 [
B) = — / E!(¢') exp(iw't)) dt’ (7.89)
2T J_ o
or more explicitly,

E'(W') =

/ bl o0 W Y tl
Zey(v') / exp(iw't’) d (7.90)

o —oo [,},2 ('U') 22 + b12]3/2 ’

which can be evaluated in terms of the modified Bessel function K; of order
one:

A Ze b’w’ blwl
e
E (w ) - v’ (")’(’U')’v’) K, (—"7(1),)”,) . (791)
Thus, the spectrum is
dWw' e e (Ze)?c o' 2 o [ bW
dA’ dw' =B = 20202 \ y(v')v' 16 e ) (7.92)

Note that this frequency distribution starts to cut off when
W' >y /Y, (7.93)

which is consistent with the fact that the pulse is confined roughly to a time
interval of order ¢’ ~ b’ /v(v')v’. Thus, the characteristic cutoff frequency should
be

p 1 @) (7.94)

Y —

t o
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which is the value we infer from the complete expression (7.92). Of particular
interest is the situation where v' — ¢. According to our discussion at the
beginning of this subsection, this can occur for sufficiently large values of Z.

In that case,
dw'  (Ze)? [ bw' \® _, [ b )
= . .95
dA'dw'  w2b2%c \ y(v')c K; v(v')e (7.95)

This is the photon spectrum, in the form of a pulse, that scatters off the electron
to produce the bremsstrahlung radiation we see in the laboratory frame. To
simplify matters, let us consider the low-frequency domain (specifically, the
region hw'/2m S mec?), in which the scattering of the virtual quanta by the
electron occurs in the Thomson limit with a constant cross section op. The
scattered radiation is then

aw’ daw’
@l T A

(7.96)

scatt

And in the final step, when we wish to transform this to the laboratory frame
where the radiation is actually measured, we note that both the energy W and
the frequency w transform as the 0-components of 4-vectors (i.e., they trans-
form identically), so that dW/dw is invariant. The scattered virtual radiation,
or what we would otherwise call the relativistic bremsstrahlung emission, there-
fore has the following distribution in frequency as seen by an observer in the

laboratory:
_ (Ze)? [ VS 2 o b
lab =0T m2b2¢ v(v')e Ki y(')e) (7-97)

Earlier, we mentioned that the ion is moving slowly in our frame. We haven’t
actually used this yet, but we can now see why this restriction simplifies mat-
ters somewhat, for v’ is then almost equal to the electron’s velocity v in the
laboratory. In other words, the electron’s velocity is by far the dominant con-
tributor to the relativistic effects during the transformation, and so we can put
v(v') = 4(v). In addition, we can put b = b’ since the impact parameter is
measured perpendicular to the relative direction of motion between the elec-
tron and the proton. The only remaining frame-dependent quantity appearing
in Equation (7.97) is the frequency, which we may transform to its laboratory
frame counterpart using Equation (5.31), though actually in this case it’s easier
to use the reverse transformation

aw

dw

w=vy(v)w'(1+ Bcosh'), (7.98)
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where @' is the scattering angle in the electron’s rest frame. In the Thomson
limit, an observer in this frame sees scattered radiation with front-back sym-
metry, meaning that when we average out the angle dependence in Equation
(7.98), w ~ v(v)w'. Thus, with the final substitution

8t et

T=F mikL
we get the laboratory frame bremsstrahlung emissivity (Figure 7.9)

daw 8228 [bw\® _, [ bw
dw ~ 3rb2cPm? (7%) Ki (:y?_c) ' (7.100)

(7.99)

Asymptotically, we know that
1

Ky (z) ~ e k1), (7.101)
and \1/2
Ki(z) ~ (%) exp(—z) , (z>1). (7.102)

Figure 7.9 Sketch of the bremsstrahlung spectrum, which is independent of
frequency for low values of w, and falls off exponentially for w > wc, where

we = 72¢/b.

Thus, at low frequencies (i.e., w K we = 42¢/b), dW/dw is independent of w.
However, at large frequencies (i.e., w > We),

aw w —2bw
- ~7F exp ( or ) , (7.103)
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and so the spectrum falls off exponentially. The overall distribution is shown
schematically in Figure 7.9.

This type of particle emissivity occurs quite frequently in nature and is ex-
tremely useful in providing us with a means to infer the underlying physical
conditions at the source. High-temperature plasmas, such as those encountered
in confined fusion systems, or near the surface of very compact astrophysical
objects, are particularly good examples of this. In a hot gaseous environment,
the average particle energy is given in terms of the plasma temperature T ac-
cording to (E) ~ 3kT/2. Thus, when a particle with this energy is incident
on a scattering center, its distance of closest approach b corresponds to the
situation where all of this kinetic energy is converted into Coulomb potential
energy (Ze?/b), so that in general, b ~ T~!. Since in addition w, = w.(b,T), it
is clear that w, therefore effectively depends only on the temperature, and the
location of a “knee” in the observed spectrum immediately gives us a measure
of the particle energy through the inferred value of T'.

7.5 RADIATIVE MOTIONS OF A POINT
CHARGE

What happens to a charge while it is radiating? Although this may sound like
a philosophical inquiry, it is in fact one of the most intriguing questions we can
ask in electrodynamics. We have avoided thinking about this too hard all along
with the justification that if we stay in the appropriate particle energy regimes
and consider only sufficiently low-frequency fields, then the particle motion can
be described as if the process of radiative emission has no effect on the sources
themselves. In other words, we have assumed that while they are radiating,
the particles undergo only minimal changes to their energy, momentum, and
angular momentum as a result of this process. But surely something must be
happening to them, since the fields do in fact carry dynamical luggage away
from the charges, as we showed in § 3.3. And yet when we measure the mass of
the electron before and after it has radiated, it always has the same value. With
our development of a relativistically correct theory, we are now in a position to
stray away from our previously self-imposed restrictive energy ranges and begin
to explore what our presumably correct field and dynamics equations tell us
about the process of radiation in more extreme situations. Our hope is that by
stretching our analysis in this way, we will start to see how the charges react to
the creation of a field and thereby to understand the process of emission itself.
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As we saw in § 4.6.2, the Poynting vector representing the radiative flux emitted
by an accelerated charge has a magnitude given by Equation (4.176). In terms
of the elemental solid angle d2 = d A/r?, where d A is an increment of area, the
power radiated by the charge per unit solid angle is dP/dQ = g%a? sin® /4w c3.
Thus, in classical electrodynamics, an accelerated charge g emits radiation at
the Larmor rate

P= -2-‘-13(\';)2 (7.104)

~ 3¢c3 ’ '

where a = |v|, which is the integral of dP/df2 over all solid angles. One often
assumes that the particle’s trajectory (and hence v) are known a priori and
so calculating the rate of energy loss P is straightforward, if not completely
accurate. A correct treatment of this problem would require the equations de-
scribing the accelerated motions of point charges to be modified if the reactions
on the motions from their radiations are to be taken into account. Let us add
a radiative reaction force Faq4 to the Newtonian equation of motion, so that

mV = Fext + Fraq (7.105)

where F,q must be chosen to account for the energy loss given by Equation
(7.104). But how do we determine what F;a.q looks like? One of the physical
arguments we can make is that energy should be strictly conserved during the
interaction, and so over the course of the motion (from time ¢; to t;) we should
have
/tzF Py 7.106
. raKiv—-363tlvv. (7.106)
In a sense, this is a way of calculating the average radiative reaction force acting
over the time interval ¢t — ¢t;. Now, integrating by parts, we have

2¢2 (2. . 24 . o 202 [
33 . v-vdt——3—C3(V‘V)|t1+3—c3- ; v-vdt. (7.107)

Generally speaking, the acceleration acts over a finite time so that by choosing

t1 and t, appropriately, we can impose the condition that v — 0 at the end
points of the time interval. When this is the case,

t2 2q2 .
/t1 dt {F,ad - 3—03-—v} v=0, (7.108)

and since this should be true regardless of what the particle’s velocity profile is,
we may identify the radiative reaction force as (Iwanenko and Sokolow 1953)

2q2 ..

33V (7.109)

Frad =
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It follows that the dynamics equation for the radiating particle should then
be modified to what is known as the Abraham-Lorentz equation of motion
(Lorentz 1915)

m(V —7V) = Fexs | , (7.110)
where 02 \
= q ~ —-24 Z.T_l_e. g
re = s 6.3 10 (m) (e) s (7.111)

is roughly the time it takes light to cross the classical electron radius r, =
e?/mec® when m = m.

It is clear therefore, and this confirms what we have been assuming all along,
that the radiative reaction m7,.V is almost always negligible during accelerations
by a force Fex; that falls within the confines of classical analysis. A force
producing acceleration variations violent enough to make 7.V ~ v would have
to contain Fourier components with frequencies of the order of 1/7.. In this
regime, the field quanta are y-rays with energy h/277, ~ 100 MeV. However,
electron-positron pair creation sets in at hv R 2m.c? ~ 1 MeV. At these
energies, the classical analysis is no longer valid since quantum effects cannot
be ignored.

Example 7.2. Although in the classical domain the radiative reaction
is small, it is nonetheless nonzero. Let us consider the case of a nonrelativistic
charged harmonic oscillator to see what observable effect, if any, we can expect.
The nonrelativistic equation of motion we should use is Equation (7.110), with
a harmonic external force

Fex, = —kx , (7.112)

corresponding to a natural frequency wy = \/k/m. The equation of motion for
a one-dimensional problem is thus

.. di
i +wir=1.—, (7.113)

dt
and this is what we must now solve for z. Putting z ~ €™ in this equation
yields the dispersion relation w? — w2 — iw® 7. = 0. Fortunately, we know that
in most circumstances 7. € 1/w and w & wy, so that our solution should not

differ greatly from that in the absence of damping. That is, we expect that

x ~ exp(iwpt) , (7.114)
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for which
T~ iwoa: y
i~ -z,
and i
Z;:' ~ —idz = —wii . (7.115)
We can thus rewrite Equation (7.113) as
i+ wit~ —TWwit (7.116)
or
E+Tt+wiz~0, (7.117)

where I' = 7.w? is the “damping constant.” Since 7, is very small, most physical
systems will have I' < 1, and so to lowest order in T', the radiatively damped

solution is
z ~ A exp(—iwpt) exp(-TI't/2), (7.118)

as may be verified by direct substitution into Equation (7.117). A is the initial
amplitude of the motion. We see that the potential energy U z? of the
oscillator thus decays as exp(—I't). So yes, the charge does radiate because
it has an accelerated motion, and over time the cost is borne by its potential
energy which eventually goes to zero.

Because of radiation damping, the fields emitted by the oscillator cannot be
monochromatic, since the motion is changing over time. We can estimate the
emitted line width by considering a Fourier expansion of the field, which will
contain all the contributing frequency components. Let us put

E(x,t) = Eo(x) exp(—iwt) exp(—TI't/2) = /;oo E,(x) exp(—iwt) dw , (7.119)

where the time dependence of E is suggested by the solution for . Then, the
Fourier component with frequency w is

£ Eo(x) [ . .
E,(x) = o exp(—iwpt) exp(—T't/2) exp(iwt) dt
0
Ey (X) 1
o w—wo)—T/2° (7.120)
The radiation intensity I, is proportional to E2, so that
I, = Lol L (7.121)

T2 (w—w)2+12/4°
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normalized in such a way that
o0
/ I, dw = I (7.122)

(see Figure 7.10).

Figure 7.10 Broadening of the emission line from a charged harmonic oscil-
lator, due to the damping effect of the radiative reaction force on the particle.
I' is the half-width of the line at half maximum intensity, and wg is the natural
frequency of the oscillator.

The frequency half-width at half-intensity is therefore?°
Aw1/2 ~I = Te w2 . (7123)

By way of example, a charged oscillator with the same parameters as a typ-
ical electron in an atom would produce a line with a wavelength half-width
AAl/z/A ~ 10—8.

20In addition to a broadening of the line, the radiative reaction also induces a line shift due
to the dissipative effect of the emission. However, the classical prediction, which is that the
shift is much smaller than Aw, /; is quite different from the correct quantum mechanical value.
The reason for this is that even in the absence of “real” photons, the quantized radiation
field is subject to vacuum fluctuations involving the spontaneous creation and annihilation of
electron-positron pairs, which act on the charged particle to cause a shift in its energy. This
radiative shift, known as the Lamb shift, was first observed in 1947 (Lamb and Retherford
1947).
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7.6 RADIATION DAMPING AND THE
RELATIVISTIC LORENTZ-DIRAC
EQUATION

Let us now break away from the overly restrictive low-energy domain we have
been considering and instead use a relativistically correct framework to study
the behavior of accelerated charges when v — c. Because the radiation rates
are greatly enhanced in this limit, we expect that the radiative damping effects
will be appreciable. To do this, we need to generalize the Abraham-Lorentz
equation into a covariant form.

