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structed from more fundamental particles: quarks. The distribution of quarks within
protons and neutrons, their interactions, and how they define the properties of pro-
tons and neutrons, and hence nuclei, are subjects of major research worldwide. This
study requires the use of beams of high-energy electrons. Understanding of proton
structure at high energies has been greatly expanded by the study of generalized
parton distributions and of nucleon spin structure. Photons can separate the roles of
quark and gluonic degrees of freedom within hadrons and hence filter glueballs and
hybrid mesons. At high energies, both photon and nucleon structure can be probed.
The former manifests itself in diffractive photoprocesses, where there is a uniquely
rich interplay between perturbative and non-perturbative effects. This book pro-
vides an authoritative overview on the subject, and sections on chiral perturbation
theory, crucial in understanding soft pions and soft photons near threshold, and
duality ideas, equally crucial at intermediate energies, are included.

The emphasis throughout the book is on phenomenology, and the book concentrates
on describing the main features of the experimental data and the theoretical ideas
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in the field of particle physics and electromagnetic interactions.
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Preface

Within the Standard Model of particle physics, it is the strong phase of QCD that is
least understood, and the electromagnetic interaction that is best understood. It is
therefore natural to use the electromagnetic interaction as a relatively gentle probe
of the internal structure of hadrons and of other aspects of non-perturbative strong
interactions.

This approach is hardly new: electron scattering was first used to measure the charge
distribution within the proton some 50 years ago. However, its importance has been
enormously enhanced by the recent development of many experimental facilities
dedicated to electromagnetic interactions, and the realization that other laboratories
can access electromagnetic interactions in novel ways. These facilities are primarily
at low and medium energies, which probe the small-Q2 kinematic regions, and
upgrades are planned. In contrast, existing high energy electron accelerators, such
as HERA, are soon to close, and even B-factories in e+e− annihilation are coming
to the end of their lives. The focus of electromagnetic and hadron physics will be on
QCD in the strong interaction regime (‘strong QCD’) as distinct from perturbative
QCD physics.

The physics of strong QCD falls mainly into two areas: hadron spectroscopy at low
energies and non-perturbative aspects of high-energy processes. In spectroscopy,
the ability to tune the virtuality of the photon in electroproduction enables the spa-
tial structure of baryons to be explored; and since photons only couple directly to
charged particles, they are a vital tool in separating the roles of quark and gluonic
degrees of freedom within hadrons, and hence in filtering glueballs and hybrid
mesons. At high energies, there has been considerable progress in understand-
ing both photon and nucleon structure. The former manifests itself in diffractive
photoprocesses, where there is a uniquely rich interplay between perturbative and
non-perturbative effects, and intermediate colour dipoles play the dominant role;
while the study of proton structure at high energies has been greatly expanded by the
study of skewed or generalized parton distributions and of nucleon spin structure.
In addition we have included reviews of chiral perturbation theory, which plays

xii



Preface xiii

a crucial role in understanding both soft pions and soft photons in the threshold
region; and of duality ideas, which play an equally crucial role at intermediate
energies.

In view of the enormous and continuing interest stimulated by these developments,
a review of the present state of knowledge is both timely and useful. Because of
the wide range of the material, a cooperative format has been adopted, similar to
that used in a review of early work on the same topic published many years ago.*

Again, the emphasis throughout is primarily on phenomenology, concentrating on
describing the main features of the experimental data and the theoretical ideas used
in their interpretation. As such we hope it will be of interest and use to all physicists
interested in hadron physics, including graduate students.

For ease, laboratories and experiments will be referred to by their common acronyms
or abbreviated forms. For reference the most common of these are the Thomas
Jefferson National Accelerator Facility (JLab), LEGS at the Brookhaven National
Laboratory (BNL), BaBar at the Stanford Linear Accelerator Center (SLAC), CLEO
at Cornell University and MIT-Bates at MIT in the USA; MAMI at Mainz, ELSA at
Bonn and HERMES at DESY in Germany; GRAAL at Grenoble in France; FENICE
at Frascati in Italy; the COMPASS experiment at CERN; VEPP at Novosibirsk in
Russia; and LEPS at Spring-8 and BELLE in Japan.

Finally, we are grateful to all the participating authors, both for their contributions
and for their cooperation with the editors in obtaining a well-balanced presentation.

Frank Close
Sandy Donnachie

Graham Shaw

* Electromagnetic Interactions of Hadrons, A Donnachie and G Shaw eds, Plenum Press, New York,
Vol I (1978) and Vol II (1978).





1

Quark models of hadrons and issues
in quark dynamics

F E Close

1.1 Chromostatics

The discovery of quarks in inelastic electron scattering experiments, following
their hypothesized existence to explain the spectroscopy of hadrons, led rapidly to
the quantum chromodynamic (QCD) theory and the Standard Model, which has
underpinned particle physics for three decades. Today, all known hadrons contain
quarks and/or antiquarks.

The QCD Lagrangian implies that gluons also exist, and the data for inelastic
scattering at high energy and large momentum transfer confirm this. What is not
yet established is the role that gluons play at low energies in the strong interac-
tion regime characteristic of hadron spectroscopy. QCD implies that there exist
‘glueballs’, containing no quarks or antiquarks, and also quark–gluon hybrids. The
electromagnetic production of hybrids is one of the aims of JLab. Glueballs, on the
other hand, are not expected to have direct affinity for electromagnetic interactions;
hence hadroproduction of a meson that has suppressed electromagnetic coupling is
one of the ways that such states might be identified.

Quarks are fermions with spin 1
2 and baryon number 1

3 . A baryon, with half-integer
spin, thus consists of an odd number of quarks (q) and/or antiquarks (q̄), with a net
excess of three quarks. Mesons are bosons with baryon number zero, and so must
contain the same number of quarks and antiquarks.

The simplest configuration to make a baryon is thus three quarks, qqq; a meson
most simply is qq̄. Within this hypothesis well over two hundred hadrons listed
by the Particle Data Group (PDG) [1] can be described. The question of whether
there are hadrons whose basic constitution is more complicated than these, such
as mesons made of qqq̄q̄ or baryons made of qqqqq̄, is an active area of research,

Electromagnetic Interactions and Hadronic Structure, eds Frank Close, Sandy Donnachie and Graham Shaw.
Published by Cambridge University Press. C© Cambridge University Press 2007
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2 F E Close

which we shall summarize later. First we examine what property of the attractive
forces causes such combinations to occur and then discuss how the multitude of
hadrons are described.

The fundamental theory of the strong forces between quarks is QCD. The details of
this theory and rules of calculation may be found in dedicated texts such as [2]. A
quark carries any of three colours – which we label RBG. They are the charges that
are the source of the force between quarks. The rules of attraction and repulsion
are akin to those of electrostatics where like repel and unlike attract. Associate
positive charges with quarks and negative with antiquarks. The attraction of plus
and minus then naturally leads to the qq̄ configurations, the mesons, for which the
colour charges have counterbalanced.

In quantum electrodynamics, QED, the electromagnetic force is transmitted by
photons; analogously, in QCD the forces between quarks are transmitted by gluons.
This far is analogous to the formation of electrically neutral atoms. The novel
feature arises from the three different colour charges. Two identical colours repel
one another but two different, namely RG, RB or BG, can mutually attract. A third
quark can be mutually attracted to the initial pair so long as its colour differs from
that pair. This leads to attraction between three different colours: RBG. A fourth
quark must carry the same colour charge as one that is already there and will be
repelled by that, meanwhile being attracted to the dissimilar pair.

The above pedagogic illustration needs better specification. The rules of attrac-
tion and repulsion depend on the symmetry of the pair under interchange. Thus
symmetric combinations repel, antisymmetric attract. Two identical colours, being
indistinguishable, are trivially symmetric. Two differing colours can be either sym-
metric or antisymmetric:

[RB]S ≡
√

1
2 (R B + B R), (1.1)

[RB]A ≡
√

1
2 (R B − B R). (1.2)

Thus any pair of quarks in a baryon is in an antisymmetric symmetry state for
the saturation of the attractive forces. The full wave function for the colour of a
three-quark baryon is thus

√
1
6 ((RB − B R)G + (BG − G B)R + (G R − RG)B) . (1.3)

The three colours form the basic 3 representation of SU(3); the three ‘negative’
colours of antiquarks are then a 3̄. The rules of combining representations give

3 ⊗ 3̄ = 1 ⊕ 8; 3 ⊗ 3 ⊗ 3 = 1 ⊕ 8 ⊕ 8 ⊕ 10. (1.4)
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It is the colour-singlet representations that are the formally correct SU(3) expres-
sions of the above heuristic combinations. Hadrons are thus colour singlets of
colour SU(3). Building a relativistic quantum gauge field theory of colour SU(3)
leads to QCD. The baryons are thus in the antisymmetric representation of colour
SU(3). The above argument shows how this is a natural consequence of the attrac-
tive colour forces in chromostatics. The antisymmetry under interchange of colour
labels, combined with the Pauli principle that requires fermions, such as quarks,
to be antisymmetric under the exchange of all their quantum numbers, leads to
essential constraints on the pattern of hadrons and their properties.

1.2 Mesons as bound states from bb̄ to light flavours

For heavy-flavour mesons, such as cc̄ and bb̄, a non-relativistic potential model
description of meson spectroscopy is realized phenomenologically and may be jus-
tified theoretically. The ground state 1S, the first excited state with orbital excitation
L = 1, denoted by 1P , and the radial excitation of the S-state, 2S with the 1D level
being slightly higher than this, are qualitatively in accord with the pattern of a linear
potential V (r ) = Kr . Here r is the radial separation of the q and q̄, and K (known
as the string tension) has dimensions of (Energy)2. Empirically K ∼ 1 GeV/fm
∼ 0.18 GeV2.

The qualitative features of the spectrum of states survive for all flavours (with some
exceptions, such as 0++, which we discuss later). This has enabled a successful
phenomenology to be built in applying the non-relativistic constituent-quark model
to light flavours even though the a priori theoretical justification for this remains
unproven. A widely-used approach has been to approximate the dynamics to that
of the harmonic oscillator, with Gaussian wave functions of form exp(−r2β2

M/2)
multiplied by the appropriate polynomials and β treated as a variational parameter
in the Hamiltonian H for each of the 1S, 1P, 2S, 1D, . . . states.

There are also spin-dependent energy shifts among states with the same overall
L, the forms of which phenomenologically share features with those generated by
the Fermi–Breit Hamiltonian in QED. This is widely interpreted as evidence for
analogous chromomagnetic effects in QCD.

The qq̄ picture is only literally true for states that are stable. If the number of
colours Nc → ∞, the amplitudes for qq̄ → qq̄ + qq̄ ∼ 1/Nc → 0. In the real
world Nc = 3 and the coupling to meson channels must distort the simple qq̄
picture. A particular example occurs for cc̄ where the DD̄ thresholds cause non-
trivial admixtures of cc̄uū and cc̄dd̄ in the ‘primitive’ cc̄ wave functions of the
J PC = (0, 1, 2)++ χ states [3–5] and the 1−− ψ(3685) which are all below the
DD̄ threshold. In the simple cc̄ non-relativistic-potential picture, electromagnetic
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transitions among these states, such as

ψ(3685) → γχJ ; χJ → γψ, (1.5)

are electric dipole, E1, transitions. In this case if ψ(3685) ≡ 3S1, then apart
from phase-space effects the relative widths ψ(3685) → γχJ would be in the
ratio 2+ : 1+ : 0+ = 5 : 3 : 1, whereas for a 3 D1 initial state these ratios become
2+ : 1+ : 0+ = 20 : 15 : 1 [6,7]. While data are qualitatively in accord with the
predictions of such a model for the 3S1 case, future precision data can reveal the
presence of relativistic effects, 3 D1 components and of DD̄ mixing in the cc̄ states.
This is a particular example where electromagnetic transitions can give precision
information on hadron wave functions and dynamics. More discussion of this can
be found in chapter 4.

An example of this is the conundrum of the state X (3872) [8]. This charmonium
state is degenerate with the neutral DD̄∗ threshold and as such is suspected of
having uū admixture in its cc̄ wave function. The uū and absence of dd̄ will lead
to significant isospin violation in its decays. If this state is 1++, then one may
anticipate such a light flavour asymmetry at a small level in the wave function of
the χ1(3500). High-statistics data on the hadronic decays of the χ1(3500) could
reveal if this is the case.

Such subtle effects could occur more widely in the charmonium states. The basic
idea is as follows. The mass difference between dd̄ and uū, although small and
widely neglected in analysis, can have measurable effects when the dynamics
involves the differences among various energies. For example, the mixing of dd̄
and uū in the χ states may be driven by M(DD̄) − M(χ ). For uū mixing into the
χ0 for example, it will be the neutral threshold D0 D̄0 that is relevant, while for the
dd̄ mixing it is D+ D−. The difference in the energy gaps in the two cases is ∼5%;
for states that are nearer the threshold such flavour-dependent effects can become
highly significant. In the case of the cc̄ state X (3872) [8] one has almost perfect
degeneracy with the D0 D̄∗0 threshold such that admixture of uū is expected to
dominate dd̄ utterly [9,10].

High-statistics data on χ hadronic decays should be studied to see if there is an
asymmetry between the neutral and charged particles in the final states, which
would show a failure of simple isoscalar decay. These data can be taken in the e+e−

facilities CLEO-c at Cornell University and BES in Beijing.

These mixing effects may be studied in precision data for heavy flavours and the
resulting insights applied to light flavours. In the latter we already have qualitative
understanding of where the limits of the qq̄ model occur. The strategy is to quantify
these en route to a more mature dynamical picture of the light flavoured hadrons.
This has interest in its own right but also is needed when building Monte Carlo mod-
els for the decays of B and D heavy flavours into channels involving light hadrons.
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1.2.1 Linear plus Coulomb potential

The phenomenological picture of the linear potential deduced from the pattern
of the energy levels gives insight into the nature of the force fields acting on the
constituents. As the force field ∼ dV (r )/dr , then V (r ) ∼ Kr implies the field is
constant as a function of the distance r between the colour sources. This immediately
contrasts with the behaviour in QED where V (r ) ∼ 1/r implies that E(r ) ∼ 1/r2,
whereby the fields spread freely into all directions of three-dimensional space. The
message for QCD is that the field lines concentrate along the line connecting the
colour source q and sink q̄. Thus the ‘linear’ potential is aptly named!

This is in accord with the picture that emerges from lattice QCD [11,12]. The
potential is predicted to be linear and by implication the field lines collectively form
a tube-like configuration. This has led to ‘flux-tube models’ [13,14] of qq̄. These
models underpin the potential, which is all that is needed for many calculations.
However, they and the lattice computations also imply that the flux-tube provides
an independent degree of freedom, which can be excited. The resulting states that
form when the flux-tube is excited in the presence of qq̄ are known as ‘hybrids’
[13–18]. We consider their dynamics later.

For the conventional qq̄ states one views the flux-tube as the source of the linear
potential, at least at distances comparable to the confinement scale (r ∼ 1 fm). At
short range, say r ∼ 0.1 fm, QCD theory implies that the colour force is transmitted
by gluons, which act independently of one another analogously to the way that
photons behave in QED. This gives a Coulombic contribution to the potential
as r → 0. The exchange of a single gluon gives perturbative corrections to the
simple potential, generating analogues of the spin-dependent hyperfine shifts that
are familiar in QED.

The effective potential arising from QCD is thus taken as [3,7]

V (r ) = Kr − 4

3

αs

r
+ C (1.6)

(the factor 4
3 is a normalization factor arising from the SU(3) colour matrices at the

quark vertices). In calculations it is often useful to make a Gaussian approximation
to the wave functions, which may be found variationally from the Hamiltonian

H = p2

μ
+ Kr − 4

3

αs

r
+ C, (1.7)

where μ = mqmq̄/(mq + mq̄) is the reduced mass, with standard quark-model
parameters mq = 0.33 GeV for u and d quarks and 0.45 GeV for s quarks, K = 0.18
GeV2 and αs ∼ 0.5.

Not only are the patterns of the energy levels preserved as one goes from heavy
to lighter flavours, but many of the energy gaps are quantitatively approximately
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independent of flavour mass. Thus the gap between the 1−− qq̄ in the 1S to 2S
levels is 563 MeV for bb̄ (ϒ(10023)−ϒ(9460)) and 589 MeV for cc̄ (ψ(3686)−
ψ(3097)). For the light flavours the analogous gap between ρ(1460) and ρ(770)
is only some 10% larger while the absolute mass scales have changed by over an
order of magnitude.

For a constituent of mass m in a potential that behaves as V (r ) ∼ r N , this gap would
vary as m−N/(N+2), hence ∼m for the Coulomb potential and ∼m−1/3 for linear.
Mass independence would ensue for a potential V (r ) ∼ ln r , which is approximately
how the linear + Coulomb appears in the region of r most sensitive to the bound
states.

However, there are also clear mass-dependent effects, notably in the splittings
between the 3S1−1S0 levels (1−−−0−+). These vary from over 600 MeV for
ρ(770) − π (140), through 400 MeV for K ∗(890)−K (490) to significantly less for
ψ(3095)−ηc(2980) (we adopt the naming conventions for particles of the PDG [1]).

1.2.2 Hyperfine shifts

Although the mass gaps between successive orbital excitation levels of the effective
potential are empirically approximately flavour-independent, there is a marked
flavour dependence of the splitting between the S-wave states of differing total
spin. Specifically this concerns the 1− and 0− states of qq̄ and the J P = 3

2
+

and
1
2
+

baryons.

Early evidence that mesons and baryons are made of the same quarks was pro-
vided by the remarkable successes of the Sakharov–Zeldovich constituent quark
model [19], in which static properties and low-lying excitations of both mesons and
baryons are described as simple composites of asymptotically free quasiparticles
with a flavour-dependent linear mass term and hyperfine interaction,

M =
∑

i

mi +
∑
i > j

σi · σ j

mi · m j
· vhyp, (1.8)

where mi is the effective mass of quark i, σi is a quark spin operator and v
hyp
i j is a

hyperfine interaction. This form has analogy with the source of hyperfine splitting
in atomic hydrogen and suggests for hadrons that there is a QCD source in single-
gluon exchange. As in the QED case, this (chromo)magnetic interaction is inversely
proportional to the constituent masses.

In QCD the colour couplings are proportional to λi · λ j , with λ the SU(3) matrices
[20]. The spin-dependent σi · σ j term then causes the lowest-spin combinations to
be further attracted, their high-spin analogues suffering a relative repulsion. This
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leads to a strong chromomagnetic attraction between a u and a d flavour when the
ud diquark is in the 3̄ of the colour SU(3) and in the 3̄ of the flavour SU(3) and has
I = 0, S = 0.

The relative magnitudes of the spin-dependent shifts for a common set of flavours
depend on the net colour of the interacting constituent pair. Since the colour expec-
tation values are

〈λ1 · λ2〉qq(3̄) = 1
2〈λ1 · λ2〉qq̄(1), (1.9)

the relative shifts for colour-singlet mesons and baryons are

J = 0 → −3; J = 1 → +1; J = 3
2 → + 3

2 ; J = 1
2 → − 3

2 , (1.10)

whence m() > m(N ) and m(ρ) > m(π ). These need to be rescaled by the appro-
priate masses following (1.8) when comparing the flavour dependence of the energy
shifts [20,21], such as for m(�∗) > m(�) and m(K ∗) > m(K ).

These spin- and flavour-dependent energy shifts are manifested not only in the
different masses of hadrons with different spins, but also cause the splitting of �−�

baryons. This is because the ud in �Q(Qud) have, by the Pauli correlation, S = 1
and are hence pushed up in energy relative to their counterparts in the �Q(Qud),
which are in S = 0. Details are in [21].

These attractive forces can generate correlations among pairs of quarks and/or
antiquarks, which are manifested as spin-dependent effects in inelastic scattering
and in the appearance of colour-singlet hadrons with content qqq̄q̄ or qqqqq̄. These
attractive correlations arise when a qq or q̄q̄ are antisymmetric in each quantum
number, thus qq in colour 3̄ (q̄q̄ in 3), spin-zero and flavour singlet. This has
significant implications for the structure of mesons with J PC = 0++ below 1 GeV
[22,23]. It also can lead to the possibility of ‘pentaquark’ states (ud)(ud)Q̄, where the
(ud) denotes a correlated pair and the antiquark has a distinct flavour Q = s, c, b. A
particular example of the latter would be ududs̄, which would form a baryon with
positive strangeness, which is thus manifestly exotic in that it cannot be formed
from any combination of qqq.

1.3 Flavour mixings

Any flavour of quark Q and its antiquark Q̄ when attracted together form a state
with no net flavour, in particular having zero electric charge and strangeness. How
then are we to tell what combination of flavours occurs in any given physical state?
We begin with some theoretical expectations.

Consider two heavy flavours, say bb̄ and cc̄. The mass matrix will have on its
diagonal 2mb and 2mc, and if this was the whole story these would be the physical
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eigenstates. But there is also the possibility that these neutral states can annihilate
through some common channel, for example gluons. Let the strength of this anni-
hilation be A. It may connect bb̄ to cc̄ and it can also connect either of these to
itself. The matrix thus becomes

(
2mb + A A

A 2mc + A

)
. (1.11)

The eigenstates depend on the relative size of (mb − mc)/A. If this is large the
eigenstates are bb̄ and cc̄; this is indeed the case if we identify the c, b with the
physical charm and bottom quarks where the vector mesons, for example, are
the ψ(cc̄) and ϒ(bb̄). If it is small, which would be the case if we chose u,d
instead of c,b, they tend to the equally mixed states (uū ± dd̄)/

√
2, which are the

familiar isospin eigenstates. The I = 1 state (uū − dd̄)/
√

2 decouples from the
annihilation A channel, while the I = 0 (uū + dd̄)/

√
2 couples with an enhanced

amplitude
√

2 times that of an individual flavour and the mass gap is proportional
to A.

Thus we have a qualitative understanding of why the cc̄ and bb̄ spectroscopies are
distinct (or ‘ideal’) while their u,d counterparts are mixed into the ‘isospin’ basis.
Now consider the latter systems but in the presence of the strange quark, which can
form ss̄ states.

Consider the limit where mu ∼ md but ms − md >> A. The eigenstates will then
be the same uū ± dd̄ as above with the third state being ss̄. This is realised in the
vector mesons where the isoscalar mesons are ω = (uū + dd̄)/

√
2 and φ = ss̄. The

evidence for this will be described shortly; the implication of it is that A is small
for the vector meson channel [20].

Now consider the limit where ms > md and A > ms − md . The eigenstates are
now orthogonal mixtures of uū + dd̄ and ss̄. This is what is observed for the 0−+

mesons where η(550) and η′(960) are mixtures of these flavours. Specifically, it
was found in [20] that A(0−+) is in the range 80−600 MeV while A(1−−) is 5–7
MeV, in both cases there being a slight hint that the magnitude falls with increasing
energy. The annihilation contribution thus seems to be much smaller for the vector
mesons than for the pseudoscalar and a question for dynamics is why?

Determining which J PC states are ‘ideal’ (that is like the 1−−) and which are
strongly mixed is one of the unresolved issues in the spectroscopy of light flavours.
Answering it may help to identify the dynamics that controls this mixing. Electro-
magnetic interactions can play a significant role in addressing these issues as we
now illustrate by showing how they have already been seminal in the case of the
1−− and 2++ multiplets, at least.



Quark models of hadrons 9

1.3.1 The 1−− and 2++ nonets

That the vector and tensor multiplets are near ideal can be seen from the pattern
of their masses. One I = 0 state has mass similar to that of the isovector, while
the other I = 0(ss̄) is heavier with the strange K (us̄) midway between them. As
the I = 1 state contains only u and d flavours, this pattern suggests that the lighter
isoscalar is nn̄ ≡ (uū + dd̄)/

√
2, while the heavier is ss̄. Examples of such nonets are

1−− : ρ(770) ∼ ω(780); K ∗(890); φ(1020), (1.12)

2++ : a2(1320) ∼ f2(1270); K ∗(1430); f2(1525). (1.13)

This pattern of flavours is also confirmed by the strong decays, in the approximation
that the dominant hadronic decay is driven by the creation of qkq̄k in the field lines
between the original qi q̄ j (where i,j,k denote the flavour labels) such that

qi q̄ j → qi q̄kqkq̄ j → (qi q̄k) + (qkq̄ j ). (1.14)

Thus ss̄ can decay to sū + us̄, which is ≡ K K̄ , but it does not decay to ππ . This
rule underpins the suppressed decays of the φ and f2(1525) to ππ . The relative
strengths of the electromagnetic couplings of these states also fit with this ideal
picture.

For 1−− one has the direct coupling qq̄(1−−) → γ → e+e−. Thus the leptonic
widths, after phase-space corrections, give a measure of the flavour contents. This
is discussed further in chapter 5. The amplitude is proportional to the sums of
electric charges of the qq̄ contents weighed by their amplitude and phases. Thus
for the relative squared amplitudes

ρ(dd̄ − uū)/
√

2 : ω(uū + dd̄)/
√

2 : φ(ss̄) = 9 : 1 : 2, (1.15)

which may be compared with their e+e− widths in keV

�e+e−
[ρ : ω : φ] = 6.8 ± 0.11 : 0.60 ± 0.02 : 1.28 ± 0.02. (1.16)

The differences in phase space are only small and so do not affect the arguments
here. However, it is noticeable that the ratios seem to apply to the widths in that
they hold also for the �e+e−

(ψ(cc̄); ϒ(bb̄))

�e+e−
[ψ(cc̄) : ϒ(bb̄)] = 5.26 ± 0.37 : 1.32 ± 0.05, (1.17)

which are experimentally in accord with 4�e+e−
(φ(ss̄)) and �e+e−

(φ(ss̄)) respec-
tively.
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For future reference, it is useful to show these states in the 1–8 basis of SU(3)F :

ω1 ≡ (uū + dd̄ + ss̄)/
√

3; ω8 ≡ (uū + dd̄ − 2ss̄)/
√

6 (1.18)

whereby (denoting the light quark component by nn̄ ≡ (uū + dd̄)/
√

2)

φ(ss̄) =
√

1
3ω1 −

√
2
3ω8,

ω(nn̄) =
√

2
3ω1 +

√
1
3ω8. (1.19)

The electromagnetic couplings of the 2++ states also confirm their tendency towards
ideal flavour states. Here the decays to γ γ have amplitudes proportional to the sum
of the squares of the electric charges of the quarks weighted by their relative phases.
Thus for the relative squared amplitudes

a2(dd̄ − uū)/
√

2 : f2(uū + dd̄)/
√

2 : f2(ss̄) = 9 : 25 : 2, (1.20)

which may be compared with their γ γ widths in keV

�(a2(1320) → γ γ ) : �( f2(1270) → γ γ ) : �( f2(1525) → γ γ )

= 100 ± 8 : 261 ± 30 : 9.3 ± 1.5. (1.21)

The a2(1320) : f2(1270) ratio is in excellent agreement with this; the f2(1525) is
about a factor 2 smaller. The agreement between the mass-degenerate a2 : f2 states
is in accord with ideal flavour states and then, if the heavier f2 is ss̄, its strange
quark masses will suppress its magnetic contribution to the γ γ amplitude and thus
be consistent with the reduced strength.

To the extent that the vector mesons are ideal states, the radiative transitions of
C = + states (C = +) → γ V (= ρ : ω : φ) may be used to determine the flavour
contents of the initial C = + states (see chapter 4). As flavour is conserved in
electromagnetic transitions to leading order, decays to γρ weigh the nn̄ component
of the initial C = + state, and those to γφ weigh its ss̄ component. This can be used
as a further measure of the flavours of tensor mesons, where the reduced widths
(phase space removed) would be expected to satisfy

�R( f2 → ργ )

�R( f ′
2 → φγ )

= 9

4
. (1.22)

Empirically there is only an upper limit on these transitions. Obtaining their mag-
nitudes is thus important, both as a check of this flavour filter and also for compar-
ison with the analogous transition magnitudes for f0,1 → γ V as these can test the
single-quark transition hypothesis for radiative transitions [24].

Complementary to this is the question of to what extent these ideal flavour states
are realized for excited vector mesons such as ρ(1460), ρ(1700), ω(1420), ω(1650)
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and φ(1680). The decays of these ρ∗ : ω∗ : φ∗ → 2++γ have been discussed in [7]
and chapter 4 as a potential way of addressing these issues and of discriminating
the 3 D1 and 23S1 (radial excitation) content of these states. These issues are also
important in helping disentangle any hybrid vector meson presence in the wave
functions of these states [7,25].

The radiative decays into the ground state ρ, ω, φ are potentially especially inter-
esting for the enigmatic scalar mesons, the isoscalar members of which are hypoth-
esized to be mixtures of nn̄, ss̄ and also pure glue (‘glueball’) configurations. By
studying the relative rates for 0++ → γ V (ρ : ω : φ) the flavour content of a set
of scalar mesons may be weighed and then unitarity be checked to determine how
much ‘inert’ (glue) presence is in the wave functions.

1.3.2 Allowed J PC

The spin- 1
2 q and q̄ couple their spins to a total of 0 (singlet) or 1 (triplet). In the

non-relativistic picture these couple with the orbital angular momentum L to give
the total spin of the system �J = �L + �S. This is analogous to the atomic physics
conventions for positronium and is how we combine the spins for quarks of the
same or similar mass. In the more extreme asymmetric case of heavy Q and light
q̄ we follow the scheme more familiar in the hydrogen atom. The spin of the light
(anti)quark sq is first coupled to the orbital angular momentum l to give the total
effective state jq . This is then combined with the spin SQ of the heavy quark. One
can of course use either coupling scheme as the one is linearly related to the other.
However, their utility varies.

It is when one has more than one state with the same overall spin (for example
the J P = 1+ mesons formed from the qq̄ with L = 1 and S = 0, 1) that one or the
other scheme becomes more appropriate. For q and q̄ of the same flavour the meson
is an eigenstate of C. Since C = (−1)(L+S), the charge conjugation can distinguish
the triplet (1++) and singlet (1+−) states. Thus the �J = �L + �S basis is appropriate.
For flavoured states, such as the K,D,B there is no C eigenvalue. The physical states
are in general mixtures of the singlet and triplet basis states:

K1(1273) = cos θ |1 P1〉 + sin θ |3 P1〉,
K1(1402) = −sin θ |1 P1〉 + cos θ |3 P1〉. (1.23)

It is important to be careful about the convention. Barnes et al [26] uses the mix-
ing angle formula for kaons (ns̄ = K1), whereas Blundell et al [27] apply it to
antikaons (sn̄). The opposite phases in the two conventions arise because the
charge conjugation operator gives opposite phases when applied to |1 P1〉 and |3 P1〉
states.
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The precise mechanism of this mixing of different Sqq̄ states in the K-system is
an open question. In the heavy-quark limit the angle in the above convention is
θ = tan−1(1/

√
2) ∼ +35.3◦. In the single-gluon exchange of QCD, the fact that

ms �= mu,d causes a non-conservation of qq̄ spin in the spin–orbit interaction.
However, with a realistic strange quark mass the mixing angle is only θ = +5◦,
which does not appear large enough to explain the observed mixing angle (see
footnote number 90 in [26] for further discussion of this point). Contrast this with
the hypothesis of Lipkin [28] who notes that the mixing might be determined by
the coupling of the two |K1〉 states through their decay channels. With sufficiently
strong decay couplings the physical resonances are driven into near ‘mode eigen-
states’ [26], which explains the separation into ‘ρK ’ and ‘π K ∗’ resonances. This
model suggests a singlet-triplet mixing angle of ∼45◦, which is in accord with
an analysis of the hadronic decays in [26]. This mixing pattern needs to be more
precisely determined. Radiative transitions K1 → Kγ can help here. The E1 tran-
sition in leading order conserves the qq̄ spin and so one would anticipate the 1 P1

component to dominate. Detailed estimates are needed in order to exploit the oppor-
tunities presented by radiative transitions in the kaonic system. This may become
possible experimentally in e+e− → ψ → K̄ K1 → K̄ Kγ at a high-luminosity ψ

factory such as CLEO-c or BES.

For the neutral mesons qq̄, C is an eigenvalue. However, not all correlations of J PC

are accessible. As an antiquark has the opposite intrinsic parity to a quark, the parity
of qq̄ with relative angular momentum L is P = (−1)L+1. Their charge conjugation
eigenvalue in a state of total spin S and angular momentum L is C = (−1)L+S . Thus
the pattern of J PC for the lowest levels is as follows:

S = 0 : 0−+, 1+−, 2−+,

S = 1 : 1−−, (0, 1, 2)++, (1, 2, 3)−−. (1.24)

Thus we see that J±,± correlations occur for any J with the exception of 0−−. In
the series J±∓ the J = odd correlates with positive parity and J = even correlates
with negative parity. We do not have the sequence 0+−, 1−+, 2+− . . . . Thus we have
the concept of ‘exotic’ states

0−−; and 0+−, 1−+, 2+−, . . .

A meson observed with any of the above exotic combinations cannot be described
as a non-relativistic qq̄ state. Thus looking for charge-neutral mesons with exotic
J PC is a strategy for isolating glueballs or hybrids (qq̄ states where the gluonic
degrees of freedom are excited) as these can form the ‘exotic’ J PC combinations.
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1.4 Baryons

A baryon consists most simply of three quarks. For spectroscopy and the low-
energy phenomenology of baryon resonances and transitions, such a picture gives a
remarkably good description though precision data are beginning to show this may
not be the whole story. The elastic form factors of the nucleons and the transition to
 begin to show the effects arising from π components in the wave function. These
are discussed in chapters 2, 3 and 5. Furthermore, when viewed at high resolution
the proton and neutron appear as swarms of quarks, their antimatter counterparts,
antiquarks, and gluons – the quantum bundles that bind these constituents. The qq̄
meson and qqq baryon configurations are the simplest combinations for which the
attractive forces of QCD saturate, leading to stable hadrons. First we consider the
qqq picture of baryons in ‘strong QCD’ and then the richer details of nucleons
as revealed in deep inelastic scattering in the pQCD regime. In the latter there is
evidence that there is a ‘sea’ of qq̄ pairs resolved at small distances. There is a
wider problem here: QCD does not forbid configurations such as qqq̄q̄ or qqqqq̄
to occur in the strong QCD regime. The question about such multiquark states is
not one of existence but of observability. For example many are expected to have
widths that are too broad for the states to be seen.

1.4.1 Role of the Pauli principle

Quarks, being fermions, obey the Pauli exclusion principle, which implies that when
two quarks are interchanged, their total wave function must be antisymmetric. This
has no impact on qq̄ mesons but is essential in baryons. As the qqq is already
antisymmetric in the colour degree of freedom, it must be globally symmetric in
the space–spin–flavour product.

In the S-state the spatial wave function is symmetric and so we seek symmetry in
flavour and spin. This immediately implies that two identically flavoured quarks,
such as uu or dd, must be symmetric in spin, hence in spin 1. If ↑↓ refer to Sz

projections, then for a pair we have three symmetric combinations for S = 1

S = 1 : ↑↑; (↑↓ + ↓↑)/
√

2; ↓↓ (1.25)

and one antisymmetric for S = 0

S = 0 : (↑↓ − ↓↑)/
√

2. (1.26)

If we replace ↑, ↓ respectively by u,d we can write the analogous states for isospin
I = 1 (symmetric) and I = 0 (antisymmetric). In the S-wave baryons the overall
symmetry leads to the correlation that pairs with I = 0 must have S = 0, and those
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φλ φρ

P: [(ud+du)u-2uud]/
√

6 (ud-du)u/
√

2
N: −[(ud+du)d - 2ddu]/

√
6 (ud-du)d/

√
2

Table 1.1. Mixed symmetry combinations of u and d
flavours for proton and neutron.

with I = 1 have S = 1. Thus in the �(uds) and �(uds), the (ud) are in I = 1, 0
respectively and hence are coupled to S = 1, 0. This implies that the spin of a
polarized � is carried by that of the strange quark. Also this immediately generalizes
to �c,b where the polarization will be carried by the c,b flavour. These correlations
underpin the mass-difference of � > �. They also drive the phenomenology of the
spin polarization asymmetry in inelastic electron scattering.

The above are easy to see for a pair of quarks. The extension to three is more
involved. As regards flavour, the uds combinations lead to ten that are flavour
symmetric. Write them (abc) to denote the totally-symmetric state (ab + ba)c +
(ac + ca)b + (bc + cb)a, suitably normalized. The baryons with the corresponding
quantum numbers are:

(uuu); (uud); (ddu); (ddd) ≡ ++,+,0,−,

(uus); (uds); (dds) ≡ �(∗)+,0,−,

(uss); (dss) ≡ �(∗)0,−,

(sss) ≡ �−. (1.27)

As these are totally symmetric in flavour they must also be symmetric in spin.
This implies they have spin 3

2 ; the totally symmetric spin states with Sz = + 3
2 ;

+ 1
2 ; − 1

2 ; − 3
2 being

↑↑↑; (↑↑↓ + ↑↓↑ + ↓↑↑)/
√

3; (↓↓↑ + ↓↑↓ + ↑↓↓)/
√

3; ↓↓↓ .

Thus it is the overall symmetry that causes the 10 to have spin 3
2 .

States where all flavours are identical can only be written in a symmetric form. States
where one or more is distinct can be written with antisymmetric parts. Only when all
three are distinct can a totally antisymmetric combination be written. Combinations
like uud can be written in ‘mixed’ symmetry forms denoted φλ,ρ , which are listed
in table 1.1. These are respectively antisymmetric (ρ) and symmetric (λ) under
the exchange 1 ↔ 2 while they go into linear combinations of one another under
1, 2 ↔ 3. Thus we say they transform with mixed symmetry MS(λ) and MA(ρ)
respectively. There is no agreed convention and we will use MS,A or the λ and ρ

notation throughout this book. The corresponding states for other members of the
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octet follow by the cyclic replacements u → d → s starting from the P forms of
the table. We have illustrated the result for the N.

In this simple picture of qqq, baryons can only have strangeness 0, −1, −2 or −3.
In particular no positive strangeness baryons can be formed. The possibility of such
an exotic baryon is discussed in section 1.8.

1.5 Spin–flavour correlations

While the flavour content and relative phases of wave functions are probed by
electric couplings, the correlations of flavour and spin are most directly probed by
the magnetic interaction. Immediate examples are the relative sizes of the magnetic
moments of baryons, in particular the neutron and proton.

The Pauli correlation of three nucleons in the nuclei 3He and 3H implies that the
two identical fermions (for example pp in 3He) have net spin S = 0 and hence
do not contribute to the magnetic moment �μ (in the approximation that all are
in the S-state). Thus μ(3He) : μ(3H) = μ(n) : μ(p), which is true to ∼20%, any
discrepancies being due to higher angular momentum components and/or transient
pion exchanges. For the p and n made of three constituent quarks, the colour degree
of freedom causes the Pauli correlation of like flavours to be reversed. Thus uu
in the proton (uud) has net S = 1. Hence the S-state wave function involves the
coupling of S = 1

2 ⊗ S = 1 → S = 1
2 . The resulting Clebsch–Gordan coefficients

then imply that for a proton with Sz = ↑

|p ↑〉 =
√

2
3 |u ↑ u ↑ d ↓〉 +

√
1
3 |u ↑ u ↓ d ↑〉 (1.28)

(the constitution of the neutron follows immediately upon replacing u ↔ d). The
spin-weighted probabilities are then P(u ↑) = 5

3 , P(u ↓) = 1
3 , P(d ↑) = 1

3 and
P(d ↓) = 2

3 . The expectation value of Izσz , which gives the magnitude of gA/gV , is
5/3 in this simple state. Also the ratio of magnetic moments is given by the expec-
tation value of the charge-weighted sum of the quark spin-projection σz . The above
wave function then implies that the ratio of proton and neutron magnetic moments
is − 3

2 . The assumption that the magnetic moments of quarks are uniformly propor-
tional to their charges is profound and merits deeper understanding. The agreement
with data is good to within ∼3%, supporting the S-state constituent qqq model
description.

This is better even than the nuclear case and qualitatively suggests that pion-
exchange currents and qqqqq̄ components cannot play a major role in this con-
stituent wave function. However, precision data on charge radii and inelastic scat-
tering show that things cannot be so simple (see chapters 2 and 3). Extending the
analysis to the baryon octet, assuming that the intrinsic magnetic moment of a
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strange quark and a down quark are in the ratio μ(s)/μ(d) = m(d)/m(s), gives
overall reasonable agreement though the data, especially on the magnetic moments
of �, merit better precision in order to constrain the wave functions. Thus precision
data on the magnetic moments of the octet and on the magnetic dipole M1 transition
γ N → (1232) are needed, as are possible electric quadrupole E2 contributions,
which are absent in the most naive qqq 56 wave functions but present when pion
clouds or admixtures of other components are in the wave function, as suggested by
pQCD, are needed. The role of a pion cloud can also be better constrained through
measurements of charge radii and of the ratio G E (q2)/G M (q2) of the electric and
magnetic form factors.

The constituent wave function (1.28) is also manifested in spin-dependent asym-
metries in deep inelastic polarized scattering. The essential assumption here is of
incoherent scattering on the valence quarks at x ≥ 0.1. In this case, consider for
example a polarized photon with Jz = +1 incoherently scattering from the polar-
ized quarks forming a final state with Jz = + 3

2 or + 1
2 . If the total photoabsorption

cross section in each of these configurations is denoted σ ( 3
2 ) and σ ( 1

2 ) respectively,
the polarization asymmetry A = (σ ( 3

2 ) − σ ( 1
2 ))/(σ ( 3

2 ) + σ ( 1
2 )) and is driven by

∼ ∑
u,d e2

u,dσz . Thus

A(γ n) = 0; A(γ p) = 5
9 , (1.29)

where in this simple model 5
9 ≡ 1

3 gA/gV .

In inelastic electroproduction at modest values of Q2 the valence quarks play a sub-
stantial role in determining these cross-sections over a large range of the kinematic
variable x (which is roughly interpreted as the fraction of the momentum of the
initial nucleon along the direction of the incident virtual photon that was carried
by the struck quark). In this picture it is natural that the valence quark contribu-
tion peaks when x ∼ 0.2−0.3 and in this region the above predictions appear to
be realized. However, at very large Q2 the ‘pollution’ from gluons and qq̄ pairs
dominates the valence quark probability and it is only for x ≥ 0.5 that the valence
quarks dominate the wave function. The region x → 1 probes the rare extreme
where a single quark carries all of the momentum. The QCD forces that elevate
the energy of a qq pair with S = 1 (thus for example uu will carry more than the
average) imply that as x → 1 the probability to find u is greater than that to find
d. The spin wave function in (1.28) implies that in a polarized nucleon, if a quark
carries all of its momentum it also carries all of its spin polarization [29]. So for
example for the neutron the asymmetry at large values of x, A(x → 1) → 1, which
is radically different from the vanishingly small magnitude at smaller x. A similar
result is expected for the proton but as the value is already rather large, any increase
in magnitude as x → 1 will be harder to establish.
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While the prediction of the A(x → 1) → 1 is universal in pQCD-based models,
the approach to this value with increasing x is model-dependent. A dedicated study
at JLab with a 12 GeV upgrade may shed light on this. The formalism relevant for
polarized leptoproduction is described in chapter 7.

1.6 SU(6) multiplets and excited multiplets

Taking the SU(3)F fundamental representation (u,d,s) and combining it with the
SU(2) spin (↑, ↓) one can form a fundamental six-dimensional representation of
SU(6): u ↑, d ↑, s ↑, u ↓, d ↓, s ↓. The formalism is especially useful when dis-
cussing baryons, as here the Pauli principle limits the possibilities under interchange
of any pair of quarks such that only the overall antisymmetric wave function is
allowed. As the colour-singlet representation qqq is already antisymmetric, then
as noted earlier this implies that the product of spatial, spin and flavour degrees of
freedom must be overall symmetric under interchange.

The SU(6) representations for qqq are 6 ⊗ 6 ⊗ 6 = 56S ⊕ 70M ⊕ 70M ⊕ 20A

(where the subscripts denote the symmetric, mixed symmetric and antisymmet-
ric behaviour of the representation). The Pauli principle will then constrain the
correlations between these states and their spatial state as follows.

The spatial ground state, L = 0, is symmetric. Thus here the flavour-spin must be
symmetric, namely 56. Decomposed into SU(3) ⊗ SU(2) this becomes 8,2 ⊕ 10,4.
The 2 corresponds to the 2S + 1 states of spin, hence S = 1/2; analogously the 4

corresponds to S = 3/2. Thus we see that the correlation of an octet with spin 1
2

and a decuplet of spin 3
2 is forced on us, in accord with data.

This simple assignment of N and (1232) has immediate constraints on their
electromagnetic properties. The magnetic moments of the neutron and proton are
predicted to be in the ratio of μp/μn = − 3

2 , which is within 3% of the actual
value. The amplitude for γ N →  could in general be either magnetic dipole,
M1, or electric quadrupole, E2 but in this model E2 ≡ 0; the magnitude of the M1
amplitude for the N to (1232) transition relative to the magnetic moment of the
proton is μ(N) : μ = 2

√
2/3. The ratio of electric and magnetic form factors of

the proton, G E (Q2)/G M (Q2), is predicted to be invariant with Q2; for the neutron
G E (Q2) = 0.

Although these results are qualitatively in agreement with experiment, it has long
been known that for real photons there is a small non-zero E2 amplitude for γ N →
(1232) [30] and that 〈r2〉 ∼ dGn

E/d Q2 < 0 [31]: see chapters 2 and 3. The latter
is most simply described by giving the neutron a pion cloud: n → pπ− giving
a negative outer charge due to the light π−, whereas the compensating positive
requires fluctuation to −π+, which is suppressed due to the higher mass of the .
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Modern precision data have confirmed and extended these results to higher Q2,
where the E2 amplitude remains very small compared to expectations from pQCD
[32], and shown that G E/G M has a non-trivial dependence on Q2 [33]. These
data are clear indications that while the constituent-quark model is a good first
approximation in certain circumstances, it is not the complete picture of hadrons.
Further precision data on the complete set of electromagnetic transitions involving
nucleons and (1232) as a function of q2 can show how to build the more complete
picture of these states.

Now consider the excitation of a quark to the first excited level, a P-state, L P = 1−.
For the three-quark system there are two independent degrees of internal spatial
freedom. These are conventionally written

√
2�ρ = �r1 − �r2;

√
6�λ = 2�r3 − �r1 − �r2 ≡ 3�r3. (1.30)

These have mixed symmetry under interchange: they are respectively antisymmetric
(ρ) and symmetric (λ) under the exchange 1 ↔ 2 while they go into one another
under 1, 2 ↔ 3. Thus we say they transform with mixed symmetry MS(λ) and
MA(ρ) respectively.

To form an overall symmetric space–SU(6) state with L = 1 thus requires that the
SU(6) be in a mixed symmetry state. This is the 70 which under SU(3) ⊗ SU(2)
becomes 8,2 ⊕ 8,4 ⊕ 10,2 ⊕ 1,2. Finally combining these spins of 1

2 or 3
2 with

the L = 1 gives negative-parity baryons in the following families, with candidate
members identified:

28 : S11(1550), D13(1550),
48 : S11(1700), D13(1700), D15(1700),

210 : S31(1700), D33(1700),
21; S01(1405), D03(1520). (1.31)

These simple identifications are for illustration only. There are unresolved questions
as to the mixing angles for the physical states S11 or D13 between the 28 and 48

bases and among the � states in 21, 28 and 48. Precision data on the photo- and
electroproduction of these states can constrain these: see chapter 3.

While hyperfine splittings are clearly seen for the ground state L = 0 hadrons, when
L �= 0, spin–orbit splittings are expected. Empirically these are small, as is clear in
(1.31), and explaining this continues to be a puzzle. In mesons the contributions to
mass shifts arising from the short-range vector potential (single-gluon exchange)
and from the long-range scalar potential are individually several hundreds of MeV
but cancel.

The small splittings for mesons are therefore explicable. However, for baryons it
is not so simple [34]. As this is a three-body system, the rest frame of the baryon
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in general differs from that of the interacting pair of quarks; transforming between
these frames introduces a spin rotation that acts like a spin–orbit contribution to the
Hamiltonian and which is not cancelled in general.

The spin dependence in meson and baryon spectroscopy in QCD is assumed to be
due to gluon exchange. An alternative school has posited that π and η exchanges
play a role in baryons [35]. This has been robustly criticized [36]. There has been
a misconception that π exchange within baryons, being spinless, has no spin–orbit
splittings and so may explain the empirical phenomenon. However, this is not so
[36]. In all pictures Thomas precession occurs and, left to itself, would give inverted
spin–orbit split multiplets (that is for states with the same value of L and different
values of J, one finds that the state with the highest value of J lies lowest in mass,
the splittings being several hundreds of MeV). The problem phenomenologically is
to find a cancellation of the inevitable Thomas effects. In mesons this occurs but in
baryons it fails, for the reasons above. The cause of the small spin–orbit splittings
in baryons remains unresolved.

While it is possible to choose parameters such that N ∗ spin–orbit splittings are
small, this fails in the case of the �(1405) 1

2
−

and �(1520) 3
2
−

where the parameters
would suggest that the 1

2
−

should actually be heavier than the 3
2
−

[34]. The light mass
of the �(1405) may be an indicator that this state is affected by the KN threshold in
S-wave and/or has qqqqq̄ ‘pentaquark’ composition. Radiative couplings between
the �(1405) or �(1520) and the ground state �/� can differentiate these pictures.

The single-gluon exchange perturbation also causes mixing among states. In this
picture the �(1405; 1800; 1670), which are all 1

2
−

, are mixtures of the 70-plet 21,
28 and 48. The �(1405) in particular is 0.9|21〉 + 0.4|28〉. Improved data on the
electromagnetic couplings of these states and on their hadronic branching ratios
are required to test these wave functions.

Electromagnetic transitions from the nucleon to N ∗ are direct and can test wave
function mixings also. In the 70 one has 1

2
−

; 3
2
−

states (known as S11; D13 respec-
tively), which can be either 28 or 48. The latter configuration cannot be photopro-
duced from protons in leading order. The physical states are predicted to be mixed
(NH,L respectively referring to the heavier and lighter mass eigenstates),

|NH 〉 = cos(θ )|48〉 + sin(θ )|28〉,
|NL〉 = −sin(θ )|48〉 + cos(θ )|28〉. (1.32)

The masses are not well enough known to pin down |θ | with precision. Better data
on γ N → S11 → Nη in particular are needed (see chapter 3).

This angle is a sensitive discriminator among models. The QCD inspired model of
[37] predicts its magnitude for the S11 parameter free:

θ = −arctan[ 1
2 (

√
5 − 1)] ∼ −32◦.
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Other models have more freedom. Hence precision data on the photo- and electro-
production of these states together with their hadronic decay branching ratios (in
particular into Nη: Nπ ) may significantly constrain the wave functions and expose
the dynamics.

It is also possible to build negative-parity states by adding a qq̄ to make qqqqq̄
‘pentaquark’ configurations. The QCD forces, however, appear to be repulsive for
such configurations, unless they form the colour-singlet meson–nucleon configura-
tion. If excitation to P-wave is included, however, it is possible for attractive forces
to take over, leading to non-trivial pentaquark combinations such as uudds̄, which
with positive strangeness is manifestly outside the states that are allowed within
the qqq model.

One or more quarks may be excited to higher levels. The symmetry properties of the
resulting spatial wave functions then determine the SU(6) representations allowed
by Pauli. For the details of forming these configurations see a dedicated text such
as [21]. If the ρ degree of freedom were to be ‘frozen’ in the ground state and only
the λ degree of freedom were excited (thus qqq being effectively a quark–diquark
model), then there would be a correlation between L p = (even)+ ≡ 56 and L p =
(odd)− ≡ 70. If both ρ and λ can be excited, as in a ‘genuine’ qqq system, there
is no such correlation and one can have 70+, 56− and 20 dimensions for example.
One of the challenges for baryon spectroscopy is to determine clearly which of
these possibilities is realized in nature.

1.7 Role of Q2 as a test of dynamics

Hadron form factors are the most basic observables that reflect the composite nature
of hadrons. Indeed, the first indication that the proton is a composite object came
from the measurements of the proton form factors in elastic electron–proton scat-
tering [38]. In our modern QCD-based picture of hadrons, the high-Q2 behaviour of
elastic and transition form factors probes the high-momentum components of their
valence quark wave functions. Of particular interest in this regard is understanding
when the dynamics of valence quarks makes a transition from being dominated by
the strong QCD of confinement to pQCD.

This transition should first occur in the simplest systems, in particular the elas-
tic form factor of the pion seems the best hope for seeing this experimentally.
Here the asymptotic behaviour is rigorously calculable in pQCD [39] and is
Q2 Fπ (Q2) → 8παs f 2

π , where fπ = 133 MeV is the π+ axial-vector decay con-
stant (see chapter 2). The approach to this asymptotic value is model-dependent.
Experimental knowledge of Fπ (Q2) is poor and a dedicated programme at JLab
could give important insights.
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The development of precise new measurement techniques has begun to give much
more detailed images of the structure of the nucleon through its elastic and transition
form factors. At small Q2(< 1 GeV2) precise measurements of the electric form
factor of the neutron, Gn

E (Q2), show values statistically different from zero. The
neutron magnetic form factor remains less well determined. For both of these form
factors few measurements exist for Q2 > 1 GeV2. A non-zero value for the neutron
electric form factor implies flavour-dependent correlations within the wave func-
tion. Two immediate possibilities for these are the hyperfine interaction between
the quarks [40] and the pion cloud [41].

For the proton, polarization measurements [33] have shown that the electric form
factor falls much faster than the magnetic one (see chapter 3). Furthermore, the
E2/M1 ratio for the N →  transition has remained near zero over the entire
range of momentum transfer explored up to Q2 = 4 GeV2 [32], in line with the
most naive constituent-quark model, whereas the pQCD prediction for this number
asymptotically is unity.

The S11(1535) may be considered the negative-parity partner of the nucleon. In the
limit of exact chiral symmetry they would be degenerate. The properties of the S11

form factor reveal fundamental aspects of dynamical chiral symmetry breaking in
QCD. Chiral symmetry is discussed in chapter 5 and applied to baryons in chapter 3.

At Q2 = 0 the excitation of any given resonance with J ≥ 3
2 involves both electric

and magnetic multipoles. The relative weight of these is determined by the SU(6)
and orbital structure of the resonance wave function. These multipole magnitudes
can be translated into predictions for the relative helicity amplitudes, where the
resonance is photoproduced with Jz = 1

2 or 3
2 . Thus for example the D13(1520) is

found to be photoproduced from a proton target with σ ( 1
2 ) ∼ 0 due to a destructive

interference between the E1 and M2 multipoles. This tendency arises for the tower
of resonances in the series D13, F15, . . . [42,43] and plays a role in generating the
negative sign of the total in the Gerasimov–Drell–Hearn (GDH) integral for Q2 = 0.
See chapter 6 for a full discussion.

For Q2 �= 0 the magnetic multipoles are predicted in constituent models increas-
ingly to dominate over the corresponding electric multipoles [42,43], leading to a
reversal of the spin polarization. This causes σ ( 1

2 ) > σ ( 3
2 ) at large Q2, in accord with

the implications of the Bjorken sum rule and predictions of pQCD. An unresolved
question is how rapidly this occurs; in the non-relativistic quark model (NRQM) the
changeover from σ ( 3

2 ) to σ ( 1
2 ) is predicted to occur at Q2 ∼ 0.1−0.2 GeV2. This

transition has yet to be quantified in data; its dependence on the resonance J P is
also unknown. A precise measure of this systematics is likely to give more detailed
insight into dynamics than a global study of the Q2 dependence of departures from
the GDH integral.
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The Q2 dependence for small Q2 can expose the threshold behaviour of transition
form factors and thereby show how many ‘orbital excitation gaps’ occur between the
wave functions of the nucleon and resonance state. Thus for example the excitation
of P11(1440) needs precision data. Its internal quark structure has been variously
suggested to be: (i) a radially excited qqq, in which case there would be a large
threshold factor in the transition form factor to this radially excited state; (ii) a hybrid
baryon, for which the qqq would be in the ground state and so there would be no
threshold factors in the excitation form factor, but excitation of the gluonic degrees
of freedom is not well understood theoretically; or (iii) a pentaquark (qqqqq̄) for
which a large suppression may be expected with increasing Q2.

In general the transitions touch on broader questions of the duality between exclu-
sive coherent excitation of N ∗ and the inclusive sum rules for incoherent inelastic
scattering. This brings us to the question of quark–hadron duality.

1.7.1 Q2 duality of form factors and deep-inelastic scattering (DIS)

Baryons, in particular the nucleon, appear as qqq states when viewed at low energy.
By contrast, in highly inelastic scattering, such as in electron scattering with large
momentum transfer Q2, a richer structure of q, q̄ and gluons is resolved. The tran-
sition between the low-energy ‘constituent’ picture and the short-distance ‘parton’
picture of pQCD is an area of active study both in experiment and theory. This is
especially so at machines, such as at JLab, which can both probe the excitation
of nucleon resonances as a function of Q2 and also study the beginnings of the
highly inelastic scattering where scale invariance appears in the data. One ques-
tion among many is whether the coherent excitation of resonances disappears at
large Q2, thereby exposing the incoherent short-distance world of pQCD, or instead
whether the former is in some sense dual to the latter [44,45].

Interest has been partly prompted by high-precision data from JLab [46] on the
unpolarized F2 structure function of the proton in the resonance region, which
showed a striking similarity, when averaged over resonances, to the structure func-
tion measured at much higher energies in the deep-inelastic continuum. This is
described in chapter 10. This phenomenon was first observed some time ago by
Bloom and Gilman [44], who found that when integrated over the mass of the
inclusive hadronic final state, W, the scaling structure function at high Q2 smoothly
averages that measured in the region dominated by low-lying resonances,∫

dW Fexpt
2 (W 2, Q2) =

∫
dW Fscaling

2 (W 2/Q2) . (1.33)

The integrand on the left-hand side of (1.33) represents the structure function in
the resonance region at low Q2, while that on the right-hand side corresponds to
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the scaling function, measured in the deep-inelastic region at high Q2. The latter
is described by leading-twist pQCD as an incoherent sum over quark flavours,
whereby the structure functions are proportional to

∑
e2

i ; by contrast the former
involves coherent excitation of resonances.

Global duality is said to hold after integration over all W in (1.33). This equal-
ity can be related to the suppression of higher-twist contributions to moments of
the structure function [47], in which the total moment becomes dominated by the
leading-twist (approximately Q2-independent) component at some lower value of
Q2. Information on all coherent interaction dynamics is subsequently lost. A more
local form of duality is also observed [46], in which the equality in (1.33) holds for
restricted regions of W integration – specifically, for the three prominent resonance
regions at W ≤ 1.8 GeV. The duality between the resonance and scaling structure
functions is also being investigated in other structure functions, such as the longitu-
dinal structure function [48], and spin-dependent structure functions of the proton
and neutron [49]. For spin-dependent structure functions, in particular, the work-
ings of duality are more intricate, as the difference of cross sections no longer
needs to be positive. An example is the contribution of the (1232) resonance to
the polarization-dependent structure function of the proton, g1, which is large and
negative at low Q2, but may become positive at higher Q2.

Early work within the SU(6) symmetric quark model [43,42,50] showed how the
ratios of various deep inelastic structure functions at x = Q2/2Mν ∼ 1

3 , for both
spin-dependent and spin-independent scattering, could be dual to a sum over N ∗

resonances in 56 and 70 representations of SU(6). With the emergence of precision
data, showing detailed and interesting x dependence as x → 1, various questions
arise:

� How do changes in ratios as x → 1 relate to the pattern of N ∗ resonances iden-
tified in [43,50,51]?

� Are certain families (spin–flavour correlations) of resonances required to die out
at large Q2 in order to maintain duality? If so, can electroproduction of specific
examples of such resonances test this?

� Can such a programme reveal the spin–flavour dependence of short distance
forces in the QCD bound state?

A detailed discussion of these questions is in [45].

The duality between the simplest SU(6) quark parton model results [52] for ratios
of structure functions with sums over the 56 and 70 coherent N ∗ excitations was
described in [42,43,51]. An essential feature of these analyses was that SU(6) was
exact and that exotics in the t-channel were suppressed.
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Although the s-channel sum was shown to be dual for ratios of incoherent quantities
[43,50,51], this alone did not explain why (or if) any individual sum over states
scaled. The transition from resonances to scaling has been explored in microscopic
models at the quark level. The phenomenological quark model duality of [43,50,
51] was shown [53] to arise in a simple model of spinless constituents. A simple
model in which the hadron consisted of a point-like scalar ‘quark’ bound to an
infinitely massive core by an harmonic oscillator potential was used [54] to explicitly
demonstrate how a sum over infinitely narrow resonances can lead to a structure
function which scales in the Q2 → ∞ limit.

Since the original quark-model predictions were made in the 1970s, the quantity
and quality of structure function data have improved dramatically. We now know,
for instance, that in some regions of x SU(6) symmetry is badly broken, the strongest
deviations from the naive SU(6) expectations being prevalent at large values of x.
The new data will set challenges for theories of quark–hadron duality. There are
questions such as:

� Can duality survive locally in x, in principle?
� What do the observed variations in x require of N ∗ excitations if duality is to

survive?
� In particular, what families (spin–flavour correlations, or SU(6) multiplets) are

suppressed as x → 1, or equivalently Q2 → ∞, for duality to hold?
� Does the excitation of low-lying prominent N ∗ resonances, belonging to such

families, exhibit such behaviour?

If the x → 1 systematics for N ∗ families are not matched by specific N → N ∗

transition form factors as a function of Q2, then duality fails. If, however, they do
match, then this can expose the patterns in the flavour–spin dependence of short-
distance forces in the strong QCD limit.

1.8 Pentaquarks and exotic baryons

The original conception of the constituent-quark model, and of our modern picture,
was based on the observation that hadrons exist with (apparently) unlimited amounts
of spin, but with only very restricted amounts of electric charge and strangeness.
In particular, all baryons (strongly interacting fermions such as the proton) seen
hitherto in 60 years of research with cosmic rays or accelerator-based experiments,
carry either no strangeness (like the proton and neutron) or negative amounts (like
the �, � and �−).

During 2003 a range of experiments claimed that a metastable particle known as
the theta baryon may exist [55–59]. Described most simply: it is like a heavier



Quark models of hadrons 25

version of the proton but it possesses positive strangeness in addition to its positive
electrical charge and it is denoted as �+. This made it utterly novel. As the absence
of ‘positive strangeness baryons’ in part is what helped establish the quark model
in the first place, the claims were indeed radical.

QCD allows more complicated clusters of quarks or antiquarks and there is good
evidence for this. For example, when the proton is viewed at high resolution, as
in inelastic electron scattering, its wave function is seen to contain configurations
where its three ‘valence’ quarks are accompanied by further quarks and antiquarks
in its ‘sea’. The three-quark configuration is thus the simplest required to produce
its overall positive charge and zero strangeness. The question thus arises whether
there are baryons for which the minimal configuration cannot be satisfied by three
quarks.

The most familiar examples of course are atomic nuclei, the deuteron for example
requiring a minimum of six quarks; it is the attractive forces of QCD that conspire to
cluster these into two triplets such that the neutron and proton remain identifiable
within the nucleus (there are interesting questions as to whether the six quarks leave
an imprint in the properties of the deuteron that go beyond this simple neutron and
proton cluster). A baryon with a positive amount of strangeness would be another
such example; in this case the positive strangeness could only be produced by the
presence of a strange-antiquark s̄, the overall baryon number requiring four further
quarks to accompany it. Thus we would have three quarks accompanied by an
additional quark and antiquark, making what is known as a ‘pentaquark’.

Hitherto unambiguous evidence for such states in the data has been lacking, their
absence having been explained by the ease with which they would fall apart into
a conventional baryon and a meson. It has been estimated that they would survive
for less than 10−24 seconds, with widths of several hundred MeV which is at the
limits of what is detectable.

The surprise was that the claimed pentaquark had a width of less than 10 MeV,
perhaps even ∼1 MeV. While this created a challenge for theory, it was also an
enigma for experiment. If the width was small, then the production cross section
also should be small, yet experiments were claiming to see it produced at a rate
comparable to that of conventional hadrons. There were other inconsistencies in the
data (for a summary see [60–62]) until a dedicated high-statistics photoproduction
experiment at JLab put an upper limit on the production that was less than some
previously claimed signals. The pentaquark baryon seems to have been an artefact.
However, the large number of theoretical papers addressed to this issue prepared
to countenance the possibility of strong correlations in QCD (for example [63,64])
were testimony to how little is understood about the properties of strong QCD. For
a detailed summary see [65].
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1.8.1 States beyond qq̄ and qqq in QCD

If the �+ were to be confirmed it would become the first clear example of a simple
hadronic state with exotic quantum numbers that forced one to go beyond qqq or
qq̄ in QCD. There is, however, evidence of states in the meson sector, albeit with
conventional flavour quantum numbers, that appear to be in accord with predictions
that the forces in QCD have a strong attraction in certain correlated states and
thereby can give rise to multiquark configurations, such as qqq̄q̄.

To introduce these, let us begin with the well-understood heavy flavour sector where
there are clearly established scalar mesons cc̄ and bb̄. They behave as canonical
3 P0-states which partner 3 P1,2 siblings. Their production (for example in radiative
transitions from 23S1-states) and decays (into 13S1 or light hadrons) are all in accord
with this. There is nothing to suggest that there is anything ‘exotic’ about such scalar
mesons.

For light flavours too there are clearly identified 3 P1,2 nonets which call for analo-
gous 3 P0 siblings. However, while all other J PC combinations appear to be realized
as expected (apart from well-known and understood anomalies in the 0−+ pseu-
doscalars), the light scalars empirically stand out as singular.

The interpretation of the nature of the lightest scalar mesons has been controversial
for over 30 years. There is still no general agreement on where the qq̄ states are,
whether there is necessarily a glueball among the light scalars, and whether some
of the too numerous scalars are multiquark, K K̄ or other meson–meson bound
states. These are fundamental questions of great importance in particle physics.
The mesons with vacuum quantum numbers are known to be crucial for a full
understanding of the symmetry breaking mechanisms in QCD, and presumably
also for confinement.

Theory and data are now converging that QCD forces are at work but with different
dynamics dominating below and above 1 GeV/c2 mass. The experimental prolifer-
ation of light scalar mesons is consistent with two nonets, one in the 1 GeV region
(a meson–meson nonet) and another one near 1.5 GeV (a qq̄ nonet), with evidence
for glueball degrees of freedom. At the constituent level these arise naturally from
the attractive interquark forces of QCD. Below 1 GeV these give a strong attrac-
tion between pairs of quarks and antiquarks in S-wave leading to a nonet which is
‘inverted’ relative to the ideal nonets of the simple qq̄ model. Conversely, above
1 GeV the states seeded by 3 P0 qq̄ are present. The scalar glueball, predicted by
lattice QCD in the quenched approximation, causes mixing among these states.

As pointed out by Jaffe [22] long ago, there is a strong QCD attraction among qq
and q̄q̄ in S-wave, 0++, whereby a low-lying nonet of scalars may be expected.
As far as the quantum numbers are concerned these states will be like two 0−+ qq̄
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mesons in S-wave. In the latter spirit, Weinstein and Isgur [66] noticed that they
could motivate an attraction among such mesons, to the extent that the f0(980) and
a0(980) could be interpreted as K K̄ molecules.

The relationship between these is being debated [67–71], but while the details
remain to be settled, the rather compelling message of the data is as follows. Below
1 GeV the phenomena point clearly towards an S-wave attraction among two quarks
and two antiquarks (either as (qq)3̄(q̄q̄)3, or (qq̄)1(qq̄)1, where superscripts denote
their colour state), while above 1 GeV it is the P-wave qq̄ that is manifested.
There is a critical distinction between them: the ‘ideal’ flavour pattern of a qq̄
nonet on the one hand, and of a qqq̄q̄ or meson–meson nonet on the other, are
radically different; in effect they are flavoured inversions of one another. Thus
whereas the former has a single ss̄ heaviest, with strange in the middle and I = 0;
I = 1 set lightest (φ; K ; ω, ρ-like), the latter has the I = 0; I = 1 set heaviest
(K K̄ ; πη or ss̄(uū ± dd̄)) with strange in the middle and an isolated I = 0 lightest
(ππ or uūdd̄) [22,66].

The phenomenology of the 0++ sector appears to exhibit both of these patterns
with ∼1 GeV being the critical threshold. Below 1 GeV the inverted structure of
the four-quark dynamics in S-wave is revealed with f0(980); a0(980); κ and σ as the
labels. One can debate whether these are truly resonant or instead are the effects of
attractive long-range t-channel dynamics between the colour-singlet 0−+ members
in K K̄ ; Kπ ; ππ , but the systematics of the underlying dynamics seems clear.

For the region below 1 GeV, the debate centres on whether the phenomena are truly
resonant or driven by attractive t-channel exchanges, and if the former, whether
they are molecules or qqq̄q̄. The phenomena are consistent with a strong attraction
of QCD in the scalar S-wave nonet channels. The difference between molecules
and compact qqq̄q̄ will be revealed in the tendency for the former to decay into a
single dominant channel – the molecular constituents – while the latter will feed a
range of channels driven by the flavour spin Clebsch–Gordan coefficients. For the
light scalars it has its analogue in the production characteristics.

The picture that is now emerging from both phenomenology [72–74] and theory
[75] is that both components are present. As concerns the theory [75], think for
example of the two-component picture as two channels. One, the quarkish channel
(Q Q) is somehow associated with the (qq)3̄(q̄q̄)3 coupling of a two-quark–two-
antiquark system, and is where the attraction comes from. The other, the meson–
meson channel (M M) could be completely passive (for example no potential at all).
There is some off-diagonal potential which flips that system from the Q Q channel
to M M . The way the object appears to experiment depends on the strength of the
attraction in the Q Q channel and the strength of the off-diagonal potential. The
nearness of the f0 and a0 to the K K̄ threshold suggests that the Q Q component
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cannot be too dominant, but the fact that there is an attraction at all means that the
Q Q component cannot be negligible. So in this line of argument, a0 and f0 must
be superpositions of four-quark states and K K̄ molecules.

1.9 Gluonic excitations

Lattice QCD predictions for the mass of the lightest (scalar) glueball are now mature.
In the quenched approximation the mass is ∼1.6 GeV [77,76,78–80]. Flux-tube
models imply that if there is a qq̄ nonet nearby, with the same J PC as the glueball,
then G − qq̄ mixing will dominate the decay [81]. This is found more generally
[82] and recent studies on coarse-grained lattices appear to confirm that there is
indeed significant mixing between G and qq̄ together with associated mass shifts,
at least for the scalar sector [83].

Furthermore, the maturity of the qq̄ spectrum tells us that we anticipate the 0++qq̄
nonet to occur in the 1.2–1.6 GeV region. There are the following candidates
a0(∼ 1400); f0(1370); K (1430); f0(1500) and f0(1710).

One immediately notes that if all these states are real there is an excess, precisely
as would be expected if the glueball predicted by the lattice is mixing in this region.
Any such states will have widths and so will mix with a scalar glueball in the same
mass range. It turns out that such mixing will lead to three physical isoscalar states
with rather characteristic flavour content [78,72]. Specifically; two will have the
nn̄ and ss̄ in phase (‘singlet tendency’), their mixings with the glueball having
opposite relative phases; the third state will have the nn̄ and ss̄ out of phase (‘octet
tendency’) with the glueball tending to decouple in the limit of infinite mixing. There
are now clear sightings of prominent scalar resonances f0(1500) and f0(1710) and
probably also f0(1370). Confirming the resonant status of the last is one of the
critical pieces needed to clinch the proof. The production and decays of these states
are in remarkable agreement with this flavour scenario [72].

Precision data on scalar meson production and decay are consistent with this and
the challenge now centres on clarifying the details and extent of such mixing.

A major question is whether the effects of the glueball are localized in this region
above 1 GeV, as discussed by [72,23] or spread over a wide range, perhaps down
to the ππ threshold [84]. This is the phenomenology frontier. There are also two
particular experimental issues that need to be settled: to confirm the existence of
a0(1400) and determine its mass and to determine whether the f0(1370) is truly
resonant or is a t-channel exchange phenomenon associated with ρρ.

1.9.1 Hybrids and glueballs

While QCD implies that gluons can mutually couple, and thereby offers the prospect
of bound states of pure glue, ‘glueballs’, we have no general insight into the
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spectroscopy and widths of these states. According to lattice QCD, the lightest
glueball has J PC = 0++ and in the absence of mixing with qq̄ or hadrons, has a
mass ∼1.6 GeV [78]. In this idealized scenario the next states are expected to be
2++ and 0−+ with masses ∼2 GeV. A glueball with the same quantum numbers as
the photon is not expected until m ∼ 4 GeV. The lightest glueball with exotic J PC

is predicted to be 0+− with m ∼ 3.0 ± 0.8 GeV.

Neither lattice QCD nor models give any clear guide as to the widths of glue-
balls. Ideas based on perturbative QCD and the Zweig rule have led to suggestions
that they could be narrow. A lattice study of the 0++ gave the decay width into
two pseudoscalars ∼100 MeV, akin to that of conventional hadrons. There are
even phenomenological analyses suggesting that the scalar glueball at least mixes
strongly with mesons, affecting the spectrum of I = 0 states in the region 1.3 to
1.7 GeV [81,72] or even across a broader mass range [84].

As gluons are electrically neutral, how might photons aid in identifying their dynam-
ics? Four areas come to mind: (i) the production of a C = + glueball recoiling
against a photon in Q Q̄ → γ G; (ii) the measurement of the q2 evolution of a glue-
ball’s structure functions, which will increase in strength as the gluons are resolved
into qq̄ pairs in contrary fashion to the evolution of ‘normal’ hadrons; (iii) the
comparison of the production of a glueball in gg → G or in central production
pp → pGp, which are strong as in (i) above, with γ γ → G, which is suppressed
due to the glueball’s electrical neutrality; (iv) looking for mixing of a glueball
with the I = 0 members of a qq̄ nonet that may be revealed by radiative transi-
tions involving ideally mixed flavour states, for example Mn(C = +) → γρ and
Ms(C = +) → γφ weigh the nn̄ and ss̄ flavour contents respectively of positive
charge conjugation states [7,61].

In ψ → γ R, pQCD implies that the rate is sensitive to J PC (R). Thus one has to
allow for the J PC before naively assuming that a large branching ratio implies
R ≡ G. Close et al [85] have quantified this and argue that the production rate for
a pure glueball with mG ∼ 1.5 GeV depends on its J PC and total width thus

103b(ψ → γ G[0++; 2++; 0−+]) ∼ �(MeV)/[96; 26; 50], (1.34)

whereas for a qq̄ the scaled factors are ∼5−10 times larger, for example for 0++

being O(500−1000). Within this uncertainty therefore

103b(ψ → γ qq̄[0++; 2++; 0−+]) ∼ �(MeV)/[500−1000; 150−300; 250−500].
(1.35)

This result is only qualitative as it is necessary to take account of the SU(3) flavour
wave functions of the qq̄ (see [85]) but shows why qq̄ with 2++ are prominent
whereas those with 0++ are harder to isolate. With the advent of high-statistics
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data from CLEO-c and BES the rates as a function of J PC need to be both better
quantified experimentally and put on a more solid theoretical foundation.

Using the existing analysis of [85] as a benchmark against which improvements
should be made we note the following.

(a) There does appear to be an enhanced rate in the 0−+ channel around 1.4 GeV
consistent with the presence of a glueball, reinforcing early suggestions to
this effect. Such a mass is lower than lattice QCD predicts and it is principally
this feature that has led to reluctance to accept this as a prima facie glueball.
Close et al [85] concluded that the η(1440) data in ψ → γ η(1440) appeared
to separate into two mesons. The lower-mass state ηL (1410) has a strong
affinity for glue, or mixing with the η′ via the UA(1) anomaly, whereas the
higher-mass state ηH (1480) is consistent with being the ss̄ member of a nonet,
perhaps mixed with glue.

(b) In the 0++ channel there appears to be significant strength in the 1.5–1.7
GeV region where the f0(1500) and f0(1700) are seen. The f0(1710) at
least appears at a strength consistent with at least half of its strength being
gluonic. Resolving the presence of any further resonant scalars such as the
role of f0(1370) will also be important in this programme.

A challenge for BES and CLEO-c will be to investigate these states at higher
precision in ψ decays. In particular the decays of these mesons into γ V (≡ ρ, ω, φ)
can probe their flavour and hence be done in concert with programme (iv) [7].

1.9.2 Hybrid production by photons

An essential step in the phenomenological study of the origin and nature of con-
finement is to identify the spectrum of hybrid mesons. Lattice QCD predicts such
a spectroscopy [86], but there are no unambiguous signals against which these
predictions can be tested.

A major stumbling block had been that while predictions for their masses [86,14],
hadronic widths [89,88] and decay channels [89,88,87] were rather well agreed
upon, the literature contained little discussion of their production rates in electro-
magnetic interactions. Meanwhile, a significant plank in the proposed upgrade of
JLab has been its assumed ability to expose the predicted hybrid mesons in photo-
and electroproduction.

Lattice QCD has demonstrated that a string-like chromoelectric flux-tube forms
between distant static quarks [12]. In the simplest situation of a long tube with
fixed Q, Q̄ sources on its ends, a flux-tube has a simple vibrational spectrum cor-
responding to the excitation of transverse phonons in its string-like structure. The
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essential features of this gluonic spectrum are retained in the spectrum of real
mesons with their flux-tube excited – the hybrid mesons. Implications for spec-
troscopy and hadronic decays in such a flux-tube model [14] have been extensively
explored. However, until the late 1990s the only estimates of electromagnetic cou-
plings in this model [90,91] were at best upper limits, in that they were based upon
vector meson dominance of hadronic decays into modes including ρ and assumed
that certain selection rules [88] against this mode were suspended in π exchange.

A calculation [92] has quantified the conjecture of Isgur [93] that electromagnetic
excitation amplitudes of hybrids may be significant. In particular this was found
to be expected for E1 transitions between conventional and hybrid mesons for
electrically charged states. This could have implications for γ p → nH+.

The lightest hybrids with exotic J PC (0+−, 1−+, 2+−) have their qq̄ coupled to spin
1. As the photon is already a vector particle there has emerged a folklore that photons
may therefore be a good source of hybrid production since in photoproduction it
is only necessary then to ‘tickle the flux tube’ to have the possibility of an exotic
J PC . The more detailed calculations in [92,94,95] find no support for this belief.
The excitation of the tube occurs as a combination of the photoexcitation of a quark
which is displaced from the centre of mass of the qq̄-flux-tube system. This leads
to non-zero overlap with excited hybrid states but the net spin of the qq̄ need not
be trivially conserved.

Nonetheless, photoproduction of the exotic states is expected to be significant [92,
94,95]. It is found that the electric dipole transitions of the hybrid axial meson
to π±γ and of the exotic (0, 2)+− to ργ give radiative widths that can exceed
1 MeV. This implies significant photoproduction rates in charge-exchange reactions
γ p → H+n. The exotic 2+− may also be produced diffractively in γ p → H p.

The exotic 1−+ may be produced by π exchange in γ N → 1−+N . Depending
on its total width, the resulting signal may compare with that for a2 production
[96]. The exotic 2+− should be more readily produced [95]. It is predicted to have
photoexcitation from π , with a strength that is comparable to that of the 1−+, and in
addition can be diffractively excited from a gluonic pomeron, γ N → 2+−N . Hence
a test for hybrid production is to seek 2+− and compare its production amplitudes
with those of 1−+.

There is also a spectroscopy of non-exotic J PC and some of these are predicted
to have significant photoproduction strength. In particular, the relative (reduced)
widths of hybrid a1H (1++) and the conventional b1Q(1+−) are predicted in the
flux-tube model to be

�E1(a+
1H → π+γ )

�E1(b+
1Q → π+γ )

= 72

π3

k
m2

n

∣∣∣∣ H 〈r〉π
b〈r〉π

∣∣∣∣
2

, (1.36)
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where k is the string tension k ∼ 1 GeV/fm, mn is the constituent-quark mass and
the 〈r〉 factors are measures of the charge radii. This ratio should be studied in
lattice QCD as it is the most direct measure of the price for exciting the gluonic
degrees of freedom in strong QCD, at least if the flux-tube model is a guide to the
dynamics.

Hybrid mesons with heavy flavours, in particular hybrid charmonium states, are
anticipated. If a hybrid vector charmonium is above the threshold for decay to
DD̄1, then it is predicted [88] that the dominant decay will be to this DD̄1 state and
that decays to pairs of ground-state charmed mesons, such as DD̄, Ds D̄s, D∗ D̄∗,
are suppressed. It is thus interesting that a vector state ϒ(4260) has been seen
in e+e− → ψππ [97] with hadronic width ∼90 MeV and a leptonic width that
has been inferred to be ∼100 eV [98]. Its leptonic width, being much smaller
than those of other vector mesons [1], and its significant decay width to ψππ

testify to its unusual nature. It has been suggested that it may be a vector hybrid
charmonium [99], which had been predicted [88,100], or a tetraquark state, csc̄s̄
[99]. A test of these competing hypotheses is in their predictions of decay modes.
With the tetraquark hypothesis the ϒ(4260) will decay to Ds D̄s , while this mode
is suppressed for a hybrid. As hybrid charmonium is predicted to occur around
4 GeV in mass and a vector state to couple strongly to DD̄1 [88], the fact that the
ϒ(4260) is near to the DD1 threshold is already of interest.

In principle, the ψ in the ψππ final state can be polarized. As a hybrid vector meson
has its cc̄ coupled to spin 0, in contrast to conventional vector mesons where the
cc̄ are in spin 1, one may expect that the polarization will differ in these scenarios,
though detailed model predictions are not yet agreed upon. Empirically one may
study the analogous process at lower energies in the strange sector. The process
e+e− → K K̄1 → φππ has been seen; the polarization of the φ and the mass dis-
tribution of ππ should be measured here and compared with their counterparts in
the charm sector e+e− → DD̄1 → ψππ .

This is potentially an exciting example of how comparison of e+e− annihilation at
energies appropriate to different flavours can enable the underlying dynamics to be
explored.

From a dedicated programme in such photo- and electroproduction evidence for
states with exotic quantum numbers should emerge. If they are not seen then there
is something seriously amiss in our intuition. However, the observation of exotic
quantum numbers does not of itself imply the production of hybrid states. One
can form such combinations from qqq̄q̄. A detailed spectroscopy is required, in
particular of an entire multiplet, to ascertain whether it forms a regular nonet (as in
the simplest qq̄ cases) or an inverted one (as for the 0++ states below 1 GeV). Only
when this evidence is available can one decide with any confidence whether exotic
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mesons are qqq̄q̄ states (the latter case) or hybrids (the former). This brings us to
the more general question of how reliable the simple constituent picture should be
expected to be and what further tests might be envisaged.

1.9.3 When does the quark model work?

There is general agreement that the NRQM is a good phenomenology for bb̄ and cc̄
states below their respective flavour thresholds. Taking cc̄ as an example we have
S-states (ηc, ψ, ψ(2S)), P-states (χ0,1,2) and a D-state (ψ(3772)), the last just above
the DD̄ threshold. Their masses and the strengths of the E1 radiative transitions
between ψ(2S) and χJ are in reasonable accord with their potential model status.
In particular there is nothing untoward about the scalar states.

Do the same for the light flavours and one finds clear multiplets for the 2++ and
1++ states (though the a1 is rather messy); it is when one comes to the scalars that
suddenly there is an excess of states. An optimist might suggest that this is the
first evidence that there is an extra degree of (gluonic) freedom at work in the light
scalar sector. But there is more: there is a clear evidence of states that match onto
either qqq̄q̄ or correspondingly meson–meson in S-wave.

Such a situation is predicted by the attractive colour–flavour correlations in QCD
[22,23]. Establishing this has interest in its own right but it is also necessary to ensure
that one can classify the scalar states and then identify the role of any glueball by any
residual distortion in the spectrum. It is in this context that discovery of narrow states
in the heavy flavour sector provide tantalizing hints of this underlying dynamics
elsewhere in spectroscopy. If this is established it could lead to a more unified and
mature picture of hadron spectroscopy.

The sharpest discoveries have involved narrow resonances: cs̄ states, probably
0+, 1+, lying just below DK̄ , D∗ K̄ thresholds; and cc̄ degenerate with the Do D̄∗o

threshold. These are superficially heavy-flavour states, but their attraction to these
thresholds involves light quarks and links to a more general theme.

First note [5] that the cc̄ potential picture gets significant distortions from the DD
threshold region, such that even the cc̄ χ states can have 10% or more admixtures
of meson pairs, or four-quark states, in their wave functions. Also simple potential
models of the Ds-states are inadequate to explain the 2.32 GeV and 2.46 GeV
masses of these novel states as simply cs̄ in some potential. Furthermore, the lattice
seems to prefer the masses to be higher than actually observed, though the errors
here are still large. In summary, there is an emerging picture that these data on the
D̄s sector (potentially 0+ and 1+ and the S-wave D K̄ and D∗ K̄ thresholds) and
the cc̄ sector (with the S-wave Do D̄∗o thresholds) confirm the suspicion that the
simple potential models fail in the presence of S-wave continuum threshold(s).
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Now let us examine this in the light flavoured sector. The multiplets where the
quark model works best are those where the partial wave of the qq̄ or qqq is lower
than that of the hadronic channels into which they can decay. For example, the ρ

is S-wave qq̄ but P-wave in ππ ; as S-wave is lower than P-wave, the quark model
wins; by contrast the σ is P-wave in qq̄ but S-wave in ππ and in this case it is the
meson sector that wins and the quark model is obscured.

A similar message comes from the baryons. The quark model does well for the 

(S-wave in qqq but P-wave in π N ); at the P-wave qqq level it does well for the D13,
which as its name implies is D-wave in hadrons, but poorly for the S11 which is S-
wave in Nη. The story repeats in the strange sector where the strange baryons with
negative parity would be qqq in P-wave: the D03(1520) is fine but the S01(1405) is
the one that seems to be contaminated with possible KN bound-state effects.

As an exercise I invite you to check this out. It suggests a novel way of classifying
the Fock states of hadrons. Instead of classifying by the number of constituent
quarks, list by the partial waves with the lowest partial waves leading. Thus for
example

0++ = |0−0−(qqq̄q̄)〉S + |qq̄〉P + · · · ,

while

1−− = |qq̄〉S + |0−0−(qqq̄q̄)〉P + · · ·
or

(1230) = |qqq〉S + |π N (qqqqq̄)〉P + · · · .

This holds true for

2++ = |qq̄〉P + |0−0−(qqq̄q̄)〉D + · · ·
the relevant S-wave vector-meson pairs being below threshold. For the remaining
P-wave qq̄ nonet with C = + we have a delicate balance

1++ = |qq̄〉P + |0−1−〉S + · · · ,

where the πρ S-wave distorts the qq̄ a1, as is well known; the f1(1285) is protected
because the two-body modes are forbidden by G-parity; for the strange mesons
the K ∗π and Kρ channels play significant roles in mixing the 1++ and 1+− states,
while the ss̄ state is on the borderline of the K K̄ ∗ threshold.

Chiral models which focus on the hadronic colour-singlet degrees of freedom are
thus the leading effect for the 0++ sector but subleading for the vectors. An example
has been presented [101] where the Nc dependence of the coefficients of the chiral
Lagrangian was studied. In the Nc → ∞ limit it was found that �(ρ) → 0, like
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qq̄ , whereas �(σ ) → ∞, like a meson S-wave continuum. Thus there appears
to be a consistency with the large Nc limit selecting out the leading S-wave
components.

Conversely, the ‘valence’ quark model can give the leading description for the
vectors or the (1232) but there will be corrections that can be exposed by fine-
detail data. The latter are now becoming available for the baryons from JLab; the
elastic form factors of the proton and neutron show their charge and magnetic
distributions to be rather subtle, and the transition to the (1232) is more than
simply the M1 dominance of the quark model. There are E2 and scalar multipole
transitions which are absent in the leading qqq picture. The role of the π N cloud is
being exposed; it is the non-leading effect in the above classification scheme. The
�+(1540) as a pentaquark may inspire novel insights into a potential pentaquark –
or Nπ cloud – component in the N and (1232).

The message is to start with the best approximation – quark model or chiral – as
appropriate and then seek corrections.

Bearing these thoughts in mind highlights the dangers of relying too literally on
the quark model as a leading description for high-mass states unless they have
high J PC values for which the S-wave hadron channels may be below threshold.
It also has implications for identifying glueballs and where the gluonic degrees of
freedom play an explicit role and cannot simply be subsumed into the collective
quasiparticle known as the constituent quark.

The lightest glueball is predicted to be scalar [78] for which the problems arising
from the S-wave thresholds have already been highlighted. At least here, by exploit-
ing the experimental strategies outlined in this overview, we are possibly going to
be able to disentangle the complete picture. For the 2++ and 0−+ glueballs above
2 GeV there are copious S-wave channels open, which will obscure the deeper
‘parton’ structure. Little serious thinking seems to have been done here.

For the exotic hybrid nonet 1−+ we have a subtlety. In the flux-tube models
abstracted from lattice QCD, the qq̄ are in an effective P-wave [13,14,92], which we
may describe by |qq̄g〉P . There is a leading S-wave 0−1+ meson pair at relatively
low energies, such that

1−+ = |0−1+〉S + |qq̄g〉P + · · · .

The S-wave thresholds for πb1 and π f1 are around 1400 MeV, which is significantly
below the predicted 1.8 GeV for lattice or model and tantalizingly in line with one
of the claimed signals for activity in the 1−+ partial wave. All is not lost however;
a qq̄ or qq̄g nonet will have a mass pattern and decay channels into a variety of
final states controlled by Clebsch–Gordan coefficients, whereas thresholds involve
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specific meson channels. These can, in principle, be sorted out, given enough data
in a variety of production and decay channels, but it may be hard.

The essential message is that in unravelling the dynamics of hadrons, especially
in the light flavour sector, no single experiment will suffice. The strategy involves
a range of complementary probes and detailed assessment of their results. The
electromagnetic probe, on which this book is focussed, has the special virtue of
coupling in leading order to charged constituents. Electric and magnetic couplings
can reveal the correlations of flavours and spins. Comparison with other data where
gluonic channels are dominant can reveal patterns among hadrons which can dis-
entangle the flavoured q, q̄ content and expose electrically neutral gluonic degrees
of freedom. Such ideas are not new but now promise to come into sharper focus
than hitherto with the advent of a new generation of high-luminosity customized
facilities. To this end, it is a purpose of this volume to review and sharpen the
arguments and theory of the electromagnetic interactions of hadrons.
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Elastic form factors

R Ent

A fundamental goal of nuclear and particle physics is to understand the structure and
behaviour of strongly interacting matter in terms of its fundamental constituents.
An excellent model of atomic nuclei is that they consist of protons and neutrons
interacting by the exchange of pions. This is the view of the nucleus studied at low
resolution. Hence, protons, neutrons and pions can be considered as the building
blocks of the nuclei, a description valid for almost all practical purposes. Nonethe-
less, these building blocks are themselves composite particles, and studying their
electromagnetic structure has been one of the main research thrusts of electron
scattering.

The first studies of the electromagnetic structure of nucleons using energetic elec-
tron beams as probes began in the 1950s with the work by Hofstadter et al [1].
The experimental goal in these early measurements and in those that followed was
to understand how the electromagnetic probe interacts with the charge and current
distributions within nucleons. The embodiment of these interactions are the electro-
magnetic form factors. These quantities could be calculated if a complete theory of
hadron structure existed. In the absence of such a theory, they provide an excellent
meeting ground between experimental measurements and model calculations.

These nucleon form-factor measurements become increasingly difficult at high Q2

because the cross section is found to fall as ∼Q−12 at high Q2 and the counting rates
drop correspondingly. However, experimental techniques have progressed greatly
since the early experiments and, together with the exploitation of spin degrees of
freedom, have produced an impressive data set out to large Q2.

The large range in Q2 accessible to modern experiments, combined with the high
precision of the data, allow not only a precise determination of global properties
such as the charge radius of these nuclear building blocks, but also the study of
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their detailed internal structure. These data have instigated considerable theoretical
interest, although there is still much to be learned about the nucleon by refining
both measurement and theory.

2.1 Electron scattering and form-factor measurements

Under Lorentz invariance, spatial symmetries and charge conservation, the most
general form of the electromagnetic current of a nucleon can be written as

Jμ = −ie
[

F1(Q2)γ μ + κN

2m N
F2(Q2)iσμνqν

]
, (2.1)

where m N is the nucleon mass, F1 denotes the helicity-non-flip Dirac form factor, F2

the helicity-flip Pauli form factor and eκN/2m N is the nucleon anomalous magnetic
moment. The form factors at Q2 = 0 are

F p
1 (0) = F p

2 (0) = Fn
2 (0) = 1, Fn

1 (0) = 0 (2.2)

and κp = 1.79, κn = −1.91. If q2 is the momentum transfer to the nucleon, in elec-
tron scattering q2 is space-like, that is q2 < 0 and we define Q2 = −q2. Conversely,
if q2 is time-like, that is q2 > 0, as in e+e− annihilation, we define Q2 = q2 so that
Q2 is always positive.

Since isospin is a well-preserved symmetry in strong interactions, one can combine
the proton and neutron form factors to give the isoscalar (s) and isovector (v) form
factors of the nucleon:

Fs
i = 1

2

(
F p

i + Fn
i

)
; Fv

i = 1
2

(
F p

i − Fn
i

)
; (i = 1, 2). (2.3)

In the space-like region (q2 < 0) the form factors can be measured through elec-
tron scattering. In the time-like region (q2 > 0) the form factors can be measured
through the creation or annihilation reactions e+e− → N N̄ or vice-versa. The form
factors are analytic in the complex q2 plane and satisfy a dispersion relation of the
form:

F(t) = 1

π

∫ ∞

t0
dt ′ Im F(t ′)

t ′ − t
, (2.4)

with t = q2. G-parity requires that t0 = 9(4)m2
π for the isoscalar (isovector) case,

where mπ is the pion mass.

For unpolarized electron scattering with single-photon exchange, the elastic differ-
ential cross section is [2]

dσ

d�
= E ′

E
σM

[(
F2

1 + κ2τ F2
2

) + 2τ (F1 + κ F2)2 tan2 (
1
2θ

)]
, (2.5)
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where τ = Q2/4m2
N , θ is the electron scattering angle, E, E ′ are the incident and

final electron energies, respectively, and

σM =
(

α cos
(

1
2θ

)
2E sin2

(
1
2θ

)
)2

(2.6)

is the Mott cross section for point-like scattering [3].

Often the electric and magnetic Sachs form factors G E and G M are used. In the
Breit frame, where the energy transfer is zero and |q| = Q, the Fourier transforms
of these Sachs form factors are directly related to the charge and magnetization
distributions in the nucleon. They are defined as linear combinations of F1 and F2:

G E = F1 − τκ F2, G M = F1 + κ F2. (2.7)

Initially these form factors were separated only by using the Rosenbluth method
[4], which can be understood by rewriting (2.5) in terms of the Sachs form factors:

dσ

d�
= E ′

E
σM

[
G2

E + τG2
M

1 + τ
+ 2τG2

M tan2 (
1
2θ

)]
. (2.8)

The polarization, ε, of the virtual photon is given by [2]

ε−1 = 1 + 2(1 + τ ) tan2 (
1
2θ

)
, (2.9)

which can be used to rewrite (2.8) to give the reduced cross section

σR ≡ dσ

d�

ε(1 + τ )E
σM E ′ = τG2

M (Q2) + εG2
E (Q2). (2.10)

The Rosenbluth method consists of making measurements at a fixed Q2 and variable
ε(θ, E) and fitting the reduced cross section σR with a straight line of slope G2

E and
intercept τG2

M .

Early measurements of the form factors suggested a scaling law relating three of
the four nucleon elastic form factors by a dipole formula describing their common
Q2 dependence:

G p
E (Q2) ≈ G p

M (Q2)

μp
≈ Gn

M (Q2)

μn
≈ G D ≡ (1 + Q2/0.71)−2. (2.11)

This behaviour was known as form-factor scaling. The dipole parametrization G D

corresponds, in coordinate space, to an exponentially decreasing radial density.
However, high-precision polarization data show that this might not be correct: see
subsection 2.2.2.

Although the neutron has no net charge, the non-zero value of its magnetic moment
implies that it must have a charge distribution. The neutron electric form factor
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Figure 2.1. G p
E/G D (left) and G p

M/(μpG D) (right) versus Q2 from the Rosenbluth
method.

differs from the other three and is well parametrized [5] as

Gn
E = −μnG D

τ

1 + 5.6τ
. (2.12)

2.2 Space-like nucleon form factors

A rich body of experiments has been devoted to determine the space-like nucleon
form factors and continues today with ever-improving experimental techniques.
We will first review the status of the nucleon form-factor determinations from spin-
averaged measurements, and then continue with those more recent determinations
using spin-dependent techniques.

2.2.1 Spin-averaged measurements

Proton form factors The Rosenbluth method described above is problematic as
it requires the measurement of absolute cross sections and at large Q2 the cross
section is insensitive to G E . This is obvious from (2.10), recalling the definition
of τ .

Figure 2.1 presents the Rosenbluth data set for the proton form factors. (See [6]
for a compilation and references.) The dipole law describes the Q2 dependence to
a good approximation (≈10%) for both form factors out to Q2 = 8 GeV2. As a
result, one is inclined to believe that form-factor scaling holds well also. The latter
was used to extract values of G p

M from the forward-angle, elastic cross section
measurements of SLAC experiment E136 [7], out to Q2 = 30 GeV2. Because G p

M
dominates these measurements at high Q2, the error made due to the assumption
of form-factor scaling is small.

However, the limitation of the Rosenbluth method can be seen from the large errors
in G p

E measurements for Q2 > 1 GeV2. This is even more evident in the ratio
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Figure 2.2. The ratio μpG p
E/G p

M as determined with the Rosenbluth method. Data
are from [8–13]. The statistical and systematic errors are added in quadrature.

μpG p
E/G p

M from different data sets: data scatter by up to 50% at Q2 values larger
than 1 GeV2 (see figure 2.2). Subsequent measurements of the proton form factors
exploiting a double-polarization observable have upset the apparent form-factor
scaling as we shall see in subsection 2.2.2.

Neutron form factors The lack of a free neutron target has limited the quality
of the data on neutron form factors. Of all the form factors, the neutron electric
form factor is the least well known. Its small intrinsic size, in combination with the
dominance of Gn

M over Gn
E , makes it difficult to measure. However, the slope at

Q2 = 0 is known from thermal neutron scattering from electrons [14]:

dGn
E

d Q2

∣∣∣∣
Q2=0

= 0.678 ± 0.030. (2.13)

The deuteron has served as an approximation to a source of a free neutron target.
A good understanding of the ground- and final-state wave functions is required
in order to extract reliable information about the neutron form factors. The tra-
ditional techniques (restricted to the use of unpolarized beams and targets) used
to extract information about Gn

M and Gn
E have been: elastic scattering from the

deuteron: d(e, e′)d; inclusive quasielastic scattering: d(e, e′)X ; and scattering from
the deuteron with the coincident detection of the scattered electron and recoiling
neutron: d(e, e′n)p.

More recently, a ratio method which minimizes uncertainties in the deuteron and
final state wave function has been emphasized: d(e, e′n)/d(e, e′ p). Sensitivities to
nuclear binding effects and experimental fluctuations in the luminosity and detector
acceptance are minimized in such a ratio measurement, the main technical diffi-
culty being the absolute determination of the neutron detection efficiency. Such
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measurements have been pioneered for Q2 values smaller than 1 GeV2 at Mainz
[15–17] and Bonn [18]. The Mainz Gn

M data are 8–10% lower than those from
Bonn, at variance with the quoted uncertainty of ∼2%. An explanation of this dis-
crepancy could be an error in the detector efficiency of 16–20%, but this remains
unconfirmed. The current status of the data on Gn

M is shown in figure 2.3.

The lack of data at large momentum transfers will soon be remedied. A study of
Gn

M at Q2 values up to 5 GeV2, using this ratio method, has been completed at JLab
[19]. A hydrogen target was in the beam simultaneously with the deuterium target,
to determine the neutron detector efficiency in situ via the p(e, e′nπ+) reaction.
Preliminary results [19] (not shown) indicate that Gn

M is within 10% of G D over
the full Q2 range of the experiment.

Until the early 1990s the extraction of Gn
E was done most successfully through

either small angle elastic e–d scattering [5,20] or by quasielastic e–d scattering
[21]. In the impulse approximation, the elastic electron–deuteron cross section is
the sum of the proton and neutron responses, weighted with the deuteron wave
function. In the limit of small θe, the cross section can be written [22]

dσ

d�
∼ (

G p
E + Gn

E

)2
∫

dr
[
u(r )2 + w(r )2] j0

(
1
2qr

)
, (2.14)

with u(r ) and w(r ) the S- and D-state wave functions of the deuteron. The coherent
nature of elastic scattering gives rise here to an interference term between the neu-
tron and proton response, which allows the smaller Gn

E contribution to be extracted.
Still, the large proton contribution must be removed.

Hence, experiments have been able to achieve small statistical errors but remain sen-
sitive to the deuteron wave function model, leaving a significant residual dependence
on the nucleon–nucleon (NN) potential. The most precise data on Gn

E obtained from
elastic e–d scattering are shown on the right-hand side of figure 2.3 from an experi-
ment at Saclay, published in 1990 [20]. The curves are parametrizations of the data
based on different NN potentials used in the extraction. The band they form is a
natural measure of the theoretical uncertainty in this method (≈50%) that reflects
the knowledge of the NN potentials at that time.

2.2.2 Spin-dependent measurements

It has been known for many years that the nucleon form factors could be measured
through spin-dependent elastic scattering from the nucleon, accomplished either
through a measurement of the scattering asymmetry of polarized electrons from
a polarized nucleon target [26,27], or equivalently by measuring the polarization
transferred to the nucleon [28,29].
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Figure 2.3. Left: Gn
M from unpolarized scattering [15–18,21,23] and polarized

scattering [24,25]. Right: Gn
E from elastic e–d scattering [20]. The band defined

by the lines represents the theoretical error associated with the extraction (see text).

In the scattering of polarized electrons from a polarized target, an asymmetry
appears in the elastic scattering cross section when the beam helicity is reversed. In
contrast, in scattering a polarized electron from an unpolarized target, the transferred
polarization to the nucleon produces an azimuthal asymmetry in the secondary scat-
tering of the nucleon (in a polarimeter) due to its dependence on its polarization. In
both cases, the perpendicular asymmetry is sensitive to the product G E G M . Only
since the mid 1990s have experiments exploiting these spin degrees of freedom
become possible.

Like spin-averaged measurements, determination of the neutron form factors
requires scattering from a nuclear target. As before, the deuteron is the target of
choice but, in the case of beam–target asymmetry measurements, 3He also becomes
a viable target as it approximates a polarized neutron [30]. In either case, extrac-
tion of the neutron form factors is again complicated by the need to account for
ground-state and final-state wave function effects. Fortunately it has been found
for the deuteron that in kinematics that emphasize quasi–free neutron knockout,
both the transfer polarization Pt [31] and the beam–target asymmetry AV [32] are
especially sensitive to Gn

E and relatively insensitive to the choice of NN potential
and other reaction details. Calculations [30] of the beam–target asymmetry from a
polarized 3He target also showed only modest model dependence.

The proton form-factor ratio G
p
E/G

p
M In elastic electron–proton scattering a

longitudinally polarized electron will transfer its polarization to the recoil proton.
In the one-photon exchange approximation the proton can attain only polariza-
tion components in the scattering plane, parallel (Pl) and transverse (Pt ) to its
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Figure 2.4. The ratio μpG p
E/G p

M from polarization-transfer experiments [33–37],
compared to data using the Rosenbluth method [39,40] and the reanalysis by
Arrington [38] of older SLAC data.

momentum. The ratio of the charge and magnetic form factors is directly propor-
tional to the ratio of these polarization components:

G p
E

G p
M

= − Pt

Pl

Ee + E ′
e

2m N
tan

(
1
2θe

)
. (2.15)

The polarization-transfer technique was used for the first time by Milbrath et al
[33] at the MIT-Bates facility. The proton form-factor ratio was measured at Q2

values of 0.38 and 0.50 GeV2. A further measurement at a Q2 value of 0.4 GeV2 was
performed at the Mainz MAMI facility [34]. The greatest impact of the polarization-
transfer technique, however, was made by two experiments [35,37] at JLab, extend-
ing this proton form factor ratio to a Q2 value of 5.6 GeV2.

Figure 2.4 shows the results for the ratio μpG p
E/G p

M . The most striking feature of the
data is the sharp, practically linear decline as Q2 increases, which was parametrized
[37] as:

μp
G p

E (Q2)

G p
M (Q2)

= 1 − 0.13(Q2 − 0.04) (2.16)

with Q2 in GeV2. Since it is known that G p
M is well described by the dipole

parametrization, it follows that G p
E falls more rapidly with Q2 than G D.

This significant fall-off of the form-factor ratio is in clear disagreement with the
results from the Rosenbluth method. Arrington [38] performed a careful reanal-
ysis of earlier Rosenbluth data. He selected only experiments in which an ade-
quate ε-range was covered with the same detector. The results of this reanalysis
are also given in figure 2.4 and do not show the large scatter seen in figure 2.2.
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Subsequently, an extensive data set on elastic electron–proton scattering collected
in Hall C at JLab has been analysed [39]. The results are evidently in good agree-
ment with Arrington’s reanalysis. Lastly, a high-precision extraction of G p

E/G p
M has

been made using the ‘super-Rosenbluth’ method in Hall A at JLab [40]. The latter
experiment was specifically designed to reduce significantly the systematic errors
compared to earlier Rosenbluth measurements. The main improvement came from
detecting the recoiling protons instead of the scattered electrons, so that the proton
momentum and the cross section remain practically constant when one varies ε at a
constant Q2 value. Results [40] of this experiment, covering Q2 values from 2.6 to
4.1 GeV2, are again in excellent agreement with previous Rosenbluth results. This
basically rules out the possibility that the disagreement between Rosenbluth and
polarization-transfer measurements of the ratio G p

E/G p
M is due to an underestimate

of ε-dependent uncertainties in the Rosenbluth measurements. This is clearly illus-
trated in figure 2.5(left), which highlights the difference in reduced cross section
measurements, as a function of ε, found between the Rosenbluth method and the
G p

E/G p
M ratio from the polarization-transfer technique, at Q2 = 2.64 GeV2.

The G
p
E/G

p
M discrepancy It has been suggested [41] that two-photon exchange

contributions could be responsible for the discrepancy in the G p
E/G p

M form-factor
ratio as determined from the Rosenbluth and polarization transfer methods. In such a
two-photon exchange process the nucleon undergoes a first virtual photon exchange
which can lead to an intermediate excited state and then a second exchange to return
to its ground state. Such corrections would provide an ε-dependent modification
of the cross section measurements, thus directly affecting the Rosenbluth method
and only to a lesser extent [42] the polarization-transfer method, which contains a
direct ratio measurement of recoil polarization.

The most stringent tests of two-photon exchange effects have been carried out
by measuring the ratio of electron and positron elastic scattering off a proton.
Corrections due to two-photon exchange will have a different sign in these two
reactions. Unfortunately, this (e+ p/e− p) data set is quite limited [43], only extend-
ing (with poor statistics) up to a Q2 value of ∼5 GeV2, while at Q2 values larger
than ∼2 GeV2 basically all data have been measured at ε values larger than ∼0.85.
Existing comparisons yield an average ratio of 1.003±0.005, with χ2 = 0.87. These
data have been interpreted as showing that the two-photon effects must be small.
However, due to the sparsity of data at low ε and Q2 > 2 GeV2, it is difficult to
draw definite conclusions. Arrington [43] has compiled the world’s data for this
ratio and show a possible ε-dependent slope in the (e+ p/e− p) ratio, including all
data with Q2 < 2 GeV2 (see figure 2.5(right)). This behaviour may be consistent
with the two-photon exchange effects required to explain the discrepancy, if con-
firmed with better data, and at higher Q2. Arrington [44] determined the proton’s
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Figure 2.5. Left: the reduced cross section at Q2 = 2.64 GeV2 as determined
in the JLab E01-001 experiment using the ‘super-Rosenbluth’ method [40]. The
dashed line indicates the ε-dependent slope one would have measured using the
polarization-transfer ratio of G p

E/G p
M and arbitrarily assuming that the magnetic

form factor is fixed. Right: σe+p/σe−p cross section ratio as a function of ε for
measurements below Q2 = 2 GeV2. The solid line is a fit to the ratio, assuming a
linear ε dependence and no Q2 dependence. It yields a slope of (−5.7±1.8)% [43].

electric and magnetic form factors by using the Rosenbluth method data, the
polarization-transfer data, and the assumption that two-photon exchange effects
explain the discrepancy. This analysis is also consistent with the measured
(e+ p/e− p) ratios.

Other tests, also inconclusive, looked for non-linearities in the ε-dependence (the
linearity of the reduced cross sections is illustrated in figure 2.5(left)) or measured
the transverse (out-of-plane) polarization component of the recoiling proton, a
non-zero value of which would be a direct measure of the imaginary part of the
two-photon exchange amplitude.

Calculations suggest that the two-photon exchange diagram may indeed be the
cause of the discrepancy. Blunden et al [45] resolved half of the discrepancy when
calculating the elastic contribution to two-photon exchange effects, using a simple
monopole Q2 dependence of the hadronic form factors. Of course, a full calcu-
lation must include contributions where the intermediate proton is in an excited
state, which was not included in [45]. Chen et al [46] include these contribu-
tions through two-photon exchange off partons in the proton, with emission and
reabsorption of the partons described in terms of generalized parton distributions.
About half of the effect needed to bring the two experimental techniques into
agreement at larger Q2 is found. Hence, it is becoming more and more likely that
two-photon exchange effects are responsible for at least a major part of the measured
discrepancy.

The neutron electric form factor Gn
E Polarized targets have been used to extract

Gn
E and Gn

M . The beam–target asymmetry can be written schematically (a, b, c,
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Figure 2.6. Kinematics definitions for polarized electron scattering from a polarized
target.

and d are known kinematic factors) as [27]

A = a cos θG2
M + b sin θ cos φG E G M

cG2
M + dG2

E

, (2.17)

where θ and φ fix the target polarization axis (see figure 2.6). With the target
polarization axis in the scattering plane and perpendicular to the photon momen-
tum q (�, � = 90◦, 0◦), the asymmetry AT L is proportional to G E G M . With
the polarization axis in the scattering plane and parallel to q (�, � = 0◦, 0◦),
measuring the asymmetry AT allows G M to be determined [24,25]. The latter
extractions are included in figure 2.3. Here, we will show Gn

E measurements using
either polarized-target (2.17) or recoil polarimetry methods (2.15).

The first measurements were carried out at MIT-Bates, both with a polarized 3He
target [47] and with a neutron polarimeter [48]. Gn

E was later extracted from beam–
target asymmetry measurements using polarized 3He targets at Mainz [49], polar-
ized ND3 targets at JLab [50] and a polarized atomic-beam target at NIKHEF
[51], and from recoil polarimetry measurements using deuterium targets at Mainz
[52] and JLab [53]. In all the later measurements a neutron was detected in coinci-
dence with the scattered electron to enhance sensitivity of the measured observables
to Gn

E .

At low Q2 values, Gn
E extractions require corrections for nuclear-medium and

rescattering effects, which can be sizeable: 65% for 2H at 0.15 GeV2 and 50% for
3He at 0.35 GeV2. These corrections are expected to decrease significantly with
increasing Q2, although no reliable calculations are presently available for 3He
above 0.5 GeV2. There is excellent agreement among the results from the different
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Figure 2.7. Gn
E measurements from both polarized target and recoil polarization

measurements, for deuteron targets. Data are from [48,50–53]. An extraction using
2H elastic form factor measurements is also shown, for comparison [54]. The
dashed curve represents the Galster parametrization [5].

techniques. Moreover, nuclear-medium effects seem to become negligible at ∼0.7
GeV2, even for 3He [30], on the basis of a large and precise data set accumulated at
Mainz [52]. Data from JLab, using either a polarimeter or a polarized target [53,50],
extend up to Q2 ≈ 1.5 GeV2 with an overall accuracy of ∼10%. For the sake of
clarity, we only show Gn

E extractions using deuterium targets in figure 2.7 that have
been published since 1994. A precise data set for Gn

E over a large range in Q2: 0.2
< Q2 < 1.5 GeV2 has become available since the mid 1990s.

Lastly, Schiavilla and Sick [54] have extracted Gn
E from available data on the

deuteron quadrupole form factor FC2(Q2) with a much smaller sensitivity to the
NN potential than from inclusive (quasi)elastic scattering. Remarkably, the Galster
parametrization [5] continues to provide a reasonable description of the data.

Charge and magnetization distributions The charge and magnetization root-
mean-square radii are related to the slopes of the form factors at Q2 = 0 by

〈r2
E〉 = 4π

∫
drρ(r )r4 = −6

dG E (Q2)

d Q2

∣∣∣∣
Q2 = 0

,

〈r2
M〉 = 4π

∫
drμ(r )r4 = − 6

μ

dG M (Q2)

d Q2

∣∣∣∣
Q2 = 0

, (2.18)

with ρ(r) (μ(r)) denoting the radial charge (magnetization) distribution. Initial
results for the proton charge radius did not agree with a three-loop QED calculation
[55] of the hydrogen Lamb shift. Accurately taking into account Coulomb distortion
effects and higher moments of the radial distribution [56] brings the proton charge
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Observable Value ± error

〈(r p
E )2〉1/2 0.895 ± 0.018 fm [56]

〈(r p
M )2〉1/2 0.855 ± 0.035 fm [56]

〈(rn
E )2〉 −0.113 ± 0.005 fm2 [14]

〈(rn
M )2〉1/2 0.87 ± 0.01 fm [17]

Table 2.1. Values for the nucleon charge and mag-
netization radii

radius into excellent agreement. Within error bars the root-mean-square radii for
the proton charge and magnetization distribution and for the neutron magnetization
distribution are equal (see table 2.1).

In the Breit frame the nucleon form factors can be written as Fourier transforms of
their charge and magnetization distributions (for example see [57])

ρ(r ) = 4π

(2π )3

∫ ∞

0
d Q G(Q)

sin Qr
Qr

. (2.19)

Beyond the choice of this particular frame, the form factors are not solely determined
by the internal structure of the nucleon, but will also contain dynamical effects due
to relativistic boosts, complicating an intuitive interpretation in terms of spatial
nucleon densities.

Nonetheless, Kelly [58] extracted spatial nucleon densities from the available form-
factor data in a model in which the asymptotic behaviour of the form factors
conformed to perturbative QCD scaling at large Q2. The neutron and proton mag-
netization densities extracted are quite similar to each other, but narrower than
the proton charge density. The neutron charge density exhibits a positive core sur-
rounded by a negative surface charge, peaking at just below 1 fm, attributed to a
negative pion cloud.

A feature common to all nucleon form factors appears to be a ‘bump’ or ‘dip’ in
the ratio to the dipole form at

√
Q2 ≈ 0.5 GeV with a width of ∼0.2 GeV, as obser-

ved by Friedrich and Walcher [57] (see also figure 2.1). They performed a model
fit to all four form factors with two ingredients: a dipole behaviour for constituent-
quark form factors, and a pion cloud with an l = 1 harmonic oscillator behaviour,
and also extracted spatial densities. Their results suggest a pion cloud peaking at
a radius of ∼1.3 fm, close to the Compton wavelength of the pion, slightly larger
than the result of [58]. Note that Hammer et al [59] argue from general principles
that this pion cloud should peak much more inside the nucleon, at ∼0.3 fm.

Although an intuitive interpretation of form factors in terms of spatial densities
alone is questionable, the general structure seen in the form factors, at

√
Q2 ∼ 0.5

GeV, may still be valid.
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2.3 Model calculations of nucleon form factors

Nucleons are composed of quarks and gluons and information about their internal
structure is critical for testing quark models. For example, in a symmetric quark
model, with all valence quarks having the same wave function, the charge distri-
bution of the neutron would everywhere be zero, and thus Gn

E = 0. Hence, any
deviation from zero exposes the details of the wave functions. Of course, detailed
knowledge on the nucleon form factors is also critical for any study of nuclear
structure (for example, see [29]). The accumulation of precise form-factor data,
and especially the surprising polarization transfer results for G p

E/G p
M , have pro-

duced a flurry of theoretical studies which we summarize briefly.

Initially, the nucleon form factors were described in terms of vector-meson domi-
nance (VMD) models [60,61], in which it is assumed that the virtual photon couples
to the nucleon via intermediate light vector mesons. The coupling strengths between
the virtual photon and the vector mesons and between the vector mesons and the
nucleon are either constrained by other data or are fitted to the nucleon form factors.
Since u and d quarks are the essential building blocks of the nucleons, all VMD
models include the lowest-mass mesons, the ρ and ω. The role of the φ is less
clear as it correlates with a possible s-quark contribution to the nucleon’s ground-
state wave function. The success of the simplest VMD models in describing the
form factors at low and moderate Q2 is offset by their difficulty in accommodating
the Q−4 decrease of the form factors at high Q2. By adding more parameters, for
example by including heavier vector mesons, generalized VMD models do succeed
[62] in giving an excellent description of all nucleon form-factor data, as shown in
figure 2.8, but provide little predictive power.

Numerous attempts have been made to develop more prescriptive models, but
these either fail quantitatively with one, or more, of the form factors or only
manage to give an overall qualitative description. The VMD model has been
modified by imposing [63,64] the large-Q2 behaviour of perturbative QCD (see
below), by adding a meson-cloud contribution [65] and by using dispersion rela-
tions [59] to limit the number of parameters in generalized VMD models. Other
approaches include applying chiral perturbation theory [66] at low Q2, a chiral-
soliton model, in which the nucleon becomes a Skyrmion with spatial extension,
plus isoscalar and isovector meson exchange [67] and an effective theory based on an
SU(3) Nambu–Jona–Lasinio Lagrangian [68] that incorporates spontaneous chiral
symmetry breaking and is comparable to the inclusion of vector mesons in the
Skyrme model but involves fewer free parameters.