Consider the electromagnetic force on a charged particle arising only from an
externally applied field. According to Equation (5.129), the covariant electro-
magnetic force on a charge q is

(s
‘% = %F“.,m , (7.124)

fo=

and we remind ourselves that the 4-momentum p® = mu® is given in terms of
the particle’s rest mass m. Let us be very careful and not make any unneces-
sary assumptions here. This force equation must preserve the correct balance
between the effects on the particle’s energy and its momentum from frame to
frame, since this is a physical law that all observers must agree on. How do we
see that? We know that the individual components of f* are not conserved, but
a scalar formed from the contraction of f* and another 4-vector is a constant.
We have several choices to pick from, but let’s take the simplest one available
to us, which is the 4-velocity. In effect, what we are doing is to take the “pro-
jection” of f* in the direction of the particle’s motion (i.e., uq), and since this
projection is a 4-scalar, it must be invariant from frame to frame. Physically,
this amounts to determining the relationship between the power exerted on the
charge and the rate of change of its momentum in one frame and then using
the known properties of a Lorentz transformation to see what restrictions may
be imposed on the particle’s mass and velocity. We thus make the contraction
(i.e., take the projection)

Ug f& = %F"‘»,u"ua =0, (7.125)

where the last equality follows from the antisymmetry of F'*,. Though seem-
ingly trivial, this is a very fundamental result, for it says that

dp®* md o (dm
Ua —— = 5 dr(u Ua) — (U%uUqy) o =0, (7.126)
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or since u®uqy = c2,

dm/dr=0] . (7.127)

So the external electromagnetic field induces an interaction that does not
change the particle’s rest mass, only its momentum p = ymv. This is im-
portant in view of the fact that the particle’s own field E,w, represents an
energy distribution and therefore a mass density E2,, /4wc?.

This presents us with somewhat of a dilemma because while f* may impart ki-
netic energy K and momentum p in the right proportions to leave the particle’s
rest mass unchanged,

m?c® = (K + mc®)?/c® - p?, (7.128)

the depletions by radiation alone do not! In other words, if we try to accelerate
a charge with an electromagnetic field F'®.,, according to our current set of
equations, we give it the right combination of K and p to keep m constant, but
as a result of the induced acceleration, it must then radiate away fractions of
these that will not preserve the value of m. This is a consequence of the fact
that a charged particle can only give up energy and momentum in proportions
consistent with p*p, = m2c? # 0, whereas the radiation field takes up propor-
tions consistent with a zero photon mass (as we discussed earlier in § 3.3.2).
But we know that charges emerge from radiative processes with their total rest
mass intact, so there must be some additional reaction—a temporary distortion
of the attached self-field—that cancels out the rest-mass changing effects!

Understanding what these distortions are is not trivial, but we can begin by
analogy with the nonrelativistic case and argue that no matter what, the ra-
diation process must induce a back reaction on the charge, which we shall call
(dp*/dT)raq. Now, in the particle rest (i.e., primed) frame, the radiation is
emitted with front-back symmetry, implying that incrementally dp’ = 0, so

that "
(l) =0. (7.129)
dr rad

However, the charge is losing energy at a rate commensurate with the Larmor
value (Equation [7.104]), so that

El
(d—) —_P, (7.130)
dr rad
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Since dp’ = 0 and dx’ = 0, the transformation of the energy interval (i.e., the
0-component of p'®) into the lab frame is simply

dE = vdE', (7.131)
and similarly,
dt = ~drt . (7.132)
Therefore,
!
P=P=— (@) - (?E) , (7.133)
dt rad dr rad
so that IE IE
(_) =y (_) — P, (7.134)
dr rad dt rad
Similarly, the transformation of the spatial portion of p® here gives
3P
(d—p) o (7.135)
dr rad ¢
or .
- (gB> = éP. (7.136)
dt ] .4 ¢

Thus, in covariant form, we must have

dp® P
— (%) = EE u® . (7137)
rad

The instantaneous balance of energy and momentum changes then requires that

ap® _ a_P o o«

— =f* = =u*+k". 7.138

dr f c? + ( )
We already know that some 4-vector kK must be present in the equation of
motion, because the rest mass m is known to be the same before and after the
interaction and otherwise the equation would not comply with the rest-mass-

preserving property u® dpo /dT = 0. That is,

P
Ua f& — Ua u® + uak® =0, (7.139)
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so that with us f* = 0, we must have

U K™ = cz;uau"‘ =P. (7.140)
In principle, Equation (7.138) is the self-consistent expression we have been
looking for to describe the particle’s radiative motion. It correctly takes into
account the acceleration due to the external field, the reaction on the particle
due to the emission of radiation, and an additional term that guarantees the
observed constancy of the rest mass m. We may interpret this term as an
effect resulting from the distortion of the particle’s self-field, but we still need
to evaluate it. Much of this rests on the nature of the Larmor power P. We
know that it is a Lorentz invariant quantity, so its form written in terms of
4-vectors must be covariant. In the particle’s rest frame,

2¢>
/I 12
P' = 33 |a"|*, (7.141)
where a’ is its acceleration. Let us now define the 4-vector
du*
b= .142
at=—, (7.142)

with the intention of using it to write Equation (7.141) in terms of 4D language.
Evaluating a* in the rest frame with v = 0 and v(v') = 1, we find that
a'* = (0,a’'), where a’ is the Newtonian acceleration, and so in this frame

2(]2 !
~330
As we said, P is an invariant and since a* is a 4-vector, this form must be valid
in all frames. The result of this is that we can now rewrite Equation (7.140) as

P = Bal, . (7.143)

2 2
Ug K = ——3—33 a®aq , (7.144)
which becomes after integration by parts (as in the classical limit),
2¢% d?u®
a —
=33 g2 (7.145)
We thus arrive at the covariant Lorentz-Dirac equation
du® . 2¢° [d®u®  u® du* du,
—_— = — |-+ — — —F 14
= f 3c3 | dr? ¢ dr dr (7.146)

(Barut 1964; Rohrlich 1965), where f© is given by Equation (5.133).
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A slightly different way to understand our derivation is to argue that f* cannot
be the complete expression for the electromagnetic force on a charge. We
know for sure that Equation (7.137) must hold true and that dm/dr =0, i.e.,
the energy stored in the charge must remain untouched. Thus, the “correct”
electromagnetic force f2&, must be such that usf&; = Pu®us/c = P # 0, so
that we need to make the identification

fiov = f* + 5%, (7.147)

where k is the missing piece of the force. In other words, we know that the
charge is left unchanged after the acceleration. Therefore, the radiation field
must ultimately have its origin in F*g. The term k“ represents the transition
of the field from its external configuration F®g to its final radiative form.

Example 7.3. Suppose a charge ¢ is moving relativistically in one di-
mension. Then, with |p| = p, the spatial part of the Lorentz-Dirac equation
becomes

dp 2¢% | d? dy dyv
3——7F()+3csl —(yv) + v (E?) —02 (dT , (7.148)
where F(7) is the ordinary Newtonian force as a function of 7. Thus,
dp 1d?p  p (dv\? p [(dp\’
& =10+ 3 [mdfz 2(F) —wa(g) | o
But
D2
v=41+ 5, (7.150)
so that P p
4__rp 2 (7.151)

dr ~ ym2¢? dr ’

It is straightforward to show that this then results in

dr\*__p_(d)"_ P dp (7.152)
dr m3c2 \dr ~ m(p? +m2c?) ’ '

and therefore that

. 2¢> . >
p= 14+ L F(r) + o2 (p———”p———) L (1159)

3cdm p? + m2c?
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where overdots signify differentiation with respect to 7. It is common in special
relativity to solve for the so-called rapidity

sinh¢ =By, (7.154)

because the corresponding equations are simpler. Let us therefore make the
substitution
p=mecsinh(, (7.155)

for which .
p=mccosh(-(, (7.156)

2
1+ mp262 = /1 +sinh® ¢ = cosh( . (7.157)

Thus, combining Equations (7.153) and (7.156), and making the appropriate
substitutions for p and p, we get

and

m({ —7.¢) = F(CT) : (7.158)

which is again the Abraham-Lorentz equation, but now for the rapidity param-
eter ¢ instead of the velocity. The time constant is 7, = 2¢/3mc3.

We will in fact go ahead and solve this equation, but we can already see that
there will be some limitations in its applicability, particularly near the time
“boundaries.” What we mean here is that normally an equation of motion is
second order in time, so that two conditions (the initial position and initial
velocity) are sufficient to specify the motion exactly. But now we have a third-
order derivative, so that we should also prescribe the initial acceleration, which,
however, depends on the net force experienced by the particle. This is a problem
if, as is the customary practice, we insist on “turning” on the force at some time
t1 and then “turning” it off at a later time ¢,. How do we know the acceleration
at t; without first solving the problem? Normally, the initial conditions are
completely independent of the applied force; here they are not.

The most direct way to solve Equation (7.158) is with the use of an integration
factor, defined by the expression

= exp(r/7) € . (7.159)
With this substitution, Equation (7.158) becomes

mé = —Zrl_c exp(—71/1.) F(7) , (7.160)
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which can be solved directly, and then reverting back to ¢, we get
o0
m¢ = —————eng/Tc) / exp(—7"/71.) F(r") dr" . (7.161)
c T

The upper limit on the integral was chosen with the understanding that (=0
as T — 00. To complete the solution, we integrate once more and get

o0 dT” F(T”)
! Tc mC

¢(1) = ¢(—0) +/_T dr' exp('r'/’rc)/ exp(—7" /7). (7.162)

With the specification of the force F(7), the complete motion of the particle is
therefore known, though one must be careful to consider the boundary problems
alluded to above. For example, if we insist on letting the force be a constant
Fy over a time 0 < 7 < 7; and zero otherwise, Equations (7.156) and (7.161)

result in
r

The implication is that the charge is “preaccelerated,” since dp/dt # 0 even
before the force is turned on. The appearance of 71 here is a direct consequence
of our need to put ( = 0 at the upper limit of integration in Equation (7.161).
But suppose we really let 7, — oo so that only a dependence on 7. survives.
This solution suggests that a very rapid adjustment is taking place around the
time when the force is turned on, because the particle’s momentum is not being
increased at the full rate until after a time A7 ~ 7, has passed, beyond which
dp/dt ~ Fy. Even for v — ¢, At is very small. For example, the distance trav-
eled by a 100 MeV electron (with v = 200) during a time At = 7. is roughly
4 x 10~ cm, or about 1/1000 times the nuclear diameter. Unfortunately, this
makes it impractical to think about the possibility of turning the force on sud-
denly (i.e., within a time 7.) at a specified time 7 = 0 because it would violate
the uncertainty principle. Nonetheless, the character of the solution does point
to this initial period when the effect of the force seems to be felt elsewhere. One
interpretation is that during this time, the particle’s self-field is being distorted,
and radiation is subsequently generated as it attempts to recover.
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SPECIAL TOPICS

Our development of the basic theory of electrodynamics is now complete. In
this chapter, we divert our attention toward more applied aspects, including
techniques to determine the angular symmetries of the field when the source
distribution is extended, charged particle interactions, the dynamics of magne-
tized fluids, and several topics of current interest in ongoing research. Although
a quantum theory of electrodynamics is essential for a better understanding of
the behavior of charged particles in the extremely high energy domain, the the-
ory in the form discussed here is highly relevant to a multitude of still-unsolved
problems ranging from the behavior of high-temperature gases in confined fu-
sion reactors to the interaction of pair plasmas with thermal and nonthermal
radiation fields near the event horizon of Cygnus X-1-like black hole systems.
Our intent here is to provide a flavor for how some of these topics are ap-
proached.

8.1 TIME-INDEPENDENT MULTIPOLE
FIELDS

Although Equation (2.12) for the potential of an arbitrary charge distribution
p(x') is exact, it tends to mask the fact that the potential and the correspond-
ing field often possess angular symmetries linked to the charge configuration
itself. In this section, we shall see how to separate out the various angular
components when p is time independent. The much more difficult task of iden-
tifying the various multipole components in a time-dependent situation is left
to the next section. Here, we seek a decomposition of the field into spherical
waves with a common center, though we must note that they are not necessarily

195
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isotropic! Typically, the origin of our coordinate system is placed within the
charge distribution, though as we shall see, the actual location of the origin
is not immaterial. Starting with Equation (2.12) for the potential ®, we look
for an expansion of the distance modulus appropriate for observation distances
much larger than the source size (i.e., for |x| > |x’|):

1 1
x-x'| — {x]2 + %2 - 2x - x'}/?