Finally, various forms of relativistic constituent-quark model have been applied
[70–74], again with varying degrees of success. The three most successful results
are shown in figure 2.8.
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Figure 2.8. Comparison of various calculations with a sample of available nucleon
form-factor data. For G p

E only polarization-transfer data are shown. Note that
not all available data are presented, especially for Gn

E and Gn
M . The calculations

shown are from [59,62,65,67–69]. Where applicable, the calculations have been
normalized to the calculated values of μp,n .

At large Q2, quark-dimensional scaling arguments [75] and perturbative QCD [76]
can be applied. The photon couples to a single quark and each gluon exchange nec-
essary to share the momentum among the quarks contributes a factor proportional
to Q−2, thereby directly obtaining F1 ∝ 1/Q4, F2 ∝ 1/Q6 and F2/F1 ∝ 1/Q2.
The polarization-transfer data do not follow this asymptotic form-factor scaling
behaviour. In the asymptotically free limit of QCD, hadron helicity is conserved.
However, if a quark orbital angular momentum component is introduced [77] into
the wave function of the proton, giving non-zero quark transverse momentum, then
hadron helicity conservation is broken. This approach predicts a 1/Q behaviour
for the ratio of the Dirac and Pauli form factors at intermediate values of Q2, in
excellent agreement with the polarization-transfer data for Q2 ≥ 3 GeV2. It has
been pointed out [65] that this 1/Q behaviour is accidental and only valid in an
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Figure 2.9. The ratio (Q2 F2/F1)/ln2(Q2/�2) as a function of Q2 for the proton
data (polarization-transfer only) and neutron data, with the calculations of [65,67,
70,73]. A value of 300 MeV has been used for � in both figures.

intermediate Q2 region, but a generalization [78] of this issue concludes that the Q2

behaviour of the polarization-transfer data signals substantial quark orbital angular
momentum in the proton. Belitsky et al [79] and Brodsky et al [80] have revis-
ited the onset of the predicted perturbative QCD behaviour. The former derive the
following large Q2 behaviour:

F2

F1
∝ ln2 Q2/�2

Q2
, (2.20)

where � is a soft scale related to the size of the nucleon. Even though the
polarization-transfer data follow this behaviour (see figure 2.9), this could very
well be precocious [79], since it is not clear at what Q2 one really reaches the
perturbative QCD domain. Brodsky et al [80] argue that a non-zero orbital angular
momentum wave function contributes to both F1 and F2 and thus, in the asymptotic
limit, Q2 F2/F1 should still become constant.

It has been realized that the nucleon form factors can be interpreted as the Fourier
transforms of charge and current (or quark) density distributions in the plane trans-
verse to the photon–nucleon axis. This is similar to the Feynman parton distribution,
which can be interpreted in a frame of reference in which the nucleon travels with
the speed of light. This is reflected in the nucleon form factors being moments of
generalized parton distributions (GPDs, see chapter 9) and so providing a constraint
on these distributions.
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All the models that have been described are effective to some degree and highlight
features of QCD. In the end, only lattice gauge theory can provide truly ab initio
calculations, but accurate lattice QCD results are still several years away. As an
example, calculations of the nucleon form factors by the QCDSF collaboration [81]
are still limited to the quenched approximation, in which sea-quark contributions
are neglected, a box size of 1.6 fm and a pion mass of 650 MeV are taken. Ashley
et al [69] have extrapolated the results of these calculations to the chiral limit
using chiral coefficients appropriate to full QCD. The agreement with the data
is poor, a clear indication of the technology developments required before lattice
QCD calculations can provide an accurate description of experimental form-factor
data.

2.4 Time-like nucleon form factors

Although a great deal of effort has been put into elucidating the electromagnetic
nucleon form factors in the space-like region, much less is known about the time-like
form factors. In the time-like region, measurements have been made at electron–
positron storage rings and, for the proton, by studying the inverse reaction of antipro-
ton annihilation to e+e− on a hydrogen target.

The time-like and space-like form factors are connected by analytic continuation
in the complex q2 plane and a comprehensive model of nucleon structure should
simultaneously describe the proton and neutron form factors in both regions. Hence,
time-like form factors can be used to test unified descriptions of nucleon structure.

Unfortunately, data on time-like form factors are scarce, and measurements that
separate the electric and magnetic form factors are only indirectly made in limited
regions of Q2 for the proton and not at all for the neutron. This is because the impact
of the electric form factor on the cross section in the time-like region is kinematically
reduced by a factor m2

N/Q2, as in the space-like region. This explains the lack of
data for G E (Q2). For the proton, Bardin et al [82] provided cross sections for
p p̄ → e+e− at five different beam energies. Although the quality of the data does
not allow for a proper separation of the proton electric and magnetic form factors,
their ratio at Q2 ∼ 4 GeV2 appears unity within the uncertainties.

Estimates of the proton magnetic form factor have mainly been obtained by assum-
ing form-factor scaling, G E = G M , for which there is little justification except
at the N N̄ threshold, where the relationship G M (4m2

N ) = G E (4m2
N ) must hold

(recall (2.7), noting that τ = 1 at Q2 = 4m2
N ). Results range from near threshold to

Q2 ≈ 15 GeV2 [82–85]. Neutron magnetic form factors have been measured, with
very limited statistics, by one single experiment at Frascati [86], from threshold up
to Q2 ≈ 6 GeV2.
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Figure 2.10. The magnetic form factors (divided by the dipole form factor G D) in
the time-like region. The proton (neutron) magnetic form factor is shown in the
top (bottom) panel and is here derived using the calculated electric form factors of
[92]. The data are compared to calculations of Iacchello and Wan [92], Hammer
et al [93] and Dubnicka et al [94].

Very near threshold, the proton magnetic form factor exhibits a strong Q2

dependence. A hint for a similar strong Q2 dependence is also seen in the case
of the neutron. Because the relationship G M (4m2

N ) = G E (4m2
N ) is only valid at

threshold, the strong Q2-dependence may well originate from the G E contribution
to the cross section.

The steep Q2-dependence of these form factors near threshold could be explained
[86] by a relatively narrow structure at the boundary of the unphysical region. A
similar anomaly has been reported in the total cross section σtot (e+e− → hadrons),
with an apparent dip in the total multihadronic cross section [87]. This dip and
the steep variation of the proton form factor near threshold may be fitted with a
narrow resonance, with a mass M ∼ 1.87 GeV and a width � of 10–20 MeV [86].
This narrow resonance would be consistent with the hypothesis of an N N̄ bound
state, predicted a long time ago [88–91]. However, this is not conclusive and N N̄
experiments do not appear to support it. See chapter 4 for a further discussion.
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The rather limited data for time-like magnetic form factors are shown in figure 2.10
(as mentioned above, essentially no data exist for the electric form factors). For this
compilation, the magnetic form factors have been extracted from the measurements
by Iachello and Wan [92] using their calculated electric form factors (these cal-
culations aim to simultaneously describe proton and neutron, in both space- and
time-like regions, in one comprehensive model based on a VMD framework). Clear
deviations from the dipole form factor G D can be seen in the time-like region, from
threshold up to 6 GeV2. This is in sharp contrast to the space-like form factors that
are reasonably well described by the dipole form.

Iachello and Wan [92], Hammer et al [93], and Dubnicka et al [94] have extended
their VMD calculations through analytic continuation from the space-like to the
time-like domain. The model of Iachello and Wan appears to provide a consistent
description of the magnetic form factors, after adding a very narrow subthreshold
isoscalar resonance at MX = 1.870 GeV2 with negligible width. This explains the
strong Q2-dependence of the calculation in the threshold region, Q2 > 4m2

N , and
follows the suggestion of [86].

Clearly, extensions of theoretical form-factor calculations to the time-like region
are highly desirable, in combination with an extension of the present measurements
to separate electric and magnetic form factors. The latter may be possible with high-
luminosity e+e− colliders at Beijing and Frascati and the use of initial-state radiation
at BELLE and BABAR. These would provide a great opportunity to unravel the
structure of the nucleon with far greater detail.

2.5 The pion form factor

The pion occupies an important place in the study of the quark–gluon structure of
hadrons and has been the subject of many calculations [95–104]. Due to its relatively
simple qq̄ valence structure it is expected that a perturbative QCD approach can
be applied at lower energies for the pion than for the nucleon, with estimates [105]
suggesting that perturbative QCD contributions start to dominate the pion form
factor at Q2 ≥ 5 GeV2. In addition, the asymptotic normalization of the pion wave
function, in contrast to that of the nucleon, is known from pion decay. Within
perturbative QCD one can derive [106]

lim
Q2→∞

Fπ (Q2) = 8παs f 2
π

Q2
, (2.21)

where fπ is the pion decay constant.

The charge form factor of the pion, Fπ (Q2), is an essential element of the structure
of the pion. Its behaviour at very low values of Q2 has been determined up to
Q2 = 0.28 GeV2 from scattering high-energy pions off atomic electrons [107].
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Figure 2.11. Schematic diagram representing quasielastic electron scattering off a
pion in the proton.

Such data may be used to extract the charge radius of the pion, which leads to a
root-mean-squares radius of 0.663 ± 0.006 fm. For the determination of the pion
form factor at higher values of Q2 one has to resort to high-energy electroproduction
of pions on a nucleon, that is employ the p(e, e′π+)n reaction. At sufficiently
small momentum transfer t to the nucleon, the pion-exchange contribution can be
determined. This may be considered as quasielastic scattering of the electron from
a virtual pion in the proton, and gives access to Fπ (see figure 2.11). The cross
section for this process can be written as

d3σ

d E ′d�e′d�π

= �V
d2σ

dtdφ
, (2.22)

where �V is the virtual-photon flux factor, φ is the azimuthal angle of the outgoing
pion with respect to the electron scattering plane and t is the Mandelstam variable
t = (pπ − q)2. The two-fold differential cross section can be written as

2π
d2σ

dtdφ
= ε

dσL

dt
+ dσT

dt
+

√
2ε(ε + 1)

dσLT

dt
cos φ

+ ε
dσT T

dt
cos 2φ, (2.23)

where ε is the virtual-photon polarization parameter. The cross sections σX ≡
dσX/dt depend on W , Q2 and t . In the pole approximation to pion exchange, the
longitudinal cross section σL is proportional to the square of the pion form factor:

σL ∝ −t Q2(
t − m2

π

)2 F2
π . (2.24)

The φ acceptance of the experiments should be large enough for the interference
terms σLT and σT T to be determined. Then, by taking data at two energies at
every Q2, σL can be separated from σT by means of a longitudinal/transverse (LT)
separation.

The pion form factor was studied in the 1970s for Q2 between 0.4 and 9.8 GeV2 at
CEA/Cornell [108] and at Q2 = 0.7 GeV2 at DESY [109]. In the DESY experiment
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Figure 2.12. Separated cross sections σL and σT (full and open symbols, respec-
tively) compared to the Regge model (full curve for L, dashed curve for T) [110].
The Q2 values are in units of GeV2.

an LT separation was performed by taking data at two values of the electron energy.
In the experiments done at CEA/Cornell, however, this was done in a few cases only,
and even then the resulting uncertainties in σL were so large that the LT-separated
data were not used. Instead (2.24) was used to determine the pion form factor
from σL , which was estimated by subtracting σT , assumed to be proportional to
the virtual-photon cross section, from the measured (differential) cross section. No
uncertainty in σT was included in this subtraction. Hence values of Fπ above Q2 =
0.7 GeV2 published in the 1970s were not based on LT-separated cross sections.

Additional LT-separated data for the pion form factor have been published for Q2

up to 1.6 GeV2 [110]. Using the High Momentum Spectrometer and the Short
Orbit Spectrometer at JLab, and electron energies between 2.4 and 4.0 GeV, data
for the reaction p(e, e′π+)n were taken for central values of Q2 of 0.6, 0.75, 1.0
and 1.6 GeV2, at a central value of the invariant mass W of 1.95 GeV. Because of
the excellent properties of the electron beam and experimental setup, LT-separated
cross sections could be determined with high accuracy. The extracted cross sections
are displayed in figure 2.12. The error bars represent the combined statistical and
systematic uncertainties. As a result of the LT separation technique the total error
bars on σL are enlarged considerably, typically to about 10%.

The pion-pole contribution sits on a large background from other exchanges. An
attempt to model the γ ∗ p → π+n reaction was made by Vanderhaeghen et al [111]
in terms of Regge theory (see chapter 5) with the pion and ρ-meson trajectories.
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Figure 2.13. The JLab and reanalysed DESY values for Fπ in comparison to the
results of several calculations [96,98,99,100,104]. The model uncertainty is repre-
sented by the grey area. The (model-independent) pion-atomic electron scattering
data from [107] are also shown. A monopole behaviour of the form factor obeying
the measured charge radius is almost identical to the Maris and Tandy curve.

A comparison with the separated σL and σT data at W = 1.95 GeV is given in
figure 2.12 from which it can be seen that the description of the σL data is only
qualitative and the σT data are underestimated.

To determine Fπ , the experimental data of [110] were compared to the results of
a Regge theory fit [111], although the centre-of-mass energy is rather low for this
approach. The pion form factor and the πρ transition form factor were treated as free
parameters, together with t-independent backgrounds at each Q2. The values of Fπ ,
extracted this way, are shown in figure 2.13. For consistency Fπ was determined in
[110] in the same way from the published DESY cross sections [109] at Q2 = 0.7
GeV2 and W = 2.19 GeV. The resulting best value for Fπ , also shown in figure 2.13,
is larger by 12% than the original result, which was obtained using the Born-term
model of Gutbrod and Kramer [112].

The application of pion-pole dominance for σL at small |t |, as prescribed by (2.24),
was checked by Volmer et al [110] by studying the reactions d(e, e′π+)nn and
d(e, e′π−)pp, which gave within the uncertainties a ratio of unity for the longitu-
dinal cross sections.

The data for Fπ in the region of Q2 up to 1.6 GeV2, as shown in figure 2.13,
globally follow a monopole form obeying the pion charge radius [107]. This can
be understood phenomenologically in a VMD picture, with the pion radius well
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described by
√

6/Mρ ∼ 0.63 fm. In this picture, the pion form factor is fitted well
by a simple monopole form dominated by the ρ(770).

The Fπ data are also compared to a sample of quark-based calculations. The model
by Maris and Tandy [104] provides a good description of the data. It is based on the
Bethe–Salpeter equation with dressed quark and gluon propagators, and includes
parameters that were determined without the use of these Fπ data. The data are also
well described by the QCD sum rule plus the hard-scattering estimate of [95,96].
Other models [100] were fitted to the older Fπ data and therefore underestimate the
present data. A perturbative QCD calculation [102], extending the basic dependence
given by (2.21) to next-to-leading order, and including transverse momenta of the
quarks, Sudakov factors, and a way to regularize the infrared divergence, renders an
approximately constant value of Q2 Fπ ≈ 0.18 over the whole range of Q2 shown.
Other perturbative QCD calculations yield similar results, but with a lower value of
Q2 Fπ [99]. Hence it is clear that in the region below Q2 ≈ 2 GeV2, where accurate
data now exist, soft contributions are still larger than perturbative QCD ones. It
is of great interest to extend the data to higher values of Q2 ≈ 5 GeV2, where as
mentioned estimates [105] suggest that perturbative QCD contributions may start
to dominate the pion form factor.

The success of the single-pole approximation to the pion form factor with an effec-
tive mass mef f ≈ mρ

Fπ (q2) = 1

1 − q2/m2
e f f

(2.25)

for space-like momenta q2 can be understood through a simple dispersion-relation
calculation [113]. The simplest version, a superconvergent dispersion relation, has
the form

Fπ (t) =
∫ ∞

t0
dt ′ ImFπ (t ′)

t ′ − t
, (2.26)

provided that Fπ (t) → 0 sufficiently rapidly as t → ∞ to ensure the convergence
of the integral in (2.26). Here t0 = 4m2

π is the physical π–π threshold.

At large space-like momenta, perturbative QCD gives the rigorous prediction [114]
for the asymptotic behaviour of the form factor

Fπ (q2) ∼ 8π f 2
π αs(−q2)

−q2
, (2.27)

where αs is the QCD coupling parameter and fπ = 130.7 ± 0.4 MeV is the pion
decay constant. In leading order, (2.27) becomes

Fπ (q2) ∼ 32π2 f 2
π

−β0q2 log(|q2/�2|) , (2.28)
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Figure 2.14. The squared modulus of the pion form factor.

where β0 = 11 − 2n f /3 is the usual β-function of QCD. To satisfy (2.28), at large
positive q2 the absorptive part of the pion form factor should have the asymptotic
behaviour

ImFπ (t) → 32π3 f 2
π

q2β0 log2(q2/�2)
. (2.29)

This is more than sufficient to ensure the convergence of the integral in (2.26)
and indeed to ensure that the absorptive part of the pion form factor satisfies the
superconvergence condition ∫ ∞

s0

dt ′ ImFπ (t ′) = 0. (2.30)

The square of the modulus of the pion form factor in the time-like region is related
to the cross section for e+e− → π+π− by

σe+e−→ππ = πα2

3q2

(
1 − 4m2

π

q2

) 3
2 |Fπ (q2)|2. (2.31)

However, what is required for the dispersion integral (2.26) is ImFπ (q2), not
|Fπ (q2)|2 and this requires a model-dependent fit. This is discussed in chapter
4 and although there are uncertainties at π–π masses above 1 GeV the contribution
from this region is small as the integral is dominated by the ρ(770). This can be
seen in figure 2.14, which shows the squared modulus of the space-like and time-
like pion form factor. As the P-wave ππ phase shift is known and the amplitude is
elastic until the πω threshold, the phase of Fπ (q2) is given by Watson’s theorem
[115] (see chapter 3) over this mass range, so there is no model dependence in the
dominant mass region.
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Figure 2.15. |q2|Fπ (q2) in the space-like region from the dispersion-relation cal-
culation. The curves are defined in the text.

To obtain ImFπ for the dispersion integral (2.26), a fit is made to the e+e− → ππ

cross section assuming that the low-momentum region is given by a coherent sum
over a few vector mesons and that the amplitude matches the QCD prediction
asymptotically [113]. Evaluating the dispersion integral is then straightforward.
Because of the dominance of the contribution from the ρ(770) to the integral, the
uncertainty in the resulting space-like form factor is small, well within the errors
of the present data. The result [113] for the space-like form factor is given in
figure 2.15, the two curves showing the range of model dependence. In the single-
pole approximation, the upper curve corresponds to m2

e f f ≈ 0.525 GeV2 and the
lower curve to m2

e f f ≈ 0.505 GeV2.

2.6 The axial form factor

In electroweak interactions we also have to consider matrix elements of the axial-
vector current operator as well as the vector current. For weak charged currents,
the most general expression for the axial current of the nucleon is

Aμ = −ie
[

G A(Q2)γ μγ5 + G P (Q2)
1

2m N
qμγ5

]
, (2.32)

with G A the axial and G P the induced pseudoscalar form factor, respectively. In
principle, in the most general form also a scalar form factor and a tensor form factor
are present, which disappear in the absence of ‘second class currents’ [116]. Such
second class currents would not be invariant under G-parity, and are experimentally
excluded to a high precision.
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Figure 2.16. Left: cross sections obtained from neutrino and antineutrino scattering
[118]. The solid lines are from the best dipole fit to the combined data (m A = 1.06
GeV). Right: experimental data for the normalized axial form factor extracted from
pion electroproduction experiments in the threshold region. Note that these G A
results were extracted using various theoretical models. The dashed curve shows
a dipole fit with an arbitrary axial mass m A = 1.1 GeV to guide the eye.

Consider first the axial form factor. For low and moderate momentum transfer,
Q2 < 1 GeV2, where the bulk of the experimental data exists, the axial form factor
can be represented by a dipole fit

G A(Q2) = gA(
1 + Q2/m2

A

)2 (2.33)

in terms of one adjustable parameter, m A, the axial mass, and the axial-vector
coupling constant gA = 1.2670 ± 0.035 [117]. This axial-vector coupling constant
is measured in (polarized) neutron β decay. The axial root-mean-square radius is
given by

〈
r2

A

〉 = − 6

gA

dG A(Q2)

d Q2

∣∣∣∣
Q2=0

= 12

m2
A

(2.34)

in analogy with the corresponding relations (2.18) for the electromagnetic root-
mean-square radii. Two methods have been used to determine the axial form fac-
tor of the nucleon. The most direct method is to use (quasi)elastic (anti)neutrino
scattering off nucleons, typically νμ + n → μ− + p [118]. Data are shown in
figure 2.16(left). With new and precise results for the nucleon electromagnetic
form factors now available, and the latest value for the axial-vector coupling con-
stant, a new global fit to the neutrino world data has been carried out [119]. The
improved fit gives m A = 1.001 ± 0.020 GeV. This corresponds to an axial radius
of 〈r2

A〉1/2 = (0.683 ± 0.014) fm.
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The second method to determine the axial form factor is based on the analysis
of charged pion electroproduction data off protons slightly above pion production
threshold. First, the transverse component (see also (2.23)) of the near-threshold
electroproduction cross section is determined. Then a multipole expansion is used
to determine the electric-dipole transition amplitude E (−)

0+ . The axial form factor
is then linked to this transition amplitude through the low-energy theorem of
Nambu, Lurié and Shrauner [120], valid for massless pions. Model-dependent
corrections to allow for finite pion mass were subsequently developed. The resulting
axial-vector form factor is shown in figure 2.16(right). In a review, Bernard et al
[121] used chiral perturbation theory to compute a finite mass correction to the axial
mass extraction that is appreciable, correcting the value extracted from a Mainz
Microtron experiment, m A = 1.068 ± 0.015 GeV [122], to m A = 1.013 ± 0.015
GeV. This brings the value in agreement with that extracted from the neutrino scat-
tering method. Therefore, it appears m A, and thus the axial radius, is reasonably
well determined.

In contrast, the induced pseudoscalar form factor G P (Q2) is essentially unknown.
Pion-pole dominance arguments relate the induced pseudoscalar form factor to
the axial form factor. Under the assumptions of axial-current conservation and
massless pions (partially-conserved axial current approximation or PCAC) one can
write [123]:

G P (Q2) = 2m N
G A(Q2)

m2
π − Q2

. (2.35)

Hence, the pseudoscalar coupling constant gP equals 2m N gA/m2
π .

The most direct measurement of G P is from muon capture on the proton, μ− +
p → νμ + n. Such a measurement is constrained to Q2 = 0.88m2

μ, the momentum
transfer for muon capture by the proton at rest. The results of such measurements
often disagree, with atomic physics corrections complicating matters at such low
Q2 [121]. The weighted world average for gP from such measurements amounts
to 8.79 ± 1.92, in good agreement with expectations from PCAC, although within
large uncertainties.

In principle, G P (Q2) can also be measured from the longitudinal cross section
determined in pion electroproduction. The leading dependence due to the pion pole
(and its chiral corrections) is unique and can be tested. However, such experiments
are challenging as the pion momentum has to be small in the centre-of-mass system
to justify the chiral corrections. The only data published at larger Q2 are from a
Saclay experiment [124], where only the lowest pion centre-of-mass momentum
could be used to extract G P reliably.

The existing world data, both the weighted world average from the muon cap-
ture experiments and the determination from pion electroproduction, are shown in



66 R Ent

Figure 2.17. The ‘world data’ for the induced pseudoscalar form factor G P (Q2).
The pion electroproduction data are from [124]. The datum at Q2 = 0.88m2

μ rep-
resents the world average of muon capture. The solid line indicates an expectation
from pion-pole dominance.

figure 2.17. A curve indicating the pion-pole prediction has been added, which illus-
trates well the usual interpretation of G P in terms of a nucleon pion-cloud picture. It
is clear that more precise data, from both processes, would be very welcome – there
is obvious room for improvement in data constraining the G P form factor. More
precise data could, for example, discriminate between the pion-pole prediction and
corrections within chiral perturbation theory [121].

2.7 Nucleon strange form factors

The electromagnetic vector and the axial nucleon currents, as defined in (2.1) and
(2.32), can be related to the currents of the elementary quarks in the nucleon,
assuming that the quarks are point-like Dirac particles [125]. Hence, the nucleon
form factors can also be expressed as linear combinations of the currents of the
different flavours of quarks. This allows a relatively clean determination of the
contribution of u, d and s quarks to the vector currents of the nucleon by means of
comparison of neutral weak and electromagnetic elastic scattering measurements
off the nucleons, as shown by Kaplan and Manohar in 1988 [126], assuming that
the proton and neutron obey charge symmetry [127].

The lowest-order Feynman diagrams contributing to electron–nucleon scattering
are given in figure 2.18. The Z -boson has both vector and axial-vector coupling
that gives rise to parity violation in electron scattering.
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Figure 2.18. Lowest-order Feynman diagrams contributing to electron–nucleon
scattering. The electroweak currents of the nucleon are indicated by solid blobs.

For electroweak electron–neutron scattering the electromagnetic charges, eγ

f , of the
quarks are related to the neutral weak vector charges, eZ

f , by

eZ
f = 2T3, f − 4eγ

f sin2(θW ), (2.36)

where f denotes the quark flavour (u, d, or s) and T3, f is the weak isospin. Factoring
out the quark charges, the electromagnetic and neutral weak vector form factors
can be written as:

Gγ

E,M = 2
3 Gu

E,M − 1
3

(
Gd

E,M + Gs
E,M

)
,

G Z
E,M = (

1 − 8
3 sin2 θW

)
Gu

E,M + (−1 + 4
3 sin2 θW

) (
Gd

E,M + Gs
E,M

)
,

(2.37)

with θW the weak mixing angle [117]. Similarly, the neutral weak axial currents of
the quarks can be identified in the overall axial current as

G A = Gu
A − (

Gd
A + Gs

A

)
. (2.38)

The key point here is that the electromagnetic and neutral weak vector form fac-
tors (currents) represent different linear combinations of the same matrix elements
of contributions from the different flavours of quarks, in the end allowing for a
decomposition. Because they have charges of the opposite sign, quarks and anti-
quarks contribute to the matrix elements G f

E,M,A with opposite signs. As a result,
if the spatial distributions of s and s̄ quarks were the same, their charges would
cancel everywhere and Gs

E would vanish.

It is straightforward to solve for the contributions of the three flavours in the case
where one more observable can be found that depends on a different linear combi-
nation of these matrix elements. This is what the parity-violating electron–nucleon
scattering programme hinges on [125,126].

Because the weak interaction violates parity (that is the weak current contains both
vector and axial-vector contributions), the interference of the electromagnetic and
weak currents violates parity. Observation of this small effect requires comparison
of an experiment and its mirror image. In parity-violating electron scattering, the
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mirror measurement is made by reversing the beam helicity. The asymmetry in
cross sections formed with respect to this beam helicity is

APV ≡ σ+ − σ−
σ+ + σ−

, (2.39)

with its overall scale set by the ratio of the neutral weak and electromagnetic
propagators, that is

MZ

Mγ
∼ Q2

M2
Z

(2.40)

or about 10−4 at Q2 = 1 GeV2.

Of course, a simple three-quark picture of the nucleon yields zero for strange matrix
elements. However, this is clearly too simplistic. A non-zero nucleon’s strangeness
content was historically viewed as a meson-cloud effect – that is the feature that a
(‘dressed’) nucleon can, for a short time consistent with the uncertainty principle,
transform into a (‘bare’) nucleon plus a multi-pion state – within which description
one can intuitively understand the origin of the nucleon’s charge structure. In the
case of the strangeness matrix elements, of course, it is not the pion cloud which is
responsible for the effect but rather the transformation into states containing strange
quarks – K�, K�, ηN – which yields a non-zero effect. A more contemporary
way to describe the origin of non-zero strangeness current matrix elements is in
terms of the strange quark sea, which can be represented by the fragmentation of
gluons into ss̄ pairs.

The parity-violating interaction of electrons with nucleons also involves an axial-
vector coupling to the nucleon, Ge

A. This axial-vector coupling can slightly differ
from the corresponding quantity in neutrino scattering, G A, as described in sec-
tion 2.6. Explicitly, it contains additional contributions from the strange-quark helic-
ity content of the nucleon, �s, the anapole form factor, that is an additional term to
(2.32), including the possibility that parity is not strictly conserved, and radiative
corrections. The axial form factor Ge

A, or at least its isovector piece Ge(T =1)
A , can be

determined from the parity-violating asymmetry in quasielastic electron scattering
from deuterium, where the strange-quark effects in the neutron and proton tend to
cancel. Hence, this is an experimentally observable quantity that can be used to
correct strange form-factor measurements.

The SAMPLE experiment at the Bates Linear Accelerator Center was the first to
study strange form factors and the anapole contribution. The elastic asymmetry
from the proton was measured, in addition to the quasielastic asymmetry from the
deuteron, for backward angles at Q2 = 0.1 GeV2. In [128], analysis of the SAMPLE
results is presented which yields a value of the strange quark contribution to the
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Figure 2.19. Uncertainty bands of Gs
M vs. Ge(T =1)

A at Q2 = 0.1 GeV2 resulting from
the two 200 MeV data sets of the SAMPLE experiment [128]. Also shown is the
uncertainty in the theoretical expectation (vertical band) for Ge(T =1)

A as computed
by [129] extrapolated to the same Q2. The smaller ellipse corresponds to the 1σ
overlap of the hydrogen data and the theoretical prediction, the larger ellipse to
the 1σ overlap of the two data sets.

magnetic form factor

Gs
M (Q2 = 0.1) = +0.37 ± 0.20 ± 0.26 ± 0.07, (2.41)

where the uncertainties are due to statistics, systematics, and radiative corrections,
respectively. The value for Ge

A is consistent with the theoretical expectation [129],
as illustrated in figure 2.19. A similar consistency in Ge(T =1)

A is found at Q2 = 0.03
GeV2 [130].

For forward angle experiments in particular, it is convenient to express the deviation
due to strange quark contributions in terms of

Gs
E + ηGs

M ∼ (APV − AN V S), (2.42)

where η = τG p
M/εG p

E and AN V S is the no-vector-strange (NVS) asymmetry
hypothesis (Gs

E = Gs
M = 0).

The HAPPEX experiments utilized the two spectrometers in Hall A at JLab to
measure parity violation in elastic scattering at very forward angles. In the original
HAPPEX measurement at Q2 = 0.477 GeV2 the result was close to that expected
with the NVS hypothesis [131]. The A4 experiment at the Mainz Microtron used
an array of PbF2 detectors for their forward angle measurements, at Q2 = 0.23
GeV2 [132] and subsequently at Q2 = 0.108 GeV2 [133]. While no measurement
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Figure 2.20. Results of four measurements of parity-violating asymmetries in
elastic electron–proton scattering at Q2 ∼ 0.1 GeV2. Shaded bands represent the
1-sigma combined statistical and systematic uncertainty. Also shown is the 95%
confidence level ellipse from all four measurements. The black squares and narrow
vertical band represent various theoretical calculations (with the labels [a]–[g]
corresponding to [136,93,137–141], respectively).

independently indicates a significant strange form-factor contribution, the A4 mea-
surement at Q2 = 0.108 GeV2 is 2σ away from the theoretical expectation neglect-
ing strange quarks. HAPPEX measurements have been performed at Q2 = 0.1
GeV2 on both hydrogen [134] and 4He [135] targets, and a summary of the results
at Q2 = 0.1 GeV2 is presented in figure 2.20. Note that the elastic scattering from the
spin-0 4He nucleus does not allow for magnetic or axial-vector current contributions.

Although each independent measurement does not show a statistically significant
non-zero Gs

E + ηGs
M , the data at Q2 = 0.1 GeV2 do indeed suggest a positive

contribution consistent with Gs
M ∼ + 0.5 and a small, possibly negative, Gs

E at
Q2 = 0.1 GeV2. At this Q2, improvements by a factor of 2–3 in precision are
expected from a future HAPPEX experiment. Such precision has the potential to
dramatically impact our understanding of the role of strange quarks in the nucleon.
The role of strange quarks in parity-violating elastic electron–proton scattering has
been mapped out over a large range in Q2, 0.12 ≤ Q2 ≤ 1.0 GeV2, by the G0
experiment at JLab [142]. This experiment used a dedicated toroidal spectrom-
eter to detect the recoiling protons following elastic scattering. The results indi-
cate non-zero, Q2-dependent, strange-quark contributions, as shown in figure 2.21,
which also includes the earlier HAPPEX and A4 measurements. The agreement
between the experiments is excellent. The results show a systematic and intriguing
Q2-dependence. The G0 measurements at Q2 ∼ 0.12 GeV2 are consistent with
the hypothesis mentioned earlier that Gs

M ∼ + 0.5 at Q2 = 0.1 GeV2. Because η
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Figure 2.21. The combination Gs
E + ηGs

M for the G0 measurements. The grey
bands indicate systematic uncertainties (to be added in quadrature); the lines
indicate the sensitivity to different electromagnetic form-factor parametrizations
[58,57,38]. For comparison, the HAPPEX and A4 results [131–134] are also
shown.

increases linearly throughout, the apparent decline of the data in the intermediate
region up to Q2 ∼ 0.3 may hint at a negative value for Gs

E in this range. Lastly,
there is a trend to positive values of Gs

E + ηGs
M at higher Q2. Backward angle

measurements planned by G0 at JLab and A4 at Mainz will provide precise sepa-
rations of Gs

E and Gs
M over a range of Q2 to address this issue.

The planned backward angle G0 experiments include measurements of the parity-
violating asymmetry in quasielastic scattering from deuterium, up to Q2 ∼ 0.8
GeV2. Hence, future parity-violating experiments will not only allow precise deter-
mination of Gs

E and Gs
M from the hydrogen data, but also the first experimental

information on (the isovector piece of) the axial form factor Ge(T =1)
A away from

the static limit [143]. In combination with neutrino scattering data, this should also
allow extraction of the axial strange form factor Gs

A [144].

2.8 Outlook and conclusions

Advances in polarized electron sources, polarized nucleon targets and nucleon
recoil polarimeters have enabled accurate measurements of the spin-dependent
elastic electron–nucleon cross section. New data on nucleon electromagnetic form
factors with unprecedented precision have (and will continue to) become available
in an ever increasing Q2-domain. The two magnetic form factors G p

M and Gn
M

approximately follow the simple dipole form factor G D, although a clear deviation
appears for G p

M for Q2 > 8 GeV2, increasing with Q2.
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The G p
E/G p

M ratio drops linearly with Q2, according to polarization-transfer
data, assuming that two-photon exchange effects are the cause for the apparent
discrepancy between polarization-transfer and Rosenbluth-method data. The neu-
tron electric form factor Gn

E is still reasonably well described by the Galster
parametrization. Plans exist to extend the accurate form-factor measurements of
G p

E , Gn
E , and Gn

M up to 5–10 GeV2.

The precise data set at low Q2 has been used to constrain the charge and magnetiza-
tion radii better. Also, global form factor fits point to features reminiscent of a pion
cloud. In the time-like region, on the other hand, only limited data are available.
Better data and extensions of form-factor calculations to the time-like region are
required.

The full nucleon form-factor data place increasingly tight constraints on models of
nucleon structure. So far, all available theories are at least to some extent effective,
although only a few adequately describe all four form factors. Only lattice gauge
theory will in the end provide truly ab initio calculations, but accurate lattice QCD
results for the form factors will not be available for some time. An excellent model
description of the present data on the pion form factor does already exist. Here,
it will be very interesting to extend the Q2 range of these measurements to shed
more light on the onset of the anticipated asymptotic scaling behaviour. Hadron
form factors can also be connected directly to the quark structure of matter using
the generalized parton distribution formalism, discussed in chapter 9.

When extended to electroweak lepton–nucleon scattering, knowledge can be gained
on the axial and pseudoscalar form factors, or, through a program of parity-violating
elastic electron–nucleon scattering experiments, on the strange quark contributions
to the nucleon form factors. Some outstanding discrepancies between neutrino
scattering and pion electroproduction methods have been solved, with the axial
mass m A now well established at 1.001 ± 0.020 GeV. Data on the pseudoscalar
form factor remain scarce.
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3

Electromagnetic excitations of nucleon resonances

V Burkert and T-S H Lee

It has long been recognized that the study of nucleon resonances (N ∗) is one of
the important steps in the development of a fundamental understanding of strong
interactions. While the existing data on the nucleon resonances are consistent with
the well-studied SU(6) ⊗ O(3) constituent-quark-model classification, many open
questions remain. On the fundamental level, there exists only very limited
understanding of the relationship between QCD [1], the fundamental theory of
strong interactions, and the constituent-quark model or alternative hadron models.
Experimentally, we still do not have sufficiently complete data that can be used
to uncover unambiguously the structure of the nucleon and its excited states. For
instance, precise and consistent data on the simplest nucleon form factors and the
nucleon–�(1232) resonance (N–�) transition form factors up to sufficiently high
momentum transfer are becoming available. Thus the study of N ∗ structure remains
an important task in hadron physics, despite its long history.

With the development since the 1990s of various facilities with electron and photon
beams, extensive data on electromagnetic production of mesons have now been
accumulated for the study of N ∗ physics. These facilities include JLab, LEGS at
Brookhaven National Laboratory and MIT-Bates in the USA; MAMI at Mainz and
ELSA at Bonn in Germany; GRAAL at Grenoble in France and LEPS at Spring-8 in
Japan. The details of these facilities are summarized in [2] and will not be included
here. The main purpose of this chapter is to review the theoretical models used in
analysing these data, and to highlight the results obtained.

3.1 Issues

It is useful first to review briefly the status of theoretical efforts in understanding
the structure of the nucleon and the N ∗ states. The most fundamental approach is
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to develop accurate numerical simulation of QCD on the lattice [3] (lattice QCD).
Significant progress has been made. Some basic properties of baryons, such as
masses of ground states and low-lying excited states, have been reproduced by
lattice QCD [4–6]. The first calculation of the electromagnetic transition form
factors from the ground state proton to the �(1232) within unquenched QCD has
been attempted [7]. However, reliable lattice QCD calculations for electromagnetic
meson-production reactions seem to be in the distant future, and models of hadron
structure and reactions will likely continue to play an important role and provide
theoretical guidance for experimenters.

The development of hadron models for the nucleon and nucleon resonances has
a long history. Since the 1970s, the constituent-quark model has been greatly
refined to account for residual quark–quark interactions due to one-gluon exchange
[8–10] and/or Goldstone boson exchange [11,12]. Efforts are underway to refor-
mulate the model within relativistic quantum mechanics [13–15]. Conceptually
completely different models have also been developed, such as bag models [16],
chiral bag models [17,18], algebraic models [19], soliton models [20], colour-
dielectric models [21], Skyrme models [22], and covariant models based on
Dyson–Schwinger equations [23]. With suitable phenomenological procedures,
most of these models are comparable in reproducing the low-lying N ∗ spectrum as
determined by the amplitude analyses of elastic π N scattering. However, they have
rather different predictions on the number and the ordering of the highly excited N ∗

states. They also differ significantly in predicting some dynamical quantities such
as the electromagnetic and mesonic N–N ∗ transition form factors. Clearly, accu-
rate experimental information for these N ∗ observables is needed to distinguish
these models. This information can be extracted from the data on electromagnetic
meson-production reactions. With the very intense experimental efforts in the past
few years, such data have now been accumulated with high precision at the various
facilities mentioned above. We are now in a very good position to make progress.

We next discuss how the new data can be used to address some of the long-standing
problems in the study of N ∗ physics. The first one is the so-called missing-resonance
problem. This problem originated from the observation that some of the N ∗ states
predicted by the constituent-quark model are not seen in the baryon spectrum that is
determined mainly from the amplitude analyses of π N elastic scattering. There are
two possible solutions to this problem. First, it is possible that the constituent-quark
model has the wrong effective degrees of freedom of QCD in describing the highly-
excited baryon states. Other models with fewer degrees of freedom, such as quark–
diquark models, or models based on alternative symmetry schemes [24], could be
more accurate in reproducing the baryon spectrum. The second possibility is that
these missing resonances do not couple strongly to the π N channel and can only
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be observed in other processes. Data from experiments measuring as many meson–
baryon channels as possible are needed to resolve the missing-resonance problem.

The second outstanding problem in the study of N ∗ physics is that the partial decay
widths of baryon resonances compiled and published periodically by the Particle
Data Group (PDG) have very large uncertainties in most cases [25]. For some
decay channels, such as ηN , K� and ωN , the large uncertainties are mainly due to
insufficient data. However, the discrepancies between the results from different
methods of amplitude analysis are also sources of uncertainties. This problem
can be resolved only with a sufficiently large database that allows much stronger
constraints on amplitude analyses, and a strong reduction in the model dependence
of the extracted N ∗ masses and partial decay widths. This requires that the data
must be precise and must cover very large kinematic regions in scattering angles,
energies, and momentum transfers. The data on polarization observables must also
be as extensive as possible.

These two experimental challenges are now being met. The modern accelerator
facilities are well equipped with sophisticated detectors for measuring not only the
dominant single-pion channel but also kaon, vector-meson, and two-pion channels.

The third long-standing problem is in the theoretical interpretation of the N ∗ param-
eters. Most of the model predictions on N ∗ → γ N helicity amplitudes are only in
qualitative agreement with the experimental results. In some cases they disagree
even in sign. One could attribute this to the large experimental uncertainties, as dis-
cussed above. However, the well-determined empirical values of the simplest and
most unambiguous �(1232) → γ N helicity amplitudes are about 40% larger than
the predictions from practically all of the hadron models. This raises the question
about how the hadron models, as well as the lattice QCD calculations, are related
to the N ∗ parameters extracted from empirical amplitude analyses. We need to
evaluate critically their relationships from the point of view of fundamental reac-
tion theory. The discrepancies in the �(1232) region must be understood before
meaningful comparisons between theoretical predictions and empirical values can
be made. Much progress has been achieved. The results, as will be detailed in
section 3.4.1, strongly indicate that it is necessary to apply an appropriate reaction
theory in making meaningful comparisons of the empirical values from amplitude
analyses and the predictions from hadron models and lattice QCD.

The above discussions clearly indicate that a close collaboration between experi-
mental and theoretical efforts is needed to make progress in the study of N ∗ physics.
A possible interplay between them is illustrated in figure 3.1. On the theoretical
side, we need to use lattice QCD calculations and/or hadron structure models to
predict properties of nucleon resonances, such as the N–N ∗ transition form factors
indicated in figure 3.1. On the experimental side, sufficiently extensive and precise
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Figure 3.1. Scheme for N ∗ study.

data of meson-production reactions must be accumulated. We then must develop
reaction models for interpreting the data in terms of hadron structure calculations.
The development of empirical amplitude analyses of the data is an important part
of this task.

In this chapter, we will focus on the lower parts of figure 3.1. The N ∗ structure
calculations can be found in textbooks, for example [26], or review articles [27].
In section 3.2, the general formulation for calculating cross sections for electro-
magnetic meson production is presented. Section 3.3 is devoted to reviewing and
assessing most of the models being used to analyse the data. Results from the anal-
yses of electromagnetic meson-production data are highlighted in section 3.4. In
section 3.5 we discuss future directions.

3.2 General formalism

Most of the experiments for N ∗ study involve reactions with a single meson and
baryon in the final state. We therefore only present the formulation for analysing
the data for such reactions. The generalization of the formulation to the cases that
the final states are three-body states, such as γ ∗N → ππ N , is straightforward.

The N (e, e′M)B reaction is illustrated in figure 3.2. The final meson–baryon
(M–B) states can be composed of two-body states, such as π N , ηN , K�, ωN
and φN , or of quasi-two-body states, such as π�, σ N and ρN . Within relativistic
quantum field theory, the Hamiltonian density for describing this process can be
written concisely as

Hem(x) = eAμ(x)[ jμ(x) + Jμ(x)] , (3.1)

where Aμ is the photon field,
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Figure 3.2. Kinematics of the meson electroproduction reaction. M is a meson, B
represents a nucleon or any baryon (�, �, . . . ), φM is the angle between the e–e′
plane and the M–B plane and θM is the angle between the outgoing meson and
the virtual photon.

jμ(x) = ψ̄e(x)γ μψe(x) (3.2)

is the lepton current, and the electromagnetic interactions involving hadrons are
induced by the hadron current Jμ.

With the convention of Bjorken and Drell [28], the Hamiltonian density (3.1) leads to〈
kp′

∣∣∣∣
∫

dx Aμ(x)Jμ(x)

∣∣∣∣ qp
〉

= (2π )4δ4(p + q − k − p′)

×〈kp′ | εμ(q)Jμ(0) | qp〉 , (3.3)

where q , p, k, and p′ are the four-momenta for the initial photon, initial nucleon,
final meson and final nucleon respectively and εμ(q) is the photon polarization
vector. It is convenient to write

〈kp′ | εμ(q)Jμ(0) | qp〉 = 1

(2π )6

√
m N

EN (p′)
1√

2Eπ (k)
εμ(q)Jμ(k, p′; q, p)

×
√

m N

EN (p)

1√
2ω

, (3.4)

where Ea(p) = √
p2 + m2

a , with ma denoting the mass of particle a, and ω = q0 is
the photon energy. Throughout this chapter, we will suppress the spin and isospin
indices unless they are needed for detailed explanations. The formula for calculating
electromagnetic meson-production cross sections can be expressed in terms of
Jμ(k, p′; q, p).

For evaluating electroproduction cross sections, it is common and convenient to
choose a coordinate system in which the virtual photon is in the quantization
z-direction and the angle between the e–e′ plane and M–B plane is φM , as illustrated
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in figure 3.2. The differential cross section of the N (e, e′M)B reaction can be
written as [29]

dσh

d E ′
ed�′

ed�∗
M

= �
dσh

d�∗
M

with

dσh

d�∗
M

=
[dσunpol

d�∗
M

+ h
√

2ε(1 − ε)
dσLT ′

d�∗
M

sin φM

]
, (3.5)

where h is the helicity of the incoming electron, and σLT ′ is the cross section due to
the interference between the longitudinal and transverse components of the current
matrix elements. An explicit expression for the unpolarized cross section σunpol will
be given later. All cross sections with scattering angle �∗ in (3.5) are defined in the
centre-of-mass frame of the final M–B system. The kinematic factors associated
with the incoming and outgoing electrons are only contained in the following two
variables:

ε =
{

1 + 2 | q |2
Q2

tan2( 1
2θe)

}−1
,

� = αK H

2π2 Q2

E ′
e

Ee

1

1 − ε
, (3.6)

where K H = ω − Q2/2m N is the virtual photon flux, α = e2/(4π ) = 1/137 is the
electromagnetic coupling strength, qμ = (ω, q) is the four-momentum of the photon
in the laboratory frame, and Q2 = −q2 =| q |2 −ω2. The incident and outgoing
electron energies Ee and E ′

e are related to qμ by

ω = Ee − E ′
e , (3.7)

Q2 = 4Ee E ′
e sin2( 1

2θe) , (3.8)

where θe is the angle between the incident and outgoing electrons.

We next present formulae for calculating the centre-of-mass differential cross sec-
tions on the right-hand side of (3.5). The unpolarized cross section is given by

dσunpol

d�∗
M

= dσT

d�∗
M

+ ε
dσL

d�∗
M

+ ε
dσT T

d�∗
M

cos 2φM +
√

2ε(1 + ε)
dσLT

d�∗
M

cos φM ,

(3.9)

where σT , σL , σT T , and σLT are called the transverse, longitudinal, polarization,
and interference cross sections. These four cross sections and σLT ′ in (3.5) can be
written as

dσα

d�∗
M

= | kc |
qγ

c
Mα(kc, p′

c; qc, pc) . (3.10)
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Here qγ
c = (W 2 − m2

N )/(2m N ) = K H is the magnitude of the effective pho-
ton centre-of-mass momentum, W = √

s is the centre-of-mass energy, given by
W 2 = (p + q)2 = (k + p′)2 and α = T, L , T T, LT and LT ′. The centre-of-mass
momenta kc, p′

c, qc, and pc in (3.10) can be calculated from the corresponding
momenta in the laboratory frame by a Lorentz boost with 
β = ẑ | 
q | /(ω + m N ).
Obviously qγ

c =| qc | at the real photon point Q2 = 0.

The meson-production dynamics is contained in the Mα of (3.10). They are cal-
culated from various combinations of current matrix elements evaluated on the
φM = 0 plane (see figure 3.2):

MT (kc, p′
c; qc, pc) = 1

4 F
∑
spins

[| J x (kc, p′
c; qc, pc) |2 + | J y(kc, p′

c; qc, pc) |2],

ML (kc, p′
c; qc, pc) = 1

2 F
∑
spins

Q2

ω2
[| J z(kc, p′

c; qc, pc) |2],

MT T (kc, p′
c; qc, pc) = 1

4 F
∑
spins

[| J x (kc, p′
c; qc, pc) |2 − | J y(kc, p′

c; qc, pc) |2],

MLT (kc, p′
c; qc, pc) = − 1

2 F
∑
spins

√
Q2

ω2
Re{J z(kc, p′

c; qc, pc)J x∗(kc, p′
c; qc, pc)},

MLT ′(kc, p′
c; qc, pc) = 1

2 F
∑
spins

√
Q2

ω2
Im{J z(kc, p′

c; qc, pc)J x∗(kc, p′
c; qc, pc)},

(3.11)

with

F(kc, pc′; qc, pc) = e2

(2π )2

1

2EM (kc)

m N

EB(p′
c)

m N

EN (pc)

EM (kc)EB(p′
c)

2W
. (3.12)

This formulation can be readily used to calculate various polarization observables
with a polarized initial nucleon. For observables with a polarized final baryon, the
situation is more complicated. The relevant formulae have been explicitly derived
for pseudo-scalar meson production [30,31] and those for analysing spin observ-
ables in vector-meson production were developed in [32].

We also note that the unpolarized photoproduction cross section is given by
dσT /d�∗

M evaluated at Q2 = 0 and qγ
c →| qc |. Calculations of pion photopro-

duction polarization observables are given, for example, in Appendix C of [68].

For investigating nucleon resonances, it is necessary to express the meson-
production cross sections in terms of multipole amplitudes corresponding to definite
angular momentum, parity and isospin. This is well known when the final hadron
state consists of only a pseudo-scalar and a spin- 1

2 baryon, such as π N , K Y and
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ηN . Equation (3.4) is written in terms of invariants in the centre-of-mass frame of
the final M–B system [33]

εμ Jμ(kc, p′
c; qc, pc) =

∑
i=1,6

Fi (s, t, Q2)ū(pc
′)Oi u(pc) , (3.13)

where s = (kc + p′
c)2 and t = (kc − qc)2 are the usual Mandelstam variables,

Fi (s, t, Q2) are the Lorentz-invariant amplitudes and Oi are operators defined in
the baryon spin space

O1 = iσ · b ,

O2 = σ · k̂cσ · (q̂ × b) ,

O3 = iσ · q̂ck̂c · b ,

O4 = iσ · k̂ck̂c · b ,

O5 = −iσ · k̂cb0 ,

O6 = −iσ · q̂cb0 , (3.14)

with

bμ = εμ(qc) − ε̂ · q̂c

| qc | qμ
c . (3.15)

Obviously we have b · q̂c = 0.

The invariant amplitudes Fi (s, t, Q2) can be expanded in terms of multipole ampli-
tudes characterized by the angular momentum and quantum numbers of the initial
γ ∗N and the final M–B system:

F1 =
∑

�

[P ′
�+1(x)E�+ + P ′

�−1(x)E�− + P ′
�+1(x)M�+ + (� + 1)P ′

�−1(x)M�−],

F2 =
∑

�

[(� + 1)P ′
�(x)M�+ + �P ′

�(x)M�],

F3 =
∑

�

[P ′′
�+1(x)E�+ + P ′′

�−1(x)E�− − P ′′
�+1(x)M�+ + P ′′

�−1(x)M�−],

F4 =
∑

�

[−P ′′
� (x)E�+ − P ′′

� (x)E�− + P ′′
� (x)M�+ − P ′′

� (x)M�−],

F5 =
∑

�

[−(� + 1)P ′
�(x)S�+ + �P ′

�(x)S�−],

F6 =
∑

�

[(� + 1)P ′
�+1(x)S�+ − �P ′

�−1(x)S�−]. (3.16)

In the above equations, the multipole amplitudes E�±, M�± and S�± are functions
of W and Q2 only, with the subindices ± denoting the total angular momentum
J = � ± 1

2 of the final M–B state. They describe the transitions which can be
classified according to the transverse or scalar (S) character of the photon. The
transverse photon states can either be electric (E) with parity (−1)Jγ , or magnetic
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(M) with parity (−1)Jγ +1, where Jγ is the angular momentum of the initial photon.
The relation between the longitudinal multipoles and the scalar multipoles is L�± =
(ω/ | q |)S�±.

The application of the standard isospin formalism to electromagnetic processes [34]
rests on the assumption that the electromagnetic current of the hadrons, like the
electric charge, transforms as an isoscalar plus the third component of an isovec-
tor. In first-order processes, this is equivalent to treating the photon as a linear
combination of isoscalar and isovector particles, both with I3 = 0, and assuming
isospin conservation. For any multipole M� ≡ E�±, M�±, S�±, this leads to three
isospin amplitudes M I

� with I = 0, 1
2 ,

3
2 . The superscript 0 indicates an isoscalar-

photon amplitude leading to an I = 1
2 final state, while the superscripts 1

2 and
3
2 indicate isovector-photon amplitudes leading to I = 1

2 and I = 3
2 final states

respectively.

In the energy region where pion–nucleon scattering is purely elastic, the multipole
amplitudes for γ N → π N satisfy Watson’s theorem [35]

ImM I
� (W ) = ±|M I

� (W )|e−iδ I
� (W ) (3.17)

or equivalently

ImM I
� (W ) = M I

� (W )e−iδ I
� (W ) sin δ I

� (W ), (3.18)

where δ I
� (W ) is the phase shift for pion–nucleon scattering in the partial wave

with the same quantum numbers (�, I ). This result follows from unitarity and time-
reversal invariance and implies that the phases of the multipole amplitudes are given
by the corresponding elastic scattering phase shifts.

3.3 Theoretical models

A theoretical framework for investigating pion photoproduction reactions was first
developed by Watson [34,35] and by Chew, Goldberger, Low and Nambu [36]
(CGLN) using dispersion relations. With the advent of accurate experimental pion–
nucleon phase shifts, the application of dispersion relations [37–42] led rapidly to
the elucidation of all the main features of pion photoproduction in the �(1232)
resonance region, including detailed values of both resonant excitation amplitudes
[38]. Subsequently the method was extended to discuss both the higher-mass N ∗

resonances [43,44] and pion electroproduction [45–47]. It was further exploited
[48,49] to give the only significant test, to date, of the isospin properties of the
electromagnetic current discussed above. The dispersion-relation approach has been
revived [50,51] to analyse new pion photoproduction and electroproduction data
and has been extended [52,53] to the analysis of η photoproduction.
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Isobar models [54,55] were developed to extract the parameters of the higher-
mass nucleon resonances and to incorporate final states other than the pion, for
example two pions and other mesons such as η, K , ω, and φ. Later, the K -matrix
effective-Lagrangian models [56,57] were developed to study the �(1232) excita-
tion. The K -matrix method and isobar parametrization have been used subsequently
as tools for performing amplitude analyses of the data and determining resonance
parameters. Examples are the dial-in codes SAID [58] and MAID [59]. In SAID,
the dispersion relations are also used in their analyses of π N elastic scattering.
Progress has also been made in extracting resonance parameters using the multi-
channel K -matrix method [60–62] and the unitary coupled-channel isobar model
[63–65].

More recently, a rather different theoretical point of view has been taken to develop
dynamical models of meson production reactions [66–81]. These models account
for off-shell scattering effects and can therefore provide a much more direct way to
interpret the resonance parameters in terms of existing models of hadron structure.
So far, the dynamical reaction model has been able to interpret the resonance
parameters, in particular of the �(1232) resonance, in terms of constituent-quark
models. Its connection with the results from quenched and unquenched lattice
QCD calculations remains to be established. In the first part of this section, we
derive schematically the formalism for the models which have often been used to
analyse the data of electromagnetic meson production reactions. This enables us to
see the differences between these models and to assess the results from applying
them in analysing the data. We then give some detailed formulae for the dynamical
models that are needed for discussing the results in section 3.4. The approach based
on dispersion relations will be described in the last part of this section.

3.3.1 Hamiltonian formulation

To give a general derivation of most of the existing models of meson production in
electromagnetic interactions, it is convenient to consider a Hamiltonian formulation.
Such a formulation can be derived from relativistic quantum field theory by using
various approximations such as the unitary transformation method developed in
[70,78]. The Hamiltonian formulation is most commonly used in the study of
nucleon–nucleon and pion–nucleon scattering. It is equally valid in the study of
reactions involving photons as we will now describe in this subsection.

Within this framework, the Hamiltonian describing the meson–baryon reactions
can be cast into the form

H = H0 + V , (3.19)
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Figure 3.3. Tree diagrams for meson–baryon reactions. N ∗ represents an excited
baryon state.

where the free Hamiltonian H0 is the sum of kinetic energy operators of the photon
and of the mesons and baryons in the reaction. The interaction term is defined as

V = vbg + vR(E) , (3.20)

where vbg is the non-resonant (background) term due to mechanisms such as the
tree diagrams illustrated in figure 3.3(a)–(d), and vR describes the N ∗ excitation,
figure 3.3(e). Schematically, the resonant term of (3.20) can be written as

vR(E) =
∑
a,b

∑
N ∗

i

�
†
i,a�i,b

E − M0
i

. (3.21)

Here E is the total energy of the system, �i,a defines the decay of the i th N ∗

state into a meson–baryon state a : γ N , π N , ηN , π�, ρN , σ N , · · · . The mass
parameter M0

i is related to the resonance position. For example, M0
� is a bare mass

of the �(1232) state which will be dressed by the non-resonant interaction vbg to
generate a physical mass M� ∼ (1232 + i 120) MeV at E = 1232 MeV resonance
position.

With the Hamiltonian (3.19), the S-matrix of the reaction (a,b), where (a,b) denote
specific channels, is defined by

Sa,b(E) = δa,b − 2π iδ(E − H0)Ta,b(E) , (3.22)

and the scattering T -matrix is given by

Ta,b(E) = Va,b +
∑

c

Va,cgc(E)Tc,b(E) . (3.23)

Here the propagator of channel c is

gc(E) = 〈c | g(E) | c〉
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with

g(E) = 1

E − H0 + iε

= gP (E) − iπδ(E − H0) , (3.24)

where

gP (E) ≡ P
( 1

E − H0

)
. (3.25)

Here P denotes taking the principal-value part of any integration over the propa-
gator. We can also define the K -matrix as

Ka,b(E) = Va,b +
∑

c

Va,cgP
c (E)Kc,b(E) . (3.26)

Equations (3.23) and (3.26) then define the following relation between the K -matrix
and T -matrix:

Ta,b(E) = Ka,b(E) −
∑

c

Ta,c(E)[iπδ(E − H0)]c Kc,b(E) . (3.27)

By using the two-potential formulation [82], one can cast (3.23) into the form

Ta,b(E) = tbg
a,b(E) + t R

a,b(E), (3.28)

where the first term

tbg
a,b(E) = v

bg
a,b +

∑
c

vbg
a,cgc(E)tbg

c,b(E) (3.29)

is determined only by the non-resonant interaction. The resonant amplitude

t R
a,b(E) =

∑
i, j

�̄
†
N ∗

i ,a(E)[G(E)]i, j �̄N ∗
j ,b(E) (3.30)

is determined by the dressed vertex

�̄N ∗,a(E) = �N ∗
i ,a +

∑
b

�N ∗
i ,bgb(E)tbg

b,a(E) (3.31)

and the dressed propagator

[G(E)−1]i, j (E) = (E − M0
i )δi, j − �i, j (E) . (3.32)

Here M0
i is the bare mass of the i th N ∗ resonance and the self-energy is

�i, j (E) =
∑

a

�
†
N ∗

i ,aga(E)�̄N ∗
j ,a(E) . (3.33)



Electromagnetic excitations of nucleon resonances 89

Note that the propagator ga(E) for channels including an unstable particle, such
as π�, ρN and σ N , must be modified to include a width. In the Hamiltonian
formulation this amounts to the replacement

ga(E) →
〈
a

∣∣∣∣ 1

E − H0 − σv(E)

∣∣∣∣ a
〉

, (3.34)

where the energy shift σv(E) is due to the decay of an unstable particle in the
presence of a spectator. Schematically it can be written as

σv(E) = g†
v

Pππ N

E − H0 + iε
gv , (3.35)

where gv describes the decays of ρ, σ or � and Pππ N is the projection operator for
the ππ N subspace.

Equations (3.23) and (3.27)–(3.35) are the starting points of our derivations. From
now on, we consider the formulation in the partial-wave representation. The channel
labels, (a, b, c), will also include the usual angular momentum and isospin quantum
numbers.

3.3.2 Tree-diagram models

The tree-diagram models are based on the simplification that T ≈ V = vbg + vR .
The resonant effect is included by modifying the mass parameter of vR , defined
in (3.21), to include a width, such as M0

i = Mi − 1
2 i�tot

i (E). Equation (3.23) then
simplifies to

Ta,b(tree) = v
bg
a,b +

∑
N ∗

i

�
†
i,a�i,b

E − Mi + 1
2 i�tot

i (E)
, (3.36)

where vbg is calculated from the tree diagrams of a chosen Lagrangian (see figures
3.3(a)–(d)) and �tot

i is the total decay width of the i th N ∗.

Tree-diagram models have been applied mainly to the photoproduction and elec-
troproduction of K mesons [83–90], vector mesons (ω, φ) [91–93] and two pions
[94]. At high energies, the t- and u-channel amplitudes (figures 3.3(b)–(c)) are
replaced in some tree-diagram models by a Regge parametrization [95,96]. The
validity of using tree-diagram models to investigate nucleon resonances is obvi-
ously very questionable, as discussed in the studies of ω photoproduction [93] and
kaon photoproduction [76]. For example, it is found that the coupling with the π N
channel can change the total cross section of γ p → K +� by about 20% [76] and
can drastically change the photon asymmetry of ω photoproduction reactions [93].
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3.3.3 Unitary isobar models

The unitary isobar model (UIM) developed [59] by the Mainz group (MAID) is
based on the on-shell relation (3.27). By including only one hadron channel, π N ,
(3.27) leads to

Tπ N ,γ N = 1

1 + i Kπ N ,π N
Kπ N ,γ N . (3.37)

In the energy region below the two-pion production threshold, we can use the
relation Kπ N ,π N = − tan δπ N with δπ N being the pion–nucleon scattering phase
shift. One then can write the right-hand side of (3.37) as ∼ eiδπ N Kπ N ,γ , which
is consistent with Watson’s theorem [35]. This relation with the π N phase shift
is simply extended in MAID to higher energies where the phase shifts become
complex. By further assuming that K = V = vbg + vR , one can cast the above
equation into the form

Tπ N ,γ N (UIM ) = ηπ N eiδπ N

[
v

bg
π N ,γ N

]
+

∑
N ∗

i

T N ∗
i

π N ,γ N (E) , (3.38)

whereηπ N is the inelasticity parameter of theπ N elastic scattering. Clearly, the non-
resonant multi-channel effects, such as γ N → (ρN , π�) → π N which could be
important in the second and third resonance regions, are neglected in MAID. In addi-
tion, the non-resonant amplitude v

bg
π N ,γ N is evaluated using an energy-dependent

mixture of pseudo-vector (PV) and pseudo-scalar (PS) π N N coupling

Lπ N N = �2
m

�2
m + q2

0

L PV
π N N + q2

0

�2
m + q2

0

L P S
π N N , (3.39)

where q0 is the on-shell photon energy. With a cutoff �m = 450 MeV, one then
gets PV coupling at low energies and PS coupling at high energies.

For the resonant terms in (3.38), MAID uses the parametrization due to Walker
[54]:

T N ∗
i

π N ,γ N (E) = f i
π N (E)

�tot Mi ei�

M2
i − E2 − i Mi�tot

f i
γ N (E) Āi , (3.40)

where f i
π N (E) and f i

γ N (E) are the form factors describing the decays of N ∗, �tot

is the total decay width and Āi is the γ N → N ∗ excitation strength. The phase �

is determined by the unitarity condition and the assumption that the phase ψ of the
total amplitude is related to the π N phase shift δπ N and inelasticity ηπ N by

ψ(E) = tan−1

[
1 − ηπ N (E) cos 2δπ N (E)

ηπ N (E) sin 2δπ N (E)

]
. (3.41)
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At energies below the two-pion production threshold, where ηπ N = 1, then ψ =
δπ N so that Watson’s theorem is recovered. This is the motivation for choosing
this prescription. It is, however, not clear whether the prescription (3.40)–(3.41)
can be derived within a Hamiltonian formulation. In addition to the assumption
(3.39) on the π N N coupling, this phenomenological aspect of MAID must be
clarified before the N ∗ parameters extracted from the analyses using MAID can be
interpreted correctly.

The UIM developed by the JLab/Yerevan group (JANR) [53] is similar to that of
MAID, but it implements a Regge parametrization in calculating the amplitudes at
high energies. MAID and JANR-UIM have been used extensively to analyse the
data on π and η production. Information for a few N ∗ resonances has been extracted
from data and will be discussed in some detail in section 3.4.

3.3.4 Multi-channel K-matrix models

The SAID model The model employed in the SAID collaboration [58] is based
on the on-shell relation (3.27) with three channels: γ N , π N , and π� that represents
all other open channels. The solution of the resulting 3 × 3 matrix equation can be
written as

Tγ N ,π N (SAID) = AI (1 + iTπ N ,π N ) + ARTπ N ,π N , (3.42)

where

AI = Kγ N ,π N − Kγ N ,π�Kπ N ,π N

Kπ N ,π�

, (3.43)

AR = Kγ N ,π�

Kπ N ,π�

. (3.44)

In the analysis, AI and AR are simply parametrized as

AI =
[
v

bg
γ N ,π N

]
+

M∑
n=0

p̄nzQlα+n(z) , (3.45)

AR = mπ

k0

(
q0

k0

)lα N∑
n=0

pn

(
Eπ

mπ

)n

, (3.46)

where k0 and q0 are the on-shell momenta for the pion and photon respectively,

z =
√

k2
0 + 4m2

π/k0, QL (z) is the Legendre function of the second kind, Eπ =
Eγ − mπ (1 + mπ/(2m N )), and pn and p̄n are free parameters. SAID calculates
v

bg
γ N ,π N of (3.45) from the standard PS Born term and ρ and ω exchanges. The

empirical π N amplitude Tπ N ,π N needed to evaluate (3.42) is also included in SAID.
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Once the parameters p̄n and pn in (3.45) and (3.46) are determined, the N ∗ param-
eters are then extracted by fitting the resulting amplitude Tγ N ,π N at energies near
the resonance position to a Breit–Wigner parametrization similar to (3.40). Exten-
sive data on pion photoproduction have been analysed by SAID and the method
extended to pion electroproduction.

While the the parametrizations (3.45) and (3.46) are convenient for fitting the data, it
is not clear whether they are sound theoretically. If the data were extensive enough
to cover most of the possible observables, perhaps the extracted N ∗ parameters
would not depend too much on the parametrizations of the amplitudes. On the
other hand, this is unlikely over to be the case. A theoretical understanding of the
prescription (3.45) and (3.46) used in SAID is needed to make progress.

The Giessen model The coupled-channel model developed by the Giessen group
[62] can be obtained from (3.27) by making the approximation K = V ; that is by
neglecting all multiple-scattering effects for the K-matrix included in (3.26). This
leads to a matrix equation involving only the on-shell matrix elements of V :

Ta,b(Giessen) =
∑

c

[(1 + i V (E))−1]a,cVc,b(E) . (3.47)

The interaction V = vbg + vR is evaluated from tree diagrams corresponding to
various effective Lagrangians. The form factors, coupling constants, and resonance
parameters are adjusted to fit both the π N and γ N reaction data. They include up
to five channels in some fits, and have claimed to identify several new N ∗ states.
However, further confirmation is needed to establish their findings conclusively.
In particular, it remains to investigate how the off-shell multiple scattering effect,
neglected in this model, influences the resonant amplitudes.

3.3.5 Dynamical models

The development of dynamical models has been aimed at separating the reaction
mechanisms from the hadron structure in interpreting the data of electromagnetic
meson-production reactions. The importance of this theoretical effort can be under-
stood by recalling the experience in the development of nuclear physics. For exam-
ple, the information about the deformation of 12C can be extracted from the inelas-
tic scattering reaction 12C(p, p′)12C(2+, 4.44 MeV) only when a reliable theory
[97], such as the distorted-wave impulse approximation and the coupled-channels
method, is used to calculate the initial and final proton–12C interactions including
off-shell scattering effects. Accordingly, one expects that the N ∗ structure can be
determined only when the interactions in its decay channels π N , ππ N , . . . can be
calculated from a reliable reaction theory. This has been pursued by developing
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Figure 3.4. Graphic representation of the dressed γ N → �(1232) vertex within
the SL model [70,72].

dynamical models which are guided to a very large extent by the early work on
meson-exchange models of nucleon–nucleon and pion–nucleon scattering.

We will give a detailed account of the dynamical models in the �(1232) region.
Dynamical models for higher-mass N ∗ states are still being developed and will
only be briefly described.

The Δ(1232) region Keeping only the �(1232) and the two channels a, b =
π N , γ N , (3.28)–(3.33) reduce to the Sato–Lee (SL) model [70,72].

Explicitly, we have

Tπ N ,π N (E) = tbg
π N ,π N (E) + �̄

†
�,π N (E)�̄�,π N (E)

E − M0
� − ��(E)

, (3.48)

Tγ N ,π N (E) = tbg
γ N ,π N (E) + �̄

†
�,γ N (E)�̄�,π N (E)

E − M0
� − ��(E)

, (3.49)

with

�̄�,γ N (E) = ��,γ N + ��,π N Gπ N (E)tbg
π N ,γ N (E) , (3.50)

�̄�,π N (E) = ��,π N + ��,π N Gπ N (E)tbg
π N ,π N (E) , (3.51)

tbg
π N ,γ N (E) = v

bg
π N ,γ N + tbg

π N ,π N (E)Gπ N (E)vbg
π N ,γ N , (3.52)

tbg
π N ,π N (E) = v

bg
π N ,π N + v

bg
π N ,π N Gπ N (E)tbg

π N ,π N (E) (3.53)

and

��(E) = �
†
�,π N (E)Gπ N (E)�̄�,π N (E) . (3.54)

These equations indicate clearly how the non-resonant interactions modify the
resonant amplitude. Specifically, (3.50) is illustrated in figure 3.4 for the dressed
γ N → �(1232) transition in the SL model. We see that the pion-cloud effect is
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due to the non-resonant photon interactions before the �(1232) is excited by the
intermediate off-shell pions. This reaction mechanism is calculated explictly in a
dynamical approach such that the direct photoexcitation of the �(1232) in figure 3.4
can be identified [70] with the constituent-quark-model predictions. We will see
later that the pion-cloud effect plays a crucial role in obtaining a good description
of the data.

Alternatively, we can recast (3.23) in the �(1232) region as

Tγ N ,π N (E) = t B
γ N ,π N (E) + t R

γ N ,π N (E) , (3.55)

with

t B
γ N ,π N (E) = v

bg
γ N ,π N + v

bg
γ N ,π N Gπ N (E)Tπ N ,π N (E) ,

t R
γ N ,π N (E) = vR

γ N ,π N + vR
γ N ,π N Gπ N (E)Tπ N ,π N (E) . (3.56)

These latter equations are used by the Dubna–Mainz–Taiwan (DMT) model [73,75],
except that it departs from a consistent Hamiltonian formulation and replaces the
term t R by Walker’s parametrization, (3.40):

t R
γ N ,π N (E) = fπ N (E)

�tot M�ei�

M2
� − E2 − i M��tot

fγ N (E) Āγ N . (3.57)

Other differences between the SL model and the DMT model are in the π N poten-
tial employed and how the non-resonant γ N → π N amplitudes are regularized.
The π N potentials in both models are constrained by the fits to π N scattering phase
shifts, but they could generate different off-shell effects because of the differences
in the approximations used in deriving the meson-exchange mechanisms from rel-
ativistic quantum field theory. In the DMT model, the non-resonant γ N → π N
amplitudes are calculated by using MAID’s mixture (3.39) of PS and PV couplings,
while their π N potential is from a model [98] using PV coupling. In the SL model,
the standard PV coupling is used in a consistent derivation of both the π N potential
and γ N → π N transition interaction using a unitary transformation method.

We now give the formulae required for the discussions in section 3.4.1 on the
�(1232) resonance. The �(1232) excitation is parametrized in terms of a Rarita–
Schwinger field. In the � rest frame, where m� = q0 + EN (q), the resulting γ N →
�(1232) vertex function can be written in the more transparent form

〈� | �γ N→� | q〉 = − e
(2π )3/2

√
EN (q) + m N

2EN (
q)

1√
2ω

3(m� + m N )

4m N (EN (q) + m N )
T3

× [iG M (q2)S × q · ε + G E (q2)(S · εσ · q + S · qσ · ε)

+ GC (q2)

m�

S · qσ · qε0], (3.58)
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where q = (ω, q) is the photon four-momentum, and ε = (ε0, ε) is the photon
polarization vector. The transition operators S and T are normalized by the reduced
matrix elements 〈�||
S||N 〉 = 〈�|| 
T ||N 〉 = 2. The convention

〈J ′M ′ | Tkq | J M〉 = (−1)2k〈J ′M ′ | Jk Mq〉/〈J ′ || T || J 〉/√2J ′ + 1

has been used.

By using (3.58) and the standard definitions [99,100] for multipole amplitudes,
it is straightforward to evaluate the magnetic M1, electric E2 and longitudinal
(‘Coulomb’ in nuclear-physics convention) C2 amplitudes of the γ N → �(1232)
transition. With the commonly-used convention Q2 = −q2 > 0, it is found [72] that

GM (Q2) = 1

N
[�γ N→�]M1, (3.59)

GE (Q2) = − 1

N
[�γ N→�]E2, (3.60)

GC (Q2) = 2m�

q N
[�γ N→�]C2, (3.61)

with

N = e
2m N

√
m�q
m N

1

[1 + Q2/(m N + m�)2]1/2
.

At Q2 = 0, the above relations agree with that given in Appendix A of [68]. Equa-
tions (3.59)–(3.61) can also be defined to relate the dressed vertex �̄γ N→�, defined
by (3.50), to the corresponding dressed transition form factors:

G∗
M (Q2) = 1

N
[�̄K

γ N→�]M1, (3.62)

G∗
E (Q2) = −1

N
[�̄K

γ N→�]E2, (3.63)

G∗
C (Q2) = 2m�

q N
[�̄K

γ N→�]C2. (3.64)

Note that in these equations, the upper index K in �K
�,γ N means taking only the

principal-value integration in evaluating the second term of (3.50). Details are
discussed in [70].

At the Q2 = 0 real-photon point, we will also compare the theoretical predictions
with the helicity amplitudes listed by the PDG [25]. These amplitudes are related
to the multipole amplitudes by

A3/2 =
√

3
2 [[�̄K

γ N→�]E2 − [�̄K
γ N→�]M1], (3.65)

A1/2 = − 1
2 [3[�̄K

γ N→�]E2 + [�̄K
γ N→�]M1]. (3.66)
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At the �(1232) resonance position E = MR = 1232 MeV, the π N phase shift in
the P33 channel passes through 90 degrees. As derived in detail in [70], this leads to
a relation between the multipole components of the dressed vertex �̄γ N→�(1232) and
the imaginary parts of the γ N → π N multipole amplitudes in the π N P33 channel:

G∗
M (Q2) = 1

N

√
8πm�k��

3m N q
× Im

{
M3/2

1+
}

, (3.67)

G∗
E (Q2) = 1

N

√
8πm�k��

3m N q
× Im

{
E3/2

1+
}

, (3.68)

q
2m�

G∗
C (Q2) = 1

N

√
8πm�k��

3m N q
× Im

{
S3/2

1+
}

, (3.69)

where �� is the �(1232) width, k and q are respectively the magnitudes of the
three-momenta of the pion and photon in the rest frame of the �. We can then
obtain the useful relations that the E2/M1 ratio, REM , and the C2/M1 ratio, RSM ,
of the dressed γ N → �(1232) transition at W = 1232 MeV can be evaluated
directly by using the γ N → π N multipole amplitudes:

REM = [�̄K
γ N→�]E2

[�̄K
γ N→�]M1

=
Im

{
E3/2

1+
}

Im
{

M3/2
1+

} , (3.70)

RSM = [�̄K
γ N→�]C2

[�̄K
γ N→�]M1

=
Im

{
S3/2

1+
}

Im
{

M3/2
1+

} . (3.71)

Equations (3.70) and (3.71) can be used in empirical amplitude analyses to
extract the transition form factors and the E2/M1 and C2/M1 ratios of the
γ N → �(1232) transition. The extractions of the bare vertices, which can be com-
pared with the predictions from some hadron-structure calculations, can only be
achieved by using dynamical models through (3.50). This indicates why an appro-
priate reaction theory is needed in the N ∗ study, as illustrated in figure 3.1 and the
results of [70,72].

The second and third resonance regions In these regions we need to include
more than the π N channel to solve equations (3.28)–(3.35). In addition, these
formulae must be extended [78] to account explicitly for the ππ N channel, instead
of using the quasi-two-particle channels π�, ρN , and σ N to simulate the ππ N
continuum. This, however, has not been fully developed. Studies in the second and
third resonance regions are within the formulation defined by (3.28)–(3.35). These
equations are the basis of examining N ∗ effects [92] and coupled-channel effects
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[93] on ω meson photoproduction [92,93] and K photoproduction [76]. Both effects
are found to be important in determining the differential cross sections and various
polarization observables. In these studies, all N ∗ resonances listed by PDG [25] or
predicted by constituent-quark models are considered, but only the coupling with
π N channel is emphasized. Clearly, their results should be further examined by
considering the effects due to other channels.

A coupled-channel study of both π N scattering and γ N → π N in the S11 partial
wave [74] included the π N , ηN and γ N channels. In their γ N → π N calculation,
they neglected the γ N → ηN → π N coupled-channel effect, and followed the
procedure of the DMT model to evaluate the resonant contribution in terms of
Walker’s parametrization (3.40). They found that four N ∗ resonances are required
to fit the empirical amplitudes in the S11 partial wave up to W = 2 GeV. Obviously
their results must be re-examined because of the lack of a complete treatment of
coupled-channel effects, in particular those due to two-pion channels.

There are also some coupled-channel calculations [77,69] of pion photoproduction
up to the second resonance region, W = 1.5 GeV, although the treatment is not
complete. While they can give reasonable fits to the pion photoproduction data,
their results on the N ∗ parameters cannot be interpreted until further investigations
of coupled-channel effects are made.

The dynamical study of electromagnetic meson-production reactions in the higher
mass N ∗ region are still being developed. It is an outstanding challenge to develop
a complete dynamical coupled-channel calculation including all N ∗ resonances
listed by the PDG [25] or predicted by the constituent-quark model to fit all meson-
production data up to W = 2.5 GeV. Such a complex task requires close collabo-
ration between theoretical and experimental efforts.

3.3.6 Dispersion-relation approaches

The dispersion-relation approach is based on the unitarity of the S-matrix and on
the analyticity and crossing properties of the scattering amplitudes, which can be
proven with some degree of rigour [101]. This approach played a key role in the early
study of pion photoproduction, as outlined at the beginning of this section. Here
we summarize briefly later work that has been used in analysing the data discussed
in this chapter, referring to the many review articles, for example [44,102,100], for
a more complete discussion.

To discuss models based on dispersion relations, it is necessary first to write the
hadronic current matrix element defined by (3.3) as

〈kp′ | εμ Jμ(0) | qp〉 =
∑
i=1,6

ū(p′)[Ai (s, t, u)Mi ]u(p), (3.72)
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where u(p) is the Dirac spinor, Ai (s, t, u) are Lorentz-invariant functions of
Mandelstam variables s, t and u. The Mi are independent invariants formed from
γ μ, γ5 and momenta. The expressions for Mi can be found, for example, in [44].
For pion production, the amplitudes can be further classified by isospin quantum
numbers. These are A(0) for the isoscalar photon, and for the isovector the two
amplitudes A(1/2) and A(3/2) for the final π N system with total isospin I = 1

2 and
I = 3

2 respectively. Each invariant amplitude in (3.72) can be expanded as

Ai = 1
2 A(−)

i [τα, τ3] + A(+)
i δα,3 + A(0)

i τα , (3.73)

where τ is the isospin Pauli operator, andα is the isospin quantum number associated
with the produced pion. Equation (3.73) then leads to A(1/2)

i = A(+)
i + 2A(−)

i and
A(3/2)

i = A(+)
i − A(−)

i .

For π and η production, the starting point is the fixed-t dispersion relation [37] for
the invariant amplitudes AI

i :

Re[AI
i (s, t)] = AI,pole

i + 1

π
P

∫ ∞

sthr

ds ′
[ 1

s ′ − s
+ ε I ξi

s ′ − u

]
Im[AI

i (s ′, t)] , (3.74)

where I = 0, +, − denotes the isospin component and ξ1 = ξ2 = −ξ3 = −ξ4 =
1, ε+ = ε0 = −ε− = 1 are defined such that the crossing symmetry relation
AI

i (s, t, u) = ξiε
I AI

i (u, t, s) is satisfied. With the relations (3.13) and (3.72) and
the multipole expansion defined by (3.17), the fixed-t dispersion relation (3.74)
leads to the following set of coupled equations relating the real part and imaginary
parts of multipole amplitudes:

Re[M I
� (W )] = M I,pole

� (W ) + 1

π
P

∫ ∞

Wthr

dW ′ Im[M I
� (W )]

W ′ − W

+ 1

π

∫ ∞

Wthr

dW ′ ∑
�′

K I
��′(W, W ′)Im[M I

�′(W )] , (3.75)

where M I
� is the multipole amplitude, M I,pole

� (W ) is calculated from the PS Born
term and the kernel K I

�,�′ contains various kinematic factors. These equations are
valid up to a centre-of-mass energy of W ≈ 1.3 GeV and should form the basis of
a reasonable approximation at somewhat higher energies [39]. In the work of [50],
the procedures of [42] are used to solve the above equations by using the method
of Omnes [103]. It assumes that the multipole amplitude can be written as

M I
� (W ) = eiφ�(W )

r�I
M̄ I

� (W ), (3.76)

where M̄ I
� is a real function and r�I is some kinematic factor. Hence

Im[M I
� (W )] = hI∗

� (W )M I
� (W ) , (3.77)
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with hI
�(w) = sin(φ I

� ) exp(iφ I
� (W )). In the elastic region, the phase φ I

� = δ I
� by

Watson’s theorem [35]: see (3.18). At higher energies it is assumed to be

φ I
� (W ) = arctan

[
1 − ηI

� (W ) cos 2δ I
� (W )

ηI
� (W ) sin 2δ I

� (W )

]
, (3.78)

where δ I
� and ηI

� are the phase and inelasticity of π N scattering in the partial wave
with quantum numbers (�, I ).

The next approximation is to limit the sum over �′ in the right-hand-side of (3.75)
to a cutoff �max . For investigating production below Eγ = 500 MeV, �max = 1 is
taken. Another approximation is needed to handle the integration over W in (3.75).
In [50], the integration is cutoff at W = � = 2 GeV such that the required phases
�� can be determined by the empirical π N phase shifts. The contribution neglected
from W > 2 GeV is then accounted for by adding vector-meson exchange terms,
M I,V

� (W ). Equation (3.75) then takes the form

M̄ I
�(W ) = M̄ I,pole

� (W ) + 1

π

∫ �

Wthr

dW ′ h
I∗
� (W ′)M̄ I

�(W ′)
W ′ − W − iε

+ 1

π

∑
�′,I ′

∫ �

Wthr

dW ′ K̄ I,I ′
��′ (W W ′)hI ′∗

�′ (W ′)M̄ I
� (W ′)

+ M I,V
� (W ). (3.79)

The method of solving (3.79) is given in [50]. With the above procedures, the
model contains ten adjustable parameters. An excellent fit to all γ N → π N data
up to Eγ = 500 MeV has been obtained in [50]. The resonance parameters of the
�(1232) resonance have been extracted.

The calculations in [51] follow the same approach with the additional simplifi-
cation that the couplings among different multipoles and the contribution from
W > � to the integration are neglected; setting K̄ I,I ′

�,�′ = 0 and M I,V
� = 0 in solving

(3.79). These simplifications are justified in calculating the dominant �(1232) exci-
tation amplitude M (3/2)

1+ . But it is questionable if they can be applied for calculating
weaker amplitudes. Thus no attempt was made in [51,52] to fit the data directly
using dispersion relations. Rather, the emphasis was in the interpretation of the
empirical amplitudes M (3/2)

1+ , E (3/2)
1+ in terms of rescattering effects and constituent-

quark model predictions. By assuming that the multipole expansion is also valid in
electroproduction, the Q2 dependence of these �(1232) excitation amplitudes is
then predicted.

The dispersion-relation approach is also used in [52] to analyse the pion photopro-
duction and electroproduction data in the second and third resonance regions. It is
assumed that the imaginary parts of the amplitudes for MN + mπ < W < 2 GeV
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are from the resonant amplitudes parametrized as Walker’s Breit–Wigner form
(3.40) and above W = 2.5 GeV are from a Regge-pole model. The imaginary parts
of the amplitudes in 2 GeV < W < 2.5 GeV are obtained by interpolation. The real
parts of the amplitude in the second and third resonance regions are then calculated
from the dispersion relations. The empirical amplitudes are then fitted by adjusting
the resonant parameters. It turns out that the resulting parameters are close to those
obtained using the UIM described in subsection 3.3.3.

With appropriate modification, the dispersion-relation approach can be applied to
investigate the production of other PS mesons. This has been achieved in [53] in
analysing the η photo- and electroproduction data.

3.4 Data and results

A large volume of data is needed to extract the fundamental physics on reso-
nance parameters or discover new baryon states from the electromagnetic meson-
production reactions. Efforts in this direction in the 1970s and 1980s at various
laboratories were hampered by the low-duty-cycle synchrotrons that were available
and by the limitations of magnetic spectrometers with relatively small apertures.
For a discussion on these results see the review by Foster and Hughes [104]. The
construction of continuous-wave (CW) electron accelerators, and advances in detec-
tor technologies, making it possible to use detector systems with nearly 4π solid
angle coverage and the ability to operate at high luminosity, have revolutionized
the subject. These experimental advances have been reviewed in [2]. In this section
we focus on the main results from the analyses of the new data.

3.4.1 Single-pion production

Single-pion photoproduction and electroproduction have been the main pro-
cesses in the study of the electromagnetic transition amplitudes of the lower-
mass nucleon resonances. A large amount of data on pion photoproduction
now exists [105–108], including results from measuring beam asymmetries and
beam–target double-polarization observables [109,110]. Similar advances have also
been made for π0 and π+ electroproduction from protons [111–124], covering a
large range in W and Q2 and the full polar and azimuthal angles. For the first
time, high-precision data from measurements using polarized electron beams and
polarized nucleon targets and detection of recoil nucleon polarization have been
obtained. A summary of the new electroproduction data is presented in table 3.2
(see below). In addition to the unpolarized differential cross section (dσunpol/d�∗

M ),
various polarization observables have also been measured.



Electromagnetic excitations of nucleon resonances 101

0

10

20

30 θπ=85o

0

0.2

0.4

0.6

0.8

0

10

20

30 θπ=105o

0

0.2

0.4

0.6

0.8

0

10

20

30

200 300 400

θπ=125o

0

0.2

0.4

0.6

0.8

200 300 400

Figure 3.5. The differential cross section dσ/d� (left) and the photon asymmetry
� (right) of the p(γ, π0)p reaction calculated from the SL model [70] compared
with the MAMI data [106] for photons in the energy range 200 to 450 MeV. The
� photoproduction data from LEGS [107] agree well with the MAMI data and
hence are not shown. The dashed curves are obtained by setting RE M = 0. The
dashed curves for the differential cross section (left panels) are indistinguishable
from the solid curves.

One of the main outcomes from analyses of these single-pion production data is
a more detailed understanding of the �(1232) resonance. The focus has been on
the determination of the magnetic M1, electric E2, and Coulomb C2 form factors
of the γ N → �(1232) transition. This development is discussed in detail in this
subsection. The analyses of the data for the single-pion production in the second
and third resonance regions are discussed in sections 3.4.2 and 3.4.3.

Pion photoproduction High-statistics data on the photon asymmetry of the
γ N → π N reaction are essential in extracting the small E1+ amplitude which
can be used in (3.68) to determine the electric E2 strength of the γ N → �(1232)
transition. Figure 3.5 shows the γ p → pπ0 data from MAMI [106]. The results
from the SL model [70] are also displayed. When the E1+ amplitude is turned off in
the dynamical calculation, the predicted photon asymmetries (dotted curves) devi-
ate from the data. Amplitude analyses of these new data have been performed by
several groups and we now have a world-averaged value of the REM ratio, defined
by (3.70), RE M (0) = (−2.38 ± 0.27)% [125]. The magnetic M1 transition strength
has been determined as G∗

M (0) = 3.18 ± 0.04 (unitless as defined by (3.58)). It is
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A3/2 RE M
Dressed Bare Dressed Bare

Dynamical model −258 −153 −2.7 −1.3 [70]
−256 −136 −2.4 0.25 [73]

K-matrix −255 −2.1 [57]
Dispersion −252 −2.5 [50]
Quark model −186 ∼ 0 [126]

−157 ∼ 0 [19]

Table 3.1. Helicity amplitude A3/2 and E2/M1 ratio REM for the γ N → �(1232)
transition at Q2 = 0 photon point. A3/2 is in units of 10−3 GeV−1/2 and REM is given
as a percentage.

instructive to note that in the SU(6) quark model G∗
M (0) is related to the proton

magnetic moment G p = 1 + κp = 2.793 by

[G∗
M (0)]SU (6) = 4

3

√
m N

2m�

G p = 2.298. (3.80)

This relation can be obtained by following the derivations given in Appendix A of
[68] and using the relationship between the decay width ��→γ N and the multipole
amplitudes M1+ and E1+:

��→γ N = q2m N

2πm�

[|M1+|2 + 3|E1+|2]. (3.81)

The SU(6) value 2.298 given in (3.80) clearly seriously underestimates the empirical
value 3.18 ± 0.04. This has long been noticed in many quark-model calculations.

Using the dynamical model of section 3.3.5, the bare transition strengths can be
extracted by separating the pion-cloud effects from the full (dressed) transition
strengths, as defined in (3.50) and illustrated in figure 3.4. The pion-cloud effect
can be more clearly seen in table 3.1. The dressed values of the helicity amplitude
A3/2, calculated from two dynamical models [70,73], agree well with the empirical
values from amplitude analyses based on the K -matrix method and dispersion
relations. Within the dynamical models, the dressed values are about 40% larger
in magnitude than the bare strengths, indicating the importance of the pion cloud.
These bare values are within the range predicted by two constituent-quark models
[19,126]. This suggests that the bare parameters of the dynamical models can be
identified with some hadron structure calculations. From table 3.1 it can also be seen
that the difference between the dressed and bare values of REM is even larger. The
bare values from the two dynamical-model analyses are quite different, indicating
some significant differences in their formulations as discussed in section 3.3.5.
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W range Q2 range
Reaction (GeV) (GeV2) Lab/experiment

ep → epπ0 < 1.8 0.4–1.8 JLab-CLAS [113]
�(1232) 0.1–0.9 ELSA-Elan [119]
�(1232) 2.8, 4.0 JLab-HallC [111]
< 2 2–6 JLab-CLAS [120]
�(1232) 7.5 JLab-HallC [121]
< 2.0 1.0 JLab-HallA [115]

ep → enπ+ < 1.6 0.3–0.65 JLab-CLAS [112]
�(1232) 0.1–0.9 ELSA-Elan [119]
< 2 2–6 JLab-CLAS [120]


e p → epπ0 �(1232) 0.2 MAMI-A1 [117]
�(1232) 0.3–0.65 JLab-CLAS [114]
�(1232) 0.12 Bates-OOPS [118]


e p → enπ+ < 1.6 0.3–0.65 JLab-CLAS [116]

e p → e
pπ0 �(1232) 1.0 JLab-HallA [122]

e
p → epπ0 �(1232) 0.5–1.5 JLab-CLAS [124]

e
p → enπ+ < 1.85 0.4, 0.65, 1.1 JLab-CLAS [123]

Table 3.2. Summary of data of single-pion electroproduction reactions. The arrows in
the reaction indicate if the electron beam or the target nucleon is polarized.

Pion electroproduction High-precision pion electroproduction data started to
become available in 1999 with the publication [111] of p(e, e′π0)p data at Q2 = 2.8
and 4 GeV2 from JLab. These data allowed the determination of the parametrization
of the γ ∗N → �(1232) transition form factors within the SL [72], MAID [59],
and DMT [73] models. For example, the resulting bare magnetic M1 form factor
G M (Q2) of the SL model takes the form

G M (Q2) = G M (0)[(1 + aQ2) exp(−bQ2)]G D(Q2), (3.82)

where G M (0) = 1.9 ± 0.05, a = 0.154 GeV−2, b = 0.166 GeV−2 and G D(Q2) =
1/(1 + Q2/0.71)2 is the dipole form factor of the proton. With this phenomeno-
logical step, these three models have since been most commonly used to make
predictions for the data listed in table 3.2. Sample comparisons with the data from
JLab are shown in figures 3.6 and 3.7. In general, the predictions from the SL,
MAID, and DMT models are in good agreement with all of the available data in the
�(1232) region. However, work is still needed to remove the remaining discrepan-
cies so that the γ ∗N → �(1232) form factors can be more precisely determined.
In particular, the electric E2 form factor G E (Q2) and Coulomb C2 form factor
GC (Q2) within each model must be further examined and refined before they can
be used for testing the predictions from hadron models or lattice QCD calculations.
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Figure 3.6. p(e, e′π0)p cross section data [113] from CLAS at JLab compared
with the predictions from the SL Model [72].

Figure 3.7. CLAS data [114] on σLT ′ of the p(e, e′π+)n reaction in the �(1232)
region are compared with predictions from SL [72] (solid), MAID [59] (dashed )
and DMT [73] (dash-dotted ) models.
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The data from JLab have extensive coverage in angle and energy and hence allow
nearly model-independent determination of the γ ∗N → �(1232) transition form
factors. Analyses are based on the consideration that, at the �(1232) peak, the
dominant amplitude is M1+ and the small quadrupole E1+ and S1+ are accessible
through their interference with it. Thus analysis can be started by using a truncation
in which only terms involving M1+ are retained. With the partial-wave decompo-
sitions of (3.17), the differential cross sections in (3.9) can be expanded in terms
of Legendre polynomials:

dσT

d�
+ ε

dσL

d�
=

∞∑
l=0

Al Pl(cos θ ), (3.83)

√
2ε(ε + 1)

dσLT

d�
=

∞∑
l=1

Bl P ′
l (cos θ ), (3.84)

ε
dσT T

d�
=

∞∑
l=2

Cl P ′′
l (cos θ ), (3.85)

where P ′
�(x) = d P�(x)/dx and P

′′
� (x) = d2 P�(x)/d2x .

In the approximation that we retain only terms that contain the dominant multipole
M1+, the coefficients in these equations are related to |M1+|2 and its projections on
to the other S- and P-wave multipoles E1+, S1+, M1−, E0+ and S0+:

|M1+|2 = 1
2 A0, (3.86)

Re(E1+M∗
1+) = 1

8 (A2 − 2
3C2), (3.87)

Re(M1−M∗
1+) = − 1

8 (A2 + 2(A0 + 1
3C2)), (3.88)

Re(E0+M∗
1+) = 1

2 A1, (3.89)

Re(S0+M∗
1+) = B1, (3.90)

Re(S1+M∗
1+) = 1

6 B2. (3.91)

The coefficients A�, B� and C� of (3.86)–(3.91) are determined by fitting (3.83)–
(3.85) to the data. As the pion–nucleon P33 phase shift is known, (3.86) can be
used to give both the real and imaginary parts of the M1+ amplitude and, through
the interference terms (3.87) and (3.91), the E1+ and S1+ amplitudes. Finally, the
γ ∗N → �(1232) transition form factors are determined through (3.67)–(3.69).
Although this procedure is largely model-independent, the corrections from the
truncation of multipoles in fitting the data can be estimated by using, for example,
the UIM of the JLab/Yerevan group (JANR) described in section 3.3. The resulting
values (solid and open squares) of G∗

M of the γ N → �(1232) transition up to
Q2 = 6 GeV2 are displayed in figure 3.8, along with the values given by earlier
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Figure 3.8. Data on the magnetic transition form factor G∗
M for the γ ∗N →

�(1232) transition are compared with the predictions from SL [72] (Sato–Lee
(dressed)), MAID [59] of 2003 (MAID03) and DMT [73] (DMT) models. The
dotted curve (Sato–Lee (bare)) is obtained from the SL model by turning off
the pion-cloud effect. G D(Q2) = 1/(1 + Q2/0.71)2 is the usual dipole form factor
of the proton. Data extracted from old single-arm electron scattering experiments
are labelled ‘inclusive’. All other data have been obtained from multipole fits to
the data of exclusive π0 production from protons. The data are from a compilation
in [2].

work. They are compared with the results calculated from the models of SL (Sato–
Lee (dressed)), MAID of 2003 (MAID03) and DMT. For the SL model, we also
show the bare form factor (Sato–Lee (bare), dotted curve) that is obtained by turning
off the pion-cloud effect and using (3.82). As mentioned above, the parameters of
these three models have been determined mainly by using the data [111] at Q2 = 2.8
and 4 GeV2. The results at other low Q2 and in the Q2 > 4 GeV2 region are the
predictions. The agreement between these three model predictions with the new
empirical values from JLab clearly indicates that the magnetic M1 form factors in
the three models considered are consistent with the new data.

Comparing the solid and dotted curves in figure 3.8, it is seen that the pion-cloud
effect is about 40% at Q2 = 0, but becomes much smaller at high Q2. This sug-
gests that results at Q2 ≥ 6 (GeV)2 will essentially probe the bare form factor
which describes the direct excitation of the quark core as illustrated in figure 3.4. It
remains to be verified that the bare form factor (3.82) of the SL model can be iden-
tified with the constituent-quark-model predictions, as is the case for the Q2 = 0
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Figure 3.9. The imaginary parts of the E3/2
1+ and S3/2

1+ at W = 1.232 GeV calculated
from the SL model [72]. The dotted curves are obtained from setting the pion-cloud
effect to zero.

photoproduction amplitudes given in table 3.1. How the results shown in figure
3.8 can be related to lattice QCD calculations [7] is still an open question mainly
because of the difficulties involved in handling the meson–baryon continuum states
on the lattice.

The pion-cloud effect is even more dramatic in the E1+ and S1+ amplitudes. This
is illustrated in figure 3.9. We see that the pion-cloud effect greatly enhances these
two amplitudes at low Q2 and yields non-trivial Q2 dependence. The ratios REM

and RSM , which are defined by these two amplitudes in (3.70) and (3.71), calculated
from the SL and DMT models are compared with the empirical values in figure 3.10.
The models agree well with each other and with the empirical values of RE M .
However, they differ greatly in RSM at low Q2, indicating significant differences in
their formulations as discussed in section 3.3. The results from the SL model appear
to be consistent with the JLab results. On the other hand, efforts are still being made
to improve the empirical values at low Q2 for a more detailed verification of the
pion-cloud effects illustrated in figure 3.9.

3.4.2 η-meson production

The photo- and electroproduction of the η meson on protons is another example
of a successful single-channel analysis and the photocoupling amplitude of the
S11(1535) resonance has now been extracted with confidence.

As η is an isoscalar meson it can only couple with nucleons to form isospin I = 1
2

states. This makes the production of η from nucleon targets an ideal tool to separate
isospin- 1

2 resonances from isospin- 3
2 resonances. The total photoproduction cross

section, shown in figure 3.11(left), exhibits a rapid rise just above the Nη threshold,
indicative of a strong S-wave contribution. This behaviour is known to be due
to the first negative-parity nucleon resonance, the S11(1535), which couples to
the Nη channel with a branching fraction of approximately 55% [127]. The next
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Figure 3.10. Data on ratios RE M (denoted as E1+/M1+) and RSM (denoted as
S1+/M1+) for the γ N → �(1232) transition compared with predictions from the
SL [72] and DMT [73] models. These two ratios are related to the E3/2

1+ , S3/2
1+ ,

and M3/2
1+ multipole amplitudes of γ ∗N → π N , by (3.70) and (3.71). Preliminary

data from CLAS at low Q2 are also included (open circles). The data are from a
compilation in [2].

higher-mass nucleon resonance with a significant Nη coupling is the P11(1710).
This makes the production of η from nucleon targets the reaction of choice for
detailed studies of the electromagnetic excitation of the S11(1535) resonance. As can
be seen in figure 3.11(right) the S11 remains dominant up to rather high values of Q2.

While the various data sets agree in their general behaviour, there are apparent
discrepancies between two of them near 1070 MeV photon energy. The discrepancy
may be traced to the differences in the way the extrapolations to θ∗

η = 0◦ and
θ∗
η = 180◦ have been made in the two experiments. In order to obtain a total cross

section, extrapolations are necessary if the experiments do not cover the full angular
range, and models are used to guide the extrapolation into the unmeasured regions.

Table 3.3 gives an overview of the kinematics covered in η-production measure-
ments [128–138].

η photoproduction from protons The η-photoproduction data on differential
cross sections [128,129,133,135] cover the pη invariant mass range from production
threshold up to W = 2.3 GeV, and have allowed a detailed analysis of the S11(1535)
resonance.
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Observables W range Q2 range
Reaction (GeV) (GeV2) Laboratory

γ p → pη dσ/d� < 2.0 JLab-CLAS [128]
dσ/d� < 1.7 GRAAL [130,135]
dσ/d� < 2.3 ELSA-CB [129]
dσ/d� < 1.53 MAMI-TAPS [133]

γ (n/p) → (n/p)η dσn/dσp < 2.3 GRAAL [131]

γ p → pη � < 2.3 GRAAL [136]
γ 
p → pη T < 2.3 ELSA [138]

γ 
p → pη � < 1.53 MAMI-A2 [132]
ep → epη σLT , σT T , < 2.2 2.8–4.0 JLab-Hall-C [127]

σT + εσL
σLT , σT T , < 2.2 0.3–4.0 JLab-CLAS [134,137]
σT + εσL

Table 3.3. Summary of η photoproduction data. � is the linearly-polarized photon asym-
metry and T is the polarized-target asymmetry.
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Figure 3.11. Left: total cross section for γ p → pη. The open circles are data from
MAMI [132,133]. The solid circles are from GRAAL [130], and open squares
are from JLab [128]. Right: the Q2 dependence of the total cross sections for
γ ∗ p → ηp from JLab [134,137].

The S11(1535) has been treated as a three-quark state in the quark model. How-
ever, its nature as a three-quark state has been questioned. For example, in [139]
the state is characterized as a dynamically-generated � K̄ state. On the other
hand, a three-quark state with J P = 1

2
−

is clearly seen in quenched lattice QCD
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Resonance Mass (MeV) � (MeV) Ap
1/2 Model

S11(1535) 1527 142 96 UIM
1542 195 119 Dispersion relations
1520–1555 100–200 60–120 PDG

Table 3.4. S11(1535) photocoupling in units (10−3 GeV−1/2) from global fit [53]
using the UIM and dispersion relations compared with the PDG values [25].

calculations. The photocoupling amplitudes and their Q2 dependence could be
powerful tools in determining the internal resonance structure.

Several analyses have been performed on η photoproduction [53,140,141]. We
describe the results from a global analysis [53] that uses both the UIM, as explained
in section 3.3.3, and a dispersion-relation approach, as also described in section
3.3.6, to assess the model dependence of the resulting amplitudes. In addition to
the differential cross sections this global analysis includes polarized target asymme-
tries [138] and polarized beam asymmetries [136]. All established N ∗ resonances
above the Nη threshold were included, that is S11(1535), D13(1520), S11(1650),
D15(1675), F15(1680), D13(1700), P11(1710) and P13(1720). The cross section data
were fitted for invariant masses in the range 1.49 < W < 2.15 GeV. The polariza-
tion data cover only the range up to W = 1.7 GeV.

The analysis results for the S11(1535) resonance are summarized in table 3.4. We
see that the results from the UIM and dispersion relation analyses are consistent
and are within the rather wide ranges given by the PDG [25]. More importantly,
both analyses confirm the large helicity amplitude Ap

1/2.

We note that the results for S11(1535) from the global fits are also in good agreement
with the analysis of pion and η electroproduction data at Q2 = 0.4 GeV2, as will
be discussed in section 3.4.3. From the fit to the differential cross sections one can
then also extract the total η-photoproduction cross section. The results are compared
with the experimental data in figure 3.11(left).

The global analysis incorporates also the beam asymmetry, �, in the fit. This
observable is highly sensitive to the interference of the dominant E0+ multipole
with the E2− and M2− multipoles of the neighbouring D13(1520) state. The
sensitivity of � to the contributions from the D13(1520) can be seen if we express
� in the approximation that only S-waves, P-waves, and D-waves with spin J ≤ 3

2
contribute, and only terms containing the dominant Eη

0+ multipole are retained
[140]:

� = 3 sin2 θRe[E∗η

0+(Eη

2− + Mη

2−)]

|Eη

0+|2 . (3.92)
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Resonance Mass (MeV) � (MeV) βηN (%) βπ N (%)

D13(1520) 1520 120 0.05 ± 0.02 50–60
F15(1680) 1675 130 0.15 ± 0.03 60–70

Table 3.5. The mass, width (�), and branching fractions βηN and βπ N for
the D13(1520) and F15(1680) states extracted from the global fits [53] of η
photoproduction data.

This expression can be fitted to the measured beam asymmetry �. Using Eη

0+ from
fits to the cross section data, the multipoles Eη

2− + Mη

2− for the D13(1520) can then
be determined. Using the known pion multipoles Eπ

2− + Mπ
2− and the branching

fraction βπ N , the branching fraction βηN can then be extracted.

In the mass range of the F15(1680), the beam asymmetry is also sensitive to the
branching ratio βηN for that state. The results for the D13(1520) and F15(1680) are
summarized in table 3.5. Both results represent significantly- improved values for
the branching fractions.

η electroproduction from protons η electroproduction experiments have
focussed on the Q2 evolution of the S11(1535) transverse photocoupling amplitude
A1/2(Q2). Experiments in the 1970s [142–145] indicated a very slow falloff with
Q2. More recent experiments [127,134,137] have studied this behaviour in detail
with high statistics over a wide kinematic range. Applying the Legendre polynomial
expansions (3.83)–(3.85) with a limit of l = 2 to fit the differential cross section
data, the coefficients A0, A1, A2, B1, B2 and C2 can be extracted. The resulting
values of these coefficients are shown in figure 3.12(left). We note that A0 is mostly
due to the S11(1535) resonance, and is by far the largest amplitude. The longitudinal
and transverse amplitudes cannot be separated in this analysis. However, the global
analysis that includes single-pion channels, discussed below, finds a rather small
longitudinal contribution to A0. Assuming σL = 0, |A1/2| can then be computed
from a Breit–Wigner resonance fit to A0. The figure 3.12(right) shows a compi-
lation of results for A1/2(Q2). The striking feature is the slow falloff with Q2,
indicating a hard transition form factor throughout the entire Q2 range. It should be
noted that while the Q2 evolution is well determined, the absolute normalization of
A1/2(Q2) is uncertain to the extent that the branching fraction βNη(S11) = 0.55 and
a total width of 150 MeV have been used in extracting A1/2. The PDG [25] allows
a large range of 0.30–0.55 for this branching fraction. However, the analysis of
Armstrong et al [127], gives a most-probable value of βNη(S11) ≈ 0.55. The use of
this value is consistent with the values βNη(S11) = 0.55 and βNπ (S11) = 0.4 used
in the combined analysis [146] of π and η electroproduction, which is the subject
of the next section.
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Figure 3.12. Left: the fitted values of the partial-wave coefficients (defined in (3.83)
to (3.85)) of η production are compared to the predictions of ηMAID [30]. Right:
the Q2 evolution of the photocoupling helicity amplitudes (A1/2) determined from
Breit–Wigner resonance fits to the parameter A0(W ) at fixed W . The full circles
are the most recent CLAS data [134,137]. The open diamonds are JLab data [127]
and the open circles are from the compilation of older data in [134]. Solid and
dashed lines are quark-model predictions from [153] and [150] respectively.

3.4.3 Combined analysis of Nπ and Nη electroproduction

Most previous results on the Q2 evolution of the S11(1535) transition amplitude were
obtained from Breit–Wigner resonance parametrizations to fit theη-production data.
This has been justified because of the dominant contribution of the S11(1535) to the
pη channel. However, this is not a fully satisfactory solution since the higher-mass
states that couple to Nη may also contribute to the lower-mass region. Furthermore,
there are also non-resonant contributions that must be taken into account. A much
more constrained approach is to carry out a global analysis that takes higher-mass
resonances as well as non-resonant terms into account and fits both the π and η

production data.

A large-acceptance detector allows simultaneous measurements of cross sections
and polarization observables for several channels, for example pπ0, nπ+ and pη.
Also, the large acceptance provides complete angular distributions, including the
full azimuthal dependence. As can be seen in (3.9) this allows the separation of
three response functions in the unpolarized cross section. Furthermore, the use of
a highly-polarized electron beam provides data on the helicity-dependent response
function σLT ′ . The full set of these data taken with a hydrogen target has been
analysed using both the UIM [52] and the dispersion-relation approach [53]. The
results for the S11(1535) are shown in table 3.6.
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Mass Width Q2 A1/2 × 103 S1/2 × 103

Resonance (MeV) (MeV) (GeV2) (GeV−1/2) (GeV−1/2)

S11(1535) 1530 150 0.375 92 ± 2 −12 ± 3
0.75 91 ± 1 −13 ± 3

0.40 91 ± 4 −21 ± 4
0.65 95 ± 3 −15 ± 3

Table 3.6. Results for S11(1535) from the combined analysis [146] of cross
section and polarized beam asymmetry data of electroproduction with nπ+,
pπ0, and pη final states. A1/2 and S1/2 are the transverse and scalar helicity
amplitudes.

In table 3.6, we see that the transverse helicity amplitude A1/2(Q2) at low Q2

shows little Q2 dependence. These values of A1/2(Q2) are slightly higher than
those obtained in the single-resonance analyses shown in figure 3.12(right). We
also note that the longitudinal amplitude S1/2 for the S11(1535) is rather small.
The uncertainties are the differences between the results obtained from the two
conceptually very different approaches, and thus indicate the model dependence of
the analysis. Clearly, the two approaches are remarkably consistent in extracting
the A1/2 and S1/2 amplitudes. As can be seen in figure 3.12, the slow falloff with Q2

is only qualitatively reproduced by constituent quark model calculations [150,153].

The results for the P11(1440) and D13(1520) are compared with models in
figures 3.13 and 3.14. For the P11(1440), the magnitude of A1/2(Q2) drops rapidly
with Q2 and changes sign near Q2 = 0.5 GeV2. The P11(1440) also shows a strong
longitudinal coupling. The comparison with a variety of models shows that none of
them describes the data, for either the transverse or longitudinal amplitudes. The
data need to establish whether there is a sign change in Ap

1/2 as models [147–153]
differ as to whether this is to be expected.

The results of the global analysis for the D13(1520) are shown in figure 3.14. These
new results are compared with the previous data in the top panels of figure 3.16. We
see from figure 3.14 that the A1/2 and A3/2 amplitudes have a strikingly-different
Q2 dependence. While A3/2 is large at the real photon point and drops rapidly with
Q2, A1/2 is small at Q2 = 0 and then rises in magnitude with increasing Q2 before
falling slowly at high Q2. One can discuss this in terms of the helicity asymmetry
A1, defined as:

A1 = A2
1/2 − A2

3/2

A2
1/2 + A2

3/2

. (3.93)

The data imply that A1 ≈ −1 at Q2 = 0, and crosses zero near Q2 = 0.5 GeV2,
where A1/2 ≈ A3/2. The ratio A1 approaches +1 at high Q2. Such a ‘helicity switch’
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Figure 3.13. JLab results for the Q2 evolution of the P11(1440) photocoupling
helicity amplitudes A1/2(Q2) (left), and S1/2(Q2) (right) from a combined analysis
[146] of π N and ηN data. Curves are the predictions of the hybrid model of [147]
(bold solid), the light-cone model of [149] (thin solid), the light-cone model of
[152] (dashed) and the meson-cloud model of [148] (dashed-dot).

Figure 3.14. JLab results for the Q2 evolution of the D13(1520) photocoupling
amplitudes A1/2, A3/2 and S1/2 from a combined analysis [146] of π N and ηN
data. The shaded bands indicate the uncertainties seen in previous analyses using
mostly pπ0 cross section data. Solid, dot, and dot-dashed lines show predictions
of theoretical calculations [149,152,151].



Electromagnetic excitations of nucleon resonances 115

was indeed predicted [154,155] within the non-relativistic quark model. In such a
model [156], the ratio of helicity amplitudes for γ p → D+

13(1520) is given by:

AD13
1/2

AD13
3/2

= 1√
3

(
q2

β2
− 1

)
, (3.94)

where q2 is the square of the three-momentum transfer to the D13(1520) at
the real photon point, evaluated in the laboratory system, and β is the strength
of the oscillator string constant in the simple-harmonic-oscillator model. The
q2-dependent term corresponds to the spin-flip term B in the single-quark tran-
sition model (SQTM), to be explained in section 3.4.4, while the constant term is
the quark-orbit flip amplitude A. At the real photon point, the ratio A1 ≈ −1 in
the model as β2 ≈ q2 for the photoproduction of D13(1520). This agrees remark-
ably with the data for γ p → D+

13(1520). For electroproduction, where Q2 �= 0,
the momentum transfer q2 increases causing the ratio A1 to increase and A1/2

becomes dominant at high Q2. Modern quark models include other terms in addi-
tion to the quark spin-flip and orbit-flip, but predict qualitatively the same behaviour
[126,149,150]. A similar behaviour is predicted by quark models [126,153,155,156]
for the transition to the F15(1680). Here the data quality is not sufficient to allow
stringent tests of the prediction.

In summary, the combined analysis of complete data sets with high statistics in
pη, nπ+ and pπ0 cross sections and the beam-spin response functions σLT ′ , has
produced a nearly model-independent result for the electrocoupling amplitudes of
the P11(1440), S11(1535) and D13(1520) resonances. The Q2 evolution of the A1/2

and S1/2 amplitudes for the P11(1440) is qualitatively consistent with the predictions
of a model including a meson cloud. The latter result confirms what was found for
the γ ∗N → �(1232) transition. As discussed in section 3.4.1, the meson-cloud
effects can be sizeable and must be taken into account in modelling the γ N → N ∗

transition amplitudes.

3.4.4 Electromagnetic transitions to the [70, 1−] supermultiplet

Analyses of the data on π and η production have established the electromagnetic
transition amplitudes for the S11(1535), P11(1440) and D13(1520) resonances. In
this section, we discuss how this information can be used to test the constituent-
quark model.

The existing data for nucleon resonance properties, such as mass, spin-parity and
flavour, fit well into the representations of the SU(6) ⊗ O(3) symmetry group. This
symmetry group leads to supermultiplets of baryon states with the same orbital
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angular momentum L. Within an SU(6) ⊗ O(3) supermultiplet the quark spins are
aligned to form a total quark spin S, with s = 1

2 , 3
2 , which combines with L to

form the total angular momentum J = L + S. A large number of explicit dynam-
ical quark models have been developed to predict the electromagnetic transitions
between the nucleon ground state and its excited states [157,148–150]. Many of
these calculations belong to the SQTM within which it is assumed that only a
single quark is involved in the electromagnetic transition. The fundamentals of
the SQTM are described in [158,159,154], where the symmetry properties for the
transition from the ground state nucleon [56, 0+] to the [70, 1−] and the [56, 2+]
supermultiplet are discussed. Within the SQTM, algebraic relations between res-
onance excitations can be derived from symmetry properties. The parameters of
these algebraic equations can be determined [160] from the experimental informa-
tion on just a few resonances. Predictions for other resonances belonging to the
same SU(6) ⊗ O(3) supermultiplet can then be made.

The [70, 1−] supermultiplet contains S11(1535) and D13(1520) which have been
studied with a large amount of data of π and η production, as discussed in the
previous subsections. Thus we can make use of this new information to predict
electromagnetic transitions to the [70, 1−] supermultiplet. For the transition to the
[70, 1−], the quark transverse current can be written within the SQTM as a sum of
three terms [158,159,154]:

J+ = AL+ + Bσ+ + Cσz L+, (3.95)

where σ is the quark Pauli-spin operator, Lz is the projection of the quark orbital
angular momentum L onto the photon direction (z-axis), and L+ = − 1√

2
(Lx + i L y)

is a raising operator for L. Clearly, the term A in (3.95) corresponds to a quark
orbit-flip with �Lz = +1, and the term B to a quark spin-flip with �Lz = 0.
The term C corresponds to both a quark spin-flip and an orbit-flip with �Lz =
+1. The relationships between the A, B and C amplitudes and the usual helicity
photocoupling amplitudes A1/2 and A3/2 are listed in table 3.7.

The coefficients A, B and C of (3.95) can be determined for the γ + [56, 0+] →
[70, 1−] transitions [160], using table 3.7 and the data on the photocoupling
amplitudes of the S11(1535) and D13(1520) resonances. The results are shown
in figure 3.15. The shaded bands are the ranges of these three coefficients allowed
by the errors on the photocoupling amplitudes of the S11(1535) and D13(1520) reso-
nances. Knowledge of these three coefficients and of two mixing angles for the tran-
sition to the [70, 1−] allows predictions for 16 amplitudes of states belonging to the
same supermultiplet. The first mixing angle θ is between two J P = 1

2
−

states result-
ing in physical S11(1535) and S11(1650) states. There is also a small mixing angle
of 6◦ for the two 3

2
−

states resulting in the physical states D13(1520) and D13(1700).
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State Proton target Neutron target

S11(1535) A+
1/2 = 1

6 (A + B − C) cos θ A0
1/2 = − 1

6 (A + 1
6 B − 1

3 C)

D13(1520) A+
1/2 = 1

6
√

2
(A − 2B − C) A0

1/2 = − 1
18

√
2
(3A − 2B − C)

A+
3/2 = 1

2
√

6
(A + C) A0

3/2 = 1
6
√

6
(3A − C)

S11(1650) A+
1/2 = 1

6 (A + B − C) sin θ A0
1/2 = 1

18 (B − C)

D13(1700) A+
1/2 = 0 A0

1/2 = 1
18

√
5
(B − 4C)

A+
3/2 = 0 A0

3/2 = 1
6
√

15
(3B − 2C)

D15(1675) A+
1/2 = 0 A0

1/2 = − 1
6
√

5
(B + C)

A+
3/2 = 0 A0

3/2 = − 1
6

√
2
5 (B + C)

D33(1700) A+
1/2 = 1

6
√

2
(A − 2B − C) Same

A+
3/2 = 1

2
√

6
(A + C) Same

S31(1620) A+
1/2 = 1

18 (3A − B + C) Same

Table 3.7. Helicity amplitudes for the electromagnetic transition from the ground state
[56, 0+] to the [70, 1−] multiplet expressed in terms of the SQTM amplitudes. θ is the
mixing angle relating two J P = 1

2
−

states resulting in the physical states S11(1535) and
S11(1650). The mixing angle used in the calculations is θ = 31◦ [9,158].