1 X2 2x-x')"V?

I_x_l{H XF P . (8.1)

For large distances, the expansion parameter |x'|/|x| is much smaller than 1,
and so by the binomial theorem

1 1 x-x 1x]2 3(x-x')?
- a1 XX ° . 2
=] le{ TRE TIRE T2 R (8.2)

The dependence of each of these terms on the source position x’ is now very
simple, and it is straightforward to carry out the integration in Equation (2.12):

q zipi 1 Ti Tj
M) =+ 52 Qi+ (8.3)
i ij
where
g= / p(x') d2' | (8.4)
pi = / 2 p(x) &2 | (8.5)
and
Qu = [ @ola; =17 85) o) 6)

are, respectively, the monopole moment ¢, the dipole moment p, and the
quadrupole moment tensor @;;. As written, Equation (8.3) is a multipole
expansion of the potential written in rectangular coordinates. Its usefulness
is apparent the moment we realize that only one or maybe two terms domi-
nate the potential for typical source configurations. As an example, consider a
source p(x') = q63(x’'), for which

<1>(x)=§+o+0+..., (8.7)
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i.e., only the term describing the (radial) spherically symmetric contribution to
® survives. However, when p(x') = ¢63(x;) — ¢63(x2), then

q>(x)=0+x7'3‘3+0+..., (8.8)

where now
P = ¢X; — gX2 . (89)

In these two simple examples, the angular dependence of the field is rather
obvious. The field is independent of angle when the source is a monopole, and
it has a straightforward cosf dependence when the charge is separated out,
e.g., as collinear points, § being the angle between the observation point vector
x and the line passing through the charges.

In extreme cases, the angular dependence of ® may be more complicated, and in
such instances, it is common to expand the potential using spherical harmonics:

oo l
Yim(0,4) 4m
=0 m=-1

where ¢, now constitute the multipole moments. Using the expansion

o) l 1
1 1 r .
=41Y 3 gy nt Y@ ) Yin@9) (1)

|x — x|

in Equation (2.12), where r. (rs) is the smaller (larger) of |x| and |x'|, we
compare the two expressions for ® term by term, and thus infer that

m = [ Yin@,6)7" plx) (8.12)

which are coefficients that clearly contain information about the #-dependence
through [ and the ¢-dependence through m. Note that the number of “mul-
tipole” moments does not depend on which coordinate system we use. For
example, the number of dipole moments p; (i.e., three) is the same as the num-
ber of ¢im, and the number of components of the quadrupole tensor Qij (ie.,
five independent components, since this is a trace-free symmetric tensor) is the
same as the number of go,p,.

The most direct way of recovering the multipole field is to differentiate the
appropriate term in the expansion for &:

—)

E=-V&, (8.13)
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where
_4n(l+1)  Yin(6,9)

E.(l,m) = el Im e (8.14)
4r 1 8Yinm(0,9)
Eo(l,m) = —'2—11—1 Qqm 'rl+2 ao y (8.15)
4T 1 im

Having said this, we must also recognize that the multipole moments do depend
on the choice of origin. This is not surprising since the angular distribution of
the source itself depends on where the origin is placed, and we recognize the
fact that the field symmetries ultimately depend on the configuration of the
charge. Looking at the clump in Figure 8.1, for example, it is obvious that the
angular description of p(x’) depends on whether the reference point is at 0 or
0'. Asa concrete example, let us see how a displacement of the origin by a
constant vector A’ alters a given moment, in this case, the dipole moment p
given in Equation (8.5).

Figure 8.1 Calculation of the multipole moments of an arbitrary charge dis-
tribution with respect to two different origins.

Starting with the general expression as applied to 0, we have

/ x p(x) d3z

Po

_ / (x' + A p(x) &2’ . (8.17)
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That is,
Po = /x’p(x’) Bz’ + A"/p(x’) &z’ (8.18)

where A’ is assumed to be constant. Thus, using the definition of p, we see
that

Po=pPy +4'-q, (8.19)

which clearly depends on A, However, notice that the moment ¢ is not changed
when the origin is moved. This is an example of a general theorem, which says
that the lowest nonvanishing multipole moment of any charge distribution is
independent of the choice of origin, but that all higher moments are in general
dependent on where the coordinate system is centered. Thus, the practical use
of multipole expansions is really limited to situations where the charge density
exhibits some degree of symmetry, so that its “center” is well defined.

8.2 MULTIPOLE EXPANSION OF
TIME-DEPENDENT FIELDS

Let us now extend these ideas to the case where the fields are no longer static.
In the free space between sources, the four components of the potential A* must
satisfy the wave equations (3.13) and (3.14). If we decompose the potential into
a series of time-harmonic terms (i.e., a Fourier series), each of these frequency
components

Al (x,t) = A} (x) exp(—iwt) (8.20)
is then a solution of the Helmholtz equation
(V2 + k%) A% (x) =0, (8.21)
where as always,
2y _ W

The customary method of solution is to separate out the angular and radial
variables with the expansion

AB, (%) = ) Ri(r) Yim(6,9) (for eachp) , (8.23)
lm

which results in two equations:

1 0 . .0 1 6?2
- (S_ln—é% sm050- + mw) Yim = l(l + I)Y'lm (824)
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(the angular equation), and

1 d? I(1+1)
[“;a‘ﬁ” 72

R, = szl (’I’) (8.25)

(the radial-wave equation). Very importantly, all the l-solutions to Equation
(8.25) are independent of m, and so the radial-wave factors will be the same for
all the 21+ 1 differently oriented angular patterns. This is a property that time-
dependent multipole waves share with the static multipole fields we considered
earlier.

Like the Bessel equation, the radial-wave equation has solutions that depend
on 7 only through the product ¢ = kr, since this substitution in (8.25) gives

2 I(l+1)
‘[d@‘ ¢

This means that radial waves differ from each other only in the scale of their
extensions into space as measured by r in units of their wavelength A = 27 /k,
but not their profiles. In the simplest case, [ = 0, the solutions are trivially
found to be

] (CR) = (CRY) (8.26)

(Ro ~ exp(%i() , (8.27)

describing radial waves that propagate isotropically, since Yoo = 1/v/4m is in-

dependent of direction. The ! = 0 solutions are thus the spherical Hankel

functions of order zero: '
exp(i¢)

ho(¢) = i (8.28)

and the most general isotropic (I = 0) solution is therefore

Ry = agho + bohg s (8.29)

where ag and by are coefficients to be determined by the boundary conditions
for each value of u. As it turns out, this vacuum spherically symmetric solution
is unphysical (i.e., it cannot be generated in a manner that is self-consistent
with the actual boundary conditions) since it is not possible to vary the charge
of a point source in time while still preserving overall charge conservation. As
such, the only real solution to Maxwell’s equations with spherical symmetry is
the time-independent Coulomb solution.

For general values of [, the solution to the radial-wave equation can be written

Ry(r) = a; hy(kr) + by hj (kr) (for each ) , (8.30)
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where h;({) are the spherical Hankel functions of order I. This R; is expressed
as an arbitrary superposition of outgoing and incoming waves.

Let us now return to the angular equation (8.24), which is often written as

LY, =11+ 1)Yi , (8.31)
where 1 8 5 L 8
L*= - [Ein_o 6 <sin9 55) + =3 W} : (8.32)
When expressed in the form
le@xﬁ% (8.33)

it is apparent that L is proportional to the orbital angular-momentum operator
in quantum mechanics. We will find this expression useful in our derivation of
the fields below.

In a source-free region of empty space, time-harmonic fields satisfy the equa-
tions

VxE = ikB,
V-E = 0B,
VxB = —ikE,
V-B = 0. (8.34)

We can either eliminate E, so that
(V2+k?)B = 0,
V-B = 0,
E = -VxB, (8.35)
or we can eliminate B and get
(V2+E)E = 0,
V-E = 0,

B = —-VxE. (8.36)
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In either case, each of the Cartesian components of E and B satisfies the
Helmholtz equation, which is solved by the techniques we have just been de-
scribing. The solutions must also automatically satisfy the conditions V-E=
V -B = 0. An elegant way to handle this is to define the scalar quantities r - E
and r - B, which have the property that

Vi(r-E)=r-(V’E)+2V-E, (8.37)
and similarly for B.2! The Helmholtz equation for r - E is therefore
(V2+k%)(r-E)=r-(V?E)+2V-E+k’r-E. (8.38)

But from Equation (8.36) we know that V?E = —k?E, and so as long asr - E
is a solution to the Helmholtz equation, the zero divergence condition on E is
satisfied self-consistently. The same applies for B, and this result also ensures
that all the components have the same [ and m.

Our experience with the potentials allows us to immediately write down the
solutions for r - E and r - B, including a summation over all possible values of
the expansion indices:

rE=Y [aum hu(kr) + bim b (kr)] Yim (6, 9) , (8.39)
l,m
r-B= Z [al'm’ hy (k’l‘) + bl’m’ h;‘,(kr)] Yi’m’ (0’ ¢) , (840)
U,m

where each [aim hi(kr) + bim b (kr)] Yim (0, ¢) (and similarly for the quantities
with primed indices) must represent a multipole field of order (I,m). A “pure”
magnetic multipole field of order (I,m) is usually defined by the condition

r-EM=o, (8.41)

for which the corresponding magnetic field is then

(1+1
r- Bl(nﬂf) = ik—) gim(kr) Yim(6,9) , (8.42)
and
g,m(kr) = Cim h[(kr) + dim h;‘ (kr) . (8.43)

However, this is not yet sufficient information for us to determine the fields
E and B themselves. For this, we must introduce the additional constraints

21For a review of several different, but equivalent, approaches to follow in this derivation,
see Bouwkamp and Casimir (1954).
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(8.36) imposed by Maxwell’s equations. In particular, using the last expression
in (8.36), we can say that

kr.B=%r-(ﬁxE)=%(rxﬁ).E=L-E. (8.44)

The last step follows from the same type of vector manipulation used in Equa-
tion (2.112). Thus, in order for us to have a “pure” magnetic multipole as
we have here defined it, we need the electric field to satisfy not only Equation
(8.41), but also

L-E(}) =1+ 1) gum (kr) Yim (6, 9) - (8.45)

Does it make sense to have a nonzero electric field when all we'’re trying to
set up is a magnetic multipole field? Well, think about the situation we're
dealing with here. The source is varying in time, and we expect the fields to
be time dependent as well. In Chapter 3 we learned that time-varying fields
act as sources for each other, and so it would be inconsistent for us to have a
time-dependent B multipole and no associated electric field at all. It should
not be surprising, therefore, that we end up with a description that looks like a
cross between the electrostatic multipole fields and the transverse propagating
fields in a wave guide (see § 4.5). Since L operates only on Y},,, the solution to
Equation (8.45) is

E{) = gim (k) L Yim (6, ¢) (8.46)

because L?Y},, = (I + 1)Y,;n. The corresponding B field is then

.

M ! M
BM = ~ VX ERD, (8.47)
and the coefficients in Equation (8.43) should be matched accordingly to be
consistent with this.

Clearly, the same derivation applies to “pure” electric multipole fields, yielding
the field configuration

B{2) = fim(kr)L Yim(6,9) , (8.48)
and _
E 1 = E
EE) = £V xB (8.49)

where fi,(kr) is analogous to g, (kr).

The most general solution we can write down for a time-dependent multipole
electromagnetic field is therefore a superposition over all such components of
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order (I,m), encompassing both “pure” electric and “pure” magnetic multi-
poles:

o i
E=)_ z af V x fi(kr)LYim + a}hgi(kr) LYim| (8.50)

-

i .
B=)_ La{-f,, fi(kr) LYim — © MtV x gi(kr)LYim| , (8.51)

and this now becomes a boundary-value problem which requires evaluation of
the coefficients a”, and a,. Notice that we have now denoted the functions
f and g only by the index [, smce the m-dependence is contained solely within
the Y}, and the constants a, and a}¥, take into account the different weighting
factors for the various spherical harmonics (see Blatt and Weisskopf 1952; Morse
and Feshbach 1953).

Example 8.1. Consider a harmonically time-dependent electric field E,
which is known to have the functional form

E = Eysinf § (8.52)

at 7 = R near the source. Let us use the formalism we have developed in this
section to determine the multipole field structure in the radiation zone. For
simplicity, we shall assume that there is no current or magnetization.

We begin with the general solutions given in Equations (8.50) and (8.51). In
the radiation zone, the fields depend on the imposed boundary conditions at
smaller radii. Since the source is localized to a region Ry < r, let’s assume
that we have only outgoing waves. In that case,

fi(kr) ~ hy(kr) . (8.53)

But in the radiation zone (i.e., kr > 1),

ha(kr) — (i)t SXRERT) (8.54)
" kr
In addition, we have no current or magnetization, so that only electric multipole
fields should be present, i.e., a¥ = 0. Thus,

B Bp=) af(- ‘+13’3’%"—)LY (8.55)

tl.m



Special Topics 205

The corresponding electric field is

E Ej = Z gn(k;) [ (exp(zkr)) X LY + exp(ikr) = ¥ x LY,
l,m

T r
(8.56)
But .
g=;2 _ oL (8.57)
~ Or r2? ’ '
so that 5
NxL=r62—t‘7(1+ra—r) . (8.58)

And so, keeping only terms of order 1/r,

Ep ~ — Z( S\ +1 exp(Zkr) [ x LY}, — = (rV V) Yzm] a’lm . (8.59)

where 2 = r/r. Since the second term is of order 1/kr times the first, we have
in the limit kr > 1,

exp(ikr
Eg - - Z( §)tt =t p( )4, % LYim aF,
=-nxBg=Bgxn. (8.60)

These are clearly typical radiation fields, transverse to the radius vector, and
falling off as 1/r.

To solve for the fields, let’s take 7ix Equation (8.59), for then

. ~i+1€xXp(ikr) . A a
AaxEg = - Z(—z)""l—l%ﬁ— af, {(i - L) — (A - A)L} Vi

~J+1€XpP(tkr
= Z(_z)'“———p’sr )a{fnLY,m, (8.61)

sincei-L=r-(rxV)/i=V-(rxr)/i=0. Therefore,

) exp(ikr
alEm(__z)l+1 p(ikr)

Er \/l(lT/Y[mL (n X EE) dQ

(8.62)

where 1
L-(ﬁxEE)zzf(rxﬁ)-(ﬁxEE). (8.63)
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The fact that we know what Eg is at some given radius r = R thus allows us
to evaluate the expansion coefficients outright. Putting

r x Eg|r = REpsinf ¢ (8.64)
and
. .8 .1 8 o
(rxV)-(anE) = ( %—Om%)(&)smetﬁ)
= FEgycosf
4
= ?WEO Yio, (8.65)

right away we get

1 kR —i / in
E o __ , Yimt| = Bo Yio df2 . 8.66
Hm = (SO exp(kR) i@+ J V3O (8.66)

Thus,
g _ tEokR [2m
%10 = exp(ikR) V 3’ (8.67)
and all others are zero. The complete solution is
2
Bg = —iEoy/ -éz (?) exp{ik(r — R)} L Y10, (8.68)
and
Eg=Bgxn. (8.69)

8.3 COLLISIONS BETWEEN CHARGED
PARTICLES

In Chapter 7, we examined the bremsstrahlung emissivity of an electron inter-
acting electromagnetically with an ion. The radiation produced by this form of
acceleration is just one of the physical manifestations resulting from the “col-
lision” between charges. Another very important aspect of this problem is to
determine the energy exchange between swiftly moving, charged particles and
the deflections from their incident direction. Consider the particular example
of two charges ¢ and @, with respective masses m and M, moving initially with
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velocities v and V in the laboratory frame as shown in Figure 8.2. As we did
in § 7.4, it will be convenient for us to transform to another frame in which one
of the particles is at rest. Taking this to be m’s frame (see Figure 8.3), M here
moves with a velocity V', where

V“ -V

, ——
Vii= 1-V-.v/e?’

(8.70)

A%
V'J_ 1

(8.71)

A -V v/’

and v(v) = (1 — v?/c?)~1/2,

(m,q)

Figure 8.2 Collision between two charged particles with mass m and M,
causing deflections by angles 6, and g, respectively.

For definiteness, let us assume that V and v are antiparallel (along the z' axis)
and in the z’ — 2’ plane, and that the particle paths are initially separated by
a distance b. Then,

Vi =0, (8.72)
and v+
r_ ()
i=1 +oV/c? ' (8.73)

Since b is perpendicular to v, this separation remains the same in the primed
(i.e., m’s) frame.

Fortunately, we have already gone through the process of finding the trans-
formed fields due to particle Q in ¢’s rest frame (see Equations [7.77]), so using
the charge () instead of Ze as we did earlier, we know that g sees the field
components
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o vy
Qz — (B2 +12(V7) V2 ¢2]3/2
El — Q’Y(V,) b
Qz [ + F2(V V2 tl2]3/2 ’
EH, =0. (8.74)

It should be stressed here that this derivation is valid only as long as () moves
with minimal changes to its velocity. These expressions give the electric field
components in ¢’s initial frame of reference, in terms of @Q’s initial velocity.
Thus, if during the interaction @ experiences a substantial change to its velocity,
the transformed field changes at each step of the interaction. We therefore
require that M > m, as was the case for the ion and electron system that led
to the derivation of Equation (7.74).

Figure 8.3 Transformation of the coordinates from the laboratory (un-
primed) frame to m’s rest (primed) frame. In this frame, moving with velocity
v relative to the laboratory, M has a velocity V'.

The change in momentum experienced by ¢ is

o0
Ap), = / qEL - dt' . (8.75)
This expression itself is only valid as long as Apy is sufficiently small that

v/ x B’ forces in ¢’s initial rest frame may be ignored during the interaction.
Since E!, is antisymmetric in ¢/, we don’t have to evaluate the integral to realize
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that Ap;, = 0. Only the transverse component survives:

24 LI
oo [b2 + 72(‘/1) V2 t'2]3/2

qQb /°° du _ 29Q
V' ) (b2+u2)3/2 Y

Notice that most of the frame dependence has dropped out. In particular,
it seems at first remarkable that Ap’ does not depend on «(V'). This is a
consequence of the fact that although E' is “bunched up” (near # = 0) and
enhanced by a factor y(V’), the duration of the pulse is decreased by the same
factor due to time dilation. The resultant effect (which is the time-integrated
force) is therefore independent of v(V"').

Ap,,

(8.76)

Thus, as a result of the interaction, the energy of ¢ is changed to the new value

1 _ q 2
Uq = {mzc4 + (3‘7) C } . (877)
As long as Ap’ is small, a binomial expansion simplifies this to
2¢°Q* [ 1
2
Ué =mc” + mv! 32- . (878)

Thus, in the laboratory (i.e., unprimed) frame after the collision,
1

Uafe = ) (2+ 2,

_ R
Py = 7(”)(P||+c c) )

P. = Py, (8.79)

where p’ = (0,0,2¢Q/bV’). Remembering that v was chosen to be antiparallel
to V and that consequently v - p’ = 0, we see that

U, Ul
c - 7(”) C,

vU, vU,
PI= T T =0T

p, = (o 0 2‘1_Q;> . (8.80)
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Particle m’s altered energy in the laboratory frame is therefore seen to be

22
U, = v(v)me + fnq—‘??- (%) ), (8.81)

and using the transformation of velocity (8.73), we therefore infer an interaction
energy exchange

L 2¢2Q% (1+0V/c?)?
AU, = mb?2  (V +v)? 1)

The deflection angle 6, is known from the change in vector momentum of
particle m. Thus,

(8.82)

tanf, = LB-.LI
|P|||
29Q 1+ vV/c? _
~ [ % v +£ ] [y(w)mv] ™" . (8.83)
When both v and V are relativistic, then
| 2¢°Q*y(v
and 240
PO b 2
tanf, ~ ) bm® (8.85)

Both AU, and 6, decrease with b, as expected. In addition, 6, decreases with
swiftness, whereas AU, increases with y(v) because of the effects of boosting.
The caveat is that our analysis breaks down for small values of b, where AU,
becomes larger than the available energy.

8.4 MAGNETOHYDRODYNAMICS

Interesting new physics is encountered when highly conducting fluid media
interact with magnetic fields. Much of our attention in the early chapters was
devoted to the effects on charged particles due to the dynamical influence of
external fields, and correspondingly, we learned a great deal about the fields
produced by charges. In Chapter 7 we started to examine the self-consistent
dynamical behavior of radiating charges, taking into account the influence of
momentum and energy losses to the radiation. Magnetohydrodynamics is the
study of the dynamics of magnetized (though highly conducting) fluids in which
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the charge densities and currents produce macroscopic fields and are affected
by them. This self-consistent coupling of the bulk charge motions and the
associated fields is in some sense a synthesis of some of these ideas, but in
order to keep the problem tractable, we shall consider only the nonrelativistic
aspects of the interaction for which the radiative reaction effects are negligible.
Still, this will constitute our first attempt at using the Maxwell and dynamics
equations in a consistent manner, since we here permit the charges and currents
to interact with their own fields.

Consider the Faraday field equation

=~ 1 0B :
VXE—-—Z—é't—, (886)

and suppose that our medium is moving with some velocity v with respect to
the laboratory. In the local rest frame of the medium, Ohm’s law says

J=0E, (8,87)

where prime denotes rest frame coordinates. From the Lorentz transformations
(Equation [5.131]) we know that

- M
E_7(E+ch), (8.88)
so that for nonrelativistic motion,
" v
J~a(E+C><B). (8.89)
Thus, if the medium is neutral so that there are no advected currents,
A
J~0(E+EXB). (8.90)

Equations (8.86) and (8.90) may be combined to eliminate one of the unknowns,
usually taken to be the electric field E. The result is

B c

——:VX(VXB—-J). 91
ot o (8.91)
It must be emphasized again that the source appearing in this equation is itself
subject to the effects of the field. One way to put this in explicitly is to use
another of Maxwell’s equations (Ampere’s law) in the form

6xB=4%’J. (8.92)
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The displacement current is usually ignored because JE/dt is O(v?/c?) com-
pared to ¢V x B. Then,

aB = C2 — —
rrll Vx(va)—m(VxVxB)
2
- 9 _C 3T .B) - V2
= V x(vxB) 47w{V(V B) - V°B} . (8.93)
Thus, since§~B=0,
6B =,

This differential equation is a complete description of the magnetic field within
the fluid in terms of its velocity and conductivity. Below, we consider the
behavior of B in two important limiting situations.

Special Case 1. We here consider an environment with very high
conductivity. When o — oo, clearly

OB
S *Vx(vxB). (8.95)

Note that although we derived this using Ohm’s law (to get Equation [8.94]),
its validity requires only that the fluid cannot support any significant electric
field in its own reference frame, i.e., that E' ~ 0 in Equation (8.88). The result
in (8.95) then follows directly from Faraday’s law (Equation (8.86]). To see
what this means physically, let us consider the magnetic flux through a loop
moving with the medium?? (see Figure 8.4). Then,

/B dA = /( +v- V) B.dA, (8.96)

where d/dt = 0/0t+v- V is the convective derivative. Suppose we now consider
a small volume of fluid within which v is only slowly varying. In that case,
spatial derivatives of v can be made arbitrarily small compared to the other
derivatives (e.g., 0B/0t), and therefore

v-VBrVx(Bxv)+v(V-B)=Vx(BxvV). (8.97)

227 very readable and detailed development of these ideas is given in the excellent book
by Parker (1979).
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Thus,
i/B.dAzf[QE+€7x(va) dA=0. (8.98)

Figure 8.4 Transport of a magnetic flux loop C with cross-sectional area A
through a conducting medium. The loop’s velocity is v.

That is, when the conductivity o is very large, the magnetic flux through any
loop moving with the medium is constant in time. The way to visualize this
is to think of the lines of force as being frozen into the fluid and being carried
along with it. Because 0 — oo, any motion of the magnetic field through the
fluid results in the generation of v x B “eddy” currents that act to maintain
the status quo, and because of the high degree of conductivity, it costs virtually
nothing energetically for this to happen.

Special Case 2. Let us now consider the other extreme—a system with
very high resistivity. When the conductivity ¢ is very small,

0B ¢ -

— ~-— V’B, 8.99

ot A4dmo (8.99)
which is a diffusion equation. In this case, the magnetic field is not “slaved”
to the material motion, but it instead diffuses (or decays) away on a time scale
Tp, where

B| , ¢ |B]

D 4mo L2’

and L is a length characteristic of the spatial variation of B. That is,

(8.100)

Tp ~ 4mo L2 /2| . (8.101)
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For example, a 1 cm copper sphere has a diffusion time scale 7p ~ 1 second.
By comparison, the sun’s magnetic field is expected to diffuse away in about
1010 years.