Figure 3.15. The single-quark transition amplitudes A, B, C (defined in (3.95))
extracted [160] using world data on the S11(1535) and on the D13(1520). The
shaded bands are the ranges of these three coefficients allowed by the errors on
the photocoupling amplitudes of the S11(1535) and D13(1520) resonances.
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Figure 3.16. Helicity amplitudes A1/2 for the [70, 1−] multiplet. The shaded bands
are the SQTM predictions [160] using the shaded bands of figure 3.15 for the
coefficients A, B, and C of (3.95). The superscript ‘0’ refers to amplitude for the
neutron target.

This mixing angle is not included in the calculation. The predictions, calculated
from the shaded bands in figure 3.15, are shown in figure 3.16 and compared with
the available helicity amplitude data. Note that the data points for S11(1535) and
D13(1520) (three figures on the top row of figure 3.16) are used to determine the
coefficients A, B and C of (3.95) shown in figure 3.15. The rest of the figures 3.16
are the SQTM predictions.
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In the second to fifth rows of figure 3.16 we see that the SQTM predictions agree
very well with the data at the Q2 = 0 real-photon point. This suggests that the single-
quark transition may be the dominant contribution to the excitation of the states
in [70, 1−]. More electroproduction data for extracting transition amplitudes at
Q2 > 0 and for other members of the [70, 1−] multiplet are needed for a conclusive
test of the SQTM. Most of the states in the [70, 1−] with masses near 1700 MeV
couple strongly to Nππ channels and require more involved analysis techniques.
Progress in this area is discussed in the next section. There are similar SQTM
relations for the transition from the nucleon ground state to the members of the
[56, 2+] supermultiplet. In this case four SQTM amplitudes can contribute. The only
state for which the two transverse photocoupling amplitudes have been measured in
electroproduction is the F15(1680), which is insufficient to extract the four SQTM
amplitudes.

3.4.5 Two-pion production

Two-pion channels dominate the electromagnetic meson-production cross sections
in the second and third resonance regions where we hope to resolve the missing
resonance problem [157] and ultimately determine what basic symmetry group
[24] is underlying the baryon spectrum. Thus a detailed understanding of two-pion
production is very important in the N ∗ study, and has been pursued very actively.
Extensive two-pion production data have now been accumulated at JLab, Mainz
and Bonn, but have not been fully analysed and understood theoretically. Here we
will mainly report on the status of the data and describe some very preliminary
attempts to identify N ∗ states.

The study of ππ N channels requires the use of detectors with nearly 4π solid
angle coverage for charged or neutral particle detection. Several such detectors
have been in operation for a number of years, and have generated large data sets
for the reactions

γ p → pπ0π0 , (3.96)

γ p → pπ+π− , (3.97)

ep → epπ+π− . (3.98)

These processes can be projected onto various isobar channels which are useful in
identifying the nucleon resonances from the data. The pπ+π− final state contains
the �++π− and ρ0 p isobar components, which could have large sensitivity to
resonance decays. But it also has very strong contributions from non-resonant
mechanisms which complicate the analysis of the data. The pπ0π0 final state has
the advantage of high sensitivity to resonances because it has fewer non-resonant
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Reaction Observables W range Q2 range Lab.
(GeV) (GeV2)

γ ∗ p → pπ+π− σtot ,
dσ

d Mpπ+
< 2.1 0.65–1.3 CLAS [162]

dσ

d Mπ+π−
,

dσ

d cos θπ−

γ p → pπ+π− σtot ,
dσ

d Mpπ+
< 2.0 0 CLAS [163]

dσ

d Mπ+π−
,

dσ

d cos θπ−

γ p → pπ0π0 σtot ,
dσ

d Mpπ0
< 1.9 0 GRAAL [165]

dσ

d Mπ0π0

γ p → pπ0π0 σtot , �,
dσ

d Mpπ0
< 1.55 0 MAMI [164,166]

dσ

d Mπ0π0

Table 3.8. Summary of γ p → pππ reaction data. MNπ denotes the invariant mass of the
produced Nπ subsystem. � is the photon asymmetry.

contributions. It also does not couple to the pρ0 isobar state. Table 3.8 gives a
summary of two-pion production data obtained at various laboratories.

Analysis of pπ+π− final state The pπ+π− channel has been studied in both
photoproduction [161,163] and electroproduction [162] reactions. Two distinctly
different approaches, based on isobar models, have been applied to analyse the
data from JLab [163,167] and CB-ELSA [161]. The first approach is to adjust
the parameters of an isobar model [167] to fit the fully-extracted cross section
and polarization-asymmetry data [167,169]. The second one is to fit directly the
unbinned data [161].

The first approach makes use of knowledge obtained from production by
pion beams. The energy dependence of non-resonant processes is parametri-
zed and resonance photocouplings and hadronic couplings are fixed if known, for
example from single-pion processes. Resonances in specific partial waves can be
introduced to search for undiscovered states. Model parameters are then obtained
by fitting to the one-dimensional projections of the multi-dimensional differential
cross section. Such a model can lead to a qualitatively good description of the
projected data. The method has been used in the analysis of CLAS electropro-
duction data [162]. As displayed in figure 3.17(left), a significant discrepancy was
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Figure 3.17. Total cross sections for photoproduction (left) and electroproduction
(right) of π+π− on protons at Q2 = 0.65, 0.95 and 1.30 GeV2 (from the top). Data
sets are from CLAS [162,163]. The curves are explained in the text.

found near W = 1.7 GeV between the data and the predictions (dotted curves) from
the isobar model employed. This discrepancy was attributed either to inaccurate
hadronic couplings for the well-known P13(1720) resonance, determined from the
analysis of hadronic experiments, or to an additional resonance with J P = 3

2
+

with
either I = 1

2 or I = 3
2 . The discrepancy is best visible in the total cross sections for

electroproduction, shown in figure 3.17(right). The dotted line shows the model pre-
dictions using resonance parameters from single-pion electroproduction and from
the analysis of π N → Nππ data [25,60,65]. The solid line represents the fit when
the hadronic couplings of the P13(1720) to �π and to Nρ are allowed to vary well
beyond the ranges established in the analysis of hadronic data. Alternatively, a new
state was introduced with hadronic couplings extracted from the data. Table 3.9
summarizes the results of the analysis using a single P13 with modified hadronic
couplings, and a new PI 3 state with undetermined isospin while keeping the PDG
P13(1720) hadronic couplings unchanged.

The total photoproduction cross section in figure 3.17(left) shows a dependence
on W that is very different from the electroproduction data in the right panel. In
particular, the photoproduction data have a much higher non-resonant contribution
largely due to increased non-resonant ρ0 production. Both data sets are consistent
with a strong resonance near W = 1.72 GeV in the P13 partial wave [170].

The drawback of this approach is that when fitting one-dimensional projections of
cross sections, correlations between data sets are lost. The second approach [163]
is based on a partial-wave formalism starting from the T matrix at a given photon
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Mass (MeV) � (MeV) �π�/� (%) �Nρ/� (%)

P13 from [167] 1725 ± 20 114 ± 19 63 ± 12 19 ± 9
P13(1720) of PDG 1650–1750 100–200 70–85
New PI 3 from [167] 1720 ± 20 88 ± 17 41 ± 13 17 ± 10

Table 3.9. The PDG [25] parameters for the P13(1720) are compared with the values deter-
mined from fitting [167] the π+π− electroproduction data on protons. The parameters
of the newly proposed PI 3 with undetermined isospin I are also listed.

energy E:

T f i (E) = 〈pπ+π−; τ f |T |γ p; E〉
=

∑
α

〈pπ+π−; τ f |α〉〈α|T |γ p; E〉

=
∑

α

ψα(τ f )V α(E) , (3.99)

where α denotes all intermediate states, and τ f characterizes the final state kinemat-
ics. The decay amplitude ψα(τ f ) = 〈pπ+π−; τ f |α〉 is calculated using an isobar
model for specific decay channels, for example �++π−, �0π+ or pρ0. The pro-
duction amplitude V α = 〈α|T |γ p; E〉 is then determined by using an unbinned
maximum-likelihood procedure to fit the data event by event. This method takes
into account all correlations between the variables.

In this analysis, 35 partial waves were included in addition to t-channel processes
with adjustable parameters. Figure 3.18 shows intensity distributions in different
isobar channels, for the J = 5

2 (m = 1
2 ) and J = 3

2 (m = 1
2 ) partial waves. Clear sig-

nals of the well-known F15(1680) and the poorly-known P33(1600) are seen. In the
final analysis the energy dependence is fitted to a Breit–Wigner form to determine
masses and widths of resonant states. This method is closer to a model-independent
approach and can directly ‘discover’ new resonances in specific partial waves.

Analysis of the pπ0π0 final state The CB-ELSA collaboration has analysed
the pπ0π0 final state using a more model-dependent version of the partial-wave
analysis. Here s-channel Breit–Wigner distributions are fitted to the data on an
event-by-event basis, therefore retaining the correlations in the data. However,
the fit is constrained by the parametrized energy dependence of the Breit–Wigner
function. Neglecting t-channel processes may be suitable for the pπ0π0 channel,
but is insufficient for the pπ+π− channel. The method has been applied in the
mass range up to 1800 MeV [161]. The decay channels �(1232)π , N (ππ )s , and
P11(1440)π are included. The data can be fitted with partial waves of known states,
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Figure 3.18. Preliminary results [163] of a partial-wave analysis of the γ p →
pπ+π− reaction showing the well-known F15(1680) (left) and evidence for the
poorly-known P33(1600) (right).
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Figure 3.19. Preliminary results [161] of a partial-wave analysis for the reaction
γ p → pπ0π0, shown by the histogram, compared with the total cross section
measured by TAPS [164] and GRAAL [165].

and do not require additional new states. At the present time the solutions are not
unique, and equally good fits are obtained with different partial waves. This points
to a need for the inclusion of polarization observables or other final states into
the analysis. In figure 3.19 the total cross section for γ p → π0π0 p is shown as
extracted from the integral over all partial-wave contributions and compared to
previous data from TABS [164] and GRAAL [165].
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3.4.6 Kaon production

Production of kaons from nucleons has long been recognized as a potentially very
sensitive tool in the search for excited non-strange baryon states [168]. The lack
of consistent data sets for K� and K� production in a wide kinematic range has
hampered the research in this area. Moreover, the interpretation of these data in terms
of N ∗ excitations, mainly for charged K +� and K +�0 channels, is complicated by
the fact that they may be dominated by non-resonant particle-exchange processes.
Another drawback in comparison to Nπ and Nππ is the relatively small cross
section and the lack of known strong resonances with a dominant coupling to kaon–
hyperon channels. This fact makes it more difficult to use strangeness production
as a tool in the study of excited baryons, and specifically in the search for new
resonances.

Most of the theoretical models [83–90] for kaon production are based on the tree-
diagrams approach, as described in section 3.3.2. The validity of these tree-diagram
models is questionable, as discussed, for example, in a coupled-channel study [76]
of kaon photoproduction. We therefore focus mainly on the status of the data, not
on the results from these theoretical models.

The K� and K� channels allow isospin separation as the K� final state selects
isospin- 1

2 states, while K� couples to both isospin states. An important tool in res-
onance studies is the measurement of polarization observables. The self-analysing
power of the weak decay � → pπ− can be used to measure the � recoil polariza-
tion. To make full use of this unique feature large acceptance detectors are needed.

Photoproduction of K +Λ and K +Σ High-statistics data on kaon photopro-
duction covering the resonance region are available from the SAPHIR [172] and
the CLAS [173] collaborations. These data consist of angular distributions and �

polarization asymmetries, as summarized in table 3.10.

Typical data of angular distributions for K +� and K +� production are shown in
figure 3.20. We see that the K +� data (left panel) show a strong forward peaking
for photon energies greater than 1 GeV, indicating large t-channel contributions.
For the K +�0 channel (right panel) the angular distributions are more symmetric
or ‘resonance-like’ at low energies, but become somewhat more forward-peaked at
energies above 1.3 GeV.

The high statistics of these data allows, for the first time, the identification of the
structures in the differential cross section that hint at interference between reso-
nances and the non-resonant background. The presence of s-channel resonances is
particularly evident in the W dependence shown in figure 3.21. At the most forward
angles (upper panel), two resonance-like structures are visible at W ≈ 1.7 GeV,
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Reaction Observables W range cos θ∗
K range Q2 Laboratory

(GeV) (GeV2)

γ p → �K dσ/d� < 2.15 −0.95 to 0.95 SAPHIR [171]
dσ/d� < 2.6 −0.95 to 0.95 SAPHIR [172]
dσ/d� < 2.3 −0.85 to 0.85 CLAS [173]

γ p → �K dσ/d� < 2.15 −0.95 to 0.95 SAPHIR [171]
dσ/d� < 2.6 −0.95 to 0.95 SAPHIR [172]
dσ/d� < 2.3 −0.85 to 0.85 CLAS [173]

γ p → K + 
�, 
� P < 2.3 −0.85 to 0.85 CLAS [173]
p.r.f. < 2.6 −0.95 to 0.95 SAPHIR [172]

ep → eK + 
� σLT ,σT T , < 2.2 −1.0 to 1.0 < 3 CLAS [174]
σT + εσL

ep → eK + 
� σT , σT T , < 2.2 −1.0 to 1.0 < 3 CLAS [174]
σT + εσL


e p → eK +� P ′
x , P ′

z < 2.2 −1.0 to 1.0 < 3 CLAS [174]

Table 3.10. Summary of hyperon photo- and electroproduction data. The transfer polariza-
tion components P ′

x and P ′
z are defined in (3.100) and p.r.f. is the polarization response

function.

0

0.2

-1 -0.5 0 0.5 1
0

0.2

-1 -0.5 0 0.5 1

0

0.2

-1 -0.5 0 0.5 1
0

0.2

-1 -0.5 0 0.5 1

0

0.2

-1 -0.5 0 0.5 1
0

0.2

-1 -0.5 0 0.5 1

0

0.2

-1 -0.5 0 0.5 1
0

0.2

-1 -0.5 0 0.5 1

0

0.2

-1 -0.5 0 0.5 1
0

0.2

-1 -0.5 0 0.5 1

0

0.2

-1 -0.5 0 0.5 1
0

0.2

-1 -0.5 0 0.5 1

0

0.2

-1 -0.5 0 0.5 1
0

0.2

-1 -0.5 0 0.5 1

0

0.2

-1 -0.5 0 0.5 1
0

0.2

-1 -0.5 0 0.5 1

0

0.2

-1 -0.5 0 0.5 1
0

0.2

-1 -0.5 0 0.5 1

0

0.2

-1 -0.5 0 0.5 1
0

0.2

-1 -0.5 0 0.5 1

0

0.2

-1 -0.5 0 0.5 1
0

0.2

-1 -0.5 0 0.5 1

0

0.2

-1 -0.5 0 0.5 1
0

0.2

-1 -0.5 0 0.5 1

Figure 3.20. Angular distributions of K +� photoproduction (left) and K +�0 pho-
toproduction (right). Both data sets are from SAPHIR [172]. The curves represent
Legendre polynomial fits to the data.
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Figure 3.21. W -dependence of K +� photoproduction for several scattering angles
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K inc K +� centre of mass frame. in cos θ∗
K . Data with full circles are from CLAS

[173]. The triangles are older data from SAPHIR [171]. The theoretical curves are
from [176] (Guidal/Laget/vdH), [89] (KAON-MAID) and [177] (Janssen).

and at W ≈ 1.95 GeV. The structure at 1.7 GeV could be accommodated by the
known states S11(1650), P11(1710) and P13(1720) if the K� coupling of these states
is allowed to vary. From hadronic processes these couplings are very poorly known
[25]. At intermediate angles (middle panel) the data indicate a smoother fall-off
with W , while at backward angles (lower panel) another resonance-like structure
near W ≈ 1.875 GeV emerges, overlapping with the structure at the higher mass.
These distributions reveal complex processes, indicating contributions from more
than a single resonance near W = 1.9 GeV.

Electroproduction of K +Λ and K +Σ Kaon electroproduction is another tool
in the study of non-strange nucleon resonances. While the K +� and K +�0 photo-
production cross sections exhibit complex structures of resonant and non-resonant
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Figure 3.22. Cross section from CLAS [174] for K +� electroproduction at Q2 =
0.7 GeV2 integrated over to the forward hemisphere (left panel) and backward
hemisphere (right panel) in the centre of mass angle θK . Here εL ≡ ε of (3.6).

contributions that are difficult to disentangle, some of the resonance contributions
in electroproduction may be enhanced at higher Q2 due to their slower form factor
falloff compared to other resonances and compared to the background amplitudes.
A significant amount of data is available from CLAS [174,175]. In these experi-
ments the electron beam is polarized, and hence the virtual photon also has a net
circular polarization.

Figure 3.22 shows samples of the K +� production cross sections integrated over
either the forward hemisphere (left panel) and backward hemisphere (right panel) at
fixed Q2. Clearly, the angular dependence of electroproduction data at fixed W also
show strong forward peaking, indicating significant t-channel mechanisms. This
is similar to what has been observed in photoproduction data. The results shown
in figure 3.22(right) reveal resonance-like behaviour near W = 1.7 GeV and 1.87
GeV at large angles, while at the forward angles (left panel) the resonant structures
are masked by the large non-resonant contributions. The enhancements in the cross
section appear in the same range of W as in photoproduction and are likely to be
due to the same resonances contributions.

The data on � recoil polarization have been obtained in measurements with polar-
ized electron beams. The total � recoil polarization can be written as

P� = P0 ± PeP′, (3.100)

where Pe is the electron beam polarization, P0 is the induced polarization, which is
present without beam polarization, and P′ is the transferred polarization. Figure 3.23
displays the data of the transferred � polarization integrated over all Q2 for three
bins in W . The quantities P ′

x ′ and P ′
z′ are the projections of the polarization vector P′

on to the x ′- and z′-axes, which are also defined in figure 3.23. The data show that the
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Figure 3.23. Left: transferred � polarization in K + electroproduction. Right: coor-
dinate system defining the � polarization projections. Data, integrated over all φ
angles, are from CLAS [175]. The curves are predictions from models of [85]
(dotted), [90] (solid) and [172] (dot-dashed).

z′ polarization is large and is rising with cos θ∗
K , indicating a t-channel mechanism.

On the other hand, the x ′ polarization is large and remains negative throughout the
angular range. None of the theoretical results from tree-diagram models [83–90]
or a Regge model [176] can give an adequate description of the data.

To summarize, production of K +� and K +�0 from protons exhibits evidence of s-
channel nucleon resonance contributions in the mass range where no N or �(1232)
resonances have been well established. However, resonances are masked by large
t-channel processes. In order to extract reliable information on contributing reso-
nances a better understanding of non-resonant processes is needed. Currently, the
most important task is to continue experimentally to establish a broad and solid base
of consistent data in the strangeness sector, including extensive differential cross
sections, beam and target polarization asymmetries and polarization transfer mea-
surements. A ‘complete’ measurement of all observables, which is needed to extract
unambiguously all helicity amplitudes, can be achieved [178,179]. This requires
use of a polarized photon beam and of a polarized target and the measurement of the
hyperon recoil polarization. Experimental effort in this direction will continue with
a series of new measurements planned at JLab. On the theoretical side, a dynam-
ical coupled-channels approach, such as that described in section 3.3.5, must be
developed to interpret the resonance parameters extracted from the data.

3.4.7 Photoproduction and electroproduction of vector mesons

Early investigations of photoproduction and electroproduction of vector mesons
were mainly in the high-energy region where the data can be explained largely
by diffractive pomeron exchange. In the low-energy region, the meson-exchange
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mechanisms play an important role. This is illustrated in figure 3.24, which is taken
from the calculation of [92]. We see that the diffractive pomeron-exchange (dash-
dotted curve) becomes negligible at energies near the ω photoproduction threshold.
The s- and u-channel nucleon terms, and π and η exchanges, account for the main
part of the total cross section.

Here we describe only the status of ω photoproduction in the resonance region W <

2.5 GeV, where the excitations of nucleon resonances can be studied. High-quality
data in this region have been obtained at ELSA, JLab and GRAAL. As an example,
the data from ELSA are shown in figure 3.25. Photoproduction of the ρ will not be
discussed since the ρ is broad and the coupling of the ρN channel to N ∗ states can be
meaningfully defined only in an analysis involving two-pion production channels
as discussed in section 3.4.5. Photoproduction of the φ will also not be covered
here since the φ meson has little, if any, contribution from s-channel resonances, as
the predominantly ss̄ quark structure of the φ makes N ∗ → Nφ an OZI suppressed
decay[182].

Quark models that also couple to hadronic channels predict that ω photoproduction
off protons is a promising tool in the search for undiscovered N ∗ states [126,183].
As in the case of Nη and K +�, the pω final state, due to the isoscalar nature of
the ω, is only sensitive to isospin- 1

2 N ∗ resonances. Experimentally, ω production
has been measured in both magnetic detectors and neutral-particle detectors. In
magnetic detectors the pω channel is usually identified through the ω → π+π−π0

decay. This channel has an 89% branching ratio. Detectors with large acceptance
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Figure 3.25. Data of differential cross section for γ p → pω from ELSA [181].
The curves are from empirical fits to the data.

for the detection of photons allow the ω → π0γ channel with an 8.5% branching
ratio to be measured.

Theoretical models for investigating low-energy ω production are still being devel-
oped. Most of the calculations, such as that displayed in figure 3.24, are based
on tree diagrams. It has been recognized that coupled-channels effects must be
accounted for before the models can be used reliably to extract resonance parame-
ters from the data. The importance of coupled-channels effects on ω photoproduc-
tion has been demonstrated in a one-loop calculation [93] based on the dynamical
coupled-channel formulation, and also in a K -matrix coupled-channels model of
the Giessen group [62]. More effort is clearly needed to improve these theoretical
approaches.

3.5 Concluding remarks and outlook

Very significant progress is being made in the study of N ∗ physics. We now have
fairly extensive data for π , η, K , ω, φ and ππ production. Theoretical models for
interpreting these new data and/or extracting the N ∗ parameters have also been
developed.
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From the analyses of the single-pion data in the �(1232) region, quantitative infor-
mation about the γ N → �(1232) transition form factors has been obtained. With
the development of dynamical reaction models, the role of pion-cloud effects in
determining the �(1232) excitation has been identified as the source of the long-
standing discrepancy between the data and the constituent-quark-model predictions.
Moreover, the Q2-dependence of the γ N → �(1232) form factors has also been
determined up to about Q2 ∼ 6 GeV2. The M1, E2 and C2 γ ∗N → �(1232) tran-
sition form factors should be considered along with the proton and neutron form
factors as benchmark data for testing various hadron models as well as lattice QCD
calculations.

The combined analysis of the π and η production data has led to a quantitative
determination of several N ∗ parameters in the second resonance region. However,
a correct interpretation of the N ∗ parameters in terms of current hadron-model
predictions requires a rigorous investigation of the dynamical coupled-channels
effects which are not included in amplitude analyses based on either the K -matrix
isobar model or the dispersion relation approach.

Analyses of the data for K�, K�, Nππ and pω channels are still being devel-
oped. So far, most of the analyses are based on tree-diagram models with isobar
parametrizations for the resonances. Final state interactions, as required by the uni-
tarity condition, are either neglected completely or calculated perturbatively using
effective Lagrangians. The coupled-channels K -matrix effective Lagrangian model,
pioneered by the Giessen Group, looks very promising for extracting the resonance
parameters from a combined analysis of the data for all channels. However, much
work is needed to reduce the uncertainties in their non-resonant parameters and
to account for the ππ N unitarity condition. There is also a need for better track-
ing of systematics and model-dependent uncertainties in such complex fits. For a
rigorous interpretation of the resonance parameters in terms of predictions from
hadron models or lattice QCD calculations, the analyses based on the dynamical
coupled-channels model, as given in section 3.3.5, are indispensable.

Progress made since the 1990s has resulted from close collaboration between exper-
imentalists and theorists. With much more complex data to be analysed and inter-
preted, such collaborations must be continued and extended in order to bring the
study of N ∗ physics to a complete success.
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[148] M Warns, H Schröder, W Pfeil and H Rollnik, Zeitschrift für Physik C45 (1990) 627
[149] S Capstick and B D Keister, Physical Review D51 (1995) 3598
[150] M Giannini, E Santopinto and A Vassallo, Progress in Particle and Nuclear Physics

50 (2003) 263
[151] F Cano and P Gonzalez, Physics Letters B431 (1998) 270
[152] F Cardarelli and S Simula, Physical Review Letters 62 (2000) 06520
[153] F E Close and Z P Li, Physical Review D42 (1990) 2194
[154] F E Close, An Introduction to Quarks and Partons, Academic Press, London (1979)
[155] F E Close and F J Gilman, Physics Letters 38B (1972) 541
[156] L A Copley, G Karl and E Obryk, Physics Letters 29B (1969) 117
[157] P Koniuk and N Isgur, Physical Review D21 (1980) 1868
[158] A J G Hey and J Weyers, Physics Letters 48B (1974) 69
[159] W N Cottingham and I H Dunbar, Zeitschrift für Physik C2 (1979) 41
[160] V Burkert et al, Physical Review C67 (2003) 035204
[161] U Thoma, Proceedings Workshop on the Physics of Excited Nucleons, S A Dytman

and E S Swanson eds, World Scientific, Singapore (2002)
[162] M Ripani et al, Physical Review Letters 91 (2003) 022002
[163] M. Bellis et al, CLAS collaboration, Proceedings of NSTAR 2004, D Rebreyend,

J-P Bocquet and V Kuznetsov eds, World Scientific, Singapore (2004)
[164] M Wolf et al, European Physics Journal 9 (2000) 5
[165] Y Assafiri et al, Physical Review Letters 90 (2003) 222001
[166] F Harter et al, Physics Letters B401 (1997) 229
[167] V Mokeev et al, Physics of Atomic Nuclei 64 (2001) 1292
[168] S Capstick and W Roberts, Physical Review D58 (1998) 074011
[169] V Burkertet al, Physics of Atomic Nuclei 66 (2003) 2149
[170] V I Mokeev et al, Proceedings of NSTAR 2004, D Rebreyend, J-P Bocquet and V

Kuznetsov eds, World Scientific, Singapore (2004)
[171] M Q Tran et al, Physics Letters B445 (1998) 20
[172] K H Glander et al, European Physical Journal A19 (2004) 251
[173] J W C McNabb et al, CLAS Collaboration, Physical Review C69 2004) 042201
[174] R Feuerbach et al, Proceedings International Conference on the Structure of

Baryons, C Carlson and B Mecking eds, World Scientific, Singapore (2002);
M D Mestayer et al, Proceedings PANIC’99, G Faeldt, B Höistad and S Kullander
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4

Meson radiative decays

F E Close, A Donnachie and Yu S Kalashnikova

Three aspects of meson radiative decays are discussed in this chapter. The first,
electron–positron annihilation to hadrons, is aimed primarily at the study of the
light-quark vector mesons, both isovector and isoscalar, to determine their spec-
trum, decay modes and nature. An important byproduct is the evaluation of the
contribution from hadronic vacuum polarization to the muon magnetic moment.
Directly related to the isovector states, through the assumption of conserved vector
current, are the semileptonic decays of the τ and hadronic decays of B mesons. The
second topic deals with single-photon transitions between two mesons A → γ B
that are a much cleaner probe of the meson wave functions than are hadronic decays.
The direct coupling of the photon to the charges and spins of constituents makes
it possible for single-photon decays to discriminate among different models for
mesons. In particular, they can be very relevant for distinguishing hybrids and glue-
balls from conventional qq̄ excitations. Two-photon decays of mesons, discussed
in the third section, provide an even more powerful probe of meson structure and a
qualitative distinction between glueballs and qq̄ excitations, although restricted to
a more limited set of states than are single-photon decays.

4.1 Electron–positron annihilation and τ decay

There are two principal fields of interest in e+e− annihilation and the corresponding
channels in τ decay. These are the spectroscopy and decays of the vector-mesons
and the contribution from the total e+e− annihilation cross section to vacuum polar-
ization integrals relevant for Standard Model calculations of the muon anomalous
magnetic moment.

To the extent that the conserved vector current (CVC) hypothesis is correct, the
isovector part of σ (e+e− → hadrons) is related to the corresponding τ decay by an
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isospin rotation [1]. The e+e− annihilation cross section to a final hadronic state X
may be written in terms of a spectral function vX

0 (s) as

σ (e+e− → X ) = 4πα2

s
vX

0 (s), (4.1)

where s ≡ M2
X is the square of the e+e− centre-of-mass energy. For the decay

τ− → X−ντ ,

d�

ds
= G2

F |Vud |2SEW

32π2 M3
τ

(M2
τ − s)2(M2

τ + 2s)vX
−(s), (4.2)

where G F is the Fermi constant, |Vud | is the Cabibbo–Kobayashi–Maskawa (CKM)
weak mixing-matrix element, SEW accounts for electroweak radiative corrections
[2] and Mτ is the mass of the τ . The assumption of CVC then implies

vX
0 = vX

−, (4.3)

where vX
− is the τ -decay spectral function with an appropriate combination of final

states. For example,

σ (e+e− → π+π−) = 4πα2

s
vπ−π0

, (4.4)

σ (e+e− → π+π−π+π−) = 4πα2

s
vπ−3π0

, (4.5)

σ (e+e− → π+π−π0π0) = 4πα2

s
(v2π−π+π0 − vπ−3π0

). (4.6)

The reaction e+e− → γ + X , where the photon emission is caused by initial-state
radiation (ISR) and X is a hadronic final state, can be used [3–5] to measure the
cross section for e+e− → X . The ISR cross section for a particular hadronic final
state X is related to the corresponding e+e− annihilation cross section by

dσe+e−→γ X (s, x)

dx
= W (s, x)σe+e−→X (s(1 − x)), (4.7)

where x = 2Eγ /
√

s, Eγ is the energy of the ISR photon in the e+e− centre-of-mass
frame,

√
s is the e+e− centre-of-mass energy and

√
s(1 − x) is the mass of the final

state X . The function W (s, x) describes the energy dependence of the ISR photons
and is given by [5]

W (s, x) = β[(1 + δ)x (β−1) − 1 + 1
2 x], (4.8)

where

β = 2α

π
[2 log(

√
s/me) − 1] (4.9)

and δ takes into account vertex and self-energy corrections.
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An advantage of ISR data is that an entire range of centre-of-mass energies is
scanned in one experiment, avoiding relative normalization uncertainties. A dis-
advantage is that the mass resolution is less good than that obtained in direct
annihilation.

The vector-meson spectrum can also be accessed via appropriate hadronic
B-meson decays, B̄ → D(∗) X , where X is a light-quark hadronic system. The
particular case of X = ωπ− has been observed [6]. Conversely, knowledge of the
vector-meson spectrum and decay modes can be used to study the mechanism of
factorization in B decays [7].

4.1.1 The ρ, ω and φ

For a given final state X , the e+e− cross section at a centre-of-mass energy
√

s
produced via a single Breit–Wigner resonance of mass mV is

σe+e−→X (s) = 4πα2 4π

γ 2
V

m2
V

s
mV �X (s)

(s − m2
V )2 + m2

V �2
tot (s)

, (4.10)

where �X (s) is the partial width for the final state X , �tot (s) is the total width and
4π/γ 2

V is a measure of the strength of the radiative decay width

�V →e+e− = mV α2

3

4π

γ 2
V

. (4.11)

Hence (4.10) may be rewritten as

σe+e−→X (s) = 12π

s
(mV �e+e−)(mV �X (s))

(s − m2
V )2 + m2

V �2
tot (s)

. (4.12)

The radiative decay width is determined by the wave function of the qq̄ bound state
at the origin, ψ(0, mV ), by

�V →e+e− = 16πα2

m2
V

C2
V |ψ(0, mV )|2, (4.13)

where CV is the mean electric charge of the valence quarks inside the vector meson:
C2

ρ = 1
2 , C2

ω = 1
18 , C2

φ = 1
9 , C2

J/ψ = 4
9 , C2

ϒ = 1
9 . If the bound state is given by

a Coulomb-like non-relativistic potential, then |ψ(0, mV )|2 ∝ m3
V as, in general,

|ψ(0, mV )|2 ∝ m3/(2+n)
V for V (r ) ∝ rn . Then (4.13) does not give the correct ratios

of widths which are [8]

�ρ→e+e− : �ω→e+e− : �φ→e+e− : �J/ψ→e+e− : �ϒ→e+e− =
10.68 ± 0.29 : 0.913 ± 0.036 : 1.93 ± 0.074 : 8.22 ± 0.31 : 2. (4.14)
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Figure 4.1. Cross section for e+e− → π+π−. The data are from [9].

To obtain the ratios (4.14) it is necessary to assume that |ψ(0, mV )|2 ∝ m2
V in

which case the ratios of widths becomes 9:1:2:8:2 in the absence of mixing, in
good agreement with (4.14).

The cross section for the reaction e+e− → π+π− is dominated by the ρ, although
the line-shape does not correspond to a relativistic Breit–Wigner with a conven-
tional P-wave width. An additional shape parameter is required and this, together
with the large width of the ρ, creates difficulties in determining the resonance
parameters. Another effect on the cross section comes from interference with the
isospin-violating π+π− decay of the ω. Although the π+π− branching fraction of
the ω is small, less than 2% [8,9], the interference results in a significant distortion
of the line shape, as can be seen in figure 4.1. The sharp drop in the cross sec-
tion at the ω mass is clearly visible. Conversely there must be an isospin-violating
π+π−π0 decay of the ρ, although this is much more difficult to measure as, because
of the large ρ width, the interference term appears as a small background under the
ω peak, giving a slight distortion of the ω line-shape. The branching fraction has
been determined [10] as Bρ→3π = (1.0+0.54

−0.36 ± 0.34)10−4.

A third topic of interest is the π+π−π0 decay of the φ. Because of the Okuba–
Zweig–Iizuka (OZI) rule [11], which implies suppression of this decay mode, the
conventional view is that it is due to ω–φ mixing. That is

|φ〉 ≈ |φ0〉 + εφω|ω0〉, |φ0〉 = ss̄, |ω0〉 = 1√
2
(uū + dd̄), (4.15)

where |φ0〉 and |ω0〉 are the unmixed states and εφω is the ω–φ mixing parameter. An
alternative to ω–φ mixing is direct decay. A particularly sensitive test is provided
[12] by the ratio �(φ → e+e−)/�(ω → e+e−). If the 3π decay of the φ is due
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entirely to mixing, then εφω ≈ 0.05. However, the preferred value appears to be
εφω ≈ 0.015 [10], indicating that the direct transition is the principal mechanism.

4.1.2 The continuum: vector-meson spectroscopy

The existence of the isovectors ρ(1450) and ρ(1700) and their isoscalar counter-
parts ω(1420) and ω(1600) appears to be well established [8]. Following the original
suggestion [13] from a theoretical analysis on the consistency of the 2π and 4π

electromagnetic form factors and the ππ scattering length, a full analysis [14] of
the 2π and 4π channels in e+e− annihilation and photoproduction reactions con-
firmed the conjecture that there are two isovector vector states in this mass region
and determined their masses. The existence of the ρ(1450) was supported by the
analysis [15] of the ηρ0 mass spectra obtained in photoproduction and e+e− anni-
hilation. Numerous subsequent analyses, summarized in [8], of the 2π , 4π and ηρ0

channels in e+e− annihilation and τ decay, confirm the earlier conclusions with
a caveat on the mass of the ρ(1450) that we discuss below. The evidence for the
ρ(1450) and the ρ(1700) comes primarily from the π+π− and ωπ0 channels in
e+e− annihilation and the corresponding charged channels in τ decay. The data
on e+e− → π+π−π+π− and e+e− → π+π−π0π0 (excluding ωπ0) and the cor-
responding charged channels in τ decay are compatible with the two-resonance
interpretation [16–18] but do not provide such good discrimination, despite these
being the two major decay channels in the continuum. The reason is that in ππ and
ωπ there is strong interference with the tail of the ρ which is absent in the other two
channels. The ππ data show the interference quite unambiguously, as can be seen
in figure 4.2. There is a clear shoulder below 1.5 GeV from the interference of the
ρ(1450) with the (primarily real) high-mass tail of the ρ followed by destructive
interference with the ρ(1700) and then possibly constructive interference with yet
another state at higher mass. In contrast the 4π data, an example of which is given
in figure 4.3, are rather featureless with no detailed structure.

The emphasis has been on the isovector states for several reasons. The two-body ππ

and ωπ channels have no counterpart in the isoscalar sector, the cross sections for
the excitation of the ρ(1450) and the ρ(1700) are an order of magnitude larger than
those for the ω(1420) and ω(1650) and τ decay provides an additional data source
with comparable statistics to e+e− annihilation but very different systematics. The
data available for the study of the ω(1420) and ω(1650) are e+e− → π+π−π0

(which is dominated by ρπ ) and ωπ+π−. The latter cross section shows a clear
peak that is apparently dominated by the ω(1650). The e+e− data for the former
cross section show little structure, but are appreciably larger than estimated from
the tails of the ω and φ, indicating that an additional contribution was required.
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Figure 4.2. Cross section for e+e− → π+π−. The data are from [19] (crosses) and
[20] (bars).
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Figure 4.3. Cross section for e+e− → π+π−π+π−. The data are from [18].

A best fit was obtained with two states [16], although a fit with only the ω(1650)
could not be completely excluded. However ISR data [21] are quite unambiguous
with two clear resonance peaks, see figure 4.4.

There is an interesting structure in e+e− → 6π near 1.9 GeV, as shown in the com-
bination σ (e+e− → 2π+2π−2π0) + σ (e+e− → 3π+3π−) in figure 4.5. A good
fit to these data is obtained [24] with two resonances, one of mass about 1.78 GeV
and one of mass about 2.11 GeV. The latter is a candidate for another resonance,
but the former could be the known ρ(1700) with the resonance peak distorted
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Figure 4.4. Cross section for e+e− → π+π−π0. The data are from [21].
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Figure 4.5. Combined cross sections σ (e+e− → 2π+2π−2π0) + σ (e+e− →
3π+3π−). The data are from [22] and [23], quoted in [24].

by threshold effects, causing an apparent increase in the mass. Similar structure
is found [25,26] in diffractive photoproduction of 6π states, although the inter-
pretation put on the data is different. A satisfactory fit can be obtained assuming
that the dip is due to the interference of a narrow resonance either with a contin-
uum [25] or with a continuum plus a second resonance [26]. In the latter case the
narrow resonance has a mass of 1.91 ± 0.01 GeV and a width of 37 ± 13 MeV,
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consistent with the result found in [25]. The second resonance has a mass of
1.730 ± 0.034 GeV and a width of 315 ± 100 MeV and so can be identified with the
ρ(1700). This narrow-resonance model is equally applicable to the 6π data in e+e−

annihilation. A similar narrow-dip structure occurs in the total e+e− annihilation
cross section [27]. The mass is close to the N N̄ threshold and the time-like nucleon
form factors have an anomalously strong Q2 dependence that can be explained by
postulating a narrow resonance close to the threshold: see section 2.5.

The hidden-strangeness sector is complicated by the fact that the excited ρ and ω

states can decay into open strangeness and indeed are expected to have significant
partial widths in the K K̄ and K ∗ K̄ + c.c. channels [28]. There is clear evidence
in e+e− → K 0

L K 0
S , K +K − and K 0

S Kπ for the φ(1680), the dominant decay mode
being K K ∗. However, as we shall see in chapter 5, there is no evidence for this latter
decay mode in photoproduction and the mass in the K +K − mode is appreciably
higher, at 1750 MeV [29].

Although there is general consensus on the existence of the ρ(1450), ρ(1700),
ω(1420), ω(1650) and φ(1680), there is considerable ambiguity in the parameters of
these resonances. Results from channels for which there is strong interference with
the tail of the ρ, ω or φ, for example in π+π− and ωπ0, are sensitive to the choice
of model used to estimate this contribution. The data being analysed are many half-
widths above the ρ, ω or φ peak and the high-energy tail of a resonance is a rather ill-
defined quantity. The relative phases of the higher-mass vector-mesons are unknown
except in a simple non-relativistic model. Corrections to the model and mixing of
bare states through common hadronic channels can induce arbitrary phases among
the physical states. Allowing these to vary can drastically change the interference
and hence the resonance parameters. It is essential to analyse all available channels
simultaneously in order to take account correctly of the contribution of opening
channels to the total width. However, not all data are of comparable quality and
the data in some channels are inconsistent, for example e+e− → ωπ shown in
figure 4.6.

Independent evidence for both the ρ(1450) and ρ(1700) in their 2π and 4π decay
modes has come from the study of the reactions p̄n → π−π0π0 [33] and p̄n →
π−4π0, p̄n → 2π−2π−π+ [34]. However, in a reanalysis [35] of the CERN–
Munich data [36] for the reaction π− p → π−π+n at 17.2 GeV beam energy, no
significant evidence of the ρ(1450) was found, but a definite contribution was
required from the ρ(1700). There is also clear evidence [37] for the ω(1650) in the
reaction π− p → ωηn at a beam energy of 18 GeV.

The initial explanation of these vector-meson states was that they are the first radial,
23S1, and first orbital, 13 D1, excitations of the ρ and ω and the first radial excitation
of the φ as the masses are close to those predicted by the quark model [38]. However,
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Channel ππ πω ρη πh1 πa1 ρρ ρ(ππ )S Other Total

ρ2S 68 115 18 1 3 10 1 80 295
ρ1D 27 23 13 104 105 6 0 137 415

Table 4.1. The 3 P0 partial widths for ρ2S and ρ1D .
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Figure 4.6. Cross section for e+e− → ωπ0. The data are from [30] (crosses), [31]
(stars) and [32] (bars).

the data on the 4π channels do not appear to be compatible with what is expected
for the isovector radial and orbital excitations of the ρ. Of course, this is a model-
dependent statement as it assumes that the hadronic decays of the vector qq̄ can be
predicted. The standard decay model, the 3 P0 model [28,39], does appear to allow
this with some accuracy. A systematic study [28] of known light-qq̄ decays shows
that a 3 P0-type amplitude dominates and calculated widths agree with data to 25–
40%. Assuming that their masses are 1.45 and 1.7 GeV, the 3 P0 partial widths for
ρ2S and ρ1D are given in table 4.1, where ‘other’ includes K K̄ , K ∗ K̄+ c.c. and 6π

channels, and the σ is the broad S-wave ππ enhancement. Altogether 16 channels
have been incorporated in the calculation [28,40].

From table 4.1 one can see that the 4π decays of the ρ2S , other than ωπ , are
negligible and so the ρ2S effectively makes no contribution to the 4π channel.
In contrast, the 4π decays of the ρ1D are large and the two dominant ones, a1π

and h1π , are comparable. However, in the non-relativistic limit the e+e− width
of the 13 D1 state vanishes. Some non-zero width will be created by relativistic
corrections [38], but this is expected to be small, so again one does not anticipate
a large contribution to the 4π channel. This is in direct contrast to the data, as
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Channel ρπ ωη b1π ω(ππS) Other Total

ω2S 328 12 1 8 36 385
ω1D 101 13 371 0 53 561

Table 4.2. The 3 P0 widths for the ω2S and ω1D .

experimentally the π+π−π+π− and π+π−π0π0 channels are dominant. Further,
it has been claimed in e+e− annihilation in the range 1.05–1.38 GeV [41] that
the principal 4π channel, other than ωπ , is a1π , a conclusion supported from the
analysis [32] of τ → 3ππ0ντ .

One explanation of this has been to suggest that the qq̄ vector states are mixed with a
hybrid vector [42,43] as this decays predominantly to a1π in flux-tube models [43],
and to a1π and ρ(ππ )S in constituent-gluon models [44]. Both the π+π−π+π−

and the π+π−π0π0 channels are accessed by the a1π and ρ(ππ )S decays so, in
either case, e+e− annihilation and the corresponding τ decays should in principle
be explicable in terms of some suitable combination of ρ, ρ2S , ρ1D and hybrid ρH .
Such evidence that we have on the isoscalar states implies the need for more than
the ω plus its radial and orbital excitations, although the picture that emerges is not
entirely clear. There is no unique signal, in contrast to the a1π in the isovector case.
The ω2S , the ω1D and the hybrid ωH are all expected to have ρπ , which is known
to dominate the π+π−π0 channel, as a strong decay mode. The 3 P0 predictions for
the decays of the ω2S and ω1D are shown in table 4.2. It is known [45,46] that the 5π

channel is dominated by ωπ+π−, so is consistent with b1π . In the flux-tube model
the width of the hybrid ωH is predicted to be small, ∼20 MeV, and is essentially
all ρπ . The ωH width is predicted to be appreciably larger in constituent-gluon
models [44] with ρπ dominant, although some ω(ππ )S is allowed.

In [40] a simple mixing scheme was proposed for the isovector channels assuming
that there is no direct mixing between the 23S1 and 13 D1 qq̄ states and that the bare
hybrid has no direct e+e− coupling. The results were reasonable and qualitatively
consistent with observation. Two of the three physical states were identified with
the ρ(1450) and the ρ(1700) and the third state was put ‘off stage’ at a higher mass,
provisionally identified with the possible isovector state in the vicinity of 2.0 GeV.

However, there is another possibility, namely that the ρ(1450) is not the lightest of
the isovector states. Identifying the ρ(1450) and ρ(1700) states as the first radial
and first orbital excitations of the ρ is suspect as the masses of the corresponding
J P = 1− strange mesons are less than the predictions, particularly for the 23S1 at
1414 ± 15 MeV [8] compared to the predicted 1580 MeV [38]. Quite apart from
comparing predicted and observed masses, one would expect the nn̄ mesons to
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be 100–150 MeV lighter than their strange counterparts, putting the 23S1 at less
than 1300 MeV and the 13 D1 at less than 1600 MeV. Analysis of τ → ντπ

+π−

[20] gives a mass in the range 1300–1350 MeV, depending on the model used for
the tail of the ρ, and there are numerous indications in other reactions supporting
this.

Regge theory (see chapter 5) requires the existence of an infinite set of trajec-
tories, daughter trajectories, successively one unit lower in angular momentum.
This concept was developed at a time when little was known about meson spec-
troscopy. The evidence for daughter trajectories is now very convincing [47]. This
then requires isoscalar and isovector J P = 1− mesons approximately degenerate
with the f2(1270) and a2(1320). Over the years there have been numerous indi-
cations of an excited ρ in the region of 1250–1300 MeV. A vector state at about
this mass, decaying predominantly to πω and approximately decoupling from ππ ,
was predicted long ago from an analysis of form-factor data [48]. More generally,
it emerged naturally in applications of generalized vector dominance (GVD) [49]
and corresponded to that given by the Veneziano spectrum [50] with a universal
slope: see chapter 5.

At the time photoproduction data on γ p → (ωπ )p, with the ωπ peaking at
around 1240 MeV, were believed to provide direct experimental evidence for
the ρ(1250) [51]. However, the conclusion of spin-parity analyses of later data
[52,53] was that the enhancement is consistent with predominant J P = 1+ b1(1235)
production, with ∼20% J P = 1− background, if only these two spin-parity
states are included in the analysis. However, if a J P = 0− state is added, then
J P = 1− becomes the largest partial wave. It has been suggested [54,55] that there
is strong evidence for a ρ(1200) in the ωπ channel in the reaction p̄n → ωπ−π0.
Intriguingly, many years ago evidence was presented [56] for two J P = 1− states
with masses (1097+16

−19) and (1266 ± 5) MeV in the reaction γ p → e+e− p. The
evidence for these two states was obtained from the interference between the
Bethe–Heitler amplitude and the real part of the hadronic photoproduction ampli-
tude. There is further evidence from the analysis [57] of the π+π− channel in the
reaction K − p → π+π−� for a J P = 1− state with mass (1302+28

−25) MeV. Finally,
a spin-parity analysis [58] of the ωπ− system in the Dωπ− and D∗ωπ− decays of
the B̄ shows preference for a J P = 1− resonance with mass (1349 ± 25+10

−5 ) MeV
and width (547 ± 86+46

−45) MeV.

If there is a ρ(1250), then the picture proposed in [40] is incorrect. A more rea-
sonable interpretation would be that the ρ(1250) is the 23S1 radial excitation of the
ρ, with the ρ(1450) and ρ(1700) being mixed states of the hybrid and the 13 D1

orbital excitation of the ρ. In some ways this is natural as the hybrid and the 13 D1
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are believed to have a common channel, namely a1π , so mixing between these two
states can be expected.

An alternative explanation for the strong a1π component in the 4π channel is
direct non-resonant production as the a1–ρ–π coupling is strong. A current algebra
calculation of the e+e− → 2π+2π− cross section using the axial-current matrix
element obtained from τ → ρπν indicated that this dominates the low-mass part of
the 2π+2π− spectrum [59]. This would explain the observed strong a1π component
in the 4π channels without the need to invoke a hybrid meson. In this scenario,
the ρ(1250), if it exists, would be identified with the 23S1 radial excitation of the
ρ and the ρ(1700) identified with the 13 D1 orbital excitation or this mixed with
a higher-mass hybrid meson. A second effect of direct a1π production is that the
e+e− coupling of the ρ(1700) is greatly reduced, making its interpretation as the
orbital excitation of the ρ more plausible.

It is clear that neither the number nor the nature of the vector states is known with
certainty. Detailed knowledge of the specific hadronic channels in their decays is
lacking and is an essential requisite to make progress. We shall see in chapter 5
that photoproduction data add further complexity to this already confused situation.
High-statistics e+e− experiments using ISR and photoproduction experiments at
JLab have the potential to change this situation.

4.1.3 The contribution to the muon magnetic moment

The Standard Model prediction for the anomalous magnetic moment of the muon
can be separated into three basic contributions, the purely electromagnetic [60,61],
the weak [62] and the hadronic. The hadronic component, ahad

μ , can itself be divided
into three:

ahad
μ = ahad,L O

μ + ahad,H O
μ + ahad,L BL

μ , (4.16)

where ahad,L O
μ is the lowest-order contribution from hadronic vacuum polarization

[63–65], ahad,H O
μ is the corresponding higher-order part [66] and ahad,L BL

μ is a
small contribution from light-by-light scattering [67,68] that includes, among other
terms, a pion-pole contribution.

The contribution from ahad,L O
μ is calculated from the dispersion relation [69]

ahad,L O
μ = α2

3π2

∫ ∞

4m2
π

ds
K (s)

s
R(s), (4.17)

where R(s) is the ratio of the ‘bare’ cross section for e+e− annihilation
into hadrons to the point-like muon-pair cross section and K (s) is the QED
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kernel [70]

K (s) = x2(1 + 1
2 x2) + (1 + x)2

(
1 + 1

x2

)

× (log(1 + x) − x + 1
2 x2) + 1 + x

1 − x
x2 log x (4.18)

with x = (1 − βμ)/(1 + βμ) and βμ = √
(1 − 4m2

μ/s). The reason for using the
‘bare’ cross section, defined as the measured cross section corrected for initial-
state radiation, electron-vertex loop and photon vacuum polarization contributions,
is to avoid possible double-counting of higher-order contributions which are already
part of aμ. As the kernel K (s) decreases with increasing s, the integrand in (4.17) is
weighted to low energies, emphasizing the contribution from the ρ, which is about
73%. About 93% comes from values of

√
s below 1.8 GeV [65].

As the directly-measured total cross section for e+e− annihilation into hadrons
is not known with sufficient accuracy above

√
s ≈ 1 GeV, it is customary to use

the individual exclusive cross sections. Both e+e− and τ -decay are available, but
there is disagreement between the 2π and 4π spectral functions from these two
reactions. This poses a serious problem as these are the two dominant channels.
Evaluating all exclusive cross sections [65] gives the lowest-order hadronic vacuum
polarization contribution to aμ as (684.7 ± 6.0 ± 3.6)10−10, based on e+e− data,
and (709 ± 5.1 ± 1.2 ± 2.8)10−10, based on τ -decay data. These lead respectively
to 3σ and 0.9σ deviations of the Standard Model predictions for aμ from the
measured value [71] of (11 659 204 ± 7 ± 5)10−10.

It has been suggested [72] that the difference between the 2π spectral functions in
e+e− annihilation and τ decay may be explained by the isospin breaking due to
a difference between the masses and widths of the charged and neutral ρ mesons.
The τ data are about 10% larger than the e+e− data in the tail above the ρ and
this can be reduced significantly, to 2 or 3%, by a mass difference of a few MeV
between ρ0 and ρ±, the latter being the heavier, and a consequential change in the
widths, the ρ± width being the larger by several MeV. This then leads to the lowest-
order hadronic vacuum polarization contribution to aμ being (694.8 ± 8.6)10−10, a
Standard Model prediction for aμ of (11 659 179.4 ± 9.3)10−10 and a discrepancy
of (23.6 ± 12.3)10−10, corresponding to a deviation of 1.9σ .

4.1.4 Testing factorization in hadronic B decay

An understanding of non-leptonic B decays is important for the study of CP vio-
lation. In certain kinematic situations it has been argued that factorization may be
applied, that is matrix elements of four-quark operators may be written as the
product of pairs of matrix elements of two-quark operators. Two different
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Figure 4.7. Comparison of the ωπ mass distribution in τ decay [32] (crosses) and
in B decay [6] (bars).

approaches have been used to support this assumption, perturbative QCD [73]
and the large-Nc limit of QCD [74]. Reactions such as B → D(∗) X , where X is a
hadronic state of low invariant mass and D(∗) retains the light quark from the B
meson, provide specific tests of the factorization hypothesis. The perturbative QCD
arguments for factorization depend on the light quarks being produced in an almost
collinear state and corrections are expected to grow with m X/EX , where m X is the
invariant mass of the final state X and EX is its energy in the B rest frame. However,
if factorization works primarily due to the large Nc limit, then its accuracy is not
expected to decrease as m X increases. Thus multi-body final states provide more
information than do two-body final states.

Factorization has been shown to be consistent with experiment in two-body decays,
such as B → D(∗)π and D(∗)ππ [75], but these do not allow the study of corrections
to factorization as a function of m X . This is obviously so for X ≡ π and, as the
ρ dominates for X ≡ ππ , d�(B → D(∗)ππ )/dm X is a steeply-falling function of
m X . The case of X ≡ ωπ−, which has been measured [6], does permit factorization
to be studied over a range of m X . The factorization prediction for the decay B →
D(∗) X is [7]

d�(B → D(∗) X )/dm2
X

d�(B → D(∗)l ν̄)/dm2
X

= 3π
(
c1(m B) + 1

3 c2(m B)
)2

vX
(
m2

X

)
, (4.19)

where c1 and c2 are known functions that occur in the weak Hamiltonian, and vX

is the τ -decay spectral function defined in (4.2). A comparison of τ -decay and
β-decay data is made in figure 4.7, from which it can be deduced that factorization
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is a reasonable approximation that does not appear to worsen as m X increases. How-
ever, it should be recalled, see figure 4.6, that there are considerable discrepancies
among the different ωπ data sets in τ decay and e+e− annihilation.

4.2 Single-photon transitions between mesons

As the electromagnetic interaction is much better known than the strong one, radia-
tive decays are a cleaner probe of wave functions than hadronic decays. The photon
couples directly to the charges and spins of constituents, and it is possible to dis-
criminate among different models for mesons. This can be particularly relevant in
distinguishing gluonic excitations (hybrids and glueballs) from conventional exci-
tations with the same J PC .

The simplest single-photon transition process is that between two mesons A → γ B.
For the initial meson A with spin-parity J PA

A and final meson B with spin-parity
J PB

B , conservation of angular momentum and parity gives the selection rules

|JA − JB | ≤ J ≤ JA + JB, (4.20)

where J is the photon angular momentum,

PA PB = (−1)J (4.21)

for electric-multipole E J photon emission and

PA PB = (−1)J+1 (4.22)

for magnetic-multipole M J photon emission.

Electromagnetic gauge invariance requires the matrix element Mμ of the radiative
decay current to be transverse,

kμMμ = 0, (4.23)

where kμ is the photon four-momentum. For the transition A → γ B it means that
the matrix elements of the current vanish in the limit k → 0.

4.2.1 Quark model description of A → γB

The transition amplitude is readily calculated in the framework of the non-
relativistic quark model, where mesonic spectra and wave functions are defined
from the Schrödinger equation with the Hamiltonian

H = p2

2μ
+ V (r ), (4.24)
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where μ = (mqmq̄)/(mq + mq̄) is the reduced mass in the quark–antiquark system,
and r is the interquark distance. A popular choice for the potential is ‘linear plus
Coulomb’, motivated by lattice Wilson-loop calculations [76].

As soon as the model for the effective potential V is defined and mesonic wave
functions are found, the amplitude for the radiative transition A → γ B is given
by well-known quantum-mechanical expressions. Let the initial meson A, with
mass m A, decay at rest to the final meson B, with mass m B , and a photon with
three-momentum k. The transition amplitude has the form

MA→B = eq

〈
B

∣∣∣∣ 1

2mq
(pqe−ikrq + e−ikrq pq) − i

2mq
σ × ke−ikrq

∣∣∣∣ A
〉

+ (q ↔ q̄), (4.25)

where mq is the constituent-quark mass, rq is the quark coordinate and pq is the
quark three-momentum.

The differential decay rate is given by

d�

d cos θ
= k

EB

m A
α

∑
|MA→B |2, (4.26)

where the sum is over final-state polarizations, and EB is the centre-of-mass energy
of the final meson.

Expanding (4.25) in powers of k R, where R is the meson radius, one obtains stan-
dard multipole expansion formulae. The lowest multipoles are electric dipole, E1,
and magnetic dipole, M1, transitions. Those most readily accessible experimentally
are E1 transitions between S and P levels and M1 transitions between S levels.

If the quarks are treated non-relativistically, the long-wavelength approximation
k R � 1 should be applicable. M1 transitions proceed via the spin-flip part of the
amplitude (the second term in (4.25)), so that the amplitude is proportional to the
overlap of wave functions,

M ∼
∫

d3rψ∗
B(r)ψA(r). (4.27)

This is either 1 or 0, so in this limit M1 transitions do not require knowledge of
exact wave functions.

The E1 transitions are not so simple even in the long-wavelength approximation.
Not only is knowledge of wave functions required, the amplitude must be propor-
tional to the photon momentum. While this is obviously the case for the spin-flip
part of the amplitude, the convective term (the first term in (4.25)) responsible for
E1 transitions apparently does not exhibit such behaviour. To reproduce low-energy
theorems in electromagnetic interactions one should invoke the Schrödinger
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equation for the wave functions together with the commutation relation

pi = i
2

[p2, ri ]. (4.28)

As the strong Hamiltonian takes the form (4.24), one has

〈
B

∣∣∣∣ pk

2μ

∣∣∣∣ A
〉

= − i
2
ω〈B | rk | A〉, (4.29)

where ω = m A − m B is the photon energy in this approximation. In this way the
well-known dipole formula is established:

Mk ∼ ω

∫
d3rψ∗

B(r)rkψA(r), (4.30)

where ψA(r) and ψB(r) are the wave functions of initial and final mesons in the
coordinate representation.

The result (4.30) is of a more general nature. The amplitude should vanish in the
kμ → 0 limit. This property follows from the QCD Lagrangian and manifests itself
as electromagnetic-current conservation (4.23). At the level of the Lagrangian,
properties like vector-current conservation are obvious, but in order to retain such
properties for physical matrix elements at the mesonic level the initial and final
states must be proper solutions of the bound-state problem.

E1 rates are sensitive to the potential, especially if the mesons involved are radial
excitations with nodes in their wave functions. However, the main uncertainty comes
from the relation (4.30), which holds true only if the masses of the initial and final
states are the ‘correct’ eigenvalues of the quark-model Hamiltonian (4.24), and not
the physical masses. In other words, the naive quark model (4.24) does not take
into account the fine and hyperfine corrections to the spectra.

Such corrections are relativistic, O(1/m2), and come from the Fermi–Breit reduc-
tion of a Dirac-type equation with vector and scalar interaction (for example see
[77]). To be self-consistent, one should take into account not only relativistic cor-
rections to the spectra and the wave functions, but also the corrections of the same
order to the radiative decay amplitude. The latter are not exhausted by retaining
the subleading O((k R)2) corrections in (4.25), but add extra terms as was shown
in [77–79].

A comprehensive analysis of these extra terms, including the spin–orbit term in
radiative transitions, is given in [80], where the expression for the radiative decay
amplitude is derived using a variety of methods. The result for the transition
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amplitude with next-to-leading relativistic corrections is

Mk =
∑
q(q̄)

eq

〈
B

∣∣∣∣− 1

2mq
(pke−ikr + e−ikr pk) + i

2mq
σnεnikki e−ikr

+ 1

2m3
q

k2kk − 1

2m2
q
εkinσn

∂Vv(r )

∂ri
+ 1

2m2
q

[pk, Vs(r )]+

∣∣∣∣∣ A

〉
. (4.31)

Here Vv and Vs are vector and scalar confining potentials in the Dirac bound-state
equation. Hence the answer for the radiative transition amplitude depends not only
on the form of the binding potential, but also on the Lorentz nature of the confining
force. In particular, the scalar piece of the confining potential does not contribute
to the spin–orbit term in (4.31).

The states A, B are eigenfunctions of the full Fermi–Breit Hamiltonian. Using the
explicit form of this Hamiltonian and the commutation relation

pi e−ikr = i
2

(
[p2, ri e−ikr] + ri [e−ikr, p2]

)
, (4.32)

one can obtain the modified dipole formula

Mk =
∑
q(q̄)

eq

〈
B

∣∣∣∣∣−iωrke−ikr + i
2mq

σnεnjk p j e−ikr − iω
4m2

q
σnεnjkk j

∣∣∣∣∣ A

〉
, (4.33)

whereω is the difference of eigenvalues of the Fermi–Breit Hamiltonian. This dipole
formula contains the same model dependence on the Lorentz nature of confinement
as the equivalent formula (4.31), as this dependence is hidden in (4.33) in the initial
and final meson wave functions.

Various relativistic models based on Bethe–Salpeter equations with instantaneous
[81] or fully-covariant [82] interaction kernels not only reproduce the formulae
(4.31) and (4.33) for heavy quarks, but also justify some phenomenological concepts
employed in the description of radiative decay amplitudes. For example, quarks
are dressed by the strong interaction that leads, in particular, to a modification of
the quark–photon vertex [83]. In a theory with confinement such a modification
should give rise to a vector-meson-dominant quark form factor, thus confirming
the vector-meson-dominance hypothesis [84]. On the other hand, it can be viewed
as a mechanism generating in a natural way an anomalous magnetic moment for
the quark, a quantity introduced phenomenologically to fit the data on radiative
mesonic transitions (see, for example, [85]). Another point concerns the backward-
in-time motion of the quark pair in a meson. In the radiative transition amplitude
these negative-energy components of the mesonic wave function lead to exchange-
current contributions [86,87]. One should have in mind, however, that the results
of relativistic quark models are very model-dependent.
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4.2.2 Applications: heavy flavours

In practice, the calculations of radiative decay amplitudes often include lowest E1
and M1 amplitudes and subleading M2 transitions only, neglecting the relativistic
corrections described. The most notable successes of this approach have been in
reproducing qualitatively the magnitudes and relative phases of over 100 helicity
amplitudes for photoexcitation of the proton and neutron [88–90]. These give a
clear indication of which amplitudes are large or small, and of their relative sizes
and signs. This suggests that although corrections may be individually significant,
their collective effect is small.

For the case mq = mq̄ = m the total width for the M1 transition between the ground
state 3S1 and excited 1S0 levels in the dipole approximation is

�(1S → 1S) = 4

3
α

EB

m A
〈e2

q〉
k3

m
, (4.34)

where 〈e2
q〉 is the charge factor:

〈e2
q〉 = 1

36 for nn̄ → nn̄ with the same isospin,

〈e2
q〉 = 1

4 for nn̄ → nn̄ with different isospin,

〈e2
q〉 = 1

9 for ss̄ → ss̄,

〈e2
q〉 = 4

9 for cc̄ → cc̄. (4.35)

The first successes in calculations of meson radiative decay rates were in describ-
ing these transitions. The rate for the decay ω → π0γ , calculated with (4.34)
and the standard value of 0.33 GeV for the constituent light-quark mass, is about
600 keV, which is not far from the empirical value 717 ± 43 keV [8]. This agreement
should not be taken too seriously as, in spite of the phenomenological successes
of the naive quark model (4.24), the pion cannot be described in such a simple
way as its Goldstone-boson nature is completely lost. Nonetheless, the relations
(4.35) give the value 1

9 for the ratio �(ρ0 → π0γ )/�(ω → π0γ ), in satisfactory
agreement with data: 0.09 ± 0.02 [8].

The quark model gives a natural explanation for the ratios of radiative transition
rates of charged and neutral 3S1 heavy–light mesons, such as D∗ → Dγ . Indeed,
from (4.25) one has

M(D∗0 → D0γ )

M(D∗+ → D+γ
= 2/3mc + 2/3mu

2/3mc − 1/3md
. (4.36)

Substituting the values of constituent-quark masses one immediately sees that
B R(D∗0 → D0γ ) � B R(D∗+ → D+γ ).



156 F E Close, A Donnachie and Yu S Kalashnikova

Transition Calculated width Measured width
(keV) (keV)

χc0 → γ J/ψ 120 119 ± 16
χc1 → γ J/ψ 242 287 ± 24
χc2 → γ J/ψ 315 426 ± 38
ψ ′ → γχc0 46 24 ± 2
ψ ′ → γχc1 41 24 ± 2
ψ ′ → γχc2 29 18 ± 2

Table 4.3. E1 transition rates calculated in the Cornell model [93]
for charmonium.

One expects that the most reliable calculations are those of transitions between
heavy quarkonia levels, as this situation is non-relativistic. Taking the mass of
charmed quarks as 1.8 GeV, the naive calculation (4.34) gives

�(J/ψ → γ ηc) = 1.94 keV, (4.37)

while the experimental number is 1.13 ± 0.41 keV [8]. More elaborate calcula-
tions in the framework of the Cornell model [91,92] for the binding potential give
essentially the same number, 1.92 keV [93].

The transition ψ ′ → γ ηc is forbidden in the dipole approximation due to the orthog-
onality of the wave functions (see (4.27)), and one must expand the factors e−ikr in
(4.25) further. To calculate this knowledge of wave functions is required and, due to
the node in the wave function of the radial excitation, these calculations are rather
unstable. Nevertheless, the Cornell model describes this decay quite satisfactorily:
the calculated width is 0.91 keV, while data give 0.78 ± 0.25 keV.

The S–P radiative transitions in charmonium are known and can be used to check
the formalism. The leading E1 transition rate in the dipole approximation is

� = 4(2J + 1)

27
α〈e2

q〉k3r2
AB (4.38)

for 3S1 →3 PJ γ decays, and

� = 4
9α〈e2

q〉k3r2
AB (4.39)

for 3 PJ →3S1γ decays, where rAB is the radial part of the dipole matrix element
(4.30). Up to differences in phase space, (4.38) gives

�(ψ ′ → γχc0) : �(ψ ′ → γχc1) : �(ψ ′ → γχc2) = 1 : 3 : 5 (4.40)

and the rates χcJ → γ J/ψ should be equal. The results of the full calculations
with the Cornell model are summarized in table 4.3.



Meson radiative decays 157

The agreement is not very satisfactory, though the trends are more or less repro-
duced. It is argued in [87] that including exchange-current contributions brings
the calculated widths into closer agreement with data. Note, however, that as was
discussed above, accounting for exchange currents also brings uncertainties due to
the strong model dependence.

Other corrections discussed in this regard are those due to coupled channels effects
[92]. A well-known example is the position of the 3 D1 charmonium level. Poten-
tial models place it at 3815 MeV, while it is the ψ(3770) that is usually iden-
tified as 3 D1 charmonium. On the other hand, the relevant open-charm thresh-
olds are D0 D̄0 at 3729 MeV and D+ D− at 3739 MeV. It is usually assumed that
the coupling to DD̄ pulls the 3 D1 charmonium down to the observed mass of
3770 MeV.

For the transitions 3 D1 → γ 3 PJ in the dipole approximation one has the ratio

�(3 D1 → γχc0) : �(3 D1 → γχc1) : �(3 D1 → γχc2) = 20 : 15 : 1, (4.41)

a trend quite opposite to (4.40). Full Cornell-model calculations [94] yield the rates

�(ψ(3770) → γχc0) = 225 keV (254 keV),

�(ψ(3770) → γχc1) = 59 keV (183 keV),

�(ψ(3770) → γχc2) = 3.2 keV (3.9 keV), (4.42)

where the numbers in parentheses are calculated without coupled-channel correc-
tions. There are no experimental data with which to compare, but the results (4.42),
as well as other results of the Cornell model, demonstrate that coupled-channel
corrections can be substantial for higher quarkonia.

4.2.3 Angular distributions

Further information can be obtained from angular distributions [95], which is most
naturally done in terms of helicity amplitudes. For example, consider the process

e+e− → 1−− → J P+γ, (4.43)

where the only allowed values of the projection of the vector-meson spin are ±1,
with the z-axis taken along the electron beam direction. Then, for J = 0 there is
only one helicity amplitude A, which leads to

dσ

d cos θ
∼ |A|2(1 + cos2 θ ). (4.44)
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For J = 1 there are two helicity amplitudes, B0 and B1, and

dσ

d cos θ
∼ (|B0|2 + 2|B1|2)

(
1 + |B0|2 − 2|B1|2

|B0|2 + 2|B1|2 cos2 θ

)
. (4.45)

For J = 2 there are three helicity amplitudes, C0, C1 and C2, and

dσ

d cos θ
∼ (|C0|2 + |C2|2 + 2|C1|2)

(
1 + |C0|2 + |C2|2 − 2|C1|2

|C0|2 + |C2|2 + 2|C1|2 cos2 θ

)
. (4.46)

Quark-model predictions constrain the relations between various helicity ampli-
tudes. For example, the structure of the current responsible for the radiative transi-
tion with a transversely-polarized photon, between qq̄ S and P states is [84,96,97]

J±1 ≡ A〈L±〉 + B〈S±〉 + C〈Sz L±〉. (4.47)

Here 〈L±〉, 〈S±〉 and 〈Sz L±〉 are the relevant Clebsch–Gordan coefficients for cou-
pling L × S → J, and the z-axis is directed along the photon momentum. In terms
of unknown quantities A, B and C the helicity amplitudes can be written as

A =
√

2(A − B − C), (4.48)

B0 =
√

3(A − C), B1 =
√

3(A − B), (4.49)

C0 = (A + 2B − C), C1 =
√

3(A + B), C2 =
√

6(A + C). (4.50)

As the electric and magnetic multipole amplitudes are linear combinations of A,
B and C , the amplitudes may be written alternatively in terms of multipoles, as in
[98], giving

A ≡ E1; B ≡ (M − ER); C ≡ −(M + ER). (4.51)

Here E1 is the leading electric-dipole term, ER is the ‘extra’ electric-dipole term
and M is the magnetic-quadrupole term. Note that electric octupole contributions,
while allowed in general for radiative transitions between tensor and vector-mesons,
will vanish if the vector is a pure 3S1 state, and the tensor is a pure 3 P2 state [96].

In accordance with (4.44), (4.45) and (4.46) the angular distributions can measure
the ratios of helicity amplitudes, which, in turn, allows possible deviations from qq̄
structure to be studied.

4.2.4 Light flavours and a flavour filter

Calculations in the light-quark sector are more ambiguous. Nevertheless, one may
hope that quark-model calculations can provide a reliable estimate of which radia-
tive decay rates are large or small and which ones are accessible experimentally.
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Decay Width (keV) Final state

ρ0(1450) → f2(1270)γ 712 ππγ

φ(1690) → f2(1525)γ 148 K K̄γ

φ(1900) → f1(1420)γ 408 K K̄πγ

Table 4.4. Rates and final states for some radiative decays calcu-
lated in [99].

The calculations [99] in the model given by strong Hamiltonian (4.24) and transition
current (4.25) indeed demonstrate that some radiative transitions in the light-quark
sector should be measurable at high-intensity facilities. Results for some interesting
radiative decays are listed in table 4.4 together with the corresponding final states.
The results quoted in table 4.4 were obtained assuming ρ(1450) and φ(1690) to be
23S1 nn̄ and ss̄ states respectively, while the (unobserved) φ(1900) was taken to be
the 13 D1 ss̄ state.

The advantages of ρ0(1450) → f2(1270)γ and φ(1690) → f2(1525)γ are that the
final-state mesons are comparatively narrow, their decays are two-body and there
are no neutrals in the final state other than the photon.

These two decays are unique identifiers of theρ(1450) and theφ(1690) as quarkonia,
and discriminate between quarkonia and hybrid assignments for these states. In a
hybrid vector the quark–antiquark pair is in a spin-singlet, while in quarkonia it
is in a spin-triplet. Thus for hybrids the transition to 3 PJ qq̄ states is necessarily
magnetic spin-flip and is suppressed.

The decay φ(1900) → f1(1420)γ discriminates between the f1(1420) and the
η(1440), as the width of φ(1900) → f1(1420)γ appears necessarily to be much
larger than that of φ(1900) → η(1440)γ . The nearness of the masses and widths
of the f1(1420) and the η(1440), and several common hadronic decay modes, have
hitherto been sources of confusion.

Radiative decays to and from scalar mesons offer the possibility to determine the
flavour content of scalar mesons. Moreover, as lattice calculations [100] identify
the lightest glueball to be a scalar 0++ with mass around 1.5 GeV, it should mix
with scalar qq̄ mesons in the 1.3–1.7 GeV range. Radiative decays may disentangle
the role of the glueball in these scalar mesons.

In the absence of glueball mixing one has in the model [97]

�( f0(1370) → γρ) ∼ 2300 keV (4.52)

and

�( f0(1710) → γφ) ∼ 870 keV, (4.53)

assuming f0(1370) and f0(1710) to be nn̄ and ss̄ scalar states.
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ρ(770) φ(1020)
L M H L M H

f0(1370) 443 1121 1540 8 9 32
f0(1500) 2519 1458 476 9 60 454
f0(1710) 42 94 705 800 718 78

Table 4.5. Effect of mixing in the scalar sector of the 13 P0 nonet for radiative decays
to ρ and φ. The radiative widths, in keV, are given for three different mixing scenarios
as described in the text: light glueball (L), medium-weight glueball (M) and heavy
glueball (H).

The width of the decay f1(1285) → γρ is measured and provides a check on
the model. The calculated width is 1400 keV, which compares well with the data
[8,101,102] of 1320 ± 312 keV. The width for f2 → γρ appears to be rather smaller,
644 keV. Experimentally this width is small as neither the MARKIII [101] nor the
WA102 [102] experiments has any evidence for it, so it is reasonable to suppose
that the results for the f0 radiative decays are valid as well.

The widths (4.52) and (4.53) can be changed substantially when glueball mixing
is included, the degree of modification depending on the mass of the bare glueball.
Three different mixing scenarios have been proposed: the bare glueball is lighter
than the bare nn̄ state [103]; its mass lies between the bare nn̄ state and the bare
ss̄ state [103]; or it is heavier than the bare ss̄ state [104]. We denote these three
possibilities by L, M and H respectively. The predicted widths for the decays of
f0(1370), f0(1500) and f0(1710) to γρ and γφ for each of these possibilities are
given in table 4.5.

It is clear that the discrimination between different mixing scenarios is strong.
Other potentially powerful ways of determining glueball mixing in the scalar
mesons were identified in [99] through the radiative transitions ρD → γ f0(1370)
and γ f0(1500). There is also similar sensitivity in the decays φD → γ f0(1500) and
φD → γ f0(1710).

4.2.5 Photoexcitation of hybrid mesons

Theory [105] has provided compelling arguments from QCD that confinement
occurs via the formation of a flux tube: a relativistic object with an infinite number
of degrees of freedom. Conventional mesons arise when this flux tube is unexcited,
acting as an effective potential, which underpins the application of potential models
such as those described elsewhere in this chapter. Excitations of the flux tube give
new states, known as hybrids.
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A significant plank in the proposed upgrade of JLab is its assumed ability to expose
the predicted hybrid mesons in photo- and electroproduction. Direct calculations
[106,107] of such electromagnetic transitions predict that the E1 transition ampli-
tudes may be large and accessible in forthcoming experiments.

In [105,108,109] the flux tube was discretized into N + 1 cells, and then N → ∞.
Up to N modes may be excited. We shall focus on the first excited state, with
excitation energy ω = π/r .

The flux tube is dynamic, with degrees of freedom in the two dimensions transverse
to the Q Q̄-axis. The state of the flux tube can be written in terms of a complete set
of transverse eigenstates |�y1 . . . �yn . . . �yN 〉 and the Fourier mode for the first excited
state is

�yn =
√

2

N + 1
�a1 sin

πn
N + 1

.

In the small-oscillation approximation the system becomes harmonic in �y (�a). The
states of the flux tube are then described by Gaussians (see equations (11), (12) and
(13) in [108]). For a pedagogic illustration, consider the tube to be modelled by a
single bead, mass br .

If the transverse displacement is �y, then conservation of the position of the centre
of mass and of orbital angular momentum about the centre of mass leads to a mean
transverse displacement of the Q and Q̄. If these have masses m Q , then relative to the
centre of mass, the position vector of the quark has components in the longitudinal
�r and transverse �y directions:

�rQ =
[

1
2�r ;

(
br

2m Q

)
�y
]

.

The dependence of �rQ on �y enables a quark–current interaction at rQ to excite
transitions in the �y oscillator, leading to excitation of the flux tube.

This is the essential physics behind the excitation of hybrid modes by current
interactions with the quark or antiquark. Extending to N beads leads to more math-
ematical detail, but the underlying principles are the same. The position vector of
the quark becomes [108]

�rQ;Q̄ = �R ± 1

2
�r + br

πm Q

√
2

N + 1
�a1

with �R the position of the centre of mass of the qq̄-tube system.

It has been argued that this dependence �rQ = f (�r , �y) gives significant contribu-
tions to static properties of hadrons, such as charge radii, 〈r2

π 〉, and to the slope of
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the Isgur–Wise function ρ(v · v′), which seem to be required experimentally [108].
Isgur showed that these ‘transverse excursions’ give huge ∼51% corrections in
light-quark systems where m Q = md , and ∼13% corrections in heavy–light Qq̄ sys-
tems. Furthermore, the

∑∞
1 (1/p3) is ∼80% saturated by its p = 1 term. Together,

these suggest that the transition amplitudes to the lowest hybrids (p = 1 phonon
modes) could be substantial. In [106] it was demonstrated that this can be so, at
least for certain quantum numbers.

The respective amplitudes for conventional E1 transitions and the hybrid excitation
come from expanding the incoming plane wave to leading order in the momentum
transfer, thereby enabling the linear terms in �q · �rQ to break the orthogonality of
initial and final wave functions and cause the transition.

By combining with the tensor decomposition of the current–quark interaction, we
may calculate excitation amplitudes to hybrids, and compare with those for con-
ventional mesons in various multipoles. Full details are in [107].

A general feature of operators required to excite the lowest hybrid states (the first
flux-tube mode) is the presence of the transverse position vector �y to break the
orthogonality between the lowest Q Q̄ state and the ‘�y-excited’ hybrid states. Hence
in photoproduction one accesses E1 or (orbitally excited) M1 transitions in leading
order. These are �S = 0, for example 0−+

Q → 1±±
H or 1−−

Q → (0, 1, 2)∓±
H . (Note

that states with the ‘wrong’ charge conjugation will only be accessible for flavoured
mesons, for example in γ p → H+n, and hence will have no analogue for cc̄ and
other I = 0 states.)

Transitions involving spin-flip, �S = 1, will need a �σ spin operator as well as the
above. Such terms arise as finite-size corrections to the �σ · �B magnetic interaction
and also in the spin–orbit interaction �σ · �pQ × �E , in Jem . These are normally non-
leading effects at O(v/c)2 in amplitude and hence much suppressed for heavy
flavours.

The familiar E1 amplitude between Q1 Q̄2 conventional states (e.g γπ ↔ b1) may
be summarized by

M̃(γπ ↔ b1) =
(

e1

m1
− e2

m2

)
b〈r〉π |�q| μ√

3
, (4.54)

where b〈r〉π is the radial wave function moment
∫ ∞

0 r2dr Rb(r )r Rπ (r ), and μ is the
reduced mass of the Q Q̄ system.

Following [105] we denote the number of positive or negative helicity phonon
modes transverse to the body vector �r by {n+, n−}, which for our present purposes
will be {1, 0}or {0, 1}. The analogous amplitude for exciting the �y oscillator between
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spin-singlet states leads to M̃ ≡ M (δ+ − δ−), where

M(γπ → a1H ) =
(

e1

m1
+ e2

m2

)
H 〈r〉π |�q|

√
b

3π3
δm,+1 (4.55)

(where the factors δ+,− correspond to {1, 0} and {0, 1} respectively, while the δm,±1

refers to the hybrid polarization in the fixed axes x, y, z [105]). The transition
γπ ↔ a1H is seen to vanish when m1 ≡ m2 and e1 = −e2 in accord with the
constraints of charge conjugation. The above formula can be immediately taken
over to flavoured states where m1 �= m2.

The parity eigenstates in the flux tube are given in [105]. Parity eigenstates ± are
then the linear superpositions 1√

2
(|{1, 0}〉 ∓ |{0, 1}〉) such that for πγ E1 transitions

we have

〈P = −|πγ 〉 = 0; 〈P = +|πγ 〉 =
√

2M.

This applies immediately to the excitation of the hybrid a±
1H in γπ± → a±

1H , where
there is no spin-flip between the spin-singlet π and a1H . In general we can write
the radiative width �(A → Bγ ) as

4
EB

m A

|�q|
(2JA + 1)

∑
m A

J

|M̃(m A
J , m B

J = m A
J + 1)|2,

where the sum is over all possible helicities of the initial meson. The ratio of widths
�E1(a+

1H → π+γ )/�E1(b+
1 → π+γ ) is then

72

π3

b
m2

n

∣∣∣∣ H 〈r〉π
b〈r〉π

∣∣∣∣
2
[

|�qH |3 exp
(−|�qH |2/8β̄2

H

)
|�qb|3 exp

(−|�qb|2/8β̄2
b

)
]

, (4.56)

where mm = mqmq̄/(mq + mq̄) and the factor in square brackets includes the q3

phase-space and a ‘typical’ form factor taken from the case of harmonic-oscillator
binding [99].

The adiabatic model of [105], with a variational harmonic-oscillator solution, gives
|H 〈r〉π/b〈r〉π |2 ≈ 1.0, so the radial moments do not suppress hybrids [107]. The
main uncertainty is the computed size of the π [99]. Assuming that this hybrid
has mass ∼1.9 GeV [105,109], and using the measured width �(b+

1 → π+γ ) =
230 ± 60 keV [8] we predict using (4.56) that

�(a+
1H → π+γ ) = 2.1 ± 0.9 MeV,

where the error allows for the uncertainty in βπ .

The equivalent E1 process for spin-triplet Q Q̄ states is (0, 1, 2)+−
H ↔ ργ , where

the only difference from the S = 0 case is the addition of L , S Clebsch–Gordan
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factors coupling the Q Q̄ spin and flux-tube angular momentum to the total J of the
hybrid meson in question. The matrix element is analogous to (4.55) multiplied by
the Clebsch–Gordan 〈1 + 1; 1mρ |Jm J 〉. We find (for J = 0, 1, 2 in this E1 limit)

�(b+
J H → ρ+γ ) = 2.3 ± 0.8 MeV,

where the error reflects the uncertainties in the conventional E1 strength and β f1

and where we have taken m H = 1.9 GeV.

The transition to the exotic 2+− may be significant from either ρ or π exchange
[107,110]. This state may also be excited diffractively by photons, the gluon
exchanges (pomeron) exciting the flux tube. Hence the exotic 2+− is expected
to be photoproduced at least as copiously as the 1−+ and should be sought at JLab
via meson exchange and at higher energy diffractively.

4.2.6 Radiative transitions A → γM1 M2

The process A → γ B can be viewed as the O((1/NC )0) single-photon emission
process in the 1/NC expansion. More complicated transitions A → γ M1 M2 are of
order 1/

√
NC at most, and are described with decay chains

A → γ B, B → M1 M2,

A → M1 B, B → γ M2. (4.57)

Consider, for example, the radiative decay of a neutral vector-meson V 0 into a pair
of charged pseudoscalars P+ P−. It can go via scalar intermediate state S,

V 0 → γ S, S → P+ P−, (4.58)

that is an E1 radiative transition, and, as was discussed above, the amplitude
is proportional to the photon energy ω. It can also go via a vector intermediate
state V ′,

V 0 → V ′± P∓, V ′± → γ P± (4.59)

(M1 radiative transition), and the amplitude is again proportional to ω.

However, the photon couples to charged constituents in all possible ways, including
emission from the charged external lines, which corresponds to the decay chain

V 0 → P+ P−, P± → γ P±. (4.60)
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In the soft photon limit ω → 0 the amplitude is

Mμ = egV

(
((q+ · ε) − (q− · ε) + (k · ε))

q+μ

(q+ · k)

+ ((q− · ε) − (q+ · ε) + (k · ε))
q−μ

(q− · k)
− 2εμ

)
, (4.61)

where gV is the V P P coupling constant, q± are the pseudoscalar four-momenta,
k is the photon four-momentum, and ε is the polarization four-vector of the vector
meson. The first terms in (4.61) correspond to the emission from the external
pseudoscalar lines, while the last term is the so-called contact term required by
electromagnetic gauge invariance.

Equation (4.61) is, actually, the Low theorem [111] for a given process. In the
soft-photon limit there are the terms O(1/ω) and O(ω0) in the radiative transi-
tion amplitude; these terms are proportional to the elastic V → P+ P− amplitude
gV , and can be obtained in a model-independent form (4.61). As the amplitudes
(4.58) and (4.59) are proportional to ω, they are next-to-next-to-leading in the
limit ω → 0.

There are no such terms if the final-state mesons are neutral, so the mechanisms
(4.58) and (4.59) compete, depending on the flavour content of the mesons involved.
Nevertheless, the existence of the decay chain (4.60) suggests that the process
V → γ P0 P0 can proceed also via an intermediate loop of charged pseudoscalars:

V 0 → γ P+ P−, P+ P− → P0 P0. (4.62)

The latter amplitude is formally O(1/N 3/2
C ), but may be dominant in some kine-

matical circumstances due to threshold effects.

Special cases are the decays φ → γπ0π0 and φ → γπ0η. In the upper part of the
final-meson invariant mass spectra narrow peaks are observed [112], which are the
manifestation of scalar f0(980) and a0(980) resonances.

The φ-meson is predominantly ss̄. In the quarkonium picture the isovector
a0(980) is made of light quarks. Thus the amplitude (4.25) cannot be responsible
for the decay φ → γπ0η in the a0 resonance region. The same is true for the decay
φ → π0π0γ , if the isoscalar f0(980) is made of light quarks. Conversely, if f0(980)
is an ss̄ state, then its decay to π0π0 final state is suppressed by the OZI rule [11].
On the other hand, both a0(980) and f0(980) are known to couple strongly to the
K K̄ channel, so independently of the model for these scalars, the decay mechanism
via a charged kaon loop is operative, as was suggested in [113] and [114], and this
amplitude is enhanced due to the nearby K K̄ threshold.
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In the kaon loop model the transition current describing the decay φ → γ S, where
S is a0 or f0, is written as

Mμ = e
gφgS

2π2im2
K

I (a, b)(εμ(p · k) − pμ(k · ε)), (4.63)

where p and k are the φ-meson and photon momenta, mK is kaon mass, gφ and
gS are φK +K − and SK +K − coupling constants, a = m2

φ/m2
K , b = m2

S/m2
K , and

I (a, b) is the loop integral function:

I (a, b) = 1

2(a − b)
− 2

(a − b)2

(
f (b−1) − f (a−1)

)
+ a

(a − b)2

(
g(b−1) − g(a−1)

)
,

(4.64)
where

f (x) =
{

−(arcsin(1/2
√

x))2 x > 1
4

1
4 (log(η+/η−) − iπ ) x < 1

4

,

g(x) =
{

(4x − 1)1/2 arcsin(1/2
√

x) x > 1
4

1
2 (1 − 4x)1/2(log(η+/η−) − iπ ) x < 1

4

,

η± = 1

2x

(
1 ± (1 − 4x)1/2).

Calculation of the loop integral (4.64) is rather instructive, as it is governed to a
large extent by electromagnetic gauge invariance. As already mentioned, one should
add the contact term in (4.61) to make the φγ K K̄ interaction gauge invariant.
Substituting the vertex (4.61) into the loop integral one immediately notes that both
the contact graph and the one describing the emission from the kaon line diverge,
and only the sum of these graphs is finite. Moreover, the correct finite part of the
loop integral is extracted by appealing to gauge invariance. This can be done either
by imposing the condition Mμkμ = 0 [114], or by calculating the imaginary part of
the amplitude and reconstructing the real part by means of a subtracted dispersion
relation, with the subtraction constrained by gauge invariance [113]. In such a way,
the integral I (A, b) remains finite in the limit a → b, and the amplitude (4.63) is
proportional to the photon momentum.

The data [112] on φ → γπ0η and φ → γπ0π0 are compatible with the kaon loop
model [115].
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4.3 Two-photon decays of mesons

4.3.1 General motivation

As photons couple to charged particles, γ γ decays are a useful tool for study-
ing the structure of mesons. The cross sections also reveal the dynamics rather
directly. In γ γ → ππ at low energies the photon sees the pion’s overall charge,
whereby σ (γ γ → π+π−) is much larger near threshold than σ (γ γ → π0π0). At
higher energies the photon begins to resolve the π , coupling to its constituent
qq̄ and causing them to resonate. The f2(1270) and various f0(980; 400–1200;
1500;1710) scalar resonances then dominate the cross sections of both charged and
neutral ππ .

If one had full information on the polarization of the incident photons and angular
correlations between the initial and final directions and spins, it would be possible
to extract the couplings of states with a definite set of J PC . In practice, experiments
have limited angular coverage and initial polarizations are not measured. This
restricted information affects determination of the resonance parameters [116] and
progress has come from the imposition of constraints.

Low-energy theorems for Compton scattering γπ → γπ at threshold [117,118]
absolutely normalize the threshold cross sections for γ γ → ππ [119].

At threshold the amplitude is proportional to the squared charge of the π and hence
σ (γ γ → π+π−) >> σ (γ γ → π0π0). The pion pole that determines the Born
amplitude is so near the γ γ → ππ physical region that it dominates the behaviour
of the γ γ → ππ amplitude in the low-energy region [116,120,119].

Above about 500 MeV unitarity adds constraints where each γ γ → h → ππ par-
tial wave amplitude is related to the corresponding hadronic process h → ππ

[121]. At energies below 1 GeV, where h ≡ ππ , the constraints are very restrictive
but above this energy the K K̄ threshold is crossed and coupled channel unitarity
requires inputs from ππ → K K̄ . The ηη channel is relatively weak but above 1.4
GeV γ γ → 4π becomes important and analysis has not yet been made. Thus, at
the present, highly constrained analyses of γ γ → ππ exist only up to ∼ 1.4 GeV.

The γ γ couplings of resonances determined in such amplitude analyses are calcu-
lated by two different methods [120]. One involves analytic continuation to the pole
position of the extracted amplitudes found in the complex s-plane and is formally
correct; the other is a more naive approach based on the height of the Breit–Wigner-
like peak. In the case of prominent isolated resonances, such as the f2(1270), the
two methods give nearly identical results. However, for the f0(980), which over-
laps both the K K̄ threshold and the very broad S-wave enhancement described
as f0(400 − 1200) [121], only the pole method is applicable. Conversely, for the
f0(400 − 1200) itself, the pole is far from the real axis and only the peak-height
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provides a sensible measure of its γ γ width via

�R
γ γ (peak) = σ

peak
γ γ m2

R�tot

8π (�c)2(2J + 1)BR
, (4.65)

where BR is the hadronic branching ratio to the particular final state.

The resulting widths are found to be [121]

�( f0(980) → γ γ ) = (0.28+0.09
−0.13) keV,

�( f0(400 − 1200) → γ γ ) = (3.8 ± 1.5) keV. (4.66)

The implications of these for models are discussed later.

The γ γ widths of the prominent tensor resonances are abstracted from data on
γ γ → πη(a2) and γ γ → K K̄ ( f2(1525)) relatively directly. The current values in
keV are [8]

�γγ (a2(1320) : f2(1270) : f2(1525)) =
1.00 ± 0.08 : 2.61 ± 0.30 : 0.093 ± 0.015. (4.67)

These electromagnetic couplings of the 2++ states confirm their tendency towards
ideal flavour states. Independently we know that the f2(1270) is to good approxima-
tion the nn̄ member of an ideal flavour nonet. Here the decays to γ γ of the neutral
members have amplitudes proportional to the sum of the squares of the electric
charges of the quarks weighted by their relative phases. Thus for the relative squared
amplitudes

a2(uū − dd̄)/
√

2 : f2(uū + dd̄)/
√

2 : f2(ss̄) = 9 : 25 : 2, (4.68)

which are very close to the experimental values in (4.67) (the shortfall for the ss̄ state
being consistent with the suppression of magnetic couplings ∼ (mn/ms)2).

The predictions for the γ γ widths depend not only on the flavour content but also
on the probability for the constituents to overlap in order to annihilate. Within a
qq̄ multiplet we expect these to be approximately the same, as confirmed above.
If this is true throughout the supermultiplet of qq̄ states 3 P2,1,0, one can relate the
tensor widths to those of the scalars, with some model dependence. We now review
this and then consider the implications for the light scalar mesons.

4.3.2 Non-relativistic approach to Q Q̄ → γγ

Two-photon widths have been estimated by modelling mesons as non-relativistic
Q Q̄ states. In lowest-order perturbation theory, begin with the free-quark scattering
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amplitude Mscat and use the prescription

MBS =
∫

d3 p�(p)Mscat
(2π )3/2(2M)1/2

[(2π)3/2(2m)1/2]2
, (4.69)

where MBS is the invariant amplitude for the γ γ transition from the bound state
to the final state, �(p) is the momentum-space wave function, M is the bound-
state mass and m = 1

2 M is the quark mass. Then if R(r ) is the radial part of the
wave function normalized to

∫
dr r2|R(r )|2 = 1, including a factor of three for

colour, and 〈e2
q〉2 is the square of the effective quark charge for the process, one has

[122–124]

�γγ (1S0) = 12α2〈e2
q〉2 |R(0)|2

M2
, (4.70)

�γγ (3 P0) = 15

4
�γγ (3 P2) = 432α2〈e2

q〉2 |R′(0)|2
M4

(4.71)

and

�γγ (1 D2) = 192α2〈e2
q〉2 |R′′(0)|2

M6
. (4.72)

These results have been generalized in [125]. Denoting R(l)(0) as the lth derivative
of the wave function, the non-relativistic γ γ widths of positronium are of the form

�[2S+1L J (e+e−) → γ γ ] = �λ=0,2�λ

α2

m2L+2
e

|R(l)(0)|2. (4.73)

The allowed values of the γ γ helicity λ are 0 and 2 for (S = 1, J = L ± 1), and
λ = 2 only for the ‘middle of the multiplet’ triplet states. For the qq̄ case again,
replace me → mq , and multiply by a flavour factor |〈e2

q/e2〉|2 and a colour factor of
three. The authors argue (see next subsection) that M in the above formulae should
be understood as 2m, where m is the constituent mass. This distinction becomes
important for high partial waves.

For the spin-singlet case, J PC = even−+, the reduced partial width is

�λ=0(1L J=L ) = 1 (4.74)

for all L [126]. This reproduces (4.70) and (4.72) as special cases. For spin-triplet
states, S = 1 and L =odd, the coefficients �λ have non-trivial J, L , λ dependences.
The general results are [125]

�λ=2(3L J=L+1) = (L + 2)(L + 3)

L(2L + 3)
, (4.75)

�λ=0(3L J=L+1) = 0, (4.76)
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�λ=2(3L J=L ) = (L − 1)(L + 2)

L2
, (4.77)

�λ=2(3L J=L−1) = (L − 2)(L − 1)(L + 1)

L2(2L − 1)
(1 + χ )2, (4.78)

�λ=0(3L J=L−1) = (2L + 1)2

L(2L − 1)
, (4.79)

where χ is

χ = 0(L = 1); = L(2L + 1)

2(L − 2)(L − 1)
(L ≥ 3). (4.80)

Spin-triplet decays of immediate interest are those with L = 1, 3. For L = 1 the
above results recover the well-known relative widths of

[�λ=2(3 P2) : �λ=0(3 P2)] : �λ(3 P1) : �λ=0(3 P0) = [1 : 0] : 0 : 15
4 . (4.81)

The light-quark L = 3 qq̄ states will probably be the first L > 2 states to be
detected in γ γ . The theoretical partial widths and helicity couplings implicit in
the above relations are potentially useful as experimental signatures. For the L = 3
multiplet, the relative γ γ widths, summed over helicities, are

�(3 F4) : �(3 F3) : �(3 F2) = 1 : 1 : 919
100 , (4.82)

which imply that the 2++ 3 F2 state should be the easiest to observe by an order
of magnitude in the partial width (but somewhat less in the cross section due to
(2J + 1) factors). We expect the 3++ and 4++ 3 FJ states to have similar γ γ widths;
this is in marked contrast to the analogous L = 1 states for which the J = l; 1++

state is forbidden to decay to on-shell photons by the Landau–Yang symmetry
theorem. As the 4++ state f4(2050) is well established and has known branching
ratios to ππ and ωω [8], a search for γ γ production of this state could be carried
out using existing data sets. Both the helicity couplings of 3 F2 qq̄ states are present
with comparable amplitudes

�λ=0(3 F2)

�λ=2(3 F2)
= 294

625
, (4.83)

so it should be possible to distinguish this state from a radially excited 3 P2 for which
the λ = 2 amplitude is dominant. Close and Li [127] found that λ = 2 dominance
is characteristic of the lightest 2++ hybrids as well; hence a large λ = 0 width for
a 2++ state would be a clear signature for 3 F2.
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The matrix element for Q Q̄→ γ γ is the coherent sum of e2
q contributions from the

individual quark flavours. For I = 1, 1√
2
(uū − dd̄) this is 〈e2

q〉2 = 1
18 . For I = 0

the mixing between nn̄ and ss̄, or equivalently between SU(3)F 8 and 1, can be
deduced by comparison of the γ γ widths. As a function of the mixing angle (where
θ = 0 is ideal mixing) the two 〈e2

q〉2 are

〈e2
q〉2

a =
[

5
9
√

2
cos θ − 1

9 sin θ
]2

; 〈e2
q〉2

b =
[

5
9
√

2
sin θ + 1

9 cos θ
]2

. (4.84)

This implies that at least one of the two isoscalars must have a significantly larger
γ γ width than the I = 1 partner. Furthermore, the correlation of dd̄ (lighter) and
ss̄ (heavier) masses and the above couplings implies that one expects the lighter
of the two isoscalars to have the larger γ γ partial width. As we have seen above,
the tensor mesons agree with these generalities with θ ∼ 0.

The above relations are among different flavoured states of the same J PC . Comple-
mentary to this we have relations among common flavour states of different J PC ,
typified by the relations (4.70)–(4.72).

These formulae can be applied to the hadronic decays of heavy flavour Q Q̄ where
in perturbative QCD these are driven by Q Q̄→ gg annihilation. At leading order
the relation is

�γγ (R) = 9〈e2
q〉2

2

(
α

αs

)2

�gg(R), (4.85)

though there are considerable QCD corrections, in particular the possibility of cc̄g
components in the wave function such that the (colour octet) cc̄ can annihilate into
a gluon in S-wave. These may be responsible for the excessive relative strength in
the 0++ [8], where for cc̄ the ratio of 0++ : 2++ hadronic widths can be compared
with (4.71):

�T (0++) : �T (2++) = 8 ± 1 (4.86)

and for the γ γ widths

�γγ (0++) : �γγ (2++) = 7 ± 2. (4.87)

Although the magnitudes of the ratio are not precise, the clear message is that the
scalar width to γ γ is significantly larger than that of the tensor, as predicted in the
non-relativistic picture.
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4.3.3 Phenomenology

The absolute scale of γ γ widths of light qq̄ states is a rather sensitive quantity
and one can easily be misled into believing that predictions of γ γ widths are stable
by models that reproduce the 0−+, 2++ widths to ∼30%. The 1 D2 is an example.
Ackleh and Barnes [126] stressed that the calculations involve mq more directly
than 1

2 M . The resulting width for the 1 D2 is proportional to m−6
q and so is highly

sensitive. With mq ∼ 330 MeV, Ackleh and Barnes [126] found �γγ ∼0.3 − 2
keV, whereas with M = 1670 MeV the width is predicted to be only 1–10 eV!
Comparison with data [8] is unclear. Signals have been claimed corresponding to
�γγ (π2(1670)) ∼1 keV, whereas other experiments report only upper limits of less
than 72 eV. The test of this procedure is to apply it in searching for the I = 0
partner, η2(∼ 1700) for which �γγ ∼ (25/9)�γγ (π2).

Ackleh and Barnes [126] derived the exact relativistic result for the singlet qq̄:

� J (γ γ ) = 6α2

πm2

〈
e2

q

e2

〉2

|
∫ ∞

0
dp p2φ(p)

(
1 − β2

β

)
Q J (β−1)|2, (4.88)

where Q J (x) is the Legendre function of the second kind. As β → 0 this is

�N R(1 D2 → γ γ ) = 3α2

m6

〈
e2

q

e2

〉2

|R ′′
(0)|2, (4.89)

which agrees with Anderson et al [124] so long as their M → 2mq .

The limitations of such calculations are exposed for the γ γ decay widths of π, η, η′

that are approximately proportional to M3
R . This can be motivated by an effective

Lagrangian

L = 1

2
gφFμν F∗

μν → �γγ = 1

64π
g2 M3

R. (4.90)

The problem with the quark-model calculation is that it does not incorporate the
physical mass of the initial state, which must be restored as a physical input. In effect
the quark-model calculation determines g and then imposes the M3

R dependence.
Similar arguments lead to M3

R dependence for the L = 1, 2 qq̄ state also.

The relativistic calculations of [126] find no significant suppression with increasing
L for �(qq̄ → γ γ ) for light flavours. This would be consistent if the signals claimed
for π2 [8] are confirmed, as they are of similar strength to that of the a2 → γ γ . If
this is the case, then one might plausibly expect to observe higher-L states such as
L = 3 (2, 3, 4)++.
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This is in marked contrast to the predictions for heavy flavours. The prediction for
cc̄ is successful

�γγ (ηc) = 4.8 keV (Theory, [126]); 7.5 ± 1.8 keV (Data [8]), (4.91)

though the predictions are rather sensitive to the choice of mc [128]. There is strong
orbital suppression, 0−+ → 2−+ falling by ∼102 for cc̄ and by ∼103 for bb̄. Hence
it is unrealistic to expect to see L ≥ 2 cc̄ and bb̄ coupling to γ γ .

4.3.4 Scalar mesons in γγ

The non-relativistic calculations that give rise to the above also imply that the
tensor is produced polarized, A(γ γ → 2++)Jz=0 = 0. This result is predicted to
be robust even for light relativistic qq̄ [129] and appears to be good empirically
for the f2(1270). Thus it may be reasonable to apply these ideas to light flavours.
Including M3 factors as discussed above

�γγ (3 P0) = 15

4

(
m0

m2

)3

�γγ (3 P2). (4.92)

The relativistic corrections to this have been calculated [129]. For mq → 0 the ratio
→ 0 as a result of chiral symmetry. For constituent masses of ∼300 MeV the ratio
�γγ (3 P0)/�γγ (3 P2) is reduced by ∼2; a larger γ γ width for 0++ relative to 2++ is
still expected. The width for f0(400 − 1200) in (4.66) is thus consistent with 3 P0

nn̄, whereas that for f0(980) is not, though 3 P0 ss̄ is possible.

There is much discussion that the f0(980) may be a K K̄ molecule [130] or a qqq̄q̄
state [131] (for detailed discussion of this issue and further references see [132]).

For a K K̄ molecule, the fourth power of the constituent charges is much larger than
for an ss̄ state but the state is more diffuse and so the annihilation probability will
be much smaller. The actual magnitude of the γ γ width is thus model-dependent.
In the non-relativistic model of [130], the γ γ width has been calculated [133]
to be �( f0(K K̄ ) → γ γ ) = 0.6 keV, which is somewhat larger but not inconsis-
tent with the data in (4.66). Within the compact qqq̄q̄ picture the predictions are
approximately 0.3 keV for both f0 and a0 [134,113]. Experimentally [8]

�γγ ( f0(980)) = 0.39+0.10
−0.13keV; �γγ (a0(980)) = 0.24+0.08

−0.07keV, (4.93)

where for the a0 it is assumed that the branching ratio to ηπ is 100%. Thus techni-
cally its γ γ width is larger than this value.

There is also discussion as to whether these states are compact qqq̄q̄ states and what
implications this has for their γ γ widths [113]. Rather than focussing on absolute
magnitudes there may be lessons to learn from the ratio of the f0/a0 → γ γ widths.
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From (4.93) this is in the region of 1–2. This is somewhat below the 25
9 expected if

these were pure ss̄ and nn̄ states, as could be the case given their mass degeneracy
[135]. It is consistent with unity, as expected in the simplest form of K K̄ molecule,
where only the charged kaons contribute and isospin is assumed to be exact. It
is possible that, due to the closeness of K K̄ thresholds, and the mass difference
between charged and neutral kaons, there could be significant breaking of G-parity
in these states. The effect on the γ γ ratio has not been definitively discussed.

It is generally agreed that the f0(980) and a0(980) are not simply qq̄ but have
significant qqq̄q̄ or K K̄ components in their wave functions. It is not clear how γ γ

probes the deep structure of their wave functions. We know that for 2++ the γ γ reads
the compact qq̄ flavours; there is no two-body S-wave competition in the imaginary
part as ρρ and other allowed hadronic channels are all too heavy. One would expect
that for the 0++ K K̄ will dominate if there is a long-range K K̄ component in the
wave function. At the other extreme, were the state a pure compact four-quark, then
the higher intermediate states – K K , K K ∗, K K ∗∗, · · · – would all be present but the
ratios of the γ γ couplings to f0/a0 would probably be sensitive and more reliable.

The production by highly virtual γ ∗γ ∗ in e+e− → e+e− f0/a0 could probe the
spatial dependence of their wave functions. It would be especially instructive were
the ratio to be strongly Q2 dependent.

Above 1 GeV there are other scalars, notably the f0(1370, 1500, 1710) and an
isovector a0(1450). The γ γ widths of these states can be important in elucidating
their structure. This is particularly interesting in view of the expectation that there
is a scalar glueball in this region and may mix with the I = 0 states [136–138].
The effects of such mixings on the pattern of γ γ widths can be dramatic [139].
Only rough estimates of these widths are available and a detailed analysis is awaited.
ALEPH have quoted [140] �( f0(1500) → γ γ ) < 0.17 keV. This small value could
point towards significant ss̄ content (though this seems at odds with hadronic decays
of this state [137,138]) or that it is a glueball or, as is certainly plausible, that the
γ γ width is not yet well determined.

To extend amplitude analysis of γ γ beyond 1.4 GeV will require studies of γ γ →
2π , 4π and K K̄ . Only when these channels are analysed simultaneously can reliable
scalar signals be extracted from beneath the dominant tensor effects. The width
f0(1710) → γ γ in particular is important to measure in order to complete the
analysis and isolate the role of a scalar glueball [139].

4.3.5 Glueballs and γγ constraints

If a state is a glueball it will occur in ψ → γ RJ as a singleton and be strongly
suppresssed in RJ → γ γ . By contrast, if RJ is an I = 0 member of a qq̄ nonet,
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there will be two orthogonal states in the 1-8 flavour basis for production in both
ψ → γ RJ and RJ → γ γ . Flavour mixing angles may suppress one or the other of
the pair in either RJ → γ γ or ψ → γ RJ but there are strong correlations between
the two processes, so that a comparison between them can help to distinguish
glueball from qq̄ . In particular, if a qq̄ state is flavour ‘favoured’ in ψ → γ RJ , so
that it is prominent and superficially ‘glueball-like’, it will also be flavour favoured
in γ γ → R(qq̄) in dramatic contrast to a glueball. The detailed arguments are
presented in [139].

Such discrimination between a glueball G and a qq̄ M can be rather powerful.
Chanowitz [141] suggests a quantitative measure for glueballs via ‘stickiness’,
which after phase space is removed is given by

SR = �(ψ → γ R)

�(R → γ γ )
, (4.94)

such that for G and M with the same J PC , SG/SM ∼ 1/α4
s � 1.

The essence of stickiness is that G → γ γ proceeds via a qq̄ loop whereby

�(G → γ γ )

�(M → γ γ )
∼

(αs

π

)2
, (4.95)

while in perturbation theory

�(ψ → γ G)

�(ψ → γ M)
∼

(
1

αs

)2

. (4.96)

This provides a qualitative distinction between G and qq̄ with some empirical
success, for example that S(η(1440)) ∼ 10S(η(550)). However, the absolute nor-
malization of S was not defined until [139].

The detailed analysis in section 5 of [139] showed how the relationship has to be
applied to the set of I = 0 states in a nonet and that for the qq̄ states f2(1270) and
f2(1520) the γ γ and ψ → γ R data give consistent results if this pair are orthogonal
qq̄ states. For the scalar mesons above 1 GeV the analysis involves both qq̄ and G
states mixed together. It is data, such as γ γ couplings, that are required to determine
these mixings.

Within a tightly-constrained mixing analysis based on the known hadronic decays
of these states, two possible solutions were found. The details are in [139] and
[138]. They can, in principle, be distinguished once γ γ widths are established.
Both schemes imply that �( f0(1710) → γ γ ) = 1−2 keV, while �( f0(1500) →
γ γ ) ∼ 0.1–0.5 keV. In general it was found that for three states, such as the
f0(1370, 1500, 1710), that are mixtures of nn̄, ss̄ and G, the pattern of relative γ γ
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widths for the three states will be f0(1370) : f0(1500) : f0(1710) = large: small:
medium, typically 10:≤1:3 in order of magnitude.

This needs to be tested for these scalar states. This relative ordering of γ γ widths is
a common feature of mixings for all initial configurations for which the bare G does
not lie nearly degenerate with the nn̄ state. As such it is a robust test of the general
idea of nn̄ and ss̄ mixing with a nearby G. If, say, the γ γ width of the f0(1710)
were to be smaller than that of the f0(1500) or comparable or greater than that of
the f0(1370), the general hypothesis of three-state mixing would be disproved. The
corollary is that qualitative agreement may be used to begin isolating in detail the
mixing pattern.

Combined with the radiative analyses described elsewhere in this chapter, these
could be critical tests for identifying the presence and mixing dynamics of glueballs.

4.3.6 γγ amplitudes and relation to Vγ

The γ γ decay widths of 0++/2++ being in the ratio of 15/4 arises non-
relativistically and it is instructive to see how this is related to the essential qq̄ struc-
ture and to the electromagnetic transition. The 2J + 1 factor accounts for a factor 5;
the essential spin dynamics yields 3/4 and it is this latter that we need to understand.

The approach of a quark-model practitioner is to consider [98,84,99]

〈qq̄, S = 1, L = 1; J = 0, 2|Hem |qq̄, S = 1, L = 0; J = 1〉 (4.97)

for transitions between 0++ or 2++ and a vector meson (3S1), the latter then turning
into the second photon by vector-meson dominance. In this

Hem ∼ AL+ + BS+ + C Sz L+ (4.98)

is the most general transformation structure for a positive helicity γ that can flip
the qq̄ system’s Lz, Sz by one unit (with arbitrary strength A, B respectively) or
flip Lz weighted by Sz (strength C). The magnitudes of A, B, C may be calculated
in a specific model but in general the relative matrix elements for J = 0, 2 may be
related to Clebsch–Gordan coefficients driven by the L+, S+, Sz L+ folded into the
L ⊗ S = J of the qq̄ states. The result is

T2 = A + C, T0 = 1√
6
(A + 2B − C), S0 = 1√

3
(A − B − C), (4.99)

where T, S refer to tensor or scalar meson and the subscript denotes Jz . See also
page 370 in [96].

The static limit of the electric-dipole approximation corresponds to retaining
only the A terms. However, both electric and magnetic transitions can occur in the
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non-relativistic limit of the positronium calculation, corresponding to [129]

A = −2B, C ≡ 0. (4.100)

This immediately gives

T0 ≡ 0, S0 ≡
√

3
2 T2. (4.101)

Hence we see that the helicity-zero selection rule and the 15
4 ratio of widths

( 15
4 ≡ (2J + 1)(

√
3
2 )2) emerges.

That the ‘magic’ relation at (4.101) follows may be seen by disentangling the
positronium calculation. The key is to study its γ -matrix structure and to interpret
it in the time-ordered way [129]. The essential structure of the decay in the non-
relativistic limit is

(p · ε2 + iσ · k × ε2k · p)σ · ε1 (4.102)

and hence the structure at (4.100).

But we can now go further and consider the effect of relativistic corrections, specif-
ically p2/m2 effects [129]. Note that even for cc̄ systems v2/c2 ∼ 1/4 and so these
effects cannot simply be ignored. The structure now is more general than (4.102).

Full details are given in [129] but we may approximate the effects here by replacing
(4.100) by A ∼ −2B; C �= 0. Equation (4.99) then becomes

T2 = A + C, T0 = 1√
6

(0 − C), S0 = 1√
3

(
3A
2

− C
)

, (4.103)

which shows that in the rates |T0|2 ∼ 0 in leading order in the relativistic correction.
If A and C are positive (as in specific models), then the scalar rate is reduced and
the tensor relatively enhanced, that is

σ (S → γ γ )

σ (T → γ γ )
<

15

4
, (4.104)

though still

T0 ∼ 0. (4.105)

This prediction of a vanishing amplitude for T0 is thus robust and has even been
used as a constraint in some amplitude analyses [142]. In summary, the relative
γ γ amplitudes for C = + mesons complement their radiative transitions to and
from vector-mesons, such as M → γ (ρ, ω, φ) and provide a sharp measure of the
flavour content of mesons. These promise to come into practical focus with the
advent of high-statistics data at ψ factories.
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5

Intermediate-energy photoproduction

F E Close and A Donnachie

The principal objective of intermediate-energy photoproduction is to determine
the spectrum of higher-mass mesons, particularly the little-known ss̄ states and
exotic qq̄g or qq̄qq̄ mesons discussed in chapter 1. The ability to provide linearly-
polarized photon beams is an important feature as this can be used as a filter for
exotics, in contrast to pion or kaon beams. Understanding the production mechanism
has been shown to be an essential feature in extracting spectroscopic information
and this requires an understanding of the concept of complex angular momentum
and the Regge-pole formalism.

This formalism is first introduced briefly as a description of high-energy scattering
and photoproduction processes in general. Details can be found in [1] and [2]. An
appreciation of this formalism and its limitations is essential to an understanding of
medium-energy and high-energy two-body and quasi-two-body reactions at small
|t |. The formalism is applied to the photoproduction of pseudoscalar and vector
mesons to illustrate these points explicitly. The prospects for exploring the spectrum
of exotic mesons are then discussed.

At large |t | it is more appropriate to use a partonic approach to describe the data.
At fixed centre-of-mass angles and large |t |, the constituent-quark counting rule
makes specific predictions for the energy dependence of exclusive processes. The
rule was first derived from simple dimensional counting arguments [3] and was
later confirmed in a short-distance perturbative QCD (pQCD) approach [4]. Pseu-
doscalar and vector meson production at θc.m. = 90◦ appear to be compatible with
the predictions of the model from the surprisingly low energy of Eγ ≈ 3.3 GeV.

In the extreme backward direction, the cross sections are dominated by Reggeized
u-channel baryon exchange. The main interest here focusses on the φ as a guide to
a possible intrinsic ss̄ component in the wave function of the proton.
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5.1 Regge poles

Consider the two-body process 1 + 2 → 3 + 4 at large s and small t . The final state
need not be the same as the initial state. Most such processes exhibit a strong forward
peak and there is a correlation between the existence of a forward peak (small t < 0)
in s-channel processes and the exchange of particles or resonances in the t-channel.
This is connected directly to the quantum numbers of the exchange and reactions
which do not have resonances allowed in the t-channel have appreciably smaller
cross sections than those of similar ones which do. For example [2] σ (K − p →
π−�+) � σ (K − p → π+�−) and σ ( p̄ p → �̄−�+) � σ ( p̄ p → �̄+�−).

Particle exchange and resonance exchange in the crossed channel thus appear as
an important part of high-energy scattering. However, it is straightforward to show
[2] that the scattering amplitude cannot be dominated by the exchange of just a few
t-channel resonances. For simplicity consider the elastic scattering of equal-mass
spinless particles. The t-channel partial-wave series is

A(s, t) = 16π

∞∑
l=0

(2l + 1)Al(t)Pl(zt ), (5.1)

where

zt = cos θt = 1 + 2s
t − 4m2

. (5.2)

Suppose that only one resonance is exchanged with a given spin, σ say, so that only
one partial wave in (5.1) will contribute. Dropping the other terms in the sum, then
for large s

A(s, t) = 16π (2σ + 1)Aσ (t) Pσ

(
1 + 2s

t − 4m2

)
∼ f (t)sσ . (5.3)

The optical theorem relates the total cross section σ tot to the imaginary part of the
forward amplitude. At large

√
s the theorem is

σ tot (s) ∼ s−1 Im A(s, t = 0). (5.4)

Applying the optical theorem to (5.3) then gives σ tot ∼ sσ−1 at large s. Thus
exchange of a spin-0 particle, for example the pion, would give a total cross section
that decreases as s−1. The exchange of a spin-1 meson, such as the ρ, would give a
constant total cross section and the exchange of a spin-2 meson like the f2 would
require the total cross section to increase linearly with s. None of this is observed
in total cross sections. Above the s-channel resonance region, say for centre-of-
mass energies

√
s ≥ 2.5 GeV, total cross sections initially decrease with increasing

energy, approximately as s−0.5, and then ultimately increase but only slowly, very
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much more slowly than would be implied by the exchange of a single spin-2 particle
in the t channel.