The behavior of the fluid-field system is determined primarily by which of these
regimes we are in. The study of magnetohydrodynamics is quite extensive and
continues to be an active area of research, particularly in the context of confined
high-temperature plasmas, both here on earth and in the strong gravitational
environments near black holes. The magnetic field in these systems is quite
strong and can significantly influence the gas dynamics via its pressure. We
know that in a fluid with gas pressure P, the force density on it can be written
—VP. A similar construction is possible for the magnetic field. To see how this
comes about, we recognize that the electromagnetic field exerts a force density

1

us

%(J «B)=——Bx (VxB) (8.102)

(from Ampére’s law). Thus, the electromagnetic force density can itself be
written, via the identity

V(B-B)=2(B-V)B+2B x (V xB), (8.103)
* 1 B? 1
~(IxB)= -V (87) o (B : v) B. (8.104)

We therefore associate a magnetic pressure

Py = B?/8x (8.105)

with B, and in cases where (B-V)B = 0 (see the discussion following Equation
[8.106] below), the magneto-gas equilibrium condition is achieved when

P + Ppy = constant . (8.106)

The second term on the right-hand side of Equation (8.104) also has a direct
physical interpretation. If we write B - V B/4r in the form (|B|8|B|/8s) /4,
where ds is an element of path length along the direction of B, then it can be
further transformed into (0|B|?/ds)/8w. That is, this term is the spatial rate
of change of magnetic field energy density along 3, which therefore represents
a tensile force in that direction.
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8.5 ALFVEN WAVES AND PARTICLE
ACCELERATION

Quasars are believed to be prodigious powerhouses energized by massive black
holes surrounded by disks of infalling matter. The fact that we see gamma-
rays with energies ¢, = 30 GeV coming from their direction suggests that the
particles producing these photons have a Lorentz factor v ~ 30 GeV /mc?,
which for electrons is & 6 x 10%. Other evidence, such as the superluminal
motion observed in many of these sources (see § 8.7 below), also implies that
v should be much larger than 1. The Lorentz factor may be even higher in
pulsars—rapidly spinning, magnetized neutron stars—reaching values beyond
~ 107 or more. It is clear, therefore, that nongravitational acceleration schemes
must play a role in energizing the particles in many of these systems. Perhaps
the most common of these is electromagnetic acceleration.

A key ingredient in this subject is the role played by the magnetic field. Sev-
eral different mechanisms may contribute to the acceleration, depending on the
field distribution, since charges generally move in circles perpendicular to B
because of the Lorentz v x B force, as well as moving more freely along B.
When B is random, the principal method of acceleration is the Fermi process,
in which bundles of magnetic flux act as mirrors bouncing the particles back
and forth and thereby energizing them. On the other hand, when the field
is well organized, a more direct acceleration mechanism is based on the idea
that electric fields may be generated parallel to B, where the particle motion
is unrestricted. This is the situation we have here, and to understand how a
magnetic field disturbance energizes the charges, let us for the moment return
to some of the equations we developed in the previous section on magnetohy-
drodynamics. When the medium is highly conducting, Equation (8.89) shows
that

E~ —% xB . (8.107)

Thus, from Faraday’s law (8.86), the simple equation satisfied by the magnetic
field in these circumstances is

B -
— =V x(vxB). (8.108)
ot
At the same time, the gas is subject to the mass conservation law,
0 -
-6—’t’+v-(nv) =0, (8.109)

and the dynamical influence of the electric and magnetic fields. (The mass
density 7 is not to be confused with the charge density p.) That is, starting
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from the Lorentz force density (which is a continuum generalization of the point
particle Equation [1.3])

dv 1

— =pE+ - B .
n— =pE+-(JxB), (8.110)
we assume that the medium is neutral (i.e., that the charge density p is zero)
and take J to be given by Ampere’s law (Equation [1.34]), with the result that

- 1 - 1 0E

ov
5t

As we shall see, the acceleration scheme associated with this magnetic field
disturbance acts on a small fraction of charges within the plasma (i.e., those
particles moving principally in the direction along B). Most of the plasma
responds as a fluid with a subrelativistic velocity. Equation (8.111) describes
the behavior of this slowly moving gas, and so for a nonrelativistic motion, we
reduce this equation to

Ov = 1 =
na+n(v'V)v~—Z;Bx[VxB]. (8.112)
Equations (8.108), (8.109), and (8.112) form a complete set of coupled relations
describing the behavior of the fluid and the magnetic field in an interacting
environment.

Suppose now that the field B is jiggled, perhaps due to a disturbance at z =0
as shown in Figure 8.5. This field might, for example, be anchored in the
disk surrounding massive, compact objects or might be frozen into the surface
layers of highly magnetized neutron stars, as discussed above. The solution to
Equations (8.108), (8.109), and (8.112) that describes this wave propagation
with perfect symmetry in the z — y plane is

B = ByZ + Bp exp(ikz — iwt) & , (8.113)
v =0+ v exp(ikz —iwt) &, (8.114)
E =0+ Ej exp(ikz —iwt) 9, (8.115)

where clearly Ba, va, and Ea represent the traveling perturbation. It is not
difficult to see with direct substitution of (8.113)—(8.115) into the coupled equa-
tions that

BaA = Ba exp(ikz — iwt) & = —g Byv. (8.116)
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Not surprisingly, this is a plane wave—a so-called Alfvén wave—with phase
velocity vo = w/k traveling in the z-direction. But notice that E is always
perpendicular to B and hence can only accelerate charges perpendicular to the
magnetic field. This does not lead to persistent acceleration because of v x B
forces.

N

Figure 8.5 A strong, uniform magnetic field B anchored in a highly con-
ducting medium is jiggled at the base. Like a perturbation on a string, this
disturbance travels outward along the field lines.

Real situations, however, are hardly sufficiently ideal to sustain perfect plane
waves. Instead, some x — y structure is expected, and because curl B is then
nonzero, we expect a current and therefore an electric field component along 2.
The MHD equations ([8.108], [8.109], and [8.112]) also allow for the following
solution:

B = ByZ + B sin(kyy) exp(ikz — iwt) &, (8.117)

which we may interpret as one of the frequency components in a Fourier series
expansion for a more general structure of the field in the y-direction. Then,
from Equation (8.86),

OE 0B, . 0B, ,
—a-t-erEy'—Ca—yz, (8118)

which for a harmonic field leads to
E~ % [ikBa sin(kyy) § — ky Ba cos(k,y) 7] exp(ikz —iwt) .  (8.119)

The important thing to notice is the appearance of an E, component, which
can accelerate particles along the (local) Z direction (see Figure 8.6).
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Figure 8.6 The presence of an electric field component E. in the direction
of B induces an acceleration of the charges, though restricted by a drag due to
collisions with other particles in the medium.

The collision frequency v, in a typical neutron-star magnetosphere, where the
particle density is ~ 1016 —1026 cm~3, is about 107 s~1. In between scatterings,
the E, component accelerates the charges according to

dp: _

= qE, , (8.120)
where p, = ymv,. Thus, for a relativistic electron (with v, &~ ¢ = constant),

dy eE,

— . 121

dt mec (8 )

As a rough estimate of how energetic the particles can become, we take these
relations and put
ek, N ekyBa

_ MeClVe = Mewle |
In typical pulsars, ky ~ 27 /Acrust, Where the crust scale length Acrust is of order
10 cm, antd By ranges from 108 G to as high as the underlying magnetic field
strength ~ 102 G. In addition, w =~ vy k, where k ~ 2w/R, and the stellar
radius is R, ~ 10 km. In principle, this mechanism can therefore accelerate
particles to a Lorentz factor much in excess of 10'°, since the Alfvén wave phase
velocity v, is greater than c. In practice, several damping influences and the
creation of lepton pairs set in well before this plateau is reached.

~y

(8.122)

7m ax

8.6 SYNCHROTRON EMISSION

In Chapter 7, we considered the radiation produced by electrons accelerated in
the Coulomb field of an ion, a process known as bremsstrahlung. A similarly
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common phenomenon is the acceleration of charges in a magnetic field, which
leads to another form of emissivity called cyclotron radiation, when the parti-
cle motion is nonrelativistic, and synchrotron radiation in the fully relativistic
limit (Schott 1912; Rybicki and Lightman 1979). This mechanism is sometimes
also referred to as “magnetic” bremsstrahlung, by analogy with the process we
considered earlier. The composite radiation spectrum depends quite strongly
on the energy partitioning among the particles, and in nature we encounter
both thermal (usually Maxwellian) and nonthermal (usually power-law) dis-
tributions. In this section, we shall derive the single particle emissivity and
spectrum. Once this is known, it is a straightforward matter to integrate this
expression over the particle energy occupation function to obtain the plasma’s
overall radiation profile for any given physical conditions.

Let us begin by considering the behavior of a nonrelativistic electron gyrating
in a magnetic field, as shown in Figure 8.7.

Figure 8.7 A nonrelativistic electron gyrating with velocity v in a magnetic
field B. The angle between v and the local field lines is a.

From the Lorentz force law (Equation [1.3]) we know that the electron experi-
ences a force

Fp = (—e) (-‘cf x B) , (8.123)

which points in a direction perpendicular to both v and B. As such, the motion
of the electron is a superposition of a translational path with (constant) velocity
v = vcosa, together with a circular motion with velocity v; = vsina. The
electron is constantly being accelerated, and it therefore emits radiation whose
energy source is ultimately the agent that energizes the particle, The equation
of motion gives

Mea = _76 vxB, (8.124)



220 CHAPTER 8

or
mev: |—evy B|_|-evsinaB (8.125)
Tayr c - c )
The particles therefore gyrate with a radius
Tgyr = vjma ) (8.126)
gyr
where the gyration frequency is
eB
=—=1. 107 i -1, .
Weye = = 1.8 x 10 ( 1 gauss) radians s (8.127)

The emitted power for a single accelerated charge is given by the Larmor rate
(Equation [7.104]). Thus, with an acceleration @ = wgyr v sin@, an individual
charge emits at a rate

2e?
33 Yeyr
This produces the well-known cyclotron radiation, which is monochromatic
with a frequency w = wgyr due to the perfect circular motion of the electron in
the v frame (Figure 8.8).

P= v? sin’a . (8.128)

P((D)‘

© gyr

Figure 8.8 The cyclotron spectrum of an electron moving nonrelativistically.
In addition, the emission is fairly isotropic, arising from the dipole pattern
affixed to the acceleration vector, as shown in Figure 8.9(a).

An arguably more interesting situation arises when the particle motion is rel-
ativistic, for then the particle’s trajectory is distorted by time-dilation and
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length-contraction effects. The particle no longer exhibits perfect circular mo-
tion and so will emit at more than one frequency. The components of the

particle’s equation of motion in terms of its charge ¢ = —e are now
g—('ym v)=gva (8.129)
dat'' ¢ c ’ )
and p
EZ("/mecz) =qv-E=0. (8.130)

(a) (b)

Figure 8.9 Angular distribution of the radiation (a) in the electron’s instan-
taneous rest (i.e., primed) frame, and (b) in the laboratory frame, where it is
moving with velocity v. The angle ¢’ is that measured in the electron’s rest
frame, whereas 6 is that seen in the laboratory frame.

The second of these forces the condition v = constant, so that in the first
equation,

mey ‘(li—‘t' = %v xB. (8.131)
That is,
ad (8.132)
da '
and d
(‘i’tl = W‘iec v xB, (8.133)

where v is parallel to B and v, is the perpendicular component. It is evident
that the electron’s frequency of gyration is now

qB
YMeC

wp = , (8.134)




222 CHAPTER 8

and that its acceleration is
ay =wWBUL . (8.135)

Thus,

2¢?2 , e’B? o2
33 ) y2m2c *

2
= 3 ré cf% 4% B? (8.136)
where ro = e2/m.c? is the classical electron radius. It is necessary to average
this expression over all angles for a given normalized speed 8. Using the pitch
angle a shown in Figure 8.7, we have

(61) = % /Sin2a dQ = g—gi , (8.137)
and therefore the average Larmor power from a single electron is
(P)= %‘J'T ¢~ ugp, (8.138)
where up = B?/8r is the magnetic field energy density and
or = 8”;% (8.139)

is the Thomson scattering cross section.

Getting the single particle spectrum of this radiation is equally important, but a
little more involved. Before actually carrying out the derivation, we can foresee
the direction in which this will take us by noting the importance of beaming
effects, primarily due to aberration resulting from the relativistic transforma-
tion of angles. As we have already mentioned earlier, the angular distribution
of radiation in the electron’s rest frame is the dipolar pattern centered on v,
as shown in Figure 8.9(a). In terms of the angle 6’ defined in this figure, the
angular distribution of the radiation in the electron’s (primed) frame is

S’ o sin? (g - 0’) = cos? ¢’ (8.140)

(see Equation [4.176]). But this angle changes for an observer in the laboratory
frame, and so the power distribution is shifted. The easiest way to understand
how this comes about is to think about how a pulse of light is observed in the
two frames. We recall that one of the postulates of special relativity is that c
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is the same for all observers, in all frames. Suppose now we have a pulse of
light traveling in a straight line making an angle §' with respect to the frame
velocity v. Its velocity components parallel and perpendicular to v = v3 are
clearly

¢, =ccosb', (8.141)

and
¢ =csind' . (8.142)

According to Equations (5.38), (5.39), and (5.40), the photon’s velocity com-
ponents in the laboratory frame are therefore

c +v
, = —— , 14
= 30+ (8:149)
and
= L (8.144)
TN A e ) '

But ¢, = csinf in the laboratory frame, and so we arrive at the angle trans-

formation formula in g’
) sin
sinf = Y0 F Boosd) ° (8.145)

Returning now to Equation (8.140), we see that the flux drops to half its max-
imum value in the electron’s rest frame at §' = 7 /4. But according to (8.145),
this point corresponds to sinf = 6 ~ 1/ in the laboratory frame, and so we an-
ticipate that most of the emitted radiation is beamed into a cone of angle ~ 1/5
about v, as shown in Figure 8.9(b). The main result of this is that whereas
in the nonrelativistic case the observed electric field is sinusoidal in time (pro-
ducing the monochromatic power spectrum shown in Figure 8.8), here the 1/
beaming leads to a spike in the observed field intensity that requires many fre-
quency components to adequately describe its shape. Since, in addition, the
gyration frequency wgyr = wWB = wgyr/7, the contributing frequencies are much
closer together (as we shall see by the end of this section).

Our formal procedure for deriving the single-particle synchrotron spectrum
begins with expression (7.88) for the energy observed in the laboratory frame
per unit area per unit angular frequency w, written in terms of the Fourier
transform of the electric field. Making the additional change from area to solid
angle like we did in the derivation of Equation (7.64), we have
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dw c 2

dw dQ  4n2

/ ” [R2E(t)]; exp(iwt) dt

¢ 0o ﬁx{(ﬁ—ﬁ)xﬁ}
= / — exp(iwt) dt | (8.146)
4méc | J_o (1-n-p)3

t

gvhere the ~expression in square brackets is to be evaluated at the retar~ded time
t =t — R(t)/c (see § 7.3). Thus, changing the integration variable to ¢, putting
d=(1-n- B)di, and noting that R(t') ~ |r| — fi - r4({) far from the source at
rq(t), we have

aw 1

dwdQ ~ 4n2c

/oo ﬁx{(ﬁ—ﬁ)xﬁ}

o (1—17-B)2

2

x expliw(t — 7 - r4(f)/c)] dt (8.147)

This can be simplified somewhat by noting that 7 x {(7 — B) x ﬁ} /(1—"- B)? =
d/di[i x (7 x B)], for then integrating (8.147) by parts gives

dW PR [P . = o ) 2
o d0 = inte /;oon x (f° x B) exp[iw(t — @t - r4(t)/c)] dt (8.148)
Putting &, = 72 x €1, we see from Figure 8.10 that
A a3 . . [t . vt .
fi X (A X B) = —€ sin (—) + €, cos (—) sinf , (8.149)
B TB

where 3 &~ 1 has been used. For the argument of the exponential, we note that

- Aere(f . ¢
t—zl—l:gﬁ = t—-r—BCOSOSin<v—)

c c B

o1 202\7
N o {(1+'y 0°)t +

2.,273
et } , (8.150)

3ry
where the sine and cosine functions have been expanded for small arguments

and it has been assumed that v &~ c. Expanding the sine and cosine func-
tions once more in Equation (8.149) and returning to (8.148), we find that the
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radiation spectrum may be written as the sum of contributions from the two
polarization states

. 2
aw, P / ® cf iw 0 2\ 5 c272i3]} s
= — — [(1 0°)t dt| , (8.151
dwdQ  4m2c|/_ B P 2,2 (147767t + 3ry ( )
and
dWy _ ¢?w?6? | [ ' 292 07w1}~2
— w df| | (8.152
o dQ) lm%,[w“pz A+ + =57 (8.152)
with

aw__ dW,  dW
dwdQ ~ dwdQ ' dwd

[>

0

(8.153)

=>

Figure 8.10 Synchrotron radiation from a particle passing the point x = 0 at
the retarded time £ = 0. Here, rp is the radius of curvature, v is the particle’s
velocity, ¥ = vi/rg, and &, is a polarization vector perpendicular to v and in
the orbital plane at £ = 0 (see § 4.2).

These expressions for the spectral components can be greatly simplified with
the change of variable

yet
re (1 +~262)1/2 -

In addition, we know that most of the radiation will be produced in the “for-
ward” (i.e., 8 ~ 0) direction (see Figure 8.9b), so that

x (8.154)

wrp(l + v26%)3/2 LW
3cy3 = 2w,

: (8.155)
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where the critical angular frequency is
_3.3
we = 57 wpsina, (8.156)

and « is the pitch angle, as shown in Figure 8.7. In writing Equation (8.155),
we have made use of the definition

rg = , (8.157)

which is the relativistic generalization of (8.126) with wgyr = wWB = wgyr/7-
Thus, the spectral components may be written

dW, _ ¢w? [rp(1+~%6°) 2
dwdQ ~ 3n2¢ 2 K2/3(w/2wc) ) (8.158)
and .
dWy _ Pw?é? re(1 +~26%)1/2 \
dwdQ ~ 372 [ ~e ] Ki/3(w/2we) (8.159)
where - \ 1
Ky/3(n) = / T exp [— in (:c + —a:?’)] da (8.160)
—00 2 3
and
= 3. 1,
Kis(m)= | explzinlz+gz || do (8.161)
—o0 2 3

are the modified Bessel functions of order 2/3 and 1/3, respectively. In the
final step, these spectral components must be integrated over all solid angles
Q to give the energy per angular frequency range emitted by the particle per
complete orbit:

aw 2¢%w?rysina [
dwl == 37rc£'y4 / (1+7%6*) K3 3(w/2wc) df (8.162)
— 00
dW, 2¢%wrysina [ s a2 1o
do  3ncdy? (1 +7%6%) 6% K3 3(w/2wc) df . (8.163)
—00

The result is

dW,. V3¢g*ysina
dw 2c

dW  V3¢ysina
dw 2c

[F(w/2we) + G(w/2w,)] , (8.164)

[F(w/2we) — G(w/2we)] (8.165)
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where o
Pz = (2) [ " Kap©) de, (3.166)
e G(w/2we) = (5;) Ky/s (wi) . (8.167)

0 0.29 ¢

Figure 8.11 The single-particle spectrum in the limit of very high velocity.
The spectrum involves a great number of harmonics, which blend together to
form a continuous envelope due to the action of several broadening mechanisms.
One such mechanism occurs for a distribution of particle energies, for which
the spectra of particles do not all fall on the same lines. Here, v = w/2m,
Ve = we/2m.

The expressions we have derived give the total energy emitted per angular
frequency per complete particle orbit. In order to convert these to the power
per angular frequency, we divide them by the orbital period T' = 2x/wp and
add the two polarization components to reach the total emitted power

_ V3¢Bsina
T 27Tmec?

P() Flw/2w) . (8.168)

This function is shown in Figure 8.11, together with its limiting forms in the
very low and very high frequency regions. The maximum occurs at w = 0.29w,.

8.7 ECHOES OF THE BIG BANG

The ideas we have introduced and developed in this book are applicable to
many areas in physics, such as the one described here and those discussed in
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the next two sections. One of the most exciting applications—certainly the
most intriguing—is to our ongoing study of the early universe. Astronomy is
slowly enlarging the windows available for observing the cosmos with the intro-
duction of instruments that detect particles other than photons. For example,
the air shower arrays that measure the debris of collisions between cosmic rays
and particles in the upper atmosphere are gaining in sensitivity and spatial
resolution and are now providing important information on high-energy parti-
cle acceleration and transport in the interstellar medium. Currently, neutrino
astronomy is one of the most exciting and rapidly developing fields, and we are
likely to see the first detection of extrasolar neutrinos (from steady sources, as
opposed to transient events such as supernova 1987A) within the next decade
or two. However, no one can deny the fact that most of the information we
acquire from the cosmos is borne by the radiation in transit to the earth from
distant objects. The oldest source about which we know is the Big Bang. How
these photons propagate through the universe, how their polarization changes
when they pass through a magnetized region, and how they interact with mat-
ter, can tell us a great deal about the fabric of spacetime and the genesis of
everything around us.

There are very few “fossils” that we can use to unravel the mystery of the early
universe; one of the most important is the cosmic microwave background radi-
ation (CMBR). In the theory of the Big Bang, the early universe was hot and
dense, and most of the hydrogen was ionized. So the free electrons and pro-
tons formed a hot sea of charges and currents coupled to electric and magnetic
fields, forming an equilibrium with the photon distribution via interactions that
include Compton scattering, and bremsstrahlung (see § 7.4) and synchrotron
(see § 8.6) emission and absorption processes. In the beginning, matter and
radiation were coupled strongly and behaved as a single fluid in thermodynamic
equilibrium, so the radiation field was that of a blackbody.

The rapid expansion that ensued lowered the matter density and temperature,
and about a month after the Big Bang the photon creation and annihilation
rates would no longer have been fast enough to guarantee a blackbody spec-
trum, so the lack of distortions in the CMBR places severe limits on any pro-
cesses that would have added or subtracted energy from the radiation field.
(An excellent, though somewhat technical, account of the early history of the
universe may be found in Linde 1990.) The very existence of the CMBR (dis-
covered serendipitously by Penzias and Wilson in 1965 and measured to high
precision with the COBE satellite by Fixsen et al. in 1996) appears to rule
out the steady state model of the universe, for which changes occur without
a gradient in time, so that any one step in the evolution of the cosmos would
look like any other. This picture is inconsistent with the CMBR since the uni-
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verse today does not contain the isothermal and opaque environment required
to produce a blackbody spectrum.

Instead, several arguments favor an inflationary cosmology, in which the early
epoch in the evolution of the universe saw the occurrence of a phase transition
(or perhaps several) and an exponential growth in size (Starobinsky 1980; Guth
1981). The essential elements of this model are that there exists a scalar field ¢
(or fields) that couple to the other particles, but the importance of this coupling
changes with temperature. The basic idea is that the equilibrium value of the
field ¢ at fixed temperature T' # 0 is governed by the location of the minimum of
the free energy density V (¢, T'), which reduces to the potential of ¢ (i.e., V[¢])
when T' = 0. A motivation for considering such a scalar field is that in unified
theories of the weak, strong, and electromagnetic forces, all vector mesons that
mediate these fields are massless and no fundamental differences exist among
the interactions when their coupling with the scaler field is not important (or
indeed absent). This presumably was the case at the very beginning, when
T was so high that the equilibrium value of ¢ was zero. As the temperature
dropped, the equilibrium value of ¢ moved away from zero, introducing an im-
portant coupling with the other particles that led to some of the vector bosons
acquiring mass. Their corresponding interactions became short range, thereby
destroying the symmetry between the various forces. During this period, the
vacuum energy density presumably did not change as the universe expanded,
because of the presence of an ever increasing (nonzero) equilibrium value of ¢.
The effect of this on the expansion of the universe was considerable, leading to
an exponential growth in size, i.e., an inflation. Eventually, this energy stored
in the field ¢ was transformed into thermal energy, and the universe again be-
came extremely hot, after which its evolution is described by the standard hot
universe theory, with the important refinement that the initial conditions for
the expansion stage of the hot universe are determined by processes that oc-
curred during the period of inflation. The inflationary model of cosmology still
contains some unresolved issues, and variants are now appearing that address
some of the remaining problems. Nonetheless, the nearly perfect isotropy of the
CMBR shows that the entire observable universe had to be causally connected
prior to the time at which the radiation detached from the matter, and this is
evidence for an earlier period of inflation.