If we are to retain the picture of particle exchange, then all the resonance contri-
butions in the t channel must act collectively and combine in some way to give the
observed energy dependence. Thus any meson, the f2 for example, has to be consid-
ered as a member of a whole family of resonances of increasing spin and mass, and
we must consider the exchange of all this family simultaneously and their contribu-
tions must be correlated with each other. The mathematical framework for adding
the resonances together is based on a formalism initially developed by Regge [5–7]
for non-relativistic potential scattering. His formalism involved making the orbital
angular momentum l, which is initially defined only for non-negative integer values,
into a continuous complex variable. He showed that the radial Schrödinger equation
with a spherically-symmetric potential can be solved for complex l. That is, the
partial-wave amplitudes Al(t) can be considered as functions A(l, t) of complex l,
such that

A(l, t) = Al(t) l = 0, 1, 2, . . . . (5.5)

Regge found that if the potential V (r ) is a superposition of Yukawa potentials, then
the singularities of A(l, t) in the complex l-plane are poles whose locations vary
with t :

l = α(t). (5.6)

These poles are known as Regge poles, or reggeons, and as t is varied they trace
out paths defined by (5.6) in the complex l-plane. The functions α(t) are called
Regge trajectories. In relativistic scattering theory they are associated with the
exchanges of families of particles. Values of t such that α(t) is a non-negative
integer correspond to the squared mass of a bound state or resonance having that
spin. The theory allows us to sum the whole family of exchanges corresponding to
the particles associated with the Regge trajectory α(t).

In relativistic theory it is necessary [2] to introduce two amplitudes A±(l, t), such
that

A+(l, t) = Al(t), l even, A−(l, t) = Al(t), l odd (5.7)

and write the t-channel partial-wave expansion (5.1) as

A(s, t) = A+(s, t) + A−(s, t) (5.8)

with

A±(s, t) = 8π

∞∑
l=0

(2l + 1)Al(t)(Pl(zt ) ± Pl(−zt )). (5.9)
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Because Pl(−z) = (−1)l Pl(z), A+(s, t) receives contributions only from even l and
A−(s, t) only from odd l. Therefore in A+(s, t) we can replace Al(t) by A+

l (t) and
in A−(s, t) we can replace Al(t) by A−

l (t). The amplitudes A± are known as even-
and odd-signatured amplitudes.

The final Regge representation for A±(s, t) is [2]

A±(s, t) = −π
∑

i

β±
i (t)

�(α±
i (t) + 1) sin(πα±

i (t))

(
1 ± e−iπα±

i (t)) (
s
s0

)α±
i (t)

=
∑

i

β±
i (t)�(−α±

i (t))
(
1 ± e−iπα±

i (t)) (
s
s0

)α±
i (t)

, (5.10)

where we have used the property �(α + 1)�(−α) = −π/ sin(πα). The sum in
(5.10) is over allowed exchanges, the α±

i (t) are the corresponding Regge trajecto-
ries, the β±

i (t) the residues at the poles and s0 an arbitrary fixed scale. The form
(5.10) gives the behaviour of A±(s, t) for large s and small t , with |t | � s. This
latter requirement is a very important constraint in applications. Frequently the vari-
able ν = 1

4 (s − u) is used instead of s as consideration of s-channel ↔ u-channel
crossing is important. Crossing simply takes ν → −ν. It is also common for the
�-functions in (5.10) to be absorbed into the (unknown) residues βi (t).

The factors

ξ±
αi

(t) = 1 ± e−iπαi (t) (5.11)

are called signature factors. It can be shown [2] that for values of t in the s-
channel physical region, the amplitudes A±(l, t) are real for real l and for these
physical values of t both the positions α±(t) of the poles of the amplitudes and
their residues β±

i (t) are real, so the phase of the high-energy behaviour of a Regge-
pole contribution to A±(s, t) is given by the signature factor. Similar considerations
apply to the u-channel [8].

The Regge formalism tells us nothing about the trajectories α±
i (t), which can only

be obtained from experiment.

The �(−α±
i (t)) in (5.10) have poles for values of t when one of the α±

i (t) has a
non-negative integer value. The signature factors ξ+

αi (t) vanish when α is an odd
integer, so that the even-signatured amplitude has poles at those values of t for
which an α+

i (t) is a non-negative even integer σ+. Similarly, the odd-signatured
amplitude has poles at the values of t for which an α−

i (t) is a positive odd integer σ−.
These poles can be identified with the exchanges of particles of spin σ±, whose
squared mass is the corresponding value of t .

The real part of the trajectory for the meson states ρ(770), ρ3(1690) and ρ5(2350)
is shown in figure 5.1, together with its extension to negative t , extracted from
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Figure 5.1. Data for αρ(t) obtained at t < 0 from π− p charge-exchange scattering
data and the physical states at t > 0, from [2].

the π− p → π0n differential cross section. A plot such as this is known as a
Chew–Frautschi plot [9]. The near linearity of the trajectory allows a simple extrapo-
lation from the t-channel physical region t > 4m2

π to the s-channel scattering region
t < 0. That is, the trajectory has the form

α(t) = α0 + α′t. (5.12)

The four trajectories { f2(1270), f4(2050), . . .}, {a2(1320), a4(2040), . . .},
{ω(780), ω3(1670), . . .} and {ρ(770), ρ3(1690), . . .} are nearly degenerate [2]. The
first pair are even signature, the second pair odd. Each pair contains an isospin-
0 and an isospin-1 trajectory, so effectively the ‘leading trajectory’ contains four
near-degenerate trajectories all of which are nearly linear.

Although the real parts of the Regge trajectories α(t) cannot be exactly linear, as
above the physical threshold they have a non-zero imaginary part, it turns out that the
linear approximation is remarkably good and is sufficient for many purposes, as is
the assumption of degeneracy. However, neither is strictly true and the consequences
of deviations from both have been extensively explored.

Applying the optical theorem (5.4) to (5.12), a Regge trajectory α(t) gives a term
with energy dependence

σ ab(s) ∼
( s

s0

)α0−1
. (5.13)



Intermediate-energy photoproduction 187

From figure 5.1 we see that the intercept of the trajectories at t = 0 is close to 0.5 and
this accounts for the observed decrease in hadronic total cross sections at low and
intermediate energies. However, all hadronic total cross sections, pp, p̄ p, pn, p̄n
π± p and K ± p, ultimately increase with energy [10]. The meson exchanges cannot
account for this rise, which requires the introduction of a new Regge exchange, the
pomeron, which has isospin 0 and C = +1. It seems consistent with experiment to
assume that the pomeron trajectory αIP (t) is linear in t:

αIP (t) = 1 + εIP + α′
IP . (5.14)

The value of εIP can be obtained from fits [11–14] to the total cross section and
lies in the range 0.081–0.112. The value of α′

IP is determined by fitting the small-t
pp cross section and is found [15] to be 0.25 with a high degree of accuracy. As
the pomeron is natural-parity exchange, it follows from the signature factor (5.11)
that this small value of ε means that the pomeron contribution is almost purely
imaginary at t = 0.

It is generally believed that the pomeron is gluonic in origin and many of its
features can be understood qualitatively in terms of the exchange of two non-
perturbative gluons [16]. However, it is reasonable to ask whether the pomeron
should be interpreted as particle exchange, but in terms of glueballs not qq̄ mesons.
This suggestion is strongly supported by lattice gauge theory. In [17], the lightest
J = 0, 2, 4, 6 glueball masses have been calculated in D = 3 + 1 SU(3) gauge
theory in the quenched approximation and extrapolated to the continuum limit.
Assuming that the masses lie on a linear trajectory, the leading glueball trajectory
is found to be α(t) = (0.93 ± 0.024) + (0.28 ± 0.02)α′

IRt , where α′
IR ≈ 0.93 is the

slope of the mesonic Regge trajectories. Thus this glueball trajectory has an intercept
and slope very similar to that of the phenomenological pomeron trajectory. The
results of the calculation and the linear fit are shown in figure 5.2.

Parametrizing high-energy total cross section data by a fixed power εIP > 0 of s
will ultimately violate the Froissart–Lukaszuk–Martin bound [18,19]:

σ tot (s) ≤ π

m2
π

log2(s/s0) (5.15)

for some fixed, but unknown, value of s0. At currently accessible energies this is
not a significant constraint, but it does imply that the power εIP cannot be exactly
constant. It must decrease as s increases, but probably rather slowly. A mechanism
for this is provided by the exchange of two or more pomerons which moderates
the leading power behaviour and, in the case of the eikonal model for example,
asymptotically gives a log2 s behaviour [2].
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Figure 5.2. Pomeron trajectory from lattice gauge theory [17].

Linearity in the Chew–Frautschi plot is also apparent in the baryon trajectories.
The slope is comparable to that for the meson trajectories. An excellent review of
the Regge phenomenology of baryon trajectories can be found in [8].

It is familiar that the residue G(t0) of a particle pole at t = t0 in a partial-wave ampli-
tude Aσ (t) factorizes. That is, when it occurs in an s-channel scattering amplitude
1 + 2 → 3 + 4,

G1+2→3+4(t0) = g12g34. (5.16)

The unitarity relations in the t channel can be used to show that G(t) factorizes
similarly, even when t is not close to t0. Consequently, the β±

i (t) in (5.10) have a
similar factorization.

5.1.1 Regge cuts

Of course it is possible to exchange more than one reggeon. These multiple
exchanges give rise to cuts. Unfortunately the theory of Regge cuts is still not
well developed [2]. We do know [20] that the exchange of two reggeons, each
having a linear trajectory, yields a cut with a linear αc(t):

αc(t) = αc(0) + α′
ct (5.17)

with

αc(0) = α1(0) + α2(0) − 1,

α′
c = α′

1α
′
2

α′
1 + α′

2

. (5.18)
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Thus a reggeon–pomeron cut will have an intercept slightly larger and a slope
appreciably smaller than those of the reggeon trajectory and so the cut can easily
dominate over the pole contribution. Even for a reggeon–reggeon cut, which has a
lower intercept than either of the poles, for sufficiently large |t | the cut contribution
to the large-s behaviour of the amplitude will dominate over those from the poles,
because the slope α′

c is smaller than either of α′
1 and α′

2. So cuts can become
important at large t even if they are relatively small at small t .

The cut contributions do not factorize and the leading behaviour for large s is of
the form

Ac(s, t) ∼ sαc(t)(log(s))−γ (t). (5.19)

The logarithmic factor in (5.19) is highly model-dependent. Although there is no
well-formulated theory that allows cut contributions to be calculated, there are
models, the most popular one being the eikonal model. This reproduces the general
expressions for αc(t) and allows the cut contributions to be calculated explicitly in
terms of the single-reggeon-exchange amplitude [2].

We need to know the quantum numbers associated with a two-reggeon system.
Internal quantum numbers, such as isospin and G-parity, combine exactly as if the
reggeons were elementary particles. For example, the exchange of the f2 Regge
pole (I = 0, G = +1) and the a2 Regge pole (I = 1, G = −1) will give a cut with
I = 1, G = −1. However, a Regge cut will appear in amplitudes of both parities
because of the angular momentum associated with the two-reggeon system, and
there is also the important question of signature. It has been shown [21], for external
particles both with spin and without spin, that the signature of the cut is

τ = τ1τ2η, (5.20)

where τ1 and τ2 are the signatures of the two exchanged reggeons and η = −1 if
both reggeons are fermions and η = +1 otherwise.

A Regge trajectory is said to have natural parity, or naturality +1, if the spin and par-
ity of the mesons on it are given by J P = J (−1)J

, for example 0+, 1−, 2+, 3−, . . . ,
and to have unnatural parity, or naturality −1, if the spin and parity of the mesons on
it are given by J P = J (−1)J+1

, for example 0−, 1+, 2−, 3+, . . . . The parity and natu-
rality of Regge cuts are discussed in [22], where it was shown that if the exchanged
reggeons have naturalities n1 and n2, then amplitudes of naturality −n1n2 are sup-
pressed relative to amplitudes of naturality n1n2 and that this suppression grows
with increasing energy. As a consequence, for cuts where the two reggeons are
any of ρ, ω, a2 or f2, all of which are natural parity, the natural-parity cut will
dominate over the unnatural parity one. The only exception to this is in reactions
for which there is a constraint relation between amplitudes at t = 0 which makes
the natural and unnatural parity amplitudes equal there. Then the suppression of
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one is accompanied, at small t , by the suppression of the other, although away from
t = 0 the +n1n2 contribution can recover from this suppression.

5.1.2 Daughter trajectories

For internal consistency, Regge theory requires an infinite set of daughter trajec-
tories [1,2], related to the leading trajectory α0(t) by α1(t) = α0(t) − 1, α2(t) =
α0(t) − 2, . . . The trajectory α1(t) is known as the first daughter of α0(t); α2(t) is
the second daughter and so on. The concept of daughter trajectories was developed
at a time when little was known about meson spectroscopy. There was no experi-
mental evidence for them and no theoretical proof of their existence and alternative
viewpoints were proposed. Meson spectroscopy is now much more developed, and
the non-strange meson resonances do appear to lie [23] on nearly linear, parallel,
Regge trajectories. The evidence for daughter trajectories is very convincing.

Because they are low-lying, the contributions from daughter trajectories to cross
sections decrease much more rapidly than do the contributions from the leading
trajectories and so normally they are unimportant except at very low energies.

5.1.3 Spin

It is straightforward to incorporate spin, the most convenient way being to use the
helicity formalism [24]. Each particle is labelled by its helicity λ and we consider
helicity amplitudes, that is matrix elements taken between helicity states, in the
s-channel centre-of-mass frame. For the process 1 + 2 → 3 + 4 this gives

〈P3, λ3; P4, λ4|T |P1, λ1; P2, λ2〉 ≡ Tλ3λ4;λ1λ2 (s, t) (5.21)

with

dσλ3λ4;λ1λ2

d�
= |p3|

64π2|p1|s |Tλ3λ4;λ1λ2 |2. (5.22)

If the spins of the particles are s1, s2, s3, s4, then the number of amplitudes appears
to be (2s1 + 1)(2s2 + 1)(2s3 + 1)(2s4 + 1). However, because of parity and time-
reversal invariance the number of independent amplitudes will be less than this. For
example for πp scattering there are two, for γ N → π N there are four, and for pp
or p p̄ elastic scattering there are five.

Apart from the simplicity of this formula, with no cross terms, the usefulness of the
helicity formalism stems from the fact that the partial-wave series is a straight-
forward generalization of the series for the scattering of two spin-0 particles.
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It is

Tλ3λ4;λ1λ2 (s, t) = 16π

∞∑
J≥μ

(2J + 1)T J
λ3λ4;λ1λ2

(s) d J
λλ′(θs), (5.23)

where J is the total angular momentum in the t channel,

λ = λ1 − λ2 λ′ = λ3 − λ4 μ = max (|λ|, |λ′|) (5.24)

and d J
λλ′(θs) is an element of the rotation matrix [25]. Using d J

00(θs) = PJ (cos θs)
we immediately recover the partial-wave series for spinless particles, with J = l.

In the forward direction θs = 0, λ and λ′ are projections of the total angular momen-
tum in the same direction and the conservation of angular momentum demands that
the amplitude vanishes unless λ = λ′. Thus for θs ≈ 0, the behaviour of d J

λλ′(θs)
makes Tλ3λ4;λ1λ2 (s, t) vanish at least as fast as

Tλcλd ;λaλb ∼ (
sin 1

2θs
)n

, (5.25)

where n = |λ − λ′| is known as the net helicity flip.

The Reggeization procedure can be applied to the helicity amplitudes and, as in
the spinless case, we need to use the t-channel helicity amplitudes Tλ̃2̄λ̃4;λ̃1λ̃3̄

(s, t).
These are related to the s-channel helicity amplitudes by a complicated crossing
matrix. Since Regge poles have definite parity, it is appropriate to use t-channel
amplitudes of definite parity, so that only poles of that parity contribute to them.
This is done analogously to the A± of (5.10) by taking sums and differences of
partial-wave helicity amplitudes:

T J±
λ̃2̄λ̃4;λ̃1λ̃3̄

(t) = T J
λ̃2̄λ̃4;λ̃1λ̃3̄

(t) ± η1η3̄(−1)−s1−s3 T J
λ̃2̄λ̃4;−λ̃1,−λ̃3̄

(t), (5.26)

where the superscript (±) specifies the parity and η1 and η3̄ are intrinsic parities of
the particles concerned. Note that this is in addition to constructing amplitudes of
definite signature. To take account of kinematic constraints for s-channel scattering,
for example (5.25), it is easiest to go back to the s-channel helicity amplitudes. It
is found that a Regge pole makes s-channel helicity amplitudes behave for large s
as sα(t), as in the case of spinless particles, though it need not contribute to all of
the amplitudes.

We have seen in (5.25) that the conservation of angular momentum makes s-
channel helicity amplitudes vanish at θs = 0 at least as fast as a certain power
of sin 1

2θs . However, parity conservation may give a more stringent requirement on
the behaviour of the contribution from a given Regge pole. A contribution from any
t-channel reggeon has definite parity in the t channel. Therefore it satisfies

Tλ3λ4;λ1λ2 = ±T−λ3λ4;−λ1λ2 . (5.27)
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The behaviour (5.25) is therefore not achievable and must be modified to

Tλ3λ4;λ1λ2 ∼ (
sin 1

2θs
)n+n′

, (5.28)

where

n + n′ = |λ1 − λ3| + |λ2 − λ4|
= max [|λ1 − λ3 − λ2 + λ4|, |λ1 + λ2 − λ3 − λ4|]. (5.29)

5.1.4 Duality

It is convenient to start by recalling the origins of duality in pion–nucleon scattering
through finite-energy sum rules (FESRs) [26–29]. These relate an integral over the
resonance region at fixed t to a sum over the Regge-pole terms appropriate to
higher energies. An amplitude AA(ν, t) which is odd under crossing, AA(ν, t) =
−AA(−ν, t), is represented at high energy by a sum over poles of odd signature:

AA(ν, t) = −π
∑

i

βi (t)
�(α±

i (t) + 1) sin(πα±
i (t))

(
1 ± e−iπα±

i (t)) (2ν)α
±
i (t). (5.30)

The corresponding FESR is∫ νc

ν0

dν ImAA(ν, t) = − 1
2π

∑
i

βi (t)
�(αi (t) + 2)

(2νc)αi (t)+1. (5.31)

For an amplitude that is even under crossing, AS(ν, t) = AS(−ν, t), the FESR is
written for ν AS(ν, t):∫ νc

ν0

dν νImAS(ν, t) = 1
4π

∑
i

βi (t)
�(αi (t) + 3)

(2νc)αi (t)+2. (5.32)

Provided that the convergence criteria are satisfied, FESRs can be written for
ν2n AA(ν, t) and ν2n+1 AS(ν, t), where n is an integer, giving sum rules of different
moments. Not all amplitudes are crossing even or crossing odd, so for a general
amplitude both odd- and even-moment sum rules must be considered [30].

As the FESRs are written for amplitudes, knowledge of the low-energy amplitudes,
from partial-wave analysis, provides important information about the Regge-pole
amplitudes. The upper limit of integration, νc, must be sufficiently high for the
Regge-pole expression to be valid. However, in practice νc is determined by the
upper limit of phase-shift analysis, corresponding typically to values of

√
s close

to 2 GeV.

The principal applications of FESRs were to pion–nucleon scattering [31,32] and
to pion photoproduction [33–36]. It is necessary to assume that the Regge-pole
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Figure 5.3. Comparison of pLab(σ tot (π− p) − σ tot (π+ p)) with the extrapolation
of Regge fits to higher-energy data [2].

amplitude describes the real physical amplitude at low energy on the average and
that this averaging takes place over intervals appreciably smaller than the range of
integration. This does happen in practice, as illustrated in figure 5.3 which compares

pLab(σ tot (π− p) − σ tot (π+ p)) (5.33)

with the Regge fit to high-energy data. In this case the Regge exchange is the ρ

trajectory, extrapolated to low energies.

The π− p and π+ p high-energy elastic scattering amplitudes receive equal contri-
butions from pomeron exchange, which cancels in the difference (5.33) between the
two total cross sections. This implies that the non-pomeron Regge-pole t-channel
exchanges are dual to the s-channel resonances. Figure 5.4 shows that the extrap-
olations to low energy of the Regge fits to the high-energy π+ p and π− p total
cross sections give good descriptions of the average low-energy cross sections in
each case. The resonances sit on a non-resonance background, so assuming that the
non-pomeron t-channel exchanges are dual to the low-energy s-channel resonances
leads to the assumption that pomeron exchange is dual to the low-energy s-channel
non-resonance background.

This assumption of two-component duality is explicitly realized in the individual
partial-wave amplitudes in π N scattering [32]. The linear combinations of partial-
wave amplitudes fl

I
±, where the superscript I labels the s-channel isospin and the
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Figure 5.4. Comparison of the low-energy π+ p and π− p total cross sections with
extrapolated Regge fits to higher-energy data [2].

subscript l± refers to total angular momentum J = l ± 1
2 ,

f 0
l± = 1

3

(
f

1
2

l± + 2 f
3
2

l±
)

f 1
l± = 1

3

(
f

1
2

l± − f
3
2

l±
)

(5.34)

correspond to isospin-0 and isospin-1 exchange in the t channel. As the pomeron
does not contribute to the t-channel I = 1 exchange amplitude, two-component
duality predicts that the f 1

l± should be given entirely by s-channel resonances.
On the other hand, the f 0

l± should not be given by s-channel resonances alone, but
should have a predominantly-imaginary smooth background on which the s-channel
resonances are superimposed. With the exception of the S-waves, this is what π N
partial-wave analysis shows. The t-channel I = 1 amplitudes are represented by
clear resonance circles in the complex phase-shift plane, with very little background.
In contrast the resonance circles in the t-channel I = 0 amplitudes are superimposed
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Figure 5.5. I = 0 and I = 1 exchange amplitudes for P3 and F5 pion–nucleon
partial waves.

on a large and predominantly-imaginary background. The P3 and F5 partial waves,
from the partial-wave analysis of [37], are given as examples in figure 5.5.

Despite these successes, duality is not a precise concept. A counter example is
provided by pp scattering which does have a non-zero Regge contribution, although
this is appreciably less than that in p̄ p scattering.

5.1.5 The Veneziano model

A theoretical representation of the scattering amplitude that is explicitly crossing
symmetric and analytic, has Regge behaviour, satisfies the FESRs and exhibits
duality, although it violates unitarity, is provided by the Veneziano model [38]. The
model contains strictly-linear trajectories, zero-width resonances and an infinite set
of daughter trajectories. For a reaction that is identical in all three channels, for
example π0π0 scattering, the amplitude has the form

A(s, t) = β̄ [B(−α(s), −α(t)) + B(−α(s), −α(u)) + B(−α(t), −α(u))],

(5.35)

which is explicitly s ↔ t , s ↔ u, t ↔ u crossing-symmetric. In (5.35), β̄ is a
constant, α is a real linear trajectory

α(s) = α(0) + α′s, (5.36)
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and B(x, y) is the Euler Beta-function

B(x, y) = �(x)�(y)

�(x + y)
. (5.37)

Reactions which do not have resonances in all three channels do not have all the
terms in (5.35).

It is straightforward to show [2] that the first term in (5.35) may be written as a sum
of poles in either variable:

B(−α(s), −α(t)) =
∞∑

n=0

Rn(t)
n − α(s)

=
∞∑

n′=0

R′
n(s)

n′ − α(t)
, (5.38)

with Rn a polynomial of degree n, and similarly for the second and third terms.
Equation (5.36) shows that the Veneziano amplitude fulfils the duality requirement
that the amplitude can be represented as a sum of poles in either the s or the t
channel. It is equally straightforward to show [2] that for fixed t and large s

B(−α(s), −α(t)) = �(−α(t)) (−α′ s)α(t) (1 + O(s−1)) (5.39)

and in this limit

A(s, t) ∼ β̄ �(−α(t)) (1 + e−iπα(t)) (α′s)α(t), (5.40)

which is the Regge behaviour for an even-signatured trajectory.

The Veneziano amplitude is important because it demonstrates that simple func-
tions exist which satisfy the theoretical requirements of analyticity, crossing and
duality. However, it also demonstrates that there is no unique function as the
B(−α(s), −α(t)) of (5.36) can be replaced by

B(m − α(s), n − α(t)) (5.41)

for any integers m, n ≥ 1, and similarly for the s, u and t, u terms.

5.2 Photoproduction of pseudoscalar mesons

In principle it is possible to perform a complete set of measurements in pseudoscalar-
meson photoproduction, that is to determine the amplitudes at fixed t up to an overall
phase [39–41]. The reaction is given in terms of four complex amplitudes, which
suggests that determining four magnitudes and three phases requires only seven
experiments. However, seven experiments are not sufficient to resolve discrete
ambiguities. The discussion is most conveniently carried out in terms of transver-
sity amplitudes, which use the normal to the scattering plane as the quantization axis
[42,43]. The cross section plus the three single-spin observables (beam, target and
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recoil baryon polarization) determine the magnitudes of the transversity ampli-
tudes. There are twelve independent double-polarization measurements, four each
of beam-target, target-recoil and beam-recoil. With careful selection of four of these
it is possible to extract all the requisite phases without discrete ambiguities [41]. In
practice, however, such a complete set of measurements has not yet been made and
the use of FESRs to provide supplementary information has been very important
and informative.

5.2.1 Pion photoproduction

Pion photoproduction is usually discussed either in terms of the four independent
s-channel helicity amplitudes T λγ

λN λ′
N
, where λγ is the photon helicity and λN , λ′

N
are the helicities of the initial and final nucleons, or in terms of four independent
t-channel amplitudes Fi . These amplitudes, the relations between them and the
definition of the cross section and polarization parameters are given in appendix D
of [2]. Here we summarize the salient features.

The s-channel helicity amplitudes satisfy the conditions

T 1
+− = T −1

−+, T 1
−− = T −1

++,

T 1
++ = T −1

−−, T 1
−+ = −T −1

+−, (5.42)

where the usual convention of denoting the nucleon helicities only by their sign
has been used as there is no ambiguity. Because of the relations (5.42) it is also
conventional to use the λγ = 1 helicity amplitudes and omit the photon-helicity
label. As the pion has zero helicity there is automatic helicity flip at the photon–
pion–reggeon vertex, so the net helicity flip is defined by the nucleon helicities.
Then T−+ is a non-flip amplitude (N ), T++ and T−− are both single-flip amplitudes
(S1 and S2 respectively) and T+− is double-flip (D).

The amplitudes Fi have definite parity in the t channel. At large s, F3 and F4 are
respectively natural- and unnatural-parity t-channel amplitudes while F1 and F2

are respectively natural- and unnatural-parity t-channel amplitudes at all energies.
Further, the amplitudes F2 and F3 are constrained at t = 0 by

F3 = 2m N F2, (5.43)

where m N is the nucleon mass.

5.2.2 π0 photoproduction

We start with γ p → π0 p, for which the principal reggeon exchange is expected
to be the ω. The contribution from ρ exchange is small as the γ –π–ω coupling is
about three times the γ –π–ρ coupling and the coupling of the ω to the nucleon is



198 F E Close and A Donnachie

Parity Amplitude Trajectory J PC

Natural F1 ω (2l + 1)−−
Unnatural F2 b1 (2l + 1)+−

Natural F3 ω (2l + 1)−−
Unnatural F4 Unknown (2l)−−

Table 5.1. Leading Regge trajectories contributing to π0

photoproduction.
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Figure 5.6. Differential cross sections for π− p → π0n at pLab = 9.8 GeV [44]
(top) and γ p → π0 p at Eγ = 12 GeV [45] (bottom).

about four times the coupling of the ρ [2]. As the ω trajectory has natural parity
it contributes to the F1 and F3 amplitudes. A contribution from the lower-lying
b1(1235) trajectory is allowed, as the dominant decay of the b1(1235) is ωπ , but
its coupling to the nucleon is unknown and has to be determined from experiment.
The b1(1235) contributes only to the F2 amplitude. The lowest-mass states on the
allowed Regge-pole trajectories are given in table 5.1. As cuts do not have a specific
parity, the ω-pomeron cut can contribute to F1, F2 and F3.
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Figure 5.7. Effective ω trajectory obtained from the π0-photoproduction differen-
tial cross section. The line is the same as in figure 5.1.

The differential cross section for γ p → π0 p looks very like that for π− p →
π0n, as shown in figure 5.6. Just as the former reaction is dominated by
the ρ-exchange single-flip amplitude, π0 photoproduction is dominated by the
ω-exchange single-flip amplitudes. The origin of the minimum in the cross section
at t ≈ −0.55 GeV2 is the zero in ω exchange due to the vanishing of the signature
factor there, just as for ρ exchange in π− p charge exchange. However, π0 photopro-
duction is more complicated [34] than π− p charge exchange, as can be seen from
the effective trajectory in figure 5.7. The line is the extrapolated fit to the physical
states on the ω trajectory. This figure should be compared with the corresponding
one for ρ exchange, figure 5.1. It is clear that for π0 photoproduction additional
contributions are required.

However, without going into detail one can get a general picture of the process
directly from the data. As the dominant ω exchange is natural parity, for plane-
polarized photons one would expect that the polarized beam asymmetry

� = σ⊥ − σ‖
σ⊥ + σ‖

(5.44)

should be predominantly equal to 1. This is very nearly true, as can be seen in
figure 5.8. The slight dip at t ≈ −0.6 necessarily requires unnatural parity exchange.
From table 5.1 it can be seen that there is no known contribution to F4, implying
that this amplitude should be zero or, at most, very small. This in turn requires that
the recoil polarization asymmetry R and the polarized target asymmetry T should
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Figure 5.8. Polarized-beam asymmetry for γ p → π0 p at Eγ = 6.0 GeV [45].

be equal as, to leading order in s [2],

R
dσ

dt
= 1

16π

√−t
4m2

p − t
Im

(
F1 F∗

3 − (
4m2

p − t
)
F4 F∗

2

)
,

T
dσ

dt
= 1

16π

√−t
4m2

p − t
Im

(
F1 F∗

3 + (
4m2

p − t
)
F4 F∗

2

)
(5.45)

and so

(R − T )
dσ

dt
=

√−t
8π

Im(F2 F∗
4 ). (5.46)

Comparison of R and T is rather difficult as the data are at different energies
and an interpolation in t is also necessary. Additionally F2 is small, so in practice a
comparison of R and T is not a sensitive test of whether F4 = 0. Further information,
in the form of FESRs, is necessary.

A model [46] consisting of the ω, ρ and b1 reggeon exchanges, with non-degenerate
ω and ρ trajectories, provides a qualitative description of the data. Although it is
quantitatively rather poor except at very small t and does not reproduce accurately
the dip structure seen in the differential cross section, it is strongly constrained. The
magnitudes of the ω and ρ contributions are fixed by the widths of the radiative
decays ω → πγ , ρ0 → π0γ and the known ωN N , ρN N couplings. The only ‘real’
parameter is the magnitude of the b1 contribution as its coupling to the nucleon is
unknown. The comparative success of this approach is a good indicator of how well
simple models can describe data.
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An effective trajectory lying above the ω trajectory, clearly required from figure 5.7,
cannot be produced by b1 exchange so cuts are an essential and important part of
the reaction. As the high-energy data alone do not determine the amplitudes it is
essential to use FESRs. There are five principal conclusions from a combined fit
[33,34] to the data and the sum rules. The F1 amplitude dominates the cross section,
as expected, but the zero in the ω contribution is masked by a strong cut. However,
the cut does not move the minimum in dσ/dt because it is predominantly real,
whereas the pole is mainly imaginary there. The FESRs show that F2 and F3 are
finite at t = 0 so it is necessary for the cuts, which are large, to ‘conspire’ to satisfy
the constraint (5.43). The zero of the ω-pole contribution in F3 is completely masked
by the cut. The F4 amplitude is non-zero and has strong energy dependence, but
whether it is due to a low-lying trajectory or cuts or a combination of both cannot
be determined. No simple cut model can explain the pattern of cuts observed. The
residues found for the ω pole agree reasonably well with what is known about
the ωπγ and ωN N couplings, so it is reasonable to believe that the correct cut
amplitudes have been obtained.

These results confirm our qualitative expectations for ω exchange, but the cut
contributions do not follow the conventional picture and are not understood. Thus
π0 photoproduction provides a considerable contrast to π− p charge exchange. Not
only are cut effects important in determining the structure of the flip amplitudes, but
also it is clear that no simple cut model can account for all the structure observed. In
general π0 photoproduction sets rather difficult problems for high-energy models,
even though the basic structure reflects the expected behaviour.

5.2.3 π± photoproduction

The isospin decomposition for charged pion photoproduction is

Fi (γ p → π+n) =
√

2
(
F (0)

i + F (−)
i

)
,

Fi (γ n → π− p) =
√

2
(
F (0)

i − F (−)) (5.47)

and the crossing properties of F (0)
i and F (−)

i under s–u interchange are

F (−)
1 , F (−)

2 , F (−)
3 and F (0)

4 are odd,

F (0)
1 , F (0)

2 , F (0)
3 and F (−)

4 are even. (5.48)

The lowest-mass states on the allowed Regge-pole trajectories are given in table 5.2.
Since the two reactions γ p → π+n and γ n → π− p are related by line reversal,
exchanges with different G-parity enter with different relative sign in the two cases.
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Parity Amplitude G = +1 trajectory G = −1 trajectory

Natural F1 ρ a2
Unnatural F2 b1 π

Natural F3 ρ a2
Unnatural F4 Unknown a1

Table 5.2. Leading Regge trajectories contributing to π+ photoproduction.
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Figure 5.9. Differential cross section for γ p → π+n at Eγ = 8.0 GeV [47].

An obvious feature of the differential cross section [47] for γ p → π+n is the narrow
forward peak. The cross section at Eγ = 8 GeV is shown in figure 5.9, where dσ/dt
is plotted as a function of

√−t to highlight the forward peak. The differential cross
sections at lower energies are very similar in shape [47] and there is strong energy
dependence: the cross section decreases approximately as s−2. This is evident in
the effective trajectory in figure 5.10, which shows that αe f f ≈ 0 over the whole
t range. Another obvious feature of these data is that they are structureless, apart
from the peak, and there is no dip at t ≈ −0.55 GeV2.

The forward peak, in which the differential cross section rises by more than a factor
of two between t = −m2

π and t = tmin , is naturally associated with pion exchange.
Pion exchange is unique among reggeon exchanges. The �(−α(t)) in (5.10) has a
pole near the physical region, so for small t one can approximate it by the pion-
pole term. The pion-exchange term vanishes in the forward direction, even though
it occurs in the non-flip amplitude T+− as well as in the double-flip amplitude T−+,
and so by itself it cannot produce a forward peak.
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Figure 5.10. Effective trajectory for γ p → π+n.

If we consider pion-exchange as a Feynman diagram, it is well known that the ampli-
tude is not gauge-invariant by itself. When using pseudoscalar (PS) π N coupling,
this has to be complemented by the s-channel nucleon diagram for γ p → π+n and
by the u-channel nucleon-exchange diagram for γ n → π− p. These are the mini-
mum terms necessary for gauge invariance and correspond to the electric coupling.
The anomalous magnetic part is gauge-invariant by itself (there is no corresponding
pion term) and need not be included. If it is retained, its influence is negligible.
For pseudovector (PV) π N coupling it is necessary to add the Kroll–Ruderman
contact term. The two coupling schemes lead to exactly the same gauge-invariant
amplitudes.

The problem then arises about Reggeizing these nucleon terms. For the pion
pole itself there is no problem [46]: one simply replaces the Feynman propagator
1/(t − m2

π ) by the appropriate Regge term, PRegge say, of (5.10). In other words the
pole-like propagator is multiplied by (t − m2

π )PRegge. It is suggested in [46] that
one does precisely the same for the nucleon terms, so symbolically

Mπ (γ p → π+n) → (
t − m2

π

)
Pπ

Regge

(
Mπ

t-exch + M N
s-exch

)
,

Mπ (γ n → π− p) → (
t − m2

π

)
Pπ

Regge

(
Mπ

t-exch + M N
u-exch

)
. (5.49)

The effect of these additional terms is to create the sharp rise observed in the forward
differential cross section over the range �t ≈ m2

π .

The experimental ratio of theγ n → π− p andγ p → π+n differential cross sections
is shown in figure 5.11. The pion-pole contribution is essentially the same in both
reactions which accounts for the ratio being close to unity at small t . Away from
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Figure 5.11. Ratio R = dσ
dt (γ n → π− p)/ dσ

dt (γ p → π+n) at Eγ = 8.0 GeV [47].

the very forward direction, the other contributions come into play. In an obvious
notation,

dσ

dt
(γ p → π+n) ∝ |(π + b1) + (ρ + a2)|2,

dσ

dt
(γ n → π− p) ∝ | − (−π + b1) + (ρ − a2)|2, (5.50)

where π stands for the complete gauge-invariant pion-exchange term and the
changes in sign between the two reactions are a consequence of the negative
G-parity of the π and a2 exchanges. As the (ρ,a2) and (π ,b1) trajectories are nearly
degenerate, and as the positive and negative G-parity exchanges have different sig-
nature factors, this change in sign leads to rotating phases exp(−iπα(t)) for one
reaction and to constant phases for the other. This difference is crucial in explaining
the data in figure 5.11, and the success in doing so is a remarkable achievement for
Regge theory. Fixing the magnitude of theρ contribution from the width of the radia-
tive decay ρ± → π±γ and the known ρN N coupling, parameter-free predictions
[46] can be made for the γ p → π+n and γ n → π− p. Although still qualitative, it is
better than the corresponding description ofγ p → π0 p and in particular gives a pre-
cise description of the cross section ratio R = dσ

dt (γ n → π− p)/ dσ
dt (γ p → π+n).

To improve on this description, it is necessary to parametrize the amplitudes and to
impose FESRs, fitting them and the data rather than attempting a prediction a priori
[35,48,36]. In this approach the s-channel and u-channel nucleon poles are not
included and are replaced by Regge cuts. The simplest prescription is to put a pion
pole directly into the s-channel helicity amplitudes that have no kinematic factors
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that are not required by s-channel angular-momentum conservation [49,50]. This
means replacing the factorizing form t/(t − m2

π ) by m2
π/(t − m2

π ) in the non-flip
amplitude. As we can rewrite m2

π/(t − m2
π ) as t/(t − m2

π ) − 1 we see that we are
simply adding a specific smooth background which interferes destructively with
the pole and which should be associated with a cut. The pion-exchange contri-
bution to the double-flip amplitude is unaltered as s-channel angular momentum
conservation requires that the t dependence is unchanged. This simple prescription,
known as poor man’s absorption (PMA), describes the near-forward charged-pion-
photoproduction data rather well, but fails at larger values of |t | [48]. An interesting
feature of the FESRs is that the two amplitudes to which pion exchange contributes
are determined, to a good approximation, by the Born terms as the higher-mass
baryon resonances cancel in the forward direction. This explains the success of
the Born-term model and it is interesting to note that this cancellation agrees with
quark-model predictions for the coupling of the baryon resonances to the different
helicity states in γ N → π N [51].

Pion exchange contributes only to the t-channel amplitude F2, which we have seen
must satisfy the constraint F3 = 2m p F2 at t = 0. This constraint is satisfied trivially
by pion exchange as it vanishes at t = 0. However, this is not the case for the cut.
The constraint equation automatically requires a cut in F2 to be accompanied by a
cut in F3, that is the cut occurs in both the unnatural- and natural-parity amplitudes.
This immediately predicts the behaviour of the polarized beam asymmetry, �, at
small t as there [2]

� ∼ (|F3|2 − 4m2
p|F2|2

) / (|F3|2 + 4m2
p|F2|2

)
, (5.51)

so � = 0 at t = 0 from the constraint equation (5.43). As |t | increases F2 decreases
rapidly but F3 varies slowly. Hence � will increase rapidly to a value close to 1, in
conformity with the data.

The fact that αe f f ≈ 0 over the whole t range is evidence for strong cuts. It is
not surprising that the reggeon-exchange contributions, other than the pion, are
not obvious in the differential-cross-section data. Both ρ and a2 exchange are
allowed, but we know that their couplings to the nucleon are weak. We also know
from π0 photoproduction that ρ exchange is not important and that b1 exchange
does not make a significant contribution. However, FESRs [35] show that ρ and a2

exchange, and their associated cuts, cannot be completely excluded. Their presence
is not seen directly in the data but through interference with the strong pion cut in
the natural-parity amplitude. The absence of a dip in the differential cross section
could be taken to imply that the ρ pole does not have a zero there. However,
the presence of the strong cuts, evident from the energy dependence of the cross



206 F E Close and A Donnachie

section, invalidates that argument. The evidence from sum rules is that the zero is
required [35].

The principal conclusion to be drawn from pion photoproduction at small t is
that predictions of the reactions are at best qualitative, except at very small t .
A precise quantitative description, particularly of polarization data, requires the
incorporation of Regge cuts. As there is no simple prescription for calculating the
cuts, these data provide a salutary reminder that the application of Regge theory is
not straightforward.

At large |t | it is more appropriate to use a partonic approach to describing the
data. At fixed centre-of-mass angles and large t , the constituent-quark counting
rule makes specific predictions for the energy dependence of exclusive processes.
The rule was first derived from simple dimensional counting arguments [3] and was
later confirmed in a short-distance pQCD approach [4]. The rule is qualitatively
consistent with many measurements, although there are a few anomalies in pp
scattering and the prediction of conservation of hadron helicity is not confirmed.
For pion photoproduction the rule predicts that

dσ

dt
= f (θc.m.)s−7 (5.52)

at fixed centre-of-mass angle θc.m.. Data [52] for γ p → π+n and γ n → π− p at
θc.m. = 90◦ are shown in figure 5.12. The differential cross section has been multi-
plied by s7 and the data appear to indicate the onset of scaling from s ≈ 7 GeV2.

Scaling is also apparent from about the same energy at θc.m. = 70◦ in both channels,
but not at θc.m. = 50◦. This is not really surprising as these latter data lie in the
range 0.696 < |t | < 1.248 GeV2 for

√
s ≥ 2.35 GeV, which is still very much in

the Regge region.

5.2.4 η0 photoproduction

The data for γ p → η0 p, shown in figure 5.13, pose a severe problem for Regge
models. The reaction has the same exchanges as γ p → π0 p, but exchanges of
different isospin enter in different combinations. If we write

Fi (π
0 p) = F0

i + F1
i , (5.53)

where the superscripts denote the t-channel isospin, then for η photoproduction we
can use vector-meson dominance (VMD) arguments [35] to write

Fi (ηp) = 1
3 x

√
3
(

1
r F0

i + r F1
i

)
. (5.54)
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Figure 5.12. Differential cross section [52] for: (a) γ p → π+n and (b) γ n → π− p
at θc.m. = 90◦.

Here r = γρ/γω ≈ 2.8 and x ≈ 1.23 depends on the η − η′ mixing angle. The
effect of (5.54) is to suppress ω exchange and enhance ρ exchange. However,
whatever the combination of ω and ρ exchange, one would expect a minimum in
the cross section around |t | ∼ 0.55 GeV2, just as in π− p charge exchange and in
π0 photoproduction.

In this case it is not possible to use FESRs as, although they can be written down
formally, there is an unphysical cut from the πp threshold to the ηp threshold
whose contribution cannot be evaluated. The ‘solution’ once again is to invoke
cuts and the most plausible description [34] is to have the cross section dominated
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Figure 5.13. Differential cross section for γ p → η0 p at Eγ = 6.0 GeV [53].

by natural-parity exchange with the cuts washing out the dip arising from the
poles. The dominance of natural-parity exchange is evident from the polarized-beam
asymmetry �, which is large and positive. The cut structure in η photoproduction
is very different from that in π0 photoproduction, emphasizing once again the
difficulty of using Regge theory for ab initio predictions.

5.2.5 K + photoproduction

Just as for η photoproduction, FESRs are not applicable. However, one can deduce a
lot about the reaction by direct inspection of the data for the reactions γ p → K +�0

and γ p → K +�0. The principal Regge exchanges for these two reactions are
the trajectories on which the K (494) and K ∗(892) are the lowest-mass members.
Assuming linear trajectories and exchange-degeneracy, the K trajectory is specified
in principle by the K (494), K1(1270), K2(1770), K3(2320) and two higher-mass
states still in need of confirmation [10], K3(2320) and K4(2500). A further compli-
cation is that the K1(1270) and K1(1400) are mixtures of the K1B(1 P1) (the natural
candidate for the trajectory) and the K1A(3 P1), so the physical mass is presumably
not the correct one to use. Ignoring this problem and fitting to the three established
states gives the trajectory

αK ≈ 0.7
(
t − m2

K

)
. (5.55)

This choice allows satisfactory agreement with the small-t data, although the data
are not able to establish definitively the precise K trajectory. There are five states
available to establish the K ∗ trajectory, K ∗(892), K ∗

2 (1430), K ∗
3 (1780), K ∗

4 (2045)
and K ∗

5 (2380) although the latter is another state still in need of confirmation [10].
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Figure 5.14. Cross sections for (a) K� and (b) K� photoproduction [54]. The
data, from top to bottom, are at photon laboratory energies of 5, 8, 11 and 16 GeV.

Fitting the four established states gives the trajectory

αK ∗ ≈ 0.25 + 0.89t. (5.56)

The differential cross sections for γ p → K +�0 and γ p → K +�0 are given in
figure 5.14 and the effective trajectory for γ p → K +�0 in figure 5.15. The line in
the latter figure is that of (5.56).

In the middle of the t range shown it is clear that the effective trajectory is consistent
with exchange of the K ∗(892) trajectory. At very small t the effective trajectory
is consistent with the dominance of K exchange, from (5.55) the intercept of the
trajectory at t = 0 is approximately −0.17. Finally, at the larger values of −t there
is an indication of a deviation from the K ∗ trajectory, presumably a K ∗–pomeron
cut which will have an intercept slightly larger and a slope appreciably smaller than
that of the K ∗ trajectory: recall (5.17) and (5.18). This interpretation is reflected
in the data. Just as for ω and ρ exchange in pion photoproduction, K ∗ exchange
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Figure 5.15. Effective trajectory for γ p → K +�0. The line is the K ∗ trajectory (5.56).

goes to zero in the forward direction. The forward differential cross section, figure
5.14(a), is rather flat at the lowest energy but tends more and more to zero as
the energy increases; the contribution of K exchange decreases relative to K ∗

exchange as it is a lower-lying trajectory. In contrast, the differential cross section
for γ p → K +�0, figure 5.14(b), tends to zero as t → 0 at all energies, implying
that K exchange is very small in this reaction. The data on the polarized beam
asymmetry � (not shown) bear this out. For γ p → K +�0 the beam asymmetry �

is consistent with unity at all values of t , hence requiring natural-parity exchange.
For γ p → K +�0 the beam asymmetry � is consistent with unity only for |t | ≥ 0.2
GeV2 and requires some unnatural-parity exchange at smaller values of |t |.
It is rather straightforward to model this. The most obvious approach is the analogue
of the model for π± photoproduction discussed above [46]. For K ∗ exchange, the
coupling constant at the γ –K –K ∗ vertex can be estimated from the electromagnetic
width of the K ∗ and for K exchange the coupling is simply the electric charge. The
strong coupling constants involved are much less well known experimentally than
the coupling constants in pion photoproduction but can be estimated through SU(3).
In practice only the contribution of the K is relatively well determined and it is
necessary to treat the hadronic couplings of the K ∗ as parameters, apart from their
sign which is known. This simple model gives a rather good description of the γ p →
K +�0 and γ p → K +�0 differential cross sections and shows that K ∗ exchange
completely dominates γ p → K +�0 and, except for |t | ≤ 0.2 GeV2, dominates
γ p → K +�0. However, the model is not so successful in reproducing the recoil
baryon asymmetry in γ p → K +�0, particularly at larger values of |t |. This can be
ascribed to a K ∗–pomeron cut, as already inferred from the effective trajectory.
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5.3 Vector-meson photoproduction

Unlike pseudoscalar-meson photoproduction it is not straightforward, even in prin-
ciple, to perform a complete set of measurements to determine the amplitudes of
vector-meson photoproduction at fixed t up to an overall phase. For example, it
can be shown [55] that measuring the two-meson decay of a photoproduced ρ or
φ does not determine the meson’s vector polarization, only its tensor polarization.
The decay of the vector meson into lepton pairs is also insensitive to the polar-
ization of the vector meson unless the spin of one of the leptons is measured.
Nonetheless, despite this and in contrast to the complexity of pseudoscalar-meson
photoproduction, the description of light-quark vector-meson photoproduction is
surprisingly simple.

5.3.1 ρ and ω photoproduction

A particular feature of ρ photoproduction is the distortion of the line shape of the ρ

due to interference between the amplitude for direct ρ production and the amplitude
for the Drell–Söding mechanism [56,57]. In the latter, the photon dissociates into
two oppositely-charged pions, each of which scatters off the target. This is a partic-
ular example of the more general Deck effect [58]. The interference term changes
sign from positive to negative in passing through the ρ mass and results in a skewing
of the π+π− mass spectrum and an apparent shift in the mass and width of the ρ.
At low energies the π+π− mass spectrum is further complicated by contamination
from the π�(1232) channel, hence it is necessary to use high-energy data to see the
Drell–Söding mechanism cleanly. In figure 5.16 the two-pion invariant mass in pho-
toproduction [59] at

√
s = 70 GeV is compared with the naive expectation of a P-

wave Breit–Wigner. The skewing is t- and Q2-dependent and the model gives a good
description of both this and the angular correlation of the photoproduced pion pairs.

A direct connection between πp scattering and ρ and ω photoproduction is provided
via the assumption of VMD [60]. In its simplest form, VMD says that the cross
section for γ p → ρp is given by

dσ

dt
(γ p → ρp) = α

4π

γ 2
ρ

dσ

dt
(ρ0 p → ρ0 p), (5.57)

where 4π/γ 2
ρ is the ρ–photon coupling, which can be found from the e+e− width

of the ρ:

�ρ→e+e− = α2

3

4π

γ 2
ρ

mρ. (5.58)
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Figure 5.16. The line shape of the ρ in photoproduction. The data are from [59]
and the curve is a P-wave Breit–Wigner.

In the additive-quark model, the amplitude for ρ0 p → ρ0 p is simply given by the
average of the amplitudes for π− p and π+ p elastic scattering. In this combina-
tion of πp scattering amplitudes the C = −1 exchanges cancel (as they should)
leaving the pomeron and f2 exchanges. There are two omissions in this proce-
dure. One is a contribution from a2 exchange, which is forbidden in πp elastic
scattering by G-parity but is allowed for ρ0 photoproduction. However, this is
expected to be extremely small. Firstly, the photon is necessarily isoscalar (ω-like)
for a2 exchange, while for f2 exchange the photon is isovector (ρ-like). Thus
g f2ργ ≈ 3ga2ργ . Secondly, the a2–nucleon coupling is much weaker than the f2–
nucleon coupling [2]: phenomenologically g f2 N N ≈ 8ga2 N N . The net effect is that
the amplitude for a2 exchange is a small percentage of that for f2 exchange. The
near-degeneracy of the f2 and a2 trajectories means that any contribution from a2

exchange will have minimal impact on the energy and t dependence of the cross
section. The other omission is pion exchange, but this is again small as the pho-
ton is once more necessarily ω-like. Also, its contribution decreases rapidly with
increasing energy, so it is relevant only close to threshold. The trajectories of the
pomeron, f2 and a2 are well known from hadronic scattering, as is the mass scale by
which we must divide s before raising it to the Regge power, namely the inverse
of the trajectory slope [2]. It is well established that the trajectories couple to the
proton through the Dirac electric form factor F1(t), which can be represented by
the dipole form

F1(t) = 4m2
p − 2.79t

4m2
p − t

1

(1 − t/0.71)2
. (5.59)
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Figure 5.17. Comparison of predictions from (5.61) for γ p → ρp with data [61]
at

√
s = 4.3 GeV.

Wherever it can be experimentally checked, the differential cross section for ρ0

photoproduction is found to have the same slope at small t as the π± p elastic
differential cross sections, so it is natural to assume that the form factor of the ρ,
Fρ(t), is the same as that of the pion. As discussed in chapter 2, the pion form factor
is well described by

Fπ (t) = 1

1 − t/0.5
. (5.60)

Using this gives an excellent description of high-energy πp elastic scattering.
Assuming that the spatial structure of the ρ0 is the same as that of the ρ±, the
amplitude for γ p → ρ0 p is then

T (s, t) = i F1(t)Fρ(t)
(

AP (α′
Ps)αP (t)−1e− 1

2 iπ (αP (t)−1)

+AR(α′
Rs)αR (t)−1e− 1

2 iπ (αR (t)−1)). (5.61)

Normalizing the amplitude such that dσ/dt = |T (s, t)|2/(16π ) in μb GeV−2, then
AP = 48.8 and AR = 129.6 using (5.57), the PDG value for the ρ → e+e− width
and a standard fit to the π± p total cross sections [2]. The resulting predictions for
the γ p → ρ0 p differential cross section are compared with data at

√
s = 4.3 GeV

[61] in figure 5.17 and at
√

s = 71.7 GeV [62] in figure 5.18. The predictions agree
equally well [2] with data at

√
s = 6.9 and 10.8 GeV [63] (not shown). This model

has implications for polarization effects in ρ photoproduction. It is well known in
ρ photoproduction that the helicity of the ρ is the same as that of the photon, the
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Figure 5.18. Comparison of predictions for γ p → ρp from (5.61) with ZEUS data
[62] at

√
s = 71.7 GeV.

phenomenon of s-channel helicity conservation (SCHC). What is less well known
is that pomeron and f2 exchange also conserve helicity equally well at the nucleon
vertex. This is readily seen in pion–nucleon elastic scattering. Applying FESRs
shows [31,32] that much the largest C = +1 exchange amplitude is the helicity non-
flip amplitude A++, that is s-channel helicity is conserved in C = +1 exchange.
The helicity-flip amplitude A+− is primarily C = −1 ρ exchange. These results are
reflected in the π− p and π+ p polarization data which are given by the interference
of A++ and A+−. These are almost mirror-symmetric as a function of t , P(π− p) ≈
−P(π+ p), as the ρ-exchange contribution has the opposite sign in π− p and π+ p
scattering. The polarization should decrease with energy approximately as sαρ−αP

and the data are compatible with this. There is a small deviation from complete
mirror symmetry. The t-channel isoscalar–isovector interference terms cancel in the
sum of Pdσ/dt for π+ p and π− p scattering, which allows the ratio of the t-channel
isoscalar helicity-flip amplitude to the helicity non-flip amplitude to be determined
[64]. It is small, but non-zero. As the amplitude necessarily involves a combination
of f2 and pomeron exchange these cannot be distinguished experimentally.

Target-polarization effects in ρ photoproduction will arise primarily from the inter-
ference of the dominant pomeron and f2 exchange with the a2 and other small
unknown exchanges. However, this does not necessarily mean that polarized-target
asymmetries will be small: they are rather large at low and intermediate energies
in π± p elastic scattering. It does mean that they are not predictable and that they
essentially measure the small amplitudes.

Is (5.57) extendable to charged-ρ photoproduction, relating γ p → ρ+n to π− p →
π0n via ρ0 p → ρ+n? Although a2 exchange is very small compared to pomeron
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Figure 5.19. Comparison of γ p → ρ+n [65] and π− p → π0n [44].

and f2 exchange, it is not so small compared to ρ exchange as their couplings to
the nucleon are comparable [2]. One would expect the t dependence and energy
dependence of γ p → ρ+n and π− p → π0 p to be the same because of the near-
degeneracy of the ρ and a2 trajectories, but the absolute normalization to be unspec-
ified. The two reactions are compared in figure 5.19 at

√
s = 4.3 GeV. The shapes

are certainly in reasonable agreement, but the π− p charge-exchange data have been
reduced by a factor of 160 rather than the nominal 278 from the factor 4πα/γ 2

ρ in
(5.57). Note the very different scale between γ p → ρ0 p and γ p → ρ+n, showing
that ρ and a2 exchange are really small compared to pomeron and f2 exchange.

Figure 5.18 shows good agreement with the small-t ZEUS data at
√

s = 71.7 GeV.
However at

√
s = 94 GeV, where the data are at larger values of |t |, the predicted

cross section is too low, the discrepancy increasing with increasing |t |. A clue to
explaining this is provided by the proton structure function F2(x, Q2) at small x .
Within the framework of conventional Regge theory it is necessary to introduce [66]
a second pomeron, the hard pomeron, with intercept a little greater than 1.4. This
concept is also compatible [67] with the ZEUS data [68] for the charm component
Fc

2 (x, Q2) of F2(x, Q2) which seem to confirm its existence. The slope of the
trajectory can be deduced [2,67] from the H1 data [69] for the differential cross
section for the process γ p → J/ψp:

αPh (t) = 1.44 + α′
Ph

t α′
Ph

= 0.1 GeV−2. (5.62)

The hard-pomeron contribution to the amplitude for γ p → J/ψp is then

i F1(t)
(

APh

(
α′

Ph
s
)αPh (t)−1 e− 1

2 iπ (αPh (t)−1)
)
. (5.63)
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Figure 5.20. Comparison of the two-pomeron model [67] with ZEUS data [70] on
γ p → ρ0 p at

√
s = 94 GeV.

The contribution from the soft pomeron must be added to this and the coefficients
APh and AP , the corresponding coefficient for the soft-pomeron contribution to
J/ψp photoproduction is obtained by fitting the H1 [69] and ZEUS [62] differen-
tial cross sections. The fits to the data for F2 at small x and for Fc

2 suggest that the
coupling of the hard pomeron to quarks is flavour-blind. Thus the hard-pomeron
contribution to γ p → ρp can be obtained from that in γ p → J/ψp by includ-
ing the effect of the vector-meson wave functions. Assuming that the point-like
component of the photon, rather than the hadron-like component, is responsible,
then the strength of the hard-pomeron coupling depends only on the magnitude
of the vector-meson wave function at the origin and the relevant quark charges.
This means that it is proportional to

√
�V →e+e−/mV . Figure 5.20 shows that adding

this hard-pomeron contribution to the amplitude for γ p → ρp provides a good
description of the large-|t | data.

At large-|t | at low energy the model falls well below the data, as shown in figure 5.21.
As for pion photoproduction a partonic description is more appropriate than one
in terms of Regge poles, but unlike pion photoproduction, two-gluon exchange is
allowed in addition to quark exchange. We shall see in the case of φ photoproduction
that pomeron exchange does saturate the large-|t | cross section at the same energy,
so there is no need for an additional term. However, it may be that this agreement
is accidental and that an interpretation in terms of two-gluon exchange at large |t |
matched to the pomeron at small |t | is more appropriate [72,73]. Neither of these
is sufficient to explain the data and it is clear that quark-exchange mechanisms
are important. The θc.m. = 90◦ data are shown in figure 5.22. The curve is s−7,
arbitrarily normalized, implying that the onset of scaling at this angle apparently
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Figure 5.21. Comparison of the two-pomeron model [67] with CLAS data [71] on
γ p → ρ0 p at Eγ = 3.8 GeV.
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Figure 5.22. The differential cross section for γ p → ρ0 p at 90◦ [71]. The curve
is s−7, arbitrarily normalized.

occurs already by s ≈ 6 GeV2. In the extreme backward direction, Reggeized u-
channel baryon exchange becomes the dominant mechanism.

The discussion on ρ0 photoproduction can be applied directly to ω photoproduc-
tion with three modifications. Firstly, the cross section is approximately a factor
of 9 smaller due to the difference between 4π/γ 2

ρ and 4π/γ 2
ω . Secondly, the a2

contribution is larger, both in absolute as well as relative terms, as the photon is
now ρ-like for a2 exchange. Thirdly, the cross section from pion exchange is larger
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by a factor of 9 than in ρ photoproduction. The effect of the a2 contribution is
not observable in the data, but the changes in the pomeron and f2 contributions
and in the pion-exchange contribution most definitely are. By using plane-polarized
photons [61] the natural-parity (J P = (−1)J ) and unnatural-parity (J P = (−1)J+1)
exchanges can be separated. This confirms that pion-exchange is the dominant con-
tribution near threshold and shows that the cross section from C = −1 exchange
is larger than the cross section from C = +1 exchange until

√
s ≈ 2.5 GeV. At

energies above
√

s ≈ 4.5 GeV the cross section is well described in magnitude and
shape by (5.57) with the replacement of 4π/γ 2

ρ by 4π/γ 2
ω . (Recall that in simple

VMD, σ (ρ0 p → ρ0 p) = σ (ωp → ωp).)

5.3.2 φ photoproduction

For φ photoproduction at small |t |, because of the pomeron dominance arising
from Zweig’s rule, the cross section should behave as s2ε/b, where b is the near-
forward t slope. The data are compatible with this, but are not sensitive to constant
b or to letting the forward peak shrink in the canonical way, that is by taking
b = b0 + 2α′ln(α′s). We know that VMD is not a good approximation for the φ

and that wave-function effects are important [74], so the normalization can only be
specified by the data. Nothing detailed is known about the spatial structure of the
φ. Modelling this in analogy with the π and the ρ, the form

Fφ = 1

1 − t/μ2
(5.64)

gives a good description [74] of the data at small t , with μ2 = 1.5 GeV2 and
including only the soft pomeron. The structure of the φ is being probed by the
pomeron just as the structure of the π± is probed by a virtual photon. For |t | ≥ 0.5
GeV2 at high energy, the predicted cross section for φ photoproduction lies below
the data, just as for the ρ. The discrepancy is resolved by the same prescription
[67]. The model is compared with the data [75,76] at

√
s = 71.7 and 94 GeV in

figure 5.23.

There are data [77] at 〈Eγ 〉 = 3.5 GeV to much larger values of |t |, indeed almost to
the kinematical limit |t | = 4.6 GeV2. As for the ρ, the hard-pomeron contribution
is negligible at this energy. The cross section due to the soft pomeron is compared
with the low-energy data in figure 5.24, with the surprising result that it agrees with
the data out to |t | = 2.5 GeV2. Of course this result is crucially dependent on the
choice (5.64) of form factor for the φ. An alternative explanation for these data has
been proposed in terms of two-gluon exchange [72,73], matched to the pomeron-
exchange contribution around |t | ∼ 1 GeV2. This model works extremely well and
agrees with the data out to |t | ∼ 3 GeV2. At high energy and for |t | ≥ 1 GeV2
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Figure 5.23. Comparison of two-pomeron model [67] with data on γ p → φp at√
s = 71.7 and 94 GeV [75,76].
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Figure 5.24. Comparison of two-pomeron model [67] with data on γ p → φp at
Eγ = 3.5 GeV.

the predictions of the two models differ dramatically, and by |t | = 3 GeV2 at
√

s =
94 GeV the two-gluon exchange model predicts a cross section more than a factor
of 50 larger than the pomeron-exchange model.

The highest |t | bin in the Eγ = 3.5 GeV data is certainly due to u-channel N and N ∗

exchange. Its presence raises the question of an intrinsic ss̄ component in the wave
function of the proton. This is not a new question and has been studied for some time
in p̄ p interactions. The first comparison [78] of the reactions p̄ p → φπ+π− and
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p̄ p → ωπ+π− showed that φ production is enhanced relative to the ω beyond
expectation from the OZI rule. The φ is almost pure ss̄ with only a small admixture
of uū + dd̄. This can be quantified by a small deviation δ = θv − θi from the ideal
mixing angle θi . For any initial hadrons A, B and any final state hadrons X not
containing strange quarks, then [79]

R = σ (A + B → φX )

σ (A + B → ωX )
= tan2 δ · f, (5.65)

where f is a kinematical phase-space factor. That data do not agree with the simple
prediction (5.65) should not be unexpected as non-perturbative effects can cause
s̄s pairs to be present in the vacuum and the observation is generally interpreted
as due to an intrinsic s̄s component in the proton wave function [80,81]. Two
production mechanisms have been suggested [82], ‘shakeout’ in which an intrinsic
s̄s component converts directly to the φ and ‘rearrangement’ involving an s and
s̄ from different s̄s pairs combining to form the φ with their s̄ and s partners
annihilating. These provide a reaction-dependent, non-universal modification of
the naive OZI prediction.

The reactions p̄ p → φπ0/ωπ0 [83,84] and φγ/ωγ [84], p̄n → φπ−/ωπ− [85]
and n̄ p → φπ+/ωπ+ [85] all show strong enhancement over the simple OZI pre-
diction (5.65) by factors of 30–50. In the case of φπ+ it can be shown [86] that
the large enhancement is restricted to the S-wave. This can be understood [82], at
least qualitatively, if the strange quarks and antiquarks in the nucleon are polarized.
If the ss̄ pair in one nucleon were in a J PC = 1−− state, then φ production could
be explained by direct expulsion, the shakeout mechanism. However, this would
imply a universally enhanced φ, independently of the recoiling particle, contrary
to experiment. If the ss̄ pair were in a J PC = 0++ state, then the φ is necessarily
produced by the rearrangement mechanism which requires the initial state to be
3S1, as observed, for the 1−−φ.

The observation of backward φ photoproduction at low energy shows that the
reaction is sensitive to effective φN N and φN N ∗ couplings. The rearrangement
mechanism is allowed in backward φ photoproduction, but other mechanisms are
not excluded so the reaction lacks discrimination.

5.3.3 Higher-mass vector mesons

For a final vector state V , the cross section for γ p → V p is related by VMD to that
for e+e− → V by [87]

d2σγ p→V p(s, m2)

dt dm2
= σe+e−→V (m2)

4π2α

dσV p→V p(s, m2)

dt
. (5.66)
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The amplitude at t = 0 is related to the total cross section for V p scattering by the
optical theorem. Using this and integrating over t gives

dσγ p→V p(s, m2)

dm
= mσe+e−→V (m2)

32π3αb

(
σ tot

V p→V p(s)
)2

, (5.67)

where b ≈ 7 GeV−2 is the slope of the near-forward differential cross section.

The shapes of the σ (e+e− → π+π−π+π−) and of the differential cross sec-
tion dσ (γ p → π+π−π+π−)/dm, in the photon energy range 20–70 GeV, with
〈√s〉 = 8.6 GeV, are reasonably well matched via (5.67) [88]. In contrast, the shapes
of dσ (γ p → ωπ0)/dm, over the same photon energy range as the π+π−π+π−

data, and σ (e+e− → ωπ0) do not agree, the photoproduction data having a pro-
nounced enhancement centred at about 1.25 GeV. A spin-parity analysis [89] of
the ωπ0 photoproduction data concluded that the enhancement is consistent with
the production of b1(1235), that is J P = 1+, with ∼ 20% J P = 1− background
if only these two spin-parity states are included in the analysis. This conclusion
was subsequently confirmed [90] at

√
s = 6.2 GeV. The J P = 1− background is

consistent in shape with the e+e− ωπ data. If a J P = 0− amplitude is added, then
J P = 1− becomes the largest amplitude [89], with the ωπ mass distribution peak-
ing at around 1.3 GeV, albeit with large errors. The enhancement is still present at√

s = 200 GeV [91], but a spin-parity analysis of these data cannot be performed
because of limited acceptance. It has been argued [92] that, if this ωπ enhancement
is due to the photoproduction of the b1(1235), then these data provide evidence for
quark spin-flip in pomeron exchange as the γ → b1(1235) transition is from a quark
spin-triplet state to a quark spin-singlet one. Alternatively it could be evidence for
a ρ(1300), discussed in chapter 4. In this case there is an obvious breakdown of the
simple VMD argument that works rather well for the π+π−π+π− channel.

The data on γ p → π+π− p provide a clue to this apparent breakdown of VMD.
The deep dip due to destructive interference seen in e+e− → π+π−, figure 4.2,
becomes a peak in photoproduction, shown in figure 5.25. The interference is now
constructive so there has been a relative sign change between the ρ and the higher-
mass states responsible for the structure. It has been suggested [93] that this is
due to mixing between a 23S1 qq̄ state and a hybrid vector meson which cannot
be excited diffractively in lowest-order QCD. This model is based on the dipole
picture, see chapter 8, and the effect arises partly from the wave function of the
23S1 state and partly from the mixing that has to be quite strong. An alternative
explanation is that the effect is due primarily to the Drell–Söding mechanism [56,57]
discussed in section 5.3.1. Above the ρ peak the interference term is negative, as is
apparent from figure 5.16, and could be responsible for the phase change. The two
mechanisms have different implications for the ωπ channel in photoproduction. If
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Figure 5.25. The π+π− mass distribution in the reaction γ p → π+π− p [89]. The
curve is an estimate of the background under the peak.

the effect is due to the behaviour of the wave functions of the excited states, then
it is channel independent and the same phase change will be present in the ωπ

channel. The Drell–Söding mechanism is specific to the π+π− channel so has no
direct relevance for ωπ , although the equivalent Deck mechanism [58] in the ωπ

channel could cause a similar phase change. However, to evaluate this requires a
full understanding of e+e− → πω that we do not yet have: see chapter 4.

A further example of a possible phase change is seen in the ηρ channel. The cross
section for e+e− → ηρ rises rapidly from threshold and peaks at about 1.5 GeV. In
contrast the invariant mass distribution for the J P = 1− state in photoproduction
decreases rapidly and monotonically from threshold. If a change of phase between
e+e− annihilation and photoproduction is assumed, then it is possible to describe
both data sets simultaneously with constructive interference between the ρ and
ρ(1450) in e+e− annihilation and destructive interference in photoproduction [94].

Data on the photoproduction of J P = 1− isoscalar states exhibit a number of anoma-
lies [95,96] when compared with the corresponding channels in e+e− annihilation
or with the equivalent J P = 1− isovector channels in photoproduction. The most
notable anomaly occurs in the data on photoproduction of the J P = 1− ρπ final
state when compared with that of the J P = 1− ωπ0 final state, the latter being an
order of magnitude larger than expected. The ωπ+π− invariant mass distribution
has a double-peaked structure, the dip coinciding with the single peak of the cross
section for e+e− → ωπ+π− that is dominated by the ω(1650). The photoproduced
ηω mass spectrum has a clear peak, consistent with dominance by the ω(1650),
in complete contrast to the corresponding photoproduced ηρ mass spectrum that
decreases monotonically, as discussed above.
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Figure 5.26. The 3π+3π− mass distribution in the reaction γ p → 3π+3π− p [97,98].

These anomalies, of course, are based on the implicit assumption that the dominant
exchanges in photoproduction are the pomeron and the f2(1250) Regge trajectory.
There is good reason for this. The only other leading Regge trajectory that can
contribute is that of the a2(1320) as the ω and ρ trajectories are excluded by
C-parity. The coupling of the a2 trajectory to the nucleon is known to be an order
of magnitude smaller than that of the f2 [2], so it appears unlikely that a2 exchange
could give rise to such dramatic effects.

The narrow structure seen in e+e− → 6π near 1.9 GeV, discussed in chapter 4,
is also apparent in γ p → 3π+3π− p [97,98], see figure 5.26. A broad structure
is seen in the ωρπ mass spectrum in photoproduction [99]. Fitting this peak with
a Breit–Wigner, assuming a fixed width, gives a mass of 2.28 ± 0.05 GeV and a
width of 0.44 ± 0.11 GeV. However, as there is evidence that the principal mode
is ωa1, threshold effects will distort the resonance and reduce the mass to a value
compatible with that found in the analysis of e+e− → 6π , namely 2.11 GeV [100].
The structure in the 3π+3π− photoproduction data has been interpreted as due to
the interference of a narrow resonance either with a continuum or a continuum
plus a second resonance. This second resonance has a mass of 1.730 ± 0.034 GeV
and a width of 315 ± 100 MeV so can be identified with the ρ(1700). The narrow
resonance has a mass of 1.91 ± 0.01 GeV, a width of 37 ± 13 MeV and a small
e+e− width: it is only visible because of the interference.

A possible interpretation of this narrow state, if that is the correct interpretation of
the data, is in terms of a hybrid qq̄g meson. Three candidates exist [101] for mesons
with the exotic quantum numbers J PC = 1−+ at 1.4, 1.6 and 2.0 GeV, although
their interpretation in terms of resonances remains ambiguous. Ideally we would
have mass predictions for light-quark hybrids comparable to those for qq̄ states, but
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unfortunately this is not the case. Estimates for the lightest hybrids lie between 1.3
and 1.9 GeV, but with a preference for the upper end of this range. However, it does
seem to be generally agreed that the mass ordering is 0−+ < 1−+ < 1−− < 2−+, so
a J PC = 1−− hybrid with a mass of about 1.9 GeV is not unreasonable. However,
until the specific decay modes within 6π are determined, the interpretation of the
data remains speculation.

We saw in chapter 4 that there is evidence in e+e− annihilation for the 23S1 radial
excitation of the φ, the φ(1680). This is seen in K +K −, K 0

S K 0
L and K 0

S Kπ , the
dominant decay mode being K ∗K . Several photoproduction experiments [102] have
observed an enhancement in K +K − with a mass in the region of 1.7 GeV or higher.
Due to the comparatively low statistics of these experiments this enhancement was
identified with the φ(1680). However, a high-statistics experiment [103] challenges
this interpretation on two grounds. The mass is well defined in the K +K − channel
as 1753.5 ± 1.5 ± 2.3 MeV, clearly inconsistent with 1680 MeV, and no evidence
is found for an enhancement in K ∗K . In both respects these data contradict not
only the low-statistics photoproduction data but also the e+e− data, thus adding
more confusion to an already confused picture.

5.4 Exotic mesons

Although estimates of the electromagnetic transition amplitudes between conven-
tional and hybrid mesons now exist [104,105], precise rates for the photoproduction
of exotic (hybrid) mesons are presently uncalculable as there is no clear understand-
ing of the Regge exchange contributions to these cross sections. Indeed, what is
required are detailed data on hybrid photoproduction so that they can give new
insights into Regge dynamics and duality. Ideas on duality were originally devel-
oped based on the production and classification of ‘normal’ hadrons; what is the
pattern of duality in a world with glueballs and hybrids – which states are dual to
what? A strategic study of exotic hadron production, its energy and t dependences
for example, may give insight to such questions. However, in the absence of such
information it is hard to quantify the production of hybrids.

Nonetheless, there are qualitative, and semiquantitative, reasons to suppose that
their production rates (at least for light flavours) are not dramatically less than
those of conventional hadrons.

The initial estimates were based on VMD. Afanasev and Page [106] computed
π1 photoproduction rates under the assumption that the process was driven by
π exchange. The photon converted to ρ in a vector dominance model and the
observed rate for π1 → πρ was used to model the production vertex. There are
two problems here. One is that a large coupling of π1 → πρH may compensate
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for the small γ → ρH whereby γ → ρH followed by ρHπ → π1 can compete and
interfere with the ρ contribution. The second, potentially serious concern, is that
strong criticisms have been made about the claimed observation of π1 in the ρπ

mode [107].

Photoproduction of the exotic hybrid 2+− is expected to be significant on rather
general grounds as γ N → 2+−N can occur by diffractive (pomeron) and by f2

exchange.

Diffractive scattering is known to give a significant cross section for π N → a1 N
and also apparently γ N → b1 N [92], thus 1−−N → 2+−N may also be expected.
Furthermore, whereas π N → a1 N and γ N → b1 N involve spin flip at quark level,
which empirically leads to some suppression [92], the 1−− ρ and the 2+− hybrid
are both spin triplets, and so no such penalty is expected in γ N → 2+−N . Hence
2+− production is expected to be copious at high energy and probably also at lower
energies where f2 exchange can contribute [108].

Isgur had conjectured [109] that light hybrids have photoproduction cross sections
∼50% those of normal hadrons. Close and Dudek [104,105] have shown how to
compute rates for both conventional and hybrid mesons in the lattice-based flux-tube
model. These computations endorse Isgur’s conjecture. Hence there is no reason to
suppose that photoproduction rates of hybrids are insignificant: the challenge will
be to identify the exotic J PC 2+− or 1−+ in the many-particle final states. JLab at
12 GeV would provide an ideal environment where the meson states at small t may
be separated from decays at the baryon vertex.
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[57] P Söding, Physics Letters 19 (1965) 702
[58] R T Deck, Physical Review Letters 13 (1964) 169



Intermediate-energy photoproduction 227

[59] J Breitweg et al, ZEUS Collaboration, European Physical Journal C2 (1998)
247

[60] A Donnachie and G Shaw in Electromagnetic Interactions of Hadrons Vol 2, A
Donnachie and G Shaw eds, Plenum Press, New York (1978)

[61] J Ballam et al, Physical Review D7 (1973) 3150
[62] J Breitweg et al, ZEUS Collaboration, European Physical Journal C1 (1998) 81
[63] D Aston et al, Omega-Photon Collaboration, Nuclear Physics B209 (1982) 56
[64] N H Buttimore et al, Physical Review D59 (1999) 114010
[65] J Abramson et al, Physical Review Letters 36 (1976) 1432
[66] A Donnachie and P V Landshoff, Physics Letters B437 (1998) 408
[67] A Donnachie and P V Landshoff, Physics Letters B478 (2000) 146
[68] J Breitweg et al, ZEUS Collaboration, European Physical Journal C12 (2000) 35
[69] C Adloff et al, H1 Collaboration, Physics Letters B483 (2000) 23
[70] J Breitweg et al, ZEUS Collaboration, European Physical Journal C14 (2000) 213
[71] M Battaglieri et al, CLAS Collaboration, Physical Review Letters 87 (2001) 172002
[72] J M Laget, Nuclear Physics A699 (2002) 184
[73] F Cano and J M Laget, Physical Review D65 (2002) 074022
[74] A Donnachie and P V Landshoff, Physics Letters B348 (1995) 213
[75] M Derrick et al, ZEUS Collaboration, Physics Letters B377 (1996) 259
[76] J Breitweg et al, ZEUS Collaboration, European Physical Journal C14 (2000) 21
[77] E Anciant et al, CLAS Collaboration, Physical Review Letters 85 (2000) 213
[78] A M Cooper et al, Nuclear Physics B146 (1978) 1
[79] H J Lipkin, Physics Letters 60B (1976) 371
[80] J Ellis, E Gabathuler and M Karliner, Physics Letters B217 (1989) 173
[81] E M Henley, G Krein and A G Williams, Physics Letters B281 (1992) 178
[82] J Ellis, M Karliner, D E Kharzeev and M G Sapozhnikov, Physics Letters B353

(1995) 319
[83] J Reifenrother et al, ASTERIX Collaboration, Physics Letters B267 (1991) 299
[84] C Amsler et al, Crystal Barrel Collaboration, Physics Letters B346 (1995) 343
[85] V G Ableev et al, OBELIX Collaboration, Nuclear Physics A585 (1995) 577
[86] A Filippi et al, OBELIX Collaboration, Nuclear Physics A655 (1999) 453
[87] J J Sakurai and D Schildknecht, Physics Letters 40B (1972) 121
[88] D Aston et al, Omega Photon Collaboration, Nuclear Physics B189 (1981) 15
[89] M Atkinson et al, Omega Photon Collaboration, Nuclear Physics B243 (1984) 1
[90] J E Brau et al, Physical Review D37 (1988) 2379
[91] T Golling and K Meier, H1 Collaboration, H1-preliminary-010117;

T Berndt, H1 Collaboration, in Proceedings International Conference on High
Energy Physics, Elsevier Science, Amsterdam (2002);
T Berndt, H1 Collaboration, Acta Physica Polonica B33 (2002) 3499

[92] A Donnachie, Physics Letters B611 (2005) 255
[93] H G Dosch, T Gousset, G Kulzinger and H J Pirner, Physical Review D55 (1997)

2602
[94] A Donnachie and A B Clegg, Zeitschrift für Physik C34 (1987) 257
[95] A Donnachie and A B Clegg, Zeitschrift für Physik C42 (1989) 663
[96] A Donnachie and A B Clegg, Zeitschrift für Physik C48 (1990) 111
[97] P L Frabetti et al, E637 Collaboration, Physics Letters B514 (2001) 240
[98] P L Frabetti et al, E637 Collaboration, Physics Letters B578 (2001) 290
[99] M Atkinson et al, Omega Photon Collaboration, Zeitschrift für Physik C29 (1985)

333
[100] A B Clegg and A Donnachie, Zeitschrift für Physik 45 (1990) 677



228 F E Close and A Donnachie

[101] J Kuhn in HADRON ’03, E Klempt, H Koch and H Orth eds, American Institute of
Physics, New York (2003)

[102] D Aston et al, Omega Photon Collaboration, Physics Letters B104 (1981) 231
M Atkinson et al, Omega Photon Collaboration, Zeitschrift für Physik C27 (1985)
233
J Busenitz et al, E401 Collaboration, Physical Review D40 (1989) 1

[103] J M Link et al, FOCUS Collaboration, Physics Letters B545 (2002) 50
[104] F E Close and J J Dudek, Physical Review Letters 91 (2003) 142001-1
[105] F E Close and J J Dudek, Physical Review D69 (2004) 034010
[106] A Afanasev and P R Page, Physical Review D57 (1998) 6771
[107] A R Dzierba, C A Meyer and A P Szczepaniak, Journal of Physics Conference

Series 9 (2004) 192
[108] F E Close and J J Dudek, Physical Review D70 (2004) 094015
[109] N Isgur, Physical Review D60 (1999) 114016



6

Chiral perturbation theory

M Birse and J McGovern

In the Standard Model the up and down quarks – the constituents of normal matter –
couple very weakly to the electroweak Higgs field. The resulting ‘current’ masses
for these quarks are of the order of 10 MeV. This is much smaller than the typ-
ical energies of hadronic states (several hundred MeV or more). In the context
of low-energy QCD, this means that these quarks are nearly massless and so, to
a good approximation, their chiralities are preserved as they interact with vector
fields (gluons, photons, W s and Zs). This conservation of chirality has important
consequences for hadronic physics at low energies.

If chirality is conserved, then right- and left-handed quarks are independent and
we have two copies of the isospin symmetry which relates up and down quarks.
The QCD Lagrangian therefore is symmetric under the chiral symmetry group,
SU(2)R × SU(2)L . However, the hadron spectrum shows no sign of this larger
version of isospin symmetry; in particular, particles do not come in doublets with
opposite parities. Moreover, constituent quarks, as the building blocks of hadrons,
appear to have masses that are much larger than their current masses.

This conundrum can be resolved if the chiral symmetry of the theory is hidden (or
spontaneously broken) in the QCD vacuum. A non-vanishing condensate of quark–
antiquark pairs is present in the vacuum, and this is not invariant under SU(2)R ×
SU(2)L transformations. The energy spectrum of quarks propagating in this vacuum
has a gap (like that for electrons in a superconductor), implying that masses have
been dynamically generated.

In the limit of exact chiral symmetry (vanishing current masses for the up and
down quarks) pions would be massless ‘Goldstone bosons’. Their properties reflect
the fact that the dynamics is chirally symmetric even though the vacuum is not.
For example, there is a non-vanishing pion-to-vacuum matrix element of the axial
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current: fπ , the decay constant measured in weak decays of charged pions. In
addition, all strong interactions of pions would vanish at threshold in the chiral limit.

In the real world, the small current masses of the up and down quarks explicitly
break this symmetry. As a result pions do have small masses and their interactions
do not vanish exactly. Nonetheless the forms of the interactions of pions with each
other and with other hadrons remain strongly constrained by the approximate chiral
symmetry of QCD. The weakness of pionic interactions at low energies makes a
new kind of perturbative expansion possible: one where we expand in powers of
momenta and pion masses. The success of such an expansion relies on the fact
that the current quark masses make small contributions to hadron properties and
interactions. (Contrary to the claims of those who say that the elusive Higgs boson
is the origin of mass in the universe, if quarks were massless the proton and neutron
would still have at least 90% of the masses we observe in our world.) This expansion
can be obtained from an effective field theory known as chiral perturbation theory
(χPT). A comprehensive review of it and its applications to mesons and baryons
can found in [1]. Also very useful are two older reviews: [2] for the mesonic sector,
and [3] for the single-nucleon sector. Extensions of these ideas to systems of two
or more nucleons (which we do not discuss here) can be found in [4,5].

6.1 Chiral symmetry

The QCD Lagrangian with two flavours of light quark (up and down) has the form

L(x) = q(x)γ μ

(
i∂μ − g

λa

2
Ga

μ(x)

)
q(x) − q(x)mqq(x) − 1

4 GaμνGa
μν, (6.1)

where Ga
μ(x) are the gluon fields and

mq ≡
(

mu 0
0 md

)
(6.2)

is the matrix of current masses for the quarks.

For equal current masses (mu = md) the theory is symmetric under isospin rotations,

q(x) → exp(iα · τ )q(x). (6.3)

In the limit of vanishing current masses (mu = md = 0), the right- and left-handed
quarks decouple and the theory is symmetric under two copies of isospin symmetry
[1],

q(x) → exp

(
i

1 + γ5

2
αR · τ

)
q(x), q(x) → exp

(
i

1 − γ5

2
αL · τ

)
q(x).

(6.4)
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These chiral transformations form a representation of the global symmetry group
SU(2)R ×SU(2)L . The smallness of the masses compared to typical hadronic energy
scales means that, to a good approximation, QCD respects this chiral symmetry.
The extension of this symmetry to three flavours is also useful, although the much
larger strange-quark mass (ms ∼ 100 MeV) means that the SU(3)R × SU(3)L is
more strongly broken.

The Noether currents corresponding to the chiral transformations (6.4) are the
isospin currents

J a
μ(x) = q(x)γμ

τ a

2
q(x) (6.5)

and the axial currents

J a
5μ(x) = q(x)γμγ5

τ a

2
q(x). (6.6)

The currents and their conserved charges obey the algebra [1,6]

[Qa, J b
μ(x)] = iεabc J c

μ(x),

[Qa, J b
5μ(x)] = iεabc J c

5μ(x),

[Qa
5, J b

5μ(x)] = iεabc J c
μ(x). (6.7)

The strong interactions between quarks and gluons in QCD lead to a complicated
vacuum state, with non-zero expectation values for colourless, scalar combina-
tions of quark and gluon fields – ‘condensates’. Even in the absence of current
masses, this vacuum is symmetric under only the ordinary (vector) isospin symme-
try, not the full chiral symmetry. The axial charges do not annihilate the vacuum,
but instead create unnormalizable states. This indicates that the chiral symmetry of
the Lagrangian is hidden or ‘spontaneously broken’. Goldstone’s theorem implies
that there must be massless excitations with the same quantum numbers as the
axial charges, spin-0, odd parity and isospin-1: the quantum numbers of the pions.
Another signal of this special nature of the pion is the non-zero matrix element of
the axial current between a pion and the vacuum,

〈0|J a
5μ(x)|πb(q)〉 = i fπqμe−iq·xδab, (6.8)

where fπ � 92.5 MeV is the pion decay constant, determined empirically from the
weak decay of the charged pions.

In the real world, chiral symmetry is explicitly broken by the current masses of
the quarks and so the pions are not exactly massless. Nonetheless, the approximate
chiral symmetry of QCD explains why the pions are so much lighter than all other
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hadrons. Taking the divergence of (6.8), we get

∂μ〈0|J a
5μ(x)|πb(q)〉 = fπm2

πe−iq·xδab, (6.9)

and so we can use the divergences of the axial currents as interpolating fields which
create and destroy pions. At low energies, the small pion masses mean that matrix
elements of these currents will be dominated by their pionic parts. Consequently,
many properties and interactions of low-momentum pions can be determined from
chiral symmetry alone, and so satisfy chiral low-energy theorems (LETs).

6.1.1 Partial conservation of the axial current (PCAC)

The principle of PCAC was used to derive many of these results in the 1960s [6]. It
takes ∂μ J a

5μ(x) as a pion field to extrapolate pion scattering amplitudes off-shell to
the point where the pion four-momentum vanishes, known as the soft-pion limit.

As a first example, consider the pion propagator (the expectation value of the time-
ordered product of two of these fields):∫

d4x eiq·x〈0|T(∂μ J a
5μ(x), ∂ν J b

5ν(0))|0〉 = i
f 2
π m4

π

q2 − m2
π

F(q2)δab. (6.10)

This has a pole at the pion mass, with a residue given by the square of the strength
with which the interpolating field couples to the pion (6.9). Other states with the
same quantum numbers as the pion also contribute, but at low energies these multi-
pion states are suppressed by phase space. The first resonance in this channel lies
above 1 GeV. Close to the pion pole, therefore, these states provide a background
that varies slowly with q2. This background has been absorbed into the function
F(q2), which is normalized to F(m2

π ) = 1 at the pion pole.

In the soft-pion limit (defined to avoid ambiguity by setting q = 0 and then taking
q0 → 0) we can integrate the left-hand side of (6.10) by parts to get

−〈0|[Qa
5, ∂

ν J b
5ν(0)]|0〉 = i〈0|[Qa

5, [Qb
5,H(0)]]|0〉. (6.11)

Here we have also used Noether’s theorem: ∂ν J b
5ν(x) = −i

[
Qb

5,H(x)
]
, whereH(x)

is the Hamiltonian density. The crucial assumption underlying PCAC is that the
scales �χ controlling the energy and momentum dependences of amplitudes are
all much larger than mπ , and so differences between amplitudes at q2 = m2

π and
q2 = 0 are suppressed by powers of mπ/�χ . The same assumption of a wide
separation of scales underlies χPT, as we shall see. Under this assumption, we
have F(0) � F(m2

π ), and hence the soft-pion limit of (6.10) becomes

〈0|[Qa
5, [Qb

5,H(0)]]|0〉 � − f 2
π m2

πδab, (6.12)
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up to terms of order m4
π . This is the Gell-Mann–Oakes–Renner (GOR) relation [7],

which shows that to leading order the square of the pion mass is proportional to the
strength of the explicit symmetry breaking.

In QCD, where the symmetry breaking term has the form HSB(x) = q(x)mqq(x),
the GOR relation is

m̄q〈0|q(x)q(x)|0〉 � − f 2
π m2

π , (6.13)

where m̄q is the average of the up- and down-quark masses and the vacuum expec-
tation value of the scalar density of quarks is known as the ‘quark condensate’.
Taking a typical estimate for the light-quark masses of m̄q ∼ 7 MeV, we find a
condensate of about 3 fm−1 (about six times the ordinary vector density of quarks
at the centre of a nucleus).

These ideas can also be applied to the interactions between low-momentum pions.
For example, to order m2

π , the amplitude for elastic scattering of two pions,
πa(p1)πb(p2) → π c(p3)πd(p4), is [8]

T cd,ab
ππ � δabδcd

s − m2
π

f 2
π

+ δacδbd
t − m2

π

f 2
π

+ δadδbc
u − m2

π

f 2
π

, (6.14)

where the Mandelstam variables are

s = (p1 + p2)2, t = (p1 − p3)2, u = (p1 − p4)2. (6.15)

Note that in the chiral limit, mπ = 0, this amplitude vanishes at threshold. This
illustrates an important property of Goldstone bosons: their interactions vanish in
the limit of exact chiral symmetry and zero four-momentum.

Chiral symmetry also controls the forms of the interactions between pions and
nucleons. In particular the pion–nucleon coupling is related to the nucleon’s axial
coupling constant, gA(0). This is defined by

〈N (p2)|J a
5(μx)|N (p1)〉 = ū(p2)

[
gA(q2)γμγ5 + gP (q2)qμγ5

]
1
2τ

a u(p1)eiq·x ,
(6.16)

where gA(q2) is the axial form factor of the nucleon, gP (q2) is its ‘induced’ pseu-
doscalar form factor, and q = p2 − p1. If we take the divergence of (6.16), we find
that the left-hand side contains the pion pole

i fπm2
π igπ N N

q2 − m2
π

ū(p2)qμγ5τ
au(p1), (6.17)

where gπ N N is the physical pion–nucleon coupling constant, defined at the pion pole.
Under the PCAC assumption that all other terms vary smoothly between q2 = m2

π

and q2 = 0, the q → 0 limit of the divergence gives us the Goldberger–Treiman
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relation,

gπ N N fπ � MN gA(0), (6.18)

up to corrections of order m2
π . In the chiral limit, this would provide an exact

connection between gπ N N and gA(0). For realistic quark masses, corrections to it are
of the order of 5% or less.

There are also important chiral constraints on pion–nucleon scattering at low ener-
gies. The starting point for deriving these is the amplitude for forward scattering,
N (p)πb(k) → N (p)πa(k), written in terms of a matrix element of two PCAC pion
fields. By manipulating this along similar lines to the derivation of the GOR rela-
tion, the terms in this amplitude up to first order in the pion energy can be related
to the chiral properties of the nucleon.

The PCAC scattering amplitude T ba
π N is defined for off-shell pions by

i
∫

d4x eik·x〈N (p)|T (
∂μ J a

5μ(x), ∂ν J b
5ν(0)

) |N (p)〉

=
(

i fπm2
π

k2 − m2
π

)2

T ba
π N . (6.19)

This can be integrated by parts and for soft pions, with k = 0 and small ω ≡ k0, it
becomes

−
(

fπm2
π

m2
π − ω2

)2

T ba
π N = −i〈N (p)| [Qa

5, ∂
ν J b

5ν(0)
] |N (p)〉

+ ω

∫
d4x eiωx0〈N (p)|T (

J a
50(x), ∂ν J b

5ν(0)
) |N (p)〉.

(6.20)

If translational invariance is used to shift the origin to x , the matrix element in the
second term becomes

〈N (p)|T (
J a

50(0), ∂ν J b
5ν(−x)

) |N (p)〉. (6.21)

This term can then be integrated by parts again, giving

−
(

fπm2
π

m2
π − ω2

)2

T ba
π N = −i〈N (p)| [Qa

5, ∂
ν J b

5ν(0)
] |N (p)〉

− ω〈N (p)| [Qa
5, J b

50(0)
] |N (p)〉

+ iω2〈N (p)|T (
J a

50(x), J b
50(0)

) |N (p)〉. (6.22)
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Some care is needed with the final term of (6.22). This could contain contributions
from intermediate ground-state nucleons, which would give rise to rapid energy
dependence in the scattering amplitude. These do not appear for forward scattering
of physical pions or in the soft-pion limit defined here but, more generally, such
‘Born terms’ need to be isolated before the PCAC approach can be applied.

The second term of (6.22) is linear in ω as ω → 0. It is isospin-odd and the current
algebra of (6.7) shows that it is just proportional to the (vector) isospin of the
nucleon. At the physical point, ω = mπ , this corresponds to a term of order mπ .
Other contributions are at least of order m2

π and so this term is the leading-order
piece of the scattering amplitude at low energies. Hence, to order mπ , the scattering
amplitude has the form found by Weinberg and Tomozawa [8,9],

T ba
π N � i

mπ

f 2
π

εabcū(p)γ0t cu(p). (6.23)

This isospin-odd amplitude may have a similar form to ρ-exchange, but its presence
follows purely from chiral symmetry.

The isospin-even amplitude at threshold is much smaller than the isospin-odd one.
It consists of various contributions of order ω2 or m2

π . One of these is of particular
interest since it contains information about the scalar density of quarks in the
nucleon. This piece is analogous to the GOR relation for the vacuum and it is
obtained in a similar way from the soft-pion limit of the pion–nucleon scattering
amplitude. In the limit ω → 0, only the first term of (6.22) survives, leaving a result
proportional to the pion–nucleon sigma commutator [10],

σπ N ≡ 1

3

∑
a

〈N (p)| [Qa
5,

[
Qb

5,H(0)
]] |N (p)〉 = m̄q〈N (p)|q(0)q(0)|N (p)〉.

(6.24)

Estimates of σπ N from pion–nucleon scattering are typically in the range 45 MeV
[11] to 64 MeV [12].

Similar results can also be obtained for electromagnetic processes involving pions.
For example, the amplitude for pion photoproduction γ (q)N (p) → π (k)N (p′) is
given by∫

d4x eik·x〈N (p′)|T (
∂μ J a

5μ(x), J em
ν (0)

) |N (p)〉 = fπm2
π

k2 − m2
π

T a
ν . (6.25)

In the soft-pion limit, current algebra can be used to relate this amplitude to a matrix
element of the axial current,

T a
ν = 1

fπ
〈N (p′)| [Qa

5, J em
ν (0)

] |N (p)〉 = i
fπ

εa3c〈N (p′)|J c
5ν(0)|N (p)〉. (6.26)
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This term, first derived by Kroll and Ruderman [13], is the leading piece of the
amplitude for photoproduction of charged pions. Its strength is proportional to
gA(0)/ fπ or, making use of the Goldberger–Treiman relation, gπ N N/MN .

For neutral pions, a = 3 in (6.26) and the Kroll–Ruderman term vanishes. The
amplitude for low-energy π0 photoproduction obtained using PCAC contains two
pieces, both arising from the Born terms [14]: one of order mπ , which can be thought
of as the coupling of the photon to the electric dipole moment of the π0 N system,
and one of order m2

π that is proportional to the magnetic moment of the nucleon.

However, this result ignores contributions from other states with small energy
denominators, in particular π N states whose denominators are of order mπ . As
a result it fails to describe data for π0 photoproduction at threshold [15].

Indeed a general problem with the PCAC approach is that, while it successfully
embodies the symmetry constraints on tree-level amplitudes, it is poorly designed
to handle intermediate states where virtual particles are created and destroyed.
These are much more conveniently handled within a field-theoretic framework, as
proposed by Weinberg [16]. The corresponding effective field theory of low-energy
pions, χPT, incorporates all of the older LETs obtained using PCAC and provides
the tools for systematically extending them to include the effects of virtual pions.

6.2 Effective field theory of Goldstone bosons

The field theory describing the low-energy interactions of pions is clearly not a
fundamental one. Instead it is an ‘effective’ theory whose Lagrangian contains
all possible local terms consistent with the symmetries of the underlying theory,
QCD. What makes this theory tractable is the same separation of scales that was
responsible for the successes of PCAC: the fact that the pion mass is much smaller
than all other energy scales in hadron physics.

Focussing on pions as the Goldstone bosons of the strong interaction and restricting
our sights to low momenta, say of the order of mπ , this means that we can expand
the theory in powers of ratios of low-energy scales Q (pion masses or momenta) to
underlying scales �χ . The latter arise from the degrees of freedom that have been
integrated out, and are of the order of 700 MeV to 1 GeV. They include the masses of
heavier hadrons, such as the ρ-meson or the nucleon, and also the scale associated
with the hidden chiral symmetry, 4π fπ . (The latter is a more appropriate scale than
fπ itself because of the factors of 4π that typically appear in the denominators of
loop diagrams.)

This separation of scales makes it possible to classify the infinite number of terms
in the effective theory by counting the powers of the ratio Q/� they contain. In
general this power counting can be obtained with the help of the renormalization
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group. In the case of pions, however, the counting is simplified by the fact that
all the interactions of Goldstone bosons are weak at low energies, suppressed by
powers of their masses or momenta.

For the pions, therefore, it is enough just to count powers of small scales, as pointed
out by Weinberg [16]. The terms in the Lagrangian are classified by their order
d = 2, 4, . . . : the number of derivatives and powers of the pion mass they contain.
Each internal pion line in a Feynman diagram represents a propagator, 1/(q2 − m2

π ),
which is of order Q−2. Each loop integration over an unconstrained four-momentum
is formally of order Q4. Hence a diagram with Nd vertices of order d, NI internal
lines and NL loops contributes to an amplitude at order

D =
∑

d

Nd d − 2NI + 4NL . (6.27)

Since each vertex provides a δ-function constraining the internal momenta (apart
from the δ-function for conservation of the external momenta), the number of
loops is

NL = NI −
∑

d

Nd + 1. (6.28)

Using this in (6.27), we can express the order in the form

D =
∑

d

Nd(d − 2) + 2NL + 2. (6.29)

Such a diagram may contain a logarithmic divergence, but this can be cancelled
against a counter term: the coefficient of a term in the Lagrangian of order D. Since
D is of higher order than all of the vertices appearing in the divergent integral, it is
possible to renormalize the theory order-by-order in powers of the small scales.

One might worry that diagrams containing vertices involving powers of momenta
could also give rise to power-law divergences. In principle they do, but these are
always suppressed by additional powers of the large-scale �χ in their denomina-
tors. Hence their contributions are irrelevant, in the language of the renormalization
group, provided the running regulator or cut-off scale is kept well below �χ . This
makes it very convenient to evaluate the loop integrals using dimensional regular-
ization, where the logarithmic divergences can be cleanly isolated and subtracted.

This power counting can be extended to include baryons. As discussed below, at
low energies these particles can be treated non-relativistically, in which case their
propagators are of order Q−1. Hence the order of a diagram is given by

D =
∑

d

(
N (M)

d + N (M B)
d

)
d − 2N (M)

I − N (B)
I + 4NL , (6.30)
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where it has N (M)
I internal meson lines, N (B)

I internal baryon lines, N (M)
d mesonic

vertices and N (M B)
d meson–baryon vertices of order d. The number of loops is now

given by

NL = N (M)
I + N (B)

I −
∑

d

(
N (M)

d + N (M B)
d

) + 1. (6.31)

In addition, if we restrict our attention to processes involving a single baryon, we
have the constraint ∑

d

N (M B)
d − N (B)

I = 1. (6.32)

These allow us to express the order in the form

D =
∑

d

N (M)
d (d − 2) +

∑
d

N (M B)
d (d − 1) + 2NL + 1. (6.33)

6.3 Mesonic chiral perturbation theory

The effective Lagrangian describing the pions can be constructed in terms of an
SU(2) matrix field U (x), which transforms linearly under chiral symmetry:

U (x) → RU (x)L†, (6.34)

where (R, L) ∈ SU(2)R×SU(2)L . This can be represented in various ways as a
non-linear function of three canonical pion fields. For example, one commonly
used form is

U (x) = exp

(
i
τ · φ(x)

f

)
. (6.35)

An alternative, used by Bernard et al [3], is the square-root form,

U (x) =
√

1 − φ(x)2

f 2
+ i

τ · φ(x)

f
. (6.36)

The form in (6.35) can easily be extended to the three-flavour chiral symmetry,
SU(3)R × SU(3)L , by writing

U (x) = exp

(
i
λaφa(x)

f

)
, (6.37)

where the λa are the eight Gell-Mann matrices and the fields φa(x) now represent
the particles that would be Goldstone bosons in the limit of three massless flavours.
Apart from the pions, these are the kaons and η-mesons.
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The larger masses of the pseudoscalar mesons containing strange quarks
(∼500 MeV) mean that the chiral expansion will converge more slowly than that
with pions alone. Nonetheless, the three-flavour version of χPT, at least in the
mesonic sector, does seem to converge rapidly enough to be useful.

6.3.1 Leading order

At lowest order, the Lagrangian contains kinetic and mass terms for the pions,

L(2)
π = 1

4 f 2 tr
[
(∇μU )†∇μU

] + 1
4 f 2 tr

[
χU † + χ †U

]
. (6.38)

Here f is the pion decay constant at this order, and χ is proportional to the quark
mass matrix, which explicitly breaks the chiral symmetry. The covariant derivative,

∇μU = ∂μU − i(vμ + aμ)U + iU (vμ − aμ), (6.39)

contains couplings to external vector and axial fields, vμ(x) and aμ(x). The combi-
nations vμ ± aμ correspond to right- and left-handed gauge transformations. These
gauge fields include, in particular, electromagnetism,

vμ(x) = eQ Aμ(x), (6.40)

where

Q = 1
6λ8 + 1

2λ3 (6.41)

is the quark charge matrix and we have followed the convention [3] that e = −|e| is
the charge of the electron, −√

4πα. There are also the W and Z fields of the weak
interaction, but in practice in determining the weak decay constant of the pion, it
is more convenient to use an external axial vector source,

aμ(x) = 1
2 τ · aμ(x). (6.42)

If we expand L(2)
π up to second order in the pion fields of (6.35), we find the

expected kinetic and mass terms as well as the electromagnetic couplings of the
charged pions,

L(2)
π � 1

2 ∂μφ · ∂μφ + eAμ ε3i j φi∂
μφ j + 1

2 e2 Aμ Aμ
(
φ2

1 + φ2
2

)
− 1

4 tr
[
χ + χ †] φ2 + · · · . (6.43)

This shows that the mass of the pions at lowest order, denoted by m, is given by

m2 = 1
2 tr

[
χ + χ †] . (6.44)

The non-linear nature of U (x) means that L(2) also contains interactions between
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the pions. Expanding it to fourth order in the pion fields we get

L(2)
π � · · · + 1

6 f 2

[
(φ · ∂μφ)(φ · ∂μφ) − φ2∂μφ · ∂μφ

]

+ m2

24 f 2
(φ2)2 + · · · . (6.45)

Note that for terms with three or more pion fields, the choice of representation
for U (x) does make a difference to the vertices and Feynman rules. However, all
on-shell scattering amplitudes are the same. For example, the amplitude obtained
from (6.45) for the scattering process πa(pa)πb(pb) → π c(pc)πd(pd) is

T cd,ab
ππ � δabδcd

s − m2

f 2
+ δacδbd

t − m2

f 2
+ δadδbc

u − m2

f 2

− 1

3 f 2
(δabδcd + δacδbd + δadδbc)

(
p2

a + p2
b + p2

c + p2
d − 4m2) .

(6.46)

The final term in this expression is absent for the square-root representation of U (x),
but this term vanishes when all particles are on-shell, leaving a physical amplitude
that agrees with Weinberg’s form, (6.14).

6.3.2 Next-to-leading order

At next order the Lagrangian consists of all possible terms involving four deriva-
tives, two derivatives and one power of χ , or two powers of χ [17]. Since the
symmetry-breaking strength χ is proportional to the square of the pion mass, all
of these are of order Q4. The resulting Lagrangian can be written in the form [18]
(see [1], appendix D.1),

L(4)
π = l1

4

(
tr

[
(∇μU )†∇μU

])2 + l2

4
tr

[
(∇μU )†∇νU

]
tr

[
(∇μU )†∇νU

]
+ l3 + l4

16

(
tr

[
χU † + χ †U

])2 + l4

8
tr

[
(∇μU )†∇μU

]
tr

[
χU † + χ †U

]
+ l5 tr

[
U †Fμν

R U FLμν

] + i
l6

2
tr

[
Fμν

R ∇μU (∇νU )† + Fμν

L (∇μU )†∇νU
]

− l7

16

(
tr

[
χU † − χ †U

])2 + h1 + h3 − l4

4
tr

[
χ †χ

]
+ h1 − h3 − l4

16

{(
tr

[
χU † + χ †U

])2 + (
tr

[
χU † − χ †U

])2

− 2 tr
[
χU †χU † + χ †Uχ †U

] }
− 4h2 + l5

2
tr

[
FRμν Fμν

R + FLμν Fμν

L

]
. (6.47)
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Note that although the coupling constants are defined as in [17], the form of the
Lagrangian is different from the one given there, and corresponds instead to that
of [18]. This reflects the fact that there are many different but equivalent ways to
write down an effective Lagrangian. These are related by transformations of the field
operators, as discussed in [19,1]. This Lagrangian contains a number of coefficients,
li , known as low-energy constants (LECs). At present, these are either fitted to data
on mesonic scattering or decay processes, or they can be estimated by assuming
resonance saturation [20]. Ultimately one would like to be able to determine them
directly from lattice QCD. A summary of empirical values for them can be found
in appendix D of [1]. There are also three constants, hi , that multiply combinations
of external fields only.

At this order, the Lagrangian contains pieces that are quadratic in the field tensors
for the external vector and axial-vector fields:

Fμν

R = ∂μ(vν + aν) − ∂ν(vμ + aμ) − i[vμ + aμ, vν + aν],

Fμν

L = ∂μ(vν − aν) − ∂ν(vμ − aμ) − i[vμ − aμ, vν − aν]. (6.48)

In the case of electromagnetism, the field tensors are

F R
μν = F L

μν = −eQFμν, (6.49)

and one of these pieces provides a wave-function renormalization for the photon.

The analogous Lagrangian for the three-flavour case is [21]

L(4)
π Kη = L1

(
tr

[
(∇μU )†∇μU

])2 + L2tr
[
(∇μU )†∇νU

]
tr

[
(∇μU )†∇νU

]
+ L3tr

[
(∇μU )†∇μU (∇νU )†∇νU

]
+ L4tr

[
(∇μU )†∇μU

]
tr

[
χU † + χ †U

]
+ L5tr

[
(∇μU )†∇μU (χU † + χ †U )

] + L6
(
tr

[
χU † + χ †U

])2

+ L7
(
tr

[
χU † − χ †U

])2 + L8tr
[
χU †χU † + χ †Uχ †U

]
− i L9tr

[
Fμν

R ∇μU (∇νU )† + Fμν

L (∇μU )†∇νU
]

+ L10tr
[
U †Fμν

R U FLμν

] + H1tr
[
FRμν Fμν

R + FLμν Fμν

L

]
+ H2tr

[
χ †χ

]
. (6.50)

This contains more independent terms than the two-flavour version, because the
group SU(3)R × SU(3)L has more invariants. However, since some of the data used
to determine the LECs comes from kaon decays [22], the three-flavour version is
useful even in the context of purely pionic physics.

As already mentioned, these LECs inL(4) play the vital role of absorbing all the one-
loop divergences. In dimensional regularization, logarithmic divergences show up
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Figure 6.1. The basic one-loop diagram contributing to the pion self-energy at order Q4.

in loop integrals as poles at the physical number of space-time dimensions, d = 4,
and the LECs can be renormalized to cancel these. It is convenient to use a modified
minimal subtraction, which also cancels some finite numerical terms that naturally
appear in dimensional regularization. The resulting renormalized couplings, lr

i , are
defined by

li = lr
i (λ) + γi L(λ), (6.51)

where

L(λ) = λd−4

16π2

(
1

d − 4
+ 1

2 (γE − 1 − log 4π )

)
. (6.52)

Here d is the number of space-time dimensions, γE is Euler’s constant and λ is the
arbitrary scale introduced in this regularization.

6.3.3 Pion propagator

At order Q4, the pion propagator receives contributions from loop diagrams involv-
ing interactions from L(2) and from insertions of terms from L(4). The pion-loop
contribution arises from the diagram shown in figure 6.1, where the interaction
vertex is just the lowest-order ππ scattering amplitude in (6.46). For a pion with
momentum p, this gives

−i�(4)
π loop(p2) =

∫
ddl

(2π )d
i
[

(p + l)2 − m2

f 2
+ 3

(−m2)

f 2
+ (p − l)2 − m2

f 2

− 5

3 f 2
(2p2 + 2l2 − 4m2)

]
i

l2 − m2 + iε
.

(6.53)

Using the fact that in dimensional regularization

i
∫

ddl
(2π )d

= 0, (6.54)
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all of the integrals can be expressed in terms of one basic ‘tadpole’ integral,

�π ≡
∫

ddl
(2π )d

i
l2 − m2 + iε

= 2m2

(
L(λ) + 1

16π2
log

m
λ

)
+ O(d − 4), (6.55)

and the pion-loop contributions to the self-energy can be written

−i�(4)
π loop(p2) = i

6 f 2
(−4p2 + m2)�π. (6.56)

This self-energy is of order Q4, in accordance with Weinberg’s power counting. It
also contains a logarithmic divergence, signalled by the pole at dimension d = 4.
This has the same structure as the self-energy insertions arising from the O(Q4)
Lagrangian, and can be renormalized using the constants Li . These ‘counter terms’
contribute a self-energy

−i�(4)
C .T .

(p2) = i
2m2

f 2

[
l4 p2 − (l3 + l4)m2] , (6.57)

where we have used (6.44) to express χ in terms of the leading-order pion mass m.
The full self-energy is thus

−i�(4)(p2) = i
f 2

[(− 2
3 �π + 2l4m2

)
p2 + (

1
6 �π − 2(l3 + l4)m2

)
m2] , (6.58)

and the pion propagator is

i
p2 − m2 − �(4)(p2) + iε

. (6.59)

The physical pion mass is defined by the position of the pole which, to this order,
is given by

m2
π = m2 + �(4)(m2)

= m2 + m2

f 2

(
1
2 �π + 2l3m2

)
. (6.60)

The renormalized LEC lr
3(λ) is given by (6.51) with γ3 = − 1

2 [17]. Using this we
can write the pion mass as

m2
π = m2 + m4

f 2

(
1

16π2
log

m
λ

+ 2lr
3(λ)

)
. (6.61)

The pion mass is finite, as it should be. It is also independent of the arbitrary renor-
malization scale λ, since the log λ term in lr

3(λ) exactly cancels the corresponding
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term from the pion loop. A common choice of renormalization scale is λ = m. This
is convenient in phenomenological applications since the chiral logarithm log(m/λ)
then vanishes. However, it should be used with caution in comparisons with lattice
QCD results, since m2 is an adjustable parameter there and it is important to keep
all dependence on it explicit.

This result for m2
π also illustrates some general features of χPT. It contains a piece

m4 log m which is non-analytic in the symmetry-breaking strength m2 and so can
only arise from low-momentum virtual pions (or the long-distance part of the pion
cloud). The other piece, m4, is analytic in m2, but involves an LEC. This arises
from short-distance physics which has been integrated out of the effective theory,
including high-momentum virtual pions and heavy mesons, not to mention the
quark substructure of the pion.

The pion wave function renormalization at this order is given by

1

Zπ

= 1 − ∂�

∂p2

∣∣∣∣
p2=m2

= 1 − 1

f 2

(
2
3 �π − 2l4m2

)
. (6.62)

Since γ4 = 2 [17], this is neither finite nor independent of λ. However, this is not
a problem, since Zπ is not an observable. (In fact it also depends on the choice of
Lagrangian, and the representation used for U (x) [1].)

6.3.4 Pion form factor

At lowest order, the pion is simply a point particle. Its coupling to a photon with
polarization ε is represented by the Feynman rule

eεa3bε · (p + p′), (6.63)

where p, a are the momentum and isospin of the initial pion, and p′, b are those
of the final one. However, at higher orders, pion loops generate an electromag-
netic form factor for the charged pion [17]. This contains a non-trivial dependence
on the momentum transfer q = p′ − p. Those parts of the form factor where the
momentum scale is set by mπ can be predicted from χPT, while the rest must
be parametrized by LECs. At order Q4, an external photon can be coupled either
to the internal pion line or to the vertex in the basic one-loop diagram of figure 6.1.
There is also a contribution from the bare vertex multiplied by a factor of

√
Zπ

for each external pion line. The insertion on the internal line leads to the following
pieces: a divergent term proportional to m2ε · (p + p′), a divergent term propor-
tional to q2ε · (p + p′) − ε · q(p′2 − p2) and a term with this structure multiplied
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by a finite function of q2/m2. With the exponential representation of U (x), the
insertion at the vertex gives only a divergent term proportional to m2ε · (p + p′).
(For the square-root form, this contribution vanishes.)

When all terms of order Q2 are put together, the divergences proportional to m2ε ·
(p + p′) are found to cancel against the divergent piece of the wave function renor-
malization mentioned above. Also the structure q2ε · (p + p′) − ε · q(p′2 − p2) is
precisely that of the ππγ vertex from the l6 term in L(4)

π and so it can be absorbed
by renormalizing that coefficient. The resulting form factor is then [17,1]

Fπ (q2) = 1 − q2

f 2

{
lr
6(λ) + 1

96π2

[
2 log

m
λ

+ 1

3
+

(
1 − 4

m2

q2

)
J (0)

(
q2

m2

)]}
,

(6.64)

where, at least for x < 0 (corresponding to space-like q: q2 = −Q2 < 0),

J (0)(x) = −2 +
√

x − 4

x
log

√
4 − x + √−x√
4 − x − √−x

. (6.65)

The corresponding charge radius of the pion is given by

〈r2〉π = 6
∂ Fπ

∂q2

∣∣∣∣
q2=0

= − 6

f 2

[
lr
6(λ) + 1

96π2

(
1 + 2 log

m
λ

)]
. (6.66)

Note that, as often happens in χPT, the quantity of most physical interest cannot be
predicted since it contains an undetermined LEC. Instead, the pion charge radius
must be used to fix the LEC lr

6(λ). The full form factor Fπ (q2) is then predicted
to this order. In order to do this, we need to replace the leading-order quantities f
and m by their physical values. Although this introduces an error, this is beyond
the order to which we are working. In the three-flavour theory, the relevant LEC is
Lr

9(λ) [23]. Once this has been determined from the pion charge radius, the radius
of the charged kaon can be predicted. The result is consistent with experimental
determinations, although the uncertainties are rather large.

6.3.5 Anomalous processes

The terms in the Lagrangian discussed so far are symmetric under the interchange
U ↔ U †, aμ ↔ −aμ. As a result they all involve only even numbers of pions.
This symmetry is a natural one for a purely bosonic theory, but it is not one that is
respected by theories like QCD that contain fermions. Fermion loops can violate
the Ward identities corresponding to local chiral invariance [24,25], giving rise to
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processes likeπ0 → γ γ and K +K − → π+π0π−. To describe these in our effective
field theory, we need to include terms that involve odd numbers of meson fields,
and hence have odd intrinsic parity.

The necessary term in the effective action was first constructed by Wess and Zumino
[26]. Later, Witten [27] showed that it is a topological invariant which has a non-
local structure in four dimensions but which can be expressed in a local form in
five dimensions. Its coefficient contains an integer which can be identified with the
number of colours of quark, Nc = 3.

The full Wess–Zumino–Witten (WZW) action can be written as a local functional of
U (x) only in five dimensions but, when expanded in powers of the pion field, each
term can be integrated to give a local four-dimensional term. The local terms all
contain an odd number of pseudoscalar meson fields, and four derivative operators
or vector fields contracted using a totally antisymmetric Levi–Civita tensor. For
more details, see [1]. Perhaps the most important of these terms in the context of
electromagnetism is the one,

−i
Nce2

96π2 f
εμνρσ Fμν Fρσφ3(x), (6.67)

which gives the leading contribution to the decay of the neutral pion, π0 → γ γ .

Since it is a topological invariant whose LEC contains the integer Nc, one would not
expect the WZW action to be renormalized [28,29]. There are, however, other odd-
intrinsic-parity terms of higher order which are chirally invariant. These are needed
to renormalize loop diagrams containing vertices from the WZW action [29]. For
example, the order-Q6 Lagrangian, which is needed for the one-loop diagrams, con-
tains 23 independent terms with odd intrinsic parity [30]. These higher-order terms
can contribute corrections of order m2 to processes like π0 → γ γ but they do not
affect the anomalous Ward identities. More discussion of them can be found in [2].

6.3.6 Next-to-next-to-leading order

The state-of-the-art in mesonic χPT is centred on calculations at order Q6, which
involve the evaluation of two-loop diagrams with vertices from L(2)

π . One par-
ticularly important application is to ππ scattering, but there are also a number of
interesting results for electromagnetic processes. These calculations are formidably
complicated, in part because of the number of diagrams that need to be evalu-
ated, but also because of the number of LECs: more than a hundred in the O(Q6)
Lagrangian. Reviews of the renormalization of two-loop diagrams in χPT can be
found in [31–33].
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Figure 6.2. Cross section integrated over | cos θ | < 0.6 for the process γ γ →
π+π−, plotted against centre-of-mass energy E . The curves show the results of
χPT at order Q2 (short-dashed line), Q4 (long-dashed) and Q6 (solid). They are
taken from Bürgi [36], using the same parameters and LECs. The contributions of
irreducible two-loop integrals have been neglected since they are very small for
γ γ → ππ in this energy range, as discussed in [40,36]. The data points are from
the Mark II Collaboration [35].

One of the first electromagnetic processes to be studied at this order was the produc-
tion of charged pions in two-photon collisions, γ γ → π+π−. Calculations of the
cross section at order Q4 [34] had showed an enhancement over the Born (order-
Q2) result, bringing it into agreement with the low-energy data from the Mark II
Collaboration [35], as can be seen in figure 6.2. Bürgi extended these calculations
to order Q6 [36] and found that the chiral expansion was converging well for this
process. Unfortunately, there are no data in the regions where the two-loop con-
tributions have most effect, although the result is at least in good agreement with
dispersion theory [37]. One should note that the O(Q6) result does depend on three
poorly-determined LECs from L(6)

π , which Bürgi estimated using resonance satura-
tion. The resulting values suggest that these LECs make rather small contributions
to the total cross section.

In the case of γ γ → π0π0, there are no tree-level contributions at either Q2 or
Q4. At leading order, therefore, the amplitude can be calculated just from one-loop
diagrams [34,38]. The result is a chiral prediction, only involving pion and kaon
masses and fπ . It falls significantly below the data from the Crystal Ball Collab-
oration [39] for energies between threshold and about 400 MeV. The inclusion
of two-loop contributions [40] improves the picture considerably, giving a cross
section in good agreement with the available data even up to energies of about
650 MeV, see figure 6.3. In addition, the behaviour near threshold matches well



248 M Birse and J McGovern

300 400 500 600 700

5

10

15

E ( MeV)

cross
section

( nb)

Figure 6.3. Cross section integrated over | cos θ | < 0.8 for the process γ γ →
π0π0, plotted against centre-of-mass energy E . The curves show the results of
χPT at order Q4 (dashed line) and Q6 (solid). They are taken from Bellucci
et al [40], but use the updated parameters and LECs listed in [36]. The contributions
of irreducible two-loop integrals have been neglected, as in figure 6.2. The data
points are from the Crystal Ball Collaboration [39].

with Pennington’s dispersion-theoretic results [41]. As in the charged-pion case,
the result does involve three O(Q6) LECs but, again, estimates using resonance
saturation suggest that their contributions are small.

Also important is Compton scattering from pions, either charged or neutral, since
this can give information on the electric and magnetic polarizabilities of the pions.
To second order in the photon energies (ω1, ω2) the amplitude for γ (q1)π±(p1) →
γ (q2)π±(p2) can be written in the form

T =
(

− e2

mπ

+ 4παπω1ω2

)
ε1 · ε2 + 4πβπω1ω2(ε1 × q̂1) · (ε2 × q̂2), (6.68)

where απ and βπ are the electric and magnetic polarizabilities, respectively. For
scattering from a neutral pion, the energy-independent term is absent. The results
(theoretical and experimental) for these polarizabilities were reviewed in [42], and
an updated survey can be found in [43]. For the charged pions, the experimental
situation is somewhat confused. The extraction of απ from the Mark II data on
γ γ → π+π− leads to a value of the order 2 × 10−4 fm3, but with a large uncertainty
of nearly 100%. In contrast determinations from radiative pion scattering on nuclei
(π N → γπ N ) or radiative pion photoproduction from the proton (γ p → γπ+n)
lead to much larger values, in the region of (7–20) × 10−4 fm3. The result, from a
γ p → γπ+n experiment at Mainz [43], is

απ+ − βπ+ = (11.6 ± 1.5 ± 3, 0 ± 0.5) × 10−4 fm3, (6.69)
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where the three errors are: statistical, systematic, and an estimate of the model
dependence of the nucleonic processes that contribute to the observed cross section.

Since Compton scattering and pair production are related by crossing symmetry,
their amplitudes can be calculated from the same set of diagrams. In χPT at one-loop
level, the electric and magnetic polarizabilities are related by

απ + βπ = 0 (6.70)

for both charged and neutral pions. At this level, the polarizability of the charged
pion comes entirely from contact interactions and can be expressed in terms of two
O(Q4) LECs [34,37]. In terms of the couplings in the three-flavour Lagrangian
(6.50), it has the form

απ+ = e2

π f 2
π mπ

(
Lr

9 + Lr
10

)
. (6.71)

The combination of LECs appearing here is one which can be determined from
radiative pion decay. In contrast, the polarizability of the neutral pion comes entirely
from loops at this level, and so it is predicted in terms of fπ and mπ to be

απ0 = − e2

384π3 f 2
π mπ

. (6.72)

These calculations were extended to order Q6, by Bürgi for the charged pion [36]
and by Bellucci et al [40] for the neutral pion. The polarizabilities are much more
sensitive to the O(Q6) LECs than the total cross sections for pair production, and
so they have significant uncertainties coming from the use of resonance saturation.
The results are

απ+ + βπ+ = (0.3 ± 0.1) × 10−4 fm3,

απ+ − βπ+ = (4.4 ± 1.0) × 10−4 fm3,

απ0 + βπ0 = (1.15 ± 0.30) × 10−4 fm3,

απ0 − βπ0 = (−1.90 ± 0.20) × 10−4 fm3. (6.73)

The effects of newer determinations of the O(Q4) LECs on the charged pion
polarizabilities are discussed in [43]. The new values all lie within the old error
bars: for example, the central value for απ+ − βπ+ changes from 4.4 to 4.9 in
the usual units. It is interesting to note that there is a very significant deviation
between the two-loop χPT prediction for απ+ − βπ+ and the experimental result
from Mainz (6.69). One obvious comment is that the experiment uses a proton
target as a source of pions, and so the scattering involves a virtual pion. There
are also nucleonic processes that contribute to the cross section, which the Mainz
group had to estimate using two models. Kao et al have examined the process
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γ p → γπ+n using heavy-baryon χPT and found that two combinations of π N
LECs contribute significantly [44]. They suggest that results covering a wider range
of scattering angles may be needed to disentangle the pion polarizabilities from π N
physics.

6.4 Including nucleons

6.4.1 Introduction

Interesting though purely mesonic processes are, we clearly also want to be able
to consider cases with one or more baryons present. It is obvious from the start
that such a theory poses more questions about the appropriate low-energy degrees
of freedom than does the purely mesonic case. In the latter case there is a clear
mass gap between the pions and heavier mesons (ρ . . .) and so χPT, in which
these heavier mesons are integrated out, should be valid for a significant range of
energies, up to several times the pion mass. However, in the baryon sector there
are many resonances, with the mass gap between the nucleon and its lowest lying
resonance, the �(1232), being only around twice the pion mass. The problem is
even more acute in the case of SU(3), with the mass for instance of the K� system
lying at or above the mass of a dozen nucleon or � resonances. In fact, in sharp
contrast to the mesonic sector, rather little work has been done including strange
baryons, and we will here address only the non-strange sector. For low-enough
energies it should be permissible to work only with pions and nucleons as explicit
degrees of freedom, but even here we may find unexpectedly large LECs generated
by integrating out the �(1232). For processes where energies significantly exceed
the pion mass, explicit �s will be mandatory.

The simplest possible Lagrangian which describes the coupling of a pseudoscalar
pion to a nucleon would be

�(i D/ − M + gγ5φ · τ )�, (6.74)

but this is clearly not chirally invariant and generates, for instance, a large π N
scattering length in contradiction to experiment. One way of restoring the symmetry
is to include the scalar partner of the pion, the σ ; the σ -exchange tree graph then
cancels against the direct pion scattering graphs and gives, in the chiral limit, the
vanishing scattering length demanded by symmetry. However, in an effective field
theory a heavy degree of freedom like the σ should not be present. Integrating it out
will generate a pion–nucleon seagull, but also terms in which four or more pions
couple directly to the nucleon. Of course the sigma model is just that, a model, but
it does help to explain the fact that chiral symmetry demands that the form of the
pion–nucleon coupling is more complicated than above.
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In the most widely used representation, the nucleon field itself transforms under
chiral rotations in a way that depends on the pion field: � → K (L , R, U )�. Recall-
ing that the pion field described by U transforms as U → RU L†, we can introduce
u which satisfies u2 = U and u → RuK † ≡ K uL†. Skipping the details of the
constraints this imposes on K , we can see that a Lagrangian built of structures
which transform homogeneously under chiral transformations, X → K X K †, will
be chirally invariant. Two such structures are the covariant derivative,

Dμ = ∂μ + 1
2 [u†, ∂μu] − i

2
u†(vμ + aμ)u − i

2
u(vμ − aμ)u†

= ∂μ − ieQ Aμ

− i
4 f 2

εabc(∂μφa)φbτc − ie
8 f 2

Aμ(δa3τ b + δb3τ a − 2δabτ 3)φaφb + · · · ,

(6.75)

where vμ and aμ are external vector and axial-vector fields (in terms of the photon
field, vμ = eQ Aμ) and

uμ = i(u†∇μu − u∇μu†)

= − 1

f
(τ · ∂μφ + eεa3bτaφb Aμ + · · · ). (6.76)

In each case the expansion to order one photon and two pions is given.

The leading order pion–nucleon Lagrangian is then

�
(

i D/ − M + g
2
γ μγ5uμ

)
�. (6.77)

The derivative coupling of the pion field ensures that, as required by chiral sym-
metry, soft pions do not interact with nucleons. At lowest order, the pseudovector
coupling of the pion to the nucleon is equal to the axial coupling constant g, as
required by the Goldberger–Treiman relation. Other chiral LETs are also auto-
matically incorporated in this Lagrangian: the term with two pion fields gives the
Weinberg–Tomozawa piece [8,9] of π N scattering, and the one with one pion and
one photon gives the Kroll–Ruderman term in charged-pion photoproduction.

Beyond leading order four further structures enter that transform homogeneously
and are second order in derivatives or the pion mass; these allow coupling to vector
and axial-vector, and to scalar and pseudoscalar external fields respectively:

f ±
μν = u†F R

μνu ± uF L
μνu†,

χ± = u†χu† ± uχ †u. (6.78)
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Expanded to second order in the pion fields, the vector and scalar structures become

f +
μν = e(∂μ Aν − ∂ν Aμ)

(
2Q + 1

4 f 2
(δa3τ b + δb3τ a − 2δabτ 3)φaφb

)
+ · · · ,

χ+ = 2m2

(
1 − 1

4 f 2
φ2 + · · ·

)
+ O ((mu − md)τ3) , (6.79)

where F R,L
μν are field tensors defined in terms of vμ + aμ and vμ − aμ respectively,

so that for photons F R
μν = F L

μν = eQ Fμν . Symmetry-breaking effects due to the
quark masses enter the Lagrangian through the second of these structures, χ±. It is
clear that, in contrast to the mesonic sector where only terms with even numbers of
derivatives or powers of meson masses enter, in the nucleon sector there are terms
with both odd and even powers. This is a further reason why high accuracy is a
harder goal to achieve in the baryonic sector.

Initial attempts to go beyond tree level with this Lagrangian immediately hit a snag.
If the integrals are regulated with dimensional regularization, one-loop integrals,
which one would hope to be of third order, actually generate corrections at lower
orders. For instance in the chiral limit the one-loop correction to the nucleon mass is

δMN = −3g2 M3

f 2

(
L(λ) + 1

16π2
log

M
λ

)
+ O(d − 4), (6.80)

where λ is the scale introduced by dimensional regularization and L(λ) is defined
in (6.52). To retain M as the chiral-limit nucleon mass, a counter term is required
at leading order. Similarly, away from the chiral limit there are corrections pro-
portional to Mm2/ f 2 which need to be absorbed in second-order counter terms.
This is repeated at every order, with lower-order counter terms continually requir-
ing adjustment to absorb contributions from higher-order graphs, and so the power
counting is not manifest. The problem is clear: the nucleon mass does not disappear
in the chiral limit, so allowing the nucleon to propagate provides another scale to
disrupt the power-counting.

Historically the solution adopted was the heavy-baryon approach (HBχPT), which
starts from the observation that since MN is of the order of the underlying heavy
scale of the effective field theory (�χ ≈ mρ ≈ 4π fπ ), a consistent treatment will
expand amplitudes in powers of p/MN as well as p/�χ . This can be achieved
by decomposing the Dirac nucleon field into ‘large’ and ‘small’ components (in
the rest frame, upper and lower components) and integrating out the latter so that
antinucleons no longer propagate. In leading order the remaining field acts as an
infinitely heavy source for the pion field; corrections of successively higher powers
of 1/MN are present at each higher order. With MN no longer present as a dynamical
scale, the power-counting is restored. The price to be paid is an extra set of terms
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in the Lagrangian at each order, and hence more diagrams to calculate. Lorentz
invariance is realized only to the given order in 1/MN , and the analytic structure
of amplitudes as a function of MN is destroyed. For example, the photoproduction
threshold occurs at ω = mπ to any finite order (though in this case the resummation
of higher-order terms to obtain the correct threshold is easy to carry out).

More recently it has been realized that other regularization schemes exist which
allow power-counting to be maintained within a relativistic approach. Essentially
these regularizations work by automatically absorbing all terms with positive pow-
ers of MN into LECs, but they differ as to how they treat the remainder. Chiral
symmetry ensures that the results of such calculations, if expanded in powers of
mπ/MN , must give the same results for the non-analytic terms, but they may dif-
fer in the analytic terms (and hence have different definitions of the LECs.) Since
fourth-order calculations have already been done in HBχPT for most quantities of
interest, the main impact of these alternative schemes will be whether they will allow
fifth-order calculations (including two-loop calculations) to be done routinely. In
this chapter we will deal mainly with heavy-baryon pion–nucleon χPT, with some
further comments on other versions at the end.

6.4.2 Heavy baryon chiral perturbation theory

The details of the heavy-baryon reduction are well covered in [3], and will not be
repeated here. The essential point is that the nucleon four-momentum is written as
Pμ = Mvμ + pμ, where vμ (not to be confused with an external vector field!) is
the velocity vector, v2 = 1, and pμ is a small residual momentum which, unlike
Pμ, is of order Q. After eliminating the ‘small’ or lower components, the nucleon
propagator depends only on pμ. The first two orders of the Lagrangian read

L(1)
π N = ψ†(iv · D + gu · S)ψ,

L(2)
π N = ψ†

(
1

2M
((v · D)2 − D2 − ig{S · D, v · u}) + c1〈χ+〉

+
(

c2 + g2

8M

)
(v · u)2 + c3u · u +

(
c4 + 1

4M

)
[S · u, S · u] + c5χ̃+

− i
4M

[Sμ, Sν]
(

1
2 (1 + ◦

κs)〈 f +
μν〉 + (1 + ◦

κv) f̃ +
μν

))
ψ, (6.81)

where operators have been split into diagonal and traceless parts via X =
1
2〈X〉 + X̃ . The spin operator Sμ obeys v · S = 0, S · S = (1 − d)/4 and [Sμ, Sν] =
iεμναβvα Sβ with ε0123 = −1. The LECs ci have dimensions of inverse mass; the
isoscalar and isovector anomalous magnetic moments are related to the parameters
in the relativistic Lagrangian of [45,18] by ◦

κv = Mc6 and ◦
κs = M(c6 + 2c7). The
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magnetic moment terms are a good example of the workings of HBχPT: the Dirac
magnetic moments come in as a 1/M correction, while the anomalous magnetic
moments, arising from resonance contributions or quark substructure according to
one’s point of view, come in proportional to a priori unknown LECs. Note that at
this order all LECs are finite as loops do not contribute until third order.

There are three terms in L(2)
π N which have terms proportional to 1/M only. Some of

these could be eliminated using the equation of motion from L(1)
π N , at the expense of

generating higher-order corrections, and this was done by Ecker and Mojžiš [46].
Although the resulting Lagrangian is shorter, terms with a physically obvious mean-
ing are disguised, and keeping track of higher-order terms is laborious. Although
versions with and without equation-of-motion simplifications exist at third order,
only the unsimplified version exists at fourth order. It is important to stick to one
version or the other in a single calculation.

At third order there are 23 independent terms which can be constructed in the
relativistic Lagrangian using the structures already introduced, and hence 23 LECs.
These are denoted bi in [46] and di in [47]. The non-relativistic reduction contains
further terms with coefficients proportional to 1/M2

N or ci/MN . At this order pion
loops enter also. In general these loops, evaluated in dimensional regularization,
are divergent, and amplitudes are rendered finite by requiring the LECs to have
infinite parts: di = dr

i (λ) + (κi/16π2 f 2)L , where the finite part dr
i (λ) is dependent

on the renormalization scale. LECs evaluated at different scales are related by
dr

i (λ′) = dr
i (λ) + (κi/16π2 f 2) log(λ/λ′).

Some comment is in order about the different versions of the third-order Lagrangian
that exist in the literature. The full list of relativistic terms was first written down
by Krause [45]. Ecker found a set of 22 of these together with the corresponding
β-functions which was sufficient for renormalization [48], and this set was also
listed in [3], with the corresponding LECs labelled Bi and their β-functions βi .
This basis is still widely used. Subsequently Ecker and Mojžiš constructed the
minimal full non-relativistic Lagrangian, using the equations of motion to reduce
the number of terms [46]; they termed the LECs bi but retained the notation βi

though there is no direct correspondence with the β-functions of the earlier paper.
Some quantities which though not observable are still useful, such as the wave
function renormalization, are not finite in the second approach.

Finally Fettes et al repeated this work, discovering that the fourth operator on
Ecker and Mojžiš’s list was redundant but otherwise keeping the same order-
ing [47]. However, they chose not to use the equations of motion to simplify
the terms which come from the non-relativistic reduction, nor those required for
renormalization. As a result there are another eight operators, labelled di , where
i = 24–31, whose LECs can be chosen to vanish at some renormalization point
(they used λ = mπ ), and the β-functions (labelled κi ) are not the same as the βi .
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This basis is convenient for calculations with λ = mπ but, as already noted, it
requires some care if the non-analytic structures of amplitudes are of interest. In
that case care must be taken not to cancel, say, the LEC dr

31(λ), whose numeri-
cal value happens to be (g2/16π2 f 2) log(λ/mphys .

π ), against a corresponding term
(g2/16π2 f 2) log(mπ/λ), which comes from a loop calculation after cancellation
of the divergence.

At fourth order there are 118 independent terms in the relativistic Lagrangian, with
LECs denoted by ei . These, together with the additional terms generated in the non-
relativistic reduction, are listed in [49]. The corresponding β-functions are listed
in a differently ordered, non-minimal basis in [50].

6.4.3 Loop integrals: the nucleon mass

The nucleon propagator obtained from L(1)
π N is i/v · p, where p is the residual

nucleon momentum after subtracting Mv. If a chiral expansion is made of v · p
the leading term is usually a loop momentum or an external energy of order mπ .
However, at higher order v · p also contains the mass shift (MN − M)v and the
external nucleon kinetic energy. These are cancelled by contributions to the nucleon
propagator from terms in L(2,3,...)

π N and from loops, to leave only a dependence on the
off-shell energy. This rather cumbersome procedure is an example of the practical
complications introduced by the heavy-baryon reduction.

The nucleon mass is determined by the pole of the nucleon propagator; if the self-
energy at residual energy v · p = ω is denoted by �(ω), this implies (for a nucleon
at rest)

δM − �(δM) = 0, (6.82)

where MN = M + δM . Up to third order this gives δM = �(0). Furthermore, the
wave function renormalization is given by

Z N = 1 + �′(0). (6.83)

A further point to note is that the overall wave function normalization in the heavy
baryon approach corresponds to a normalized upper component for a Dirac spinor.

At second order, the first correction to the chiral-limit nucleon mass M appears: the
term proportional to c1 in L(2)

π N contributes −4m2
πc1 to the nucleon mass. Here m2

π

comes from an explicit occurrence of the quark mass in the Lagrangian: this is not
due to long-range pion loops, but an effect from the quark structure of the nucleon.
At third order, however, there is a contribution from the pion cloud round the
nucleon, coming from the diagram shown in figure 6.4. (Tadpoles vanish because
the lowest-order ππNN seagull vertex is isovector.) The resulting self-energy as a
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Figure 6.4. The pion-loop contribution to the nucleon self-energy.

function of ω = v · p is

�
(3)
loop(ω) = i

g2

f 2

∫
ddl

(2π )d
S · (−l)τb

i
v · (p − l) + iη

S · lτa
iδab

l2 − M2 + iε

= − 3g2

2 f 2
{Sμ, Sν} 1

i

∫
ddl

(2π )d

lμlν
(v · l − ω − iη)(M2 − l2 − iε)

.

(6.84)

The integral in this expression can be expressed in terms of a simpler one with no
factors of lμ in the numerator [3]. That is termed J0(ω, m), and can be evaluated by
combining the denominators using the Feynman parametrization

1

AB
= 2

∫ ∞

0
d y

1

(A + 2y B)2
, (6.85)

giving

J0(ω, M) = −4Lω − ω

8π2

(
2 log

M
λ

− 1

)
− 1

4π2

√
m2 − ω2 arccos

(
−ω

m

)
+ O(d − 4). (6.86)

By means of a variety of standard manipulations, all integrals encountered can be
expressed in terms of J0. For instance, the integral in (6.84) gives gμν J2(ω, M) +
vμvν J3(ω, m), where J2 = ((m2 − ω2)J0 − ω�π )/(d − 1) etc. Integration-by-
parts identities also allow derivatives of the Ji with respect to ω or m2 to be
simplified, for instance ∂ J2/∂m2 = 1

2 J0.

Thus the pion–nucleon loop nucleon self-energy is

�
(3)
loop(ω) = −3g2m3

32π f 2
− 3(d − 1)g2

4 f 2
ω�π + O(ω2m), (6.87)

the first term giving the mass shift due to the pion cloud, and the second the loop
contribution to the wave function renormalization. The mass shift is non-analytic
in m2

π , and (of necessity) finite. There can be no contribution from the third-order
Lagrangian of this form, so this is the full mass shift at this order.

Whether there are other third-order contributions affecting the wave function renor-
malization and terms of order ω3 depends on the Lagrangian. With Ecker’s original
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version there are contributions from two terms in L(3)
π N , both with undetermined

LECs (B15 and B20). In Ecker and Mojžiš’ version there are no further contribu-
tions proportional to the bi . Finally in the form used by Fettes et al the terms which
contribute have no finite parts (at λ = mπ ). In the first and last approaches the LECs
serve to make �(3)(ω) finite; in the latter, for instance, the counterterm contribution
is

�
(3)
C .T .

= d24ω
3 − 8d28m2ω, (6.88)

where κ28 = −9g2/16. This gives

Z N = 1 − 3(d − 1)g2

4 f 2
�π − 8d28m2

= 1 − 3g2m2

32π2 f 2

(
1 + 3 log

m
λ

)
− 8m2dr

28(λ), (6.89)

which is finite and determined. (Numerically, the logarithm and the dr
28 terms can-

cel). For completeness we also give the first two terms of the expansion of gA:

gA = g + m2

(
4dr

16(λ) − 8gdr
28(λ) − g(2g2 + 1)

8π2 f 2
log

m
λ

− g3

16π2 f 2

)
.

(6.90)

Finally, the leading correction to the Goldberger–Trieman relation in Fettes’ scheme
is given by

gπ N N

MN

= gA MN

fπ
− 2m2

πd18

fπ
, (6.91)

where the LEC d18 is finite and independent of λ.

For comparison, Z N , gA and gπ N N in Ecker’s scheme are obtained by replacing dr
16(λ)

with Br
9(λ)/(4π f )2, and similarly for d18 and B23, and d28 and B20.

6.4.4 Electromagnetic interactions: Compton scattering

Calculations of the chiral expansion of the nucleon mass or axial coupling constant
are of limited interest since these terms already enter at lowest order: they are
primarily determined by non-pionic physics and the higher terms are only of interest
as ingredients in other calculations or for carrying out chiral extrapolations of lattice
QCD data. The magnetic moment, too, has a contribution from short-range (quark
substructure or resonance) physics at lowest order (expressed in the LECs c6 and
c7). There are other properties of the nucleon, however, which in χPT are dominated
by pion effects, and hence these quantities are predicted in χPT to a given order.
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Perhaps the most famous of these are the electromagnetic polarizabilities of the
nucleon.

The scattering of real, unpolarized, long-wavelength photons from, for instance, a
proton is required by gauge and Lorentz invariance to depend only on the mass and
charge of the target: this is the Thomson limit of Compton scattering (ν → 0). As
the photon energy is increased, deviations from this cross section arise because the
proton is not perfectly rigid, but can deform in response to electric and magnetic
fields. This is characterized by the electric and magnetic polarizabilities, α and β,
which enter the scattering amplitude through

T = ε′ · ε
(

−Z2e2

M
+ 4παωω′

)
+ 4πβ ε′ × k′ · ε × k + · · · , (6.92)

where ε and ε′ are the polarization vectors of the initial- and final-state photons,
whose momenta and energy are k, ω and k′, ω′ respectively. Spin-dependent terms
have been omitted. The PDG [51] give the following values for the proton

αp = 12.0 ± 0.6 × 10−4 fm3,

βp = 1.9 ± 0.5 × 10−4 fm3. (6.93)

The neutron values are less accurately known but the data are consistent with
vanishing isovector polarizabilities. These values are surprisingly small in view of
the roughly 1 fm3 volume of the proton.

The sum of α and β can also be obtained from a dispersion relation relating the
forward Compton scattering amplitude to the unpolarized photon absorption cross
section. This is the Baldin sum rule and it gives αp + βp = 14.2 ± 0.5 × 10−4 fm3.

In HBχPT the first diagram to contribute is the seagull term from the first two terms
of L(2); these arise from the non-relativistic reduction, contain no LECs and exactly
reproduce the Thomson amplitude. At third order the first loop diagrams enter, but
crucially there are no contributions from LECs. Thus to third order the full Compton
scattering amplitude is obtained as a function of ω/mπ , and the polarizabilites can
be obtained from a Taylor series in powers of ω. The results are the same for the
proton and neutron [52]:

α = 5e2g2
A

384π2 f 2
π mπ

= 12.2 × 10−4 fm3,

β = e2g2
A

768π2 f 2
π mπ

= 1.2 × 10−4 fm3. (6.94)

Note that in the chiral limit the polarizabilities, being proportional to 1/mπ , would
diverge; nonetheless the physical values are in extremely good agreement with the
(surprisingly small) experimental values.
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The agreement of the lowest-order prediction for α is actually embarrassingly
good: one would expect higher-order corrections to be at least 10% rather than 1%.
The next-order calculation can also be done, but at this order the pion loops are
divergent and there is a fourth-order seagull with four unknown LECs contributing
to the isoscalar and isovector α and β: the effective seagull, which has contributions
from six chirally-invariant terms, is given by

L(4) = 2π N †
{

1
2 [δβs + δβvτ3]gμν

− [(δαs + δβs) + (δαv + δβv)τ3]vμvν

}
Fμρ Fν

ρ N + · · · .

(6.95)

Attempts to estimate the LECs by assuming that they are generated from pole
graphs on integrating out the � give contributions to α and β of around 5 fm3 and
spoil the agreement found at lowest order [53]: this is still an unsolved problem.

Of course, a calculation in HBχPT to a given order does not just give the polar-
izabilities; it gives a full prediction for the cross section as a function of photon
energy and scattering angle. To third order there are no free parameters; to fourth
order some of the second-order LECs ci enter, along with the contributions to α

and β mentioned above. If the ci are taken from fits to pion–nucleon scattering,
the remaining LECs can be fit to proton Compton scattering data [54]. Results are
obtained that are consistent with the PDG values [51] (in fact they were used as
input in the 2004 PDG values) and the fit is good provided the energy and the
magnitude of the momentum transfer are restricted to be below 200 MeV. This is
consistent with the expectation that the �(1232) will enter as an active degree of
freedom at around that scale, and this will be mentioned again when we discuss
including the �(1232) explicitly. Figure 6.5 shows the agreement between theory
and experiment [54].

In spite of the generally satisfactory situation for unpolarized scattering, there
are other aspects of Compton scattering that are not so satisfactory. In writing
the scattering amplitude of (6.92) we omitted four structures dependent on the
proton spin. Four spin-dependent polarizabilities are associated with the low-energy
behaviours of these structures. For forward scattering the relevant combination is
called γ0; for backward scattering, γπ . One would expect these to be important
for scattering of polarized photons and targets, but such experiments have not yet
been done. However, dispersion relations link the spin-dependent forward Compton
scattering amplitude to polarized photon absorption cross sections: the most famous
is the Gerasimov–Drell–Hearn (GDH) sum rule [55]

πe2κ2

2M2
N

=
∫ ∞

ν0

dν ′ σ3/2(ν ′) − σ1/2(ν ′)
ν ′ , (6.96)
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Figure 6.5. HBχPT results for the Compton scattering differential cross section
(in nb/sr) at four different laboratory angles, compared to data from various exper-
iments. The regions shaded in grey correspond to

√−t > 200 MeV, and so were
excluded from the fit when extracting α and β. The solid lines are the fourth-order
result; the dashed lines are third order. (The figure is taken from [54]; a list of
experiments may be found therein.)

where 3/2 and 1/2 refer to parallel and antiparallel photon and proton spins; an anal-
ogous integral weighted by 1/ν ′3 gives γ0. These cross sections have been measured
at Mainz and Bonn, and the proton forward spin polarizability has been accurately
determined to be γ0 = −0.94 ± 0.15 × 10−4 fm4. This quantity is predicted in
HBχPT at both third and fourth order. Unfortunately the results are in sharp con-
trast to the success of the spin-independent case, with the third- and fourth-order
results being 4.5 × 10−4 and −3.9 × 10−4 fm4 respectively [56,57]. Clearly the
lack of convergence makes the actual value irrelevant. The reason for this failure is
not clear; discussion can be found in [58,59].

Cross sections for inelastic scattering of electrons on protons (that is, proton struc-
ture functions) can similarly be used to construct the amplitudes for forward ‘doubly
virtual Compton scattering’, including Q2-dependent versions of the GDH sum rule
and of α + β and γ0. These quantities are typically of interest because the high-Q2

region – well-established from deep-inelastic scattering – is very different from the
Q2 = 0 point. HBχPT can also be used at non-zero Q2, and so can make interesting
predictions about the low-Q2 evolution. To date, though, rather few calculations
have been done. Most work has focussed on the generalized GDH sum rule I1(Q2),
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Figure 6.6. I1 is a generalized GDH sum rule and is related to the integral of the
spin-dependent structure function g1; I2 is similarly related to g2. Q2 is measured
in GeV2. The proton data are from [61], while the neutron data (from 3He) are
from [62]; empty symbols represent the experimental data and filled symbols
are corrected for the high-energy part of the integral which is not measured in
these experiments. The third panel shows the difference between I1 for the proton
and neutron (the integral which at high Q2 gives the Bjorken sum rule). The solid
curve is HBχPT [60]. The short-dashed curve is a simple polynomial fit to all the
data (not just the points shown) constrained to have the right value at Q2 = 0. The
long-dashed curve is the relativistic χPT result (discussed later) [63].

which satisfies I1(0) = −κ2/4 and which can be expressed in terms of the first
moment of the spin-dependent nucleon form factor g1:

I1(Q2) = 2M2

Q2

∫ x0

0
dxg1(x, Q2). (6.97)

This has been calculated in HBχPT by Ji, Kao and collaborators [60]. It vanishes
at O(p3) so the O(p4) result is the leading one, and no comment can be made about
the convergence of the chiral expansion. Results are shown in figure 6.6.

Data for I p,n
1 (Q2) have been obtained in electron scattering experiments [61,62];

results for the neutron have been extracted from data on the deuteron and on 3He.
To the experimental data must be added a high-energy contribution estimated from
deep-inelastic scattering. Although the GDH sum rule gives I p

1 (0) = −0.80, the data
are small and positive down to rather small Q2, and only those from JLab, which
go down to 0.15 GeV2 (Q = 390 GeV), dip below the axis. The slope at Q2 = 0
cannot therefore be clearly extracted, but it is very compatible with that given by
HBχPT, as is that for the neutron. However, the HBχPT curve badly overshoots



262 M Birse and J McGovern

all but the lowest Q2 points. Perhaps that is to be expected from experience with
real Compton scattering, which at this order breaks down well below that scale. It
has been suggested that the difference of the proton and neutron integrals should
converge better since � effects should cancel. This does indeed seem to be the case.
Data also exist for I n

2 (Q2), related to first moment of g2, which is equal and opposite
to I n

1 at Q2 = 0. Here again the O(p4) HBχPT prediction seems valid for very low
Q2. Kao et al [64] have also compared higher moments of g1 and g2 with data,
confirming the inability of calculations at this order to go beyond Q2 ≈ 0.1 GeV2.
For more details of generalized GDH sum rules the reader is referred to the review
by Drechsel and Tiator [65].

A closely related process is virtual Compton scattering, the production of real pho-
tons in electron scattering experiments. (Unlike doubly-virtual Compton scattering,
this is not just a thought experiment.) The scattering amplitude, now a function of
the virtuality of the incoming photon as well as its energy and the scattering angle,
can be decomposed into twelve scalar amplitudes, only six of which survive in the
limit Q2 → 0. Generalized polarizabilities, which are functions of Q2, are defined
by taking the limit in which the real photon energy goes to zero. In the standard
notation two are generalizations of α and β, and in fact there are only four others
which are independent though eight can be defined. Only two of these four are
non-vanishing in the limit Q2 → 0, and these correspond to γ3 and γ2 + γ4.

The sole relevant experiment has been done at MAMI, at fixed Q2 = 0.33 GeV2

and photon beam energy of 0.6 GeV but with a range of outgoing photon energies
from 30 to 110 MeV [66]. The experimental cross section is dominated by the
Bethe–Heitler process in which the real photon is radiated by the initial- or final-
state electron, so direct cross section comparisons are not particularly illuminating.
From analysis of the full data set, two terms in the low-energy expansion of the
residual (non-Born or Bethe–Heitler) spin-independent amplitude are extracted,
termed PL L − PT T /ε and PLT . At Q2 = 0 these are related to α and β respectively,
though they are not a theorist’s natural extension of these polarizabilities to finite
Q2. These can also be extracted from an HBχPT calculation of the virtual Compton
scattering amplitude; so far this has only been done at O(p3) [67], but surprisingly,
given the relatively large Q2, the agreement is perfect.

More theoretical effort has been applied to the generalized spin-dependent polariz-
abilities, which have all now been calculated to two chiral orders [67,68]. However,
there are no relevant data. As might have been expected from the situation with
the polarizabilities defined in real scattering, there is no convergence, and about all
one can say about the agreement with estimates based on dispersion relations and
the MAID pion electroproduction database is that the order of magnitude is right
(which is at least more than can be said for some quark models [69]).
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For more information the reader is referred to the review of real and virtual Compton
scattering, with particular reference to dispersion relations but also covering χPT,
by Drechsel et al [69].

6.4.5 Electromagnetic interactions: pion photoproduction

Threshold neutral pion photoproduction from the proton is one of the most cele-
brated applications of χPT. In 1970 a ‘low-energy theorem’ was derived [14] which
gave the threshold value of the S-wave amplitude E0+ as an expansion in powers
of mπ/MN . As discussed above in section 6.1.1 the leading term of order mπ/MN

simply reflects the magnitude of the electric dipole moment of the pπ0 system.
However, when the first precision measurements were done at Saclay and Mainz
[70,71], they disagreed with the ‘LET’ by a factor of about two. With the advent of
χPT, however, Bernard et al [72] recognized that the so-called LET was in fact just
the Born term, and that pion loops contributed at order (mπ/MN )2. Furthermore, the
contribution was numerically large, calling into question the convergence, so
the χPT prediction at this order, while disproving the old LET, does not really
constitute a new one. At one order higher unknown LECs enter [73]. For some con-
siderable time this finding was controversial, but by now there is general agreement
with the position that in general the LETs of the 1960s and 1970s are simply lowest-
order predictions of χPT, and that χPT is indeed the correct framework in which to
go beyond lowest order. Further experiments, including some with polarized pho-
tons at Mainz [74], have confirmed that the threshold value of E0+ does not agree
with the old LET. However, when the two LECs which enter the full amplitude are
fitted to the data, very satisfactory agreement with total cross section, differential
cross section and photon asymmetry is obtained; in particular the cusp in E0+ at the
charged pion production threshold is reproduced. In addition, two of the P-wave
amplitudes, P1 and P2, are predicted at leading order independently of the LECs,
and hence constitute new LETs which are both convergent and in good agreement
with the data [73,76]. Figures 6.7 and 6.8 show the full fourth-order HBχPT results
and the TAPS data to which the five LECs are fit. (The curves shown are from the
authors’ fit following the procedures of Bernard et al [76].)

6.4.6 Chiral perturbation theory and lattice QCD

There are many quantities of interest in hadronic physics that cannot be predicted
by χPT. Most fundamental perhaps is the nucleon mass, which simply enters as
a parameter in the lowest-order Lagrangian. (More accurately, what enters is the
value that the mass would have in the chiral limit, that is if quarks were massless.)
In general, any property of the nucleon which is not primarily due to the pion cloud



264 M Birse and J McGovern

150 155 160 165

− 0.16
− 0.14
− 0.12
− 0.1

− 0.08
− 0.06
− 0.04

Eg

B = Re [ E0+ P1] 

150 155 160 165

− 0.15
− 0.125

 −0.1
− 0.075
− 0.05

− 0.025
0

Eg

C = P1
2− P23

2

25 50 75 100 125 150 175
− 0.05

0.05

0.1

0.15

0.2

0.25

q 

S

150 155 160 165

0.1

0.2

0.3

0.4

0.5

0.6

Eg 

A= E0+ 
2+ P23

2

Figure 6.7. TAPS data on neutral pion photoproduction [74,75]. The first figure
shows the photon asymmetry �. The other three summarize the differential cross
section: at each energy the three parameters A, B and C (in units of 10−4 fm2)
are given by the best fit curve dσ/d� = (q/k) (A + B cos θ + C cos2 θ ), where
q and k are the pion and photon three-momenta respectively. Such a quadratic
form will hold if only the four s- and p-wave amplitudes E0+ and P1, P2 and P3
are important; P2

23 ≡ 1
2 (P2

2 + P2
3 ). For more details see [73]. The curves are the

fourth-order HBχPT results, with the five free parameters fit to the full data set.
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result based on the fit shown in figure 6.7.
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will also not be predicted; examples include the anomalous magnetic moment and
the axial coupling constant, as well as many others which are less well known. In a
few cases one can argue that the dominant contribution is from hadronic resonances,
and greater predictive power may be obtained in a theory which contains the � as
an explicit degree of freedom, as will be discussed below. But in general these
properties are due intrinsically to quark-level physics. The only way we currently
have to predict these is to use the computer simulations of the underlying theory of
quarks and gluons: lattice QCD.

For all the immense progress that has been made in lattice QCD, computer power
still places severe limitations on how closely the simulations can approach the real-
world limit. (For a review of the state-of-the-art in 2003 and further references,
see [77].) By definition all calculations are done in finite volumes with finite lattice
spacing, but in addition so far all have used quark masses heavier than the real ones –
often much heavier, so that the pion mass might be around 500 MeV [78–80]. A
further commonly-used shortcut is to exclude the contributions from quark loops –
the ‘quenched approximation’ [81].

Usually simulations (quenched or unquenched) are done at several values of these
parameters and some form of extrapolation to infinite volume, zero lattice spacing
and physical pion mass is performed. Polynomial extrapolation is well motivated
for the first two, but it was common to see linear extrapolation in the quark mass as
well. However, χPT tells us how nucleon properties must vary as the quark mass
goes to zero, and that behaviour is not in general linear.

It is now realized that lattice QCD and χPT give us largely complementary infor-
mation, the former dealing well with short-distance properties about which χPT
is silent, and the latter describing the pion cloud which, due to large quark masses
and finite volumes, still eludes lattice calculation. The possibility therefore exists
of using extrapolation formulae given by the χPT expansion of the quantity being
calculated, fitting the LECs which enter to the lattice data. It is even possible to
provide alternative χPT extrapolations which allow for the effects of quenching
[82–85]. The effects of unquenched pion loops may then be added in by hand.
These chiral extrapolations have a double benefit, enabling more accurate lattice
QCD predictions and providing first-principles extractions of the LECs. At the cur-
rent time, however, their full potential has yet to be realized, since most lattice
data involve pion masses beyond the likely radius of convergence of χPT. (How
large that is is also disputed.) Two approaches have had some success so far. One
is naively fitting the χPT formula to data with pion masses as high as 600 MeV
[86] or more [80] (although in some cases an extended version with explicit �s is
used [87]). The other is to use some theoretically-motivated function of pion mass
which has the correct low-mass expansion. An example is the inclusion of form
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factors in the one-loop diagrams [88]. It is unlikely that either approach will win
full acceptance until lattice data exist for masses sufficiently low that the chiral
expansion is trustworthy and the data show convincingly that a linear extrapolation
cannot be correct.

6.4.7 Extensions and variants of chiral perturbation theory

In this section, we will briefly cover two topics: calculations that avoid the heavy-
baryon reduction, and the inclusion of � baryons in the theory.

The first attempts to include baryons in χPT, naturally enough, used relativistic
nucleons, but it was quickly recognized that the integrals which arise, regulated with
dimensional regularization in the standard way, did not respect any power counting
and progress was only possible with the application of the heavy-baryon reduc-
tion. Amplitudes so calculated respect all symmetries including Lorentz invariance
order by order, that is any violations will be higher order in powers of 1/MN

than the order to which one is working. However, various properties of the full
amplitude are no longer manifest – crossing symmetry for instance – and some-
times by-hand corrections are required to ensure that thresholds occur at the correct
place. These corrections amount to resumming successive terms in the 1/MN expan-
sion. Further complications arise when intermediate nucleons can go on-shell. In
addition the heavy-baryon Lagrangian with all its fixed terms is much lengthier
than the relativistic one, and calculations are correspondingly more involved with
more diagrams entering. For these reasons relativistic treatments would seem more
attractive [89–91].

The best-known relativistic framework is called ‘infrared regularization’ [89,90].
Without going into details, the integrals that arise from pion–nucleon loops are split
in two; one part is UV finite and contains all the non-analyticities in m2

π , while the
other is IR regular (though possibly UV divergent), generating an expression which
can be expanded as a regular polynomial in m2

π . This polynomial is rendered finite
by the LECs in the usual fashion. The resulting amplitude respects power counting
and the non-analytic part agrees with the heavy baryon result.

Discussion of the advantages of the IR scheme tend to focus on its superior treatment
of kinematic effects. Surprisingly, however, in several cases the predictions of the
IR and heavy baryon theories differ quite significantly, even though they agree
to, say, O(mπ/MN )2. In figure 6.6 the long-dashed curve is the relativistic χPT
result [63], while the solid curve is the HBχPT result [60]. Clearly they are very
different, and HBχPT is much closer to the experimental situation. At first sight
this is very worrying and suggests that the HBχPT results are only coincidentally
accurate; higher-order terms, it would seem, must spoil the agreement. However,
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this is not necessarily correct. From the point of view of HBχPT the higher-order
terms in the IR result are only a subsection of the total. All the higher-order LEC
contributions are missing. For instance, the Dirac and anomalous magnetic moments
are treated differently, since one is a 1/MN effect and the other is due to an LEC.
Furthermore, there are reasons to believe that the relativistic and LEC contributions
might tend to cancel. The IR results contain not only kinematic corrections, but also
contributions from nucleon-level ‘z-graphs’. These, however, are clearly strongly
suppressed by the large size of the nucleon. This suppression might be implemented
by the inclusion of LECs order-by-order in the HBχPT scheme, but the connection
is lost in the IR scheme. This is a topic where much work remains to be done.

A more fundamental modification of baryon χPT is to include the �(1232) baryon
as an explicit field in the Lagrangian [92–94]. The motivation is clear. Since the
nucleon–�(1232) mass difference is only twice the pion mass, integrating out
the �(1232) (as is done implicitly when writing down a Lagrangian of pions and
nucleons only) will put an absolute upper limit of 2mπ on the radius of convergence
for any process in which the �(1232) can be excited – probably significantly lower
in practice.

It is straightforward to include a �(1232) field in a heavy-baryon Lagrangian.
However, a new scale, M� − MN , is introduced, which does not vanish in the chiral
limit. (While the pion cloud contributes some of the extra energy of the �(1232),
quark-level effects such as the hyperfine splitting are also expected to be important.)
A decision has to be taken as to the power-counting to be used. The most common
one is the ‘small-scale expansion’ [94] which treats M� − MN as being of order mπ ,
which may be numerically correct in this world but clearly is wrong in the chiral
limit. In this scheme π� loops contribute at the same order as π N loops, whereas
if the �(1232) is integrated out its effects are first manifest (through LECs) at one
order higher. To simplify a somewhat complicated picture, this tends to spoil the
good predictions of HBχPT for static properties such as the electric polarizability
[95]. However, if corrected by hand (by ‘promoting’ a single higher-order term)
the energy dependence is then improved, and in Compton scattering the problem
encountered at moderate energies and backward angles can be solved [96]. On
balance the introduction of the �(1232) does improve the predictions of lowest-
order χPT, although the large number of extra LECs which enter at higher orders
has so far prevented calculations being pushed beyond lowest order.

Finally, we should mention that, while the state-of-the-art for HBχPT currently
consists of one-loop calculations at order Q4, some first two-loop (order-Q5) results
have been obtained [97–99]. These will be important for testing the convergence
of the expansions of quantities such as the spin-polarizabilities, which first appear
at order Q4 [100].



268 M Birse and J McGovern

References

[1] S Scherer, Advances in Nuclear Physics 27 (2003) 27
[2] G Ecker, Progress in Particle and Nuclear Physics 36 (1996) 71
[3] V Bernard, N Kaiser and U-G Meissner, International Journal of Modern Physics

E4 (1995) 193
[4] S R Beane, P F Bedaque, W C Haxton, D R Phillips and M J Savage, At the Frontier

of Particle Physics: Handbook of QCD, M Shifman ed, Vol. 1, p. 133, World
Scientific, Singapore (2001)

[5] P F Bedaque and U van Kolck, Annual Review of Nuclear and Particle Science 52
(2002) 339

[6] V de Alfaro, S Fubini, G Furlan and C Rossetti, Currents in Hadron Physics, North
Holland, Amsterdam (1973)

[7] M Gell-Mann, R J Oakes and B Renner, Physical Review 175 (1968) 2195
[8] S Weinberg, Physical Review Letters 17 (1966) 616
[9] Y Tomozawa, Nuovo Cimento 46A (1966) 707

[10] E Reya, Reviews of Modern Physics 46 (1974) 545
[11] J Gasser, H Leutwyler and M E Sainio, Physics Letters B253 (1991) 252
[12] M M Pavan, I I Strakovsky, R L Workman and R A Arndt, πN Newsletter 16 (2002)

110
[13] N M Kroll and M A Ruderman, Physical Review 93 (1954) 233
[14] P de Baenst, Nuclear Physics B24 (1970) 633
[15] A M Bernstein and B R Holstein, Comments on Nuclear and Particle Physics 20

(1991) 197
[16] S Weinberg, Physica 96A (1979) 327
[17] J Gasser and H Leutwyler, Annals of Physics 158 (1984) 142
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7

Spin structure functions

P Mulders

This chapter deals with properties of hadrons in high-energy scattering processes
with special emphasis on spin dependence. We consider electroweak interactions,
specifically lepton–hadron scattering that allows a separation of the scattering
amplitude for the reaction into a leptonic part and a hadronic part, where the lep-
tonic part involving elementary particles is known. The structure of the hadronic
part is constrained by its Lorentz structure and fundamental symmetries and can be
parametrized in terms of a number of structure functions. The resulting expression
for the scattering amplitude can be used to calculate the cross sections in terms of
these structure functions and, in turn, a theoretical study of the structure functions
can be made. Part of this can be done rigorously with the only input, or assump-
tion if one prefers, the known interactions of the hadronic constituents, quarks and
gluons, within the standard model. For this both the electroweak couplings of the
quarks needed to describe the interactions with the leptonic part via the exchange
of photon, Z0 or W ± bosons, as well as the strong interactions of the quarks among
themselves via the exchange of gluons are important. For a general reference see
the books of Roberts [1] or Leader [2].

7.1 Leptoproduction

In this section we discuss the basic kinematics of a particular set of hard electroweak
processes, namely the scattering of a high-energy lepton, for example an electron,
muon or neutrino, from a hadronic target, �(k)H (P) → �′(k ′)X . In this process at
least one hadron is involved. If one does not care about the final state, counting
every event irrespective of what is happening in the scattering process, one talks
about an inclusive measurement. If one detects specific hadrons in coincidence
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with the scattered lepton one talks about semi-inclusive measurements or more
specifically one-particle inclusive, two-particle inclusive etc., depending on the
number of hadrons that are detected.

e

h

XH

e' q2 = (k − k ′)2 ≡ −Q2 ≤ 0

2P · q ≡ 2M ν ≡ Q2

xB

2Ph · q ≡ −zh Q2

P · k = P · q
y

= Q2

2xB y

In the above figure, k, k ′ are the four-momenta of the initial and scattered leptons, P
that of the initial hadron, and so forth. In this scattering process a hadron is probed
with a space-like (virtual) photon, for which one can consider the Breit frame in
which the photon four-momentum has a spatial component only. This shows that
the spatial resolving power of the probing photon is of the order λ ≈ 1/Q. Roughly
speaking, one probes a nucleus (1–10 fm) with Q ≈ 10–100 MeV, baryon or meson
structure (with sizes in the order of 1 fm) with Q ≈ 0.1–1 GeV and deep into the
nucleon (<0.1 fm) with Q > 2 GeV. Electroweak interactions with the constituents
of the hadrons, namely the quarks, are known. This opens the way to study how
quarks are embedded in hadrons (for example in leptoproduction or in the Drell–
Yan process, A(PA)B(PB) → �(k)�̄(k ′)X ) or to study how quarks fragment into
hadrons (in leptoproduction and e+e− annihilation into hadrons).

For inclusive unpolarized electron scattering the cross section, assuming one-photon
exchange, is given by

E ′ dσ

d3k ′ = 1

s − M2

α2

Q4
L (S)

μν 2MW μν, (7.1)

where s = (k + P)2, L (S)
μν is the symmetric lepton tensor,

L (S)
μν (k, k ′) = Tr[γμ(k/′ + m)γν(k/ + m)] = 2kμk ′

ν + 2kνk ′
μ − Q2gμν, (7.2)

and Wμν is the hadron tensor, which contains the information on the hadronic part
of the scattering process:

2M Wμν(P, q) = 1

2π

∑
n

∫
d3 Pn

(2π )3 2En
〈P|J †

μ(0)|Pn〉

×〈Pn|Jν(0)|P〉 (2π )4 δ4(P + q − Pn), (7.3)

where |P〉 represents a target with four-momentum P, and the sum is over interme-
diate hadronic states.
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x B

physical
region

x B = 1

W
2

> M
2

fixed < 1

ν

Q 2

Figure 7.1. The physical region in deep inelastic scattering.

Using (2π )4δ4(P + q − Pn) = ∫
d4x exp(i P · x + iq · x − i Pn · x), shifting the

argument of the current, Jμ(x) = exp(i Pop · x)Jμ(0) exp(−i Pop · x) and using
completeness for the intermediate states, the hadron tensor can be written as
the expectation value of the product of currents: Jμ(x)Jν(0). If a second term
∝ Jν(0)J †

μ(0)δ4(P − q − Pn) is added, which is zero in the physical region (ν > 0)
because of the spectral conditions of the intermediate states n (P0

n > M), then after
a similar procedure one can combine the terms to give

2M Wμν = 1

2π

∫
d4x ei q·x 〈P|[J †

μ(x), Jν(0)]|P〉. (7.4)

This expression remains valid when electron polarization is included provided that
summing and averaging over spins is understood.

What is probed in leptoproduction? In the reaction e + H → e′ + X the unobserved
final state X can be the target (elastic scattering) or an excitation. In a plot of the
two independent variables ν and Q2, see figure 7.1, elastic scattering corresponds
to the line ν = Q2/2M , where M is the mass of the target. The behaviour of
the cross section along this line, where the ratio xB = 1, is proportional to the
square of a form factor: see chapter 2. Exciting the nucleon gives rise to inelastic
contributions in the cross section at ν > Q2/2M , starting at the threshold W =
M + mπ . Note that as a function of xB any resonance contribution will move closer
to the elastic limit when Q2 increases: see chapter 10. When Q2 and ν are both
large enough, the cross section becomes the incoherent sum of elastic scattering
off the point-like constituents of the nucleon. This is known as the deep inelastic
scattering region, in which one finds (approximate) Bjorken scaling. In this simple
picture the structure functions become functions of one kinematic variable, xB ,
that is identified with the momentum fraction of the struck quark in the nucleon,
enabling measurement of quark distributions. We will make this explicit below.
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The picture breaks down in limiting cases, such as xB → 1, where it becomes dual
to the summation over resonances (see chapter 10) or xB → 0, corresponding, for
fixed Q2, to ν → ∞. In this region one may employ Regge theory (see chapters 5
and 8).

It is also possible to consider in more detail the space-time correlations that are
probed. From the kinematics of deep inelastic scattering one can see that the process
probes the light-cone. In the nucleon rest-frame, both q0 = ν and q3 =

√
Q2 + ν2

go to infinity. However, at finite xB only one of the sum and the difference of them
goes to infinity. For such reasons it is useful to introduce light-cone coordinates.
These are defined by a± = (a0 ± a3)/

√
2. The scalar product of two vectors is given

by a · b = a+b− + a−b+ − a1b1 − a2b2. Choosing q along the negative z-axis,
q− = (ν + |q|)/√2 → ∞ and q+ = (ν − |q|)/√2 ≈ −MxB/

√
2. In the hadron

tensor, which involves a Fourier transform of the product of currents, this corre-
sponds to |x+| ≈ 1/q− → 0 and |x−| ≈ 1/|q+| → 1/MxB . Thus, although the
distances and times probed depend on xB and are not necessarily small, x2 =
x+x− − x2

⊥ ≈ −x2
⊥ ≤ 0. On the other hand, causality requires that x2 ≥ 0, so

that deep inelastic scattering probes the light-cone, x2 ≈ 0.

7.2 Structure functions and cross section

The simplest thing one can do with the hadron tensor is to express it in standard
tensors and structure functions that depend on the invariants. Instead of the tradi-
tional choice of tensors, gμν , Pμ Pν and εμνρσ qρ Pσ multiplying structure functions
W1, W2 and W3 that depend on ν and Q2, we go immediately to a dimensionless
representation. First define a Cartesian basis of vectors [3], starting with the nat-
ural space-like momentum defined by q . Using the target-hadron momentum Pμ,
one can construct a four-vector P̃μ = Pμ − (P · q/q2) qμ, orthogonal to P and q,
which is time-like with length P̃2 = κ P · q, where

κ = 1 + M2 Q2

(P · q)2
= 1 + 4 M2x2

B

Q2
. (7.5)

The quantity κ takes into account mass corrections proportional to M2/Q2. Thus
define

Zμ ≡ −qμ, (7.6)

T μ ≡ − q2

P · q
P̃μ = qμ + 2xB Pμ. (7.7)

For these vectors Z2 = −Q2 and T 2 = κ Q2 and we shall often use the normalized
vectors ẑμ = −q̂μ = Zμ/Q and t̂μ = T μ/Q

√
κ . With respect to these vectors one



Spin structure functions 275

can also define transverse tensors,

gμν

⊥ ≡ gμν + q̂μq̂ν − t̂μ t̂ν, (7.8)

ε
μν

⊥ ≡ εμνρσ t̂ρ q̂σ . (7.9)

To get the parametrization of hadronic tensors, such as in (7.4), including for gen-
erality also a spin four-vector S, we use the general symmetry property

Wμν(q, P, S) = Wνμ(−q, P, S) (7.10)

as well as properties following from hermiticity, parity and time-reversal invariance,

W ∗
μν(q, P, S) = Wνμ(q, P, S), (7.11)

Wμν(q, P, S) = W νμ(q̄, P̄, −S̄) (parity), (7.12)

W ∗
μν(q, P, S) = W μν(q̄, P̄, S̄) (time reversal), (7.13)

where p̄ = (p0, −p). Finally we use current conservation implying qμWμν =
Wμνqν = 0. For inclusive unpolarized leptoproduction the most general form for
the symmetric tensor is

M W μν (S)(P, q) =
(

qμqν

q2
− gμν

)
F1(xB, Q2) + P̃μ P̃ν

P · q
F2(xB, Q2)

≡ −gμν

⊥ F1(xB, Q2)︸ ︷︷ ︸
FT

+ t̂μ t̂ν

(
−F1 + κ

2xB

F2

)
︸ ︷︷ ︸

FL

, (7.14)

where the structure functions F1, F2, or equivalently the transverse and longitudinal
structure functions, FT and FL , depend only on the variables Q2 and xB . This is the
structure for the electromagnetic part of the electroweak interaction. For the weak
W - or Z -exchange part, both vector and axial-vector currents with different parity
behaviour occur. In that case the antisymmetric tensor

M W μν (A)(q, P) = iεμνρσ Pρqσ

(P · q)
F3(xB, Q2)

= i κ ε
μν

⊥ F3(xB, Q2) (7.15)

is also allowed. This arises from that part of the tensor in which one of the currents
in the product is a vector current and the other is an axial-vector current.

The cross section is obtained from the contraction of the lepton and hadron ten-
sors. It is convenient to expand the lepton momenta k and k ′ = k − q in t̂ , ẑ
and a perpendicular component using the scaling variable y = P · q/P · k. (In
the target rest-frame this reduces to y = ν/E .) The result, including target-mass
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ẑ

P
h⊥ Ph ĥ

lepton scattering plane

q
k

k' π−φ

Figure 7.2. Kinematics for lepton–hadron scattering. Transverse directions indi-
cated with a ⊥ index are orthogonal to P and q, for example the orthogonal
component of the momentum of a produced hadron has been indicated. Similarly
one can consider the orthogonal component of the spin vector of the target.

corrections, is

kμ = 2 − y
y

1

κ
T μ − 1

2
Zμ + kμ

⊥

= Q
2

q̂μ + (2 − y)

2y
Q√
κ

t̂μ +
√

1 − y + 1
4 (1 − κ) y2

y
Q√
κ

�̂μ

Q2→∞−→ Q
2

q̂μ + (2 − y) Q
2y

t̂μ + Q
√

1 − y
y

�̂μ, (7.16)

where �̂μ = kμ

⊥/|k⊥| is a space-like unit vector in the perpendicular direction lying
in the lepton scattering plane. The kinematics in the frame where the virtual photon
and the target are collinear, including the target rest-frame, is illustrated in figure 7.2.
With this definition of �̂ and neglecting mass corrections (κ = 1), for unpolarized
leptons we obtain the symmetric lepton tensor

Lμν (S) = Q2

y2

[ − 2
(
1 − y + 1

2 y2) gμν

⊥ + 4(1 − y)t̂μ t̂ν

+ 4(1 − y)
(
�̂μ�̂ν + 1

2 gμν

⊥
)

+ 2(2 − y)
√

1 − y (t̂μ�̂ν + t̂ν �̂μ)
]
. (7.17)

For electromagnetic scattering the explicit contraction of lepton and hadron tensors
gives the result

dσ ep

dxBdy
= 4π α2 xB s

Q4

[(
1 − y + 1

2 y2) FT (xB, Q2) + (1 − y) FL (xB, Q2)
]

= 2π α2 s
Q4

[(1 − y) F2(xB, Q2) + xB y2 F1(xB, Q2)]. (7.18)
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We have used the known photon coupling to the lepton and parametrized in the
structure functions our ignorance of hadron structure. The fact that we know how
the photon interacts with the quark constituents of the hadrons will be used later to
relate the structure functions to quark properties. In the same way it is known how
the Z0 and W couple to quarks. To describe weak interactions the antisymmetric
part of the lepton tensor is needed also. We shall encounter this when we discuss
polarization.

7.3 Virtual photon cross sections

The tensor Wμν also appears in the total cross section for γ ∗ H → everything,
where γ ∗ indicates a virtual photon. For a given virtuality Q2 of the photon, this
cross section depends on only one variable, W 2 = (P + q)2, or equivalently on the
variable ν = P · q/M ,

σγ ∗ H (ν) = 4π2α

K
εμ∗Wμνε

ν, (7.19)

where 4M K is the photon flux factor. This flux factor is physical only for real
photons (Q2 = 0). For Q2 �= 0 several conventions have been used: (i) define K by
4M K = 4

√
(p · q)2 − p2q2, that is K =

√
ν2 + Q2; (ii) take the real photon result

4M K = 4P · q or K = ν; (iii) use the result 4M K = 2(W 2 − M2) for a massless
photon and equate W 2 to the invariant mass in the case of a virtual photon, that is
W 2 = 2 P · q + M2 − Q2 or K = ν − Q2/2M .

Being a total cross section for virtual photoabsorption, the hadronic tensor is related
to the forward virtual Compton amplitude through the optical theorem,

Wμν = 1

π
Im Tμν, (7.20)

where

2M Tμν(P, q) = i
∫

d4x eiq·x〈P|T Jμ(x)Jν(0)|P〉. (7.21)

Using the photon polarization vectors εμ
α , where α indicates one of the polarization

directions orthogonal to qμ,

ε
μ
± =

√
1
2 (0, ∓1, −i, 0) = ∓

√
1
2 (εx ± i εy), (7.22)

εμ
L = 1√

Q2
(q3, 0, 0, q0), (7.23)

one gets two transverse structure functions and one longitudinal structure func-
tion, Fα = εμ∗

α MWμνε
ν
α. Because they are proportional to cross sections for virtual
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photons, the structure functions F+, F− and FL are non-negative. We have

FT = 1

2
(F+ + F−) = F1, (7.24)

FL = F2

2xB

− F1, (7.25)

F3 = F+ − F−. (7.26)

7.4 Symmetry properties of the structure functions

For the virtual Compton scattering process, γ ∗(q) + H (P) → γ ∗(q ′) + H (P ′), the
amplitude Tμν(P, q, q ′) can be expanded in terms of amplitudes Ti that depend
on the invariants in the scattering process. These invariants are two of the three
Mandelstam variables for the γ ∗N process, s = (P + q)2, t = (P − q)2 and u =
(P − q ′)2. Note that s + t + u = 2 M2 − 2 Q2.

In the forward direction only two such amplitudes survive for spin-averaged scat-
tering when Q2 �= 0. First we review the symmetries and analytic properties of the
amplitudes T1,2 and the structure functions W1,2. Crossing symmetry relates the
amplitudes

T ab→cd(pa, pb, pc, pd) = T c̄b→ād(−pc, pb, −pa, pd). (7.27)

For the virtual Compton amplitude, T γ ∗ H̄→γ ∗ H̄
1 (u, s) = T γ ∗ H→γ ∗ H

1 (s, u). For the
elastic γ ∗ H and γ ∗ H̄ amplitudes, the crossing properties imply T1(s, u) = T1(u, s).
From the optical theorem the relation between the total cross section for γ ∗ H →
X and the imaginary part of the forward elastic γ ∗ H → γ ∗ H amplitude is the
discontinuity over the cut in the physical region, namely the imaginary part of
the forward amplitude T1. For the forward amplitude ν = (s − u)/4M and T1 is a
symmetric function of ν. One has

σ
γ ∗ H
T (ν) = 4πα

K
Im T1(s + iε, u) = 4πα

K
Im T1(ν + iε), (7.28)

σ
γ ∗ H̄
T (ν) = 4πα

K
Im T1(u + iε, s) = 4πα

K
Im T1(−ν + iε)

= −4πα

K
Im T1(ν + iε), (7.29)

where the last equality follows from the symmetry result T1(ν) = T1(−ν) and the
fact that T1 is a real analytic function, T1(ν) = T ∗

1 (ν∗). Note that as Wμν is defined
as the commutator of the currents, the cross section for the crossed part enters with
a negative sign. As an analytic function of ν, however, one has

W1(ν, Q2) = 1

π
Im T1(ν + iε, Q2) = −W1(−ν, Q2), (7.30)
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Figure 7.3. The Compton amplitude for a point fermion.

which can also be derived from the translation invariance properties of the com-
mutator defining W μν . The analytic behaviour and symmetry in xB = Q2/2Mν is
exactly the same as that in ν, that is W1(xB) = −W1(−xB).

A simple example in which all of these properties are illustrated is the forward
Compton amplitude for scattering off a point fermion with mass m and charge
Q/e = e f , illustrated in figure 7.3. The amplitude T1 is the coefficient of gμν in the
amplitude Tμν ,

2m Tμν = e2
f

ū(p)γμ( p/ + q/ + m)γνu(p)

(p + q)2 − m2 + iε
+ [μ ↔ ν, q ↔ −q]. (7.31)

This equals

2m T1 = e2
f

(
s − u

2(s − m2 + iε)
+ u − s

2(u − m2 + iε)

)

= e2
f

(
1

1 − x + iε
+ 1

1 + x + iε

)
, (7.32)

the imaginary part of which is the structure function for a point-like fermion,

2m W1 = e2
f [δ(1 − xB) − δ(1 + xB)] . (7.33)

Analogous arguments can be applied to T2 and W2 [1].

7.5 Polarized leptoproduction

For polarized leptons in the initial state (7.1) becomes

L (s)
μν = Tr

[
γμ(k/′ + m)γν(k/ + m)

1 ± γ5 s/)

2

]
= 2 kμk ′

ν + 2 k ′
μkν − Q2 gμν ± 2i m εμνρσ qρsσ , (7.34)

where m is the lepton mass. Note that for light particles, or particles at high energies,
the helicity states (ŝ = k̂) become chirality eigenstates. For Lμν the equivalence is
easily seen because for sμ = (|k|/m, E k̂/m) (s2 = −1 and s · p = 0) in the limit
E ≈ |k| one obtains the result sμ ≈ kμ/m. Then the leptonic tensor for helicity
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states (λe = ±) becomes

L (λe=±1/2)
μν ≈ L (R/L)

μν = L (S)
μν + λe L (A)

μν , (7.35)

where the antisymmetric lepton tensor is given by

L (A)
μν (k, k ′) = Tr[γμγ5k/′γν k/]

= 2i εμνρσ qρkσ . (7.36)

Expanding in the Cartesian set t̂ , ẑ and the vector �̂ in the same way as for the
symmetric part, the antisymmetric part of the lepton tensor has the form

Lμν (A) = Q2

y2

[ − i y(2 − y) ε
μν

⊥ − 2i y
√

1 − y
(
t̂με

νρ

⊥ − t̂νε
μρ

⊥
)
�̂ρ

]
. (7.37)

Polarized leptons in deep inelastic scattering �e p → X can be used to probe the anti-
symmetric tensor for unpolarized hadrons, measuring the F3 structure function. This
contribution comes via the interference between the γ and the Z exchange terms.

When the target is polarized there are several more structure functions compared to
the case of an unpolarized target. For a spin- 1

2 particle the initial state is described
by a two-dimensional spin-density matrix ρ = ∑

α |α〉pα〈α| describing the proba-
bilities pα for a variety of spin possibilities. This density matrix is Hermitian with
Tr ρ = 1. In the target rest-frame it can be expanded in terms of the unit matrix and
the Pauli matrices,

ρss ′ = 1
2 (1 + S · σss ′), (7.38)

where S is the spin vector. When |S| = 1 there is only one state |α〉 and ρ2 =
ρ. When |S| ≤ 1 there is an ensemble of states. The case |S| = 0 is simply an
average over spins, corresponding to an unpolarized ensemble. To include spin
one, the hadron tensor can be generalized to a matrix in spin space, W̃ μν

s ′s (q, P) ∝
〈P, s ′|Jμ|X〉〈X |J ν |P, s〉 depending only on the momenta, or one can look at the
tensor

∑
α pαW̃ μν

αα (q, P). The latter is given by

W μν(q, P, S) = Tr(ρ(P, S)W̃ μν(q, P)), (7.39)

with the space-like spin vector S appearing linearly, satisfying P · S = 0 in an
arbitrary frame and having invariant length −1 ≤ S2 ≤ 0. It is convenient to write

Sμ = SL

M

(
Pμ − M2

P · q
qμ

)
+ Sμ

⊥, (7.40)

with

SL ≡ M (S · q)

(P · q)
. (7.41)
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For a pure state S2
L + S2

⊥ = 1. Parity requires that the polarized part of the tensor,
that is the part containing the spin vector, enters in an antisymmetric tensor of the
form

M W μν (A)(q, P, S) = SL

iεμνρσ qρ Pσ

(P · q)
g1 + M

P · q
iεμνρσ qρ S⊥σ (g1 + g2)

= −i SL ε
μν

⊥ g1 − i
2M
Q

[
t̂με

νρ

⊥ − t̂νε
μρ

⊥
]
S⊥ρ xB(g1 + g2).

(7.42)

Equation (7.42) contains two structure functions, g1(xB, Q2) and g2(xB, Q2). The
combination gT ≡ g1 + g2 is also used. The resulting cross section is

dσL L

dxB dy
= 4π α2

Q2
λe

[
SL (2 − y) g1 − |S⊥| cos φ�

S
2M
Q

√
1 − y xB(g1 + g2)

]
.

(7.43)

In all of the above formulae mass corrections proportional to M2/Q2 have been
neglected.

A special case of inclusive scattering is elastic scattering. Then the final state four-
momentum is P ′ = P + q and (P + q)2 = M2, that is xB = 1. The formalism for
inclusive leptoproduction can still be used but the hadron tensor becomes

2M Wμν(q, P) = 〈P|Jμ(0)|P ′〉〈P ′|Jν(0)|P〉︸ ︷︷ ︸
Hμν (P;P ′)

1

Q2
δ(1 − xB). (7.44)

7.6 The parton model

7.6.1 The intuitive approach

In the intuitive derivation of the parton model the γ ∗-quark cross section is convo-
luted with a momentum distribution of quarks in the nucleon. The γ ∗q cross section
is given by

σ̂ (γ ∗q) = 4π2α

2p · q
ε∗
μwμνεν,

wμν(p, q) = 1

2M

[(
qμqν

q2
− gμν

)
Q2 + 4 p̃μ p̃ν

]
δ(2 p · q + q2), (7.45)

which can be separated into the transverse and longitudinal cross sections:

σ̂T (γ ∗q) = 4π2α e2
q δ(2p · q − Q2), (7.46)

σ̂L (γ ∗q) = 4π2α e2
q

4m2
q

Q2
δ(2p · q − Q2) � σ̂T . (7.47)
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Note that there are, in principle, ambiguities here because of the flux factor for
virtual photons and that σ̂L (γ ∗q) � σ̂T at large Q2.

This parton cross section is then folded with the probability function for finding
partons in the target. For this purpose it is convenient to give the explicit momenta
as light-cone components, p = [p−, p+, p⊥], where p± = (p0 ± p3)/

√
2 or p =

p−n− + p+n+ + pT in terms of two light-like vectors satisfying n2
− = n2

+ = 1
and n+ · n− = 0. Thus p± = p · n∓. Note that n± are not unique. The light-cone
expansion for the external vectors P and q is

q2 = −Q2

P2 = M2

2 P · q = Q2

xB

⎫⎪⎪⎬
⎪⎪⎭ ←→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q =
√

1
2 Q n− −

√
1
2 Q n+

P = xB M2

Q
√

2
n− + Q

xB

√
2

n+

.

The representation with light-like vectors shows that when Q2 becomes large, the
nucleon momentum is on the scale of Q, that is it is light-like. The hard momentum
has both components proportional to Q, but this is not the case for P and P− � q−.

A scaling variable that includes finite-Q effects is often used. This is the Nachtmann
variable xN = −q+/P+. Recalling that xB = Q2/2P · q,

xN = 2xB

1 + √
1 + 4 M2x2

B/Q2
. (7.48)

Compared with the hard scale Q the parton momentum is also light-like. It is
useful to expand p = p− n− + x P+n+ + pT , where the light-cone momentum
fraction x ≡ p+/P+ has been introduced. It is straightforward to show that on-
shell (p2 = m2)

p− = m2 + p2
T

2p+ = m2
⊥

2x P+ , (7.49)

while in a hadron

p− = 2 p · P − x M2

2P+ ,

p2
T = x(1 − x) M2 − x M2

R − (1 − x)p2,

where M2
R = (P − p)2.

Under the assumption that all invariants p · P ∼ M2
R ∼ p2 ∼ P2 = M2, then for

a quark in a hadron the expansion in terms of n± gives p+ ∼ P+ ∼ Q, while
p− ∼ M2/Q and p2

T ∼ M2. This is sufficient to derive the parton model results.
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q q

Figure 7.4. The handbag diagram for inclusive deep inelastic scattering off a
hadronic target.

The cross section for γ ∗q elastic scattering can be rewritten as

σ̂T = 4π2αe2
q

Q2
δ(1 − x p), (7.50)

where x p = −q+/p+.

Introducing probabilities fi (x) for finding partons carrying fraction x = p+/P+ =
xB/x p of the target light-cone momentum, leads to*

σT =
∑

i

e2
i

∫
dx fi (x)

4π2α

Q2
δ
(

1 − xB

x

)

= 4π2α

Q2

∑
i

e2
i xB fi (xB). (7.51)

Comparing with

σT = 8π2α

Q2
xB F1, (7.52)

we get

F1(xB) = 1
2

∑
i

e2
i fi (xB). (7.53)

As σ̂L ∝ 1/Q2 → 0 as Q2 → ∞, one obtains FL = 0 and the Callan–Gross relation,

F2(xB) = 2xB F1(xB). (7.54)

7.6.2 The diagrammatic approach

Another way in which the parton model is obtained is by considering the quark
handbag diagram of figure 7.4 and its antiquark equivalent. These diagrams are

* Note that the probability actually involves fi (x) dx/x , but for the cross section we need also to
include counting rates. This requires that we need the cross section multiplied by flux factors. The
ratio of the flux factors for quarks and hadrons is p · q/P · q ≈ p+/P+ = x . Hence we need to
weight the cross section with fi (x) dx .
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Φ(p;P,S)

p p

P P

Figure 7.5. Forward antiquark-target scattering amplitude.

the leading ones out of a full set in which the connection to hadrons is left as an
unknown quantity [4,5]. The basic expression for the quark part of the handbag
diagram is

2M W μν(P, q)

=
∑

q

e2
q

∫
dp− dp+ d2 p⊥ Tr (�(p) γ μ( p/ + q/ + m)γ ν) δ((p + q)2 − m2)

≈
∑

q

e2
q

∫
dp− dp+ d2 p⊥ Tr

(
�(p) γ μ q−γ +

2q− γ ν

)
δ(p+ + q+)

≈ −gμν

⊥
1

2

∑
q

e2
q

∫
dp− d2 p⊥ Tr(γ + �(p))

∣∣∣∣
p+=xB P+

+ · · · , (7.55)

where �(p) is the forward antiquark-target scattering amplitude,

�i j (p, P, S) = 1

(2π )4

∫
d4ξ ei p·ξ 〈P, S|ψ j (0)ψi (ξ )|P, S〉, (7.56)

diagrammatically represented by figure 7.5. Including the antiquark part and
comparing with the general form of the hadronic tensor, then

2 F1(xB) = 2M W1(xB, Q2) =
∑

q

e2
q [q(xB) + q̄(xB)] , (7.57)

with

q(xB) = 1

4π

∫
dξ− e+i xB P+ξ−〈P, S|ψ(0)γ +ψ(ξ )|P, S〉

∣∣∣∣
ξ+=ξ⊥=0

, (7.58)

q(xB) = 1

4π

∫
dξ− e−i xB P+ξ−〈P, S|ψ(0)γ +ψ(ξ )|P, S〉

∣∣∣∣
ξ+=ξ⊥=0

(7.59)

satisfying q(xB) = −q(−xB). As expected, the result is a light-cone correlation
function of quark fields.
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7.6.3 The operator in coordinate-space

The parton result for the structure functions can also be derived by inserting free
currents in the hadron tensor for the current commutator and using the expression
for the free field commutator.

By using the anticommutation relations for free quark fields, given by
{ψ(ξ ), ψ(0)} = ∂/ δ(ξ 2) ε(ξ 0)/2π the gμν contribution in the current–current com-
mutator for quarks can be derived. It is

[Jμ(ξ ), Jν(0)] = [: ψ(ξ )γμψ(ξ ) :, : ψ(0)γνψ(0) :]

= −gμν

2π
[∂ρ δ(ξ 2) ε(ξ 0)] : ψ(ξ )γ ρψ(0) − ψ(0)γ ρψ(ξ ) :. (7.60)

An important feature, evident in the free-current commutator, is the light-cone
dominance. By sandwiching the commutator between physical states and taking
the Fourier transform, it is a straightforward calculation to obtain the same result
for the hadron tensor as in the diagrammatic approach above. Details can be found
in [6].

7.6.4 Flavour dependence

The explicit flavour and spin dependence of the structure functions in electroweak
processes depend on the probe being a γ , Z0 or W ± boson. However, the currents
are known in terms of the quark fields. Omitting the coupling constants e or

√
G F ,

the standard-model currents coupling to fermions are

J (γ )
μ = : ψ(x) Q γμ ψ(x) :, (7.61)

J (Z )
μ = : ψ(x)

(
I 3

W − Q sin2 θW
)
γμL ψ(x) : − : ψ(x) Q sin2 θW γμR ψ(x) :

= : ψ(x)
(
I 3

W − 2 Q sin2 θW
)
γμ ψ(x) : − : ψ(x) I 3

W γμγ5 ψ(x) :, (7.62)

J (W )
μ = : ψ(x) I ±

W γμL ψ(x) :, (7.63)

where γμR/L = γμ(1 ± γ5).

In terms of the quark distribution functions u p(x), dp(x), etc., the one-photon
exchange contribution to ep scattering is

Fep
2 (x)

x
= 2 Fep

1 (x)

= 4
9 (u p(x) + u p(x)) + 1

9 (dp(x) + d p(x)) + 1
9 (sp(x) + s p(x)) + · · ·

≡ 4
9 (u(x) + u(x)) + 1

9 (d(x) + d(x)) + 1
9 (s(x) + s(x)) + · · · , (7.64)
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where the last line exhibits the convention of using the proton as the reference hadron
for distribution functions. Using flavour symmetry, u p = dn , dp = un , sp = sn , then
for en scattering

Fen
2 (x)

x
= 2 Fen

1 (x)

= 1
9 (u(x) + u(x)) + 4

9 (d(x) + d(x)) + 1
9 (s(x) + s(x)) + · · · . (7.65)

As the difference between quarks and antiquarks contributes to the quantum num-
bers, it is convenient to divide the quark distribution into a valence part and a sea
part

q(x) = qv(x) + qs(x), (7.66)

where

qv(x) ≡ q(x) − q(x). (7.67)

The quark distributions are positive definite so, for instance,

1

4
≤ Fen

2

Fep
2

= (u + u) + 4(d + d) + (s + s) + · · ·
4(u + u) + (d + d) + (s + s) + · · · ≤ 4. (7.68)

Near xB ≈ 0 the experimental ratio is about 1, indicating dominance of sea quarks.
Near xB ≈ 1 the valence quarks dominate. Naively one might expect u = 2 d and
all others zero, that is a ratio of 2

3 . The experimentally observed limit for xB → 1
is consistent with tending towards 1

4 , the lower limit, which is reached for d � u,
that is dominance of the u-quark in the proton (and therefore the d-quark in the
neutron).

It is clear that in order to determine the quark distributions several processes are
needed. At present the various quark and gluon distributions are known over a
wide range of xB and Q2, for example see figure 7.6. For compilations we refer
to [8].

7.7 Properties of quark distributions

7.7.1 Interpretation as densities

To be convinced that the above expressions for q(x) and q(x) can be interpreted as
momentum densities it is necessary to realize that ψ(ξ )γ +ψ(0) = √

2 ψ
†
+(ξ )ψ+(0),

where ψ± = P± ψ are projections obtained with projection operators onto quark
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Figure 7.6. Distributions of x times the unpolarized parton distributions f (x)
(where f = uv, Dv, ū, d̄, s, c, g) using the NNLO MRST2004 parametrization
[7] at a scale μ2 = 10 GeV2.

states [9], with P± = 1
2γ

∓γ ±. A complete set of states can then be inserted to
give

q(x) =
∫

dξ−

2π
√

2
eip·ξ 〈P, S|ψ†

+(0)ψ+(ξ )|P, S〉
∣∣∣∣
ξ+=ξT =0

=
√

1
2

∑
n

|〈Pn|ψ+|P〉|2 δ(P+
n − (1 − x)P+), (7.69)

which represents the probability that a quark is annihilated from |P〉 giving a state
|n〉 with P+

n = (1 − x)P+. Since P+
n ≥ 0 one sees that x ≤ 1. From the antiquark

distribution q̄(x) and its relation to −q(−x) one obtains x ≥ −1, thus showing that
the support of the functions is −1 ≤ x ≤ 1 [10,11].

7.7.2 Polarized parton densities

Analogous to the unpolarized structure functions, for the polarized structure
functions

2 g1(xB) =
∑

q

e2
q [q(xB) + q(xB)], (7.70)
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where

SLq(xB) = 1

4π

∫
dξ− e+i xB P+ξ−〈P, S|ψ(0)γ +γ5ψ(ξ )|P, S〉

∣∣∣∣
ξ+=ξ⊥=0,

(7.71)

SLq(xB) = 1

4π

∫
dξ− e−i xB P+ξ−〈P, S|ψ(0)γ +γ5ψ(ξ )|P, S〉

∣∣∣∣
ξ+=ξ⊥=0.

(7.72)

The quantity SLq represents the difference of chiral-even and chiral-odd quarks;
in an infinite-momentum frame these are quarks with spins parallel or antiparallel
to the proton spin. The chiral-even and chiral-odd quark fields are projected out by
the operators

PR/L = 1
2 (1 ± γ5) (7.73)

that commute with the operators P±. Hence qR(xB) and qL (xB) are obtained, where
q(xB) = qR(xB) + qL (xB) and q(xB) = qR(xB) − qL (xB).

7.7.3 Sum rules

As probability distributions, the quark distribution functions satisfy a number of
obvious sum rules, such as∫ 1

0
dx [u(x) − u(x)] = nu = 2, (7.74)∫ 1

0
dx [d(x) − d(x)] = nd = 1, (7.75)∫ 1

0
dx [s(x) − s(x)] = ns = 0, (7.76)

corresponding to the net number of each of these flavour species in the proton. On
the basis of this one finds a number of sum rules for the structure functions, such
as the Gottfried sum rule [12] that is based on a flavour-symmetric sea distribution:
u(x) = d(x),

SG =
∫ 1

0

dx
x

[
Fep

2 (x) − Fen
2 (x)

]
= 1

3

∫ 1

0
dx[u(x) − d(x) + u(x) − d(x)] = 1

3 . (7.77)

The experimental result [13] is 0.240 ± 0.016, indicating that u(x) �= d(x).
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If the explicit quark distributions are found, the quantity obtained by weighting the
sum over all quarks with the momentum can be determined:∫ 1

0
dx x �(x) ≡

∫ 1

0
dx x[u(x) + u(x) + d(x) + d(x) + s(x) + s(x) + · · · ] = εq .

(7.78)

This represents the total momentum fraction of the proton carried by quarks and
antiquarks and experimentally is substantially less than 1. This deficit is attributed
to the momentum carried by gluons.

Estimates for the polarized structure functions can be obtained using the naive
flavour-spin structure of the proton based on SU(6) symmetry:

|p ↑〉 =
√

1
18 (2 u↑u↑d↓ − u↑u↓d↑ − u↓u↑d↑

+ 2 d↑u↑u↓ − d↑u↓u↑ − d↓u↑u↑

+ 2 u↑d↑u↓ − u↑d↓u↑ − u↓d↑u↑). (7.79)

From this wave function, the results in terms of a normalized one-quark distribution
q(x) are

u↑(x) = 5
3 q(x), u↓(x) = 1

3 q(x),

d↑(x) = 1
3 q(x), d↓(x) = 2

3 q(x), (7.80)

or

u(x) = 2 q(x), u(x) = 4
3 q(x),

d(x) = q(x), d(x) = − 1
3 q(x), (7.81)

and all other distributions (strange quarks or antiquarks) are zero. In this case sum
rules are obtained for the polarized distributions:∫ 1

0
dx [u(x) + u(x)] = u = 4

3 , (7.82)

∫ 1

0
dx [d(x) + d(x)] = d = − 1

3 . (7.83)

Note that the sum � = u + d + s + · · · represents (as probability distri-
butions) the total number of quarks parallel to the proton spin. If the proton spin
comes from the quark spins, as is the case for the SU(6) wave function (7.80)
multiplying a spherically symmetric spatial wave function, one expects this to be 1.
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It leads to

�
p
1 =

∫ 1

0
dx g p

1 (x) = 1
2

[
4
9 u + 1

9 d + 1
9 s

] = 5
18 ≈ 0.28, (7.84)

�n
1 =

∫ 1

0
dx gn

1 (x) = 1
2

[
4
9 d + 1

9 u + 1
9 s

] = 0, (7.85)

which are in disagreement with the experimental results [14], �
p
1 ≈ 0.15,

�n
1 ≈ −0.04.

These unexpected results stimulated a vigorous experimental programme, incorpo-
rating inclusive and semi-inclusive measurements (see section 7.10) and leading to
the picture of the polarizations for the different flavours shown in figure 7.7 (taken
from [15]). These indicate a strong deviation from the above naive expectations
u/u = 2

3 and d/d = − 1
3 , especially at small xB .

The importance of these sum rules becomes clearer when one starts with the expres-
sions for the distribution functions in terms of matrix elements of bilocal operator
combinations. One has∫ 1

−1
dx q(x) =

∫ 1

0
dx [q(x) − q(x)] = 〈P|ψ(0)γ +ψ(0)|P〉

2P+ = nq, (7.86)

where nq is the coefficient in the expectation value 〈P|ψ(x)γ μψ(0)|P〉 = 2 nq Pμ.
The coefficient nq is precisely the quark number because the vector currents are
used to obtain the quantum numbers for flavour (up, down, strange, . . .). In general
one obtains∫ 1

−1
dx xn−1 q(x) =

∫ 1

0
dx xn−1 [q(x) + (−)n q(x)]

= 1

2P+ 〈P|ψ(0) γ +
(

i∂+

P+

)n−1

ψ(0)|P〉. (7.87)

The moments of the structure functions are related to expectation values of particular
quark operators. In a field theory these matrix elements depend on a renormalization
scale μ2 and thus a similar renormalization scale dependence must be present for the
structure functions. In the next sections these QCD corrections will be discussed in
more detail. In some cases, such as the rule in (7.86), the result is scale-independent.
This is true if the operator combination corresponds to a conserved current. The
situation is different for the second moment that appeared in the momentum sum
rule (7.78),∫ 1

−1
dx x q(x, log μ2) =

∫ 1

0
dx x [q(x, log μ2) + q(x, log μ2)]

= 〈P|ψ(0) iγ +∂+ψ(0)|P〉(μ2)

2 (P+)2
= εq(μ2), (7.88)
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Figure 7.7. The quark polarizations obtained from inclusive and semi-inclusive
spin measurements by the HERMES collaboration at DESY [15]. The error bars
indicate statistical uncertainties while the bands indicate systematic uncertainties
in which the light grey band specifies the part due to errors in the fragmentation
process. The lowest plot gives the scales at which the asymmetries in the various
bins are measured.

where εq is defined in 〈P|ψ(0) iγμ∂νψ(0)|P〉 = 2 εq Pμ Pν + · · · and is the relative
contribution of quarks to the energy–momentum tensor of the proton (the dots
indicate trace terms ∝ M2 gμν). Only the first moment of the sum including quark
and gluon distributions in the proton is scale-independent as in this case the local
operator turns out to be the energy–momentum stress tensor of QCD.
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For polarized structure functions the lowest moment is given by∫ 1

−1
dx q(x, log μ2) =

∫ 1

0
dx [q(x, log μ2) + q(x, log μ2)]

= 〈P|ψ(0)γ +γ5ψ(0)|P〉(μ2)

2 P+ = q(μ2). (7.89)

The quantity q implicitly carries a polarization direction and appears in
〈P|ψ(0)γ +γ5ψ(0)|P〉 = 2Mq Sμ, the matrix element of the axial current, where
Sμ is the spin vector for the nucleon defined in (7.40) and in general depends on the
renormalization scale. In particular, because of the Adler–Bell–Jackiw anomaly
[16], the flavour-singlet axial current is not conserved. It implies, however, a break-
ing independent of the flavour of the quarks. For the non-singlet axial currents that
are important in the flavour-changing weak decays of baryons (for example for
the neutron the current is proportional to τ+ γ μγ5) the current is conserved and the
corresponding matrix elements are scale-independent. From the neutron decay the
scale-independent flavour non-singlet combinations can be deduced:

q3 = u(μ2) − d(μ2) = gA/gV = 1.26, (7.90)

while from hyperon decays, using SU(3) symmetry,

q8 = u(μ2) + d(μ2) − 2 s(μ2) ≈ 0.6. (7.91)

In terms of these combinations and the scale-dependent singlet combination,

�(μ2) = u(μ2) + d(μ2) + s(μ2), (7.92)

one has

�
p/n
1 (x) = 1

9 �(μ2) ± 1
12 q3 + 1

36 q8. (7.93)

A sum rule involving only flavour non-singlet combinations is, for example, the
polarized Bjorken sum rule [17],∫ 1

0
dx

[
gep

1 (x) − gen
1 (x)

] = 1
6q3 = 1

6 gA/gV ≈ 0.21, (7.94)

in fairly good agreement with experiment (see also (7.95), where O(αs) effects
bring data and theory into excellent agreement). Note that this result is a factor 0.75
smaller than the naive expectation for which gA/gV = q3 = 5

3 instead of gA/gV ≈
1.26. A long-known explanation for this reduction is the relativistic nature of quarks
in hadrons implying a sizeable P-wave contribution in the lower components of the
quark spinor that reduces the spinor densities ψγ5γ3ψ = ψ†σzψ .

Using the result for �
p
1 or �n

1 as the third input one can solve for �, leading
to � ≈ 0.2, which is very small compared to the naive expectation that � is



Spin structure functions 293

of the order of 0.75, taking the same reduction factor for relativistic quarks as for
gA/gV . At present we know that the scale dependence is important and that the
deep inelastic measurements imply �(20 GeV2) ≈ 0.2.

7.8 QCD corrections in deep inelastic scattering

The connection of structure functions and quark distribution functions to local
operators via sum rules is more formally grounded in the operator product expansion
(OPE). See standard texts for details. For example chapter 2 in [18] defines the
anomalous dimension, or gamma function, γi and coefficient function Ci . We state
here the empirical implications.

The Gottfried sum rule gets a very small correction. The polarized Bjorken sum
rule gets a correction to the order of α2

s as follows [19]:∫ 1

0
dx

[
g p

1 (x, Q2) − gn
1 (x, Q2)

] = 1
6 gA/gV

(
1 − αs

π
+ α2

s

π2
(−4.5833 + 1

3 f )

)
,

(7.95)

where f is the number of active flavours. This gives an excellent explanation of the
experimental result � p

1 − �n
1 ≈ 0.19 being somewhat smaller than 1

6 gA/gV = 0.21.

As we have seen, the g p
1 sum rule by itself involves the singlet combination �

connected to the singlet axial current. The leading-order result is

�(Q2) = exp

(
γ �

1

8π b0

(
αs(Q2) − αs

(
Q2

0

) ))
�

(
Q2

0

)
(7.96)

and the correction for the singlet contribution to the spin sum rules is

�S
1 (Q2) =

(
1 − αs

π
+ α2

s

π2
(−4.5833 + 1.16248 f )

)
�(Q2). (7.97)

Including this, the deviation of the proton sum rule from the naive result can be
understood.

7.9 Evolution equations

The intuitive folding picture that we have used to derive the parton model can be
extended to obtain the QCD corrections. This approach also provides a practical
way to calculate the coefficient functions ci (g) and the gamma functions γi (g).

Extending the result for the transverse structure function written as a delta function
contribution,

σT =
∑

q

∫ 1

0
dz q(z)

[
e2

q
4π2α

Q2
x δ(x − z) + δσ̂q(z, Q2) + · · ·

]
, (7.98)
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one obtains contributions from the process γ ∗q → Gq. As there are two particles
in the final state, δσq(z, Q2) is not simply proportional to δ(x − z). The amplitude is

|M|2 = 32π2 e2
q ααs

4

3

(
− t̂

ŝ
− ŝ

t̂
+ 2ûQ2

ŝ t̂

)
(7.99)

and contributes

δσ (ŝ) = e2
q

2πααs

(ŝ + Q2)2

4

3

(
− t̂

ŝ
− ŝ

t̂
− 2t̂ Q2 + 2ŝ Q2 + 2Q4

ŝ t̂

)
dt̂ . (7.100)

Using light-cone components, the momenta for γ ∗(q) + quark (k) → gluon
(pG) + quark (pq) are

q ≡
[ Q2

x A
√

2
, − x A√

2
, 0⊥

]
, (7.101)

k ≡
[ m2

z A
√

2
,

z A√
2
, 0⊥

]
≈

[
0,

z A√
2
, 0⊥

]
, (7.102)

pG =
[
ζq−,

p2
⊥

2ζq− , p⊥
]

≈
[ ζ Q2

x A
√

2
, 0, p⊥

]
, (7.103)

pq =
[
(1 − ζ )q−,

p2
⊥

2(1 − ζ )q− , −p⊥
]

≈
[ (1 − ζ )Q2

x A
√

2
, 0, −p⊥

]
. (7.104)

Note that z can be written as x/ξ , where ξ ≡ −q+/k+ is the Bjorken scaling variable
for the subprocess. Neglecting all particle masses, in which case p2

q = 0, gives

p2
⊥ = ζ (1 − ζ )(1 − ξ )

ξ
Q2. (7.105)

The invariants for the subprocess become

ŝ = (k + q)2 = 1 − ξ

ξ
Q2 = 1

ζ (1 − ζ )
p2

⊥, (7.106)

t̂ = (pG − q)2 = −1 − ζ

ξ
Q2 = − 1

ζ (1 − ξ )
p2

⊥. (7.107)

The kinematic range of the process ŝ ≥ 0, −(ŝ + Q2) ≤ t ≤ 0 in principle restricts
the ranges of (ξ, ζ ) to 0 ≤ ξ ≤ 1 and 0 ≤ ζ ≤ 1. The cross section is

δσ̂q(ξ, Q2) = e2
q

2πααs

Q2

4

3
ξ

[
1 − ζ − 2 ξ

1 − ξ
+ 1 + ξ 2

(1 − ξ )(1 − ζ )

]
dζ. (7.108)

For inclusive scattering one has to integrate over the final state, hence over ζ .
However, there are singular points, specifically for ζ = 1, which correspond to a
gluon radiated with p⊥ = 0. These divergences are therefore referred to as collinear
divergences. There are several ways of regularizing them, for example by giving
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quarks and gluons masses, by dimensional regularization, or by imposing a p⊥
cutoff. The restriction p2

⊥ ≥ μ2 modifies the allowed region in the (ξ, ζ ) plane. For
a given ξ (not too close to unity) the integration is limited to

ξ

1 − ξ

μ2

Q2
≤ ζ ≤ 1 − ξ

1 − ξ

μ2

Q2
. (7.109)

With this regularization the result becomes

δσ̂q(ξ, Q2) = e2
q

2πααs

Q2
ξ

[
B(ξ ) + Pqq(ξ ) log

(
Q2

μ2

)]
, (7.110)

where

Pqq(ξ ) = 4

3

1 + ξ 2

(1 − ξ )
(7.111)

is the splitting function coming from the collinear 1/(1 − ζ ) singularity. Combining
the results of the leading contribution (omitting for now the term B(ξ )),

σT = 4π2α

Q2
x

∑
q

e2
q

∫ 1

x

dz
z

q(z)

[
δ
(

1 − x
z

)
+ αs

2π
Pqq

( x
z

)
log

(
Q2

μ2

)]
.

(7.112)

This can be rewritten in a form reminiscent of the parton model as

σT = 4π2α

Q2
x

∑
q

e2
q q(x, log Q2), (7.113)

where the functions q(x, log Q2) satisfy

∂q(x, log Q2)

∂ log Q2
= αs(Q2)

2π

∫ 1

x

dz
z

q(z) Pqq

( x
z

)
. (7.114)

As in the case of integrating over ζ , here one again encounters divergences, in this
case for ξ = x/z → 1. They are dealt with by considering the 1/(1 − ξ ) appearing
in the splitting functions as functionals,∫ 1−δ

0
dx

f (x)

1 − x
= −

∫
f (x) d log(1 − x)

=
∫ 1−δ

0
dx

f (x) − f (1)

1 − x
− f (1) log δ

=
∫ 1

0
dx

f (x) − f (1)

1 − x
− log δ

∫
dx f (x) δ(1 − x)

≡
∫ 1

0
dx

f (x)

(1 − x)+
− log δ

∫
dx f (x) δ(1 − x),



296 P Mulders

q q

P                                                          P

p p

q q

P                                                        P

p p

(a) (b)

Figure 7.8. Ladder diagrams used to calculate the asymptotic behaviour of the
correlation functions. See text.

which defines

1

1 − x
= 1

(1 − x)+
− δ(1 − x) log δ. (7.115)

Including these and other singular contributions (vertex corrections to the process
γ ∗ + q → q), then

q(x, Q2) =
∫ 1

x

dz
z

q(z)

{
δ
(

1 − x
z

)
+ αs

2π
log

(
Q2

μ2

) [
a δ

(
1 − x

z

)
+ Pqq

( x
z

)]}
. (7.116)

The terms between curly brackets can be interpreted as the probability density Pqq

of finding a quark inside a quark with fraction ξ = x/z of the parent quark to first
order in αs . Instead of calculating all contributions and checking all cancellations,
it is easier to see what the final result must be by using probability conservation:∫

dξ Pqq(ξ ) = 1. (7.117)

Keeping the form in (7.112), the expression between square brackets in (7.116) can
be written as

Pqq(ξ ) = 4

3

1 + ξ 2

(1 − ξ )+
+ 2 δ(1 − ξ ). (7.118)

While this splitting function describes how QCD corrections arising from q → qG
splitting are incorporated into the parton distributions (figure 7.8(a)), other splitting
functions such as PqG , describing how quark and gluon distribution functions mix
(figure 7.8(b)) are required. They are calculated from the process γ ∗G → qq. Since
gluons are flavour-blind, such corrections do not affect non-singlet and valence
distribution functions.
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The splitting function for the polarized distribution functions is given by

Pqq(x) = Pqq(x) = 4

3

1 + ξ 2

(1 − ξ )+
+ 2 δ(1 − ξ ). (7.119)

7.9.1 Solutions of the evolution equations

In solving the evolution equations the moments play an important role, while they
also establish the connection with the OPE. Rewriting the evolution equation (7.114)
as

dq(x, τ )

dτ
= αs(τ )

2π

∫ 1

0
dz

∫ 1

0
dyδ(x − yz) Pqq(y) q(z, τ ), (7.120)

and using the moments

Mn(τ ) ≡
∫ 1

0
dx xn−1 q(x, τ ), (7.121)

An ≡
∫ 1

0
dy yn−1 Pqq(y, τ )

= 4

3

[
−1

2
+ 1

n(n + 1)
− 2

n∑
j=2

1

j

]
, (7.122)

then
d Mn(τ )

dτ
= αs(τ )

2π
An Mn(τ ). (7.123)

Using the leading-order QCD result for αs(τ ), dαx/dτ = −(b0/4π ) αs , this is easily
solved, giving

Mn(Q2)

Mn(μ2)
=

(
αs(Q2)

αs(μ2)

)dn

, (7.124)

where dn = −2 An/b0. The moments of the splitting functions are, up to a factor,
equal to the gamma functions γ0n , namely An = −γ0n/4 [18]. As an example,
consider the second moment of the quark distributions, for which A2 = − 16

9 . The
result for d2 is d2 = 32

9 b0 = 32
81 for three flavours. The fraction of momentum carried

by valence quarks thus vanishes for Q2 → ∞ as

M2(Q2) =
∫

dx x[q(x, log Q2) − q(x, log Q2)] ∝ (αs(Q2))d2 . (7.125)

Mixing occurs for sea quarks and gluons. As a consequence, the combination corre-
sponding to the total momentum (involving the second moment of the singlet-quark
distribution and the second moment of the gluon distribution) is Q2-independent.
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In principle the evolution of the structure functions can be obtained by means of the
evolution equations. Using the moments is actually quite convenient, although one
needs all of them. A very useful method in practice is to parametrize the distributions
at one value of Q2 with a function for which the moments can be easily calculated,
evolve the moments and apply an inverse Mellin transform. One has

q(x, Q2) = − 1

2π i

∫ c+i∞

c−i∞
dn x−n Mn(Q2), (7.126)

where c must be such that Mn has no singularities in the complex n-plane to the
right of the line Re n = c. A similar relation exists for the moments of the splitting
functions, An = −γ0n/4,

Pqq(x) = 1

8π i

∫ c+i∞

c−i∞
dn x−n γ0n. (7.127)

While the splitting functions are universal (process-independent), the contributions
B(x) of (7.110) are in general process-dependent. An example of a contribution
of this type is the longitudinal structure function (for which the dominant parton
model result is zero). Calculating both the αs and B(x) contributions for F1 and F2

in electroproduction gives the first non-vanishing contribution in the longitudinal
structure function,

FL (x, Q2) = αs(Q2)

π

[
4

3

∫ 1

x

dz
z

( x
z

)2
F2(z, Q2)

+
(

2
∑

q

e2
q

) ∫ 1

x

dz
z

( x
z

)2 (
1 − x

z

)
z G(z, Q2)

]
. (7.128)

7.10 One-particle inclusive leptoproduction

We now consider the case in which one particle is detected in coincidence with the
scattered lepton. This is known as one-particle inclusive or 1PI leptoproduction. The
kinematics of this process has been shown already in figure 7.2. With a target hadron
(momentum P) and a detected hadron h in the final state (momentum Ph) one has
a situation in which two hadrons are involved and the operator product expansion
cannot be used. Within the framework of QCD and knowing that the photon or Z0

current couples to the quarks, it is possible to write down a diagrammatic expansion
for leptoproduction. The relevant diagrams in the deep inelastic limit (Q2 → ∞)
for 1PI production are those of figure 7.9.

In analogy with the case of inclusive scattering, in 1PI scattering we again param-
eterize the momenta with the help of two light-like vectors, which are now chosen
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Figure 7.9. The simplest (parton-level) diagrams for semi-inclusive scattering, of
which we consider 1PI leptoproduction. Note that also the diagram with opposite
fermion flow has to be added.

along the hadron momenta:

q2 = −Q2

P2 = M2

P2
h = M2

h

2 P · q = Q2

xB

2 Ph · q = −zh Q2

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

←→

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ph = zh Q√
2

n− + M2
h

zh Q
√

2
n+

q = Q√
2

n− − Q√
2

n+ + qT

P = xB M2

Q
√

2
n− + Q

xB
√

2
n+

An additional invariant zh comes in. Note that the expansion is appropriate for
current fragmentation, when the produced hadron is hard with respect to the target
momentum, that is P · Ph ∼ Q2. The minus component p− is irrelevant in the
lower soft part of figure 7.9, while the plus component k+ is irrelevant in the upper
soft part. Note that having made the choice of P and Ph , one can no longer omit a
transverse component in the momentum transfer q. Up to mass effects, one has the
relation

qμ
T = qμ + xB Pμ − Pμ

h

zh
≡ −QT ĥμ. (7.129)

This relation allows the experimental determination of the ‘transverse momentum’
effect from the external vectors q, P and Ph , which are in general not collinear.
The vector ĥ defines the orientation of the hadronic plane in figure 7.2.

An important consequence in the theoretical approach (figure 7.9) is that one can
no longer simply integrate over the transverse components of the quark momenta.
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7.10.1 Structure functions and cross sections

For an unpolarized or spin-zero hadron in the final state, the symmetric part of the
tensor is given by

MWμν

S (q, P, Ph) =−gμν

⊥ HT + t̂μ t̂ν HL

+ (t̂μĥν + t̂ν ĥμ)HLT + (2 ĥμĥν + gμν

⊥ )HT T . (7.130)

Note that an antisymmetric term in the tensor is also allowed,

MWμν

A (q, P, Ph) = −i(t̂μĥν − t̂ν ĥμ)H′
LT . (7.131)

Clearly the lepton tensor in (7.17) or (7.36) is able to distinguish all the structures
in the semi-inclusive hadron tensor.

The symmetric part gives the cross section for an unpolarized lepton and an unpo-
larized target,

dσO O

dxBdy dzhd2qT

= 4π α2 s
Q4

xB zh

{(
1 − y + 1

2
y2

)
HT + (1 − y)HL

− (2 − y)
√

1 − y cos φ�
h HLT + (1 − y) cos 2φ�

h HT T

}
,

(7.132)

while the antisymmetric part gives the cross section for a longitudinally polarized
lepton (note that the target is not polarized)

dσL O

dxBdy dzhd2qT

= λe
4π α2

Q2
zh

√
1 − y sin φ�

h H′
LT . (7.133)

Of course, many more structure functions appear for polarized targets or if one
considers polarimetry in the final state. In this case the most convenient way to
describe the spin vector of the target theoretically is via an expansion of the form

Sμ = −SL

MxB

Q
√

2
n− + SL

Q

MxB

√
2

n+ + ST . (7.134)

Up to O(1/Q2) corrections SL ≈ M (S · q)/(P · q) and ST ≈ S⊥, where the sub-
script ⊥ still refers to the labelled vector being perpendicular to q and P . For a pure
state, S2

L + S2
T = 1, but in general this quantity is less than or equal to 1.

7.10.2 The parton model approach

The expression for Wμν can be rewritten as a non-local product of currents and it is
a straightforward exercise to show by inserting the currents jμ(x) = :ψ(x)γμψ(x) :
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that for 1PI scattering in the tree approximation

2MWμν(q; P S; Ph Sh)

= 1

(2π )4

∫
d4x eiq·x 〈P S| : ψ j (x)(γμ) jkψk(x) :

∑
X

|X ; Ph Sh〉

× 〈X ; Ph Sh| : ψ l(0)(γν)liψi (0) : |P S〉
= 1

(2π )4

∫
d4x eiq·x 〈P S|ψ j (x)ψi (0)|P S〉(γμ) jk

× 〈0|ψk(x)
∑

X

|X ; Ph Sh〉〈X ; Ph Sh|ψ l(0)|0〉(γν)li

+ 1

(2π )4

∫
d4x eiq·x 〈P S|ψk(x)ψ l(0)|P S〉(γν)li

× 〈0|ψ j (x)
∑

X

|X ; Ph Sh〉〈X ; Ph Sh|ψi (0)|0〉(γμ) jk + · · ·

=
∫

d4 p d4k δ4(p + q − k) Tr
(
�(p)γμ(k)γν

) +
{

q ↔ −q
μ ↔ ν

}
,

(7.135)

where

�i j (p) = 1

(2π )4

∫
d4ξ eip·ξ 〈P S|ψ j (0)ψi (ξ )|P S〉,

kl(k) = 1

(2π )4

∫
d4ξ eik·ξ 〈0|ψk(ξ )

∑
X

|X ; Ph Sh〉〈X ; Ph Sh|ψ l(0)|0〉.

Note that in � (quark production) a summation over colours is assumed, while in
 (quark decay) an averaging over colours is assumed. The quantities � and 

correspond to the blobs in figure 7.9 and parametrize the soft physics, leading to
the definitions of distribution and fragmentation functions [20,21]. Soft refers to all
invariants of momenta being small as compared to the hard scale, that is for �(p)
one has p2 ∼ p · P ∼ P2 = M2 � Q2.

In general many more diagrams have to be considered in evaluating the hadron
tensors, but in the deep inelastic limit they can be neglected or considered as
corrections to the soft blobs. We return to this later.

7.11 Collinear parton distributions

The form of � is constrained by hermiticity, parity and time-reversal invariance.
The quantity depends not only on the quark momentum p but also on the target
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momentum P and the spin vector S. It is necessary to satisfy the requirements

[hermiticity] ⇒ �†(p, P, S) = γ0 �(p, P, S) γ0, (7.136)

[parity] ⇒ �(p, P, S) = γ0 �( p̄, P̄, −S̄) γ0, (7.137)

[time reversal] ⇒ �∗(p, P, S)

= (−iγ5C) �( p̄, P̄, S̄) (−iγ5C), (7.138)

where C ≡ iγ 2γ0, −iγ5C = iγ 1γ 3 and p̄ = (p0, −p).

To obtain the leading contribution in inclusive deep inelastic scattering one can
integrate over the component p− and the transverse momenta (see the discussion
in section 7.6 where the parton model has been derived). This integration restricts
the non-locality in �(p). The relevant soft part then is a particular Dirac trace of
the quantity

�i j (x) =
∫

dp− d2 pT �i j (p, P, S)

=
∫

dξ−

2π
eip·ξ 〈P, S|ψ j (0)ψi (ξ )|P, S〉

∣∣∣∣
ξ+=ξT =0

, (7.139)

depending on the light-cone fraction x = p+/P+. When one wants to calculate
the leading order in 1/Q for a hard process, one looks for leading parts in M/P+

because P+ ∝ Q. The leading contribution [22] turns out to be proportional to
(M/P+)0,

�(x) = 1

2

{
f1(x) n/+ + SL g1(x) γ5 n/+ + h1(x)

γ5 [S/⊥, n/+]

2

}
. (7.140)

The precise expression of the functions f1(x), etc. as integrals over the amplitudes
can be easily written down after forming traces with the appropriate Dirac matrix,

f1(x) =
∫

dξ−

4π
eip·ξ 〈P, S|ψ(0)γ +ψ(ξ )|P, S〉

∣∣∣∣
ξ+=ξT =0

, (7.141)

SL g1(x) =
∫

dξ−

4π
eip·ξ 〈P, S|ψ(0)γ +γ5ψ(ξ )|P, S〉

∣∣∣∣
ξ+=ξT =0

, (7.142)

Si
T h1(x) =

∫
dξ−

4π
eip·ξ 〈P, S|ψ(0) iσ i+γ5 ψ(ξ )|P, S〉

∣∣∣∣
ξ+=ξT =0

. (7.143)

Including flavour indices, the functions f q
1 (x) = q(x) and gq

1 (x) = q(x) are pre-
cisely the functions that we encountered before.

The third function in the above parametrization is known as transversity or trans-
verse spin distribution [23]. Including flavour indices one also denotes hq

1(x) =
δq(x). In the same way as we have seen for f1(x) and g1(x), the function h1
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can be interpreted as a density, but instead of the projectors on quark chiral-
ity states, PR/L = 1

2 (1 ± γ5), one needs those on quark transverse spin states,
P↑/↓ = 1

2 (1 ± γ iγ5). One has

f1(x) = f1R(x) + f1L (x) = f1↑(x) + f1↓(x), (7.144)

g1(x) = f1R(x) − f1L (x), (7.145)

h1(x) = f1↑(x) − f1↓(x). (7.146)

This results in some trivial bounds such as f1(x) ≥ 0 and |g1(x)| ≤ f1(x). We have
discussed already the support and charge-conjugation properties of f1(x). The anal-
ysis for all these functions shows that the support is in all cases −1 ≤ x ≤ 1,
while the charge conjugation properties of the functions are f (x) = − f (−x)
(C-even) for f1 and h1 and f (x) = + f (−x) (C-odd) for g1.

The Dirac structure for h1 in terms of chirality states is ψ RψL and ψ LψR . Such
functions are called chiral-odd and cannot be measured in inclusive deep inelastic
scattering.

While the evolution equations for q(x) and q(x) require quark–quark and quark–
gluon splitting functions, the chiral-odd nature of δq(x) prevents mixing of this
quantity with gluon distributions. The splitting function is given by

δPqq(ξ ) = 4

3

2 ξ

(1 − ξ )+
+ 2 δ(1 − ξ ). (7.147)

7.12 Bounds on the distribution functions

The trivial bounds on the distribution functions (|h1(x)| ≤ f1(x) and |g1(x)| ≤
f1(x)) can be sharpened. For instance one can look explicitly at the structure of the
correlation functions �i j of (7.139) in Dirac space. Actually, we will look at the cor-
relation functions (� γ0)i j , which involves matrix elements ψ

†
+ j (0)ψ+i (ξ ) at leading

order. In the representation where γ 0 = ρ1, γ i = −iρ2σ i , γ5 = iγ 0γ 1γ 2γ 3 = ρ3,
the matrices may be written as

P+ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ ,

P+γ5 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ , P+γ 1γ5 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ .
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The projector P+(1 ± γ5) only leaves two independent Dirac spinors, one right-
handed (R) and one left-handed (L). In this basis the relevant matrix (� n/−) for
hard scattering processes is given by

(� n/−)i j (x) =
⎧⎪⎪⎪⎪⎪⎪⎩

f1 + SL g1
(
S1

T + i S2
T

)
h1(

S1
T − i S2

T

)
h1 f1 − SL g1

⎫⎪⎪⎪⎪⎪⎪⎭ . (7.148)

The S-dependent correlation function � can also be turned into a matrix in the
nucleon-spin space via the standard spin- 1

2 density matrix ρ(P, S). The relation is
�(x ; P, S) = Tr [�(x ; P) ρ(P, S)]. Writing

�(x ; P, S) = �O + SL �L + S1
T �1

T + S2
T �2

T , (7.149)

then on the basis of spin- 1
2 target states with SL = +1 and SL = −1 respectively,

one has

�ss ′(x) =
⎧⎪⎪⎪⎪⎪⎪⎩

�O + �L �1
T − i �2

T

�1
T + i �2

T �O − �L

⎫⎪⎪⎪⎪⎪⎪⎭ . (7.150)

By generalizing �(p) to matrix elements between states 〈P, s| and |P, s ′〉, the
matrix M = (� n/−)T (where T means transposed in Dirac space) has the property
that v†Mv ≥ 0 for any direction v in Dirac space.

In the basis +R, −R, +L and −L , the matrix in quark ⊗ nucleon spin-space
becomes

(�(x) n/−)T =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1 + g1 0 0 2 h1

0 f1 − g1 0 0

0 0 f1 − g1 0

2 h1 0 0 f1 + g1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

R

R

L

L

(7.151)

R R L L

Any diagonal element of this matrix must always be positive, hence the eigenvalues
must be positive, which gives a bound on the distribution functions stronger than
the trivial bounds, namely

|h1(x)| ≤ 1
2 ( f1(x) + g1(x)) . (7.152)

This is known as the Soffer bound [24].
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Changing to the transverse-quark spin basis gives the quark production matrix

(�(x) n/−)T =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1 + h1 0 0 g1 + h1

0 f1 − h1 g1 − h1 0

0 g1 − h1 f1 − h1 0

g1 + h1 0 0 f1 + h1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(7.153)

7.13 Transverse momentum-dependent correlation functions

Without integration over pT , the soft part is

�(x, pT ) =
∫

dξ−d2ξT

(2π )3
eip·ξ 〈P, S|ψ(0)ψ(ξ )|P, S〉

∣∣∣∣
ξ+=0

. (7.154)

For the leading-order results the parts involving unpolarized targets (O), longitu-
dinally polarized targets (L) and transversely polarized targets (T), up to terms
proportional to M/P+, take the forms [25,26]:

�O (x, pT ) = 1
2

{
f1(x, pT ) n/+ + h⊥

1 (x, pT )
i [ p/T , n/+]

2M

}
, (7.155)

�L (x, pT ) = 1
2

{
ST g1T (x, pT ) γ5 n/+ + ST h⊥

1L (x, pT )
γ5 [ p/T , n/+]

2M

}
, (7.156)

�T (x, pT ) = 1
2

{
f ⊥
1T (x, pT )

εμνρσ γ μnν
+ pρ

T Sσ
T

M

+ pT · ST

M
g1T (x, pT ) γ5 n/+ + h1T (x, pT )

γ5 [S/T , n/+]

2

+ pT · ST

M
h⊥

1T (x, pT )
γ5 [ p/T , n/+]

2M

}
. (7.157)

All functions appearing in (7.157) have a natural interpretation as densities, just as
for the pT -integrated functions. Densities such as those of longitudinally-polarized
quarks in a transversely-polarized nucleon (g1T ) and of transversely-polarized
quarks in a longitudinally-polarized nucleon (h⊥

1L ) are now included.
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Not all functions survive after integration over pT . The pT integration leaves (7.140)
with

f1(x) =
∫

d2 pT f1(x, pT ),

g1(x) =
∫

d2 pT g1L (x, pT ),

h1(x) =
∫

d2 pT

[
h1T (x) + p2

T

2M2
h⊥

1T (x, pT )

]
.

The explicit treatment of transverse momenta also provides a way to include the
evolution of quark distribution and fragmentation functions. The assumption that
soft parts vanish sufficiently fast as a function of the invariants p · P and p2, which
at constant x implies a sufficiently fast vanishing as a function of p2

T , turns out to
be true. Assuming that the result for p2

T ≥ μ2 is given by the diagram shown in
figure 7.8, the extra distribution written in terms of pT becomes

f1
(
x, p2

T

) p2
T ≥μ2

=⇒ 1

π p2
T

αs(μ2)

2π

∫ 1

x

dy
y

Pqq

(
x
y

)
f1(y; μ2), (7.158)

giving

f1(x ; μ2) ≡ π

∫ μ2

0
dp2

T f1
(
x, p2

T

)
, (7.159)

which results in a logarithmic scale dependence.