Still, the CMBR is not perfectly isotropic, even though the distortions are
incredibly minute, and this is where much of the current research interest lies.
To understand what the full sky maps of the microwave radiation are telling
us, let us first consider how variations in its intensity are manifested. The
radiation field is generally a function of position and time, and at any given
spacetime point has a distribution in both angle and frequency. The specific
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intensity I(u,v) is defined to be such that the amount of energy transported by
radiation of frequencies (v, v+dv) across a surface element dS, in a time dt, into
a solid angle d2, is du = I(u,v) dS pdQddv dt, where p is the cosine of the angle
between the wave vector (i.e., the direction of travel) and the normal to dS.
In cgs units, I(u,v) has dimensions ergs cm~2 s~! Hz™! sr=!. To determine
the transformation properties of the specific intensity, we calculate the number
of photons N in a frequency interval dv, passing through an element of area
dS oriented perpendicular to the z-axis, into a solid angle d(2 along an angle
cos™! u to the z-axis in a time interval dt. If dS is stationary in the lab frame,

we then have
N = [I(p,v)/hv] (d2dv) (dS pdt) . (8.169)

An observer in a frame moving with velocity v along the z-axis sees dS moving
with a velocity v in the negative z direction. This observer therefore counts

No = [Io(po, vo)/hvo] (dQ dvo) [dS po dto + (v/c) dS dio] (8.170)

photons passing through dS. The first term represents the number of photons
that would have been counted had dS been stationary, whereas the second term
is the photon number density Iy/chyy times the volume (dS vdty) swept out
by dS in a time dtg = 7y dt. Since both observers must count the same number
of photons passing through dS, we must have N = Ny, for which

3
I(M, l/) = (Vio) Io(ﬂo,llo) . (8171)

This follows from the effects of time dilation (see Equation [5.23]) and the
transformation of angles (see, e.g., Rybicki and Lightman 1979), which are here
conveniently grouped together along with the transformation of frequencies.
Clearly, the quantity I(u,v)/v® is a Lorentz invariant, called the invariant
intensity.

The CMBR has a blackbody spectrum described by the Planck law, which in
the local co-moving frame is isotropic and may be expressed as

2h1/03/62
exp(hvo/kTo) — 1

Here, h and k are, respectively, the Planck and Boltzmann constants. We there-
fore see that according to Equations (5.31) and (8.171), the CMBR intensity
measured by an observer at rest in a frame moving with velocity v relative to
this co-moving frame must be

Io([.to, Vo) = Bo(l/o,To) = (8172)

2hv3 /2

Hu,v) =B, T) = exp(hv/kT) -1’

(8.173)
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where
T=v14+Bpo)To . (8.174)

In other words, fluctuations in the CMBR that result from local variations
in the flow velocity can be characterized as perturbations in the measured
temperature of the blackbody spectrum.

After a few months following the Big Bang, the radiation and baryonic matter
were strongly coupled by Thomson scattering (see §§ 7.4 and 8.6), which does
not alter the photon energy, though it can modify the radiation’s angular dis-
tribution. A few hundred thousand years later (the exact period depends on
cosmological constants that are not known precisely), at a redshift z ~ 1360, T
fell to the point where helium and hydrogen were about 50% recombined into
transparent gases (Peebles 1982). The surface of last scattering occurred a little
later, at z ~ 1160, after which the photons were free to stream across the uni-
verse. Although the rapid scattering between the photons and charged particles
prior to recombination effectively isotropized the radiation field, homogeneity
could not be maintained by the photons that remained trapped in co-moving
coordinates. After the helium and hydrogen recombined to render the medium
transparent, any inhomogeneity in the radiation field was manifested as an
anisotropy in the CMBR, or equivalently, as a nonuniform temperature 7T'.

There are several effects other than differences in the velocity of the electron-
photon fluid that can produce the temperature variations described above.
These include fluctuations in (i) the density of the universe at the surface of
last scatter, (ii) the gravitational potential of the universe at this surface, and
(iii) the gravitational potential along the photon path. Different physical phe-
nomena are responsible for each of these, so that by studying the CMBR, we
can infer valuable information about the early universe. For example, in the in-
flationary cosmology (Starobinsky 1980; Guth 1981), the large-scale structures
associated with these anisotropies were once much smaller than the horizon
during the inflationary epoch, but grew to be much larger than the horizon as
the universe expanded. Indeed, the large-scale inhomogeneities represented by
the anisotropy of the CMBR were evidently produced only 10~35% seconds after
the Big Bang by causal quantum fluctuations.

On smaller scales, inhomogeneities were also produced by “echoes” of the Big
Bang. Matter moving at the speed of sound (c, ~ ¢/v/3) had sufficient time
before recombination to move the distance spanned by an angle of about 1° on
the surface of last scattering. This produced overshooting and the pressure of
the photon gas led to oscillations. The temperature variations resulting from
this process are also called “acoustic” fluctuations, and the scale associated



232 CHAPTER 8

with how far a sound wave moves from the beginning of the Big Bang to when
hydrogen recombines is known as the “sonic” horizon. This distance serves
as a ruler for measuring the geometry of the universe. The reason for this is
that, while the inhomogeneities associated with primordial density fluctuations
are dependent on a number of cosmological parameters, the peak lpeax in the
Legendre multipole (angular) power spectrum is most sensitive to the total
density Q of the universe. (The expansion of the CMBR distribution in angular
space is done by analogy with the multipole expansion for the potential in
Equation [8.10], so that lpeax corresponds to the dominant spherical harmonic in
this series. A fluctuation associated with the /th multipole has a corresponding
angular scale of w/1.) This density is expressed as a ratio over the value that
characterizes a flat, or “Euclidean,” universe. So if o > 1, there is sufficient
energy in the universe to close it and foretell a future collapse; a value (Y < 1,
on the other hand, implies an open universe that should expand forever. At
the time of this writing (2000), several observational campaigns have reported
the preliminary results of their high-resolution mapping of the CMBR?? and
the results are consistent with inflationary models for the early universe, and
a value for Qg of 1.0(+0.15)(—0.30). At this point, the data already rule out
alternative models, e.g., those based on topological defects, that actively bring
about large-scale structure. It should be pointed out, however, that inflationary
cold dark matter models also predict the presence of secondary peaks (at higher
values of [). The current data limit the amplitude of these harmonics, but they
do not exclude their presence, so their existence is still an open question.

Finally, a wealth of information can be found not only in the temperature
fluctuations of the microwave background radiation, but also in its polarization
characteristics. Scattered light, whether it is sunlight reflected by a haze, or
microwave background photons that are reflected off of free electrons in the
early universe, is often polarized. This effect occurs because the electron-photon
scattering cross section depends upon the polarization of the incoming photon
(which corresponds to the direction of the photon’s electric field). The physics
behind this is similar to that discussed in § 4.3 in the context of a radiation
field propagating from one medium to another across an interface, or reflected
back by this surface. This effect makes it possible for us to probe the properties
of the electrons encountered by the photons as they propagate from the surface
of last scatter to our detector.

23The principal groups that have thus far reported their results are the BOOMERanG
experiment (Balloon Observations Of Millimetric Extragalactic Radiation and Geomagnet-
ics), the MAXIMA balloon-borne experiment, and the Mobile Anisotropy Telescope (MAT)
at Cerro Toco in Chile. The reader is encouraged to learn more about these discoveries in
Miller et al. (1999), de Bernardis et al. (2000), and Hanany et al. (2000).
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8.8 COSMIC SUPERLUMINAL SOURCES

Since the 1960s, quasars have been known to emit a significant fraction of
their light by synchrotron radiation from relativistic electrons in weak magnetic
fields (e.g., van der Laan 1966). In the early days, this model could explain
the characteristic radio spectra and the intensity variations on a time scale of
years that were observed in some of these sources, but there were problems
with this interpretation in others. If the quasar redshifts are indicators of their
cosmological distances (which in the 1960s was a subject of some controversy—
see Hoyle and Burbidge 1966), then the rapid flickering over several months or
less implied that the radiating regions could be no more than a fraction of a
light year across. This is based on the simple idea that a significant variation
of an object’s luminosity can occur only over an interval longer than the light
travel time across the source’s dimension, for otherwise different portions of
the emitter have no way of “communicating” the information that they are
changing. Thus, if a fluctuation in the luminosity occurs over a time At, it is
expected that the source of the variation is no bigger than ~ ¢ At. The reason
this small size presented a difficulty was that the implied energy density of the
particles and the radiation were then much higher than was allowed by the
simple synchrotron model. In fact, no radio photons at all would be permitted
to escape, since the frequent inverse Compton scatterings with the relativistic
electrons would then inevitably lead to the production of high-energy radiation.

An interesting solution to this problem was proposed by Rees (1966, 1967),
who suggested that this runaway problem could be alleviated if the rapidly
varying sources were expanding with relativistic velocities. Relativistic effects
can yield shorter apparent time scales for the variations and permit larger source
dimensions. As we shall see below, an additional by-product of this is that parts
of the source can then appear to move across the sky with a velocity that exceeds
¢, i.e., “superluminally.” However, the experimental verification of this model
could not be obtained until radio astronomy could extend the resolution of the
measuring instruments from arcseconds to milliarcseconds. A milliarcsecond
corresponds to a length of 1.2 light years at a distance of 100 Megaparsecs,
roughly the near edge of the quasar population. This need for higher angular
resolution motivated groups in Canada, the United States, England, and the
former Soviet Union to develop Very Long Baseline Interferometry (VLBI), in
which independent local oscillators are used to obtain and record signals on
magnetic tape for later correlation.

During the period between 1968 and 1970, the quasar 3C 279 was monitored
by an American-Australian team (Gubbay et al. 1969), who noticed changes
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in the source visibility and total flux density indicating that during the time
of observation, a radio emitting component had reached a diameter of about
1 milliarcsecond, implying expansion at an apparent velocity of at least twice
the speed of light. Moffet et al. (1972) concluded that their measurements
presented evidence for a relativistic expansion of this component, confirming
the basic prediction by Rees several years earlier. The public reaction to the
discovery of apparent superluminal motion was generally one of skepticism,
inducing some to refute special relativity and/or the concept of cosmological
redshifts (e.g., Stubbs 1971). However, in subsequent years, the development of
more sophisticated analysis methods for VLBI and the setting up of extensive
observing programs have led to the generation of true images of the super-
luminal motion of the sources, allowing us to see not only the birth of these
components, but also their evolution. Upward of 30 superluminal, or possibly
superluminal, quasars have now been cataloged (Zensus and Pearson 1987).

Let us see if we can understand the nature of this phenomenon in a simple
way. Suppose we observe a “blob” of relativistic electrons emitting synchrotron
radiation (see previous section) as it moves from points 1 to 2 in a time At
(Figure 8.12). Because 2 is closer to the observer than 1, the apparent duration
of the light pulse received at earth is At minus the light travel time from point
1 to the line running horizontally out from point 2:

Ateyy = At — 28060 _ (1-2 cost) . (8.175)

C c

The apparent transverse velocity is therefore

v v At sin6
app - Atapp

v sinf
= m ; (8.176)

To find the maximum permissible value, we now differentiate vap, with respect
to 6 and set the result equal to zero. This yields the critical angle 6., where

cos b, = % =4. (8.177)

Correspondingly, sinf. = y/1 — 32 = 1/v. Therefore, the maximum apparent
velocity is
/1 — 32
vvl1=-5% (8.178)

Umaxzm——’yv.
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v sin0 At

Figure 8.12 A “blob” moving with very high velocity v from point 1 to
point 2, as seen by a distant observer whose line of sight makes an angle 6 with
respect to v.

Thus, there is a range of angles, all close to zero, for which the observed blob
velocity greatly exceeds its actual velocity v. Indeed, when v > 1, vayx clearly
exceeds c¢. Does this violate the second postulate of special relativity? Not
at all. There is no actual transfer of particles and/or information across the
sky. Any two physical points in the blob’s path are still connected by an agent
traveling with velocity v < c.

8.9 POLARIZED RADIATION FROM THE
BLACK HOLE AT THE GALACTIC
CENTER

The region bounded by the inner few light years at the heart of the Milky Way
contains several principal components that coexist within the central deep grav-
itational potential of the galaxy. Though largely shrouded by the intervening
gas and dust, the galactic center is now actively being explored observationally
at radio, submillimeter, infrared, X-ray, and vy-ray wavelengths with unprece-
dented clarity and spectral resolution. The interactions governing the behavior
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and evolution of this nucleus are attracting many astronomers and astrophysi-
cists interested in learning about the physics of black hole accretion, magnetized
gas dynamics, and unusual stellar formation, among others. The galactic center
is one of the most interesting regions for scientific investigation because it is the
closest available galactic nucleus and therefore can be studied with a resolution
that is impossible to achieve in other galaxies.

For example, the galactic center is now known to harbor by far the most ev-
ident dark mass condensation, which apparently coincides with a compact,
synchrotron-emitting, radio source known as Sgr A*. Several observations (per-
taining to the proper and radial motion of stars and gas) strongly support the
idea that this object has a mass of over two and a half million suns (Haller et
al. 1996; Eckart and Genzel 1996; Ghez et al. 1998). Yet the nature of this
unusual object is still largely unknown. One might naively expect from the
abundance of nearby gas that this black hole should be accreting prodigiously
and be very bright from the conversion of matter energy into radiation. How-
ever, it is underluminous (compared to naive expectations) at all wavelengths
by many orders of magnitude. Does this imply new physics associated with
the accretion of matter through the event horizon, or does it imply something
peculiar about the manner with which the gas radiates?

The answers to these questions must be sought from the spectral characteristics
of Sgr A*. Of significant current interest is the detection of linear polarization in
the millimeter and submillimeter radiation produced by this source. Although
the degree of linear polarization in Sgr A* is found to be quite low (less than
1%) below 86 GHz, this is not the case at 750, 850, 1350, and 2000 pum, where
a surprisingly large intrinsic polarization of over 10% has now been reported
(Aitken et al. 2000). These observations also point to the tantalizing result that
the position angle (see § 4.2) changes considerably (by about 80°) between the
millimeter and the submillimeter portions of the spectrum, which one would
think must surely have something to do with the fact that the emitting gas
becomes transparent at submillimeter wavelengths (Melia 1994).

Astrophysicists are now working with the hypothesis that the millimeter and
submillimeter radiation from Sgr A* is being produced by hot, magnetized gas
orbiting the black hole within a mere 5 to 20 Schwarzschild radii of its event
horizon. (A Schwarzschild radius is defined to be 2GM/c?, in terms of the
black hole mass M and the gravitational constant G. For the black hole at
the galactic center, this region is comparable in size to Mercury’s orbit.) The
reason for this is that although the gas falls in toward the black hole from
large distances, it carries some specific angular momentum that forces it to
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circularize (i.e., to enter into Keplerian rotation) at about 20 Schwarzschild
radii from the center (see, e.g., Coker and Melia 1997).

The detection of a net polarization in the emission from Sgr A* is rather strong
evidence in favor of this “accretion disk” picture. This is because the circular-
ized flow constitutes a magnetic dynamo that greatly amplifies the azimuthal
component of the magnetic field. The gas is very hot and highly ionized, so
any seed B is stretched and wrapped many times by the differentially rotat-
ing plasma as it orbits the black hole. The physical state of this gas is such
that the dominant radiating mechanism is synchrotron emission (see § 8.6) by
a (relativistic) Maxwellian distribution of particles swirling around within this
field. Thus, an important constraint arises from the geometry of this highly
ordered magnetic field, since it tends to point preferentially in the plane of the
disk anchored to the black hole: the polarization vector (i.e., the direction of
the electric field associated with the radiation) is generally perpendicular to

the azimuthal direction since the synchrotron-emitting particles gyrate around
B.

Once the radiation is produced, its transport characteristics through the region
surrounding the black hole depend sensitively on the wavelength A\. The reason
for this is that the photon mean free path is much smaller than the system
size above A = 1 mm, and larger than the emitting region for A < 1 mm.
Consequently, the millimeter to centimeter radiation that we see is dominated
by emitting elements on the near and far sides of the black hole (since photons
from the sides are scattered many times away from the line of sight). For this
radiation, the polarization direction tends to be perpendicular to the accretion
disk (i.e., to B which lies in the plane of the disk). In contrast, the dominant
contribution in the submillimeter region comes from the blue-shifted emitter
to the side of the black hole, where the Doppler boosting is significant for gas
velocities approaching c (see Equation [5.31]). This submillimeter radiation
therefore has a polarization vector pointing along the disk as seen at earth.

The net result of these effects is that the radio emission from Sgr A* is partially
polarized, with a position angle that changes by almost 90° from the millimeter
to submillimeter portions of the spectrum. Polarization measurements such as
these may eventually constitute a powerful diagnostic of the emitting region just
outside the event horizon of the black hole at the galactic center and provide us
with an opportunity of studying in detail the predictions of general relativity
in the strong field limit.
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action at a distance, 2
action principles, 145
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time, 104
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binomial theorem, 196
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black hole, 215, 235
blackbody, 228, 230
boundary conditions, 16, 45, 83, 96
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Neumann, 35
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magnetic, 219
radiation, 181
spectrum, 181
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density, 5
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classical electron radius, 185, 222
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angular momentum, 74
field angular momentum, 159
field energy, 70
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inflationary, 229
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spectrum, 220
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damping force, 88, 185
due to radiation, 188
degrees of freedom, 147, 149
diamagnetic, 16
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displacement, 15
differential equations
coupled, 22
elliptic, 18, 22
first-order, 20
hyperbolic, 20, 23
ordinary, 16
parabolic, 23
partial, 16
diffusion, 23, 213
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magnetic moment, 15
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radiation, 107, 113, 173
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boundary conditions, 35
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discriminant, 23

dissipation of electromagnetic energy, 71

div, 4

divergence, 4, 12-13

theorem, 69
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dyadic notation,

electric
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field divergence, 25

flux, 3
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permittivity, 16

potential, 7
electrodynamics

Lagrangian formulation of, 145
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electromagnetic

acceleration, 215
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energy dissipation, 71

energy, 70

energy-momentum tensor, 141

field, 1, 136
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Euler-Lagrange equations, 155, 157
event horizon, 236

expansion of the
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potential, 42
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magnetic, 3, 15, 25
magnetostatic, 18, 50-51, 54, 59, 69
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momentum flux, 74
momentum, 72, 139
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oscillations, 92
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radiation zone, 77
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scalar, 19, 229
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spherical waves, 195
time-dependent, 61, 162, 199
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time-independent, 25
transformation, 62, 177
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velocity, 105
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flux
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momentum, 73
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potential, 128, 163
Fourier expansion, 65, 107, 162
Fourier-Bessel theorem, 47
frequency, 20, 220
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cutoff, 180
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of a TM mode, 98

of radiation, 162, 176
oscillator, 187
plasma, 91

frozen-in magnetic field, 213

galactic center, 236
Galilean relativity, 115, 129
principle of, 117
transformations in, 115
gauge
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invariance, 64, 159-160
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theories, 18
transformation, 19, 63
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action, 147
energy, 152
force, 151
momentum, 149-150
grad, 8
grand unified theory, 6
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time-dependent, 63, 66, 163
Green'’s
first identity, 32
theorem, 32
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Hamilton’s principle, 147, 152, 156
of least proper time, 152
Hamiltonian, 152, 158
harmonic fields, 79, 89
in matter, 88
harmonic oscillator, 185
emission line from, 187
Heaviside function, 134, 167
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Helmbholtz equation, 202
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specific, 230
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Lorentz, 138
of action, 157
of physical laws, 160
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Keplerian rotation, 237
Kronecker delta, 127
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length contraction, 120
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Lorentz
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magnetic
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permeability, 16, 18
pressure, 214
scalar potential, 52, 55
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magnetization, 55, 58, 79

magnetohydrodynamics, 210, 214-215
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magnetostatic energy, 70
mass conservation, 215
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homogeneous, 15, 155
in a nondissipative medium, 93
in covariant form, 137, 140, 177
in matter, 14
inhomogeneous, 63, 155, 162
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Maxwell stress tensor, 73-75, 139
metric tensor, 127, 140
Michelson-Morley experiment, 116
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moment
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flux, 6
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magnetic, 5
moment, 196
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time-independent, 195
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functions, 46
problem, 37
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Fourier series, 42
Hermite, 42
Legendre polynomials, 42
Mathieu, 42
Neumann, 46
spherical harmonics, 42
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paramagnetic, 16
particle

acceleration, 215

dynamics, 21
permeability, 16, 83
permittivity, 16, 25
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phase

in Hamilton’s principle, 147

of a field, 80-82

of a wave, 121, 218

velocity, 217-218
photons, 2, 68, 73, 121, 131, 176, 181, 187,

189, 223, 228, 230
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Planck function, 230
plane wave, 78-79, 83, 217
plasma, 91, 183, 195, 214, 216

frequency, 91
point current, 98
Poisson’s equation, 13, 18-19, 25, 30, 34, 57
polarization, 2, 80, 82, 84, 225, 227-228,

232, 236

circular, 81, 235

electric, 15
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field, 14
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magnetic, 15
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potential

advanced scalar, 67

advanced vector, 67

electric, 7

expansion with orthonormal functions, 42

4-vector, 128

magnetic scalar, 52, 55

magnetic vector, 57

retarded scalar, 67, 173

retarded vector, 67, 173

retarded, 99

scalar, 12

time-dependent, 13

vector, 13, 18-19
Poynting vector, 71, 79, 142, 173
Poynting’s theorem, 68
preacceleration, 194
propagation, 23

vector, 78, 89, 91
propagator in momentum space, 164
proper time, 124, 137, 169
pulsars, 218

quadrupole moment, 196-197
quantum
chromodynamics, 2
electrodynamics, 17
fluctuations, 231
mechanical effects, 46, 176
quasars, 215, 233-234

radiation, 77, 98, 107, 161
angular distribution of, 162, 173, 222
beamed, 222
beaming cone, 175
bremsstrahlung, 176
cosmic, 233, 235

- cyclotron, 219-220

damping, 188
dipole, 107
emitted power, 174
field, 102, 105, 107
microwave, 228
monochromatic, 220
spectrum, 162, 179, 181, 225, 227
synchrotron, 225, 233, 235
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radiative
motion of a point charge, 183, 189
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reflection, 83, 85, 87, 93
refraction, 83, 85, 93
complex index of, 91
index of, 90-91
relative motion, 61-62, 118
relativistic
charge conservation, 135
collision, 176
expansion, 234
force, 129, 138, 155
kinematics, 132
kinetic energy, 131
Lagrangian, 150-151
Lorentz-Dirac equation, 188
motion of a charge, 151

particles, 133, 153, 176, 178, 218, 233-234

transformation, 133
transformation of angles, 222
treatment of radiation, 161
two-particle collision, 132
renormalization, 17
residue theorem, 165
resistivity, 213
rest mass, 129, 188, 192
retarded
fields, 173
potential, 67, 99, 173
time, 104

scalar
field, 19, 229
potential, 12
Schwarzschild radius, 236
self-energy, 17
shrinkage factor, 102
simultaneity, 120
skin depth, 92
Snell’s law, 8587
solid angle, 41, 53-54, 174, 184, 223, 226
spacetime
covectors, 124
four-dimensional, 64, 124
4-vectors, 124
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scalar, 124
tensors, 125
special relativity, 61, 115, 235
basic principles of, 115
length contraction in, 120
postulates of, 118, 235
rapidity in, 193
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spherical waves, 195, 199
Stokes parameters, 80, 82

stress-energy tensor, 2, 73-74, 139, 144, 158

superluminal
motion, 215, 234
sources, 233-234
supersymmetry, 18
symmetry, 28, 40, 42
Cartesian, 42
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synchrotron
emission, 218
radiation, 225
spectrum, 225, 227
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tensor, 125
contravariant, 126
covariant, 126
energy-momentum, 141
field-strength, 136, 177
metric, 127, 140
of rank greater than one, 126
scalar, 125
stress-energy, 144, 158
vector, 125

Thomson scattering, 181, 222

transverse
electric mode (TE), 95
magnetic mode (TM), 95
waves, 78

uncertainty principle, 176, 194
universe, 5, 228

early, 228

hot, 229

steady state model of, 229

variational principle, 147, 152, 154, 156
vector potential, 13, 18-19, 59
Very Long Baseline Interferometry, 233
virtual quanta, 176

scattered. 181
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wave, 19 polarization, 87
Alfvén, 215, 217-218 propagation, 216
causal disturbance, 66 spherical, 195, 199
damped, 91 transverse, 78
electromagnetic, 2, 77 vector, 20

equation, 20, 89, 159

guide, 93-94, 96-98, 203

in nonconducting medium, 78
phase of, 121 Yang-Mills theory, 18
plane, 78-79, 83, 217

world line, 172