Different functions survive after integrating over pT weighted with pα
T . For example,

�α
∂ (x) ≡

∫
d2 pT

pα
T

M
�(x, pT )

= 1

2

{
−g(1)

1T (x) Sα
T n/+γ5 − ST h⊥(1)

1L (x)
[γ α, n/+]γ5

2

− f ⊥(1)
1T εα

μνργ
μnν

−Sρ

T − h⊥(1)
1

i[γ α, n/+]

2

}
(7.160)

involves transverse moments defined as

g(1)
1T (x) =

∫
d2 pT

p2
T

2M2
g1T (x, pT ), (7.161)

and similarly for the other functions. The functions h⊥
1 and f ⊥

1T are T-odd. This
is discussed in section 7.16 on colour gauge invariance. Time-reversal invari-
ance cannot be used for the transverse moments and so they are not required
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to vanish. Fragmentation functions are also not required to vanish. The T-odd
functions correspond to unpolarized quarks in a transversely-polarized nucleon
( f ⊥

1T ) or transversely-polarized quarks in an unpolarized nucleon (h⊥
1 ). The easiest

way to interpret the functions is by considering their place in the quark production
matrix (�(x, pT ) n/−)T , which becomes [27]

R R L L

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1 + g1L
|pT |

M eiφ g1T
|pT |

M e−iφ h⊥
1L 2 h1

|pT |
M e−iφ g∗

1T f1 − g1L
|pT |2

M2 e−2iφ h⊥
1T −|pT |

M e−iφ h⊥∗
1L

|pT |
M eiφ h⊥∗

1L
|pT |2

M2 e2iφ h⊥
1T f1 − g1L −|pT |

M eiφ g∗
1T

2 h1 −|pT |
M eiφ h⊥

1L −|pT |
M e−iφ g1T f1 + g1L

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

In this representation T-odd functions appear as imaginary parts, f ⊥
1T = −Im g1T

and h⊥
1 = Im h⊥

1L .

7.14 Fragmentation functions

Analysis of the soft part describing quark fragmentation can be performed analo-
gously to that for the distribution functions [21]. This needs

i j (z, kT ) =
∑

X

∫
dξ+d2ξT

(2π )3
eik·ξ Tr〈0|ψi (ξ )|Ph, X〉〈Ph, X |ψ j (0)|0〉

∣∣∣∣∣
ξ−=0

.

(7.162)

For the production of unpolarized (or spin-0) hadrons h in hard processes, to leading
order in 1/Q one needs the (Mh/P−

h )0 part of the correlation function,

O (z, kT ) = z D1(z, k ′
T ) n/− + z H⊥

1 (z, k ′
T )

i [k/T , n/−]

2Mh
. (7.163)

The arguments of the fragmentation functions D1 and H⊥
1 are z = P−

h /k− and
k ′

T = −zkT . The first is the light-cone momentum fraction of the produced hadron,
the second is the transverse momentum of the produced hadron with respect to the
quark. The fragmentation function D1 is the analogue of the distribution function
f1. It can be interpreted as a quark decay function, giving the probability of finding a
hadron h in a quark. The quantity nh = ∫

dz D1(z) is the number of hadrons and the
normalization of the fragmentation functions is given by

∑
h

∫
dz z Dq→h

1 (z) = 1.
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The function H⊥
1 , interpretable as the difference between the numbers of unpo-

larized hadrons produced from a transversely-polarized quark depending on the
hadron’s transverse momentum, is allowed because of the non-applicability of
time-reversal invariance [28]. This is natural for the fragmentation functions [29,30]
because of the appearance of out-states |Ph, X〉 in the definition of , in contrast
to the plane-wave states appearing in �. The function H⊥

1 is of interest because it
is chiral-odd. This means that it can be used to probe the chiral-odd quark distribu-
tion function h1, which can be achieved, for example, by measuring an azimuthal
asymmetry of pions produced in the current fragmentation region.

The spin structure of fragmentation functions is also conveniently summarized in
an explicit R and L chiral-quark basis. For decay into spin-zero hadrons,

((z, kT ) n/+)T =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
D1 i |kT | e−iφ

Mh
H⊥

1

−i |kT | e+iφ

Mh
H⊥

1 D1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
R

L

. (7.164)

R L

7.14.1 Examples of azimuthal asymmetries

Transverse momentum dependence shows up in the azimuthal dependence in the
semi-inclusive deep inelastic scattering (SIDIS) cross section, via ĥ or the trans-
verse spin vectors, in most cases requiring polarization of beam and/or target or
polarimetry [31–34]. Examples of leading azimuthal asymmetries, appearing for
polarized leptoproduction, are〈

QT

M
sin

(
φ�

h − φ�
S

)〉
OT

= 2πα2 s
Q4

|ST |
(
1 − y + 1

2 y2)
×

∑
a,ā

e2
a xB f ⊥(1)a

1T (xB)Da
1 (zh), (7.165)

〈
QT

Mh
sin(φ�

h + φ�
S)

〉
OT

= 4πα2 s
Q4

|ST | (1 − y)

×
∑
a,ā

e2
a xB ha

1(xB)H⊥(1)a
1 (zh). (7.166)

Here 〈W 〉 denotes the qT -integrated cross section with weight W . The factor QT

is included, because it and the direction ĥ combine to form qT . This allows the
cross section to be separated into distribution and fragmentation parts, one of them
weighted with transverse momentum.

Note that both of these asymmetries involve T-odd functions, which can only
appear in single-spin asymmetries. The latter can easily be checked from the
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Figure 7.10. Weighted asymmetries for the Collins and Sivers angles [33,34] (see
(7.165) and (7.166)) obtained in semi-inclusive single-spin asymmetries mea-
sured on a transversely-polarized hydrogen target by the HERMES collaboration
at DESY [35]. The error bars represent the statistical uncertainties.

conditions on the hadronic tensor, which are the same as those in (7.11)–(7.13).
They require an odd number of spin vectors entering in the symmetric part
and an even number of spin vectors entering in the antisymmetric part of the
hadron tensor. The results of single-spin asymmetries in SIDIS measurements on a
transversely-polarized target from HERMES [35] are shown in figure 7.10. An
extended review of transverse momentum-dependent functions and transversity
can be found in [36].

7.15 Inclusion of subleading contributions

If one proceeds up to order 1/Q, one also needs terms in the parametrization
of the soft part proportional to M/P+. Limiting ourselves to the pT -integrated
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Figure 7.11. Examples of gluonic diagrams that must be included at subleading
order in lepton hadron inclusive scattering (left) and the soft part entering this
process (right).

correlations [22],

�(x) = 1

2

{
f1(x) n/+ + SL g1(x) γ5 n/+ + h1(x)

γ5 [S/T , n/+]

2

}

+ M
2P+

{
e(x) + gT (x) γ5 S/T + SL hL (x)

γ5 [n/+, n/−]

2

}
. (7.167)

We shall use inclusive scattering off a transversely-polarized nucleon (|S⊥| = 1)
as an example to show how higher-twist effects can be incorporated in the cross
section. The hadronic tensor for a transversely-polarized nucleon is zero to leading
order in 1/Q. At order 1/Q a contribution is obtained from the handbag diagram
that involves the transverse moments in �α

∂ in (7.160).

There is a second contribution at order 1/Q, however, coming from diagrams such
as the one shown in figure 7.11. For these gluon diagrams only the matrix elements
of the bilocal combinations ψ(0) g Aα

T (ξ ) ψ(ξ ) and ψ(0) g Aα
T (0) ψ(ξ ) are necessary.

The �α
A(x) and �α

∂ (x) contributions sum to �α
D(x) involving matrix elements of

bilocal combinations ψ(0) i Dα
T ψ(ξ ) for which the QCD equations of motion can

be used to relate them to the functions appearing in �:

�α
D(x) = M

2

{
−

(
x gT − m

M
h1

)
Sα

T n/+γ5 − SL

(
x hL − m

M
g1

) [γ α, n/+]γ5

2

}
.

(7.168)

For example, the distribution function gT (xB, Q2), defined in (7.42), appears in the
corresponding structure function of polarized inclusive deep inelastic scattering:

2M W μν

A (q, P, ST ) = i
2MxB

Q

[
t̂με

νρ

⊥ − t̂νε
μρ

⊥
]
S⊥ρ gT (xB, Q2), (7.169)

leading to the result

gT (xB, Q2) = 1

2

∑
q

e2
q

(
gq

T (xB, Q2) + gq̄
T (xB, Q2)

)
. (7.170)
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The process of integrating the correlation functions over p−, pT and finally over p+,
consecutively restrains the non-locality to lightfront-separated fields, light-cone-
separated fields and local fields. This allows interesting relations to be derived. For
example, the correlators

∫
dx �[γ μγ5](x) must yield gA Sμ

T , for any μ, which means
that the functions in the non-local correlators �[γ +γ5](x) and �[γ αγ5](x), with α

transverse, yield the same result after integration over x ,
∫

dx g1(x) = ∫
dx gT (x).

They also give the Burkhardt–Cottingham sum rule
∫

dx g2(x) = 0 [37]. For quark–
quark correlators, similar considerations yield relations between the subleading
functions and the transverse momentum-dependent leading functions, referred to
as Lorentz invariance relations, such as [38,31]

gT = g1 + d
dx

g(1)
1T , (7.171)

although these relations may be too naive if one includes gauge links (see section
7.16). An interesting result is obtained by combining the relation (7.171) with an
often-used approximation, in which the interaction-dependent part �α

A is set to zero.
In that case the difference �α

D − �α
∂ vanishes. Using (7.168) and (7.160) this gives

x g̃T = x gT − g(1)
1T − m

M
h1 = 0. (7.172)

As an application of the relations between twist-three functions and transverse
momentum-dependent functions in combination with the Lorentz invariance rela-
tions, g(1)

1T can be eliminated using (7.171) to obtain a relation between gT , g1 and
g̃T . The relation for g2 = gT − g1 takes the form

g2(x) = −
[

g1(x) −
∫ 1

x
dy

g1(y)

y

]
+ m

M

[
h1(x)

x
−

∫ 1

x
dy

h1(y)

y2

]

+
[

g̃T (x) −
∫ 1

x
dy

g̃T (y)

y

]
. (7.173)

Neglecting the interaction-dependent part, that is setting g̃T (x) = 0, the Wandzura–
Wilczek approximation [39] for g2 is obtained. This provides a simple and often-
used estimate for g2 when the quark mass term is neglected.

7.16 Colour gauge invariance

So far two issues have been disregarded. The first is that the correlation functions
� involve two quark fields at different space-time points and hence are not colour
gauge invariant. The second issue is that in the gluonic diagrams, such as figure
7.11, there are correlation functions involving matrix elements with longitudinal
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(A+) gluon fields,

ψ j (0) g A+(η) ψi (ξ ).

These do not lead to any suppression. The + index in the gluon field causes the
matrix element to be proportional to P+, p+ or M S+, rather than the proportionality
to M Sα

T or pα
T that one gets for a gluonic matrix element with transverse gluons.

A straightforward calculation, however, shows that the gluonic diagrams with one
or more longitudinal gluons involve matrix elements (soft parts) of operators ψψ ,
ψ A+ ψ , ψ A+ A+ ψ , etc. that can be resummed into a correlation function

�i j (x) =
∫

dξ−

2π
eip·ξ 〈P, S|ψ j (0)U(0, ξ ) ψi (ξ )|P, S〉

∣∣∣∣
ξ+=ξT =0

, (7.174)

where U is a gauge link operator

U(0, ξ ) = P exp

(
−i

∫ ξ−

0
dζ− A+(ζ )

)
, (7.175)

a path-ordered exponential with the path along the negative direction. The unsup-
pressed gluonic diagrams combine into a colour gauge invariant correlation function
[40]. We note that at the level of operators one expands

ψ(0)ψ(ξ ) =
∑

n

ξμ1 · · · ξμn

n!
ψ(0)∂μ1 · · · ∂μnψ(0), (7.176)

in a set of local operators. However, only the expansion of the non-local combination
with a gauge link

ψ(0)U(0, ξ ) ψ(ξ ) =
∑

n

ξμ1 · · · ξμn

n!
ψ(0)Dμ1 · · · Dμnψ(0), (7.177)

is an expansion in terms of local gauge-invariant operators. The latter operators are
precisely the local (quark) operators that appear in the operator-product expansion
applied to inclusive deep inelastic scattering.

For the pT -dependent functions, one finds that inclusion of A+ gluonic diagrams
leads to a colour gauge invariant matrix element with links running via ξ− = ±∞
[41,42]. For instance, in lepton–hadron scattering

�(x, pT ) =
∫

dξ−d2ξT

(2π )3
eip·ξ 〈P, S|ψ(0)U [+](0, ξ ) ψ(ξ )|P, S〉

∣∣∣∣
ξ+=0

, (7.178)

where the link U [+] is shown in figure 7.12(a).
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(a) ξ −

ξ T

(b) ξ −

ξ T

Figure 7.12. The gauge link structure in the quark–quark correlator � in SIDIS (a)
and Drell–Yan process (b) respectively.

We note that the gauge link involves transverse gluons [43,44], showing that in
processes involving more hadrons the effects of transverse gluons are not necessarily
suppressed. This has also been demonstrated in explicit model calculations [45].

Moreover, depending on the process the gauge link can also run via minus infinity,
involving the link in figure 7.12(b). This is, for instance, the case in Drell–Yan
processes. Here again the transverse momentum-dependent distribution functions
are no longer constrained by time reversal, as the time-reversal operation inter-
changes the U [+] and U [−] links, leading to the appearance of T-odd functions in
(7.160). The process dependence of the gauge link, however, points to particular sign
changes when single-spin azimuthal asymmetries in semi-inclusive leptoproduction
are compared to those in Drell–Yan scattering. For such effects the measurement of
transverse momentum dependence is a must, since the specific link structure does
not matter in pT -integrated functions, in which both links in figure 7.12 reduce to
the same straight-line link connecting 0 and ξ .
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8

Diffraction and colour dipoles

J Forshaw and G Shaw

Diffractive photoprocesses are both copious and varied, and their theoretical inter-
pretation involves an interplay of perturbative and non-perturbative ideas which
presently defies a rigorous treatment in QCD. Nonetheless, considerable progress
has been made, and the colour-dipole model has emerged as a unifying frame-
work for discussing the wide range of phenomena observed. In this chapter we
will discuss the main features of diffractive photoprocesses, their interpretation in
the colour-dipole model and the relation between this model and other theoretical
approaches.

8.1 Diffractive processes

Diffraction is a high-energy phenomenon, illustrated in figure 8.1 where A and B
may be photons or hadrons and Y and Z may be single particles or an inclusive
sum over n ≥ 1 particle states. The dashed line indicates an exchange of energy,
momentum and angular momentum, but no non-zero colour, flavour or isospin
quantum numbers may be exchanged and charge conjugation is positive. In QCD,
this exchange is assumed to be mediated by two or more gluons in a colour-singlet
state. High energy means that the square of the centre-of-mass energy s = W 2 is
much larger than any other energy scale:

s � −t, m2
Y , m2

Z . . . .

For diffractive processes initiated by virtual photons, the latter include the photon
virtuality Q2, implying

x ≈ Q2/s � 1.

Electromagnetic Interactions and Hadronic Structure, eds Frank Close, Sandy Donnachie and Graham Shaw.
Published by Cambridge University Press. C© Cambridge University Press 2007
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Figure 8.1. The generic mechanism for diffraction, where the dotted line indicates
vacuum exchange and the incoming particles A, B can be hadrons or photons. In
the final state Y and Z can be single particles or inclusive sums over hadrons.

We note that −t, m2
Y , m2

Z , Q2 etc. can themselves become large, provided they
remain much smaller than s. This region is of particular theoretical interest, since
the presence of a hard scale opens up the subject to perturbative QCD.

Diffractive processes are characterized experimentally by two distinctive features:
rising cross sections and rapidity gaps. The two groups of final-state particles in
figure 8.1 emerge in roughly the forward and backward directions in the centre-of-
mass frame and are well separated in rapidity or pseudo-rapidity:

η = − log tan
(

1
2θ

)
,

where θ is the polar angle with respect to the beam direction. Such rapidity gaps are
characteristic of colour-singlet exchange, which can be contrasted to the typically
copious particle production that arises as a result of the breaking of colour strings
in colour-exchange processes. Rapidity gaps occur not only in diffractive pro-
cesses but also, for example, in colour-singlet meson-exchange processes. However,
meson exchange gives rise to cross sections which fall with increasing energy: see
chapter 5. Nonetheless at finite energies one may need to take account of small
contributions from the exchange of flavour-singlet meson-exchange contributions
that can interfere in general with the dominant diffractive process.

The precise energy dependence of diffraction depends upon the process and kine-
matic region observed. For processes involving only hadrons and in the absence
of any hard scale (that is an energy scale much larger than the typical hadronic
scale ∼200 MeV), the energy dependence of all observed diffractive processes can
be described by the exchange of a simple Regge pole, the soft pomeron, with the
universal trajectory [1]

αP (t) ≈ 1.08 + 0.25t, (8.1)

discussed in chapter 5. The fact that the intercept αP (0) is close to unity reflects
the fact that these diffractive cross sections rise slowly with energy. The total cross
sections for hadron–hadron scattering, for example, all increase as sαP (0)−1 ≈ s0.08
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at high energies. To a good approximation, the same behaviour applies to the total
cross section for real photo absorption

γ + p → X, (8.2)

where X represents an inclusive sum over hadronic states, while the energy depen-
dence of the photoproduction processes

γ + p → V + p V = ρ, ω, φ (8.3)

is also found to be compatible with the ‘soft pomeron’ behaviour (8.1). For this and
other reasons, early studies of diffractive photoprocesses emphasized the ‘hadron-
like’ behaviour of real photoprocesses, and their interpretation via simple vector
dominance ideas [2]. This type of behaviour is now loosely, but conveniently,
referred to as ‘soft diffraction.’

This picture was changed dramatically with the advent of HERA, which enabled an
impressive variety of diffractive photoprocesses to be studied at very high energies.
These processes include deep inelastic scattering (DIS)

γ ∗ + p → X (8.4)

that is related to elastic virtual Compton scattering

γ ∗ + p → γ ∗ + p (8.5)

by the optical theorem, and the diffractive deep inelastic scattering (DDIS) process

γ ∗ + p → X + p, (8.6)

where the hadronic state X is separated from the proton by a rapidity gap. The
exclusive processes observed include deeply-virtual Compton scattering (DVCS)

γ ∗ + p → γ + p, (8.7)

where the final-state photon is real, and the vector-meson production processes

γ ∗ + p → V + p, (8.8)

where V = ρ, ω, φ or J/ψ .

Of even greater significance was the fact that HERA enabled these processes to
be studied in the regime where the photon virtuality Q2 is large compared to
the typical hadronic scale, but nonetheless is very small compared to the energy
variable s = W 2, as required for diffraction. In this region, the cross sections rise
much more steeply than would be expected from the soft-pomeron behaviour (8.1),
a phenomenon that is loosely but conveniently referred to as ‘hard diffraction’.



318 J Forshaw and G Shaw

More generally, if different data sets are each parametrized by a single effective
Regge-pole-exchange formula, the intercept is found to vary roughly in the range

1.08 ≤ αeff (0) ≤ 1.4, (8.9)

depending on the value of Q2 and the particular process observed. Of course,
this implies that diffractive photoprocesses cannot really be described by a single
Regge-pole exchange, since this would require a universal intercept in all reactions.
Hard diffraction seems to occur whenever any hard scale is present. For example,
even for real photons, J/ψ photoproduction has a significantly steeper energy
dependence than ρ or φ photoproduction, due to the presence of the relatively hard
scale provided by the mass of the J/ψ .

These processes involve an interplay of perturbative and non-perturbative physics
that currently defies a rigorous treatment in QCD. Rather there are several models,
each of which throws light on different aspects of the problem, with varying degrees
of success. Here we focus on the ‘colour-dipole model’ that provides a unified
description of the various processes (8.2)–(8.8) and allows different dynamical
scenarios to be explored. Before doing so, we introduce some more general ideas
that we hope will help develop physical insight.

8.1.1 Diffraction in the laboratory frame

Throughout this chapter, we shall concern ourselves with the scattering of a photon
off a proton. In general the photon may have some space-like virtuality Q2. Dif-
ferent reference frames are conveniently chosen to emphasize different aspects of
the physics. In the infinite-momentum frame, at large Q2, the parton distribution
functions have a simple interpretation: they describe the longitudinal momentum
distribution of point-like constituents of the proton target. In this frame the virtual
photon is regarded as point-like. However, in the laboratory frame the incoming
photon typically develops hadronic fluctuations a long distance from the proton
target and the intermediate states into which it converts can reasonably be regarded
as constituents of the photon. The typical distance travelled by a vacuum fluctuation
of a photon into a hadron of invariant mass mh is given by the coherence length
[3], which is just the inverse of the longitudinal momentum required to put it on
mass-shell, and is given at high energies s � m2

h, Q2 by

lc = s
M

(
Q2 + m2

h

) � M−1 ≈ 0.2 fm,

where M is the proton mass. In photoproduction Q2 = 0 and the dominant
hadronic contributions h are usually assumed to be the light vector mesons, so that
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typically

lc ≈ s
/ (

M m2
ρ

)
Q2 ≈ 0,

which, in the diffractive region, is very large compared to the size of the proton
or the range of the strong interaction. Hence the contribution from a particular
intermediate vector-meson state can to a good approximation be factorized into
an amplitude for the photon to convert to the vector meson, times an amplitude
describing the interaction of the vector meson with the proton target. This is the
conceptual basis of vector-meson-dominance models of diffraction [2] and is well
known (see chapter 5).

What is perhaps not so well known is that the same space-time picture and factoriza-
tion property generalizes to diffractive photoprocesses at large Q2. If we consider
DIS at large Q2, the typical value of m2

h is itself of order Q2 in models that give
scaling. Hence the typical value of the coherence length is

l̄c ∼ 1/Mx, (8.10)

whether the fluctuations are qq̄ pairs (as in the parton model) or hadrons (as in
hadron-dominance models). This typical coherence length is again very long in
the diffractive region, so that once again the contribution from a particular vacuum
fluctuation h can, to a good approximation, be factorized into an amplitude for the
photon to convert to the state h times an amplitude describing the interaction of h
with the proton target. Different models are then defined by the choice of dominant
hadronic states h and the nature of their interactions with the target.

8.2 The dipole framework

In the colour-dipole model [4,5] the dominant states h are assumed to be quark–
antiquark pairs, characterized by their transverse size r and by the fraction z of the
light-cone momentum of the pair carried by the quark. Such states are called ‘colour
dipoles’ and are assumed to be eigenstates of diffraction; that is they scatter without
change of r and z in the diffractive limit. This statement can be justified in pertur-
bative QCD. Beyond that, like the dominance of qq̄ pairs, it is a model-dependent
assumption that must be tested against experiment. The resulting mechanism for
the generic process

γ ∗ + p → A + p A = γ ∗, γ, ρ, . . . (8.11)

is shown in figure 8.2, and leads to amplitudes of the schematic form

A(γ + p → A + p) =
∫

dτ�in
γ T �out

A , (8.12)
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Aγ∗

p

r

b

z

1 − z

Figure 8.2. The colour-dipole model for γ ∗ + p → A + p.

where T is the scattering amplitude of a given dipole configuration with the target
and the integral runs over all dipole configurations. For the moment we ignore
kinematic factors.

The strength of this approach lies in the fact that the dipole scattering amplitude is
the same for all processes. However, within this common framework there are many
different formulations for the interaction amplitude T that have been applied with
varying degrees of success. In the rest of this section we first formulate the dipole
model in more detail, obtaining the precise form for relations like (8.12), before
discussing different formulations for the form of the dipole scattering amplitude.
We start by discussing the dipole fluctuations themselves.

8.2.1 Dipole states

In the light-cone quantization approach [6], the vacuum state of the free Hamilto-
nian is also an eigenstate of the full Hamiltonian. Hence an eigenstate of the latter
can be expanded in terms of the eigenstates of the free light-cone Hamiltonian,
in which each free parton i is characterized by its light-cone energy k+

i =
(k0

i + k3
i )/2, together with other appropriate variables. Hence a hadronic state |�〉

can be expanded in the form

|�〉 =
∑

n

�n|n〉, (8.13)

where �n are the light-cone wave functions of the hadronic state and each colour-
singlet partonic state |n〉 is characterized by the transverse momenta �k⊥i and helic-
ities λi of the partons i , together with their longitudinal momenta k+

i . However,
the diffractive eigenstates are believed to be those for which the partons have fixed
impact parameters [7]. It will therefore be more convenient for what follows to
choose a mixed configuration–momentum space description, in which the trans-
verse momenta �k⊥i are replaced by their conjugate transverse position vectors �bi . At
the same time, the light-cone energies k+

i are replaced by the fractional light-cone
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energies

xi = k+
i

P+
∑

i

xi = 1, (8.14)

where

P+ =
∑

i

k+
i P⊥ =

∑
i

�k⊥i

are the light-cone energy and transverse momentum of the hadron state. In other
words, the expansion (8.13) takes the form

|�〉 =
∑

i

�(xi , �bi , λi ) |xi , �bi , λi 〉, (8.15)

where the light-cone wave functions �(xi , �bi , λi ) are invariant under a Lorentz
boost in the longitudinal z-direction.

In the colour-dipole model [4,5] we assume that a similar decomposition

|γ ∗〉H =
∑

�qq̄ |qq̄〉 +
∑

|�qq̄g|qq̄g〉 + higher Fock states (8.16)

can be applied to the hadronic fluctuations of the photon, and that, in the diffractive
processes (8.11), the qq̄ states dominate. We shall discuss this approximation in
more detail subsequently and will go beyond it in our discussion of the DDIS
process. Denoting their transverse position vectors by �b1 and �b2 respectively, we
define the impact vector of the pair by

�b = 1
2 (�b1 + �b2) b = |�b| (8.17)

and the relative transverse position vector by

�r = �b1 − �b2 r = |�r |, (8.18)

where r is referred to as the transverse size, or just the size, of the dipole. Finally
the expansion (8.16) becomes

|γ ∗, λ〉H =
∑
hh̄

∫
dz d2�r �

γ,λ

h,h̄ (�r , z)|z, �bi , h, h̄〉 + higher Fock states, (8.19)

where λ is the photon helicity, h, h̄ are the helicities of the quark and antiquark
respectively, and we have incorporated the fact that the probability of finding a
particular qq̄ configuration is independent of its impact vector �b.
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8.2.2 The dipole cross section

We now consider the diffractive processes (8.11) shown in figure 8.2. Implicit in
this diagram is the central assumption that, in the diffractive limit, the dipole states
are eigenstates of the scattering operator, with spin-independent eigenvalues:∗

T̂ |z, �bi , h, h̄〉 = τ (�b, s; z, �r )|z, �bi , h, h̄〉. (8.20)

The corresponding amplitude for elastically scattering a dipole from the proton is
given by

A(s, �r , z, �P⊥) =
∫

d2�b ei �P⊥·�b〈z, �bi , h, h̄|T̂ |z, �bi , h, h̄〉,

where �P⊥ is the transverse momentum of the outgoing proton.

Appealing to the optical theorem (setting −t ≈ �P2
⊥ = 0), we therefore refer to

σ (s, r, z) =
∫

d2�b Imτ (�b s; z, �r )

s
(8.21)

as the ‘dipole cross section’ and interpret it as the total cross section for scattering a
dipole of size r from a proton. Note that our notation makes explicit the assumption
that the dipole cross section is independent of the dipole orientation and the helicities
of the quark and antiquark.

8.2.3 Reaction cross sections

The dipole cross section is important because, given the light-cone wave functions,
it is all that is required to calculate diffractive processes in the forward direction.
The differential cross section for the exclusive process γ ∗ + p → A + p is given
by

dσ

dt

∣∣∣∣
t=0

= 1

16πs2
|〈A|T̂ |γ ∗, λ〉(s, t = 0)|2, (8.22)

where λ = L , T for longitudinal and transverse photons respectively. The forward
amplitude can be expressed in terms of the scattering amplitude at fixed impact
parameter �b by

〈A|T̂ |γ ∗, λ〉(s, t = 0) =
∫

d2�b 〈A|T̂ |γ ∗, λ〉(s, �b), (8.23)

∗ A factor i is often inserted into the right-hand side of this equation, so that τ (�b, s; z, �r ) is real if the
scattering amplitude is purely imaginary. We do not follow that convention here.
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which in turn is given by

〈A|T̂ |γ ∗, λ〉(s, �b)

=
∑
h,h̄

∫
dz d2�r 〈A|z, �bi , h, h̄〉〈z, �bi , h, h̄|T̂ |z, �bi , h, h̄〉〈z, �bi , h, h̄|γ ∗, λ〉, (8.24)

where we have summed over all dipole configurations and neglected all higher Fock
states. Using (8.19) and (8.21) together with (8.23), one obtains

Im〈A|T̂ |γ ∗, λ〉(s, t = 0)

= s
∑
h,h̄

∫
dz d2�r � A

h,h̄(�r , z)∗ �
γ,λ

h,h̄ (�r , z) σ (s, r, z). (8.25)

The forward differential cross section (8.22) can then be calculated by substituting
(8.25) into (8.22) and either neglecting the correction from the real part of the
amplitude or, preferably, estimating it using dispersion-relation techniques. The
total reaction cross section is then usually estimated by assuming an exponential
ansatz for the t dependence, giving

σL ,T (γ ∗ p → Ap) = 1

B
dσ T,L

dt

∣∣∣∣
t=0

, (8.26)

and the value of the slope parameter B is taken from experiment. Some of the most
interesting results are those obtained for the inclusive processes (8.4) (DIS) and
(8.6) (DDIS), for which there exists a wealth of data as functions of x and Q2 and,
in the case of DDIS, of the mass of the diffractively produced state m2

X . We start by
considering the total virtual photoabsorption cross sections σL ,T (γ ∗ p → X ) which
define the proton structure functions

2x F1(x, Q2) = Q2

4π2αem
σT , F2(x, Q2) = Q2

4π2αem
(σL + σT ). (8.27)

From the optical theorem

σλ = s−1Im〈γ ∗, λ|T̂ |γ ∗, λ〉(s, t = 0), λ = L , T,

which, together with (8.25), gives the result

σL ,T (x, Q2) =
∫

dz d2�r |�L ,T
γ (r, z)|2σ (s, r, z), (8.28)

where

|�L ,T
γ (r, z)|2 ≡

∑
h,h̄

|�γ, L ,T
hh̄ (�r , z)|2. (8.29)
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Turning to the diffractive DIS reaction (8.6), we can express the final state as an
incoherent sum over the diffractive eigenstates (that is dipole states):

dσ D
T,L

dt

∣∣∣∣∣
t=0

= 1

16πs2

∑
all dipoles

|〈γ T,L |T̂ |z, r〉|2 (8.30)

and hence

dσ D
T,L

dt

∣∣∣∣∣
t=0

= 1

16π

∫
dzd2�r |�T,L

γ (r, z)|2σ 2(s, r, z). (8.31)

Note that this result includes a sum over all forward diffraction products X , and
hence over all corresponding masses m X , whereas experiments also measure the
dependence on the mass m X . To make comparison with this requires more elaborate
expressions, which we will introduce later. In addition, only that subset of the
diffractive-dissociation final state that is composed exclusively of a quark–antiquark
pair has been included in (8.31). As we shall see later, when we consider the case
of large values of m X , we will need to go beyond this approximation.

8.3 Light-cone wave functions

We see from the above results that the crucial ingredients of the model are the colour-
dipole cross section (8.21), which will be discussed in the following section, and
the light-cone wave functions. Among the wave functions, those of the photon are
particularly important, since they are the only wave functions required to calculate
several of the most important processes, like DIS (8.4), DDIS (8.6) and virtual
Compton scattering (8.7). Furthermore, while the photon light-cone wave functions
can be calculated within QED, at least for small dipole sizes, the vector-meson wave
functions are not reliably known and must be obtained from models.

The light-cone wave functions �h,h̄(�r , z) in the mixed representation used in the
dipole model are obtained from a two-dimensional Fourier transform

�h,h̄(�r , z) =
∫

d2�k
(2π )2

ei�k·�r �h,h̄(�k, z) (8.32)

of the momentum space light-cone wave functions �h,h̄(�k, z). For small transverse
separations it is reasonable to neglect gluonic interactions between the quark and
antiquark in calculating the photon light-cone wave functions. The probability
amplitude for the photon to fluctuate into a qq̄ pair in momentum space can then
be calculated in lowest-order QED:

�
γ,λ

h,h̄ (�k, z) =
√

Nc

4π

ūh(�k)√
z

(ee f γ.ελ
γ )

vh̄(−�k)√
1 − z

�γ (k, z), (8.33)
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per fermion of charge ee f . Here the ελ are the polarization vectors of the photons,
and the ‘scalar’ part of the photon light-cone wave function, �γ , is given by

�γ (k, z) = z(1 − z)

z(1 − z)Q2 + k2 + m2
f

. (8.34)

This would be the photon light-cone wave function in a toy model of scalar quarks
and photons.

For the vector mesons, the simplest approach is to assume the same vector current
as in the photon case, with an additional (unknown) vertex factor �λ(k, z):

�
V,λ

h,h̄ (�k, z) =
√

Nc

4π

ūh(�k)√
z

(
γ.ελ

V

) vh̄(−�k)√
1 − z

�V
λ (k, z), (8.35)

where the scalar part of the meson light-cone wave function is given by

�V
λ (k, z) = z(1 − z)�λ(k, z)

−z(1 − z)M2
V + k2 + m2

f

. (8.36)

Different models are defined by specifying these scalar wave functions. In practice,
it is common to choose the same functional form for �V

T and �V
L ; perhaps allowing

the numerical parameters to differ.

Before considering the different cases in more detail, it is instructive to consider
the longitudinal wave functions more explicitly. Using the polarization vectors

εL
γ =

(
q+

Q
,

Q
q+ , �0

)
; εL

V =
(

v+

MV
, − MV

v+ , �0
)

, (8.37)

it follows that the longitudinal-photon light-cone wave function is

�
γ,L
h,h̄ (�k, z) =

√
Nc

4π
δh,−h̄ee f

(
2z(1 − z)Q

k2 + m2
f + z(1 − z)Q2

− 1

Q

)
(8.38)

and that of the vector meson is

�
V,L
h,h̄ (�k, z) =

√
Nc

4π
δh,−h̄

(
z(1 − z)2MV �(k, z)

k2 + m2
f − z(1 − z)M2

V

+ �(k, z)

MV

)
. (8.39)

On substituting (8.38) in (8.32) the second term of (8.38) leads to a dipole of
vanishing size, which does not contribute to the cross section. This is in accord
with gauge invariance. The same argument cannot be used to justify the omission
of the second term in the meson wave function (8.39), since the latter has a k
dependence. In practice, this term is omitted in some models, but retained in others,
as we will see. A discussion of the gauge-invariance issues surrounding this point
can be found in [8].
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8.3.1 The photon wave functions

The normalized photon light-cone wave functions resulting from (8.32) and (8.33)
are

�
γ,L
h,h̄ (�r , z) =

√
Nc

4π
δh,−h̄ee f 2z(1 − z)Q

K0(εr )

2π
(8.40)

and

�
γ,T (γ=±)
h,h̄ (�r , z) = ±

√
Nc

2π
ee f

× [ie±iθr (zδh±,h̄∓ − (1 − z)δh∓,h̄±)∂r + m f δh±,h̄±]
K0(εr )

2π
,

(8.41)

where

ε2 = z(1 − z)Q2 + m2
f (8.42)

and K0(x) and K1(x) = −∂x K0(x) are modified Bessel functions [9] with the
asymptotic behaviours

K0(x) ≈
( π

2x

)1/2
e−x ≈ K1(x) x → ∞, (8.43)

K0(x) ≈ − log x K1(x) ≈ x−1 x → 0. (8.44)

The dipole size �r has been written in polar form (r, θr ) and the notation for the
quark and antiquark helicities is such that if the photon helicity is ±1, then the term
proportional to z forces the quark to have helicity ± 1

2 and the antiquark to have
helicity ∓ 1

2 . The term proportional to 1 − z simply swaps the quark and antiquark
and the term proportional to m f is the helicity-flip term for which the quark and
antiquark have equal helicities.

The corresponding results for the spin-summed wave functions (8.29), which are
required to evaluate the structure functions (8.27), are

∣∣�L
γ (r, z)

∣∣2 = 6

π2
αem

n f∑
f =1

e2
f Q2z2(1 − z)2 K 2

0 (εr ), (8.45)

∣∣�T
γ (r, z)

∣∣2 = 3

2π2
αem

n f∑
f =1

e2
f

{
[z2 + (1 − z)2]ε2 K 2

1 (εr ) + m2
f K 2

0 (εr )
}
, (8.46)

where the sum is over all n f quark flavours f .

It follows from (8.43) that the wave functions decrease exponentially with r at large
Q2 and fixed z. Specifically

�(r, z) ∼ exp[−r Qz(1 − z)],
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provided Q2z(1 − z) � m2
f , so that only small dipoles can contribute unless z

is close to its end-point values 0 or 1. As can be seen from (8.40) and (8.41),
these end-points are suppressed for the longitudinal but not for the transverse
case. This is the origin of the statement that longitudinal photon processes are
more inherently perturbative than transverse photon processes, other things being
equal.

For low Q2 the situation is different. In particular, for Q2 = 0, ε = m f , and the wave
functions fall off as exp(−m f r ) for large r . Hence, for light quarks in particular,
large dipoles with r ≈ m−1

f can contribute.

At this point we need to remind ourselves that the above perturbative calculation of
the wave function makes no sense for large dipoles, since for r > 1 fm strong forces
between the quarks obviously play an important role, leading to confinement. In
this region a qq̄ picture only makes sense if we consider constituent quarks, and
vector-dominance ideas seem a more appropriate guide than perturbative QCD.
In particular, it is well known that generalized vector dominance (GVD) models
[10] can describe the nucleon structure function data in the transition region 0 ≤
Q2 ≤ 10 GeV2, from photoproduction to scaling. However, as shown in [11], this
success only extends to nuclei if the off-diagonal version [12] is used. Frankfurt et al
[13] have studied the pattern of scattering eigenstates in this model, calculating the
probability P(σ, Q2) for the photon to interact with the target with a scattering cross
section σ . As we shall see in the next section, for small dipoles where perturbative
ideas are applicable, the dipole cross section is approximately proportional to r2,
while the behaviour of the wave functions is controlled by (8.44). Using these
properties and changing the integration variable from r to σ , it is easily shown from
(8.28) that for transverse photons, P(σ, Q2) ∝ σ−1, independent of Q2. Frankfurt
et al [13] found approximately the same behaviour in the GVD model for small σ .
However, as σ increases to the size of typical hadronic cross sections, there are peaks
in P(σ, Q2) at small Q2 that die away as Q2 increases and which it is reasonable
to associate qualitatively with vector meson states. For a discussion of the relation
between GVD models and the dipole approach, see [14].

In order to reproduce this behaviour qualitatively, Forshaw, Kerley and Shaw (FKS)
[15] chose a light-quark mass corresponding roughly to the constituent mass and
modified the QED wave function by multiplying it by an adjustable Gaussian
enhancement factor: ∣∣�T,L

γ (r, z)
∣∣2 → ∣∣�T,L

γ (r, z)
∣∣2 f (r ), (8.47)

where

f (r ) = 1 + B exp(−c2(r − R)2)

1 + B exp(−c2 R2)
. (8.48)
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Figure 8.3. The weight function H (r, Q2) at Q2 = 0, 1 GeV2 and 15 GeV2. Left:
corresponding to the photon wave function obtained by FKS [15] with m2

q =
0.08 GeV2 (dashed lines). Right: corresponding to the perturbative QED photon
wave function with m2

q = 0.02 GeV2 (dashed lines). In both plots the solid lines
correspond to the perturbative QED wave function with m2

q = 0.08 GeV2.

This purely phenomenological form enables the width and height of the enhance-
ment to be controlled independently while keeping the enhancement localized at
typical hadronic sizes r ∼ 1 fm. The effect of this is conveniently summarized by
integrating out the angular and z dependence in (8.25) and (8.28) to give

σ
γ ∗ p
total =

∫
dz d2r (|�T (z, r )|2 + |�L (z, r )|2)σ (s, r, z)

= 12

π
αem

∫
dr H (r, Q2)σ (s, r ), (8.49)

where σ
γ ∗ p
total is the sum of the transverse and longitudinal photon cross sections. In

the last line we have made the common assumption that the dipole cross section is
independent of z and this is reflected in the slight change in notation. The resulting
behaviour of H (r, Q2) for the final parameter values (which were obtained by fitting
to total cross section data) is shown in figure 8.3. As can be seen, the enhancement
is important for very low Q2, but decreases rapidly as Q2 increases.

Other authors do not in general include an explicit enhancement factor, but achieve
a similar but broader enhancement by varying the quark mass. Choosing a smaller
quark mass increases the wave function at all large r , while leaving it almost
unchanged at small r , as illustrated in figure 8.3. Golec-Biernat and Wüsthoff
[16,17], for example, used m2

f = 0.02 GeV2, so that m f is comparable to the pion
mass. In practice [18] the difference between these two approaches only becomes
important when analysing real photoabsorption data, mainly that from fixed-target
experiments [19].
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In summary, the photon wave functions are well determined at small r , while their
magnitude at large r is model-dependent. It is partly because of this that DDIS
data are so important, since they and DIS together involve essentially different
combinations of wave function and cross section, as can be seen by comparing
(8.28) and (8.31).

8.3.2 Vector-meson wave functions

We next turn to the vector-meson wave functions, which from (8.32) and (8.35) can
be written in the forms

�
V,T (γ=±)
h,h̄ (�r , z) = ±

√
Nc

4π

√
2

z(1 − z)

× [
ie±iθr (zδh±,h̄∓ − (1 − z)δh∓,h̄±)∂r + m f δh±,h̄±

]
φT (r, z)

(8.50)

and

�
V,L
h,h̄ (�r , z) =

√
Nc

4π
δh,−h̄

1

MV z(1 − z)
[z(1 − z)M2

V + δ × (m2
f − ∇2

r )]φL (r, z),

(8.51)

where ∇2
r ≡ 1

r ∂r + ∂2
r . Note that the second term in square brackets, which occurs

in the longitudinal meson case, is a direct consequence of keeping the second term
in (8.39) and is omitted or kept depending on whether the parameter δ = 0 or 1.

The scalar parts of the wave functions φL ,T (r, z) are model-dependent. How-
ever, they are subject to two constraints. The first is the normalization condition
[20,21]

1 =
∑
h,h̄

∫
d2�k

(2π )2
dz |�V,λ

h,h̄ (�k, z)|2 =
∑
h,h̄

∫
d2�r dz |�V,λ

h,h̄ (�r , z)|2, (8.52)

which embodies the assumption that the meson is composed solely of qq̄ pairs.
Note that this normalization is consistent with (8.25) and differs by a factor 4π

relative to the conventional light-cone normalization.

The second constraint comes from the electronic decay width of the vector meson
[21,22], and can be expressed directly in terms of the scalar parts of the wave
functions:

fV MV = Nc

π
ê f

∫ 1

0

dz
z(1 − z)

[z(1 − z)M2
V + δ × (m2

f − ∇2
r )]φL (r, z)

∣∣
r=0

(8.53)
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and

fV MV = − Nc

2π
ê f

∫ 1

0

dz
[z(1 − z)]2

[
(z2 + (1 − z)2)∇2

r − m2
f

]
φT (r, z)

∣∣
r=0

,

(8.54)

assuming that rφL ,T (r, z) → 0 at r = 0 and r = ∞. The couplings fV of the mesons
to the electromagnetic current are determined from the experimentally measured
leptonic decay widths �V →e+e− using 3MV �V →e+e− = 4πα2

em f 2
V . In (8.53) and

(8.54) ê f is the effective electronic charge arising from the sum over quark flavours
in the meson: ê f =

√
1
2 , 1

3 and 2
3 for the ρ, φ and J/ψ respectively.

In what follows we shall confine ourselves to two particular models for the scalar
parts of the vector-meson wave functions: the Dosch, Gousset, Kulzinger, Pirner
(DGKP) model and the boosted-wave-function model. Our treatment will be brief,
and much more detailed formulae can be found in [22], [23] and [24].

DGKP meson wave function In the DGKP approach [22], the r and z dependence
of the wave function are assumed to factorize. We note that the theoretical analysis of
Halperin and Zhitnitsky [25] shows that such a factorizing ansatz must break down
at the end-points of z. However, since the latter are suppressed in the DGKP wave
function this has no practical consequence. Specifically, the scalar wave function
is given by

φλ(r, z) = G(r ) fλ(z)z(1 − z). (8.55)

(Note that DGKP do not actually include the factor z(1 − z) in the scalar wave
function. This is because they define the scalar wave function to be the right-hand
side of (8.36) divided by z(1 − z).) A Gaussian dependence on r is assumed,

G(r ) = π fV

Ncê f MV
e− 1

2 ω2
λr2

, (8.56)

and fλ(z) is given by the Bauer–Stech–Wirbel model [26]:

fλ(z) = Nλ

√
z(1 − z)e−M2

V (z− 1
2 )2/2ω2

λ . (8.57)

Dosch et al set δ = 0 in (8.51), which is equivalent to neglecting the second term
in (8.39).

For a particular quark mass, the free parameters of the DGKP wave function can
be determined from the constraints (8.52)–(8.54). The resulting behaviour [24] of
the ρ wave functions is shown in figure 8.4. The wave functions peak at z = 1

2
and r = 0, and go rapidly to zero as z → 0, 1 and r → ∞, so that large dipoles
are suppressed. From the figures, we see that the transverse wave function has a
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Figure 8.4. The ρ wave functions |�L |2 (left) and |�T |2 (right) in the DGKP
model with the light quark mass m2

u,d = 0.08 GeV2. Note the different scales for
the ordinate.

broader distribution than the longitudinal wave function. The φ wave functions are
qualitatively similar to, but slightly more sharply peaked than, the ρ wave functions.

Boosted wave functions In this approach, the scalar part of the wave function
is obtained by taking a given wave function in the meson rest-frame. This is then
boosted into a light-cone wave function using the Brodsky–Huang–Lepage pre-
scription, in which the expressions for the off-shellness in the centre-of-mass and
light-cone frames are equated [27] or, equivalently, the expressions for the invariant
mass of the qq̄ pair in the centre-of-mass and light-cone frames are equated [28].

The simplest version of this approach assumes a simple Gaussian wave function
in the meson rest-frame. Alternatively, Nemchik et al [23] have supplemented this
by adding a hard ‘Coulomb’ contribution to give an improved description of the
rest-frame wave function at small r . However, as discussed in [24], this results in
an unphysical singularity in the light-cone wave functions at r = 0, z = 1

2 . In what
follows, therefore, we confine ourselves to the simple case of a boosted Gaussian
wave function. We refer to [23,24] for details of this procedure. Here we simply
state the result, which is that the meson light-cone wave functions are given by
(8.51), (8.50) with δ = 1 and the scalar wave functions φλ(r, z):

φλ(r, z) = Nλ 4z(1 − z)
√

2π R2 exp

(
− m2

f R2

8z(1 − z)

)
exp

(
−2z(1 − z)r2

R2

)
.

(8.58)

Like the DGKP wave function discussed above, for a given quark mass the boosted
Gaussian wave function contains two free parameters which can be determined
from the constraints (8.52)–(8.54).
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Figure 8.5. The ρ wave functions |�L |2 (left) and |�T |2 (right) in the boosted
Gaussian model with the light quark mass m2

u,d = 0.08 GeV2.

Figure 8.6. The J/ψ wave functions |�L |2 (left) and |�T |2 (right) in the boosted
Gaussian model with the charm quark mass mc = 1.4 GeV.

The behaviour of the resulting ρ wave functions is shown in figure 8.5. On compar-
ing this with figure 8.4 one sees that they are qualitatively similar to those obtained
in the DGKP case but that the peaks are a little less pronounced.

In figure 8.6, the corresponding wave functions for the J/ψ meson are shown. As
expected, the larger charm mass ensures that these wave functions are more tightly
peaked around z = 1

2 and r = 0.

8.4 The dipole cross section

Different versions of the colour-dipole model are characterized by different forms
for the dipole cross section (8.21). In choosing them, authors are guided by pertur-
bative QCD for small dipoles, and hadron dominance for large dipoles. The free
parameters, which are invariably needed, are usually determined by fitting to the
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≈

�z
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�x

Figure 8.7. Dipole evolution via gluon emission,

copious and high-precision DIS data, and the resulting dipole cross section is then
used to make predictions for other processes. The most stringent test comes from
comparison to the DDIS data, for reasons mentioned earlier. In what follows, we
will focus mainly on models which have provided successful predictions for DDIS.
First, however, we will discuss the theoretical expectations for small dipoles, where
perturbative QCD is expected to be appropriate.

8.4.1 Small dipoles and QCD

Physically, a small dipole created far upstream of the target proton may evolve to a
more complicated state through partonic radiation. To leading order in the number
of colours, the original dipole may branch into two dipoles as a consequence of
gluon emission, as illustrated in figure 8.7. These two dipoles may then also radiate
additional gluons and by the time the fluctuation reaches the target proton the
original dipole may have evolved into a system of many dipoles. The amount of
evolution clearly depends upon the evolution time of the dipole system and this in
turn is controlled by the overall centre-of-mass energy or, more conveniently, the
rapidity Y = 1

2 log{(E + pz)/(E − pz)} ≈ 1
2 log (s/s0) in the diffractive limit.

That we can describe the dipole evolution in terms of a classical branching process
needs some justification. It follows from the assumption that the radiation of a gluon
always takes place off a long-lived state, so that the emission is independent of the
prior history of the state; that is the timescale of emission is much less than the
lifetime of the state which is doing the emitting. The lifetime of the relevant emitter
(a dipole) is determined by the rapidity interval into which the emission can take
place and provided this is large enough we are justified in our use of this dipole
branching picture. We therefore can view the evolution of the original dipole as an
evolution in rapidity, and given the probability that a particular dipole branches into
a pair of dipoles we can immediately write down the appropriate evolution equation.

The probability that a dipole whose ends are located at transverse positions (�x, �y)
will emit a gluon at transverse position �z, thereby creating two dipoles at (�x, �z) and
(�y, �z), is

d P = Ncαs

π
dY

d2�z
2π

(�x − �y)2

(�x − �z)2(�y − �z)2
, (8.59)
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where dY is the rapidity interval into which the gluon is emitted [5,29,30]. Conse-
quently, the cross section for a dipole (�x, �y) to interact with the target satisfies the
equation

∂σ (�x, �y, Y )

∂Y
= Ncαs

π

∫
d2�z
2π

(�x − �y)2

(�x − �z)2(�y − �z)2

× (σ (�x, �z, Y ) + σ (�y, �z, Y ) − σ (�x, �y, Y )). (8.60)

The first two terms express the fact that the original dipole may branch into two,
one or other of which may then scatter off the proton, whilst the last term reflects
the fact that after emission the original dipole is destroyed. Note that the possibility
that both newly-created dipoles might scatter off the proton is not included in this
equation. We might expect this approximation to break down if the dipole cross
section is too large. This is indeed the case and we shall return to this issue in the
following subsection.

Given the dipole cross section at some Y = Y0, (8.60) allows us to compute it at
all other values of Y under the assumption that Y, Y0 � 1. In fact, (8.60) is none
other than the dipole form of the Balitsky, Fadin, Kuraev, Lipatov (BFKL) equation
[31,32] which correctly sums all of the leading logarithms in energy to all orders,
that is all terms ∼ (αsY )n . (Note that (8.60) does not actually depend upon us making
the leading Nc approximation.) In summing multi-gluon emissions into the dipole
cross section we are effectively including some of the higher-Fock components in
the photon wave function, in particular those components which contain leading
logarithms in energy.

Making contact with the discussion in section 8.2.2, the dipole cross section of
(8.60) is simply

σ (�x, �y, Y ) = Imτ (�b, s; z, �r )

s
(8.61)

with �x − �y = �r and 1
2 (�x + �y) = �b.

It is worth remarking here that, for non-diagonal processes such as the electro-
production of vector mesons, there is an asymmetry in the dipole evolution. This
asymmetry is beyond the leading logarithmic approximation and as such it is only
appropriate to speak of a truly universal dipole cross section within this approxima-
tion. Beyond leading logarithms, it is more appropriate to use a formalism which
builds in the off-diagonal nature of scattering amplitudes from the start, such as is
provided by the so-called skewed parton distribution functions: see chapter 9.

Let us now turn to another way to view the dipole cross section in perturbative QCD.
Equations (8.27) and (8.28) determine the structure function F2(x, Q2) in terms of
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the photon wave function and the dipole cross section. Now the Q2 evolution equa-
tions of Dokshitzer, Gribov, Lipatov, Altarelli and Parisi (DGLAP) tell us that [33]

∂ F2(x, Q2)

∂ log Q2
≈

∑
q

e2
q

αs

2π

∫ 1

x
dz G(x/z, Q2)Pqg(z), (8.62)

where G(x, Q2) is the gluon momentum density, Pqg(z) = 1
2 (z2 + (1 − z)2) and

eq is the electric charge of a quark, q, in units of the electron charge. This
approximation is reasonable in the small-x region where the gluon density is
dominant. Formally, it is correct in the double leading logarithmic approximation
(DLLA) where all terms proportional to (αs log Q2 log(1/x))n are summed.
Equating the dipole prediction for ∂ F2/∂ log Q2 (using (8.27), (8.28), (8.45)) with
the DGLAP prediction of (8.62), implies that

σ (s, r ) ≈ π2αs

3
r2G(x, A2/r2). (8.63)

The constant A is not determined in DLLA, although numerical studies indicate
that A ≈ 3.

The equivalence of the BFKL and DGLAP approaches in the double logarithmic
region is evident in that (8.60), with the aid of (8.63), reduces to

∂G(x, 1/r2)

∂ log(1/x)
≈ Ncαs

π

∫
b>r

db2

b2
G(x, 1/b2) (8.64)

in the double logarithmic approximation, which corresponds to the region where
the emitted dipole is much larger than the parent dipole. This is just the DGLAP
evolution of the gluon in the double logarithmic approximation.

Equation (8.63) informs us that as r → 0 so σ (s, r ) → r2 modulo logarithmic
corrections. This property of the dipole cross section means that small dipoles
tend to cut through the target without hindrance and goes by the name of ‘colour
transparency’: see chapter 11. It is a key property that is included in all models of
the dipole cross section.

8.4.2 Non-linear dynamics and saturation

For small enough dipoles, perturbative QCD anticipates that the dipole cross sec-
tion should rise with increasing s. Equation (8.60) is a linear evolution equation:
dipoles branch to produce more dipoles and the result is a dipole cross section which
grows exponentially with rapidity, that is σ ∼ exp(λY ) where λ = (Ncαs/π )4 log 2.

Eventually, as the dipole cross section rises, non-linear effects will necessar-
ily become relevant. In the last section we noticed this effect when, in writing
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down (8.60), we acknowledged that it ignored the possibility that both newly-
created dipoles could scatter off the proton.

If we assume that the two dipoles scatter independently off the proton, then we can
immediately generalize (8.60). In terms of the S-matrix S(�x, �y, Y ) for scattering a
dipole (�x, �y) off a proton at rapidity Y , independent scattering implies that

∂S(�x, �y, Y )

∂Y
= Ncαs

π

∫
d2�z
2π

(�x − �y)2

(�x − �z)2(�y − �z)2

× (S(�x, �z, Y )S(�y, �z, Y ) − S(�x, �y, Y )). (8.65)

The first term now expresses the possibility that the newly-created dipoles can each
either scatter off the proton or pass through it without any scattering. Substituting for
1 − S(�x, �y, Y ) = 1

2σ (�x, �y, Y ), which follows from (8.21), (8.61) and the fact that

σ (s, r ) = 2
∫

d2�b (1 − S(�x, �y, Y )), (8.66)

we can write (8.65) as

∂σ (�x, �y, Y )

∂Y
= Ncαs

π

∫
d2�z
2π

(�x − �y)2

(�x − �z)2(�y − �z)2

× (
σ (�x, �z, Y ) + σ (�y, �z, Y ) − σ (�x, �y, Y )

− 1
2σ (�x, �z, Y )σ (�y, �z, Y )

)
. (8.67)

This is the Balitsky–Kovchegov (BK) equation [34,35]. The assumption of
independent scattering is a strong one but can be expected to capture at least some
of the essential physics. To go beyond this approximation takes us into the domain
of the ‘colour glass condensate’ (CGC), which is a subject whose details lie beyond
the scope of this chapter. We refer to the review articles [36–38] for the details
and here restrict ourselves to providing a very brief overview that we present at
the end of this subsection.

The non-linear term in the BK equation has the effect of reducing (or ‘saturating’)
the dipole cross section at large Y . Although we focus on the BK equation here,
we ought to stress that the idea of saturation through non-linear gluon dynamics is
not new [39]. For sufficiently small dipoles, the non-linear effects are unimportant.
Conversely, dipoles larger in size than some ‘saturation radius’, rs(x), feel the non-
linear dynamics. We expect that r (x) ought to push to lower values as x decreases,
reflecting the rapid rise of the dipole cross section with decreasing x . Detailed
analysis using the next-to-leading order (NLO) BFKL equation to determine
where non-linear effects should become important indicates that r (x)2 ∼ xλ, where
λ ≈ 0.3 [40]. However, the question of precisely when saturation dynamics
becomes relevant is one that has eluded theoretical efforts to date. One of the
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predictions of the BK equation is that, for r > rs(x), the dipole cross section should
only depend upon the geometrical scaling variable r/rs(x).

It is interesting to note that although the BK equation guarantees that the scattering
probability at fixed impact parameter does not violate unitarity, it does not neces-
sarily follow that unitarity is preserved in the sense of the amplitude as a whole
(that is, in the sense of the Froissart bound). There remains a perturbative tail out
to large impact parameters which is power-like and which generates a growth of
the cross section stronger than that implied by unitarity. For further discussion we
refer to [41,42].

Many authors [16,18,43–45] have formulated dipole models which incorporate
gluon saturation effects in an approximate manner. In this chapter, we will concen-
trate on two saturation models whose parameters have been determined by fitting
to the precise DIS data.

The GW saturation model The model of Golec-Biernat and Wüsthoff (GW)
[16,17] combines the approximate behaviour σ ∝ r2 at small r together with a
purely phenomenological implementation of the anticipated saturation dynamics
which also satisfies geometric scaling. The dipole cross section takes the attractively
simple form:

σ = σ0

[
1 − exp

( −r2 Q2
0

4(xmod/x0)λ

)]
. (8.68)

Here Q0 = 1 GeV and xmod is a modified Bjorken variable,

xmod = x

(
1 + 4m2

f

Q2

)
, (8.69)

where m f is the quark mass. The three free parameters x0, σ0 and λ were determined
using a purely perturbative photon wave function, which is somewhat enhanced at
large r -values by the use of a light quark mass somewhat smaller than the constituent
mass. The fit to data on the F2 structure function yielded σ0 = 29.12 mb, λ = 0.277
and x0 = 0.41 × 10−4, with quark masses 0.14 GeV for the light quarks and 1.5
GeV for the charm quark.

The resulting behaviour of the dipole cross section is illustrated in the left-hand panel
of figure 8.8. (The curves marked ‘FKS’ will be discussed in the next subsection.)
As can be seen, the dipole cross section is characterized by a rapid increase with
decreasing x for small r , changing to a softer x dependence as r increases beyond
the ‘saturation radius’

rs(x) = 2

Q0

(
xmod

x0

)λ/2

. (8.70)
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Figure 8.8. The GW dipole cross section (left) and CGC dipole cross section (right)
at W = 75 GeV for Q2 = 2 GeV2 (dotted line) and Q2 = 20 GeV2 (dashed line).
The Q2-independent FKS dipole cross section (solid line) at the same energy is
shown for comparison.

Saturation arises because of the decrease of the saturation radius with decreasing
x . Let us consider a dipole of fixed transverse size r . If r < rs(x), the dipole cross
section increases rapidly as x decreases. However, this rapid rise switches to a
softer x dependence when x becomes so small that rs(x) itself decreases below the
fixed dipole size r . In the figure, this manifests itself in the fact that the softer x
dependence sets in at a lower value of r at the lower value of Q2. In the language
of the gluon density, G(x, 1/r2), saturation means that the steep rise as x decreases
is tamed as Q2 falls, and that the taming is deferred to lower x as Q2 increases.

We note that a subsequent refinement of the GW model takes into account correc-
tions due to DGLAP evolution at large Q2 [46].

The CGC model The dipole model of Iancu et al [43] can be thought of as a
development of the GW saturation model. Though still largely a phenomenological
parametrization, Iancu et al do argue that it contains the main features of the CGC
regime, where the gluon densities are high and non-linear effects become important.
In particular, they take

σ = 2π R2N0

(
r Qs

2

)2[γs+log(2/r Qs )/(κλ log(1/x))]
for r Qs ≤ 2

= 2π R2{1 − exp[−a log2(br Qs)]} for r Qs > 2 , (8.71)

where the saturation scale Qs(x) ≡ (x0/x)λ/2 GeV. The coefficients a and b are
uniquely determined by ensuring continuity of the cross section and its first deriva-
tive at r Qs = 2. For r Qs < 2 the solution matches that of the leading order BFKL
equation and fixes γs = 0.63 and κ = 9.9. The coefficient N0 is strongly correlated
to the definition of the saturation scale and Iancu et al found that the quality of fit
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Figure 8.9. The Wilson line contributing to a high-energy quark passing through
th colour field of the proton.

to F2 data is only weakly dependent upon its value. For a fixed value of N0, there
are therefore three parameters which need to be fixed by a fit to the data, that is x0,
λ and R. In this chapter, we take N0 = 0.7 and a light quark mass of mq = 140
MeV, for which the fit values are x0 = 2.67 × 10−5, λ = 0.253 and R = 0.641 fm.
The CGC dipole cross section is shown in the right-hand panel of figure 8.8. It is
very similar to the GW dipole cross section and we show only the predictions of
the CGC model when comparing to data.

The colour glass condensate The dipole cross section can be obtained by aver-
aging the product of the two Wilson lines, which correspond to the quark–antiquark
dipole, over all colour configurations of the proton, that is,

S(�x, �y, Y ) = 1

Nc
〈V †(�x)i j V (�y) j i 〉, (8.72)

where

V †
i j (�x) = P exp

(
ig

∫ ∞

−∞
dx+ A−

a (x+, �x)ta
)

i j
(8.73)

is the Wilson line for a right-moving (x− ≈ 0) quark at fixed �x , as represented in
figure 8.9. P denotes that the fields Aata are ordered from left to right in order of
descending x+ and the angled brackets in (8.72) indicate an average over gluon
fields in the proton. In this way the essential gluon dynamics is associated with the
proton, which is natural in a frame where the proton is left-moving and at much
larger rapidity than the right-moving dipole. In (8.73), the interaction with the gluon
field of the proton is of eikonal type and as such implicitly assumes that the gluon
field is sufficiently soft, that is it is dominated by Fourier components that are small
compared to the energy of the quark – we expect this to hold in the diffractive
limit [47].

The field averaging at rapidity Y can be formulated as a functional integral with
a weight functional WY [A−]. Generally this functional cannot be evaluated. How-
ever, further progress can be made since the evolution of WY [A−] in rapidity can
be computed in perturbative QCD. This is the Jalilian-Marian, Iancu, McLerran,
Weigert, Leonidov, Kouner (JIMWLK) evolution equation which lies at the heart
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of the CGC approach [48]:

∂WY [α]

∂Y
= 1

2

∫
x,y

δ

δαa(�x)
ηab(�x, �y)

δWY [α]

δαb(�y)
, (8.74)

where

ηab(�x, �y) = 1

π

∫
d2�z

(2π )2

(�x − �z) · (�y − �z)

(�x − �z)2(�y − �z)2

× (
1 + Ṽ †(�x)Ṽ (�y) − Ṽ †(�x)Ṽ (�z) − Ṽ †(�z)Ṽ (�y)

)ab
(8.75)

and Ṽ †(�x) is defined analogously to (8.73) but is in the adjoint representation.
As rapidity increases, JIMWLK accounts for the fact that more and more gluon
emissions can take place and that eventually, as a result of the non-linear gluon
dynamics, the proton saturates with gluons.

The dipole DIS S-matrix is thus given by

S(�x, �y, Y ) = 1

Nc

∫
[Dα] V †(�x)i j [α]V (�y) j i [α] WY [α] (8.76)

and hence its evolution satisfies the equation

∂S(�x, �y, Y )

∂Y
= 1

Nc

∫
[Dα] V †(�x)i j [α]V (�y) j i [α]

∂WY [α]

∂Y
. (8.77)

Substituting for the Wilson lines and performing the functional derivatives in (8.74)
yields the Balitsky equation [35]:

∂S(�x, �y, Y )

∂Y
= Ncαs

π

∫
d2�z
2π

(�x − �y)2

(�x − �z)2(�y − �z)2

×
(

1

N 2
c
〈V †(�x)i j V (�z) j i V †(�z)kl V (�y)lk〉 − S(�x, �y, Y )

)
. (8.78)

This equation reduces to the BK equation (8.67) if one assumes that the average
over the product of Wilson loops is the product of the averages. Otherwise, the
evolution equation is not closed but rather the first equation in an infinite hierarchy.
The BFKL equation (8.60) emerges on expanding in the Wilson lines to lowest
order in the strong coupling.

8.4.3 Regge dipole models

With the discovery of ‘hard diffraction’ at HERA, it became clear that diffractive
photoprocesses could no longer be described by the exchange of a single Regge pole,
the ‘soft pomeron’, characterized by the trajectory (8.1). One possible interpretation
is that there is a new phenomenon – ‘hard diffraction’ – which becomes dominant
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for hard enough scales and large enough energies. If one assumes that this can
also be approximated by a Regge pole, then one is led to the hypothesis of two
pomerons: the soft pomeron (8.1) which dominates in hadronic diffraction and
some ‘soft’ photoprocesses; and a second pomeron, the ‘hard pomeron’, which
dominates for hard enough scales and large enough energies. This hypothesis has
been explored by Donnachie and Landshoff [49], who obtained an excellent fit
to data on the proton structure function, the charmed structure function and J/ψ

production using a hard pomeron trajectory

αP (t) ≈ 1.42 + 0.10 t.

The varying energy dependence (8.9) observed in diffractive photoprocesses then
arises from the varying relative importance of these two contributions.

The same hypothesis has also been used in the context of GVD models by Kerley
and Shaw [50], who argued that the hard-pomeron term must be associated with
long-lived fluctuations of the photon with very large invariant masses. In the context
of dipole models, such heavy long-lived states are naturally associated with small
dipoles, with correspondingly large components of the quark’s transverse momen-
tum leading to large expectation values for the dipole invariant mass. These ideas
led FKS [15] to propose a two-component Regge model for the dipole cross section
of the form

σ (s, r ) = σsoft(s, r ) + σhard(s, r ). (8.79)

The soft term has a weaker energy dependence, σsoft ∼ s0.06, than the hard term,
σhard ∼ s0.44, with the hard term most important at low r (σhard ∼ r2) and the soft
term dominant at large r .

The free parameters in both the dipole cross section and the photon wave function
were determined by fitting to DIS and real photoabsorption data, with the FKS
model using a photon wave function incorporating the enhancement factor (8.48).
The resulting dipole cross section is shown in figure 8.10. As can be seen, as s
increases the dipole cross section grows most rapidly for small r , where the hard
term dominates, eventually exceeding the typically hadronic cross section found for
dipoles of large r ≈ 1 fm. This rise should be tamed, sooner or later, by saturation
effects. However, such saturation effects are not included in the FKS model, or in
any two-component Regge model. For comparison, we show the FKS dipole cross
section in each of the panels in figure 8.8. The non-monotonicity at W = 300 GeV
is a direct consequence of not including any saturation.

Other parametrizations of similar form have been presented by Donnachie and
Dosch [51], who obtained successful predictions for a variety of reactions, but did
not consider DDIS, and by Forshaw and Shaw [18].
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Figure 8.10. The FKS Regge dipole cross section: dashed line W = 10 GeV, solid
line W = 75 GeV and dotted line W = 300 GeV.

The Forshaw–Shaw (FS2004) approach is identical in philosophy to the original
model of FKS in that it is a sum of hard and soft components. Since we shall use
the FS2004 form of the dipole cross section to make comparisons to data in the
next section we shall be a little more explicit. Most importantly, FS2004 can serve
either as an unsaturated Regge model or as a saturation model, depending on how
one of the parameters is determined.

The dipole cross section is assumed to satisfy the simple form

σ = AHr2x−λH
m for r < r0 and

= ASx−λS
m for r > r1, (8.80)

where

xm = Q2

Q2 + W 2

(
1 + 4m2

Q2

)
. (8.81)

For light-quark dipoles, the quark mass m is a parameter in the fit, whilst for charm
quark dipoles the mass is fixed at 1.4 GeV.

In the intermediate region r0 ≤ r ≤ r1 one has to interpolate linearly between
the two forms of (8.80). Whether this is a Regge-inspired model or a satura-
tion model depends entirely upon the way in which the boundary parameter r0 is
determined.

If the boundary parameter r0 is kept constant, then the parametrization reduces to a
sum of two powers, as might be predicted in a two-pomeron approach. It is plainly
unsaturated, with the dipole cross section obtained at small r -values growing rapidly
with increasing s at fixed Q2 (or equivalently with decreasing x) without damping
of any kind. We shall henceforth call this the FS2004 Regge model.
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Alternatively, saturation can be introduced by adopting a device previously utilized
in [47]. Instead of taking r0 to be fixed one determines it to be the value at which
the hard component is some fixed fraction of the soft component, that is

σ (s, r0)/σ (s, r1) = f, (8.82)

and treat f instead of r0 as a fitting parameter. This introduces no new parameters.
However, the scale r0 now moves to lower values as x decreases, and the rapid
growth of the dipole cross section at a fixed value of r begins to be damped as soon
as r0 becomes smaller than r . In this sense saturation effects are modelled, albeit
crudely, with r0 the saturation radius. We shall henceforth call this the FS2004
saturation model.

8.5 Dipole phenomenology

It is now time to confront the dipole model predictions to the data. First, the pre-
cise data on DIS will be used to pin down the parameters of a particular dipole
model. Afterwards, one is able to make predictions for other observables involving
few, if any, additional parameters. Apart from wanting to examine how the dipole
formalism fares against the data, we would like to exploit the universality of the
formalism to test explicit theoretical ideas against the widest-possible variety of
data. In particular, it is most interesting to inquire whether the data provide evidence
for saturation dynamics or whether a two-component Regge model is successful.

It may well be that the Regge approach with two pomeron poles is the most appro-
priate description of the data with non-linear saturation effects entering at energies
beyond those accessed in experiment so far. On the other hand, one might take
the view that there is only a single pomeron pole with an intercept substantially
above unity (or an even more complicated j-plane analytic structure) and that in
order to explain the data saturation dynamics enters, at low scales there being more
saturation than at higher scales. Both of these rather general approaches can at
least qualitatively explain why the energy dependence of the data is as it is. The
two-pomeron approach attributes the more steeply rising cross section at higher Q2

to the increasing role of the harder pomeron whilst the saturation model approach
attributes this steepening to the diminishing role of saturation effects.

To this end we shall now compare the CGC and FS2004 models with the available
data.

8.5.1 Analysis of the structure function data

We shall first discuss the fits to the DIS data [52] in the kinematic range

0.045 GeV2 < Q2 < 45 GeV2 x ≤ 0.01. (8.83)
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Figure 8.11. Comparison of the FS2004 dipole model to a subset of DIS data
[52]. Upper: No saturation fits. FS2004 Regge dipole fit (dashed line) and (solid
line) a fit of the same model to data in the restricted range 5 × 10−4 < x < 10−2,
extrapolated over the whole x-range x < 0.01. Lower: Saturation fits. FS2004
saturation fit (solid line) and the CGC dipole model (dot-dashed line).

As the parameters of the CGC fit to data have already been presented, let us turn to
the FS2004 fits.

Regge fits to DIS data The best fit obtained using the FS2004 Regge model (that
is without saturation) is shown as the dashed line in figure 8.11 (upper) and the
parameter values are listed in table 8.1. While the values of the Regge exponents λS

and λH and of the boundary parameters r0 and r1 are eminently sensible, the quality
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AH 0.650 λH 0.338
AS 58.42 λS 0.0664
r1 4.844 r0 0.872
m 0.223

Table 8.1. Parameters for the FS2004 Regge
model in the appropriate GeV-based units.

of the fit is not good, corresponding to a χ2/data point of 428/156. One might worry
that this merely demonstrates a failure of this admittedly simple parametrization.
However, we have attempted to fit the data with other Regge inspired models,
including the original FKS parametrization, but without success.

A possible reason for this failure is suggested by figure 8.11 (upper). At fixed-
Q2, the poor χ2 arises because the fit has much too flat an energy dependence at
the larger x values for all except the lowest Q2 value. This could be corrected by
increasing the proportion of the hard term, but this necessarily would lead to a
steeper dependence at the lower x values at all Q2. This interpretation is confirmed
by the solid curve in figure 8.11 (upper), which shows the result of fitting only
to data in the range 5 × 10−4 < x < 10−2, and then extrapolating the fit to lower
x values, corresponding to higher energies at fixed Q2. As can be seen, this leads
to a much steeper dependence at these lower x values than is allowed by the data at
all Q2. An obvious way to solve this problem is by introducing saturation at high
energies, to dampen this rise. We shall discuss this in the next subsection.

Another way to alleviate the problem would be to multiply the dipole cross section
by a factor (1 − x)δ. Such a correction is clearly beyond the control of the Regge
approach and is anticipated in a partonic approach. However, even with δ as large as
20, the fit is still not satisfactory. The problem could also be eliminated by restricting
the fitted region to x ≤ 10−3. In our view, there is no justification for this as the
non-diffractive contributions are already small at x ≈ 0.01, the (1 − x)δ correction
providing an example of this.

Saturation fits to DIS The best-fit parameter values for what we refer to as our
FS2004 saturation model are listed in table 8.2 corresponding to a χ2/data point of
155/156. The corresponding fits to the data are shown in figure 8.11 (lower). Also
shown are the very similar results obtained using the CGC model [45].

It is clear from these results that the introduction of saturation into the FS2004 model
immediately removes the tension between the soft and hard components which is so
disfavoured by the data. However, it is important to note that this conclusion relies
on the inclusion of the data in the low-Q2 region: both the Regge and saturation
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AH 0.836 λH 0.324
AS 46.24 λS 0.0572
r1 4.48 f 0.129

m 0.140

Table 8.2. Parameters for the FS2004 saturation
model in the appropriate GeV-based units.

Figure 8.12. The DDIS process

models yield satisfactory fits if we restrict the fit to Q2 ≥ 2 GeV2, with χ2/data
point values of 78/86 and 68/86 respectively.

8.5.2 Diffractive deep inelastic scattering

We are now ready to compare the predictions of the FS2004 and CGC models with
data on DDIS.

Kinematics of diffraction The generic diagram of the DDIS process (8.6) is
shown in figure 8.12. In addition to the standard DIS variables x and Q2, there
are two other kinematic variables: t , the squared four-momentum transfer to the
proton, and m2

X , the invariant mass of the diffractively produced state. In addition,
it is useful to introduce two further variables:

xIP = q.(p − p′)
q.p

� m2
X + Q2

W 2 + Q2
,

β = Q2

2q.(p − p′)
= x

xIP
� Q2

m2
X + Q2

. (8.84)

In the infinite momentum frame, xIP gives the fraction of the longitudinal proton
momentum taken from the proton vertex by the diffractive exchange, while β gives
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the fraction of xIP transferred to the struck quark. Hence the product xIPβ gives
the fraction of the (longitudinal) momentum of the proton possessed by the struck
quark, that is x = xIPβ. The approximate relations included in (8.84) hold good in
the diffractive regime of high s.

As in DIS, the differential cross sections observed in DDIS are expressed in terms
of structure functions which characterize the interaction of the exchanged photon
with the hadronic system. Specifically, the transverse and longitudinal diffractive
structure functions F D(4)

T and F D(4)
L are defined by

d4σ (ep → eXp)

dxdQ2dxIPdt
= 4πα2

x Q4

[(
1 − y + y2

2

)
F D(4)

T − (1 − y)F D(4)
L

]
, (8.85)

where y is the usual DIS variable y = q · p/k · p. The sum of the transverse and
longitudinal structure functions defines

F D(4)
2 = F D(4)

T + F D(4)
L . (8.86)

All three structure functions F D(4)
i are expressed in terms of the associated virtual

photon cross sections by a relation analogous to (8.27) in inclusive DIS:

F D(4)
i (t, xIP , β, Q2) = Q2

4π2α

dσi (γ ∗p → Xp)

dxPdt
, (8.87)

where i = 2, T, L . We shall be interested in the structure functions

F D(3)
2 , F D(3)

T , F D(3)
L , (8.88)

which are obtained by integrating the corresponding F D(4)
i over the momentum

transfer |t |. As for exclusive processes, this is often done using the empirical
parametrization

dσ

dt
= dσ

dt

∣∣∣∣
t=0

exp(−B|t |). (8.89)

Dipole model predictions The contribution due to quark–antiquark dipoles to
F D(3)

L ,T can be obtained from a momentum space treatment, as described in [17,53].
Here we shall simply quote the result.

First we introduce the definitions

�0,1 ≡
(∫ ∞

0
rdr K0,1(εr )σ (x p, r )J0,1(kr )

)2

, (8.90)
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Figure 8.13. The qq̄ and qq̄g contributions to F D(3)
2 .

where k2 = m2
X z(1 − z) + m2

f . Note the shift in notation for the dipole cross section
to emphasize that the relevant energy is that determined by xIP . The diffractive
structure functions are then given by

xIP F D(3)
qq̄,L (Q2, β, xIP ) = 3Q6

32π4β B
·
∑

f

e2
f · 2

∫ 1/2

z0

dzz3(1 − z)3�0, (8.91)

and

xIP F D(3)
qq̄,T (Q2, β, xIP ) = 3Q4

128π4β B
·
∑

f

e2
f · 2

∫ 1/2

z0

dzz(1 − z)

× {
ε2[z2 + (1 − z)2]�1 + m2

f �0
}

(8.92)

for the longitudinal and transverse components respectively. The lower limit of

the integral over z is given by z0 = (1/2)(1 −
√

1 − 4m2
f /m2

X ) (which ensures that

k2 > 0) and B is the slope parameter.

If we are to confront the data at low values of β, corresponding to large invariant
masses m X , it is necessary to also include a contribution from the higher Fock
state qq̄g. We can estimate this contribution using an effective ‘two-gluon dipole’
approximation due to Wüsthoff [17,53], as illustrated in figure 8.13.

This gives

xIP F D(3)
qq̄g,T (Q2, β, xIP ) = 81βαs

512π5 B

∑
f

e2
f

∫ 1

β

dθ

(1 − θ )3

[(
1 − β

θ

)2

+
(

β

θ

)2
]

×
∫ (1−θ )Q2

0
dk2

t log

(
(1 − θ )Q2

k2
t

)

×
[∫ ∞

0
udu σ (u/kt , xIP )K2

(√
θ

1 − θ
u2

)
J2(u)

]2

,

(8.93)
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Figure 8.14. Comparison of the predictions of the FS2004 Regge fit (dashed line),
the FS2004 saturation fit (solid line) and CGC fit (dot-dashed line) with the data
on F D(3)

2 . Preliminary data from [55].

where, following [54], we have inserted a missing factor of 1
2 compared with the

expression in [17]. The light-cone variable

z = θ

1 − θ

k2
t

Q2

and u = ktr . Note in particular that the normalization of this component is rather
uncertain.

Comparison with experiment The predictions obtained from the above formu-
lae for DDIS involve no adjustment of the dipole cross sections used to describe
the F2 data. However, we are free to adjust the forward slope for inclusive diffrac-
tion, B, within the range acceptable to experiment, which means that the overall
normalization of F D(3)

2 is free to vary slightly. We choose the rather low value of
B = 4.5 GeV−2 in what follows. We are also somewhat free to vary the value of αs

used to define the normalization of the qq̄g component, which is important at low
values of β. Rather arbitrarily we take αs = 0.1.

In principle, if evidence for saturation is seen in the DIS data, then it should also
be detectable at some level in DDIS data.

As we have seen, there is a characteristic difference in the predictions of the Regge
and saturation models for the energy dependence of the DIS structure function F2 at
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Figure 8.15. Comparison of the predictions of the FS2004 Regge fit (dashed line),
the FS2004 saturation fit (solid line) and CGC fit (dot-dashed line) with the data on
F D(3)

2 . Top: Q2 = 8.5 GeV2; bottom: Q2 = 15 GeV2; and in each case xIP = 0.003.
Preliminary data from [55].

fixed Q2. If DIS and DDIS are described by the same dipole cross section, then there
should be corresponding differences in the predictions for the energy dependence of
the diffractive structure function F D(3)

2 at fixed Q2 and fixed diffractively produced
mass m X . In other words, it should be seen in the xIP dependence at fixed Q2 and
fixed β.

In figure 8.14 we show the predictions of our new FS2004 Regge and saturation
models for the xIP dependence of the structure function F D(3)

2 at fixed Q2 and β,
together with the corresponding predictions of the CGC model. In doing so, we have
chosen to focus on β values in the intermediate range where the predictions are
relatively insensitive to the qq̄g term and to the large-r behaviour of the photon wave
function, which are both rather uncertain. There is, however, still some freedom
in the choice of slope parameter, and hence in the absolute normalization. As can
be seen there is, as expected, a characteristically different energy dependence of
the Regge model and the two saturation models. There is a hint that the saturation
models are preferred, but more accuracy is required in order to make a more positive
statement.

In figure 8.15 we show the β dependence at fixed xIP and Q2. Although this is
unlikely to exhibit saturation effects in a transparent way, it is nonetheless a sig-
nificant test of the dipole models discussed, because different size dipoles enter
in markedly different relative weightings to the DIS case. For β ≥ 0.4, where the
qq̄ dominates, it is clear that the Regge dipole and both saturation models are
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Figure 8.16. Breakdown of the various contributions to F D(3)
2 (in the CGC model).

Solid line is the total contribution, short dashed line is the qq̄ contribution (light
quarks only), dash-dotted line is the qq̄g contribution and the long dashed line is
the cc̄ contribution. Top: Q2 = 8.5 GeV2; bottom: Q2 = 15 GeV2; and in each
case xIP = 0.003. Preliminary data are from [55].

compatible with the data, given the uncertainty in normalization associated with
the value of the slope parameter mentioned above. At the lowest β values, where the
model-dependent qq̄g component is dominant, there is a discrepancy between the
data and the predictions of all three models, which can only be removed by reducing
the value of αs well below the value assumed.

Finally, figure 8.16 explicitly shows the contribution from the light quark–antiquark
dipoles. The majority of the remaining contribution comes from the qq̄g term and
there is a small contribution from charm quark–antiquark dipoles. As can be seen,
in the intermediate- to high-β region, where the qq̄g contribution is negligible,
the predictions agree well with the data. However, the qq̄g contribution can be
seen to dominate, as expected, for small β, corresponding to diffractively produced
states with invariant mass m2

X > Q2. The breakdown is qualitatively similar in other
dipole models.

8.5.3 Deeply virtual Compton scattering

DVCS on protons, γ ∗ p → γ p, is seen as an important reaction for the study of
diffraction in QCD, despite the obvious difficulty in measuring it. In the standard
QCD approach the amplitude is described at large Q2 by skewed parton distribu-
tions, corresponding to operator products evaluated between protons of unequal
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momenta, as discussed in chapter 9. Furthermore, it offers an opportunity to access
directly the real part of the diffractive amplitude, which is difficult to measure
in other ways. To see this, we note that virtual Compton scattering is accessed
experimentally through the leptonic process:

e±(k) + p(p) → e±(k ′) + p(p′) + γ (q ′), (8.94)

where the four-momenta of the incoming and outgoing particles are given in brack-
ets. As well as DVCS, the Bethe–Heitler (BH) process, in which the photon is
radiated by the initial or final state lepton, also contributes to the DVCS amplitude.
In particular, interference terms between these two contributions can be detected by
measuring asymmetries defined in the target rest-frame with respect to the azimuthal
angle φ between the electron scattering plane and the plane defined by the virtual
photon and the outgoing proton momenta. Because the BH amplitude is itself real,
for the case of unpolarized electron scattering from an unpolarized target, these
interference terms are sensitive to the real part of the diffractive amplitude.

We will not discuss the asymmetries further, because they have not yet been mea-
sured, but refer to Balitsky and Kuchina [56] for their detailed definitions and to
Freund and McDermott [57] for predictions of their magnitudes in the dipole model.
However, data integrated over φ are available for unpolarized particles. In this case
the interference term between the two processes vanishes in the limit of large Q2,
so that the differential cross section can be written as:

d2σ

dyd Q2
= d2σDVCS

dyd Q2
+ d2σBH

dyd Q2
.

Here y ≈ (Q2 + W 2)/S is the fraction of the incoming electron energy carried by
the virtual photon, where S = (k + p)2 is the square of the lepton–proton centre-
of-mass energy and we have neglected the lepton and proton masses. The BH
contribution is essentially known in terms of the Dirac and Pauli form factors (for
example see (18) and (27) of [58]) and can be easily calculated and subtracted from
the total to leave the DVCS cross section

d2σDVCS

dW d Q2
= αem

π Q2W
[1 + (1 − y)2] σ (γ ∗ p → γ p) (8.95)

in a form convenient for comparing to dipole predictions for σ (γ ∗ p → γ p).

Dipole predictions The imaginary part of the DVCS amplitude at zero momen-
tum transfer is given by

Im ADVCS (W 2, Q2, t = 0) =
∫

dz d2r �T ∗
γ (r, z, Q2) σ (s, r ) �T

γ (r, z, 0). (8.96)
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We have here made explicit the dependence of the photon wave function upon
the photon virtuality. Thus dipole models provide predictions for this process with
no adjustable parameters beyond those used to describe DIS and DDIS. However,
before comparing these predictions with experiment, some general comments are
worth making.

Firstly, only transverse virtual photons contribute to this amplitude, because the
final photon is necessarily transverse, and the dipoles scatter without changing
helicity. In addition, (8.96) indicates that DVCS is a good probe of the transition
between soft and hard regimes in the dipole model. This is because DVCS is more
sensitive to large dipoles than DIS at the same Q2, because of the presence of the
real-photon wave function in the amplitude. Finally we note that although (8.96)
contains no adjustable parameters, a value of the badly-determined slope parameter
B must be assumed in order to turn the predictions for the forward amplitude into
predictions for the cross section. For this reason, the normalization is uncertain.

In figure 8.17, we compare the predictions of the FS2004 Regge and saturation
models and the CGC model with H1 data [59], using a value B = 7 GeV−2 for the
slope parameter. Bearing in mind the normalization uncertainty, the agreement is
excellent for all three models, although significant differences between the saturated
and unsaturated models appear when the predictions are extrapolated to higher
energies, as one would expect.

8.5.4 Vector-meson production

We next consider the diffractive vector-meson production reactions, that is

γ ∗(q) + p(p) → V (q ′) + p(p′) V = ρ, φ or J/ψ. (8.97)

In these processes the choice of vector meson, as well as of different photon virtual-
ities, allows one to explore contributions from dipoles of different transverse sizes
[60]. The process also has the advantage that there is a wide range of available data,
including data on the ratio of the contributions from longitudinal and transverse
photons, obtained from the angular distribution of the vector-meson decay prod-
ucts. It ought also to provide important information on the poorly-known light-cone
wave functions of the vector mesons.

Here we will again confine ourselves to the CGC model and the FS2004 Regge and
saturation models. We will show predictions corresponding to the boosted Gaussian
wave functions discussed in section 8.3, without adjustment of parameters to fit the
data. In comparing with data, one must always bear in mind the uncertainties in
the wave functions, and also in the empirical slope parameter B. A more detailed
study of these issues can be found in [24].
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Figure 8.17. Comparison of the predictions of the FS2004 Regge fit (dashed line),
the FS2004 saturation fit (solid line) and CGC fit (dot-dashed line) with the DVCS
data [59]. The upper plot shows the W dependence at Q2 = 4.5 GeV2. The lower
plot shows the Q2 dependence at W = 75 GeV.

Production of ρ and φ In figure 8.18 we show the predictions of the three models
for ρ production. A correction for the real parts is included, as discussed in [24],
and it is typically less than 20%. The parametrization of [61] is used for the B
parameter, that is (in appropriate GeV-based units)

B = 0.60

(
14

(Q2 + M2
V )0.26

+ 1

)
. (8.98)

Note that the flatness of the CGC prediction at Q2 = 0 is a consequence of using
the modified x variable of (8.69). The original CGC fit was performed without this
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Figure 8.18. Comparison of the predictions of the FS2004 Regge fit (dashed line),
the FS2004 saturation fit (solid line) and CGC fit (dot-dashed line) to the ρ meson
data. The upper plot shows the W dependence at Q2 = 0 GeV2, Q2 = 3.5 GeV2

and Q2 = 13 GeV2 [62]. The lower plot shows the Q2 dependence at W = 75 GeV
[63].

modification but to higher-Q2 DIS data. Some modification is clearly needed if
we are to try to extrapolate to lower Q2 otherwise the cross section diverges. The
quark-mass correction is sensible and does not spoil the agreement with the DIS
data.

The data on φ meson production are qualitatively very similar to those for the ρ.

8.6 Conclusions

In this chapter we have shown how the high-energy interactions of a photon with
a hadron can be described within the framework of the colour-dipole model. The
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space-time structure of the physics allows a factorization of all scattering amplitudes
in a way which allows one to view the interaction as the scattering of a colour dipole
off the proton. This dipole scattering is universal and provides the unifying link
between all high-energy photon–nucleon reactions. In other words, once the dipole
cross section is known one is in a position to predict a wide range of observables.

QCD provides the basis on which to compute the dipole cross section and we have
spent some time exploring the underlying theory. At sufficiently high energies the
dipole cross section should saturate, and it is one of the principal goals of experiment
to probe for this new non-linear QCD dynamics. We have compared models of the
dipole cross section which include and exclude saturation to a very wide range of
data collected at the DESY ep collider HERA. One of the aims of such a comparison
is to assess the extent to which the data are able to reveal the onset of saturation.
Subject to the caveat that we have only considered QCD inspired models for the
dipole cross section, and not models which have a rigorous quantitative basis in
QCD, we have shown that the data do provide tentative evidence in favour of the
models which include saturation.
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9

Generalized parton distributions

V Burkert and M Diehl

Generalized parton distributions (GPDs) have been recognized as a versatile tool to
investigate and describe the structure of hadrons at the quark–gluon level. They are
closely related to conventional parton distributions and also to hadronic form fac-
tors, but contain information that cannot be accessed with either of these quantities.
Important areas where GPDs can provide new insight are the spatial distribution
of quarks and gluons within a hadron and the contribution of quark orbital angular
momentum to the nucleon spin. In this chapter we present the basics of the theory
of GPDs, the dynamics they encode and the efforts of phenomenology and experi-
ment to measure them in exclusive scattering processes. We do not attempt to give
a comprehensive account of the vast literature and refer to the reviews [1–5] for
more detailed discussion and references.

Experimental access to GPDs is provided in suitable hard scattering processes with
exclusive final states, especially in processes initiated by a highly virtual photon.
Recall that the cross section for inclusive deep inelastic scattering (DIS) is related
to the amplitude for forward Compton scattering, γ ∗ p → γ ∗ p, via the optical
theorem. In the Bjorken limit of large Q2 = −q2 at fixed xB = Q2/(2pq), this
amplitude factorizes into a short-distance process involving quarks and gluons and
the usual parton distributions which encode the structure of the target hadron at
quark–gluon level. At leading order in αs one then obtains the handbag diagram in
figure 9.1(a) with p′ = p and q ′ = q. In appropriate kinematics this type of fac-
torization generalizes to the non-forward amplitude which can appear in exclusive
processes. One such example is ep → epγ , called deeply virtual Compton scatter-
ing (DVCS), where the photon with momentum q ′ is real and one takes the limit
of large Q2 at fixed xB and fixed squared momentum transfer t = (p − p′)2. The
long-distance dynamics is now encoded in generalized parton distributions which
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q q’

q’

q

p′p

p(a) (b)

p′

Figure 9.1. (a) Handbag diagram for the Compton amplitude in Bjorken kinemat-
ics. A second diagram is obtained by interchanging the photon vertices. (b) The
crossed-channel diagram for two-photon annihilation into a hadron–antihadron
pair.

involve the different hadron states before and after the scattering. Not only can
the hadron momenta differ but also their polarization, and one may also have the
transition from one hadron to another. Each of these degrees of freedom opens a
way to study important aspects of hadron structure, as we will see in the following.

Crossing symmetry relates Compton scattering with the annihilation of two photons
into a hadron–antihadron pair. An analogous pattern of factorization, shown in figure
9.1(b), is found in the limit where at least one of the photons goes far off-shell at
fixed invariant mass s = (p + p′)2 of the produced hadrons. This leads to quantities
describing the hadronization of a quark–antiquark pair into the final state. These
generalized distribution amplitudes are connected to GPDs by s–t crossing. At the
same time they are direct extensions of the light-cone distribution amplitudes for,
say, a single-pion state which occur in two-photon annihilation γ ∗γ → π0.

9.1 Properties and physics of GPDs

9.1.1 Definitions and basics

The usual parton distributions are expectation values of quark or gluon operators
for a given hadron state. Their generalizations describe the matrix elements of
the same operators, but between different hadron states. To describe partons it is
useful to introduce light-cone coordinates v± = (v0 ± v3)/

√
2 and the transverse

part �v = (v1, v2) of a four-vector v, where we define the scalar product such that
�v 2 ≥ 0. Note that a plus-momentum p+ becomes proportional to the longitudinal
momentum of a particle in the infinite-momentum frame, where p3 → ∞ and
where the parton picture is most immediate. Fractions of plus-momentum (often
called ‘momentum fractions’ for ease of language) are invariant under boosts in
the z-direction. For the generalized quark distributions in the nucleon one can



Generalized parton distributions 361

ξ−x−ξ− x +ξxxξ− x+ξ x−ξ

ξ <x<1<x<−1 −ξ 1−ξ<x<ξ
Figure 9.2. Partonic representation of a GPD in different regions of x . Momentum
fractions x and ξ refer to the average hadron momentum P = 1

2 (p + p′).

define [1]

Fq = 1

2

∫
dz−

2π
eix P+z− 〈

p′∣∣ q̄
(− 1

2 z
)

γ +q
(

1
2 z

) ∣∣p
〉∣∣∣

z+=0, �z =�0

= 1

2P+

[
Hq(x, ξ, t) ū(p′)γ +u(p) + Eq(x, ξ, t) ū(p′)

iσ+α�α

2m
u(p)

]
,

F̃q = 1

2

∫
dz−

2π
eix P+z− 〈

p′∣∣ q̄
(− 1

2 z
)

γ +γ5 q
(

1
2 z

) ∣∣p
〉∣∣∣

z+=0, �z =�0

= 1

2P+

[
H̃q(x, ξ, t) ū(p′)γ +γ5u(p) + Ẽq(x, ξ, t) ū(p′)

γ5�
+

2m
u(p)

]
,

(9.1)

where we omit the polarization dependence of the hadron states and spinors for
brevity. As a shorthand for different quark flavour combinations we will use H u+d =
H u + H d etc. We write

P = 1
2 (p + p′), � = p′ − p, t = (p′ − p)2, (9.2)

and m for the nucleon mass. The plus-momentum transfer to the proton is described
by the skewness parameter ξ = (p − p′)+/(p + p′)+. As a consequence of Lorenz
invariance the GPDs H , E , H̃ , Ẽ only depend on t and on the momentum fractions
x and ξ relative to the average hadron momentum P . These definitions hold in
light-cone gauge A+ = 0. In other gauges a Wilson line, or gauge link, has to be
inserted between the antiquark and quark fields q̄(− 1

2 z) and q( 1
2 z) as explained in

chapter 7.

There are three distinct regions in x for a given value of ξ , as shown in
figure 9.2. We assume ξ > 0 here, which is the case of relevance in the physi-
cal processes studied so far. For ξ < x < 1, GPDs describe the emission of a quark
by the incoming hadron and its absorption by the outgoing one. For −1 < x < −ξ

one has emission and absorption of an antiquark. In the central region −ξ < x < ξ ,
which has no analogue in the usual parton distributions, one has the emission of a
quark–antiquark pair from the initial hadron. Following the pattern of evolution one
refers to ξ < x < 1 and −1 < x < −ξ as Dokshitzer, Gribov, Lipatov, Altrarelli,
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Parisi (DGLAP) regions, and to −ξ < x < ξ as the Efremov, Radyushkin,
Brodsky, Lepage (ERBL) region, as explained in section 9.1.5. The parton inter-
pretation can be made explicit in light-cone quantization (see [7] for an introduction
in the context of parton distributions). In this formalism the quark field appearing
in (9.1) can be Fourier expanded in terms of quark annihilation and antiquark cre-
ation operators, b and d†, which come with factors e−i z−k+

and eiz−k+
respectively.

Here k+ is constrained to be non-negative, as k0 + k3 must be for a positive-energy
state on mass shell. The three regions in figure 9.2 then select the terms dd†, db,
b†b, respectively.

In the forward limit p = p′ the GPDs Hq and H̃q become the usual parton distri-
bution functions (see chapter 7). For x > 0 one has

Hq(x, 0, 0) = q(x), Hq(−x, 0, 0) = −q̄(x),

H̃q(x, 0, 0) = �q(x), H̃q(−x, 0, 0) = �q̄(x) (9.3)

in terms of the unpolarized and polarized quark distributions q(x) and �q(x) and
their analogues q̄(x) and �q̄(x) for antiquarks. Eq and Ẽq are multiplied with
p′ − p in their definitions, so that they decouple in the forward limit and are
invisible in processes where the usual parton densities are accessed. The com-
binations Hq(x, ξ, t) − Hq(−x, ξ, t) and H̃q(x, ξ, t) + H̃q(−x, ξ, t) describe the
exchange of positive C parity in the t-channel; in the forward limit they are the
sum of quark and antiquark distributions. In turn, Hq(x, ξ, t) + Hq(−x, ξ, t) and
H̃q(x, ξ, t) − H̃q(−x, ξ, t) correspond to negative C parity in the t channel. The
relevant combinations for E are as for H , and those for Ẽ are as for H̃ .

For gluons we have definitions similar to those in the quark sector:

F g = 1

P+

∫
dz−

2π
eix P+z− 〈

p′∣∣ G+μ
(− 1

2 z
)

Gμ
+ (

1
2 z

) ∣∣p
〉∣∣∣

z+=0, �z =�0

= 1

2P+

[
H g(x, ξ, t) ū(p′)γ +u(p) + Eg(x, ξ, t) ū(p′)

iσ+α�α

2m
u(p)

]
,

F̃ g = − i
P+

∫
dz−

2π
eix P+z− 〈

p′∣∣ G+μ
(− 1

2 z
)

G̃μ
+ (

1
2 z

) ∣∣p
〉∣∣∣

z+=0, �z =�0

= 1

2P+

[
H̃ g(x, ξ, t) ū(p′)γ +γ5u(p) + Ẽ g(x, ξ, t) ū(p′)

γ5�
+

2m
u(p)

]
,

(9.4)

where G̃αβ = 1
2ε

αβγ δGγ δ is the dual field-strength tensor (ε0123 = 1). For symmetry
reasons H g, Eg are even and H̃ g, Ẽ g are odd functions of x . This is because the
field strength operator Gαβ both creates and annihilates gluons (in contrast to the
quark field q, which annihilates quarks but creates antiquarks). In the forward limit
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one has

H g(x, 0, 0) = xg(x), H̃ g(x, 0, 0) = x�g(x) (9.5)

for x > 0, whereas Eg and Ẽ g decouple again. Notice the extra factors of x com-
pared with (9.3).

Using time-reversal symmetry one can show that for both quarks and gluons
H (x, ξ, t) = H (x, −ξ, t), that is H is an even function of ξ . Together with the
relation [H (x, ξ, t)]∗ = H (x, −ξ, t), which directly follows from the definitions
(9.1) or (9.4), this constrains H to be real-valued. Analogous relations hold for E ,
H̃ , Ẽ . One can also define GPDs for the transition from one hadron to another.
Transition GPDs provide a tool to study the parton structure of hadrons not readily
available as targets (and give information quite different from the fragmentation
functions into these hadrons).

The p → �(1232) transition GPDs have been studied in [3,8]. Note that transition
GPDs are in general not even in ξ , since time-reversal symmetry relates different
transitions such as p → � and � → p. Isospin invariance can be used to express
the p → n and n → p transition GPDs through the difference of u and d quark
GPDs in the proton. GPDs for other transitions within the ground-state baryon
octet, such as p → �, are related to those in the proton by approximate flavour
SU(3) symmetry, see [3,5]. Here it will depend on a particular case whether these
transitions can provide additional information on the nucleon GPDs or rather on
details of SU(3) symmetry breaking.

The outgoing hadron state in matrix elements defining GPDs need not be a single
hadron, but can also be a multi-hadron state. The distributions then depend on its
invariant mass and on further variables describing its internal structure [3,9]. A
case of particular practical relevance is the transition N → Nπ , where N denotes
a nucleon. Time-reversal invariance transforms a state |Nπ〉out into |Nπ〉in and
hence does not force such transition GPDs to be real-valued; their complex phases
reflect the strong interactions in the Nπ system.

9.1.2 Spin structure

As one can see from the operators in their definitions, the distributions H and E for
a spin- 1

2 target involve the sum of positive and negative quark or gluon helicities,
whereas H̃ and Ẽ involve their difference. Referring to the parton spins one often
calls H , E ‘unpolarized’ and H̃ , Ẽ ‘polarized’ GPDs. In both cases there is no
net helicity transfer on the parton side: in the DGLAP regions the emitted and the
absorbed partons have the same helicity and in the ERBL region the helicities of the
two emitted partons couple to zero. To discuss the spin dependence on the hadron
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side it is useful to choose states that have definite light-cone helicity [6], which is for
instance invariant under boosts along the z-axis. For p+ � m, light-cone helicity
differs from the usual helicity only by effects of order m/p+, which is reminiscent
to the near-equivalence of plus-momentum and ordinary momentum for particles
moving fast in the positive z-direction. Inserting the appropriate spinors (given in
[4] for example) into the matrix elements (9.1) one obtains

F++ =
√

1 − ξ 2

[
H − ξ 2

1 − ξ 2
E

]
, F−+ = eiϕ

√
t0 − t
2m

E ,

F̃++ =
√

1 − ξ 2

[
H̃ − ξ 2

1 − ξ 2
Ẽ

]
, F̃−+ = eiϕ

√
t0 − t
2m

ξ Ẽ, (9.6)

where the first index in Fλ′λ denotes the light-cone helicity of the outgoing proton
and the second index that of the incoming proton (for better legibility we label
fermion helicities only by their sign). The other spin combinations are given as
F−− = F++, F+− = −[F−+]∗, F̃−− = −F̃++, F̃+− = [F̃−+]∗ by parity invari-
ance. The smallest kinematically allowed value of −t at given ξ is

−t0 = 4ξ 2m2/(1 − ξ 2), (9.7)

and the azimuthal angle ϕ is given by eiϕ| �D| = D1 + i D2 with

�D = �p ′

1 − ξ
− �p

1 + ξ
, t = t0 − (1 − ξ 2) �D2. (9.8)

The special role played by this vector will again appear in section 9.1.7. We see in
(9.6) that H and H̃ conserve the proton helicity. In turn, E and Ẽ are responsible
for proton helicity flip. The factors eiϕ indicate that in these transitions one unit
of orbital angular momentum compensates the mismatch of helicity transferred on
the parton and on the hadron side, thus ensuring angular-momentum conservation
along z. In sections 9.1.3 and 9.1.8 we will see from other points of view that E
and Ẽ involve orbital angular momentum in an essential way.

In addition to the distributions discussed so far there are GPDs describing the
helicity flip of quarks or gluons in the DGLAP regions, transferring a net helicity
of 1 in the case of quarks and of 2 in the case of gluons. They become diagonal
in parton polarization if one changes basis from states of definite helicity to states
of definite transversity (see [7] for example). The relevant operators for quark and
gluon transversity GPDs are q̄σ+i q and G+i G j+ + G+ j Gi+ − gi j G+αGα

+, where
i, j are transverse indices. For spin- 1

2 targets, four transversity GPDs for each parton
species parametrize the dependence on the initial and final hadron polarizations [10].
For quarks one of these GPDs tends to the usual quark transversity distribution in
the forward limit (see chapter 7). All others require orbital angular momentum to
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balance a helicity mismatch between the partons and hadrons and hence decouple
for equal hadron momenta.

A general way to count the number of GPDs for given spin of the hadrons uses the
interpretation of parton distributions as parton–hadron scattering amplitudes, see
[7,10] for example. Rewriting∫

dz−

2π
eix P+z− 〈

p′∣∣ q̄
(− 1

2 z
)

γ +q
(

1
2 z

) ∣∣p
〉∣∣∣

z+=0, �z =�0

=
∫

dk− d2�k
(2π )4

[ ∫
d4z ei(kz) 〈p′∣∣ T q̄

(− 1
2 z

)
γ +q

(
1
2 z

) ∣∣p
〉]

k+=x P+
, (9.9)

the second line is identified as a Green’s function with two external hadrons and two
(off-shell) external quarks, integrated over the minus and transverse momentum of
the quarks (and hence over their off-shellness). The time-ordering prescription has
been inserted when going to the second line, which is possible because the fields
are taken at light-like distance (see section 3.4 of [4] for references).

Using this connection one obtains the number of GPDs for a parton species as
the number of independent helicity amplitudes for parton–hadron scattering when
the constraints of parity invariance are included. We have seen in section 9.1.1
that time-reversal symmetry relates distributions at ξ and −ξ and thus does not
reduce their number, except for ξ = 0. With a spin-0 target one gets for each quark
flavour and for gluons one unpolarized GPD (given by the same matrix element
as Fq,g in (9.1) and (9.4)) and one transversity GPD. The nine parton helicity
conserving GPDs in a spin-1 target like the deuteron have been classified in [11].

9.1.3 Sum rules, form factors and the nucleon spin

Taking x moments of GPDs one obtains matrix elements of local operators with
twist 2, just as for the usual parton densities. These matrix elements are readily
parametrized in terms of form factors, which depend only on t . Of special impor-
tance are the contributions of a given quark flavour to the usual Dirac and Pauli
nucleon form factors,

〈p′| q̄(0)γ μq(0) |p〉 = Fq
1 (t) ū(p′)γ μu(p) + Fq

2 (t) ū(p′)
iσμα�α

2m
u(p), (9.10)

and the form factors parametrizing the quark part of the energy–momentum tensor,〈
p′∣∣T (μν)

q (0)
∣∣p

〉 = Aq(t) ū(p′)P (μγ ν)u(p) + Bq(t) ū(p′)
P (μ iσ ν)α�α

2m
u(p)

+ Cq(t)
�(μ�ν)

m
ū(p′)u(p), (9.11)
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where t (μν) = 1
2 (tμν + tνμ) − 1

4 gμν tα
α denotes symmetrization of indices and sub-

traction of the trace for any tensor tμν . The trace part of T μν has twist 4 and is not
accessible from the distributions we consider here. The form factors in (9.10) and
(9.11) are related to the lowest Mellin moments of Hq and Eq by∫ 1

−1
dx Hq(x, ξ, t) = Fq

1 (t),
∫ 1

−1
dx x Hq(x, ξ, t) = Aq(t) + 4ξ 2Cq(t),∫ 1

−1
dx Eq(x, ξ, t) = Fq

2 (t),
∫ 1

−1
dx x Eq(x, ξ, t) = Bq(t) − 4ξ 2Cq(t).

(9.12)

Due to Lorentz invariance the ξ dependence on the right-hand sides of (9.12) can
only originate from factors of �μ in the form-factor decompositions. These are
readily generalized to higher moments [1], and the xn moments of Hq and Eq turn
out to be polynomials in ξ of order n + 1 (which in addition must be even due to
time-reversal invariance). This ‘polynomiality’ property puts important constraints
on the x and ξ dependence of the original distributions. The terms with the highest
power cancel in the sum of H + E as seen in (9.12). Analogous sum rules hold for
the polarization-dependent distributions, where

∫ 1
−1 dx H̃q and

∫ 1
−1 dx Ẽq give, for

instance, the axial and pseudoscalar nucleon form factors. In the axial sector there
is, however, no analogue of the form factors Cq [4], so that the xn moments of H̃q

and Ẽq are polynomials in ξ of order n. Finally there are similar sum rules for the
gluon GPDs, where in particular

∫ 1
0 dx H g and

∫ 1
0 dx Eg are related to the gluon

part of the energy–momentum tensor. Notice the correspondence of xn moments
for quarks with xn−1 moments for gluons, which reflects the different factors of x
in the forward limits (9.3) and (9.5).

The Dirac and Pauli form factors are well measured, at least for small to moderate
t (see chapter 2), and can be used as constraints on the hitherto unknown GPDs. In
contrast, the energy–momentum form factors (9.11) cannot be directly measured,
and it is hoped that information about GPDs will provide access to them. Widespread
interest in GPDs has in fact been triggered by Ji’s sum rule [12]

2
〈
J 3

q

〉 = Aq(0) + Bq(0) = lim
t→0

∫ 1

−1
dx x[Hq(x, ξ, t) + Eq(x, ξ, t)], (9.13)

where 〈J 3
q 〉 is the total angular momentum along z carried by quarks and antiquarks

of flavour q in a proton polarized in the positive z-direction. This comprises not
only the contribution from quark helicity, which can be obtained from the moments∫ 1

0 dx [�q(x) + �q̄(x)] of the usual polarized quark densities (see chapter 7), but
also the part due to the orbital angular momentum carried by the quarks. A direct
evaluation of the integral in (9.13) from measurements of hard exclusive processes
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will be very difficult (see section 9.3.9). On the other hand, the relation (9.13)
provides the only known route to 〈J 3

q 〉 and thus how the total spin of the nucleon is
made up at the quark–gluon level. It can also be used at the theory level to calculate
〈J 3

q 〉, for instance using lattice QCD (see section 9.2.6).

In analogy to (9.13) the total angular momentum carried by gluons is given as
2〈J 3

g 〉 = limt→0
∫ 1

0 dx [H g(x, ξ, t) + Eg(x, ξ, t)]. Note that for vanishing t and ξ

the corresponding integrals over x Hq or H g alone give the momentum fraction
along z for each parton species. Combining the sum rules for total momentum and
for total angular momentum, one thus finds that

∫ 1
0 dx Eg + ∑

q

∫ 1
−1 dx x Eq must

vanish when both t and ξ are zero.

9.1.4 Generalized distribution amplitudes

Generalized distribution amplitudes [13,14] parametrize matrix elements of the
same operators as GPDs. The most detailed investigations have been made for the
two-pion system, where one has

�q(z, ζ, s) =
∫

dx−

2π
ei(z− 1

2 ) (p+p′)+x− 〈
π+π−∣∣ q̄

(− 1
2 x

)
γ +q

(
1
2 x

) ∣∣0〉∣∣∣
x+=0, �x =�0

(9.14)

and an analogous definition for gluons. Here p and p′ are the respective momenta
of π+ and π−, and s = (p + p′)2 is their invariant mass. The momentum fraction
of the quark is denoted by z and ζ = p+/(p + p′)+ is the momentum fraction of
the π+ relative to the total hadron momentum. Moments in (2z − 1) of the gener-
alized distribution amplitudes are polynomials in (2ζ − 1), whose coefficients are
form factors of twist-2 operators in the time-like domain, for example the time-like
pion form factor, given by

∫ 1
0 dz �u(z, ζ, s) = (2ζ − 1) Fπ (s). By analytic contin-

uation these form factors are connected with the form factors parametrizing the
x moments of the GPDs in the pion; this is the crossing relation between GPDs
and generalized distribution amplitudes. For the same reason we discussed in con-
nection with N → Nπ GPDs at the end of section 9.1.1, generalized distribution
amplitudes are not real-valued but have dynamical phases reflecting the strong
interactions within the multi-hadron system. The phases of two-pion distribution
amplitudes are simply related with the phases of elastic ππ scattering by Watson’s
theorem, provided that s is below the inelastic threshold [15]. Two-pion distribu-
tion amplitudes reflect in various ways the dynamics of the two-pion system and
its interplay with quarks and gluons, see [4] for an overview. Examples are their
connection with chiral perturbation theory and their connection with the distribu-
tion amplitudes of resonances such as the ρ or f2 mesons, which are defined just
as in (9.14) but with |ππ〉 replaced by the single-meson state.
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9.1.5 Evolution

Like the usual parton distributions, GPDs depend on a factorization scale μ2, which
reflects the separation of parton scattering and hadronic matrix element in pro-
cess amplitudes and physically describes the resolution scale at which partons are
probed. For a non-singlet combination of GPDs like H u−d the evolution equations
have the form

μ2 d
dμ2

H u−d(x, ξ, t) =
∫ 1

−1

dx ′

|ξ | V
( x

ξ
,

x ′

ξ

)
H u−d(x ′, ξ, t), (9.15)

whereas in the singlet sector the mixing of quark and gluon distributions is described
by a matrix equation, just as for the usual parton densities. Note that due to their
spin structure, transversity GPDs do not mix quarks and gluons under evolution and
in this sense allow one to probe ‘primordial’ quarks or gluons in a hadron, which
have not been ‘generated’ by the usual perturbative parton-splitting processes.

The evolution kernels V (x, x ′) have been studied in detail to leading [13,16] and
next-to-leading [17] logarithmic accuracy. Two different patterns of evolution can
be distinguished. In the DGLAP regions the change in μ2 of a GPD at x only
depends on GPDs at momentum fractions |x ′| ≥ |x |. Here, evolution to higher
scales μ2 shifts parton momenta to smaller values and corresponds to momentum
loss of partons by radiation. For ξ → 0 one recovers the well-known DGLAP
evolution equations and kernels for the usual parton densities. In the ERBL region,
all values of x ′ contribute on the right-hand sides of the evolution equations. This
region thus acts as a sink of partons evolving ‘out’ of the DGLAP regions. Inside the
ERBL region there is a redistribution of parton momenta, described by the kernels
V (x, x ′) in the domain |x |, |x ′| ≤ 1, where they coincide with the usual ERBL
kernels governing the scale evolution of meson distribution amplitudes [18,19].
This is just one example of the close connection between distribution amplitudes
and GPDs in the region −ξ < x < ξ . Another one will be discussed in section 9.2.1.
The evolution of GPDs makes a deep connection manifest between the evolution of
parton densities and of meson distribution amplitudes [13,16]. The link providing
this connection is that both types of quantities are matrix elements of the same
quark–gluon operators, and one can indeed formulate their evolution equations as
the renormalization group equations of these operators.

9.1.6 Double distributions and the D-term

The matrix elements in the definitions of GPDs can be parametrized in a different
way which involves double distributions [13,20,2]. For the quark vector current one
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Pβ +(1−α)Δ /2−(1+α)Δ /2Pβ

+Δ /2P−Δ /2P

Figure 9.3. (a) Momenta associated with the partons and hadrons in a double
distribution. (b) Support region of double distributions, and lines of integration to
obtain GPDs for ξ < x1 < 1 and −ξ < x2 < ξ according to (9.17).

has 〈
p′∣∣ q̄

(− 1
2 z

)
(zγ ) q

(
1
2 z

) ∣∣p
〉∣∣∣

z2=0

= ū(p′)(zγ ) u(p)
∫

dβ dα e−iβ(Pz)+iα(�z)/2 f q(β, α, t)

+ ū(p′)
iσμαzμ�α

2m
u(p)

∫
dβ dα e−iβ(Pz)+iα(�z)/2 kq(β, α, t)

− ū(p′)
�z
2m

u(p)
∫

dα eiα(�z)/2 Dq(α, t). (9.16)

The exponents in the Fourier transform can be associated with the momentum flow
shown in figure 9.3(a), where β appears similar to the momentum fraction x in a
forward parton density and 1

2 (1 + α) similar to the momentum fraction z in a meson
distribution amplitude. The support region of the double distributions f q and kq is
the rhombus |α| + |β| ≤ 1 [13,20], and the support region of Dq is |α| ≤ 1. Time-
reversal invariance forces f q and kq to be even and Dq to be odd in α. Comparing
with (9.1) one finds the reduction formula

Hq(x, ξ, t) =
∫

dβ dα δ(x − β − ξα) f q(β, α, t) + sign(ξ ) Dq
( x

ξ
, t

)
,

Eq(x, ξ, t) =
∫

dβ dα δ(x − β − ξα) kq(β, α, t) − sign(ξ ) Dq
( x

ξ
, t

)
,

(9.17)

where the lines of integration in the β–α plane are shown in figure 9.3(b). One
readily checks that the representation (9.17) automatically satisfies the polyno-
miality constraints (section 9.1.3), which explains the prominent role played by
double distributions in constructing ansätze for GPDs. The inversion of (9.17) has
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been given in [21,22], but it requires analytic continuation of the GPDs outside the
physical region |x |, |ξ | ≤ 1 and has not been used in practice.

That a complete parametrization of the matrix element in (9.16) requires a term
with a prefactor (�z) was only realized in [23], where it was also shown that
the corresponding function Dq may be chosen to depend only on α but not
on β. This so-called D-term provides the highest power ξ 2n in the moments∫ 1
−1 dx x2n−1 Hq(x, ξ, t) and cancels in Hq + Eq as it must (section 9.1.3). Its

lowest non-vanishing moment
∫

1
−1dx x Dq(x, t) = 4Cq(t) is a form factor of the

energy–momentum tensor in (9.11). From (9.17) and its support properties it fol-
lows that the D-term only contributes to the ERBL region in GPDs. We finally
remark that there is an analogous D-term for H g and Eg in the gluon sector, but
not for H̃q,g or Ẽq,g. For further discussion we refer to [21,24].

9.1.7 Impact parameter and the spatial structure of hadrons

A physically appealing property of GPDs is that they contain information about the
spatial distributions of partons in a hadron, as first realized in [25,26] and reviewed
in [4,27]. To obtain this formulation one changes basis from the usual momentum
eigenstates of hadrons to states

|p+, �b 〉 =
∫

d2 p
16π3

e−i�b ·�p |p+, �p 〉, (9.18)

which are localized in the transverse plane while still having definite plus-
momentum. Remarkably, the localization of a particle in two dimensions is possible
to arbitrary accuracy, whereas localization in all three dimension is limited within
the Compton wavelength. A spatial interpretation of GPDs in all three dimensions
has been proposed in [28,29]. Some insight into why two-dimensional localization
is possible can be gained by forming wave packets [25]; on the more formal level the
states (9.18) are eigenstates of a two-dimensional position operator [6]. The mixed
representation in ‘impact parameter’ �b and plus-momentum p+ is well suited for
a parton interpretation, since one can ensure that all partons move fast by boosting
to a frame where p+ is large.

To understand what a definite position �b means for a hadron with internal structure,
we consider an important symmetry on the light-cone. A subgroup of the Lorentz
group called ‘transverse boosts’ transforms any four-vector k according to

k+ → k+, �k → �k − k+�v , (9.19)

with a given transverse vector �v . (The transformation law for k− is easily obtained
from the invariance of k2.) These transformations are analogous to the Galilean
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Figure 9.4. Representation of a GPD in impact parameter space. Plus-momentum
fractions refer to the average proton momentum P and are indicated above or below
lines. The region ξ < x < 1 is shown in (a), and the region −ξ < x < ξ in (b).

transformations in non-relativistic mechanics, where k+ is replaced by the mass
of the particle. By Noether’s theorem the light-cone analogue of the conserved
centre of mass �r = ∑

mi�r i/
∑

mi for a multi-particle system thus is the ‘centre of
momentum’ �b = ∑

k+
i

�b i /
∑

k+
i . One can explicitly show that �b for a proton state

|p+, �b 〉 is the centre of momentum of the partons in the proton. Inserting (9.18)
into the definition (9.1) one obtains∫

d2 D
(2π )2

ei�b · �D
[

H − ξ 2

1 − ξ 2
E

]
= N−1 1 + ξ 2

(1 − ξ 2)5/2

×
〈

p′+,
�b

1 − ξ

∣∣∣∣ ∫
dz−

4π
eix P+z−

q̄
(− 1

2 z
)

γ +q
(

1
2 z

) ∣∣∣∣ p+,
�b

1 + ξ

〉
z+=0, �z =�0

(9.20)

if both proton states have positive light-cone helicity, where N is a normaliza-
tion factor. The GPDs depend on �D via t as given in (9.8). The corresponding
matrix element with proton helicity flip is obtained from the Fourier transform of
(D1 + i D2) E according to (9.6). The physical content of (9.20) is illustrated in
figure 9.4. The transverse distance between the extracted parton or parton pair from
the centre of momentum of the hadron, up to factors of (1 ± ξ )−1, is specified by
�b . The shift in the centre of momentum between the initial and the final hadron
reflects the change in plus-momentum [30].

At ξ = 0 the interpretation becomes yet simpler, and the Fourier transformed GPDs
give the density of partons with definite plus-momentum x and transverse distance
�b from the proton centre. Integrating over �b one sets t = 0 in momentum space and
thus recovers the usual parton densities, where all transverse information is lost.
The average �b 2 of partons at given x is obtained as

〈�b 2〉 = 4
∂

∂t
log H (x, 0, t)

∣∣∣
t=0

. (9.21)

The Fourier transforms of H and H̃ readily give the sum and difference of par-
tons with positive or negative helicity in a proton with helicity along z. A density
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interpretation for E is obtained by changing basis from proton states |±〉z of defi-
nite light-cone helicity to states |±〉x = (|+〉z ± |−〉z)/

√
2 of definite transversity,

which may be seen as the light-cone analogue of states with spin along the x-axis
(see [7] for example). The Fourier transform of E then describes the change in the
transverse quark distribution between proton states |+〉x and |−〉x [27]. However,
no density interpretation is obtained for Ẽ , which decouples at ξ = 0.

The interpretation as a two-dimensional density carries over to the Fourier trans-
forms of form factors like F1, F2 or Aq , Bq , which respectively describe the
transverse distribution of quark charge or of longitudinal quark momentum in the
nucleon. Note that F1, F2 belong to a conserved current and hence have no depen-
dence on a factorization scale μ2. They may be interpreted at large μ2, where quarks
can be resolved, but their information is not specific to short-distance degrees of
freedom. In contrast, Aq and Bq do refer to a specific resolution scale; evolution
redistributes longitudinal momentum between quarks and gluons.

We finally remark that the information about transverse hadron structure in GPDs
is different from that in kT -dependent parton distributions (see chapter 7), which
are more easily interpreted in transverse momentum and not in transverse position
space [30]. Connections between the two types of distributions have been proposed
in the context of spin structure [31].

9.1.8 The wave function representation

A detailed interpretation of the information encoded in GPDs is obtained by writing
them in terms of light-cone wave functions. In the formalism of light-cone quantiza-
tion and light-cone gauge (see section 9.1.1) one obtains parton states by acting on
the vacuum with the creation operators for quarks, antiquarks and gluons appearing
in the Fourier decomposition of quark and gluon fields at z+ = 0. One proceeds
by expanding a physical hadron state on to these parton states. The coefficients of
this Fock-state expansion are the light-cone wave functions, which thus contain the
most detailed description of the hadron structure at quark–gluon level. This formal-
ism makes the ideas of the parton model explicit and provides valuable insights,
although there are subtle unresolved issues, for instance concerning zero-modes,
renormalization and the choice of gauge (see [4] for references).

Inserting the Fock-state expansion into the definitions (9.1) or (9.4) and expressing
the fields in terms of parton creation and annihilation operators, one obtains a
representation of GPDs as a product of wave functions �in�∗

out for the incoming
and outgoing hadron [32]. This is to be summed over all possible configurations of
spectator partons, including their number, keeping fixed the momentum fractions
and quantum numbers of the parton emitted and reabsorbed in the DGLAP regions,
or those of the parton pair emitted in the ERBL region. For equal hadron momenta
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and spins, one obtains squared wave functions |�|2 and thus the interpretation
of usual parton distributions as classical probabilities. In non-forward kinematics
one has instead the interference of different wave functions and thus correlates
different parton configurations in the hadron. One can also Fourier transform the
wave function representation from transverse momentum to transverse position
space. This leads to the picture shown in figure 9.4, where the blobs represent wave
functions �̃in and �̃∗

out describing partons of definite impact parameter and plus-
momentum. In the case ξ = 0 one then has squared wave functions |�̃|2 and again
an interpretation as classical probabilities, as discussed just above.

According to (9.6) the GPDs E and Ẽ describe matrix elements with opposite
helicities of the initial and the final hadron. On the other hand, the helicities of all
partons in their respective wave functions are the same. This implies that at least in
one of the wave functions �in and �∗

out the parton helicities do not add up to the
helicity of the proton, which requires orbital angular momentum among the partons.
We thus see that the integral

∫ 1
−1 dx x Eq(x, 0, 0) appearing in Ji’s sum rule (9.13) is

just one particular piece of information on orbital angular momentum in the nucleon.

The polynomiality conditions on GPDs are non-trivial in the wave function repre-
sentation. This reflects that Lorentz invariance, which underlies these conditions, is
not manifest in the light-cone formalism, where certain coordinate directions are sin-
gled out. The independence of

∫ 1
−1 dx Hq(x, ξ, t) on ξ , for instance, requires cancel-

lation of the ξ dependence from the individual contributions of the regions |x | > ξ

and |x | < ξ , where wave functions with different parton numbers are involved.
Relations among the light-cone wave functions for states with different particle
number are indeed produced by the equations of motion of the theory. Examples
of such relations can be studied in field-theoretical models which permit explicit
calculations in perturbation theory (see [4] for references), but little is known about
these relations in general.

Non-trivial relations between different light-cone wave functions are also required
for the behaviour of GPDs at the transition point x = ξ between the DGLAP and the
ERBL regions, where they must be continuous although they may be non-analytic
in x [33]. Physically the point x = ξ is rather intriguing since it involves one parton
with finite and another with vanishing plus-momentum, as can be seen in figure 9.2.
In several field-theory models one indeed finds quark GPDs that are continuous at
x = ξ whereas the first derivative in x has a jump (see references in [4]). For gluon
GPDs there are indications that also the first derivative in x is continuous [34], but
no conclusive analysis has yet been given.

The wave function representation has been used in [35] to construct models of
GPDs at large x , say above 0.5, where one can expect that Fock states with only a
limited number of partons dominate. One then needs to model a limited number of
wave functions, which can be tested against further observables.
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9.1.9 Positivity constraints

In the DGLAP regions the wave function representation has the structure of a scalar
product in the functional space of wave functions. The corresponding Schwartz
inequalities provide constraints on GPDs which can be written in a variety of
forms. One type of constraint has a combination of GPDs bounded from above by
the conventional parton distributions, for instance [36]

(1 − ξ 2)
(

Hq − ξ 2

1 − ξ 2
Eq

)2
+ t0 − t

4m2
(Eq)2 ≤ q

( x + ξ

1 + ξ

)
q
( x − ξ

1 − ξ

)
,

(9.22)

where we have omitted the arguments x , ξ , t of Hq and Eq for brevity and where
ξ < x < 1 is required. Powerful positivity constraints can also be derived using the
impact-parameter space representation. The bound [37]

(Eq(x, 0, 0))2 ≤ m2 (q(x) + �q(x)) (q(x) − �q(x))

× 4
∂

∂t
log(Hq(x, 0, t) ± H̃q(x, 0, t)) |t=0 (9.23)

for x > 0 (valid with both signs on the right-hand side) involves the average squared
impact parameter of partons in the second line and is especially restrictive when x
becomes large (see section 9.2.5). The validity of all these constraints is subject to
the same caveats as the positivity of forward parton densities. They can be derived
in a region where the non-forward Compton amplitude is well approximated by
the expression (9.34) of leading twist and leading order in αs . Positivity constraints
hence require the factorization scale μ2 of the distributions to be sufficiently large.

9.2 Dynamics and models

9.2.1 Chiral dynamics

Dynamics associated with chiral symmetry and its breaking plays a role for dif-
ferent aspects of GPDs. The most prominent example is the contribution of pion
t-channel exchange to the isovector combination Ẽu−d . Extrapolating to t = m2

π one
obtains [38,39]

Ẽu−d(x, ξ, t) −t→m2
π−→ θ (|x | < |ξ |) 1

2|ξ | φπ

( x + ξ

2ξ

) 4m2gA

m2
π − t

, (9.24)

where gA ≈ 1.26 is the nucleon axial charge and φπ the twist-2 distribution ampli-
tude of the pion, normalized to

∫ 1
0 dz φπ (z) = 1 with z being the momentum fraction

of the quark in the pion. Since m2
π is so small one expects this pion-pole contribution

to remain prominent for small negative values of t ; in this sense pion exchange is
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Figure 9.5. Pion exchange in γ ∗ p → π+n. The full box is the pion-pole contribu-
tion to Ẽ , and the dashed box gives the pion form factor at leading order in 1/Q2

when t is analytically continued to m2
π .

special compared with any other exchange in the t-channel. The physical picture of
(9.24) is illustrated in figure 9.5, where isospin invariance has been used to connect
Ẽu−d with the transition GPD from proton to neutron. An off-shell pion is emitted
by the nucleon and annihilates into a qq̄ pair which is probed in a hard scattering
process.

Heavy-baryon chiral perturbation theory has been applied to the x moments of the u
and d quark GPDs of the nucleon in [40] to evaluate non-analytic terms in the small-
t behaviour, which originate in the chiral logarithms generated at one-loop level.
In the same calculation one also obtains the non-analytic part of the dependence
on m2

π , which is important for the extrapolation of calculations in lattice QCD (see
section 9.2.6).

Predictions of chiral symmetry and its breaking can be obtained in the limit where
the momentum of a pion becomes soft. Such soft-pion theorems have been used
in [8] to express the N → Nπ transition GPD in soft-pion kinematics through the
nucleon GPDs. The results were confirmed in [41,42] but have been challenged in
[43,44] and this important issue remains to be clarified. Soft-pion theorems as well
as non-analytic behaviour in t and m2

π have also been considered for the GPDs in
a pion and for the two-pion distribution amplitude [15,45,46].

In [47] the pion-cloud contribution to the gluon distribution in the nucleon has been
obtained as the convolution of the distribution of pions in the nucleon with the gluon
distribution in a pion. For this to be meaningful the pion virtuality should only be
of order m2

π , which requires −t of order m2
π and gluon momentum fractions below

mπ/m. In terms of impact parameters one then probes gluons at large distances of
order 1/mπ .

9.2.2 The large-Nc limit

The limit of SU(Nc) gauge theory for a large number Nc of colours provides impor-
tant insights into QCD with Nc = 3. Of particular practical relevance for GPDs is
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Figure 9.6. The GPD flavour combinations H u+d (left), Eu−d (right, solid) and
H̃ u−d (right, dashed) at ξ = 0.3 and t = −0.35 GeV2, as obtained in the chiral
quark–soliton model [3].

that a hierarchy of sizes is obtained for different spin–flavour combinations in the
nucleon. In kinematics where t/m2 ∼ 1/N 2

c and x, ξ ∼ 1/Nc one obtains [3]

H u+d ∼ N 2
c , H u−d ∼ Nc, H̃ u+d ∼ Nc, H̃ u−d ∼ N 2

c ,

Eu+d ∼ N 2
c , Eu−d ∼ N 3

c , Ẽu+d ∼ N 3
c , Ẽu−d ∼ N 4

c ,
(9.25)

as well as Du+d ∼ N 2
c and Du−d ∼ Nc for the quark D-term. Some consequences

of the relations (9.25) are known to work rather well, such as the relative size and
sign of the forward parton densities u, d and �u, �d at x ∼ 1/3, as well as the
small ratio Fu+d

2 /Fu−d
2 of isoscalar and isovector Pauli form factors at small t . The

large-Nc limit further relates the GPDs for the N → �(1232) transition with those
of the nucleon [3].

9.2.3 The chiral quark–soliton model

The chiral quark–soliton model is an effective theory of QCD at low scales, imple-
menting the chiral dynamics and the 1/Nc expansion of QCD. For a detailed account
in the context of GPDs and further references see [3]. The model gives a fair descrip-
tion of nucleon form factors at small t and of the forward quark densities taken at
the scale μ ∼ 600 MeV, which plays the role of an ultraviolet cutoff in the effective
theory. The nucleon in this model can be represented as consisting of Nc ‘valence’
quarks in a bound-state level together with ‘sea’ quarks in the negative-energy Dirac
continuum, thus including both quark and antiquark degrees of freedom. Gluon dis-
tributions are found to be parametrically suppressed and have not been studied so far.

The leading flavour combinations of GPDs in (9.25) have been calculated within
this model in [39,48]. The x dependence of H u+d , Eu−d and H̃ u−d has considerable
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Figure 9.7. Predictions of the chiral quark–soliton model [39] for Ẽu−d at ξ = 0.2
and t = −0.5 GeV2 (solid), t = −0.7 GeV2 (dashed) and t = −1 GeV2 (dotted).
The curves result from the positive pion-pole term (9.24) and a negative non-pole
contribution.

structure due to the interplay of the ‘valence’ and ‘sea’ contributions, as seen in
figure 9.6. Neither H u+d nor H̃ u−d is found to be compatible with a factorized
form F(t) f (x, ξ ) for the t dependence, which is often used as a simplification in
phenomenology [3]. The pion-pole contribution (9.24) is obtained analytically in
the model and generally dominates Eu−d , but other contributions are not negligible
already at moderate t , both in the ERBL and in the DGLAP regions, as is seen in
figure 9.7. Dedicated studies of the nucleon helicity-flip distribution E have been
presented for Eu−d in [49] and for the non-leading flavour combination Eu+d in [50].

An isosinglet D-term of considerable size has been extracted from the model in [51]
and is often used in phenomenological studies. Extrapolated to t = 0 it can be
written as

Du+d(x) ≈ (1 − x2)
[ − 4.0 C3/2

1 (x) − 1.2 C3/2
3 (x) − 0.4 C3/2

5 (x)
]
, (9.26)

in terms of Gegenbauer polynomials. Note that the coefficients in (9.26) do not
refer to the low scale μ ∼ 600 MeV of the model calculation but are an estimate
of the values at μ2 of a few GeV2, as clarified in [52].

9.2.4 Quark models

A number of dynamical studies of nucleon GPDs have been performed in
constituent-quark models, with or without the inclusion of relativistic effects. The
description of the nucleon as a three-quark system with corresponding Schrödinger
wave functions restricts such studies to the region x > ξ . Results for the GPDs H ,
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E , H̃ , Ẽ of u and d quarks have been obtained in [53,54]. The resulting elastic
form factors and forward parton densities do not compare particularly well with
experiment. Nevertheless we find it interesting to study qualitative features of the
model, in particular for E and Ẽ , about which we have little knowledge since their
forward limits are unknown. The relative signs of u and d quark distributions are
such that the isotriplet combinations Eu−d and Ẽu−d dominate over the isosinglet
ones (in accordance with the large-Nc predictions). Compared with H and H̃ both
E and Ẽ are shifted towards smaller x . We finally note that Ẽ is of considerable size
for zero ξ and t (where the pion-pole contribution is absent) but decreases rather
fast for finite values of either variable.

Perturbative evolution to higher scales μ of the GPDs obtained in a constituent-
quark description of course also generates antiquarks and gluons. A different pro-
posal to include these degrees of freedom is to assign a substructure to the constituent
quarks, parametrized by GPDs for partons within a constituent quark. This has been
pursued in [55,56].

The nucleon GPDs have also been investigated in the MIT bag model [57]. Finally,
a variety of studies have been performed for the GPDs of the pion, using different
formalisms and different types of quark models. We do not have the space to discuss
them and refer to [4] for details and references.

9.2.5 The interplay of x and t dependence

A very important feature of GPDs is the correlation between their dependence on t
and on the momentum fractions x and ξ . (Most studies so far have considered the
simplified case ξ = 0 for this purpose.) In physical terms, this correlation reflects
that the transverse distribution of partons depends on their momentum fraction.
This dependence contains valuable clues to the dynamics at work. An example of
such an interplay is the contribution to GPDs from the pion cloud at transverse
distances of order 1/mπ , which requires parton momentum fractions to be small
(see section 9.2.1).

At very small x the behaviour of parton distributions is related to Regge theory,
where the simplest type of x dependence is a power in x , due to the exchange of a
single Regge pole. Extending this form to finite t one obtains a power behaviour like
x−α(t), where Regge phenomenology suggests a linear form α(t) = α(0) + α′t for
−t not too large: see chapter 5. This results in a factor exp[α′t log(1/x)] correlating
the x and t dependence of GPDs. According to (9.21) the average squared impact
parameter 〈�b 2〉 of partons then grows like log(1/x) for decreasing x . The physical
picture behind this is Gribov diffusion, which views repeated parton radiation at
small x as a diffusion process in impact-parameter space.
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As x becomes large, the spectator partons in figure 9.4 have less and less weight in
the average

∑
xi �b i , so that the position of the struck parton will tend to be close

to the centre-of-momentum of the hadron [27]. For growing x , the �b distribution
should thus become more narrow and hence the t distribution more flat. If one
requires that the distance �b /(1 − x) between the struck parton and the centre of
momentum of the spectators stays finite on average, one needs 〈�b 2〉 to vanish at least
like (1 − x)2 [58]. A simple form of t dependence that satisfies this requirement and
also exhibits Regge behaviour at small x is exp[ t f (x)] with f (x) → A (1 − x)2

for x → 1 and f (x) → α′ log(1/x) for x → 0. Such parametrizations have been
explored in more detail in [59,60].

9.2.6 Lattice QCD

We have seen in section 9.1.3 that x moments of GPDs are matrix elements of
local operators and are parametrized in terms of form factors. Such quantities can
be evaluated in lattice QCD, and detailed studies [61,62] have investigated the
form factors of the quark energy–momentum tensor (9.11). Further progress will
be needed, particularly in the extrapolation to physical values of the quark masses
and in the calculation of ‘disconnected graphs’, where the external current attaches
to a quark line which is not connected with the initial and final hadron state. Such
contributions cancel in the difference of u and d quark distributions but may well be
important in their sum. Nevertheless, it is interesting to note characteristic features
of present results. The relative size of u + d and u − d combinations for the form
factors A, B, C is for instance found to follow the predictions of the large-Nc limit
given in section 9.2.2, as seen in figure 9.8. Evaluating Aq + Bq at t = 0 one gets
in particular the total quark angular momentum, and on subtracting the moments∫ 1

0 dx [�q(x) + �q̄(x)] of the polarized quark densities calculated on the lattice,
results for the orbital angular momentum 〈L3

q〉 are obtained. Both [61] and [62]
found a very small 〈L3

u+d〉, but given the uncertainties just discussed no definite
conclusions can be drawn. Closer investigation suggests that a small 〈L3

u+d〉 may
result from cancellations between 〈L3

u〉 and 〈L3
d〉 [63].

The t dependence of the moments with different powers xn has been compared for
n = 0, 1, 2 in [64,65] and a clear flattening of the t slope with increasing n was
observed. Such a trend is in line with our discussion at the end of the previous
subsection, and it is interesting that it sets in already for moments in which the
average values of x are below 0.5.

A different line of development is ‘transverse lattice gauge theory’, where lattice
methods for the transverse directions are combined with the formalism of discrete
light-cone quantization. In [66] this was used to evaluate the quark GPD of the pion
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Figure 9.8. The form factors Aq (left), Bq (middle) and Cq (right) of the energy–
momentum tensor for u quarks (full squares) and d quarks (open circles), obtained
in a quenched lattice calculation [61] with quark masses corresponding to mπ =
870 MeV. The renormalization scale is μ = 2 GeV.

directly in the mixed representation of momentum fraction and impact parameter.
For increasing �b the x dependence was found to be strongly suppressed at large x
and strongly enhanced at small x .

9.2.7 Ansätze for phenomenology

The methods we have discussed so far address particular aspects and features of
GPDs, but none of them provides sufficient input for evaluating scattering ampli-
tudes of hard processes, where distributions in the full range of x are needed for
several quark flavours and possibly gluons. Phenomenological studies so far have
used ansätze for GPDs, whose typical form we now describe. Detailed accounts
are given in [3,67]. In the forward limit the distributions H and H̃ reduce to the
usual parton densities, which are rather well measured and can be used as an input.
For definiteness let us concentrate on H u and H d . The t dependence has so far
mostly been simplified as a factorizing form Hq(x, ξ, t) = Hq(x, ξ ) Fq

1 (t)/Fq
1 (0)

with the u and d quark contributions to the Dirac form factor taken from experi-
ment. This ansatz satisfies the sum rules (9.12), but according to our discussion in
sections 9.2.3 and 9.2.5 can only be a crude approximation.

The simplest model one can make for the ξ dependence is to neglect it, setting
Hq(x, ξ ) = q(x) for x > 0 and Hq(x, ξ ) = −q̄(−x) for x < 0. This so-called ‘for-
ward model’ is consistent with general symmetries, but it is physically not plausible
near x = 0 for finite ξ , where it gives a singular behaviour in x . In the forward limit
this singularity corresponds to partons with vanishing plus-momentum. For finite
ξ the point x = 0 describes the emission of a quark–antiquark pair with equal
momentum fractions ξ , for which there is no reason to expect a singular behaviour.
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To ensure polynomiality in ξ of all x moments, a more sophisticated treatment of
the ξ dependence is conveniently achieved by constructing a model at the level of
double distributions (section 9.1.6). A widely used ansatz for the double distribution
is to set f q(β, α, t) = f q(β, α) Fq

1 (t)/Fq
1 (0) with

f q(β, α) = q(β) − q̄(β)

1 − β
ρval

( α

1 − β

)
+ q̄(β)

1 − β
ρsea

( α

1 − β

)
,

f q(−β, α) = − q̄(β)

1 − β
ρsea

( α

1 − β

)
(9.27)

for β > 0, where the ‘profile functions’ ρ are normalized to
∫ 1
−1 dα ρ(α) = 1 [68,3].

Their form is taken as ρ(α) ∝ (1 − α2)b with a parameter b that may be chosen
differently in ρval and ρsea . For b = ∞ one gets ρ(α) = δ(α) and thus recovers the
forward model discussed above. Analogous ansätze can be made for H̃q , H g and
H̃ g. Common choices in the literature are b = 1 for quarks and b = 2 for gluons.

The separation into ‘valence’ and ‘sea’ parts follows the convention in the forward
limit, but note that the ‘valence’ part in (9.27) generates a non-zero Hq(x, ξ, t) in
the ERBL region. Since the ‘sea’ part in (9.27) does not contribute to

∫ 1
−1 dx Hq =

Fq
1 (t) it may be taken with a different t dependence in the full double distribution

f q(β, α, t) [67]. A first attempt at a more realistic model for the interplay between
t and the longitudinal momentum fractions has been made in [3], with a form
f q(β, α, t) = f (α, β) |β|−α′t motivated by Regge theory (see section 9.2.5).

The sum rule
∫ 1
−1 dx (eu H u + ed H d) = F p

1 (t) for the Dirac form factor of the proton
was found to be rather well satisfied at small t for α′ ≈ 0.8 GeV2, which is quite
close to the value for meson trajectories in Regge phenomenology. Such an ansatz
has been developed further in [59,60].

In figure 9.9 we show GPDs obtained in the forward model and from the model
(9.27) with b = 1. As seen in (9.17), a double-distribution ansatz misses the possible
contribution from D-terms. To the ansatz just described, many phenomenological
studies have added the isosinglet D-term contribution (9.26) estimated in the chiral
quark–soliton model, or its extension to the SU(3) flavour-singlet combination
Du+d+s proposed in [3]. Figure 9.9 shows that such a term leads to considerable
structure in the ERBL region.

At small x and ξ the values of β relevant in the reduction formula (9.17) are small
as well, and one may replace the factors 1 − β with 1 in (9.27). For an approximate
small-x behaviour like x−λ of xq(x) one can perform the relevant integrations
and obtain an analogous behaviour like ξ−λ Ĥ (x/ξ ) of ξ Hq(x, ξ ). For gluons, an
approximate behaviour like x−λ of xg(x) translates into a behaviour like ξ−λ Ĥ (x/ξ )
of H g(x, ξ ). One finds that Hq,g(ξ, ξ ) decreases with the profile parameter b, a trend
already seen in our above example at ξ = 0.3. The dependence of the GPDs on b
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Figure 9.9. H u+d (left) and H̃ u−d (right) at ξ = 0.3 and t = −0.35 GeV2, obtained
from the ansatz (9.27) and its polarized analogue, using ρval = ρsea and the quark
distributions from [69,70] at μ = 1 GeV. The solid and dashed curves are for
b = ∞ and b = 1, respectively, and the dotted curve shows the result for b = 1
plus the D-term given in (9.26). The t dependence is modelled by multiplying
Hq (both the double-distribution part and the D-term) with the Dirac form factor
Fq

1 (t) and H̃q with the nucleon axial form factor, both properly normalized.

is significantly larger for quarks than for gluons, see [4] for example. An ansatz
proposed by Shuvaev et al [71] corresponds to b = 1 + λ and is often used in the
literature for processes at small x .

In [72] it was claimed that the ansatz we have described gives amplitudes for DVCS
that are too large to be compatible with cross section data from H1 [101] and the
beam spin asymmetries from HERMES [102] and CLAS [103], unless one takes
b = ∞. The authors propose instead an ansatz consisting of the forward model in
the DGLAP regions, whereas in the ERBL region they take a simple polynomial
form with coefficients chosen such that the polynomiality conditions are met for
the lowest two Mellin moments. Such an ansatz has the inherent problem that
polynomiality of all higher moments (and hence Lorentz invariance) is violated.
How important this violation is at the level of the GPDs or of observables for given
kinematics has not been investigated.

The GPDs E and Ẽ cannot be modelled using the strategies we described, since their
forward limits are unknown. For Ẽ most studies use only the pion-pole contribution
(9.24). First attempts at a detailed model of E , which is crucial in the context of
orbital angular momentum, have been made in [3,59,60].

9.3 Processes

9.3.1 Factorization

The measurement of GPDs in hard exclusive processes rests on factorization the-
orems very similar to those that connect the usual parton densities with inclusive
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processes like DIS or Drell–Yan lepton pair production. Detailed investigations
for Compton scattering and for exclusive meson production have been made in
[20,33,73]; a brief account can be found in [74].

Factorization of the Compton amplitude holds in a generalization of the Bjorken
limit of DIS, namely for |q2| + |q ′2| → ∞ at fixed t and fixed q2/W 2 and q ′2/W 2.
Here four-momenta are as in figure 9.1(a) and W 2 = (p + q)2 is the squared centre-
of-mass energy of the proton–photon system. In practical terms, at least one of the
photon virtualities as well as W 2 should be much larger than −t and than the
scale of soft hadronic interactions. Special cases are: (i) DVCS, which has q ′2 = 0
and is accessible in electroproduction ep → epγ [75], and (ii) time-like Compton
scattering, which has q2 = 0 and can be seen in heavy lepton pair production
γ p → p �+�− [76]. ‘Double DVCS’ can be studied in ep → ep �+�− and has both
photons off-shell [77,78]. In general one has two scaling variables,

ξ = − �q̄
2Pq̄

≈ Q2 + Q′2

2W 2 + Q2 − Q′2 , ρ = − q̄2

2Pq̄
≈ Q2 − Q′2

2W 2 + Q2 − Q′2 , (9.28)

with q̄ = 1
2 (q + q ′) and Q′2 = q ′2. The approximations are valid in the generalized

Bjorken limit. In a frame where the incoming and outgoing protons have large
momenta in the positive z direction (with transverse momenta of order

√−t) one
finds ξ ≈ (p − p′)+/(p + p′)+, as we have used in GPDs so far. The factorization
theorem states that the amplitude can be written as

A(γ ∗ p → γ ∗ p) =
∑

i

∫ 1

−1
dx T i (x, ρ, ξ, Q2 − Q′2)Fi (x, ξ, t) (9.29)

with corrections suppressed by inverse powers of the hard scale Q or Q′ (for
simplicity we henceforth refer to Q as the large scale, keeping in mind that either
Q or Q′ may be large). Here Fi stands for any of the quark and gluon matrix elements
in (9.1) and (9.4), which are parametrized by GPDs. The dependence of the hard
scattering kernels T i on Q2 − Q′2 is logarithmic and due to radiative corrections,
where for legibility we have not displayed the factorization and renormalization
scales. Apart from this logarithmic dependence the amplitude is independent of the
photon virtualities at given ξ , ρ and t ; this is the exact analogue of Bjorken scaling
in DIS. We will discuss the dependence of the amplitude (9.29) on the photon
helicities in the next subsection.

Analogous factorization can be shown for electroproduction ep → epM of a light
meson M . The relevant limit is as in the Compton case, where q ′2 is now the squared
meson mass and hence neglected along with other hadron masses. Note that one
then has

ξ ≈ xB/(2 − xB) (9.30)
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Figure 9.10. Example diagrams for hard meson production γ ∗ p → Mp with
(a) quark and (b) gluon GPDs.

in terms of the usual Bjorken variable, as one has for DVCS. The factorization
formula for the photon–proton amplitude is

A(γ ∗ p → Mp) = 1

Q

∑
i j

∫ 1

−1
dx

∫ 1

0
dz T i j (x, ξ, z, Q2)Fi (x, ξ, t) φ j (z) (9.31)

with corrections to it going like 1/Q2. Apart from a logarithmic Q2 dependence
in T i j , the amplitude (9.31) falls like 1/Q at fixed ξ and t and requires both
photon and meson to be longitudinally polarized; all other helicity transitions are
suppressed by further powers of 1/Q. Long-distance physics is parametrized by
GPDs on the target-hadron side, and by light-cone distribution amplitudes φ j for
the qq̄ and (if quantum numbers permit) the two-gluon content of the produced
meson (see section 9.1.4). Example diagrams at leading order in αs are shown in
figure 9.10.

Let us mention some important aspects of the factorization theorems for both Comp-
ton scattering and light meson production. The outgoing hadron with momentum p′,
as well as the produced meson, may be replaced with multi-hadron states, described
by transition GPDs or by generalized distribution amplitudes. In the generalized
Bjorken limit the invariant masses of these multi-hadron states stay fixed, that is
they should be small compared with the hard scale Q2. This ensures that the systems
with momenta p′ and q ′ are well separated in rapidity.

The hard-scattering subprocesses are evaluated with external parton momenta
exactly collinear and on-shell. This ‘collinear approximation’ corresponds to the
leading term in a Taylor expansion∫

d4k H (k)A(k) ≈
∫

dk+ H (k)
∣∣∣
k−=0,�k =�0

∫
dk− d2k A(k), (9.32)

where H denotes the amplitude for the hard subprocess, A the amplitude repre-
sented by the lower blobs in figures 9.1(a) and 9.10, and k the loop momentum



Generalized parton distributions 385

connecting them. Integrated over k− and �k , the amplitude A becomes a matrix
element parameterized by GPDs according to (9.9). The analogous approximation
is made for the produced meson, where the plus-momenta instead of the minus-
momenta of the external partons are neglected in H .

To ensure large internal virtualities in the hard scattering subprocess, the partons
connecting it with the GPDs must have large plus-momenta, and those connecting
it with the produced meson must have large minus-momenta. The factorization
formulae (9.29) and (9.31) contain, however, momentum configurations where
this is not the case, in particular the point x − ξ = 0 in the GPDs and the end-
point regions z = 0 or z = 1 in the distribution amplitudes. An essential part
of the factorization theorems is to show that such soft regions either give only
power suppressed contributions to the amplitude (and hence may be included in
the formulae to leading-power accuracy) or that they can be ‘circumvented’ by
deforming the integration contours for x or z in the complex plane into a region
where internal virtualities in the ‘hard scattering subprocess’ are truly hard. This
property is not trivial: it holds, for instance, if the virtual photon in meson elec-
troproduction is longitudinally polarized, but does not hold if it is transverse.
It also does not hold in exclusive hadron–hadron scattering processes such as
p p̄ → p p̄ μ+μ−, which hence do not factorize (see [4] for a discussion and further
references).

The power behaviour in Q2 and the dependence on the polarization of the photon and
(if applicable) the meson are generic predictions of the factorization theorems. Both
can be experimentally measured, which provides model-independent tests whether
the approximations leading to factorization are adequate in given kinematics.

9.3.2 Compton scattering

To leading order in 1/Q and in αs the Compton amplitude in generalized Bjorken
kinematics is given by the quark-handbag diagrams as shown in figure 9.1(a). In
this approximation the hadronic tensor is

T αβ = i
∫

d4x eiq̄x 〈p′∣∣T J α
em

(− 1
2 x

)
J β

em

(
1
2 x

) |p
〉 = −gαβ

T F − iεαβ

T F̃, (9.33)

from which the Compton amplitude is obtained by contracting with the polarization
vectors of the photons and multiplying with the squared lepton charge e2. The
only non-zero components of the transverse tensors are g11

T = g22
T = −1 and ε12

T =
−ε21

T = 1, and eJ α
em(x) is the electromagnetic current. In (9.33) we have introduced
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convolutions

F(ρ, ξ, t) =
∑

q

e2
q

∫ 1

−1
dx Fq(x, ξ, t)

(
1

ρ − x − iε
− 1

ρ + x − iε

)
,

F̃(ρ, ξ, t) =
∑

q

e2
q

∫ 1

−1
dx F̃q(x, ξ, t)

(
1

ρ − x − iε
+ 1

ρ + x − iε

)
,

(9.34)

where the sum is over all flavours of quarks with electric charge eeq . Following
the decomposition (9.1) one obtains ‘Compton form factors’ H or E by replacing
Fq with Hq or Eq , and H̃ or Ẽ by replacing F̃q with H̃q or Ẽq in (9.34). The
relevant combinations of these form factors for definite helicities of the initial and
final protons are readily obtained from (9.6). At next-to-leading order in αs the
convolutions F and F̃ (and correspondingly the Compton form factors) obtain
corrections which also involve the gluon GPDs H g, Eg, H̃ g, Ẽ g. Several groups
have evaluated the O(αs) terms; see [67,79] for detailed numerical investigations
and [4] for further references.

To leading accuracy in 1/Q (where transverse momenta of the photons are to be
neglected) the tensor (9.33) only contributes to transitions where both the photons
have positive helicity or both have negative helicity. At O(αs) there are in addition
amplitudes where the photon helicity is flipped by two units. To ensure angular
momentum conservation in the collinear hard scattering process these transitions
require the gluon transversity GPDs mentioned in section 9.1.2. Unless one of the
photons is on-shell there are also O(αs) amplitudes where both photons have helicity
0; this is the analogue of the longitudinal structure function in DIS. Amplitudes
where one photon is longitudinal and the other is transverse are 1/Q suppressed
and will be discussed in section 9.3.4.

9.3.3 Light-meson production

Electroproduction of light mesons offers a variety of channels where different
combinations of GPDs can be studied. To leading order in 1/Q and in αs the
amplitude for γ ∗ p → ρ0 p with a longitudinally polarized photon is

AL = 2e
Q

Fρ(ξ, t),

Fρ(ξ, t) = 4παs

9

fρ√
2

∫ 1

0
dz

φρ(z)

z(1 − z)

∫ 1

−1
dx

(
1

ξ − x − iε
− 1

ξ + x − iε

)
× [

2
3 Fu(x, ξ, t) + 1

3 Fd(x, ξ, t) + 3
8 x−1 F g(x, ξ, t)

]
, (9.35)
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where the meson distribution amplitude φρ is normalized to
∫ 1

0 dz φρ(z) = 1 and
fρ ≈ 209 MeV is the ρ decay constant. In analogy to Fρ one defines convolutions
Hρ and Eρ for the GPDs H and E . Contrary to Compton scattering, quark and
gluon contributions appear here at the same order in αs . To obtain the analogous
expression for γ ∗ p → π0 p one replaces fρ → fπ ≈ 131 MeV, φρ → φπ , Fq →
F̃q and omits the term with F g. The formulae for other cases can be found in [3,4].
By parity invariance the production of mesons with natural parity P = (−1)J , such
as vector mesons, selects the unpolarized GPDs. The production of mesons with
unnatural parity P = (−1)J+1, such as pseudoscalars, selects only polarized GPDs.
Hence meson production allows one to study these distributions separately, unlike
Compton scattering where such parity constraints do not hold because the transverse
photon polarizations single out additional directions. No meson production channel
is known where the polarized gluon distributions H̃ g or Ẽ g contribute at leading
order in 1/Q and αs . Quark or gluon transversity GPDs do not contribute either at
leading power in 1/Q.

If the produced meson has definite C-parity, the hard scattering kernels are either
even or odd in x and thus select combinations of GPDs describing definite C-parity
in the t-channel (section 9.1.1). In particular the production of ρ0, ω, φ selects the C-
even combinations, just as Compton scattering. Assuming φρ(z) = φω(z) = φφ(z)
and neglecting small SU(3) breaking effects for the meson decay constants, the
appropriate combinations in F(ξ, t) are

ρ :
√

1
2

(
2
3 Fu + 1

3 Fd + 3
8 x−1 F g

)
,

ω :
√

1
2

(
2
3 Fu − 1

3 Fd + 1
8 x−1 F g

)
, φ : − (

1
3 Fs + 1

8 x−1 F g
)
. (9.36)

Combined information from these meson channels and DVCS is one of the few
handles for disentangling the distributions H and E for different quark flavours
and gluons. Another possibility is to use scattering on both proton and neutron
targets, see section 9.4.

In contrast to neutral mesons, the production of charged mesons involves a mixture
of C-even and C-odd GPD combinations. One of the few processes where the C-odd
combinations of unpolarized GPDs (analogous to the valence quark distributions
q − q̄) can be accessed separately is the production of f0 or f2 resonances. Alter-
natively one can study the production of π+π− pairs in the continuum, where in
particular the interference between pairs of even and odd C-parity can be extracted
from angular measurements [80,4]. First experimental results have been presented
by HERMES [81]. Further issues of special interest are the physics of strangeness
and flavour SU(3) violation in the production of K or K ∗ mesons (together with
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the transition from the nucleon to a � or �) and the study of SU(3) breaking and
the axial anomaly in the production of η and η′, see [3,4] and references therein.

An important part of charged-pion production comes from the pion-pole contribu-
tion (9.24) to Ẽu−d . Since its support is the ERBL region, it only appears in the real
part of the scattering amplitude. At amplitude level one can write

Apole
L (γ ∗ p → π+n) = −e

Q Fπ (Q2)

fπ

2mgA

m2
π − t

ū(p′)γ5u(p), (9.37)

where

Fπ (Q2) = 2παs

9

f 2
π

Q2

[ ∫ 1

0
dz

φπ (z)

z(1 − z)

]2

(9.38)

is the electromagnetic pion form factor to leading order in 1/Q and αs (see fig-
ure 9.5). Analogous kaon-pole contributions appear in γ ∗ p → K +� and γ ∗ p →
K +�0. The relation (9.37) remains valid at higher orders in αs or in 1/Q and is
the basis for attempts to measure Fπ at moderate to large Q2: see chapter 2. The
formulation in terms of GPDs provides a tool to estimate in which kinematical
region the contribution from Fπ may actually dominate the longitudinal amplitude
AL , see [38] for example. Notice in particular that the pion-pole contribution (9.37)
is independent of ξ at given Q2 and t , whereas the corresponding contribution from
H̃ should approximately follow the ξ dependence of the polarized quark densities
�q(ξ ) and hence rise when ξ becomes small. The t dependence of the contribution
from H̃ is presently not known but should significantly differ from (9.37).

Next-to-leading order corrections in αs for meson production were initially studied
only for γ ∗ p → π+n in [82], and subsequently the calculation of the scattering
kernels for other channels was completed [83]. Both studies indicate that O(αs)
corrections can be very large (as they can be in Fπ ), and further investigation will
be needed to clarify for which kinematics and which observables one has sufficient
theoretical control.

The γ ∗ p cross section for longitudinal photons following from (9.35) is

dσL

dt
= αem

Q6

4ξ 2

1 − ξ 2
(CU + CT sin β) (9.39)

with

CU (ξ, t) = (1 − ξ 2) |Hρ |2 −
( t

4m2
+ ξ 2

)
|Eρ |2 − 2ξ 2 Re (E∗

ρHρ),

CT (ξ, t) =
√

1 − ξ 2

√
t0 − t
m

Im (E∗
ρHρ), (9.40)
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Figure 9.11. Definition of the azimuthal angle β between the hadronic plane and
the transverse target spin ST in the target rest frame. ST is perpendicular to the
z-axis, which points in the direction opposite to the virtual photon momentum.

where β is the angle between the hadron plane and the transverse target polarization
ST as defined in figure 9.11. The analogous expression for π0 production is

CU (ξ, t) = (1 − ξ 2) |H̃π |2 − t
4m2

|ξ Ẽπ |2 − 2ξ Re (ξ Ẽ∗
πH̃π ),

CT (ξ, t) = −
√

1 − ξ 2

√
t0 − t
m

Im (ξ Ẽ∗
πH̃π ). (9.41)

For other meson channels the same expressions hold with the appropriate decay
constants and integrals over GPDs or distribution amplitudes.

We see in (9.39) that the factorization theorem predicts a 1/Q6 falloff for dσL/dt
at fixed ξ and t , up to logarithms of Q2 due to radiative corrections. In contrast,
Bjorken scaling of the Compton amplitude results in a 1/Q4 behaviour at fixed ξ and
t of the cross section dσT /dt for transverse photons in DVCS. Note that kinematical
factors ξ 2/(1 − ξ 2) and 1/Q4 in (9.39) are due to phase space and photon flux, for
which we used Hand’s convention [84] and neglected terms suppressed by 1/Q2.

The transverse target-polarization asymmetry resulting from (9.39) is sensitive to
the ratio E/H or Ẽ/H̃ and thus provides a way to separate GPDs with and without
proton helicity flip. This asymmetry belongs to those observables where it has been
argued that theoretical uncertainties should partially cancel, see [3,4] and references
therein. We note that a longitudinal target polarization asymmetry does not occur
with a longitudinal photon due to parity invariance.

9.3.4 Compton scattering beyond leading-power accuracy

For the Compton amplitude not only the leading term but also the first corrections
in a 1/Q expansion have been studied in detail. At 1/Q accuracy there are con-
tributions from the handbag diagrams of figure 9.1(a) where the Taylor expansion
(9.32) of the hard scattering kernel in the transverse parton momentum �k is car-
ried one order further. Other contributions arise from graphs where an additional
gluon (with transverse polarization) connects the blob in figure 9.1(a) with the hard
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scattering. The two types of contribution are not separately gauge invariant; note
that the transverse derivative ∂ j , related to transverse momentum via Fourier trans-
formation, and the transverse gluon field A j combine to give a covariant derivative
∂ j − ig A j . Careful treatment is needed to prevent double counting or the violation
of electromagnetic or strong gauge invariance, and has been carried out in different
formalisms, from the first study [85] to the very detailed analysis [86] (see [4] for
references). Methods and results are similar to those for the spin-dependent struc-
ture function g2, although gauge invariance is more subtle in the non-forward case.

The additional hadronic matrix elements required to calculate the Compton ampli-
tude at the 1/Q level and leading order in αs can be chosen as in (9.1), but with the
non-local currents q̄γ +q and q̄γ +γ5q replaced by q̄γ j q and q̄γ jγ5q, where j is a
transverse index. Using the QCD equations of motion, they can be parametrized by
a part expressed in terms of the twist-2 GPDs H , E , H̃ , Ẽ (called the Wandzura–
Wilczek part) and by a part involving non-local quark–antiquark–gluon operators
q̄γ +G+ j q and q̄γ +γ5 G̃+ j q (often called the ‘genuine’ twist-3 part). There are
indications that nucleon matrix elements of these operators might be small, and
their neglect is referred to as the Wandzura–Wilczek approximation.

The 1/Q corrections to Compton scattering do not affect the helicity amplitudes
which are already present at leading-power accuracy (see the previous subsection)
but instead provide non-zero transitions between a longitudinal and a transverse
photon. At leading order in αs the new amplitudes for DVCS can be written in
terms of the Compton form factors H, E , H̃, Ẽ already appearing at leading power,
of new form factors given by

HW =
∑

q

e2
q

∫ 1

−1
dx

1

ξ + x
log

2ξ

ξ − x − iε

(
Hq(x, ξ, t) − Hq(−x, ξ, t)

)
,

(9.42)

and its counterparts for E , H̃ , Ẽ , and of convolution integrals involving four inde-
pendent quark-antiquark-gluon matrix elements. If the latter are small, the ampli-
tudes appearing at order 1/Q can be used to obtain additional information on the
twist-2 GPDs.

The known factorization theorems do not extend to 1/Q accuracy, and it is not guar-
anteed that one can still write the Compton amplitudes in terms of perturbative hard
scattering kernels and process-independent nucleon matrix elements. The results
of explicit calculation at Born level, as well as at O(αs) in the Wandzura–Wilczek
approximation [87], are however consistent with factorization.

Not much is known about power corrections of order 1/Q2 in non-forward Compton
scattering. No complete evaluation of target-mass corrections has been possible yet,
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but partial results have been obtained and suggest that such corrections are typically
of order ρ2m2/Q2 rather than m2/Q2, where ρ is defined in (9.28). This would
render them moderate in much of experimentally relevant kinematics. The 1/Q2

corrections to the Compton amplitude with photon helicity flip by two units have
been evaluated to leading order in αs in the Wandzura–Wilczek approximation
[88] and may constitute an important correction to the contribution from gluon
transversity, which appears at leading power in 1/Q but only starts at O(αs).

9.3.5 Meson production from transverse photons

Meson production from transverse virtual photons is power suppressed by 1/Q
compared with the leading amplitude, where the photon is longitudinal, and it
is tempting to see whether collinear factorization can consistently describe the
amplitude in this case. Calculation in [89,90] of the graphs of figure 9.10 with a
transverse γ ∗ and a transverse ρ gave a result containing integrals over the meson
distribution amplitude that diverge logarithmically:∫ 1

0

dz
z

∫ 1

z

du
u

φρ(u). (9.43)

Further one finds integrals such as∫ 1

−1
dx

1

(ξ − x − iε)2
Hq,g(x, ξ, t) = −

∫ 1

−1
dx

1

ξ − x − iε
∂

∂x
Hq,g(x, ξ, t),

(9.44)

which are expected to diverge at least for quark distributions (see section 9.1.8).
In the regions z ≈ 0 and x ≈ ξ where the divergences occur, partons become soft
and the collinear approximation breaks down. The divergences disappear when
the transverse momentum of the partons is not neglected in the partonic scattering
amplitude; one then has for instance an inverse propagator zQ2 + �k 2 instead of
zQ2. The integral over z then behaves like log[Q2/〈�k 2〉], where 〈�k 2〉 is a typical
transverse momentum of the quark in the meson. Such a logarithmic enhancement
of the amplitude for transverse photons may explain why the measured ratio of
γ ∗ p → ρp cross sections with longitudinal and transverse photons is not very
large at moderate Q2, see section 9.6.1. From the derivation of the factorization
theorem [73] one expects that for a transverse photon there are contributions to
the amplitude with soft partons connecting the meson and the proton side (see our
discussion in section 9.3.1). Such contributions can no longer be expressed in terms
of hard scattering kernels and soft matrix elements involving either the proton or
the meson and entail a breakdown of factorization.
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The sensitivity of amplitudes with transverse photons or mesons to soft parts of
phase space has also been seen in calculations for vector meson production at small
x , where the transverse parton momenta entering the partonic amplitude were kept
explicitly. With suitable model assumptions on the meson wave function a rather
successful phenomenology for the γ ∗–ρ helicity transitions has been achieved [91].
Given our remark at the end of the previous paragraph, it remains unclear to what
extent such an approach can give an adequate description of the dynamics.

9.3.6 Power corrections

The systematic evaluation of power corrections to those helicity amplitudes which
receive a leading-twist contribution remains an unsolved problem. There are, how-
ever, a number of approaches to estimate specific sources of power corrections
which have been tested in processes similar to the ones we are dealing with. Here
and in the following we use ‘leading twist’ to designate the leading term in the 1/Q
expansion of Compton scattering or meson production, given by the factorization
formulae (9.29) or (9.31).

One generally expects that power corrections are more important in meson pro-
duction than in Compton scattering at equal values of Q2. This is because already
at the Born level the hard scattering subgraphs in meson production involve more
internal lines than those in Compton scattering; compare figures 9.1 and 9.10. At
a given hard external momentum the internal virtualities in meson production are
hence smaller and corrections to the approximations underlying the leading-twist
factorization formulae can be more important. This trend is indeed seen when
comparing power correction estimates for the transition γ ∗γ → π and for the elas-
tic pion form factor, which respectively have the same hard scattering graphs as
DVCS and exclusive π+ production off the proton. The form factor Fγπ describing
γ ∗γ → π can indeed be reproduced fairly well in the leading-twist approximation
down to quite low Q2, see figure 9.12. This does not imply that power corrections
are entirely negligible in the Q2 range shown, but the data do not require them to
be large. Notice that the contribution to DVCS from the pion-pole part (9.24) of
Ẽ can be expressed through the form factor Fγπ (Q2), just as the elastic pion form
factor Fπ (Q2) appears in the pion-pole contribution (9.37) to γ ∗ p → π+n.

The inclusion of the transverse parton momentum in the hard scattering kernels
has been studied for the form factors Fγπ (Q2) and Fπ (Q2) in [94,95], building on
the modified hard scattering formalism of Sterman and collaborators. The meson
structure is parametrized here by its qq̄ light-cone wave function. Given the close
connection of the relevant hard scattering kernels (see figure 9.5) this approach is
readily applied to meson electroproduction as far as the meson is concerned. Taking
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Figure 9.12. CLEO data for the scaled γ –π transition form factor [92] compared
with a calculation at leading twist and next-to-leading order in αs , using a pion
distribution amplitude with a fitted Gegenbauer coefficient a2 = −0.06 at scale
μ = 1 GeV [93]. The dotted line gives the value

√
2 fπ attained for Q2 → ∞,

when the running coupling goes to zero and φπ takes its asymptotic form under
evolution.

account of the transverse parton momentum on the proton side is more involved as it
requires a model for kT -dependent generalized parton distributions, for which there
is little phenomenological guidance. Using such a model, both meson production
and DVCS have been considered in [96]. A substantial suppression of the meson
production cross section was found, even for Q2 of several GeV2, whereas for DVCS
the corrections were moderate. Large suppression factors due to transverse quark
momentum were also obtained for vector meson production at small x in [97,98].

A different kind of power correction in the pion form factor is shown in figure
9.13(a), where the quark struck by the photon carries most of the pion momentum
whereas the spectator momentum is soft – a mechanism discussed long ago by
Feynman. This gives a positive contribution to the form factor. Having one power
of αs less than the leading-twist contribution, it can be quite large at moderate
Q2, see [95]. It is rather straightforward to extend this soft overlap mechanism
to electroproduction in the ERBL region, where the kinematics of the partonic
subprocess are the same as in the pion form factor. One then obtains a purely-
real contribution to the scattering amplitude, which was found to be quite large in
γ ∗ p → π+n [96]. It is, however, not understood how to evaluate the analogous
contribution in the DGLAP region, where it cannot be expressed in terms of the
pion light-cone wave function (see figure 9.13(b)).

In the leading-twist approximation of DVCS, perturbation theory can be used
because of the point-like coupling of the real photon to quarks. To estimate the
contribution from the hadronic component of the photon to DVCS, the studies
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Figure 9.13. Soft overlap contribution to the pion form factor (a) and to meson
electroproduction in the DGLAP region (b).

[99,100] have used models which describe the experimental data for ρ electropro-
duction in certain kinematics and converted the amplitude for γ ∗

T p → ρT p into
a contribution to the amplitude for γ ∗

T p → γ p using simple vector-meson domi-
nance. Although it cannot be interpreted as a power correction in a straightforward
way, the contribution in question may be seen as an indicator for effects beyond
the leading-twist description of Compton scattering. In [99] this contribution was
compared with DVCS data by H1 [101] and found to be at the 10–20% level in the
Compton amplitude, whereas the ρ contribution estimated in [100] accounts for
up to 50% of the DVCS beam spin asymmetries measured at HERMES [102] and
CLAS [103].

9.3.7 Heavy-meson production

Exclusive production of charmonium or bottomonium provides another class of
processes where GPDs can be accessed. Here the heavy-quark mass provides
a hard scale, even in photoproduction. Neglecting heavy-quark distributions in
the nucleon, the relevant graphs involve gluon GPDs as shown in figure 9.10(b).
To leading order in a non-relativistic expansion, the heavy-meson wave function
becomes trivial for the ground-state mesons, J/ψ and ϒ , with quark and anti-
quark sharing the meson four-momentum in equal parts and their relative velocity
v being approximately zero. The uncertainty in the value of the charm-quark mass
gives a corresponding uncertainty in the cross section for γ p → J/ψ p. There
is no consensus concerning the corrections to this leading-order non-relativistic
expansion. In [104] the O(v2) corrections have been evaluated in the formalism of
non-relativistic QCD and were found to be quite small. The studies [97,105] took
into account the relative momentum between c and c̄ directly in the hard scatter-
ing kernel. Using different model wave functions for the J/ψ , moderate to large
correction factors were obtained compared with the leading-order non-relativistic
formula.
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For photoproduction of heavy vector mesons there is no factorization theorem to all
orders in perturbation theory, but the explicit calculation of the O(αs) corrections to
the hard scattering kernel has given a structure compatible with factorization [106].
Numerically the corrections were found to be very large, and further study will be
required to understand in which kinematics this process can reliably be described
in the approximation discussed here.

The description we have outlined readily generalizes to electroproduction as long
as the photon virtuality is not much greater than the quark mass, and this case has
indeed been included in [97,105]. In the limit where Q2 is much bigger than the
squared quark mass, it sets the hard scale and the collinear factorization scheme
for light mesons becomes applicable. The structure of the meson is then encoded
in its light-cone distribution amplitude.

9.3.8 A remark on small x

The connection between the production of light or heavy vector mesons at small x
and the gluon distribution in the proton was realized early on [107,108]. These stud-
ies worked at leading-logarithmic accuracy in log(1/x), where the generalized gluon
distribution at t = 0 can be replaced in the relevant loop integrals by the usual gluon
distribution at a typical longitudinal momentum fraction, which is of order (m2

V +
Q2)/W 2 ≈ 2ξ . We note that, taken literally, leading log(1/x) accuracy is a serious
limitation for phenomenology, since even the ambiguity whether to take ξ or 2ξ as
the argument of the gluon distribution has a large impact on the resulting cross sec-
tion at small x . The t dependence of the generalized gluon distribution is, however,
a legitimate part of the leading log(1/x) approximation, and typically parametrized
via an exponential form dσ/dt ∝ exp(Bt) for the cross section at small t .

A theoretical approach to describe processes in the leading log(1/x) approximation
is based on colour dipoles, discussed in chapter 8. Within colour-dipole factoriza-
tion, the usual gluon density appears as a building block when making the additional
approximation of leading twist and double leading logarithm log Q2 log(1/x). It
is important to realize that the relation between this scheme and the collinear fac-
torization discussed in the present chapter is not always trivial (see [4] for a brief
account). This is highlighted by DVCS, which in the dipole formalism is described
in terms of the gluon distribution in the nucleon, whereas in collinear factoriza-
tion both quark and gluon distributions are of comparable importance even at xB

of order 10−3, if one chooses a factorization scale μ = Q [67]. This reflects the
ambiguity in separating the process amplitude into parton distributions and other
building blocks, illustrated in figure 9.14. We note also that the space-time picture
of the process is different in the two schemes. The collinear factorization approach
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Figure 9.14. (a) Collinear factorization of a diagram for high-energy γ ∗ p scattering
into γ ∗g scattering and the gluon distribution. Depending on the virtuality of the
internal quark lines, the same diagram can be factorized into γ ∗q scattering and
the quark distribution. (b) Factorization of the same diagram into photon wave
functions and the scattering of a qq̄ dipole on the proton, as appropriate in the
colour-dipole approach.

is naturally interpreted in the infinite-momentum frame, where a gluon emitted by
the target scatters on the photon via a quark loop. The dipole picture may be visual-
ized in the target rest frame, where the photon splits into a qq̄ pair that subsequently
scatters on the proton.

9.3.9 Revealing GPDs

We see in (9.34) and (9.35) that to leading order in αs the leading-twist amplitudes
for both DVCS and electroproduction of light mesons involve GPDs in the form∫ 1

−1
dx Hq(x, ξ, t)

(
iπδ(x − ξ ) + 1

ξ − x

)
± {x → −x} (9.45)

and its analogues for Eq , H̃q , Ẽq and the gluon distributions, where the pole of
(ξ − x)−1 is to be regularized by Cauchy’s principal-value prescription. In this
approximation the imaginary part of the scattering amplitude is given directly by
GPDs at the special points x = ±ξ (see section 9.1.8). Including αs corrections
one obtains integrals over x in the DGLAP regions. In contrast, the real part of the
amplitude is sensitive to all x already at Born level. The most relevant region of x
in the integral is of course determined by ξ , so that the dependence of scattering
amplitudes on t and ξ yields rather direct information on the spatial distribution of
partons with typical momentum fractions of order ξ (see section 9.1.7).

To reconstruct the dependence of GPDs on the independent momentum fractions
x and ξ is a much more difficult problem. To leading order in αs the imaginary
part of the amplitude for double DVCS involves GPDs at x = ±ρ, where |ρ| < ξ

according to (9.28). Double DVCS hence offers the unique possibility to scan GPDs
in the ERBL region. Indirect information on the x dependence of GPDs resides in
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Figure 9.15. Contribution to the electroproduction of a photon from Compton
scattering (a) and from the Bethe–Heitler process (b).

the logarithmic Q2 dependence of scattering amplitudes, which is encoded in the
perturbative evolution equations and hard scattering kernels. This information can
of course only be used in kinematics where power corrections in 1/Q can be
neglected, and according to our discussion in section 9.3.6 Compton scattering
looks more promising in this context than meson production.

To constrain the x dependence of GPDs in practice, one needs physically well-
motivated functional ansätze for these functions, as one does for the extraction
of ordinary parton distributions from inclusive processes. The constraints from
the forward limit, the elastic form factors, polynomiality and positivity are not
trivial to fulfil, and so far only double-distribution based ansätze as discussed in
section 9.2.7 have been used, where the forward limit and polynomiality are satisfied
by construction.

As we have seen in sections 9.3.2 and 9.3.3, means of disentangling the spin
and flavour structure of GPDs are offered by a combination of Compton scat-
tering and suitable meson production channels, by measurements with polarized
targets, and by combined data on proton and neutron targets. In the following
section we will investigate the potential of Compton scattering, which in particular
provides separate access to real and imaginary parts of the scattering amplitude,
where, as we have just discussed, GPDs intervene in very different fashions.

9.4 Phenomenology of Compton scattering

DVCS has a rich phenomenology because it is observed in electroproduction ep →
epγ , where it competes with the Bethe–Heitler process (see figure 9.15). The latter
is calculable since the electromagnetic proton form factors are experimentally well
known at the small values of momentum transfer where they are required: see
chapter 2. Using the interference between the two processes, one can study the
amplitude of virtual Compton scattering, γ ∗ p → γ p, including its phase. As we
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Figure 9.16. Kinematics of ep → epγ in the centre of mass of the final-state photon
and proton.

have seen in the previous subsection, this is most valuable for constraining the
dependence of GPDs on x and ξ .

The kinematics of electroproduction are described in terms of the invariants Q2, W 2,
t entering the Compton subprocess, in addition to the azimuthal angle φ between the
lepton and hadron plane defined in figure 9.16 and the usual inelasticity parameter
y = (qp)/(kp). We neglect the lepton mass throughout, and our discussion readily
carries over to μp → μpγ .

The Bethe–Heitler graphs in figure 9.15 are readily evaluated without further
approximation. Expressed through the variables we have chosen, the result is quite
complicated but simplifies considerably in the kinematical limit of large Q2 at fixed
t , xB , y and φ, which is relevant for DVCS. For detailed discussions and formulae
see [109,67,4]. Decomposing the cross section for ep → epγ on an unpolarized
target into contributions dσB H + dσV C S + dσI N T from the Bethe–Heitler process,
Compton scattering and their interference, one finds

dσB H

dφ dt d Q2 d log xB
= α3

em

8πs2

1

|t |
4

ε

1

P

×
[

1 − ξ 2

ξ 2

t − t0
t

(
F2

1 − t
4m2

F2
2

)
+ 2(F1 + F2)2 + O

( 1

Q

)]
, (9.46)

with the Dirac and Pauli form factors F1 and F2 evaluated at t . Here s = (k + p)2

is the squared ep centre-of-mass energy and ε ≈ (1 − y)/(1 − y + 1
2 y2) is the ratio

of longitudinal to transverse photon flux in the Compton process. The factor

P = 1 − 2 cos φ

√
2(1 + ε)

ε

1 − ξ

1 + ξ

t0 − t
Q2

+ O
( 1

Q2

)
(9.47)

is due to the lepton propagators in the graphs of figure 9.15(b) and is proportional to
the product s ′u′ of their virtualities. Although formally 1/Q suppressed, the cos φ

dependent factor in (9.47) can be numerically quite important, especially in the
kinematics of the HERMES and JLab experiments (see section 9.5).
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For dσV C S and dσI N T it is useful to parametrize the dynamics of γ ∗ p → γ p by
helicity amplitudes e2 Mλ′μ′,λμ. Here λ (λ′) is the helicity of the incoming (outgo-
ing) proton and μ (μ′) the helicity of the incoming (outgoing) photon. With the
constraints of parity invariance there are twelve independent amplitudes for DVCS,
which can be chosen to correspond to the combinations (+, +), (+, 0), (+, −) of
the photon helicities (μ′, μ) . As discussed in sections 9.3.2 and 9.3.4, the ampli-
tudes Mλ′+,λ+ appear at leading order in 1/Q and αs , the twist-3 amplitudes Mλ′+,λ0

are 1/Q suppressed, and Mλ′+,λ− comes with a suppression by either αs or 1/Q2.
One can readily express the four amplitudes Mλ′+,λ+ in terms of the Compton form
factors H, E , H̃, Ẽ and hence of integrals over H , E , H̃ , Ẽ . The four amplitudes
Mλ′+,λ0 depend on integrals over the same GPDs, and in addition on four inde-
pendent quark–antiquark–gluon matrix elements. For Compton scattering on an
unpolarized target one has

dσV C S

dφ dt d Q2 d log xB
= α3

em

8πs2

1

Q2

1

1 − ε

∑
λ′λ

|Mλ′+,λ+|2 + · · · . (9.48)

For simplicity we have neglected the target mass in the phase space and
flux factor. In order to include the target mass one should replace s2 with
(s − m2)2(1 + 4x2

Bm2/Q2)1/2, both here and in (9.46) and (9.50). We have here only
given the contribution from the leading amplitudes Mλ′+,λ+. The complete expres-
sion contains also terms depending on φ and on the lepton beam polarization P�,
where cos φ and P� sin φ accompany the interference of Mλ′+,λ0 with Mλ′+,λ+ or
Mλ′+,λ−, and cos 2φ accompanies the interference between Mλ′+,λ− and Mλ′+,λ+
(there is no term with P� sin 2φ). The φ dependence of the ep cross section thus gives
access to the photon helicity dependence of the Compton amplitudes and makes it
possible to test their different size and Q2 behaviour at fixed xB and t expected from
the factorization theorem. The same is possible with the interference term between
the Compton and Bethe–Heitler processes, as we shall see shortly.

From (9.46) and (9.48) we see that the relative size of Bethe–Heitler and Compton
cross sections is

dσB H : dσV C S ∼ Q2(1 − ε) : |t |ε, (9.49)

so that Bethe–Heitler typically dominates over Compton scattering since we require
Q2 � |t |. An exception is the case ε ≈ 1, which requires small y and hence large s
at given xB and Q2 according to the relation Q2 = yxB(s − m2). This is illustrated
by the estimates in figure 9.17. Note that the factor P from the lepton propagators
can enhance the Bethe–Heitler contribution at φ around 0◦, especially if ε is small.

Whether the Bethe-Heitler process dominates or not, information about Comp-
ton scattering can be obtained from dσI N T . Especially clean access to the
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Figure 9.17. The cross section for ep → epγ and its individual contributions
from DVCS (dashed) and the Bethe–Heitler process (dotted) for different electron
energies in the proton rest frame, given in the panels. The remaining kinematical
quantities are Q2 = 2.5 GeV2, xB = 0.25 and φ = 45◦. The curves are based
on the same model as the dashed curves in figure 9.19 and will be described in
section 9.5.

interference term is provided in the difference of cross sections for e− p → e− pγ

and e+ p → e+ pγ , where dσB H + dσV C S drops out because of the lepton charge
factors, whereas dσI N T remains. Furthermore, the Bethe–Heitler contribution (but
not dσV C S) exactly drops out in the single-spin asymmetries for a longitudinally-
polarized lepton beam and for a longitudinally- or transversely-polarized proton
target. This is a consequence of parity and time-reversal invariance, see [4] for a
discussion of its limits of validity. In double-spin asymmetries there is, however, a
Bethe–Heitler contribution.

For an unpolarized target the interference term has the structure

dσI N T

dφ dt d Q2 d log xB
= −e�

α3
em

8πs2

1

|t |
m
Q

8
√

2

ξ

1

P

[
cos φ

1√
ε(1 − ε)

Re M̂++

− cos 2φ

√
1 + ε

1 − ε
Re M̂+0 − cos 3φ

√
ε

1 − ε
Re M̂+−

+ P� sin φ

√
1 + ε

ε
Im M̂++ − P� sin 2φ Im M̂+0 + O

( 1

Q

)]
, (9.50)
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where M̂μ′μ is a linear combination of the Compton amplitudes Mλ′μ′,λμ with known
coefficients depending on ξ and t , and P is given in (9.47). The charge of the lepton
beam is e� = ±1, and its polarization is normalized as −1 ≤ P� ≤ 1. The depen-
dence on φ and ε is hence completely explicit in (9.50), and angular analysis can
be used to separate the different terms in the interference, which involve Compton
amplitudes playing very different roles in the large-Q2 limit. In particular, the lead-
ing amplitudes Mλ′+,λ+ are those going with cos φ and P� sin φ. In this context it is
important to take into account that the factor P from the Bethe–Heitler propagators
provides an additional φ dependence of the interference term. Especially in kine-
matics where this is not negligible, the cleanest access to the Compton amplitudes
is obtained by reweighting the cross section with P .

Upon closer inspection [67,4] and taking into account the predictions of the fac-
torization theorem for the different Compton amplitudes, one finds that the terms
denoted as O(1/Q) in (9.50) are actually suppressed by 1/Q2 or by αs , except for a
contribution which is independent of φ and P� and involves the leading amplitudes
Mλ′+,λ+ with kinematic coefficients of order 1/Q. This suggests that the results
extracted in an angular analysis based on (9.50) can be interpreted as definite com-
binations of Compton amplitudes with only moderate corrections.

With an unpolarized nucleon target one has access to a combination of Compton
amplitudes and hence of GPDs. To disentangle the spin dependence parametrized
by H , E , H̃ , Ẽ , target polarization is required. The unpolarized Compton cross
section is sensitive to the quadratic combination

1
2

∑
λ′λ

|Mλ′+,λ+|2 = (1 − ξ 2)(|H|2 + |H̃|2) −
(

ξ 2 + t
4m2

)
|E |2

− ξ 2 t
4m2

|Ẽ |2 − 2ξ 2 Re (H∗E + H̃∗Ẽ) (9.51)

of the integrals over GPDs we defined in section 9.3.2. Other combinations appear in
the Compton contribution to the single spin asymmetry for transverse target polar-
ization and in the double asymmetry for longitudinal lepton beam and longitudinal
or transverse target polarization. A more direct separation is offered by the inter-
ference term, where GPDs appear linearly. For a polarized target the leading-twist
contribution from the amplitudes Mλ′+,λ+ is

dσINT ∝ cos φ Re M̂++ + P�

√
1 − ε2 sin φ Im M̂++

+ SL
[

sin φ Im M̂ L
++ + P�

√
1 − ε2 cos φ Re M̂ L

++
]

+ ST cos β
[

sin φ Im M̂ S
++ + P�

√
1 − ε2 cos φ Re M̂ S

++
]

+ ST sin β
[

cos φ Im M̂ N
++ − P�

√
1 − ε2 sin φ Re M̂ N

++
]
, (9.52)
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where the target polarization vector is (ST cos β, ST sin β, SL ) in the coordinate sys-
tem of figure 9.11, normalized as 0 ≤ ST ≤ 1 and −1 ≤ SL ≤ 1. The combinations
of Compton amplitudes are given by

M̂++ =
√

1 − ξ 2

√
t0 − t
2m

[
F1H + ξ (F1 + F2)H̃ − t

4m2
F2 E

]
,

M̂ L
++ =

√
1 − ξ 2

√
t0 − t
2m

[
F1H̃ + ξ (F1 + F2)

(
H + ξ

1 + ξ
E
)

−
( ξ

1 + ξ
F1 + t

4m2
F2

)
ξ Ẽ

]
,

M̂ S
++ =

[
ξ 2

(
F1 + t

4m2
F2

)
− t

4m2
F2

]
H̃ −

( t
4m2
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1 + ξ

)
ξ (F1 + F2) E

+
[( t

4m2
+ ξ 2

1 + ξ

)
F1 + t

4m2
ξ F2

]
ξ Ẽ − ξ 2(F1 + F2)H ,
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4m2
(F2H − F1 E) + ξ 2

(
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4m2
F2

)
(H + E)

− ξ 2(F1 + F2)
(
H̃ + t

4m2
Ẽ
)

(9.53)

in terms of integrals over GPDs. Hence, with both longitudinal and transverse tar-
get polarization, one has four independent observables to separate the four twist-2
Compton form factors. We see that the only combination where E is not kine-
matically suppressed compared with other GPDs is M̂ N

++. To be sensitive to this
distribution, which plays a special role in the context of angular momentum, requires
transverse target polarization.

So far we have focused on a proton target. Data for DVCS on both the proton and
the neutron would allow separation of the GPDs for u and d quarks. At leading
order in αs the Compton amplitude involves quark combinations

p : 4
9 Fu + 1

9 Fd + 1
9 Fs, n : 1

9 Fu + 4
9 Fd + 1

9 Fs, (9.54)

and their analogues for F̃q , with the quark flavour referring to a proton target in
both cases. The detailed phenomenology of DVCS on the proton and the neutron is
different: in the t range of interest F1(t) is small but F2(t) is large for the neutron,
whereas both are comparable for the proton: see chapter 2. In particular, we see in
(9.53) that the unpolarized combination M̂++ is sensitive to E in the neutron case.
Measurements of DVCS on the neutron using a deuteron target have been approved
at JLab [110].
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Figure 9.18. Contributions from Compton scattering and the Bethe–Heitler pro-
cesses to ep → ep μ+μ−.

9.4.1 Double DVCS

We emphasized in section 9.3.9 that double DVCS contains unique information on
GPDs in the region where they describe qq̄ emission from the target. Extraction of
the Compton signal from exclusive lepton pair production ep → ep �+�− is more
complex than in the case of DVCS, since there are now two different types of
Bethe–Heitler processes, shown in figure 9.18. The ratio of cross sections dσB H1 :
dσV C S ∼ Q2(1 − ε) : |t |ε is as in the case of DVCS, whereas for the new type of
Bethe–Heitler process one has dσB H2 : dσV C S ∼ Q′2 : |t | without the possibility to
enhance the Compton process by going to ε ≈ 1. Using the angular distribution of
the produced lepton �+ one can, however, construct observables where dσB H2 does
not contribute because of the lepton charge factors in the different processes [76].
We note that channels where the produced lepton pair has different flavour than
the beam, that is ep → ep μ+μ− and μp → μp e+e−, admit a simpler theoretical
analysis than their counterparts with two identical leptons in the final state. First
theoretical studies of lepton pair production have been carried out in [77,78,111],
and it remains to be seen to which extent the physics potential of this process can
be harvested in experiments.

9.5 Experimental results on DVCS

DVCS is the theoretically cleanest process sensitive to GPDs and offers most
detailed observables. The first experimental results in fixed-target experiments
[102,103] were for the lepton-beam spin asymmetry

ALU (φ) = 1

|P�|
dσ e↑ − dσ e↓

dσ e↑ + dσ e↓ . (9.55)

Following our discussion in section 9.4 its denominator is φ-independent in the
limit of large Q2 and dominated by the Bethe–Heitler cross section (9.46) unless
ε is very close to 1. In the numerator the Bethe–Heitler contribution is absent for
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and preliminary data from HERMES [112] (right). The solid curves show fits
to the data of the form ALU (φ) = s1 sin φ, and the remaining curves are model
calculations discussed in the text. The different signs of the asymmetry reflect that
CLAS used an e− and HERMES an e+ beam.

symmetry reasons and the Compton contribution involves twist-3 amplitudes, so
that the asymmetry is approximately proportional to the combination Im M̂++ of
twist-2 Compton form factors given in (9.53). At small to modest values of ξ and
t this combination is dominated by ImH due to kinematical prefactors. Hence
to leading order in αs one has direct access to Hq(ξ, ξ, t) − Hq(−ξ, ξ, t) with
the above approximations. For a precise interpretation of data the cross section
difference dσ e↑/dφ − dσ e↓/dφ is more suitable than the normalized asymmetry
(9.55), whose denominator does receive contributions from dσV C S and dσI N T at
some level of accuracy [67]. Measurement of cross section differences is, however,
experimentally more demanding.

The results on ALU shown in figure 9.19 support the relevance of the large-Q2 limit
for DVCS in current experiments. The CLAS collaboration compared their data
[103] with theory predictions for Q2 = 1.25 GeV2, xB = 0.19, −t = 0.19 GeV2

and ε = 0.3, whereas the average kinematical values for HERMES [112] are
Q2 = 2.5 GeV2, xB = 0.12, −t = 0.18 GeV2 and ε = 0.88. In both measure-
ments the asymmetry approximately follows a sin φ behaviour, a fit to ALU (φ) =
s1 sin φ + s2 sin 2φ giving s2 = −0.024 ± 0.021 for CLAS. Preliminary CLAS data
with much higher statistics find a ratio s2/s1 smaller than 15% [113]. This trend
is in line with the large-Q2 picture, where a sin 2φ modulation of ALU should be
1/Q suppressed compared with the sin φ term.
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asymmetry in a fit to the form ALU (φ) = s1 sin φ + s2 sin 2φ. The curves corre-
spond to the same model as the dotted curves in figure 9.19.

The size of the asymmetries is described reasonably well by calculations that
approximate Compton scattering to leading order in 1/Q and αs (see (9.33) and
(9.34)), with GPDs modelled along the lines described in section 9.2.7. The model
of Hq taken for the curves in figure 9.19 assumes a factorized t dependence, adding
the D-term (9.26) from the chiral quark–soliton model to the double-distribution
ansatz (9.27) with ρval = ρsea ∝ (1 − α2)b and the next-to-next-to-leading order
(NNLO) quark densities from [114] at μ = 1 GeV. The profile parameter was set
to b = 1 for the dashed and to b = 4 for the dotted curves.

The measurements presented in figure 9.19 are integrated over rather large kinemat-
ical regions in xB , Q2 and t . In figure 9.20 we show preliminary data from CLAS
for a finer binning in xB or in Q2. The calculation from the model just described
gives a fair description of the data, except for the points at large xB .

As we saw in section 9.4, a polarized target is necessary to disentangle GPDs with
different spin structure in DVCS. For longitudinal target polarization one can define

A UL (φ) = 1

|SL |
dσ p↑ − dσ p↓

dσ p↑ + dσ p↓ . (9.56)

As in the case of ALU this asymmetry receives its dominant contribution from the
interference term (9.52) in the large-Q2 limit. Given the kinematical prefactors in
(9.53), and taking into account that the unpolarized GPDs H are likely larger than
their polarized counterparts H̃ , one expects Im M̂ L

++ to be dominated by ImH and
Im H̃. Together with the information from the beam spin asymmetry one can thus
access H̃q(ξ, ξ, t) + H̃q(−ξ, ξ, t) to leading accuracy in αs .
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Figure 9.21. Cross section for γ ∗ p → γ p measured by ZEUS [117]. The curves
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Single-spin asymmetries provide access to the imaginary parts of Compton ampli-
tudes. The lepton beam charge asymmetry is sensitive to their real parts and hence
to GPDs in both the DGLAP and ERBL regions. In the large-Q2 limit the term
Re M̂++ from the interference can be filtered out by the cos φ modulation of the
asymmetry

AC (φ) = dσ e+ − dσ e−

dσ e+ + dσ e− . (9.57)

Preliminary data from HERMES [115,116] give a coefficient c1 = 0.11 ± 0.04
for a fit to AC = c0 + c1 cos φ with average kinematical values Q2 = 2.8 GeV2,
xB = 0.12, −t = 0.27 GeV2 and ε = 0.84. This is well in the range of present
model calculations, which give a wide range of values with either sign, reflecting
in particular our ignorance of GPDs in the ERBL region. In fixed-target kinematics
the D-term in (9.26) gives a sizeable positive contribution to the coefficient of cos φ

in AC . However, comparison of the model results in [51] and [67] shows that the
uncertainty on the double-distribution part of GPDs is significant as well, so that
one cannot constrain the D-term directly. Note, however, that by its form (9.17) the
D-term gives a ξ -independent contribution to H at fixed Q2 and t , and the opposite
contribution to E , and has an experimentally-accessible signature.

At high ep centre-of-mass energies
√

s there is a wide kinematical region where
y is small, so that the Compton and Bethe–Heitler processes are of comparable
strength. Subtracting the Bethe–Heitler contribution one can then measure the
Compton cross section. Such measurements have been performed by the H1 and
ZEUS collaborations [101,117] at

√
s = 300 GeV to 318 GeV. Figure 9.21 shows

the ZEUS results for the γ ∗ p → γ p cross section, which one can expect to be
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Figure 9.22. H1 data [119] on the t-slope in ρ production.

dominated by |H|2 in (9.51). A fair description of the data can be achieved with
several models for GPDs [67,79,72]. We note that colour-dipole models (see
section 9.3.8 and chapter 8) fare equally well. Whether the leading-log(1/x)
approximation underlying the dipole formalism or the leading-twist description
discussed here is more appropriate in given small-x kinematics remains ambiguous,
as it does for the inclusive structure functions of DIS. A major uncertainty for
models in both approaches is the fact that the t dependence of DVCS is known
only approximately [118].

9.6 Experimental results on meson production

As discussed in section 9.3, meson electroproduction probably requires rather large
values of Q2 for a leading-twist interpretation to be adequate. On the other hand,
it provides valuable handles to separate different flavour and spin combinations of
GPDs. Compared with DVCS it offers fewer observables that can be evaluated at
leading twist, whose extraction from data is, however, more straightforward.

9.6.1 Vector mesons

Data in a wide range of kinematics are available for electroproduction of the neutral
vector mesons ρ0, ω, φ, both at intermediate and large W , as well as for J/ψ

photo- and electroproduction. From (9.36) one expects that ρ and ω production is
dominated by the gluon distribution at very small xB and by the quark distributions
at large xB . Where the transition between these regimes takes place remains to be
clarified.

Figure 9.22 shows the t-slope parameter for ρ production, obtained from an expo-
nential fit dσ/dt ∝ eBt at small t . Similar results have been obtained in φ production
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[127]. The corresponding measurement for J/ψ production gives values of B
between 4 and 5 GeV−2, with little dependence on Q2 between the photoproduc-
tion limit and Q2 = 100 GeV2 [128]. The steep decrease of B(Q2) for ρ production
can be interpreted as an effect of the transverse quark momentum in the meson on
the hard-scattering subprocess [97]. Comparison with the value for J/ψ produc-
tion then suggests that this power suppressed effect becomes negligible only when
Q2 ≥ 10 GeV2. In the leading-twist regime 2B is the average impact parameter
〈�b 2〉 of gluons according to (9.21).

The factorization theorem for light-meson production predicts that at large Q2

both photon and meson should have longitudinal polarization. The photon helici-
ties in the γ ∗ p cross section σ = σT + εσL can be disentangled by a Rosenbluth
separation (see chapter 2), where ε is varied at given xB and Q2. However, this
requires measurement at different ep centre-of-mass energies. The polarization of
the produced vector meson can be inferred from its decay angular distribution, for
example in ρ → π+π−. Helicity-changing transitions from the photon to the meson
are known to be small empirically, and neglecting them one can determine the ratio
R = σL/σT from the measured polarization of the vector meson. This method has
been used in the measurements shown in figure 9.23. Preliminary data for Q2 up to
30 GeV2 [120] suggest that R continues to rise with Q2. Power counting at large
Q2 predicts R to rise like Q2 up to logarithms (see also section 9.3.5). We see
that σL is comparable to σT for Q2 of a few GeV2, indicating that formally 1/Q2

suppressed effects are not numerically small in that range.

The longitudinal cross section σL for ρ production has been measured by CLAS
[121] for Q2 between 1.5 and 3 GeV2 and several bins in xB . The data for xB = 0.31
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Figure 9.24. Data from CLAS [121] on σL for ρ production. The curves are
explained in the text.

and 0.38 are shown in Figure 9.24 and compared with the calculation from [96],
which is restricted to quark GPDs and takes into account power corrections from the
transverse momentum of quarks in the hard scattering kernel (see section 9.3.6). The
model taken for Hq uses a factorizing t dependence and the double-distribution
ansatz (9.27) with ρval = ρsea and B = 5. The bins with xB = 0.48 and 0.52 in
the same measurement correspond to kinematics very close to threshold, where a
GPD based approach to the dynamics cannot be expected to work. Corresponding
measurements at xB around 0.1 have been made by HERMES [126]. The observed
ratio of cross sections for φ and ρ0 production implies that in this region of xB both
quark and gluon exchange must be relevant [129]. A consistent estimate of power
corrections for this case has not yet been given. In figure 9.25 we show data from
H1 and ZEUS for ρ and φ production. The model calculations from [98] shown in
the same figure are obtained with gluon GPDs only and take into account power
corrections from the transverse momentum of quarks in the meson. They use a
factorized t dependence for H g and the analogue of (9.27) for gluons with a profile
parameter b = 1. We see that a description of the data by calculations using the
leading-twist formalism and an estimate of power corrections is fair, although not
perfect.

The cross sections for ρ and φ production at large Q2 show a steep rise with W , in
contrast to the photoproduction cross sections in these channels. A similarly steep
rise is found for the cross section in DVCS (see figure 9.21) and also for J/ψ

photo- and electroproduction, shown in figure 9.26. For J/ψ production the W
dependence does not change significantly between Q2 = 0 and 100 GeV2 within
present errors [128]. Such findings corroborate the interpretation of these processes
in terms of gluon distributions, which at sufficiently large scales rise strongly with
decreasing momentum fraction.



410 V Burkert and M Diehl

1

10

10 2

0 20 40 60 80 100 120 140 160

Q2 = 3.5 GeV2

7

13

17

27

W(GeV)

σ(
n

b
)

γ*p→ρp

ZEUS

1

10

10 2

10 3

0 5 10 15 20 25 30 35 40

W = 75 GeV

Q2(GeV2)

H1
ZEUS

φ

ρ

Figure 9.25. Left: cross section for γ ∗ p → ρp measured by ZEUS [123,124].
Right: σL for ρ and φ production, extracted in [125] from data of H1 (circles) and
ZEUS (squares). The curves are discussed in the text.

0.1

1

10

102

10
2

W(GeV)

σ(
n

b
)

ZEUS

γ*p→J/ψ p

( x 0.03)

( x 0.05)

( x 0.1)

( x 0.2)

16

6.8

3.1

0.4

Q2 = 0

Figure 9.26. ZEUS data for J/ψ production [128] versus W for various values of
Q2 given in the plot. The electroproduction cross sections have been scaled for
clarity.

9.6.2 Prospects for pseudoscalar-meson production

Separation of the cross sections for transverse and longitudinal photons can only be
done by the Rosenbluth method for pseudoscalar-meson photoproduction at high
Q2. Note however that, in contrast to vector-meson production, σT now involves
helicity flip from the photon to the meson, so that one may expect R = σL/σT to be
larger than for ρ production at the same Q2. Information on the polarization of the
virtual photon can be obtained in the same manner as for DVCS, namely from the
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distribution in the angle φ between the lepton and hadron planes. The unpolarized
ep cross section can be written as

1

�T

dσ

dφ dt d Q2 dxB
= dσT

dt
+ ε

dσL

dt
+

√
2ε(1 + ε) cos φ

dσLT

dt
+ ε cos 2φ

dσT T

dt
,

(9.58)

where �T is a kinematical factor. The φ-dependent terms go with the interference
between longitudinal and transverse or between the two transverse photon polar-
izations, so that at large Q2 they should be suppressed by 1/Q relative to σL . Corre-
sponding measurements are underway at CLAS. Similar interference terms occur in
the single-spin asymmetries for longitudinal-beam or longitudinal-target polariza-
tion. A non-zero value for the latter has been measured in ep → eπ+n by HERMES
[130] with average kinematics Q2 = 2.2 GeV2, xB = 0.15, −t = 0.46 GeV2 and
ε = 0.95. Preliminary HERMES results for σT + εσL have been presented in [131].

Production of charged pseudoscalars is special in that it receives contributions from
π+ or K + exchange in the t-channel, which can be large in a wide kinematical
region. As we discussed in section 9.3.3, the relative size of the contributions from
GPDs Ẽ and H̃ is measured in the transverse target-spin asymmetry.

9.7 GPDs and large-angle scattering processes

The concept of GPDs has also found application in processes at large invariant
momentum transfer t . Although their theory is much less advanced than the one
presented so far in this chapter, the developments we now briefly present have
spawned a rather successful phenomenology and may be seen as a promising ansatz
to understand large-t scattering in a description based on quark and gluon degrees
of freedom. A more detailed account and references are given in [4,5].

To see the main physics issues in this context (which are quite different from those in
processes at small t but large Q2) consider the Dirac form factor of the proton at large
t . In the asymptotic limit −t → ∞ one expects that the hard scattering mechanism
will dominate, where each parton in the three-quark Fock state of the proton under-
goes a hard scattering (see for example [132] for a review). This can be calculated
using the same collinear factorization approach we discussed in section 9.3.1, with
long-distance dynamics now encoded in the leading-twist distribution amplitudes
of the nucleon. Compared with analogous observables involving mesons, such as
the pion form factor, the larger number of internal propagators results in a stronger
‘dilution’ of the external hard momentum in the hard scattering subprocess, so that
much larger t is required in order for internal propagators to be predominantly far
off-shell. The endpoint regions, where one or more partons in the nucleon wave
function have soft momenta, play a more prominent role for baryon form factors.
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Figure 9.27. (a) Data for the proton Dirac form factor [134] and the result of
modelling the soft overlap of the lowest three Fock states in the proton [35].
(b) Cross section data for wide-angle Compton scattering [135] compared to the
result obtained with (9.59) and Compton form factors from the same model. The
curve is for s = 10.3 GeV2 and would differ by less than 20% for the other values
of s, provided that −t and −u are above 2.3 GeV2.

Calculations within the hard scattering approach that come close to describing the
experimental data (which extends up to −t of about 30 GeV2 for the proton) typi-
cally receive their main contributions from such soft regions of phase space, where
internal virtualities in the graphs are soft [133]. The approximations of the for-
malism then become invalid and the calculation inconsistent. A different approach
is to consider precisely the contribution from endpoint configurations, where all
partons in the nucleon except one are soft, as originally suggested by Feynman.
This contribution may be approximated by the overlap of light-cone wave functions
for the lowest few Fock states, and a rather successful phenomenology has been
obtained with suitable model wave functions. In figure 9.27(a) we show results
obtained with simple model wave functions for the Fock state with three quarks
and the Fock states with three quarks and an additional gluon or qq̄ pair. The same
wave functions give a rather good description of polarized and unpolarized parton
densities at x >∼ 0.5 (see section 9.1.8).

The preceding discussion carries over to other processes, in particular to Compton
scattering at large Mandelstam invariants s, t , u, often referred to as ‘wide-angle
Compton scattering’. An evaluation in the hard scattering approach [136] confirms
that this mechanism seriously undershoots the cross section data for s, −t , −u of
several GeV2. For this process there is again a soft overlap contribution, where the
elementary quark–photon vertex appearing in the Dirac form factor is replaced by
Compton scattering on a quark, see figure 9.28. The soft overlap of the wave func-
tions can be described in terms of generalized parton distributions: then one obtains
handbag diagrams as in figure 9.1(a) with their factorized form of a hard scattering
subprocess on a single quark and a soft matrix element of the nucleon [35,137].
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Figure 9.28. Contributions to wide-angle Compton scattering from the hard scat-
tering (a) and the soft overlap (b) mechanism.

For the unpolarized cross section of γ p → γ p the soft handbag mechanism gives

dσ

dt
= πα2

em

s2

[
(s − u)2

|su|
(

R2
V (t) − t

4m2
R2

T (t)
)

+ (s + u)2

|su| R2
A(t)

]
(9.59)

with Compton form factors

RV (t) =
∑

q

e2
q

∫ 1

−1

dx
x

Hq(x, 0, t), RT (t) =
∑

q

e2
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∫ 1
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dx
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Eq(x, 0, t),

RA(t) =
∑

q

e2
q

∫ 1

−1

dx
x

sign(x) H̃q(x, 0, t). (9.60)

The calculation leading to (9.59) requires the Mandelstam invariants to be large on
a hadronic scale. In particular the target mass has been neglected, and the Compton
subprocess was evaluated setting the momentum fraction x of the incoming quark
to 1, which corresponds to this quark taking the entire plus-momentum of its parent
proton. Model estimates suggest that this is not a very good approximation for
moderate values of s, t , u, and to improve on it remains a major task for theory.
To do this in a consistent way is not trivial since gauge invariance requires one to
treat the external quarks in the hard scattering as on-shell, or to take into account
additional gluons exchanged between the hard and soft subprocesses.

An important feature of the soft overlap mechanism is that in a limited but rather
wide region of t it can produce an approximate power behaviour of the form factors
F1(t), RV (t) and RA(t) of the form t−2, which coincides with the power behaviour
obtained in the leading-twist hard scattering approximation. Such a behaviour of
the Compton form factors translates into an approximate power behaviour of dσ/dt
like s−6 at fixed t/s and thus again mimics leading-twist power behaviour, which
is approximately seen in the data. In figure 9.27(b) we compare the result from
(9.59) and the Compton form factors modelled in [35] with data from [135], where
we required −t and −u to be above 2.3 GeV2. Shown is the ratio between dσ/dt
and the Klein–Nishina cross section dσK N/dt , which up to proton mass terms is
obtained from (9.59) by setting RV = RA = 1 and RT = 0 (see [139]). The quality
of data obtained in present experiments is illustrated in figure 9.29, where the curves



414 V Burkert and M Diehl

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
10−1

10 0

10 1

10 2

10 3

cos θ

γp → γp

Preliminary

11

s = 20 GeV2

8.9

6.9

×10

d
σ
/d

t
[p

b
/G

eV
2
]

Figure 9.29. Preliminary data from Hall A at JLab [138] for wide-angle Compton
scattering at different values of s given in the plot. θ is the scattering angle in the
centre-of-mass frame. The theoretical curves (see text) are restricted to the region
where −t and −u are above 2.5 GeV2, and the error bands reflect theoretical
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has been scaled by a factor 10 and could be tested with the 12 GeV upgrade at
JLab (see section 9.8).

show a calculation in the soft handbag mechanism including O(αs) corrections (see
below). The Compton form factors have been obtained from a parametrization of
GPDs fitted to the electromagnetic form factors and the valence quark densities of
the nucleon [59].

Because of the kinematical prefactors, the cross section (9.59) is mainly sensitive
to the vector form factor RV . Access to RA and RT is provided by polarization
observables like the helicity correlation KL L between the incoming photon and
the outgoing proton and the correlation KL S between the helicity of the incoming
photon and the transverse polarization of the recoil proton in the scattering plane.
With the definitions given in [140] one finds in the soft handbag approximation

KL L
dσ

dt
= 2πα2

em

s2

s2 − u2

|su|
(

RV (t) − t
s + √−su

RT (t)
)

RA(t),

KL S
dσ

dt
= 2πα2

em

s2

s2 − u2

|su|
√−t
2m

(
4m2

s + √−su
RV (t) − RT (t)

)
RA(t).

(9.61)
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While KL L is mainly sensitive to RA/RV , the ratio KL S/KL L depends only on
RT /RV and thus is sensitive to the tensor form factor RT , which describes proton
helicity flip in analogy to the Pauli form factor. A variety of other polarization
observables have been studied, and the soft handbag mechanism makes a number
of predictions that can be experimentally tested [140]. Data from Hall A at JLab
give KL L = 0.678 ± 0.083(stat) ± 0.040(syst) at s = 7 GeV2 and −t = 4 GeV2

[141], which is well in the range of the model predictions in [140].

The O(αs) corrections to the hard scattering process have also been evaluated [140].
The structure of the singularities appearing in this calculation is such that they can
be absorbed by the renormalization of the Compton form factors, suggesting that
a more rigorous treatment of the mechanism in the framework of factorization
should be possible. After renormalization the O(αs) corrections are found to be
rather moderate, at the level of 10% for experimentally relevant kinematics.

The soft handbag mechanism can equally be applied to wide-angle Compton scat-
tering with an off-shell initial photon, provided its virtuality Q2 is not much bigger
than the hard scale set by s. The relevant calculations are readily generalized from
the case of real photons and the greater number of observables allows for further
tests of the reaction mechanism [142]. Application of the same mechanism to the
production of a meson at large s, t , u is also possible, but comes with the additional
complexity of the transition from the initial photon to the meson [143]. The soft
overlap mechanism for wide-angle Compton scattering has an analogue for pro-
cesses in the crossed channel, meson or baryon production from two photons and
photon pair production in p p̄ collisions at large s, t , u. Its calculation leads to gen-
eralized distribution amplitudes at large s, and admits a rich phenomenology which
so far has been quite successfully applied to exclusive channels in γ γ annihilation
(see [144] and references therein).

9.8 Future facilities for GPD physics

The knowledge of GPDs obtained by 2007 is still very limited and does not result
from a dedicated experimental program. A large effort is, however, underway to
improve upon existing data and to extend the kinematical reach of hard exclusive
processes. Its focus is on DVCS, from which one can expect a major impact on GPD
physics already at modest energies and photon virtualities. New equipment is being
installed or is under construction to improve the experimental conditions for isolat-
ing the exclusive production of high-energy photons. The HERMES collaboration
is building a detector to measure the recoil proton [145], the CLAS experiment is
constructing a new forward-angle photon detector [146], and in Hall A at JLab a
dedicated DVCS experiment is being carried out with a large photon calorimeter
and a proton recoil detector [147]. At higher energies, there is an effort underway
to measure DVCS and exclusive meson production in the COMPASS experiment
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Figure 9.30. Kinematical coverage [150] for DVCS at fixed-target facilities, taking
into account restrictions from both phase space and event statistics. The collider
experiments at HERA cover a narrow slice at very small xB on this linear scale
and reach very high Q2.

at CERN, which also has plans for a new recoil detection system [148]. The HERA
collider experiments H1 and ZEUS will continue to take data on DVCS and vector-
meson production at high Q2 and small xB . In the present run H1 is operating two
spectrometers for high-acceptance detection of forward and very forward protons,
with ξ respectively around 10−1 and 10−2 [149]. By 2007 it is expected that several
of these experiments will have collected high-statistics data for beam-charge, beam-
spin or target-spin asymmetries and possibly for the corresponding cross section
differences in DVCS. These data will cover a significantly increased kinematical
domain. On the same time scale, results on deeply virtual production of ρ0, ρ+,
ω, φ, π0, π+ and η mesons can be expected. Figure 9.30 gives an overview of the
kinematics covered in fixed-target experiments.

At the more extended time scale of 2010 and beyond, the energy upgrade of
the JLab electron accelerator to 12 GeV, combined with luminosities from L =
1035 cm−2 s−1 for the planned CLAS upgrade to L = 1038 cm−2 s−1 for smaller-
acceptance magnetic spectrometer setups, will increase the kinematical reach in
Q2, xB and t , and significantly improve the statistical accuracy for all exclusive pro-
cesses. As an example of the expected data quality we show in figure 9.31 projections
for measuring the kinematical dependence of the beam-spin asymmetry in DVCS.
Such measurements will constrain GPDs as functions of several variables to a much
greater extent than currently available data, such as those shown in figure 9.20.
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Figure 9.31. Projections for the beam-spin asymmetry in DVCS at the planned
energy upgrade of the electron accelerator at JLab. The data are simulated for a
beam energy of 11 GeV and the curves represent predictions with different GPD
models. s1 is obtained from a fit to ALU (φ) = (s1 sin φ + s2 sin 2φ)/(1 + c1 cos φ),
where the cos φ term has been introduced to account for the dominantφ dependence
from the Bethe–Heitler cross section in the denominator of the asymmetry.

To exploit fully the physics potential of studying GPDs will require a dedicated
machine with characteristics to cover a large range in xB and Q2, that is with
sufficiently high

√
s and luminosities that can compete with or surpass the capabil-

ities available in present fixed-target experiments with large-acceptance detectors.
Detectors should be able to measure exclusive processes in a wide range of t .
These aims could be achieved with a new electron–ion collider (EIC) currently in
discussion for a location in the USA [151]. The ELIC option (electron light-ion
collider) would be an ideal instrument for GPD physics with exclusive processes
at xB > 10−3 since it is designed for highest luminosities of up to 1035 cm−2 s−1

[152]. The option of electron–nucleus interactions (eRHIC at BNL) has lower lumi-
nosity but can reach smaller xB values [153]. A summary of existing and possible
future facilities for GPD physics is given in table 9.1.

9.9 Outlook

The theory of GPDs and exclusive processes where they occur has reached a level
of sophistication similar to the description of inclusive DIS in terms of the usual
parton densities. The leading-twist amplitudes for both Compton scattering and
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Experiment Energy Equipment P� Pol. target L (unpol.)
(GeV) (%) (cm−2 s−1)

JLab/CLAS 6 em. cal. 85/e− p, d 2 × 1034

JLab/Hall A 6 em. cal., recoil det. 85/e− 3He 1037

HERMES 27.5 recoil det. 50/e± p, d 3 × 1032

COMPASS 100–190 recoil det. 80/μ± p, d 1.3 × 1032

H1 27.5/920 forw. spectrom. 50/e± 4.5 × 1031

ZEUS 27.5/920 50/e± 4.5 × 1031

JLab@12GeV 12 CLAS12 85/e− p, d 1035

Hall A 85/e− 3He 1037

Hall C 85/e− p, d 1038

ELIC 7/150 4π detector yes/e− p, d, 3He 1035

eRHIC 10/250 4π detector yes/e± p, d, 3He 4.4 × 1032

Table 9.1. Present and possible future facilities for GPD physics, with specification of
beam energies, special equipment for exclusive measurements, lepton beam polarization,
polarized target capability, and luminosity for an unpolarized target. ELIC and eRHIC are
two options of the EIC project.

meson production are calculated to next-to-leading order in αs , and the structure of
1/Q power corrections in Compton scattering is well understood. An outstanding
task for theory remains to understand the pattern and size of next-to-leading order
and power corrections in meson production sufficiently well for a quantitative
interpretation of data with Q2 of a few GeV2. To determine the dependence of
GPDs on the three variables x , ξ , t is a formidable challenge, and to date no model-
independent procedure is known to achieve this in practice, with the exception of
access to the ERBL region in double DVCS: see section 9.3.9. A realistic prospect is
to investigate GPDs and the physics they encode with a combination of theoretical
studies, non-perturbative calculations such as in lattice QCD and experimental
data.

Measurements of Compton scattering have the potential to provide the most strin-
gent and detailed constraints on GPDs. As we explained, data on meson production
are more difficult to interpret quantitatively. Given their possibility to separate dis-
tributions for different quark flavours and gluons, they should, however, not be
dismissed, and suitable cross section ratios may offer a practicable way to achieve
this. To exploit fully the physics potential of GPDs, detailed measurements are
required. Multi-dimensional spectra in xB and t will help to disentangle the inter-
play of longitudinal and transverse degrees of freedom in the distribution of partons,
and to lift the degeneracy among models that are able to describe overall rates. In
addition, the combined dependence on Q2 and xB provides a crucial handle to
test the power behaviour on Q2 and its modification by logarithms predicted by
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the theory. To use GPDs as a tool for studying the spin structure of the nucleon,
polarization measurements are mandatory. Key observables are the asymmetries
for longitudinal and transverse target polarization in Compton scattering, and for
transverse target polarization in meson production.
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[8] P A M Guichon, L Mossé and M Vanderhaeghen, Physical Review D68 (2003)

034018
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10

Quark–hadron duality

R Ent

At asymptotically high energies, the property of QCD known as asymptotic free-
dom, in which quarks interact feebly at short distances, allows one to calculate
hadronic observables in terms of expansions in the strong coupling constant gs , or
more commonly αs = g2

s /4π . The small value of αs at large momentum scales (or
short distances) makes possible an efficient description of phenomena in terms of
quarks and gluons or, more generally, partons.

At low-momentum scales, on the other hand, where αs is large (see [1] for example),
the effects of confinement make strongly-coupled QCD highly non-perturbative.
Here, it is more efficient to work with collective degrees of freedom, the physical
hadrons, that is mesons and baryons.

Despite the apparent dichotomy between the parton and hadron regimes, in nature
there exist instances where the behaviour of low-energy cross sections, averaged
over appropriate energy intervals, closely resembles that at asymptotically high
energies, calculated in terms of quark–gluon degrees of freedom. This phenomenon
is referred to as quark–hadron duality, and reflects the relationship between con-
finement and asymptotic freedom, and the transition from perturbative to non-
perturbative regimes in QCD.

The observation of such a non-trivial relationship between inclusive electron–
nucleon scattering cross sections at low energy, in the region dominated by the
nucleon resonances, and that in the deep-inelastic scattering (DIS) regime at high
energy predates QCD. While analysing the data from the early DIS experiments at
SLAC, Bloom and Gilman observed [2,3] that the inclusive structure function at low
hadronic final-state mass, W , generally follows a scaling curve that describes high-
W data, which the resonance structure function averages. Initial interpretations of
this duality used the theoretical tools available at the time, namely finite-energy sum
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rules (FESRs) (see chapter 5), or consistency relations between hadronic amplitudes
inspired by the developments in Regge theory that occurred in the 1960s [4,5].

Following the advent of QCD in the early 1970s, Bloom–Gilman duality was refor-
mulated [6,7] in terms of an operator product (or ‘twist’) expansion of moments of
structure functions. This allowed a systematic classification of terms responsible
for duality and its violation in terms of so-called ‘higher-twist’ operators, which
describe long-range interactions between quarks and gluons. Ultimately, however,
this description fell short of adequately explaining why particular multi-parton cor-
relations were suppressed, and how the physics of resonances gave way to scaling.
From the mid-1970s the subject was largely forgotten for almost two decades, as
attention turned from the complicated resonance region to the more tractable prob-
lem of calculating higher-order perturbative corrections to parton distributions, and
accurately describing their Q2 evolution.

The availability of high-luminosity (polarized) beams, together with polarized tar-
gets, has allowed one to revisit Bloom–Gilman duality at a much more quantitative
level than previously possible, and impressive amounts of data of unprecedented
quantity and quality have now been compiled in the resonance region and beyond.
One of the striking findings [8] is that Bloom–Gilman duality appears to work
exceedingly well, down to Q2 values of 1 GeV2 or less, which is considerably
lower than previously believed. In parallel, there has been a growing realization
that understanding the resonance region in inelastic scattering, and the interplay
between resonances and scaling in particular, represents a critical gap which must
be filled if one is to fathom fully the nature of the quark–hadron transition in QCD.
This has led to a resurgence of interest in questions about the origin of quark–hadron
duality.

10.1 Duality in hadronic reactions

The decade or so preceding the development of QCD saw tremendous effort devoted
to describing hadron interactions in terms of S-matrix theory and self-consistency
relations. One of the profound discoveries of that era was the remarkable relation-
ship between low-energy hadronic cross sections and their high-energy behaviour,
in which the former on average appears to mimic certain features of the latter.

Historically, duality in strong interaction physics represented the relationship
between the description of hadronic scattering amplitudes in terms of s-channel
resonances at low energies, and t-channel Regge poles at high energies, as illus-
trated in figure 10.1. (More comprehensive discussions of Regge phenomenology
can be found, for example, in the book of Collins [4], or in the more recent account
by Donnachie et al [5]. A summary of the relevant aspects is given in chapter 5.)
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Figure 10.1. Dual descriptions of the scattering process, in terms of a sum over
s-channel resonances R(s), and in terms of t-channel Reggeon exchanges α j (t)

At low energies, one expects the scattering amplitude to be dominated by just a
few resonance poles, R. As s increases, however, the density of resonances in each
partial wave, as well as the number of partial waves itself, increases, making it
harder to identify contributions from individual resonances. Therefore, at high s it
becomes more useful to describe the scattering amplitude in terms of a t-channel
partial-wave series, allowing the amplitude to be written as a sum of t-channel Regge
poles and cuts. At small |t | the Regge trajectories are consistent with linearity:

α(t) = α(0) + α′t (10.1)

and amplitudes behave as

A(s, t) ∼ sα(t) , s → ∞. (10.2)

This implies that at large s the total cross section behaves as σ ∼ sα(0)−1.

While the s- and t-channel partial-wave sums describe the low- and high-energy
behaviour of scattering amplitudes, respectively, an important question confronting
hadron physicists of the 1960s was how to merge these descriptions. This was espe-
cially challenging at intermediate s, where the amplitudes approach their smooth
Regge asymptotic behaviour, but some resonance structures still remain.

Progress towards synthesizing the two descriptions came with the development of
FESRs, which are generalizations of superconvergence relations in Regge theory
[9] relating dispersion integrals over the amplitudes at low energies to high-energy
parameters. The formulation of FESRs stemmed from the sum rule of Igi [10],
which used dispersion relations to express the crossing symmetric π N forward
scattering amplitude in terms of its high-energy behaviour. An implicit assumption
here is that beyond a sufficiently large energy ν > ν̄, the scattering amplitude can
be represented by its asymptotic form, AIR, calculated within Regge theory [11].
The resulting sum rules relate functions of the high-energy parameters to dispersion
integrals which depend on the amplitude over a finite range of energies.

An important early application of FESRs was made for the case of π N scattering
amplitudes. In their seminal analysis, Dolen et al [12] observed that summing
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Figure 10.2. Total π+ p (left) and isovector-exchange πp cross section pLab�σ =
pLab(σπ+ p − σπ− p) (right), as a function of laboratory momentum, pLab , com-
pared with Regge fits to high-energy data. (Adapted from [5].)

over contributions of s-channel resonances yields a result which is approximately
equal to the leading (ρ) pole contribution obtained from fits to high-energy data,
extrapolated down to low energies.

The original duality hypothesis embodied in the FESRs was not complete. It did not
include pomeron (IP) exchange that was introduced in Regge theory to describe the
behaviour of total and elastic cross sections at large s [4,5]. Since the known mesons
lie on Regge trajectories with intercepts αIR(0) < 1, from (10.2) the resulting cross
sections will obviously decrease with s. To obtain approximately constant cross
sections at large s requires an intercept αIP(0) ≈ 1. While there are no known
mesons on such a trajectory, the exchange of a pomeron (which can be modelled
in QCD through the exchange of two or more gluons) is introduced as an effective
description of the high-energy behaviour of cross sections.

A generalization of the s- and t-channel duality to include contributions from
both resonances and the non-resonant background upon which the resonances are
superimposed was suggested by Harari [13] and Freund [14].

In this ‘two-component duality’, resonances are dual to the non-diffractive Regge
pole exchanges, while the non-resonant background is dual to pomeron exchange
[15],

A(s, t) =
∑
res

Ares(s, t) + Abkgd(s, t) (10.3)

=
∑

IR

AIR(s, t) + AIP(s, t). (10.4)

The data on π± p scattering in figure 10.2 show pronounced resonance structures at
small laboratory momenta, pLab < 2–3 GeV, which oscillate around the Regge fit to
high-energy data, with the amplitude of the oscillations decreasing with increasing
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Figure 10.3. Total inclusive photoproduction cross section data for the proton as
a function of the centre of mass energy,

√
s, compared with a parametrization

(dashed curve) of the high-energy data. From [18].

momenta. Averaging the resonance data over small energy ranges thus exposes a
semi-local duality between the s-channel resonances and the Regge fit. Since both
the non-diffractive (isovector exchange, right) and total (left) cross sections satisfy
duality, then so must the diffractive, IP-exchange component.

For the case of electroproduction, the two-component duality model has immediate
application in DIS. In inclusive electroproduction from the nucleon, the behaviour
of the cross sections at large s ≡ W 2 = m2

p + Q2(ω − 1), where ω = 2m pν/Q2,
corresponds to the ω → ∞ behaviour of structure functions. Two-component dual-
ity therefore suggests a correspondence between resonances and valence quarks.
At fixed Q2, large ω ∼ large s and the behaviour of the structure function is given
by poles on the f2-meson and a2-meson Regge trajectories,

Fval
2 (ω) ∼ ωαIR(0)−1, (10.5)

with the background dual to sea quarks or gluons, for which the large-ω behaviour
is determined by pomeron exchange,

Fsea
2 (ω) ∼ ωαIP(0)−1. (10.6)

A dual model of DIS based on Regge calculus was developed by Landshoff and
Polkinghorne [16] to describe the early DIS data. The natural extension of using
Regge language to describe electroproduction can be dramatically shown in the total
photon–proton cross section, σγ p, at low ν, as illustrated in figure 10.3. Oscilla-
tions around the high-energy behaviour can be readily seen, where the high-energy
‘scaling’ curve here is a fit to the large-s data by Donnachie and Landshoff [17].
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Figure 10.4. Early proton νW2 structure function data in the resonance region,
as a function of ω′, compared to a smooth fit to the data in the scaling region at
larger Q2. The resonance data were obtained at the indicated kinematics, with Q2

in GeV2, with the longitudinal to transverse ratio R = 0.18. (Adapted from [3].)

They use a Regge-inspired model in which the total γ p cross section is parametrized
by the sum of diffractive and non-diffractive components,

σγ p = X (2m pν)αIP−1 + Y (2m pν)αIR−1, (10.7)

where for real photons one has 2m pν = s − m2
p, with s the total γ p centre-of-mass

energy squared. The exponents αIP = 1.0808 and αIR = 0.5475 are determined by
fitting the pp and p p̄ total cross section data and the coefficients X and Y are given
by X = 0.0677 mb and Y = 0.129 mb. Although the parameters were fitted to the
data for

√
s > 6 GeV, the fit appears on average to go through the resonance data

at low
√

s (even at Q2 = 0).

10.2 Bloom–Gilman duality

By examining the early inclusive electron–proton scattering data from SLAC,
Bloom and Gilman observed [2,3] a remarkable connection between the structure
function νW2(ν, Q2) in the nucleon-resonance region and that in the DIS contin-
uum. The resonance structure function was found to be equivalent on average to
the DIS one, with the averages obtained over the same range in the scaling variable

ω′ = 2Mν + M2

Q2
= 1 + W 2

Q2
= ω + M2

Q2
. (10.8)

While the physical interpretation of this modified scaling variable was not clear at
the time, it did naturally allow for the direct comparison of data at higher W 2 to data
at lower W 2, over a range of Q2. The original data on the proton structure function
νW2(ν, Q2) in the resonance region are illustrated in figure 10.4 for several values
of Q2 from 0.75 GeV2 to 3 GeV2.
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The νW2(ν, Q2) structure function data were extracted from the measured cross
sections assuming a fixed value of the longitudinal to transverse cross section ratio,
R = σL/σT = 0.18. The scaling curve was a simple parametrization of the high-
W (high-Q2) data available in the early 1970s [19], when DIS was new and data
comparatively scarce.

The observations made by Bloom and Gilman are still valid, and may be summarized
as follows:

• The resonance region data oscillate around the scaling curve.
• The resonance data are on average equivalent to the scaling curve.
• The resonance region data ‘slide’ along the DIS curve with increasing Q2.

These observations led Bloom and Gilman to make the far-reaching conclusion that
‘the resonances are not a separate entity but are an intrinsic part of the scaling
behaviour of νW2’ [2].

In order to quantify their observations, Bloom and Gilman drew on the work on
duality in hadronic reactions to determine a FESR equating the integral over ν of
νW2 in the resonance region, to the integral over ω′ of the scaling function [2],

2M
Q2

∫ νm

0
dν νW2(ν, Q2) =

∫ 1+W 2
m/Q2

1
dω′ νW2(ω′). (10.9)

Here the upper limit on theν integration,νm = (W 2
m − m2

p + Q2)/2m p, corresponds
to the maximum value of ω′ = 1 + W 2

m/Q2, where Wm ≈ 2 GeV, so that the integral
of the scaling function covers the same range in ω′ as the resonance region data. The
FESR (10.9) allows the area under the resonances in figure 10.4 to be compared to
the area under the smooth curve in the same ω′ region to determine the degree to
which the resonance and scaling data are equivalent.

A reanalysis of the resonance region and quark–hadron duality within QCD was
performed by De Rújula et al [6,7,20], who reinterpreted Bloom–Gilman duality
in terms of moments M (n)

2 (Q2) of the F2 structure function. For n = 2 one recovers
the analogue of (10.9) by replacing the νW2 structure function on the right-hand
side by the asymptotic structure function, Fasy

2 (x), so that the FESR can be written
in terms of moments as

M (2)
2 (Q2) =

∫ 1

0
dx Fasy

2 (x). (10.10)

Since these moments are integrals over all x , at fixed Q2, they contain contributions
from both the DIS continuum and resonance regions. At large Q2 the moments are
saturated by the former; at low Q2, however, they are dominated by the resonance
contributions. One may expect therefore a strong Q2 dependence in the low-Q2
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moments arising from the 1/Q2 power behaviour associated with the exclusive
resonance channels.

Empirically, one observed only a slight difference, consistent with logarithmic
violations of scaling behaviour in Q2, between moments obtained at Q2 = 10
GeV2, and those at Q2 ≈ 2 GeV2 that have a contribution of about 30% from
resonances. The equivalence of the moments of structure functions at high Q2

with those in the resonance-dominated region at low Q2 is usually referred to as
‘global duality’. If the equivalence of the averaged resonance and scaling structure
functions holds over restricted regions in W , or even for individual resonances, a
‘local duality’ is said to exist.

Bloom and Gilman’s observation that, with changing Q2, the νW2 structure function
in the resonance region tracks a curve whose shape is the same as the scaling limit
curve is expressly a manifestation of local duality, in that it occurs resonance by
resonance. The scaling F2 function becomes smaller at the larger values of the
scaling variable, associated with higher values of Q2. Therefore, the resonance
transition form factors must decrease correspondingly with Q2.

10.3 Duality in inclusive electron scattering

Since the original observations of Bloom–Gilman duality in inclusive structure
functions, F2(x, Q2) has become one of the best-measured quantities in lepton
scattering, with measurements from laboratories around the world contributing to
a global data set spanning over five orders of magnitude in x and Q2. In parallel,
with the advent of JLab, precise structure function data are now also available in
the resonance region.

A sample of proton F2 structure function data from JLab [8] in the resonance
region is depicted in figure 10.5, where it is compared with fits to a large data set of
higher-W and Q2 data from the New Muon Collaboration (NMC) [21]. Figure 10.5
is in direct analogy to figure 10.4 above, where the Nachtmann variable ξ = 2x/(1 +√

(1 + 4m2
px2/Q2)) has replaced the more ad hoc variable ω′ as a means to relate

deep-inelastic data at high values of W 2 and Q2 to data at the lower values of
the resonance region, as well as to include proton target-mass corrections. It has
been shown that ξ is the correct variable that systematically absorbs all target-mass
corrections. These corrections are large when Q2 ≈ m2

p and need to be taken into
account in studying QCD scaling violations in the nucleon [22,20].

The extraction of the F2 structure function from cross section data can only proceed
with some input for the ratio R of the longitudinal to transverse cross sections, since
F2 ∼ (d2σ/d�d E ′) × (1 + R)/(1 + εR). At high Q2 the scattering of longitudinal
photons from spin- 1

2 quarks is suppressed, and one expects R → 0 as Q2 → ∞.
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Figure 10.5. Proton νW p
2 = F p

2 structure function data in the resonance region
as a function of ξ , at Q2 = 0.45, 0.85, 1.70, and 3.30 GeV2 from JLab [8]. The
resonance data were obtained with a longitudinal to transverse ratio R = 0.20. The
arrows indicate the elastic point in ξ , corresponding to x = 1. The curves represent
fits to DIS structure function data at the same ξ but higher (W 2, Q2) from NMC
[21] at Q2 = 5 GeV2 (dashed) and Q2 = 10 GeV2 (solid).

At low Q2, however, R is no longer suppressed, and could be sizeable, especially
in the resonance region and at large x .

The comparison shown in figure 10.5 has two shortcomings. A value of R is assumed
and the presentation of the resonance data and DIS scaling curves has an inherent
ambiguity. We will first address these before showing a quantification of the original
Bloom–Gilman observation.

Until 2004 very little data on R existed in the region of the resonances, rendering reli-
able longitudinal/transverse (LT) separations impossible. The few measurements
that existed below Q2 = 8 GeV2 in this region yielded R < 0.4, and had typical
errors of 100% or more. This lack of knowledge of R was reflected in the choices
of R = 0.18 and R = 0.20 for figures 10.4 and 10.5, respectively. These values
simply reflected the average values of R known at the time. Precision LT-separated
measurements of proton cross sections at JLab [23] have enabled detailed duality
studies to be made in both of the unpolarized structure functions and their moments.

Beyond the lack of precise knowledge of R, the classic presentation of duality in
electron–proton scattering, as depicted in figures 10.4 and 10.5, is also somewhat
ambiguous in that resonance data at low Q2 values are being compared to scaling
curves at higher Q2 values. It is difficult to evaluate precisely the equivalence of
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Figure 10.6. Proton F2 structure function in the resonance region for several values
of Q2, as indicated. Data from JLab [23] compared with some parametrizations of
the DIS data at the same Q2 values (see text).

the two if Q2 evolution is not taken into account. Furthermore, the resonance data
and scaling curves, although at the same ξ or ω′, are at different x and sensitive
therefore to different parton distribution functions (PDFs). A more stringent test
of the scaling behaviour of the resonances would compare the resonance data with
fundamental scaling predictions for the same low-Q2, high-x values as the data.

Such predictions are now commonly available from several groups around the
world, for instance, the Coordinated Theoretical-Experimental Project on QCD
(CTEQ) [24]; Martin, Roberts, Stirling, and Thorne (MRST) [25]; Glück, Reya,
and Vogt (GRV) [26], and Alekhin [27]. These groups provide results from global
QCD fits to a full range of hard scattering processes, such as lepton–nucleon DIS,
prompt photon production, Drell–Yan measurements and jet production, to extract
quark and gluon distribution functions (PDFs) for the proton. The idea of such
global fitting efforts is to adjust the fundamental PDFs to bring theory and exper-
iment into agreement for a wide range of processes. These PDF-based analyses
include perturbative QCD radiative corrections which give rise to logarithmic Q2

dependence of the structure function.

Comparison of resonance region data with PDF-based global fits allows the
resonance-scaling comparison to be made at the same values of (x, Q2), mak-
ing the experimental signature of duality less ambiguous. Such a comparison is
presented in figure 10.6 for LT-separated F2 data from JLab experiment E94-110
[23], with the data bin-centred to the values Q2 = 1.5, 2.5 and 3.5 GeV2 indicated.

The smooth curves in figure 10.6 are the perturbative QCD fits from the MRST
[25] and CTEQ [24] collaborations, evaluated at the same Q2 values as the data.
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Target-mass corrections are included in these evaluations according to the prescrip-
tion of Barbieri et al [28]. The SLAC curve is a fit to DIS data [29], which implicitly
includes target-mass effects inherent in the actual data. The target-mass-corrected
perturbative QCD curves appear to describe, on average, the resonance strength at
each Q2 value. Moreover, this is true for all of the Q2 values shown, indicating
that the resonance averages must be following the same perturbative Q2 evolution
which governs the perturbative QCD parametrizations (MRST and CTEQ). This
demonstrates even more emphatically the striking duality between the nominally
highly-non-perturbative resonance region and the perturbative scaling behaviour.

New LT-separated data from JLab experiment E94-110 for the proton transverse
(F1) and longitudinal (FL ) structure functions in the resonance region are shown in
figure 10.7 [23]. LT-separated data from SLAC, predominantly in the DIS region,
are also shown for comparison [30]. Where coincident, the JLab and SLAC data are
in excellent agreement, providing confidence in the achievement of the demanding
precision required of this type of experiment. In all cases, it is also interesting to note
that the resonance and DIS data smoothly move toward one another in both x and Q2.

The curves in figure 10.7 are from Alekhin’s next-to-next-to-leading order (NNLO)
analysis [27], including target-mass effects as in [20], and from the MRST NNLO
analysis [25], with and without target-mass effects according to [28] included. It is
clear that target-mass effects are required to describe the data. However, other than
the target-mass corrections, no additional non-perturbative physics seems neces-
sary to describe the average behaviour of the resonance region for Q2 > 1 GeV2.
Furthermore, this is true for a range of different Q2 values, indicating that the scal-
ing curve describes as well the average Q2 dependence of the resonance region.
These results are analogous to those in figure 10.6 for the F2 structure function,
and are a manifestation of quark–hadron duality in the separated transverse and
longitudinal channels.

Quark–hadron duality can be quantified by computing integrals of the structure
function over x in the resonance region at fixed Q2 values,

∫ xres

xth

dx F2(x, Q2), (10.11)

where xth corresponds to the pion production threshold at the fixed Q2, and xres =
Q2/(W 2

res − M2 + Q2) indicates the x value at that same Q2 where the traditional
delineation between the resonance and DIS regions falls, namely W ∼= 2 GeV.
These integrals may then be compared to the analogous integrals of the ‘scaling’
structure function at the same Q2 and over the same range of x . Alternatively, one
can quantify local duality by computing such integrals for regions in x limited to
the prominent resonance regions.
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Figure 10.7. The purely transverse (left) and longitudinal (right) proton structure
functions 2x F1 and FL , measured in the resonance region (triangles) as a func-
tion of x , compared with existing high-precision DIS measurements from SLAC
(squares). The curves are from Alekhin (dashed) [27], and from MRST [25], both at
NNLO, with (dotted) and without (solid) target-mass effects included, as described
in the text. The prominent resonance regions (�(1232), S11(1535), F15(1680)) are
indicated by the arrows.

The integrated perturbative strength appears equivalent to the resonance region
strength to better than 5% above Q2 = 1 GeV2. This is similarly true for all promi-
nent resonance regions [8]. This shows unambiguously that duality is holding quite
well on average in all of the unpolarized structure functions; the total resonance
strength over a range in x is equivalent to the perturbative, PDF-based prediction.

If one assumes duality, it is also possible to obtain a scaling curve by averaging the
resonance region data themselves. In this case one finds that the resonances oscillate
around the fit to within 10%, even down to Q2 values as low as 0.5 GeV2 [8]. At low
x and Q2, such a duality-averaged curve yields a clear valence-like shape, which
is in qualitative agreement with the neutrino/antineutrino data on the valence x F3

structure function [31]. This suggests a unique sensitivity of the duality-averaged
F2 data at low Q2 to valence quarks.

An alternative approach to quantifying the observation that the resonances average
to the scaling curve has been used by Alekhin [27]. Here �F2, the difference
between the resonance structure function values and those of the scaling curve, is
used to quantify duality, as shown in figure 10.8, where these differences are seen
to oscillate around zero. Integrating �F2 over the resonance region, the resonance
and scaling regimes are found to be within 3% in all cases above Q2 = 1 GeV2.

As already mentioned in section 10.2, the quantities most directly amenable to
a QCD analysis are the moments of structure functions by means of the opera-
tor product expansion (OPE) [32]. According to the OPE, at large Q2 
 2

QCD
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Figure 10.8. The difference �F2 between proton F2 structure function data (at
Q2 ∼ 1.5 GeV2) from JLab, and the scaling curve of [27] as a function of missing
mass W . The integrated difference yields a value of –0.0012 ± 0.0066 for this
particular W -spectrum.

the moments of the structure functions can be expanded in powers of 1/Q2. The
coefficients in this expansion are matrix elements of quark and gluon operators
corresponding to a certain twist, τ , defined as the mass dimension minus the spin,
n, of the operator. For the second (n = 2) moment of the F2 structure function, M (2)

2

(see (10.10)) one has the expansion

M (2)
2 (Q2) =

∞∑
τ=2

A(2)
τ (αs(Q2))

Qτ−2
, (10.12)

where A(2)
τ are the matrix elements with twist ≤ τ .

Asymptotically, as Q2 → ∞ the leading-twist (τ = 2) terms dominate these
moments. In the absence of perturbatively-generated corrections, these give rise
to the Q2 independence of the structure function moments, and hence are respon-
sible for scaling.

The leading-twist terms correspond to diagrams such as that in figure 10.9(a), in
which the virtual photon scatters incoherently from a single parton. The higher-
twist terms in (10.12) are proportional to higher powers of 1/Q2 with coefficients
which are matrix elements of local operators involving multi-quark or quark–gluon
fields. Diagrammatically, these correspond to processes such as those depicted in
figure 10.9(b) and (c).

The relation between the higher-twist matrix elements and duality in electron scat-
tering was elucidated in the classic work of De Rújula, Georgi and Politzer [7,20].
The connection follows almost immediately from the definition of the moment
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(a) (b) (c)

Figure 10.9. (a) Leading-twist (‘handbag diagram’) contribution to the structure
function. (b) Higher-twist (‘cat’s ears’) four-quark contributions. (c) Higher-twist
quark–gluon interactions.

expansions in (10.12). For the F2 structure function, the lowest moment, M (2)
2 ,

corresponds precisely to the Bloom–Gilman integral in (10.9), as already stated
in section 10.2. At low Q2 the moments display strong Q2 dependence, violating
both scaling and duality. In the OPE language this violation is associated with large
corrections from the subleading, 1/Qτ−2 higher-twist terms in (10.12).

At larger Q2 the moments become independent of Q2, as they would if they were
given entirely by the scaling contribution. According to (10.12), this duality can
only occur if the higher-twist contributions either are small or cancel. Duality
is synonymous, therefore, with the suppression of higher twists, which in partonic
language corresponds to the suppression of interactions between the scattered quark
and the spectator system, as illustrated in figure 10.9(b) and (c). In other words,
suppression of final-state interactions is a prerequisite for the existence of duality.

Note that since the resonances are bound states of quarks and gluons, they necessar-
ily involve (an infinite number of) higher twists. At Q2 = 1 GeV2 approximately
70% of the cross section integral (or the n = 2 moment) comes from the resonance
region, W < Wres . Despite this large resonant contribution, the resonances and the
DIS continuum conspire to produce only about a 15% higher-twist correction at the
same Q2, as figure 10.10 (left) demonstrates. Here the total M (2)

2 moment from pro-
ton measurements at JLab [33] is plotted versus Q2, together with the leading-twist
contribution calculated from the PDF parametrization of [25]. Remarkably, even
though each bound-state resonance must be built up from a multitude of twists,
when combined the resonances interfere in such a way that they closely resemble
the leading-twist component.

To conclude this section, we present in figure 10.10(right) moments of new, LT-
separated, spin-averaged, structure function data. Previous F2 moments were con-
structed using assumed values for R [34,35]. One of the most remarkable features
of the results in figures 10.10(right) is that the elastic-subtracted moments exhibit
little or no Q2 dependence even for Q2 < 1 GeV2. In the region where the moments
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Figure 10.10. Left: total n = 2 moment of the proton F2 structure function (squares)
and the leading-twist contribution (solid line) [33]. Right: second (n = 2) moments
of the F2 (top), 2x F1 (centre) and FL (bottom) structure functions, evaluated from
the JLab E94-110 data [23]. The total moments are connected by solid lines, and
elastic-subtracted moments by dashed lines.

are completely dominated by the nucleon resonances, the n = 2 moments of both of
the unpolarized structure functions appear to behave just as in the DIS region at high
Q2. This phenomenological observation is even more striking when constructing
similar Nachtmann moments [22]. In such moments the kinematical target-mass
corrections (non-negligible at such low Q2) are taken into account. This reduces
even further the remaining Q2 dependence of the structure function moments at
low Q2.

10.4 Scaling and duality in dynamical models

Although Bloom–Gilman duality for structure function moments at intermediate
and high Q2 can be analysed systematically within the OPE, an elementary under-
standing of the origins of duality for structure functions as a function of x or Q2

is more elusive. This problem is closely related to the question of how to build
up a scaling (Q2-independent) structure function entirely out of resonances [36],
each of which is described by a form factor that falls rapidly with increasing Q2.
The description of Bjorken scaling in DIS structure functions is most elegantly
formulated within the QCD quark–parton model, which is justified on the basis of
asymptotic freedom. On the other hand, the physical final state comprises entirely
hadrons, so it must also be possible, in the general sense of quark–hadron duality,
to describe the process in terms of hadronic degrees of freedom (resonances and
their decays) alone.
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One of the central mysteries in strong-interaction physics, and a key to the question
of the origin of duality, is how scattering from bound (confined) states of quarks
and gluons in QCD can be consistent with scaling, a property synonymous with
scattering from free quarks.

10.4.1 Large-Nc limit

Perhaps the simplest, and most graphic, demonstration of the interplay between
resonances and scaling is in QCD in the large-Nc limit. In the case of qq̄ bound
states, in this limit the hadronic spectrum consists entirely of infinitely narrow, non-
interacting resonances of increasing mass. On the other hand, since no element of
the perturbative QCD results for DIS depends on Nc, at the quark level one still
obtains a smooth scaling structure function. Therefore in the large-Nc world duality
must be invoked even in the scaling limit.

The derivation of a scaling function from large Nc resonances was demonstrated
explicitly for the case of one space and one time dimension [37]. QCD in 1 + 1
dimensions in the Nc → ∞ limit, known as the ’t Hooft model [38], is an exactly
soluble field theory, in which all hadronic Green’s functions are calculable in terms
of quark degrees of freedom. (The essential simplification which allows one to solve
the 1 + 1 dimensional theory non-perturbatively is the freedom to choose gauges in
which the gluon self-coupling vanishes.) In the large-Nc limit, even in lowest order,
the exchange of a massless gluon between quarks corresponds to an attractive qq̄
potential which rises linearly with r (compared with the 3 + 1 dimensional case
which gives rise to a Coulombic 1/r potential). Therefore confinement is an almost
trivial consequence in the ’t Hooft model. Furthermore, simply by power counting
one can show that the theory is asymptotically free, which automatically leads to
Bjorken scaling in structure functions.

In the more realistic case of QCD in 3 + 1 dimensions one expects that qq̄ bound
states will remain narrow in the large-Nc limit, so that local duality must still
be invoked. However, at finite Nc, resonances will acquire finite widths, and one
can expect complications with mixing of resonant and non-resonant background
contributions. Of course, confinement has not been proved in 3 + 1 dimensions,
rendering the above discussion suggestive but not rigorous. Hence, one usually
resorts to quark models to learn how duality may arise in Nature.

10.4.2 Resonance parametrizations

In a more phenomenological approach, Domokos et al [39] showed that one could
accommodate structure function scaling by summing over resonances parametrized
by Q2-dependent form factors.
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Figure 10.11. Resonance contributions to the proton F p
2 structure function ver-

sus the Nachtmann scaling variable ξ in the model of [42]. The solid line is a
parametrization of DIS data [8].

Starting from a harmonic oscillator-like spectrum of nucleon excitations, the struc-
ture function F2 was constructed by a sum of transition form factors weighted
by kinematical factors. It was shown that the resonance summation, in this model,
indeed yields a scaling function in the Bjorken limit. In addition, the correct ω′ → 1
behaviour according to the Drell–Yan–West relation [40,41] was exhibited, with
ω′ the scaling variable introduced by Bloom and Gilman. Similar arguments were
later used to derive scaling in spin-dependent and neutrino structure functions from
sums over resonant excitations [39].

While this illustrates the compatibility of confinement and asymptotic scaling in
DIS, it does not address the question of the origin of Bloom–Gilman duality at
finite Q2. Davidovsky and Struminsky [42] have constructed a phenomenological
model of the structure functions in the resonance region in the spirit of the earlier
work of [39], but with additional physical constraints for the threshold behaviour
as q → 0, and the asymptotic behaviour as Q2 → ∞.

Summing over a total of 21 resonance states (smeared by a Breit–Wigner shape)
in the isospin- 1

2 and isospin- 3
2 channels with masses MR > 2 GeV, the total F2

structure function is shown in figure 10.11 as a function of the Nachtmann scal-
ing variable ξ . The �(1232) resonance clearly provides the largest contribution.
The non-resonant background contribution here is relatively small, so that as Q2

increases the � peak moves to larger ξ , following the general trend of the scaling
curve. On the other hand, the higher-mass resonances lie about a factor 2 below the
scaling curve at the Q2 values shown, which reflects the absence of the non-resonant
backgrounds which are relatively more important for the higher-mass resonances.
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At lower ξ (higher W ), a quantitative description of the data would require the
inclusion of additional resonances beyond MR ∼ 2 GeV. This quickly becomes
intractable as little phenomenological information exists on N → R transitions at
high W , and indicates that a quark-level description may be more appropriate at
these kinematics.

10.4.3 Harmonic oscillator model

Despite the challenges in describing the transition to scaling in terms of phenomeno-
logical form factors, it is nevertheless vital to understand how the dynamics of
resonances gives way to scaling in the preasymptotic, finite-Q2, region. This has
been examined by several authors [36,43–46] in the context of particular dynamic
models.

Isgur et al [36] simplified the problem by considering a spinless, charged ‘quark’
of mass m bound to an infinitely massive core via a harmonic oscillator potential.
In this model they studied both the appearance of duality at low Q2 and the onset of
scaling at high Q2. For the case of scalar photons, the inclusive structure function,
W , is given by a sum of squares of transition form factors (as in the models discussed
above) weighted by appropriate kinematic factors [36],

W(ν, q) =
Nmax∑
N=0

1

4E0 EN
|F0,N (q)|2δ(EN − E0 − ν). (10.13)

The form factors F0,N represent transitions from the ground state to states charac-
terized by the principal quantum number N ≡ l + 2k, where k is the radial and l
the orbital quantum number, and the sum over states N goes up to the maximum,
Nmax , allowed at a given energy transfer ν. A related discussion which focuses on
the response in the time-like region was given by Paris and Pandharipande [45].

The scaling function corresponding to the structure function in (10.13) is given by

S(u, Q2) ≡ |q| W =
√

ν2 + Q2 W, (10.14)

with dimensions [mass]−2. The scaling variable u is defined as

u = 1

2mq
(
√

ν2 + Q2 − ν)
(
1 +

√
1 + 4m2

q/Q2
)
, (10.15)

and takes into account both target-mass and quark-mass effects [28]. Note that the
variable u in (10.15) is scaled by the quark mass, mq , rather than the bound state
mass, so that the range of u is between zero and infinity.

The structure function S(u, Q2) is shown in figure 10.12 for several finite values of
Q2, where for illustration the δ-functions have been smoothed by a Breit–Wigner
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Figure 10.12. Onset of scaling for the structure function S(u, Q2) as a function
of u for Q2 = 0.5 (solid), Q2 = 1 (short-dashed), 2 (long-dashed) and 5 (dotted)
GeV2. The width for N ≥ 1 has been arbitrarily set at �N = 100 MeV with the
elastic width set to �N=0 = 30 MeV. (From [36].)

shape with an arbitrary but small width, �N . The resonance structure is quite evident
in each of the low-Q2 curves, with the amplitude of oscillation decreasing with
increasing Q2. As Q2 increases, each of the resonances moves out towards higher
u, as dictated by kinematics. The right-most peak in each of the curves corresponds
to the elastic contribution. At Q2 = 0, this is the only allowed state, and is equal
to almost half of the asymptotic value of the integral over u. It remains rather
prominent for Q2 = 0.5 GeV2, though most of the function is by this point built up
of excited states, and it becomes negligible for Q2 ≥ 2 GeV2.

For local duality to hold, the resonance ‘spikes’ would be expected to oscillate
around the scaling curve and to average to it, once Q2 is large enough. Remark-
ably, even the curves at lower Q2 tend to oscillate around the scaling curve. The
difference between the scaling function and the curve in figure 10.12 at 5 GeV2

(dotted) is almost negligible. The asymptotic scaling function therefore straddles
the oscillating resonance structure function in an apparently systematic manner.
This is quite extraordinary given the very simple nature of the model, and points to
the rather general nature of the phenomenon of duality.

10.4.4 Sum of squares vs square of sums

Simple models such as the one discussed above are valuable in providing physical
insight into the dynamical origins of duality. However, one may wonder whether
some of the qualitative features of duality and the onset of scaling could be a
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consequence of the restriction to scattering from a single quark charge. In general,
if one neglects differences between the quark flavours, the magnitude of the structure
function F2 is proportional to the incoherent sum of the squares of the (quark and
antiquark) constituent charges,

∑
q e2

q . On the other hand, the summation over
resonance transition form factors is implicitly driven by the coherently-summed
square of constituent charges, (

∑
q eq)2, for each resonance. The basic question

then arises: Why do the interference terms
∑

q =q ′ eqeq ′ cancel or how does the
square of the sum become the sum of the squares?

Close and Isgur [43] elucidated this problem by drawing attention to the necessary
conditions for duality to occur for the general case of more than one quark charge.
They considered a composite state made of two equal-mass scalar quarks with
charges e1 and e2, at positions r1 and r2, respectively, interacting via a harmonic
oscillator potential. This exposes the critical point that at least one complete set
of even- and odd-parity resonances must be summed over for duality to hold [43]
(see also [47]). An explicit demonstration of how this cancellation takes place in
the SU(6) quark model is given below.

Similar results have also been obtained by Harrington [46], who performed a
detailed study of the relationship between coherent and incoherent descriptions
of the structure function within this model and the cancellation of the higher-twist
interference terms. Summing over the orbital angular momentum for each N , the
contributions to the structure function from a transition to the state N were shown to
be proportional to e2

1 + e2
2 + 2e1e2(−1)N , which illustrates how the contributions

from alternate energy levels tend to cancel for the e1e2 interference term.

10.4.5 SU(6) symmetry

The SU(6) spin-flavour symmetric-quark model serves as a useful basis for both
visualizing the principles underpinning the phenomenon of duality and at the same
time providing a reasonably close contact with phenomenology. Quark models
based on SU(6) spin–flavour symmetry provide benchmark descriptions of baryon
spectra, as well as transitions to excited N ∗ states.

In a series of classic early papers, Close, Gilman and collaborators [48–51] showed
how the ratios of various DIS structure functions could be dual to sums over N ∗

resonances in the 56-dimensional and 70-dimensional representations of SU(6).

Since the nucleon ground-state wave function is totally symmetric, the only
final-state resonances that can be excited have wave functions which are either
totally symmetric or of mixed symmetry, corresponding to the positive parity 56+

and negative parity 70− representations respectively [52]. The relative weight-
ings of the 56+ and 70− contributions are determined by assuming that the
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electromagnetic current is in a 35-plet. Allowing only the non-exotic singlet 1

and 35-plet representations in the t-channel, which corresponds to qq̄ exchange,
the reduced matrix elements for the 56+ and 70− are constrained to be equal. In
the t-channel these appear as γ γ → qq̄, while in the s-channel this effectively
maps onto the leading-twist handbag diagram in figure 10.9(a), describing incoher-
ent coupling to the same quark. Exotic exchanges require multi-quark exchanges,
such as qqq̄q̄ in the t-channel and correspond to the ‘cat’s ears’ diagram in figure
10.9(b). Physically, therefore, the appearance of duality in this picture is correlated
with the suppression of exotics in the t-channel [48].

Although the s-channel sum was shown by Close and coworkers [48,50,51] to be
dual for ratios of structure functions, this alone did not explain the underlying reason
why any individual sum over states scaled. The microscopic origin of duality in
the SU(6) quark model was more recently elaborated by Close and Isgur [43], who
showed that the cancellations between the even- and odd-parity states found to be
necessary for duality to appear, are realized through the destructive interference in
the s-channel resonance sum between the 56+ and 70− multiplets. Provided the
contributions from the 56+ and 70− representations have equal strength, this leads
exactly to the scaling function proportional to

∑
q e2

q .

Close and Isgur showed that in the SU(6) limit duality is also realized for FL [43]. In
general the interplay of magnetic and electric interactions will make the workings
of duality non-trivial. In the Q2 → 0 limit both electric and magnetic multipoles
will contribute and the interference effects can cause strong Q2 dependence [48,49],
such as that responsible for the dramatic change in sign of the lowest moment of g p

1

in the transition towards the Gerasimov–Drell–Hearn sum rule at Q2 = 0. Close
and Isgur suggest [43] that Bloom–Gilman duality will fail when the electric and
magnetic multipoles have comparable strengths, although the precise Q2 at which
this will occur is unknown.

10.5 Duality in spin-dependent electron scattering

We have explored the transition between the parton and hadron regimes in unpolar-
ized electron scattering and established the degree to which quark–hadron duality
holds in the F1 and F2 structure functions. In principle, there should also exist kine-
matic regions in spin-dependent electron–nucleon scattering, where descriptions
in terms of both hadron and parton degrees of freedom coexist. Indeed, duality in
spin-dependent structure functions has been predicted from both perturbative [53]
and non-perturbative QCD arguments [50,43].

The feature which most distinguishes the study of duality in spin-dependent scat-
tering from that in spin-averaged scattering is that since spin structure functions are
given by differences of cross sections, they no longer need be positive. A dramatic
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example of this is provided by the �(1232) resonance, whose contribution to the g1

structure function of the proton is negative at low Q2. In spin-dependent scattering
several new questions for the investigation of quark–hadron duality therefore arise:

1. Does quark–hadron duality work better (or only) for positive definite quantities
such as cross sections, in contrast to polarization asymmetries?

2. Is there a quantitative difference between the onset of quark–hadron duality
for spin-averaged and spin-dependent scattering, and if so, to what can this
be attributed?

3. Does quark–hadron duality also hold for local regions in W for spin-dependent
structure functions, and if so, how do these regions differ from those in unpo-
larized scattering?

Expanding on the last question, the above example of the �(1232)-resonance con-
tribution to the polarization asymmetry is sometimes used as evidence against
quark–hadron duality in spin-dependent scattering [54]. However, this argument
is not complete: the �(1232)-resonance region consists of both a resonant and a
non-resonant contribution, and it is the interplay between these that is crucial for
the appearance of duality [53,55]. The more relevant question is at which value
of Q2 does the �(1232)-resonance region turn positive (in the case of the proton
g1), and whether quark–hadron duality holds at lower Q2 if one averages over the
elastic peak and other nearby resonances in addition to the �(1232). Clearly duality
cannot be too local at low Q2.

A large quantity of precision spin structure function data has been collected since
the 1980s [56] in the DIS region (W > 2 GeV) over a large range of Q2. This
has allowed initial studies of the logarithmic scaling violations in the g1 structure
function, and in turn has enabled one to embark upon dedicated investigations of
quark–hadron duality in spin-dependent scattering.

The first modern experiment accessing the proton g1 spin structure function in the
resonance region was SLAC experiment E143 [57]. A negative contribution in the
region of the N–�(1232) transition was observed, and a large positive contribution
for W 2 > 2 GeV2. The resonance region data at Q2 ≈ 1.2 GeV2 seemed to approach
the DIS results, with the exception of the negative N–�(1232) transition region.
When integrating over the region of ξ corresponding to the nucleon resonances
at Q2 ≈ 1.2 GeV2, one finds about 60% of the corresponding DIS strength at
Q2 = 3.0 GeV2. Obviously, a large source of this missing strength lies in the
�(1232) region, which is still negative. Indeed the integrated strength in the region
2 < W 2 < 4 GeV2 amounts to about 80% of the DIS strength.

More recently, the HERMES collaboration at DESY reported data on the A1 spin
asymmetry (see (3.93)) in the nucleon resonance region for Q2 > 1.6 GeV2 [58].
The resonance region data were reported to be in agreement with those measured
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Figure 10.13. Left: Proton spin structure function g1 from CLAS [59] in the reso-
nance region, at three values of Q2 indicated. The curves are the global parametriza-
tions of the spin structure functions from [60]. Right: Ratio of the integrated
strength of the g1 data to that of the global parametrization. Both the data and the
QCD parametrization are integrated for each Q2 over the x regions corresponding
to the indicated W 2 regions (with the elastic contribution included).

in the DIS region [57,56]. The average ratio of the measured A1 asymmetry in the
resonance region to the DIS power law fit is 1.11 ± 0.16 (stat.) ± 0.18 (syst.) [58].
This suggests that for Q2 > 1.6 GeV2, the description of the spin asymmetry in
terms of quark degrees of freedom is, on average, also valid in the nucleon resonance
region. The implication of this result is the tantalizing possibility of measuring the
partonic content of A1 at large values of x , almost up to x = 1, by extending such
measurements into the nucleon resonance region.

The CLAS collaboration at JLab carried out inclusive polarized scattering experi-
ments at energies of 2.6 and 4.3 GeV, using a polarized NH3 target [59]. Some of
the results, for Q2 > 0.7 GeV2, are shown in figure 10.13(left). In the lowest-Q2

bins, the contribution of the �(1232) resonance region to g1 is negative, whereas the
contributions of the higher-mass states are positive. The negative �(1232) contri-
bution obviously prevents a naive local duality interpretation at low Q2. However,
in some models [43,61] local duality is only expected to arise after averaging over
the �(1232) and the (positive) elastic contribution. Indeed, addition of the nucleon
elastic and N−�(1232) transition contributions would render a positive definite
value for the averaged g1.

This is further illustrated in figure 10.13(right), where we show the integrated
strength of the nucleon resonance region data as compared to the integrated strength
from the global structure function parametrizations [60]. Here the data have been
split into two regions – the region W 2 < 2 GeV2 (with the elastic contribution
included), and 2 < W 2 < 4 GeV2 – and then integrated for each Q2 over the x
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regions corresponding to the chosen W 2. Clearly the elastic region overcompensates
for the negative �(1232) region contribution, and the ratio for the region W 2 <

2 GeV2 falls as a function of Q2. The region 2 < W 2 < 4 GeV2 has ∼75% of the
strength of the global QCD parametrization [60], close to the 80% found in the
SLAC-E143 data [57] at Q2 = 1.2 GeV2. The complete nucleon resonance region,
with the elastic contribution included, closely resembles what one expects from
the QCD parametrization at Q2 ≈ 1.7 GeV2. However, an even earlier onset is
observed when both the elastic and �(1232) regions are left out.

The first experiment measuring the deuteron spin structure function gd
1 in the

nucleon resonance region was again the SLAC experiment E143 [57], utilizing
a polarized ND3 target. The measured gd

1 structure function amounts to about half
of the g p

1 structure function, leading to an almost null, but slightly negative, contri-
bution of gn

1 . This is essentially the same behaviour as that found in the DIS data
at higher W and Q2, hinting that duality also exists for non-positive observables.

The CLAS collaboration at JLab collected gd
1 data with significantly smaller sta-

tistical uncertainties than the SLAC-E143 experiment, and better resolution in W
[62]. The CLAS data do show an unambiguously positive gd

1 for W 2 > 2 GeV2,
indicating that the helicity- 1

2 transition amplitudes dominate even at rather low
values of Q2 (Q2 ≈ 0.5 GeV2). They conclude that the onset of local duality is
slower for polarized structure functions than for unpolarized ones, as only the high-
est Q2 = 1.0 GeV2 data, beyond the �(1232) region, show fairly good agreement
with a fit to DIS data at Q2 = 5 GeV2 [62]. For the unpolarized Fd

2 structure func-
tion, local duality was observed to hold well already for Q2 = 0.5 GeV2, from a
similar comparison.

This leads us to conclude that the onset of duality in the spin-dependent structure
functions occurs at larger values of Q2 than for spin-averaged structure functions,
in the region of 1 < Q2 < 2 GeV2. There are hints that duality also works for non-
positive observables, and an earlier onset is definitely observed when combining the
elastic and�(1232) regions. The evidence for quark–hadron duality in both the spin-
averaged and the spin-dependent scattering process suggests that the helicity- 1

2 and
helicity- 3

2 photoabsorption cross sections exhibit quark–hadron duality separately.

10.6 Duality in semi-inclusive reactions

In this section we generalize the duality concept to the largely unexplored domain of
semi-inclusive electron scattering, eN → eh X , in which a hadron h is detected in
the final state in coincidence with the scattered electron. The virtue of semi-inclusive
production lies in the ability to identify, in a partonic basis, individual quark species
in the nucleon by tagging specific mesons in the final state, thereby enabling both
the flavour and spin of quarks and antiquarks to be systematically determined.



448 R Ent

γ∗

q

N*

M

X

N

=
N*,N’* q, X

Σ

γ∗M

N’*N

Σ

Figure 10.14. Duality between descriptions of semi-inclusive meson production
in terms of nucleon resonance (left) and quark (right) degrees of freedom [43,67].

Within a partonic description, the scattering and production mechanisms become
independent, and the cross section (at leading order in αs) is given by a simple
product of quark distribution and quark → hadron fragmentation functions,

d2σ

dxdz
∼

∑
q

e2
q q(x) Dq→h(z), (10.16)

where the fragmentation function Dq→h(z) gives the probability for a quark q to
fragment to a hadron h with a fraction z of the quark energy, z = Eh/ν. Here, we
will focus on the process where a quark fragments into a pion, such that the elec-
troproduced pion carries away a large fraction, but not all, of the exchanged virtual
photon’s energy. Factorization, as in (10.16), has been argued to be achievable at
lower energies, such as those available at HERMES and JLab, for pions with large
elasticity z [63,64]. Data indeed suggest that the factorization assumption may be
valid at energies accessible at HERMES and JLab with large enough z cuts [65,66].

In terms of hadronic variables the fragmentation process can be described through
the excitation of nucleon resonances, N ∗, and their subsequent decays into mesons
and lower-lying resonances, which we denote by N ′∗. The hadronic description
must be rather elaborate, however, as the production of a fast outgoing meson in the
current fragmentation region at high energy requires non-trivial cancellations of the
angular distributions from various decay channels [43,36]. The duality between the
quark and hadron descriptions of semi-inclusive meson production is illustrated in
figure 10.14. Heuristically, this can be expressed as [43,67]

∑
N ′∗

∣∣∣∣∣
∑
N ∗

Fγ ∗ N→N ∗(Q2, W 2) DN ∗→N ′∗ M (W 2, W ′2)

∣∣∣∣∣
2

=
∑

q

e2
q q(x) Dq→M (z),

(10.17)

where Dq→M is the quark → meson M fragmentation function, Fγ ∗ N→N ∗ is the
γ ∗N → N ∗ transition form factor, which depends on the masses of the virtual
photon and excited nucleon (W = MN ∗), and DN ∗→N ′∗ M is a function representing
the decay N ∗ → N ′∗M , where W ′ is the invariant mass of the final state N ′∗.
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Figure 10.15. The ratio of unfavoured to favoured fragmentation function D−/D+
(at z = 0.55) as a function of x , using only deuterium data [66,68].

A dedicated experiment (E00-018) to study duality in pion electroproduction has
been performed at JLab [66]. A 5.5 GeV electron beam was used to study pion
electroproduction off proton and deuteron targets for Q2 between 1.8 and 6.0 GeV2,
for 0.3 ≤ x ≤ 0.55, and with z in the range 0.35–1.

Using the deuterium data only, the ratio of unfavoured to favoured fragmentation
functions D−/D+ can be extracted. Here the favoured fragmentation function (D+)
corresponds to a pion which contains the struck quark (for example, a π+ after a u
or d̄ quark is struck), while the unfavoured fragmentation function (D−) describes
the fragmentation of a quark not contained in the valence structure of the pion
(for example, a d quark for the π+). To a good approximation, this ratio is simply
given by D−/D+ = (4 − N π+

/N π−
)/(4N π+

/N π− − 1). Preliminary results [66]
are shown in figure 10.15 in comparison with data from the HERMES experiment
[68].

The first observation is that the behaviour as a function of z of D−/D+ measured by
E00-108 closely resembles that seen in the HERMES experiment [68], albeit with
slightly larger values than the HERMES ratios. However, it seems premature to draw
a final conclusion from this in view of the preliminary state of the E00-108 analysis.
The second observation to draw is that the D−/D+ ratio extracted from the JLab
data shows a smooth slope as a function of z. This is quite remarkable given that the
data cover the full resonance region, 0.88 < W ′2 < 4.2 GeV2. Apparently, there
is some mechanism at work that removes the resonance excitations in the π+/π−

ratio, and hence the D−/D+ ratio. This mechanism can be simply understood in
the SU(6) symmetric-quark model.

Close and Isgur [43] applied the SU(6) symmetric-quark model to calculate produc-
tion rates in various channels in semi-inclusive pion photoproduction, γ N → π X .
The pattern of constructive and destructive interference, which was a crucial feature
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N ′∗ multiplet γ p → π+N ′∗ γ p → π−N ′∗ γ n → π+N ′∗ γ n → π−N ′∗

28 [56+] 100 0 0 25
410 [56+] 32 24 96 8
28 [70−] 64 0 0 16
48 [70−] 16 0 0 4

410 [70−] 4 3 12 1
total N π

N 216 27 108 54

Table 10.1. Relative strengths of SU(6) multiplet contributions to inclusive π± photopro-
duction off the proton and neutron [43] (arbitrary units).

of the appearance of duality in inclusive structure functions, is also repeated in the
semi-inclusive case. Defining the yields of photoproduced pions from a nucleon
target as

N π
N (x, z) =

∑
N ′∗

∣∣∣∣∣
∑
N ∗

Fγ N→N ∗(Q2, W 2) DN ∗→N ′∗π (W 2, W ′2)

∣∣∣∣∣
2

, (10.18)

the breakdown of N π
N into the individual states in the SU(6) multiplets for the final

W ′ states is shown in table 10.1 for both proton and neutron.

The results in table 10.1 suggest an explanation for the smooth behaviour of the
ratio of fragmentation functions D−/D+ ≡ Dπ+

d /Dπ+
u for a deuterium target in

figure 10.15. The ratio D−/D+ ≈ (4 − N π+
/N π−

)/(4N π+
/N π− − 1), so from

the relative weights of the matrix elements in table 10.1 one observes that the sum
of the p and n coefficients for π+ production is always 4 times larger than for π−

production. In the SU(6) limit, therefore, the resonance contributions to this ratio
cancel exactly, leaving behind only the smooth background, as would be expected
at high energies. This may account for the glaring lack of resonance structure in
the resonance region fragmentation functions shown in figure 10.15.

There now exist strong hints in pion-electroproduction data that quark–hadron dual-
ity extends to semi-inclusive scattering. To convert these hints into conclusive evi-
dence requires a new series of precision semi-inclusive experiments encompassing
both the nucleon-resonance and DIS regions.

10.7 Duality in exclusive reactions

Quark–hadron duality should work better for inclusive observables than for exclu-
sive ones, partly because perturbative behaviour appears to set in at higher Q2 for
the latter, and partly because there are more hadronic states over which to aver-
age. Although duality may be more speculative for exclusive processes, there are,
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Figure 10.16. An illustration of a typical inclusive momentum spectrum of pro-
duced hadrons in the inclusive hadron production reaction γ ∗N → M X . From
[69].

nevertheless, correspondence arguments that relate the exclusive cross sections at
low energy to inclusive production rates at high energy.

This exclusive–inclusive connection in hadronic physics dates back to the early days
of DIS and the discussion of scaling laws in high-energy processes. Bjorken and
Kogut [69] articulated the correspondence relations by demanding the continuity
of the dynamics as one goes from one (known) region of kinematics to another
(unknown or poorly known).

For an inclusive process, such as γ ∗N → M X where M is a meson, as the momen-
tum (energy) of the meson increases, the invariant mass MX of the recoiling system
X enters the resonance region, as shown in figure 10.16. The correspondence argu-
ment states that the magnitude of the resonance contribution to the cross section
should be comparable to the continuum contribution extrapolated from high energy
into the resonance region,

∫ pmax

pmin

dp E
d3σ

dp3

∣∣∣∣
incl

∼
∑
res

E
dσ

dp2
T

∣∣∣∣
excl

, (10.19)

where pmin = pmax − M2
X/4pmax and the integration region over the inclusive

cross section includes contributions up to a missing mass MX .

For inclusive electroproduction, this correspondence relation (10.19) was applied
to derive the Drell–Yan–West relation [40,41] between the asymptotic behaviour of
the elastic form factor and structure function in the x → 1 limit. This Drell–Yan–
West relation can be used to extract the proton and pion form factors from inclusive
structure function data. Figure 10.17(left) shows the resulting proton magnetic form
factor G p

M extracted using the JLab scaling curve for F p
2 [8]. The extracted form
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Figure 10.17. Left: proton magnetic form factor G p
M extracted from an inelas-

tic scaling curve using local duality, and compared with the Gari–Krumpelmann
parametrization [70] of the world’s G p

M data (from [71]). Right: local duality
prediction [72] for the pion form factor, using phenomenological pion structure
function input from the Fermilab E615 Drell–Yan experiment [73] (solid), and the
forms Fπ

2 (x) ∼ (1 − x) and (1 − x)2 (dashed) [74].

factor is found to be in remarkable agreement with a parametrization of the world
data on G p

M [70]. This G p
M parametrization is reproduced quite well, to within 30%

accuracy, for Q2 from 0.2 GeV2 up to ∼4 GeV2 [71].

Similarly, using the fit to the Fπ
2 (x) data from the E615 experiment at Fermilab [73],

the resulting form factor Fπ (Q2) can be extracted, as shown in figure 10.17(right,
solid curve). The agreement appears remarkably good, although there are reasons
why its foundations may be questioned [72].

Soon after Bjorken and Kogut suggested the exclusive–inclusive correspondence, it
was used [75] to predict the behaviour of the real Compton scattering cross section
off the proton, γ p → γ p, at large angles in the centre-of-mass frame. An extension
of the study of duality in Compton scattering has been made to the case of one
virtual and one real photon in the limit of large Q2, known as the deeply virtual
Compton scattering (DVCS) process, ep → eγ p.

Interest in this reaction has been fostered by the realization that at high Q2 DVCS
provides access to generalized parton distributions (GPDs), with one of the impor-
tant practical questions being whether the GPD formalism (see chapter 9) is appli-
cable at intermediate energies. Here one may appeal to duality for an answer: if
one can demonstrate that duality applies also to the case of DVCS, then a par-
tonic interpretation of the scattering may be valid down to low Q2. This problem
has been investigated by Close and Zhao [44] in a generalization of the scalar
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constituent-quark model with a harmonic oscillator potential, a model discussed
earlier for the case of the DIS structure functions [43,36]. The emergence of the
scaling behaviour from duality in this model is due to the mass degeneracy between
multiplets with the same N but different l, which causes a destructive interference
between all but the elastic contribution.

The γ p → π+n reaction was considered by Afanasev et al [76] for s ∼ |t |, who
studied duality in the limit of fixed centre-of-mass scattering angle, θcm . Good
agreement with data [77] is observed for the energy dependence at θcm = 90◦.
However, Hoyer [78] has pointed out that at fixed angle this underestimates the
measured cross section by about two orders of magnitude, due to additional dia-
grams involving more than a single quark in the nucleon that cannot be neglected
in this limit. The appropriate limit for duality, and more generally factorization, to
hold in semi-exclusive reaction is the |t | � s limit [79].

As well as requiring an appropriate choice of kinematics, part of the apparent fail-
ure of duality in exclusive reactions also stems from the restriction to a single
hadronic state. Duality arises when sufficiently many intermediate hadronic states
are summed over, resulting in cancellations of non-scaling contributions. The can-
cellations are not exact, however, and duality violations are present at any finite
kinematics.

10.8 Outlook

The historical origins of quark–hadron duality can be traced back to the 1960s,
and the discovery of s- and t-channel duality in hadronic reactions. This duality
reflected the remarkable relationship between low-energy hadronic cross sections
and their high-energy behaviour, which, in the context of FESRs, allowed Regge
parameters (describing high-energy scattering) to be inferred from the (low-energy)
properties of resonances.

It was natural, therefore, that the early observations of a duality between reso-
nance production and the high-energy continuum in inclusive electron–nucleon
DIS would be interpreted within a similar framework. Bloom and Gilman found
that by averaging the proton F2 structure function data over an appropriate energy
range the resulting structure function closely resembled the scaling function which
described the high-energy scattering of electrons from point-like partons.

Electron scattering provides a wonderful stage for investigating the dynamical ori-
gin of quark–hadron duality. The perturbative scaling of the DIS structure functions
occurs here in terms of the parton light-cone momentum fraction x , which can be
accessed at different values of Q2 and W 2, both within and outside the resonance
region. Hence, both the resonance spectra and the scaling function describing the
high-energy cross section can be mapped by varying Q2 of the virtual photon.
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Following the pioneering DIS experiments at SLAC in the late 1960s, the availabil-
ity of (continuous wave) high-luminosity polarized beams, together with polarized
targets, has allowed one to revisit Bloom–Gilman duality with unprecedented pre-
cision, and disentangle its spin, flavour, and nuclear dependence, in both local and
global regions. The results have been striking: quark–hadron duality occurs at much
lower Q2 and more locally than had been expected.

Although considerable light has been shed upon the dynamical origins of quark–
hadron duality, there are still important questions which need to be addressed before
we come to a quantitative understanding of Bloom–Gilman duality in the structure
function data. The observation of duality in spin-averaged structure functions in
the region of the �(1232) resonance, for instance, suggests non-trivial interference
effects between resonant and non-resonant (background) physics. Early descrip-
tions of the resonance and background contributions employed the so-called two-
component model of duality, in which the resonances are dual to valence quarks
(associated with the exchange of Reggeons at high energy), while the background
is dual to the qq̄ sea (associated with pomeron exchange). In more modern lan-
guage, this would call for a QCD-based derivation in which the properties of the
non-resonant background can be calculated within the same framework as those of
the resonances on top of which they sit.

It is also clear that the quark–hadron duality phenomenon is not restricted to inclu-
sive electron–hadron scattering alone. If, as we believe, it is a general property
of QCD, then it should manifest itself in other processes and in different observ-
ables. There are, in fact, predictions for quark–hadron duality in semi-inclusive and
exclusive electroproduction reactions. The available evidence is scant, but it does
suggest that at energy scales of a few GeV such reactions may proceed by closely
mimicking a high-energy picture of free electron–quark scattering. This will be an
exciting area of research for the next decade.

It is truly remarkable that in a region where we have only a few resonances, all con-
sisting of strongly interacting quarks and gluons, the physics still ends up resembling
a perturbative quark–gluon theory. Quark–hadron duality is the underlying cause
of the smooth transition ‘on average’ from hadrons to quarks witnessed in Nature,
allowing simple partonic descriptions of observables down to relatively low-energy
scales.
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Colour Transparency

G A Miller

The strong interaction between hadrons and nuclei leads to the phenomenon of
shadowing. However, in the special situation of high-momentum-transfer coherent
processes, these interactions can be turned off, causing the shadowing to disappear
and the nucleus to become quantum-mechanically transparent. This phenomenon
is known as colour transparency. In more technical language, colour transparency
is the vanishing of initial- and final-state interactions, predicted by QCD to occur in
high-momentum-transfer quasi-elastic nuclear reactions. These are coherent reac-
tions in which one adds different contributions to obtain the scattering amplitude.
Under such conditions the effects of gluons emitted by small colour-singlet sys-
tems vanish. Thus colour transparency is also known as colour coherence. The name
‘colour transparency’ is rather unusual. One might think that it concerns transparent
objects that have colour, but it is really about how a medium can be transparent to
objects without colour. This chapter provides a pedagogic review that defines the
phenomenon and the conditions necessary for it to occur, assesses the role of colour
transparency in strong interaction physics and reviews experimental and theoretical
progress.

11.1 Point-like configurations

Strong interactions are strong: when hadrons hit nuclei they generally break up
the nucleus or themselves. Indeed, a well-known classical formula states that the
intensity of a beam of hadrons falls exponentially with the penetration distance. It
is remarkable that QCD admits the possibility that, under certain conditions, the
strong interactions can effectively be turned off and hadronic systems can move
freely through a nuclear medium.
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Consider the elastic scattering of a small colour-singlet qq̄ system by a nucleon.
At sufficiently high energy, the separation b of the quarks (in a direction transverse
to the momentum) does not change. The lowest-order perturbative contribution is
given by two-gluon exchange [1–3] and the remarkable feature is that, in the limit
that b approaches 0, the cross section vanishes because colour-singlet point particles
do not exchange coloured gluons. This feature can be expressed in a concise form as

limb→0 σ (b2) ∝ b2. (11.1)

This reduced interaction is often termed ‘colour screening’ and is an unusual feature
of QCD. In chiral theories of the interactions of hadronic systems, small relative
distances between constituents (corresponding to small sizes) imply large relative
momenta and therefore very strong interactions. Thus experimental verification of
the behaviour of the cross section (11.1) and its consequences supports the belief
that QCD is the correct theory of the strong interaction.

This chapter is concerned with the diverse consequences of the notion that small-
sized colour-singlet objects do not interact strongly. There are interesting questions
to ask and answer. In particular, how can one make a small-sized colour singlet,
ensure that it propagates as a colour singlet and carefully measure the effects of
vanishing interactions?

It is natural to suppose that small-sized colour-singlet objects are made in pro-
cesses involving high momentum transfer. Candidate reactions include diffrac-
tive excitation of pions or photons [4] into two jets [5] moving at large relative
momenta, electroproduction of vector mesons [6,7] and quasi-elastic reactions such
as (p, pp), (e, e′ p) and (e, e′π ) [6,7]. High momentum transfer is usually associ-
ated with small wavelengths, but more is involved here. An object of small size,
without soft-colour and pion fields, is supposed to be produced in the midst of a
high-momentum-transfer process. This was suggested originally as a consequence
of perturbative QCD applied at very high Q2 [6,7]. The relevance of perturbative
QCD for experimentally accessible values of Q2 was questioned [8,9], but later
it was shown [10,11] how including the effects of gluon radiation [12] extends
the kinematic region of applicability of perturbative calculations. However, many
theoretical and experimental results make it clear that perturbative treatments are
usually not complete unless energies very much greater than 10 GeV and momen-
tum transfers well in excess of 10 GeV2 are involved, so it is relevant to ask if
strong QCD can lead to small-sized objects. Studies of popular hadronic models
have shown [13,14] that point-like configurations can be produced for momentum
transfers as low as 1–2 GeV2.

Producing a point-like configuration is not sufficient in itself. One must be able
to identify that the important components contributing to the invariant amplitude
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are those of small size. This introduces the requirement of coherence. A reaction
must involve a colour-singlet object before and after the interaction. Ensuring this
requires a detailed experimental knowledge of the kinematics. For inclusive reac-
tions, the influences of detailed quantum-mechanical-interference effects are lost,
classical considerations dominate and the colour transparency idea becomes irrel-
evant. Another difficulty is that a very small-sized colour-singlet object (consisting
of u, d or s quarks) is not in a physical state. It can be thought of as a wave packet
consisting of a coherent superposition of physical states, undergoing time evolution
that changes the relative phases of the components and consequently the object’s
size. Any change of the size of an object of zero spatial extent must be an increase,
so the system must expand and become large eventually. The rest-frame time scale
for these evolutions of sizes is of the order of hadron size divided by the speed of
light, but in the laboratory this is multiplied by a time dilation factor that can be
large enough to allow the influence of the vanishing interaction (11.1).

Taking these considerations into account, one may see that the magical disappear-
ance of the strong scattering amplitude arises in three steps.

� A high-momentum-transfer reaction creates a colour-singlet point-like configu-
ration that moves with high momentum through a nucleus.

� In coherent processes, the interaction between the point-like configuration and
the nucleon will be strongly suppressed because of cancellations between gluon
emission amplitudes arising from different quarks.

� The point-like configuration is not an eigenstate of the Hamiltonian. It can be
regarded as a wave packet undergoing time evolution, which necessarily changes
(and therefore increases) the size of the colour-singlet object, turning it into
a normal-sized strongly interacting configuration. Therefore the observation of
colour transparency requires that the point-like configuration escape the nucleus
before it expands.

The first item addresses the interesting dynamical question of whether a point-like
configuration ever exists. According to perturbative QCD, such objects are the origin
of high-momentum-transfer hadronic form factors, but the validity of perturbative
QCD is not a necessary condition. The second item is on firmer ground because the
suppression of interactions is one of the essential ingredients needed to understand
how Bjorken scaling occurs for deep-inelastic scattering at small x [6,15–17]. Fur-
thermore, for high-energy scattering (11.1) applies and smaller objects generally do
have smaller cross sections [18]. The third item leads to complications in observing
the influence of colour transparency. One needs very high energies, the ability to
handle the expansion in a quantitative manner, or the use of double scattering to
isolate the interaction between the point-like configuration and the nucleon.
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Figure 11.1. Perturbative interactions of small-sized colour-singlet objects. The
heavy lines represent incident and outgoing colour-singlet objects. This shows
one of the eight graphs of the same order. Both gluons can originate on either the
quark or the antiquark, and graphs with crossed gluons must be included.

11.2 Small-sized objects have small cross sections

The general feature of QCD that small objects have small cross sections at high
energy is supported by strong theoretical arguments and diverse experimental evi-
dence. This is the basis for supposing that colour transparency is an observable
phenomenon.

For example, consider the interaction between two colour-singlet systems. Evaluat-
ing the lowest-order perturbative two-gluon exchange contribution gives the result
that if the size of either colour-singlet object vanishes, its scattering amplitude
also vanishes [1–3]. This is because colour-singlet point particles do not exchange
coloured gluons.

Figure 11.1 shows the high-energy, small-angle scattering of two mesons in the
centre-of-mass frame, with the momentum of one of the mesons in the 3-direction.
For very-high-energy scattering one may treat the transverse separations between
the quark and antiquark of each meson as fixed quantities b, B. In the centre-
of-mass frame, one meson has very large P+ = (P0 + P3) and the other a very
large P− = (P0 − P3). In this situation, both the plus and minus components of
the momenta of the exchanged gluons can be neglected and only the transverse
components enter into the intermediate gluon and fermion propagators. This means
that the scattering amplitude must be a function of b and B only. The quarks and
antiquarks couple to the gluon with opposite signs, so that if either of b, B vanishes
then the scattering amplitude vanishes. Suppose b is small, and B has a typical
hadron size ∼1 fm, then the cross section is of the form (11.1). The quadratic
behaviour is interpreted as arising from two dipole factors, ∼b, that originate from
each of the exchanged gluons.

The original work [1–3] succeeded in explaining the approximately constant
nature of hadronic cross sections at high energy, provided a reasonably successful
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two-gluon exchange model of the pomeron and offered a natural explanation of the
various sizes of hadronic cross sections. This explanation was later verified in a
quantitative manner [18] for meson–nucleon scattering under the assumption that
(11.1) applies over much of the meson volume. A dramatic confirmation of the idea
that small objects have small cross sections is discussed in Section 11.6.

The idea that small-sized qq̄ pairs interact with strongly-reduced cross sections
is now understood to be an important part of lepton–nucleon and lepton–nucleus
deep-inelastic scattering. For small values of Bjorken x the deep-inelastic scattering
arises (as seen in the laboratory frame) from terms in which the virtual photon
breaks up into a qq̄ pair. Gribov [19] noticed that if the pair–target interactions are
treated as those of an ordinary vector meson then the cross section for transversely-
polarized virtual photons depends on log 1/x . Bjorken denoted this result a disaster
[20] because it badly violates scaling that requires a 1/Q2 behaviour. (1/Q2 log Q2

gives the usual scaling violations caused by the influence of asymptotic freedom.)
Bjorken handled the problem by reducing the value of the cross section for qq̄ pairs
moving at high relative transverse momentum. The relation between this reduced
interaction and colour neutrality was noticed, using a U (1) treatment [21]. The
basic idea [6,17,15] is that high relative momentum implies that the transverse size
of the pair is small and that the interactions of such a pair are strongly inhibited.
The reduced interactions of small-sized quark–antiquark pairs play an important
role in understanding the nuclear shadowing observed in deep-inelastic scattering
[6,16,22].

These ideas led naturally to the dipole approach to deep-inelastic scattering and to
hadronic interactions [23], discussed in chapter 8. In this approach the scattering
amplitude is actually expressed as an integral over configurations of all sizes. Quan-
titative agreement with data for structure functions and photon–target interactions
is achieved.

The original perturbative two-gluon exchange model has deficiencies when applied
to elastic scattering because low-momentum gluons are important. In particular, the
slope of dσ/dt at t = 0 diverges for the exchange of massless gluons. The model
was extended to include the effects of gluon–gluon interactions [24] and the non-
perturbative role of gluon–target scattering. Essential new features were found by
considering the relevant box diagrams [25,5]. The cross section depends on the
gluon distribution of the target, gT (x, Q2) [26]:

σ (b2) = π2

3

(
b2αs

(
Q2

eff

)
xgT

(
x, Q2

eff

))
x=λ/sb2,Q2

eff=λ/b2, (11.2)

where λ is the proportionality factor that relates the high relative momentum to
1/b and depends upon the particular process and wave functions involved. For the
situations of interest to this review λ ≈ 9 [27].
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The result (11.2) is consistent with the original idea that the point-like configuration
has no interactions, but the entrance of the gluon distribution function introduces
significant interesting differences from the original work [1–3]. The previously-
mentioned divergence of the slope of elastic cross sections exists. Furthermore, gT

increases as x decreases to very small values and this causes interesting energy
dependence. A detailed derivation and discussion of the accuracy of (11.2) is pre-
sented in [28]. Rigorous factorization theorems justifying the application of (11.2)
to hard electroproduction of mesons have been derived [29].

The small-sized interactions of point-like configurations of qq̄ pairs seems rea-
sonably well verified. This physics is closely analogous to the reduction of the
electromagnetic strength of an electric dipole of small size. That there will be sim-
ilar cancellations of the field of gluons emitted by small-sized colour-neutral qqq
configurations [3] is the remarkable prediction derived from QCD according to its
SU(3) nature of colour.

11.3 Generic colour transparency

The issues related to colour transparency are: formation of a point-like configu-
ration in a high-momentum-transfer reaction, suppression of the soft interactions
of the point-like configuration with the target, and avoidance of the expansion of
the point-like configuration into a large blob-like configuration. The experimental
measurements must be done with kinematics sufficiently controlled that the sep-
aration between the hard and soft processes can be well defined. For example, in
the (e, e′ p) reaction, the electron–proton interaction must be known to occur at a
much larger momentum transfer than that of any ejectile–nucleus interactions.

Interesting special features that bring colour transparency to life for any given
reaction are discussed below. Here we provide a general framework.

First consider a general high-momentum-transfer process in which an isolated
nucleon in a state i is converted into a final state f . Then the invariant amplitude
can be represented as

M f i = 〈 f |F̂ |i〉, (11.3)

in which the operator that induces the reaction is denoted as F̂ . For example, in
electron–proton scattering at large Q2, F̂ is the electromagnetic current operator,
i contains an incident photon and a proton at rest in the laboratory frame and
f represents a high-momentum proton. In the case of pp elastic scattering, F̂
represents the high-momentum part of the interaction and any soft interactions are
subsumed within the states i, f . Other examples involve an incident pion or virtual
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photon. In that case the necessary high momentum originates in the wave function of
the incident particle and F̂ represents the soft-scattering interaction with the target.

An incident photon may fluctuate into a qq̄ pair, with a time scale controlled by
the uncertainty principle. For systems that propagate rapidly in the laboratory, this
time scale is known as the coherence length, lc:

lc = 2ν

Q2 + M2
qq̄

, (11.4)

because the qq̄ fluctuation may propagate over this distance. Here ν is the photon
energy and Q2 the negative of the square of its invariant mass. If the mass of the qq̄
system is of the order of Q, then lc ∼ 1/(2MN x). Thus for low values of x , such as
those that occur in vector-meson production, lc can be large and soft interactions of
the qq̄ fluctuation may occur. For large values of x , such as for the (e, e′ p) nuclear
reaction, a point-like photon interacts with the target.

The intermediate state F̂ |i〉 may or may not be a point-like configuration. Its overlap
with the physical final state will necessarily be small at large momentum transfer,
but it is not possible to examine the microscopic nature of the intermediate state
without using nuclear targets. Therefore consider the high-momentum-transfer pro-
cess occurring on any nucleon bound in a target nucleus. The initial and final nuclear
states are denoted by I, F and the invariant amplitude is given by

MF I = 〈F | (1 + TS G0 ) F̂ (1 + G0 TS) |I 〉, (11.5)

in which residual interactions (not contained in the states |I, F〉) involving nucleons,
other than the struck one, are denoted as TS and G0 represents the non-interacting
Green’s function. The expression (11.5) is general and applies to any process. For
example, in vector-meson production by virtual photons of low x , the term G0TS

may represent the propagation of the incident photon as a qq̄ pair. For the (p, pp)
reaction, G0TS and TSG0 represent the soft initial- and final-state interactions.

We examine (11.5) under two separate limiting conditions. First, suppose that the
energies are high enough so that any point-like configuration can propagate with-
out changing its properties. Then G0 can be regarded as a constant. Given the
dipole nature of high-energy low-momentum transfer interactions (11.1) and (11.2),
TS ∝ b2. The quantities 〈 f |b2F̂ |i〉 and 〈 f |F̂b2|i〉 control the initial- and final-state
interactions. The Q2 dependence of this matrix element is crucial. If 〈 f |b2F̂ |i〉
approaches 0 with increasing Q2 much faster than 〈 f |F̂ |i〉 does, then final-state
interactions will not be important. This suggests that we define an effective size to
determine whether or not a point-like configuration is formed:

b2(Q2) ≡ 〈 f |b2F̂ |i〉
〈 f |F̂ |i〉 . (11.6)
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The vanishing of b2(Q2) for any given reaction is a necessary condition for colour
transparency to occur. Note that the effective size (11.6) is an off-diagonal matrix
element. This is relevant for observing the given initial and final state, while
the diagonal matrix element involving the putative point-like configuration state
〈i |F̂†b2F̂ |i〉 has no relevance.

If one treats the Green’s function G0 as a constant then b2(Q2) is essentially the
ratio of the second term to the first term of the multiple-scattering series (11.5).
However, G0 does not act as a constant, because the wave-packet state F̂ |i〉 is not
an eigenstate of the Hamiltonian and therefore undergoes time evolution. This can
only increase the wave-packet size and restore soft quark–gluon fields. The time,
τ , for a quantum fluctuation from a point-like configuration of bare mass MX to a
relevant object of normal hadronic size of mass M1 is given by

τ = 2P/
(
M2

X − M2
1

)
, (11.7)

where P is the momentum of the wave packet. The expansion time is controlled by
an undetermined parameter MX . Equation (11.7) involves a simplification because
any high momentum transfer would produce a set of configurations of different
masses. For sufficiently large energies, τ is long enough that the object can leave the
nucleus while small enough to avoid final state interactions and colour transparency
occurs. But what is MX ? Purely theoretical arguments do not give a value, but we can
obtain a lower limit for nucleon final states. In that case, the mass M1 is that of the
nucleon, and the lowest possible value one can think of for the value of MX is the sum
of the nucleon and pion masses. The use of (11.7) with MX = MN + mπ , M1 = MN

leads to τ ≤ (E/1 GeV) fm, which, for the experimentally relevant value of E ≈
5 GeV, is about 5 fm or smaller than the diameter of the aluminium nucleus.
More realistic estimates [30,31,13,32] use larger values of MX ∼ 1.4−1.6 GeV
and obtain smaller distances. The sadly-unavoidable conclusion is that, unless the
energy is very high, the point-like configuration will expand. One must account for
this effect.

Thus the conditions for colour transparency to occur are that the effective size (11.6)
be vanishingly small and the fluctuation time (11.7) be huge. If both conditions are
satisfied, then TSG0F̂ ∼ TSF̂ ≈ 0, and the same holds for F̂G0TS . Then one finds

MF I ≈ 〈F |F̂ |I 〉 ≡ MF I (PW B A), (11.8)

in which PWBA refers to the plane-wave Born approximation. Two different situ-
ations are relevant. Suppose the nuclear process is coherent, then

MF I ≈ AM f i , (11.9)
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and the sum over all the nucleons is represented as a schematic factor A. The other
relevant situation occurs when the nucleus is excited by the removal of a single
nucleon (quasi-elastic reaction), and one sums over all such excited states. Then∑

|MF I |2 ≈ A|M f i |2. (11.10)

The much sought-after limit of perfect colour transparency is expressed by either
of (11.9) or (11.10). The A dependence of the cross section can be either A2 or A
depending on the particular nuclear process studied. More generally, the ratio of
nuclear to nucleon cross sections is measured and defined to be the transparency
T (A, Q2), with perfect transparency corresponding to a value of unity. Experi-
mental measurements weight the numerator and denominator with the relevant
acceptance, and theorists must match these in their calculations.

11.4 Simple examples

Colour transparency provides a number of simple examples that require a good
understanding of quantum-mechanical-interference phenomena.

11.4.1 Quantum-mechanical invisibility

The effects of the reduced interaction (11.1) and (11.2) are interesting in the context
of our understanding of visibility and invisibility. Consider a very energetic qq̄
system made of very massive quarks (onium) incident on a slab of nuclear matter
of thickness L [33]. Under the standard semi-classical theory applicable for short
wavelengths, the probability Psc(L) for the onium passing through the slab while
remaining in its ground state and without losing energy is

Psc(L) = e−L/λ, (11.11)

where λ = 1/(σ0ρ) is the path length, with σ0 the onium–nucleon cross section and
ρ the nuclear density. But the onium wave function entails a probability for the pair
to have a transverse separation:

	2(b) = 1

π〈b2〉e−b2/〈b2〉, (11.12)

using a simple model. At sufficiently high energies each separation propagates
without changing and each interacts with a different strength according to (11.1)
and (11.2). Using this leads to a probability amplitude given by∫

d2b	2(b)e−(b2/2〈b2〉) L/λ, (11.13)



466 G A Miller

so that the true survival probability P(L) of the ground state is

P(L) = 1

(1 + L/2λ)2
. (11.14)

For λ � L , the expressions (11.11) and (11.14) coincide. More generally, the
quantum-mechanically computed probability (11.14) can be much larger than
(11.11) because the small-sized components of onium have reduced interactions that
allow propagation through a dense medium. The inclusive cross section computed
by taking the sum of the individual cross sections corresponds to a transmission
probability that varies as 1/L [32].

The analogy with optics is clear. Light cannot propagate through an opaque object
(as in (11.11)) and the object casts a shadow. But quantum mechanically (11.14)
holds and propagation through the medium is allowed. The classically opaque object
loses it shadow. Only visible objects cast shadows, so (11.1) and (11.2) correspond
to quantum-mechanical invisibility.

11.4.2 Existence of point-like configurations

Is a point-like configuration formed in a high-momentum-transfer reaction? This
is the dynamical question of interest. The use of general principles is not sufficient
to provide an answer.

It is worthwhile to examine simple examples to understand how it is that different
dynamical interactions lead to different answers. Therefore the effective size b2(Q2)
of (11.6) is evaluated using simplifying assumptions following [13,14]. The first
example is the non-relativistic interaction of two equal-mass quark systems. The
form factor is given by

F(Q2) =
∫

d3r ψ∗(r )e
iq·r

2 ψ(r ), (11.15)

where Q2 = q · q and Q = |q|. The quantity e
iq·r

2 ψ(r ) ≡ χQ(r) is a wave packet
formed in a high-momentum-transfer reaction. The measurement of F(Q2) only
determines a given integral involving χQ(r). To see whether or not this quantity
represents a point-like configuration one examines the effective size (11.6) which,
for this example, takes the form

b2(Q2) = 1

F(Q2)

∫
d3r ψ∗(r )b2χQ(r), (11.16)

as q · r = 0. This leads to the result

b2(Q2) = −16
d log F(Q2)

d Q2
. (11.17)
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The form factor F(Q2) falls as a power of Q2 unless the binding potential is an
analytic function of r2 [14]. An example is binding with an attractive Coulomb
potential for which

b2(Q2) = 32a2
0

16 + Q2a2
0

∼ 8

(Q/2)2
, (11.18)

where a0 is the Bohr radius and the second expression is the limit for very large
values of Q2. This vanishing of b2(Q2) shows that colour transparency is possible
for systems bound by Coulomb forces. Alternatively, if the binding potential is a
harmonic oscillator, F(Q2) = e−Q2 R2/6 with R2 as the mean square radius, then the
effective size b2(Q2) = 2R2/3 is a constant. If linear forces govern the dynamics
there will be no colour transparency.

Relativity is very important at high momentum transfer, so we consider a relativistic
system of two light quarks, spinless for simplicity, labelled as 1,2. Light-front
dynamics [34–37] can be used to treat the system in any reference frame. Define
the components of the total momentum vector Pμ as P± = (P0 ± P3), and �P .
Spatial coordinates are given by x+ = x0 + x3, x− = x0 − x3, �x . The coordinate
x− is canonically conjugate to the plus-component of the momentum that is closely
related to the Bjorken scaling variable. The evolution operator for the light-front
‘time’ variable x+ is P−, so that the relativistic Schrödinger equation is

P−	 =
�P2 + M̂2

P+ 	, (11.19)

where M̂2 is the mass-squared operator for the system:

M̂2|n〉 = M2
n |n〉, (11.20)

where the spectrum is discrete for a confined system and the ground state is repre-
sented by n = 1. The use of relative coordinates

α ≡ p+
1 /P+, �p = (1 − α)�p1 − α �p2, (11.21)

where p1 and p2 are the quark four-momenta, leads to the unique result that in any
reference frame the Schrödinger equation (11.19) can be expressed as( �p2 + m2

α(1 − α)
+ V

)
|n〉 = M2

n |n〉, (11.22)

where V is the effective quark–quark interaction operator. This use of light-cone
variables allows the separation of centre-of-mass and relative variables, so that
the wave function of any two-quark system of total four-momentum Pμ can be
expressed as e−i P·x〈�p, α|φ〉, in which momentum-space �p, α are used for the
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internal variables and coordinate-space x is used to describe the motion of the
centre of mass. In deep-inelastic scattering with Bjorken scaling, the variable
α = Q2/(2MNν) = x .

Form factors can be computed easily using light-front dynamics if one employs a
reference frame in which q+ = 0 and Q2 = −q2

⊥. The boosts are kinematic and the
form factor for the transition between states n and n′ is

Fn′n(Q2) =
∫

d2b
∫ 1

0
dα

〈n′|�b, α〉ei �q⊥·�bα〈�b, α|n〉
α(1 − α)

≡ 〈n′|ei �q⊥·�bα|n〉, (11.23)

where �b is conjugate to �p. The effective size analogous to (11.6),

b2
n′n(Q2)Fn′n(Q2) = 〈n′|b2|n〉, (11.24)

can be vanishingly small for large values of Q2 [13,14].

11.4.3 Expansion of point-like configurations

The existence of a point-like configuration is not sufficient to guarantee the obser-
vation of colour transparency, as we have seen in section 11.3. Here we provide a
simple treatment of the dynamics governing expansion.

Suppose that a state |φ〉 of total four-momentum Pμ is created in a point-like
configuration, |P LC〉, at some initial time defined as t = 0. We may treat it as a
coherent expansion of complete eigenstates of M̂2:

〈�p, α|φ(t)〉 =
∑

n

〈�p, α|n〉e−i
√

P2+M2
n t〈n|P LC〉, (11.25)

for the relativistic two-quark system of the previous subsection. The condition for
avoiding expansion is that the phase factors for states n that contribute importantly
to the sum be approximately the same. This occurs if τ of (11.7) is larger than the
radius of the nucleus.

Note that the interaction V generally causes evolution in all of the three variables
�p, α. Two-dimensional approaches [17,38] that keep the value of α fixed are not
complete. Indeed, the failure to maintain the influence of confinement in three spatial
dimensions is responsible for the difficulties in end-point behaviour encountered
in [38]. The expression (11.25) uses a hadronic basis, but one may also use only
quark degrees of freedom.

The point-like configuration is not the system that one encounters. Instead it is∑
n |n〉e−i

√
P2+M2

n t〈n|P LC〉. Suppose this system interacts with a strength gov-
erned by b2, and the end product is detected as the ground state. Then the
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experimentally-relevant overlap b2(t) is

b2(t) = 〈1|b2
∑

n

|n〉e−i
√

P2+M2
n t〈n|P LC〉. (11.26)

The use of completeness and the definition of a point-like configuration lead to
the result that b2(t = 0) = 0. Jennings and Miller developed a simple harmonic
oscillator model [39,31] in which the matrix element 〈1|b2|n〉 is non-zero when n
corresponds to the ground state or states of energy M2 . Then

b2(t) = e−i E1t〈1|b2|1〉〈1|P LC〉
(

1 − ei
(M2

1 −M2
2 )

2P t
)

, (11.27)

if P � M2. The real part of the quantity in parentheses, 2 sin2
(

M2
1 −M2

2
4P t

)
, controls

the strength of the final-state interaction.

11.4.4 Point-like configurations in the nuclear ground state

The existence of a point-like configuration as a significant part of the nucleon wave
function has consequences for physics other than form factors. Quarks within a
point-like configuration have high relative momentum and are therefore much more
likely to carry a large plus-component of momentum (α of (11.21)). Therefore deep-
inelastic scattering from a free proton at large x should be strongly influenced by
the point-like configuration. The EMC effect [40] is the observation that structure
function of a bound nucleon is smaller than that of a free nucleon by about 10–15%
for large values of x , so it is natural to consider the effects of nuclear binding on
the structure of the nucleon.

For simplicity consider the nucleon |N 〉 to be a superposition of a configuration of
normal size |N0〉 and an orthogonal point-like configuration that occurs with small
probability. Then

|N 〉 ≈ |N0〉 + ε0|P LC〉, (11.28)

where ε0 = v/�E with v the interaction that connects the components and �E > 0
the energy difference between the unperturbed configurations. Based on the nucleon
spectrum, we might expect �E to be about 500–600 MeV. Now suppose the nucleon
is bound within a nucleus: its different components respond to the nuclear force in
different ways. The point-like configuration would not feel the attractive interac-
tions with the medium but the average-sized configuration would. For an attractive
potential energy −U , the energy denominator is increased from �E to �E + U ,



470 G A Miller

and the PLC amplitude is suppressed by the nuclear binding [41–43]:

ε = ε0

(
1 − U

�E

)
. (11.29)

A typical nuclear binding potential is of the order of 60 MeV deep, so the probability
amplitude is reduced by 10%.

The effect of this suppression can be large for processes in which the interference
effect between the point-like configuration and the normal-sized configuration pro-
vides the dominant contribution. Deep-inelastic scattering at high x is one example,
and the resulting suppression is one of the explanations of the EMC effect [41].
Another is that the nucleon form factor of a bound nucleon would be suppressed
compared to the free one at high Q2. Experiments [44] that search for nuclear
modifications of the proton form factor could detect this effect of a point-like con-
figuration at larger values of Q2.

Another issue concerns the convergence of the series that determines the effective
interaction between nucleons. The effects of colour transparency would help to sup-
press the short-distance interaction between bound nucleons and could ultimately
help theorists to better understand convergence.

11.5 The best case: dijet production by high-energy pions

Fermilab experiment E791 [45] has obtained an unambiguous observation of colour
transparency in the diffractive dissociation into dijets of pions of momentum P =
500 GeV scattering coherently from carbon and platinum targets: π A → qq̄ A. The
qq̄ pair (or resulting dijet) state has a relative transverse momentum �κ and the quark
carries a plus component of momentum z P . Then the mass m f of the diffractively
produced state is

m2
f = m2

q + �κ2

z(1 − z)
. (11.30)

The process begins when, long before the incident pion hits the target, it fluctuates
into a qq̄ pair. The coherence length (11.4) for this to occur is very large because
of the large value of P . A two-gluon exchange interaction with a single nucleon
then brings the virtual pair into reality ultimately as two jets. Detailed arguments
show [46] that the dominant term is the diagram T1 of figure 11.2 in which the high
relative momentum arises from gluon exchange between the quark and antiquark
in the simplest configuration of the initial state pion, and in which the two-gluon
exchange interaction is soft. The special result here is that the invariant amplitude
depends only on the qq̄ components of the initial-pion wave function.
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−κ(1-z),

κz,

N

q

q

π

N

Figure 11.2. Dominant graph, T1: the large momentum transfer arises from the
initial-π wave function. The figure shows one of the eight of this class of diagrams.
Both gluons can originate on either the quark or the antiquark, and graphs with
crossed gluons must be included.

11.5.1 Dominant amplitude for πN → N + di jet

Consider the forward (t = tmin ≈ 0) amplitude, M, for coherent dijet production
on a nucleon π N → N + dijet [5]:

M f i ≈ T1 = 〈 f (�κ, z), N ′ | F̂ | π, N 〉, (11.31)

where F̂ represents the interaction with the target nucleon. The initial |π〉 and final
| f (�κ, z)〉 states represent the physical states that generally involve all manner of
multi-quark and gluon components.

The dominant Feynman diagrams in figure 11.2 can be rewritten as a product of
a high-momentum component of a light-cone pion wave function with the ampli-
tude for the scattering of a quark–antiquark dipole by a target. Its evaluation con-
sists of three parts: (i) determining the relevant part of the pion wave function,
(ii) identifying the interaction with the target (in this case with the gluon field of
the target) that causes the pion to dissociate into a qq̄ pair and (iii) computing the
overlap matrix element (11.31).

The high-transverse-momentum component of the pion light-cone wave function,
χπ (�p, α), arises from the perturbative one-gluon-exchange acting on the strong
QCD light-cone pion wave function [47,46]:

χ (�p, α) = 4πCFαs(�p 2)

�p 2

√
3 fπα(1 − α)

(
log

Q2

�2
QC D

)CF /β

, (11.32)

where CF = N 2
c − 1/2Nc = 4

3 , αs(�p2) = 4π/(β log(�p2/�2
QC D)), β = 11 − 2

3 n f ,
and fπ = 93 MeV. The argument of the strong coupling constant αs is �p2 in leading
logarithm approximation and Q is the renormalization scale of the wave function
[47].
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The α dependence of (11.32) is that of the asymptotic pion distribution amplitude.
Analysis of experimental data for virtual Compton scattering and the pion form
factor performed in [48,49] shows that the correct amplitude is not far from the
asymptotic one. The expression (11.32) includes the influence of QCD evolution
as well as vertex and self-energy corrections, so that QCD predicts the dependence
of χπ (�p, α) to be very similar to the phenomenological form of [5].

If the asymptotic expression for the pion wave function (11.32) is used in the
scattering amplitude (11.31) and one evaluates only the diagrams of figure 11.2,
one obtains the dominant term T1. To proceed it is necessary to specify the soft
scattering operator F̂ . The transverse distance operator �b = (�bq − �bq̄) is canonically
conjugate to the transverse relative-momentum operator. At sufficiently small values
of b = |�b|, the leading-twist effect and the dominant term at large s arise from
diagrams in which the pion fragments into two jets as a result of interactions
with the two-gluon component of the gluon field of a target, see figure 11.2. The
perturbative QCD determination of this interaction involves a diagram similar to
the gluon-fusion contribution to the nucleon sea-quark content observed in deep-
inelastic scattering. One calculates the box diagram for large values of the relative
momentum using the wave function of the pion instead of the vertex for γ ∗ → qq̄.
This leads [46] to a purely-imaginary scattering amplitude F̂ that is essentially of
the form (11.2), except that the function gN becomes the skewed or generalized
gluon distribution [46] (see chapter 9), because the mass difference between the
pion and the final two-jet state necessitates that the reaction requires a non-zero
momentum transfer to the target.

The most important effect shown in (11.2) is the b2 dependence, which shows the
diminished strength of the interaction for small values of b. To proceed we need
the scattering operator F̂ corresponding to (11.2):

F̂(b2) = is
σ0

〈b2〉b2, (11.33)

in which σ0 is treated as a constant. This scattering operator is independent of the
longitudinal momenta and has a simple dependence on the transverse momentum
operator, so that the evaluation of the matrix element (11.31) leads to an expression
in which the arguments of χπ turn out to be the final-state variables (�κ, z). The
approximate pion wave function, valid for large relative momenta, is given by
(11.32). The b2 operator appearing in (11.33) can be taken to act on the pion wave
function as −δ(�p − �κ)∇2

p. Then combining (11.32) and (11.33) and evaluating
(11.31) leads to the QCD result [46]:

T1 = −4is
σ0

〈b2〉
4πCFαs(κ2)

κ4

(
log

κ2

�2
QC D

)CF /β

a0 z(1 − z) (11.34)
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of the same form as the 1993 result [5]. Derivatives of the logarithmic terms of
(11.32) are ignored because similar terms are neglected in taking F̂ to be propor-
tional to b2. Such corrections are of the order of the inverse of log(κ2/�2

QC D). The
κ dependence of T1 leads to dσ (κ)/dκ2 ∼ κ−8 or dσ (κ)/dκ ∼ κ−7, which is to
be compared with the experimental result [45] that the power fall-off is 6.5±2 for
κ > 1.8 GeV.

11.5.2 Nuclear dependence

The amplitude is dominated by a process in which the pion becomes a qq̄ pair, of
essentially zero transverse extent and having the very large longitudinal momen-
tum of the incident pion, well before hitting the nuclear target. This point-like
configuration can move through the entire nucleus without expanding. The dom-
inant contribution occurs when the qq̄ pair interacts with one nucleon and passes
undisturbed through the remainder of the nuclear matter. The nuclear amplitude
MF I takes the form of (11.9) M(A) ≈ A M f i if the momentum transfer t to the
nucleus vanishes. The effects of nuclear modifications of the skewed gluon distri-
bution function [46] can modify this simple dependence. There also is an unusual
qq̄-nucleus rescattering term, proportional to the nuclear radius divided by κ2,
that interferes constructively with the dominant amplitude [5] as a result of the b2

dependence of the scattering operator (11.33). The usual effect of rescattering is
destructive interference associated with shadowing.

Suppose one measures the production of a dijet state of mass m f (11.30) and relative
transverse momentum �κ . Then the differential cross section for a nuclear target, of
radius RA, obtained from the amplitude (11.9) takes the form

dσ (A)

dt
= A2 dσ (N )

dt
et R2

A/3, (11.35)

where dσ (N )/dt is the cross section for a nucleon target. For very small values of t
the A dependence is a spectacular A2. In reality, one hopes to measure the integral

σ (A) =
∫

dt
dσ (A)

dt
≈ 3

R2
A

A2 dσ (N )

dt

∣∣∣∣
t=0

. (11.36)

A typical procedure is to parametrize σ (A) as

σ (A) = σ1 Aα (11.37)

in which σ1 is a constant independent of A. The nominal dependence is given by
α = 4

3 , but one finds α ≈ 1.45 for the two specific targets, platinum (A = 195) and
carbon (A = 12), used in E791.
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The strong A dependence is supposed to be the unique signature of a coherent
nuclear diffraction process. Another mechanism causing a similar A dependence is
that of electromagnetic production by the Primakoff process in which the final state
is produced from a pion well outside the nucleus so that there would be no initial-
state interactions. However, the Primakoff process is governed by the fine structure
constant α = 1/137 and is real in contrast with the purely-imaginary dominant
term. It is therefore expected to provide a very small effect. A detailed evalua-
tion [46] showed that the Primakoff amplitude leads to a negligible correction for
E791, but would be more important for higher energies available at colliding-beam
facilities.

The ideal procedure would be to measure the jet momenta precisely enough so as
to be able to identify the final nucleus as the target ground state. While it is feasible
to consider this for electron–nucleus colliders, it is impossible for high-energy
fixed-target experiments, so another technique must be used. E791 [45] isolated the
dependence of the coherent elastic peak on the momentum transfer to the target, t ,
as the distinctive property of the coherent processes. This is shown in figure 11.3.
The coherent slope of these curves is consistent with the radii measured in electron
scattering experiments. It is immediately apparent that the peak is much narrower
for the larger nucleus. The main advantage of the E791 experiment that enabled
the data of figure 11.3 to be obtained is the excellent resolution of the transverse
momentum.

The extraction of the coherent signal involves separating the coherent contributions
from the incoherent ones and the background, as in figure 11.3. The theory for this
is detailed in [46]. The result is a modified version of the quantity σ1 of the total
cross section (11.37):

σ1 ≈ 3(A − 1)2

r2
N + R2

A

dσN

dt

∣∣∣∣
t=0

. (11.38)

Here the nucleon radius r2
N takes into account the slope of the elementary cross sec-

tion, assuming that it is determined solely by the nucleon vertex. The result (11.38)
differs by a factor of (A − 1)2/A2 from the A dependence predicted previously for
coherent processes (11.35). Using A = 12 and 195, the nuclear radii mentioned
above, rN = 0.83 fm and parametrizing the ratio of cross sections obtained from
(11.38) by σ ∝ Aα, gives

α = 1.54, (11.39)

instead of α = 1.45. The experimental result [45] is

α ≈ 1.55 ± 0.05, (11.40)
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Figure 11.3. Coherent diffractive peaks observed in pion–nucleus interactions:
q2

t ≡ −t . (From [45].) Here 1.5 ≤ κ ≤ 2.0 GeV for the platinum and carbon tar-
gets. The curves are fits of Monte Carlo simulations to the data: coherent disso-
ciation (dotted line), incoherent dissociation (dashed line), background (dashed-
dotted line), and total fit (solid line).

which is remarkably close to the theoretical value shown in (11.39). Under the naive
treatment of diffraction, the incident pion would be strongly absorbed by a large
nucleus and α would be about 2

3 . Having α = 1.55 instead of 0.67 causes the ratio
of the platinum to carbon cross sections to be enhanced by about a factor of 12. If
one takes into account that effects of colour fluctuations increase diffractive cross
sections [50], the ratio of 12 becomes a still startling enhancement factor of 7 [46].
The effects of colour transparency have been observed.

11.6 Vector-meson production

We have seen in section 11.5 that colour transparency was discovered in the π–dijet
reaction. Meson electroproduction on nuclei also involves a qq̄ final state and so it
is natural to use it to search for effects of colour transparency [7,6].

A QCD factorization theorem [29], proved for exclusive meson production by lon-
gitudinally polarized photons on nucleons, shows that contributions involving qq̄
point-like configurations dominate the process in the Bjorken limit. The combi-
nation of this feature with the colour screening of QCD, (11.1) and (11.2), leads
immediately to the prediction that colour transparency should occur for both coher-
ent and incoherent nuclear processes [51,52].
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Figure 11.4. A typical two-gluon exchange contribution to the amplitude for
γ ∗(q)N (p) → V (q + �)N (p − �). This is one of eight possible graphs.

We shall first discuss how point-like configurations and colour screening enter
for a nucleon target. This will be followed by a discussion of nuclear colour
transparency.

11.6.1 Production on nucleons

Consider the differential cross section for γ ∗
L (q) + N (p) → V (q + �) +

N (p − �) in the near-forward region at kinematics for which Bjorken scaling
applies. A detailed perturbative QCD calculation of this [51] has been made, and
we follow this reference. The process, illustrated in figure 11.4, takes place sequen-
tially in time, in three steps. The process begins when the virtual photon breaks up
into a quark–antiquark pair with a lifetime τi given by

τi = q+τ−1
i = Q2 +

�k2 + m2

α(1 − α)
≈ Q2, (11.41)

where m is the current quark mass and α and �k are the quark longitudinal-momentum
fraction and transverse momentum. Then the quark–antiquark pair is scattered by
the target proton, with the cross section of (11.2). The process is completed when
the final-state vector meson is formed after a time τ f ≥ τi , given by

q+τ−1
f =

�k2 + m2

α(1 − α)
. (11.42)

The amplitude M f i can therefore be written as a product of three factors: the wave
function, determined by QED, giving the amplitude for the virtual photon to break
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into a quark–antiquark pair; the amplitude for qq̄-target scattering given by (11.2);
and the wave function giving the amplitude for the scattered quark–antiquark pair
to become a vector meson, V . The only target dependence is caused by differing
gluon distributions. See chapter 8 for a related discussion.

The invariant amplitude M f i is given, using the notation of (11.23), by [52]:

M f i = π2

3
αs

(
Q2

eff

)
xgN

(
x, Q2

eff, t
)〈V |b2eiα ��⊥·�b|γ ∗

L 〉, (11.43)

with ��⊥ as the transverse momentum transfer and t = −�2
⊥. Contributions to the

integral are dominated by terms with α ≈ 1
2 for the wave functions of [52].

The main features of the perturbative QCD analysis [51] are consistent with those
obtained by Donnachie and Landshoff (DL) [53] and Cudell [54]. The pomeron
is represented by the effective exchange of two non-perturbative gluons and the ρ

wave function is expressed as a non-relativistic vertex function. In [51] the two-
gluon aspect of the QCD pomeron is directly related to the proton’s gluon structure
function (11.2) and the relativistic structure of the vector meson is treated. Both
perturbative QCD [51] and the DL model predict that the dominant amplitude
involves a longitudinally-polarized photon and vector meson, and the leading cross
section falls as Q−6. That this is compatible with data is shown in [54] and chapter 7.

Reproduction of the measured magnitudes of cross sections for large values of Q2

at HERA energies was achieved [52] using relativistic ρ-meson wave functions that
include the effects of a high-momentum tail. This indicates that perturbative QCD
is relevant for describing the interaction of small-sized qq̄ pairs with nucleons.
Furthermore, the cross section for vector-meson production by transverse photons
is predicted to be suppressed by extra powers of Q2, and this is consistent with the
current data [55,56] for ρ-meson production. This suppression is a crucial feature
of the perturbative QCD predictions. Indeed, experiments at HERA (see the review
[57]) have convincingly confirmed the basic predictions of the perturbative QCD
calculation. At high Q2 there is a rapid increase with energy (corresponding to a
decrease in x) and the cross section for longitudinally-polarized photons dominates
over that for transverse ones.

Another central feature of the predictions of [51] is that, for fixed small values of
x and Q2 → ∞, the slope of the cross section for small values of t is determined
solely by the slope of the target gluon distribution, Bg. If the t dependence is
parameterized as dσ/dt = AeB(Q2)t , (11.43) yields

B(Q2) = Bg + 〈V |b4α2|γ ∗
L 〉/〈V |b2|γ ∗

L 〉, (11.44)

in which the second term (with a fixed value of α) is of the form of the effective
size (11.6). The predicted Q2 dependence of B, depends on the Q2-dependent
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Figure 11.5. Q2 dependence [52] of the slope parameter B of (11.44). The solid
curve shows that the slope for ρ production becomes the same as the one for J/	
production at large values of Q2. The data are from [58]. Figure courtesy of M
Strikman [59].

effective size of the qq̄ pair, not the size of the meson V . A comparison between
the predicted value of B and data is shown in figure 11.5. The agreement between
theory and experiment provides a dramatic confirmation that the wave function of
a longitudinally-polarized virtual photon acts as a point-like configuration.

11.6.2 Hard coherent processes with nuclei

The dominance of configurations of small size is a key feature of perturbative QCD
predictions for forward diffractive leptoproduction of longitudinally-polarized vec-
tor mesons with 1/2m N x � 2RA and for the coherent diffraction of pions into
two jets. Thus, even for a nuclear target, colour screening inherent in the cross
sections (11.1) and (11.2) implies that the coherent qq̄ point-like system can-
not interact. In leading-logarithmic approximation and in the light-cone gauge
only two gluons connect the pion–dijet system and photon–vector-meson system
with the nucleus, as illustrated in figures 11.2 and 11.4. Thus, in the appropriate
kinematic region, the hadronic system propagating through the nucleus suffers no
initial-state or final-state absorption, and the nuclear dependence of the π + A →
dijet + A and γ ∗ A → V A forward amplitudes will be approximately additive in
the nucleon number A. We can understand this remarkable feature of QCD from the



Colour Transparency 479

space-time arguments given above. The final-state vector meson or dijet is formed
over a long time given by (11.42) from a compact qq̄ pair which does not attain its
final physical size and normal strong interactions until it is well outside the target
nucleus. Although the vector meson (or two jets) suffers no final-state interactions,
the forward amplitude is not strictly additive in nuclear number because the gluon
distribution itself can be shadowed at small values of x . Thus one predicts [51,32]
an identical nuclear dependence for the forward vector-meson diffractive leptopro-
duction cross sections, diffractive production of dijets by pions, the longitudinal
structure functions F L

A (x, Q2), and the square of the gluon structure functions:

dσ
dt (π A → jet − jet + A)

∣∣
t=0

dσ
dt (π N → jet − jet + N )

∣∣
t=0

=
dσ
dt (γ ∗ A → V A)

∣∣
t=0

dσ
dt (γ ∗N → V N )

∣∣
t=0

=
[

F L
A (x, Q2)

F L
N (x, Q2)

]2

= g2
A(x, Q2)

g2
N (x, Q2)

. (11.45)

The nuclear gluon distribution is expected to be more strongly shadowed than
the nuclear quark structure functions at intermediate Q2 because of the larger
colour charge of the gluon. Numerical estimates [6,60,61] lead to gA(x, Q2

0)/
AgN (x, Q2

0) ∼ 0.85 for A = 12 and 0.6 for A = 200 at x = 0.01 and Q2 = 4
GeV2. However, at fixed x ∼0.01–0.03, shadowing substantially decreases with
Q2 due to scaling violation effects [60], which should lead to an effective increase
of transparency for ρ leptoproduction at fixed x with increasing Q. At higher ener-
gies, when the gluon distributions are very large, one expects the onset of colour
opacity. This can be checked by studying ultra-peripheral collisions at the LHC
[62].

Evidence for the influence of colour transparency has been obtained in a Fermilab
experiment [63] from the A dependence of the cross section for coherent J/ψ

photoproduction which finds σ ∝ A1.40. The coefficient in the exponential arises
from a calculation of the form of (11.35)–(11.37), using the nuclear radii of the
particular targets, assuming the absence of initial- and final-state interactions. More
recently, evidence for colour transparency effects has been reported, with moderate
statistics, in incoherent ρ0-meson production in deep-inelastic muon–nucleus scat-
tering [56]. The data appear to indicate the onset of colour transparency predicted
by perturbative QCD for incoherent γ ∗ A → ρN (A − 1)′ reactions. However, it is
important to distinguish whether the increase in transparency with increasing Q2

arises from the influence of an increase in the coherence length (11.4) or from the
effects of colour transparency [64]. At small values of ν, lc � RA any observed
vector meson is produced inside the nucleus and typically travels through only about
half of the nuclear thickness to escape. For large values of ν, lc � RA, the vector
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meson exists as a quantum fluctuation of the virtual photon before it encounters
the nucleus and must propagate through the entire nuclear thickness. This variation
in qq̄-nuclear interactions with lc has been observed by a HERMES experiment
[65]. Another HERMES experiment [66] reported a rise of nuclear transparency
with Q2 (with fixed values of lc) for both coherent and incoherent ρ0 production.
A JLab Laboratory experiment [67] plans a measurement of incoherent ρ0 electro-
production. The Q2 dependence of the nuclear transparency ratio for two different
targets with fixed coherence lengths will be measured. A correct interpretation of
vector-meson experiments depends on the ability to separate the effects of changes
in the coherence length from those of colour transparency [68,38]. Observing that
the amplitude for coherent nuclear forward diffractive ρ leptoproduction is approx-
imately proportional to A would provide dramatic evidence for colour transparency.

11.7 Quasi-elastic nuclear reactions

We have seen in sections 11.5 and 11.6 that the general concepts of colour trans-
parency in the perturbative domain are now firmly established for high-energy
processes: the presence of point-like configurations in vector mesons and pions and
the form of the small-size qq̄ dipole–nucleon interaction at high energies are well
established experimentally. It is important to observe the influence of colour screen-
ing and colour transparency in nucleon–nucleon interactions. The unique feature of
QCD is the prediction that small colour-neutral qqq configurations undergo reduced
interactions due to the cancellation of amplitudes involving different quarks.

As discussed above, colour transparency is the vanishing or near-vanishing of initial-
and/or final-state interactions in large Q2 nuclear quasi-elastic reactions. This phe-
nomenon depends on the formation of a small-sized object, a point-like configura-
tion, in two-body projectile–nucleon collisions. High energies are needed to avoid
the expansion of the point-like configuration, but one also needs the experimental
resolution to be sufficiently good to ensure that no extra pions are produced in the
interaction. Also it is difficult to enforce the requirement of exclusivity or semi-
exclusivity that maintains the coherent nature of the reaction. At lower energies,
one must take account of the expansion of the point-like configuration. The combi-
nation of uncertainties regarding the experimental kinematics and the treatment of
the expansion of the point-like configuration has led to doubts about the meaning
of some of the experimental results.

11.7.1 Time development

A point-like configuration produced in the interior of the nucleus expands as it
moves through the nucleus, as described in section 11.3 and subsection 11.4.3.
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Including this effect has been shown to be a crucial element in accurate calculations
[69,39,31,70–72] for laboratory beam momenta less than 20 GeV, for which quasi-
elastic measurements are possible.

We discuss some of the attempts to include this effect, using the (e, e′ p) reaction
as the simplest example. If we denote by Mi the amplitude to remove a proton
from the shell-model orbital i and detect an outgoing proton of momentum p, the
general expression (11.5) can be written as

M f i = 〈p |(1 + TSG0)J |i〉, (11.46)

where J is the electromagnetic-current operator. The soft ejectile–nucleus scattering
amplitude TS is obtained by solving the equation TS = U + U G0TS , where U
represents the interaction between the ejected object and the nucleus.

The old-fashioned approach is to treat the ejectile as a proton. Then the operator U
is the optical potential U opt , with

U opt ≈ −iσρ(R), (11.47)

where σ is the proton–nucleon total cross section and ρ(R) is the nuclear density,
R being the distance from the nuclear centre. For simplicity, the finite range of the
nucleon–nucleon interaction and the usually small real part of U opt are neglected.
The term −iσ represents the forward proton–nucleus scattering amplitude via the
optical theorem. If the proton wave function is obtained from U opt , the proton wave
is said to be distorted (from the plane-wave approximation). The use of such a wave
function in computing Mα is the distorted-wave impulse approximation, DWIA,
where the ‘impulse’ refers to the use of the free nucleon–nucleon cross section.
The notation DWIA is used by nuclear physicists, while the high-energy limits of
such calculations are termed as Glauber calculations.

The new feature that arises at large Q2 is that the ejected object may be a point-like
configuration that does not interact. If the energies are not sufficiently high, the
ejectile expands as it moves through the nucleus and the soft interactions must be
included. Farrar et al [69] argued that the square of the transverse size is roughly
proportional to the distance travelled, Z , from the point of hard interaction where the
point-like configuration is formed. Thus the scattering amplitude ‘σ ’ that appears
in the optical potential is replaced by one that grows as the ejectile moves in the
Z -direction

σ P LC (Z ) =
(

σhard + Z
τ

[σ − σhard]

)
θ(τ − Z ) + σθ (Z − τ ), (11.48)

where the expansion time τ of (11.7) was originally obtained with M2
X − M2

1 =
1.4 fm−2. Using σ P LC (Z ) is theoretically justified for small times, when the system
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is small enough so that the leading-logarithmic approximation to perturbative QCD
can be applied [69,7,6,73]. For very large times, σ P LC (Z ) reverts to the standard
hadronic cross section. In between these times, one may expect that (11.48) serves
as a smooth interpolation formula.

The time development of the point-like configuration can also be obtained by mod-
elling the ejectile–nucleus interaction as Û = −iσ (b2)ρ(R) (recall (11.1)) in which
an interpolation formula such as σ (b2) = σ0b2/〈b2〉 can be used. Then the average
of σ (b2) is consistent with the measured projectile–nucleon cross section.

One may assume a baryonic basis and compute the relevant matrix elements
of σ (b2) [39,31,70]. Jennings and Miller [39,31] used a harmonic-oscillator
basis and suggested that the Lippmann–Schwinger equation TS = Û (1 + G0TS)
be solved by computing the term of first order in Û and exponentiating the
result. Then U opt is modified by replacing σ by an effective cross section, σe f f ,
given by,

σe f f (Z ) = σ
(
1 − e−i Z/τ

)
, (11.49)

where τ is determined from the mass of the lowest radial excitation of the ground
state. Using the frozen approximation (τ → ∞) leads to σe f f = 0 and colour trans-
parency, but at low energies the old-fashioned optical potential emerges. Exponen-
tiation is an accurate approximation [74].

A sum-rule approach [75] used measured matrix elements for deep-inelastic scat-
tering to represent the hard scattering operator, measured diffractive-dissociation
cross sections to represent the soft scattering operator and some model assumptions.
The result can be expressed as

σe f f (Z ) =
∫ ∞

(M+mπ )2
d M2

Xρ
(
M2

X , Q2) (
1 − e−i(M2

X −M2
N )Z/2P

)
, (11.50)

where P is the magnitude of the total three-momentum of the ejectile and the
function ρ represents the product of measured matrix elements. All values of M2

X
contribute, so that some colour-transparency effects appear at low values of P , but
obtaining a nearly-complete cancellation requires higher values of P than does
the model (11.49). For small values of Z , σe f f is approximately linear in Z as
is σ P LC of (11.48) [32], so numerical differences between the results of using
(11.48) and (11.50) are much smaller than other uncertainties. Other approaches
are discussed in the review [76]. The minimum requirements for any successful
treatment of expansion are that the point-like configuration should not interact for
small values of Z , but interact with full strength for large values. Any search for
colour transparency at an energy for which two such treatments give very different
answers should be terminated.
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11.7.2 Electromagnetic interactions with nuclei

The use of the (e, e′ p) reactions has an appealing simplicity. Either the struck
proton is, or is not, transformed into a point-like configuration and it should be
straightforward to observe or rule out the effects of colour transparency. An intrepid
group of experimentalists made pioneering measurements in the NE18 experiment
at SLAC [77,78]. These experiments were later redone [79], with greatly improved
statistical and systematic uncertainties.

It is necessary to discuss kinematics. For a given Q2 and a virtual photon striking a
proton at rest, the kinetic energy of the outgoing nucleon, Tp is equal to the virtual
photon energy and for elastic scattering (x = 1) is

Tp = Q2

2MN
. (11.51)

This is only 4 GeV for the largest measured value of Q2. We may estimate an
upper limit on the expansion time (11.7) by using the lowest possible value of MX

in (11.7). This is that of the Roper resonance P11(1440) (because interactions of
the form of (11.1) and (11.2) do not flip spin), so that τ ≤ 4 fm. Expansion effects
mask the expected small effect that colour transparency yields as it turns on with
increasing Q2.

In the JLab experiment [79], coincident detection of the momenta of the recoil elec-
tron and ejected proton enabled the energy transfer, ν = Ee − E ′

e, to be determined.
The separation energy, Em , needed to remove the nucleon is Em = ν − Tp − TA−1,
where Tp and TA−1 are the kinetic energies of the final-state proton and (A − 1)
recoil nucleus, both of which could be determined. The momentum of the detected
proton is p and q is the three-momentum transfer. These quantities determine the
missing momentum pm = p − q. Under the plane-wave impulse approximation
(PWIA), the missing momentum pm is the same as the initial momentum of the
proton within the nucleus. In a non-relativistic PWIA formalism, the cross section
can be written as a product

d4σ

d E ′
ed�′

ed E pd�p
= Kσep S(Em, pm), (11.52)

where d E ′
e, d�′

e, d E p and d�p are the phase-space factors of the electron and
proton, K = |p|E p, and σep is the off-shell electron–proton cross section. The
spectral function S(Em, pm) is the joint probability to find a proton of momentum
pm and separation energy Em within the nucleus.

The definition of the transparency ratio is the same as in the earlier A(e, e′ p) colour-
transparency experiment [77,78], namely the ratio of the cross section measured
on a nuclear target to the cross section for (e, e′ p) scattering in PWIA. This ratio
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Figure 11.6. Transparency for (e, e′ p) quasi-elastic scattering from D (stars), C
(squares), Fe (circles), and Au (triangles). Data from [79] are represented by the
large solid stars, squares, and circles, respectively. Earlier JLab data (small solid
squares, circles, and triangles) are from [88]. Previous SLAC data (large open
symbols) are from [77] and [78]. Previous Bates data [83] (small open symbols)
occur at the lowest Q2 on C, Ni and Ta targets. The solid curves shown from
0.2 < Q2 < 8.5 GeV2 represent the results of Glauber calculations from [82] for
C, Fe and Au and [84,85] for the D.

is defined as a transparency T (A, Q), with

T (A, Q) =
∫

V d3 pmd EmYexp(Em, pm)∫
V d3 pmd EmYPW I A(Em, pm)

, (11.53)

where the integral is over the phase space V defined by the cuts Em < 80 MeV
and |pm | < 300 MeV. Yexp(Em, pm) and YPW I A(Em, pm) are the corresponding
experimental and simulation yields.

Spectral functions, generated from an independent-particle model, are used as input
to the simulation. This procedure overestimates the experimental yield because the
repulsive effects of nucleon–nucleon correlations are not included. To account
for this, a correlation correction was applied by multiplying T (A, Q) by factors
of 1.11 for 12C and 1.22 for 56Fe, as determined from calculations in [80] and
[81]. The data and related calculations are shown in figure 11.6. Experimental
systematic uncertainties of ±2.3% are included with the statistical errors, but the
effects of model-dependent systematic uncertainties on the simulations (typically
about 5%) are not displayed. The solid curves shown from 0.2 < Q2 < 8.5 GeV2

represent the results of Glauber calculations from [82]. In the case of deu-
terium, the dashed curve is a Glauber calculation from [84,85]. The only energy
dependence observed arises from the energy dependence of the elementary
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nucleon–nucleon cross section σ . This causes the fall in T (A, Q) as Q2 is increased
from low values of Q2 to about 2 GeV2. No evidence for the effects of colour trans-
parency is obtained.

A great variety of calculations were performed in response to the prospect of
learning about colour transparency, including [86], [31], [75], [71], [42] and [87].
For precise comparisons between different calculations it is necessary to compute
T (A, Q2) using the same kinematic cuts and the same ground-state wave func-
tions. Typically, there is an unavoidable model dependence of about 5%, arising
from using different bound state wave functions, nucleon–nucleon cross sections
and nuclear densities so that detecting colour transparency requires the observation
of a much larger effect.

A JLab experiment measured the nuclear transparency of the process γ n → π− p in
4He [89] for photons of energy between 1.6 and 4.5 GeV. Some barely perceptible
deviations from the DWIA Glauber calculations are seen. A higher-energy experi-
ment could provide a more fruitful search for the effects of colour transparency.

In principle, pion transparency can be determined by measuring pion electro-
production from nuclear targets [90]. Measurable effects of about 40% have been
predicted [91,92] for the kinematics of this experiment.

11.7.3 Rescattering conquers time development

The practical problem in looking for colour-transparency effects in experiments
at values of Q2 from about one to a few GeV2 is that the assumed point-like
configuration expands while propagating through the nucleus. Observing colour
transparency at intermediate values of Q2 requires finding a way to suppress the
expansion effects. One might use the lightest nuclear targets, where the propagation
distances are small. But then the transparency is close to unity so any effects of
colour transparency must be small. However, suppose a final-state interaction is
specifically required to produce a given final state. Then colour-coherent effects
would manifest themselves as a consequent decrease of the probability to reach
the final state, and one could observe an effect decreasing from the Glauber value
to zero. Thus, the measured cross section is to be compared with a vanishing
quantity so that the relevant ratio of cross sections runs from unity to infinity. The
first calculations [93] showed that substantial colour-transparency effects could be
observable in (e, e′ pp) reactions on 4He and 3He targets.

To be specific, consider the cross section for the reaction (ed → e′ pn) (in which
the proton carries the large momentum of the photon) for various momenta of
magnitude ps of the recoiling neutron. For small values of ps , easily accommodated
by the deuteron wave function, the Glauber rescattering mechanism should provide
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a small decrease in the cross section in the usual shadowing way by interfering
with the impulse approximation term, figure 11.7(a). But rescattering effects, figure
11.7(b), are the dominant source of large values of ps . Specific calculations [84,94,
95] showed that it is possible to separate the two kinematic regions by choosing two
momentum intervals for the recoiling neutron: (300–500 MeV) for the rescattering
region and (0–200 MeV) for the shadowing region. The rescattering mainly changes
the momentum of the recoiling neutron by giving its momentum a component
transverse to the direction of the virtual photon. Therefore both effects are enhanced
if the momentum of the recoiling neutron is transverse to the direction (z) of the
virtual photon. This corresponds to α = (Es − pz

s )/m ≈ 1. Figure 11.8 shows the
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expected Q2 dependence of the ratio

R = σ (ps = 400 MeV)

σ (ps = 200 MeV)
. (11.54)

Another idea involves pionic degrees of freedom. The pion cloud of a nucleon
is suspected to be responsible for many observed features, such as the relatively
large slope of the neutron electric form factor [96]. One can consider processes
in which pion exchanges cause the recoiling neutron to be detected as a �(1232)
in the d(e, e′ p)� reaction. An example is the quasi-elastic production of the �++

in electron scattering, the (e, e′�++) reaction. The initial singly-charged object
is knocked out of the nucleus by the virtual photon and converts to a �++ by
emitting or absorbing a charged pion. But pionic coupling to small-sized systems
is suppressed, so this cross section for quasi-elastic production of �++s should fall
faster with increasing Q2 than the predictions of conventional theories. Significant
effects of this new ‘chiral transparency’ [13] have been predicted [97].

Another interesting variation of the rescattering idea is in the planned measurement
of coherent vector-meson production from the deuteron [98]. Double scattering is
necessary to produce a vector-deuteron final state at large scattering angles. This
would be suppressed if the vector meson is produced as a point-like configuration.
Relatively small propagations distances are involved, so that expansion confusion
is avoided [99,100].

11.7.4 Proton-nucleus interactions

The first dedicated experiment seeking the effects of colour transparency was per-
formed at Brookhaven National Laboratory [101]. The cross sections for the process
A(p, pp)(A − 1) were measured for beam momenta pL of 6, 10 and 12 GeV. The
experimental setup used [102] was that for proton–proton elastic scattering at a
centre-of-mass angle of 90◦. Very stimulating and intriguing results were obtained.
In contrast with the prediction of the Glauber formalism that the ratio of the nuclear
to nucleon cross sections is small and independent of energy, the ratio rises rapidly as
pL goes from 6 to 10 GeV and falls at larger values of pL . The rise seems consistent
with the onset of the effects of colour transparency, but the fall-off was a surprise.

The original experiment is subject to several questions. For a hydrogen target,
the correct identification of an elastic-scattering event requires detecting only the
outgoing momentum of one proton and the angle of the other. This is not sufficient
for nuclear scattering because of the influence of the Fermi motion of the bound
proton, so the observed reactions do not correspond exactly to pp elastic scattering
at 90◦ in the centre of mass. Furthermore, the data were plotted as a function of an
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Figure 11.9. The transparency ratio of cross section to the partial-wave Born
approximation (PWBA) as a function of beam momentum pL and kz ≈ 0. The
data are those of [103–105]. The standard DWIA, or Glauber, calculation is repre-
sented by the lower solid line. The effect of colour transparency using a point-like
configuration (PLC) only is shown as the dashed line, while accounting for the
interplay between a point-like configuration and a blob-like configuration (BLC),
using the model of [106], and including necessary Fermi motion and time-evolution
effects according to [107] is shown as the upper solid line.

effective beam momentum, Pef f , related to the invariant mass of the two outgoing
nucleons. This is an incorrect treatment of the Fermi momentum of the initial
bound proton as that of a freely moving proton. It is more correct (and substantially
different) to display the data as a function of −kz , the component of the momentum
of the struck nucleon (in the beam direction) calculated in the PWIA.

The DWIA describes similar data at intermediate energies of E p = 1 GeV with
an accuracy of better than 20%; see [27] for reviews. However, the BNL data are
generally considerably above the DWIA/Glauber results of [101,69,31,108,42], as
shown in figure 11.9. The relatively-large value of dσ/dσ B indicates the presence
of a large transparency effect, but the drop at high energy led to new ideas [109,106].

Understanding these ideas requires knowing some features of the pp elastic scat-
tering data. The energy dependence of the 90◦ angular distribution is of the form
of R(s)/s10, where R(s) oscillates between 1 and 3 over the energy range of the
BNL experiment. Ralston and Pire [106] suggested that the energy dependence is
caused by an interference between a hard amplitude, which produces a point-like



Colour Transparency 489

configuration, and a soft one, which involves a large blob-like configuration. This
makes sense because it is difficult to imagine that the intermediate state can be
treated as a point-like configuration with all six quarks in the same location. The
idea of Ralston and Pire is that the blob-like configuration is due to the Landshoff
process [106]. Another mechanism is that of Brodsky and de Teramond [109], in
which the two-baryon system couples to charmed quarks (there is a small six-quark
configuration and a blob-like configuration that is a six-quark plus cc̄ object). This
suggestion originated from the observation that the mass scale of the rapid energy
variation in AN N [102] and in the measured transparency matches that of the charm
threshold. In both [106] and [109] the observed nuclear effect is claimed to result
from the suppression of the blob-like configuration in the nucleus. The observed
ratio is that of a pp cross section in the nucleus which varies smoothly with s and
the free pp cross section which has a bump. However, it is necessary to include
the effects of wave-packet expansion and proton Fermi motion [75,107,110,111]
to make quantitative calculations.

The interplay between the contributions of the point-like configuration and the
blob-like configuration leads to a drop in the transparency ratio. A description of
the drop obtained from these ideas was successful in reproducing the early data
[107], but many questions remained because of the uncertainty in the kinematics.

To answer the questions regarding kinematics, a new detector was developed so
that the momenta of both outgoing protons could be detected [103–105].These
newer experimental results largely confirmed the original ones. No effects other
than colour transparency can account for the rise in the ratio. However, it is difficult
to account completely for the fall-off. The new data and the 1997 predictions of this
author, applying the theory of [107], are shown in figure 11.9. Qualitative agreement
is achieved, but the drop in the ratio is not as steep as that of the data. Calculations that
describe the data [112,113] neglect the essential influences of expansion and Fermi
motion, so we cannot accept the results. It seems clear that including the effects
of colour transparency improves the agreement between theory and experiment.
However, the remaining disagreement indicates a lack of knowledge in handling
the details of calculating the (p, pp) cross section, such as the influence of nucleon–
nucleon correlations [108]), and perhaps some experimental difficulties remain. The
original incorrect use of Pef f was maintained in the newer work. A general remark
is that the electron-scattering experiments should be easier to understand.

A final comment concerns the relation between the searches for the effects of
colour transparency using (p, pp) and (e, e′ p) reactions. In the former, the emerging
protons have half the energy of the incident proton, and the effects of expansion are
very important. Thus colour-transparency effects originate in the initial state for
incident momenta greater than 6 GeV. According to the kinematic relation (11.51),



490 G A Miller

one should see the effects of colour transparency at Q2 ≈ 12 GeV2 for the (e, e′ p)
reaction. The present maximum value of Q2 for which (e, e′ p) data exist is 8.1
GeV2 [79]. Thus there is no contradiction between the BNL data that show signs
of colour transparency and (e, e′ p) data that do not. A discovery or contradiction
will be revealed when the energy of JLab is increased.

11.8 Assessment and outlook

The basic origin of colour transparency is that small-sized objects have small-sized
cross sections: recall (11.1) and (11.2). This occurs because of cancellations among
the effects of gluons emitted from different constituents of point-like configura-
tions. Point-like colour-singlet objects do not exchange gluons. The experimental
evidence confirming this ranges from the measured sizes of hadronic cross sections
to the observation of scaling in deep inelastic lepton–nucleon scattering.

The small size can be observed under suitable experimental conditions that maintain
the coherence needed to produce a small-sized object or point-like configuration
and operate at high-enough energy so that the object remains point-like as it moves
through the entire nucleus. The effect of colour transparency has been observed
in the coherent diffractive dissociation of pions into jets [45]: a ratio of nuclear
cross sections is about seven times higher than the one expected from the standard
DWIA/Glauber theory. Furthermore, the predictions of perturbative QCD for the
process γ p → ρ0 p have been verified. This makes it natural for colour transparency
to be expected as soon as nuclear targets are used for vector-meson production at
high energies. Indeed, there is already some evidence [63] and studies have found
tantalizing hints [56], but nothing as strong as a factor of 7 has been seen.

So far, the influence of point-like configurations and colour transparency has been
detected most clearly in reactions involving qq̄ pairs. Observing colour transparency
in reactions involving baryonic point-like configurations would verify a remarkable
feature of the SU(3) nature of QCD that the gluon fields coherently emitted by a
small-sized colour-neutral qqq system will also be cancelled. The first attempts
were the pioneering BNL (p, pp) experiments. Tantalizing evidence was seen at
laboratory momenta from 6 to 10 GeV [101,103–105]. However, there are difficul-
ties: (i) in understanding the experimental kinematics, (ii) with the theory of treating
a six-quark object as a point-like configuration and (iii) with treating various details
of the reaction theory. The hope of using a simpler process spurred efforts to use
the (e, e′ p) reaction along with quasi-elastic kinematics. No evidence for colour
transparency was observed for values of Q2 up to about 8 GeV2 [79]. However,
even the largest value corresponds to an outgoing proton kinetic energy of only
about 4 GeV, significantly lower than used at BNL.
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Establishing the existence of colour transparency for three-quark systems remains
an important goal. Increasing the beam energy at JLab to enable experiments at
values of Q2 of greater than 10 GeV2, or making careful kinematically-complete
measurements of the ed → e′ pn reaction, would be the best way to achieve this.

What would be the implications of a successful observation of baryonic colour
transparency? The first is that one of the unusual predictions of QCD would have
been verified. But there are a host of other implications related to the physics of
nuclei because the point-like configurations of a bound nucleon would be suppressed
compared to those of a free one. This provides one of the explanations of the EMC
effect [40], predicts a nuclear modification of the nucleon form factor and could
help theorists to understand better the interaction between nucleons separated by
small distances.

Colour transparency is one of the novel and unusual consequences of QCD. Exper-
imental verification that this phenomenon exists for both mesons and baryons is
an important part of the general program of testing QCD and learning how the
strong interaction really works. New phenomena such as the disappearance of the
pion–nucleus interaction at energies of 500 GeV have been discovered already,
and analogous features of baryon–nuclear interactions could be discovered using
precision electron scattering experiments at much lower energies.
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